
A PlusCal User’s Manual

P-Syntax∗ Version 1.8

Leslie Lamport

14 August 2021

∗There is also a C-Syntax version of this manual. See
page 3 for a description of the two syntaxes.

Contents

Preface 1

The Two Syntaxes 3

1 Introduction 4

2 Getting Started 6
2.1 Typing the Algorithm . 6
2.2 The TLA+ Module . 7
2.3 Translating and Executing the Algorithm 9
2.4 Checking the Results . 10
2.5 Checking Termination . 11
2.6 A Multiprocess Algorithm . 12
2.7 Where Labels Must and Can’t Go 17

3 The Language 19
3.1 Expressions . 20
3.2 The Statements . 20

3.2.1 Assignment . 20
3.2.2 If . 21
3.2.3 Either . 22
3.2.4 While . 23
3.2.5 Await (When) . 23
3.2.6 With . 23
3.2.7 Skip . 24
3.2.8 Print . 24
3.2.9 Assert . 25
3.2.10 Call and Return . 25
3.2.11 Goto . 25

3.3 Processes . 25
3.4 Procedures . 26
3.5 Macros . 28
3.6 Definitions . 29
3.7 Labels . 30
3.8 The Translation’s Definitions and Declarations 31

4 Checking the Algorithm 33
4.1 Running the Translator . 33
4.2 Specifying the Constants . 35
4.3 Constraints . 36
4.4 Understanding TLC’s Output 36
4.5 Invariance Checking . 37
4.6 Termination, Liveness, and Fairness 38
4.7 Additional TLC Features . 40

4.7.1 Deadlock Checking . 40
4.7.2 Multithreading . 41
4.7.3 Symmetry . 41

5 TLA+ Expressions and Definitions 43
5.1 Numbers . 43
5.2 Strings . 44
5.3 Boolean Operators . 44
5.4 Sets . 46
5.5 Functions . 47
5.6 Records . 48
5.7 The Except Construct . 49
5.8 Tuples and Sequences . 49
5.9 Miscellaneous Constructs . 50
5.10 Temporal Operators . 51

5.10.1 Fairness . 52
5.10.2 Liveness . 53
5.10.3 One Algorithm Implementing Another 54

5.11 TLA+ Definitions . 55

References 55

A The Grammar 57

B The TLA+ Translation 60
B.1 The FastMutex Algorithm . 60
B.2 Procedures . 65

C Translator Options 67

Useful Tables 70

Index 73

Preface

This is an instruction manual for Version 1.4 of the p-syntax version of
the PlusCal algorithm language. The following section, on page 3, explains
the difference between this syntax and the alternative c-syntax. Section 1
explains what an algorithm language is and why you’d want to use one.
Section 2 tells you what you need to know to get started using PlusCal.
After reading it, you’ll be able to write and check PlusCal algorithms.

You can read the other parts of this manual as you need them. The table
of contents and the index can help you find what you need. Pages 70–72 at
the end, just before the index, contain a series of tables that summarize a
lot of useful information. The rest of the manual is arranged in the order
you’re likely to want to look at it:

• Section 3 describes the things you’ll find in most programming lan-
guage manuals, like the statements of the language. Once you’ve
started writing PlusCal algorithms, you should browse this chapter
to learn about features of PlusCal not mentioned in Section 2.

• We run programs, but we check algorithms. Section 2 gets you started
using the translator and TLC model checker to check PlusCal algo-
rithms. Section 4 tells you more about the translator and TLC. It’s
mostly about TLC, describing some of its additional features and how
to use it to debug an algorithm. You should go to Section 4 if you
don’t understand what the translator or TLC is trying to say when it
reports an error.

• Section 5 is mainly about writing PlusCal expressions. The expression
language of PlusCal is much richer and more powerful than that of
any programming language because it is based on mathematics, not on
programming. The ten or so pages about expressions in Section 5 just
introduce the subject. You can learn more from the book Specifying
Systems, referred to here as the TLA+ book [3], or from any books on
the elementary mathematics of sets, functions, and logic—especially
ones written by mathematicians and not computer scientists.

• Section A of the appendix contains a BNF grammar of PlusCal. The
subjects of Appendix Sections B and C will make no sense to you until
you’ve read Section 1.

Don’t forget about the table of contents, the tables on pages 70–72, and the
index.

1

I wish to thank the people who helped make PlusCal possible. Keith
Marzullo collaborated in the writing of the translator and helped with the
design of the PlusCal language. Georges Gonthier made many useful sug-
gestions for the language.

2

The Two Syntaxes

PlusCal has two separate syntaxes, the prolix p-syntax and the more com-
pact c-syntax. Here is a snippet of code written in the two syntaxes:

P-Syntax

while x > 0 do

if y > 0 then y := y-1;

x := x-1

else x := x-2

end if

end while;

print y;

C-Syntax

while (x > 0)

{ if (y > 0) { y := y-1;

x := x-1 }

else x := x-2 } ;

print y;

The additional wordiness of the p-syntax makes the meaning of the code
clearer, and its use of explicit ends instead of “}”s makes it easier to find
syntax errors. However, the c-syntax version is shorter, and sensible for-
matting makes the meaning of the code clear enough. You may prefer the
c-syntax version if you’re used to programming in a language derived from
C, such as C++, C#, or Java.

This manual describes the p-syntax version. A manual for the c-syntax
version is available from the TLA+ tools Web site.

3

1 Introduction

PlusCal is an algorithm language. An algorithm language is meant for writ-
ing algorithms, not programs. Algorithms differ from programs in several
ways:

• Algorithms perform operations on arbitrary mathematical objects,
such as graphs and vector spaces. Programs perform operations on
simple objects such as Booleans and integers; operations on more com-
plex data types must be coded using lower-level operations such as
integer addition and method invocation.

• A program describes one method of computing a result; an algorithm
may describe a class of possible computations. For example, an algo-
rithm might simply require that a certain operation be performed for
all values of i from 1 to N . A program specifies in which order those
operations are performed.

• Execution of an algorithm consists of a sequence of steps. An algo-
rithm’s computational complexity is the number of steps it takes to
compute the result; defining a concurrent algorithm requires specify-
ing what constitutes a single (atomic) step. There is no well-defined
notion of a step of a program.

These differences between algorithms and programs are reflected in the fol-
lowing differences between PlusCal and programming languages.

• The language of PlusCal expressions is TLA+, a high-level specifica-
tion language based on set theory and first-order logic [3]. TLA+ is
infinitely more expressive than the expression language of any pro-
gramming language. Even the subset of TLA+ that can be executed
by the TLC model checker is far more expressive than any program-
ming language.1

• PlusCal provides simple constructs for expressing nondeterminism.

• PlusCal uses labels to describe the algorithm’s steps. However, you can
omit the labels and let the PlusCal translator add them as necessary.
You are likely to do this only for uniprocess (sequential) algorithms,

1SETL [4] provides many of the set-theoretic primitives of TLA+, but it can imple-
ment higher-level operations only by programming them with procedures and it cannot
conveniently express nondeterminism.

4

where the partitioning of the computation into steps does not affect
the values computed—except in one case described at the end of Sec-
tion 3.6. For multiprocess (concurrent) algorithms, you will probably
want to specify the grain of atomicity explicitly.

The primary goals of a programming language are efficiency of execution
and ease of writing large programs. The primary goals of an algorithm
language are making algorithms easier to understand and helping to check
their correctness. Efficiency matters when executing a program that imple-
ments the algorithm. Algorithms are much shorter than programs, typically
dozens of lines rather than thousands. An algorithm language doesn’t need
complicated concepts like objects or sophisticated type systems that were
developed for writing large programs.

It is easy to write a PlusCal algorithm that cannot be executed—for
example, one containing a statement that assigns to x the smallest integer
for which Goldbach’s conjecture2 is false, if one exists, or else the value 0.
An unexecutable algorithm can be interesting, and may represent a step in
the development of a practical algorithm. However, most PlusCal users will
want to execute their algorithms. The PlusCal translator compiles a PlusCal
algorithm into a TLA+ specification. If the algorithm manipulates only finite
objects in a sensible way, then the TLC model checker will probably be able
to execute that specification. When used in model-checking mode, TLC
will check all possible executions of the algorithm. It can also be used in
simulation mode to check randomly generated executions.

The Toolbox

You will almost certainly use the PlusCal translator and the TLC model
checker with the TLA+ Toolbox. This manual assumes that’s you will be
doing. However, it does not explain in any detail how to use the Toolbox.
The Toolbox’s Help pages explain that. See the TLA web site [1] to find
out how to obtain the Toolbox.

The translator and TLC are ordinary Java programs and can be run
from a command line. See the TLA+ Tools page on the TLA web site to
find out how to run the translator. The TLA+ book explains how to run
TLC.

2Goldbach’s conjecture, which has not been proved or disproved, asserts that any even
number greater than 2 is the sum of two primes.

5

2 Getting Started

I assume here that you’ve programmed in an imperative language like Java or
Pascal or C. I will therefore not bother to explain the meaning of something
like a while statement that appears in such languages. You can find the
meaning of while and all other PlusCal statements in Section 3. (The index
can help you.)

2.1 Typing the Algorithm

As an example, consider the following bit of PlusCal code that describes
Euclid’s algorithm, adapted from a version given by Sedgewick [5, page 8].
It sets v to the gcd (greatest common divisor) of u and v.

while u 6= 0 do (∗ 6= is typed # or /= . ∗)
if u < v then u := v || v := u ; \∗ swap u and v.

end if ;

u := u - v;

end while ;

(The semicolons before the two ends are optional.) Comments indicate how
to type symbols such as “ 6= ” that appear in the examples. A complete list
of the ascii versions of symbols appears in Table 5 on page 72.

You should find this code easy to understand, except for the “||” in the
then clause on the second line. Assignments separated by “||”s (rather than
by semicolons) form a single multiple assignment statement that is executed
by first evaluating all the right-hand sides, then doing the assignments.
Thus, as the comment says, the multiple assignment swaps the values of u

and v.
The snippet of algorithm also indicates the two ways comments are writ-

ten: either begun with “*” and ended by the end of the line, or enclosed in
matching “(*” and “*)” delimiters. Comments can be nested, so you can
use “(*” and “*)” to comment out commented code.

Let’s now put this piece of code into a complete algorithm. The algo-
rithm begins

--algorithm EuclidAlg

where we’ve given it the name EuclidAlg. We next declare the variables
u and v and specify their initial values. (We could omit their initial values
and initialize them with assignment statements, but it’s better to do it this
way.) Just to illustrate the two kinds of initialization, we give u the initial

6

value 24, but let the initial value of v be any integer from 1 through some
parameter N.

variables u = 24; v ∈ 1.. N; \∗ ∈ is typed \in .

The declaration of v asserts that its initial value is an element of the set
1 .. N of integers from 1 through N. (Individual declarations can be sep-
arated by either semicolons or commas; the final semicolon [or comma] is
optional in the p-syntax.)

We add print statements to print out the initial values of the variables
and the final value of v. The print statement can print the value of any ar-
bitrary expression; to print multiple values, we can either let that expression
be a tuple or else use multiple print statements. The complete algorithm
is as follows, where the while loop is the same as above.

--algorithm EuclidAlg

variables u = 24 ; v ∈ 1 .. N ;

begin print 〈u, v〉 ; \∗ 〈 . . . 〉 is typed << . . . >> .

while u 6= 0 do
...

end while ;

print 〈"have gcd", v〉 ;
end algorithm

2.2 The TLA+ Module

The translated version of the algorithm is put inside a TLA+ module. The
algorithm must go in the same file as the module. The module begins

module Euclid

which is typed as

----------------- MODULE Euclid ----------------

(The number of dashes in each “-- · · · --” doesn’t matter, as long as there
are at least four.) The module name is arbitrary, but a module named
Euclid must go in a file named Euclid.tla.

The module next imports two standard TLA+ modules.

extends Naturals, TLC

7

The Naturals module defines common operators on natural numbers, includ-
ing subtraction (“−”) and the operator “..” that appear in the algorithm’s
expressions. The TLC module is needed if the algorithm uses a print state-
ment. The extends statement must be the first statement in the module.

Next, the module declares the parameter N.

constant N

Every symbol or identifier that appears in an expression in the algorithm
must be either (a) a built-in TLA+ operator like = or 〈 . . . 〉 , (b) declared
or defined in the module, or (c) declared or defined in an imported module.

The algorithm itself should appear in the module within a single com-
ment:

(* --algorithm EuclidAlg
...

end algorithm *)

(It may also be placed before or after the module in file Euclid.tla, but
that’s not a good idea.)

The translation is put in the module between the two single-line com-
ments

* BEGIN TRANSLATION

* END TRANSLATION

If those lines are already present, the translator will delete everything be-
tween them and replace it with the TLA+ translation of the algorithm. If
not, the translator will insert the BEGIN/END TRANSLATION comment lines
immediately after the comment containing the algorithm. You can put them
elsewhere (as you must if the algorithm is outside the module), but you
shouldn’t.

The module ends with

which is typed as a string of four or more “ = ” characters.
You can create the file Euclid .tla in your favorite text editor and then

open a new specification in the Toolbox with that as its root file. How-
ever, you will probably prefer to create the file in the Toolbox as a new
specification.

8

2.3 Translating and Executing the Algorithm

You run the translator on the Eulcid module with the Translate PlusCal
Algorithm command on the Toolbox’s File menu (or by typing Control+T).
(Because this is a uniprocess algorithm that contains no labels, the translator
will automatically add the necessary labels.) After translating the algorithm,
we can execute it by using the New Model command on the Toolbox’s TLC
Model Checker menu to have it create a new model. We must specify the
value the model should assign to N . We do that in the What is the model?
section of the model’s Model Overview page. Let’s assign it the (ordinary)
value 3000.

Let’s now run the TLC model checker on the specification produced
by the translation. We’ll first run it in simulation mode, which performs
randomly-chosen possible executions—for this algorithm, by randomly choos-
ing the initial value of N . (Use the TLC Options section of the Advanced
Options model page.) TLC produces a gush of output like

<< 24, 1005 >>

<< "have gcd", 3 >>

<< 24, 200 >>

<< "have gcd", 8 >>

<< 24, 2717 >>

<< "have gcd", 1 >>

<< 24, 898 >>

<< "have gcd", 2 >>

<< 24, 1809 >>
...

that ends only when we stop TLC (with the Cancel button on the progress
dialog).

Instead of having TLC randomly generate possible executions, we can
run it in model-checking mode, in which it checks all possible executions of
the algorithm. Go back to the TLC Options section of the Advanced Options
page and select Model-checking mode. To avoid a huge mass of output, let’s
change the model to have it set N to 4, so there are only 4 possible executions
of the algorithm. Running TLC now produces the following output:

<< 24, 1 >>

<< 24, 2 >>

<< 24, 3 >>

<< 24, 4 >>

9

<< "have gcd", 4 >>

<< "have gcd", 3 >>

<< "have gcd", 2 >>

<< "have gcd", 1 >>

TLC has checked the four possible executions, producing the eight possible
executions of the print statements. But it did not perform those execu-
tions separately. Instead, TLC found all reachable states using a breadth-
first search. In doing so, it performed the four possible first steps before
performing any of the four possible last steps.

If you want sensible output from running TLC in model-checking mode,
you should have the algorithm execute only a single print statement at the
end. For our example algorithm, this requires saving the initial value of v

in a separate variable. So, we modify the algorithm by introducing a new
variable v_ini whose initial value is the initial value of v.

--algorithm EuclidAlg

variables u = 24 , v ∈ 1 .. N , v_ini = v

begin while u 6= 0 do . . .
end while ;

print <<24, v_ini, "have gcd", v>> ;

end algorithm

Translating and running TLC in model-checking mode on this algorithm
produces the output

<< 24, 4, "have gcd", 4 >>

<< 24, 3, "have gcd", 3 >>

<< 24, 2, "have gcd", 2 >>

<< 24, 1, "have gcd", 1 >>

2.4 Checking the Results

We don’t have to print the results and examine them by hand to check them.
We can let TLC do the checking by using an assert statement. Suppose
we have defined gcd(x , y) to be the gcd of x and y . We can then replace the
print statement in algorithm EuclidAlg by

assert v = gcd(24, v_ini)

TLC will print an error message if this statement is executed when v does not
equal gcd(24, v_ini). For this to work, the operator gcd must be defined
in the TLA+ module, before the translated algorithm—that is, before the

10

“BEGIN TRANSLATION” line. You may be able to understand the TLA+

definition of gcd knowing that:

• gcd(x , y) is defined to be the largest integer that divides both x and y .

• An integer p divides an integer q iff (if and only if) q % p equals 0,
where q % p is the remainder when q is divided by p.

• The gcd of x and y is at most equal to x (or y).

The standard TLA+ operators that are used in the definition are briefly
explained in Tables 1 and 2 on pages 70 and 71. Here is the definition; give
it a try.

gcd(x , y)
∆
= choose i ∈ 1 . . x :

∧ x % i = 0
∧ y % i = 0
∧ ∀ j ∈ 1 . . x : ∧ x % j = 0

∧ y % j = 0
⇒ i ≥ j

If you can’t understand it now, you should be able to after reading Section 5.

2.5 Checking Termination

To check that algorithm EuclidAlg always terminates, we perform the trans-
lation with the -termination option. We do this by putting the line

PlusCal options (-termination)

in the file–either in a comment or else before or after the module. (The
“-” can be omitted from an option name when it appears in the options

statement.) This produces the appropriate translation that should ensure
termination. If we then create a new model, it will add Termination to the
Properties part of the What to check? section of the Model Overview page.
This will cause TLC to check that all possible executions terminate. (The
Termination property is included by the Toolbox for all PlusCal algorithms,
but its box is checked only if the termination property specified for the root
module when the model is created.)

If TLC discovers a non-terminating execution, it will produce an error
message indicating that property Termination is violated, and the Toolbox’s
error trace window will show the non-terminating trace. Section 4.4 on
page 36 explains how to interpret the trace.

11

ncs: noncritical section;
start : 〈b[i] := true〉;

〈x := i〉;
if 〈y 6= 0〉 then 〈b[i] := false〉;

await 〈y = 0〉;
goto start fi;

〈y := i〉;
if 〈x 6= i〉 then 〈b[i] := false〉;

for j := 1 to N do await 〈¬b[j]〉 od;
if 〈y 6= i〉 then await 〈y = 0〉;

goto start fi fi;
critical section;
〈y := 0〉;
〈b[i] := false〉;
goto ncs

Figure 1: Process i of the fast mutual exclusion algorithm, based on the
original description.

2.6 A Multiprocess Algorithm

Algorithm EuclidAlg is a uniprocess algorithm, with only a single thread
of control. We now look at an example of a multiprocess algorithm writ-
ten in PlusCal. The example is the Fast Mutual Exclusion Algorithm [2].
The algorithm has N processes, numbered from 1 through N . Figure 1 on
this page is the original description of process number i , except with the
noncritical section and the outer infinite loop made explicit. Angle brackets
enclose atomic operations (steps). For example, the evaluation of the ex-
pression y 6= 0 in the first if statement is performed as a single step. If that
expression equals true, the next step of the process sets b[i] to false. The
process’s next atomic operation is the execution of the await statement,
which is performed only when y equals 0. (The step cannot be performed
when y is not equal to 0.)

The PlusCal version of this algorithm is in Figure 2 on the next page.
After the algorithm name comes the declaration of the global variables:

variables x , y = 0 , b = [i ∈ 1.. N 7→ FALSE]

(Here too, declarations can be separated by either semicolons or commas,
and the final semicolon [or comma] is optional.) The initial value of x doesn’t
matter and is not specified. The declaration of b states that it is initially

12

--algorithm FastMutex

variables x , y = 0 , b = [i ∈ 1..N 7→ FALSE]

process Proc ∈ 1..N

variable j ;

begin

ncs: while TRUE do

skip ; \∗ The noncritical section.

start: b[self] := TRUE ;

l1: x := self ;

l2: if y 6= 0 then l3: b[self] := FALSE ;

l4: await y = 0 ;

goto start

end if ;

l5: y := self ;

l6: if x 6= self

then l7: b[self] := FALSE ;

j := 1 ;

l8: while j ≤ N do await ~b[j] ;

j := j+1

end while ;

l9: if y 6= self then l10: await y = 0 ;

goto start ;

end if ;

end if;

cs: skip ; \∗ The critical section.

l11: y := 0 ;

l12: b[self] := FALSE ;

end while ;

end process

end algorithm

Figure 2: The fast mutual exclusion algorithm in PlusCal.

13

an array indexed by the set 1.. N such that b[i] equals FALSE for every i

in 1.. N. (The symbol “ 7→” is typed “|->”.) The expression

[v ∈ S 7→ v + 1]

equals an array A indexed by the set S such that A[v] = v + 1 for every v
in S . What programmers call an array, mathematicians call a function. Like
a mathematician, I usually call A a function with domain S rather than an
array indexed by S . However, TLA+ and PlusCal use programmers’ square
brackets instead of mathematicians’ parentheses to represent array/function
application. The 7→ construct and other TLA+ notation for functions is
explained in Section 5.5 on page 47.

The algorithm continues with

process Proc ∈ 1.. N

This statement begins a collection named Proc of N processes, each process
identified by a number in 1.. N. The statement

variable j ;

declares j to be a local variable of these processes, meaning that each of the
N processes has its own separate variable j. A local or global variable z can
be initialized by a declaration of the form

variable z = exp ; or variable z ∈ exp ;

The matching “begin” and “end process” enclose the code for each
process in the collection Proc, where self is the identifier of that process
(in this example, a number in 1..N).

The obvious difference between the original pseudo-code for process i in
Figure 1 and the code for each process self of the PlusCal algorithm in
Figure 2 is that the angle brackets have been replaced by labels. A single
step (atomic action) of a PlusCal algorithm consists of the execution from
one label to the next. For example, the execution of the test y 6= 0 at
label l2 is atomic because a single step that begins at l2 ends when control
reaches either l3 or l4.

The PlusCal algorithm represents the noncritical and critical sections as
atomic skip operations whose execution consists of a single “no-op” step
that does nothing. The await statement of the original version is repre-
sented by the PlusCal await statement. A step containing a statement
“await exp” can be executed only if the expression exp equals TRUE. Think

14

of the processor attempting to execute the entire step. The attempt suc-
ceeds if the “await exp” statement is executed with exp equal to true. In
that case, the step is actually executed and control advances to the next
step. If exp equals false, then the attempted execution fails and nothing
is changed; the processor will try to execute the step again later.

The keyword when is a synonym for await. You can use await and when

interchangeably.
The original algorithm uses a for loop to test the values of b[j] in in-

creasing order of j . The for loop is represented in the PlusCal version by
the while loop at label l8 and the assignment statement that precedes it.
When control in a process is at statement l8 and j ≤ N , then the next
step of the process consists of an execution from l8 back to l8—that is, a
complete execution of the body of the while loop. If j > N , a step that
begins at l8 performs the while test and ends with control at l9.

The FastMutex algorithm works if the b[j] are tested in arbitrary order.
We can rewrite the algorithm to perform the tests in a nondeterministic
order by replacing that PlusCal code with

j := 1.. N ;

l8: while j 6= {} do \∗ {} is the empty set.

with p ∈ j do await ~b[p] ; \∗ ~ is logical negation.

j := j \ {p} ; \∗ \ is set difference.

end with ;

end while ;

(If you don’t know the meaning of the operator “ \ ”, look it up in the index.)
The statement

with id ∈ S do body

sets id to a nondeterministically chosen element of the set S and then exe-
cutes body. (In model-checking mode, TLC will check the algorithm for all
possible choices of id .) Replacing id ∈ S with id = exp causes the body to
be executed with id equal to the current value of exp.

A multiprocess algorithm can have multiple “process” sections. The
statement

process Name = e

begins a single process named Name with identifier e. Note that Name is an
arbitrary name that you give to the process; e is an expression. Changing
Name has no effect on the algorithm, but changing the process’s identifier
e can make a difference. Different processes must have different identifiers.

15

Moreover, the identifiers of all processes should have the same “type”—for
example, they should all be integers or all be strings or all be sets of records.

The safety property that algorithm FastMutex should satisfy is mutual
exclusion, meaning that at most one process can be in its critical section at
any one time. For the PlusCal version, this means that no two processes
can be at the statement labeled cs. An invariant is an assertion that is
true in every state that can occur during an execution of the algorithm.
Mutual exclusion is the invariance of the assertion “no two processes are at
statement cs”. We can tell TLC to check that this assertion is an invariant.
But first, we must know how to express the assertion in TLA+.

The TLA+ translation introduces a new variable pc whose value is the
label of the next statement to be executed. For algorithm FastMutex , a
process with identifier i executes the statement labeled l5 next iff pc[i]
equals the string “l5”. For any multiprocess algorithm, the value of the
variable pc is a function whose domain is the set of process identifiers. For
a uniprocess algorithm, the value of pc is a single string equal to the label
of the next statement to be executed. There is an implicit label Done at
the end of every process, and at the end of a uniprocess algorithm. (Since a
process of algorithm FastMutex never terminates, pc[i] never equals “Done”
for any process i .

In algorithm FastMutex , a process i is at statement cs iff pc[i] equals
“cs”. Mutual exclusion is therefore asserted by the invariance of the predi-
cate Mutex , defined by

Mutex
∆
=

∀ i , k ∈ 1 . . N : (i 6= k)⇒ ¬((pc[i] = “cs”) ∧ (pc[k] = “cs”))

(The operators like ∀, ⇒, ¬, and ∧ are explained in Section 5.3 on page 44.
Section 3.8 on page 31 explains why we could not use the identifier j instead
of k in the ∀ expression.)

TLA+ allows a definition to refer only to variables and operators that
have already been defined or declared. Since the definition of Mutex uses
the variable pc, which is declared by the translation of the algorithm, this
definition must come after the translation—in other words, after the “END
TRANSLATION” line.

We tell TLC to check the invariance of Mutex by adding it as an invariant
in the What to check? section of the Model Overview page. We need not
have defined Mutex in the module; we could instead just use its definition

∀ i , k ∈ 1 . . N : (i 6= k)⇒ ¬((pc[i] = “cs”) ∧ (pc[k] = “cs”))

16

as the invariant to check.
The variable pc can be used in the algorithm’s expressions. We could

therefore also check mutual exclusion by replacing the skip statement cs

with assert statement in statement cs:

cs: assert ∀ i ∈ 1.. N : (i 6= self) ⇒ (pc[i] 6= “cs”);

(“∀” is typed “\A”, and “⇒” is typed “=>”.) When using an assert, we
must also import the TLC module in the extends statement.

Invariance checking is discussed further in Section 4.5. Section 4.6 de-
scribes how to check liveness properties, which are the generalization of
termination.

2.7 Where Labels Must and Can’t Go

The labeling of statements in a PlusCal algorithm is not completely arbitrary
but must obey certain rules. The complete list of rules is given in Section 3.7
on page 30. Here are the most common rules, which apply to the FastMutex
algorithm.

• The code for each process (and a uniprocess program) must begin with
a label.

• A while statement must be labeled.

• The do clause of a with statement cannot contain any labeled state-
ments. This rule restricts what can appear within a with statement—
for example, it prohibits nesting a while inside a with. These restric-
tions apply even when you let the translator add labels. The complete
list of such restrictions is given in Section 3.2.6 on page 23.

• An if statement that contains a label within it must be followed by
a label. For example, label l5 of algorithm FastMutex cannot be
omitted.

• In any control path from one label to the next, there cannot be two
separate assignment statements to the same variable. For example,
this rule would be violated by two assignments to variable b if labels
l1, l2, and l3 were all removed—even if one of the assignments was to
a different element of the array. However, a single multiple assignment
such as

x[1] := 1 || x[2] := 2

17

may assign to different components of the same variable.

The PlusCal translator will tell you if you have violated any of these rules.
Running it with the -label option causes the translator to add any nec-
essary labels. (The text of the algorithm in the source file is not changed;
the translator adds the labels internally.) The -reportLabels translator
option is like the -label option, but it causes the translator to tell you
where it added the labels. The -label option is the default for a uniprocess
algorithm if (and only if) you don’t type any labels yourself.

If the algorithm contains no labels, then the translator will add as few
labels as possible, resulting in an algorithm with the fewest possible steps.
Using the fewest steps makes model checking as fast as possible.

18

3 The Language

This section lists the statements and constructs of PlusCal and explains
their meanings. In doing so, it also describes the language’s grammar. A
BNF specification of the grammar appears in Section A on page 57 of the
appendix. That grammar and most of the examples in this section show
statements and other syntactic units all ending with a semicolon. That final
semicolon is not required if it is followed by any of the following tokens.

begin do else elsif end macro or procedure process

Before getting to the language description, we need some definitions. A
statement sequence is a sequence of statements, each ended by a semicolon.
For example, the body of a while statement consists of a sequence of state-
ments. If there is an if statement in that sequence of statements, then its
then clause consists of a separate sequence of statements. The statements
in the then clause are not part of the sequence that forms the while’s body.
(It is the if statement, not the statements that occur inside it, that is a
statement of the while’s body.)

A control path is a path through a piece of PlusCal code that represents
a syntactically possible execution sequence, if we ignore how the statements
are executed. For example, in the code

a: if FALSE then goto w ;

b: x := 7 ;

c: y := 8 ;

end if ;

d: x := 0 ;

there is a control path that goes from the label a to the label c—even though
no execution can actually follow that path.

A step is a control path that starts at a label, ends at a label, and passes
through no other labels. In the example above, there are two steps beginning
at label a—one that ends at b and one that ends at d. Remember that there
is an implicit label Done at the end of a uniprocess algorithm and at the
end of each process in a multiprocess algorithm. An execution of a PlusCal
algorithm consists of a sequence of executions of steps. Part of a step can
never be executed by itself (except for a print or assert statement, as
described below).

19

3.1 Expressions

The expressions in PlusCal algorithms can be any TLA+ expressions that
do not contain a PlusCal reserved word or symbol such as begin or “||”.
You can write arbitrary TLA+ definitions in the module before the “BEGIN
TRANSLATION” line and use the defined symbols in the algorithm’s expres-
sions. Section 5 explains how to write TLA+ expressions and definitions.
Table 1 on page 70 and Table 2 on page 71 provide a convenient summary.

You are probably used to programming languages that allow only simple
operators in expressions and allow variables to have only simple values. In
PlusCal, the following statement assigns to x a record whose a component
is the set of integers from 1 to N and whose bcd component is the set of all
prime numbers less than or equal to N.

x := [a 7→ 1..N,

bcd 7→ {i ∈ 2..N : ∀ j ∈ 2..(i-1) : i % j 6= 0}]

It may be a while before you learn how to take advantage of PlusCal’s
powerful expression language.

TLA+ has the general rule that an identifier cannot be assigned a new
meaning if it already has a meaning. Thus, the identifier i cannot be used
as a bound variable in an expression like

[i ∈ 1 . . N 7→ false]

if it already has a meaning—for example, if i is an algorithm variable. As-
signing a new meaning to a symbol can result in a “multiply-defined symbol”
syntax error in the algorithm’s TLA+ translation.

3.2 The Statements

The examples in Section 2 contain most PlusCal statements. Here is a com-
plete list of all the statements that can appear in the body of an algorithm,
process, procedure, or macro, along with the rules for labels that pertain to
each of them. The labeling rules are also all listed in Section 3.7 below.

3.2.1 Assignment

An assignment is either an assignment to a variable such as

y := A + B

or else an assignment to a component, such as

20

x.foo[i+1] := y+3

If the current value of x is a record with a foo component that is a function
(array), then this assignment sets the component x.foo[i+1] to the current
value of y+3. The value of this assignment is undefined if the value of x is not
a record with a foo component, or if x.foo is not a function. Therefore, if
such an assignment appears in the code, then x will usually be initialized to
an element of the correct “type”, or to be a member of some set of elements
of the correct type. For example, the declaration

variable x ∈ [bar : BOOLEAN,

foo : [1.. N → {"on", "off"}]] ;

asserts that initially x is a record with a bar component that is a Boolean
(equal to TRUE or FALSE) and a foo component that is a function with
domain 1.. N such that x.foo[i] equals either “on” or “off” for each i in
1.. N. (The symbol “→” is typed “->”.)

An assignment statement consists of one or more assignments, separated
by “||” tokens, ending with a semicolon. An assignment statement contain-
ing more than one assignment is called a multiple assignment. A multiple
assignment is executed by first evaluating the right-hand sides of all its as-
signments, and then performing those assignments from left to right. For
example, if i = j = 3, then executing

x[i] := 1 || x[j] := 2

sets x[3] to 2.
Assignments to the same variable cannot be made in two different as-

signment statements within the same step. In other words, in any control
path, a label must come between two statements that assign to the same
variable. However, assignments to components of the same variable may
appear in a single multiple assignment, as in

x.foo[7] := 13 || y := 27 || x.bar := x.foo ;

3.2.2 If

The if statement has its usual meaning. The statement

if test then t clause else e clause end if ;

is executed by evaluating the expression test and then executing the t clause
or e clause depending on whether test equals true or false. The else

21

clause is optional. An if statement must have a then clause and may have
zero or more elsif . . . then clauses optionally followed by an else clause.
It must be ended by end if;. For example, the following two if statements
are equivalent.

if x > 0 if x > 0

then x := 0; then x := 0

elsif y > 0 then y := 0; else if y > 0 then y := 0

else z := 0; else z := 0;

end if; end if; end

if;

An if statement that contains a call, return, or goto statement or a
label within it must be followed by a labeled statement. (A label on the if

statement itself is not considered to be within the statement.)

3.2.3 Either

The either statement has the form:

either clause1

or clause2
...

or clausen

end either ;

It is executed by nondeterministically choosing any clause i that is executable
and executing it. The either statement can be executed iff at least one of
those clauses can be executed. If any clause i contains a call, return, or
goto statement or a label, then the either statement must be followed by
a labeled statement. The statement

if test then t clause
else e clause

end if ;

is equivalent to the following, where the await statement is explained in
Section 3.2.5 on the next page.

either await test ; t clause
or await ¬ test ; e clause

end either ;

22

3.2.4 While

The while statement has its usual meaning. The statement

lb : while test do body end while ;

is executed like the following if statement, where the goto statement is
explained in Section 3.2.11 on page 25.

lb : if test then body ; goto lb ; end if ;

A while statement must be labeled. However, the statement following a
while statement need not be labeled, even if there is a label in body.

3.2.5 Await (When)

A step containing the statement await expr can be executed only when the
value of the Boolean expression expr is TRUE. Although it usually appears
at the beginning of a step, an await statement can appear anywhere within
the step. For example, the following two pieces of code are equivalent.

a : x := y + 1 ; a : await y + 1 > 0 ;

await x > 0 ; x := y + 1 ;

b : ... b : ...

The step from a to b can be executed only when the current value of y+1

is positive. (Remember that an entire step must be executed; part of a step
cannot be executed by itself.) The keyword when can be used instead of
await.

3.2.6 With

The statement

with id ∈ S do body end with ;

is executed by executing the statement sequence body with identifier id equal
to a nondeterministically chosen element of S . (The symbol ∈ is typed
“\in”.) Execution is impossible if S is empty. This with statement is
therefore equivalent to

await S 6= {} ; with id ∈ S do body end with ;

The two statements

23

with id = expr do . . . with id ∈ {expr} do . . .

are equivalent. (The expression {expr} equals the set containing a single
element equal to expr .)

In general, a with statement has the form

with id1 ? expr1 ; ... ; idn ? exprn do body end with ;

where each ? may be either = or ∈ . (Commas may be used instead of
semicolons between the id i ? expr i items.) This statement is equivalent to

with id1 ? expr1 do ... with idn ? exprn

do body end with ... end with ;

The body of a with statement may not contain a label. This rule, combined
with the rules listed in Section 3.7 (page 30) for where labels are required,
implies that the following may not appear within the body of a with state-
ment.

• A while statement.

• Two separate assignment statements that assign values to the same
variable. (A single multiple assignment may assign values to different
components of the same variable.)

• Any statement following a return, or any statement other than a
return following a call.

3.2.7 Skip

The statement skip; does nothing.

3.2.8 Print

Execution of the statement

print expr ;

is equivalent to skip, except it causes TLC to print the current value of expr .
TLC may print the value even if the step containing the print statement is
not executed because of an await statement that appears later in the step.

An algorithm containing a print statement must be in a module that
extends the TLC module.

24

3.2.9 Assert

The statement

assert expr ;

is equivalent to skip if expression expr equals true. If expr equals false,
executing the statement causes TLC to produce an error message saying
that the assertion failed and giving the location of the assert statement.
TLC may report a failed assertion even if the step containing the assert

statement is not executed because of an await statement that appears later
in the step.

An algorithm containing an assert statement must be in a module that
extends the TLC module.

3.2.10 Call and Return

The call and return statements are described below in Section 3.4 on
page 26.

3.2.11 Goto

Executing the statement

goto lab ;

ends the execution of the current step and causes control to go to the state-
ment labeled lab. In any control path, a goto must be immediately followed
by a label. (Remember that the control path by definition ignores the mean-
ing of the goto and continues to what is syntactically the next statement.)

It is legal for a goto to jump into the middle of a while or if statement,
but this sort of trickery should be avoided.

3.3 Processes

A multiprocess algorithm contains one or more processes. A process begins
in one of two ways:

process ProcName ∈ IdSet

process ProcName = Id

The first form begins a process set, the second an individual process. The
identifier ProcName is the process or process set’s name. The elements of
the set IdSet and the element Id are called process identifiers. The process

25

identifiers of different processes in the same algorithm must all be different.
This means that the semantics of TLA+ must imply that they are different,
which intuitively usually means that they must be of the same “type”. (For
example, the semantics of TLA+ does not specify whether or not a string
may equal a number.) For execution by TLC, this means that all process
identifiers must be comparable values, as defined on page 264 of the TLA+

book [3].
The name ProcName has no significance; changing it does not change

the meaning of the process statement in any way. The name appears
in the TLA+ translation, and it should be different for different process

statements
As explained above in Section 2.6 on page 12, the process statement is

optionally followed by declarations of local variables. The process body is
begun by “begin” and ended by “end process”. Its first statement must be
labeled. Within the body of a process set, self equals the current process’s
identifier.

A multiprocess algorithm is executed by repeatedly choosing an arbitrary
process and executing one step of that process, if that step’s execution is
possible. Execution of the process’s next step is impossible if the process has
terminated, if its next step contains an await statement whose expression
equals false, or if that step contains a statement of the form “await x ∈ S”
and S equals the empty set. As explained in Section 2.6 on page 12, fairness
conditions may be specified on the choice of which processes’ steps are to
be executed.

3.4 Procedures

An algorithm may have one or more procedures. If it does, the algorithm
must be in a TLA+ module that extends the Sequences module.

The algorithm’s procedures follow its global variable declarations and
define section (if any) and precede the begin of a uniprocess algorithm or
the first process of a multiprocess algorithm. A procedure named PName
begins

procedure PName (param1, . . . , paramn)

where the identifiers param i are the formal parameters of the procedure.
These parameters are treated as variables and may be assigned to. As ex-
plained in Section 4.5 on page 37, there may also be initial-value assignments
of the parameters.

26

The procedure statement is optionally followed by declarations of vari-
ables local to the procedure. These have the same form as the declara-
tions of global variables, except that initializations may only have the form
“variable = expression”. The procedure’s local variables are initialized on
each entry to the procedure.

Any variable declarations are followed by the procedure’s body, which is
begun by “begin” and ended by “end procedure”. The body must begin
with a labeled statement. There is an implicit label Error immediately
after the body. If control ever reaches that point, then execution of either
the process (multiprocess algorithm) or the complete algorithm (uniprocess
algorithm) halts.

A procedure PName can be called by the statement

call PName (expr1, . . . , exprn) ;

Executing this call assigns the current values of the expressions expr i to the
corresponding parameters param i , initializes the procedure’s local variables,
and puts control at the beginning of the procedure body.

A return statement assigns to the parameters and local procedure vari-
ables their previous values—that is, the values they had before the procedure
was last called—and returns control to the point immediately following the
call statement.

The call and return statements are considered to be assignments to the
procedure’s parameters and local variables. In particular, they are included
in the rule that a variable can be assigned a value by at most one assignment
statement in a step. For example, if x is a local variable of procedure P ,
then a step within the body of P that (recursively) calls P cannot also assign
a value to x .

For a multiprocess algorithm, the identifier self in the body of a proce-
dure equals the process identifier of the process within which the procedure
is executing.

The return statement has no argument. A PlusCal procedure does not
explicitly return a value. A value can be returned by having the procedure
set a global variable and having the code immediately following the call

read that variable. For example, in a multiprocess algorithm, procedure P
might use a global variable rVal to return a value by executing

rVal[self] := ... ;

return ;

From within a process in a process set, the code that calls P might look like
this:

27

call P(17) ; lab: x := ... rVal[self] ... ;

For a call from within a single process, the code would contain the process’s
identifier instead of self.

In any control path, a return statement must be immediately followed
by a label. A call statement must either be followed in the control path by
a label or else it must appear immediately before a return statement in a
statement sequence.

When a call P statement is followed immediately by a return, the
return from procedure P and the return performed by the return statement
are both executed as part of a single execution step. When these statements
are in the (recursive) procedure P , this combining of the two returns is
essentially the standard optimization of replacing tail recursion by a loop.

3.5 Macros

A macro is like a procedure, except that a call of a macro is expanded at
translation time. You can think of a macro as a procedure that is executed
within the step from which it is called.

A macro definition looks much like a procedure declaration—for example:

macro P(s, i) begin await s ≥ i ;

s := s - i ;

end macro ;

The difference is that the body of the macro may contain no labels, no
while, call, return, or goto statement. It may contain a call of a previ-
ously defined macro. Macro definitions come right after any global variable
declarations and define section.

A macro call is like a procedure call, except with the call omitted—for
example:

P(sem, y + 17) ;

The translation replaces the macro call with the sequence of statements ob-
tained from the body of the macro definition by substituting the arguments
of the call for the definition’s parameters. Thus, this call of the P macro
expands to:

await sem ≥ (y + 17) ;

sem := sem - (y + 17) ;

28

When translating a macro call, substitution is syntactic in the sense that
the meaning of any symbol in the macro definition other than a parameter
is the meaning it has in the context of the call. For example, if the body
of the macro definition contains a symbol q and the macro is called within
a “with q ∈ . . .” statement, then the q in the macro expansion is the q

introduced by the with statement.
When replacing a macro by its definition, the translation replaces every

instance of a macro parameter id in an expression within the macro body
by the corresponding expression. Every instance includes any uses of id as
a bound variable, as in the expression

[id ∈ 1 . . N 7→ false]

The substitution of an expression like y + 17 for id here will cause a mys-
terious error when the translation is parsed. When using PlusCal, obey the
TLA+ convention of never assigning a new meaning to any identifier that
already has a meaning.

3.6 Definitions

An algorithm’s expressions can use any operators defined in the TLA+ mod-
ule before the “BEGIN TRANSLATION” line. Since the TLA+ declaration of
the algorithm’s variables follows that line, the definitions of those opera-
tors can’t mention any algorithm variables. The PlusCal define statement
allows you to write TLA+ definitions of operators that depend on the algo-
rithm’s global variables. For example, suppose the algorithm begins:

--algorithm Test

variables x ∈ 1..N ; y ;

define zy
∆
= y*(x+y)

zx(a)
∆
= x*(y-a)

end define ;

...

(The symbol “
∆
= ” is typed “ == ”.) The operators zy and zx can then be

used in expressions anywhere in the remainder of the algorithm. Observe
that there is no semicolon or other separator between the two definitions.
Section 5.11 on page 55 describes how to write TLA+ definitions.

The variables that may appear within the define statement are the ones
declared in the variable statement that immediately precedes it and that
follows the algorithm name, as well as the variable pc and, if there is a pro-
cedure, the variable stack . Local process and procedure variables may not

29

appear in the define statement. The define statement’s definitions need
not mention the algorithm’s variables. You might prefer to put definitions
in the define statement even when they don’t have to go there. However,
remember that the define statement cannot mention any symbols defined
or declared after the “END TRANSLATION” line; and the symbols it defines
cannot be used before the “BEGIN TRANSLATION” line.

Definitions, including ones in a define statement, are not expanded in
the PlusCal to TLA+ translation. All defined symbols appear in the transla-
tion exactly as they appear in the PlusCal code. In particular, evaluation of
a defined symbol in the body of the algorithm uses the value that a variable
appearing in the definition has at the beginning of the current step—even
if that symbol appears after an assignment to the variable. For example, if
the variable x appears in the definition of sym, then these two code snippets
can produce different results, even in a sequential algorithm:

x := "new" ;

y := sym

x := . . . ;
a : y := sym

Executed when the value of x is "old", evaluation of sym in the first snippet
will use the value "old" for x, and in the second it will use the value "new".

3.7 Labels

Various rules for where labels must or may not appear have been introduced
above. The complete set of rules are:

• The first statement in the body of a procedure, of a process, or of a
uniprocess algorithm must be labeled.

• A while statement must be labeled.

• A statement S in a statement sequence must be labeled if it is preceded
in that sequence by any of the following:

– A call statement, if S is not a return or a goto.

– A return statement.

– A goto statement.

– An if or either statement that contains a labeled statement, a
goto, a call, or a return anywhere within it.

• A macro body and the do clause of a with statement cannot contain
any labeled statements.

30

• In any control path, a label must come between an assignment to a
variable x and any other statement that assigns a value to x . A local
variable or parameter of a procedure P is set by a call P(...) or
return statement in P .

The implicit labels Done and Error cannot be used as actual labels.

3.8 The Translation’s Definitions and Declarations

This section lists all the identifiers declared and defined in the TLA+ trans-
lation of a PlusCal algorithm. You may need to know what those identifiers
are when writing invariants and liveness properties to check the algorithm.
Moreover, as explained on page 20 of Section 3.1, TLA+ does not allow the
assignment of a new meaning to an identifier that already has a meaning.
Redefining an identifier declared or defined by the translation, or using it
as a bound variable, will cause a “multiply-defined identifier” error when
the TLA+ module is parsed by the SANY parser, which is invoked by the
Toolbox.

The translation of a PlusCal algorithm declares the following TLA+

variables:

• Each variable declared either globally or locally within a process or a
procedure.

• pc

• stack , if the algorithm contains one or more procedures.

• Each formal parameter of a procedure.

A multiprocess PlusCal algorithm defines each of the following. For a uni-
process algorithm, the “(self)” argument is omitted.

• For a multiprocess algorithm, the set ProcSet of all process identifiers.

• The tuple vars of all variables.

• The initial predicate Init . It contains a conjunct for each variable.
The conjuncts for global variables precede those for local procedure
and process variables. The conjuncts for the variables declared in
a single variable statement appear in the order in which they are
declared. (This order is significant, since the initial value of a variable
can depend on the initial values assigned by previous conjuncts.)

31

• The next-state action Next and the complete specification Spec.

• For each statement label Lab, an action Lab(self) if the statement is
in a procedure or in a process set; otherwise, an action Lab. This
action is the TLA+ representation of the atomic operation beginning
at that label. (Actions and atomic operations are discussed in Sec-
tion 5.10.1 on page 52.) If the definition is of Lab(self), then this is
the action describing the operation performed by a process self , for
self in ProcSet .

• For each procedure P , an action P(self). It is the disjunction of all
actions in the procedure executed by a process with identifier self in
ProcSet .

• For each process set named P , an action P(self). It is the disjunction
of all actions not in a procedure that are executed by a process with
identifier self in the process set.

• For each single process named P , an action P that is the disjunction
of all actions not in a procedure that are executed by the process.

Because TLA+ does not allow an identifier to be declared or defined
multiple times, the translation may rename some of these identifiers to pro-
duce a legal TLA+ specification. For example, if the PlusCal code declares
a variable x and also uses x as a label, or if it declares x as a local variable
in two different procedures, then one of the two x’s must be renamed. If
the translator renames identifiers, then it issues a warning and indicates, in
comments placed right after the “BEGIN TRANSLATION” line, what renam-
ings have been done.

Identifiers defined or declared in the translation may not be given new
meanings in any TLA+ definition that follows the “END TRANSLATION” line.
For example, if the PlusCal algorithm declares a variable j, then a definition
that follows the translated algorithm cannot contain the expression

∀i , j ∈ 1..N : (i 6= j)⇒ ¬((pc[i] = “cs”) ∧ (pc[j] = “cs”))

that redeclares the identifier j . Such a re-use of an identifier causes a
“multiply-defined identifier” error when the TLA+ module is parsed.

32

4 Checking the Algorithm

Sections 2.3–2.5 above tell you how to use the translator and TLC model
checker to check an algorithm. This section explains more about the trans-
lator and TLC. Only the commonly used features of TLC are described.
Consult Chapter 14 of the TLA+ book for a more complete description
of what TLC can do. Also, check the document Current Versions of the
TLA+ Tools on the TLA+ tools web page for recently-added features. That
page can be found from the main TLA+ web page, a link to which is at
http://lamport.org. The Toolbox’s Help pages also describe many of
TLC’s features.

4.1 Running the Translator

Running the translator is simple; Section 2.3 on page 9 explains how to do it.
Section 2.5 on page 11 describes the translator’s -termination option. The
other options you are likely to use are ones that specify fairness properties;
they are described in Section 4.6 on page 38. Appendix Section C on page 67
contains a list of all translator options.

The one part of using the translator that can be tricky is understanding
its messages. There are two kinds of translator error messages that can be
mysterious. The first is one saying that the translator was expecting to find
a certain token and didn’t. For example, the missing semicolon at the end
of the first line of

L1: a := b + c

L2: f[x] := c

produces the error message

-- Expected ";" but found ":="

line . . . , column

where the line and column numbers indicate the location of the second
“:=”. We might expect the translator to complain when it finds “b + c”
followed by “L2”, since no legal expression can begin b + c L2. However,
the translator does not try to parse expressions. It leaves that task to the
SANY parser, which is called by the Toolbox. Instead, upon seeing the “:=”
in the first statement, the translator just assumes that everything until the
next reserved symbol is part of the assignment statement’s expression. It
discovers that something is wrong when it finds the expression ended by
“:=”.

33

The lesson to be learned from this example is that the source of an error
can come well before the location where the error is reported. If you can’t
find the cause of an error, try narrowing in on it by running the translator
with sections of the code commented out. (You can do this by bracketing
the code with (* and *), even if it contains comments.)

The second class of error that can be mysterious is one caused by omit-
ting a needed label. This is indicated by an error message like

-- Missing label at the following location: ...

Section 3.7 on page 30 gives the rules for where labels are needed. If you
are mystified by this message, it may be because you’ve forgotten that call
and return statements assign values to a procedure’s parameters and local
variables.

As explained above, some errors in the algorithm are not found by the
translator but by SANY, the TLA+ parser. The error can be either in the
part of the module that you wrote or in the part written by the translator.
The translator does not parse expressions, leaving it to SANY to find most
errors in the algorithm’s expressions. Clicking on the error message in the
Toolbox jumps to and highlights the error in the translation. Executing the
Toolbox’s Goto PCal Source command jumps to the corresponding region of
PlusCal. If the source of the problem is not immediately clear, you should
be able to figure it knowing that the translation copies your expressions
pretty much the way you typed them, except for the following changes.

• Some variables are primed.

• Variables local to a process are turned into functions (arrays) that
take an additional argument. For example, in algorithm FastMutex of
Figure 2 on page 13, each occurrence of the local variable j is replaced
by j [self].

• An assignment to an element of a function or record variable is rewrit-
ten as an assignment to the variable using the TLA+ except construct
explained in Section 5.7 on page 49.

• Variables may be renamed, as explained in Section 3.8 on page 31.

If the parser complains that an identifier has been multiply defined, it may
mean that you have redefined or used as a bound variable an identifier that is
defined or declared in the algorithm’s translation. This problem is discussed
above in Section 3.8 on page 31.

34

Occasionally, it may be difficult to figure out the cause of a parsing error.
In that case, try inserting a “==· · ·==” line to prematurely end the module
in different places until you find the definition or statement that is causing
the error.

4.2 Specifying the Constants

Most algorithms are written in terms of constant parameters, declared in
the TLA+ module with a constant statement. A model must specify the
values of these constants. This is done in the What is the model? section of
the Model Overview page.

There are three kinds of values you can assign to a constant:

• An ordinary value, such as 3000.

• A model value. Making a constant a model value tells TLC to treat
it as an uninterpreted symbol that is unequal to any value other than
itself.

• A set of model values. For example, setting the constant Proc equal
to the set {p1, p2, p3} of model values tells TLC to let the value of
Proc be the set {p1, p2, p3}, where p1, p2, and p3 are considered to
be model values (uninterpreted symbols).

See the Toolbox help page for more information about model values.
You can also assign new meanings to defined constants and constant

operators for the purpose of model checking. For example, an algorithm
might contain a statement

with i ∈ Nat do . . .

where Nat is defined by the standard Naturals module to be the set of all
natural numbers. TLC cannot check an algorithm that requires it to enu-
merate an infinite set like Nat . However, you can use the Definition Override
section of the model’s Advanced Options page to tell TLC to substitute a
finite set of numbers for Nat .

Definition override can also be used to replace a definition with one
that is more easily computed by TLC. For example, you might replace the
definition of gcd on page 11 with an alternative definition that TLC can
compute more efficiently. You could use gcd in the algorithm because its
definition is easy to understand, but speed up the checking by having TLC
use another definition.

35

4.3 Constraints

TLC tries to generate all reachable states of the algorithm. It does this by
repeatedly finding all states that can be reached with a single step from a
reachable state that it has already found, starting with all possible initial
states. It will run forever if there are an infinite number of reachable states.

Some algorithms have infinitely many reachable states because they have
counters or queues that can grow without bound. You can limit the reach-
able states that TLC examines by using a constraint, which is an arbitrary
Boolean expression. If TLC finds a reachable state s that does not satisfy
the constraint, then it will not look for states that can be reached from s.
You can specify such a constraint in the State Constraint section of the
model’s Advanced Options page. For example, the constraint x < 17 causes
TLC to find only those reachable states that are either initial states or are
reachable by a sequence of states all having x less than 17.

4.4 Understanding TLC’s Output

There are two kinds of errors TLC can find: (i) an assert statement is
executed when its expression is false or some property that you asked TLC to
check is not satisfied, or (ii) the algorithm is trying to evaluate a meaningless
expression such as foo.bar if foo does not equal a record. In the first case,
TLC tells you which assertion or property is violated. In the second, it
usually reports the stack of nested expressions it was executing when it found
the error; but in some cases it just prints the unhelpful message “null”.

For any error, TLC produces an error trace of states reached in the
execution up to the point at which the error occurred. A state consists of
an assignment of values to all the variables. TLC shows most values as
ordinary TLA+ expressions, as described in Section 5. However, functions
are described in terms of the operators @@ and :> that are defined in the
TLC module. The expression

d1 :> e1 @@ d2 :> e2 @@ . . . @@ dn :> en

equals the function f with domain {d1, . . . , dn} such that f [d i] = e i for each
i in 1 . . n.

It can sometimes be quite difficult to figure out the cause of an error
from TLC’s error message. In that case, you can debug by inserting print

statements in the algorithm. You can also use the Print operator in the
algorithm’s expressions or in the invariants that TLC is checking. The op-
erator Print is defined in the TLC module so Print(pval , val) equals val ,
but TLC prints the value of pval when evaluating it.

36

TLC reports the location of an error in the TLA+ specification, and you
can usually click on the error message and jump to that location. If the
location is in the algorithm’s translation, the Toolbox’s Goto PCal Source
command will jump to the corresponding part of the PlusCal code.

4.5 Invariance Checking

The examples in Section 2 explain how to use TLC to check invariance of
a formula—meaning that the formula is true in all states reached in any
execution of the algorithm. An important example of invariance is type
correctness. In ordinary typed programming languages, type correctness is
a syntactic condition. Because PlusCal is typeless, type correctness is a
property of the algorithm, asserting that the value of each variable is an
element of the proper set. For example, we say that a variable p has type
prime number iff the value of p is always a prime number—in other words,
iff the following formula is an invariant, where Nat is the set of natural
numbers.

p ∈ {i ∈ Nat : ∀ j ∈ 2..(i-1) : i % j 6= 0}

(If you don’t understand this invariant now, you should after reading Sec-
tion 5.) TLC can check if this formula is an invariant. Like type checking in
ordinary programs, checking type correctness is a good way to find simple
errors in a PlusCal algorithm.

For an algorithm to be type correct, the initial values of its variables
must be of the right “type”. If no initial value is specified for a variable, its
default initial value is an unspecified constant named defaultInitValue.
By default, the Toolbox’s models set it to be a model value (see page 35).
Since defaultInitValue is unspecified, it is not a type-correct value for the
variable. The algorithm will therefore not be type correct unless the variable
is properly initialized. Among the variables whose type you might want to
check are the procedure parameters. An algorithm can assign initial values
to a procedure’s formal parameters as indicated in this example:

procedure Foo (p1 = 0, p2 = {"a", "b"})

Like a procedure variable’s declaration, the initial-value declaration of a
formal parameter p must be of the form p = expression.

Since a procedure’s formal parameters are set equal to the corresponding
arguments when the procedure is called, their initial values do not affect the
execution. Those initial values serve only to ensure that the corresponding
variables in the TLA+ specification always have values of the correct type.

37

4.6 Termination, Liveness, and Fairness

We saw in Section 2.5 how to check termination of a uniprocess algorithm.
Termination is a special case of a general class of properties called liveness
properties, which assert that something must eventually happen. We can
use TLC to check more general liveness properties of an algorithm.

An algorithm satisfies a liveness property only under some assumptions—
usually fairness assumptions on actions. In a PlusCal algorithm, there is an
action corresponding to each label. Execution of that action consists of
executing all code from that label to the next. An action is enabled iff it
can be executed. Consider the following code within a process:

a: y := 42;

z := y + 1;

b: await x > self;

x := x-1;

c: ...

An execution of action a consists of executing the assignments to y and z .
That action is enabled iff control in the process is at a. An execution of
action b decrements x by 1. It is enabled iff control is at b and the value of
x is greater than the process’s identifier self .

An action like a that is enabled iff control is at that label is said to be
non-blocking. An action like b that is not non-blocking is said to be blocking.

Fairness for a non-blocking action means that the process cannot stop
at that action. Thus, fairness at a means that if control in the process is at
a, then the process must eventually execute action a.

There are two kinds of fairness conditions for blocking actions. Weak
fairness of an action α means that a process cannot halt at α if α remains for-
ever enabled. For example, weak fairness of action b means that if x > self
remains true while the process is at b, then action b is eventually executed.
Strong fairness of α means that, in addition to a process not being able to
halt at α if α remains true forever, it can’t halt if α keeps being disabled
and subsequently enabled. For example, strong fairness of action b implies
that process self cannot halt at b as long as x > self either remains true or
keeps becoming true, even if it also keeps becoming false.

For a non-blocking action, weak and strong fairness are equivalent, so
there is only one kind of fairness.

Writing fair process instead of just process asserts that all actions
of the process are, by default, weakly fair. The default fairness condition
of an action of the process can be modified by adding + of - after its label.

38

Writing a:+ asserts that action a is strongly fair. Writing a:- asserts that
action a satisfies no fairness condition.

Writing fair+ process process assserts that all actions of the process
are strongly fair by default. Adding - after a label in the process asserts
that the action satisfies no fairness condition. Adding + after a label in a
fair+ process has no effect.

A process that is not a fair or fair+ process is called an unfair process
and has no fairness assumptions on its actions. Adding + or - after a label
in such a process has no effect.

The following translator options affect fairness assumptions.

-wf Makes any unfair process (one not preceded by fair or fair+) a
fair process.

-sf Makes any unfair process (one not preceded by fair or fair+) a
fair+ process.

-nof Makes every process an unfair process.

In addition to fairness of individual algorithm actions, there is also fairness of
the entire algorithm. This property asserts that the algorithm cannot halt if
it has at least one enabled action. This property is asserted by beginning the
algorithm with --fair algorithm , or by the -wfNext translator option.

For a uniprocess or sequential algorithm, beginning the algorithm with
--fair algorithm or using the -wfNext, -wf, or -sf option are equivalent.
(Without another process, if control is at a blocking action α that is not
enabled, then α can never become enabled.) Weak fairness for a sequential
algorithm can also be specified by writing fair (or fair+) before the begin

that begins the algorithm’s body. Adding + or - after a label has no effect
for a sequential algorithm.

The -termination option, discussed in Section 2.5 on page 11, effectively
adds a -wf option if none of the fairness options described above is specified.

The liveness properties we want an algorithm to satisfy can be specified
as temporal formulas using the TLA+ temporal operators used to express
fairness and liveness are described in Section 5.10 on page 51. Temporal
properties are subtle and can be hard to understand. Chapter 8 of the
TLA+ book discusses these properties in more detail. Here, we just describe
one particular operator that is quite useful: the operator ;, typed ~> and
pronounced leads to.

The formula P ; Q asserts that if P ever becomes true, then Q is true
then or will be true at some later. As an example, let’s consider algorithm

39

FastMutex in Figure 2 on page 13. We assume that the processes are fair, so
we add the keyword fair before the process. We allow a process to remain
forever inside its noncritical section or its critical section. We therefore add
- after the labels ncs: and cs:.

The liveness condition the algorithm satisfies is that, if some process is
trying to enter its critical section, then some process (not necessarily the
same one) is or eventually enters its critical section. A process i is trying
to enter its critical section if pc[i] is in the set {“start”, “l1”, . . . “l10”}. It’s
easier to express this by saying that pc[i] is not in the set {“ncs”, “cs”, “l11”, “l12”}.
So, the property we want to check is that this condition leads to some process
being in its critical section. This property is writen as

(∃i ∈ 1 . . N : pc[i] /∈ {“ncs”, “cs”, “l11”, “l12”})
; (∃i ∈ 1 . . N : pc[i] = “cs”)

TLC can check this property for three processes (N = 3) in about a minute.

The language constructs and translator options described allow you to
express all the fairness assumptions about an algorithm that you’re likely
to need. In the unlikely event that you want some other kind of fairness
assumption, you can write it yourself using the TLA+ temporal operators
described in Section 5.10 on page 51.

Liveness checking (including termination) is slower than invariance check-
ing, and TLC cannot check liveness on as large a model as it can check
invariance.

4.7 Additional TLC Features

4.7.1 Deadlock Checking

An algorithm is deadlocked if it has not terminated, but it can take no
further step. A process has terminated if it has reached the end of its code,
so control is at the implicit Done label that ends its body.

The most likely way for a uniprocess algorithm to deadlock is for a
procedure call to “fall off the end” without executing a return statement—
that is, for it to reach the implicit label Error that ends the procedure
body.

A multiprocess algorithm is deadlocked if no process can take a step, but
some process has not terminated. The usual way for this to happen is for
each processes to be waiting, either at an await statement whose expression
is false or at a statement of the form “with x ∈ S . . . ” when S equals the
empty set.

40

Deadlock is normally an error and is reported by TLC. However, some-
times an algorithm is supposed to halt in a state in which not all processes
have reached the end of their code. To stop TLC from checking for deadlock,
uncheck the Deadlock box on the Model Overview page.

4.7.2 Multithreading

TLC can execute with multiple threads to take advantage of a multiprocessor
computer. You specify the number of threads it should use in the How to
run? section of the Model Overview page. The number you choose should
be at most equal to the number of actual processors the computer has.
(Running it with more threads than there are processors can slow TLC
down.) In theory, using w processors can speed up TLC’s computation
of the set of reachable states by a factor of almost w . In practice, the
speedup depends on the quality of the Java runtime’s implementation of
multithreading. TLC’s algorithm for checking liveness is single-threaded, so
additional worker threads will not speed up that part of TLC’s execution.

4.7.3 Symmetry

Many algorithms are symmetric in a set of values. For example, the fast mu-
tual exclusion algorithm described in Section 2.6 on page 12 is symmetric in
the set of process identifiers. This means that, given any possible execution
of the algorithm, permuting the set of identifiers of the processes yields a
possible execution. Exactly what symmetry means is explained in Section
14.3.4 on page 245 of the TLA+ book.

When assigning a set of model values to a constant, we can specify that
set to be a symmetry set. (Model values are explained on page 35.) TLC
will then speed up its checking of the algorithm by ignoring any new state
it finds that is the same as a state it has already found under a permutation
of that set of model values.

TLC can use symmetry only for a set of model values. For TLC to take
advantage of the symmetry of algorithm FastMutex , that algorithm would
have to be rewritten to use an arbitrary set of process identifiers instead of
the set of numbers 1 . .N .

When we instruct TLC to assume that an algorithm is symmetric, it
does not check whether the algorithm really is symmetric. That’s our re-
sponsibility.

Do not tell TLC both to assume symmetry and to check liveness. The
interaction of a symmetry assumption with TLC’s algorithm for checking

41

liveness is subtle. It’s hard to determine if liveness checking will produce
correct results when symmetry is assumed.

42

5 TLA+ Expressions and Definitions

We now describe the TLA+ operators with which PlusCal expressions are
built. They are also listed with brief explanations in Tables 1–3 on pages 70–
71. Only TLA+ operators that can be evaluated by TLC are given.

We show the typeset versions of all expressions. Table 5 on page 72
shows how symbols with no obvious ascii representation are typed. TLA+

keywords are typed with upper-case letters, so true is typed as TRUE.
If you’re not sure about the meaning of some construct, try it out with

the Toolbox. You can have the Toolbox print the value of any constant
expression by typing it into the Evaluate Constant Expression section of a
model’s Model Checking Results page. This will cause TLC to evaluate the
expression and print the result in the Value box. You can tell TLC not to
do any checking of the specification by selecting No Behavior Spec in the
What is the behavior spec? section of the Model Overview page. (This will
be the default selection if you create a module with no algorithm and no
variable declaration.)

5.1 Numbers

Non-negative integers are typed in the usual way as strings of decimal digits.
The standard module Naturals defines the following standard operators on
integers:

+ − ∗ ^ (exponentiation) < > ≤ ≥ % ÷ . .

where − is subtraction, not the unary negation operator. The expression ab

is typed a^b . The operator “ . . ” is defined so a . . b is the set of all integers
c such that a ≤ c ≤ b. The modulus operator % and the integer division
operator ÷ are defined so that, for any integer a and positive integer b, the
value of a % b is in 0 . . (b − 1) and

a = b ∗ (a ÷ b) + (a % b)

The Naturals module also defines Nat to be the set of all natural numbers
(non-negative integers).

The Integers module defines everything the Naturals module does plus
the unary “−” operator and the set Int of all integers. You are unlikely to
use Nat or Int in an algorithm, but you might very well write something
like n ∈ Int in a type-correctness invariant (Section 4.5).

43

5.2 Strings

Strings are enclosed in double-quotes ("), so the string “abc” is typed "abc".
The following pairs of characters are used to represent certain special char-
acters in strings.

\" " \t tab \f form feed
\\ \ \n line feed \r carriage return

A string is defined in TLA+ to be a sequence of characters, but TLC does not
treat them as first-class sequences. TLC treats strings as a primitive data
type, except that the operators “◦” (concatenation) and Len (length) defined
in the standard Sequences module work properly on them—for example,
TLC knows that “ab” ◦ “c” equals “abc” and Len(“abc”) equals 3. (These
operators are described in Section 5.8 on page 49 below.) Even though
sequences in TLA+ are functions, TLC does not regard them as such and it
cannot evaluate “abc”[2].

Putting the TLA+ comment delimiters (* and *) inside strings in a
PlusCal algorithm is tricky if the algorithm appears in a comment (as it
probably does). For example, suppose your algorithm contains the statement

x := "the *) delimiter" ;

Because this appears inside a comment, the TLA+ parser ignores the double-
quotes and considers *) to end a comment. To keep both the TLA+ parser
and the PlusCal translator happy, you have to write something like this:

* (*

x := "the *) delimiter" ;

A similar trick works for (* .

5.3 Boolean Operators

The Boolean values are written true and false. The set boolean contains
these two values. The five propositional operators on Booleans are

∧ conjunction (and, typed “/\”)

∨ disjunction (or, typed “\/)”

¬ negation (not, typed “ ~ ”)

⇒ implication (typed “ => ”)

≡ equivalence (typed “ <=> ”
or “\equiv”)

The four binary operators are defined by the truth tables of Figure 3 on the
next page. The operator ¬ is defined by

¬true = false ¬false = true

44

F G F ∧G
true true true

true false false

false true false

false false false

F G F ∨G
true true true

true false true

false true true

false false false

F G F ⇒ G

true true true

true false false

false true true

false false true

F G F ≡ G
true true true

true false false

false true false

false false true

Figure 3: Truth tables for the binary Boolean operators.

In addition to the usual binary operators ∧ and ∨, TLA+ also allows a
bulleted-list notation for conjunctions and disjunctions. For example, the
expression

∧ A
∧ ∨ B
∨ C
∧ D

equals A∧ (B ∨C)∧D . Indentation is used to eliminate parentheses, which
can make a complicated formula easier to read. The ∧ or ∨ symbols in a
bulleted-list conjunction or disjunction must line up exactly.

Universal and existential quantification over sets of values have the fol-
lowing forms:

∀ x ∈ S : P(x)
The expression that equals true if P(x) equals true for all elements
x in the set S , and equals false if P(x) equals false for some x in
S . Thus, ∀n ∈ 1 . . 3 : f [n] > y is equivalent to

(f [1] > y) ∧ (f [2] > y) ∧ (f [3] > y)

∃ x ∈ S : P(x)
The expression that equals true if P(x) equals true for some x
in S , and equals false if P(x) equals false for all x in S . Thus,
∃n ∈ 1 . . 3 : f [n] > y is equivalent to

(f [1] > y) ∨ (f [2] > y) ∨ (f [3] > y)

45

In these expressions, the bound identifier x may not already be defined or
declared, and it may not occur in the expression S . In the case of S equal
to the empty set {}, these definitions become

∀ x ∈ {} : P(x) ≡ true

∃ x ∈ {} : P(x) ≡ false

for any P . TLA+ allows some obvious abbreviations for nested quantifiers.
For example,

∀ x ∈ S , y ∈ T : F means ∀ x ∈ S : (∀y ∈ T : F)

∃ x , y ∈ S : F means ∃ x ∈ S : (∃ y ∈ S : F)

5.4 Sets

Enumerated finite sets are written in the usual way, {e1, . . . , en} being the
set containing the elements e1, . . . , en . For example, {1 + 1, 2 + 2, 4} is
the set containing the two elements 2 and 4. (Remember that an element
either is or is not an element of a set; it makes no sense to talk about a set
containing multiple copies of an element.) As a special case of this notation,
{} is the empty set (the set containing no elements). TLA+ provides the
following operators on sets.

∈ (membership) ∪ (union) union (big
⋃

)

⊆ (subset) ∩ (intersection) subset (power set)

\ (set difference)

Here are their definitions:

e ∈ S Equals true if e is an element of the set S and equals false
otherwise.

S ∩ T The set of elements in both S and T .

S ∪ T The set of elements in S or T (or both).

S ⊆ T True iff every element of S is an element of T .

S \T The set of elements in S that are not in T .

union S The union of the elements of S . In other words, a value e is
an element of union S iff it is an element of an element of S .
Mathematicians usually write this as

⋃
S .

46

subset S The set of all subsets of S . Mathematicians sometimes call
this the power set of S and write it as P(S) or 2S .

Mathematicians often describe a set as “the set of all . . . such that . . . ”.
The following two constructs formalize such a description.

{x ∈ S : P(x)} The subset of S consisting of all elements x satisfying
property P(x). For example, the set of all odd natural
numbers can be written {n ∈ Nat : n % 2 = 1}.

{e(x) : x ∈ S} The set of elements of the form e(x), for all x in the
set S . For example, {2∗n + 1 : n ∈ 1 . . 100} is the set
{3, 5, 7, . . . , 201}.

In these expressions, the bound identifier x may not already be defined
or declared, and it may not occur in the expression S . The construct
{e(x) : x ∈ S} has the same generalizations as ∃x ∈ S : F . For example,
{e(x , y) : x ∈ S , y ∈ T} is the set of all elements of the form e(x , y), for x
in S and y in T .

The standard module FiniteSets defines Cardinality(S) to be the cardi-
nality (number of elements in) the finite set S .

The expression choose x ∈ S : P(x) is defined to equal some arbitrarily
chosen value x in the set S such that P(x) equals true. If no such x exists,
then the value of that expression is unspecified, and TLC will report an
error when evaluating it. The choose operator is known to logicians as
Hilbert’s ε. This operator cannot be used to introduce nondeterminism in
an algorithm. The PlusCal statement

n := CHOOSE i ∈ 1.. 7 : TRUE

will assign to n the same value every time it is executed. That value is some
single unspecified integer in the set 1 . . 7.

5.5 Functions

What programmers call an array, mathematicians call a function. Intu-
itively, a function f maps each element d in its domain to the value f [d].
If f is not a function or d is not in the domain of f , then the meaning of
f [d] is not specified and TLC will report an error if it tries to evaluate that
expression.

A function is completely specified by its domain and the value of f [d] for
every d in its domain. If f is a function, then domain f is its domain. The

47

expression [x ∈ S 7→ e(x)] equals the function f whose domain is S such
that f [d] = e(d) for every d in S . For example,

[i ∈ {1, 2, 3} 7→ 2 ∗ i]

is the function twice with domain {1, 2, 3} such that

twice[1] = 2 twice[2] = 4 twice[3] = 6

Using the operators @@ and :> defined in the TLC module, this function
can also be written

(1 :> 1) @@ (2 :> 4) @@ (3 :> 6)

For any sets S and T , the expression [S → T] is the set of all functions
f with domain S such that f [d] is in T for all d in S .

Functions are first-class values, so f [d] can be a function. For example,
the function

[i ∈ Nat 7→ [j ∈ 1 . . N 7→ (2 ∗ i) % j]]

is a function f such that f [3][x] equals 6 % x .
TLA+ also allows functions of multiple arguments. For example,

[i ∈ Nat , j ∈ 1 . . N 7→ (2 ∗ i) % j]

is a function g of two arguments such that g [3, x] equals 6 % x . A function
with multiple arguments is actually a function with a single argument that
is a tuple. For example, g [3, x] is shorthand for g [〈3, x 〉]. (Section 5.8 on
the next page discusses tuples.)

5.6 Records

TLA+ provides records that are much like the records (also called structs)
of ordinary programming languages. If exp is a record-valued expression,
then exp.bar is the bar field of that record. The expression

[foo 7→ 17, bar 7→ {1, 2, 3}]
equals the record r containing a foo field whose value is 17 and a bar field
whose value is the set {1, 2, 3}. This record r is an element of the set

[foo : Nat , bar : subset 1 . . 13]

consisting of all records with a foo field that is an element of the set Nat of
natural numbers and a bar field that is an element of the set subset 1 . . 13
of all subsets of the set 1 . . 13.

In TLA+, a record with fields foo and bar is actually a function whose
domain is the set {“foo”, “bar”}. The expression exp.bar is shorthand for
exp[“bar”].

48

5.7 The Except Construct

TLA+ provides an except construct for describing a function or record that
is almost the same as a given function or record. You will probably not need
to use the except construct yourself. However, it is used extensively in the
TLA+ translation of PlusCal programs, so you must know how to interpret
it if you want to understand the translation.

If f is a function, then [f except ![c] = exp] equals the value of f after
executing the PlusCal statement f [c] := exp. Thus, [f except ![c] = exp]
is the function g that is the same as f except that g [c] = exp. This function
can also be written

[x ∈ domain f 7→ if x = c then exp else f [x]]

Similarly, if r is a record, then [r except !.c = exp] is the record that
equals the value of r after executing r .c := exp. In other words, it is the
record that is the same as r except that its c field equals exp. Since a record
is a function whose domain is a set of strings, [r except !.c = exp] is the
same as [r except ![“c”] = exp].

A “!” clause of an except construct can be more complicated. For
example [f except ![c].d [e] = exp] is the value of f after executing the
statement f [c].d [e] := exp. You can check that this equals

[f except ![c] = [f [c] except !.d = [f [c].d except ![e] = exp]]]

An except expression can have multiple “!” clauses. For example, the
expression [f except ![c] = exp1, ![d].e = exp2] equals the value of f after
executing the PlusCal multiple assignment statement

f [c] : = exp1 | | f [d].e : = exp2

Remember that a multiple assignment is executed by first evaluating all the
right-hand expressions, then performing the assignments from left to right.
This implies that [f except ![c] = exp1, ![d].e = exp2] is equal to

[[f except ![c] = exp1] except ![d].e = exp2]].

5.8 Tuples and Sequences

A finite sequence is what programmers usually call a list. In TLA+, a
sequence of length n is the same as an n-tuple, which is defined to be a
function with domain 1 . .n. Finite sequences are written in angle brackets
〈 〉. The sequence 〈e1, . . . , en 〉 is the function s with domain 1 . .n such that
s[i] equals ei, for each i in 1 . .n. Thus, 〈“a”, “bc”, “de”〉[3] equals “de”.

49

Sets of tuples can be described with the Cartesian product operator ×.
For example, Nat× Int×{“a”, “b”, “c”} is the set of all triples 〈x , y , z 〉 such
that x ∈ Nat , y ∈ Int , and z ∈ {“a”, “b”, “c”}.

The standard module Sequences defines the following operators:

Seq(S) The set of all sequences of elements of the set S . For example,
〈3, 7〉 is an element of Seq(Nat).

Head(s) The first element of sequence s. For example, Head(〈3, 7〉)
equals 3.

Tail(s) The tail of sequence s, which consists of s with its head re-
moved. For example, Tail(〈3, 7, “a”〉) equals 〈7, “a”〉.

Append(s, e) The sequence obtained by appending element e to the tail
of sequence s. For example, Append(〈3, 7〉, 3) equals 〈3, 7, 3〉.

s ◦ t The sequence obtained by concatenating the sequences s and
t . For example, 〈3, 7〉 ◦ 〈3〉 equals 〈3, 7, 3〉.

Len(s) The length of sequence s. For example, Len(〈3, 7〉) equals 2.

5.9 Miscellaneous Constructs

An if expression has the form

if bool then t expr else e expr

If bool equals true, then this expression equals t expr ; if bool equals false,
then it equals e expr .

The case expression

case p1 → e1 2 . . . 2 pn → en

equals some e i for which pi equals true. If there is no such pi , then the
value of the expression is unspecified and TLC will report an error when
evaluating it. For example, the value of the expression

case i ∈ 1 . . N → “a” 2 i ∈ N . . 2 ∗N → “b”

is

• “a” if i is in 1 . . (N − 1),

• “b” if i is in (N + 1) . . 2 ∗N ,

50

• either “a” or “b” if i = N ,

• unspecified if i is not in 1 . . 2 ∗ N , and TLC reports an error when
evaluating it.

In the third case, whether the expression equals “a” or “b”, it equals the
same value every time it is evaluated.

The case expression

case p1 → e1 2 . . . 2 pn → en 2 other e

is equivalent to

case p1 → e1 2 . . . 2 pn → en 2 ¬(p1 ∨ . . . ∨ pn)→ e

Thus, its value equals e if all of the pi equal false.
A let expression allows you to make definitions local to the expression.

For example,

let x
∆
= a + b

y
∆
= a − b

in if y > 0 then x + y else x − y

equals

if a − b > 0 then (a + b) + (a − b) else (a + b)− (a − b)

Any sequence of TLA+ definitions can appear between the let and the in.
Section 5.11 on page 55 describes TLA+ definitions.

5.10 Temporal Operators

A behavior is a nonempty sequence of states, where a state is an assign-
ment of values to variables. A behavior of an algorithm is one that can be
generated by executing the algorithm.

A temporal formula is a predicate on behaviors—in other words, it is
true or false for any nonempty sequence of states. An algorithm satisfies a
temporal formula F iff F is true of all behaviors of the algorithm.

Temporal formulas cannot appear in a PlusCal algorithm. They are
used only in the fairness properties assumed of the algorithm’s executions
and in the properties asserted about the algorithm. Section 4.6 on page 38
explains how to assert fairness properties of the algorithm and how to tell
TLC to check liveness properties. This section defines the TLA+ temporal
operators that are used to express these fairness and liveness properties.

51

The definitions are given for infinite behaviors only. They are applied to
finite behaviors by considering the behavior 〈s1, . . . , sn 〉 to be equivalent to
the infinite behavior 〈s1, . . . , sn , sn , sn , . . .〉 obtained by repeating the last
state forever.

5.10.1 Fairness

An atomic operation of an algorithm consists of all control paths that start
at some label l , end at a label, and do not pass through any label. For
example, this code sequence

L1: if x = 0 then y := y + 1

else L2: await sem > 0 ;

sem := sem - 1;

end if;

L3: ...

contains the atomic operations

L1: if x = 0 then y := y + 1 else L2: end if; L3:

and

L2: await sem > 0 ; sem := sem - 1 ; L3:

We name an atomic operation by the label that begins it, so the second of
these atomic operations is called operation L2.

In TLA+, an action is a formula describing how the state changes. More
precisely, it is a formula that is true or false of a pair of states. We say that
s → t is an A step iff action A is true of the pair 〈s, t 〉 of states. An action
A is said to be enabled in a state s iff it is possible to perform an A action
in state s—that is, iff there is some state t such that s → t is an A step.

For each atomic operation L of a PlusCal algorithm, the TLA+ trans-
lation defines an action L that represents the operation—in other words,
where s → t is an L step iff executing operation L in state s can produce
state t . We call L an atomic action of the algorithm. Appendix Section B on
page 60 describes how atomic operations are represented as atomic actions.

Fairness assumptions about the algorithm are expressed with the follow-
ing fairness assumptions about actions:

Weak Fairness of an action A means that if it remains continuously pos-
sible to execute A, then A is eventually executed. Weak fairness of A
is expressed by the temporal formula WFvars(A) (typed WF_vars(A)),

52

where vars is the tuple of all variables of the algorithm. This formula
asserts of a behavior 〈s1, s2, . . .〉 that, if there is some i > 0 such that
A is enabled in state s j , for all j ≥ i , then s j → s j+1 is an A step, for
some j ≥ i .

Strong Fairness of an action A means that if it is repeatedly possible
to execute A, even if it is repeatedly impossible to execute A, then
A is eventually executed. Strong fairness of A is expressed by the
formula SFvars(A) (typed SF_vars(A)). This formula asserts of a be-
havior 〈s1, s2, . . .〉 that if A is enabled in infinitely many states s j ,
then s j → s j+1 is an A step, for some j > 0.

Strong fairness of A is stronger than (implies) weak fairness of A. In other
words, if SFvars(A) is true of a behavior σ, then WFvars(A) is also true of σ.

As an example, let L2 be the atomic action corresponding to the atomic
operation L2 above (on the preceding page). Weak fairness of L2 means
that, if the process is at control point L2 and sem remains positive, then
eventually operation L2 will be executed. Strong fairness of L2 means that,
if the process is at control point L2 and sem keeps being set to a positive
value, even if it keeps being reset to 0, then eventually L2 will be executed.

A process’s next-state action is defined to be the disjunction of all its
atomic actions. The most common fairness assumption is weak fairness of
each process’s next-state action. For a PlusCal algorithm, weak fairness of a
process’s next-state action is equivalent to the conjunction of weak fairness
of each of its atomic actions. Similarly, strong fairness of a process’s next-
state action in a PlusCal algorithm is equivalent to strong fairness of each
of its atomic actions. An algorithm’s next-state action is the disjunction of
all of its atomic actions. Weak fairness of the algorithm’s next-state action
means that the algorithm will not halt if it is possible for some process to
perform an action.

5.10.2 Liveness

The temporal properties that an algorithm should satisfy are expressed with
the temporal operators “2”, “3”, and “;”, which are defined as follows:

2F is true of a behavior σ iff the temporal formula F is true for every suffix
of σ. In other words, 2F is true for a behavior 〈s1, s2, . . .〉 iff F is
true on the behavior 〈s i , s i+1, . . .〉, for all i > 0. Hence, if 2F is true
of σ, then F is true of σ. We usually think of 2F as asserting that F
is always true.

53

3F is true of a behavior σ iff the temporal formula F is true of some suffix
of σ. Since σ is a suffix of itself, if F is true of σ then so is 3F . We
usually think of 3F as asserting that F is eventually true.

F ; G asserts of a behavior σ that if τ is any suffix of σ for which F is
true, then there is a suffix of τ for which G is true. In other words,
F ; G asserts that whenever F becomes true, G must be true then
or at some later point in the execution. We usually read ; as “leads
to”.

Formulas expressing liveness properties are built with these operators and
state predicates. A state predicate is a formula that is true or false of a
state. For example, the state predicate x > 0 is true of those states in which
the value of x is greater than 0. A state predicate is considered to be the
temporal formula that is true of a behavior σ iff it is true of the first state
of σ. If P is a state predicate, then 2P is true of a behavior σ iff P is true
of the first state of all suffixes of the behavior—in other words, iff P is true
of all states of σ. Hence, the temporal formula 2P asserts that P is an
invariant of an algorithm. The formula 3P asserts of a behavior σ that P
is true in some state of σ.

To check that you understand these temporal operators, you can verify
that:

• 23F is true of a behavior σ iff F is true for infinitely many suffixes of
σ. In particular, if P is a state predicate, then 23P asserts of σ that
P is true for infinitely many states of σ.

• 32F is true of a behavior 〈s1, s2, . . .〉 iff there is some i > 0 such that
F is true of 〈s j , s j+1, . . .〉, for all j ≥ i .

• F ; G is equivalent to 2(F ⇒ 3G).

5.10.3 One Algorithm Implementing Another

Instead of just checking that an algorithm satisfies certain properties, you
can check that it implements a complete higher-level specification describ-
ing what the algorithm is supposed to do. The TLA+ book explains how to
write such a specification in TLA+. You can also write the specification as
a more abstract PlusCal algorithm. In that case, you will have to show that
the algorithm implements its more abstract version under an interface refine-
ment. Interface refinement is explained in Section 10.8 of the TLA+ book.
In most cases, the interface refinement will be a simple data refinement.

54

5.11 TLA+ Definitions

TLA+ allows you to define operators that take zero or more arguments.
Ordinary operator definitions have the two forms

F
∆
= expr

F (p1, . . . , pn)
∆
= expr

(The symbol “
∆
= ” is typed “ == ”.) The identifier F and the formal pa-

rameters pi must not already have a meaning. All identifiers, other than
the pi , that appear in the expression expr must already have a meaning.
Hence, recursive definitions cannot be written in this way. TLA+ does allow
recursive function definitions of the form

f [x ∈ S]
∆
= expr

For example, you can define the factorial function by

fact [n ∈ Nat]
∆
= if n = 0 then 1 else n ∗ fact [n − 1]

TLA+ also permits definitions of binary (infix) operators. For example, the
following defines ⊕ (typed “(+)”) to mean addition modulo N :

a ⊕ b
∆
= (a + b) % N

Table 4 on page 71 lists all user-definable operator symbols. (Table 5 on
page 72 lists the non-obvious ascii versions of those symbols.)

Definitions of operators or functions that are used in the PlusCal al-
gorithm must appear in the module before the “BEGIN TRANSLATION” line,
or in a define statement as described in Section 3.6 on page 29. Except
for ones in a define statement, definitions that use the identifiers declared
or defined in the translation must come after the “END TRANSLATION” line.
Those identifiers are listed in Section 3.8 on page 31.

TLA+ does not use a semicolon or any other delimiter to end a definition.
It’s customary to start each definition on a new line, but that isn’t necessary.
Two successive definitions can be separated by any kind of space character
or characters.

References

[1] Leslie Lamport. TLA—temporal logic of actions. A web page, a link
to which can be found at URL http://lamport.org. The page can
also be found by searching the Web for the 21-letter string formed by
concatenating uid and lamporttlahomepage.

55

[2] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1–11, February 1987.

[3] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003. Also
available on the Web via a link at http://lamport.org.

[4] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Program-
ming with sets: An Introduction to SETL. Springer-Verlag, New York,
1986.

[5] Robert Sedgewick. Algorithms. Addison-Wesley, 1988.

56

Appendix

Section A gives the BNF grammar of PlusCal, and Section B describes the
TLA+ translation of a PlusCal algorithm.

A The Grammar

The algorithm must appear in a file with a TLA+ module, either outside the
module or within a single comment. In the latter case, it will almost surely
be enclosed by “(*” and “*)”. Comments within an algorithm are delimited
by “*” or “(*. . . *)”. The grammar described here is for an algorithm with
every comment removed and replaced by one or more spaces.

Here is a simplified BNF grammar for the algorithm text. It does not
express the restrictions on where labels must or may not occur, which are
explained in Section 3.7 on page 30. It also does not express the restrictions
on what statements may occur in the body of a macro—namely, that a
while, call, return, goto, or macro call may not appear there. The BNF
uses the following notations.

• The square brackets “ [” and “] ” are BNF grouping symbols (but “ [”
and “] ” are literals).

• a | b means a or b.

• a0,1 means 0 or 1 instance of a.

• a∗ means 0 or more instances of a.

• a+ means 1 or more instances of a.

Any “;” prescribed in the grammar may be omitted if it immediately pre-
cedes any of the following reserved words.

begin do else elsif end macro or procedure process

The grammar is:

〈Algorithm 〉 ::= [--algorithm | --fair algorithm] 〈name 〉
〈VarDecls 〉0,1
〈Definitions 〉0,1
〈Macro 〉∗
〈Procedure 〉∗
[〈AlgorithmBody 〉 | 〈Process 〉+]
end algorithm

57

〈Definitions 〉 ::= define 〈Defs 〉 end define [;]0,1

〈Macro 〉 ::= macro 〈Name 〉 ([〈Variable 〉 [, 〈Variable 〉]∗]0,1)
〈AlgorithmBody 〉
end macro [;]0,1

〈Procedure 〉 ::= procedure 〈Name 〉 ([〈PVarDecl 〉 [, 〈PVarDecl 〉]∗]0,1)
〈PVarDecls 〉0,1
〈AlgorithmBody 〉
end procedure [;]0,1

〈Process 〉 ::= [fair [+]0,1]0,1 process 〈Name 〉 [= | \in] 〈Expr 〉
〈VarDecls 〉0,1
〈AlgorithmBody 〉
end process [;]0,1

〈VarDecls 〉 ::= [variable | variables] 〈VarDecl 〉+

〈VarDecl 〉 ::= 〈Variable 〉 [[= | \in] 〈Expr 〉]0,1 [;|,]

〈PVarDecls 〉 ::= [variable | variables] [〈PVarDecl 〉 [;|,]]+

〈PVarDecl 〉 ::= 〈Variable 〉 [= 〈Expr 〉]0,1

〈AlgorithmBody 〉 ::= begin 〈Stmt 〉+

〈Stmt 〉 ::= [〈Label 〉 : [+ | -]0,1]0,1 〈UnlabeledStmt 〉

〈UnlabeledStmt 〉 ::= 〈Assign 〉 | 〈If 〉 | 〈While 〉 | 〈Either 〉 | 〈With 〉 |
〈Await 〉 | 〈Print 〉 | 〈Assert 〉 | 〈Skip 〉 | 〈Return 〉 |
〈Goto 〉 | 〈Call 〉 | 〈MacroCall 〉

〈Assign 〉 ::= 〈LHS 〉 := 〈Expr 〉 [|| 〈LHS 〉 := 〈Expr 〉]∗ ;

〈LHS 〉 ::= 〈Variable 〉 [[〈Expr 〉 [, 〈Expr 〉]∗] | . 〈Field 〉]∗

〈If 〉 ::= if 〈Expr 〉 then 〈Stmt 〉+
[elsif 〈Expr 〉 then 〈Stmt 〉+]∗

[else 〈Stmt 〉+]0,1

end if ;

〈While 〉 ::= while 〈Expr 〉 do 〈Stmt 〉+ end while ;

〈Either 〉 ::= either 〈Stmt 〉+ [or 〈Stmt 〉+]+ end either ;

〈With 〉 ::= with [〈Variable 〉 [= | \in] 〈Expr 〉 [;|,]]+

do 〈Stmt 〉+ end with ;

58

〈Await 〉 ::= [await | when] 〈Expr 〉 ;

〈Print 〉 ::= print 〈Expr 〉 ;

〈Assert 〉 ::= assert 〈Expr 〉 ;

〈Skip 〉 ::= skip ;

〈Return 〉 ::= return ;

〈Goto 〉 ::= goto 〈Label 〉 ;

〈Call 〉 ::= call 〈MacroCall 〉

〈MacroCall 〉 ::= 〈Name 〉 ([〈Expr 〉 [, 〈Expr 〉]∗]0,1) ;

〈Variable 〉 ::= A TLA+ identifier that is not a PlusCal reserved word and
is not pc, stack , or self .

〈Field 〉 ::= A TLA+ record-component label.

〈Name 〉 ::= A TLA+ identifier that is not a PlusCal reserved word.

〈Label 〉 ::= A TLA+ identifier that is not a PlusCal reserved word and
is not Done or Error.

〈Expr 〉 ::= A TLA+ expression not containing a PlusCal reserved word
or symbol.

〈Defs 〉 ::= A sequence of TLA+ definitions not containing a PlusCal
reserved word or symbol.

TLA+ expressions and definitions are described in Section 5. A TLA+

record-component label is any sequence of letters, digits, and “_” characters
containing at least one non-digit and not equal to “WF_” or “SF_”. A TLA+

identifier is a record-component that is not one of the following.

ASSUME ASSUMPTION AXIOM CASE CHOOSE CONSTANT

CONSTANTS DOMAIN ELSE ENABLED EXCEPT EXTENDS IF IN

INSTANCE LET LOCAL MODULE OTHER UNION SUBSET THEN

THEOREM UNCHANGED VARIABLE VARIABLES WITH

The PlusCal reserved words are

assert await begin call define do either else elsif

end goto if macro or print procedure process return

skip then variable variables when while with

The PlusCal reserved symbols are “:= ” and “||”.

59

B The TLA+ Translation

B.1 The FastMutex Algorithm

The TLA+ translation is described with the example algorithm of FastMutex
in Figure 2 on page 13. I have simplified the translation a bit to make it
easier to read, but I have not altered its meaning. To help you understand
the translation of your own algorithm, you can try executing the Toolbox’s
Goto PCal Source command on any region of the translation.

The translation begins

constant defaultInitValue

This declares defaultInitValue to be an unspecified constant. By default, a
Toolbox model makes defaultInitValue a model value. (The declaration of
defaultInitValue is omitted if every variable is explicitly initialized.)

The translation next declares the algorithm’s variables and defines vars
to be the tuple of all these variables.

variables x , y , b, j , pc
vars

∆
= 〈x , y , b, j , pc〉

The variable pc is added to describe the control state. If an algorithm
contains one or more procedures, a variable stack is added to hold the calling
stack. In addition, each formal parameter and local variable of a procedure
is declared to be a variable.

Had the algorithm contained a define statement, the translation would
have contained two variables statements, the first declaring the variables
x , y , b, and pc, and the second declaring the remaining variable j . The
definitions from the define statement would have been put between the
two variables statements.

For a multiprocess program, the translation next defines the set ProcSet
of all process identifiers.

ProcSet
∆
= 1 . . N

Next is the definition of the initial predicate Init that specifies the initial
values of all the declared variables. Comments indicate if the variables are
global or local to a process or procedure.

Init
∆
= Global variables

∧ x = defaultInitValue
∧ y = 0

60

∧ b = [i ∈ 1 . . N 7→ false]
Process Proc

∧ j = [self ∈ 1 . . N 7→ {}]
∧ pc = [self ∈ ProcSet 7→ “ncs”]

Observe that the process-local variables and the variable pc are made func-
tions with domain equal to the appropriate set of process identifiers.

Next come the action definitions. As explained in Section 5.10.1 on
page 52, a TLA+ action is a formula describing a pair of states—the state
before executing the action and the state after executing it. In an action,
unprimed variables refer to their values before executing the action and the
primed variables refer to their values after the execution.

The translation defines an action for each atomic operation of the algo-
rithm. As explained in Section 5.10.1, an atomic operation begins at a label
that is used to name the action. The first such action definition is generated
by statement ncs. The definition is parameterized by the identifier self ,
which represents the current process’s identifier. (The except construct is
explained in Section 5.7 on page 49.)

ncs(self)
∆
= ∧ pc[self] = “ncs”
∧ pc′ = [pc except ![self] = “start”]
∧ unchanged 〈x , y , b, j 〉

The conjunct pc[self] = “ncs” is an enabling condition, meaning that the
action can be executed only when it is true. It asserts that control of process
self is at label ncs. The action sets pc[self] to “start”; the unchanged
conjunct asserts that the values of all other variables are not changed. The
evaluation of the while test does not appear explicitly in the action because
it equals true. The skip statement similarly does not appear because it
has no effect.

The atomic actions corresponding to the statements labeled start and l1
are analogous.

start(self)
∆
= ∧ pc[self] = “start”
∧ b′ = [b except ![self] = true]
∧ pc′ = [pc except ![self] = “l1”]
∧ unchanged 〈x , y , j 〉

l1(self)
∆
= ∧ pc[self] = “l1”
∧ x ′ = self
∧ pc′ = [pc except ![self] = “l2”]
∧ unchanged 〈y , b, j 〉

61

Action l2 performs the if statement’s test and the subsequent transfer of
control.

l2(self)
∆
= ∧ pc[self] = “l2”
∧ if y 6= 0 then pc′ = [pc except ![self] = “l3”]

else pc′ = [pc except ![self] = “l5”]
∧ unchanged 〈x , y , b, j 〉

The body of the then clause of statement l2 consists of two atomic actions.

l3(self)
∆
= ∧ pc[self] = “l3”
∧ b′ = [b except ![self] = false]
∧ pc′ = [pc except ![self] = “l4”]
∧ unchanged 〈x , y , j 〉

l4(self)
∆
= ∧ pc[self] = “l4”
∧ y = 0
∧ pc′ = [pc except ![self] = “start”]
∧ unchanged 〈x , y , b, j 〉

The expression y = 0 of the await statement is an enabling condition of
action l4. (Recall that this means the action can be executed only when
y = 0 is true. The conjunct pc[self] = “l4” is the other enabling condition
of this action.)

Actions l5 and l6 introduce nothing new and their definitions are omitted
here. Action l7 shows that the process’s local variable j has been turned
into an array indexed by self .

l7(self)
∆
= ∧ pc[self] = “l7”
∧ b′ = [b except ![self] = false]
∧ j ′ = [j except ![self] = 1]
∧ pc′ = [pc except ![self] = “l8”]
∧ unchanged 〈x , y〉

Action l8 shows how a while statement whose test is not identically true is
translated.

l8(self)
∆
= ∧ pc[self] = “l8”
∧ if j [self] ≤ N

then ∧ ¬b[j [self]]
∧ j ′ = [j except ![self] = j [self] + 1]
∧ pc′ = [pc except ![self] = “l8”]

else ∧ pc′ = [pc except ![self] = “l9”]

62

∧ unchanged j
∧ unchanged 〈x , y , b〉

Actions l9, cs, and l11 are obtained in a similar manner and are omitted.
Actions l10 and l12 show the translation of an explicit goto and the transfer
of control at the end of the while loop.

l10(self)
∆
= ∧ pc[self] = “l10”
∧ y = 0
∧ pc′ = [pc except ![self] = “start”]
∧ unchanged 〈x , y , b, j 〉

l12(self)
∆
= ∧ pc[self] = “l12”
∧ b′ = [b except ![self] = false]
∧ pc′ = [pc except ![self] = “ncs”]
∧ unchanged 〈x , y , j 〉

The translation next defines Proc(self) to be the next-state action of process
self of process set Proc, which is the disjunction of all the atomic actions
of the process. (The name of a process or process set is used only to name
the process’s next-state action.) A step of the process is one that satisfies
formula Proc(self).

Proc(self)
∆
= ncs(self) ∨ start(self) ∨ l1(self) ∨ l2(self) ∨ l3(self)

∨ l4(self) ∨ l5(self) ∨ l6(self) ∨ l7(self) ∨ l8(self)
∨ l9(self) ∨ l10(self) ∨ cs(self) ∨ l11(self)
∨ l12(self)

The action Next is defined to be the next-state action of the entire algorithm.
It is the disjunction of the next-state actions of all the processes. (The
existential quantification is equivalent to the disjunction Proc(1) ∨ . . . ∨
Proc(N).)

Next
∆
= ∨ ∃ self ∈ 1 . . N : Proc(self))
∨ Disjunct to prevent deadlock on termination

∧ ∀ self ∈ ProcSet : pc[self] = “Done”
∧ unchanged vars

The last disjunct of Next is added for TLC’s benefit. TLC has no way of
distinguishing deadlock from termination, which is simply a desired form of
deadlock. The translation therefore adds a disjunction to Next that allows a
terminated algorithm to perform a step that does nothing. This transforms
termination into an infinite no-op loop, so it is not reported as deadlock by

63

TLC.3 Since the FastMutex algorithm cannot terminate, the disjunct serves
no function in this case. However, the translator is not clever enough to
notice that the disjunct is unnecessary. The -noDoneDisjunct translator
option always suppresses this extra disjunct.

The translator next defines formula Spec to be the complete TLA speci-
fication of the algorithm. The formula will mean nothing to you if you don’t
know TLA, but that doesn’t matter. You don’t need to understand TLA to
use PlusCal. If no liveness or termination option is specified, the definition
of Spec is

Spec
∆
= Init ∧2[Next]vars

Had we used a fair process statement or the -wf option to specify weak
fairness of the processes’ actions, the definition of Spec would have the ad-
ditional conjunct

∀ self ∈ 1 . . N : WFvars(Proc(self))

Had we added - after the labels ncs: and cs:, this conjunct would have
become

∀ self ∈ 1 . . N : WFvars((pc[self] /∈ {“ncs”, “cs”}) ∧ Proc(self))

Adding a + after the label l4: would have changed this conjunct to

∀ self ∈ 1 . . N : ∧WFvars((pc[self] /∈ {“ncs”, “cs”}) ∧ Proc(self))
∧ SFvars(l4(self))

If the algorithm had procedures, then Proc(self) would have been defined
to be the disjunction only of the atomic actions in the process body. For
each procedure P called by the process, the translation would have defined
action P(self) to be the disjunction of the atomic actions in the body of the
procedure, and it would have conjoined to Spec the fairness property

∀self ∈ 1 . . N : WFvars(P(self))

Any + and - label modifiers in the procedure would be handled analogously
to the way they are handled in the body of the process.

Had we specified strong fairness of the process, either with a fair+

process statement or the -sf translator option, then the translation would
have been the same except with WF replaced everywhere by SF, and the
(now redundant) conjunct SFvars(l4(self)) eliminated.

Finally, the translation defines the temporal formula Termination that
asserts the property that the algorithm eventually terminates:

3If you are familiar with TLA, then you will realize that adding this disjunct does not
change the meaning of the specification, just the way TLC checks it.

64

--algorithm Procedures

procedure P(pA = 11, pB = 12)

variables pv = 0 ;

begin LP1 : pv := 1 ;

call Q("ProcP") ;

LP2 : return ;

end procedure ;

procedure Q(qA = 13)

variables qv1 = 1; qv2 = 2;

begin LQ1: if qA = "Mn"

then qv1 := 9 ;

call P("a", "b")

else print stack ;

end if ;

LQ2: return ;

end procedure ;

begin LM: call Q("Mn") ;

end algorithm

Figure 4: An algorithm illustrating procedure calls.

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

B.2 Procedures

The FastMutex algorithm does not show how procedure calls and returns
are translated. Their translation models a standard implementation using
a call stack that is represented by the variable stack . For a multiprocess
algorithm, the value of stack is an array of individual stacks, indexed by
process identifier. You probably don’t care exactly how procedure calls
and returns are represented in TLA+; if you do, you can just look at the
translation of an algorithm containing them. However, you may need to
understand how to read the value of stack when debugging your algorithm.
This is explained with the sample algorithm of Figure 4 on this page.

An execution of the algorithm calls procedure Q . The execution of Q
calls procedure P , and that execution of P calls Q . The execution of Q
following the last call prints the value of stack and returns. The other two
procedure executions then return and the algorithm terminates.

The value of stack is thus printed in an execution of Q inside an execution
of P inside an execution of Q . Executing the algorithm prints the following

65

value of stack . (The notation for writing records is explained in Section 5.6
on page 48.)

〈 [qA 7→ “Mn”, qv1 7→ 9, qv2 7→ 2, pc 7→ “LP2”, procedure 7→ “Q”] ,

[pA 7→ 11, pB 7→ 12, pv 7→ 0, pc 7→ “LQ2”, procedure 7→ “P”] ,

[qA 7→ 13, qv1 7→ 1, qv2 7→ 2, pc 7→ “Done”, procedure 7→ “Q”] 〉

The value is a sequence of three records, one for each procedure being
executed. The innermost procedure execution produced the first of these
records. The procedure field shows that the algorithm is executing a call of
Q , and the pc field shows that this execution will return to the statement
labeled LP2. The remaining components show the values of the procedure’s
parameter qA and its local variables qv1 and qv2 when the procedure was
called. The corresponding variables will be restored to those values upon
the next return from procedure Q .

The second record in the sequence stack contains the same information
for the call of procedure P . Since this was the first call of P in the call
stack, the parameters pA and pB and the local variable pv contained their
initial values.

66

C Translator Options

Some translator options can be specified in the module file with an options

statement. It has the form

PlusCal options (list of options)

where the items in the list may be (but need not be) separated by commas.
In the options statement, the “-” in the option name may be omitted. Any
options may be specified in the Toolbox as follows. In the Spec Explorer
(which can be raised from the File menu), right-click on the specification
and select Properties. Put the list of options, with “-” in the option names
and without commas, in the PlusCal call arguments field.

Options That May Appear in an options Statement

-wf Change all unfair processes to weakly fair (fair) processes.

-sf Change all unfair processes to strongly fair (fair+) processes.

-wfNext Conjoin to specification Spec weak fairness of the algorithm’s entire
next-state action

-nof Conjoin no fairness assumption to specification Spec.

-termination If no fairness option is selected, it is equivalent to select-
ing the -wf option. When it appears in an option statement in a
specification’s root module, it causes new Toolbox models to specify
termination checking. When used in command-line mode (see below),
it adds to the .cfg file a command to cause TLC to check for termina-
tion.

-noDoneDisjunct Suppress the extra disjunct that the translation normally
adds to the next-state action Next to prevent TLC from thinking that
the algorithm has deadlocked when it terminates.

-label Tells the translator to add missing labels. The translator will add
the minimum set of labels needed to satisfy the labeling rules given in
Section 3.7 on page 30. This is the default for a uniprocess algorithm
in which the user has typed no labels.

-labelRoot name If the translator adds missing labels, this causes it to
use the prefix name for the added labels, so the labels will be name1,
name2, etc. The default prefix is Lbl .

67

-lineWidth The translator tries to perform the translation so lines have
this maximum width. (It will often fail.) The default value is 78; the
minimum value is 60.

Options That Can be Specified Using the Spec Explorer

-spec name This option is used to have the translation performed by ex-
ecuting a TLA+ specification instead of by the translator itself. It
causes the translator to write to the file AST .tla in the current direc-
tory a TLA+ module that defines ast to equal a TLA+ representation
of the algorithm’s abstract syntax tree (AST) and fairness to equal
the fairness option. (The current directory is the one from which the
translator is run.) The translator then copies the files name.tla and
name.cfg from its own internal directory to the current directory, runs
TLC on name.tla, and uses TLC’s output to produce the translation.

The TLA+ representation of an algorithm’s AST does not capture for-
matting information, so this translation will not work on any algorithm
containing an expression with bulleted lists of conjuncts or disjuncts.
Also, the translator does not attempt to format the output, so the
translation is difficult to read. This option is mainly of use to peo-
ple interested in the formal specification of PlusCal. However, if you
suspect that an error is caused by a bug in the translator, you might
try using this option to see if the error occurs when the translation is
performed by the TLA+ specification.

Currently, there is only a single specification of the translator available,
called by letting name be PlusCal .

-myspec name Like -spec, except the translator uses the files names.tla
and names.cfg in the current directory, instead of copying them from
its own directory.

-writeAST This causes the translator to write the file AST .tla as in the
-spec option, but not to perform the translation.

Options for Command-Line Use Only

The PlusCal translator can be run outside the Toolbox, from a command
line. It then produces a configuration (.cfg) file that can be used to run
TLC from the command line. The following options make sense only when
the translator is run from a command line.

68

-unixEOL When you view the files written by the translator in a text editor,
you may find a ^M at the end of every line. This option will force the
translator to use the Unix end-of-line convention, which should remove
those ^Ms.

-help Type a help file instead of doing a translation.

-nocfg Suppress writing of the .cfg file.

-reportLabels Tells the translator to print the names and locations of all
labels it adds. Like -label, it causes the translator to add missing
labels.

-debug Runs the translator in debugging mode. Currently, this does noth-
ing useful.

69

Logic
∧ ∨ ¬ ⇒ ≡
true false boolean [the set {true, false}]
∀ x ∈ S : p (1) ∃ x ∈ S : p (1)

choose x ∈ S : p [An x in S satisfying p]

Sets
= 6= ∈ /∈ ∪ ∩ ⊆ \ [set difference]

{e1, . . . , en} [Set consisting of elements ei]

{x ∈ S : p} (2) [Set of elements x in S satisfying p]

{e : x ∈ S} (1) [Set of elements e such that x in S]

subset S [Set of subsets of S]

union S [Union of all elements of S]

Functions
f [e] [Function application]

domain f [Domain of function f]

[x ∈ S 7→ e] (1) [Function f such that f [x] = e for x ∈ S]

[S → T] [Set of functions f with f [x] ∈ T for x ∈ S]

[f except ![e1] = e2]
(3) [Function f̂ equal to f except f̂ [e1] = e2]

Records
e.h [The h-field of record e]

[h1 7→ e1, . . . , hn 7→ en] [The record whose hi field is ei]

[h1 : S 1, . . . , hn : Sn] [Set of all records with hi field in S i]

[r except !.h = e] (3) [Record r̂ equal to r except r̂ .h = e]

Tuples
e[i] [The i th component of tuple e]

〈e1, . . . , en 〉 [The n-tuple whose i th component is ei]

S 1 × . . .× Sn [The set of all n-tuples with i th component in S i]

(1) x ∈ S may be replaced by a comma-separated list of items v ∈ S , where v is either
a comma-separated list or a tuple of identifiers.

(2) x may be an identifier or tuple of identifiers.

(3) ![e1] or ! .h may be replaced by a comma separated list of items !a1 · · · an , where
each a i is [e i] or .h i .

Table 1: The operators of TLA+.

70

if p then e1 else e2 [e1 if p true, else e2]

case p1 → e1 2 . . . 2 pn → en [Some ei such that pi true]

case p1 → e1 2 . . . 2 pn → en 2 other → e [Some ei such that pi true,
or e if all pi are false]

let d1
∆
= e1 . . . dn

∆
= en in e [e in the context of the definitions]

∧ p1
...

∧ pn

[the conjunction p1 ∧ . . . ∧ pn] ∨ p1
...

∨ pn

[the disjunction p1 ∨ . . . ∨ pn]

Table 2: Miscellaneous constructs.

2F [F is always true]

3F [F is eventually true]

WFe(A) [Weak fairness for action A]

SFe(A) [Strong fairness for action A]

F ; G [F leads to G]

Table 3: Temporal operators.

+ (1) − (1) ∗ (1) / (2) ◦ (3) ++

÷ (1) % (1) ^ (1,4) . . (1) . . . −−
⊕ (5) 	 (5) ⊗ � � ∗∗
< (1) > (1) ≤ (1) ≥ (1) u //

≺ � � � t ^^

� � < : :>(6) & &&

< = v (5) w | %%

⊂ ⊃ ⊇ ? @@ (6)

` a |= =| • ##

∼ ' ≈ ∼= $ $$

© ::= � .
= ?? ! !

∝ o]

(1) Defined by the Naturals, Integers, and Reals modules.

(2) Defined by the Reals module.

(3) Defined by the Sequences module.

(4) x^y is printed as x y .

(5) Defined by the Bags module.

(6) Defined by the TLC module.

Table 4: User-definable operator symbols.

71

∧ /\ or \land

¬ ~ or \lnot or \neg

∈ \in

〈 <<

< <

≤ \leq or =< or <=

� \ll

≺ \prec

� \preceq

⊆ \subseteq

⊂ \subset

< \sqsubset

v \sqsubseteq

` |-

|= |=

→ ->

∩ \cap or \intersect

u \sqcap

⊕ (+) or \oplus

	 (-) or \ominus

� (.) or \odot

⊗ (\X) or \otimes

� (/) or \oslash

∃ \E

∃∃∃∃∃∃ \EE

]v]_v
WFv WF_v

∨ \/ or \lor

≡ <=> or \equiv

/∈ \notin

〉 >>

> >

≥ \geq or >=

� \gg

� \succ

� \succeq

⊇ \supseteq

⊃ \supset

= \sqsupset

w \sqsupseteq

a -|

=| =|

← <-

∪ \cup or \union

t \sqcup

] \uplus

× \X or \times

o \wr

∝ \propto

“s” "s" (1)

∀ \A

∀∀∀∀∀∀ \AA

〉v >>_v
SFv SF_v

⇒ =>
∆
= ==

6= # or /=

2 []

3 <>

; ~>
+−. -+->

7→ |->

÷ \div

· \cdot

◦ \o or \circ

• \bullet

? \star

© \bigcirc

∼ \sim

' \simeq

� \asymp

≈ \approx
∼= \cong
.
= \doteq

x y x^y (2)

x+ x^+ (2)

x ∗ x^* (2)

X# x^# (2)

′ ’

-------- (3) -------- (3)

-------- (3) ======== (3)

(1) s is a sequence of characters.

(2) x and y are any expressions.

(3) a sequence of four or more - or = characters.

Table 5: The ascii representations of typeset symbols.

72

Index

" (double quote), 44
^ (exponentiation), 43
|| (PlusCal separator), 6
7→ (TLA+ constructor), 14, 48
\ (set difference), 46
\∗ (end-of-line comment), 6
− (minus), 43
¬ (negation), 44
→ (TLA+ operator), 48
; (leads to), 53, 54
÷ (integer division), 43
+ (plus), 43
× (Cartesian product), 50
⇒ (implies), 44
≡ (equivalence), 44
∆
= (defined to equal), 29, 55
. . (integer interval), 8, 43
∗ (multiplication), 43
◦ (sequence concatenation), 50

for strings, 44
2 (always), 53
3 (eventually), 53, 54
< (less than), 43
≤ (less than or equal), 43
⊆ (subset), 46
(∗ . . . ∗) (comment), 6
f [e] (function application), 14, 47
[h1 7→ e1, . . . , hn 7→ en] (record con-

structor), 48
[x ∈ S 7→ e] (function constructor),

14, 48
[h1 : S1, . . . , hn : Sn] (set of records),

48
〈e1, . . . , en 〉 (tuple/sequence), 49
{ } (empty set), 46
{e1, . . . , en} (set), 46
{x ∈ S : P(x)} (set constructor), 47

{e(x) : x ∈ S} (set constructor), 47
> (greater than), 43
≥ (greater than or equal), 43
∧ (conjunction), 44
∩ (set intersection), 46
∨ (disjunction), 44
∪ (set union), 46
:> (TLA+ operator), 36, 48
! (in except), 49
% (modulus), 11, 43
@@ (TLA+ operator), 36, 48
∀ (universal quantification), 45
∃ (existential quantification), 45
ε, Hilbert’s, 47
∈ (set membership), 46

in with statement, 23
in variable initialization, 7

action, 52, 61
atomic, 52
blocking, 38
corresponding to label, 31, 38
defined for procedure, 32
defined for process set, 32
defined for single process, 32
enabled, 52
next-state, 31, 53, 63
non-blocking, 38

action, atomic, 14
algorithm

beginning of, 6
language, 4
multiprocess, 12
placement of, 8
uniprocess, 12
versus program, 4

always (2), 53

73

and (∧), 44
angle brackets (〈 〉), 49
Append (TLA+ operator), 50
array, 47
ascii representation of symbol, 72
assert (PlusCal statement), 10, 17,

25
assertion, failure of, 25
assignment, 20–21

multiple, 6, 21
to a component, 20

assumption, fairness, 38
atomic action, 14, 52
atomic operation, 52

translation of, 61
await (PlusCal statement), 14, 23

BEGIN TRANSLATION, 8
behavior, 51
binary operator, defining, 55
blocking action, 38
BNF grammar, 57
body of process, 26
book, TLA+, 1
Boolean

operator, 44, 45
value, 44

brackets, square, 14
in BNF grammar, 57

built-in operator of TLA+, 8
bulleted list, 45

c-syntax, 3
call (PlusCal statement), 27

as assignment, 27
in with statement, 24
not allowed in macro body, 28
translation, 65

Cardinality (TLA+ operator), 47
case (TLA+ expression), 50

.cfg file, 68
checking

assertion, 10
invariant, 16, 37
termination, 11
the algorithm, 33

choose (TLA+ operator), 47
command line, running translator and

TLC from, 5
command line, running translator from,

68
commas, used instead of semicolons,

7, 12
comment

in PlusCal algorithm, 6, 57
nested, 6

comparable values, 26
component, assignment to, 20
computational complexity, 4
configuration file, 68
conjunction (∧), 44
conjunctions, bulleted list of, 45
constant (TLA+ statement), 8, 35
constant

operator, 70
parameters, 35

constant, specifying value of, 9
constraint, 36
constructor, set, 47
control path, 19

data refinement, 54
deadlock, 40, 63
debugging, 36
defaultInitValue, 37

declaration of, 60
define (PlusCal statement), 29

translation of, 60
definition, 55

of binary operator, 55

74

placement of, 16, 29, 55
definitions, overriding(, 35
definitions, overriding), 35
difference, set (\), 46
disjunction (∨), 44
disjunctions, bulleted list of, 45
division, integer (÷), 43
do (clause of while statement), 23
domain (TLA+ operator), 47
domain of a function, 47
Done (implicit label), 16

not usable as label, 30

either (PlusCal statement), 22
when label must follow, 22, 30

else (clause of if statement), 21
elsif (clause of if statement), 22
empty set, 46
enabled, 38, 52
enabling condition, 61
end of module, 8
END TRANSLATION, 8
equivalence (≡), 44
error

found by TLC, 36
found by translator, 33
missing label, 34
multiply-defined symbol, 20, 31,

32
Error (implicit label), 27

not usable as label, 30
Euclid’s algorithm, 6
eventually (3), 54
except (TLA+ construct), 49

used in translation, 34, 61
exclusion, mutual, 16
execution of multiprocess algorithm,

26
existential quantification, 45
exponentiation, 43

expression
changed by translator, 34
evaluating with Toolbox, 43
not parsed by translator, 33
PlusCal, 20, 43–51

extends (TLA+ statement), 7

factorial, definition of, 55
failure of assertion, 25
fair (PlusCal construct)

for sequential algorithm, 39
--fair algorithm (PlusCal construct),

39
fair process (PlusCal construct), 38,

64
fair+ process (PlusCal construct),

39, 64
fairness, 38, 52

for non-blocking action, 38
strong, 38
weak, 38

false, 44
Fast Mutual Exclusion Algorithm, 12
FastMutex (PlusCal algorithm), 13,

60
field of record, 48
file name, 7
FiniteSets module, 47
formal parameters of a procedure, 26

initializing, 37
formula, temporal, 51
function, 47

domain of, 47
of multiple arguments, 48
recursive definition of, 55

gcd, 6, 11
Goldbach’s conjecture, 5
Gonthier, Georges, 2
goto (PlusCal statement), 25

75

not allowed in macro body, 28
Goto PCal Source Toolbox command,

34, 37, 60
grammar of PlusCal, 57–59
greatest common divisor, 6, 11

Head (TLA+ operator), 50
Hilbert’s ε, 47

identifier
defined by translation, 31
process, 25
reassigning meaning of, 20, 29,

31, 32
renamed by translation, 32

if (PlusCal statement), 21
when label must follow, 17, 22,

30
if (TLA+ expression), 50
iff (if and only if), 11
implementing a specification, 54
implementing an algorithm, 54
implication (⇒), 44
imported module, 7
indentation used to eliminate paren-

theses, 45
infix operator, 71

defining, 55
Init (defined by translation), 31, 60
initial predicate, 31, 60
initializing

procedure parameter, 37
procedure variable, 27
variable, 6, 14, 37

Int (set of integers), 43
integer division (÷), 43
Integers module, 43
interface refinement, 54
intersection (∩), 46
invariant, 16

checking, 16, 37

keywords, 59

label, 14, 59
action corresponding to, 31, 38
after
call statement, 28, 30
either statement, 22, 30
if statement, 17, 22, 30

error caused by omitting, 34
may not appear in macro body,

28, 30
must follow
goto statement, 25, 30
return statement, 28, 30

naming an atomic operation, 52
needed at beginning of

algorithm body, 30
procedure body, 17, 27, 30
process body, 26, 30

not permitted in with statement,
17, 24, 30

of while statement, 17, 23, 30
rules for, 17, 30

-label (translator option), 18, 67
-labelRoot (translator option), 67
language, algorithm, 4
language, programming, 4
leads to (;), 54
Len (TLA+ operator), 50

for strings, 44
-lineWidth (translator option), 68
list, 49
liveness, 38, 53

checking and symmetry, 41
local variable

declaration, 26
of procedure, 27
of process, 14

76

macro, 28, 57
call, 28
parameter, 29

macro (PlusCal statement), 28
Marzullo, Keith, 2
meaning, reassigning in TLA+, 20,

29, 31, 32
membership, set, 46
missing label error message, 34
mode,

model-checking, 9
model

creating in Toolbox, 9
model value, 35
model-checking mode, 9
module

end of, 8
imported, 7
name, 7
Naturals, 8
TLA+, 7
TLC , 8, 17

modulus (%), 43
multiple arguments, function of, 48
multiple assignment, 6, 21
multiple assignments to variable, 21,

27, 30
not allowed in with, 24

multiply-defined symbol (parsing er-
ror), 20, 31, 32

multiprocess algorithm, 12
execution of, 26

multiprocessor computer, running
TLC on, 41

mutual exclusion, 16
-myspec (translator option), 68

name of
file, 7
module, 7

process, 25, 26
process set, 25, 26, 63

Nat (set of natural numbers), 43
natural numbers, 8
Naturals module, 8, 43
negation (¬), 44
nested comments, 6
nested quantifiers, 46
Next (defined by translation), 31, 63
next-state action

of algorithm, 31, 63
of process, 53

-noDoneDisjunct (translator option),
64, 67

-nof (translator option), 39
non-blocking action, 38
nondeterminism

in either statement, 22
in with statement, 23
not expressed with choose, 47

not (¬), 44
null (TLC error message), 36
numbers, 43

natural, 8

objects, 5
operation, atomic, 52
operator

Boolean, 44, 45
constant, 70
infix, 71
temporal, 71
TLA+, 43–54
user-definable, 71

option statement, 11
options, translator, 67–69
or (∨), 44
or (clause of either statement), 22
overriding definitions(, 35
overriding definitions), 35

77

p-syntax, 3
parameter

constant, 35
declaration of, 8, 35
of macro, 29
of procedure, 26

initializing, 37
parentheses, eliminated by indenta-

tion, 45
path, control, 19
pc (variable), 16, 31, 60

in define statement, 29
in expressions, 17
value of, 16

PlusCal, 4
PlusCal

expression, 20, 43–51
grammar, 57–59
version, 1

power set, 46, 47
predicate, initial, 31, 60
predicate, state, 54
print (PlusCal statement), 7, 10, 24

debugging with, 36
Print (TLA+ operator), 36
procedure, 26

action defined for, 32
call, 27
parameter, 26

initializing, 37
return from, 27
returning a value, 27
translation of, 65–66

procedure (PlusCal construct), 26
process, 25

action defined for, 32
body of, 26
identifier of, 25
individual, 25
name of, 25, 26

next-state action of, 53
set, 25

action defined for, 32
name of, 25, 26, 63

variable, 14
process (PlusCal construct), 14, 25
ProcSet (defined by translation), 31,

60
program versus algorithm, 4
programming language, 4

quantification, 45–46
quantifier nesting, 46

reachable states, 10, 36
record, 48

as function, 48
recursion, tail, 28
recursive definition, 55
refinement, data, 54
refinement, interface, 54
renaming by translation, 32
-reportLabels (translator option),

18, 69
reserved words, 59
return (PlusCal statement), 27

as assignment, 27
in with statement, 24
not allowed in macro body, 28
translation, 65

rules for labels, 17, 30

SANY parser
finds algorithm errors, 33, 34

Sedgewick, Robert, 6
self (PlusCal identifier), 14, 26, 27,

61
semicolon (;)

omitting, 19
semicolon (;)

78

not used in TLA+ definitions, 29,
55

omitting, 57
semicolons, used instead of commas,

7, 12
Seq (TLA+ operator), 50
sequence, 49–50

of statements, 19
of states printed by TLC, 36

Sequences Module, 50
set, 46–47

constructor, 47
difference (\), 46
membership, 46
of all . . . , 47
power, 46, 47
process, 25

SETL, 4
-sf (translator option), 39, 64
skip (PlusCal statement), 14, 24
Spec (defined by translation), 31, 64
-spec (translator option), 68
special character in string, 44
specification of the algorithm, 64
square brackets, 14

in BNF grammar, 57
stack (variable), 31, 60, 65

in define statement, 29
value, 65

state, 36
predicate, 54
reachable, 10, 36
sequence printed by TLC, 36

statement sequence, 19
step, 19, 52

of an algorithm, 4
string, 44

treatment by TLC, 44
strong fairness, 38, 53
struct, 48

subset, 46
subset (TLA+ operator), 46, 47
symbol

symbol, ascii representation, 72
typing, 6
user-definable, 71

symmetry set (of model values), 41
symmetry used by TLC, 41–42
syntaxes of PlusCal, 3

Tail (TLA+ operator), 50
tail recursion, 28
temporal

formula, 51
operator, 51–54, 71

termination, 38, 63
checking, 11

Termination (property defined by
translation), 11, 64

-termination (translator option), 11,
39

then (clause of if statement), 22
threads, running TLC with multiple,

41
TLA+, 4

book, 1
definition, 55

placement of, 16, 20, 55
module, putting algorithm in, 7
operator, 43–54
tools web page, 33

TLC
running from command line, 5
simulation mode, 9
stopping, 9

TLC model checker, 33
error found by, 36
on multiprocessor computer, 41
treatment of strings, 44
use of symmetry, 41

79

TLC module, 8, 17, 36
needed for assert statement, 25
needed for print statement, 24

Toolbox, 5
creating file with, 8
evaluating expressions with, 43
Goto PCal Source command, 34,

37, 60
translation, 60–66

identifiers defined by, 31
identifiers renamed by, 32
of atomic operation, 61
of procedure, 65–66
variables declared by, 31

translator, 8
TLA+ specification, 68
expressions changed by, 34
options, 67–69
running, 33–35
running from command line, 5,

68
running from Toolbox, 9

true, 44
tuple, 49
type correctness, 37
types, 5
typing symbols, 6

unary minus, 43
unchanged (TLA+ operator), 61
union (∪), 46
union (TLA+ operator), 46
uniprocess algorithm, 12
universal quantification, 45
-unixEOL (translator option), 69
user-definable symbol, 71

value
Boolean, 44
model, 35

returned by procedure, 27
values, comparable, 26
variable, 59

declared by translation, 31
initializing, 6, 14, 27, 37
local, declaration of, 26
multiple assignments to, 21, 27,

30
multiple assignments to not al-

lowed in with, 24
of procedure, 27
of process, 14

variable (PlusCal statement), 14
vars (defined by translation), 31, 60
version of PlusCal, 1

weak fairness, 38, 52
web page, TLA+ tools, 33
-wf (translator option), 39, 64
-wfNext (translator option), 39
when (PlusCal statement), 15, 23
while (PlusCal statement), 23

may not appear in a with, 24
not allowed in macro body, 28

with (PlusCal statement), 15, 23
label not permitted in, 17

-writeAST (translator option), 68

80

