
AN724: Designing for Multiple Networks
on a Single Zigbee Chip

This application note discusses the design considerations in-
volved in integrating a feature that allows a node with one Zigbee
radio to operate on multiple Zigbee networks.
Prior to EmberZNet PRO 6.8.0, the multi-network implementation limited the number of
always-on roles that a device could serve on the participating networks. Starting with
EmberZNet PRO 6.8.0, the multi-network feature and a new multi-PAN feature allow
the device to operate as a coordinator on both Zigbee networks in a host-NCP configu-
ration.

KEY POINTS

• Multi-network vs Multi-PAN
• Design considerations
• Network context and stack APIs
• Application framework support
• Tokens
• Multi-network timing considerations

silabs.com | Building a more connected world. Rev. 0.8

1. Introduction

Multi-network and multi-PAN features allow a device to operate on two Zigbee networks using the same radio. These Zigbee networks
may have different security settings or network parameters, such as short ID, PAN ID, extended PAN ID, or radio power. The only pa-
rameter that stays the same on all networks is the node's EUI64. While the multi-network feature allows the two networks to be on
different radio channels, the multi-PAN feature requires that this setting matches.

This application note presents the software options to implement a feature wherein a device with a single Zigbee radio may concurrent-
ly operate on two Zigbee networks. Depending on the intended use case, you can choose either of the following configurations:
• Multi-network: Device may serve in an always-on role on a maximum of one of the two networks. This feature is implemented by

timesharing the radio between the two networks. Consequently, the networks may have non-overlapping network and radio settings.
• Multi-PAN: An extension of the multi-network feature wherein a device may serve in an always-on role (specifically a coordinator) on

both networks in a host-NCP configuration. The tradeoff is that the radio channel needs to match on both networks. Because this
configuration needs to keep track of the state of both networks, there is a significant increase in flash and RAM usage.

Each of these configurations has its own set of limitations. These restrictions and other considerations are discussed in greater detail in
the following sections.

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Introduction

silabs.com | Building a more connected world. Rev. 0.8 | 2

2. Design Considerations

There are several factors to consider when designing a node that can operate concurrently on multiple networks as illustrated in the
following figure. This section discusses them in detail as well as the associated tradeoffs.

Note: As of this revision of this application note, the number of concurrent networks is limited to two.

Figure 2.1. Implementation Examples

Based on the roles that the node is expected to serve on the networks, there are three general use cases:

• Single-network: This use case is the standard version of the EmberZNet PRO stack where a node may only be part of one network
at a time. This configuration links in stub versions of the multi-network and multi-pan libraries. This is often the only configuration that
is available on parts that are severely code-space restricted.

• Multi-network: This use case is applicable when the Zigbee radio on a device is timeshared between two networks wherein the
device serves the role of an always-on device on no more than one network. An always-on device may be a Zigbee PRO coordina-
tor, router, or (non-sleepy) end device.

To function as an always-on device on one network, the device must limit its role as a sleepy end-device on the other network. The
node may also choose to function as a sleepy end-device on both networks. In this case, it can sleep when it is not active on any
network. This allows the two networks to be on different radio channels, run at different radio power levels, and have dissimilar net-
work security requirements. This configuration links in the multi-network library and a stub version of the multi-pan-library.

The network scheduling algorithm seamlessly takes care of switching between networks so that the node is on the always-on net-
work unless it explicitly polls or sends some data to the parent on the sleepy end device or sleepy network(s). As soon as the polling
or data sending transaction on the sleepy network is completed, the node immediately switches back to the always-on network until
a new polling or data sending transaction is initiated. A node that is a coordinator/router on one network and a sleepy end device on
the other will not be able to save energy by temporarily shutting down the radio (sleep mode). On the other hand, a node that is a
sleepy end device on all networks can enter sleep mode, thus providing energy savings.

Due to the additional overhead required to maintain information on both networks, there is a nominal increase in code space and
RAM usage when compared to the single-network use case. Therefore, this feature is limited to parts with flash size of at least
512kB.

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Design Considerations

silabs.com | Building a more connected world. Rev. 0.8 | 3

• Multi-PAN: This use case is an extension of the multi-network use case where a device with a single Zigbee radio operates two
Zigbee networks and takes the role of an always-on node on both networks. This configuration is only supported in Host-NCP mode.
Host applications that support two coordinator nodes require an NCP that is similarly configured to support Zigbee stack functionality
for the two networks.

To function as an always-on device on both networks, there is an additional restriction that both networks need to be on the same
radio channel so they can receive messages meant for either network at all times. The onus is upon the application to ensure that
both networks are on the same radio channel. Starting with EmberZNet PRO 6.8.0, the stack supports a dual-coordinator configura-
tion only. The first network index supports Zigbee 3.0 security and the second network index only supports the no-security Zigbee
PRO network configuration profile. The stack does not currently restrict application-initiated channel changes. This is acceptable
when only one of the networks is up. However, when both networks are functional, care must be taken to avoid disruptive network or
user-initiated channel changes as these are not supported.

In this configuration, it is also important to note that there is a limitation regarding sleepy broadcast messages. There is a maximum
of one broadcast that is queued for all sleepy end devices across both networks.

This configuration links in both the multi-pan and multi-network libraries. There is more overhead involved in serving as a coordinator
compared to a router or an end-device. As a result, this configuration with two coordinators results in the most flash and RAM usage
and is limited to parts with a flash size of at least 512kB.

Table 2.1. Allowed Role Combinations

Network 0 Network 1 Required Libraries

Zigbee PRO (Coordinator, Router, End de-
vice or Sleepy end device)

N/A Multi-network stub; Multi-PAN stub

ZigBee PRO Coordinator (always-on) ZigBee PRO Sleepy end device Multi-network library; Multi-PAN stub

ZigBee PRO Router (always-on) ZigBee PRO Sleepy end device

ZigBee PRO End device (always-on) ZigBee PRO Sleepy end device

ZigBee PRO Sleepy end device ZigBee PRO Sleepy end device

Zigbee PRO Coordinator with Zigbee 3.0
security (always-on)

Zigbee PRO Coordinator with no-security
(always-on)

Multi-network library; Multi-PAN library

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Design Considerations

silabs.com | Building a more connected world. Rev. 0.8 | 4

3. Network Context and Stack APIs

The EmberZNet PRO stack internally manages multiple networks by maintaining multiple network contexts and by switching to the ap-
propriate network context when required. The internal network context at the stack is totally transparent to the application, and the ap-
plication has no means of interfering with the stack internal network context.

The stack also stores the application's current network context. Every API call invoked in the application code refers to the application
current network. For instance, an emberGetNodeId() call returns the node's short ID on the network referred by the application current
network. The following table lists the APIs provided to set and get the application current network.

Table 3.1. Multi-Network Stack APIs

Ember API Description

uint8_t emberGetCurrentNetwork() Returns the index of the current application network context.

EmberStatus emberSetCurrentNetwork(uint8_t index) Sets the current application current network context.

uint8_t emberGetCallbackNetwork() Returns the index of the network context of the current callback. If this
function is invoked outside of a stack callback, it returns 0xFF.

The first two APIs are straightforward get and set functions for the application network context. The application network context is set by
passing emberSetCurrentNetwork a network context index. If the network index to this function is invalid, the API returns the error
code EMBER_INDEX_OUT_OF_RANGE.

Note: The set function is also available as a Command Line Interface (CLI) command network set <x>. This allows for a seamless
extension of other CLI commands to perform network specific operations. The following is an example on how the set API may be used
on a multi-PAN device to form two centralized networks.

// Set network context. This serves as application network index for the APIs that follow
// This is similar to CLI command "network set 0"
emberSetNetwork(0);

// Form centralized network on network index 0
emberAfPluginNetworkCreatorStart(true);

// Set network context. This serves as application network index for the APIs that follow
// This is similar to CLI command "network set 1"
emberSetNetwork(1);

// Form centralized network on network index 1
// params.channels must match the single channel from the first network!
emberFormNetwork(params);

The emberGetCallbackNetwork() API makes the application aware of the network context for the callback. For instance, when the
stack calls emberIncomingMessageHandler(), the application may invoke emberGetCallbackNetwork() inside the callback to retrieve
the index of the network on which the packet was received. The following is an example on how to query the network context for a
handler.

void emberIncomingMessageHandler (EmberIncomingMessageType type,
 EmberApsFrame *apsFrame,
 EmberMessageBuffer message)
{
 //Get network index for incoming packet
 uint8_t nwkIndex = emberGetCallbackNetwork();

 emberAfPushCallbackNetworkIndex();
 // Perform any network specific operations here
 emberAfPopNetworkIndex();
}

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Network Context and Stack APIs

silabs.com | Building a more connected world. Rev. 0.8 | 5

4. Zigbee Application Framework Support for Nodes on Multiple Networks

The Zigbee application framework provides additional network management functionality to help you easily build and deploy devices
that operate on multiple networks. For more information on implementing multi-network functionality with the Zigbee application frame-
work, see UG391: Zigbee Application Framework Developer's Guide. The Zigbee application framework provides many advantages to
the application developer in terms of reduced complexity, mostly relating to how it seamlessly manages the different network contexts
when sending and receiving messages, before invoking callbacks, and before triggering event handlers for certain types of events.

The Zigbee application framework allows users to configure options such as the Zigbee device type and security for the individual net-
works on the Zigbee stack. When operating a device concurrently on two Zigbee networks in a host-NCP configuration, you must
choose a similarly capable NCP that matches the host configuration. Multi-network-library and Multi-pan-library plugins are provided to
enable and implement the appropriate functionality on the Zigbee stack.

The EmberZNet PRO SDK comes with the following sample applications that demonstrate one potential configuration. You can use
these as a reference to make a different application while being mindful of the limitations. Refer to section 2 Design Considerations for
additional guidance.

• MpZ3TcCustomTcHost: A host application that implements a node which is able to serve as a coordinator on two networks. The first
network uses Zigbee 3.0 security and the second network uses no-security. You can use this host application in combination with
either of the following NCP sample applications.

mp-ncp-uart-hw: A multi-PAN aware NCP application that communicates with the host over UART with hardware flow control.

mp-ncp-spi: A multi-PAN aware NCP application that communicates with the host over SPI.

4.1 Handling of Different Network Contexts

• Endpoint mapping: For Zigbee PRO networks, the Zigbee application framework maintains a mapping between network contexts
and disjoint sets of endpoints. For example, network 0 may be associated with the set of endpoints {1,2,3} while network 1 is associ-
ated with the set {4,5,6}. Notice that these two sets of endpoints must be disjoint; that is, the same endpoint cannot be associated
with two different network contexts. For each application framework API that is endpoint-related, the framework switches network
context according to the endpoint mapping. For instance, when we send a unicast message using the application framework API
emberAfSendUnicast(), the application framework looks into the source endpoint specified in the passed apsFrame struct and
switches to the corresponding network context prior to passing the packet to the stack. The network context is then restored to the
original one.

• Callbacks and network-specific handlers: The Zigbee application framework ensures that the network context is always correctly
set when an application framework callback or network context-sensitive event handlers are invoked. For example, when
emberAfPreMessageReceivedCallback() is called, the current network context gets set to that of the receiving network. Note that
framework sets the network context for callbacks with the emberAf prefix, but does not set the context for handlers called by the
stack. For example, the network context will not be set automatically when the stack calls emberPollCompleteHandler(). However,
the End Device Support plugin will set the appropriate context before calling
emberAfPluginEndDeviceSupportPollCompletedCallback(). The following example provides sample code to query the network
index in an application framework callback.

void emberAfPluginEndDeviceSupportPollCompletedCallback(EmberStatus status)
{
 //Get network index for end device support poll complete handler
 uint8_t nwkIndex = emberGetCallbackNetwork();

}

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Zigbee Application Framework Support for Nodes on Multiple Networks

silabs.com | Building a more connected world. Rev. 0.8 | 6

4.2 Multi-Network Application Framework APIs

The application framework provides a set of APIs for dealing with network context. These APIs are used in the application framework
code to perform network context switching as described above. Notice that in all the code provided by the application framework, net-
work context switching is performed using the APIs in the following table.

Table 4.1. Multi-Network Application Framework APIs

API Description

EmberStatus emberAfPushNetworkIndex(uint8_t index) Sets the current network to that of the given index
and adds it to the stack of networks maintained by the
framework. Every call to this API must be paired with
a subsequent call to emberAfPopNetworkIndex().

EmberStatus emberAfPushCallbackNetworkIndex(void) Sets the current network to the callback network and
adds it to the stack of networks maintained by the
framework. Every call to this API must be paired with
a subsequent call to emberAfPopNetworkIndex().

EmberStatus emberAfPushEndpointNetworkIndex(uint8_t endpoint) Sets the current network to that of the given endpoint
and adds it to the stack of networks maintained by the
framework. Every call to this API must be paired with
a subsequent call to emberAfPopNetworkIndex().

EmberStatus emberAfPopNetworkIndex(void) Removes the topmost network from the stack of net-
works maintained by the framework and sets the cur-
rent network to the new topmost network. Every call
to this API must be paired with a prior call to
emberAfPushNetworkIndex(),
emberAfPushCallbackNetworkIndex(), or
emberAfPushEndPointNetworkIndex().

uint8_t emberAfPrimaryEndpointForNetworkIndex(uint8_t index) Returns the primary endpoint of the given network in-
dex or 0xFF if no endpoints belong to the network.

uint8_t emberAfPrimaryEndpointForCurrentNetworkIndex(void) Returns the primary endpoint of the current network
index or 0xFF if no endpoints belong to the current
network.

uint8_t emberAfNetworkIndexFromEndpoint(uint8_t endpoint) Returns the network index of a given endpoint or
0xFF if the endpoint does not exist.

uint8_t emberAfNetworkIndexFromEndpointIndex(uint8_t index) Returns the network index of the endpoint corre-
sponding to the passed index or 0xFF if no endpoint
is currently stored at the passed index.

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Zigbee Application Framework Support for Nodes on Multiple Networks

silabs.com | Building a more connected world. Rev. 0.8 | 7

5. Non-Volatile Storage Tokens

Network-related tokens are duplicated for each participating network. Tokens that pertain to a network may be accessed using the
standard APIs after setting the application network context. The tokens that have been duplicated are summarized in the following ta-
ble.

Table 5.1. Tokens that are duplicated for each participating network

Node data (node ID, node type, PAN ID, extended PAN ID, tx power, channel, profile)

Network key and network key sequence number

Network alternate key and key sequence number

Network security frame counter

Trust center info (TC mode, TC EUI64 and TC link key)

Network management info (active channels, manager node ID and update ID)

Parent info (parent node ID and parent EUI64)

Child table (nodeID, EUI64 and information flags) – This is only duplicated for nodes that are coordinators on both participating net-
works.

Tokens that are not network-related are stored only once per node. These tokens return the same value regardless of the application
network index context.

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Non-Volatile Storage Tokens

silabs.com | Building a more connected world. Rev. 0.8 | 8

6. Multi-Network Timing Considerations

6.1 Leaving the Always-On Network

If the node participates in an always-on network as coordinator or router, it is important that the application does not poll and/or send
data too frequently on the sleepy network(s). Every poll on the sleepy network(s) results in a temporary absence from the always-on
network, which directly affects the throughput of the always-on network. This section provides the results of experimental measure-
ments performed on Silicon Labs devices. This information will help the application designer to avoid throughput degradation on the
always-on network. As we will show later in this section, a certain threshold in terms of “away time” from the always-on network should
not be exceeded in order to maintain the throughput on the always-on network at an acceptable level.

The following table provides the average time a multi-network node spends during a complete network switch, and of typical polling and
data-sending transactions of a sleepy end device. Data packets exchanged during the tests determining average time were frames 127
bytes long, or the highest size allowed by the 802.15.4 physical layer.

Table 6.1. Polling Sequences Average Time

Event sequence Average time

Network switch 420 μs

POLL + NO DATA 2.26 ms

POLL + DATA 8.02 ms

DATA + POLL + NO DATA 8.82 ms

DATA + POLL + DATA 14.52 ms

A complete network switch, which involves retuning the radio on a different channel with different transmission power, takes about 420
μs. During the network switch, the node will not be able to receive or transmit on any network.

It takes on average about 2.25 ms for a sleepy end device to poll a parent that does not have data to transmit to the child, while it takes
about 8 ms to poll the parent and receive a data packet from the parent.

Similarly, it takes about 8.8 ms to send data to the parent and then poll the parent, without receiving a data packet. Finally, it takes
about 14.5 ms to send data to the parent, poll for data, and receive a data packet from the parent.

Note: For each polling transaction, add the network switch time twice to the overall transaction time (the first switch to the sleepy net-
work and second switch to the always on network).

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Multi-Network Timing Considerations

silabs.com | Building a more connected world. Rev. 0.8 | 9

To estimate how the throughput of the always-on network degrades as the traffic on the sleepy network increases, we deployed a
three-node network as shown in Figure 2.1 Implementation Examples on page 3, where the multi-network node is the coordinator of an
HA network (Network A) and is joined as sleepy end device to an SE network (Network B).

Traffic was sent continuously on Network A so that maximum throughput is always achieved. Traffic on Network B was exchanged at
different rates. All the data packets exchanged in these tests were encrypted at both network and APS layers and had an 82-byte pay-
load (the maximum achievable payload with network and APS encryption for a single ZigBee fragment).

Figure 6.1 Throughput of the Always-On Network on page 10 illustrates how the maximum achievable throughput on Network A de-
grades as the traffic on Network B increases. All the values are expressed as a fraction of the maximum throughput achieved when no
traffic is exchanged on Network B (about 53.5 packets per second).

The interval between SED network activity in the following figure indicates how often the multi-network node leaves the always-on net-
work to perform a data transaction on the sleepy network. In an SED data transaction, the multi-network node polls, the coordinator
sends a data packet, and the multi-network node sends an APS acknowledgment to the coordinator.

Figure 6.1. Throughput of the Always-On Network

We found the following results:
• By leaving the always-on network every 5 seconds, a multi-network node achieves a throughput of 99.8%,
• By leaving the always-on network every 2 seconds a multi-network node achieves a throughput of 99.0%,
• By leaving the always-on network every quarter of a second the throughput drops to about 91%.

Notice that these tests represent an average scenario where traffic is non-bursty, that is, every two subsequent data transactions on the
sleepy network are well spaced. Therefore, the multi-network node is always able to go back to the always-on network after one data
transaction on the sleepy network. Other tests have showed that heavy bursty outgoing traffic on the sleepy network can lead a multi-
network node to spend longer time intervals on the sleepy network, which in turn can further reduce the throughput on the always-on
network. For instance, exchanging the same amount of traffic as one data transaction every quarter of a second in a bursty fashion
would further reduce the throughput to about 86.4%.

To summarize, traffic on the sleepy network directly affects the throughput of the always-on network. However, both the rate of such
traffic and also its distribution in time are important. The application designer should take into account these results when defining the
type and the amount of traffic that will be exchanged on the sleepy network.

Note: The application designer should keep the length of a single interval of time away from the always-on network as short as possi-
ble, by spacing polls and data sends on the sleepy network(s).

The multi-network application designer has full control of how long and how often a multi-network node leaves the always-on network
for the sleepy network. A single network sleepy end device automatically polls again for data if the incoming packet from the parent has

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Multi-Network Timing Considerations

silabs.com | Building a more connected world. Rev. 0.8 | 10

the frame pending bit set. However, if a multi-network node is also participating in an always-on network, the automatic poll is delayed
by 100 ms.

Note: A multi-network node that participates in an always-on network and a sleepy network is guaranteed to switch back to the always-
on network after one poll on the sleepy network. If the frame pending bit of the incoming packet is set, the node will poll again after 100
ms.

Some special operations can occasionally occur on the sleepy network that can cause a multi-network node to stay on the sleepy net-
work for a prolonged time interval. We measured how throughput on the always-on network is affected during these special operations.
Please refer to the following table for more details.

Table 6.2. Throughput of the Always-On Network During Special Operations on the Sleepy Network

Special operation on the sleepy network Average time Throughput

Join (HA) 0.63s 95.9%

Find network + Join (HA) 1.81s 16.2%

Join + Registration (SE) 29.4s 94.7%

Find network + Join + registration (SE) 31.0s 88.7%

AN724: Designing for Multiple Networks on a Single Zigbee Chip
Multi-Network Timing Considerations

silabs.com | Building a more connected world. Rev. 0.8 | 11

Smart.
Connected.
Energy-Friendly.

Products
www.silabs.com/products

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license
to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is
required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health,
which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such
unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-
Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Introduction
	2. Design Considerations
	3. Network Context and Stack APIs
	4. Zigbee Application Framework Support for Nodes on Multiple Networks
	4.1 Handling of Different Network Contexts
	4.2 Multi-Network Application Framework APIs

	5. Non-Volatile Storage Tokens
	6. Multi-Network Timing Considerations
	6.1 Leaving the Always-On Network

