An exciting hobby s... for everyone

everyday electronics

NEW EDU•KIT MAJOR

COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT．
BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER．
\star Transistor Eappicce Redio \star Slg Tha Tracer \star Signal Injector \star Transititur Tester NPN－PNP $\star{ }^{\star}{ }^{4}$ Trausinlor Push Poll Amplifier 太 ± 7 Transistor Ioudspeaker Radio Mw／LL Metronome \star Electronic Noise Generator \star Batteryleta Cryatal Radio \star One Trannistur Radio $\star 2$ Transintor Regeneratlye Radio $\star 3$ Transkntor Regenerative Radio \star Audinie Conthmity Teater \star Scsaitive Pre－Amplifier．

Total Building Costs

$\star 24$ Rexintors $\star 21$ Capacitors $\star 10$ Trankirtors \star 3i londspeaker \star Eurpliece \star Mics Baseboard $\star 311$－ Why connectors $\star 2$ Volume controls $\star 2{ }^{2}$ Slider 8 witches MW／${ }^{\star}$ Tunimg Condenser \star Roi $\rightarrow 61$ ard of slecring，etc．$\$$ Parts price list and plans 50 p （ HREE with parts）．
 MW2．LW．SW1，SW2，SW3，Trawier Band，VHF and Local 8 tastions also Aircraft Band，Bulle in Perrite Rod Aerial for MW／LW．Retractable，chrome
 pull output ualno 600 m Trancietora．Car terial and Tape Recording Bockets． 10 Transistors plus 3 Diodes Ganged Tuning Condenser with VHF section Separate coll for Aircraft Band．Volume on／ori．Wave Change and tone Control．Attrac－ tive Case in black with ollver blocking．Size
$9^{\sim} \times 7^{-} \times 4^{*}$ ．Eay to follow instructions and flagrams． Parts price list and plans 80 D （PREE with parts） Total building corts p $\mathbf{E 8 . 5 0 ~ P . ~ P . \& ~}$

 （ $+10 \%$ 下AT 22p）
TRANSONA FIVE

NEW
 EVERYDAY SERIES

 Build thi： series of deaignsE，V． 56 Transietorn and 2 diodes．MW／LW Powered bs $4 f$ volt Batters．Ferrite rod serlal，tonin condenser，volume control，and loudspeaker．Attractive case with red speaker sille．\＄tze $9^{\prime \prime} \times 5_{a^{\prime \prime}} \times 2 \frac{g^{\prime \prime}}{}$ pproz．
Parts price list and Plans 15p．Free with parte．
 Orerseas P \＆$P E 1 \cdot 20$（ $+10 \%$ VAT 27p）
E．V． 6 Case and looks at above， 6 Transistors and 8 diodee．Powered by 9 volt battery．Ferrite rod nerial， 3 loudspeaker，ete．，MWINW coverage．Pum Poil
Total Building Costs $\$ 3.60 \mathrm{P}$ \＆P
Orcreen $\mathrm{P} \& \mathrm{P}$ 21－25p）
（ $+10 \%$ VAT 36 p ）
E．V． 7 Case and looks as above． 7 Tranaictore and 3 dloder．Bix wavebands．MW／LW，Trawlef Band， swl， 8 Wg．SWS，powered by 9 volt battery．Fueh ull ontput．Teleacoplo peaker Part

ROAMER
 EIGHT Mk 1

NOW WITH
VARIABLE
TONE CONTROL

Tunsble Wavebands：MW1．MW2．LW，SW1，BW2． 8 W3 and Trawler Band．Built in Ferrite Rod Aerial lor MW and LW．Retractable chrome plated Tele－ ocople aerial for Short Wares．Puab puil output uring 600 mW transistors．Car weriel and Tape record mocketc． Selectivity wwich 8 transistors plus 3 diodes．Latest ganged tuning condenser．Volumefon／ofi，tuning，wave change and tone controla．Attractive case in rich chenge and thate whith grif blocking．Size $9 \times 7 \times$ in approx．Easy to follow instructions and diagrams． Farts price fist and plane 26p（FREE with parta）．
Total Euilding Costs $\mathbf{5 6 . 9 8}$ P P \＆
（Overmea P．\＆P．\＆1． 86 ） （Overmes P．\＆P． $\mathbf{z 1}$－86）
$(+10 \%$ VAT 69 p$)$
ferrite nod serial for MW／Lw．Retractable chrome plated teleacopic acrial for VHF and SW．Puoh FuL output using 600 m transistors． 9 Trannistors and 3 diodes，tuning condenser with V．F．F．section， ecparate coil for aircraft，tuotiug coil loudepeaker， Folume ON／OFF and wavechange control．Attractive all white case with red grille and carrylag atrap． Plans 30 p （FREE with parta）Parth Price list an

Components inclade
Tuning Condenser： 2 Yolume Controls： 2 SHider隹 Strip：Ferrite Rod Atrisl：Battery Clips：${ }^{2}$ Tar Liunds In Transiators： 4 Diodes：Reristors：Capanitors： from Haster tinit．enationk them to be stored for fuinre nse．Ideal for Schnolh．Educatioasal ．Inthoritics and all thone intercmed in radio construction． Farts price lirt and plans 25 （ FREE with parta）．
Total Building Cosis 55.50 PR 名 Oversead P \＆P \＆1．85） （ $+10 \%$ VAT 55p）

id A 1 Sis case and looky

Tunable Wavebanda：MW，LW，日W1，SW2，SWS Trawier band plut an Extra Medium wavehand for easler tuning of Laxembourg etc．Senaitive ferrite rod acrial and telemcople aerlal for Short Wavea．Sin． Bpeaker． 8 ctages－6 tranaistors and 2 diodes．Attrac－ ith polished metal incerts．Bize $9 \times \operatorname{BH} \times 2 \mathrm{fin}$ approx．Plans and parte price list 25p（PRRE with parta）

Total Building Costs $\{3.98$ PP A （Overseas F．\＆F．\＆i $\cdot 85$ ）
$+10 \%$ VAT 39f）

TRANS EIGHT

8 TRAESISTORS and 8 DIODES

6 Tunable Wavebands：MW，LW， SW3 and Trawler Band．Sensitive ferrite rod aerial for M．W．and L．W．Telescopic acrial for sbort Waves．3in． Spenker． 8 improved type trans． istors plus 3 dioies．Attractive case In black with red grille，dial and black mobs with polished thetal inserts．size $9 \times 3 \times 2$ ， 20 ．approx．Truoh puil drive a larger spcaker．Parte price liat and plans 25p（PREE wlth parto）．

Total Bullding Costs
 （Overnean P \＆P \＆1，25）
 £4•48
 ris

（ $+10 \%$ V．A．T．44p）

RADIO EXCHANGECO

61a HIGH STREET，BEDFORD，MK40 1SA

Tef 023452367
Reg．no． 788372

Name
Address
（Dept．E．E．5．）
\rightarrow ロー

The Catalogue you MUST have!

Only 55 p. plus $22 p$ past pand

POST THIS GOUPON

with cheque or P.O. for 77p.

COMPLETE＊ STEREOSYSTEM

£51．00

40 Watt Amplifier．
Viscount Ill－R102 now 20 watts pet channei．
System I includes．
Viscount III amplifier－volume．bass．treble and balance controls，plus switches for mona／ steieo on／off function and bass and treble filters．Plus headphone socket． Specification
20 watts per channel into 8 ohms． Total distortion＠10W＠ $\mathrm{ikHz} 0 \cdot 1 \%$ ．P．U． 1 （for ceramic cartridges） 150 mV inta 3 Meg. P．U． 2 （for magnetic cartridges） 4 mV ＠ 1 kHz into 47 K ． equalised whthin＝1dB R．I．A．A．Radio 150 mV into 220k．（Sensitivities given at full power）． Tape out facilities：headphone socket，poiver out 250 mW per channel．Tone contro／s and filter characteristics．Bass：$\div 12 \mathrm{~dB}$ to -17 dB \＆ 60 Hz ．Bass filter： 6 dB oer octave cut．Treble control：treble－ 12 dB to -12 dB ＠ 15 kHz Treble filter： 12 dB per octaye．Signal to noise ratio：（all controls at max．）－ $58 \mathrm{d8}$ ．
Crosstalk better than 35 dB on all inguts Overload characteristics better than 26 dB on all inputs．Size approx． $13_{4}^{3-} \times 9^{-} \times 33_{4}^{3-}$ ．
Garrard SP25 deck，with magnetic cartridge． de luxe plinth and hinged cover．
Two Duo Type II matched speakers Enclosure size approx． $17 \frac{1}{2}^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime} \times 6^{\circ \prime}$ in simulated teak．Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter Complete System $£ 51.00$

f69．00

System II
Viscount ill amplifier（As Svstem I\} Garrard SP． 25 （As System I）
Two Duo Type IIIA matched speakers－ Enclosure size approx． $31^{\circ} \times 13^{\prime \prime} \times 11^{\prime \prime}$＂． Finished in teak veneer．Urive units approx． $13 \frac{1^{\prime \prime}}{2} \times 8 \frac{1}{4}{ }^{-1}$ with $3 \frac{\pi}{2}^{-} \mathrm{HF}$ speaker．Max．power 20 watts． 8 ohms．Freq．range 20 Hz to 20 kHz ．

Complete Sysţem．f69．00
PRICES ：SYSTEM 1
Viscount III R 102 amplifier $\quad £ 24-20-\mathbf{f 1 p} p p$ 2 Iuo Type II speakers
$\mathrm{f} 14 \cdot 00+\mathrm{f} 2 \cdot 20 \mathrm{p}$ \＆p
Garrard SP25 with
MAG．cartridge de luxe plinth
and hinged cover
$\mathbf{£ 2 1 . 0 0}+\mathbf{E 1 . 7 5 p} \boldsymbol{f} p$.
total f 99.20
Available complete for only $£ 51.00+£ 3.50 \mathrm{p} . \& \mathrm{p}$
PRICES ：SYSTEM 2
Viscount R 102 a mplifier $\quad \mathrm{f} 24 \cdot 20+\mathrm{f} 10$ \＆p 2 Duo Type III A speakers $\quad \mathbf{f 3 9 . 0 0}+\mathbf{f} 4.00 \mathrm{p} \& \bar{p}$
Garrard SP25 with
MAG．cartridge de luxe plinth $£ 21.00^{\circ}+£ 1.75 p$ of． and hinged cover

$$
\text { total } £ 84.20
$$

Ayailable complete lor only $£ 69.00+£ 4 p \& p$ ．

QUALITY SOUND＊

 FOR LESSTHAN $£ 19 \cdot 00$Stereo 21 easy to assemble audio system kit，－no soldering required．Includes：－
BSR 3 speed deck．automatic，manual facilities together with ceramic cartridge．
Two 8＂${ }^{\prime \prime}$ 5＂speakers with cabinets $^{\text {s }}$
Amplifier module．Ready built with control panel．speaker leads and fuli，easy to follow assembly instructions．

For the technically minded：－
Specifications：
input sensitivity 600 mV ：Aux．input sensitivity 120 mV ：Powet output 2.7 watts per channel： Output impedance $8-15$ ohms． Stereo headjohone socket with automatic speaker cutout． Provision for auxiliary inputs－radio．tape．etc．，and outputs for taping discs．Overall Dimensions．Speakers approx．
$15 \frac{1^{*}}{} \times 8^{\prime \prime} \times 4^{\prime \prime}$ ．Complete deck and cover in closed position approx． $15 \frac{1}{2}^{*} \times 12^{-} \times 6^{\circ}$ ．Complate only $£ 18.95+£ 1.00$ Extras if required．
p \＆p Optional Diamond Styli $£ 1.37$
Specially selected pair of steseo headphones with individual level controls and padded earpieces to give optimum performance， $\mathbf{£ 3 . 8 5}$ ．

8TRACK CARTRIDGE PLAYER＊

Elegant selt selector push button player for use with your own stereo system．Compatible with Viscount III system．the Stereo 21 and the Unisound module． Technical specification． Mains input． 240 V ，Output sensitivity 125 mV Comparable unit sold elsewhere at $£ 24.00$ approx． Yours for only $£ 10.95+90$ p．p\＆
 BUILD YOUR OWNSTEREO AMPLIFIER＊
for the man who wants to design his own stereo －here＇s your chance to start，with Unisound－ pre－amp．power amplifier and control panel．No solderag－just simply screw together． 4 watts per channel into 8 ohms．Inputs： 120 mV （for ceramic cartridge｜．The heart of Unisound is high efficiency I．C．monolithic powes chips which ensure very low distortion over the audio spectrum． 240V．AC anly．$£ 7 \cdot 64+55 p . p \& p$

AMPLIFIER

Reliant Mk IV Mono Amplifier．Ideal for the small disco or house parties．
Outputs 20 watts R．M．S．into 8 ohms \｛suitable for 15 ohms）－
inputs＊ 5 Electrically Mixed Inputs．＊3 Individual Mixing controls．＊Separate bass and treble controls common to all 5 inpats．
＊Muxer employing F．E．T．（Fieid Effect Transis－ tors）．＊Solid State Circuitry．＂Attractive Styling． INPUT SENSITIVITIES
1）Crystal Mic or Guitar 9 mV ．2）Maving coit Mic or Guitar 8 mV .3$)$ 4）．5）Medium output equipment（Gram．Tuner．Moartor，Organ，etc．） －all 250 mV sensituvity．
AC Mains 240 V ．operation．
Size approx． $12 \frac{\ddagger}{2}$ ins $\times 6$ ins $\times 3 \ddagger$ ins $\mathbf{f 1 3 . 5 0 \div 6 0 p .}$ postage \＆packing．

A suitable 3 speed tape deck，less heads． Caters up to $5{ }_{4}^{3}$ ins．spools．240V AC mains． Unused but store soiled hence no warranty．$£ 4.00+\mathbf{£ 1 . 0 0 p}$ \＆p

THE ULTIMATE COMPLETE SPEAKER SYSTEM EMI LE 315

Recommended retail selling price, $\mathbf{£ 8 6}$-00.
Dur price $\mathbf{5 4 5} \mathbf{0 0}+$ £3.50 postage \& packing.

A professionāl standard five way speaker system with enclosure giving top quality performance.
Enclosure Dimensions app̄rox. ($3 \mathrm{ft} . \times 2 \mathrm{ft} . \times 1 \mathrm{ft}$.). Drive Units
Hand built - $15^{\prime \prime}$ diameter bass with $3^{\text {" }}$ voice coil, - two 5" diameter Mid Range units. -two $3 \frac{1}{4}$ " HF. units. plus matching crossover panel with two variable potentiometers for mid and high frequency adjustment. Powder Handling Continuous rating 35 W rms., Peak power rating 70 W .
Frequency Response $20 \mathrm{~Hz} 20,000 \mathrm{~Hz}$. Impedance 8 ohms.

EMI SPEAKERS FANTASTIC REDUCTION

15-14A/780. Bass unit on a rigrd diecast chassis. Superior cone material handles up to 50 watts RMS. and is treated to give a smooth frequency response. Resonance 30 Hz . flux density 360.000 Maxwells. Impedance at 1 kHz is 8 ohms. 3^{7} voice coil.

Recommended retail price f40. 80 .
OUR PRICE $£ 18.70+$ f1-50p \& p

950 Kit - Five matched speakers and crossover unit for handling up to 45 watts, frequency response from 20 to $20,000 \mathrm{~Hz}$.
Huge $19: \times 14^{\prime \prime}$ (approx.) high efficiency Bass-Speaker with 16,500-gauss magnet built on a heavy diecast frame.
The four 10,000 gauss iweeters. each $3!^{-}$dia. approx., are fed by the crossover which eritically adjusts signal for maximum fidelity. Impedance at 1 kHz is 8 ohms. Bass coil 2^{2}. others 0.5°. Recommended list price $£ 44.00$.
OUR PRICE $£ 25 \cdot 00+$ £1-50p\&p Special Offer.

.

Radio and TV Components (Acton) Ltd.

21 High Street, Acton, London W3 6NG(E)

323 Edgware Road, London W2
Edgware: 9 a.m. $-5.30 \cdot \mathrm{p}$.m. Half day Thurs.
Acton: 9.30 a.m. -5 p.m. Closed all day Wed.

CRESCENT wan IT
11， 15 \＆ 17 MAYES ROAD，LONDON N22 GTL 8883206
10% VAT TO BE ADDED TO ALL GOODS E CARRIAGE PRICES

LOUDSPEAKER A top quality speaker Ideal where amall nize in import－ by E．M．I．for a mell－ mown hi－\quad met
maker．Size： 7 in ．x tm．Impedance： 8 ohma．Flax： 38,000 ．Max．Free range：90Hz to 12kRs．Power handling：6W． Unbeatable．Frice：E1－60．Free postage on this itera． CRESCENT 9.300 ．DISCO CON－ TROL PACK．
A contral unit which when connec－ ted to twin decks makes a diaco of protessional quallity．We supply s professional quality．Wo aupply a manst front panel whieli incorporstes controle．fritech and input sockets．The control＇modnle，I．C．construction incorporating，mixing，pre－mpp and head－phone listening ampliner －Inpota inclade Mic．Tape／Casette and Trin Decks．－Controls include Mic．Tape，Rech Deck and P．F．L．Full instractiona are Included with every Pack MONO－ 514 plus 20 PR．STEREO－ 177 plos 200 PP．Gend a R．A．N，for more Information． 8TEREO／MOTO ERADPRONE YOLU． Plug Biereo phoaes into tate control box and you then incorporate a right and mono switch．Complete with atereo Jack plug and 2 m asble．
A Bargain at $\$ 1$ ．Plus 10 p P．\＆P．
BARGAIN BOARDS

Components galore for the experimenter Ex computer boards with Rosiators．

Capacitors and unoful Trundistors－at least translstors per bosard．
5 BOARDS $21 \cdot 00$, P．\＆P．Fre EOY VOLTAGE AMPID 5 transistor emplititer complete FIER Fow onily at
lus 13 P P．\＆P ．
SWO WAI
ADAPTOR
Stereo
Stereo jack plug to two tereo line sockets com－ plete with 110 mm of cable．For plogging two stereo finputs into one．A Bargain zi（ 5 p phos $5 p$ P\＆P．
 for 9 V d．c．and s．e．supplies． output．
witput．
plifer will DMP Inpat－this am－ player，baby alarta，
pisser，haby al．

＂CREACENT＂CATALOGUE If you are a oonstrwetor you send 20 p inc．Podtere．
YMI LOUDSPEAKERS
 $91^{\circ}(57 \mathrm{~mm}) 80 \mathrm{abm}-50 \mathrm{each}$ Please Inciude 5p．P．\＆P．up to 3
Mint－Londipaskers MIni－Loudspesker

MAIL ORDE゙R
DEPT．
No． 11 LOMDON N22 ${ }_{6} 122$

RI－VOLF BATYREY ELIHETOR

 Enablee you to work your transiator radic，amplller，or asusetie，etc．from diminstor Jnst by moring compaet you can elect the voltago you require－6r，7tr volte．This means an your cranistor power pack applleationa can be bandled bs thln one palt． Approx．gize： $2 t^{*} \pm 2 \frac{1}{*}^{\circ} \times 33^{\circ}$ ．OUR PRIGE－$22750+10 \mathrm{p}$ ．F．\＆ F ．Same model maltably wired for the Pbilips Cematte－ $000+10 \mathrm{p}$ ．P．\＆ P ．

CEPSGENT＂ 100 WAMESLS ALF PURFOSE A RLWIER U．8ULLD． 15
We ouppiy the three modnles Ior sou to bulld thit Disco－ Group－P．A．amplifer toto the cebitnet of your cholce．

大 THE POWHE AYP TODULE

 42100 W170W．5．ms．＊q．wave 300 W nstantaneous peak into 8 ohm 60 W into 16 ohm）． 814.88 carr． 45 p ．

大 THE EREAMP YODOLS Pour control pre－amp．Vol． Resigned to drive most ampli－ Designed to drive most ampli－ 38.96 carr．25p．
＊THE POWER SUPPLY CODULE P8100 Is supplied complete with the mains tranaforwer．29－66，carr． 50p．Complete fixing mitrac－ thon are supplied and no tochnical knowledge is reguired to connect the three ready wirdid modales．A fantastic bargain． If you purchase all three modules．285．carr．75p．Bend this or our ready built ampllbars

$200 / 250 \mathrm{~V}$ Balls RALI

 RELAYHeary duty coll．All new and unused D．P．D．T． mains relays 50 ＋V．A．T．Cacr． Free．Special quantity price： 240 per 100 relinge．

＂CRESCEET

 BKAT BRITE＂ SKAKLE CHANNEL SOUND TO MGET UNTT This fantastic little box approc． $5^{\circ} \times 3^{\omega} \times 21$connected to the outpat of a connected to the output of a sound sounce from 1 to 100 watt produces a peycbedelio light diaplay of up to 1000 watts． control the unit js fused and can not harm your armplifier A Bargain at 87.50 plus 10 p P．\＆P．

MAITS 2RASSFORIER Pased Primary 240F．Becondisy 2207 （9） 50 mA ． 6.2 V （3）1A． Thls transformer is rande to a very high small sure：2in x

TRI－FOLT CAB COIVERTER Enablea Fou to woth
your Tranalator Radio your Rranaistor Radia， Amplifer or Canacte etc．
from the 12 volt car supply positive or neg． earth．
Thin converter sapplies 6．7t or 9 volte apdis tranistor regalated．AD： prox size $23^{\circ} \times 35^{\circ} \times 2^{2}$ reay money to fit and a real monsy saving device
for $48.50+10 \mathrm{p}$ ．P．\＆P

COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR OUR SHOPS ARE OPEN ALL DAY FROM 9 A．M．TO 6 P．M． 6.30 P．M．ON FRIDAY （WE CLOSE ALL DAY THURSDAY）
13 SOUTH MALL，EDMONTON，N． 98031685

1 pole 12 wity 2 pale 2 way 2 pole 3 way 2 pole 4 way 2 pole 6 way 3 pole 4 Way

4 polc 3 way 18 peach．Flease toc． Sp P．\＆P ．Uf to 3
switches switches． $\square 50$

POTEXTIOMETRARS All types $1^{\prime \prime}$ and lens diameter． 5K Los or 5K 10K Lin less 10K 25K Switch 25 K Lew 50K 100 K 2pea， 100 K Switch 100K 250 K Double 250 K 40 p ． 250 K Double 250 K each
500 K 1M 5witch 1M
2M 24pex，
Up to ${ }^{3}$ Pota．Flease add 5p．$P,{ }^{2} P$

Brtush made Bangr of
的位－ $11^{\circ} \times 1^{\circ} \times \mathbf{f}^{\circ}$ All two changeorers with 250 V ． $1-3 \mathrm{~A}$ contacto and saitable for fittlag on－1m Veroboard．
Type volts Current Ohms 27／A 12v 173／A 700Ω $\begin{array}{llll}21 / A & 125 & 28 \mathrm{M} / \mathrm{A} & 630 \Omega \\ 12 / \mathrm{A} & 6 \mathrm{~F} & 333 / \mathrm{A} & 185 \Omega\end{array}$ 80p esch． Please inc
3 Belays．

learn how to become a radio－amateur in contact with the whole world．We give skilled preparation for the G．P．O．licence
变
Free！
Brochure，without obligation to：

BRITISH NATIONAL RADIO \＆ ELEGTRONICS SCHOOL P．O．Box 156，JERSEY

 NAME ADDRESS
YOU AIN＇T HEARD NOTHIN＇YET f ！

until you tune in to stereo perfection with the＇varicap＇

Approx．Size $8 \frac{2}{8}^{\prime \prime} \times 2 \frac{2 \pi}{4 \prime} \times 6 \frac{1^{\prime \prime}}{}$

Features include push button＂Spot On＂tuning，with up to S preset stations（no difficult cuning dial and drive cord）．Easy＂no problem＂construction，requiring only a few simple setting up adjustments with a D．C．Voltmeter． Uses NEW pre－set modules for R．F．and I．F．circuits－no circuit alignment．High efficiency Integrated Circuic Phase Lock Loop Decoder for perfect stereo reception，with stereo lamp indicator．TOTAL KIT price only $£ 28.50$ including V．A．T．and postage．With Fibre Glass P．C． Board，neat slimline teak veneered cabinet with brushed aluminium front panels，push buttons etc．
All parts available seDarately．
IDEAL FOR USE WITH THE＂TEXAN＂．＂GEMINI＂ AND ANY GOOD QUALITY STEREO AMPLIFIER． Please send large S．A．E．for full details．
228．ECCLESALLROAD．SHEFFIELD S11 8PE Telephone No．（0742） 668888
THE COMPONENT CENTRE OF THE，NORTH

-
 SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

Telephone Comer

COMPLETE TELEPHONES Normal Household Type

TELEPHONE DIALS

Standard Poss office type. Guaranteed in Only $271 / 20$ worting order

Tested and Guaranteed Paks

 55p
B31 10 Red Swliches. 1 R Iong: bre
B99 $200 \begin{aligned} & \text { Mixed Canacifiors. } \\ & \text { Aproxa, ouantity }\end{aligned}$ Approx. quantity
contlod by weighi
H4. 250 mixed Resislors: Approz quantily countod by welght
H35 100 Mixed Diodes, Germ, Gold bonded, etc.
Marked and Unmarke
H38 30 Short lead Trangis stors, NPN Slliteon Plasana type

55
 Flops BMC 945
H41 $2 \begin{aligned} & \text { sill Power trasisitors } \\ & \text { comp oair } \\ & \text { BD } 131 / 1 / 32\end{aligned}$
O Unmarked Untested Paks

$$
\begin{aligned}
& \text { B6 } 150 \text { semanium Diodes } \\
& 886100 \text { sll olodes sub. min. }
\end{aligned}
$$

Make a rev counter
for your car

The 'TACHO BLOCK'. Thls eneapsulated block will.turn any $0-1 \mathrm{~mA}$ moter into a lincar
and accurate rev. counter for any car with and accurate rev. normal
system.

Ex GPOP Push Button Intercom Telephones

Exactly as internal telephone systems still in everyday use where auttomatic Internal exchanges
5,10 or 15 ways. Complete with clrcults and Instructions. Necessary 24 pair cable 22p per yard. Price of each instrument is Independant

of the number of ways.
 $£ 2.75$ p. $38 \frac{1}{2} p$
 PERINSTRUMENT

Cable can be sent by Parcel Post. Post and Packing per 50 yds. 73ip.
Extension TelodP 550.
E1-37E for 2. P.\&P. 55 p
These phones are extensions and do not con-
A Cross Hatch
Generator $£ 3$. 85 pasid
A complete kit of parts inciuding Printed Circuit Board. A faur position switeh gives X-hatch, Dols, Vertical or Horlzontal lines. Integrated Circuit design for easy construction and reliablity. A project in the Sept. '72 edition of Televisign. - Sunfect to Ayshlabllity

TESTED \& GUARANTEED

H65 4 40361 Type NPN Sill translstors 55 p
H66 4 to36- Type PNP Silitransistors 55 p
UNTESTED' UNMARKED
${ }^{H 67} 10 \begin{gathered}3819 N \text { Channel FETs } \\ \text { plastic case type }\end{gathered}$

Over 1,000,000 Transistors

in stock

We hold a very large range of fully marked tested and guaranteed transistors, power transistors, diodes and rectifiers at very competitive prices. Please send for free cataiogue.
Our very popular, 4p transistors
TYPE "A", PNP Silicon alloy, TO-5 can
TYPE "B" PNP Silicon, plastic encapsulation TYPE "E", PNP Germanlum AF or RF
TYPE "'G". NPN Silicon plastic encapsulation TYPE "H" PNP silicon similar ZTX 500 range

8 VARLOUS TYPES
P\&P $27 t \mathrm{p}$

High Speed Magnetic

Counter

4 digit (non-reshi)

Plastic Power Transistors
Now in TWO

RANGES

These are 40W and 90W Silicon Plastic Power Transistors of the very latest design, available in NPN or PNP at the most shatteringly low prices of all time. We have boen selling these successiully in quantity to all parts of the world and we are proud to offor them under our Tested and Guaranteed terms.
Range 1. VCE. Min 15. HFE Min 15

 Complementary pairs matched for galn at 3 amps. 11p extra per pair. Please state NPN or PNP on order.

LM380 Audio i.C. as featured in Practical Wireless December issue complete with application data $£ 1 \cdot 10$

INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices (from 11p each). These are all listed in our FREE Catalogue. see coupon below.

METRICATION CHARTS now avallable This fantastically detailed conversion calculator carries thousands of classified references between matric and British (and U.S.A.) measurements of length, area, volume. Hiquldmeasure. weights etc

LOW COST DUEL IN LINE I.C. SOCKETS 14 pin type at 161p each $\}$ Now new low profle 16 pin type at $18 p$ each $\}$ type

BOOKS

We have a large selection of Reference and Technical Books in stock.

Send for lists of publications

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at east 30 really high quality lactory marked \& Rectifiers mounted on Prinled Circuit Panela. dentification Chart supplied to glve some information on the Transistors.

11p P \& P on this Pak.
Tlease ask for Pak P.1. only 55 p

Fiease send me the FREE Bi-Pre-Pak Catalogue.

NAME

ADDRESS

ALL PRICES INCLUDE 10% VAT
MINIMUM ORDER 5OP. CASH WITH ORDER PLEASE. Add 11p post and packing per order
OVERSEAS ADD EXTRA FOR POSTAGE BUY THESE GOODS WITH ACCESS

?

MULLARD POLYESTER CAPACITORS C280 SERIES

250 V P.C. Mouncing: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \frac{1}{3} \mathrm{p}, 0.068 \mu \mathrm{~F}$,
 15p. 1-5 $\mu \mathrm{F}, 23$ р. 2-2 μ F, 26p.
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.02 \mathrm{~m}_{\mu} \mathrm{F}, 0.033_{\mu} \mathrm{F}, 3 \frac{1}{4} \mathrm{P} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \frac{1}{3 p} \mathrm{~F} .0 .15 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{P}$. $0.22 \mu \mathrm{~F}, 8 \frac{1}{2} p .0 \cdot 33 \mu \mathrm{~F}, 12 \mathrm{p}-0.47 \mu \mathrm{~F}, 14 \mathrm{p}$
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \frac{1}{\mathrm{I}} \mathrm{p}, 0.1 \mu \mathrm{~F} .4 \frac{1}{\mathrm{y}} \mathrm{D} .0 .15 \mu \mathrm{~F}$, 5p, $0.22 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 \cdot 47 \mu \mathrm{~F}, 8 \frac{4}{4} \mathrm{p} .0-68 \mu \mathrm{~F}, 12 \mathrm{p}, \mathrm{i} \mu \mathrm{F}, \mathrm{i} 4 \mathrm{p}$.
MINIATURE CERAMIC PLATE CAPACITORS $50 \mathrm{~V}:(\mathrm{pF}) 22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$.
$560,680,820,1 K, 1 K 5,2 K 2,3 K 3,4 K 7,6 K 8,(\mu F) 0 \cdot 01,0 \cdot 015,0 \cdot 022,0 \cdot 033,0-047$, $2 \frac{1}{2} \mathrm{p}$. each. $0 \cdot 1,30 \mathrm{~V}, 4 \frac{1}{\mathrm{p}} \mathrm{p}$.
POLYSTYRENE CAPACITORS I60V 5%
(pF) 10. 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300 ,
4700. 4p. 6800. 10,000, 4tp.
 VALUES AVAILABLE-E12 Serics only. (Nec prices above 100.)

PRESET SKELETON POTENTIOMETERS

MINIATURE 0.25 W Vercical or horizontal 6p each IK. $2 K 2$, $4 K 7$. IOK. esc. Up to IMg 5 .05W Vercical. 100 n co 220K Ω 5p each

B. H. COMPONENT FACTORS LTD.

(E.E.) 61 CHEDDINGTON ROAD. PITSTONE, NR. LEIGHTON BUZZARD, BEDS, LUT 9AQ Tel. : Cheddingeon 668446 (Sed. Code 0296)
PLEASE WRITE FOR FREE CATALOGUE

COMPONEVTS

MAIL ORDER ONLY S.A.E. FOR ALL ENQUIRIES

ELECTRONIC COMPONENTS FOR E.E. PROJECTS

ELECTRONIC YMETER APR. $74 £ 6.40+10 p P$ \& P
SPEED GUARD Mar. $74 \quad E 3.60+10 p P$ \& P

SLIDE TIMER FEB. 74
FETSET JAN. 74
$\mathbf{6 2 . 1 0}+10 p P \& P$
$62.00+10 p P \& P$
$62.10+10 p P \& P$
$\mathbf{6 1 . 5 0}+10 p P \& P$
$\mathbf{6 4 . 5 0}+25 p P \& P$
$64.10+30 p P \& P$
$\mathbf{f 1 . 5 0}+5 p P \& P$
BETA FUZZ-TREBLE JAN. 73
(For Beta Fuzz-Treble, Component board components only)
BETA TRANSFORMER
$1.85+5 p P \& P$

ENGINEERS

LRA:

YOURSELF FOR A BETTER JOB wim

MORE PAY!

Do you want promotion, a better job. hikher pay? "New Opportunities" shows you how to set them through a low-cost B.I.E.T. homestudy course. There areno books to buy and you can pay-as-you.

The B.I.E.T. guide co success should be Sead by every ambitious entincer. now. No ooligation and nobody will cal on you It could be the best thing you on you It

AUDIOTRONIC Model ATM5
dewer movement. case with edgwise Rempes; $0-3 / 15 / 350$ Penges. $0-3 / 15 / 350$
$300 / 1200 \mathrm{AC}$
12500 . (2500 opr). $0.6 / 30$ $300 / 600 \mathrm{~V}$ DC
(5000 opv). 0.300 Resistance: $x 10 \mathrm{~B}$ Restrance: $x 10 \mathrm{~g}$
$\times 100.10$ to +16 ds. test leads and data OUR PRICE E3.50 P\&P 15p

MODEL U437 MULTINAETER $10,0000 \mathrm{pv}$. A first manufactured in USSR to the highest 2 trendares. Rarger $25 / 10 / 50 / 250$ $500 / 3000 \mathrm{~V}$ AC DC current 100. $10 / 10$ al 1/10/100mA/TA. $3 / 30 / 300 \mathrm{k} / 3 \mathrm{Meg}$.
ohms. Complete with batteries, leadry instructions and a sturdy stee OUR PRICE £4.95 P\&P25p

MOOEL HIOKI 730X 30.000 opv. Overload protection. $6 / 30 / 60 / 300 / 800$. 1200 V DC. $12 / 60$) 120 600/1 200 VAC $50 / \mathrm{mA}$ 30 mA $2 \mathrm{~m} / 300 \mathrm{~mA}$ $2 \mathrm{~K} / 200 \mathrm{~K} /$ 10to 63 dB . OUR PRICE $£ 7.50$

 P\&P15p.

J4324 MULTIMETER

High sensitivity,
lood protectes.
$20,000 p^{2}$ Ranger $0.6 f 12 / 3 / 12307$
$60 / 120 / 600 / 1200 \mathrm{~V}$ 60/120/600/1200V
DC. $3 / 6 / 15 / 60 / 150 /$ 300/600/900V AC. Current: $0.06 / 0.6 /$
$6 / 60 / 600 \mathrm{~mA} / 3 A D C$.
$0.3 / 3 / 30 / 300 \mathrm{ma}$ 3A AC. Resistence
 Mohms. Decibels. -10 to +12 dB . Size $167 \times .98 \times 83 \mathrm{~mm}$. Supplied comp-
tote with test leads, spore diode and iste with tess
instructions.
OUR PRICE $\mathbf{E 8 . 0 0}$

TMK MODEL TW50K

10 Meg ohms. -20 to +81.5 ciB OUR PRICE 88.50 Pg, 17p

U435 MULTIMETER $20,000 \mathrm{pv}$, Owarload

 grotectigd. Ampers:$75 \mathrm{mV} / 2.5 / 10 / 251$
$100 / 250 / 500 / 1000 \mathrm{~V}$ DC. $25 / 10 / 25 / 100 \mathrm{~V}$ Curiont: $500 \mathrm{~A} 1 / \mathrm{AC}$. 25/100mA/ $5 / 2.5 A$
$0.5 / 25 / 100 \mathrm{~mA}$ DC. $5 / 25 / 100 \mathrm{ma}$
$0.5 / 2.5 A$ AC. Resigt-
ohmat. Size: $205 \times 110 \times 84 \mathrm{~m}$ plied complete with leads, crocodile
elips and steel ewrrying case. OUR PRICE $\mathbf{E 8 . 7 5}$ P\&P 20p

U4312 MULTIMETER

KAMOOEN 72.200 Multitester

$0 / 75 / 150 / 300 / 750 \mathrm{mV} / 1.5 / 3 / 7.5 /$ 15/
$305 / 5 / 150 / 300 / 750 \mathrm{~V}$ DC. $0 / 750 \mathrm{mV} /$ $30 / 75 / 150 / 300 / 750 \mathrm{~V}$ DC. $0 / 750 \mathrm{mV} /$
$1.5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}$ 1.5/3 /7.5/15/30/75/150/300/750V AC. Autamatic cut out devica. Supp-
tied complete with test lewds, manual and test cortificates. OUR PRICE E49.00 P\&P 50D
TE40 HIGH SENSITIVITY AC VOLTMETER
10 Mag inputt
10 rsnges: $0.001 /$
$0.03 / 0.1 / 3.31$ $1 / 3 / 11 / 30 / 100 /$ 300 V RMS. $5 \mathrm{cps}^{-1.2 \mathrm{MHz}}$
-40.18 .40 dB suppled comple
with leads and OUR PRICE E17.50 PRP 25p
TE65 VALVE VOLTMETER $28 \mathrm{rang}=\mathrm{DC}$ vol
$1.5-1500 \mathrm{~V} . \mathrm{AC}$ volts $1.5-1500 \mathrm{~V}$
Aecistance up to
1000 Megohms.
$200 / 240 \mathrm{~V}$ AC
plate with probe
and instructions.
OUR PRICE E17.50 PkP 300
Additional probes zvaileble
RF $£ 2.12$. HV $£ 2.50$
LB3 TRANSISTOR TESTER
Tests ICO and B .
from 9V battery.
Instructions supplie
OUP PRICE
£3.95 P\&P 20p

MOOEL AF. 105 VOM
50,000 opv, M
scals. Meter
protection.
300/600/1200V DC $0 / 6730 / 120 /$ $300 / 800 / 120$
$0 / 30 / 2 \mathrm{~A} / 6 /$
$80 / 300 \mathrm{ma} /$
12 Amp . $0 / 10 \mathrm{~K}$
$2 \mathrm{~m} / 10 \mathrm{~m} 100$

Mog Ohms. 20 to 27 dB DUR PRICE E12.50 PRE 20p. LB4 TRANSISTOR
TESTER
Trats PNP or NPN transistors Audio
indication Oparater on two $1.5 V^{\text {p }}$
battories. Complete
OUR PRICE

£4.50 P\& P 200
U4341 Multimeter $\&$
Transistor Tester
27 ranges. 16.700 opy.
Overiosed protcted,

Pancis $0.3 / 1.5 / 61$ | $30 / 60 / 150 / 300 / 900 \mathrm{~N}$ |
| :--- |
| DC |
| $150 / 5 / 30 / 150 /$ | D- $1.5 / 7.5 / 30 / 150 /$

$300 / 750 \mathrm{AC}$. Currat: $0.08 / 0 . B /$
$6 / 60 \% 000 \mathrm{mADC}$ $6 / 6 / 300 \mathrm{~mA}$
$0.3 / 3 / 30 / 300 \mathrm{~mA}$. AC
 a. $3 / 3 / 30 / 300 \mathrm{~m}$
Reniztance: 0.061 0.6/2/6/20/60/200k ohma/2 Mohms. with probes, lewe and stow carrying OUR PRICE E10.50 P\&P 200
KAMOOEN HMG500
insulation resistance tester

deluxe atrrying
OUR PRICE E19.95 P\&P 30p
SIOOTR MULTIMETER
TRANSISTOR TESTER
$100,006 o p y$. M
scye Overload
protection. O/0.121
$600 \vee$ OC, $0 / 15301$
$120 ; 600 \mathrm{~A}$ AC.
$0 / 12 / 600 \mathrm{LA} 12 /$
$300 \mathrm{~mA} / 6 / 12 A D C$
$0 / 10 \mathrm{k} / 1 \mathrm{Meg}$
-20 to 450 dB.
$0.01-0.2 \mathrm{MFD}$
Iransistor tester measures Alphs, Bets
and ICO. Complete with instructions, batteries and leads. OUR PRICE E15.95 P\&P 25p CI5 PULSE OSCIL LOSCOPE

$\mathbf{k H z}$-3000ugec. Frea rumping 20-200 kHz in nine ranges Calibrator pipx.
$220 \times 380 \times 430 \mathrm{~mm}$. $115-230 \mathrm{~V}$ AC. OUR PRICE E39.00 Corr. peid
RUSSIAN CITE Double Beam OSCIL LOSCOP 5 MHz paes band amplifiers fiectang
utar 5×4 CRT
 swetg from azorsec. free nunnaing time butit. $50 \mathrm{~Hz}-1 \mathrm{MHz}$.

Calibrator and amplituda Calibrator. Supplied complete with al tectstories
and instruction manual. OUR PRICE 587.00 MODEL TE15 GRID DIP METER Transistorized. Ope
ztess Grid Oip.
Oneillator AbsortOneilastor. Absort-
fion Wave Meter and tion Wave Meter and
Oscillating Detector. Frequency rampe
$40 \mathrm{kHz}-280 \mathrm{~Hz}$ in six colle 80014 metre. SV bettioy
operation sjete:
igo $80 \times 40 \mathrm{~mm}$
OUR PRICE £ 19.95 P\&P 20p
Also see Sollowing pages
ALL PRICES EXCLUDE VAT

Hsandy SWR muter for
transmitter antenns ment, with built-in field strengin meter. Accerracy
$5 \times$, Impedence 52 indic ator $1000 \mathrm{~A} D C$. Fuil

OUR PRICE 4.25

AT201 Decade ATTENUATOR Froquency range 0 -
$0-111 \mathrm{~dB} .0 .1 \mathrm{~dB}$
treps. Impedence 600 ohms input
DOWer maximum 300 dBm . Size: $90 \times 56 \mathrm{~mm}$.
QUR PRICE E12.50 TRANSISTORISED LC.R. A.C

BR/8 REASURING BRIDGE
 $\begin{array}{ll}20 & \begin{array}{l}\text { a new portable } \\ \text { bridge affering }\end{array} \\ \text { excetlent range an } \\ \text { accuracy nt low } \\ \text { cost. Hanges. R }\end{array}$

Ranger it 1% L. 1 H- 119 C 100F
HENRY 8 Runges $2=\%$ C Wenkr of Ranges $2=\times$ C 100 F RAYIO $1: 1 / 1000-1 \quad 1 / 100.6$ RATIO cos. Opersted from voltaga at $\$, 000$ cps. Opersted from 9 voht. 100 A metal case. Sise $7, \frac{1}{2} \times 5=2 \mathrm{in}$. OUR PRICE $\mathbf{2 5 5 . 0 0}$ PGP 25D.
TE16A TRANSISTORISED SIGNAL GENERATOR
5 ranges, 400 kHz
to 30 NiHz in 30 wiperiz. the handy for the handy-man.
Operates on $9 V$
V battery. Wide aray to read 800 kHz
Size: 149
with instructions and itads. Complets OUR PRICE 88.97 MODEL TE20 RF SIGNAL
GENERATOR
Six bands. 120kHz-
R00MHz, Dual output
RF terninals. Separate
varisble zadio outpur.
Accurracy $\pm 2 \%$. Audio
outpur to 8 VV . Power recuirements:

OUtput 808 VV . Power recuirements:
$105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ AC. Size: 193 K $285 \times 150 \mathrm{~mm}$. Complete with test
OUR PRICE E17.50 P\&P 40p TE-20D RF SI
GENERATOR
Accurste wide +

coveting 120 kHz

MHz on 8 bands.
Varible R.

afternetor eudio outpint. Xial socker for calibrstion. 220/240V s.c Brand new with instructions. DUR PRICE $£ 17.50$ - Pe9 90
ARF 300 AF/RF SIGNAL GENERATGR
All transistoris
Compact futhy
portable AF wave $18 \mathrm{H}_{3}$ to 220 KHz . Af square
wive 18 Hz to 100 k Hz. Outpur Squara P.PRF 100 kHz
z004Hz. Ouтpu
$220 / 240 \mathrm{~V}$ AC
nith instuctions and feact OUR PRICE $\mathbf{5} 29.95$
MODEL MGTOO SINE SQUARE

Wave $19-100$,900 Ha Squo Ovipur Sime ae Souere wave 10 y Q sisw 180 a 90 a 90 mm . Oporation 220 r240v. A.C. OUR PRICE £I9. 95

 Voltage Stabiliser
Inout $88-125 V$ AC Inpur $88-125 \mathrm{~V}$ AC or
$176-250 \mathrm{~V}$ AC. Output $120 V \mathrm{AC}$ or 240 V AC. OUR PRICE 111.97
OUAP 50
PS100B Regulated POWER
SUPPLY UNIT

OUR PRICE E11.97

PS200 Regulated POWER

SUPPLY UNIT

OUR PRICE $£ 19.95$
POWER RHEOSTATS
High quality ceramic
construction. Wind. construction. Win
ings embedded In
it
 wiper. Continuous rating. Wide range zyailibler ox Fstock Sinole hole fixiing. \% dia
Bulk quantities ivailble. 25 WATT 10/25/50/100/250/500/ $1000 / 2500$ Onms E1.15 PEP 10D 50 WATT 10/25/50/100/250/500 1000/2500/5000 Ohms

£1.62 P\&P 10 p

100 WATT $1 / 5 / 10 / 25 / 50 / 500 / 250$ /
100 WATT $1 / 5 / 10 / 2$

AUTO TRANSFORMERS Fully shrouded.
 $\begin{array}{ccc}80 \text { WATTS } & £ 2.75 & \text { P\&P } 18 p \\ 150 \text { WATTS } & £ 3.50 & \text { P\&P } 180\end{array}$
 150 WATTS 300 WATTS E
 500 WATTS 56.95 P\&P33p
 1000 WATTS E9.50 P\&P 38p
 1500 WATTS E12.50 P\&P 43p $\begin{array}{lll}2250 \text { WATTS } & \text { E20.95 } & \text { P\&P 50p } \\ 5000 \text { WATTS } & £ 44.95 & \text { P } 8 P \text { E }\end{array}$ CPI10 CHASSIS PUNCH SET

Carefulty machined top, grode steel. $11 / 8^{\prime \prime \prime}$ punchos complete with gripper OUR PRICE $£ 3.00$ P\&PP 40p YAMABISHI VARTABLE VOLTAGE TRANSFORMERS Execllent quatiry at low cost. Input
$230 \mathrm{~V} 50 / \mathrm{FOHz}$ Output $0-260 \mathrm{~V}$. MODEL $\$ 260$ BENCH MOUNTING

BVD5 Veinier TUNING DIAL

 ${ }^{190} \times 117 \times$ ximm. OUR PRICE 15.62

N 100 m w OUR PRICE E24.95 pei pair OUR PRICE $\mathbf{f} 52.50$ per pair P1003 Thrtec Channel 1 Wotr OUR PRICE E71.25 per pair \& NB. Licmince required for use in UK

RUH6 Reflex Horn Speaker

 Bull t-in driverunit. Impedence 16 ohms Power rating 10W. Responst $380-$
7000 Hz Size 7000 Hz . Size
3pp. $6^{\circ} \times \mathbf{F}^{-}$
Weather Whather and OUR PRICE 4.97

Four bands covering 550 kHz ta 30
MHyz continuous and ejectrica band mprad on 10. i5. 20. 40 , and 80 mtr mpalvo plus 7 diode cirasit. 4 to 8 OHm outpur and phone luek. SSBCW , ANL, varizbse BFO. SMetcr and separate band spread dias. IF freat
uency 445 H tz, sudio output 15 watt. Y rribble $A F$ and $A F$ gain controf
$115 / 250 \vee \mathrm{AC}$, with instructions.
IUP PrICE 12 - 51 CARR
TRIO TR2200 TRANNSCEIVER
 spopker socket. Compleze with micro phone and 144.48 , $144.72 \& 145.32$ OUR PRICE $£ 79.50$

BELTEK W5400 CAR
TRANSCEIVER

Solid state mobile transceiver for 12 volt DC neg. Tranamits and recsives
on any 12 of 28 channels between on any 12 of 28 channels between
144 and 146 Nitis. Power outpur 1ow 144 and 146 NHty. Power outpus 10W
and 1 iW switchable. Controls: On/olfl
 with dynamic mic. PTT switch, thfte 145 of erystals for $144.48,144.6$ and 145 MHz , mounting bracket and ins-
tructions. Size: $150 \times 70 \times 220 \mathrm{~mm}$. OUR PRICE E75.00

DT55G DIGITAL CLOCK

alsrm sfeop' switch. llluminated rot any dia with hours, minutes and sec-
ands. Automatically turns off radio,
TV TV. light stc. and with muto-switeh $240 V$ will turn on apgin when resuired $350 \mathrm{~V}-3$ Amp.
OUR PRICE 55.95 P\&P 30p
KE630 3 Station INYERCOM

Master and two wibstations Can be oft with cable and batteries OUR PRICE E5.25 PEP 500

DHO2SSTEREO HEADPHONES Wonderful vanu
portormance
able hasd band. mpedence 8 oh
$20-12,000 \mathrm{~Hz}$
Complete with
lead and plug
OUR PRICE £2.50
PEP 300
TE1035 Stered HEAOPHDNES Hient responss. Foam ubbor oarcups. Adiustsble hasadband. 8 ohms mpodence. Frequency Complete with cable

SHBUV MONO/STEREO HEADFHONE
Volume control f
esch channel. 4196 ohm response $20 \mathrm{~Hz}-18 \mathrm{k} ⿳ \mathrm{~Hz}$ esponse $20 \mathrm{Ht}-18 \mathrm{kH}$
Complete with 10 H . eoiled lead and jack plu OUR PRICE £4.97
BK001 HEADSET and Boom Microphone Morving coil. I
for lanquage for lanpua
teathing
communi

cations ete.
Headphone
 whits pesk. Din weo.

OUR PRICE £12.95
SPECIAL
BARGAIN!
FERGUSON 3406 HI-FI SPEAKERS
Hioh quality 2 why speak 2 stems
25 matk $4-8$ ohms. $40 \mathrm{~Hz}-18 \mathrm{kHz}$.
 OUR PRICE £26.95 PR. P\&P £i Model A1018 FMTUNER 6 transistor high
quality unit-
$31 F$ पif stages and
double tuned

discriminaior. For use with most amplifiers. Covers
$88-10 a \mathrm{HHz}$. Power by $Q V$ battery. OUR PRICE E13.50 P\&P 30p

ALI PRICES
EXCLIDEVAT

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Or

CLEAR PLAST Size $85 \times 64 \mathrm{~mm}$

Items with asterisk are Moving Iron rype, all others are Moving Coil
CLEAR PLASTIC MODEL S0830

50uA.		
500 u		
50, 100.504 A		
1 mA		
${ }^{5 \mathrm{ma}}$ (10mA		
50 mA		
100 mA500 mA		
OA DC		
SVDC		

CLEAR PLAST Size $50 \times 50 \mathrm{~mm}$

10 mA
50 mA
103 m

CLEAR PLASTIC MODEL MR 3BP
Size. $42 \times 42 \mathrm{~mm}$

CLEAR PLASTIC MOOEL SD460
Sice: $59 \times 46 \mathrm{~mm}$

8AKELITE MOOEL 580 Enlarged Window
50
10
50
5
1
1
$\mathbf{5}$
2
$\mathbf{5}$
$\mathbf{5}$
3

CLEAR PLASTIC MODEL MR 52 E

50, 1004 104

500.50 uA
$1000-100 \mathrm{AA}$
$100-1$
1 mA
5 mA
10 mA
50

50 mA
100 mA
500 mA
500 mA
14 DC
SADC
$10 V D C$
$20 V D C$
$50 V$ DC
$300 V D C$
$15 Y A C$
$20 V D C$
$50 V$ DC
$300 \mathrm{~V} D$.
15 AC
300 V AC
63.70
83.6
63
63
63
83
63
63
63
63
63
63
63
63
63
63
63
63
6

BAKELITE MODEL MR 65 Size: $80 \times 80 \mathrm{~mm}$

250 A
50 A
100 A
500 A
500 A
50.0 .50
5000 A
50.0 .50
100.0 .100.
$50.0-500 \mathrm{~A}$
1000.100 A
$500-0.500 \mathrm{u}$.
$\operatorname{ITmA}_{\mathrm{I} \cdot 0.1 \mathrm{~mA}}$
7.0 .1 mA
5 mA
50 mA

10 m 50 m 100

CALL INTO YOUR NEARESTLASKYS BRANCH OR ORDER WITH CONFIDENCE BYMAIL ORDER

CENTRAL LONDON
481 OXFORD ST. (Opening late April) 10 IOITENHAM CT. RD. O1-637 2232 $\begin{array}{ll}27 \text { YOTTENHAM CT. RD. } 01-6363715 \\ 33 \text { TOTIENHAM CT. RD. } & \text { Ol- } 6362605\end{array}$ 42/45 TOTTENHAM CT. RD. Ol-636084S 87 TOTTENHAM CT. RD. 01.5803731 $\begin{array}{ll}257 / 8 \text { TOTTENHAM CT. RD. } & 01.5800670 \\ 3 \text { USEE ST. WCZ } & 0.4378204\end{array}$ $\begin{array}{ll}3 \text { LUSLEST. WG } & 01-4378204 \\ 34 \text { LISLEST. WQ } & 01-4379155 \\ \text { HLD }\end{array}$ $\begin{array}{ll}34 \text { LISLE ST. WQ } & 01-4379155 \\ \text { HIBEDGWARERD. W2 } & 01-7239789\end{array}$ $\begin{array}{ll}193 \text { EDGWARERD. W2 } & 01-7236211 \\ 207 \text { EDGWARERD. W2 } & 01-7233271 \\ 311\end{array}$ $\begin{array}{ll}207 \text { EDGWARE RD. W2 } & 01-7233271 \\ 311 \text { EDGWARE RD. W2 } & 01-2620387 \\ 346 \text { EDGWARE RD. } 22\end{array}$ $\begin{array}{ll}346 \text { EOGWARE RD. W2 } & 01-7234453 \\ 382 \text { EDGWARE RD. WZ } & 01.7234194 \\ \text { ID9 FLEFY ST CC4 } & 01-3535812\end{array}$ 109 FEETST.ECA \quad Ol-353 2833
$152 / 3$ FLEET ST. ECA

B6 SOUTH ST. ROMFORD
70-20218
KENT
53/S7 CAMOEN RO., TUNBRIDGE WELLS

LEICESTERSHIRE

45 MARK̃ET PLACE, LEICESTER
$0533-537678$
SURREY
1046 WHITGIFT CENIRE, CKOYOON 27 EDEN ST. KINGESTON $01-5467845$

WARWICKSHIRE

116 CORPORATION ST.. BIRMINGHAM
(Opening ghorthy)
ALL BRANCHES OPEN FROM 9am to 6pm MON. TO SAT.
HEAD OFFICE AND MAIL ORDER DEPARTMENT
aUDIOTRONIC HOUSE.
the hyde industrial estaite.
THE HYDE. LDNDON NWG 6JJ.
TELEPHONE= $01 \cdot 2053735 \& 5651$

MAIL ORDER SPECIALISTS We offor a speedy and efficent servece by mall order Renrember to did total velue 0.000 10\% Vat to caniage and packinn and send cash with ordef to he.ad ofrice. TO AVOID OELAYS PLEASE PRINT NAME AND ADDRESS CEEARLYIN CAPITALS BARCLAYCARO \& ACCESS Holders welcome cilismionybinnch or tetephonc yout or rete phonc your orser to heat ofice. CREDIT TERMS availabte for Fersonal Shoopery on sales of ESO and ovat

BARGAIN CENTRE
Many special ctearance offers and end of stock lines at
87 TOTTENHAM COURT RD FOR PERSONAL SHOPPERS

EXPORT personal exports arranged for overscas visiors
an 310 our branches
Goods despatentid to all parts of the wontd through our Export
Mait Oider Deprartment. fmmediate attention orders.

CHEQUES ACCEPİED FROM PERSONBA SHOPPERS ONLY WITH BANKERS EARD.
All pricos correct at 13-3-74 bur
wibect to change
A minmoen ul ine Austrot

A ready built unit, ready for connection to the I.F. stages of existing F.M. Radio or Tuner. A tell tale light can be connected. The unit is a small printed circult, no further alignment necessary. A L.E.D. is recommended as the indicating light, suitable device available from us at $36 \frac{1}{2} \mathrm{p}$. Instructions included

5W \& 10W AMPS

5Woni\&1.98 10 W oni $£ 2.49$

incl. P. \& P. and V.A. T
These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{2 \prime \prime}^{\prime \prime}$. The 5 W amp will run from a 12 V car battery making it very sultable for portable voice reinforcement such as public functlons. Two ampllfiers are ideal for stereo. Complete connection detalls and treble, bass, volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the UK. Built and tested.

Now available for $5 \& 10$ NAMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only, will ft - 15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick-up cartridges.
£1-21.
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetlc pick=up cartridges.
$£ 1 \cdot 69$
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and trebie boost and cut.

E1-21
Instruction leaflet supplied with all units. Post and packing and VAT included in prices.

Decoders/.
3W Ampsf.
5W Amps
10W Amps
Stereo Pre-Amps 1 Stereo Pre-Amps 2
Stereo Tone Controls
(Please insert quantities and delete those not applicable)
Name
Address
BI-PREPAK
Ca. Regn Na820919
Dept.-D, 222/224 West Road Westcliff-on-Sea, Essex SS0 9DF Telephone: Southend (0702) 46344

Trannies
4 Bush House, Bush Fair, Harlow, Essex.

* PRICES INCLUSIVE

OF Y.A.T.
\star Retail Shop open 9 to 5.30 Mon to Sat.

* Post \& Package 12p.
$\star 1974$ Catziogue 20p.
\star Tel. Harlow 37739.

everyday electronics construction kits

- Kits contain electronic parts only -

Slave Flash El-85	Tutor Board E7.20
Electronic Door Bell \$4.00	VCO Effect Unit E3.80
Wax Waa El 1.50	F.E.T. Receiver $52 \cdot 00$
Personal Receiver	Sewing Machine Speed
Aquarium Thermostat	Control EI. 45
\$2.85	Band T.R.F. Receiver
Train Controller \quad E3.15	E12.00
Light Dimmer \quad ¢3.50	Power Supply Unit E7.85
Baby Snatch Alarm E8-80	Slide Projector Unit $\$ 2.00$
Stereo Headphone Adaptor	Emergency Lighting \$7.00
11.85	Speed Guard 33.60
Gas Alarm $\quad 66.60$	Plant Propagator $\quad 55.00$
Auto-water for Plants $\mathbf{£ 2 \cdot 2 5}$	A.F.Oscillator $\quad \$ 6.60$
Tremolo Unit $\mathbf{1 2} 10$	

TRANSISTOR ASSISTED IGNITION LIGHT POWERED RECEIVER ELECTRONIC VOLTMETER

for kits in this months issue send the quoted approximated cost of components in box-reprint of any project 20p.

£1 BARGAIN PACKS

\&1 10 . Silicon NPN Power Transistors (2N3055) tested/unmarked.
\& 30 Plastic FET's unmarked/ untested, similar co 2N3819.
El 20 TO5 transistors NPN or PNP, state which. 2 to 5 amp untested/unmarked.
fl 20 TOl8 transistors PNP like BCl78. BCI79 etc. untested/unmarked.
fi 30 Plastic $2 N 3055$ unmarked/untested TO220 case.
fl 10 General Purpose, fully tested FET's.
El 500 carbon resistors $\frac{1}{4}$. $\frac{1}{2}$, I. 2 watt.
E) 100 Electrolytic condensers.
EI 250 Ceramic Polystyrene, Silver Mica etc. Condensers.
¢l Polyester, Polycarbonate, Paper, etc. condensers.
fl 25 Potentiometers assorted.
f1 250 High Stab 1% 2\%, 5% resistors.
$f 1$ Ilb Assorted nuts, bolcs, washers, spacers, etc.
fl 25 Assorted Switches, rotary, lever. micro, toggle, etc.
£l 50 Preset Potentiometers.

* any 5 packs $£ 4.50$

P/P 25p for each pack

We have been appointed stockist of Amtron high quality construction kits.
UK65 Transistor tester $\mathbf{6 1}$-89 UK92 Telephone Amplifier
UKI 10 Stereo Amp. Ell.07 UK220 Signal iniector $\quad \mathbf{2 : 5 7}$ UK230 AM/FM Antenna Amplifier
£3-23
UK300 four channel Radio
Control Transmitter
£6.55
UK3IO Radio control Receiver
UK325 "GCX2" channel
splitting unit-1000 and $2000 \mathrm{~Hz} \quad 87.86$
UK330 "GCX2' channel splitting unit 1500 splitting unit 2500 Hz E7-86
UK345 Superheterodyne radio control receiver $\mathbf{\$ 6} 55$ UK415 Resistor Box E8.69 UK425 Capacitor Box 88.39 UK525 VHF tuner 120 to $160 \mathrm{mHz} \quad \mathrm{El2} .44$ UK540 LW/MW/FM tuner UK790 Capacitive Burglar Alarm $47 \cdot 5$ UK835 Guitar pre-amplifier

UK875 Capacitive discharge electronic ignition for internal combustion engine $\mathrm{El4}$-5!

* Many orher kits available. \star Send for the free Amtron catalogue.

We also stock a large range of electronic semiconductor at competitive price. Our new 74 catalogue is now available at $\mathbf{2 0 p}$.

Lenrys

DON'T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures on request

MULTIMETERS

UK's

LARGEST RANGE
OF KITS \&
GADGETS
(carr. etc. 30p)

Ti-2 $20 \mathrm{~K} / \mathrm{V}$ ort SIImline
M2 H330 (Case Ey. 25) 20KiVolt Slimline de-luxe
Ti H33D $2 \mathrm{~K} / \mathrm{Volt}$ ROBust
44324 20K/Volt with AC current ranges
AFtos (Case Et-90) 50K/Volt
$4431320 \mathrm{~K} / \mathrm{Volt}$ AC current. Steel case
U431 Plus Built in transistor tester
OTHER EQUIPMENT
5.5

SE250B Pockei Signal Inlector
2.10 carr. 15p

Pocket Signal Tracer
1.70 carr. 15p

120 280mHz meter 40 kHz - 15.00 carr. 30 p

TE20D 120 kHz -500mHz RF Gener
TE22D $\quad 20 \mathrm{~Hz}-200 \mathrm{kHz}$ Audio Generator carr. 180 D
$\begin{array}{lll}\text { SE350A } & \text { Deluxe Signal Tracer } & 19.95 \text { carr. } 40 \mathrm{D} \\ \text { SEAOD }\end{array}$
Volts/ohms/R-C sub./
New Revolutionary Supertester 680R
e80R Multi-tester

ansistor tester	11.00
Elsctronic voltmeter	18.00
Ampclamp	11.95
Temperature probe	11.95
Guass met	1-95
Signal Injector	5.95
Phase Sequence	5.95
EHT Probe	5.95
Shunts 25/50/100 A	-50

A SELECTION OF INTERESTING ITEMS

C3025 Compact translstor tester 6.95 oA 0150 1310 S. 1000 Easiohone D120i tejephone amolifier 7.50 o D1203 Teleamp. with PU coll
 3 Kw Dimmer/controller $\quad 3.00 \mathrm{p}$ a p 10 p $9^{\prime \prime}$ Twin spring unit For 36 o \& p 15 p 16"Twin spring unit Reverbs $6.85 p \& p 25 p$ US50 Ultrasonlc Switch Transmitter/Receiver $£ 12 \cdot 75$ $\begin{array}{lll}\mathrm{C} 3041 & 1-250 \mathrm{MHz} \\ \mathrm{C} 3043 & \mathrm{MCH} & 1-300\end{array}$
CHO3 SCH $1-300 \mathrm{MHz}$
V2005 105 Alrcratt Band Convertor 4.54 $\quad 55.75$ 82005
82004
2
Ch
ch . Stereo mixer mixer 4.50 p \& 150 4.20 pap15p PK3 Kit. Eich vour own circulls $£ 1.95 \mathrm{p} \& \mathrm{D} 20 \mathrm{p}$

BUILD THIS RADIO

Portable MW/LW radio kIt using Mullard RF/IF module. extra selectivity. Slow motion Uning. FIbre olass PVC cablnet. 600 MW output. All parts c7.01 (battery 22p), carr. etc. 32p.

EXCLUSIVE: SPECIAL OFFERS

 MW/LW CAR RADIO Rotel RA310 is + is wat anackg. 30p.
8 TRACK CAR STEREO Weln W500 Battory/Mains (- Earth) with speakers in AKAI GXC40
Pods \& fixings. £12-50 Stereo cassette recorder carr/packg. 40 . Cassette Pair carr/packg. 50 p. Portable Battery Cassette Pair Akai ADM mlcroTape Player $\$ 7 \cdot 25$. d adaptor 200 Car Lighter Plug and adaptor 20 p .者 for all cassette and radio PORTABLE CASS
$6 / 7 \frac{1}{1 / 9}$ volt output (stato TAPE PLAYER6/7t/9 volt output (stato TAPE PLAYERWidth) $£ 1-95$ each

Rotel Stereophone | ROHE30 |
| :--- |
| RH | RH730 RHH30

RH
for cat or carry around. E7-25 EA. 50 HANIMAX BC8OA POCKET Es.73 CALCULATOR WITH

EDGWARE ROAD, LONDON W2

SPECIAL PURCHASES

 HANIMAX BCBITM MEMORY VERSION $\quad £ 77.50$MAINS UNIT for BC808. BC811M (state modei) PANIAAX HiO1 STEREO COMPACT RECORD ELA.50) Price $E 39-95$. PIus free palit of stereo phones. UHF TV TUNERS
CHANNELS 21 TO 4
 Receiver If output. $£ \mathbf{2} \cdot 50$, Post 20p

EASY TO BUILD KITS BY

AMTRON-EVERYTHING SUPPLIED

3
3
3
1
1
1
1

310 Radio control receiver
300 4-channel R/C transmitter
345 Superhet R/C receives
Simple transistor tester
8 watt Amplifier
12 watt amplifior
Stereo control unit
Power suoply for
Power supply for 120
Power supply tor 2×120
AM/FM aerial amplifier
Auto packing light
Mic. preamplifles
If generator $10 \mathrm{~Hz}-1 \mathrm{mHz}$
Sq. Wave generator $20 \mathrm{~Hz}-20 \mathrm{Khz}$ WR meter
NI-CAD Charger 1.2-12V
STAB Power suppiy 8-12v 0.25-0-1 A
STAB Power supply 8-1
DC motor speed Gov.
Electronic Chaffinch
Windscreen wiper
Acoustic switch
Metal Detector (electronics only)
Capacitlve Burglar aiarm
Gultar preamp.
875 CAP. Discharge ignition for car engine
(-Ve Earth)
Scope Callbrator
Level indicator
$20-160 \mathrm{mHz}$ VHF timer
hoto cell switch
Electronle continulty tester
Silde project
Acoustic Alarm auto feed contro!
uartz XTAL checker
signal ínjector
vox
670 Bufer Battery Charger
885 Capacitive Contact Alarm
850 Electronic Keyer
Electronic Digital Clock
LL KITS 38.50 SUBJECT TO STOCK
availability
Prices correct at
time of preparation. without notice.

BUILD THIS TUNER

MW/LW Radio Turner to Uae with any amplifier. Features Mullard RFIF module Forrito aerlel, bulit in battery. Excellent result
All parts EA .35 , carr. 150 .

MULTI-USE \& RADIONIC KITS $\begin{array}{ll}10-1 & 10 \text { Projects } \\ 50-1 & 10 \text { Projects }\end{array}$
150-1 150 Projects
Telephone Communicator
$\begin{array}{ll}\times 20 & 20 \text { (Elec.) } \\ \times 40 & 40 \text { (radio) }\end{array}$
All transistor circuits with hand books
TBA800 5 WATT :.C.
Suitable alternative to SL403D.
5 watt output
5 watt output
 ta si-5e.

ZFRA Sutable for December '73
ZFTAA. Sultable for De
ST2 (D32) DIAC 23p
RRSI/40 SCR 45p.
$\begin{array}{ll}\text { ZFT4 } & 53.00 \\ \text { ZFT8 } & 63-50 \\ \text { CFT12 } & 54.50\end{array}$
 ap
pri
be oply. Caralogues in the prices. A new catalogue will
be available for Aug

UK'S
LARGEST RANGE OF
TRANSISTORSANDDEVICES

JUST A SELECTION

- T8A800 5 Watt IC
- Sinclair ICR 6 Watt IC
- ZN4141C Radio

Ultrasonic Transducers

* 3015F 7SEG Indicat
* WiL 209 LED

240 each 22 E1-7
OVER I500 DIFFERENT SEMI - CONDUCTOR DEVICES IN STOCK
Free stock list-latest edition (Ref, 38) on request includes radio valves, I.C.'s Rectiflers, Triacs, SCR's LED's, etc. Mors types-better prlces-discounts for quantity small or larga.
GARRARD BATTERY TAPE DECK

TOP QUALITY

SLIDER CONTROLS

somm stroke high quality controls complete-with knobs (post, efc. 15p any quanity).
Singlos Log and Lin $250 \mathrm{~K}, 500 \mathrm{~K}, \mathrm{M}, 100 \mathrm{~K}$, each.
Ganged Log and Lin $10 \mathrm{~K}, 22 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}$. 65p each
(Quantlity discounts
avallable)
Complete with knobs TUNERJDECODER
AMPLIFIERS (carf., etc. 20p
$4-300$, 0.3 watt 9 volt 1
104. 1 watt 9 volt

304, 3 walt 9 volt
555,3 watt 12 volt
E1208 5 watt 12 voll
608,10 watt 14 volt
608, 10 watt 24 volt
E1206, 30 watt 45 vol
E $\sum 210,2 \frac{1}{2}+2 \frac{1}{2}$ watts
12 volt
RES00, 5

MARRIOT

TAPE HEADS
4 TRACK MONO or
2 TRACK STEREO
'i7' Migh Impedance $52 \cdot 50$ '48' Med. Impedance $£ 2.50$ '36' Med.' Impedance $£ 5-4$ RT30/ET3 2 track mono Record/Erase low imp top pair
rase heads for ' 177^{\prime} ' 18 '
 43' Erase Hesd for ' 63 (Post, etc. 150 any qty).
URE AMPLIFIERS \& 20p) Hesco, watt IC malns operated Amplifier with controls
with controls
SAC13, $15+15$ wat
Stereo with controls

POWER SUPPLIES FOR EVERY PURPOSE

(All cased unieas stated chassis)
$470 \mathrm{C} 6 / 7+/ 9$ volt 300 mA (inciudes Multi-Adaptor for Car Lighter Voltage Adaptors $300 \mathrm{~mA} \mathbf{S S}^{2-15}$ post 20 D Car Lighser Voitage Adaptors 300 mA (State voltage
SC202 $3 / 6 / 7 / 8 / 9$ volt 400 mA
HC244R Stabllised version
P500 8 volt 500 mA
P11 24 volt 500 mA (chassis)
P15 $26 / 28$ volt 1 amp (chassis)
P1080 12v 1 amp (chassis)
P1081 45v 0.9 amp (chassis)
P12 45-12 volt $0.4-1 \mathrm{amp}$
SEt01A $3 / 6 / 9 / 12$ voff 1 amp (Stab.)
RP16A $8 / 74 / 9 / 12$ i amp (Stab)
FIBRE OPTICS
0.01 Diam. Mono Filament 0
per 50 metre reel 0.13 Dlam. E
Fibres Sheathed. $51 \cdot 00$ per metro
SPRAY $\$ 15 \mathrm{~mm}$ Dlam. (Mares Tail
SPRAYS 15 mm Dlam. (Mares Tai
Spray 810.507 mm . Diarn. $\mathbf{6 5 - 0 0}$)
Alf types oftered subjact to avaliability
Cortet at tine of piess e a OLD
10% VAT TO BE ADDED TO ALL ORDER
UK post etc. 150 per order unless stated.

PROJECTS THEORY...

SOUNDS DIFFERENT

Now, for something quite different, as they say, in sound. We are all familiar with a host of unique sounds (musical or otherwise!) that alectronics has been entirely responsible for. But in addition to creating original sounds, electronics is of course very good at imitating sounds, such as those characteristic of traditional musical instruments. Many examples have already appeared, but so far as we are aware the Bagpipes have not been singled out for this favoured treatment-until now.

We wonder why. Anyhow to demonstrate our strict neutrality in matters musical as well as geographical, we offer our readers this latest musical novelty. It is, incidently, yet another example of the inspired use of fairly conventonal circuitry. So please remember, all you would-be inventors, it is that original thought for applying electronics to some account in an unusual or novel way, that is all important; the actual circuitry comes quite naturally thereafter, in many cases.

SPEED GUARD

The tendency of motorists to travel at unsafe speeds when caught in fog has a perfectly reasonable explanation, so the experts tell us. It is really because sense of speed is seriously affected when sight of external reference points is lost due to poor visibility, the need to concernrate fully on the road ahead precluding any diversion of attention-even momentarily-
from windscreen to speedometer. So an unconscious steady acceleration is all too commonly the result.

In an attempt to overcome this particular problem we understand that the authorities are currently investigating a "head-up" display speedometer, where the appropriate data is projected onto the windscreen and is readable without interfering in any way with the driver's normal view.

It is to be hoped that success is the outcome of this attempt to produce a cheap and relatively simple version of the more sophisticated system already employed in aircraft, so that in time it could become standard equipment for all vehicles. In the meanwhile it occurs to us that the Speed Guard described in the March issue of Everyday Electronics could very well be widely adopted as a fog hazard aid, providing an audible indication that some predetermined speed (reasonably low- $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. for example) has been reached. The addition of an on/off switch is all that would be necessary to make the Speed Guard suitable for this kind of fundtion; it could then be easily brought into operation directly visibility deteriorated to a dangerous level.

For a quite modest outlay of about $£ 4$ the motorist could equip his vehicle with an extremely useful, and maybe lifesaving, electronic aid.

Our June issue will be published on Friday, May 17

EDITOR F. E. Bennett ASSISTANT EDITOR M. Kenward - B. W. Terrell B.Sc.

ART EDITOR J. D. Pountney - P. A. Loates K. A. Woodruff
ADVERTISEMENT MANAGER D. W. B. Tilleard

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. 3 NO. 5 5
CONSTRUCTIONAL PROJECTS
ELECTRONIC BAGPIPES Simulation of the real thing by T. Richardson 254
SIMPLE BUZZER An audible alarm by A. Russell - 258
TRANSISTOR TESTER (E.E. Test Gear Five) 266
EGG TIMER Times from two to five minutes by R. A. Penfold 276
GENERAL FEATURES
EDITORIAL 252
TEACH-IN '74 Lesson 8: The Astable and Alternoting Current by Phil Allcock 260
COUNTER INTELLIGENCE A retailer comments by Paul Young 270
ELECTRONICS AND THE MOTOR CAR by C. S. Pointer 271
SHOP TALK Component supply matters by Mike Kenword 275
PLEASE TAKE NOTE 275
RUMINATIONS by Sensor 280
SEMICONDUCTOR PRIMER Facts and figures by A. P. Stephenson 281
HELP! Your problems answered 282
JACK PLUG AND FAMILY Cortoon 285
DOWN TO EARTH Impedance by George Hylton 286
READERS' LETTERS from you to us 289
WHAT DO YOU KNOW? Capacitors 289

Publisher's Annual Subscription Rate, Including postage to any part of the world, $£ 2.95$. International Giro facilities Account No. 5122007. State reason for payment "message to payee". Address to Everyday Electronics, Subseription Department, Carlton House, Great Queen Street, London, WC2E 9PR. Bladers for volumes 1 to 3 (state which) and indexes for volume 1 and 2 available for $£ 1.25$ and 11 p respectively, including postage, from Binding Department, at the above address.
We are unable to supply back copies of Everyday Electronles or reprints of articles and cannot undertake to answer readers' letters requesting designs, modlfications of information on commercial equipment or subjects not published by us, An s.a.e. should be enclosed for a personal reply. Letters concerning published articies should be addressed to: The Editor, those concerning advertisements to: The Advertise. ment wanager, both at the address shown opposite.

Make sure of your copy-Order Now!

Electronic simulation of the bagpipe sound.

THIs instrument is an attempt to simulate, fairly simply, the sound and method of playing the bagpipes. The finished instrument is also capable of producing other types of sound and is fitted with a vibrato effect and switching for the drone sound in the bagpipe simulation.

CIRCUIT

The complete circuit diagram is shown in Fig. 1, TR3 is the main unijunction oscillator (chanter oscillator) which is fine tuned by VR2. wired in series with resistors R19 to R26. These resistors being inside the chanter. Transistor TR2 forms a vibrato oscillator which can be switched off and on as desired, by the tone switch S1. This same switch in another position will operate the drone oscillator (TR1). This is necessary for simulation of bagpipes.

The drone oscillator has a larger value tuning resistor VR1, which allows the drone to be tuned to either the treble or bass end of the scale as desired. Both oscillators are fed to TR4 via resistors R12 and R13; it will be noticed R13
is a higher value than R12, so that the chanter will be predominant while playing the pipes.

Transistor TR4 is a signal amplifier the output of which is fed to a screened lead via the tone forming network comprising $\mathrm{Cl}, \mathrm{Cl} 2, \mathrm{Cl3}$ and R18. These components suppress some of the higher harmonics, and make a more realistic bagpipe sound. Switch $S 2$ is simply a microswitch wired in series with battery B1. It is situated in such a position that by squeezing the unit with the elbow, Sl is closed and switches the unit on for playing. The unit is switched off when pressure is released. This leaves both hands free on the chanter to enable the player to start, or end a tune on any note desired.

It will be seen that with the tone switch in position one, the bagpipe sound is produced; in position two only the main oscillator is in circuit. This will give a sound not unlike the clarinet, bit adjustments of controls on the amplifier it is plugged into, could make a lot of difference to the tone. In position three, the sound is modulated by the vibrato, and becomes a pleasing sound, not unlike an organ.

CONSTRUCTION

As seen from the Fig. 2. most of the components are mounted on a Veroboard panel

ELECTRONIC

 BY T. RICHARDSON

measuring 20 holes by 13 , the copper strips running along the 20 holes. The strips are cut at the points marked on the underside drawing and all the components are laid out in straight lines from top to bottom; it must be noted that components (C2, R13; C7, R8; C9 and R12) are stood up on end and the junctions are not connected to the panel after wiring.

This panel can be tested on its own, by connecting in VR1 and a temporary connection from VR2 free end to battery positive. Either connect phones across the output or feed into an amplifier, connect the battery positive and negative. This should cause the chanter oscilfator to function, adjustrment of VR2 should change the pitch by about two or three notes:

Now connect the wire from $\mathrm{Cl} / \mathrm{R} 2$ to negative, and the drone will be heard, VR1 should alter the drone by well over an octave. If all is well, connect a wire from R7 to negative and test the vibrato.

Fig. 1. Complete circuit diagram of the Electronic Bagpipes.

Components....

Resistors

R1	18 kS 2	R14	62ks,	SEE
R2	820S2	R15	10kS	(1
R3	$1 \mathrm{k} \Omega$	R16	4.7ks!	
R4	5.6k Ω	R17	1 k S	
R5	10ks2	R18	62ks2	
R6	10kS	R19	1 k ?	
R7	3.9kS2	R20	$3 \cdot 3 \mathrm{kS} 2$	approximate
R8	220ks	R21	$2 \cdot 4 \mathrm{k}!2$	values,
R9	10ks2	R22	1.2 ks 2	may need
R10	820s2	R23	2.2 kS	alteration
R11	1 k ?	R24	1.5 kS	to tune
R12	27kS?	R25	$2 \cdot 1 \mathrm{kS}$?	chanter
R13	82kS	R26	620s?	

Capacitors

C1 $0.1 / \mathrm{F}$
C2 0.022 F
C3 $1 / \mu \mathrm{F}$
C4 $1,1 \mathrm{~F}$ may be
C5 1/ F $\}$ elect. 12 V
C6 1, F
C7 $0 \cdot 1 / 1 \mathrm{~F}$
C8 $0.1 / \mathrm{F}$
C9 $0.039 \mu \mathrm{~F}$
C10 $0 \cdot 1 / 1 \mathrm{~F}$
C11 $50 \mu \mathrm{~F}$ elect. 12 V
$\mathrm{C}_{12}-0.002 \mu \mathrm{~F}$
C13 0.002 1 F

Potentiometers

> VR1 $50 \mathrm{ks} \Omega$ lin carbon
> VR2 5 kS lin carbon

Semiconductors
TR1 TIS43 unijunction
TR2 OC75 germanium pno
TR3 TIS43 unijunction
TR4 OC71 germanium pmp

Switches

S1 single pole three way wafer switch
S2 push to make single pole microswitch S3-S10 push to break single pole miniature push buttons (8 off)

Miscellaneous
B1 9V PP3 battery
Knob to suit S1, screened lead, 25 mm diameter plastic tube 270 mm long, materials for case, connecting wire, Verobioard 13 strips by 20 holes by 0.15 inch matrix, $\&$ BA fixings. plastic or Formica for facia panel.

Approximate cost of components including V.A.I.
excluding case £6.00

ELECTRONIC BATPIPES

B

Fig. 3. Layout and wiring of the components inside the case.
Fig. 4. Wiring of the chanter. Spacing between switches is one inch. Switch S10 should be mounted $\frac{1}{2}$ inch above $\mathbf{S 9}$.

Everyday Electronics, May 1974

Fig. 2. Component layout and wiring on the Veroboard.

It should be mentioned at this point that R4 ($5 \cdot 6$ kilohm) and R8 (220 kilohm) are used in the prototype, but may be adjusted to suit individual requirements, R4 controls vibrato speed and R8 the amplitude. An OC75 transistor or similar is used in the vibrato and must be a high gain type, TR4 is an OC71, but this could be any similar transistor. TR1 and TR3 are both unijunction type TIS43 but similar alternatives can be used.

CASE

A box must be assembled in the way shown in Fig. 3, but at this stage the top panel is not fixed. The left hand panel in Fig. 3 is 6 mm narrower than the rest. The two upright supports (A and B in Fig. 3) should be tapered from halfway along, to the side panel. This allows the top panel to be squeezed in under the armpit, to actuate the microswitch S2.

After drilling holes on the side panel to accommodate controls VR1 and VR2, and switch

Photograph of the component board.

Sl, the components may be mounted inside the case.

Switch S2 must be bolted to the side panel near the front edge, so that the actuator will be pressed in when the side panel is pushed onto it.

After all the wiring is completed as shown in Fig. 3 the side panel is screwed on, with two screws near the right hand side. Finally the case is covered in thin foam rubber and a tartan bag covers the whole unit. This bag may either be tacked or glued to the control panel, and the fascia screwed on to finish the unit off (see photographs).

CHANTER

The chanter is made by sawing 25 mm diameter plastic tube (such as water pipe etc.) down the centre and drilling suitable sized holes to take miniature push button switches. After wiring to Fig. 4, join the two halves together.

The chanter resistors are chosen to play the diatonic scale. To select the proper key R9 may have to be varied, so as to play the top note of the scale with VR2 near mid travel.

PLAYING

The unit is plugged into an amplifier of almost any type. A suitable design will be published in our July issue. The instrument is placed under the arm, control panel downwards, and squeezed. Switch to position two or three and once you'ne certain the chanter is tuned properly, switch to position one and tune drone to either top, or bottom note. When fingering this instrument the same method is used as for playing a tin whistle or similar instrument, i.e. the highest note left open is sounded.

An audible warning device useful for many applications

ABALANCED armature earpiece can be converted into an effective buzzer by the addition of only a few components. The prototype "converted" earpiece was used in a continuity tester but the buzzer can be used in any application requiring an audible alarm.

CIRCUIT

The circuit diagram of the Simple Buzzer is shown in Fig. 1. and operates as follows.

When the supply is connected, Cl starts to charge up via VRl, and when a certain voltage level is reached at the junction of VR1 and C1, the transistor starts to conduct.

The change in voltage across the earpiece, TL1, induces a voltage in L1 which tends to help TR1 turn on (positive feedback), TR1 thus turns on very quickly. When TR1 is fully on, the voltage induced in Ll reduces to zero and Cl discharges through TR1 base/emitter; as this occurs, the voltage on TR1 base is reduced, and a point is reached when TR1 starts to turn off.

The voltage change across TL1 is now in the opposite direction and this induces a voltage in L1 which assists TR1 to turn off.

When TRI is fully off the cycle repeats itselfthus producing an audible tone. The frequency of the tone is dependant on the values of VRI and C 1 . Reducing VR1 will enable Cl to charge up more rapidly and thus increase the frequency, i.e. a higher pitched tone.

CONSTRUCTION

The components can either be mounted inside the earpiece itself, as in the prototype, or may be mounted seperately on a piece of Veroboard or printed circuit board.

BY A.RUSSELL

It is necessary to dismantle the earpiece and remove the coil; with this done, wind on 10 turns of $26 \mathrm{~s} . \mathrm{w} . g$. enamelled copper wire and replace the coil. Mount the other components in the earpiece as shown in Fig. 2.

If this exact type of earpiece is not used it may be necessary to redesign the layout of the components or alternatively an exterior circuit board will have to be employed.

SETTING UP

Turn the potentiometer VR1 to its maximum resistance position and switch on.

With a small screwdriver, turn VR1 until a tone emanates from the earpiece. If the buzzer

Fig. 1. Circult diagram of the complete Simple Buzzer.

Photograph of the original unit with part of the case removed.
refuses to oscillate, even when VR1 is one quarter of the maximum value, intercharge the connections to the added feedback windings, and repeat the above procedure. The buzzer, when correctly set up can be activated by closing S1. this is useful when used as a door buzzer; if

Components....

Capacitors

C1 $0.1 \mu \mathrm{~F}$
C2 $25 \mu \mathrm{~F}$ elect. 12 V

Potentiometer

VR1 $10 \mathrm{k} \Omega$ skeleton preset
Transistor
TR1 2 N3702 silcon pnp or any similar transistor
Miscellaneous
L1 26 s.w.g. enamelled copper wire
S1 on/off switch if required, e.g. door bell push, etc.
B1 3V battery ($2 \times \mathrm{U} 2 \mathrm{etc}$)
TL1 ITBA No. 5 or any balanced armature earpiece of approx. 50 ohms to 100 ohms impedance.
Connecting wire.
used in an alarm circuit, the switch can be replaced by a set of relay contacts or a thyristor
COMPONENT NOTES
The earpiece used in the prototype was one from an army field telephone unit, type ITBA No. 5. It has a coil resistance of 50 ohms. This type and similar earpieces should be available from government surplus stores.

The transistor type is not critical, almost any $p n p$ transistor with a gain ($h_{\text {fe }}$) greater than 20 would do.

Fig. 2. Complete layout and wiring of the simple buzzer.

IE: TM-TI 14 FOR RECHVER WW ELECTRONICS... THEORY AND EXP ERMEVTS

TUTOR: PHIL ALLCOCK*

alternating Current

LESSON 8 The Astable and Alternating Current

THIS month we examine the astable multivibrator and go on to look at some new ideas and theory relevant to basic circuit elements, in order to extend the range of electronic circuits that can be covered in the remainder of the Teach-In ' 74 series. The additional components required for the Tutor Board experiments for future parts are listed later.

ASTABLE CIRCUIT

The astable circuit does not have any permanent stable states and switches continuously between two temporary states. The basic idea follows on quite naturally from the previous monostable but the circuit is modified so that a second charge/discharge timing element is introduced between point Z and the base of TR2 in Fig. 7.4 of last month.

Instead of the switching state being controlled directly from point Z it is controlled instead by a duplicate of the coupling circuit Cl, R1. The simplest arrangement is illustrated in Fig. 8.1 where it can be seen that the astable consists

Fig. 8.1. The astable multivibrator.

of two similar timing circuits connected so that the transistor of either circuit acts as the "switch" for the other "half". Consequently the recharging of (say) C2 via R 2 determines the instant at which TR2 can switch from off to on and it is the switching on of TR2 which initiates the timing interval during which Cl can recharge viá Kl .

This recharging of Cl , in turn controls the switch on instant of TR1, which in turn controls the start of the timing interval for TR2 again. The cycle of events continues indefinitely and as one transistor switches on the other is automatically switched off for a time duration determined by the choice of $C-R$ values.

It is not necessary to have $\mathrm{Cl}=\mathrm{C} 2$ or $\mathrm{Rl}=\mathrm{R} 2$ although the maximum values of R1 and R2 are limited in this circuit by the need to ensure adequate current for the lamps LP1, LP2.

In normal circumstances the circuit will start operating as soon as the supply voltage is connected but occasionally both transistors can switch on together, in which case the circuit will not self-start. This failure to start sometimes occurs when the supply voltage builds up slowly, as can happen when the circuit is operated from a power supply derived from the mains, but is less likely to happen when the two timing circuits are made dissimilar by using (say) different values for Cl and C 2 , with $\mathrm{R} 1=\mathrm{R} 2$.

The waveforms of base voltage against time for the two transistors are illustrated in Fig. 8.2 for the case where C 1 is larger than C2 and R1, R2 are equal. The recharging of Cl via R 1 involves the larger time constant and this makes the on/off times unequal. For equal on/off durations the transistors must be "identical" and the two time constants must be equal.

VOLTAGE REVERSAL

In both the monostable and the astable circuit we have seen that the voltage at the base of the transistor reverses at the instant of switching,

[^1]

Fig. 8.2. Voltage waveforms for the astable multivibrator.
due to the charge storage characteristic of the capacitor and in some circuits the reverse bias across the base/emitter junction can exceed the safe reverse voltage rating given by the manufacturer. For the BC107 device this rating is given as:-

$$
V_{\text {ebo }}(\max)=6 \cdot 0 \text { volts }
$$

Consequently when a supply voltage of more than 6.0 volts is employed there is a risk of transistor damage, or circuit malfunction, since we have already shown that the instantaneous value of the reverse bias has a maximum value which is only about 500 mV less than the supply voltage used. For the circuits shown in Fig. 7.4 and 8.1 this voltage is about 4.0 volts and is within the transistor rating.

It is often necessary to operate a circuit such as the astable from a supply voltage considerably larger than the $6 \cdot 0$ volt $V_{\text {cbo }}$ rating (which is incidentally a typical value for many modern silicon transistors). Certain modifications can be made to the basic circuit to protect the transistor emitter/base junctions from excess reverse voltage and two possibilities are shown in Fig. 8.3.

In Fig. 8.3a a silicon diode is used in series with the transistor base lead so that when the voltage reversal occurs the higher reverse voltage rating of the diode (typically 50 volts or more) protects the transistor junction against possible breakdown. The reverse voltage is shared between the diode and the transistor junction and since the diode will maintain a very high back resistance even when subjected to large reverse voltages, the current flow is severely restricted and breakdown cannot occur.

The forward voltage drop across the diode increases the voltage level at which the transistor turns on, and with a silicon diode the voltage V_{1} in Fig. 8.3a will become clamped at about $1 \cdot 0$ volt instead of the previous value of approximately 0.5 volts. Fig. 8.3 b works in a similar manner but has the additional effect of raising

(a)
(b)

Fig. 8.3(a). Protection by base diode (b) protection by emitter diode.
the voltage level at point Z, when the transistor saturates, due to the diode voltage drop.
Since the change of voltage at point Z determines the negative excursion at the base of the other transistor, the emitter connected diode will reduce this excursion by about 0.5 volts. Note that V_{1} for the emitter diode arrangement will be slightly larger than V_{1} for the base diode circuit because the emitter connected diode must carry the full emitter current of the transistor and as a result will have a larger forward voltage drop, V_{0}. The only effect of these small differences is that the circuit timing changes slightly but this need not concern us here.

OFF TIME AND FREQUENCY OF OPERATION

We have seen that the transistor TR1 in Fig. 7.1 turns off for a short interval immediately the switch is closed. The "off time" can be obtained by considering the waveform shown in Fig. 7.3 which shows that TRI remains off for the interval ($t_{r}-t_{1}$). During this interval the capacitor voltage V_{c} changes from +4.0 volts to -0.5 volts and it can be shown that the "off time" is given by the following equation.

$$
\text { "off time" }=(\mathrm{C} 1 \times \mathrm{R} 1) \log _{e}\left[\frac{1}{1-N}\right]
$$

Where N is the ratio of the actual change in the voltage $V_{\text {r }}$, to the maximum change that would occur if the emitter/base clamping action was not present. For our circuit this ratio is:

$$
N=\frac{4 \cdot 0-(-0 \cdot 5)}{4 \cdot 0-(-4 \cdot 5)}=\frac{4 \cdot 5}{8: 5}=\frac{9}{17}
$$

The symbol $\log _{e}$ means natural logarithm and is given in books of mathematical tables.

For our circuit:

$$
\log _{e}\left[\frac{1}{1-N}\right]=\log _{e}\left[\frac{17}{8}\right]=0.75
$$

In fact N is always approximately equal to one half because the actual change of capacitor voltage is nearly equal to the supply voltage whilst the maximum voltage change is about twice this value. (For $N=0.5$ the $\log _{\text {e }}$ term would be 0.7 approximately). We have therefore a simple way of estimating the of time as 75 per cent of the
$C R$ constant. If $\mathrm{Cl}=1000 \mu \mathrm{~F}$ and $\mathrm{Rl}=4 \cdot 7 \mathrm{k} \Omega$ the off time will be given by:-
"off time" $=(0.75 \times 4.7 \times 1000)$ milliseconds, which is approximately $3 \cdot 5$ seconds.

In the case of the astable circuit one complete sequence of events, called a cycle, will take a time that is the sum of the individual off times for the two halves of the circuit. The "number of cycles" that occur in one second is known as the frequency. One cycle per second is called one hertz (Hz).

We can express these circuit parameters as follows:
Total "off time" 0.75 (C1.R1 +C2.R2) and if $\mathrm{Cl} . \mathrm{Rl}=\mathrm{C} 2 . \mathrm{R} 2=T$ say, then

Frequency $\frac{1}{(1.5 \times T)} \mathrm{Hz}$. (must be in seconds)
It must be noted that this result is only approximate but does give a simple method of estimating the circuit frequency.

The astable circuit is just one of many oscillator circuits that can generate voltages (in this case at either the transistor collectors or bases) which are periodic i.e. have a repetitive waveform. The normal household mains supply is another example of a periodic (alternating) voltage, and has a smoother waveform than the square wave output produced at the collectors of the astable multivibrator circuit.

REFERENCE OR COMMON CONNECTIONS

Most of the circuits covered so far have involved currents and voltages that were either steady, or that varied in magnitude (but not polarity) with time. In many circuits one side of the power supply is taken as the common or ground side even though no connection is actually made to "ground or earth".

This concept of a common point or datum is useful since we can refer our measurements to this point and in Fig. 8.4 a circuit is shown that in effect uses two separate power supplies B1, B2 which provide opposite polarity. With reference to the datum or common point, B1 provides a positive voltage to one end of RT and therefore sets up an emitter current in TRI.

Fig. 8.4. Common base amplifier using two power supplies.

The collector current flows via R2 which is supplied with a negative voltage (relative to datum) by B2. The small base current must flow in the datum lead which is common to input, output, B1 and B2.

We have seen that it is possible to produce a reversal of voltage polarity in the astable multivibrator (Fig. 8.2) and in many electronic circuits alternating voltage and current waveforms of this type are produced.

ALTERNATING WAVEFORMS

It is not necessary for all alternating waveforms to have the same shape as Fig. 8.2 and some other common variations are illustrated in Fig. 8.5. In Fig. 8.5a the waveform is smooth and there are no abrupt changes.

An example of such a waveform is the household mains supply and in this case the waveform is very nearly simusoidal. This simply means that the voltage or current varies with time according to the mathematical sine function and can therefore be expressed by $V=V_{\mathrm{m}} \sin (2 \pi f t)$. We will come back to this expression later on.

The Figs. 8.5b and 8.5c show a triangular waveform and a square waveform respectively. Notice that in each of these examples the waveform "shape" repeats itself at regular intervals and that the waveform is symmetrical insofar as the shape of the positive and negative portions are mirror images of each other.

In Fig. 8.5d we have a "repetitive pulse" waveform. The waveform still repeats its particular shape at regular intervals but the waveform symmetry is no longer present since the positive portions are "tall and narrow" whilst the negative portions have smaller amplitude and greater width.

Actually it is somewhat artificial to consider the waveform as two portions, positive and negative, but at this stage we shall find the idea useful for discussion purposes.

Fig. 8.5. Some common waveforms.

(c)

(d)

(e)

The waveform in Fig. 8.5e is not, strictly speaking, an alternating waveform, since it is always positive, but it can be considered to be made up of two parts. If we add a steady positive voltage to an alternating voltage such as that in Fig. 8.5b we can produce a waveform exactly like that in Fig. 8.5e. This idea of breaking a waveform into steady and alternating portions is also very useful.

aVERAGE VALUES

Waveforms that contain alternating and steady components are very common and the steady component is known as the average value of the waveform. The meaning of this is best illustrated by considering the current waveforms shown in Fig. 8.6. In (a) the waveform is symmetrical and the shape repeats itself every two milliseconds. We say that the periodic time is 2 ms since this is the time occupied by the waveform in tracing out its characteristic shape for one complete cycle of variation.

The waveform is made up by a series of such cycles and the number of cycles that occur every second is known as the frequency, measured in hertz (Hz). Thus the waveform of Fig. 8.6a can be described by the following :-
> shape-squarewave
> period-2ms (for one complete cycle)

frequency -500 Hz (number of cycles per second)
other features-symmetrical $\pm 1 \mathrm{~A}$, average value zero.
The zero average value results from the perfect symmetry of the positive and negative half "cycles. The area under the positive half cycle is (lamp) \times (1 ms) and represents a flow of charge of one millicoulomb in a given direction through some circuit. The area under the negative half cycle represents an equal amount of charge flowing in the opposite direction. The nett or average flow is therefore zero over one or more complete cycles of the square waveform.

A similar shape is illustrated in Fig. 8.6b but this time the current is either 2 A or zero. The period, frequency and peak to peak current swing (2A) are the same as before but this time the average value is not zero. Every complete cycle a charge of 2 mC is passed round the circuit in the positive direction-nothing is ever passed back in the reverse direction. The
average flow is therefore 2 mC every 2 ms and is equivalent to an average current of 1 ampere.

This can be seen in Fig. 8.6b since if the top half of each rectangle is removed and used to fill the following space a continuous constant current of +1 ampere results. It is easy to see that by adding a constant current of one ampere to the waveform of Fig. 8.6a the waveform of Fig. 8.6b results.

A.C. THEORY

To extend our knowledge of electronic circuits it is necessary to examine the behaviour of all our previous components under alternating conditions. In fact to gain a full understanding of the behaviour of components it is necessary to consider time varying current or voltage waveforms in general and fortunately this is possible by introducing one fundamental conceptnamely the idea of rate of change. If the voltage across a capacitor is varying with time the current flow will be given by

$$
i=C \times \text { rate of change of voltage. }
$$

If C is in farads and the rate of change is in volts per second the current will be in amperes. If the rate of change of voltage is varying with time then the current will vary in a similar manner. To illustrate some of the possibilities let us consider Fig. 8.7. Diagram (a) shows a voltage which is rising uniformly with time. In this case the rate of change is constant and is equal to the slope of the line which is +20 volts per second. Since the capacitor has a fixed value of $1000 \mu \mathrm{~F}$ the current will be constant and equal to:

$$
\text { Current }=1000(\mu \mathrm{~F}) \times 20(\mathrm{~V} / \mathrm{s})=20,000, \mathrm{~A} A=20 \mathrm{~mA}
$$

As long as the rate of change of voltage is maintained constant at $20 \mathrm{~V} / \mathrm{s}$ the current will remain at 20 mA . After say ten seconds the capacitor voltage will have increased from zero to +200 volts and the charge, Q , stored in the capacitor will be

$$
\begin{aligned}
\mathrm{Q} & =C \times V \\
& =1000(\mu \mathrm{~F}) \times 200(\mathrm{~V})=0.2 \text { coulomb }
\end{aligned}
$$

Notice that this result agrees with the charge transferred by the current flow using

$$
\begin{aligned}
\mathrm{Q} & =i \times t \\
& =20(\mathrm{~mA}) \times 10(\mathrm{~s})=0 \cdot 2 \text { coulomb }
\end{aligned}
$$

A voltage that rises and falls in a regular way is illustrated in Fig. 8.7b, if this voltage appeared

(a)

Fig. 8.6. Illustrating average values.

Fig. 8.7. Voltage and current waveforms for a capacitor.
across a capacitor C the resulting current would be a square wave. The current is positive when the voltage has a positive rate of change of +20 volts per second, whereas the current flow is reversed (i.e. negative) when the voltage falls at 20 volts per second. A falling voltage gives a negative rate of change.

Notice that the capacitor is charging when the current is positive and discharging when the current is negative, Fig. 8.7c illustrates the be-

Components . . .

Capacitors
(Additional to those
$0 \cdot 22,1 \mathrm{~F}$ polyester (2 ofi)
listed in Part 1)

Semiconductors

IN4001 silicon diodes (3 off)
TIS43 unijunction transistor (1 off)
$2 N 3819$ field effect transistor (1 off)
BC477 silicon pnp transistor (1 off)
BTX30-25 triac (1 off)
Loudspeaker
$35 \Omega 65 \mathrm{~mm}$ (approx) (1 off)
Miscellaneous
Friedland bell transformer 8 V secondary (1 off); Ferrite $\operatorname{rod} 150$ to 200 mm long, 10 mm ($\frac{7}{8}$ in) diameter (1 off); 30 s.w.g. enamelled copper wire (2 oz. reel); Plastic cotton bobbin (1 off from Woolworths); Reed switch type 6-RSR-A (1 off). 12-way terminal blocksimilar to that already in use.
haviour when the capacitor voltage is a sine wave. At the positive and negative voltage peaks the rate of change (i.e. slope of the waveform) is zero. The current waveform has the same sinusoidal shape but it is displaced in time relative to the voltage waveform.

The displacement is seen to be equivalent to a shift of a quarter of one cycle and since one complete cycle corresponds to a change of 360 degrees in the angle θ of a sine function, such as $10 \sin \theta$, the displacement can be expressed as a shift of phase of 90 degrees. The current is said to lead the voltage by 90 degrees since it passes through any specified point, such as X, 90 degrees ahead of the corresponding point on the voltage variation.

INDUCTANCE

When current flows in a wire or conductor a magnetic field is set up in the vicinity. If the wire is formed into a coil the magnetic field links the various turns, and this gives rise to the property known as inductance. In our previous experiments we have not needed to use this property which is incidentally always present to some degree, just as stray capacitance is always present, in electronic circuits.

Some components utilise the magnetic effects produced by current flow and two well known examples are the relay and transformer.

Next month we shall look at inductance in a.c. circuits and go on to examine reactance, resonance and r.m.s. values.

For the experimental work of the remainder of the Teach-In ' 74 series, some additional components will be required; these are listed on this page.

TUTOR BOARD EXPERIMENT

Test No. 19

Disconnect the battery and modify the Tutor Board wiring to match the circuit of Fig. 8.1. Use $4: 7$ kilohm resistors for R1 and R2 and check the operation of the circuit for each of the following capacitor values in turn. Observe capacitor polarity!

1. C 1 and C 2 both $250 \mu \mathrm{~F}$.
2. $\mathrm{C} 1=1000 \mu \mathrm{~F} ; \mathrm{C} 2=250 \mu \mathrm{~F}$.
3. $\mathrm{Cl}=1000 \mu \mathrm{~F} ; \mathrm{C} 2=125 \mu \mathrm{~F}$ (made from two $250 \mu \mathrm{~F}$ capacitors in series).
The on state for each transistor is indicated by the lamps and the voltage at Z_{1} and Z_{2} can be examined using the standard $0-10 \mathrm{~V}$ voltmeter circuit. The layout for this test is left as an exercise for readers. The effect of the different capacitor values can be determined by observing the "on time" of the lamps.

Plus 3 Constructional Projects...

81 m and 150 m AMATEUR BANDS RECEIVER

Ordinary a.m. receivers are unsuitable for single sideband reception and also for the other main transmission mode used by amateurs, carrier wave (morse code). The most simple type of receiver suitable for amateur band reception is the direct conversion type and the construction of such a receiver covering the 80 metre and 160 metre bands will be described next month.

FREEZER TEMPERATURE ALARM

Many homes now possess a deep freeze unit and it is logical, particularly if the unit is fitted in a garage or other "outbuilding", to have an indicator available in the house to show that a temperature variation has occurred before the contents of the freezer are spoiled. The unit to be described next month indicates any rise or fall in the temperature with an audible and visual warning.

R.F.SIGNAL

JUNE ISSUE ON SALE MAY 17

TRANSISTOR

 TESTERGives a direct reading of six transistor parameters

Enthusiasts spend a large proportion of their time testing and commissioning electronic circuits. Transistors employed within these circuits can become suspect and therefore a simple transistor test meter is an asset. The Transistor Tester described in this article is cheap and simple to build yet checks the basic parameters of the transistor under test. These parameters are static forward current transfer ratio ($h_{\text {PB }}$), collector leakage current (Iceo) and base/ emitter, base/collector forward and reverse resistance.

The instrument functions with a supply voltage between 10 and 20 volts, which is within the range of the Power Supply Unit described in the February issue.

TEST SYSTEM

The meter measures gain by injecting a known current I_{B} into the base of the transistor under test and monitoring the collector current I_{c}. This gives a direct reading of gain which satisfies the formula:

$$
I_{\mathrm{FE}}=\frac{I_{\mathrm{C}}}{I_{\mathrm{B}}}
$$

Large changes in collector current or collector /emitter voltage affect the transistor gain. The Transistor Tester is designed so that these variations are small enough to be ignored.

As the symbol, I Iceo indicates, the meter ascertains the level of collector leakage current by leaving the base open circuit and applying a constant voltage across the collector/emitter junction, $V_{\text {ce }}$. Indicated current flow is the leakage current taken from the collector supply.

Fig. 1 shows that when subjecting an $n p n$ transistor to resistance checks the transistor acts as two pn junctions connected back to back. This enables the junctions of the base/emitter and base/collector to be treated as two diodes. A similar mechanism explains how the system makes resistance checks of pnp transistors. However, as the doping in each region is reversed, the diode connections need to be inverted to obtain the same action.

Fig. 1. (a) Schematic layer representation (b) diode representation (c) circuit symbol of an npn transistor.

the CIRCUIT

The complete circuit diagram, Fig. 2, shows switch S1 set to npn and therefore the collector voltage of the transistor under test is positive with respect to the emitter. A voltage of 4.7 V drives the base of the transistor via resistors R2, R3 and R4 depending on the position of the gain switch S 4 .

A maximum collector current of 10 mA provides a suitable and safe value for testing general purpose transistors. The meter used to indicate the gain is connected in series with collector, via switches S1, S2 and S3, and because it is 1 mA full scale deflection (f.s.d.), it is shunted with R5 to give the required 10 mA f.s.d. Thus by switching S4 the unit can measure a direct gain up to 1000 .

Testing a transistor whose collector and emitter are short circuited will cause a large current

Fig. 2. The complete circuit diagram of the Transistor Tester.
to pass through the meter. To protect the meter against damage, a germanium diode D2 is connected across it. However, the internal resistance of the meter must be about 170 ohms. The short circuit fault in transistors will cause the meter to register hard over in all positions of switch S4, also when S3 is switched to check leakage.

As most leakage currents are in the order of a few microamps the meter is not shunted, so the lmA f.s.d. will indicate a "leaky" transistor. Switching S3 from position shown removes the shunt resistor R5 and open circuits the base connection (at S3e) thereby giving a direct indication of leakage current (Iceo).

FORWARD/REVERSE RESISTANCE

Testing the forward resistance of the base/ emitter junction of an $n p n$ transistor requires its base to be positive with respect to the emitter. Switching S3 to its resistance position and S 5 to its base/emitter position achieves this and the meter in series with the base measures the current flow.

A large base current is not required or advisable for this test and therefore R6 is included to limit this current below 1 mA . Hence the
meter does not require a shunt when making resistance measurements.

To check the junction is behaving like a diode the forward/reverse switch S2 is changed to its reverse position. This reverses the supply voltage applied to the base/emitter junction, also the meter connections.

As the diode is now reverse biased, only leakage current will flow: One can test the base/ collector junction in the same manner with switch S5 in the relevant position.

Most general purpose transistors have a minimum base/emitter breakdown voltage (V_{gro}) of 5 V and as a safety measure the test voltage is set below that limit at $4 \cdot 7 \mathrm{~V}$. The Zener diode Dl and resistors Rla and R1b achieve this and also enable the unit to function with a supply in the range of 10 to 20 V .

CONSTRUCTION

The prototype unit was built in an Olsen type 25 A metal instrument case with louvres, of approximate size $160 \times 110 \times 100 \mathrm{~mm}$, although any similar case will do.

With reference to Figs. 3 and 4, drill the front panel to suit the components and then fit them in position and secure.

TRaISIISTOR TESTER

Fig. 3. The positions of the components, all of which are mounted on the front panel showing wiring details. For clarity the top half of $\mathbf{S 2}$ is detailed below left.

$P=P O L E$

Photograph of the completed Transistor Tester.

Components....

Resistors
R1a $680 \Omega \frac{1}{2} W$
R1b $680 \Omega \frac{1}{2} W$
R2 $39 \mathrm{k} \Omega$
R3 $75 \mathrm{k} \Omega$
R4 $390 \mathrm{k} \Omega$
R5 18Ω

SEE
 SHOP

R6 $6 \cdot 8 \mathrm{k} \Omega$
All $\frac{1}{4} W \pm 5 \%$ carbon or better, except where stated

Diodes

D1 400 mW 4.7 V Zener diode type BZY88 or similar
D2 AAZ15 germanium or similar

Switches

S1 four-pole two-way Maka
S2 four-pole two-way biased lever type MLK03 4CN/S (Keyswitch)
S3 six-pole three-way Maka
S4 single-pole three-way rotary type
S5 single-pole changeover toggle
Miscellaneous
ME1 1mA d.c. SEW SD460
SK1, 2 heavy duty insulated terminals (one red, one black) (2 off)
Knobs: two large, one small with indicators (3 off); three-pin transistor socket.

Photograph of completed prototype unit removed from case.

The majority of switches used (e.g. Sl-3) have several poles and wiring can easily become confused. It is therefore advisable to wire according to Fig. 3 in conjunction with Fig. 2, starting at the left-hand side of the diagram and working methodically through to the right completing each switch position before going on to the next.

Another aid in clarifying this exercise is to cross off on the diagram each wire as it is connected.

When this has been done and thoroughly checked out, the front panel should be labelled as detailed in Fig. 4 and the knobs screwed on.

Fig. 4. Details of component positions and labelling on the front panel of the unit.

TEST PROCEDURES

Set the $n p n / p n p$ switch to its relevant position and place a transistor in the test socket. To check gain, position the test mode switch S3 to $h_{\text {PE }}$ and the gain control to its $\mathbf{x} 100$ position.

If the meter indication is greater than full scale, switch the gain control until a direct reading can be taken. Multiplying this reading by the gain control position gives the $h_{F E}$ of the transistor under test.

Remember that the parameter $h_{\text {PE }}$ is related to collector current when testing high-power transistors, as there is a large difference between the test and normal operating collector currents.

To check that the transistor's collector leakage current is not excessive, position the test mode switch to Iceo and check that the meter registers a small, if any, current flow. Again, if testing a high-power transistor, some of which have a high leakage current, it is advisable to refer to this particular transistor's data before dismissing it as faulty, purely on the strength of high leakage current.

RESISTANCE

If the previous tests give incorrect results the transistor is faulty and a resistance check will confirm this. To perform the latter test, position the mode switch to resistance and the base/ collector, base/emitter switch to base/emitter. Check that the meter indicates a current flow; if not the base/emitter is open circuit.

If the meter indicates a current flow, position the forward reverse switch to reverse and check that only leakage current is flowing. If the meter registers a current flow, the base/emitter junction is short circuit or acting as a resistance and not a diode.

Check the base/collector junction by the same procedure, but with the base/emitter, base/collector switch S5 in the relevant position.

The forward, reverse switch action is such that it is non-locking in the reverse position.

This is necessary as inadvertently leaving this switch in the reverse position will alter the sense of the $n p n / p n p$ switch. Biasing the switch in the forward position resolves this problem.

DIODE TESTING

This system can be used equally well for resistance measurements of a diode. Proceed as for a transistor measurement, but ensure that the $n p n / p n p$ switch is in the $n p n$ position and the base/emitter, base/collector switch is in the base/emitter position.

As stated earlier the base connection is now positive with respect to the emitter and therefore they can be used for the respective anode/ cathode connection of the diode to be tested. Place the diode in the base and emitter connections of the transistor test socket and operate the forward, reverse switch to check the diode action.

UNKNOWN TRANSISTORS

If a transistor type or lead connections are unknown, adopt the following procedure. Posi-
tion the mode switch to resistance, and ensuring the base/emitter connection (be) has been selected, place any two of the three transistor leads in the base/emitter test points.

Using the forward and reverse switch, check to see if this connection behaves like a diode. If it does, continue the process combining other pairs of leads until a particular pair give no indication of current flow in either position of the forward reverse switch. This will indicate that these leads are the collector and emitter connections thereby proving the remaining lead is the base.

Connect the known base lead to its relevant position and with either of the remaining leads in the emitter connection, position the $n p n / p n p$ switch to give a meter reading. As the forward reverse switch is biased in the forward position, the $n p n / p n p$ switch will indicate transistor type when current flow is registered.

Finally, distinguish between collector and emitter leads by positioning the mode switch to h_{FE} and then interchanging the collector/emitter lead positions until the highest gain reading is obtained. The transistor has now been identified with respect to type and lead connections.

A retailer discusses component supply matters.

1have often wondered what percentage of the amateur electronic enthusiasts visit exhibitions? The Boat Show is crammed with boating enthusiasts, the Motor Show with motorists and this list could be considerably extended, but I get the impression that the majority of people at an electronic exhibition are from industry or like myself connected with the trade. If I am correct I think it is a great pity.

The only exception to this was the Radio Hobbies Exhibition (now I believe, defunct) which used to be held at the Horticultural Hall, Victoria and later at Seymour Hall, Seymour Place. It was held in November and it was packed full of the amateur fraternity.

All the same we have a vcry fine "professional" electronics exhibition in London every year around May and smaller exhibitions are held in Leeds and Brighton. If you venture to the Continent there are large exhibitions in Berlin, Hanover and Paris.

I never miss the London ones and in the last 10 years I have
only missed the Paris one once. It was the fact that. I have just read a notice in the press to the effect that the "Salon International des Composants Electroniques" in Paris is on, from the 1-6 April inclusive which prompted this article. This is an international exhibition and some 23 different countries are represented including of course the U.K.

I certainly urge you all (especially if you are London based) to visit one of these exhibitions. You will learn a lot, and be able to examine the most up to date circuitry in electronics, you will also find the staff on the stands most helpful. No matter that you are not placing any orders, they know that the amateur of today may be the chief buyer of a large concern tomorrow.

Paris

If you enjoy the London ones, then be extra daring and next year try Paris. Everyone ought to visit Paris once in their life, so combine two pleasures and do the Eiffel Tower, the

Louvre, and the Lido as well!
Having said all that, I would like to make a plea to have an exhibition for the amateur electronics constructor, including the "ham". I think the only way it will come about is if the electronics magazines themselves sponsor it!
There is at Olympia, an annual "Do It Yourself" exhibition and since they don't take all the space it might be tacked on to that. I am sure we could rely on the support of many component re-tailers-even to the extent of taking stands.
Should any of you wish to go to either the "R.C.E.M.F." or "Electronics Instruments and Automation" Exhibition (they alternate each year) these are the two London Exhibitions and announcements should be appearing in the press in April giving the dates, or visit your reference library and have a look in "Whats On" at the exhibitions page.

With reference to the Paris exhibition for information write to:
The French Trade Exhibitions, 196 Sloane Street,
London S.W. 1
or telephone 01235 3234. You will also find the French Tourist Office in Piccadilly, London W. 1 very helpful on hotels and aravel facilities.

By C.S.POINTER

THE electronic content of some of the new more advanced cars now reaching the dealers' showrooms is increasing each year. Many of the more expensive cars have as standard equipment or optional extras electronically controlled fuel injection, transistorised ignition, elcctronic tachometer, stereo cassette player, a.m./f.m. transistor radio, etc.

This trend can be expected to continue in the future with developments such as ignition cut-out systems operated when seatbelts are not correctly worn and automatic control of vehicle speed at a pre-set value. There are many developed systems and production electronic extras available and some of these will be covered in this article.

SAFETY DEVICES AND SYSTEMS

Electronics can be used to operate such safety devices as ice warning units (to warn the driver of a temperature approaching freezing point), direction indicators, speed warning devices; automatic headlamp dipping units and emergency flasher units.

One company has developed a system to prevent a car fitted with the system being driven if the seat belts are not correctly worn. This system cuts out the ignition to prevent the car from being driven unless the driver and pas-
senger wear their seatbelts. Fig. 1 shows the system attached to a car, the system operation is as follows.

The weight of a person sitting on the seat operates a sensor in the seat Fig. 1c. The ignition circuit is then broken unless the seatbelt is correctly worn and the sensing circuit is com-

Fig. 1. The seat belt system developed by Mult lard and the Ford Motor Company.

Fig. 2. Control logic of the sysiem shown in Fig. 1.
plete. When the belt buckle Fig. 1b is closed, an ultrasonic transmitter mounted above the car windscreen emits a signal. If the belt is correctly worn across the driver's body then the ultrasonic signal beam will be picked up by an ultrasonic receiver on the belt, Fig. la, the signal at the receiver completes the sensing circuit and then the system logic closes the ignition circuit enabling the car to be driven.

The system has been designed to filter out short term interference from such things as cigarette smoke or quick hand movements across the ultrasonic beam. A delayed action and possibly some warning of pending ignition cutout would be required in the event of the seatbelt being removed whilst the vehicle was in motion.

The system control logic can be arranged so that the car can be parked or garaged in low gear or reverse without the need for the seatbelt to be worn by the driver. The block diagram, Fig. 2, shows a system with the facility for overriding control for parking as mentioned above.

The passenger seat sensor provides a signal to the system control logic if the passenger seat is occupied, the ignition circuit is then broken unless both seatbelts are correctly used. The delayed action and warning lamp control circuits would be built into the system control logic circuit, the warning lamp being flashed on and off to attract the driver's attention.

There are many safety systems which have been developed in the last few years, these include an experimental radar unit to give the driver warning of obstructions or vehicles ahead of his car in foggy conditions, there are also several anti-lock braking systems.

Anti-lock braking systems have been developed to prevent any one or all of the wheels of the
car from locking and putting the car into a skid. A set of wheel sensors detect the onset of wheel lock and transmit a signal to the control unit which varies the operating pressure of a pressure limiting valve in the hydraulic brake line to the wheel brake cylinder, Fig. 3.

PERFORMANCE AND PERFORMANCE MEASUREMENT

There are two fields in which electronics can be used in connection with performance, the first production of performance, the second measurement of performance.

The two main types of electronic unit used in performance production are transistorised ignition systems and ellectronically controlled fuel injection systems.

Transistorised ignition systems fall into two types, transistor assisted ignition and capacitor discharge ignition. Transistor assisted ignition systems use a transistor amplifier switched by the contact breaker points to switch on and off a high voltage power transistor in the ignition coil primary circuit; since the transistor amplifier input current is small, and non-inductive arcing at the contact breaker points is virtually totally eliminated, point wear is greatly reduced; with the use of a high ratio ignition coil the ignition h.t. voltage is increased, raising ignition efficiency. This system can be used with contact breakerless ignition systems where the transistor amplifier is switched by a magnetic pickup in the distributor.

Fig. 4 shows the block diagram of a transistor assisted ignition system using a magnetic pickup in place of the conventional contact breaker. An oscillator in the amplifier unit connected to the

Fig. 3. Block diagram of an antilock braking system for vehicles.

Everyday Electronics, May 1974

Fig. 4. A transistor assisted ignition system using a magnetic pickup.
pickup supplies a signal voltage to the input windings wound on the outer limbs of the " E " shaped pick-up transformer.

The signal voltage sets up a field around each outer limb, the two fields oppose one another and the magnetic fluxes produced in the centre limb are arranged to cancel, therefore the voltage induced in the output winding wound around the centre limb is very small.

When one of the timing rotor ferrite inserts passes the pick-up transformer, bridging the gap between one of the outer limbs and the centre limb of the transformer, the magnetic fields no longer cancel and the resulting fiux induces a voltage in the output winding of the pick-up. The output from the pick-up is fed to the amplifier unit and the presence of a signal resulting

The Lucas Opus 3 (MkI) ignition system using a magnetic pickup.

Fig. 5. A block diagram of a capacitor discharge ignition system.
from the ferrite insert lining up with the pick-up turns off the normally conducting power output transistor in the ignition coil primary circuit.

When the power output transistor turns off the current flow to the ignition coil, a large voltage is induced in the coil secondary, the h.t. voltage produced is switched to the appropriate sparking plug by the distributor h.t. rotor and ignition occurs.

Control of ignition timing with vacuum and centrifugal advance can be incorporated in this system by vacuum control of pick-up module position and centrifugal control of timing rotor position. 'The ballast resistor unit provides bias to the power transistor and also increased ignition coil voltage for cold starting.

This system requires much less maintenance than conventional ignition systems, and will operate efficiently at much higher engine speeds. Since this system is unlikely to go out of adjustment, correct timing is maintained resulting in more control of exhaust emission, fuel economy and constant performance.

Shown in Fig. 5 is the block diagram of a capacitor discharge ignition system. The inverter circuit running at about two thousand cycles per second and rectified by a high voltage bridge, charges the energy storage capacitor to a high voltage (approximately 500 volts).

When the contact breaker points close, the trigger circuit switches on the silicon control rectifier and the storage capacitor is connected across the ignition coil primary. The energy stored in the capacitor causes the coil primary voltage to reach, very quickly, a large negative voltage; the capacitor then discharges and the current in the coil primary passes through zero cutting off the thyristor.

The fast change in the coil primary induces a large voltage in the secondary which supplies h.t. to the plugs via the distributor head rotor arm.

This system will operate more efficiently than normal systems even with fouled plugs and gives easier starting with smoother running from cold. A standard ignition coil can be used since a high ratio coil is not required as used with transistor assisted ignition circuits.

Electronic fuel injection systems are now user on some production cars. One of the units us
contains a plug-in printed circuit board plus power transistors mounted on a suitable heatsink. The unit monitors engine temperature and inlet manifold pressure and operates the fuel injectors to deliver the correct amount of fuel for the operating conditions. Since the amount of fuel delivered is controlled, the efficiency of the engine may be inceased, and fuel economy together with pollution control may be achieved.

DIAGNOSIS

Separate measuring instruments are mainly used for setting up and checking that the car is properly tuned. Many garages have electronic tuning aids for measuring ignition settings and performance, battery charging circuit efficiency and engine performance. These instruments range from those displaying the measured performance on a meter to those displaying waveforms on a screen or giving a digital display or printout.

With the use of an oscilloscope display unit, it is possible to monitor the ignition system performance with the engine running. By displaying on the screen the ignition coil primary

The Crypton "Motorscope" Mk VI-engine analyser shown in use.
voltage waveform, diagnosis can be made of damaged plugs and fouled plugs, open-circuit h.t. cables, etc. The complete waveform for all the engine cylinders can be displayed and the faulty components associated with a particular cylinder can be pinpointed.

A network of dealers are now using a diagnosis system to check customers' cars; all new cars sold by the dealer network being fitted with sockets for connection to the diagnosis equipment, older models not fitted with sockets are connected to the equipment via adaptor leads. For each model to have diagnosis service a programme card supplies data to the diagnosis equipment controlling the tests carried out and giving the correct readings that should be
obtained for comparison, within the equipment.
After connection of the equipment to the car and programming the unit using the correct card, a digital display indicates the number of the test to be carried out and the value measured then appears on the digital display. If the measured value is within the specified limits the measured value is printed out on the test record which is presented to the customer at the end of the tests. Those operations and tests which are not automatically carried out are completed by the mechanic using a manual input unit.

The diagnosis covers steering, brakes, electrical equipment, tyre pressures, oil, brake-fluid, water levels, engine cylinder compression and engine dynamic tests. One test automatically carried out is measurement of wheel alignment which is measured by reflecting a projected light beam across a measuring plate; another check is to measure the battery fluid using a sensor mounted in the battery.

Using this system allows a mechanic to check 88 test operations in about half an hour. The police also use electronics to check the speed of vehicles on the road using the Doppler effect

A Crypton timing light being used to set the ignition timing with the engine running.
to measure the speed of a car passing the radar unit.

The most widely used electronic instrument for measuring performance fitted to today's cars is the electronic tachometer unit; this device converts the pulses produced by the ignition circuit contact breaker points into meter deflection current, thus giving a meter reading proportional to the engine speed. The input to some tachometer units is taken from an input sensor which consists of a coil of a small number of turns wound around the contact breaker to coil connection wire.

Next month. This article will be continued and will cover car security, entertainment and communication.

Both our series of constructional projects concerning test gear (the E.E. Test Gear Five), which will finish next month when the R.F. Signal Generator is published, and last month's special supplement Test Gear may have aroused some interest in many constructors.

The section on multirange meters in the supplement started by saying: "A multirange test meter is probably the first and most useful item of test gear anyone is likely to purchase." This is, of course, quite true and if you do not have any test gear you should look at meters before anything else.

To get a worthwhile instrument you will probably have to spend about $£ 8$ or more. However, next month we are presenting an exciting opportunity for you to win a multimeter. A number of good quality meters will be presented as prizes in our free entry competition, so don't miss this chance.

Transistor Tester

One or two problems concerning components for the Transistor Tester may arise, mainly with the switches specified. The miniature Maka switches should be generally available-if you have trouble one of the larger London based suppliers should be able to help. You will probably have to buy the parts separately and assemble them. The wafers used on the prototype were two 4 pole, 3 way (used for the 6 pole 3 way
switch) and one 4 pole, 3 way (used for the 4 pole, 2 way switch).

Obviously 2 poles are not used on the first switch and one "way" is not used on the second. The switch assembly has a "Stop washer" which can be adjusted so that the switch will rotate only through the required number of positions.

The lever key switch is available from Farnell Electronic Components Ltd., Canal Road, Leeds, LS12 2TU. The switch is type MLK03.4CN/S and will only move in one direction, without locking. It will only have contacts on one side as shown in the wiring diagram. The switch costs 78 p plus 3 p for the handle plus 25p small order surcharge plus VAT-we make that about $£ 1 \cdot 17$. Handles are available in a vast range of colours, red, dark green, blue, yellow, grey, ivory, maroon and black being the main onesstate colour required when ordering.

Electronic Bagpipes

Once again the problems with parts for the Electronic Bagpipes article seem to be confined to switches. This time very simple, small press to break switches which are available from a few of the larger suppliers. The switches should be miniature types not exceeding about 35 mm overall and must be press to break.

The microswitch used for the on/off switch must be capable of
being operated when the side is squeezed and is best if it can be screwed to one side and operated by the other. Most types with a button operator are suitable.

Chanter material will depend on what is available but make sure the switches will go insidethe connection tags may need bending over for this. Most other parts should be readily available.

Egg Timer

All parts for the Egg Timer should be generally available, although you may have to shop around a bit for the loudspeaker. The case used in the prototype came from Trampus Electronics, PO Box 29, Bracknell, Berks, but quite a few similar types are available from many suppliers.

Simple Buzzer

The Simple Buzzer is built around a balanced armature earpiece: The most important things to check when buying this is that the impedance is correct and that the whole thing can be taken apart. For this reason one of the ex. W.D. types in a plastic case will probably be best.

Stop Press!

The twin ganged potentiometer for the Audio Frequency Oscillator (March 1974) is available from Radio and T.V. Components Ltd., for a total cost of 75 p including postage, packing and VAT.

In Demo Circuits last month (page 221) the formulae for inductive reactance and capacitive reactance are shown under the wrong headings, they should be transposed.

In Teach-In '74 Lesson 6, Fig. 6.3. The wire from B2+ve should go to the centre tag of SI. Lead from D2 + ve should go to junction of $R 3 / B I-v e$.

Fig. 2. The complete circuit diagram of the Egg Timer showing the three major sections.

the CIRCUIT

A complete circuit diagram of the Egg Timer is shown in Fig. 2; dotted lines break the circuit into the three sections outlined above.

Transistor TR1 is a unijunction transistor, and the operation of this is completely different to that of an ordinary transistor. The unijunction has an emitter, two bases, and no collector. With no voltage present at the emitter terminal, the base 1 and base 2 connections of the transistor will have the characteristic of a resistor with a value of a few kilohms between them.

With reference to Fig. 2, with S1 in the on position, there will be a potential of about one volt at TR1 base 1. The input resistance to the emitter of TR1 will be extremely high at low voltages, perhaps several hundred megohms, therefore Cl will begin to slowly charge through VR1 and VR2.

Since C1, VR1 and VR2 all have high values, the voltage across C1 will increase slowly.

Eventually, when there is a potential of a few volts across C 1 , the triggering point of TR1 will be reached. When this happens, the input resistance to the emitter of TR1 drops to a very low level, and C1 will discharge very rapidly. As this occurs, the resistance between TR1, base 1 and base 2 will drop to about half it's previous level, thus causing the voltage at base 1 to rise to about 4 volts. This will only last for the time it takes for Cl to discharge (a fraction of a second), and then the circuit returns to the beginning of the cycle.

Both VR1 and VR2 can alter the time taken between turn on, and the pulse at TR1 base 1 . Potentiometer VR2 is a preset type connected as a variable resistor which is adjusted so that VR1 (which is fitted on the front panel of the timer, and has the dial marked around it) covers the required range of 2 to 5 minutes. Component VR2 has to be a preset, rather than a fixed resistor, so that compensation for the wide tolerances of the electrolytic capacitor used for Cl , can be made. The tolerance of this component can be as much as plus 100 per cent and minus 50 per cent.

BISTABLE MULTIVIBRATOR

Transistors TR2 and TR3 form the bistable. When the supply is turned on, the voltage at the collector of each transistor will begin to rise. Due to the component tolerances, the voltage at one collector will rise more quickly than that at the other collector. To ensure that the voltage rises more quickly at the collector of TR2, C2 has been included.

As the voltage at TR3 collector rises, this rise will be coupled by C2 to TR3 base, where it will have the effect of reducing the voltage at TR3 collector. The effect of C2 is only slight, but is enough to ensure correct circuit action.

The voltage at TR2 collector will therefore rise quickly to almost the full supply potential, and this will be coupled through R5 to TR3 base, causing the potential at TR3 collector to go to almost zero. Thus each time the unit is switched on, TR2 will be off (not conducting) and TR3 will be fully on (conducting).

Base 1 of TR1, and the base of TR2 are coupled by R3. Therefore, when base 1 goes positive at the end of the timing period, TR2 base will also go positive. This will cause TR2 collector te go more negative. Because the collectors, and bases of TR2, and TR3 are cross coupled by R5 and R6, a regenerative action will take place. The base of TR3 will go more negative, causing TR3 collector to go more positive, bringing us full circle back to TR2 base which will go still more positive. This regenerative action will continue until the transistors have changed states, with TR3 collector at nearly full supply potential, and TR2 collector at almost earth potential. In other words TR2 is fully on and TR3 fully off.

It is seen from this that the bistable will have only a small output voltage until it is triggered by the short output pulse from TR1, whereupon its output will rapidly swing to a high level, and stay at this level.

AUDIO OSCILLATOR

The audio oscillator is formed by TR4, and TR5. These are both operated as common emitter amplfiers, R9 being the collector load

Fig. 3. The layout of the components on the Veroboard wired to the components mounted in the case.

Photograph showing the completed Egg Timer. .EGG

Components....

Capacitors

C1	$1000 \mu \mathrm{~F}$ elect. 10 V
C2	$0.01 \mu \mathrm{~F}$
C3	$0.047 \mu \mathrm{~F}$

Semiconductors

TR1 TIS43 unijunction
TR2, 3, 4 2N706 silicon npn (3 off)
TR5 2N4062 silicon pnp
Miscellaneous
VR1 $100 \mathrm{k} \Omega$ carbon lin.
VR2 100k』 preset lin.
S1 double-pole double throw toggle or slide switch
LS1 25 ohm loudspeaker approx. 70 mm diameter
B1 9 volt PP3
Veroboard, 0.1 in . matrix size 10 strips by 32 holes; speaker fret; connectors to suit B1; plastic case size $110 \times 72 \times 30 \mathrm{~mm}$ or larger; knob.
resistor for TR4, and LS1 is the collector load for TR5. The input, and the ontput of the circuit are in phase, and C3 will therefore introduce positive feedback, which will cause the circuit to oscillate when a suitable biasing current is present at TR4 base.

However, the biasing resistor, R8, is connected to the output of the bistable, and will normally be at a very low potential, and will not introduce a proper biasing current. At the end of the timing period when the output of the bistable changes to a higher potential, then the required biasing current is introduced, and the circuit will then oscillate, producing an audible tone from LS1.

When the circuit is turned off, Sla shorts across the terminals of Cl , ensuring that this is fully discharged, and that the unit is immediately ready for use again.

CONSTRUCTION

Most of the components are mounted on piece of $0 \cdot 1$ in. matrix Veroboard size 10 strips by 32 holes as shown in Fig. 3. All the components with the exception of R5 are mounted vertically.

Begin construction by making the breaks along the copper strips on the underside of the board
and then drill the two fixing holes for 6BA clearance (No. 31 twist drill). Now position and solder all the resistors and capacitors in place as detailed and then position and solder the transistors in place using a heatshunt to avoid thermal damage.

The prototype Egg Timer was housed in a commercially available plastic case, size 110×72 $\times 30 \mathrm{~mm}$ (internal dimensions). Any case of similar size is equally suitable but do not choose one that is any smaller than employed on the prototype otherwise it may be impossible to fit all the components into it.

Should a metal case be used, steps must be taken to insulate the Veroboard panel from this, and it should be ensured that no other parts are in electrical contact with it.

Make the necessary cut-outs and holes in the case to suit the components and board fixings and then secure the remaining components in position as indicated in Fig. 3.

A cut out about 50 mm in diameter should be made in the front of the case, where the loudspeaker is to fit, and a piece of speaker fret glued to the inside of the case to cover the hole. The speaker is then glued to this.
As can be seen, the preset potentiometer VR2 is soldered directly to VRI. Either a horizontal or a vertical mounting type can be used, but in either case it should be orientated so that.it can be easily adjusted when soldered in place. Now wire up according to Fig. 3 and when completed fix the board to the inside of the case as shown in Fig. 4.

Fig. 4. The completed unit with lid removed.
No battery bracket is detailed as this was found unnecessary; a piece of foam rubber below and above the battery will hold it securely in position when the lid is screwed on.

ADJUSTMENT AND CALIBRATION

The only adjustment required is that of VR1. This should be set with the slider half way around the track at the outset; VR2 is adjusted

Photograph of the completed unit with battery and board removed.
for minimum resistance (turned fully anti-clockwise), and the unit is turned on.

If it is functioning correctly, after about two minutes the alarm will sound. The exact time taken should be monitored. If it takes less than two minutes, the resistance of VR1 must be increased, and if it takes more than two minutes, the resistance of VR1 must be decreased. The
process should then be repeated until it takes two minutes (plus or minus a few seconds) for the alarm to sound, from when the timer is turned on.
It is then necessary to calibrate a scale around the control knob of VR2. The two minute has already been found, and now every half minute point up to five minutes must be found, by trial, and error. This is a lengthy business, but there is unfortunately no short cut to this.

Ruminations
 By Sensor

A Woman's Work

I suppose that those people unacquainted with the electronics industry tend, when thinking of it, to give it a masculine imageserious looking men with slide rules in their top pocket, scribling abstruse calculations and speaking to each other in a near incomprehensible jargon. But, while men like these undoubtedly exist, for they are the visionaries and the innovators without whom the industry would soon stagnate, women dominate the scene to a remarkable extent.
In some branches of the industry women make up 95 per cent of the workforce and their jobs range from assembly work (of all degrees of complexity) through planning, drawing office,
laboratories and inspection and testing right through to senior management level.

Women, of course, also occupy the secretarial and clerical positions. I knew two young women who gave up secretarial jobs in order to work on the bench, both felt that bench work was much more satisfying than their former jobs and enabled them to employ themselves creatively. Although working conditions were not as good, and the hours worked a little longer than those they enjoyed formerly, they had no regrets about their change of occupation.

As You Like It

I once asked a woman who was doing a minor repetition job, how she could do the same thing day after day without becoming bored beyond endurance. She replied that she enjoyed the work because it left her mind free to think of other things! I have since found this to be a useful way of approaching one's own
chores. We all have boring work to do at times, and if we let our hands work automatically we can daydream, think or plan to our hearts content; thus viewed, a monotonous task can be a welcome respite from more demanding employment.

Many of the jobs done by women in the electronics and electrical industries are very demanding indeed and require a high degree of skill. I am thinking, particularly, of some of the soldering work such as soldering the "hair" springs on to a micro-ammeter-a steady hand and a good eye together with a great deal of patience, are essential; I know-I've tried it myself.

Look around your home and you will see the work of our womenfolk-the electricity meter, the light bulbs and electrical fittings, even the wire that connects them together, the T.V., radio and all the domestic appliances were built or made almost entirely by women. And when you reach for the telephone you are touching a woman's work again.

SEMICONDUCTOR PRIMER
 By A.P. STEPHENSON

11. IMPORTANT TRANSISTOR CURVES

Graphs showing the effect of base current and collector voltage on the collector current.

Although collector current is very sensitive to base current, it is hardly affected by collector voltage. The graphs in Figs. 11.1 and 11.2 illustrate.

Note

If base current is increased, the collector current also increases by a much greater amount
The ratio $\left(\frac{\text { base current }}{\text { collector current }}\right)$ is called the forward current gain $h_{\text {fe. }}$. In Fig. 11.1, for example, $h_{\text {Ft: }}=100$.

Note

Unlike the base, the collector voltage is unable to change the collector current by any appreciable amount (except for very low voltages).

As far as collector voltage is concerned, the transistor behaves almost as a constant current device see Fig 11.2.

12. BC107, BC108, BC109 TRANSISTORS

These form a useful trio for general audio or video circuitry and have the advantage of cheapness (about 10 p each) and easy availability in almost any district.

They are silicon $n p n$, planar epitaxial transistors encased in TO-18 form. BC107 is a higher voltage version, quite suitable as a driver for
audio output stages.
BC108 is a general purpose "dogsbody".
BC109 is a low noise version, particularly suitable as an input stage for low level signals. For military use, they arrive disguised as: CV 0374882 CV 0375395 CV 0375627 (BCl07) (BC108) (BCl09)

BRIEF SPECIFICATION

PARAMETER	BC107	BC108	BC109	UNITS
$V_{\text {CE max }}$.	50	30	30	V
$I_{C \text { max }}$.	200	200	200	mA
Power dissipation max at $<25^{\circ} \mathrm{C}$	300	300	300	mW
$T_{J_{\text {max }}}$.	175	175	175	deg. C
$\begin{array}{r} h_{\mathrm{FE}} \text { (at } I_{\mathrm{C}}=10 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V} \text {) } \\ \text { (at } I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V} \end{array}$	$\begin{array}{r} 90 \\ 180 \end{array}$	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	$\begin{aligned} & 270 \\ & 500 \end{aligned}$	typical
$h_{\mathrm{fc}}\left(\text { at } I_{\mathrm{C}}=2 \mathrm{~mA} . V_{\mathrm{CE}}=5 \mathrm{~V}\right)$ measured at 1 kHz	$\begin{aligned} & 125 \\ & 500 \end{aligned}$	$\begin{aligned} & 125 \\ & 500 \end{aligned}$	$\begin{aligned} & 240 \\ & 900 \end{aligned}$	minimum maximum
$f_{\mathrm{T}}\left(\right.$ at $\left.I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\text {CE }}=5 \mathrm{~V}\right)$	300	300	300	M Mz
V_{CE} saturation voltage when $\frac{I_{\mathrm{B}}}{I \mathrm{C}}=20$	300	300	300	mV
NOISE at $I_{\mathrm{C}}=200 \mu \mathrm{~A} . R_{3}=2 \mathrm{k} \Omega$ (max) at $1 \mathrm{kHzB}=200 \mathrm{~Hz}$	10	10	4	dB

Interference

I want to fit a radio in my car. How do I go about suppressing the engine?

The main sources of interference are from the sparking plugs, the generator brushes and the coil. To overcome the loud clicking type of interference from the plugs you must suppress the leads from the distributor to the plugs. Modern cars are usually fitted with carbon leads that are already suppressed and in those cases you need not worry (in fact you will dégrade your engine's performance if you try to insert suppressors). You can buy plug suppressors which are in the shape of plug caps; these screw into the cables running from the distributor-all they consist of are high value resistors that go in series with the normal plug lead.

To cure coil interference which again is a clicking noiseconnect a $0 \cdot 1 \mu \mathrm{~F}$ capacitor between the coil's connection to the contact breaker and ground (the car's chassis). Noise from the generator is a loud whine that rises and falls in pitch as you rev the engine. Again connect a $0 \cdot 1 \mu \mathrm{~F}$ capacitor between the generator's main output connection and ground-the main connection of the generator is usually the larger terminal. Do not connect the capacitor between the field coil terminal and ground.

Should interference still persist tighten up the battery connections, check the aerial is properly fitted to the radio and make sure the
aerial lead's screening is well connected to the car's chassis at the aerial end. Worn cut-out contacts can produce spurious interference which is difficult to identify. The $0 \cdot 1 \mu \mathrm{~F}$ capacitors we mention can be purchased from any auto spares shop and usually have the correct sized terminals to make fitting easy.

Hum Loop

Someone told me it is good practice to earth a hi fi systemnot only for safety reasons but to remove hum. My amplifier was earthed but I had a bit of hum so I earthed the record player only to find the hum got worse. Is there any logical reason for this?

It sounds as though by earthing the record player you have introduced what is called "an earth loop". This is very easy to do and is often a very bad source of hum. Certainly your system should be earthed, but the connection back to the main earthing point (in your case we suspect this was the mains plug) should be by one route only. By connecting separate earths (a) from the amplifier and (b) from the turntable unit to separate (?) mains plugs you form an inductive loop (from the mains earth through the chassis of your amplifier, down the coaxial screening, through the chassis of your turntable and back to mains ground).
If you are unfortunate and have a transformer or similar inductor in the system carrying 50 Hz mains the earth loop will pick up currents by induction from the source and this signal is superimposed on your pick up signal giving rise to the worsening hum. It is better to earth the amplifier and make sure that the screening of your pick up cable is grounded to the amplifier's chassis at one end and to the turntable unit's chassis at the other. This way the whole system is earthed but you do not introduce any loops.

Battery Leakage

My electronic flash gun runs off dry batteries and unfortunately these leaked and made a mess inside. However I cleaned out the battery compart. ment but it still won't work. Could the material from the batteries have caused any problem
or is it more likely to be something else?

Almost certainly the material from the battery is the cause of the malfunction. You must check the circuitry inside the gun and remove all traces of the paste. It can cause leakage across capacitors, bridge gaps in printed circuit boards and worse still will actually dissolve the copper from circuit boards. If you see green deposits on the copper wiring of the circuit you can bet that the last has occurred and you may have to do a bit of re-wiring.

If you do attempt to have a go yourself be warned; very high voltages at high currents are present in electronic flash gunsdo not be deceived by the small batteries! So, be careful if you test it out when it is not in its case; in particular do not touch the terminals of the main capacitor unless you have discharged it first with an insulated handled screwdriver!

Transistor Selection

Your instructional articles always make the operation of a transistor seem very simple and it seems that the only parameter of importance is the h_{f}. Is this true, and if so why are there so many different types?

It is true that $h_{f 0}$ is a very important parameter but there are other obvious ones that are just as critical. There are also a few less obvious ones. One has to consider the reverse breakdown voltage across the base/ collector and base/emitter junc-tions- $V_{\text {obo }}$ and $V_{\text {ebo; }}$ also the breakdown voltage between collector and emitter ($V_{\text {ceo }}$). There is always a limit to the collector current you can draw through the device before it fuses internally ($I_{\text {emar }}$).

A transistor cannot dissipate unlimited power without overheating. Too high an operating temperature changes the base emitter forward voltage drop and this effects the biasing conditions. There is thus a complicated link between power dissipation and operating characteris-tic-apart from the obvious effect of excessive dissipation melting connections inside the device and ruining it.
Maximum power dissipation

RAPY

BUILD, SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :
valve experiments.transistor experiments amplifiers. oscillators. signal tracer. photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter. time delay circuit, servicing procedures.

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test. service and maintain all types of electronic equipment, radio and TV receivers, etc.

TRANSISTORS
and samb-conductors of many types from simple diodes to ICs photoozensitive devices, threshold switches, etc. atc.

MINITRON DIGITAL INDICATORS $3015 F$ Seven segment filament, compatible with standard logic modules. 0-9 and decimal polnt 9 mm characters in 16 lead DIL. Now avallable in 8 mA or 85 mA segment ratings $\mathrm{Es}-20$.
Suitable BCD decoder driver 7447 \&i.15.
-
HELECTROLYTIC CAPACITORS
Incans, plasic sleeved
$100 \mathrm{mF} / 25 \mathrm{~V}$ 25 200050 mF 51 p $5000 / 50$ モ1-48

POLYESTER CAPACITORS TYPE C. 230 Radial leads for P.C.B. mounting. Worklng voltage 250 V d.c.
$0.01,0.015,0.022,0.053,0.047 \mathrm{ea} .3 \mathrm{p}$
$0.089,0.1,0-15$ ea, $4 p$
$0.2250 \cdot 0.337 p: 0.47$
0.22 5p; 0.33 7p;0.47 5p; 0-68 11p:1-0 14p: $\mathbf{1}-5$ 24p; 2-224p.
EILYERED MICA CAPACTORS
Working voltage 500 V d.c.
Values in pFs- $2 \cdot 2$ to $820 \ln 32$ stages, each 5 p . 000, 1500 7p; 1800 8p; 2200 100; 2700, 3600 12p 7700, 5000 150; 6800 20p; $8200,10,00025 \mathrm{p}$.

OOTENTIOMETERS
ROTARY, CARBON TRACK, Double wlpers for pood contact and long working ttfe
P, 20 EINGLE Ilnear 100 ohms to 4.7 megohms
ea. 14 .
P. 20 SiNGLE log. 4.7 Kohms to 2.2 megohms. e8. 14 p .
P. 20 DUAL GANG Iinear 4.7 Kohms to 2.2 meg
ohms, ea. 42p. GANG log. 4.7 Kohms to 2.2 meg-
ohms. ea. 4ito.
JP. 20 DUAL GANG Log/antilog 10K, 22K, 47K 1 megohm only ea. 48%.
2A DP mains switch with eny of above 14p extra.
Decades of 10,22 and 47 only avallable in ranget above.
BLIDER POTENTIOMETERS
Linear or log. loK to ímeg. In all popular values Escutch
Contral arey knobs bik/whtlred/yel/grnfblueldk. grey It orey, ea. 6p.

ELECTROLYTIC CAPACITORS
Axial Lend
$5 \mathrm{~F} \quad 3 \mathrm{~V} \quad 6.3 \mathrm{~V} 10 \mathrm{~V} 16 \mathrm{~V} 25 \mathrm{~V} 40 \mathrm{~V} 63 \mathrm{~V} 100 \mathrm{~V}$

This is ED Service

DISCOUNTS

Avallable on all liems excapt thase shown with NETT PRICES. 10% on ordera from es to $£ 15.85 \%$ on orders $£ 15$ and over
PACKINEANDEOSTAGEFREE in U.K. For mail orders for O list valuo and under, there is an addisional handing charge of 10 p . GUARANTEE OF QUALTTY
All goods are sold on the understanding that they conform to manufacturers specification and satisfaction is guaranteed as such-no relects. seconds' or sub-standard merchandige is oflared for sale.
V.A.T. Prices quoted do not include V.A.T., for which 10% must be added to total nett value of order. Prices subject to alteration without notice. S.A.E. with written enquirles please.

RESISTORS

Code	Watts	Ohms	8-9	10-99	100
c	1/20	82-220K	5		7-5
c	1/3	4.7-470K	$1 \cdot 3$	1.1	$0 \cdot 8$ nett
c	1/2	4-7-10M	$1 \cdot 3$	1-1	0.9 nett
C	$3 / 4$	4-7-1091	1.5	1-2	0.97 ne
	1	4.7-10M	3-2	2-3	1.92 net
MO	$\frac{1}{1}$	10-1M	4	$3 \cdot 3$	2.3 nott
WW	1	0.22-3.3	\bigcirc	8	E
WW	3	1-10K	7	7	*
WW	7	-siok	-	\%	\%

Codes: C-carbon film, high stability, low nolse. MO-metal oxlde, Electrosil TR5, ultra low noise.
Yatues: All E. 12 except Ci/3, C3/4, MO $1 / 2$
10, 12, 15. 18, 22, 27. 33, 39, 47, 56, 68, 82 and their E24; as Ei2 plus 11. 13, 16, 20, 24, 30, 36, 43, 51.62 75, in and thelr decades.
orerances: All 5% except MO $1 / 2$ at 2%. WW. at $10 \%=0.08$
Prices are in pence each for quantities of the sama ohmic value and power rating. NOT mixed values. (Ipnore fractions of one penny on total value ol reslstor order.)

2ENER DIODES full rente E24 valute. 400 mW 2.7V to 36 V , t10 each: $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V , 210 each 1-5W: 4.7V to 75Y, 48p each, Cilo to Increase 1.5W rating to 3 watts (type 266F) 3p.

TRANSFORMERS—MAINE

MT3 30V/2A plue 4 taps
MT103 $50 \mathrm{~V} / \mathrm{TA}$ plus 4 taps
MTI2T BOVI2A plus 4 tape
MTOS BOV/2A plus 4 taps
$28 T O 5+12 \mathrm{~V}, 2-\mathrm{O}-2 \mathrm{~V}$

GIRO ACCOUNT No. 38/671/4002
All postal communications, mail orders etc. to Head Office at Egham address, Dept EE. 4.
28, ST. JUDES ROAD, ENGLEFIELD GREEN EGHAM, SURREY TW20 OHB Telephone Egham 3603; Telex 264475 . Shop hours: 9-5.30 daily. Sats. 9-1.0 p.m. NORTHERN BRANCH: 680, Burnage Lane, Burnage Manchester M19 1NA Telephone (061) 4324945
Shop hours: 9-1 and 2-5.30 daliy. Sats. 9-1.0 p.m.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA; P.O. Box 27, Swarthmore PA 19081.
($P_{\text {tot }}$) has to be specified for a certain temperature differential between the device and its surroundings and whether or not the transistor is on a heat sink. Some not so obvious parameters are that the h_{fe} of a transistor varies depending on the level of collector current: a high collector curfent causes noise generation inside the device (when amplified it sounds like background hiss) and this is undesirable in the front stages of hi fi amplifierssome transistors are specially selected to have low noise.
The diode capacities of reverse biased junctions in the transistor can influence high frequency circuits and must be allowed for in circuit calculations as must any internal resistance the transistor might have.

Transistors are designed, manufactured and selected to meet permutations on all these parameters (plus a few more) so you can see why there is such a vast number of different types-apart from obvious differences like silicon/germanium, or pnp/npn.

Wire Size

When winding coils (e.g. aerial rods or suppression inductors) I can see it is desirable to keep to the right number of turns-this, presumably, sets the inductance -but is the wire thickness important because you usually specify an s.w.g. number?

There are some instances where wire thickness is not important but as a general rule we suggest
you stick to recommendations. The coil might be carrying high current (suppressors) and unless the wire is heavy enough it might overheat. In the case of aerial rods, the length of the coil around the rod might be an important factor in setting the inductance (as might be the spacing between turns); changing the wire gauge might affect these
At high frequencies (short waves) one should always use thicker wire because the a.c. currents only flow along the outer edges of the conductor (skin effect) and to avoid excessive internal d.c. resistance (which reduces the efficiency or " Q " of a tuned circuit) you need as large an outer circumference as possible. Sometimes multistrand (Litz) wire might be specified for the same reason: When winding bobbins for high value inductors it may not be possible to get suffcient turns on if you use a heavier gauge.

Microphony

I have quite a good quality amplifier with a microphone input. If I connect a crystal microphone to this input (which is supposed to be matched for a high impedance input) I get very good reproduction but when I kick the microphone cable I get a "clunking" noise in the loudspeaker. This is not due to pick up in the microphone as I have done this with a very long extension cable-it even happens with no microphone connected to the end! I am using coaxial cable
so I cannot see what can possibly be causing the trouble which, while not disastrous, is a bit of a nuisance.

This effect is quite commonparticularly with high input impedance amplifiers fed from a predominately capacitive source (such as a crystal microphone). The cause is the capacitance between the central core and the screening of the cable you are using. When you kick the cable, or bend it quickly, you can change the spacing between the core and the screen by a small amount (due to the deformation of the insulating sleeve between them). This change in spacing gives a rise to a very small change in the cable's capacitance.

If there is any standing potential on the core a minute current will flow into, or out of this localised change in capacity. This current is amplified by your system and gives rise to the "clunk" you can hear. We say the cable is microphonic. There are two solutions. The first is to ensure that the cable contains twin conductors one of which is connected to the outer screeuing at both ends.

A more expensive way-which will give you better results with a crystal microphone-is to make a microphone pre-amplifier that will reduce the output impedance of the microphone. This should be connected into the circuit as close to the microphone as possibleyou can then use much longer cables without affecting the low frequency response and use the low impedance input of your main amplifier.

TOUnTOERHITIV By GEORGE HYLTON

"Is there any simple way of telling how impedance varies with frequency?"

No, there isn't. There seems to be a lot of confusion about the meaning of "impedance". Some people seem to think that impedance must imply a circuit with capacitance or inductance in it-it ain't necessarily so.
A square is a rectangle but all rectangles aren't square. A circuit which offers impedance may contain capacitance or inductance, but it could contain just resistance, and nothing else.

IMPEDANCE

Impedance is a general term, which includes resistance, inductive reactance, capacitive reactance, or any combination of these. Impedance, in a.c. circuits, is like resistance in d.c. ones. It describes the ability of a circuit to impede the flow of current, irrespective of what is doing the impeding.
A 100 ohm resistor has an impedance of 100 ohms. In this case, the impedance doesn't vary with frequency. But a $1_{\mu} \mathrm{F}$ capacitor has an impedance which decreases as the frequency increases, while a 1 henry inductor has an impedance which increases with frequency. But place this inductor and capacitor in series and you find that the impedance of the combination varies with frequency in an unexpected way.

At low frequencies it's high. At high frequencies it's high. But at about 160 Hz it is very low. Place the same two components in parallel, and the combined impedance is low at all frequencies except near 160 Hz , when it becomes very high. Impedance can be very puzzling.

REACTANCE

What some people mean by "impedance" is the special kind which should be called reactance.
that is, the impedance of a capacitor or an inductor. These impedances vary with frequency, and although measured in ohms are really rather special quantities. They have a sort of polarity; if you think of inductive reactance as positive then capacitive reactance is negative. This explains the strange behaviour of the series and parallel LC circuits.

SERIES AND PARALLEL

The starting point for this understanding is a knowledge of the net resistance of two resistances in series and parallel:

Series combination $\mathrm{R}=$ R1 + R2
Parallel combination $\mathrm{R}=$ R1R2/(R1 + R2)
The rules for two impedances Zl and Z 2 are the same:

Series combination $=$ Z1 + Z2
Parallel combination $=$ $\mathrm{Z1Z2} /(\mathrm{Z1}+\mathrm{Z} 2)$
On the face of things, this doesn't seem to cast any light on LC circuits and their resonant frequencies. But that's because we haven't put the signs in. If Zl is an inductive reactance, and Z 2 a capacitive reactance, then to allow for the "polarity" if we put Zl for inductive reactance we must put $-\mathrm{Z2}$ for capacitive reactance.

Thus the series $L C$ circuit has an impedance of $\mathrm{Z1}-\mathrm{Z2}$, and it's obvious that if Z1 and Z2 each have the same number of ohms, as they must have at one special frequency, then the combination has an impedance of zero.

The parallel combination becomes a fraction with -Z1Z2 at the top and $\mathrm{Z1}-\mathrm{Z2}$ at the bottom, and if $\mathrm{Zl}-\mathrm{Z2}=0$ the combination is something divided by
zero. As any mathematician will tell you, the result of dividing any number by zero is an infinitely large number. Hence the very high impedance of the parallel $L C$ circuit at its resonant frequency.

OPERATOR " j "

There's just one snag. The simple "positive inductive, negative capacitive" approach gives the parallel-resonant $L C$ circuit a negative impedance. Measurement shows that this is not so. At resonance, the impedance is just a high resistance. So the simple "positive-negative" approach isn't the whole story. In order to make the maths correspond with reality, mathematicians play a trick. They call the inductive reactance $\mathrm{jZ1}$ and the capacitive reactance -jZ2.
The series $L C$ circuit is now $\mathrm{jZ1}-\mathrm{jZ2}=\mathrm{j}(\mathrm{Z1}-\mathrm{Z2})$ which is zero, as before, when $\mathrm{Zl}=\mathrm{Z2}$, since $-\mathrm{j} \times 0=0$. The parallel $L C$ circuit becomes:

$$
\frac{(j Z 1) \times(-j Z 2)}{j Z 1-j Z 2}=\frac{-j^{2} Z 1 Z 2}{j(Z 1-Z 2)}
$$

and when $\mathrm{Zl}=\mathrm{Z} 2$, this becomes $-j^{2} \mathrm{ZlZ2} / 0$, which is infinity times $-\mathrm{j}^{3}$. Now comes the clever bit. Let $-\mathrm{j}^{2}=1$. So infinity times $-\mathrm{j}^{2}$ becomes infinity times 1 , or just plain infinity.

That embarrassing negative sign has disappeared. The " j " is called an "operator", which is a mathematical name for something you invent to make it possible to get your sums right, and which obligingly disappears from the scene when you've finished.

"He constructed a device, fixed it to the lock and opened the door -I knew we shouldn't have let him subscribe to Everyday Electronics!"

PLUGS

Pack 1075 pin Din
Pack 1083 pin Din
Pack 135 t" jack
Pack 130 t' $^{\prime \prime}$ Jack Storeo
Pack 103 Loudspeaker Plug
Pack 100 Phono Plug
Pack 2303 pin Socker
Pack 2365 Pin Socket
Pack 234 L/speaker Socke
READY MADE LEADS
3 pin to 3 pin Din
3 pin to open end
5 pin to 5 pin Din
5 pin to open end
5 pin to 4 phono plugs
All leads approx. 6 ft . in length.
5peaker lead Din to spade
Extension lead Din plug to
socket 12 ft . 80 p
DIAMOND STYLI
BTA; 9TA; 9 TAHC; GP91; 5T4; ST9; EV26; GC8 All at 80p each. Double Diamond $£ 1 \cdot 25$.
Diamond suitable for Orbit NM22; G800; M3D $62 \cdot 25$ eath.

HEADPHONES

Sennheisser HD414
AKG K50
$£ 12.50$
AKG K50
66.50

RECORD CARE
Cecil Watts Dust Bug $\quad \leqslant 1-20$ Parastatic Disc Preener 45p Antistatic Fluid $20 p$
Dust Bug Spares
(Brush \& Roller)
Prices inc VAT and Post.
15p

CASSETTE TAPES

Audio-Magnetics C60

Cassetce Caddy $\mathbf{E} 1$ - 20
Cassette Head Cleaner 35p
ZONAL ILFORD TAPE
5^{*} Seandard 600ft $25 p$
5 ªn $^{\prime \prime}$ Standard 900ft
$7^{\prime \prime}$ (Plain boxed) $1200 \mathrm{ft} \quad 60 \mathrm{p}$
$7^{\text {n }}$ (Westminster Boxed)
1800fs.
7" Reel of Leader Tape
(Blue or green) $\quad 7.25$

MICROPHONES

AKG DIO9 $\quad £ 12.65$
$\begin{array}{lr}\text { AKG D202EI } & \text { E43.45 } \\ \text { AKG D190C }\end{array}$
$\begin{array}{ll}\text { AK } \\ \text { AKG DI90C } & \ell 18.70 \\ \text { AKG DI90E } & \in 20.02\end{array}$
$\begin{array}{lr}\text { AKG DI90E } & £ 20.02 \\ \text { AKG D224 } & £ 55.00\end{array}$
$\begin{array}{lr}\text { AKG D224 } & \left.\begin{array}{l}855.00 \\ \text { Sennheisser MD2IIN } \\ \mathbf{E 4 9 . 5 0}\end{array}\right)\end{array}$ Sennheisser MD413N E29.70 Sony ECMSO 693.50

Audio RMSTF Radio Mik
6231.00

SPEAKERS

E.M.I. 350 Kit 8 ohms $\quad 68 \cdot 20$
E.M.I. 450 Kit 8 ohms $\quad \mathbf{4} 40$

CARTRIDGES
Goldring G800
66.00

Orbit NM22 $\quad \$ 4.00$
Shure 75/6
Sonotone 8T4A (Dia)
Ronnette 105 (Dia)
66.00

Prices correct when going to press but subject to change without norice
J. J. Francis (wood green) Ltd. MANWOOD HOUSE, MATCHING GREEN, HARLOW, ESSEX CMI7 ORS Tel: Matching 476

SDPRMB ELECTRONIC IGNITION KIT

COMPRISES

Everything:-
Ready Drilled Case and Metalwork, Cables, Coil Connectors.
silicon Grease, Printed Circuit Board, 5 year guaranteed com ponents and a full 8 -page instruction leaflet
WHEN COMPLETE THE UNIT CAN BE FITTED TO YOUR CAR IN ONLY 15 MINUTES USING THE STANDARD COIL AND CONTACT BREAKER POINTS: TO GIVE YOU:-
Instant all weather starting. Up to 20% fuel saving. Longer battery life, Higher top speed, Faster acceleration. Spark plugg battery life, Higher top speed, faster acceleration. Spark plugs,
last about five time longer, Misfire due to contact breaker, bounce electronically eliminated, Purer exhaust emission resulting in less air pollution, Contact breaker burn eliminoted. Suitable for all petrol engines up to 8 cylinders

KIT PRICE ONLY $\mathbb{1 1 1 . 6 2}$
Ready Built Car Unic $\mathbf{E 1 4} \mathbf{8 5}$
Single coll C.B. Motor Cycle
(prices include V.A.T. and post \& packing)
Unit $117 \cdot 60$
Tavin coil C.B. Motor cycle unit $623 \cdot 24$
Triple coil C.B. Moror cycle
When ordering seate positive or negative earth and 6 or 12 vole.

MOTOR CYCLE UNITS NOT AVAILABLE IN KIT FORM ORDER NOW FROM

Ideal for Stabtisised Power Supply Units. A llghtweight case with pertorated sides and top. The front panel Is of heavy gauge anodised alt. The 100, bottom, sides and back interiock. secured by 4 screws.
The front frame is a clever moulding holding the panels allowlng for 4 hidden fixings for a chassis If required (not supplled). Integrally mounting for the tilt support which the siandard with thls matt blue pilated case.

Helght Length Depth Code 1 off $120 \mathrm{~mm} 284 \mathrm{~mm} 138 . \mathrm{mm} 00 / 3009-00 \quad 56.40$ $120 \mathrm{~mm} \quad 224 \mathrm{~mm} \quad 138 \mathrm{~mm} 00 / 3009-10 \quad 55.64$ Incl, feet ill VAT and P P. $£ 7.07$ Incl. feet tlit, VAT and P\&P Less for quantity

conTIL handles

(1) No. 265

Anodised aluminium centre bar Black plastic brackets with mouldedin core. 75 mm @ 97p. 5 more sIzes up (2) No, z̀1.

Nylon 112 mm . Load 50 Kg . ©a) 45 p .
(3) No. 277

All., ground, pollshed, anodised 88 mm (3) $94 \mathrm{p}, 120 \mathrm{~mm}$ (6) Ef-08. (4) No. 268

Satin ali. $57-5 \mathrm{~mm}$ @ $94 p .102 \mathrm{~mm}$ (
E1-01, 145.5 mm (3) Et- 57 .
(5/6) No, 250
Black nylon Very comfortable. 75 mm
(a) $29 p, 110 \mathrm{~mm}$. (a) $41 \mathrm{p}, 155 \mathrm{~mm}$. (ब) 67 p .
rices include VAT. Less for quan-

Groy or blue with protected Prices Include feet, P. \& P. and VAT.
aluminium front panel ($16 \mathrm{~s} . \mathrm{w} .0$.) If handle not nuallable, price less 9p.
 ated are PC/D, PC/G or 1 , PP/A or B, Q \& S, are bilghter and give an average of $25,000 \mathrm{hrs}$. llfe. The $0.5^{\prime \prime}$ dla. are red or white,
dia. leads volts 10 100 100要 PC/A to I $6^{*} 110$ or $160-260$ 1719 16 to

 Stype none 110 or $160-260$ 29p 27p none
P. \&P. inc. any quantly, $160-260230$
210 Min. ousantity each type 10 off.
the 0.375° are red, amber or white; these have 3 cap shapes and all may be suppiled for 115. 240V. or the PP neons in 110,240 and 44 GV . with $6^{\prime \prime}$ or $30^{\prime \prime}$ leads.
Send for details in new catalogue.

The design of these cases permits the instrument to be bulti or serviced withln their external panels. 48 shapes. Low cost. Blue PVCISteel with white P.V.C. coated aluminium panels.
∞
\qquad H.
$3^{\prime \prime}$ Pant
Prices include screws, rubber feet, one or two chassis according to size, and P \& P and $Y A T$. of two chassis Prices correct to 30th April 1974

WEET MYDE W

WEST HYOE DEVELOPMENTS LTO. RYEFIELD CRES.. NORTHWOOD

Project
 the slimmest, most elegant hi•fi modules ever made

 80Living with hi-fitakes on new meaning with Project 80 modules. They can be assembled virtuaily amphere. creating opportunitues to install systems hitherio only dreamed about and never before made practical Quality and reliability are everything you could wish for. Units are mounted by 6BA bolts at sear passing through drilled holes. cases are in
 black with white ambellishment.

Stereo 80 pre-amplifier and control unit

Each channel has independent tone and volume slider controls enabling exceptionally good environmental matching to be obtained. A virtual earth input stage forms part of the up-dated circuitry which includes generous overload margins. Clear instructions with template are supplied.

Size $-260 \times 50 \times 20 \mathrm{~mm}\left(10 \frac{1}{2} \times 2 \times \frac{3}{4} \mathrm{ins}\right)$ Inputs - Mag. P.U. 3 mV RIAA corrected: Ceramic P.U.Radio,Tape S/N ratio-60db
Frequency range $-10 \mathrm{~Hz} 1025 \mathrm{KHz}+3 \mathrm{~dB}$ Power requirements - 20 to 35 volts Outputs $-100 \mathrm{mV}: A B$ monitoring for zape Controls - Press button for tape, radio and P.U.Sliders for Volume. Bass and Treble.

Project 80
 FM tuner and stereo decoder

FM Tuner
Size $-85 \times 50 \times 20 \mathrm{~mm}$
Tuning range -87.5 to 108 MHz Detector-f.C. balanced coincidence.
AFC - Switchable
One 26 transistor I.C.
Twin dual varicap tuning Distortion 0.2% at 1 KHz for 30% modulation
4 pole ceramic filter in I.F. section Sensitivity - 4 microvolts for
30 dB quieting
Output -300 mV for 75 KH deviation

Decoder-
With gallium arsenide runing beacon and 19 -transistor I.C. Size $-47 \times 50 \times 20 \mathrm{~mm}$
 $\underset{\text { Decoder }}{\text { R.P.P. }} 7.45^{+0.45 p}$ V.A.T

Project 80 active filter unit

Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{3}{4} \times 2 \times \frac{3}{4} \mathrm{~ns}\right)$
Voltage gain - minus 0.2 dB
Frequency response -36 Hz to 22 KHz .
controls minimum
Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V
HF cut off (scratch) -22 KHz to $5 \cdot 5 \mathrm{KHz}$.
12 dB /act. slope
L.F. cut off (rumble) -28 d 8 at 20 Hz .

9dR/oct slope
R.R.P 6.95 +0.69p

Guarantee

- if. within 3 months of purchasing any product direct from us. you are dissatisfied with it, your money will be refunded on production of recerpi of payment. Many Sinclair appointed Stockisis aiso offer this guarantee

Should any defect anse in normal use. we will service it without charge For damage arising from mis-use a small charge (typically $£ 1-00$) will be made
Z. 40 \& Z. 60 power amplifiers
2.40

Size $-55 \times 80 \times 20 \mathrm{~mm}$ Input sensitivity -100 mV Output - 15 WRMS continuous $8 \Omega(35 \mathrm{~V})$. Frequency response$10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Signal to noise ratio 64dB
Distortion-less than 0.7% at 10 W into 8Ω Power requirements -12-35 volts

Z. 60

Size- $55 \times 98 \times 20 \mathrm{~mm}$ Input sensitivity -
$100-250 \mathrm{mV}$
Output-25W RMS 8Ω $(45 \mathrm{~V})$.
Distortion-typically 0.03\%

Frequencyresponse 10 Hz to more than $200 \mathrm{KHz}+1 \mathrm{~d} 8$
S/N ratio-
better than 70dB
R.R.P. $f 695+0.69 p$

Sinclair power

 supply unitsPZ. 8
The worlds most advanced unit in its class. It is a stabilised unit. Reentrarit current limmeng makes damage from overload or even direct shorting impossible. a principle never before incorporated in a commercially available constructor module. Normal working voltage (adjustable) 45 V .
R.R.P. $£ 7.98+0.79$ p V.A.T.

Without mains transformer PZ. 5 30V unstabilised
R.R.P. $£ 4.98 \div 0.49$ p V.A.T.

PZ. 6 35V stabilised
R.R.P. $\mathbf{F} 7.98+0.79 p \vee . A . T$.

TO SINCLAIR RADIONICS LTD. ST. IVES, HUNTINGDON PE17 4HJ
Please send post paid.
for which I enclose Cash/Cheque for $£$
including V.A.T.
Name
Address

BLOCKLETTERS.
MAY. 74

F.E.T. Gonnections

With reference to your January ' 74 Everyday Electronics Fetset I must point out that I have just spent two hours trying to sort out why the diagram given for the field effect transistor differs from the actual component I received.
As a beginner in this field perhaps you may be able to help me know the difference between the three connections of any transistor. I hope you can find time to explain.

> J. Waterhouse, Lancs.

Various transistors have different leadout configurations and the only way to find these is to consult the published data. Some transistors are made with more than one leadout configuration and usually a suffix letter is added to the number to denote the different construction. Three different connections for the f.e.t. are shown below.

Malaysian Praise

I have been a regular reader of your fabulous magazine sincé I started reading it in January ' 73. I must say that it is both instructive and educational.

My enthusiasm in electronics grew with the regular reading of your magazine and I am sure many of my fellow Malaysian readers are finding your mag. just as interesting.

I have built some of your projects e.g. the General Purpose Amplifier, Egg Timer, Waa Waa unit etc, and they all worked wonderfully. My compliments to you and your staff!

> Poon Chee Seng, Malaysia

Reactance

I am a regular reader of Everyday Electronics. There has been a slight error in the print of your April issuc.

It is in the article Demo Circuits by Mike Hughes. The equation for inductive reactance is $X_{L}=2 \pi f \mathrm{~L}$ and that of capacitive reactance is $\mathrm{X}_{C}=\frac{1}{2 \pi f \mathrm{C}}$ but instead you had the equation for capactive reactance below inductive re-
actance and that for inductive reactance below capacitive reactance.
This, I think is a bit misleading for beginners, as your magazine is primarily intended for beginners in electronics.
To conclude I would like to say that it is one of the most interesting informative magazines that I have come across. I appreciate the wonderful service and know. ledge we derive from it.

Y. Bayat,

 London.Somehow the two equations have been transposed. The equations are correct but appear under the wrong headings. We are sorry about this.

Electronics Club

I thought I would write and tell you about our school electronics club. I am in the third year at Kirkcaldy High School.
In the senior school there is an electronics club which meets every Monday, Tuesday and Thursday. The club supply us with resistors, capacitors, solder, soldering irons, p.c. board etc., for our projects. We have to pay for some components such as semiconductors, transformers and IC's which the club has not got in stock.
We read your magazine and enjoy building the projects you print, so we hope you will keep us supplied.
G. Wilson,

Fife.
We will certainly keep the supply of constructional projects flowing-there are four in this is.sue.

What doy youknow?

CAPACITORS

1. Calculate the tofal value of the following capacitors wired in series: $0.1 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$ and $0.47 \mu \mathrm{~F}$.
2. Calculate the total value of the following capacitors wifed in parallel: $-0.001 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$ and $0.0047 \mu \mathrm{~F}$.
3. You have a "flat" type capacitor with coloured bands around it. The colours are brown, black, orange, black, red, this is reading from the top (away from the leads) to bottom. State the value of the capacitor, its tolerance and voltage.
4. Is it necessary to always use an exact value electrolytic e.g. if $8 \mu \mathrm{~F}$ is quoted could a $10 \mu \mathrm{~F}$ normally be used and if so why?

ANSWERS

to lopioedes e asn of әq!isstusad Kןfusou
 әq \ddagger nu

 $3 n^{i} L S S O \cdot 0=2000-0+50 \cdot 0+100 \cdot 0=3 \cdot 2$

$57 \frac{17 \cdot 0}{1}+\frac{20 \cdot 0}{1}+\frac{1 \cdot 0}{1}=\frac{3}{1}$.

The largest selection

EX COMPUTER BOARDS
Packed with tranifistors，dlodes，capzcitors and resistors－COMPONENT VALUE \＆1．50．

30
SPECIAL OSE．As above PLUS Power Tra： statore ONLY 55 p exch +p \＆$D 15 \mathrm{p}$
GTABLLISED POWER MODULES
Complete with circult dlagrames，
90p exch＋p\＆p 15p
PATOLDSE BOARDS
4 for $30 \mathrm{p}+\mathrm{p}$ \＆ p 20 p ．
FIBRE－GLASS PRINTED
CIRCUIT BOARDS
$16 \ddagger \times 4^{\prime \prime}$ approx． 2 for $55 p$
DECON－DALO 33PC Marker Etch reabiant printed circult marker pea oop esch

VEROBOARDS

Packs containing appros
alzes，all -1 matric 550
REPANCOCHOKES \＆COILS
RFChokes
${ }^{\mathrm{CHI}} \mathbf{C H} .2 .5 \mathrm{mHH} 25 \mathrm{p} \quad \mathrm{CH} 2.5 .0 \mathrm{mH} 25 \mathrm{~m}$ CE3． $7-5 \mathrm{mH} 25 \mathrm{p}$ CH4． 10 mH 25 D colls
DRXI Crystal set 219 DRR2 Dual range 45p
COIL FORMERS \＆CORES
NORMAN ：$^{-}$Cores \＆ 4 Formers 7D
i＂Corss \＆Formers 8p

SWITCHES

DPIDT Toggle 25p SP／gT Toggle 18p

FUSES

$11^{\prime \prime}$ and 20 mm ． $200 \mathrm{~mA}, 200 \mathrm{~mA}$ ． 250 mA
Sooma．1A．I．5A，2A AN̄TI－sURGE 5pca
EARPHONES
Crystal 2.5 mm plux ${ }^{33 \mathrm{p}}$
Cryital 3.5 mm plug 33 p

DYNAMIC MICROPHONES
B1223． 200 ohms plus onfort awitch and 2.5 mm and 3.5 mm pluge 21.60

3－WAY STEREO HEAD．
 PHONE JUNCTION 8OX

H1012 51.87
2－WAY CROSSOVER
NETWORK
K4007． 80 ohms Imp．Insention lass 3dB \＆1．\％1
CAR STEREO SPEAKERS
（Angled） 53.85 per pair．

BI－PAK

CATALOGUE AND LISTS Send S．A．E．and 10p．

INSTRUMENT CASES

 BV2 11＊

ALUMINIUM BOXES

BA1	53°	\times	23＂	\times	$1{ }^{\prime \prime}$	487
BA2	4	\times	4 ＂	x	$1{ }^{\prime \prime}$	419
BA3	$4^{* \prime \prime}$	\times	24＊	x	$1{ }^{\prime \prime}$	410
BA4	$5{ }^{\prime \prime}$	\times	$4{ }^{\prime \prime}$	\times	$1{ }^{\prime \prime}$	47
BA5	4^{*}	x	21＂	\times	2	48
BAE	$\mathrm{S}^{\prime \prime}$	x	2	x	$1 *$	34 p
BA7	7	\times	$6^{\prime \prime}$	\times	21＂	88
BA8	$8{ }^{\sim}$	\times	$5{ }^{\prime \prime}$	x	3	84
BA9	0	\times	$4 *$	\boldsymbol{x}	$\mathbf{2}^{\prime \prime}$	549

VISIT OUR COMPONENT SHOP

18 BALDOCK ST．，WARE，Herts．（A10）
Open Mon．－Thurs．9．15－6 pam．Sat．9．15－5．50．Late Night Shopping until 7 Fri．Tel． 61593

BIB HI－FI ACCESSORIES

De Luxe Groov－Kleen

Model 42 E1－84
Chrome Finish Model 60 £1：50

411 Iii -1.		
Ref．P．II－F1 Cleaner 31D Ret．32A．Stylue Balsnce 21 －88 Ret．J．Tape Head Cleaning Kit 51p Ret．35．Cassette Case $21-27$ lef．56．Hi－Fi stereo Hints \＆Tipa \％is		
PLUGS AND SOCKET		
SOCEETS		
PS 35 DEN	2 Pin（Spenter）	0.08
PS 36 DIN	3 Pln	0.10
PS 37 DIN	$6 \mathrm{Pin} 180^{\circ}$	0.10
PS 38 DIN	$5 \mathrm{Pin} 240^{\circ}$	0．10
P8 39	Jack 2.5 mm Smitched	0.09
PS 40	Jack $3-5 \mathrm{~mm}$ 日witched	0.10
PSal	Jack ：＂Switched	0.17
Ps 42	Jack Stereo Switched	0.28
Ps 43	Pbono Single	0.06
1944	Phoso Double	0.10
PS 45	Car Aerial	0.09
PS 46	Co－Axial Surface	0.08
P3 47	Co－Axial Flunb	0.14

102 For model CN240 3／32＂
104 For model CNie $403 / 16^{\circ}$
1100 For model CCN240 $3 / 32^{\circ}$ 1101 For model CCN2s 318° 102 Por model CCN340 子＂ 1020 Yor model GP40 3／32＊ 1021 For model G240 1／8＂ 1022 For model g2so $3 / 16^{\prime \prime}$
50 For model $\times 253 / \mathrm{sz}^{\prime \prime}$
51 Yor inodel $\mathbf{x} 251 / 8^{*}$
52 For model Xas $3 / 16^{\prime \prime}$
ELEMENTS
ECN 240 £1－16
ECON 24021.32
EG 240 ： 1 －16
EX 25 冬1．16

ANTEX HEAT SINKS 10p

V．A．T．Included in all prices．Please add 10p P：\＆P．（U．K．only）．Overseas orders－please add extra for postage．

NEW COMPONENT PAK BARGAINS
Pack
Cl Deseription Price
250 Resistors mixed raloes appros
count by weight
0.55
C2 200 Capacitors mired values approx
C3 $50 \begin{gathered}\text { Precinion Realstors } \\ \text { mixed values }\end{gathered} \quad 1 \%, \begin{aligned} & 2 \% \\ & 0.55\end{aligned}$
C4 75 th wiveristors mired preferred
Pleces asorted Ferritc Rods 0．35
2 Tuning Ganga，MW／LW YIFP G－55
1 Fack Wire 50 metres－assorted colours
a 3 Micro switches
ClO 15 Assorted Pota \＆Pre－Sets
CLI 5 Jack Sockets 3×3－ 5 mm 2
Standard Switch Type

C12 40 Paper Condensers pref

C13 20 Eilectrolftics Trans，types
C14 1 Pack aksorted Mardware－
Nutal Bolta，Grommsta etc．
C13 4 Mains Slude 8 witches
C16 20 Assorted Tazs strips \＆Panel． 0.56
Cl7 10 Ansorted Control Knobs
C18 4 Rotary Wave Change Switches 0.55
C19 3 Reisga 6－24V Operating
Sheets Copper
sprox． $10^{\circ} \times$ ininate $^{\sim}$ \qquad

INLINE SOCRKETS

PS 21 D．I．N． 2 Pin（Speaker） Pg 22 D．L工N． 3 Pin
P8 23 D．I．N． 5 Pin 180° PS 24 D．I．N． 5 Pin 240° P8 25 Jack 2.5 mm Plantic P8 26 Jack 3.5 mm Plastic PS 27 Jack t° Plastlc PS 28 Jack ${ }^{\prime \prime}$ Screened PS 29 Jack Sterio Plastic PS 30 Jack Stereo Screened P8 31 Phono Bcreened PS 32 Car Aerial PS 33 Co－Axial

PLUGS

PS 1 D．I．V． 2 Pin \｛Speaker）
PS 2 D．I．N． 3 Pin
PS 3 D．T．N． 4 Pin
PS． 4 D．I．N． 5 Pin 180°
Pg 5 D．I．N． 5 Pin 240° P8 6 D．IN． 8 Pin Pg 7 S．I．N． 7 Pin PB \＆Jack 2.5 ram Screcned PS 9 Jack 9 －5mm Plaetic Eg 10 Jack 3.5 mm Screened PS 11 Jack t＂Plastic Pg 12 Jack i＂Screencd PS 13 Jack Stereo Screened PS 14 Phopo
Ps 15 Car Aerla PS 16 Co－Axial

CABLES

CP 1 Single Lapped Screen
CP 2 Twin Common Scree CP 3 Sterea Screened
\qquad Four Core Individually Screened 0．38 Microphona Fully Braided Cable 0.10 Three Core Mains Cable CP 8 Twin Oral Mains Cable $\begin{array}{lll}\text { CP } & 8 & \text { Twin Oral Ma } \\ \text { CP } 9 & \text { Speaker Cabse }\end{array}$ CP 10 Low Loss Co－Axial

CARBON

POTENTIOMETERS

Log and Lit
$47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, 14，21
CC 1 Single less Switch
ve 2 Single D．P．Switch
VC 3 Taudem Less 8witch
FC 4 IK Lin Less 8 witch
VC 5 100K Log anti－Log

HORIZONTAL CARBON

 PRESETS0.1 watt 0.06 each
$100,220,470,1 \mathrm{~K}, ~ 2.2 \mathrm{~K}, 4 \mathrm{TK}, 10 \mathrm{~K}, 22 \mathrm{~K}$,

WORLD SGOOP jumbo

SEMICONDUCTOR PACK

Transioners－Game and Bilicon Rectiners Dlodes－Trises－Thyristors－I．C＇s and leners ALL NEW AND CODED．

APPROX 100 PIECES
Offeriog the amtiteur a santaitic bergain Pak and an enormoux baving－ldentifcation and

Oniy $\& 2$ p．\＆p．20p

EX－COMPUTER BOARDS

BY THE BOXFULLII
20 Bosids packed with Semiconductors and other Electronic Componeate．Each board approx．Eize $8^{\prime \prime} \times 7^{\prime \prime}$ ．All known type no and eanily recogniamble．
EANTASTIC VALUE AT \＆2．20 per BOX p．\＆p．52p

SPECIAL PURCHASE

2N3055．Silicon Power Transistors NPN Famous manitacturers out－of－spec devices free from open and ahort defects－every one $115{ }^{\circ}$ ．T03．Metal Cas
OUR SPECLAL PRICE 8 fiop

LOW COST CAPACITORS

RECORD STORAGE／ CARRY CASES

CASSETTE CASES

Holds 12． $10^{\prime \prime} \times 3 z^{\prime \prime} \times 5^{\circ}$ ．Lock \＆Hendle 21.80

8－TRACK CARTRIDGE

 CASESHolds $14.15^{\prime \prime} \times 3^{\prime \prime} \times 6^{\circ}$ ．Lock $\&$ Hande
 COLOURS：Red，Black and Tan－Please atate preference．

REPANCOTRANSFORMERS

240s．l＇rimary，Secondary voltares arailable from selecter tappings $4 v .7 v, 8 v, 10 v$ ， $14 v$ $15 v, 17 v$
and $25 v-0-25 v$ ．

Tspe	Amps．	Price	P \＆ P
MT30／4		21.93	80
－1750／1	1	¢2． 42	359
MrT50j2	8	E8．80	408

CARTRIDGES

AC08 GP91－18C． 200 mV at $1 \cdot 2 \mathrm{cms} / \mathrm{sec}$ 12．18 ACO GP93－1． $280 \mathrm{~m} \nabla$ at $1 \mathrm{~cm} / \mathrm{eoc}$ el 15 ACOS GP96－1． 100 mV at lem／mee 28.65 TTC J．2005．Cryatal／Hi Output TTC J－20 10C Crystal／Ei Outgut Compatible TTC J－200 CS StereofH3 Ontprit TTC J－2105 Ceramis／Med．Output 81.64

CARBON FILM RESISTORS

The E12 Range of Carbon Film Realstora， f8th wratt arallable in YAKS of 50 pieces， R1 50 Mixed 100 ohms－ 820 ohms 409 K 250 Mixed IK obms -8.2 K ohms 40 p Es 50 Mixed 10K ohms－82K ohms 40） R4 50 Mixed 100 K ohme－1 Meg．ohrns 40 g THESE ARE UNBEATABLE PRICE8－ LESS THAN 1p BACH INCT．VA．T

BI－PAK SUPERIOR QUALITY
LOW－NOISE CASSETTES

-the lowest rrices!

 BI-PAK QUALITY COMES TO AUDIO!
AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

The ALIO, AL20 and ALSO urits are omplar in thelr appearance and in theit
generyl specification. Howerer, caretol genoral specificstion. However, careiul resulted in a range of output powers from 3 to 10 ratta R.M.s.
The versatility of their design maken them ideal for use in record players, tape recordert stereo amplitiere and casaette and cartridge tape plagers in the car and at hoone.

Patemeter	Conatiaious	Performance
HARMOMTC DISTORTION	PO $=3$ WATT8 $\mathrm{f}=1 \mathrm{KHz}$	0-25\%
LOAD IMPEDANCE	-	8-16 Ω
EAPGT IMPEDANCE	1-1K吅z	$100 \mathrm{k} \Omega$
FREQUENCY EESPONSE CE 3dB	Po-2 WATTS	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
BENBITIVITY for RATED O/P	Vim $=25 \mathrm{~V} . \mathrm{Kl}=8 \Omega \mathrm{i}-\mathrm{IKHz}$	75 mV . R388
DIMENSIONS	-	$3^{\prime \prime} \times 2 \mathrm{c}^{\prime \prime} \times \mathrm{I}^{\prime \prime}$

The above table relates to the AL10, AL20 and AL30 modules. The following table outliaes the difierences is their working conditions.

Parametar	AL10	AL20	AL30
Maximam Bupply Voltage	25	30	30
Pover output for 2% T.II.D. (RL $-8 \Omega \mathrm{f}=1 \mathrm{~K} \mathrm{~F}_{\mathrm{z}}$)	$\$$ watte RMS 3 [in.	$\begin{aligned} & 5 \text { watts. } \\ & \text { RMB Min. } \end{aligned}$	$\begin{aligned} & \text { 10 watts } \\ & \text { RMS Min. } \end{aligned}$

AUDIO AMPLIFIER

 MODULES| AI 10. | 3 watts | R3S | 82.19 |
| :---: | :---: | :---: | :---: |
| AL 20. | 6 watte | RM8 | \$2. 59 |
| AL 30. | 10 watts | RM8 | E301 |

POWER SUPPLIES
P8 12. (Uge with AL10 \& AL20) 88p 8PM 80. (Use with also AL30 \& AL50)
FRONT PANELS SP 12 with Knobs 825

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTEGTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

Max Feat Sink temp. $90^{\circ} \mathrm{C}$.

- Frequency Response 20 Hz 100 KHz
O 0.1% Distortion
Distortion better than 1% at 1 KHz
Supply voltage $\mathbf{1 0 - 3 5}$ volts
Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful littie amplifier which should satisfy the most critical A.F enthusiast.

STABILISED POWER MODULE SPM80

APSO is eapecinlly dasigned to power 2 of the ALso Amplitiers. up to 15 ratt (r.m.s.) per channel simul taneousiy. This module embodies the latest componente and circult techniques ineorporating complete short circoit protectlon. With the addition of the Malne Transformer MT80, the onlt will proride outputs of op to I.s ampe at 35 rolte. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These unita enabie you to bolld Aodio Systems of the highes quality atia hitherto unobtainahie price. Also ideal for many
other spplications includiag:-Disco 8yoteins, Public Addresa Intercom Unite, etc. Handbook arailable 10p PRICE \{3-25

TRANSFORMER BMT80 £2. 15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a speciflcation and NOT a price, and yet still the greatest value on the market the PA100 atereo pre-Amplifier has been conceived from the latest circuit techniques Desleped for use with the Als0 power amplifer eyntem, this quallty made quitincorporate NPN dericed for use in the input atages. Three aritched sterso inpotes, and rumbl
Which aleo bas a STEREOKONO switch, volome, bsisce are feantinuovaly rariobl bass and treble controls.

The STEREO 20

The 'Stereo 20 ' amplifer is moxnted, ready wired and teated on a one-piecc chassis mearuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$. This compant anit comes complete with on/ofy switch volame control, balance, bass and treble controls, Transformer, Power supply and Power amps. Attractivaly printed front panel and match Int control knobs. The 'Stereo 20 ' has been deaigned inthout inta with the mecheniom alternatively, into a saparate cabinet Oatput power 20 w peak. Ingut 1 (Cer 800 mV into 13 . Freq. rea. $25 H z-25 \mathrm{kHz}$ Input 2 (Aux.) 4 mV into 50 K . Firmonic distortion. Bass control $\pm 12 \mathrm{~dB}$ at
60 Hx typically 0.25% wit 1 watt.
Treble con. $\pm 14 \mathrm{~dB}$ at 14 kHz .

ALL PRICES INCLUDE V.A.T.

Frequency reaponan-20Ex-50KEx $(-3 \mathrm{~dB})$ Bass controlTreble controi- 12 dB at 60 Hz $\pm 14 d B$ at 14 KHz -Input 1. Impedance

1 Mer, ohm 4 Input 2 . Impedance. Sensitivity 4 mV

Look for our
Practical Wireless Wireless World
Radio Constructor

SPECLIEATIOK
Frequeney Reapone Harmonic Distortion
2. Radio, Tyner
3. Magnetic P.U

All input voltages are for an output of 250 mV . Tape and P. V. Inputs equalised to RIAA curve within if IdB. from 20 Hz to 20 KHz .

Bass Control

Pitters: Rumble (Eigh Pass)
Bcratch (LOw Pasa)
gignsl/NoLse Ratio
Input overload
Supply
Dimenalons
COMPI
Co
SPECIAL COMPLETE KIT COMPRIGING ONLY £13-15 SPM80, 1 BMT80 \& 1 PA100 ONLY $£ 25 \cdot 30$ FREE p. \& p.

$20 \mathrm{Fs}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$ better than 0.1% 1.25 mV gato 50 K $1-5 \mathrm{mV}$ into $50 \mathrm{~K} \Omega$ 1dB. from 20Hx to 20KHz.
$\pm 106 \mathrm{~B}$ at 20 Hz 100 Hz
3EHz
better then -65 dB
$+26 \mathrm{~dB}$
+35 volts at 20 mA
ONLY 513
2 AL50's, 1

> Giro No. 388-7006
> Please send all orders direct to wershouse and despatch cepartment
> P.O. BOX 6, WARE•HERTS

> Postage and facking add $11 p$. Over seas add extra for airmail. Minimum order 55p. Cash wilh order please. Guaranteed Satisfaction or Money Back

PRE.A MPLIFIERS

PA 12. (Use with AL10 \& AL20) 14.85

TRANSFORMERS

T461 (Uee with AL10) E1-38 P \& \mathbf{P} 15p T888 (Usc with AL20) 1.98 P \& $P 15 p$ BETSO (Use with AL30\& AL50) 22.15

The ftems below are from the March Sup
plement to ous 1974 Catalooue. You ean plement to our 1974 Catalogue. You ean supplements by sending $6 f$ p.

r-ak vaneered with Niding frout anal taperin LD Speaker spaces cach cad. Size appros $14.2^{\prime \prime} \times 15^{\prime \prime} \times 15^{\prime \prime}$. Prahably coat over $£ \geq 01$ trake. Our Price 28.10 each. We can arrang
Iclivery within 200 iniles if rou can orler 10 o

Enab Record Player. Bunh Ref. No. SRP eparate hasa and treble controls help give thi anusually good sount quality. A xaitable anpulter peaker unit convertz this to foll sterea Cabler ize $7^{\prime \prime} \times 16 \%^{\prime \prime} \times 18^{\prime \prime}$ deep. Finished in charcout rey leather cloth. Folly tranvintorised with $8^{\prime \prime}$ olume. Socket sterea bass, on/on, ireble anil price 9.27 .73 Out Price $17 \% .72$ recimg of 0ic 43. Pont and inurance $\& 2$

Erres Table Radio. Dutch musile. Three wavebanit C.M \& 3 .) Nice 4 lue ($\left.161^{\prime \prime} \times 81^{\prime \prime} \times 8\right)^{\prime \prime}$ woodel 3binet with high glosw finish. fis $\times 4^{\prime \prime}$ speak crs wett tuade trous eoois livese radins ar ery wett luade from good quality component ulaker They recently retaileal at e18 each on were well worth it. The nnes we have are brin bew and working but have faled final inkpection recause cither they will work only on miains of aily on hatteries. It Is unlikely that the tovit I ryy thuch however and we are arrarging for imult diagranl. Price 88.64 plas ह1 poat ant. เมurance
Electric Welder. Bic transformer lin metal cas. with cartying handle and control switulh, outpu1 frrough rery beary duty termilials, Ontpu: ults $1 \cdot 4-8.25$ volts max. 117 amps--norma nsins input rocket for optional foot switch $\varepsilon 1950$ ptas s-2 carriage up 10200 miler. A furthfi II for each 100 milca extra
24v 3 amp Mains Transformer. Upright nountins with fixing, clatnpe standaril priniary $240 / 200$ with fixing. clampr, standari prinkary 240
$1: 3 / 160-23.50$ plus 30 p post and acrvice.
Mains Transformer. $(6 \cdot 5 \mathrm{v}-0-6.5 \mathrm{v}$ at 500 mA ann ir at l amp), Normal tapped primary. Eiprighi

Mains Translormer. ($18 \mathrm{v}-575-39 \mathrm{v}-41 \mathrm{v}$ at $\stackrel{2}{2}$ an] r thls would function at $18 \mathrm{r}-0-18 \mathrm{r})$. Primar: ppert 110. $115,127,200,220$ and 240 v selecter 5 Labelled plug. l'rimary sercen and mult! ipped. Lipright mounting with fxing lugs 52.95 Midzet Two Gangs. Tunlig condenser as Atted t. uny Japaneye and Houe kong radla*-probabl, Hopf each mection with ? mpindle with terminat$\rightarrow 8$ trimmenc. Price $3 \mathrm{~S}_{\mathrm{p}}$. W'ith trimmers 50 p Ferrite Rods for acrisir, etc. The following type ire in Rtock Dla $1^{\prime \prime} 4^{\prime \prime}$ lumk 15p. $5^{\prime \prime}$ loris 18 p lia. $5 / 16^{\prime \prime}, 5^{\prime \prime}$ houg $20 \mathrm{p}, 6^{\prime \prime}$ long $25 \mathrm{p}, 8^{\prime \prime}$ long 80 p
lia. $3 / 8^{\prime \prime} .4^{\prime \prime}$ long 20p, $3^{\prime \prime}$ long 25p. $6^{\prime \prime}$ Iong 80 p ${ }^{\prime \prime}$ iong 00 p ; Dia. ${ }^{\circ}$. fong long 85p: Ferrite slal NIng $\times \frac{2 i v}{} \times 1 / 8 \mathrm{th}^{\prime \prime}-20 \mathrm{p}$.
Photo Resistor. Mplland type. Thix drovs it anktance frums approx. 250 K namir in ciark aly appror, 200 ohms in brikht light but it is ads coating out of corthers on one nide. Price 22p 0-8 Ammeter. g" $^{\prime \prime}$ yluarc, full vision face for fius. munting-moving imn. kleal for charger fop each

MAINS TRANSISTOR POWER

 PACKesigned to operste transiatur acts and amplifierlujustable outpat $8 \mathrm{r} ., 9 \mathrm{v}$., 12 rolta for np t . (romA (class 8 worklng). Takes the place of anis if the followlag batteries: PPJ, PP3, PP4, PPIi, 1PP7. PPS and others. Kit compriacs: main-
 l-10. plus 20p postago.

TERMS:- Add 10% V.A.T.
end postage where quoted-orher item post free if order for these items is 66.00. ocherwise add 20^{p}.

d.BULL(ELECTRIGAL)LTD. (Dept.EE) 7 Park Street Croydon CRO 1YD. Callers to
 102/103 Tamworth Rd. Croydon

BEAT THE BUDGET AT ZIGGY'S 2001

Multimeter AC-DC Yype U. 437

A-d.c. 0.1 .1 precision 6 rane.a.e. 2.5 to $1,000 \mathrm{~V}$ 6 ranecs: 100 to $1 \mathrm{Ma}-4$ Frequency: $45-40 \mathrm{kHz}$ TAUT SUSPENSIONS MOVEMENT
Complete with steel
ONLY CA .95 inc. VAT and poscage.
SPECS. MULTIMETER
 d.c. Usually hizh current ranes AC3 ${ }^{\text {amps }}$ 2.e./d.e. Voltages AC3 to 900 V d.e. 0.6 to 1200 V Resisfance 500 ohms-20-200 $2,000 \mathrm{~kg}$. Transmission leve -10 to +12 dB . This high protection protection. Complete with Price only 88 incl. VAT and poseage.
ENAMELLED COPPER WIRE
S.W.G. 16, $18,20,22.24,26,201$ reels, 26 p $29,30,32,34,36,38,40$; 202 reels, 36 p. Postage 1-5, 10p, 6 plus, 15 p.
ANTEX SOLDERINGIRON BITS
In in,
tisin, tyin. All 26p each. Postage $5 p$ MAINSTRANSFORMER
MAINSTRANSFORMER
Eagle MT6, 6,0-6, $100 \mathrm{M} / \mathrm{A}$. 95 p plus 60 P . \& p Eagle Type MT280 6-0-6, 250 MA A Ai MT150 12-0-12, ISOM/A \} \{lus 12 P MTI 100 24-0-24, $100 \mathrm{M} / \mathrm{A}$. $\}$ P. \& P.

POTENTIOMETERS
log or lin less switch (and ikg lin) 1-5 12p $5-1011 \mathrm{p}$ each. 11 plus 10 k each.
10 ka 100 kg 1 mR
log or li
log or
plus 20ρ
dual Iess switch $1-5$ 39p. 5 - 10 37p. 10 plus 35p. Any mix for Quanticy Prices. P. \& p. $7 p$ QUALITY MONO SLIDER POTS FROM JAPAN
RRS 10 kR . RR6 100 kR . RNT 500 kL Track Lengeh: 30 mm . Fixing Cenere: 50 mm 3 pach. P. \& P. 5p.
HSIO Heavy gauge tapered copper jaw heat sink elip on to the leads of heat sensizive components to ensure that they are no damaged when soldering or de-soldering. 50p MN.
MINILOUOSPEAKERS

radio loudspeaker ohm replacement transistor radio loudspeaker. 70p. P. \& P. 5p
TURNTABLE SERVICES
Headshells
Garrard Sp25 Mk, I \& II. Type M7
Thorens TP50 for TDI50
Thorens TP60 for TDIS0
Goldring PH7 for GLBS
Head Slides
Postage 5p
Garrard Ct for SL 75 , ete Poscage 5p per item
$\begin{array}{ll}\text { Garrard C2 for SP25 Mk MII, SL95, exc. } & 50 p \\ \text { BS }\end{array}$
B.S.R. for MP60. $310,510,610$
lockey Wheels
Garrard SP25 Type, ece.
McDonaid MP60, etc.
Styli Diamonds for Sonotone
TA/HC LP/78 65p 9TA/HC LP/LP 95 p NSW210 210 piecos, assorted nuts, serews and washers. S5p. P. \& P. 5p
TRANSISTORS
BCIO7. 108,109 , all 9p each. Any six 50p P. \& P. 4p

EAGLE LTT00 TRANSFORMER
PR P. Sp.
NEW MULLARO OATA BOOK $1973 / 74$ 30p. P. \& P. 5p
FOR SPEEDY DELIVERY OF THESE MINT CONDITION COMPONENTS PLEASE SEND C.W.O. 20 ZIGGY'S 200 ELECTRONICS CO. LTO. DEPT. E.E. 14 MABELEY STREET, LONDON, E.9.
All- prices include VAT. please add postage whero indicated.

SINCLAIR CALCULATORS
Cambidge Kit se2s. 85 (52.80)
Cambridge Assembled $525 \cdot 95$ ($£ 3 \cdot 00$)
Executive Memory E38.95 (E4.40)
New Sinclatr Scientific fets. 55 ((4.80)
FERRANTI ZN414
IC radlo chip with data fs $\cdot 20$ (23p). Also avallable kit of other parts to complete a radio $\mathrm{Ez} \cdot 55(40 \mathrm{p}$) Send sae for tree leaflet.

SINCLAIR PROJECT 80
AFU 65.85 (80p)
240 E4. $85(67 \mathrm{p}$)
O15 Es. 79 (87 p)
PZ5 £4-23 (55p)
PZ $25.95(92 \mathrm{p})$
PZ8 E8. 95 (92 D)
Decoder 8 2.45 (85p) Trans for PZ8 82.95 (50p)
Tuner 59.85 (El -20) Stereo 80 EN .95 (EI-20)
Send sae for free leaflet on now quadraphonl
adapter for use with Project 80 天9.95 ($£ 1 \cdot 20$)

SINCLAR

SUPERIC12
6W rms power
with 44 page
printed circult
E2-10 (43p)

SWANLEY IC TOMORROW

The world's most powerlul IC amplifier. SImilar with data but no printed clrcuit $£ 2.60$ (47 p) 20% discount on $10 \mp$ quantitles.

DELUXE KIT FOR THEICI2

Includes all parts for the printed clrcult and olinme, bass and treble controls needed to amplete the mono veralon $\overline{\text { E }}$-55 (26p). Stereo model with badance cantrol E3-50 (46p).

ICI2 POWER KIT

Supplies 28V 0.5 Amps $\mathbf{\varepsilon 2 . 4 7}$ (50p)
LOUDSPEAKERS FOR THE ICI2

PREAMP KITS FOR THE ICI2
Type 1 for magnetic pickups, mics and tuners. mono model $\overline{5}$ - 30 (24p). Stereo model $£ 2-30$ (34 p) Type 2 for ceramic or crystal plckups

SEND SAE FOR FREE LEAFLET ON KITS

BATTERY

ELIMINATOR
BARGAIN
The most versatile battery ellminator ever of 3 ed. Switehed output at 500 mA si .95 (70 p)

Other ellminators stocked:
$50 \mathrm{~mA}:-8 \mathrm{~V}$ £1-50 (30p). 9V $£ 1 \cdot 50$ (30p). $7 \frac{1}{3 V}$ cassette type z2.2s (30p).
500 mA :-Higher current deluxe models. $6,7 \frac{1}{2}$ or $9 V$ (state which) $£ 2 \cdot 85$ (50 p).
S.DECS AND T-DECS

S-DEC E1-98 (31p)
T-DEC E3.63 (47p)

IC carriers:-
16 dII: \rightarrow plain $81 p$ (t50). With socket $£ 1 \cdot 77$ (250) 10 TO5:-plaln 7tp (i5p). With socket $81 \cdot 68$ (24p). Experiment quides:-A $£ 1-50(26 p)$, B $£ 1 \cdot 77(29 p)$
C gip (15 p$)$, D $£ 2-40(35 p)$. $\mathrm{E} £ 4-20(53 \mathrm{p})$.

ZIPPYCABINETS

Attractive plastic instrument cases In 4 slzes. $80 \times 50 \times 30 \mathrm{~mm} 60 \mathrm{p}(25 \mathrm{p}), 115 \times 65 \times 40 \mathrm{~mm}$ 7p (30p). $125 \times 70 \mathrm{~mm}$
$E 1-80(45 \mathrm{p})$

ICONOMICAL QUADRAPHONICS £9.95 ($\mathbf{(1 1 - 3 0)}$
Complete self contained matrix quadraphonic synthesizer In attractive cablnet. Just feed output speakers to obtsin the latest experlence in sound Send sae for fres leafiet.

SWANLEY ELECTRONICS
 PO BOX 68, SWANLEY, KENT BR8 8TQ.

Please add the sum shown in brackets tfter the price to cover the cost of post and VAT. O No VAT charged on overseas orders.

Everyday Electronics Classified Advertisements

RATES: 9p per word (minimum 12 words). Box No. 20p. extra. Seml-display- $\mathbf{1 6 . 0 0}$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Litd., Fleetway House, Farringdon Street, London EC4A 4AD.

EDUCATIONAL

CITY \& GUNDS EXAMINATIONS. Make sure you succeed with an ICS home study course for C\& G Electrical Installations. Telecommunications, Technicians and Radio Amateurs. Free details from:-International Corresdetails fromi-ile Schools, Dept. TJIF, Interpondence Schools, Dept
text House, London SW8 4UJ.
COLOUR TV SERVICING. Make the most of the current boom. Learn the technique of servicing Colour \& Mono TV sets through new home study courses, approved by leading manufacturers. Also radio and audio courses. Free details from:-International Correspondence Schools, Dept. 731 F 2 , Intertext House London SW8 4UJ.
TECHNICAL TRAINING. Get the qualifications you need to succeed. Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering \& Programming. Also self build radio kits. Free details from:- International Correspondence Schools, Dept. 731F3, Intertext House, London SW8 4UJ.

RECEIVERS and COMPONENTS

COMPONENTS GALORE. Pack of 500 mixed components manufacturers surplus plus once used. Pack includes plus prors, carbon and W.W. capacitors various, transistors, diodes, trimmers, potentiometers etc. Send $£ 1+10 p$ p and p. c.w.o. to CALEDONIAN COMPONENTS, Strathore Road, Thornton, Fife.
TUNBRIDGE WELLS, components from Teleservice, 108 Camden Road, Tunbridge Wells, Kent. Telephone 31803.
$\begin{aligned} & \text { 7LB ASSORTED COMPONENTS EI-65 } \\ & \text { 2LB ASSORTED COMPUTER PANELS }\end{aligned}$
2LB ASSORTED COMPUTER PANELS
3 ASS. M,C. METERS $2^{\pi}-3^{\prime \prime} £ 1-15$ (25p).
$\begin{aligned} & \text { SILICON DIODES } 650 \text { V } 1 \div \text { A. } 35 p \text { (50). } \\ & \text { COMPUTER PANELS } 5-\text { BCIO8, Dlodes } 4-55 p\end{aligned}$
(10p). LARGE PANELS, average 40 transistors,
$\begin{aligned} & \text { loads of hi-stabs, etc. } 85_{0}^{\circ} \text { (25p). } \\ & \text { COPPER CLAD PAX. PANELS } 5 t^{*} \times 5 \frac{1}{\prime \prime}^{\prime \prime}\end{aligned}$
6-45p c.p.
VALUPAKS-from 25 to 75 p . Send 100 for Jists
of these and panels etc. Refund on purchase.
J.W.B. RADIO
2 Barnfield Crescent, Sale, Cheshire M33 1NL
Postage in brackets

SPECIAL PACK of components. 25 resistors, 10 diodes, 20 capacitors, all tested and guaranteed. Also contains 20 transistors, untested manufacturers rejects. Send 50 p to Felectronics, 6 rejects. Send Cassing, Carlisle.

SERVICE SHEETS

SERYICE SHEETS for Televisions, Radios, Transistors, Record Players, Tape Recorders, etc., from $5 p$ with free Fault-Finding Guide. Over 10,000 models available. S.A.E. enquiries. Catalogue 20p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 425066 .

MISCELLANEOUS

BATYERY ELIMINATOR KITS. Our well-known Mini Mains Pack Kits now complete with drilled insulated base $32 \times 55 \mathrm{~mm}$. Fits into space of most large transistor batteries. Easy wiring instructions. Safe, silent mains transformer, silicon rects, smoothing capacitor, all top grade. For any ONE of citor, all voltages (state which): 3 V , these voltages $(s t a t e$
300 mA max.; $6 \mathrm{~V}, 180 \mathrm{~mA} ; 9 \mathrm{~V}, 120 \mathrm{~mA}$; $1 R \mathrm{~mA}$ max.; 60 mA . 50 VAT included. By mail only, UK post 5p. Amatronix L.td., 346 Selsdon Ró., South Croydon, Sur-
rey CR2 ODE.

DESOLDERING BRAID direct from manufacturers. Removes components from printed panels in seconds. Noncorrosive. Hang-up cards containing 5 feet. 40 p V.A.T. paid. Postage $5 p$ any quantity. Ashleys, 91 Vale Road, Ash Vale, Surrey.
RADIO \& TELEVISION AERIAL BOOS TERS $£ 2.95 \mathrm{p}$, five television valves 45 p . 50p bargain transistor packs, bargain El resistor and capäcitor packs. UHFVHF televisions $\ddagger 7.50$, carr. £1-50p. S.A.E. for 3 leaflets. ELECTRONIC MAIL ORDER (BURY) LTD., Bridge Street, Ramsbottom. Bury, Lancs. STYLI. Finest quality for most Crystal and Magnetic Cartridges: DoubleDiamond, Diamond/Sapphire, Double Sapphire, Sapphire, at lowest prices. Quick Service. FREE LIST sent for (EE) LONGLEY LANE GATLEY, (EE) LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE SK8 4EE.

WIRE

H.C. Copper, P.V.C. Insulated 24 A.W.G. ($0.2 \mathrm{~m} . \mathrm{m} .{ }^{2}$) in P.V.C. Colours Black, Yellow, Blue or White. Reels $80 z \mathrm{~s} £ 0.95$; $11 \mathrm{~b} £ 1.80$; $2 \mathrm{lbs} £ 3.50$; 4 lbs £6.75 including VAT and postage larger Reels avallable C.W.O.
H. A. WAINWRIGHT \& CO. LTD.

9A Farncombe Street, Farncombe, Godalming, Surrey.
Tel: Godalming 23545.
 wouk nommally cost you f's at any electrical shop. Voltsge 240 AC . $50 \mathrm{c} / \mathrm{s}$ LIMTTED QUANTITY AVAILABLE. gimliar product eells at 4.50. C.W.O. Immodiate' deapatch Refand, If not delighted.
V.G.S. INTERNATIONAL (SGEID)

Pickworth. Sleaford, Lincolnshire.

LOUDSPEAKERS

WILMSLOW AUDIO
Dept. H. Swan Works, Bank Square, Wilmslow Cheshire SK9 Ihf Tel. Wifmsiow 29599

12 VOLT FLUORESGENT LIGHTS
 (As illustrated by Thorn A.E.I.)

Beat power cuts, be mdependenc. Ideal for Caravans, Tent, Emergency Lighting, etc.
Works anywhere where $/ 2 \mathrm{~V}$ is available. Guaranteed for six months, READY TO USE at:-

12 ins 8watt
 £4 post ine paid VAT

 SALOP ELECTRONICS Callers 23 Wyle Cop welcome Shrewsbury, for lists or Shropshire. Enquiries Large S.A.E Tel. Shrewsbury 53206BEGINNERS, we exist for you. Instruction, components, constructional kits. Send S.A.E. to Electrolern, Lyburn Lodge, Nomansland, Wiltshire.

FIBRE OPTICS-OPTIKIT 103 contains 2 m . Crofon 1610, 64 Serand Light Conduit plus 5 metres each FP20, FP40. FP60 Plastic Monofibre (diameter $0.5,1.0 .1 .5 \mathrm{~mm}$). Price $64-84$ including booklet. PP., VAT. FIBRE OPTIC SUPPLIERS, (EE), P.O. Box 702. London WIO 6SL

2N57T7 SILICON PHOTODARLING-
TON AMPLIFIER sensitive lighs det ector, much superior to CdS light cell. Price I off OPTIC SUPPLIERS. (EE), P.O. Box 702. London WIO 6SL.
RED LIGHT EMITTING DIODES MLED 500 in TO92 case. MV54 miniature $(2 \mathrm{~mm}$). Price (both types) 5 for $\mathrm{fl} \cdot 10$ inc. data, VAT, pp. FIBRE OPTIC SUPPLIERS, (EE), P.O. Box 702, London WIO 6SL.

NEW PRODUCTS. Panel mounting holders for ORP12 L.D.Rs. in polished aluminium 25p. Control knobs 11/16 dia, in aluminium with colour coded ends 18 p , state colour Any turned part supplied. $7 p$ for list. Post $10 p$. Electro-Mech. Products, 7 Chantry Avenue, Bideford, Devon.

71b BARGAIN PARCELS

Rundreds of new resistors. capacitors, pots, swltches. Also crystals, computer
loads of odds \& ends. Onily $£ 1 \cdot 65$ (40p)
VERSATLLE POWER UNIT
Contains Mains Transtormer, 2 A Thermal Cut-
Out and Brldge Rect. WIII glve $1 \cdot 7-10.5 \mathrm{~V}$ output Out and Bridge Rect. WIII glve $1 \cdot 7-10 \cdot 5 V$ output
with 2 extra catwacitors (provided). Ideal for NickWith 2 extra Capacitors (provided). Ideal for NictCad Rattery Charger, 5 V ITL supply, Castette
or Radio. etc. Brand new with information or Radp (200).

3W TAPE AMPLIFIERS

Very sensitive 4 valve amplifier, with tone a volume controls giving 3 watts into 3 ohms. Only $E 1-65$ (400); Also available in cabinel with $7 \times{ }^{2}$ speaker and non-standard tape deck. miles $£ \frac{1}{20}$ over) Suitable cassette $£ 1(30 \mathrm{p})$ miles, Spare head 30p.

FERRIC CHLORIDE

Anhydrous to mil-spec. 11b 50 p (20p) $3 \mathrm{lb} \mathbf{\Sigma 1 - 2 0}$ (30p), 101 b $£ 3.50(60 \mathrm{p})$.
SURPLUS COMPO
SURPLUS CONPONENTS: 500 asstd resis tors £1 (200); 300 capacitors all types $£ 1(30 \mathrm{p})$; 2510 X crystals $75 p$ ($30 p$); 40 asstd. pots $£ 1$ ($30 p$).
$V A T$ NOT INCLUDED-ADD 10% Carr là brackels, small parts 4D. SAE List GREEMNEL]ELEGTRONEREEE]
24 Goodhart Way. West Wickham, Kent, BR4 OES.
Shopest 21 Deptford Eroadway, SEB,
Tel 01 - 6922009 z 38 Lower Addiscombe Rd.
Croydon.
unless you can resist the temptation to get these super 'attention-getters': * Pocket-sized MAXI-VOLT BIg tinch Spark Generator (instant 15,000 volts!). Ready-made, needs no batteries. Carry it around anywhere. Only weighs about 3 oz . (85 g .) send $\mathrm{f} /-35$ for your MaxiVolt now!

* Unique TRANSMITTER/RECEIVER Kit. No licence examinacions or tests required to operate this transistorised equipment. Easy to build. Get transmitting. Send $\mathbf{4 5} 90$ for yours now!
* Psychedelic MINI-STROBE Kit. Take a pocket-sized lighening storm to Disco's and parties. 'Brain-freeze' "em with vari-speed stop-motion flashes. Includes super case too. Send $\boldsymbol{2} \cdot 20$ now!
(All prices include V.A.T., packing. and postage.)
Send remittance to:
BOFFIN PROJECTS,
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY (Mail order U.K. only)
Or for more details, send 15p for lists, olus free design project sheet.

CONSTRUCTION AIDS. Screws, nuts, spacers, etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boardsmasters, negatives and boards, oneoff or small numbers. Send $6 p$ for list. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road, Stratford-onAvon, Warks.

IWSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM gv BATTERY (not supplied). ALL COMPONENTS AND PRINTED CIRCUIT BOARO WITH FULL INSTRUCTIONS. KIT PRICE: $\mathbf{E 2} \cdot 88$ post pald.

CREATE "PHASE" EFFECT ON YOUR' RECORDS, TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM 8V BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUCTIONS. KIT PRICE: $£ 2-86$ post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR ELECTRONIC PRODUCTS

9ta, LICHFIELD STREET, WALSALL, STAFFS. WSI IUZ

VEROSTRIIP

LENGTH $8.5^{\prime \prime}$

WIDTH 1.5"
Available from your Local Retailer
0.1 and 0.15 pitch Vero Strip is suitable for all applications where Tag Boards can be used.

VERO ELECTRONICS LTD
INDUSTRIAL ESTATE
CHANDLERS FORD HANTS.

A FULL RANGE OF RADIO AND AUDIO INTEGRATED CIRCUITS GUARANTEED TO MANUFACTURER'S FULL SPECIFICATIONS.

Please send cash with órder. Prices include VAT. P \& P for U.K. $12 p$ peí order. Overseas add airmail charge.

Send this coupon and $4^{\prime \prime} \times 9^{\prime \prime}$ stamped addressed envelope for comprehensive free price list.
Please print
NAME \qquad
\qquad
ADDRESS \qquad
\qquad
\qquad

89-91 Wardour St., London, W1V 3TF

YATES ELECTRONICS (FLITWICK) LTD

DEPT. E.E., ELSTOW STORAGE DEPT KEMPSTON HARDWICK,

BEDFORD.
C.W.OO PLEASE POSTAND PACKING PLEASE ADD 10p TO ORDERS UNDER 62. Cagalogue which contains data sheecs for most of the components listed will be sent free on requesc. 10p stamp appreciated.

Callers Welcome Morn to Sat. 9 a.m. 5 p.m.
PLEASE ADD 10% VAT

RESISTORS
WW Iskra hish stability carbon film-very low hoise-capless construction.
fw Mullard CR25 earbon film-very smal body size $7.5 \times 2.5 \mathrm{~mm}$. IW Mullard CR25 carbon
iW 2% ELECTROSIL TR5.

wates	Tolerance 10% 10 10 10% 10%	$\begin{gathered} \text { Range } \\ 4 \cdot 7 \Omega-2 \cdot 2 M a \\ 3 \cdot 3 M 0-10 M \Omega \\ 10 \Omega-1 M \Omega \\ 10-3 \cdot 9 \Omega \\ 4 \cdot 7 \Omega-1 M \Omega \\ 10-10 Q \end{gathered}$

Quantity price applien for any seleccion. Ignore fractions on cotal order.

DEVELOPMENT PACK

0.5 watt 5% likra resistors 5 off each value 4.7 a to 1 Ma . .
E12 pack 325 resistors $\& 2.40$. E 24 pack 650 resistors 64.70 .

POTENTIOMETERS
Carbon track $5 k \mathrm{k}$ to 2 Ma . lot or linear (log \ddagger W. Iin $\ddagger W$).
SKELETON PRESET POTENTIOMETERS
SKELETON PRESET POTENTIOMETERS
Lintar: $100,250,5000$ and decades to $5 M \mathrm{M}$. Horizontal or vertical P.C. mounting $(0.1$ matrix).

TRANSISTORS

SLIDER POTENTIOMETERS
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm . DUAL GANG, 10K +.10 K ece. log. or lin. 60p. KNOB FOR ABOVE, I2p.
FRONT PANEL. 65p.
18 Gauge panel $12 \mathrm{in} \times$ fin with slozs cuz for use with slider pols. Grey or mazt black finish complete with fixingt for 4 pots.

MULLARD POLYESTER CAPACITORS C296 SERIES
400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{P} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F} .6 \mathrm{p} .0 .22 \mu \mathrm{~F}$, $150 \mathrm{~V}: 0-01 \mu \mathrm{~F}, 0-015 \mu \mathrm{~F} 0.022 \mu \mathrm{~F}$. $4 \frac{1}{2}$ p. $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}, 3 \mathrm{p} \mathrm{p}, 0.15 \mu \mathrm{~F}$ 3 PP . 22 . MULLARD POLYESTER CAPACITORS C280 SERIES

MYLAR FILM CAPACITORS 100 V
$0.001 \mu F, 0.002 \mu \mathrm{~F}, 0-005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$,
CERAMIC DISC CAPACITÓORS $\begin{aligned} & 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0-005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, \\ & 2 \pm \mathrm{p} \cdot 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 34 \mathrm{p}:\end{aligned} \quad 100 \mathrm{pF}$ to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.

ELECTROLYTIC CAPACITORS
(LF/V) $1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63.4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 9 / 63,10 / 25,10 / 63,15 / 18,15 / 40$, 15/63, 22110. 2225, 22/63, $33 / 6 \cdot 3,33 / 16,33140,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6-3$.
 $47 / 40,680 / 6-3.11 \mathrm{p} .100 / 63,150 / 63,220 / 63$. $1000 / 10,120.470 .25,680 / 16,1500 / 6 \cdot 3$. 13 p . $470 / 40.680 / 25$, $1000 / 16$. $1500 / 10.2200 / 6=3$, 18p. $330 / 63$. $680 / 40$, $1000 / 55$, $1500 / 16$ 2200/10, 3300/6.3, 4700/4, 21 p.

SOLID TANTALUM BEAD CAPAC̄ITORS

$\begin{array}{ll}0.1 \mu \mathrm{~F} & 35 \mathrm{~V} \\ 0.22 \mu \mathrm{~F} & 35 \mathrm{~V}\end{array}$
$\begin{array}{ll}0.2 \mu \mu \mathrm{~F} & 35 \mathrm{~V} \\ 0.47 \mu \mathrm{~V} & 35 \mathrm{~V}\end{array}$
$\begin{array}{ll}2.2 \mu F & 35 V \\ 4.7 \mu \mathrm{~V} & 35 \mathrm{~V} \\ 6.8 \mu \mathrm{~F} & 25 \mathrm{~V}\end{array}$
$\begin{array}{ll}6.8 \mu F & 25 V \\ 10 \mu F & 25 V\end{array}$

$\begin{array}{ll}22 \mu \mathrm{~F} & 16 \mathrm{~V} \\ 33 \mu \mathrm{~F} & 10 \mathrm{~V}\end{array}$

$47 \mu F^{6} \cdot 3 V$
$100 \mu V^{3}$

LARGE (CAN) ELECTROLYTICS HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT $\begin{array}{llllll}0.01 \mu \mathrm{~F} & 10 \mathrm{p} & 0.047 \mu \mathrm{~F} & 13 \mathrm{p} & 0.22 \mu \mathrm{~F} & 20 \mathrm{p} \\ 0.022 \mu \mathrm{~F} & 12 \mathrm{p} & 0.1 \mu \mathrm{~F} & 13 \mathrm{p} & 0.227 \mu \mathrm{~F} & 22 \mathrm{p}\end{array}$ POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \frac{1}{2} \%$ 10pF to $1,000 \mathrm{pF}$ E 12 Series Values. 4 p each.

SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI

The GDI is the world's first semiconductor that can convert a concentration of zas or smoke into an electrical signal. The sensor decreases its elactrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen. carbon monoxide. smoke. This decrease is ustally larze enough to be utilized without amplification. Full detaits and circuirs are supplied with each decector.
Detector GDI, 42 Kit of parts for detectors including GDI and P.C. board bux excluding ease. Mains operated detector $63-20$. 12 or 24 V battery operated audible alarm $£ 7 \cdot 30$. As above for PP9 bascery, $\{6 \cdot 40$.
PRINTED BOARD MARKER
97p
Draw the planned circuit onto a copper laminate board with the P.C. Pen, allow zo
dry. and immerse the board in the etchanc. On removal the circuit remains in high dry. and

PARKERS SHEET METAL FOLDING MACHINES
 heavy vice MODELS

With Bevelfed Former Bars

No. 1. Caparity 18 gauge mild stee! $\times 38 i n$, wide... E21-00 carr. free No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$, wide ... 615.00 carr. free No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$. wide … 115.00 carr. free Also new bench models. Capacicies 36 in . $\times 18$ gauge $440 \cdot 0024$ in. $\times 16$ gauge $£ 38 \cdot 00$. Cerriage free. Add 10% VAT to total price of machine. End folding ateachmentes for radio chassis, tray and box making. Steel angle $36^{\prime \prime}$ model, 40 p per ft . Other models 30 p . The two smaller models will form flanges. As supplied to Government Departmencs. Universities, Hospitals,
One year's guarantee. Money refunded if not satisfied. Send for dezoils. A. B. PARKER, Folding Maching Works,

Upper George Sto; Heckmondwike, Yorke. Heckmondwike $4039 \% 1$

Lanyse BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures on request

BUILD THE

You pay less VaI with Henry's Low Prices

Now built and used by chousand
of satified cussomers. Feature:
slim desifn overall size in cabinet $15 t^{\prime \prime} \times 22^{\prime \prime} \times 6\left\{^{\prime \prime \prime}-6-1 C ' s, 10\right.$ transistors, stabilisers Gardners ow field transformer. Fibr l, complece chassis work. Now available built and rested as well as in kit form. HIGH QUALITY \& STABILITY ARE TEXAS ENGINEERS FOR PERFORMANCE RELIABILITY AND EASE OF CONSTRUCTION. FACIIITIES, Onfoff switch indicator, headphonts socket, separate treble, bass. volume and balance controls, scrateh and rumble filters, monolstereo switeh, input selector: Mos. P.U., Radio Tuner, Aux. Can be alvered for Mic. Tape. Tape-head, et Conseructional derails Ref. No. 21

30p. Distributed by Henry's throushout UK. FREE-Teak cabinet wish complese kit.
(ife 28 -50
 and cested $833^{-1} 1$ as arfloseking)

EARN YOURSELF EASY

 MONEY, WITH PORTABLE DISCO EQUIPMENTDISCO MINI A complese portable lisco, fitted mixer/preamp 2 decks al Acilities. above buc with Slider Controls As above bur with slider Co SDLS 100 wate mixer/amplifier wit slider controls
R50 50 wate mixer/amplifier
R100 100 watt mixer/amplifier
DISCO AMP 100 watt mixer/amplifie Northcourt:
40040 wate mixer/amp
80080 wate mixerlamp
DISCO MIXER/PREAMPLIFIERS
(OP for up to $6-100$ watt amplifiers) plir (lidy concrois)
DISCO VOX (slider controls) the
complete disco preamp
D] 100100 wate power amplifier for
above Mk is 3 channel 3 kw sound to
lizhr 130 L Mk lit slider eonerois
DJ DISC LITE as $30 \mathrm{~L}-2$ plus variable
sDeed flashes
DIMAMATIC I $k W$ adjustable speed
Garlsboro Reverbersion Unit
Disco anti-feedback microphone
Diseo anti-feedback microphone
Colt 150 watt licuid wheel projector 150 waet Q1 liquid wheel projector 150 wate Q1 cassette wheel projector Spare Effects and liquid cassettes larg range of patterns
6 inch Liquid wheels
Various cassetres
Mini spor bank fiteed 3 lamp̄s
Auto Trilite (mini with flashers) Bubblemaker with liquid Mixers/Mics/Speakers/Lighting U.K.s largest range of Disco Lishting RREE STO AKG/RESLO DJ/CARLSBRO/EAGLE MICS., STANDS, MIXERS, CABINETS CHASSIS AND COMPLETE SPEAKER SYSTEMS, MEGAPHONES, TURN TABLES, PUBLIC ADDRESS COM PONENTS.

All prices carr. paid (UK) (VAT EXTRA) Barclaycard;Access call, write or phone your

EXCLUSIVE

DECCA KELLY SPEAKERS

12 wate speaker Tweeter systems 8° Bass/Midrobe radiator plus crossover 612.50
per pair of systems (carr./packg. 40ந) or built into veneered cabinets, size 18 . $12 \times 61^{\circ}$ E19-50 pair (carr. (i).
 discounts and demonstrations for callers. Latess stock liszs on request (Ref. No. 17). Card. Direct orders and latest prices

TRANSISTORS/SEMI.

CONDUCTORS

U.K.s largest ranze tor every application Smajl quantity discounts. Also Trade Export and Induzerial enquiries invited Lacest scock list (Ref. No. 36) including valves on request.

ELECTRONICS

SUPPLIES
Specialists in electronics for more than 30 years. Trade and industry suppliesevery type of component and equipment.

NEW SINCLAIR PROJECT 80 tereo PreAmplifier
Audio Filser Unit
Z40 15 Watt Amplifier
Z60 25 Watt Amplifier
PZ5 Mod. for 1 or 2 Z40
PZ6 Mod. (S Tab) 1 or 2 Z40 TRA MSFORMER FOR PZ8
NEW FM TUNER

All items post paid.

BUILD THE NEW HENELEC

STEREO FM TUNER

A complete!y new high seability stereo
FM tuner. Features variebic capacity diode tuming. stabiliser power
supply, IC Decoder hizh gin low noise. IF stazes. LED indicacors. Tuning meter, AFC, easy to conseruct and use. Main operated. Slim modern de sign with fibre glass PC, teak cabinet, ete. Available as at $\begin{array}{ll}\text { kit to build or ready buit. } \\ \text { Overall size } 8^{\prime \prime} \times 2^{\prime \prime} \\ \text { O } & 6^{3 N} \text {. Pro }\end{array}$ duced to give hikh performance with a realistic price. (Parts list and with a realistic price. (Parts $\mathbf{c o n s e r u c t i o n a l ~ d e t a i l s ~ R e f . ~ N o . ~} 530 \mathrm{p}$)
cont Henry's are sole distributors UK and Europe KIT PRICE E21.00 (+VAT) or built $\begin{aligned} & \text { and rested }\end{aligned} \mathbf{2 4 . 9 5}(+$ VAT)

LIVING SOUND LOW NOISE TOP QUALITY CASSETTES MADE BY EMI TAPES LTD. TO INTERNATIONAL STANDARDS ESPECIALLY FOR HENRY'S. ALL POST PAID LESS THAN $\frac{1}{1}$ REC. PRICES COMPLETE WITH LIBRARY CASES
 85.80 wach

Italian $\mathrm{EI}-36$ per eourse. $£ 5$ for any 4 .
LOW COST HI-FI SPEAKERS
SPECIAL OFFERS
EM1 $13^{\prime \prime} \times 8^{\prime \prime}$-full range speakers (pose 20p each or 30 p pair) 82.20 each or $£ 4.00 \mathrm{pa}$

15 ohms 23.8
5020 wate $C / 0$ Tweeters 8 or 15 ohms 67.80 each

$$
\text { wood abiner } £ 4.80 \text { post } 35 \text { p. }
$$

BUILD YOURSE F A POCKET CALCLLATOR

 tainer and raking 3jout 3 hours to assemblethats the Sinclair Cambridge pocket caiculator from Henry's. Some of zhe many feazures include interiace chip. thick-film resistor pack, printed circuit board, electronie components pack Size $4 \frac{t^{*}}{}{ }^{*}$ long $\times 2^{* *}$ wide $\times+t^{*}$ deep ree of charge with the kit for the more advanced echnologise
£24-95 Alidemibibele $£ 27 \cdot 20$ + VAT. ready to use. + VAT.
emather AX 7806 $486 x$ + - 0 E without notice. E\&OE. Like a permanent job at Henry's? Experienced and trainee salesmen required. Tel, 01-4028791.
of this magazine

EDGWARE ROAD, LONOON WZ

404-406 Eloctronic Compononts and Equipment 01.4028381
309 PA - Disco - Lighting High Power Sound 01-7236963 303 Bargaios Store (Callers only)
Home and Cor Entertamment Centres London and brunchos now open 120 Shaftosbury Avenue. London W1 01.4379692 104 Burnt Oak Broadway. Burnt Oak, Edgware 01-952 7402
$190-194$ Station Radd. Harrow, Middiese 01.863 7788/9 190-194 Station Road. Harrow, Middlesex 01.863 7788/
$354-356$ Edgwaro Road, London WZ 01-402 5854/4736

[^0]: (6) IPC Magazines Limited 1974. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Everyday Electronics Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^1]: * North Staffordshire Polytechnic Any communications arising from the Teach-In '74 series must be addressed to Everyday Electronics, Fleetway House, Farringdon Street. London E.C.4).

