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Chapter 1
Introduction

The SC100 application binary interface (ABI) defines a set of standardsintended to ensure interoperability
between conforming software components, such as, compilers, assemblers, linkers, debuggers, and
assembly language code. These standards cover run-time aspects as well as object formats to be used by
compatible tool chains from the StarCore Technology Center, Agere Systems, Motorola, and third party
tools developers.

A benefit of this standard definition is interoperability of conforming tools. This allows usersto select the
best tool for each phase of the application development cycle, rather than being constrained to using an
entiretool chain. Another benefit is compatibility of conforming libraries. Programmers can build
compatible binary libraries and assembly code libraries, and be assured of their continued compatibility
over time.

1.1 Overview
This ABI addresses the following types of standards:

e Low level run-time binary interface standards
— Processor-specific binary interface (the instruction set and representation of fundamental data
types)
— Function calling conventions (how arguments are passed and results are returned, how registers
are assighed, and how the calling stack is organized)
» Source-level standards
— Clanguage (preprocessor predefines, name mapping, and intrinsics)
— Assembler syntax and directives
« Object-file binary interface standards
— Header convention
— Section layout
— Relocation information format
— Debugging information format

e Library standards
— Compiler run-time libraries (integer routines and floating-point routines)

SC100 Application Binary Interface 1-1
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1.2 Conformance

Features defined in this ABI are mandatory unless specifically stated otherwise. Optional features, if
implemented, must conform to the ABI.

1.3 References

The following standards provide useful reference information:
« Tool Interface Sandard (T1S) Executable and Linking Format (ELF) Soecification, Version 1.1,
UNIX Systems Laboratories, Portable Formats Specification, 1995

« DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review Draft, UNIX
International, Program Languages SIG, July 27, 1993

« ANSI/IEEE Sd 754-1985, | EEE standard for binary floating-point arithmetic data types

e ISO/IEC 9899:1999(E), International Sandard - Programming Languages—C, 2nd Edition,
International Organization for Standardization, December 1, 1999

The following StarCore documents are included by reference into this ABI. With the exception of the
design specification listed bel ow, these documents are available through the StarCore web site at
http://www.starcore-dsp.com.
e SC100 Assembly Language Tools User’s Manual (MNSC100ALT/D)
Describes the SC100 assembler syntax and directives listed in Chapter 5 of this ABI.

e SC110 DSP Core Reference Manual (MNSC110CORE/D)
Describes the SC110 core architecture and programming model, including the SC110 instruction set.

e SC140 DSP Core Reference Manual (MNSC140CORE/D)
Describes the SC140 core architecture and programming model, including the SC140 instruction set.

« Support in the Assembler and Smulator Required for Correct Reporting of SC100 Restrictions
(design specification)
Defines which instruction set programming rules must be validated by the assembler and simulator,
and specifiesthe identifier that must be included in the error or warning message that is generated
when agiven ruleisviolated. This document is an internal design specification that is available to
third parties under a non-disclosure agreement with the StarCore Technology Center.

The SC100 generation of core architectures currently includes two cores: the StarCore SC110 and the
StarCore SC140. As future cores become available, their respective core reference manuals should also be
considered part of this ABI.

1-2 SC100 Application Binary Interface



Revision History

1.4 Revision History

ThisRev. 2.0 of the ABI supersedes the previous edition, Rev. 1.8, dated 04/2000. Major changes from the
previous edition include:

Chapter 2, “Low-Level Binary Interface.”

Updated discussion of fundamental datatypes, aggregates, and bit fields, with little-endian and
big-endian differences noted.

Added sections on stack unwinding, register saving and restoring functions, function call modes,
address modifier modes, saturation mode, and data addressing models.

Removed the section, “Interrupt Handlers.”
Updated the calling conventions with these notable changes:

— If thefirst argument isal ong | ong (where implemented), doubl e, or | ong doubl e, itis
passed in DO and D1, asif it were first stored in an 8-byte aligned memory area and then the
low-addressed word were loaded into DO and the high-addressed word into D1.

— Each argument on the stack is passed in the byte order appropriate for the endian mode.

— A function with avariable number of arguments passesthelast fixed argument and all subsequent
variable arguments on the stack.

— Anargument that is 8-byte aligned is passed 8-byte aligned on the stack. All other arguments are
passed 4-byte aligned on the stack.

— Arguments are passed on the stack, in order, from higher addresses to lower addresses. Each
argument on the stack is passed in the byte order appropriate for the endian mode.

— Al onglong,doubl e,orl ong doubl e returnvalueisreturned in DOand D1, asif it werefirst
stored in an 8-byte aligned memory area and then the low-addressed word were loaded into DO
and the high-addressed word into D1.

— A function returning a structure or union of any sizereceivesin R2 the address of space in which
to return the structure or union. The function does not return that address in R2.

— Theextension registers, D6.e and D7.e, are callee saved; the remaining extension registers are
caller saved.

— The MCTL register is caller saved.

— A compiler assumes the rounding mode default is two’'s complement rounding, and the scaling
mode default is no scaling.

Chapter 3, “High-Leve Languages |ssues.”

Added new C preprocessor predefines; _ SC110__, SC140__, LI TTLE ENDI AN__, and
__BIG ENDIAN__.

Removed requirement for support of C in-line assembly syntax.

Changed names of existing floating-point routines and integer routines, and added doubl e and | ong
| ong routines. Also added descriptions of all routines.

Added new section on intrinsics for accessing architectural features.

Chapter 4, “Object File Format.”

Updated the list of SC100 ELF sections.
Added sections on SC100 special sections and debugging information.
Replaced the rel ocation section with a new rel ocation scheme.
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Removed original Chapter 5, “Endian Support.” Thisrevision of the ABI incorporates endian information
in individual sections, as appropriate, throughout the document.

Chapter 5, “Assembler Syntax and Directives’ (originally Chapter 6 in Rev 1.8).

» Removed requirement for support of object file control directives, in addition to the individual
directives MODE, DUPA, DUPC, DUPF, EXITM, MACLIB, MACRO, and PMACRO.

e Added requirement for support of EL SE and FALIGN directives.
« Added requirements for checking SC100 programming rules.

1.5 Acknowledgements

The SC100 Application Binary Interface team included representatives from the following companies:

Agere Systems Inc. Metrowerks, Inc.

Altium Limited Motorola, Inc.

Green Hills Software, Inc. WindRiver Systems, Inc.
Lineo, Inc.

We gratefully thank all participants for devoting their time and effort to create this standard.
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Chapter 2
Low-Level Binary Interface

This chapter defines low-level system standards for the SC100 generation of DSP cores, including:

» Processor-specific binary interface (the instruction set and representation of fundamental data types)

» Function calling conventions (how arguments are passed and results are returned, how registers are
assigned, and how the calling stack is organized)

2.1 Core Architecture

The SC100 generation of core architectures currently includes three cores: the StarCore SC110, the
StarCore SC140, and the StarCore SC140E. The architecture and instruction set for each coreisdefined in
that core’s respective reference manual, aslisted in Section 1.3, “References.” Programs written for these
cores use their instruction sets, as well as the instruction encodings and semantics of their architecture.
Programmers may assume that the instructions for these cores work as documented. Note that while an
ABI-conforming SC110 program will run on an ABI-conforming SC140 processor, the reverseis not
aways true.

To conform to the ABI, the processor must execute the architecture’ s instructions and produce the
expected results. This ABI does not define requirements for the services provided by an operating system,
nor does it specify what instructions must be implemented in hardware. A software emulation of the
architecture could conform to the ABI.

Programs that use non-SC100 instructions or capabilities do not conform to the SC100 ABI. Such
programs may produce unexpected results when run on machines lacking the non-SC100 capability.

SC100 Application Binary Interface 2-1
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2.2 Endian Support

The SC100 architecture supports both big-endian and little-endian implementations. This standard defines
abinary interface for each. Note that program binaries that run on a big-endian implementation are not
portable to a little-endian implementation, and vice versa. The same applies to the data generated by these
programs, as well as to the layout of data used by these programs (such as the layout of data generated by
compilation tools).

The bytes that form the supported data types are ordered in memory according to the following:

* Inabig-endian implementation, the most significant byte (MSB) islocated in the lowest address
(byte 0).

< Inalittle-endian implementation, the least significant byte (LSB) islocated in the lowest address
(byte 0).

2.3 Fundamental Data Types

The SC100 architecture defines the following data types:
e An 8-hit byte
e A 16-bit word
e A 32-bit long word
e A 64-bit double-long word

The following examples illustrate the bit and byte numbering for these data types.

Example 2-1. Word Bit and Byte Numbering

bit 15 8 7 0
MSB ‘ LSB

Little-Endian

byte 1 ‘ ‘ byte 0

bit 15 8 7 0
MSB ‘ LSB

Big-Endian

byte 0 ‘ ‘ byte 1

2-2 SC100 Application Binary Interface
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Example 2-2. Long Word Bit and Byte Numbering

bit 31 24 23 16 15 8 7 0
byte 3 ‘ MSB ‘ ‘ ‘ LSB ‘ byte 0 Little-Endian
bit 31 24 23 16 15 8 7 0
byte 0 ‘ MSB ‘ ‘ ‘ LSB ‘ byte 3 Big-Endian
Example 2-3. Double-Long Word Bit and Byte Numbering
bit 31 24 23 16 15 8 7 0
byte 3 LSB byte 0
Little-Endian
bit 63 56 55 48 47 40 39 32
byte 7 MSB byte 4
bit 63 56 55 48 47 40 39 32
byte 0 MSB byte 3
Big-Endian
bit 31 24 23 16 15 8 7 0
byte 4 LSB byte 7

SC100 Application Binary Interface
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Table 2-1 shows the mapping between these fundamental data types and the C language data types. Note
that fundamental datais always naturally aligned; that is, a double-long word is 8-byte aligned, along
word is 4-byte aligned, and aword is 2-byte aligned.

Table 2-1. Mapping of C Data Types to SC100
Size Align -
Type C Type (bits) (bits) Limits SC100
Bool 1 8 8 0.1 signed byte
Character | char
_ 8 8 |-27.2"-1 signed byte
si gned char
unsi gned char 8 8 0. 28-1 unsigned byte
short
16 16 | -215. 2151 signed word
si gned short
unsi gned short 16 16 |0. 2%-1 unsigned word
Integral i nt
si gned int
enum 32 32 |28 231 signed long word
| ong
si gned | ong
unsi gned int
32 32 |0. 2% unsigned long word
unsi gned | ong
long | ong?
64 64 | -28% . 2631 signed double-long word
si gned | ong | ong?
unsi gned 1 ong | ong? 64 64 |0. 264-1 unsigned double-long word
Pointer pointer to data )
32 32 |0. 2% unsigned long word
pointer to function
Floating? -3.402¢%8 | -1.175¢738 _
, fl oat 32 32 38 38 unsigned long word
Point 1.175e™°° .. 3.402e
doubl e -1.797e308 | .2.225¢308
64 64 -308 308 | unsigned double-long word
|0ng doubl e 2.225e .. 1.797e
Notes:

1. This data type is specified in the latest ISO C definition (ISO/IEC 9899:1999). Support of this data type is
optional. If used, this data type must be implemented with the size and alignment shown.

2. Floating point types conform to the IEEE 754 format.

2-4
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Fractional types are supported in C using intrinsic functions; Table 2-2 shows the fractiona types that are
supported.

Table 2-2. Mapping of C Fractional Types to SC100

C Type C Type Definition (ts)iltzse) '&I:?Sr; Limits
21
fractional short 16 16 -1 g—lg)
2
2%t 1
long fractional | ong or int 32 32 -1 KTI)
2
Little-Endian:
_ _ typedef struct {
long frr?\ctlor)al with unsi gned int body:
extension bits .
signed char ext;
} wor d40;
39
o 64 32 |-256 .. (2 1)
Big-Endian: 231
typedef struct {
char pad[ 3];
signed char ext;
unsi gned i nt body;
} wor d40;
typedef struct {
double precision int |sb; 64 2 1 :263_11
fractional int nsb; T 0%
} wor d64;

SC100 Application Binary Interface 2-5
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2.4 Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned member
(that is, the member with the largest alignment). For example, a structure containing achar , ashort, and
ani nt must have a4-byte alignment to match the alignment of thei nt . Arrays have the same alignment
astheir individual elements.

The size of any structure, array, or union must be an integral multiple of its alignment. Structure and
unions may require padding to meet size and alignment constraints:

« Anentire structure or union is aligned on the same boundary as its most strictly aligned member.

» Each member is allocated starting at the next byte that satisfies the alignment requirement for that
member. This may require internal padding.

» |f necessary, astructure’ ssizeisincreased to makeit amultiple of the structure’salignment. Thismay
require tail padding, depending on the last member.

In both endian modes, members are allocated starting with the low order (lowest addressed) byte of the
structure or union, as shown in the following examples. In Example 2-4, thereisinternal padding so that
thefirst short (s1) startsat aword boundary. Tail padding makes the structure size a multiple of thei nt
member’s 4-byte alignment.

Example 2-4. Structure With Internal and Tail Padding

struct { /* 12 bytes, 4-byte aligned */
char c;
short s1;
i nt i
short s2;
}
bit 31 16 15 8 7 0
byte 3 sl pad c byte 0
bit 63 32
i Little-Endian
byte 7 byte 4
bit 95 80 79 64
byte 11 pad s2 byte 8
bit 95 88 87 80 79 64
byte 0 c pad sl byte 3
bit 63 32
i Big-Endian
byte 4 byte 7
bit 31 16 15 0
byte 8 s2 pad byte 11
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Example 2-5. uni on Allocation

uni on { /* 4 bytes, 4-byte aligned */
short s;
char ¢;
long |I;
}
bit 31 16 15 8 7
byte 3 pad 5 byte 0 ) )
pad Little-Endian
bit 31 24 23 16 15
byte 0 S pad byte 3 ) )
c pad Big-Endian

SC100 Application Binary Interface
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2.5 Bit Fields

Structure and union definitions may have bit fields as listed in Table 2-3.

Table 2-3. C Bit Field Types

C Type

Maximum Width (bits)

_Bool 1

char 2

si gned char 2
unsi gned char 2

1to8

short 2
si gned short 2
unsi gned short 2

1to 16

i nt

signed int

enun?

| ong? 1to 32

si gned | ong?
unsi gned int
unsi gned | ong?

Notes:

1. Support of _Bool is optional. Ifimplemented, it must be implemented with the width and range shown.
2. This bit field type is not required for ISO C conformance, but is required for ABI conformance.

Support of _Bool isoptional, but all other types shown in Table 2-3 must be supported. This ABI does not
have requirementsfor | ong | ong bit fields.

Unsigned bit-field values range from 0 to 2%, where w is the bit field’ swidth in bits. Signed bit-field
values range from -2% 1 to 2% 11,

A “plain” bit field (one that is not explicitly declared signed or unsigned) is signed. Although they may
havetypechar, short,int, orl ong (which can have negative values), bit fields of these types have the
same range as hit fields of the same size with the corresponding signed type. The same size and alignment
rules that apply to other structure and union members also apply to bit fields. The following rules
additionally apply to bit fields:

In little-endian implementations, bit fields are allocated right to left. The first bit field occupies the
least significant bits while subsequent bit fields occupy more significant bits.

In big-endian implementations, bit fields are allocated left to right. The first bit field occupies the
most significant bits while subsequent bit fields occupy less significant bits.

A bit field may not cross a boundary for itstype. For example, asigned char bit field cannot exceed
eight bitsin width, and it cannot cross a byte boundary.

Bit fields must share a storage unit with other structure and union members (either bit field or non-bit
field) if and only if there is sufficient space within the storage unit.

An unnamed bit field does not affect the alignment of its enclosing structure or union, although an
individual bit field's member offsets obey the alignment constraints. An unnamed, zero-width bit
field prevents any further member (either bit field or non-bit field) from residing in the storage unit
corresponding to the type of the zero-width bit field.

2-8
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Note in the following examples that alignments are driven not by the widths of the bit fields but by the

underlying types. Example 2-6 shows a structure that is 4-byte aligned and has a 4-byte size because of the
i nt bit fields. There isinternal padding so that the char bit field does not cross a byte boundary, and so

that the short member starts at aword boundary. All members share along word.

Example 2-6. Bit Field Alignment and Padding

struct { /* 4 bytes, 4-byte aligned */
i nt a : 3
i nt b : 4
char c : 5
short d;
s
bit 31 16 15 13 12 8 7 6 3 2 0
byte 3 d pad c b a byte 0 Little-Endian
t pad
bit31 28 252423 19 18 16 15 0
byte 0 a b c pad d byte 3 Big-Endian
1 pad

In Example 2-7, the structure is 2-byte aligned because the unnamed | ong bit field does not affect
structure alignment. The zero-width shor t bit field pads to the next word boundary.

Example 2-7. Unnamed and Zero-Width Bit Fields

struct { /* 8 bytes, 2-byte aligned */
short a 9;
short .0
char b 5;
| ong 15;
}s
bit 31 21 20 16 15 9 8 0
byte 3 pad b pad a byte 0
Little-Endian
bit 63 32
byte 7 pad byte 4
bit 63 55 54 48 47 43 42 32
byte 0 a pad b pad byte 3
Big-Endian
bit 31 0
byte 4 pad byte 7

SC100 Application Binary Interface
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2.6 Function Calling Sequence

Compilers must support the conventions described in this section.

2.6.1 Argument Passing and Return Values

The following calling conventions must be supported.

If the first function argument is 4 or fewer bytes and is an integral type, floating type, structure, or
union, the argument is passed in DO. If it isa pointer, it is passed in RO.

If the second argument is 4 or fewer bytes and is an integral type, floating type, structure, or union,
the argument is passed in D1. If it isa pointer, it is passed in R1.

When an argument is passed in DO or D1, only the lower order register bytes that constitute the
argument are defined. For example, afirst argument of type short is passed in DO[15:0], and the
contents of DO[31:16] and DO0.e are undefined.

If thefirst argument isal ong | ong (whereimplemented), doubl e, or | ong doubl e, itispassedin
D0 and D1, asif it werefirst stored in an 8-byte aligned memory area and then the low-addressed
word were loaded into DO and the high-addressed word into D1. This means that DO contains the
most significant long word in big-endian and the least significant long word in little-endian.

Functions with avariable number of arguments pass the last fixed argument and all subsequent
variable arguments on the stack. The rules above apply to arguments before the last fixed argument.

All other arguments are passed on the stack. Note that the first argument may be passed on the stack,
followed by the second argument being passed in D1 or R1.

Argumentsare passed on the stack, in order, from higher addressesto lower addresses. Each argument
on the stack is passed in the byte order appropriate for the endian mode.

Anargument that is 8-byte aligned according to Section 2.3, “Fundamental Data Types,” Section 2.4
“Aggregates and Unions,” and Section 2.5, “Bit Fields,” is passed 8-byte aligned on the stack. All
other arguments are passed 4-byte aligned on the stack.

The congtituent bytes of an integral argument of fewer than 4 bytes are located on the stack asiif the
argument had been promoted to 32 bits, although the caller might not sign or zero extend the
argument. Thus, in little-endian, those arguments are placed in the lower addressed byteswithin their
4-byte memory blocks, and in big-endian they are placed in the higher addressed bytes.

Anintegral return value, other than al ong | ong, issign or zero extended to 40 bits and returned in
DO. A float valueisreturnedin DO. A | ong | ong, doubl e, or | ong doubl e return valueisreturned
inD0and D1, asif it werefirst stored in an 8-byte aligned memory area and then the low-addressed
word were loaded into DO and the high-addressed word into D1.

A pointer return valueis returned in RO.

A function returning astructure or union receivesin R2 the address of the returned structure or union.
The caller allocates space for the returned object.

Registers will be saved as shown in Table 2-4.

Compilers will make the following assumptions about operating control bits:

— Rounding mode default is 1 (SR[3]=1), which means two's complement rounding.
— Scaling mode bits default is 0 (SR[4,5] =[00] ), which means no scaling.

Setting these mode bits is the application’s responsibility.
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Example 2-8 shows two function calls and the arguments that are allocated for each call.

Example 2-8. Function Calls and Allocation of Arguments

Function Call 1:
foo(int al, struct fourbytes a2, struct eightbytes a3, short a4)

Arguments:
al - in register dO
a2 - in register dl

a3 - on the stack at SP (stack pointer address)
a4 - on the stack at SP- 8 (little-endian) or
SP - 10 (bi g-endian)

Function Call 2:
bar (1l ong *bl, int b2, char b3, int b4[])

Arguments:
bl - inrO
b2 - in dl

b3 - on stack at SP (little-endian) or
SP - 3 (bi g-endi an)
b4 — on stack at SP - 4

Table 2-4 summarizes register usage in the calling convention.

Table 2-4. Register Usage in the Calling Convention

. Caller Callee
Register Saved Saved Used As

DO + First numeric argument
Return numeric value

D1 + Second numeric argument

D2-D5 +

D6-D7 +

D8-D15 +

DO0.e-D5.e +

D6.e-D7.e +

D8.e-D15.e +

RO + First pointer argument
Return pointer value

R1 + Second pointer argument

R2 + Structure or union return address
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Table 2-4. Register Usage in the Calling Convention (Continued)

Register gg\llls(rj (S:;lllgg Used As

R3-R5 +

R6 + Global offset pointer, used for PIC and PID
R7 + Optional frame pointer

R8-R15, BO-B7 +

NO-N3, M0-M3 +

MCTL +

SP (NSP, ESP) +

SAO0-SA3 +

LCO-LC3 +

2.6.2 Variable Argument Lists

In some cases, C programs intended to be portable rely on argument passing schemes that assume the
following:

e All arguments are passed on the stack
« Arguments appear on the stack in increasing order

In reality, programs that make these assumptions are not portable, but still work on many implementations.
They do not work with this standard, however, because some arguments are passed in registers. On the
SC100 and other architectures, C programs intended to be portable use the header files <st dar g. h> or
<var ar gs. h> to deal with variable argument lists.

ANSI C requiresthat before afunction with avariable argument list is called, it must be declared with a
prototype containing atrailing ellipsis mark (...). However, compiler vendors are expected to provide
optionsfor non-ANSI programsto allow them to declare variable argument functions in the command line
or to treat al non-prototyped functions as (potentially) having variable argument lists.

2.6.3 Stack

The SP register serves as the stack pointer. SP will point to the first available location, with the stack
direction being towards higher addresses (i.e., a push will be implemented as “(sp)+”). Initially along
word with value -1 is pushed at offset 0 on the stack to serve as atop-of-stack marker. The stack pointer
must be 8-byte aligned.
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2.6.4 Stack Frame Layout

The stack pointer points to the top (high address) of the stack frame. Space at higher addresses than the
stack pointer is considered invalid and may actually be unaddressable. The stack pointer value must always
be a multiple of eight.

Figure 2-1 shows typical stack frames for a function and indicates the relative position of local variables,
arguments, and return addresses. The stack grows upward from low addresses.

The outgoing arguments areais located at the top (higher addresses) of the frame.

The caller puts argument variables that do not fit in registers into the outgoing arguments area. If all
argumentsfit in registers, this areais not required. A caller may allocate outgoing arguments space
sufficient for the worst-case call, use portions of it as necessary, and not change the stack pointer between
calls.

Local variables that do not fit into the local registers are allocated space in the local variables area of the
stack. If there are no such variables, thisareais not required.

The caller must reserve stack space for return variables that do not fit in registers. Thisreturn buffer areais
typically located with the local variables. This space istypically allocated only in functions that make calls
returning structures.

A “return address’ vaue of Oxffffffff (-1) is used to denote the current frame as the outermost (ol dest)
frame on the current call stack. This convention requires that the outermost frame be manually constructed
and that sufficient object file details are availabl e to determine the sizes of all frames on the current call
stack. The sole purpose of this convention isto stop stack unwinding while debugging.

Beyond these requirements, afunction is free to manage its stack frame in any way desired.

High Addresses

Local Variables
and
Saved Registers

Incoming Arguments

Low Addresses

Figure 2-1. Stack Frame Layout
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2.6.5 Stack Unwinding

The compiler will create special symbolswhen a module is compiled without debug enabled (e.g., the- g
compiler option is not used). These symbolswill appear aslocal symbolsinthe. synt ab ELF section and
will have the following syntax:

Text St art _nodul e_nane : nodule’s | ow PC

Text End_nodul e_narne : modul e’ s high PC

St ackOf f set _| abel . size of stack at | abel
FuncEnd_functi on_nane : function’s high PC
Where:

* nodul e_nane isthe base name of the sourcefile. The base name must follow the same conventions
as assembly language labels. These conventions are outlined in Section 5.3.1, “ Symbol Names.”

e | abel isaprogram label within the function. The value of St ackCf f set _| abel isthe size of the
stack frame at the label. The size isin 2-byte words and does not include an implied JSR/BSR
two-word stack push.

e functi on_nane isthe function name, without aleading underscore.

For example, ahel | 0. ¢ program might generate the EL F symbol sequence shown below.

Value Size Binding Type Section Nane

0x10120 0 LOCAL NOTYPE .text TextStart _hello
0x0 0 LOCAL NOTYPE ABS StackOffset  _nmmin
0x2 0 LOCAL NOTYPE ABS StackOf fset _DW 2
0x0 0 LOCAL NOTYPE ABS StackOf fset DW5
0x1012a 0 LOCAL NOTYPE .text DW 2

0x10136 0 LOCAL NOTYPE .text DW 5

0x10138 0 LOCAL NOTYPE .text FuncEnd_nmai n
0x10138 0 LOCAL NOTYPE .text TextEnd_hel l o

In this example, the Binding LOCAL means an ELF symbol binding of STB_LOCAL, the Type NOTYPE
means a symbol type of STT_NOTYPE, and the Section ABS means a symbol table entry of SHN_ABS.

Example 2-9 illustrates how these symbols might be defined in an assembly language program.
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Example 2-9. Generating Stack Unwinding Symbols in Assembly Code

section .text |oca

TextStart _hello

R R R R R R I I O I I R R I T R R R R R
)

Exanpl e function _nmain

R R R R O R R I I O R I R R T I R R R S R

gl obal _main
mai n type func
[

push r6

push r7

]

DW 2

[
pop r6
pop r7

rts

FuncEnd__nmin

StackOf fset _main equ 0 ; at _main sp = 0 words
StackOf fset DW 2 equ 2 ; at DW2 sp = 2 words
StackOf fset DW5 equ 0 ; at DW5 sp = 0 words

Text End_hel | o

endsec
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2.6.6 Register Saving and Restoring Functions

The register saving and restoring functions described in this section save and restore the callee-saved
registers defined by Table 2-4 and the SR. These functions are provided to save and restore these registers
with aminimal increase in static code size. The functions use nonstandard calling conventions which
reguire them to be statically linked into any executable or shared object modulesin which they are used.

Thus their interfaces are private, within module interfaces, and therefore are not part of the ABI. They are
defined here only to encourage uniformity among compilersin the code used to save and restore registers.

After calling the saving function __ Qabi _cal | ee_save, the stack frame values relative to the address
in the stack pointer (SP) will be:

~SP ~SP
R7 R7
Little-Endian -4 Big-Endian -4
R6 R6
-8 -8
D7 12 D7 12
D6 16 D6 16
Reserved 20 Reserved 20
D7.e D6.e
-22 -22
D6.e 24 D7.e 24
SR SR
-28 -28
Return Address Return Address
-32 -32

Therestoring function ____Qabi _cal | ee_r est or e assumes the stack frame layout above. It restores the
callee-saved registers and returns through the caller return address stored at SP-32. Thereisno need for an
RTS after calling the restoring function, since it returns automatically for the caller.

Example 2-10 shows an exampl e use of the saving and restoring functions. The functions do not modify
any caller-saved registers.

Example 2-10. Saving and Restoring Functions Usage Example

f oo:
bsr __ Qabi _cal |l ee_save ; save callee-saved registers
adda #franme_size foo,sp ; adjust SP by frane size
_foo_body:
_foo_body_end:
suba #frame_size foo,sp ; adjust SP by frane size
bra ___Qabi_callee_restore ; restore callee-saved registers

and return to caller of foo
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2.6.7 setjimp and longjmp Layout

The layout for thej np_buf used by setjmp and longjmp follows. This layout preserves the callee-saved
registers, which is needed to restore the state when longjmp is called.

typedef int jnp_buf[7];

Offset Saved Register Offset Saved Register
Little-Endian +0 D6 Big-Endian +0 D6
+4 D7 +4 D7
+8 R6 +8 R6
+12 R7 +12 R7
+16 D6.e + 16 D7.e
+18 D7.e +18 D6.e
+20 SP + 20 SP
+24 Return Address +24 Return Address

2.6.8 Frame and Global Pointers

This ABI standard does not require the use of aframe pointer or aglobal pointer. If, however, the use of a
frame pointer or aglobal pointer is necessary, acompiler may alocate R7 as aframe pointer and R6 asa
global pointer. When these registers are allocated for this purpose, they should be saved and restored as
part of the function prologue/epilog code.

2.6.9 Dynamic Memory Allocation

Dynamic allocations are implemented using a heap structure managed by the standard library functions
mal | oc() andfree() . The heap shall be allocated statically by the linker. All addresses returned by
mal | oc() shall be at least 8-byte aligned.

2.6.10 Hardware Loops

All hardware loop resources are available for the compiler’ suse. Asit is assumed that no nesting occurs
when entering afunction, a function may use all four nesting levels for its own use.
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2.7 Function Call Modes

Compilers must support the following pragma directives to control how external functions are called. The
directives affect all functions declared after the pragma. If the compiler encounters inconsistent pragma
directives for a given function, it will generate a warning and use the information from the original
directive.

#pragma starcore cal | node=near
#pragma starcore cal |l node=far
#pragma starcore cal |l node=def aul t

If the callmodeisfar, the compiler will generate a 32-hit absolute call. If the callmode is near, the compiler
will generate a 20-bit PC-relative call. If afunction is out of range at link time, the linker will generate an
error. The default callmode is determined by compiler options.

2.8 Address Modifier Modes

Compilers will make the following assumptions about address modifier modes:

e Thedefault C runtime state of the MCTL register is 0, which identifies the memory address
calculation methods for RO-R7 aslinear.

« Ifthe MCTL register ischanged local to afunction, then MCTL must berestored to O prior to calling
any other function or returning from the original function.

2.9 Saturation Mode

Compilers shall be able to set arithmetic saturation mode on or off using a compiler command line option,
and they shall document their default saturation mode settings. Compilers need not emit the same code
when saturation mode is off as they emit when the modeis on.

Compilers must support the saturation mode intrinsics as described in Table 3-8.

2.10 Data Addressing Models

A Zero Data Area (ZDA) has special data sections located near zero, allowing the compiler to more
effectively use the 16-hit absolute addressing mode. The sections, . zdat a and . zbss, need to be located
in the low 16-bits of address space. The compiler supports directivesto place datain the zero dataarea, and
knows to use the more efficient addressing modes to accessiit. If more datais placed in ZDA than can fit,
the linker will generate errors.

By default, datais placed in the standard data areas. Compilers will support an option that allows a coarse
level of control, in which the user has the option of allocating all datato ZDA or alocating only those data
items of a specified size.
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The following pragma directives allow afiner level of control:

#pragnma starcore startzda
#pragma starcore endzda
#pragnma starcore startdata
#pragma starcore enddata

Any data declared between the st ar t zda and endzda directives will be placed in ZDA. The
corresponding st ar t dat a and enddat a directives force datainto the standard data section even if the
zero data compiler option is specified.

Compilers must support both unsigned 16-bit, signed 16-bit, and signed 32-bit addresses. If the application
issmall enough to allow all static datato fit into the lower 64K or 32K of the address space, then more
efficient code can be generated. The big memory model does not restrict the amount of space allocated to
addresses; this model is the default. The small memory model assumes that all addresses are within the
address range of an unsigned 16-bit immediate. The tiny memory model assumes that all addresses are
within the range of asigned 16-bit immediate (effectively an unsigned 15-bit range).

These three compilation models are provided to allow the compiler to generate references to global and
static data without global knowledge as to the variables’ final allocation address in memory. For each
model, the compiler will assume that referencesto global and static data fit within the corresponding size
implied by the model. The expectation isthat the linker will generate errors whenever a symbolic reference
isresolved to not fit within the range defined by the memory modd.

When the compiler uses the big memory model to access a data object, whether static or global, it must use
alonger instruction that includes a 32-bit address. This operation requires an additional word, and asa
result it produces code that is larger, and in some cases, slower, than asimilar operation using the small or
tiny memory models.

Example 2-11 illustrates the code sequence to generate the address of a globa symbol in memory and the
sequence to reference the memory contents of a global symbol for each memory model.

Example 2-11. Memory Models

;; Big Menory Mbdel
nmove. | address, d0 (3 16-bit words)
nmoveu. | #address,d0 (3 16-bit words)

;; Smal | Menory Model

nove. | <address, dO (2 16-bit words)
noveu. | #address,d0 (3 16-bit words)

;; Tiny Menory Model
nmove. | <address, dO (2 16-bit words)
nove. w #addr ess, dO (2 16-bit words)

Certain instructions can be used only in small and tiny memory models. If < is omitted in conjunction with
these instructions, an error results. Example 2-12 shows the instruction BMSET.W, which sets bit 0 in the
specified address, and is valid only in small and tiny memory models.

Example 2-1