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Abstract—Modern shared-memory platforms embrace the
Non-uniform Memory Access (NUMA) architecture - they have
physically distributed, yet cache-coherent shared-memory. This
paper explores the feasibility of a shared-memory graph process-
ing engine for NUMA platforms inspired by designs that target
zero-sharing platforms. This work exploits the characteristics
of two processing modes, synchronous and asynchronous, in the
context of the shared-memory NUMA platform. Depending on
the algorithm, phase of execution, and graph topology, syn-
chronous and asynchronous modes hold unique advantages over
one another. We then explore a hybrid solution that combines
synchronous and asynchronous processing within the same graph
computation task and harness optimizations therein. An extensive
evaluation using graphs with billions of edges and empirical
comparisons with several state-of-the-art solutions demonstrate
the performance advantages of our design.

I. INTRODUCTION

Depending on the supporting platform, high-performance
graph processing solutions can be divided as: (i) scale-out
solutions that target a shared-nothing platform (e.g., a compute
cluster); and (ii) single-node solutions that target a shared-
memory platform. While a scale-out distributed solution (e.g.,
GraphLab [1] and HavoqGT [2]) is indeed needed to process
massive graphs, today’s shared-memory platforms equipped
with up to terabytes of main memory and hundreds of
hardware threads, are often a better choice for medium size
workloads since they offer higher performance for a fixed
dollar or watt budget [3]–[6].

Modern multiprocessor (i.e., multi-socket) platforms em-
brace the Non-uniform Memory Access (NUMA) architecture.
This architecture distributes memory to each processor/socket
to reduce contention on the memory bus; and enables shared-
memory platforms with massive main memory and a large
number of processors. However, the cost of accessing memory
is non-uniform: accessing a memory location belonging to an-
other socket (a so-called remote memory access) is slower than
accessing a memory location belonging to the same socket
where the thread generating the memory access request runs (a
so-called local memory access). Remote memory accesses are
2–7.5× more expensive than that of the local memory ones [7].
Local and remote memory access performance also varies
with access type (e.g., read vs. write) and patterns (sequential
vs. random). The remote-random access can be twice as
expensive as the local-random access, and over 5× more
expensive than the local-sequential access. Therefore, careful
data placement and memory access pattern optimizations are
needed to maximize application performance.

TABLE I: Relative speedup in runtime on two and four sockets, over a
single socket (where all memory accesses are local), for two high-performance
graph processing systems (Galois and Totem), three algorithms, and on two
different workloads (synthetic - RMAT-29, and real-world - Twitter). See §III
for experiment details.

#Sockets Algorithm Galois (Twitter) Totem (RMAT-29)

2
BFS 0.98× 1.54×
SSSP 1.49× 1.35×
PageRank 1.32× 1.37×

4
BFS 1.72× 1.97×
SSSP 1.45× 1.78×
PageRank 1.67× 2.41×

Why NUMA Awareness is Crucial? Unfortunately, most
existing graph processing systems are unable to harness the
full performance potential of modern NUMA systems, and
as a consequence, they do not scale well with the increasing
number of NUMA nodes (i.e., processors/sockets). Table I
highlights the limited scalability of two well-known frame-
works Galois [4] and Totem [3], for three graph algorithms
(see §III for experiment details). These solutions do not scale
well with the number of NUMA nodes; primarily due to the
fact that they are NUMA-oblivious.

One can view a NUMA system as resembling a high band-
width and low latency, shared-nothing distributed platform,
but with the flexibility of accessing both local and remote
memory in the same byte addressable manner; hence, the
message passing overhead of remote accesses is significantly
lower than for protocols used by shared-nothing platforms.
This view presents the opportunity to transfer some of the
wisdom of distributed graph processing platforms to develop
a shared-memory graph processing solution optimized for
NUMA systems.

We present HyGN (short for Hybrid Graph processing
engine for NUMA) - a graph processing engine optimized for
NUMA platforms. Similar to scale-out solutions we partition
the graph and bind each partition to a NUMA node to
maximize locality. Each partition is processed by parallel
threads available in the NUMA node. HyGN supports two
key processing modes: synchronous - the compute phase
only operates on the process/node local data, and an explicit
communication phase synchronizes the required distributed
algorithm states; asynchronous - communication is overlapped
with compute, and no explicit communication phase is re-
quired. Additionally, the engine supports a hybrid computation
mode which combines sync and async processing within the
same graph computation task execution.
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TABLE II: Graph processing frameworks and their design characteristics. Fol-
lowing distributed frameworks are NUMA-oblivious. GraphLab also supports
Async, however, the Sync mode offers vastly superior performance [10].

Framework Processing
NUMA- Distr. Comm. Remote Traffic

mode aware and/or Parallelism Aggregation

D
is

tr
ib

ut
ed GraphLab Sync No MPI+OpenMP Yes

HavoqGT Async No MPI N/A
GraphMat Sync No MPI+OpenMP Yes
Gluon-Async Bulk-Async No LCI [11]+Pthread Yes

PowerSwitch
Hybrid

No MPI+OpenMP Yes
(Sync+Async)

Si
ng

le
no

de

Galois - No Pthread N/A
Ligra - No Cilk Yes
Totem - No OpenMP N/A
Polymer Sync Yes Pthread Yes
GraphGrind Sync Yes Cilk Yes

HyGN
Sync, Async,

Yes OpenMP YesHybrid
(Sync+Async)

HyGN’s design draws inspiration from shared-nothing
scale-out designs, however, it aims to take advantage of
the shared-memory (in Table IV we directly compare with
two scale-out solutions, out-of-the-box). Past contributions
Polymer [7] and GraphGrind [8] only explored synchronous
distributed processing for NUMA platforms. PowerSwitch [9]
enables synchronous and asynchronous hybrid processing,
however, was explored in the context of scale-out distributed
processing; and compared to ours, it adopts a different strategy
to select a processing mode (explained in §II-D). Table II
presents the key design characteristics of a number of well-
known shared-memory and distributed graph frameworks and
how they compare with HyGN.

This paper makes the following contributions:
(i) We present a detailed study that highlights the advantages

and shortcomings of synchronous and asynchronous process-
ing modes with respect to different algorithms and graph
topologies; and a thorough design exploration that justifies
the need for Sync+Async hybrid processing on the NUMA
platform (§II-C).

(ii) Based on these insights we present the design and
implementation of HyGN: a fast and memory efficient graph
processing engine. We evaluate HyGN using four well-known
graph algorithms (covering a wide spectrum of memory access
patterns and communication behaviours) namely, Breadth-
first search (BFS) (two variants) [12], Single Source Shortest
Path (SSSP - Bellman-Ford algorithm), and PageRank (PR).
Through evaluation on a four socket NUMA machine, and
using six real-world and four synthetic graphs - with up to 85
billion edges, we demonstrate the performance and scalability
of our solution (§III). Across these algorithms our solution
shows on average 3× (up to 3.9×) scalability on four sockets
(§III-C) and achieves up to 73 Billion TEPS (Traversed Edges
Per Second) throughput (§III-A) for BFS.

(iii) We empirically compare our solution with five re-
lated systems: the NUMA-aware Polymer [7]; state-of-the-art
NUMA-oblivious solutions Galois and Totem; and distributed
frameworks PowerSwitch and HavoqGT. We demonstrate up
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Fig. 1: High-level illustration of graph partitions in HyGN. V (vertex) and
E (edge) are the arrays to represent each partition of the graph in the CSR
format. S is the state buffer for local vertices of a partition. Each outbox is
the state buffer for remote neighbors within the same partition. The figure
shows state buffers (i.e., the inbox and outbox) required for the synchronous
communication design; and the communication paths for explicit memory
copy from the out- to in-box. This design enables, in synchronous mode, a
partition to perform lock-free parallel memory copy to all remote partitions.
Updates from remote inbox(es) are then applied to the local state buffer of
the destination partition. A pair of in- and out-boxes are of the same size,
determined at graph partitioning time. In the asynchronous design, remote
threads directly update a remote vertex’s state in S (i.e., the in- and out- box
state buffers are not used).

to 45× speedup (on average 7.7×) over Galois; and up to
14× speedup (on average 3.9×) over NUMA-aware Polymer
(§III-B). Additionally, our system is 5×more memory efficient
than the most comparable system, Polymer.

II. HYGN: SYSTEM DESIGN AND IMPLEMENTATION

This section presents the design and implementation of HyGN.
The system is comprised of three functional elements: (i) a
graph partitioning module, (ii) a parallel compute engine, and
(iii) a communication substrate; below, we describe them.

A. Graph Partitioning

The graph is split into the same number of partitions as the
available NUMA domains of the target platform. We adopt a
light-weight partitioning approach1: First, the graph vertices
are sorted by their neighbor degree (past work has demon-
strated this improves cache locality [3], thus performance);
then the graph vertices are distributed among the partitions
in a round-robin manner; resulting in each partition to have
approximately equal share of graph vertices and edges. Within
each partition, the subgraph is maintained in the compact
Compressed Sparse Row (CSR) data structure. Each vertex
is assigned an additional vertex ID, local to the partition it
belongs to; the higher order bits in the vertex ID also encode
the vertex’s ‘home’ partition ID. The neighbors (i.e., the target
vertex of an edge) of each vertex is identified as local or
remote. A neighbor is local if its home partition ID is the
same as that of the vertex, otherwise the neighbor is marked
remote. Fig. 1 shows an example using two partitions.

B. Parallel Compute Engine

HyGN’s graph processing engine embraces an iterative
design similar to the popular Bulk Synchronous Parallel (BSP)

1Other partitioning techniques that may offer further load balancing are
possible within our design (the partitioning is likely much more expensive).



model: in each superstep, the graph partitions work in parallel
to process the graph vertices. In the communication phase
(in Sync mode only), the distributed algorithm states are
synchronized via inter-partition communication.

In the compute phase of a superstep, for each partition, the
system iterates over local vertices and process them. At the
individual partition-level, we adopt a vertex-centric processing
model: a fixed pool of threads (local to a NUMA domain)
iteratively process the vertices. For a graph traversal algorithm,
the processing task is essentially a neighborhood computation:
either a scatter operation - a vertex updates the algorithm state
of its neighbors, e.g., the distance in the SSSP algorithm; or
a gather operation - a vertex accumulates the algorithm state
of the neighbors, for instance, to compute its own state, e.g.,
the rank in the PageRank algorithm.

At application launch time, for each graph partition, we
allocate the graph topology and algorithm specific data struc-
tures on the respective NUMA node using the libnuma library.
We use nested parallelism supported in OpenMP for parallel
processing: first, each NUMA node creates a single thread
that performs the above discussed memory allocations for
each graph partition. Then, each of these threads spawns child
threads (equal to the number of cores/hyper-threads available
on a NUMA node) for algorithm processing. The main thread
launches a superstep; parallel threads, one per NUMA node,
invoke the compute kernel on all partitions; each partition
spawns child threads (equal to the number of cores/hyper-
threads) for algorithm processing.

C. Distributed Processing Modes and Inter-partition Comm.

This section first presents the design of the infrastructure
enabling synchronous and asynchronous processing, then eval-
uates the performance of each technique, and highlights their
respective advantages and limitations. Informed by this study,
the following section presents the design of hybrid mode for
iterative graph processing on NUMA platforms.

Synchronous (Sync) Mode. Here, we embrace a BSP (Bulk
Synchronous Parallel) model and we consider NUMA as
a shared-nothing platform where each socket represents an
independent node. Each superstep has a computation and
a communication phase. In the computation phase, memory
accesses are limited within a partition’s local NUMA domain
and updates to remote neighbors’ states are stored locally.

During computation, each partition updates its local state
buffer, S, for local neighbors. For each remote neighbor, its
state is locally updated in the corresponding outbox. In the
communication phase, each outbox is copied to the corre-
sponding inbox of the remote partition, and then from the
inbox to the local state buffer S (Fig. 1). All partitions perform
this memory copy between NUMA domains in parallel.

The key advantages of this design are: (i) Zero remote
memory accesses during the compute phase. (ii) All remote
memory writes (outbox to inbox copy) are sequential. (iii) This
approach enables message aggregation - a partition maintains
only one state per remote vertex (in the corresponding outbox),
irrespective of the number of incoming edges the remote vertex

has. This has the potential of significantly decreasing the
volume of inter-partition traffic, therefore, remote communi-
cation; especially in the presence of high-degree vertices that
are prevalent in scale-free graphs.

Asynchronous (Async) Mode. Since, NUMA platforms are
shared-memory systems, there are opportunities for design op-
timizations over solutions targeting shared-nothing platforms,
especially with respect to remote communications. A NUMA
node can directly access data stored in a remote NUMA
domain simply by obtaining a pointer to the corresponding
address (enabled by the virtual memory management subsys-
tem); no explicit message passing over an expensive protocol
(e.g., MPI) is required.

Unlike Sync, Async does not have an explicit commu-
nication step for synchronizing distributed algorithm states;
instead, during computation, a vertex directly updates the
state of a remote neighbor in the state buffer residing in its
home partition (in a remote NUMA domain). This design
does not require the outbox or the inbox; it performs remote
access during computation, however, they are overlapped by
computation (by the other threads), which helps to hide the
overhead of remote accesses. One design limitation of Async
is, unlike the Sync mode, it does not support the message
aggregation mechanism (described earlier); therefore, it will
result in higher inter-partition traffic compared to the Sync
mode. Furthermore, the remote memory access are random
(unlike in Sync mode where they are sequential).

Comparing Sync and Async Performance. Since Sync
aggregates messages for remote vertices, it performs faster
than Async for PageRank (where the frontier is always large),
as shown in Fig. 4; as Async suffers from doing many
expensive remote random accesses. For BFS-DO, where few
updates happen in a superstep, Async benefits from over-
lapping computation with communication and updating the
visited remote neighbor directly in their respective partitions.
Here, Async is 2.8× faster than Sync, which suffers from high
communication latency. Further, in every superstep, as shown
in Fig. 2 and Fig. 3, Sync is faster for PageRank and Async
is faster for BFS-DO.

For BFS-LS and SSSP, as shown in Fig. 2 and Fig. 3,
Sync benefits from message aggregation in the burst mode
(i.e., the frontier is large), but it does not perform well
compared to Async for all the graph workloads considered
in this work. (See §III for testbed, benchmark algorithms and
dataset details.)

D. Introducing the Hybrid Processing Design

Based on the observation that, depending on the algorithm
and the phase of its execution, Sync and Async modes hold
advantages over one another, we explore a hybrid processing
mode that combines Sync and Async processing within the
same graph processing task: a superstep operates in either Sync
or Async mode, and, over the course of execution, the system
is able to switch between modes across supersteps.

The idea behind this design stems from two key observa-
tions (similar to those made by PowerSwitch yet in a shared-
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Fig. 2: Per superstep runtime comparison between Sync and Async designs, for BFS-LS (Level-Synchronous), BFS-DO (Direction-Optimized BFS), SSSP
and Pagerank for Twitter. X-axis labels identify the supersteps and Y-axis shows runtime for each superstep.
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Fig. 3: Per superstep runtime comparison between Sync and Async designs, for BFS-LS (Level-Synchronous), BFS-DO (Direction-Optimized), SSSP and
Pagerank for RMAT-29. X-axis labels identify the supersteps and Y-axis shows runtime for each superstep.

nothing platform context): Firstly, in the middle supersteps of
a graph traversal algorithm, often the frontier size is signif-
icantly larger than in the rest of the execution (highlighted
by prolonged runtime for these supersteps in Fig. 2 and
Fig. 3). For Async, this also leads to a large volume of costly
remote memory accesses (there is no message aggregation
in Async). In this phase of the algorithm, Sync is a better
choice: although it requires an explicit communication phase
per superstep, Sync enables sequential remote-writes as well
as message aggregation (which reduce the volume of remote
accesses) - for a group of boundary edges with the same
destination vertex, only one message is sent (per partition)
over the interconnect. Secondly, Async is able to hide the
overhead of remote accesses by overlapping communication
with computation; thus, in the supersteps of an execution
when the frontier size is relatively small the number of remote
(random) accesses is low and Async is a better choice.

At the implementation level, the hybrid design retains the
distributed state buffers used by Sync, i.e., per partition outbox
and inbox. To support asynchronous processing, in the hybrid
design, each partition also maintains pointers to the state
buffers of all the other partitions.

Selecting a Processing Mode in the Hybrid Design. The
decision to select either Sync or Async mode is informed
by statistics about the current state of execution. The cur-
rent implementation incorporates a low-overhead heuristic to
accomplish this: if the global frontier size, i.e., the number
of vertices, across all partitions, to be processed in the next
superstep, is equal to or higher than a predefined threshold
then Sync is selected, otherwise processing continues in the
Async mode. For a traversal algorithm like BFS and SSSP, our
observation is that the initial frontier size is always extremely
small, therefore, for these algorithms, we always run the first
superstep in Async mode. Running the first superstep in Async
mode offers further benefits: it is able to activate remote

Algorithm 1 High-level Overview of the Hybrid Design

1: Input: graph G(V,E), threshold α
2: procedure RUN-ENGINE
3: do
4: if δ ≥ α then . Online monitoring
5: SUPERSTEP(mode←sync)
6: else
7: SUPERSTEP(mode←async)
8: end if
9: while not finished

10: end procedure
11: procedure SUPERSTEP
12: if mode = sync then
13: COMPUTE SYNC(); barrier
14: COMMUNICATE(); barrier
15: else if mode = async then
16: COMPUTE ASYNC(); barrier
17: end if . COMPUTE invokes the algorithm kernel
18: δ ← (f × 100)/|V | . f is the frontier size for the next

superstep
19: end procedure

neighbors (i.e., they are included in the next frontier) as well,
which is not possible in the Sync mode. Alg. 1 is a high-level
overview of the key algorithmic steps in the hybrid design.

Determining the Threshold in the Hybrid Design. The
threshold for the (minimum) frontier size (to switch to Sync
mode) is provided as an input at application launch time. The
thresholds used in this paper were determined through offline
explorations2, by studying a number of real-world graphs in
the Sync and Async mode (presented earlier in this section and
some of the results are in Fig. 2 and Fig. 3). Our observation is
that the same threshold works for different graphs with similar
properties, such as neighbor degree distribution and skewness.
For example, for the power-law graphs, synthetic RMAT

2Past contributions have identified similar thresholds through offline studies
of graph properties [9], [12].
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Fig. 4: Runtime comparison of three NUMA designs, for four algorithms, on
a four socket configuration, using the RMAT-29 graph. Y-axis represents the
runtime - lower is better. For Sync and hybrid designs, runtimes are broken
down to computation and communication phases.

and real-world Twitter, the same threshold offers the best
performance: when 30% (or more) of the vertices are present
in the frontier, the Sync mode offers superior performance.
We note that it might be possible to develop more informed
heuristics for threshold selection (even an online heuristic),
however, beyond the scope of our current contribution.

Comparison with PowerSwitch. PowerSwitch [9] extends
GraphLab [1] and presents hybrid processing on a shared-
nothing platforms. Unlike PowerSwitch that borrows the Sync
and Async engines from GraphLab, we have designed both
Sync and Async engines specifically for shared-memory (e.g.,
data layout for harnessing fast sequential read/write operations
across NUMA domains). The switch-timing in PowerSwitch
is epoch based: for Sync, few supersteps make an epoch;
for Async, a fixed execution duration makes an epoch. To
switch between modes, PowerSwitch relies on user-provided
parameters, offline profiling, and continuous online monitor-
ing. The required user-provided parameters are: convergence
ratio, weight factor and sampling rate - determined through
offline analysis by an expert on a per graph basis. PowerSwitch
further leverages machine learning for predicting optimal
switch-timing. In contrast, HyGN only takes the threshold as
user input. At the end of each superstep, only the frontier
size is verified against the threshold. Moreover, PowerSwitch
requires separate state buffers for Sync and Async modes, and
synchronization between them when switching between the
processing modes.

E. Programming Interface / Algorithm Implementation

HyGN exposes a generic vertex-centric interface for al-
gorithm implementation which is based on Totem [3], [13].
The COMPUTE A/Sync function in Alg. 1 invokes the user
provided algorithm kernel. For evaluation, we use four of the
existing algorithms available with the latest Totem release. Our
NUMA-aware graph engine is virtually a drop-in replacement
for Totem’s original CPU processing engine.

TABLE III: Graph datasets used for evaluation. Here, only RMAT graphs are
synthetic, the rest are real-world graphs.

Graph #Vertices #Edges Avg. Degree Algorithms
Twitter (TWR) 52M 3.9B 48 All
Friendster (FRS) 66M 3.6B 55 All
webCC-2012 (WC12) 89M 4B 50 All
ukWeb-2007 (UK07) 105M 7.5B 71 All
clueWeb-2012 (CW12) 978M 85B 87 All
road-USA (RDUS) 24M 58M 2.4 SSSP
RMAT Scale 27–30,

1B 32B 32 All
e.g., RMAT-30 (R30)

III. EVALUATION

We study the performance of the three processing modes and
empirically compare with five related projects. We demonstrate
scalability on a four socket NUMA machine using real-world
and synthetic graphs.

Testbed. The testbed is a Dell PowerEdge R920 with four
Intel Xeon E7-4870 v2 (Ivy Bridge) sockets, each with 15
cores offering hyper-threading, and 30MB L3 cache; i.e., 60
cores or 120 hardware threads and 120MB L3 memory in total.
The machine is equipped with 1.5TB main memory.

Benchmark Graph Algorithms. We use the following graph
algorithms for evaluation; in the past, these algorithms have
been commonly used by many [1]–[5], [7], [8], [14].

Level-Synchronous (BFS-LS) and Direction-Optimized
(BFS-DO) are two variants of the Breadth-first Search (BFS)
algorithm. For Scale-free graphs, BFS-LS suffers from heavy
atomic writes in the middle supersteps (see supersteps 3 and
4 in Fig. 2(a) and Fig. 3(a)). BFS-DO addresses this issue
by switching to the less expensive pull-based processing [12].
Single Source Shortest Path (SSSP) finds the shortest path
from a source vertex to every other vertex in the graph;
our implementation of SSSP is based on the Bellman-Ford
algorithm. In PageRank, a vertex computes its rank based on
ranks of its neighbors. Unlike BFS and SSSP, in PageRank, the
compute workload (i.e., the frontier size) is the same across all
iterations. We consider these algorithms for evaluation because
they are the building blocks of many complex algorithms,
and cover a spectrum of memory access patterns typically
found in most graph algorithms. For example, BFS is used
by Betweenness Centrality and Eccentricity algorithms. SPMV
has similar memory access pattern as PageRank.

Datasets. Table III lists datasets used for evaluation. We
create undirected versions of the graphs. The table also lists
the algorithms used with the respective graphs for evaluation.

Twitter [15] and Friendster [16] are online social network
graphs; webCC-2012 [16], ukWeb-2007 [17] and clueWeb-
2012 [18] are real-world webgraphs; road-USA [16] is a road
network graph with very large diameter (∼6K) and highly
sparse (very low average degree). We use four synthetic
Recursive MATrix (RMAT) graphs of scale 27–30 (the scale
represents log of number of vertices - scale 29 has 229

vertices). RMAT graphs are generated following the Graph500
standards with the parameters, (A, B, C, D) = (0.57, 0.19, 0.19,
0.05), and a directed edge factor of 16.



Experimental Methodology. We run each experiment 20
times and report the average. For BFS and SSSP, we use
randomly selected source vertices (the same sources were
used for all experiments when comparing frameworks ). For
PageRank, we run each experiment with 10 iterations and
normalize the runtime to one iteration. For SSSP, we use edge
weights in the range (0, 100] as used in [4]. We run BFS-
DO using small diameter power-law graphs: Twitter, Friendster
and RMAT; as noted by the authors, this algorithm primarily
targets small diameter graphs [12].

We empirically compare our work with Polymer [7] -
optimized for NUMA platforms; two NUMA-oblivious so-
lutions: Galois v2.2 [4] and Totem [13] (past studies have
shown Totem (CPU-only) outperforms Galois [13], and Galois
generally performs better than the other well-known frame-
work Ligra [7], [8].) Additionally, we compare with two
distributed solutions: HavoqGT [2] - a fully asynchronous
framework; and PowerSwitch [9] - it extends (and outper-
forms) GraphLab [1]. Since, except Galois, none of the above
mentioned work offers switching between push and pull modes
in the same execution, they do not implement BFS-DO.

Unless otherwise specified, an experiment was ran using all
available 120 threads on our testbed.

A. Throughput and Runtime Performance

Fig. 5 compares the performance of the three NUMA
designs. Here, to normalize across graphs of different sizes,
the performance metric is Traversed Edges Per Second (TEPS)
- a measure of throughput for a graph traversal algorithm by
the Graph500 consortium (higher is better).

For PageRank, Sync performs up to 23% faster than Async
as Async suffers from expensive remote random reads for
remote neighbors, while the superior performance of Sync is
attributed to local accesses only during computation and fewer
remote accesses enabled by remote traffic aggregation. Since
the frontier size never changes, Hybrid executes in Sync mode
with little monitoring overhead (at most ∼14ms, ∼2% of the
execution time).

Since BFS-DO alleviates the volume of memory writes
in BFS-LS, Async benefits by doing a few remote random
writes and less expensive random reads. Furthermore, as few
updates happen, Sync suffers from expensive communication,
as shown in Fig. 4. Async is up to 3.6× faster than Sync.
Hybrid executes in Async mode only with overhead of up to
10% of execution time (∼32ms).

BFS-LS and SSSP have expensive burst modes, where
Sync benefits from message aggregation. While Async benefits
in rest of the supersteps by overlapping computation with
communication. Note that in Async, remote random access
happens for every edge, which becomes the bottleneck in
the burst mode. For BFS-LS and SSSP, even though Sync is
slower than Async (up to 2×), for most workloads, executing
the burst phase in Sync mode improves the performance of
Hybrid (from ∼7B TEPS to over 9B TEPS for BFS-LS, and
over 2× speedup for SSSP). Fig. 6 shows that the hybrid mode
improves the peak superstep runtime time compared to Async.
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Fig. 5: Billion Traversed Edges Per Second (TEPS) achieved by the three
NUMA designs, for four algorithms. Y-axis represents TEPS - higher is better.

When the frontier is large, the hybrid design takes advantage
of remote traffic aggregation and fast sequential remote access
(as it operates in the Sync mode), thus addresses the key
limitation of the Async design.

B. Comparison with the Related Systems

Table IV presents runtime performance comparison of
HyGN with five frameworks (using five datasets): NUMA-
aware Polymer; NUMA-oblivious Galois and Totem; and
distributed systems PowerSwitch (Sync+Async hybrid) and
HavoqGT (Async). We run all experiments on all systems with
120 threads (120 MPI processes for HavoqGT) while Table V
presents memory overhead..

Compared to NUMA-aware Polymer, HyGN is at most
14.2×, 3.3×, and 2.3× faster for BFS-LS, PageRank,
and SSSP, respectively. HyGN always outperforms NUMA-
oblivious and distributed solutions by a larger margin: HyGN
is at most 45.8× faster than Galois and 2.2× faster than
Totem. Among all the frameworks, PowerSwitch performs the
worst: on average, HyGN is ∼31× faster (maximum ∼76×).
The asynchronous distributed framework HavoqGT performs
reasonably well on a single node, often outperforms Galois.
On average HyGN is 8.6× faster than HavoqGT (maximum
∼20×). For SSSP, Polymer shows some advantage over our
solution for social network graphs: ∼1.2× faster on average;
but at the cost of consuming ∼5× more memory (Table V).
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Fig. 6: Per superstep runtime comparison between Sync, Async and hybrid
designs, for BFS-LS and SSSP using RMAT-29.



TABLE IV: Comparison of the runtime time (in seconds) between HyGN and
five other frameworks. Since not all frameworks support BFS-DO, we only
present numbers for BFS-LS. ‘×’ indicates an unsuccessful run.

NUMA-aware NUMA-oblivious Distributed
Graph HyGN Polymer Totem Galois PowerSwitch HavoqGT

B
FS

-L
S

RMAT-27 0.7 3.4 0.9 5.8 42.7 8.9
Twitter 0.9 12.8 1.5 3.1 33.4 7.5
Friendster 1.1 5.8 1.8 5.2 18.1 8.9
webCC12 1.6 12.4 2.5 6.3 82.9 10.1
ukWeb07 2.2 19.1 4.0 8.1 × 12.3

Pa
ge

R
an

k

RMAT-27 0.7 2.3 0.9 2.0 18.8 10.4
Twitter 0.7 1.9 1.1 13.9 13.3 8.3
Friendster 1.2 2.2 1.9 2.0 91.7 9.9
webCC12 0.9 1.8 2.7 41.2 13.8 9.6
ukWeb07 0.6 0.9 0.8 1.8 × 12.4

SS
SP

RMAT-27 2.4 2.0 5.3 13.3 65.7 11.2
Twitter 3.3 3.2 6.6 8.7 62.4 35.5
Friendster 8.9 6.4 15.1 21.6 45.1 11.2
webCC12 5.5 6.7 11.8 19.9 137.7 13.0
ukWeb07 7.4 16.7 11.3 31.6 × 18.6

PowerSwitch could not run ukWeb-2007 (and the other
larger graphs) on a single node - the implementation has a
hard limit on the length of the CSR edge list of a single
partition (only one partition per compute node is supported),
which the ukWeb-2007 graph exceeds. HyGN successfully ran
the 85B edge clueWeb-2012 graph on our testbed (results in
Fig. 5): the graph topology alone requires ∼640GB memory,
while the weighted version requires about ∼1TB memory.
Unfortunately, none of the other frameworks, except for Totem,
was able to run this graph: Polymer fails with the out of mem-
ory (OOM) error, while Galois, PowerSwitch and HavoqGT
exhausts the system memory during in-memory graph creation.
(This is not unexpected of the distributed systems, since they
have additional memory requirements to maintain states that
enable efficient inter-node communication.)

To the best of our knowledge, two of the state-of-the-art
shared-memory NUMA-aware graph processing frameworks
are Polymer [7] and GraphGrind [8]. GraphGrind have shown
to perform better than Polymer in some scenarios, but we
were unable to compile their code which relies on a custom
Cilk runtime, and the authors did not provide enough details
to mitigate this issue. (We reached out to the authors for
assistance; unfortunately, they were unable to help us to
run their code.) Based on the numbers reported in [8], if
we compare the relative improvements of GraphGrind over
Polymer, on average, it is only 1.2× faster; and maximum up
to 1.4× faster for the three algorithms (GraphGrind does not
support BFS-DO). Our hybrid design is on an average 3.9×
faster than Polymer.

Memory Consumption. Table V presents memory usages
by three shared-memory frameworks for three algorithms
and different graphs. Since it replicates application data and
runtime states across partitions, on average, Polymer ends up
using ∼5× more memory than HyGN. Memory consumption
by Galois is on a par with HyGN, despite HyGN has the in-
frastructure overhead of distributed computation (and naturally

TABLE V: Memory consumption (in GB) by shared-memory frameworks.
Lower is better.

Algorithm Graph HyGN Polymer Galois

BFS-LS
RMAT-27 18.5 122.0 18.4
Twitter 16.4 93.2 17.3

PageRank
RMAT-27 25.2 123.0 32.7
Twitter 18.4 93.8 49.3

SSSP
RMAT-27 41.7 174.0 47.9
Twitter 32.1 140.0 40.8

requires more memory than Totem).

C. Scalability Evaluation

Fig. 7 presents results of strong scaling: it plots runtimes
on one, two and four sockets for HyGN, Polymer and Galois
(when using RMAT-27 and Twitter graphs). With increasing
number of sockets, NUMA-oblivious Galois shows poor, often
negative, scaling: the speedup on four sockets over one socket,
for Twitter, is maximum 1.7×; for RMAT-27 the average
speedup is 1.4×, maximum 2.0×.

On four sockets HyGN shows respectable speedup over a
single socket: for Twitter, the average is 3×, and the maximum
is 3.9×. For RMAT-27, HyGN shows average 2.9× and
maximum 3.7× speedup. Polymer does not show negative
scaling; however, on one socket it performs poorly, so the
relative speedup on four sockets is not representative of true
scalability (over 4× speedup). In [7], it was also shown
that, on one socket, Polymer performs poorly and the slowest
among all shared-memory frameworks.

Fig. 8 compares workload scalability between HyGN and
Polymer using RMAT graphs, where the graph size doubles
with one fold increase in the RMAT scale. With increas-
ing workload, for HyGN, the runtime grows more linearly
compared to Polymer, whose performance worsen with the
increasing graph size. For BFS-LS, HyGN is ∼4× faster for
RMAT-27, which grows to ∼9× for RMAT-30. Polymer failed
to run SSSP for the RMAT-30 graph; it crashes with the OOM
error.

D. The Case of SSSP on the road-USA Graph

Table VI presents the number of supersteps required and
runtime for SSSP for the road-USA graph for different designs.
Furthermore, we study the impact of the threshold on the
performance of the hybrid design.

Sync requires 70% more supersteps than Async: the road
network graph has a large diameter and is highly sparse - in
a superstep, the frontier size is extremely small; however, the
need for an explicit communication phase severely slows down
the convergence rate of the distributed states; over 80% of the
total runtime time is spent in the communication phase. In the
Async mode, the overhead of remote access are subsidized by
overlapping theses accesses by compute cycles - the result is
about an order of magnitude gain in runtime over Sync.

Table VI also shows runtimes for different thresholds: here,
the system would operate in the Sync mode if the frontier
has, for example, 0.1% of the vertices in the graph. Hybrid
performance gradually improves with higher thresholds as
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Fig. 7: Strong scaling experiment: Runtime for different numbers of CPU
sockets for HyGN, Polymer and Galois, using RMAT-27 and Twitter graphs.

0

10

20

30

40

R
2

7

R
2

8

R
2

9

R
3

0

Ti
m

e 
(s

)

BFS-LS

HyGN
Polymer

0

5

10

15

20

25

30

R
2

7

R
2

8

R
2

9

R
3

0

PageRank

0
5

10
15
20
25
30
35

R
2

7

R
2

8

R
2

9

R
3

0

SSSP

Fig. 8: Runtime when scaling the workload size for HyGN and Polymer using
RMAT graphs. The experiment uses all sockets on the platform.

hybrid predominately operates in the Async mode (highlighted
by similar runtime as Async-only mode).

IV. RELATED WORK

To the best of our knowledge, Polymer [7] and Graph-
Grind [8] are state-of-the-art single-node NUMA-aware graph
frameworks. Both frameworks extend Ligra [5] and adopt
the vertex-cut partitioning approach (popular among dis-
tributed graph processing frameworks for scale-free, power-
law graphs); only support the Sync processing mode; and store
the data graph in a combined CSR-CSC format.

Polymer is memory inefficient as observed in our exper-
iments (§III-B). It co-locates in- and out- edges with their
source/target vertices and does vertex replication to reduce
remote memory accesses. For application data, it avoids ex-
plicit messages for synchronization by having a single copy
of them. GraphGrind adds a NUMA-aware extension to the
Cilk runtime and addresses the load imbalance issue in graph
processing on NUMA systems. From the memory usage
perspective, it stores an additional copy of the graph for sparse
traversal, and its memory requirement is comparable with that
of Polymer [8]. In contrast, HyGN stores both graph topology
and application specific data on the respective partition only.
Hence, even in the Async mode, the interconnect traffic only
accounts for updating state of the remote vertices, rather than
updating the state of all vertices in a globally shared buffer as
in Polymer and GraphGrind.

TABLE VI: Supersteps and execution time breakdown for SSSP on road-USA
graph for Sync, Async, and Hybrid (for different thresholds).

Configuration #Supersteps Total Compute Comm. / Hybrid
time (s) time (s) overhead (s)

Sync 575 34.49 5.96 28.53
Async 341 3.34 3.34 N/A
Hybrid (0.1%) 476 15.95 4.21 11.74
Hybrid (1%) 394 11.27 3.61 7.66
Hybrid (10%) 341 6.21 3.47 2.74
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