
PI SERVER APPLICATION USER’S GUIDE
PUBLICATION HSEPIS-UM020A-EN-E–September 2007

Historian SE

HSEPIS-UM020A-EN-E 8/8/07 11:09 AM Page 1

Contact Rockwell

Customer Support Telephone — 1.440.646.3434

Online Support — http://support.rockwellautomation.com

Copyright Notice

© 2007 Rockwell Automation Technologies, Inc. All rights reserved. Printed in USA.

This document and any accompanying Rockwell Software products are copyrighted by Rockwell Automation Technologies, Inc.
Any reproduction and/or distribution without prior written consent from Rockwell Automation Technologies, Inc. is strictly
prohibited. Please refer to the license agreement for details.

Trademark Notices

FactoryTalk, Rockwell Automation, Rockwell Software, the Rockwell Software logo are registered trademarks of Rockwell
Automation, Inc.

The following logos and products are trademarks of Rockwell Automation, Inc.:

FactoryTalk Historian Site Edition (SE), RSView, FactoryTalk View, RSView Studio, FactoryTalk View Studio, RSView
Machine Edition, RSView ME Station, RSLinx Enterprise, FactoryTalk Services Platform, and FactoryTalk Live Data.

The following logos and products are trademarks of OSIsoft, Inc.:

PI System, Sequencia, Sigmafine, gRecipe, sRecipe, and RLINK.

Other Trademarks

ActiveX, Microsoft, Microsoft Access, SQL Server, Visual Basic, Visual C++, Visual SourceSafe, Windows, Windows ME,
Windows NT, Windows 2000, Windows Server 2003, and Windows XP are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Adobe, Acrobat, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries.

ControlNet is a registered trademark of ControlNet International.

DeviceNet is a trademark of the Open DeviceNet Vendor Association, Inc. (ODVA).

Ethernet is a registered trademark of Digital Equipment Corporation, Intel, and Xerox Corporation.

OLE for Process Control (OPC) is a registered trademark of the OPC Foundation.

Oracle, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation.

All other trademarks are the property of their respective holders and are hereby acknowledged.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii)

of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013

Warranty

This product is warranted in accordance with the product license. The product’s performance may be affected by system
configuration, the application being performed, operator control, maintenance, and other related factors. Rockwell Automation
is not responsible for these intervening factors. The instructions in this document do not cover all the details or variations in the
equipment, procedure, or process described, nor do they provide directions for meeting every possible contingency during
installation, operation, or maintenance. This product’s implementation may vary among users.

This document is current as of the time of release of the product; however, the accompanying software may have changed since
the release. Rockwell Automation, Inc. reserves the right to change any information contained in this document or the software
at anytime without prior notice. It is your responsibility to obtain the most current information available from Rockwell when
installing or using this product.

Version: 9.00.05

PI Server Applications User Guide Page iii

PREFACE – USING THIS GUIDE

About this Guide

The PI Server Applications User Guide explains how to use PI Server Applications.
PI Server Applications are supplemental subsystems that you can run in conjunction with the
PI Server to provide additional functionality. PI Server Applications are not necessary to
run the PI Server, and are typically licensed separately.

The PI Server Applications included in this guide are:

 PI Performance Equations Scheduler

 PI Performance Equations Recalculator

 PI Steam Functions Module

 PI Batch Database

 PI Totalizer Subsystem

 PI Alarm Subsystem

 PI Real-Time Statistical Quality Control (SQC)

This guide provides full administration and end-user instructions for the PI Server
Applications listed above. An additional PI Server Application, the PI Batch Generator
Interface (PIBaGen), is not discussed in this guide. For information regarding PIBaGen, see
the PI Batch Generator User Guide.

Installation Note

The PI Server and Server Applications are distributed together as one installation. Your
ability to use any one of the PI Server Applications depends upon your EULA (End-user
License Agreement.) Contact Rockwell Automation Technical Support for licensing
information.

Preface - Using this Guide

Page iv

The PI Server Documentation Set

The PI Server Documentation Set includes seven user guides, described below. These
documents are included on the FactoryTalk Historian SE installation CD under Redist > Docs

Title Subject Matter

Introduction to PI
System Management

A guide to the PI Server for new users and administrators. It explains PI
system components, architecture, data flow, utilities and tools. It provides
instruction for managing points, archives, backups, interfaces, security and
trusts, and performance. It includes a glossary and resource guide.

PI Server Installation
and Upgrade Guide

A guide for installing, upgrading and removing PI Servers on Windows and
UNIX platforms, including cluster and silent installations.

PI Server System
Management Guide

An in-depth administration guide for the PI Server, including starting and
stopping systems, managing the Snapshot, Event Queue and Data Archive,
monitoring system health, managing backups, interfaces, security, and
moving and merging servers. Includes comprehensive instructions for using
command-line tools: PIConfig, PIDiag, and PIArtool, and in-depth
troubleshooting and repair information.

PI Server Reference
Guide

A comprehensive reference guide for the system administrator and
advanced management tasks, including: databases; data flow; PI Point
classes and attributes, class edit and type edit; exception reporting;
compression testing; security; SQL subsystem; PI time format; and
overviews of the PI API, and PI-SDK System Management Tool (SMT).

Auditing the PI
Server

An administration guide that explains the Audit Database, which provides a
secure audit trail of changes to PI System configuration, security settings,
and Archive Data. It includes administration procedures to enable auditing, to
set subsystem auditing mode, to create and archive database files, and to
export audit records.

PI Server
Applications User
Guide

A guide to key add-on PI Server Applications: Performance Equations (PE),
Totalizer, Recalculator, Batch, Alarm, and Real-Time SQC (Statistical Quality
Control). Includes a reference guide for Performance Equations, and Steam
calculation functions.

PINet and PIonPINet
User Guide

A systems administration guide, including installation, upgrade and
operations, for PINet for OpenVMS and PIonPINet, which support migration
and interoperability between PI2 and PI3 Systems.

 Preface - Using this Guide

PI Server Applications User Guide Page v

Conventions Used in this Guide
This guide uses the following formatting and typographic conventions.

Format Use Examples

Title Case PI Client Tools
 PI System Elements
 PI Server Subsystems

 Use the client tool, FactoryTalk Historian
ProcessBook, to verify that all data has been
recovered.

 All incoming data is queued in the Event Queue by
the Snapshot Subsystem.

Italic text Files, Directories, Paths
 Emphasis
 New Terms
 Fields
 References to a chapter or section

 The backup script is located in the \PI\adm directory.
 Archive files can be either fixed or dynamic. The
archive receiving current data is called the Primary
Archive.

 See Section 4.2, Create a New Primary Archive.

Bold Italic text References to a publication See the PI Server Reference Guide.

 System and Application
components:
 Subsystems
 Tools / Utilities
 Processes / Scripts / Variables
 Arguments / Switches / Options
 Parameters / Attributes / Values
 Properties / Methods / Events /

Functions

 The Archive Subsystem, piarchss, manages data
archives. Piarchss must be restarted for changes to
take effect.

 On UNIX, invoke site-specific startup script,
pisitestart.sh, and on Windows, invoke
pisrvsitestart.bat.

 Three Point Database attributes affect compression:
CompDev, CompMin, and CompMax. These are
known as the compression specifications.

 Procedures and Key Commands On the Tools menu, click Advanced Options.
 Press CTRL+ALT+DELETE to reboot

Bold text

 Interface components
 Menus / Menu Items
 Icons / Buttons / Tabs
 Dialog box titles and options

 Click Tools > Tag Search to open the Tag Search
tool.

 Click the Advanced Search tab.
 Use the search parameters PImean Value = 1.

Monospace

type:

"Consolas"
font

Consolas monospace is used for:
 Code examples
 Commands to be typed on the
command line (optionally with
arguments or switches)

 System input or output such as
excerpts from log files and other
data displayed in ASCII text

 Bold consolas is used in the
context of a paragraph

To list current Snapshot information every 5 seconds,
use the piartool -ss command. For example:

Light Blue -
Underlined

Links to URL / Web sites, and email
addresses

http://support.rockwellautomation.com

Preface - Using this Guide

Page vi

Related Documentation

Rockwell Automation provides a full range of documentation to help you understand and use
the PI Server, PI Server Interfaces, and PI Client Tools. Each Interface has its own manual,
and each Client application has its own online help and/or user guide.

The UniInt End User Manual describes the OSIsoft Universal Interface (UniInt), which is
recommended reading for PI Server system managers. Many PI Interfaces are based upon
UniInt, and this guide provides a deeper understanding of principals of Interface design.

Using PI Server Tools

The PI Server provides two sets of powerful tools that allow system administrators and users
to perform system administration tasks and data queries.

 The PI Server includes many command-line tools, such as pidiag and piartool. The
PI Server Documentation Set provides extensive instruction for performing PI Server
administrative tasks using command-line tools.

 The PI System Management Tools (SMT) is an easy-to-use application that hosts a
variety of different plug-ins, which provide all the basic tools you need to manage a
PI System. You access this set of tools through a single host application. This host
application is sometimes referred to as the SMT Host, but it is more commonly called
System Management Tools or SMT.

In addition to extensive online help that explains how to use all of the features in the SMT,
the SMT includes the Introduction to PI System Management user guide.

PI Server Applications User Guide Page vii

QUICK TABLE OF CONTENTS

Chapter 1. PI Server Applications..1

Chapter 2. PI Performance Equations Scheduler...5

Chapter 3. PI Performance Equations Recalculator ..21

Chapter 4. PI Performance Equations Syntax and Functions Reference49

Chapter 5. PI Steam Functions Reference ..191

Chapter 6. PI Batch Database...245

Chapter 7. PI Totalizer Subsystem...263

Chapter 8. PI Alarm Subsystem ...303

Chapter 9. PI Real-Time SQC..347

PI Server Applications User Guide Page ix

TABLE OF CONTENTS

Preface – Using this Guide ..iii

Table of Tables...xvii

Table of Figures ..xix

Chapter 1. PI Server Applications..1
1.1 PI Server Applications Overview ...1

1.1.1 PI Performance Equations Scheduler ..1
1.1.2 PI Performance Equations Recalculator ..1
1.1.3 PI PE Syntax and Functions Reference...2
1.1.4 PI Steam Functions Reference ..2
1.1.5 PI Batch Database..2
1.1.6 PI Totalizer Subsystem...2
1.1.7 PI Alarm Subsystem...3
1.1.8 PI Real-Time SQC..3

Chapter 2. PI Performance Equations Scheduler...5
2.1 About Calculated Points ...6
2.2 About the PE Subsystem..6

2.2.1 Start and Stop the PE Subsystem..7
2.3 Procedure to Create Calculated Points...7
2.4 Determine Scan Classes and Point Source..8

2.4.1 Find the PE Subsystem Point Source ..8
2.4.2 Specify the Optional Instance ID ..9
2.4.3 Find the PE Subsystem Scan Classes...9

2.5 Choose a Scheduling Method ..11
2.6 Set Attributes for Calculated Points..12

2.6.1 Set the Point Source...13
2.6.2 Set the Location3 Attribute: Timestamp ...13
2.6.3 Set the Location4 Attribute: Scan Class...13
2.6.4 Set the ExDesc Attribute: Calculation Expressions..14

Table of Contents

Page x

2.6.5 Set the Scan Attribute...15
2.6.6 Set the Shutdown Attribute...16
2.6.7 Examples of Calculation Expressions ..16

2.7 Tips and Troubleshooting ..17
2.7.1 Tips for Creating Calculated Points..18
2.7.2 Common Performance Equation Problems and Errors..18
2.7.3 Prevent Scheduling Errors..19
2.7.4 Prevent Skipped Calculations ..19
2.7.5 When Data Types Don't Match...20

Chapter 3. PI Performance Equations Recalculator ..21
3.1 Recalculator Overview ..21

3.1.1 Glossary of Recalculation Terms ...22
3.2 PE Recalculator Functionality..23

3.2.1 Point Dependency Considerations ...24
3.2.2 Time Range Considerations...24
3.2.3 Clock-Scheduling vs. Event-based Scheduling..25
3.2.4 Step Point Attribute...25
3.2.5 Compression / Exception..25
3.2.6 Scan and Archiving Attributes ..26
3.2.7 Location1 ..26

3.3 Types of PE Point / Time Relationships..26
3.3.1 Type 1: Simple Point Relationship ...27
3.3.2 Type 2: Multi-level Dependency Point Relationship...30
3.3.3 Type 3: Recursive Point Relationship ..31
3.3.4 Type 4: Relative Point Relationship ...31
3.3.5 Type 5: Special Event Point Relationship ..32
3.3.6 Type 6: Time Range Point Relationship...33
3.3.7 Type 7: Multi-level Time Dependency ..33
3.3.8 Type 8: Absolute Time Reference Point Relationship..34

3.4 Special PE Time Functions...34
3.4.1 Modify a Timestamp ...34
3.4.2 Parsetime Function...34
3.4.3 Extract a Number from a Timestamp ...35

3.5 Examples of Archive Retrieval / Search Functions ...35
3.6 Recalculation Limitations ...36

3.6.1 Source Variables without Archive Values...36

 Table of Contents

PI Server Applications User Guide Page xi

3.6.2 Exact Simulation of the Original Scan Cycles ..36
3.6.3 Modifications of the Performance Equation..36
3.6.4 Archive and Time Functions...36
3.6.5 Unsupported Dynamic Functions ...36
3.6.6 Incomplete Timestamps ...37
3.6.7 Blob Support...37

3.7 Recalculator Point Configuration ..37
3.7.1 Point Name...37
3.7.2 Extended Descriptor ...37
3.7.3 Point Source ...37
3.7.4 Scan..38
3.7.5 Archiving...38
3.7.6 Location1 ..38
3.7.7 Location4 ..38
3.7.8 PointType..38
3.7.9 Step ..38
3.7.10 Other Attributes ..38

3.8 Start Recalculator as a Service..39
3.8.1 Configure Startup and Shutdown ...39
3.8.2 Specify Options with a Startup Script File ..40
3.8.3 Specify Options with the Windows Registry ...43
3.8.4 Run Multiple Instances ...44

3.9 Start Recalculator Manually ...45
3.9.1 Recalculator Startup Options ...45
3.9.2 Manual Recalculations ...46

3.10 Stop Recalculator ..46
3.11 Optimize Recalculator Performance..47
3.12 Error and Information Messages ...47

Chapter 4. PI Performance Equations Syntax and Functions Reference49
4.1 Performance Equations Syntax ...49

4.1.1 Performance Equation Syntax..49
4.1.2 Performance Equation Operands...50
4.1.3 Tagname Operands..51
4.1.4 String Operands ...53
4.1.5 Time Expression Operands..53
4.1.6 Function Operands ...56

Table of Contents

Page xii

4.1.7 List of all Performance Equation Operators ...57
4.1.8 Operator Priority ...63
4.1.9 Data Types ...64
4.1.10 Error Values..65
4.1.11 Test the Performance Equation Syntax..65

4.2 Performance Equations Functions..66
4.2.1 Function Arguments ...66

4.3 List of Built-in Functions ..67
4.3.1 Functions Grouped By Type...67
4.3.2 Functions Listed Alphabetically ..71

4.4 Performance Equations Functions Reference ...76

Chapter 5. PI Steam Functions Reference ..191
5.1 Steam Functions Overview...191

5.1.1 Steam Functions Naming Convention..192
5.2 Range of Steam Functions ...193

5.2.1 Functions that use Temperature and Pressure as Independent Variables........193
5.2.2 Functions that use Enthalpy or Entropy as an Independent Variable194

5.3 Steam Property Reference States..195
5.4 Steam Functions Reference ...197

Chapter 6. PI Batch Database...245
6.1 PI Batch Overview ...245

6.1.1 The PI Batch Subsystem (BSS), PI Batch Database (PBD), and PI Batch
Generator (PIBaGen) ...246

6.1.2 Compatibility of PI-API Batch Applications for PI2 (OpenVMS) Servers247
6.1.3 Glossary of Batch Terms..247

6.2 Installation..247
6.3 Configuration ...247

6.3.1 Unit Configuration...248
6.3.2 Alias Configuration ...254

6.4 Batch Data Information ...256
6.4.1 PI Batch Data (PIBATCH) Table ..257
6.4.2 Common Operations ..258

6.5 Batch Subsystem Operation ..260
6.5.1 Check for Unit Consistency ..260
6.5.2 Monitor Activation Tags for Transitions ..260
6.5.3 Evaluate BIDExpr and ProdExpr ..260

 Table of Contents

PI Server Applications User Guide Page xiii

6.6 Client Access to Batch Subsystem Batches ..260
6.7 Complete Example ..261

Chapter 7. PI Totalizer Subsystem...263
7.1 Totalizer Subsystem Overview ..263

7.1.1 Totalizer vs. Performance Equations ...264
7.2 Totalizer ConfigurationOverview ...266

7.2.1 Creation of a Totalizer Point ...266
7.2.2 Totalizer Input Values...267

7.3 Totalizer Point Class Attributes ...268
7.3.1 SourceTag ..272
7.3.2 RateSampleMode...272
7.3.3 TotalCloseMode ...275
7.3.4 ReportMode..283
7.3.5 Function..284
7.3.6 CalcMode..287
7.3.7 ZeroBias ...292
7.3.8 Period ...292
7.3.9 Offset ..292
7.3.10 MovingCount ..292
7.3.11 Period2 ...293
7.3.12 Offset2 ..293
7.3.13 PctGood..293
7.3.14 Conversion ...293
7.3.15 FilterExpr ..294
7.3.16 EventExpr ...294
7.3.17 CompValue...295
7.3.18 Options ...295

7.4 Build Totalizer Points..297
7.4.1 SMT Totalizer Editor Plug-in ..297
7.4.2 PI TagConfigurator ...297
7.4.3 Piconfig ...298

7.5 Program Operation..299
7.5.1 Startup ..299
7.5.2 Error Messages ..299
7.5.3 Response to Scan Flag ..299

Table of Contents

Page xiv

7.6 PI for OpenVMS Upgrade Considerations ..299
7.6.1 Features in PI3 versus PI for OpenVMS ..300
7.6.2 Compatibility with PI for OpenVMS ..300

7.7 Demonstration Points ...301

Chapter 8. PI Alarm Subsystem ...303
8.1 Alarm Subsytem Overview ...304

8.1.1 Alarm Points ...304
8.2 Alarm Point Configuration..306

8.2.1 SourceTag ..308
8.2.2 Test1, Test2, Test3, Test4..308
8.2.3 Action1, Action2, Action3, Action4 ...318
8.2.4 ExDesc ...319
8.2.5 DigitalSet ..319
8.2.6 ReferenceTag...319
8.2.7 AutoAck ..320
8.2.8 DeadBand...320
8.2.9 Options ...320
8.2.10 ControlTag..320
8.2.11 ControlAlg...321

8.3 Alarm State Sets ..321
8.3.1 Condition...321
8.3.2 Acknowledgement Status ...322
8.3.3 Priority...322

8.4 Alarm Groups...326
8.4.1 Alarm Group Point Configuration ...326

8.5 Build Alarm Points ..328
8.5.1 PI TagConfigurator ...328
8.5.2 Piconfig ...328

8.6 Build Alarm Group Points...329
8.6.1 PI TagConfigurator ...329
8.6.2 Piconfig ...329

8.7 Override Default PointSource Values for Alarms...330
8.8 Build Alarm Digital State Sets..330
8.9 Program Operation..332

8.9.1 Startup ..332
8.9.2 Alarm Notification ...332

 Table of Contents

PI Server Applications User Guide Page xv

8.9.3 Error Messages ..334
8.9.4 Demonstration Points ...334

8.10 PI for OpenVMS Upgrade Considerations ..334
8.10.1 New Alarm Subsystem Features in PI Server 3.4..334

8.11 Alarm State Set Encoding and Decoding..335
8.11.1 Conversion to Digital State code ..335
8.11.2 Conversion from Digital State Code ...336
8.11.3 Sample Alarm Digital State Sets ..336
8.11.4 Digital Base Set ..341

Chapter 9. PI Real-Time SQC..347
9.1 Introduction to Statistical Quality Control ..348
9.2 Case Study for PI Real-Time SQC..348
9.3 Real-Time SQC Definitions and Terminology...349
9.4 Tests for Unnatural Patterns ..351

9.4.1 Western Electric Unnatural Pattern Tests ..351
9.4.2 Pattern Types and Tests ..352

9.5 PI Real-Time SQC Configuration..354
9.5.1 Required and Optional Points ..355

9.6 Pattern Tests..355
9.7 SQC Alarm Priority and Precedence ...356

9.7.1 Priority...356
9.7.2 Precedence ..357

9.8 Create a New SQC Alarm..357
9.9 Start and Run the PI Alarm Subsystem...357

9.9.1 Initial Subsystem Startup..358
9.9.2 Subsystem Startup ...359
9.9.3 Subsystem Shutdown...361

9.10 Associated Point Configuration...361
9.10.1 Tools to Create and Edit Associated PI Points...361
9.10.2 Summary of Associated PI Points for SQC Alarms..362
9.10.3 Configure the Associated Points ..362

9.11 PI SQC Alarm Point Configuration...366
9.11.1 Methods for Configuring PI SQC Alarm Points ..366
9.11.2 SQC Alarm Point Class ..367
9.11.3 Pattern Test Configuration..371
9.11.4 Associated-Point Tagnames...374

Table of Contents

Page xvi

9.12 PI Real-Time SQC Chart Types ..375
9.12.1 Charts of Individuals ...375
9.12.2 Moving Average, Moving Range and Moving Standard Deviation.....................375
9.12.3 X-Bar, Range and Standard Deviation ...375
9.12.4 EWMA...375

9.13 Default SQC Alarm Digital States ..376
9.14 Log Messages..378

9.14.1 View Log Messages ...378
9.14.2 Log Message Reference ..378

Technical Support and Resources...381

Index of Topics...383

PI Server Applications User Guide Page xvii

TABLE OF TABLES

Table 2–1. Attributes that Require a Special Setting for Calculated Points.............................12
Table 3–1. Glossary of Recalculation Terms ...22
Table 3–2. Types of PE Point / Time Relationships...26
Table 3–3. Recalculator Startup Options ...41
Table 3–4. Recalculator Debug Levels and Output ...43
Table 4–1. Operands in Performance Equations...51
Table 4–2. Examples of Time Syntax ..55
Table 4–3. PE Operators, Listed by Type, with Examples ..57
Table 4–4. PE Arithmetic Operators ..59
Table 4–5. Valid Operations on Time Values ..60
Table 4–6. Relational Operators in Performance Equations ...61
Table 4–7. Prefix Operators ...62
Table 4–8. Conjunction, Disjunction and Inclusion Operators ...62
Table 4–9. Operator Priority...63
Table 4–10. Functions Grouped by Type...68
Table 4–11. Functions Listed Alphabetically..71
Table 5–1. Engineering Units...191
Table 5–2. Supported Functions ..192
Table 5–3. Digital States Returned ..193
Table 5–4. Input Range for Each Function ..193
Table 6–1. PIBAUNIT Table Attributes ..248
Table 6–2. Configuration Differences from PI BA in PI2 (OpenVMS)....................................251
Table 6–3. PIBAALIAS Table Attributes ..255
Table 6–4. PIBATCH Table Attributes ...257
Table 7–1. Five Major Parameters that Affect Totalizer...266
Table 7–2. Totalizer Point Class Attribute Set ...268
Table 7–3. Allowed Combinations of TotalCloseMode and ReportMode283
Table 7–4. Viable Function and CalcMode Options...285
Table 7–5. Conversion Factors for Units ...294

Table of Tables

Page xviii

Table 7–6. PI for OpenVMS and PI for NT and UNIX Equivalents ..301
Table 8–1. Alarm Point Class Attributes ..306
Table 8–2. Example Test Comparisons and the Alarm Status ..309
Table 8–3. Viable Argument Data Types for Operators...309
Table 8–4. Comparisons of the Is_In Operator..314
Table 8–5. Comparisons of the Not_In Operator ...315
Table 8–6. Comparisons of the Includes Operator ..316
Table 8–7. Comparisons of the CondEQ Operator..317
Table 8–8. Examples Using First Syntax (Condition Priority) ..318
Table 8–9. Examples Using Second Syntax (StateName) ..318
Table 8–10. Combiner Logic Examples ...319
Table 8–11. Sample Alarm Conditions ..321
Table 8–12. Three-state Acknowledgement Status ...322
Table 8–13. Single Priority Alarm State Set...322
Table 8–14. Example Three-priority-level System...323
Table 8–15. Alarm Digital State Set with Three Priorities..323
Table 8–16. Example Digital Alarm State Set with One Priority ..324
Table 8–17. Example Digital Alarm Set with Three Priorities ..324
Table 8–18. PointFunc Options..326
Table 8–19. Example Alarm Group..327
Table 8–20. One Priority Alarm Set ...337
Table 8–21. Three Priority Alarm Set...338
Table 8–22. Single Priority Alarm Set (Digital Base Set) ...341
Table 8–23. Three Priority Alarm Set (Digital Base Set)..342
Table 9–1. Precedence of SQC Alarm's Pattern Tests...357
Table 9–2. Summary of Associated Points ...362
Table 9–3. TestStatusTag Bits Indicate SQC Alarm State ...364
Table 9–4. Examples of TestStatusTag values ..364
Table 9–5. Values of the ResetTag...365
Table 9–6. SQC_Alarm Point Class Attributes ...367
Table 9–7. Valid ChartType Values ..370
Table 9–8. Pattern Test Configuration Examples ...372
Table 9–9. Default DigitalSet for SQC Alarms ..376
Table 9–10. Informational Messages..379
Table 9–11. Error Messages: Serious Errors..380

PI Server Applications User Guide Page xix

TABLE OF FIGURES

Figure 3–1. Recalculation Period on Type = Simple, Step=1, No Compression28
Figure 3–2. Recalculation Period on Type = Simple, Step=0, No Compression29
Figure 3–3. Recalculation Period on Type = Simple, Step=0, PE Point with Compression30
Figure 3–4. Type = Relative Time Shift..32
Figure 3–5. Type = Relative Time Reference ..33
Figure 4–1. Block Diagram of ARMA Calculation Function ...83
Figure 7–1. Exception Reporting..264
Figure 7–2. Time Weighted Calculation for Totalizer and Performance Equation.................265
Figure 7–3. Flow Diagram for the Creation of a Totalizer Point...267
Figure 7–4. Natural Sampling ..272
Figure 7–5. Scan1 Sampling..273
Figure 7–6. Scan2 Sampling..274
Figure 7–7. Event Sampling...274
Figure 7–8. TotalCloseMode of Clock..275
Figure 7–9. TotalCloseMode of EventChange...277
Figure 7–10. TotalCloseMode of EventTrue ..278
Figure 7–11. TotalCloseMode of NsampleMoving (1) ...279
Figure 7–12. TotalCloseMode of NSampleMoving (1)...280
Figure 7–13. TotalCloseMode of NSampleBlock ...281
Figure 7–14. TotalCloseMode of TimeMoving and RateSampleMode of Natural282
Figure 7–15. TotalCloseMode of TimeMoving and RateSampleMode of Scan2...................282
Figure 7–16. TimeWeighted Total for Natural and Scan1 with Step=0288
Figure 7–17. Time-Weighted Total for Natural and Scan2 with Step=1289
Figure 7–18. Event-Weighted Total for Natural ...289
Figure 7–19. Event-Weighted Average for Scan1 ...290
Figure 7–20. Digital States with RateSampleMode of Natural...291
Figure 7–21. Digital States with RateSampleMode of Scan1 or Scan2.................................291
Figure 7–22. Time-Weighted Total with Scan1 and CloseAtEvent..296
Figure 7–23. PI TagConfigurator Creation of Totalizer Point...298

Table of Figures

Page xx

Figure 7–24. Export Tags Dialog Box ..298
Figure 8–1. Flow Diagram of Alarm Points ..305
Figure 8–2. Calculation of Rate of Change..313
Figure 8–3. Deadbands for Upper and Lower Alarm Limits...320
Figure 8–4. PI TagConfigurator Creation of Alarm Point ...328
Figure 8–5. PI Tag Configurator...329
Figure 8–6. Editing Default PointSource Values for Alarms ..330
Figure 8–7. Example FactoryTalk Historian ProcessBook Display of Alarms333
Figure 9–1. San Francisco Bay Salinity ...351
Figure 9–2. SQC Chart Zone Definition ...352
Figure 9–3. One Point Outside 3 Sigma Limit (Instability) ...352
Figure 9–4. Two of Three Points in Zone A or Beyond (Instability)353
Figure 9–5. Four of Five Points in Zone B or Beyond (Instability) ...353
Figure 9–6. Eight Successive Points Fall on One Side of the Center Line (Instability)353
Figure 9–7. Fifteen Consecutive Points in Zone C (Stratification) ...354
Figure 9–8. Eight Points on Both Sides of Center with None in Zone C (Mixture)354
Figure 9–9. Limits for Pattern Tests ...356

PI Server Applications User Guide Page 1

Chapter 1. PI SERVER APPLICATIONS

1.1 PI Server Applications Overview

The power of the PI System is enhanced by the PI Server Applications, which work on top of
the PI Server. PI Server Applications are a set of processing tools that help you get more out
of your data by automating specific processes.

The PI Server Applications and reference sections included in this guide are:

Chapter 2 – PI Performance Equations Scheduler

Chapter 3 – PI Performance Equations Recalculator

Chapter 4 – PI PE Syntax and Functions Reference

Chapter 5 – PI Steam Functions Reference

Chapter 6 – PI Batch Database

Chapter 7 – PI Totalizer Subsystem

Chapter 8 – PI Alarm Subsystem

Chapter 9 – PI Real-Time Statistical Quality Control (SQC)

1.1.1 PI Performance Equations Scheduler
The Performance Equations (PE) Scheduler provides an equation syntax and library of
built-in functions that allow you to perform a wide variety of calculations on PI data.

Performance Equations can work with frequently-updating Snapshot and Archive values,
whereas tools such as spreadsheets only have access to Archive data and limited access to
Snapshot update values.

Each Performance Equation is associated with a PI point, and the calculation results are
stored in the PI Archive. The performance equation point may be configured to be evaluated
periodically by the PE Scheduler (time-based). Alternatively, it may be configured to be
evaluated when an event is received on a specified trigger point (event-based).

1.1.2 PI Performance Equations Recalculator
The Performance Equations is designed to adjust values of Performance Equation points
automatically. The adjustment occurs when Archive values of points that are used in
Performance Equation expressions are added, changed, or deleted. You can also use
Recalculator as an offline utility to reprocess explicit periods of time for specific points.

Chapter 1 - PI Server Applications

Page 2

1.1.3 PI PE Syntax and Functions Reference
PI Performance Equations allows you to easily implement sophisticated, real-time
calculations, using data in the PI System. Calculations can include unit performance, real-
time cost accounting, real-time yield accounting, batch summary, conversions and
totalizations not performed by PI Totalizer, logical operations, and calculating aggregates.

This chapter provides comprehensive instructions for using Performance Equations syntax
and functions.

1.1.4 PI Steam Functions Reference
The PI Steam Functions module is an extension to the PI Performance Equations Scheduler.
Steam Functions provide a complete set of functions for deriving the thermodynamic
properties of steam and water. PI Steam Functions support both English and SI units, and are
based on the ASME (American Society of Mechanical Engineers) Steam Tables, 6th Ed.

This chapter provides a comprehensive reference for setting up Steam calculations.

1.1.5 PI Batch Database
Most processes have repeatable time segments or stages. PI Batch Database technology
maps process or manufacturing events to slices of time and data, and stores these in the PI
Data Archive. Identifying these process stages and measuring their repeatability is the
purpose of PI Batch. Building this fundamental association enables powerful data and process
analysis for both traditional and non-traditional batch processes.

While industries such as chemical and pharmaceutical use PI Batch to track and analyze
batches, it is also widely used in non-batch applications to identify and track process events.
PI Batch tracks and stores batch and process based events hierarchically as Batches, Unit
Batches, or Sub Batches.

PI Batch is used in conjunction with its companion client application PI BatchView, which
allows you to view and compare events that have been collected by PI Batch and stored in the
PI System.

1.1.6 PI Totalizer Subsystem
The Totalizer Subsystem performs common calculations such as totals, averages, minimum
and maximum values, and standard deviations. The output of a calculation is stored in a PI
point.

The main difference between a Performance Equations point and a Totalizer point is that
Performance Equations are based on Archive events, while Totalizer results are based on
Snapshot events.

PI Totals are the most accurate way to represent production summary data. Totalizers can be
started and reset based on time and event, and ensure the highest accuracy in the calculation
of flow volumes and other critical variables used to monitor product transfers or production
performance. Totalizer is especially practical for totaling measurements or other process
variables at the end of specific time periods, such as the end-of-day yields.

 1.1 - PI Server Applications Overview

PI Server Applications User Guide Page 3

1.1.7 PI Alarm Subsystem
The Alarm Subsystem provides the capability to establish alarms for PI points. PI Alarm
allows you to track, manage and acknowledge alarm conditions caused by processes that
exceed user-specified parameters.

PI Alarm keeps a constant eye on process conditions. PI Alarm can monitor many variables
such as temperatures, volumes, flow rates, product quality or raw material consumption.
Alarms can be triggered by the duration of an event or deviation from norm.

PI Alarm will assess the condition as well as the priority of an event, as you define it.
Depending on the longevity and/or severity of the event, it can notify specific personnel. PI
Alarm includes client functionality through the PI-API to alert operators to selected alarms.

Data from PI Alarm are displayed in its companion client application, PI AlarmView. Alarm
conditions are historized together with an acknowledgement status.

1.1.8 PI Real-Time SQC
PI Real-Time Statistical Quality Control (SQC) uses numerical methods to monitor the
characteristics of a process, making sure they remain within pre-determined boundaries.
When Real-Time SQC perceives an unacceptable deviation in a process, PI Real-Time SQC
Alarms alert the appropriate personnel.

The PI Real-Time SQC component makes it easy to apply the Western Electric Pattern Tests
to all of your process or laboratory data collected by the PI System. PI Real-Time SQC
continually reviews any SQC tests in the PI System. It stores test results and a record of SQC
control limits back into your PI System. The results are available for viewing and analysis via
FactoryTalk Historian ProcessBook and the PI SQC Add-In.

The SQC Subsystem is a part of the PI Alarm Subsystem, which provides continual
evaluation of SQC pattern tests and the management of alarms generated from them.

PI Server Applications User Guide Page 5

Chapter 2. PI PERFORMANCE EQUATIONS SCHEDULER

This chapter explains how to create calculated points using the PI Performance Equations
(PE) Scheduler. The PE Scheduler allows you to implement sophisticated online calculations
without having to program in high-level languages.

The PE Scheduler provides an equation syntax and library of built-in functions that allow you
to perform a wide variety of calculations on PI data. (See Chapter 4: PI Performance
Equations Syntax and Functions Reference.) Performance Equations can work with
frequently-updating Snapshot and Archive values, whereas tools such as spreadsheets only
have access to Archive data and limited access to Snapshot update values.

PE Scheduler allows you to easily implement sophisticated, real-time calculations, such as:

• Unit performance
• Real-time cost accounting
• Real-time yield accounting
• Grade-based costing
• Batch summary
• Conversions and totalizations not performed by PI Totalizer
• Logical operations
• Calculating aggregates

Each Performance Equation is associated with a PI point, and the calculation results are
stored in the PI Archive as a calculated point, or PE point. You can configure a PE point to
be evaluated periodically by the Performance Equation Scheduler on a time-based basis, or
when an event is received on a specified trigger point, called event-based scheduling. The
Scheduling Method is discussed in Section 2.5.

This chapter includes the following topics:

Section 2.1, About Calculated Points, on page 6

Section 2.2, About the PE Subsystem, on page 6

Section 2.3, Procedure to Create Calculated Points, on page 7

Section 2.4, Determine Scan Classes and Point Source, on page 8

Section 2.5, Choose a Scheduling Method, on page 11

Section 2.6, Set Attributes for Calculated Points, on page 12

Section 2.7, Tips and Troubleshooting, on page 17

Chapter 2 - PI Performance Equations Scheduler

Page 6

Typically, you use Performance Equations in one of two ways:

 To create Calculated Points - points that have the PE subsystem as their source. The
PE Scheduler determines the value of these points by performing PE calculations
specified during the creation of the calculated point.

 Programmatically - via the PI-SDK, FactoryTalk Historian DataLink or FactoryTalk
Historian ProcessBook. Refer to product documentation for applicable Performance
Equations instructions.

2.1 About Calculated Points

Calculated points perform calculations on one or more PI points. Calculated points are similar
to other PI points, but they use the Performance Equation Subsystem as the point source. (The
point source is specified in pipeschd.bat in the \pi\bin directory.) The PE Scheduler performs
the calculations specified for the point at the scheduled time (based on "time" or "event") and
sends the result to the Snapshot.

Note: In this guide, Calculation Points are also referred to as PE Points and these
two terms are used interchangeably.

To create a calculated point, you put a calculation expression in the Extended Descriptor
(ExDesc) attribute field and you set the point source to the point source for the PE subsystem.
The value for the calculated point at any given time is the result of this calculation
expression. The PE Scheduler calculates a new value for the point according to the schedule
you define for it, either at regular intervals or using an event trigger.

You can use calculated points in other calculations, graph them in trend displays, or include
them in reports, just like any other point.

2.2 About the PE Subsystem

The PE Scheduler works a lot like an interface, except that it runs locally, on the PI Server. It
has an associated point source location and scan classes. The PE Scheduler evaluates the
calculation expression for each calculated point according to the schedule you configure for
that point, and sends the resulting value and timestamp to the Snapshot. Calculated points are
subject to exception and compression tests, just as other points are.

Like an interface, the PE Subsystem needs to be running in order to calculate data and send it
to the Snapshot. The PE Scheduler executable is located in the PI/bin directory and is called
pipeschd.exe.

2.2.1 Start and Stop the PE Subsystem
The PI startup script starts the PE subsystem, along with the other PI Server subsystems. Like
other PI subsystems, if your PI Server is Windows-based it’s a good idea to run the PE
subsystem as a Windows service, so that it can run in the background, independent of any
particular login session.

 2.3 - Procedure to Create Calculated Points

PI Server Applications User Guide Page 7

On Windows computers, the PE subsystem typically runs as a Windows service and you
manage it as you would any other Windows Service. The PE Scheduler service is called the
PI Performance Equation Scheduler. Open the Services control panel (Control Panel >
Administrative Tools > Services), right-click on the PI Performance Equation Scheduler
service, then start, stop or restart the service.

On UNIX, use the ps command to determine the process ID, and then use the kill command
to stop the process:

$ ps -aef | grep pipeschd

piadmin 25688 1 1 Sep 14 ? 35:22 ./pipeschd /Q /ps=C /ec=24 /f=00:

$ kill -2 25688

2.3 Procedure to Create Calculated Points

To perform a calculation on PI data, you must create a PI point; put your calculation
expression in the ExDesc attribute field; set the PointSource attribute to the point source
specified in the pipschd.bat file; and set location4 to the Scan class.

Follow these steps to perform a calculation on PI data:

1. Determine the scan classes and point source. (See Determine Scan Classes and Point
Source on page 8.)

2. Choose a scheduling method. You can use either clock-based scheduling or event-
based scheduling. (See Choose a Scheduling Method on page 11.)

3. Create the point, and set the required attributes. (See Set Attributes for Calculated
Points on page 12.) Create a new PI point using the PI tool of your choice, such as PI
Tag Configurator or piconfig. Set the required attributes as follows:

• PointSource: Set PointSource to the point source location specified in
pipeschd.bat on Windows, or pipeschd.sh on UNIX. The default point source
location for calculated points is the ASCII character, C, but you can edit
pipeschd.bat to use another single alphanumeric ASCII character.

• Location4: If you're using clock-based scheduling for this calculation, put the
appropriate scan class in location4. The available scan classes are listed in
pipeschd.bat. If you're using event-based scheduling, leave location4 blank.

Chapter 2 - PI Performance Equations Scheduler

Page 8

• ExDesc: Put your calculation expression in the Extended Descriptor (ExDesc)
attribute field. The exact ExDesc expression depends on what type of scheduling
(clock- or event-based) the point uses.

• PointClass: classic

4. Test the PI PE calculation expression. You can use the pipetest utility to check
whether an equation is syntactically correct. (See Run the pipetest Utility, on page
65.)

2.4 Determine Scan Classes and Point Source

PE Points use the scan classes and point source configuration for the PE Subsystem defined
in pipeschd.bat on Windows, and pipeschd.sh on UNIX. By default, pipeschd.bat is located
in the directory PI\bin where PI\ is the path to the main directory in your PI installation.

2.4.1 Find the PE Subsystem Point Source
To find the correct PE point source location for your PE points, open pipeschd.bat with a text
editor and look for the entry /ps= (see below, circled). The point source is usually C, but it
can be any single alphanumeric character.

Note: Make a note of the character. This is the value you must use for the
PointSource attribute on all calculated points.

Change the Point Source
From a PI Administrator account, you can change the point source for PEs. Do not do this
unless absolutely necessary. If you change the point source location, any existing calculated
points will not work unless you change the PointSource attribute to match the new location.

To change the point source location for your calculated points, follow these steps:

1. Stop the PE Subsystem.

2. Change the point source to any single alphanumeric character. This is the value you
must use for the PointSource attribute on all calculated points.

3. Make a note of the character and be sure to publish the new number to everyone who
creates PE points for this server.

 2.4 - Determine Scan Classes and Point Source

PI Server Applications User Guide Page 9

4. Edit all existing calculated points to reflect the new point source.

5. Start the PE Subsystem.

2.4.2 Specify the Optional Instance ID
Within pipeschd.bat, you can optionally specify an instance ID (/id=n). When the instance ID
is specified, PI PE Scheduler only loads and calculates PE points with Location1 attribute
matching the /id value.

2.4.3 Find the PE Subsystem Scan Classes
All the scan classes available for a calculated point are listed in pipeschd.bat. If you don't see
the scan class you need for a particular calculated point, you can add a new scan class
(requires PI Administrator privileges.)

What is a Scan Class?
A scan class is a code that the PE Subsystem and other PI interfaces use to specify
scheduling. Scan classes consist of a period, which specifies the interval between calculations
and, optionally, an offset that specifies a start time for the calculations to begin – along with a
code that specifies the UTC time to use for scheduling:

Scan Class Period
The period specifies the interval between calculations. The first two digits are the hours, the
second two the minutes, and the third two the seconds. For example, the scan class can
specify that the calculation take place every hour (01:00:00), every three minutes (00:03:00),
every 52 seconds (00:00:52), etc.

Scan Class Offset
The offset specifies a start time for the calculation. The offset is optional. If no offset is
included in the scan class, the first calculation takes place immediately. The offset is counted
from midnight of the current day and, as with the period, the first two digits are the hours, the
second two the minutes, and the third two the seconds. So, for example, the offset can specify
that the first calculation occur at midnight (00:00:00), at 1AM (01:00:00), at 1PM (13:00:00),
at 2:05PM (14:05:00), at 25 seconds past noon (12:00:25), etc.

Scan Class UTC Time Flag
The UTC time flag specifies that the scheduling should sync with Universal Time
Coordinate (UTC). The UTC time is optional. If a scan class has a frequency of more than an
hour, make it a UTC scan class by adding a comma followed by a capital U:
(/f=08:00:00,07:00:00,U). If you don't do this, then your scheduling might be inaccurate the

Chapter 2 - PI Performance Equations Scheduler

Page 10

next time there is a change to (or from) daylight savings time. UTC scan classes don't have
this problem because they force the scan class scheduling to sync with UTC, rather than local
time.

Find the PE Scan Classes
To see all currently available scan classes for your calculated points, follow these steps.

Open pipeschd.bat with a text editor and look for all the entries that begin with the characters
"backslash" f (/f). These are the scan classes. Choose the scan class that you want to use for
the calculated point and set the location4 attribute to the appropriate value.

The position within the startup command line defines the scan classes; that is, the first /f=
refers to scan class 1, the second /f= refers to scan class 2, etc. Simply add more /f=
parameters to define more scan classes. The calculated point is assigned to a scan class using
the location4 attribute. For example, if location4 is set to 2, the PE point will be evaluated
every 2 minutes.

Add New Scan Classes
You can add new scan classes, if you have PI Administrator privileges. Stop the PE
Subsystem before editing pipeschd.bat.

Add your new scan class at the end of the line containing scan classes, as the last scan class in
the list. If you add a new scan class earlier in the list, you change the location4 values for the
existing scan classes. You can add as many new scan classes as you like to the end of the
scan class list in pipeschd.bat.

Restart the PE Subsystem when you finish editing pipeschd.bat.

 2.5 - Choose a Scheduling Method

PI Server Applications User Guide Page 11

2.5 Choose a Scheduling Method

The attributes you set for a calculated point depend in part on the type of scheduling you use
for the point. Each calculated point must use either clock (time-based) scheduling or event
scheduling:

 Clock Scheduling: With clock scheduling, you use scan classes to schedule the
calculation. The PE Scheduler calculates a new value for the point at the specified
intervals, such as every hour, every five seconds, every 20 minutes, etc. You can
optionally specify an initial start time for the calculation interval.

For clock-scheduled points, define the PE calculation expression in the ExDesc
attribute field and specify a scan class in the location4 attribute field. (See Set the
ExDesc Attribute for Clock-Scheduled Points and Set the Location4 Attribute: Scan
Class, on page 13.)

 Event Scheduling: With event scheduling, you configure the calculation to occur
when a specified point gets a new Snapshot value. For example, you might want a
calculation performed whenever the point ba:level.1 receives an update event.

For event-scheduled points, put both the PE expression and the trigger tag name in
the ExDesc attribute field (see Set the ExDesc Attribute for Event-Scheduled Points
on page 15) and set the location3 attribute field to specify the timestamp of the point.
(See Set the Location3 Attribute: Timestamp, on page 13).

2.6 Set Attributes for Calculated Points

Table 2–1 lists the attributes that require a special setting for calculated points.

Table 2–1. Attributes that Require a Special Setting for Calculated Points

Attribute Requirement

ptClassName Classic.

PointSource Set to value specified in pipeschd.bat file (or
pipeschd.sh on UNIX). The default value is C.

location3 Output timestamp setting for event-based
scheduling.

location4 Put the scan class here for clock-scheduled
points. Leave blank for event-based points.

ExDesc This is where you put your performance
equation.

scan Set the scan attribute to 1 (the default value)

shutdown Marker inserted in Archive at shutdown.

All point attributes that are not listed in Table 2–1 work just the same as they do for other
points. However, the following attributes do not apply to calculated points:

• Location2

Chapter 2 - PI Performance Equations Scheduler

Page 12

• Location5
• UserInt1
• UserInt2
• UserReal1
• UserReal2
• EventTag
• InstrumentTag
• SquareRoot

2.6.1 Set the Point Source
The PointSource attribute for calculated points is defined in pipeschd.bat, discussed in Find
the PE Subsystem Point Source on page 8. The default value is C; however you can change
the defined value to any other single alphanumeric character by editing pipeschd.bat.

2.6.2 Set the Location3 Attribute: Timestamp
If the calculated point uses clock scheduling, do not set the location3 attribute. Use the
location3 attribute for event-scheduled points, to specify how PI determines the timestamp
for the calculated point. When location3 is set to 0 (the default value), set the timestamps for
the calculated point to the time when the expression is evaluated.

When location3 is set to a non-zero value, the expression is evaluated at the timestamp of the
triggering event and the timestamp of the resulting value is set to the timestamp of the
triggering event.

2.6.3 Set the Location4 Attribute: Scan Class
If the calculated point uses event scheduling, do not set the location4 attribute. If the point
uses clock scheduling, set a value for location4 to a positive non-zero integer that specifies a
valid scan class.

You select a particular scan class for a calculated point by setting the value of the location4
attribute for that point. All the scan classes available for a calculated point are listed in
pipeschd.bat (called pipeschd.sh on UNIX computers). To select the first scan class in the
list, set the location4 attribute to 1; to select the second scan class, set the location4 attribute
to 2; etc.

For an explanation of scan classes and how to configure them, see Find the PE Subsystem
Scan Classes, on page 9.

 2.6 - Set Attributes for Calculated Points

PI Server Applications User Guide Page 13

2.6.4 Set the ExDesc Attribute: Calculation Expressions
For each calculated point, specify the PE calculation for the PE Scheduler to perform. PE
calculation expressions use PE syntax and functions to define calculations, using data from
other points. PE calculation expressions are similar to arithmetical expressions. You can use
any of the standard arithmetic operators in a PE expression (such as +, -, or *) to add the
values of two points together, add a number to the value of a point, etc. You can also use
Performance Equation functions and Steam Table functions in your PE calculation
expressions (see Chapter 4, PI Performance Equations Syntax and Functions Reference, and
Chapter 5, PI Steam Functions Reference.)

You define the PE calculation expression in the Extended Descriptor (ExDesc) attribute field,
but the exact syntax you use depends on the type of scheduling you’re using. For clock-
scheduled points, you type only the PE calculation expression into the ExDesc attribute field,
but for event scheduling you must also specify the point that acts as the event trigger.

Note: If the equation begins with a single quote (') and you are working with PI Tag
Configurator, enclose the calculation expression in parentheses. Otherwise Excel will
remove the single quote.

Set the ExDesc Attribute for Clock-Scheduled Points
For clock-scheduled points, the ExDesc field contains only the calculation expression itself.
Several examples of simple calculation expressions are provided below.

The following example simply adds the current value of the sinusoid point to the current
value of the ba:level.1 point.

'sinusoid' + 'ba:level.1'

The following example takes the total time during the last hour that the sinusoid point had a
value between 30 and 70.

timegt('sinusoid', '*-1h', '*', 30) - timegt('sinusoid', '*-1h', '*', 70)

For more examples of calculation expressions, see Examples of Calculation Expressions on
page 16. For a complete reference on the PE syntax and functions, see Chapter 4, PI
Performance Equations Syntax and Functions Reference.

Set the ExDesc Attribute for Event-Scheduled Points
For event-scheduled points, the syntax for the ExDesc attribute field is:

event = tagname, CalculationExpression

where tagname is the name of the point that triggers the calculation and
CalculationExpression is the calculation expression that PE Scheduler uses to calculate the
value for the point.

For example, to set up a one-hour average of the sinusoid point that triggers whenever
sinusoid gets a new Snapshot value, use the following expression in the ExDesc attribute
field:

event=sinusoid,TagAvg('sinusoid', '*-1h', '*')

Chapter 2 - PI Performance Equations Scheduler

Page 14

The PE Scheduler uses the Snapshot value as the event trigger. This means that events that do
not enter the Snapshot do not trigger the calculation. For example, an event that does not pass
the exception reporting does not trigger a new calculation.

Character Limits on the Extended Descriptor Attribute
For both clock and event scheduling methods, there is a set limit on the number of characters
that you can use for the extended descriptor. These limits depend on the tool you use to create
your calculated point, rather than on the PE subsystem itself. In the PI TagConfigurator, the
limit is 4096 characters.

Regardless of the limits on the extended descriptor, we recommend that you keep expressions
less than 300 characters, if possible. Expressions that are much longer than that tax the
system. If you need a longer expression, consider breaking down your equation into parts and
creating calculated points to handle each of the parts. Be careful to schedule the calculations
so that PE Scheduler can perform them in the correct order. See Prevent Scheduling Errors
on page 19, for more information.

2.6.5 Set the Scan Attribute
Always set the scan attribute to 1 for calculated points. When the scan attribute is set to 0, PI
will not perform the calculations or generate any values for the point. Note that 1 is the
default value for the scan attribute, so you can usually just leave this attribute as-is.

2.6.6 Set the Shutdown Attribute
Performance Equations are not calculated if the PI Server is not running, so you should
always set the Shutdown attribute to 1. When Shutdown is set to 1, the system inserts a
shutdown event with the timestamp of the PI Server shutdown. Note that the shutdown event
is inserted only when the PI Server itself stops — it is not inserted if the PE Subsystem stops
independently of the PI Server.

2.6.7 Examples of Calculation Expressions
This section provides some helpful hints and examples for writing Performance Equations.

Totalization of Digital Point Example
In this example, the goal is to obtain the total of the number of times a point goes into a
digital state for the month. Accumulator is the PE point. OnOffSwitch is the digital point that
uses a Digital State Set with two digital states: ON and OFF.

If day(‘*’)=1 and day(PrevEvent(‘Accumulator’, ‘*’))<>1 then 0 else if

PrevVal(‘OnOffSwitch’, ‘*’) <> “ON” and ‘OnOffSwitch’ = “ON” then

'Accumulator' +1 else NoOutput()

This performance equation checks whether it is the first of the month and whether the last
event did not occur on the first of the month. If it is the first of the month, Accumulator
resets. Otherwise if the previous value of OnOffSwitch is not the digital state ON and the
current value is ON, then Accumulator increments.

 2.7 - Tips and Troubleshooting

PI Server Applications User Guide Page 15

TagTot Example
In this example, the goal is to use the TagTot function to obtain a total on a point that has
engineering units other than the default per day. RateTag has engineering units of gallons per
hour and the objective is to get the number of gallons for the previous day.

If PctGood(‘RateTag’, ‘y’, ‘t’)>85 then TagTot(‘RateTag’, ‘y’,

‘t’)*24 else “Bad Total”

First, the performance equation checks the percent of good values starting from the midnight
yesterday to the midnight of the current day. If the percentage is greater than 85, then a total
of RateTag is calculated for that given period. The total is multiplied by 24 hours per day to
obtain the units of gallons. If the percentage is less than or equal to 85, the digital state of
Bad Total is given. In this example, although the RateTag would have an integer or real
point type, digital states only in the SYSTEM Digital State Set are allowed.

TagMax vs. Max Example
In this example, the objective is to obtain the maximum of a point for the month. One method
for doing this is the TagMax function, shown in the next paragraph. An alternative method,
also shown below, uses the Max function. Here’s the calculation expression with TagMax:

If Day(‘*’)=1 and Day(PrevEvent(‘RateTag’, ‘*’))<>1 then

TagMax(‘RateTag’, Bom(PrevEvent(‘RateTag’, ‘*’)), Bom(‘*’)-‘+1s’)

else NoOutput()

The performance equation first checks that it is the beginning of the month and then finds the
maximum of RateTag from the prior month up to one second before the beginning of the
current month. Notice that the beginning of the month function Bom was not used to check
for the first of the month. The following expression:

Bom(‘*’)= ‘*’

is not as accurate as the previous expression because the current time of the scan might not
exactly equal the beginning of the month. Also the TagMax function may use too many
resources accessing the Archive for data of the previous month and slow down the system.

Here’s the calculation expression with Max:

If Day(‘*’)=1 and Day(PrevEvent(‘RateTag’, ‘*’))<>1 then

Max(TagZero(‘RateTag’), ‘RateTag’) else Max(‘RateTag’, ‘MaxTag’)

This expression has the tagname of MaxTag and compares the point to be maximized
RateTag to the current maximum in MaxTag. If the current time is the first of the month,
MaxTag is reset by comparing the maximum between the current value of RateTag to the
tagzero of RateTag. This version of obtaining a maximum makes only one Archive call as
opposed to Archive calls to obtain one month of data.

2.7 Tips and Troubleshooting

This section contains the following topics:

 Tips for Creating Calculated Points, on page 18

Chapter 2 - PI Performance Equations Scheduler

Page 16

 Common Performance Equation Problems and Errors, on page 18

 Prevent Scheduling Errors, on page 19

 Prevent Skipped Calculations, on page 19

 When Data Types Don't Match, on page 20

2.7.1 Tips for Creating Calculated Points
To avoid problems with your Performance Equations, follow these guidelines:

 Use the BadVal function to check to see if the value to be evaluated is bad, before
carrying out a calculation.

 Use the PctGood function to check if the amount of data that is good, is within an
acceptable level.

 Remember to escape anything that requires double quotes, with “double quotes”.

 Cascade calculations that occur in the same scan class by using offsets.

 Don’t use ambiguous timestamps.

 Set the Step attribute to 1 if you wish to have your data tracked as a stair-step instead
of straight-line interpolation.

2.7.2 Common Performance Equation Problems and Errors
If you do not see results for a PE point, check the following:

 Make sure the PE Subsystem is running.

 Use the pipetest utility to check your equation syntax. Check your equation for any
of the following common errors:
• Are all PI times and tag names enclosed in single quotes?
• Did you spell your tag names and function names correctly?
• If the equation text begins with the single quote character ('), did you enclose

the entire string in parentheses? Excel removes the leading single quote.
• Are you (not) using tag names that are also valid PI time expressions?

 Check the log file pipc.log in the pipc\dat directory for Windows (pipeschd.log in
pi\log for UNIX) to see if there are errors in the equations during compilation. In the
log file, error at offset x indicates that a syntax error x characters from the beginning
of the equation has been detected.

When the Performance Equation evaluator cannot perform a calculation during runtime, it
returns the error value Calc Failed. This means that the PE point has the correct equation
syntax and is running. Some possible causes are:

 Source tags have unexpected values. For example, the expression 'sinusoid' + 12
will result in Calc Failed if the value for the source tag sinusoid equals the digital
state Shutdown.

 2.7 - Tips and Troubleshooting

PI Server Applications User Guide Page 17

 The source data do not meet the minimum pctgood value in a summary calculation.
For example, TagAvg('sinusoid', '*-1h', '*', 80) will result in Calc Failed if
less than 80% of the values for sinusoid are good for the last hour.

 Runtime data type conversion fails. For example, suppose the PE point is a digital
point and has the expression 'StringTag'. If the string source tag StringTag has a
string that cannot be converted to a digital state either in the PE point’s digital state
set or the System Digital State Set, then the result will be Calc Failed.

2.7.3 Prevent Scheduling Errors
If two clock-scheduled calculations are evaluated at the same period and offset, there is no
way to determine which calculation should be performed first. If your calculated point
references other calculated points, you need to use an appropriate scan class offset to force PI
to evaluate the calculations in a specific sequence.

For example, suppose points A, B, and C all represent calculated points. Point C is calculated
as A/B (A divided by B), so point C should be calculated after points A and B are calculated. If
all three points have the same scan class, there is nothing that ensures that points A and B will
be calculated before point C is calculated. To trigger the point C calculation to take place
after the point A and point B calculations, you can use a scan class with a slight offset for
point C. For example, if you use the following scan classes for points A, B and C, then PI will
calculate point A and B every hour on the hour, and then calculate point C a second later.

Point Scan class

A /f=01:00:00,01:00:00

B /f=01:00:00,01:00:00

C /f=01:00:00,01:00:01

2.7.4 Prevent Skipped Calculations
Although the only limit on the number of performance equations on a PI Server is the number
points available to the PI Server, there are practical limits on the performance of PE
Scheduler. It is possible for the PE subsystem to get overloaded.

If a scan class is more than one scan period behind, it will skip the calculation in order to
catch up.

To see whether the PE Subsystem is skipping calculations, look at the pipc.log file located in
the pipc\dat directory (or pi\log\pipeschd.log on UNIX).

If you find that the PE Subsystem is skipping calculations, we recommend you use the Offset
attribute to stagger the calculation times so that large groups of calculations are not scheduled
for the same time. For example, by using offset times of 10 seconds, 20 seconds, 30 seconds,
and so forth, you can divide a set of five-minute calculations into thirty sub-groups to even
out the system loading.

Chapter 2 - PI Performance Equations Scheduler

Page 18

2.7.5 When Data Types Don't Match
When a calculated point's type does not match the type of the calculation, PE Scheduler
converts the data type of the result to the data type of the calculated point (unless the result is
a digital state).

In other words, for string points, the PE subsystem converts the calculation result into a
string. For digital points, PE subsystem first converts the result into a digital state within the
digital state set for the calculated point. If this initial conversion is not successful, the PE
Subsystem converts the result into a digital state within the System Digital State Set. For
numeric points, the PE subsystem converts the calculation result to an appropriate numeric
value, such as integer or float.

If the data type conversion fails (for example, it is not possible to convert the string “ABC”
into a numeric value), then the calculation expression returns the digital state Calc Failed.

PI Server Applications User Guide Page 19

Chapter 3. PI PERFORMANCE EQUATIONS
RECALCULATOR

The PI Performance Equations (PE) Recalculator is designed to adjust values of PE points
automatically. The adjustment occurs when Archive values of points that are used in PE
expressions are added, changed, or deleted. You can also use PE Recalculator as an offline
utility to reprocess explicit periods of time for specific points.

This chapter includes the following topics:

Section 3.1, Recalculator Overview, on page 21

Section 3.2, Recalculator Functionality, on page 23

Section 3.3, Types of PE Point / Time Relationships, on page 26

Section 3.4, Special PE Time Functions, on page 34

Section 3.5, Examples of Archive Retrieval / Search Functions, on page 35

Section 3.6, Recalculation Limitations, on page 36

Section 3.7, Recalculator Point Configuration, on page 37

Section 3.8, Start Recalculator as a Service, on page 39

Section 3.9, Start Recalculator Manually, on page 45

Section 3.10, Stop Recalculator, on page 46

Section 3.11, Optimize Recalculator Performance, on page 47

Section 3.12, Error and Information Messages, on page 47

3.1 Recalculator Overview

The PE Recalculator automatically adjusts values of PE points when values of points used in
PE expressions are added, changed, or deleted. Delayed or out-of-order Snapshot events can
also trigger recalculations.

Note: PE evaluations based on new Snapshot values are performed by the PE
Scheduler as described in Choose a Scheduling Method on page 11. Recalculator
covers all times before the Snapshot value of a PE point.

Chapter 3 - PI Performance Equations Recalculator

Page 20

The Recalculator supports multi-level (but not recursive) dependencies and takes into account
the resulting time dependency. Explicit time dependency expressions and time-related
functions are supported as well. Some point attributes of the dependent PE point and the
source points are considered.

Like other standard PI subsystems, Recalculator runs on a PI Server Home Node, either as a
service, or manually as a console application. When Recalculator is started as a service,
messages are sent to the PI Message Subsystem and additional debug output may be sent to a
log file. When Recalculator is started as an application, messages are written to the console.

There are several limitations and side effects to keep in mind, due to compression and other
factors, which are described in this chapter.

It is important to realize that recalculation “is expensive” as it bypasses exception reporting,
may retrieve a lot of Archive data for many tags, and may generate many out-of-order events.
All of these factors place a significant overhead on a PI Server. In addition to these
considerations, check that any affected Archive file contains the point definitions and has
sufficient space.

3.1.1 Glossary of Recalculation Terms
The following recalculation terms are used in this chapter.

Table 3–1. Glossary of Recalculation Terms

Name Description

Dependent
Point

A PI point that normally receives its values from the PE Scheduler when it
evaluates an expression. These are also the points that are modified by the PE
Recalculator when necessary.

Source Point A PI point whose tag appears in a PE expression. In general, additions, changes,
and deletions of source point values trigger recalculations.

Absolute
Timestamp

A date/time expression that evaluates to the same time regardless of the time of
the calculation. Examples include '10-oct-99' and '01-jan-70.'

Relative
Timestamp

A date/time expression defining an offset from the actual time of the calculation.
Examples include '+7h' and '-30d'.
Note: One exception to this rule occurs when a Relative Timestamp appears as one of the
two time arguments of a PI PE Archive retrieval function. If the other time is an absolute time,
it becomes the basis time.

Basis Time The time to which the offset defined by the Relative Timestamp is applied. When
evaluating PE point values, the PE Recalculator will determine the basis time of
the dependent values to be corrected and will apply the offsets from that basis.

Combination
Time

A date/time expression consisting of an absolute timestamp and a relative
timestamp as an offset. Examples include 'T+7h.'

Performance
Equation
Point

Same as Dependent Point.

 3.2 - PE Recalculator Functionality

PI Server Applications User Guide Page 21

Name Description

Inversion Changing the sign of a Relative Timestamp offset in order to define the period of
time requiring recalculation. For example, if an expression reads,
"TagVal('input', '*-1h')", then PE point values up to one hour after an
'input' event, or '*+1h', must be recalculated.

3.2 PE Recalculator Functionality

When the PE Scheduler starts, it finds the PE points by scanning the PI Point Database for
points with a specific point source, usually C.

Since the Recalculator sends events to the same PE points, it also scans the PI Point Database
on startup, scanning for the same point source. By default, all PE points are considered for
recalculation. If you wish, you may assign values to the Location1 attribute of any PE point.
The Recalculator can be configured to consider only points with a specific Location1
parameter value.

The PE Scheduler will sign up for exceptions for any event trigger points. The Recalculator
signs up for Archive events of all source points. The reason for the difference is that the
Recalculator must be aware of any changes to any source point, not just event trigger points.

Only events that were not handled in time by the PE Scheduler are considered by the
Recalculator. The timestamp of the source point event has to be older than the Snapshot time
of the corresponding dependent PE point. The delay caused by the normal scan cycle does not
trigger a recalculation.

Recalculation is done in two steps: For a source point event, first the affected PE point
periods are found. Then, all these periods are processed for existing events to replace, and
new events to insert. When inserting new events, their timestamps are derived from the
timestamps of the source events.

Generally, there are three main questions:

 Which dependent PE points are affected?

 What time range has to be recalculated?

 How do other point attributes influence the recalculation?

These questions are discussed here and lead to a definition of different recalculation types.
The recalculation types are described in a subsequent section.

3.2.1 Point Dependency Considerations
Generally, all tags used in the ExDesc field of a PE point in the PI Point Database are
classified as source tags. These tags may be used in arithmetic expressions or as function
parameters.

With the PI Server, it is possible to dynamically construct tags by concatenating string
constants and values of one or more string points. The Recalculator is unable to process
expressions that use this construct.

Chapter 3 - PI Performance Equations Recalculator

Page 22

3.2.2 Time Range Considerations
Time ranges are defined by two timestamp expressions, usually passed as two arguments to
the same PI PE function. Examples include TagAvg and FindEq. It occurs frequently that
the timestamp expression '*' is used. This is basis time for the calculation. For PE points
evaluated normally by the PE Scheduler, the basis time is the current time except for an
event-based PE point with Location3 set to one. In that case, the basis time is the trigger
event time. For the Recalculator, the basis time is in general the time of the new or changed
source point event.

Any new event for the source point not handled by the PE Scheduler will cause a series of
Archive events within the time range to be recalculated. The Recalculator must determine the
start and end time of the affected time range.

Time calculations resulting in a timestamp or in an interval can be inverted if no absolute
timestamps are involved. For example, consider a PE expression such as:

TagVal('input_pt', '*-1h')

If 'input_pt' receives a new event earlier than the Snapshot time of the PE point, its
timestamp is the basis time for recalculation. PE point events one hour after the 'input_pt'
event are affected. The minus sign is effectively inverted to a plus sign, as in '*+1h'.

Inversion also applies to time periods:

TagAvg('input_pt', '*', *-1h')

If a new event for 'input_pt' is received, its timestamp is the basis time, or '*' in the
expression. The new event affects the period '*' until '*+1h'.

If there are absolute times in an expression, it would mean that all PE point values would
have to be recalculated. In other words, if an absolute time appears in an expression, all
values after the timestamp of a new or changed event would need to be recalculated.

Time Range Examples
Tag Expression

TimeCalc If BadVal('xsource','*-8H') then NoOutput() else

Tagval('xsource','*-8H')

CalcInt TagAvg('xsource','*-1h','*')

AllCalc If BadVal('xsource') then Tagval('xsource','12-Jan-98 08:00’)

else 'xsource'

TimeCalc: In the first example, if the value of xsource at 12-Jan-98 12:12:00 is changed,
TimeCalc at 12-Jan-98 20:12:00 (8 hours later) has to be recalculated.

CalcInt: In the second example, the expression has to be recalculated for a 1-hour period past
the time of a modification of xsource.

 3.2 - PE Recalculator Functionality

PI Server Applications User Guide Page 23

AllCalc: If the value of xsource at 12-Jan-98 08:00:00 were to be modified, then all values of
the PE point after 12-Jan-98 08:00 would have to be recalculated whenever xsource is in a
bad state.

3.2.3 Clock-Scheduling vs. Event-based Scheduling
If a PE point is clock-scheduled, a new source point event causes a search for existing PE
point events up to one scan cycle after the source point event to take place. The time between
calculations depends on the Location4 attribute indicating the scan cycle defined in
pipeschd.bat.. If there is no Archive event found in the searched period, a new one is created.

In event-based calculations, no scan classes are defined and Location4 is ignored. If an event
within a default period (10 sec) does not exist, a new one is created for simple dependencies.

3.2.4 Step Point Attribute
The Step attribute defines how a trend of data values appears between events stored by PI
Server.

If Step = 0, data values are linearly interpolated between archived events for numeric points.
Changing a source point value implies changing all archived PE point values between the
previous and the next event of the source point.

If Step = 1, data values value between archived events are considered to be the same as the
previous event. Changing a source point event influences a dependent PE point between the
modified source point event and its next event. Data values prior to the modified event are not
affected.

3.2.5 Compression / Exception
Because of exception reporting and compression, not every original PE point event is found
in the PI Data Archive. The Recalculator cannot simulate the original exception or
compression algorithm because it no longer has the original Snapshot values. It recalculates
for all events of all source points, plus all existing PE point events, plus start/end of the
affected period.

There might be more Archive events after a recalculation. This might fail or take rather long
when performed on Archive periods that are no longer covered by the primary Archive file.

3.2.6 Scan and Archiving Attributes
Set the Scan attribute to 0 to turn off the PE Scheduler. The Archiving flag causes no events
to be sent to the PI Data Archive for storage.

If the Scan attribute is set to 0, then there are no values generated by the PE Scheduler at
some time in the past. If Archiving is 0, values generated by the PE Scheduler are not stored.
The times at which the Scan and Archiving attributes were edited are not recorded.

Note: The ability to recalculate events may be affected if either of these attributes
are set to 0. It is impossible to accurately correct history if there were no original
events to adjust.

Chapter 3 - PI Performance Equations Recalculator

Page 24

3.2.7 Location1
The Location1 attribute may be used to exclude points or to schedule multiple instances of
the Recalculator for performance reasons. This corresponds to the number in the /in startup
parameter or in the Instance Registry setting. By default, all PE points are examined for
recalculation.

3.3 Types of PE Point / Time Relationships

The types of the relationship between a PE point and time are summarized below, and
explained in subsequent sections.

Table 3–2. Types of PE Point / Time Relationships

Relationship Short Description

Simple The expression consists of arithmetic operations and functions.
There are no time parameters except '*'.

Multilevel Point Dependency A PE point is source for another point. Archive modifications
should trigger another recalculation.

Recursive One of the source points in the expression is the PE point.

Relative Time Shift The period to be recalculated is shifted according to the PE. No
additional event for PE point is created at source event time.

Special Event If the source event range covers the indicated event (e.g., 'T'),
the period to be recalculated is determined according to the PE.
Otherwise, the dependency relation can be ignored.

Time Period Reference The PE contains Archive functions with start and end time. Start
and End time have to be relative to a basis time ('*', 'T', etc.)

Multilevel Time Dependency The time parameter of an Archive function is the result of
another function.

Absolute Time Reference Automatic recalculation is not supported. This type of expression
can only be recalculated manually.

3.3.1 Type 1: Simple Point Relationship
This type of recalculation covers all arithmetic functions and operations and all functions
working on actual values only. Bad digital states are evaluated as with normal Performance
Equations. Other errors will not change existing Archive events.

The question of the affected time range of the PE point has to be resolved even in this case.

Tag Expression

TestCalc 100 - 'sinusoid'

T2Calc TagVal('TestCalc' , '*') * (('sinusoid'-50.0)/50.0)

 3.3 - Types of PE Point / Time Relationships

PI Server Applications User Guide Page 25

Finding Corresponding Timestamps
The main task is to find the timestamps for the modified source points that define the period
of time that needs to be recalculated. In general, the timestamp of a PE point event is different
from the timestamp of a source point. For the Simple recalculation type, the following
situations depending on point attributes are considered:

 The PE always uses the values prior to the beginning of the scan cycle. In the
example above, T2Calc is always one cycle behind TestCalc. The cycle is defined
by the scan class of the PE points and by the scan parameters in pipeschd.bat.

 To insert a value, PE uses the system time, not the timestamp of an event trigger
point by default.

As the calculated point may depend on more than one source point, the Archive is examined
for events until the next event of the modified source point. All these events have to be
recalculated. See Figure 3–1.

Inserting New Archive Events
When a new data event has been inserted for the source point, a new event of the dependent
PE point may need to be inserted as well. The Recalculator searches the Archive for the next
dependent PE point event after the trigger event. A point event found within one scan cycle
will be modified; otherwise a new event for the dependent PE point will be inserted. An
inserted event is set at the source event’s timestamp +1 sec.

Dependent

A new event is
inserted.

Additional input

We recalculate
this event too!

Source 1

Source 2

Figure 3–1. Recalculation Period on Type = Simple, Step=1, No Compression

Source Data with Step=0
If the Step attribute is 0, a modification even affects the time prior to the changed value. The
Recalculator examines the Archive in the range from the previous event to the next event of
the modified source point. All events of the PE point in this period have to be recalculated.

Chapter 3 - PI Performance Equations Recalculator

Page 26

Notice that a PE point event prior to the initiating source point may be modified. See the
exclamation point (!) in Figure 3–2.

Note: With Step = 0, entering a single event into the Data Archive always affects the
period between the previous and the next unmodified event. If you intend to enter a
single peak or to mark the last “originally good value”, you have to enter additional
events.

We recalculate all events
in this range!

!

Source

Dependent

Modified input

Figure 3–2. Recalculation Period on Type = Simple, Step=0, No Compression

Exception Reporting Algorithm
The PE Scheduler sends data to the Snapshot by exception to create events for dependent PE
points. Depending on the exception parameters, this may result in suppressing new events if
there are no relevant changes to the previous value. The compression algorithm minimizes
the amount of available Archive events. In the following considerations, this is generally
called Compression. The effect of the exception algorithm is not considered separately.

Compression on Calculated Values
There are no events in the Archive as long as the interpolated line between two events fits to
the "real" values. The exception/compression algorithm cannot be simulated when the actual
values are no longer available.

This implies extra considerations:

 The modified range of the PE point may be even larger than the affected source point
range.

 Depending on the unmodified source point’s event, a recalculation may yield
different results compared to the straight-line result of recalculating only the given
events of the PE point.

 3.3 - Types of PE Point / Time Relationships

PI Server Applications User Guide Page 27

These considerations are shown in Figure 3–3.

Source

Dependent

M odified

Source

Additional

?2

Original result based
on same source

?1

?2

?3?3

Figure 3–3. Recalculation Period on Type = Simple, Step=0, PE Point with Compression

Recalculator inserts extra events at the beginning and the end of the modified period (?3) if
necessary, so there are no new results without changed input. Due to the compression
algorithms, the new values may still be slightly different from the original interpolated
values.

Recalculator inserts extra events according to the modified source point event. Recalculator
does not insert additional events due to unmodified source events (?2).

Recalculator recalculates all existing dependent events in the time range affected by the
modified source event (?1). It does not simulate the exception reporting and compression
algorithm.

Conditional Dependency
“If-then-else” constructions are evaluated only during recalculation. The point and time
dependency is stated by parsing the expression in the ExDesc parameter for all cases on
startup.

3.3.2 Type 2: Multi-level Dependency Point Relationship
A B C …

(“x y” means x influences y, y is dependent, and x is source)

Normally, no other special considerations are required if PE points are used as source points
again. As new values of PE points are sent to the archive, there is an event on which the
Recalculator has signed up, so the standard mechanism does all the work.

Recursive Point Relationship is checked for this dependency, too.

Chapter 3 - PI Performance Equations Recalculator

Page 28

3.3.3 Type 3: Recursive Point Relationship
A B A or directly A A

Such a recursive dependency is legal; you may use it for counting, etc. The result depends
normally on “if-then-else” and on scan cycle parameters.

If a recursive dependency is detected, no automatic recalculation occurs. You may start a
complete recalculation manually by using the /execute option and stating the desired time
range. The result, however, depends on previous values and recalculations.

Examples
Tag Expression

TestCalc If BadVal('TestCalc') then 0 else (if 'TestCalc' > 9999 then 0 else

'TestCalc' + 1)

EvCount Event=CountMe, if BadVal('EvCount') then 0 else ('EvCount' + 1)

TestCalc increments by one on every scan cycle and resets if the value is bad or is larger than
9999.

EvCount shows the number of events for the point CountMe.

The BadVal() constructions are required to quit any non-numeric initial state (Shutdown,
PtCreated).

These recursive calculations are very sensitive to the previous state of the variable and may
give different results when they have already been recalculated before. In example 2
(EvCount), there is no possibility to detect all events from the Archive. Additionally, they
would generally result in a recalculation of the whole period up to now.

For these reasons, PE points depending recursively on themselves are generally excluded
from recalculations.

There is no explicit limit on the number of levels to detect a recursive dependency.

A B C … (any number of PE points) … Z A

3.3.4 Type 4: Relative Point Relationship
* - n X ; X ∈ {S, M, H, D }

This relationship type is also known as a time shift relationship. For example:

Tagval('s_pt', '*-3h')

Inverting results in * + nX, so the Recalculator schedules recalculations at '*+3h', when
's_pt' receives an Archive modification event.

 3.3 - Types of PE Point / Time Relationships

PI Server Applications User Guide Page 29

Source

Dependent

We recalculate all events in
this range!

Modified input

‘*+3h’

‘*+3h’

Figure 3–4. Type = Relative Time Shift

The algorithm described for type = Simple (without explicit time dependency) is applied to a
period shifted by the indicated offset. Extra events are not created.

For the example here, this results in a recalculation period for the dependent PE point from
t1=(prevevent(source) + 3h) to t2=(nextevent(source) + 3h). See Figure 3–4.

Note: Future references '*+nX' are syntactically correct. Based on actual values,
they result in ‘No Data’ or ‘Bad’. On recalculation, they may result in numeric
values. These are processed normally without error messages.

3.3.5 Type 5: Special Event Point Relationship
B ± n X ; B ∈ {T, Y, 1 .. 31, Mon, Tue, … }

This relationship type is also known as a Relative Time Reference.

The recalculation period may be one complete day relative to the given timestamp. The sign
of the offset fraction is inverted. Note that only changes effective at the specified special time
result in a recalculation.

Examples
Tag Expression

BASEVAL TagVal(‘xsource’,’T’)

DIFFVAL 'xsource' – TagVal('xsource','T')

BASEVAL holds the midnight value of xsource of each day. If this value changes, all
Archive values of BASEVAL for that day have to be modified. Every recalculation on this
day yields the same new result. If there are changes of xsource at other timestamps, nothing
is recalculated.

Chapter 3 - PI Performance Equations Recalculator

Page 30

DIFFVAL has to be recalculated for the whole day, when xsource at midnight is modified.
Other changes of xsource affect values of DIFFVAL only at the event timestamp of xsource,
and the period of time between the previous and next events of xsource. The period of time
between the new xsource event and the next xsource event would have to be recalculated if
the Step point attribute is 1. See Figure 3–5.

.

xsource

DIFFVAL

We recalculate all events in this range!

Modified input

 00:00 00:00

This change
influences one day

Figure 3–5. Type = Relative Time Reference

3.3.6 Type 6: Time Range Point Relationship
In the example below, any change of xsource affects the value of YSUM for the whole next
day's period.

Tag Expression

YSUM TagTot ('xsource','Y', 'T')

This dependency type requires that both time parameters be relative to the calculation time.
Expressions like '-1h' are valid as one of the time parameters. They are interpreted relative to
the other.

3.3.7 Type 7: Multi-level Time Dependency
The time parameter of an archive function is the output of another function. For example, this
expression finds the average value of sinusoid from the time yesterday at which the value of
'starttrigger' was 50 to the current time:

TagAvg('sinusoid', FindEq('starttrigger','y','t',50), '*')

For recalculation purposes, the relation to the point sinusoid is considered a Type 1 (Simple)
point relation. As the detection of the affected period does not consider the time dependency,

 3.4 - Special PE Time Functions

PI Server Applications User Guide Page 31

not all possibly affected PE events are automatically recalculated. For example an edited
value of sinusoid does not force the recalculation of the dependent PE point for the whole
next day.

The calculation itself uses the time parameters correctly, so requesting a recalculation
manually could be used as a workaround, if necessary.

3.3.8 Type 8: Absolute Time Reference Point Relationship
In the first example below, if the value of xsource at 01-Jan-98 is changed, the Recalculator
would have to calculate everything from the timestamp stated in the PE expression up to now.

In the second example below, other changes of xsource affect the value of DIFFVAL only at
the timestamp of xsource and the interval of time between the previous and next events of
xsource.

Tag Expression

BASEVAL TagVal('xsource','01-Jan-98')

DIFFVAL 'xsource' – TagVal('xsource','01-Jan-00')

A change in an absolute timestamp in an expression does not cause recalculation of the whole
Archive automatically. If this function is desired, you have to run the Recalculator as a
console application, stating which point and time period has to be recalculated.

3.4 Special PE Time Functions

Some of the time functions in the PE library change the data type of their arguments, or
extract information from timestamps. This category of time functions requires special
consideration.

3.4.1 Modify a Timestamp
There are several time functions that modify a given timestamp including Bod (), Bom (),
Bonm (), Noon (). If the timestamp parameter is relative to calculation time (normally * or
something based on it), the result refers to a special timestamp relative to the parameter. If
this timestamp is modified, the Recalculator must recalculate a whole day or a whole month.
This is similar to the "B ± n X " problem above (Type 4: Relative Time Reference). If the
timestamp parameter is absolute, the result is an absolute timestamp; an automatic
recalculation is suppressed (Type 8: Absolute Time Reference).

3.4.2 Parsetime Function
Parsetime () converts any string to a timestamp. If the input string is a constant and complete
time expression, this has the same effect as a direct time parameter in single quotes. Here
Parsetime() is not necessary (PI2 compatibility).

If the input string is an incomplete constant time expression, we have something relative to
‘*’ that evaluates similar to the previous functions.

Chapter 3 - PI Performance Equations Recalculator

Page 32

If the input string is a variable, evaluation at compile time is impossible: Any automatic
recalculation is suppressed.

3.4.3 Extract a Number from a Timestamp
Other functions extract a number out of a timestamp, including Day (), DaySec (), Hour (),
YearDay () .

These functions don’t affect the recalculation period. If the results are used in other time
expressions, they have the same effect as any other variables. The effects can only be
evaluated during the recalculation process.

3.5 Examples of Archive Retrieval / Search Functions

A simple form of filter, assuming no compression, with scan-based values; this avoids
recursive use of the PE point:

('xsource' + (PrevVal('xsource', '*')*9) / 10

Yesterday’s average value:

TagAvg('xsource', 'Y', 'T')

Performs an integration (sum) on xsource since tsource’s value first exceeded 10.0
yesterday; assuming xsource has a per day EngUnit:

TagTot(xsource, FindGt(tsource,'Y','T',10.0),'T')*24

These functions have several time parameters, defining a time range of Archive values to use.
See the limits of the Time Range Reference type, earlier in this chapter.

PrevEvent(), or NextEvent () return an absolute timestamp outside a given time range. This
means theoretically that we cannot determine the reverse time. Practically they return the
neighbor timestamp to the input timestamp. This is the same algorithm the recalculation
performs anyway (if source point’s Step=0). Therefore, no extra time dependency is
evaluated. This applies also to the functions PrevVal() and NextVal().

Note: Multilevel functions, such as PrevVal('tagname'), or PrevEvent('tagname')-
1s) are calculated properly, but determining the affected recalculation period is not
supported properly.

3.6 Recalculation Limitations

There are some restrictions and limitations on the Recalculator’s ability to reprocess
Performance Equation expressions. This section outlines these limitations.

 3.6 - Recalculation Limitations

PI Server Applications User Guide Page 33

3.6.1 Source Variables without Archive Values
If any of the source variables do not have Archive values, the recalculation results in No
Data. This is not inserted into the Archive. If the original PE Scheduler calculation created
Archive events, they are preserved. Recalculation of these equations is not performed.

3.6.2 Exact Simulation of the Original Scan Cycles
A point event found within one scan cycle will be modified; otherwise a new event for the
dependent PE point will be inserted. An inserted event is set at the source event’s timestamp
+1 sec.

3.6.3 Modifications of the Performance Equation
When you modify a PE, recalculation is not initiated. Whenever recalculation does occur, the
current expression is used. Previous expressions are not retained.

If you want to apply a new formula to past values, you must run the Recalculator explicitly
on the desired point and period.

3.6.4 Archive and Time Functions
These generally result in recalculating some period between the input event and now. If these
functions are used, they can cause a heavy amount of system load. As noted earlier, the
recalculation of the whole Archive up to now because of absolute timestamps is suppressed
on automatic recalculation.

Timestamps as a result of other embedded functions are not supported completely. If the
timestamp expression cannot be evaluated at compile time (subsystem start), a dependency
Type 1 (i.e. Simple) is assumed. This applies to expressions like:

TagVal('input_tag', PrevEvent('input_tag','*')-3600)

Not all affected PE point events might be found correctly. See the description of Type 7:
Multilevel Time Dependency for another example.

It is syntactically correct to have relative time expressions referencing future values. PE
Scheduler works on No Data and gets a Calc Failed result. If the Recalculator has to perform
this calculation, this is not considered specially. A numerical value might be returned and
stored in the archive. So there are different results without any change in the source data.

3.6.5 Unsupported Dynamic Functions
Recalculator does not support the following functions: Arma (), Delay (), Impulse (), and
MedianFilt ().

3.6.6 Incomplete Timestamps
An incomplete absolute timestamp (e.g., ‘25’ = midnight on the 25th of the actual month)
refers to the actual time of compilation, which gives different results depending on the time
of recalculation. For more details, see Set the Location3 Attribute: Timestamp, on page 13.
Avoid these expressions.

The calculation is independent of the Archive time for which it will be used.

Chapter 3 - PI Performance Equations Recalculator

Page 34

As incomplete timestamps are not absolute dates, they don’t lead to a total recalculation of
any dependent PE point. As they are not valid relative time expressions, inverting of time
dependency is not performed.

3.6.7 Blob Support
Like the PE Scheduler, the Recalculator does not handle Blob type points.

3.7 Recalculator Point Configuration

Points used by the Recalculator are completely defined by the requirements of the PE
subsystem. For more information regarding point configuration, see Chapter 2, PI
Performance Equation.

In addition, the Location1 parameter is used. The Location1 value does not influence the
operation of the PE Scheduler.

The Recalculator uses the Point Name and Step parameters from the source points. The
Recalculator signs up for events of the source points, which may belong to any point source.

The Recalculator is scheduled with the point source class of PE points, and uses the following
parameters of the dependent PE points: Extended Descriptor (ExDesc), Point Source, Scan
flag, Archiving flag, Location 4, and Point Type, as described below.

3.7.1 Point Name
The point names for the PE point and the source points follow the normal PI point-naming
conventions.

3.7.2 Extended Descriptor
The Extended Descriptor (Exdesc) contains the Performance Equation. It is analyzed to find
source points and time expressions. It is calculated to get the new Archive values.

3.7.3 Point Source
All points defined in the PI Point Database for use with this module must share the point
source of the PE subsystem. The Point Source is a single character. The standard for the PE
Subsystem is C.

3.7.4 Scan
The Scan flag must be set to 1 for the PE Scheduler to work on this point. The Recalculator
does not use or change the Scan flag.

3.7.5 Archiving
Archiving has to be set to 1 for the PE Scheduler to create Archive events of this point. The
Recalculator does not use or change the Archiving flag, but the Archiving flag must be set to
1.

 3.8 - Start Recalculator as a Service

PI Server Applications User Guide Page 35

3.7.6 Location1
By default, the Recalculator considers all PE points as candidates for recalculation and does
not use this attribute value. However, if there is a parameter "/IN=n" where n > 0) in the
startup file or an Instance value in the Registry, only points with the corresponding value in
Location1 are recalculated. This feature can be used to assign PE points into recalculation
groups.

Note: It is possible to start multiple instances of the Recalculator. Every instance
should be controlled by a different /in parameter.

3.7.7 Location4
This parameter specifies the scan class used by PE Scheduler.

3.7.8 PointType
As with the PE Scheduler, the point types Int16, Int32, Float16, Float32, Float64, Digital
and String may be used.

3.7.9 Step
This value for the source point is used to determine if any event any time prior to the
scheduled event must be examined. See Point Dependency Considerations, on page 24.

3.7.10 Other Attributes
The Recalculator does not use any other point attributes. They may be used by the PE
Scheduler and retain their normal meanings for other operations.

The following attributes are not used:

• Location2
• Location3
• Location5
• UserInt1
• UserInt2
• UserReal1
• UserReal2
• EventTag
• InstrumentTag
• Square root code

3.8 Start Recalculator as a Service

The Recalculator can run as a Windows service, to automatically recalculate PE points that
have source points that receive edits, deletions, or new delayed or out-of-order events.

Chapter 3 - PI Performance Equations Recalculator

Page 36

The Recalculator module is normally installed automatically when the PI Server is installed.
This section explains how to configure the PE Recalculator startup.

3.8.1 Configure Startup and Shutdown
The Recalculator is not set to start automatically upon system startup, even if you chose to
have the PI Server start automatically. To start Recalculator automatically, edit the startup
and shutdown scripts, and change the startup settings for the Recalculator service. You should
do both since you may start the PI Server by starting the computer, or by running the startup
script when the computer is already running.

Startup and Shutdown Scripts
Edit \pi\adm\ pisrvsitestart.bat and add the line:

net start pirecalc

Edit \pi\adm\ pisrvsitestop.bat and add the line:

net stop pirecalc

Edit \pi\adm\ pisitestart.bat and add the line:

start "PI Recalculator Subsystem" /min cmd /k ..\bin\pirecalc.exe

Configure Automatic Startup
The Recalculator may be configured for automatic startup by either of two methods:

Using the Control Panel Services Applet
Open the Control Panel and start the services applet. Locate the PI Recalculator
Subsystem in the list of services. Click the Startup button:

 3.8 - Start Recalculator as a Service

PI Server Applications User Guide Page 37

Click the Automatic radio button. The Recalculator will start automatically on your next
reboot.

Using Recalculator Command-Line Arguments
The Recalculator executable supports command-line arguments that can be used to configure
it to run as a Windows service.

Issue the following commands:

\pi\bin\pirecalc –remove

\pi\bin\pirecalc –install –auto -depend piarchss

–display "PI Recalculator Subsystem"

3.8.2 Specify Options with a Startup Script File
When the Recalculator starts, it searches for \pi\bin\pirecalc.bat. This file may contain startup
and debugging options, and can also be used as the startup file when starting the Recalculator
manually. This file is not created automatically when the PI Server is installed or upgraded.

Note: When specifying file names in the script, be sure to use full path names.

You can also set some of these options by editing the Windows NT/2000 Registry. See
Section 3.8.3, Specify Options, for details.

Recalculator Startup Options
Table 3–3 shows the command line switches for the PE Recalculator. These options are
detailed after the table.

Chapter 3 - PI Performance Equations Recalculator

Page 38

Some of these options are best used only when the Recalculator is started manually. See
section 3.9, Start Recalculator Manually, for details.

Table 3–3. Recalculator Startup Options

Parameter Description

/in=0 Interface number (corresponds to Location1 point
attribute). Omitting this parameter or a value of 0 means
ignore Location1 values.

/output=c:\….\pirecalc.log Module-specific debug log file pathname. The default
output is to the screen, if run as console application.

/ex[ecute]=tag,start[,stop][,TEST] Recalculate a specific PE point and exit. This option can
accept one timestamp to specify a point in time, or two
timestamps to specify a range. Adding the word 'TEST'
causes the display of recalculated results with no
storage in PI.
Wildcard characters can be used in the tag. If present,
an /in= startup parameter is checked, too.
This option may only be used only in manual mode.

/deb=0 Debug level. See Table 3–4 for debug level options.

These parameters of pipeschd.bat are also read and interpreted:

/f=… Scan Class frequency, optional use of multiple /f=…
-no default values provided -

/ps=C Point Source

Note: Command-line parameters are case-insensitive. You can use a leading -
(hyphen) instead of / (forward slash) as well.

Command-Line Parameter Reference

/ps = C
Specifies the point source of the points on which the module will operate. This parameter is
taken from the PE Scheduler startup script file, pipeschd.bat.

/in = 1
This parameter corresponds to the Location1 attribute of a point. If you omit this parameter
or set it to zero, all PE points, determined by the /ps parameter in pipeschd.bat, are checked
for recalculations.

/f = 00:00:30[,00:00:00]
This parameter is set in pipeschd.bat. It defines the scan frequency for different scan classes.
There is no limit on the number of scan classes. An offset may be added.

 3.8 - Start Recalculator as a Service

PI Server Applications User Guide Page 39

These parameters in combination with the Location4 point attribute determine where an
existing PE event is searched, or if a new event is created. The offset portion is not used.

/output = C:\Program Files\Rockwell Software\FactoryTalk
Historian\Server\PI\log\pirecalc.log
The /output option causes Recalculator to generate debug output and error messages and
send them to C:\Program Files\Rockwell Software\FactoryTalk
Historian\Server\PI\log\pirecalc.log. If you omit this parameter and start Recalculator
(manually) as a console application, output is sent to the console window.

If you start Recalculator as a service and the output parameter is missing, output goes to the
PI System Message Log. Use the PIGetMsg utility or PIHealthCheck to retrieve this
information. Debug messages are not sent to the PI System Message Log.

/execute = tagmask,starttime[,endtime][,TEST]
The “/execute” mode allows you to test or modify single Dependent PE points. Use this
option only when you manually start the Recalculator.

For example: "/execute=tag1,12-dec-98 15:00:00" means, recalculate the PE point tag1 at
the given timestamp, then exit.

 For starttime and endtime the PI time syntax is allowed.

Note: Do not use quotes around tagname and time. If this option contains space
characters (timestamps require a space between date and time), enclose the whole
option in double quotes.

 Tagmask is searched among the tags with the same point source as stated in
parameter /ps in pipeschd.bat.

 If a parameter /in is present, Location1 is checked, too.

 Tagmask can contain wildcard characters * and ?. All matching points are
recalculated.

 If there are two time parameters, they define a time range to be recalculated.

 If there is a single time parameter and no event exists at that time - within limits
given by the corresponding scan cycle, a new Archive event is created.

 If the additional sub-parameter TEST is applied, the results are not stored in the Data
Archive but are printed only, according to the /output parameter.

 This mode doesn’t work when run as a service.

 The option keyword may be abbreviated up to "/ex=".

/deb=0
The module is able to print additional debug information into the module-specific log file,
depending on the debug level used. The amount of log information increases with the value.
All information of lower levels is included.

Chapter 3 - PI Performance Equations Recalculator

Page 40

Table 3–4 lists allowed debug values, and output.

Table 3–4. Recalculator Debug Levels and Output

Debug
Level

Output

0 Start / Version / Number of points / Stop (As sent to Message Subsystem). Test mode
results. Internal errors.

1 Additional information about module operation. Examples: startup parameter / defaults,
results of dependency check on start/update.

2 Information about problems that will be handled by the module and will not cause data
loss. Start of a recalculation period.

3 Display result dependency. More calculation period info.

4 Print out each calculation the program performs. Only for onsite test purposes. Use this
mode if directed by OSI Tech Support. Log file might increase rather quickly.

5 More information than Level 4.

6 … 8 Additional internal debugging information

9 Maximum internal dump output.

3.8.3 Specify Options with the Windows Registry
To control Recalculator when started as a service, you can specify startup options in the
Windows NT/2000 Registry rather than creating a startup script file. Registry values are not
created automatically when the PI Server is installed or upgraded. Use the RegEdit
application to update the Registry.

You can include the following startup parameters in the Registry key
KLM\SYSTEM\CurrentControlSet\Services\pirecalc:

Startup Parameter Registry Value Name Data Type

/output DebugLogFile REG_SZ

/deb DebugLevel REG_DWORD

/in Instance REG_DWORD

Note: Startup file settings located in pi\bin\pirecalc.bat have priority over Registry
settings.

If there is no path information for DebugLogFile, the standard PI Server log directory
C:\Program Files\Rockwell Software\FactoryTalk Historian\Server\PI\log is assumed.

 3.8 - Start Recalculator as a Service

PI Server Applications User Guide Page 41

The example above shows the Recalculator service configured for a debug level of 1, with a
debug log file specified.

A normal installation has neither Registry keys nor the pirecalc.bat file.

3.8.4 Run Multiple Instances
To recalculate several subsets of Performance Equation points you may wish to run multiple
instances of pirecalc. Create a startup script for each instance, such as:

\pi\bin\pirecalc.bat

\pi\bin\pirecalc2.bat

\pi\bin\pirecalc3.bat

They should differ by the /in=# startup parameter. If they are intended to start console
applications, they may refer to the same executable, \pi\bin\pirecalc.exe. See Section 3.9,
Start Recalculator Manually, for more information.

To run multiple instances of Recalculator, create copies of pirecalc.exe and rename them, for
example:

\pi\bin\pirecalc2.exe

\pi\bin\pirecalc3.exe

Then install them as services by running

\pi\bin\pirecalc2.exe –install –auto -depend piarchss

–display "PI Recalculator Subsystem (Subset 2)"

It is necessary that corresponding .exe and .bat files have the same base names and reside in
the same directory \pi\bin\. You may change the display (icon) names. Rockwell Automation
recommends you start them with "PI." They must be unique.

Edit the start and shutdown scripts: see the instructions in Section 2.2.1, Start and Stop the
PE Subsystem, for more information. The notes there about automatic vs. manual service start
apply to the additional instances as well.

To rename the originally installed instance, you have to remove the service first. Use the
command:

Chapter 3 - PI Performance Equations Recalculator

Page 42

\pi\bin\pirecalc.exe –remove

And proceed as described above.

Alternatively to different .bat files, you may add the Instance=# Registry value as described
in Section 3.8.3, Specify Options. The Registry key pirecalc2 might look like this:

3.9 Start Recalculator Manually

You can start Recalculator as a console application instead of, or as well as, a Windows
service. This is useful if you want to watch debug message output on the screen, or to
reprocess Performance Equation expressions on demand.

3.9.1 Recalculator Startup Options
When started manually, the Recalculator interprets the same startup options as when run as a
service. See Recalculator Startup Options, on page 41.

An example of a startup script is as follows:

pirecalc.exe /deb=1 /output=c:\Program Files\Rockwell Software\FactoryTalk

Historian\Server\pi\log\pirecalc.out

You can start the Recalculator by running a batch file (such as \pi\bin\pirecalc.bat)
containing these startup options.

You can recalculate a subset of PE points if they have the same Location1 parameter. This is
specified with the /in startup parameter. Different subsets can be processed in parallel by
other instances of pirecalc, that are run as console or as a service. Running several console
application instances in parallel simply requires different startup scripts, containing different
/in parameters.

 3.10 - Stop Recalculator

PI Server Applications User Guide Page 43

3.9.2 Manual Recalculations
This section describes recalculation operations that you can perform when you start
Recalculator manually.

Recalculate a Single PE Point over a Period of Time
Use the /execute option with two timestamps. For example:

/execute=MyAvgTag,"01-dec-98","01-jan-99"

Recalculate a Single PE Point at a Specific Time
Use the /execute option with a single timestamp:

PIRECALC "/exec=petag,timestamp"

A new value is added if there is no event in the Archive at or directly (within one scan period)
after the timestamp. For example:

/execute=MyOtherTag,"30-nov-98 23:59:59"

Test Recalculation over a Period of Time
Recalculator shows the expected value of a PE point by recalculating it, but does not store the
result in the PI Data Archive:

pirecalc /exec=T2Calc,Y+7h,Y+15h,TEST

Recalculator shows T2Calc’s values from yesterday at nine o’clock in the morning, to three
o'clock in the afternoon. The Archive remains unmodified and might contain different values.
T2Calc is assumed to be a dependent PE point.

Test Recalculation at a Specific Time
Recalculator shows the expected value of a PE point by recalculating it, but does not store the
result in the PI Data Archive:

pirecalc /exec=T2Calc,Y+9h,TEST

The Recalculator shows T2Calc’s value from yesterday morning at nine o’clock. The
Archive remains unmodified and might contain a different value. T2Calc is assumed to be a
dependent PE point.

3.10 Stop Recalculator

If you start Recalculator in single execution mode (that is, manually with the parameter
/execute), the module stops itself when finished. If you start Recalculator as a console
application, use the <Ctrl>-C or <Ctrl>-<Break> key command.

If you start Recalculator as service, you can stop it via the Control Panel, or with the
command: (where PI\ is the full path of the PI directory)

PI\bin\pirecalc –stop

Chapter 3 - PI Performance Equations Recalculator

Page 44

or

net stop pirecalc

3.11 Optimize Recalculator Performance

Recalculator is intended to operate as a background task on already existing Archive events.
To limit the system load, recalculation is divided into several steps with decreasing priority:

 Find the PE point and period to be calculated, whenever triggered by a source event.

 Perform calculations of periods found in the previous step.

 Check for point attribute updates.

These steps are triggered in different cycles and are limited to a number of operations per
cycle. You cannot change the parameters controlling this behavior.

To speed up the performance of the single execution mode, select an appropriate subset of
dependent PE points using the point attribute Location1 and the /in= startup parameter.

3.12 Error and Information Messages

You can view Recalculator system (log) messages in two locations.

 The standard PI System Message Log contains general information and error
messages, such as: subsystem start / stop, used point source character, and number of
points handled. Use pigetmsg or PIHealthCheck to read the Message Log.

 You can instruct Recalculator to generate a user-configurable message log file.
Output messages to any filename with the /output startup parameter. (If you start
Recalculator as an application, the output defaults to the console window.) Configure
the error and debug information recorded with the /deb=level startup parameter. The
log also records results if you use the /execute=tagname,period,TEST startup
argument.

PI Server Applications User Guide Page 45

Chapter 4. PI PERFORMANCE EQUATIONS SYNTAX AND
FUNCTIONS REFERENCE

The Performance Equations (PE) Scheduler allows you to easily implement sophisticated,
real-time calculations, using data in the PI System. (See Chapter 2, PI Performance
Equations Scheduler.)

The PE Scheduler includes an equation syntax and a library of built-in functions, which allow
you to easily perform a wide variety of calculations on PI data. Typical calculations include
unit performance, real-time cost accounting, real-time yield accounting, heat and material
balances, batch summary, conversions and totalizations not performed by PI Totalizer, logical
operations, and calculating aggregates.

This chapter provides comprehensive instructions for using Performance Equations syntax
and functions, and includes the following topics:

Section 4.1, Performance Equations Syntax, on page 49

Section 4.2, Performance Equations Functions, on page 66

Section 4.3, List of Built-in Functions, on page 67

Section 4.4, Performance Equations Functions Reference, on page 76

4.1 Performance Equations Syntax

Performance Equations syntax includes the following topics:

 Performance Equation Syntax, on page 49

 Performance Equation Operands, on page 50

 List of all Performance Equation Operators, on page 57

 Data Types, on page 64

 Test the Performance Equation Syntax, on page 65

4.1.1 Performance Equation Syntax
Writing a Performance Equation calculation expression is very similar to writing an
expression in arithmetic. In fact, you can use any of the standard arithmetic operators in a PE
expression (such as +, -, or *) to add the values of two points together, add a number to the
value of a point, etc.

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 46

As with arithmetic expressions, the building blocks of a PE calculation expression are
operands and operators. Performance equations are simply expressions in which operators act
on operands. A basic PE expression takes the form: operand operator operand – as shown
here:

The PE Scheduler evaluates the first example as the value of TagA plus the value of TagB.
The second example is 3 minus the value of TagC. The third example is 7 times the square
root of TagD.

You can construct more complex PE expressions, just as you can in arithmetic. The PE
Scheduler performs most operations in the same order as they'd be performed in a
mathematical expression. For a complete listing of PE operator priority, see Operator
Priority, on page 63.

Use parentheses to group together expressions you want to evaluate first:

The first example above evaluates as the sum of the values of TagA and TagB, divided by the
difference of 3 minus TagC. The second example is TagA divided by the sum of TagA and
TagB. The third example is 3 plus the product of 7 and the square root of TagD.

4.1.2 Performance Equation Operands
The operands that the PE Scheduler recognizes are listed in Table 4–1. (As indicated under
Syntax Requirements, certain operands must always be enclosed in single or double quotes.)

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 47

Table 4–1. Operands in Performance Equations

Operand Type Syntax
Requirements

Examples

Numbers

(none) 1342

98.6

.0015

1.2e2

Tagnames In single quotes 'sinusoid'

'ba:level.1'

'ba.phase.1'

PI Time Expressions

In single quotes '01-dec-03'

'16-jul-94'

'*'

Strings

In double quotes "string string string"

"Now is the Winter of Our

discontent…"

"sinusoid"

Functions

Must be a PE
function

TagVal('sinusoid')

TagAvg('sinusoid')

Cos('sinusoid')

Number Operands
You can use numbers in Performance Equations. The PE Scheduler processes all numbers as
floating point numbers. Examples of numbers include:

3.14159

299792458

299792458.

0.671

.671

6.71e-1

Note: The second and third examples are equal, as are the fourth, fifth, and sixth.

4.1.3 Tagname Operands
You can use tagnames in Performance Equations to represent values from the Snapshot. You
must put the tagname in single quotes, unless you are using the tagname as a string, in which
case you must enclose it in double quotes. The PE Scheduler evaluates the tagname according
to its use it in an expression, as a function argument, or as a time expression.

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 48

Tagnames in Expressions
If you use the tagname in an expression, PE evaluates the tagname as that point's value at the
current time. For example:

3 + 'sinusoid'

is equal to the value of sinusoid at the current time (see note), plus three. The same value
results from the expression:

3 + TagVal('sinusoid', '*')

Note: The exception is when this expression is used in a PE point, the PE point is
event-based, and the Location3 attribute is set to one.

Tagnames as Function Arguments
If you use the tagname as an argument in one of the PE built-in functions, then the PE
subsystem evaluates the tagname according to the type of value expected by that particular
function.

For example, if the function expects a tagname, then PE passes a tagname to the function. If
the function expects any other data type such as a string or a number, PE Scheduler gets the
current value of the point and passes that to the function—as whatever data type is expected.

For example, the Concat function expects two or more strings as arguments. It concatenates
all the arguments into a single string:

Concat('sinusoid', 'ba:level.1')

To evaluate this expression, the PE Subsystem takes the current value of the sinusoid point
and the ba:level.1 point and passes these to the Concat function as strings. Concat then
returns a string that is composed of the value of the sinusoid point followed by the value of
the ba:level.1 point. If the current values of these points are, respectively, 85.329 and 30.478,
Concat returns the following string:

85.32930.478

Tagnames that Are Valid Time Expressions
Wherever possible, choose tagnames that cannot possibly be interpreted as time expressions.
The tagname t-151d, for example, is also a valid time expression meaning today minus 151
days. If you must work with tagnames that are also valid time expressions, use the built-in
function TagNum to ensure that the PE subsystem does not treat the tagname as a time. For
example, Abs(TagNum("t-151d")) would return the absolute Snapshot value of point t-151d.
Note that TagNum interprets a double-quoted string as the argument.

To the PE subsystem, an expression within single quotes can correspond either to a time or a
tagname. The PE Scheduler treats expressions in single-quotes as tagnames for all the built-in
functions that take a point as the first argument. (Examples include TagVal, TagAvg, and
AlmCondition). In all other cases, the PE subsystem first attempts to resolve the expression
as a time. If the expression is not a valid time, then the PE subsystem tries to resolve it to a
tagname. If the point does not exist, the subsystem returns the error Calc Failed.

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 49

For example, TagVal('t-151d') returns the Snapshot value for the point t-151d, if it exists.
However, the expression t-151d returns the date corresponding to 151 days before today—
because it is a valid time expression.

4.1.4 String Operands
Strings are sequences of any printable characters. Strings are always enclosed in double-
quotes. Some examples are:

"This is a string"

"sinusoid"

"14-Dec-97"

Note: Character strings might look like tagnames or time expressions, as in the
second and third examples above. In some cases, the string in the third example
might be interpreted as a time. The difference is that a character string is enclosed in
double quotes (for example, "string") while a tagname must be enclosed in single
quotes (for example, 'tagname') and a time expression may be enclosed in either
single or double quotes.

4.1.5 Time Expression Operands
In a PE, you can use any standard PI time expression if you enclose it in single quotes. The
following topics briefly explain PI time expressions and how to work with them in PEs. For
more information about PI time, see the PI Server System Management Guide.

 PI Time Expressions

 Tips for Working with PI Time Expressions

 Times as Strings

 Quick Reference Table of Time Syntax Examples

PI Time Expressions
PI allows three basic types of time expressions: relative time, combined time, and absolute
time.

Relative Time
Relative time expressions are some number of a number of days, hours, minutes, or
seconds, specified with either a leading plus sign or a leading minus sign.

The reference time, or starting time, for the relative time expression is usually the current
time. In PEs, we recommend you use a combined time expression, rather than a relative
time expression.

+1d

-24h

-3m

+24s

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 50

Combined Time
A combined time expression is a specific reference time, followed by a relative time
expression. In Performance Equations, you enclose the combined time expression in
single quotes (or double quotes, if you are passing the time expression to a PE function as
a string).

'*+8h'

'18-dec-02 -3m'

'T+32s'

Combined time expressions should contain only a single operator. If you add additional
operators, you get unpredictable results. For example, the following are not valid time
expressions:

'*+1d+4h'

'T-1d+12h'

Absolute Time
Absolute time expressions are everything else—in other words, any time expression that
is neither a relative nor a combined time expression is an absolute time expression. When
using absolute time expressions in PEs, put the time expression in single quotes.

'*'

'14-Dec-97'

TagVal('Sinusoid', "1-Jun-2000")

'11-Nov-96 2:00:00.0001'

't'

Tips for Working with PI Time Expressions
When working with time expressions in PEs, please follow these important guidelines:

 Use absolute or combined time expressions, rather than relative time expressions. If
you don't, depending on the context of the expression, you might get an error
message or PI might choose a starting time that is not what you expect.

 Relative and combined time expressions do not provide any special processing for
clock or calendar events such as daylight savings time boundaries. If you need
intervals based on local clock time, use Noon() and Bod() functions.

 Relative and combined time expressions contain only a single operator: either a
single plus sign (+) or a single minus sign (-). If you add additional operators, you get
unpredictable results. For example, the following are not valid time expressions:
'*+1d+4h'

'T-1d+12h'

Times as Strings
You can also pass a time expression as a string to a function that expects a string. In this case,
enclose the time expression in double quotes, rather than single quotes.

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 51

Performance Equations Time Syntax Reference
The following table provides PI time syntax examples.

Table 4–2. Examples of Time Syntax

Description Code Example Example Description

Now * * Now—current time

Midnight at specified
date and current
month

dd 25 Midnight the 25th of the
current month

Midnight at specified
date

dd-mmm-yy 25-aug-02 Midnight on August 25th 2002

Specified time at
specified date

dd-mmm-yy hh:mm:ss 25-aug-02

12:00:00

Noon on August 25th 2002

Specified hour at
current date

h: 8: 8:00 at current date

Specified hour and
day of current month,
year and minute

dd h: 25 8: 8:00 on the 25th day of the
current month

Today at 00:00:00 t t+7h Today at 7 a.m.

Yesterday at 00:00:00 y y+15h Yesterday at 3 p.m.

Day of the week at
00:00:00

sa,su,mo,tu,w,th,f mo+6.5h Monday at 6:30 a.m.

Time interval (days) #.#d 1.3d 1.3 days

Time interval (hours) #.#h 1.5h One hour and a half

Time interval (minutes #.#m 32m 32 minutes

Time interval
(seconds)

#.#s 49s 49 seconds

4.1.6 Function Operands
The PE Scheduler provides built-in functions that perform a variety of operations. You can
use any of these functions as an operand in a Performance Equation.

Numbers and Strings as Digital States
Digital state values consist of a state set specifier and a state number within that set. Each set
has a list of text names for the states. You can set a digital point with an expression that
results in either a number (specifying the offset) or a string (specifying the state name).

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 52

Comparing the Value of Digital and Numeric Points to Strings
In PEs, you can use expressions that compare the value of a digital or numeric point to a
string. For example, if the string "Run" is in the state set for digital point PumpStatTag, then
the following expression is valid:

If 'PumpStatTag' <> "Run" then 1 else 0

The state set for a numeric point is the System State Set. The System State Set is the default
state set for all points and it contains a collection of all the states that any point can use.
Examples are Shutdown, Over Range, I/O Timeout, etc. For example, the expression

'sinusoid' = "Shutdown"

is true if the numeric point sinusoid contains the digital state Shutdown from the System
Digital State Set.

Comparing a Digital State to a String Point
If you want to compare a digital state to a string point, use the DigState function to convert a
string to a digital state explicitly. For example, the following are different:

If 'StringTag' = "Shutdown" then 0 else 1

If 'StringTag' = DigState("Shutdown") then 0 else 1

The former is true if the string point contains the string "Shutdown" while the latter is true if
the point contains the digital state Shutdown.

Setting the Digital State for a Numeric or Digital Point
You can use a string to set the digital state for a numeric or digital point. When you do this,
PE Scheduler looks first in that point's state set for a state that corresponds to the string. If the
state does not exist in the point's state set, PE Scheduler searches the System Digital State Set
for the state string. If PE Scheduler cannot find the state string in either the Digital State Set
for that point or in the System Digital State Set, it returns Calc Failed. The state set for a
numeric point is the System Digital State Set.

4.1.7 List of all Performance Equation Operators
You use PE operators in PE expressions to act on operands such as tagnames, numbers, and
time expressions. Operator priority works basically as it does in math—multiplication and
division are performed before addition and subtraction, etc. You can also use parentheses to
group operations, just as you do in math. For a complete explanation of operator priority, see
Operator Priority on page 63.

Table 4–3 lists all the PE operators, according to type, with examples.

Table 4–3. PE Operators, Listed by Type, with Examples

Operator
Type

Operator

Syntax Example

Meaning
(A, B, C and D are all operands)

Arithmetic + A + B Addition: A + B

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 53

Operator
Type

Operator

Syntax Example

Meaning
(A, B, C and D are all operands)

– A – B Subtraction: A minus B

* A * B Multiplication: A times B

/ A / B Division: A divided by B

^ A ^ B Raising to a power: A to the power of B
(AB)

Mod A mod B Modulus: the remainder of A divided by
B

< A < B Less than: returns true if A is less than
B

= A = B Equal to: returns true if A equal to B

> A > B Greater than: returns true if A is greater
than B

<= A <= B Less than or equal to: returns true if A is
less than or equal to B

<> A <> B Not equal to: returns true if A is not
equal to B

Relational

>= A >= B Greater than or equal to: returns true if
A is greater than or equal to B

Not NOT A Complementation: returns true if A is 0
and False otherwise

Prefix

– - A Negation (as prefix operator): returns
the negative of A

And A and B Conjunction: returns true if operands A
& B both evaluate to true. If both A and
B are integers, returns the result of a
bitwise AND operation.

Or A or B Inclusive disjunction: returns true if
either operand A or operand B
evaluates to true. If both A and B are
integers, returns the result of a bitwise
OR operation.

in .. A in B..D Membership in a range: returns true if
the value of A is between B and D

Conjunction,
Disjunction
and Inclusion

in () A in (B1, B2,

…BN)

Membership in a discrete set: returns
true if the value of A matches any of the
values enclosed in the parentheses.

If-Then-Else
Expressions

if then

else

if A then B else

D

If-then-else expression: returns B if A is
true—otherwise it returns D

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 54

Arithmetic Operators
PE operators include the simple arithmetic operators in Table 4–4.

Table 4–4. PE Arithmetic Operators

Operator Meaning Notes

+ Addition

– Subtraction

* Multiplication

/ Division

^ Raising to a power

mod Modulus The mod operator returns the remainder after its left
operand is divided by its right operand. For example, 17
mod 3 equals 2.

For a complete list of all PE operators, see List of all Performance Equation Operators on
page 57.

Arithmetic Operations on Time Values
You can perform certain arithmetic operations on times, such as adding two time expressions,
or subtracting one absolute time expression from another. The result of the operation is one of
the following:

 A Timestamp. A timestamp is just a date and time in the PI timestamp format. For
example: 25-aug-02 12:00:00

 A Period. A period is a number of seconds.

 A Number.

Table 4–5 shows valid operations and results, where N represents a number, T represents an
absolute or combined time expression, and P represents a period.

Table 4–5. Valid Operations on Time Values

Operator Expression Result Example

T+ P T '*' + '+3h'

T+ N T '*' + 10

P + N P ('t'- 'y') + 10

+

P + P P ('t'- 'y') + ('t'-'y')

- (infix) T - P T '*' – '+3h'

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 55

Operator Expression Result Example

T - N T '*' – 10

T - T P 't' – 'y'

P - N P ('t'- 'y') – 10

P - P P ('t'- '*') - ('t'-'y')

P * N P ('t' –'y') * 5 *

N * P P 5 * ('+1d' –'+1h')

P / P N ('t'- '*') / ('t'-'y')

P / N P ('t'- '*') / 2

/

N / P N 2 / ('t'- '*')

T mod P T (see note) '*' mod ('*'-'t')

T mod N T (see note) '*' mod 2

P mod P P ('*'-'y') mod ('*'-'t')

mod

P mod N P ('*'-'y') mod 3

- (prefix) -P P -('*'-'y')

Note: The timestamp returned is the result of T mod P or T mod N added to January
1, 1970 Universal Coordinate Time (UTC). So depending on the time zone, different
results are expected; in some case, even an error value is returned. In PI for
OpenVMS systems, the use of T mod P or T mod N returns P.

Relational Operators
A relational operator (one of <, =, >, <=, <>, and >=) returns a value of 0 for false or 1 for
true. You can use these operators to compare numbers, times, digital states, or character
strings. With relational operators, you can compare bad values, or values of different types
without generating an error.

Table 4–6. Relational Operators in Performance Equations

Operator Meaning

< Less than

= Equal to

> Greater than

<= Less than or equal to

<> Not equal to

>= Greater than or equal to

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 56

Comparing Bad Values
If you're comparing two operands of the same type, and one or both operands has a bad value,
the expression returns 0, rather than an error value.

Comparing Operands of Different Types
When you use the <> operator to compare any two operands of different types, the expression
always returns a 1 (i.e., 'true'). When you use any other relational operator (anything except
<>) to compare two operands of different types, the expression returns a 0 (i.e., 'false') except
in the following cases:

 If one of the two operands is the digital type, then the PE subsystem compares the
digital operand to the digital state of the other operand, if it exists. For example:

'sinusoid' = DigState("Shutdown")

 If the sinusoid point has a digital state Shutdown, then this expression returns a value
of 1 (i.e., true). Otherwise, it returns a value of 0 (i.e., false)

 If one of the two operands is the string type and the other is neither digital nor string
type, then the PE subsystem compares the string operand to the digital state of the
other operand, if it exists. This allows the string substitution of its corresponding
digital state; i.e., Shutdown and DigState("Shutdown") would be the same.

Time Comparisons
You can perform all comparisons, including in, on times.

'*+20m' >= '*+300s'

PrevEvent('tag1', '*') > PrevEvent('tag2', '*')

If a comparison is true, the result is 1; otherwise, it is 0.

Prefix Operators
A prefix operator is simply an operator that appears to the left of its operand, for example, "-
x".

Table 4–7. Prefix Operators

Operator Meaning

– Negation

Not Complementation: Returns 1 if operand is 0 (or rounding to 0) and 0 otherwise

The expression following a prefix operator should be numeric. If you use a tagname as the
operand, make sure that the point returns a number. Note too, that even points that typically
return a number, sometimes return a digital state, such as Shutdown. Valid examples include:

-3

Not 7

-TagVal ('sinusoid')

Not Cos('ba:level.1')

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 57

-StateNo('DigitalTag')

Not TagBad('StringTag'))

The last two examples use digital and string points (DigitalTag and StringTag) but these are
used as arguments to functions that return numbers (StateNo and TagBad).

Conjunction, Disjunction and Inclusion Operators
You can use and, or, in .., and in() operators in PEs.

Table 4–8. Conjunction, Disjunction and Inclusion Operators

Operator Meaning Returns

and Conjunction Returns true if operands A & B both evaluate to true. If
both A and B are integers, returns the result of a bitwise
AND operation.

or Inclusive disjunction Returns true if either operand A or operand B evaluates
to true. If both A and B are integers, returns the result
of a bitwise OR operation.

in .. Membership in a range The in .. operator returns 1 if true and 0 if false.

in () Membership in a discrete
set

The in () operator returns 1 if true and 0 if false.

Inclusion Operator Examples
The following are two examples that use inclusion operators.

If 1 in 0 .. 2 Then 1 Else 0

The result is 1, since 1 is between 0 and 2.

If 1 in (0, 2) Then 1 Else 0

The result is 0, since 1 does not equal either 0 or 2.

Using the Inclusion Operator with Digital State Functions
You can use the in .. operator with functions that return digital states, in which case the
operator uses the offset within the Digital State Set for comparison. The digital states must all
be in the same Digital State Set. Lexical comparisons are made with character strings.

Time Comparisons
You can use the Inclusion operators (in.., in()) on time expressions. If the comparison is
true, the result is 1; otherwise, it is 0.

If-Then-Else Expressions
The if–then–else operator is a compound operator whose operands are used as follows:

if expr0 then expr1 else expr2

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 58

where expr0, expr1, and expr2 are expressions. If expr0 is true (nonzero), this operator
returns the value of expr1; it returns the value of expr2 if expr0 is false (zero).

Here are some examples:

if 'tag1' > 50 then "overlimit" else "good"

if 'tag1'= 1 then Sin('tag2') else if 'tag1'= 2 then Cos('tag2') else

Tan('tag2')

if 'tag3'<> "shutdown" then (if 'tag1' > 'tag2' then 'tag1' else 'tag2') else

"error"

'*' + (if 'tag2' = 0 then 3600 else 0)

Note: You must include the 'if,' the 'then,' and the 'else.' Nested operations are
supported.

4.1.8 Operator Priority
The PE Scheduler executes operators in order of priority, from highest to lowest. When
multiple operators have the same priority, the order of execution is either from left-to-right or
right-to-left, depending on the operator, as listed in the following table.

Table 4–9. Operator Priority

Operator Priority Order

-(prefix) 9 (done first) L-R

^ 8 R-L

Not 7 L-R

*, /, mod 6 L-R

+ , – 5 L-R

<, =, >, <=, <>, >= 4 L-R

in .., in() 3 L-R

And 2 L-R

Or 1 (done last) L-R

Note: The Not operator has a priority between ^ and *. This differs from
conventional priority schemes.

You can use parentheses anywhere to affect the order of calculation. Regardless of operator
priority, operations within parentheses are evaluated before operations outside those
parentheses. For example, (2+3) * 5 equals 25 while 2 + 3 * 5 equals 17.

4.1.9 Data Types
The PE Scheduler recognizes the following data types:

 4.1 - Performance Equations Syntax

PI Server Applications User Guide Page 59

 Number

 Character string

 Tagname

 Time

 Period

Every variable has one of these data types; every function returns one of these data types. The
PE Scheduler cannot typically use one data type where another is expected. For example, you
cannot add two character strings, or multiply two times together. Additionally, the built-in
functions might require particular data types for particular arguments.

Type Checking
At compile time, the PE subsystem checks type compatibility as far as possible. This process
catches some errors, such as trying to add a number to a character string.

However, not all type compatibility errors can be detected at compile time. The expression

'sinusoid' / 2.0

works well if sinusoid has a numeric value, but if sinusoid is equal to the digital state
Shutdown the expression returns an error (Calc Failed).

Note: Comparisons (expressions using relational operators) are an exception to this
rule. Every comparison is valid, regardless of its operand types.

4.1.10 Error Values
When the PE subsystem cannot perform a calculation during runtime, it returns the error
value Calc Failed. Error values propagate through most calculations. For example, an error
value plus one is an error value. Exceptions to this rule are:

 The BadVal and Concat functions

 The relational operators when a value of 0 is returned

To check for compile time errors on Windows-based computers, check the pipc.log file
located in the \pipc\dat\ directory. For UNIX check the pipeschd.log file located in
C:\Program Files\Rockwell Software\FactoryTalk Historian\Server\PI\log.

4.1.11 Test the Performance Equation Syntax
The pipetest utility is a command line function that checks the syntax of a Performance
Equation. There is also an System Management Tool (SMT) plug-in to test a performance
equation. (See the SMT documentation for information.) It can operate interactively, take its
input from a file or check the extended descriptor of a point.

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 60

Run the pipetest Utility
The pipetest utility is located in the pi\adm directory. To start pipetest, open a command
window, change to the pi\adm directory, and type a pipetest command. For a complete list of
pipetest commands, type:

pipetest -?

The pipetest utility is limited to equations that are 4095 characters or less and you can not
use it to test dynamic response functions.

Using pipetest in Interactive Mode
To run the pipetest utility interactively from a command prompt window, open a command
window, change to the pi\adm directory, and type:

pipetest

At the pipetest equation prompt, type in the equation you want to test. If the equation syntax
is not valid, pipetest displays a syntax error. If the syntax is valid, pipetest displays the result
of the equation.

Using pipetest in File Input Mode
You can also put one or more performance equations in a simple text file, and pass the entire
file to pipetest using the –f switch. In the text file, you put each equation on a single line.
You can include comment lines by beginning the line with an exclamation mark (!).

Here's the text from an example pipetest file, called peTestEquations.txt:

! test calculation for point A

if BadVal('sinusoid') then 0 else ('sinusoid')/25

! test calculation for point B

TimeLT('sinusoid', 'y' , 't', TagVal('sinusoid', '*'))

To test the equations in the file, type:

pipetest –f peTestEquations.txt

Each input line in turn is echoed and the evaluated result is displayed.

Check a Point's ExDesc Parameter
To check the Performance Equation of a specific point or group of points, use the –t switch
followed by a tag mask. For example:

pipetest –t sinusoi*

will process all points whose tagnames begin with the letters "sinusoi". The pipetest utility
echoes the tagname, the value of the extended descriptor field, and the evaluated result. The
pipetest utility ignores the event=tagname expression so, for example, the expression
event='sinusoid', 1+2 is the same as 1+2.

Optionally, you can also specify a PointSource character. For example, to process all points
with a point source character of C, type:

 4.2 - Performance Equations Functions

PI Server Applications User Guide Page 61

pipetest –f * C

4.2 Performance Equations Functions

In addition to all the basic arithmetic operators, the PE subsystem provides a large number of
built-in functions that you can use to perform more complex operations, such as taking the
sine or cosine of a point value, taking the average of a tag's value over time, etc.

4.2.1 Function Arguments
Functions have one or more arguments, or inputs, which are enclosed in parenthesis
following the function name. Some of the arguments may be optional. If there are several
arguments, they are separated by commas:

functionName(argument1, argument2, argument3)

The following are examples of function expressions:

Max(3, 5, 12.6, 'sinusoid')

PrevEvent('sy:arc001', '*-2h')

Sqr(Abs(TagMax('tag', 'y', 't')))

Log(if 'tag'=2 then .5 else .2)

Functions can also be nested and joined in expressions:

Avg(TagVal('TagA', 'y'), TagVal('TagB', 'y'), TagVal('TagC', 'y'))

if TagVal('TagA', '*') < TagVal('TagB', '*') then sin('TagB') else sin('TagA')

You can use a tagname in any argument where a number or character string is called for. A
tagname in single quotes is evaluated as if it had been written TagVal(tagname), which is the
same as TagVal('tagname', '*'). This gets the point's value at the "current" time for the
calculation.

If the argument calls for a number, but the point's value is a digital state when the function is
evaluated, a run-time error (Calc Failed) is generated.

4.3 List of Built-in Functions

The PE Scheduler provides a wide range of built-in functions that make it easier for you to
perform calculations on PI data. (Note that you can also use Steam Table Functions in PEs.)

Note: Immediately below, are two tables that provide a complete listing of all built-in
PE functions. One table lists functions grouped by type, and the the other is
arranged alphbetically.

4.3.1 Functions Grouped By Type
Table 4–10 lists all functions categorically, as follows.

• Math functions

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 62

• Other Math Functions
• Aggregate Functions
• Miscellaneous Functions
• PI Archive Retrieval
• PI Archive Search
• PI Archive Statistics
• Point Attributes
• Time Functions
• Dynamic Response
• Alarm Status Functions
• String Functions
• String Conversion

Table 4–10. Functions Grouped by Type

Function Type Name Meaning

Asin Arc sine

Acos Arc cosine

Atn Arc tangent

Atn2 Arc tangent (two arguments)

Cos Cosine

Cosh Hyperbolic cosine

Exp Exponential

Log Natural logarithm

Log10 Common logarithm

Sin Sine

Sinh Hyperbolic sine

Sqr Square root

Tanh Hyperbolic tangent

Math
Functions

Tan Tangent

Abs Absolute value

Float Conversion of string to number

Frac Fractional part of number

Int Integer part of number

Poly Evaluate polynomial

Round Round to nearest unit

Other Math
Functions

Sgn Numerical sign

 4.3 - List of Built-in Functions

PI Server Applications User Guide Page 63

Function Type Name Meaning

Trunc Truncate to next smaller unit

Avg Average

Max Maximum

Median Median selector

Min Minimum

PStDev Population standard deviation

SStDev Sample standard deviation

Aggregate
Functions

Total Sum

BadVal See if a value is bad (not a number or time)

Curve Get value of a curve

DigState Get digital state from a string

IsDST Test whether a time is in local daylight savings time period

IsSet Test if a PI value is annotated, substituted, or questionable

StateNo The code number of a digital state

Miscellaneous
Functions

TagBad See if a point has an abnormal state

NextEvent Time of a point's next Archive event

NextVal Point's next value after a time

PrevEvent Time of a point's previous Archive event

PrevVal Point's previous value before a time

PI Archive
Retrieval

TagVal Point's value at a time

FindEq Timestamp when point = value

FindGE Timestamp when point >= value

FindGT Timestamp when point > value

FindLE Timestamp when point <= value

FindLT Timestamp when point < value

FindNE Timestamp when point ~= value

TimeEq Total period when point = value

TimeGE Total period when point >= value

TimeGT Total period when point > value

TimeLE Total period when point <= value

TimeLT Total period when point < value

PI Archive
Search

TimeNE Total period when point ~= value

PI Archive EventCount Number of Archive events

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 64

Function Type Name Meaning

PctGood Percent of good time in a period

Range Range of minimum to maximum value

StDev Time-weighted standard deviation

TagAvg Time-weighted average

TagMean Event-weighted average

TagMax Maximum value in a period

TagMin Minimum value in a period

Statistics

TagTot Time integral over a period

TagDesc Get a point's descriptor

TagEU Get a point's engineering unit string

TagExDesc Get a point's extended descriptor

TagName Get a point's name

TagNum Get a point's ID

TagSource Get a point's point source character

TagSpan Get a point's span

TagType Get a point's type character

TagTypVal Get a point's typical value

Point
Attributes

TagZero Get a point's zero value

Bod Timestamp for beginning of the day for given time

Bom Timestamp for beginning of the month for given time

Bonm Timestamp for first of the next month for given time

Day Day of the month from a time

DaySec Seconds since midnight from time

Hour Hour from a time

Minute Minute from a times

Month Month from a time

Noon Timestamp for local noon of day of a times

ParseTime Convert character string to time

Second Second from a times

Weekday Day of the week from a times

Year Year from a time

Time
Functions

Yearday Day of the year from a time

 4.3 - List of Built-in Functions

PI Server Applications User Guide Page 65

Function Type Name Meaning

Arma Dynamic response from Auto Regressive Moving Average
model

Delay Introduce time delay

MedianFilt Select the median value of time series

Dynamic
Response

Impulse Dynamic response characterized by impulse response shape

AlmAckStat Alarm acknowledgement status code

AlmCondition Condition code number for Alarm State

AlmCondText Alarm condition as text

Alarm Status
Functions

AlmPriority Alarm priority number

Ascii ASCII character code for a character

Char String for ASCII character code(s)

Compare Wild comparison of two strings

DigText Text for a digital state

Format Formatting of a numerical number

InStr Instance of a sub-string

LCase Conversion of all characters to lower case

Len Length of a string

Left First characters in a string

LTrim Removal of blanks on the left side of a string

Mid Extraction of a sub-string from a string

Right Last characters in a string

RTrim Removal of blanks on the right side of a string

Trim Removal of blanks on both sides of a string

String
Functions

UCase Conversion of all characters to upper case

Concat Concatenate two or more strings

String String representing any PI value

String
Conversion

Text Concatenation of strings for a series of PI value arguments

4.3.2 Functions Listed Alphabetically

Table 4–11. Functions Listed Alphabetically

Name Meaning

Abs Absolute value

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 66

Name Meaning

Acos Arc cosine

AlmAckStat Alarm acknowledgement status code

AlmCondition Condition code number for Alarm State

AlmCondText Alarm condition as text

AlmPriority Alarm priority number

Arma Dynamic response from Auto Regressive Moving Average model

Ascii ASCII character code for a character

Asin Arc sine

Atn Arc tangent

Atn2 Arc tangent (two arguments)

Avg Average

BadVal See if a value is bad (not a number or time)

Bod Timestamp for beginning of the day for given time

Bom Timestamp for beginning of the month for given time

Bonm Timestamp for first of the next month for given time

Char String for ASCII character code(s)

Compare Wild comparison of two strings

Concat Concatenate two or more strings

Cos Cosine

Cosh Hyperbolic cosine

Curve Get value of a curve

Day Day of the month from a time

DaySec Seconds since midnight from time

Delay Introduce time delay

DigState Get digital state from a string

DigText Text for a digital state

EventCount Number of Archive events

Exp Exponential

FindEq Timestamp when point = value

FindGE Timestamp when point >= value

FindGT Timestamp when point > value

FindLE Timestamp when point <= value

FindLT Timestamp when point < value

 4.3 - List of Built-in Functions

PI Server Applications User Guide Page 67

Name Meaning

FindNE Timestamp when point ~= value

Float Conversion of string to number

Format Formatting of a numerical number

Frac Fractional part of number

Hour Hour from a time

Impulse Dynamic response characterized by impulse response shape

InStr Instance of a sub-string

Int Integer part of number

IsDST Test whether a time is in local daylight savings time

IsSet Test if a PI value is annotated, substituted, or questionable

LCase Conversion of all characters to lower case

Len Length of a string

Left First characters in a string

Log Natural logarithm

Log10 Common logarithm

LTrim Removal of blanks on the left side of a string

Max Maximum

Median Median selector

MedianFilt Select the median value of time series

Mid Extraction of a sub-string from a string

Min Minimum

Minute Minute from a time

Month Month from a time

NextEvent Time of a point's next Archive event

NextVal Point's next value after a time

Noon Timestamp for local noon of day of a time

ParseTime Convert character string to time

PctGood Percent of good time in a period

Poly Evaluate polynomial

PrevEvent Time of a point's previous Archive event

PrevVal Point's previous value before a time

PStDev Population standard deviation

Range Range of minimum to maximum value

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 68

Name Meaning

Right Last characters in a string

Round Round to nearest unit

RTrim Removal of blanks on the right side of a string

Second Second from a time

Sgn Numerical sign

Sin Sine

Sinh Hyperbolic sine

Sqr Square root

SStDev Sample standard deviation

StateNo The code number of a digital state

StDev Time-weighted standard deviation

String String representing any PI value

TagAvg Time-weighted average

TagBad See if a point has an abnormal state

TagDesc Get a point's descriptor

TagEU Get a point's engineering unit string

TagExDesc Get a point's extended descriptor

TagMax Maximum value in a period

TagMean Event-weighted average

TagMin Minimum value in a period

TagName Get a point's name

TagNum Get a point's ID

TagSource Get a point's point source character

TagSpan Get a point's span

TagTot Time integral over a period

TagType Get a point's type character

TagTypVal Get a point's typical value

TagVal Point's value at a time

TagZero Get a point's zero value

Tan Tangent

Tanh Hyperbolic tangent

Text Concatenation of strings for a series of PI value arguments

TimeEq Total period when point = value

 4.3 - List of Built-in Functions

PI Server Applications User Guide Page 69

Name Meaning

TimeGE Total period when point >= value

TimeGT Total period when point > value

TimeLE Total period when point <= value

TimeLT Total period when point < value

TimeNE Total period when point ~= value

Total Sum

Trim Removal of blanks on both sides of a string

Trunc Truncate to next smaller unit

UCase Conversion of all characters to upper case

Weekday Day of the week from a time

Year Year from a time

Yearday Day of the year from a time

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 70

4.4 Performance Equations Functions Reference

Abs

Return the absolute value of an integer or real number.

Format
Abs(x)

Arguments
x

Must be an integer or real number.

Returns
The absolute value of x.

Exceptions
If x is not an integer or real number, returns an error value.

Examples
Abs(1)

Abs(-2.2)

Abs('tag1')

Abs('tag1'- 'tag2')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 71

Acos

Return the inverse (or arc) cosine of an integer or real number. The inverse cosine of x is the
angle in radians whose cosine is equal to x.

Format
Acos(x)

Arguments
x

Must be a real number between -1.0 and 1.0, inclusive.

Returns
The inverse cosine of x, in radians.

Exceptions
If x is not a number, or is less than -1.0 or greater than 1.0, returns an error value.

Examples
Acos(1-.5)

Acos(-.5)

If 'tag1' < 1 and 'tag1' > -1 then Acos('tag1') else 0

See Also
Asin, Atn, Atn2, Cos, Cosh, Sin, Sinh, Tan, Tanh

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 72

AlmAckStat

Return the acknowledgement status code for an alarm point.

Format
AlmAckStat(alm)

Arguments
alm

An alarm tagname.

Returns
The acknowledgement status code for the given Alarm State. Possible values are:

0 - acknowledged (or no alarm)

1- unacknowledged

2 - missed alarm

Exceptions
If the argument is not a digital state tagname, an error condition is returned.

Examples
AlmAckStat('alarmtag')

See Also
AlmCondition, AlmCondText, AlmPriority

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 73

AlmCondition

Returns the condition code for an Alarm State.

Format
AlmCondition(alm)

Arguments
alm

An alarm tagname.

Returns
The code number of the condition for the alarm tagname.

Exceptions
If the argument is not a digital state tagname, an error is returned.

Examples
AlmCondition('alarmtag')

See Also
AlmAckStat, AlmCondText, AlmPriority

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 74

AlmCondText

Return the string for the condition of an Alarm State.

Format
AlmCondText(alm)

Arguments
alm

An alarm tagname.

Returns
The condition text for the condition represented by the alarm status.

Exceptions
If the argument is not a digital state tagname, an error condition is returned.

Examples
AlmCondText('alarmtag')

See Also
AlmAckStat, AlmCondition, AlmPriority

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 75

AlmPriority

Return the priority of an Alarm State.

Format
AlmPriority(alm)

Arguments
alm

A digital state value from a PI Alarm State Set.

Returns
The priority of the given alarm. Priorities are small positive integers. Priority 0 is an alarm
that is never unacknowledged.

Exceptions
If the argument is not from a valid Digital State Set for alarms, an error condition is returned.

Examples
AlmPriority('alarmtag')

See Also
AlmAckStat, AlmCondition, AlmCondText

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 76

Arma

Calculate dynamic response for Auto Regressive Moving average model as shown in Figure
4–1.

Format
Arma(in, runflag, (a1, a2, … aN),(b0, b1, b2, … bN))

Arguments
The denominator and numerator coefficient series are enclosed in parenthesis with a comma
between the two. There must be only one more term (b0) in the numerator than denominator.
Both in and runflag may be any expression that evaluates to a number.

in

Must be an integer or real number.

runflag

Non-zero enables filter to run.

a1,a2,…

Coefficients of past output terms.

b0, b1,b2…

Coefficients of the present and past input terms of the model.

Returns
The next output value in time series response to past and present input.

ut = a1 * ut-1 + a2 * ut-2 + … + an * ut-n + b0 * yt +

b1 * yt-1 + b2 * yt-2 + … + bn * yt-n

Where ut is model output at time t, now. ut-1 is output one sample interval in the past. yt is
the input signal at time t. If runFlag expression result is 0, the model is reset. Depending on
the number of coefficients used, Arma stores the inputs and outputs until an evaluation of the
model is available. For example, in

Arma('input_tag', 1, (0. ,1), (1, -1 ,1))

Arma stores two previous values of the input and output. Hence when the point is first
created, no good results will be given until two prior values of the input have been stored.
From then on, the two most current previous values will be stored.

Exceptions
Arma will give different results depending on which type of scheduling is used. In scan class
scheduling, the interval between time series values depends on the scan class and gives values
at evenly spaced time intervals. On the other hand, event based scheduling is dependent on a
trigger from another point. If the exception deviation is not zero, the intervals for events will

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 77

be not be evenly spaced in time and hence Arma will give results that are not trustworthy.
Arma is not supported in the pipetest utility or in FactoryTalk Historian DataLink. If the
input point is not a real number or integer, Arma will return an error.

Examples
Derivative: Arma('input_tag', 1, (0.), (1, -1))

Integration: Arma('input_tag', 1, (1.), (.05, 0.))

Second order filter: Arma('input_tag', 1, (.25,.25), (.1,.25,.15))

Δ

Δ

b1

b2

b3

bn

a1

Σ

...

Δ

Δ

Δ

Δ

Δ

Δ

a2

a3

an

b0

...

Input Signal Output

Figure 4–1. Block Diagram of ARMA Calculation Function

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 78

Ascii

Return the ASCII character code of the first character of a string.

Format
Ascii(String)

Arguments
string

Any expression evaluating to a string.

Returns
The character code of the first character of the string.

Exceptions
If the argument is not a string, an error value is returned.

Examples
Ascii("D") = 68

Ascii(string('cdm158'))

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 79

Asin

Return the inverse (or arc) sine of a number. The inverse sine of x is the angle in radians
whose sine is equal to x.

Format
Asin(x)

Arguments
x

Must be a real number between -1.0 and 1.0, inclusive.

Returns
The inverse sine of x, in radians.

Exceptions
If x is not a number, or is less than -1.0 or greater than 1.0, returns an error value.

Examples
Asin(TagVal('tag1','y'))

Asin(-0.5)

Asin('tag1')

See Also
Acos, Atn, Atn2, Cos, Cosh, Sin, Sinh, Tan, Tanh

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 80

Atn

Return the inverse (or arc) tangent of an integer or real number. The inverse tangent of x is
the angle in radians whose tangent is equal to x.

Format
Atn(x)

Arguments
x

Must be an integer or real number.

Returns
The inverse tangent of x, in radians.

Exceptions
If x is not an integer or real number, returns an error value.

Examples
Atn(1)

Atn(-2.2)

Atn('tag1')

Atn('tag1'- 'tag2')

See Also
Acos, Asin, Atn2, Cos, Cosh, Sin, Sinh, Tan, Tanh

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 81

Atn2

Calculate the inverse (or arc) tangent of a pair of numbers, which represent a point on the
plane. If you draw a line between the point whose Cartesian coordinates are (a, b) and the
origin, the angle between that line and the x-axis is the inverse tangent of (a, b).

Format
Atn2(a, b)

Arguments
a

Must be an integer or real number.

b

Must be an integer or real number.

Returns
The inverse tangent of (a, b), in radians.

Exceptions
If a or b is not an integer or real number, returns an error value.

Examples
Atn2(TagVal(‘tag1’,‘y’),TagVal(‘tag1’, ‘y’))

Atn2(1,1)

Atn2(‘tag1’, ‘tag2’)

See Also
Acos, Asin, Atn, Cos, Cosh, Sin, Sinh, Tan, Tanh

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 82

Avg

Return the average of all the arguments.

Format
Avg(x1, x2, ..., xn)

Arguments
x1...xn

May be numbers, times, or periods but all must be the same data type.

Returns
The average of the arguments. The result is the same data type as the operands.

Exceptions
Arguments whose run-time values are character strings or digital states are not included in the
average. If all values are character strings or digital states, Avg returns an error value.

Examples
Avg(TagVal('tag1','y'),TagVal('tag1', 'y'),1,2)

Avg('y', 't', '14-Dec-97', '14 8:00')

Avg('tag1', 'tag2')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 83

Badval

Test a value to see if it is bad. For real and integer points, a bad value is a digital state value.
For Digital points, a bad value is a digital state value outside its own Digital State Set.

Format
Badval(x)

Arguments
x

A value to be tested.

Returns
1 if the value is bad

0 if the value is not bad

Exceptions
Returns 1 for blob points. Returns 0 for character strings.

Examples
BadVal('tag1')

BadVal('digitaltag')

BadVal(TagVal('stringtag', '14-Dec-97 8:00:00'))

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 84

Bod

Gets the timestamp for midnight at the start of a day.

Format
Bod(time)

Arguments
time

A time expression.

Returns
Timestamp for the start of the day.

Exceptions
None.

Usage Note
This function is useful for establishing a time at a unique clock time independent of the
length of particular days.

Examples
Bod('*')

Bod('y')

Bod(FindEq('tag1', '14-Dec-97', '+17d',50))

See Also
Bom, Bonm, Noon

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 85

Bom

Gets the timestamp for midnight at the beginning of the month.

Format
Bom(time)

Arguments
time

A time expression.

Returns
Timestamp for the start of the month.

Exceptions
None.

Usage Note
This function is useful for establishing a time at a unique clock time independent of the
length of particular days.

Examples
Bom('*')

Bom(PrevEvent('tag', '*'))

Bom(FindEq('tag1', '14-Dec-97', '+17d',50))

See Also
Bod, Bonm, Noon

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 86

Bonm

Gets the timestamp for midnight at the beginning of the next month.

Format
Bonm(time)

Arguments
time

Time expression.

Returns
Timestamp for the start of the next month.

Exceptions
None.

Usage Note
This function is useful for establishing a time at a unique clock time independent of the
length of particular days.

Examples
Bonm('*')

Bonm('y')

Bonm(FindEq('tag1', '14-Dec-97', '+17d',50))

See Also
Bod, Bonm, Noon

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 87

Char

Build a string from ASCII character codes.

Format
Char(n1 [, n2, …])

Arguments
n1, n2, ...

Numeric numbers or expressions.

Returns
A string built from the character codes.

Exceptions
If an argument is not a number, returns an error.

Examples
Char(65) = "A"

Char(80, 73) = "PI"

Char(6 * 9) = "6"

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 88

Compare

Compare two strings with wild characters ("*" and "?").

Format
Compare(str1, str2 [,casesen])

Arguments
str1, str2

Strings. Str2 may contain wild characters.

casesen (optional)

Flag indicating if the comparison is case sensitive.

casesen = 0 the comparison is case insensitive (default)

casesen = 1 the comparison is case sensitive

Returns
1 if Str1 = Str2

0 otherwise

Exceptions
Wild characters in str1 are not treated as wild.

Examples
compare("?","a") = 0

compare("What","wh") = 0

compare("What","wha?") = 1

compare("What","wh*") = 1

compare("What","wh*", 1) = 0

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 89

Concat

Concatenate two or more strings.

Format
Concat(s1, s2, ..., sn)

Arguments
s1...sn

Must be character strings, or expressions yielding character strings.

Returns
The character strings, concatenated together. This function does not insert blanks between its
arguments. If you need blanks, you must add them yourself.

Note
Consider using Text, which is more general and more precise in many cases than Concat.

Examples
Concat("shut", "down") = "shutdown"

See Also
Text

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 90

Cos

Return the trigonometric cosine of an integer or real number.

Format
Cos(x)

Arguments
x

Must be an integer or real number, which represents an angle in radians.

Returns
The cosine of x.

Exceptions
If x is not an integer or real number, returns an error value.

Examples
Cos('tag1')

Cos(1)

Cos(1.1)

See Also
Acos, Asin, Atn, Atn2, Cosh, Sin, Sinh, Tan, Tanh

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 91

Cosh

Return the hyperbolic cosine of an integer or real number.

Format
Cosh(x)

Arguments
x

Must be an integer or real number.

Returns
The hyperbolic cosine of x.

Exceptions
If x is not an integer or real number, returns an error value.

Examples
Cosh('tag1')

Cosh(.9)

Cosh(1)

See Also
Acos, Asin, Atn, Atn2, Cos, Sin, Sinh, Tan, Tanh

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 92

Curve

Returns the y value of a curve given the x value.

Format
Curve(x, (x1,y1) (x2,y2) … (xn,yn))

Arguments
x

Expression evaluating to a number.

x1, y1

The first point on the curve. The xi's and yi's are numeric constants evaluated at compile
time. The values set for xi's must be in ascending order.

Returns
Returns the y value on the curve corresponding to the value of x. Linear interpolation is used
between points defining the curve. If the value of x is less than x1 then y1 is returned and if it
is greater than xn, yn is returned. The points are assumed to be ordered in the x direction
from smallest to largest.

Exceptions
If the value of x is not an integer or real number, an error value is returned.

Examples
curve('tag1', (0,100) (100,0)) //inverter

curve('tag3', (25,25) (75,75)) //limiter

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 93

Day

Extract the day of the month from a time expression.

Format
Day(time)

Arguments
time

A time expression.

Returns
The day of the month of time, in the range 1–31.

Exceptions
None.

Examples
Day('*')

Day('t')

Day(FindGt('tag1', '*-30d', '*',50))

See Also
DaySec, Hour, Minute, Month, Second, Weekday, Year, Yearday

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 94

DaySec

Extract the number of seconds since midnight from a time expression.

Format
DaySec(time)

Arguments
time

A time expression.

Returns
The number of seconds of time since midnight, in the range 0–86399.

Exceptions
None.

Usage Note
This function is the same as the Time function in the PI 2.x Performance Equation package.
For example, if the current time is 8:30 am, DaySec('*') returns 30600.

Examples
DaySec('*')

DaySec('t')

DaySec(FindGt('tag1', '*-30d', '*',50))

See Also
Day, Hour, Minute, Month, Second, Weekday, Year, Yearday

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 95

Delay

Delay line, the output tracks the input. For use in real time calculations, in pipeschd.exe for
example, this function might be a better choice than Prevvalue.

Format
Delay(x, runflag, n)

Arguments
x

Must be an integer or real number.

runflag

Non-zero enables filter to run.

n

Length of the delay, integer.

Returns
The input signal delayed by n calculation intervals. For scan class scheduling, the calculation
interval is based on the scan class. For event based scheduling, the calculation interval will be
dependent on the trigger and the exception deviation.

Exceptions
Delay is not supported in the pipetest utility or in FactoryTalk Historian DataLink. If the
input point is not a real number or integer, Delay will return an error. Delay will return Calc
Failed until n scans have elapsed after startup.

Examples
Delay('tag1',1,2)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 96

DigState

Translate a character string representing a digital state into its corresponding digital state.

Format
DigState(s1 [, x])

Arguments
s1

A character string representing a digital state.

x (optional)

A digital point in which the character string represents a digital state. If omitted, all Digital
State Sets, starting with the System Digital Set, are searched for the given string.

Returns
A digital state

Exceptions
If the character string does not represent a digital state in the Digital State Set of the reference
digital point, the function returns Calc Failed. If digital point is omitted and character string
does not represent a digital state in any of the digital sets, Calc Failed is returned.

Examples
DigState("digitalstring", 'digitaltag')

StateNo(DigState("digitalstring", 'digitaltag'))

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 97

DigText

Obtain the text corresponding to the current digital state of a point.

Format
DigText(tagname)

Arguments
tagname

A tagname that represents a digital state variable.

Returns
The text for the digital state.

Exceptions
If the argument is not a digital state tagname, an error condition is returned.

Examples
DigText('alarmtag')

DigText('cdm158')

DigText('nondigitaltag') would not compile and returns an error message

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 98

EventCount

Find the number of Archive events for a point over a given time.

Format
EventCount(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point must represent a continuous variable.

starttime

Must be a time expression representing the beginning of the time range to search.

endtime

Must be a timestamp, greater than starttime; the end of the time range to search.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must
good.

Returns
Number of Archive events for the point within the specified interval.

Exceptions
If the point has no good values or the pctgood minimum is not reached for the given time
range, returns an error value.

Caution
When endtime is a future time (for example, '*+1h'), TagCount might include the system
digital state No Data and thus is larger the number of events stored in the PI Archive. Avoid
using a future time if possible.

Examples
EventCount('tag1', 'y', '*')

EventCount('tag1', '14-Dec-97', '+1d',70)

EventCount('tag1', '14-Dec-97', '15-Dec-97')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 99

Exp

Return the exponential of an integer or real number. This is the number ex, where e =
2.7182818...

Format
Exp(x)

Arguments
x

Must be an integer or real number.

Returns
The exponential of x.

Exceptions
If x is not an integer or real number, returns an error value.

Examples
Exp('tag1')

Exp(TagVal('tag1','14-Dec-97'))

Exp(11)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 100

FindEq

Find the first time, within a range, when a point is equal to a given value.

Format
FindEq(tagname, starttime, endtime, value)

Arguments
tagname

A tagname enclosed in single quotes.

starttime

A time expression representing the beginning of the time range to search Relative times are
relative to endtime if endtime is not itself a relative time.

endtime

A time expression representing the end of the time range to search. Relative times are relative
to starttime if starttime is not itself a relative expression. If endtime is earlier than starttime,
the range is searched backwards.

value

Must be an integer or real number or digital state (character string), the value to search for.

Returns
The timestamp closest to starttime, within the given range, for which the point was equal to
the given value.

Exceptions
If the point was never equal to the given value, FindEq returns an error value.

Usage Note
FindEq interpolates between Archive events, if necessary, to find the value it is looking for.

Examples
FindEq('tag1', 't', '*',40.0)

FindEq('digitaltag', '-1d', '*', TagVal('digitaltag', '14-Dec-97'))

FindEq('digitaltag', '14-Dec-97', '*', "On")

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 101

FindGE

Find the first or last time, within a range, when a point is greater than or equal to a given
value.

Format
FindGE(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

A time expression representing the beginning of the time range to search or a time relative to
endtime, if endtime is a time.

endtime

A time expression representing the end of the time range to or a time (in seconds) relative to
starttime, if starttime is a time. If endtime is earlier than starttime, the range is searched
backwards.

value

Must be an integer or real number or digital state (character string), the value to search for.

Returns
The timestamp closest to starttime, within the given range, for which the point was greater
than or equal to the given value.

Exceptions
If the point was always less than the given value, FindGE returns an error value.

Usage Note
FindGE interpolates between archive events, if necessary, to find the value it is looking for.

Examples
FindGE('tag1', 't', '*',40.0)

FindGE('digitaltag', '-1d', '*', TagVal('digitaltag', '14-Dec-97'))

FindGE('tag1', '-1d', '*','tag2')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 102

FindGT

Find the first time, within a range, when a point is greater than a given value.

Format
FindGT(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

A time expression representing the beginning of the time range to search. Can be a time
relative to endtime if endtime is a time.

endtime

End of the time range to search, time expression or time (in seconds) relative to starttime if
starttime is a time. If this time is earlier than starttime, the range is searched backwards.

value

Must be an integer or real number or digital state (character string), the value to search for.

Returns
The timestamp closest to starttime, within the given range, for which the point was greater
than the given value.

Exceptions
If the point was never greater than the given value, FindGT returns an error value.

Usage Note
FindGT interpolates between Archive events, if necessary, to find the value it is looking for.

Examples
FindGT('tag1', 't', '*',40.0)

FindGT('tag1', '-1d', '*',40.0)

FindGT('digitaltag', '-1d', '*', TagVal('digitaltag', 'y'))

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 103

FindLE

Find the first time, within a range, when a point is less than or equal to a given value.

Format
FindLE(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search; time expression or time relative to endtime if endtime
is a time.

endtime

End of the time range to search, timestamp or time (in seconds) relative to starttime if
starttime is a time. If this time is earlier than starttime, the range is searched backwards.

value

Must be an integer or real number or digital state (character string), the value to search for.

Returns
The timestamp closest to starttime, within the given range, for which the point was less than
or equal to the given value.

Exceptions
If the point was always greater than the given value, FindLE returns an error value.

Usage Note
FindLE interpolates between Archive events, if necessary, to find the value it is looking for.

Examples
FindLE('tag1', 't', '*',40.0)

FindLE('tag1', -3600, '*',40.0)

FindLE('tag1', 'Saturday', '*',40.0)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 104

FindLT

Find the first time, within a range, when a point is less than a given value.

Format
FindLT(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search; time expression or time relative to endtime if endtime
is a time.

endtime

End of the time range to search, time expression or time (in seconds) relative to starttime if
starttime is a time. If this time is earlier than starttime, the range is searched backwards.

value

Must be an integer or real number or digital state (character string), the value to search for.

Returns
The timestamp closest to starttime, within the given range, for which the point was less than
the given value.

Exceptions
If the point was never less than the given value, FindLT returns an error value.

Usage Note
FindLT interpolates between Archive events, if necessary, to find the value it is looking for.

Examples
FindLT('tag1', 't', 3600,40.0)

FindLT('tag1', -1h, '*',40.0)

FindLT('tag1', '14-Dec-97 01:00:00.0001, '*',40.0)

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 105

FindNE

Find the first time, within a range, when a point is unequal to a given value.

Format
FindNE(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search; time expression or time relative to endtime if endtime
is a timestamp.

endtime

End of the time range to search, time expression or time (in seconds) relative to starttime if
starttime is a time. If this time is earlier than starttime, the range is searched backwards.

value

Must be an integer or real number or digital state (character string), the value to search for.

Returns
The timestamp closest to starttime, within the given range, for which the point was unequal to
the given value.

Exceptions
If the point was always equal to the given value, FindNE returns an error value.

Examples
FindNE('tag1', 'y', '*',40.0)

FindNE('tag1', '14-Dec-97', '*',40.0)

FindNE('tag1', '14-Dec-97', 'Monday',40.0)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 106

Float

Convert a string to a number.

Format
Float(x)

Arguments
x

A string or number.

Returns
A number for a numeric string and Calc Failed for a non-numeric string. If x is already a
number, x is returned.

Examples
Float(12.3) = 12.3

Float('sinusoid')

Float("-12.3") = -12.3

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 107

Format

Convert a number to string according to a format expression.

Format
Format(num, format [,num_type])

Arguments
num

A number (real or integer).

format

Format-control string. This is the same as that used by the C language function Sprintf.

num_type (optional)

Number-type character. This must be either R(eal) or I(nteger). The default is R.

Returns
A formatted string.

Examples
Format('sinusoid', "%3.3f", "R") = "66.890"

Format(45, "%3.3d") = "045"

Format(45, "%3.3d", "I") = "045"

Format(45, "%3.3d", "R") = "000" (Don't do this!)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 108

Frac

Returns the fractional part of a real number. Returns 0 for integers.

Format
Frac(x)

Arguments
x

Must be an integer or real number.

Returns
The fractional part of x.

Exceptions
If x is not an integer or real number, returns an error value.

Usage Note
By definition: Int(x) + Frac(x) = x.

Examples
Frac('tag1')

Frac(1.1)

Frac(TagVal('tag1', '14-Dec97'))

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 109

Hour

Extract the hour from a time expression.

Format
Hour(time)

Arguments
time

A time expression.

Returns
The hour of time, in the range 0–23.

Exceptions
None.

Examples
Hour('*')

Hour('Saturday')

Hour('t')

See Also
Day, DaySec, Minute, Month, Second, Weekday, Year, Yearday

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 110

Impulse

Dynamic response specified by the impulse response.

Format
Impulse(tagname, runflag, i1,i2 …)

Arguments
tagname

Must be a tagname for a numerical point.

runflag

Non-zero enables filter to run.

i1, i2, …

Unit impulse response specifying dynamic model, text sequence of numbers.

Returns
Dynamic model output as function of time.

u(t)=i1*u(t-1) + i2*u(t-2) + …

Where u(t) is the current output and u(t-1) is the output one sample interval in the past.

Exceptions
Impulse gives different results depending on which type of scheduling is used. In clock
scheduling, the interval between time series values depends on the scan class and gives values
at evenly spaced time intervals.

On the other hand, event-based scheduling is dependent on a trigger from another point. If the
exception deviation is not zero, the intervals for events are not evenly spaced in time—hence
Impulse gives results that are not trustworthy. Impulse is not supported in the pipetest utility
or in FactoryTalk Historian DataLink. If the input point is not a real number or integer,
Impulse returns an error.

Examples
Impulse('tag1',1,1,1,1)

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 111

InStr

Determine the location within a string where a sub-string match is first found.

Format
InStr([start,] str1, str2 [,casesen])

Arguments
start (optional)

An integer specifying which character in str1 to start the comparison. Must be larger than or
equal to 0.

str1, str2

Two strings and/or points with string pointtypes to be compared.

casesen (optional)

Flag indicating if the comparison is case sensitive.

casesen = 0 the comparison is case insensitive (default)

casesen = 1 the comparison is case sensitive

Returns
0 if str2 is not a sub-string of str1 starting from the start position; otherwise, the location of
character where str2 first matches the characters in str1 from the start position.

Exceptions
Wild characters are not treated as wild.

Examples
InStr("What", "At") = 3

InStr("What What What", "What") = 1

InStr("what", "At", 1) = 0

InStr(4,"what","At") = 0

InStr('StringTag', "Error") = 1 (if the tag value for 'stringtag' is "Error")

InStr('StringTag',"StringTag") = 0 (if the tag value for 'stringtag' is

"Error")

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 112

Int

Return the integer part of an integer or real number.

Format
Int(x)

Arguments
x

A number or string.

Returns
The integer part of x. If x is a string, it is first converted into a number.

Exceptions
If x is not a number or a numeric string, returns Calc Failed.

Examples
Int('tag1')

Int(1)

Int(2.1)

Int("2.1")

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 113

IsDST

Determine if a time expression is in a daylight saving time (DST) period on the local
machine.

Format
IsDST(time)

Arguments
time

A time expression.

Returns
1 if the time is in a DST period and 0 otherwise.

Exceptions
If the argument is not a time value, an error condition is returned.

Examples
IsDST('*')

IsDST('*-182.5d')

IsDST('t')

IsDST('timestringtag')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 114

IsSet

Determine if a PI value is annotated, substituted, or questionable.

Format
IsSet(pivalue, select)

Arguments
pivalue

Any PI value. May be an integer, real number, digital state, or character string.

select

A string but only the first character is considered. "a" for annotated; "s" for substituted; and
"q" for questionable. It is case-insensitive.

Returns
1 if true and 0 otherwise.

Exceptions
None.

Examples
IsSet('sinusoid', "a")

IsSet('sinusoid', "annotated")

IsSet('sinusoid', "annotatted is mispelled")

IsSet('stringtag',"annotatiiion is mispelled but it does not matter.")

IsSet('stringtag',"A")

IsSet('alarmtag1',"q")

IsSet('stringtag',"s")

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 115

LCase

Convert a string to a lowercase string.

Format
LCase(strexp)

Arguments
strexp

Must be a string.

Returns
A string that has been converted to lowercase.

Exceptions
If the argument is not a string, returns an error value.

Examples
LCase("Stringtag") = "stringtag"

LCase('Stringtag') = "error" if the Snapshot value for the stringtag equals

"Error"

See Also
UCase

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 116

Left

Determine a specified number of characters of a string from the left.

Format
Left(str, len)

Arguments
str

A string.

len

An integer.

Returns
len characters of the string from the left.

Exceptions
If the arguments are not of the required types, returns an error.

Examples
Left("Stringtag", 3) = "Str"

Left('Stringtag', 3) = "Err" if the Snapshot value for the stringtag equals

"Error"

See Also
Mid, Right

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 117

Len

Determine the length of a string.

Format
Len(str)

Arguments
str

A string.

Returns
The length of a string.

Exceptions
If the argument is not a string, returns an error value.

Examples
Len("Stringtag") = 9

Len('Stringtag') = 5 if the Snapshot value for the stringtag equals "Error"

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 118

Log

Return the natural (base-e = 2.7182818...) logarithm of an integer or real number.

Format
Log(x)

Arguments
x

Must be an integer or real number greater than zero.

Returns
The natural logarithm of x.

Exceptions
If x is zero or negative, or not a number, returns an error value.

Examples
Log('*')

Log(14)

Log(TagVal('tag1', '14-Dec-97'))

See Also
Log10

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 119

Log10

Return the common (base-10) logarithm of an integer or real number.

Format
Log10(x)

Arguments
x

Must be an integer or real number greater than zero.

Returns
The common logarithm of x.

Exceptions
If x is zero or negative, or not a number, returns an error value.

Examples
Log10('*')

Log10(14)

Log10(TagVal('tag1', '14-Dec-97'))

See Also
Log

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 120

LTrim

Remove the leading blanks from a string.

Format
LTrim(str)

Arguments
str

A string.

Returns
A string with leading blanks removed.

Exceptions
If str is not a string, an error value is returned.

Examples
LTrim(" Stringtag") = "Stringtag"

LTrim("Stringtag ") = "Stringtag "

LTrim('Stringtag') = "Error" if the Snapshot value for the stringtag equals "

Error"

See Also
RTrim, Trim

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 121

Max

Return the maximum of arguments.

Format
Max(x1, x2, ..., xn)

Arguments
x1...xn

May be numbers, times, or time periods, but all must be the same.

Returns
The maximum of the arguments. The result has the same data type as the arguments.

Exceptions
Arguments whose run-time values are digital states are ignored. If all values are digital states,
Max returns an error value.

Examples
Max('*', 'y', 'Saturday')

Max(14, 'tag1', 14.5, TagVal('tag2','14-Dec-97'))

Max('*'-'*-h', 't'-'y', TimeEq('tag1', 'y', 't',50))

See Also
Min

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 122

Median

Return the median (middle) value of three or more arguments.

Format
Median(x1, x2, ..., xn)

Arguments
x1...xn

May be only integers, real numbers, times, or time periods, but all arguments must be the
same data type.

Returns
The median value of the input arguments. If the number of arguments is even, the average of
the two middle values is returned.

Exceptions
Arguments whose run-time values are digital states are ignored. The function must have
greater than two arguments that evaluate to non-digital states; otherwise, Median returns an
error value.

Usage Note
Median allows for mixed integer and real data types. Median follows the data type of the first
argument. Hence if the first argument is a point that evaluates to an integer then all the other
entries will be converted to integers by truncation (not by rounding).

Examples
Median('*', 'y', 'Saturday')

Median(14, 'tag1', 14.5, TagVal('tag2','14-Dec-97'))

Median('*'-'*-1h', 't'-'y', TimeEq('tag1', 'y', 't',50))

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 123

MedianFilt

Return the median value of the last specified number of values of a time series.

Format
MedianFilt(tagname, runflag, number)

Arguments
tagname

Must be a numerical point.

runflag

Non-zero enables filter to run.

number

The number of series elements to be considered. A numeric constant greater than or equal to
3.

Returns
The median value of the last number values in the series of values.

Exceptions
Arguments whose run-time values are digital states are ignored. MedianFilt is not supported
in the pipetest utility or in FactoryTalk Historian DataLink. If all values are digital states,
MedianFilt returns an error value.

Examples
MedianFilt('tag1',1,3)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 124

Mid

Return a sub-string within a string.

Format
Mid(str, start [,len])

Arguments
str

A string.

start

An integer specifying the position of the first character within the string. The first character in
the string is number 1.

len (optional)

The maximum length of the returned string. The default is the length of the string.

Returns
len characters of the string to the left of (and including) the first character whose position is
specified by start.

Exceptions
If the arguments are not of the required types, an error value is returned. The maximum
number of characters that can be returned is 999.

Examples
Mid("Stringtag", 3) = "ringtag"

Mid("Stringtag", 3, 2) = "ri"

Mid('Stringtag', 1, 1) = "E" if the Snapshot value for the stringtag equals

"Error"

See Also
Left, Right

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 125

Min

Return the minimum of arguments.

Format
Min(x1, x2, ..., xn)

Arguments
x1...xn

May be numbers, times, or time periods, but all must be the same data type.

Returns
The minimum of the arguments. The result has the same data type as the arguments.

Exceptions
Arguments whose run-time values are digital states are ignored. If all values are digital states,
Min returns an error value.

Examples
Min('*', 'y', 'Saturday')

Min(14, 'tag1', 14.5, TagVal('tag2','14-Dec-97'))

Min('*'-'*-1h', 't'-'y', TimeEq('tag1', 'y', 't',50))

See Also
Max

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 126

Minute

Extract the minute from a time expression.

Format
Minute(time)

Arguments
time

A time expression.

Returns
The minute of time, in the range 0–59.

Exceptions
None.

Examples
Minute('*')

Minute('1')

Minute('*-1h')

See Also
Day, DaySec, Hour, Month, Second, Weekday, Year, Yearday

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 127

Month
Extract the month from a time expression.

Format
Month(time)

Arguments
time

A time expression.

Returns
The month of time, in the range 1–12.

Exceptions
None.

Examples
Month('*')

Month('1')

Month('*-1h')

See Also
Day, DaySec, Hour, Minute, Second, Weekday, Year, Yearday

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 128

NextEvent

Find the time of a point's next Archive event after a given time.

Format
NextEvent(tagname, time)

Arguments
tagname

A tagname.

time

A time expression.

Returns
The timestamp of the next Archive event for tagname after time.

Exceptions
If point has no Archive data after time, returns an error value.

Examples
NextEvent('tag1','*')

NextEvent('digitaltag', '*')

See Also
NextVal, PrevEvent, PrevVal, TagVal

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 129

NextVal

Find the value of a point's next Archive event after a given time.

Format
NextVal(tagname, time)

Arguments
tagname

A tagname.

time

A time expression.

Returns
The value of the next Archive event for tagname after time.

Exceptions
If point has no Archive data after time, returns an error value.

Examples
NextVal('tag1','*-1h')

NextVal('digitaltag', '14-Dec-97')

See Also
NextEvent, PrevEvent, PrevVal, TagVal

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 130

Noon

A timestamp for noon on the day of a given time expression.

Format
Noon(time)

Arguments
time

A time expression.

Returns
A timestamp corresponding to noon of the day of the input time.

Exceptions
None.

Usage Note
This function is useful for establishing a unique clock time independent of the length of
particular days.

Examples
Noon('*')

Noon('14-Dec-97')

See Also
Bod, Bom, Bonm

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 131

NoOutput

Do not send the current calculation result to PI.

Format
NoOutput()

Arguments
None

Usage Note
It is important to include the parentheses after this function (use NoOutput() instead of
NoOutput as NoOutput is an invalid syntax). This function applies only to the current
calculation. The output of this function in pipetest.exe is "NoOutput() Called".

Example
If 'PITag' < 100 or 'PItag' > 0 then 'PITag' else NoOutput()

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 132

ParseTime

Translate a PI time expression to a timestamp.

Format
ParseTime(s)

Arguments
s

Must be a character string in PI time format.

Returns
The timestamp corresponding to s.

Exceptions
If s is not a character string, or if there is a syntax error, returns an error value.

Usage Note
There is no difference between ParseTime("14-Nov-92") and the time expression '14-Nov-
92', except that the ParseTime call definitely takes more time. This is because the time
expression (enclosed in single quotes) is evaluated at compile time, not run time.

If you write ParseTime('14-Nov-92') (using single quotes, not double quotes) the parser will
detect an error, because the expression in single quotes is already translated to a timestamp at
compile time.

The expression ParseTime(":12:00:00") is not the same as the time expression ':12:00:00'.
The ParseTime expression is evaluated at runtime and translated using '*' as the relative time
base, while the time expression is evaluated at compile time and uses the time the expression
is parsed as the relative time base.

Examples
ParseTime("14-Dec-97")

ParseTime("t")

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 133

PctGood

Find the time percentage, over a given range, when a point's archived values are good.

Format
PctGood(tagname, starttime, endtime)

Arguments
tagname

A tagname.

starttime

Must be a time expression, the beginning of the time range to search.

endtime

Must be a time expression, greater than starttime; the end of the time range to search.

Returns
An integer or real number from 0.0 to 100.0: the percentage of the given time when the point
had good values.

Examples
PctGood('tag1', 'y','*')

PctGood('tag1', '-1h', '*')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 134

Poly

Evaluate the polynomial c0 + c1x + c2x2 + … +cnxn.

Format
Poly(x, c0, ..., cn)

Arguments
x

The variable. It must be an integer or real number.

c0...cn

The coefficients. There must be at least one coefficient. All must be numbers.

Returns
The value of the polynomial.

Exceptions
If x or any coefficient is not an integer or real number, Poly returns an error value.

Examples
Poly('tag1',1,1)

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 135

PrevEvent

Find the time of a point's previous Archive event before a given time.

Format
PrevEvent(tagname, time)

Arguments
tagname

A tagname.

time

A time expression.

Returns
The timestamp of the previous Archive event for tagname before time.

Exceptions
If point has no Archive data before time, returns an error value.

Examples
PrevEvent('tag1', '*')

PrevEvent('tag1','14-Dec-97')

See Also
NextEvent, NextVal, PrevVal, TagVal

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 136

PrevVal

Find the value of a point's previous Archive event before a given time.

Format
PrevVal(tagname, time)

Arguments
tagname

A tagname.

time

A time expression.

Returns
The value of the previous Archive event for tagname before time.

Exceptions
If point has no Archive data before time, returns an error value.

Examples
PrevVal('tag1', '*')

PrevVal('tag1','14-Dec-97')

See Also
NextEvent, NextVal, PrevEvent, TagVal

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 137

PStDev

Return the standard deviation of two or more arguments, where those arguments represent the
whole population. The standard deviation of a population x1...xn is

where μ is the mean of the arguments, i.e.,

n
xi∑

Format
PStDev(x1, x2, ..., xn)

Arguments
x1...xn

May be numbers or time expressions, but all must be the same.

Returns
The standard deviation of the arguments. If the arguments are numbers, the result is a
number; if the arguments are times or time periods, the result is a time period.

Exceptions
Arguments whose run-time values are digital states are ignored. If all values are digital states,
PStDev returns an error value.

Usage Note
In most cases you should use Sstdev instead of PstDev. Sstdev calculates the standard
deviation of a sample.

Examples
PStDev('tag1', 'tag2')

PStDev('*','14-Dec-97', 'y')

PStDev('*'-'y','14-Dec-97'-'*', '-1h')

See Also
SStDev

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 138

Range

Find the difference between a point's maximum and minimum values during a given time,
according to values stored in the PI Archive.

Format
Range(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point should represent a continuous variable.

starttime

Must be a time expression, the beginning of the time range to search.

endtime

Must be a time expression, greater than starttime; the end of the time range to search.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must
good.

Returns
The difference between the point's maximum and minimum values during the given time.

Exceptions
If the point has no good values or the pctgood minimum is not reached in the given time
range, returns an error value.

Caution
The OverRangeStat and UnderRangeStat digital states are not taken into account when
calculating this value.

Examples
Range('tag1', 'y', '*')

Range('tag1','-1h', 'y')

Range('tag1','y', '+1h',70)

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 139

Right

Determine a specified number of characters of a string from the right.

Format
Right(str, len)

Arguments
str

A string.

len

An integer.

Returns
len characters of the string from the right.

Exceptions
If the arguments are not of the required types, an error value is returned.

Examples
Right("Stringtag", 3) = "tag"

Right('Stringtag', 4) = "rror" if the Snapshot value for the stringtag equals

"Error"

Right("Stringtag", 20) = "Stringtag"

See Also
Left, Mid

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 140

Round

Round a number or time to the nearest unit.

Format
Round(x [, unit])

Arguments
x

Must be an integer or real number or time expression.

unit (optional)

The size of the unit to round to. If x is a number, unit must be a number. If x is a time
expression or time period, unit must be a time period. If unit is omitted, Round rounds to the
nearest integer (for a number) or second (for a time period).

Returns
The nearest value to x which is an integer multiple of unit. Returns the same data type as x.
For more information, see the examples below.

Exceptions
If x is a string, or if unit is of the wrong data type, returns an error value.

Examples

Expression Value Comments

Round(12.499) 12.0 Round to nearest integer

Round(12.500) 13.0 Half a unit rounds up

Round(12.8, 10) 10.0 Round to nearest ten

Round('14-Dec-97 11:47, '+1h') 14-Dec-97 12:00 Round to nearest hour (returns timestamp)

Round('18:47' –'15:00','+1h') 10800 Round period to nearest hour (returns
period in seconds)

Note: Round to the nearest day results in a timestamp of the closest day in UTC time and not
local time.

Usage Note
If x is time and unit is omitted this routine has no effect: times are accurate only to 1 second.

See Also

Trunc

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 141

RTrim

Trim trailing blanks from a string.

Format
RTrim(str)

Arguments
str

A string.

Returns
The source string with trailing blanks removed.

Exceptions
If str is not a string, an error value is returned.

Examples
RTrim("Stringtag ") = "Stringtag" "

RTrim(" Stringtag") = " Stringtag"

RTrim('Stringtag') = "Error" if the Snapshot value for the stringtag equals

"Error "

See Also
LTrim, Trim

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 142

Second

Extract the second from a time expression.

Format
Second(time)

Arguments
time

A time expression.

Returns
The second of time, in the range 0–59.

Exceptions
None.

Examples
Second('*')

Second('y')

Second('*-1h')

See Also
Day, DaySec, Hour, Minute, Month, Weekday, Year, Yearday

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 143

Sgn

Return a representation of the numerical sign of a number.

Format
Sgn(x)

Arguments
x

Must be an integer or real number.

Returns
-1 if x < 0.
0 if x = 0.
1 if x > 0.

Exceptions
If x is not an integer or real number, returns an error value.

Examples
Sgn('tag1')

Sgn(1)

Sgn(0)

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 144

Sin

Return the trigonometric sine of a number.

Format
Sin(x)

Arguments
x

Must be an integer or real number, which represents an angle in radians.

Returns
The sine of x.

Exceptions
If x is not a number, returns an error value.

Examples
Sin('tag1')

Sin(1)

Sin(1.1)

See Also
Acos, Asin, Atn, Atn2, Cos, Cosh, Sinh, Tan, Tanh

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 145

Sinh

Return the hyperbolic sine of a number.

Format
Sinh(x)

Arguments
x

Must be an integer or real number.

Returns
The hyperbolic sine of x.

Exceptions
If x is not a number, returns an error value.

Examples
Sinh('tag1')

Sinh(1)

Sinh(0.9)

See Also
Acos, Asin, Atn, Atn2, Cos, Cosh, Sin, Tan, Tanh

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 146

Sqr

Return the square root of a number.

Format
Sqr(x)

Arguments
x

Must be an integer or real number greater than or equal to zero.

Returns
The square root of x.

Exceptions
If x is negative, or is not a number, returns an error value.

Examples
Sqr('tag1')

Sqr(2)

Sqr(2.1)

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 147

SStDev

Return the standard deviation of two or more arguments, where those arguments represent a
sample of a larger population. The standard deviation of a sample x1...xn is equal to

 ()
1

2

−

−∑
n
xi μ

Where μ is the sample mean, i.e.,

n
xi∑

Format
SStDev(x1, x2, ..., xn)

Arguments
x1...xn

May be numbers or time expressions, but all must be the same.

Returns
The sample standard deviation of the arguments. If the arguments are numbers, the result is a
number; if they are times or time periods, the result is a time period (number of seconds).

Exceptions
Arguments whose run-time values are digital states are ignored. If there are not at least two
numeric values, SStDev returns a zero.

Usage Note
In the rare case where you have the entire population, rather than a sample, you might use the
function PstDev, rather than SStDev.

Examples
SStDev('tag1', 'tag2', TagVal('tag1', 'y'))

SStDev('y', 't', '14-Dec-97')

SStDev(1, 2, 1.1)

See Also
PStDev

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 148

StateNo

Translate a digital state into its corresponding state number.

Format
StateNo(digstate)

Arguments
digstate

A digital state value.

Returns
The offset into the Digital State Set corresponding to digstate.

Exceptions
If a point is passed as digstate that is not a digital point, returns an error value.

Usage Note
A digital state may appear more than once in the digital state Table. In this case, the value
that StateNo returns may vary. If digstate is the value of a digital point, StateNo returns a
code number appropriate for that point.

Examples
StateNo('digitaltag')

StateNo(TagVal('digitaltag', '*-1h'))

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 149

StDev

Find the time-weighted standard deviation of a point over a given time, according to values
stored in the PI Archive.

Format
StDev(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point must represent a continuous variable.

starttime

Must be a time expression representing the beginning of the time range to search.

endtime

Must be a time expression, greater than starttime; representing the end of the time range to
search.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must be
good.

Returns
The point's time-weighted standard deviation over the given time.

Exceptions
If the point has no good values or the PctGood minimum is not reached for the given time
range, returns an error value.

Caution
If the point has few good Archive values during the time period, this function's result may not
be trustworthy. Use the PctGood function to find out what percentage of the values is good.

Examples
StDev('tag1', 'y', '*')

StDev('tag1', '14-Dec-97', '+1d',85)

StDev('tag1', '14-Dec-97', '15-Dec-97')

See Also
PctGood

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 150

String

Convert any value to a string.

Format
String(anyvalue)

Arguments
anyvalue

Any expression. It may be of any of the normal PI System data types.

Returns
The string representing the value argument.

Exceptions
None.

Examples
String(12.23) = "12.23"

String('sinusoid')

String('pidigital')

String('*')

String("Hello, PI user!") = "Hello, PI user! "

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 151

TagAvg

Find the time-weighted average value of a point over a given time, according to values stored
in the PI Archive.

Format
TagAvg(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point must represent a continuous variable.

starttime

Must be a time expression representing the beginning of the time range to search.

endtime

Must be a time expression, greater than starttime; representing the end of the time range to
search.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must be
good.

Returns
The point's time-weighted average value over the given time.

Exceptions
If the point has no good values or the pctgood minimum is not reached for the given time
range, returns an error value.

Caution
If the point has few good Archive values during the time period, this function's result may not
be trustworthy. Use the PctGood function to find out what percentage of the values are good.

Examples
TagAvg('tag1', 'y', '*')

TagAvg('tag1', '14-Dec-97', '+1d',70)

TagAvg('tag1', '14-Dec-97', '15-Dec-97')

See Also
PctGood

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 152

TagBad

Test if a point has an abnormal state at a given time. If the point's type is R or I, any digital
state is abnormal. If the point is type D, the states that are defined for that point are normal;
all others are abnormal.

Format
Tagbad(tagname [, time])

Arguments
tagname

A tagname.

time (optional)

A time expression. If omitted, the current time ('*') is used.

Returns
0 if the point's state at time is normal, 1 if it is abnormal.

Exceptions
If point does not exist, or has no archived value at time, returns an error value.

Usage Note
Badval can test any value or expression; TagBad can only test a point.

Examples
TagBad('tag1', '*')

TagBad('digitaltag', '14-Dec-97')

TagBad('tag1', 'y')

See Also
Badval

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 153

TagDesc

Get a point's descriptor from the Point Database.

Format
TagDesc(tagname)

Arguments
tagname

A tagname.

Returns
The point's descriptor.

Exceptions
If point does not exist, returns an error value.

Examples
TagDesc('tag1')

TagDesc('digitaltag')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 154

TagEU

Get a point's engineering unit string from the Point Database.

Format
TagEU(tagname)

Arguments
tagname

A tagname.

Returns
The point's engineering units.

Exceptions
If point does not exist, returns an error value.

Examples
TagEU('tag1')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 155

TagExDesc

Get a point's extended descriptor from the Point Database.

Format
TagExDesc(tagname)

Arguments
tagname

A tagname.

Returns
The point's extended descriptor.

Exceptions
If point does not exist, returns an error value.

Examples
TagExDesc('tag1')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 156

TagMax

Find the maximum value of a point during a given time, according to values stored in the PI
Archive.

Format
TagMax(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname.

starttime

A time expression indicating the beginning of the time range to search. Relative times are
relative to endtime, if endtime is not itself a relative time. For example:

TagMax('tag1', '-1h', '*',95)

Here, the starttime is one hour before the endtime, which is now ('*').

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must be
good.

Returns
The point's maximum value during the given time.

Exceptions
If the point has no good values or the pctgood minimum is not reached for the given time
range, returns an error value.

Caution
The OverRange digital state is not taken into account when calculating this value.

Examples
TagMax('tag1', 'y', '*')

TagMax('tag1', '-1h', '*',95)

TagMax('tag1', '14-Dec-97', '+1h')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 157

TagMean

Find the average value of a point over a given time, according to values stored in the PI
Archive.

Format
TagMean(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point must represent a continuous variable.

starttime

Must be a time expression representing the beginning of the time range to search.

endtime

Must be a time expression, greater than starttime; representing the end of the time range to
search.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must
good.

Returns
The point's average value over the given time. Notice that the average is not time-weighted.

Exceptions
If the point has no good values or the pctgood minimum is not reached for the given time
range, returns an error value. Unlike some other summary functions, TagMean does not
interpolate any value on the boundary. Thus, if there is no Archive event between the
specified interval, an error value is returned.

Caution
If the point has few good Archive values during the time period, this function's result may not
be trustworthy. Use the PctGood function to find out what percentage of the values is good.

Examples
TagMean('tag1', 'y', '*')

TagMean('tag1', '14-Dec-97', '+1d',70)

TagMean('tag1', '14-Dec-97', '15-Dec-97')

See Also
PctGood

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 158

TagMin

Find the minimum value of a point during a given time, according to values stored in the PI
Archive.

Format
TagMin(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point should represent a continuous variable.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

Relative times are relative to starttime, if starttime is not itself a relative time. This time must
be after starttime.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must
good.

Returns
The point's minimum value during the given time.

Exceptions
If the point has no good values or the pctgood minimum is not reached for the given time
range, returns an error value.

Caution
The UnderRange digital state is not taken into account when calculating this value.

Examples
TagMin('tag1', 'y', '*')

TagMin('tag1', '-1h', '*',90)

TagMin('tag1', '14-Dec-97', '+1h')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 159

TagName

Get a point's name from the Point Database.

Format
TagName(tag)

Arguments
tagname

A tagname.

Returns
The point's name.

Exceptions
If point does not exist, returns an error value.

Examples
TagName('tag1')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 160

TagNum

Get a point's number from the Point Database.

Format
TagNum(string)

Arguments
string

A tagname in double quotes.

Returns
The point's number.

Exceptions
If point does not exist, returns an error value.

Examples
TagNum("tag1")

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 161

TagSource

Get a point's point source character from the Point Database.

Format
TagSource(tagname)

Arguments
tagname

A tagname.

Returns
The point's point source character.

Exceptions
If point does not exist, returns an error value.

Examples
TagSource('tag1')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 162

TagSpan

Get a point's span from the Point Database.

Format
TagSpan(tagname)

Arguments
tagname

A tagname.

Returns
The point's span. If the point's type is Digital this is an integer whose value is the number of
digital states defined for the point.

Examples
TagSpan('tag1')

TagSpan('digitaltag')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 163

TagTot

Find the totalized value (time integral) of a point over a given time, according to values
stored in the PI Archive.

Format
TagTot(tagname, starttime, endtime [, pctgood])

Arguments
tagname

A tagname. This point must represent a continuous process flow.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time.

pctgood (optional)

Minimum time percentage over the given time range, that the point's archived values must be
good.

Returns
The point's totalized value over the given time.

Exceptions
If the point has no good values or the PctGood minimum is not reached for the given time
range, returns an error value.

Caution
If the point has few good Archive values during the time period, this function's result may not
be trustworthy. Use the PctGood function to find out what percentage of the value is good.

Usage Note
The system chooses a scale factor such that the integral will be correct only if the flow is
expressed in units per day. If the flow is expressed in units per hour, or per some other time
unit, you must multiply this result by a conversion factor. The conversion factor equals the
number of actual flow time units in a day.

For instance, if you totalize a point measured in gallons per minute, you must multiply the
result of TagTot by 1440 to get the answer in gallons. This conversion factor is not related to
the time period you are totalizing over; it is strictly a function of the point's engineering units.

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 164

Some PI sites have the default total period configured to be per-hour rather than per-day. If
you are at one of these sites, your conversion factor will differ.

Examples
TagTot('tag1', 'y', '*')

TagTot('tag1', '-1h', '*',85)

TagTot('tag1', '14-Dec-97', '+1h')

See Also
PctGood

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 165

TagType

Get a point's type character (I, R, or D) from the Point Database.

Format
TagType(tagname)

Arguments
tagname

A tagname.

Returns
The point's type character.

Exceptions
If point does not exist, returns an error value.

Examples
TagType('tag1')

TagType('digitaltag')

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 166

TagTypVal

Get a point's typical value from the Point Database.

Format
TagTypVal(tagname)

Arguments
tagname

A tagname.

Returns
The point's typical value. If the point's type is R or I, this is a number; if the point's type is D,
this is a digital state (character string).

Exceptions
If point does not exist, returns an error value.

Examples
TagTypVal('tag1')

TagTypVal('digitaltag')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 167

TagVal

Find a point's Archive value at a given time.

Format
TagVal(tagname [, time])

Arguments
tagname

A tagname.

time (optional)

A time expression. If you omit this argument, '*' is used.

Returns
The archived value of tagname at time. This value is interpolated unless the point has
resolution code 4.

Exceptions
If point does not exist, or has no archived value at time, returns an error value.

Examples
TagVal('tag1')

TagVal('digitaltag')

TagVal('tag1','*')

See Also
NextEvent, NextVal, PrevEvent, PrevVal

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 168

TagZero

Get a point's zero value from the Point Database.

Format
TagZero(tagname)

Arguments
tagname

A tagname.

Returns
The point's zero value. If the point's type is R or I, this is a number; if the point's type is D,
this is a digital state (character string).

Exceptions
If point does not exist, returns an error value.

Examples
TagZero('tag1')

TagZero('digitaltag')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 169

Tan

Return the trigonometric tangent of a number.

Format
Tan(x)

Arguments
x

Must be an integer or real number, which represents an angle in radians.

Returns
The tangent of x.

Exceptions
If x is not a number, returns an error value.

Examples
Tan('tag1')

Tan(1)

Tan(1.1)

See Also
Acos, Asin, Atn, Atn2, Cos, Cosh, Sin, Sinh, Tanh

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 170

Tanh

Return the hyperbolic tangent of a number.

Format
Tanh(x)

Arguments
x

Must be an integer or real number.

Returns
The hyperbolic tangent of x.

Exceptions
If x is not a number, returns an error value.

Examples
Tanh('tag1')

Tanh(1)

Tanh(1.1)

See Also
Acos, Asin, Atn, Atn2, Cos, Cosh, Sin, Sinh, Tan

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 171

Text

Concatenate strings representing argument values.

Format
Text(val1 [, val2, …])

Arguments
val1, val2, …

Any expression. These may be of any of the normal PI System data types.

Returns
A string that is the concatenation of strings representing the argument values.

Examples
Text('sinusoid')

Text("The value for tag sinusoid is at ", '*', " is ", 'sinusoid') = "The value

for tag sinusoid at 1-Jun-00 17:07:18 is 89.09"

See Also
Concat

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 172

TimeEq

Find the total time, within a range, when a point is equal to a given value.

Format
TimeEq(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

value

Must be an integer or real number or digital state (character string); the value to search for.

Returns
The time period within the given range, for which the point was exactly equal to the given
value.

Exceptions
None.

Examples
TimeEq('tag1', 't', '*',40.0)

TimeEq('digitaltag', '-1d', '*',TagVal('digitaltag', '14-Dec-97'))

TimeEq('digitaltag', '14-Dec-97', '*', "On")

See Also
TimeGE, TimeGT, TimeLE, TimeLT, TimeNE

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 173

TimeGE

Find the total time, within a range, when a point is greater than or equal to a given value.

Format
TimeGE(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

value

Must be an integer or real number or digital state (character string); the value to search for.

Returns
The time period within the given range, for which the point was greater than or equal to the
given value.

Exceptions
None.

Usage Note
TimeGE interpolates between Archive events, if necessary, to find the times when the point
crossed the given value.

Examples
TimeGE('tag1', 't', '*',40.0)

TimeGE('digitaltag', '-1d', '*',TagVal('digitaltag', '14-Dec-97'))

TimeGE('digitaltag', '14-Dec-97', '*', "On")

See Also
TimeEq, TimeGT, TimeLE, TimeLT, TimeNE

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 174

TimeGT

Find the total time, within a range, when a point is greater than a given value.

Format
TimeGT(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

value

Must be an integer or real number or digital state (character string); the value to search for.

Returns
The time period within the given range, for which the point was greater than the given value.

Exceptions
None.

Usage Note
TimeGT interpolates between Archive events, if necessary, to find the times when the point
crossed the given value.

Examples
TimeGT('tag1', 't', '*',40.0)

TimeGT('digitaltag', '-1d', '*',TagVal('digitaltag', '14-Dec-97'))

TimeGT('digitaltag', '14-Dec-97', '*', "On")

See Also
TimeEq, TimeGE, TimeLE, TimeLT, TimeNE

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 175

TimeLE

Find the total time, within a range, when a point is less than or equal to a given value.

Format
TimeLE(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

value

Must be an integer or real number or digital state (character string); the value to search for.

Returns
The time period within the given range, for which the point was less than or equal to the
given value.

Exceptions
None.

Usage Note
TimeLE interpolates between Archive events, if necessary, to find the times when the point
crossed the given value.

Examples
TimeLE('tag1', 't', '*',40.0)

TimeLE('digitaltag', '-1d', '*',TagVal('digitaltag', '14-Dec-97'))

TimeLE('digitaltag', '14-Dec-97', '*', "On")

See Also
TimeEq, TimeGE, TimeGT, TimeLT, TimeNE

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 176

TimeLT

Find the total time, within a range, when a point is less than a given value.

Format
TimeLT(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

value

Must be an integer or real number or digital state (character string); the value to search for.

Returns
The time period within the given range, for which the point was less than the given value.

Exceptions
None.

Usage Note
TimeLT interpolates between Archive events, if necessary, to find the times when the point
crossed the given value.

Examples
TimeLT('tag1', 't', '*',40.0)

TimeLT('digitaltag', '-1d', '*',TagVal('digitaltag', '14-Dec-97'))

TimeLT'digitaltag', '14-Dec-97', '*', "On")

See Also
TimeEq, TimeGE, TimeGT, TimeLE, TimeNE

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 177

TimeNE

Find the total time, within a range, when a point is unequal to a given value.

Format
TimeNE(tagname, starttime, endtime, value)

Arguments
tagname

A tagname.

starttime

Beginning of the time range to search. Relative times are relative to endtime, if endtime is not
itself a relative time.

endtime

End of the time range to search. Relative times are relative to starttime, if starttime is not
itself a relative time. This time must be after starttime.

value

Must be an integer or real number or digital state (character string); the value to search for.

Returns
The time period within the given range, for which the point was unequal to the given value.

Exceptions
None.

Examples
TimeNE('tag1', 't', '*',40.0)

TimeNE('digitaltag', '-1d', '*',TagVal('digitaltag', '14-Dec-97'))

TimeNE('digitaltag', '14-Dec-97', '*', "On")

See Also
TimeEq, TimeGE, TimeGT, TimeLE, TimeLT

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 178

Total

Return the sum of two or more arguments.

Format
Total(x1, x2, ..., xn)

Arguments
x1...xn

May be numbers or time periods, but all must be the same.

Returns
The total of the arguments. The result has the same data type as the arguments.

Exceptions
Arguments whose run-time values are digital states are not included in the total. If all values
are digital states, Total returns an error value.

Examples
Total('tag1', 'tag2', TagVal('tag1', 'y'),40.0)

Total('t'-'y', '+1h')

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 179

Trim

Trim blanks on both sides of a string.

Format
Trim(str)

Arguments
str

A string.

Returns
The source string with leading and trailing blanks removed.

Exceptions
If str is not a string, an error value is returned.

Examples
Trim(" Stringtag ") = "Stringtag"

Trim(" Stringtag is a string tag. ") = "Stringtag is a string tag."

See Also
LTrim, RTrim

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 180

Trunc
Truncate a number or time to the next lower unit.

Format
Trunc(x [, unit])

Arguments
x

Must be an integer or real number, time expression, or time period.

unit (optional)

The size of the unit to truncate to. If x is a number, unit must be a number. If x is a time
expression or time period, unit must be a time period. If unit is omitted, Trunc truncates to
the next lower integer (for a number) or second (for a time period).

Returns
The largest value smaller than x which is an integer multiple of unit. Returns the same data
type as x. For more information, see the examples below.

Exceptions
If x is a string, or if unit is of the wrong data type, returns an error value.

Examples

Expression Value Comments

Trunc(12.999) 12.0 Truncate to next lower integer

Trunc(18.75, 10) 10.0 Truncate to next lower ten

Trunc('14-Dec-97
11:47','+1h')

14-Dec-97
11:00

Truncate to next lower hour

Trunc('18:47' –
'15:00','+1h')

10800 Truncate period to next lower hour
(returns period in seconds)

Note: Trunc to the next lower day results in a timestamp of the next lower day in
UTC time, not local time.

Usage Note
If x is a time, and unit is omitted, this routine has no effect, as times are only accurate to one
second.

See Also
Round

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 181

UCase

Convert a string to an uppercase string.

Format
UCase(strexp)

Arguments
strexp

Must be a string value.

Returns
An uppercase string.

Exceptions
If the argument is not a string, returns an error value.

Examples
UCase("Stringtag") = "STRINGTAG"

UCase('Stringtag') = "ERROR" if the Snapshot value for the stringtag equals

"Error"

See Also
LCase

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 182

Weekday

Extract the day of the week from a timestamp.

Format
Weekday(time)

Arguments
time

A time expression.

Returns
The day of the week of time, in the range 1–7, where 1 represents Sunday.

Exceptions
None.

Examples
Weekday('*')

Weekday('t')

See Also
Day, DaySec, Hour, Minute, Month, Second, Year, Yearday

 4.4 - Performance Equations Functions Reference

PI Server Applications User Guide Page 183

Year

Extract the year from a time expression.

Format
Year(time)

Arguments
time

A time expression.

Returns
The year of time, in the range 1970–present.

Exceptions
None.

Examples
Year('*')

Year('t')

See Also
Day, DaySec, Hour, Minute, Month, Second, Weekday, Yearday

Chapter 4 - PI Performance Equations Syntax and Functions Reference

Page 184

Yearday

Extract the day of the year from a time expression. The day of the year (also known as a
Julian day) is an integer ranging from 1 to 366, where 1 represents January 1.

Format
Yearday(time)

Arguments
time

A time expression.

Returns
The day of the year of time, in the range 1–366, where 1 represents January 1.

Exceptions
None.

Examples
Yearday('*')

Yearday('t')

See Also
Day, DaySec, Hour, Minute, Month, Second, Weekday, Year

PI Server Applications User Guide Page 185

Chapter 5. PI STEAM FUNCTIONS REFERENCE

The PI Steam Functions module is an extension to the PI Performance Equations Scheduler.
Steam Functions provide a complete set of functions for deriving the thermodynamic
properties of steam and water within Performance Equations. PI Steam Functions support
both English and SI units, and are based on the ASME (American Society of Mechanical
Engineers) Steam Tables, 6th Ed.

This chapter provides a comprehensive reference for setting up Steam calculations, and
includes the following sections:

Section 5.1, Steam Functions Overview, on page 191

Section 5.2, Range of Steam Functions, on page 193

Section 5.3, Steam Property Reference States, on page 195

5.1 Steam Functions Overview

The PI PE Steam Functions Module (PI Steam) makes available functions that calculate the
thermodynamic properties of steam within Performance Equations. The steam functions are
also available in a COM library, PISteamFunctions.dll, which is distributed by other OSIsoft
products, such as ACE.

For each steam function, there are two function calls: one in English units and another in SI
units. The engineering units for the variables in the steam functions are listed in Table 5–1.
Table 5–2 lists the supported functions in PI Steam.

Table 5–1. Engineering Units

Variable English Unit SI Unit Conversion Factor (Eng to SI)

Temperature degree F degree C (T - 32) / 1.8

Pressure psia kpa 6.894757

Volume ft3/lbm cc/g 62.42796

Enthalpy BTU/lbm J/g 2.326

Entropy BTU/lbm/R J/g/K 4.1868

Chapter 5 - PI Steam Functions Reference

Page 186

Table 5–2. Supported Functions

Name Function Description

StmEng_tsatp Saturation temperature as a function of pressure.

StmEng_hsatp Saturation enthalpy as a function of pressure.

StmEng_ssatp Saturation entropy as a function of pressure.

StmEng_vsatp Saturation vapor specific volume as a function of pressure.

StmEng_psatt Saturation pressure as a function of temperature.

StmEng_hsatt Saturation enthalpy as a function of temperature.

StmEng_ssatt Saturation entropy as a function of temperature.

StmEng_vsatt Saturation vapor specific volume as a function of temperature.

StmEng_vpt Vapor specific volume as a function of pressure and temperature. (For saturated and super
heated steam.)

StmEng_vptl Water specific volume as a function of pressure and temperature.

StmEng_vph Vapor specific volume as a function of pressure and enthalpy. (For wet and dry steam.)

StmEng_vps Vapor specific volume as a function of pressure and entropy. (For wet and dry steam.)

StmEng_hpt Enthalpy as a function of pressure and temperature. (For saturated and super heated steam.)

StmEng_hptl Liquid enthalpy as a function of pressure and temperature. (For water.)

StmEng_hps Enthalpy as a function of pressure and entropy. (For wet and dry steam.)

StmEng_spt Entropy as a function of pressure and temperature. (For saturated and super heated steam.)

StmEng_sptl Liquid entropy as a function of pressure and temperature. (For water.)

StmEng_sph Entropy as a function of pressure and enthalpy. (For wet and dry steam.)

StmEng_tph Temperature as a function of enthalpy and pressure. (For wet and dry steam.)

StmEng_tps Temperature as a function of entropy and pressure. (For wet and dry steam.)

StmEng_xph Steam quality (vapor fraction) as a function of enthalpy and pressure. (For wet steam.)

StmEng_xps Steam quality (vapor fraction) as a function of entropy and pressure. (For wet steam.)

StmEng_hpx Enthalpy as a function of pressure and steam quality. (For wet steam.)

StmEng_spx Entropy as a function of pressure and steam quality. (For wet steam.)

5.1.1 Steam Functions Naming Convention
The formulas have the same naming convention as those callable by user program, i.e.
STMENG_XXX for English units and STMSI_XXX for SI units. The formulas return the
steam properties values and accept real number as arguments (i.e., argument type R). In case
of error, the formulas return the digital states as shown in Table 5–3.

 5.2 - Range of Steam Functions

PI Server Applications User Guide Page 187

Table 5–3. Digital States Returned

Digital State Description

INP OUTRANGE Input condition out of computation range

NOT CONVERGE Calculation failed to converge in iterative loop.

These digital states are standard and are installed with PI Server. The format for each formula
is listed in the reference section.

5.2 Range of Steam Functions

Table 5–4 lists the valid range in English units of the input variables for each of the steam
functions. The PI Steam functions should compute the same results as the equations given in
the ASME Steam Tables, 6th Edition. Besides the accuracy quoted by the ASME Steam
Tables, you should be aware of the issues raised in Functions that use Temperature and
Pressure as Independent Variables on page 193, and Functions that use Enthalpy or Entropy
as an Independent Variable on page 194.

5.2.1 Functions that use Temperature and Pressure as Independent Variables
For the HPT, SPT and VPT functions, the steam has to be superheated or saturated dry. If
the temperature and pressure are on the saturated curve, the calculated entropy, enthalpy or
volume is the property of saturated vapor. If the input temperature is less than the saturated
temperature for the input pressure, an Input Out of Range error is returned (i.e., digital state
INPOUTRANGE for PI formulas or error code -1 for user-callable functions). Since
measurements are not exact, these PT functions can tolerate an error margin:

if (0 > Tsat - Tin > error margin) then saturated steam

The default error margin is 0.5 degree F.

Table 5–4. Input Range for Each Function

Function

Temp (deg f)

Pressure
(psia)

Enthalpy
(btu/lb)

Entropy
(btu/lb/r)

Quality

StmEng_tsatp 0.088589 to
3208.2

StmEng_hsatp 0.088589 to
3208.2

StmEng_ssatp 0.088589 to
3208.2

StmEng_vsatp 0.088589 to
3208.2

StmEng_psatt 32. to 705.47

StmEng_hsatt 32. to 705.47

StmEng_ssatt 32. to 705.47

Chapter 5 - PI Steam Functions Reference

Page 188

Function

Temp (deg f)

Pressure
(psia)

Enthalpy
(btu/lb)

Entropy
(btu/lb/r)

Quality

StmEng_vsatt 32. to 705.47

StmEng_vpt,
StmEng_vptl

32. to 1600 0.088589 to
16000.

StmEng_vph 0.088589 to
16000.

-1 to 1860.

StmEng_vps 0.088589 to
16000.

 -0.1 to 3.0

StmEng_hpt,
StmEng_hptl

32. to 1600 0.088589 to
16000.

StmEng_hps 0.088589 to
16000.

 -0.1 to 3.0

StmEng_spt,
StmEng_sptl

32. to 1600 0.088589 to
16000.

StmEng_sph 0.088589 to
16000.

-1 to 1860.

StmEng_tph 0.088589 to
16000.

-1 to 1860.

StmEng_tps 0.088589 to
16000.

 -0.1 to 3.0

StmEng_xph 0.088589 to
3208.2

-1 to 1860.

StmEng_xps 0.088589 to
3208.2

 -0.1 to 3.0

StmEng_hpx 0.088589 to
3208.2

 0 to 1

StmEng_spx 0.088589 to
3208.2

 0 to 1

5.2.2 Functions that use Enthalpy or Entropy as an Independent Variable
For the VPH, VPS, HPS, SPH, TPH and TPS functions, the valid ranges cover both the
superheated and the wet steam. However, even though the ASME listed valid range for
enthalpy goes from -1 to 1860 BTU/lbm and the entropy ranges from -0.1 to 3.0
BTU/lbm/degR, there are some combination of pressure and enthalpy or entropy that
correspond to compressed water rather than steam. Hence, these input conditions will
generate an error state.

For the wet steam region, the ASME routines use the Clapeyron equation and the saturated
vapor values to compute the result. For the VPH and VPS functions, the computed volume
can differ by a few percents as compared to the volume calculated from the saturated vapor
volume, saturated liquid volume and the vapor fraction. The difference in the computed
volume increases as the moisture content of the vapor mixture increases. However, since the

 5.3 - Steam Property Reference States

PI Server Applications User Guide Page 189

practical use of the steam function involves steam with vapor fraction higher than 0.5, the
ASME equation is not modified.

For the HPS and SPH functions in the wet steam region, the ASME routines use the equation
(Hvap = T*Svap) and the saturated vapor values to compute the result. The functions do not
check if the input enthalpy or entropy is less than those of the saturated liquid and the
extrapolated value is returned.

For the TPH and TPS function in the wet steam region, the ASME routines just check
whether the input enthalpy or entropy is less than that of the saturated vapor at the given
pressure. If the input enthalpy or entropy is less than the saturated vapor value, the saturated
temperature is returned as the answer. The functions do not consider the case where the input
enthalpy or input entropy is less than that of the saturated liquid an error state.

Similarly, for the XPH and XPS functions, the ASME routines do not consider the input
enthalpy or entropy out of bound even when they are greater than saturated vapor properties
or less than saturated liquid properties. The functions return 1.0 as the vapor fraction when
the input enthalpy or entropy is greater than the saturated vapor properties. Input enthalpy or
entropy less than the saturated liquid properties results in negative vapor fraction rather than
an error state.

Though the ASME routines have inadequate checks for the wet steam region, OSI did not
modify these routines because in reality, the steam functions are not used in regions where
the input checks would cause a problem.

One final feature, for pressure above the critical point (3208.2 psia), the VPH, VPS, HPS,
SPH, TPH and TPS functions compute valid results for states corresponded to temperature
greater than 682 degrees F. but less than the critical temperature, 705.47 degrees F, even
though these states are considered compressed water rather than steam.

5.3 Steam Property Reference States

The ASME establishes the following reference states:

Triple Point
Triple point of water is at 273.16 degree K or 0.01 degree C or 0.018 degree F.

Celsius Scale
The Celsius temperature is exactly Tk - 273.15.

Critical Point
Critical point of steam is at 647.3 degree K and 22,120 kpa, or 705.47 degree F and 3208.3
psia.

Reference State
The specific internal energy and specific entropy of the liquid phase were fixed at zero at the
triple point of water.

Chapter 5 - PI Steam Functions Reference

Page 190

5.4 Steam Functions Reference

This section provides a detailed reference of Steam Functions.

StmEng_TsatP

Calculates the saturation temperature as a function of pressure—all variables expressed in
English units.

Format
StmEng_TsatP(P)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

Returns
Computed saturation temperature in degrees F. or Error digital state.

Sample Values

Pressure Temperature

10. 193.21

100. 327.82

1000. 544.58

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 191

StmEng_HsatP

Calculates the saturated vapor specific enthalpy as a function of pressure—all variables
expressed in English units.

Format
StmEng_HsatP(P)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

Returns
Computed specific enthalpy for saturated vapor in BTU/lbm or Error digital state.

Sample Values

Pressure Vapor Enthalpy

10. 1143.4

100. 1187.2

1000. 1192.9

Chapter 5 - PI Steam Functions Reference

Page 192

StmEng_SsatP

Calculates the saturated vapor specific entropy as a function of pressure—all variables
expressed in English units.

Format
StmEng_SsatP(P)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

Returns
Computed saturated vapor specific entropy in BTU/lbm/R or Error digital state.

Sample Values

Pressure Entropy

10. 1.7879

100. 1.6027

1000. 1.3910

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 193

StmEng_VsatP

Calculates the saturated vapor specific volume as a function of pressure—all variables
expressed in English units.

Format
StmEng_VsatP(P)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

Returns
Saturated vapor specific volume in ft3/lbm or Error digital state.

Sample Values

Pressure Volume

10. 38.42

100. 4.431

1000. 0.44596

Chapter 5 - PI Steam Functions Reference

Page 194

StmEng_PsatT

Calculates the saturation pressure as a function of temperature—all variables expressed in
English units.

Format
StmEng_PsatT(T)

Arguments
T

Steam temperature in degree F. The valid range is 32 to 705.47 degree F.

Returns
Computed saturation pressure of the steam in psia or Error digital state.

Sample Values

Temperature Pressure

100. 0.9492

400. 247.26

700. 3094.33

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 195

StmEng_HsatT

Calculates the saturated vapor specific enthalpy as a function of temperature—all variables
expressed in English units.

Format
StmEng_HsatT(T)

Arguments
T

Steam temperature in degree F. The valid range is 32 to 705.47 degree F.

Returns
Computed specific enthalpy for saturated vapor in BTU/lbm or Error digital state.

Sample Values

Temperature Vapor Enthalpy

100. 1105.1

400. 1201.0

700. 995.2

Chapter 5 - PI Steam Functions Reference

Page 196

StmEng_SsatT

Calculates the saturated vapor specific entropy as a function of temperature—all variables
expressed in English units.

Format
StmEng_SsatT(T)

Arguments
T

Steam temperature in degree F. The valid range is 32 to 705.47 degree F.

Returns
Computed saturated vapor specific entropy in BTU/lbm/R or- Error digital state.

Sample Values

Temperature Entropy

100. 1.9825

400. 1.52735

700. 1.1390

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 197

StmEng_VsatT

Calculates the saturated vapor specific volume as a function of temperature—all variables
expressed in English units.

Format
StmEng_VsatT(T)

Arguments
T

Steam temperature in degree F. The valid range is 32 to 705.47 degree F

Returns
Computed saturated vapor specific volume in ft3/lbm or Error digital state

Sample Values

Temperature Volume

100. 350.39

400. 1.863

700. 0.0752

Chapter 5 - PI Steam Functions Reference

Page 198

StmEng_VPT

Calculates the vapor specific volume as a function of pressure and temperature—all variables
expressed in English units. Only use for superheated or dry saturated steam. An error of -1 (or
input out of range digital state) will be resulted for input temperature lower than the
saturation temperature for the input pressure. However, the function computes for the full
range of temperature for input pressure greater than the critical pressure.

Format
StmEng_VPT(P, T)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

T

Steam temperature in degree F. The valid range is 32 to 1600 degree F.

Returns
Computed vapor specific volume in ft3/lbm or Error digital state.

Sample Values

Pressure Temperature Volume

300. 1000. 2.8585

800. 1000. 1.047

1400. 1000. 0.5809

5000. 1000. 0.13118

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 199

StmEng_VPTL

Calculates the liquid specific volume as a function of pressure and temperature—all variables
expressed in English units. Only use for liquid water condition. An error of -1 (or input out of
range digital state) will be resulted for input temperature higher than the saturation
temperature for the input pressure. However, the function computes for the full range of
temperature for input pressure greater than the critical pressure.

Format
StmEng_VPTL(P, T)

Arguments
P

Pressure of the water in psia. The valid range is 0.088589 to 16000 psia.

T

Water temperature in degree F. The valid range is 32 to 1600 degree F.

Returns
Computed liquid specific volume in ft3/lbm or Error digital state.

Sample Values

Pressure Temperature Volume

300. 100. 0.016115

800. 100. 0.016091

1400. 100. 0.016062

5000. 100. 0.015897

Chapter 5 - PI Steam Functions Reference

Page 200

StmEng_VPH

Calculates the vapor specific volume as a function of pressure and enthalpy—all variables
expressed in English units. Use for both superheated or wet steam.

Format
StmEng_VPH(P, H)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

H

Specific enthalpy of the steam in BTU/lbm. The valid range is -1 to 1860 BTU/lbm.

Returns
Computed vapor specific volume in ft3/lbm or Error digital state.

Sample Values

Pressure Enthalpy Volume State

300. 1526.2 2.8585 Superheated

800. 1511.4 1.047 Superheated

1400. 1493.2 0.5809 Superheated

5000. 1364.6 0.13118 Superheated

300. 1122. 1.3904 90 % vapor

Note: The computed result may differ slightly from that computed using the
saturated liquid volume, saturated vapor volume and vapor fraction. The difference
increases with the moisture content of the steam.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 201

StmEng_VPS

Calculates the vapor specific volume as a function of pressure and entropy—all variables
expressed in English units. Use for both superheated or wet steam.

Format
StmEng_VPS(P, S)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

S

Specific entropy of the steam in BTU/lbm/R. The valid range is -0.1 to 3.0 BTU/lbm/R.

Returns
Computed vapor specific volume in ft3/lbm or Error digital state.

Sample Values

Pressure Entropy Volume State

300. 1.7964 2.8585 Superheated

800. 1.6807 1.047 Superheated

1400. 1.6096 0.5809 Superheated

5000. 1.4001 0.13118 Superheated

300. 1.4183 1.3904 90 % vapor

Note: The computed result may differ slightly from that computed using the
saturated liquid volume, saturated vapor volume and vapor fraction. The difference
increases with the moisture content of the steam.

Chapter 5 - PI Steam Functions Reference

Page 202

StmEng_HPT

Calculates the vapor specific enthalpy as a function of pressure and temperature—all
variables expressed in English units. Only use for superheated or dry saturated steam. An
error of -1 (or input out of range digital state) will be resulted for input temperature lower
than the saturation temperature for the input pressure. However, the function computes for the
full range of temperature for input pressure greater than the critical pressure.

Format
StmEng_HPT(P, T)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

T

Steam temperature in degree F. The valid range is 32 to 1600 degree F.

Returns
Computed vapor specific enthalpy in BTU/lbm or Error digital state.

Sample Values

Pressure Temperature Enthalpy

300. 1000. 1526.2

800. 1000. 1511.4

1400. 1000. 1493.2

5000. 1000. 1364.6

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 203

StmEng_HPTL

Calculates the liquid specific enthalpy as a function of pressure and temperature—all
variables expressed in English units. Only use for compressed water. An error of -1 (or input
out of range digital state) will be resulted for input temperature higher than the saturation
temperature for the input pressure. However, the function computes for the full range of
temperature for input pressure greater than the critical pressure.

Format
StmEng_HPTL(P, T)

Arguments
P

Pressure of the water in psia. The valid range is 0.088589 to 16000 psia.

T

Water temperature in degree F. The valid range is 32 to 1600 degree F.

Returns
Computed liquid specific enthalpy in BTU/lbm or Error digital state.

Sample Values

Pressure Temperature Enthalpy

300. 100. 68.788

800. 100. 70.106

1400. 100. 71.684

5000. 100. 81.081

Chapter 5 - PI Steam Functions Reference

Page 204

StmEng_HPS

Calculates the vapor specific enthalpy as a function of pressure and entropy—all variables
expressed in English units. Use for both superheated or wet steam.

Format
StmEng_HPS(P, S)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

S

Specific entropy of the steam in BTU/lbm/R. The valid range is -0.1 to 3.0 BTU/lbm/R.

Returns
Computed vapor specific enthalpy in BTU/lbm or Error digital state.

Sample Values

Pressure Entropy Enthalpy State

300. 1.7964 1526.2 Superheated

800. 1.6807 1511.4 Superheated

1400. 1.6096 1493.2 Superheated

5000. 1.4001 1364.6 Superheated

300. 1.4183 1122. 90 % vapor

Note: Even if the input entropy is less than that of the saturated liquid, the function
still computes the enthalpy by extrapolation without setting an error state.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 205

StmEng_SPT

Calculates the vapor specific entropy as a function of pressure and temperature—all variables
expressed in English units. Only use for superheated or dry saturated steam. An error of -1 (or
input out of range digital state) will be resulted for input temperature lower than the
saturation temperature for the input pressure. However, the function computes for the full
range of temperature for input pressure greater than the critical pressure.

Format
StmEng_SPT(P, T)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

T

Steam temperature in degree F. The valid range is 32 to 1600 degree F.

Returns
Computed vapor specific entropy in BTU/lbm/R or- Error digital state.

Sample Values

Pressure Temperature Entropy

300. 1000. 1.7964

800. 1000. 1.6807

1400. 1000. 1.6096

5000. 1000. 1.4001

Chapter 5 - PI Steam Functions Reference

Page 206

StmEng_SPTL

Calculates the liquid specific entropy as a function of pressure and temperature—all variables
expressed in English units. Only use for compressed water. An error of -1 (or input out of
range digital state) will be resulted for input temperature higher than the saturation
temperature for the input pressure. However, the function computes for the full range of
temperature for input pressure greater than the critical pressure.

Format
StmEng_SPTL(P, T)

Arguments
P

Pressure of the water in psia. The valid range is 0.088589 to 16000 psia.

T

Water temperature in degree F. The valid range is 32 to 1600 degree F.

Returns
Computed liquid specific entropy in BTU/lbm/R or- Error digital state.

Sample Values

Pressure Temperature Entropy

300. 100. 0.12936

800. 100. 0.12905

1400. 100. 0.12868

5000. 100. 0.12645

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 207

StmEng_SPH

Calculates the vapor specific entropy as a function of pressure and enthalpy—all variables
expressed in English units. Use for both superheated or wet steam.

Format
StmEng_SPH(P, H)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

H

Computed vapor specific enthalpy in BTU/lbm. The valid range is -1.0 to 1860 BTU/lbm.

Returns
Computed vapor specific entropy in BTU/lbm/R or- Error digital state.

Sample Values

Pressure Enthalpy Entropy State

300. 1526.2 1.7964 Superheated

800. 1511.4 1.6807 Superheated

1400. 1493.2 1.6096 Superheated

5000. 1364.6 1.4001 Superheated

300. 1122. 1.4183 90 % vapor

Note: Even if the input enthalpy is less than that of the saturated liquid, the function
still computes the entropy by extrapolation without setting an error state.

Chapter 5 - PI Steam Functions Reference

Page 208

StmEng_TPH

Calculates the steam temperature as a function of pressure and enthalpy—all variables
expressed in English units. Use for both superheated or wet steam.

Format
StmEng_TPH(P, H)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

H

Specific enthalpy of the steam in BTU/lbm. The valid range is -1 to 1860 BTU/lbm.

Returns
Computed steam temperature in degree F. or Error digital state.

Sample Values

Pressure Enthalpy Temperature State

300. 1526.2 1000. Superheated

800. 1511.4 1000. Superheated

1400. 1493.2 1000. Superheated

5000. 1364.6 1000. Superheated

300. 1122. 417.35 90 % vapor

Note: Even if the input enthalpy is less than that of the saturated liquid, the function
still returns the saturated temperature as the answer without setting an error state.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 209

StmEng_TPS

Calculates the steam temperature as a function of pressure and entropy—all variables
expressed in English units. Use for both superheated or wet steam.

Format
StmEng_TPS(P, S)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 16000 psia.

S

Specific entropy of the steam in BTU/lbm/R. The valid range is -0.1 to 3.0 BTU/lbm/R.

Returns
Computed steam temperature in degree F. or Error digital state.

Sample Values

Pressure Entropy Temperature State

300. 1.7964 1000. Superheated

800. 1.6807 1000. Superheated

1400. 1.6096 1000. Superheated

5000. 1.4001 1000. Superheated

300. 1.4183 417.35 90 % vapor

Note: Even if the input entropy is less than that of the saturated liquid, the function
still returns the saturated temperature as the answer without setting an error state.

Chapter 5 - PI Steam Functions Reference

Page 210

StmEng_XPH

Calculates the steam quality (vapor fraction) as a function of pressure and enthalpy—all
variables expressed in English units. Use only for wet steam.

Format
StmEng_XPH(P, H)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

H

Specific enthalpy of the steam in BTU/lbm. The valid range is -1 to 1860 BTU/lbm.

Returns
Computed steam quality (vapor fraction) or Error digital state.

Sample Values

Pressure Enthalpy Steam Quality

300. 1122.0 0.9

800. 1130.4 0.9

1400. 1117.7 0.9

Note: If the input enthalpy is greater than that of the saturated vapor, the function
returns 1.0 as vapor fraction. If the input enthalpy is less than that of the saturated
liquid, the function would compute negative vapor fraction without setting an error
state.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 211

StmEng_XPS

Calculates the steam quality (vapor fraction) as a function of pressure and entropy—all
variables expressed in English units. Use only for wet steam.

Format
StmEng_XPS(P, S)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

S

Specific entropy of the steam in BTU/lbm/R. The valid range is -0.1 to 3.0 BTU/lbm/R or
Error digital state.

Returns
Computed steam quality (vapor fraction).

Sample Values

Pressure Entropy Steam Quality

300. 1.4183 0.9

800. 1.3458 0.9

1400. 1.2923 0.9

Note: If the input entropy is greater than that of the saturated vapor, the function
returns 1.0 as vapor fraction. If the input entropy is less than that of the saturated
liquid, the function would compute negative vapor fraction without setting an error
state.

Chapter 5 - PI Steam Functions Reference

Page 212

StmEng_HPX

Calculates the steam specific enthalpy as a function of pressure and quality (vapor fraction)—
all variables expressed in English units. Use only for wet steam.

Format
StmEng_HPX(P, X)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

X

Steam quality (vapor fraction). Valid range is from 0.0 to 1.0.

Returns
Computed specific enthalpy of the steam in BTU/lbm or Error digital state.

Sample Values

Pressure Steam Quality Enthalpy

300. 0.9 1122.0

800. 0.9 1130.4

1400. 0.9 1117.7

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 213

StmEng_SPX

Calculates the steam specific entropy as a function of pressure and quality (vapor fraction)—
all variables expressed in English units. Use only for wet steam.

Format
StmEng_SPX(P, X)

Arguments
P

Pressure of the steam in psia. The valid range is 0.088589 to 3208.2 psia.

X

Steam quality (vapor fraction). Valid range is from 0.0 to 1.0.

Returns
Computed specific entropy of the steam in BTU/lbm/R or- Error digital state.

Sample Values

Pressure Steam Quality Entropy

300. 0.9 1.4183

800. 0.9 1.3458

1400. 0.9 1.2923

Chapter 5 - PI Steam Functions Reference

Page 214

StmSI_TsatP

Calculates the saturation temperature as a function of pressure—all variables expressed in SI
units.

Format
StmSI_TsatP(P)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

Returns
Computed saturation temperature in degree C. or Error digital state.

Sample Values

Pressure Temperature

50. 81.345

1000. 179.88

10000. 310.96

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 215

StmSI_HsatP

Calculates the saturated vapor specific enthalpy as a function of pressure—all variables
expressed in SI units.

Format
StmSI_HsatP(P)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

Returns
Computed specific enthalpy for saturated vapor in J/g.

Sample Values

Pressure Vapor Enthalpy

50. 2646.0

1000. 2776.2

10000. 2727.7

Chapter 5 - PI Steam Functions Reference

Page 216

StmSI_SsatP
Calculates the saturated vapor specific entropy as a function of pressure—all variables
expressed in SI units.

Format
StmSI_SsatP(P)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

Returns
Computed saturated vapor specific entropy in J/g/K or Error digital state.

Sample Values

Pressure Entropy

50. 7.5947

1000. 6.5828

10000. 5.6198

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 217

StmSI_VsatP

Calculates the saturated vapor specific volume as a function of pressure—all variables
expressed in SI units.

Format
StmSI_VsatP(P)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

Returns
Computed saturated vapor specific volume in cc/g or Error digital state.

Sample Values

Pressure Volume

50. 3240.2

1000. 194.29

10000. 18.041

Chapter 5 - PI Steam Functions Reference

Page 218

StmSI_PsatT

Calculates the saturation pressure as a function of temperature—all variables expressed in SI
units.

Format
StmSI_PsatT(T)

Arguments
T

Steam temperature in degree C. The valid range is 0.0 to 374.15 degree C.

Returns
Computed saturation pressure of the steam in kpa or Error digital state.

Sample Values

Temperature Pressure

50. 12.335

200. 1554.9

350. 16535.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 219

StmSI_HsatT

Calculates the saturated vapor specific enthalpy as a function of temperature—all variables
expressed in SI units.

Format
StmSI_HsatT(T)

Arguments
T

Steam temperature in degree C. The valid range is 0.0 to 374.15 degree C.

Returns
Computed specific enthalpy for saturated vapor in J/g or Error digital state.

Sample Values

Temperature Vapor Enthalpy

50. 2592.2

200. 2790.9

350. 2567.7

Chapter 5 - PI Steam Functions Reference

Page 220

StmSI_SsatT

Calculates the saturated vapor specific entropy as a function of temperature—all variables
expressed in SI units.

Format
StmSI_SsatT(T)

Arguments
T

Steam temperature in degree C. The valid range is 0.0 to 374.15 degree C.

Returns
Computed saturated vapor specific entropy in J/g/K or Error digital state.

Sample Values

Temperature Entropy

50. 8.0776

200. 6.4278

350. 5.2177

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 221

StmSI_VsatT

Calculates the saturated vapor specific volume as a function of temperature—all variables
expressed in SI units.

Format
StmSI_VsatT(T)

Arguments
T

Steam temperature in degree C. The valid range is 0.0 to 374.15 degree C

Returns
Computed saturated vapor specific volume in cc/g or Error digital state.

Sample Values

Temperature Volume

50. 12046.

200. 127.16

350. 8.7991

Chapter 5 - PI Steam Functions Reference

Page 222

StmSI_VPT

Calculates the vapor specific volume as a function of pressure and temperature—all variables
expressed in SI units. Only use for superheated or dry saturated steam. An error of -1 (or
input out of range digital state) will be resulted for input temperature lower than the
saturation temperature for the input pressure. However, the function computes for the full
range of temperature for input pressure greater than the critical pressure.

Format
StmSI_VPT(P, T)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

T

Steam temperature in degree C. The valid range is 0.0 to 871.11 degree C.

Returns
Computed vapor specific volume in cc/g or Error digital state.

Sample Values

Pressure Temperature Volume

2500. 600. 159.21

5000. 600. 78.616

10000. 600. 38.320

40000. 600. 8.0884

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 223

StmSI_VPTL

Calculates the liquid specific volume as a function of pressure and temperature—all variables
expressed in SI units. Only use for compressed water. An error of -1(or input out of range
digital state) will be resulted for input temperature higher than the saturation temperature for
the input pressure. However, the function computes for the full range of temperature for input
pressure greater than the critical pressure.

Format
StmSI_VPTL(P, T)

Arguments
P

Pressure of the water in kpa. The valid range is 0.6108 to 110316.0 kpa.

T

Water temperature in degree C. The valid range is 0.0 to 871.11 degree C.

Returns
Computed liquid specific volume in cc/g or Error digital state.

Sample Values

Pressure Temperature Volume

2500. 100. 1.04245

5000. 100. 1.04116

10000. 100. 1.03861

40000. 100. 1.02438

Chapter 5 - PI Steam Functions Reference

Page 224

StmSI_VPH

Calculates the vapor specific volume as a function of pressure and enthalpy—all variables
expressed in SI units. Use for both superheated or wet steam.

Format
StmSI_VPH(P, H)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

H

Specific enthalpy of the steam in J/g. The valid range is -2.326 to 4326.36 J/g.

Returns
Computed vapor specific volume in cc/g or Error digital state.

Sample Values

Pressure Enthalpy Volume State

2500. 3685.1 159.21 Superheated

5000. 3664.5 78.616 Superheated

10000. 3622.7 38.320 Superheated

40000. 3346.4 8.0884 Superheated

2500. 2617.0 72.04 90 % vapor

Note: The computed result may differ slightly from that computed using the
saturated liquid volume, saturated vapor volume and vapor fraction. The difference
increases with the moisture content of the steam.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 225

StmSI_VPS

Calculates the vapor specific volume as a function of pressure and entropy—all variables
expressed in SI units. Use for both superheated or wet steam.

Format
StmSI_VPS(P, S)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

S

Specific entropy of the steam in J/g/K. The valid range is -0.41868 to 12.5604 J/g/K.

Returns
Computed vapor specific volume in cc/g or Error digital state.

Sample Values

Pressure Entropy Volume State

2500. 7.5956 159.21 Superheated

5000. 7.2578 78.616 Superheated

10000. 6.9013 38.320 Superheated

40000. 6.0135 8.0884 Superheated

2500. 5.8837 72.04 90 % vapor

Note: The computed result may differ slightly from that computed using the
saturated liquid volume, saturated vapor volume and vapor fraction. The difference
increases with the moisture content of the steam.

Chapter 5 - PI Steam Functions Reference

Page 226

StmSI_HPT

Calculates the vapor specific enthalpy as a function of pressure and temperature—all
variables expressed in SI units. Only use for superheated or dry saturated steam. An error of
-1 (or input out of range digital state) will be resulted for input temperature lower than the
saturation temperature for the input pressure. However, the function computes for the full
range of temperature for input pressure greater than the critical pressure.

Format
StmSI_HPT(P, T)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

T

Steam temperature in degree C. The valid range is 0.0 to 871.11 degree C.

Returns
Computed vapor specific enthalpy in J/g or Error digital state.

Sample Values

Pressure Temperature Enthalpy

2500. 600. 3685.1

5000. 600. 3664.5

10000. 600. 3622.7

40000. 600. 3346.4

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 227

StmSI_HPTL

Calculates the liquid specific enthalpy as a function of pressure and temperature—all
variables expressed in SI units. Only use for compressed water. An error of -1 (or input out of
range digital state) will be resulted for input temperature higher than the saturation
temperature for the input pressure. However, the function computes for the full range of
temperature for input pressure greater than the critical pressure.

Format
StmSI_HPTL(P, T)

Arguments
P

Pressure of the water in kpa. The valid range is 0.6108 to 110316.0 kpa.

T

Water temperature in degree C. The valid range is 0.0 to 871.11 degree C.

Returns
Computed liquid specific enthalpy in J/g or Error digital state.

Sample Values

Pressure Temperature Enthalpy

2500. 100. 420.86

5000. 100. 422.74

10000. 100. 426.50

40000. 100. 449.22

Chapter 5 - PI Steam Functions Reference

Page 228

StmSI_HPS

Calculates the vapor specific enthalpy as a function of pressure and entropy—all variables
expressed in SI units. Use for both superheated or wet steam.

Format
StmSI_HPS(P, S)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

S

Specific entropy of the steam in J/g/K. The valid range is -0.41868 to 12.5604 J/g/K.

Returns
Computed vapor specific enthalpy in J/g or Error digital state.

Sample Values

Pressure Entropy Enthalpy State

2500. 7.5956 3685.1 Superheated

5000. 7.2578 3664.5 Superheated

10000. 6.9013 3622.7 Superheated

40000. 6.0135 3346.4 Superheated

2500. 5.8837 2617.0 90 % vapor

Note: Even if the input entropy is less than that of the saturated liquid, the function
still computes the enthalpy by extrapolation without setting an error state.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 229

StmSI_SPT

Calculates the vapor specific entropy as a function of pressure and temperature—all variables
expressed in SI units. Only use for superheated or dry saturated steam. An error of -1 (or
input out of range digital state) will be resulted for input temperature lower than the
saturation temperature for the input pressure. However, the function computes for the full
range of temperature for input pressure greater than the critical pressure.

Format
StmSI_SPT(P, T)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

T

Steam temperature in degree C. The valid range is 0.0 to 871.11 degree C.

Returns
Computed vapor specific entropy in J/g/K or Error digital state.

Sample Values

Pressure Temperature Entropy

2500. 600. 7.5956

5000. 600. 7.2578

10000. 600. 6.9013

40000. 600. 6.0135

Chapter 5 - PI Steam Functions Reference

Page 230

StmSI_SPTL

Calculates the liquid specific entropy as a function of pressure and temperature—all variables
expressed in SI units. Only use for compressed water. An error of -1 (or input out of range
digital state) will be resulted for input temperature higher than the saturation temperature for
the input pressure. However, the function computes for the full range of temperature for input
pressure greater than the critical pressure.

Format
StmSI_SPTL(P, T)

Arguments
P

Pressure of the water in kpa. The valid range is 0.6108 to 110316.0 kpa.

T

Water temperature in degree C. The valid range is 0.0 to 871.11 degree C.

Returns
Computed liquid specific entropy in J/g/K or Error digital state.

Sample Values

Pressure Temperature Entropy

2500. 100. 1.305

5000. 100. 1.30304

10000. 100. 1.29919

40000. 100. 1.27714

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 231

StmSI_SPH

Calculates the vapor specific entropy as a function of pressure and enthalpy—all variables
expressed in SI units. Use for both superheated or wet steam.

Format
StmSI_SPH(P, H)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

H

Computed vapor specific enthalpy in J/g. The valid range is -2.326 to 4326.36 J/g.

Returns
Computed vapor specific entropy in J/g/K or Error digital state.

Sample Values

Pressure Enthalpy Entropy State

2500. 3685.1 7.5956 Superheated

5000. 3664.5 7.2578 Superheated

10000. 3622.7 6.9013 Superheated

40000. 3346.4 6.0135 Superheated

2500. 2617.0 5.8837 90 % vapor

Note: Even if the input enthalpy is less than that of the saturated liquid, the function
still computes the entropy by extrapolation without setting an error state.

Chapter 5 - PI Steam Functions Reference

Page 232

StmSI_TPH

Calculates the steam temperature as a function of pressure and enthalpy—all variables
expressed in SI units. Use for both superheated or wet steam.

Format
StmSI_TPH(P, H)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

H

Specific enthalpy of the steam in J/g. The valid range is -2.326 to 4326.36 J/g.

Returns
Computed steam temperature in degree C. or Error digital state.

Sample Values

Pressure Enthalpy Temperature State

2500. 3685.1 600. Superheated

5000. 3664.5 600. Superheated

10000. 3622.7 600. Superheated

40000. 3346.4 600. Superheated

2500. 2617.0 223.94 90 % vapor

Note: Even if the input enthalpy is less than that of the saturated liquid, the function
still returns the saturated temperature as the answer without setting an error state.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 233

StmSI_TPS

Calculates the steam temperature as a function of pressure and entropy—all variables
expressed in SI units. Use for both superheated or wet steam.

Format
StmSI_TPS(P, S)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 110316.0 kpa.

S

Specific entropy of the steam in J/g/K. The valid range is -0.41868 to 12.5604 J/g/K.

Returns
Computed steam temperature in degree C. or Error digital state.

Sample Values

Pressure Entropy Temperature State

2500. 7.5956 600. Superheated

5000. 7.2578 600. Superheated

10000. 6.9013 600. Superheated

40000. 6.0135 600. Superheated

2500. 5.8837 223.94 90 % vapor

Note: Even if the input entropy is less than that of the saturated liquid, the function
still returns the saturated temperature as the answer without setting an error state.

Chapter 5 - PI Steam Functions Reference

Page 234

StmSI_XPH

Calculates the steam quality (vapor fraction) as a function of pressure and enthalpy—all
variables expressed in SI units. Use only for wet steam.

Format
StmSI_XPH(P, H)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

H

Specific enthalpy of the steam in J/g. The valid range is -2.326 to 4326.36 J/g.

Returns
Computed steam quality (vapor fraction) or Error digital state.

Sample Values

Pressure Enthalpy Steam Quality

2500. 2617.0 0.9

5000. 2630.2 0.9

10000. 2595.8 0.9

Note: If the input enthalpy is greater than that of the saturated vapor, the function
returns 1.0 as vapor fraction. If the input enthalpy is less than that of the saturated
liquid, the function would compute negative vapor fraction without setting an error
state.

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 235

StmSI_XPS

Calculates the steam quality (vapor fraction) as a function of pressure and entropy—all
variables expressed in SI units. Use only for wet steam.

Format
StmSI_XPS(P, S)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

S

Specific entropy of the steam in J/g/K. The valid range is -0.41868 to 12.5604 J/g/K.

Returns
Computed steam quality (vapor fraction) or Error digital state.

Sample Values

Pressure Entropy Steam Quality

2500. 5.8837 0.9

5000. 5.6682 0.9

10000. 5.3939 0.9

Note: If the input entropy is greater than that of the saturated vapor, the function
returns 1.0 as vapor fraction. If the input entropy is less than that of the saturated
liquid, the function would compute negative vapor fraction without setting an error
state.

Chapter 5 - PI Steam Functions Reference

Page 236

StmSI_HPX

Calculates the steam specific enthalpy as a function of pressure and quality (vapor fraction)—
all variables expressed in SI units. Use only for wet steam.

Format
StmSI_HPX(P, X)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

X

Steam quality (vapor fraction). Valid range is from 0.0 to 1.0.

Returns
Computed specific enthalpy of the steam in J/g or Error digital state.

Sample Values

Pressure Steam Quality Enthalpy

2500. 0.9 2617.0

5000. 0.9 2630.2

10000. 0.9 2595.8

 5.4 - Steam Functions Reference

PI Server Applications User Guide Page 237

StmSI_SPX

Calculates the steam specific entropy as a function of pressure and quality (vapor fraction)—
all variables expressed in SI units. Use only for wet steam.

Format
StmSI_SPX(P, X)

Arguments
P

Pressure of the steam in kpa. The valid range is 0.6108 to 22119.8 kpa.

X

Steam quality (vapor fraction). Valid range is from 0.0 to 1.0.

Returns
Computed specific entropy of the steam in J/g/K or Error digital state.

Sample Values

Pressure Steam Quality Entropy

2500. 0.9 5.8837

5000. 0.9 5.6682

10000. 0.9 5.3939

PI Server Applications User Guide Page 239

Chapter 6. PI BATCH DATABASE

Most processes have repeatable time segments or stages. The PI Batch Subsystem maps
process or manufacturing events to slices of time and data, and stores these batch- and
process-based events hierarchically in the PI Data Archive as Batches, Unit Batches, or Sub
Batches. This capability enables powerful data and process analysis for both traditional and
non-traditional batch processes.

Many manufacturing companies find it useful to track their products in discrete batches rather
than as a time-continuous product. PI Batch can define and record sequences such as events
in discrete manufacturing, paper reels, steel coils, product or grade changes, turbine startups,
and lab runs. While industries such as chemicals and pharmaceuticals use PI Batch to track
and analyze batches, it is also widely used in non-batch applications to identify and track
process events. Along with the use of audit trail support, PI Batch and the PI System become
an integral component of a validated reporting environment in compliance with 21 CFR Part
11.

This chapter describes the functionality provided by the PI Batch Subsystem, from
configuration to interaction with the resulting batch data, and includes the following topics:

Section 6.1, PI Batch Overview, on page 245

Section 6.2, Installation, on page 247

Section 6.3, Configuration, on page 247

Section 6.4, Batch Data Information, on page 256

Section 6.5, Batch Subsystem Operation, on page 260

Section 6.6, Client Access to Batch Subsystem Batches, on page 260

Section 6.7, Complete Example, on page 261

6.1 PI Batch Overview

Traditional batch applications are common in industries like chemical, food and beverage,
and pharmaceutical manufacturing. Batch processing has also been used in applications in
which a sequence of steps occurs, such as burner startup and shutdown, to determine whether
or not proper sequencing took place. Furthermore, batch processing has been used in
applications that are not typically considered pure batch processes to correlate process data
that has been generated during say an 8-hour shift or a 24-hour time period. Comparison of
various parameters during such shifts or time periods often leads to valuable insight about the
underlying process.

Chapter 6 - PI Batch Database

Page 240

PI Batch is used in conjunction with its companion Client application, PI BatchView, which
allows you to search, select, trend, and compare events that have been collected by PI Batch
and stored in the PI System. Earlier versions of PI BatchView were based on the PI-API, and
more recent versions are based on the PI-SDK.

Batch activity is indexed on the following parameters:

• Time
• Unit
• Batch ID
• Product ID

Once the batch activity is recorded, specific batches or groups of batches can be searched and
retrieved. The batch search results may then be used to frame process data from the PI
Archive in the context of the selected batches.

6.1.1 The PI Batch Subsystem (BSS), PI Batch Database (PBD), and PI Batch
Generator (PIBaGen)
The PI Batch Subsystem (BSS) was introduced with PI Server 3.1. It provides batch
processing functionality: configuration, monitoring, and query processing. It continues to be
installed and supported, but it is no longer the only (or preferred) technology for batch
processing.

 For information about the PI Batch Subsystem, read this chapter.

The PI Batch Database (BDB) was introduced with PI Server 3.3 and PI-SDK 1.1. It
provides enhanced batch information processing support.

 For information about the PI Batch Database, refer to the PI-SDK User Manual.

The PI Batch Generator (PIBaGen) Interface was introduced with the PI Batch Database.
It is now included with PI Server Applications. It is a PI-SDK-based interface that reads
process unit configuration from the PI Module Database and writes into the PI Batch
Database. The interface monitors the PI Server for events that trigger the beginning of a batch
and then stores information about each batch, such as Batch ID and Product ID, into the PI
Data Archive.

 For information about the PI Batch Generator, refer to the PI Batch Generator
(PIBaGen) User Manual.

The PI Batch Database and the PI Batch Generator are independent of the PI Batch
Subsystem. All three of these system components may be used in parallel.

 For a comparison of the PI Batch Subsystem and PI Batch Database refer to PI
Batch Database Support of the PI Batch Subsystem. This document also explains
how to access BSS batches from the BDB, and vice versa.

To search, select, trend, and compare batches of interest, client products such as PI-
BatchView are available.

 6.2 - Installation

PI Server Applications User Guide Page 241

6.1.2 Compatibility of PI-API Batch Applications for PI2 (OpenVMS) Servers
PI-API batch applications developed against PI BA in a PI2 Server (OpenVMS) will still
function correctly when run against a PI3 Server with the PI Batch Subsystem.

6.1.3 Glossary of Batch Terms
The following Batch terms are used in this chapter.

Term Definition

Batch A batch represents a span of time on a unit.

Unit Defines the name of the equipment set on which the batch activity takes place. Unit
definitions are not limited to a single piece of equipment. For example, a unit could
be a single reactor or a group of reactors and related equipment.

BatchID This is a name given to a batch of material. The BatchID is not required to be unique.

ProductID Describes a specific material or class of materials. This term is used in batch
applications that use equipment to produce a variety of different materials. A
ProductID is not required for a batch definition, but it does provide a useful search
index.

6.2 Installation

The PI Batch Subsystem is automatically installed on new installations or upgrades of the PI3
Server, but a valid license is required in order to use it. The pibatch.exe executable is located
in \PI\bin. The installation itself will not result in the creation of any units or batches, but the
installed piconfig script \PI\adm\pibatch.dif can be used to configure an example unit and
enable the creation of sample batches. The pibatch.dif script is discussed in more detail in
section 6.7.

The PI Batch Subsystem must started first, to configure any units or to create batches. Startup
will typically occur automatically either at boot time or when the PI Server startup script is
executed.

6.3 Configuration

All configuration for the PI Batch Subsystem must be performed with the command-line
utility piconfig. See chapter 11, The Piconfig Utility, in the PI Server System Management
Guide, for information about using the piconfig utility.

6.3.1 Unit Configuration
The starting point for all batch configurations is the unit, the piece or set of equipment where
batches occur. There are two fundamental rules for units:

 The unit name must be unique.

 The unit may only process one batch at a time.

Chapter 6 - PI Batch Database

Page 242

PI Batch Unit (PIBAUNIT) Table
The configuration for all units is stored in the data file \PI\dat\pibaunit1.nt and is accessed
exclusively via the piconfig table named PIBAUNIT. The configuration for a unit involves
several attributes of information, and the following list includes each attribute's name, data
type, default value ("D:"), and current value ("C:"):

* (Ls -) PIconfig> @table PIBAUNIT

* (Ls - PIBAUNIT) PIconfig> @?atr

1 - UnitName String D: C:

2 - NEWUnitName String D: C:

3 - ActiveTag String D: C:

4 - ActiveType String D: pulse C:

5 - BIDExpr String D: C:

6 - DataAccess String D: o:rw g:r w:r C:

7 - DataGroup String D: piadmin C:

8 - DataOwner String D: piadmin C:

9 - Description String D: C:

10 - EvalDelay String D: 0 C:

11 - MergeConsecutive String D: 0 C:

12 - ProdExpr String D: C:

13 - UnitAccess String D: o:rw g:r w:r C:

14 - UnitGroup String D: piadmin C:

15 - UnitOwner String D: piadmin C:

Table 6–1 provides a complete description of each of the unit attributes.

Table 6–1. PIBAUNIT Table Attributes

Attribute Description

UnitName This defines the unique unit name, which is the primary index of the
PIBAUNIT table. The name cannot include the ‘\’ character but can be
renamed.

NEWUnitName Used to rename an existing unit.

ActiveTag The PI tag that defines whether a batch is active or inactive on this unit.
Two different units cannot have the same batch activation tag.

This attribute defines when a batch begins (becomes Active) or ends
(becomes Inactive) on a unit. The transition is a function of the data type
and value of the batch activation tag. The two possible types are Pulse
(default) and Step.

The Inactive / Active transition occurs according to the
following table. A change in value within the same status
range has no effect on the status of the unit.

ActiveTag
data type

Batch becomes
Inactive

Batch becomes Active

Integer Value = 0 Value <> 0

ActiveType

PULSE

Digital Value = first
digital state

Value <> first digital state

 6.3 - Configuration

PI Server Applications User Guide Page 243

Attribute Description

Float -1 < Value < 1 Value <= -1 or Value >= 1

String Value = "" Value <> ""

Units with this type are normally active: every time the
ActiveTag receives a new value, the current batch is
completed and a new batch is started. New batches will
cease being created for each new value when the ActiveTag
receives the Stop Value.

ActiveTag data type Stop Value

Integer Value = 0

Digital Value = first digital state

Float -1 < Value < 1

STEP

String Value = ""

BIDExpr This defines the expression consisting of PI Tags and text to generate a
batch identifier (BatchID) when a batch starts on a unit. See the section,
Rules for Defining BIDExpr and ProdExpr, for more information.

ProdExpr This defines the expression consisting of PI tags and text to generate a
product identifier (ProductID) when the batch starts on a unit. See the
section, Rules for Defining BIDExpr and ProdExpr, for more information.

EvalDelay Delay (default is zero), in seconds, to wait before evaluating BIDExpr and
ProdExpr after the batch starts. If the batch duration is shorter than the
evaluation delay, the BIDExpr and ProdExpr will be evaluated when the
batch ends. This attribute is useful if the BatchID and ProductID are not
defined until after the batch starts.

MergeConsecutive If the value of this attribute is non-zero (default is zero) and the
ActiveType is Pulse, consecutive batches with the same BatchID are
considered to be one batch. The first assigned ProductID is used for the
entire batch. This attribute is useful for batches that are halted
temporarily and then restarted before the actual batch completes.

Description A textual description of the unit.

DataAccess Similar to tag security, this security attribute controls access to the batch
data for the unit for the owner, group, and world. The format is the
following: "o:<access> g:<access> w:<access>" where the <access>
mask is either "rw" for read-write access, "w" for write-only access, "r" for
read-only access, or "" for no access. The default access string is "o:rw
g:r w:r".

DataGroup This security attribute indicates which group of PI users can access batch
data for the unit. The default data group is piadmin.

DataOwner This security attribute indicates which individual PI user owns the batch
data for the unit. The default data owner is piadmin.

UnitAccess Same as DataAccess, except this controls access to the configuration for
the unit. The default access string is also "o:rw g:r w:r".

UnitGroup This security attribute indicates which group of PI users can access the
configuration for the unit. The default unit group is piadmin.

Chapter 6 - PI Batch Database

Page 244

Attribute Description

UnitOwner This security attribute indicates which individual PI user owns the
configuration for the unit. The default unit owner is piadmin.

Rules for Defining BIDExpr and ProdExpr
If only one type of product is made on a given unit, a simple fixed text string will suffice for
ProdExpr. Typically, however, a given unit supports many different products, so the
ProductID must be generated from the value of one or more PI tags when the batch begins.
Similarly, a different BatchID will likely need to be generated even though it is not required
to be unique.

To generate multiple BatchIDs or ProductIDs requires an expression similar to the following:

" 'R1:PRODA'/4 + \"_\" + 'R1:PRODB'/5 + \"-A\" "

Note: The backslashes preceding the inner double quotes are needed; otherwise,
they would be misinterpreted to be the final double quote of the entire expression.

Such an expression combines the values of the PI tags R1:PRODA and R1:PRODB with
some additional text to generate a product name. Some example values of the PI tags and the
resulting ProductID (or BatchID) are:

R1:PRODA R1:PRODB ProductID

5 765.99 0005_00765-A

BLACK YELLOW BLAC_YELLO-A

ABC XYZ_X ABC _XYZ_X-A

12345 Shutdown ####_Digital
State Set-A

The following is a complete list of the syntax rules and limitations for specifying both
BIDExpr and ProdExpr expressions:

 The entire expression must be enclosed in double quotes.

 PI points must be enclosed in single quotes.

 Static text strings must be enclosed in double quotes. Backslashes must precede the
double quotes surrounding text strings to prevent misinterpretation of the final double
quote for the entire expression.

 A number following the field size indicator, '/', indicates the number of characters the
field will occupy. A value of 0 or an unspecified field width indicates that all
characters are required.

 The values for integer tags are right-justified and zero-filled if the number of digits is
less than the field size. If the number of integer digits exceeds the field size, the field
is filled with '#'s.

 6.3 - Configuration

PI Server Applications User Guide Page 245

 The values for float tags are truncated and then converted to integers, which means
the field size rules for integers then apply.

 The values for digital or string tags are left-justified and filled with trailing spaces if
the number of characters is less than the field size. If the number of characters
exceeds the field size, the text is truncated.

 If any tag has a bad status, the field is filled with '#'s.

 Any leading or trailing blanks in the resulting BatchID or ProductID are truncated.

 The resulting BatchID or ProductID should not contain any of the following
characters: * ? or \. These characters will interfere with wildcard searches.

Support for Web Processes
The PI Batch Subsystem supports batches for paper machines and other web processes like
textiles and film. For these types of batches, the batch active tag should be of type Step. This
tag may be used to record the sequential batch number on a particular machine (unit), taking
on a new value when a new batch is started. The batch start time will be the timestamp of the
value of the tag, and the batch end time will be one second before the timestamp of the next
value in the Archive.

Configuration Differences from PI BA in PI2 (OpenVMS)
The PI Batch Subsystem configuration differs from PI BA in PI2 (OpenVMS). The
differences and the reasons for the differences are summarized in Table 6–2.

Table 6–2. Configuration Differences from PI BA in PI2 (OpenVMS)

Difference from PI BA in PI2 Reason

Removal of the list of TAG
aliases for the UNIT.

Tag aliases are included in the PI3 Server. Therefore, they are not
duplicated in the PI Batch Subsystem.

Removal of the STEP and
CYCLETIME tags.

These functions are not supported in the PI Batch Subsystem.
Instead, this functionality is provided by Performance Equations.

Addition of the type of the
batch active tag

The starting and stopping of a batch on a unit is indicated by the
value of the unit’s batch active tag.
 For PI BA in PI2, all of the batch active tags were of type pulse.
That is, when the value of the batch active tag is 0 (or its digital
equivalent) the unit is considered inactive. When the batch active
tag is 1 (or its digital equivalent), the unit is considered active.

 Batch active tags of type Step are not restricted to the values of
0 and 1. To support web processes, described above, the batch
active tag takes on a new value when a batch is started, ending
the previous batch.

Common Operations
The following sub-sections demonstrate the common tasks of creating, listing, renaming,
editing, and deleting units.

Chapter 6 - PI Batch Database

Page 246

Create Units
Recall that the only attributes with default values are the following: ActiveType, EvalDelay,
MergeConsecutive, and the six security attributes (DataAccess, DataGroup, DataOwner,
UnitAccess, UnitGroup, UnitOwner). If the default values for these attributes are
acceptable, then these attributes do not have to be specified when creating new units. The
following piconfig commands will create the unit TestUnit using the default attribute values:

* (Ls -) PIconfig> @table PIBAUNIT

* (Ls - PIBAUNIT) PIconfig> @mode create

* (Cr - PIBAUNIT) PIconfig> @istr unitname,activetag,bidexpr,prodexpr,

description

* (Cr - PIBAUNIT) PIconfig> TestUnit,TestUnitTrigger,"\"TestUnitBID\"",

"\"TestUnitPID\"","This is a test unit."

*> TestUnit,TestUnitTrigger,"\"TestUnitBID\"","\"TestUnitPID\"","This is a test

unit."

When a new unit is created, a unique PI point (e.g. piba36) is created to store batch data in
the Archive just for that particular unit. One easy way to determine the name of this point,
which may be needed during troubleshooting, is to examine the PI Server Message Log at the
time the unit is created for a message similar to:

0 pipoints 27-Nov-05 22:46:27

>> Point Added by User (1) piadmin, piba36, PtId: 8406, RecNo: 4283

List Units
Use the following piconfig commands to list all the attributes for TestUnit:

* (Ls -) PIconfig> @table pibaunit

* (Ls - PIBAUNIT) PIconfig> @mode list

* (Ls - PIBAUNIT) PIconfig> @ostr *

* (Ls - PIBAUNIT) PIconfig> @select unitname=TestUnit

* (Ls - PIBAUNIT) PIconfig> @ends

TestUnit,TestUnitTrigger,pulse,"TestBID",o:rw g:r w:r,piadmin,piadmin, This is

a test unit.,0,0,"TestPID",o:rw g:r w:r,piadmin,piadmin

Rename Units
Renaming units requires the use of the NEWUnitName attribute in edit mode. The following
piconfig commands rename TestUnit:

* (Ls -) PIconfig> @table pibaunit

* (Ls - PIBAUNIT) PIconfig> @mode edit

* (Ed - PIBAUNIT) PIconfig> @istr unitname,newunitname

* (Ed - PIBAUNIT) PIconfig> TestUnit,TestUnit1

*> TestUnit,TestUnit1

Because a unit's name is not used to store the actual batch data, renaming a unit will be
wholly transparent to batch data searches and retrieval.

 6.3 - Configuration

PI Server Applications User Guide Page 247

Edit Units
Any unit attribute except for UnitName can be edited directly using the attribute's name. The
following piconfig commands will edit the security attributes DataAccess and UnitAccess
for TestUnit:

* (Ls -) PIconfig> @table pibaunit

* (Ls - PIBAUNIT) PIconfig> @mode edit

* (Ed - PIBAUNIT) PIconfig> @istr unitname,dataaccess,unitaccess

* (Ed - PIBAUNIT) PIconfig> TestUnit,"o:rw g:rw w:","o:rw g:rw w:"

*> TestUnit,"o:rw g:rw w:","o:rw g:rw w:"

Editing a unit will also result in editing of the unique PI point (e.g. piba36) used to store the
unit's batch data in the archive. Examining the PI Server message log around the time of a
unit edit should yield a message similar to:

0 pipoints 27-Nov-05 23:17:22

>> Point Edited by User (1) piadmin, piba36, Point Id: 8406

Delete Units
Rockwell Automation does not recommend deleting units, especially those that have valid
batch data. Nevertheless, the following piconfig commands will delete TestUnit:

* (Ls -) PIconfig> @table pibaunit

* (Ls - PIBAUNIT) PIconfig> @mode delete

* (Dl - PIBAUNIT) PIconfig> @istr unitname

* (Dl - PIBAUNIT) PIconfig> TestUnit

*> TestUnit

In case of user error, deleting a unit will not automatically result in the deletion of the unique
PI point used to store the unit's batch data in the Archive. Instead, the batch data storage point
will simply be renamed. Examining the PI Server Message Log around the time of a unit
deletion should yield a message similar to:

0 pipoints 27-Nov-05 23:30:04

>> Point Renamed by User (1) piadmin, New Tag piba36_del, Old Tag piba36,

PointId: 8406

To completely delete the unit and all of its batch data would require the second manual step
of deleting the renamed batch data storage point (e.g. piba36_del) for that particular unit.

6.3.2 Alias Configuration
PI points are often named to reflect the instrument data source in order to provide an obvious
mapping between the two. However, in practice, except possibly for the instrument or process
engineers, it is much easier to reference a particular attribute by its unit name and common
name. Furthermore, in many cases, the unit name is implied, so the common name itself is an
unambiguous reference to the physical attribute.

For example, as shown below, a plant may have three very similar reactors with the same
three important attributes: level, temperature, and flow. The corresponding PI points for the
attributes would be different for each reactor.

Chapter 6 - PI Batch Database

Page 248

Unit Name Common Attribute Name PI Point Name

Reactor1 Level LIC:129732.PV

Reactor1 Temperature TIC:135432.PV

Reactor1 Flow FIC:245433.PV

Reactor2 Level LIC:297324.PV

Reactor2 Temperature TIC:254326.PV

Reactor2 Flow FIC:245432.PV

Reactor3 Level LIC:397321.PV

Reactor3 Temperature TIC:354399.PV

Reactor3 Flow FIC:345439.PV

Aliases in the PI Batch Subsystem provide the mechanism to enable the more natural
reference to an attribute's common name instead of the more obscure instrument name.

PI Batch Alias (PIBAALIAS) Table
The configuration for all aliases is stored in the data file \PI\dat\pibaalias.nt and is accessed
exclusively via the piconfig table named PIBAALIAS. Compared to unit configuration, alias
configuration is very simple, involving only a couple of attributes listed below. The list
includes each attribute's name, data type, default value ("D:"), and current value ("C:").

* (Ls -) PIconfig> @table PIBAALIAS

* (Ls - PIBAALIAS) PIconfig> @?atr

1 - Alias String D: C:

2 - NEWAlias String D: C:

3 - Tag String D: C:

A complete description of each of the alias attributes appears below in Table 6–3.

Table 6–3. PIBAALIAS Table Attributes

Attribute Description

Alias The alias name has two components: unit name and common name.
The syntax for an alias is the following: \\unit name\common name.
The unit name must correspond to an existing unit in the PIBAUNIT
table.

NEWAlias Used to rename an existing alias.

Tag The name of the PI point associated with the alias. The PI point must
already exist

Common Operations
The following sub-sections demonstrate the common tasks of creating, listing, renaming,
editing, and deleting aliases.

 6.3 - Configuration

PI Server Applications User Guide Page 249

Create Aliases
The following piconfig commands will create three aliases on unit Reactor1, one for each of
the attributes level, temperature, and flow:

* (Ls -) PIconfig> @table PIBAALIAS

* (Ls - PIBAALIAS) PIconfig> @mode create

* (Cr - PIBAALIAS) PIconfig> @istr alias,tag

* (Cr - PIBAALIAS) PIconfig> \\Reactor1\level,LIC:129732.PV

*> \\Reactor1\level,LIC:129732.PV

* (Cr - PIBAALIAS) PIconfig> \\Reactor1\temperature,TIC:135432.PV

*> \\Reactor1\temperature,TIC:135432.PV

* (Cr - PIBAALIAS) PIconfig> \\Reactor1\flow,FIC:245433.PV

*> \\Reactor1\flow,FIC:245433.PV

List Aliases
Because aliases include the unit name, a wildcard (default: '*') is often used to select or list
specific aliases. The following piconfig commands list all aliases defined for Reactor1:

* (Ls -) PIconfig> @table PIBAALIAS

* (Ls - PIBAALIAS) PIconfig> @mode list

* (Ls - PIBAALIAS) PIconfig> @ostr alias,tag

* (Ls - PIBAALIAS) PIconfig> @select alias=\\Reactor1*

* (Ls - PIBAALIAS) PIconfig> @ends

\\Reactor1\flow,FIC:245433.PV

\\Reactor1\level,LIC:129732.PV

\\Reactor1\temperature,TIC:135432.PV

The wildcard can be used to list a variety of other alias combinations. For example, @select
alias=* will list all aliases for all units; @select alias=*\temperature will list all aliases
with a common name of temperature.

Rename Aliases
Renaming of aliases is performed in edit mode using the NEWAlias attribute. The following
piconfig commands rename the temperature alias of Reactor1:

* (Ls -) PIconfig> @table PIBAALIAS

* (Ls - PIBAALIAS) PIconfig> @mode edit

* (Ed - PIBAALIAS) PIconfig> @istr alias,newalias

* (Ed - PIBAALIAS) PIconfig> \\Reactor1\temperature,\\Reactor1\CoreTe

mp

*> \\Reactor1\temperature,\\Reactor1\CoreTemp

Edit Aliases
Edit mode is also used when changing the corresponding PI point for an alias. The following
piconfig commands change the PI tag associated with the temperature alias of Reactor1:

* (Ls -) PIconfig> @table PIBAALIAS

* (Ls - PIBAALIAS) PIconfig> @mode edit

Chapter 6 - PI Batch Database

Page 250

* (Ed - PIBAALIAS) PIconfig> @istr alias,tag

* (Ed - PIBAALIAS) PIconfig> \\Reactor1\temperature,TIC:234531.PV

*> \\Reactor1\temperature,TIC:234531.PV

Delete Aliases
The following piconfig commands delete the temperature alias of Reactor1:

* (Ls -) PIconfig> @table PIBAALIAS

* (Ls - PIBAALIAS) PIconfig> @mode delete

* (Dl - PIBAALIAS) PIconfig> @istr alias

* (Dl - PIBAALIAS) PIconfig> \\Reactor1\temperature

*> \\Reactor1\temperature

6.4 Batch Data Information

All batch data for all units is stored in the Data Archive. When a unit is created, it is assigned
a unique Archive point named pibaN, where N is the unit’s unique integer ID, for storing
batch data specific to that unit. Each completed batch consists of two events written to the
appropriate pibaN point: an event at the start time of the batch with a System Digital State of
ActiveBatch; and an event at the end time of the batch with the actual batch data stored as a
Blob object.

6.4.1 PI Batch Data (PIBATCH) Table
The batch data events should typically never be accessed directly from the archive. Instead,
batch data should be accessed via the piconfig table named PIBATCH. The below list
includes the name, data type, default value (D:), and current value (C:) of each of the batch
data attributes.

* (Ls -) PIconfig> @table PIBATCH

* (Ls - PIBATCH) PIconfig> @?atr

 1 - UnitName String D: C:

 2 - NEWUnitName String D: C:

 3 - BID String D: C:

 4 - BIDsearch String D: C:

 5 - Count String D: 50 C:

 6 - Handle String D: C:

 7 - ProdID String D: C:

 8 - ProdIDsearch String D: C:

 9 - SearchStart String D: C:

 10 - SearchStop String D: C:

 11 - StartStatus String D: C:

 12 - StartTime String D: C:

 13 - StopStatus String D: C:

 14 - StopTime String D: C:

A complete description of each of the batch data attributes appears below in Table 6–4.

 6.4 - Batch Data Information

PI Server Applications User Guide Page 251

Table 6–4. PIBATCH Table Attributes

Attribute Definition

UnitName The name of the unit associated with a batch. In
searches, the wildcard search string for unit
names.

NEWUnitName This attribute is not supported.

BID The name or identifier of a batch. This is evaluated
when a batch starts (+ evaluation delay).

BIDsearch The wild card search string for BatchIDs.

Count The maximum number of batches to retrieve in a
search. If not specified, the default number of
batches returned is 50.

Handle The unique identifier for a single batch. The format
is the following: <uniqueID>-<StopTime in UTC>.
The unique ID is the same integer (N) used in the
name pibaN of the unit's Archive point.

ProdID The name or identifier of a batch's product. This is
evaluated when a batch starts (+ evaluation delay).

ProdIDsearch The wild card search string for ProductIDs.

SearchStart The start time of a search.

SearchStop The end time of a search.

StartStatus An integer indicating the status of a batch's start
time: 0 = Not Set; 1 = Unknown; 2 = OK.

StartTime The time a batch started.

StopStatus An integer indicating the status of a batch's end
time: 0 = Not Set; 1 = Unknown; 2 = OK.

StopTime The time a batch completed.

6.4.2 Common Operations
The following sub-sections demonstrate the common tasks of creating, listing, editing, and
deleting batches.

Create Batches
New batches may only be created for existing units, and the start and stop times are subject to
the following three conditions:

 The start time must be before the stop time.

 The time span of the batch must not overlap an existing batch on the same unit.

 There must be a registered Archive that covers the time span of the batch.

Chapter 6 - PI Batch Database

Page 252

BID and ProdID are optional but typically very useful attributes. A Handle should not be
specified, for it will be generated. The following piconfig commands will create a batch for
TestUnit2:

* (Ls -) PIconfig> @table pibatch

* (Ls - PIBATCH) PIconfig> @mode create

* (Cr - PIBATCH) PIconfig> @istr unitname,bid,prodid,starttime,stoptime

* (Cr - PIBATCH) PIconfig> TestUnit2,"Batch-1","Prod-1","24-Dec-05 04:00","24-

Dec-05 08:00"

*> TestUnit2,"Batch-1","Prod-1","24-Dec-05 04:00","24-Dec-05 08:00"

List Batches
Recall that the following five attributes can be specified as search input to narrow the list of
batches: UnitName, BIDSearch, ProdIDSearch, SearchStart, and SearchStop. A typical
search will specify at least UnitName, SearchStart, and SearchStop. The following
piconfig commands will list all batches for TestUnit2 since December 1, 2005:

* (Ls -) PIconfig> @table pibatch

* (Ls - PIBATCH) PIconfig> @mode list

* (Ls - PIBATCH) PIconfig> @ostr unitname,bid,prodid,starttime,

stoptime,handle

* (Ls - PIBATCH) PIconfig> @ostr ...

* (Ls - PIBATCH) PIconfig> @istr unitname,searchstart,searchstop

* (Ls - PIBATCH) PIconfig> TestUnit2,1-dec-05,*

> TestUnit2,1-dec-05,

TestUnit2,Batch-1,Prod-1,24-Dec-05 04:00:00,24-Dec-05 08:00:00,35-1135440000

TestUnit2,Batch-2,Prod-2,24-Dec-05 08:01:00,24-Dec-05 12:00:00,35-1135454400

* End Repeat...

Note: The command @ostr … is required to force the output of multiple batches.
Without this command, only the first batch that matches the input criteria will be
output.

When listing batches, the Count attribute must also be taken into consideration. If Count is
not specified in the input structure, then a maximum of 50 batches will be output.

For user convenience, the installed piconfig script \PI\adm\pibalist.dif specifies the same
attributes in the input and output structures as those used in the above example, the typical
search.

Edit Batches
Any combination of the following four batch attributes may be edited: StartTime,
StopTime, BID, ProdID. Modification of StartTime or StopTime is subject to the same
three conditions identified in Create Batches, and if the time modification is valid, the
respective time status attribute will always be set to 2 = "OK".

 6.5 - Batch Subsystem Operation

PI Server Applications User Guide Page 253

In addition to the attributes that will be modified, the batch Handle must also be specified to
uniquely identify the target batch for modification. Because a Handle encapsulates
StopTime, modification of StopTime will render that batch Handle obsolete after the edit.

The following piconfig commands modify the BID and StopTime of the last December
batch for TestUnit2:

* (Ls -) PIconfig> @table pibatch

* (Ls - PIBATCH) PIconfig> @mode edit

* (Ed - PIBATCH) PIconfig> @istr handle,bid,stoptime

* (Ed - PIBATCH) PIconfig> 35-1135454400,"Batch-2Mod","24-Dec-05 14:00:00"

*> 35-1135454400,"Batch-2Mod","24-Dec-05 14:00:00"

Delete Batches
As when editing batches, the Handle must be specified when deleting batches. After a delete,
the Handle will always be rendered obsolete. No other attributes need to be specified. The
following piconfig commands delete the last December batch for TestUnit2 (note the Handle
changed after modifying StopTime in the Edit Batches example):

* (Ls -) PIconfig> @table PIBATCH

* (Ls - PIBATCH) PIconfig> @mode delete

* (Dl - PIBATCH) PIconfig> @istr handle

* (Dl - PIBATCH) PIconfig> 35-1135461600

*> 35-1135461600

6.5 Batch Subsystem Operation

The following sections describe the primary operating tasks of the Batch Subsystem.

6.5.1 Check for Unit Consistency
When the Batch Subsystem first starts up, it checks all defined units (stored in
\PI\dat\pibaunit1.nt) for consistency. The consistency check includes verifying the existence
of the batch activation tags as well as any tags referenced in the expressions for generating
BatchID and ProductID. Any unit indicated as active is also checked to verify that the same
batch is still running, and if there is a discrepancy, the Data Archive is updated appropriately.
Similarly, if any unit previously indicated as inactive is detected to have an actively running
batch, the Data Archive is updated accordingly as well. If any problems are encountered,
messages are sent to the PI Message Subsystem.

6.5.2 Monitor Activation Tags for Transitions
After startup is complete, the Batch Subsystem begins monitoring all batch activation tags for
exception reports. The Batch Subsystem will remain in this state until it is shut down. If the
Batch Subsystem detects a transition for a batch activation tag from an inactive to active
state, the unit is updated to record the start of the batch. Until batch completion, all the
information for a running batch is actually stored with the unit (in \PI\dat\pibaunit1.nt). If an
active to inactive state transition is detected, the batch is considered complete, and the Blob

Chapter 6 - PI Batch Database

Page 254

object containing the complete batch structure is created and finally stored in the Data
Archive.

6.5.3 Evaluate BIDExpr and ProdExpr
The Batch Subsystem normally evaluates the BIDExpr and ProdExpr to generate the
BatchID and ProductID, respectively, when the batch activation tag transitions from an
inactive to active state. The evaluation of these expressions can be delayed for a unit by using
the EvalDelay attribute. After the evaluation time, changes to any tags involved in a
BIDExpr and ProdExpr are ignored.

6.6 Client Access to Batch Subsystem Batches

Other than with piconfig, read-only programmatic access to the batches created by the Batch
Subsystem is available directly with the PI-API. Read-only programmatic access is also
available via the PI-SDK, but only if the units are first registered with the Batch Database;
this registration procedure is detailed in the document PI Batch Database Support of the PI
Batch Subsystem.

The only API-based client application is the PI BatchView add-in for Excel, but of course,
custom API applications can always be written. All other client applications such as
BatchView for FactoryTalk Historian ProcessBook or the stand-alone BatchView Quick
Search are SDK-based applications, and therefore require unit registration with the Batch
Database. See corresponding user guides for more information.

6.7 Complete Example

Installation of the Batch Subsystem does not result in the creation of any units or batches. The
installed piconfig script \PI\adm\pibatch.dif creates a sample unit and enable the automatic
creation of sample batches. Of course, the actual configuration and batch data is contrived,
but the example provides a complete functional overview of the Batch Subsystem.

Before executing the script, ensure that the Batch Subsystem and all other PI Server
subsystems are fully started. To execute the script, simply enter the following at a command
prompt after changing to the \PI\adm directory:

piconfig < pibatch.dif

The script first creates two digital sets to model BatchIDs and ProductIDs and two digital
tags, one assigned to each set, to be used in the BIDExpr and ProdExpr attributes of the
sample unit. These digital tags are configured to be serviced by the Random Simulator
Interface (executable name: random), a default interface distributed with all PI Servers, so
this interface also needs to be configured and started for the example to work properly.

The script then creates a single sample unit named Reactor1 using the default point
BA:Active.1 as the batch activation tag. If the default points were not created at PI Server
installation time, then they can be created manually by executing the following at a command
prompt after changing to the \PI\adm directory:

 6.7 - Complete Example

PI Server Applications User Guide Page 255

piconfig input defaultpt.dif input defaultpt.dat exit

BA:Active.1 is serviced by the Ramp Soak Simulator Interface (executable name: rmp_sk),
another default interface distributed with all PI Servers, so this interface also needs to be
configured and started for the example to work properly.

The script finishes with the creation of a few aliases–Temperature, Level, and Concentration–
using other default points–BA:Temp.1, BA:Level.1, and BA:Conc.1, respectively.

If the script executed without errors and all the simulator interfaces are running, a new batch
for Reactor1 should be created approximately every 81 minutes.

PI Server Applications User Guide Page 257

Chapter 7. PI TOTALIZER SUBSYSTEM

The PI Totalizer Subsystem (Totalizer) performs common calculations such as totals,
averages, minimum and maximum values, and standard deviations. Output of a calculation is
stored in a PI point.

The main difference between a Performance Equations point and a Totalizer point calculating
the same summary is that Totalizer calculates from realtime inputs (as opposed to archived
values.) Performance Equations are based on Archive events, while Totalizer results are
based on Snapshot events.

PI Totals are the most accurate way to represent production summary data. Totalizers can be
started and reset based on time and event, and ensure the highest accuracy in the calculation
of flow volumes and other critical variables used to monitor product transfers or production
performance. Totalizer is especially practical for totaling measurements or other process
variables at the end of specific time periods, such as the end-of-day yields.

This chapter includes the following topics:

Section 7.1, Totalizer Subsystem Overview, on page 263

Section 7.2, Totalizer ConfigurationOverview, on page 266

Section 7.3, Totalizer Point Class Attributes, on page 268

Section 7.4, Build Totalizer Points, on page 297

Section 7.5, Program Operation, on page 299

Section 7.6, PI for OpenVMS Upgrade Considerations, on page 299

Section 7.7, Demonstration Points, on page 301

7.1 Totalizer Subsystem Overview

Totalizer allows you to perform certain calculations on a point in the Snapshot, and to store
the results in another point. The process is called postprocessing. Postprocessing includes the
following types of summary calculation:

• Total
• Average
• Minimum
• Maximum
• Range

Chapter 7 - PI Totalizer Subsystem

Page 258

• Standard Deviation
• Median

Additionally, Totalizer permits the counting of update events for a point. The types of
counting allowed are as follows:

• All Events
• Event Equal To a value
• Event Not Equal To a value
• Event Greater Than a value
• Event Greater Than or Equal To a value
• Event Less Than a value
• Event Less Than or Equal To a value
• Event change from Greater Than or Equal To to Less Than
• Event change from Less Than to Greater Than or Equal To

The Totalizer is a dedicated subsystem, pitotal. This subsystem signs up for exceptions,
which means that it is notified when a new value is added to the Snapshot for any of the
points to be postprocessed. After postprocessing, values, for example, average, total, or time
in state, are sent back to the PI Snapshot.

Note: Since pitotal uses Snapshots of the data, postprocessing uses uncompressed
data. Its results are more accurate than those computed later from values in the
archive.

7.1.1 Totalizer vs. Performance Equations
Totalizer may be more accurate because the values used in Totalizer calculations are taken
from the Snapshot, not after the application of compression as in the case of Performance
Equations. Figure 7–1 shows an interval of time for which an accumulation of a point occurs.
Within this accumulation interval, the point also undergoes exception reporting.

ExMin
ExMax

ExDev

Previous reported
event

First event outside of
exception specs

Events sent to snapshot
as result of first exception

Events that fail exception test

Events that pass exception test

Figure 7–1. Exception Reporting

 7.1 - Totalizer Subsystem Overview

PI Server Applications User Guide Page 259

The values are sent to the Snapshot if they pass the exception test defined by the ExDev,
ExMin and ExMax attributes. In Figure 7–2, 10 of the 28 values fail the exception test and
are not sent to the Snapshot. The Totalizer utilizes the 18 values that are left for the
evaluation. On the other hand, the Performance Equation Scheduler uses the compressed
values (if compression is on). Figure 7–2 shows the difference in the resultant time-weighted
calculation for the Totalizer and the Performance Equation Scheduler.

Regions that are included
and excluded for a time-
weighted calculation using
PI Totalizer

Events that fail compression test

Events that pass compression test

Region considered in
Time-Weighted calculation
using Compressed Values

Figure 7–2. Time Weighted Calculation for Totalizer and Performance Equation

The region considered for the calculation is the area under the curve created by connecting
the 18 values left from the exception test. On the other hand, the region considered by the
Performance Equation calculation would be the area under the curve that is created by
connecting the six points that are left after the compression test. In general, the difference in
accuracy between the two calculations is about 1 to 2.5 percent.

The Totalizer may also be more efficient in many cases, especially when the summary
interval is large. Consider a year-to-day calculation. If the calculation is implemented as a
performance equation, the Archive data from the beginning of the year to the current time
needs to be retrieved to carry out the calculation. On the other hand, if the calculation is
implemented as a Totalizer point, then only the new Snapshot event is needed to do the
calculation.

Chapter 7 - PI Totalizer Subsystem

Page 260

7.2 Totalizer ConfigurationOverview

Totalizer is very flexible, offering a wide range of operating modes. The behavior of a
particular point is primarily determined by five multiple-choice parameters:

Table 7–1. Five Major Parameters that Affect Totalizer

RateSampleMode CalcMode Function

Natural
Scan1
Scan2
Event

TimeWeighted
EventWeighted
AllEvents
EventChange
TimeTrue

TotalCloseMode ReportMode

Clock
EventChange
EventTrue
NSampleMoving
NSampleBlock
TimeMoving
Forever

PeriodEnd
Ramping
Running
RunEstimate
RunEst2

Total
Average
Minimum
Maximum
Range
StdDeviation
Median
EventEQ
EventNE
EventGE
EventGT
EventLE
EventLT
EventGE_LT
EventLT_GE

Not counting the behavior influences of the Rate Point Data Type and Step parameter, the
number of combinations of the five parameters is 12,000 (5 x 5 x 6 x 16 x 5). However, not
all of the combinations are allowed. For example, a point that is computing a total with a
TotalCloseMode option of Forever does not allow the ReportMode of PeriodEnd because
the totalization cannot stop at the end of the period. The combinations of the allowed cases
are described later in this chapter.

7.2.1 Creation of a Totalizer Point
Totalization involves several steps, as follows:

1. Sample the value (RateSampleMode) from the input point called the rate point
(SourceTag).

2. Possibly exclude the value based on a filter (Filter Expression).

3. Accumulate the observed values as needed for the specified summary function
(Function and CalcMode).

4. Determine when the Totalizing period is complete and the accumulators need to be
reset (TotalCloseMode).

5. Report the result (ReportMode).

 7.2 - Totalizer ConfigurationOverview

PI Server Applications User Guide Page 261

 Figure 7–3 shows a flow diagram for the steps that are involved in creating a Totalizer point.

Function/
CalcMode
- Determines
the type of
calculation that
is done for the
accumulation

TotalCloseMode
- Schedules the time for the
reset of the accumulation and
when the value is set to PI
Snapshot

ReportMode
- Determines
the manner in
which the result
is sent to PI
Snapshot

Totalizer
Tag

Source
Tag

Filter Expression
- Filters out the values
sent to the accumulation

RateSampleMode
- Determines
the type of
sampling

Figure 7–3. Flow Diagram for the Creation of a Totalizer Point

7.2.2 Totalizer Input Values
Each Totalizer point has a single input called the source or rate point. This is the point whose
values are summed, counted, or otherwise accumulated to produce the required summary
value. The arrival of a new rate point value triggers the accumulation and reporting functions
of each Totalizer point. Most often this process will be “naturally” scheduled, that is every
new value reported to the system will be processed into the ongoing accumulation.

Filtering
Each point may have one filter expression. This expression is evaluated each time that a new
update value is received for each tag referenced in the expression. The results are stored in
time order until the next rate point value is received.

Accumulation
The accumulation step takes the previous and current rate point values into account when
adding to the accumulators. If a filter is specified, the stored filter expression results are also
considered. The details of the accumulation depend on the specified functions. The available
functions are: total, average, minimum, maximum, range, standard deviation, count (of
digital states), and timer.

Accumulation Interval
The accumulation interval is the interval of time for which a postprocessing calculation
occurs. Totals are often generated for intervals specified by a period and an initial start time.
Alternatively, the interval may be defined by external events using a trigger expression in PE
form.

Output
The output of the results is usually reported at the end of the accumulation interval. The
output can also be estimated before the completion of the accumulation interval. A running
result is also available.

Chapter 7 - PI Totalizer Subsystem

Page 262

7.3 Totalizer Point Class Attributes

The points to which the Totalizer writes its postprocessed values must be of the Totalizer
Point Class. This class has both Base and Totalizer attributes. Table 7–2 lists the additional
attributes in the Totalizer Point Class attribute set. These Totalizer-specific parameters drive
the totalization process.

The data types for the five major attributes, RateSampleMode, TotalCloseMode,
ReportMode, Function, and CalcMode as well as the SourceTag, Options, and CompVal,
are strings and are not case-sensitive. The filter and event expressions use the Performance
Equation syntax. Period, Period2, Offset and Offset2 are relative timestamps while the rest
of the attributes are real numbers.

Table 7–2. Totalizer Point Class Attribute Set

Point Attribute Default Value or
Valid Options

Notes

SourceTag Point to be postprocessed. (See Options, below in
this table, for SourceTag values.)

Natural (default) Processes when new rate point value arrives.

Scan1 Time based samples based on Period2 and
Offset2, interpolated between update events.

Scan2 Time based samples based on Period2 and
Offset2, extrapolated from the value of the last
seen event.

RateSampleMode

Event Triggered only when EventExpr changes.

Clock (default) Accumulation interval based on Period and Offset
parameters.

EventChange Closes when EventExpr result changes value.

EventTrue Totalizer on while value of EventExpr is non-zero.

NSampleMoving Period based upon a fixed number of input values
that is set with the MovingCount parameter.

NSampleBlock Period based upon a block of input values. The
number of input values for the block is set with the
MovingCount parameter.

TimeMoving Moving time window based on Period.

TotalCloseMode

Forever Never resets unless no previous valid point can be
found or Options attribute is settable (for total,
event counting or time only).

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 263

Point Attribute Default Value or
Valid Options

Notes

PeriodEnd No output until period end.

Ramping Running result update to PI Snapshot at the time of
the update (sawtooth).

Running (default) Running result update to PI Snapshot at one
second after the period start time.

RunEstimate Projected output based on current rate value.

ReportMode

RunEst2 Projected output based on average value.

Total (default) Numeric rate points only.

Average Numeric rate points only.

Minimum Numeric rate points only.

Maximum Numeric rate points only.

Range Numeric rate points only.

StdDeviation Numeric rate points only.

Median Numeric rate points only.

Events Numeric, digital, or string points.

EventEQ Numeric or Digital points.

EventNE Numeric rate points only.

EventGE Numeric rate points only.

EventGT Numeric rate points only.

EventLE Numeric rate points only.

EventLT Numeric rate points only.

EventGE_LT Change counter from >= to < (numeric or Digital
points).

Function

EventLT_GE Change counter from < to >= (numeric or Digital
points).

TimeWeighted
(default)

Values used in calculation weighted in proportion
to duration during period.

EventWeighted The value of each update carries the same weight.

AllEvents Count all events matching condition.

ChangeEvents Count only events that were changes of value from
the previous update.

CalcMode

TimeTrue Time in seconds event condition is true.

ZeroBias 0.0 Rate point value is zero below this value.

Period +1h Period of postprocessing used for
TotalCloseMode.

Chapter 7 - PI Totalizer Subsystem

Page 264

Point Attribute Default Value or
Valid Options

Notes

Offset +0m Offset from beginning of day of the start of
Totalizer.

MovingCount 2 Number of input values for NSampleMoving or
NsampleBlock.

Period2 +2m Used for RateSampleMode in Scan1 and Scan2.

Offset2 +0m Used for RateSampleMode in Scan1 and Scan2.

PctGood 85 Lower limit on the percentage of input data that
needs to be good.

Conversion 1 Conversion factor multiplies the accumulation
result.

FilterExpr Performance equation expression that filters the
rate point.

EventExpr Performance Equation expression used in
TotalCloseMode and RateSampleMode.

CompValue ON Comparison value for event counting and time
conditions expressed in the Function parameter.

Field contains zero or more keywords for optional Functions.

InFromTotalizer The rate point value is from an external (DCS)
Totalizer block.

UnderIsBad Under range condition on rate point is bad data
(default is zero).

NoClampZero Enable output to be less than zero.

CloseAtEvent Event ends accumulation interval.

Setable TotalCloseMode of Forever can be set externally.

OneAtStart Report is one value at 1 second into of the period
for the ReportMode of PeriodEnd.

OneAtEnd Report is one value at the end of the period for the
ReportMode of PeriodEnd.

UnderIsZero Source tag values are UnderRange (status code)
are considered to be at the source tag zero value.

OverIsTop Source tag values are OverRange (status code)
are considered to be at the source tag zero+span
value.

SourceStat Use a bad source tag status in place of “Bad
Total”.

Options

LimitBack Limits the number of totalization periods that will be
reported between source tag events.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 265

7.3.1 SourceTag
The SourceTag attribute specifies the rate point, which is the primary input for the
postprocessing. This rate point must already exist and must be specified when the Totalizer
point is configured. The rate point may be any numeric, digital, or string point types. The
value and timestamp used in the postprocessing calculation is taken when an update of the
rate point arrives.

7.3.2 RateSampleMode
The RateSampleMode attribute specifies when the individual values from the rate point will
be used in the calculation or will be added to the accumulation. The default option for the
RateSampleMode is Natural.

Natural (default)
Natural is the default and most common option. Figure 7–4 shows the update values of the
rate point. The values that are considered in the postprocessing calculation are the update
values that lie within the accumulation interval.

Accumulation
Interval

Update values of the rate point

Figure 7–4. Natural Sampling

Depending on the other attributes such as the TotalCloseMode, ReportMode, Function, and
CalcMode, the calculation of the result may or may not involve the update values of the rate
point outside the accumulation interval. These features are discussed later in the chapter.

Scan1
Scan1 uses the attributes Period2 and Offset2 to sample the rate point at evenly spaced time
intervals. Values that lie within two updates of the rate point values are linearly interpolated.
Hence, Scan1 does not compute the completed results until the rate point after the
accumulation interval end time, as shown in Figure 7–5.

Chapter 7 - PI Totalizer Subsystem

Page 266

Accumulation
Interval

Scan rate based
on Period2 and
Offset2 attributes

Interpolated values of rate tag

Values of rate point

Figure 7–5. Scan1 Sampling

The values used in the calculation are the interpolated values at the timestamps set using
Period2 and Offset2. Also, note that the sample rate may or may not coincide with the
postprocessing period. For digital point counting, the digital state does not change until the
update event of the rate point is a different digital state. Hence, Scan1 will be similar to Scan2
in that the digital state at a particular scan of the rate point will be the last seen digital state of
the rate point.

Scan2
Scan2 is like Scan1 in that it also samples at evenly spaced time intervals using the attributes
Period2 and Offset2 except that sampled values are calculated from the last seen event. The
value is projected almost as though the Step option was set. Scan2 performs similarly to
Scan1 when counting digital states, as shown in Figure 7–6.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 267

Accumulation
Interval

Scan rate based
on Period2 and
Offset2 attributes

Interpolated values of rate tag

Values of rate point

Figure 7–6. Scan2 Sampling

Event
Event uses the event expression specified in the EventExpr attribute to determine when to
sample the rate point. Sampling occurs when there is a change in the value of the event
expression, as shown in Figure 7–7.

Accumulation Interval

Scan rate based
change in value of
EventExpr

Interpolated values of rate tag

Values of rate point

Figure 7–7. Event Sampling

The values used in the calculation are linearly interpolated between values of the rate point
and timestamped at the time when the value of the event expression changes. Event performs
similarly to Scan1 in counting digital states.

Chapter 7 - PI Totalizer Subsystem

Page 268

7.3.3 TotalCloseMode
The option set in the TotalCloseMode attribute determines the accumulation interval. The
Totalizer functions accumulate data over the accumulation interval. The calculation is “closed
out” at the end of the accumulation interval and the “next event” occurs.

Note: “Closed out” means that the result is calculated and reported and the internal
state of the accumulation function is reset. The “next event” refers to either a value of
the rate point updating or an event from the event expression or the filter expression
for the Totalizer point being updated.

Clock (default)
In TotalCloseMode of Clock, the Totalizer runs and resets at regular time intervals. The
times are specified through two attributes, Period and Offset. Period is the length of each
accumulation interval. Offset specifies the start of the first interval. The accumulation begins
at the start of the day on which the Totalizer is started plus the amount of time given in the
Offset parameter. Period is a relative time of any length. Clock is the default setting for this
option.

The Period parameter may be specified as local time or UTC (Universal Coordinated Time).
Periods longer than one hour that have no specifier are assumed to be local time. This allows
totalization intervals to start at the same time every day even when the clocks are reset for
Daylight Savings Time.

The Offset is a relative timestamp that is less than the Period. Figure 7–8 shows an example
of the Clock option of the TotalCloseMode.

Accumulation
Interval Values of rate point

Event from
FilterExpr

Event from
EventExpr

Figure 7–8. TotalCloseMode of Clock

In this example, although the accumulation ends, the actual close of the accumulation does
not occur until the rate point updates. This event can occur well after the end of the
accumulation interval. When the update event occurs, the calculated result is written to the
Archive with timestamps of the actual totalization interval.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 269

For the RateSampleMode of Scan2, the close out of the accumulation occurs at the first
update event at or after the end of the period. In Natural, Scan1 and Event, the closeout of the
accumulation occurs only when the rate point value updates.

EventChange
This option connects the totalization period to external events. It requires a valid event
expression be defined in the EventExpr attribute. The current accumulation will end and
reset whenever the result of the event expression is different from that of the previous event
expression calculation.

If the expression includes PI tags referencing the Snapshot, it is evaluated on a natural
schedule. That is, it is recalculated whenever there is a new update for any of the tags.
Expressions that do not reference Snapshot values are evaluated at times specified by the
period and offset parameters but only when rate tag events beyond these times have been
received. PI time functions may be used in these expressions to establish many useful
intervals.

A naturally scheduled expression is only evaluated as each update is received for the real PI
tags in the expression. The times of these events are used in the evaluation of any time
functions in the expression. Tags that come from the same source (interface or remote PI
system) as that of the rate tag should be used to assure synchronization of these critical timing
events. The Option, CloseAtEvent may be used to force prompt closing of the Totalizer at the
period end time. Time-weighted totals will assume the rate tag to be constant at the last value
observed to the end of the period.

Expressions that contain no PI Snapshot references are evaluated at times specified by the
Period and Offset parameters. These calculations are only performed when new updates on
the rate tag are received. As each rate tag update arrives, its timestamp is compared with the
next time the expression is due for calculation. If the due time is prior to the event timestamp,
the expression is evaluated before the new event is fully processed.

Accumulation
Interval

Values of rate point

Event from EventExpr

Time at which
result sent to PI
SnapShot for
RateSampleMode
of Scan2 and
Event

Time at which
result sent to PI
Snapshot for
RateSampleMode
of Natural and
Scan1

Figure 7–9. TotalCloseMode of EventChange

As shown in Figure 7–9 for Natural and Scan1, the result of the accumulation will be delayed
and not be sent to PI Snapshot until an update for the rate point is observed. If the event

Chapter 7 - PI Totalizer Subsystem

Page 270

expression does not contain a point but only a time function, it will also be evaluated with the
RateSampleMode of Natural based on the rate point.

EventTrue
This option also requires a valid event expression to be defined in the EventExpr attribute. In
this case, as shown in Figure 7–10, an accumulation interval is started when the event
expression result is evaluated to be non-zero. Accumulation will continue until the event
expression is evaluated to give a zero result, at which point the Totalizer is closed out and
placed in a non-calculating state. The Totalizer point will be marked with the system status
condition “Good-Off” to indicate that no postprocessing data will be available for the
interval.

The times at which the event expression is evaluated is different depending on whether or not
a tag is specified in the event expression. See the description of the EventExpr attribute for
details about when the EventExpr is evaluated.

Accumulation
Interval #1

Accumulation
Interval #2

Interval
Labeled as
Good-Off

Values of rate point

EventExpr <> 0

Time at which
result sent to PI
SnapShot for
RateSampleMode
of Scan2 and
Event for
Accumulation
Interval #1

Time at which result
sent to PI Snapshot
for RateSampleMode
of Natural and Scan1
for Accumulation
Interval #1

EventExpr = 0

Time at which
result sent to PI
SnapShot for
RateSampleMode
of Scan2 and
Event for
Accumulation
Interval #2

Figure 7–10. TotalCloseMode of EventTrue

Similar to EventChange, the time at which the results are sent to PI Snapshot for
RateSampleMode of Scan2 and Event is when the event expression is equal to zero and
closes out the accumulation. The time at which RateSampleMode of Natural and Scan1
closes out the accumulation is when an update from the rate point occurs.

NSampleMoving
The accumulation interval is defined as the time required to sample the rate point a specified
number of times. The actual time will be based upon the RateSampleMode and the filter
expression. The number of values used in the calculation for this TotalCloseMode option is
set in the MovingCount attribute. The NSampleMoving option only supports the
ReportMode option of Ramping.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 271

Figure 7–11 shows two accumulation intervals with the MovingCount set to 3. Also, a filter
expression is used to limit the values of the RateSampleMode option of Natural used in the
accumulation.

Accumulation Interval #1

Accumulation Interval #2

Time at which result
sent to PI SnapShot
Accumulation
Interval #1

Time at which result
sent to PI Snapshot
for Accumulation
Interval #1

Filter Filter Filter

Values of rate point that
are filtered out

Values of rate point

Figure 7–11. TotalCloseMode of NsampleMoving (1)

The accumulation waits for the number of inputs defined by MovingCount and then
performs the calculation and sends the results to PI Snapshot. As a new sample arrives, the
value at the beginning of the accumulation is left out to incorporate the most recent value and
a new result is calculated and posted. In the above example, the values that are used do not
include the values excluded by the filter expression. For the RateSampleMode of Scan1,
Scan2, and Event, values that are included in the accumulation are interpolated from the
values of the rate point.

Figure 7–12 shows an example of RateSampleMode of Scan1 with a filter expression.

Chapter 7 - PI Totalizer Subsystem

Page 272

Accumulation
Interval #1

Accumulation
Interval #2

Filter Filter Filter

Time at which result sent to PI
SnapShot for Accumulation
Interval #1 is at the update of
rate point

Interpolated values of rate point that
are filtered out

Interpolated values of rate point

Values of rate point

Time at which result sent to PI
SnapShot for Accumulation
Interval #3 is at update of rate
point even when filter is active

A

B
C

D
E

Accumulation Interval
#4

Accumulation
Interval #3

Time at which result sent to PI
SnapShot for Accumulation
Interval #2 is at update of rate
point

Figure 7–12. TotalCloseMode of NSampleMoving (1)

Due to the configuration of the scan rate, the number of accumulations for the same number
of updates for the rate point doubles to four intervals. In the figure, the update values from the
rate points labeled as A and C are used to generate three interpolated values. Although the
update of the rate point C is within the time when the filter expression is true, it is used as a
reference point to generate interpolated values from update rate point values labeled as A and
C and also from C to E. Notice that the interpolated values (labeled as B and D) that occurred
when the filter expression was used, were excluded. Furthermore, in this example, the times
at which the results are sent to the Snapshot are at updates of the rate point.

NSampleBlock
The accumulation interval is defined as the time required to sample the rate point a specified
number of times. The actual time will be based upon the RateSampleMode and the filter
expression. The number of values used in the calculation for this TotalCloseMode option is
set in the MovingCount attribute. With NSampleBlock, the accumulation is in blocks of
events. The NSampleBlock option only supports the ReportMode option of PeriodEnd.

Figure 7–13 shows three accumulation intervals with the MovingCount set to 3. Also, a filter
expression is used to limit the values of the RateSampleMode option of Natural used in the
accumulation.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 273

Figure 7–13. TotalCloseMode of NSampleBlock

The accumulation waits for the number of inputs defined by MovingCount and then
performs the calculation and sends the results to PI Snapshot. In the example (Figure 7–13),
the values that are used do not include the values excluded by the filter expression.
Accumulation Interval #1 shows the first accumulation interval after the start of the Totalizer,
the accumulation interval starts at the time of the first event and closes at the time of the last
event. The next accumulation level starts after the end of the prior accumulation interval and
stops after three new events (which are not filtered) are processed. Notice that this second
accumulation interval and subsequent accumulation intervals will all start at one second after
the close of the prior interval.

TimeMoving
This option is similar to the previous case except the time for accumulation is specified
rather than the number of samples. The accumulation time is specified in the Period attribute.
As a value for accumulation is received, the Totalizer goes back a certain amount of time that
is specified by the Period parameter and checks to see if the Totalizer has started or that the
rate point has been created for postprocessing. If either of the conditions is not true, then the
point is entered into a circular queue. When conditions (start of Totalizer and point created
for rate point) are true, then the accumulation interval is set and a value for the beginning of
the period is interpolated between two update values of the rate point.

Figure 7–14 demonstrates the beginning of a TimeMoving accumulation. In this example, the
first accumulation interval does not begin until the fourth update of the rate point because the
fourth point is the first instance where the accumulation interval does not extend to the start
of the Totalizer.

Chapter 7 - PI Totalizer Subsystem

Page 274

Accumulation
Interval

At this update of rate
point Accumulation
Interval still goes
beyond start of
Totalizer

Time at which result
sent to PI Snapshot
for Accumulation
Interval

Filter Filter

Values of rate point that
are filtered out

Values of rate point

Start of Totalizer

Figure 7–14. TotalCloseMode of TimeMoving and RateSampleMode of Natural

The shaded region represents the area under the curve for which postprocessing for the
CalcMode option of TimeWeighted is calculated. This is discussed in CalcMode on page
287. In another example, the RateSampleMode is Scan2 whereby the value of the last update
of the rate point is used as 0the interpolated value.

Filter Filter

At this update of rate points
Accumulation Interval still
goes beyond start of Totalizer

Interpolated values of rate point that
are filtered out

Interpolated values of rate point

Values of rate point

Time at which result
sent to PI SnapShot for
Accumulation Interval
#1 is at scan rate of
filter expression

Start of Totalizer
Accumulation

Interval #1

Accumulation
Interval #2

Time line for natural
scan rate of filter
expression

Time line for
scan rate of
Scan2

Time at which result
sent to PI SnapShot
for Accumulation
Interval #2 is at
update of rate point

Figure 7–15. TotalCloseMode of TimeMoving and RateSampleMode of Scan2

Since the interpolated values of the rate point depend only on a prior update of the rate point,
the scan rate of the filter expression is also important. In the figure above, the time at which

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 275

the results for accumulation interval #1 is at the natural scan rate of the filter expression and
does not need to be delayed to the time of the update of the rate point. For this example, if the
filter expression did not exist, then both the results from accumulation interval #1 and #2
would have been sent to the Snapshot at the update of the rate point. The start of the Totalizer
is when the Totalizer Subsystem begins. If the file, pilasttot_T.dat does not exist in the pi\dat
directory, the start of the Totalizer would be at the time when the Totalizer last started. If the
file does exist, then the start of the Totalizer is at the time specified in the pilasttot_T.dat. The
only valid option for the ReportMode attribute is Ramping.

Forever
In this mode, the Totalizer never resets. When restarted, it continues from the value found in
the resultant point. This option works for total and all of the count and timing functions.
Some external force may change the Totalizer point only if the Option point attribute is set to
Setable. In this event, the new value will be used as the base for the next Totalizer result. The
only valid option for ReportMode is Ramping. The only functions allowed are Total,
Maximum, Minimum and event counting functions.

7.3.4 ReportMode
The option set in the ReportMode attribute specifies the manner in which the Totalizer
results will be sent to the PI Snapshot. Table 7–3 lists the allowed combinations of
TotalCloseMode and ReportMode where ‘X’ denotes the allowable option.

Table 7–3. Allowed Combinations of TotalCloseMode and ReportMode

 ReportMode (X indicates combinations that are allowed)

TotalCloseMode Period End Ramping Running Run Estimate RunEst2

Clock X X X X X

EventChange X X X

EventTrue X X X

NSampleMoving X

NSampleBlock X

TimeMoving X

Forever X

PeriodEnd
No output is reported until the end of the accumulation period. At that time, the Totalizer
sends the calculated result twice by default. The value is sent once with a timestamp of the
start of the accumulation period plus one second, and again with a timestamp at the end of the
accumulation interval. The result on a trend display in FactoryTalk Historian ProcessBook is
a horizontal line of the result value through the period of the totalization. An Archive query
for the result will return the same value any time during the period. The Option parameter
may be used to change the default to write a value only at the beginning of the period
(OneAtStart) or only at the end of the period (OneAtEnd).

Chapter 7 - PI Totalizer Subsystem

Page 276

Ramping
The Ramping option result is a running result that is sent to PI Snapshot when an update
event occurs. Using the Function option Total with Ramping will result in a sawtooth trend
on a trend display that ramps up and then resets.

Running (default)
The Running option result is output to the PI Snapshot as each rate point event is received. It
is sent with a timestamp of one second into the current totalization period. If the Archive
compression specification CompMin is set to one second, the successive values will not be
recorded in the Archive, but will be available for display. Running is the default setting for
ReportMode.

RunEstimate
A new result is sent to the PI Snapshot as each rate point event is processed. The value is an
estimate of the result if the rate point were to hold steady at its current value. RunEstimate
can only be used for the Function option of Total.

RunEst2
A new result is sent to the PI Snapshot as each rate point event is processed. The value is an
estimate of the result if the rate point were to hold steady at the average observed so far in
this accumulation interval. RunEst2 can only be used for the Function option of Total.

7.3.5 Function
The combination of Function and CalcMode parameters defines the primary behavior of a
Totalizer point. The first seven Function options (Total, Average, Minimum, Maximum,
Range, StdDeviation, and Median) are intended for use with numerical rate points only. The
first two CalcMode options (TimeWeighted and EventWeighted) define the kind of
accumulation.

The remaining functions ("Events:" EventEQ, EventNE, …) are for counting events and are
primarily intended for use with digital rate points. Besides the Function option of Events,
they compare the rate point value to the CompValue parameter, which is expected to be the
text of a digital state. They will also work with numeric points and a valid number in
CompValue. Each is a counter for a CalcMode of AllEvents or ChangeEvent. The result is a
time when the CalcMode is TimeTrue. Internally, the time is accumulated in seconds. The
result is multiplied by the Conversion parameter before being sent to the PI Snapshot.

Table 7–4 shows the allowed combinations of Function and CalcMode options where X
denotes the allowed combinations.

Table 7–4. Viable Function and CalcMode Options

 Math Counting Timing

Function Time
Weighted

Event
Weighted

All
Events

Change
Events

Time
True

Total X X

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 277

 Math Counting Timing

Average X X

Minimum X X

Maximum X X

Range X X

StdDeviation X X

Median X

Events X X

EventEQ X X X

EventNE X X X

EventGE X X X

EventGT X X X

EventLE X X X

EventLT X X X

EventGE_LT X X X

EventLT_GE X X X

Some example combinations are as follows:

Function CalcMode Comp Value Result

EventEQ ChangeEvent Manual Number of times the rate point switched
to Manual

EventNE TimeTrue Manual Total time the rate point was in some
state other than Manual

Events AllEvents Total number of updates received by
the rate point

Total (default)
The result is the totalization of the rate point value. If CalcMode is EventWeighted, this is the
sum the values from the individual rate point value update events. TimeWeighted uses
trapezoidal integration to produce the total. Caution should be used in choosing the
RateSampleMode option. If the goal is for a total of the values of a rate point, the Natural
option should be used. The other RateSampleMode options will extrapolate values from
defined time points and may lead to incorrect totals.

Average
The result is the average of the rate point value. If the CalcMode is EventWeighted, the
average is the totaled individual update events and divided by the number of events. The

Chapter 7 - PI Totalizer Subsystem

Page 278

CalcMode option of TimeWeighted considers the time between events, dividing by the area
under the curve by the time interval.

Maximum or Minimum
The result is the maximum or minimum observed value of the input. If the CalcMode is
EventWeighted, the result will be one of the input values. If there is a filter expression active
and the CalcMode is TimeWeighted, the result may be an interpolated value corresponding to
the time when the filter changed state.

For TotalCloseModes of NSampleMoving and TimeMoving, a sorted list of all of the values
seen during the period is maintained.

Range
The result is the difference between the maximum and minimum observed values of the
input. If the CalcMode is EventWeighted, the result will be one of the input values. If there is
a filter expression active and the CalcMode is TimeWeighted, the result may be an
interpolated value corresponding to the time when the filter changed state.

For TotalCloseModes of NSampleMoving and TimeMoving a sorted list of all of the values
seen during the period is maintained.

StdDeviation
The result is the standard deviation of the observed data. Both time- and event-weighted
forms are available.

For TotalCloseModes of NsampleMoving, an array of intermediate results is kept.
StdDeviation is not supported for TotalCloseMode option of TimeMoving with CalcMode
option of EventWeighted.

Median
The Median value is the middle observed value of the input. If there is an even number of
values in the sample, an average of the center two is selected. Using Median with a short time
interval can be very effective as a filter for noise removal.

For TotalCloseModes of NSampleMoving and TimeMoving a sorted list of all of the values
seen during the period is maintained.

Counting and Timing Functions

The following Function options are used for counting and timing operations. The allowed
CalcMode options are AllEvents, ChangeEvents, and TimeTrue.

Events
This Function option counts all event updates of the rate point that pass exception handling
and the filter expression. The allowed CalcMode options are AllEvents and ChangeEvents.
Caution should be used if the RateSampleMode option is not Natural. Using the other three

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 279

options of the RateSampleMode with Events will result in counting the interpolated values
as event updates.

EventXX
The set of Function options denoted as EventXX (EventEQ, EventNE, EventGE, EventGT,
EventLE, and EventLT) is used to count the number of update events that pass exception
handling. The filter expression or is used to find the time that the value of the rate point meets
the condition of the Function. As rate point events are received, they are compared to the
value in CompValue parameter to produce a true or false result.

For CalcMode of AllEvents, true events are simply counted. ChangeEvents will only count
those events that have values different than the immediately previous event. Consecutive
events with the same value will be skipped. For the TimeTrue mode, the true event starts a
timer and a false event stops it.

EventXX_XX
The set of Function options denoted as EventXX_XX (Event LT_GE and EventGE_LT) is
used as transition counters. They are used to count the number of times the update events
(that pass exception handling and the filter expression) pass through the value set in the
CompValue attribute or are used to find the time that the value of the rate point meets the
condition of the Function. As rate point events are received, they are compared to the value
in CompValue parameter to produce a true or false result.

For CalcMode of AllEvents, true events are simply counted. ChangeEvents will only count
those events that have values different than the immediately previous event. Repeat events
with the same value will be skipped. For the TimeTrue mode, the true event starts a timer and
a false event stops it.

7.3.6 CalcMode
The value set in the CalcMode parameter modifies the Function parameter. The first two
options (TimeWeighted and EventWeighted) can only be used with math functions while the
last three (AllEvents, EventChange, and TimeTrue) can only be used with counting functions.

TimeWeighted
The time between input values is (default)considered in totalization and average functions.
This is the normal option for accumulating flow signals into totals for the period. Figure 7–16
demonstrates a time-weighted total for both RateSampleMode options of Natural and Scan1.

Chapter 7 - PI Totalizer Subsystem

Page 280

Accumulation
Interval

Scan rate based
on Period2 and
Offset2 attributes

Interpolated values of rate point

Values of rate point

Time Weighted Total for
RateSampleMode of Natural with
step attribute of rate point = 0 or
RateSampleMode of Scan1

Figure 7–16. TimeWeighted Total for Natural and Scan1 with Step=0

In both cases, the total will be similar. The area considered for totalization is the shaded
region. Furthermore, if the Step attribute of the rate point is 0, then that indicates that the
values between the update points are interpolated. If the value of the Step attribute is 1, then
the Scan1 RateSampleMode is overwritten and the totalization would be as if Scan2 was the
intended option. Figure 7–17 shows the plots for a totalization for the RateSampleMode
options of Natural and Scan2 with the Step option set at 1.

Accumulation
Interval

Scan rate based
on Period2 and
Offset2 attributes

Interpolated values of rate point

Values of rate point

Time Weighted Total for Scan2

Addition area that
is considered for
RateSampleMode
of Natural and
Rate point step =
1

Figure 7–17. Time-Weighted Total for Natural and Scan2 with Step=1

When the Step attribute is “on” (equal to 1) then the value of the rate point remains the same
until a new update value is seen. This is similar to Scan2. For the example in the previous
figure, the totalization for Scan2 is shown in the shaded area. This, however, is different than
the area for Natural scanning with Step equal to 1. For this specific example, the totalization

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 281

considers both the two shaded patterned areas as well as the shaded area for Scan2. Even if
Step = 0 for Scan2, the totalization would be the same.

EventWeighted
Here each rate point value is taken to be a discrete addition to the accumulated result. Time
is not considered. Each event has the same weight. In the first example shown in Figure 7–18,
the RateSample mode is Natural and the Function is Total.

Accumulation
Interval

A
BXA

XB

Total = XA+XB

Figure 7–18. Event-Weighted Total for Natural

In this case the accumulation interval contained two updates of the rate point labeled as A and
B. Therefore, the result is the summation of the values (XA and XB) of the rate points.

In another example shown in Figure 7–19 the RateSampleMode is Scan1 and the Function
is Average.

Accumulation
Interval

Scan rate based
on Period2 and
Offset2 attributes

Interpolated values of rate point

Values of rate point

A
B

EDCXA

XC

XE

XB

XD

EventWeighted XA+ XB + XC + XD + XE
 Average =

 5

Figure 7–19. Event-Weighted Average for Scan1

Chapter 7 - PI Totalizer Subsystem

Page 282

The scan rate generated five interpolated values labeled as XA through XE, and the average
would be the sum of the values divided by the number of interpolated events. Use caution if
you want to use the Function option of Total with EventWeighted and the RateSampleMode
options of Scan1, Scan2, and Event. In the above example, since the events were interpolated,
the total from the interval would be the summation from XA through XE.

AllEvents
With the Function option of Events, the CalcMode option AllEvents counts all value
updates. For the rest of the event functions that use the CompValue attribute for comparison
with the update value, this CalcMode option counts all the events for which the comparison
is true. This means that events that repeat the same value will be counted.

In Figure 7–20, the digital states can be represented on a timeline by plotting the digital state
offsets for the two digital states “on” and “off.”

Accumulation
Interval

ON

OFF

ON

D
ig

ita
l S

ta
te

 O
ffs

et

OFF

Figure 7–20. Digital States with RateSampleMode of Natural

For the Function of Events, the count for the accumulation interval is 2. If the Function is
EventEQ and the CompValue is “on,” then the result is 1. For functions such as EventGT, the
comparison is made based on the digital state offset. Since “on” has a lower digital state
offset value than “off” for this example, using EventGT would result in counting the “off”
event that occurred within the accumulation interval.

In another example shown in Figure 7–21, the RateSampleMode is Scan1. The value of the
digital state at the time set by the scan rate is the digital state for the last seen update event.
Hence, using Scan1 or Scan2 would be similar.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 283

Scan rate based
on Period2 and
Offset2 attributes

Interpolated digital states of rate point

Digital states of rate point

Accumulation
Interval

ON

OFF

ON

OFF

ON ON

OFF OFF

ON

Figure 7–21. Digital States with RateSampleMode of Scan1 or Scan2

The result of Function option Events is 5 and the result of EventEQ is 3 and the result of
EventGT is 2.

ChangeEvents
In the event class of functions, the count is only those updates that satisfy the condition and
that were real changes of value. Therefore, the count represents not the update events but the
changes of the update events. For the example shown in AllEvents where the
RateSampleMode could be either Scan1 or Scan2, the result of the function option Events is
2 and the result of EventGT is 1.

TimeTrue
This CalcMode option results in the duration of the conditions to be accumulated. Internally,
time is accumulated in seconds. The result is multiplied by the Conversion parameter before
being sent to the PI Snapshot. For the Function of EventEQ and CompValue of “on”,
TimeTrue will find the time within the accumulation interval that the digital state was “on”.

7.3.7 ZeroBias
The value of the rate point will be considered to be zero if less than this value.

7.3.8 Period
The Period attribute is used by the TotalCloseMode option of Clock to set the accumulation
interval. It accepts relative timestamps. For example, ‘+1h’, ‘+30m’, and ‘+1d’ will set the
accumulation interval to one hour, 30 minutes, and one day, respectively.

Periods longer than one hour are understood to be in local (wall clock) time. That is, for
periods that evenly divide into 24 hours, the totalization times will be the same from day to
day as the system changes to/from Daylight Savings Time (DST).

Chapter 7 - PI Totalizer Subsystem

Page 284

Optionally, the time interval may be specified to be in local (wall clock) or UTC (fixed
period) terms. This is done by appending a /local or /utc to the parameter. Actually, only the l
or c is needed.

For example, ‘+8h /local’ specifies 8 hour shifts instead of absolute 8 hour periods. This
means that for the 8-hour totalization period that spans the time change from Daylight to
Standard, the actual period length would be 9 hours. When the time changes from Standard to
Daylight, the actual period would be 7 hours.

7.3.9 Offset
The relative timestamp set in the Offset attribute is used by the TotalCloseMode option of
Clock to determine when to begin the initial accumulation. The Offset is a relative timestamp
that must be less than the relative timestamp set in the Period attribute. For example, if
Offset is ‘+12h’ and Period is ‘+1d’, the Totalizer will begin the accumulation calculation at
noon on the day that the Totalizer starts and will accumulate data for a period of 24 hours.

7.3.10 MovingCount
The value in MovingCount attribute is used by the TotalCloseMode option of
NSampleMoving and NSampleBlock to determine the number of samples for the accumulation
interval.

7.3.11 Period2
The Period2 attribute is used by the RateSampleMode options of Scan1 and Scan2 to set the
sampling rate. It accepts relative timestamps. For example, ‘+1m’, ‘+30s’, and ‘+ 1h’ will set
the accumulation interval to one minute, 30 seconds, and one hour, respectively. The Period2
attribute also accepts the optional /local and /utc flags.

7.3.12 Offset2
The relative timestamp set in Offset attribute is used by the RateSampleMode option of
Scan1 and Scan2 to determine when to start sampling. Offset2 is a relative timestamp that
must be less than the relative timestamp set in the Period2 attribute. The Totalizer will use
the beginning of the day for which the Totalizer is started as the reference point for when to
account for Offset2 and move in intervals set by Period2 and sample at the next appropriate
beginning of a period. For example, if Offset2 is ‘+10s’, Period2 is ‘+1m’, and the start of the
Totalizer is at noon, the first sample will be taken at noon plus 10 seconds and the next
sample will be taken at 12:01:10.

7.3.13 PctGood
PctGood is a number between 0 and 100 (in percent). If rate tag values are bad for a larger
fraction of the totalization period, the output of the Totalizer will be marked bad.

Percent good is calculated based on the amount of time that the rate tag has a bad status over
the totalization period for TimeWeighted totals and for the event counting functions (Events,
EventEQ, EventNE, EventGE, EventGT, EventLE, EventLT, EventGE_LT, EventLT_GE) with
a CalcMode of TimeTrue.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 285

Percent good is calculated based on the number of events that have a bad status for
EventWeighted totals and for the event counting functions with a CalcMode of AllEvents and
ChangeEvents.

In the case of TimeWeighted totals, the Totalizer adjusts the total to account for the missing
data. This extrapolation takes the resultant good data and divides it by the fraction of time
that the data was good. For example, if the total of the good data is 100 and the percentage of
the data that was good for the time period is 80%, then the total that is reported is 125. To
turn off extrapolation, set PctGood to 0. By setting PctGood to 0, the total that is reported
from the previous example would be 100.

7.3.14 Conversion
Conversion is a number that multiplies the raw Totalizer result. It is used to convert the
units of the rate tag to the proper units for the totalization.

For TimeWeighted totals, the total is computed with the assumption that the rate tag is in
“units/day.” If the units of the rate tag are not in units/day, then the units of the rate tag must
be converted to units/day using Conversion. For example, if the units of the rate tag are in
kg/hr (kilograms per hour) and the desired total is in g (grams), then Conversion must be set
to 2400. That is, (1 kg/hr) (24 hr/day)(1000 g/kg) = (2400 g/day).

For EventWeighted totals Conversion can be used to convert the units of the rate tag to the
desired units of the total. For example, if the units of the rate tag is in kilograms and the
desired total is in grams, then Conversion should be set to 1000.

Here are some typical conversion factors for common units.

Table 7–5. Conversion Factors for Units

Source Units Total Units Conversion

bbl per day bbl 1.0

lbs per hour lbs 24.

gal per min gal 1440

Cubic feet per sec. acre-ft 0.504167

7.3.15 FilterExpr
This is a mathematical expression in PI Performance Equation syntax. The expression is
compiled and given an initial evaluation based on the current Snapshot values of tags
referenced. It is re-evaluated whenever an update is received for any of its tags.

Rate tag point values are excluded from totalization during intervals that the expression result
is zero. That is, rate tag values for periods when the filter expression result is zero are not
included in the total. This behavior is consistent with the sense of filter expressions in PI-API
and FactoryTalk Historian DataLink. For averages, the time is also excluded from the
calculation.

For efficiency of evaluation, Archive access functions are not allowed in filter expressions.
Archive access functions include such functions as TagVal and TagAve.

Chapter 7 - PI Totalizer Subsystem

Page 286

The rate point is not filtered when the status of the filter expression is bad. The filter
expression is likely to be bad whenever some of the input points for the filter expression have
bad status.

Refer to Chapter 2, PI Performance Equation, for more information about the syntax of the
expressions.

Some examples of filter expressions are as follows:

'DigitalTag'= "ON"

'RateTag' > 50

7.3.16 EventExpr
This is a PE expression that defines event times used by EventChange and EventTrue for
the TotalCloseMode options. It also defines the times at which the rate point is scanned for
the RateSampleMode option of Event. The expression is naturally scheduled. That is, it will
be evaluated whenever a new value is received for any of its input values.

Event expressions are normally evaluated as new values are received for the tags they
reference. For TotalCloseMode of EventChange and EventTrue, an event expression that
references no Snapshot tags will be evaluated at times specified by the Period and Offset
parameters. Each time a rate tag value is received, if the event expression due time has
passed, the rate tag value is evaluated prior to processing the new update value.

Some examples of event expressions are as follows:

'R-2410_mode'

'DigitalTag' = "ON"

int(('*' - '1-jan-2001')/(7 * '+24h'))

7.3.17 CompValue
The value set in the CompValue attribute is used for comparison in all the event counting
functions (e.g., EventGE, EventLE) except the Function option Events because Events counts
all update events and does not need a comparison value. The CompValue should match the
data type of the rate tag. It may be a digital state name, string, or a number.

7.3.18 Options
This field allows for entry of zero or more option words to select lesser-used functions.

InFromTotalizer
This option is set if the rate point is actually the integral of the flow signal to be totalized.
This is intended for use with the typical DCS accumulator block. The DCS can easily process
the flow at a very high sample rate. The updates to PI can be set for relatively large exception
deviation values with negligible loss of accuracy. These DCS blocks typically have a rollover
at some finite value. As that total is reached, the block output drops to the bottom of its range
and accumulation continues. The Totalizer observes this large value jump and calculates the
correct increment from the configured full-scale value of the rate point.

 7.3 - Totalizer Point Class Attributes

PI Server Applications User Guide Page 287

UnderIsBad
Consider values below the rate point zero level to be bad. If this option is not set, values are
considered valid. Negative values are set to zero or used if enabled by the NoClampZero
option.

NoClampZero
Do not clamp the output of the Totalizer to be greater than zero. Without this option, zero is
substituted for negative rate tag values.

CloseAtEvent
The close out of the accumulation interval is at the end of the period and the result of the
calculation is sent to the Snapshot. For time-weighted calculations, the value used at the end
of the period is the value of the last seen update of the rate point. Figure 7–22 shows an
example of a time-weighted total with Scan1 and the CloseAtEvent option.

Accumulation
Interval

Scan rate based
on Period2 and
Offset2 attributes

Interpolated values of rate point

Values of rate point

Time Weighted Total for
RateSampleMode of Natural with
step attribute of rate point = 0 and
Option of CloseAtEvent

Time at which
result sent to PI
SnapShot

Values are from last seen
update value of rate point

Figure 7–22. Time-Weighted Total with Scan1 and CloseAtEvent

This option will works only on event-driven TotalCloseModes of EventChange and
EventTrue.

Setable
The TotalCloseMode of Forever can be changed by some external force only when the
option field is set to Setable. In this case, the new value will be used as the base for the next
Totalizer result.

OneAtStart
The TotalCloseMode of PeriodEnd can be modified to only send a value only at the
beginning of the period (one second after the close of the last period) when the option field is

Chapter 7 - PI Totalizer Subsystem

Page 288

set to OneAtStart. The default behavior of PeriodEnd is to send a value to the beginning and
the end of the period.

OneAtEnd
The TotalCloseMode of PeriodEnd can be modified to only send a value at the end of the
period when the option field is set to OneAtEnd. The default behavior of PeriodEnd is to send
a value to the beginning and the end of the period.

UnderIsZero
Some external systems have limited ranges for measured values but are able to report that the
signal is below the available range. This option causes the Totalizer to use the rate tag zero
value in place of updates with UnderRange status.

OverIsTop
Some external systems have limited ranges for measured values but are able to report that the
signal is above the available range. This option causes the Totalizer to use the rate tag top of
span value in place of updates with OverRange status.

SourceStat
When the PctGood minimum is not attained, the Totalizer normally reports “bad total” as a
status. With this option, a bad status actually received from the source tag will be used
instead. This supplies some reason for the failure to someone looking only at the Totalizer
results.

LimitBack
When LimitBack is set, the number of totalization periods that will be reported between
source tag events is limited to twenty. This is a partial solution to the problem some systems
encounter when restarting after being down for some time. The Totalizer may attempt to
write results for all of the totalization periods for the period when the system was down.

7.4 Build Totalizer Points

Totalizer points can be created in the same manner as other point types except that Totalizer
point attributes includes the Totalizer attributes as well as the point attribute for the Base
point class.

7.4.1 SMT Totalizer Editor Plug-in
This plug-in provides a user-friendly GUI to create a Totalizer point. Unlike
TagConfigurator discussed below, the editor strictly enforces the non-supported
combinations of options.

 7.4 - Build Totalizer Points

PI Server Applications User Guide Page 289

7.4.2 PI TagConfigurator
The easiest way to build many Totalizer points is using the PI TagConfigurator tool. See the
Rockwell Automation support Web site to download this tool. An example is shown in Figure
7–23.

Figure 7–23. PI TagConfigurator Creation of Totalizer Point

Note: under Export Tags of the PI SMT pull-down menu, the Point Class must be
Totalizer.

Figure 7–24. Export Tags Dialog Box

Furthermore, the PointSource attribute must also be explicitly set to T.

7.4.3 Piconfig
Alternatively, you can use the following script in the piconfig utility to create the same
Totalizer point:

@table pipoint

@ptclass totalizer

@mode create, t

@istru tag, pointsource, sourcetag, ratesamplemode, totalclosemode, reportmode,

function, calcmode

Chapter 7 - PI Totalizer Subsystem

Page 290

totnumtag, T, sinusoid, natural, clock, periodend, total, eventweighted

@ends

7.5 Program Operation

7.5.1 Startup
The pitotal program is started with the rest of the system. The program periodically writes
its internal status to the file PI\dat\pilasttot_T.dat. This file is also written during a normal
system shutdown. At startup, pitotal looks for this file. If it is not found, all Totalizer points
are initialized to start at the current time without consideration of any prior history.

If the pilasttot_T.dat file is found, it is read to obtain partial accumulation results to include
when restarting points. For the most part, all points with simple time-based scheduling will be
able to restart. If the accumulation interval that was in progress when the file was written has
expired, an attempt is made to close that total and a shutdown event will be written after it.
Otherwise, the accumulation is restarted with the assumption that no data points have been
lost. If any point appears to have shutdown events after the time of the pilasttot_T file, then
restart is canceled in favor of total cold start. Points that are event-scheduled have no basis to
know if restart is valid. Shutdown events are written and the point is cold-started.

Any point that has been reconfigured while pitotal was offline would be cold-started. Point
Database edits may result in a re-initialization of the point. This will occur when a significant
parameter change is made.

7.5.2 Error Messages
All significant events in the life of a Totalizer point are noted in the PI server log. These
include point additions and edits, scan status changes, and error conditions. These events can
be monitored using the pigetmsg in the pi\adm directory. For UNIX, an additional log file
pitotal.log is also used. This file is located in the pi/log directory. See Chapter 2 in the PI
Server System Management Guide, for information about using the pigetmsg utility.

7.5.3 Response to Scan Flag
When an operating Totalizer point is turned off-scan, the Totalizer is closed out as though
this were the end of the period and a Scan Off event is written to the Archive. Going back
on-scan is a full initialization of the point; no partial results are carried forward. A Scan On
event is written to the Archive.

7.6 PI for OpenVMS Upgrade Considerations

The Totalizer can nominally do all the operations that the PI for OpenVMS version could do
and more. Simple time-based points should port with no difficulty. However, the advanced
Totalizer algorithms depend on very specific behavior of underlying implementations that are
quite different. Any PI for OpenVMS points that use filter and event expressions will need
special attention.

The following are known differences:

 7.6 - PI for OpenVMS Upgrade Considerations

PI Server Applications User Guide Page 291

 The meaning of the filter expression result has been reversed to match the logic of the
API. Now, input values are ignored (filtered out) when the filter expression result is
zero.

 The Performance Equation syntax used in the event and filter expressions is different.
The largest difference is the absence of a formula library in PI Server. See Chapter 2,
PI Performance Equation, for further details.

 New functions are available for counting and timing of events. Use of these functions
may enable the elimination of many event and filter expressions.

 The use of PI for OpenVMS option of moving Totalization with event- and clock-
scheduling is not supported.

7.6.1 Features in PI3 versus PI for OpenVMS
The Totalizer Subsystem includes new features that not included in PI for OpenVMS.

 Totalizer points use a new point class with a new set of parameter names and
meanings.

 A running account of the output.

 The event expression that can be time-scheduled.

 New event functions that can count and time values from Digital points.

 Sampling of the rate point that can be time-scheduled.

 Moving totals with several new scheduling options.

 New numeric functions that include Maximum, Minimum, Median, and Range.

 The input that may come from a typical DCS Totalizer block.

7.6.2 Compatibility with PI for OpenVMS
The PI Server Totalizer can do all of the functions offered by PI for OpenVMS
postprocessing. Simple Totalizers can be ported easily through a translation of parameter
names. Points that use event or filter expressions will need to be examined for compatibility
with the PI Server syntax.

In many cases it should be possible to get the desired functionality by using the new Totalizer
features rather than by re-writing expressions. These will be easier to document and use less
computing resource.

The meaning of the filter operation has been redefined. A true filter result, that is non-zero,
now passes the signal. Table 7–6 lists the available postprocessing options in PI for
OpenVMS and the PI Server equivalents.

Chapter 7 - PI Totalizer Subsystem

Page 292

Table 7–6. PI for OpenVMS and PI for NT and UNIX Equivalents

PI for OpenVMS PI Server

Postprocessing
Type

Type of
Scheduling

Point Attribute

Option to Set

RateSampleMode Natural

TotalCloseMode Clock

ReportMode PeriodEnd

Clock

CalcMode TimeWeighted

RateSampleMode Natural

TotalCloseMode EventChange

ReportMode PeriodEnd

Time-weighted

Event

CalcMode TimeWeighted

RateSampleMode Natural

TotalCloseMode Clock

ReportMode PeriodEnd

Clock

CalcMode EventWeighted

RateSampleMode Natural

TotalCloseMode EventChange

ReportMode PeriodEnd

Discrete

Event

CalcMode EventWeighted

RateSampleMode Natural

TotalCloseMode NSampleMoving

ReportMode Ramping

Natural

CalcMode TimeWeighted

Clock Not Supported

Moving

Event Not Supported

7.7 Demonstration Points

Demonstration points for the Totalizer subsystem are available in the pi\adm directory in the
totalizerpts.dif file but are not automatically created when the system is installed. These
Totalizer demonstration points can be created by redirecting the file to the piconfig utility.
See Chapter 11, The Piconfig Utility, in the PI Server System Management Guide for
information about using the piconfig utility.

$ piconfig < totalizerpts.dif

PI Server Applications User Guide Page 293

Chapter 8. PI ALARM SUBSYSTEM

The PI Alarm Subsystem (PI Alarm) provides the capability to establish alarms for PI
points. PI Alarm allows you to track, manage and acknowledge alarm conditions caused by
processes that exceed user-specified parameters.

PI Alarm can monitor many variables such as temperatures, volumes, flow rates, product
quality or raw material consumption. Alarms can be triggered by the duration of an event or
deviation from norm.

PI Alarm keeps a constant eye on process conditions. PI Alarm will assess the condition as
well as the priority of an event, as you define it. Depending on the longevity and/or severity
of the event, it can notify specific personnel. PI Alarm includes client functionality through
the PI-API to alert operators to selected alarms.

Data from PI Alarm are displayed in its companion client application, PI AlarmView. Alarm
conditions are historized together with an acknowledgement status. When Real-Time SQC
perceives an unacceptable deviation in the process, PI SQC Alarms alert the appropriate
personnel.

This chapter includes the following topics:

Section 8.1, Alarm Subsytem Overview, on page 304

Section 8.2, Alarm Point Configuration, on page 306

Section 8.3, Alarm State Sets, on page 321

Section 8.4, Alarm Groups, on page 326

Section 8.5, Build Alarm Points, on page 328

Section 8.6, Build Alarm Group Points, on page 329

Section 8.7, Override Default PointSource Values for Alarms, on page 330

Section 8.8, Build Alarm Digital State Sets, on page 330

Section 8.9, Program Operation, on page 332

Section 8.10, PI for OpenVMS Upgrade Consideration, on page 334

Section 8.11, Alarm State Set Encoding and Decoding, on page 335

Chapter 8 - PI Alarm Subsystem

Page 294

8.1 Alarm Subsytem Overview

A PI System often brings together information from several sources and can perform
calculations that are not easily done elsewhere. Some sites may have alarm philosophies that
enable them to take advantage of the PI System to provide alerts on these higher level
functions.

PI Alarm provides the basic server-side functions of an alarm system. The alarm package
includes the following features:

• Current and archived Alarm States.
• Alarm Groups to organize and manage alarms
• A simple alarm detection program for monitoring numeric, digital, and string

points.
• Alarm client functionality available through the PI-API to alert operators to

selected alarms.

The alarm package is organized into two categories.

 The first part is the Alarm Point. Alarms are displayed and archived as digital
points. A monitoring program observes updates to numeric, digital, and string points
and then tests each for configured alarm conditions.

 The second part is the Alarm Group. A set of alarm points can be organized into
Alarm Groups. Statistics such as the number of alarm points and the number of
unacknowledged alarms can be obtained for each Alarm Group. Groups can be
members of other groups to form alarm hierarchies.

8.1.1 Alarm Points
An alarm point is a digital point that indicates the alarm status of a point in the PI System. PI
Alarm can monitor the values of other points and set the values of alarm points when defined
boundaries are exceeded. Numeric values exceeding limits or digital values changing to a
special state are two such boundaries.

The digital state of an alarm point may include both the priority and acknowledgement status
of the alarm condition.

 The condition of an alarm is the type of limit that the alarm is triggering. Some
typical names of conditions are “high” and “low”. For example, if a numeric point is
greater than a certain numeric constant, the condition of the alarm can be high.

 The acknowledgement status may be determined by whether a user has
acknowledged the alarm, not acknowledged the alarm, or not acknowledged the
alarm condition that no longer exists.

 The priority is level of importance given to the particular alarm.

Each alarm point has a source point, which is the tag whose value is being monitored for
special changes. Figure 8–1 shows the flow diagram of an alarm point.

 8.1 - Alarm Subsytem Overview

PI Server Applications User Guide Page 295

Action1

Alarm Digital
State Set

Combiner
Logic

Alarm
point

Source
point Test1

Action4Test4

Action3Test3

Action2Test2

Reference
Tag

Figure 8–1. Flow Diagram of Alarm Points

The alarm point is naturally scheduled and signs up for updates of the source point. This
means that the alarm point is evaluated whenever the source point produces an exception. A
series of tests are done and an alarm is triggered if any of the tests are true. The digital state
of the alarm point is then set based on the combiner logic, which is discussed later in this
chapter.

Alarm Tests and Actions
An alarm is the result of a set of four tests on the current value of another point. Each alarm
tag has a primary source point that is the subject of these tests. Each alarm point can be
configured to perform four simple tests on new values received by the source tag. The tests
are individually configured for comparisons like "greater than," "equal," etc. Each time a
source tag value is received, the configured tests are performed. The result of each test is a
Boolean (true/false) value. The four test results are input to combiner logic that decides the
alarm status to be set. The answer depends on the configured priority of the test conditions,
the order of detection, and the acknowledgement status of the current alarm.

Combiner Logic
Combiner logic refers to the manner in which the digital state of an alarm is set when a test or
multiple tests are true. If more than one test condition is true, the rule for which Alarm State
to set is that priorities have precedence. When two conditions of the same priority are true, it
is the first (in order of the tests) that is used to set the Alarm State. Further details of the logic
are given in the Action1, Action2, Action3, and Action4 attributes for alarm points.

Acknowledgment
In this release, acknowledgment is accomplished by allowing the client program to write
acknowledged digital states corresponding to the Alarm Digital States directly to the alarm
points. For example, an Alarm Digital State that represents a high value in the source tag can
only be acknowledged by the corresponding high acknowledged digital state. The alarm
program will over-write the client input in case of an error.

Chapter 8 - PI Alarm Subsystem

Page 296

See Section 8.3, Alarm State Sets, for more information about Alarm Digital States. Future
releases will provide an interface for acknowledgement and other functions through the PI-
SDK.

An auto-acknowledge for the alarm point is also possible. An auto-acknowledged point will
continue to display the current alarm condition, but the display status will never be
unacknowledged. Further details on auto-acknowledgement can be found in the AutoAck
attribute for alarm points.

8.2 Alarm Point Configuration

Alarm points have the point class of alarm. The point source is ‘@’ and the data type must
be digital.

Table 8–1 lists the attributes for the alarm point class.

Table 8–1. Alarm Point Class Attributes

Point Attribute Valid Options Description

SourceTag Source point used to test for alarm

GT Alarm if values greater than numeric value

LT Alarm if values less than numeric value

EQ Alarm if values equal numeric value, digital state or string

NE Alarm if values not equal numeric value, digital state or
string

StepGT Alarm if values stepped up more than numeric value

StepLT Alarm if values stepped down more than numeric value

RateGT Alarm if rate of change is greater than numeric value

RateLT Alarm if rate of change is less than numeric value

Is_in Alarm if value is in the digital state or string

Not_In Alarm if value is not in the digital state or string

Includes Alarm if values includes digital state or string

Change Alarm if value of point changes

CondEQ Alarm if condition is equal to string

CondNE Alarm if condition is equal to string

Test1
Test2
Test3
Test4

IsUnAck Alarm if unacknowledged

Condition nn Name of the alarm condition
nn = priority

Action1
Action2
Action3
Action4

StateName Valid name in Digital State Set.

ExDesc GroupTag Alarm Group of alarm point

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 297

Point Attribute Valid Options Description

DigitalSet Name of the Alarm Digital State Set for point

ReferenceTag Tagname Point that will be used for comparison operators if
specified.

Yes (default) Any alarm always shows as acknowledged. AutoAck

No Full acknowledge operation supported.

DeadBand 0.0 (default) Threshold for point not to be in alarm

Options RT = num Used with the RateGT and RateLT to define the period of
the rate

ControlTag Point that is used to take the alarm out of service if
specified.

ControlAlg <reserved for future use>

Note: While the actual point class has the parameters, Test5 and Action5, only four
Test/Action pairs are implemented.

8.2.1 SourceTag
The point set in the SourceTag attribute is the primary source used in the testing for alarm
conditions. The point must already exist and must be specified when the Alarm Point is
configured. The point may be numeric, digital or string point types.

8.2.2 Test1, Test2, Test3, Test4
The set of four attributes Test1, Test2, Test3, and Test4 contains the test for the alarm
condition. The syntax for the attribute is the operator followed by an argument that is within
parenthesis, which is also followed by an optional time parameter.

Syntax: Operator (Argument) Time

The argument can be a numeric constant; string, digital state, or it may refer to another tag.
The following examples use the EQ (equals to) operator that is detailed later in this section.

EQ (12)

EQ (ON)

EQ (“This is a string”)

In addition, the argument can be a reference to another point that has the data type of
numeric, string, or digital. If a reference is used, the argument is the tagname of the reference
point that is enclosed in single quotes or the keyword, ref. In the case where the keyword, ref
is used, the ReferenceTag attribute must be the tagname of the desired reference point. An
optional numeric constant offset can also be used only in the case when the keyword ref is
used and only if the reference point is a numeric point. This adds or subtracts a numeric
constant from the value of the reference point before the test is done.

EQ (‘tagname’)

Chapter 8 - PI Alarm Subsystem

Page 298

EQ (ref)

EQ (ref + 12)

EQ (ref – 14)

An optional time parameter can also be used to delay the triggering of the alarm until the test
comparison is true for a given amount of time. The time parameter is a relative timestamp
that is added to the comparison. The time parameter consists of a plus sign, one or more
numbers, and a letter (s, m, h, or d). There may be no spaces between these elements.

EQ (12) +14m

EQ (‘tagname’) +11h

EQ (ref + 70) +1h

EQ (ON) +1d

In the examples above, the first test triggers an alarm if the source tag is equal to 12 for over
14 minutes. The second test alarms when the source point is equal to the reference point
(referenced by tagname) for over 11 hours. The third test compares the source point with the
reference point plus 70 and if they are equal for over one hour then an alarm is triggered. In
the fourth test, an alarm triggers if the source point is ON for over one day.

All numeric point comparisons are performed using floating-point operations and all string
and digital state comparisons are performed using character operations. Comparisons of a
digital or string data type with a numeric data type returns an error at the time which the point
is compiled. Blob data types are not supported. Table 8–2 shows some examples of the
comparisons and whether an alarm will trigger.

Table 8–2. Example Test Comparisons and the Alarm Status

Operator Source
point
value

Test
value

Trigger
an

alarm?

Comparison

EQ 12 12 Yes numeric source and numeric test value

EQ 14 70 No numeric source and numeric test value

EQ 12 12 Error numeric source and digital test value

EQ 12 “12” Error numeric source and string test value

EQ OFF OFF Yes digital source and digital test value

EQ OFF “OFF” Yes digital source and string test value

EQ OFF “OFF ” No digital source and string test value (with
trailing space)

EQ Off OFF Yes digital source and digital test value

Each of the four tests is evaluated in numeric order from Test1 through Test4 and each test is
associated with an “action” attribute numerically. For example, if the test set in Test1
becomes true, the associated “action” would be the one set in the Action1 attribute. In
general, if there is only one test that is used for the alarm point, it would be set in Test1 but
there is no rule governing the where to apply the test for the alarm point. Test1 could be left
unused and Test2, Test3, or Test4 may be used. In the case where all four attributes are

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 299

unused, the alarm point will default to the digital state that represents “no alarm” for that
point. If more than one test is true, the digital state of the alarm is governed by the combiner
logic rules mentioned earlier in this chapter and detailed in the Action1, Action2, Action3,
and Action4 attributes section of this chapter.

Table 8–3 shows the available options for the comparison operators with their descriptions as
well as their viable argument data types. An X in the table denotes that the data type is
allowable.

Table 8–3. Viable Argument Data Types for Operators

Argument Data Type
(X indicates Allowed)

Operator

Description

Numeric Digital String

GT Greater Than X

LT Less Than X

EQ Equal To X X X

NE Not Equal To X X X

StepGT Step Greater Than X

StepLT Step Less Than X

RateGT Rate Greater Than X

RateLT Rate Less Than X

Is_In Is In the string or digital state X X

Not_In Is not in the string or digital state X X

Includes Includes the string or digital state X X

Change Change of State X X X

CondEQ Alarm condition equals X

CondNE Alarm condition not equal X

IsUnack Alarm condition is unacknowledged X

GT
The operator GT tests numeric constants as well as points that evaluate into numbers against
a numeric source point. An alarm is triggered if the value of the source point is greater than
the value set in the test. If a reference point is used, the tagname of the reference point is used
as the argument. If the keyword ref replaces the numeric constant as the argument and the
ReferenceTag attribute contains the tagname of the reference point, a numeric constant may
be added or subtract to the value of the reference point. A time parameter in the form of a
relative timestamp can delay the triggering of an alarm until the comparison is true for that
period of time.

GT (12)

GT (‘tagname’)

Chapter 8 - PI Alarm Subsystem

Page 300

GT (ref)

GT (ref + 14)

GT (70) +1h

LT
The operator LT tests numeric constants as well as points that evaluate into numbers against
a numeric source point. An alarm is triggered if the value of the source point is less than the
value set in the test. If a reference point is used, the tagname of the reference point is used as
the argument. If the keyword ref replaces the numeric constant as the argument and the
ReferenceTag attribute contains the tagname of the reference point, a numeric constant may
be added or subtract to the value of the reference point. A time parameter in the form of a
relative timestamp can delay the triggering of an alarm until the comparison is true for that
period of time.

LT (12)

LT (‘tagname’) +14m

LT (ref - 70)

LT (11) +1h

EQ
The operator EQ tests can be performed with numeric constants, digital states, strings or a
reference to another point. An alarm is triggered if the value of the source point is equal to the
value set in the test. If a reference point is used, the tagname of the reference point is used as
the argument. If the keyword ref replaces the numeric constant as the argument and the
ReferenceTag attribute contains the tagname of the reference point, a numeric constant may
be added or subtract to the value of the reference point.

A time parameter in the form of a relative timestamp can delay the triggering of an alarm
until the comparison is true for that period of time.

EQ(12.14)

EQ (OFF)

EQ (ref)

EQ (ref + 70)

EQ (“This is a string”) +1h

NE
The operator NE tests can be performed with numeric constants, digital states, strings or a
reference to another point. An alarm is triggered if the value of the source point is not equal
to the value set in the test. If a reference point is used, the tagname of the reference point is
used as the argument. If the keyword ref replaces the numeric constant as the argument and
the ReferenceTag attribute contains the tagname of the reference point, a numeric constant
may be added or subtract to the value of the reference point. A time parameter in the form of
a relative timestamp can delay the triggering of an alarm until the comparison is true for that
period of time.

NE(12)

NE (ON)

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 301

NE (‘tagname’)

NE (ref – 14.11)

NE (“This is a string”) +70m

StepGT
The operator StepGT tests numeric constants as well as points that evaluate into numbers
against a numeric source point. An alarm is triggered if the value of the source point changes
more than the value set in the test. If a reference point is used, the tagname of the reference
point is used as the argument. If the keyword ref replaces the numeric constant as the
argument and the ReferenceTag attribute contains the tagname of the reference point, a
numeric constant may be added or subtract to the value of the reference point. A time
parameter in the form of a relative timestamp can delay the triggering of an alarm until the
comparison is true for that period of time.

StepGT (12)

StepGT (‘tagname’) +14m

StepGT (ref - 70)

StepGT (11) +1h

StepLT
The operator StepLT tests numeric constants as well as points that evaluate into numbers
against a numeric source point. An alarm is triggered if the value of the source point changes
less than the value set in the test. If a reference point is used, the tagname of the reference
point is used as the argument. If the keyword ref replaces the numeric constant as the
argument and the ReferenceTag attribute contains the tagname of the reference point, a
numeric constant may be added or subtract to the value of the reference point. A time
parameter in the form of a relative timestamp can delay the triggering of an alarm until the
comparison is true for that period of time.

StepLT (12)

StepLT ('tagname')

StepLT (ref - 14)

StepLT (70) +1h

RateGT
The operator RateGT tests numeric constants as well as points that evaluate into numbers
against a numeric source point. An alarm is triggered if the rate of change of the source point
is greater than the value set in the test. The rate of change is calculated by dividing the
difference between discrete average of two successive periods by the period. Figure 8–2
shows an example of the calculation of the rate of change.

Chapter 8 - PI Alarm Subsystem

Page 302

Period = 10 min Period = 10 min

Time at which alarm point
value sent to PI Snapshot

Average = 6.5
6.0

8.5

5.0 Average = 5.0

2.5

6.0
6.5

diff = 1.5

Rate of Change = diff = 1.5 = .15
 Period 10

Figure 8–2. Calculation of Rate of Change

In the example, the average of the first period is 6.5 units and the average of the second
period is 5.0 units. Hence the rate of change is 1.5 units per minute. The values used in the
calculation are those sent to PI Snapshot as exceptions. The comparison test is made after the
second period at the time of the arrival of the next source point Snapshot value. The default
period is 10 minutes. The period can be changed by setting a new period in the options
attribute.

If a reference point is used, the tagname of the reference point is used as the argument. If the
keyword ref replaces the numeric constant as the argument and the ReferenceTag attribute
contains the tagname of the reference point, a numeric constant may be added or subtract to
the value of the reference point. A time parameter in the form of a relative timestamp can
delay the triggering of an alarm until the comparison is true for that period of time.

RateGT (12.8)

RateGT ('tagname')

RateGT (ref + 14)

RateGT (70) +1h

RateLT
The operator RateLT tests numeric constants as well as points that evaluate into numbers
against a numeric source point. An alarm is triggered if the value of the source point is less
than the value set in the test. If a reference point is used, the tagname of the reference point is
used as the argument. If the keyword ref replaces the numeric constant as the argument and
the ReferenceTag attribute contains the tagname of the reference point, a numeric constant
may be added or subtract to the value of the reference point. A time parameter in the form of
a relative timestamp can delay the triggering of an alarm until the comparison is true for that
period of time. The default period is 10 minutes. The period can be changed by setting a new
period in the options attribute.

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 303

RateLT (12.8)

RateLT ('tagname')

RateLT (ref + 14)

RateLT (70) +1h

Is_In
The operator Is_In tests digital states, strings, or points that evaluate into digital states or
strings against a digital state or string. In the comparison, all digital states are converted into
strings, and a string-to-string comparison is performed. The Is_In operator triggers an alarm
if the source point value is in the test value. For a reference point, the tagname of the
reference point is used as the argument. If the keyword, ref is used as the argument, the
ReferenceTag attribute contains the tagname of the reference point. A time parameter in the
form of a relative timestamp can delay the triggering of an alarm until the comparison is true
for that period of time.

Is_In ("ON OFF")

Is_In ('tagname')

Is_In (ref)

Is_In ("This is a string") +1h

Table 8–4. Comparisons of the Is_In Operator

Operator Source point
value

Test value Trigger an
alarm?

Comparison

Is_In Off “ON OFF” Yes digital source and
string test value

Is_In “string” “This is a
string”

Yes string source and
string test value

Is_In “str” “This is a
string”

Yes string source and
string test value

Is_In “strings” “This is a
string”

No string source and
string test value

Is_In 100 1002 Error numeric source and
digital test value

Is_In 100 “1002” Error numeric source and
string test value

Not_In
The operator Not_In tests digital states, strings, or points that evaluate into digital states or
strings against a digital state or string. In the comparison, all digital states are converted into
strings and a string-to-string comparison is performed.

The Change operator triggers an alarm if the source point value is not in the test value. For a
reference point, the tagname of the reference point is used as the argument. If keyword ref is
used as the argument, the ReferenceTag attribute contains the tagname of the reference
point.

Chapter 8 - PI Alarm Subsystem

Page 304

A time parameter in the form of a relative timestamp can delay the triggering of an alarm
until the comparison is true for that period of time.

Not_In ("ON OFF")

Not_In ('tagname')

Not_In (ref)

Not_In (ON) +1h

Table 8–5. Comparisons of the Not_In Operator

Operator Source point
value

Test value Trigger an
alarm?

Comparison

Not_In ON “OFF ON” No digital source and
string test value

Not_In OF “OFF ON” No digital source and
string test value

Not_In ONE “OFF ON” Yes digital source and
string test value

Not_In “1” 12345678 No string source and
digital test value

Not_In 9 “12345678” Yes digital source and
string test value

Not_In 10 100 Error numeric source
and digital test
value

Not_In 10 “100” Error numeric source
and string test
value

Includes
The operator Includes tests digital states, strings or points that evaluate into digital states or
strings against a digital state or string. In the comparison, all digital states are converted into
strings and a string to string comparison is performed. The Includes operator triggers an
alarm if the source point value includes the test value. For a reference point, the tagname of
the reference point is used as the argument. If keyword ref is used as the argument, the
ReferenceTag attribute contains the tagname of the reference point. A time parameter in the
form of a relative timestamp can delay the triggering of an alarm until the comparison is true
for that period of time.

Includes (HI)

Includes ('tagname')

Includes (ref)

Includes ("This is a string") +1h

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 305

Table 8–6. Comparisons of the Includes Operator

Operator Source point
value

Test value Trigger an
alarm?

Comparison

Includes Hihi “HI” Yes digital source and
string test value

Includes High HI Yes digital source and
digital test value

Includes “VIN3234A” “VIN3234” Yes string source and
string test value

Includes “VIN3234A” “VIN3235” No string source and
string test value

Includes 1002 100 Error numeric source and
digital test value

Includes 1002 “100” Error numeric source and
string test value

Change
The operator Change tests numeric values, digital states, strings or points that evaluate into
numeric values, digital states or strings. All numeric comparisons are done as floating point
operations and comparisons of all digital states are converted into strings and a string-to-
string comparison is performed. The Change operator triggers an alarm if the source point
value is different from the previous value. A time parameter in the form of a relative
timestamp can delay the triggering of an alarm until the comparison is true for that period of
time.

Change ()

Change () +1h

CondEQ
The operator CondEQ tests alarm point conditions against alarm points. An alarm will
trigger if an alarm of another alarm point is equal to the test value. For a reference point, the
tagname of the reference point is used as the argument. If keyword ref is used as the
argument, the ReferenceTag attribute contains the tagname of the reference point. A time
parameter in the form of a relative timestamp can delay the triggering of an alarm until the
comparison is true for that period of time. The argument is an alarm condition. In the
following examples, an alarm is triggered if the condition of the source alarm point is low,
the condition of the source alarm point is equal to the condition of the reference point (ref),
and the condition of the source point is high for over one hour, respectively.

CondEQ (low)

CondEQ ('alarmtagname')

CondEQ (ref)

CondEQ (high) +1h

Table 8–7 show examples of the CondEQ operator using the sample Alarm Digital State Set
given in the Alarm State Sets section of this chapter. The digital state for a new alarm with

Chapter 8 - PI Alarm Subsystem

Page 306

the condition of low is low << and the digital state for an acknowledged alarm with the
condition of low and an urgent priority is ** low.

For more information about Alarm Digital States, see Section 8.3, Alarm State Sets.

Table 8–7. Comparisons of the CondEQ Operator

Operator Source point
value

Test value Trigger an
alarm?

Comparison

CondEQ Low Low Yes digital source and
digital test value

CondEQ Low << Low Yes digital source and
digital test value

CondEQ ** low Low Yes digital source and
digital test value

CondEQ Low Lolo No digital source and
digital test value

CondNE
The operator CondNE tests alarm point against an alarm point. An alarm will trigger if an
alarm of another alarm point is not equal to the test value. For a reference point, the tagname
of the reference point is used as the argument. If keyword ref is used as the argument, the
ReferenceTag attribute contains the tagname of the reference point. A time parameter in the
form of a relative timestamp can delay the triggering of an alarm until the comparison is true
for that period of time. The argument is an alarm condition. In the following examples, an
alarm is triggered if the condition of the source alarm point is not low, the condition of the
source alarm point is not equal to the condition of the reference point (ref), and the condition
of the source point is not high for over one hour, respectively.

CondNE (low)

CondNE ('alarmtagname')

CondNE (ref)

CondNE (high) + 1h

IsUnack
IsUnack tests an alarm point against another alarm point. This operator has no arguments and
triggers an alarm if the source alarm point is unacknowledged.

In the following examples, an alarm is triggered if the source alarm point is unacknowledged
and goes unacknowledged for over one hour, respectively.

IsUnack ()

IsUnack () +1h

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 307

8.2.3 Action1, Action2, Action3, Action4
The set of four attributes Action 1, Action 2, Action 3 and Action 4 specify the digital state
that is set when the corresponding test set in the Test1, Test2, Test3, Test4 attributes trigger
an alarm. There are two forms of the attribute and their syntax is as follows.

Syntax: Form 1) Condition Priority

 Form 2) StateName

If an Alarm State Set is the Digital State Set for the alarm point, then the first form of the
attribute is used. In this case Condition is the alarm condition to be set for the alarm point
and Priority is the numeric priority level alarm. See Section 8.3, Alarm State Sets, for more
information about conditions and priorities. Table 8–8 gives examples of the use of the first
syntax and the resulting digital state that is set using the example Alarm Digital State Set
shown in Table 8–15.

Table 8–8. Examples Using First Syntax (Condition Priority)

Action1 Digital State Description

Hihi 1 __ hihi << New unacknowledged HIHI alarm with priority
level 1

Hihi 2 _* hihi << New unacknowledged HIHI alarm with priority
level 2

High 3 ** high << New unacknowledged HIGH alarm with priority
level 3

Low 0 LOW LOW alarm with priority 0 always returns just the
alarm condition

In the above examples, the digital state that is set is for a new alarm with the attribute
AutoAck set to NO. Furthermore, it is also possible to have a priority level of 0, which is
shown as the last example in Table 8–8. In that case, only the alarm condition is returned
regardless of the acknowledgement status.

The second case is not limited to the Alarm Digital State Set and any digital state set may be
utilized. The second case only requires that the attribute contain a digital state (StateName)
that belongs to the digital state set of the alarm point.

Table 8–9. Examples Using Second Syntax (StateName)

Action
1

Digital State Description

Hihi HIHI Condition only. Similar to using the first syntax with priority 0

** high ** High Alarm Digital State

auto Auto Digital Set used is Modes {Manual, Auto, Cascade, Program, Prog-Auto}

Chapter 8 - PI Alarm Subsystem

Page 308

The first two examples given in Table 8–9 use the Alarm Digital State Set from Table 8–15.
The last example used a default digital state set, Modes, with the digital states {Manual,
Auto, Cascade, Program, Prog-Auto}.

When more than one alarm is triggered simultaneously, the combiner logic determines the
digital state that is set by using the following rules:

• Priorities have precedence.
• When two conditions of the same priority are true, it is the first (in order of the

tests) that is used to set the Alarm State.

Table 8–10 gives examples of which “action” will be taken when more than one “action”
attribute is triggered. In these examples, it is assumed that all four tests were done and the
“actions” that were left blank are the result of alarms that were not triggered.

Table 8–10. Combiner Logic Examples

Action1 Action2 Action3 Action4 Result

Hihi 1 High 1 Hihi 1

Hihi 2 High 1 Hihi 2

auto Manual auto

In the first combiner logic example, all the priorities are the same; hence Action1 is set
because it is the first test that is true. In the second example, even though Action4 and
Action1 are both true, Action1 is used because it has a higher priority. The last example
demonstrates the second syntax where priority is not used; hence Action1 is set because it is
the first test that is true. Refer to Alarm State Sets on page 321 for more information about the
digital state that is set.

8.2.4 ExDesc
The tagname of the Alarm Group for the alarm point is set in the ExDesc. An alarm point
must belong to an Alarm Group and the Alarm Group must be created before the creation of
the alarm point. Refer to Alarm Groups on page 326 for additional information.

8.2.5 DigitalSet
The DigitalSet attribute specifies the name of the Alarm State Set that is to be associated
with the tag. An alarm point is required to have a digital set and the digital set must be
created before the creation of the alarm point. See Section 8.3, Alarm State Sets, for more
information about Alarm Digital States.

8.2.6 ReferenceTag
The tagname defined in the ReferenceTag attribute is used in the Test1, Test2, Test3, and
Test4 attributes as a reference point to trigger alarms. In the case where a reference is used,
the argument in the test is the keyword ref. In this case, the ReferenceTag attribute must be
the tagname of the desired reference point.

 8.2 - Alarm Point Configuration

PI Server Applications User Guide Page 309

8.2.7 AutoAck
The two options that can be set for the AutoAck attribute are yes or no. The default is yes. If
the value in AutoAck attribute is yes then an alarm is automatically acknowledged. For a
three-acknowledgment status configuration in the Alarm State Set, the new and
unacknowledged missed statuses shown in Table 8–12 would never be assigned to an alarm
point value.

8.2.8 DeadBand
The DeadBand attribute modifies the Test1, Test2, Test3, and Test4 attributes of GT and
LT. The DeadBand is a threshold, within the alarm limit, that the rate point must pass after
an alarm is triggered before the point is considered not to be in alarm. The default DeadBand
is 0.

Time at which
upper limit alarm
is triggered

Deadband

Time at which upper
limit alarm is no
longer in alarm

Deadband

Upper Alarm Limit

Lower Alarm Limit

Time at which
lower limit alarm is
triggered

Time at which
lower limit alarm is
no longer in alarm

Figure 8–3. Deadbands for Upper and Lower Alarm Limits

8.2.9 Options
The option attribute is used to modify the period associated with the RateGT and RateLT
operators in the Test1, Test2, Test3, and Test4 attributes.

Syntax: RTime = timestamp

The following examples set the period to 1 hour, 5 minutes, and 30 seconds respectively.

RTime = +1h

Rtime = +5m

Rtime = +30s

8.2.10 ControlTag
 The tagname defined in the ControlTag attribute is used in the combiner logic to disable
alarms. The tagname specified by the ControlTag attribute must refer to a numeric (any float
or integer) or digital point type. Any other point type will result in an Error state for the
alarm point. In the case where a control tag is used, the alarm can be taken out of service by
setting the value of the control tag to zero for numeric tags or the 0th state for digital tags.

Chapter 8 - PI Alarm Subsystem

Page 310

Below is an example of using the ControlTag to disable an alarm when net generation drops
below a predetermined value. This could easily be applied to all alarms on a unit. Assume
that U2:NetGen.PV is the net generation on our example unit.

Configure a PE point, a digital point, with 2 states: Not Running and Running. Be sure that
Not Running is first digital state in the set. Set the point to be naturally scheduled, based on
our net generation value. The ExDesc of the PE will look similar to:

event=U2:NetGen.PV, if('U2:NetGen.PV' > 5) THEN "Running" ELSE "Not Running"

If there are only 2 states in this digital set, and Not Running is the first one, the following
ExDesc will do the same thing.

event=U2:NetGen.PV, 'U2:NetGen.PV' > 5

Finally, enter the tagname of this PE as the ControlTag of any alarms that should be disabled
when net generation falls below 5.

8.2.11 ControlAlg
Reserved attribute for future implementation.

8.3 Alarm State Sets

An Alarm State Set is a Digital State Set constructed such that condition, acknowledgement,
and priority codes are all encoded in the digital states.

8.3.1 Condition
The condition of an alarm describes the manner in which an alarm is manifested. Table 8–11
shows some sample descriptions of the types of alarm conditions that may be implemented.

Table 8–11. Sample Alarm Conditions

Condition Example Description

Lolo The value of the point is way below normal

Low The value of the point is below normal

High The value of the point is above normal

Hihi The value of the point is way above normal

Rate The rate of change of the point is abnormal

Step The change in value of the point is abnormal

Change The value of the point has changed from the previous

8.3.2 Acknowledgement Status
The acknowledgement shows the status or the amount of attention that has been paid to the
alarm. The acknowledgement status is a modifier to the condition of the alarm. This release
of PI Alarm allows for 1 or 3 states of acknowledgement statuses. The three-state

 8.3 - Alarm State Sets

PI Server Applications User Guide Page 311

acknowledgement status set consists of the New Alarm, the Acknowledged Alarm and
Unacknowledged Alarm that is missed. The one-state acknowledgement is defined by having
all alarms acknowledged. Table 8–12 shows the three-state acknowledgement status and
respective descriptions.

Table 8–12. Three-state Acknowledgement Status

Acknowledgment
Status

Description

New An alarm has been triggered and is unacknowledged.

Acknowledged The triggered alarm is acknowledged.

Unacknowledged
Missed

The unacknowledged alarm was missed because the
source point is no longer in alarm.

8.3.3 Priority
The priority describes the level of importance given to the triggered alarm or the severity
associated with the triggered alarm. Table 8–13 is an Alarm Digital State Set with a single
priority and three acknowledgement statuses.

Table 8–13. Single Priority Alarm State Set

New Alarm Acknowledged Alarm Unacknowledged Alarm Missed

Lolo << Lolo Lolo _x

Low << Low Low _x

High << High High _x

Hihi << Hihi Hihi _x

Rate << Rate Rate _x

Step << Step Step _x

Change << Change Change _x

Dig1 << Dig1 Dig1 _x

Dig2 << Dig2 Dig2 _x

In this scheme, the acknowledgement statuses are represented by symbols. New alarms are
denoted by the symbol “<<” at the end of the alarm conditions, while acknowledged alarms
are just denoted as the alarm conditions itself. Alarms that are missed because the source
point has gone out of an alarm condition are denoted by an underscore followed by an “x”
(“_x”) after the alarm condition.

For the case where more severity is placed on certain types of alarms as opposed to others,
the priority level can be expanded to multiple levels. Table 8–14 shows an example of a
three-priority system with their respective meanings.

Chapter 8 - PI Alarm Subsystem

Page 312

Table 8–14. Example Three-priority-level System

Priority
Level

Example Description Sample Symbol

1 Alert __

2 Important _*

3 Most Urgent **

The three priorities are classified from the most severe (priority level 3) to the least severe
(priority level 1) as Most Urgent, Important, and Alert and their respective symbols which
is denoted in front of the alarm condition are “**”, “_*”, and “__” respectively. Table 8–15
shows the same Alarm Digital State Set with the additional priorities.

Table 8–15. Alarm Digital State Set with Three Priorities

Priority New alarm Acknowledged
Alarm

Unacknowledged
Alarm Missed

** Lolo << ** Lolo ** Lolo _x

** Low << ** Low ** Low _x

** High << ** High ** High _x

** Hihi << ** Hihi ** Hihi _x

** Rate << ** Rate ** Rate _x

** Step << ** Step ** Step _x

** Change << ** Change ** Change _x

** Dig1 << ** Dig1 ** Dig1 _x

Most
Urgent

** Dig2 << ** Dig2 ** Dig2 _x

_* Lolo << _* Lolo _* Lolo _x

_* Low << _* Low _* Low _x

_* High << _* High _* High _x

_* Hihi << _* Hihi _* Hihi _x

_* Rate << _* Rate _* Rate _x

_* Step << _* Step _* Step _x

_* Change << _* Change _* Change _x

_* Dig1 << _* Dig1 _* Dig1 _x

Important

_* Dig2 << _* Dig2 _* Dig2 _x

__ Lolo << __ Lolo __ Lolo _x

__ Low << __ Low __ Low _x

Alert

__ High << __ High __ High _x

 8.3 - Alarm State Sets

PI Server Applications User Guide Page 313

Priority New alarm Acknowledged
Alarm

Unacknowledged
Alarm Missed

__ Hihi << __ Hihi __ Hihi _x

__ Rate << __ Rate __ Rate _x

__ Step << __ Step __ Step _x

__ Change << __ Change __ Change _x

__ Dig1 << __ Dig1 __ Dig1 _x

__ Dig2 << __ Dig2 __ Dig2 _x

The only default Alarm State Set that is installed is the Pialarm33 State Set. Four sample
Alarm State Sets are also included in a piconfig script (two for use with numeric source tags
and two for digital). These sample Alarm State Sets are provided in Section 8.3, Alarm State
Sets. For each type, one set is simple, only showing alarm condition, and the other complete,
showing priority, condition, and acknowledge status. The sample Alarm State Sets for
numeric source points are displayed in Table 8–13 and Table 8–14. A second set of Alarm
State Sets for digital or string source points are provided in Table 8–16 and Table 8–17.

Table 8–16. Example Digital Alarm State Set with One Priority

New alarm Acknowledged
Alarm

Unacknowledged
Alarm Missed

Move << Move Move _x

Fail << Fail Fail _x

Off << Off Off _x

Over << Over Over _x

Under << Under << Under <<

Change << Change Change _x

D7 << D7 D7 _x

D8 << D8 D8 _x

Table 8–17. Example Digital Alarm Set with Three Priorities

Priority New alarm Acknowledged
Alarm

Unacknowledged
Alarm Missed

 ** Move << ** Move ** Move _x

Chapter 8 - PI Alarm Subsystem

Page 314

Priority New alarm Acknowledged
Alarm

Unacknowledged
Alarm Missed

** Fail << ** Fail ** Fail _x

** Off << ** Off ** Off _x

** Over << ** Over ** Over _x

** Under << ** Under ** Under _x

** Change << ** Change ** Change _x

** D7 << ** D7 ** D7 _x

** D8 << ** D8 ** D8 _x

_* Move << _* Move _* Move _x

_* Fail << _* Fail _* Fail _x

_* OFF << _* OFF _* OFF _x

_* Over << _* Over _* Over _x

_* Under << _* Under _* Under _x

_* Change << _* Change _* Change _x

_* D7 << _* D7 _* D7 _x

Important

_* D8 << _* D8 _* D8 _x

__ Move << __ Move __ Move _x

__ Fail << __ Fail __ Fail _x

__ OFF << __ OFF __ OFF _x

__ Over << __ Over __ Over _x

__ Under << __ Under __ Under _x

__ Change << __ Change __ Change _x

__ D7 << __ D7 __ D7 _x

Alert

__ D8 << __ D8 __ D8 _x

Each site using PI Alarms needs to examine its needs for alarm display sets and establish
local standards. While state sets can be added or changed, some changes will require
significant re-configuration of client programs. This can be minimized by planning.

As with all Digital State Sets, each of the digital state strings in the tables corresponds to a
digital state code. The manner in which the Alarm State Sets mentioned above are changed
into digital states is explained in Section 8.11, Alarm State Set Encoding and Decoding.

 8.4 - Alarm Groups

PI Server Applications User Guide Page 315

8.4 Alarm Groups

An Alarm Group is a collection of alarm points that are grouped together using a common
group name. Furthermore, Alarm Groups may also contain other Alarm Groups, to create an
alarm hierarchy. Each alarm point is assigned to a single Alarm Group. The Alarm Group
organization should match the operational structure of the plant. This hierarchy forms the
basis for alarm system control and reporting functions.

Each Alarm Group is represented in the PI system by one or more points. A single point is
required to provide the name for the group referred to by alarm points within it. The Alarm
Group point can receive values that represent statistics about the alarms in the group.
Additional points allow the alarm subsystem to report group statistics (number of alarms,
number of unacknowledged alarms, etc.). These additional statistical points are optional.

8.4.1 Alarm Group Point Configuration
An Alarm Group is represented by one or more points in the PI System. The default point
source for Alarm Group points is G. The Alarm Group uses the point class base with a
numeric data type. The parameters that configure an Alarm Group are contained in the
ExDesc attribute.

Attribute Parameters

ExDesc GroupName PointFunc Arg

The GroupName parameter defines the name of the group. The PointFunc parameter
contains the options to be set for the group. Statistics of the Alarm Group are described in the
PointFunc table (Table 8–18). The Arg parameter is a modifier to the PointFunc parameter.
Available statistics include the number of alarms at each priority and the highest priority of
the currently active alarms in the group. Groups can be arranged on a hierarchy.

Table 8–18. PointFunc Options

PointFunc Description

GroupID Setting PointFunc to GroupID defines the Alarm Group. The optional Arg
parameter is the name of the group’s parent group in the hierarchy (if it exists)

UnAck Displays total number of unacknowledged alarms within a group or priority.
The Arg parameter defines the priority for the unacknowledged alarms.

InAlarm Displays total number of points in alarm within a group or priority. The Arg
parameter defines the priority of the alarms.

In that case, the statistics at the parent level include the points in the groups below. Groups
can be arranged to any depth. There is nothing preventing both points and groups from being
assigned to the same group. Table 8–19 shows an example Alarm Group hierarchy with two
subgroups.

Chapter 8 - PI Alarm Subsystem

Page 316

Table 8–19. Example Alarm Group

TagName ExDesc Description

AlarmTop AlarmTop
GroupID

Name of Alarm Group for the top of alarm hierarchy and
also total number of alarm points within the hierarchy in
an Alarm State.

Tot_Unack AlarmTop
UnAck

Total number of unacknowledged alarms in AlarmTop
hierarchy

AlarmGrp1 AlarmGrp1
GroupID
AlarmTop

Name of Alarm Group that belongs to the AlarmTop
hierarchy and also the total number of alarm points in this
group that is in an Alarm State.

AlarmGrp1_Unack_1 AlarmGrp1
UnAck 1

Number of unacknowledged alarms in AlarmGrp1 with
priority 1

AlarmGrp1_InAlarm_1 AlarmGrp1
InAlarm 1

Number of alarm points in an Alarm State in AlarmGrp1
with priority 1

AlarmGrp2 AlarmGrp2
GroupID
AlarmTop

Name of Alarm Group that belongs to the AlarmTop
hierarchy and also the total number of alarm points in this
group that is in an Alarm State.

AlarmGrp2_InAlarm_0 AlarmGrp2
InAlarm 0

Number of alarm points in an Alarm State in AlarmGrp2
with priority 0

AlarmGrp2_Unack AlarmGrp2
UnAck

Total number of unacknowledged alarms in AlarmGrp2

This example Alarm Group contains the point AlarmTop that defines the top of the alarm
hierarchy. AlarmTop and Tot_Unack give the statistics of the total number of alarms points
that are in alarm and the total number of unacknowledged alarms in the alarm hierarchy that
are in the alarm hierarchy. AlarmGrp1 and AlarmGrp2 are the two Alarm Groups within the
hierarchy.

AlarmGrp1_Unack_1 and AlarmGrp1_InAlarm_1 are the statistics of the number of
unacknowledged alarms in Alarm Group AlarmGrp1 with priority 1 and the number of alarm
points in AlarmGrp1 that are in alarm with priority 1, respectively.

AlarmGrp2_InAlarm_0 and AlarmGrp2_Unack are the number of alarm points in an
Alarm State with priority 0 in AlarmGrp2, and the statistics of the total number of
unacknowledged alarms in AlarmGrp2, respectively. Using the modifier Arg of ‘UnAck’
with the priority 0 will always return 0 because conditions are always considered
acknowledged.

8.5 Build Alarm Points

Alarm points are created in the same manner as other points except that the Alarm must be of
alarm point class, which includes Base attributes. The point type must be digital and the
PointSource must be ‘@’.

To override the PointSource default values, see Override Default PointSource Values for
Alarms, page 330.

 8.6 - Build Alarm Group Points

PI Server Applications User Guide Page 317

8.5.1 PI TagConfigurator
You can easily create alarm points with the PI TagConfigurator tool. See the Rockwell
Automation Technical Support Web site to download this tool.

Figure 8–4. PI TagConfigurator Creation of Alarm Point

8.5.2 Piconfig
Alternatively, you can use piconfig to create an alarm point:

@table pipoint

@ptclass alarm

@mode create, t

@istru tag, pointsource, sourcetag, exdesc, pointtype, digitalset, test1,

action1

alarmtag1, @, sinusoid, alarmgrp1, digital, pialarm33, lt (20), lolo 2

@ends

8.6 Build Alarm Group Points

Alarm Group points are created in the same manner as other points. The point type must be
numeric and the PointSource must be G.

To override the PointSource default values, see Override Default PointSource Values for
Alarms, page 330.

Chapter 8 - PI Alarm Subsystem

Page 318

8.6.1 PI TagConfigurator
Alarm Group points can be created using the PI Tag Configurator utility, which you can
obtain from the Rockwell Automation support Web site.

Figure 8–5. PI Tag Configurator

8.6.2 Piconfig
Alternatively, you can use the piconfig utility to create the same Alarm Group point.

@table pipoint

@ptclass base

@mode create, t

@istru tag, pointsource, exdesc, pointtype

alarmgrp1, G, “alarmgrp1 GroupID”, Int32

@ends

8.7 Override Default PointSource Values for Alarms

You can override the default PointSource values by setting particular values in the Windows
Registry. Under the Registry key, SYSTEM/CurrentControlSet/Services/pialarm, the
string values AlarmPS, GroupPS, and SqcPS will be present if used.

For example, in Figure 8–6, the RegEdit screen has been reset with the PointSource for
Alarm points set to A, the PointSource for group points to S, and the PointSource for sqc
alarmpoints to C. Changes take effect only when the pialarm service is restarted.

 8.8 - Build Alarm Digital State Sets

PI Server Applications User Guide Page 319

Figure 8–6. Editing Default PointSource Values for Alarms

For UNIX systems, the command line that starts the Alarm Subsystem may contain optional
arguments to override the default point sources. For the same settings as in the Windows
example above, include the following options in the command line: -ps=A, -gps=S, and -
qps=C.

8.8 Build Alarm Digital State Sets

Alarm Digital State Sets are similar to all digital state sets in that each digital state string must
correspond to a digital state code. The Alarm State Set is special because there is a specific
structure that is required for this type of digital state set. The following piconfig script is an
example that shows how to build a simple Alarm Digital State Set with three
acknowledgement statuses, three priorities, and two conditions - low and high.

@table PIDS

@mode create,t

@istyp delim,

@istru set,

@istru oldcode ,state

@istru ...,

pialm33,

1, ----

2, __ Low ^^

3, _* Low ^^

4, ** Low ^^

5, __ Low <<

6, _* Low <<

Chapter 8 - PI Alarm Subsystem

Page 320

7, ** Low <<

8, __ Low _x

9, _* Low _x

10, ** Low _x

11, __ High ^^

12, _* High ^^

13, ** High ^^

14, __ High <<

15, _* High <<

16, ** High <<

17, __ High _x

18, _* High _x

19, ** High _x

20, LOW

21, HIGH

22, 3 3

@ends,

In the above script, the Alarm State Set is named pialm33. There are 22 digital states. The
first digital state is the state of no alarm. In this script, the no alarm status is represented by
the symbol “----”.

1, ----

If the desired representation for no alarm is “No Alarm,” this line in the script would be:

1, No Alarm

The last digital state (22nd) corresponds to the number of acknowledgment statuses and the
number of priorities that exist for the Alarm State Set. In this example, it is three for both. For
only one priority, the line would read as follows:

22, 3 1

The Alarm State Set is created in a manner similar to having three nested loops, where the
outer loop is the condition, the middle loop is the acknowledgement status, and the innermost
loop is the priority. So for each condition, the innermost loop sets the priorities from least
severe to most severe, which are represented here by the symbols “__”, “_*”, “**”.

2, __ Low ^^

3, _* Low ^^

4, ** Low ^^

The middle loop then sets the acknowledgement statuses in the order of acknowledged alarm
(“ ^^“), new alarm (“<<”) and unacknowledged alarm missed (“_x”).

2, __ Low ^^

3, _* Low ^^

4, ** Low ^^

5, __ Low <<

6, _* Low <<

7, ** Low <<

 8.9 - Program Operation

PI Server Applications User Guide Page 321

8, __ Low _x

9, _* Low _x

10, ** Low _x

The outer loop finally loops around the conditions. Hence each condition has 3
acknowledgement statuses and 3 priorities, and thus 9 digital states each. Since the first
digital state code is the no alarm condition, digital state codes 2 though 19 are used for the
Alarm States. At the end of the Alarm States are the condition names themselves.

20, LOW

21, HIGH

As mentioned earlier, the last digital state code is used to tell the alarm program how many
acknowledgement statuses and priorities are in the Alarm State Set.

22, 3 3

Further details on encoding and decoding Alarm Digital States is provided in Alarm State Set
Encoding and Decoding, page 335.

8.9 Program Operation

8.9.1 Startup
The Alarm Subsystem program is started with the rest of the system. The location of the
program, pialarm.exe for Windows and pialarm for UNIX, is in the pi\bin directory. All rate
calculations are reset when the PI System or the Alarm Subsystem is restarted.

8.9.2 Alarm Notification
Alarm Points are standard digital points. Client programs can request to be alerted when point
values change through the standard Update Manager mechanisms. FactoryTalk Historian
ProcessBook can use alarm summary tags as the basis for the operator alert process without
signing up for every alarm point in the system. Future versions of the alarm server will allow
a client to receive alarm updates on an Alarm Group basis.

Viewing Alarms in FactoryTalk Historian ProcessBook
The following figure shows an example of an alarm display in FactoryTalk Historian
ProcessBook.

Chapter 8 - PI Alarm Subsystem

Page 322

Figure 8–7. Example FactoryTalk Historian ProcessBook Display of Alarms

The example above is edited from the Kamyr display, from the PIDemo example included in
PIProcessBook. It shows the alarm point values next to the values of the source tag as well as
a trend display of the statistics of the alarms for the unit (Unit5). The chart on the bottom left
corner displays the statistics of the alarms for the four other units as well as the current unit.

8.9.3 Error Messages
All significant events in the life of an alarm and Alarm Group point are noted in the system
Message Log, including point additions, edits and error conditions. For UNIX, an additional
log file is called pilarm.log. To monitor logged events, use the pigetmsg utility. See the PI
Server System Management Guide for information about using the pigetmsg utility.

 8.10 - PI for OpenVMS Upgrade Considerations

PI Server Applications User Guide Page 323

8.9.4 Demonstration Points
Demonstration points for the PI Alarm Subsystem are available in the pi\adm directory in the
Alarmpts.dif file but are not automatically created when the system is installed. These alarm
demonstration points can be created by redirecting the file to the piconfig utility. See Chapter
11, The Piconfig Utility, in the PI Server System Management Guide for information about
using the piconfig utility.

$ piconfig < alarmpts.dif

8.10 PI for OpenVMS Upgrade Considerations

The PI Server Alarm subsystem is capable of having all the alarms of the PI for OpenVMS
version and more.

The following are known differences:

 The method of alarm messaging is not supported on the server side. The Alarm Client
program will allow for the viewing of alarms and Alarm Groups as well as
messaging. This feature will be available in the future.

 A log of the alarms is not available. The history of the alarm is contained in the alarm
points themselves.

 Acknowledgement of the alarm is accomplished by selecting the auto-
acknowledgement feature or writing an acknowledged digital state to the PI system
through the PI-API.

8.10.1 New Alarm Subsystem Features in PI Server 3.4
The Alarm Subsystem includes new features that are not included in PI for OpenVMS.

 The Alarm Subsystem allows you to set Alarm priorities.

 Alarm Groups can incorporate other Alarm Groups, to form hierarchies.

 The Alarm Subsystem supports testing of string tags.

8.11 Alarm State Set Encoding and Decoding

Due to the manner in which the Alarm State Set is structured, conversion from the digital
state code or offset to the condition, acknowledgement status, and priority is not as
straightforward as it may seem.

There is a distinction between the manner in which Digital State Sets are created and the
digital state code (offset) that is returned from a client program. For example, the following is
part of the piconfig script to create an Alarm Digital State Set as explained in Section 8.8,
Build Alarm Digital State Sets.

@table PIDS,

@mode create,t

@istyp delim,

Chapter 8 - PI Alarm Subsystem

Page 324

@istru set,

@istru oldcode ,state

@istru ...,

pialm33,

1, ----

2, __ Low ^^

3, _* Low ^^

4, ** Low ^^

5, __ Low <<

etc…

In the script, the digital states are numbered starting at 1. On the contrary, the offset, which is
returned from a client program returns the digital state offset in which the number begins at 0.
Therefore, for encoding and decoding, the digital state code is the digital state offset. Hence
the offset for the digital state shown for ** Low ^^ in the script is 3 and not 4.

In order for client applications to convert from digital state codes to the condition,
acknowledgement status, and priority, and vice versa, the following algorithms should be
applied. See section 8.8, Build Alarm Digital State Sets for more information.

8.11.1 Conversion to Digital State code
The algorithm for conversion points first needs to change the condition, C,
acknowledgement status, A, and priority, P, to numeric values. In the conversion the value
for the condition is given by where the condition is placed in the Alarm State Set. For
example, in the Alarm State Set given in Table 8–15, the conditions are listed as follows.

Lolo

Low

High

Hihi

Rate

Step

Change

Dig1

Dig2

Therefore, the position for the condition Hihi within the list of conditions is 4, and the
number of conditions, MaxC, is 9. Nack is the number of acknowledgement statuses. This
number can only be 1 or 3. The numeric value for the acknowledgement statuses, A, for the
case when Nack is 1 will be 1. The numeric values for the situation when Nack is 3, is given
as follows.

A = 0 (Acknowledged)

A = 1 (New Alarm)

A = 2 (Unacknowledged Missed)

The priority, P, is level of severity associated with the alarm. This number increases as the
severity of the alarm increases and goes from 0 to the maximum priority, MxP.

For example, an Alarm State Set with MxP equal to 3 is as follows.

 8.11 - Alarm State Set Encoding and Decoding

PI Server Applications User Guide Page 325

P = 0 (Condition Only)

P = 1 (Alert)

P = 2 (Important)

P = 3 (Most Urgent)

P equal to 0 results in the alarm condition. The number of states per condition Pa1 is given
by multiplying the number of acknowledgeable statuses by the max numeric priority level:

Pa1 = Nack * MxP

For example, if the two conditions in the Alarm State Set are high and low, then MaxC is
equal to 2. The number of states in the Alarm State Set is Nsts.

Nsts = Pa1 * MaxC + MaxC

The digital state code, code, is then given by the following equation.

code = Pa1 * (C - 1) + Mxp * A + P

8.11.2 Conversion from Digital State Code
Given the numeric values for the condition, C, acknowledgement status, A, and Priority, P,
the digital state code, code, is obtained using the following equations points.

C = int((code-1)/Pa1) +1

A = int((code-Pa1*(C-1)-1)/MxP)

P = code-Pa1*(C-1) - MxP * A

In the prior equations, the number of states per condition is Pa1 and the maximum number of
priorities is MxP. These are defined in Section 8.8, Build Alarm Digital State Sets.

8.11.3 Sample Alarm Digital State Sets
The following tables list the four Alarm State Sets and their respective digital state numbers,
which are used in a piconfig session points. The only Alarm Digital State Set that is installed
(by default) is pialarm33.

These Alarm State Sets can be created in a piconfig session using the file almstate.dif.

$ piconfig < almstate.dif

One Priority Alarm Set

Table 8–20. One Priority Alarm Set

Offset AlarmSet

0 .

1 Lolo

2 Low

3 High

4 Hihi

5 Rate

Chapter 8 - PI Alarm Subsystem

Page 326

Offset AlarmSet

6 Change

7 Dig1

8 Dig2

9 Lolo <<

10 Low <<

11 High <<

12 Hihi <<

13 Rate <<

14 Change <<

15 Dig1 <<

16 Dig2 <<

17 Lolo _x

18 Low _x

19 High _x

20 Hihi _x

21 Rate _x

22 Change _x

23 Dig1 _x

24 Dig2 _x

25 LOLO

26 LOW

27 HIGH

28 HIHI

29 RATE

30 CHANGE

31 DIG1

32 DIG2

33 3 1

Three Priority Alarm Set

Table 8–21. Three Priority Alarm Set

Offset AlarmSet

0 .

 8.11 - Alarm State Set Encoding and Decoding

PI Server Applications User Guide Page 327

Offset AlarmSet

1 __ Lolo

2 _* Lolo

3 ** Lolo

4 __ Lolo <<

5 _* Lolo <<

6 ** Lolo <<

7 __ Lolo _x

8 _* Lolo _x

9 ** Lolo _x

10 __ Low

11 _* Low

12 ** Low

13 __ Low <<

14 _* Low <<

15 ** Low <<

16 __ Low _x

17 _* Low _x

18 ** Low _x

19 __ High

20 _* High

21 ** High

22 __ High <<

23 _* High <<

24 ** High <<

25 __ High _x

26 _* High _x

27 ** High _x

28 __ Hihi

29 _* Hihi

30 ** Hihi

31 __ Hihi <<

32 _* Hihi <<

33 ** Hihi <<

Chapter 8 - PI Alarm Subsystem

Page 328

Offset AlarmSet

34 __ Hihi _x

35 _* Hihi _x

36 ** Hihi _x

37 __ Rate

38 _* Rate

39 ** Rate

40 __ Rate <<

41 _* Rate <<

42 ** Rate <<

43 __ Rate _x

44 _* Rate _x

45 ** Rate _x

46 __ Step

47 _* Step

48 ** Step

49 __ Step <<

50 _* Step <<

51 ** Step <<

52 __ Step _x

53 _* Step _x

54 ** Step _x

55 __ Change

56 _* Change

57 ** Change

58 __ Change <<

59 _* Change <<

60 ** Change <<

61 __ Change _x

62 _* Change _x

63 ** Change _x

64 __ Dig1

65 _* Dig1

66 ** Dig1

 8.11 - Alarm State Set Encoding and Decoding

PI Server Applications User Guide Page 329

Offset AlarmSet

67 __ Dig1 <<

68 _* Dig1 <<

69 ** Dig1 <<

70 __ Dig1 _x

71 _* Dig1 _x

72 ** Dig1 _x

73 __ Dig2

74 _* Dig2

75 ** Dig2

76 __ Dig2 <<

77 _* Dig2 <<

78 ** Dig2 <<

79 __ Dig2 _x

80 _* Dig2 _x

81 ** Dig2 _x

82 LOLO

83 LOW

84 HIHI

85 HIGH

86 RATE

87 STEP

88 CHANGE

89 DIG1

90 DIG2

91 3 36

8.11.4 Digital Base Set

Single Priority Alarm Set

Table 8–22. Single Priority Alarm Set (Digital Base Set)

Offset AlarmSet

0 .

1 Move

2 Fail

Chapter 8 - PI Alarm Subsystem

Page 330

Offset AlarmSet

3 OFF

4 Over

5 Under

6 Change

7 Dig6

8 Dig7

9 Move <<

10 Fail <<

11 OFF <<

12 Over <<

13 Under <<

14 Change <<

15 Dig7 <<

16 Dig8 <<

17 Move _x

18 Fail _x

19 OFF _x

20 Over _x

21 Under _x

22 Change _x

23 Dig7 _x

24 Dig8 _x

25 MOVE

26 FAIL

27 OFF

28 OVER

29 UNDER

30 CHANGE

31 DIG7

32 DIG8

33 3 1

 8.11 - Alarm State Set Encoding and Decoding

PI Server Applications User Guide Page 331

Three Priority Alarm Set

Table 8–23. Three Priority Alarm Set (Digital Base Set)

Offset AlarmSet

0 .

1 __ Move

2 _* Move

3 ** Move

4 __ Move <<

5 _* Move <<

6 ** Move <<

7 __ Move _x

8 _* Move _x

9 ** Move _x

10 __ Fail

11 _* Fail

12 ** Fail

13 __ Fail <<

14 _* Fail <<

15 ** Fail <<

16 __ Fail _x

17 _* Fail _x

18 ** Fail _x

19 __ OFF

20 _* OFF

21 ** OFF

22 __ OFF <<

23 _* OFF <<

24 ** OFF <<

25 __ OFF _x

26 _* OFF _x

27 ** OFF _x

28 __ Over

29 _* Over

30 ** Over

Chapter 8 - PI Alarm Subsystem

Page 332

Offset AlarmSet

31 __ Over <<

32 _* Over <<

33 ** Over <<

34 __ Over _x

35 _* Over _x

36 ** Over _x

37 __ Under

38 _* Under

39 ** Under

40 __ Under <<

41 _* Under <<

42 ** Under <<

43 __ Under _x

44 _* Under _x

45 ** Under _x

46 __ Change

47 _* Change

48 ** Change

49 __ Change <<

50 _* Change <<

51 ** Change <<

52 __ Change _x

53 _* Change _x

54 ** Change _x

55 __ Dig7

56 _* Dig7

57 ** Dig7

58 __ Dig7 <<

59 _* Dig7 <<

60 ** Dig7 <<

61 __ Dig7 _x

62 _* Dig7 _x

63 ** Dig7 _x

 8.11 - Alarm State Set Encoding and Decoding

PI Server Applications User Guide Page 333

Offset AlarmSet

64 __ Dig8

65 _* Dig8

66 ** Dig8

67 __ Dig8 <<

68 _* Dig8 <<

69 ** Dig8 <<

70 __ Dig8 _x

71 _* Dig8 _x

72 ** Dig8 _x

73 MOVE

74 FAIL

75 OFF

76 OVER

77 UNDER

78 CHANGE

79 DIG7

80 DIG8

81 3 3

PI Server Applications User Guide Page 335

Chapter 9. PI REAL-TIME SQC

Statistical Quality Control (SQC) is the use of numerical methods to monitor the
characteristics of a process, making sure they remain within pre-determined boundaries.

The PI Real-Time SQC (PI SQC) component allows you to apply Western Electric Pattern
Tests to all process or laboratory data collected by the PI System. PI SQC continually reviews
any SQC tests in the PI System. It stores test results, and a record of SQC control limits back
into your PI System. The results are available for viewing and analysis via FactoryTalk
Historian ProcessBook and the PI SQC Add-In.

PI SQC is a part of PI Alarm, which provides continual evaluation of SQC pattern tests and
the management of alarms generated from them. When an unacceptable deviation from test
norm occurs, PI SQC notifies the PI SQC Alarm Manager.

The chapter includes an overview of SQC fundamentals, an understanding of how PI SQC
works, an explanation of how to configure the PI points on which PI SQC functionality
depends, and instructions on how to install PI SQC.

The following topics are included:

Section 9.1, Introduction to Statistical Quality Control , on page 348

Section 9.2, Case Study for PI Real-Time SQC, on page 348

Section 9.3, Real-Time SQC Definitions, on page 349

Section 9.4, Tests for Unnatural Patterns, on page 351

Section 9.5, PI Real-Time SQC, on page 354

Section 9.6, Pattern Tests, on page 355

Section 9.7, SQC Alarm Priority and Precedence, on page 356

Section 9.8, Create a New SQC Alarm, on page 357

Section 9.9, Start and Run the PI Alarm Subsystem, on page 357

Section 9.10, Associated Point Configuration, on page 361

Section 9.11, PI SQC Alarm Point Configuration, on page 366

Section 9.12, PI Real-Time SQC Chart Types, on page 375

Section 9.13, Default SQC Alarm Digital States, on page 376

Section 9.14, Log Messages, on page 378

Chapter 9 - PI Real-Time SQC

Page 336

The following books, on the subject of Statistical Quality Control (SQC), were used in
developing this chapter, and may be helpful in developing your implementation of PI SQC.

 Wheeler, Donald J., Advanced Topics in Statistical Process Control: The Power of
Shewart's Charts, 1995, SPC Press, Knoxville

 Statistical Quality Control Handbook, 2nd Edition, 1958, Western Electric Company

9.1 Introduction to Statistical Quality Control

Whenever a series of observations or measurements of a process parameter are examined the
measurements will not, in general, be identical to each other. Statistical Quality Control is
beased on the core premise that all processes fluctuate. The fluctuations may be natural or
unnatural. Natural fluctuations are generally small, while unnatural fluctuations are larger and
introduced by external (hopefully, definable) causes. SQC provides a set of simple tools to
identify instances of unnatural fluctuation so that causes can be assigned and corrected.

In simple terms:

 Everything Varies – People live to different ages; all patterns fluctuate.

 Individual things are unpredictable – You cannot predict exactly how long you will
live; individual points are not predictable.

 Groups of things from a constant system of causes tend to be predictable – Actuaries
rely on this to predict life expectancy for insurance companies; a series of points
from a constant process tend to follow a pattern.

It is possible to calculate statistical control limits for any given set of data and to evaluate the
data against those limits. When the data fits within the limits its fluctuations are said to have a
natural pattern. If the data falls outside of the limits it is said to have an unnatural pattern. The
limits can either be defined in terms of a firm number, such as "centerline +/- 3 standard
deviations", or in terms of pattern tests like "4 successive points greater than 2.0 standard
deviations from the center line on the same side of the center line".

The primary method for such evaluation of the process is the Control Chart. Methods for
preparation and interpretation of control charts have been developed over the last 40 years.
Control Charts are employed by a wide range of industries and agencies as a means to
monitor and stimulate improvements in many types of processes.

9.2 Case Study for PI Real-Time SQC

The following example illustrates how PI SQC can be used and helpful in a typical setting.

Tip: If you are not familiar with the principals and practices of Real-Time SQC, read
Section 9.1, Introduction to Statistical Quality Control before you read this
application example.

 9.3 - Real-Time SQC Definitions and Terminology

PI Server Applications User Guide Page 337

Assume that we want to set up an SQC Alarm that will evaluate data entered for a lab test.
We’ve already established a PI point for the manual entry of laboratory results, and we have
been entering data for some time.

Recently, we decided to apply SQC to this laboratory measurement. We used FactoryTalk
Historian ProcessBook and the SQC Add-In for ProcessBook to construct an ad-hoc SQC
chart of individuals for the measurement. By investigating data collected when the process
was running within norms, we established control limits for the chart. We entered those
numeric values into the control parameters tab for that chart. We decided to apply only the 1
of 1, Outside 3 Sigma limit to this chart.

The ad-hoc chart served us well for a couple of months; it gave us enough information to
make process improvements. After observing the post-process improvement data for some
time, we recalculated control limits for this lab measurement and found that we could tighten
the chart control limits. Since we decided to keep a history of our control limits over time, we
created PI points into which we entered both the old and the newly calculated control limits.
We then set the control parameters for the chart to get limits from the new PI tags.

After using this chart for a while, we decided that we wanted to alert the operator when the
chart showed that a pattern test failure had occurred, so that action could be taken before we
produced off-spec product. It wasn’t practical for the operator to keep the ad-hoc SQC chart
displayed in the monitor all the time, so we decided to implement an SQC Alarm in PI.

We configured an SQC alarm point to use the same lab value as the ad-hoc chart, the same
control limit tags and to evaluate the same pattern test (Individual Measurements). Now the
SQC calculations happen on the PI Server whenever the lab tester enters a new value. The
operator sees an indication on the FactoryTalk Historian ProcessBook display if the
calculation results in an alarm condition. The operator can take corrective action and
acknowledge the alarm. If the process is in an upset condition, the operator can suspend the
evaluation of the alarm by clicking on a button on the FactoryTalk Historian ProcessBook
display - and later turn the alarm evaluation back on when the process returns to normal.

If process engineers review the SQC control limits and enter new SQC control limits lab
measurement, the PI SQC Alarm processor senses the change and begins using the new limits
for the SQC Alarm.

9.3 Real-Time SQC Definitions and Terminology

The following SQC terms and phrases are used in this chapter.

Statistical Quality Control – The use of numerical methods to help keep the
characteristics of a process within boundaries.

• Statistical – drawing conclusions from numbers
• Quality – the characteristics or properties of the process
• Control – keeping something within boundaries

Process – A process is a set of conditions or causes that work together to produce a
result. In an industrial setting a process can be a single control loop, a unit operation, a

Chapter 9 - PI Real-Time SQC

Page 338

laboratory measurement, a task performed by a single person or a team, or virtually any
combination of ‘actors’ that work together to produce a result.

Fluctuating Measurements – All processes have parameters that can be measured.
Repeated measurement of a process’s parameters will show fluctuations in the
parameter’s value. Fluctuations can be classified into two types:

• Natural Fluctuation – These are small fluctuations due to the precision of
measurement, the normal small random changes in the process that cannot be
assigned to a cause (Non-definable Cause). Natural fluctuation may be due to
minute variability in equipment, measurement imprecision, or other similar
causes.

• Unnatural Fluctuation – These are large, abnormal fluctuations due to some
external cause. The causes of unnatural fluctuations are generally definable to
some outside influence. For example, an unnatural fluctuation could arise from
software malfunction, field instrument failure, putting the wrong material into the
product or similar causes.

Natural Pattern – A pattern of measurements of a process parameter exhibiting natural
variability due to minute fluctuations in raw materials, equipment, measurement
precision, etc. Obviously, natural fluctuations result in natural patterns. A natural pattern
will always have the all of the following characteristics (source: Statistical Quality
Control Handbook, 1956-1984, Western Electric Company.)

• Most of the points are near the centerline.
• A few of the points spread out and approach the control limits.
• None of the points (or at least only a very rare and occasional point) exceeds the

control limits.

Conversely, unnatural patterns will lack one or more of the three characteristics listed
above.

Unnatural Pattern – A pattern of measurements of a process parameter exhibiting large
fluctuations due to a definable cause.

Tests for Unnatural Patterns – There are two basic premises for testing the naturalness
of a pattern:

• Test individual points versus limits.
• Test multiple points for trend – there are several commonly accepted tests for

trend recognition (e.g. eight points in a row on one side of the plot center line.)

Sample Grouping – Breaking a large collection of measurements into subgroups.
Evaluating subgroup averages and ranges provides a more sensitive tool for spotting
process variations with definable causes (unnatural patterns).

Example
The following example illustrates the above definitions.

 9.4 - Tests for Unnatural Patterns

PI Server Applications User Guide Page 339

Over the last couple of decades there has been an active water-sampling program in the San
Francisco Bay. The graph below depicts the salinity data collected since 1989 at a single
monitoring station at a depth of 1 meter:

C h a r t o f S F B a y S a l i n i t y S t a 3 3

0

5

1 0

1 5

2 0

2 5

3 0

3 5

3 / 1
6

4 / 1
9

3 / 2
3

5 / 1
9

8 / 1
8

3 /1
8

6 /1
4

2 /1
7

4 /1
9

10 / 2
6

4 /1
1

2 /2
1

2 / 1
9

2 / 2
6

D a t e & T i m e

S
a

li
n

Figure 9–1. San Francisco Bay Salinity

In Figure 9–1, the process is a particular locale in San Francisco Bay. Measurements of
salinity were taken over time at that location. It is clear from the plot that the measurements
fluctuate. In order to learn whether the fluctuations are natural or unnatural we need to be
able to test for unnatural patterns and evaluate the data against those tests.

Statistical quality control can be defined as: defining tests and evaluating data (sets of
measurements) against those tests to determine if data exhibit unnatural patterns.

9.4 Tests for Unnatural Patterns

Historically, Shewart's classic Control Chart test involved testing the samples plotted on the
Control Chart against 3 sigma limits. Over time, people applying SQC instituted additional
tests that sought to check the samples for the presence of unnatural patterns. Over the years a
number of such tests have been established. The basic set of pattern tests is known as the
Western Electric set.

9.4.1 Western Electric Unnatural Pattern Tests
Seven classic pattern tests from the Western Electric SQC book are implemented in PI. For
interpretation of patterns, the area between the upper and lower control limits is broken into 3
zones. The zones along with their names as implemented in PI SQC are illustrated below.

Chapter 9 - PI Real-Time SQC

Page 340

Zone A (OutsideControl)

Zone B (OutsideTwoSigma)

Zone C (OutsideOneSigma)

Lower Control Limit (LCL)

Upper Control Limit (UCL)

Va
lu

e

Sample (or time)

Figure 9–2. SQC Chart Zone Definition

9.4.2 Pattern Types and Tests

Instability
There are four tests for instability. These are the most important of the pattern tests:

1. Any single point that falls outside the 3-sigma limit fails this test.

Figure 9–3. One Point Outside 3 Sigma Limit (Instability)

2. Two out of three successive points fall in Zone A or beyond on one side of the center
line.

 9.4 - Tests for Unnatural Patterns

PI Server Applications User Guide Page 341

Figure 9–4. Two of Three Points in Zone A or Beyond (Instability)

3. Four out of five successive points fall into Zone B or beyond on one side of the
center line.

Figure 9–5. Four of Five Points in Zone B or Beyond (Instability)

4. Eight successive points fall on one side of the center line.

Figure 9–6. Eight Successive Points Fall on One Side of the Center Line (Instability)

Stratification
Samples whose up and down variations are very small in relation to the centerline are termed
stratified. Stratification exists when 15 or more consecutive points fall within Zone C on
either side of the centerline.

Chapter 9 - PI Real-Time SQC

Page 342

Figure 9–7. Fifteen Consecutive Points in Zone C (Stratification)

Mixtures
The mixture pattern is one in which points fall near the limits and not near the centerline. The
test for mixture is eight consecutive points on both sides of the centerline where no point is
within Zone C. At least one crossing of the center line must occur.

Figure 9–8. Eight Points on Both Sides of Center with None in Zone C (Mixture)

Trends
Trends are indicated by a series of points that are either monotonically increasing or
decreasing.

9.5 PI Real-Time SQC Configuration

SQC Alarm processing is a critical part of implementing Real-Time SQC. The continual
evaluation of SQC pattern tests and the management of alarms generated from them are the
responsibility of the PI Real-Time SQC product.

Creation and maintenance of SQC Alarms is most easily performed using the PI SQC Alarm
Manager application, which includes its own user guide. The PI point that implements PI
SQC Alarm functionality is called an SQC Alarm. See Section 9.11, PI SQC Alarm Point
Configuration for a detailed discussion of configuration options for an SQC Alarm.

 9.6 - Pattern Tests

PI Server Applications User Guide Page 343

9.5.1 Required and Optional Points
An SQC Alarm requires five points in the Data Archive in addition to the alarm point itself.
Required points provide a data source for the alarm, user control over the operation of the
alarm point, and storage of the SQC control limits. Required points can be shared among
SQC Alarms, if appropriate.

There are five optional PI points that you can configure for an SQC Alarm. One of these
optional points provides detailed reporting on the status of all pattern tests when the Alarm is
set. Other optional points are used by client and user-written programs to associate
specification limits and comments with an SQC Alarm and to drive limit changes based on
the value of another PI point (e.g., product-based limits). See section 9.10, Associated Point
Configuration, for point specifications.

9.6 Pattern Tests

Each PI SQC Alarm has one or more pattern tests defined. A pattern test is in Alarm status if
some maximum number ‘X’ out of a total number ‘Y’ of consecutive samples meets the test
condition (for example, if 2 of 3 samples are outside two standard deviations from the
centerline). The standard Western Electric Pattern Tests are supported:

 Outside Control – This test counts the number of samples outside the control limit
on one side of the center line.

 Outside Two Sigma – This test evaluates the sample against a limit drawn 2/3 of the
way between the center line and the control limit. Do not confuse sigma in this usage
with the standard deviation of the sample (that interpretation would only be true if, as
classically defined, SQC control limits are set to 3 times the standard deviation of
process measurements; but the control limits could be set to other values depending
on process needs).

 Outside One Sigma – This test evaluates the sample against a limit drawn 1/3 of the
way between the center line and the control limit. Do not confuse sigma in this usage
with the standard deviation of the sample.

 One Side of CL – This test counts how many samples are on one side of the center
line.

 Stratification – This test counts the number of samples that fall within the upper and
lower One Sigma limits on both sides of the center line.

 Mixture – This test counts the number of samples that fall outside the upper and the
lower One Sigma limits on both sides of the center line.

 Trend – This test counts the number of samples which are monotonically increasing
or decreasing.

Chapter 9 - PI Real-Time SQC

Page 344

Center Line (CL)

Lower TwoSigma LImit

Lower OneSigma Limit

Upper TwoSigma Limit

Upper OneSigma Limit

Lower Control Limit (LCL)

Upper Control Limit (UCL)

Va
lu

e

Sample (or time)

Figure 9–9. Limits for Pattern Tests

The following implementation options are supported for tests 1, 2, 3, and 4:

 Test evaluated only above the center line

 Test evaluated only below the center line

 Test evaluated both above and below the center line

9.7 SQC Alarm Priority and Precedence

The SQC Alarm processor uses the concepts of alarm priority and test precedence established
in the PI Alarm Subsystem. A brief explanation appears below.

9.7.1 Priority
SQC Alarms embody the same concept of priority that is described in Chapter 8, PI Alarm
Subsystem. Higher priority indicates a more immediate operator concern. For example,
consider an alarm system designed with four priorities 0, 1, 2, and 3. A priority of 0 might
indicate an alert for which no action is required, while a priority of 3 indicates a severe alarm
requiring an immediate response.

Each SQC Alarm can be configured to have a priority which applies to all of the alarm's
pattern tests. Selecting a priority may prove useful for incorporating SQC Alarms into Alarm
Groups for the general management of alarms. For more information, see Section 8.6, Build
Alarm Group Points.

9.7.2 Precedence
The seven pattern tests that may be executed with PI SQC have a fixed order of precedence,
as listed below.

 9.8 - Create a New SQC Alarm

PI Server Applications User Guide Page 345

Table 9–1. Precedence of SQC Alarm's Pattern Tests

Precedence Pattern Test

7 OutsideControl

6 OutsideOneSigma

5 OutsideTwoSigma

4 OneSideofCL

3 Stratification

2 Mixture

1 Trend

An SQC alarm point can be configured to test for any combination of these patterns. In such a
point, if more than one pattern test is in alarm status, the highest precedence test will be the
one reported in the SQC alarm point.

9.8 Create a New SQC Alarm

Follow these steps to activate a new SQC Alarm:

Caution: If you perform these steps out of order, an SQC Alarm may be placed in
the Error state.

1. Start the PI Alarm Subsystem. The first time the subsystem runs, it creates the new
point class used for SQC Alarms, and the Digital State Tables used for controlling
SQC Alarm execution and reporting.

2. Create the Associated Points on the PI Server. You can use the Excel Workbooks that
are included in the distribution as templates.

3. Enter initial values for control limit points and enter Normal for the ResetTag and
the TestStatusTag (if used).

4. Create the SQC alarm point. You can use the Excel Workbooks included in the
distribution as a template.

9.9 Start and Run the PI Alarm Subsystem

PI Real-Time SQC is handled by an enhanced version of the PI Alarm Subsystem.

 To start the PI Alarm Subsystem, use the command:
net start pialarm

 To stop the PI Alarm Subsystem, use the command:
net stop pialarm

Chapter 9 - PI Real-Time SQC

Page 346

9.9.1 Initial Subsystem Startup
The first time that the Alarm Subsystem with Real-Time SQC capability is run, it creates the
SQC_Alarm Point Class needed to establish Real-Time SQC Alarms. The subsystem also
creates the pisqcalarm digital state set, which contains the Alarm States used by PI SQC.

During the initial and subsequent Alarm Subsystem startups, messages are logged to the PI
System Message Log, which you can review with the pigetmsg utility.

Determine the PointSource
When the Alarm Subsystem starts up, it determines the PointSource used by SQC Alarms.
The default PointSource is Q. The subsystem finds all points on the server that have the
specified PointSource.

On Windows, you can override the default PointSource by editing the pialarm key in the
Registry. To do this, start RegEdit and select the key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\pialarm

Add a value to this key called SQCAlarmPS. Set the value equal to the letter you want for
the PointSource (for example, Q).

Find all SQC Alarms
For each point found with the PointSource specified above, the Scan attribute is checked. If
the Scan attribute is On, an SQC Alarm is initialized.

Initialize each SQC Alarm
After the SQC Alarm is created, its behavior is set by interpreting the configuration
information in the SQC alarm point attributes. If the subsystem cannot interpret the
configuration information, then a value of Error is written to the point and the point is not
processed further. The following sections describe how SQC alarm point attributes are used
during the subsystem startup.

Source Data
This is the process data source to be monitored. The SourceTag attribute is read and the SQC
Alarm signs up for notification of new data events for the source point.

Control Limits
The UCL, CL, and LCL Tag attributes are read, and the SQC Alarm signs up for notification
of data events on those points.

SQC Execution Control
The ResetTag attribute is read and the SQC Alarm signs up for notification of data events on
the reset point.

 9.9 - Start and Run the PI Alarm Subsystem

PI Server Applications User Guide Page 347

TestStatusTag
The TestStatusTag attribute is read, and if it is a valid PI point, the SQC Alarm uses it for
detailed pattern test reporting.

Pattern Tests
Each SQC Alarm contains seven pattern tests. Each pattern test is initialized by reading its
configuration text.

Event Sign Up
The SQC Alarm also signs up for data events on the SQC alarm points so it will know about
attempts to acknowledge alarms. The current value of the ResetTag is read and used to
preserve the execution state of the SQC Alarm.

An SQC Alarm can be set up to clear when the subsystem restarts. If the ClearOnStart
attribute is set to True then the alarm is cleared, and alarm calculations are started anew. If
the ClearOnStart attribute is set to False then data are retrieved from PI to the pattern test
buffer, the prior state of the SQC Alarm is retrieved from PI, and alarm calculations are
restarted.

9.9.2 Subsystem Startup

Control the Evaluation of SQC Alarms
The SQC Alarm ResetTag attribute controls the execution state of the SQC Alarm. The three
default execution states are Normal, Hold, and Clear:

 The Normal state allows the SQC Alarm to be evaluated. If Normal is written to the
ResetTag of an SQC Alarm which was in Hold, the System Digital State Alarm-On
(indicating that the SQC Alarm is active and awaiting a new SourceTag event to
process) will be written to the SQC alarm point.

 The Hold state suspends evaluation of pattern tests. If Hold is written to the
ResetTag of an SQC Alarm the System Digital State Alarm-Off (indicating that the
SQC Alarm is no longer active) will be written to the SQC alarm point.

 The Clear state clears the pattern test buffer, sets the SQC Alarm in a No Alarm
State and places the SQC Alarm in a Hold state, but the SQC Alarm values remains
as Clear.

If you need to clear and restart the SQC Alarm calculations for an SQC alarm point, you must
first set its ResetTag to Clear and then to Normal. You can do this by using the PI API in
VBA code in FactoryTalk Historian ProcessBook, Microsoft Excel or in a user-written
program. An example illustrating the technique appears in the FactoryTalk Historian
ProcessBook independent display file, which is included in the PI SQC distribution.

Evaluate New Source Data
When a new value arrives for the SourceTag of an SQC Alarm, the new value is added to the
collection of previous values used by the test evaluator. Each of the pattern tests is evaluated.
Whenever there is a change to the alarm condition of one or more of the pattern tests, the

Chapter 9 - PI Real-Time SQC

Page 348

highest precedence test in alarm is written to the SQC alarm point. The timestamp of the SQC
Alarm will be the same as the source data event time.

If the optional TestStatusTag is configured, then a value corresponding to all tests in alarm
will be written to the TestStatusTag with the same timestamp as the SQC Alarm event. The
TestStatusTag also includes an indication of the side of the center line of the most recent
source data event.

SQC Alarm processing is a Real-Time function; alarms are evaluated whenever new data for
source points arrive. If PI Archive data are edited, or data are inserted into the Archive before
the most recent Snapshot event (out of order data), then the SQC Alarm processor ignores
that data.

Change the Control Limits
The control limits for an SQC Alarm can be changed at any time. When control limits are
changed, new test evaluation limits are calculated for each pattern test. If the SQC Alarm’s
ClearOnLimitChange attribute of the SQC alarm point is set to Yes, then the SQC Alarm is
cleared and alarm calculations are started anew.

If more than one limit is changed for an SQC Alarm, then more than one reset of the alarm
calculations will occur. If you need to change more than one control limit, you can avoid the
multiple resets by first setting the SQC Alarm’s ResetTag to Hold, changing the control
limits, and then setting the ResetTag to Normal. You can do this with the PI API in VBA
code in FactoryTalk Historian ProcessBook, Microsoft Excel, or in a user written program.
An example illustrating the technique is included in the FactoryTalk Historian ProcessBook
independent display file included in the PI SQC distribution.

Control limits are applied in real-time. Once a new control limit (one that is different in value
from the existing control limit) is entered, regardless of its timestamp, it is applied to the
Alarms calculated from that moment in real-time forward. If a control limit value is inserted
before the most recent snapshot event for the control limit, it will be ignored.

Acknowledge SQC Alarms
SQC Alarms can be configured to either of two acknowledgement options. The point attribute
that controls acknowledgement behavior is AutoAck. The default value of the SQC Alarm’s
AutoAck attribute is Yes. If the default value is used, then SQC Alarms will appear just as if
the SQC chart were drawn manually – each pattern test failure will result in an Alarm event.
This is the typical manner for evaluating Shewart control charts.

If you wish to require personnel to manually acknowledge an SQC Alarm, set AutoAck to
No. An unacknowledged alarm will be written for each alarm calculated by the pattern tests.
The user has the opportunity to acknowledge the alarm by writing the unacknowledged
digital state to the SQC alarm point.

9.9.3 Subsystem Shutdown
If only the Alarm Subsystem is shut down, SQC Alarm evaluation is simply terminated.

If the entire PI System is shut down, SQC Alarm evaluation is also terminated. All points that
were configured to receive shutdown events will receive the shutdown value.

 9.10 - Associated Point Configuration

PI Server Applications User Guide Page 349

9.10 Associated Point Configuration

An SQC Alarm requires the existence or creation of several PI points in addition to the SQC
alarm point. Also, the user has the option to create several additional PI points that could be
used by user-written programs to further enhance SQC Alarm reporting. All of these points
are described in the following topics, along with the requirements for configuring these
points.

9.10.1 Tools to Create and Edit Associated PI Points
The SQC alarm point and its associated PI points can be configured using the PI
TagConfigurator portion of PI SMT (PI System Management Tools). The PI SMT can be
downloaded from the Rockwell Automation support Web site. A sample Excel workbook for
use with PI TagConfigurator is included in the distribution media.

Note: When defining a new SQC Alarm, it is important that all of the required,
associated PI points are created before the SQC alarm point is created.

In the following section, the function of each of the required PI points is described in detail.

9.10.2 Summary of Associated PI Points for SQC Alarms
In addition to the SQC alarm point itself, five PI points are required to implement an SQC
Alarm. Additionally, five optional tags may also be created if desired.

Table 9–2. Summary of Associated Points

Tag Alias Description

SourceTag The PI point on which the Alarm Calculations will be performed. This point
MUST have compression turned off (compressing = 0).
Note: If compression on the source tag is not turned off, then alarms will be
calculated based on snapshot events that may later be ‘compressed out.' This
may lead to confusion since alarms might be generated that are not associated
with archived source-data events.

TestStatusTag (Optional) The PI point whose value corresponds to all pattern tests currently in
alarm condition.

ResetTag The PI point whose value sets the execution status of the Pattern Test
evaluation.

UCLTag The PI point whose value is the upper control limit for the chart.

CLTag The PI point whose value is the center line for the chart.

LCLTag The PI point whose value is the lower control limit for the chart.

USLTag (Optional) The PI point whose value is the Upper Specification limit for the chart.

LSLTag (Optional) The PI point whose value is the Lower Specification limit for the chart.

ProductTag (Optional) The PI point whose value represents the current product.

CommentTag (Optional) The PI point for storing comments associated with the SQC Alarm.

Chapter 9 - PI Real-Time SQC

Page 350

9.10.3 Configure the Associated Points
Each of the following tag reference attributes of the SQC alarm point hold the TagName of
the PI point to be used in the Alarm calculation.

Although a naming convention for the points associated with the SQC alarm point is not
necessary, you may wish to implement one for ease in recognizing the purpose for the
associated points. One possible convention is to base the names of the SQC alarm point and
all of the associated points on the name of the SourceTag. If the source tag is PV1011
associated tags might be named PV1011.alarm, PV1011.status, PV1011.UCL, PV1011.LCL,
etc.

Note: For the associated points it is usually desirable to archive every value that is
input for that point. Thus, exception reporting and compression are typically turned
off for all associated points.

SourceTag
The SourceTag contains the values from which the SQC Alarm pattern tests are evaluated.
This is also the value that would be charted if the user were generating a graphic SQC Chart.
It is possible to use the same SourceTag for multiple SQC Alarms.

The SQC Alarm’s SourceTag can be any PI point. Typically the SourceTag point will be a
manually entered value for a chart of individuals, or a PI Totalizer Point for aggregated
sampled data. For example, the sampled data could be an average of a fixed number of
manually entered values or a time-weighted average of an analog measurement from a DCS.

The pointtype of the SourceTag should be a numeric data type, typically a floating point
number such as a float32 or float64.

To ensure that archive events for alarms and source tag archive events are in sync, the
SourceTag must have compression turned off.

Note: If compression on the source tag is not turned off, then alarms will be
calculated based on Snapshot events that may later be ‘compressed out.' This may
lead to confusion since alarms might be generated that are not associated with
archived source-data events.

TestStatusTag
The TestStatusTag can be used by customer-written programs in situations where
knowledge of all pattern tests in alarm is needed (for example, in the dynamic creation of
operator action guidelines). A TestStatusTag can only apply to one SQC Alarm.

The TestStatusTag is a point with pointtype int32, whose value is set by the Alarm
Subsystem. The value indicates all of the pattern tests currently in alarm by assigning each of
the pattern tests a bit within the 32-bit word. Whenever a pattern test is in alarm, its bit is set.
If a test is not evaluated, its bit is always zero. After the bits are set for all pattern tests in
alarm, the sign of the TestStatusTag is set to indicate whether the corresponding value of the
SourceTag was above or below the center line for the event triggering the alarm. If the value
of the SourceTag was equal to the center line, the TestStatusTag is positive.

 9.10 - Associated Point Configuration

PI Server Applications User Guide Page 351

The Alarm Subsystem assigns the values given in Table 9–3 to the TestStatusTag based on
the individual SQC pattern-test alarms.

Table 9–3. TestStatusTag Bits Indicate SQC Alarm State

Test Value Bit #

OutsideControl 64 6

OutsideTwoSigma 32 5

OutsideOneSigma 16 4

OneSideofCL 8 3

Stratification 4 2

Mixture 2 1

Trend 1 0

A TestStatusTag value of 0 indicates no tests in alarm; a value of 64 indicates the
OutsideControl test is in alarm; a value of 24 indicates that both the OutsideOneSigma and
OneSideofCL tests are in alarm.

For values of the SourceTag below the centerline, the integer generated by the above bit
setting algorithm is then multiplied by -1.

Table 9–4 provides more examples.

Table 9–4. Examples of TestStatusTag values

Tests in Alarm TestStatusTag

OneSideofCL & Stratification 8 + 4 12

OutsideTwoSigma & Trend
(SourceTag < CL)

32 + 1 -33

OutsideTwoSigma &
OutsideOneSigma

32 + 16 48

For values of the SourceTag below the centerline, the TestStatusTag will be negative;
however, care must be taken when analyzing the individual bits of the TestStatusTag. Before
analyzing the bits of a negative TestStatusTag, the TestStatusTag should first be multiplied
by -1 to remove the sign. Then the individual bits may be readily analyzed. For example, if
the OneSideofCL alarm has been set because the values of the SourceTag are below the
centerline, the TestStatusTag will first be assigned a value of 8 and then multiplied by -1 to
arrive at -8. When viewed as a group of bits that are set, -8 is represented as
11111111111111111111111111111000, not -100.

Chapter 9 - PI Real-Time SQC

Page 352

ResetTag
The ResetTag is used by client programs to control the execution of pattern tests on an SQC
Alarm. The PI Alarm Subsystem looks for updates to the value of the ResetTag and
implements the desired actions. The allowed values of the ResetTag are listed in Table 9–5.

Table 9–5. Values of the ResetTag

Value Action Digital State Offset

Normal Pattern Tests are processed 0

Hold Pattern Tests are not processed, but buffer is
preserved (no new values are added to it,
however)

1

Clear SQC alarm point set to the "no alarm"
condition, buffer is cleared, and the SQC Alarm
behavior is the same as if it were placed in
Hold. (i.e. Pattern Tests are not processed. No
new values are placed in the buffer.)
After Clearing an alarm it is necessary to set
the ResetTag to Normal to restart the
processing of the SQC Alarm.

2

The same ResetTag PI point can be used for multiple SQC Alarm calculations if desired.

The PointType of the ResetTag must be Digital and the DigitalSet attribute should be set to
pialarmcontrol, which is the Digital State Set where the reset values are stored. This Digital
State Set is created automatically when the subsystem starts up for the first time.

UCLTag, CLTag and LCLTag
Control limits are stored in the PI points referenced by UCLTag, CLTag, and LCLTag
parameters. These PI points can be performance equations, manually entry points, or points
whose values come from a DCS or a user-written program. The SQC pattern test evaluation
portion of the PI Alarm Subsystem monitors the values of the control limits and senses
changes in their values (e.g., if the user implements limits that change with product or grade).
The same UCL, CL, and LCL points can be shared among multiple SQC Alarms if desired.

The pointtype of the control limit points should be set a numeric data type, such as a float32
or float64.

If a control limit is changed, the pattern tests for the associated SQC Alarm are reset,
depending on the ClearOnLimitChange attribute. If ClearOnLimitChange = Yes, the SQC
Alarm is placed in the Hold state, the TestBuffer is zeroed and the alarm evaluation is then
set to the Normal state.

USLTag and LSLTag
Specification limits are stored in the PI points referenced by the optional USLTag, and
LSLTag attributes. These PI points can be performance equations, manually entry points, or
points whose values come from a DCS or a user-written program.

 9.11 - PI SQC Alarm Point Configuration

PI Server Applications User Guide Page 353

The pointtype of the control limit points should be set to a numeric data type, such as a
float32 or float64.

These tags are used for display and for calculation of the process capability (Cpk) by version
1.1 or greater of the PI SQC Add-In for ProcessBook. If the attributes are blank, then the
specification limits will not be displayed and the Cpk will not be calculated.

While specification limits are not used in SQC Alarm calculations, users may wish to
establish regular PI Alarms based on the values of the SourceTag relative to the specification
points.

ProductTag
ProductTag is an optional PI point used to designate the current product for which the SQC
Alarm is being calculated. User-written programs might use this point's value to
programmatically adjust the control and specification limits based on the product or grade of
material being manufactured.

CommentTag
CommentTag is an optional PI point for storing comments associated with the SQC Alarm.
Information regarding conditions in the plant environment at certain times may be stored in
this tag. User-written programs may be used to enter and retrieve these comments for use in
process improvements based on attributing SQC Alarms to causes such as the technique
known as Pareto analysis.

9.11 PI SQC Alarm Point Configuration

The PI SQC Alarm Point is the central storage point for all the information needed to
implement a PI SQC Alarm. Configuration information of a SQC alarm point includes all of
the attributes needed to define the PI SQC Alarm’s behavior as well as the associated points
that are referenced by the SQC Alarm.

The following topics describe how to manually configure the PI SQC alarm point. OSI
recommends the use of the PI SQC Alarm Manager application for the creation and
maintenance of SQC Alarms.

Later, you will find discussion of how to configure associated points, both required and
optional, that are used to define a SQC Alarm.

9.11.1 Methods for Configuring PI SQC Alarm Points
The order of point creation is important, because if the SQC alarm point is created before the
associated points (including setting their initial values), then the PI Alarm Subsystem will not
process the SQC Alarm; instead, it will place the SQC Alarm in the Error state.

The PI SQC Alarm Manager is a utility included in the distribution media that will enable
you to create and edit alarm points correctly.

Alarm points can also be configured using the PI TagConfigurator portion of PI-SMT (PI
System Management Tools). PI TagConfigurator currently supports creating, editing, and

Chapter 9 - PI Real-Time SQC

Page 354

deleting SQC Alarm tags. Sample Excel workbooks for use with PI TagConfigurator are
included in the distribution media. The instructions in the workbooks step through the
creation of associated points, setting initial values for the associated points, creating the
sample aggregation point (for SQC Alarms other than for a chart of Individuals), and the
creation of the SQC alarm point itself.

9.11.2 SQC Alarm Point Class

SQC Alarm Definition
SQC alarm points have their own point class: SQC_Alarm. This SQC_Alarm point class
contains attributes needed to describe an SQC Alarm. The fundamental attributes that are
required to specify an SQC alarm point are given in Table 9–6.

Note: When specifying attribute values ‘Yes’, ‘Y’, ‘True’, ‘T’, ‘On’ and ‘1’ all have
equivalent meaning and may be used interchangeably. The strings are case
insensitive. The same is true of ‘No’, ‘N’, ‘False’, ’F’, ’Off’ and ‘0’.

Table 9–6. SQC_Alarm Point Class Attributes

Point Attribute

Default Value or Valid
Options

Description

Ptclass SQC_Alarm The SQC Alarm Point Class

PointType Digital All SQC Alarms are Digital points

Digitalset pisqcalarm Contains SQC Alarm States

PointSource Q Identifies SQC alarm points

Scan 1 or 0 (default=1) On (1) or Off (0). SQC Alarms are only
calculated for scan=On

Compressing 1 or 0 (default=1) On or Off. Should be set to OFF

AutoAck Yes (default) or No Automatic acknowledgement of alarms

ChartType 0-8 (0 is default) Describes type of SQC chart the SQC
Alarm is testing (Used only by the PI SQC
Add-In for ProcessBook).

ClearOnStart Yes or No (default) Yes means start alarm calculations afresh
on startup or editing of the alarm point; No
means seed alarm calculations with
archive values of SourceTag and restore
the alarm’s prior state

ClearOnLimitChange Yes (default) or No Yes means start alarm calculations afresh
when any limit tag changes; No means
continue evaluating alarms using new limit
values.

ExDesc

Specifies Alarm Group

 9.11 - PI SQC Alarm Point Configuration

PI Server Applications User Guide Page 355

Point Attribute

Default Value or Valid
Options

Description

SQCAlarmPriority 0-n (0 is default) Integer value specifies the alarm priority
assigned to all alarms generated by this
SQC Alarm definition.

PIProductLimits

<reserved for future use>

WaitOnLimitChange

<reserved for future use>

Pattern Test Definitions (if left blank, the pattern test will not be performed)

OutsideControl x of y [<blank>, above,
or below]

Within y number of samples, x are outside
of control limits. Options: specify above or
below to apply test only above or below the
center line.

OutsideTwoSigma x of y [<blank>, above,
or below]

Within y number of samples, x are outside
the "Two Sigma" limit. Options: specify
above or below to report alarms for this test
only above or below the center line.

OutsideOneSigma x of y [<blank>, above,
or below]

Within y number of samples, x are outside
the "One Sigma" limit. Options: specify
above or below to report alarms for this test
only above or below the center line.

OneSideofCL x of y [<blank>, above,
or below]

Within y number of samples, x are on one
side of the center line. Options: specify
above or below to report alarms for this test
only above or below the center line.

Stratification x of y Within y number of samples, x are within
the "One Sigma" limit.

Mixture x of y Within y number of samples, x are not
within the "One Sigma" limit.

Trend x x consecutive values trend either up or
down.

Associated-Point TagName Definitions

SourceTag

TagName for PI point on which the Alarm
Calculations will be performed

TestStatusTag

(Optional) TagName for PI point to which
SQC Alarm system writes value indicating
which tests are in alarm

UCLTag

TagName for Upper Control Limit

CLTag

TagName for Center Line

Chapter 9 - PI Real-Time SQC

Page 356

Point Attribute

Default Value or Valid
Options

Description

LCLTag

TagName for Lower Control Limit

ResetTag

TagName for PI point governing Alarm
Calculation execution and reset

USLTag

(Optional) TagName for Upper
Specification Limit

LSLTag

(Optional) TagName for Lower
Specification Limit

ProductTag

(Optional) TagName for a PI point to store
the name of the current product or grade
being produced.

CommentTag

(Optional) TagName for a PI point to store
comments associated with the SQC Alarm.

Ptclass
This must be set to SQC_Alarm.

PointType
This must be set to digital. The SQC alarm point contains a digital state representing the
value of the highest precedence alarm currently set.

Digitalset
This must be set to pisqcalarm, which contains SQC Alarm States. The digital states in the
pisqcalarm Digital State Set are described in "Default SQC Alarm Digital States," page 376.

PointSource
The PointSource identifies points as SQC alarm points. The default PointSource for SQC
Alarms is Q, although this can be configured to a different string as described in the topic,
Determine the PointSource, in section 9.9.1.

Scan
Scan is used to determine when SQC Alarms are calculated. SQC Alarms are not calculated
when Scan = Off. When Scan is changed from Off to On while the SQC Alarms are running,
the ClearOnStart attribute (described below) determines the SQC Alarm's startup behavior.

Compressing
Compression defaults to On (i.e., 1) for all PI points, but Compressing should be set to
OFF (i.e., 0) to ensure archiving of all SQC Alarms.

 9.11 - PI SQC Alarm Point Configuration

PI Server Applications User Guide Page 357

Note: Exception reporting is not used for SQC alarm points.

Behavior Controls

AutoAck
AutoAck is used for automatic acknowledgement of alarms. It defaults to Yes.

If AutoAck = No, the SQCAlarmPriority needs to be set to a nonzero value in order to use
acknowledgements.

ChartType
ChartType is an indicator used by the PI SQC Add-In to FactoryTalk Historian
ProcessBook. The ChartType attribute indicates the type of SQC chart for which the SQC
Alarms are being calculated. Valid values are listed in Table 9–7.

Note: This attribute is not used by the PI Server in its SQC calculations. The SQC
Alarm Point’s SourceTag will determine whether this is a chart of individuals, an x-
bar chart, etc. The default value is 0. See page 375 for a description of how to set up
SQC Alarms for the various chart types.

Table 9–7. Valid ChartType Values

Value ChartType

0 Chart type is unspecified (default)

1 Individuals

2 X-Bar

3 Moving Average

4 Exponentially-Weighted Moving Average (EWMA)

5 Standard Deviation

6 Moving Standard Deviation

7 Range

8 Moving Range

ClearOnStart
ClearOnStart=Yes is used to clear any active alarm and start alarm calculations afresh on
startup or after a change to the alarm point’s attributes. No means to start the alarm
calculations using retrieved archive values of SourceTag and to restore the SQC Alarm’s
prior state. If not specified on point creation, ClearOnStart defaults to No.

Chapter 9 - PI Real-Time SQC

Page 358

ClearOnLimitChange
ClearOnLimitChange=Yes means clear any active alarm and start alarm calculations afresh
when any control limit tag (UCLTag, CLTag, LCLTag) changes. No means continue
evaluating alarms using new limit values. If not specified on point creation, ClearOnStart
defaults to Yes.

Note: If set to Yes, changing more than one limit tag may result in one reset for each
limit that is changed. This can be avoided by first setting the ResetTag to Clear,
changing the control limits, and then setting the ResetTag to Normal.

PIProductLimits
<Included in Point class and reserved for future use>

WaitOnLimitChange
<Included in Point class and reserved for future use>

Alarm Group Identification

ExDesc
ExDesc specifies an Alarm Group that this SQC Alarm belongs to. SQC Alarms may be
added to existing PI Alarm Groups.

Alarm Priority

SQCAlarmPriority
SQCAlarmPriority is an integer value that sets the priority of the SQC Alarm. Defaults to 0.
This affects how the SQC Alarm will be reported with respect to other alarms and SQC
Alarms on your system. For a discussion of alarm priorities and precedence, see page 356.

In addition to setting AutoAck = No, SQCAlarmPriority must be set to a nonzero value in
order to use acknowledgements.

9.11.3 Pattern Test Configuration
Each SQC Alarm can test for up to seven pre-set patterns. Any combination of pattern tests
may be used in a single alarm. Pattern tests that compare values of the source tag to the
control limits use values of the UCLTag, CLTag, and LCLTag. A description of each test
follows below.

The general form for configuring a pattern test is to enter the text "x of y", where x and y are
positive integers. If a pattern test attribute is left blank it will not be evaluated. The
descriptions of each pattern test also list the values for x of y recommended in the Western
Electric Statistical Quality Control Handbook.

In the case of the Trend pattern test only, x is specified because the test looks for x
consecutively increasing or decreasing values.

 9.11 - PI SQC Alarm Point Configuration

PI Server Applications User Guide Page 359

For four of the tests (OutsideControl, OutsideOneSigma, OutsideTwoSigma, and
OneSideofCL), the modifiers above and below can be added after "x of y" to restrict the
alarm reporting to a single side of the center line. Table 9–8 illustrates the pattern test
configuration options.

Table 9–8. Pattern Test Configuration Examples

Attribute Entry Pattern Test Behavior

<Blank> Test will not be performed (default).

4 of 5 Test looks for 4 out of 5 consecutive values of the SourceTag which
meet the test condition. This test will be evaluated for values of the
SourceTag that are both greater than and less than the value of the
CLTag

2 of 3 above Test will look for 2 out of 3 consecutive values of the SourceTag
which meet the test condition. Alarms resulting from this test will
only be reported for values of the SourceTag that are greater than
the value of the CLTag.

8 of 8 below Test will look for 8 consecutive values of the SourceTag which meet
the test condition. Alarms resulting from this test will only be
reported for values of the SourceTag that are less than the value of
the CLTag.

OutsideControl
This pattern test fails (sets an alarm) when x of y values of the SourceTag are outside of
control limits. A value of the SourceTag is outside the control limits when

SourceTag > UCL or SourceTag < LCL.

The above or below options can be used with this pattern test to restrict pattern alarm
reporting to one side of the center line. The Western Electric SQC Handbook recommends 1
of 1 for this pattern test.

OutsideTwoSigma
This pattern test fails (sets an alarm) when x of y values of the SourceTag are outside the
"TwoSigma" limit. A value of the SourceTag is outside the "TwoSigma" limit when

SourceTag > (2/3 * (UCL-CL) + CL) or SourceTag < (CL - 2/3 * (CL-LCL)).

The above or below options can be used with this pattern test to restrict pattern alarm
reporting to one side of the center line. The Western Electric SQC Handbook recommends 2
of 3 for this pattern test.

OutsideOneSigma
This pattern test fails (sets an alarm) when x of y values of the SourceTag are outside the
"OneSigma" limit. A value of the SourceTag is outside the "OneSigma" limit when

SourceTag > (1/3 * (UCL-CL) + CL) or SourceTag < (CL - 1/3 * (CL-LCL)).

Chapter 9 - PI Real-Time SQC

Page 360

The above or below options can be used with this pattern test to restrict pattern alarm
reporting to one side of the center line. The Western Electric SQC Handbook recommends 4
of 5 for this pattern test.

OneSideofCL
This pattern test fails (sets an alarm) when x of y values of the SourceTag are on one side of
the center line. The above or below options can be used with this pattern test to restrict
pattern alarm reporting to one side of the center line. The Western Electric SQC Handbook
recommends 8 of 8 for this pattern test.

Stratification
This pattern test fails (sets an alarm) when x of y values of the SourceTag are within the
"OneSigma" limit. A value of the SourceTag is within the "OneSigma" limit when

(CL - 1/3 * (UCL-CL)) > SourceTag > (CL + 1/3 * (CL-LCL)).

The Western Electric SQC Handbook recommends 15 of 15 for this pattern test.

Mixture
This pattern test fails (sets an alarm) when x of y values of the SourceTag are found on both
sides of the centerline and none of these values falls within "OneSigma." Each of the x values
must satisfy one of the following two conditions

SourceTag > (CL + 1/3 * (UCL-CL)) or SourceTag < (CL - 1/3 * (CL-LCL));

and among the x values, both of these conditions must be met at least once.

The Western Electric SQC Handbook recommends 8 of 8 for this pattern test.

Trend
This pattern test fails (sets an alarm) when x consecutive values of the SourceTag trend either
up or down.

The Western Electric SQC Handbook recommends 8 for this pattern test.

9.11.4 Associated-Point Tagnames
There are several required and optional tags associated with each SQC Alarm. The tag names
of these points are stored in the attributes described below.

SourceTag
Tagname for PI point containing the source data on which the SQC Alarm calculations will
be performed.

TestStatusTag
(Optional) Tagname for PI point to which SQC Alarm system writes value indicating which
tests are in alarm. When this attribute is left blank (the default) the TestStatusTag is not used.
When a TestStatusTag is used, the TestStatusTag point must be unique in each SQC Alarm
definition.

 9.12 - PI Real-Time SQC Chart Types

PI Server Applications User Guide Page 361

UCLTag
Tagname for Upper Control Limit. The same UCLTag can be used in more than one SQC
Alarm definition.

CLTag
Tagname for Center Line. The same CLTag can be used in more than one SQC Alarm
definition.

LCLTag
Tagname for Lower Control Limit. The same LCLTag can be used in more than one SQC
Alarm definition.

ResetTag
Tagname for PI point governing the SQC Alarm calculation's execution and reset. The same
ResetTag can be used in more than one SQC Alarm definition.

USLTag and LSLTag
(Optional) Tagnames for the PI points to store the Upper Specification and Lower
Specification Limits. The same USLTag and LSLTag can be used in more than one SQC
Alarm definition. Leave these tag attributes blank (default) if you do not wish to store your
specification limits in PI points.

ProductTag
Reserved for future use

CommentTag
(Optional) Tagname for a PI point to store comments associated with the SQC Alarm. Leave
this tag attribute blank (default) if you do not wish to store comments in a PI point.

9.12 PI Real-Time SQC Chart Types

The type of control chart for which an SQC Alarm is established depends solely on the SQC
Alarm’s SourceTag. The SourceTag can be any PI point type; creating subgroups of
measurements for use in SQC is generally done using a combination of totalizer and
performance equation points.

9.12.1 Charts of Individuals
The SourceTag for the SQC Alarm here is any PI point. Each new measurement is used in the
pattern test evaluation

Chapter 9 - PI Real-Time SQC

Page 362

9.12.2 Moving Average, Moving Range and Moving Standard Deviation
The SourceTag for these types of SQC Alarms is a Totalizer point whose source is the raw
measurement point. The Totalizer point should configured to take the moving average, etc. of
the raw data point based either on a number of raw data events or a time period.

9.12.3 X-Bar, Range and Standard Deviation
The SourceTag for these types of SQC Alarms is a Totalizer point whose source is the raw
measurement point. The Totalizer point should configured to take the average, etc. of the raw
data point based either on a number of raw data events (nsampleblock) or a time period.

9.12.4 EWMA
The SourceTag for the EWMA (Exponentially Weighted Moving Average) SQC Alarm is a
Performance Equation which watches for events on the raw data tag and whose equation
syntax is (note that <xxx> indicates that you need to substitute a value or string):

‘<RawDataTag>’ +

if badval (‘<me>’) then

<Lambda> * PrevVal(<’RawDataTag>’) else

<Lambda> * PrevVal(‘<me>’)

Lambda is the weighting factor whose magnitude you must determine. You should substitute
the name of the Performance Equation tag that you are creating for <me> in the example
above.

9.13 Default SQC Alarm Digital States

The default digital state set (pisqcalarm) for SQC Alarms is automatically installed during
the first startup of the PI Alarm Subsystem. Another Digital State Set can be created for
custom use. The Digital State Set must contain the same seven pattern tests in the same order
as below. You may alter the number of acknowledgement states or priorities or change the
text displayed when a pattern test fails in your custom set. See Create a New SQC Alarm for
details on constructing Alarm Digital State Sets.

The zeroeth state contains the No Alarm digital state. The last digital state (71st in this case),
records the number of priorities and acknowledgement states in the digital state set.

Table 9–9. Default DigitalSet for SQC Alarms

Offset AlarmSet

0 .

1 __ Trend

2 _* Trend

3 ** Trend

4 __ Trend <<

5 _* Trend <<

 9.13 - Default SQC Alarm Digital States

PI Server Applications User Guide Page 363

Offset AlarmSet

6 ** Trend <<

7 __ Trend _x

8 _* Trend _x

9 ** Trend _x

10 __ Mixture

11 _* Mixture

12 ** Mixture

13 __ Mixture <<

14 _* Mixture <<

15 ** Mixture <<

16 __ Mixture _x

17 _* Mixture _x

18 ** Mixture _x

19 __ Stratification

20 _* Stratification

21 ** Stratification

22 __ Stratification <<

23 _* Stratification <<

24 ** Stratification <<

25 __ Stratification _x

26 _* Stratification _x

27 ** Stratification _x

28 __ OneSideofCL

29 _* OneSideofCL

30 ** OneSideofCL

31 __ OneSideofCL <<

32 _* OneSideofCL <<

33 ** OneSideofCL <<

34 __ OneSideofCL _x

35 _* OneSideofCL _x

36 ** OneSideofCL _x

37 __ OutsideTwoSigma

38 _* OutsideTwoSigma

Chapter 9 - PI Real-Time SQC

Page 364

Offset AlarmSet

39 ** OutsideTwoSigma

40 __ OutsideTwoSigma <<

41 _* OutsideTwoSigma <<

42 ** OutsideTwoSigma <<

43 __ OutsideTwoSigma _x

44 _* OutsideTwoSigma _x

45 ** OutsideTwoSigma _x

46 __ OutsideOneSigma

47 _* OutsideOneSigma

48 ** OutsideOneSigma

49 __ OutsideOneSigma <<

50 _* OutsideOneSigma <<

51 ** OutsideOneSigma <<

52 __ OutsideOneSigma _x

53 _* OutsideOneSigma _x

54 ** OutsideOneSigma _x

55 __ OutsideControl

56 _* OutsideControl

57 ** OutsideControl

58 __ OutsideControl <<

59 _* OutsideControl <<

60 ** OutsideControl <<

61 __ OutsideControl _x

62 _* OutsideControl _x

63 ** OutsideControl _x

64 Trend

65 Mixture

66 Stratification

67 OneSideofCL

68 OutsideTwoSigma

69 OutsideOneSigma

70 OutsideControl

71 3 3

 9.14 - Log Messages

PI Server Applications User Guide Page 365

9.14 Log Messages

Errors in configuration of SQC alarm points and errors encountered in the operation of the
subsystem are written to the PI System Message Log. The following section explains how to
view those error messages using the PIGetMsg utility. The error messages are listed along
with hints on how to correct the error condition.

9.14.1 View Log Messages
The PIGetMsg utility provides the means to view all SQC-related messages written to the PI
System Message Log. Use the following command to view them:

pigetmsg -st "pitimestring" -et "pitimestring" -pn "pialarm" -msg "mask"

Substitute a valid time string in PI format for the start and end pitimestring and substitute the
string mask you are interested in for mask. The mask could be a tagname.

9.14.2 Log Message Reference
Wherever you see <SQC Alarm Point> in this list, you will see the name of your SQC alarm
point within the braces in the message log.

Table 9–10 lists the messages that occur under normal operating conditions.

Table 9–10. Informational Messages

Message Explanation

Created the state set The subsystem created one of the digital state sets it needs
to function. Only seen if the state set does not exist at the
time of subsystem startup.

SQC alarm point class OK The subsystem created the SQC Alarm pointclass. Only
seen if the pointclass does not exist when the subsystem
starts up. The subsystem successfully created the
pointclass.

Adding SQC Alarm <SQC
Alarm Point>

A new SQC alarm point has been created on the PI Server
and it is being picked up by the subsystem.

Previously deleted SQC Alarm
<SQC Alarm Point> is being
added again.

The SQC Alarm was previously established. PI point was
deleted and then re-created. Now it is being picked up by
the subsystem.

Editing SQC Alarm <SQC Alarm
Point>

The SQC alarm point has been edited and the subsystem is
picking up the changes.

An existing PI point is being
changed to an SQC Alarm
<SQC Alarm Point>

The PI point's PointSource was edited to the one used by
the subsystem for SQC Alarms and is being picked up by
the subsystem.

PointSource edit, deleting alarm
<SQC Alarm Point>

The PI point's PointSource was edited to one not used by
the subsystem, and the subsystem will no longer process
the point.

PI Point Deleted, deleting alarm
<SQC Alarm Point>

The PI point was deleted so the subsystem will no longer
process it.

Chapter 9 - PI Real-Time SQC

Page 366

Message Explanation

<SQC Alarm Point> Scan set to
off

The SQC Alarm's Scan attribute was set to 'OFF', so the
subsystem will no longer process it.

<SQC Alarm Point> Scan-off at
initialization – not added

The subsystem tried to establish the SQC Alarm, but the
point's scan attribute is set to 'OFF'. If this is not what you
want, edit the point using PI SMT and change the scan
attribute to 'ON'.

<SQC Alarm Point> Scan-on ...
re-initializing.

SQC alarm point was edited and the Scan parameter was
changed from 'OFF' to 'ON'. The Alarm is being put back on
line.

Error Messages
Table 9–11 lists messages that indicate that a serious error has occurred at some point in the
running of PI Real-Time SQC or in the initialization of a Real-Time SQC Alarm.

Table 9–11. Error Messages: Serious Errors

Message Explanation

Failed to create SQC alarm
point class ... retrying

The subsystem had trouble creating the pointclass. Possible
solution to problem: Open a command window and change
directory to the pi\adm directory. Then issue the command
net stop pialarm. After the services are stopped, enter
the command net start pialarm. Now look in the
message log for the message ‘SQC alarm point class
created’.

<SQC Alarm Point> failed to
setup digital set

The digital set specified for the SQC Alarm is not valid.
Check to see that you have used a valid digital state set and
that it conforms to the requirements as listed in this chapter.

<SQC Alarm Point> being
edited but unable to retrieve
attributes

Subsystem can't get attributes for point during an attempt to
edit the SQC Alarm.

<SQC Alarm Point> is wrong
point type for alarm point

The SQC Alarm was not created as a digital point. Change
the SQC alarm point's pointtype to digital.

<SQC Alarm Point> failed to
get sourcetag attribute.Status-

Unable to retrieve the SQC Alarm's SourceTag attribute.

<SQC Alarm Point> update
signup for <_sourcetag >
failed

For some reason the subsystem was not able to sign up for
data events on the tag.

<SQC Alarm Point> sourcetag
<_sourcetag> pointtype is not
valid

The SourceTag was not a recognized type, change the
SourceTag pointtype.

<SQC Alarm Point> failed to
get teststatustag attribute

Unable to retrieve the TestStatusTag attribute.

<SQC Alarm Point> failed to
get SQCAlarmPriority attribute

Unable to get the SQCAlarmPriority attribute.

 9.14 - Log Messages

PI Server Applications User Guide Page 367

Message Explanation

<SQC Alarm Point> update
signup for <SQC Alarm Point>
failed

Unable to sign up for data events on the SQC alarm point

<SQC Alarm Point> Status of
< ResetTag > is bad at start

The current value of the ResetTag for the SQC Alarm is not
NORMAL, HOLD or CLEAR. Enter an initial value of
NORMAL for the reset tag.

<SQC Alarm Point> Status of
one or more Limits is bad at
start

One or more limit points for this SQC Alarm has a bad
status (includes 'Pt Created', 'Shutdown', etc). Enter initial
values for all three limit tags.

<SQC Alarm Point> One or
more pattern tests failed to
initialize

One or more of the pattern test attributes was not properly
defined. Check to see that all pattern tests are properly
configured according to this chapter.

PI Server Applications User Guide Page 369

TECHNICAL SUPPORT AND RESOURCES

Technical Support Options

Contact Rockwell Automation Technical Support at the following:

• Customer Support Telephone — 1-440-646-3434
• Online Support — http://support.rockwellautomation.com

Knowledge Center
The Knowledge Center provides a searchable library of documentation and technical
data, as well as a special collection of resources for system managers. For these options,
click Knowledge Center in the Technical Support Web site.

• The Search feature allows you to search Support Solutions, Bulletins, Support
Pages, Known Issues, Enhancements, and Documentation (including User
Manuals, Release Notes, and White Papers).

• System Manager Resources include tools and instructions that help you
manage: Archive sizing, Backup scripts, Daily Health Check, Daylight Saving
Time configuration, PI Server security, PI System sizing and configuration, PI
Trusts for Interface Nodes, and more.

Before You Call or Write for Help

When you contact Rockwell Automation Technical Support, please provide:

• Product name, version, and/or build numbers
• Computer platform (CPU type, operating system, and version number)
• The time that the difficulty started
• The message log(s) at that time

Find Version and Build Numbers
To find version and build numbers for each PI System subsystem (which vary depending
on installed upgrades, updates or patches) use either of the following methods:

• If you have PI System Management Tools (PI SMT) installed, select Start >
Programs > PI System > PI System Management Tools. In PI SMT, select the
server name, then under System Management Plug-Ins, open Operation > PI
Version. The PI Version tree lists all versions.

Chapter 9 - PI Real-Time SQC

Page 370

• If you do not have PI SMT installed, open a command prompt, change to the
pi\adm directory, and enter piversion –v. To see individual version numbers for
each subsystem, change to the pi\bin directory and type the subsystem name
followed by the option –v (for example, piarchss.exe –v).

View Computer Platform Information
To view platform specifications:

• In Windows, right-click on My Computer and choose Properties. For more
detailed information, select Start > Run, and enter msinfo32.exe

• In UNIX, enter uname –a

 Index of Topics

PI Server Applications User Guide Page 371

INDEX OF TOPICS

– operator, 53
* operator, 53
/ operator, 53
^ operator, 53
+ operator, 52
< operator, 53
<= operator, 53
<> operator, 53
= operator, 53
> operator, 53
>= operator, 53
Abs

function in PEs, 70
Absolute time expressions, 50
Absolute Timestamp

Recalculator Subsystem, 20
Accumulation

Interval, Totalizer, 261
output, 261

Totalizer, 261
Acknowledgement

Alarms, 294, 295, 310
Acos

function in PEs, 71
Action 1 point attribute

in Alarms, 307
Actions

Alarms, 295
Activation tag, 242, 253
Alarm Digital State Sets

Building, 319
Alarm Group, 294, 315

Alarm Statistics, 315
for SQC alarms, 358
hierarchy, 315
Identification, 358

Alarm Group Points
Building with PI
TagConfigurator, 318
Building with piconfig, 318

Alarm Notification, 321
Alarm Points, 294

Building with piconfig, 317
Alarm Set

Single Priority, 329
Three Priority, 326, 331

Alarm State Set, 310
Encoding and Decoding, 323

Alarm States, 294
Alarm Subsystem

Acknowledgement, 294, 295
Acknowledgement Status, 310
actions, 295
Alarm Group, 315
Alarm State Set, 310
AutoAck, 309
Building Alarm Group Points,
315, 317
Building Alarm Points, 316
Combiner Logic, 295
Condition, 294, 310
ControlTag, 309
Conversion to digital state
code, 324

Chapter 9 - PI Real-Time SQC

Page 372

Converstion from digital state
code, 325
DeadBand, 309
Demonstration Points, 323
Digital state sets, 362
DigitalSet attribute, 308
Error messages, 322, 365
ExDesc, 308
IsUnack, 306
new features, 323
Notification, 321
Options, 309
Overview, 293
Point Configuration, 296
Points, 294
Priority, 294, 311
Program Operation, 321
ReferenceTag, 308
Sample Alarm State Sets, 325
shutdown, 348
sign up for data events, 347
SourceTag, 297
Start, 321
startup, 346
test, 295
Test1, 297

Change, 305
CondEQ, 305
CondNE, 306
EQ, 300
GT, 299
Includes, 304
Is_In, 303
LT, 300
NE, 300
Not_In, 303
RateGT, 301
RateLT, 302
StepGT, 301
StepLT, 301

Upgrading from PI for
OpenVMS, 323

Alarms
Number of alarms, 315
Number of unacknowledged
alarms, 315

Alias
Deleting, 250
Renaming a batch alias, 249

Alias Table
Batch Subsystem, 248

AllEvents
Totalizer, 282

AlmAckStat
function in PEs, 72

Almconditon
function in PEs, 73

AlmCondText
function in PEs, 74

AlmPriority
function in PEs, 75

And operator, 53
Archive, 101

retrieval, 63, 65
search, 63

Archive and Time Functions
Recalculator Subsystem
Subsystem, 33

Archiving flag
Recalculator Subsystem, 23

Arg Alarm Group, 315
Argument

Data type, 299
for built-in functions, 61
tagnames as, 48

Arithmetic operations
on Times, 54

Arithmetic Operators, 52, 54
Arma

function in PEs, 76
Ascii

function in PEs, 78
Asin

function in PEs, 79

 Index of Topics

PI Server Applications User Guide Page 373

Associated Points, 350
Atn

function in PEs, 80
Atn2

function in PEs, 81
Attributes, 63, 64

exdesc character limits, 14
PE Subsystem, 11
setting for PEs, 11
Totalizer, 262

AutoAck, 348, 357
Alarms, 309

Average
Totalizer, 277

Avg
function in PEs, 82

Badval
function in PEs, 83

Basis time
Recalculator Subsystem, 20

Batch Subsystem
Alias Table, 248
Batch Deletes, 253
Batch Edits, 252
configuration, 241
Operation, 253
Pibaunit name table, 253

Batch tags in Data Archive, 250
BATCHACTIVETYPE, 242
BATCHEXPR, 243
BATCHID

Defining, 244
Defining for Web Processes,
245
definition of, 241
Evaluation, 254

Behavior Controls
PI SQC, 357

BID
Batch Subsystem, 251

Blob
Data types, 298

Recalculator Subsystem
Subsystem, 34

Bod
function in PEs, 84

Bom
function in PEs, 85

Bonm
function in PEs, 86

Calc Failed message, 59
CalcMode, 263

AllEvents, 282
ChangeEvents, 283
EventWeighted, 281
TimeTrue, 283
TimeWeighted, 279
Totalizer, 279

Calculated expressions
character limits, 13, 14

Calculated Points, 6
about, 6
adding scan classes, 10
calculation expressions, 13
creating, 7
exDesc attribute, 13, 14
finding scan classes, 10
finding the PointSource, 8
location3 attribute, 12
location4 attribute, 12
PointSource attribute, 12
scan attribute, 14
scan class offset, 9
scan class period, 9
scan class, UTC time flag, 9
scan classes, 9
scheduling, 11
scheduling problems, 17
setting scan classes, 12
shutdown attribute, 14
switching calculations on or
off, 14
tips for creating, 16

Calculated tags

Chapter 9 - PI Real-Time SQC

Page 374

inconsistent data types, 18
setting attributes, 11

Calculation expressions, 13
about, 13
examples, 14
syntax basics, 45

Calculation intervals
PEs, 11

Celsius scale, 189
ChangeEvents

Totalizer, 283
Char

function in PEs, 87
Character limits on PEs, 13, 14
ChartType, 357
Check a Point's exDesc Parameter,

60
Clapeyron equation, 188
ClearOnLimitChange, 352, 358
ClearOnStart, 347, 357
Clock Scheduling

for PEs, 11
Recalculator Subsystem, 23

Clock TotalCloseMode
Totalizer, 268

Clock-scheduled points
setting scan class, 12

CloseAtEvent
Totalizer, 287

CLTag, 349, 352
Coercion, data type, 18
Combination Time, 20
Combined time expressions, 50
Combiner Logic

Alarms, 295
CommentTag, 349, 353
Comparing

Point Values to Strings, 52
Comparisons

Compare
function in PEs, 88

in PEs, 56, 59

Compressing, 356
Computer platform

Information, 370
CompValue, 264

Totalizer, 286
Concat

function in PEs, 89
CondEQ

Alarms, 305
Condition

Alarms, 294, 310
CondNE

Alarms, 306
Configuration

Batch, 241
Totalizer, 260

Conjunction Operators, 53
Control chart, 336
Control limits, 336

changing, 348
reset of alarm calculations,
348

initializing on startup, 346
Real-Time application, 348

ControlAlg, 310
ControlTag, 309

Alarms, 309
Conversion

Totalizer, 285
Conversion factor

TagTot function, 163
Conversion, data type, 18
Cos

function in PEs, 90
Cosh

function in PEs, 91
Count

Batch Subsystem, 251
Counting Functions

Totalizer, 258, 278
Cpk, 353
Critical point of steam, 189

 Index of Topics

PI Server Applications User Guide Page 375

Curve
function in PEs, 92

CYCLETIME tag, 245
Data types

checking, in PEs, 59
inconsistent, in PEs, 18

DataLink, 6
Day

function in PEs, 93
DaySec

function in PEs, 94
DeadBand

Alarms, 309
Default

point source for alarm group
points, 315

Delay
function in PEs, 95

Delete
an Alias, 250

Demonstration Points
Alarm, 323
Totalizer, 292

Dependent Point
Recalculator Subsystem, 20

Digital Base Set, 329
Digital Set, 356

Alarms, 308
Digital State Set

SQC custom, 362
SQC default, 362

Digital States
numbers and strings as, 51
Steam Tables, 186

Digstate
function in PEs, 96

DigText
function in PEs, 97

Disjunction Operators, 53
Documentation

conventions, v
for interfaces, vi

Dynamic Functions
Recalculator Subsystem
Subsystem, 33

Dynamic Response, 65
Encoding and Decoding

Alarm State Set, 323
Engineering units, Steam Tables,

185
Enthalpy

as independent variable, 188
Entropy

as independent variable, 188
EQ

Alarms, 300
Error Messages

Alarm, 322
PI SQC, 365
Totalizer, 290

Errors
Checking, 58
in PEs, 16, 59

EvalDelay
Batch Subsystem, 243, 254

Event
Totalizer, 278

Event expression
Totalizer, 269

Event RateSampleMode
Totalizer, 267

Event Scheduling
for PEs, 11
Recalculator Subsystem, 23

EventChange TotalCloseMode
Totalizer, 269

EventCount
function in PEs, 98

EventExpression
Totalizer, 286

EventTag, 12
EventTrue TotalCloseMode

Totalizer, 270
EventWeighted

Chapter 9 - PI Real-Time SQC

Page 376

Totalizer, 281
EventXX

Totalizer, 279
EventXX_XX

Totalizer, 279
Examples

calculation expressions, 14
Exception reporting, 357
ExDesc, 358

Alarms, 308
ExDesc attribute

Checking an, 60
create calculated point, 6
for PEs, 13, 14

Execution control, 346
Exp

function in PEs, 99
Expressions

absolute time, 50
combined time, 50
PE syntax, 45
relative time, 49
tagnames in, 48
time, tips for, 50

Extended descriptor
character limits, 14

FactoryTalk Historian DataLink, 6
FactoryTalk Historian

ProcessBook, 6, 321
Filter Expression

Totalizer, 261, 285
FindEq

function in PEs, 100
FindGE

function in PEs, 101
FindGT

function in PEs, 102
FindLE

function in PEs, 103
FindLT

function in PEs, 104
FindNE

function in PEs, 105
Float

function in PEs, 106
Fluctuation

natural, 338
unnatural, 338

Forever TotalCloseMode
Totalizer, 275

Format
function in PEs, 107
of PEs, 45

Frac
function in PEs, 108

Functions
aggregate, 63
as PE operands, 47, 51
Attributes

Totalizer, 276
Average, 277
Events, 278
EventXX, 279
EventXX_XX, 279
math, 62, 65
Maximum, 278
Minimum, 278
Range, 278
StdDeviation, 278
tagnames as arguments, 48
Time, 64
Total, 277
Totalizer, 263
transcendental, 62

GroupID
Alarm Group, 315

GroupName
Alarm Group, 315

GroupTag
alarms, 296

GT
Alarms, 299

Handle

 Index of Topics

PI Server Applications User Guide Page 377

Batch Subsystem, 251
Hierarchy

Alarm Groups, 315
Hour

function in PEs, 109
If-then-else expressions, 53
If-then-else operator, 57
Impulse

function in PEs, 110
in () operator, 53
in .. operator, 53
InAlarm

Alarm Group, 315
Includes

Alarms, 304
Inclusion Operators, 53
Independent Variables, 187, 188
InFromTotalizer

Totalizer, 286
Instability tests, 340
InStr

function in PEs, 111
InstrumentTag, 12
Int

function in PEs, 112
Interfaces

downloading documentation
for, vi
PE Subsystem, 6

Intervals between PE calculations,
11

Inversion
Recalculator Subsystem, 21

Is_In
Alarms, 303

IsDST
function in PEs, 113

IsSet
function in PEs, 114

IsUnack
Alarms, 306

LCase

function in PEs, 115
LCLTag, 349, 352
Left

function in PEs, 116
Len

function in PEs, 117
Limits

on characters in PEs, 13, 14
List

aliases
Batch Subsystem, 249

location1 attribute
Recalculator Subsystem, 24

location3 attribute
for PEs, 12
PEs, 11

location4 attribute
for PEs, 10, 12

Log
function in PEs, 118

Log10
function in PEs, 119

Lower Control Limit tag, 361
Lower Specification Limit tag, 361
LSLTag, 349, 352
LT

Alarms, 300
LTrim

function in PEs, 120
Max

function in PEs, 121
Maximum

Totalizer, 278
Median

function in PEs, 122
MedianFilt

function in PEs, 123
Mid

function in PEs, 124
Min

function in PEs, 125

Chapter 9 - PI Real-Time SQC

Page 378

Minimum
Totalizer, 278

Minute
function in PEs, 126

Mixture pattern, 342
test algorithm, 360

Mod operator, 53
Month

function in PEs, 127
MovingCount

Totalizer, 270, 272
Naming convention, 186
Naming tags, 48
Natural fluctuation, 338
Natural pattern, 336, 338
Natural RateSampleMode

Totalizer, 265
NE

Alarms, 300
NEWUnitName, 242
NextEvent

function in PEs, 128
NextVal

function in PEs, 129
NoClampZero

Totalizer, 287
Noon

function in PEs, 130
Not

operator, 53
Not_In

Alarms, 303
NsampleBlock TotalCloseMode

Totalizer, 272
NsampleMovin TotalCloseMode g

Totalizer, 270
NSampleMoving

Totalizer, 272
Numbers

as digital states, 51
as PE operands, 47

Offset
scan class, 9
scheduling problems, 17
Totalizer, 284

Offset2
Totalizer, 284

OneAtEnd
Totalizer, 288

OneAtStart
Totalizer, 288

OneSideofCL, 343
test algorithm, 360

Operands
functions, 51
in PEs, 46
numbers as, 47
strings, 49
tagnames as, 47
tagnames as function
arguments, 48
time expressions, 49

Operation
Alarm, 321
Totalizer, 290

Operations on times, 54
–operator, 53
Operators

Arithmetic, 54
in PEs

priority, 58
List of, 52
Prefix, 56

Option
Alarms, 309
CloseAtEvent, 287
OneAtEnd, 288
OneAtStart, 288
Options field

Totalizer, 286
Setable, 275, 287

Or operator, 53
Out-of-order data

 Index of Topics

PI Server Applications User Guide Page 379

PI SQC, 348
OutsideControl

test algorithm, 359
OutsideOneSigma

test algorithm, 359
OutsideTwoSigma

test algorithm, 359
OverIsTop

Totalizer, 288
Overloading PE Subsystem, 17
Parameters

tagnames as, 48
Totalizer, 260

Pareto analysis
comment tag, 353

Parsetime
function in PEs, 132
Recalculator Subsystem, 31

Pattern
natural, 336, 338
unnatural, 336, 338

Pattern tests
additional options for, 344
as used in PI Real Time SQC

definitions, 343
configuration of, 358
definition of, 338
evaluation of, 347
initializing, 347
precedence, 344

order of, 344
Western Electric, 339
zones, 339

Pattern types, 340
instability, 340
mixture, 342
stratification, 341
trend, 342

PctGood
PEs, 133
Totalizer, 284

PE Operators. See Operators
PE Subsystem

about, 6
executable, 6
overloading, 17
skipped calculations, 17
starting and stopping, 7

Performance Equations
about calculated points, 6
adding scan classes, 10
Built-in functions table, 62, 65
calculation expressions, 13
changing the PointSource, 8
character limits, 13, 14
creating, 7
errors in, 16
examples, 14
exDesc attribute, 13, 14
finding scan classes, 10
finding the PointSource, 8
How they're used, 6
inconsistent data types, 18
location3 attribute, 12
location4 attribute, 12
number operands, 47
operands, 46
Operators, 52
Parentheses, 58
Pipetest Utility, 59
PointSource attribute, 12
scan attribute, 14
scan class offset, 9
scan class period, 9
scan class,UTC time flag, 9
scan classes, 9
Scheduler, 5, 7
scheduling, 11
scheduling problems, 17
setting attributes, 11
setting scan classes, 12
shutdown attribute, 14

Chapter 9 - PI Real-Time SQC

Page 380

string operands, 49
switching calculations on or
off, 14
syntax, 45
syntax basics, 45
tagnames as function
arguments, 48
tagnames as operands, 47
tagnames in, 48
tagnames in expressions, 48
time expressions, 49
time expressions as operands,
49
time-based or event-based,
definition, 5
times as strings, 50
tips, 16
tips for time expressions, 50
troubleshooting, 16

Period
MovingCount, 284
scan class, 9
Totalizer, 283

Period2
Totalizer, 284

PeriodEnd ReportMode
Totalizer, 275

PEs
about calculated points, 6
calculation expressions, 13
changing the PointSource, 8
character limits, 14
creating, 7
errors in, 16
examples, 14
exDesc attribute, 13, 14
finding the PointSource, 8
inconsistent data types, 18
location3 attribute, 12
location4 attribute, 12
number operands, 47
operands, 46

PointSource attribute, 12
scan attribute, 14
Scan class offset, 9
Scan class period, 9
scan class,UTC time flag, 9
scan classes, 9

adding for PEs, 10
configuring for PEs, 9
setting for PEs, 12

Scan classes
finding for PEs, 10

Scheduler, 7
scheduling, 11
scheduling problems, 17
setting attributes, 11
Shutdown attribute, 14
string operands, 49
switching calculations on or
off, 14
syntax, 45
syntax basics, 45
tagnames as function
arguments, 48
tagnames as operands, 47
tagnames in, 48
tagnames in expressions, 48
time expressions, 49
time expressions as operands,
49
times as strings, 50
Tips for creating, 16
tips for time expressions, 50

PI
Performance Equation
Scheduler, 7

PI BA for OpenVMS, 245
PI Message Log, 365
PI Message subsystem, 346
PI PE Steam module

definition, 185
naming convention, 186
supported functions, 186

 Index of Topics

PI Server Applications User Guide Page 381

PI SDK, 6
PI SMT, 349, 353
PI SQC Subsystem

Multiple resets
how to avoid, 348

Running the subsystem, 347
Sample Grouping, 338
Zones, 339

PI System
shut down

impact on SQC, 348
PI System Management Tools, 349,

353
PI TagConfigurator, 349, 353

Alarm Group Points, 318
Building Totalizer Points, 289

Piconfig
Building Totalizer Points, 289

PIGetMsg utility, 365
Pilasttotal_T.dat, 290
pipeschd file

adding scan classes, 10
changing the point source, 8
finding scan classes, 10
PointSource, 8
scan classes, 9

pipeschd.bat, 8
pipeschd.exe, 6
pipeschd.sh, 8
Pipetest Utility, 59
Pisqcalarm digital set, 356
PItotal, 258

Program, 290
Point

dependent PE points, 21
Point Attributes

RateSampleMode
in Totalizer, 265

ReportMode
in Totalizer, 275

SourceTag
in Totalizer, 265

TotalCloseMode
in Totalizer, 268

Point Class
SQC, 354

Point Configuration
Alarms, 296
Recalculator Subsystem, 34
Totalizer Points, 260

Point restart
event-scheduled points, 290

PointFunc
Alarm Group, 315

Points
creating PEs, 7
naming, 48

PointSource, 356
alarm group points, 315
configuring for PEs, 8
determining, 346
how to set default, 346
overriding defaults, 318
PEs, changing, 8

PointSource attribute
for PEs, 8, 11, 12

PointType, 356
Poly

function in PEs, 134
Postprocessing, 257
Prefix Operators, 53, 56
Pressure

as independent variable, 187
PrevEvent

function in PEs, 135
PrevVal

function in PEs, 136
Priorities

Alarms, 294, 311
Priority

PI SQC, 344
Process

definition of, 337

Chapter 9 - PI Real-Time SQC

Page 382

Process capability, 353
ProcessBook, 6
PRODEXPR, 243
ProdIDsearch

Batch Subsystem, 251
Product

Defining Name, 244
Product Batch Subsystem, 241
ProductTag, 349, 353
Program Operation

Alarm, 321
Totalizer, 290

PStDev
function in PEs, 137

Ptclass, 356
ptClassName

for PEs, 11
Quotes

around strings, 49
Ramping ReportMode

Totalizer, 276
Range

function in PEs, 138
Totalizer, 278

RateGT
Alarms, 301

RateLT
Alarms, 302

RateSampleMode, 262, 269, 271
Event, 267
Natural, 265
Point attribute in Totalizer, 265
Scan1, 265
Scan2, 266

Recalculation
Absolute Time Reference
Point Relationship, 31
Multi-level Dependency Point
Relationship, 27
Multi-level Time Point
Relationship, 30

Recursive Point Relationship,
28
Relative Point Relationship, 28
Relative Time Point
Relationship, 29
Simple Point Relationship, 24
Special Event Point
Relationship, 29
Time Range Point
Relationship, 30
Time Shift Point Relationship,
28

Recalculator Subsystem
Archive and Time Functions,
33
Archive retrieval & search
functions, 32
Compression exception, 23
compression, calculated
values, 26
configuration, 36
Dynamic Functions, 33
error and information
messages, 44
exception reporting, 26
Extract from Timestamp, 32
functionality, 21
glossary, 20, 241
Incomplete Timestamps, 33
installation, 36
Limitations, 32
manual use for one point, 42
multiple instances of, 41
options, 37
overview, 19
Overview, 19
point configuration, 34
starting, 37
step attribute, 26
time functions, 31
time range considerations, 22
tuning, 44

Reference State

 Index of Topics

PI Server Applications User Guide Page 383

Steam Functions, 189
ReferenceTag

Alarms, 308
Registry

Recalculator Subsystem, 40
Relational Operators, 53
Relative time

expressions, 49
Relative Timestamp

Recalculator Subsystem, 20
ReportMode, 263

PeriodEnd, 275
Point Attribute

in Totalizer, 275
Ramping, 276
RunEst2, 276
RunEstimate, 276
Running, 276
Totalizer, 275

ResetTag, 349, 352
digitalset, 352
functions of, 347
initializing, 346
pointtype, 352

Right
function in PEs, 139

Round
function in PEs, 140

RTrim
function in PEs, 141

RunEst2 ReportMode
Totalizer, 276

RunEstimate ReportMode
Totalizer, 276

Running ReportMode
Totalizer, 276

Sample Grouping
PI SQC, 338

Scan attribute, 356
checking on subsystem startup,
346
for PEs, 14

Recalculator Subsystem, 23
Scan class

definition, 9
offset, 9
period, 9
scheduling problems, 17
UTC time flag, 9

Scan Flag
Response to, 290

Scan1 RateSampleMode
Totalizer, 265

Scan2 RateSampleMode
Totalizer, 266

Scheduling
clock, for PEs, 11
event, for PEs, 11
Totalizer, 261

Scheduling PEs, 11
problems, 17

SDK, 6
SearchStart

Batch Subsystem, 251
Second

function in PEs, 142
Sequencing PEs, 17
Server Application

PE Syntax and Functions
Reference, 2
Performance Equations
Calculator, 1
Performance Equations
Scheduler, 1, 5
PI Alarm Subsystem, 3
PI Batch Subsystem, 2
PI Totalizer Subsystem, 2
Real-Time SQC, 3
Recalculator, 19, 20
Steam Tables, Syntax and
Functions Reference, 2
Totalizer, 257

Server Applications
Overview, 1

Chapter 9 - PI Real-Time SQC

Page 384

Setable
Totalizer, 287

Sgn
function in PEs, 143

Shutdown
Alarm subsystem, 348

Shutdown attribute
for PEs, 14

Sin
function in PEs, 144

Single Priority Alarm Set, 329
Sinh

function in PEs, 145
SMT, 349, 353

about, vi
Source data

obtaining on startup, 346
SourcePoint

Recalculator Subsystem, 20
SourceStat

Totalizer, 288
SourceTag, 349, 350

Point attribute
in Alarms, 297

Totalizer, 265
Specification limits, 352
SQC alarm, 342

acknowledgment options, 348
associated points

SourceTag, 360
TestStatusTag, 360
UCLTag, 361
CLTag, 361
LCLTag, 361
ResetTag, 361
USLTag, 361
LSLTag, 361
CommentTag, 361

Behavior on control limit
change, 348
Finding all, 346

How to change control limits,
348
How to clear and restart alarm
calculations, 347
How to control execution of,
347
initialization,clearing on
subsystem startup, 347
initialization,control limits,
346
initialization,execution control,
346
initialization,pattern tests, 347
initialization,signing up for
events, 347
initialization,source data, 346
Initialization,subsystem error
handling, 346
initialization,test status
indicator, 347
manual acknowledgement of,
348
point class, 354
PointSource,determining, 346
PointSource,how to set default,
346
priority of, 344
required and optional points
for, 343
TestStatusTag

values, 351
TestStatusTag,use of, 348

SQC Alarm point
attributes, 354
configuring, 353

SQC Chart types
exponentially weighted
moving average, 362
individuals, 361
moving average, 362
moving standard deviation,
362
range, 362
standard deviation, 362

 Index of Topics

PI Server Applications User Guide Page 385

x-bar, 362
SQC_Alarm Point Class

creation of, 346
SQCAlarmPriority, 358
Sqr

function in PEs, 146
SquareRoot, 12
SStDev

function in PEs, 147
Start

Alarm, 321
Recalculator Subsystem, 36
Totalizer, 290

Startup
of alarm subsystem, 346

StateNo
function in PEs, 148

States
numbers and strings as, 51

Statistical Quality Control
definition of, 337
introduction to, 336
reference sources, 336

StdDeviation
Totalizer, 278

StDev
function in PEs, 149

Steam Functions
Reference, 2, 190
valid range, 187

Step attribute
Recalculator Subsystem, 23
Recalculator Subsystem:, 26

STEP tag, 245
StepGT

Alarms, 301
StepLT

Alarms, 301
StmEng_HPS, 204
StmEng_HPT, 202
StmEng_HPTL, 203

StmEng_HPX, 212
StmEng_HsatP, 191
StmEng_HsatT, 195
StmEng_PsatT, 194
StmEng_SPH, 207
StmEng_SPT, 205
StmEng_SPTL, 206
StmEng_SPX, 213
StmEng_SsatP, 192
StmEng_SsatT, 196
StmEng_TPH, 208
StmEng_TPS, 209
StmEng_TsatP, 190
StmEng_VPH, 200
StmEng_VPS, 201
StmEng_VPT, 198
StmEng_VPTL, 199
StmEng_VsatP, 193
StmEng_VsatT, 197
StmEng_XPH, 210
StmEng_XPS, 211
StmSI_HPS, 228
StmSI_HPT, 226
StmSI_HPTL, 227
StmSI_HPX, 236
StmSI_HsatP, 215
StmSI_HsatT, 219
StmSI_PsatT, 218
StmSI_SPH, 231
StmSI_SPT, 229
StmSI_SPTL, 230
StmSI_SPX, 237
StmSI_SsatP, 216
StmSI_SsatT, 220
StmSI_TPH, 232
StmSI_TPS, 233
StmSI_TsatP, 214
StmSI_VPH, 224
StmSI_VPS, 225
StmSI_VPT, 222
StmSI_VPTL, 223

Chapter 9 - PI Real-Time SQC

Page 386

StmSI_VsatP, 217
StmSI_VsatT, 221
StmSI_XPH, 234
StmSI_XPS, 235
Stop

Recalculator Subsystem, 43
Stratification

pattern test, 341
test algorithm, 360

String
function in PEs, 150

String functions, 65
Strings

as digital states, 51
as PE operands, 47, 49
Comparing Point Values to, 52
times as, 50
using quotes with, 49

Subgroups, 338
Subsystems

PE, about, 6
PE, executable, 6

Syntax
PEs, 45

System Management Tools, vi
Table

Pibaunit name, 253
Tag

Aliases, 245
Tag Configurator, 349, 353
TagAvg

function in PEs, 151
TagBad

function in PEs, 152
TagDesc

function in PEs, 153
TagEU

function in PEs, 154
TagExDesc

function in PEs, 155
TagMax

function in PEs, 156
TagMax vs. Max Example

Performance Equations, 15
TagMean

function in PEs, 157
TagMin

function in PEs, 158
Tagname or time expression?, 48
Tagnames

Batch Subsystem, renaming,
249
in arguments, 61
in PEs, 48, 159

TAGnames
as function arguments, 48
as PE operands, 47
in expressions, 48

TagNum
in PEs, 160

Tags
naming, 48

TagSource
function in PEs, 161

TagSpan
function in PEs, 162

TagTot
Example, Performance
Equations, 15
function in PEs, 163

TagTot function
conversion factor, 163

TagType
function in PEs, 165

TagTypVal
function in PEs, 166

TagVal
function in PEs, 167

TagZero
function in PEs, 168

Tan
function in PEs, 169

Tanh

 Index of Topics

PI Server Applications User Guide Page 387

function in PEs, 170
Temperature

as independent variable, 187
Test1 point attribute

in Alarms, 297
Testing alarms, 295
TestStatusTag, 349, 350

initializing, 347
pointtype, 350
use of, 348
values, 351

Text
function in PEs, 171

Three Priority Alarm Set, 326, 331
Time expression or tagname?, 48
Time expressions

absolute time, 50
and strings, 50
Arithmetic operations on, 54
as PE operands, 49
combined time, 50
relative time, 49
tips, 50

Time Functions
Extract from Timestamp, 32
Recalculator Subsystem, 31

TimeEq
function in PEs, 172

TimeGE
function in PEs, 173

TimeGT
function in PEs, 174

TimeLE
function in PEs, 175

TimeLT
function in PEs, 176

TimeMoving TotalCloseMode
Totalizer, 273

TimeNE
function in PEs, 177

Timestamps

modifying through
Recalculator, 31
setting for PEs, 12

TimeTrue
Totalizer, 283

TimeWeighted
Totalizer, 279

Timing Functions
Totalizer, 278

Tips for creating PEs, 16
Total

function in PEs, 178
Totalizer, 277

TotalCloseMode, 262, 268
Clock, 268
EventChange, 269
EventTrue, 270
Forever, 275
NSampleBlock, 272
NSampleMoving, 270
TimeMoving, 273
Totalizer, 268

Totalization of Digital Tag
Example
Performance Equations, 14

Totalizer Subsystem
Building Totalizer Points, 288
CalcMode, 279
Compatibility with PI for
OpenVMS, 291
CompValue, 286
Configuration, 260
Conversion, 285
Demonstration Points, 292
Error Messages, 290
EventExpression, 286
Filter Expression, 285
InFromTotalizer, 286
MovingCount, 284
new features, 291
Offset, 284
Offset2, 284

Chapter 9 - PI Real-Time SQC

Page 388

Options field, 286
OverIsTop, 288
Overview, 257
PctGood, 284
Period, 283
Period2, 284
Point Class Attributes, 262
Points

Building, 288
RateSampleMode, 265
ReportMode, 275
Scheduling, 261
SourceStat, 288
SourceTag, 265
TotalCloseMode, 268
UnderIsZero, 288
upgrading from PI for
OpenVMS, 290
ZeroBias, 283

Trend pattern test, 342, 360
algorithm, 360

Triggering events, PEs, 11
Trim

function in PEs, 179
Triple point of water, 189
Troubleshooting

PEs, 16
Recalculator Subsystem, 44

Trunc
function in PEs, 180

Type
checking, in PEs, 59

Type coercion
in PEs, 18

UCase
function in PEs, 181

UCLTag, 349, 352
UnAck

Alarm Group, 315
UnderIsBad

Totalizer, 287
UnderIsZero

Totalizer, 288
UniInt

downloading documentation
for, vi

Unit Batch Subsystem, 241
UnitName, Batch Subsystem, 242,

248, 251
Universal Coordinate Time, 55

in PEs, 9
Universal Interface

downloading documentation
for, vi

Unnatural fluctuation, 338
Unnatural Pattern, 339

tests for, 338
Western Electric tests for, 339

Update events, PEs, 11
Upgrade from PI for OpenVMS

Alarm, 323
Totalizer, 290

Upper Control Limit tag, 361
Upper Specification Limit tag, 361
UserInt1, 12
UserReal1, 12
USLTag, 349, 352
UTC, 55
UTC time flag, scan class, 9
Utility

pipetest, 59
Values of the TestStatusTag, 351
Web processes, 245
Weekday

function in PEs, 182
Western Electric SQC book, 339
Wildcards, 249
Year

function in PEs, 183
Yearday

function in PEs, 184
ZeroBias, 263

Totalizer, 283

PI Server Applications User Guide Page 389

