ORIGINAL SUBMISSION

NutraSource, Inc. 6309 Morning Dew Ct, Clarksville, MD 21029 (410)-531-3336 or (301) 875-6454

March 8, 2016

GRN 000636

\$ 636

Dr. Antonia Mattia Office of Food Additive Safety (HFS-255) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740

Subject: GRAS Notice for Phosphatidylserine derived from Sunflower Lecithin

Dear Dr. Antonia Mattia:

On behalf of ECA Healthcare, Inc., we are submitting for FDA review a GRAS notification for phosphatidylserine (PS) derived from sunflower lecithin. The attached documents contain the specific information that addresses the safe human food uses for the notified substance. We believe that this determination and notification are in compliance with proposed Sec. 170.36 of Part 21 of the Code of Federal Regulations (21 CFR section170.36) as published in the Federal Register, Vol. 62, No. 74, FR 18937, April 17, 1997.

We enclose an original and two copies of this notification for your review. Please feel free to contact me if additional information or clarification is needed as you proceed with the review. We would appreciate your kind attention to this matter.

Sincerely, (b) (6)

318/2016

Susan Cho, Ph.D. Susanscho1@yahoo.com Agent for ECA Healthcare, Inc.

enclosure

GRAS EXEMPTION CLAIM for SunPSTM Manufactured by ECA Healthcare, Inc.

Prepared by: NutraSource, Inc. 6309 Morning Dew Court Clarksville, MD 21029 Tel: 410-531-3336; Susanscho1@yahoo.com

A. GRAS EXEMPTION CLAIM: phosphatidylserine (PS) from sunflower lecithin (SunPS[®]) - **Exemption from the Requirement for Premarket Approval Pursuant to Proposed 21 CFR 170.36**

ECA Healthcare, Inc. (hereinafter referred to as ECA) has determined that its phosphatidylserine (PS) from sunflower lecithin (SunPSTM) is Generally Recognized As Safe (GRAS). Consistent with Section 201(s) of the *Federal Food, Drug, and Cosmetic Act,* this determination is based on scientific procedures described in the following sections. Since these procedures specify the conditions of its intended use in food, the use of ECA's SunPSTM is exempt from the requirement of premarket approval.

Signed

Susan Cho Date: Agent for ECA Healthcare, Inc.

B. Notifier's Name and Address

Jiang Su, Managing Director ECA Healthcare, Inc. 1017 North Building, 1839 Qixin Rd Shanghai, China 201101 Tel: +86+139-1704-0601 or 909-859-4956 (Cell phone in California) Fax: +86-21-3358-0611 E mail: jiang.su@ecahealthcare.com

GRAS EXEMPTION CLAIM for SunPSTM Manufactured by ECA Healthcare, Inc. Prepared by: NutraSource, Inc. 6309 Morming Day Court

6309 Morning Dew Court Clarksville, MD 21029 Tel: 410-531-3336; Susanscho1@vahoo.com

A. GRAS EXEMPTION CLAIM: phosphatidylserine (PS) from sunflower lecithin (SunPS[®]) -Exemption from the Requirement for Premarket Approval Pursuant to Proposed 21 CFR 170.36

ECA Healthcare, Inc. (hereinafter referred to as ECA) has determined that its phosphatidylserine (PS) from sunflower lecithin (SunPSTM) is Generally Recognized As Safe (GRAS). Consistent with Section 201(s) of the *Federal Food*, *Drug*, *and Cosmetic Act*, this determination is based on scientific procedures described in the following sections. Since these procedures specify the conditions of its intended use in food, the use of ECA's SunPSTM is exempt from the requirement of premarket approval.

1

Signed

(b) (6)

3/8/2016

Susan Cho Date: Agent for ECA Healthcare, Inc.

B. Notifier's Name and Address

Jiang Su, Managing Director ECA Healthcare, Inc. 1017 North Building, 1839 Qixin Rd Shanghai, China 201101 Tel: +86+139-1704-0601 or 909-859-4956 (Cell phone in California) Fax: +86-21-3358-0611 E mail: jiang.su@ecahealthcare.com

BECEIVE 2016 NAR 16 2016 NAR 16 2016

C. Name of GRAS Substance

Common name is Phosphatidylserine (PS). Trade name is SunPSTM, manufactured by ECA Healthcare, Inc.

D. Product Description

D.1. Identity

<u>Chemical name:</u> Phosphatidylserine (PS). Per IUPAC-CBN nomenclature, it is a 1,2-diacyl-sn-glycero-3-phospho-L-serine.

Chemical Abstract Registry Number:

There is no CAS Reg. Number assigned specifically to PS derived from sunflower lecithin. The generic CAS Reg. Number assigned to PS is: 84776-79-4.

<u>Chemical Formula:</u> The empirical formula of the most abundant molecule (comprising two linoleic acids) is $C_{42}H_{73}O_{10}PNCa$.

<u>Structure:</u> PS consists of a glycerophosphate skeleton conjugated with two fatty acids and L-serine via a phosphodiester linkage. The structural diagram below shows the general representation of the glycerophosphate backbone with R as fatty acids. The counter ion for the phosphate moiety is Ca^{2+} .

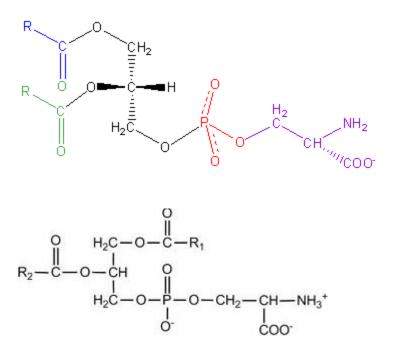


Figure 1. General structure of PS, where R= alkyl group; the counter ion for the phosphate moiety is Ca²⁺ in the most abundant form.

Fatty Acid Profile:

The mean percentages of the fatty acids (FA) in PS from various sources are presented in Table 1. Table 2 presents the FA profile of SunPSTM. The bovine source is mainly composed of stearic and oleic acids; the main fatty acids in plant sources have linoleic acid and oleic acid; and fish sources have docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and palmitic acid as the main fatty acids. Different sources do not significantly impact safety profiles of PS.

Fatty Acid		cal FA compo			
	Soy-	Sunflower-	Fish-	Krill-	Bovine-
	derived	derived	derived	derived	derived
	\mathbf{PS}^1	PS	PS^2	PS^3	PS^4
Caprylic acid (C8:0)			1		
Myristic acid (C14:0)			2	2	
Palmitic acid (C16:0)	14	11	23	23.5	3
Palmitoleic acid (C16:1)			2	1.8	
Stearic acid (C18:0)	4	2.9	2	1	40
Oleic acid (C18:1 n-9)	15	15.8	13	13	35
Vaccenic acid (C18:1n-					
11)					
Linoleic acid (C18:2n-6)	62	70.11	2	1.2	
alpha-Linolenic acid	5	0.2	1	1	
(C18:3 n-3)	5	0.2	1	1	
Octadecatetraenoic acid				2	
(C18:4n-3)				Δ	
Eicosenoic (C20:1n-9)			2	0.6	6
Arachidonic acid (C20:4n-			1	0.7	
6)			1	0.7	
Eicosapentaenoic acid			12	31	
(C20:5n-3; EPA)			12		
Erucic acid (C22:1)				1.3	6
Docosapentaenoic acid			1	0.7	
(C22:5)			1	0.7	
Docosahexaenoic acid			33	14	7
(C22:6n-3; DHA)			55	14	/
Nervonic acid (C24:1n-9)				0.3	3
Others			5	5	

Table 1. Fatty acid (FA) profiles of soy-, sunflower-, fish-, krill-, and bovine-derived PS

¹ GRN No. 000223; ² GRN No. 000279; ³ GRN No. 000311.

⁴ Adopted from Claro et al. (1999) and GRN 545. DHA=Docosahexaenoic acid; EPA=Eicosapentaenoic acid; FA= fatty acid.

ruble 2. Typical latty acta (TT) composition of Ecit 5 Sun					
Percentage (as % of total FA)					
14.58					
3.88					
15.90					
60.32					
5.32					
100					

Table 2. Typical fatty acid (FA) composition of ECA's SunPSTM

D.2. Manufacturing Process

The phosphatidylcholine-enriched lecithin is enzymatically trans-phosphatidylated with L-serine using phospholipase D, which catalyzes the substitution of the choline head-group with serine to form PS. Following the enzymatic reaction, PS is separated from the reaction mixture, purified and dried.

ECA uses a Hazard Analysis and Critical Control Point (HACCP)-controlled manufacturing process and rigorously tests its final production batches to verify adherence to quality control specifications described below. Processing aids, such as ethanol and other ingredients including excipients used in the manufacturing process, are food-grade as specified in the Food Chemical Codex (FCC). The ECA's manufacturing facility and process are certified with the NSF International, based in Ann Arbor, Michigan, USA.

D.3. Typical Composition and Specifications

SunPSTM is produced as an off-white to brown-colored powder. Table 3 presents the typical composition of SunPSTM in comparison to those described in other GRNs for PS. Table 4 shows specifications of SunPSTM. Analysis of pesticides (less than 0.05 ppm) and dioxin congeners (less than 0.5 ppm) showed that the levels for the pesticides and other contaminants are minimal in this product. Specifications are comparable to those established in the previous GRAS notices (GRNs 186, 197, 223, and 545; PS content: GRN 186, $\geq 19\%$; GRN 197, $\geq 90\%$; GRN 223, $\geq 70\%$; GRN 545, $\geq 60\%$).

ECA's product is specified to contain \geq 50% PS. The product also contains other phospholipids and glycerides naturally occurring in sunflower lecithin. These other phospholipids include lysoPS, phosphatidic acid, lyso phosphatidic acid, and associated phospholipids. Compared to the sunflower PS described in GRN 545, the specifications of SunPSTM are approximately 10% lower in the PS content and 10% higher in other phospholipids. These phospholipid profiles are not expected to impact the safety profile of PS products since other phospholipids follow similar metabolic pathways to that of PS. Phospholipids including phosphatidic acid, lyso PS, and lyso phosphatidic acid, are a class of lipids that are a major component of all cell membranes. Due to their safety and functionality, phospholipids are widely used as an emulsifier in food formulations.

Table 5. Typical composition								
Parameter	SunPS	GRN	GRN	GRN	GRN	GRN	GRN	
		545	186	197	223	279	311	
PS, %	52.3	66.8	19*	90	72.0	48.0	55.0	
Phosphatidyl acid, %	7.3	9.2	≤81	3.2	10.6	6.6	5.6	
Phosphatidylcholine, %	3.6	0.4		NA	NA	1.6	0.8	
Lyso PS, %	0.8	0.9		0.3	0.5	0.8	0.8	
Lyso phosphatidyl acid, %	0.6	0.7		0.3	0.3	NA	NA	
Phosphatidyl inositol, %	3.5	1.3		NA	NA	1.6	1.6	
Other phospholipids, %	17.2	8.0		0.5	4.3	19.8	12.8	
Glycerides (Tri-, di- and	3.1	4.9		0.1	2.8			
mono-), %	5.1							
DHA+EPA, %	NM	NM	NM	NM	NM	22	23	
Calcium, %	2.8	2.5	NA	0.2	2.5	NA	NA	
Sodium, %		NA	NA	3.1	≤0.1	NA	NA	
Silicon dioxide should be	1-1.5		≤1					
less than 1.5%	1-1.5							
Free L-serine, %	0.5	0.4	NA	0.3	≤0.1	NA	NA	
Loss on drying, %	1.1	NA	≤5.0	1.0	≤0.2	NA	NA	
Ash, %	14.2	14.6	NA	NA	12.7	NA	NA	
Volatiles, %	NM	NM	NM	NM	NM	2.0	1.5	
NIA - not ovailable. NIM- not measured, DC- Dheamhatided again as * This value represents the sum								

Table 3. Typical composition of $SunPS^{TM}$ and other PS

NA=not available; NM=not measured; PS= Phosphatidylserine; *This value represents the sum of PS and lysoPS.

Table 4. Specifications of SunPSTM

Parameter	Specifications, %	Assay method
Color	Off-white, light yellow to brown	Visual
Phosphatidylserine	≥50.0%	³¹ P-NMR
Loss on drying	≤2.0%	Karl Fisher
Peroxide value	\leq 5 meq/Kg	AOCS official Cd 8-53
Microbiological assays		
Total plate count	≤1000 cfu/g	USP 61
Yeast and mold	≤100 cfu/g	USP 61
E. coli	Negative (cfu/g)	USP 61
Salmonella	Negative (cfu/20g)	USP 61
Heavy metals		
Lead	≤1 ppm	USP 251
Arsenic	≤1 ppm	USP 211
Cadmium	≤1 ppm	AAS
Mercury	≤0.1 ppm	USP 261
Aflatoxins (B1, B2, G1, G2)	≤0.2 ppb	HPLC-FLD
Ethanol	≤1,000 ppm	GC

E. Applicable Conditions for Use of the Notified Substance

E.1. Current Regulatory Status

In 2003, the ability of dietary supplementation with PS (both PS derived from soy lecithin and bovine cortex) to support cognition and interrupt cognitive deterioration was recognized by the FDA in its approval of the qualified health claim, 'Consumption of PS may reduce the risk of dementia in the elderly', with a disclaimer, 'Very limited and preliminary scientific research suggests that phosphatidylserine may reduce the risk of dementia in the elderly' (FDA, 2003). In the FDA's response to this health claim petition, the FDA concluded that the use of PS as a dietary supplement is safe and lawful under 21 C.F.R. § 101.14 provided that bovine-derived sources, if used, are not derived from bovine tissues from cattle born, raised, or slaughtered in any country where bovine spongiform encephalopathy exists.

In addition, the FDA has issued no question letters on six GRAS notices related to food uses of PS derived from sunflower lecithin (GRN 545; FDA, 2015), soy lecithin (GRNs 186, 197, and 223; FDA 2006a, 2006b, 2007), and marine oil (GRNs 279 and 311; FDA, 2009, 2010). In these GRAS notices, toxicity-related studies on PS from the literature were presented to support the safety of PS. The FDA did not question the acceptability and suitability of these studies to establish the safety of PS for the proposed food uses. The safety and related information in the above mentioned GRAS notices are hereby incorporated by reference into this independent GRAS determination.

E.2. Intended Use Levels and Food Categories

SunPSTM will be used in the same food categories and at the same use levels as those described in GRN 223 and 545. As shown in Table 5, ECA proposes to use SunPSTM as a nutrient [21 CFR_ §170.3(o)(20)], and as an alternative to other sources of PS, at levels up to 100 mg PS per serving in dairy product analogs (imitation milk and soy milk), grain products (nutritional bars: breakfast, granola, and protein), milk products (flavored milk and milk drinks, excluding fluid milk, milk-based meal replacements, and yogurt), and processed fruits and fruit juices (fruit flavored drink), at use levels of 50 mg PS per serving in breakfast cereals and milk (fluid- regular, filled, buttermilk, and dry reconstituted), and up to 300 mg in medical foods. Medical foods are defined as foods that are specially formulated and intended for the dietary management of a disease that has distinctive nutritional needs that cannot be met by the normal diet alone.

ECA does not intend to use PS as a component of infant formula or in foods under the USDA's jurisdiction such as meat, poultry, and egg products.

Food category	Proposed food use	PS max. use	RACC,	Use
		level	g or ml	level, %
		(mg/RACC)		
Breakfast cereals	Instant and regular hot cereals	50	240	0.0208
	Ready-to-eat cereals	50	15-55	0.0909-
				0.333
Dairy product	Imitation milk	100	240	0.042
analogs	Soy milk	100	240	0.042
Grain products	Nutritional bars (breakfast, granola,	100	240	0.625
	protein)			
Milk products	Flavored milk and milk drinks,	100	240	0.042
	fluid			
	Milk, fluid (regular, filled,	50	240	0.0208
	buttermilk, and dry reconstituted)			
	Milk-based meal replacements	100	240	0.042
	Yogurt	100	225	0.044
Processed fruits	Fruit flavored drinks	100	240	0.042
and fruit juices				

Table 5. Intended use and maximum use levels of PS

Adopted from GRNs 223 and 545. RACC= Reference Amount Customarily Consumed; PS= Phosphatidylserine.

E.3. Estimated Dietary Intakes (EDIs) of PS Under the Intended Food Uses

Currently, dietary intakes of PS, from its natural presence in the diet, is estimated to be in the range of 75 - 184 mg/person/day.

Since SunPSTM will be used in the same food categories and at the same use levels as those described in GRN 223 and 545, these exposure calculations presented in those GRNs are valid for SunPS as well. As noted in GRN 223 and 545, consumption of types of food categories intended for addition of PS by the total U.S. population resulted in estimated mean all-user intakes of PS of 44.8 mg/person/day (0.95 mg/kg body weight [bw]/day. When heavy consumers (90th percentile) were assessed, the 90th percentile all-user intakes of PS from all intended food uses by the total population were 98.7 mg/person/day (2.51 mg/kg bw/day). A summary of the estimated daily intakes of PS from the intended food categories is presented in Table 6.

These estimates are highly optimistic since all foods under the intended uses will not be used at the maximum use levels. Based on the totality of the science and as discussed below, these intake levels are considered safe.

Age group, years	% users	N of total	mg/day		mg/kg bw/day	
		users	Mean	90 th	Mean	90 th
				percentile		percentile
0-2	52.5	1,880	27.4	60.5	2.21	4.86
3-11	79.8	5,030	41.9	91.1	1.72	3.64
12-19, females	54.1	380	45.8	89.1	0.83	1.67
12-19, males	55.0	383	60.7	117.8	1.01	2.18
20+ females	53.3	2,438	42.2	96.4	0.65	1.47
20+ males	46.0	2,230	49.6	105.0	0.61	1.31
Total population	59.9	12,341	44.8	98.7	0.95	2.15

Adopted from GRN 545. EDI = estimated dietary intake; PS= Phosphatidylserine; BW = body weight; N= number.

E.4. Basis for the GRAS Determination

The subject of the present GRAS assessment is SunPSTM, PS derived from sunflower lecithin. PS, a structural component of cells, is found in all biological membranes of plants, animals, and other life forms. As the specifications in this GRAS determination are similar to the specifications in the previous FDA GRAS Notice (GRN 545), it is recognized that the information and data in the GRAS Notice received and reviewed by FDA are pertinent to the safety of the PS product derived from sunflower lecithin in this GRAS determination. Therefore, this notice incorporates by reference the safety and metabolism studies and other pertinent information of PS discussed in GRN 545. In addition, as soy PS and PS derived from sunflower and marine sources follow the similar metabolic pathway, this notice also incorporates by reference the safety and other pertinent information discussed in GRNs 183, 197, and 223 (FDA, 2001, 2010a; PS from soy lecithin) and GRNs 279 and 311 (PS from marine source; FDA, 2009, 2010).

The intended use of sunflower PS (SunPSTM) has been determined to be safe though scientific procedures as set forth in 21 CFR 170.3(b), thus satisfying the so-called "technical" element of the Generally Recognized as Safe (GRAS) determination. In addition, because this safety evaluation was based on generally available and widely accepted data and information, it also satisfies the so-called "common knowledge" element of a GRAS determination.

Technical Element (Safety) of the GRAS Determination

Numerous human and animal studies have reported benefits of SunPSTM with no major adverse effects. ECA uses a HACCP-controlled manufacturing process and rigorously tests its final production batches to verify adherence to quality control specifications. There is broad-based and widely disseminated knowledge concerning the chemistry of PS. This GRAS determination is based on the data and information generally available and consented opinion about the safety of PS from a sunflower source. The literature indicates that PS offers consumers benefits without adverse effects.

The following safety evaluation fully considers the composition, intake, nutritional, microbiological, and toxicological properties of SunPSTM as well as appropriate corroborative data.

- 1. ECA's SunPS[™] is manufactured under current Good Manufacturing Practices (cGMP) using common food industry materials and processes. Analytical data from multiple lots indicate that SunPS[™] complies reliably with the established food-grade product specifications and meets all applicable purity standards. ECA's SunPS[™] meets the specifications of the Food Chemical Codex, 8th edition.
- 2. PS is an endogenous substance found in the human body. The bioavailability of the ingested PS is limited due to extensive hydrolysis in the intestine prior to absorption, and that absorbed PS is transported and rapidly converted into other endogenous constituents. Orally ingested PS is hydrolyzed in the intestine prior to its absorption. The absorbed PS is transported and rapidly converted into other endogenous constituents. Although no animal toxicity studies and human studies were done on PS from this sunflower source, we recognize that metabolic fates of PS are expected to be similar regardless of its source.
- 3. Historical consumption of PS supports the safety of PS. PS is commonly found in common foods such as meat, fish, legumes, etc. PS has been marketed as a dietary supplement for the past two decades without any adverse effects (except gastrointestinal side effects such as nausea and indigestion). A typical recommended dose of PS as a dietary supplement is 100 mg three times a day (300 mg/day).
- 4. In numerous human clinical studies, the safety of PS has been confirmed at daily doses of up to 300 mg for up to 6 months (Hellhammer et al., 2004, 2012, 2014; Jorissen et al., 2001, 2002). The safety of PS has been proven in human clinical studies including susceptible groups (elderly and children) and healthy individuals. Appendix A summarizes human clinical studies conducted on PS derived from various sources.
- 5. The 90th percentile EDI under the intended use is estimated to be 98.7 mg PS/person (2.51 mg/kg bw/day) for all-users. The 90th percentile intake of PS is approximately 3-fold lower than the safe levels (300 mg/day) determined on the basis of available human safety studies. The EDI estimates are based on the assumption that SunPSTM will replace currently marketed PS derived from various sources. Thus, no increase in exposure is expected.
- 6. A variety of animal toxicity studies and *in vitro* mutagenicity/genotoxicity studies corroborate the human clinical safety data. The animal studies did not show any significant toxicity at doses up to approximately 1,000 mg/kg/day (Heywood, 1987).
- 7. In the previous six GRAS notices (GRNs 186, 197, 223, 279, 311, and 545) to the FDA, the safety of PS derived from marine, soy, and sunflower sources has been established in toxicological studies in animals and mutagenicity studies and is further supported by

clinical studies in humans. In particular, the FDA had no question on the safety of PS derived from sunflower (GRN 545).

- 8. Additional studies published subsequent to the FDA GRAS notices continue to support the safety of PS as a food ingredient (Hellhammer et al., 2014; Lifshitz et al., 2015; Vakhapova et al., 2014).
- 9. The FDA has agreed to exercise enforcement discretion with a Qualified Health Claim Petition on PS. The petitioner in this submission demonstrated that soy-derived PS is safe at levels up to 500 mg/day (FDA, 2003).
- 10. The compositional data and product properties are consistent with carefully controlled cGMP production and purification. ECA's SunPS[™] preparation contains no impurities or contaminants of concern.

Based on the above-described data and information, we conclude that SunPSTM, when used as a nutrient, is reasonably expected to be safe.

Common Knowledge Element of a GRAS Determination

FDA notes that general recognition of safety requires common knowledge about the substance throughout the scientific community knowledgeable about the safety of substances directly or indirectly added to food. The two following components meet a common knowledge element of a GRAS determination:

- 1. Data and information related to safety are generally available, and this has been established by utilizing published, peer-reviewed scientific journals, and
- 2. Several reviews by experts in the field also have documented the safety of PS. In addition, PS has been the subject of six GRAS notices submitted to the FDA for use as a nutrient. In each case, the FDA responded that they had no questions on the proposed use and did not object to the respective GRAS determination. In addition, there is consensus among qualified scientists about the safety of the substance for its intended use.

Because this safety evaluation was based on generally available and widely accepted data and information and there was consensus among qualified scientists about the safety of PS for its intended use, it also satisfies the "common knowledge" element of a GRAS determination.

F. Availability of Information

The detailed data and information that serve as a basis for this GRAS determination will be provided to the U. S. FDA upon request, or are available for the FDA's review and copying during reasonable business hours at the offices of NutraSource, Inc. located at 6309 Morning Dew Ct., Clarksville, MD 21029, USA.

G. Basis of GRAS determination: Through scientific procedures.

References

Claro FT, Silva RH, Frussa-Filho R. Bovine brain phosphatidylserine attenuates scopolamineinduced amnesia. Physiol Behav. 1999;67:551-4.

FDA. 2003. Qualified Health Claim: Final Decision Letter - Phosphatidylserine and Cognitive Dysfunction and Dementia.

http://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072999.htm.

FDA. 2006a. GRN 186: Soy lecithin enzymatically modified to have increased phosphatidylserine. Lipogen Products (9000) Ltd., Israel. Date of closure - July 20, 2006. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=186.

FDA. 2006b. GRN 197: Phosphatidylserine. Degussa Food Ingredients GmbH, Germany. Date of closure - September 20, 2006. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=197.

FDA. 2007. GRN223: Phosphatidylserine. Enzymotec Ltd., Israel. Date of closure - December 20, 2007. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=223.

FDA. 2009. GRN 279: Phosphatidylserine derived from fish. Enzymotec Ltd., Israel. Date of closure - July 29, 2009. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=279.

FDA. 2010. GRN 311: Krill-based phosphatidylserine. Enzymotec Ltd., Israel. Date of closure – June 15, 2010.

http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=311.

FDA. 2015. GRN 545: Phosphatidylserine derived from sunflower. Enzymotec Ltd., Israel. Date of closure – June 5, 2015. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=545.

Hellhammer J, Vogt D, Franz N, Freitas U, Rutenberg D. A soy-based phosphatidylserine/ phosphatidic acid complex (PAS) normalizes the stress reactivity of hypothalamus-pituitaryadrenal-axis in chronically stressed male subjects: a randomized, placebo-controlled study. Lipids Health Dis. 2014;13:121. 11 pages.

Hellhammer J, Hero T, Franz N, Contreras C, Schubert M. Omega-3 fatty acids administered in phosphatidylserine improved certain aspects of high chronic stress in men. Nutr Res. 2012;32:241-50.

Hellhammer J, Fries E, Buss C, Engert V, Tuch A, Rutenberg D, Hellhammer D. Effects of soy lecithin phosphatidic acid and phosphatidylserine complex (PAS) on the endocrine and psychological responses to mental stress. Stress. 2004;7:119-26.

Jorissen BL, Brouns F, Van Boxtel MP, Riedel WJ. Safety of soy-derived phosphatidylserine in elderly people. Nutr Neurosci. 2002;5:337-43.

Jorissen BL, Brouns F, Van Boxtel MP, Ponds RW, Verhey FR, Jolles J, Riedel WJ. The influence of soy-derived phosphatidylserine on cognition in age-associated memory impairment. Nutr Neurosci. 2001;4:121-34.

Lifshitz Y, Levi L, Eyal I, Cohen T, Tessler S. Sub-chronic (13-week) oral toxicity study, preceded by an in utero exposure phase and genotoxicity studies with fish source phosphatidylserine in rats. Food Chem Toxicol. 2015;86:234-44.

Vakhapova V, Cohen T, Richter Y, Herzog Y, Kam Y, Korczyn AD. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in nondemented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord. 2014;38:39-45.

Appendix A. Human Clinical Studies of PS

		1		A dyorga affects reported	Reference
No. of	Daily	Duration	Design	Adverse effects reported	Reference
subjects (PS-	dose,				
treated)	mg	d cinco tha	lest ED A	ravian of 2014 2015	
	1			review of 2014-2015	X7-1-1
157 non-	100	15 wk	OL	PS-DHA was found to be safe and	Vakhap-
demented	mg	OLE		well tolerated, with no significant	ova et al.,
participants	PS+	from		side effects	2014
with memory	26 mg DHA+	Vakhap-			
complaints,		ova et			
50-90 y	EPA	al., 2011	т		
Studies referen		evious GRN	NS		
Children with		1.7 1	DD		
200 ADHD	300	15 wk	DB-	Well tolerated. No major adverse	Manor et
children, 6-		DB+15	PC+	events. Adverse events reported	al., 2013
13 y		wk OL	OL	included – gastrointestinal	
				discomfort, atopic dermatitis,	
				hyperactivity, tics, nausea, elevated	
				SGOT, tantrum episodes, insomnia,	
				high triacylglyceride level, and soft	
(0, 1:11	200	00.1	DD	stool.	X 7 ·
60 children	300	90 d	DB-	No side effects. Well tolerated.	Vaisman
with putative			PC		et al.,
ADHD,					2008
8-13 y					
Elderly with m			OI		D:14 (
26 patients with	100 ^a	12 wk	OL	No significant changes were found	Richter et
				in resting BP, pulse and weight	al., 2011
subjective				during the study period.	
memory				In addition, no major adverse	
complaints,				events were reported.	
60-90 y	300	151-	DB-	No garioug advarga averta war-	Valther
157 non- demented		15 wk	PC	No serious adverse events were	Vakhap-
participants	mg PS+		rU	classified. No clinically meaningful differences between	ova et al., 2011
with memory					2011
-	79 mg			treatment groups on the tested blood parameters.	
complaints,	DHA+ EPA			bioou parameters.	
50-90 y	ErA				

Table A-1. Human Clinical Studies of PS from marine source

Modified from GRN 545. ^a In combination with 600 mg GPC, 20 mg vinpocetine, 50 mg uridine-5monophosphate (disodium), 550 mg plant extracts (150 mg wild blueberry, 125 mg ashwagandha, 150 mg grape seed, 125 hops, ginger and rosemary. ADHD = attention deficit hyperactivity disorder; BP = blood pressure; d=days; DB=double blind; EEG=electro encephalogram; mo=months; OL=open label; OLE=open label extension; PC=placebo controlled; PS= Phosphatidylserine; wk=weeks; y=years.

No. of subjects (PS- treated) mgDaily tionDura- tionDesign tionAdverse effects reportedReferenceA recent study published since the last FDA review of 2014-2015	Table A-2. Hun			5	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No. of	Daily	Dura-	Design	Adverse effects reported	Reference
A recent study published since the last FDA review of 2014-201575 healthy4006 wkDB-PCNo significant adverse events reportedHellhammer et al., 201475 healthymg PS9No significant adverse events reportedHellhammer et al., 201480 healthy200 in42 dDB-PCNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy3001 moDB-PCNo side effects in treatment group (2 in placebo)Benton et al., 20010.8 y3001 moDB-PCNone reportedHellhammer et al., 200420.45 y800°600, 80°12 wkDB-PCNone reportedHellhammer et al., 200420 healthy30012 wkDB-PCNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy2006 wkDB-PCNore reported. No influence on mean heart rate. 2007Jager et al., 200720 healthy2006 wkDB-PCNore reported. No influence on mean heart rate. 2007Jager et al., 200718 physically active males, mean 22.5 y40014 dOL DB-PCNore reportedStarks et al., 200810 healthy y60010 dDB-PCNone reportedStarks et al., 200818 physically children with ADHD2002 moDB-PCNone reportedStarks et al., 200810 healthy y	- ·	Dose,	tion			
75 healthy male400 mg PS + 4006 wk mg PS + 400DB-PC reportedNo significant adverse events reportedHellhammer et al., 2014Studies referencesin previous GRNsHealthy subjectsBaumeister et al., 2008Baumeister et al., 2008Healthy subjects1001 moDB-PCNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy alks path3001 moDB-PCNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy alks path3001 moDB-PCNone reportedHellhammer et al., 200120.45 y all state600, all state200 in all state200 in all state200 in all state200 in all state60 healthy subjects, all state30012 wkDB-PCNone reportedHellhammer et all, 200120.45 y all state800°12 wkDB-PCNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy golfers, 20-552006 wkDB-PCNone reported. No influence on mean heart rate. 200718 hysically males40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 200810 healthy males60010 dDB-PCNone reportedStarks et al., 200810 healthy males2002 moDB-PCNone reportedStark						
malemg PS volunteers, mean 26 ymg PAreportedet al., 2014Studies references in previous GRNsHealthy subjects16 healthy200 in bars42 dDB-PCNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy3001 moDB-PCNoside effects in treatment group (2 in placebo)Benton et al., 200120.8 y400, al., 20014wkDB-PCNone reportedHellhammer et al., 200480 healthy al., 2044 y400, al., 20014wkDB-PCNone reportedHellhammer et al., 200460 healthy ansmoking men, 30 - 60 y30012 wkDB-PCNo significant adverse events reported; Weight gain, high blood pressure and uncasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy golfers, 20-552006 wkDB-PCNone reported. No influence on mean heart rate. 2007Jager et al., 200718 physically ales40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 200710 healthy males60010 dDB-PCNone reportedStarks et al., 200810 healthy theales20002 moDB-PCNone reportedStarks et al., 2008201 theam ales10 dDB-PCNone reportedStarks et al., 200810 healthy theales60010 dDB-PCNone reportedStarks et al., 2008201 thieres <t< td=""><td></td><td>published</td><td>since the</td><td></td><td></td><td></td></t<>		published	since the			
volunteers, mean 26 y $+ 400$ mg PAAAStudies references in previous GRNsHealthy subjectsI6 healthy subjects200 in bars42 dDB-PC DB-PCNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy a00 and particles300 barsI mo DB-PCDB-PC No side effects in treatment group (2 in placebo)Benton et al., 200120.8 y a00 kg bars400, box bars4wk bB-PCDB-PC None reportedNone reported reported by two subjectsHellhammer et al., 200420-45 y consmoking men, 30 - 60 y300 reported12 wk reported, Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-550000Awk reported. No influence on mean heart rate. 2007Jager et al., 200718 physically active males, maae40014 dOLNot effected on cortisol, total testosterone, or mood. 2011Parker et al., 200810 healthy coldern with ΔDHD 2002 mo DB-PCDB-PCNone reportedStarks et al., 200810 healthy y2002 mo DB-PCDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201410 healthy y300 or I2 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 201410 healthy y60012 wkDB-PCN	75 healthy	400	6 wk	DB-PC	No significant adverse events	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	male	•			reported	et al., 2014
Studies references in previous GRNsHealthy subjects200 in bars42 d barsDB-PC rate valuesNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy alks mean 20.8 y300 all1 mo allDB-PC allNo side effects in treatment group (2 in placebo)Benton et al., 200180 healthy all y400, all4wk allDB-PC allNone reportedHellhammer et al., 200480 healthy all y400, all4wk allDB-PC allNone reportedHellhammer et al., 200480 healthy all y400, all4wk allDB-PC allNone reportedHellhammer et al., 201280 healthy all y400 all12 wk allDB-PC allNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-55200 all6 wk allDB-PC allNone reported. No influence on mean heart rate.Jager et al., 200710 healthy active males, mean 22.5 y400 all14 dllOL allNot effected on cortisol, total testosterone, or mood.Parker et al., 200810 healthy alther60010 dllDB-PC and on adverse effects were observed.Hirayama et al., 201410 healthy y2002 mo all baseDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al.	volunteers,	+400				
Healthy subjects $42 d$ DB-PCNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy3001 moDB-PCNo side effects in treatment group (2 in placebo)Benton et al., 200180 healthy400, 800 healthy4wkDB-PCNone reportedHellhammer et al., 200480 healthy400, 800 healthy4wkDB-PCNone reportedHellhammer et al., 200490 healthy400, 800 healthy4wkDB-PCNone reportedHellhammer et al., 200490 healthy30012 wkDB-PCNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201290 healthy2006 wkDB-PCNone reported. No influence on mean heart rate.Jager et al., 200790 healthy2006 wkDB-PCNone reported. No influence on mean heart rate.Jager et al., 200790 healthy40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 200810 healthy60010 dDB-PCNone reportedStarks et al., 200810 healthy20002 mo DB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201410 healthy60012 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2014120 elderly300 or12 wkDB-PC <td>mean 26 y</td> <td>mg PA</td> <td></td> <td></td> <td></td> <td></td>	mean 26 y	mg PA				
16 healthy subjects200 in bars42 d arsDB-PC barsNone reported. No effect on heart rate valuesBaumeister et al., 200848 healthy males, mean 20.8 y3001 moDB-PC and sequenceNo side effects in treatment group (2 in placebo)Benton et al., 200120.8 y 80 healthy400, 40w4wkDB-PC and sequenceNone reportedHellhammer et al., 200480 healthy 20-45 y600, 800°4wkDB-PC and sequenceNone reportedHellhammer et al., 200460 healthy nonsmoking men, 30 - 60 y30012 wkDB-PC and and any sequence reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-552006 wkDB-PC and any sequence by any sequence reported. No influence on mean heart rate.Jager et al., 200710 healthy mean 22.5 y60010 dDB-PC and any sequence and any sequence any sequenceJager et al., 200710 healthy y60010 dDB-PC any sequenceNot effected on cortisol, total testosterone, or mood.Parker et al., 200810 healthy y60010 dDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201410 healthy y2002 moDB-PCThe tr	Studies reference	ces in pre-	vious GF	RNs		
subjectsbarsrate valueset al., 200848 healthy males, mean 20.8 y3001 moDB-PCNo side effects in treatment group (2 in placebo)Benton et al., 200180 healthy subjects, 20-45 y400, 600, 20-45 y4wkDB-PCNone reportedHellhammer et al., 200460 healthy nonsmoking men, 30 - 60 y30012 wkDB-PCNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-552006 wkDB-PCNone reported. No influence on mean heart rate.Jager et al., 200718 physically active males, mean 22.5 y40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 200810 healthy males60010 dDB-PCNone reportedStarks et al., 200810 healthy with2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201420 elderly with300 or12 wkDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014	Healthy subject	S				
48 healthy males, mean 20.8 y300 and an any sector and any sector basic construction1 mo model DB-PC and any sector (2 in placebo) None reportedBenton et al., 2001 and any sector (2 in placebo) et al., 200480 healthy subjects, 20-45 y400, 800a4wk any sector any sector basic constructionDB-PC any sector any sector pressure and uneasiness were reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy nonsmoking men, 30 - 60 y200 any sector any sector any sector basicDB-PC any sector pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-55200 any sector any sector and any sector any sector basic active males , mean 22.5 y6 wk any basic any sector any sector any sector any sector any sector basic active males , mean 22.5 yNot effected on cortisol, total testosterone, or mood. any sector any sector and no adverse effects were observed.Parker et al., 200810 healthy alther with CUED thildren, 4-14200 any sector any sector any sector any sector any sector and no adverse effects were observed.Hirayama et al., 2014120 elderly with300 or any sector12 wk any bB-PCDB-PC baserved.The treatment was well-tolerated and no adverse effects were observed.120 elderly with300 or any sector12 wk any bB-PCNo adverse eve	16 healthy	200 in	42 d	DB-PC	None reported. No effect on heart	
males, mean 20.8 y <td>subjects</td> <td>bars</td> <td></td> <td></td> <td>rate values</td> <td>et al., 2008</td>	subjects	bars			rate values	et al., 2008
males, mean 20.8 y <td>48 healthy</td> <td>300</td> <td>1 mo</td> <td>DB-PC</td> <td>No side effects in treatment group</td> <td>Benton et</td>	48 healthy	300	1 mo	DB-PC	No side effects in treatment group	Benton et
80 healthy subjects, 20-45 y400, 600, 800a4wk 4wk boxDB-PC boxNone reportedHellhammer et al., 200460 healthy nonsmoking men, 30 - 60 y300 a12 wk aDB-PC aNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-55200 a6 wk aDB-PC aNone reported. No influence on mean heart rate.Jager et al., 200718 physically mean 22.5 y400 a14 d aOL aNot effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males600 a10 d aDB-PCNone reportedStarks et al., 2008Children with ADHD200 a2 mo aDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014120 elderly with300 or 60012 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	males, mean					al., 2001
subjects, 20-45 y600, 800°et al., 200460 healthy nonsmoking men, 30 - 60 y30012 wk reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-552006 wk reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupJager et al., 200720 healthy young golfers, 20-552006 wk reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupJager et al., 200718 physically active males, mean 22.5 y40014 dOL resource of the resource of the resource of the resource of the resource of the resource of the reatment groupParker et al., 200710 healthy males60010 dDB-PC resourceNone reported reportedStarks et al., 200820112002 moDB-PC resourceThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201410 healthy y300 or 60012 wk reportedDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	5					
20-45 y800 ^a Image: second seco	80 healthy	400,	4wk	DB-PC	None reported	Hellhammer
60 healthy nonsmoking men, 30 - 60 y30012 wkDB-PCNo significant adverse events reported; Weight gain, high blood pressure and uneasiness were reported by two subjects from the treatment groupHellhammer et al., 201220 healthy young golfers, 20-552006 wkDB-PCNone reported. No influence on mean heart rate.Jager et al., 200718 physically active males , mean 22.5 y40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males60010 dDB-PCNone reportedStarks et al., 20082008Children with ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014120 elderly with300 or12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	subjects,					et al., 2004
nonsmoking men, 30 - 60 yImage: second seco	20-45 y	800 ^a				
men, 30 - 60 ypressure and uneasiness were reported by two subjects from the treatment groupJager et al., 200720 healthy young golfers, 20-552006 wkDB-PCNone reported. No influence on mean heart rate.Jager et al., 200718 physically active males, mean 22.5 y40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males60010 dDB-PCNone reportedStarks et al., 2008Children with ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201420 elderly with300 or12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	60 healthy	300	12 wk	DB-PC	e	Hellhammer
Image: Second systemImage: Second systemImage: Second systemImage: Second systemImage: Second system20 healthy young golfers, 20-552006 wk wkDB-PCNone reported. No influence on mean heart rate.Jager et al., 200718 physically active males, mean 22.5 y40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males60010 dDB-PCNone reportedStarks et al., 200810 healthy males60010 dDB-PCNone reportedStarks et al., 20082008Children with ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014120 elderly with300 or12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	•					et al., 2012
20 healthy young golfers, 20-552006 wk wkDB-PC DB-PCNone reported. No influence on mean heart rate.Jager et al., 200718 physically active males, mean 22.5 y40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males60010 dDB-PCNone reportedStarks et al., 201136 ADHD yung2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014120 elderly with300 or12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	men, 30 - 60 y				1	
20 healthy young golfers, 20-552006 wk wkDB-PC None reported. No influence on mean heart rate.Jager et al., 200718 physically active males, mean 22.5 y40014 dOL Not effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males60010 dDB-PC None reportedNone reportedStarks et al., 200810 healthy males60010 dDB-PC None reportedNone reportedStarks et al., 2008208Children with ADHD2002 mo None reported.DB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014120 elderly with300 or 60012 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002					reported by two subjects from the	
young golfers, 20-55Image: Solution of the second					treatment group	
golfers, 20-55Image: Constraint of the second s	20 healthy	200	6 wk	DB-PC	None reported. No influence on	Jager et al.,
18 physically active males, mean 22.5 y40014 dOLNot effected on cortisol, total testosterone, or mood.Parker et al., 201110 healthy males60010 dDB-PCNone reportedStarks et al., 200810 healthy males60010 dDB-PCNone reportedStarks et al., 2008Children with ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201420 elderly with300 or12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002					mean heart rate.	2007
active males , mean 22.5 ytestosterone, or mood.201110 healthy males60010 dDB-PCNone reportedStarks et al., 200810 healthy males60010 dDB-PCNone reportedStarks et al., 2008Children with ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201436 ADHD y2002 moDB-PCThe treatment was well-tolerated observed.Hirayama et al., 201420 elderly with cognitive decline or impairment12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	golfers, 20-55					
mean 22.5 yImage: Children with ADHDDB-PCNone reportedStarks et al., 200836 ADHD children, 4–142002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014yImage: Children with cognitive decline or impairment0012 wkDB-PCNo adverse events and no significant differences were found120 elderly with300 or 60012 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	18 physically	400	14 d	OL	Not effected on cortisol, total	
10 healthy males60010 dDB-PCNone reportedStarks et al., 2008Children with $ADHD$ 2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201436 ADHD children, 4–14 y2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014Elderly with cognitive decline or impairment12 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002	-				testosterone, or mood.	2011
malesImage: Children with ADHD200836 ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 201436 ADHD2002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014yImage: Comparison observed with comparison observed with comparison observed with comparison observed with observed with comparison observed with comparis	mean 22.5 y					
Children with ADHD36 ADHD children, 4–142002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014yImage: Second seco	-	600	10 d	DB-PC	None reported	· · · · ·
36 ADHD children, 4–142002 moDB-PCThe treatment was well-tolerated and no adverse effects were observed.Hirayama et al., 2014yElderly with cognitive decline or impairmentJorissen et significant differences were foundJorissen et al., 2002						2008
children, 4–14and no adverse effects were observed.al., 2014yImage: state of the st	Children with A	DHD				
yobserved.Elderly with cognitive decline or impairment120 elderly300 or12 wkBPPCNo adverse events and nosignificant differences were foundal., 2002	36 ADHD	200	2 mo	DB-PC	The treatment was well-tolerated	Hirayama et
Elderly with cognitive decline or impairment120 elderly300 orwith60012 wkDB-PCNo adverse events and nosignificant differences were foundal., 2002	children, 4–14				and no adverse effects were	al., 2014
120 elderly with300 or 60012 wkDB-PCNo adverse events and no significant differences were foundJorissen et al., 2002						
with 600 significant differences were found al., 2002	Elderly with co	gnitive de	ecline or	impairmei	nt	
	120 elderly	300 or	12 wk	DB-PC	No adverse events and no	Jorissen et
memory in standard biochemical and	with	600			significant differences were found	al., 2002
	memory				in standard biochemical and	

Table A-2. Human Clinical Studies of Soy PS

impairment				hematological safety parameters, blood pressure, and heart rate.	
73 elderly with mild cognitive impairment, 50–69 y	100 or 300	6 mo	DB-PC	No adverse events were observed. No clinically significant change in vital signs, hematological, and biological blood or urine parameters. Differences in blood glucose levels were considered clinically insignificant.	Kato- Kataoka et al., 2010
8 elderly with subjective memory complaints, >60 years	300	6 wk	OL	Not reported	Richter et al., 2010
30 elderly with memory complaints	300	12 wk	OL	S-PS significantly reduces BP. S- PS consumption was well tolerated and no serious adverse events were reported	Richter et al., 2013
15 with mild cognitive decline, 65-78 y	300	12 wk	OL	No changes noted in serum electrolytes, glucose, thyroid function, and differential blood counts; no adverse effects noted.	Schreiber et al., 2000

Expanded from GRN 545. ^aEach 100 mg PS contains additional: 125 mg phosphatic acid, 270 mg of other PL, 5 mg of silicon dioxide. ADHD = attention deficit hyperactivity disorder; BP = blood pressure; d=days; DB=double blind; EEG=electro encephalogram; mo=months; OL=open label; OLE=open label extension; PC=placebo controlled; PS= Phosphatidylserine; wk=weeks; y=years.

No. of subjects	Daily	Duration	Design	Adverse effects	Reference
	Dose,				
Studies references i	mg n previoi	IS GRNs			
30 hospitalized patients with moderate mental impairment, mean 72.4 y	300	60 d	OL	No symptoms of adverse reactions were observed	Allegro et al., 1987
142 subjects with gradual decline of intelligence, 40- 80 y	200	90 d	DB	No change noted in pre- and post-dose clinical exams, clinical chemistries, and blood counts; no adverse events	Amaducci et al., 1988
30 patients with mild cognitive decline, mean 69.2 y	300	60 d	OL	No adverse effects were reported	Caffarra et al., 1987
130 patients, uncharacterized	300	60 d	DB	No treatment related clinically significant adverse effects.	Cenacchi et al., 1987
425 elderly with moderate to severe cognitive decline	300	180 d	DB	Dizziness, vomiting and dyspepsia reported in a few patients, mainly in the placebo group. No pharmacological interactions	Cenacchi et al., 1993
149 elderly with AAMI, 50-75 y	300	12 wk	DB	Well tolerated; no adverse events	Crook et al., 1991
51 patients with probable AD, 55-85 y	300	12 wk	DB	Well tolerated; no adverse events	Crook et al., 1992
35 patients with senile dementia of AD type, 65-91 y	300	6 wk	DB	No significant side effects noted	Delwaide et al., 1986
33 patients with mild primary degenerative dementia	300	8 wk	DB	No adverse effects were reported	Engel et al., 1992
331 patients with senile dementia	300	2 mo	DB	No adverse effects were reported	Funfgeld et al., 1989
35 patients with moderate cognitive decline, 61-80 y	300	60 d	OL	No adverse effects were reported	Granata & Michele, 1987

 Table A-3. Human Clinical Studies of PS from Bovine Cortex

80 elderly with mild to moderate dementia, 48-79 y	400	6 mo	OL	No adverse effects were reported	Heiss et al., 1993
70 patients with probable AD, 48- 79 y	400	6 mo	OL	No adverse effects were reported	Heiss et al., 1994
10 elderly women with depressive disorders, 70-81 y	300	30 d	PC- CO	No adverse effects were reported	Maggioni et al., 1990
9 healthy men, 18-40 y	800	10 d	DB	None reported; BP unchanged	Monteleone et al., 1992
87 patients with severe cognitive impairment, mean 71.2 y	300	60 d	DB	No change noted in pre- and post-dose clinical and neurological exams, clinical chemistries, and EEG.	Palmieri et al., 1987
27 with senile cognitive decline, 55-80 y	300	60 d	OL	No change in pre- and post- dose blood biochemistry parameters.	Puca et al., 1987
30 (10 MID, 10 SDAT, 10 depression, mean 67-71 y	400	60 d	OL	No reported changes in liver and kidney function blood biochemistry or blood counts.	Rabboni et al., 1990
39 (20) patients with cerebro- vascular disease	300	2 mo	DB- PC	No differences in side effects between the groups. Transient epigastric discomforts were reported, which disappeared by the end of the study	Ransmayr et al., 1987
34 patients with mild cognitive decline, 60-80 y	300	60 d	OL	No remarkable side effects	Sinforiani et al., 1987
170 patients with cognitive deterioration, 55- 80 y	300	90 d	DB	No adverse effects were reported	Villardita et al., 1987

Expanded from GRN 545. Expanded from GRN 545. AD=Alzheimer disease; AAMI=age-associated memory impairment; BP = blood pressure; d=days; DB=double blind; EEG=electro encephalogram; MID= Multi-infarct dementia; mo=months; OL=open label; PC=placebo controlled; PS= Phosphatidylserine; SDAT= Senile dementia-Alzheimer type; wk=weeks; y=years.

Dose	Daily dose	Duration	Results	Reference
A Recent Study Published since the FDA's Last Review of 2014-2015				
Rat	0, 1,050,	13 wk subchronic	NOAEL for F1	Lifshitz et al.,
	2,100, and	toxicity study	=2,100 mg/kg bw/d	2015
	3,250 mg/kg	with an <i>in-utero</i>	for PS-DHA or 850	
	bw PS-DHA	exposure phase	mg/kg bw for PS	
	(Marine		(98% purity)	
	source)			
Studies Reference	ed in Previous GR	'Ns*		
Rat, Sprague	5 g/kg bw	Single dose	LD_{50} >5 g/kg bw	Heywood et
Dawley				al., 1987
Rat, Sprague	0, 10, 100, and	26 wk	NOAEL=close to	Heywood et
Dawley	1,000 mg/kg		1,000 mg/kg bw	al., 1987
	bw			
Dog, beagle	0, 10, 100, and	26 wk	NOAEL=1,000	Heywood et
	1,000 mg/kg		mg/kg bw	al., 1987
	bw			
Rat, Sprague	0, 10, 100, and	Days 6 to 15 of	NOAEL=200	Heywood et
Dawley	200 mg/kg bw	gestation;	mg/kg bw	al., 1987
		teratogenicity		
Rabbit	0, 10, 100, and	Days 6 to 18 of	NOAEL=450	Heywood et
	450 mg/kg bw	pregnancy;	mg/kg bw	al., 1987
		teratogenicity		

APPENDIX B.	Summarv	of Animal	Toxicity	Studies of PS
	~ ••••••••			

PS= Phosphatidylserine; BW = body weight; NOAEL= no observed adverse effect; PS sourcebovine.

References Cited in the Appendix Tables

Allegro L, Favaretto V, Ziliotto G. Oral phosphatidylserine in elderly patients with cognitive deterioration. An open study. Clin Trials J. 1987;24:104-8.

Amaducci L. Phosphatidylserine in the treatment of Alzheimer's disease: results of a multicenter study. Psychopharmacol Bull. 1988;24:130-4.

Baumeister J, Barthel T, Geiss KR, Weiss M Influence of phosphatidylserine on cognitive performance and cortical activity afterinduced stress. Nutr Neurosci.2008;11:103-10.

Benton D, Donohoe RT, Sillance B, Nabb S. The influence of phosphatidylserine supplementation on mood and heart rate when faced with an acute stressor. Nutr Neurosci. 2001;4:169-78.

Caffarra P, Santamaria V. The effects of phosphatidylserine in patients with mild cognitive decline. Clin Trials J. 1987;24:109-14.

Cenacchi T, Baggio C, Palin E. Human tolerability of oral V assessed through laboratory examinations. Clin Trials J. 1987;24:125-30.

Cenacchi T, Bertoldin T, Farina C, Fiori MG, Crepaldi G. Cognitive decline in the elderly: A double-blind, placebo-controlled multicenter study on the efficacy of phosphatidylserine administration. Aging Clin Exp Res. 1993;5:123-33.

Crook TH, Tinklenberg J, Yesavage J, Petrie W, Nunzi MG, Massari DC. Effects of phosphatidylserine in age-associated memory impairment. Neurology. 1991;41:644-49.

Crook T, Petrie W, Wells C, Massari DC. Effects of phosphatidylserine in Alzheimer's disease. Psychopharmacol Bull. 1992;28:61-6.

Delwaide PJ, Gyselynck-Mambourg AM, Hurlet A, Ylieff M. Double-blind randomized controlled study of phosphatidylserine in senile demented patients. Acta Neurol Scand. 1986;73:136-40.

Engel RR, Satzger W, Günther W, Kathmann N, Bove D, Gerke S, Münch U, Hippius H. Double-blind cross-over study of phosphatidylserine vs. placebo in patients with early dementia of the Alzheimer type. Eur Neuropsychopharmacol. 1992;2:149-55.

Funfgeld EW, Baggen M, Nedwidek P, Richstein B, Mistlberger G. Double-blind study with phosphatidylserine (PS) in Parkinsonian patients with senile dementia of Alzheimer's type (SDAT). Prog Clin Biol Res. 1989;317:1235-46.

Granata Q, Di Michele J. Phosphatidylserine in elderly patients. Clin Trials J. 1987 24:99-103.

Heiss WD, Kessler J, Slansky I, Mielke R, Szelies B, Herholz K. Activation PET as an instrument to determine therapeutic efficacy in Alzheimer's disease. Annals NY Acad Sci. 1993; 695:327-31.

Heiss WD, Kessler J, Mielke R, Szelies B, Herholz K. Long-term effects of phosphatidylserine, pyritinol, and cognitive training in Alzheimer's disease. A neuropsychological, EEG, and PET investigation. Dementia. 1994;5:88-98.

Hellhammer J, Vogt D, Franz N, Freitas U, Rutenberg D. A soy-based phosphatidylserine/ phosphatidic acid complex (PAS) normalizes the stress reactivity of hypothalamus-pituitaryadrenal-axis in chronically stressed male subjects: a randomized, placebo-controlled study. Lipids Health Dis. 2014;13:121. 11 pages.

Hellhammer J, Hero T, Franz N, Contreras C, Schubert M. Omega-3 fatty acids administered in phosphatidylserine improved certain aspects of high chronic stress in men. Nutr Res. 2012;32:241-50.

Hellhammer J, Fries E, Buss C, Engert V, Tuch A, Rutenberg D, Hellhammer D. Effects of soy lecithin phosphatidic acid and phosphatidylserine complex (PAS) on the endocrine and psychological responses to mental stress. Stress. 2004;7:119-26.

Heywood R, Cozens DD, Richold M. Toxicology of a phosphatidylserine preparation from bovine brain (BC-PS). Clin Trials J. 1987;24:25-32.

Hirayama S, Terasawa K, Rabeler R, Hirayama T, Inoue T, Tatsumi Y, Purpura M, Jäger R. The effect of phosphatidylserine administration on memory and symptoms of attention-deficit hyperactivity disorder: a randomised, double-blind, placebo-controlled clinical trial. J Hum Nutr Diet. 2014;27 Suppl 2:284-91.

Jager R, Purpura M, Geiss KR, Wei13 M, Baumeister3 J, Amatulli F, Schröder L, Herwegen H. The effect of phosphatidylserine on golf performance. J Int Soc Sports Nutr. 2007; 4:23. 4 pages.

Jorissen BL, Brouns F, Van Boxtel MP, Riedel WJ. Safety of soy-derived phosphatidylserine in elderly people. Nutr Neurosci. 2002;5:337-43.

Kato-Kataoka A, Sakai M, Ebina R, Nonaka C, Asano T, Miyamori T. Soybean derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J Clin Biochem Nutr. 2010;47:246-55.

Lifshitz Y, Levi L, Eyal I, Cohen T, Tessler S. Sub-chronic (13-week) oral toxicity study, preceded by an in utero exposure phase and genotoxicity studies with fish source phosphatidylserine in rats. Food Chem Toxicol. 2015;86:234-44.

Maggioni M, Picotti GB, Bondiolotti GP, Panerai A, Cenacchi T, Nobile P, Brambilla F. Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr Scand. 1990;81:265-70.

Manor I, Magen A, Keidar D, Rosen S, Tasker H, Cohen T, Richter Y, Zaaroor-Regev D, Manor Y, Weizman A. Safety of phosphatidylserine containing omega3 fatty acids in ADHD children: a double-blind placebo-controlled trial followed by an open label extension. European Psychiatry. 2013;28:386-91.

Monteleone P, Maj M, Beinat L, Natale M, Kemali D. Blunting by chronic phosphatidylserine administration of the stress-induced activation of the hypothalamo-pituitary-adrenal axis in healthy men. Eur J Clin Pharmacol. 1992;42:385-8.

Monteleone P, Beinat L, Tanzillo C, Maj M, Kemali D. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinol. 1990;52:243–8.

Palatini P, Viola G, Bigon E, Menegus AM, Bruni A. Pharmacokinetic characterization of phosphatidylserine liposomes in the rat. Br J Pharmacol. 1991;102:345-50.

Palmieri G, Palmieri R, Inzoll MR, Agrati AM, Vargiu A. Doubleblind controlled trial of phosphatidylserine in patients with senile mental deterioration. Clin Trials J. 1987;24:73 -83.

Parker AG, Gordon J, Thornton A, Byars A, Lubker J, Bartlett M, Byrd M, Oliver J, Simbo S, Rasmussen C., Greenwood M, Kreide RB. The effects of IQPLUS Focus on cognitive function, mood and endocrine response before and following acute exercise. J Intl Soc Sports Nutr. 2011;8:16. 6 pages.

Puca FM, Bavarese MA, Minervini MG. Exploratory trial of phosphatidylserine efficacy in mildly demented patients. Clin Trials J. 1987;24:94-8.

Rabboni M, Maggioni FS, Giannelli A, Beinat L. Neuroendocrine and behavioral effects of phosphatidylserine in elderly patients with abiotrophic or vascular dementia or mild depression. Clin Trials J. 1990;27:230-40.

Ransmayr G, Ploerer S, Gerstenbrand F, Bauer G. Double-blind placebo-controlled trial of phosphatidylserine in elderly patients with arteriosclerotic encephalopaty. Clin Trials J. 1987; 24:62-72.

Richter Y, Herzog Y, Eyal I, Cohen T. Cognitex supplementation in elderly adults with memory complaints: an uncontrolled open label trial. J Dietary Suppl. 2011;8:158-68.

Richter Y, Herzog Y, Cohen T, Steinhart Y. The effect of phosphatidylserine containing omega-3 fatty acids on memory abilities in subjects with subjective memory complaints: a pilot study. Clin Interv Aging. 2010;5:313–26.

Richter Y, Herzog Y, Lifshitz Y, Hayun R, Zchut S. The effect of soybean derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study. Clin Interv Aging. 2013;8:557–63.

Schreiber S, Kampf-Sherf O, Gorfine M, Kelly D, Oppenheim Y, Lerer B. An open trial of plantsource derived phosphatidylserine for treatment of age-related cognitive decline. Isr J Psychiatry Relat Sci. 2000;37:302-7.

Sinforiani E, Agostinis C, Merlo P, Gualtieri S, Mauri M, Mancuso A. Cognitive decline in ageing brain. Therapeutic approach with phosphatidylserine. Clin Trials J. 1987 24:115-24.

Starks MA, Starks S, Kingsley M, Purpura M and Jager R. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Intl Soc Sports Nutr. 2008;5:11.6 pages.

Villardita JC, Grioli S, Salmeri G, Nicoletti F, Pennisi G. Multicenter clinical trial of brain phosphatidylserine in elderly patients with intellectual deterioration. Clin Trials J. 1987 24:84-93.

Vaisman N, Kaysar N, Zaruk-Adasha Y, Pelled D, Brichon G, Zwingelstein G, Bodennec J. Correlation between changes in blood fatty acid composition and visual sustained attention

performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr. 2008; 87:1170-80.

Vakhapova V, Richter Y, Cohen T, Herzog Y, Korczyn AD. Safety of phosphatidylserine containing omega-3 fatty acids in non-demented elderly: a doubleblind placebo-controlled trial followed by an open-label extension. BMC Neurol. 2011;11:79. 7 pages.

Vakhapova V, Cohen T, Richter Y, Herzog Y, Kam Y, Korczyn AD. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in nondemented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord. 2014;38:39-45.

EXPERT PANEL STATEMENT

GENERALLY RECOGNIZED AS SAFE (GRAS) DETERMINATION FOR THE ADDITION OF PHOSPHATIDYLSERINE (PS) DERIVED FROM SUNFLOWER LECITHIN TO FOODS

Coordinated by: NutraSource, Inc. 6309 Morning Dew Court Clarksville, MD 21029 Tel: 410-531-3336 Susanscho1@yahoo.com

GENERALLY RECOGNIZED AS SAFE (GRAS) DETERMINATION FOR THE ADDITION OF PHOSPHATIDYLSERINE (PS) DERIVED FROM SUNFLOWER TO FOODS

Table of contents

I. INTRODUCTION	4
II. INFORMATION ABOUT THE IDENTITY OF THE NOTIFIED	4
SUBSTANCE	
II.A. Background	4
III. CLAIM OF GRAS STATUS	5
III.A. Claim of Exemption from the Requirement for Premarket Approval	
Requirements Pursuant to Proposed 21 CFR § 170.36(c)(1)	5
III.B. Common or Trade Name	5
III.C. Name and Address of Responsible Individual	5
III.D. Chemistry and Physicochemical Properties	6
III.E. Manufacturing Process of SunPS™	8
III.F. Typical Composition and Specifications	
	10
IV. INTENDED USES AND EXPOSURE ESTIMATES	11
IV.A. Intended Technical Effects	11
IV.B. Intended Use	11
IV.C. Estimated Dietary Intakes (EDI) Under the Intended Use	12
IV.C.1. Intakes from Natural Presence in Food	12
IV.C.2. EDIs under the Intended Uses	12
V. BASIS FOR GRAS DETERMINATION	13
V.A. Current Regulatory Status	13
V.B. Review of Safety Data	15
V.B.1. Absorption, Metabolism, and Excretion of PS	15
V.B.2. Mutagenicity and Genotoxicity Studies	16
V.B.3. Animal Toxicity Studies	17
V.B.3.1. A Recent Animal Toxicity Study	17
V.B.3.2. Animal Toxicity Studies Referenced in Previous GRNs	17
V.B.4. Human Clinical Studies	17
V.B.4.1. Recent Human Clinical Studies	17
V.B.4.2. Human Clinical Studies Referenced in Previous GRNs	18
VI. SAFETY DETERMINATION	19
VII. CONCLUSIONS OF THE PANEL	20
VIII. REFERENCES	21
APPENDIX A. CERTIFICATE OF ANALYSIS	29
APPENDIX B. QUALIFICATIONS OF EXPERTS	30

Tables

Table 1. FA profiles of soy-, sunflower-, fish-, krill-, and bovine-derived PS	7
Table 2. Typical FA composition of ECA's SunPS [™]	8
Table 3. Typical composition specifications of SunPS [™]	10
Table 4. Specifications of SunPS [™]	11
Table 5. Intended use and maximum use levels of PS	12
Table 6. EDIs of PS under the intended use in all-users	13
Table 7. Summary of recent animal toxicity studies of PS	17
Table 8. Recent human clinical studies of PS	18
Figures	
Figure 1. General structure of PS	6
Figure 2. Flow diagram of SunPS [™] manufacturing process	9

9

GENERALLY RECOGNIZED AS SAFE (GRAS) DETERMINATION FOR THE ADDITION OF PHOSPHATIDYLSERINE (PS) DERIVED FROM SUNFLOWER TO FOODS

I. INTRODUCTION

The undersigned, an independent panel of recognized experts (hereinafter referred to as the Expert Panel), qualified by their scientific training and relevant national and international experience to evaluate the safety of food and food ingredients, was convened by NutraSource, Inc., at the request of ECA Healthcare, Inc. (hereinafter referred to as ECA), to determine the Generally Recognized As Safe (GRAS) status of its phosphatidylserine (PS) from sunflower lecithin (SunPS[™]) as a nutritional food ingredient as defined in 21 CFR§170.3(o)(20) in foods. A comprehensive search of the scientific literature for safety and toxicity information on PS was conducted through NutraSouce, Inc. and made available to the Expert Panel members. The Expert Panel members independently and critically evaluated materials submitted by ECA and other information deemed appropriate or necessary. ECA assures that all published and unpublished safety-related information in its possession and relevant to the subject of this safety assessment has been provided to NutraSource, Inc. and has been accurately summarized in this GRAS monograph. Following an independent, critical evaluation, the Expert Panel unanimously agreed to the decision described herein.

The purpose of this dossier is to (1) Outline the identity and composition of SunPSTM, (2) Estimate exposure under the intended use, (3) Document the literature pertaining to the safety, toxicity, and food uses of PS, and (4) Assemble an independent Expert Panel of recognized experts to evaluate the data and information in this document to determine if the document is sufficient to establish GRAS status. The data and information summarized in this dossier demonstrate that the intended use of SunPSTM, produced using current Good Manufacturing Practices (cGMP) and meeting food-grade specifications, is GRAS, based on scientific procedures, as described herein.

II. INFORMATION ABOUT THE IDENTITY OF THE GRAS SUBSTANCE

II.A. Background

Phosphatidylserine (PS) is the major acidic phospholipid class that accounts for 13–15% of the phospholipids in the human cerebral cortex (Glade and Smith, 2015; Kim et al., 2014). The human body contains about 30 g of PS, about half (approximately 13 g) of which is found in the brain. PS plays a vital role in several metabolic processes such as activation of cell-membrane bound enzymes and is involved in neuronal signaling. In the plasma membrane, PS is localized exclusively in the cytoplasmic leaflet where it forms part of the protein docking sites necessary for the activation of several key signaling pathways (Kim et al., 2014).

Dietary PS supplements are known to improve cognitive function, mood, and stress management in humans and experimental animals, and the intake of PS has been associated with an improvement in psychiatric disorders, such as bipolar and major depressive disorders, as well as the prevention of inflammatory neurodegenerative events (Glade and Smith, 2015). Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/day) safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells (Glade and Smith, 2015). It supports human cognitive functions, including the formation of short-term memory, the consolidation of longterm memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes (Glade and Smith, 2015). Moreover, in combination with phosphatidic acid (PA), PS has been shown to reduce cortisol levels and enhance well-being under acute social stress (Hellhammer et al., 2004, 2014). PA has different roles in the cell: it is a precursor for other lipids such as PS or phosphatidylcholine via the conversion of PA to diacylglycerol (Sheng et al., 2015) where PA influences membrane curvature and acts as a signaling lipid for diacylglycerol (Sheng et al., 2015).

In this GRAS assessment, PS is intended to be used in a dry powder form as an alternative for the currently marketed PS from sunflower, fish, soy, and other sources that are used as nutritional ingredients for foods and medical foods for the general population. Thus, the overall exposure to PS is not expected to increase as a result of the introduction of SunPSTM onto the market.

The FDA has issued no question letters on six GRAS notices related to food uses of PS derived from soy lecithin (GRNs 186, 197, and 223), sunflower lecithin (GRN 545), and marine oil (GRNs 279 and 311). In these GRAS notices, toxicity-related studies on PS from the literature were presented to support the safety of utilizing PS. The FDA did not question the acceptability and suitability of these studies to establish the safety of PS derived from various sources. The safety and related information in the above-mentioned GRAS notices is hereby incorporated by reference to this independent GRAS determination.

III. CLAIM OF GRAS STATUS

III.A. Claim of Exemption from the Requirement for Premarket Approval Requirements Pursuant to Proposed 21 CFR § 170.36(c)(1)

Phosphatidylserine, derived from sunflower, for use as a nutrient, has been determined to be Generally Recognized As Safe (GRAS) and, therefore, is exempt from the requirement of premarket approval under the conditions of its intended use as described below. The basis for this finding is described in the following sections.

III.B. Common or Trade Name:

The common name of the subject of this GRAS document is phosphatidylserine derived from sunflower. The product will be marketed under the trade name SunPSTM.

III.C. Name and Address of Responsible Individual:

Jiang Su, Managing Director ECA Healthcare, Inc. 1017 North Building 1839 Qixin Rd $SunPS^{\text{TM}}$

Shanghai, China 201101 Tel: +86+139-1704-0601 or 909-859-4956 (Cell phone in California) Fax: +86-21-3358-0611 E mail: jiang.su@ecahealthcare.com

ECA Healthcare Inc. accepts responsibility for the GRAS determination that has been made for phosphatidylserine derived from sunflower (herein after referred to as SunPSTM) as described in this GRAS document; consequently, phosphatidylserine derived from sunflower (SunPSTM) meeting the conditions described herein is exempt from premarket approval requirements for food ingredients.

III.D. Chemistry and Physico-chemical Properties

<u>Chemical name:</u> Phosphatidylserine (PS). Per IUPAC-CBN nomenclature, it is a 1,2-diacyl-sn-glycero-3-phospho-L-serine.

Chemical Abstract Registry Number:

There is no CAS Reg. Number assigned specifically to PS derived from sunflower. The generic CAS Reg. Number assigned to PS is: 84776-79-4.

<u>Chemical Formula:</u> The empirical formula of the most abundant molecule (comprising two linoleic acids) is $C_{42}H_{73}O_{10}PNCa$.

<u>Structure:</u> PS consists of a glycerophosphate skeleton conjugated with two fatty acids and L-serine via a phosphodiester linkage. The structural diagram below shows the general representation of the glycerophosphate backbone with R as fatty acids. The counter ion for the phosphate moiety is Ca^{2+} .

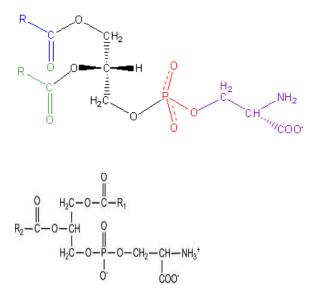


Figure 1. General structure of PS where R= alkyl group; the counter ion for the phosphate moiety is Ca^{2+} in most abundant form.

6

Fatty Acid Profile:

The mean percentages of the fatty acids (FA) in PS from other sources are presented in Table 1. Table 2 presents the FA profile of SunPSTM. Bovine source is mainly composed of stearic and oleic acids as the main fatty acids: plant sources have linoleic acid and oleic acid; and fish sources have docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and palmitic acid as the predominant fatty acids. Different sources do not significantly impact safety profiles of PS. Additional studies also have confirmed this in the treatment level as well (Sakai et al., 1996; Suzuki et al., 2001).

Fatty Acid	Typical FA composition (as % of total FAs)				
	Sunflower-	Soy-	Fish-	Krill-	Bovine-
	derived	derived	derived	derived	derived
	PS	\mathbf{PS}^1	PS^2	PS^3	PS^4
Caprylic acid (C8:0)			1		
Myristic acid (C14:0)			2	2	
Palmitic acid (C16:0)	11	14	23	23.5	3
Palmitoleic acid (C16:1)			2	1.8	
Stearic acid (C18:0)	2.9	4	2	1	40
Oleic acid (C18:1 n-9)	15.8	15	13	13	35
Vaccenic acid (C18:1n-11)					
Linoleic acid (C18:2n-6)	70.11	62	2	1.2	
alpha-Linolenic acid (C18:3	0.2	5	1	1	
n-3)	0.2	5	I	I	
Octadecatetraenoic acid				2	
(C18:4n-3)				2	
Eicosenoic (C20:1n-9)			2	0.6	6
Arachidonic acid (C20:4n-6)			1	0.7	
Eicosapentaenoic acid			12	31	
(C20:5n-3; EPA)			12		
Erucic acid (C22:1)				1.3	6
Docosapentaenoic acid			1	0.7	
(C22:5)			1	0.7	
Docosahexaenoic acid			33	14	7
(C22:6n-3; DHA)			55	14	/
Nervonic acid (C24:1n-9)				0.3	3
Others			5	5	

 Table 1. Fatty Acid (FA) profiles of sunflower-, soy-, fish-, krill-, and bovine-derived PS

 Fatty Acid
 Typical FA composition (as % of total FAs)

¹ GRN No. 223; ² GRN No. 279; ³ GRN No. 311.

⁴ Adopted from Claro et al. (1999) and GRN 545. DHA=Docosahexaenoic acid;

EPA=Eicosapentaenoic acid; FA= Fatty Acid; PS= Phosphatidylserine.

p obtained of p and p , p
% of total FA
11.0
2.9
15.8
70.1
0.2
100

Table 2. Typical FA composition of SunPS[™], % of total FA

FA=Fatty Acid; PS=Phosphatidylserine; SunPS[™] = PS derived from sunflower.

III.E. Manufacturing Process of SunPSTM

The phosphatidylcholine-enriched lecithin from sunflower is enzymatically transphosphatidylated with L-serine using a phospholipase enzyme. The enzyme used for transphosphatidylation is derived from a microorganism that is non-pathogenic and non-toxicogenic. This enzymatic process catalyzes the substitution of the choline head-group with serine to form PS. The enzyme treatment does not alter the fatty acids attached to the molecule or its stereochemistry . Following the enzymatic reaction, the solid product is separated from the reaction mixture, purified, and dried. A final blending with approved food-grade excipients, including silicon dioxide, is carried out in order to produce a free-flowing powder.

ECA's SunPS[™] is manufactured under current Good Manufacturing Practices (cGMP) using common food industry materials and processes. ECA uses a Hazard Analysis and Critical Control Point (HACCP)-controlled manufacturing process and rigorously tests its final production batches to verify adherence to quality control specifications. Processing aids, such as ethanol and other ingredients including excipients used in the manufacturing process, are foodgrade as specified in the Food Chemical Codex (FCC). The ECA's manufacturing facility and process are certified with the NSF International, based in Ann Arbor, Michigan, USA.

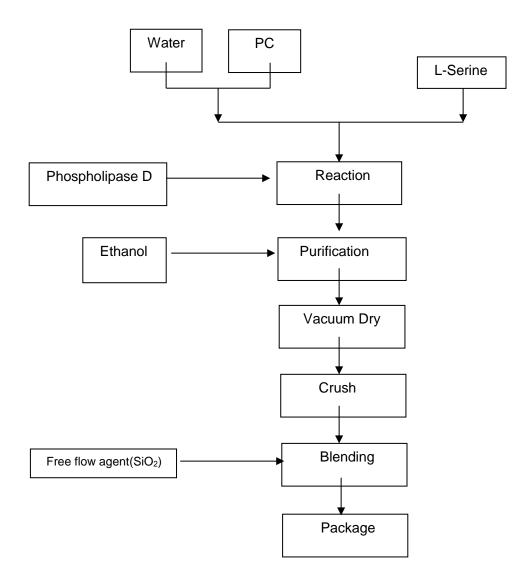


Figure 2. Flow diagram of SunPSTM manufacturing process

III.F. Typical Composition and Specifications

SunPS[™] is produced as a grayish brown powder. The typical composition and specifications are shown in Tables 3 and 4, respectively. Analytical data from five different non-consecutive manufacturing lots are presented in Appendix A. Analysis of pesticides (less than 0.05 ppm) and dioxin congeners (less than 0.5 ppm) showed that the levels for pesticides and other contaminants are minimal in this product. Compared to sunflower PS described in GRN 545, the specifications of SunPSTM are approximately 10% lower in PS content and 10% higher in the other phospholipids. However, specifications are comparable to those established in the other GRAS notices (PS content: GRN 186, ≥19%; GRN 197, ≥90%; GRN 223, ≥70%). The PS product also contains other phospholipids (33%) and ash (14%) naturally occurring in sunflower lecithin. These other phospholipids. These phospholipids profiles are not expected to impact the safety profile of PS preparations.

Parameter	SunPS™	GRN 545	Assay method
PS, %	52.3	66.8	³¹ P-NMR
Phosphatidyl acid, %	7.3	9.2	³¹ P-NMR
Phosphacholine, %	3.6	0.4	³¹ P-NMR
Lyso PS, %	0.8	0.9	³¹ P-NMR
Lyso phosphatidyl acid, %	0.6	0.7	³¹ P-NMR
Phosphatidyl inositol, %	3.5	1.3	³¹ P-NMR
Other phospholipids, %	17.2	8.0	³¹ P-NMR
Glyceride (Tri-, di- and mono-), %	3.1	4.9	GC-FID
Sum of other Phospholipids and	36.1	25.4	
glycerides, %	50.1		
Calcium, %	2.8	2.5	ICP-OES
Silicon dioxide, %	1 - 1.5		
Free L-serine, %	0.5	0.4	Ninhydrin reaction
Loss on drying, %	1.1		Karl Fisher
Ash, %	14.2	14.6	
Heavy metals			
Lead, ppm	≤1		USP≤251>
Arsenic, ppm	<u>≤1</u> ≤1		USP≤211>
Cadmium, ppm	≤1		AAS
Mercury, ppm	≤0.1		USP≤261>

Table 3. Typical composition of SunPS[™]

PS= Phosphatidylserine.

Table 4. Specifications of Sum		1
Parameter	Specifications, %	Assay method
Color	Grayish brown	Visual
PS	≥50.0%	³¹ P-NMR
Loss on drying	≤2.0%	Karl Fisher
Peroxide value	≤5 meq/Kg	AOCS official Cd 8-53
Microbiological assays		
Total plate count	≤1000 cfu/g	USP 61
Yeast and mold	$\leq 100 \text{ cfu/g}$	USP 61
E. coli	Negative (cfu/g)	USP 61
Salmonella	Negative (cfu/20g)	USP 61
Heavy metals		
Lead	≤1 ppm	USP 251
Arsenic	≤1 ppm	USP 211
Cadmium	≤1ppm	AAS
Mercury	≤0.1ppm	USP 261
Aflatoxins (B1, B2, G1, G2)	≤0.2 ppb	HPLC-FLD
Ethanol	≤1,000 ppm	USP 467

Table 4. Specifications of SunPSTM

PS=Phosphatidylserine

IV. INTENDED USES AND EXPOSURE ESTIMATES

IV.A. Intended Technical Effects

SunPS[™] is intended for use in powder form as a nutritional ingredient to provide a supplementary source of PS in consumer diets. While there is no specified Dietary Reference Intake (DRI) level for PS, intake of PS via food sources has been shown to be beneficial for brain function. Although PS is naturally present in the diet from foods such as certain fish, poultry, and meats (especially organ meats), its supplementation to food is gaining attention due to its potential health benefits.

IV.B. Intended Use

As shown in Table 5, ECA proposes to use SunPSTM as a nutrient [21 CFR §170.3(o)(20)], and as an alternative to soy-, marine-, or bovine PS, at levels up to 100 mg PS per serving in dairy product analogs (imitation milk and soy milk), grain products (nutritional bars: breakfast, granola, and protein), milk products (flavored milk and milk drinks, excluding fluid milk, milk-based meal replacements, and yogurt), and processed fruits and fruit juices (fruit flavored drink), at use levels of 50 mg PS per serving in breakfast cereals and milk (fluid - regular, filled, buttermilk, and dry reconstituted), and up to 300 mg in medical foods. Medical foods are defined as foods that are specially formulated and intended for the dietary management of a disease that has distinctive nutritional needs that cannot be met by the normal diet alone.

ECA does not intend to use PS as a component of infant formula or in foods under the USDA's jurisdiction such as meat, poultry, and egg products.

Food category	Proposed food use	Use level	RACC,	Use
		(mg/RACC)	g or ml	level, %
Breakfast cereals	Instant and regular hot cereals	50	240	0.0208
	Ready-to-eat cereals	50	15-55	0.0909-
				0.333
Dairy product	Imitation milk	100	240	0.042
analogs	Soy milk	100	240	0.042
Grain products	Nutritional bars (breakfast, granola,	100	240	0.250
	protein)			
Milk products	Flavored milk and milk drinks,	100	240	0.042
	fluid			
	Milk, fluid (regular, filled,	50	240	0.0208
	buttermilk, and dry reconstituted)			
	Milk-based meal replacements	100	240	0.042
	Yogurt	100	225	0.044
Processed fruits	Fruit flavored drinks	100	240	0.042
and fruit juices				

Table 5. Intended use and use levels of SunPSTM

Adopted from GRN 223 and 545. RACC=Reference Amount Customarily Consumed; PS= Phosphatidylserine.

IV.C. Estimated Daily Intakes (EDI) under the Intended Use

IV.C.1. Intake from Natural Presence in Food

PS is found in small amounts in foods such as meats, eggs, soy products, certain legumes, and milk. Dietary intake of PS, from its natural presence in the diet, is estimated to be in the range of 75 - 184 mg/person/day (Bruni et al.,1989; FDA, 2006b; Hamm, 2004). Common sources of industrially produced phospholipids are soya, rapeseed, sunflower, chicken eggs, bovine milk, fish, eggs, etc. Each source has a unique profile of individual phospholipid species and, consequently, differing applications in food, nutrition, and pharmaceuticals. In food formulations, phospholipids can act as an emulsifier, enabling oils to form a colloid with water.

Although some foods with standards of identity are included in the list of foods, at present the use of SunPSTM is intended for foods without a standard of identity.

IV.C.2. EDIs from the Intended Uses

Since SunPS[™] will be used in the same food categories and at the same use levels as those described in GRN 223 and 545, the exposure calculations presented in those GRNs are valid for SunPS[™] as well (Table 6). In these GRNs, the EDIs of PS from soy or sunflower sources under the intended use was determined using the Continuing Survey of Food Intakes by Individuals (CSFII) 1994-96 database (USDA, 1998).

As noted in GRN 223 and 545, approximately 60% of the total U.S. population was identified as potential consumers of PS from the proposed food uses. Although infants are included in the intake determinations, PS is not intended to be used in products such as baby foods or infant formula that are specifically marketed for use by infants. Consumption of types of food categories intended for addition of PS by the total U.S. population resulted in estimated mean all-user intakes of PS of 44.8 mg/person/day (0.95 mg/kg body weight [bw]/day. When heavy consumers (90th percentile) were assessed, the 90th percentile all-user intakes of PS from all intended food-uses by the total population was 98.7 mg/person/day (2.51 mg/kg bw/day). A summary of the estimated daily intakes of PS from the intended food categories is presented in Table 6. The EDI of high consumers under the intended use (98.7 mg/day) is comparable to the dietary intake of PS from its natural presence in dietary sources (75-184 mg/day). These estimates are highly optimistic since all foods under the intended uses will not be used at the maximum use levels. Based on totality of science, and the information discussed below, these intake levels are considered safe.

Age group, years	% users	N of total	mg/day		mg/kg bw/d	ay
		users	Mean	90 th	Mean	90 th
				percentile		percentile
0-2	52.5	1,880	27.4	60.5	2.21	4.86
3-11	79.8	5,030	41.9	91.1	1.72	3.64
12-19, females	54.1	380	45.8	89.1	0.83	1.67
12-19, males	55.0	383	60.7	117.8	1.01	2.18
20+ females	53.3	2,438	42.2	96.4	0.65	1.47
20+ males	46.0	2,230	49.6	105.0	0.61	1.31
Total population	59.9	12,341	44.8	98.7	0.95	2.15

Table 6. EDIs of PS under the intended use in all-users

Adopted from GRN 545. EDI = estimated dietary intake; PS= Phosphatidylserine; BW = body weight; N= number.

V. BASIS FOR GRAS DETERMINATION

V.A. Current Regulatory Status

In 2003, the ability of dietary supplementation with PS (both PS derived from bovine cortex and soybean lecithin) to support cognition and interrupt cognitive deterioration was recognized by the FDA in its approval of the qualified health claim, 'Consumption of PS may reduce the risk of dementia in the elderly', with a disclaimer, 'Very limited and preliminary scientific research suggests that phosphatidylserine may reduce the risk of dementia in the elderly' (FDA, 2003). In the FDA's response to this health claim petition, the FDA concluded that the use of PS as a dietary supplement is safe and lawful under 21 C.F.R. § 101.14 provided that bovine-derived sources, if used, are not derived from bovine tissues from cattle born, raised, or slaughtered in any country where bovine spongiform encephalopathy exists.

In addition, the FDA has issued no question letters on six GRAS notices related to food uses of PS derived from soy lecithin (GRNs 186, 197 and 223), sunflower lecithin (GRN 545), and fish lecithin (GRN 279 and 311). In these GRAS notices, toxicity-related studies on PS from the literature were presented to support the safety of utilizing PS. The FDA did not question the acceptability and suitability of these studies to establish the safety of PS for the revised, proposed food uses. The safety and related information in the above mentioned GRAS notices is hereby incorporated by reference to this independent GRAS determination.

The pertinent information is summarized below:

GRN 186: Soy lecithin enzymatically modified to have increased phosphatidylserine. Intended use - Ingredient in food in general, except meat and poultry. Lipogen Products (9000) Ltd., Israel. Date of closure - July 20, 2006. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=186.

GRN 197: Phosphatidylserine; Intended use - Ingredient in yogurt (excluding fat-free yogurts), powdered milk, ready to drink soymilk, meal replacements, cereal bars, powdered beverage mixes, chewing gum, and breakfast cereals at 20 mg per serving. Degussa Food Ingredients GmbH, Germany. Date of closure - September 20, 2006. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=197.

GRN223: Phosphatidylserine; Intended use - Ingredient in milk, flavored milk, milk drinks (excluding milk, fluid), milk imitation (soy milk), milk-based meal replacement, yogurt, breakfast bars, and fruit flavored drink at levels of 100 milligrams (mg) phosphatidylserine per serving and in breakfast cereals and milk, fluid at 50 mg/serving. Enzymotec Ltd., Israel. Date of closure - December 20, 2007.

http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=223.

GRN 279: Phosphatidylserine derived from fish; Intended use - Ingredient in breakfast cereals, dairy product analogs, grain products and pastas, milk products, and processed fruits and fruit juices at levels intended to provide 30 mg of phosphatidylserine per serving; and, as an ingredient in medical foods at levels that would not exceed 300 mg of phosphatidylserine per day. Enzymotec Ltd., Israel. Date of closure - July 29, 2009. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=279.

GRN 311: Krill-based phosphatidylserine; Intended use - Ingredient in breakfast cereals, dairy product analogs, grain products and pastas, milk products, and processed fruits and fruit juices, at a use level intended to provide 30 mg of phosphatidylserine per serving; and, as an ingredient in medical foods at levels that would not exceed 300 mg of phosphatidylserine per day. Enzymotec Ltd., Israel. Date of closure – June 15, 2010. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=311.

GRN 545: Phosphatidylserine derived from sunflower; Intended use – same as GRN 223 except medical foods. Intended for use in milk, flavored milk, milk drinks (excluding milk, fluid), milk imitation (soy milk), milk-based meal replacement, yogurt, breakfast bars, and fruit flavored drink at levels of 100 mg PS per serving; in breakfast cereals and milk, fluid at 50 mg/serving; and in medical foods at levels not to exceed 300 mg/serving. Enzymotec

Ltd., Israel. Date of closure – June 5, 2015. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=545.

Present GRAS assessment by ECA-Healthcare, China: PS derived from sunflower; Intended use –same as GRNs 223 and 545.

V.B. Review of Safety Data

As noted above, the FDA has issued 'no question' letters on six GRAS notices of PS regardless of its source (GRNs 186, 197, 223, 279, 311, and 545; FDA, 2006a, 2006b, 2007, 2009, 2010, and 2015). As the specifications in this GRAS determination are similar to those noted in those FDA GRAS notices (although the concentration of PS in SunPS[™] is lower than that of the previous notice) and FA profiles do not impact the safety of PS, it is recognized that the information and data in the GRAS notices are pertinent to the safety of the SunPS[™] in this GRAS determination. Therefore, this notice incorporates by reference the safety and metabolism studies discussed in GRN 545 and the other five GRAS notices. The subject of the present GRAS assessment is PS from sunflower lecithin (powder form). Additionally, this GRAS determination discusses additional mutagenicity and genotoxicity study ((Lifshitz et al., 2015), an animal toxicity study (Lifshitz et al., 2015) and human clinical studies (Hellhammer et al., 2014; Vakhapova et al., 2014) that have been published since the FDA's last GRAS notice review of 2014-2015.

V.B.1. Absorption, Metabolism, and Excretion of PS

GRN 545 and the other GRNs discuss the metabolic fate of PS as follows: Following dietary ingestion of PS, pancreatic digestive enzymes cleave specific FAs. The lysophospholipids thus formed are absorbed by the mucosal cells of the intestine and could be reacylated into PS. The FAs released can be further used for triglyceride (TG) synthesis (Tso, 1994). Because of the high activity of decarboxylases in the mucosal cells, the majority of the PS is converted into other phospholipids. PS is decarboxylated mainly to phosphatidylethanolamine (Wise et al., 1965). The reacylated PS, phosphatidylethanolamine and other phospholipids enter the lymph and circulation and are redistributed. The available evidence indicates that only part of the ingested PS reaches systemic circulation as part of the phospholipid pool. For all routes of administration, approximately 60% of the ingested PS is excreted in feces, while 10% is eliminated in urine (Toffano et al., 1987). The major metabolite recovered in the feces was lysoPS (about 50%) after oral administration (Toffano et al., 1987).

Although the FA composition between bovine cortex-, soy-, marine-, or sunflower-derived PS differs, these differences are unlikely to affect the safety profile. Compared to saturated FA present in bovine sources, unsaturated FA present in plant sources are not expected to have more adverse effects. Bovine cortex PS (BCPS) primarily contains saturated and monounsaturated fatty acids, as well as some DHA (Hendler and Rorvik, 2001), and marine-derived PS mainly contain omega-3 polyunsaturated fatty acids (PUFA) and saturated FA. Sunflower- and soy-derived PS mainly contain PUFA. Thus, the human studies of PS derived from bovine cortex- and marine sources can be used for the safety evaluation of PS derived from sunflower lecithin.

Compared to sunflower PS described in GRN 545, the specifications of SunPSTM are approximately 10% lower in the PS content and 10% higher for other phospholipids content.

These phospholipids profiles are not expected to impact the safety profile of PS preparations since other phospholipids follow similar metabolic pathways to that of PS (Murru et al., 2013). Phophoslipids including phosphatidic acid, lyso PS, and lyso phosphatidic acid, are a class of lipids that are a major component of all cell membranes.

V.B.2. Mutagenicity and Genotoxicity Studies

Historically, PS is derived from animal sources such as bovine cortex. In recent years, because of potential contamination concerns from bovine spongiform encephalopathy (BSE) prions, other sources of PS such as plant and marine sources have been explored. As noted above, these differences in FA profiles are unlikely to affect the safety profile of PS regardless of its origin.

The mutagenic potential of PS from the BCPS was investigated in human lymphocytes, a chromosomal damage assay, mouse-lymphoma cell mutation tests, cultured human epithelial cell DNA repair assays, and in an *in vivo* mouse micronucleus assay (Heywood et al., 1987). It is concluded that BCPC is not genotoxic or clastogenic under the conditions described in the 1987 Heywood paper. A recent study by Lifshitz et al. (2015) confirmed the findings from previous research as follows:

Bacterial reverse mutation assay of PS-DHA

PS-DHA was shown not to be mutagenic in either the bacterial reverse mutation assay or the human lymphocyte micronucleus assay (Lifshitz et al., 2015). In the bacterial reverse mutation assay, PS-DHA was tested for mutagenic activity in the Ames test using the histidine-requiring *S. typhimurium* strains TA 1535, TA 1537, TA 98, and TA 100 and in the tryptophan-requiring *E. coli* strain WP2 uvrA in both the absence and presence of S9-mix. In these tests, PS-DHA did not induce any dose-related increases in the mean number of revertant colonies.

Cultured human lymphocyte micronucleus assay

PS-DHA was examined for its potential to induce micronuclei in cultured binucleated human lymphocytes, in both the absence and presence of a metabolic activation system (S9-mix) (Lifshitz et al., 2015). In this *in vitro* mammalian cell micronucleus test, blood obtained from two different donors was used and ethanol was used as a solvent for the test substance. The final concentrations of the test substance in the culture medium ranged from 0.39 to 200 µg/ml. Cytotoxicity was determined from Cytokinesis-Block Proliferation Index (CBPI). The results obtained from the two *in vitro* micronucleus tests at doses up to 200 µg/ml demonstrated that PS-DHA was not clastogenic and/or aneugenic to cultured human lymphocytes.

V.B.3. Animal Toxicity Studies

V.B.3.1. A Recent Animal Toxicity Study

Recently, the safety of fish PS conjugated to DHA (PS-DHA) was examined in a subchronic toxicity study with an in-utero exposure phase (Lifshitz et al., 2015; Table 7). Rats were exposed to diets containing 1.5, 3, or 4.5% PS-DHA or two control diets. The test ingredient used in the current study comprised 81% phospholipids, of which PS comprised 49%. The FA profile reflects the fish lecithin source, comprising approximately 15% DHA and 7.5% EPA. Parental (F0) animals were fed throughout mating, gestation and lactation. Subsequently, a subchronic,

13-week study was conducted on the F1 animals followed by 4 weeks of recovery. The genotoxicity tests showed no mutagenicity potential. No significant toxicological findings were found in the F0 rats or the F1 pups. In a 13-week study, an increase in the presence of renal minimal-mild multifocal corticomedullary mineralization was noted in nine females of the high-dose group. This change was not associated with any inflammatory or degenerative changes in the kidneys. The no-observed-adverse-effect level (NOAEL) in the present study was placed at 3% in the diet (mid-dose group), equivalent to an overall intake of at least 2,100 mg/kg body weight (bw)/day for PS-DHA or 850 mg/kg bw/day for 98% purity PS in the F1 generation.

	2	5 5		
Dose	Daily dose	Duration	Results	Reference
Rat	0, 1,050, 2,100,	13 wk subchronic	NOAEL for F1	Lifshitz et al.,
	and 3,250 mg/kg	toxicity study	=2,100 mg/kg	2015
	bw PS-DHA	with an in-utero	bw/d for PS-DHA	
		exposure phase	or 850 mg/kg bw	
			for 98% purity PS	

PS= Phosphatidylserine; SD = Sprague Dawley; BW = body weight; NOAEL= no observed adverse effect level.

V.B.3.2. Animal Toxicity Studies Referenced in Previous GRNs

Previous GRNs summarized traditional toxicity studies done on BCPS and marine PS containing DHA. The acute oral LD_{50} of PS was determined to be greater than 5 g/kg bw and subchronic studies found the NOAEL of PS as 1,000 mg/kg bw/day in rats and dogs (Heywood et al., 1987). In addition, PS was not teratogenic at daily doses of up to 200-450 mg/kg bw for 12 days during pregnancy in rats and rabbits (Heywood et al., 1987).

V.B.3. Human Clinical Studies

V.B.3.1. Recent Human Clinical Studies

Recent studies published since FDA's 2015 review (Hellhammer et al., 2014; Vakhapova et al., 2014) reported the data consistent with the agency's prior decision (Table 8). In healthy subjects, daily supplementation with 300 mg PS or 400-800 mg of PS-phosphatic acid (PA) complex (PAS) safely attenuated the increase in cortisol secretion induced by acute stressors, including moderate- to high intensity exercise (Hellhammer et al., 2014). Hellhammer et al. (2014) reported that in chronically stressed subjects, soy PS 400 can be expected to buffer a hyper-responsivity of the hypothalamic-pituitary-adrenal axis to acute stressors by normalizing cortisol responses. In contrast, PAS 400 did not affect endocrine stress response in high chronically stressed subjects who do not have elevated cortisol levels.

Marine PS also improved cognitive function (Table 8; Vakhapova et al., 2014). The improvements observed after 15 weeks of daily supplementation with 300 mg of PS from a study by Vakhapova et al. (2011) were sustained for another 15 weeks by continued dietary supplementation with 100 mg/day of PS (Vakhapova et al., 2014).

No. of	Daily	Duration	Design	Adverse effects reported	Reference
subjects (PS-	dose,		_		
treated)	mg				
PS from a mar	ine source	e			
157 non-	100	15 wk	OL	PS-DHA was found to be safe and	Vakhap-
demented	mg	OLE		well tolerated, with no significant	ova et al.,
participants	PS+	from		side effects	2014
with memory	26 mg	Vakhap-			
complaints,	DHA+	ova et			
50-90 y	EPA	al., 2011			
Soy PS					
75 healthy	400	6 wk	DB-	No significant adverse events	Hell-
male	mg PS		PC	reported	hammer et
volunteers,	+400				al., 2014
mean 26 y	mg PA				

 Table 8. Recent human clinical studies of PS

^a In combination with 600 mg GPC, 20 mg vinpocetine, 50 mg uridine-5-monophosphate (disodium), 550 mg plant extracts (150 mg wild blueberry, 125 mg ashwagandha, 150 mg grape seed, 125 hops, ginger and rosemary. d=days; DB=double blind; OL=open label; PC=placebo controlled; PS= Phosphatidylserine; wk=weeks.

V.B.4.2. Human Studies Referenced in Previous GRNs

Of the 38 human clinical trials, 21 studies evaluated BCPS, 13 trials (reported in 14 papers) tested soy-based PS (soy PS), and 4 trials employed marine-based PS (marine PS). Although these investigations were designed to study the efficacy of PS, clinical observations also included any adverse effects. None of these studies reported adverse effects of PS, regardless of its source.

PS derived from sunflower

Although fatty acid composition between bovine cortex-, soy-, marine-, or sunflower-derived PS differs, these differences are unlikely to affect the safety profile. Most toxicity/safety studies were done on BCPS (bovine source) and soy PS, which were found to be safe. Compared to saturated FA present in bovine source, unsaturated FA present in plant sources are not expected to have more adverse effects. BCPS primarily contains saturated and monounsaturated fatty acids, as well as some DHA (Hendler and Rorvik, 2001) and marine-derived PS mainly contain omega-3 polyunsaturated fatty acids (PUFA) and saturated FA. Sunflower- and soy-derived PS mainly contain PUFA. Thus, the human studies of PS derived from bovine cortex-, marine-, and soy-sources can be used for the safety evaluation of PS derived from sunflower.

PS from bovine source (BCPS)

Human clinical studies on oral BCPS have employed daily doses of 100 to 800 mg, with the duration of 10 days to 6 months in elderly patients with various age-related cognitive problems (Table 8-1; Allegro et al., 1987; Amaducci et al., 1988; Caffarra et al., 1987; Cenacchi et al., 1987, 1993; Crook et al., 1991, 1992; Delwaide et al., 1986; Engel et al., 1992; Funfgeld et al., 1989; Granata and Michele, 1987; Heiss et al., 1993, 1994; Maggioni et al., 1990; Monteleone et al., 1992; Palmieri et al., 1987; Puca et al., 1987; Rabboni et al., 1990; Sinforiani et al., 1987; Villardita et al., 1987). None of the studies listed above reported adverse effects of PS on measured outcomes. In addition, no adverse events were associated with PS supplementation.

PS from a marine source (Marine PS)

Improved verbal immediate recall also was observed in a double-blind, placebo controlled clinical trial in a large group of elderly subjects with memory complaints when treated with a daily dose of 300 mg PS containing DHA and EPA in a 3:1 ratio (VayacogTM Enzymotec Ltd., Israel) (Vakhapova et al., 2011). A subset with relatively good cognitive performance at baseline showed the greatest improvement (Vakhapova et al., 2011).

PS derived from soybean (Soy PS)

The findings from the BCPS studies were confirmed and extended in studies evaluating soy PS (Baumeister et al., 2008; Benton et al., 2001; Hellhammer et al., 2004, 2012, 2014; Hirayama et al., 2014; Jager et al., 2007; Jorissen et al., 2001, 2002; Kato-Kataoka et al., 2010; Parker et al., 2011; Richter et al., 2010, 2013; Schreiber et al., 2000; Starks et al., 2008).

All of the studies described above reported no adverse effects of PS in healthy subjects and patients with cognitive decline or memory impairment.

VI. SAFETY DETERMINATION

Numerous human and animal studies have reported benefits of PS with no major adverse effects. ECA uses a HACCP-controlled manufacturing process and rigorously tests its final production batches to verify adherence to quality control specifications. There is broad-based and widely disseminated knowledge concerning the chemistry of PS. This GRAS determination is based on the data and information generally available and consented opinion about the safety of PS from a sunflower source. The literature indicates that SunPS[™] offers consumers benefits without adverse effects.

PS, a structural component of cells, is found in all biological membranes of plants, animals, and other life forms. FDA has received several GRAS Notices for PS derived from different sources (GRNs 186, 197, 223, 279, 311, and 545). In each case, the FDA responded that they had no questions on the proposed use and did not object to the respective GRAS determination. In particular, the FDA had no question on the safety of PS derived from sunflower (GRN 545).

The following safety evaluation fully considers the composition, intake, nutritional, microbiological, and toxicological properties of SunPS[™], as well as appropriate corroborative data.

- 1. ECA's SunPSTM is manufactured under current Good Manufacturing Practices (cGMP) using common food industry materials and processes. Analytical data from multiple lots indicate that SunPSTM complies reliably with the established food-grade product specifications and meet all applicable purity standards.
- 2. PS is an endogenous substance found in the human body. The bioavailability of the ingested PS is limited due to extensive hydrolysis in the intestine prior to absorption, and that absorbed PS is transported and rapidly converted into other endogenous constituents. Orally ingested PS is hydrolyzed in the intestine prior to its absorption. The absorbed PS is transported and rapidly converted into other endogenous constituents. Although no animal toxicity studies and human studies were done on PS from this sunflower source, we recognize that metabolic fates of PS are expected to be similar regardless of its source.
- 3. Historical consumption of PS supports the safety of PS. PS is found in common foods such as meat, fish, legumes, etc. PS has been marketed as a dietary supplement for the past two decades without any adverse effects (except gastrointestinal side effects such as nausea and indigestion). A typical recommended dose of PS as a dietary supplement is 100 mg three times a day (300 mg/day).
- 4. The 90th percentile EDI under the intended use is estimated to be 98.7 mg PS/person (2.51 mg/kg bw/day) for all-users. The 90th percentile intake of PS is approximately 3-fold lower than the safe levels (300 mg/day) determined on the basis of available human safety studies. The EDI estimates are based on the assumption that SunPS[™] will replace currently marketed PS derived from various sources. Thus, cumulative exposures are not expected.

- 5. A variety of animal toxicity studies and *in vitro* mutagenicity/genotoxicity studies corroborate the human clinical safety data. The animal studies did not show any significant toxicity at doses up to 1,000 mg/kg/day.
- 6. In numerous human clinical studies, safety of PS has been confirmed at daily doses of up to 300 mg for up to 6 months. The safety of PS has been proven in human clinical studies including susceptible groups (elderly and children) and healthy individuals.
- 7. Additional studies published subsequent to the FDA GRAS notices continue to support the safety of PS as a food ingredient.
- 8. The FDA has agreed to exercise enforcement discretion with a Qualified Health Claim Petition on PS. The petitioner in this submission demonstrated that soy-derived PS is safe at levels up to 500 mg/day.
- 9. The compositional data and product properties are consistent with carefully controlled cGMP production and purification. ECA's SunPS[™] preparation contains no impurities or contaminants of concern.
- 10. Several reviews by experts in the field also have documented the safety of PS.

Based on the above-described data and information, we conclude that SunPSTM, when used as a nutrient, is reasonably expected to be safe.

VII. CONCLUSION OF THE EXPERT PANEL: GENERALLY RECOGNIZED AS SAFE (GRAS) DETERMINATION FOR THE ADDITION OF PHOSPHATIDYLSERINE (PS) DERIVED FROM SUNFLOWER LECITHIN TO FOODS

Prepared for ECA Healthcare Inc.

We, the undersigned expert panel members, have critically evaluated the materials summarized as follows: We conclude that phosphatidylserine (PS) from a sunflower source is safe and Generally Recognized As Safe (GRAS) for its intended use in foods. The U.S. Food and Drug Administration (FDA) has either listed or affirmed PS as GRAS according to the Title 21 Code of Federal Regulations (21 CFR 170.3(o)(20)). Our conclusion is based on published animal toxicology and human clinical studies of PS from various sources. We recognize that animal toxicity studies and human clinical studies of PS do not present risks associated with the intended use and use levels of SunPSTM. Although no animal toxicity studies and human studies were done on PS from this sunflower source, we recognize that metabolic fates of PS are expected to be similar regardless of its source.

Our conclusion is based on published animal toxicology and human clinical studies of PS from various sources including PS derived from soy, fish, and bovine cortex. We recognize that animal toxicity studies and human clinical studies of PS do not present risks associated with the intended use and use levels of SunPSTM. The exact chemical structures and compositions of PS have been established and fall into the non-toxic classification. Considering that PS derived from sunflower lecithin is of biological origin, that it exists naturally in many foods, and that it does not represent a known health hazard, SunPSTM is considered as a GRAS substance.

It is also our opinion that other qualified and competent scientists reviewing the same publicly available toxicological and safety information would reach the same conclusion. Therefore, we have concluded that SunPSTM, when used as described in this dossier, is GRAS based on scientific procedures.

Susan Cho, Ph.D. President, NutraSource, Inc. susanscho1@yahoo.com	
Signature:	Date:
Robert L. Martin, Ph.D., Waldorf, MD 20601	
Signature:	Date:
George C. Fahey, Ph.D. Professor Emeritus, The University of Illinois-Urbana,	Urbana, IL 61801
Signature:	Date:

SunPSTM

VII. CONCLUSION OF THE EXPERT PANEL: GENERALLY RECOGNIZED AS SAFE (GRAS) DETERMINATION FOR THE ADDITION OF PHOSPHATIDYLSERINE (PS) DERIVED FROM SUNFLOWER LECITHIN TO FOODS

Prepared for ECA Healthcare Inc.

We, the undersigned expert panel members, have critically evaluated the materials summarized as follows: We conclude that phosphatidylserine (PS) from a sunflower source is safe and Generally Recognized As Safe (GRAS) for its intended use in foods. The U.S. Food and Drug Administration (FDA) has either listed or affirmed PS as GRAS according to the Title 21 Code of Federal Regulations (21 CFR 170.3(o)(20)). Our conclusion is based on published animal toxicology and human clinical studies of PS from various sources. We recognize that animal toxicity studies and human clinical studies of PS do not present risks associated with the intended use and use levels of SunPS™. Although no animal toxicity studies and human studies were done on PS from this sunflower source, we recognize that metabolic fates of PS are expected to be similar regardless of its source.

Our conclusion is based on published animal toxicology and human clinical studies of PS from various sources including PS derived from soy, fish, and bovine cortex. We recognize that animal toxicity studies and human clinical studies of PS do not present risks associated with the intended use and use levels of SunPSTM. The exact chemical structures and compositions of PS have been established and fall into the non-toxic classification. Considering that PS derived from sunflower lecithin is of biological origin, that it exists naturally in many foods, and that it does not represent a known health hazard, SunPSTM is considered as a GRAS substance.

It is also our opinion that other qualified and competent scientists reviewing the same publicly available toxicological and safety information would reach the same conclusion. Therefore, we have concluded that SunPSTM, when used as described in this dossier, is GRAS based on scientific procedures.

Susan Cho, Ph.D. President, NutraSource, Inc. susanschol@yahoo.com

Date: March 8, 2016 (b) (6) Signature: Robert L. Martin, Ph.D., Waldorf, MD 20601 (b) (6) Date: March 8, 2016 Signatur George C. Fahey, Ph.D. Professor Emeritus, The University of Illinois-Urbana, Urbana, IL 61801 (b) (6) Date: March 7, 2016 Signature:

VIII. REFERENCES

Allegro L, Favaretto V, Ziliotto G. Oral phosphatidylserine in elderly patients with cognitive deterioration. An open study. Clin Trials J. 1987;24:104-08.

Amaducci L. Phosphatidylserine in the treatment of Alzheimer's disease: results of a multicenter study. Psychopharmacol Bull. 1988;24:130-34.

Baumeister J, Barthel T, Geiss KR, Weiss M Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr Neurosci.2008;11:103-10.

Benton D, Donohoe RT, Sillance B, Nabb S. The influence of phosphatidylserine supplementation on mood and heart rate when faced with an acute stressor. Nutr Neurosci. 2001;4:169-78.

Bruni A, Mietto L, Bellini F, Boarato E, Toffano G. 1989. Pharmacological and autopharmacological action of phosphatidylserine. In Phospholipids in the Nervous System: Biochemical and Molecular Biology. Eds: Bazan, N.G., Horrocks, L.A. and Toffano, G. Fidia Research Series, Vol. 17 Livana Press, Padova: pp 217-24.

Caffarra P, Santamaria V. The effects of phosphatidylserine in patients with mild cognitive decline. Clin Trials J. 1987;24:109-14.

Cenacchi T, Baggio C, Palin E. Human tolerability of oral V assessed through laboratory examinations. Clin Trials J. 1987;24:125-30.

Cenacchi T, Bertoldin T, Farina C, Fiori MG, Crepaldi G. Cognitive decline in the elderly: A double-blind, placebo-controlled multicenter study on the efficacy of phosphatidylserine administration. Aging Clin Exp Res. 1993;5:123-33.

Claro FT, Silva RH, Frussa-Filho R. Bovine brain phosphatidylserine attenuates scopolamine-induced amnesia. Physiol Behav. 1999;67:551-54.

Crook TH, Tinklenberg J, Yesavage J, Petrie W, Nunzi MG, Massari DC. Effects of phosphatidylserine in age-associated memory impairment. Neurology. 1991;41:644-49.

Crook T, Petrie W, Wells C, Massari DC. Effects of phosphatidylserine in Alzheimer's disease. Psychopharmacol Bull. 1992;28:61-6.

Delwaide PJ, Gyselynck-Mambourg AM, Hurlet A, Ylieff M. Double-blind randomized controlled study of phosphatidylserine in senile demented patients. Acta Neurol Scand. 1986;73:136-40.

Engel RR, Satzger W, Günther W, Kathmann N, Bove D, Gerke S, Münch U, Hippius H. Double-blind cross-over study of phosphatidylserine vs. placebo in patients with early dementia of the Alzheimer type. Eur Neuropsychopharmacol. 1992;2:149-55.

FDA. 2003. Qualified Health Claim: Final Decision Letter - Phosphatidylserine and Cognitive Dysfunction and Dementia.

http://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072999.htm.

FDA. 2006a. GRN 186: Soy lecithin enzymatically modified to have increased phosphatidylserine. Lipogen Products (9000) Ltd., Israel. Date of closure - July 20, 2006. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=186.

FDA. 2006b. GRN 197: Phosphatidylserine. Degussa Food Ingredients GmbH, Germany. Date of closure - September 20, 2006. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=197.

FDA. 2007. GRN223: Phosphatidylserine. Enzymotec Ltd., Israel. Date of closure - December 20, 2007. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=223.

FDA. 2009. GRN 279: Phosphatidylserine derived from fish. Enzymotec Ltd., Israel. Date of closure - July 29, 2009. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=279.

FDA. 2010. GRN 311: Krill-based phosphatidylserine. Enzymotec Ltd., Israel. Date of closure – June 15, 2010. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=311.

FDA. 2015. GRN 545: Phosphatidylserine derived from sunflower. Enzymotec Ltd., Israel. Date of closure – June 5, 2015. http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=545.

Funfgeld EW, Baggen M, Nedwidek P, Richstein B, Mistlberger G. Double-blind study with phosphatidylserine (PS) in Parkinsonian patients with senile dementia of Alzheimer's type (SDAT). Prog Clin Biol Res. 1989;317:1235-46.

Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition. 2015;31:781-86.

Granata Q, Di Michele J. Phosphatidylserine in elderly patients. Clin Trials J. 1987 24:99-103.

Hamm M. 2004. Nutritional- scientific statement on the change of nutritive provision with phosphatidylserine (PS). Article provided by Dr. Hamm. Cited in GRN 545.

Heiss WD, Kessler J, Slansky I, Mielke R, Szelies B, Herholz K. Activation PET as an instrument to determine therapeutic efficacy in Alzheimer's disease. Annals NY Acad Sci. 1993; 695:327-31.

Heiss WD, Kessler J, Mielke R, Szelies B, Herholz K. Long-term effects of phosphatidylserine, pyritinol, and cognitive training in Alzheimer's disease. A neuropsychological, EEG, and PET investigation. Dementia. 1994;5:88-98.

Hellhammer J, Vogt D, Franz N, Freitas U, Rutenberg D. A soy-based phosphatidylserine/ phosphatidic acid complex (PAS) normalizes the stress reactivity of hypothalamus-pituitaryadrenal-axis in chronically stressed male subjects: a randomized, placebo-controlled study. Lipids Health Dis. 2014;13:121. 11 pages.

Hellhammer J, Hero T, Franz N, Contreras C, Schubert M. Omega-3 fatty acids administered in phosphatidylserine improved certain aspects of high chronic stress in men. Nutr Res. 2012;32:241-50.

Hellhammer J, Fries E, Buss C, Engert V, Tuch A, Rutenberg D, Hellhammer D. Effects of soy lecithin, phosphatidic acid and phosphatidylserine complex (PAS) on the endocrine and psychological responses to mental stress. Stress. 2004;7:119-26.

Hendler SS, Rorvik D. 2001. Phosphatidylserine. In: PDR for Nutritional Supplements. Medical EconomicsTM Thomson Healthcare, Montvale, NJ, pp. 354-56.

Heywood R, Cozens DD, Richold M. Toxicology of a phosphatidylserine preparation from bovine brain (BC-PS). Clin Trials J. 1987;24:25-32.

Hirayama S, Terasawa K, Rabeler R, Hirayama T, Inoue T, Tatsumi Y, Purpura M, Jäger R. The effect of phosphatidylserine administration on memory and symptoms of attention-deficit hyperactivity disorder: a randomised, double-blind, placebo-controlled clinical trial. J Hum Nutr Diet. 2014;27 Suppl 2:284-91.

Jager R, Purpura M, Geiss KR, Weil M, Baumeister J, Amatulli F, Schröder L, Herwegen H. The effect of phosphatidylserine on golf performance. J Int Soc Sports Nutr. 2007; 4:23. 4 pages.

Jorissen BL, Brouns F, Van Boxtel MP, Riedel WJ. Safety of soy-derived phosphatidylserine in elderly people. Nutr Neurosci. 2002;5:337-43.

Jorissen BL, Brouns F, Van Boxtel MP, Ponds RW, Verhey FR, Jolles J, Riedel WJ. The influence of soy-derived phosphatidylserine on cognition in age-associated memory impairment. Nutr Neurosci. 2001;4:121-34.

Kato-Kataoka A, Sakai M, Ebina R, Nonaka C, Asano T, Miyamori T. Soybean derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J Clin Biochem Nutr. 2010;47:246-55.

Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res. 2014;56:1-18.

Lifshitz Y, Levi L, Eyal I, Cohen T, Tessler S. Sub-chronic (13-week) oral toxicity study, preceded by an in utero exposure phase and genotoxicity studies with fish source phosphatidylserine in rats. Food Chem Toxicol. 2015;86:234-44.

Maggioni M, Picotti GB, Bondiolotti GP, Panerai A, Cenacchi T, Nobile P, Brambilla F. Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr Scand. 1990;81:265-70.

Manor I, Magen A, Keidar D, Rosen S, Tasker H, Cohen T, Richter Y, Zaaroor-Regev D, Manor Y, Weizman A. Safety of phosphatidylserine containing omega3 fatty acids in ADHD children: a double-blind placebo-controlled trial followed by an open label extension. Eur Psychiatry. 2013;28:386-91.

Monteleone P, Maj M, Beinat L, Natale M, Kemali D. Blunting by chronic phosphatidylserine administration of the stress-induced activation of the hypothalamo-pituitary-adrenal axis in healthy men. Eur J Clin Pharmacol. 1992;42:385-88.

Monteleone P, Beinat L, Tanzillo C, Maj M, Kemali D. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinol. 1990;52:243-48.

Murru E, Banni S, Carta G. Nutritional properties of dietary omega-3-enriched phospholipids. Biomed Res Int. 2013;2013:965417. 13 pages.

Palatini P, Viola G, Bigon E, Menegus AM, Bruni A. Pharmacokinetic characterization of phosphatidylserine liposomes in the rat. Br J Pharmacol. 1991;102:345-50.

Palmieri G, Palmieri R, Inzoll MR, Agrati AM, Vargiu A. Double blind controlled trial of phosphatidylserine in patients with senile mental deterioration. Clin Trials J. 1987;24:73 -83.

Parker AG, Gordon J, Thornton A, Byars A, Lubker J, Bartlett M, Byrd M, Oliver J, Simbo S, Rasmussen C., Greenwood M, Kreide RB. The effects of IQPLUS Focus on cognitive function, mood and endocrine response before and following acute exercise. J Intl Soc Sports Nutr. 2011;8:16. 6 pages.

Puca FM, Bavarese MA, Minervini MG. Exploratory trial of phosphatidylserine efficacy in mildly demented patients. Clin Trials J. 1987;24:94-98.

Rabboni M, Maggioni FS, Giannelli A, Beinat L. Neuroendocrine and behavioral effects of phosphatidylserine in elderly patients with abiotrophic or vascular dementia or mild depression. Clin Trials J. 1990;27:230-40.

Ransmayr G, Ploerer S, Gerstenbrand F, Bauer G. Double-blind placebo-controlled trial of phosphatidylserine in elderly patients with arteriosclerotic encephalopaty. Clin Trials J. 1987; 24:62-72.

Richter Y, Herzog Y, Eyal I, Cohen T. Cognitex supplementation in elderly adults with memory complaints: an uncontrolled open label trial. J Dietary Suppl. 2011;8:158-68.

Richter Y, Herzog Y, Cohen T, Steinhart Y. The effect of phosphatidylserine containing omega-3 fatty acids on memory abilities in subjects with subjective memory complaints: a pilot study. Clin Interv Aging. 2010;5:313-36.

Richter Y, Herzog Y, Lifshitz Y, Hayun R, Zchut S. The effect of soybean derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study. Clin Interv Aging. 2013;8:557–63.

Sakai M, Yamatoya H, Kudo S. Pharmacological effects of phosphatidylserine enzymatically synthesized from soybean lecithin on brain functions in rodents. J Nutr Sci Vitaminol (Tokyo). 1996;42:47-54.

Schreiber S, Kampf-Sherf O, Gorfine M, Kelly D, Oppenheim Y, Lerer B. An open trial of plantsource derived phosphatidylserine for treatment of age-related cognitive decline. Isr J Psychiatry Relat Sci. 2000;37:302-07.

Sheng X, Yung YC, Chen A, Chun J. Lysophosphatidic acid signalling in development. Development. 2015;142:1390-05.

Sinforiani E, Agostinis C, Merlo P, Gualtieri S, Mauri M, Mancuso A. Cognitive decline in ageing brain. Therapeutic approach with phosphatidylserine. Clin Trials J. 1987 24:115-24.

Starks MA, Starks S, Kingsley M, Purpura M, Jager R. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Intl Soc Sports Nutr. 2008;5:11.6 pages.

Suzuki S, Yamatoya H, Sakai M, Kataoka A, Furushiro M, Kudo S. Oral administration of soybean lecithin transphosphatidylated phosphatidylserine improves memory impairment in aged rats. J Nutr. 2001;131:2951-56.

Toffano G, Battistella A, Orlando P. Pharmacokinetics of radiolabeled brain phosphatidylserine. Clin Trials J. 1987;24:18-24.

Tso P. 1994. Intestinal lipid absorption. In L. R. Johnson (ed), Physiology of the Gastrointestinal Tract. Vol. 56 (L. R. Johnson, ed), Raven Press, New York, pp. 1867-1907.

USDA. 1998.CSFII 1994-1996. http://www.ars.usda.gov/Services/docs.htm?docid=14531.

Villardita JC, Grioli S, Salmeri G, Nicoletti F, Pennisi G. Multicenter clinical trial of brain phosphatidylserine in elderly patients with intellectual deterioration. Clin Trials J. 1987 24:84-93.

Vaisman N, Kaysar N, Zaruk-Adasha Y, Pelled D, Brichon G, Zwingelstein G, Bodennec J. Correlation between changes in blood fatty acid composition and visual sustained attention

performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr. 2008; 87:1170-80.

Vakhapova V, Richter Y, Cohen T, Herzog Y, Korczyn AD. Safety of phosphatidylserine containing omega-3 fatty acids in non-demented elderly: a doubleblind placebo-controlled trial followed by an open-label extension. BMC Neurol. 2011;11:79. 7 pages.

Vakhapova V, Cohen T, Richter Y, Herzog Y, Kam Y, Korczyn AD. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in nondemented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord. 2014;38:39-45.

Wise EM, Jr. Elwyn D. Rates of reactions involved in phosphatide synthesis in liver and small intestine of intact rats. J Biol Chem. 1965; 240: 1537-48.

APPENDIX A. CERTIFICATE OF ANALYSIS - $SunPS^{\rm TM}$

	Typical	Lot	Lot	Lot	Lot	Lot
Parameter	level/speci	2015	2015	2015	2015	2015
1 drameter	-fications	0901	0903	0906	1001	1003
PS, %	52.3	53.1	52.6	52.1	52.2	52.4
Phosphatidyl		7.1	7.3	7.4	7.2	7.3
acid, %	7.3	/.1	7.5	7.1	7.2	1.5
Phosphacholine, %	3.57	3.51	3.32	3.63	3.41	3.45
Lyso PS, %	0.8	0.8	0.7	0.7	0.8	0.8
Lyso phosphatidyl		0.58	0.56	0.6	0.58	0.57
acid, %	0.59	0.50	0.50	0.0	0.50	0.57
Phosphatidyl		3.4	3.5	3.3	3.4	3.5
inositol, %	3.5	5.1	5.5	5.5	5.1	5.5
Other		17.41	17.30	17.31	17.32	17.33
phospholipids, %	17.24	17.11	17.50	17.51	17.52	17.55
Glyceride (Tri-, di-		3.0	3.2	3.1	3.0	3.2
and mono-), %	3.1					
Calcium, %	2.8	2.5	2.6	2.8	2.6	2.8
Free L-serine, %	0.5	0.4	0.5	0.4	0.5	0.5
Loss on drying, %	1.1	1.2	1.4	1.2	1.2	1.3
Ash, %	14.2	14.1	14.2	14.3	14.2	14.3
		≤ 5	≤ 5	≤ 5	≤ 5	≤ 5
Peroxide value	\leq 5 meq/Kg	meq/Kg	meq/Kg	meq/Kg	meq/Kg	meq/Kg
Lead	≤1ppm	≤1ppm	≤1ppm	≤1ppm	≤1ppm	≤1ppm
Arsenic	≤1ppm	≤1ppm	≤1ppm	≤1ppm	≤1ppm	≤1ppm
Cadmium	≤1ppm	≤1ppm	≤1ppm	≤1ppm	≤1ppm	≤1ppm
Mercury	≤0.1ppm	≤0.1ppm	≤0.1ppm	≤0.1ppm	≤0.1ppm	≤0.1ppm
Aflatoxins (B1,	≤0.2 ppb	≤0.2 ppb	≤0.2 ppb	≤0.2 ppb	≤0.2 ppb	≤0.2 ppb
B2, G1, G2)						
Ethanol	≤1,000	ND	ND	ND	ND	ND
	ppm					
Organochlor	≤0.05ppm	≤0.05ppm	≤0.05ppm	≤0.05ppm	≤0.05ppm	≤0.05ppm
Pesticides						
Organophosphor	≤0.05ppm	≤0.05ppm	≤0.05ppm	≤0.05ppm	≤0.05ppm	≤0.05ppm
Pesticides	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dioxins and Furans	≤0.5ppm	<u>≤0.5ppm</u>	≤0.5ppm	≤0.5ppm	<u>≤0.5ppm</u>	≤0.5ppm
Total plate count	≤ 1000	≤1000	≤1000	≤1000	≤1000	≤1000
Veeete en 1 Melde	cfu/g	cfu/g	cfu/g	cfu/g	cfu/g	cfu/g
Yeasts and Molds	$\leq 100 \text{ cfu/g}$	≤100	≤ 100	≤ 100	≤ 100	≤ 100
	Nagetiere	cfu/g	cfu/g	cfu/g	cfu/g	cfu/g
E. coli	Negative	Negative	Negative (ofu/g)	Negative	Negative	Negative
Salmonella	(cfu/g)	(cfu/g)	(cfu/g)	(cfu/g)	(cfu/g)	(cfu/g)
saimonella	Negative (cfu/20g)	Negative (cfu/20g)	Negative (cfu/20g)	Negative (cfu/20g)	Negative (cfu/20g)	Negative (cfu/20g)
	(cru/20g)	(c1u/20g)	(c1u/20g)	(cru/20g)	(c1u/20g)	(cru/20g)

Certificate of Analysis

roduct	Code:	1812613	Batch No.: (b) (6)	P/O NO.:	
	QUANTITY:	100KG	PACKAGE: 10KG/CARTO	V	
	MFG.DATE	OCT. 9, 2015	EXP. DATE: OCT. 8, 2017		
	Product Cha	racteristics:			
	Shelf Life		24 months		
	Description		Grayish brown powder		
	Source		Sunflower		
	Solvents Use		Ethanol & water		
	Country of O	rigin	China		
	Test Items		Specification	Test	Method
	Identification		Positive	Conform	NMR
	Phosphatidyl	serine	≥50.0%	52.20%	NMR/HPLC
	Phosphatidyl			7.20%	31P-NMR
	Phosphatidyl			3.41%	31P-NMR
	Lyso Phosph	atidylserine		0.80%	31P-NMR
	Lyso phospha	tidyl acid		0.58%	31P-NMR
	Phosphatidyl	inositol		3.40%	31P-NMR
	Other phosph	nolipids		17.32%	31P-NMR
	Glyceride (Tri	-, di- and mono-)		3.00%	GC-FID
	Calcium			2.60%	ICP-OES
	Free L-serine		≤1.0%	0.50%	Ninhydrin
	Loss on dryir	ıg	≤2.0%	1.20%	Karl Fischer
	Ash			14.20%	Gravimetric
	Microbiolog	ical Profile			
	Total Plate C		≤1,000cfu/g	<1,000cfu/	USP<61>
	Yeast & Mold	1	≤100cfu/g	<100cfu/g	USP<61>
	E.coli		Negative	Conform	USP<61>
	Salmonella		Negative	Conform	USP<61>
	Additional T	estina	Contraction of the second s		
	Heavy Metals				
	Lead*		≪1ppm	<1ppm	USP<251>
	Arsenic*		≤1ppm	<1ppm	USP<211>
	Cadmium*		≤1ppm	<1ppm	AAS
	Mercury*	1 00 04 001*	≤0.1ppm	<0.1ppm	USP<261>
	Aflatoxins (B Organochloi	1,B2,G1,G2)* Pesticides	≪0.2ppb ≪0.05ppm	Conform Conform	HPLC-FLD GC/MS
		hor Pesticides	≪0.05ppm ≪0.05ppm	Conform	GC/MS
	Dioxins and F		≤0.5ppm	Conform	HRMS
	Ethanol		≤0.5%	Conform	GC
		C	Specifications.	oomonn	

Store in tightly closed containers at room temperature. Protected from moisture and pes infestation.

The items with * are tested periodically.

Certificate of Analysis

roduct	Code:	1812613	Batch No .:	(b) (6)	P/O NO .:	
	QUANTITY:	100KG	PACKAGE:	10KG/CARTON	1	
	MFG.DATE	SEP. 2, 2015	EXP. DATE:	SEP. 1, 2017		
	Product Cha	aracteristics:				
	Shelf Life		24 months			
	Description		Grayish brown	powder		
	Source		Sunflower			
	Solvents Use	ed	Ethanol & wate	er		
	Country of O	rigin	China			
	Test Items		Specification	<u>n</u>	Test	Method
	Identification		Positive		Conform	NMR
	Phosphatidyl	serine	≥50.0%		53.10%	NMR/HPLC
	Phosphatidyl	acid			7.10%	31P-NMR
	Phosphatidyl				3.51%	31P-NMR
	Lyso Phosph				0.80%	31P-NMR
	Lyso phospha				0.58%	31P-NMR
	Phosphatidyl				3.40%	31P-NMR
	Other phosph				17.41%	31P-NMR
		-, di- and mono-)			3.00%	GC-FID
	Calcium	, ,			2.50%	ICP-OES
	Free L-serine		≤1.0%		0.40%	Ninhydrin
	Loss on dryin	na	≤2.0%		1.20%	Karl Fischer
	Ash	19	~2.070		14.10%	Gravimetric
					14.1070	Gravimetric
	Microbiolog					
	Total Plate C		≤1,000cfu/g		<1,000cfu/	USP<61>
	Yeast & Mold	1	≤100cfu/g		<100cfu/g	USP<61>
	E.coli		Negative		Conform	USP<61>
	Salmonella		Negative		Conform	USP<61>
	Additional T					
	Heavy Metals	S	der nati			
	Lead*		≤1ppm		<1ppm	USP<251>
	Arsenic* Cadmium*		≤1ppm		<1ppm <1ppm	USP<211> AAS
	Mercury*		≤1ppm ≤0.1ppm		<0.1ppm	USP<261>
		1,B2,G1,G2)*	≤0.2ppb		Conform	HPLC-FLD
	Organochloi		<0.2ppb <0.05ppm		Conform	GC/MS
		hor Pesticides	≤0.05ppm		Conform	GC/MS
	Dioxins and F	urans	≤0.5ppm		Conform	HRMS
	Ethanol		≤0.5%		Conform	GC
	Conclusion:	Complies With	Specifications			

Store in tightly closed containers at room temperature. Protected from moisture and pest infestation.

The items with * are tested periodically.

Certificate of Analysis

roduct	Code:	1812613	Batch No.: (b) (6)	P/O NO.:	
	QUANTITY:	100KG	PACKAGE: 10KG/CARTO	DN .	
	MFG.DATE	SEP. 5, 2015	EXP. DATE: SEP. 4, 2017		
	Product Cha	aracteristics:			
	Shelf Life		24 months		
	Description		Grayish brown powder		
	Source		Sunflower		
	Solvents Use	ed	Ethanol & water		
	Country of O	rigin	China		
	Test Items		Specification	Test	Method
	Identification	í.	Positive	Conform	NMR
	Phosphatidy	Iserine	≥50.0%	52.60%	NMR/HPLC
	Phosphatidyl	acid		7.30%	31P-NMR
	Phosphatidyl	Choline		3.32%	31P-NMR
	Lyso Phosph	natidylserine		0.70%	31P-NMR
	Lyso phospha	atidyl acid		0.56%	31P-NMR
	Phosphatidyl			3.50%	31P-NMR
	Other phosp	holipids		17.30%	31P-NMR
		i-, di- and mono-)	3.20%	GC-FID
	Calcium			2.60%	ICP-OES
	Free L-serine		≤1.0%	0.50%	Ninhydrin
	Loss on dryin	ng	≤2.0%	1.40%	Karl Fischer
	Ash	-		14.20%	Gravimetric
	Microbiolog	ical Profile			
	Total Plate C		≤1,000cfu/g	<1,000cfu/	USP<61>
	Yeast & Mole		≤100cfu/g	<100cfu/g	USP<61>
	E.coli	u	Negative	Conform	USP<61>
	Salmonella		Negative	Conform	USP<61>
			Negative	Comonn	031-01-
	Additional T Heavy Metal				
	Lead*	5	≤1ppm	<1ppm	USP<251>
	Arsenic*		≤1ppm	<1ppm	USP<211>
	Cadmium*		≪1ppm	<1ppm	AAS
	Mercury*		≤0.1ppm	<0.1ppm	USP<261>
	Aflatoxins (B	1,B2,G1,G2)* r Pesticides	≤0.2ppb	Conform	HPLC-FLD
		ohor Pesticides	≪0.05ppm ≪0.05ppm	Conform Conform	GC/MS GC/MS
	Dioxins and F		≪0.5ppm	Conform	HRMS
	Ethanol		≤0.5%	Conform	GC
		: Complies With	n Specifications.		
	Storage & P	ackaging:			

The items with * are tested periodically.

Certificate of Analysis

duct	Code:	1812613	Batch No .:	(b) (6)	P/O NO .:	
	QUANTITY:	100KG	PACKAGE:	10KG/CARTON		
	MFG.DATE	SEP. 5, 2015	EXP. DATE:	SEP. 4, 2017		
	Product Cha	aracteristics:				
	Shelf Life		24 months			
	Description		Grayish brown	powder		
	Source		Sunflower			
	Solvents Use	d	Ethanol & wate	r		
	Country of O	rigin	China			
	Test Items		Specification		Test	Method
	Identification		Positive		Conform	NMR
	Phosphatidyl	serine	≥50.0%		52.10%	NMR/HPLC
	Phosphatidyl	acid			7.40%	31P-NMR
	Phosphatidyl				3.63%	31P-NMR
	Lyso Phosph	atidylserine			0.70%	31P-NMR
	Lyso phospha	tidyl acid			0.60%	31P-NMR
	Phosphatidyl				3.30%	31P-NMR
	Other phosph	nolipids			17.31%	31P-NMR
	Glyceride (Tri	i-, di- and mono-)		3.10%	GC-FID
	Calcium				2.80%	ICP-OES
	Free L-serine		≤1.0%		0.40%	Ninhydrin
	Loss on dryin	na	≤2.0%		1.20%	Karl Fischer
	Ash	0			14.30%	Gravimetric
	Microbiolog	ical Profile				
	Total Plate C		≤1,000cfu/g		<1,000cfu/	USP<61>
	Yeast & Mold	ł	≤100cfu/g		<100cfu/g	USP<61>
	E.coli		Negative		Conform	USP<61>
	Salmonella		Negative		Conform	USP<61>
	Additional T	esting				
	Heavy Metals					
	Lead*		≤1ppm		<1ppm	USP<251>
	Arsenic*		≤1ppm		<1ppm	USP<211>
	Cadmium*		≤1ppm		<1ppm	AAS
	Mercury*	1 02 01 001	≤0.1ppm		<0.1ppm	USP<261>
	Organochlo	1,B2,G1,G2)*	≪0.2ppb ≪0.05ppm		Conform	HPLC-FLD
		hor Pesticides	≪0.05ppm ≪0.05ppm		Conform	GC/MS
	Dioxins and F		≪0.5ppm		Conform Conform	GC/MS HRMS
	Ethanol	an anna	≤0.5%		Conform	GC
		Complies With	h Specifications.		Jonorni	20
	Storage & P					

The items with * are tested periodically.

Certificate of Analysis

roduct	Code:	1812613	Batch No.: (b) (6)	P/O NO.:	
	QUANTITY:	100KG	PACKAGE: 10KG/CART		
		OCT. 15, 2015	EXP. DATE: OCT. 14, 20		
		aracteristics:			
	Shelf Life		24 months		
	Description		Grayish brown powder		
	Source		Sunflower		
	Solvents Use	d	Ethanol & water		
	Country of O	rigin	China		
	Test Items		Specification	Test	Method
	Identification		Positive	Conform	NMR
	Phosphatidyl	serine	≥50.0%	52.40%	NMR/HPLC
	Phosphatidyl	acid		7.30%	31P-NMR
	Phosphatidyl	Choline		3.45%	31P-NMR
	Lyso Phosph	atidylserine		0.80%	31P-NMR
	Lyso phospha	tidyl acid		0.57%	31P-NMR
	Phosphatidyl			3.50%	31P-NMR
	Other phosph	nolipids		17.33%	31P-NMR
	Glyceride (Tri	-, di- and mono-)		3.20%	GC-FID
	Calcium			2.80%	ICP-OES
	Free L-serine		≤1.0%	0.50%	Ninhydrin
	Loss on dryir	ng	≤2.0%	1.30%	Karl Fischer
	Ash			14.30%	Gravimetric
	Microbiolog	ical Profile			
	Total Plate C		≤1,000cfu/g	<1,000cfu/	USP<61>
	Yeast & Mold	i	≤100cfu/g	<100cfu/g	USP<61>
	E.coli		Negative	Conform	USP<61>
	Salmonella		Negative	Conform	USP<61>
	Additional T	esting			
	Heavy Metals				
	Lead*		≪1ppm	<1ppm	USP<251>
	Arsenic*		≤1ppm	<1ppm	USP<211>
	Cadmium*		≪1ppm	<1ppm	AAS
	Mercury*		≤0.1ppm	<0.1ppm	USP<261>
	Aflatoxins (B	1,B2,G1,G2)*	≤0.2ppb	Conform	HPLC-FLD
	Organochlor		≤0.05ppm	Conform	GC/MS
	Dioxins and F	hor Pesticides	≤0.05ppm	Conform	GC/MS
		urdits	≤0.5ppm	Conform	HRMS
	Ethanol		≤0.5% Specifications.	Conform	GC

Store in tightly closed containers at room temperature. Protected from moisture and perinfestation.

The items with * are tested periodically.

Pages 000061-000065 of Curriculum Vitae removed in accordance with the Privacy Act of 1974.

Pages 000066-000431 have been removed in accordance with copyright laws. Please see the bibliography list of the references that have been removed on pages 000049-000054.

SUBMISSION END