Environmental Assessment for Food Contact Notification (FCN) 1917 https://www.fda.gov/Food, see Environmental Decisions under Ingredients and Packaging (Search FCN 1917)

An EA Revision Sheet has been prepared for this Environmental Assessment – See the FONSI for this Food Contact Notification

Environmental Assessment

1. Date June 18, 2018

2. Name of Applicant ANGUS Chemical Company

3. Address Communications to be sent care of:

Mitchell Cheeseman, Ph.D. Steptoe & Johnson LLP

1330 Connecticut Avenue, NW

Washington, DC 20036

4. Description of Proposed Action

The action requested in this food contact notification (FCN) is to permit the use of the substance 2-amino-2-methyl-1-propanol (CAS Reg. No. 124-68-5) (hereinafter AMP, the food contact substance, or FCS) as a dispersant for mineral pigment suspensions as used as fillers and coatings in paper and paperboard. The pigments of interest are made of clay, titanium dioxide, or calcium carbonate. In the filler application, the intended AMP use level is 0.05% (500 ppm), while in the mineral pigment coating application the intended use level is 0.25%. The FCS is not for use in contact with infant formula and human milk. Finished materials and articles containing the FCS may be used in single use applications, for contact with all types of food, under the Conditions of Use A through H and J as described in FDA's Tables 1 and 2.¹

The FCS provides processing benefits resulting in increased brightness, opacity, and cost-efficiency.

ANGUS does not manufacture the paper pulp or paper and paperboard that could contain the FCS. Instead, ANGUS markets the FCS to manufacturers of mineral pigments, who in turn supply the pigments to paper and paperboard mills in the U.S. Finished articles containing the FCS are expected to be utilized in patterns corresponding to the national population density and widely distributed across the country. Therefore, it is anticipated that disposal will occur nationwide. According to the US Environmental Protection Agency's (EPA) 2014 update regarding municipal solid waste in the United States, which is the most recent data available, 64.7% of paper and paperboard materials in MSW were recycled, leaving 28.4% of paper MSW for disposal in landfills or elsewhere and 6.9% for combustion. More detailed data is provided by EPA on the recycling, combustion, and landfilling specifically of containers and packaging. These data indicate that 25.6% are recycled and of the remaining generated

¹ U.S. Food and Drug Administration, *Food Types & Conditions of Use for Food Contact Substances*, http://www.fda.gov/Food/IngredientsPackagingLabeling/PackagingFCS/FoodTypesConditionsofUse/ucm109358.ht

² U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery (5306P), *Advancing Sustainable Materials Management: 2014 Fact Sheet*, November 2016, pg. 8, Table 1. Available at: https://www.epa.gov/sites/production/files/2016-11/documents/2014 smmfactsheet 508.pdf.

³ U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery (5306P), *Advancing Sustainable Materials Management: 2014 Tables and Figures*, December 2016, pg. 9, Table 5. Available at: https://www.epa.gov/sites/production/files/2016-11/documents/2014 smm tablesfigures 508.pdf.

waste, 14.6% (1,260 of 8,640 thousand tons generated) was combusted and 59.8% (5,170 of 8,640 thousand tons generated) was landfilled.⁴

5. Identification of Substances that are Subject of the Proposed Action

The FCS is 2-Amino-2-methyl-1-propanol (AMP, CAS Reg. No. 124-68-5), with a molecular weight of 89.1, a chemical formula of $C_4H_{11}NO$ and the following structure:

The typical physical and environmental properties for AMP are as follows:

Property	Value ⁵	
Appearance	Colorless viscous liquid to waxy solid	
pH of 1% aqueous solution at 20°C	11.3	
Freezing point	30°C	
Melting point	30°C	
Boiling point	163.8°C	
Flash point	77.79 °C (closed cup)	
Vapor Pressure	0.34 mmHg at 20°C	
Relative Density	0.92 at 40°C	
Water Solubility	Miscible with water	
Octanol-Water Partition Coefficient	Log K _{ow} -0.63 at 20 °C	
Soil Mobility Partition Coefficient	K _{oc} 18 (estimated)	
Viscosity	102 mPa/s	

5. Introduction of Substances into the Environment

a. Introduction of Substances into the Environment as a Result of Manufacture

Under 21 C.F.R. § 25.40(a), an environmental assessment ordinarily should focus on relevant environmental issues relating to the use and disposal from use, rather than the production, of FDA-regulated articles. The FCS may be manufactured in plants both inside and outside of the United States. When manufactured in the U.S., the plants meet all applicable federal, state and local environmental

⁴ Id.

⁵ ANGUS Chemical Company Safety Data Sheet for AMP-Regular (99% AMP in solution), https://www.angus.com/literature/downloaddoc?fileName=ANGUS AMP REGULAR SDS.pdf&contentType=Safety20Data%20Sheet&parentFolder=Literature.

regulations. The Notifier asserts that there are no extraordinary circumstances that would indicate the potential for adverse environmental impacts resulting from the manufacture of the FCS such as:

1) unique emission circumstances not adequately addressed by general or specific emission requirements (including occupational) promulgated by Federal, State or local environmental agencies where the emissions may harm the environment; 2) the proposed action threatening a violation of Federal, state or local environmental laws or requirements (40 C.F.R. § 1508.27(b)(10)); or 3) production associated with a proposed action may adversely affect a species or the critical habitat of a species determined under the Endangered Species Act or the Convention on International Trade in Endangered Species of Wild Fauna and Flora to be endangered or threatened, or wild fauna or flora that are entitled to special protection under some other Federal law. Consequently, information on the manufacturing site and compliance with relevant emissions requirements is not provided here.

b. Introduction of Substances into the Environment as a Result of Use/Disposal

The FCS is intended for use as dispersion agent for mineral pigments that are in turn used as fillers and coatings during the paper manufacturing process. ANGUS plans to market the FCS to pigment suppliers, who in turn market pigments to paper and paperboard mills in the U.S. Potential environmental exposure would occur during paper processing and when the paper and paperboard products themselves (as packaging) are disposed by the user.

Waste Water:

We will assume that all of the FCS used in the filler application will enter the facility waste water processing system. Effluent from the pulp and paper processing will be treated via waste water treatment facilities before release into the environment. This substance has high water solubility, a low vapor pressure, and low Log Kow, which indicates a low potential for adsorption to soil or sediments, and a low potential to volatilize from water or soil to the atmosphere. AMP has been shown to be readily biodegradable, with degradation determined to be 89.3% after 28 days.

The intended technical effect of the AMP is to aid with the dispersion of the mineral pigment added to food contact paper in order to increase brightness and opacity. A major application is in the production of bleached paper products. Bryant, *et al.* have analyzed water use in paper and paperboard production based on process and product type. Although this reference does not specifically address the production of food contact paper, it does report information on the water use in various types of mills, including integrated pulp and paper mills, bleached kraft market pulp mills, and paper mills

⁶ Water-discharging facilities producing pulp, paper, and paperboard are subject to the US Environmental Protection Agency's effluent guidelines and standards under the Clean Water Act, at 40 C.F.R. Part 430.

⁷ ANGUS Chemical Company Safety Data Sheet for AMP-Regular.

⁸ Grönfors, J., *Use of Fillers in Paper and Paperboard Grades*, Final Thesis, Tampere University of Applied Sciences (May 2010), pp. 23-25, https://theseus.fi/bitstream/handle/10024/16226/Gronfors_Jarkko.pdf?sequence=1, which discusses the types of cartonboard typically used in food contact applications and identifies them primarily as using bleached chemical pulp.

⁹ Bryant, P.S., Malcolm, E.W., and Woitkovich, C.P., IPST Technical Paper Series Number 601 Pulp and Paper Mill Water Use in North America (December 1995), PDF p. 9, https://smartech.gatech.edu/bitstream/handle/1853/1920/tps-601.pdf.

producing more and less than 100 tons paper/day. The reported median water use levels for these types of facility (in thousand gallons per short ton) are 22.9, 23.0, 3.6 and 12.0, respectively. The report notes that specialty grade mills may have very high water use relative to other mills in their category, which would include some mills producing food contact papers. In describing the water consumption rate data for paper mills producing greater than 100 air-dried short tons (ADST) per day, Bryant, et al. state, "[of] the 11 categories analyzed, mills producing paper and board with production rates greater than 100 tons/day had the lowest median water use at 3,600 gallons/ton." The histogram for this mill category (Fig. 3) shows that 14% of mills in this category (218 x 14% = 31 mills) use less than or equal to 1,000 gal/ton and 54% of these mills (218 x 45% = 118 mills) use less than or equal to 4,000 gal/ton per day. As summarized above, a reasonable conservative water consumption rate would be 1,000 gal/ton/day.

Assuming 1,000 gal/ton, the calculated daily water use would be:

$$\frac{1,000 \ gal}{short \ ton \ paper} \times \frac{3.785 \ L}{gal} \times \frac{1 \ kg \ water}{L \ water} = 3,785 \ kg \ water/ton$$

Presence of AMP in the wastewater is anticipated only as a result of the filling application. The coating is applied during the dry-end of production (i.e., to the dried sheet). In our experience, the only loss of water-containing AMP from the coating application would be minor losses to evaporation, while excess coating is returned to the system for reuse. The use level requested for the AMP is 0.05% in the pigment, the mineral pigment may comprise up to 72.5% of the filler, and the filler may be used at up to 30% in the finished paper. This equates to 0.01% in the finished paper (or 100 mg AMP/kg paper). The level of AMP in the water is therefore calculated as follows:

$$\frac{100 \ mg \ AMP}{kg \ paper} \times \frac{907.185 \ kg}{short \ ton} \times \frac{1 \ short \ ton}{3,785 \ kg \ water} = \frac{24.0 \ mg \ AMP}{kg \ water \ per \ day}$$

At an 89.3% biodegradation rate, the level of AMP remaining after degradation would be 24.0 mg/kg \times (100%-95%) = 1.2 mg/kg. If we then use a 10-fold dilution factor for discharge to surface waters, ¹⁴ the estimated environmental concentration is 0.12 mg/kg (equivalent to 0.12 mg/L).

Air (Combustion):

Solid wastes, including disposal by users of paper products generated with the FCS, are expected to be disposed of by either landfill or incineration.

¹⁰ Id., Table 2.

¹¹ ld.

¹² ld., p. 2.

 $^{^{13}}$ 0.05% × 72.5% × 30% = 0.01%.

¹⁴ Rapaport, Robert A., 1988. Prediction of consumer product chemical concentrations as a function of publically owned treatment works treatment type and riverine dilution. Environmental Toxicology and Chemistry, 7(2), 107-115. Found online at: http://onlinelibrary.wiley.com/doi/10.1002/etc.5620070204/abstract.

The food contact substance consists of carbon, hydrogen, nitrogen, and oxygen, elements commonly found in municipal solid waste. To calculate the potential environmental introduction of the FCS due to combustion of finished articles, we have assumed that available carbon in the FCS would be converted to carbon dioxide, that available nitrogen will be converted to nitrous oxide, and assumed that 14.6% of the market volume will be combusted.

There is the potential for greenhouse gas (GHG) emissions to result from the use and disposal of the FCS during the incineration of articles containing the FCS in MSW combustion facilities. Such facilities are regulated by the EPA under 40 C.F.R. Part 98, which "establishes mandatory GHG reporting requirements for owners and operators of certain facilities that directly emit GHG." Part 2 of this regulation (40 C.F.R. § 98.2), describes the facilities that must report GHG emissions and sets an annual 25,000 metric ton CO2-e emission threshold for required reporting.

To evaluate the significance of the environmental impact of these GHG emissions, we refer to CEQ regulations under 40 C.F.R. § 1508.27, which defines 'significantly' as it relates to assessing the intensity of an environmental impact in NEPA documents. 40 C.F.R. § 1508.27(b)(10) states that when evaluating intensity of an impact, one should consider "whether the action threatens a violation of Federal, State, or local law or requirements imposed for the protection of the environment." Based on the confidential market volume, the expected carbon dioxide equivalent emissions, as shown in the confidential attachment to the EA, are below 25,000 metric tons on an annual basis. As the estimated GHG emissions are well below the threshold for mandatory reporting, no significant environmental impacts are anticipated resulting from combustion of the FCS in MSW combustion facilities.

<u>Landfill</u>:

In light of EPA's regulations governing municipal solid waste landfills, only extremely small amounts, if any, of the FCS is expected to enter the environment as a result of the landfill disposal of finished articles containing the FCS. EPA's regulations require new municipal solid-waste landfill units and lateral expansions of existing units to have composite liners and leachate collection systems to prevent leachate from entering ground and surface water, and to have groundwater monitoring systems. (40 C.F.R. Part 258.) Although owners and operators of existing active municipal solid waste landfills that were constructed before October 9, 1993 are not required to retrofit liners and leachate collection systems, they are required to monitor groundwater and to take corrective action as appropriate.

6. Fate of Emitted Substances in the Environment

a. Air

As described above, no significant quantities of any substances will be released to the atmosphere upon the use and disposal of finished articles manufactured with the FCS. Therefore, an assessment of the environmental fate of these substances is not required.

b. Water

As discussed above, the calculated EEC to surface waters is 0.12 mg/kg (equivalent to 0.12 mg/L). Based on the measured log Kow of -0.63 and bioconcentration factor (BCF) of <1, ¹⁵ the FCS is not expected to bioaccumulate. The lowest reliable aquatic toxicity values are reported as follows: ¹⁶

Group	Species	Acute LC ₅₀ or EC ₅₀ (unless indicated)
Freshwater Fish	Lepomis macrochrius (Bluegill sunfish)	190 mg/L
Freshwater Invertebrates	Daphnia Magna	193 mg/L
Saltwater Fish	Pleuronectes platessa (European plaice)	184 mg/l
Saltwater invertebrate	Crangon Crangon (shrimp)	179 mg/L
Freshwater plants	Green algae (Scenedesmus sp.)	565.5 mg/L
Microorganisms	Activated sludge	342.9 mg/L

No chronic ecotoxicity studies have been identified in the literature. The most sensitive species is the shrimp, with an LC50 of 179 mg/L. The calculated EEC of 0.12 mg/L is approximately 1500-fold lower below this endpoint. Moreover, we note that the most sensitive species is a saltwater species. We would expect that most if not all paper mills would be located along and discharge into freshwater bodies (saltwater would cause corrosion to mill equipment). It is our understanding that the dilution factor for discharge to surface waters which we have applied in developing the EEC contemplates only discharge to freshwater bodies. Thus, we would expect that an EEC for saltwater species would be significantly lower. With regard to freshwater species, the calculated EEC of 0.12 mg/L is nearly 1600-fold below the lowest identified LC50, for bluegill.

c. Land

Considering the factors discussed above, no significant effects on the concentrations of and exposures to any substances in terrestrial ecosystems are anticipated as a result of the proposed use of the subject FCS. As discussed above, EPA's regulations for new and expanding landfills require implementing preventive measures to significantly reduce or eliminate leachate.

On these bases, there is no reasonable expectation of a significant impact on the concentration of any substance in the environment due to the proposed use of the FCS in the production of food contact paper and paperboard.

6

¹⁵ See AMP-Regular SDS.

¹⁶ Id

7. Environmental Effects of Released Substances

No significant introductions of the substances into the environment as a result of the proposed use of the FCS were identified above. Therefore, an evaluation of the environmental effects of the proposed use of the FCS is not required. In addition, the use and disposal of finished articles containing the FCS are not expected to threaten a violation of applicable laws and regulations, such as the EPA's regulations in 40 C.F.R. Part 60 that pertain to municipal solid waste combustors or and Part 258 that pertain to landfills.

8. Use of Resources and Energy

As is the case with other food contact substances, the production, use and disposal of the FCS involves the use of natural resources such as petroleum products and coal. The use of the FCS in the fabrication of food-contact materials is not expected to result in a net increase in the use of energy and resources, because the FCS is intended to be used in packaging which will be used in place of similar paper and paperboard materials now on the market for use in food packaging applications. The partial replacement of these types of materials by products containing the FCS is not expected to have any adverse impact on the use of energy and resources.

The FCS also is not expected to have a significant effect on paper recycling programs. Due to its affinity for water, AMP used in the filler application is expected to almost entirely remain with the whitewater in the processing plant. AMP used in the coating application may be present in paper that is recycled. When the paper for recycling is re-pulped, the AMP would be expected dissolve into the pulp slurry and will be treated with other chemicals from the recycling process. For this reason, the intended use of AMP will have no effect on the recyclability of paper.

9. Mitigation Measures

As discussed above, no significant adverse environmental impacts are expected to result from the use and disposal of the FCS when present in waste water or in finished paper and paperboard. Therefore, the FCS is not reasonably expected to result in any new environmental issues that require mitigation measures.

10. Alternatives to the Proposed Action

No potential adverse environmental effects are identified herein that would necessitate alternative actions to that proposed in this FCN. If the proposed action is not approved, the result would be the continued use of the currently marketed materials that the subject FCS would replace. Such action would have no environmental impact.

11. List of Preparers

Dr. Mitchell Cheeseman, Steptoe & Johnson LLP, 1330 Connecticut Ave., NW, Washington, DC 20036.

Dr. Cheeseman holds a Ph.D. in Chemistry from the University of Florida. Dr. Cheeseman served for 18 months as a NEPA reviewer in FDA's food additive program. He has participated in FDA's NEPA review of nearly 800 food additive and food contact substance authorizations and he supervised NEPA review for FDA's Center for Food Safety and Applied Nutrition for five and a half years from 2006 to 2011.

Ms. Deborah C. Attwood, Steptoe & Johnson LLP, 1330 Connecticut Ave., NW, Washington, DC 20036.

Ms. Attwood has 9 years of experience preparing environmental submissions to FDA for the use of food contact substances.

12. Certification

The undersigned official certifies that the information provided herein is true, accurate, and complete to the best of his knowledge.

Date: June 18, 2018

Mitchell Cheeseman, Ph.D.

13. References

ANGUS Chemical Company Safety Data Sheet for AMP-Regular.

Bryant, P.S., Malcolm, E.W., and Woitkovich, C.P., IPST Technical Paper Series Number 601 *Pulp and Paper Mill Water Use in North America* (December 1995).

Grönfors, J., *Use of Fillers in Paper and Paperboard Grades*, Final Thesis, Tampere University of Applied Sciences (May 2010).

Rapaport, Robert A., 1988. *Prediction of consumer product chemical concentrations as a function of publically owned treatment works treatment type and riverine dilution*. Environmental Toxicology and Chemistry, 7(2), 107-115.

- U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery (5306P), *Advancing Sustainable Materials Management: 2014 Fact Sheet*, November 2016.
- U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery (5306P), *Advancing Sustainable Materials Management: 2014 Tables and Figures*, December 2016.
- U.S. Food and Drug Administration, Food Types & Conditions of Use for Food Contact Substances.

14. Attachments

Confidential Attachment to the Environmental Assessment.