D60 - D70 Series DIGITAL READOUTS

Operation Manual

(Version 5.0)

Dear consumer:

Thank you for buying the 2V/3V/4V multifunctional Digital Readout (DRO) products manufactured by our company. This kind of DRO is widely used on the machine tools such as milling machines, lathes, electric discharge machines, grinding machines, etc. and detecting equipments, as well as in the positional and auxiliary processing of manual operation.

Operation Manual:

This manual is the instruction for operation and use of 2V and 3V and 4V multifunctional DROs.

Mode D60-2V: 2 axis DRO, applicable to the 2 axis milling machines, grinding machines, lathes and the machines require 2 axes display.

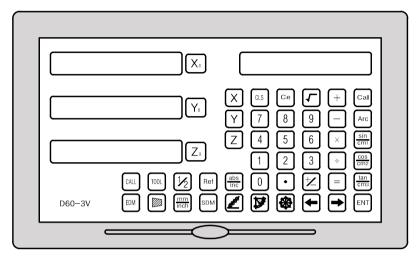
Mode D60-3V: 3 axis DRO, applicable to the machines require 3 axis display, such as milling machines, lathes, Electrical Discharge Machines etc.

Mode D60-4V: 4 axis DRO, applicable to the machines require 4 axis display, such as milling machines, lathes, Electrical Discharge Machines etc.

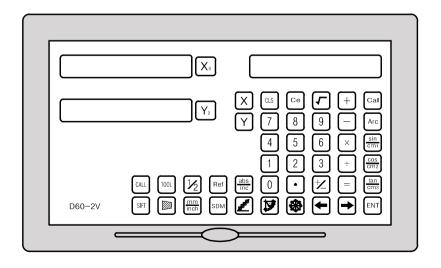
Safety Precautions:

In order to prevent electric shock or fire disasters, the DRO must be kept dry or not be splashed directly by the cooling liquid. In the case that the DRO emits smoke or peculiar smell, pull out the power plugs immediately to prevent fire disasters and electric shock. Then contact our company or the dealers, do not try to repair it by yourself.

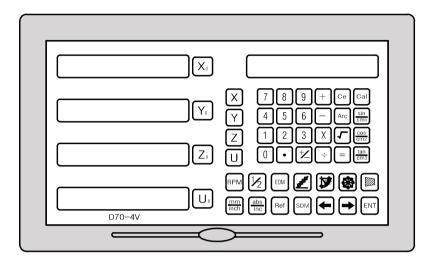
The DRO is connected with the grating ruler or other displacement sensors to form the precise measuring system. Special attention should be paid when using the measuring system, and do protect the connection between the grating ruler and DRO from damage to avoid measuring errors.


Do not repair and modify the measuring devices of DRO by yourself, otherwise the failure, fault or damage will be caused. If any abnormality occurs, please contact our company or the dealers.

When the sensors (such as grating rulers, magnetic grating rulers, rotary encoders) used with the DRO device are damaged, do not use other brand products to replace the damaged ones, for the products of each company have different features, index, interface and modes. Please replace the damaged sensors under the professional's guidance; otherwise it is liable to cause damage to the DRO device.


 $(\in$

IS09001


D60-3V Panel of the DRO

D60-2V Panel of the DRO

D70-4V Panel of the DRO

Instruction of Panel and keypad

Instruction of the keypad of the DRO

XYZU ———	Axis selection key
0 1 2 3 4 5 6 7 8 9	· Numeric key
+-×÷=	· Calculation key (calculator function)
Cal	- Caculation key (calculator function)
Се	· Zeroing key (calculator function)
Arc	Restore the trigonometric function (calculator function)
	Square root calculation key (calculator function)
•	. Decimal point input key
	. Minus input key
ENT	Confirm key

Instruction of Panel and keypad

CLS -	- Delete the input value (calculator function)
<u> </u>	- 1/2 value calculation function key
mm inch	- The Metric/British units Switching key
Ref	- Scale key / Sleeping function key
SDM	- 200 Points Auxiliary Zero Position Function key
	- Arc machining function (PRD) key
	Divide holes on Circumference (PCD) function key Y+Z enabling key (L series DROs)
	- Divide holes on an oblique line (PLD) function key
sin cm1	This key is the sine function key in the calculation function;Bevel machining function key (M series DROs)
cos om2	- This key is the cosine function key in the calculation function; Rectangular

Instruction of Panel and keypad

tan cms	· Tangent function key of calculation function
abs. inc	- Absolute / relative coordinates transformation key
+	Selection key
	· Taper checking function key
CALL	· Tool magazine input key
	· Tool magazine call key
EDM	Congruous Output Function in EDM (3V DROs)
$X_{\circ}Y_{\circ}Z_{\circ}U_{\circ}$	- Zeroing, reseting
SIFT -	Digital filtering function key (2V DROs)
RPM -	D70-4V rotate speed measurement function

Content

Content

1. Introduction about D60-VSeries
D60-V Series
1.1 2V DROs for 2 axis lathes
1.2 2V DROs for 2 axis milling machines
1.3 2V DROs for 2 axis grinding machines
1.4 3V DROs for 3 axis lathes
1.5 3V DROs for 3 axis milling machines 5
1.6 3V DROs for EDM6
D70-V Series
1.7 4V DRO used for revolving speed measurement
2. System Parameters Setting
2.1 Selection of Linear Encoder or Rotary Encoder 9
2.2 Resolution Setting
2.3 Counting Direction Selection
2.4 Compensation Type Tetting
2.5 Parameter Setting of Rotary Encoder 11
2.6 DRO Type Selection / Inch mode decimal point switch function _{. 11}
3. Basic Functions
3.1 Zeroing, Data Recovery
3.2 Display in Metric/British units
3.3 Input Coordinate 16
3.4 1/2 Function 16
3.5 ABS/INC Way
3.6 Full zeroing 200 points SDM 18
3.7 Power Off Memory Function

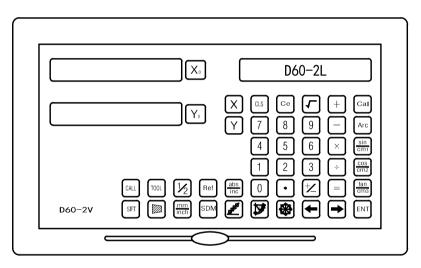
Content

3.8 Sleeping Function	8
3.9 Ref Ruler storage function	
3.9.1 Find Zero Point of grating ruler (FIND.REF)	9
3.9.2 Find the Zero Point (RECALL)	20
3.10 Linear Compensation	22
3.11 Non-linear Compensation 2	24
3.12 200 TOOL Storeroom 2	
4. Special Function	
4.1 PLD Function	36
4.2 PCD Function	
4.3 Smooth R Function	
4.4 Simple R Function	
4.5 Rectangle Chambering Function	59
4.6 Bevel Machining Function	'2
4.7 Calculator Function 7	'5
4.8 Tool Diameter Compensation	' 9
5. Special Functions for Grinding Machines	
5.1 Digital Filtering Function	31
6. Special Functions for Lathes	
6.1 200 sets of tools	33
6.2 Toper Measuring Function	37
6.3 Radius/diameter Conversion Function	39
6.4 Y + Z function (special for 3 axis lathes)	1
7. EDM Function	
7.1 Introduction and Operation sequences	2
8. D70-4V rotate speed measurement function	
8.1 Brief Introduction Operation Processes	02

Content

	8.2 The installing drawing of Rotate Measurement Machinery 104
9.	Appendix
	9.1 Specifications
	9.2 Mechanical dimensions and Installation Drawing 105
	9.3 Troubleshooting

1. Introduction


1. Introduction of 2-axis lathe of D60-V series

1. Introduction:

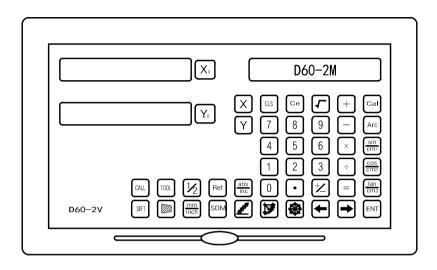
The power switch of the DRO is located on its back. The DRO enters the self-checking state firstly after booting. After the self-checking state is completed, the window at the left side displays the resolution of X, Y and Z respectively, and the window on the right side displays the set machine tool type. D60-2M applies to 2-axis milling machines; D60-3M applies to 3-axis milling machines; D60-3L applies to 3-axis lathes; D60-2L applies to 2-axis lathes and D60-3E applies to the electric discharge machines.

D60-V Series

1.12 - axis lathe

Apply to: 2 - axis lathe

Basic functions:


- 1) Zeroing; 2) Zeroing reset; 3) Metric/British units switching;
- 4) Dimension input; 5) ABS/INC coordinates conversion;
- 6) Power off memory; 7) Full zeroing of 200 sets SDM coordinate origins; 8) Sleeping mode; 9) Ruler storage function; 10) Linear compensation;
- 11) Non-linear compensation; 12) 200 sets of auxiliary coordinate;
- 13) Parameters Setting;

Special functions:

- 1) Magazine including 200 sets of tools; 2) Diameter/ radius conversion;
- 3) Toper measuring: 4) Calculator function:

1.2 2 - axis milling machine

Apply to: 2 - axis milling machines, punching machines, etc.

Basic functions:

1) Zeroing; 2) Zeroing reset; 3) Metric/British units switching;

4) 1/2 function; 5) Dimension input; 6) ABS/INC coordinates conversion;

7) Power off memory; 8) Full zeroing of 200 sets SDM coordinate origins;

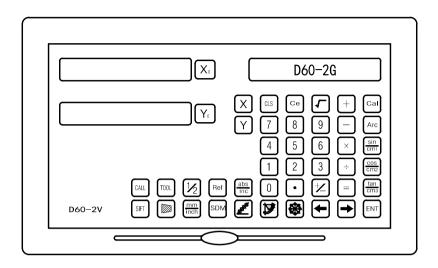
9) Sleeping mode; 10) Ruler storage function; 11) Linear compensation;

12) Non-linear compensation; 13) 200 sets of auxiliary coordinate;

14) Parameters Setting;

Special functions:

1) Bevel punching function; 2) Divide holes on Circumference (PCD) function;


3) Arc machining function; 4) Chamber step machining function;

5) Bevel machining function; 6) Calculator function;

1. Introduction of 2-axis grinding machine of D60-V series

1.3 2-axis grinding machine

Apply to: 2-axis grinding machine

Basic functions:

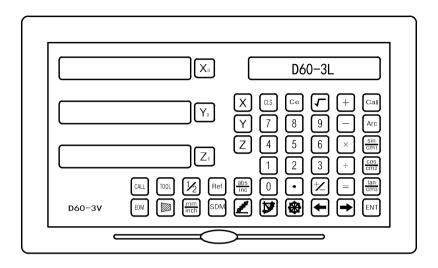
1) Zeroing; 2) Zeroing reset; 3) Metric/British units switching;

4) 1/2 function; 5) Dimension input; 6) ABS/INC coordinates conversion;

7) Power off memory; 8) Full zeroing of 200 sets SDM coordinate origins;

9) Sleeping mode; 10) Ruler storage function; 11) Linear compensation;

12) Non-linear compensation; 13) 200 sets of auxiliary coordinate;


14) Parameters Setting;

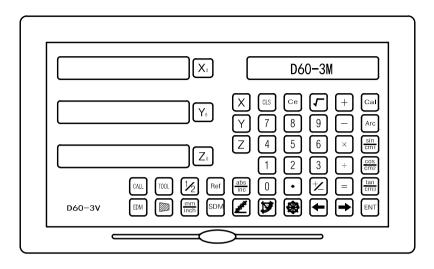
Special functions:

1) Digital filtering; (eliminating the display maladjustment caused by the shake of the grinding machine); 2) Calculator function;

1.4.3-axis lathe

Apply to: 3-axis lathe

Basic functions:


- 1) Zeroing; 2) Zeroing reset; 3) Metric/British units switching;
- 4) Dimension input; 5) ABS/INC coordinates conversion;
- 6) Power off memory; 7) Full zeroing of 200 sets SDM coordinate origins;
- 8) Sleeping mode; 9) Ruler storage function; 10) Linear compensation;
- 11) Non-linear compensation; 12) 200 sets of auxiliary coordinate;
- 13) Parameters Setting;

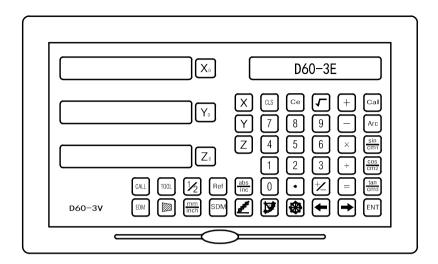
Special functions:

- 1) Magazine including 200 sets of tools; 2) Diameter/ radius conversion;
- 3) Toper measuring; 4) Calculator function;
- 5) Y+Z function;

1.5 3 - axis milling machine

Apply to: 3 - axis milling machines, punching machines, etc.

Basic functions:


- 1) Zeroing; 2) Zeroing reset; 3) Metric/British units switching;
- 4) 1/2 function; 5) Dimension input; 6) ABS/INC coordinates conversion;
- 7) Power off memory; 8) Full zeroing of 200 sets SDM coordinate origins;
- 9) Sleeping mode; 10) Ruler storage function; 11) Linear compensation;
- 12) Non-linear compensation; 13) 200 sets of auxiliary coordinate;
- 14) Parameters Setting;

Special functions:

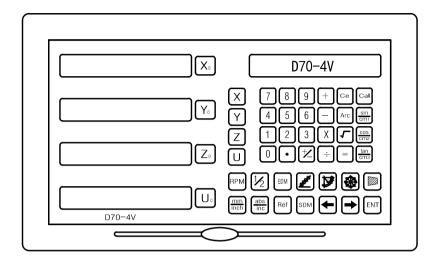
- 1) Bevel punching function; 2) Divide holes on Circumference (PCD) function;
- 3) Arc machining function; 4) Chamber step machining function;
- 5) Bevel machining function; 6) Calculator function;

1.6 EDM DRO

Apply to: EDM

- **Basic functions:**
 - 1) Zeroing; 2) Zeroing reset;
- 3) Metric/British units switching;

- 4) 1/2 function;
- 5) Dimension input;
- 6) ABS/INC coordinates conversion;


- 7) Power off memory; 9) Sleeping mode;
- 8) Full zeroing of 200 sets SDM coordinate origins;
- 10) Ruler storage function; 11) Linear compensation;
- 12) Non-linear compensation; 13) 200 sets of auxiliary coordinate;
- 14) Parameters Setting;

Special functions:

- 1) Bevel punching function;
- 2) PCD function;
- 3) Calculator function;
- 4) Electric discharge machine (EDM) function;

1.7 D70-V series DRO of rotate speed measurement

Apply to: milling machines, lathe, EDM

Basic functions:

1) Zeroing;

2) Zeroing reset;

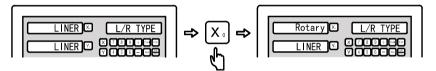
3) Metric/British units switching;

- 4) 1/2 function;
- 5) Dimension input;
- 6) ABS/INC coordinates conversion;

- 7) Power off memory; 9) Sleeping mode;
- 8) Full zeroing of 200 sets SDM coordinate origins;
- 10) Ruler storage function; 11) Linear compensation;
- 12) Non-linear compensation; 13) 200 sets of auxiliary coordinate;
- 14) Parameters Setting;

Special functions:

- 1) Bevel punching function; 2) PCD function; 3) Calculator function;
- 4) Electric discharge machine (EDM) function; 5) Rotate Speed Measurement: Special keys:


2. System parameter setting

The power switch of the DRO is located on its back. The DRO enters the self-checking state firstly after booting, which includes checking whether the LED display is normal and whether the setting of system resolution and model is appropriate. The self-checking state will sustain until DRO enters normal display state.

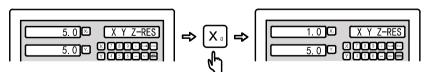
Press the • key once during the self-checking process, then the DRO will enter system parameter setting state. (Note that pressing just once is OK. If pressing twice, the system will skip the self-checking process and enter normal display state.

In the system parameter setting, we can set parameters as follows: 1) encoder type selection (linear encoder or rotary encoder); 2) resolution setting (Fixed resolution: 0.1um, 0.2um, 0.5um, 1um, 2um, 2.5um, 5um and10um.); 3) Counting direction setting (0 indicates positive direction, 1 indicates negative direction); 4) compensation type setting (linear or nonlinear compensation); 5) parameter setting of rotary encoder; 6) DRO type selection:

2.1: Encoder type selection (LINER stands for a linear displacement transducer matching the axis. Rotary stands for a rotary encoder matching the axis);

Press X key to alter the encoder type of X axis;

Press Y key to alter the encoder type of Y axis;

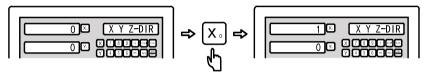

Press Z key to alter the encoder type of Z axis;

Press key to enter step 2 and press key to save and exit parameter setting.

2.2: Resolution setting (Set resolution for the corresponding encoder)

For linear encoder, set the resolution as follows:

Fixed resolution selection: 0.1um, 0.2um, 0.5um, 1um, 2um, 2.5um, 5um and 10um. Press X_0 key to alter the resolution of X axis. Press Y_0 key to alter the resolution of Y axis. Press Z_0 key to alter the resolution of Z axis.

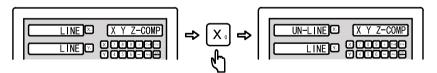

For rotary encoder, set the resolution as follows: (set the resolution of the rotary encoder in the following way). The rotary encoder can display in two ways. When entering the resolution in the way of positive number, the rotary encoder displays in degree (D). When entering the resolution in the way of negative number, the rotary encoder displays in degrees/minutes/seconds (DMS).

Press \blacktriangleright key to enter step 3 and \bullet key to save and exit parameter setting.

2.3: Counting direction selection

When selecting counting direction, it is divided into positive and negative direction (0 on the left window indicates positive counting direction of the window. 1 on the left window indicates negative counting direction of the window.) The operations are shown in the chart below.

Press X key to alter the counting direction of X axis.


Press Υ_{\circ} key to alter the counting direction of Y axis

Press \sum_{Z} key to alter the counting direction of Z axis.

Press \Longrightarrow key to enter step 4 and press \bigodot key to save and exit parameter setting.

2.4: Compensation type setting: (Select linear or nonlinear compensation)

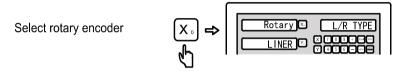
When entering the compensation type setting, LINE on the left window indicates linear compensation for the window. UN-LINE on the left window indicates nonlinear compensation for the window. The operations are shown in the chart below.

LINE: select linear compensation type: (see detailed operation in linear compensation setting section)

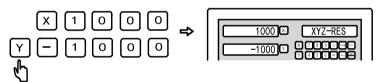
UN-LINE: select nonlinear compensation type: (see detailed operation in nonlinear compensation setting section)

Press X key to alter the selection of X axis.

Press \(\overline{\cupsilon} \) key to alter the selection of Y axis.

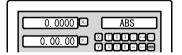

Press key to alter the selection of Z axis.

Press • key to save and exit parameter setting and back to the user interface.


2.5: Parameter setting of rotary encoder

Enter system parameter setting and select rotary encoder. Information screen displays L\R TYPE and X axis displays Rotary, then press key to enter the resolution setting of the rotary encoder when information screen displays XYZ-RES. The resolution varies among different types of encoder, so you have to enter resolution for the corresponding rotary encoder type. When entering resolution, negative value results in degrees/minutes/seconds (DMS) counting mode and positive value results in degree (D) counting mode. This DRO supports a maximum resolution of 99999.

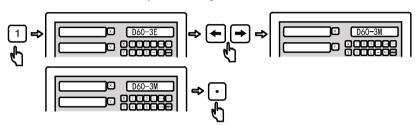
Example: Set the resolution of rotary encoder as 1000P/R



Input the resolution of X axis as +1000 and -1000 to Y axis

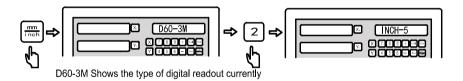
After inputting the resolution press key to exit system parameter setting and back to the main menu.

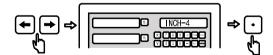
X axis counts in degree (D) mode and Y axis counts in degrees, minutes and seconds (DMS) mode


2.6: DRO type selection

D60-3V multifunction DRO applies to 3-axis milling machines (D60-3M), 3-axis lathes (D60-3L) and EDMs (D60-3E). D60-2V multifunction DRO applies to 2-axis milling machines (D60-2M) and 2-axis lathes (D60-2L) and 2-axis grinding machines (D60-2G).

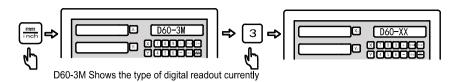
D60-3V D60-2V and D60-1V Multi-function Digital Readout are easy to set up to use for milling machine,lathe machine,grinding machineand EDM ect.After turning on the DRO,Press Key one time,it will enter digital readout type selection,press key enterDigital Readout selection system,press key choose the axis,D60-1v, one axis,D60-2V two axis D60-3V Three axis.D60-1V include the type:1L,1M,1G.D60-2V include 2L,2M,2G D60-3V include 3L 3M 3E,can be set as users request

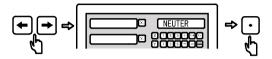



After setting the axis, then press 1 key one time again, then enter digital readout model selection, press + choose the neccessary type After it, press key again to restore the model, then exit the system setting

2.6-1 Inch mode decimal point switch function

When the digital readout do self-checking after turning on,press key to enter system menu,press one time again enter digital readout Inch mode decimal point switch function Inch mode support four and five decimal points places,Digital Readout defaults to five decimal points.Users can set it according to their demands,the setting methods are as follows:

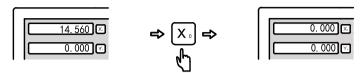




After setting, press key to restore, then exit lnch mode decimal point switch function.

2.6-2 Digital Readout Power On Display settings:

When the digital readout do self-checking after turning on,press key one time to enter system menu,press key again to enter digital readout power on display setting.Press key to switch, D60-XX display shows it is in accordance with the current type of digital readout.



After setting press • key to restore then exit Power On Display settings.

3.1 Zeroing, data recovery

Function: Operator could zero the displayed coordinate at any position.

Example 1: Zero the displayed value of X axis at the current position.

Press Y_{\circ} key to zero the displayed data of Y axis;

Press $\overline{|z|}$ key to zero the displayed data of Z axis;

Data recovery

Function: Recover the data which has been zeroed by mistake at any position. Example 2: Realize the data recovery of X axis.

 $\begin{array}{c|c}
\hline
 & 14.560 \times \\
\hline
 & 0.000 \times \\
\hline
 & 0.000$

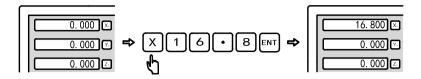
Press Y key to recover the displayed data of Y axis;

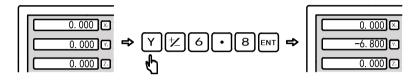
Press Z key to recover the displayed data of Z axis;

3.2 Display in Metric/British units

Function: Display the location size in Metric (mm) or British (inch) units.

Example 1: Switch the British (inch) units currently displayed to the Metric (mm) units.


Example 2: Switch the Metric (mm) units currently displayed to the British (inch) units.

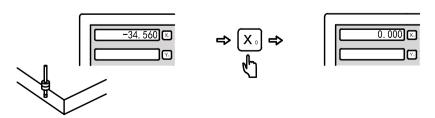

3.3 Input coordinates

Function: Enable the operator to set the current position at any value.


Example 1: Set the position of the current X axis as 16.800.

Example 2: Set the position of the current Y axis as -6.800.

Example 3: Set the position of the current Z axis as 8.250.

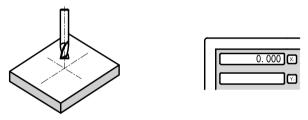


3.4 1/2 function

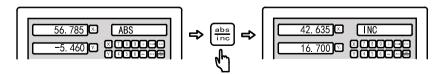
Function: DRO provides automatic centre find function which divides the current displayed position by 2 and sets the zero point at the centre of work piece.

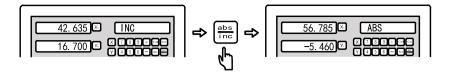
Example 1: Set the zero point of X axis at the centre of work piece

Step 1: Align the optical edge finder on one side of X axis of work piece then clear to zero.


Step 2: Align the optical edge finder on the other side of X axis of work piece.

Step 3: Divide the current display of X axis by 2 according to centre find function.


The X-axis centre of the work piece is 0.000. Move the grating ruler to 0.000, which is the centre of the work piece.


3.5 ABS/INC Coordinates

Function: DRO provides two sets of standard coordinate display value, namely ABS (absolute) and INC (relative) coordinates. The operator could store the reference zero point of work piece at ABS coordinate, and convert ABS coordinate to INC coordinate for machining. Zeroing at any position at INC coordinate won't affect the length value relative to the reference zero point of work piece at ABS coordinate, which shall be stored during the whole machining process and could be checked whenever necessary.

Example 1: Press Rey to convert the current ABS coordinate to INC coordinate

Example 2: Press Rep key to convert the current INC coordinate to ABS coordinate

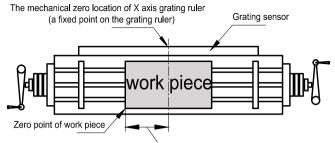
3.6 Full zeroing of 200 sets of auxiliary zero points of SDM

Under ABS state press of for 10 times. When information screen displays CLR SDM, it testifies that 200 sets of auxiliary zero locations has all been cleared.

3.7 Power Off Memory Function

In case of sudden powering off during machining process, DRO provides data storage module which could store the coordinate and data before powering off. When DRO is powered on again, all the data before powering off will recover automatically.

3.8 Sleeping function

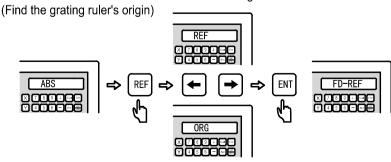

Function: The operator could switch off DRO temporarily during the period when he leaves the machine. (Under non-ABS mode)

Example: Press key to pause DRO under non-ABS state. Press key again to return to machining state. When DRO returns to machining interface, machining continues.

3.9 Ruler storage function:

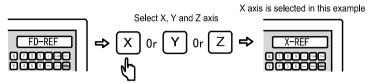
Function: In daily machining process, we often encounter such situations as power failure or machining couldn't be finished in one day. If losing the machining zero point, we have to retrieve the zero point of work piece which is troublesome. What's more serious is that there's always errors in retrieving the zero point of work piece by touching, which may cause errors to the parts machined afterwards. DRO provides ruler storage function. It stores the zero point of work piece by using the zero location of grating ruler, which enables the operator to find the zero point easily after power off without retrieving the zero point by touching.

Example: Take the X axis for example:


Store the distance to find ruler centre after power off,Reset the distance, then the zero point of work piece will be retrieved.

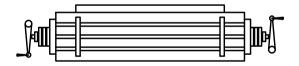
Note: The ruler storage function in our DRO is the most advanced and easiest to use in the DRO market. Each time the operator uses functions which may affect the zero point such as Zeroing, finding centre and inputting coordinate under ABS coordinate, DRO will store the distance between zero point of work piece and ruler centre. So the operator only need operate under the ABS coordinate to set the origin before either switching on the DRO or machining (the work piece hasn't been clamped onto the table). Through which the DRO will record the zero location of the ruler. Then DRO will deal with other storage processes without bothering the operator.

3.9.1 Ruler storage function (set the origin):


Function: When machining a complex work piece, its zero point couldn't lose under the cases of power off or failing to finish machining in one day. In this case we could set the origin under the ABS coordinate state of DRO to store the origin of the work piece into DRO. DRO will memorize the distance between the zero point of new work piece and ruler centre during all the operations of resetting the work piece's zero point under ABS coordinate such as Zeroing, finding centre and inputting coordinate so as to retrieve the work piece's zero point after power off or closing ruler.

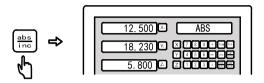
Step 1: Enter REF function and select REF to set the origin.

Note: Select REF for ruler storage function (find the grating ruler's zero location) Select OGR for retrieving the work piece's coordinate origin (retrieve the work piece's coordinate origin)


Step 2: Select the axis of the ruler:

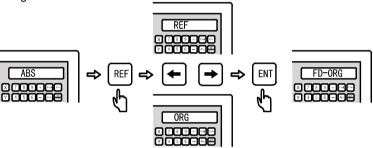
Step 3: Turn the hand wheel on X direction of the machine tool and move the table, then DRO will search for the machine zero point of grating ruler on X axis. When the machine zero point is fixed, the buzzer will ring once and the information window will promptly display: Find-X. Repeat step 2 and 3 to complete the ruler storage function of Y and Z axis.

Turn the machine tool to find the grating ruler's zero location


Step 4: Press key to exit ruler search function and back to he machining interface.

3.9.2 Retrieve the work piece's origin:

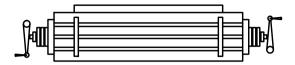
Function: When machining a complex work piece, the zero point gets lost because of sudden power off. After the power is connected, we couldn't keep on machining until we retrieve the work piece's zero point. Note that we couldn't move the machine by this time. When DRO's self-checking finishes, press key back to ABS coordinate (not necessary if DRO is already under ABS coordinate when switched on). By this time we need to record the data of X, Y and Z axis under the current ABS mode. Detailed operating steps are shown below.


Step 1: Record the data of X, Y and Z axis under ABS mode when DRO completes self-checking:

Example: If DRO completes switch-on self-checking under ABS mode X axis is 12.500 Y axis is 18.230 Z axis is 5.800.

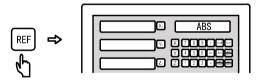
Note: DRO couldn't deal with the data of X, Y and Z axis automatically, so they need to be recorded to find the zero point.

Step 2: Enter REF function and select the function of retrieving the work piece's origin:


Note: Select REF for ruler storage function (find the grating ruler's zero location)

Select OGR for retrieving the work piece's coordinate origin (retrieve the work piece's coordinate origin)

Step 3: Turn the hand wheel on X direction of the machine and move the table, then DRO will find for the machine zero point of grating ruler on X axis. When the zero point is found, the buzzer will ring once and the information window will promptly display: Find-X. Repeat step 2 and 3 to complete retrieving the work piece's origin of Y and Z axis.



Turn the machine to find the grating ruler's zero location

Step 4: After searching the work piece's origins on X, Y and Z axis, turn the machine under ABS coordinate state. When the coordinates of X, Y and Z axis are the ABS coordinates recorded at power-on self-checking, this point is the one when machining stopped at last power off and we could go on machining the unfinished work piece.

Example: Turn the machine to the coordinates recorded manually at power-on self-checking under ABS mode.

Turn the machine to retrieve the working point when machining stopped at last power off.

Press [Ref] key to exit the ruler tracking number function.

Note: Retrieve the work piece's origin. The data couldn't be recovered until the origin is set before machining.

3.10 Linear compensation

Function: Linear error compensation function is used to correct the system errors of the grating ruler measurement system linearly.

Note: the calculation formula of correction coefficient is:

Correction coefficient S = (L - L1) / (L / 1000) mm/m

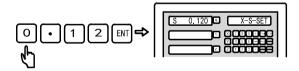
L: Stands for the actual measured length (mm)

L1: Stands for the displayed value (mm) on the DRO

S: Stands for correction coefficient (mm/m) (+ indicating lengthening and – indicating shortening)

Compensation range: - 1.9 mm/m to + 1.9 mm/m

Example: The actual length of the machine's X axis table is 1000.000mm and the displayed value on the DRO is 999.880mm. The correction coefficient is calculated as follows:


$$S = (1000.000 - 999.880) / (1000.000 / 1000.000) = 0.120$$

Set the linear compensation coefficient according to the following operation (Note: Set the compensation method as linear compensation in the system parameter setting section firstly. The detailed operations are described in system parameter setting section.)

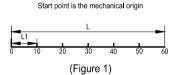
Step 1: Press x key and then key and the DRO will enter linear compensation setting.

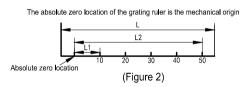
Step 2: Input the correction coefficient, then press [sit] key and the linear compensation function will be prompted automatically.

Note: The linear compensation operation of Y axis or Z axis resembles that of X axis.

3.11 Non linear compensation

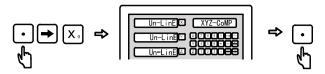
Function:

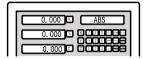

Non linear compensation enables the operator to input non linear error compensation value in the DRO by which way the DRO could compensate all kinds of errors of the machine. Non linear compensation function of DRO could improve the accuracy of the machine greatly if only the positions of the machine have a high repeatability. This function is particularly applicable to the machine tools which have a high requirement on accuracy, such as grinding machine, boring machine etc.


Operating principles:

Non linear compensation adopts a fixed position provided by the REF position in the grating ruler as the absolute zero point of the machine. CPU of the DRO will compensate the readings according to the input error list in the parameter setting section. The software of the DRO could provide non linear error compensation function on X, Y and Z axis. Each axis has a maximum compensation value of 40 points. Note that non linear and linear compensation couldn't be used simultaneously.

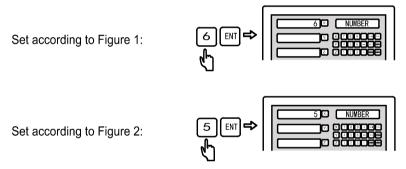
This DRO has two methods for non linear error compensation:


- 1. Take the start point as the mechanical origin to make error compensation. (Figure 1)
- Take the first absolute zero point of the grating ruler as the mechanical origin to make error compensation. (Figure 2)

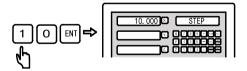


- L: Distance of the grating ruler's effective range
- L1: Length of the compensation part
- L2: Effective distance of compensation
- 1. Parameters are set as follows: (The operation method for X, Y and Z axis is the same).

Step 1: Set the compensation method as non linear compensation in the system menu after booting. Press • key and then → key to select XYZ-CoMP. Then press X₃, , Y₃ and Z₃ keys to set X, Y and Z axis as non linear compensation. If X, Y and Z axis display Un-LinE respectively, it indicates that non linear compensation has been set. Press • key again to exit system menu setting.



Step 2: Move the grating ruler to the minimum end of coordinate data for Zeroing. DRO enters the ABS absolute coordinate display method.

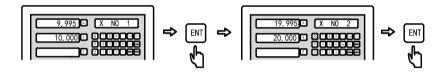

Step 3: Press X key and then key to enter the non linear compensation function of X axis and input the relative parameters.

Step 4: Input the compensation part number

Note: The compensation part number of any axis should be inputted on X axis.

Step 5: Input the length of each compensation part

Step 6: Select the start point (non linear compensation takes the zero location as the start point. There are two kinds of zero location: a. the left zero, b. the mechanical zero location under ABS coordinates. Select by pressing — and — keys)


Method A: Zeroing at left

Method B: zero location under ABS coordinates

Method A (zeroing at left), clear the start point at the left and confirm by pressing [at] key. Method B (ABS zero location), the operation is similar to finding the zero location under REF. It enters the compensation interface automatically after finding the zero location.

Zero location is a counting point and the most important reference point of non linear compensation. After entering the compensation interface, X axis displays the actual data of the grating ruler and Y axis displays the compensation value of the compensation axis.

Step 7: Input the adjusted values segmentally and press [N] key to enter the next point.

X axis displays the actual moving value of the grating ruler and Y axis displays the corrected value. When inputting the corrected value, we should measure from the start point to the displayed corrected value position of Y axis firstly and then move the X axis grating ruler to the measured standard value position.

Press [NT] key to set the next point.

Note: In this function the compensation range couldn't exceed 1mm/m, or the compensation is set as 0.

2. Method of cancelling non linear compensation value:

Non linear compensation value could only be used to the DRO, grating ruler and machine when they are set together. When a grating ruler or DRO whose compensation value has been set on a certain machine is moved to another machine, this non linear compensation value is incorrect. In this case we should cancel or reset the non linear compensation value.

The method of cancelling is:

According to the non linear compensation set method indicated above, input the compensation part as 0 when prompted to initialize all the compensation parameters. At present all the compensation parameters set before will be invalid and the current compensation value is zero.

3. Method of retrieving the mechanical origin

When it was power off during grating ruler movement or grating ruler moved without power on, we have to find the mechanical origin again before booting. Because when the machine is moved under power off, the origin of the machine coordinate couldn't match the value on the DRO. If we don't retrieve the mechanical origin, such dislocation will be brought into the subsequent user coordinate system, as the non linear compensation value is set based on wrong mechanical coordinate when calculating the user coordinate, which brings errors to display coordinate.

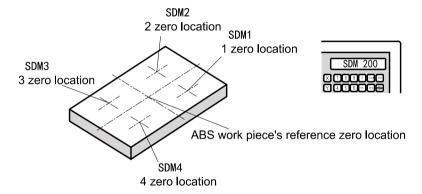
Set the mechanical origin as follows:

Enter non linear compensation after booting. When inputting compensation part number and compensation length, make no change and press we key directly to skip. Then we come to select the compensation start point, select ABS-ZERO (ABS zero location) and press we key to find the zero location. At this time the information screen displays RESET-X, slide the X axis grating ruler to find the zero location until DRO gives out a sound. System has entered the compensation interface automatically then press key to exit non linear compensation.

Note:

The work origin could only be retrieved when the start point of non linear compensation is set at the ABS zero location. If set the leftmost as the ABS zero location, the work origin couldn't be retrieved. At this time we have to reset the non linear compensation. The following method is recommended for setting non linear compensation: set the compensation start point as ABS zero location. The user searches the mechanical origin after each booting to guarantee the consistency of the mechanical origins.

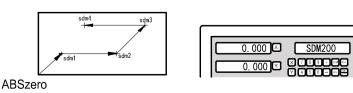
3.12 200 sets of auxiliary zero location:


Function:

Typical grating DRO only provides two groups of coordinates, namely ABS/INC. But in most of the daily machining occasions, operators always find it not enough, especially in die machining or small batch machining. The DRO provides 200 sets of auxiliary zero location (SDM) function to compensate for the shortage of the ABS/INC function. But SDM is not just a simple additional INC coordinate, it has the following difference compared to ABS/INC.

- 1. INC zero location is completely independent. Regardless of any change in ABS zero location, INC zero location will never change. But the zero location of SDM is relative to ABS, which means when ABS zero location changes, all the SDM zero locations shall change correspondingly.
- 2. The distance of SDM relative to ABS coordinate could be entered by keys directly, which is both fast and precise.

Applications of SDM in sub zero point:


Operators could set each sub zero location on the work piece in the SDM auxiliary zero location coordinates.

Press key or key to convert to SDM auxiliary zero location directly without returning to ABS coordinate.

Applications of SDM in small batch machining

SDM function could store batch of working point positions in SDM zero location. Operators could enter all the working points to the DRO at once. Alternatively, operators could also input the working points into SDM of DRO when machining the first work piece. Afterwards they only need to adjust the reference zero location of the subsequent work pieces in ABS coordinate. As the SDM zero locations correspond to these of ABS, all the working point shall recur by SDM zero locations.

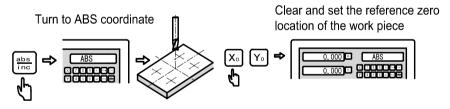
Reference of work piece (0.000)

Input the required coordinate value under SDM state according to SDM or press and keys to turn to each SDM auxiliary zero location. Move the machine until each SDM coordinate displays 0, which is the position of each working point.

SDM application examples:

If you need set 4 auxiliary zero locations on the work piece (from SDM1 to SDM4), two methods are available:

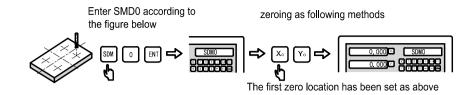
- 1. Zeroing in place.
- 2. Input each SDM coordinate by pressing keys directly.



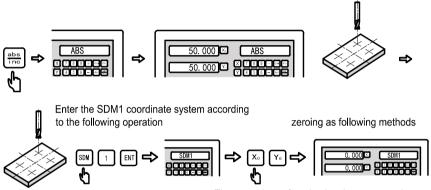
Method I: Zeroing in place

At first set the reference zero location of the work piece in ABS coordinate and move the table to each SDM zero location directly, then turn to SDM Zeroing and memorize the zero location.

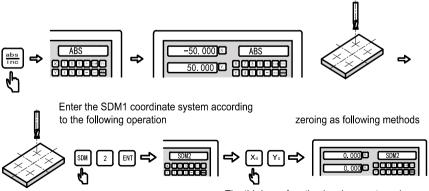
Step 1: Set the reference zero location of the work piece in ABS coordinate


Move the table to reference zero location of the work piece

Step 2: Set the first zero location

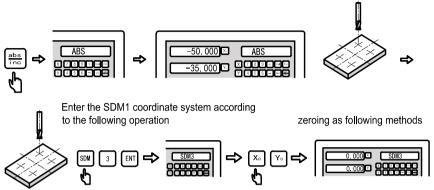

Move the table of the machine to X=50,000, Y=-35,000 under ABS mode.

Step 3: Set the second zero location

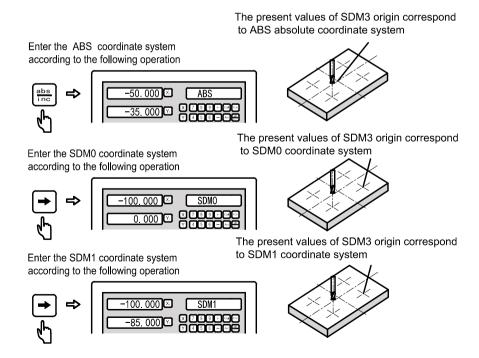

Enter the ABS coordinate system according to the following operation. Move the table of the machine to fix the tool at the position of X=50,000, Y=50,000.

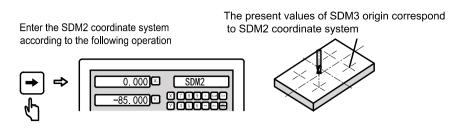
The second zero location has been set as above

Step 4: Set the third zero location


Enter the ABS coordinate system according to the following operation. Move the table of the machine to fix the tool at the position of X=-50.000, Y=50.000.

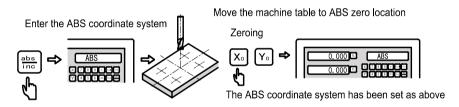
The third zero location has been set as above


Step 5: Set the forth zero location


Enter the ABS coordinate system according to the following operation. Move the table of the machine to fix the tool at the position of X=-50.000, Y=-35.000.

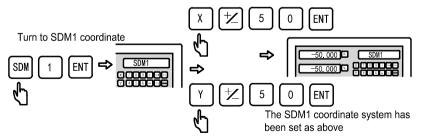
The forth zero location has been set as above

Press and keys to check whether the SDM coordinate inputted is correct. Checking operation as follows (check the coordinate of SDM3 origin under ABS, SDM0, SDM1, SDM2 and SDM3 coordinate systems.)



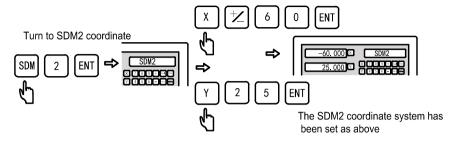
Zeroing in place is simple and clear, but lots of SDM zero locations have to be built up, which is inefficient, so method 2 is recommended.

Method 2: Enter SDM coordinate by pressing keys directly

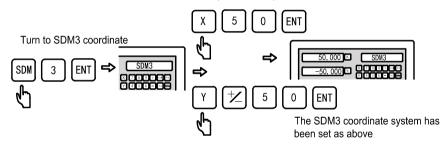

The method of inputting SDM coordinate by pressing keys directly: At first set the reference zero location of the work piece in ABS coordinate and move the machine table to ABS zero point, then input all the SDM zero location coordinates in once at this position.

Step 1: Set the reference zero location of the work piece in ABS coordinate

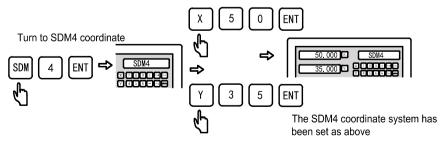
Step 2: Set the zero location of the first point


Invert the positive and negative number of SDM zero location coordinate of the first point, then input the coordinate

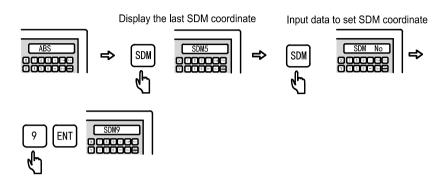
Note: When inputting all the SDM zero locations directly, we have to treat the coordinate values of the SDM zero location on the chart by positive and negative inversion. That's because the SDM zero coordinate on the chart takes ABS zero location as parameter, while in practice it takes SDM zero location as parameter. It is parallel to treat the ABS zero coordinate by different SDM zero locations.


Step 3: Set the zero location of the second point

Invert the positive and negative number of SDM zero location coordinate of the second point, then input the coordinate


Step 4: Set the zero location of the third point

Invert the positive and negative number of SDM zero location coordinate of the third point, then input the coordinate


Step 5: Set the zero location of the fourth point

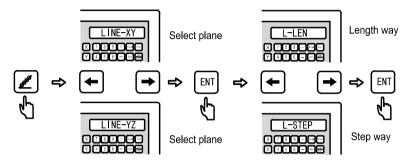
Invert the positive and negative number of SDM zero location coordinate of the forth point, then input the coordinate

Note: Quick setup SDM coordinate

DRO provides 200 sets of coordinates from 0 to 199. It is inefficient to set by and keys. Under ABS or INC coordinate we have to press key twice to set. But under SDM coordinate we only need to press key once to set SDM coordinate, the detailed operation is as follows:

4. Special Function

PLD Function


4.1 PLD Function

(Applicable to the machine tools: 2M, 3M milling machines and Electric Discharge Machines)

We have two ways to realize the PLD function.

Way 1: Length way (L-LEN, the distance from the starting hole center to the ending hole center)

Way 2: Step way (L-STEP, the distance between two adjacent holes)

PLD input parameters:

L-LEN:

LENGTH - - oblique line overall length (the distance from the starting hole to the ending hole, as shown in figure B)

ANGLE - - oblique line angle (as shown in figure A)

No HOLE - hole number (as shown in figure B)

L-STEP:

STEP ---- pitch-row length (the distance between two adjacent hole centers, as shown in figure B)

ANGLE - - oblique line angle (as shown in figure A)

No HOLE - hole number (as shown in figure B)

Example: as shown in the right figure

Figure A:

The angle refers to the position direction of the oblique line on the coordinate plane. The anti-clockwise direction is the positive direction, and the clockwise direction is the negative direction.

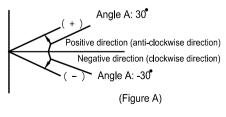
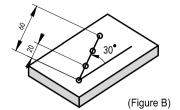
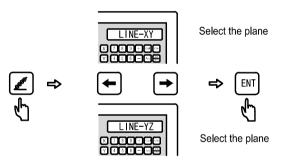



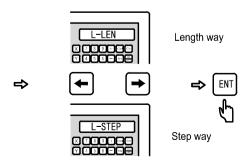
Figure B:

oblique line: 60mm oblique line angle: 30mm pitch-row: 20mm holes: 4

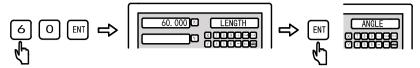

Example 1: L-LEN

Step 1: Firstly, move the tool to the position of the starting hole. (L-LEN)

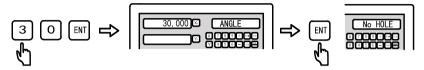
Press the key to enter the function of punching on an oblique line.

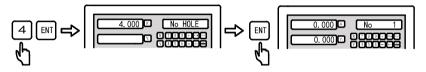

Step 2: Select the machining plane

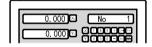
Press the \leftarrow and \rightarrow keys to select the "machining plane" and press the set for confirmation (This setting is only available for 3 M and EDM DRO. Because 2M DRO only contains XY plane, it can jump into the next step directly without selection).



Step 3: Machining way selection


Press the A and keys to select "the machining way" and press the for confirmation. Here, we select the L-LEN.

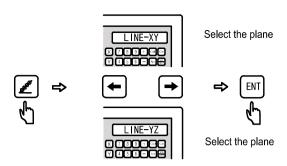

Step 4: Input length


Step 5: Input angle

Step 6: Input hole number

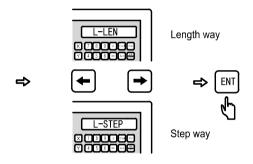
Step 7: Enter the machining state, and display the position of the first hole

Step 8: Press the key to display the position of the next machining point, then move the machine tool until the axis displays zero, indicating the position of the second machining point, and press the key to exit the function of punching on an oblique line anytime.

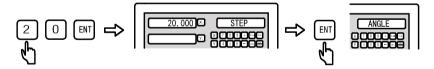

Example 2: L-STEP

Step 1: Firstly, move the tool to the position of the starting hole. (L-STEP)

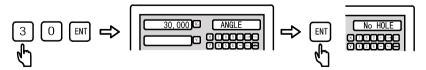
Press the key to enter the function of punching on an oblique line.


Step 2: Select the machining plane

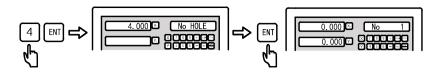
Press the And keys to select the "machining plane" and press the Free key for confirmation (This setting is only available for 3 M and EDM DRO. Because 2M DRO only contains XY plane, it can jump into the next step directly without selection).



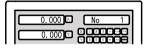
Step 3: Machining way selection


Press the And keys to select "the machining way" and press the for confirmation. Here, we select the L-STEP.

Step 4: Input step length



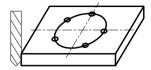
Step 5: Input angle



Step 6: Input hole number

4.1 PLD Function

Step 7: Enter the machining state, and display the position of the first hole


Step 8: Press the key to display the position of the next machining point, then move the machine tool until the axis displays zero, indicating the position of the second machining point, and press the key to exit the function of punching on an oblique line anytime.

PCD Function

4.2: PCD Function

(Applicable to machine tools: 2M and 3M milling machines and EDM)

This function is used for dividing the arc equally, such as the equally distributed holes on the drilling flange.

Function:

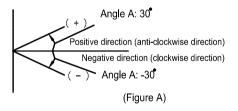
The DRO offers the tool positioning function of drilling equally divided holes on the circumference. Operators only need to input the relevant machining parameters according to the provided information, then the system will calculate the position coordinates of holes immediately and set the hole position to zero point (0.000, 0.000) temporarily. Operators only need to input the following six parameters.

PCD-XY plane selection

CT-POS circle center coordinate

DIA arc diameter

ST-ANG starting angle (angle of 1st hole position)


ED-ANG ending angle (angle of the last hole position)

No HOLE hole number

The DRO automatically calculates the position of every equally divided hole on the circumference and sets position of every hole to zero point. Operators only need to press the ← and → keys

to select which hole to be reached on the circumference, then move the machine tool until the DRO displays (0.000), i.e. the hole position is reached.

Note: The angle direction is shown in the right figure.

Example: Machining for the Work Pieces as shown in the Figure

PCD-XY - - plane XY

CT-POS - - - coordinate of circle center X=0.000 Y=0.000

DIA ----- 80mm arc diameter Coordinate of circle center

ST-ANG - - - starting angle 0°

ED-ANG - - - ending angle 360°

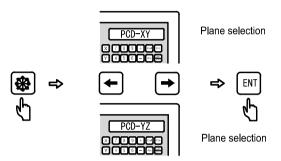
No HOLE - - 9 holes

Note: the 1st hole will be superposition with the 9th hole.

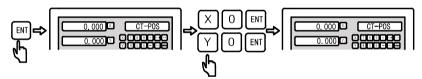
Coordinate of circle center (0.000 , 0.000)

Ending angle 30°

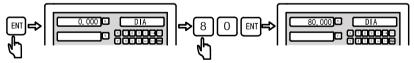
Ending angle 30°

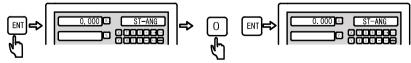

4.2 PCD Function

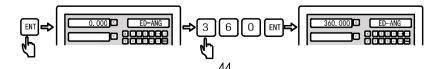
Step 1: Find the central position of the work piece, and Set the tool. Press the key to enter the PCD function.


Step 2: Plane selection

Press the \blacksquare and \blacksquare keys to select the machining plane to select XY plane and then press the \blacksquare key to confirm the next step.

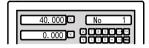

This setting is only available for 3M and EDM DRO. Because 2M DRO only contains XY plane, it can jump into the next step directly without selection.


Step 3: Enter coordinate of circle center


Step 4: Input diameter

Step 5: Input starting angle

Step 6: Input ending angle



Step 7: Input hole number

Step 8: Enter the machining state

Enter the machining state, and display the position of the first hole.

Step 9: Move the machine tool until the axis displays zero, i.e. the first point position is reached. Press the key to display next machining point position, and move the machine tool until the axis displays zero.

Step 10: Press the key to exit the PCD function anytime.