

3M[™] Sponge Stick and 3M[™] Hydrated Sponge

How 3M meets your organization's sample collection needs.

Quality

- Lot-to-lot quality release testing
- Certificate of Analysis available for every lot
- Continuous improvement to exceed 3M technical standards

Consistency

- Process controlled manufacturing
- Robust supplier standards and controls

Global coverage and support

- Supply chain—climate controlled products
- Technical support
- Global coverage with local support

USDA-FSIS

 Validated 3M Sponges for food contact and environmental swab samples (FSIS Directive 3/28/13)

Key Considerations	Facts			
Removal of bacterial contaminants from the surface				
The release of these bacteria from the swab/sponge for quantitative measure	Cellulose and Polyurethane sponges are proven to be equivalent for sampling environmental surfaces*+.			
Subsequent cultivation				
Free of biocides	Biocide-free cellulose sponge maintains viability for wide range of organisms. <i>Listeria</i> can be maintained for 72 hours of refrigeration*.			
Toxicity and environmental friendliness	Cellulose sponges are made from renewable biomass Polyurethane sponges are made from reaction of polyols, diisocyanates, catalysts, and additives.			
Strength and durability	3M sponges made with cellulose are tested for withstanding scrubbing on multiple surfaces*.			
Batch to batch consistency	3M sponges made with cellulose raw materials are sorted during inspection process so that the chemical and mechanical properties of the cellulose sponges are consistent from batch to batch*.			
Ab.:	• Letheen is stable at ambient storage temperature for up to 2 months*.			
Ambient storage temperature	 NB is stable at ambient storage temperature*. 			
	*Internal 3M data			

Cellulose and Polyurethane sponges are proven to be equivalent for sampling environmental surfaces.

Key Considerations

- The effectiveness of the swabbing technique depends on the efficacy of these three individual components:
 - The removal of bacterial contaminants from the surface
 - The release of these bacteria from the swab/sponge for quantitative measurements
 - Their subsequent cultivation
- To optimize the potential for consistent, accurate laboratory results all batches of sponges should be tested for sterility and efficacy to ensure every product is of consistent quality.
- The guidelines in the Microbiology Laboratory Guidebook (MLG) of USDA and Bacteriological Analytical Manual (BAM) of FDA specifies sponge composition to be non-bactericidal, cellulose or polyurethane as necessary for environmental sampling ^(1,2).
 - <u>Cellulose</u> sponges are manufactured using natural ingredients, cellulose derived from wood pulp, sodium sulphate and hemp fibers.
 - Polyurethane sponges are made by reacting a polyol, a type of complex alcohol, with diisocyanate in the presence of suitable catalysts and additives.

Publications

Recent scientific publications by FDA and academia evaluate sponge performances and demonstrate outcomes consistent with 3M internal studies:

- Sheth, I., et.al. (2018) Comparison of three enrichment schemes for the detection of low levels of desiccationstressed Listeria spp. from select environmental surfaces. Food Control, 84; 493-498
 - FDA results showed no statistically significant difference on swabbing *Listeria spp.* from stainless steel surface between sponges made from cellulose (SSL100, 3M) and polyurethane (EZ-10DE-PUR, World Bioproducts).
- 2. Keeratipibul, S., et.al. (2017) Effect of swabbing techniques on the efficiency of bacterial recovery from food contact surfaces. Food Control, 77; 139-144
 - Cellulose sponge and polyurethane (PU) foam swabs provided a greater swab efficiency on biofilm recovery among different surface types and microorganisms.
 - Statistically significant high values of biofilm swabbing efficiency are in bold.
- 3. Internal 3M studies demonstrate that cellulose and polyurethane sponges do not show statistically significant differences in their pick up and release efficiencies from stainless steel surface.

Table 3: Number of positive samples by each sponge sampler material (Manufacturer) after sampling

Sponges material	Cellulose (3M)	Cellulose (Nasco)	Polyurethane (Worldbioproduct)
Positive control (5)	5	5	5
Negative control (5)	0	0	0
Samples (20)	10	8	13

Table 2: Biofilm swab efficiency of each swab type.

		Biofilm Swab Efficiency* of Each Swab Type				
Bacteria	Surface Type	Cotton	Gauze	PU Foam	Cellulose Sponge	
	Stainless	47.8 ± 0.8c	51.4 ± 0.7a	48.3 ± 0.4b,c	51.3 ± 0.1a	
E.coli	New PSU	$50.1 \pm 0.7c$	$52.0 \pm 0.6ab$	52.6 ± 0.9a	51.0 ± 1.1bc	
	Old PSU	49.7 ± 0.5b	49.6 ± 1.0ab	49.7 ± 1.0ab	50.0 ± 0.8a	
	Stainless	49.4 ± 0.2d	54.2 ± 0.7b	53.4 ± 0.1c	55.0 ± 0.6a	
S. aureus	New PSU	48.9 ± 0.2d	$52.6 \pm 0.5ab$	51.3 ± 0.2c	53.6 ± 0.1a	
	Old PSU	47.5 ± 0.1d	52.0 ± 0.1d	50.5 ± 0.2c	52.8 ± 0.3a	
	Stainless	46.7 ± 0.7c	47.0 ± 0.7bc	50.0 ± 0.4a	48.5 ± 0.3ab	
S. Typhimurium	New PSU	46.2 ± 0.7d	51.9 ± 1.7b	55.2 ± 0.1a	51.6 ± 1.7bc	
	Old PSU	45.1 ± 0.4c	44.9 ± 1.0c	49.3 ± 0.7a	47.7 ± 2.0b	
	Stainless	48.2 ± 0.1c	50.0 ± 0.2b	50.2 ± 0.0b	51.0 ± 0.1a	
L. monocytogenes	New PSU	47.8 ± 0.1c	$52.5 \pm 0.3a$	50.8 ± 0.1b	52.9 ± 0.1a	
	Old PSU	48.2 ± 0.1c	49.8 ± 0.2b	50.4 ± 0.1b	51.7 ± 0.1a	
Total Average		48.0	50.7	51.0	51.4	

^{*}Data are means ± SD for three determinations. Means in the same row with no letters in common are significantly different (P<0.05).

3M Australia Pty Ltd Bldg A, 1 Rivett Road North Ryde NSW 2113 Phone: 136 136

Web: 3M.com.au/FoodSafety

94 Apollo Drive Rosedale Auckland 0632 Phone: 0800 80 81 82 Web: 3M.co.nz/FoodSafety

3M is a trademark of 3M. All other trademarks are the property of their respective owners. ©3M 2020. All rights reserved. AV011476312

Microbiology Laboratory Guidebook. 8.10. Isolation and Identification of Listeria monocytogenes from Red Meat, Poultry and Egg Products, Ready- To-Eat Siluriformes (Fish) and Environmental Samples. Revision 10. (2017).

^{2.} Bacteriological Analytical Manual, Chapter 10. Detection and Enumeration of Listeria monocytogenes in Foods. (2015). U.S Food and Drug Administration.