
1976 Motorola Semiconductor Data Library Volume 6 Series B Linear Integrated Circuits
PDF
1976 Motorola Semiconductor Data Library Volume 6 Series B Linear Integrated Circuits 11 Master Index and Cross Reference Guide
IJ MIL-M-38510 Program and Chip Information
I I Operational Amplifiers
I I Voltage Regulators
El Interface Circuits
I I Voltage Comparators
I I Consumer Circuits
I I . Other Linear Circuits
I J Package Information and Mounting Hardware
l1iJ Application Notes '>-t
Volume 6/S.eries B
. prepared by Technical Information Center
Se111iconductor Data Library
LINEAR INTEGRATED CIRCUITS
This Linear Integrated Circuit Data Book contains data s_heets .for one of. the largest selections of linear ICs in the industry. Included are devices that were developed by the various,Motorola R&D groups, a·s well as an extensive second-source inventory of the most popular circuits developed elsewhere. The data sheets are arranged by product or market category.
To provide the user with a quick overview of Motorola's complete line of . standard linear ICs, a number of selector guides separate the total line into market or product divisions. This provides a quick comparison of similar devices, spelling out the most signficant differences. Also included are a crosHeference table of .second-source devices and other product-related information.
The information in this book has been carefully.checked and is believed to be reliable; however, no responsibility is assu·med for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any licens~ under the patent rights of any manufacturer.
Printed in U.S.A.
Series B ©MOTOROLA INC., 1976
Previous Edition © 1975 "All Rights Reserved",
'\
MOTL, MECL, MECL 10,000, MHTL, MRTL, MTTL, and Switchmode are trademarks of Motorola Inc.
CONTENTS
Page
CHAPTER 1 - MASTER INDEX AND CROSS-REFERENCE GUIDE . . . . . . . . . . . . . . 1-1 Master Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Cross-Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
CHAPTER 2 - MIL-M-38510 PROGRAM AND CHIP INFORMATION . . . . . . . . . . . . . 2-1 Ml L-M-38510 Program Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
CHAPTER 3 - OPERATIONAL AMPLIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Device Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Data Sheets (See page 3-2 for page numbers.)
CHAPfER 4 - VOLTAGE REGULATORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Device Listing . . . . . . . . . . · . . . . . . . _. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Data Sheets (See page 4-2 for page numbers.)
CHAPTER 5 -- INTERFACE CIRCUITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·· Selection Guides: Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-A/A-D Conversion ..... · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computer and Terminal Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Interface . .. . . . . . . . . . . . . . . . . . . . ·. . . . . . . . . . . . . . . . . . . Numeric Display Interface......................·. . . . . . . . . . . . . . Co_mmunications Interface (Telephony). , . . . . . . . . . . . . . . . . ~ . . . . . . . . Data Sheets (See page 5-2 for page numbers.)
5-1 5-2
5-4 5-8 5-9 5-14 5-16 5-17 5-18
CHAPTER 6 -VOLTAGE COMPARATORS.. . . . . . . . . . . . ... . . . . . . . . . · . . . . . . 6-1 Device Listing . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · . . . . . . 6-2 Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Data Sheets (See page 6-2 for page numbers.)
CHAPTER 7 -CONSUMER CIRCUITS......................... . . . . . . . . . 7-1 Devi.ce Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 Data Sheets (See page 7-2 for page numbers.)
CONTENTS (continued)
Page CHAPTER 8 - OTHER LINEAR CIRCUITS ... , . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Device Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8"2 / Selection Guides:
)
High-Frequency Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Special-Purpose Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 Data. Sheets (See page 8-2 for page numbers.) CHAPTER 9 - PACKAGE INFORMATION AND MOUNTING HARDWARE. . . . . . . . . 9-1 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Mounting Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·9-11 CHAPTER 10-:-APPLICATION NOTE ABSTRACTS . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
. ii
II
Device
Number
DS3645 DS3647 DS3675 DS3677 DS8641 DS36147 DS36177 LF155 LF155A LF1,56 LF156A LF157 LF157A LF355 l-F355A LF356 LF356A LF357 LF357A LMl 17 LM123 LM317 LM323 MC1302 MC1303 MC1306 MC1310 MC1312 MC1314 MC1315 MC1323 MC1324 MC1327 MC1330A MC1331 MC1344 MC1349 MC1350 MC1351 MC1352 MCl355 MC1356 MC1357 . MC1358 MC1364 MC1375 MC1384 MC1385 MC1391 MC1393 MC1394 MC1398 MC1399 MC1403 MC1403A MC1405 MC1406 MC1408 MC1410 MC1411
MC14~2
MASTER IN·DEX
Function
Page
Hex Three-State Latch/Driver .................................................... 5-19 Quad Three-State MOS Memory 1/0 Register .. , .................·................. 5-22 Hex Three-State Latch/Driver .................................................... 5-19 Quad Three-Stcite MOS Memory 1/0 Register ...........................·......... 5-22 Quad Unified Bus Transceiver ...... , ............................................. 5-25 Quad Three-State MOS Memory 1/0 Register ..................................... 5-22 Quad Three-State MOS Memory 1/0 Register ..................................... 5-22 Monolithic JFET Operational Amplifier ............................................. 3-7 Monolithic JFET Operational Amplifier ....·.................................. , ..... '3-7 Monolithic JFET Operational Amplifier ............................................. ';3-7 Monolithic JFET Operational Amplifier ............................... ; ............. 3-7 Monolithic JFET Operational Amplifier ..... ~ ........................·.............. 3-7 Monolithic JFET Operational Amplifier ............................................. 3-7 Monolithic JFET Operational Amplifier ............................................. 3-7 Monolithic JFET Operational Amplifier ........................................ ; .... 3-7 Monolithic JFET Operational· Amplifier ............................................. 3-7 Monolithic JFET Operational Amplifier ............................................. 3-7 Monolithic JFET Operational Amplifier ............................................. 3-7 Monolithic JFET Operational Amplifier ........................... : ................. 3~7 3-Terminal Adjustable Positive Regulator .......................................... 4-6 Positive Voltage Regulator .... '. ................................................... 4-7 3-Terminal Adjustable Positive Regulator .......................................... 4-6 Positive Voltage Regulator ........................................................ 4-7 7-Stage Divider .......·............................................... : ............ 7-7 Dual Stereo Preamplifier ...............·......................................... 7-9 1/2-Watt Audio Amplifier ............ ; .....·.................................... 7-13 FM Stereo Demodulator ......................................................... 7-18 Four-Channel SQ Decoder ....................................................... 7-26 Four-Channel Audio Voltage-Controlled Amplifier ................................. 7-26 Four-Channel Audio Logic Circuit ................................................ 7-26 Triple Doubly Balanced Chroma Demodulator ..................................... 7-38 Dual Doubly Balanced Chroma Demodulator ..................·................... 7-43 Dual Doubly Balanced Chroma Demoduiator ...................................... 7-47 Low-Level Video Detector ........................................................ 7-51 Lo~-Level Video Detector ...·.................................................... 7-57 TV Signal Processor ..................................................... ; ....... 7-64 IF Amplifier ................ ; ......... : ........................................... 7-67 IF Amplifier .................................................·......... ·........... 7-72 TV Sound Circuit ....................... ; ...................... ; .................. 7-76 TV Video IF Amplifier ............................................................ 7-80 Limiting FM IF Amplifier ......................................................... 7-85 FM Detector/Limiter ............................................................ 7-89 IF Amplifier and Quadrature Detector .............. ; ....· , ........................ 7-93 TV Sound IF Amplifier ........................................................... 7-99 Automatic Frequency Control ................................................. , . 7-104 FM IF Circuit ................................................... ; ......... ; ..... 7-108 5-Wat~ Audio Power Amplifier .................................................. 7-112 Class B Audio Driver ............................................................ 7-114 TV Horizontal Processor ........................................................ 7-120 TV Vertical· Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-125 TV HorizontaI Processor ·............ , ....................... : .................. 7-120 TV Color Processing Circuit ...................................................... 7-128 TV Color Processing Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ·······.······ 7-134 Precision Low-Voltage Reference .................................................. 4-9 Precision Low-Voltage Reference.: ................................................ 4-9 Analog-to-Digital Converter Subsystem ................. : . ........................ 5-28 Six-Bit Multiplying Digital-to-Analog Converter ....·............................... 5-42 Eight-Bit Multiplying Digital-to-Analog Converter ................... ; .............. 5-54 Video Amplifier ................................... ; : .............................. ; 8-6 Peripheral Driver Array .......................................................... 5-68 Peripheral Driver Array .......................................................... 5-68
1-2
MASTER INDEX
Device Number
Function
Page
MC1413 MC1414 MC1416 MC1420 MC1422 MC1430 MC1431 MC1433 MC1435 MC1436 MC1436C MC1437 MC1438 MC1439 MC1440 MC1444 MC1445 MC1454 MC1455 MC1456 MC1456C MC1458 MC1458C MC1458N MC1458S MC1460 MC1461 MC1463 MC1464 MC1466 MC1468 MC1469 MC1472 MC1488 MC1489 MC1489A MC1494 MC1495 MC1496 MC1503 MC1503A MC1505 MC1506 MC1508 · MC1510 MC1514 MC1520 MC1530 MC1531 MC1533 MC1535 MC1536 MC1537 MC1538 MC1539 MC1540 MC1544 MC1545 MC1550 MC1552 MC1553 MC1554 MC1555
Peripheral Driver Array .......................................................... 5-68 Dual Differential Comparator ........................ , ............................ ; 6-5 Peripheral Driver Array .......................................................... 5-68. Differential Output Operational Amplifier .......................·.................. 3-12 Timing Circuit with Adjustable Threshold ......................................... 8-10 Operational Amplifier ........................................................... 3-16 Operational Amplifier ........................................................... 3-16 Operational Amplifier ........................................................... 3-20 Dual Operational Amplifier ...................................................... 3-25 High Voltage Operational Amplifier ............................................... 3-30 High Voltage Operational Amplifier ............................................... 3-30 Dual Operational Amplifier ...................·...... , ........................... 3-34 Power Booster .................................................................. 8-17 High Slew Rate Operational Amplifier ............................................ 3-38 Core-Memory Sense Amplifier .......... ·....................................' ...... 5-71 AC-Coupled 4-Channel Sense Amplifier .......... '. ............................... 5-74 Wid.eband Amplifier .........................·................................... 8-23 1-Watt Power Amplifier ....................... ,.................................. 8-39 Timing Circuit ................................................................... 8-43 High Performance Operational Amplifier .......................................... 3-46 High Performance Operational Amplifier .......................................... 3-46 Dual Operational Amplifier .............·........................................ 3-52 Dual Operational Amplifier ...................................................... 3-52 Low Noise Dual Operational Amplifier ............................................ 3-52 High Slew Rate Dual Operational Amplifier ....................................... 3-57 Positive Voltage Regulator ............................................... ; ....... 4-11 Positive Voltage Regulator ....................................................... 4-11 Adjustable Negative Voltage Regulator ............................................ 4-12 NPN Power Darlington Driver .................................................... 8-50 Voltage and Current Regulator ................................................... 4-28
Dual ± 15-Volt Tracking Regulator ................................................ 4-38
Adjustable Positive Voltage Regulator ............................................. 4-44 Dual Peripheral Positive NANO Driver ............................................ 5-82 Quad MOTL Line Driver ......................................................... 5-85 Quad MOTL Line Receiver ....................................................... 5-91 Quad MOTL Line Receiver .·..................................................... 5-91 Four-Quadrant Multiplier ........................................................ 8-61 Four-Quadrant Multiplier ........................................................ 8:-75 Balanced Modulator-Demodulator ................................................ 8-91 Precision Low-Voltage Reference .................................................. 4-9 Precision Low-Voltage Reference .................................................. 4-9 Analog-to-Digital Converter Subsystem ....... , ................................... 5-28 Six-Bit Multiplying Digital-to-Analog Cohv~rter ........................ : ........... 5-42 Eight-Bit Multiplyi11g Digital-to-Analog Converter .................................. 5-54 Video Amplifier .................................................................. 8-6 Dual Differential Comparator ...........-........................................... 6-5 Differential Output Operational Amplifier ......................................... 3-12 Operational Amplifier ........................................................... 3-16 Operational Amplifier .......................................... , ................ 3-16 Operational AmRlifier ........................................................... 3-20 Dual Operational Amplifier ...................................................... 3-25 High Voltage Operational·Amplifier .............................. : ................ 3~30 Dual Operational Amplifier ...................................................... 3-34 Power Booster .................................................. ; ............... 8-1 7 High Slew Rate Operational Amplifier ............................................ 3-38 Core-Memory Sense Amplifier ................................................... 5-71 AC-Coupled 4-Channel Sense Amplifier .......................................... 5-74 Wideband Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .'. . . . . . . . . . . . . . . . . 8-23
1
RF-IF Amplifier .................................................................. 8-29 Video Amplifier .. ; ................................................................ 8-35 Video Amplifier ................................................................. 8-35 1-Watt Power Amplifier ............. , ........................................... 8-39 Timing Circuit .................................................. : . .............. 8-43
II
1-3
·
MASTER INDEX
Device Number
Function
Page
MC1556 MC1558 MC1558N MC1558S MC1560 MC1561 MC1563. MC1566 MC1568 MC1569 MC1590 MC1594 MC1595 MC1596 MC1709 MC1709A MC1709C MC1710 MC1710C MC1711 MC17i1C MC1712 MC1712C MC1723 MC1723C. MC1733.
MC1733C MC1741 MC1741C MC1741N MC1741NC · MC1741S
MC1741SC MC1747 MC1747C MC1748 MC1748C MC1776 · MC1776C MC26S10 MC26S11 MC3232A MC3245 MC3301 MC3302 MC3303 MC3310 MC3315 MC3316 MC3317 MC3320 MC3321 MC3325 MC3330 MC3333,. MC3340 MC3344 MC3346 MC3358 MC3360 MC3370 MC3380 MC3386
High Performance Operational Amplifier .......................................... 3-46 Dual Operational Amplifier .~ .. , ...................... ~ .......................... 3-52 Low Noise Dual Operational Amplifier ......................... :- .................. 3-52 High Slew Rate Dual Operational Amplifier ....................................... 3-57 Positive Voltage Regulator ....................................................... 4-11 · Positive Voltage Regulator ............................................ ·......... , . 4-11 Adjustable Negative Voltage Regulator .......................... , ................. 4-12 Voltage and Current Regulator ................................................... 4-28
Dual ± 15-Volt Tracking Regulator ........... , .................................... 4-38
Adjustable Positive Voltage Regulator ............................................ 4~44 Wideband Amplifier with AGC ................................................... 8-52 Fem-Quadrant Multiplier ........................................................ 8-61 Four-Quadrant Multiplier ........................................................ 8-75 Balanced Modulator-Demodulator ............'. ................................... 8-91 General Purpose Operational Amplifier ........................................... 3-63 General Purpose Operational Amplifier ........................................... 3-63 General Purpose Operational Amplifier ...... , .................................... 3-63 Differential Comparator ........................................................... 6-9 Differential Comparator ...................·......................................... 6-9 Dual Differential Comparator ...............................................·...... 6-13 Dual Differential Comparator ........................... "' ............. ; .......... 6-13 Wideband DC Amplifier .....................·..................................... 3-67 Wideband DC Amplifier .......................................................... 3-67 Adjustable Positive or Negative Voltage Regulator ............................. , ... 4-63 Adjustable Positive or Negative Voltage Regulator ................................. 4-63 Differential Video Amplifier ............................. : ........ , .............. 8-101 Differential Video Amplifier .................·................................... 8-101 .General Purpose Operational Amplifier ........................................... 3-72 General Purpose Operational Amplifier ..............................,............. 3-72 Low Noise Operational Amplifier .................................. ; .... ; ......... 3-72 Low Noise Operational Amplifier ................................................. 3-72 High-Slew-Rate Operatio·nal Amplifier ............................................ 3-77 High-Slew-Rate Operational Amplifier ........................................ ; ... 3-77 Dual MC1741 Operational Amplifier ...................... : ...................... : 3-83 Dual MC1741 C Operational Amplifier ............................................ 3-83 General Purpose Operational Amplifier ........................................... 3-87 General Purpose Operational Amplifier ........ ; .............. : ................... 3-87 Programmable Operational Amplifier ............................................. 3-91 Programmable Operational Amplifier ................. ; . : ...............·...·..... 3-91 (See XC26S 10) Quad Open-Collector Bus Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-97 (See XC26S 11) Quad Open-Collector Bus Transceiver ............................. 5-97 Memory Address Multiplexer and Refresh Address Counter ....................... 5-100 Quad TTL-to-MOS Driver ..... .' .................. ~ .............................. 5-104 Quad Operational Amplifier ...................................................... 3-100 Quad Comparator ................................................................ 6-17 Quad Differential Input Operational Amplifier .................................... 3-116 Wide-Band Amplifier ...............·............................................. 7-1.39 (See XC3315) Frequency-to-Voltage Converter .................... '. .............. 7-143 (See XC3316) Dual Frequency-to-Voltage Converter ....... , ...................... 7-149 (See XC3317) Dual Frequency-to-Voltage Converter .............................. 7-149 Class B Audio Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-156 Class B Audio Driver .......................;.................................... 7-156 Automotive Voltage Regulator ...... ·............................·................ 7-160 Differential/Cascade Amplifier .................................................. 7-164 Vari-Dwell Ignition ............. , ..........·.........·............................ 7-166 Electronic .Attenuator ....·...................................................... 7-169 Programmable Frequency Switch .... : ........................................... 8-109 General-Purpose Transistor Array ........... : ........................... : ....... 7-172 Dual Low Power Operational Amplifier .......................................... 3-122 1/4-Watt Audio Amplifier ......................................................7-175 Zero Voltage Switch .....................................' ....................... 8-114 Emitter Coupled Astable Multivibrator ........................................... 1-178 Gen,eral-Purpose Transistor Array· .........................................: ..... 7-172
MASTER INDEX
Device ·Number
Function
Page
MC3390 MC3391 MC3401 MC3403 MC3405 MC3408 MC3410 MC3410C MC3411 MC3416 MC3417 MC3418 MC3420 MC3422 MC3423 . MC3426
MC3430 MC3431 MC3432 MC3433 MC3437 MC3438 MC3440 MC3441 MC3443 MC3446 · MC3448 MC3449 . MC3450
MC3452 MC3453 MC3456 MC3458 MC3459 MC3460 MC3461 MC3466 MC3467 MC3468 MC3471 MC3476 MC3480 MC3486 MC3487 MC349P MC34$1 MC3492 MC3494 MC3503 MC3505 MC3510 MC3520 MC3523 MC3556 MC3558 MC3571 MC4202C MC4558 MC4558C MC4741 MC4741C MC5524 MC5525
Ph.ase-Locked Loop Frequency Synthesizer for CB Radio .......................... 7-184 Remote Controller and Display Driver for CB Radio ............................... 7-185 Quad Operational Amplifier ...................................................... 3-108 Quad Differential Input Operational Amplifier ........ ~ ........................... 3-116 Dual Operational Amplifier plus Dual Voltage Comparator ......................... 8-118 Eight-Bit Multiplying Digital-to-Analog Converter ................................. 5-107 Ten-Bit D-to-A Converter ........................................................ 5-113 Ten-Bit D-to-A Converter .... ; ............................ ~ ..................... 5-113 (See XC3411) Dual Voltage Comparator .......................................... 6-21 Crosspoint Switch ...............................· ............................... 5-125 Continuously Variable· Slope Delta Modulator/Demodulator ....................... 5-134 Continuously Variable Slope Delta Modulator/Demodulator ....................... 5-134 Switchmode Regulator Control Circuit .......................... : ................. 4-69 Current Limiter ........... :- . .................. ·................................... 4-74 Overvoltage Sensing Circuit .................................................... 8-123 Ground Fault Interrupter ........................................................ 8-127 High-Speed Quad Comparator .............................................. , .... 6-23 High-Speed Quad Comparator ................................................... 6-23 High-Speed Quad Comparator . ; ................................................. 6-23 High-Speed Quad Comparator ................................................... 6-23 Hex Unified Bus Receiver ....................................................... 5-142 Quad Unified Bus Transceiver ................................................... 5-145 Quad Interface Bus Transceiver ................................................. 5-148 Quad Interface Bus Transceiver ................................................. 5-148 Quad Interface Bus Transceiver ................................................. 5-148 Quad Interface Bus Transceiver ......................................·........... 5-152 (See XC3448) Quad Three-State Bus Transceiver ................................. 5-155 Triple Bidirectional Bus Switch .................................................. 5-243 . Quad Line Receiver ...........·................................................ 5-159 Quad Line Receiver ....................................... : .................... 5-159 Quad Line Driver ...................................... ·......... , ............... 5-166 Dual Timing Circuit ............................................................ 8-134 Dual Lpw Power Operational Amplifier ................ : .............. '. .......... 3-122 Quad NMOS Memory Driver ............... ; ..... , .............................. 5-170 Gate Controlled Four-Channel MOS Clock Driver ................................. 5-174 Dual NMOS Memory Sense Amplifier ........................................... 5-187 Gate Controlled Four-Channel MOS Clock Driver ................................. 5-174 Triple Preamplifier ............................................................. 5-193 Magnetic Read Amplifier ....................................................... 5-198 Quad FET Input Operational Amplifier ........................................... 3-128 Programmable Operational Amplifier ...................... : ..... : ............... 3-130 (See XC3480) Memory Controller Circuit ................................ : ........ 5-218 Quad RS-422/423 Line Receiver ................................................ 5-219 (See XC3487) Quad RS-422 Line Driver with Three-State Outputs ..... .' ........... 5-222 Seven Digit Gas Discharge Display Driver .....................,................... 5-224 8-Segment Visual Display Driver ................................................ 5-230 8-Segment Visual Display Driver ........... : .............. ~ ..................... 5-230 Seven Digit Gas Discharge Display Driver ........................................ 5-224 Quad Differential Input Operational Amplifier .................................... 3-116 Dual Operational Amplifier plus Dual Voltage Comparator ......................... 8-118 Ten-Bit D-to-A Converter ....................................................... 5-113 Switchmode Regulator Control Circuit ............................................ 4-69 Overvoltage Sensing Circuit ................................................. ; . , 8-123 Dual Timing Circuit ............................................... ; ............ 8-134 Dual Low Power Operationai Amplifier ................. .'........................ 3-122 Quad FET Input Operational Amplifier ........................................... 3-128 Programmable Quad Operational Amplifier ....................................... 3-134 Dual High Frequency Operational Amplifier ...................................... 3-138 Dual High Frequency Operational Amplifier ...................................... 3-138 Quad MC1741 Operational Amplifier: ..........................................·.3-140 Quad MC1741 Operational Amplifier ....................... ; .................... 3-140 Dual Sense Amplifier ............................................................ 5-252 Dual Sense Amplifier. :1 . ·····....···...···. .'····....····...·.·····.·.···...····. 5-252
·
1~5
·
MASTER INDEX
Device
Number
Function
Page
MC5528 MC5529 MC5534 MC5535 MC5538 MC5539 MC6875 MC6880A MC6881 MC6885 MC6886 MC6887 MC6888 MC6889 MC7524 MC7525 MC7528 MC7529 MC7534 MC7535 MC7538 MC7539 MC7705C MC7706C MC7708C MC7712C MC7715C MC7718C MC7720C MC7724C MC7805C MC7806C MC7808C MC7812C MC7815C MC7818C MC7824C MC78L02AC MC78L05AC MC78L05C MC78L08AC MC78L08C MC78L12AC MC78L12C MC78L15AC MC78L15C MC78L18AC MC78L18C MC78L24AC MC78L24C MC78M05C MC78M06C MC78M08C MC78M12C MC78M1-5C MC78M18C .MC78M20C MC78M24C MC7902C MC7905C MC7905.2C MC7906C MC7908G
Dual High-Speeq Sense Amplifier with Preamplifier Test Points ................... 5-255 Dual High-Speed Sense Amplifier with Preamplifier Test Points ......... ,', ....... , 5-255 Dual Sense Amplifier with Inverted Outputs ..................................... 9-258 Dual Sense Amplifier with Inverted Outputs ..................................... 5-258 Sense Amplifier with Preamplifier Test Points .................................... 5-260 Sense Amplifier with Preamplifier Test Points .................................... 5-260 (See XC6875) M6800 Clock Generator/Driver .................................... 5-237 Quad Three-State Bus Transceiver .............................................. 5-238 triple Bidirectional Bus Switch .................................................. 5-243 Hex Three-State Buffer/Inverter ......................................... , ...... 5-245 Hex Three-State Buffer/Inverter ................................................ 6-245 Hex Three-State Buffer/Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-245 Hex Three-State Buffer/Inverter ................................................ 5-245 Non-inverting Bus Transceiver .............................·.................... 5-250 Dual Sense Amplifier ......................................... ,· ................. 5-252 Dual Sense Amplifier ........................................................... 5-252 Dual High-Speed Sense Amplifier with Preamplifier Test Points ................... 5-256 Dual High-Speed Sense Amplifier with Preamplifier Test Points ................... 5-255 Dual Sense Amplifier with Inverted Outputs .............. , ...................... 5-258 Dual Sense Amplifier with Inverted Outputs ..................................... 5-258 Sense Amplifier with Preamplifier Test Points .................................... 5-260 Sense Amplifier with Preamplifier Test Points .................................... 5-260 Positive Voltage Regulator (750mA) ...... : ....................................... 4-76 Positive Voltage Regulator (750mA) .............................................. 4-76 Positive Voltage Regulator (750mA) .............................................. 4-76 Positive Voltage Regulator (750mA) .............................................. 4-76 Positive Voltage Regulator (750mA) .............................................. 4-76 Positive Voltage Regulc:ttor (750mA) .............................................. 4-76 Positive Voltage Regulator (750mA) .............................................. 4-76 Positive Voltage Regulator (750mA) .......................... , ................... 4-76 Positive Voltage Regulator (1.5A) ................................................. 4-84 Positive Voltage Regulator (1.5A) ................................................. 4-84 Positive Voltage Regulator (1.5A) ................................................. 4-84 Positive Voltage Regulator (1.5A) ................................................. 4-84 Positive Voltage Regulator (1.5A) ...................................... ; .......... 4-84 Positive Voltage Regulator (1.5A) ................................................. 4-84 Positive Voltage Regulator (1.5A) .........................·~~....................... 4-84 Positive Voltage Regulator (1 OOmA) .............................................. 4-92 Positive Voltage Regulator (1QOmA) .............................................. 4-92 Positive Voltage Regulator (1 OOmA) .............................................. 4-92 Positive Voltage Regulator (1 OOmA) .............................................. 4-92 · Positive Voltage Regulator (1 OOmA) .............................................. 4-92. Positive Voltage Regulator (1 OOmA) .............................................. 4-92 Positive Voltage Regulator (1 OOmA) .............................................. 4-92 Positive Voltage Regulator (100mA) ............................................... 4-92 Positive Voltage Regulator (100mA) .............................................. 4-92 Positive Voltage Regulator (100mA) .............................................. 4-92 Positive Voltage Regulator (1 OOmA) ........................................... 1 · · 4-92 Positive Voltage Regulator (100mA) .............................................. 4-92 Positive Voltage Regulator (1 OOmA) ......... ~ .................................... 4-92 Positive Voltage Regulator (500mA) .............................................. 4-99 Positive Voltage Regulator (500mA) ............................................ ·.. 4-99 Positive Voltage Regulator (500mA) ................ , ............................. 4-99 Positive Voltage Regulator (500mA) ..............................................· 4-99 Positive Voltage Regulator (500mA) .............................................. 4-99 Positive Voltage Regulator (500mA) .....·........................................ 4-99 Positive Voltage Regulator (500mA) .............................................. 4-99 Positive Voltage Regulator (500mA) .............................................. 4-99 Negative Voltage Regulator (1.5A) ............................................... 4-107 Negative Voltage Regulator (1.5A) .................. ; ..... : ...................... 4-107 Negative Voltage Regulator (1.5A) .......... , ......................... , .......... 4-107 Negative Voltage Regulator (1.5A) ...............................................4-107 Negative Voltage Regulator (1.5A) ................ , .............................. 4-107
1-6
MASTER INDEX
Device Number
Function
Page
MC7912C
Negative Voltage Regulator (1.5A) ............................................... 4-107
MC7915C
Negative Voltage Regulator (1.5A) ............................................... 4-107
MC7918C
Negative Voltage Regulator (1.6A) ............................................... 4-107
MC7924C
Negative Voltage Regulator (1.5A) ............................................... 4-107
MC79L03AC Negative Voltage Regulator (1OOmA) .............. , ............................. 4-116
MC79L03C Negative Voltage Regulator (100mA) ............................................ 4-116
MC79L06~C Negative Voltage Regulator (1OOmA) ............................................ 4-116
MC79L05C Negative Voltage Regulator (1OOmA) ............................................ 4-116
MC79L12AC Neg~tive Voltage Regulator (100mA) .................................,........... 4-116
MC79L12C Negative Voltage Regulator (100mA) ............................................ 4-116
MC79l15AC Negative Voltage Regulator (100mA) ............................................ 4-116
MC79L15C Negative Voltage. f\egu lator (1OOmA) ............................................ 4-116
MC79L18AC Negative Voltage Regulator (100mA) ................... ;; ........................ 4-116
MC79L18C Negative Voltage Regulator (100mA) ............................................ 4-116
MC79L24AC Negative Voltage Regulator (i OOmA) ............................................ 4-116
MC79L24C Negative Voltage Regulator (1 OOmA) ............................................ 4-116
MC8T13
Dual Line Driver ... .' ................·.......................................... 5-262
MC8T14
Triple Line Re·ceiver ............................................................. 5-265
MC8T23
Dual Line Driver ............................................................... 5-262
MC8T24
Triple Line R~ceiver ............................................................ 5-265
MC8T26A
Quad Bus Transceiver/MPU Bus Extender ....................................... 6-238
MC8T28
Non-Inverting Bus Transceiver .................................................. 6-250
MC8T95
Hex Three-State Buffer/Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-245
MC8T96
Hex Ttirec:1-State Buffer/Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-245
MC8T97
Hex Three-State Buffer/Inverter ................................................ 6~245
MC8T98
Hex Three-State Buffer/Inverter ................................................ 5-245
MC55107
Dual Line Receiver ..............................................·............... 5-269
MC55108
Dual Line Receiver ............................................................. 5-269
MC55325
Dual Me.mory Driver ......................·................. , ..............·.... 5-285
MC75107
Dual Line Receiver ; ............................................................. 5-269
MC761.08
Dual Line Receiver .............. , .............................................. 5-269
MC76110
Dual Line Driver ............................................................... 5-274
MC75140
Dual Line Receiver : ................. ; .......................................... 5-281
MC75325
Dual Memory Driver ............................................................. 6·285
MC76368
Dual MECL-to-MOS Driver ...................................................... 5-299
MC75365
Quad MOS Clock·Oriver ................................·......................... 5-291
MC75368
Dual MECL-to-MOS Driver...................................................... 5-299
MC75450
Dual Peripheral Driver, Positive AND ............................................ 5-306
MC76461
. Dual Peripheral Driver, Positive AND ............................................ 5-311
MC75452
Dual Peripheral Driver, Positive NANO ........................................... 6-311
MC75453
Dual Peripheral Driver, Positive OR .............................................. 5-311
MC75454
Dual Peripheral Driver·. Positive NOR .......................... , ................. 5-311
MC75461
High Voltage Peripheral Driver .................................................. 5-315
MC75462
High Voltage Peripheral Driver .................................................. 5-315
MC75463
High Voltage Peripheral Driver .............·.................................... 5-316
MC75464 MC75491
High Voltage Peripheral Driver .................................................. 5-315 Quad Ligh~-Emitting Diode (LED) Driver .......................................... 5-320
MC75492
Hex Light-Emitting Diode (LEO) Driver ........................................... 5-320
MCC1486
Quad LED Digit Driver ................'..............._........................... 5-326
MCC1487
Quad LEO Digit Driver .......................................................... 5-:326
MLM101A Generl=ll Purpose Adjustable Operational Amplifier ................................. 3-146
MLM104
Adjustable Negative Voltage Regulator .................................... , ·..... 4-122
MLM105
Adju~table Positive Voltage Regulator ........... , ............................... 4-124
MLM107
General Purpose Operational Amplifier .......................................... 3-150
MLM108
Prectsion Operational Amplifier ....................................... , ......... 3-154
MLM108A Precision Operational Amplifier ................................................. 3-154
MLM109 · Positive Voltage Regulator ...................................................... 4-126
MLM110
Unity Gain Operational Amplifier ............................. : ..... , ............ 3-159
MLMi 11
Voltage Comparator .........·.................................................... 6-31
MLM124
Quad Operational Amplifier. ............... , .................................... 3-161
MLM139
Quad Comparator (Single Supply) ................................................ 6-35
MLM139A Quad Comparator (Single Supply) ...........................·.................... 6-39
MLM158
Dual Operational Amplifier .....................................................3-167
·
-
1-7
II
" MASTER INDEX
Device
Number
Function
Page
MLM201A MLM204 M.LM205
MLM207 MLM208 MLM208A · MLM209. MLM210 MLM211 MLM224 MLM239 · MLM239A MLM258 MLM301A MLM304 MLM305 MLM307 MLM308 MLM308A MLM309 MLM310 MLM311 MLM324 MLM339 MLM339A MLM358 MLM565C MLM2901 MLM2902 MMH0026 MMH0026C NE592 SE592 TDA1190Z XC26S10 XC26S11 XC3315 XC3316 XC3317 XC3411 XC3448
XC~480
XC3487 XC6875
General Purpose Operational Amplifier .......................................... 3-146 Adjustable Negative Voltage Regulator ................................}........... 4-122 Adjustable Positive Voltage Regulator ......................,..................... 4-124 · General Purpose Operational Amplifier .......................................... 3-150 Precision Operati9nal Amplifier ............................... , ......... ~ ....... 3-154 · Precision Operational Amplifier ................................................. 3-154 Positive Voltage Regulator ...................................................... 4-126 Unity Gain Operational Amplifier ................................ , ................ 3-159 Voltage Comparator ............................. , ....·........................... 6-31 Quad Operational Amplifier ..................................................... 3-161 Quad Comparator (Single Supply) ................................................ 6-35 Quad Comparator (_S1ngle Supply) ............ ·'· .................................. 6-39 Dual Operational.Amplifier ... ··~· .............................................. 3-167 General° Purpose Operational Amplifier .......................................... 3-146 Adjustable Negative Voltage Regulator .......... , ..... , .......................... 4-122 Adjustable Positive Voltage Regulator ........................................... 4-124 General Purpose Operational Amplifier .......................................... 3-150 Precision Operational Amplifier ................................................. 3-191 Precision Operational Amplifier ................................................. 3-154 Positive Voltage Regulator ...................................................... 4-126 Unity Gain Operational Amplifier ............................ ~ ..................· 3-159 , Voltage Comparator ............................................................. 6-31 Quad Operational Amplifier ..................................................... 3-161 Quad Comparator (Single SuppJy) ...........................,. .................... 6-35 Quad Comparator (S~ngle Supply) ................. ; ..........................·... 6-39 Dual Operationa I Amplifier .....................................................3-167 Phase-Locked Loop ................................................. ~ . , .......... 8-141 Quad Comparator . : ........... ·.................................................... 6-43 Quad Operational Amplifier ..................................................... 3-173 Dual MOS Clock Driver ......................................................... 5-328 Dual MOS Clock Driver ......................................................... 5-328 Video Amplifier ..................... '. .......................................... 8-145 Video Amplifier ................................................................. 8-145 TV Sound System ................................................................ 7-186 Quad Open-Collector Bus Transceiver ............................................ 5-97 Quad Open-Collector Bus Transceiver ............................................ 5-97 Frequency-to-Voltage Converter ........................................ ; ........ 7-143 Dual Frequency-to-Voltage Converter ....... : .................................... 7-149 Dual Frequency-to-Voltage Converter ............................................ 7-149 Dual Voltage Comparator .................. ~ ..................................... 6-21 Quad Three-State Bus Transceiver .............................................. 5-155 Memory Controller Circuit ...................................................... 5-218 Quad RS422 Line Driver with Three-State Outputs ............................... 5-222 M6800 Clock Generator/Driver ................................................. 5-237
1·8
·
MOTOROLA - LINEAR INTEGRATED CIRCUITS CROSS. REFERENCE
... provides a complete interchangeability list linking over 6000 devices offered by most major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola device. The Motorola "Direct Replacement" column lists devices with identical pin connections and package and the same or better electrical characteristics and
temperature range. The Motorola "Functional Replacement" column provides a device which performs the same function but with possible differences in pac~age configurations, pin. connections, temperature range or electrical specifications.
Part No.
709BE 709BH 709CE 709CH 709CJ 710BE 710BH 710CE 711BE 711BH 711BN 711CE 711CJ 723BE 723CE 723CJ 741BE 741BH 741BN 741CE 747BE 747BN 747CE 748BE 748CE 809BE 809CE 823AE I 1458CE ' 3232
3245 5524DM 5525DM 5528DM 5529DM 5534DM 5535DM 5538DM 5539DM
66051 6605L 7524DC 7524PC 7525DC 7525PC 7528DC 7528PC 7529DC 7529PC 7534DC 7534PC 7535DC 7535PC 7538DC 7538PC 7~9DC 75 9PC
Motorola Direct
Replacement
MC1709G MC1709F MC1709CG MC1709CF MC1709CP2 MC1710G MC1710F MC1710CG MC1711G MC1711F MC1711L MC1711CG MC1711CP MC1723G MC1723CG MC1723CL MC1741G MC1741F MC!741L MC1741CG
MC1458CG
MC3245L MC5524L MC5525L MC5528L MC5529L MC5534L MC5535L MC5538L MC5539L
MC7524L MC7524P MC7525L MC7525P MC7528L MC7528P MC7529L MC7529P MC7534L MC7534P MC7535L MC7535P MC7538L MC7538P MC7539L MC7539P
Motorola Functional Equivalent
MC1747G MC1747L MC1747CG MC1748G MC1748CG MC1776G MC1776CG MC1723G MC3232AL
MC3443P MC3443L
Part No.
8216 8226 9614DC 9614DM 9614FM 96l5DC 9615DM 9615FM 9616CDC 9616EDC 9616DM 9617DC 9620DC 9620DM 9621DC 9621DM 9622DC 9622DM 9624DC ··9624DM 9625DC 9625DM 9627CDC 9627DM 9636T 9637T 96381 9640J 96400 9640DC 9640NC 9665PC 9666PC 9667PC 9668PC 9665DC 9666DC 9667DC 9668DC 55107ADM 55108ADM 55107BDM 55108BDM 55110DM 55121DM 55122DM 55207DM 55208DM 55224DM 55225DM 55232DM 55233DM 55234DM 55235DM 55238DM 55239DM 55325DM
Motorola
Direct Replacement
Motorola
Functional Equivalent
MC3488P MC3486P I MC3487P MC3443P
MC3440P MC1411P MC1412P MC1413P MC14!6P MC1411L MC1412L MC1413L MC!416L MC55107L
MC5~108L
MC55325L
MC8T26L MC8T28L MC75110L MC75110L MC75110L MC75108L MC55108L MC55108L MC1488L' MC1488L MC1488L MC1489AL MC75110L MC75110L MC75108L MC55108L MC75140Pl MC75140Pl MMH0026CL MMH0026CL MMH0026CL . MMH0026CL MC1489AL MC1489AL
MC3443P MC3440P
MC55107L MC55108L MC75110L
MC8Tl3L MC8Tl4L MC55107L MC55108L MC5524L MC5525L MC5528L MC5529L ' MC5534L MC5535L MC5538L MC5539L
Part No.
55325FM 75107ADC · 75107BDC 75107APC 75107BPC 75108ADC 75108BDC 75108APC 75108BPC 75110DC 75llOPC 75121DC 75121PC 75122DC 75122PC 75123DC 75123PC l5124DC 75!24PC 75207DC 75207PC 75208DC 75208PC 75224DC 75224PC 75225DC 75225PC 75232DC 75232PC 75233DC 75333PC 75234DC 75234PC 75235DC 75235PC 75238DC 75238PC 75239DC 75239PC 75325DC 75325PC 75450ADC 75450APC 75451APC 75451ATC 75452ARC 75452ATC 75453ARC 75453ATC 75454ARC 75454ATC 75450BDC 75450BPC 75451BRC 75451BTC 75452BRC 75452BTC
,,
Motorola Direct
Replacement MC55325F MC75107L MC75107P MC75108L MC75108P MC75110L MC75110P MC8Tl3L MC8Tl3P MC8T14L MC8Tl4P MC8T23L MC8T23P MC8T24L MC8T24P
MC75325L MC75325P' MC75450L MC75450P MC75451U MC75451P MC75452U MC75452P MC75453U MC75454P MC75454U MC75454P
SN75451BP SN75452BP
Motorola .Functional Equivalent
MC75107L MC75107P MC75108L MC75108P
MC75107L MC75107P MC75108L MC75108P
MC7524L MC.7524P MC7525L MC7525P MC7528L MC7528P MC7529L MC7529P MC7534L MC7534P MC7535L MC7535P MC7538L MC7538P MC7539L MC7539P
MC75450L MC75450P MC75451U MC75452U
1~9
·
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
75453BRC 75453BTC 75454BRC 75454BTC 75460DC 75460PC 75461RC 75461TC 75462RC 75462TC 15463RC 75463TC 75464RC 75464TC 75491DC 75491PC 75491ADC 75491APC 75492DC 75492PC 75492ADC 75492APC AD301AL AD505J AD505K AD505S AD509J AD509K AD509S AD518J AD518K AD518S AD530 AD531 AD532J AD559JD AD559K AD559KD AD559S AD559SD A0580J AD580K AD580M AD580S AD580T AD741CJ AD741J AD741K AD741L AD741S AD7520D AD7520F AD7520N AM26SIOPC AM26SIODC AM26SllPC AM26SllDC AM725A31T AM166039F AM166039T AMLMlOl AMLMlOIA AMLMlOlAD AMLMlOlAF AMLMlOlD AMLM101F AMLM105 AMLM105f AMLM105H AMLM107 AMLM107D AMLM107F AMLMllO AMLMllOD
Motorola Direct
Replacement SN75453BP SN75454BP
MC75461U MC75461P MC75462U MC75462P MC75463U MC75463P MC75464U MC75464P MC75491P
MC75492P
MCl408L8 MCl408L8 MCl408L8 MCl508L8 MCl508L8
I
MC26SIOP MC26S10L MC26Sll P MC26S11L
MLM101AG MLM101AG
MLM105G MLM105G MLM107G
MLMllOG
Motorola Functional Equivalent MC75453U
MC75454U
MC75450L MC75450P
MC75491P
MC75491P MC75491P MC75492P
MC75492P MC75492P MLM301AG MC1776CG MC1776CG MC1776G MLM301AG MLM301AG MLM101AG MLM301AG MLM301AG MLM101AG MC1595L MC1595L MC1595G
MC1403U MC1403Pl MCl403AP1 MCl503U MCl503AU MCl741CG MC1741G MCl741G MC1741G . MC1741SG
MC3410L MC3410L MC3410L
MC1556G MLM301AG MLM301AG
MLMlOIAG MLM101AG MLM101AG MLMIOIAG
MLM105G
MLM107G MLMJ07G
MLMllOG
Part No.
AMLMllOF AMLMllOH AMLMlllO AMLMlllF AMLM111H AMLM201 AMLM201A AMLM201AD AMLM201AF AMLM201D AMLM201F AMLM205 AMLM205F AMLM205H AMLM207 AMLM207D AMLM207F AMLM210 AMLM210D AMLM210F AMLM210H AMLM211D AMLM211H AMLM301 AMLM301A AMLM301AD AMLM301D AMLM305 AMLM305A AMLM305F AMLM305H AMLM310 AMLM310D AMLM310F AMLM310H AMLM311D AMLM311H AMU3F7733312 AMU3F7733393 AMU3F7748312 AMU317741312 AMU317741393 AMU5B7733312 AMU5B7733393 AMU5B7741312 AMU5B7741393 AMU5B7747312 AMU5B7747393 AMU5B7748312 AMU5B7748393 AMU5R7723312 AMU5R7723393 AMU6A7723312 AMU6A7723393 AMU6A7733312 AMU6A7733393 AMU6A7741312 AMU6A774I393 AMU6A7748312 AMU6A 77 48393 AMU6W7747312 AMU6Wi747393 BD5030 BD5031 CAlOlAT CAlOIT CA107T CAlOBAS CAIOBAT CAI OBS CA108T CA139AG CA139G CA201AT
Motorola Direct
Replacement
MLMllOG MLMlllL MLMlllF MLMlllG MLM201AG MLM201AG
MLM205G
MLM205G MLM207G
MLM210G
MLM210G MLM211L MLM211G MLM301AG MLM301AG
MLM305G
MLM305G MLM310G
MLM310G MLM311L MLM311G
MCI 741F MC1741CL MCl733G MC1733CG MC1741G MC1741CG MCl 747G MC1747CG MC1748G MCl748CG MCl723G MC1723CG MCl723L MCl723CL MC1733L MC1733CL MCl 741L MC1741CL
MC1747L MC1747CL MCC1486 MCC1487 MLMlOlAG MLMlOlAG MLM107G MLM108AU MLMIOBAG MLM108U MLM108G MLM139AL MLM139L MLM201AG
Motorola Functional Equivalent
MLMllOG
MLM201AP1 MLM201AG MLM201AP1 MLM201AG MLM205G MLM207G
MLM207G MLM210G MLM210G
MLM301AU MLM301AU
MLM305G MLM305G MLM310G MLM310G
MC1733L MCl 733CL MCl748G
MC1748G MC1748CP1
Part No.
CA201T CA207T CA208AT CA208S CA208T CA239AE CA239AG CA239E CA239G CA301AT CA307T CA308AS CA308AT CA308S CA339AE CA339AG CA339E , CA339G CA723CE CA741CS CA741CT CA741S CA741T CA747CE CA747CF CA747CT CA747E CA747F CA747T CA748CS
CA7~8CT
CA748S CA748T CA758E CASIOQ CABIOQM CA1310E CAl352E CAl391E CA1394E CA1398E CA1458S CA1458T CA1558S CAl558T CA2111AE CA2111AQ CA3000 CA3001 CA3002 CA3004 CA3005 CA3006 CA3007 CA3008 CA3008A CA3010 CA3010A CA3011 CA3012 CA3013 CA3014 CA3015 CA3015A CA3016 CA3016A CA3020 CA3020A CA3021 CA3022 CA3023 CA3026 CA3028A CA3028AF
Motorola Direct
Replacement
MLM207G MLM208AG MLM208U MLM208G MLM239AP MLM239AL MLM239P MLM239L MLM301AG MLM307G MLM308AP1 MLM308AG MLM308G MLM339AP MLM339AL MLM339P MLM339L MC1723CP MC1741CPI MC1741CG MC1741U MCl741G MC1747CL MCl 747CL MC1747CG MC1747L MCl747L MC1747G MCl748CPI MCI 748CG MC1748U MCl748G
MC1310P MC1352P MC1391P MC1394P MC1398P MCl458CPI MCl458G
MCl558G MCl35.7P MC1357PQ
Motorola Functional Equivalent MLM201AG
MCl310P MC1384PQ MC1384PQM
MCl5~8U
MC1550G MC1550G MCl55QG MC1550G MC1550G MCl550G MC1550G MCl 709F MCl 709F MC1709G MC1709G MC1590G MCl590G MC1357P MC1357P MC1709G MC1709G MCl 709F MC1709F MC1554G MC1454G MC1590G MC1590G MC1590G
CA3054 MC1550G MC1550G
MOTOROLA Semiconduc'for Produc'fs Inc.
1-10
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
CA3028AS CA3028B CA3028BF CA3028BS CA3029 CA3029A CA3030 CA3030A CA3031 CA3032 CA3033 CA3033A CA3035 CA3035Vl CA3037 CA3037A CA3038 CA3038A CA3040 CA3041 CA3042 CA3043 CA3044 CA3044Vl CA3045 CA3045F CA3046 CA3047 CA3047A CA3048 CA3052 CA3053 CA3053F CA3053S CA3054 CA3056 CA3056A CA3058 CA3059 CA3064 CA3064E CA3065 CA3066 CA3067 CA3068 CA3070 CA3071 CA3072 CA3075 CA3076 CA3078AS CA3078AT CA3078S CA3078T CA3079 CA3085 CA3085A CA3085AF CA3085AS CA3085B CA3085BF CA3085BS CA3085F CA3085S CA3086 CA3086F CA3090AQ CA3091D CA3120E CA3125E CA3132EM CA3134E ·CA313,4EM CA3134QM
Motorola Direct
Replacement
Motorola
Functional Equivalent '
Part No.
Motorola Direct
Replacement
Mqtorola Functional Equivalent
Part No.
Motorola Direct Replacement
MC1550G CA3136A
MC3346P OS3632N
MC1550G CA3137E
MC1323P DS3633H
MC1550G CA3146
MC3346P OS3633J
MC1550G CA3401E
MC3401P
OS3633N
MC1709P2 CA6078AS
MC1776G OS3634H
MCl 709P2 CA6078AT
MC1776G OS3634J
MCl 709P2 CA6741S
MC1776G OS3634N
MC1709P2 CA6741T
MC1776G OS3644J
MC1712G CA3302E
MC3302P
DS3644N
MC1712CG CMP-OlCJ
MC1556G OS3650J
MC3450L
MC1533L CMP-OlCP
MC1556P OS3650N
MC3450P
MC1533L D555CJ
MC1555G OS3651J
MC3430L
MC1352P 03232
MC3232AP
OS3651N
MC3430P
MC1352P 03245
MC3245P
DS3652J
MC3452L
MC1709L 08216
MC8T26L OS3652N
MC3452P
MC1709L 08226
MC8T28L OS3653J
MC3432L
MCl 709L DAC-01
MC1506L OS3653N
MC3432P
MC1709L OAC-08
MC1408L8 OS3674J
MC3460l
MC1510G DM7820AO
MC75140Pl DS3674N
MC3460P
MC1351P OM7820J
MC75140Pl OS55107J
MC55107L
MC1357P DM7822J
MC1489AL OS55107W
MC1357P OM7837J
MC3437L DS55108J
MC55108L
MC1364P OM7838J
MC3438L OS55108W
MC1364P OM7887J
MC3490P DS.55110J
MC3346P OM7887N
MC3490P DS55121J
MC3346P DM7889J
MC3491P OS55121W
MC3346P
OM7889N
MC3491P OS55122J
MC1433L OM7897J
MC3494P OS55122W
MC1433L OM7897N
MC3494P OS5524AJ
MC5524AL
MC3301P OM8820AN
MC75140Pl OS5524J
MC5524L
MC3301P DM8820J
MC75140Pl DS5525J
MC5525L
MC1550G OM8820N
MC75140Pl OS5528AJ
MC5528AL
MC1550G OM8822J
MC1489AL -OS5528J
MC5528L
MC1550G DM8822N
MC1489AP DS5529J
MC5529L
CA3054
OM8837N
MC3437P
DS55325J
MC55325L
MC1741CG
DM8838N
MC3438P
OS55325W
MC55325F
MC1741G
DM8861N
MC75491P DS5534AJ
MC5534AL
CA3059 OM8863N
MC75492P OS5534J
MC5534L
CA3059
OM8887J
MC3490P OS5535J
MC5535L
MC1364P OM8889J
MC3491P DS5538AJ
MC5538AL
MC1364P
OM8897J ·
MC3494P DS5538J
MC5538L
MC1358P
DM75491N
MC75491P
OS5539J
MC5539L
MC1399P DM75492N
MC75492P
DS75107J
MC75107L
MC1323P DS0026CG
MMH0026CG DS75107N
MC75107P
MC1352P DS0026CH
MMH0026CG
OS75108J
MC75108L
MC1399P DS0026CJ
MMH0026CL
DS75108N
MC75108P
MC1399P DS0026CN
MMH0026CP1
DS75109N
MC75109P
MC1323P DS0026G
MMH0026G OS75110J
MC75110L
MC1375P
DS0026H
MMH0026G
DS75110N
MC75110P
MC1590G DS0026J
MMH0026L
DS75121J
MC8T13L
MC1776G OS0056CG
MMH0026CG OS75121N
MC8T13P
MC1776G DS0056CH
MMH0026CG DS75122J
MC8Tl4L
MC1776CG OS0056CJ
MMH0026CL DS75122N
MC8T14P
MC1776CG DS0056CN
MMH0026CP1 DS75123J
MC8T23L
CA3059 DS0056G
MMH0026G DS75123N
MC8T23P
MC1723G OS0056H
MMH0026G DS75124J
MC8T24L
MC1723G OS0056J
MMH0026L OS75124N
MC8T24P
MC1723L OS1488J
MC1488L
DS75207J
MC1723G DS1489AJ
MC1489AL
OS75207N
MC1723G OS1489J
MC1489L
OS75208J
MC1723L DS3486N
MC3486P
OS75208N
MC1723G DS3687N
MC3487P
OS7520AJ
MC7520AL
MC1723L DS3611H
MC1471U . DS7520AN
MC7520AP
MC1723G DS3611N
MC1471Pl OS7524AJ
MC7524AL
MC3386P
OS3612H
MC1472U OS7524AN
MC7524AP
MC3346P DS3612N
MC1472N DS7524J
MC7524L
MC1310P OS3613H
MC1473U DS7524N
MC7524P
MC1594L OS3613N
MC1473Pl DS7525J
MC7525L
MC1344P DS3614H
MC1474U DS7525N
MC7525P
MC1323P DS3614N
MC1474Pl DS7528AJ
MC7528AL
MC1384PQ
DS3631~
MC1471U DS7528AN
MC7528AP
TDA1190Z DS3631N
MC1471Pl DS7528J
MC7528L
TDA1190Z DS3632H
MC1472U DS7528N
MC7528P
@ . TDA1190Z DS3632J
MC1472U OS7529J
MC7529L
MOTOROLA Semiconductor Products Inc·
Motorola Functional Equivalent
MC1472Pl MC1473U MC1473U MC1473Pl MC1474U MC1474U MC1474Pl MC3460L MC3460P
MC55107L MC55108L MC75110L
MC8Tl3L MC8Tl3L MC8T14L MC8T14L
MC75107L MC75107P MC75108L MC75108P
1-11
II
I I .__L~IN_EA_R_l_NT_E_GR_A_TE_o_c_1R_c_u1_1s_c_R_o_ss_R_E_FE_R_EN_C_E___;__~~~~~~~~~~~~------.JI-
Part No.
DS7529N DS75325J DS75325N DS7534AJ DS7534AN DS7534J DS7534N DS7535J DS7535N DS75365J DS75365N DS7538AJ DS7538AN DS7538J · DS7538N DS7539J DS7539N DS75450J DS75450N DS75451H DS75451N DS75452H DS75452N DS75453H DS75453N DS75454H DS75454N DS75461H DS75461N DS75462H DS75462N DS75463H DS75463N DS75464H DS75464N DS75491J DS75491N DS75492J DS75492N DS7837J DS7837W DS7838J DS7838W DS7887J DS7889J DS7897J DS8833J DS8833N DS8834J DS8834N DS8835J DS8835N DS8837J DS8837N DS8838J DS8838N DS8839J DS8839N DS8887J DS8887N DS8889J DS8889N DS8897J DS8897N ICBSQOOC IC88001C IC.B8741C ICH8500ATV ICH8500TV ICLlOIALNDP ICLlOIALNFB ICLlO IALNTY ICL30 IALNPA ICL30.1ALNTY
Motorola Direct
Replacement
Motorola
Functional Equivalent .
Part No.
Motorola Direct
Replacement
Motorola
Functional Equivalent
Part No.
Motorola Direct
Replacement
MC7529P MC75325L MC75325P MC7534AL MC7534AP MC7534L MC7534P MC7535L MC7535P MC75365L MC75365P MC7538AL MC7538AP MC7538L MC7538P MC7539L MC7539P MC75450L MC75450P
SN75451BP
SN75452BP·
SN75453BP
SN75454BP
MC75461P
MC75462P
MC75463P
MC75464P
MC75491P
MC75492P
MC3437L MC3437P MC3438L MC3438P
MC15451U
MC75452U
MC75453U
MC75454U
MC75461U
MC75462U
MC75463U
MC75464U
MC75491P
MC75492P
MC3437L MC3437L MC3438L MC3438L MC3490P MC3491P MC3494P MC8T28L MC8T28P MC8T26L MC8T26P MC8T26L MC8T26P
MC8T28L MC8T28P MC3490P MC3490P MC349-IP MC3491P MC3494P MC3494P MLMlllL MLMlllL MC1741CG MC1776CG MC1776CG MLMlOIAG MLMlOlAG MLM101AG MLM301AG MLM301AG
ICL741CLNPA ICL741CLNTY ICL741LNDP ICL741LNFB ICL741LNTY ICL8001CTZ ICL8001MTZ ICL8007CTA ICL8007MTA ICL8008CPA ICL8008CTY ICL8013A ICL8013B ICL8013C ICL8017CTW ICL8017MTW ICL8021C ICL8021M
·ICL8022C ICL8022M ICL8043CDE ICL8043CPE ICL8043MDE ICL8048CDE ICL8048DPE IH510111E IH5101MIE ITT641 ITT652 ITT654 ITT656 ITT1330 ITT1352 ITT3064 ITT3065 ITT3066 ITT3701 ITT3707 ITT3710 ITT3714 Ll44AP L201 L202 L203 LDllOCJ LDlllCJ
LD114CR LF152D LF155AH LF155AJG LF155AL
LF155H LF155JG LF155L LF156AH LF156AJG LF156AL LF156H LF156JG LF156L LF157AH LF157AJG LF157AL LF157H ·
LF157JG LF157L LF252D LF255H LF255JG LF255L LF255P LF256H
LF256JG LF256L
MC1411P MC1412P MC1413P MC1330P MC1352P MC1364P MC1358P
MC1411P MC1412P MC1413P
MC1405L
LF155AH LF155AJ·8 LF155AH
LF155H LF155J-8 LF155H LF156AH ' LF156AJ-8 LF156AH LF156H LF156J-8 LF156H LF157AH LF157AJ-8 LF157AH LF157H LF157J-8 LF157H
LF155H LF155J-8 LF155H LF155J-8 LF156H LF156J-8 LF156H
MC1741CP1 MC1741CP1
MC1741L MCl 741L MC1741L MLMlllL MLMlllL MC1709CG MC1709CG MLM301APL MLM301AP1 MC1594G MC1594G iviC1594G MLM301AP1 MLM301AP1 MC1776G MC1776G MC1776G MC1776G MC1776G MC1776G MC1176G MC1776G MC1776G MC1545G MC1545G MC1385P '
MC1399P TDA1190Z MC1399P MC1391P MC1394P MLM324P
MC14435VP
MC14435VR LF155U
LF155U
LF256P LF257H LF257JG LF257L LF257P LF352D LF355AH
LF355AJG LF355AL LF355AP LF355H LF355JG LF355L LF355N LF355P LF356AH
LF356AL LF356AJG LF356AP LF356H LF356JG LF356L LF356N LF356P LF357AH LF357H LF357JG LF357L LF357N LF357P LHOOOlACH LHOOOlAH LHOOOlACD LHOOOlAD LHOOOlACF LHOOOlAF LH0002CH
LH0002H LH0004CH LH0004H LH0042CH LHlOlF
LH101H LH201F LH201H LH740ACH LH740AH LH2101AD LH2101AF LH2201AD
LH2201AF LH2301AD LH2301AF LMlOOF LMlOOH LMlOIAD LMlOlAF LMIOIAH LMlOIAJ LMlOlAJ-14
LM101AJG LMIOlAL LMlOID LMIOIF LMlOIH LMlOIJ.14 LM102H LM104F LM104H LM104J LM104L LM105F LM105H LM105JG
LF156J-8 LF157H LF157 J.8 LF157H LF157J-8 LF355AH LF355AJ-8 LF355AH LF355AN LF355H LF355J-8 LF355H LF355N LF355N LF356AH LF356AH LF356AJ-8 LF356AN / LF356H LF356J-8 LF356H LF356N LF356N LF357AH LF357H LF357 J-8 LF357H LF357N LF357N
MLMIOIAG
MLMIOIAU MLMlOIAG
MLM101AG MLMllOG MLM104G MLM104G MLM105G
M MOTOROLA Semiconductor Products Inc,_
Motorola Functional Equivalent
LF355U
MC1776CG MC1776G MC1776CG MC1776G
MC1776CG MC1776G MC1538R MC1538R MC1436G MC1536G MC1776G MC1741F MC1741G MCl 741F MC1741G
LF355H LF155H MC1537L MC1537l MC1537L MC1537L MC1437L MC1437L MLM105G MLM105G MLMlOIAG MLM101AG MLMIOIAU MLM101AU
MLMlOIAU MLM101AG MLMIOlAU MLM104G MLM104G MLM105G MLM105G
1-12
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
II
Part No.
LM105L LM106H LM1070 LM107F LM107H LM107J LM107J-14 LM107JG LM107l LM108AD LMlOBAF LM108AH LM108AJ LM108D LMlOBF LM108H LM109H LM109K LM109LA LMllOD LMllOF · LMllOH LMlllD LMlllF LMlllH LM112D LM112F LM112H LM117H LM117K LMllBD LM118F LM118H LM120H-5.0 LM120H·5.2 LM120H-6.0 LM120H·8.0 LM120H·12 LM120H-15 LM120H·l8 LM120H·24 LM120K,5.0 LM120K·5.2 LM120K-6.0 LM120K·8.0 LM120K·12 LM120K-15 LM120K·l8 LMltOK-24 LM122F LM122H LM123K LM124AD LM124AF LM124AJ LM124D LM124F LM124J LM125H LM126H LM128H LM139AD LM139AJ LM1390 LM139J LM140LAH·5.0 LM 140bAH·6.0 LM140LAH-8.0 LM140LAH·12 LM140LAH·15 LM140LAH·18 LM140LAH-24 lM1430 LM143F
Motorola Direct
Replacement
Motorola Functional
Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional Equivalent
Part No.
Motorola
Direct Replacement
MLM105G
LM143H
MC1536G LM220K·l2
MC1710G LM145K
MC7905CK LM220K·l5
MLM107U LM1480
MC4741L
LM220K·l8
MLM107G LM148F
MC4741L LM220K·24
MLM107G
LM149D
MC4741L LM222H
MLM107U
LM149F
MC474ll LM223K
LM123K
MLM107U LM158AH
MLM158G LM224AD
MLM107U
LM158H
MLM158G
LM224AF
MLM107G
LM158JG
MLM158U
LM224AJ
MLM108AL
LM158L
MLM158G
LM224D
MLM224L
MLM108AF
LM163J
MC3450L LM224F
MLM108AG
LM171H
MC1590G LM224J
MLM224L
MLM108AU
LM200F
MLM205G LM225H
MLM108L
LM200H
MLM205G LM226H
MLMlOBF
LM201AD
MLM201AU LM228H
MLM108G
LM201AF
MLM201AG LM239AD
MLM239AL
MLM109G
LM201AH
MLM201AG
LM239AJ
MLM239AL
MLM109K
LM201AJ
MLM201AU LM239D
MLM239L
MLM109K
LM201AJG
MLM201AU
LM239J
MLM239L
MLMllOG LM201AL
MLM201AG
LM240LAH·5.0
MLMllOG LM201AN
MLM201AP1 LM240LAH·6.0
MLMllOG
LM201AP
MLM201AP1
LM240LAH·8.0
MLMlllL
LM201AJ.14
MLM201AU LM240LAH·l2
MLMlllF
LM201D
MLM201AU LM240LAH·15
.MLMlllG
LM201F
MLM201AG LM240LAH· 18
MC1556L LM201H
MLM201AG
LM240LAH·24
MC1556L LM201J
MLM201AU
LM240LAZ·5.0
MC1556G LM201J-14
MLM201AU LM240LAZ·6.0
LM117H
LM202H
MLM210G
LM240LAZ ·8.0
LM117K
LM204H
MLM204G
LM240LAZ·12
MC1741SL LM204F
MLM204G LM240LAZ-15
MC1741SL LM205F
MLM205G LM240LAZ·18
MC1741SG LM205H
MLM205G
LM240LAZ-24
MC7905CK LM206H
MC1710CG LM243H
MC7905.2CK LM207D
MLM207U LM245K
MC7906CK LM207F
MLM207G LM248D
MC4741L
MC7908CK LM207H
MLM207G
LM248J
MC4741L
MC7912CK LM207J
MLM207U
LM249D
MC7915CK LM207J·l4
MLM207U LM249J
MC7918CK LM208AD
MLM208AL
LM258AH
MC7924CK LM208AF
MLM208AF
LM258H
MLM258G
MC7905CK LM208AH
MLM208AG
LM271H
MC7905.2CK 'LM208AJ
MLM208AU
LM300F
MC7906CK LM208D
I
MLM208U LM300H
MC7908CK LM208F
MLM20SF
LM301AD
MC7912CK LM208H
MLM208G
LM301AF
MC7915CK LM209K
MLM209K
LM301AH
MLM301AG
MC7918CK LM209H
MLM209G
LM301AJ
MLM301AU
MC7924CK LM210D
MLM210G LM301AJG
MLM301AU
MC1555G LM210F
MLM210G LM301AL
MLM301AG
MC1555G LM210H
MLM210G
LM301AN
MLM301AP1
LM123K
lM211D
MLM211L
LM301AP
MLM301AP1
MLM124L LM211F
MLM211F
LM302H
MLM310G
MLM124l LM211H
MLM211G
LM304F
MLM124L LM212D
MC1556L LM304H
MLM304G
MLM124L
LM212F
MC1556L LM304J
MLM124L LM212H
MC1'456G LM304L
MLM304G
MLM124L
LM217H
LM117H
LM304N
MC1568G LM217K
_LM117K
LM305AH
MC1568G LM218D
MC1741SL LM305AJG
MC1568G LM218F
MCJ741SL LM305AL
MLM139AL
LM218H .
MC1741SG LM305AP
MLM139Al
LM220H-5.0
MC7905CK LM305F
MLM139l
LM220H-5.2
MC7905.2CK LM305H
MLM305G
MLM139L
LM220H·6.0
MC7906CK LM305JG
MC78L05ACG LM220H·8.0
MC7908CK LM305L
MLM305G
MC78L06ACG LM220H-12
MC7912CK LM305P
MC78L08ACG LM220H·15
MC7915CK LM306H
MC78Ll2ACG LM220H-18
MC7918CK LM307D
MC78Ll5ACG LM220H·24
MC7924CK LM307F
I
MC78L18ACG LM220K-5.0
MC7905CK LM307H
MLM307G
MC78L24ACG LM220K-5.2
MC7905.2CK LM30.7J
MtM307U
MC1536G LM220K-6.0.
MC7906CK LM307JG
MLM307U
@ . MC1536G LM220K·8.0
MC7908CK LM307J.14
MOTOROLA Semiconductor Products Inc.
Motorola Functional Equivalent
MC7912CK MC7915CK MC7918CK MC7924CK MC1555G
MLM224L MLM224L MLM224L
MLM224L
MC1568G MC1568G MC1568G
MC78L05ACG MC78L06ACG MC78L08ACG MC78Ll2ACG MC78Ll5ACG MC78Ll8ACG MC78L24ACG MC78L05ACP MC78L06ACP MC78L08ACP MC78L12ACP MC78Ll5ACP MC78Ll8ACP MC78L24ACP
MC1536G MC7905CK
MC4741L MC4741L MLM258G
MC1590G MLM305G MLM305G MLM301AU MLM301AG
MLM304G
MLM304G
MLM304G MLM305G MLM305G MLM305G MLM305G MLM305G
MLM305G
MLM305G MC1710CG MLM307U MLM307G
MLM307U
1-13
II
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
LM307L LM307N LM307P LM308AD LM308AF LM308AH LM308AH·l · LM308AH-2 LM308AJ LM308D LM308H LM308N LM309H LM309K LM309KC LM309LA LM310D LM310F LM310H LM310J-8 LM3ION LM3llD LM311F
LM~llH
LM311N LM311N-14 LM312D LM312F LM312H LM317H LM317K LM317P LM317T LM3180 LM318F LM318H LM318N LM320H-5.0 LM320H-5.2 LM320H-6.0 LM320H·8.0 LM320H-12 LM320H-15 LM320H·18 LM320H-24 LM320K-5.0 LM320K-6.0 LM320K-8.0 LM320K-12 LM320K-i5 LM320K-18 LM320K-24 LM320MP-5.0 LM320MP-5.2 LM320MP-6.0 LM320MP-8.0 LM320MP-12 LM320MP-15 LM320MP-18 LM320MP-24 LM320T-5.0 LM320T-5.2 LM320T-6.0 LM320T-8.0 LM320T-12 LM320T-15 LM320T-18 LM320T-24 LM322H LM322N LM323K LM324AJ LM324AN · LM324J
Motorola Direct
Replacement
. Motorola Functional Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional Equivalent
Part No.
Motorola Direct
Replacement
MLM307G MLM307Pl MLM307Pl MLM308AL MLM308AG MLM308AU MLM308L MLM308G MLM308Pl MLM309G MLM309K MLM309K MLM309K MLM310G MLM310Pl MLM311L MLM311F MLM311G MLM311Pl MLM311L
LM317H LM317K LM317T LM317T
LM323K MLM324L
MLM308AL
MLM308AG MLM308AG
MLM310G MLM310G
MLM310Pl
MC1456L MC1456L MC1456G
MC1741SCL MC1741SCL MC1741SCG MC1741SCP1 MC7905CK MC79052CK MC7906CK MC7908CK MC7912CK MC7915CK MC7918CK MC7924CK MC7905CK MC7906CK MC7908CK MC7912CK MC7915CK MC7918CK · MC7924CK MC7905CT MC79Q5.2CT MC7906CT MC7908CT MC7912CT MC7915CT MC7918CT MC7924CT MC7905CT MC7905.2CT MC7906CT MC7908CT MC7912CT MC7915CT MC7918CT MC7924CT
MC1455G MC1455Pl
MLM324L MLM324P MC3403L
LM324N
LM325AN LM325H LM325N LM326H LM326N LM328AN LM328H
LM328N LM339AD LM339AN LM339N LM340K·5.0 LM340K-6.0 LM340K-s:o LM340K-12 LM340K-15 LM340K-18 LM340K-24 LM340KC-5.0 LM340KC-6.0 LM340KC-8.0 LM340KC-12 LM340KC-15 LM340KC-18. LM340KC-24 LM340LAH-5.0 LM340LAH-6.0 LM340LAH-8.0 LM340LAH-12
LM340LAH-15 LM340LAH-18 LM340LAH-24 LM340LAZ -5.0 LM340LAZ -6.0 LM340LAZ -8.0 LM340LAZ-12 LM340LAZ -15 LM340LAZ-18 LM340LAZ·24 LM340T·5.0 LM340T-6.0 LM340T-8.0 LM340T-12 LM340T-15 LM340T-18 LM340T-24 LM341P-5.0 LM341P-6.0 LM341P-8.0 LM341P-12 LM341P-15
LM341P-18 LM341P-24 LM342P-5.0 LM342P-6.0 LM342P-8.0 LM342P-12 LM342P-15 LM342P-18 LM342P-24 LM343D LM343H LM345K LM348D lM348J LM348N LM349D LM349J
LM349N LM358AH LM358AN LM358H
LM358JG
MLM324P
MLM339AL MLM339AP MLM339P MC7805CK MC7806CK MC7808CK MC7812CK MC7815CK MC7818CK MC7824CK MC7805CK MC7806CK MC7808CK MC7812CK MC7815CK MC7818CK MC7824CK
MC7805CT MC7806CT MC7808CT MC7812CT MC7815CT MC7818CT MC7824CT MC78M05CT MC78M06CT MC78M08CT MC78Ml2CT MC78Ml5CT MC78Ml8CT MC78M24CT MC78M05CT MC78M06CT MC78M08CT MC78Ml2CT MC78Ml5CT MC78Ml8CT MC78M24CT
MC4741L MC4741Cl MC4741CP
MLM358G MLM358U
MC3403P MC1468L MC1468G MC1468L MC1468G MC1468L MC1468l MC1468G MC1468L
MC78L05ACG MC78L06ACG MC78L08ACG MC78Ll2ACG MC78L15ACG MC78L18ACG MC78L24ACG MC78L05ACP MC78L06ACP MC78L08ACP MC78L12ACP MC78L15ACP MC78L18ACP
MC78L24~CP
MC1436G MC1436G MC7905CK
MC4741CL MC4741CL MC4741CL MLM358G MLM358Pl
LM358L LM358N LM358P LM363AJ LM363AN LM363J LM363N LM371H LM376JG LM376L LM376N LM376P LM380N
LM381N LM382N LM384N LM386N LM388N LM390N LM555CH LM555CN LM555H
LM556CD LM556CJ LM556CN LM556D LM556J LM565CH LM565CN LM565H LM703LN LM709AH LM709AJ LM709CH
LM709CJ LM709CN LM709CN-8
LM709H LM709J LM710CH LM710CN LM710H LM711CH LM711CN LM711H LM723CD LM723CH LM723CJ LM723CN LM7230 LM723H LM723J LM733CD LM733CH · LM733CJ LM733CN LM7330 LM733H LM733J LM741AD LM741AF . LM741AH
LM741AJ-14 LM741CD LM741CF LM741CH LM741CJ LM741CJ-14 LM741CN LM741CN-l4
LM741D LM741ED LM741EH LM741EJ
MLM358G MLM358Pl MLM358Pl
MLM305G
MC1455G MC1455Pl MC1555G
MC3456~
MC3456L MC3456P MC3556L MC3556L
MLM565CP
MC1709AG MC1709AL MC1709CG MC1709CL MC1709CP2 MC1709CP1 MC1709G MC1709L MC1710CG MC1710CP MC1710G MC1711CG MC1711CP MC1711G MC1723CL MC1723CG MC1723CL MC1723CP MC1723L MC1723G MC1723L MC1733CL MC1733CG MCi733Cl MC1733CP MC1733L MC1733G MC1733L
I
MC1741CL MC1741CF MC1741CG MC1741CU MC1741CL MC1741CP1 MC1741CP2 MC1741L
M MOTOROLA Semiconduc'for Products Inc.
Motorola Functional Equivalent
MC3450L MC3450P MC3450L MC3450P MC1590G MLM305G MLM305G MLM305G MC1384PQ MC1303P MC1303P MC1384PQ MC1306P MC1384PQ MC1384PQ
MLM565CP MLM565CP
MC1350P
MC1741L MC1741F MC1741G MC1741L
MC1741CL MC1741CG MC1741CU
1-14
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
II
Part No.
LM741EJ·l4 LM741EN LM741F LM741H LM741J-14 LM746N LM747CD LM747CF LM747CH LM747CJ LM747CN LM7470 LM747F LM747H LM747J LM748CH LM748CJ LM748CN LM748H LM748J LM1303N LM1307N LM1310N LM1351N LM1391N LM1394N LM1414J LM1414N LM1458H LM145SJ LM1458N LM1458N-14 LM1488J LM1489AJ LM1489J LM1496H LM1496J LM1496N LM15i4J LM1558H LM1558J LM1596H LM1596J LMlBOOAN LM1800N LM1805 LM1808N LM1828N LM1841N LM1845N LM1848N LM1850N LM1900D LM2111N LM2113N LM2900J LM2900N LM2901N LM2902J LM2902N LM2904N LM2905N LM2907N LM2917N LM3011H LM3026 LM3045 LM3046N LM3054 LM3064N LM3065N LM3066N LM3067N LM3070N
Motorola Direct
Replacement
Motorola Functional Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional Equivalent
Part No.
Motorola Direct
Replacement
MC1741CL LM3071N
MC1399P LM75324N
MC1741CP1 LM3075N
MC1375P
LM75125J
MC75325P
MC1741F
LM3086N
MC3386P
LM75325N
MC75325L
MC1741G
LM3126
MC1399P LM75450N
MC75450P
MC1741L
LM3146
MC3346P LM75451N
MC75451P
MC1323P LM3146A
MC3346P LM15452N
MC75452P
MC1747CL
LM3301N
MC3301P
LM75453N
MC75453P
MC1747CF
LM3302J
MC3302L
LM75454N
MC75454P
MC1747CG
LM3302N
MC3302P
LM78L05ACH
MC78L05ACG
MC1747CL
LM3401N
MC3401P
LM78L05ACZ
MC78L05ACP
MC1747CP2
LM3900N
MC3401P LM78L05CH
MC78L05CG
MCl747L
LM3905N
MC1455Pl LM78L05CZ
MC78L05CP
MC1747F
LM4250CH
MC1776CG LM78L08ACH
MC78L08ACG
MC1747G
LM4250CN
MC1776CP1 LM78L08ACZ
MC78L08ACP
MC1747L
LM4250H
MC1776G LM78L08CH
MC78L08CG
MC1748CG
LM5524J
MC5524L
LM78L08CZ
MC78L08CP
MC1748CU
LM5525J
MC5525L
LM78L12ACH
MC78L12ACG
MC1748CP1
LM5528J
MC5528L
LM78L12ACZ
MC78L12ACP
MC1748G
LM5529J
MC5529L
LM78L12CH
MC78Ll2CG
MC1748U
LM5534J
MC5534L
LM78Ll2CZ
MC78L12CP
MC1303P
LM5535J
MC5535L
LM78U5ACH
MC78L15ACG
MC1307P
LM5538J
MC5538L
LM78L15ACZ
MC78L15ACP
MC1310P
LM5539J
MC5539L
LM78L15CH
MC78L15CG
MC1351P
LM7524J
MC7524L
LM78Ll5CZ
MC78L15CP
MC1391P
LM7524N
MC7524P
LM78L18ACH
MC78Ll8ACG
MC1394P
LM7525J
MC7525l
LM78L18ACZ
MC78L18ACP
MC1414L
LM7525N
MC7525P
LM78L18CH
MC78L18CG
MC1414P
LM7528J
MC7528L
LM78L18CZ
MC78L18CP
MC1458G
LM7528N
MC7528P
LM78L24ACH
MC78L24ACG
MC1458U
LM7529J
MC7529L
LM78L24ACZ
MC78L24ACP
MC1458Pl
LM7529N
MC7529P
LM78L24CH
MC78L24CG
MC1458P2
LM7534J
MC7534l
LM78L24CZ
MC78l24CP
MC1488L
LM7534N
MC7534P
MC1310A
MC1310P
MC1489AL
LM7535J
MC7535L
MC1408B
MC1408P8
MC1489L
LM7535N
MC7535P
MC1408F
MC1408L8
MC1496G
LM7538J
MC7538L
MC1458JG
MC1458U
MC1496L
LM7538N
MC7538P
MC1458L
MC1458G
MC1496P
LM7539J
MC7539L
MC1458P
MC1458Pl
MC1514L
LM7539N
MC7539P
MC1558JG
MC1558U
MC1558G
LM7805KC
MC7805CK
MC1558L
MC1558G
MC1558U
LM7806KC
MC7806CK
MH0026H
MC1596G
LM7808KC
MC7808CK
MH0026CH
MMH0026CG
MC1596L
LM7812KC
MC7812CK
MH0026CN
MMH0026CP1
MC1310P LM7815KC
MC7815CK
MH0026G
MC1310P LM7818KC
MC7818CK
MH0026CG
MC1385P LM7824KC
MC7824CK
MH0026F
TDA1190Z LM55107AJ '
MC55107L
MH0026CF
MC1323P LM55108AJ
MC55108L
MIC709-1
MC1709G
MC1356P
LM55109J ·
MC75110L MIC709-5
MC1709CG
MC1344P LM55110J
MC75110L MICll0-18
MC1710F
MC1323P LM55121J
MC8T13L MIC710-1C
MC1710G
MC3426L LM55122J
MC8T14L MIC710-5B
MC1710CF
MC3301L LM55123J
MC8T23L MIC710-5C
MC1710CG
MC1357P
LM55124J
MC8T24L MIC711-1B
MC1711F
MC1357P LM55325N
MC55325L
MIC711-1C
MC1711G
MC3301L LM75107AJ
MC75107L
MIC711-5B
MC1711CF
MC3301P LM75107AN
MC75l07P
MIC711-5C
MC1711CG
MLM2901P
LM75108AJ
MC75108L
MIC712-1B
MC1712F
,MLM2902L
LM75108AN
MC75108P
MIC712-1C
MC1712G
MLM2902P
LM75110J
MC75110L
MIC712-1D
MC1712L
MLM358Pl LM75110N
MC75110P
MIC712-5B
MC1712CF
MC1455Pl LM75121J
MC8T13L
MIC712-5C
MC1712CG
MC3315P LM75121N
MC8T13P
MIC712-5D
MC1712CL
MC3315P LM75122J
MC8T14L
MIC723-1
MC1723G
MC1550G LM75122N
MC8T14P
MIC723-5
MC1723CG
CA3054 LM75123J
MC8T23L
MIC741-1C
MC1741G
MC3346P LM75123N
MC8T23P
MIC741-1D
MC1741L
MC3346P
LM75124J
MC8T24L
MIC741-5.C
MC1741CG
CA3054
LM75124N
MC8T24P
MIC741-5D
MC1741CL
MCl364P
LM75207L
MC75107L MllOlAF
MC1358P
LM75207N
MC75107P ML101AM
MC1399P LM75208J
MC75108L MllOlAT
MLM101AG
MC1323P LM75208N
MC75108P MllOlF
MC1399P LM75324J
, MC75325L MLlOlM
® . MOTOROLA Semiconductor rroducts Inc.
Motorola Functional Equivalent
MC75325P
MMH0026CG MMH0026CG · MMH0026CG MMH0026CL MMH0026Cl
MLM101AG MLMlOlAG MLM101AG MLM101AG
1-15
II
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
MllOlT ML107F ML107M MLl07T MllOBAF MllOBAM MllOBAT MllOBM MllOBT MllllF MllllM MllllS MllllT MlllBF MlllBM ML118T ML201AF ML201AM ML201AT ML201F ML201M ML201T ML207F ML207M ML207T ML208AF ML208AM ML208AT ML208M ML208T ML211F ML211M ML211S ML211T ML218F ML218M ML218T ML301AP ML301AS ML301AT ML301P ML301S ML301T ML307P ML307S ML307T ML308AM ML308AT ML308M ML308T ML311M ML311P ML311S ML311T ML318M ML318T ML709AF ML709AM ML709AT ML709CP ML709CT ML709F ML709M ML709T ML723CF ML723CM ML723CP ML723CT ML723F ML723M ML723T ML741AF ML741AM ML741AT
Motorola Direct
Replacement
Motorola . Functiohal Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional Equivalent
Part N~.
Motorola Direct
Replacement
MLMlOlAG
MLM1.07G
MLM107G
MlM107G
MC1556G
MLM108AL
MLM108AG
MLM108L
MLM108G
MLMlllF
MLMll lL
MLMlllL
MLMlllG
MC1741SG
MC1741SG
MC1741SG
MLM201AG
MLM201AG
· MLM201AG
MLM201AG
MLM201AG
MLM201AG
MLM207G
MLM207G
MLM207G
MC1556G
MLM208AL
MLM208AG
MLM208L
MLM208G
MLM211F
MLM211L
MLM211Pl
MLM211G
MC1741SG
MC1741SG
MC1741SG
MLM301AP1
MLM301AP1
MLM301AG
MLM301AP1 ·
MLM301AP1
MLM301AG
MLM307G
MLM307Pl
MLM307G
MLM308AL
MLM308AG
MLM308L
MLM308G
MLM311L
· MLM311L
MLM311Pl
MLM311G
MC1741SCP1
MC1741SCG
MCl 709AF
MC1709A~
MC1709AG
MC1709CP2
MC1709CG
MC1709F
MC1709L
.MC1709G
MC1723CL
MC1723CL
MC1723CL
MC1723CG
MCi723L
MC1723l
MC1723G . .MC1556G
MC1556G
MC1556G
ML741CP ML741CS ML741CT ML741F
ML741M ML741T ML747CP ML747CT ML747F ML747M ML747T ML748CP ML748CS ML748CT 'ML748F ML748M ML748T ML1436T
ML1437P ML1458P ML1458S ML1458T ML1488M ML1489AM ML1489M ML1536T
ML1537M ML1558M ML1558T ML3046P ML4250T 1ML4250CS
ML4250CT ML4251T ML4251CS ML4251CT ML6503M ML7503M N5065A N5070B N5071A N5072A N5556T N5556V N5558F N5558T N5558V
N5595A N5595F N5596A N5596K N5709A N5709G N5709T N5709V N5710A N5710T N5711A N5711K N5723A N5723T N5733K N5741A N5741T N5741V N5747A N5747F N5748A N5748T N7520B N7521B N7522B N7523B N7524B
MCl 741CP2 MC1741CP1 MC1741CG
MC1741F MC1741L MC1741G MC1747CL MC1747CG MC1747F MC1747L MC! 747G
MLM301AP1 MC1748CG
MC1748G MC1436G MC1437P MC1458P2 MC1458Pl MC1458G MC1488L MC1489AL MC1489L MC1536G MC1537L MC1558L MC1558G MC3346P
MC1358P
MC1456G MC1456Pl MC1458L MC1458G MC1458Pl MC1495L MC1495L MC1496L MC1496G MC1709CP2 MC! 709CF MC1709CG MC1709CP1 MC1710CP MC1710CG MC1711CP MC1711CG
MC1723CG MC.1733CG · MC1741CP2 MC1741CG MC1741CP1 MC1747CL MC1747CL
MC1748CG MC7520P MC7521P MC7522P MC7523P MC7524P
I
MLM301AP1 MC1748G MC1748G
· MC1776G MC1776CG MC1776CG
MC1776G MC1776CG MC1776CG
MC1537L MC1437L MC1399P MC1399P MC1323P
MC1723CP
I
MC1747CG
N7525B N8Tl3B N8Tl3P N8Tl4B N8T14E N8Tl5A N8Tl5F N8Tl6A N8T23B N8T23E N8T24B N8T24E N8T26AB
N8T26AE N8T26B N8T28B N8T37A N8T38A N8T95B N8T95F N8T96B N8T96F N8T97B N8T97F N8T98B N8T98F NE501A
NE501K NE515A
NE515G NE515K NE516A NE516G NE516K NE528B NE528E
NE531G NE531T NE531V
NE533G NE533T NE533V NE537G , NE537T
NE540L NE550A NE550L NE555JG NE555L NE555P NE555T NE555V NE556A NE5561 NE565A
NE565K NE592A NE592K OP-OlC OP-OlG
OP·OlH OP-OlJ
OP·Oll OP·OlP OP-08 OP·OBA OP·OBB OP·OBC OP-OBE
PA239A RC702T RC709D RC709DN RC709DP
MC7525P MC8Tl3P MC8Tl3L MC8Tl4P MC8Tl4L
MC8T23P MC8T23L MC8T24P MC8T24L MC8T26AP MC8T26AL MC8T26P MC8T28P MC3437P MC3438P MC8T95P MC8T95L MC8T96P MC8T96L MC8T97P MC8T97L MC8T98P MC8T98L
MC1455U MC1455G MC1455Pl MC1455G MC1455Pl MC3456P MC3456L MLM565CP NE592L NE592G
MC1712CG MCl 709CL MC1709CP1 ·MC1709CP2
®MOTOR0 L A Semiconduc'for Prod UC'fs I n c .
Motorola Functional Equivalent.
MC1488L MC1488L MC1489L
MC1733CL MC1733CG MC1420G
MC1520F MC1420G MC1420G MC1520F MC1420G MC1444L MC1444L MC1439G MC1439G MC1439P MC1776C,G MC1776CG MC1776CG MC1456G MC1456G MC1554G MC1723CP MC1723CG
-·
MLM565CP
MC1536 MC1536 MC1536 MC1536G MC1536G MC1536P MC1776 MC1776 MC1776 MC1776 MC1776 MC1303P
1-16
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
II
Part No.
RC709Q RC709T RC7IODC RC7lODP RC710Q RC710T RC7UDC RC711DP RC711Q RC711T RC723D RC723T RC733D RC733T RC741D · RC741DN RC741DP RC74IQ RC741T RC747D RC747T RC748T RC14I4DC RCI414DP RC1437D RCI437DP RCI458DN RCI458T RCI488DC RCI489ADC RC1489DC RC1556T RC1558T RC3302DB RC4131DP RC4131T RC4136D RC4136DP RC4136J RC4I36N RC4I95T RC4195TK RC4444R RC4558DN RC4558JG RC4558L RC4558P RC4558T RC4739D RC4739DB RC4739DP RC7522M RC7523M RC7524M RC7525M. RC8T13DD RC8Tl3MP RC8T14DD RC8T14MP RC8T23DD RC8T23MP RC8T24DD RC8T24MP RC75107AD RC75107ADP RC75I08AD RC75108ADP RC75109D RC75I09DP RC75110D RC75110DP RC75~5DD RM70 Q RM702T
Motorola
Direct Replacement
Motorola Functional Equh1alent
Part No.
Motorola Direct
Replacement
Motorola
Functional Equivalent '
Part No.
Motorola
Direct Replacement
MCI 709CF
RM709D
MCI 709L
SGIOlT
MLMlOIAG
MC1709CG
RM709Q
MCI 709F
SGI02J
MCI710CL
RM709T
MCI709G
SG102T
MLMllOG
MCI710CP
RM710D
MC1710L
SG104T
MLM104G
MCI 710CF
RM710Q
MC1710F
SG105N
MCI710CG
RM710T
MC1710G
SG105T
MLM105G
MC1711CL
RM711DC
MC1711L
SG107J
MCI711CP
RM711Q
MCI711F
SG107T
MLM107G
MCI711CF
RM711T
MC1711G
SGIOBAJ
MLMIOBAL
MCI711CG
RM723D
MCI723L
SGIOBAT
MLM108AG
MC1723CL
RM723T
MC1723G
SG108J
MLM108L
MCI723CG
RM733D
MCI733L
SGIOBT
MLMIOBG
MCI733CL
RM733T
MC1733G
SGI09K
MLMI09K
MCI 733CG
RM741D
MCI74IL
SG109T
MLMI09G
MCI 74ICL·
RM741DP
MC174IP
SGilOD
MCI741CPI
RM74IQ
MC1741F
SGllOT
MLMllOG
MCI741CP2
RM741T
MC1741G
SG111D
MLMllIL
MCI74ICF
RM747D
MCI747L
SG111M
MLM111PI
MCI741CG
RM747T
MCI747G
I
SGillT
MLMlllG
MCI747CL
RM748T
MC1748G.
SG118J
MCI747CG
RMI5I4DC
MC1~14L
SGI18T
MCI748CG
RM1537D
MC1537L
SGI20K-05
MCI4I4L
RM4I36D
MC3503L SGI20K-5.2
MCI4I4P
RM4136J
MC3503L SGI20K-12
MC1437L
RM4195T
MCI568G SGI20K·I5
MCI437P
RM4I95TK
MCI568R SG120T-05
MCI458PI
RM4558D
MC4558U
SG120T-5.2
MC1458G
RM4558JG
MC4558U
SGI20T-I2
MC1488L
RM4558L
MC4558G
SGI20T-I5
MCI489AL
RM4558T
MC4558G
SGI24J
MLM124L
MC1489L
RM55107AD
MC55107L
SG140K·05
MCI456CG
RM55325DD
MC55325L
SG140K-06
MC1558G
RV3301DB
MC3301P
SG140K·08
MC3302P
S5556T
MC1556G
SG140K·I2
MC1471SCP1 S5558E
MC1558L
SG140K·l5
MC1741SG S5558T
.· MC1558G
SGI40K-18
MC3403L S5596F
MCI596L
SGI40K-24
MC3403P S5596K
MC1596G
SG200T
MC3403L S5709G
MC1709F
SG201AD
MC3403P S5709T
MC1709G
SG201AM
MLM20IAP1
MC1468G S5710T
MC1710G
SG20IAN
MCI468R S5711K
MC1711G
SG20IAT
MLM201AG
MC3416L
S5723T
MC1723G
SG201J
MC4558CP1
S5733K
MCI 733G
SG201M
MLM201AP1
MC4558CU
S5741T
MC1741G
SG201N
MC4558CG
S8Tl3E
MC8Tl3L SG201T
MLM20IAG
MC4558CP1
S8T14E
MC8Tl4L SG202J
MC45589G
SE501K
MC1733G SG202M
MC1303P SE515G
MC1520F SG202N
MCI303P SE515K
MC1520G SG202T
MLM210G
MC1303P
SE516A
MC1520G SG204T
MLM204G
MC7522L
SE516G
MC1520F SG205N
MC7523L
SE516K
MC1520G SG205T
MLM205G
MC7524L
SE528E
MC1544L , SG207J
MC7525L
SE528R
MC1544L SG207M
MC8Tl3L
SE531G
MC1539G SG207N
MC8Tl3P
SE531T
MC1539G SG207T
MLM207G
MC8T14L
SE533G
.J
MC1776G SG208AJ
MLM208'AL
MC8T14P
SE533T
MC1776G SG208AM
MLM208AU
MC8T23L
SE537G ·
MCI556G SG208AT
MLM208AG
MC8T23P
SE537T
MC1556G SG208J
MLM208L
MC8T24L
SE550L
MC1723G SG208M
MLM208U
MC8T24P
SE555JG
MC1555U
SG208T
MLM208G
MC75107L
SE555L
MC1555G
SG209K
MLM209K
MC75107P
SE555T
.MC1555G
SG209T
MLM209G
MC75108L
SE556A
MC3556L
SG210D
MC75108P
SE565A
MLM565CP SG210M
MC75110L SE565K
MLM565CP SG210N
MC75110P SE592A
SE592L
SG210T
MLM210G
MC75110L
SE592K
SE592G
SG211D
MLM211L
MC75110P
SGIOOT
MCI723G SG211M
MLM211PI
MC75325L
SG101AD
MLMlOlAG SG211T
MLM21IG
MC1712F
SGIOIAT
MLMIOIAG
SG218J
@ . MCI721G
SG101J
MLMIOIAG SG218M
~OTOROLA Sem1conducf:or Producf:s Inc·
Motorola Functional Equivalent
MLMllOG
·MLM105G · MLM107G
MLMllOG
MC174ISL MCI74ISG MC7905CK MC7905.2CK MC7912CK MC79I5CG MC7905CT MC7905.2CK MC7912CT MC79I5CT MC7805CK MC7806CK MC7808CK MC78I2CK MC78I5CK MC78I8CK MC7824CK MC1723G MLM201AG MLM20IAP1 MLM20IAG MLM201AP1 MLM210G MLM210G MLM210G
MLM205G MLM207G MLM207G MLM207G
MLM210G MLM210G MLM210G
MC1741SL MC1741SL
1-17
II
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
SG218T SG224J. SG224N SG300N SG300T SG301AD SG301AM SG301AN SG301AT SG302J SG302M SG302N SG302T SG304T SG305AT SG305N SG305T SG307J SG307M SG307N SG307T SG308AJ SG308AM SG308AT SG308J SG308M SG308T SG309K SG309T SG310D SG310M SG310N SG3lOT SG311D SG311M SG311T SG318J SG318M SG318T SG320K-05 SG320K-5.2 SG320K-12 SG320K·15 SG320T-05 SG320T-5.2 SG320T-12 SG320T-15 SG324J SG324N SG340K-05 SG340K-06 SG340K-08 SG340K-12 SG340K-15 SG340K-18 SG340K-24 SG555CM SG555CT SG555T SG556CJ SG556CN SG556J SG556N SG710CD SG710CF SG710CN SG710CJ SG7100 SG710F SG710N SG710T SG711CD SG711CF SG711CN
Motorola
Direc't Replacement
Motorola Functional Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional
Equivalent
Part No.
Motorola
Direct
Re~lacement
MLM224L MLM224P
MLM301AP1
MLM301AG
MLM310Pl
MLM310G MLM304G
MLM305G
MLM307Pl
MLM307G MLM308AL MLM308AP1 MLM308AG MLM308L MLM308Pl MLM308G MLM309K MLM309G
MLM310Pl
MLM310G MLM311L MLM311Pl MLM311G
MLM324L MLM324P MC7805CK MC7806CK MC7808CK MC7812CK MC7815CK MC7818CK MC7824CK MC1455Pl MC1455G MC1555G MC3456L MC3456P MC3556L MC3556L MC1710CL MC1710CF MC1710CP MC1710CG MC1710L MC1710F MCI 710P MC1710G MC1711CL MC1711CF MC17llCP
MC1741SG
MC1723CP MC1723CG MLM301AG MLM301AP1 MLM310Pl MLM310Pl
MLM305G MLM305G MLM307Pl MLM307Pl
MLM310Pl MLM310Pl
MC1741SCL MC1741CP1 MC1741CG MC7905CK MC7905.2CK MC7912CK MC7915CK
MC7905CT MC7905.2CT
MC7912CT MC7915CT
SG711CT
SG7llD SG7llF SG711N SG7llT SG723CD SG723CN
SG723CT SG7230 SG723T SG733CD SG733CN SG733CT SG733D SG733N SG733T SG741CD SG741CF SG741CM SG741CN SG741CT SG7410 SG741F SG741T SG14'1SCM SG741SCT SG741ST SG747CJ SG747CN
SG747CT SG747J SG747T SG748CD
SG748CM SG748CN
SG748CT SG748D SG748T SG777CJ SG777CM
SG777CN SG777CT SG777J SG777T
SG1118AJ SG1118AT SG1118J SG1118T SG1217 SG1217J SG1217T.
SG1250T SG1401N SG1401T SG1402N , SG1402T SG1436CT
SG1436M SG1436T
SG1456CT SG1456T SG1458M SG1458T SG1468J SG1468N SG1468T SG1495D SG1495N SG1496D SG1496N SG1496T SG1501AD SG1501AT SG1501D
MC1711CG MC17lll MC1711F MC1711P MC1711G MC1723CL MC1723CP MC1723CG MC1723L MCl 723G MCl 733CL
MC1733CG MCl 733L
MC1733G MC1741CL MC1741CF MC1741CP1 MC1741CP2 MC1741CG MCl 741L MC1741F MC1741G MC1741SCP1 MC1741SCG MC1741SG MC1747Ct MC1747CP2 MC1747CG MC1747L MC1747G
MC1748CG
MC1748G
MC1436CG MC1436U MC1436G MC1456CG MC1456G MC1458Pl MC1458G MC1468L MC1468L MC1468G MC1495L MC1495L MC1496L
MC1496G
MC1568L
MC1733CP
MC1733L
MC1748CP1 MC1748CP1 MC1748CP1
MC1748G MLM308AL MLM308AP1 MLM308AP1 MLM308AG MLM108AL MLM108AG MLM108AL MLM108AG MLM108L MLM108G
MC1741G MC1741SL MC1741SG MC1776G MC1533G MC1533G MC1594L MC1594L
MC1496L MC1568L MC1568G
SG1501T SG1502D SG1502N SG1524J SG1536T SG1556T
SG1558T SG15950 SG15960 SG1596T
SG16600 SG1660J SG1660M SG1660T .SGl 7600 SGl 760F SGl 760J SG1760M SG1760T SG2118AJ SG2118AM SG2118AT SG2118J SG2118M SG2118T SG2250T SG2401N SG2402N SG2402T SG2501AD SG2501AT SG2501D SG250lN SG2501T SG2502D SG2502N SG2502T SG2524J SG3118AJ SG3118AM SG3118AT SG3118J SG3118M SG3118T SG3250T
SG3401N SG3401T SG3402N SG3402T SG3501AD SG3501AT
SG35010 SG3501N SG3501T SG3502D SG3502G SG3502N SG3524J SG4250CM SG4250CT SG4250T SG45010 SG4501N SG4501T SG7524J SG7524N
SG7525J SG7525N
SG7528J SG7528N SG7529J SG7529N SG7805CK SG7805K
MC1568G
MC1536G MC1556G MC1558G MC1595L MC1596L MC1596G
MC1468L MC1468L MC1468G
MC1468L MC1468G MC1468L MC1468L IV!Cl468G
MC1468L MC1468L MC14G8G MC7524L MC7524P MC7525L MC7525P MC7528L MC7528P MC7529L MC7529P MC7805CK
MOTOROLA Semiconductor Products Inc.
Motorola Functional Equivalent
MC1568L MC15'68L MC3520L
MLM301AG MLM308L
MLM308Pl MLM308G MLM307G MLM307G MLM308L MLM308Pl MLM308G MLM208AL MLM208AU MLM208AG MLM208L MLM208U MLM208G MC1776G MC1433G MC1494L MC1494L MC1468L MC1468G
MC1468L MC1468L MC1468G MC3520L MLM308AL MLM308AP1 MLM308AG MLM308L MLM308Pl MLM308G MC1776G MC1433G MC1433G MC1494L MC1494L
MC1468L MC1468G MC1468L MC3420L MC1776CP1 MC1776CG MC1776G
MC7805CK
1-1 R
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
SG7806CK SG7806K SG7808CK SG7808K SG7812CK SG7812K SG7815CK SG7815K SG7818CK SG7818K SG7824CK SG7824K SHQ013HC SH0013HM SH2001FC SH2001FM SH2001HC SH2001HM SH2002FC SH2002FM SH2002HC SH2002HM SH2002HC SH2200FC SH2200FM S!i2200HC SH2200HM SH2200PC SH8090FM SN5510FA SN5510l SN5522J SN5523J SN5524J SN5525J SN5528J SN5529J SN7510FA SN7524J SN7524N SN7525J SN7525N SN7528J SN752BN ·SN7529J SN7529N SN52101AL SN52104L SN52105L . SN52106FA
SN52106J SN52106L SN52107L SN52108Al SN52108l SN52109L SN52110l . SN52510FA
SN52510J SN52510L SN52514J SN52555L SN52558L SN52702AFA SN52702AJ SN52702AL SN52702FA SN52702J SN52702L SN52709AFA SN52709AJ SN52709AL SN52709FA SN52709J
Motorola Direct
Replacement
Motorola Functional
Equivalent
Part.No.
Motorola Direct
Replacement
Motorola Functional
Equivalent
Part No.
Motorola Direct
Replacement
MC7806CK
SN52709L
MC1709G
SN72710J
MC1710CL
MC7806CK SN52710FA
MC1710F
SN72710L
MC1710CG
MC7808CK
SN52710J
MC1710L
SN72710N
MC1710CP
MC7808CK SN52710L
MC1710G
SN72711J
MC17llCL
MC7812CK
SN52711FA
MC1711F
SN727lll
MC1711CG
MC7812CK SN52711J
MC17lll
SN72711N
MC1711CP
MC7815CK
SN52711L
MC1711G
SN72720J
MC7815CK SN52723FA
MC1723F
SN72720l
MC7818CK
SN52723J
MC1723L
SN72720N
MC7818CK SN52723L
MC1723G
SN72723J
MC1723CL
MC7824CK
SN52733J
MC1733L
SN72723L
MC1723CG
M.CZ824CK SN52733L
MC1733G
SN72733J
MC1733CL
MMH0026CG SN52741FA
MC1741F
SN72733L
MC1733CG
MMH0026G SN52741J
MC1741L
SN72741FA
MC1741CF
MC75462P SN52741L
MC1741G
SN72741J
MC1741CL
MC75462P SN52747FA
MC1747F
SN72741L
MC1741CG
MC75462P SN52747J
MC1747L
SN72741N
MC1741CP2
MC75462P SN52747L
MC1747G
SN72741P
MC1741CP1
MC75462P SN52748L
MC1748G
SN72747FA
MC1747CF
MC75462P SN52770L
MC1556G SN72747J
MC1747CL
MC75462P SN52771L
MC1556G SN72747L
MC1747CG
MC75462P SN52810FA
MC1710F SN72747N
MCl 747CP2
MC75462P SN52810J
MC1710L SN72748L
MC1748CG
MC75462P SN52810L
MC1710G SN72748P
MC1748CP1
MC75462P SN52811FA
MC1711F SN72770L
MC75462P SN52811J
MC1711L SN72771L
MC75462P SN528lll
MC1711G . SN72810FA
MC75462P SN55107AJ
MC55107L
SN72810J
MC1508L8 SN55107BJ
MC55107L SN72810L
MC1510F
SN55108AJ
MC55108L
SN72810N
MC1510G
SN55108BJ
MC55108L SN72811FA
MC5522L
SN55109J
MC75110L SN72811J
MC5523L
SN55110J
MC75110l SN728lll
MC5524L
SN55232J
MC5534L SN72811N
MC5525L
SN55233J
MC5535L SN72905
MC7905CP
MC5528L
SN55234J
MC5524l SN72906
MC7906CP
MC5529L
SN55235J
MC5525L SN72908
MC7908CP
MC1410F
SN55238J
MC5538L SN72912
MC7912CP
MC7524L
SN55239J
MC5539L SN72915
MC7915CP
MC7524P
SN55244J
MC1544l
SN72L022P
MC7525l
SN55325J
MC55325L
SN72L044JA
MC7525P
SN72301Al
MLM301AG
SN72~044N
MC7528L
SN72301AP,
MLM301AP1
SN75107AJ
MC75107L
MC7528P
SN72304L
MLM304G
SN75107AN
MC75107P
MC7529L
SN72305AL
MLM305G SN75107BJ
MC7529P
SN72305L
MLM305G
SN75107BN
MLMlOlAG
SN72306J
MC1710CL SN75108AJ
MC75108L
MLM104G
SN72306L
MC1710CG SN75108AN
MC75108P
MLM105G
SN72306N
MC1710CP SN75108BJ
MC1710F SN72307L
MLM307G
SN75108BN
MC1710L SN72308AL
MLM308AG
SN75110J
MC75110L
MC1710G SN72308L
MLM308G
SN75110N
MC75110P
MLM107G
SN72309l
MLM309G
SN75121J
MC8Tl3l
MLM108AG
SN72310l
MLM310G
SN75121N
MC8Tl3P
MLM108G
SN723lll
MLM311G
SN75122J
MC8Tl4L
MLM109G
SN72311P
MLM311P
SN75122N
MC8Tl4P
MLMllOG
SN72376L
MLM305G SN75123J
MCBT23l
MC1710F SN72440J
MC3370P SN75123N
MC8T23P
MC1710L SN72440N
MC3370P SN75124J
MC8T24L
MC1710G· SN72510J
MC1710CL SN75124N
MC8T24P
MC1514L
SN72510L
MC1710CG SN75138N
MC1555G
SN72510N
MCl 710CP SN75138J.
MC1558G
SN72514J
MC1414L SN75140P
MC75140Pl
MC1712F SN72514N
MC1414P SN75l50J
MC1712L SN72555L
MC1455G
SN75150N
MC1712G SN72555P
MC1455Pl
SN75154J
MC1712F
~
MC1712L
SN72558L SN72558P
MC1458G MC1458Pl
SN75154N SN75l~8J
MC148BL
MC1712G
SN72702J
MC1712CL
SN75 88N
MC1488L
MC1709AF
SN72702l
MCi712CG
SN75189AJ
MC1489AL
MC1709AL
SN72709J
MC1709CL
SN75189J
MC1489L
MC1709AG
SN72709L
MC1709CG
SN75189AN
MC1489AL
MC1709F MC1709L
SN72709N SN72709P
MC1709CP2 MC1709CP1
SN75189N SN75207J
MC1489L
M - MOTOROLA Semiconductor Products Inc.
Motorola Functional Equivalent
MC1710CL MC1710CG MC1710CP
MC1456G MC1456G MC1710CF MC1710CL MC1710CG MC1710CP MC1711CF MC1711CL MC1711CG MC1711CP
MLM358Pl MLM324P MLM324P MC75107l MC75107P MC75108L MC75108P
MC3443P MC3443P MC1488L MC1488L MC1489L MC1489L
MC75107L
1-19
II
II
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
SN75207N SN75208J SN75208N SN75232J SN75232N SN75233J SN75233N SN75234J SN75134N SN75235J SN75235N SN75238J SN75238N SN75239J SN75239N SN75261N SN75322N SN75362P SN75365J SN75365N SN75368J SN75368N SN75369P SN75450AJ SN75450AN SN75450BN ' SN75450N SN75451AP SN75451P SN75452P SN75453P SN75454P SN75460AJ SN75460AN SN75461 SN75461AP SN75462 SN75462AP SN75463 SN75463AP ' SN75464 SN75464AP SN75461N SN75466J SN75466N SN75467J SN75467N SN75468J SN75468N SN75475P SN75475JG SN75491N SN75492N SN76000P SN76005ND SN76011ND SN76021ND SN76024ND SN76104N SN76105N SN76111N SN76113N SN76115N SN76116N SN76117N SN76130N SN76131N SN76149N SN76242N SN76243N SN76246N. SN76298N SN76514L SN76514N
Motorola Direct
Replacement
Motorola Functional
Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional
Equivalent
Part No.
Motorola Direct
Replacement
MC75365L MC75365P MC75368L MC75368P MMH0026CP MC75450L MC75450P
MC75450P2 MC75451P MC75451P MC75452P MC75453P MC75454P MC75460L MC75460P MC75461 MC75461P MC75462 MC75462P MC75463 MC75463P MC75464 MC75464P MC75491P MC1411L MC1411P MC1412L MC1412P MC1413L MC1413P MC1472Pl MC1472U MC75491P MC75492P
MC1310P
MC1398P
MC1496P
MC75107P MC75108L MC75108P MC7534L MC7534P MC7535L MC7535P' MC7534L MC7534P MC7535L MC7535P MC7538L MC7538P MC7539L MC7539P MC3461L MC3460P MMH0026CP
MC75450P2
\
MC1306P MC1384PQ MC1384PQ MC1384PQ MC1384PQ
MC1310P MC1310P MC1310P MC1310P MC1310P MC1310P MC1303P MC1303P MC1303P MC1399P MC1399P MC1323P MC1496G
SN76530P SN76564N
SN76565N SN76591P SN76594P
SN76600P SN76642N SN76644N SN76650N SN76651N SN76653N
SN76660N SN76665N SN76666N SN76669N SN76675N SN76678P
SSSlOlAL SSSlOlAJ SSS101AP SSS107J SSS107P SSS201AJ SSS201AL SSS201AP SSS207J SSS207P SSS301AJ SSS301AL SSS301AP SSS741BJ SSS741BL SSS741BP SSS741CJ SSS741CL SSS741CP
SSS741GJ SSS741GP SSS741J SSS741L SSS741P SSS747B2 SSS747BP SSS747CK SSS747CM SSS747CP SSS747GK SSS747GM SSS747GP SSS747L SSS747P SSS1408A-6Z SSS1408A-7Z
SSS1408A·8Z SSS1508A-8Z SSS1458J
SSS1558J TAA630
TB/1120S TBA440. TBA520 TBASOO TBA810AS TBA810S TBA920 TBA920S TBA940 TBA950 TBA990 TBA1190Z TL022CJG TL022CL
TL022CP TL022MJG
MC1330P MC1364P MC1364P MC1391P MC1394P MC1350P MC1357P MC1352P MC1351P
MC1364P MC1358P MC1356P MC1375P
MLM101AG MLM107G MLM201AG
MLM207G MLM301AG MLM301AP1
MC1741P2
MC1741CP2 MC1741SG
MC1747F
MC1747F
MC1408L6 MC1408L7 MC1408L8 MC1508L8 MC1458G MC1558G
TBA1190Z
MC1352P
MC1352P MC1357P
MC1355P MLMlOlAG
MLMlOlAPl
MLM107G
MLM201AG MLM201AP1
MLM207G
MLM301AG
MC1741G MC1741F
MC1741CG MC1741CF
MC1741SG MC1741G MC1741F MC1741P2
MC1747L MC1747CG MC1747CF MC1747CL MC1747G
· MC1747L MC1747F MC1747L
MC1327P MC1358P MC1352P MC1327P MC1384PQ MC1384PQM MC1384PQ MC1391P MC1391P MC1344P MC1344P MC1327P
MLM358U MLM358G MLM358Pl MLM158U
TL022ML TL044CJ TL044CN TL044MJ ·
TL497CJ TL497CN TL497MJ UDN5711M UDN5712M UDN5713M UDN5714M
UDN·7183A UDN-7184A
UDN·7186A UDN-6144A UDN·6164A UDN-6184A UHD-490 UHP-490 UHD-491 UHP-491 UHP-495 ULN2001A ULN2002A ULN2003A ULN2004A ULN2111A ULN2111N ULN2113A ULN2113N ULN2114A ULN2114K ULN2114N
ULN2120A ULN2121A ULN2122A ULN2124A ULN2125A ULN2126A ULN2127A ULN2128A ULN2129A ULN2136A ULN2139D ULN2139G ULN2139H
ULN2139M ULN2151D ULN2151G ULN2151H ULN2151M ULN2156D ULN2156G
ULN2156H ULN2156M ULN2157A
ULN2157H ULN2157K ULN2165A ULN2165N ULN2209A ULN2210A ULN2224A ULN2228A ULN2244A ULN2262A ULN2264A ULN2267A
ULN2280A ULN2285P ULN2298A ULN2741D ULN2747A ULS2139D
MC1471Pl MC1472Pl MC1473Pl MC1474Pl
ULN2001A ULN2002A ULN2003A ULN2004A MC1357P MC1357PQ
MC1375P MC1356P
MC1358P MC1358PQ MC1310P MC1324P
~
MC1364P MC1398P
MOTOROLA Semiconductor Produc'fs Inc.
Motorola Functional Equivalent '
MLM158G MLM324L MLM324P MLM124L MC3420L MC3420P MP520L
MC3491P MC3491P MC3491P MC3490P MC3490P MC3490P MC3494P MC3494P MC3494P MC3494P MC3490P
MC1357P MC1357P MC1323P MC1323P MC1323P MC1310P MC1310P MC1310P MC1399P MC1344P MC1303P MC1399P MC1310P
MC1439G MC1439G MC1439P2 MC1439Pl MC1741CG MC1741CF MC1741CP2 MC1741CP1 MC1456G MC1456G MC1456G MC1456G MC1458P2 MC1458P2 MC1458G
MC1356P
MC1323P MC1310P MC1399P
MC1323P MC1384PQ MC1384PQ.
MC1741CG MC1747CL MC1539G
1-20
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
ULS2139G ULS2139H ULS2139M ULS2151D ULS2151G. ULS2151H ULS2151M ULS2156D ULS2156G ULS2156H ULS2156M ULS2157A ULS2l57H ULS2157K uA0802DC·l uA0802DC·2 uA0802DC-3 uA0802DM·l uA0802PC-l uA0802PC-2 uA0802PC-3 uAlOIAD uAlOlAF uAlOlAH uAIOlD uAlOIF uAIOlH uA102M uA104HM uAI05HM uA107H uAI08AD uAIOSAF uA108AH uA108D uAI08F uAI08H uAI09KM uAllOM uA201AD uA201AF uA20IAH uA201D uA201F uA201H uA207H uA208AD uA208AF uA208AH uA208D uA208F uA208H uA209KM uA301AD uA301AH uA301AT uA302C uA304HC uA305AHC uA305HC uA307H uA307T uA308AD uA308AH uA308D uA308H uA309KC uA3IOCH uA311T uA376TC uA555HC uA555HM ·uA555TC uA556DC
.Motorola
. Direct Replacement
Motorola
Functional Equivalent
Part NC?.
Motorola Direct
Replacement
Motorola
Functional Equivalent
Part No.
Motorola
Direct Replacement
MC1539G uA556DM
MC3556L
uA733HC
MC1733CG
MC1539L uA556PC
MC3456P
uA733HM
MC1733G
MC1439Pl
uA702DC
MC1712CL
uA733MJ
MCl 733L
MC1741G uA702DM
MC1712L
uA733ML
MC1733G
MC1741F
uA702FM
MC1712F
uA734DC
MC1741L
uA702HC
MC1712CG
uA734DM
MC1741CP1
uA702HM
MC1712G
uA734HC
MC1556G
uA702MJ
MC1712L
uA734HM
MC1556G
uA702ML
MCl 712G
uA739DC
MC1556G
uA706APC
MC1384PQ uA739PC
MC1556G
uA709ADM
MCl 709AL
uA740HC
MC1558L
uA709AFM
MCl 709AF
uA740HM
MC1558L
uA709AHM
MC1709AG
uA741ADM
MC1558G
uA709AMJ
MCl 709AL
uA741AFM
MC1408L8
uA709AMJG
MC1709AU
·uA741AHM
MC1408L7
uA709AML
MC1709AG
uA741CJ
MC1741CL
MC1408L6
uA709CJ
MCl 709CL
uA741CJG
MC1741CU
MC1508L8
uA709CJG
MC1709CU
uA74ICL
MCI74ICG
MCI408P8
uA709CL
MC1709CG
uA741CN
MC1741CP2
MCI408P7
uA709CN
MC1709CP2
uA741CP
MC1741CP1
MCI408P6
uA709CP
MC1709CP1
uA741DC
MCI741CL
MLMlOlAU uA709DC
MCl 709CL
uA741DM
MCl 741L
MLMlOlAPl uA709DM
· MC1709L
uA74i'EDC
MLMlOlAG
uA709FM
MCI 709F
uA741EHC
MLMlOIAU uA709HC
MC1709CG
uA741FC
MCI741CF
MLMIOIAPl uA709HM
MC1709G
uA741FM
MCI 74IF
MLMlOIAG
uA709MJ
MCI 709L
uA74IHC.
MC174ICG
MLMllOG
uA709MJG
· MC1709U
uA741HM
MC1741G
MLM104G
uA709ML
MC1709G
uA74IMJ
MCI 741L
MLM105G
uA709TC
MCI709CPI
uA741MJG
MCI741U
MLM107G
uA709PC
MC1709CP2
uA74IML
MC1741G
MLM108AL
uA710CH
MC1710CF
uA74IRC
MC174ICU
MLM108AF
uA710DC
MCI 710CL
uA74IRM
MCI741U
MLM108AG
uA710DM
MC1710L
uA741PC
MC174ICP2
MLM108L
uA710FM
MCI7IOF
uA741TC
MCI 74ICP1
MLMlOSF MLM108G
uA710HC uA710HM
MC1710CG MC1710G
I
uA742DC
uA746DC
MLM109K
uA710PC
MC1710CP
uA746HC'
MLM1IOG
uA711DC
MC1711CL
uA747ADM
MLM201AU uA711DM
MC1711L
uA747AHM
MLM201AP1 uA711FM
MCI711F
uA747CJ
MCl 741CL
MLM201AG
uA711HC
MC1711CG
uA747CL
MC1747CG
MLM201AU uA711HM
MC1711G
uA747CN
MC1747CP2
MLM20IAP1 uA711PC
MC1711CP
uA747DC
MC1747CL
MLM201AG
uA715DC
MCI741SCL uA747DM
MG1747L
MLM207G
uA715DM
MCI741SL uA747EDC
MC1747CCBM
MLM208AL
uA715HC
MC1741SCG uA747EHC
MC1747CICM
MLM208AF
uA715HM
MC1741SG uA747HC
MC1747CG
MLM208AG
uA723CJ
MC1723CL
uA747HM
MC1747G
MLM208L
uA723Cl
MC1723CG
uA747MJ
MC1747L
MLM208F
uA723CN
MCI723CP
uA747ML
MC1747G
MLM208G
uA723DC
MC1723CL
uA747PC
MCI 747CP2
MLM209K
uA723DM
MC1723L
uA748AFM
MLM301AU uA723HC
MC1723CG
uA748AHM
MLM301AG
uA723HM
MC1723G
uA748CJ
MCl 748CL
MLM301AP1
uA723MJ
MC1723L
uA748CJG
MC1748CU,
MLM310G
uA723ML
MC1723G
uA748CL
MC1748CG
MLM304G
uA723PC
MC1723CP
uA748CN
MCl 748CP2
MLM305G uA725AHM
MLM108AG uA748CP
MC1748CP1
MLM305G
uA725EHC
MLM308AG uA748DC
MC1748CL
MLM307G
uA725HC
MLM308AG uA748DM
MC1748L
MLM307Pl
uA725HM·
MLM108AG uA748FM
MC1748F
MLM308AL
uA727HC
MCI420G uA748HC
MC1748CG
MLM308AG
uA727HM
MC1520G uA748HM
MC1748G
MLM308L
uA730HC
MC1420G uA748MJ
MC1748L
MLM308G
uA730HM
MCI520G uA748MJG
MC1748U
MLM309K
uA732DC
MC1310P uA748ML
MCI748G
MLM310G
uA732PC
MCI310P uA748TC
MCI748CPI
MLM311PI
uA733CJ
MCI 733CL
uA749DC
MLM305G vA733CL
MCI733CG
uA749DHC
MC1455G
uA733CN
MCI 733CP
uA749DM
MCI555G
uA733DC
MCl 733CL
uA749HC
MCI455PI
uA733DM
MCI 733L
uA749PC
@ . MC3456L
uA733FM
MC1733F
uA753TC
M.OTOROLA Semiconductor Produc'f· Inc·
Motorola Functional Equivalent
MLM311L MLMlllL MLM311G MLMlllG MC1303P MC1303P
LF355H LF155H MC1741L MC1741F MC1741G
MCH41L MCI741G
CA3059 MC1323P MC1323P MC1747L MC1747G
MC1748F MC1748G
MCI435L MCl435G MCI535L MC1435G MCI303P MCI356P
1-21
·
a
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No.
uA754HC uA754TC uA757DC uA757DM uA758DC uA758PC uA767DC uA767PC uA772 uA775DC uA775DM uA775PC uA776DC uA776DM uA776HC uA776HM uA776TC uA777CJ uA777CJG uA777CL uA777CN uA777CP uA777DC uA777HC uA777MJ uA777MJG uA777ML uA777TC uA780DC uA780PC uA781DC uA781PC uA786DC uA787PC uA791KC uA791KM uA791P5 uA796HC uA796HM uA796DC uA796DM uAZ98HC uA798HM uA798RC uA798RM ' uA798TC uA799HC uA799HM uA1312PC uAl-314PC uA1315PC uA1391PC uA1394PC uA1458CHC uA1458CP uA1458CRC uA1458CTC uA1458E uA145BHC uA1458P uA1458RC uA1458TC uA1558E uA1558HM uA2136PC uA2240DC uA2240DM uA2240PC uAl026HM uA3045 uA3046DC uA3054PC uA3064PC uA3065PC
Motorola
Direct Replacement
Motorola Functional Equivalent
Part No.
Motorola Direct
Replacement
Motorola
Functional Equivalent
Part No.
Motorola Direct
Replacement
Motorola Functional
Equivalent
MLM339L MLM139L MLM339P
MC1776CG MC1776G MC1776CP1
MC1496G MC1596G MC1496L MC1596l MC3458G MC3558G MC3458U MC3558U MC3458Pl
MC1312P MC1314P MC1315P MC1391P MC1394P MC1458CG MC1458CP1 MC1458CU MC1458CP1 MC1458G MC1558G MC1458Pl MC1458U MC1458Pl MC1558G MC1558G MC1356P
MC3346P CA3054P MC1364P MC1358P
MC1355P MC1355P MCi350P MC1350P MC1310P MGi310P MC1310P MC1310P MC1741S
MC1776CG MC1776G
MLM308AU MLM308AU MLM.308AG MLM308AP1 MLM308AP1 MLM308AU MLM308AG MLM108AU MLM108AU MLM108AG MLM308AP1
MC1399P MC1399P MC1399P MC1399P MC1327P . MC1399P MC1438R MC1538R MC1438R
MC1741G MC1741G
MC1455U MC1555G MC1455Pl
CA3054 MC3346P
uA3075PC uA3086DM uA3301P uA3302P uA3303P uA3401P uA3403D uA3403P uA4136DC
uA4136DM uA4136PC uA4558HC uA4558HM uA4558TC uA7805CKC
uA7805KC uA7805KM
uA7805UC uA7806CKC uA7806KC uA7806KM uA7806UC uA7808CKC uA7808KC uA7808KM uA7808UC uA7812CKC uA7812KC uA7812KM uA7812UC
uA7815CKC uA7815KC uA7815KM
uA7815UC uA7818CKC uA7818KC uA7818KM uA7818UC uA7824CKC uA7824KC uA7824KM
uA7824UC uA78GHM uA78GKC uA78GKM uA78GU1C uA78H05KC uA78L02ACJG uA78L02ACLP uA78L02CJG uA78L02CLP uA78L05ACJG
uA78L05ACLP uA78l05AHC uA78L05AWC
uA78L05CJG uA78l05CLP uA78L05HC uA78L05WC uA78L06ACJG uA78LOSACLP uA78L06CJG uA78L06CLP uA78L08ACJG uA78L08ACLP tJA78LQ8CJG. iiA78l08CLP uA78ll2ACJG uA78L12ACLP uA78ll2AHC uA78ll2AWC uA78ll2CJG uA78ll2CLP uA78ll2HC.
MC1375P MC3386P MC3301P MC3302P MC3303P MC3401P MC3403L MC3403P
MC4558CG MC4558G MC4558CP1 MC7805CT MC7805CK
MC7805CT MC7806CT MC7806CK
MC7806CT MC7808CT MC7808CK
MC7808CT MC7812CT MC7812CK
MC7812CT MC7815CT MC7815CK
MC7815Cl' MC7818CT MC7818CK
MP815CT MC7824CT MC7824CK
MC7824CT
MC78L02ACP
MC78l02CP
MC78L05ACP MC78l05ACG MC78l05ACP
.'>
MC78L05CP MC78l05CG MC78L05CP
MC78L06ACP ·
MC78L06CP
MC7.8l08ACP
MC78L08CP
MC78L12ACP MC78l12ACG MC78L12ACP
MC78l12CP MC78ll2CG
MC4741Cl MC4741l MC4741CP
MC7805CK
\
MC7806CK
MC7808CK
MC7812CK
MC7815CK
MC7818CK
MC7824CK LM117K LM117K LM117K LM317T
MC7805CK MC78L02ACG
MC78L02CG MC78L05ACG
MC78L05CG
MC78L06ACG MC78L06CG MC78L08ACG MC78L08CG MC78l12ACG
MC78ll2CG
uA78L12WC liA78L15ACJG uA78Ll5ACLP uA78l15AHC uA78Ll5AWC
uA78l15CJG uA78l15CLP uA78ll5HC uA78l15WC uA78L26AWC uA78MGHC uA78MGT2C uA78MGUiC uA78M05CKC uA78M05HC uA78M05HM uA78M05UC uA78M06CKC uA78M06HC uA78M06HM uA78M06UC uA78M08CKC uA78M08HC uA78M08HM
uA78M08UC uA78M12CKC
uA78Ml2HC uA78Ml2HM uA78Ml2UC uA78Ml5CKC uA78M15HC uA78Ml5HM uA78Ml5UG uA78Ml8HC uA78Ml8HM uA78Ml8UG uA78M20CKC uA78M20HC uA78M20HM uA78M20UG uA78M24CKC uA78M24HC uA78M24HM uA78M24UC
uA7902KC uA7902KM
uAJ.902UC uA7905KC uA7905KM uA7905UC
uA7906KC uA7906KM
uA7906UC uA7908kC uA7908KM uA7908UC uA7912KC uA7912KM uA7912UC
uA7915KC uA7915KM uA7915UC uA7918CKC uA7918KC uA7918KM' uA7918UC uA7924CKC uA7924KC uA7924KM
uA7924UC uA79l05AHC uA79L05AWC uA79L05HC uA79L05WC
MC78Ll2CP
MC78l15ACP MC78l15ACG . MC78L15ACP
MC7Sll5CP MC78ll5CG MC78ll5CP MC7802ACP
I
MC78M05Ct MC78M05CG
MC78M05CT MC78M06CT MC78M06CG
MC78M06CT MC78M08CT MC78M08CG
MC78M08CT MC78M12CT MC78M12CG
MC78M12CT MC78M15CT MC78Ml5CG
MC78M15CT MC78M18CG
MC78Ml8CT MC78M20CT MC78M20CG
MC78M20CT MC78M24CT MC78M24CG
MC78M24CT MC7902K
MC7902CT MC7905CK
MC7905CT MC7906CK
MC7906CT MC7908CK
MC7908CT . MC7912CK
MC7912CT MC7915CK
MC7915CT MC7918CT MC7918CK
MC7918CT MC7924CT MC7924CK
MC7924CT MC79L05ACG MC79L05ACP MC79L05CG MC79L05CP
MC78l15ACG
MC78ll5CG
LM317H LM317T LM317T MC78M05CG
MC78M06CG
MC78M08CG
MC78Ml2CG
MC78Ml5CG MC78Ml8CG
MC78M20CG
MC78M24CG MC7902K MC7905CK MC7906CK MC7908CK MC7912CK
MC7915CK
MC7918CK
MC7924CK
M MOTOROLA Semiconductor Products Inc.
1-22
LINEAR INTEGRATED CIRCUITS CROSS REFERENCE
Part No;
uA79L12AHC uA79L12AWC uA79L12HC uA79L12WC uA79ll5AHC uA79Ll5AWC uA79ll5HC uA79Ll5WC uA79M05AHM uA79M05AUC uA79M05CKC uA79M05HM uA79M05UC uA79M06AHM uA79M06AUC uA79M06CKC uA79M06HM uA79M06UC uA79M08AHM uA79M08AUC
Motorola Direct
Replacernent MC79Ll2ACG MC79Ll2ACP MC79Ll2CG MC79L12CP MC79Ll5ACG MC79Ll5ACP MC79Ll5CG MC79Ll5CP
MC7905CT
MC7906CT
Motorola Functional Equivalent
MC7905CK MC7905CT MC7905CK MC7905CT MC7906CK MC7906CT MC7906CK MC7906CT MC7908CK MC7908CT
Part No.
uA79M08CKC uA79M08HM uA79M08UC uA79Ml2AHM uA79Ml2AUC uA79Ml2CKC uA79Ml2HM uA79Ml2UC uA79Ml5AHM uA79Ml5AUC uA79Ml5CKC uA79Ml5HM uA7.9Ml5UC uA79Ml8AHM uA79Ml8AUC uA79Ml8HM uA79Ml8UC uA79M24AHM uA79M24AUC uA79M24HM uA-79M24UC
Motorola Direct
Replacement MC7908CT
MC7912CT
MC7915CT
Motorola Functional Equivalent
MC7908CK MC7908CT MC7912CK MC7912CT
MC7912CK MC7912CT MC7915CK
MC7~15CT
MC7915CK MC7915CJ MC7918CK MC7918CT MC7918CK MC7918CT MC7924CK MC7924CT MC7924CK MC7924CT
Part No.
uA8T13DC uA8T13PC uA8T14DC uA8T14PC uA8T23DC uA8T23PC uA8l24DC uA8T24PC uAF155AHM uAF155HM uAF156AHM uAF156HM uAF157AHM uAF157HM uAF355AHC uAF355HC uAF356AHC uAF356HC uAF357AHC uAF357HC
-
Motorola Direct
Replace merit
MC8Tl3L MC8Tl3P MC8Tl4L MC8Tl4P MC8T23L MC8T23P MC8T24L MC8T24P LF155AH LF155H LF156AH LF156H LF157AH LF157H LF355AH _LF355H LF356AH LF356H LF357AH LF357H
Motorola Functional Equivalent
II
/
@ . MOTOROLA Semiconductor Products Inc·
1-23
·
' .
l-24
II
THE MOTOROLA MIL-M-38510 PROGRAM
Motorola, a pioneer in the manufacture of high-reliability integrated circuits*, now offers you a two-way program for MIL-M-38510 products. 1. A growing line of JAN-QUALIFIED integrated circuits. 2. An extensive program to supply MIL-M-38510 PROCESSED -de-
vices that approaches the Qualified Reliability goals without the delay time and high cost of the actual qualification program. Motoroia stocks many circuits which me~t JAN-QUALIFIED specifi- · cations, and is actively persuing an expansion ofthis qualification listing with product in all IC categories - encompassing Bipolar Digital, Linear and MOS technologies.
Motorola 38510 PROCESSED products complement JANQUALIFIED products by f'Tl?king available hi-rel versions of nearly all Motorola full-temperature range circuits, while adding the advantage of hi-rel standardization.
THE MOTOROLA MIL-M-38510 PROGRAM OFFERS YOU THESE BENEFITS:
1. Standardization of environmental and electrical test procedures. 2. Less specification writing required. 3. Less time required. in negotiating specifications. 4. Fast delivery. 5. Lower costs.
*Motorola, in early 1971, was the first company to be qualified as a M IL-M-38510 approved facility by the Defense Electronics Supply .Center of DOD.
2-2
l\flll-M-38510 JAN-QUALIFIED PRODUCT
SCREENING '-EVELS
Class A
Class B
Class C
I
JAN-QUALIFIED DEVICE MARKINGS
APF?LIES TO ALL TYPES OF INTEGRATED CIRCUITS
JM3851 O/XXXXXAYY
JM38510/XXXXXBYY
JM38510/XXXXXCYY
·
FEATURES:
1. Manufactured in a government-approved facility.
2. G.S.I. (Government Source Inspection) provided upon request.
Example of MIL-M-38510 JAN"Qualified markings
ORDER: JM38510/10101BGB
MARKING: JM38510/101'01BGB
HOW TO ORDER MIL-M-38510 JAN-QUALIFIED PRODUCT
Basic Numbering Parameters - Example: JM38510/XXXXXYYY
J
~
INDICATES A QUALIFIED
DEVICE
M38510 /XXX
~ I
I
MILITARY
DETAIL
DEVICE TYPE
DESIGNATOR SPECIFICATION WITHIN DETAIL
NUMBER
· SPECIFICATION
r xx y
=1
CLASS A, B, OR C (SEE DEVICE CLASS TABLE)
y
T
CASE OUTLINE (SEE CASE OUTLINE TABLE)
y
~ LEAD FINISH (SEE LEAD FINISH TABLE)
CASE OUTLIN~ TABLE
A - 1/4'' x 1/4'' flat pack, 14-pin
c - 1/4'' x 3/4" dual-in-line, 14-pin
E - 1/4'' x 3/4" dual-in-line, 16-pin F - 1/4'' x 3/9" flat pack, 16-pin G - 8-lead can H - 1/4'' x 1/4" flat pack, 10-lead I - 10-leadcan · J - . 112'' x 11/4'' dual-in-line, 24-pin K - 3/9" x W' flat pack, 24-pin
X - 3-lead can
Y - 2-lead power can
LEAD FINISH TABLE
A - Kovar or Alloy 42, with hot solder dip
B - Kovar or Alloy 42, with acid tin plate·
C - Kovar or Alloy 42, with gold plate
X - Any of the above, for ordering purposes only.
2-3 .
·
I MIL-M-38510 PROCESSED· ·PRODUCT
Class A
SCREENING LEVELS
Class B
Class D
Class C
MC38510/XXXXAYYM MC38510/XXXXAYYS
PROCESSED DEVICE MARKINGS
APPLIES TO ALL TYPES OF INTEGRATED CIRCUITS
MC38510/XXXXBYYM MC38510/XXXXOYYM
MC38510/XXXXBYYS MC38510/XXXXDYYS
MC38510/XXXXCYYM MC38510/XXXXCYYS
FEATURES: .
1. Lower cost than JAN-QUALIFIED.
2. Devices manufactured using design and processing guidelines contained in MIL-M-38510.
3. Product supplied with Motorola standard data sheet electricals (''S" suffix) or MIL-M-38510 electricals ("M" suffix).
4. G.S.I. (Government Source Inspection) provided upon request.
.Example of MIL-M-38510 Processed markings
DEVICE: MC1741BGBS ORDER: MC1741BGBS MARKING: MC38510/1741BGBS
HOW TO·ORDER MIL-M-38510 PROCESSED PRODUCT
Basic Numbering Parameters - Example: MCXXXXYYYS or M
MOTOROLA DEVICE TYPE
MCXXXX
I
I
CLASS A, B, C, OR D
(SEE DEVICE
CLASS TABLE)
r y y y
T T I
CASE OUTLINE
LEAD FINISH
(SEE CASE
(SEE LEAD
OUTLINE TABLE) FINISH TABLE)
Sor M
c:::::i
S ~ MOTOROLA DATA SHEET ELECTRICALS
M = JAN SLASH SHEET ELECTRICALS
CASE OUTLINE TABLE
A - 1/4" x W' flat pack, 14-pin C - W' x 3/4" dual-in-line, 14-pin E - W' x 3/4 11 dual-in-line, 16-pin F - W' x 3/a" flat pack, 16-pin G - 8-lead can H - W' x W' flat pack, 10-lead I - 10-lead can, pin 10 at tab J - W' x 11/4" dual-in-line, 24-pin K - 3/a" x W' flat pack, 24-pin X - 3-lead can Y - 2-lead power can
*3 -8-lead dual-in-line *8 -10-lead can, pin 1 at tab *9 -10-lead tall can *R -9-lead power can
*Linear processed devices only.
LEAD FINISH TABLE
A - Kovar or Alloy 42, with hpt solder dip
B - Kovar or Alloy 42, with acid tin plate
C - Kovar or Alloy 42, with gold plate
X - Any of.the above; for ordering purposes only.
2-4
SCREENING PROCEDURES
FOR MIL-M-38510 JAN-QUALIFIED AND MIL-M-38510 PROCESSED PRODUCT
(TO MIL-STD-883 REQUIREMENTS)
In recognition of the fact that the level of screening has a direct impact on the cost of the product, as well .as its quality and reliability, four standard levels of screening are provided to coincide with four device classes, or levels of quality assurance.
Flexibility is provided in the choice of test conditions and stress levels, to provide screens tailored to a partic-
ular product or application. Selection of a level better than that required for the specific product and application will result in unnecessary expense. A level less than that required may result in a risk that reliability requirements will not be met. For general hi-rel applications, the Class B or D screening levels should be considered.
SCREEN Internal Visual (Pr_ecap)
Stabilization Bake
Temperature Cycling Constant Acceleration
Seal (a) Fine (b) Gross
Serlallzatlon Interim Electrical Parameters
Burn-In Test
Interim Electrical Parameters
Reverse Blas Burn-in
Interim Electrical Parameters
Seal (a) Fine (b) Gross
Final Electrical Tests (a) Static tests
(1) 25°C (subgroup 1, table 1, 5005)
(2) Max. and min. rated bperating temp. (subgroups 2 and 3, table 1, 5005)
(b) Dynamic tests and/or switching tests @ 25°C (subgroup 4 and 9, table 1, 5005)
(c) Functional test@ 25°C (subgroup 7, table 1, 5005)
Radiographic Ouallflcatlon or Quality Conformance Inspection
External Visual
DEVICE CLASS TABLE
CLASS A
METHOD
ROMT
CLASS B '
METHOD
RQMT
CLASS 0 1
METHOD
RQMT
CLASS C
METHOD
ROMT
2010 Condition A and 38510__\_
1008, 24 hrs min. test Condition C
1010 Condition C
100% 100% 100%
2010 Condition Band 38510
1008, 24 hrs min. test Condition C
1010 Condition C
100% 100% 100%
201 O Condition Band 38510
1008, 24 hrs min. test Condition C
1010 Condition C
100% 100% 100%
2010 Condition Band 38510
1008, 24 hrs min. test ~ondition C
1010 Condition C
100% 100% 100%
2001 Condition E (min.) Y1 plane
100%
2001 Condition E (min.) Y1_ plane
1014
100% 100%
2001 Condition E (min.) Y1 plane
1014
100% 100%
2001 Condition E (min.) Y1 plane
1014
100% 100%
100%
-
-
-
Per applicable
100% Per applicable
3
Per applicable
3
-
device
device
device
specification·
specification·
specification'
1015
100% 1015
100% t015
100%
-
240 hrs@
160 hrs@
160 hrs@
125°C min.
125°C min.
125°C min.
Per applicable
100%
-
-
-
device
specification·
1015 Condition A
100%
-
-
-
or C 72 hrs
at 150°C min.
Per applicable
100% Per applicable .
100% Per applicable
100%
-
device
device
device
specification'
specification·
specification·
1014
100%
-
-
-
Per applicable device specification'
100% 100%
Per applicable device
speci~cation'
100% 100%
Per applicable device specification'
100%
Per applicable device specification'
Sample, at Group A
100%
Sample at Group A
100%
100%
Sample at Group A
Sample at Group A
100%
'100%
100%
100%
2012 5005 Class A
2009
100%
Sample 5005
per
Class B
38510·
100% 2009
-
Sample 5005
per
Class B
385104
100% 2009
-
Sample 5005
per
Class
385104
100% 2009
-
Sample per 38510·
100%
' For MIL·M-38510 PROCESSED product only.
,
· MIL·M-38510 QUALIFIED product is tested per applicable 38510 detail specification. MIL-M-38510 PROCESSED product is tested per applicable 38510 detail specification ("M" suffix), or per the Motorola standard data sheet electrical specification (''S" suffix).
-·When specified in the applicable device specification 100% of the devices shall be tested.
· For MIL·M-38510 PROCESSED product, Group A Is performed per 5005 and Groups B, C, and D are available upon request.
·
2-5
LINEAR INTEGRATED CIRCUIT
CHIPS
II
Most of t/)e linear integrated circuit devices in this Data Book are available in chip form. Many are offered in two options - conventional (face up bonding) and flip-chip versions. Moforola offers
many standard Ifnear chips from warehou$e stock either directly from the factory or through fraf?~
chised distributor$. In addition, custom linear IC chips may be designed and to meet a specific need. Specific intormation on chip processing, testing, and handling can be o_btained in the Chips Data
Bo~k fv,olume 8 pf the Motorola Semiconductor Data Library).
LINEA~ CHIP FORMATS
Conventional Chips encompass by far the greatest number of available linear IC chips. These silicon chips use gold backsiqe metalization. for easy eutectic bonding to the metalized area of hybrid assemblies. The interconnecting metalization and bonding pad areas are formed from evaporated aluminum. Either gold or aluminum wire may be employed for connection between on-chip bonding pads and the external circuit.
Flip-chips can be mounted to a hybrid substrate in a single operation.
Connection to the substrate bonding pads is made by means of raised "solder bumps" that protrude above the chip surfe:tce at the integrated-circuit bonding pads. The devi~es are mounted to the substrate metalization areas circµit side down by means . of conventional reflow solder techniques.
2-6
·
OPERATIONAL AMPLIFIERS
Temperature Range
o to 10°c c -55to 12s0
Other
Page
LF355,A LF356,A LF357,A MC1420 MC1430 MC1431 MC1433 MC1435 · MC1436,C MC1437 MC1439 MC1456,C MC1458,C MC1458N MC1458S MC1709C MC1712C MC1741C MC1741NC MC1741SC MC1747C MC1748C MC1776C
LF155,A LF156,A LF157,A MC1520 MC1530 MC1531 MC1533 MC1535 MC1536 MC1537 MC1539 MC1556 MC1q58 MC1558N MC1.558S MC1709,A MC1712 MC1741 MC1741N MC1741S MC1747 MC1748 MC1776
MC3401 IViC3403 MC3458 MC3471 MC3476 MC4202C MC4558C MC4741C MLMJ01A MLM307 MLM308,A MLM310 MLM324 MLM358
MC3503 MC3558 MC3571
-;-
MC4558 . MC4741
MLM101A MLM107 MLM108,A MLM110 MLM124 MLM158
MC3301
MC3303 MC3358
MLM201A MLM207 MLM208,A MLM210 MLM224 MLM258 MLM2902
Monolithic JFET Operational Amplifier . . . . . . · · . . . 3-7
Monolithic JFEI Operational Amplifier . . . . . . . . . . . 3-7
Monolithic JFET Operational Amplifier . . . . . . . . . . . 3-7
Differential Output Operational Amplifier.... , ...... 3-12
... General Purpose Operational Amplifier
·........ 3-16
Darlington Input Operational Amplifier ...··...... 3-16
General Purpose Operational Amplifier . . . . . . . . . . . 3-20
Dual Operational Amplifier . . . . . . . . . . . . . . . · . . 3-25
High Voltage Operational Amplifier . . . . . . . . . . . . . 3-30
Dual MC1709 Operational Amplifier . . . . . . . . . . · . . 3-34
. . . . High Slew Rate Operational Amplifier ·. . . . . . . 3-38
High Performance Operational Amplifier
I
I
I
I
I
I
I
I
I
I
3-46
Dual MC1741 Operational Amplifier . . . . · . . . . . . . . 3-52
Low Noise Dual Operational Amplifier. . . . . . . . . . . . 3-52
High Slew Rate Dual Operational Amplifier . · . . . . . . . 3-57
General Purpose Operational Amplifier
I
I
I
I
I
I
I
I
I
I
I
3-63
Wideband DC Amplifier . . . . . . . . . . . · . . . . . . . . 3-67
General Purpose Operational Amplifier
I
I. I
I
I
I
I
I
I
I
3-72
Low Noise Operational Amplifier . . . . . . . . . . · . · . . 3-72
High Slew Rate Operational Amplifier . . . . . . . . . . . . 3-77
Dual MC1741 Operational Amplifier . . . . . · . . . . . . . 3-83
General Purpose OperatJpnal Amplifier . . . . . . . · . . . 3-87
Programmable Operational Amplifier. . . . . · . . . . · . . 3:.91
Quad Operational Amplifier. ,, . . . . . . . . . . . . . . . . 3-100
Quad Operational Amplifier . · . . . . . . . . . . . . . . . . 3-108
Quad Differential Input Operational Amplifier . · . . . . . 3-116
Dual Operational Amplifier . . . . . . . . . . . . ·. . . . . · . 3-122
Quad FET Input Operational Amplifier . . . . . . . . . . . 3-128
Programmable Operational Amplifier; . . .·......... 3-130
Programmable Quad Operational Amplifier · . · . . . . . . 3"134
Dual High Frequency Operational Amplifier . . . . . . . . 3-138
Quad MC1741 Operational Amplifier
3-140 "I
I
I
I
I
I' I
I
I
I
General Purpose Operational Amplifier
I
I
I
I
I
I
I
I
I
I
I
3-146
General Purpose Operational Amplifier . . . · . . . . . . . 3-150
Precision Operational Amplifier. . . . . . . · . . . . . · . . . 3-154
Unity Gain Operational Amplifier
I
I
I
I
I
I
I
I
I
I
I
I
I
I
3-159
Quad Operational Amplifier . . . . . . . . . . . . . . . . . . 3-161
Dual Operational Amplifier . . . . . . . . . . . · · . . · . . 3-167
Quad Operational Amplifier . . . . . . . . . . . · · . · · . . 3-173
3-2
Single Operational Amplifiers
NONCOM PEN SATED
Devices listed in ascending order of price
11e uA max
v,o TCVIO
mV uV/°C max typ
110 nA max
Avol BW(Av=1) SR(Av=1) Supply Voltage
V/V MHz
V/us
V
min
typ
typ
min max
Description
Device Packages
Military Temperature Range (-55°C to +125°C)
.5
5
15
200 25K
1
.5
5
15
200 50K
1
.075 2
10
10 50K
1
.5
3
15
60 50K
2
5
2
15
500 2.5K
7
1
5
15
150 40K
.8
.3
±;3. ±18 General Purpose MC1709 601, 606,
632,693
.5
±3 ±22 General Purpose MC1748 601, 693
.5
±3 ±22 General Purpose MLM101A 601,693
4.2
±4 ±18 High Slew Rate MC1539 601, 632
1.5
+12 +12
Wideband DC
MC1712 601, 606,
-6
-6
Amplifier
632
2.0
±4 ±20 General Purpose MC1533 6028, 606,
632
2
10
15
100 1K
10
.6
3
5
100 25K
1
.002 2
3
.2 50K
1
10
5
15 2000 4.5K
3
15
10
15
25 2.5K
2
.00~
.5
1
.2 BOK
1
5.0
±4
±8 Differential Output MC1520 602A,606
.5
±3 ±18 High Performance MC1709A 601, 606,
MC1709
632
.3
±3 ±20
Precision
MLM108 601,606,693
1.0
±4
±9 General Purpose MC1530 6028, 606,
632
1.0
±4
±9 General Purpose MC1531 6028, 606,
(Darlington Input)
632
.3
±3 ±20
Precision
MLM108A 601, 606,
693
Industrial Temperature Range (0°C to +70°C)
.25 7.5 10
50 25K
1
.5
6
15
200 20K
1
1.5 7.5
15
500 15K
1
7
7.5
15
1
25K
1
7.5
5
15 2000 2K
7
4
15
15
200 750
10
.5
±3 ±18 General Purpose LM301A 601,626
693
.5
±3 ±18 General Purpose MC1748C 601,-626
693
.3
±3 ±18 General Purpose MC1709C 601, 606,
626, 632,
646, 693
.3 - ±3 ±18
Precision
LM308 601, 606,
626,693
1.5
+12 +12
Wideband DC MC1712C 601, 606,
-6
-6
Amplifier
632
5.0
±4
±8 Dif.ferential Output MC1420 602A, 606
1 7.5 15
100 15K
2
2
7.5
15
50 30K
.8
7
.5
5
1
SOK
1
15
10
15 4000 3K
3
.3
15
15
100 1.5K
2
4.2
±6 ±18 High Slew Rate MC1439 601, 626,
632,646
2.0
±4 ±18 General Purpose MC1433 6028, 606,
632,646
.3
±3 ±18
Precision
LM308A 601, 606,
626,693
1.0
±4
±8 General Purpose MC1430 6028, 606,
632, 646
1.0
±4
±8 General Purpose MC1431 6028, 606,
(Darlington Input)
632, 646
·
3-3
·
Single Operational Amplifiers
INTERNALLY COMPENSATED
Devices listed in ascending order of price
l1s uA max
V10 TCVIO
mV uV/°C max typ
110 nA max
Avol BW(Av=1 I SR(Av=1 I Supply Voltage
VIV ll/IHz
V/us '
V
min
typ
typ
min max
Description
Military Temperature Range (-55°C fo +125°C)
.5
5
15
200 50K
1
.5
±3· ±22 General Purpose
Device MC1741
.20
3000 90
90
.5
5
15
200 50K
1
±4
±8 Differential Wide- MC1733
band Video Amp
.5
±3 ±22
Low Noise
MC1741N
.5
5
15
200 50K
1
10
±3 ±22 High Slew Rate MC1741S
.075 2
10
10 50K
1
.003 4
12
Unity
20
.015 4
10
2 10QK
1
.0075 5
15
3 200K
1
.02
5
10
3 100K
1
100pA 5
5
20pA '50K
1
100P,A 5
5
20pA 50K
2
100pA 5
5
20pA 50K
3
50pA 2
3
10pA 50K
1
50pA 2 ·3
10pA 50K
2
50pA 2
3
10pA 50K
3
*This Circuit to be Introduced
.5
±3 ±22 General Purpose MLM107
30
±3 ±18
Unity Gain
MLM110
2.5
±3 ±22 High Performance MC1556
.2
±1.5 ±18 uPower Program- MC1776
mable
2.0
±15 ±40
5
±5 ±22
15
±5 ±22
High Voltage FET Input FET Input
MC1536 LF155 LF156
75
±5 ±22 Wideband FET Input LF157
5
±5 ±22
FET Input
LF155A
15
±5 ±22
FET Input
LF156A
75
±5 ±22 Wideband FET Input LF157A
Packages
601. 606, 632, 693 6b3, 632
601 ·. 606 632. 693 601. 632,
693
601,693 601
601, 632 601. 632
601 601* 601*
601* 601* 601* 601*
Industrial Temperature Range (0°C to +70°C)
.5
6
15
200 20K
1.0
.25 7.5
10
50 25K
1.0
30
5000 80
90
.05
6
15
25 50K
1.0
.5
6
15
200 20K
1.0
.5
6
15
200 20K
1.0
.007 7.5
12
.003 6
15
Unity 3 100K
.03 10 .04 10 200pA .10 200pA 10
200pA 10
12
10 7QK
12
10 70K
5
50pA 50K
5
SOpA SOK
5
SOpA SOK
SOpA 2 SOpA 2 50pA 2
1
10pA 50K
1
10pA SOK
1
10pA 50K
*This Crrcurt to be Introduced
20.0 1.0
1.0 1.0 1.0 2.0
3.0
1.0 2.0 3.0
.5
±3 ±18 General Purpose MC1741C 601. 632.
626. 646,
693
.5
±3 ±18 General Purpose MLM307 601, 626,
693
±4
±8 Differential Wide- MC1733C 601. 632.
ba.nd Video Amp
646
.2
±1.5 ±18 Low Cost uPower, MC3476 601, 626
Programmable
.5
±3
±18 f- Low Noise
MC1741NC 601, 632,
626, 646.
693
10
±3 ±18 High Slew Rate MC1741SC 601. 632,
626. 646, . 693
30
±3 ±18
Unity Gain
MLM310
601
.2
±1.5 ±18 uPower. Program- MC1776C
601
mable
2.5
±3 ±18 High Performance MC1456 601, 632
2.0
±15 ±34
High Voltage
MC1436
601
5
±5 ±18
FET Input
LF3S5
601*
15
±S ±18
FET Input
LF3S6
601*
7S
±S ±18
Wideband FET
LF357
601*
Input
?
±5 ±18
15
±S ±18
FET Input FET Input
LF355A LF3S6A
601* 601*
75
±S ±18 Wideband FET Input LF357A
601*
3-4
Dual Operational Amplifiers
INTERNALLY COMPENSATED
D,evices listed in ascending order of price
1re uA max
v,o TCvro mV uV/°C max typ
110 nA max
Avol BW(Av=1) SR(Av=1) Supply Voltage
V/V MHz
V/us
V
min
typ
typ
min max
Military Temperature· Range (-55°C to +125°C)
.5
~
10
200 50K
1.1
.8
±3 ±22
.5
5
10
200 50K
1
.5
5
10
200 50K
1.1
.5
±3 ±22
.8
±3 ±22
Description
Dual MC1741 Dual MC1741 Dual Low Noise
.5
5
10
200 50K
4
.15
5
10
30 SOK
1
.5
5
10
200 50K
1
.S
5
10
50 SOK
1
1.S
±3 ±22 High Frequency
Dual
.6
±1.S ±18
Single Supply
+3 +36
Dual
(Low Power
Consumption)
10
±3 ±22 High Slew Rate
Dual
.6'
±1.S ±18
Single Supply
+3 +36
Dual
Device Package~
MC1558 MC1747 MC1558N MC4558
MLM158
601, 632 693
601,632 601. 632,
693 601, 632
693
601, 632, 693
MC15S8S MC3558
601, 632, 693
601. 632, 693
Industrial Temperature Range (0°C to +70°C)
.5
6
10
200 20K
1.1
.5
6
10
200 2SK
1
.2S
6
7
50 2SK
1
.5
6
10
200 20K
3
.5
10
7
50 20K
1
.S
6
10
200 20K
1
.5
6
10
200 20K
1.1
.8
±3 ±18
Dual MC1741
MC14S8 601. 626,
632. 646, 693
.5
±3 ±18
Dual MC1741
MC1747C 603, 632,
646
.6
±1.5 ±18 Single Supply Dual MLM358 601, 626,
+3.0 +36
(Low
693
Power Consumption)
1.5
±3 ±18
Dual.High
MC4558C 601. 626
Frequency
693
.6
±1.5 ±18 Single Supbly Dual MC3458 601, 626
+3.0 +36
(Low
693
Crossover Distortion)
10
±3 ±18 High Slew·Rate MC1458S 601, 626,
Dual
632. 646, 693
.8
±3 ±18 Dual Low Noise MC1458N 601. 626,
632. 646, 693
Automotive Temperature Range (-40°C to +85°C)
s
8
10
7S 20K
1
.6
NONCOMPENSATED
Military Temperature Range (-55°C to +125°C)
:s
5
10
200 2SK
1
.25
3
3
10
300 4K
1
.01
Industrial Temperature Range (0°C to +70°C)
1.5 7.5. 10
soo 15K
1
.25
5
5
10
500 3.5K
1
.01
±1.S ±18 +3 +36
±3 ±18 ±2 ±10
±3 ±18
±2
±9
Single Supply Dual
Dual MC1709 Dual General
Purpose
Dual MC1709 Dual General
Purpose
MC3358
626
MC1537 MC1535
632 601. 606,
632
MC1437 MC143S
632, 646 6026,607
632
·
3-5
·
Quad Operational Amplifiers
INTERNALLY COMPENSATED
Devices listed in ascending order of price
11s uA max
V10 !Cv10 mV uV/°C max typ
110 nA max
Avol BW(Av=1) SR(Av=1) Supply Voltage
VIV . MHz
V/us
V
min
typ
typ
min max
Military Temperature Range (-55°C to +125°C)
.5
5
15
200' 50K
1
.15
5
7
30 50K
1
.5
±3 ±22
.6
±1.5 ±16
+3.0 +32
.5
5
7
50 50K
1
.6
±1.5 ±18
+3.0 +36
200pA 5
10 20pA 50K
10
20
±3.0 ±18
Description
Quad MC1741 Quad
(Lower Power Consumption) Quad General
Purpose Low Power Quad Active
Filter FET Input. High
, Frequency
Device Packages
MC4741 MLM124
632,646 632,646
MC3503 632, 646
MC3571 632. 646*
Industrial Temperature Range (0°C to 10°C)
.3
1K
5
.6
.25
6
7
50 25K
1
.6
.5
10
7
50 20K
1
.6
.5
6
15
200 20K
1
.5
.1
5
10
10 lOK
5
1.5
200pA 6
10 20pA 25K
10
20
*This Circuit to be Introduced
Automotive Temperature Range (-40°C to +85°C)
.3
1K
4
.6
.5
10
50
1
.6
.5
8
10
75 20K
1
.6
±1.5 +3.0 ±1.5 +3.0
±1.5 +3.0
±3 ±1.5
±3.0
±18 +36 ±16 '+32
±18 +36
±18 ±18
±18
Low Cost Quad
Quad (Low Power Consumption)
Quad (No Crossover
Distortion)
Quad MC1741 Quad Programmable
Low Power Quad Active Filter
FET Input. High Frequency
MC3401 MLM324
MC3403
MC4741C MC4202C MC3471
632.646 632. 646
632,646
632,646 632, 646* 632, 646*
±2 ±15
Quad Mirror
MC3301
646
+4 +28
Gain
±1.5 ±13
Quad Diff.
MLM2902
646
+3 +126
(Low Power)
±1.5 ±18
Quad Diff.
MC3303
646
+3 +36 General Purpose
CASE MATERIAL SUFFIX after type number
CASE MATERIAL SUFFIX after type number
601 Metal
G
14
c::::J
1
632 Ceramic
L·
PACKAGE STY.LES
W·:· .·~:· ~·:·:·
0
1
·· 1
0
1
2
2
2
602A
6028
603
Metal
Metal
Metal
G
G
G
14
CJ
1
646
Plastic p
8
5
0
4
693
Ceramic
u
606 Ceramic
F
b 1 626 Plastic P,Pl,N
3-6
LF155·LF156·LF157* LF155A·156A·157 A
LF35S·LF356·LF357 LF355A ·356 A·357 A
1......_ _ _A_d_v_a_n_c_e_I_n_f_o_r_m_a_t_io__n _ ___.
MONOLITHIC JFET
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
MONOLITHIC JFET INPUT OPERATIONAL AMPLIFIERS
These internally compensated operational amplifiers incorporate highly matched JFET transistors on the same chip with standard bipolar transistors. The JFET transistors enhance the input charac.teristics of these operational amplifiers by more than an order of magnitude over conventional amplifiers.
This series of op amps combines the low current characteristics typical of FET amplifiers with the low initial offset voltage and offset voltage stability of bipolar amplifiers. Also nulling the offset voltage does not degrade the drift or common mode rejection.
· Low Input Bias Current - 30 pA
· Low Input Offset Current - 3.0 pA
· Low Input Offset Voltage - 1.0 mV · Temperature Compensation of Input Offset Voltage -
c 3.0µVt0
· Low Input Noise Current - 0.01 pA/y'RZ
· High Input Impedance - 1012.Q · High Common~Mode Rejection Ratio - 100 dB · High DC Voltage Gain - 106 dB
Fast Settling Time to 0.01 % Fast Slew Rate Wide. Gain Bandwidth Low Input Noise Voltage
LF155A LF156A LF157A
4.0µs
1.5 µs
1.5 µs
5.0 V/µs 12 V/µs 50 V/µs
2.5 MHz 5.0 MHz 20 MHz
20 nV/y'RZ 12 nV!.../Hi. 12 nV!.../Hi.
H SUFFIX
·METAL PACKAGE
CASE 601
L~.t
NC
Offset Null ,
$~/ff'N::;:.:~::~:' Vee
(top view)
r·J-8SUFFIX
CERAMIC PACKAGE CASE 693
N SUFFIX
PLAS.TIC PAC.KAGE CASE 626
~~ irn ].
Offset Null 1 § 8 NC
lnvtlnput 2
-·
7 Vee
Noninvt Input 3
+
6 Output.
VEE 4 ·
5 Offset Null
APPLICATIONS
The LF series is suggested for all general purpose FET input amplifier requirements where precision and frequency response flexibility ar.e of prime importance.
Specific1applications include:
· Sam'ple and Hold Circuits · High Impedance Buffer · Fast DIA and A/D Co11verters · Precision High Speed · Integrators
·
This is advance information and specifications are subject to change without notice.
3-7
*NOTE: The LF 157 series is designed for wide~ bandwidth applications. The series is decompe,nsated (AV min= 5).
LF155/A, LF156/A; LF157/A, LF355/A, LF356/A, LF357/A
·
TY.PICAL CIRCUIT CONNECTIONS
FIGURE 1 - DRIVING CAPACITIVE LOADS
FIGURE 2 - LARGE POWER B~NDWIDTH AMPLIFIER
· LF155/6 A= 5.0 k LF157 Fl=1.25k
Fl"
5.0 k
r +2.0V
-2.0 v __J
Due to a unique· output stage design these amplifiers have the ability to drive large capacitive loads and still maintain stability. CL(max) =< 0.01 µF. Overshoot .;;; 20% Settling time (t5 ) =< 5.0 µs
10 k
Vout
1.0 v C"'\
C"'\.
-1.0 v , "'"7 '
10V f\ f\
-10V \ . )
For distortion < 1% and a 20 Vp-p Vout
swing, power bandwidth Is: 500 kHz.
FIGURE 3 - INPUT OFFSET VOLTAGE ADJUSTMENT
Vee
FIGURE 4 - SETTLING TIME TEST CIRCUIT 2.0 k, 0.1%
+15 v
5.0 k, 0.1%
·1.0 k, 0.1%
Vout
VEE
· V10 is adjusted with a 25 k potentiometer · The potentiometer wiper is connected to V cc · For potentiometers with temperature coefficient of 100
ppm/°C or less the additional drift with adjust is"" 0.5 µV/ 0 c/mV of adjustment.. · Typical overall drift: 5.0 µV!°C ±(0.5 µV!°C/mV of adjustment.)
Summing
5 k, 0.1%
Nodee---'~~/'~-~---'
1-----a +15 v
·Settling time is tested with the L F 155/6 connected as unity gain inverter and LF 157 connected for Av=-5
· FET used to isolate the probe capacitance
· Output = 10 V step *Av= -5 for LF 157
MAXIMUM RATINGS
Rating Supply Voltage
Differential Input Voltage Input Voltage Range (1 l Output Short-Circuit Duration Operating Ambient Temperature Range Operating Junction Temperature Storage Temperature Range
Symbol
Vee Vee Vm V10R isc TA TJ Tstg
LF155A, 156A, 157A
+22 -22 ±40 ±20
-55 to +125 150
LF355A, 356A,357A
LF155, LF156, LF157
+22
+22
-22
-22
±40
±40
±20
±20
-Continuous
Oto +70
-55 to +125
100
150
-65 to +150
LF355, LF356, LF357
+18 -18 ±30 ±16
0 to +70 ~ 100
Note 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
Unit
v
v v
oc oc oc
(f!} MOTOROLA Semiconductor Products Inc.
3-8
LF155/A, LF156/A, LF157/A, LF355/A, LF356/A, LF357/A
DC ELECTRICAL CHARACTERISTICS (Vee= 15 to 20 V, Vee= -15 to -20 v, TA= Ttow to Thigh
lnote 21 unless otherwise noted.I
Characteristic
Symbol
LF155/6/7 Min Typ Max
LF355/6/7* Min Typ Max
Input Offset Voltage
(Rs= 50 .n, VcM = 0) ITA;,, 25°c1
Average Temperature Coefficient of Input Offset Voltage (Rs= 50 .nl
Change in Average TC with V 10 Adjust
(Rs =50 .nl (3)
Input Offset Current (TJ = 25°Cl <21 (TJ ~Thigh· VcM = 0)
Input Bias Current (TJ = 25°c1 (2)
(TJ ~Thigh· VcM = Ol
~
Input Resistance
(TJ= 25°Cl
Large Signal Voltage Gain <Vee= ±15Vl (Vo= ±10V. RL = 2.0 k, TA= 25°Cl
Ou~ut Voltage Swing (Vee= ±15 v. RL = 10 kn.)
Input Coinmon·Mode Voltage Range
<Vee= ±15 vi,
Common-Mode Rjection Ratio
Supply Voltage Rejection Ratio
Supply Current LF155/355 LF156/157
LF356/3~7
*Vee= ±15 v
V10
t.V10/t.T t.TC/t.V10
110
l1B
'i AvoL
Vo VtcR CMRR PSRA
lo
-
-
7.0
-
3.0 5.0
-
5.0
-
-
0.5
-
-
3.0
20
- - 20
-
30 100
-
-
50
- 1012 -
25
-
-
50 200
-
±12 ±13
-
+15.1 -
±11 -12.0
85
100
-
85
100
-
-
2.0 4.0
-
5.0 7.0
---
-
-
13
- :to 10
-
- 5.0
-
0.5
-
-
3.0
50
-
-
2.0
-
30 200
-
-
8.0
- 1012 -
15
-
-
25
200
-
±12 ±13
-
+15.1 ±10 -12.0
-
80 100 -
80
100
-
-
2.0 4.0
---
-
5.0
10
Unit mV
µ.Vf°C
µ.V/°C permV
pA nA
pA nA n.
V/mV
v v
dB dB mA
AC ELECTRICAL CHARACTERISTICS, (Vee= ±15 V; TA= 25°c, unless otherwise noted.I
Characteristic
Slew Rate (Av= 1) (Av= 5)
LF155,6 LF157
Gain-Bandwidth Product
Settling Time to 0.01% (4)
Equivalent Input Noise Voltage <Rs= 100 .n, f = 100 Hzl
<Rs= 100 .n, f = 1000 Hz)
Equivalent Input Noise Current (f = 100 Hzl (f = 1000 Hz)
Input Capacitance
Symbol SR
LF155/355 Min Typ Ma>.<
-
5.0
-
BWp
-
2.5
-
ts
- -
4.0
en
-
25
-
- 20 -
in
-
0.01
-
- 0.01 -
Ci
-
- 3.0
*These minimum limits apply fdr the LF156 and LF157 only.
LF156/356 Min Typ Max
7.5* 12
-
-
5.0
-
-
1.5
-
-
15
-
-
12
-
-
O.Q1
-
- - O.Q1
-
3.0
-
LF157/357 Min Typ Max
30*
50
-
-
20
-
-
20
-
-
15
-
- 12
-
-
0.01
-
-
O.Q1
-
-
3.0
-
Uriit V/µ.s
MHz µ.s
nv"j'JH;
P A NHz
pF
NOtE:
(1) Unless otherwise specified, the absolute maximu,;, negative input voltage is equal to the negative power supply.
(2) Trow = -55°C for LF155/155A/156/156A/157/157A
= o°C for LF355/355A/356/356A/357/357A
Thigh = +125°C for LF155/155A/156/156A/157/157A = +10°c for LF355/355A/356/356A/357/357A
(3) The temperature coefficient of the adjusted input offset
c t voltage changes only a small amount (0.5 µ.V 0 typically)
for each mV of adjustment from its original unadjusted
value. Common-mode rejectron and open loop voltage gain are also unaffected by offset adjustment.
(4) Settling time is defined here, for a unity gain inverter connection using 2.0 k resistors for the LF155/6. It is the time required. for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF157, Av = -5.0, the feedback resistor from output to input Is 2.0 k and the output step is 10 V (see settling time test circuit).
@ MOTOROLA Sernlconducf:or Producf:s Inc.
3-9
·
LF15S/A, LF156/A, LF157/A, LF355/A, 'LF356/A, LF357/A
·
DC ELECTRICAL CHARACTERISTICS (Vee= 15 to 20 V, Vee= -15 to -20 V, TA= T1ow to Thigh
(note 2) unless otherwise noted.)
'
,
Characteristic
Input Offset Voltage (Rs= 50 51, VcM = Ol (TA= 25°Cl
Average Temperature Coefficient of Input Offset Voltage (Rs= 50 51) ·
Change in Average TC with V 10 Adjust (Rs = 50 51) (3)
Input Offset Current (TJ = 25°C) (2) (TJ.,.;; Thigh· VcM = 0)
Input Bias Current (TJ = 25°Cl (2) (TJ.,.;; Thigh· VcM = 0)
Input Resistance (TJ = 25°C)
Large Signal Voltage Gain (Vee= ±15 vi (Vo= ±10 V, RL = 2.0 k, TA= 25°C)
Output Voltage Swing (Vee= ±15 V, RL = 10 k51)
Input Common-Mode Voltage Range (Vee= ±15 vl
Common-Mode Rejection Ratio
Supply Voltage Rejection Ratio
Supply Current LF 155A/355A LF 156A/7A/356A/7A
Symbol ·v10
!:N1olt::.T t:.TC/t:.V10
110
11B
fj AvoL
Vo V1cR CMRR PSRR
lo
L F155A/6A/7A Min Typ Max
-
-
2.5
-
1.0 2.0
-
3:0 5.0
-
0.5
-
-
3.0. 10
-
-
10
,
-
30
50
-
-
25
- 1012 -
25
-
-
50
200
-
±12 ±13
-
+15.1 ± 11 -12.0
-
85
100
-
85
100
-
-
2.0 4.0
-
5.0 7.0
LF355A/6A/7A Min Typ Max
-
-
2.3
-
1.0 2.0
-
3.0 5.0
-
0.5
-
Unit mV
µV/°C µV/0 c. permV
-
3.0 10
pA
-
-
1.0
nA
-
30
50
-
-
5.0
- -
1012
25
-
-
50
200
-
±12 ±13
-
+15.1 -
± 11 -12.0
85
100
-
85
100
-
-
2.0 4.0
-
5.0 7.0
pA nA
n
V/mV
v
v
dB dB mA
AC' ELECTRICAL CHARACTERISTICS (Vee= ±15 v, TA= 25°C, unless otherwise noted.)
Characteristic
Slew Rate (Av= 1) (Av= 5)
LF155A/6A LF157A
Gain-Bandwidth Product
Settling Time to 0.01% (41
Equivalent Input Noise Voltage (Rs= 100 51l (f = 100 Hz) (f = 1000 Hz)
Equivalent Input Noise Current (f = 100 Hz) (f = 1000 Hz)
Input Capacitance
Symbol SR
LF155A/355A Min Typ Max
3.0
5.0
-
L F156A/356A Min Typ Max
10
12
-
LF157A/357A Min Typ Max
40
50
-
Unit V/µs
BWp
-
2.5
-
4.0 4.5
-
15
20
-
MHz
ts
-
4.0
-
-
1.5
-
-
1.5
-
µs
en
nV/.,/HZ
- 25
-
-
15
-
-
15
-
-
20
-
-
- 12
-
- 12
in
pA/,/HZ.
-
O.o1
-
-
- 0.01
-
O.o1
-
- 0;01 -
-
O.o1
-
-
O.o1
-
Ci
-
3.0
-
-
3.0
-
-
3.0
-
pF
For Notes 1, 2, 3, 4, see previous page.
@ MOTOROLA Semiconducf:or Producf:s Inc.
3-10
LF155/A, LF156/A, LF157/A, LF355/A, LF356/A, LF-357/A
Balance
1~5
CIRCUIT SCHEMATIC
(-)
2 Inv. Input
J3
10 pF** 05
VEE 09
·· Vee 7
Out 6
· ·e = 2.0 pF on LF157.
Device
LF155H, LF155AH LF155J-8, LF155AJ-8
LF355H, LF355AH LF355N, LF355AN LF355J-8, LF355AJ-8 LF156H, LF156AH LF l 56J-8, LF 156AJ-8 LF356H, LF356AH
ORDERING INFORMATION
Temperature Range
-55 to +125°C -55 to +125°c
o to +10°c o to +7o0 c
o to +7o0 c
-55 to +125°c -55 to +125°c
o to +7o0 c
Package
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP Metal Can Ceramic DIP Metal Can
Device
LF356N, LF356AN LF356J-8, LF356AJ-8
LF157H, LF157AH LF157J-8, LF157AJ-8
LF357H, LF357AH LF357N, LF357AN LF357J-8, LF357AJ-8
Temperature Range
o to +7o0 c
o to +10°c -55 to +125°c
-55 to +125°c o to +10°c
o to +7o0 c
o to +·10°c
Package
Plastic DIP Ceramic DIP
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP
--------@ MOTOROLA Semiconductor Products Inc.
3-11
ORDERING INFORMATION
Device
MC1420G MC1520F MC1520G
Temperature Range
0°c to +70°C :_55°C to + 125°C -55°C to + 125°C
Pack&g~
Metal Can Ceramic Flat
Metal Can
MC1420 MC1520
·
DIFFERENTIAL OUTPUT OPERATIONAL AMPLIFIER
A wide-band, general-purpose operational amplifier which features both differential Inputs and outputs. Open loop gain is approximately 3000 VIV but may be adjusted with external feedback components. This de~ice is particularly useful in applications which require differential outputs.
· Differential Input arid Differential Output · Wide Closed-Loop Bandwidth; 10 MHz · Differential Gain; 70 dB · High Input Impedance; 2.0 Megohms: · Low Output Impedance; 50 ohms
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
MAXIMUM RATINGS (TA 0 +25°e unless otherwise noted)
Rating
Symbol
Value
Power Supply Voltage
Differential Input Signal
load Current Power Dissipation (Package limitation)
Metal Package Derate a~e TA = +25°c
Flat Package Derate ab<>Ve TA= +25°c
Operating Temperature Range Me1520 MC1420
Storage Temperature R~nge
Vee VEE Vin Ill, ll2 Po
TA Tstg
+8.0 -8.0
±.8.0 15
680 4.6 500 3.3 -55 to t125 0 to r 75 -65 to t150
Unit Vdc
Vdc mA
mW
mwt0 c
mW mW/°C
ue
oe
FIGURE 1 - CIRCUIT SCHEMATIC
COMPENSATION
vee
3-12
1
10
1nput1 ~ 9 Vee
tnput 2 3
CJ 8
~
4
C4 , 7
C2 5
Vee
Output 2 ·6
- Output 1
F SUFFIX CERAMIC PACKAGE
CASE 606 -IT0-91)
i
Input 2
® ~ 1
Cl
9 1nputl
c2 2
s Vee
Vee 3
1 C3
Output 1 4 5 6 C4
Output 2
G SUFFIX METAL PACKAGE
CASE 603
MC1420, MC1520
SINGLE-ENDED ELECTRICAL CHARACTERISTICS
(Vee= +6.0 Vdc VEE= -6 0 Vdc TA= ·25°C unless otherwise noted I
MC1520
Characteristic
Symbol
Min
Typ
Max
Open LOOR Voltage Gain
(T1ow @ ~ TA~Thigh <V)
Avol
1000
1500
-
60
64
-
Output Impedance (f = 20 Hz)
zos
-
50
100
Input Impedance (f = 20 Hz)
Zj5
0.5
2.0
-
Output Voltage Swinq (RL =7.0kn[Figure8])
Vo
±3.5
±4.0
-
Input Common-Mode Voltage Swing
V1CR
±2.0
±3.0
-
Common-Mode Rejei;:tion Ratio
CMRR
75
90
-
Input Bias Current
11s
((118 = 11; 12). TA= +25oc)
-
0.8
2.0
Min 750
-
±3.0
60
-
Input Offset Current
010=11-12l (110 = (1 -12, TA= T1 0 wl 1110 = 11 .:.12. TA= Thigh)
lInput Offset Voltage (TA= +25°Cl
Step Response
G·io · 1.0. 10% O""hoo1 R1=10kn R2=10kn R3=5.0H2 Cs= 39pF
~ Gain= 10, 10% Overshoot R1=10kn
ltR2 = 100 kn R3=10kn Cs= 10 pF
G"" · 100, No O""hoo1 R1=1.0kn R2=100kn R3= 1.0kn Cs= 1.0pF
{ Opoo loop, No O""hoo1 R 1 =_son R2 = oo
R3 = 50 n
Cs= 0
11101
-
-
1v1ol
-
tTHL
-
tPLH,tPHL
-
dVoutldt <D
-
tTHL
-
tPLH,tPHL
-
dVoutfdt <D
-
tTHL
-
tPLH·tPHL
-
dVoutfdt <D
-
tTHL
-
tPLH·tPHL
-
dVoutfdt CD
-
Bandwidth: (Open Loop[ Figure 4]) (Closed Loop[ Unity Gain]) (Figure 5)
-
-
Input Noise Voltage (Open Loop) (5.0 Hz - 5.0 MHz)
Vn.(in) -
Average Temperature Coefficient of
av 1otaT
Input Offset Voltage
(Rs= 50 n, TA= T1ow to Th.!.ll.hl
-
DC Power Dissipation (Vo= 0)
Po
-
Power Supply Sensitivity (Vo=O)
G) dV 0 utldt =Slew Rate
·s±
-!
@ T1ow = o0 c for MC1420,
-55°C for MC1520
30
100
-
-
200
-
-
200
-
5.0
10
-
80
-
-
70
-
-
5.0
-
-
80
-
-
70
-
-
15
-
-
80
-
-
70
-
-
30
-
-
180
-
-
70
-
-
35
-
-
2.0
-
-
10
-
-
11
15
-
2.0
-
-
120
240
-
250
450
-
Thigh= +75°C for MC1420 +125°C for MC1520
MC1420 Typ 1500 64
50
2.0 ±4.0
±3.0 90
2.0
30 -
5.0
80 70 5.0
80 70 15
80 70 30
180 70 35
2.0 10
11
2.0
120
250
Max -
-
-
-
-
-
4.0
200 -
15
-
-
-
-
-
-
-
-
-
·-
-
-
240
-
Unit VIV dB ohms megohms Vpeak Vpeak dB µA
nA
mV
ns ns V/µs
ns ns V/µs
ns ns V/µs
ns ns V/µs
MHz
µV(rms) µV/0 c
mW µV/V
·
3-13
MC1420,' MC1520
·
DIFFERENTIAL ELECTRICAL CHARACTERISTICS
(Vee= +6 O Vdc, VEE= -6 0 Vdc, TA= +25°C. unless otherwise noted.)
Characteristic
Gain (Open Loop)
Input Impedance (f= 20 Hz)
Output Impedance (f= 20 Hz)
Common-Mode Output Voltage
Output Voltage Swing (RL.= 7.0k.n)
Symbol Avol Zid Z(>d
Vo(CM) Vo
Min 2000
66
0.5
-,
-0.5
.:l:.7.0
MC1520 Typ 3000 70
2.0
100
0
±8.0
Max
-
' -
-
200
+0.5
-
Min 1500
64
-
-
-
±6.0
MC1420 Typ 3000 70
2.0
100
0
±8.0
Max
-
-
-
-
-
-
Unit VIV dB megohms
ohms
Vdc
Vpeak
TYPICAL CHARACTERISTICS
(Vee= +6.0 Vdc, VEE= -6.0 Vdc, TA= +25°C unless otherwise noted.)
+8.0
+6.0
~
i5 +4.0
~ w Cl +2.0
~
> 0
I-
~ -2.0
:>
0
:.<: -4.0 ~ "- -6.0
·-a.o
0.1
FIGURE 2 - LARGE SIGNAL SWING versus FREQUENCY
CURVE 4
CURVE~ ~
J
lL
......
2
~ 1
~
~y
1L
1.0
10
100
t, FREQUENCY (kHz)
1000
10,000
FIGURE 3 - OPEN LOOP VOLTAGE GAIN
70
1T
~ i:;un ~ 60 l--+-H-l+ltfl--+-++'ld+ttt--+-+~+t+--1+-1h1i"kl]l'.l+ttt--+-+~
50 1--1-+++H+H---+-++-l-Ht#~~-+-H-H-W-l'\._,..c..lu..+.RV++E+Hl-H-~~+++H-#1
"'"Cl
~ ~
1'
IN
~ ~
2
~·~
401--+-l-+l-l+l-l+-__c..j:..-4-4--l-J-i.J.U------l__c..j:..-l-W!IJ.ll.-l-l--l-J:IJ.Ul--.+-1--+-i~
301---+-t+Hff-H---l--+-l-++l+H----l-l--+-H+Hl--!-3".1'1\-+++m+--..P,.l-+1+++1;
0 >
3 "'
"' ~ ~
1 20 1--r-HH+tttt--t-+++tlH-tt--t-H+l-Hff--+-++1-Hfflf'\:..-+l\-+++tttll
10 l--+-H-1f+++H----+-++
""' N
0.1
1.0
10
100
1000
10,000
f, FREQUENCY (kHz)
TEST CIRCUIT
At
NON·INVEATING ---..---<>-i
C<
FIGURE CURVE
NO.
NO.
MODE
VOLTAGE GAIN
1 INVERTING
100
3
2 INVERTING 3 INVERTING
10 1.0
4 NON· INVERTING
1.0
TEST CONDITIONS
NOISE
OUTPUT R11Hl R2IQ) R3llll Cs!pF) mV(rnu)
I.Ok 100 k I.Ok 1.0
2.0
10k 100 k 10 k 10
0.55
!Ok 10k 5.0 k 39
0.17
~
10 k 10k 39
0.17
1 NON-INVERTING Avol
0
~
50 1.0
1.0
4
2 NON-INVERTING Avol
0
~
50 10
2.0 I
3 NON· INVERTING Avol
0
~
50 39
5.2
1 NON·'INVERTING
100
100 !Ok 100 1.0
2.0
5
2 NON-INVERTING
10
1.0k 9.1 k 910 10
0.55
3 NON-INVERTING
1.0
~
!Ok 10k 39
0.17
FIGURE 4 - CLOSED LOOP VOLTAGE GAIN versus FREQUENCY
c;o +so~~~~--r-T"T'T"ll~
~ +401---1-l-t-j..j.U.jl....-!--l-+-M-l++l----l-l-++-+++++~l-+-+-l.J.l.U+---+-l-+1+1-H<
z
CURVE!........_
~
I~
~ +201---1-l-t-j..j.U.M---1--1-+-M-1++1----1-1-++-+++++~1-+4+~~N-+-+-~+H1
~
2 ~
0
i
~~
-20L._...J._L.J..J.J..IJ.l.L.-...J......U..J..U.lll---1....J....u...L..LJJ.L--lc...J..-J...L..U"1J-lll"-l....J....L.U..LW
1.0
10
100
1000
10,000 100,000
t, FREQUENCY (kHz)
3-14
MC1420, MC1520
TYPICAL OUTPUT CHARACTERISTICS !Vee= +6.0 Vdc, VEE= -6.0 Vdc, TA= +25°C unless otherwise noted.)
FIGURE 5 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE
z
0
~ ~ 100~·---l--l----+-itc---+--~--1--~ 0 801----+-----i----A---1---+---+---~
0::
~ 601----+---htc-~--+---+---+---~ g? 401----+--+----i---+--1---+---+---~
3.0 4.0 5.0 6.0 7.0 e.o 9.o
Vee and VEE. POWER SUPPL y VOLTAGE (Vdc)
FIGURE 6 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE
70
60
50
~
z <(
40
C!)
w
C!)
<t:
~ 30
> 0
0
J:
20
10
0 2.0
4.0
6.0
Vee and VEE. SUPPLY VOLTAGE (Vdc)
·
8.0
FIGURE 7 -SINGLE ENDED OUTPUT VOLTAGE versus LOAD RESISTANCE
FIGURE 8 - OUTPUT NOISE VOLTAGE ' v'ersus SOURCE RESISTANCE
8.0 1-----l~---lf-----l---+---+v---+i.----=--+--+--+-~
f' vr f 1--1---+-L--+v--A--~-+--+--+--+---1----1
~ 4..0 '-----'V'-----lv~---1--+--+--+--+---+---+----I
> 0
2.01
2.0 0L---JL---'---'---'--_..___..___....__....__.........,.__,
0
4.0
6.0
8.0
10
RL LOAD RESISTANCE (kU)
Rs. SOURCE RESISTANCE (kn)
3-15'
·
ORDERING INFORMATION
Device
MC1430F, 1431 F MC1430G,1431G MC1430P, 1431 P MC1530F,1531F MC1530G, 1531 G
Temperature Range
0°C to +70°C O°C to +70°C 0°c to +70"0 -55°C to +125°C -55°C to + 125°C
Package
Ceramic Flat Metal Can Plastic DIP Csramic Flat Metal Can
MC1430, MC1431 MC1530, MC1531
OPERATIONAL AMPLlflER
... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.
The MC1531 (MC1431) is provided with Darlington inputs to increase input impedance; otherwise the MC1531 (MC1431) circuit is identical with the MC1530 (MC1430) circuit.
· High Open Loop Voltage Gain - 4500 niin (MC1530l - 2500 min (MC1531)
· High Input Impedance - 10 Kilohms min (MC1530) - 1.0 Megohm min (MC1531)
· Low Output Impedance - 50 Ohins max
· High Slew Rate - 6.0 V/µs typ@ Avs =10
· High Open Loop Bandwidth - 2.0 MHz typ (MC1530) 0.4 MHz typ (MC1531)
MAXIMUM RATINGS (TA= 2s0 e unless otherwsie noted)
Rating
Power Supply Voltage Me15JO, Me1531 MC1430, MC1431
Differential Input Voltage Range
Load Current
Power Dissipation (Package Limitation) Metal Package Derate above TA= +2s0 e Flat Package Derate above TA "' +25°e Dual ln·Line Plastic Package Me1430, Me1431 Derate above +25°c
Operating Ambient Temperature Range Me1530, Me1531 Me1430, Me1431
Storage Temperature Range
Metal and Ceramic Package
Plastic Package
MC1430, Me1431
Sy~bol
Vee.Vee Vee.Vee
V10R IL Po
TA
T stg
Value +9.0, -9.0 +s.o· .;.s.o
+ 5.0 10
680 4.6 500 3.3
400 3:3
-55 to +125 Oto +75
-65 to +175 -55 to +15o
Unit Vdc
Volts mA
rriW mwt0 e
mW mwt0 e
.mW mwt0 e
oc
oc
. CIRCUIT SCHEMATICS
FIGURE 1 - MC1530/MC1430 (STANt:>ARD INPUT)
FIGURE 2 - MC153l/MC1431 (DARLINGTON INPUT)
Output
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
PIN CONNECTIONS
FSUFFIX
CERAMIC PACKAGE CASE 606 T0-91
Non IInnvv. IInnppuutt 1 2 r n _ 1 · o }9 Lag. comp.
GVende
3 4
Output 5
8 7
}Lead Comp
6 Vcc
G SUFFIX METAL PACKAGE
CASE 603 B
Output
PSUF!=IX PLASTIC PACKAGE
CASE 646 (MC1430P/MC1431P only)
11
CLoamg p
·
3-16
MC1430, MC1431, MC1530, MC1531
ELECTRICAL CHARACTERISTICS (Vee= +6.0 Vdc, VEE= -6.0 Vdc, TA= +25°c unless otherwise notedl
Characteristic
Symbol
MC1530
Min
Typ
Max
MC1430
Min
Typ
Input Bias Current
3.0
10
5.0
Input Offset Current
0.2
2.0
0.4
Input Offset Voltage
1.0
5.0
2.0
6.0
6.0
Single-Ended Input Impedance (Open-Loop, f = 30 Hz) Common-Mode Input Voltage Swing
10
.±. 2.0
20 ± 2.7
5.0 ± 2.0
15 ± 2.5
Equivalent Input Noise Voltage (Open-.Loop, Rs= 50 ohms, BW = 5.0 MHz)
10
10
Common-Mode Rejection Ratio (f = 100 Hz)
CMRR
70
75
65
75
Open-Loop .Voltage Gain, TA= t25°c
· TA= T1ow to Thigh Bandwidth (Open-Loop, -3.0 dB, no roll-off capacitance)
Avol BW
4500 1.0
5000 2.0
12,500
3000 1.0
5000 2.0
Output Impedance (f = 100 Hz) Output Voltage Swing (RL = 1.0 k ohms) Power Supply Sensitivity (Rs,;;;;; 10 k H)
25
50
25
Vo
±4.5 ± 5.2
±4.0 ±5.0
PSRR
100
100
Power Supply Current DC Quiescent Power Consumption (Vo= 0)
'cc. IEE
9.2
12.5
9.2
Pc
110
150
110
ELECTRICAL CHARACTERISTICS lVcc = +6.0 Vdc, Vee = -6.0 Vdc, TA= +25°C unless otherwise noted)
Characteristic Input Bias Current Input Offset Current Input Offset Voltage
Symbol
Single-Ended Input Impedance (Open-Loop, f = 30 Hz)
Common-Mode Input Voltage Swing
Equivalent' Input Noise Voltage (Open-Loop, R5 =· 50 ohms, BW = 5.0 MHz)
Common-1\tlode Rejection Ratio (f = 100 Hz)
Open-Loop Voltage Gain TA= +25°c TA= T1ow io Thigh
Bandwidth (Open-Loop, -3.0 dB, no 'roll-off capacitance)
Output Impedance (f = 30 Hz) Output Voltage Swing (R L = 1.0 k ohms) Power Supply Sensitivity (Rs.;;;;; 10 k nl
Power Supply Current
DC Quiescent Power Consumption (Vo= Ol
Zis
CMRR Avol
BW Zo . Vo PSRR
Pc
MC1531
Min
Typ
0.025
0.003 3.0
1000 ± 2.0
2000 ±2.4
Max
0.150
0.025 10 18
16.5
20
65
65
2500 ±4.5
3500 0.4 25 ± 5.2 100 9.2 110
7000 50
12.5 150
MC1431
Min
Typ
0.1
0.01
5.0
300 ±2.0
600 ±2.2
20
60
75
1500 3500
±4.0
0.4 25 ±5.0 100 9.2 110
Max 15 4.0 10 11 12
50 12.5 150
Max 0.3 0.1 15
50 12.5 150
Unit µAde µf>.dc mVdc
k!1
;N(rms)
dB VIV
MHz ohms
µVIV mAdc mW
Unit µAde µAde mVdc
kn
µV(rms) dB VIV
MHz ohms
µVIV mAdc
mW
·
: j t ~"' ..=!. t--·THL 10%-\; J_
%--8 50,._
·out 90
400mv
-=
\~
\\OVERSHOOT
STEP RESPONSE, TYPICAL CHARACTERISTICS !Vee= +6.0 Vdc, Vee= -6.0 Vdc, Vo= 400 mVdc. TA= +25°e>
Step Response Gain = 100, 0% overshoot,
{ R1=1 ..0 k ohm, R2 = 100 k ohms, R3 = 1.0 k oh'm, el= 750pF
Gain= 10, 10% overshoot, { Rl ~ 10 k ohms, R2 = 100 k ohms,
R3 = 10 k ohms, C1 = 6800 pF
Gain = 1.0, 5.0% overshoot,
{ R1 = 10 k ohms, R2 = 10 k ohms,
R3 = 5.0 k ohms, C1 = 33,000 pF
Symbol
tTHL tPHL
SR
tTHL tPHL
SR
tTHL tPHL
SR
MC1530 MC1430
0.13 0.11 33'
0.34 0.25 6.0
0.28 0.16 1.7
MC1531 MC1431
0.36 0.21 16
0.30 0.28 5.5
0.37 0.17 1.4
µs µs V/µs
µS µs V/µs
µs µs V/µs
\""°SLEW RATE
'--
® MOTOROLA Se1niconductor Products Inc.---------
3-17
MC1430, MC1431, MC1530, MC1531
·
FIGURE 3- TEST CIRCUIT R2
Cl
TYPICAL OUTPUT CHARACTERISTICS
(Vee= +6.0 Vdc, Vee = -6.0 Vdc, TA= +25°e)
FIG. NO.
5 6
7 8
9
CURVE NO.
1,2 3 4
1 2 3 4 5
1 2 3
1 2 3 4
1 2 3 4
VOLTAGE GAIN
100 10 1
100 10 10 1 1
100 10 1
AvoL AvoL AvoL AvoL
AvoL AvoL AvoL AvoL
OEVleE NO.
Me1530/Me1430, Me1531/Me1431 Me1530/Me1430, Me1531/Me1431 Me1530/Me1430, Me1531/Me1431
Me1530/MC1430 Me1530/Me1430 Me1530/Me 1430 Me1530/Me 1430 Me1530/Me1430
Me1531/Me1431 Me1531/Me1431 Me1531/Me1431
Me1530/Me1430 Me1530/Me1430 MC1530/Me1430 Me1530/Me1430
Me1531/Me1431 Me1531/Me1431 MC1531 /Me1431 MC1531/Me1431
TEST CONDITIONS
R1 (k!l} R2(k!ll R3(!ll C1 (pFI
1.0
100 1.0k
750
1
10
100
10 k 6800
10
10
5.0k 33,000
1.0
100
1.0 ~
750
10
100
10 k 6800
1.0
10
1.0 k 6800
10
10
5.0k 33,000
1.0
1.0
500 33,000
1.0
100
1.0 k
750
10
100
10k 6800
10
0 0 0 0
1----0
5.0k
0 0 0 0
33,000
0 750 6800 33,000
0
~
0
0
0 0 0
--~
0
750
0
6800
0
33,000
14
.0:... 12
~
i! 10 ~
LU 8.0 C<!I
~ 6.0
>
~ 4.0
0
~ 2.0
0 1.0 k
FIGURE 4 - LARGE SIGNAL SWING versus FREQUENCY
/
~3, ~ CURVE 4
N It
2 i\
~ ~ ~~
~ ~~
N
10 k
100 k
1.0 M
IOM
f, FREQUENCY (Hz)
FIGURE 5 - MC1530/MC1430 VOLTAGE GAIN versus FREQUENCY
45.--~,.--...-.--.-.,.-.-n-r-~--,----.~......,."T'T'>rr-~....-_,.--,.-,--,-,"'T'M
CUR~ 401--~-t--+-t-+++t-t+-~-+--+-+-+-+-++-1+---~-+-+-t-H+H
~ J01--~+-+-1-+-++H+~-+-+--+-++-t+1t+--~-+--+-+-1~~~-4-l-~ 35t--~+--t--t--t-++H+~-+-+--+-++-t+11+-~....--+-+...-H-++1
z
~ 25t--~+--+-l-+-+-+-t-++-~-+---+-+--+-+-++<>+-~-+--+--+--i-+-t.......
C!I
r"'l ~ 2oi--~r-T-t-t-i'1"Hi"~-t--t-+~::tHH-~"k~+i--ti-ttt ~ CURVE~ ~ <~ 15t--~+--t--t--t-++H+~-+-+--+-++-t+1~~~..-. +---1~1-"t--Hr++~
;j 51.~:=::::::=:::::1=~==~=:f\:l\:I,:
1J1VE~5
10 k
100 k
I.OM
!OM
f, FREQUENCY (Hz)
45 40 35 z 30
~ 25
LU
~o~ 20
> 15
i 10
5..0
10 k
FIGURE 6 - MC1531/MC1431 VOLTAGE GAIN versus FREQUENCY
I
~
WvE~
,...
CURVE~
T l
~
~
l\
CURV71° r-......
100 k
I.OM
IOM
!,FREQUENCY (Hz)
FIGURE 7 - MC1530/MC1430 OPEN LOOP VOLTAGE GAIN versus FREQUENCY
901---+---+-,+++--+---+-,+++--+---+-+++--+--++++---+--+~
f, FREQUENCY (Hz)
([!'J '------'---~·
MOTOROLA Semiconductor Products Inc.-------~
3-18
MC1430, MC1431, MC1530, MC1531
FIGURE 8 - MC1531/MC1431 OPEN LOOP VOLTAGE GAIN versus FREQUENCY
901--+--+-+++-+-+-l-++--ll--+-+++--+--lf-l-l-+---1---1-+-+-l
~ 751--+--+-+-H-+-~4+---.Jf.-..-+4.++---+---.Jl-4-J..+----'4---I~
N N ~ 60t----1r--11-H+t--...._~:-+-N+~~~~-f~~f-----i~r--1~ri~R"t-~-+-++l
lll
CURVE~
~
~ ~~~~ ~ 451--+--+-+++-+-+-11--Ro,~-~n.'l..,l.+-+~-3-!f-l-l-+---1---l_j_j_J
J 30t--t--+-+++----+----+-+++--t--1~+~-+~N~N+~~-+--~+1
15 l---l'--l.-t-++--+-+-+-l-+--4---+--4--1-+--l~>---"'o.lf';;;--l-l.-'--b-...J-"'-1---l--l-U
~N...
o.__....__._.L...1.J._J.-..i.....Ju..i..---.JL----.L...L...J..J...--L-L...L.LI-1"""-~---L-LJ.J
100
1.0k
!Ok
100k
1.0M
!OM
f, FREQUENCY (Hz)
FIGURE 11 - COMMON-MODE SWING versus POWER SUPPLY VOLTAGE
~ 7.0 ,---,-----,--.---.---,-,-----.---,--,----,---,
.~ 6.0 1---1-----1--+--+---+---+-
g ~ s.o
g §; 4.0 >---------<--+-
~ ~ 3.01--+--f---+--H-+=---......=-=::i-::;;,..~-f---l
o~
8::;;; ;;: 2.01---1-----.J--¥='""""~""""'=----+en 1.0 t---t-----+--+---,_,_----'-·--'---+--1------1---1
> ~
O'---'----'--'--_,_-~-~-.l.--'---'---' 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10
Vee and VEE. POWER SUPPLY VOLTAGE (VOL TS)
FIGURE 9 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE
~ 90
~ 80
0
~iii 70
g 0
::s
:!:"60
~ ~ 50
0
40
TA= +25°C
A ~
~
MC1530/MC1430 MC1531/MC1431
30
2.0
4.0
6.0
8.0
10
Vee and VEE. POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 10- OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
FIGURE 12 - POWER CONSUMPTION versus
POWER SUPPLY VOLTAGE 1000 800 600
400
200
vv -
>
100 80
; 60
z 7"
0
j:: 40 ;t.
7
zl7 i3i
5 20 a:
~ 10
~ 8.0
6.0
4.0
2.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Vee and VEE· POWER SUPPLY VOLTAGE (Vdc)
·
-6.0 L---'-'"-L....L.J..L.l..L'---'--L-.J.-'-'..J..J..L.1..---"-..l.-L-l..J....U..L.J
10
100
1.0 k
10 k
RL. LOAD RESISTANCE (OHMS)
.@ MOTOROLA Semiconductor Products Inc.
3-19
ORDERING INFORMATION
Device
MC1433F MC1433G MC1433L MC1433P MC1533F MC1533G MC1533L
Temperature Range
0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C -55°C to .+12s0c -55°C to +125°C ...:.ss°C to +125°C
Package
Ceramic Flat Metal Can
Ceramic DIP Plastic DIP Ceramic Flat Metal Can Ceramic DIP
MC1433, MC1533
·
OPERATIONAL AMPLIFIER
... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.
· High-Perfor,mance Open Loop Gain Characteristics
Aval = 60,000 typical
· Low Temperature Drift - ±5 µV; 0 c
· Large Output Voltage Swing ± 13 V typical@± 15 V Supply
· Low Output Impedance - z0 = 100 ohms typical
OPERATIONAL AMPLIFIER
SILICO.N MONOLITHIC INTEGRATED CIRCUIT
F SUFFIX
CERAMIC PACKAGE
~ CASE606
~
T0-91
Input 1~10 Input
Output Lag 2
· +-
9. } Input
VEE 3
8 Lag
OutPut 4
.
7 V CC
vcc5
6 Vee
lnµut Lag
G SUFFIX METAL PACKAGE
CASE 6038
OUTPUT LAG
OUTPUT
L SUFFIX CERAMIC PACKAGE
CASE 632 , T0-116
Output Lag
P SUFFIX PLASTIC PACKAGE
CASE 646 (MC1433P Only)
Vee
Vee
Vee
Output
N.C.
3-20
MC1433, MC1553
ELECTRICAL CHARACTERISTICS !Vee= +15 Vdc, VEE -15 Vdc, TA= +25°c unless otherwise noted)
Characteristic
Symbol
Min
Open Loop Voltage Gain
(TA = +25°C(D (TA = T1ow 1 to Thigh ©I
Output Impedance (f = 20 Hz)
AvoL Zo
40,000 35,000
-
Input Impedance (f = 20 Hz)
Zi 500
Output Voltage Range (RL = 10 kn) (R L = 2 kn)
Vo ±12 ±11
Input Common Mode Voltage Range
V1cR
+9.0 -8.0
Common Mode Rejection Ratio
CMRR
90
Input Bias Current (TA= +25°Ci (TA= T1owl
11s
-
-
Input Offset Current (TA= +25°C)
(TA= T1owl (TA= Thigh)
110
-
-
Input Offset Voltage--W (TA= +25°Cl (TA= T1ow' Thigh)
V10
-
-
Step Response (C2 = .10 pf) ~ Gain= 100, 10% overshoot,~
R1=10 kn, R2 = 1.0 Mn,
R3 = 100 n, C1 =0.01 µF
lGain= 10, no overshoot, R1=10 kn, R2 = 100 kn, ! R3= 10 n, C1=0.1 µF
~ Gain = 1, 5% overshoot,
R 1 =1okn, R2 = 1okn, R3= 1on,C1=1.0µF
l
tTLH
-
tpd
-
SR
-
tTLH
-
tpd
-
SR
-
tTLH
-
tpd
·-
SR
-
Average Temperature Coefficient of Input Offset Voltage (TA = T1ow to +25°Ci (TA= +25°C to Thigh I
AV10/AT -
-
Average Temperature Coefficient of Input Offset Current
(TA = T1ow to Thigh)
(TA= +25°C to Thigh)
b.110/.tiT
-
-
DC Power Consumption
Pc
(Power Supply=±15 V, V 0 = 0)
-
Positive Supply Sensitivity
PSRR+
(VEE constant)
-
Negative Supply Sensitivity (Vee constant)
(i) Thigh= +75°C for MC1433, +125°c for MC1533
PSSR-
T1ow ~ 0 for MC1433 -55°c for MC1533
MC1533 Typ
60,000 50,000
100
1000
±13 ±12 +10 ,-9.0 100
0.5
-
0.03 -
-I
1.0 -
0.25 0.1 6.2 0.3 0.1 2.9 0.2 0.1 2.0
Max
-:-
150
-
-
-
-
1.0 3.0
0.15 0.5 0.2
5.0 6.0
-
-
MC1433
Min
Typ
30,000 20,000
60,000 50,000
-
100
300
600
±12 ±10 +8.0 -8.0 80
-
±13 ±12 +9.0 -9.0 100
0.5 -
-
0.1
-
-
-
-
-
1.0
-
-
-
0.25
-
0.1
-
6.2
-
0.3
-
0.1
-
2.9
-
0.2
-
0.1
-
2.0
Max
-
-
150
-
-
-
-
-
2.0 4.0
0.50 0.75 0.75
7.5 10
-
-
-
-
-
-
-
8.0
-
5.0
-
-
10
-
-
8.0
-
0.1
-
0.05
-
-
0.1
-
-
0.05
-
125
170
-
125
240
50
150
-
50
200
50
150
-
50
200
@ Input offset voltage !Viol may be adjusted to zero.
Unit
-
n
kn Vpeak
Vpeak dB µA
µA
mV
µs µs V/µs µs µs V/µs µs µs V/µs µV/°C
nA/0 c
mW µVIV µVIV
·
@ MOTOROLA Semfoonductor Products Inc. ________,
3-21
MC1433, MC1553
·
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Rating
Power Supply Voltage
MC1533,MC1433 MC1533,MC1433
Differential Input Voltage Range
Common Mode Input Voltage Range
Load Current
Output Short Circuit Duration
Power Dissipation (Package Limitation) Metal Package Derate above TA = +25°C Flat Package
Derate above TA =+25°C
Dual In-Line Ceramic Package
Derate above TA =+25°C
Dual In-Line Plastic Package Derate above TA = +25°C
Operating Ambient Temperature Range MC1533 MC1433
Storage Temperature Range
Symbol Vee VEE
V10R V1cR
IL ts Po
TA
Tstg
Value +20,+18 -20,-18
±10
:r.Vcc 10 0.1
680 4.6 500 3.3 625 5.0 400 3.3
-55 to ~125 0 to +75
-65 to +150
Unit Vdc Vdc Volts Volts mA
s
mW mW/°C
mW mW/°C
mW
mw1°c
mW mW/°C
oc
oc
TYPICAL CHARACTERISTICS
FIGURE 2 "-TEST CIRCUIT Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°c
Vee
Test Conditions
Fig.
Curve
No.
No.
R1 tnl R2 (n) R3 (nl C1 (µFl C2 (pF)
3
1
10 k
10 k
10
1.0
10
2
10 k
100 k
10
0.1
10
3
10 k
1.0M
100
0.01
10
3
1.0 k
1.0M
390
0.002
10
4
1
10 k
10 k
10
1.0
10
2
10 k
100k
10
0.1
10
3
10 k
1.0M
100
O.Q1
10
4
1.0 k
1.0M
390
0.002
10
5
1
0
00
10
1.0
10
2
0
00
10
0.1
10
3
0
00
100
0.01
10
4
0
00
390
0.002
10
@ MOTOROLA SenJfoonductor Products Inc. _ _ _ _ _ _ ___,
3-22
MC1433, MC1553
TYPICAL CHARACTERISTICS (continued)
(Vc;c = +15 Vdc, Vee -15 Vdc, TA= +25°C _unless otherwise noted)
FIGURE 3 - LARGE-SIGNAL RANGE versus FREQUENCY
~_"J 161---+-+---+-+-+-f---+-+--+-+-+-if---+--+--t--t-t
\
I\
~ ~ ~ 121---+-41--+-+-l---+----+--+-+--.f---+--+--t--t-t
8.0 1---+--+--"ok--~-t-N+h..-+----+---'l<"[S;J-+J'-+-'::::sl"<:-tcs::--t--t-1H
4:0 l---+--+--+-+-+...~..,--<""'f---+-+-t--~-~.,.---t-----f;;:;Cc---11--t-1
ot=t=Lt1t=:L:::1::r±:±:;;;t;;;~;s_
LO k
10 k
100 k
1.0 M
I. FREQUENCY IHzl
+65 +60
+50 !g ~ +40 ~ ~ +30
~
> +20 .i_
+10
0 -5.0
10
FIGURE 4 - VOLTAGE GAIN versus FREQUENCY
4
-~
J
N
2 )'.
JuRVE 1
100
1.0 k
!Ok
100 k
"1.0 M
I, FREQUENCY IHzl
·
FIGURE 5 - OFFSET ADJUST CIRCUIT
vcc
FIGURE 6 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY (HIGH GAIN CONFIGURATION)
100
LO k
10 k
100 k
1.0 M
I, FREQUENCY .!Hzl C2
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ _ _.....
3-23
MC1433, MC1553
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 7 - POWER CONSUMPTION versus POWER SUPPLY VOLTAGE
500 ~AT-~RAEFDEUoCJEEDRATTElM~PGERAARTUJRE
L
300
200
~
2 0
t
1100
a:
~ 70
f2
50
]
30
L y
j_~ El QUl~CENT I OVI j' l l
20
1 '"j"":"'++-+~
lO 4.0 6.0 8.0 10 12 14 16 18 . 20
Vee AND VEE. POWER SUPPL y VOLTAGES (VOLTS)
FIGURE 8 - VOLTAGE GAIN versus POWE.A SUPPLY VOLTAGE
110.------..,-----.,------,.-------.
~
~100
I ~
~
·····~
!::;
.L_
; so1-----L-+-V___,,t£---+-----1-------i
~ 801------+-----+-----l-------i >
-0:
5.0
10
15
20
Vee AND VEE. POWER SUPPLY VOLTAGES (VOLTS)
.t.r...). 14
0
2: 12
UJ
"z '
;i!i IO
UJ <!l
; 8.0
0>~ 6.0
0
. ~ 4.0
8:a 2.0
a:
(.,)
> 00
FIG!JRE 9 - COMMON MOOE RANGE versus POWER SUPPLY VOLTAGE
5.0
10
15
20
Vee ANO ve.e.POWER SUPPLY VOLTAGES (VOLTS)
FIGURE 10 - INPUT NOISE VOLTAGE versus SOURCE RESISTANCE
16 CURVE
· 3
14 BANDWIDTH 50 Hz
> c,
~ 121 r-R-,--+--'-~-1-~
<!l
; 10
0
~ 8.0
~ 6.0
~ ~ 4.0
lOOk Rs. SOURCE RESISTANCE (OHMS)
@ MOTOROLA Semiconductor Products lnic. ---------'
3-24
ORDERING INFORMATION
Device
MC1435F MC1435G MC1435L MC1435P MC1535F MC1535G MC1535L
Temperature Range
0°C to +70°C 0°C to +700C
to 0°c to +70°c
0°c +70°c
-55°C to +125°C -Q5°C to +125°0 -55°C to + 125°C
Package
,Ceramic Flat Metal Can
Ceramic DIP Plastic DIP Ceramic Flat Metal Can Ceramic DIP
MC1435 MC1535
DUAL OPERATIONAL AMPLIFIERS
... designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics !!S a function of the external feedback ,components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.
Typical Amplifier Features:
· High Open Loop Gain Characteristics - Avol = 7,000
· Low Temperature Drift - ±10 µV /°C · Low Input Offset Voltage - 1.0mV · Low lnout Noi~ Voltage - 0.5µV
DUAL OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
·
CASE 607
Out~~t~~~ ~ ~m· 1~ ~~iut Input Lag A 3 i Input Lag A 4
A
B
·+ +
12 Output BLa B 11 lnpµt L11g
Non,~~~ I~~~~:~
~O ~"g~~nly&?n~ut
VEE 7
--
8 'Inv. Input
CIRCUIT SCHEMATIC INPUT LAG 1 OUTPUT LAG 1
INPUT 1 VEE - I<>--~+------.
INPUT 2 +
INPUT LAG 2 OUTPUT LAG 2
OUTPUT 1 OUTPUT 2
GSUFFIX METAL PACKAGE
-L SUFFIX
CER.AMIC PACKAGE CASE 632 T0-116
·PSUFFIX .PLASTIC PACKAGE CASE 646
Output 1 A
~~:~t 2
Input Lag A 4 Non. Inv. ltlput 5 ·
9
Non. Inv. Input
Inv. Input
3-25
MC1435, MC1535
·
HIGH Zi, DIFFERENTIAL TO.SINGLE-ENDED AMPLIFIER
10k
Zi =70 n min
(differential) 10 k
LARGE OUTPUT SWING CONFIGURATION (FLOATING LOADI 10 k 47
lk
Vt
lOk 6Vdc V-e-e-----0--.---e
Vo= 20 V1 Vo= ±10
Vpk(maxl
Vee
6 Vdc
'----+---t--41 VEE -6 Vdc
4.7
47 9 k
MA>_CIMUM RATINGS (TA= +25°c unless otherwise noted.I
Power Supply Voltage
Rating
Input Differential Voltage Range
Common-Mode Input Voltage Range
Load Current
Output Short-Circuit Duration
Po'l\er Dissipation (Package Limitation) Flat Ceramic Package Derate above TA = +25°c Metal Package Derate above TA = +25°e Ceramic Dual In-Line Package Derate above TA = +25°C
Operating Ambient Temperature Range
Storage Temperature· Range
Symbol Vee Vee VtoR· VteR
~
ts Po
'TA Tstg
MC1535
MC1435
+10
+9.0
-10
-9.0
±.5.0
±.5.0
+5.0;-4.0 20
+5.0-4.0' 20
Continuous
500 3.3 680 4 .. 6 . 625 5.0
-55 to +125
Oto +75
-65 to +1.50
-65 to.+150
Unit Vdc
Volts Volts mA
mW mwt0 c
mW mW/°C
mW mW/°C
oc oc
@ MOTOROLA Semiconduc~or ProduC~s Inc. ___________.
3-26
MC1435, MC1535
ELECTRICAL CHARACTERISTICS
(Each
Amplifier!
-s.o (Vee= +6.0 Vdc, Vee=
Vdc, TA= +25°c unless otherwise noted.I
Characteristics
Input Bias Current I 1 + I 2 TA = +25°C
111'! = -2-'TA = T1ow to Thigh©
Input Offset Current TA= +25°C TA= +25°c to Thigh TA= T1ow to +25°c
Input Offset Voltage TA= +25°c TA = T1ow to Thigh
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance Parallel Input Capacitance
Common-Mode Input Impedance (f = 20 Hz)
Common-Mode Input Voltage Swing See Figure 7,
Equivalent Input Noise Voltage (hv = 100, Rs= 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)
Common-Mode Rejection Ratio (f = 100 Hz)
Open Loop Voltage Gain (TA= T1ow to Th!g_h)
Power Bandwidth !See Figure 2, Curve 3A.) (Av= 1, RL = 2.0 kohms, THO~ 5%, V0 =20Vp-p)
Unity Gain Crossover Frequency (open-loop)
Phase Margin (open-loop, unity gain)
lGain Margin
Step Response Gain= 100, 30% overshoot, R1 = 4.7 k.n, R2 = 470 k!1, R3 = 150 .n, C1 = 1,000 pF
~Gain= 10, 10% overshoot, R1=47 kn, R2 = 470 kn,
R3 = 47 n, C1 = 0.01 µF
·1Gain=1, 5% overshoot, R1=47 kn, R2 =; 47 kn, R3= 4.7 !1, C1=0.1 µF
Output Impedance (f = 20 Hz)
Short-Circuit Output Current Output Voltage Swing (AL= 10k ohms)
Power Supply Sensitivity Vee= constant, Rs~ 10 k ohms Vee= constant, Rs~ 10 k ohms
Power Supply Current (Total)
DC Quiescent Power Consumption (Total) (Vo =Ol
Symbol 11B
110
V10
q Ci Zi V1cR
en
CMRR Avol
BWp
fc !f>m
AM
tPHL tp SR
tPHL tp SR
tPHL tp SR Zo ios Vo
PSS+ PSSice lee Pc
Min
-
-
--
-
-
-
10 +3.0 -2.0
-
-70 4,000
-
- ..
-
-
-
-
-
-
-
±2.5
-
-
MC1535
Typ
Max
MC1435 Min TY,P Max
Unit
1.2
3.0
-
-
6.0
-
50
300
-
-
300
-
-
900
-
1.0
3.0
-
-
5.0
-
1.2 5.0 µAde
-
10
nAdc
50 500
- 1500 - 1500
mVdc
1.0 5.0
-
7.5
45
-
10
45
-
k ohms
6.0
-
-
-
-
pF
250
-
-
250
-
Megohms
+3.9
-
+3.0 +3.9 -
Vpk
-2.7
-
-2.0 -2.7 -.
45
-
-
45
- nV/(Hz)Y,
-90
-
-70
-90
-
dB
7,000 10,000 3,500 7,000 -
VIV
40
-
-
40 -
kHz
2.0
-
-
2.0 -
MHz
75
-
-
75
-
degrees
18
-
-
18 -
dB
0.3 0.1 0.167 1.9 0.3 0.111 27 0.25 0.013
1.7 ±17 ±2.8
50 100
8.3 8.3 100
--
-
-
--
-
-
-
-
-
-
--
-
-
--
--
-
-
-
±2.3
-
-
--
12.5 12.5 -
150
-
0.3 -
0.1
-
0.167 -
1.9 -
0.3 -
0.111 -
27 0.25 -
0.013 -
1.7 ±17 -
- ±2.7
50 100 -
8.3 15 8.3 15
100 180
µs µs V/µs µs µs V/µs µs µs V/µs k ohms mAdc Vpk µVIV
mAdc
mW
MATCHING CHARACTERISTICS Open Loop Vol!aqe Gain Input Bias Current
Input Offset Current Average Temperature Coefficient
Input Offset Voltage Average Temperature Coefficient
Channel Separation (See Fig. 10) (f = 10 kHz)
Avo11-Avol2
-
'1B1-11B2
-
1101-1102
-
TC1101-TC1102
-
V101-V102
-
frCvl01·TCv102
-
-eo1
eo2
-
±1.0
-
±0.15 ±0.02 -
±0.1
-
±0.1
-
±0.5. -
-60
-
-
±1.0 -
dB
-
±0.15 -
µA
-
±0.02 -
µA
-
±0.1 -
nA/°C
-
±0.1 -
mV
-
±0.5 -
µV/OC
dB
-
-60 -
G)T1ow' o0 c for MC1435
-55°C for MC1535 Thigh: +75°C for MC1435
+125°C for MC1535
@
MOTOROLA
Semiconducf:or Producf:s Inc. ----------'
·
3-27
MC1435, MC1535
·
TYPICAL OUTPUT CHARACTERISTICS
IVcc = +6.0 Vdc, Vee"' -6.0 Vdc, TA= +25°c.l
FIGURE 1 - TEST Cl RCUIT
*Ceramic packages only.
--, I R . _I_ L 'T' CL
__ JI< 5.0 pF
Vee
FIGURE NO.
CURVE NO.
VOLTAGE GAIN
R1(l!)
TEST CONDITIONS
R2(l!)
C1(pf)
R3(H)
2
3 3A
{or
1 1
47k 47k
47k 47k
100,000 0
4.7
00
3
1
lor :~~
4.7k , 470 k 4.7k 470 k
1,000 0
150
00
2 lor :~
47k 470 k 47k 470k
10,000
47
Q. 1 I
00
3
lor
1 1
'47k 47k
47k 47k
100,000 0
4.7
00
4
1 2 3
Ior Avol 100
Avol
Ior Avol I Avol
100 100 100 100
or Avol 100
00
1,000
150
00
0
00
00
10,000
47.
00
0
00
00
100,000
4.7
00
0
00
C2(pf)
0 50,000
0 510
0 5,000
0 50,000
0 510
0 5,000
0 50,000
OUTPUT NOISE mV(RMS)
0.12
0.4~
1.7 2.1 1.0 2.1 0.12 0.46
8.1 8.1 5.5 5.5 4.4 4.4
7.0
1 s.o
;::.
"z' 5.0
~
~ 4.0
~
~ 3.0
g ~ 2.0
>0 1.0
0 100
140
120
~ 100
z
~ 80
w
"<i': ~
60
>
g .40
<i:
20
0 100
FIGURE 2 - LARGE SIGNAL SWING versus FREQUENCY
~
An .
h._3 -
:s:
f1
N
l"--+-..J
1.0k
10 k
f, FREQUENCY (Hz)
3A ~
~ ~
100 k
1.0 M
FIGURE 3 - VOLTAGE GAIN versus FREQUENCY +60
+50
~ +40
1
z
<i: ~ +30
t!l
~ +20
2
0
>
.;;,· +10
~
1'
-10 100
3
1.0 k
10k
100 k
f, FREQUENCY (Hz)
N
1.0M
10M
FIGURE 4- OPEN LOOP VOLTAGE GAIN versus FREQUENCY
FIGURE 5 - INPUT OFFSET VOLTAGE versus TEMPERATURE
+1.2 .---.--"'---ir---.---..---...--...---..-'--...--~--.
~
~+0.8
v .L
y ~
~
+0.4
t---t---t---t---+---+--+p,.L'.'.'.1~-----+----l
~ >
Z -I
.
/
I
"Slope
can
be
ei.ther
polar.ity
ffi-0.4 ~
~ -0.8 r-~t--t--t--f--+--+--+--+-~+----1
I-
~
~ -1.2 t--t---1t--t--f--+--+--..,..+--+--+----I
!j 1--r-Mc143s--+-I
1 < -1.6 ,___...__.___...__..___...__...__..;.....__...__...____.
1.0 k
10 k
100 k
1.0M
lOM
-60 -40 -20
+20 +40 +60 +80 +100 +120 +140
f, FREQUENCY (Hz)
TA· AMBIENT TEMPERATURE ("C)
@ fVrOTOROLA Se11'1iconductor Products Inc. _______.....
3-28
MC1435, MC1535
TYPICAL CHARACTERISTICS (continued)
FIGURE 6 - VOLTAGE GAIN versus POWEf! SUPPLY VOLTAGE
FIGURE 8 - POWER CONSUMPTION versus POWER SUPPLY VOLTAGE
90
"~ '
0 0
z
0
.0 t
Vee and VEE. POWER SUPPL y VOLTAGE (VOL TS)
FIGURE 7 - COMMON MOOE SWING
versus POWER SUPPLY VOLTAGE
~ 5.0
_.f-"'
~
i5 4.0
>Ci> w>-
v o-'
~~ 3.0
ZUJ ......
--- ~~ 2.0
:;;<(
--- --- 8 a: 1.~i--
>~ 0.5 2.0
_...- __.... +V1CR
~
i - - - -V1CR
_4.0
6.0
8.0
---
10
Vee and VEE. POWER SUPPL y VOLTAGE (VOL TS)
700
I I
600
2~ 25
50
500
+ - - SAFE OPERATING AREA
AT.REDUCED TEMPERATURE
25
50
75
400
50
75
75 HIO 100
I 200
z
Cl
t
11~~
cc
.i..--
v v Y"'
-7
-;17
100 125
125
"'<[ "u '
~
"~ '
~
"'
125
g"'
~ 60
7 ~
v ~ 40
v7 20
v .r 1 10
·o QUIESCENT= 0 V -
t--
AMBIENT TEMPERATURE
DEGREES CENTIGRADE
SAFE OPERATING AREA AN TEMP,ERATrE
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10'
Vee and VEE. POWER SUPPLY VOLTAGE IVdc)
·
FIG.URE 9 - OU'l"PUT WIDEBAND NOISE VOLTAGE versus SOURCE RESISTANCE
> 100
.§
~-
<(
~ 10
jj
{5.0 Hz to 10 MHz)
C1=1,000 pF R3·~ ~
>
UJ
"~ "
f== OPEN LOOP
t-- A> 1tioTI
C1 =1,000 pF R3 =i12,.H
m ~
~
31HI' . JJ I=. ~ 1.0 EA-10~c1 0.01 µF R3 - 47 11 v
2
t - . AIv - 1
> 0. 1
C1 -0.1 µFR3
1l\
100
1.0 k
10 k
100 k
R5, SOURCE RESISTANCE {OHMS)
OUTPUT LAG
t1~ Rs 0 Rs
VeC'
FIGURE 10 - INDUCED INPUT SIGNAL (CHANNEL SEPARATION)versus FREQUENCY
> >
..3
<(
~100~
~ ~ z· r--+-+-
Cl t--t-+-
'~ -' 10~
J·~
- t--t-+t--t-+-
1.0~
100
1.0 k
10 k
100 k
1.0 M
f, FREQUENCY {Hz)
INDUCED INPUT SIGNAL {e'. )
1n2 ':'
ov Vo Incl 0
Induced input signal (µV of induced input signal in amplifier =2 per volt of output signal at amplifier =11
e o 2 = e m2 l~I. where e o 2 is the component of
e0 2dueonly to lack of perfect separation between the
twoampl1hers
'---------,@ MOTOROLA Semiconductor Products Inc. -'_________.
3-29
·
ORDERING INFORMATION
Device
MC1436G MC1436U MC1436CG MC1436CU MC1536G . MC1536U
Temperature Range
0°c to +70°C 0°c to +70°C 0°C to +70°C 0°C to +70°C -55°C to + 125°C -55°C to +125°C
Package
Metal Can Ceramic DIP
Metal Can Ceramic.DIP
Metal Can Ceramic DIP
HIGH VOLTAGE, INTERNALLY COMPENSATED OPERATIONAL AMPLIFIER
. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.
· Maximum Supply Voltage - ±40 Vdc (MC1536) · Output Voltage Swing -
±30 Vpk(min) (Vee= +36 V, VEE= ·-36 V) (MC1536) ±22 Ypk(min) (Vee= +28 v. VEE= -28 V) · Input Bias Current - 20 nA max (MC1536) · Input Offset Current - 3.0 nA max(MC1536) · Fast Slew Rate - 2.0 V/µs typ · Internally Compensated · Offset Voltage Null Capability · Input Over· Voltage Protection · AvoL - 500.000 typ · Characteristics Independent of Power Supply Voltages (± 5.0 Vdc to± 36 Vdc)
FIGURE 1 - DIFFERENTIAL AMPLIFIER WITH ±20 V COMMON-MODE INPUT VOLTAGE RANGE
R2 100 k
MC1436 MC1436C MC1536
OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT
METAL PACKAGE CASE 601
U SUFFIX CERAMIC PACKAGE
CASE 693
R4 4.7k
-28V
Vo= 10 (Vs-VA)
Non-Inv. Input
VEE 4
FIGURE 2 - TYPICAL NON-INVERTING X10 VOLTAGE AMPLIFIER
V; = 4.4 Vp.p
Vo= 44 Vp·p
FIGURE 3 - LOW-DRIFT SAMPLE AND HOLD
+28 v
SWITCH
9 k lk
SAMPLE' COMMANO
11.0µF
-- Polycarbonate
-28 v
·orift due to bias current is typic~lly 8 mVls
3-30
MC1436, MC1436C, fVIC1536
'MAXIMUM RATINGS {TA; +25°C unless otherwise noted)
Power Supply Volt~ge
Rating
1.npyt Differential Voltage Range Input Common-Mode Voltage Range Output Short Circuit Duration (Vee= VEE= 28 Vdc, V 0 = 01 Power Dissipation (Package Limitation)
Derate above TA = +25°C Operating Ambient Temperature Range Storage Temperature Range
Symbol
l MC1536
+40 -40
l MC1436
MC1436C
ts
Po
Tstg
5.0
J -55 to +125
680 4.6
0 to +70
-65 to +150
ELECTRICAL CHARACTERISTICS (Vee; +28 Vdc, VEE; - 28 Vdc, TA; +25°e unless otherwise noted)
Unit Vdc
Volts Volts
mW mWi°C
Characteristics Input Bias Current
TA= +25°C TA= T1ow to Thigh (See Note 11 Input Offset Current TA= +25°c TA= +25°c to Thigh TA = T1 0 w to +25°c Input Offset Voltage TA= +25°c TA= T1ow to Th_i.l!_h Differential Input lmRedance (Open-Loop, f,;; 5.0·Hzl Parallel Input Resistance Parallel Input Capacitance
Common-Mode Input Impedance (f ,;;5,0 Hz)
Input Common-Mode Voltage Range
Equivalent Input Noise Voltage IAv ~ 100. Rs 0 10 k ohms, f = 1.0 kHz. BW = 1.0 Hz)
Common-Mode Rejection Ratio (de)
Large Signal de Open Loop Voltage Gain TA= +25°C
IV0 = ±. ~Q \I, RL = 100 k ohms) { TA= Tiow to Thigh (V0 = ±.10V. RL = 10 k ohms.TA= +25°Ci Power Bandwidth (Voltage Follower) (Av.= 1, RL = 5.0 k ohms, THO$ 5%, \10 = 40 Vp-p) Unity Gain Crossover Frequency (open-loop)
Phase Margin (open-loop, unity gain)
Gain Margin
Slew Rate (Unity Gain)
Output Impedance (f,;; 5.0 Hz)
Short-Circuit Output Current Output Voltage Range (AL= 5.0 k ohms)
Vee= +28 Vdc, VEE= -28 Vdc Vee_= +36 Vdc, VEE= -36 Vdc
Power Supply Sensitivity (de) VEE:'" constant, R 5 < 10 k ohms Vee= constant. Rs< 10 k ohms
Power Supply Current (See Note 21
DC Oui&scent PoWer Consumption
IV0 = 0)
Note 1
o T10 w: 0 e for Me1436,C
-55°C for MC 1536
Thigh· +70°e for MC1436.C +125°C for MC1536
Note 2:
Symbol
MC1536
Min
Typ
Max
MC1436
Min
Typ Max
8.0
20
35
15
40
55
1.0
3.0
4.5
7.0
5.0
10
14
14
2.0
5.0
7.0
5.0
10
14
rp
10
Cp
2.0
250
±.24
±25
±22
10 2.0 250 ±25
CMRR
AvoL
BWp
<t>m SR Zo
los
50
80
110
100,000 500,000 50,000
200,000
23 1.0 50 18 2.0 1.0 ±.17
50
70
110
70,000 500,000 50,000
200.000
23 1.0 50 18 2.0 1.0 ±.17
±22 ±30
±23 ±32
±20 ±22
PSS+ PSS-
Pc
15
100
15
100
2.2
4.0
2.2
4.0
124
224
35 200 35 200 2.6 5.0 2.6 5.0
146 280
Vee" VeE = 5.0 Vdc to 36 Vdc for MC1536 Vee= VEE= 5.0 Vdc to 30 Vdc for MC1436 Vee= VEE= 5.0 Vdc to 28 Vdc for MC1436C,
MC1436C
Min
Typ Max
25
90
Unit nAdc
nAdc
10
25
mVdc
5.0
12
±.18
10 2.0 250 ±20
50
50
90
50,000 500,000 200.000
23 1.0 50 18 2.0 1.0 ±19
Meg ohms pF
Megohms
nV/(Hz)Y,
dB VIV
kHz
MHz d.egrees
dB V/µs k ohms mAdc
.±20
±22
50 50
2.6
5.0
2.6
5.0
146 280
µVIV mAdc mW
·
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to bl! entirely reliable. However, no responsibility is assumed for inaccuracies. Funhermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of_ Motorola Inc, or others.
@ ---------' MOTOROLA Semiconductor Products Inc.
3-31
MC1436, MC1436C, MC1536
·
FIGURE 4 - POWER BANDWIDTH
·~ ~
~o~ :60:1--~-t-H-l-~--"::SJ-..+---+--
f-
:== t--v o+--
>
!5
rs: ~
10k r--
f--
~ 30
~
_
28V .,..
t--
~ 201-+-+-++-H-----+-~~--'IJ:Sr-+-+-f-+--lf-+----l--+-~
101-11-+-t-t++---+--t--+--r"~~~i..i::+t---...---+-+-~
__._.r-_-- 04.~o.........~"'="'="""'="'"--.._.........._.._........_._.,......._ _
~....._.
6.0 8.0. 10
20
40 60 80 100
200
400
f, FREQUENCY (kHz)
FIGURE 5 - PEAK OUTPUT VOLTAGE SWING versus
POWER SUPPLY VOLTAGE
Q ~
35r---,r----,r----,---,----,---r--r--.
I1 I
~ ~
30 1-- TA =25ot---+---+---+---+-_,.L._..v_ ___, 17
25r----+---+---+--+--+--.A;c.;-V--+---i
"' v· ~ 20>----+----+---RL=5,kl?~
vz' ~~UJ 15
v ~>, 10 v ~ 5.0
L
L
> 0
±10
±20
±30
±40
Vee. VEE. POWER SUPPL y VOLTAGE (Vdc)
FIGURE 6 - OPEN-LOOP FREQUENCY RESPONSE
+140
+120
LS:] ~ +100 1--
z
I
~ +80
UJ
"<~' +60
> +40
~ <> +20
~ ~ ~ ~
~
-20
1.0 10 100 1.0k 10k 100k 1.0M lOM 100M
I, FREQUENCY (Hz)
FIGURE 7 - OUTPUT SHORT-CIRCUIT CURRENT
versus TEMPERATURE
..,
32.-------,----.---r--..--------.-~
1 28t------t---+--+---+--+----t----1---1
124 ~~~ ~SOURCE
~~,1260
~ ~~
i12
~
~ 8.0 r----+---+--+---+--+----1-----J---l
~0 4.0 t----+---+--+-----+---+----+----t----1
~, o..___ _.___ ___.__ _.___ _.__ _..__ _,__ __._ __,
-75 -50 -25
+25 +50 +75 +100 +125
TA, AMBIENT TEMPERATURE (DC)
FIGURE. 8 - tNPUT BIAS CURRENT versus TEMPERATURE
3.2
§ 2.8 N
t----~-t----t---+---+--+----t-1----ir----;
:::::;
2.4 ~
>----+--·---+---+---+---+----+--__,I------<
0
'\....
~ 2.0 t------<Q,.f-"'r---+---+-~+---t-~-r----t-1----+
i ~.,._--+---+--+----+--~1------. 1.6 >----+-_"-J_....
~ B"' 1.2 t------t---+---+"'....,.._....-+--+----t---1------1
~
~
......
~ o.8r---r--1--t----t-"""'t-=~::::~l--4
z ~ 0.4
o,___......__ __,,___.__ _.___...__.,...___..______,
-75 -50 -25
+25 +50 +75 +1QO +125
TA, AMBIENT TEMPERATURE (DC)
@ MOTOROLA Semiconductor Products Inc.----.-----....
3-32
MC1436, MC1436C, MC1536
FIGURE 9 - INVERTING FEEDBACK MODEL zo
FIGURE 10 - NON-INVERTING FEEDBACK MODEL
z0 -o
Ao (w)-+~
When Ao (w)-+~
FIGURE 11.,... AUDIO AMPLIFIER
100k
Vee= +30 Vdc
lk 50µF
~+
CURRENT DRAIN, to "' 100 mAdc@ Rl = 51 n DJ. D2, D3 = 1N4001
----COMMON HEAT SINK
10k
FIGURE 12 - VOLTAGE CONTROLLED CURRENT SOURCE or TRANSCONDUCTANCE AMPLIFIER
WITH. 0 TO 40 V COMPLIANCE
Rl 100 k
R2 100k
+50V
r 10µF
VEE= -30 Vdc
Vo = 48 Vp-p Po= 72W(rms)@ RL =4!! Po = 36 W(rms)@ AL= 8 !!
IO.lµF 4.7
Rrc
R3
510
r-~~~~~10~0-k----t IQ I
y;-= ATc =2 mA/V
R4 100k
t Zo = RlRTC (R3 + R4)
Rl(Rrc + R3) -R2 R4
·
FIGURE 13-'REPRESENTATIVE CIRCUIT SCHEMATIC
FIGURE 14- EQUIVALENT CIRCUIT
VEE
® MOTOROLA Semiconductor Products Inc.
3-33
·
ORDERING INFORMATION
Device
MC1437L MC1437P MC1537L
Temperature Range
0°c .to +10°c 0°c to +10°c -55°C to +125°C
Package
Ceramic DIP Plastic DIP Ceramic DIP
MC1437 MC1537
HIGHLY MATCHED DUAL OPERATIONAL AMPLIFIERS
... designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.
Typical Amplifier Features: · High-Performance Open Loop Gain Characteristics AvoL = 45,ooo typical
· Low Temperature Drift - ±3 µV; 0 c
· Large Output Voltage Swing ± 14 V typical@± 15 V Supply
MAXIMUM RATINGS (TA= +25°C)
Rating Power Supply Voltage
Differential Input Voltage Range
Common-Mode Input Voltage Range
Output Short Circuit Duration
Power Dissipation (Package Limitation)
Ceramic Package
Derate above TA = +25°C
Plastic Package
MC1437P
Derate above TA = +25°C
Operating Ambient Temperature Range MC1537 MC1437
Storage Temperature_Range
Symbol Vee Vee V10R V1cR ts Po
TA
Tstg
Value +18 -18 ±5.0
±Yee 5.0
750 6.0 625 5.0
'-._.
-55 to +125 Oto +70
-65 to +150
Unit Vdc Vdc Volts Volts
s
mW mW/°C
mW
mw1°c
oc
oc
FIGURE 1 - CIRCUIT SCHEMATIC
Output 1
12 .-+--+---O 13
Output 1 Lag
DUAL MC1709
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
P SUFFIX
PLASTIC PACKAGE CASE 646
(MC1437P only)
Non:lnv. Input
Vee Output Lag B Output B Input Lag B Input Lag B
Non Inv. Input
Output 2 .Lag
1 Output 2
3-34
L SUFFIX
CERAMIC PACKAGE CASE 632 T0-116
MC1437, MC1537
ELECTRICAL CHARACTERISTICS - Each Amplifier (Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°C unless otherwise noted.)
Characteristic
Open Loop Voltage Gain (RL = 5.0 kU, V0 = ± 10 V, TA= T1ow<Dto Thigh@)
Output Impedance (f=20Hz)
Input Impedance (f=20Hz)
Output Voltage Range (RL = 10 kl!) (RL = 2.0 kn)
Input Common-Mode Voltage Range
Cornmon·Mode Rejection Ratio
Input Bias Current
(TA =, +25°Cl
~ IB=11-+- 12)
CD) 2
(TA = Tiow
Input Offset Current (110 = 11 - 12)
(110=11-12. TA·=T1ow<Dl fl10=11 -12. TA= Thigh@) Input Offset Voltage
(TA= +25°Cl
(TA= T1ow (D to Thigh@l
IStep Response Gain = 100, 5% overshoot,
/
R1 = 1 kll, R2 = 100 kl!,
IR3 = 1.5kll,C1=100pF,C2=3.0pFj
IGain= 10, 10% overshoot,
/
R1=1 kll, R2 = 10 kH ..
l R3 = 1.5 kll, C1=500pF, C2 = 20pF )
IGain = 1, 5% overshoot,
/
IR1=10kll, R2= 10kll, R3 = 1.5 kH, C1 = 5000 pF, C2 = 200 pFj
Average Temperature Coefficient of
Input Offset Voltage
(Rs= 50 H, TA= T1ow Q) to Thigh @)
(Rs~ 10 kll, TA= T1ow (Dto Thigh @l
Average Temperature Coefficient of Input Offset Voltage (TA= T1ow (Dto +25°C)
(TA= +25°C to Thigh@
DC Power Consumption (Total) (Power Supply=.± 15 V, V 0 = 0)
Positive Supply Sensitivity (VEE constant) 1
Negative Supply Sensitivity ( V CC constant)
Symbol AvoL
Zo Zi VoR
V1cR CMRR
I IB
110
V10
tTLH tPLH-tPHL
SR tTLH tPLH-tPHL
SR tTLH tPLH-tPHL
Sfj "V10/"T
"110/AT
Pc PSS+ PSS-
MC1537
Min
Typ
Max
MC1437
Min
Typ
25,000 45,000 70,000 15,000 45,000
-
3Q
-
150
400
-
-
30
50
150
±12
±14
-
±10
±13
.-
±8.0
±10
-
70
100
-
-
0.2
0.5
-
0.5
1.5
-
0.05
0.2
-
-
0.5
-
-
0.2
-
1.0
5.0
-
-
6.0
-
0.8
-
-
0.38
-
-
12
-
-
0.6
-
-
0.34
-
-
1.7
-
-
2.2
-
-
1.3
-
-
0.25
-
±12
±14
-
-
±8.0
±10
65
100
-
0.4
-
-
-
0.05
-
-
-
-
-
1.0
-
-
-
0.8
-
0.38
-
12
-
0.6
-
0.34
-
1.7
-
2.2
-
1.3
- . 0.25
-
1.5
-
-
3.0
-
-
1.5
-
3.0
-
0.7
-
-
0.7
-
-
0.7
-
0.7
-
160
225
-
160
-
10
150
-
10
-
10
150
-
10
Max
-
-
-
-
-
-
1.5 2.0
0.5 0.75 0.75
7.5 10
-
-
-
-
-
-
-
-
-
-
225
200
200
Unit
-
Sl kU Vpeak
Vpeak dB µA
µA
rnV
µs µS V/µs µS µS V/µs µS µs V/µs µV/°C
-
nA/OC
mW µVIV µVIV
Q) T1ow = o0 c for MC1437
= -55°C for MC1537
@Thigh= +10°c for MC1437 = +125°C for MC1537
MATCHING CHARACTERISTICS
Open Loop Voltage Gain Input Bias Current Input Offset Current
AvoL 1-AvoL2 11B1-11B2 1101-1102
Average Temperature Coefficient
<'>1101 <'>1102 ILiTl-1~1
Input Offset Voltage
V101-V102
Average Temperature Coefficient
<'>V101 <'>V102 1~1-1~1
Channel Separation
eo1
(f = 10 kHz)
eo2
-
±1.0
-
-
±0.15
-
-
±0.02
-
-
±0:2
-
-
±0.2
-
-
±0.5
-
-
90
-
-
±1.0
-
dB
-
±0.15
-
µA
-
±0.02
-
µA
-
±0.2
-
±0.2
-
nA/°C
-
mV
-
±0.5
-
µV/°C
-
90
-
dB
3-35
II
MC1437, MC1537
·
TYPICAL OUTPUT CHARACTERISTICS
FIGURE 3 -TEST CIRCUIT Vee= +15 Vdc, VEE= 15 Vdc, '.A= 25°C
R2 R1
FIGURE CURVE VOLTAGE
NO.
NO.
GAIN R1(!l)
4
1
1
10 k
2
10
10 k
3
100
10 k
4
1000
1.0 k
5
1
1
10 k
2
10
10.k
3
100
10 k'
4
1000
1.0 k
6
1
AvoL
0
2
AvoL
0
3
AvoL
0
4
AvoL
0
5
AvoL
0
TEST CONDITIONS R2Hll RJ(!l) C1(pf)
10 k
1.5k
5.0 k
100 k 1.5 k
500
1.0M 1.5k
100
1.0M
0
10
10 k
1.5k
5.0 k
100 k 1.5k
500
1.0 M 1.5 k
100
1.0M
0
10
"' "' ""'' "'
1.5 k 5.0 k
1.5k
500
1.5 k
100
0
10
"'
0
OUTPUT
NOISE C2(pf) (mV(tms])
200
0.10
20
0.14
3.0
0.7
3.0
5.2
- 200
0.10
20
0.14
3.0
0.7
'3.0
5.2
200
5.5
20
10.5
3.0
21.0
3.0
39.0
3.0 - -
+14
-a +12 ~ +10
~ +8.0 ~ +6.0 ~ +4.U ~ +2.0 ~ 0
0
> -2;0
lie- -4.0 ~ -6.0
ri,-8.0 ~ -10
-12
-14 10
FIGURE 4 - LARGE SIGNAL SWING versus FREQUENCY
m'1\~
CURVE 1 ~
~ ~HH
2~
~' 3 & 4
~ """,.,..... 1'
~
v I--
l_
J
~~
~
II"
r:!-
100
1.0 k
10 k
100 k
1.0M
I, FREQUENCY (Hzl
FIGURE 6 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY
FIGURE 5 - VOLTAGE GAIN versus FREQUE-NCY
+60
JI
{f L =~!
CURVE 4
+50
~
2+40
~
U.J
"'+30
<(
~ ~+20
::>
<(
+10
. - 5.0
10
100
II
TI
3
II
]
2
II
TI
1
1.0 k
10 Ii
100 k
1.0 M
I, FREOl.JENCY (Hz)
FIGURE 7 - TOTAL POWER,CONSUMPTION versus POWER SUPPLY VOLTAGE
100
1.0 k 2.0 k 5.0 k 10 k
100 k
1.0 M
I, FREQUENCY (Hz).
! 300 200
l----+t----t-
-
- +1- -- - +1- -
V0 = 0 VO LT
+------l-"---1-----l
---1---+-~---ip--~"--t
,o
t 100
~
I ./' ::z~ ~~
tC 8 50
~ 30
-
vrr, ~ 20
fcAUTION: ADDITIONAL POWER _
/
·DISSIPATION RESULTING FROM
DRIVING LOW IMPEDANCE LOADS _ _
MUST BE ADDED TO THE ABOVE
lOL----L--~~U-RV_E~~~--'--l__..l.__--.1..I_~
4.0 6.0 8.0 10
12
14 . 16 18
Vee and VEE. POWER SUPPL y (Vdc)
3-36
MC1437, MC1537
TYPICAL CHARACTERISTICS (continued)
FIGURE 8 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE
100 ,----~--------,-C-----.--------,
~
z ~ 901----------t-----+-----=..;.-""""'~=--.c-----j
60'-------1------'-------L------'
0
5.0
10
15
20
V CC and VEE, POWER SUPPLY VOLT AG.E (VOLTS)
FIGURE 9 - COMMON INPUT SWING versus POWER SUPPLY VOLTAGE
~ 18
2: 16
"2 '
~
14
UJ 12
"~' 10
>
§ 8
~ 6
~ 1--------..1~-----+------l-------1
c 2t--------t-~----+-----+-------i
>
~ O'-------'-'-------'------'--~----'
0
5.0
10
15
20
Vee and VEE. POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 10 - INPUT OFFSET VOLTAGE versus TEMPE RA TU RE
FIGURE 11 - OUTPUT NOISE VOLTAGE versus SOURCE RESISTANCE
:;:+0.6
.§
U~J+04 ~
~
~
1 1, 1
Slope can be either polarity.
~ +0.2 r--r---f'""'l"'<::::--+-~--+--+--+--+--+--+---j
~~·
~
l02
~
~ -0.4 r----r---r--+---+---+---+--+--+""',........_~+1'.---j
~
I"'
c:) -0.6
>
<l -0.8 .___..___..___..___....___....___....___....___-'----'-----'
-60 -40 -~O 0 +20 +40 +60 +80 . +100 +120 +140
TA, AMBIENT TEMPERATURE (DC)
o. 1 i;..._......i..---1.....1.1...1.1..J..11..u1UtJt1._.....1J___.J_J._11...11....1.1..ur.r.r._....;~:.i.....-.:i::r:::i..:.::.i:+-.J....u.J
100
1.0 k
10 k
100 k
Rs. SOURCE RESISTANCE (Of1MS)
FIGURE 12 - INDUCED OUTPUT SIGNAL (CHANNEL SEPARATION) versus FREQUENCY
·
· 10,000
Ill
VI v 71
IZ
~
·r-..
r'-1-. 10
-- ......
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
Induced output signal (µ,V of induced output signal in amplifier #2 per· volt of output signal at amplifier #1 ).
3-37
·
ORDERING INFORMATION
Device
MC1439G MC1439L MC1439P1 ,P2 MC1539G MC1539L
Temperature Range
0°c to +70°C 0°C to +7D°C 0°C to +70°C -55°C to + 125°C -55~C to + 125°C
Package
Metal Can Ceramic DIP Plastic DIP
Metal Can Ceramic DIP
UNCOMPENSATED OPERATIONAL AMPLIFIER
... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information see Motorola .Application Note AN-439. · Low Input Offset Voltage - 3.0 mV max · Low Input Offset Current - 60 nA max · Large Power-Bandwidth - 20 Vp-p Ou,tput Swing at 20 kHz min · Output Short-Circuit Protection · Input Over-Voltage Protection · Class AB Output for Excellent Linearity · High Slew Rate - 34 V/µs typ
FIGURE 1 - HIGH SLEW-RATE INVERTER 100 k
100 k
>--0--+---4190
SR~ 35/Vµs
+15 v -15 v
Vee VEE FIGURE 2 - OUTPUT NULLING CIRCUIT
MC1439 MC1539
OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Compensation
tl//l////lfltJ L SUFFIX CERAMIC PACKAGE
"?t~~ll!~ ~
CASE 632 (T0-116)
FIGURE 3 - OUTPUT LIMITING CIRCUIT
:....fl::.Vz - 2.1 V -0.7 v
(VEE thru Substrate on P2)
P2 SUFFIX PLASTIC PACKAGE
CASE 646 (MC1439 only)
Pl SUFFIX PLASTIC PACKAGE
CASE 626 (MC1439 only)
3-38
MC1439, MC1539
ELECTRICAL CHARACTERISTICS (Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°c unless otherwise noted.)
Characteristic Input Bias Current
(TA= +25°Cl (TA = T low <D )
Symbol '1B
MC1539
Min
Typ
Max
-
0.20
0.50
-
0.23
0.70
MC1439
Min
Typ
-
0.20
-
0.23
Input Offset Current (TA= T1owl (TA= +25°C)
(TA= Thigh<D)
11101
-
-
-
-
75
-
-
20
60
-
20
-
75
-
-
Input Offset Voltage (TA= +25°C)
(TA= T1ow· Thigh)
1v1ol
-
-
1.0
3.0
-
2.0
-
4.0
-
-
Average Temperature Coefficient of Input Offset Voltage (TA= T10 w to Thigtil
ITCv1ol
(Rs= 50 n)
-
(Rs~10kn)
-
Input Impedance (f = 20 Hz)
Zin
150
Input Common-Mode Voltage Range
V1cR
±11
Equivalent Input Noise Voltage
en
-
(Rs= 10kn. Noise Bandwidth= 1.0 Hz,
f = 1.0 kHz)
Common-Mode Rejection Ratio (f = 1.0 kHz)
CMRR
80
3.0
-
5.0
-
300
-
±12
-
30
-
110
-
-
3.0
-
5.0
100
300
±11
±12
-
30
80
110
Open-loop Voltage Gain (Vo=±10 V, R L = 1nkn, R5 = oo) (TA= +25°C to Thigh) (TA= T1owl
Power Bandwidth (Av= 1, THO~ 5%, Vo= 20 Vp-p)
(RL = 2.0 kn)
(R L = 1.0 kn, R 5 = 10 k)
Step Response
{ o,;" · 1000, "' ''""hool,
}
R1=1.0kn. R2= 1.0Mn. R3= 1.0kn.
R4 = 30 kn, R5 = 10 kn, C1=1000 pF
{°';" .1000, 15% '"'""""''
}
R1=1.0kn, R2= 1.0Mn, R3= 1.0kn.
{°';" · , R4=0,R5=10kn,C1=10pF 100, "°'"""''"'
}
R1=1.okn. R2= 100kn. R3= 1.0kn.
{°';" ·R4 = 10 kH, R5 = 10 kn, C1 = 2200 pF
10, 15% ''""ho01, ,
}
R1=1.okn. R2= 10kn. R3= 1.0kn.
R4 = 1.0 kn. R5 = 10 kn. C1=2200pF
{Go;"· 1, 15% ··~hoo1.
}
R1=10kn, R2= 10kn. R3=5.0kn.
R4 = 390 .\!, R5 = 10 k.1!, C1=2200 pF
Output Impedance (f = 20 Hz)
Output Voltage Swing
(RL = 2.0 kn. f = 1.0 kHz)
IRL = 1.0 kn, f = 1.0 kHz)
Positive Supply Rejection Ratio (VEE constant, R5 = 00)
Negative Supply Rejection Ratio
(Vee constant, R5 = "")
'
Pow~r Supply Current
(Vo= 0)
Avol
PBW
tTHL tpd SR tTHL tpd SR tTHL tpd SR tTHL tpd SR tTHL tpd SR
Zo
Vo
PSRR+
PSRR-
ice IEE
50,000 120,000
-
25,000 100,000
-
-
-
-
20
50
-
-
130
-
-
190
-
-
6.0
-
-
80
-
-
100
-
-
14
-
-
60
--
-
100
-
-
34
-
-
120
-
-
80
-
-
6.25
-
'
-
160
-
-
80
--
-
4.2
-
-
4.0
--
-
±10
-
-
-
±13
-
50
150
-
50
150
-
3.0
5.0
-
3.0
5.0
@T1ow = 0°-C for MC1439 - 55°c for MC 1539
Thigh= +10°c for MC1439 +125°C for MC1539
15,000 15,000
100,000 100,000
10
50
-
-
-
130
-
190
--
6.0
-
80
-
100
-
14
-
60
-
100
-
34
-
120
-
80
-
6.25
-
160
-
80
-
4.2
-
4.0
±10 --
-
±13 50
50
-
3.0
"' -
3.0
3-39
Max
1.0 1.5
150 100 150
7.5
-
-
-
-
-
-
-
-
-
-
-
-
---
--
-'--
-
-
-
200
200
6.7 6.7
Unit µA
nA
mV
µV/°C
kn Vpk nV/(Hz)Y,
dB
-
kHz
ns ns V/µs ns ns V/µs ns ns V/µs ns ns V/µs ns ns V/µ.s kn Vpk
µVIV µ.VIV
mAdc
·
MC1439, MC1539
·
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.I
Rating
Symbol
Value
Unit
Power Supply Voltage
Vee
+18
Vdc
Vee
+18
Differential Input Voltage Range
V1DR
±!Vee+ IVeell
Ydc
Common-Mode Input Voltage Range
V1cR
+Vcc.-IVEel
Vdc
Load Current
IL
15
mA
Output Short-Circuit Duration
,ts
Continuous
Power Dissipation (Package Limitation)
Po
I Metal Package
Derate above TA = +25°C
Ceramic Dual In-Line Package
Derate above TA = +25°C
Plastic Dual In-Line Packages MC1439
Derate above TA ';' +25°C
680
mW
4.6
mW/°C
750
mW
6,0
mw1°c
625
mW
5'.o
mW/°C
Operating Temperature Range MC1539
TA
-55 to +125
"c
MC1439
0 to +70
I
Storage Temperature Range
Tstg
oc
Metal· and Ceramic Packages
-65 to +150
Plastic Packages
-55 to +125
FIGURE 4 - EQUIVALENT CIRCUIT SCHEMATIC
FIGURE 5-EOUIVALENT CIRCUIT
FIGURE NO.
7,10,12
TYPICAL OUTPUT CHARACTERISTICS
(Vee"' +15 Vdc VEE"' -15 Vdc TA"' +25°c
CURVE NO.
·1 2
3
4
VOLTAGE GAIN
A vol '1
'!llnl
100 1000 1000
l.Ok 1.0k
T l
HST CONOITIONS (FIGURE 61
10k 10k 100k 1.0M 1.0M
I
5.0k l'.Ok 1.0k 1.0k 1.0k
I
390 1.0 k 10k 30k
0
'390 1.0k 10k 30k
0
10k 10 k
2200 2200 2200 1000
10
0
1 ,2200 2200 2200 1000 10
10 k'
' 3-40
FIGURE 6 -TEST CIRCUIT
Rt R5 VEE
MC1439, MC1539
TYPICAL CHARACTERISTICS (continued)
(Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°C, unless otherwise noted.)
FIGURE 7 - LARGE-SIGNAL SWING versus FREQUENCY
24
22
20
1: 18
~ ~ 16
~ 14
~ 12
~ 10 !c::;- 8.0
~ ~!\~
l'J' N ~
5
~
-N ~~
~~
6 f'"2' 3 ~ 4
Ri o 6.0 1-----1
>
= ].01 ~~~
~iI7 f 4.0
2.0 f------
0
1.0 k
lOk
lOOk
1.0M
f, FREQUENCY (Hz)
FIGURE 8 -OPEN-LOOP VOLTAGE GAIN versus FREQUENCY
110
a;- 100
; 90
~ 80
t-....
't--1'1-
w
~(!) 70
0 60 r-- ARROWS INDICATE
>
UNCOMPENSATED
r - - 50 g...Jc..
POLE LOCATIONS
* 40
0 3200
.J: 10
0
~ ~
l'l
~
,...
'\.~
r-..
11 j RL = 2.0 k OHMS
b..
~61'
t'
" ~ r-....
~
~
~ 5\J-
0 \
3
1'"1 21
100
1.0 k
10k
' 100k
1.0M
10 M
f, FREQUENCY (Hz)
·
FIGURE 9 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
200 300 500 700· 1.0 k
2.0 k 3.0 k 5.0 k 7.0 k 10 k
RL, LOAD RESISTANCE (OHMS)
FIGURE 10 - OPEN-LOOP PHASE-SHIFT versus FREQUENCY
20
~ ~
[[I[ 1111
40 f---------1--+--1-+++ll-1-~~l'...~+m-----+-l-+-6-l--l--l--l\,~------'>.-l-1--1-W~l~I~ 2.0lk l~~~I
! 601--t-+t-+++ltt----H-----N~it~l:"-+~:J..l4"t=tffF~J,drS-..~..~~+t++++t-----+++I1+++11
~ 80
~ ~_,~~~ttt---+--H--J+tttJ
"-i'i-l, ~ 1001--+++t+fttt-----+--+++~IB-----j---f"-l.R'H~-.....;;~3~
~ 120
~l]N f\~'~
---+-++-ttttt-----H-tti~~:--"---l\'t...ld"1'~ 140 1-----l---l---+--+--1-l-l-l-l----------l----+-l---l-l-l-l-ll--------l---l---W-l-++l------l-2A-!.\f-#~1+-"-Mtf-ffil
160 t-+-t-tti-tttt--- +-++-tttttt1--
180 t--+-t-++t+ttt----+-+-++t+ttt--+-+--+++-ttt-------+-+++t+t++--------Nf"H'l-OH-+Jj
200 ..__..._.....................___,_--L""-..............__....L....J.,..J....LJ......___._....L..J..J..U.1."---....l......J...w.l.JJ.JJ
10
100
1-0 k
10 k
100k
1.0M
f, FREQUENCY (Hz)
FIGURE 11-0UTPUT VOLTAGE SWING (to clipping) versus SUPPLY
(!)
~ 12t----+-----11-----+----l----l-~'-----+---~--l-----------'--'---'--___J
w
(!)
< ~ 11 1-----l-------1----l-----A-o > !::; ~ 10
0
ci
> 9.0 _ _.____..__......___.._....___.._...._____.__.....____.__.___-J
±12
±13
±14
±15
±16
±17
±18'
SUPPLY VOLTAGE (VOLTS)
FIGURE 12 - CLOSED-LOOP GAIN versus F~EQUENCY
60
50
~ 40
(!)
a..
~ 30 t------+-6
d!::! 20 ....:. :;£ 10
ITJ_~ ~l l4=C1O=k1O00H0MpSF
!'-
6
t-.R4=o' l -1_Ct= lO pF
TT I l 1111111
N
R4 = 10 k OHMS, C1 = 2200 pF
5
t 1
i
Hffiffi
·111mr
1 1i
~ 4
R4 = 1.0 k OHM, C1 =2200 pF
JT Hnmffimffi
t
T
1
1
~
::s_-i 3
TI ~2 R4 =390 OHMS, C1 = 2200 pF
~
T IIITTITT
1.0 k
10 k
100 k
1.0M
10 M
·
.-
f, FREQUENCY (Hz)
AcL = Closed-Loop Gain
.
3-41
MC1439, MC1539
TYPICAL CHARACTERISTICS (continued) (Vcc = +15 Vdc, VEE = -15 Vdc, TA = +25°C, unless otherwise noted.)
FIGURE 13-AcL*=1 RESPONSEversusTEMPERATURE
FIGURE 14-AcL = 10 RESPONSE versus TEMPERATURE
·
+15
~ +10
<z +5.0
...<!I
g 0
6~ -5.0 1----1--l-++H+H--+-++-l+l-ifH---1---<H-++l.UJ..--\~-l-4-W-UU
0
~ -10
<(
-15
10 k
100 k
1.0M
f, FREQUENCY (kHz)
10 M
+351---+--+-++H+t+---+-+-+-l-14-J.l.l--~~-l-+l'-l.l+.-+-~...U..u.J.J
~ +30 l---+-l-+-+~H--+-+-+-1-++H+---l---<H-++l+l+-+-+-4-+++f.l..I
z
...:.;: +251---+-l-+-+~H--+-+-+-1+1-iH+---l---<H-++l+l+-+-+-4-+++f.l..I
<!I
.+~o+J.l. l _\-l ~ ~ ti-1 -+i+.1i1~ \\l-1 ~ +20t--t-i-t++++t+--ij-+i~-+t+H+--+-i~,~~-+;--+-5+~++c++I-I
~ +151------+-+-+-e,in-~~ 100 k
TI o
t51.:
10 k -
I.J.. +
2200 pF]
+1250C
10 k-=
1.0 k
......__..__._...T. .T. .......
-5.0 .__~~....................__....__..................u.&..._..._...................u..L._....._..1-1........u.u
1.0 k
10 k
100 k
1.0M
10 M
f, FREQUENCY (kHz)
FIGURE 15-AcL = 100 RESPONSE versus TEMPERATURE
µ _ , .. J,~ 65
60
ein·
"'. -
(10)
~ 55 !-----+-
(4)
6 eo
z:.;: 50 !-----+-
~
!-----+45
0
g 40
(5:y +
8 (12)
1.0 k 3 1
2200 pF
. -= (3) 10 k
~0 35
~ 30
-550C
~·""'-' -- +25°C ,...~
<( 25
1
20 15
+1 li°1!
1T
1.0
10
100
1.0M
10 M
f, FREQUENCY (kHz)
FIGURE 16-AcL=1000 RESPONSE versus TEMPERATURE
85
1ffi' " 1 80
"' 75 z 70
·~. ~
... 65
Tl1lC T T
ein.
-
eo
1.0kr+ 30k lOOOpF
g0 60
~ 55
~ IT
~....:; 50
~~
rr_. +250C
:;:[ 45 40
r-- IT-55°C ~
35
+1250C
l I
1.0
10
100
1.0 M
10M
f, FREQUENCY (kHz)
FIGURE 17 - SPECTRAL NOISE DENSITY
250
i 200
w
~ "i5'
z 150
.1-o
~
~
~ 100
~
~
N
nr 111 ll 1~v=l~O I
f?[>
<(
>
~ 50 i
~~
~~ t -t-+-
10
100
1.0 k
10 k
f, FREOUENCY (Hz)
· AcL = Closed-Loop Gain
100 k
FIGURE 18-0UTPUT NOISE versus SOURCE RESISTANCE
100
~~3= t---
-
:r
<n t----=
VN~
~
t---
+
f---R ~
3
=~~
R1 + R2 H
R2
H
Av= Rl
>
.5
w
10 ~
R3 -
C1 R4
Rs= R3 ::::;Av-1000
lo-
"Cz ' i ~
!:; 1.0
T T
Av= 100 LL
~
0 z
Av- 10
Ilf > ~~-~(11
..li 11
0.1
0.1
1.0
10
100
Rs. SOURCE RESISTANCE (k OHMS)
3-42
MC1439, MC1539
TYPICAL CHARACTERISTICS (continued)
(Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°C, unless otherwise noted.)
FIGURE 19 - POWER DISSIPATION versus TEMPERATURE
130
120
Iz- 110
0
~ 100
ic:i
c::
90 l,..---
~ 80
~
~ 70
T vo =~ ±15 V SUPPLIES-i -- ---+-
60
50 -55
-25
0
+25
+50
+75
+100 +125
TA. AMBIENT TEMPERATURE (OC)
FIGURE 20 - POWER DISSIPATION versus POWER SUPPLV VOLTAGE
200 .-----1-.------....-------....------~
TH0=5~ r------- RL = 1.0 kn--;----=..-f"'"""'---=----l
~ 100t====:::~~t===~=====t::;;~::::~~;-:- ==-==-==-=:-j
.~§ 70 __..- -
~ .....-!
VRoL==O ~-----1
~
~
501--_-.-...-..=,.-~--~..-... ----+------1~------I
c I-""
~a: 3 0 t - - - - - - t - - - - - - - + - - - - - - l - - - - - - - '
~ 20
lO
At SrE OPERATING EA (-55 to +1251)
1·~0------:':12:------1~4-----1~6------'18
Vee AND VEE. POWER SUPPLY VOLTAGE (VOLTS)
·
FIGURE 21 - POWER BANDWIDTH (LARGE-SIGNAL SWING versus FREQUENCY)
+12F'=~=i=i:=R+ii=;:;;=i=:;::i:~;ii::;;;;;;;i:;:+;;;1:++;1~~~TTTmr-rrTT1TTTI
+10t-+-l-++++ttt--+-++~-+r----t--+--l++l-ll+---lf-++'
~ +8.0
<z.:> +6.0
~ +4.0
w <.:>
+2.0
<(
!:i
0
> -2.0
I-
~ 4.0
!::;
0
-6.0
0 >
-8.0
-10
100
,1.0k
10k
100 k
1.0 M
f, FREQUENCY (Hz)
FIGURE 22 - COMMON-MODE INPUT VOLTAGE
versus SUPPLY VOLTAGE
~U5' 18
2:. 17
w <.:>
16
<(
!:i 15
0
>
~ .14 13
g w 121-----,,,l...C..--.\-------6,....,,.~~----+---~
~ 11~:..___--+--~~=----+--_____.:.
2 2
101---::_.....q:.._ _ _+ - - - - + - - - ' - - i - - - - - - + - - - - 4
0
~ 9.0 t - - - - + - - - - t - - - - + - - - - - 1 - - - - + - - - - - 1
~ 8.0 ' - - - - - ' - - - - . L - - - - - ' - - - - - ' - - - - ' - - - - - - '
12
13
14
15
16
17
18
Vee. IVEEI. SUPPL y VOLTAGE (VOLTS)
FIGURE 23 - COMMON-MODE REJECTION RATIO versus FREQUENCY
100
1.0 k
10 k
100k
1.0M
f, FREQUENCY (Hz)
FIGURE 24 - COMMON-MOOE REJECTION RATIO versus TEMPERATURE
~ 130
0
f::
<(
~ 120
0
~
~
~ 110
AvCM
= 20
log
(~)
em CM
CMRR = IAvCM - Avoll
0
g2 ;
:::;: :::;: lOOf------'-+---+---t----11---~
8
c:: a: ~ 901...-_ _.J.__ __J__ _..___ _.1...-_ _1..-_--J_:.__ _J
-55
-25
+25
+50
+75
+100 +125
TA, AMBIENT TEMPERATURE (OC)
3-43
MC1439, MC1539
FIGURE 25 - VOLTAGE-FOLLOWER PULSE RESPONSE
·
"~ '
0
>
FIGURE 26-VOLTAGE FOLLOWER 390
Zo__J eout = Bin± Via Zin> 40 M OHMS
5.0
lO
TIME (µs)
15
20
TYPICAL APPLICATIONS
FIGURE 27 - DIFFERENTIAL AMPLIFIER
FIGURE 28-SUMMING AMPLIFIER
AF A1 e1
A2 e2
A1
AF
e2 A2
e3 A3
ForR3= ~
. *Properly Compensated
Al+ A2
FIGURE 29-+15 VOLT REGULATOR
Rs= Parallel Combination of RJ, R2. R3, Rp.
l e = _f ~ e1 + ~ e2 + ~ e3]
o Al
Az
A3
*Properly Compensated '
+30 v
2N4921 or Equiv
51 O.. lµFJ
51
lO. lµF
O;lµFI
MC1460G
For detailed information see Motorola Application Note AN·480.
10
6.8 k
.__---~~-------------+Sense
'---~---4t--------------------.a-Sense
R e t u r n · - - - ' - - - - - - - - - - - - - - - - - - _ _ _ : _ - - - - - - - - - - - - · Vo Return
3-44
MC1439, MC1539
TYPICAL APPLICATIONS lcontinuedl
FIGURE 30 - LOAD REGULATION FOR CIRCUIT OF FIGURE 29
FIGURE 31 - REGULATOR OUTPUT VOLTAGE (under pulsed load condition)
~ *
> j :E ~ -0.5 > _, ~
~ -1.0
>
-1.5 0
0
100
150
200
250
300 ~
LOAD CUR RENT (Ml LLIAMPE RES)
Horizontal. Scale: 200 µs/Div Vertical Scale: 1 mV/Div
·
3-45
·
ORDERING INFORMATION
Device
MC1456G,CG MC1456CL,L,CU,U MC1456CP1 ,P1 MC1556G MC1556L MC1556U
Temperature Range
ooc to + 70°C 0°C to +70°C 0°c to +70°C -55°C to +125°C -55°C to +125°C -55°C to +125°C
Package
Metal Can Ceramic DIP Plastic DIP
Metal Can Ceramic DIP Ceramic DIP
MC1456 MC1456C MC1556
INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATIONAL AMPLIFIER
. .. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the extern.al feedback components. For detailed information, see Application Note AN-522.
· Lo"'." Input' Bias Current - 15 nA max · Low Input Offset Current - 2.0.nA max · Low Input Offset Voltage - 4.0 mV max · Fast Slew Rate - 2.5 V/µs typ · Large Power Bandwidth - 40 kHz typ · Low Power Consumption - 45 mW max · Offset Voltage Null Capability · Output Short-Circuit Protection · Input Over-Voltage Protection
TYPICAL INPUT BIAS CURRENT AND INPUT OFFSET CURRENT versus TEMPERATURE for MC1556
'-55 -25
0
+25
+50 +75 +100 +125
TA, AMBIENTTEMPERATURE (OC)
REPRESENTATIVE CIRCUIT SCHEMATIC Vee
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G PACKAGE CASE 601
N.C.
Vee
VEE
U SUFFIX
CERAMIC PACKAGE
P1 SUFFIX . PLASTIC PACKAGE
CASE 626
88CA''"'~
Offset Null
NC
LPACKAGE Inv Input 2 -
7 Vee
CASE 632 Non-Inv. 3 -
T0-116
Input
-
v" 4
6 Output
5 o~:~r
N.C
N.C.
Vee
Output
VOLTAGE-FOLLOWER PULSE RESPONSE
OUTPUT
Vee
3-46
2µs/OIVISION
MC1456, MC1456C, MC1556
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Rating Power Supply Voltage
Differential Input Voltage Range Common-Mode Voltage Range Load Current Output Short Circuit Duration Power Dissipation (Package Limitation)
Derate above TA= +25°C Operating Temperature Range Storage Temperature Range
Symbol Vee Vee
V10R VtCR
IL ts Po
TA Tstg
MC1556
MC1456 MC1456C
+22
+lS
-22
-lS
±Vee ±.Vee
20 Continuous
680
4.6
-55 to +125
0 to +70
-65 to +150
-65 to +150
Unit Vdc
Volts Volts mA
mW mwt0 c
oc oc
ELECTRICAL CHARACTERISTICS <Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°C unless otherwise noted).
MC1556
MC1456
Characteristic
Fig. Symbol Min
Typ Max Min
Typ
Input Bias Current TA=+25°c
Its
s.o
15
15
TA= Ttow to Thigh (See Note 1)
30
Input Offset Current TA= +25°c TA= +25°c to Thigh TA= T1 0 w to +25°C
Input Offset Voltage TA =+25°c TA = T1ow to Thigh
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance Parallel Input Capacitance
110
V10
rp. Cp
1.0 2.0
5.0
3.0
5.0
2.0 4.0
5.0
6.0
5.0
3.0
6.0
6.0
Common-Mode Input Impedance (f = 20 Hz)
Zi
250
250
Common-Mode Input Voltage Range
Vt CR
±12
±13
+11
±12
Equivalent Input Noise Voltage
en
<Av= 100, Rs= 10k ohms, f = 1.0kHz, SW= 1.0Hzl
45
45
Max
MC1456C
Min
Typ Max
30
15 90
40
10
5.0
30
14
14
10
5.0
12
14
±10.5
3.0 6.0 250 ±12
45
Unit nAdc
nAdc
mVdc
Megohms pF
Megohms Vpk
.nV/(Hz)Y.
Common-Mode Rejection Ratio (f = 100 Hz)
CMRR
80
110
70
110
110
Open-Loop Voltage Gain, (Vo= ± 10 V, R L = 2.0. k ohms) TA =+25°C TA= Ttow to Thigh
4,5,6
AvoL
100,000 200,ooq -
40,000
70,000 100.000 -
40,000
25,000
100,ooq
Power Bandwidth
BWp
40
(Av= 1, RL = 2.0 k ohms, THDS5%, Vo= 20 Vp-p)
40
40
Unity Gain Crossover Frequency (open-loop)
BW
1.0
1.0
1.0
Phase Margin (open-loop, unity gain)
5,7
70
70
70
Gain Margin
5,7
1S
1S
1S
Slew Rate (Unity Gain)
SR
2.5
2.5
2.5
Output Impedance (f = 20 Hz) Short-Circuit Output Current Output Voltage Swing (R L = 2.0 k ohms)
Zo los 10 VoR
1.0
2.0
1.0 2.5
·1.0
-17, +9.q -
- -17, +9.0
-17, +9.0
±12
±13
+11
±12
±10
±12
Power Supply Rejection Ratio Vee= constant, Rs,.;;; 10 k ohms \(EE ·= constant, Rs ,.;;; 10 k ohms
PSRR+
50
100
75 200
75
PSRR-
50 100
75 200
75
Power Supply Current
DC Quieocent Power Dissipation No=O)
tee IEE
11
Po
1.0
1.5
1.0
1.5
30
45
1.3 3.0 1.3 3.0
40 90
1.3
4.0
1.3
4.0
40
120
dB VIV
kHz
MHz degrees
dB V/µs kohms mAdc Vpk µVIV
mAdc
mW
Note 1: Ttow' o0 for MC1456 and MC1456C
-55°c for MC1556
Thigh' +70°c for MC1456 and MC1456C +125°c for MC1556
·
3-47
.MC1456, MC1456C~_MC1556
·
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, VEE= -15 Vdc, TA= +250C unless otherwise noted).
g
0 24
~.
w
(!)
21
z
~ 18
w
(!)
:<; 15
0 > w 12
0
z:0::;; 9.0
:0::;; :::;; 6.0
8
I-
~
3.0
~
~ >
FIGURE 1 ~ INPUT COMMON-MODE SWING versus POWER SUPPLY VOLTAGE
y y
±3.0 ±6.0 ±9.0 ±12 ±15 ±18 ±21 ±24 Vee. VEE. POWER SUPPLY VOLTAGE (Vdc)
FIGURE 2 - SPECTRAL NOISE DENSITY
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
120
~
0
~ 100
z
0
~ 80
Ul a:
UJ
0
z:0::;; 60
:0::;;
:::;;
8
40'
~-·
~ 20
1.0
FIGURE 3 - COMMON-MODE REJECTION RATIO versus FREQUENCY
~
~ ~
~ ~ "'
10 100 1.0 k 10 k 100 k 1.0 M 10 M
FIGURE 4 - OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE
500 k .---..--'-r--..---.,---r---,--~..--~-,---...-----.
~
; 400k
t---t---1~-1-
I
I 1
MC1456
~
.MC1456C
L
~ ~ _v_-+--+---1 300 t---+--+--+-r-+--+--+.o".L'.'.J""".
-~
~
~
y ~
200 k
t---+--+---+----;..'~~----+--+--+--+---!
v ' 1 0_jlOOk 1----'F--+--+--+--+---+--+--+--+---I
0
< >
100 M
-75 -50 -25
+25 +50 +75 +100 +125 +150 +175
f, FREQUENCY (Hz)
TA, AMBIENT TEMPERATURE (DC)
FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE
+1~0
..
+120
rs_: ~ +100 ~
z
< +80
(!)
UJ
(!)
:< ;
+60
>0 +40
_j
0
<> +20
cs;] ~ ·' ~
I CSJ
-20
I'
1.0 10 100 1.0k 10k 100k 1.0M 10M 100M
f, FREQUENCY (Hz)
~IGURE 6 - OPEN-LOOP VOLTAGE GAIN
400 k .---.....--,-r--ve.,..r_su_s_s·...u.._P_P_L.,..Y_v_o~L_TA_G.,..E_s_...--+------.
~350k > - - + - - + - - - + - - + - - + - - - + - - - + - - - + - - - + - - - <
~300k i---T--T--+--T--+--+--+--+--+----f
~:; 250k t---+--+--+--+--+--+--+--+--+----f
. ~
o
200 k
l - - l - - - l - -I - + - - b~ - - - 1 - - o ! = : = * " " = 4 - - - + - - - l
g 150k t--+--~~~-----+--+--+--+--+---f
~
~ 100k t---+--+---+--+--+--+--+--+--+----1 _j
0.
50k ~
t--~+---t---+--t---,~+--+--+--+--+---1
±5.0
±10
±15
±20
±25
Vee. VEE. SUPPLY VOLTAGES (Vdc)
3-48
. MC1456, MC1456C, MC1556
TYPICAL CHARACTERISTICS (continued)
I
FIGURE 1 - OPEN-LOOP PHASE SHIFT
I'.
~ -45
ffi
~
I\.
e·
I-
~ -90
w
<"'
'
ii:
~-135
-180 1.0 10 100
I
~
~ ~
1.0k 10k 100k 1.0M f, FREQUENCY (Hz)
lOM lOOM
';ia3:' 50 .5 45
i :I-
I~- 30
c:; 25
~ 20
.iJ~S 15
~ 10
~ 5.0 9
FIGURE 8- OUTPUT SHORT-CIRCUIT CURRENT versus TEMPERATURE
~C14561
MC1456C
- r-- ~
::r::; r-
SINK
t--
SO~RCE
-75 -50 -25
+25 +50 +75 +100 +125 +150 +175
TA, AMBIENT TEMPERATURE (DC)
·
FIGURE 9 - POWER BANDWIDTH
28
~
24
["\:
Ci
~ 20
w C!J
.~ 16
~m 0>
~ 12
51-8.0 f!.---
Vout
0
f--
>
4.0 ~ -
+
2k l
-15V 1 ~
0
[
I\
" ~
~
f....J ""';
1.0
10
100
1.0 k
f, FREQUENCY (kHz)
FIGURE 10 - OUTPUT VOLTAGE SWING versus
. LOAD RESISTANCE
40
1 1 1100 k r r
:~ I?- 32
~
w
I- =
, +
rvo RL
C!J
~ 24 I- 9 1 k
VEE "="
L V"'
~
> 0
f-
~ 16
~
0
c3
=
ll
~
y 11'
> 8.0
~
TA= 25°C. THO< 5%
i--1
f;J'°kt
J
±18 V SUPPLIES
±~is~;[~
±1Jv1ulMJ
100
200
500
1.0 k
2.0 k
5.0 k 10 k
. RL. LOAD RESISTANCE (OHMS)
FIGURE 11 - POWER DISSIPATION versus
POWER SUPPLY VOLTAGE
mo S=t:~:t=i:::t:=t:~l=S=E~~:::f=E~:i:=l
70 l--+-+-+-+-+-+-+-+-+-+-+-+-1---1---t--t--t--1--t--i
50 1--t---t---t---t---t---t---t---+--t---t-t---t---t-t-t--:P...~--==t--+--i
-~
z
40 30
11----+--++--++--t+---+--++--++--++--++--++--+-+l-.+.-o+"-~+i-.+---t--.+.--r~---"+'-+----++-----++---++.-.-.+.-,~ 1Y Vo;O
vr ~o~
Ci
20 l--+-+-+-+-+-+--+--+--~~i-r:_--+-1--+---+--+---+---+---+--+--+-~
10 l:::=t:::::lt:::::1;::::::1=4::::j;~~~)/':=:::t::=:::t::=:::t:=l=::t:::t:::t:=+==+=+=+==+=I 7
a: 7.0 1--+-+-+--+-L..---+--+---+--+--+--+---+--+--+---+--+---+---+---+--t
~ 5.o 1--+-+-+-z->IF-~-+---+---+---+---+--+---+---+--+--+---+---+---+--+--+-~
~ 4.0 1--1--+--_L-'--+--+--+--+--+--+---+--+--+---+---+--+--+---+---+---+---<
~ 3.0 _L
2.0 ~v~--1---+----+---+-+-+--l--l--l--+---+----+---+-+-+---~--i
±2.0 ±4.0 ±6.0 ±8.0 ±10 ±12 ±14 ±16 ±18 ±20 ±22 Vee. VEE. POWER SUPPL y VOLTAGE (Vdc)
3-49
MC1456, MC1456C, MC1556
·
TYPICAL APPLICATIONS Where values are not given for external components they must be selected by the
designer to fit the requirements of the system.
FIGURE 12 - INVERTING FEEDBACK MODEL
FIGURE 13 - NON·INVERTING FEEDBACK MODEL
Zi
Zo
Ri
-Zo
1 + Z2;z1 zo=Zo--···
Ao (w)
IF Ao (w)-~
~ ~
IF RJ<<Zl
G
1 + ZZ/z1 zo = Zo Ao (w)
zo-o
FIGURE 14- LOW-DRIFT SAMPLE AND HOLD
+15 v
Ao (w) Z1 Zi ; 1 +Z2/z1
~= 1 + Z2/z1'
Vi
SWITCH V;
SAMPLE COMMAND
11.0µF
-- Polycarbonate
-15 v
*Oriti due to bias current is typically 8 mV/s
FIGURE.15 - HIGH IMPEDANCE BRIDGE AMPLIFIER
10 k 10 k
100 k
100 k
yo= -10 V1
3-50
MC1456, MC1456C, MC1556
TYPICAL APPLICATIONS (continued)
FIGURE 16- LOGARITHMIC AMPLIFIER
FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT
+15 v
·
See Application Note AN-261 A for further detail.
FIGURE 18 - HIGH INPUT IMPEDANCE, HIGH OUTPUT CURRENT VOLTAGE FOLLOWER
O.lµFi
V; Zj "'250 M!.1
OFFSET ~
ADJUST
0.1 µF
.._~.__~~~~~~--<.__~~~_._--VEE
x_· 470pF
Zo =100 µSl
IQ = 100 mA (max)
OUTLINE DlMENSIONS
3-51
·
ORDERING INFQRMATION
Device
Temperature Range
MC1458G,CG,NG MC1558G,NG MC1458CL,CU,L,
NL,NU,U MC1558L,NL,NU,U MC1458CP1 ,CP2,
NP1 ,NP2,P1 ,P2
0°C to +70°C -55°C to + 125°C
0°C to +70°C
-55°C to + 125°C 0°c to +70°C
Package Metal Can· Metal Can Ceramic DIP
Ceramic DIP Plastic DIP
DUAL MC.1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE
MONOLITHIC OPERATIONAL AMPLIFIERS
... designed for u5e as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.
· No Frequency Compensation Required · Short-Circuit Protection · Wide Common-Mode and.Differential Voltage Ranges · Low-Power Consumption · No Latch Up
e Low Noise Selections Offered - N Suffix
MC1458 MC1458N MC1458C
MC1558. MC1558N
(DUAL MC1741)
DUAL OPERATIONAL AMPLIFIER·
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Vee
MAXIMUM RATINGS (TA = +25°C unless otherwise noted)
Rating
Symbol
'MC1458 MC1558 Unit
Power Supply Voltage
Input Differential Volta.ge Input Common Mode Voltage (Note 1) Output, Short Circuit Duration (Note 2) Operating Ambient Temperature Range Storage Temperature R ang.e Metal, flat and Ceramic Packages
Plastic Packages Junction Temperature
Metal and Ceramic Package Plastic Package
Vee VEE V1D V1cM ts TA Tstg
TJ
+18
+22
-18
-22
±30
.t15
Continuous
o to +1or-55to+125
-65 to +150 -55 to +125
175 150
Vdc Vdc Volts Volts
oc oc
oc
Note 1. Note 2.
For supply voltages less than± 15 V, the absolute maximum input voltage is equal to the supply voltage.
Supply voltage equal to or less than 15 V.
EQUIVALENT Cl.RCUIT SCHEMATIC
P1 SUFFIX PLASTIC PACKAGE
CASE 626
0
(MC1458,MC 1458C,MC1458N)
U SUFFIX CERAMIC PACKAGE
CASE 693
l SUFFIX CERAMIC PACKAGE
CASE 632
P2 SUFFIX PLASTIC PACKAGE
CASE 646 (MC1458,MC1458C,MC 1458N)
3-52
MC1458, MC1458N_, MC1458C, MC1558, MC1558N
ELECTRICAL CHARACTERISTICS - Note 1 (Vee= 15 v VEE= 15 v TA= 25°c unless otherwise noted)
MC1558
MC1458
MC1458C
Characteristic
Symbol Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage (Rs<10k)
Input Offset Current Input Bias Current lnpu"t Resistance
V10
-
1,0 5.0 -
2.0 6.0 -
2.0 10 mV
110
-
20 200 -
- 20 200
20 300 nA
Its
-
80 500 -
- 80 500
80 700 nA
q
0.3 2.0 -
0.3 2.0 -
- 2.0 - Mn
Input Capacitance
Ci
- 1.4 -
-
1.4 -
- 1.4 -
pF
Offset Voltage Adjustment Range Com~on Mode Input Voltage Range
V10R
-
±15 -
- ±15 -
'-- ±15 -
mV
V1cR ±12 ±13 -
±12 ±13 -
±11 ±13 -
v
Large Signal Voltage Gain (Vo= ±10 V, RL = 2.0 k) (Vo= ±10 V, RL = 10 k)
Output Resistance Comnion Mode Rejection Ratio
Av 50 200 -
- --
ro
-
75 -
CMRR 70 90 -
20 200 -
-
-
-
-
75 -
70 90 -
V/mV
-
-
-
20 200 -
-
75 -
n
60 90. -
dB
(Rs< 10 k)
Supply Voltage Rejection Ratio J ms<10k)
Output Voltage Swing
(RL > 10 k) (RL > 2 k)
Output Short-Circuit Current
Supply Currents (Both Amplifiers)
Power Consumption
PSRR Vo
las lo Pc
-
30 150 -
30 150 -
30 - µV/V
v
±12 ±14 -
±12 ±14 -
±11 ±14 -
±10 ±13 - ±10 ±13 - ±9.0 ±13 -
-
20 -
- 20 -
-
20 -
mA
-
2.3 5.0 -
2.3 5.-6 -
2.3 8.0 mA
-
70 150 -
70 170 -
70 240 mW
Transient Response (Unity Gain) (V1 = 20mV, RL >2kn, CL< 100 pF) Rise Time (V1 = 20mV,HL;;. 2 kn, CL< 100 pF) 'Overshoot (V1 = 10 V, RL;;. 2 kn, CL< 100 pF) Slew Rate
tTLH
-
0.3 -
OS
-
15 -
SR
-
0.5 -
- 0.3 -
-
15 -
-
0.5 -
- 0.3 -
µs
-
15 -
%
- 0.5 - V/µs
ELECTRICAL CHARACTERISTICS (Vee= 15 V, VEE = 15 V, TA= *Thjg_h to T1ow unless otherwise noted).
MC1558
MC1458
MC1458C
Characteristic
Input Offset Voltage (R_s < 10 kn)
Input Offset Current (TA=125°Cl' (TA= -55~C) (TA= o0 c to +70°C)
Input Bias Current (TA= 125°C) (TA= -55°Cl (T.A = o°C.to +70°C)
Common Mode Input Volt~e Rari_g_e
Common Mode Rejection Ratio (R_s<10k)
Symbol Min Typ Max Min Typ Max Min Typ Max Unit
V10
1.0 '6.0
7.5
12 mV
110 7.0 200.
85 500 300
nA 400
Its
nA
30 500
300 1500
800
1000
VtcR ±12 ±13
v
CMRR 70 90
dB
Supply Voltage Rejection Ratio
(F!..s_ < 10 k)
Output Voltage Swing (RL;;. 10 k) (RL;;. 2 k)
Large Signal Voltage Gain (Vo=±10V,RL=2k)
PSRR
30 150
Vo ±12 ±14 ±10 ±13
Av 25
±12 ±14 ±10 ±13
15
±9.0 ±13
pV/V
v
V/mV'
(Vo=±10V,RL= 10k)
15
Supply Currents (Both Ampli.fiers)
lo
mA
(TA= 125°Cl
4.5
(T_A = -55°C)
6.0
Power Consumption
(TA= 125°C)
Pc
135
mW
(TA= -55°C)
180
*Thigh= 125°C for MC1558 and 70°C for MC1458, MC1458C
Ttow. = -55°C for MC1558 and o0 c for MC1458, MC1458C
Note 1. Input pins of an unused amplifier must be grounded.
® -----~---' MOTOROLA Senoiconduc·or Produc<s Inc,
·
3-53
MC1458, MC1458N, MC1458C, MC1558, MC1558N
·
NOISE CHARACTERISTICS (Applies for Me1558N and Me1458N only Vee= 15 V VEE= -15 V TA= 25°el
MC1558N
MC1458N
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Burst Noise (Popcorn Noise) (BW = 1.0 Hz to 1.0 kHz, t = 10 s,
En
-
-
20
-
-
. Rs = 100 kn) (Input Referenced)
Max
Unit
20 jµVpeak
FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE
1000
>
3
l 100
w
C/) 0
2 f-::0 Q. 2
10
w
t!f
BW = 1.0 H:7'o 1.0 kHz
v I1
FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE
100
Ti-. -nrffif
~'
i 10
llffif 1
BW = 1.0 Hz7o 1.0 kHz
0 z
f--
=>
0..
z
1.0
12
w
0
10
100
1.0 k
10 k
100 k
1.0 M
Rs, SOURCE RESISTANCE (OHMS)
0.1 10
100
1.0
lOk
lOOk
Rs. SOURCE RESISTANCE (OHMS)
1.0 M
FIGURE 3- OUTPUT NOISE versus SOURCE RESISTANCE
FIGURE 4 - SPECTRAL NOISE DENSITY
10
ti)
~
f=->-
0..
6f-0. 1
0.0 1 10
mt
:nmr :r Av= 1000
p"""
100
I 10
1.0
I-
,µ--
lZ
171
v ~ ~ ii-"
140
120
! ~ ~ 100 80
~
~~
~ 60
t---
40
TIM
Av~11.~k!1
1
20
J
0
100
1.0 k
10 k
100 k
1.0 M
10
Rs, SOURCE RESISTANCE (OHMS)
100
1.0 k
10 k
I, FREQUENCY (Hz)
100 k
FIGURE 5 - BURST NOISE TEST CIRCUIT (N Suffixed Devices Only)
100 k
1 k 100 k
To Pass/Fail Indicator
Negative
· Threshold
For· applications where low noise performance is essential, selected
Voltage
devices denoted by an N suffix are offered. These units have been
100% tested for burst noise pulses on a special noise test system.
The test. time employed .is 10 seconds and the 20 µV peak
Unlike conventional peak reading or RMS meters, this system was
limit refers to the operational amplifier input thus eliminating
especially designed to provide the quick response time essential to
errors in the closed'loop gain factor of the operational amplifier
burst (popcorn) noise testing.
under test .
.________ @ MOTOROLA Se1T1iconduct:or Product:s Inc. _________,
3.54
MC1458, MC1458N, MC1458C, MC1558, MC1558N
TYPICAL CHARACTERISTICS (Vee ::'+15 Vdc, VEE: -15 Vdc, TA: +25°C unless otherwise noted).
FIGURE 6 -POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY) 28
9- 24
~ 20
~ 16
.>...
'~ 12
~
(VOLTAGE FOLLOWER)
Tlllli ~J1illr >c:3 8.0 1--
4.0
]~
]
10
100
1.0 k
I, FREQUENCY (Hz)
ll l
\
~ ~
10 k
100 k
FIGURE 7 - OPEN LOOP FREQUENCY RESPONSE +120
+100
~ +8 0
z <( ~ +60
<(
~ +4 0
0
> ~ +2 0
<(
-20 1.0
~
~ [SJ
~ ~ ~
10
100
1.0 k
10 k
100 k 1.0M !OM
f, FREQUENCY (Hz)
·
FIGURE 8- POSITIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE
15
14 13
v v
9- 12
VI
2:. 11
~ 10
~ 9.0
> 8.0 ~ 7.0 ~ 6.0
O rl 5.0
~ 4.0
....w 3.0
2.0
~
ll
_iV
I V r1-t-'
V""
_L~
P""
1.C
100
200
500 700 1.0 k
l .ll..I. ±.15 VSUPPLIES-j
l l
±.12 v
l I
±.9 v
T
I
±.1.,H-H
1 l
2.0 k
5.0 k7.0 k 10 k
RL LOAD RESISTANCE (OHMS)
FIGURE 9 -NEGATIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE
-15...----..--r-..--r-r-....-r,..,.----.---1.--.-.-.--r-r"T"l
~ :~~====;::::::::;=~=~~~~~;::::~::1:=~=~l~_l_;..l~:;:;
~ --1l 2l1l-------ll---1-+--+~-~+-1+-+--+1-A--1-111+-i~------+t---±-.--r1+-'--5f_v+,s-u+...-.,Pl,-PT+L+l,+ES+--HIH
~ -10
lL
~ -9.0 l-----l'---+-+-+~:.61.......,,i.-'+++_ r--_-t-_,....±.112 v
c: -8.o
IL
l
~ -7.0
~ -6.o
.L ...-H-
~
I±9 v
6 -5.0
/"]
l
c:3 -4.0
P""
> -3.0
L ___,
±6V
~ -2.0
11
-1.0 .___ __..___....__.__._........_............_ __.__....__.__._........_._......
100 200
500 700 1.0 k 2.0 k
5.0 k 7.0 k 10 k
RL. LOAD RESISTANCE (OHMS)
FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)
FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER
~ ~:28 +30 VSupply t - - - +27 v
~ 22
+24 v
;;::"'- 20
~ 18 t - - - +21 v
<( 16
~ 14
+18 v
> 12 ~ 10
+15 v
~ 8.0 t - - +12 v
c:3 6.0 > 4.0
+9.0 v
2.0 ~ +6.0 v
0
+5.0 v
0 1.0 2.0
100µF
1k
10 k
Vee
200 k 200 k
50 k 50 k
3.0 . 4.0 5.0 6.0 7.0 8.0 9.0 10 RL. LOAD RESISTANCE (kr?J
@ -------~ MOTOROLA Semiconductor Products Inc.
3-55
M'C1458, MC1458N, MC1458C, MC1558, MC1558N
·
FIGURE 12 - NON-INVERTING PULSE ,RESPONSE
v-t
~ ~UTPUT
'\~
_S
i_ruT ,
lOµs/OIV
FIGURE 13-,-- TRANSIENT RESPONSE TEST CIRCUIT
.>--o-----t~- To Scope (Output)
105
100
~ 95
2
~ 90
w
"'<(
~ 85
i > 80
FIGURE 14 '-OPEN LOOP VOLTAGE GAIN versus SUPPLY. VOLTAGE
- ~-j
I
z _.....r
L 2 .L
k""
(..---
75
I
70 0 2-0 4,0 6,0 8,0 10 12 14 16 18 20 Vee. 1VEE1. SUPPLY VOLTAGES (VOLTS)
@ MOTOROLA S~mico.,dilc<or Produc<s Inc. __________.
3-56
ORDEl'.UNG INFORMATION
Device
MC1458SG MC1458SL MC1458SP1 MC1458SP2 MC1458SU MC1558SG MC1558SL MC1558SU
Temperature Range
0°C to +70°C 0°C to +70°C 0°C to +70°C 0°c to +70°C 0°C to +70°C ....:55°c to + 125°C -55°C to + 125°C -55°C to +125°C
Package
Metal Can Ceramic DIP Plastic DIP Plastic DIP Ceramic DIP
Metal Can Ceramic DIP Ceramic DIP
MC1458S MC1558S
DUAL HIGH SLEW"RATE INTERNALLYCOMPENSATED OPERATIONAL AMPLIFIERS
The MC1558S is functionally equivalent, pin compatible, and possesses the same ease ~f use as. the popular MC1558 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D/A converters due to its fast settling time and high slew rate.
· High Slew Rate - 10 V/µs Guaranteed Minimum (for inverting unity gain only)
· No Frequency Compensation Required · Short-Circuit Protection · Offset Voltage Null Capability · Wide Common-Mode and Differential Voltage Ranges · Low Power Consumption · No Latch-Up
TYPICAL APPLICATION OF OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A 0-TO-A CONVERTER
MSB
A1 5 A2 6 A3 7 A4 8
A5 9 A610 A711
LSB A812
Vcc=5.ov 13 14' 15
3
V ref = 2.0 Vdc R1=R2~1.0ki1.
Ro= 5.0 ki1
V'EE = -15 V
Ro
c·
Settling time to within 1/2 LSB (±19.5 mV) is approximately 4.0 µs from the time that all bits are switched. *The value of C may be selected to minimize overshoot
and ~inging (C "'68 pF).
Theoretical Vo
[. Vo= Vref (Ro) ~;~+~+~+~+~+~+~]
R1
2 4 8 16 32 64 128 256
Adjust Vref· R1 or Ro so that Vo with all digital inputs at high level is equal to 9.961 volts.
V o =2 -v (5k) [ -1+1- +1 - + 1 - + 1 . - + 1 - +1 - +1- ] =lOV [ -2= 5591 .961V
1 k
2 4 8 16 32 64 128 256
256
DUAL OPERATIONAL AMPLIFIERS
SI LICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Vee
-~. Output A ·
·, Output B
8 I nlvneprtuint.Ag.
2
. . ....,,.
· . ._...
6 Ilnnvpeurtt1i..ng
Non-Inverting '
Input A
·
VEE
' Non-Inverting Input 8'
LSUFFIX CERAMIC PACKAGE
CASE 632 T0-116
P2SUFFIX PLASTIC PACKAGE
CASE 646 (MC1458S only)
·
Offset " Adjust A
Inverting Input A ·
No'n-lnverting Input A
VEE
Ouptut B
Offset } Adjust B
Inverting Input B Non-Inverting Input B
P1SUFFIX
..
PLASTIC PACKAGE
CASE 626
(MC1458SOnly)
·
U SUFFIX CERAMIC PACKAGE
CASE-693
Inverting Input A
Non-Inverting 3 Input A
VEE 4
6 Inverting Input B
5 Non-Inverting Input B
-3-57
MC1458S, MC1558S
·
MC1558S LARGE-SIGNAL TRANSIENT RESPONSE (Inverting Mode)
STANDARD MC1558 versus MC1558S RESPONSE COMPARISON (Inverting Mode)
1.0µs/Div.
% REPRESENTATIVE CIRCUIT SCHEMATIC
Vee
Inverting
Input
5k
Non inverting Input
Offset Null
Offset Null
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating Power Supply Voltage
<D Input Differential Voltage Range
Input Common-Mode Voltage Range<a)
Output Short Circuit Duration
Operating Ambient Temperature Range
Storage Temperature Range
Junction Temperature
Ceramic and Metal Package Plastic Package
Symbol
Vee Vee
V1DR V1cR
ts TA Tstg TJ
MC1558S
MC1458S
~ +22
+18
-22
-18
±30
±15
Continuous
-55 to +125
Oto +70
-05 to +150 -05 to +150
175
175
150
150
Note 1. For supply voltages less than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage.
Note 2~ Supply voltage equal to or less than 15 Vdc.
·
@ MOTOROLA Se,;.,lconductor Produ~t· Inc.
3-58
Unit Vdc
Volts Volts
oc oc oc oc
MC1458S, MC1558S
ELECTR ICAL CHARACTERISTICS (Vee= +15 Vdc, VEE= -15 Vdc, TA = +25°c unless otherwise noted l
Characteristic
Power Bandwidth (See Figure 3) Av'= 1, R L = 2.0 k.n, THO= 5%; Vo= 20 V(p-p)
Large-Signal Transient Response Slew Rate (Figures 10 and 11) V(-) to V(+) V(+) to V(-) Settling Time (Figures 10 and 11)
(to within o: 1%)
Symbol BWp
SR
tsetlg
MC1558S
Min
Typ
Max
150
200
MC1458S
Min
Typ
150
200
10
20
10
12
3.0
10
20
10
12
3.0
Small-Signal Transient Response
(Gain= 1, Ein = 20 mV, see F iguras 7 and 8)
Rise Time Fall Time Propagation Delay Time Overshoot
Short-Circuit Output Currents
Open-Loop Voltage Gain (R L = 2.0 .kn) (See Figure 4) Vo= ±10 V
Output Impedance (f = 20 Hz)
Input Impedance (f = 20 Hz)
Output Voltage Swing RL=10kn RL = 2.'o kn
tTLH tTHL
tPLH·tPHL OS
0.25 0.25 0.25
20
ios
±10
±35
Avol Zo
50;000 200,000 75
Zi
0.3
1.0
Vo
±12
±14
±10
±13
0.25 0.25 0.25
20
±10
20,000 0.3
100,000 75 1.0
±12
±14
±10
±13
Max ±35
Unit kHz
V/µs µs
µs µs µs % mA
.n M.n Vpk
Tnput Common-Mode Voltage Swing Common-Mode Rejection Ratio (f = 20 Hz) Input Bias Current (See Figure 2)
Input Offset Current
Input Offset Voltage (Rs=~ 10 kn)
DC Power Consumption (See Figure 9) (Powe~ Supply= ±1!) V, Vo,;, 0)
Positive Voltage Supply Sensitivity (VEE constant)
Negat_ive Voltage Supply Sensitivity (Vee constant)
V1cR CMRR
±12
±13
70
90
±12
±13
Vpk
70
90
dB
11B
nA
200
500
200
500
11101 1v1ol
30
200
1.0
5.0
nA
30
200
mV
2.0
6.0
Pc
mW
70
150
70
170
PSS+
2.0
150
µVIV
2.0
150
PSS-
10
150
µVIV
10
150
··Plastic package offered in limited temperature range device only.
ELECTRICAL CHARACTERISTICS (Vee= 15 Vdc. VEE= -15 Vdc, TA = -55 to +125°C for MC1558S and TA= Oto 70°C for
MC1458S, unless otherwise noted.)
Characteristic Open Loop Voltage Gain
Vo=±10V
Symbol AvoL
Min 25,000
MC1558S Typ
Max
MC1458S
Min
Typ
15,000
Max
Unit VIV
Output Voltage Swing RL = 10 k.n RL = 2 kn
Input Common-Mode Voltage Range
Commo.1-Mode Rejection Ratio (f = 20 Hz)
Input Bias Current TA= 125°c TA= -55°C
TA= oto 10°c
Input Offset Current TA= 125°c TA= -55°C
TA= oto 10°c
Input Offset Voltage Rs.; 10 kn
Vo V1cR CMRR
l1B
110
V10
±12
±12
±10
±10
±12
70
200
500
500
1500
30
200
500
6.0
Vpk
~k dB
nA
800 nA
300
7.5
mV
DC Power Consumption Vo= OV
Pc
200
mW
Positive Power· Suoply Sensitivity
Pss+
150
VEE£-15V
µVIV
Negative Power Supply Sensitivity
Pss-
150
Vee= 15 v
µVIV
@ MOTOROLA fiJemiconduc'f:or Produc'f:s.lnc. _ _ _ _ _ ____.
3-59
·
. .
-
MC1458S,~MC1558S
·
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°e unless otherwise noted.)
FIGURE 1 - OFFSET ADJUST CIRCUIT
Inputs
Terminals
·Not available with G and
P1 Suffix Packages.
FIGURE 2 - INPU,T BIAS CURRENT versus TEMPERATURE
400
~
.,........ '
t- 350
~~e:; 300
u·
""........ ~
~ 250 iXi ~ 200
~ 150
ffi 100
.............t--.....
"" ~
>
<(
~ 50
0 -75 -50 -25
+25 +50 +75 T, TEMPERATURE (OC)
+100 ·125
FIGURE 3-POWER BANDWIDTH - NONDISTORTED OUTPUT VOLTAGE versus FREQUENCY
+20
~
~ +15
0
::c
t- +10 ~
v
r\
cc +5.0 ~
J'\i..
w
C!)
~
> -5.0
i/
~
!::; -10
IJ
0
~"" -1510
100
1.0 k
10 k
100 k
1,0 M
I, FREQUENCY (Hz)
FIGURE 4 - OPEN-LOOP FREQUENCY RESPONSE +120
+100
~ +80
2
~ +60
w
C!) <(
~ +40 > ~ +20
<(
-20 1.0
~
LS:
LS: cs;:
~ ~
10
100
1.0 k
10 k
100 k 1.0 M 10 M
I, FREQUENCY (Hz)
FIGURE 5 - OUTPUT NOISE versus SOURCE RESISTANCE
Rs. SOURCE RESISTANCE (OHMS)
@ M~T(:)ROLA Semiconductor Products Inc. ____________,
3-60
MC1458S, MC1558S
TYPICAL CHARACTERISTICS
(Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°e unless otherwise noted.)
FIGURE 6- SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS
20 mV r-----------.
FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE
Input
%
50
50%
Gnd
Overshoot
~OS
90%
Output 50%
Input
,-;:____
l' J
Vee 0.1 µ.F
~
0.1 µ.F
Vee
~
-15 :v
2k RL
, - , O u t p u t
'I I
r~ pF
tTLH
Overshoot VOS
Rise Time
FIGURE 9 - LARGE-SIGNAL TRANSIENT WAVEFORMS
FIGURE 8 - POWEReONSUMPTION versus POWER SUPPLY VOLTAGES
70
! 50 40 c2 30
ti: ~ 20
g 2
a:
~ 10
c a._ 7.0 ~
5.0 4.0 3.0
2.0
L
6.0
10
14
18
Vee and VEE. POWER SUPPL y VOLTAGE (VOLTS)
+10V ,.------'--------.
Input 50%
Slew Rate V(+) to V(-) (Measurement
Period)
1~ Slew Rate
(~(:1s~~e~~~t Period)
90% Allowable
Error Band
22
FIGURE 10 - SLEW RATE AND SETTLING TIME TEST CIRCUIT* 10 k*
Vee= 15 v
+10~n
=-;ovL
Input
Output
·
10 k*
·Match to within 0.01%.
False Summing
Node
1N916 or Equivalent
Inputs of Amplifier Not Under Test Should Be Grounded.
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ ___.
3-61
MC1458S, MC15588
·
SETTLING TIME
In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling ti me.
SETTLING TIME MEASUREMENT
In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1 % of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.
The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression
.J tsetlg = x2 +·y2 + z2
can be used to determine the actual amplifier settling time, where tsetlg =observed settling time
x = amplifier settling time (to be determined) y = false summing junction settling time z =oscilloscope settling time It should be remembered that to settle within ±0.1 % requires 7RC time constants. The ±0.1% factor was chosen for the MC1558S settling time as it is compatible with the ±1/2 LSB accuracy of the MC1508L-8 digital-to-analog converter. This 0-to-A converter features ±0.19% maximum error.
TYPICAL APPLICATION
FIGURE 13- 12.5-WATTWIDEBAND POWER AMPLIFIER
+15 v
FIGURE 11 - WAVEFORM AT FALSE SUMMING NODE
>
> 0
E
""""''
1.0µs/OIV FIGURE 12 - EXPANDED WAVEFORM AT
FALSE SUMMING NODE
Input 1.1 k
MCL1304 or Equivalent
(Current Limiting Diode)
300 pF
MPS-A12·· 24 k or Equivalent
MJE1100 or Equivalent
0.33
10 k·
0.33
O.J";, ERROR BAND
10 k
-15V
Delivers 12.5 watt into 4.0 ohms with less than 1% THO to 100 kHz. Pins not shown are not connected.
·.Bias cunent adjustment to eliminate Crossover Distortion. ··Epoxy .to power transistor heat sink or case for maximum Thermal Feedback.
Circuit diagrams utilizing Motorola products ar·e included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been car:efully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such-information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
@ MOTOROLA Semiconduc'for Produc'fs Inc. ----------'
3-62
ORDERING INFORMATION
Device
MC1709CF· MC1709CG MC1709CL,CU MC1709CP1 ,CP2 MC1709F,AF MC1709G,AG MC.1709L,AL,U
Temperature Range
0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +10°c -55°C to +125°C -55°C to +125°C -55°C to + 125°C
Package
Ceramic Flat Metal Can
Ceramic DIP Plastic DIP Ceramic Flat Metal Can Ceramic DIP
MC1709 MC1709A MC1709C
OPERATIONAL AMPLIFIER
... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedbacl< components.
· High·Performance·Open Loop Gain Characteristics Avoi'= 45,000 typical
· Low Temperature Drift .c... ±3.0 µV!°C typical (MC1709) · Large Output Voltage Swing - ±14 V typical@ ±15 V Supply · Low Output Impedance - z0 = 150 ohms typical
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
PIN CONNECTIONS
·
MAXIMUM RATINGS ITA ; +25°c unless otherwise noted.)
Rating
Symbol Value
Power Supply Voltage
Vee
+18
VEE
-18
Input Differential Voltage Range
V10R
±5.0
Input Common-Mode Range
V1cR
±10
Output Load Current
IL
10
Output Short-Circuit Duration
ts
5.0
Power Dissipation (Package Limitation) Metal Can Derate above TA; +25°c
Po 680 4.6
Flat Package
500
Derate above TA ; +25°c
3.3
Plastic Dual In-Line Packages (MC1709C only)
625
Derate above TA ; +25°C
5.0
Ceramic Dual In-Line Package
750
Derate above TA ; +25°c
6.0
Operating Ambient Temperature.Range
MC1709A, MC1709 MC1709C
TA -55to+125
o to +70
Storage Temperature Range Metal and Ceramic Packages Plastic Packages
Tstg
-65to +150 -55 to +125
Unit Vdc
Volts Volts mA
s
mW
mwt0 c
mW
mwt0 c
mW
mwt0 c mwt0c mwt0 c
oc
oc;
FIGURE 1.- EQUIVALENT CIRCUIT SCHEMATIC
vcc
INPUT COMPENSATION
OUTPUT
G SUFFIX METAL PACKAGE
CASE 601
F SUFFIX CERAMIC PACKAGE
CASE 606-04 T0-91
N.C.1~10N.C.
In Freq. Comp. 2
g In Freq. Comp.
Inv. Input 3
. -
8 ..Vee
Non-Inv. In 4
+
7 Output
VEE 5
6 Out Freq.
Comp.
P1SUFFIX PLASTIC PACKAGE
CASE 626
(MC1709Conly)
~
I
~
U SUFFIX CERAMIC PACKAGE
CASE 693
Input Freq. Comp.
Input Freq.
Inv. Input
Non-Inv. Input 3
5 Output Freq. Comp.
L SUFFIX CERAMIC PACKAGE
CASE 632-02 T0-116
2.4 k
10 k
----'-----'--O OUTPUT
COMPENSATION
Output 9 Output Freq.
Comp. 8 N.C. '--'-----'--'
P2SUFFIX PLASTIC PACKAGE
CASE 646 (MC1709C only)
3-63
MC1709, MC1709A, MC1709C
·
ELECTRICAL CHARACTERISTICS !unless otherwise noted, 9.0V:s;;;vcc:s;;;15 V, -9.0 V ;;.;i.vee ;;,;i.-15 V, TA= 25°Cl
Characteristic
Input Offset Voltage <Rs..;; 10 knl
Input Offset Current Input Bias Current lnP.ut Resistance Output Resistance Power Supply Currents
!Vee= 15 v. Vee,,,; -15 Vl Power Consumption
!Vee= 15 v. Vee= -15 vl Transient Response
!Vee= 15 v. Vee= -15 Vl See Figure 8 Risetime Overshoot
Symbol V10
MC1709A
Min
Typ
Max
-
0.6
2.0
, 110
-
10
50
119
-
100
200
Yj
350
700
-
ro
-
150
-
ice.lee
-
2.5
3.6
Pc
-
75
108
MC1709
Min
Typ ~ Max
-
1.0
5.0
-
50
200
-
200
500
150
400
-
-
150
-
-
-
-·
-
80
165
tTLH
-
OS
-
-
1.5
-
0.3
1.0
-
30
-
10
30
Unit mV
nA nA kn n mA
mW
µs %
ELECTRICAL CHARACTERISTICS (unless otherwise noted, 9.0v~Vee~15 V, -9.0 v ;;.;i.vee ;;.;i.-15 v. TA= -55°c to +125°Cl
MC1709A
MC1709
Characteristic
Input Offset Voltage !Rs.;;; 10 kfl)
Symbol
Min
Typ
Max
Min
Typ
Max Unit
V10
-
-
3.0
-
-
6.0
mV
Average Temperature Coefficient of Input Offset Voltage LN1ot<>T
!Rs= 50 n. TA= 25°c to 125°cl
·-
1.8
10
-
-
µV/fYC
-
I Rs = 50 n, TA = -55°C to 25°Cl
-
1.8
10
-
-
-
!Rs= 50 n. TA= -55°c to 125°c1 !Rs= 10 kn, TA= 25°C to 125°CI !Rs= 10 kn.TA= -55°c to 25°c1 !Rs= 10 kn.TA= -55°c to 125°c1
-
-
-
-
3.0
-
-
2.0
15
-
-
-
-
4.8
25
-
-
-
-
-
-
-
6.0
-
Input Offset Current (TA= -55°CI (TA= 125°c1
110
nA
-
40
250
-
100
500
-
3.5
50
-
20
200
Average Temperature Coefficient of Input Offset Current <>110/<>T.
nA/°C
ITA = -55°C to 25°cl
-
0.45
2.8
-
-
-
-ITA= 25°C to 125°c1
-
0.08
0.5
-
-
-
Input Bias Current
119
-
300
600
-
500
1500
nA
!TA= -55°Cl
Input Resistance (TA= -55°c1
Input Common-Mode Voltage Range
Yj
85
170
-
40
100
-
k.n
V1cR
±8.0
±10
-
±8.0
±.10
-
v
!Vee= 15 v. Vee= -15 v1 Common Mode Rejection Ratio
(Rs :s;;;10 knl
Supply Voltage Rejection Rati.o !Vee= 15 v. Vee= -15 v, Rs~ 10 kn)
CMRR
. 80
110
-
70
PSRR
-
40
100
-
90
-
dB
25
150
µVIV
Large Signal Voltage Gain
!Vee= 15 v. Vee= -15 v. RL ;;.;i.2.0 kn,
Vo=±15VI
Output Voltage Range
v. !Vee= 15 Vee= -15 v1
-
j
(Rl_ ;;,;i.10 knl
(RL~2.0 knl
Av VoR
25
45
70
25
45
70
V/mV
v
±.12
±.14
-
±.12
±14
-
±10 . ±13
-
±10
±.13
-
Power Supply Currents !Vee= 15 v. Vee= -15 vi !TA= -55°CI (TA= 1?5°Cl
ice/lee
mA
-
2.7
4.5
-
-
-
-
2.1
3.0
-
-
-
Power Consumption !Vee= 15, Vee= -15 v1 !TA= -55°Cl !TA= 125°c1
Pc
mW
-
81
135
-
-
63
90
-
-
-
-
-
3-64
MC1709, MC1709A, MC1709C
ELECTRICAL CHARACTERISTICS I unless otherwise noted, Vee= 15 V, Vee= -15 V, TA= 25°CI
MC1709C
Characteristic Input Offset Voltage
(Rs..;:; 10 kn, 9.0 v..;:; 15 V, -9.0 v;;. Vee;;. -15 VI
Symbol
Min
Typ
V10
-
2.0
Input Offset Current Input Bias Current
110
-
100
l1B
-
300
Input Resistance Output Resistance Power Consumption
q
50
250
ro
-
150
Pc
-
80
Large Signal Voltage Gain . (AL;;. 2.0 kn, Vo= ±10 VI
Av
15
45
Output Voltage Range (AL ;;;;.10 kn) (AL ;;;;.2.0 knl
VoR
±12
±14
±10
±13
Input Common-Mode Voltage Range Comrrion Mode Rejection Ratio
!Rs..;;;1ow1
V1cR CMRR
±8.0 65
±10 90
Supply Voltage Rejection Ratio !Rs ..;:10 kn)
PSRR
-
25
Transient Response ~e Figure 8 Rise Time Overshoot
TTLH
-
0.3
OS
-
10
Max 7.5
500 1500
-
200
-
-
200
-
Unit mV
nA nA kn n mW V/mV
v
v dB
µVIV
µs %
·
ELECTRICAL CHARACTERISTICS (unless otherwise specified, Vee= 15 V, Vee= -15 V, TA= o0 c to 10°c1
MC,1709C
Parameter
Symbol
Min
Typ
Max
Input Offset Voltage !Rs.:;; 10 kn, 9.o v.:;; Vee..;:; 15 v. -9.o v;;. Vee? 15 V)
Input Offset Current Input Bias Current Large Signal Voltage Gain
(AL;;. 2.0 kn, Vo= ±10 V) Input Resistance
V10
-
110
-
l1B
-
Av
12
ri
35
-
10
-
750
-
2.0
-
-
-
-
Unit mV
nA µA V/mV
kn
TYPICAL CHARACTERISTICS
FIGURE 2 - TEST CIRCUIT (Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°C)
R2
Fig. No.
Curve No.
3
1
2 3 4
4
1
2 3 4
5
1
2
3
4
Rl(g)
10 k 10 k 10 k 1. 0 k
1.0 k 10 k 10 k 10 k
0 0 0 0
Test Conditions
R2(g) ~(g)
10 k 100 k 1. 0 M 1.0 M
1.0 M
1. 0 M 100 k
10 k co co
co co
1. 5 k 1. 5 k 1. 5 k
0
0 1. 5 k 1. 5 k 1. 5 k
1. 5 k 1. 5 k 1. 5 k
0
C1 (pF)
5.0 k 500 100 10
10 100 500 5.0 k
5.0 k
500 100
10
C2(pf)
200 20 3.0 3.0
3.0 3.0
20 200
200 20 3.0 3.0
3-65
MC1709, MC1709A, MC1709C
·
FIGURE 4 - CLOSED LOOP VOLTAGE
1 _ _ __ FIGURE 3 - LARGE SIGNAL SWING versus FREQUENCY
28~~~~-,~~-~1\-r\
120
i 24t--+--+-l-++-~l--~1-H-++---+--+-+++-~~-++~~I---++
i
~
2l06lt-----++-----++---+1--++-++_--_-,4-1_-.-1._'r.l_+++t-H-1----1+---+-24+~+[+.-_+_~.~_l.~.~~4~-_+,-_-_+-.-.-_1.-_+.+
100
a:> 80
z
<t
t!l
60
UJ
t!l
i rm I~ ~ ~s" ~ 12t--+--+-l-++__,1--r++4---+--+-~~H+--4---11~>-HH----l--l-++I 8.0i---+--+-_......._
t<!l ~ 40 0 >
<> 20
GAIN versus FREQUENCY
~ 4·:10~0-'--'-l.-U.--'-'-'-1-'-'-:'-.,.-Lf'.-'-~'-L'l'--'-:t-.i.::oof'...__.}...Jt-'-L+..<:~:.S..~-L.:±;:IM.J1'-
-20
1.0 k
10 k
100 k
1.0 M 10 M
100
1.0 k
10k
100k
1.0M
10 M
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
120
100
~ 80
z
<t
t!l 60
UJ t!l
<~ 40 0 >
<> 20
FIGURE 5 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY
1
RL =~
f, FREQUENCY (Hz)
FIGURE 7 - SLEW RATE versus CLOSED LOOP GAIN
USING RECOMMENDED COMPENSATION NETWORKS
'100
Vs=±15V
50
20
¥-] 10
> ~ 5.0 ~
~ 2.0
"' 1.0
7~
I.Z
J..f'
v
0.5 IL
0.2
0. 1 1.0
10
100
1000
CLOSED LOOPGAIN(VOLTS)
100
~
z
<t 90
t!l
UJ
'<""
~
0
>
80
a..
g 0
70
*::>
<
60 0
FIGURE 6 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE
5.0
10
15
20
Vee and VEE. POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 8 - TRANSIENT. RESPONSE TEST CIRCUIT 10 k
3-66
ORDERING INFORMATION
Device
MC1712F MC1712G MC1712L MC1712CF MC1712CG MC1712CL MC1712CP
Temperature Range
-55°C to + 125°C -55°C to +125°C -55°C to + 125°C
0°c to +70°C O"C to +70°C 0°c to +70°C 0°C to +70°C
Package
Ceramic Flat Metal Can
Ceramic DIP Ceramic Flat
Metal Can Ceramic DIP Plastic DIP
WIDEBAND DC AMPLIFIER
. designed for use as an operational amplifier utilizing operating characteristics as a function of the external feedback components.
· Open Loop Gain AVOL = 3600. typical
c . · Low Temperature Drift - ±2.5 µVt0
· Output Voltage Swing :..... ±5.3 V typical@ +12 V and -6 V Supplies
= · Low Output Impedance - z0 200 ohms typical
MC1712 MC1712C
WIDEBAND DC AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
·
GSUFFIX METAL PACKAGE
CASE 601
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Rating
Symbol
Value
Power Supply Voltage
1vcc1+1vee1
(Total bet-n Vee and Vee terminals)
Input Differential Voltage Range
v,
Input Common Mode Range
V1cR
Peak Load Current
Power Dissipation (Package Limitation) Metal Package Oerate abo\/e TA = +25°c Flat Ceramic Package Derate above TA = +25°C Dual In-Line Ceramic Package Derate above TA = +25°c
Operating Ambient Temperature Range
MC1712 MC1712C
Storage Temperature Range
IL Po
TA Tstg
21
±5.0 +1.5 -6.0 50
680 4.6 500 3.3 625 5.0 I
-55 to +125 0 to +75
-65 to +150
CIRCUIT SCHEMATIC
Unit Vdc
Volts Volts
mA
mW mW/°C
mW mW/°C
mW mW/°C
oc
oc
F SUFFIX CERAMIC PACKAGE
CASE 606 T0-91
N.C. 1 E i 1 0 Vee
Gnd 2
9 N.C.
Inv. Input 3
-
Non-Inv. Input 4
+
8 Output 7 Lag Comp.
Vee 5
.
6 Lead Comp.
P SUFFIX PLASTIC PACKAGE
CASE 646
LSUFFIX CERAMIC PACKAGE
CASE 632 T0-116
3-67
MC1712, MC1712C
·
MC1712 ELECTRICAL CHARACTERISTICS ITA= 25°C unless otherwisl! specified)
/
Characteristic
Symbol
Vee= 12 v, Vee= -6.o v
Min
Typ
Max
Input Offset Voltage (Rs.;;; 2 kn)
Input Offset Current
Input Bias Current
Input Resistance
Input Voltage Range
Common Mode Rejection Ratio IRs..;; 2 kn, f.;; 1 kHz I
Large Signal Voltage Gain IRL;;. 100 kn, Vout = ±6.0 VI IRL;;. 100 kn, Vout = ±2.5 VI
Output Resistance
/
Supply Current IVout = 0)
Power Consumption IVout = 0)
Transient Response (Unity·Gain) (C1 = 0.01 µF, R1 = 20 n, RL.;; 100 kn, Vin= 10 mV, CL..;; 100 pF) Rise Time Overshoot
Transient Response (x100 Gain) (C3 = 50 pF, RL;;;. 100 kn, Vin= 1 mV) Rise Time Overshoot
V10 110 l1B
fj
V1 CMRR
AvoL
ro lo Pc
tTLH OS
tTLH OS
-
0.5
2.0
-
180
500
-
2.0
6.0
16
40
-
-4.0
-
+0.5
80
100
-
2000 -· -
-
3600
-
200 5.0
90
6000
-
500 6.7
120
-
25
120
-
10
50
-
10
30
-
20
40
The following specifications apply for -55°C..;; TA..;; +125°C:
Input Offset Voltage (Rs..;; 2 kn)
Average Temperature Coefficient of Input Offset Voltage (Rs= 50 n, TA= 25°c to 125°c1 (Rs= 50 n, TA =-25°c to -55°CI
Input Offset Current (TA = +125°CI ITA = -55°Cl
Average Temperature Coefficient of Input Offset Current ITA = 25°c to +125°c1 ITA = 25°C to -55°CJ
Input Bias Current (TA= -55°CI
Input Resistance
Common Mode Rejection Ratio (Rs..;; 2 kn, f.;; 1 kHz)
Supply Voltage Rejection Ratio
IVcc= 12 v. Vee= -&.o v to Vee,= 6.o v.
Vee= -3.0 v. Rs..;; 2 knl
Large Signal Voltage Gain (RL;;. 100 kn, Vout = ±5.0 VI IRL;;;. 100 kn, Vout = ±2.5 VI
Output Voltage Swing (RL;;. 100 kn) IRL;;.10 kn)
Supply Current ITA = +125°C, Vout = 01 ITA = ,..55°c. V 0ut = 01
Power Consumption ITA= +125°c. Vout = 01 ITA = -55°c. V 0ut = OI
V10 /W10/6.T
llQ
6.110/6.T l1B
fj
CMRR'
PSRR AvoL
Vo
lo
Pc
-
-
-
6.0 70
-
2000 -
±6.0 ±3.5
-
-
-
-
2.5 2.0
80 400
1.0 3.0
4.3
-
95
75
-
-
±5.3 ±4.0
4.4 5.0
80 90
3.0
10 10
500 1500
6.0 16
10
-
-
200
7000
-
-
6.7 7.5
120 135
Vee= 6.o v, Vee= -3.o v
Min
Typ
Max
-
0.7
3.0
-
120
500
-
1.2
3.6
22
67
-
-1.5
-
+0.5
80
100
-
-
-
-
600
900
1500
-
300
700
-
2.1
3.3
-
19
30
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4.0
-
3.5
15
-
3.0
15
-
50
600
-
280
1500
-
0.7
4.0
-
20
13
-
2.6
7.5
8.0
-
-
70
95
-
-
76
200
- -_ -
500
-
1760
±2.5
±2.7
-
±1.5
±2.0
-
-
1.7
3.3
-
2.1
3.9
-
16
30
-
19
36
Unit mV nA µA. kn v dB
n mA mW
ns %
ns %
mv
µV/°C µV/°C
nA nA
nAi0c nA!°C
µA kn dB
µV/V
v v mA mA mW mW
®· _______ _ . Produc~s MOTOROLA Sen1/condu<rtor
Inc.
3-68
MC1712, MC1712~
MC1712C ELECTRICAL CHARACTERISTICS ITA= 25°c unless otherwise specified)
Characteristic
Symbol
Input Offset Voltage (Rs.;; 2 knl
Input Offset Current
Input Bias Current
Input Resistance
Input Voltage Range
Common Mode Rejection Ratio (Rs.;; 2 kn, f.;; 1 kHz)
Large Signal Voltage Gain (RL;;;. 100 kn, Vout = ±5.0 VI (RL ;;;> 100 kn, Vout = ±2.5 VI
Output Resistance
Supply Current (Vout = 01
Power Consumption (Vout = 01
Transient Response (Unity-Gain) (C1=0.01 µ.F, R1=20 n. RL .. 100 kn, V;ri = 10 mV, CL<;; 100 pF) Rise Time Overshoot
Transient Response (x100 Gain) (C3 = 50 pF. RL;;;. 100 kn, Vin= 1 mV) R4se Time Overshoot
V10 116 l1B q V1 CMRR
AvoL
ro lo Pc
tTLH OS
tTLH OS
The following specifications apply for o 0 c .;;; TA .;;; +10°c:
Vee= 12 v. Vee= -6.o v
Min
Typ
Ma~
-
1.5
5.0
-
10 -4.0 70
2000
-
-
0.5 2.5 32
-
92
3400
-
200 5.0
2.0 7.5
-
+0.5
-
,
6000
-
600 6.7
-
90
120
-
25
120
-
10
50
-
10
30
-
20
40
Input Offset Voltage (Rs.;;; 2 knl
Average Temperature Coefficient of Input Offset Voltage (Rs= 50 n. TA= +10°c to o0 c)
Input Offset Current
Average Temperature Coefficient of Input Offset Current (TA= 25°c to +10°c)
o ITA = 25°c to 0 c1
Input Bias cu·rrent (TA= 0°CI
Input Resistance
Common Mode Rejection Ratio (Rs.;;; 2 kn, f.;;; 1 kHz)
Supply Voltage Rejection Ratio (Vee= 12 v. Vee= -6.0 v to Vee= 6.0 v.
Vee= -3.o v. Rs.;;; 2 knl
Large Signal Voltage Gain (RL;;;. 100 kn, Vout = ±5.0 V) (RL;;;. 100 kn, Vout = ±2.5 VI
Output Voltage Swing (RL;;;. 100 kn) (RL;;;. 10 kn)
Supply Current (Vout = 01
Power Consumption (Vout = 0)
V10 LIV10/LIT
110 lll10/LIT
l1B q CMRR
PSRR AvoL
Vo
lo Pc
-
-
-
-
-
-
6.0 6.5
-
1600
-
±5.0 ±3.5
-
-
-
5.0
-
4.0 6.0 4.0 18 86
90
-
-
±5.3 ±4.0 5.0 90
6.5
20 2.5
10 20 12
-
300 7000
-
7.0 125
Vee= 6.o v. Vee· -3.o v
Min
Typ
Max
-
1.7
6.0
-
0.3
2.0
-
1.5
5.0
16
55
-
-1.5
-
+0.5
70
92
-
-
-
-
500
800
1500
-
300
800
-
2.1
3.3
-
19.
30
-
-
-
-
-
-
-
-
-
-
-
7.5
-
7.5
25
-
, -
2.5
-
3.0
8.0
-
5.5
18
-
2.7
8
9·.o
27 - -
65
86
-
-
90
300
-
-
-
400
-
1750
±2.5
±2.7
-
±1.5
±2.0
-
-
2.1
3.9
-
19
35
Unit mV µ.A µ.A kn
v
dB
n mA mW
ns %
ns %
mV
µ.V/°C µ.A
nA/0 c nA!°C
µ.A kn dB
µ.V/V
v
v mA mW
·
@ -------~ .MOTOROLA Se,..iconductor Products Inc.
3-69
MC1712, MC1712C
·
TYPICAL OUTPUT CHARACTERISTICS
(Vee a 12 Vdc, Vee= -6.0 Vdc, TA= +25°CI
FIGURE 1 - OPEN LOOP GAIN versus POWER SUPPLY VARIATIONS
45001 .----~---~--~---~---
FIGURE 2 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY
2500~--..-l..---.J...._--..-l..---.J...._----I
10
11
12
13
14
15
Vee. POWER SUPPLY VOLTAGE (VOLTS)
10 k20 k 50 k100 k
1.0 M
I, FREQUENCY (Hz)
10 M
JOO M
FIGURE 3 - VOLTAGE GAIN versus FREQUENCY
iii ~_2+201--~-+---+--+-+--+-++++-~-+---+--+_....+-1-.+-+-1--~-+---+--+-i.-~-U-l----+----l.--I
er:
R1"' 1.0 k, R2 = 10 k, R1 = 150 Q. C1 = 1500 pf
<!I
~ +10t----+-----4---4-+-+-++++----+-----+---+--+-+-++++----+----+---+--+~-U-l-----l-----l.--I
~
§ oi--~-+---+--+...+-H-i-++-~-+---+--+-+--+-+-+-+-+-~-+---+--+-+-ri-++++-----+----+--1
J
R1 "" 1.0 k, R2 = 1.0 k, R1 = 22 Q, C1 = 0.01 µJ
0.1
1.0
2.0
5.0
10
100
200
I, FREQUENCY !MHz)
FIGURE 4 - MAXIMUM OUTPUT SWING versus FREQUENCY
12
~
~
1-Curv71
2:. JO
<z!I
Curve 2
i"' 8.0
~ !~::; 6.0
~
' "
is 4.0
Q
Curve 3
"' "'
0 >
2.0
~
~
Curve Avol 1 100 2 10
Rt tu> 1.0k 1.0 k
R2(!?l
100k 10 k
R1<u> Ct 390 430 pF 150 1500pf
3 1.0 1.0 k LO k 22 O.ot µF
R2
- R1 .....
-~
~
R1 R2
R1 +R2 R1
' r ~~ "-.~ IBn
.,..
J
..,.
l
ffi t--
rttffi l J l
0.01
0.1 0.2
0.5 1.0
IO
I, FREQUENCY !MHz)
FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE'
RL. LOAD RESISTANCE (OHMS)
....,_______ @ MOTOROLA Se;.,,ic;onducf:or Producf:s Inc.
·3-70
MC1712, MC1712C
TYPICAL CHARACTERISTICSlcontinuedl
FIGURE 6 - INPUT BIAS CURRENT versus TEMPERATURE
4.0
FIGURE 1 - INPUT OFFSET CURRENT versus TEMPERATURE
0.6
l.... ~ a
i u--"<1--------------------t 1
....
~
~ 0.4 ....
~ +12 V, -6.0 V Supplies
~ 2.0
i..i.i.
~
~
~-0.21~ ~
-
~
r-;--;--~,___._~
r-.i..._
o.._~.__~-~~·o_l_,-_3_.o_l_s_up_p_lil_s~--~--~_,_~_._~__,
-60 -40 -20
+20 +40 +60 +80 +100 +120 +140
-60 -40 -20
+20 +40 +60 +80 +100 +120 +140
TA, AMBIENT TEMPERATURE (°C)
TA, AMBIENT TEMPERATURE (°C)
FIGURE 8 - INPUT OFFSET VOLTAGE versus TEMPERATURE
FIGURE 9 - OUTPUT NOISE VOLTAGE versus SOURCE IMPEDANCE
10
·
> 0
z >
o.__~..__._.........................._~__.~........_.__.............._~_.__...........................
-40 -20
+20 +40 +60 +80 +100 +120 +140
10 20
50 100
TA, AMBIENT TEMPERATURE (°C)
R5. SOURCE RESISTANCE (OHMS)
.________ @ MOTOROLA Semiconductor Products Inc.
3-71
See last page of data sheet for ordering information.
MC1741, MC1141~ MC1741N, MC1741NC
·
INTERNALLY COMPENSATED, HIGH PERFORMANCE· OPERATIONAL AMPLIFIERS
. .. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.
· No Frequency Compensation Required · Short-Circuit Protection · Offset Voltage Null Capability · Wide Common-Mode and Differential Voltage Ranges · Low-Power Consumption · · No Latch Up · Low Noise Selections Offered - N Suffix
MAXIMUM.RATINGS (TA= +25°C unless otherwise noted)·
Rating
Symbol
MC1741C MC1741 Unit
Power Supply Voltage
Input Differential Voltage Input Common Mode Voltage (Note 1) Output Short Circuit Duration (Note 2) Operating Ambient Temperature Range Storage Temperature Range Metal, Flat and Ceramic Packages
Plastic Packages
Vee Vee
V10 V1cM
ts TA Tstg
+18
+22
Vdc
-18
-22
Vdc
±30
Volts
±15
Volts
Continuous
Oto +70 -55to+125 oc oc
-65 to +150 -55 to +125
Junction Temperature Range Metal and Ceramic Packages Plastic Packages
TJ
oc
175
150
Note 1, Note 2.
For supply voltages less than± 15 V, the absolute maximum input voltage is equal to the supply voltage.
Supply volt'lge equal to or less than 15 V.
EQUIVALENT CIRCUIT SCHEMATIC
Vee
..--.-~~~~-.-~~.-~~~~--~~~~~-.-o
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
NC
O f f s e t N u · e, lV·ee
lnvt Input '
' Output
+; · Noninvt Input '
Offset Null
Vee
(Top View)
P1 SUFFIX PLASTIC PACKAGE
CASE 626 (MC1741C,MC1741 NC)
USUFFIX CERAMIC PACKAGE
CASE 693
~
Offset Null~' NC
lnvt Input '
' Vee
Nonlnvt Input ' ·
Vee ·
· Output
' Offset Null
(Top View)
LSUFFIX CERAMIC PACKAGE
CASE 632 T0-116
P2SUFFIX
·
PLASTIC PACKAGE
.
CASE 646
(MC1 741 C,MC1 741 NC)
·. - .
OFFSET NULL
25 50
3-72
F SUFFIX CERAMIC PACKAGE
CASE606-04 T0-91
Offset NN ull 2C·~·N·C NC
Inputs:
·
~·~~~ut
vEE·::::·on,.,N""
·
(Top View)
MC1741, MC1741C, MC1741N, MC1741NC
ELECTRICAL CHARACTERISTICS IVee= 15 v Vee= 15 v TA= 25°c unless otherwise notedl.
MC1741
MC1741C
Characteristic Input Offset Voltage
(Rs:E;;10kl Input Offset Current Input Bias Current Input Resistance ln'put Capacitance Offset Voltage Adjustment Range Common Mode Input Voltage Range Large Signal Voltage Gain
(Vo= ±10 V, RL ;;;oi.2.0 kl Output Resistance Common Mode Rejection Ratio
(Rs:E;;10k)
Symbol Min
Typ
Max
Min
Typ
Max
V10
-
1.0
5.0
-
2.0
6.0
11.Q_
-
20
200
-
20
200
11B
-
80
500
-
80
500
ri
0.3
2.0
-
0.3
2.0
-
Ci
-
1.4
-
-
1.4
-
V10R -
±15
-
-
±15
-
V1cR ±12
±13
-
±12
±13
-
Av
50
200
-
20
200
-
ro
-
75
-
CMRR
70
90
-
-
75
-
70
90
-
Supply Voltage Reje1:;tion Ratio (Rs:E;;10 k)
PSRR
-
30
150
-
30
150
Output Voltage Swing (RL;;;oi.10kl (RL;;;oi.2 kl
Output Short-Circuit Current Supply Current Power Consumption
Vo
±12
±14
-
±10
±13
-
los
-
lo
-
20
-
1.7
2.8
Pc
-
50
85
±12
±14
-
±10
±13
-
-
20
-
-
1.7
2.8
-
50
85
Transient Response (Unity Gain - Noi:i-lnverting) (V1 = 20 mV, RL;,. 2 k, CL<;;; 100 pF) Rise Time (V1.= 20 mV, RL _. 2 k, CL.;; 100 pF) Overshoot (V1=10 V, RL _. 2 k, CL.;; 100 pF) Slew Rate
tTLH
-
0.3
-
OS
-
15
-
SR
-
0.5
-
-
0.3
-
-
15
-
-
0.5
-
Unit mV
nA nA MO pF f!1V
v
V/mV
n
dB
µVIV
v
mA mA mW
µs
% V/µs
ELECTRICAL CHARACTERISTICS IVcc= 15 v vEE= 15 VTA= *Thi9_h t0 Tlow un ess otherw1·se noted.)
Input Offset Volt~ge ~(Rs :E;; 10 k.QI
Characteristic
MC1741
I Symbol Min
Typ
Max
V10
-
1.0
6.0
MC1741C
Min
Typ
Max
-
-
7.5
Unit mV
Input Offset Current
(TA= 125°C)
ITA =-55°Cl
o (TA = 0 c to +10°c1
110 -
7.0
2~
-
85
500
-
-
-
-
nA
-
-
-
-
-
300
Input Bias Current ITA = 125°Cl (TA= -55°Cl
(TA = o0 c to +10°c1
Common Mode Input Voltage Range
Common Mode Rejection Ratio (Rs:E;;10k)
l1B
-
-
30
500
-
-
300
150q
-
-
-
-
-
V1cR ±12
±13
-
-
CMRR
70
90
-
-
nA
--
-
-
-
800
--
v
-
-
dB
Supply Voltage Rejection Ratio (Rs :E;;10 k)
Output Voltage Swing (RL;;;oi.10k) (RL;;;oi.2 k)
Large Signal Voltage Gain (RL;;;oi.2k, Vout=±10V)
PSRR
-
30
150
-
-
-
µVIV
Vo
±12
±14
-
±10
±13
-
Av
25
-
-
v
-
-
-
±10
±13
-
15
-
-
V/mV
Supply Currents ITA = 125°Cl (TA= -5s0 cl
Power Consumption ITA,. +125°Cl (TA = -55"Cl .
lo.
mA
-
1.5
2.5
..;.
-
-
-
2.0
3.3
-
-
-
Pc
--
45
75
-
60
100
-
--
-
mW
-
*Thigh· 125°C for MC1741 and 70°c for MC1741C
T1ow · -55°C for MC1741 and o0 c for MC1741C
®------.,,.j MOTOROLA Serniconduc~or. Products Inc.
·
3-"73
MC1741, MC1741C, MC1741N, MC1741NC
NOISE CHARACTERISTICS (Appr1es f or MC1741N and MC1741NC on Iy, V~= 15V, V~=-15V,TA=+250 C)
MC1741N
MC1741NC
Characteristic
Burst Noise (Popcorn Noise)
(BW = 1.0 Hz to 1.0 kHz, t = 10 s, Rs = 100 k)
(Input Referenced)
~mbol Min
T_m_ M_ax Min
Tvo
Max
En
-
-
20
-
-
20
Unit µ.V/peak
II
FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE 1000
! 100
w
<I)
0 z
~
~ 10 .j
BW =1.0 Hz to 1.0 kHz
~
0
10
100
1.0 k
10 k
100 k
I.OM
Rs. SOURCE RESISTANCE (OHMS)
FIGURE 2 _;RMS NOISE versus SOURCE RESISTANCE 100
1±ttlfft J_
1± lI:IlL J_
BW = 1.0 H~·;~ 1.0 kHz
~
llL
l1Il.
WL
lllL
± ± 0.1
l
11J1±1UiiIlLt
J_J_
lWlL
llilt
10
100
1.0 k
10 k
100 k
I.OM
Rs. SOURCE RESISTANCE (OHMS)
FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE 10
> 5 us ~ 1.0
w
<I)
0 z ~·
....
c:::> 0.1 .j
illL
ll1lL l
AV= 1000
iZ
-i;;o
1 10
1.0
....
n
l;tl
"
IL
J...1
~ !""'
FIGURE 4 - SPECTRAL NOISE DENSITY
140
120
\j~ ~ 100
! 80
l'N 0
z 60
~
"" N
~ 40
Jlill
Av~,J.~kn
±
20
0.01
J.
0
10-
100
1.0 k
10 k
100 k
1.0M
10
Rs. SOURCE RESISTANCE (OHMS)
100
1.0 k
10 k
I, FREQUENCY (Hz)
100 k
FIGURE 5 - BURST NOISE TEST CIRCUIT (N Suffixed Devices Only)
100 k
Positive Threshold
100 k
1 k 100 k
To Pass/Fail Indicator
Negative
Threshold
For applications where low noise performance is essential, selected
Voltage
devices denoted by an N suffix are offered. These units have been
100% tested for burst noise pulses on a special. noise test system.
The test time employed is 10 seconds and the 20 µV peak
Unlike conventional peak reading or RMS meters, this system was ·
limit refers to the operational amplifier input thus eliminating
especially designed to provide the quick response time essential to burst (popcorn) noise testing.
errors 1in the closed-loop gain factor of the operational amplifier
under test.
'
@ -------~ MOTOROLA Semiconductor Products Inc.
3-74
~C1741, MC1741C, MC1741N, MC1741NC
TYPICAL CHARACTERISTICS
(Ve~·= +15 Vdc, VEE= -15 Vdc, TA= +25°C unless otherwise noted).
FIGURE 6 -POWER BANDWIDTH
(LARGE SIGNAL SWING versus FREQUENCY)
28
'Iii a. 24
~
~ 20
~ 16
>
I-
::i 0..
12
I-
::i
Till II 0
(VOLTAGE FOLLOWER)
6 >
8.0 ~ lll ~HD
4.0 0
]~
]
10
100
1.0 k
f, FREQUENCY (Hz)
~ 1 ~ r;,..
10 k
100k
FIGURE 7 - OPEN LOOP FREQUENCY RESPONSE +120
+100
~ +80
z <( ~ +60
C< l !:i +40 0 > ~ t20 <
-20 1.0
~
~
~ rs
~
10
100 1.0 k 10 k 100 k t. FREQUENCY (Hz)
"1.0 M 10 M
FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING
versus-LOAD RESISTANCE
15~-~~~~~~~~--~-~-1~~~~
14~-__j,__-!-__J.__J.-l-_(_j.~V_J.-""""::::=j::::=t:~±7.15~V~S~U~~~L~IE~S~~
13f--~-+~+--+-+-f-+--tivH-~-+---+----+1-+---Hl-+-H
tQ. 12f----4--+---+--+-+-+17-A--l--+----l---+-1+--1--+-+-1--H llf------jl--t--i-i-t-/:l-J.~-H,----t-~-f=±~l2~V:=F=F::i:=F~
~ 10 r------+----ll----l---+u--E-,""lo"H-+---+--+--11-+-++-+-+-1 ~ 9.0 t-----<c------+---+-)-+.,,--+-+...._....---+---+---+---+---+-<-+--......
~
!:::;
8.0
7 .o
f---11--+--+Jl''..L4j.--+-+.-+t-:H t----+----<'>-u-_i_V'.._..-+-._._._,____
.
!
._._.-._-+_--+--+1-1±_9-._i..-_V_.-_t_-+._l_-l..-..H..
g ~
0
654..00.t0---1-__,-,--~r---.!.L-..._.._J.,.rjjlLL-.-___J,,b__J__-.l,_-_.._......f......._..._l._ 44._ ...-.-,+=-~-=-=+t-=±=6t:I=VF+=t-+=l+=-l+=-t=
2.0~ j 3.0 i------:...S-F'---+-1i-1-++-l-H----+'---+--_J+-+--f--+-+-H
1.CIOO
200 ~
500 700 1.0 k 2.0 k
5.0 k 7.0 k 10 k
.RL, LOAD RESISTANCE (OHMS)
FIGURE 9 -NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
-15 -14
-1 3
]II-
-;;.. -12
>o.. -1 1
;:;;- -1 0
;C:l:l -9.0 c5 -8.0 ~ -7.0
a. -6.0
51-5.0
ci -4.0
7 ) IJ....
~
17
j 1--1-
;z_ ~
>
-3.0 -2.0
'./
~
-1.0 100 200
500 700 1.0 k
i
±.15 V SUPPLIES
±
J.2v
1
±9V
j
±6V
J J
2.0 k
5.0k 7.0k 10k
AL LOAD RESISTANCE {OHMS)
II
FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)
FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER
28 +30 V Supply
26
~ 24t - - +27 v
~~ 22
z 20
+24 v
18 t - - +21 v
~ 16
!:i 14
+18 v
>0 12
~ 10
+15 v
!::; 8.0 t - - +12 v
~ 6.0 > 4.0
+9.0 v
2.0
t--
+6.0 +5.0
v v
00 1.0 2.0
100 µF
1 k
10 k
Vee
200 k 200 k
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 RL LOAD RESISTANCE (k!}J
@ MOTOROLA SemicondUctor Products Inc. --------
3-75
MC1741, MC1741C, MC1741N, MC1741NC
FIGURE 12 - NON-INVERTING PULSE RESPONSE
·
1
1
~TPUT
\
lOµs/OIV
FIGtlRE 13 - TRANSIENT RESPONSE TEST CIRCUIT
To Scope (Input)
>--<J>-------· To Scope (Output)
105
100
~ 95
z
<t:l 90
w t:l
~ 85
. 0
> ~ 80
FIGURE 14 - OPEN LOOP VOLTAGE GAIN versus SUPP.LY VOLTAGE
~
.......-r
z lL
.xL
~
75
70 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 Vee. 1Vee1. SUPPLY VOLTAGES (VOLTS)
ORDERING INFORMATION
Device
MC1741CF,NCF MC1741CG MC1741CL MC1741CP1 MC1741CP2,
NCP1, NCP2 MC1741CU,NCU MC1741F,NF MC1741G,NG MC1741L,NL MC1741U,NU MC1741NCG MC1741NCL
Alternate
LM741CD,µA741HC LM741CD,µA741DC LM741CN, µA741TC
Temperature Range
0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C
0°c to +70°C
-·ss0c to +12s0c
-,55°C to +125°C -55°C to +125°C -55°C to + 125°C
0°C to +700C 0°c to +70°C
Package
Ceramic Flat Metal Cari
Ceramic DIP Plastic DIP Plastic DIP
Ceramic DIP Ceramic Flat
Metal Can Ceramic DIP Ceramic DIP
Metal Can Ceramic DIP
Circuit diagrams utilizing Motorola produ~ts are included as a means of illustrating ,typical semiconductor applications; consequently, complete information sufficient for construction purposes is n<?t
necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described· any license under the patent rights of Motorola Inc. or others..
'--------.@ -------~ MOTOROLA Semiconductor Products Inc.
3-76
ORDERING INFORMATION
Device
MC1741SG MC1741SU MC1741SCG MC1741SCP1 MC1741SCU
Temperature Range
-55°C to +125°C -55°C to + 125°C
0°c to +70°C 0°C to +70°C 0°c to +70°C
Package
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP
MC1741S MC1741SC
HIGH SLEW-RATE INTERNALLY-COMPENSATED OPERATIONAL AMPLIFIER
The MC1741S/MC1741SC is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1741 circuit, yet offers 20 times higher slew rate and power bandwidt.h. This device is ideally suited for D-to-A converters due to its fast settling time and high·slew rate.
· High Slew Rate - 10 V/µs Guaranteed Minimum (for unity gain only) · No Frequency Compensation Required · Short-Circuit Protection · Offset Voltage Null CaP,ability · Wide Common-Mode and Differential Voltage Ranges · Low Power Consumption · No Latch-Up
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601-02
(Top View)
TYPICAL APPLICATION OF OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A 0-TO-A CONVERTER
vcc=s.ov 13
V ref= 2.0 Vdc R1=R2"=1.0kl! Ro= 5.0 kl!
MSB
A3
A6 A7 LSB AB
P1 SUFFIX PLASTIC PACKAGE
CASE 626
U SUFFIX CERAMIC PACKAGE
CASE 693
NULLM8 OFFSET
NC
INVT INPUT 2
7 Vee
NONINVT INPUT 3 4
Vee
OUTPUT 5 OFFSET NULL
(Top View)
Pins not shown are not connected.
Settling time to within 1/2 LSB (±19.5 mV) is approximately 4.0 µs from the time ,that all bits are 5Witched. *The value of C may be selected to minimize overshoot and ringing (C"" 150 pf).
Theoretical Vo
vo = RVr1ef <Roi
[A2l
A2 +4
A3 +3
A4 +16
A5 +32
A6 +54
\2A87
AB] +256
Adjust Vret. R1 or Ro so that Vo with all digital inputs at high level is equal to 9.961 volts.
Vo=2-v(5k) (1-+1-+1-+1-+1-+1-+-1+-=1 l]OV [2- 55) =9.961V
1 k
2 4 8 16 32 64 128 256
256
·
MC1741S LARGE-SIGNAL TRANSIENT RESPONSE
STANDARD MC1741 versus MC1741S RESPONSE COMPARISON
>
>Ci
.0,;
3-77.
lOµs/DIV
MC1741S; MC1741SC
·
INVERTING INPUT
CIRCUIT SCHEMATIC vee
MAXIMUM RATINGS (TA= +2s0 c unless otherwise noted.)
Power Supply Voltage
Rating
Differential Input Signal Voltage
Common-Mode Input Voltage Swing (See Note 1)
Output Short-Circuit Duration (See Note 2)
Power Dissipation (Package Limitation) Metal Package Derate above TA = +25°C Plastic Dual In-Line Package Derate above TA = +25°C
Operating Ambient Temperature Range
Storage Temperature Range Metal Package Plastic Package
Symbol Vee VEE Vio V1cR ts Po
TA Tstg
Value
1 MC1741SC
MC1741S
+18 -18
I +22 -22
±30
±15
Continuous
680 4.6 625 5.0
Oto +75 1-55 to +125
-65 to +150 -55 to +125
Note 1. For supply voltages less than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage. Note 2. Supply voltage equal to or less than 15 Vdc.
Unit Vdc
Volts Volts
mW mW/°C
mW mw/°C
OC
cc
FIGURE 1 - OFFSET ADJUST CIRCUIT
vee
INPUTS
OUTPUT
OFFSET NULL TERMINALS
FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE - 400
; 1 350
300
"'<( 250
iii
I-
~
200
!:
w 150
<.::>
~ 100
>
<(
~
so
0 -75
-25
+25 +50 +75 +100 +125
T, TEMPERATURE (OC)
.__________ @ Pr~ducts MOTOROLA Se"'.iconductor
Inc.
3-78
MC1741S, MC1741SC
ELECTRICAL CHARACTERISTICS !Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°C unless otherwise noted.)
MC1741S
MC1741SC
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Power Bandwidth (See Figure 3) Al/= 1, RL = 2.0 kn, THO= 5%, Vo= 20V(p-p)
BWp
150
200
-
150
200
Large-Signal Transient Response Slew Rate (Figures 10 and 11) V(-) to V(+) V(+) to V(-) Settling Time (Figures 10 and 11) (to within 0.1%)
SR
10
20
-
10
12
-
tsetlg
-
3.0
-
10
20
10
12
-
3.0
Small-Signal Transient Response
(Gain= 1, Ein = 20 mV, see Figures 7 and 8) Rise Time Fall Time Propagation Delay Time Overshoot
Short-Circuit Output Currents
tTLH
-
0.25
-
-
0.25
tTHL
-
0.25
-
-
0.25
- IPLH,tPHL
0.25
-
OS
-
20
-
-
0.25
-
20
ios
±10
-
±35
±10
-
Open-Loop Voltage Gain IA L · 2.0 kW (See Figure 4) Vo· ±10 V, TA· +25°C Vo= ±10V, TA= T10w* toThig_h*
Output Impedance (f ~ 20 Hz)
Avol Zo
50,000 200,000
-
25,000
-
-
-
75
-
20,000 15,000
-
100,000
-
75
Input Impedance (f ~ 20 Hz)
z'i
0.3
1.0
-
0.3
1.0
Output Voltage Swing
Vo
RL = 10 kn, TA= T1ow to Thigh (MC1741 Sonly)
±12
±14
-
RL = 2.0 kU, TA= +25uC
±10
±13
-
AL= 2.0 kn, TA= Tiow to Th!g_h
±10
-
-
Input Common-Mode Voltage Range
V1CR
±12
±13
-
TA = Ti ow to Thigh (MC1741 Sl
Common-Mode Rejection Ratio (f = 20 Hz)
CMRR
70
90
-
±12
±14
±10
±13
±10
-
±12
±13
70
90
TA= T1 0w to Thigh (MC17415) Input Bias Current (See Figure 2)
TA= +25°C and Thigh TA= T1ow Input Offset Current TA= +25°C and Thigh TA= T1ow Input Offset Voltage !Rs = ,,;;;; 10 kn) TA= +25°C TA= T10~ to Thigh
11B
-
200
500
-
200
-
500
1500
-
l -
11101
-
30
200
-
30
-
-
500
-
-
IV1ol
-
1.~
5.0
-
2.0
-
-
6.0
-
-
DC Power Consumption (See Figure 9)
(Pomr Supply= ±15 v., v0 =0)
TA= T1ow to Thigh
Pc
-
50
85
-
50
Positive Voltage Supply Sensitivity (VEE constant) TA= T10 w to Thigh on MC1741S
PSS+
-
2.0
100
-
2.0
Negative Voltage Supply Sensitivity (Vee constant)
PSS-
-
10
150
-
10
*T1ow = 0 for MC1741 SC = -55 °c for MC1741S
Thigh= +7o0c for MC1741SC =+125°c for MC1741S
Max
-
-
-
-
-
±35
-
-
-
-
-
-
500 800
200 300
6.0 7.5
85
150
150
Unit kHz
V/µs µs
µs µs µs % mA
-
!2 MS! Vpk
Vpk dB nA
nA
mV
mW
µVIV
µVIV
·
@ MOTOROLA Seniiconduc·or Products Inc.--------
3-79
MC1741S, MC1741SC
·
TYPICAL CHARACTERISTICS
!Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°C unless otherwise noted.I
FIGURE 3- POWER BANDWIDTH - NONDISTORTED OUTPUT VOLTAGE versus FREQUENCY
+20
~
~ +15 c
:i::
I- +10
il'i
v
a: +5.0 ~
N ~
!LY
ll1
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
I.OM
FIGURE 5 - NOISE versus FREQUENCY
~ 120t----t--+-++ttt1+---+-t-+++++tt---+-+-+-t-++++r-~--+-+-t~.+i
~
w Ui0t----t--+-++ttt1+---+-++++++tt---+-+-+-+-++++i-~--+-+-t~.+i
I\, ~
Av=lOO
~ 80~= 10 k t---+--t-t-H+ttt--t-+-1-++++t+-+-+-++H-++l
~cz 6400t---~ -t--+"-"-H"tot:H1"'oo::--+-t-+++++tt--t-+-+-t+t++r-~-t-+-t+tt~
~ ~
20t---+-
A~~~100
Rs= 100
l~ 1 --~ -t-t='1"t-+4$1E..~._""""+.,._.~..!::l::+++1K---+-+-+4+1+H
fWllJ
i--
100
1000
10 k
100 k
f, FREQUENCY (Hz)
FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS
20mvr----------,
FIGURE 4- OPEN-LOOP FREQUENCY RESPONSE
+120
+100
~ +80
h
z
~ +60
w <.!> ct ~ +40
0 >
.'.C;i +20
-20
1.0
10
~ ~ ~ [S
~
100
1.0 k
10 k
100 k I.OM lOM
f, FREQUENCY (Hz)
FIGURE 6-0UTPUT NOISE versus SOURCE RESISTANCE
3.5
3.0 2.5
A~= ~o1
\I
F1
rv\I/
2.0
v .L"
1.5
i..-H-'
1.0
l---1
Al~~~~
0.5
~~v=l
Ji. _]),:
I.Ok
10 k
100 k
Rs, SOURCE RESISTANCE (OHMS)
FIGURE 8 - SMALL-SIGNAL TRANSIENT RESPONSE TEST CIRCUIT
INPUT
5()'',. Pinsnotshownarenotconnected
OUTPUT
INPUT
r·~1
2k RL
RISE TIME
------- ® MOTOROLA Se,..fconductor Products Inc. ________,
3-80
MC1741S, MC1741SC
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°C unless otherwise notedJ
FIGURE 9 ~ POWER CONSUMPTION v~rsus POWER SUPPLY VOLTAG ES
I sot--+--+--+--+--+---+---+--+--+--~
z
0
501--~-t--+--+---+--+---I---+---+-~-+---~
~t 4011---+--+---l---l---l--~p--~. -~--/ -1~-~___j
~ 3011----t----t---+--+y--.,.//]/""---+---<---<l----l-----I
~ 2011----+---+--+--_L__~-+-'-_,_---+--+----+---+----l
(;} 1oi----+-~_,L_"'-i-~---+--+---+---+---<---<1-----1----
5.0
10
15
20
25
Vee and iVEEI. SUPPLY VOLTAGE (VOLTS)
FIGURE 10 - LARGE-SIGNAL TRANSIENT WAVEFORMS
+lOV
INPUT SO%
OUTPUT
SLEW RATE V(+)to V(-)
(MEASUREMENT PERIOD)
~
SLEW
(M~t!Ji_ ~~~)NTl PERIOD)
ALLOWABLE ERROR BAND
r.vs::::::=---..l 10%
FIGURE 11 - SETTLING TIME AND SLEW RATE TEST CIRCUIT
·:n --.
~1-0-~-L
VCC'l!iV
FALSE SUMMING
NOOE
ORl~~~61v , P1osnot shownarenol connecred.
SETTLING TIME
In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high·frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selecti'on of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.
SETTLING TIME MEASUREMENT
In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1 % of it's final value. Because the output and input_ voltages are ef-
fectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this
critical node· can greatly affect the accuracy of the
actual measurement. ,
·
The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the
voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of 'the actual error appears at this node. -For extremely critical measure-'
ments, the capacitance.of the diodes and the oscilloscope, and the settling time of the osdlloscope must be considered. The expression
tsetlg =..} x2 + y2 + z2
can be used to determine the actual amplifier settling time, where tsetlg = observed settling time
x = amplifier settling time (to be determined)
y = false summing junction settling time
z =oscilloscope settling time
It should be remembered that to settle within ±0.1 % requires 7RC time constants.
The ±0.1 % factor was chosen for the MC1741S settling time as it is compatible with the ±1/2 LSB accuracy of the MC1508L8 digital-to-analog converter. This D-to-A converter features ±0.19% maximum error.
·
@ MOTOROLA s,,,miconductor Products Inc. --------
3-81
MC1741S, MC1741SC
·
FIGURE 12 -WAVEFORM AT FALSE SUMMING NODE
>
> 0
E
0
l'il
TYPICAL APPLICATION
FIGURE 14 - 12.5-WATT WIDEBAND POWER AMPLIFIER
+15V
1.0µs/OIV
FIGURE 13- EXPANDED WAVEFORM AT FALSE SUMMING NODE
>
> 0
E
s:
1.0 µs/DIV
0.1% ERROR BAND
Delivers 12.SWattsinto 4.0 ohms with less than 1% THO to 100kHz, Pinsnotshownarenotconnected.
·eiascurrentadjustmenttoelimmateCrossoverOistortion . ... Epoxy to power transistor heat sink or case for ma>Cimum Thermal Feedback.
@ MOTOROLA SernlconduC'tor ProduC'ts Inc.
3~82
ORDERING INFORMATION
Device
MC1747F MC1747G MC1747L MC1747CF MC1747CG MC1747CL MC1747CP2
Temperature Range
-55"C to + 125°C -55°C to +125°C -55°C to + 125°C
0°C to +75°C 0°C to +75°C O"C to +75°C 0°c to +75°C
Package
Ceramic Flat Metal Can
Ceramic DIP Ceramic Flat
Metal Can Ceramic DIP Plastic DIP
DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE
OPERATIONAL AMPLIFIER ... designed for use as summing amplifiers, integrators, or amplifiers with Opf!rating characteristics as a function of the external feedback components. The MC1747L and MC1747CL are functionally, electrically, and pin-for-pin equivalent to the µA747 and µA747C respectively.
· No Frequency Compensation Required
· Short-Circuit Protection
· Wide Common-Mode and Differential Voltage Ranges
· Low-Power Consumption
· No Latch Up
· Offset Voltage Null Capability
FIGURE 1 - HIGH-IMPEDANCE, HIGH-GAIN·
INVERTING AMPLIFIER
vee
Vee
MC1747 MC1747C·
(DUAL MC1741)
DUAL OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
~ FSUF~
CERAMIC PACKAGE
·
~ Output A 1
G SUFFIX METAL PACKAGE
CASE 603
FIGURE 2 - CIRCUIT SCHEMATIC
Vee
- - P2 SUFFIX
L SUFFIX'
25
PLASTIC PACKAGE
CERAMIC PACKAGE
CASE 646
CASE 632-02
T0-116
50
Non Inv
Input
Offset Adj A
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes Is not necessarily given. The Information has been carefully checked and Is believed to be entirely reliable. However, no responsibility ls assumed for Inaccuracies. Furthermore, such Information does not convey to the purchaser of the semlconductor·devlces described any license under the pate~t right of Motorola Inc. or others.
Offset Adj. B Non Inv Input
©MOTOROLA INC., 1976
3-83
Offset AdjB
OS 9254
MC1747, MC1747C
·
MAXIMUM RATINGS ·(TA= +25°C unless otherwise noted.I
·Rating Power Supply Voltages
Differential Input Signal Voltage
<!>
® Common-Mode Input Swing Voltage
Output Short-Circuit Duration
Symbol Vee Vee. V1D V1cR tos
MC1747 +22 -22
l MC1747C
l +18 -18
±30
I
± 15
Continuous
Unit Vdc
Volts Volts
Voltage (Measurement between Offset Null and Veel Operating Ambient Temperature Range
Storage Temperature Range
Junction Temperature Ceramic and Metal Package Plastic Package
± 0.5
Volts
TA Tstg
l -55 to +125
Oto +75
l -65 to +150 -65 to +150
OC Oc
TJ
oc
175
150
ELECTRICAL CHARACTERISTICS (Ve~= +15 Vdc, Vee= -15 Vdc, TA= +25°c unless otherwise noted.I
Characteristics
Input Sias Current TA= +25°C TA= Thigh~ TA=T1ow (:!)
Input Offset Current TA= +25°C TA= Thigh TA =T1ow
Input Offset Voltage (Rs~ 10 k.11) TA= +25°C TA = T1ow to Thigh
Offset Voltage Adjustment Range
Differential Input Impedance (Open-loop, f = 20 Hzl Parallel Input Resistance Parallel Input Capacitance
Common-Mode Input Voltage Swing T1ow ~ TA ~ Thigh
Common-Mode Rejection Ratio (Rs= 10 k.11) T1ow ~TA~ Thigh
Open-Loop Voltage Gain
TA= +2·5°C
} (·Vo=±10V,AL=2.0k.11)
TA = T1ow to Thigh
Transient Response (Unity Gain) (Vin= 20 mV, AL= 2.0 k.11, CL~ 100 pFI RiseTime Overshoot Percentage
Slew Rate (Unity Gain)
Output Impedance
Short-Circuit Output Current
Channel Separation
Output Voltage Swing IT1ow ~ TA~ Thigh I RL=10k.11 AL=2.0k.11
Power Supply Sensitivity IT1ow to Thighl Vee= Constant, As ~10 k.11 Vee= Constant, Rs~ 10 k.n ·
Power Supply Current (each amplifier) TA= +25°C TA=T1ow TA= Th_!a.h
DC Power Consumption (each amplifier) TA= +25°C TA =T1ow TA =Thigh
MC1747
Symbol Min
Typ
Max
llB
80
500
30
500
300
1500
110
20
200
7.0
200
85
500
'V10
1.0
5.0
1.0
6.0
± 15
MC1747C
Min
Typ
Max
80
500
30
800
30
800
20
200
7.0
300
7.0
300
1.0
6.0
1.0
7.5
± 15
ri Ci V1cR
CMRA
Avol
0.3
2.0
1.4
± 12 ± 13
70
90
jso.ooo 200,000
~5.000
0.3
2.0
1.4
± 12 ± 13
70
90
25,000 200,000 15,000
Unit nAdc
nAdc
mVdc
mV M.11 pF Volts dB Volts
tPLH
SR Zo ios
VoR
± 12 ± 10
PSS+
i>s5_-
·cc.lee
Pc
0.3 5.0 0.5 75 25 120
± 14 ± 13
30 30
1.7 2.0 1.5
50 60 45
0.3 5.0 0.5 75 25 120
± 12 ± 10
± 14 ± 13
150
30
150
30
2.8
1.7
3.3
2.0
2.5
2.0
85
50
100
60
75
60
µs % V/µs ohms mAdc dB
Vpk
µVIV 150 150
mAdc 2.8 3.3 3.3
mW 85 100 100
CD
0
For supply voltages of less than± 15 V, the maximum differential input voltage is equal to± (\/cc+ !Veejl.
C2> For supply voltages of less than± 15 V, the maximum input voltage is equal to the supply voltage (+Vee. -IVeell.:
~ T10 w: OOC for MC1747CL
-55°C for MC1717L
Thigh: +75°c for MC1747CL
+125°C for MC1747L
@ MOTOROLA Semiconductor Products Inc.
3-84
.MC1747, MC1747C
FIGURE 3 - TYPICAL FREQUENCY-SHIFT KEVER TONE GENERATOR TEST CIRCUIT
vcc 15 v
Vee 15 v
0.01 µF
0.01 µF 12k 91k
9.1 9.1
LOGIC INPUT 1 k
·
Terminals not shown are not connected.
0.5 ms/DIV.
TYPICAL CHARACTERISTICS
(Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°C unless otherwise noted.)
FIGURE 5 - OPEN-LOOP VOLTAGE GAIN versus POWER-SUPPLY VOLTAGE
120
FIGURE 6 - OPEN-LOOP FREQUENCY RESPONSE +120
-~ 115
z
<i 110
(!)
___.
w
(!)
:<;t:
105
0> 100 a..
§ 95
~v-r-
k:::J
/
~0 90
~ <t:
85
80
0
3.0 6.0 9.0
12
15
18
21 24
Vee and VEE. POWER-SUPPL y VOLTAGE (VOLTS)
+100
~ +80
z
~ +60
w
(!)
<t: :; +40 0 >
.c;:; +20
-20 1.0
~
Ls:
~
Ls:
~ ~
10
100 1.0 k 10 k 100 k 1.0 M 10 M
f, FREQUENCY .(Hz)
FIGURE 7 - POWER BANDWIDTH (LARGE SIGNAL .SWING versus FREQUENCY)
FIGURE 8 - POWER CONSUMPTION versus POWER SUPPLY VOLTAGE
1ooi:=::::i:==::::i:===i===:::i===::i===i:=::::i:==::::i:===1===~
701----11---1----11---1---1---1--~1---.....r-;...L::.~-r---t
0.
~l ~'20>--+-+-+-+-H+<+--+-++-+-......,it---+-+-+-++++H>-----4-+-+-l-+++H
~<t: 16
~ ~
121---+-t--++H-H+--+-++++-1;1+--+-++++++1+--++-+-+-l+H-H
(VOLTAGE FOLLOWER)
\
Jlill ~ 0
4-:==m=ll==~====N=N >
8.0 t---t---1 ± 15 VOLT SUPPL! ES LLlllJHOl5
f++--1-4--+-+++++t---l\[\.+l+-++++H I
10
100
1.0 k
10k
100k
~ 501----11---1----11---.-1---1---1--.,....12"'.:1---I1----11----i
~; 43o011-------1-111-----1--1-----1-1--1-1-1------11-----~-·.l,.""~"'IL--._-_+--+----+-vo--=+o----r+-----Ii
y i 201----11----11----11--~.Ll'+-~--+-~-+---+---+---+---t
~
(Each amplifier)
~ 10~==11====1~.LJ:::::::it::::==~==~==~==l~==~::::::::;~:=::j
~
IL
~ 7.o 1--1--z.,,.Z-+---+---+---+---+---+---+---+--~
5.0 1----1-7+--+--+--+--+--t---tl----t--+---I
4.01---y-f#--l----ll---l---t--t--1---t--1----1 3.0 ._____.___._____.___.___.___.___.___.___._____,
2.0
6.0
10
14
18
22
f, FREQUENCY (Hz)
Vee and VEE. POWER SUPPL y VOLTAGE (VOL TS)
@ MOTOROLA SemiConductor Products Inc. ________.
3-85
MC1747, MC1747C
·
TYPICAL CHARACTERISTICS lcontinuedl
(Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°~ unless otherwise noted.I
FIGURE9 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
FIGURE 10 - OUTPUT NOISE versus SOURCE RESISTANCE
Q. 6.
~ 201--~~~--+---l--l~++-+-+-~~......~-1---+--+-+-+-~
"<'t
:; 16 0 >
~ 12
1::>
~ 8.0 >
AL, LOAO RESISTANCE (OHMS)
Rs. SOURCE RESISTANCE (OHMS)
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(maxl -TA Po(TAl = ROJA(Typl
Where: Po(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than
the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(maxl = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ROJA(Typl =Typical Thermal Resistance Junction to Ambient
L ® MOTOROLA Semlconducf:or Producf:s Inc. __J
3-86
ORDERING INFORMATION
Device
MC1748G MC1748U MC1748CG MC1748CP1 MC1748CU
Temperature Range
-55"C to +125"C -55°C to +12s0c
0°c to +70°C 0°C to +70°C -0°c to +10°c
Package
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP
Hl·GH PERFORMANCE OPERATIONAL AMPLIFIER
... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.
· Noncompensated MC1741 · Single 30 pF Capacitor Compensation Required For Unity Gain · Short-Circuit Protection · Offset Voltage Null Capability · Wide Common-Mode and Differential Voltage Ranges · Low-Power Consumption · No Latch Up
FIGURE 1 - CIRCUIT SCHEMATIC
MC1748 MC1748C
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
P1 SUFFIX PLASTIC PACKAGE
CASE 626 (MC1748C only)
U SUFFIX CERAMIC PACkAGE
CASE 693
·
lBalance I 2 Input·
G SUFFIX METAL PACKAGE
CASE 601
Compensation
50
...... L-_..~~
Vee
~-..~~+----~-+~~--~~~~~---o4
FIGURE 2 - OFFSET ADJUST AND F.REQUENCV COMPENSATION
TYPICAL COMPENSATION CIRCUITS
FIGURE 3 - SINGLE-POLE COMPENSATION
R2
Vee
FIGURE 4 - FEEDFORVVARD COMPENSATION C2
R2
Cl;;.~
Rt+ R2 Cs: 30 pf
150 pf
1 C2: - -
211'foR2 f0 : 3.0 MHz
3-87
MC1748, MC1748C
·
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Rating
Symbol
MC1748
MC1748C
Unit
Power Supply Voltage
Differential Input Signal Common-Mode Input Swing. Q) Output Short Circuit Duration Power Dissipation (Package Limitationl
Derate above TA = +25°c Operating Temperature Range· Storage Temperature Range
Vee Vee Vin V1cR ts Po
TA Tstg
+22
+18
-22
-18
±30
±15
Continuous
680 4.6
-55 to +125
0 to +70
-65 to +150
-65 to +150
Vdc
Volts Volts
mW mwt0 c
oc oc
ELECTRICAL CHARACTERISTICS (Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°C unless otherwise noted.)
MC1748
MC1748C
Input Bias Current TA= +25°,c
Characteristics
TA= T1ow to Thigh@
Input Offset Current TA= +25°c
TA= T1ow to Thigh Input Offset Voltage ms~ 10 k nl
TA= +25°c
TA= T1ow to Thigh Differential Input Impedance (Open-Loop, f = 20 Hz)
Parallel Input Resistance Parallel Input Capacitance
Common-Mode Input Impedance (f· 20 Hz)
Syml;>ol· Min
l1B -
11101
-
IV1ol -
-
Typ Max Min
0.08 0.5
-
0.3
1.5
-
0.02 0.2
-
0.08 0.5
-
1.0 5.0
-
-
6.0
-
Typ Max
0.08 0.5
-
0.8
0.02 0.2
-
0.3
1.0 6.0
-
7.5
Unit µAde
µAde
mVdc
Rp
0.3
2.0
-
0.3
2.0
- Megohm
Cp
-
1.4
-
-
1.4 -
pF
Zjn
-
200
-
-
200
Megohms
Common-Mode Input Voltage Swing Common-Mode Rejection Ratio (f = 100 Hz)
V1cR CMRR
±12 70
±13 -
90
-
±12
±13
-
70
90 -
Vpk dB
Open-Loop Voltage Gain, (V0 =±10 V, RL = 2.0 k ohms) TA= +25°c
TA= T1ow to Thigh
Avol.
VIV
50,000 200,00C - 20,000 200.ooq -
25,000 -
- 15,000 -
-
Step Response (Vin= 20 mV, Cc= 30pF, RL = 2 kn, CL= lOOpF) Rise Time Overshoot Percentage Slew Rate
Output Impedance (f = 20 Hzl Short-Circuit Output Current Output Voltage Swing (RL = 10 k ohms)
RL = 2 k ohms (TA= Tiow to thighl Power Supply Sensitivity
Vee= constant, Rs.;; 10 k ohms Vee= constant, Rs.;; 10 k ohms Power Supply Current
DC Quiescent Power Dissipation (V0 = 0)
-tr·
dVoutldt Zo lsc Vo
S+ Sio+ lo·Po
-
-
±12 ±10
-
-
-
-
0.3
-
-
5.0
-
-
0.8 -
-
75
-
-
25
-
-
±14 -
±12
±13 -
±10
30
150
-
30 150- -
1.67 2.83 -
1.67 2.83 -
50
85
-
0.3 -
5.0 -
0.8
-
75
-
25 . -
±14 -
±13 -
30 30
1.67 1.67
150 150
2.83 2.83
50 85
µs % V/µs ohms mAdc Vpk
µV/V
mAdc
mW
Q) For supply voltages less than± 15 V, the Maximum Input Voltage is equal to the Supply Voltage,
@Tiaw' Thigh'
c o 0 for MC1748C -ss0 c for MC1748
+70° for MC1748C +125°C for MC1748
@ MOTOROLA Semiconductor Produc'fs Inc.
3-88
MC1748, MC1748C
TYPICAL CHARACTERISTICS (Vee= +15 V, Vee= -15 V, TA= +25°e unless otherwise noted.)
FIGURE 5 - MINIMUM INPUT VOLTAGE RANGE 20
5.0 Vee and (-VEE). SUPPLY VOLTAGE (VOLTS)
FIGURE 6 - MINIMUM OUTPUT VOLTAGE SWING
20
"!::';
~ 16
w
<!)
APPLICABLE TO THE SPECIFIEO--+---~~"""'i<&.'lP.l!I! OPERATING TEMPERATURE RANGES
~ 121----+--+---+--+---+--7~~~~~
w
<!) <(
!::; ~ .M
~
/t?JF@?fl! ~
0
4.0
cC > 0
I----+---+----+- MRLIN=IM2U·0Mk-+---+::~r:;:;:1fflr~t~d:;:;:tfflt~1~1
O'----'----'---'----'---'----"""~""""'=--~
0
5.0
10
15
20
Vee ANO (-VEEL SUPPL y VOL TAG ES (VOLTS)
·
FIGURE 7 - MINIMUM VOLTAGE GAIN 100
94 Aijp~~~~~~GT~E1Hpi~~~CJ~~ED - - + - - -
~
RANGES
< z
BBi----+---+----+--+---+-~
<!)
w
<!)
< ~ 821-----+---+----t.-----+----+--~
>
< >
Vee ANO -VEE. SUPPLY VOLTAGES (VOLTS)
FIGURE 8 - TYPICAL SUPPLY CURRENTS
1 2.01------+--+----t---+----t---
iI"-' 1.5~--+--+-'"""'=:t---+---+--
~
~ 1.0t----+~-+---t---+---+-~ ~ 0.5
20
20
Vee ANO (-VEE) SUPPL y VOLTAGE (VOL TS)
FIGURE 9 - OPEN-LOOP FREQUENCY RESPONSE
+180~-~--~-~--~-~---,---.,.----,
SINGLE·POLE COMPENSATION. +1601-----+--+----+--+----+--+---+----i
* +1401-----+--+----+--+----+---+---+----i 315
~
c;; +1201-----+---+----+---+----+--+----T--1 270~
~
C!)
+100 i=:~;;::t~ ;~,~ ,,,c ,,,; ~-:
225 ~
/ ~
<(
+80>-----+~-_..c..~,. ---~-+--
PHASE
-~
~ +60
.Jq/)~ rs;:~
1 BO~
135 ~ -~
>
<
++2400101-i-------+---t------t-+--_--.-t-.+-,--Gf-_-A-_--It-N_:-':"+-'-+~--:5+:t_-:--:--=-'=+~~"-'~~--.~-.~,r.1--~"---~-~i---+----------~j4049
-20
~
'i>
1.0
10
100 1.0 k 10k 100k 1.0M !OM
I, FREQUENCY (Hz)
FIGURE 10 - LARGE-SIGNAL FREQUENCY RESPONSE
"!::';
0 ±15
~
w
"z '
~
tt! ±10
<(
!::; > 0
I-
~ ±5.0
~
> 0 1.0 k
TT I I 11111 I I 11111 SINGLE-POLE COMPENSATION
~
~
\ I C1=3.0pF ~
Cl= 30p~
I
~
"!-. jo...
~
"-
10 k
100 k
1.0M
I, FREQUENCY (Hz)
l !OM
@ MOTOROLA Semiconductor Produc~s Inc.
3-89
MC1748, MC1748C
·
TYPICAL CHARACTERISTICS (continued)
(Vee= +15 V, Vee= -15 V, TA= +25°C unless otherwise noted.)
FIGURE 11 - VOLTAGE FOLLOWER PULSE RESPONSE
+10 SINGLE.POLE COMPENSATION
- +8.0
~ .+6:0
>
~
: +4.0 c.:> ~ +2.0
'UJ
c.:>
< ~ -2.0 >~ -4.0
: -6.0
I\
\
~
--~
1--
~
r I- J.
.i.-1
v~UTPUT 1 INPUT
t---
]
I
~
> -8.0
-10 -;r
10 20 30 40 50 60 70 80 90
t, TIME (µs)
FIGURE 12 - OPEN-LOOP FREQUENCY RESPONSE
+14o~-~-~--~-r--~r--T-r---r----r----.
FEEOFORWARO COMPENSATION
+1201-----+--~--+----+--+---+--+----1
~ ~ +toot---
~ ~ z +801-----+------l~--':0.,.,---+----+--+---+--+------1
~~ +60
~ ~
PHA~E7-../"---+-__::_-~
~ +40
.........
> ~ < +201-----+------l---+----+~·-+>o.~.-----+--+------1
GA1N "-.. 1
- 20lL.0--10'--0--1-'.0-k---'10-k--,-10:'"0-k-.,-l..,._O:-:-M--:-lO~M.,..--:1-:-00:'-:M--'-'ii'T.,._....
f, FREQUENCY (Hz)
FIGURE 13 - LARGE-SIGNAL FREQUENCY RESPONSE
±18
~
0
~ ±16
FEEOFORWARO COMPENSATION
UJ
c.:> z
~ :tl2
UJ
c.:>
\
IS
1-0: > ±8.0
I-
a::.>.
I-
~ ±4.0
~
> 0
"'k N ~ ~
100k
1.0 M
TOM
f, FREQUENCY (Hz)
FIGURE 14 - INVERTER PULSE RESPONSE
~ +4.o
I INPih
~ +2.01----1-------1-----1---+--+--+7+---t-----+---+-----1
:< ;
7
~ -2.0
g -6.t- ~ -4.0 l---lf---1---!----t--+-----f----t----t----t---j -ll....,..,....~....i---+--4--+-..,....-1-· - _..., - 4- - - l
ri 0 -8.0 1---1--~-~--+--+--+--+----t----t---1 > -10.___.____,_ __,_ _...._ __,__ __,__ _.__ _._,,---_._,_~
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
t, TIME (µs)
.________ @ MOTOROLA_ Semiconduc'for Produc'fs Inc.
3-90
ORDERING INFORMATION
Device
MC1776G MC1776CG MC1776CP1
Temperature Range
-55°C to +125°C 0°C to +70°C 0°C to +70°C
Package
Metal Can Metal Can Plastic DIP
MC1776 MC1776C
Speci:fications and Applications In:formation
MICROPOWER PROGRAMMABLE OPERATIONAL AMPLIFIER
This extremely versatile operational amplifier features low-power consumption, high input impedance and low input noise levels. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the Iset input_ This allows the amplifier's characteristics to be optimized for input current, power consumption and input voltage, and current noise despite wide variations in operating power supply voltages.
· ±1.2 V to ±18 V Operation · Wide Programming Range
· Offset Null Capability · No Frequency Compensation Required · Low Input Bias Currents · Short-Circuit Protection
RESISTIVE PROGRAMMING (See Figure 1.)
Rset to GROUND
Rset to NEGATIVE SUPPLY (Recommended for supply voltage
less than ±6.0 V)
PROGRAMMABLE OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
~
·set Offset Null 1
m1~1~ Inverting Input
Non-Inverting Input 3
G SUFFIX METAL PACKAGE
CASE 601-03
P1 SUFFIX PLASTIC PACKAGE
CASE 626
Inverting Input 2 Non-Inverting Input 3
·
Rset
vee-0.6
lse1=-Rset
Typical Rset Values
Vee. VEE; I set= 1.5 µA lset = 15 µA
±6.0V ±10V ±12V
±15v
3.6 M.11 6.2 M.11 7.5 M.11 10M.11
360 k.11 620k.11 750 k.11 1.0M.11
Vee -0.6 -VEE
lse1=---Rset
Typical Rset Values
Vee.VEE Iset= 1.5 µA lset = 15 µA
±1.5V
±3.0V
±6.0V
±15 v
1.6M.11 3.6 M.11 7.5 M.11 20 M.11
160k.11 360 k.11 750 k.11 2.0 M.11
ACTIVE PROGRAMMING
FET CURRENT SOURCE
BIPOLAR CURRENT SOURCE
PIN CONNECTIONS
2 INVERTING
INPUT 3
NONINVERT11'¥G INPUT
NANOWATT AMPLIFIER APPLICATION lM
VB
3-91
MC1776, MC1776C
·
MAXIMUM RATINGS ITA= +250 C unless ot erwise noted.)
Rating Power Supply Voltages Differential Input Voltage Common-Mode Input Voltage
< Vee and IVeel 15 v
Vee and IVeel;;;;.: 15 v
Offset Null to Vee Voltage Programming Current Programming Voltage
(Voltage from lset terminal to ground)
Output Short-Circuit Duration* Operating Temperature Range
Storage Temperature Range Power Dissipation (Package Limitation)
Derate above TA = +25°C
Me1776 MC1776C
Symbol Vee.VEE
V10 V1cM
Voff-VEE I set Vset
ts TA
Tstg Po
Value ±18 ±30
Vee.Vee ±15 ±0.5 500
·!Vee- 2.0 v1
to Vee Indefinite
-55 to +125 0 to +10·
-65 to +150 680 4.6
*May be to ground or either Supply Voltage. Rating applies up to a case temperature of +125°C or ambient temperature of+75°eand lset,;;;;30µ,A.
Unit Vdc Vdc
Vdc
Vdc µ,A Vdc
s OC
Oc mW mW/Co
SCHEMATIC DIAGRAM
I set 7
..... ..--~~~~~~~....~~~~--<10--~+-~....~~.-~~~-+~~~~~ ~~~~-ovcc
INPUTS
50
2k 100 OUTPUT 6
100
50 OFFSET NULL
!Ok
!Ok
VEE
..... ,__~~~~.....~~---~~~~--<10--~~.....~~---...-~~~-+-~~~~~ ~~~~-04
3-92
MC1776, MC1776C
ELECTRICAL CHARACTERISTICS (Vee= +1.5 V, Vee= -15 V, lset = 1.5µ.A, TA= +25°C unless otherwise noted.I
MC1776
MC1776C
CharacteriStic
Symbol
Min
Typ
Max
Min
Typ
Max
Input Offset Voltage (Rs.;;; 10 k.O) TA= +25°C Trow* ~TA <Thigh*
Input Offset Current TA= +25°c TA= Thigh TA= Trow
Input Bias Current TA= +25°C TA =Thigh TA=T1ow
Input Resistance
Input Capacitance
Offset Voltage Adjustment Range
Large Signal Voltage Gain RL;;;i.75 k.O, Vo= ±10V, TA= +25°C
v. RL;;;i.75 k.0, Vo= ±10 T1ow~TA <Thigh
Output Resistance
Outpu! Short-Circuit Current
IV1ol
11101
'IB
Rin Cin V10R Avol
Ro 1losc
-
2.0
5.0
-
-
6.0
-
0.7
3.0
-
-
5.0
-
-
10
-
2.0
7.5
-
-
7.5
-
-
20
-
50
-
-
2.0
-
-
9.0
-
200 k 400k
-
100k
-
-
-
5.0
-
-
3.0
-
-
2.0
6.0
-
-
7.5
-
0.7
6.0
-
-
6.0
-
-
10
-
2.0
10
-
-
10
-
-
20
-
50
-
-
2.0
-
-
9.0
-
50 k 400 k
-
50 k
-
-
-
5.0
-
-
3.0
-
Supply Current I TA =+25°C
T1ow<TA <Thigh Power Dissipation
TA= +25°c T1ow<TA ~Thigh Transient Response (Unity Gainl Vin= 20 mV, RL ;;;i.5.0 k.0, CL= 100 pF
Rise Time Overshoot
Slew Rate IRL ;;;i.5.0 k.Ol
'cc. IEE -
Po
-
-
lTLH
-
OS
-
SR
-
20
25
-
-
30
-
-
0.75
-
-
0.9
-
1.6
-
-
0
-
-
0.1
-
-
20
30
-
35
-
0.9
-
1.05
1.6
-
0
-
0.1
-
Output Voltage Swing RL ;;;i: 75 k.O, TA= +25°C RL;;;i.75 k.O, T1ow<TA<Thigh
Vo
±12
±14
-
±12
±14
-
±10
-
-
±10
-
-
Input Voltage Range T1ow<TA ~Thigh
Common-Mode Rejection Ratio Rs<10k.n, T1ow<TA<Thigh
Supply Voltage Rejection Ratio Rs<tok.n, T1ow<TA<Thigh
V10
±10
-
-
±10
-
-
CMRR
70
90
-
70
90
-
PSRR
-
25
150
-
25
200
*T1ow = -55°C for MC1776
o0 c for MC1776C
Thigh= +125°C for MC1776 +10°c for MC1776C
Unit mV
nA
nA
MO pF mV VIV
k.O mA µ.A
mW
µ.s % V/µ.s
v
v
dB µ.V/V
·
3-93
MC1776, MC1776C
·
ELECTRICAL CHARACTERISTICS (Vee= +15 v, Vee= -15 v, Iset= 15 µ.A, TA= +25°c unless otherwise noted.)
MC1776
MC1776C
Ch.aracteristic
Input Offset Voltage (Rs< 10 kn) TA= :1'25°C T1ow* <TA <Thigh*
Symbol
Min
Typ
Max
Min
lYJ>
Max
IV1ol
-
2.0
5.0
-
2.0
6.0
-
-
6.0
-
-
7.5
Input Offset Current TA= +25°C TA= Thigh TA =T1ow
11101
-
2.0
15
-
2.0
25
-
-
15
-
-
.25
-
-
40
-
-
40
Input Bias Current TA= +25°C TA=Thigh TA= T1ow
Input Resistance Input Capacitance
Offset Voltage Adjustment Range
l1B
-
15
50
-
15
50
-
-
50
-
-
50
-
-
120
-
-
100
Rin
-
5.0
-
-
5.0
-
Cin
-
2.0
-
-
2.0
-
V10R
-
18
-
-
18
-
Large Signal Voltage Gain RL ;;;.5.0 kn, Vo= ±10 V, TA= +25°C RL ;;;.75 kn, Vo= ±10 v T1ow <TA <Thigh
Output Resistance
Output Short-Circuit Current
Avol
Ro lose
100 k 400 k
-
75 k
-
-
-
1.0
-
-
12
-
50 k 400 k
-
50 k
-
-
-
1.0·
-
-
12
-
Supply Current TA= +25°C T1ow<TA <Thigh
Ice. IEE
-
-
160
180
-
-
200
-
160
190
-
200
Power Dissipation TA= +25°C T1ow <TA <Thigh
Po
-
-
5.4
-
-
5.7
-
-
6.0
-
-
6.0
Transient Response (Unity Gain)
Vin= 20 mV, RL ;;;.5.0 kn, CL= 100 pF Rise Time Overshoot
Slew Rate (R L;;;. 5.0 kn)
tTLH OS
SR
-
0.35
-
-
10
-
-
0.8
-
-
0.35
-
-
10
-
-
0.8
-
Output Voltage Swing RL ;;;.5.0 kn, TA= +25°c' RL;;;.75 kn, T1ow<TA <Thigh
Vo
±10
±13
-
±10
±13
-
±10
-
-
±10
-
-
Input Voltage Range T1ow<TA<Thigh
V10
±10
-
-
±10
-
-
Common-Mode Rejection Ratio Rs< 10 kn, T1ow<TA <Thi.g_h
CMRR
70
90
-
70
90
-
Supply Voltage Rejection Ratio Rs< 10 kn, T1ow <TA <Thigh
PSRR
-
25
150
-
25
200
Unit mV
nA
nA
Mn pF mV VIV
kn mA µ.A
mW
µ.s % V/µs v
v dB µVIV
*T1 0 w = -55°C for MC1776
o0 c for MC1776C
Thigh= +125°C for MC1776 +10°c for MC1776C
3-94
MC1776, MC1776C
ELECTRICAL CHARACTERISTICS (Vee= +3.0 Vdc, Vee= -3.0 Vdc, Iset= 1.5 µ.A, TA= +25°C unless otherwise noted.)
MC1776
MC1776C
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Input Offset Voltage (Rs..;;; 10 kn) TA= +25°C T1ow* ..;;;TA ..;;Thigh*
Input Offset Current TA= +25°C TA=Thigh
·TA= T1ow
IV1ol
mV
-
2.0
5.0
-
2.0
6.0
-
-
6.0
-
-
7.5
Jl1ol
nA
-
0.7
3.0
-
0.7
6.0
-
-
~.o
-
-
6.0
-
-
10
-
-
10
Input Bias Current TA= +25°C TA=Thigh TA= T1ow
l1B
nA
-
2.0
7.5
-
2.0
10
-
-
7.5
-
-
10
-
-
20,
-
-
20
Input Resistance
Rin
-
50
-
-
50
-
Mn
Input Capacitance
CJn.
-
2.0
-
-
2.0
-
pF
Offset Voltage Adjustment Range
V10R
-
9.0
-
-
9.0
-
·mV
Large Signal Voltage Gain ·
Avol
VIV
RL #75 kn, Vo= ±1.0 V, TA= +25°C
. 50 k 200 k
-
25 k iook
-
v. RL;;;;. 75 kn, Vo= ±1.0 T1ow ..;;;TA ..;;Thigh
25 k
-
-
25 k
-
-
Output Resistance
Ro
-
5.0
-
-
5.0
-
kn
Output Short-Circuit Current Supply Current
TA= +25°c
T1ow ..;;;TA ..;;;Thi~h
lose
-
3.0
-
-
3.0
-
mA
Ice.IEE
µ.A
-
13
20
-
13
20
-
-
25
-
-
25
Power Dissipation TA= +25°C T1ow.,;;;TA .,;;;Thigh
Po
µ.W
-
78
120
-
78
120
-
-
150
-
-
150
Transient Response (Unity Gain) Vin= 20 mV, RL #5.0 kn, CL= 100 pF Rise Time Overshoot
Slew Rate (RL#5.0 kn)
Output Voltage Swing
R L # 75 kn, T1ow ..;;;"fA ..;;Thigh
Input Volta9e Range T19w..;;;TA ..;;Thigh
tTLH
-
OS
-
3.0
-
0
-
SR
-
0.03
-
-
3.0
-
-
0
-
-
0.03
-
Vo
±2.0
±2.4
-
±2.0
±2.4
-
V10
±1.0
-
-
' ±1.0
-
-
µ.s % V/µ.s
v
v
Common-Mode Rejection Ratio Rs..;;;10kn, T1ow..;;;TA..;;;Thigh
CMRR
dB
70
86
-
70
86
-
Supply Voltage Rejection Ratio R5..;;;1okn, T1ow..;;;TA..;;;Thigh
PSRR
-
25
150
-
µ.VIV
25
200
*T1ow = -55°C for MC1776 o0 c for MC1776C
Thigh= +125°c for MC1776 +10°c for MC1776C
VOLTAGE OFFSET NULL CIRCUIT
TRANSi ENT-RESPONSE TEST CIRCUIT
·
Pins not shown are not connected.
3-95
MC1776, MC1776C
·
ELECTRICAL CHARACTERISTICS (Vee= +3.0 V, Vee= -3.0 V, lset = 15 µA, TA= +250 C unless o_therwi5e noted.I
MC1776
MC1776C
Characteristic
Syml>ol
Min
Typ
Max
Min
Typ
Max
Input Offset Voltage (As :E>; 10 kSl) TA =+25°c T1ow* :E>;TA :E>;Thigh*
IV1ol
-
2.0
5.o
-
2.0
6.0
-
-
6.0
-
-
7.5
Input Offset Current TA= +25°c TA= Thigh TA= T1ow
11101
-
2.0
15
-
2.0
25
-
-
15
-
-
25
-
-
40
-
-
.40
Input Bias Current TA= +25°C TA=Thigh TA= Tfow
Input· Resistance Input Capacitance
Offset Voltage Adjustment Range
Its
-
Rin
-
Cin
-
V10R·
-
15
50
-
-
50
-
-
120
-
5.9
-
-
2.0
-
-
16
-
-
15
50
--
50 100
5.P
-
2.0
-
18
-
Large Signal Voltage Gain
AL ;;;i:5.0 kn, Vo;,, ±1.0 v. TA= +25°c
AL;;;i:5:0kn, Vo= 1.0V, T1ow:E>;TA:E>;Thl!lh
Output Resistance
Output Short-Circuit Current
Avol
50 k 200k
-
25 k
-
-
25 k 200k
25 k
-
--
Ao
-
1.0
-
-
1.0
-
lose
-
5.0
-
-
5.0
-
Supply Current
TA= +25°c T1ow~TA :E>;Thigh
tee. lee -
130
160
-
-
180
-
130
170
-
180
Power Dissipation TA= +25°c Ttow :E>;TA :E>;Thigh
Po
-
780
960
-
780
1020
-
-
1080
-
-
1080
Transient Response (Unity Gain)
Vin= 20 mV, RL;;;;. 5.0 kn, Cl= 100 pF Rise Time Overshoot
Slew Rate (RL ;;;i:5.0 kn)
trLH OS
SR
-
0.6.
-
-
5.0
-
-
0;35
-
-
0.6
-
-
5.0
-
-
0.35
-
Output Voltage Swing RL;;;i:5.0kn, Ttow~TA~Thigl:t
Vo
±1.9
±2.1
-
±2.0 ±2.1
-
Input Volt!lge Range
T1ow-~TA ~Th_jg_h
V10
±1.0
-
-
±1.0
-
-
Common-Mode Rejection Ratio Rs~10 kSl, Ttow~TA~Thigh
CMRR
70
86
-
70
86
-
Supply Voltage Rejection Ratio Rs~10 kSl,T1ow~TA :;;;;Thigh
PSRA
-
25
150
-
25
200
*T1ow = -55°C for MC1776
o0 c for MC 1776C
Thigh= +125°C for MC1776 +10°c for MC1776C
'' Unit mV
nA
nA
Mn pF mV VIV
kn mA µA
µW
µs % V/µs
v v
dB µVIV
3-96
MC1776, MC1776C
TYPICAL CHARACTERISTICS (TA= +2s.0 c unless otherwise noted.}
FIGURE 1 - SET CURRENT versus SET RESISTOR
FIGURE 2 - POSITIVE STANDBY SUPPLY CURRENT versus SET CURRENT
IOOM
""' v;
::xi;:; ·10M
::s;:~T
:....I.· ~
..Lil ......... l'S.l J.
~l.l ~~ ~
.::!
a:
0
1- Vcc=+Jv VEE= -JV
~~ ~
t; ~ 1.0M
Rset lb VEE
~
l i l l _.f _.j,.
~
~
.J 100k
Vee= +3 v VEE= -3 V Rset to GND
Vee - +15 v VEE=-15V Rset to VEE
vcc =+ls_v
.........
VEE=-15V
_..... ~!""..Rse\loGND
liiC:
~
~!":
~
IlII II
II
I :r I :ittJ.IJ
10 k
1111 T ::r:rru.u l. l..U lll
0.1
1.0
10
100
lset. SET CURRENT (µA}
1000
1 !=='+3 v.;; vee"' +18 v
1z-- 1----JV;;.VEE;>-18V
~ 100
L
a
~
~ 10
./
71
~
z
<
t;
w
1.0
i.z
T
> f::
~ 0.1
0.01
0.1
1.0
10
lset. SET CURRENT lµA)
·
100
FIGURE 3 - OPEN-LOOP GAIN versus SET CURRENT 107
t-- RL =75 k
l ill
vee = +15 v
VEE= -15 v
104 0.1
. L"""'
z
L
~
ILl
""'
~
1.0
lset. SET CURRENT (µA}
..L. jiii"" vce=+3V-
VEE- -3 V E
10
100
FIGURE 4 - INPUT BIAS CURRENT versus SET CURRENT
lOO~~~~~~~~~ml~~~~~~~~~ll
1
115-~- 10~ +3V<;;Vec<;;+18V ffi$.-3 V;>Vee;;.-18V
0.1 ..__._.._....._...........~..__._,___._._._......._....___.......__.__.__._._...._..__..__._..........._._...........
0.01
0.1
1.0
10
100
lset. SF! CURR ENT (µA)
FIGURE 5 - INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
~.--~--r~-,.--1-r--..--,-1..--.---.---'-r~-.---.
l---+---'-+--+--+3V~Vee~+18V__._ __,_ __,,____,
-3 V>VeE;;.-18v
1 ~ 24i--.,--+--+--+--+-~+--+-~+--+--+----I
~~ 18
~ ~
13 I~
h ~
lse1=1.5µA
= 12t---+--+--+-~+--+-""""'~~--+---+---+--I
~~ 6.0 1---1- lset =1.5 µA --t---t---+--+~--+i-....a.........._;.--'+---1
~60t=-=:_4-10:'.::l_2ro::=tl=::+2Io:'.:~+4!o:::+iso:::+i80;;;+41p:o::+1,j.2..~.0=+~140
T, TEMPERATURE (DC)
FIGURE 6 - GAIN'BANDWIOTH PRODUCT (GBWI versus SE"T: CURRENT
10M
L ..l. J.. ..l. ..l. ..l.1J.lll ..l. .l ..l. .l..l. ..Lill ..l. ..l. .l..d:'.111J
s i'. 1.QM [
t;
::>
0
~ ~ 100k
I I I I IllIII l l I Tl lll1 J..,.t-"_[~:.lll
Vee: +15 v llilL Vee - -15 v.Jd1ll
~~
i
;HI:
vcc
=
+
3v
l...,.......l .l.1 Vee: -3 v
lo -
~
~
.l2'DIIII l l I l l lliI l
z
z~ 10k
1£
L lIIWl
II I TT IIII
T
<
<.:I
.L
IL
l l II
JIII I :r :r I ::rn
1.0 k 0.1
lliiill .l l. .l J.J. lJll. J. J. J. .LLWlJ
1,0
10
100
lset. SET CURRENT (µA)
MC1776, MC1776C
·
TYPICAL CHARACTERISTICS (continued) (TA = +25°C unless otherwise noted.)
FIGURE 7 - OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE
30 Vcc=+15V
~
m _+.--1--1-
VEE = -15 v +-+I~-+J..-+1.1~=---+r-1+-l-T'-+:b1~1,i..i11n-++"=:::.+--++.ir--H+tl
~ 24 lset = 15µA LA-y-l-+-l-+-l-v---.-'"'-l-~Cl=l+l51V +--+--1--1-+-+-H~
ii"1-
Y
~~
VEE = -15 V +--+--1--t-+-+-H~
······rn
~ ~ 12
Vee= +3 v
§;! ~
1--1--1--1--1---1-1-1-1-1-1---1---+-+-++-+ VEE = -3 V
6:
1.5µA.; lset.; 15µA
~ 6·0 P'-11_1._1,....unt=::+:=;::t=t:t:i:tr1ut=;;;;;;;;t=r1FT=mr1
0 L____.l__.L....L.L..LJ...J.J____J_--'-'---l-L-LI-LL-11_J___J._....L..L..LL.UJ
. 1.0 k
10k
100k
1.0M
RL, LOAD RESISTANCE (OHMS)
FIGURE 8 - SUPPLY CURRENT
versus AMBIENT TEMPERATURE
,150
-
·;;{ 120 -
t
~
~
~ -7
\
~~u 90 lset=15µA
-
Vee= +15 v
- + - - - l s e t = 1 5 µ A - + - -
vcc = +3 v
VEE =-15 V +--+--+---1---1---VEE = -3 V
~!:en-' 60
_
Iset= 1.5 µA-+- lset = 1.5 µA
vcc=+15V
vcc=+3V
1------1--- VEE = -15 v -+-VEE = -3 v -+--+---+-----<
:!! 30
I I\ \
i Jl
J. l
OL--'-----''-----'---"--'---'----'----'--"'-'--~
-60 -40 -20
+20 +40 +60 +80 +100 +120 +140
T, AMBIENT TEMPERATURE (OC)
' FIGURE 9 - OUTPUT SWING versus SUPPLY VOLTAGE
lset = 15µA RL=5k --1
Vee. iVEEI. SUPPLY VOLTAGES (V)
FIGURE 10 - SLEW RATE versus SET CURRENT
10
i i 1.0
ff fffif :I J::ITfffif
Jllltill .k~
~
2::.
w I-
~ 0.1
T nnr ~ T rrflf T TJTTrTTr rnrrvcc = +15 v
~ .L :r .I
l'1
VEE= -15 V
~·
~~f
0.01
VD
vcc=+3V VEp-3 V
7
~ {
v 7
0.001
j-1 j
0.01
0.1
1.0
10
100
lset. SET CURRENT (µA)
10-13
FIGURE 11 - INPUT NOISE VOLTAGE versus SET CURRENT
~
~
~ 10·14
<{
~
> ~ 10-15
:::> d
"z.'
<{
~ 10-16
illIII~:m :::r~ i lffffi
1ftffi. :::r o:rlff ~ :::r
f ~l ~H~ I 1ltll
Itli!l..
Af = 1 Hz
+3V.;Vcc.;+18V
-3V;>VEE;>-18V
~·
>
10-17 0.01
0.1
1.0
10
100
lset. SET CURRENT (µA)
FIGURE 12 - OPTIMUM SOURCE RESISTANCE FOR MINIMUM NOISE versus SET CURRENT
lse1.SET CURRENT (µA)
3~98
MC1776, MC1776C
APPLICATIONS INFORMATION
FIGURE 13 - WEIN BRIDGE OSCILLATOR 22 k
FIGURE 15 - MULTIPLE FEEDBACK BANDPASS FILTER {1.0kH;i:)
c
·p INPUR_1 _T__ 4_ . _·___ C
for a 1.0 kHz filter with Q = 10
= and A (10) 1
R1=160k
R2 = 820
R5 = 31iQ k
C = 0.0.lµF
OUTPUT
...·. ·_._
.:. :····_
:-.<" '~·· ;·::·.··-':~f.',
't
fo=_J_ 211 RC
(for f0 = 1.0 kHz) R = 16 kl! C = 0.01 µF
FIGURE 14 - MULTIPLE FEEDBACK BANDPASS Fl LTER
FIGURE 16.;... GATED AMPLIFIER
>--0----<1........,·Vo
for a given: f0 = center frequency A (10 ) =Gain at center frequency Q = quality factor
Choose a value for C, then
R5=-Qnf0C
Rl = __fil__
2A (fo)
R2 = !lLlli
4Q2 R1-R5 To obtain less than 10% error from the operational amplifier:
Oo fo ..;;0.1 GBW where 10 and GBW are expressed in Hz. GBW is available from Figure 6 as a function of Set Current, Iset·
FIGURE 17 - HIGH INPUT IMPEDANCE AMPLIFIER
50M
10k
SOM
30M
VEE -15V
=
3-9.9
·
ORDERING INFORMATION
Device
MC3301L MC3301P
Temperature Range
-40°C to +85°C ~40°c to +85°C
Package
Ceramic DIP Plastic DIP
QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER FOR AUTOMOTiVE APPLICATIONS
These internally compensated operational amplifiers are designed specifically for single positive power supply· applications found in automotive and consumer electronics. Each MC3301 contains four independent amplifiers - making it ideal for automotive safety, pollution, and comfort controls. Some typical applications are tachometer, voltage regulator, logic circuits, power control ·and other similar usages.
· Wide Operating Temperature Range - -40 to +85°C · Single-Supply Operation - +4.0 to +28 Vdc · Internally Compensated · Wide Unity Gain Bandwidth - 4.0 MHz typical · Low Input Bias Current - 50 nA typical · High Open-Loop Gain - 2000 VIV typical
I MC3301
QUAD OPERATIONAL AMPLIFIER
SI LICON MONOLITHIC INTEGRATED CIRCUIT
-L SUFFIX
CERAMIC PACKAGE CASE 632
·P SUFFIX
PLASTIC PACKAGE CASE 646
FIGURE 1 - EQUIVALENT CIRC.UIT
16~8$13--a AMPL #2
5
AMPL. #3
9
+
+
3~- 11$--o
AMPL #1
4
AMPL #4
10
2
+
.
. 12
+
Vee - PIN 14
GROUND - PIN 7
FIGURE.2 - SMALL-SIGNAL TRANSIENT RESPONSE
>15 v vee 510 k
510 k 1.0 M
+15 v
FIGURE 3 - INVERTING AMPLIFIER
Rt 510 k
Av=-~
lorc:;,t"'Ri
1.0µF
TVO
. ~
+15 v
Av= 10BW=150kHz
FIGURE 4-'- NONINVERTING AMPLIFIER.
Rt 510 k
+Tv+ 5.0 µF.
O
10 k
+15 v
::l·~100
MC3301
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Rating Power Supply Voltage No11,rverting Input Current Sink.Current Source Current Power Dissipation (Package Limitation)
Derate above TA = +25°c Operating Temperature Range Storage Temperature Range
Symbol Vee Ir Isink I source Po
TA Tstg
Value +28 5.0 50 50 625 5.0
-40 to +85 -65 to +150
Unit Vdc mA mA mA mW mW/°C oc oc
·
ELECTRICAL CHARACTERISTICS [Vee= +15 Vdc, RL = 5.0 kn, TA= +25°c (each amplifier) unless otherwise noted]
Characteristic
Fig.No. Note Symbol Min
Typ
Max
Open-Loop Voltage Gain
TA= +25°c -4o0 c ~ TA ~ +85°c
5
Avol
1000 2000
-
-
1600
-
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded
6
1
loo
-
6.9
10
IDG
-
7.8
14
Input Bias Current, R L = 00
TA= +25°C -4o0 c ~TA ~ +85°c.
7
2
IJB
-
50
300
-
100
-
Current Mirrot Gain (Ir= 200 µAde)
7
3
A1
0.80
0.98
1.16
Current Mirror Gain Drift -4o0 c ~TA ~ +s5°c
-
±2.5
-
Output Current Source Capability IVoH = 0.4 Vdc) (VOH = 9.0 Vdc) Sink Capability IVoi.. = 0.4 Vdc)
8
I source
3.0
10
-
-
7.0
-
I sink
0.5
0.87
-
Output Voltage High Voltage Low Voltage (Inverting Input Driven) (Noninverting Input Driven)
6
VoH
13.5
14.2
-
VoLOnv)
-
0.03
0.1
Vounon) -
0.6
-
Input Resistance (Inverting input only)
Rin
0.1
1.0
-
Slew Rate (CL= 100 pF, RL = 5.0 k)
SR
-
0.6
-
Unity Gain Bandwidth Phase Margin
4
BW
-
4
.pm
-
4.0
-
70
-
Power Sl.lpply Rejection (f = 100 Hz)
PSSR
-
55
-
Channel Separation (f = 1.0 kHz)
eo1leo2
-
65
-
Unit VIV
mAdc
nAdc
A/A %
mAdc
Vdc
Megn V/µs MHz
Degrees dB dB
NOTES:
1. The quiescent current drain will increase approximately 0.3 mA for ec;ich inverting or noninverting input that is grounded.
2. Input bias current can be defined only for the inverting input. Th!! noninverting input is not a true "differential input" - as with a conventional IC qperational amplifier. As such this
input does not have a requirement for input bias current. 3. Current mirror gain is defined as the current demanded at the
inverting input divided QY the current into the. non inverting input. 4. Bandwidth and phase margin are defined with respect to the voltage gain from the inverting input to t.he output.
3-101
, iVIC3301
··......
TYPICAL CHARACTERISTICS
(Vee= +15 Vdc, RL = 5..llkSl, TA= +25°C [each ampiifier) unles$ otherwise noted.)
FIGURE 5 """7 OPEN-LOOP VOLTAGE GAIN
vcc
+15 Vdc
-----+---------Bin
4,.0 Vp-p
100 k
l:OkHz lOµFlOOk
Lt,- ~I--'·""'.,_,_.__--'----<:~
FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT
A LOV 10k B Sl
100 k
eout Avo1= -
Bin
26 k
All four amplifiers operate in the same
configuration simultaneously.
IDO: Sl =,A S2 =OPEN
IDG; Sl = A VOH(-); Sl = C VOL(-); Sl = B VOL(+); Sl =A
S2 =CLOSED S2 =CLOSED S2 =CLOSED S2 =CLOSED
FIGURE 7-:- INPUT BIAS CURRENT AND CURRENT MIRROR GAIN
.. Vee
+15Vdc
10 k
FIGURE 8 - OUTPUT CURRENT
100µA
vcc
+15 Vdc
Vo= 0.4 Vdc or9.0Vdc
100 k
i1s~ Sl ;A S2=A A1; 81 .= B Si= B
lsink: Sl =A !source: Sl = B
3-102
· MC3301
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, RL = 5.0 kn, TA= +25°C
[each amplifier) unless otherwise noted.)
FIGURE 9 - OPEN-LOOP VOLTAGE GAIN versus FREpUENCY 70
60
""'h
50 z ' <C
~ 40
<{
~ 30
> "~- 20
~
0 10
0 100
?'\..
I\..
"
~ °t'
"'1'
Jll
1.0 k
10 k
100 k
1.0 M
lOM
FREQUENCY (Hz)
2500
~ 1500
<{
~
0
;;:: 1000
:0 : ~ 500
FIGURE 10 - OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE
,,,,.,,,.,..r -
~
""'"
z ~
~
0 0 3.0 6.0 9.0 12 15 18 21 24 27 30
SUPPLY VOLTAGE (Vdc)
·
FIGURE 11 - OUTPUT RESISTANCE versus FREQUENCY
10k~~~~tt~~~~~~tm"~~~~!m~~~~
""'
~
100L.LJ..J.JJ.__J__J......l....J.....U..J..J.J..-..J-.J.-J....J....l..UU..--'--...........................,........,...,...__._~T-i-::"::"'.
0.5 k 1.0 k
5.0 k 10 k
50 k 100 k
500 k 1.0 M 5.0 M
FREQUENCY
FIGURE 12 - SUPPLY CURRENT versus SUPPLY VOLTAGE
- 1
10 8.0
,__(PJsinv!
INPUT~
GRO~
~
~
1-
~o: 6.0
::>
ic..> 4.0
~~100,l (POSITIVE INPUTS OPEN) /
~
~ 2.0
0 0 3.0 6.0 9.0 12 15 18 21 24 'l-7 30
SUPPLY VOLTAGE (Vdc)
FIGURE 13 - LINEAR SOURCE CURRENT versus SUPPLY VOLTAGE
20~-~-~-~-~-~---.-----.--~-,---,-----,
~
16f---+--+--+--+--+-~-+---+---+---+-----i
1
~
~ 12t---+--+--+---t--T--+-~~k----1--t-P"'""--t----;
B
_....r
~ 8_0 1---+--+--,.....,~"---+V--+--t--v_oH+=_o_.4_v+d-c_-+-----1
~
~
4.0 ~-+--+--+--+--+--+--+----+--+---1
FIGURE 14 ~ LINEAR SINK CURRENT versus SUPPLY VOLTAGE
~ ... 8001-----1-/--1-v_..,,.,.::.+-_+--~--+--+---+----+---1
~ v
~
B
600
Vot =0.4 Vdc
l---+--+--+--+--+--+--+---t----t-------1
·c>z;<;: 4001---+--+--+--+--+--+--+--+---+-----1
2001---+--+--+--+--+--+---t----t----t------1
3.0 6.0 9.0 12 15 18 21 24 27 30 SUPPLY VOLTAGE (Vdc)
00L--3L.0--6L.0--9~.0--1~2-_._15-_._18__.__2~1--!-24:--~27:---730
SUPPLY VOLTAGE (Vdc)
3-103
MC3301
·
OPERATION AND APPLICATIONS
Basic Amplifier
The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load I 1 i~ buffered from the input transistor by a PNP transistor, 04, and from the output by an NPN transistor, 02. 02 is biased class A by the current source 12. The magnitude of 12 (specified lsinkl is a limiting factor in capacitively COllpled
linear operation at the output. The sink current of the pevice can be forced to exceed the specified level by keeping the output de voltage above~ 1.0 volt resulting in an increase in the distortion appearing at the output. Closed loop stability is maintained by an
on-the-chip 3-pF capacitor shown in Figure 18 on .the following page. No external compensation is reqµireq.
FIGURE 15
BLOCK DIA(;RAl\I!
10
Multipleemit1erl8) 1ransis101 oneem11terconnec1e1l1ueachmpui
A noninverting input is obtained py adding a current mirror as shown in Figure 17. Essentially all current which enters the noni~verting input, Ir, flows through the diode CR 1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, 03. Thus 03 is biased to conduct an emitter current equal to Ir. ·Since the alpha
current gain of 03 ~ 1, its collector current is approximately equal to Ir also. In operation this current flows through an external feedpack resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the de quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.
FIGURE 16 ··-A BASIC GAIN STAGE
vcc+
FIGURE 17 - OBTAINING A NONINVERTING INPUT
vcc+
11
(-)
-INPUTS (+)o-----~
Ir
CR!
OUTPUT
Biasing Circuitry
The circuitry common to all four amplifiers is shown in Figure 19, see next page. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers. The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor .R 1 is the sum of the drops across CR4 and CR3 minus the V13E of 08. The PNP current sources (05, etc.) are set to the mc;ignitude VBEIR1 by transistor
06. Transistor 07 reduces base current loading. The voltage across resistor R2 is· the sum of the voltage drops across CR2, CR3
~nd CR4, minus th'e VsE drops of transistor 09 and diode CR5.
The current thus set is established by, CR5 in all the NPN current sources (010, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage. 011
(Figure 1q) prqvides circuit protection from signals that are negative
with respect to ground.
3-104
MC3301
OPERATION AND APPLICAT!ONS. (continued)
FIGURE 18 - A BASIC OPERATIONAL AMPPFl~R Vee+
FIGURE 19 - BIASING CIRCl,JITRV
H
INPUTS (+) eRl
·
NORMAL DESIGN PROCEDURE
1. Output 0-Point Biasing A. A number of techniques may be devised to bias the quiescent Output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing as shown in Figures -3 and 4 (see the first page of this specification). The high impedance of the collector of ~he noninverting "current mirror" transistor helps to achieve the maximum loOp gain for any particular configuration. It is desirable that the noninverting input current be in the 10 µA to 200 µA range.
B. Vee Reference Voltage (see Figures 3 and 4) The noninverting input is normally returned to the Vee voltage (yvhich should be well filtered) through a resistor, Rr, allowing the input current, Ir, to l:Je within the range of 10 µ.A to 200 µA. Choosing the feedback resistor, Rf, to be
. v equal to Y. Rr will now bias the amplifier output de level to
approximately ~C . This allows the maximum dynamic
range of the output voltage.
FIGURE 20 - INVERTING AMPLIFIER WITH ARBITRARY REFERENCE
Rt
C. Reference Voltage other than Vee (see Figure 20) The biasing resistor Rr may be returned to a voltage (Vrl other than Vee- By setting Rt= Rr, (still keeping Ir between 10 µA and 200 µA) the output de level will be equal to Yr· The expressiori for determining Vodc is:
where I/> is the VRF drop of the input transistors (approximately 0.6 Vdc @ +25°C arid assumed equal). A1 is the current mirror gain.
2. Gajn Determination A. Inverting Amplifier Ttie a'11Plifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the de bias and the output is normally capacitively coupled to eliminate the de voltage across the load. Note that when the output is capacitively coupled to th.e load, the value of
FIGURE 21 - INVERTING AMPLIFIER WITH Ay = 100 AND v, =Vee
510 k
Vin e---e7· --,,.,,..--u--
Rr
0.1 µ.F
Vin e----}------<>--t
*Select for low frequency response.
Av= 100
+15V
0.1 µF
T VO
~
'
IL= 300 Hz, IH = 50 kHz
3-105
MC3301
·
NORMAL DESIGN PROCEDURElcontinued).
lsink becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direc3 coupled. In this configuration, the ac gain is determined by the ratio of Rt to Ri, in the same manner as for a conventional operational amplifier;
A = -~
v Ri
The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier in-, ternal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 400 kHz with 20 dB of closed loop gain or 40 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain .intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF.
B. Noninverting Amplifier The MC3301 may be used in .the noninverting mode (see Figure 4, first page). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of
the input resistor. This resistance is approximately ~ oh~s.
r where Ir is input current in milliamperes. The noninverting ac' gain expression is giv_en by:
The bandwidth of the non inverting configuration for a given Rt value is essentially independent of the gain chosen. For Rt = · 510 k.\1 the bandwidth will be in excess of 200 kHz for noninverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.
MAGNETIC PICKUP HYSTERISIS AMPLIFIER
100 k
TYPICAL APPLICATIONS
FIGURE 22 - TACHOMETER CIRCUIT vcc=+12v
MONOSTABLE MULTIVIBRATOR 130
6.1 v
POWER SUPPLY (no nregu lated)
PULSE AVERAGING OUTPUT
Hysterisis Voltage for Switching
1¥ VH =
(Vee - 1.6)
FIGURE 23 - VOLTAGE REGULATOR
Zl '
R2
+vcc
For positive Tc' zeners R2 and R1 can be selected to give 0 Tc output.
Timing Interval: t"' 0.7 Rl Cl
/ Vp-p"' (Vo:0.6) · A1 · t RyCl
FIGURE 24 - LOGIC "OR" GATE
150 k +Vee= +15 Vdc ---'VVv---<>--1
75 k
75 k
75 k
f=A+B+C
3-106
MC3301
TYPICAL APPLICATIONS (continued)
FIGURE 25 - LOGIC "NANO" GATE (Large Fan-In) +Vee= +15 Vdc
FIGURE 26 - LOGIC "NOR" GATE
f=A·B·e·D·E···
+Vee
75k
150 k
f=A+B+e+D
75 k +Vee= +15 Vdc .
II
FIGURE 27 - R-S FLIP-FLOP
vec
Vee
FIGURE 28 -ASTABLE MUL TIVIBRATOR
0.1 µF
100 k
I'
Vee= +.1s v
RESET SET 51 k
FIGURE 29 - POSITIVE-EDGE DIFFEREN,TIATOR
Output Rise Time"' 0.22 ms Input Change Time Constant"' 1.0 ms
0.001 µF
100 k
L>Vin
~ ~~2µ-F-'V\~-0-~
FIGURE 30,.... NEGATIVE-EDGE DIFFERENTIATOR 0.001 µF
100 k
L>Vin
~~~2µ~F,__"'VVV-o--!
150 k Vee= +15 Vdc
VQ(dc) "'7 .0 Vdc Output Rise Time"' 0.22 ms
Input Change Time Constant"' 1.0 ms
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is. not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility· is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
3-107
ORDERING INFORMATION
Device
MC3401L MC3401P
Temperature Range
0°c to +70°C 0°C to +70°C
Package
Ceramic DIP Plastic DIP
·MC3401
·
Speci:fications and Applications In:formatton.
QUAD OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER
These internally compensated operational amplifiers are designed specifically for single positive power supply applications found in industrial control systems and automotive electronics. Each MC3401 device contains four independent amplifiers making it ideal for applications such as active filters, multi-channel amplifiers, tachometer, oscillator and other similar usages.
· Single-Supply Operation - +5.0 Vdc to +18 Vdc · Internally Compensated · Wide Unity Gain Bandwidth - 5.0 MHz typical · Low Input Bias Current - ~O nA typical · High Open-Loop Gain - 1000 VIV minimum
L SUFFIX CERAMIC PACKAGE
CASE 632
P SUFFIX PLASTIC PACKAGE
CASE 646
FIGURE 1 - EQUIVALENT CIRCUIT
6~8~ AMPL 112
5
AMPL 13
9
1
+
13
+
3~- 11~ AMPL #I
. 4
AMPL<4
. 10
2
+
12
+
Vee - pin 14
Ground - pin 7
FIGURE 2 - SMALL-SIGNAL TRANSIENT RESPONSE
510 k
510 k I.OM
FIGURE 3 - INVERTING AMPLIFIER
Rt 510 k
Rt Av=--
Ri
0.1 µF Vin ~1---'\N'v--~:>----1
c
1
for -wC <Ri 1.0µF
+~VO
fOk
+15 v
Av= 10 BW= 150 kHz
FIGURE 4 - NONINVERTING AMPLIFIER
Rt 510 k
AV= --....R:2t 6- ~I
Ri+-. lr(mA)
:.1=·· BW= 250 kHz
3-108
MC3401
MAXIMUM RATINGS ITA= +25°c unless otherwise noted! Rating
Power Supply Voltage Non-inverting Input Current Power Dissipation
Derate above TA = +25°C Operating Temperature Range Stora!le Tem(lerature Range
Symbol Vee lin Po
TA Tstg
Value +18 5.0 625 5.0 Oto+70 -65 to +150
Unit Vdc mA mW mW/OC oc Oc
ELECTRICAL CHARACTERISTICS [Vee= +15 Vdc, RL = 5.0 kn, TA= +25°c (each amplifier) unless otherwise noted]
Characteristic
Fig.No. Note Symbol Min
Typ
Max
Open-Loop Voltage Gain
TA= +25°c
o0 c .;;; TA .;;;; +10°c
5,9,10
1
Avol
1000 2000
-
800
-
-
Quiescent Power Supply Current (Total for four amplifiers) Noninverting inputs open Noninverting inputs grounded
Input Bias Current, RL = 00 TA= +25°C
o0 c .;;;; TA .;;;; +10°c
6,12
2
loo
-
loG
-
5
3
110
-
-
6.9
10
7.8
14
50
300
-
500
Output Cu~rent Source Capability Sink Capability
Output Voltage High Voltage Low Voltage Undistorted Output Swing 10°c <TA< +70°C)
Input Resistance
Slew Rate (CL= 100 pF, RL = 5.0 k)
5
4
13
I source
5.0
10
-
14
I sink
0.5
1.0
-
7
5
VoH
13.5
14.2
-
7
5
Vol
-
0.03
0.1
8
6
Vo(p-p)
10
13.5
-
5
Rin
0.1
~-0
-
SR
-
0.6
-
Unity Gain Bandwidth Phas~ Margin power Supply Rejection (f = 100 Hz)
BW
-
c/Jm
-
7
PSSR
-
5.0
-
70
-
55
-
Channel Separation (f = 1.0 kHz)
eo1leo2
-
65
-
Unit V/V
mAdc
nAdc
mAdc
Vdc
V(p-p) MEGil
V/µ.s MHz Degrees dB dB
·
NOTES
1. Open loop voltage gain is defined as the voltage gain from the
inverting input to the output.
2. The quiescent current will increase approximately 0.3 mA for
each noninverting input which is grounded. Leaving the non-
inverting input open causes the apparent input bias current to
increase slightly (100 nA) at high temperatures.
3. Input bias current can be defint:d only for the inverting input.
The noninverting input is not a true ''differential input" - as
with a conventional IC operational amplifier. As .such this in-
put does not have a requirement for input bias current.
4. Sink current is specified for linear operation. When the device
is used as a gate or a comparator (non-linear operation), the
sink capability of the device is approximately 5.0 milliamperes.
5. When used as a noninverting amplifier, the minimum output
voltage is the Vee of the inverting input transistor.
6. "Peak-to-peak restrictions are due to the variations of the qui-
escent de output voltage in the standard configuration (Figure
~-
.
7. Power supply rejection is. specified at closed loop unity gain,
and therefore indicates the supply rejection of both the ~iasing
circuitry and the feedback ~mplifier.
3-109
MC3401
·
SIMPLIFIED TEST,CIRCUITS
(Vee= +15 Vdc, AL= 5.0 kn.TA= +25°e [each amplifier] unless otherwise noted)'
FIGURE 5 :._10PEN-LOOP GAIN AND INPUT RESISTANCE (INPUT BIAS CURRENT, OUTPUT CURRENT)
FIGURE 6 - QUIESCENT POWER SUPPLY CURRENT
l1B
---+
Vin-----~-
lsink
->--<>------..--_.;...vo
-I source
TOµF
I~'''!Ok
6iiB 6Vin
6Vo
Rin =
Avol =- 6 Vin
Amplifier must be biased (by Vin) in the
linear operating region.
loo is total supply current with"+" input open. IQG is total supply currelirwith "+"input grounded.
FIGUR.E 7-; OUTPUT VOLTAGE SWING 10 k
FIGURE 8 - PEAK-TO-PEAK OUTPUT VOLTAGE
Rf 510 k
>-£">--------vo Vin9----7--""'----<>--
ei R'L = 5.0 k
"':"
VOL measured with"-" input biased up as shown. VOH measured with "-" input grounded.
Rr Rf lM
Vodc ~Vee Ar VeG +15 v
vee ~2
for Rr ~ 2Rf
3-110
MC3401
TYPlCAL CHARACTERISTICS
(Vee= +15 Vdc, RL = 5.0 kn, TA= +25°C [each amplifier] unless otherwise noted.)
FIGURE 9 - OPEN-LOOP VOLTAGE GAIN versus FREQUENCY
70
~ 60
z ~ 50 w
(!)
~ 40
0
>
g; 30 :l ~ 20
0
J 10
0 100
~
" ~
~
I"
~
I"'-
1.0 k
10 k
100 k
" 1.0 M
10 M
f, FREQUENCY (Hz)
2500
>
?:
z
2000
;;{
(!)
~ 1500
!:::;
0
>
~ 1000
~
0 500
0 ~
0 0
FIGURE 10 - OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE
i:..
L ~v ~
/
2.0 4.0 6.0 8.0 10 12 14 16 18 20 Vee. SUPPLY VOLTAGE (Vdc)
·
FIGURE 11 - OUTPUT RESISTANCE versus FREQUENCY
10 k
§
w
(,.)
z
~
~1.0k
~
!::;
0
:?
100 0.5 k 1.0 k
h
rs
f\
=s:
~
5.0 k 10 k
~
1'-"""l'o! +--
50k100 k
500 k 1.0 M
r5.0 M
f, FREQUENCY
FIGURE 12~ SUPPLY CURRENT versus SUPPLY VOLTAGE 10
I IQG (Positive inputs grounded)
--
s.o 1---1---+--+--+--\1:--i---+~--+~-::;;;;...l---"""""~----i
..-Vk-:±:£ ~ ~ 6.01---+---+-........."...".. "'""vl----+-r----+----1;r-·---r---r---i
~ 4.0 I--+---+---+---+--+-o'_O-+(P_o_si_tiv-lerin_p_ut_st-op_en_)-+---i
~
~
~ E? 2.01---+---+---+---+---+--+---t--i----t-----i
OL-_...__....__ __.__ _.__ _.__ _.._ __._ _~-~~
0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
Vee. SUPPLY VOLTAGE (Vdc)
FIGURE 13 - LINEAR SOURCE CURRENT versus SUPPLY VOLTAGE
14
12
<
.§. 10
I-
~ 8.0
13
~ 6.0
:::>
5l 4.0 Q, !:!
. j 2.0
.J..--
-~ ...J...--1
0 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
Vee. SUPPLY VOLTAGE (V~c)
1.4
1.2
~
<(
1.0
.§.
I-
~ 0.8
13 0.6
>z.:
;;; ~
0.4
~
0.2
FIGURE 14 - LINl;AR SINK CURRENT versus SUPPLY VOLTAGE
L
L
0 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
Vee. SUPPLY VOLTAGE (Vdc)
3-111
IVIC3401
·
OPERATION AND APPLICATIONS
Basic Amplifier
The basic amplifier is the common emitter stage shown in Figures 15 and 16. The active load l,1 is buffered from the input transistor by a PNP transistor, 04, and·from the output by an N PN transistor, 02. 02 is biased class A by the current source 1'2. The magnitude of 12 (specified lsinkl is a limiting factor in capacitively coupled
linear operation at the output. The sink current of the device can be forced to exceed the specified level with an incre115e if') the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 18. No external compensation is required.
FIGURE 15
·veeo-+~~~~-..~~~~t-~~~-..~~~~-1-~~~~,._"'--~~~.1-~~~-...~~~~-+~~~--.
14 I
I 10
=1.
I Cl RCUIT SCHEMATIC
I BIASING CIRCUITRY I
~J:L~~i~~~~ 41 ~JPRL~~/~~:i
11 ~~P~~~i~~:!
vceo-t-t-~~~-....~~-t-~..+~~~~~-.~......,1-++-~~~,..--~..--..-+++~~~~~~~..-~+-~~~-~-.-....,
14 I
I
I
I
I
L-- -- --- -
1
13
12
A noninverting input is obtained by adding a current mirror as shown in Figure 17. Essentially all current which enters the noninverting input, I in2· flgws thr0ugh the diode CR 1. The voltage drop across CR 1 correspond!! to this input current magnitude and this same voltage is applied to a matched device, 03. Thus· 03 is biased· to conduct an emitter current equal to I in2· Since· the
FIGURE 16 - A BASIC GAIN STAQE
vce+
alpha current gain of· 03 ~ 1, its collector ,::urrent ~ I in2 also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the de quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedli~e" section. ' ·
FIGURE 17 - OBTAINING A NON!NVERTING INPUT
vec+.
Biasing Circuitry
The circuitry commo11 to all four amplifiers is shown in Figure 19. The purpose of this circuitry is to provide biasing voltage for the PrilP and NPN'current sources used in the amplifiers.
The voltage drops across diodes CA2, CR3 and CR4 are used as references. The v9ltage across resistor R 1 is the sum of the drops across CA4 anp CR~ minus the Vse of 08. The PNP current sources (05, 11t<;.l are s~t to the·m~gnitude Vse/R1 by transistor
(-)
-INPUTS (+) o-------4
1in2
CRl
OUTPUT
06. Transistor 07 reduces base current loading. The voltage across resistor R2 is the sum of the voltagfi! drops across CR2, CR3 and CR4, minus the Vse c;:trops of transistor 09 and diode CR5. The current thus set is established by CR5 in all tl'!.e NPN ·current $9Urces (010, etc.). This technique results in current sourc11 niaf:!ni: tudes which are relatively indepen!:fent of the supply voltage.
3-112
MC3401
OPERATION AND APPLICATIONS !continued)
FIGURE 18 - A BASIC OPERATIONAL AMPLIFIER Vee+
FIGURE 1~ - BIASING CIRCUITRY Vee+
H
INPUTS (+) eR1
10 k
eR2
·
eR3 eR4
NO~MAL DESIGN PROCEDURE
1. Output 0-Point Biasing
A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain conside.rations it is usually desirable to use tlJ,e noninverting input to effect the biasing as shown in Figures 3 and 4. The tiigh impedance of the collector Of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular' configuration~ It is desirable that the noninverting input current be in the 5 µA to 100 µA range.
B. Vee Reference Voltage (see Figures 3 and 4)
The noninverting input is normally returned ~o the Vee voltage (vi,rhich should be well filtered) through a resjstor, Rr, ;illowing the inp4t current, Ir, to be within the range of ' 5 µA to10Q"µA. ehqos'ing the feedback resistor, Rf, to be equal to Y. Rr will now bias.the ~mplifier output de level to
approximately Vee. This allows for maximum dynamic 2
range of the output vol~age.
e. Reference Voltage other than Vee (See Figure 201. The biasing resi~tor ~r may be returned to a voltage IVrl
other than Vee· By setting Rf= Rr, (still keeping Ir between 5 µA and 100 µA) the output de level will be equal to Vr· Neglecting error terms, the expression for determining Vodc is:
where. rp is the Vee drop of the input transistors (1tpproxi-
f"!lately 0.7 Vdc@ +25°e1.
,
The error terms not appearing in the above eqµation can cause the de operating point to vary up to 20% from the expected value. Error terms are minimized by setting the input current within the range of 5 µA to 100 µA.
2. Gain Determination
A. Inverting Amplifier
The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the de b.ias arid th!! output is normally capacitively coupled to eliminate the d<; voltage 11cross the load. Note that when the output is capacitively coupled to the lo11d, the value of
FIGURE 20 - INVERTING AMPLIFIER WITH ARBITRARY REFERENCE .
Rf
FIGURE 21 - INVERTING AMPLIFIER WITH
Av= 300 AND Vr =Vee .
510 k
C* Vin ~l-_,.,,,lh--41~c:>---t
~r Ir
0.1 µf 5.1 k Vin ~t---IVV'lr-9-0---t
>-<>-4..,..~--~-evo
*Select for low frequency response.
lM
Av= 100
+15V
0.1 µF
T vo -=
fL =300 Hz, fH =50 kHz
3-113
MC3401
·
NORMAL DESIGN PROCEDURE (continued)
Isink becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ·ratio of Rf to Ri, in the same manner as for a conventiof'lal operational amplifier:
The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation .. The amplifier unity gain bandwidth is typically 5.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 500 kHz with 20 dB of closed I0,9P gain or 50 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the in!Jut resistor may occur before the closed loop gain intercepts the open loop response· curve. The inverting input capacity is typically 3.0 pF.
13. Non inverting Amplifier
Although recommended as an inverting amplifier, the MC 3401 may be used in the noninverting mode (see Figure 4). The amplifier gain in this configuration is subject to the same error terms that affect the output Q point biasing so the gain may deviate as much as ±.20% from that expected. In addition, the resistance of the input diode must be included in the value of the input resistor: This resistance is
26 approximately - ohms, where Ir is input current in milli-
lr amperes. The noninverting gain expression is given by:
A = v
Rt 26
±.20%.
Ri +Ir (mA)
The bandwidth of the noninverting configuration for a given Rf value is essentially independent of the gain·chosen. For,
Rf = 510 kn the bandwidth will be in excess of 200 kHz for noninver,ting gains of 1, 10, or 100. This is a result of
the .loop gain remaining constant for these gains since the. input resistor is effectively isolated from the feedback loop.
TYPICAL APPLICATIONS
FIGURE 22 - AMPLIFIER AND .DRIVER FOR A 50-0!iM LINE
510 k
V;n .-j1---'VV\r--4t--c.>----1 0.1 µF
1.2M
Av= 10 Vo o 6 \'.(p·p)
+15 v
'Tva20µF
r
FIGURE 23 - BASIC BANDPASS AND NOTCH FILTER
Rl
Rl
Vin c x 10 Tsp
390 k
t ~ ........~,..,_-:>--! R2
Ir
390 k
Tsp= Center Frequency Gain TN= Passband Notch Gain
1
wO =Ac
Rl =OR Rl
R2=TBP
R3 =TN R2
Rl R2
2(R1 II R3)
3-114
~TCH
MC3401
TYPICAL APPLICATIONS (continued)
0.005µF 300 k
FIGURE 24 - BANDPASS AND NOTCH FILTER 62 k
0.005 µF
100 k
300k
100 k
vcc
300k
f'"
300 k
Vin Bandpass Output_. pin 4 Notch Output- pin 10
iOO k
Vee
>-1-0 <:J----- NOTCH
Vee (Pin 14) = +12 Volts Ground - pin 7 Center Frequency 500 Hz
Q;5
Bandpass Gain = 1
10 R
FIGURE 25 - VOLTAGE REGULATOR
Vz 1N3824 4.3 V or equiv
Vee
Vo= Vz + 0.6 Vdc NOTE 1: R is used to bias the Zener. NOTE 2: If the Zener TC is positive, and equal in
magnitude to the negative TC of the input to the operational amplifier("' 2.0 mV/OC), the output is zero-TC. A 7.0-Volt Zener will,jjive a~proximately zero-TC.
·
FIGURE 26 - ZERO CROSSING DETECTOR vcc=+15V
1 M
1 M
510 k
MAGNETIC PICKUP
INPUT C\.." CC\7.. V/"\. 0 V
OUTPUTLJU1J ov
3-115
·
ORDERING INFORMATION
Device
MC3303L MC3303P MC3403L MC3403P MC3503L
Temgerature Range
-40°C to +85°C
-40°C to +85°C O~-G t~{+70°C
0°0 to-+70°C -55°C to + 125°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DiP Ceramic DIP
~pec·if'i<·ation~ and i\.pplic·ations Inf'orn1at ion
QUAD LOW POWER OPERATIONAL AMPLIFIERS
The MC3503 is a low-cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular MC1741. However, the MC3503 has several distinct advantages over standard operational amplifier types in single supply applications. Ttie quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one third of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The 'output voltage range also includes the negative p0wer supply voltage.
· Short Circuit Prptected Outputs · Class AB Output Stage for Minimal Crossover Distortion · True Differential Input Stage · Single. Supply Operation: 3.0 to 36 Volts · Split Supply Operation: ± 1.5to±18 Volts · Low Input Bias Currents: 500 nA Max · Four Amplifiers Per Package ~ Internally Compensated · Similar Performance to Popular MCl 741
Ii SINGLE SUPPLV
3.0 V to 30 V .---+---.
SPLIT SUPPLIES
CJhv'o rnv 1.5Vto18. V .
MAXIMUM RATINGS
_:;_
flating
Power Supply Voltages
Single Supply
Split Supµ,lies
Input Differential Voltage Range (1) Input Common Mode Voltage Range (1) (2)
Symbol
Vee Vee Vee V10R V1eR
Value
36 +18 -18 ±30 ±15
Unit Vdc
Vd_c Vdc
Storage Temperature Range Ceramic Package Plas_tic Package
Operating Ambient Temperature Range
MC3503 MC3403 MC3303
Junc:;fion temperature Ceramic Pack~ge Plastic Package
Tstg
oc
-65to +150
-55 to +125
TA
OC
-55 to +125
0 to +70
-40 to +85
TJ
oe
175
150
111 Split Power Supplies.
(2) For Supply Voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
3-116
MC3403P,L
MC3503~ MC3303P,~
QUAQ DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
P SUFFIX PLASTIC PACKAGE
CASE 646 (MC3403 and MC3303 only)
PIN CONNECTIONS
Out 4
Inputs 4
VEe/Gnd
Inputs 3
Out 3
MC3403, MC3503, MC3303
ELECTRICAL CHARACTERISTICS IVcc = +15 v, Vee= -15 V for MC3503, MC34Ci3, Vee= +14 v. Vee= Gnd for MCC3303.
TA = 25°C unless otherwise noted.I
Characti<istic
Input Offset Voltage TA= Thigh to Tiow 111
Input Offset current TA= Thigh to T1ow
Large Signal Open·Loop Voltage Gain Vo= t 10 V, RL · 2.0 kl!; TA= Thigh io T1ow
Input Bias Current TA= Thigh to T1ow
Output Impedance I= 20Hz
lnpUt lmpedarice I= 20f.lz
01>tput Voltage Range RL = 10k!! Ri_..= 2.0 kl! RL = 2.0 k!!, TA= Thigh to T1ow
Input Common-Mode Voltage Range
Common·Mode Rejection Ratio . Rs.;; 10k!l
Power Supply Current IV0 · 01 RL = ~
Individual Output Short·Circuit Current 121 Positive Power Supply Rejection Ratio
Negative Power Supply Rejection Ratio
Average Temperature Coefficient of Input Offset Current -TA= Thigh to Tfow
Average Temperature Coefficient of Input Oifset Voltaiie TA =.Thigh to Ttow
Power Bandwidth Ay= 1, RL = 2.0k!l, V0 = 20Vlp·pl, THO= 5%
Small·Signal Bandwidth Av= 1, RL. 10kS!, Vo= 50mV
Slew Rate Av= 1, vi= -10V to +10V
RiseTinie Av=l,RL =10k!!, Vo= SOmV
Fall Time Av= 1, RL = 10 k1!. Vo= SOmV
Overshoot Av=l,RL = 10k!!, V0 =50mV
Phase Margin ·Av_= 1, RL = 2.0 k!!. CL= 200pF
Crossover Distortion 1Vin=30mVp·p,V0 ut= 2.0Vp-p, f = 10 kHz)
MC3503
Symbol
Min
Typ
Max
V10
2.0
5.0
6.0
110
,30
50
200
AvoL
50
200
25
300
Its
-200
-500
-300
-1500
Zo
75
Zi
0.3
1.0
MC3403
Min
Typ
2.0
30
Max
10 12
50 200
20
200
15
-200
-500 -800
75
0.3
1.0
VOR
V1cR CMRR
±12
±13.5
±10
±13
±10
+13 v -Vee +13.5V-Vee
70
90
±12
±13.5
±10
±13
±10
+13V-Vee +13.5V-VeE
70
90
ice.lee
1os1
±10
PSRR+
PSRR-
·'110/~T
2.8
4.0
±30
t45
±10
30
150
30
150
50
2.8
7.0
±20
±45
30
150
30
150
50
~V1oi·'T
10
10
BWp
9.0
9.0
BW SR tTLH tTHL OS <Pm
1.0 0.6 0.35 0.35 20 60 1.0
1.0 0.6 0.35 0.35 . 20 60 1.b
111 Thigh = 125°C for MC3503, 10°c for MC3403, 95oc for MC3303
= o T1ow -55°C for MC3503, 0 c for MC3403, -40°c for MC3303
ELECTRICAL CHARACTERISTICS IVcc= 5.0 v. Vee= Gnd, TA= 25°c unless otherwise noted.I
Characteristic Input Offset Voltage Input Offset CurrentInput Bias Current Large-Signal Open-Loop Voltage Gain
RL = 2.0kn
MC3503
Symbol
Min
Typ
Max
Min
V10
2.0
5.0
110
30
50
l1B
-200
-500
AvoL
20
200
20
Power SupPly Rejection Ratio
PSRR
150
Output Voltage Range 131 RL · 10kn. Vcc=5.0V RL = 10kn, 5.0V .. Vcc ... 30 v
VoR
3.3 vcc-1.1
3.5 Vcc-1.5
3.3 Vcc-1.1
Power Supply Current
ice
Chinnel Separa1ion
f = 1.0 kHz to 20 kHz (Input Referenced)
2.5
4.0
-120
MC3403 Typ 2.0 30 -200 200
3.5 Vcc-1.5
2.5 -120
Max
10 50. -500
150
7..0
121 fllot to exceed maximum package power dissipation. 131 Output will swing io grourid
MC3303
Min
Typ
Max
2.0
8.0
10
30
75
250
20
200
15
-200
-500 -1000
75
0.3
1.0
+12
+12.5
+10
+12
+10
+13V-Vee j+13.5V-vee
70
90
2.8
7.0
±10
130
±45
30
150
50
10
9.0
1.0 0.6 0.35 0.35 20 60 1.0
MC3303
Min
Typ
Max
10
75
-500
20
200
150
3.3 Vc(:-1.7
3.5 vcc-1.5
2.5
7.0
-120
Unit mV nA V/mV
nA n Mn v
v. dB mA mA µVIV µVIV pA/OC
µV/OC
kHz
MHz V/v.s
µs
)JS
% Degrees
%
Unit mV nA nA V/mV µVIV Vp-p
mA dB
@ MOTOROLA Serniconduct.or Product.s Inc.
3-117
·
MC3403, MC3503, MC3303
·
CIRCUIT SCHEMATIC
Bias Circuitry Common to Four
Amplifiers
INVERTER PULSE RESPONSE
20 µs/div. CIRCUIT DES<;RIPTION
The MC3503/3403/3303 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices 024 and 022 with input buffer transistors. 025 and 021 and the differential to single ended converter 03 and 04. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transcon-· ductance reduction is accomplished by splitting the collectors of 024 and 022. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation,
Vee (Gndl
without saturating either the input devices or the differential to single-ended converter. The second stl14le consists of a standard current source load amplifier stage.
The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because class AB operation is utilized.
Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate. at a given operating ambient temperature, C(!n be found from the equation:
TJ(max) -TA
Po(TA) = R~JA{Typ)
Where: PD(TA) = Power Dissipation allowable at a given
operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max) = Maximum Operating Junction Temperature
as listed in the Max.imum Ratings Section
TA = Maximum Desired Operating Ambient
Temperature
Rl)JA(Typ) =Typical Thermal Resistance Junction to'
' Ambient
·
@ MOTOROLA Se11'1iconduc·or Produc·s /nC. _ _ _ _ _ _ __,
3-118
MC3403, MC3503, MC3303
TYPICAL PERFORMANCE CURVES
FIGURE 1 - SINE WAVE RESPONSE
FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE
,;
>'ti
E
0 in
·Note Class AB output stage
produces d1stort1onless s1newave
50 µs/div.
FIGURE 3 - POWER BANDWIDTH 30
c. 25 "-
~
0
20
2:
w
"' 15
<(
':::;
0
>
10
~
~ 5.0
0 > 0
TA~_25:C
-5.0 1.0 k
10k
100k
I, FREQUENCY (Hz)
1.0M
I, FREQUENCY (Hz)
FIGURE 4 - OUTPUT SWING versus SUPPLY VOLTAGE
! 30
fA =25dc
~
L
2:
w
"z '
~ 20
w
"'<(
':::;
v ~~
> 0 ~ 10 ~
k2:: L
0
~
~
>0 /
0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
Vee AND VEE. POWER SUPPLY VOLTAGES (VOLTS)_
·
FIGURE 5 - INPUT BIAS CURRENT versus TEMPERATURE
!· J.
300 1-----.,1---+--+---+---+--+--t-- Vee= 15 v _ VEE=-15V TA=25°c~
FIGURE 6- INPUT BIAS CURRENT versus SUPPLY VOLTAGE
i - 1110
Cl)
-........
"l "
<(
iii
'~ 160
_j_
~
-75 -55 -35 -15 5.0 25 45 65 85. 105 125 T, TEMPERATURE (OC)
150 0
2.0 4.0 6.0 8 . 10 12 14 16 Vee AND !VEE!. POWER SUPPL y VOLTAGES (VOLTS)
111 20
@ MOTOROLA SeTniconduct:or Product:s Inc. _ _ _ _ _ _ __.
3-119
MC3403, MC3503, MC3303
·
APPLICATIONS INFORMATION
FIGURE 7 -VOLTAGE REFERENCE Vee
FIGURE 8 - WEIN BRIDGE OSCILLATOR 50k
10 k R2
Vo
10k
10 k R1
Vo =RTR+1'Fi2
1
Vd a2Vcc
For f0 = 1 kHz R = 16 kf!
R
C= 0.01 µF
FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER e1
FIGURE fo- COMPARATOR WITH HYSTERESIS
R2
Hysteresis
e2
R
e0 = c (1 + a + bl (e2 - e1 l
V o H L _ fI f i - ·. ·
Vo
:
I I I
VoL
VinL : VinH
Vref
R 1~ VinL =
1
R:Z (VoL - Vrefl + Vref
R21
VinH = R 1:
(VoH - Vrefl + Vref
H=~(VoH-VoLl
R1 + R2
FIGURE 11 - Bl-QUAD FILTER
R
R
100 k
R1 =QR
R1 R2=-
Tep
Vref = 21 Vee
100 k
R3=TN R2
C1=10C
f 0 = 1 kHz Q= 10
@-MOTOROLA
C1
l>--<>...,.----1f----e Notch Output R = 160kf2
Vref
Where
Tep= Center Frequency Gain TN= Passband Notch Gain
c;. 0.001 µF
R1=1.6 Mh
R2 = 1.6Mf2
R3=1.6Mf2
Semiconductor Products Inc.---------'
3-120
MC3403, MC3503, MC3303
l2 - FIGURE
FUNCTION GENERATOR
2 1
Vref = Vee V ref ----0--1
Triangle Wave Output
R2 300k
Square Wave Output
Rf
f= R1 +Re 4CRfR1
if R 3 =R2 R1 R2+R1
FIGURE 13- MULTIPLE FEEDBACK BANDPASS FILTER
4
1"'
Vee
>-'1.>-<l>----1E-e v 0
Co Co= 10 C
2 1
Vref = Vee
Given fo = Center Frequency
A(f0 ) =Gain at Center Frequency
Choose Value f 0 , C Then:
Q R3=--
11 f 0 C R3
R 1 = 2 A(f )
0 R1 R5 R2 -4a2R1-R5
For less than 10% error from operat1onal amplifier
Oo fo<o.1 BW
Where f0 and BW are expressed In Hz.
If source impedance varies, filter may be preceeded with voltage follower buffer to stabilize f.ilter parameter"
·
are Circuit diagrams utilizing Motorola produCts included as a means
is believed to be entirely reliable. However, no responsibility is
of illust~ating typical semiconductor applications; consftquently, assumed for -inaccuracies. , Furthermore. such information does not
compl~t~ inf<:>rmation sufficierit for construction purposes is not convey to the purchaser of the semiconductor devices described any
nece~sarily given. The information has been carefully checked and license under the patent rights of Motorola Inc. or others.
® MOTOROLA Semlco'1ductor Products Inc.
3-121
·
ORDERING INFORMATION
Device
MC3358P1 MC3458G MC3458P1 MC3458U MC3558G MC3558U
Temperature Range
-40°C to +85°C 0°C to +70°C 0°C to +70°C 0°c to +10°c
-55°C to +1?5°C ...:..55°C to + 125°C
Package
Plastic DIP Metal Can Plastic DIP Ceramic DIP Metal Can Ceramic DIP
Specificatione an~ Applications Information
DUAL LOW POWER OPERATIONAL AMPLIFIERS
Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE. 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The MC3558 Series is equivalent to one-half of a MC3503.
These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one-fifth of' those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing com.ponents in many applications. The .output voltage range also includes the negative power supply voltage.
· Short Circuit Protected Outputs · True Differential Input Stage · Single Supply Operation: 3.0 to 36 Volts · Low Input Bia~ Currents · Internally Compensated · Common Mode Range Extends to Negative Supply · Class AB Output Stage for Minimum Crossover Distortion
· Single and Split Supply Operations Available · Similar Performance to the Popular MC 1558
MAXIMUM RATINGS
Rating
Power Supply Voltages Single Supply Split Supplies
Input Differential Voltage Range (1)
Input Common Mode Voltage Range (2)
Input Forward Current
(V1 < -0.3 V)
Junction Temperature Ceramic and Metal Packages Plastic Package
Storage Temperature Range Ceramic and Metal Packages Plastic Package
Operating Ambient Temperature Range MC3558 MC3458 MC3358
Symbol
Vee Vee VEE V10R V1cR l1F TJ
Tstg
TA
Value
36 +18 -18 ±30
±15
50
175 150
-65 to +150 -55 to +125
-55 to, +125 0 to +70
-40 to +85
Unit Vdc
Vdc Vdc mA oc
oc
oc
( 1) Split Power Supplies. (2) For Supply Voltages less than± 15 V, the absolute maximum input voltage is equal to
the supply voltage.
MC3458 MC3558 MC3358
DUAL DIFFERENTIAL INPUT
'OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Vee
VEE/Gnd P1 SUFFIX PLASTIC PACKAGE CASE 626 (MC3458, MC3358 only)
U SUFFIX CERAMIC PACKAGE
CASE 693
3-122
MC3458, MC3558, MC3358
y, (For MC3558, MC3458, Vee= +15 Vee= -15 v. TA= 25°c unless otherwise noted.) (For MC3358, Vee= +14 V, Vee= Gnd, ELECTRICAL CHARACTERISTICS c. TA = 2s0 unless otherwise noted.)
MC3558
MC3458
Me3358
Chlroctoriotic
Symbol
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
Input Offset Voltage TA= Thigh to T1ow (11
V10
2.0
5.0
2.0
10
6.0
12
2.0
8.0
m'il
10
Input OffsetCurrent TA · Thigh to T1ow.
·10
30
50
30
50
30
75
nA
200
200
250
Large Signal Open-Loop Voltage Gain Vo= ±10V, RL · 2.0 k!l, TA= Thigh to T1ow
AvoL
50
200
25
300
20
200
15
20
200
15
V/mV
Input Sias Current TA =Thigh to T1ow
Output Impedance f = 20 Hz
'·B
-200
-500
-200
-500
-200
-500
nA
-300
-1500
-800
-1000
Zo
P.i
75
75
n
Input Impedance f = 20 Hz
Zi
0.3
1.0.
0.3
1.0
0.3
1.0
M!l
Output Voltage Range
VoR
v
RL = 10k!l
,12
'13.5
'12
'13.5
12
12.5
RL=2.0kl1
,10
'13
,10
,13
10
12
RL = 2.0 k11, TA= Thigh to T1ow
,10
,10
10
Input Common·Mode Voltage Range
V1eR +13 v -Vee +13.5 V-VEE
+13 v-vee +13.5V-VEE
+12 v -Vee +12.5V-Vee
v
Common-Mode Rejection Ratio
CMRR
70
90
70
90
70
9-0
dB
Rs.;;10kl1
Power Supply Current IV0 = 0)
·cc.IEE
RL = -
Individual Output Shori·Circuit Current (2)
·as,
±10
Positive Power Supply Rejection Ratio
PSRR+
1.6
2.2
,30
,45
'10
30
150
1.6
3.7
,20
,45
±10
30
150
1.6
3.7
mA
,30
±45
mA
30
150
µ.V/V
Negative Po'h'E!r Supply Rejection Ratio
PSRR-
30
150
.30
150
µ.V/V
Average Temperature Coefficie.nt of Input
'''10/,;T
50
50
Offset Current
50
pA/°C
TA= Thigh to T1ow
Average Temperature Coefficient of Input
6V1oi·'T
10
10
Offset Voltage
10
µ.V/OC
TA= Thigh to T1ow
Power .Bandwidth
BWp
9.0
9.0
9.0
kHz
Av= 1,RL =2.0kl1, Vo= 20Vlp·pl.
THO= 5%
Small-Signal Bandwidth
BW
1.0
1.0
Av= 1, RL = 10kl1, Vo= 50mV
1.0
MHz
Slew Rate
SR
0.6
0.6
Av = 1, Vi= -1 OV to + 1Q v
0.6
V/µ.s
-Rise Time
tTLH
0.35
0.35
0.35
Av= 1,RL = 10 kl1, Vo= 50mV
Fall Time
tTHL
0.35
0.35
0.35
Av= 1,RL = 10 kll, Vo= 50mV
Overshoot
.OS
20
Av= 1;RL = 10 kl1, Vo= 50mV
20 -
20
%
Phase Margin-
<t>m
60
60
Av= 1, RL = 2.0 kl1, CL= 200pF
60
Degrees
Crossover Distortion IVin = 30mVp-p, Vout = 2.0 Vp·p, f = 10 kHz)
1.0
1.0
1.0
%
11 l Thigh = 125°c for MC3558, 10°c for MC3458, 85°C for MC3358. T1ow = -55°C for MC3558, 0°C for MC3458, -40°C for MC3358.
ELECTRICAL CHARACTERISTICS IVcc= 5.0 V, Vee= Gnd, TA= 25°c unless otherwise noted.)
MC3568
Ch.1r1cteri1tic
Symbol
Min
Typ
Max
Min
Input Offset Voltage
V10
2.0
5.0
Input Offset Current Input Bias Current Large-Signal Open·Loop Voltage Gain
RL = 2.0k!l
110
l1B
AvoL
20
30
50
-200
-500
200
20
Power Supply Rejection Ratio
PSRR
150
Output Voltage Range 13)
VoB
RL. 10 k!l, Vee= 5,0 v
3.3
3.5
3.3
RL = 10 k!l, 5.0 v .. Vee .. 30 v
Vcc-1.1v
Power Supply Current
'cc
Channel Separation
f = 1.0 kHz to 20 kHz !Input Referenced) .
2.5
4.0
-120
MC3458 Typ 2.0 30 -200 200
3.5 Vee -1.1 v
2.5 -120
Max 10 50 -500
150
7.0
MC3358
Min
Typ
Max
Unit
2.0
10
mV
75
nA
-500
nA
20
200
V/mV
150
µ.V/V
3.3
3.5
Vee -1.1 v
Vp-p
2,5
4.Q
mA
-120
dB
f2) Not to exceed maximum package power dossipatoon. (3) Output will swing to ground
·
@ MOTOROLA Semiconductor Prod_ucts Inc. --------'
3-123
MC3458, MC3558, M.C3358
·
(Y, Shown)
REPRESENTATIVE CIRCUIT SCHEMATIC
Output
Bias Circuitry Common to Both
Amplifiers
Vee
5 pF C1
R4 40 k 31 k R6
01
028
R5 2.4 k
INVERTER PULSE RESPONSE
~
1- ~
_l
' ~ i
rf
~
20 µs/div.
T
CIRCUIT DESCRIPTION
The MC3558 Series is made using two internally compensated, two-stage operatibnal amplifiers. The first stage of each consists of differential input devices 024 and 022 with input buffer transisfors 025 and 021 and the differential to single ended converter 03 and 04. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transcon· ductance reduction is accomplished by splitting the col· lectors of 024 and 022. Another feature of this input sta.ge is that the input common-mode range can include the negative supply or ground, in single supply operation,
without saturating either the input devices or the dif· ferential to single-ended converter. The second stage consists of a standard current source load amplifier stage.
The output stage is unique Qecause it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply oper· ation. This is possible because class AB operation is utilized.
Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.
@ MOTOROLA Semiconductor Product· Inc. _ _ _ _ _ ___.
3-124
M.C3458, MC3558, MC3358
TYPICAL PERFORMANCE CURVES
FIGURE 1 - Slfl!E WAVE RESPONSE
,;
~ >
Ill
0
/ .~
>'ti
E
g
"Note' Class AB output stage produces distortion less sinewave.
50 µs/div.
FIGURE 3 - POWER BANDWIDTH
-5.0 .___..__....._1........L...........u.1..--'---'--'-.J.....J-..1..J....1..___.J..__,__.L-.L...........U..
1.0 k
10 k
100 k
1.0M
f, FREQUENCY (Hz)
FIGURE 2 - qPEN LOOP FREQUENCY RESPONSE
·
-20 .__~......_LI-_J_....L.L.J.J....-1...-1....L..U--1.--1...J-l..l...-.l...-+,....L...l.J.....-l..-...!....I~
1.0
10
100
1.0k
10k
100 k 1.0M
·1. FREQUENCY (Hz)
FIGURE 4- OUTPUT SWING versus SUPPLY VOLTAGE
! 30
:;
:0::
UJ
Cz!I ~ 20
UJ (!)
<(
~
> ~ 10
!;::;
TA= 25°c
.L
/
y /
v [7
7
0
~
~
" > 0 0
2.0 4.0
6.0 8.0 10
12
14
16
18
20
Vee ANO VEE. POWER SUPPLY VOLTAGES (VOLTS)
FIGURE 5- INPUT BIAS CURRENT ver111s TEMPERATURE
J J 300--+--_...,,___...,,____._ _ _ _ _-+_ Vee= 15V -
VEE=-15V
1
TA=25°C-
z1-
~ B
2001--:---.i-....~=~--lk~ -l--l--+--+--+--1
~ iii
1:::>~ 1001---+--l---l----'I---~-~--+~-+----+-~
~
-75 -55 -35 -15 5.0 25 45 65 85 105 125 T, TEMPERATURE (DC)
FIGURE 6- INPUT BIAS CURRENT venusSUPPLY VOLTAG.E
1110
I-
i ien
<(
160
~
i.--
""' ~
150 0
2.0 4.0 6.0
10 12 14 1~ 18 20
Vee ANO !VEE[, POWER SUPPLY VOLTAGES (VOLTS)
@ MOTOROLA Serniconducf:or Producf:s Inc. _ _ _ _ _ ____.
3-125
MC3458, MC3558, MC3358
·
APPLICATIONS INFORMATION
FIGURE 7 - VOLTAGE REFERENCE Vee
FIGURE 8 - WEIN BRIDGE OSCILLATOR 50 k
10 k R2
10 k R1
R1, Vo=R1+R2
1 Vo =2Vee
10 k
1
Vref = 2 Vee
R
R e e
1 1 0, = 2 r r R e
For t0 = 1 kHz R = 16 k!!
e = Q,01 µF
FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFl,ER
e-1R
R
a R1
e2 e0 = e ( 1 +a+ b) (e2 - e1)
FIGURE 10- COMPARATOR WITH HYSTERESIS
R2
Hysteresis
VoHUJ-I
Vo
:
VoL
I I I
VinL : V;nH
Vref
VinL
=
R
R+l 1
R
2
(VoL
-
Vret> + Vref
1 VinH = R 1: R 2 (VoH - Vref) + Vref
H = R1R+1R2(VoH - VoL)
Vin C 1
R R2
FIGURE 11 - Bl-QUAD FILTER A
100 k
1 fo=211RC
R1 =QR R1
R2=Tsp
1
Vref = 2 Vee
R3=TNR2 e1=10e
Vref R2
Sar)dpass
R3
Output
R1
Vref
f 0 = 1 kHz Q= 10'
Tsp= 1
TN= 1 C1
----Notch Output
Tsp= Center Frequency Gain TN = Passband Notch Gain
A= 160kfi e = 0.001 µF R1 = 1.6 M.!1 R2 = 1.6 M.!1 R3 = 1.6 MU
@ \ MOTOROLA Serniconduc'for Produc'fs Inc. _ _ _ _ _ ____.
3-126
MC3458, MC3558, MC3358
APPLICATIONS INFORMATION (continued)
FIGURE 12 - FUNCTION GENERATOR
i Vref = Vee
Vref---0---t
Triangle Wave Output
R2 300 k
c
At
f=~ if
4CRtR1
R3=R 2 R 1 R2+R1
Square Wave Output
FIGURE 13- MULTIPLE FEEDBACK BANDPASS FILTER
4
f'
Vee
'>-0----tt--Vo
Co Co= 10 C
v·ref = 21 Vee
Given
f 0 = Center Frequency
A(f0 ) = Gain at Center Frequency
Choose Value f 0 , C Then:
a
R3=-7T f 0 C
R1 = -R-3 -
2 A(f0 ) R1 R3
R~ 4Q2R1-R3
For less than 10% error from operati"onal amplifier
oo fo<o.1
BW
Where f 0 and BW are expressed in Hz.
If source impedance varies, filter may be preceeded with voltage follower buffer to stabilize filter parameter's.
·
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not. nec;essarily given. The information has been carefully checked and
is . believed to be entirely reliable. However, no responsibility is · assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the Semiconductor devices described any license under the patent rights of Motorola Inc. or others.
® MOTOROLA Sernlconduc'for Produc'fs Inc.
3-127
·
Advance In.fqrmation
QUAD WIDEBANQ OPERATIONf-L AMPLIFIER.$
The MC3471/MC3571 is o.ne of the first quad fET-input operational amplifiers offered to the industry. Its FET input gives the amplifier a very high input imP,edance and extremely low input characteristics. The MC3471 also features a unity gain stable 10 MHz bandwidth.
This large bandwidth makes this device excellent for active filter applications where high freq4ency perforrrianc~ i~ required. It is also very useful as a general purpose high performance operational amplifier because of its attractive input characteristics.
· Four Amplifiers on a Sing!e Monolithic Chip · FET Input · Bandwidth = 10 MHz (Unity Gain Stable) · High Input Impedance · Low Input Offset Currents (20 pA) · No External Compensation Required · High Slew Rate (20 V /µs)
MC3471 MC3571
QUAD FET-INPUT OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
LSUFFIX CERAMIC PACKAGE
CASE 632 ' T0-116
P SUFFIX PLASTIC PAC~AGE
CASE 646
MAXIMU,_, RATINGS
Rating
Power Supply Volta!J!!
Input Differential Voltage Input Common Mode Voltage Output Short-Circuit Duration Power Di$Sipation
Plastic packaire Ceramic package Operating Temperature Range MC3471 MC3571 Storage 1emperature Range Operating Junction Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Res,stance, Junction to Ambient Plastic (Case 6461 Ceramic (Case 6321
Symbol
Value
Vee VEE Vm Vic
ts
Pp ..
TA
Tstg
T/
+18 -18 ±30
..
±10 Continuous
.." l
625 750
0 to +70 -55 to +125
·.>
-65 to +150 150
Symbol
Nlax
floJA 100
100
Unit Volts Volts Volts
s mW
Oc
oc oc
Unit
0 ctw
This is advance information and specifications are sub.ject.to change without notice;
3-12f3
PIN CONNECTIONS
QRDE:.RIN9 INFORNIATION
Device
MC3471L MC3471P MC3571L
Temperatur!I Range
o to +10°c
0 to +70°C '-55 to +125°C
Package
Ceramic DIP Plastic DIP Ceramic DIP
MC3471, MC3571
ELECTRICAL CHARACTERISTICS (Vee= +15 V, VEE= -15 V, TA= 25°C unless otherwise noted.I
Characteristic
lmput Offset Voltage (Rs= 10 kn) (Rs= 10 kn, Trow t~ Thl_g_hl
Input Offset Current
Input Bias Current
Large-Signal Open Loop Voltage Gain (RL = 2.0 kn) (RL = 2.0 kn, Trow to Thjg_hl
Power Supply Current (TA= 25°c1
(TA= Trow to Thigh I
(TA= 2s0 c1 (TA= T1ow to Thigh)
Common-Mode Rejectioh Ratio IT1ow to Thigh)
Power Sypply Rejection ~atio (Trow to Thjg_hl
Output Voltage (AL= 20 ~.n. Trow to Thiglil IRL = 10 kn, Trow to Th!ah)
Input Common-Mode Voltage Range
Input Differential Voltage Range
Output Short-Circuit Current · (Shorted to Supplies)
Small-Signal Bandwidth
Power Bandwidth IV0 ut"' ±10 Vl
Unity Gain Crossover Frequency
Power Consumption (TA =25°C) ITA =Trow to Thigh I
Chann~I Separation
Slew Rate
Symbol V10
110 l1B AvoL
ice
IEE CMRR PSRR
.vo
V1CR V10R
'os BW BWp fc Pc
-
SR
MC3471
Min
Typ
Max
--
-
-
6.0 7.5
-
-
20
-
20
200
25 k
-
-
15 k
-
-
-
-
10
-
-
12
-
-
10
-
-
12
80
-
-
70
-
-
±10
±12
-
±12
±13
-
±10
-
-
±30
-
-
-
~5
-
8.0
10
-
200
-
-
8.0
10
-
-
-
300
-
-
360
80
-
-
20
-
~
MC3571
Min
Typ
Max
-
-
5.0
-
-
6.0
-
-
20
-
20
200
50 k
-
-
25 k
-
,_
-
-
8.0
-
-
8.5
-
-
8.0
-
-
8.5
80
-
-
70
-
-
±10
±12
-
±12
±13
~
±10
-
-
±30
-
-
-
25
-
8.0
10
-
200
-
-
8.0
10
-
-
-
240
-
-
255
80
-
-
20
-
-
Unit mV
pA pA VIV
mA
dB dB v
v v mA MHz kHz MHz mW
dB V/µs
·
@ MOTOROLA S~rplconduc'fo~ Produc'fs Inc.
3-129
ORDERING INFORMATION
Device
MC3476G MC3476P1
Temperature Range
0°c to.+10°c 0°C to +70°C
Package
Metai Can Plastic DIP
MC3476
·
PROGRAMMABLE OPERATIONAL AMPLIFIER
This extremely versatile operational amplifier features low power
consumption, and high input impedance. In addition, the quiescent
currents within the device may be programmed by the choice of an
external resi~tor value or curre,nt source applied to the lset input.
This allows the amplifier's characteristics to be optimized for input
current, power consumption and· input voltage despite wide varia-
tions in operating power supply voltages.
·
· ±6.0 V to ±15 V Operation · Wide Programming Range · Offset Null Capability · No Frequency Compensation Required · Low Input Bias Currents · Short-Circuit Protection
RESISTIVE PROGRAMMING (See Figure 1.)
Rset to GROUND
Rset to NEGATIVE SUPP_L Y
PROGRAMMABLE OPERATIONAL AMPLIFIER
SI LICON MONOLITHIC INTEGRATED CIRCUIT
~
I set Offset Null 1
m1~1~~ Inverting Input
Non-Inverting Input 3
G SUFflX METAL PACKAGE·
CASE 601-03
P1 SUFFIX PLASTIC PACKAGE
CASE 626
Inverting Input 2 Non-Inverting Input 3
Typical Rset Values
Vee. Vee 'set= 10 µA 'set= 15 µA
±6.0 v
±9.0V
±12 v
±15 v
560-k!l 820 k!l 1.0M!l 1.5M!l
360 k!l 560 k!l 750 k!l 1.0M!l
Vee -0.6 -VEE lse1=--.--
Rset
Typical Rset Values
Vee.Vee lset= 10µA lset = 15 µA
±.6.0V
±.9.0V
±.12 v ±.15 v
1.0 Mn 1:8Mn 2.2 MU 2.7 Mn
820 kn 1.2Mn · 1.5M!l 2.0M!l
ACTIVE PROGRAMMING
FET CURRENT SOURCE
BIPOLAR CURRENT SOURCE
VOLTAGE OFFSET NULL CIRCUIT
TRANSi ENT-RESPONSE TEST CIRCUIT
Vs
3-130
MC3476
MAXIMUM RATINGSITA = +25°C unless otherwise noted.)
Rating Power Supply Voltages Input Differential Voltage Range Input Common-Mode Voltage Range Offset Null to VEE Voltage Programming Current Programming Voltage
(Voltage from lset terminal to ground)
Symbol Vee.VEE
V10R V1cR Voff-VEE I set Vset
Output Short-Circuit Duration*
Operating Ambient Temperature Range
Storage Temperature Range
Power Dissipation (Package Limitation)
Metal Package @ TA = +25°C
Derate above 25°C
Plastic Package@ TA = +25°C
Derate above 25°c
ts TA Tstg Po
*Short-Circuit to ground with lset .;;; 15 Ji.A. Rating applies up to ambient temperature of +70°C.
EQUIVALENT SCHEMATIC DIAGRAM
Value ±..18 ±30 Vee. VEE ±..0.5 200
!Vcc·0.6 vi
to Vee Indefinite Oto+70 -65 to +150
680 4.6 625 5.0
Unit Vdc Vdc Vdc Vdc µA Vdc
s oc
OC
mW mW!°C
mW mW/°C
·
I set
7
.--~~~~~~~~~~~~~....-~--+~--1~-:--<1>--~~~....-~~~~~-..~-.,...~~-QVCC
INPUTS
50
100 100 OUTPUT
100
50 OFFSET NULL
lOk
10k
VEE
..... ....... ...... L....~~~~---<~~ ~~~~~ ~~~---~~_.~~~~---~~~~~ ~~~~-o4
3-131
·
MC3476
ELECTRICAL CtiARACTERISTICS !Vee= +15 V, Vee= -15 V, lset = 15 µA, TA= +25°c unless otherwise noted.)
Characteristic
Input Offset Voltage (Rs .;; 1o kfl)
TA= +25°c 0°C .;; TA .;; 70°C
Input Offset Current
TA= +25°c
TA= 10°c
TA= o0 c
Input Bias Current TA =+25°c TA= 10°c TA= 0°C
Input Resistance
Input Capacitance
Offset Voltage Adjustment Range
Large Signal Voltage Gain
RL ;;,, 10 kn, Vo= ±.10 V, TA= +25°c
o RL;;,, 10 kn. Vo =±.10 V, 0 c.;; TA.;; 10°c
Output Resistance
·'
Output Short-Circuit Current
Supply Current
TA =+25°c
o0 c .;; TA .;; 10°c
Power Consumption TA= +25°c
o0 c .;; TA .;; 10°c
Transient Response (Unity Giiin) Vjn = 20 mV, RL;;,, 10 kn, CL= 100 pF Rise Time Overshoot
Symbol
Min
V10
-
-
110
-
'1s
-
-
-
fj
-
Ci
-
V10R
-
AvoL
50 k
25 k
ro
-
ios
-
ice. lee -
Pc
-
-
tTLH
-
OS
-
"t\'P
2.0 -
2.0 -
15
-
5.0 2.0 18
400 k
-
1.0 12
160
-
4.8 -
0.35 10
Max
6.0 7.5
25 25 40
50 50 100 -
-
-
-
-
200 225
6.0 6.75
-
-
Slew Rate (RL;;,, 10 kn!
Output Voltage Range RL;;;, 10 kn, TA= +25°c
RL;;;, 10kn, o0 c.;; TA.;; 10°c
SR
-
0.8
-
VoR
±.12
±.13
-
±.12
-
-
Input Common-Mode Voltage Range
o0 c.;; TA.;; 10°c
· V1cR
±.10
-
-
Common-Mode Rejection Ri!tio
Rs.;; 10 kn, o0 c .;; TA .;; 10°c
CMRR
70
90
-
Supply Voltage Rejection Ratio
o Rs.;; 10 kn, 0 c .;; TA ~ 10°c
PSRR
-
25
200
Unit mV
nA
nA
Mn pF mV VIV
kn mA µA
mW
µs % V/µs v
v dB µV/V
TYPICAL CHARACTERISTICS
(TA= +25°c unless otherwise noted.)
FIGURE 1 - SET CURRENT versus SET RESISTOR lOOM
;;; ~ lOM
s
a: 0 l;; ~ 1.0M
a:
~
Ji 100 k
~
..L l
!'ii,;
~ ]°"'..,. _l
Vcc=+15V vee=-1sv Rset to VEE
Vee= +15 v
'bm1'.-,.;;;:
_l ..li ·~
VEE=-15V
~sen~m1
f;
,r[ I I I IIIIJII J. J.
10 k 3: :I IIIlIII I.I
0.1
1.0
10
100
lset. SET CURRENT (µA)
FIGURE 2 - POSITIVE STANDBY SUPP!-Y . CURRENT y~rsus SET CURRENT
1000
~
1-
+sv.;;vcc .;;+15 v
2
~
100
-6V>VEE>-15V
E
~ 10
;;
0 2
~
w 1.0 > j:::
(;;
~ 0. I
0.01
0.1
I/
~
17
~
~
1.0
10
100
lset. SET CURRENT (µA)
3-132
MC3476
TYPICAL CHARACTERISTICS (continued) (TA= +25°C unless otherwise noted.)
FIGURE 3 - OPEN-LOOP GAIN versus SET CURRENT 107
~
1-RL=lOk
z 106
<
Cl
~
g
~ 105
0
~
>
<(
104
z
Jo!'I ~
0.1
1.0
,... ~
[:;a
Vee= +15 v t-+-1
VEE=-15V =Fl
~
10
100
lset. SET CURRENT (µA)
FIGURE 4 - INPUT ~IAS CURRENT versus SET CURRENT
100~E!~!IEl~§t~EEEl~§E~E!l~~~~E1l~
0.1
1.0
10
lset. SET CURR ENI lµA)
·
100
10
1.0
~ 2:.
UJ
I-
~ 0.1
~
~0.01
l.o!! 0.001
0.01
FIGURE 5 - SLEW RATE versus SET CURRENT
Vee= +15 v VEE= -15 V
I<!"
TIT ill
~ :m
III
~~
L furrn
Ill.IITI.
IIi±m
L ~~
l .I..liilll.l l.LW.1.1.1
0.1
1.0
lset. SET CURRENT (µA)
I :IIll.IITI
II ::nmm
10
100
FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW) versus SET CURRENT
lOM
IIIIII
,S 1.0M
.IIlJII
t;
::> 0
~
1-- vcc = +15 v IIlilI
l=veE=-15_v~
~ lOOk
ol -
§E z 0
~
z~ 10k
~
I I I IIIIIII
I I I I.IIJJII
:r~
.J.oo"T"
lilill
I I I IIIIlI
:r
~
I
II
~ :II JI
Il
I II
1.0k 0.1
1.0
10
100
lset. SET CURRENT (µA)
FIGURE 7 - OUTPUT voLfAGE SWING versus LOAD RESISTANCE
30 vcc=+15V
VEE=-15V
~ ~ 24 lset = 15µA
y ~~
[ ~ ~18
6 ii
I- UJ
~ ~12
UJ _, 0.. 0
--a_>
0.
0 6.0 >
L....---
0 1.0 k
10k
100k
RL, LOAD RESISTANCE (OHMS)
FIGURE 8 - OUTPUT SWING versus SUPPLY VOLTAGE
40~~~~~~~~~~~~~~~~~~~~
36t--~+--~t--~t--~t----it----i,-...--i~--i~--i~--i
1.0M
3-133
4.0 6.0 8.0 10 12 14 16 Vee. IVEEI. SUPPLY VOLTAGES (V)
18 20
·
MC4202C
Advance Information
PROGRAMMABLE QUAD OPERATIONAL AMPLIFIER
The MC4202C is an array of four independent operational amplifiers oh a single silicon chip. The operating current of the array is externally controlled by a single resistor or current source, allowing the user to trade-off power dissipation for bandwidth. · Wide Input Voltage and Common Mode Range · Externally Programmable · Internal Frequency Compensation · No Latch-Up · Matched Parameters · Short-Circuit Protection
PROGRAMMABLE QUAD OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 620
PSUFFIX PLASTIC PACKAGE
CASE 648
SCl-!EMATIC DIAGRAM (Each Amplifier)
PIN CONNECTIONS
- lnputo-----i
~ommMs~~N~~~k------i
I
To Op I Amps I
I
I
I
I
I
I
Biasi
I
I
I
l
I
I
I
I
I
: ~ lset( 1)
\
INOTE·
VEE I
I
. VEE - VsE
'I
I 1. lset =
1
Rset
where diode I
I
I
voltage"'" 0.65V.
I
L----------------~
R1 50
0/P
R2 120
This is advance information and specifications are subject to change without notice.
3-134
ORDERING INFORMATION
Device MC4202CL MC4202CP
Temperature Range
o to +10°c o to +10°c
Package Ceramic DIP Plastic DIP
MC4202C
MAXIMUM RATINGS
Rating Supply Voltage
Dif{erential Input Voltage Range Common-Mode Range Short-Circuit Duration Operating Ambient Temperature Range Operating Junction Temperature Range
Ceramic Package Plastic Package Storage Temperature Range
Symbol Vee VEE V10R V1cM Ts TA TJ
Ts!ll_
+18 -18 ±30 VEE to Vee Indefinite 0 to +70
175 150 -65 to +150
Unit .v
v
v
oc oc
oc
Notes: 1. Ceramic dual-in-line package rating applies for case temperatures to+ 125°C; derate linearly at 10.mW/°C for ambient temperatures above +95°C. Plastic dual-in-line package ·rating applies for case temperatures to 70°C; derate linearly at 6. 7 mwt0 c for ambient temperatures above +55°c. 2. Short-circuit may be ta~en to either supply line or ground on only one amplifier . at a time.
ELECTRICAL CHARACTERISTICS* -High Power Mode (Vee= 15 V, VEE= -15 V, lset = 75 µA and
TA = +25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Short-Circuit Current Supply Current(1) Input Offset Voltage
(Rs~10kn) Input Bias Current ·Input Offset Current Input Resistance
ios
-
20
Is
1.6
2.5
V10
-
1.0
11B
-
200
110
-
5.0
q
20
200
Input Common Mode Voltage Range Common Mode Rejection Ratio Voltage Supply Rejection Ratio
V1cR
12
13
CMRR
70
86
PSRR
-
50
Large-Signal Voltage Gain (RL = 3.0 kn, .6.V 0 =±10V)
Output Voltage Swing (RL = 3.0 kn)
Gain Bandwidth Product
AvoL
74
86
Vout
10
11
f1
-
2.5
Phase Margin
Rise Time (.6.V 0 = ±20 mV)
Overshoot (.6.V 0 = ±20 mV)
Channel Separation (RL =2.0 kn, f = 1.0 Hz) (RL = 2.0 kn, f = 10 kHz)
<Pm
-
45
tr
-
140
to
-
20
-
-
100
-
120
Slew Rate
SR
~
1.5
Equivalent Input Voltage Noise (Bandwidth= 100 Hz to 10 KHz)
en
-
25
Max 4.0 5.0
500 50 150
-
-
-
-
-
-
Unit mA mA mV
nA nA kn ±V dB µVIV dB
±V
MHz Degrees
ns
%
dB
V/µ,s nV../Hz.
·
@ MOTOROLA Semiconducf:or Producf:s Inc.
3-135
MC4202C
·
v. ELECTRICAL CHARACTERISTICS* - Micropower Mode (Vee,= +1,5 Vee= :..1.s v. lset = 1.0 µA unless otherwise noted.I
Characteristic
-
Symbol
Min
Typ
Max
Unit
Supply Current! 1) Input Bias Cµrrent Input Offset Current Input Offset Voltage
(Rs±,;;;;; 10 kQ) Input Resistance Input Common Mode Voltage Range Common Mode Rejection Ratio
Is
20
30
40
µA
110
-
110
-
10
100
nA
1.0
10
nA
V10
-
2.0
5.0
mV
fj
o.~
2.0
-
Mn
V1cR
0.3
0.5
-
±V
CMRR
60
80
-
dB
Voltage Supply Rejection Ratio Large Signal Voltage Gain
(RL ;;;io 100 kQ) G11in B;mdwidth Product Phase Margin
Slew Rate Rise Time
(AVo = ±20 mV) Overshoot
(AVo = ±20 mV) Channel Separation, Any Amplifier Pair
(RL = 20kn, f = 1.0 Hz, AVC) = ±0.5 VI
IRL = 10 kn, f = 1.0 kHz, AVo = ±0.5 V)
PSRR
-
AvoL
66
f1
-
.pm
-
SR
-
tr
-
to
-
-
50
200
µVIV
80
-
dB
50
-
kHz
45
-
Degrees
20
-
V/ms
7.0
-
JJS
0
-
%
dB
120
-
120
-
Equivalent Input Voltage Noise (Bandwidth= 100 .Hz to 10 KHz)
en
nv./Hz
-
200
-
ELECTRICAL CHARACTERISTICS - Parameter Matching (tset =75 µA, tests apply for parameter matching between any
operational amplifier pair.)
Characteristic Input Offset Voltage
(Rs.;; 10 k.nl Input Bias Current l!lPUt Offset Current Gain Bandwidth Product Slew Rate
Symbol
Min
Vto
-
tis
-
lio
-
f1
-
SR
-
Typ
Max
rlJnit.
1.0
-
±mV
10
-
±nA
2.0
-
±riA
100
-
±kHz
0.2
-
±V/µs
Note:
*All tests refer to a single operational amplifier unless otherwise specifiEld.
1. Tests apply to four op-amps and bias network.
TYPICAL CHARACTERISTIC CURVES
·FIGURE 1 - TOTAL SUPPLY CURRENT versus SET CU~RENT
FIGURE 2 - OUTPUT VOL TAG.E SWING versus LOAD RESISTANCE
TA= 25°C
J.d .t!!_ i"I
-1.llill _]__]_ .l_l_-1.1
_l_illil _J J I l l
vcc = + 2ov
Vee~~ ~"fJ.:U
.ii!"[
1-"i..M[ Vcc=+1.5VL
vee = -1.5 v
.l.l .11 _]__]_ 1 J
101
1.0
10
100
lk
10k
tset· SET CURRENT (µA)
g.vi:c =VEE= 115VI
TA =25DC ,L _U 1
I et= lOOµA ;Ht:Z
....
ISet = lOµA
Ii""':
..lo"'
I ~Z" ISet = tO µA
P.LIIITII ~ I ITII I l .lilIIIl I I
0. 1~ _Lill I /
lWl _]_ _l_..LW.ll _]__]_
10
100
lk
10k
lOOK
RL, LOAD RESISTANCE (OHMS)
@ MOTOROLA Semlconducf:or Product:·· inc.
3-136
MC4202C
FIGURE 3 - INPUT BIAS.CURRENT
100 k
versus SET CURRENT
,... TA - 25oc 110 k
Jill J_J_ JJll J _J_
i
- 100
Vtc =1.5 V, VEE= -1.5 ~""" . ~ l..t'!: Ll.!'l
,,,..
Vcc=+15V,VEE=-15V
.L
2
1.0 1.0
10
100
1k 10 k
lset· SET CURRENT (µA}
FIGURE 4 - TYPICAL FREQUENCY RESPONSES FOR VARIOUS SET°CURRENTS Iser
FIGURE 5 - GAIN-BANDWIDTH PRODUCT, AvoL versus SET CURRENT
> 100
llilll .I
:c 10 ~
.§ ~ OPEN LOOP
10;
H+=.GAIN AvoL
~
IillII :I ,......
~
~
1.0 :c
o0~~..
0~·
5
11-----<1--+-+Z-J~..-,..~+'--+H-HG-HAPiRND.-BDUACNT DWI DTH l---f-+---+-!H-1-H-H1-+-+-+-1-++++;;
< ~
lI.= 0,;1m1m1111m!m111~m11°·1 ~<
1.0 10 100 1 01 <.:>
0.1 .........~-~~~~~~~~~~~~~~~~-~
k
Hl k
·set· SET CURRENT (µA)
·
APPLiCAllONS INFORMATION
The following approximate relations are useful for design:
Gain-Bandwidth Product ~
Power Supply Current · ~
Slew Rate
~
50 !lsetl 30 llset> 20 llsetl
(kHz) (µA)
(V/ms)
Where: ·set is in µA, ·set= VEE - VsE
Rset
VsE = biode Voltage ~0.65 Volts
([5) ·MOTOROLA Semiconduc'for Producf:s Inc.
3-137
MC4558 MC4558C
·
Advance Information
DUAL WIDEBAND OPERATIONAL AMPLIFIER
The MC4558 and MC4558C combine all the outstanding features of the MC1458, and in addition, possesses several times the unity gain bandwidth of the industry standard.
· 2.5 MHz Unity Gain Bandwidth Guaranteed · Internally Compensated · Short Circuit Protection · Gain and Phase Match Between Amplifiers · Low Power Consumption
MAXIMUM RATINGS (TA = +25°e unless otherwise noted)
Rating
Symbol
MC4558C MC4558 Unit
Power Supply Voltage
Input Differential Voltage Input Common Mode Voltage (Note 1) Output Short Circuit Duration (Note 2) Operating Ambient Temperature Range Storage Temperature Range Metal, Flat and Ceramic Packages
Plastic Packages Junction Temperature
Metal-and Ceramic Package Plastic Package
Vee VEE V10 V1eM ts TA Tstg
TJ
+18
+22
Vdc
-18
-22
Vdc
t30
Volts
.t15
Volts
Continuous
Oto +7o1-55to+125 oc
oe -65 to +150 -55 to q25
oc 175 150
Note 1. Note 2.
For supply voltages less than±. 15 V, the absolute maximum input voltage is equal to the supply voltage.
Supply voltage equal to or less than 15 V.
EQUIVALENT CIRCUIT SCHEMATIC
R3
DUAL OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Vee
P1SUFFIX
PLASTIC PACKAGE
I
CASE 626
C·ER~M~F:~~KAGE Im¥ ,,.. CASE693
This is advance information and specifications are subject t"o change without notice.
3-138
ORDERING INFORMATION
pevice
Temperature Range
MC455SG
-55 to + 125°c
MC455SU MC455SCG MC455SCP1 MC455SCU
-55 to +125°C o to +7o0 c o to +7o0 c o to +7o0 c
Package Metal C'an Ceramic DIP Metal Can Plastic DIP Ceramic DIP
MC4558, MC4558C ·
FREQUENCY CHARACTERISTICS (Vcc=15V,VEE=-15V,TA=25°C)
. MC4558
Characteristic
Symbol
Min
Typ
Max
Min
Unity Gain Bandwidth (Av= 1)
BW
2.5
2.8
-
2.0
1\;LECTRICAL CHARACTERISTICS (Vee= 15 V, VEE= -15 V, TA= 25°C unless otherwise noted.)
Input Offset Voltage (Rs< 10 knl
Input Offset Current Input Bias Current Input Resistance Input Capacitance Common Mode Input Voltage.Range Large Signal Voltage Gain
(Vo= ±10 V, RL = 2.0 kn)
V10
110 I 1B ri Ci V1cR Av
-
1.0
5.0
-
-
20
200
-
-
80
500
-
0.3
2.0
-
0.3
-
1.4
-
-
±12
± 13
-
±12
50
200
-
20
MC4558C Typ 2.8
2.0
20 80 2.0 1.4 ± 13
. 200
Max
-
6.0
200 500
-
-
-
Output Resistance
ro
-
75
-
-
75
-
Common Mode Rejection Ratio (Rs< 10 kn)
CMRR
70
90
-
70
90
-
Supply Voltage Rejection Ratio (Rs< 10 knl
PSRR
-
30
150
-
30
150
Output Voltage Swing (RL;;;, 10 knl (RL;;;, 2 kn)
Output Short·Circuit Current Supply Currents (Both Amplifiers)
Vo
±12
±14
/
±12
±14
-
± 10
±13
-
±10
!:13
-
los
-
20
-
-
20
-
lo
-
2.3
5.0
-
2.3
5.6
Power Consumption
Pc
-
70
150
-
70
170
transient Response (Unity Gain) (V1 = 20mV, RL;;, 2kn, CL< 100 pF) (V1 = 20mV, RL;;, 2 kn, CL< 100 pF)
(V1 = 10 V, RL;;, '2 kn. CL< 100 pF)
Rise Time Overshoot Slew Rate
tTLH
OS
SR
-
0.3
-
-
15
-
-
1.5
-
-
0.3
-
-
15
-
-
1.0
-
ELECTRICAL CHARACTERISTICS (Vee= 15 V, VEE= -15 V, TA= *Thigh to Tiow unless oth.erwise noted).
Input Offset Voltage (Rs< 10 kn)
Input Offset Current (TA= 125°C) (TA= -55°Cl (TA= 0°C to +70°C)
Input Bias Current !'l:A = 125°C)· (TA= -55°C) (TA= 0°C to +70°C)
Common Mode Input Voltage Range
Common Mode Rejection Ratio (Rs< 10 knl
Supply Volt11ge Rejection Ratio (Rs.;;10kn)
Output Voltage Swing (Ri_;;, 10 kn) (RL;;,2kn)
Large Signal Voltage Gain (Vo= ±10 V, RL = 2 kn)
V10 110
11B
V1cR CMRR PSRR
Vo Av
-
1.0
6.0
~
-
7.5
-
7.0
200
-
-
85
500
-
-
-
-
-
-
30
500
-
-
300
1500
-
-.
-
-
-
±12
,±13
-
-
70
90
-
-
-
30
150
-
-
-
-
-
-
300
-
-
-
-
-
800
-
-
-
-
-
-
±12
±14
-
±10
±13
-
25
-
-
±12
±14
-
±10
±13
-
15
-
-
Unit MHz
mV nA nA Mn pF v V/mV n dB µV/V
v mA mA mW µs % V/µs
mV
nA
nA
v dB µV/V
v
V/mV
Supply Currents (Both Amplifiers) (TA= 125°Cl (TA= -55°C)
Power Consumption (TA= 125°Cl (TA= -55°Cl
lo
-
-
4.5
-
-
-
mA
-
-
6.0
-
-
-
Pc
-
-
135
-
-
-
mW
-
-
180
-
-
-
·Thigh = 12s0 c for MC4558 and 10°c for MC4558C Ttow = ~ss0c for MC4558 and o0 c for MC4558C
@ - MOTOROLA Sem1conduc'tor Produc'fs .·nc.
3-139
·
·
ORDERING INFORMATION
Device
MC4741'L MC4741CL MC4741CP
Temperature Range
-55°C to +125°C 0°C to +10°C 0°c to +10°c
Package
Ceramic OIP Ceramic DIP Plastic DIP
MC4741 MC4741C
Specifications and Applications Information
QUAD MC1741 OPERATIONAL AMPLIFIERS
The MC4741 series is a true quad MC1741 Integrated on a single monolithic chip are four independent, low-power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741; a.nd can be applied with no change in circuit performance.
The MC4741 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer ampIifiers and active filter amplifiers.
· Each Amplifier is Functionally Equivalent to the MC1741 · Class AB Output Stage Eliminates Crossover Distortion · True Differential Inputs · Internally Frequency Compensated · Short Circuit Protection · Low Power Supply Current (0.6 mA/Amplifier)
. ,QUAD MC1741 DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
LSUFFIX CERAMIC PACKAGE
CASE 632 T0-116
[14:::::1 1 (top view)
P SUFFIX PLASTIC PACKAGE
CASE 646
OFFSET NULL
EQUIVALENT CIRCUIT SCHEMATIC (1/4 of Circuit Shown)
PIN CONNECTIONS
vee
25
Out 1
Inputs 1
50
vee
Inputs 2
Out 2
Out 4
Inputs 4
VEE/Gnd
Inputs 3
Out 3
3-140
MC4741, MC4741C
MAXIMUM RATINGS(T A= +25°c unless otherwise noted).
Rating
Symbol MC4741 MC4741C
Power Supply Voltage
Input Differential Voltage Input Common Mode Voltage Output Short Circuit Duration Operating Ambient Temperature Range
Vee VEE V1D V1cM !£ TA
+22
+18
-22
-18
±44
±36
-±22
±18
Continuous
-55 to +125 0 to +70
Storage Temperature Range Ceramic Package Plastic Package
Tstg -65 to +150 -55 to +125
Junction Temperature Ceramic Package Plastic Package
TJ 175 150
Unit Vdc Vdc Volts Volts
OC OC
OC
·
TYPICAL APPLICATION HIGH IMPEDANCE INSTRUMENTATION BUFFER/FILTER
R3
@ MOTOROLA Serniconduct~r Products Inc.
3-141
MC4741 1 MC4741C
·
ELECTRICAL CHARACTERISTICS !Vee= +15 V, Vee= -15 V, TA= 25°c unless otherwise notedl.
MC4741
Characteristic Input Offset Voltage
IRs.;;;;1ok1 Input Offset Current Input Bias Current lnp·ut Resistance Input Capacitance Offset Voltage Adjustment Range Common Mode Input Voltage Range Large Signal Voltage Gain
('{Q_ = ±10 V, AL ;;;i,2.0 kl Output Resistance Common Mode Rejection Ratio
!Rs,;;;;; 10 kl Supply Voltage Rejection Ratio
(Rs.,;;10 k)
Symbol Min
Typ
Max
Min
V1Q
-
1.0
5.0
-
110
-
20
200
-
11s
-
BO
500
-
q
0.3
2.0
-
0.3
Ci
-
1.4
-
-
V10R -
±.15
-
-
V1cR ±.12
±.13
-
±.12
Av
50
200
-.
20
ro
-
75
-
-
CMRR
70
90
-
70
PSRR
-
30
150
-
Output Voltage Swing (RL;;;i, 10 k) (RL;;;i,2 k)
Vo
±12
±.14
-
±12
±10
±13
-
±10
Output Short·Circuit Current Supply Current - (All Amplifiers) Power Consumption (All Amplifiers)
los
-
lo
-
Pc
-
20
-
-
2.4
4.0
-
72
120
-
Trans.ient Response (Unity Gain - Non-Inverting)
(V1 = 20 mV, RL ;.;> 2 k, CLE;; 100 pF) Rise Time
(V1 = 20 mV, RL;;. 2 k, CL<;;; 100 pF) Overshoot
(V1"' 10 V, RL;;..2k,CLE;;100pF) Slew.Rate
tTLH
-
0.3
-
-
OS
-
15
-
-
SR
-
0.5
-
-
MC4741C Typ 2.0
20 80 2.0 1.4 ±.15 ±13 200
75 90
30
±.14 ±13 20 3.5 105
0.3 15 0.5
ELECTRICAL CHARACTERISTICS IV cc= +15V V EE= - 15V TA= *Thigh to T low un ess ot erw1se noted.I
MC4741
MC4741C
Input Offset Voltage (~ .;;;;10 kill
Characteristic
Symbol Min
Typ
Max
Min
Typ
V10
-
1.0
6.0
-
-
Input Offset Current ITA = 125°c1 (TA= -55°Cl ITA = 0°C to +71)°C)
110
-
7.0
200
-
-
-
85
500
-
-
-
-
-
-
-
Input Bias Current (TA= 125°CI ITA = -55°Cl (TA "' 0°C to +70°C)
Common Mode Input Voltage Range
Common Mode Rejection Ratio (l~.s_.;;;;10 kl
Supply Voltage Rejection ·Ratio rnsE0;10 kl
l1s
-
30
500
-
-
-
300
1500
-
-
-
-
-
-
-
V1cR ±12
±.13
-
-
-
CMRR. 70
90
-
-
-
PSRR
-
30
150
-
-
Output Voltage Swing (RL;;;i,10k) (RL;;;i,2 kl
Large Signal Voltage Gain (RL ;;;i,2 k, Vout = ±10 V)
Vo
±12
±14
-
±10
±13
-
Av
25
-
-
-
-
±10
±13
15
-
Supply Currents 7 ITA = 125°c1 (TA =·-55°Cl
(All Amplifiers)
Power Consumption (TA = +125°c1
(All Am_glifiers)
ITA = -55°Cl
lo
-
2.4
3.4
-
-
-
3.6
5.0
-
-
Pc
-
72
102
-
-
-
108
150
-
-
"Thigh"' 125°C for MC4741and7o0 c for MQ4741C T10 vv = -55°c for MQ4741 and o0 c for MC4741C
Max 6.0
200 500
-
-
-
-
150
-
-
-
7.0 210
-
-
Max 7.5
-
300
-
800 -
-
-
-
-
-
Unit
mV
nA nA M--rf pF mV
v
V/mV
n
dB µVIV
v
mA mA mW
µs
% V/µs
Unit mV nA
nA
v
dB µVIV
v
V/mV mA
mW
® MOTOROLA Semiconductor Produc:te. Inc.
3-142
MC4741, MC4741C
TYPICAL CHARACTERISTICS
(Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°e unless otherwise noted).
FIGURE 1 - POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)
28
1: 24
~ w 20
C!l <(
':i
0
16
>
I-
~ 12
5
0
(VOLTAGE FOLLOWER)
Tlllll llllll( ~ 8.0 t----+--
0
4.0 0
~~
II
10
100
1.0 k
f, FREQUENCY (Hz)
~
' ~ r-.J ~
10 k
100 k
FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE +120
+100
~ +80
h
z
~
~ +60
<(
~ +40
>
~ +20
<(
-20
1.0
10
cs;J
~ cs= & I\.
100 1.0 k 10 k 100k 1.0M lOM f, FREQUENCY (Hz)
·
FIGURE 3 - POSITIVE OUTPUT VOL T~GE SWING versus LOAD RESISTANCE
500 700 1.0 k 2.0 k RL. LOAD RESISTANCE (OHMS)
FIGURE 4 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
1 -15~-~-~-~--r~-....----.-- ~,--,,...,..-.--
-14~---+---+--+-+-+-+-++-~--+--+l-+-+-++-++-!
-l 3 f'----1--+,--f,--f-+-t-+-t~+r--==-f..-±..+1~5-Vr:-SU~P~P-i'Ll':IES:9"'t1
-121------j---t---+--+--+-+.L.-+vi>f+---+---rI-.-,...,..........t-H
>c. -11 >----+---+--+-+--+-Llj--1>'-+-++----+--+-I---..---+---t--t--t-+-1
~ -1or---1---t-t-t_i_-4ttii:ir--::::::::::;;;;j;;;=4--t-""t"ti"TH
~ -9.0r----+---+-+-+~-bi.--l""l'-++--·-+--±.112 v
~ -8.o
lZ
I
1 ~
~ii'.
-1.
-6.0 -5.0
or
-
--l
,
-
-+-'-7.
Li~L
-1~ +tttt±:
==F
-
--:
-:
-:-:-;
:t9.V
-r-
H
-
t-
m
A" >0 -_34_0.01-;;r--r1:l:--:-:+:-t1:!::i:+t11="=-J_-t""±.-6-v:~:r-tilti1
~ -2.0
l_l
-1.0~-~-~~~~~~--~--'--~~-'--'~~
100 200
500 700 1.0 k 2.0 k
5.0 k 7.0 k 10 k
RL, LOAD RESISTANCE (OHMS)
FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)
28 +30 V Supply
- 26
>6: 24I---- +27 v
~ 22 ~ 20
+24 v
;:;:; 18 I---- +21 v
~ 16
':i 14
+18 v
~ 12
~ 10
+15 v
5 8.0 1---'--- ·+12 v
~ 6.0 > 4.0
+9.0 v
2.0 0
t 0
.
-
-
+6.0V
+5.0 v
1.0 2.0
3.0 4.0
5.0 . 6.0 7.0
8.0 9.0
10
RL. LOAD RESISTANCE (k~
® MOTOROLA Sen>iconductOr Products Inc.
3~143
MC4741, MC4741C
·
R
A= 160 kH C ~ 0.001 µF fl1=1.GM!i
R2~1.GMH R3~ 1.6MH
2 1
Vref = Vee
FIGURE 6 ..:..Bl~QUAD FILTER
A
100 k
100 k C1
R1 =QR R1
R2=T5p
R3 =TN R2 C1=10C
f 0 =ikHz
a= 10
Tep= 1 TN= 1
Where
T BP= Center Frequency Gain TN= Passband Notch Gain
FIGURE 7 - NON-INVERTING PULSE RESPONSE
J
~
f
~UTPUT
~
"
\
l'.iUT
10 µs/DIV
105
100
"' 95
2!
;;( ~ 90
Cl c(
~ 85 > ~ 80
75
70 0
FIGURE 8 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE
J.-- ,
........--r
L :.:z:i ~
~
2.0 4.0 6.0 8.0 10 12 . 14 16 18 20 Vcc. IVEEI. SUPPLY VOLTAGES (VOLTS)
FIGURE 9 - TRANSIENT RESPONS~ TEST CIRCUIT
To Scope (Input)
.>--c>--....---....--_.. To Scope (Output)
@ MOTOROLA Se1niconductor Products Inc.--------
3-144
MC4741, MC4741C
FIGURE 10- Aa50LUTE VALUE DVM FRONT END 0.5µF
+'Y
500 k Bridge Null Adjust
-v
MC4741 Quad Op-Amp
·
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a giveh operating ambient temperature, can be fouflld from the equation:
TJ(rhax) -TA Po(TAl = ROJA(Typ)
Where: Po(TA) = Power Dissipation allo~able at a given operating ambient temperature. This must be greater than
the sum of the products o.f the supply voltages and supply currents at the worst case operating condition.
TJ(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ROJA(Typ) = Typical Thermal Resistance Junction to Ambient
@ MOTOROLA Semiconduc'l:or Products Inc.
~-1..1.i:\
·
ORDERING INFORMATION
Device
MLM101AG MtM101AU MLM201AG MLM201AP1 MLM201AU MLM301AG MLM301AP1 MLM301AU
Alternate LM101AH
LM301AH LM301AN
Temperature Range
-55°C to + 125°C ,-55°C to +125°C -25°C to +85°C -25°C to +85~C -25°C to +85°C
0°c to +10°c 0°c to +70°C 0°c to +10°c
Package
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP Metal Can , Plastic DIP Ceramic DIP
OPERATIONAL AMPLIFIER
A general purpose operational amplifier that allows the ~ser to choose the compensation capacitor best 'suited to his needs. With proper compensation summing amplifier slew rates to 10 V/µs can be obtained.
· Low Input Offset Current~ 20 nA maximum Over Temperature Range
· External Frequency Compensation for Flexibility
· Class AB Output Provides Excellent Linearity
· Output Short-Circuit Protection
· Guaranteed Drift Characteristics
FIGURE 1 - STANDARD COMPENSATING AND OFFSET BALANCING CIRCUIT
VEE
INVERTING . INPUT
NON-INVERTING INPUT
OUTPUT
MLMlOlA
MLM201A ·MLM301A
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
P1 SUFFIX PLASTIC PACKAGE
CASE 626
U SUFFIX CERAMIC PACKAGE
CASE.693
(MLMW>A ooO MLM30>AI ·
· rw~
lBalance 1 2 Inputs
G SUFFIX METAL PACKAGE.
CASE 601
Compensation
.__ _.J\11/\,.--VEE 20 k
FIGURE 2 - DOUBLE-ENDED LIMIT DETECTOR
VuT - - - 0 - - - - 1
FIGURE 3 - REPRESENTATIVE CIRCUIT' SCHEMATIC
Vo= 4.8 v tor VLT.; V1 .;vuT
Vo= -0.4 V
V1 < VLT or V1 > VuT
PINS NOT SHOWN ARE NOT CONNECTED
250
BALANCE
3-146
MLM101A, MLM2.01A, MLM301A
MAXIMUM RATINGS
Rating Power Supply Voltage Input Differential Voltage
Symbol Vee. Vee
V10
1 MLM101A
±22
J
VALUE
l MLM201A
±22
l
±30
MLM301A ±18
Unit Vdc Volts
Input Common-Mode Range (Note 1)
V1CR
+15
Volts
Output Short-Circuit Duration
ts
Continuous
~
Power Dissipation (Package Limitation)
Po
Metal Can
500
Derate above TA= +75°C
6.8
Plastic Dual In-Line Package Derate above TA = +25°C
Ceramic Package Derate above 25°c
(MLM201A/ 301A)
-
625
625
-
5.0 750
-- 5.0
6.6
Operating Ambient Temperature Range , Storage Temperature Range
TA
I -55 to +125
-25 to +85
I
0 to +70
Tstg
--
-65 to +150
-ii
± Note 1. For supply voltages less than 15 V, the absolute maximum input voltage. is equal to the supply voltage. 1
mW mW/°C
mW mwt0 c
mW mwt0 c
oc
oc
ELECTRICAL CHARACTERISTICS (TA = +25°c unless otherwise noted.) Unless otherwise specified, these specifications apply for
supply voltages from ±.5.0 V to ±.20 V for the MLM101A and MLM201A, and from ±.5.0 V to
-+15 V for the MLM301A.
MLM101A MLM201A
MLM301A
Characteristics Input Offset Voltage (Rs<50 knl Input Offset Current Input Bias Current Input Resistance
Symbol
Min
Typ
Max
Min
Typ
Max
V10
-
0.7
2.0
-
2.0
7 .5
110
-
1.5
10
-
3.0
50
l1B
-
30
75
-
70
250
ri
1.5
4.0
-
0.5
2.0
-
Unit mV nA nA Megohms
Supply Current VcclVEE = ±20 v VcclVEE = ±15 v
Ice. IEE
-
1.8
3.0
-
--
mA
-
-
-
-
1.8
3.0
Large Signal Voltage Gain
Av
v. v. VcclVEE ±15 Vo=±. 10 AL> 2.0 kn)
50
160
-
25
160
-
V/mV
The following specifications apply over the operating temperature range.
Input Offset Voltage (Rs·< 50 kn) Input Offset Current
V10
-
-
3.0
-
-
10
110
-
-
20
-
-
70
Average Temperature Coefficient of Input Offset Voltage T A(min) <;TA <;TA(max)
Do V10/D.T
-
3.0
15
-
6.0
30
Average Temperature Coefficient of Input Offset Current +25°c <;TA <;TA(maxi T A(min)< TA< 25°C
Input Bias Current
D. i10/D."T
-
0.01
0.1
-
0.01
0.3
-
0.02
0.2
-
0.02
0.6
11.B
-
-
100
-
-
300
Large Signal Voltage Gain
Av
VcclVEE = .±. 15 v. Vo=.±. 10 v. RL > 2.0 kn
25
-
-
15
-
-
Input Voltage Range VcclVEE = ±20 v VcclVEE = ± 15 v
V1
±15
-
--
--
·-
±12
--
-
-
Common-Mode Rejection Ratio Rs<·50kn
CMRR
80
96
-
70
90
-
Supply Voltage Rejection Ratio Rs<;50 k!l
PSSR
80
96
-
70
96
-
Output Voltage Swing Vcctvee = ±15 v. RL = 10 k'n RL = 2.0 kn
Supply Currents (TA= TA( max),
VcclVEE =do Vl
Vo
±12
±14
-
±12
+14
-
±10
±13
-
±10
±13
-
Ice. ·EE
-
1.2
2.5
-
-
-
mV nA µV/°C nA/"t
nA V/mV
v
dB dB v
mA
@ MOTOROLA Se1niconduc·or Produc<s Inc. --------
·
3·147
MLM101A, MLM201A, MLM301A
II
TYPICAL CHARACTERISTICS (Vee= +15 V·. VEE= -15 V, TA= +25°e unless otherwise nQted.)
FIGURE 4 - MINIMUM INPUT VOLTAGE RANGE
20
~ 16
C:
UJ
""~ 121----+--+----+---t--:.;,..ct-----,,
UJ
""<(
~ 8.0 1----+--+-.,__-h,C--+---,,,.C--j-->
I-
=>
"2" 4.0
er.
>
5.0 Vee and (-VEEL SUPPLy VOLTAGE (VOLTS)
FIGURE 5- MINIMUM OUTPUT VOLTAGE SWING
20
"~ '
~ 16
APPLICABLE TO THE SPECIFIEO--+--OPERATING TEMPERATURE
UJ
"2 "
RANGES
~ 121----+--+----+--+----+-_,,,.
UJ
""<(
~ 0 8.0 >
~
~ 4.0 1----+---l""'=---+---\--+---+---
ci.
0
>
20 Vee ANO (-VEELSUPPLY VOLTAGES (VOLTS)
FIGURE 6 - MINIMUM VOLTAGE GAIN
! '4:=A~p~~~:,'1~::~;~~~i'J:~a-+--"!*!*~*'l"'l*'!*"l"'l*!*l
~ 88
UJ
""<(
~ 82
>
>
<(
Vee ANO -VEE. SUPPL y VOLT AG ES (VOL TS)
FIGURE 7 - TYPICAL SUPPLY CURRENTS 2.5.----.--.-----.--.------.--
1 2.0 I - - - - + - - - + - - - + - - - - + - - - + - - -
i"' 1.51----+---l-""""""+---+---+--'*'*
'.'.:;
~ ~_T_A_=~+__c -~·----+~--_-_-_+~--_-_-_ 1~!,.,.I 250 ~ 1.0I----+--+---+--+---+--~,:,:,:,:,**;,:,:,:;~ 0
: __
__
"_"l""i""i""'l*!'""!*l""'i!<li_"i"i""'i*i"".'i"".i
0
5.0
10
15
'20
Vee ANO (-VEE) SUPPL y VOLTAGE (VOLTS)
FIGURE 8 - OPEN-LOOP FREQUENCY RESPONSE
+180r---~--~-~--~-~---,-----.----,
SINGLE-POLE .COMPENSATION
+1601----+---+---+---+----+---+----+----<
S:>
+1401----+---+----+---+----t---,-+----+----< 315
~
en
+1201----+---+----+----+----+----+---+----< 270~
z
~ ~
<(
+1+80001----+-L__:-~ .....--""-'f.'.t.-.~..~.-l-'11-"',"".~. .,---t-----1 l' ,
225 ~
PHASE+----+----! -~~
180
~
1-0_, +60
>
.
"'0N,<-~~ /
OC,_
135 ~
<(
> +40
~
9 5::
<( +lOt-----+----+--__,,__G_A_IN_"'_.,~----._.~-__,f---+-----1 4
h"
0
4'
10 100 1.0k 10 k 100 k 1.0 M lOM
f, FREQUENCY (Hz)
FIGURE 9 - LARGE-SIGNAL FREQUENCY RESPONSE
en
S~G1~oM~N~A~
~ ±15
~
UJ
"z "
~
~
~ ±10
<(
t
0 >
I-
~ ±5.0
0
~
> 0
~
Cl=
~UL
30
p~ ~ ~
1
\ Cl= 3.0 pF
~
~ N
;..:....
I'-
1.0k
10k
100 k
1.0M
lOM
't, FREQUENCY (Hz)
@ -------~ MOTOROLA Semiconductor Products Inc.
3-14R
MLM101A, MLM201A, MLM301A
TYPICAL CHARACTERISTICS <continued) (Vee= +15 V, VEE= -15 V, TA= +25°C unless otherwise noted.)
FIGURE 10 - VOLTAGE FOLLOWER PULSE RESPONSE
~ +8.0
SINGLE·POLE COMPENSATION
c5 +6.0 1---1-----1----t--+---+---+--+---+---+---I
~>+4.o ~~
~I__c_I-7 1.
~ 1----+--~---+--+---+--+--+1_,,_v_1uTPUT ~ +2.0 t----t-LJ..--'l,r--t----t---+- INPUT""l'-~--+-_A..._.,__-+--+-----l t-----'.
~ -2.0
~
I
a: -4.0
>O -6.0
1 - - -~... ~-+----+-----+.-_I+~l-l-----il-----1---1
>ci.' -8.0 1---1-----t---!--+---+-'-----+--+---+---+---I
-10 ~~
10 20 30 40 50 60 70 80 90 t, TIME (µs)
FIGURE 11 - OPEN-LOOP FREQUENCY RESPONSE
+140.--------~T--~T--T~------~
FEf;DFORWARD COMPENSATION +120
r--
~ +100
2
<(
+80
C!l
w C!l
+60
<::
~
0
>
+40
..:::;> +20
- 201~0---'10~0--1~.0-k--1~0-k--10~0-k--1.0~M--10~M--1-00~M__.",'r-' I, FREQUENCY (Hz)
·
FIGURE 12 - LARGE-SIGNAL FREQUENCY RESPONSE
~
FEEOFORWARD COMPENSATION
~ ±16t----+---i--t---t--t-+-+-t++--+--t---+--+--+-+-!-H-l
w
~ ±12t--~-!l.-1--+--+-+-+-++++----l--+-+--+---l-+-t-++l
~
~
<~::
I\.
D.._
O~ "b.. > ±8.0 t----t---i-->r+---t-+-+-+-t++--+---+---+--+--+-+-!-H-l
~ ±4.0 t-----+---t---+--~-+l'-----1'"'1--+-+++----+--+---+--+---+--l-l--l-+-I
~ci.
~ OL__L_J__L_j__LLLLli~ ._l:=t:::::±::::±=t:±:t:t!J
100 k
1.0 M
10 M
I, FREQUENCY (Hz)
FIGURE 13- INVERTER PULSE RESPONSE
+10.----,.-----.----.--,.---,---.--.----.----.--~
FEEDFORWARD COMPENSATION ~ +8.0 1---1-----1---t---t--+--+--+--O~U-TP1-U-T-1-----i
-±z-1 0~ +6.o r-+ - t- - - -
1'J1'..1-__-\-I ..,~----;----;
I ~ +4.0
.:r~
~-:i_ +2.0
t INPUT
~ -2.0
~ -4.01---H-----t----t--+---+--f----+---+---+---i
;g >- - - -+- f- -6.0 l---+-'"-"~'-11-----11-----1---t--+- --- t-----t----+-------11
~ -8.0 1---+---1----1----1--+--+---+---+---+-----1
> -10.___...__.___;,.Jl----L--L--L--'----L..--'---' 1.0 2.0 3.0 4.Q 5.0 6.0 7.0 I 8.0 9.0
t, TIME (µs)
TYPICAL COMPENSATION CIRCUITS
FIGURE 14 - SINGLE-POLE COMPENSATION
FIGURE 15 - FEEDFORWARD COMPENSATION
Rl -V1
R3 +V1
R2
Vo
Cl
Rl Cs
Cl;>--
Rl + R2
Cs = 30 pF
C2
R2 Rl
vi --'V'VV----<>--1
R3
150 pF
1 C2= - -
2irf0R2 10 = 3.0 MHz
@ -------~ MOTOROLA Semfoonduc·or Produc·s Inc.
3-149
·
ORDERING INFORMATION.
Device
MLM107G · MLM107U MLM207G MLM207U MLM307G MLM307P1 MLM30\U
Alternate LM307N
Temperature Range
-55°C to +125°C
c -55°C to +125°C
-2s0 to +as0c
-25°C to +85°C 0°c to +70°C 0°c to +70°c 0°C to +70°C
Package
Metal Can Ceramic DIP
Metal Can Ceramic DIP
Metal Can. Plastic DIP Ceramic DIP
INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER
A general purpose operational amplifier series well suited for applications requiring lower input currents than are available wit!i the popular MC1741. These improved ini:)ut characteristics permit greater accuracy in sample and hold circuits and long interval integrators.
· Internally Compensated · Low Offset Voltage: 2.0 mV max (MLM107) · Low Input Offset Current: 10 n~ max (MLM107) · Low Input Bias Current: 75 nA max (MLM107)
TYPICAL APPLICATION HIGH IMPEDANCE BRIDGE AMPLIFIER
100 k.
MLM107 .MLM207 MLM307
OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT
EPITAXIAL PASSIVATED
G SUFFIX METAL PACKAGE
CASE 601-02
P1 SUFFIX PLASTIC PACKAGE
CASE 626 (MC1741SC Only)
Vo= -10 V;n
U SUFFIX CERAMIC PACKAGE
CASE 693·
INPUTS
Pins not shown me not connected.
CIRCUIT SCHEMATIC
Vee
25 OUTPUT
OFFSET NULLMB NC
INVT INPUT 2
7 Vee
NONINVT INPUT
OUTPUT
Vee ·
5 OFFSET NULL
(Top View)
EQUIVALENT CIRCUIT
3-150
MLM107,MLM207,MLM307
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.I
Rating Power Supply Voltages
Differential I '!Q_ut Signal Voftage Common-Mode Input Swing (Note 1) Output Short-Circuit Duration Power Dissipation (Package Limitation) (Note 2) Operating Temperature Range Storage Temperature Range
Symbol
Vee V..EE. V10 V1cR tos Po TA ' Tstg
MLM107 MLM207 MLM307
+22
+22
+18
-22
-22
-18
±30
±30
±30
±15
±15 Indefinite
±15
500
500
500
-55 to +125 -25 to +85 0 to +70 -65 to +150 -65 to +150 -65 to +150
Unit Vdc
Volts Volts
mW oc oc
ELECTRICAL CHARACTERISTICS (TI A=+
Characteristics
Input Offset Voltage Rs~10k.!1, TA =+25°C Rs ~10 k.!1, TA= T1ow to Thigh Rg~ 50 k.!1, TA = +25°C Rs~ 50 k.!1, TA= T1ow to Thigh
Input Offset Current
TA= +25°c TA= T1ow to Thigh Input Bias C.urrent TA= +25°C TA= T1ow to Thiqh Input Resistance
Supply Current Vs = ±20 V, TA = +25°C
+25~C Vs = ±20 V, TA= Thi h
Vs =±15 V, TA=
Large-Signal Voltage Gain Vs= ±15 V, Vo= ±10 V, RL >2.0 k.!1, TA= +25°C VS_= ±15 V, VQ = ±1'9 V; Rt ;;;,2.0 k.!1, TA= T1 0 w
Average Temperature Coefficient of Input Offset Voltage T1ow~TA$Tl'tlgtl
Average Temperature Coefficient of Input Offset Current +25°C'S TA 5 Thigh T1ow"5.TA $ +25°C
Output Voltage Swing (TA= TJow to Thigh) Vs =±15 V, RL = 10k.!1
R L = 2.o k.!1
Input Voltage Range (TA= T1ow to Thigh) Vs= ±20 V Vs=±15V
Common-Mode Rejection Ratio (TA= Tiow to Thigh) Rs ~50 k.!1
Supply-Voltage Rejection Ratio (TA= Tiow to Thigh I Rs~50 k.!1
un ess ot erw1se noted , see Note 3)
MLM107 MLM207
Symbol
Min Typ Max
IV1oi
-
0.7
2.0
-
-
3.0
-
-
-
-
-
11101
-
1.5
10
-
-
20
11B
-
30
75
-
-
100
Rin .
1.5
4.0
-
lo
-
1.8
3.0
-
1.2
2.5
-
-
-
Av
50 160
-
25
-
-
iTCv1ol
-
3.0
15
ITC11ol Vo Vin R
CMRR VSRR
-
0.01
0.1
-
0.02
0.2
±12 ±14
-
±10 +13
-
±15
-
-
-
-
-
80
96
-
80
96
-
MLM307
Min TYP Max Unit
mV
- -
-
-
-
-
-
-
2.0
7.5
-
-
10
nA
-
3.0
-
-
-
70
-
-
0.5 2.0
-
-
-
-
-
1.8
25 160
15
-
50 70
nA 250 300
- Megohms
mA
-
3.0
V/mV -
-
6.0
- 0.01 - 0.02
±12 +14 ±10 +13
-
-
±12 -
70 90
70
96
µVJ°C 30
nA/0 c
0.3 0.6
v -
v -
-
dB.
-
:_
dB -
·
Note 1. For supply voltages less than ±.15 V, the absolute maximum input voltage is equal to the supply voltage.
Note 2. For operating at elevated temperatures, the device.must
be derated based on a maximum junction temperature of
+150°c for the MLM107, and 100°c for the MLM207
and MLM307. The T0-99 package is derated based on
a thermal resistance of +150°C/W, junction to ambient,
or +45°C/W, junction to case.
· ·
Note. 3. Unless otherwise noted, these specifications apply for:
T1ow
Thigh
±.5.0 v~ Vs ~±20 V, -55°c ~TA~ +125°c, MLM107
±5.0 v 5 Vs $±20 V, -25°C $TA ~ -i-85°c, MLM207
±5.0V~Vs~±15V, o 0 c:s::TA ~ +70°C,MLM307
@ MOTOROLA Semiconductor Products Inc. __________.
3-151
M MLM 107I LM207, M LM307
·
TYPICAL CHARACTERISTIC.S (Vee= +15 V, VEE= -15 V, TA= +25°e unless otherwise noted.)
FIGURE 1 - MINIMUM INPUT VOLTAGE RANGE
20~-----..---,------.---~--.---
Applies over specified
en
Operating Tempera1ure--+---+--+---
~
Range
~ 16t----+--+---+---+---+---
LU
<z!:I
~ 121-----+--+---+--+---.~----..
<!:I <I! I-
~ 8.0 1-----+--+---t..,L--+-::.,,C-.-+--
i
-;;, 4.0 !----+--+------+---+-~
$
o,___ _.____.__ _.___
__
..._~_._
0
5.0
10
15
20
Vee ANO (-VEE), SUPPLY VOLTAGE (VOLTS)
FIGURE 2 - MINIMUM OUTPUT VOLTAGE SWING
20.----.---,------.---....----.---
Applies over specified
~
Operating Temperature-+---+--+---
-> 161----Ra-ng+e --'---t----+--+---+--
+I
<z!:I ~ 121----+--+----+--+-~-+-_,,,_
LU <!:I
~
~ 8.0
~
i5~
4.0 1---+---i-=~-+--+----+--
ci >
5.0
10
15
20
Vee ANO (-VEE), SUPPLY VOLTAGES (VOLTS)
FIGURE 3 - MINIMUM VOLTAGE GAIN
1OO Applies over specified Operating Temperature·--+---+--+--Range
941----+--+---+--+---+--
~
z ~ 881---+--+---+--+---+-~
LU <!:I <I!
~ 821---+---r----;---+---+-~ >
J
76>----i---+----+---+---+---
5.0
10
15
Vee ANO (-VEE), SUPPLY VOLTAGES (VOLTS)
FIGURE 4 - TYPICAL SUPPLY CURRENTS
2.5 .-------..---....-----.---~-----r---
i'';;(' !-----+--+---+--+---+----:==-
:: 1.51----+---===-+---+-----+--
iw 1.0t---+----:+---+--+---'--+--
w
CJ
~ 0.5 t - - - - + - - + - - - + - - - + - - - t - - <<-->>
0 o.___
_.__ _ _ _ 5~.o--..__--1~0~-....__
15
20
20
Vee ANO (-VEEl. SUPPLY VOLTAGES (VOLTS)
FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE
+180
+160
+140
~+120
z <i+lOO
i
-
-
-
<!:I
~ ~ +80
<(
~ ~ +60
~ >J +40
~ +20
~~ -20
1.0
10
100 1.0 k 10 k 100 k 1.0 M 10 M
f, FREQUENCY (Hz)
100 M
.FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE
~ 15
> t.!
~
~ 10
~
LU
<!:I
< ~
0
>
I-
~
5.0
~
0
>6
I\
\
~
0
1.0 k
10 k
100 k
1.QM
lOM
f, FREQUENCY (Hz)
@ MOTOROLA Semiconducto'r Products Inc. ----'-------'
3-152
MLM107,MLM207,MLM307
TYPICAL CHARACTERISTICS (continued)
FIGURE 7 - VOLTAGE FOLLOWER PULSE R!=SPONSE
rn
v.; +8.o
~
0 +6.0
~ 1---tz:J +4.0
~ ~ +2.0
w
~ I~_-, 0
~ -2.0
~ l-
~-4.0 1-
5 -6.0
- - f----
~-
0 > -8.0
- r- ""}
7 ln~utT T I Voutput ~
-10 1---n
10: 20 3'0 40 ~o 60 10 00 go
t, TIME (µs)
·
®MOTOROLA Serniconducf:or Products Inc. 3-153
MlMl08, MLM108A MLM208, MLM208A MLM308, MLM308A
PRECISION OPERATIONAL AMPLIFIERS
The MLM108/MLM208iMLM308 Series operational amplifiers provide high input impedance, low input offsets and temperature drifts, and low noise. These characteristics are made possible by use of a special Super Beta processing technology. This series of amplifiers is particularly useful for applications where high-accuracy and low-drift performance are essential. In addition high-speed performance may be improved by employing feed-forward compensation techniques to maximumize slew rate without compromising other performance criteria.
The MLM108A/MLM208A/MLM308A Series offers extremely low input offset voltage and drift specifications allowing usage in even the most critical applications without external offset nulling.
· Operation From a Wide Range of Power Supply Voltages
· Low. Input Bias and Offset Currents
· Low Input Offset Voltage and Guaranteed Offset Voltage Drift Performance
· ,High Input Impedance
· Laser Trimmed and Ion Implanted
FREQUENCY COMPENSATION
· STANDARD COMPENSATION
MODIFIED COMPENSATION
NON INVEATINd
INPUT
OUTPUT
1
c1 ;;. 3 o (1 +-R2 )
R1
INVERTING INPUT
NON· INVERTING
INPUT
OUTPUT
STANDARD FEEDFORWARD COMPENSATION
5 pF
FEEDFORWARD COMPENSATION FOR DECOUPLING LOAD CAPACITANCE
Rs>10k
100k
LASER TRIMMED SUPER GAIN
OPERATIONAL' AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
F SUFFIX CERAMIC PACKAGE
CASE 606·04 T0-91
COMPEN A
N C 1 Q 1 0 COMPEN B
'.GUARD 2 3
INPUTS 4
.
9
-
8 Vee
+
7 OUTPUT
'GUARD 5·
,
6 VEE
(Top View)
G SUFFIX METAL PACKAGE
CASE 601
i
COMPEN B
VEE (Top View)
CERALMSICUFPFAICXKAGE CASE 632-02
-
l . _ - - -J
-, .. ·.
T0-116
C~~~::~ :g~: ~~MPEN.B
INPUTS 4
-
5
+
'GUARD 6
VEE 7 .
11 Vee 10 OUTPUT 9 NC
8 NC
(Top View)
COMPEN B
CL
-= 1:10pf J:::6.~1µF
-:- COMPEN A "':"
·c2 > s :~as pF
DEVICE SELECTION TABLE
STANDARD OFFSET VOLTAGE
SPECIFICATION
TIGHTENED OFFSET VOLTAGE
SPECIFICATION
OPERATING TEMPERATURE RANGE
-55 to +125°C -25 to +85°C o to +10°c
MLM108 Pkg. Suffix
F, G or L
MLM208 Pkg. Suffix F, G or L
MLM308 Pkg. Suffix F,G,LorP1
MLM108A Pkg. Suffix · F,G or L
MLM208A Pkg. Suffix F, G or L
MLM308A Pkg. Suffix
F, G or L
P1 SUFFIX PLASTIC PACKAGE
CA.SE 626 (MLM308 Only)
c1:~:: : ~: ::~PEN
3
6 OUTPUT
VEE 4
5 NC
(TopView).
U SUFFIX CERAMIC PACKAGE
CASE 693
*Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.
3-154
MLM108, A; MLM208, A; MLM308, A
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating Power Supply Voltage Input Voltage (See Note 1) Input Differential Current (See Note 2) Output Short-Circuit Duration Operating Ambient Temperature Range Storage Temperature Range
Symbol
Vee.YEE V1 l1D ts TA Tstg
VALUE
I I MLM108, MLM108A MLM208, MLM208A MLM308, MLM308A
±20
l
±20
l
±18
+15
p
I -55to +125
+10
Indefinite
-25 to +85
l
--65 to +150
Oto +70
Junction Temperature
TJ
Metal,Ceramic Package
+175
~
Plastic Package
~
+150
Unit Vdc Volts mA
oc OC .oc
Note 1. For supply voltages less than ±15 V, the maximum i_nput voltage is equal to the supply voltage. Note 2. The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input
voltage in excess of 1.0 Vis applied between the inputs unless some limiting resistance is used.
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of +5.0 V ~Vee ~+20 V
and -5.0 v;;;;.vEE ;;;;.-20 V, TA= +25°C.)
MLM108A MLM208A
MLM10S MLM208
Characteristic Input Offset Voltage .Input Offset Current Input Bias Current Input Resistance Power Supply Currents
Vee = +20 V, VEE= -20 v Large Signal Voltage Gain
Vee= IVEE1=+15 v, v 0 =±1ov,RL;;;;.1ok.n
Symbol
Min
V10
-
110
-
l1B
-
q
30
Ice.IEE
-
AvoL
80
Typ 0.3 0.05 0.8 70 ±0.3
300
Max 0.5 0.2 2.0
-
±0.6
-
Min
Typ
Max
-
0.7
2.0
Unit mV
-
,0.005
0.2
nA
-
0.8
2.0
,nA
30
70
-
Megohms
-
±0.3
±0.6
mA
50
300
-
V/mV
The following specifications apply over the operating temperature range.
Input Offset Voltage
Input Offset Current
Average Temperature Coefficient of Input Offset Voltage TA(min) ~TA ~TA(max)
Average Temperature Coefficient of Input Offset Current
lnp_ut Bias Current Large Signal Voltage Gain
Vee= IVEEI =+15 v, v 0 =±10 v, RL = 1okn Input Voltage Range
Vee= IVEEI = +15 v Common-Mode Rejection Ratio Power Supply Voltage Rejection Ratio Output Voltage Range
Vee= IVEe I= +15 v, R L = 10 k.n Supply Current (TA= TA [max])
V10
-
110
-
AV10/AT
-
Al10/AT
-
-
1.0
-
0.4
1.0
5.0
0.5
2.5
-
-
3.0
-- -
0.4
-
3.0
15
-
0.5
2.5
11B
-
-
3.0
-
-
3.0
AvoL
40
-
-
25
-
-
V1R
±13.5
-
-
±13.5
-
-
CMRR PSSR VoR
Ice.IEE
96
110
-
96
100
-
±13
±14
-
-
±0.15 ±0.4
85
100
-
80
96
-
±13
±14
-
-
±0.15 ±0.4
mV nA
µV/°C
pA/°C
nA V/mV
v
dB dB v
mA
@ MOTOROLA Sen'Jiconducl:or Producl:s Inc. ________,
3-155
MLM108; A; MLM208, A; MLM308, A
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of +5.0 V EO;Vct E0;+15 V
and -5.0 V;;;;. VEE ;;;a.-15 V, TA= +25°C.)
:
MLM308A
MLM308
Characteristic
Input Offset Voltage
Input Offset Current
Input Bias Current
Input Resistance
Power Supply Currents
v. Vee= +15 Vee= -15 v
Large Signal Voltage Gain
v, Vcc=+15.V, Vee =-15 v 0 ;;±1ov,
RL;;;a.10kn
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
V10
-
0.2
0.3
-
0.2
0.3
mV
110
-
0.2
1.0
-
0.2
1.0
nA
tie
-
1.5
7.0
-
1.5
7.0
nA
q
10
40
-
10
40
-
Megohms
Ice.IEE
-
±0.3
±0.8
-
±0.3
±0.8
mA
AvoL
80
300
-
25
300
-
V/mV
~-
The foltowing specifications apply over the operating temperature range.
Input Offset Voltage Input Offset Current
V10
-
-
0.73
-
-
10
mV /
l!.Q_
-
-
1.5
-
-
1.5
nA
Average Temperature Coefficient of Input Offset Voltage TA(min) EO;TA EO;TA(max)
Av!jrage Temperature Coefficient of Input Offset Current
AV10/AT
-
Al10/AT
-
1.0
5.0
-
2.0
10
-
µV/0 c
6.0
30
2.0
10
pA/0 c
Input Bias Current
Large Signal Voltage Gain Vee= +15 V, Vee= -15 V, Vo= ±10 V, RL;;;a.10kn
Input Voltage Range Vee= +15 v, Vee= -15 v
l1e
-
-
AvoL
60
-
V1R
±13.5
-
10
-
-
-
15
-
-
±13.5
-
10
nA
-
V/mV
-
v
Common·Mode Rejection Ratio Rs E0;5okn
CMRR
96
110
-
80
100
-
dB
Supply Voltage Rejection Ratio Rs E0;50 kn
PSSR
96
110
-
80
96
-
dB
Output Voltage Range Vee= +15 V, VEE= -15 V, RL = 10 kn
VoR
±13
±14
-
±13
±14
-
v
REPRESENTATIVE CIRCUIT SCHEMATIC
COMPENSATION A
COMPENSATION B
6.4k
500
1 k
@ MOTOROLA Semiconducf:or Producf:s Inc. _ _ _ _..;..__'--'
3-156
MLM108, A; MLM208, A; MLM308, A
TYPICAL CHARACTERISTICS
FIGURE 1 - INPUT BIAS AND INPUT OFFSET CURRENTS 2.0----------~-~-~-~-~~ 0.25
1.81---1--~>---~--'-..4
11.6
affi 1.4
a: . 1.2
0.201
~
0.15 i3
Cl) 1.0 '-"--+-----+---.-.+--+--+---+--~
Iw-
<(
~
0.8 1---~~-+---+---"---+---+----+----+----+----i
Cl)
u..
0.10 ~
~ 0.61---+--+-~+--+--+---..d----+
~
~ 0.41----+--+---+---=:;o..--=+--+-:~+:::~c-=--+---l 0.05 ~
0.2
o.___,___..___...__...__....__ _.__ _.__ _,__ _,_~o
-60 -40 -20
+20 +40 +60 +80 +100 +120 +140 T, TEMPERATURE (Oe)
FIGURE 2 - MAXIMUM EQUIVALENT INPUT OFFSET ·VOLTAGE ERROR versus INPUT RESISTANCE
100
>
..§.
w
<::>
<(
~
0> 10 I== MLM308
~
MLM108, M.LM208
0
~
t- MLk30~A
~~ 1.0
~
17
PZl7'
v
~
!::::::::
2 L
vL ~
-MLM108A, MLM208A
<(
>
5 @
~
0.1
100 k
1.0M
10 M
r;, INPUT RESISTANCE (OHMS)
100M
FIGURE 3 -VOLTAGE GAIN versus SUPPLY VOLTAGES 130
120 1----+---+----+---+----+---+----t----t
FIGURE 4- POWER SUPPLY CURRENTS versus POWER SUPPLY VOLTAGE
·
901----+--+---+--+---+--+-e~=~OOHz---1
l
80..__ _,__ _...__ _.__ _...___ _.__ __.__ _.__ __.
0
5.0
10
15
20
Vee= IVEEI. SUPPL y VOLTAGES (VOLTS)
;
1100
1----+---+----+~~-+----+~-+---+--r-_____,
Vee= IVEEI. SUPPLy VOLTAGES (VOLTS)
FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE
FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE
\
z
< +80
<::>
w
::;<::>
<(
+60
0
>
+40
...:;
0
> +20
<(
a:
0
>
10
100 LO k 10 k 100 k. 1.0 M lOM 100M
I, FREQUENCY (Hz)
10 k
100 k
I, FREQUENCY (Hz)
@ MOTOROLA Semiconductor Products Inc.
3-157
1.0 M
MLM108, A; MLM208, A; MLM308, A
·
SUGGESTED DESIGN APPLICATIONS
FIGURE 7 - FAST (1) SUMMING AMPLIFIER WITH LOW INPUT CURRENT
FIGURE 8 - SAMPLE AND HOLD
C5(2)
INPUT
R4
1 M
OUTPUT
(1 l Power Bandwidth:· (3) In addition to increasing speed,
250 kHz
the MLM101A raises high and
Small Signl! Bandwidth: low frrequency gain, increases
3.5 MHz
output d.rive capability and elim-
Slew Rate: 10 V/µs
inates thermal feedback.
(2) C5 = 6 X 10-8 R1
(1)Teflon, Polyethylene or Polycarbonate Dielectric Capacitor
INPUT GUARDING
Special care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the MLM108,A amplifier series. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble at +125°C, .particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead T0-99 type package is accomplished by using a 10. lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the boards. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from highvoltage pins are then absorbed by the guard.
The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not
used (this is different from the standard MC1741 and MLM101A pin configuration).
FIGURE 9 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT for INPUT GUARDING USING METAL PACKAGED DEVICE
Vee
'
ICOMPENSATION B
/
COMPENSATION A
~6 OUTPUT
78 1
(BOTTO,M VIEW)
INVERTING AMpLIF IER
R1
R2
FIGURE 10- CONNECTION OF INPUT G"UARDS FOLLOWER
NON-INVERTING AMPLIFIER R2
OUTPUT
(1) Used to compensate for large source resistances.
R1R2 Note: R + R must be an impedance.
1 2
@ MOTOROLA Semiconductor Products Inc.
3-158
ORDERING INFORMATION
Device
MLM110G MLM110U MLM210G MLM210U MLM310G MLM310P1 MLM310U
Temperature Range
-55°C to +125°C -55°C to + 125°C -25°C to +85°C -25°C to +85°C
0°C to +70°C 0°c to +70°C 0°c to +70°C
Package
Metal Can Ceramic DIP
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP
OPERATIONAL AMPLIFIER VOLTAGE FOLLOWER
THE MLM110, MLM210, and MLM310 are functionally, electrically, and pin-for-pin equivalent to the LM 110, LM210, and LM310 respectively.
· Input 8 ias Current: 10 nA maximum over Temperature Range · Small-Signal Bandwidth: 20 MHz typical · Slew Rate: 30 Volts/µs typical · Supply Voltage Range: ± 5.0 V to± 18 V
CIRCUIT SCHEMATIC
MLMllO MLM210 MLM310
OPERATIONAL AMPLIFIER VOLTAGE FOLLOWER
INTEGRATED CIRCUIT
GSUFFIX METAL PACKAGE
CASE 601
Balance
·
P1SUFFIX PLASTIC PACKAGE
CASE 626
·
USUFFIX
·
CERAMIC PACKAGE
CASE 693
TYPICAL APPLICATIONS
FIGURE 1 - OFFSET BALANCING CIRCUIT
FIGURE 2 - DIFFERENTIAL INPUT INSTRUMENTATION AMPLIFIER
INPUT
>--O--· OUTPUT
Pinsl.5and8noconnection
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
3-159
MLM110, MLM210, MLM310
·
= MAXIMUM RATINGS (TA +25°C unless otherwise noted.)
Power Supply Voltage
Rating
Input Voltage (Note 1) Output Short Circuit Duration (Note 2) Operating Temperature Range
Storage Temperature Range Lead Temperature
(sqldering, t = 10 s) ·
Junction Temperature Ceramic, Metal PljlCkage Plastic Package
Symbol MLM110 MLM210 MLM310
Vcclmax)
+18
+18
+18
Veelmaxl
-18
-18
-18
V1c
± 15
± 15
± 15
Tse
Indefinite
TA
-55 to +125 -25 to +85 Oto +70
Tstg
-65 to +150 -65 to +150 -65 to +150
Ts
300
300
300
TJ 175
150
Unit Vdc
Volts
Oc oc oc
OC
ELECTRICAL CHARACTERISTICS (See Note 4l
Characteristic
Symbol
MLM110 MLM210
Min
Typ
Max
MLM310
Min
Typ
Max
Input Off54;1t Voltage TA= +25°C TA= T1ow* to Thigh**
Input Bias Current TA= +25°c TA= T1ow to Thigh
Input Resistance
Input Capacitance
Large-Signal Voltage Gain (Vs=± 15 V, Vo= +10 V) TA= +25°C, RL = 8.0 k ohms TA =T1ow to Thigh· AL= 10 k ohms
Output Resistance TA= +25°c
Small-Signal Bandwidth
Slew Rate
Supply Current TA= +25°C TA= Thigh
Offset Voltage Temperature Drift -55°c.;;;;; TA.;;;;; +85°c
0TC-=c+~1T2A5~°+C10°c
Output Voltage Swing Vs=± 15·v, AL= 10k ohms
Supply Voltage Rejection Ratio
± sto v.;;;;;vs.s;;;;± 1a v
-ss c *T10 w
= =
0
-2s0c
for for
MLM110 MLM210
o0 c for MLM310
V10
--
1.5
4.0
-
-
6.0
-
2.5
7.5
-
10
l1B
-
1.0
3.0
-
2.0
7.0
-
-
10
-
-
10
q
1010 1012
-
1010 1QT2"
-
Ci
-
1.5
-
-
1.5
-
Avs
0.999 0.9999
-
0.999 0.9999
-
0.999
-
-
0.999
-
-
ro
-
0.75
2.5
-
0.75
2.5
BW
-
20
-
-
20
-
SR
-
30
-
-
30
-
lo
-
t : , v 10 1t:,T -
-
3.9
5.5
-
2.0
4.0
-
-3.9
5.5
-
6.0
-
12
-
-
-
--
--
-
-
10
-
Vo
±10
-
-
±10
-
-
PSRR
70
80
-
70
80
-
**Thigh= +125°C for MLM110 = +85°c for MLM210 = +10°c for ML.M310
Unit mV
nA
ohms pF VIV
ohms MHz V/µs mA
µV/°C
Volts dB
Note 1. For supply voltages less than ± 15 volts, the absolute
Note 3. The maximum junction temperature of the MLM110 is
~aximum input voltage is equal to the supply voltage.
+150°c, for the MLM210 - +1oo0 c, and for the
Note 2. A continuous short-i;ircuit duration·capability is spei;ified for MLM110 and MLM210 as follows: case t11mpera· tures up to +125°C and ambient tempera1;ures UP to +7d'C; for the MLM310 up to +10°ccas11temperatura and ·
MLM310 - +as0 c. For operating at elevat11d temperatures, the package must be der·ted based. on a thermal resistance of 15o<>ctW - junction to ambient, or 45°C junction to case.
+55°c ambient temper<1ture apply. A resistor (greater than
Note 4. All listed specific·tions 11pply for :t 5.0 V.;;;;; Vs.;;;;; :t18 V
2.0 k ilohms) musH~e ·inserted in series with the input when
and TA = +25°C unless otherwise noted.
the amplifier is. driven from a low impl!dance source. thus preventing d<1mage when the output is ,shorted.
Note 5. Increased output swing under load can be obtained by connecting an external resistor between the boqster and
@ Vee terminals (pi':'s 4 and 5). llllOTOR(>f.A Semiconductor Products Inc.
I
ORDERING INFORMATION
Device
MLM124L MLM224L MLM224P MLM324L MLM324P
Alternate LM124D
LM324D LM324N
Temperature Range
-55°C to +125°C
c -25°C to +as0 c c -2s0 to +as0
0°C to +70°C O°C to +70°C
Package
Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
Spec·ific·ations and Applic~ations Inforrnation
QUAD LOW POWER OPERATIONAL AMPLIFIERS
The MLM 124 Series are low-cost, quad operational amplifiers with
true differential inputs. These have several distinct advantages over
standard operational amplifier types in single supply applications.
The quad amplifier can operate at supply voltages as low as 3.0 Volts
or as high as 30 Volts with quiescent currents about one fifth of
those associated with the MC1741 (on a per amplifier basis). The
common mode input range includes the negative supply, thereby
"eliminating the necessity for external biasing components -in many
applications. The output voltage range also includes the negative
power supply voltage.
·
· Short-Circuit Protected Outputs · True Differential Input Stage · Single Supply Operation: 3.0 to 30 Volts · Low Input Bias Currents: 250 nA Max · Four Amplifiers Per Package · Internally Compensated
· Common Mode Range Extends to Negative Supply
MAXIMUM RATINGS
Rating Power Supply Voltages
Single Supply Split Supplies
Input Differential Voltage Range (1) Input Common Mode Voltage Range (2) Input Forward Current
(V1 < -0.3 V)
Package Power Dissipation Plastic Dual-ln-·Line Package Derate above TA = 25°C Ceramic Dual-In-Line Package Derate above TA = 25°c
Storage Temperature Range Ceramic Package Plastic Package
Operating Ambient Temperature Range MLM124 MLM224 MLM324
Symbol
Value
Vee Vee VEE
V10R V1cR
l1F
32 +16 -16 ±32 -0.3 to 32 50
.Unit Vdc
Vdc Vdc mA
Po
Tstg TA -
625 5.0 750 6.0
-65 to +150 -55 to +125
-55 to +125 -25 to +85
0 to +70
mW
mwt0 c
mW mWt°C
oc
oc
( 11 Split Power Supplies. (2) For Supply Voltar;es less than 32 V, the absolute maximum input voltage is equal to
the supply voltage.
MLM124 MLM224 MLM324
QUAD DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
·
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
f:::::::i 1 (top view)
1 P SUFFIX
PLASTIC PACKAGE
CASE 646 (MLM224 and
MLM324 only)
·
PIN CONNECTIONS
,,Out
Inputs 1
Out 4
Inputs 4
Inputs 2
Out
2
Inputs 3
Out 3
3-161
MLM124, MLM224, MLM324
·
ELECTRICAL CHARACTERISTICS (Vee= 5 ov VEE= Gnd, TA= 25°C unless otherwise noted.)
MLM124
M LM224,M LM324
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Input Offset Voltage TA= Thigh to T1ow ( 1)
Input Offset Current TA =Thigh to T1ow
V10
-
2.0
5.0
-
2.0
7.0
-
-
7.0
-
-
9.0
110
-
3.0
30
-
5.0
50
-
-
100
-
-
150
Large Signal Open-Loop Voltage Gain Vo= ±10V, RL = 2.0 kn, Vee= 15 V, TA =Thigh to T1ow
Input Bias Current TA·= Thigh ~o T1ow
Common-Mode Rejection Ratio
AvoL
50
100
-
25
-
-
25
100
-
15
-
-
l1B
-
-45
-150
-
-45
-250
-
-
-300
-
-
-500
CMRR
70
85
-
65
70
-
Rs..; 10 kn Power Supply Current (V0 = 0)
RL =""·TA= Thigh to T1ow
ice
-
0.8
2.0
-
0.8
2.0
Power Supply Rejection Ratio
PSRR
65
100
-
Average Temperature Coefficient of Input Offset Current L>l10/6T
-
10
-
65
70
-
-
10
-
TA= Thigh to T1ow
Average Temperature Coefficient of Input Offset Voltage L>V10/1>T
-
7.0
-
-
7.0
-
TA =Thigh to Ttow
Input Common-Mode Voltage Range Vee= 3ov Vee= 30 V, TA= Th.!l!_h to T1ow
Amplifier-to-Amplifier Coupling 1.0 kHz <;; f <;; 20 kHz, Input Referenced
V1cR
-
0
-
28.5
0
-
28.5
0
-
28
0
-
28
-
-120
-
-
-120
-
Differential Input Voltage Range Output Voltage Range
RL = 2 kn
V10R
-
-
Vee
-
-
Vee
VoR
0
3.5
-
0
3.5
-
Output Voltage - High Limit Vee= 30 V, RL = 2 kn, TA= Thigh toT1ow Vee= 30 V, RL = 10 kn, TA= Thle.h toT1ow
Output Voltage - Low Limit Vee= 5.0 V, RL = 10 kn, TA =Thigh toT1ow
VoH VOL
26
-
-
26
-
-
27
28
-
27
28
-
-
5.0
20
-
5.0
20
Output Source Current V10 = +1.0 V, Vee= 15 v V10 = +1.0 V, Vee= 15 V, TA =Thigh toT1ow
lo+
20
40
-
20
40
-
10
20
-
10
20
-
Output Sink Current Vio=-1.0V, Vee= 15V V10 = -1.0 V, Vee= 15 V, TA =Thigh to T1ow V10 = -1.0 V, Vo= 200 mV
lo-
10
20
-
10
20 - -
5.0
8.0
-
5.0
8.0
-
0.012 0.05
-
0.012 0.05
-
(1) Thigh= 125°C for MLM124, 10°c for MLM324, 85°c for MLM224.
o Ttow = -55°e for MLM124, 0 e for MLM324, -25°e for MLM224.
Unit mV nA V/mV
nA dB mA dB pA/OC µV/°C v
dB v v v
mV mA
mA
SINGLE SUPPLY
SPLIT SUPPLI ES
® MOTOROLA Se1niconciuctor Products Inc.··-------~
~-1n2
MLM124, MLM224, MLM324
(1/4Shown)
REPRESENTATIVE CIRCUIT SCHEMATIC
Bias Circuitry Common to Four
Amplifiers
·
LARGE SIGNAL VOLTAGE FOLLOWER RESPONSE
.2
> 0
5.0 µs/Div. CIRCUIT DESCRIPTION
The MLM 124 Series is made using four internally compensated, two:stage operational amplifiers. The first stage of each corisists of differential input devices 020 and
018 with input buffer transistors 021 and 017 and the differential to single ended converter 03 and 04. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of 020 and 018. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.
Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.
@ MOTOROLA Semfoonductor Products Inc. _ _ _ _ _ _ __,
3-163
MLM124, MLM224, MLM324
·
TYPICAL PERFORMANCE CURVES
FIGURE 1 - INPUT VOLTAGE RANGE
. FIGURE 2 - OPEN LOOP FREQUENCY
v <n ±16 1---1-----1----1----+---+---+--+---+---+---i
~ ;; ±14 ,___,____,_
__,_
__._--+---+17~.L,.......v~--+---+---t
L " ~~~±1±21t0--t------++------+t----+-++-:S-N.+:e--g--a+c-TV-ei't::---.L~L'.1~i..V".,'.o"-'<-t.-Lv'_!_~.,-_,.+_--+----+---t---,t---+----t-----;t
~ ±8.0 1---1-----1----t~--".L'1b"t~-7'<-+---+--+---+---+---i
~ ±s.o 1---1-----11/-_.,....VC.......,,."'-+-,--+---+--+---+---+---i
:f, ±4.0 l7"'V~ "
'Positive
o ±2.0
~
[Z]
0 ±2.0 ±4.0 ±6.0 ±8.0 ±10 ±12 ±14 ±16 ±18 ±20 VcciVEE. POWER SUPPL y VO LT AGES (VOLTS)
FIGURE 3 - LARGE-SIGNAL FREQUENCY RESPONSE
14
;::0:.. 12
UJ
~ 10 ;;ii
w
"<' 8.0
~ ~ 6.0
~
~ 4.0
a:
>0 2.0
0 1.0
\
~ f\
rwkn Vee= 15 v
VEE" Gnd GAIN= -100 Rt = 1 kn RF= 100 kn
1't'-.
~t'---..
10
100
1000
f, FREQUENCY (kHz)
FIGURE 5 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE
2.4 .---.---..-.......--.--.----.-----.-.......---.-----,.----.1-.....1..---.----.
2.1 1---+----t-+---+-t---+---t-+--+----tt- TRAL==2~5°c ~
i:?
.§ 1.8 t---+---1-+--+--+---+---+-+---+----t>---+---+-+---t
1.5 1---+----t-+---+-t---+---+-+--+----tl---t.-..+....-. -+---;
'.'.:; 1.2 L-l--J~=L...1.-j...,,=*=~::::i::t~~X:=l--!-~
5::8::
0.9 t---+---1-+--+--+---+---+-+---+----t>---+---+-+---t a: ~ 0.6 1---+-----f-+--+--+---+---+-+---+----t>---+---+-+---t
:!e
~ 0.3 l---+----t-+---+-t---+----+-+--+---11---+---+-t---i
o.___.____._ _.___.__..___.___._ _.___._____..___.___.__..__~
0
5.0
10
15
20
25
30
35
Vee. POWER SUPPL y VOLTAGE (VOLTS)
-20 L-.L..--1....LILI-...4-..L..J...J..1--'-....&...J._...._.__._......,___.__..........._.__._......
1.0
10
100
1.0 k
10 k
100 k 1.0 M
I, FREQUENCY (Hz)
FIGURE 4 - SMALL-SIGNAL VOLTAGE FOLLOWER
PULSE RESPONSE
(Non-Inverting)
550 ~~-~----,-~-~~-~---. Vee= 3ov
500 l---+--1--+-+----+-+vn: ~;~c -
~ 1 11 :-§_
.lJlnput 450 1---H---t----t--+--t--C_L_,.=_5_0__,PF_-i
· ~ 400
~ y.output
I/ V
> 350 t---ltll.-:T-LJt---t--t---t----ittf/--r---1
~ [n~- ~ ~300
!1 250 t----+~--t----t--+--t----t--+---;
200 t----+--t----t--+--t----t--+---;
* _ o~----~~
_.__..____._~___.
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
t, TIME (µs)
FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE
1 90
~
z w a: a: =>
c.,)
Cl)
a< ;
~ 80
~
__..;--
-.. ~
"
70 0 2.0 4.0 6.0
10 12 14 16 18 20
Vee. POWER SUPPLY VOLTAGE (VOLTS)
@ MOTOROLA Se1niconductor Products Inc.
'l_ 1 ~A
MLM124, MLM224, MLM324
APPLICATIONS INFORMATION
FIGURE 7 - VOLTAGE REFERENCE Vee
FIGURE 8 - WEIN BRIDGE OSCILLATOR 50 k
10k R2
10 k
10 k R1
R1 Vo=R1+R2
1 Vo =2Vcc
1
Vref =2 Vee
For f 0 =1kHz
c
R
c
R=16k.11
C = 0.01 µF
·
FIGURE 9 - HIGH IMPEDANCE DIFFEFIENTIAL AMPLIFIER
e1
-c 1 R
R
a R1
e2 e0 = C (1 +a + b) (e2 - e1)
FIGURE 10- COMPARATOR WITH HYSTERESIS
R2
Hysteresis
VoHL_ffi-H
Vo VoL
:
I I I
VinL ~ VinH
Vref
1 VinL = R 1R+ R:2 (VoL - Vrefl + Vref
R1
.
VinH= Rl + R2 (VoH - Vrefl + Vref
H = R1R+1R2 (VoH - VoL)
FIGURE 11 - Bl-QUAD FILTER
A
Vin C1
R2
. ~'----...J\l'u'\,---......0--I
R
100 k
R1 =OR
R1 R2=-
T9p
2 1
Vret = Vee
R3=TN R2 C1=10 C
f 0 = 1 kHz
Q= 10
T9p = 1
TN= 1
@ MOTOROLA
Vref
"">--<>-.---~Notch Output
T BP = Center Frequency Gain TN = Passband Notch Gain
R=160k.11 C = 0.001 µF R1 = 1.6 M.11 R2 = 1.6 M.11 R3 = 1.6 M.11
Semiconductor Products Inc. ---------'
3-165
MLM124, MLM224, MLM324
·
FIGURE 12 - FUNCTION GENERATOR
Vref = 21 Vee
Vref---U--f
Triangle Wave Output
R2 300 k
Rf
f=R1+Rc if 4CRfR1
R 3 =R2R1__ R2+R1
Square Wave Output
FIGURE 13- MULTIPLE FEEDBACK BANDPASS FILTER
4c
l'
Vee
">-<,__...---<E-e Vo
Co Co= 10 C
Vref = 21 Vee
Given
f 0 = Center Frequency
A(f0 ) =Gain at Center Frequency
Choose Value f 0 , C Then:
a
R3=-tr f 0 C
R3 R1=---
2 A(f0 ) R1 RS
R 2 =.402 R1 - RS
For less than 10% error from op amp
Oo fo<o.1 BW
Where f 0 and BW are expressed in Hz.
If source impedance varies, filter may be preceeded with voltage follower buffer to stabilize filter parameters.
Circuit diagrams utilizing Motorola products are included as a meahs of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is be.lieved to be entirely reliable. However, no responsibility is assumed for inaccuracies·. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
inc~ ®MOTOROLA Senticonductor Products
' 3-166
ORDERING INFORMATION
Device.
MLM158G MLM158U MLM258G MLM258P1 MLM258U MLM358G MLM358P1 MLM358U
Alternate LM158H
LM358H LM358N
Temperature Range
-55"C to + 125°C -55°C to +125°C -25°C to +85°C -25°C to +as0 c ...:.2s°C to +85°C
0°C to +70°C 0°c to +70°C 0°C to +70°C
Package
Metal Can Ceramic DIP
Metal Can Plastic DIP Ceramic DIP Metal Can Plastic DIP Ceramic DIP
Specifications and. Applications Information
DUAL LOW POWER OPERATIONAL AMPLIFIERS
Utilizing the circuit designs perfected for recently introduced Ouad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE. 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MCl 558 dual operational amplifier. The'MLM158Series is equivaient to one-half of a MLMl 24.
Th~se amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents ·about one-fifth of those associated with the MCl 741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.
· Short Circuit Protected Outputs · True Differential Input Stage · Single Supply Operation: 3.0 to 32 Volts · Low Input Bias Currents · Internally Compensated · Common Mode Range Extends to Negative Supply
· Single and Split Supply Operations Available · Similar Performance to the Popular MC1558
MAXIMUM RATINGS
Rating
Power Supply Voltages 1 Single Supply Split Supplies
Input Differential Voltage Range (1)
Input Common Mode Voltage Range (2)
Input Forward. Current (V1 <-0.3 Vl
Junction Temperature Ceramic and Metal Packages Plastic Package
Storage Temperature Range Ceramic and Metal Packages Plastic Package
Operating Ambient Temperature Range MLM158 MLM258 MLM358
Symbol
Vee Vee Vee VIDR V1cR l1F TJ
Tstg
TA
Value
32 +16 -16 ±32
-0.3 to 32
50
175 150
-65 to +150 -55 to +125
-55 to +125 -25 to +85
0 to +70
Unit Vdc
Vdc Vdc mA oc
oc
oc
(1) Split Power Supplies. (2) For Supply· Voltages less than 32 V, the absolute maximum input voltage is equal to
the supply voltage.
3-167
MLM158 MLM258 MLM358
DUAL DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Vee
vEE/Gnd P1 SUFFIX PLASTIC PACKAGE CASE 626 (MLM258,MLM358 only)
U SUFFIX CERAMIC PACKAGE
CASE 693
·
MLM158, MLM258, MLM358
·
ELECTRICAL CHARACTERISTICS (Vee= 5.0V, Vee= Gnd, TA= 25°C unless otherwise noted.I
MLM1li8
MLM258,MLM3&8
Characteristic Input Offset Voltage·
TA= Thigh to Ttow ( 1) Input Offset Current
TA =Thigh to T1ow
Symbol
Min
Typ
Max
Min
Typ
Max
V10
-
2.0
5.0
-
2.0
6.0
-
-
7.0
-
-
7.5
110
-
3.0
30
-
5.0
50
-
-
100
-
-
150
Large Signal Open-Loop Voltage Gain Vo=±10V,RL=2.0kn,Vcc=15V, T.A =Thigh to T1ow
Input Bias Current TA= Thigh to T1ow
Common-Mode Rej,ection Ratio
AvoL
50
100
-
25
-
-
25
100
-
15
-
-
118
-
-45
-150
-
-45
-250
-
-
-300
-
-
-500,
CMRrf
70
85
-
65
70
·-
Rs..; 1okn Power Supply Current (V 0 = 0)
RL = 00 , TA= Thigh to T1ow
ice
-
Power Supply Rejection Ratio
PSRR
65
Average Temperature Coefficient of Input Offset Current Alto/AT
-
0.5
1.2
-
100
-
65
10
-
-
0.5
1.2
70
-
10
-
TA= Thigh to Ttow
Average Temperature Coefficient of Input Offset Voltage AV10/AT
-
7.0
-
-
7.0
-
TA =Thigh to T1ow
Input Commorl-IVl'OcfeVoltage'"""R'ange Vee= 3ov Vee= 30 V, TA= Thigh to T1ow
Amplifier-to-Amplifier Coupling 1.0 kHz .;; .f.;; 20 kHz; Input Referenced
Differential Input Voltage Range
Output Voltage Range RL = 2 kH
V1cR
-
VtoR VoR
0
-
28.5
0
0.
-
28
0
-
28.5
-
28
-
-120
-
-
-120
-
-
-
Vee
-
-.
Vee
0
3.5
-
0
3.5
-
Output Voltage - High Limit Vee= 30 V, RL = 2 kn, TA= Thigh toT1ow Vee= 30 V, RL = 10 kn, TA= Thigh toT1ow
Output Voltage - Low Limit Vee= 5.0 V, RL = 10 kn, TA= ThightoT1ow
VQH Vol
26
-
-
27
28
-
26
-
-
27
28
-
-
5.0
20
-
5.0
20
Output Source Current
Vt0 = +1.0 V, Vee= 15 v
V10 = +1.0 V, Vee= 15 V, TA =Thigh toT1ow
lo+
20
40
-
20
40
-
10
20
-
10
20
-
Output Sink Current
V10 = -1.0 V, Vee= 15 v
Vto = -1.0 V, Vee= 15 V, TA =Thigh to T1ow
V10 = -1.0V, Vo= 200mV
'o-
10
20
-
10
20
-
5.0
8.0
-
5.0
8.0
-
0.012 0.05
-
0.012 0.05
-
( 1) Thigh= 125°C for MLM158, 70°C for MLM358, 85°C for MLM258. Ttow = -55°C for MLM158, 0°C forMLM358, -25°C for MLM258.
Unit mV nA V/mV
nA dB mA dB pA/°C µV/UC v
dB v v v
mV mA
niA
__'>.
SINGLE SUPPLY
3.0 V to V.eef-(-M--a-x-4) 11It~~Vee
1>--f-o
:::
! > - -f-o
"- Vee/Gnd
I
SPLIT SUPPLI ES
Veeo
u
0 v
1::: hJ11.5 v to Vee (Maxl 1.5 v to Vee (Ma~)
Vee
MOTOROLA Semiconductor Producf:s Inc. 3-168
MLM158, MLM2.58, MLM358
(%Shown)
REPRESENTATIVE CIRCUIT SCHEMATIC
Bias Circuitry Common to Both
Amplifiers
Output
R3
012
25
023
011 025
R5 2,-4 k
·
LARGE SIGNAL VOLTAGE FOLLOWER RESPONSE
T I
Vee= 15 Vdc
1---t---t---t---t---1---t----+- R L = 2 kSl -
TJ,..= 25°C
,;
> 0
lL
5.0µs/Div.
CIRCUIT DESCRIPTION
The MLM158 Series is made using two internally com-
pensated, two-stage operational amplifiers. The first stage
of each consists of differential input devices 020 and
018 with input buffer transistors 021 and 017 and
the differenti'aJ to single ended converter 03 and 04.
The first stage performs not only the first stage gain
function but also performs the level shifting and trans-
conductance reduction functions. By reducing the trans-
conductance a smaller compensation capacitor (only 5 pF)
can be employed, thus saving chip ~rea. The transcon-
ductance reduction is accomplished by splitting the col-
lectors of 020 and 018. Another feature of this input
stage is that the input common-mode range can include
the negative supply or ground, in single supply operation,
without saturating either the input devices or the dif-
ferential to single-ended converter. The second stage con-
sists of a standard current source load amplifier stage.
Each amplifier is biased from an internal-voltage regu-
lator which has a low temperature coefficient thus giving
each amplifier good temperature characteristics as well as
excellent power supply_rejection.
·
® MOTOROLA Sen.iconductor Products Inc.--------'
3-169
MLM158, MLM258, MLM358
·
TYPICAL PERFORMANCE CURVES
FIGURE 1 - INPUT VOLTAGE RANGE ±20 ..--.----.---.---.------.---r--r--.----.--. ±18 1---1----1---t--+--+--+--+---+--+----l
±2.0 ±4.0 ±6.0 ±8.0 ±10 ±12 ±14 ±16 ±18 ±20 Vee/VEE, POWER SUPPLY VOLTAGES (VOLTS)
FIGURE 3 - LARGE-SIGNAL FREQUENCY RESPONSE
14
Q.
... 12
~ w
~ 10 ~ ~ 8.0
:<;( §...;. s.o
~ ~ 4.0
a.
0 2.0 >
0 1.0
~
l~
l~lt!
~
~
N
Vee= 15v VEE= Gnd GAIN= -100
R1 = 1 k!! RF= 100 k!!
~ N
N
10
100
1000
I, FREQUENCY (kHz)
FIGURE 2 - OPEN LOOP FREQUENCY
120 ~~~-.,-,.....,...---.c--r..,...,.,...-.,-""T""T"rr-..--...,.FTTc1-J-r-1s...,J..,..,.,
_, ~ 100 l--+-W:1-+N--+t---,-+-t+1--1--11-H+-+-++++--+--+Vf!: ~5~c
~~ 801--+--+-+l+--+-+~-H'..,._f--l~+--+-++++--+--+-tt+-+-+-+ti
~~ ~ ~ '~?w~ 60 t--+--+-+1+--+--+-+-++--+-+-hH'lo~-+Tt-l--r--le-t-1--t-+-t-t-tt
ci:~
~g
40
J". ~
z 201--+--+-+l+--+--+-+++---+--+-H+-+-+++f--lf--l-H~~~-+-+ti
*
~
-20 '--'--L....1..JU....-'--'-'-..U.......J......L.J...U....................................__...........__.__............
1.0
10
100
1.0 k
10 k
100 k 1.0 M
I, FREQUENCY (Hz)
FIGURE 4 - SMALL-SIGNAL VOLTAGE FOLLOWER PULSE RESPONSE (Non-Inverting)
550
500
>_s 450
w
C> <(
400
iput
1
~
.J-'Output
> 350
~
~ 300
0
rI)_ ~-........-...
~ 25 0
vcc= 30v
Vf!·=~5~C-
CL= 50 pF
[..1v1 w...
r
20 0
4-
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
I, TIME (µs)
FIGURE 5- POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE
2.4 ..--.---.--,..--r-.--....---.-...-.....---.-"'Tl--'.r.-...---.
25°c 2.1 t---t--+-+--+-t--+--+-+--+--t- TRAL==~ -t--1
.<s 1.8 l---t---+-+--+-l---+--+-+--+---+-+--+-1---1
~ffi
1.5 t--+--+-+--+---11--+--+-+---+---t-+----+--4~
8>- 1.21I-__J_--!r:-:-::;;l_-l..-..~~~::::±=:t:::i:::r:...-=:]__L.J
11:"': 0.9 t---t---+-+--+-l---+--+-+--+---+-+--+--11---1
a:
~ 0.6 t---+-----1---t--+-t---t--+-+--+---11--+--+-+----l
~ 0.3 t--t---1-+--+-t--t---+-+--+..::.__,1--+--+-~-l
5.0
10
15
20
25
30
35
Vee. POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE
11101---+----4---!---+--+--+---+--+---+----l
....
z w a: a: ::> <.>
Cl) <(
; 1601---t----4---t---+--+--+---+--+---+----l
:!:
~
150,___....____._ ___._ __._ _..._ _..._ _.__ _,__ _.__~
0 2.0 4.0 6.0
10 12 14 16 18 20
Vee.POWER SUPPLY VOLTAGE (VOLTS)
. . __--"'----- ® MOTOROLA Se,.,iconductor Products Inc. ________,
3-170
MLM158, MLM258, MLM358
APPLICATIONS INFORMATION
FIGURE 7 - VOLTAGE REFERENCE Vee
FIGURE 8 - WEIN BRIDGE OSCILLATOR 50 k
10 k R2
10 k R1
R1 Vo=R1+R2
1 Vo =2Vcc
For f 0 =1kHz
A c
R
c
A= 16 kU C = 0.01 µF
·
FIGURE 9- HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER
e1
FIGURE 10- COMPARATOR WITH HYSTERESIS
vl__ffi- R2
Hysteresis
e2 C1
e0 = C (1 + a + bl (e2 - e1)
VoL
VinL: VinH Vref
V;nL = RlR+l R 2 (VoL - Vret> + Vref
~ R 21
V;nH= Al
(VoH - Vret> + Vref
R1 H = R1 + R2 (VoH - VoL>
FIGURE 11 - Bl-QUAD FILTER
A R2
A 100 k
100 k
R1 =OR
R2=~
Tep
R3= TN R2 C1=10 C
2 1
Vref = Vee
@
MOTOROl..A
f 0 =1kHz
_a= 10
Tep= 1
TN= 1 C1
>4r;>-<----1t----e Notch Output
Where
T BP = Center Frequency Gain
TN = Passband Notch Gain
A= 160 kU C= 0.001 µ.F R1;,,, 1.6Mil R2= 1.6Mil R3= 1.6Mil
Setniconduc~or Products Inc. -------~
3-171
MLM158, MLM258, MLM358
·
APPLICATIONS INFORMATION (continued)
, .
Vref = 2 Vee
Vref
FIGURE 12 - FUNCTION GENERATOR
Triangle Wave
R2
Output
Square Wave Output
Rt
f=R1+Rc 4CRtR1
if R 3 =R2R1 R2+R1
FIGURE 13- MULTIPLE FEEDBACK BANDPASS FILTER.
4, t''
Vee
>-~---1E---Vo
Co Co= 10 C
Vref = 21 Vee
Given
f 0 =Center Frequency
A(f0 ) = Gain at Center Frequency
Choose Value f 0 , C Then:
Q
R3=-rr f 0 C
R1 = -R-3 2 A(f0 ) R1 R3
R 2 4Q2R1-R3
For less than 10% erro'r from operational· amplifier
Oo fo<o.1 BW
Where f 0 and BW are expressed in .Hz.
If source impedance varies, filter may be preceeded with voltage follower buffer to stabilize filter parameters.
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can 'le found from the equation:
TJ(max) -TA
PonA) = ROJA(Typ)
Where: PD(TAl = Power Dissipation allowable at a given operating ambient tempe<J"ature. This must be greater than
the sum of the products of the supply voltages and supply currents at the worst case operating condition.
·TJ(max) =Maximum Operating Junction Temperature
as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient
Temperature
.
ReJA(Typ) =Typical Thermal Resistance Junction to
Ambient
Circuit diagrams utilizing Motorola products are included as a means · of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described 'any license under the patent rights of Moto.rola Inc. or others.
®MOTOROLA Semiconductor Products Inc. I 3-172
·ORDERING INFORMATION
Device MLM2902P
Alternate LM2902N
Temperature Range
-40°C to +85°C I
'Package Plastic DIP
MLM2902
Specific~ations a n d Applications Information
QUAD LOW POWER OPERATIONAL AMPLIFIER
The MLM2902 is a low-cost, quad operational amplifier with true differential inputs. This has several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 26 Volts with quiescent currents about one fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.
· Short .Circuit Protected Outputs · True Differential Input Stage · · Single Supply Operation: 3.0 to 26 Volts · Low Input Bias Currents: 500 nA Max · Four Amplifiers Per Package · Internally Compensated · Common Mode Range Extends to Negative Supply
QUAD DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
c:::::i 1 (top view)
P SUFFIX PLASTIC PACKAGE
CASE 646
·
MAXIMUM RATINGS
Rating Power Supply Voltages
Single Supply Split Supplies
Input Differential Voltage Range (1) Input Common Mode Voltage Range (2) Input Forward Current
(V1 < -0.3 V)
Storage Temperature Range !Operating Ambient Temperature Range
Symbol
Value
Vee Vee VEE
V10R V1cR
l1F
32 +13 -13 ±26 -0.3 to 26 50
Tstg TA
-65 to +150 -40 to +85
Unit Vdc
Vdc' Vdc mA oc "C
(H Split Power Supplies. (2) For Supply Voltages less than 32 V, the absolute maximum input voltage is e~ual to
the supply voltage.
PIN CONNECTIONS
Out 1
Inputs 1
Vee
Inputs 2
Out 2
Out 4
Inputs 4
Gnd/VEE
Inputs 3
Out 3
3-173
MLM2902
·
ELECTRICAL CHARACTERISTICS (Vee= 5.0 v, VEE= Gnd, TA= 25°C unless otherwise noted.)
Characteristic Input Offset Voltage Input Offset Current Large Signal Open-Loop Voltage Gain
Vo=±10V,RL=2.0kn Tnput-slas -C-urrent Common-Mode Rejection Ratio Power Supply Current (V 0 = 0)
RL =co Power Supply Rejection Ratio Input Common-Mode Voltage Range Amplifier-to-Amplifier Coupling
1.0 kHz .;; f.;; 20 kHz, Input Referenced
Symbol
Min
V10
-
110
-
AvoL
-
Tis
-
CMRR
-
Ice
-
PSRR
-
V1cR
0
-
-
Typ 2.0 5.0 100
-45 85 0.8
100
-
-120
Outp11t Voltage Range RL=2kn
VoR
0
3.5
Output Source Current V10 = +1.0 V, Vee= 15 v
lo+
20
40
Output Sink Current V1D = -1.0 V
io-
8.0
20
(1) Thigh= +85°c T1ow = -4ooc
Max 10 50
-
-500
-
2.0
-
3.5
-
-
-
-
Unit mV nA V/mV
nA dB mA
dB v dB
v
mA
mA
SINGLE SUPPL V
3.0 V to 32 V
11-~
SPLIT SUPPLIES
-=- 1.5 V to 16 V '
"'=" 1.5 V to 16 V
@ MOTOROLA Semiconductor Products Inc. --------
3-174
MLM2902
TYPICAL PERFORMANCE CURVES
FIGURE 1 - INPUT VOLTAGE RANGE
±20 ...-~~~~~~~~~~~~~~~~~~~
±18 t--~-t--~1----.,1----+~--+~--+~-4-~-+-~-+-~--'
±16 ~
t--~-t--~1----.,1----+~--+~--+~-4-~-+-~_._~__,
~ ±14
_y
~±12
~<(
±10
' ! v Nega~ive
J/"y:Y y
_y_L~
~±8.o
V%
~ ±6.0
~1 · y7
~:::~
"''Positive
±2.0 ±4.0 ±6.0 ±8.0 ±10 ±12 ±14 ±16 ±18 ±20 v cc/VEE, POWER SUPPLy VOLTAG ES (VOLTS)
FIGURE 3- LARGE-SIGNAL FREQUENCY RESPONSE
14
c.. 6. 12 t-· 2:.
w
~ 10 ~
LU
<!) 8.0
<(
~ ~ 6.0
g - 1~ 4.0
~ 2.0
>
0 1.0
~
TIT
~
lrnrkl!
t\
\
Vee= 15 v
VEE= Gnd
k!l GAIN= -100
R1 = 1
RF= lOOkU
K
~·1)_
~
10
100
1000
I, FREQUENCY (kHz)
FIGURE 2 - OPEN LOOP FREQUENCY
-20 .__.__._._....._~...............____.____.__.....__.._._.......,__.__..............__.__............
1.0
10
100
1.0k
10k
100 k 1.0M
I, FREQUENCY (Hz)
FIGURE 4- SMALL-SIGNAL VOLTAGE FOLLOWER PULSE RESPONSE (Non-Inverting)
55 0
50 0 I
~ 450
UJ <!)
1nput 1
1
<( 400
~
0
/Output
> 35 0
I-
g ~ 30 0
lL b......1
v "V"
!] 250
Vee= 30 v
VEE=Gnd _ TA= 25°C CL= 50 pF
JlJ...
~v
~
20 0 ~ 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
t, TIME {µs)
FIGURE 5 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE
FIGURE 6- INPUT BIAS CURRENT versus SUPPLY VOLTAGE
2.4
2.1
-'
s<( 1.8
I-
I 1.5
~ 1.2
~
·~
0.9
~ 0.6
c3 1'~
0.3
0 0
-
5.0
10
15
20
25
30
35
Vee. POWER SUPPLY VOLTAGE (VOLTS)
1110
I-
i
-
en
<(
; 160
~
:#
150 0
2.0 4.0 6.0
10 12 14 16
Vee. POWER SUPPLY VOLTAGE (VOLTS)
18 20
@ MOTOROLA Se'"iconductor Products Inc. ________.
·
3-175
MLM2902
·
APPLICATIONS INFORMATION
FIGURE 7 - VOLTAGE REFERENCE
Vee
FIGURE 8 - WEIN BRIDGE OSCILLATOR
50 k
10k R2
Vo
10k
10 k R1
V
0
-AT+R'1R2
1 Vo ·-Vee
' 2
Vraf =~Vee
R
For f 0 =1kHz R = 16 k!l
C = 0,01 µF
FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER
·1
!c R
R
FIGURE 10- COMPARATOR WITH HYSTERESIS
R2
Hysteresis
a R1 R1
·2
R
a0 = C ( 1 + a + b) (a2 - a1)
VoHl_ffi--H
Vo
.
:
VoL
I I I
V;nL : V;nH
Vraf
VinL = R1R+1R'2 (VoL - Vrafl + Vraf
1 V;nH= R 1: R2 (VoH - Vrafl + Vref
H = R1R+1R2 (VoH - VoL>
FIGURE 11 - Bl-QUAD FILTER
R
V;n C1
----i't---_.,,,,,.,,.,~-o-t
R
100 k
R1 =OR
R1 R2=-
T9p
Vref = 21 Vee
Vraf R2
Bandpass Output R1
Vraf
R3 =TN R~
C1=10C
f 0 = 1 kHz
Q= 10
Tep= 1
TN= 1
C1
~-o--e---...,,~Notch Output
R = 160 k!l
T BP = Canter Frequency Gain TN = Passband Notch G.aln
C = 0.001 l'F R1=1.6 M!l R2= 1.6M!l R3·= 1.6M!l
@ MOTOROLA Serniconduc·or Produc·s Inc. ---------'
3-176
MLM2902
FIGURE 12 - FUNCTION GENERATOR
1
2 Vref_ = Vee
V ref ---u--t
Triangle Wave Output
R2 300 k
Rt
f=R1+Rc if 4CRtR1
R 3 =R2R1___ R2+R1
Square Wave Output
·
FIGURE 13- MULTIPLE FEEDBACK BANDPASS FILTER
4 l'
Vee
v >-<r-.>---iE--e o
Co Co= 10 C
Vref = 21 Vee
Given
f 0 =Center Frequency
A(f0 ) =Gain at Center Frequency
Choose Value f 0 , C Then:
a c R 3 = - -
7T.f0
R3 R1=---
2 A(f0 ) R1 RS
R2 -402R1-R5
For ll!ss than 10% error from op amp
Oo fo<o.1 BW
Where f 0 and BW are expressed in Hz.
If source impedance varies, filter m11y be preceded with voltage follower buffer to stabilize filter parameters.
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applicatiqns; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for .inaccuracies. Furthermore, such information does not co_nvey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc, or others.
@ MOTOROLA Semlconducf:or Producf:s Inc.
3-177
MLM2902
(1/4 Shown)
REPRESENTATIVE CIRCUIT SCHEMATIC
Bias Circuitry Common to Four
Amplifiers
Vee
·
I 1
Vee= 15 Vdc
RL = 2 kfl - t---1
TA= 25°c
~
j_ ~
\
lL
l\
5.0 µs/Div.
CIRCUIT DESCRIPTION
The MLM2902 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices 020 and
VEE (Gnd)
018 with input buffer transistors 021 and 017 and the differential to single ended converter 03 and 04. The first stage performs not only the first stage gain function but also performs the level shifting and trans· conductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the col· lectors of 020 and 018. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.
Each amplifier is biased from an internal-voltage regu· lator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.
THERMAL INFORMATION The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA PD(TA) = ReJA(Typ)
Where: PD(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ReJAITYP) =·Typical Thermal Resistance Junction to Ambient
@ ~-------- MOTOROLA Setniconductor Products Inc.
3-178
·
VOLTAGE REGULATORS
Temperature Range
o to 10°c -55to125°C
Other
Page
LM317 LM323 MC1403,A MC1460,61 MC1463 MC1466 MC1468 MC1469 MC1723C MC3420 MC3422
MLM304 MLM305 MLM309
LM117 LM123 MC1503,A
\
MC1560,61 MC1563 MC1566 MC1568 MC1569 MC1723 MC3520
MLM104 MLM105 MLM109
MC7700C MC7800C MC78LOOC,AC MC78MOOC MC7900C MC79LOOC,AC MLM204 MLM205 MLM209
Three-Terminal Adjustable Positive Regulator ...
4-6
. . Positive Voltage Regulator . . . . . · ~ . . . . .
4-7
Precision Low-Voltage Reference ....
4-9
Positive Voltage Regulator . . . . . . . . . . . .
4-11
Adjustable Negative Regulator. . . . . . , .·..
4-12
Precision, Floating Regulator . . . . · ·
4-28
Dual ± 15-Volt Tracking Regulator ..
4-38
Adjustable Positive Regulator . . . · · . . .
4-44
Adjustable Positive or Negative Regulator ..
4-63
Switchmode Regulator Control Circuit.
4-69
Current Limiter ..............
4-74
Series of Positive Regulators (750 mA).
4-76
Series of Positive Regulators (1.5 A) ..
4-84
Series of Positive Regulators (100 mA). Series of Positive Regulators (500 mA). Series of Negative Regulators (1.5 A). .
4-92
...... 4-99 ...... 4-107
Series of Negative Regulators (100 mA) .
.... Adjustable Negative Regulator
4-116 4-122
Adjustable Positive Regulator ·....
4-124
Positive Voltage Regulator . . . . . . . . . . . . .
4-126
4-2
Fixed Output Voltage Regulators
Low cost, monolithic circuits for positive and/or negative regulation at currents from 100mA to 3 A. These dedicated circuits require no external add-on component,· although an input capacitor should be used if regulator is located an appreciable distance from the power supply filter, and an Ol)tput capacitor could improve transient response. They are ideal for on-card regulation of subsystems, affording possible economic advantages and performance improvement in applications where total system regulation is not required.
Most devices· are available in metal and plastic packages. All employ internal current limiting, thermal shutdown and safe-area compensation - making them essentially blow-out proof. All are designed to operate over a OOC to 1500C junction temperature range, except *TJ= -55°C to+1500C.
FIXED VOLTAGE, 3-TERMINAL REGULATORS FOR POSITIVE O~ NEGATIVE POLARITY POWER SUPPLIES·
Vout Volts
Tol.t Volts
lo
mA
Device Type
Max Positive Output
2
± 0.1
1500
-
3
± 0.15
100
-
3
± 0.3
100
-
!)
±][§_
100-
fl.(C78i;Q_5C
±0.25
MC75L05AC
500
MC78M05C
750
MC770.5C
1500
MC7805C
± 0.4
LM109
LM209
± 0.25
LM309
± 0.3
3000
**LM123*
± 0.2
··LM323
5.2
± 0.26
1500
-
6
± 0.3
500
MC78M06C
750
MC7706C
1500
MC7806C
8
± 0.8
100
MC78L08C
MC78L08AC
± 0.4
500
MC78M08C
750
MC7708C
1500
MC7808C
12
± 1.2
100
MC78L12C
± 0.6
MC78L12AC
500
MC78M12C
750
MC7712C
1500
MC7812C
15
± 1.5
100
MC78L15C
± 0.75
MC78L15AC
500
MC78M15C
750
MC7715C
1500
MC7815C
18'
± 1.8
100
MC78L18C
± 0.9
MC78L1.8AC
500
MC78M18C
750
MC7718C
1500
MC7818C
20
·f'f:ll
50C
750
MC7720C
24
± 2.4
100
MC78L24C
± 1.2
MC78L24AC
500
MC78M24C
750
MC7724C.
1500
MC7824C
*TJ = -55 to +159°C
·*To be introduced tOutput Voltage Tolerance for Worst Case
Device Type
Vin Reg1ine
Negative Output Min/Max mV
MC7902C
MC79L03AC
MC79L03C
MC79L05C
MC79L05AC
-
MC7905C
-
-
-
MC7905.2C -
MC7906C
-
-
-
MC7908C MCTI[L1~ MC79L12AC·
-
MC7912C
, MC79L15C
MC79L15A -
-
MC7915C
MC79L18C
MC79L18AC -
-
MC7918C
-
MC79L24C
MC79L24AC
-
-
MC7924C
5.5/35 4.7/30 4.7/30 6.7/30 7/35
7.5/20 7.2/35 8/35
9.7/30 10/35
13.7/35 14/35
16.7/35 17/35
19.7/35 20/35
22/40 25.7/40 26/40
40 60 80 200 150 100
50 25
105 100 120
200 175 100 160
250
100 240
300
100 300
325
100 360
1Q: 400 350 300 100 480
Resioad !No/AT
mV
mv/°C
120
1.0
72
0.6
72
0.6
60
0.1
100
1.0
Case
11 3'13
29.79 29. 79
79, 313 79, 313 11 313 11, 79
11
105 120
80 160
100 240
150 300
170 360
400 ,200 480
1.0 1.0
0.16 1.0
0.24 1.0
0.3 1.0
0.36 1.0
1.0 0.48 1.2 1.0
11 c.31_3 79 313
..29~13_
11 313 29, 79
79 313 79 313 11 313 29, 79
79 313 79 313 11 313 29, 79
79 313 79 313 11 313 29, 79
79 313 79, 313 11, 313 79, 313
29, 79 29, 79 79 313 79 313 11,313
·
4-3
·
Variable Output Voltage Regulators
The regulators in the following tables can be tailored.for any specific output voltage within the indicated ranges through the use of external resistors. The indicated output current is available directly from the device. Increased output current can usually be obtained through the use ofexternal current - boosting circuits. All have internal provisions for current limiting, or are internally protected against excessive thermal or SOA overloads.
POSITIVE OUTPUT REGULATORS
lo mA
Max
Device Type
s
Vin-
u
Vout
Po
Regulation
F
Differ-
Watts
% Vout ®
F
Vout
Vin
ential
Max
TA= 25°c TC Vout TJ =
I
x
Volts Min Max
Volts Min Max
~~~ Volts
Max
Tc2s0 c
T~ Line Load
Typ %/OC
oc Max
Case
20
MLM306
G
' MLM205
MLM105
4.5
40
8.5
60
3.0
0.4
1.3 0.06 0.1
~
0.68 ~
2.7
0.007
~ 601 ~
160
150 , MC1723 ~ 2.0 ~
37
9.5
40
3.0 0.66
-
0.1
0.3
0.8 2.1 t---2:1---
O.:.QQ..3 0.003
160 I =~:c
~ ~
0.2
1.0
-
0.1
0.002 0.003
175 632
L
-
0.2
0 QQ..2
250 MC1469
G
2.5
32
9
35
3.0
0.68
1.8 ~ 0.13
0.002
150 603
MC11~§_9
37
85
40
2.7
0.015
600 MC1469
A
2.6
32
9.0
35
3.0
3.0
14.0 ~ 0.05
0.002
150 614
MC1569
37
8.5
40
2.7
0.015
1500 LM317°
T
1.2
37
5_.o
40
3.0
lnterniifly
lf.tf7
1.5,
0.5
125 ~
LM317°
K
Limited
11
LMM7°
0.05 1.0
'150
"To be introduced
NEGATIVE OUTPUT REGULATORS
20
250 600
.LM304 LM204 LM104 MC1463 MC1563 M_l.;146_3 MC1463
G
0.035 30
0.015 40
G
3.8
32
3.6
33
R
3_.!l ~4
3,6
37
8.0 ~ 2.0
50
9.0
35
8.5
40
~.Q_
~5
8.5
40
3.0 2.7 ~Q_ 2.7
0.4
1.3
0.1
0;68 r--14-2.7
0.68 1.8 0.03
0.015
2.4-
r 9;1) 0.015
0.05
0.05 0.13 -o:lr5
0.007 0.002
I 18~0 I 603 ~
150 603
-o:ocr2
176 jff4
Switching Regulator
Used as the control circuit in PWM, push-pill/, bridge and series type switchmode supplies. The device includes the reference, oscillator, pulse-width modulator, phase splitter and output sections. Frequency and duty cycle are independently adjustable.
lo ±mA Max
40
Vee
Volts
Min
Max
10
30
fo
kHz
Min
Max
2.0
100
Device Number
MC3420
MC3520
SUFFIX
p L L
TA· oc Oto +70 -55 to +125
Case
648 620 620
4-4
Special Regulators
FLOATING VOLTAGE AND CURRENT REGULATORS. Designed for laboratory type power supplies, these unique regulators can deliver hundreds of volts - limited only by the breakdown voltage of associated, external, series-pass transistors.
s u
F
Vout
lo
F
IVolts
Min
Max
mA Max
Device Type
I
x
1 0
MC1466
L
MC1566
L
Vaux
Volts
l Min
Max
i21
30
20
35
·Dependent on characteristics' of external series-pass elements.
Po
Watts Max
0.75
LiVreflVref
J %
Line
Load
J 0.015 0.015
I 0.004 0.004
LilLllL TCvout
%
%/oc
Max
Typ
0.2
0.01
0.1
0.006
Case 632
DUAL ±15 V TRACKING REGULATORS. Dual polarity regulator designed to provide balanced positive and negative output voltages. Internally, the device is set for ±15 V, but an external adjustment can change both outputs simultaneously, from 8.0 V to 20 V.
Vout
Volts
Min
Max
14.8
15;2
lo mA Max
±100
Vin
Volts Min Max
Device Type
17
30 MC1468
MC1568
s
u
TC
F
F Po
%1°C (T1owto
I
Watts Regline Regload Thigh
TA
x
Max
mV
mV
Typ
oc
Case
G
0.8
10
L
1.0
R
2.4
10
3.0
0 to +75
i--§..QL ~
614
G
0.8
L
1.0
R
2.4
-55 to +125 ~
~
l
614
LOW TEMPERATURE DRIFT, LOW VOLTAGE REFERENCE
Vout Volts
Typ
lo
LiVoutfLiT
mA
ppm/0 c
Max
Typ
Device Type
s
u
Regload
F
Regline · Regline (1.0 mA <
F
(7.0V.;;; (4.5V <;; lo<11mAI
I
V1<;;30V) Vin<;;7.0V mA
TA
x
Max
Max
Max
oc
2.5 ± 25 mV
10
10
MC1403
Pl
6.0
3.0
MC1403A
u
MC1503
u
MC1503A
10
0 to +70
-55to+125
Case
626 693 693 693
·
4-5
LM117 LM317
·
Advance Iriformation
. .
3-TERMINAL
.
ADJUSTABLE OUTPUT VOLTAGE REGULATOR
The LM 117 and LM317 · are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to. 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, therm.al shutdown and safe area compensation, making them essentially blow-out proof.
The LM117/LM317 serve a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM 117/317 can be used as a precision current regulator.
· Output Current in Excess of 1.5 Ampere · Output Adjustable Down to 1.2 V
· Internal Thermal Overload Protection
· Internal Short-Circuit Current Limiting · Output Transistor Safe-area Compensation · Standard T0-220 3-lead Transistor Package
STANDARD APPLICATION
LM317
' VOUt
Adjust
+
+
· = Cin is required if regulator is located an appreciable distance from power
supply filter.
· · = C 0 is not needed for stability, however it does improve transient
response.
This is advance information and specifications·are subject to change without notice.
4-6
3-TERMINAL ADJUSTABLE VOLTAGE REGULATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
K SUFFIX METAL PACKAGE
CASE 11 (T0-3 Type)
(bottom view)
Pins 1 and 2 electrically isolatQd from case. Case Is third electrical connection.
TSUFFIX PLASTIC PACKAGE
T0-220 CASE 313
Pin 1 Pin 2
Pin 3
Adjust vout Vin
1 2 3
Pin 1 Pin 2 Pin 3
Vin Adjust Vout
(Case is output)
(Bottom View)
H SUFFIX METAL PACKAGE
CASE 79 (T0-39)
ORDERING INFORMATION
Device
Temperature Range
Package
LM117H
-55°C to +125°C
Metal Can
LM117K LM317H LM317K LM317T
-55°C to +125°C
o0 c to +10°c o0 c to +10°c
c o0 to +10°c
Metal Power Metal Can Metal Power Plastic Power
Product Preview
3 AMPERE· 5 VOLT POSITIVE VOLTAGE REGULATOR
The LM123/LM323 is a three-terminal positive regulator with afixed 5 Volt output and a load driving capability of 3 Amperes.
These regulators are supplied in a hermetic T0-3 package which possesses high reliability and low thermal resistance. This package can provide up to 30 Watts power dissipation.
The LM123/LM323 employ internal current limiting, thermal shutdown and safe area compensation which make them essentially blow-out proof.
The LM 123 ha!1 a guaranteed operation over the junction temperature range '."""55°c to +15D°C while the LM323 is specified from O°C to +125°C junction temperature.
· Delivers Up to 3Amperes Output Current · No External Component Required
· Internal Thermal Overload Protection · Internal Short·Ci~cuit Current Limiting
· 30 Watts Power Dissipation
LM123 LM323
3 AMPERE · 5 VOLT VOLTAGE REGULATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
K SUfFI~ METAL PACKAGE
CASE 11 (T0-3 TYPE)
(bottom view)
Pins 1 and 2 electrlcallv Isolated from case. Case Is third electrlcal connection.
·
STANDARD APPLICATION
LM123/ LM323
OUTPUT
MAXIMUM RATINGS Rating
Input Voltage Power Dissipation
Thermal Resistance, Junction to Air Storage Temperature Range -Operating Junction Temper11ture Range
LM123 LM323
Symbol Vin
Po
OJA TstJ!.. TJ
Value 20
Internally Limited
35 -65 to+150
-55 to +150 Oto +125
Unit Vdc
°C/W
oc
°C
A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltaQll.
= * Cin (solid tantarum) is required if
regulator is IQcated an appreciable distance
from power supply filter.
* *
=dco0eiss
not needed improve
for stability; however,
transient response.
it If
needed, its· value should be greater than
0.1 µF.
.. Thi.s.IJ advance information 11nd sp11c1f1cat1ons !Ire subject to change without notice. 4-7
ORDERING INFORMATION
DEVICE
LM123K LM323K
TEMPERATURE RANGE
_55oc to+ 125oc
o0 c to +7ooc
PACKAGE
METAL POWER METAL POWER
LM123, LM323
·
ELECTRICAL CHARACTERISTICS (TJ = Tiow to Thigh [see Note 1l unless otherwise specified.)
Characteristic Output Voltage
(Vin= 7.5 V, lout= 0, TJ = 25°C)
LM123
LM323
Symbol Min
Typ
Max .Min
Typ
Max
Unit
Vo
4.7
5.0
5.3
4.8
5.0
5.2
v
Output Voltage
Vo
4.6
-
(7.5 V <Vin< 15 V, 0 <lout< 3.0 A, P < 30 W)
5.4
4.75
-
5.25
v
Line Regulation (3)
(7.5 v <Vin~ 15 V, TJ = 25°c1
Reg in
-
5.0
25
-
5.0
25
mV
Load Regulaton (3) (Vin= 7.5 V, 0 <lout< 3.0 A, TJ = 25°C)
Reg load -
25
100
-
25
100
mV
Quiescent Current (7.5 V <Vin< 15 V, o< lout< 3.0A)
le
-
12
20
-
12
20
mA
Output Noise Voltage (10 Hz< f < 100 kHz, TJ = 25°C)
VN
-
40
-
-
40
-
µVrms
Short Circuit Current Limit (Vin= 15 V, TJ = 25°c1 (Vin= 7.5 V, TJ = 25°c)
1sc
mA
-
3.0
4.5
-
3.0
4.5
-
4.0
5.0
-
4.0
5.0
Long Term Stability
s
-
-
35
-
-
35
mV
Thermal Resistance Junction to Case (2)
RoJc -
2.0
-
-
2.0
-
OC/W
Note 1. Tlow = -55°C for LM123
= o0c for LM323
Thigh= +15o0c for LM123
= +125°c for LM323
Although. power dissipation is internally limited, specifications apply only for P < 30 W.
Note 2. Without a heat sink, the thermal resistance of the T0-3 package is aboJt 350 C/W. With a heat sink, the effective thermal resistance can· only approach the specified values of 2.0° C/W, depending on the efficiency of the heat sink.
Note 3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width< 1.0 rns and a duty cycle < 5%.
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
Where: PD(TA) = Power Dissipation allowable at a given operating ambient temperature.
TJ(max) = Maximum Op_erating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature ROJA (Typ) = Typical Thermal Resistance Junction to Ambient 15 =Total Supply Current
4-8
Product Previe"W
LOW-VOLTAGE REFERENCE
A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with Motorola MC1506, MC1508, and MC3510 D/A converters as well as numerous A/D systems. Low temperature drift is a prime design consideration.
· Nominal Output Voltage= 2.5 V ± 25 mV · Input Voltage Range= 4.5 V to 35 V · Quiescent Current = 1.2 mA typ · Output Current = 10 mA · Temperature Coefficient= 10 ppm/°C typ · Temperature Sensing Diode Available · Guaranteed Temperature Drift Specification · Equivalent to AD580
MC1403,A MC1503,A
PRECISION LOW-VOLTAGE REFERENCE
LASER TRIMMED SILICON MONOLITHIC INTEGRA'TED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 626 (MC1403 only)
·
CERAUMSICUPFAFCIKXAGE ·
.
CASE 693
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.}
Rating
Input Voltage Storage Temperature Junction Temperature
Ceramic Package Plastic Package Operating Ambient Temperature Range MC1503,A MC1403, A
Symbol V1 Tstg TJ
TA
Value 40
-65 to 150
+175 +150
-55 to +125 0 to +70
Unit
v
oc
oc oc
oc Oc
This is advance information and specifications are subject to change without notice.
4-9
ORDERIN~ INFORMATION
Device
MC1503U MC1503AU MC1403U MC1403AU MC1403P1 MC1403AP1
Temperature Range
-55to+125°c -55. to+125°c
0 to +70-o-C
o to +10°c
o to+10°c 0 to+70-o-C
Package
Ceramic DIP Ceramic DIP Plastic DIP Plastic DIP Plastic DIP Plastic DIP
MC1403, A, MC1503, A
ELECTRICAL CHARACTERISTICS IV1=15 V, TA= 25°c.unless otherwise noted~)
Characteristic
Output Voltage llo= OmAl
Temperature Coefficient of Output Voltage MC1503 ' MC1503A MC1403 MC1403A
Output Voltage Change (over specified temperature range) MC1503 MC1503A MC1403 MC1403A
Line Regulation 115v.;;v1.;;40Vl (4.5 V .;; V1 .;; 15 V)
Load Regulation 11.0mA <lo< 11 mA)
Quiescent Current Oo= OmAl
Symbol Vo
Min 2.475
Typ 2.50
!:::.Vo/{). T
-
-
-
-
-
10
-
10
t::.Vo
-
-
-
-
-
-
-
-
Regin
-
1.2
-
0.6
Res1oad
,-
-
11
-
1.2
Max 2.525
55 25 40 25
25 11 7.0 4.4
4.5 3.0 10
1.5
Unit v
ppm/°C
mV
mV mV mA
([!),MOTOROLA Semiconduc'for Produ,c'fs Inc.
4-10
MC1460, MC1461 MC1560, MC1561
POSITtVE VOLTAGE REGULATORS
These devices are not recommended for new design, but Motorola. will continue to supply these devices for existing applications.
For a complete data sheet, mail your request to Motorola Semiconductor
Products, Inc., P.0. Box 20912, Phoenix, Arizona 85036.
·
4-11
·
MC1463 MC1563
Specifications and Applications Information
NEGATIVE VOLTAGE REGULATOR
The MC1563/MC1463 is a "three terminal" negative regulator designed to deliver con· tinuous load current up to 500 mAdc and provide a maximum negative input voltage of -40 Vdc. Output current capability can be increased to greater than 10 Ade through use of one or more external transistors. Specifications and performance of the MC1563/MC1463 Negative Voltage Regulator are nearly identical to the MC1569/MC1469 Positive Voltage Regulator. For systems requiring both a positive and negative power supply, these devices are excellent for use as complementary regulators and offer the advantage of operating with a common input ground. The MC1563R/MC1463R case can be mounted directly to a grounded heat sink· which eliminates the need for an insulator.
· Case is at Ground Potential (R,package)
· Electronic "Shutdown" and Short-Circuit Protection
· Low Output Impedance - 20 Milliohms typical
· High Power Capability - 9.0 Watts
· Excellent Temperature Stability - AVo/AT= t 0.002%/°C typical
· High Ripple Rejection - 0.002% typical
· 500 mA Current Capability
NEGATIVE-POWER-SUPPLY VOLTAGE REGULATOR
SI LICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX
METAL PACKAGE CASE 603
R SUFFIX
METAL PACKAGE CASE 614·
FIGURE 1 -TYPICAL CIRCUIT CONNECTION 'll-3.51 ~Vo ~l-371Vdc,1 ~IL. ~500 mA)
FIGURE 2 - TYPICAL NPN CURRENT BOOST CONNECTION (Vo= 5.2 Vdc, IL= 10 Ade (max] l
O.lµF
c,,
Cc 0.00lµF
MCl563R MC1463A
Vin
_Rst
Select RA to Give Desired Vo: RA~ 12·Vo;-7)k!l
GND
As
1d
Co
AA
10 AL
µF
1N4001 or Equiv
Cc
VO
O.OOlµF
0.02!!
Vin
Rsc 5W
O.lµF
MC1563R MC1463R
GNO
+ Co
'IV
10AmaK
100 Rt µF
Vo zo "' 5.0 milliohms Vo = ·5.2 Vdc
FIGURE 3 -.t.15 V, ±400 mA COMPLEMENTARY TRACKING VOLTAGE REGULATOR
SOOmAmax
-Vo
+15Vdc
2N706 orEq111v
IN4001 or Equiv
l-"<>--~~-+-~~-4~t-~t>--OVO
.,..__
15Vilc
500mAmax
ORDERING INFORMATION
DEVICE
TEMPERATURE RANGE
MC1463G
MC1463R
MC1563G
-55° C to +125° C
MC1563R
-55° C to +125° C
PACKAGE Metal Can Metal Power Metal Can Metal Power
4-12
MC1463, MC1563
MAXIMUM RATINGS (Tc= +25°C unless otherwise noted.)
Rating
Symbol
Value
Input Voltage
Load Current - Peak Current, Pin 2
MC1463 MC1563
V1 -35
-40
G Package R Package
IL
250
600
12
. 10
10
Power Dissipation and Thermal Characteristics
TA= 25°c Derate above TA = 25oc Thermal Resistance, Junction to Air
Tc= 25°c Oerate above Tc = 25°C Thermal Resistance, Junction to Case
Po 1/RfJJA RfJJA
Po 1/RfJJC RBJC
Operating and Storage Junction Temperature TJ, Tstg Range
0.68
2.4
5.44
16
184
62
1.8
9.0
14.4
61
69.4
17
-65 to +150
Unit Vdc
mA mA
Watts
mwt0 c 0 ctw
Watts mW/°C OC/W
oc
·
OPERATING TEMPERATURE RANGE
Operating Ambient Temperature Range MC1463 MC1563
0 to +70 -55 to +125
ELECTRICAL CHARACTERISTICS OL = 100 mAdc, Tc= +25°C, Vin-= 15 V, Vo= 10 v unless otherwise noted.)
Characteristic
Input Voltage
(TA = T1ow (Jl to Thigh ~ IL= 1.0 mA)
Output Voltage Range (IL= 1.0 mA)
Reference Voltage (Pin 1 to Ground)
Minimum lnput"Output Voltage Differential (Ase= 0)
Bias Current (Standby Current)
llL = 1.0mAdc, Ire= 11 -Ill
Output Noise ICn = 0.1 µF, f = 10 Hz to 5..0 MHz)
Temperature Coefficient of Output Voltage
Operating Load Current Range <Ase = 0.3 ohm) R Package <Ase = 2.0 ohms) G Package
Input Regulation (Vin= 1.0 V rms, f = 1.0 kHz)
Fig. Note 4 1,6
Symbol V1
MC1563
Min Typ Max
- -8.5
-40
MC1463
Min Typ Max
-9.0 -
-35
Unit Vdc
4 -
Vo -3.6 -
-37 -3.8 -
-32
Vdc
4 -
Vref -3.4 -3.5 -3.6 -3.2 -3.5 -3.8
Vdc
4
2 lvin·Vol -
1.5
2.7 - 1.5
3.0
Vdc
4
Ire
- 7.0
11 - 7.0
14
mAdc
4 -
VN
- 120
- - 120
- µV(rms)
4
- 3 ll.Vo/ll.T
±o.002 -
- ±0.002 -
%/OC
4 -
ILR 1.0 -
1.0 -
500 1.0 200 1.0 -
mAdc 500 200
4
4
- Regline
- 0.002 O.Q15
0.003 0.030 %/Vo
Load Regulation (TJ =Constant [1.0 mAE;;;IL E;;;2o mAJl !Tc= +25°C [1.0 mA E;;;1L E;;;50 mAJ) R Package G Package
Output Impedance (f = 1.0 kHz)
6
5 Reg road
-
0.4
1.6 -
0.7
2.4
mV
- . 0.005 0.05 - 0.005 0.05
%
-
O.Q1 0.13 - O.o1 0.13
7 -
Zo -
20
--
35
- milliohms
Shutdown Current (V1 = -'35 Vdc)
8 -
lscf -
7.0
15 -
14
50
µAde
<!) T1ow = 0°C for MC1463 = -ss0 c for MC1563
(2) Thigh= +10°c for MC1463 = +12s0 c for MC1563
Heat sink required for Thigh testing of "G" package.
4-13
MC1463, MC1563
·
Note 1.
"Minimum Input Voltage" is the minimum "total instanta· neous input voltage" required to properly bias the internal zener reference diode.
Note 2.
This parameter states that the MC1563/MC1463 will regulate properly with the input-output voltage differential IV1 - Vol as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with 1V1 - Vol as low
as 1.5 Vdc as shown in the typical column.
Note 3.
"Temperature Coefficient of Output Voltage" is defined as:
±(Vo max - Vo min) (100) tJ.Vo/t:J.T = - - - - - - - - - -
!':,TA (Vo @TA= +25°CJ
where 6. TA= +180°C for the MC1563
+75°c for the MC1463
The output-voltage adjusting resistors (RA and Rsl must have matched temperature.characteristics in order 'to maintain a·constant ratio independent of temperature.
Note 4. Input regulation is the percentage change in output voltage per' volt change in the input voltage and is expressed as
Vo Input Ftegulation = - - - 100 (%/Vo_l.
Vo (V1l
where v0 is the change in the output voltage V0 for the input change Vin·
The following example illustrates how to compute maxi- 1 mum output voltage change for the conditions given:
Regin = 0.015%/Vo
= vo 10 Vdc
Vin= 1.0 V(rms)
v _(Re91inel (V1l (Vol
o-
100
(0.0151( 1.0)( 10)
100
= 0.0015 V(rms)
Note 5. Note 6.
Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.
Vol1L=1.0 mAI~ Voh = 50 mAI
Load Regulation=
x 100
Vo11L = 1.0 mAI
Not to exceed maximum package power dissipation.
TEST CIRCUITS (IL"' 100 mAdc, Tc= +25°C unless otherwise noted.)
FIGURE 4 - GENERAL TEST CIRCUIT
FIGURE 5 - LOAD TRANSIENT RESPONSE
Cn 0.1 µF
6.8 k
V1l1 Rsc
RA · 4 .
MC1563
MC1463
___... ,__
~-o-~t--~...._~-t-4Vo
Select RA to give desired Vo: RA~ (2 IVol · 7) kn
FIGURE 6- LOAD REGULATION
0.1 µF
6.8 k lOµF 200
13 k ·
2N3906 or 1E'qu1v 200
200TO PULSE GENERATOR
0.001 µF Vi= ·15Vdc 1.0
Vo= -10Vdc
FIGURE 7 - OUTPUT IMPEDANCE
0.1 µF
MC1563 MC1463
6.8 k
+IL.
+ 10µF
13k
RL
0.1 µF
Vo =-10 Vdc
0.001 µF
V1 =-15Vdc 1.0
FIGURE 8 - SHUTDOWN CURRENT
6.8 k + lOµF
13k.
10
!36 k R~ IVinlk!l for 1 mAdc /
V1 =-35Vdc
4-14
MC1463, MC1563
GENERAL DESIGN INFORMATION
1. Output Voltage, Vo a) Output Voltage is set by resistors RA and Rs (see Fig!Jre 9). Set Rs = 6.8 k oh.ms and determine RA from the graph of Figure 11 or from the equation:
RA~ (2 jVol-71 kn
b) Output voltage can be varied by making RA adjustable as
shown in Figures 9 and 10:
c) Output voltage, Vo. is determined by the ratio of RA and AB therefore optimum temperature performance can be achieved if RA and Rs have the same temperature coefficient.
R8 . d) Vo= Vref (1 +,RA); therefore the tolerance on
output voltage is determined by the tolerance of Vref and RA and Ra,
2. Short-Circuit Current, lsc Short-Circuit Current, lsc is determined by Ase· Ase may be chosen with the aid of Figure 11 when using the typical circuit connection of Figure 9.
3. Compensation, Cc A 0.001 µ.F capacitor (Cc. see Figure 9). will provide adequate compensationin most applications, with or without current boost. Smaller values of Cc will reduce stability and larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of Cc should be close to the MC1563/MC1463 with short lead lengths.
4. Noise Filter Capacitor, Cn A 0.1 µF capacitor, Cn, from Pin 3 to ground will typically reduce the output noise voltage to 120 µV(rms). The value of Cn can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.
5. Output Capacitor, C0 The value of C0 should be at least 10 µ.F in order to provide good stability.
6. Shutdown Control One method of turning "OFF" the regulator is to draw 1 mA from Pin 2 (See Figure 8). This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or de "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed de voltage at Pin 2 will cause· automatic shutdown for high junction temperatures. This will protect the chip, independent of the heat sinking used, the ambient temperature, or-the input or output voltage levels. Standard Logic levels of MRTL, MOTL* or MTTL* can also be used to turn the regulator "ON" or "OFF".
7. Remote Sensing The connection to Pin 8 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure IL) on z0 can.be greatly reduced.
FIGURE 9 - TYPICAL Cl RCUIT CONNECTION
Cn 0.lµF
6.8k Rs CASE/10
Co 10 · µF
MC1563 MC1463
Cc
0.001 µF Rsc.
V1 ......_-'\/Vlw--<l>-<l.......'. -~~~--'i-,-o--..._--.._-R_A_.... . VQ
+Rs Select RA to Give Desired Vo: RA"' (21 Vo 1-71 kll Vo"' -3.5 (l
I
60
FIGURE 10 - RA versus Vo
1 1 (RA "'(2 VO -7) k.Q)
v
y 50 t---IRB = 6.8 kHl--+---+----+---L4----1
40
""
UJ
cz.J
<>::
30
!;;
~ 20
c<c t
y 10
y
[7
/
-5.0 -10
-15
-20
-25
-30 -35
Vo. OUTPUT VOLTAGE (VOLTS)
·
FIGURE 11 - lsc versus Ase
50orr---,-----..-----.....----....----~
i 1 400
TJ = +250 C
:::>
~ 300t--\---+-----+-----l----+------1
g<>::
I-
~ 200t----"t-+-----+----t----+-----l
c:;
~ 0 1001------t---"-...::--+-----1----+------I
~
10
20
30
40
50
Rsc. EXTERNAL CURR'ENHIMITING RESISTOR (OHMS)
4-15
MC1463, MC1563
·
TYPICAL CHARACTERISTICS Unless otherwise noted: Cn= 0·1µF,Cc = 0.00 1µF,Co= lQµF, Tc= +25°C.
V1(nom) = -15 Vdc; VQ(nom) = -10 Vdc, IL.= 100 mAdc.
FIGURE 12 - TEMPERATURE DEPENDENCE OF SHORT-CIRCUIT LOAD CURRENT
FIGURE 13 - FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE
2000
~
1000
i..l
-75 -50 -25
+25 +50 +75 +100 +125 +150 +175
! 500
~ 300 ::e 200
~
1-
12 100
~
0
j 50
30
20 1.0
IL
IZ
~
IL
~ ~
L
H~
IZ
-:.if-
~
10
100
1000
TJ,JUNCTION TEMPERATURE (OC)
f, FREQUENCY (kHz)
FIGURE 14 - DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE
40
35
a
J. 1
1v1 - v 01 = 3.0 TJ = +2Joc
.§. 30 1 - - - - 1 - - - - + - - t - - - - + Ase= 0, IL= 10 mA to 500 mA __,
uUJ
2 25
<(
~
~
20
f = 1.0 kHz
I-
12 15
I-
:::>
0
j
10
5.0
0
0
-10
-20
-30
-40
Vo. OUTPUT VOLTAGE (VOL TS)
50
40
]
UJ
u
2 <(
30
~
~
~ 20
~
0
j 10
FIGURE 15 - OUTPUT IMPEDANCE versus Rsc IL= 50 mA f = 1.0 k H z - - + - - - - t - - - - - - 1 1 - - - - - - 1
3.0
6.0
9.0
12
15
Ase. CURRENT LIMITING RESISTOR (OHMS)
FIGURE 16 - CURRENT LIMITING CHARACTERISTICS
1.03
UJ 1.02
<.:>
<(
~ 1.01
> ~ 1.00 ~ 0 0.99
~:::; o. 98
<(
g::;;;; 0.97
2
~ 0.96
0 0
R~e = 13 oJMs
~
'
r-
--
20
40
60
80 100 120 140 160
IL. LOAO CURRENT (mA)
4-16
MC1463, MC1563
TYPICAL CHARACTERISTICS !continued)
FIGURE 17 - BIAS CURRENT versus INPUT VOLTAGE
6.0
IL= 1.0 mA
__.i--:::::,
1----+T_J_=__-55+0-c-RB = 6.8 kn ~
.~s
I-
~ 5.0
B
~
\
a;
t----+--+---+--TJ =+125DC-+---+---+--1
~
4.0 ,___ __,__ _..___ _...._ _...___ _...._ _..___~-~
0
-5.0 -10 -15
-20 -25
-30
-35 -40
Vin, INPUT VOLTAGE (Vdc)
FIGURE 18 - EFFECTS OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL
w
Cl
~ <n 1.6 +---+---+---+---+---+---+---+---+--_ _____,
>0 -I-' !:; ~
~ ~ 1.4 1--___,f-----i-
~~
::.::.:>. wa: ~
~ 0 1.2 1--~1=-F--=~""""°±=--'F--l---t--"
I
~
lOO
200
300
400
500
IL. LOAD CURRENT (mAdc)
FIGURE 19 - EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION
0.008
":E.
~
; 0.006
0
3
::::> Cl
~ ~ 0.004
I-
r--Q ii:
:!!::
~ ~ 0.002
+ r::::::::bl !
TJ=-55oc>
TJ = +125DC
-I TJ =+25°C
Vo=-lOV0
;O = -3.6V
0
5.0
10
15
20
25
f =irk Hz
J
30
35 40
1v1 - Vol. INPUT-OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)
FIGURE 20 - INPUT TRANSIENT RESPONSE
EW= !E\==li-----+I---+-- =~" ',"'= =- - +- - P-I"·t==~11~
~
~
~ -9.998 1---r--+---+---t---t---t---+---+---+----i
~ -10.ooor--r--r--t----r--r---r--1~c:::~;;::;:f==9
c5 -10.0021---+--+--~--+--+--+---+----+---+----l
>
IL= 50 mA
\;:; -10.0041---t---+----H----t---+---t----i----i---+---t
~ -10.0061---t---+---9---t---t---t----+---+---+----i
0
0 -10.008 .___..___...____...__ _..__-"--_ _,__ _,__ _.__ _.__ _.. >
100 µs/DIV
·
+125
01 +100
<t I-
~ ~ +75
=~ +50
~ +25
0 ~
~ -9J50
<t
~
0
~> -10.000
I-
=>
0 .
-10.250
0
>
FIGURE 21- LOAD TRANSIENT RESPONSE
+105
µ~ +100
t-f'rLH = tPH/L = 500
+95
tPHL = tPLH = 20 ns
_.L._
r-
I
. I
-,...-
+90
+85
-=
-9.998
I'/L
J
-10.000
\\.
-10.002
lOµs/DIV
1.0 ms/DIV
FIGURE 22- DC OPERATING AREA
0.6
JZ:I IJ.
J. ~ ..
0.4
0.3
~ 0.2
2 ~
21 ;[Pic1°AGE
1
.....
.l
J. ...__,
MC1463R-
p MC1563R
t GPrtGr ' '-....i ..
~ 0.1
~ 0.07
.....
::"!.s Bo.o5
J_ J_ J_
0
-----SECONDARY BREAKDOWN LIMITATIONS
<t
± ::: 0.03 ---BONDING WIRE LIMITATIONS
:_.. 'i
1 .=: --:i_-'-THERMAL LIMITATIONS ..L T
0.02
T }:
MC1463G
1 t--Tr25
0.01
1
MCT3G
3.0 4.0 5.0
7.0
10
20
30
40 50
1V1 - Vol. INPUT-OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)
4-17
MC1463, MC1563
OPERATION AND APPLICA~TIONS
This section describes the operation and design of the MC1563 (MC1463) negative voltage regulator and also provides information on useful applications.
a
SUBJECT SEQUENCE INDEX
Specification Pg. No.
Theory of Operation
7
NPN Current Boosting
9
PNP Current Boosting
10
Positive and Negative Power Supplies
11
Shutdown Techniques
11
Voltage Boosting
12
Specification Pg. No.
Remote Sensing
12
An Adjustable Zero-Tempcrature-Coeffident 13
Voltage Source
Thermal Shutdown
13
Thermal Considerations
13
PC Board Layout and Information
15
THEORY OF OPERATION
The usual series voltage regulator shown in Figure 23, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive ' divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels. '
The alternative is to eliminate the resistive divider and
to shift th~ refer~nce voltage instead. To accomplish this,
another amplifier is employed to amplify (or level shift) the reference voltage using an operational atnplifier as shown in Figure 24. The gain-determining resistors may be external, enabling a wide range of outp~t voltages. This
is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier ·are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1563) a wide range of reference voltages can be established.
The error amplifier can now be operated at unity gain to provide excellent' regulation. In fact, this "regulatorwithin-a-regulator" ~oncept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MCI 563 negative volta,ge regulator.
· Series Control Element
Reference Voltage
Vo= Vref
Reference Voltage
FIGURE 23 - Series Voltage Regulator
FIGURE 24 - The "Regulator-Within-A-Regulator" Approach
Circuit diagrams utilizing Motorola products are included as a means of illustr.ating typrcal semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is
believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
(MC1563 - Pg. 7)
4-18
MC1463, MC1563
FIGURE 25 {Recommended External Circuitry is Depicted With Dotted Lines.I
Vref and 'ref Bias
7 Vdc
6
Case/10
--r-~
Co.l:
10 µF·i'
r~ L
·
920
Output t+--t-------o 8
Sense
MC1563 (MC1463) Operation
Figure 25 shows the MC1563 (MC1463) Negative Reg-ulator block diagram, simplified schematic, and complete schematic .. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is de.tailed in the following paragraphs.
Control
The control section involves two basic functions, startup and shutdown_ A start-up function is required since the biasing i~ essentially independent of the unregulated
input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the inp~t voltage line through a resistor (60 kQ) atid permits the regulator to initially achieve the desired bias conditions. This· permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the ;egulator.
(MC1563 - Pg. 8)
4-19
·
MC1463, MC1563
The shutdown control, in effect, consists of a PNP tran· sistor across the reference zener diode. When this transistor is turned "ON", via Pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to Vin/60 kQ or 500 µA for a -30 V input.
Bias A zener diode is the main reference element and forms
the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a .ratio determined by the resistors in the diode string. The result is a reference voltage of approximately -3.S Vdc with a typical temperature coefficient of 0.002%/°C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.
DC Level Shift
The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a · conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (RA and Rs) to set the closed-loop gain 'and to boost the reference voltage to the desired output voltage. A capacitor, Cn, is introduced externally into the level shift network (via Pin 3) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is 0.1 µF and should have a voltage rating in excess of the desired output voltage. Smaller capacitors (0.001 µF ~inimum) may be used but will cause a slight increase in output noise. Larger values of Cn will reduce the noise as well as delay the start-up of the regulator.
Output Regulator
The output of the shift amplifier is fed internally to the noninverting input of the output error amplifier. The
GND
4
Cc 0.001
µF
2N3771
Vo
or Equiv
FIGURE 26 - Typical NPN Current Boost Connection
inverting input to this amplifier is the Output Sense con· nection (Pin 8) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, Rsc, is connected in the emitter of this transistor to sample the full load current. This connection enables a four-diode string to limit the drive. current to the power transistors in a conventional manner. Stability and Compensation
As has been seen, the MC1563 employs two amplifiers, each using negative feedback. This implies the possibility of frequency instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (Pin 7) and Pin 5. The recommended value of 0.001 µF will insure stability and still provide acceptable transient response (see Figure 21). It is also necessary to use an output capacitor, C0 , (typically 10 µF) directly from the output (Pin 6) to ground. When an external transistor is used to boost the current, C0 = 100 µF is recommended (see Figure 26).
NPN CURRENT BOOSTING
For applications requiring more than 500 mA of load current, or for minimizing voltage variation's due to temperature changes in the .IC regulator arising froin changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 26, are recommended. The circuit shown in Figure 26 can supply up to approximately 4.0 amperes (subject to safe area limitations). At higher currents the VsE of the pass transistor may itself exceed the
= threshold of the current limit even for Rsc 0. Figure 2
illustrates the use of an additional external diode from Pin 4 for higher current operation or for pass transistors exhibiting higher VsE's. It will probably be necessary to determine Rsc experimentally for each case where a pass transistor is used because VsE varies from device to device.
The circuit of Figure 26 when set up for a-10 V output
e..
Ccl). E ~
5.0 4.5 4.0 3.5 3.0 2.5
l
l
' ~
2.0 1.5
~
~
1.0
" ! ' - -t - . _
0.5
0 0 0.2 0.4 0.6 0.8 1.0 1.,2 1.4 1.6 1.8 2.0
Rsc· Current Limiting Resistor (Ohms)
FIGURE 27 - ·sc versus R5c (reference Figure 26)
(MC1563 - Pg. 9)
MC1463, MC1563
V11 -9.0 Vdc
0.001 µF
1 .n
Asel
FIGURE 28 - PNP Current Boost Connection
V12 -6.8 Vdc
MJ450
or Equiv ~----------Vo ~-5.2
Vdc
(RA= 13 H2) supply and operating with a -15 V input, with a Rsc of 0.1 Q, will yield a change in output voltage of only 26 mV over a load current range of from I mA to 3.5 A. This corresponds to a de output impedance of only 7.5 milliohms or a percentage load regulation of 0.26% for a full 3.5-ampere load current change. Figure 27 indicates how the short circuit current varies with the value of Rsc for this circuit.
PNP CURRENT BOOSTING
A PNP power transistor can also be used to boost the load current capabilities. To improve the efficiency of the PNP boost configuration, particularly for small output voltages, the circuit of Figure 28, is recommended. An auxiliary -9 volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the IO-ampere regulator of Figure
28 this represents a savings of 22 watts when compared with operating the regulator from the single -9 V supply. It can supply current to I 0 amperes while requiring an input voltage to the collector of the pass transistor of -6.8 volts minimum. The pass transistor is limited to IO amperes by the added short-circuit current network in its emitter (Rsc2) and the IC regulator is limited to 500 mA in the conventional manner (RscJ). The MJ450 exhibits a minimum hFE of 20 at 10 amperes, thus requiring only 500 mA from the MCI 563R. Regulation of this circuit is comparable to that of the NPN boost configuration.
For higher output voltages the additional unregulated power supply is not required. The collector of the PNP boost transistor can tie directly to Pin· 5 and the internal current limit circuit will provide short-circuit protection using Rsc (see Figure 11). Transistor Q2 and Rsc2 will not be required and Pin 2 should be returned to ground.
·
{lo +'.'.:::::400 mA max)
Vo= +5 V
MC1569R MC1469R
Positive Regulator
+Vo= I-Vol~ RA{k.11) +7
2
-=
R9=6.8k
Case
RA= 22 k 9
620
MC1563R
4
MC1463R
________ 7
8
Negative ·Regulator
-20 Vdc -----'\JIA,------------<.>5 -i........_
16-<:r------.----------.....;.V__o---= -15 Vdc
R5 a 1.8
{Io- :::::, 400 mA max)
FIGURE 29-'A.±15 Vdc Complementary Tracking Regulator With Auxiliary +5.0 V Supply
(MC1563 - Pg. 10)
4-21
MC1463, MC1563
Vee +5 Vdc
FIGURE 30 - Saturated Logic Level Shutdown Circuit
MOTLt MTTL
Output 1 k
~
lo
1N4001 or Equiv
toate must be capable of lo> 1 mA (For MOTL MC930/830 add 10 k!l from.+Vce to outP.ut.l
470
2 Met563 Met463
R(20 k)
11 mA
4
POSITIVE AND NEGATIVE POWER SUPPLIES
is not short-circuit protected.) The -15-volt supply varies
If the MC 1563 is driven from a floating source it is possible to use it as a positive regulator by grounding the
less than 0.1 mV over a zero to ..'300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt
negative output terminal. The MCI563 may also be used
supply varies 20 mV over the zero to +300-mAdc load
I
with the MC 1569 to provide completely independent positive and negative power regulators with comparable performance. When used in this manner a silicon diode such as the l N400 l must be connected as a clamp on the output with the cathode to ground and the anode to the
mA current range. The +5-volt supply varies less than 5 mV
for .o,,;;; IL,,;;; 200 with the other two voltages remain-
ing unchanged. See MCI56l. data sheet or MCI569 data sheet for information concerning latch-up when using plus and minus regulations.
negative output voltage. This is to prevent the positive voltage in trye system from forcing the output to a positive
SHUTDOWN TECHNIQUES
value and preventing the MC 1563 from starting up.
Pin 2 of the MC 1563 is provided for the express pur-
Some applications may require complementary tracking
pose of shutting the regulator "OFF". Referring to the
in which both supplies arrive at the voltage level simulta-
schematic, it can be seen that pin 2 goes to the base of a
neously, and variations in the magnitudes of the two volt-
PNP transistor; which, if turned "ON", will deny current
ages track. Figures 3 and 29 illustrate this approach. In
to all the biasing current sources. This action causes the
this application, the MC 1563 is used as the reference regu-
output to go to essentially zero volts and the only current
lator.establishing the negative output voltage. The MCI 569
drawn by the IC regulator will be the small start current
positive regulator is used in a tracking mode by grounding
through the 60 k-ohm start resistor (Vin/60 kQ). This
one side of the differential amplifier (Pin6 _of the MC 1569)
feature provides additional versatility in the applications
and using the other side (Pin 5 of the MCI 569) to sense the voltage de~eloped at the junctiQn of the two 3 k-ohm
of the MCI563. Various sub-systems may be placed in a "standby" mode to conserve power until actually needed.
resistors. This differential amplifier controls the MC 1569
Or the power may be turned "OFF" in response to other
series pass transistor such that the voltage at Pin 5 will be
occurrences such as over-heating, over-voltage,. shorted
zero. When the voltageatpin5equalszero,+1Vol must
output, etc.
equal - !Vol.
As an illustration of the first case, consider a system
For the configuration shown in Figure 29, the level
consisting of both positive-supply logic (MTTL) and
shift amplifier in the MCI 569 is employed to generate an
negative-supply logic-(MECL). The MECL logic may be
auxiliary +5-volt supply, which is boosted to a 2-ampere
used in a high-speed arithmetic processor whose services
capability by QI and Q2. (The +5-volt supply, as shown,
are not continuously required. Substantial power may
FIGURE 31 - MECL Logic Level Shutdown Circuit
MECL Gate
Output
Vee -5.2 Vdc
2N706
or Equiv
2 -0.52 Vdc
1 k
Case/10
MC1563 MC1463
(MC1563 - Pg. 11)
4-22
MC1463, MC1563
0.1
µ.F
2
3
Case/10 6.8 k
4 1 43 k
MC1563
0.001
MC1463
1-fF
8
2k
VI = -35 V --+--'V4Vl.r--+--.<5>-t,___ _ _ ___, 6
GND 68 k 25 k
2k
1N4001 or Equiv , k
20 k
JJ
MJE340 - ioo µ.F
~o_r_E_q_ui_v~- _90 V
FIGURE 32 - Voltage 80051in9 Circuit
thus be conserved if the MECL circuitry remains unpowered except when needed. The negative regulator can be shutdown using any of the standard logic swings. For saturated logic control, Figure 30 shows a circuit that allows the normal positive output swing to cause the regulator to shutdown when the logic output is in the low voltage state. The negative output levels ofa MECL gate can also be used for shutdown control as shown in Figure 31.
VOLTAGE BOOSTING
Some applications may require a high output voltage which may exceed the voltage rating of the MC1563. This . must be solved by assuring that the IC regulator is operated within its limits. Three points in the regulator need to be considered:
1. The input voltage (Pin 4),
2. the output voltage (Pin 6) and,
3. the output sense lead (Pin 8).
A reduced input voltage can be provided by using a separate supply. The output voltage may be zener-level shifted, an<i the sense line can tie to a portion of the output voltage through a resistive divider. The voltage boost circuit of Figure 32 uses this approach to provide a -90 volt supply. This circuit will exhibit regulation of0.001%overa100 mA load current range:
REMOTE SENSING
The MCI 563 offers a remote sensing capability. This is important when the load is remote from the regulator, as the resistances of the interconnecting lines (VEE and GND) are added directly to the output i,mpedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 33 shows how remote sensing is accomplished using both a separate sense line from Pin 8 and a separate ground line from the regulator to the remote load.
·
~
V1 9-
_f 0.001 µ.F
.R
*o~~
6.8 k
02
03
¢ Case/10,
_f'L ~
1
RA
_,4..,_
~
-0
MC1563
9
J'\,
MC1463
7
_,..,_
8
..,,,J"\.
J\,
5
6
FIGURE 33 - Remote Sensing Circuit
(MC1,563 - Pg. 12)
.lL
GN D
* + -10µF
R1,,
.,
~J
"
..-..
MC1463, MC1563
0.1 µ.F
2
3
'10
Re= 6.8 k
GND
·
V1 =-10 Vdc
4 MC1563G MC1463G
8
5
6
FIGURE 34 '-An Adjustable "Zero-TC" Voltage Source
lz = 1 mA (max)
RA Vz = -3.5 (1 + - )
Re
AN ADJUSTABLE ZERO-TEMPERATURE.COEFFICIENT (O-TC) VOLTAGE REFERENCE SOURCE
The MCI 563, when used in conjunction with low-TC resistors, makes an excellent reference-voltage generator. If the -3.5 volt reference voltage of the IC regulator is a satisfactory value, then Pins l and 9 can be tied together and no resistors are needed. This will provide a voltage reference having a typical temperature coefficient of 0.002%/0C. By adding two resistors, RA and Rs, any voltage between -3.5 Vdc and -37 Vdc can be obtained with the same low TC (see Figure 34)
THERMAL SHUTDOWN
By setting a fixed voltage at Pin 2, the MC1563 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the base-emitter junction of the shutdown transistor (-1.9 x
10-3v/0 C). By setting -0.61 Vdc externally, at Pin 2, the regulator will shutdown when the chip temperature reaches approximately 140°C. Figure 35 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.
In the case where an external pass transistor is employed; its temperature, rather than that of the IC regulator, re· quires control. A technique similar to the one just dis· cussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 36. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost tran· sistor, QI.
THERMAL CONSIDERATIONS
Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application,
1N3826 or Equiv
270
0.1 µF
-0.61 Vdc -----u2
2k
6.8 k
10 µF
4
5.6 k
MC1563 MC1463 .
1 - - - - ' 5mA
0.001 µF
7
v 5 6 1 -33Vdc 9----<ll>-----~R~s~c---.--~:>--t.___ _ _ _ _j'"~:>----.._-..,---._----._-41Vo
FIGURE 35 - Junction Temperature Limiting Shutdown Circuit
(MC1563 - Pg. 13)
MC1463, MC1563
the designer must use caution not .to exceed the specified maximum junction temperature (+175oq. Exceed.ing this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the de stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Ta.hie of this data sheet, junction temperature can be computed for any given application in the same ma11ner as for a power transistor*. A short-circuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current (500 mA). Care should be taken not to exceed the maximum junction temperature rating during this fault conditi.on and, in addition, the de safe operating area limit (see Figure 22).
Thermal charaeteristics for a voltage regulator are useful in predicting performance since de load and line regulation are affected by changes _in junction temperature. These temperature changes can result from either a change in the ambient temperature, TA, or a change in the power dissipated in the IC regulator. The effects of ambient
*For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Prope'rties of Semiconductors.
temperature change on the de output voltage can be estimated from the "Temperature Coefficient of .Output Voltage" characteristic parameter shown as ±0.002%/°C, typical. Power dissipation is typically changed in the IC regulator by varying the de load current. To estimate the de change in output voltage due to a change in the. de load current, three effects must be considered:
I. junction temperature change due to the change in the power dissipation
2. output voltage decrease due to the finite output impedance of the control amplifier
3. thermal gradient on the IC chip.
A temperature differential does exist across a power IC
chip and can cause a de shift in the output voltage. A "gradient coefficient," GCVQ, can be used to describe this
effect and is typically +0.03%/watt for the MCI 563R. For
an example of the relative magnitudes of these effects,
4
consider the following conditions:
Given: MC1563R with VI= ~10 Vdc Vo=-SVdc
and IL= 100 mA. to 200 mA (AIL= 100 mA)
assume TA = +25°C T0-66 Type Case with heatsink
1N4001 or Equiv
10k
2N2221
or Equiv I
I
4
7
0.1 µF
2
3
Case/10
6.8 k
MC1563 MC1463
RA +
RL
9 '
- 100
µF
8
5 6
2N3771
v, ... L _____ ~--~~""""_....._-¥
or Equiv
0 \L-.-...,~~~~~~~~~~~~~~~~~. . . . .~~._~--4.._.--ev
J--common Heat Sink
FIGURE 36 -Thermal Shutdown When Using External Pass Transistors
(MC1563 - Pg. 14)
4-25
·
MC1463, MC1563
assume Roes = o.2°C/W
and ResA = 2°ctw
o H is desired to find the AV which results from this A IL·
Each of the three previously stated effects on Vo can now be separately considered.
I. 4Vo due to A TJ
A Vo= (Vo) (APo)(AVo/AT) (RoJc+Rocs+ResA) OR
A Vo= (5 V)(SVxO.l A)(±0.002%/0C)(l9.20C/W) t::.Vo~± l.OmW
2. t::. Vo due to z0
jLWQI =(-zo)(IL)
IA Vol= -(2 x io-2)(10-l) = -2 mV
3. AVo due to gradient coefficient, AVo/AG lb. Vol= (AVo/AGXVo)(APo) lb. Vol= (+3x10-4/W)(S volts)(S x io-lw) lb. Vol= +0.8 mV
Therefore the total b. Vo is given by
lb. Vo total I=± 1.0-2.0 +0.8 mV OR
-2.2 mV ~Iva total!~ -0.2 mV
Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.
Typical Printed Circuit Board Layout
(MC1563 - Pg. 15)
4-26
MC1463, MC1563
Cn
HS
Vr
GND
Rsc
J1
Cc
01
2-1/2"
FIGURE 37 - l,ocation of Components
Co R'L
Vo RA
Radj · I
Note 1: When Radj is used it is necessary to remove the copper which shorts out Radj·
Note 2: Extra holes are available in the circuit board to permit two resistors to be paralleled to obtain the· desired value of Ase·
Note 3: If Pin 2 is used to shut down the regulator, remove the copper which!shorts Pin 2 to ground.
Note 4; Remote sensing can be achieved by removing the copper which shorts Pin 8 to Pin 6 and connecting Pin 8 directly to the "minus" load terminal. The circuit board ground should be connected to the unregulated power supply ground at the "plus" load terminal.
Typical Circuit Connection for Output Voltages Between ·3.5 and ·37 Volts
·
r----'-----'1-~~--__.. V ref
RA+ Co
01
4
MC1563R
Cc O.Q01 µF
MC1463R
9
8
- 10 µF Radj
RA.+ Radj Vo~-3.5(1 + - - - - )
Rs
6
V1
Vo
Select RA+ Radj to Give Desired v 0: RA+ Radj ~(21 v 0 1-7) kH with Rs= 6,8 kll
Component RA Rs Radj
Rsc R'L Co Cn Cc J1 Q1 *HS *socket
PC Board
*optional
PARTS LIST
Value
Description
} Select
6.8 k Select
Select Select 10µF
0.1 µF } 0,001 µF
1/4 or 1/2 watt carbon
I RC Model X·201, Mallory Model MTC·1 or equivalent
1/2 watt carbon For minimum current of f mAcic Sprague 1500 Series, Dickson D10C series
or equivalent Ceramic Disc - Centralab DOA 104, or equivalent Spr!lgue TG·P10, or equivalent Jumper
(Not Shown)
MC1563R or MC1463R
Heatsink Thermalloy #6168B or equivalent
Robinson Nugent #0001306 or equivalent Electronic Molding Corp. #6341·210·1,
6348·188·1, 6349·188·1 or equivalent
Circuit DOT, Inc. #PC1113 or equivalent 1155 W. 23rd St. ·Tempe, Arizona 85281
(MC1563 -·Pg. 16)
4-27
·
MCl466L MC1566L
Specifications ap.d Applications· Information
MONOLITHIC VOLTAGE AND CURRENT REGULATOR
This unique "floating" regulator can deliver hundreds of volts limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466/ MC1566 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance.
PRECISION WIDE-RANGE VOLTAGE and
CURRENT REGULATOR
EPITAXIAL PASSIVATED INTEGRATED CIRCUIT
· Voltage/Current Regulation with Automatic Crossover · Excellent Line Voltage Regulation, 0.01% +1.0 mV · Excellent Load Voltage Regulation, 0.01% +1.0 mV · Excellent Current Regulation, 0.1% + 1.0 mA · Short-Circuit Protection · Output Voltage Adjustable to Zero Volts · Internal Reference Voltage · Adjustable Internal Current Source
TYPICAL APPLICATIONS
CERACMAISCEP6A3C2KAGE · - _ - -. T0-116
ORDERING INFORMATION
Device MC1466L MC1566L
Temperature fJange
o0 c to+70° C -ss0 c to + 12s0 c
Package Ceramic DIP Ceramic DIP
FIGURE 1 - O-T0-15 voe, 10-AMPERES REGULATOR
FIGURE 2 - O-T0-40 voe, 0.5-AMPERE REGULATOR
FIGURE 3 - O-T0-250 voe, 0.1-AMPERE REGULATOR
1N4005 OR EQUIV
8.5k
FIGURE 4 - REMOTE PROGRAMMING
4-28
( R· Vp · 20 FOR Vp<20 Vdc, R · 0) 0,02
Pins1,2,3,and411oconnection.
MC1466L, MC1566L
MAXIMUM RATINGS (TA= +25° unless otherwise noted)
Auxiliary Voltage
Rating
Power Dissipation (Package Limitation)
Derate abo.ve TA ,;, +5o0c
Operating Temperature Range
Storage Temperature Range
MC1466 MC1566
MC1466 MC1566
Symbol Vaux
Po 1/eJA
TA
Tstg
Value
30 35 750 6.0
0 to +70 -55 to +125 -65 to +150
Unit Vdc
mW
mwt0 c
vc
Oc
ELECTRICAL CHARACTERISTICS, (TA= +25°C, Vaux= ·+25 Vdc unless othe~ise noted)
Characteristic Definition
2N2222
1,.,
rn lJl vr 13
r ·1 ... ~.g.. -~
MC1466· MC1566
OR EQUIV s
OpF pf
11
+Vin
2N3055 OR EQUIV
Rl ·8,5Sk ·1%
-
±J C0
tOµF
]L -:50
v~'·i
"rtVT 13
MC1466· MC1566
.-'.:.~mt1v
+Vin
"'.P.~· ~4B
J.t
F p
S1 ·
2N3055 OR EQUIV
0 2~.Rl.~12~ -~
89 i j
10
R4
5,0k
8,5Sk· 1% 18k tOk
'lrtf Viov
R2 9.5k±1%
v: C0 ± ] L
~
- l 1,o"iJ: -=so
'::'
2N2222
+Vin
k OpF
~" MC,1466·
LIii - MC1566
F
J>.
C1i1 .:~t·;
It. ·t .·_.,~. U5k·l'O 18k
m
2N30SS OR EQUIV
R, L25
s}f ~~ _
%
c0 J:RL v;4
tOµi
~i
Characteristic
Symbol Min
Auxiliary Voltage (See Notes 1 & 2)
Vaux
(Voltage from pin 14 to pin 7) MC146Q
21
MC1566
20
Auxiliary Current
I aux
MC1466
-
MC1566
-
Internal Reference Voltage
V1R
(Voltage from pin 12 to pin 7) MC1466
17.3
MC1566
17.5
Reference Current (See Note 3)
I ref
MC1466
0.8
MC1566
0.9
Input Current~Pin 8
MC1466
Is
-
MC1566
-
Power Dissipation
Po
MC1466
-
MC1566
-
Input Offset Voltage, Voltage Control
Viov
Amplifier (See Note 4)
MC1466
0
MC1566
3.0
Load Voltage Regulation (See Note 5)
AViov
MC1466
-
MC1566
-
MC1466 AVreflVref -
MC1566
-
Line Voltage Regulation (See Note 6)
AViov
MC1466
-
MC1566
-
MC1466 AVret!Vref -
MC1566
-
Temperature Coefficient of Output Voltage TCvo
(TA= Oto +75°CI
MC1466
-
(TA= -55.to +25°C)
MC1566
-
(TA= +25 to +125°CI
MC1566
-
Typ Max
- 30
-
35
9.0 12 7.0 8.5
18.2 19.7 18.2 19
LO 1.2 1.0 1.1
6.0 12 3.0 6.0
-
360
-
300
15
40
15 25
1.0 0.7
0.015 0.004
3.0 1.0
0.03 O.Q1
1.0 0.7
0.015 0.004
3.0 1.0
0.03 O.Q1
0.01 -
0.006 -
0.004' -
Input Offset Voltage. Current Control
Vioi
Amplifier (See Note 4)
MC1466
0
15 40
(Voltage from pin 10 to pin 11) MC1566
3.0 15 25
Load Current Regulation (See Note 71
MC1466 MC1566
~IL/IL
--
MC1466 MC1566
Al ref
-
-
--
0.2 0.1
--
1.0 1.0
Units Vdc mAdc Vdc mAdc µAde mW mVdc
mV % mV % %/OC
mVdc
% mAdc
-"l"'ins-r a~no connacuon.
4-29
·
·
MC1466L, MC1566L
NOTE 1:
The instantaneous input voltage, Vaux· must not exceed
the maximum' value of 30 volts for the MC1466 or 35
volts for the MC 1566. The instantaneous value of Vaux
must be greater than 20 volts for the MC1566 or 21
·volts for the MC1466 for proper internal regulation.
NOTE 2:
,
The auxiliary supply voltage Vaux. must "float" and be electrically isolated from the unregulated high voltage
supply, Vin·
NOTE 3:
Reference current may be set to any value of current
less than 1.2 mAdc by applying the relationship:
8 55
Iref (mA) = '
·
R1 (kn)
NOTE 4: A built· in offset voltage ( 15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero.
NOTE 5: Load Voltage Regulation is a function of two additive components, AViov and AVref. where AViov is .the change in input offset voltage (measured between 'pins 8 and 9) and AVref is the change in voltage across R'2 (measured between pin 8 and ground). Each component may be measured separately· or the sum may be measured across the load. The measurement procedure for the test circuit shown is:
a. With S.1 open (14 = 0) measure the value of Viov ( 1)
and Vref (1) b. Close S1, adjust R4 so that I4 = 500 µA and note
Viov (2) and Vref (2)·
Then AViov = Yiov (1) - Viov (2)
% Reference Regulation=
[Vref (1) - Vref (2)]
_ AVref
Vref(1)
(100%)- Vref (100%)
Load Voltage Regulation =
AVref (100%) + AViov. Vref
NOTE 6: Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, AViov and AV ref (see note 5). The measurement procedure is:
a. Set the auxiliary voltage, Vaux· to 22 volts for the MC1566 or the MC1466. Read.the value of
Viov (1) and Vref (1)· b. Change the Vaux to 28 voli:s for the MC1566 or
the MC1466 and note the value of Viov (2) and Vref(2l- Then compute Line Voltage Regulation:
AViov = AViov (1) - Viov (2) % Reference Regulation "'
[ Vref ( 1) - Vref (2)] ( lOO%) = AV ref ( lOO"/o)
Vref (1)
Vref 1
Line Voltage Regulation =
AV ref - - (100%) + AViov · Vref NOTE 7: Load Current Regulation is measured by the following procedure:
a. With 52 open, adjust R3 for an initial load current, IL( 1), such that V0 is 8.0 Vdc.
b. With 52 closed, adjust RT for V 0 = 1.0. Vdc and read IL(2)· Then Load Current Regulation=
llL(2) - IL(1)} (lOO%) +I
IL(1)
ref
where lref is 1.0 mAdc;:, Load Current Regulation is
specified in this manner because Iref passes through
the load in a direction opposite that of load current
and does not pass through the current sense re·
sistor, Rs.
·
FIGURE 5
BLOCK DIAGRAM
INTERNAL COMPENSATION
-Vaux .0---"--------<..__l---_::.:.=~=:__--=i::::4;:::+:::._ __:4:::::i
10 CURRENT
SENSE INPUT
12 3.9k
CIRCUIT SCHEMATIC
OUTPUT
INTERNAL
VOLTAGE REGULATOR
REFERENCE CURRENT SOURCE
VOLTAGE CONTROL AMPLIFIER
4-30
CURRENT
OR
CONTROL
AMPLIFIER
OUTPUT AMPLIFIER
MC1466L, MC1566L
FIGURE 6 - TYPICAL CIRCUIT CONNECTION
CR6 1500µF
I-= C4 0.1 µF
MC1466 MC1566
10
12
Rl
18k
CURRENT
R3 LIMIT
CR5
500 ADJUST
Pinsland4noconnection.
NORMAL DESIGN PROCEDURE AND DESIGN CONSIDERATIONS
1. Constant Voltage:
For constant voltage operation, output voltage V0 is given by: Vo= (lrefl (R2I
where R2 is the resistance from pin 8 to ground and Iref is the output current of pin 3. The recommended value of lref·is 1.0 mAdc. Resistor R1 sets the value of Iref:
lref = 8.5 R1
where R1 is the resistance between pins 2 and 12.
2. Constant Current: For constant current operation:
(a) Select Rs for' a 250 mV drop at the maximum desired regulated output current, I max·
(b) Adjust potentiometer R3 to set constant current output at desired value between zero and I max·
3. If Vin is greater than 20 Vdc, CR2, CR3, and CR4 are necessary to protect the MC1466/MC1566during short-circuit or transient conditions.
4. In applications where very low output noise is desired, R2 may be bypassed with C1 (0.1 µF. to 2.0 µFL When R2 is bypassed, CA1 rs necessary for protection during short-circuit conditions.
5. CR5 is recommended to protect the MC1466/MC1566 from simultaneo11s pass transistor failure and output short-circuit.
6. The RC network (10 pF, 240 pF, 1.2 k ohms) is used for
compensation. The values shown are valid for all applications.
However, the 10 pF capacitor may be omitted if fT of 01 and
02 is greater than 0.5 MHz.
·
7. For remote sense applications, the positive voltage sense terminal (pin 9) is connected to the positive load terminal through a separate sense lead; and the negative sense terminal (the gro11nd side of R2) is connected to the negative load terminal through a separate sense lead.
8. C0 may be selected by using the relationship: Co= (1~0 µFl IL(maxl· where IL(max) is the maximum load current m amperes.
9. C2 is necessary for the internal compensation of the MC1466/ MC1566,
10. For optimum regulation, current out of pin 5, 15, should not exceed 0.5 mA(:lc. Therefore select 01 and 02 such that:
'imfiai2x ~ 0.5 mAdc
where: I max= maximum short-circuit load current (mAdc)
p1 = minimum beta of 01
p2 = minimum beta of 02
> Although Pin 5 will source up to 1.5 mAdc, 15 0.5 mAdc
will result in a degradation in regulation.
·
11. CR6 is recommended when Vp)> 150 Vdc and should be rated such that Peak Inverse Voltage ...>V0 .
12. In applications where A2 might be rapidly reduced in value, it is recommended that CA3 be replaced by 02 and R4.
·
This design consideration prevents R2 from bein11 destroyed by excessive disc;harge current from C0 · Components a::z and R4 should be selected ·uch that:
A4= R2 and 10
~Vceo of 02 > v0
4-31
MC1466L, M_C1566L
OPERATION AND APPLICATIONS This section describes the operation and design of the MC I 566/MC 1466 voltage and current regulator and also provides information on useful applications.
SUBJECT SEQUENCE
Theory of Operation Applications Transient Failures Voltage/Current-Mode Indicator
·
THEORY OF OPERATION
The 'schematic of Figure 5 can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CR I and CRS with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance (VBI = Vs2), the output voltage, (V12 _: V7), is at a value that is twice the drop across either of the two diode strings: V12 - V7 = 2 (VCRl + VCR2 +VCR3 + VCR4). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit.
The voltage controlled current source (Figure 8) is a PNP-NPN composite which, 9ue to the high NPN beta,
yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage (Vs2) is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor Rl. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between Vs2 and V12, making the AVsE's very small in percentage. Circuit reference voltage is derived from the product of IR and RR; if IR is set at 1 mA
(RI = 8.5 kn), then RR (in kn) =V0. Other values of
current may be used as long as the following restraints are kept in mind: 1) package dissipation will be increased by about 11 mW/mA and 2) bias current for the voltage control amplifier is 3 µA, temperature dependent, and is extracted from the reference current. The reference current should /
FIGURE 7 - REFERENCE VOLTAGE REGULATOR
14 16 k
.12... T
Diode Vz :=:::g v
F,IGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE R1
Veux Ve 1
1Equivalent Diode Vz~9V
Regulated
Ve2
lVoltage 18 V
18k
Q3 V92
fI IR·
vz - v8 e
--R-1-
8.5. s
~A,
7
4-32
MC1466L, MC1566L
be at least two orders of magnitude above the largest expected bias curreni.
Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high-gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, Ros, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of 1/2 milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without Ros, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as:
(1)
where
0.026 re~-- and
IE
RE= added emitter degenerating resistance.
For IE= 0.5 mA,
= - 1
gm= 1-04-+3-0
I =7.5 mA/volt.
134
(2)
FIGURE 9-VOLTAGE CONTROL AMPLIFIER
12
6
Sk
Preregulated
18 v
1 mA
500
8 Reference Voltage
VR
500
+7.25 v 9
+ Output Sense
FIGURE 10 - CURRENT CONTROL CIRCUIT 12
4.3 k
11
V2 Rs
This level is further boosted by the output stage such that in the constant voltage mode overall transconductance is about 300 mA/volt.
A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin I 0 while the output current is sampled across Rs by pin 11. When IL Rs is 15 mV below the reference value, voltage V1 begins to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of V2/Rs. If V2 is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Sfnce the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" (1%+1 mA, Figure 11). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than YR. Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor.
FIGURE 11 -V1 CURVE FOR O-T0-40V, 0.5·AMPERE REGULATOR
t
en
t- 40
..J
0 ~ 30
w
(.'.)
" 20
t-
..J
0
>
10t-
>
0. 1 0.2 0.3 0.4 0.5 I, CURRENT (AMPERES)
·
4.33
MC1466L, MC1566L
·
Transistor Q9 and five· diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an ''OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional 5tage (Q9) must be included to invert the
logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 mA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source.
Note that the negative (substrate) side of the MC 1566/ MC 1466 is 7 .25 volts lower than the output voltage, and the reference regulator guarantees that the positive side is 11 volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating" above and below V0 . VCE across Q9 is only two or three VBE's depending on the number of transistors used in the series pass configuration.
Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Qt 2 and 013) · have minimum beta's of 20, then the overall regulator transwnductance will be:
g111T = (400) 300 mA/volt = 120 A/volt.
(3)
For a change in current of 500 mA the output voltage will drop only:
0.5
6. V = - = 4.2mV.
(4)
120
FIGURE 12 - MC1566 OUTPUT STAGE
._,. ______ Preregulated ________. 18 v
t From Current
c:~::1 ~~:~~er
Control Amplifier
7.25 v
The analysis thus far does not consider changes in VR due to output current changes. If IL increases by 500 mA the collector current of Q9 decreases by 1.25 mA, causing the collector current of Q5 to increase by 30 µA. Accordingly, IR will be decreased 'by R:::0.30 µA which will drop the output by 0.03%. This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing IR. Note again, however, that the maximum power rating of the package must be kept in mind. For example if IR= 4 mA, power dissipation is
Po=20V(8mA}+(ll Vx3mA)= 193mW. (5)
This indicates that the circuit may be safely operated up to l 18°C using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts,
Po= 35 V (8 mA) + 26 V (3 mA) = 358 mW, (6)
which dictates that the maximum operating temperature must be less than 91°C to keep package dissipation within specified limits.
Line voltage regulation is also a function of the voltage change between pins 8 and 9, and the change of Vref. In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in Vaux· Note that line voltage regulation is not a function of Vin· Note also that the instantaneous value of Vaux must always be between 20 and 35 volts.
Figure 6 shows six external diodes (CR1 to CR6) added for protective purposes. CR1 should be used if the output voltage is less than 20 volts and CR2, CR3 are absent. For V0 higher than 20 volts, CR1 should be discarded in favor of CR2 and CR3. ·Diode CR4 prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of'such a transistor failure mode seems remote, CR4 may be deleted. To prevent instantaneous differential and common-mode breakdown of the current sense amplifier, CR5 must be placed across the curren~ limit resistor Rs.
Load transients occasionally produce a damaging reversal
of current flow from output to input V0 > 1SO volts (which
will destroy the IC). Diode CRfr prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes CRi, CR2, CR3, and CR5 rriay be general purpose silicon units such as 1N4001 or equivalent whereas CR4 and CR6 should have a peak inverse voltage rating equal to Vin or greateJ.
APPUCATIONS
Figure 2 shows a typical O-to-40 volts, 0.5-ampere reg-' ulator with better tqan 0.01% performance, The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the MC1566/ MCI466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 mA.
'
MC1466L, MC1566L
Figure I is a O-to-15 volts, IO-ampere regulator with the pass transistor. configuration necessary to boost the load current to IO amperes. Note that C0 has been increased to 1000 µF following the general rule:
= C0 100 µF/A IL.
The prime advantage of the MCI566/MCI466 is its use as a high voltage regulator, as shown in Figure 3. This O-to-250 volts 0.1-ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output pass transistors.
The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of 100 mA, with a VcE approximately equal to 260 volts. Thus this point falls on the de line of the safe area curve, insuring that the transistor will not enter secondary breakdown.
In this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is sho~t-circuit protected. This is due to the fact that load current is diminished as output voltage drops (VcE increases as V0 drops) as seen in Figure 15. By careful design the load current at a short, Isc can be made low enough such that the combined VcE (Vin) and Isc still falls within the de safe operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compa-
tible with a short-circuit current of 100 mA. Yet current foldback allows us to design for a maximum regulated load current of 500 mA. The pertinent design equations are:
Let R2 (kn)= Vo
a =Q_.25 ( ..!.k_ _ l ]
Vo Isc
Rt {kQ) = _c:._ V0
1 -Cl'.
R _ 0.25 SC - (I - Cl'.) lsc
· en
w ~ 10
FIGURE 13 - SAFE AREA CURVE FOR THE MJ413
~
2
11tfffffi i ~
1z -
~ a:
:::>
(.)
TJ !SOC
1 ..0
1:::~- -
SECONDARY BREAKDOWN THERMAL LIMITATION AT
LIMITATION Tc 25 C
~ ~tRSCEE~~l~~t~~~~~l~~TIO~ I~ I
O::·
~ The Safe Operating Area Curves ind1
0 I-
I- cate le ·-Vee ltmits below which the device will not enter secondary breakdown Col
~ t=: 0.1 f= '.J l= _J
lector .loa.d lines for ~pecif1c circuits must
fall within the applicable Safe Area to ~void causrn~ a catastrophic f~ilure To
0
I- insure operation below the maximum TJ.
(.)
I- power·temperature derat1ng must be
SJ
~observedforbothsteadystateandpulse
power cond1t1ons
~ K de ~
100 µs
~
!\
_l ..1
\.
~i-1.0 ms
~ " ~ ' ~
0.01
l I l I !Lill
-1.
1,0 2.0 4.0 6.0 10 20 40 60 100 200 400 1000
VCE· COLLECTOR·EMITTER VOLTAGE (VOL TS)
·
FIGURE 14 - A 200 V, 0.5-AMPERE REGULATOR WITH CURRENT FOLDBACK
+ 14
5
T"'"' 13
6
25 v
1
-
MC1466 MC1566
7
11 10
~
MJ421 OR EQUIV
1N4005 OR EQUIV
15 k
1 k
R2 200 k
-=-
Rsc 2.5 n11w
1N4001
8.55 k
500
OR EQUIV .--.-1----------------.._________.__..
+
200 k
50µ'1
V 0 = 200 V
lRL
4-35
MC1466L, MC1566L
·
The terms Isc and lk correspond to the short-circuit current and maximum available load current as shown in Figure 15.
FIGURE 15-TYPICAL FOLDBACK PERFORMANCE 250
u
2'O: 200
w
(!)
<I: I- 150
..J
0
>
j 100
0.. I-
:>
i2
~ ~
00 50
>
0 0
rz:L
1sc 200
600
800
'a· OUTPUT CURRENT (mAdc)
Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type Of wiring ·is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops. do not destroy 'the excellent regulation of the MC 1566/ MCI466.
TRANSIENT FAILURES In industrial areas where electrical machinery is used
the normal ac line often contains bursts of voltage running from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditions this energy is dissipated across the internal zener connected be·
tween pins 9 and 7. This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7-volt zener (CRI) between pin 9 and pin 7. To pre· vent this failure mode the use of a shielded power transformer is recommended, as shown in Figure 6. In addition, it is recommended that Cl , C3 and C4 be included to aid in transient repression. These capacitors should have good high frequency characteristics.
If the possibility of transients on the output exists, the addition of a resistor and zener diode between pins 9 and 7 as shown on Figure 17 should be added.
VOLTAGE/CURRENT- MODE INDICATOR There may be times when it is desirable to know when
the MCI566/MC1466 is in the constant current mode or constant voltage mode. A mode _indicator can be easily added to provide this feature. Figure 18 shows how a PNP transistor has replaced a protection doide between pins 8 and 9 of Figure 2. When the MCI566/MC1466 goes from constant voltage mode to constant current mode, V0 will drop below Vg and the PNP transistor will turn on. The 1-mA ·current supplied by pin 8 will now be shunted to base of Q2 thereby turning on the indicator device I1.
FIGURE 16 - REMOTE SENSE
T.,., + 14 13
25 v
l~-7
MC1466 MC1566
8
5
6 240 pF
11
10
MJE340 OR EQUIV
8.55 k
500
All diodes are 1N4001 or equivalent.
+
+
10 µF
Note: All Ground Connections at Load Site.
4-36
MC1466L, MC1566L
r~·~
+ 14
FIGURE 17 - A O-T0-250 VOLT, 0.1-AMPERE REGULATOR MJE340 OR EQUIV
5
13
6
25V
MC1466
l
100_
MC1566
11
10
~
2
All diodes are 1N4001 or equivalent.
8.55 k
18 k
500
250k
V 0 Adjust
+
+ Vo
lRL -=
FIGURE 18 - O-T0--40 Vdc, 0.5-AMPERE REGULATOR WITH MODE INDICATOR
1
25 Vdc
MPS6565 OR EQUIV
10 pF
+50 Vdc
I
1N4001 OR EQUIV
...... ...... ..... + ~~
~~~
-a~~~~~~----';.;:...:.~,._~~~
_ _ ~~--4.._
J 50µF
Vo
t
Ve, (CONTROL VOLTAGE TO SCHMITT TRIGGER)
> ·select Qt such that VcEO V 0 .
·
4.37
·
DUAL±1&VOLTREGULATOR
The MC 1568/MC 1468 is adual polarity tracking regulator designed to provide balanced positive and negative output voltages at currents to 100 mA. Internally, the device is set for± 15-volt outputs but an external adjustment can be used to change both outputs simultaneously from 8.0 to 20 volts. Input voltages up to ± 30 volts can be used and there is provision for adjustable current limiting. The device is available in three package types to accomodate various power requirements.
· Internally set to± 15 V Tracking Outputs · Output Currents to 100 mA · Outputs Balanced to within 1% (MC1568) · Line and Load Regulation of 0.06% · 1% Maximum Output Variation due to Temperature Changes · Standby Current Drain of 3.0 mA · 1 Externally Adjustable Current Limit · Remote Sensing Provisions · Case is at Ground Potential (R suffix package)
MC1468 MC1568
DUAL ±15-VOLT TRACKING REGULATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
(bottom view)
CASE 603C METAL PACKAGE
T0-100 G SUFFIX
vee 4171
eoMPEN (+) 1(3)
CIRCUIT SCHEMATIC
CASE 614 METAL PACKAGE
R SUFFIX
CASE 632 CERAMIC PACKAG,E
T0-116 L SUFFIX
14
1 (top view)
5(81
VOLTAGE
GNO 10(1)
ADJUST
COMPEN( I
9(14) 8(121
Pin numbers adjacent to terminals are for !he G and R suffix packages only. Pin numbers in pa renthesesare for !he L suffix packayeonly
Pin 10 is yrouml lor the G sulhx package only FortheRpackage,thecaseisgrouncl.
4-38
ORDERING INFORMATION
DEVICE MC1468G MC1468L
TEMPERATURE RANGE
c o0 to +70° C c o0 to +70° C
MC1468R
o° C to +70° C
MC1568G
-55° C to +125° C
MC1568L MC1568R
-55° C to +125° C -55° c to +125° C
PACKAGE Metal Can Ceramic DIP Metal Power Metal Can Ceramic DIP Metal Power
MC1468, MC1568 I
MAXIMUM RATINGS !Tc= +25°c unless otherwise noted.)
Rating Input Voltage
Symbol vcc.IVee I
Value 30
Unit Vdc
Peak Load Current
Power Dissipation and Thermal Characteristics TA=+25°C Derate above TA = +25°C Thermal Resistance, Junction to Air Tc= +2s0 c Derate above Tc = +25°C .Thermal Resistance, Junction to Case
Storage Junction Temperature Range
Minimum Short-Circuit Resistance
OPERATING TEMPERATURE RANGE
Ambient Temperature
MC1468 MC1568
lpK
Po 1/0JA
OJA Po 110Jc OJC TJ,Tstg Rsclminl
100
G Package
0.8 6.6 150 2.1 14 70
R Package
2.4 28.5 35 9.0 61 17
L Package
1.0 10 100 2.5 20 50
-65 to +175
4.0
mA
c Watts
mwt0
0 ctw
Watts mW/°C
0 ctw
oc
Ohms
0 to +70 ·55 to +125
ELECTRICAL CHARACTERISTICS (Vee= +20 V, Vee= -20 V, C1=C2=1500pF, C3= C4 = 1.0µF, Ase+;,, Rsc-= 4.0 .n,
IL+= IL-= 0, Tc= +25°c unless otherwise noted.) (See Figure 1.)
Characteristic
Output Voltage
Input Voltage
Input-Output Voltage Differential
Output Voltage Balance Line Regulation Voltage
!Vin= 18 V to 30 VI
(T1ow<Dto Thjg_h~
Load Regulation Voltage (IL = 0 to 50 n'IA, TJ = constant) (TA = Trow to Thighl
Symbol*
MC1568
Min
Typ
Max
MC1468
Min
Typ
Max
Unit
Vo
±14.8 ±15 ±15.2 ±14.5 ±15
±15.5
Vdc
Vin
-
-
±30
-
-
±30
Vdc
IVin·Vol 2.0.
-
-
2.0
-
-
Vdc
Vear
-
±50
±150
-
±50 ±300
mV
Regin
mV
-
-
10
-
-
10
-
-
20
-
-
20
Regl
mV
-
-
-
-
10 30
--
-
-
10 30
Output Voltage Range L Package (See Figure 4.) Rand G Packages (See Figures 2 and 13.)
Ripple Rejection (f = 120 Hz)
Output Voltage "temperature Stability (Trow to Thighl
Short-Circuit Current Limit (Rsc = 10 ohms)
Output Noise Voltage (SW= 100 Hz - 10 kHz) .
Positive Standby Current (Vin= +30V)
Negative Standby Current (Vin =-30 Vl
Long-Term Stability
VoR RR
±8.0
-
±14.5
-
-
75
l·sv0 1
-
o.3
'sc
-
60
VN
-
100
Is+
-19
-
2.4
-
1.0
1No!At
-
0.2
±20
±8.0
-
±20 ±14.5
-
-
-
75
1.0
-
0.3
-
-
60
-
-
100
4.0
-
2.4
3.0
-
1.0
-
-
0.2
Vdc ±20 ±20
-
dB
% 1.0
mA -
µV(RMSl
-
mA 4.0
mA 3.0
-
. %/k Hr
<D o Trow= 0 c for MC1468
= -s5°C for MC1568
® Thigh= +10°c for MC1468
= +125°C for MC1568
·
4-39
MC1468, MC1568
·
TYPICAL APPLICATIONS
FIGURE 1 - BASIC 50-mA REGULATOR
3(5)
vo· INP_ UT(_ +) _ 417) ..___.~-lVCC
+20 v -20 v
I
~Cin
r--"i
-= i .....1.... ...L Cin
INPUT(-)
6 (10)
4.7
Rsc·
2 (4)
SENSE I+) 113) C2
COMPEN 1+)1--u--u--~
+Vo +15V
C3 l.OµF
MC1568 MC1468
1500 pF
10(1) GNOl--0---"..._......--41--- GND
8112) Cl COMPEN 1-)1--0--11---'
SENSE 1-l
1500 pF
7(11) 4.7
C4 1.0µF
-VO -15 v
Cl and C2 should be located as close to the device as possible. A 0.1 µF ceramic capacitor (Cj 11) may be required on the i11put lines if the device is located an appreciable
distance from the rectifier filter capacitors.
C3 and C4 may be increasell to improve load transient responseandtoreducetheoutput noise voltage. At low temperature operation, it may be necessary to bypass C4 with a 0.1 µF ceramic dist capacitor.
FIGURE 2 - VOLTAGE ADJUST AND BALANCE ADJUST CIRCUIT
(14.5 V..,;;; Vout..,;;; 20 V)
Rsc·
+Vo
3(5)
INPUT(+) 4 (7)
vo· Vee
INPUT(-) 5 (8)
VEE vo-
6(10)
2 (4)
9114)
SENSE(+) Vadj COMPEN (+)
MC1568
GNO
MC1468
COMPEN (-) SENSE (-) Baladj
1 (3) 1500 pF
10(1)
8112) 1500 pf
(2) 7(11)
lOOk
Ase-
-Vo
Balance adjust available in MC 1568L, MC 146BL ceramic dual in-line package only.
FIGURE 3 - ±1.5-AMPERE REGULATOR (Short-Circuit Protected, with Proper Heatsinking)
(Metal-Packaged Devices Only, R Suffix)
INPUT I+) 1+20 V to +30 V)
+ 1.0µFJ 41
M."2955
OR EQUIV
Rsc·
+Vo
x - -.........JVvv-.......-~-----<tl--- +15 Vdc
0.33 ll
2.0W
FIGURE 4 -OUTPUT VOLTAGE ADJUSTMENT
FOR s_o v...;;; l±vo I~ 14.5 v
(Ceramic-Packaged Devices Only, L Suffix.)
Rsc·
INPUT(+)
Vo+
-----0--iV~C
COMPEN (+)
~-----<>--1GNO
MC1568L MC146BL
R2 Baladj,__.u-..........- -...
1.0µF~
47
INPUT ( ) (-20 V to -30 V)
.,.____fRs\c/- \llr---------_. -15 Vdc
0.33 !Z
-Vo
2N3055
2.0W
OR EQUIV
-----o---tVEE
INPUT H
vo- SENSE 1-l
R4
15 k.
10 Rsc- 11
'"--"t'V'--------------Vo
The presence of the Baladj. ~in 2, on devices housed in the dual in-line package (L suffix) allows the user to adjust the output voltages down to t8.0 V. The required value of resistor R2 can · calculated 1rom
A
Rl Rint (o+ Vz)
2 0 R;ni (Vo - ,, - v,) -o R1
Where: Rint 0 An Internal Resistor 0 R1 ° 1 kll 0° 0.68V
Vz 0 6.6V
Some common design values are llsted below:
·Vo.Vl R2 14 1.2 k 12 1.8 k 10 3.5 k
.a.a
Tc Vo (%/°C)
0.003 0.022 0.025 0.028
ls+lmAl
10 7.2 5.0 2.6
Circuit diagrams utilizing Motorola products are included as a means of illustrating tvpical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility' is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license.under the patent rights of Motorola Inc. or others.
. 4-40
MC1468, MC1568
TYPICAL CHARACTERISTICS (Vee= +20 V, VEE = -20 V, Vo =± 15 V, TA= +25°e unless otherwise noted.)
FIGURE 5- LOAD REGULATION
~ O!""'lli;:::3::::.::::l:"--r--::;:t E
z 1.0t--+--"'~~d---t---f=-+-=i:::--+--+--l ;0:::
~< 2.0t--+--+--t--""'f-oc:::'""-""'1'~-t--1--:-:-~~-~"'.'."":"'.-i ~ 3.0i---t--+--+---t---+--"'1-.:::--r::.....::t---+--i
(.!)
< ~ 4.0t--+--+-+--1---+---+-~~~'k::::---t-_..;:""I > ~ 5.0
l-
g 6.0i----+---t--,..-t---t---+---+--t---+---+---t
1 ·00~-~--=-20--~-4~0_ __.__ _....60_ _.___8.._o_ __.___1_,oo
IL LOAD CURRENT (mA)
FIGURE 6- REGULATOR DROPOUT VOLTAGE
~ 4.0 ~-....---1--1----....---.-----_,...----
~ ~:~~ ~i·goo::s-+----if---1---+---+---1----1
~ (i) 3.01----i--t+--f1----+----1----1--....._-1--_----f
~ ~
POSITIVE REGULATO~
~
i~~ ---~' ~ o >
I ---~I ----+-
~ 2.0i--1---+-i----::==*-'-"T---iL.-.--+~--+i---=.-l--=t---+---f
::> c:
i..---r- ...
~it ~
"NEGATIVE REGULATOR
:iE Ci 1.0 t---+---+---t--,..-t---+--+---1:---t---+---t
0
>
IL LOAD CURRENT lmA)
·
FIGURE 7 - MAXIMUM CURRENT CAPABILITY
FIGURE 8 -MAXIMUM CURRENT CAPABILITY
~
E 160
~
Vin· Vo ; 3.0 v _ _..____,._..__-'lr---r---t--t---11--1
Vee; !VEE I
Gc: 1201-----+---+----+----+-~.---hc--+---':-~;
0
<
- - - - NO HEATSINK
'.3
- - - INFINITE HEATSINK
~ 801-----+---+----+----+---~S?--""T:+--Ti;
6
I-
'::: 401-----+----+----+----+----t----t-"t"T-ttt
.f
+ -'
-55
--25
+25
+50
+75 +lOO +125
TA, AMBIENT TEMPERATURE (°C)
I V;n - Vp I, INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V)
FIGURE 9 - lsc versus Rsc
100
90 ~
E ao
I-
~ 70
G 60
I-
~ 50
u 40
~ 30
i}5
\ ~ rs: " ~ ~ r--...
TJ ~ 250 C
r--
~ 20
10
0
0
4.0 8.0 12
16
20
24
28
32
Rsc, SHORT·CIRCUIT RESISTOR (OHMS)
FIGURE 10 - CURRENT-LIMITING CHARACTERISTICS 100
80
~ .§
i 60
::> '-'
(.!)
z
40
;:::
:iE ::;
20
r - -~1001MS
~ ~ ~
i----.+..
Ase; 20 OHMS ~r---1~
0
-75
-50
-25
+25 +50 +75 +100 +125
TJ, JUNCTION TEMPERATURE (OC)
4-41
MC1468, MC156S
TYPICAL CHARACTERISTICS (continued) (Vee= +20 V, VEE= -20 V, Vo=±15 V, TA= +25°e unless otherwise noted.)
·
FIGURE 11 - STANDBY CURRENT DRAIN
5.0--1--------...---...--..------.
1-vcc=IVEEI _ _,_~___., __,__ __,_ _--o-~->----<
4.0i-----+---+----+---1------1----+-------t
<
..5
I-
~ 3.0
~POSITIVE STANDBY CURRENT - t - -
L'JZ_
_ .55oc
3
~-"
+25°c--1
I-
~ 2.0
I_7
+1250C
:E 1.0 r---t:=§t§~~~~§~~~*~~+25_o55coc -
I-NEGATIVE
_/9.2'_
+l250C
O STANDBY CURRENT~
16
18
20
22
24
26
28
30
32
±Vin, INPUT VOLTAGE (±V)
FIGURE 13-TEMPERATURE COEFFICIENT OF OUTPUT VOLTAGE
o.06.--1---.-1-....,.1--------....---
o.o51--Rvsccc
= VEE = 4.0 O
= 30 V HMS
_
_
_
,
.
.
.
-
-
-
+
-
-
-
+
-
-
+
-
-
--
-
-
--
0.04 f---+1 ---+---+--+--------1--~1------"
~s ~ 0.031--t---'f--f--t--t--+--+--+1_-._.....,i........:;i
~
~
~ o.021-~+--+--+--+--+--:::_.......::::.-1---1---1---1
~ --~ ~ 0.011---+---+---=.......::::__-+--+--+--'--+---+---+---1
~ f5
~
o....,:::::-..+---+---+---+----1---1---+----+---+---~
~ _
% CHANGE IN Vo
1--- THERMAL SHIFT - CHANGE IN JUNCTION TEMPERATURE -
ll lll ll ll
1§
16
17
18
19
20
±VQ, OUTPUT VOLTAGE (±V)
FIGURE 15 - LINE TRANSIENT RESPONSE
TI I
tNcc = +20 v to +23 v
~osrnJE REGJLATO~
I
~ "-- 6Vin = +20 to +23 V
=10 lsc OHM'S
I
TT T
6VEE = -20 V to -23V
V1
L
._J NEGATIVE REGULATOR---!
TIME, 50µs/OIV
FIGURE 12 - STANDBY CUFIRENT DRAIN 10
9.0
8.0
<
..5
7.0
~ 6.0
0:: 5.0
;;:)
'-'
~ 4.0
~ 3.0
:E
2.0 r---_,_,_
1.0
POSITIVE STANDBY CURREN.J:..-
..J---
" _,_,_ NEGATIVE STANDBY CURRENT
_l ..l J_
0
15
16
17
18
19
20
±VQ, OUTPUT VOLTAGE (±V)
FIGURE 14 - LOAD TRANSIENT RESPONSE
~ " ~ 6IL = 0 - 10 mA
Rsc = 10 OHMS
~
l
l "'T 1
POSITIVE REGULATOR
I/
-~
-- NEGATIVE REGULATOR V'
TIME, 20 µs/DIV
FIGURE 16 - RIPPLE REJECTION
-10
~ -20
!
~ -30 f- Rsc = 10 OHMS
i==
IL= lOmA
~ -40
t:: -50
<(
~ -60
~ -70
0::
!~- -80
-90 ,...--
1---v
-100
100
1.0 k
7
2
10 k
NEGATIVE REGU~OR
L 17"
~ POSITIVE REGULATOR
~ .....;
100 k
1.0M
f, INPUT FREQUENCY (Hz)
4-42
MC1468, MC1568
TYPICAL CHARACTERISTICS (continued) (Vee= +20 V, VEE= -20 V, Vo =±15 V, TA= +2s0 e unless otherwise noted.)
FIGURE 17 - OUTPUT IMPEDANCE 10
l--t--1 Rsc - 4.0 OHMS
;;:; :;;;
l-+-1 IL= 10 mA l--t--1
:i:
0
~ 1.0
z
<(
~
~
I-
~ 0.1
I-
~
.-
i.-1""'
t""
0.01
100
1.0 k
161
~17
. ~
-l-
rz:
5~ ~
71
- - - NEGATIVE REGULATOR
±±fiii± ±fil±H± - - - POSITIVE REGULATOR
-Y±lli ii
i
llUl
lU
l
10 k
100 k
1.0M
I, TEST FREQUENCY (Hz)
·
4-43
·
MC1469 MC1569
Specifications and Applications In:formation
MONOLITHIC VOLTAGE REGULATOR
The MC1569/MC1469 is a positive voltage regulator designed to deliver continuous load current up to 500 mAdc. Output voltage is adjustable from 2.5 Vdc to 37 Vdc. The MC1569 is specified for use within the.military temperature range (-55 to +125°C) and the , MC1469 within the Oto +1ooc temperature range.
. For systems requiring a positive regulated voltage, the MC1569 can be used with performance nearly identical to the MC 1563 negative voltage regulator. Systems requiring both a positive and negative regulated voltage can use the MC1569 and MC1563 as complementary regulators with, a common input ground. · Electronic "Shut-Down" Control
· Excellent Load Regulation (Low Output Impedance - 20 rnilliohms typ)
· High Power ,Capability: up to 17 .5 Watts ·
· Excellent Temperature Stability: ±0.002 %fC typ
· High Ripple Rejection: 0.002 %/V ty_µ
POSITIVE VOLTAGE REGULATOR INTEGRATED 'CIRCUIT
SILICON NONOLITHIC EPITAXIAL PASSIVATED
CASE 603 METAL PACKAGE
G SUFFIX
(Bottom View)
FIGURE 1- ±.15 V, ±.400 mA COMPLEMENTARY TRACKING VOLTAGE REGULATOR
Vin
-----~
+20 Vdc
1.2
500mAmax
t-O--------,,ll'v-.-----+---..---'-4VO
+15Vdc
MC1569R MC1469R (POSITIVE
2N706 OR EQUIV 3k 0.001 µF
+ lOµF
REGULATOR I
820
CASE 614 METAL PACKAGE
R SUFFIX
3k 6.Bk
Vin -20 Vdc _
+
22k
lOµF
MC1563R MC1463R
t-0~~------+~---+--~Vo
-15Vdc 500mAmax
_._Nv-+----:r;___.:_:::'..'.'...'.:.'.~:'.:r
ORDERING INFORMATION
DEVICE TEMPERATURE RANGE
MC1469G
o0 c to +70°C
MC1469R
o0 c to +7o0 c
MC1569G
-55° C to +125° C
MC1569R
-55° C to +125° C
PACKAGE Metal Can , Metal Power Metal Can Metal Power
FIGURE 2 - TYPICAL CIRCUIT CONNECTION 13.5 ~Vo ~37 Vdc, 1 "'L ~500 mA)
FIGURE 3 - TYPICAL NPN CURRENT BOOST CONNECTION IVo = 5.0 Vdc, IL= 10 Ade (maxi I
Rsc
+Vo
MC1569R MC1469R
Co +
Select R1 to Give Oesired Vo
CASE
I O.lµF
lOµF1_-
':' Rl "'(2 Vo -71 kl!
Vo '<35 (1 + } 1! 2
4-44
MC1469, MC1569
MAXIMUM RATINGS (Tc= +25°C unless otherwise noted)
Input Voltage ·
Rating
MC1469 MC1569
Peak Load Current
Current, Pin 2 Current, Pin 9
PoV1.er Dissipation and Thermal Characteristics 'TA= +25°c
Derate above TA = +25°c Thermal Resistance, Junction to Air Tc= +25°C Derate above Tc = +25°C Thermal Resistance, Junction to Case
Operating and Storage Junction ·Temperature
Symbol
Value
Vin 35 40
G Package R Package
lpK
250
600
lpin 2
10
10
lpin9
5.0
5.0
Unit Vdc
mA mA
Po 1/BJA BJA
Po 1/BJC BJC
TJ, Tstg
0.68 5.44 184 1.8 14.4 69.4
3.0 24 41.6 14
140 7.15
-65 to +150
Watts
mW/°C
0 c1w
Watts mW/0 c
0 c1w
OC
OPERATING TEMPERATURE RANGE
Ambient Temperature.
MC1469 MC1569
Oto +70 -55 to +125
ELECTRICAL CHARACTERISTICS
(Tc= +25°C unless otherwise noted) (Load Current= 100 mA for "R" Package device,
th . . t d)
= 10 mA for "G" Package device, un 1ess 0 erwise no e
Characteristic
Input Voltage (TA=' T1ow ())to Thigh (2))
Output Voltage Range ~eference Voltage (Pin 8 to Ground , Vin = 15 V
- Minimum Input-Output Voltage Differential IRsc = 0)
Fig. Note
4
1
Symbol Vin
MC1569 Min ·Typ
8.5
-
4,5
Vo
2.5
-
4
Vref
3.4 3.5
4
2 Vin-Vo -
2.1
Bias Current (Vin= 15 V)
4
(IL= 1.0 mAdc, R2 = 6.8 k ohms, Ira= lin - ILi·
Output Noise
4
(CN = 0.1µF,f:=10 Hz to 5.0 MHz)
'rs
-
4.0
VN
-
0.150
Temperature Coefficient of Output Voltage
4
Operating Load Current.Range
(Rsc.;;;; 0.3 ohms)
R Package
4
(R 5c.;;;; 2.0 ohms)
G Package
Input Regulation
6
Load Regulation
7
(TJ =Constant [1.0 mA::'E:IL~20 mA])
(Tc= +250C [1.0 mA~IL::'f50 mA]) R Package
G Package
3
TCVo
- ±0.002
IL
1.0
-
1.0
-
4
Regin
-
0.002
5 Regroad
-
0.4
-
0.005
-
0.01
Output Impedance
8
6
Zo
ICc = 0.001 µF, Rsc = 1.0 ohm, f = l.O kHz,
Vin= +14 Vdt, Vo= +10 Vdc)
Shutdown Current (Vin = +35 Vdc)
<D Tiow = o0 c for MC1469-
= -55°c for MC1569
9
lsd
@Thigh= +70° Cfor MC1469 = +125°C for MC15G9
-
20
-
70
Max 40
37 3.6 2.7
9.0
-
-
500 200 0.015
1.6 0.05 0.13
-
150
MC1469 Min Typ
9.0
-
Max 3~
Unit Vdc
2.5
-
32
Vdc
3.2 3.5
3.8
Vdc
-
2.1
3.0
Vdc
-
5.0
12 mAdc
-
0.150
- mV(rms)
- ±0.002 -
%/OC
1.0
-
1.0
-
mAdc 500 200
- 0.003 0.030 %/Vo
-
0.7
2.4' mV
- 0.005 0.05
%
-
0.01 0.13
-
35
- milliohms
-
140 500 µAde
·
4-45
IVIC1469, MC1569
·
Note 1.
"Minimum Input Voltage" is the minimum ''.toi:a,! instantaneous input voltage" required to properly bias the internal zener reference di9de. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".
Note 2.
This parameter states that the MC1569/MC1469 will regulate properly with the input-output v61tage differ-
ential (Vin - Vol as low as 2.7 Vdc 11nd 3.c:i Vdc
respectively. Typical units will regulate properly with (Vin - Vol as low-as 2.1 Vdc as shown in the typical column. (See Figure 21.)
Note 3.
"Temperature Coefficient of Output Voltage" is defined as:
±(Vo max - Vo min) (100)
MC1569, TCVo =
(1800C) (Vo@250C) = %/°C
MC1469, TCVo =
±(Vo inax 0
Vd min) (100)
. 0
-
%/0c
(75 C) (Vo@25 C)
The output-voltage adjusting resistors (R 1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.
Note 4. Input regulation is the percentage change in output
voltage per volt change in the input voltage and is expressed as
Vo Input Regulation= Vo lvinl 100 (%/Vol.
where Vo is the change in the output voltage Vo for the input change Vin·
The following example illustrates how to compute maximum output voltage change for the conditions given:
Regin = 0.015 %/Vo v0 = 10Vdc
Vin = 1.0 V (rms)
v0 = (Reginl lvinl (Vol 100
= (0.015) (1.0) (10)
100 = 0.0015 V(rins)
Note 5.
Load regulation is specified for small 1.;;;;; +17°Cl changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.
. (VojlL = 1.0 mAJ-[VollL = 50 mA]
Load Regulation=
Vo llL = 1_0 mA
X 100
TEST CIRCUITS
FIGURE 4- CONNECTION FOR Vo ;;;,.3__5 Vdc
(Rsc=2.7ohmsunklssotherwisenot11d)
1
·Vo
FIGURE 5 - CONNECTION FOR 2.5 Vdc ;;;;.vo .,;;;;3_5 Vdc
(Rsi::"'2.7ohmiunlesso1herwisenoted)
+Vo
10.lµF CN
10orCase Select Al to give desired Vo: Rl .. (2Vo·ilk !!
FIGURE 6- INPUT REGULATION
2.7
Vo= 10Vdc
MC1569 MCl469
IOk 11.0µF
MC1569
IL
MC1469
l t--<:>------~ Co + RL
10.lµFCN
JO or Case
"]
Select R2 togivedesired Vo: R2"' 12 Volk H Select Rl: Rl "'17.0kn- R21 kn
FIGURE 7 - LOAD REGULATION
+15Vdc
1.2 ..
Vo= IOV
MCl569 MCl469
IL
l ,__,.,.__ _ _ ____, Co +
RL
RI
13k
···1
FIGURE 8 - OUTPUT IMPEDANCE
FIGURE 9 -SHUTDOWN CURRENT
+Vin
VO
l.i
1.0mA
L
!
"RJ
RL
lOorCASE
""I
4-46
MC1469, MC1569
GENERAL DESIGN INFORMAttON
1. Output Voltage, Vo al For Vo> 3.5 Vdc - Output voltage is set by resistors R1 and R2 (see Figure 41. Set R2 = 6.8 k ohms and determine R1 from the graph of Figure 10 or from the equation: R1 ~(2 Vo- 7) kr2
b) For 2.5 ~Vo~ 3.5 Vdc - Output voltage is set by resistors R1 and R2 (see Figure 51. Resistors R1 and R2 can be determined from the graph of Figure 11 or from the equations:
R2 ~2 (Vo) k.Q R1 ~ (7 k,n_.:R2) kr2
cl Output voltage, Vo. is determined by the ratio of R1 and R2, therefore optimum temperature performance can be achieved if R1 and R2 have the same temperature coefficient.
di Output voltage can be varied by making R1 adjustable as shown in Figure 43.
e) If Vo= 3.5 Vdc (to supply MRtt:for example), tie pins 6, 8 and 9 together. Rl and R2 are not needed in this case.
2. Short Circuit Current, lsc Short Circuit Current, lsc, is determined by Rsc· Rsc may be chosen with the aid of Figure 12 or the expression:
R _o.6 ohm sc""'r;-
where lsc is measured in amperes. This expression is also valid when current is boosted as shown in Figure 2.
3. Compensation, Cc A 0.001 µF capacitor, Cc, from pin 4 to ground will provide adequate compensation in most applications, with or with' out current boost. Smaller values of Cc will reduce stability and 'larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of Cc should be close to the MC1569/MC1469 with short lead lengths:
4. Noise Filter Capacitor, CN A d.1 µf= capacitor, Cl'J, from pin 7 to ground will typically reduce the output noise voltage to 150 µV (rms). The value of CN can be increased or. decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.
5. Output Cai:)acitor, Co The value of i::o should. be at least 1.0 µF in order to provide good stability. The maximum value recommended is a function of current limit resistor Rsc:
Co max ~ 250 µF
Rsc
whe~e Rsc is measured in ohms. Values of Co greater than this will degrade. the pulse response characteristics and increase the settling time. 6. Shut-Down Control One method of turning "OFF" the regulator is to apply a de voltage at pin 2. This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac ordc "squelch" control for communications circuits, and a dissipation contr'ol to protect the regulator under sustained output shortcircuiting. As the magnitude of the input-threshold voltage at Pin 2 depends .directly upon the junction temperature of the integrated circuit chip, a fixed de voltage at Pin 2 will cause automatic shut-down for high junction temperatures. This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard Logic levels of MRTL, MOTL* or MTTL * can also be used to turn the regulator "ON" or "OFF".
7. Remote Sensina The connection to pin 5 can be made with a separate lead
direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of
the miiiiammeter used to measure I Ll on z0 can be greatly reduced.
60
50
- 40
UJ <.:)
z
<( 30 t;
~ 20
er
10
0 0
FIGURE 10 - R1 versus Vo (Vo ;;;..a.5 Vdc, See Figure 41
5.0
10
15
20
25
Vo. OUTPUT VOLTAGE (VOLTS)
FIGURE 11 - R1 and R2 versus Vo (2.5 ~Vo ~3S Vdc, See Figure 5)
I
30
35
·
~
w
6.0
<z.>
<(
t;
~
~
~5
3~
Vo. OUTPUT VOLTAGE (VOLTS)
5.0 15
FIGURE 12 - lsc versus Ase
:_:gt 700
I-
~
B 500
0
g<(
I-
~ 300
c::;
~
~ 100
~
I'
\
TJ =+25°C
_l
~ ~
f'-....r--
r---
1.0
2.0
3.0
4.0
5.0
6.0
7.0 8.0
Rsc, EXTERNAL CURRENT-LIMITING RESISTOR (OHMS)
4-47
MC1469, MC1569
·
TYPICAL CHARACTERISTICS
Unless otherwise noted: CN = 0.1 µF, Cc= 0.001 µF, Co= '1.0 µF, Tc= +25°C,
Vin nom = +9.0 Vdc; Vo nom = +5.0 Vdc,
1L>200 mA for R package only.
FIGURE 13 - DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE
FIGURE 14 - OUTPUT IMPEDANCE versus Rsc
en ~ 40t----+---+---+--+---+--+---+----i
0
:l ~ 30t----+-R-s-c=-O-+--+---+---t---+-~+---1
z <
~ 201---~====:l=====l=====:t====t====+====+=----l
:!i
1-
5ir 101--~-+---+---+--+---+--+-~-+----i
0
0
......... o...._~ ~~...._~_._---~_._~---~~..._~__.-~
0
5.0
10
15
20
25
30
35
40
VQ, OUTPUT VOLTAGE (VOLTS)
0.005
~0.004 ~
z
0
~ 0.003
:::i
ffi
::: 0.002 ~ == !0.001
1.0
FIGURE 15- FREQUENCY DEPENDENCE OF INPUT REGULATION, Co= 10µF
IL=50~
Co=lOµf H
Cc= 0.001 µF
~
~ cco.m µF
i\ ":::± -~ t ; a ] Cc'_=!_0I.1i_µFi
10
100
1000
f, FREQUENCY (kHz)
__
_ _.....____ _
o...._~_._
....._~_._
~
_._~__.~__.
0
2.0 4.0 6.0
8.0
10
12
14 16
Rsc. EXTERNAL CURRENT LIMITING RESISTOR (OHMS)
FIGURE 16 - FREQUENCY DEPENDENCE OF INPUT REGULATION, Co = 2.0 µF
0.005
. ~·0.004 ~ z
0
~ 0.003
:::i
:i~ffi
:::
0.002
i:----...,.
.....
0.001
0 1.0
IL= 50 mA Co= 2µF H
l ll
~
10
I TI
y Cc= 0.001 µF
I':::::..~ ......
1'
~ Cc~0.01 µF
c = c..J..
0.1.
iµF.l.-+-
100
1000
f, FREQUENCY (kHz)
FIGURE 17 - CURRENT-LIMITING CHARACTERISTICS
1.03
1.021---+--+--+--+-'--+--+--+---+---+---!
w
<!)
~ 1.01
§; 1.00t---+--+---+---+-..--+---+---+---+----+----4
I-
ii: 0.99>---<---<---+---+---+---+----+----+--+-+---I
1:::i
o 0.980---+---+---+--Rsc = 6.8 ohms -+--+---+----f-+---1
ffi
~ 0.97
~ 0.96t---+--+--+--+---+---+--+---+---!1-t---!
-a:
~ o.o~FECL=J : F f I TI ~ 0.95 t---+--+--+--+--+--+--+---+---11-t---! I
0
20
40
60
. 80
100
IL. LOAD CURRENT (mA)
FIGURE 18 - BIAS CURRENT versus INPUT VOLTAGE
<'C .E
I-
~rx: · 4,5 1----+---'"""'+-~-+--+---+-~""""--+----l
B
~ a;
~
5.0
10
15
20
25
30
35
40
Vin. INPUT VOLTAGE (VOLTS)
4-48
MC1469, MC1569
TYPICAL CHARACTERISTICS (continued)
Unless otherwise noted:
CN = 0.1 µF, Cc= 0.001 µF, Co'." 1.0 µF, Tc= +25°C, Vin nom =; +9.0 Vdc, Vo nom = +5.0 Vdc, 1L>200 mA for R package only.
FIGURE 19 - EFFECT OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL
FIGURE 20- EFFECT OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL ON INPUT REGULATION
0.004 .---~----,c---......--~---.---~----,r---i
w 2.4t----~\7""'"'----+----,,.i..~=---~
Cl ci:
::; Ci) 2.31--~,£__--t----~~---+-...,,.,.....=.__J
0 I-
>-' !; ~ 2.2h~---+---:,,,c;.----'1--+--,.,,,.c:_--+----~ a.I~- ~-' 2.11----~'-+---__.,,,,.~-----+----__J
:;:>W
'~~ 2.0
o_ ~ 0 1.9r---~------+------f-----...;
c:
Vo=+lOVdc
~
R~=OOHM
125
250
375
500
IL. LOAD CUR RENT (mAdc)
1 f4 Vo= 1o Vdc-..-.14. -1----+---'--Vo = 3.5 vdc:-1---+---.i
8.0 ..,.
16
24
32
Vin - Vo. INPUT·OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)
FIGURE 21 - INPUT TRANSIENT RESPONSE
~
!i·i±i±ID IJ I--' 20.5
11
- 10.0031--l-_j~---+====+===+====+===+====i===:r:-=..j !; ~ 10.oo2 t---+-----i----11t..,,._-+-c-c_=+0._1µ_F-+--....+----+---l------l ~ ~ 10.0011---+--1-----1P...._ _c_c_=-+o._01_µ_F+--t--+--1---
o Cl
0 ~ 10.000 t--+--1----'ll-c--+---+--+--+--+---+->-'
~ 9.9991---+--l-----l'---+---+---+----+---l---I--
9.998 .___..___._____,_--..1._--1._---1..._---1..._ _.__ _.__
100µs/DIV
FIGURE 22 -TEMPERATURE DEPENDENCE OF SHORT-CIRCUIT LOAD CURRENT
400
.<.s( 350
Iz w
300
a:
a:
:::> <.>
250
0
5 200
I-
~ 150
c::;
~ 100
~ 50 j
0 -75
-;--_
~·
I ~Rsc=2.4n
~ Rsc~J.3n
!---+-
Asel= 10 n
-50 -25
+25 +50 +75 +100 +125
TA, AMBIENT TEMPERATURE (DC)
·
FIGURE 23·- FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, Co .., 10 µF
. . . . . ......... Ci)1000~-~~-..-~----~~......-
...,.....,....,..--...-~-..-....-1
:;;:r
l Co=lOµF
~ 8001---l--+-l-+-l-++++---l--l-+--+++++t---+-+-+-t-+H+l
-
Cc= 0.1 µF
~ w
1....--
~
Cc= o.oi /.tF
~ 600 .__+-t-+-l-++tjiC--+-++t-ttlHtl.........-:-+-.j.--t'-:f::t;~]t+I
~·
Ji
Ll
::!!!
v v !;
400
~-~+-4--il.i'rJ.vl-+++l--+-+++-¥1-"+H---+--Cc+=-IOl-.O~OlhoµHF'l'l 11v
~;? 200 IZll
.YIL
- ....,,..,..,_
1.0
10
100
1000
f, FREQUENCY (kHz)
FIGURE 24 - FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, Co = 2.0 µF
1000 Ci) ~ ~ 800
~ ~ 600
ffi ~ 400
~
~200
....
0 0.5
IT
Co= 2.0 µF
Cc= 0.1 µF
yl.i
]/
_/
~
""'t -t - t . -
Cc= 0.01 µF y y
JI __,... ~
CcTTI?
~
1.0
5.0 10
50 100
500
f, FREQUENCY (kHz)
4-49
MC1469, MC1569
OPERATIONS AND APPLICATIONS
This section describes the operation and design of the MCI569 positive voltage regulator and also provides information on useful applications.
SUBJECT SEQUENCE
'
Theory of Operation NPN Current Boosting PNP Current Boosting Switching Regulator Positive and Negative Power Supplies
Shutdown Techniques Voltage Boosting Remote Sensing An Adjustable-Zero-Temperature-
Coefficient Voltage Source
Thermal Shutdown Thermal Considerations Latch-Up
·
THEORY OF OPERATION
The usual series voltage regulator shown in Figure 25, consists of a reference voltage, an error amplifier, and a series .control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the refer" ence, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from red.uced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.
The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 26. The gain-determining, resistors may be. external, enabling a wide range of output voltages. This
is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the ref~rence amplifier. If the feedback resistors are external (as they are on the MC 1569) a wide range of reference voltages can be established.
The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulatorwithin-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC 1569 positivevoltage regulator.
FIGURE 25-SERIES VOLTAGE REGULATOR
FIGURE 26 - THE "REGULATOR-WITHIN,A-REGULATOR" APPROACH
SERIES CONTROL ELEMENT
Vo
REFERENCE VOLTAGE
Vo= Vref
REFERENCE VOLTAGE
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; 'consequently, complete information sufficient for construction purposes Is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
4-50
MC1469, MC1569
FIGURE 27 (Recommended External Circuitry is Depicted With Dotted Lines.I
M1tw.@W!'.1'>7rit%'.@ltl6~:!t#bif8WS:/:\1-'t: --&~WAJJ3%ihd
C1569/MC1469 BLOCK DIAGRAM
-- ~ - -..,,.,.,., ~ - ' - ! ~
,. ... ,..,
I
I
I
\r: _ /-7'&\
: ::
_.\!- ___ , RL ~ :
I
"-------t--o-4 +· ;:;~cc
1
co ;T: '; :I
! --I~- -~I-- I
-~-
I
.,....___----5J------ ------ .J
OUTPUT SEll)SE
·
1 OUTPUT
COMPENSATION ANO CURRENT LIMIT
OC SHIFT OUTPUT NOISE FILTER OUTPUT REFERENCE DC SHIFT. SENSE
MCI 569 Operation
Figure 27 shows the MC1569 Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.
Control
, The control section involves two basic functions; startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated
·Pm 10 ·!>ground !or Case602A lG suffrJCJ Case1s9round tor Case614 IA sufl111J
input voltage. It makes use of two zener diodes having the same .breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k.Q) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener. enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique .. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator.
4-51
MC1469, MC1569
II
The shutdown control consists of an NPN transistor across the reference zener. diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator dtops to Yin/60 k.Q or 500 µA for a 30 V input.
I
Bias
A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The resuit is a reference voltage 'of approximately 3.5 Vdc with a typical temperature coefficient of 0.002 %/°C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.
DC Level Shift
The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a· conventional operational amplifier. Consequently, negative feedback can be employed using two ·external resistors (R 1 and R2) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, CN, is introduced externally into the level shift network (via pin 7) to stabilize the amplifier and to filter the .zener noise. The recommended value for this capacitor is 0.1 µF and should have a voltage rating in excess of the desired output voltage. Smaller capacitors (0.001 µF minimum) may be used but will cause a slight increase in out}Jut noise. Larger values of CN will reduce the noise as well as delay the start-up of the regulator.
Output Regulator
The output of the level shift amplifier (pin 9) is fed to the noninverting input (pin 6) of the output error amplifier. The inverting input to this amplifier is the Output Sense connection (pjn 5) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, Rsc, is connected in the emitter of this transistor to sample the full load current. By placing an external low-level NPN transistor across Rsc as shown in Figure 27, output current can be limited to a predetermined value:
IL
max~0- .6
' or Rsc
=
-0.6-
Rsc
IL max
where IL max is the maximum load current (amperes) and Rsc is the value of the current limiting resistor (ohms).
Stability and Compensation
As has been seen, the MC1569 employs two amplifiers,. each using negative feedback. This implies the possibility of instability, due to excessive phase shift at high frequen. cies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 4) and ground. The recommended value of0.001 µF will insure stability and still provide acceptable transient response (see Figure 28, A and B). It is also necessary to use- an output capacitor, Co (typically 1.0 µF) from the output, Vo, to ground. When an ·external transistor is used to
boost the current, Co = 1.0 µF is also recommended (see
'Figure 2).
FIGURE 28A - LOAD TRANSIENT RESPONSE
f-
=>
f0 0
>
20µs/DIV
20µs/DIV
FIGURE 288 - i..OAD TRANSIENT RESPONSE
:~:u,·=tt,=1.0ns mr=tt=lOns..:::
~
.
~
25
.
85
:: i :.£:~EJ=E++EfEfit~H. m.>00
lOOµs/DIV
lOOµs/DIV
4-52
MC1469, MC1569
TYPICAL NPN CURRENT BOOST CONNECTIONS
FIGURE 29A - 5 VOLT 5-AMPERE REGULATOR
·v1n1 · 6.0 V
MC1569R MC1469R
~ 10mA
100µ1
·Farripplereductionorincreased efficiencyatlowoutputvoltages, the collector of 01 can tie to a separatelow·voltagesupplyas
shown.
FIGURE 29B - 5-VOLT 5-AMPERE REGULATOR
Vinl
2N3055 OR EQUIV
+5.0 V
VO
boost configuratjon, particularly for small output. voltages, the circuit of Figure 29 is recommended. An auxiliary 9 .5-volt supply is used to power the IC regulator
and the heavy load current is obtained from a second
supply of lower voltage. For the 5.0 ampere regulator of Figure 29 this represents a savings of 17.5 watts when compared with operating the regulator from the single 9.5 V supply. It can supply current to 5.0 amperes while requiring an input voltage to the collector of the pass transistor of 6.0 volts minimum. The ·pass transistor is limited to 5.0 amperes by the added short-circuit current network in its emitter (Rsc), (Figure 29B).
PNP CURRENT BOOSTING
A typical PNP current boost circuit is shown in Figure 30. Voltages from 2.5 Vdc to 37 Vdc and currents of many amperes can be obtained with this circuit.
Since the PNP transistor must not be turned on by the MCl569 bias current (Irn) the resistor Rin must meet the following condition
·
FIGURE 30 - PNP CURRENT BOOST CONNECTION
NPN CURRENT BOOSTING For applications requiring more than 500 mA,of load
current, or for minimizing voltage variations due totemperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 3 or 29 are recommended. The transistor shown in Figure 29A, the 2N3055 can supply currents to 5.0 amperes (subject, of course, to the safe area limitations). To improve the efficiency of the NPN
where VBE is the base-to-emitter voltage required to turn on the PNP pass transistor, (typically 0.6 Vdc for silicon and 0.2 Vdc for germanium).
For germanium pass transistors, a silicon diode may be placed in series with the emitter to provide an additional voltage drop. This allows a larger value of Rin than would be possible if the diode were omitted. The diode will, however, be required to carry the maximum load current.
SELF-OSCILLATING SWITCHING REGULATOR
In all of the current boosting circuits shown thus far it has been assumed that the input-output voltage differential can be minimized to obtain maximum efficiency in both the external pass element as well as the MC1569. This may not be possible in applications where· only a single supply voltage is available and high current levels preclude zener diode pre-regulating approaches. In such applications a switching-mode voltage regulator is highly desirable since the pass device is either.ON or OFF. The theoretical efficiency of an ideal switching regulator is 100%. Realizable efficiencies of 90% are within the realm of possibility thus obviating the need for large power dissipating components. The output voltage will contain a ripple component; however' this can be made quite small if the switching frequency is made relatively high so filtering techniques are effective. Figure 31 shows a functional diagram for a self-oscillating voltage regulator. The comparator-driver will sense the voltage across the inductor, this voltage being related to the load current, IL, by
·MC1469, MC1569
For a first approximation this can be assumed to be a linear relationship.
Initially, Vo will be low and Ql will be ON. The voltage at the non-inverting input will approach t3I Yin. when:
FIGURE 31 - BASIC SELF-OSCILLATING SWITCHING REGULATOR
·
When this output voltage is reac.hed the comparator will switch, turning QI OFF. The diode, CRl, will now become forward biased and will supply a path for the inductor current. This current and the sense voltage will start to de. crease until the output voltage reaches
where the comparator will again switch turning QI ON, and the cycle repeats. Thus the output voltage is approximately Vref plus a ripple component.
The frequency of oscillation can be shown to be
Vo (Vin -Vo) f= L Ve I(max)- Io)
(I)
where
I (max)= The maximum value of inductor current Io= The minimum inductor current.
Normally this frequency will be in the range of approximately 2 kHz to 6 kHz. In this range, inductor values can be small and are compatible with the switching times of the pass transistor and diode. The switching time of the comparator is quite fast since positive feedback aids both turn-on and turn-off .times. The limiting factors are the diode and pass transistor rise and· fall times which should be quite fast or efficiency will suffer.
Figure 32 shows a self oscillating switching regulator which in many respects is similar to the PNP current boost previously discussed. The 6.8 kQ resistor in conjunction with RI sets the reference voltage, Vref· QI and CRI are selected for fast switching times as well as. the necessary power dissipation ratings. Since a linear inductor is assumed, the inductor cannot be allowed to saturate at maximum load currents and should be chosen accordingly. If core saturation does occur, peak transistor and diode currents~ will be large. and power dissipation will increase.
4-54
I max IL(avg)
io
Vo
FIGURE 32 - MC1569 SELF-OSCILLAT·ING SWITCHING REGULATOR
Re CR2, CR3 1N4001 OR EQUIV
MC1469, MC1569
As a design center is required for a practical circuit, assume the followin{requirements:
Vin = +28 Volts Vo =+IO Volts b.Vo=50mV
f~5 kHz
I(max) =1.125 A
Io= 1 A
(2)
Using Equation (1), the inductor value can be found: L _ (28-10) 10 ( l ) 2(1.125-1) 28 5 x w3 ""l7mH.
- For the test circuit, a value of 6 mH was selected. Using for a first approximation
c _(Yin - Vo)(Vo) o- 8L f2 Yin (b.V)
(28.- 10)10
~_95 µF. As shown, a value of 100 µF was selected. Since little current is required at pin 6, Ra can be large. ,Assume Ra = 47 kfl and then use Equation (2) to determine Rb:
.:...3 28 50 x l 0 = 47 kfl Rb
Since the internal impedance pres~nted by pin 9 is on the order of 60.n, a value of Rb = 10.n is adequate.
Diodes CR2, CR3, and Re may be added to prevent
saturation of the error amplifier to increase switching
speed. When the output stage of the error amplifier approaches saturation, CR2 becomes forward biased and
clamps the error amplifier. Resistor Re should be selected
to supply a total of 1 mAdc to CR2 and CR3. To show correlation between the predicted and tested
specifications the following data was obtained:
Vin= +28 (±1 %) Volts
Vo= +10 Volts
b.Vo=60mV
f= 7 kHz
II
which checks quite well with the predicted values. Rb
can be adjusted to minimize the ripple component as well
as to trim the operating frequency. Also this frequency
will change with varying loads as is normal with this type
of circuit. Pin 2 can still be used for shut-down if so
desired. Rsc shoulci be set such that the ratio of load current to base drive cu~rent is 10: l in this case I1 ~ 100 mA
and Rsc = 6.5.n.
,
POSITIVE AND NEGATIVE POWER SUPPLIES
If the MC 1569 is driven from a floating source it is possible to use it as a negative regulator by grounding the positive output terminal. The MC1569 may also be used with the MC1563 to provide completely indepepdent positive a.nd negative voltage regulators with comparable performance.
Some appiications may require complementary tracking in which both supplies arrive at the voltage level simul~ taneously, and variations in the magnitudes 'of the two voltages track. Fig~res 1 a~d 33 iliustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regUiator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC 1569) and using the -other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3-k ohm resistors. This differential amplifier controls the MCI 569 series pl!SS transistor such that the voltage at pin 5 will be ·zero. When the voltage at pin 5 equals zero, +Vo must equal I_:_Vol.
For the configuration shown in Figure 33, the level shift amplifier in the MC1569 is employed to generate an auxiliary +S-volt supply which is boosted to a 2-ampere
capability by 91 and Q2. (The +5-volt supply, as shown,
MC1469, MC1569
·
is not short-circuit protected.) The -15-volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +JS.volt supply tracks this variation. The +IS-volt supply varies 20 mV.over the zero to +300 mAdc load current· range. The +5-volt supply varies less than
v 5 m ·for 0 ~IL~ 200 mA with the other two voltages re-
maining unchanged. See page 19 for additional information.
SHUTDOWN TECHNIQUES
Pin 2 of the MCI 569 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of an NPN transistor;· which, .if turned "ON", will turn the zener "OFF" and deny current to all the biasing current sources. This action causes the output to go to essentially
zero volts and the only current drawn by the IC regulator will be the small start current through the 60-k-ohm start resistor (Vin/60 kQ). This feature provides additional versatility in the applications of the MC1569.' Various subsystems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as overheating, over-voltage, shorted outpttt,etc.
To activate shutdown, one simply applies a potential greater than two diode drops with a current capability of 1 mA. Note that if a hard supply (i.e., +3 V) is applied directly to pin 2, the shutdown circuitry will be destroyed since there is no inherent current limiting. Maximum rating for the drive current into pin 2 is 10 mA, while 1 mA is adequate for shutdown.
FIGURE 33 - A ±15 Vdc COMPLEMENTARY TRACKING REGULATOR WITH AUXILIARY +5.0 V SUPPLY
. 3
_ _ _ Rsc =1.5
-~---__...vv..._.
(lo+,,,,400 mA MAX) --4_-·vo =+15 Vdc
MC1569R . MC1469R POSITIVE REGULATOR
J + lOµF
12 k
0.001 µF
3k
CASE
0.1 µF 6.8 k
Ra= 6.8 k
CN 0.1 µF
CASE
MZ4625 OR EQUIV
5.1 v
620
+Vo= 1-Vo I"'
RA(kn) +7
2
3k
Cc= 0.001 µF
Rs= 1.8 -20 Vdc .----"",..,__,.__ _ _ _ _ _ _-0--1
MC1563R MC1463R NEGATIVE REGULATOR
-0-----------~----·vo = -15 Vdc (10-..,400 mA.MAX)
4-56
MC1469, MC1569
FIGURE 34- ELECTRONIC SHUT-DOWN USING A MOTL GA1'E 5.0 v
J: The MC1469 is "Shut·Oown" when any
+
of the Logic Inputs are at the "O" Level. 1.0µF
(DUAL MOTL GATE)
FIGURE 35 - AUTOMATIC LATCH INTO SHUT-DOWN ll\IHEN OUTPUT IS SHORT-CIRCUITED WITH MANUAL RE-START
Rsc
+Vo
r--.,_,VV.._.......,_(+10 V)
__._ _..+ Co 11.0µF
J:. Pusht;1<j>
Re·Start
= (Normally "ON")
5.1 k
*Cl is used to allow automatic "START·UP" when Vin is first applied.
FIGURE 36-VOLTAGE BOOSTING CIRCUIT Vo= 100 Vdc
V;0 (2) =
30 Vdc 3
43 k 6.8 k
MC1569G 10
68 k
100 µF
150 v
':'
25 k
0.1 µF
20 k
Figure 34 shows how the regulator can be controlled
by a logic gate. Here, it is assumed that the regulator
operates in its - normal mode - as a positive regulator
referenced to ground - and that the logic gate is of the
saturating type, operating from a ppsitive supply to
ground. The high logic level should be greater than about
1.5 V and should source no more than 10 mA into pin 2.
The gate shown is of the MDTL type. MRTL and
MTTL can also be used as long as the drive current is
within safe limits (this is important when using MTTL,
where the output stage uses an active pull-up).
In some cases a regulator can be designed which can
handle the power dissipation resulting from normal opera- ·
tion but cannot safely dissipate the power. resulting from a
·
sustained short-circuit. The circuit of Figure .35 solves
this problem by shutting down the regulator when the
output is short-circuited.
VOLTAGE BOOSTING
The MC1569 has a maximum output voltage capability of 37 volts which covers the .bulk of the user requirements. However, it is possible to obtain higher output voltages. One such volta·ge boosting circuit is shown in Figure 36.
Since high voltage NPN silicon devices are readily available, the only problem is the voltage limitations of the MC1569. This can be overcome by using voltage shift techniques to limit the voltage to 35 volts across the MC 1569 while referencing to a higher output voltage.
The zener diode in the base lead of the NPN device is used to shift the output voltage of tl}e MC1569 by approximately 75 volts to the desired high voltage level, in this case I00 volts. Another voltage shift is accomplished by the resistor divider on th.e output to accommodate the
required 25 volt reference to the MC1569. The 2 kn
resistor is used to bias the zener diode so the current
through the 4.7 kn resistor can be controlled by the
MCl569. The 1N4001 diode protects the MC1569 from supplying load current under short circuit conditions and Q2 serves to limit base current to QI. For Rsc as shown, the short circuit current will be approximately 100 mA.
In order to use a single supply voltage, Vin(2) can be derived from Vin( I) with a zener dio~e, shunt preregulator.
It can be seen that loop gain has been reduced by the resistor divider and hence the closed loop b~ndwidth will be Jess. This of course will result in a more stable system, but regulator performance is. degraded to some degree.
REMOTE SENSING
The MCI 569 offers a remote sensing capability. This is important when the load is remote from the regulator,
4-57
MC1469, MC1569
·
as the resistance of the interconnecting lines (Vo and GND) are added directly to the output impedance of-the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 37 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.
AN ADJUSTABLE ZERO-TEMPERATURECOEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE.
The MCI569, when used in conjunction with low TC resistors, makes an excellent reference-voltage generator. If the 3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 8 and 9 can be tied together and no resistors are needed. This will provide a voltage
reference having a typical· temperature coefficient of 0.002%/°C. By adding two resistors, RI and R2, any voltage between 3.5 Vdc and 37 Vdc can be obtained with the same low TC (see Figure 38).
THERMAL SHUTDOWN
By setting a fixed voltage at pin 2, the MC 1569 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the baseemitter junction of the shutdown transistor and the diode in series with pin 2 (-3.4 x 10-3V/0 C). By setting 1.0 Vdc externally at pin 2, the regulator will shutdown when
the chip temperature reaches approximately +l 40°C. Fig-
ure 39 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.
FIGURE 37 - REMOTE SENSING CIRCUIT
FIGURE 38-AN ADJUSTABLE "ZERO-TC" VOLTAGE SOURCE
+Vin 9 - - - - - 0 - - 4 (+10 Vdc)
MC1469G
IL· 4mA Max 1--0--...--e +Vz
Rl (+4.0 Vdc) 1.0 k
lO.lµF
10
6.8 k
R2
FIGURE 39 - JUNCTION TEMPERATURE LIMITING SHUTDOWN CIRCUIT
FIGURE 39A - USING A ZERO TC REFERENCE
FIGURE 398 - USING ATA REFERENCE
Vpin 2 (for shutdown)"" 1.38 - 3.4 X 10-3 {TJ - 25DC)
Ase
+Vo.
+Vin (15 V)
+Vin (15 V)
+5.1 v
1N3826 OR EQUIV
6.8 k 2.0mA
+1.0 v
560
820
I1 mA R3
+Co 1.0µF
JJ0.001 µF-::--::-
4-58
MC1469( MC1569
FIGURE 40 - THERMAL SHUTDOWN WHEN USING EXTERNAL PASS TRANSISTORS
10 k +Vin
..,.4-------------__._-r-'..__.~"""........,+vo (+20 V)
In the case where an external pass transistor is em-
ployed, its temperature, rather than that of the IC regu-
lator, requires control. A technique similar to the one just
discussed can be used by directly monitoring the case
temperature of the pass transistor as is indicated in Fig-
ure 40. The case of the normally "OFF" thermal moni-
toring transistor, Q2, should be in thermal contact with,
but electrically isolated from, the case of the boost tran-
sistor, Ql. .
·
THERMAL CONSIDERATIONS
Monolithic voltage regu!ators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application, the designer must use caution not to exceed the specified maximum junction temperature (+1S0°C): Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the de stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the lC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed· for any given application in the sam~ manner as for a power transistor*. A shortcircuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current. Care should be taken not to
*For more qetailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.
FIGURE 41 -DC SAFE OPERATING AREA
0.7 ~--.--r--r--r--r--r---r----ir--..---,-r-----,
0.6 1----+-+-+-~f-+--+--+--t--,\+-+---;
0.5 l---+--1--+--+--+-+--+---if---+---\l-+---1
'\-t--- 0.41-------THERMAL LIMITATION (Tc= 25°C)
1 ----SECONOARY BREAKDOWN LIMITATION ~
~ 0.3 1---i""'TBONOING WIRE LIMITATION
+--
r"'- ~
::?
o.2 1---T+J-1~-+15-0+-:fC--+--+--+u_,,_.+---+---+---+--+L~\~ --t
l',
MC1469G MC1569G
~ ~ I - '·
'
MC1469R "-t-~
_,__.___,__.J'---'JL-.J.1_.___ O.l .___
1
1
_.__'_'..-"'M...._C_1_56_,9._R-__._J.--___,.....,
3.0
4.0 5.0 6.0 7.0 8.0
10
20
30 40
V;n - Vo (VOLTS)
exceed the maximum junction temperature rating during this fault condition and, in addition, the de safe operating area limit (see Figure 41).
Thermal characteristics for a voltage regulator are useful in predicting performance since de load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, TA, or a change in the power dissipated in the IC regulator. The effects of ambient temperature change on the de output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as ±0.002%/°C, typical. Power dissipation is typically changed in the IC regulator by varying the de load current. To estimate the de change in output voltage due to a change in the de load current, three effects must be considered:
1. junction temperature change due to the change in the power dissipation
2. output voltage decrease due to the finite output impedance of the control amplifier
3. thermal gradient on the IC chip.
A temperature .differential does exist across a power IC
chip and can cause a de shift in the output voltage. A
"gradient' coefficient," GCVo, can be used to describe this
effect and is typically -0.06%/watt for the MC1569,. For
an example of the relative magnitudes of these effects,
consider the following conditions:
·
·
Given
MC1569
with Vin= 10 Vdc
Vo::= s Vdc
4-59
MC1469, MCt569
·
and IL= 100 mA to 200 mA (AIL= 100 mA)
2. b.Vo due to z0 IL\Vol = (-zo)OL)
assume TA= +25°C
lb.Vol= -(2 x/10 -2)(10-1) = -2 mV
T0-66 Case with heatsink
assume Ocs = o.2°c;w
and eSA = 2°C/W
eJC = 7.15°C/W (from maximum ratings
table)
3. L\Vo due to gradient coeffi,cient, GCVo -ILWol = (GCVo)(Vo)(L\Pn) l~Vol = (-6 x 10-4/W)(5 volts)(5 x 10-lW) JLWOI = -1.6 mV
It is desired to find the L\Vo which results from this L\IL· Each of the three previously stated effects on Vo can now be separately considered.
1. t:No due to llTJ
L\Vo = (Vo)(&n)(TCVo)(e1c+ lJcs + osA)
OR L\Vo = (5V)(5 V x 0.1A)(±0.002%/°C)(9.35°C/W)
bNo ~ ±0.5 mV
Therefore the total L\Vo is given by
JLWo total!= ±0.5 - 2.0 -1.6 mV OR
-4.1 mV ~!Vo total I~ - 3.1 mV
Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects , of the parameters.
TYPICAL PRINTED CIRCUIT BOARD LAYOUT
2"
4-60
MC1469, MC1569
FIGURE 42- LOCATION OF COMPONENTS J1
R1
Q1 Q2 HS
PIN2 Vin C·I* Cc GND R2 *Ci not shown
FIGURE 43 - CIRCUIT SCHEMATIC FOR PRINTED CIRCUIT BOARD (Pg. 17) 3.5 V$Vo$37 V, 1 mA::;.IL $500 mA
+Vin ----e-------ci----1
I I
0.01, µF ;:Ik *Ci
I I
~
01 MC1569R MC1469R
:I:" 0.001 µF
~ 02 Cc
5 -=
CASE
Select Rl to give desired Vo: Rl "'(2 Vo -7) kn *Ci - May be require~ if long input leads are used.
4-61
·
MC1469, MC1569
· I
Component
R1 R2 *RA
Rsc *RL
Co
CN Cc *Ci 01 02 !'HS *Socket
PC Board *Optional
PARTS LIST
Value
Description
Select 6.8k Selei;t
Select ,. Select
I 1.0µF
Q.1 µF
o.op1µf 0.01 µF MC1569R or MC1469R 21\1522~. 2N7Q6, or equivalent
-
(Not Shown)
-
1/4 or 1/2 watt carbon
IRC Mode1 X·201 Mallory Model MTC·1 or equivalent
1/2 watt carbon
For minimum current of 1 mAdc
Sprague 1500 Series, Qickson D 10C series
or equivalent
·
Ceramic Disc - Central.ab DOA 104, Sprague TG-P10, or equivalent
Heatsink Therrnalloy #61688
Robinson Nugent #0001306 Electronic Molding Corp. #6341-210-1,
6348-188·1, 6349~188'.1
Circuit Dot, Inc. #PC1113 1155 W. 23rd ~t'., T!!rripe, Ariz. 85281
LATCH-UP
Latch-up of these and other regulators can occur if: 1. There are plus and minus voltages available 2. A load exists between Vo+ and Vo- (This "common load" may be something inconspicuous - e.g. an operation(ll amplifier. Nearly everyone who uses + ;;ind - voltages will have a common load from Vee to Vee.I 3. Vin+ and Vin - are not applied at the same time.
The above conditions result in one of the two outputs becoming reverse-bi;;ised which prevents the
regulator from turning ON . Latch-up can be prevented by the circuit configurations shqwn in
Figures 44 and 45. FIGURE-44
Rsc
Vo+
RL
Note: This configuration increases minimum input-outputdifferentialvoltageby:::: 0.7V.
FIGURE-45
Rsc
Vo Vo+
4-62
MC1723 MC1723C
MONOLITHIC VOLTAGE REGULATOR
The MC1723 is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723 is specified for operation over the military temperature range (-55°C to +125°C) and the MC1723C over the commercial temperature range (0 to +7ooc1
· Output Voltage Adjustable from 2 Vdc to 37 Vdc · Output Curren~ to 150 mAdc Without External Pass Transistors · 0.01% line and 0.03% Load Regulation · Adjustable Short-Circuit Protection
FIGURE 1 - CIRCUIT SCHEMATIC
vcc
(1218
vc
71111
6.2V
VOLTAGE REGULATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
. . .,..,.,., i:::::::1
~¥Y ~ ~
PSUFFIX
PLASTIC PACKAGE
CASE 646
view)~ (bottom
GSUFFIX
METAL PACKAGE
2
CASE 603C
(T0-100 Type)
14
·
1 - - - - - l 0 - 02() CURRENT LIMIT
....__ _ _-OCURRENT
(614 Vret
(5) 3 rn 5 Vee
2 (4)
NON-INVERTING INPUT
INVERTING INPUT
1 (31SENSE
PIN NUMBERS AOJACENT TO TERMINALS ARE FOR THE METAL PACKAGE PIN NUMBERS IN PARENTHESIS ARE FOR DUAL IN-LINE PACKAGES.
LSUFFIX CERAMIC PACKAGE
CASE 632 (T0-116)
ORDERING INFORMATION
Device
Alternate
Temperature Range
Package
MC1723CG LM723CH, µA723HC
Metal Can
MC1723CL LM723CD. µA723DC
Ceramic DIP
MC1723CP L!Vl723CN, µA723PC
Plastic DIP
MC1723G
-ssoc to +1250C Metal Can
MC1723L
-S50Cto +125°C Ceramic DIP
FIGURE 2 - TYPICAL CIRCUIT CONNECTION
FIGURE 3 - TYPICAL NPN CURRENT BOOST CONNECTION
(7 < Vo<37)
(12) 8
6 (10) Rsc
Vin
10i2)
(6)4 R3
(5)3
MC1723 !MC1723C)
1 (3)
2 (4) lOOpF
I Cref
(7) 5
Vo"'7
(R1l
1+ R22)
For best results 10 k < R2 < 100 k For minimum drift R3 = R11iR2
Vo Rl R2
Vin=20Vdc
. - - - - - - - - - - r lr-._Rs...,clV=0....3.....,3,_.. Vo=+15 Vdc
It =2AdcmaK 11218
(1117
113)
MC1723
IMC1723CI
""] (6)4 (5)3
12k 2(4)
Cl lOOpF
91131
10k
517)
4-63
MC1723, MC1723C
·
MAXIMUM RATINGS (TA .. +25°C unless otherwise noted.I
Rating
Symbol
Value
Unit
Pulse Voltage from Vee to Vee (50 msl
Continuous Voltage from Vee to Vee
Input-Output Voftage Differential
Maximum Output Current
Cur.rent from Vref
Current from Vz
Voltage Between Non-Inverting Input and Vee
Differential Input Voltage
Power Dissipation and Thermal Characteristics Plastic Package TA= +25°c Derate above TA.= +25°C Thermal Resistance, Junction to Air Metal Package TA= +25°c Cerate above TA= +25°C Thermal Resistance, Junction to Air Tc= +25°c Cerate above TA = +25°C Thermal Resistance, Junction to Case Dual In-Line Ceramic Package Derate above TA = +25°C Thermal Resistance, Junction to Air
Operating and Storage Junction Temperature Range Metal Package Dual In-Line Ceramic and Ceramic Flat Packages
Operating Ambient Temperature Range
MC172JC MC1723
Vin(p) Vin
Vin -Vo IL I ref lz Vie Vid
Po 1/8JA
8JA
Po 1/8JA 8JA
Po 1/8JA 8JC
Po 1/8JA 8JA TJ. Tstg
TA
50 40
40 150 15 25 8.0 ±5.0
1.25 10 100
1.0 6.6 150 2.1 14 35 1.5 10 100
-65 to +150 -65 to +175
0 to +70 -55 to +125
Vpeak Vdc
Vdc mAdc mAdc
mA Vdc Vdc
w
mwt0 c 0 c1w
Watt
mwt0 c
0 ctw
Watts
mwt0 c 0 c1w
Watt
mwt0 c
0 ctw
.!.
Oc
oc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: TA= +25°C, Vin 12 Vdc, Vo= 5.0 Vdc, IL= 1.0 mAdc, Rsc = 0,
C1 = 100 pF, Cref = 0 and divider impedance as seen by the error amp~fier ~ 10 kn connected as shown in Figure 1I
Characteristic
Symbol
MC1723
Min
Typ
Max
MC1723C
Min
Typ
Max
Unit
Input Voltage Range Output Voltage Range Input-Output Voltage Differential Reference Voltage Standby Current Drain (IL= 0, Vin = 30 VI Output Noise Voltage (f = 100 Hz to 10 kHz)
. Cret=O Cref = 5.0 µF
Average Temperat(f) Coefficient of Output Voltage (T1ow 1 <TA <Thigh@)
Vin Vo Vin-Vo Vref 119 VN
TCVo
9.5 2.0 3.0 6.95
-
-
-
-
-· 7.15 2.3
20 2.5 0.002
40 37 38 7.35 3.5
-
0.015
9.5 2.0 3.0 6.80
-
-
-
-
-
7.15 2.3
20 2.5 0.003
40 37 38 7.50 4.0
-
O.Q15
Vdc Vdc Vdc .Vdc mAdc µV(RMS)
%!°C
Line Regulation
Regin
(T A
=
+ 250 C)
{12 12
V <Vin<15 v<vin<40
V
v
-
IT1ow <D<TA <Thigh@)
'
12v<vin<1sv
-
0.01
0.1
-
0.02
0.2
-
-
0.3
-
0.01 0.1
%Vo 0.1 '0.5
-
0.3
Load Regulation (1.0mA<iL<so mA)
TA= ~s0 c
T1ow 1 <TA <Thigh@
Reg1oad
-
-
Ripple Rejection (f = 50 Hz to 10 kHz) Cref = 0 Cref = 5.0 µF
ReiR
-
-
Short Circuit Current Limit (Rsc = 10 n, Vo =0)
isc
-
Long Term Stability
e:.Vof"t
-
0.03
0.15
-
-
0.6
-
74
-
-
86
-
-
65
-
-
0.1
-
-
0.03
-
74 86 65
0.1
%Vo 0.2 0.6
dB
-
-
mAdc
-
%/1000 Hr
<DT1ow = 0°C for MC1723C
= -55°C for MC1723
@Thigh= +70° C for MC1723C = +125°C for MC1723
4-64
MC1723, MC1723C
TYPICAL CHARACTERISTICS
(Vin= 12 Vdc, Vo= 5.0 Vdc, IL= 1.0 mAdc, Rsc = 0, .TA= +25°C unless.otherwise noted.)
FIGURE 4 - MAXIMUM LOAD CURRENT AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL
200..--~---.-----.------.---.---,----i
TJ max= 150°C 1------1---+----+--4----1- RTH = 150°ctw
- 60 1------1---+----+--4----1- PSTAN OBY= 60 mW
:§_ 1
(No heat sink)
I-
~ 1201-4-"4-4--+----+--4----ll----+---+-----I
~
Q
~ 80~1-----l-4.--~~'---+--4----11----+---+-----I
e
-:::. 40
FIGURE 5 - LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING
+0.05 --~-..----.-----.-------.----.----.----,
0
~
2 0
~
::>
~ -0.05
CJ
<
~ ./ ~ -0.1 1--+--+--+--+---1---1---""~
l
Vin-VD· INPUT-OUTPUT VOLTAGE (VOLTS)
20
40
60
80
IQ, OUTPUT CURRENT (mA)
·
FIGURE 6- LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING
+0.05 -----~--~----~-~-~--~
~ _
Rsc =10 n
! '0 15
-0.2 .____._ _.__...____..___.__ _.__.__......._ _.__.....___._ _.
0
5.0
10
15
20
25
30
IQ, OUTPUT-CURRENT (mA)
FIGURE 7 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING
' +0.1
0 >
~
2 0
i=
:5 -0.1
::>
~
Q
< -0.2
9 ~-
·~ -0.3
-0.4
0
80
IQ, OUTPUT CURRENT (mA)
FIGURE 8 - CURRENT LIMITING CHARACTERISTICS
1.2
u;
~ 1.0
0
~
w
(!)
<
0.8
~
0
> I- 0.6 ~
I::>
0 w
0.4
>
j::
~ 0.2
0 0
~ f\
I Rsc = 10 n _,
'
TA= +125°C
TA=+2soi;
l
TA= -55°C -
l
20
40
60
80
100
IQ, OUTPUT CURRENT (mA)
FIGURE 9 - CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE
0.8
200
160 < .§
I-
~
120 B
~ i=
~ ,80 :::;
-50
+50
+100
TJ,JUNCTION TEMPERATURE (OC)
4-65
MC1723, MC1723C
·
TYPICAL CHARACTERISTICS (continued)
Fl(WRE 10 - LINE REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL
+0.2
0
~
2
S! +0.1
sl-
:::>
ffi
a:
w 2
t--
:::;
c
i
r
..Win= +3 V
-----
\
-0.1
5.0
15
25
35
Vin -Vo, INPUT-OUTPUT VOLTAGE (VOLTS)
FIGURE 11 - LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL
+o. l ..---..---..---..--I -......--""r--..,T...---T.---T...--J.,........____,
IL = 1 mA to IL = 50 rnA > 0 ~
2
0
si=
:::>
~
. ~
~ ~ g -0.11---+---1--+---+---+---P~-+--+--+-......,
~
-0.2 '---"'---"'---"'---...!---'--.....L..--'--~--'----'
0
10
20
30
40
50
Vin ·Vo. INPUT·OUTPUT VOLTAGE (VOL TS)
FIGURE 12 - STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE
4.0 ---~----~--~----.---....---.......
Vo= Vrel ------1----+----+----1
IL = 0
10
20
30
40
Vin. INPUT VOLTAGE (VOL TS)
>
.§.
2 0
~ ~ ~
~ +2.0
Cl
~
0
>
:=I=>-
:::> 0
-2.0 -5.0
FIGURE 13 - LINE TRANSIENT RESPONSE
IN~UT
1 vdLTAG E
1 J
l
IZ ,..._ L ~..... OUTPUT VOLTAGE I\. '7
+4.0
"~ '
0
+2.0 ~
2
0
~
~
0
4>
w Cl
<(
~
0
>
I-
~
~
+ 10
+20
+30
t, TIME (µs)
+40 +45
FIGURE 14 - LOAD TRANSIENT RESPONSE
>_g
2
0 j::
~
~ +2.0
0
w Cl
~
0 >
I-
~ -4.0
I-
=>
0
ToAo ~URRJNT ~
T
I\
~ =40inA
-.;;
n~ 1
I
~~
(\
~\.. ../
OUTPUT VOLTAGE
+ 10
0
~·
~ .§.
2 0
i=
.<C
~
0
0 <( 0 ....!
-8.0
-5.0
+ 10
+20
+30
+40 +45
t, TIME (µs)
FIGURE 15 - OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY
10
~ IL-50~A
v.;
:::icE 8
w 1.0
(.J
2 <(
~
~
I-
:=:::> 0. 1
:
:::>
0
~
~
v 12 ..
C1=0 _,
th
C1=1 µf"
0.0 1 100
1.0k
10 k
100.k
·1 M
I, FREQUENCY (Hz)
4-66
MC1723, MC1723C
TYPICAL APPLICATIONS
Pin numbers adjacent to terminals are for the metal Ipackage;
pin numbers in paren~hesis are for the dual in-line packages.
FIGURE 16 - TYPICAL CONNECTION FOR 2 < Vo< 7
FIGURE 17 - MC1723,C FOLOBACK CONNECTION
Rsc
MC1723
(MC1723C)
1 (3)
R3
2(4)
MC1723 (MC1723C)
(5) 3
(7) 5
J 2
vo z7 [R 1: R2
isc = v~~t z ~-:~ at-TJ =+25oc
For best results 10 k < Rl + R2 < 100 k. For minimum drift R3 = Rli1R2.
FIGURE 18 - +5 V, 1-AMPERE SWITCHING REGULATOR
R2 1 (3) 5 (7)
RA= 1_-":a_ 10 kn Iknee
where a= Vsense Vo
1J [
lknee ISC
_ 1
IL -
R · _ Vsense
sc - (1-a) isc
FIGURE 19 - +5 V, 1-AMPERE HIGH EFFICIENCY REGULATOR
100
Vin +lOV
(11) 7 (12) 8
(6) 4
2.2 k
lM
1 k
(5) 3 O.lµFJ 5.1 k
MC1723 (MC1723C)
5 (7)
=1mH
1N4001 or Equiv
=
Vin 1
+6.5 v
:=r Vin 2
0.1 µF (12)8
+10 v
Vo
10
+5 v
10(2) 1 (3)
I +
100"
(11)7 2 k
(5) 3 5.1 k
=
MC1723 (MC1723C)
(7) 5
=
6 (10)
10 (2)
'Vo 0.33 +5 v
1000 pF
FIGURE 20 - +15 V. 1-AMPERE REGULATOR WITH REMOTE SENSE 0.33
(12) 8
(6) 4
MC1723 (MC1723C)
10 (2) 1 (3)
2 (4)
12 k
+Sense Vo
10 k
Load
5 (7) -Sense
FIGURE 21 -- -15 V NEGATIVE REGULATOR
(12) 8
6 (10)
MC1723
(6) 4
(MC1723C)
5(7) Vin= -20 V
·
4-67
MC1723, MC1723C
·
TYPICAL APPLICATIONS (contin~edl
FIGURE 22 - +12 V, 1-AMPERE REGULATOR USING PNP CURRENT BOOST
2N3791 or Equiv
'\-----------<,..._.,,VV'u_-41 VO =+12 V 0.33
(11) 7
100
6 (10)
(12) 8
10 (2)
MC1723
(MC1723C)
lOk
(6) 4
(5) 3
12k
5(7)
THERMAL INFORMATION
The maximum power consumption an integrated circuit
can tolerate at a given operating ambient temperature, can be found from the equation:
Pon Al
TJ(maxl -TA = ROJA(Typl
~ V1
Is- Vo
lo
Where: Po(TAl = Power Dissipation allowable at a given
operating ambient temperature.
TJ(maxl =Maximum Operating Junction Temperature
as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient
Temperature ·
-
ROJA(Typl =Typical Thermal Resistance Junction to
Ambient
·
Is = Total Supply Current
4-68
MC3420 MC3520
Advance Information
SWITCHMODE REGULATOR CONTROL CIRCUIT
The MC3520/3420 is an inverter control unit which provides all the control circuitry for PWM push-pull, bridge and series type switchmode power supplies. These devices are designed to supply the pulse width modulated drive to the base of two external power transistors. Other applications where these devices can be used are in transformerless voltage doublers, transformer coupled de to de converters and other power control functions. The MC3520 is specified over the military operating range of -55°C to +125°C. The MC3420 is specified from 0°C to +70°C.
· Includes 100 kHz Symmetrical Oscillator · On Chip Pulse Width Modulator, Voltage Reference,
Dead Time Comparator, and Phase Splitter · Output Frequency Adjustable (2 kHz to 100 kHz) · Inhibit and Symmetry Correction Inputs Available · Controlled Start-Up · Frequency and Dead Time are Independently Adjustable
(0% to 100%) · Can be Slaved to Other MC3420's · Open Collector Outputs · Output Capability 50 mA (Max.) · On Chip Protection Against Double Pulsing of Same Ou.tput
During Load Transient Condition
FIGURE 1-TYPICAL APPLICATION
+10 to 30 V
il~r~~h-:
r·-i 1 Current
: Delay
15
1l_C_i_r_cu_i_t JI
9'
: :<;J=~2-0_k_
: 1_ _ _ _ _ _I
10
4 16
11
6 5
13 8 3 12
to
}
Base Drive
Circuit
l
to Vsense
to 'sense VR
SWITCHMODE REGULATOR CONTROL CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUITS
P SUFFIX PLASTIC PACKAGE CASE 648
·
L SUFFIX CERAMIC PACKAGE
CASE 620
·PIN CONNECTIONS Dead Time
Adjust
Output 2 Inhibit/ Symmetry Correction Input Inhibit Osc. Output Output 2
Ground
Output 1
Vee
ORDERING INFORMATION
DEVICE
MC3420P MC3420L MC3520L
TEMPERATURE RANGE
0 to +70°C 0 to +70vC -55 to +125°C
PACKAGE
Plastic DIP Ceramic DIP Ceramic DIP
4-69
MC3420, MC3520
·
ELECTRICAL CHARACTERISTICS v, (Vee= 15 TA= 25°c unless otherwise noted.I
Characteristic
Symbol
Min
Typ
Max Uriit
Supply Voltage Supply Current Output Frequency Range
Frequency Stability (TA= Thigh to Tiow, 10<Vcc<30 VI
Voltage Reference
Temperature Coefficient of Voltage Reference Oref = 400 µA)
Output Voltage lloL = +40mAI lloL = +25 mAI
Output Blocking Voltage Oscillator Output Voltage
lloL = +5 mAI Temperature Coefficient of Dead Time Inhibit l1L
(V1L = 0.7.V)
Inhibit llH (V1H = 2.4V)
Minimum Dead Time
Vee
10
ice
-
fo
2.0
--
-
Vref
-
TCVref
-
VoL
-
-
-
-
Vose
-
TCDT
-
--
-
--
-
-
0
T1ow =-55°C for MC3520 0° C for MC3420
Thigh= +125°C for MC3520 +70°C for MC3420
FIGURE 2-EQUIVALENT CIRCUIT
-
-
-
4.0
7.9 0.006
30
v
16
mA
100 kHz
-
%
-
v
0.02 %fC
-
0.5
v
-
0.3
-
40
v
-
0.5
v
0.15 -
- %fC
-0.2 mA
-
40
µA
-
-
µ
Ramp Out
8
Ramp In 5
PWM Out
4
Oscillator Vee
10
Dead Time Adjust
9 Vref
2 3
Rext Cext F/F Out
Ground
15 Inhibit
16 Symmetry Correction Input/Output 2 Inhibit
GENERAL INFORMATION
Ramp Generator
The internal block diagram of the MC3420 is shown in Figure 2, and consists of the following sections·:
Voltage Reference
A stable reference voltage is generated by the MC3420 primarily for internal use. However, it is also available externally at. Pin 9 (V ref) for use in setting the dead time (Pin 7) and for use as a reference for the external control loop error amplifiers.
The ramp generator section produces a symmetrical triangular waveform ramping between 2.0 Y and 6.0 V, with frequency determined by an external resistor (Rextl and capacitor (Cextl tied from Pins 1 and 2, respectively, to ground.
PWM Comparator
The output of the ramp generator at pin 8 is normally connected to Pin 5, RAMP IN. The PWM (pulse width modulation) comparator compares the voltage at Pin 6
@ MoTOROLA Semiconductor ProdUct.s Inc. ----------
4-70
MC3420, MC3520
(V controil to the ramp. generator output. The level of Vcontrol determines the outputs' pulse width or duty cycle. The duty cycle of each output can vary, exclusive of dead time, from 50% (when Vcontrol is at approximately 2.0 V) to 0% (Vcontrol approximately 6.0V).
Dead ~ime Comparator
An additional comparator has been included in MC3420 to allow independent adjustment of system dead time or maximum duty cycle. By dividing down Vref at Pin 9 with a resistive divider or potentiometer, and applying this voltage to Pin 7, a stable dead time is obtained for prevention of inverter switching transistor cross conduction at high duty cycles due to storage time delays.
Phase Splitter
A phase splitter is included to obtain two 180° out of phase outputs for use in multiple transistor inverter systems. It consists of a toggle flip-flop whose clock signal is derived by "ANDing" t.he output of the PWM comparator and a signal from the ramp generator section. Thi~ ·~AND" gate ensures that the outputs truly alternate under control loop transient conditions. Better understanding of this feature and MC3420 operation may be gained by studying the circuit waveforms, shown in Figure 3.
FIGURE 3 - INTERNAL WAVEFORMS
·
Voltage at V Control
I.__
_
_
_
_ _
~~!:g;i~: _J
Adjust
· Hlgh Level Corresponds to Output Transistor Saturation
Prevention of "DoublePulsed" Outputs During Transient Conditions By Use.of ANb Gate At F/F Clock Input (Transient Output Load)
Ramp In, Ramp Out Tied Together (Pins 8 & 5)
PWM Out, Output 2 Inhibit Tied Together (Pins4 & 16)
Max. Duty Cycle (Limited By Dead Time Setting) (Low Input Voltage and/or Heavy Output Load)
® MOTOROLA S81ni.conductor Products Inc. _________,
4-71
MC3420, MC3520
·
Outputs
The outputs of the MC3420 are open collector transistors capable of sinking up to 50 mA and blocking up to 40 V. They may be wire-ORed for operation in single transistor inverter systems.
Symmetry Correction Input
In some PWM inverter/converter configurations it may be desirable that one output's duty cycle be controlled independently of the other's for implementation of a system symmetry correcting control loop. In these cases, independent control of output 2 (Pin 13) pulse width may be obtained by using the symmetry correction input (Pin 16). · Normally, Pin 16 is connected to Pin 4 (PWM OUT) and output 2's duty cycle is controlled by the PWM com-
parator, as is output 1's duty cycle. However, by not
making this connection and driving Pin 16 externally, independent control of output 2's duty cycle from 0% to 50% (exclusive of dead time) can be obtained. Output 2 will be on (saturated) during its allowable conduction period if Pin 16 is at or above 2.4 V and will turn off when Pin 16 is at 0. 7 V or less (TTL compatible).
Inhibit
An inhibit function is also inc;luded in the MC3420. When. Pin 15 is held at 0. 7 V or less, both outputs of the MC3420 are forced off (non-conducting). In addition, this inhibit function disables an open-collector output, OSCILLATOR OUTPUT (Pin 14). This output normally switches at the same frequency as Output 1 with a constant 50% duty cycle, and- can be used to implement various system features such as in.rush current limiting (·see Applications Information section).
APPLICATIONS INFORMATION
The Voltage Reference
The temperature coefficient of Vref has been optimized for a 400 µA (:::::20 k.Q) load. Different loadings of Pin 9 will result in decreased temperature stability, If increased current capability is required, an op amp buffer may be used, as shown in Figure 4, to prevent a decrease in Vret's temperature stability.
f0
::::: __Q_55C. ; 5.0 k.Q ~
Rext ext
Rext ~ 20 k.Q
or from the graph shown in Figure 5.
Note that f 0 refers to the frequency of Output 1 (Pin 11) or Output 2 (Pin 13). The frequency of the ramp
generator output waveform at Pin 8 will be twice f 0 .
FIGURE 4 9
Dead Time
Figure 6 illustrates how to set or adjust the MC3420 outputs' dead time or maximum duty cycle; For minimum dead time drift with temperature or supply voltage, Vo.T. should be derived from Vref as shown.
FIGURE 6
20 k.11
Dead Time"" h(' 0~T.-2)
where f 0 is the output frequency
Output Frequency
The values of Rext and Cext for a given output frequency, f 0 , can be found from:
FIGURE 5
10 k
20 k
10 · OUTPUT FREQUENCY (Hz)
100 k
·Total circuit resistance from Pin 9 to ground should be ""20 k.11 for minimum drift
Connections to the V control Pin
In many systems, it is necessary to make multiple connections to the Vcontrol Pin in order to implement features in addition to voltage regulation such as current limiting, soft start, etc. These can be made by the use of a simple "diode-or" connection, as .shown in Figure 7. This allows whichever control element is seeking the lowest PWM duty cycle to dominate. Note that a resistor, R1, whose value is~ 50 k.Q is placed from-the Vcontrol Pin to gro1.md. Th is is necessary to provide a de path for the PWM cqmparator input bias current under all conditions.
Soft Start
In most PWM switching supplies, a soft start feature is desired to prevent output voltage overshoots and magne-
@MOTOROLA ,Semiconductor Products Inc.------"----'
4-72
MC3420, MC3520
FIGURE 7
IN4148's -------to soft start circuit
t---<>---,4--1------ to voltage control circuit R1
FIGURE 9 01
R1<;;5Q k.!1
tizing current imbalances in the power transformer primary. This feature forces the duty cycle of the switching elements to gradually increase from zero to their normal operating point during initial system powerup or after an inhibit. This feature can be easily implemented with the MC3420. One method is shown in Figure 8.
FIGURE 8
Vee
110 Vac
Rectifiers
+}to power ~witching
C1
section
1-------41-----
to prnvide a time delay on the inhibit pin to keep it low
until the input filter capacitor, Cl, has had time to.
charge, whereas the initial portion of the soft start
timing cycle can be used for this delay if this signal is
derived from one of the output pins. However, using the
Oscillator Output Pin does offer the advantage that its
waveform has a constant 50% duty cycle, independent
of the outputs' duty cycle which can simplify the design
of a drive circuit for T1.
'
·
15
To Voltage &
- - -} Current
Control
..,--- Loops
0 4 01 - 04: IN4148
After an inhibit command or' during power-up, the voltage on R1 and Pin 6 exponentially decays from Vee toward ground with a time constant of R 1C 1, allowing a gradual increase in duty cycle. Diodes D2 - D4 provide a diode-or function at the Vcontrol Pin, while 01 serves to reset the timing capacitor, C 1, when an inhibit command is received thereby reinitializing the soft-start feature. D1 allows C1 to reset when power (Vee) is turned off.
Slaving
In some applications, as when one PWM inverter/converter is used to feed another, it may be desired that their frequencies be synchronized. This can be done with multiple MC3420s as shown in Figure 10. By omitting their Rext and Cext. up to two MC3420s may be slaved to a master MC3420.
FIGURE 10 - SLAVING THE MC3420
sv-----o.._-------<11t----.
5
"MASTER"
Out
In
'------v------'
Ramp F/F 3
Out
Inrush Current Limiting
Since many PWM switching supplies are operated directly off the rectified 110 Vac line with capacitive input filters, some means of preventing rectifier failure due to inrush surge currents is usually necessary. One method which can be used is shown in Figure 9. In this circuit, a series resistor, Rs. is used to provide inrush surge current limiting. After the filter capacitor, C 1, is charged, Q 1 receives a trigger signal from the control circuitry through T 1 and shorts Rs out of the circuit, eliminating its otherwise larger power dissipation. The trigger signal for Q 1 may be derived from either the oscillator output (Pin 14) or one of the MC3420's outputs. If the oscillator output is used, it will be necessary
@ MOTOROLA Se1niconductor Products Inc. _________.
4-73
MC3422
·
Advance Information
SOLID STATE CURRENT LIMITER Intended to protect sensitive circuitry from excessive current flow, 'this current limiter appears as a low impedance path with approximately 4.5 V drop until a current level of 225 mA is reached. At this point, the unit goes into a constant current mode preventing an increase in load current and protecting the load. The high power dissipation in this mode causes the MC342~ die temperature to increase rapidly and when a temperature of about 125°C is reached, the device lowers the series current to about 15 mA to avoid destruction. The MC3422 will automatically reset itself to the normal operating mode when the fault condition is removed. · Limiting Current - 225 mA Typ · Thermal Shutdown · Two Leads · High Breakdown Voltage - 60 V Min
FIGURE 1 - TYPICAL OPERATING AREA
1z -
w
a:
aa: Is 'om
CURRENT LIMITER WITH THERMAL SHUTDOWN
SILICON MONOLITHIC INTEGRATED CIRCUIT
TSUFFIX PLASTIC PACKAGE
CASE 313
PIN 1. INPUT 2. OUTPUT 3. N.C.
Heatsink surface connected to Pin 3.
A SUFFIX METAL PACKAGE CASE 80 T0-66
BotOtutopumt v'.~~~:~~
~)2se 1 Output
PIN 1 INPUT (Base) 2 OUTPUT (Emitter) CASE. OUTPUT
Input (+)
APPLIED VOLTAGE
+50 v
Input
Output
FIGURE 2 - CIRCUIT TO ELIMINATE CONTACT BURNING
DUE TO CONTACT BUNCHING
Input
+ .... c .. · .!:: t E u::J ·...-1
Output
-sov
This is advance information and specifications are subject to change without notice.
4-74
TYPICAL CIRCUIT CONNECTION
ORDERING INFORMATION
Device
Temperature Range
Package
MC3422T MC3422R
0 to +70°C
o to +10°c
Plastic Power Metal Power
MC3422
MAXIMUM RATINGS (TA= 25°C)
Rating
Input Voltage Load Current Operating Ambient Temperature Range Operating Junction Temperature Storage Temperature Range
Plastic Package Metal Package
Symbol V1 IL TA TJ Tstg
THERMAL CHARACTERISTICS
Characteristic
Thermal 'Resistance, Junction to Case Metal Package Plastic Package
Thermal Resistance, Junction to .Ambient Metal Package Plastic Package
Symbol Ro JC
RoJA
ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted.)
Characteristic
Limiting Current (Vf =4.8 V) (Vf = 15V)
Forward Voltage Drop (IL= 1.5 mA) (IL =0.5 mA)
Output Resistance (Non-Limiting Mode) (IL = 60 mA to 10 mA)
Shutdown Current (Vf = 60 V) (After Thermal Shutdown)
Maximum Applied Voltage
Te111perature Coefficient of Forward Voltage (IL= 10 mA)
Temperature Coefficient of Limiting Current
Symbol IL
Vt
ro Is Vm 6.Vflt.T 6.ILlt.T
Value
Unit
60
v
Internally Limited
-
0 to +70
"c
Internally Limited
-
oc
-65 to +150 -65 to +150
Typical
7.0 5.0
50 75
Min
Typ
150
225
-
225
3.8
4.3
-
4.3
-
1.0
-
15
-
-
-
±1.0
-
0.8'
Unit OC/W
OC/W
Max
-
300
4.5 2.0
Unit mA
v
Ohms
20
mA
60
v
-
mV/°C
-
mA/°C
·
FIGURE 3- LIMIT REED CONTACT PEAK CURRENT
+
-
Input Output
Reed
l Current J Limiter
Contact
~ ~-...
-c
_.._
~v
-=
co* *'co 1----1
* *
FIGURE 4 - LIMIT LINE LOOP CURRENTS
. T
ll[i
c
+
Output
Current
11r c
Limiter
R
-
-50 v
-v
MOTOROLA Semiconduc'f:or Produc'f:s Inc. 4-75
·
MC7700C
series
MC7700C SERIES THREE-TERMINAL POSITIVE,VOLTAGE REGULATORS The MC7700C Series positive voltage regulators are identical to the popular MC7800C Series devices, except that they are specified for only half the output current. Like the MC7800C devices, the MC7700C three-terminal regulators are intended for local, on-card voltage regulation. Internal current limiting, thermal shutdown circuitry and safe. area compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 750 mA. · No External Components Required · Internal Thermal Overload Protection · Internal Short-Circuit Current Limiting · Output Transistor Safe-Area Compensation · Packaged in the Plastic Case 313 and Case 79 (T0-220 and Hermetic T0-39)
REPRESENTATIVE SCHEMATIC DIApRAM
4-76
THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS
G SUFFIX METAL PACKAGE
CASE 79
T0-39
TSUFFIX PLASTIC PACKAGE
CASE 313 (T0-220 Type)
Pin 1. Input 2. Ground 3. 9utput
Pin 1. Input 2. Output 3. Ground
Case connected to Pin 3.
STANDARD APPLICATION
lnput~Output
~-i~~ µF1-___J__jCo' ·
A common ground is required between the input and the output voltages. The input volt· age must remain typically 2.0 V above the out· put voltage -even during the low point on the input ripple voltage.
XX =these two digits of the type number indicate voltage.
* = Cin is required if regulator is located an appreciable distance from power supply filter.
** =Co improves stability and transient re-
sponse.
ORDERING INFORMATION
DEVICE MC77XXCG MC77XXCT
TEMPERATURE RANGE
T J = o0 c to +1s69c T J = o° C to +1S0°c
PACKAGE Metal Can Plastic Power
XX indicates nominal :v-oltage
TYPE NO./VOLTAGE
MC7705C MC7706C MC7708C MC7712C MC7715C MC7718C MC7720C MC7724C
5.0 Volts 6.0Volts
8.0 Volts
12 Volts 15 Volts 18 Vdlts 20 Volts 24 Volts
MC7700C Series
MC7700C Series MAXIMUM RATINGS (TA= +25°C unless otherwise noted.)
Input Voltage (5.0 V - 18 V) (20 V - 24 V)
Power Dissipation (Package Limitation)
Plastic Package
TA-~ 25°c
Derate above TA = 25°C
Tc= 25°c '
_
o Derate above Tc = 11 0 c
Meta.I Package
TA= 25°C Derate above TA = 25°C
Tc= 25°c Derate above Tc = 85°C
Operating Junction Temperature Range
Operating Ambient Temperature Ran\je
Storage Temperature Range
\
Plastic Package
Metal Package
Rating
·symbol V1
Po ()JA Po ()JC
Po OJA Po ()JC TJ TA Tstg
Value 35 40
Internally Limited 70
Internally Limited 5.0
Internally Limited 185
Internally Limited 25
0 to +125 0 to +85
-65 to +150 -65 to +150
Unit Vdc
0 c;w
0 c;w 0 c;w
0 c;w oc oc oc
·
MC7705C ELECTRICAL CHARACTERISTICS o (V1=10 V, lo= 250 mA, 0 c < TJ < +125°C uniess otherwise noted.)
Characteristic
Output Volt~ge (TJ = +25°C)
Symbol
Min
Vo
4.8
Typ
Max
5.0
5.2
Line Regulation (TJ = +25°c. lo = 50 mAl 7.0 Vdc.;; V1 .;; 25 Vdc
. 8.0 Vdc.;; V1.;; 12 Vdc (TJ = +25°c. lo = 250 mA) 7.0 Vdc.;; V1.;; 25 Vdc 8.0 Vdc.,;; V1.,;; 12 Vdc
Load Regulation TJ = +25°C, 5.0 mA .:;;;10 .:;;;750 mA 125 mA:,.;;; lo ,,;;;375 mA
Output Voltage (7.0 Vdc.;; V1.;; 20 Vdc, 5.0 mA.;; lo.;; 500 mA, P.;; Pmax*l
Input Bias Current (TJ = +25°C)
Input Bias Current Change 7.0 Vdc.;; V1 .;; 25 Vdc
5.0 mA .:;;;10 ,.;;;150 mA
Output Noise Voltage (TA = +25°c. 10 Hz .:;;;; f:,.;;; 100 kHz)
Long-Term Stability
Ripple Rejection Oo = 20 mA, f = 120 Hz)
Input-Output Voltage Differential to= 500 mA, TJ = +25°c
Output Resistance llo = 250 mA)
Short-Circuit Current Limit (TJ = +25°CJ
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, rf'C o:;;;TA o:;;;+t25°C
Regline
-
-
Reg load -
Vo
4.75
ltB
-
AltB -
-
VN
-
AVQ/At
-
RR
-
V1-Vo
-
ro
-
isc
-
A Vo/AT
-
7.0 2.0
35 8.0
,11 4.0
.-
4.3'
-
40
-
70 2.0
30 375 -1.0
50 25
100 50
100 50 5.25
8.0
1.3 0.5 20
-
-
-
-
*Pmax = 7.5 W for Case 313 Pmax = 5.0 W for Case 79
Unit vdc
mV
mV rnV
Vdc mA mA
µV mV/1.0 k Hrs
dB Vdc m.11 mA mv;0 c
4-77
·
MC7700C Series
MC7706C ELECTRICAL Cf1ARACTERISTICS IV1=11 v. 10 = 250 mA, o0 c < TJ < +125°c unless otherwise noted.I
Characteristic
Symbol
Min
Typ
Max
Output Voltage (TJ = +25°CI
Vo
5.75
6.0
6.25
Line Regulation (TJ = -i-25°c, lo= 50 mAI 8.0 Vdc.;; V1.;; 25 Vdc 9.0 Vdc.;; V1 .;; 13 Vdc
ITJ = +25°C. lo = 250 mAI 8.0 Vdc.;; V1.;; 25 Vdc 9.0 Vdc .;; V1 .;; 13 Vdc
Regline
-
-
-
9.0
60
3.0
30
43
120
10
60
Load Regulation T J = +25°c. 5.0 mA .;;;;; lo .;;;;; 750 mA 125 mA .;;;;10 ,,;;;375 mA
Output Voltage \ 8.0 Vdc.;; V1.;; 21Vdc,5.0 mA.;; lo.;; 500 mA, P,.;; Pmax·*
Input Bias Current (TJ = +25°CI
Input Bias Current Change 8.0 Vdc.;; V1 .;; 25 Vdc 5.0 mA .;; lo .;; 750 mA
Output Noise Voltage (TA= +25°C, 10 Hz ,,;;;f:,;;;; 1QO kHz)
Long-Term Stability
Ripple Rejection (lo= 20 mA, f = 120 Hz)
Input-Output Voltage Differenlial lo= 500 mA, TJ = +25°c
Output Resistance (lo = 250 mA) Sh~rt-Circuit Current Limit (T J = +25°C)
Average Temperature Coefficient of Output Voltage lo,= 5.0 mA, o0C .;;;TA ,,;;;+125°C
Reg1oad
-
-
Vo
5.7
11B
-
AllB
-
YN
-
A Vo/At
-
RR
-
v1-Vo
-
ro
-
isc
-
A Vo/AT
-
13
120
5.0
60
-
6.3
4.3
8.0
-
1.3
-
0.5
45
-
-
24
65
-
2.0
-
35
-
275
-
-1.0
-
Unit Vdc
mV
mV mV
Vdc mA mA
µV mV/1.0k Hrs
dB Vdc mn mA mV/°C
MC7708C ELECTRICAL CHARACTERISTICS iv1=14 V. 10 o = 250 mA, 0 c < TJ < +125°c unless otherwise noted.I
Characteristic Output Voltage (TJ = +25°CI
Symbol
Min
Typ
Max
Vo
7.7
a.o
8.3
Line Regulation ITJ = +25°c. lo = 50 mA)
10.5 Vdc.;; v 1.;; 25 Vdc
11Vdc<;;V1<;;17Vdc
(TJ = +25°C, lo= 250 mA)
10.5 Vdc..;; V1 .;; 25 Vdc 11 Vdc..;; V1 .;; 17 Vdc
Reg line
-
-
-
-
12
80
5.0
40
50
160
22
80
Load Regulation T J = +25°C, 5.0 mA .;;;;; lo .;;;;; 750 mA 125 mA .;;;;10 ..;;;;375 mA
Output Voltage 10.5 Vdc.;; Vi..;; 23 Vdc, 5.p m~.;; lo.;; 500 mA, P <;; Pmax*
Reg1oad -
-
Vo
7.6
26
16P
9.0
80
-
8.4
Input Bias Current ITJ = t25°CI
11B
-
4.3
8.0
Input Bias Current Change 10.5 Vdc.;; V1.;; 25 Vdc
5.0 mA .;;;;10 ,,;;;750 mA
Al1B
-
-
-
1.0
-
p.5
, Output Noise Voltage (TA= +25°C, 10 Hz ,,;;;f:,;;;; 100 kHz) Long-Term Stability Ripple Rejection llo = 20 mA, f = 120 Hz) Input-Output Voltage Differential lo = 500 mA, TJ = +25°c Output Resistance llo = 250 mA) Short-Circuit Current Limit (TJ = +25°C) Average Temperature Coefficient of Output Voltage lo= 5.0 mA, o0C ,,;;;TA ,,;;;+125°C
VN
-
A Vo/At
-
RR·
-
V1-Vo
-
ro
-
isc
-
A Vo/AT
-
52
-
-
32
62
-
2.0
-
40
-
225
-
-1.0
-
*Pmax = 7.5 W for Case 313 Pmax = 5.0 W for Case 79
Unit Vdc
mV
mV mV
Vdc mA mA
µV mV/1.0k Hrs
dB Vdc mn mA
mvt0 c
4-78
MC7700C Series
MC7712C ELECTRICAL CHARACTERISTICS (V1=19 v. lo= 250 mA, o0 c < TJ < +125°C unless otherwise noted.l
Characteristic
Symbol
Min
Typ
Max
Output Voltage (TJ = +25°C)
Vo
11.5
12
12.5
Line Regulation (TJ = +25°c, lo = 50 mA) 14.5 Vdc,,;;; V1 .;; 30 Vdc 16Vdc,,;;;v1,,;;;22Vdc
(TJ = +25°c. lo= 250 mAl 14.5 Vdc,,;;; V1 .;; 30 Vdc 16Vdc,,;;;v 1.-;.22Vdc
Load Regulation T J = +25°C, 5.0 mA ~lo~ 750 mA 125 mA ~lo ~375 mA
Reg1ine
-
-
-
Regload
--
-
13
120
6.0
60
55
240
24
120
46
240
17
120
Output Voltage 14.5 Vdc.;;: V1 .-;. 27 Vdc, 5.0 mA .-;. lo<;; 500 mA, P .-;. Pmax*
Input Bias Current (TJ ~ +25°C)
Input Bias Current Change 14,5 Vdc .-;. V1 .-;. 30 Vdc 5.0 mA ~!.Q. ~750 mA
Output Noise Voltage (TA = +25°C, 10 Hz ~f ~ 100 kHz)
Long-Term Stability
Vo
11.4
-
12.6
l1B
-
AltB
-
-
VN
-
A Vo/At
-
4.4
8.0
-
1.0
-
0.5
75
--
-
48
Ripple Rejection (lo= 20 mA, f = 120 Hz) Input-Output Voltage Differential
lo = 500 mA, T J = +25°C
Output Resistance (lo = 250 mA)
Short-Circuit Current Limit (TJ = +25°C)
Average Temperature Coefficient of Output Voltage lo = 5.0 mA, 0°C ~TA ~ +125°C
RR
-
V1-VO
-
'
ro
-
1sc
-
A Vo/AT
-
61
-
2.0
-
75
-
175
-
..;1.0
-
Unit Vdc
mV
mV mV
Vdc mA mA
·µV
mV/1.0k Hrs dB Vdc mn mA
mV/°C
MC7715.C ELECTRICAL CHARACTERISTICS !V1 = 23 v. lo= o 250 mA, 0 c < TJ < +125°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Output Voltage (TJ = +25°C)
Line Regulation
,.
(TJ = +25°c. lo= 50 mA)
17.5 Vdc <;; V1 <;; 30 Vdc
20 Vdc <;; VI ,,;;; 26 Vdc
ITJ = +25°C, lo= 250 mA)
17.5 Vdc .-;. V1,,;;; 30 Vdc
20 Vdc,,;;; V1 ,,;;; 26 Vdc
Vo
14.4
15
15.6
Regline
-
14
150
-
6.0
75
-
57
300
-
27
150
Load Regulation TJ = +25°C, 5.0 mA ~lo ~750 mA 125 mA.~lo ~375 mA
Reg1oad -
-
68
300
25
150
Output Voltage 17.5 Vdc,,;;; Vi,,;;; 30 Vdc, 5.0 mA,,;;; lo,,;;; 500 mA, P,,;;; Pmax*
Vo
14.25
-
15.75
Input Bias Current (TJ = +25°C)
l1B
-
4.4
8.0
Input Bias Current Change 17.5 Vdc,,;;; Vi.;;; 30 Vdc 5.0 mA .;:; lo .-;. 750 mA
Al1B -
-
-
1.0
-
0.5
Output Noise Voltage (TA.= +25°C, 10 Hz ~ f ~ 100 kHz) Long-Term Stability
VN
-
A Vo/At
-
90
-
-
60
Ripple Rejection (lo= 20 mA, f = 120 Hz)
RR
-
60
-
Input-Output Voltage Differential lo= 500 mA, TJ = +25°C ·
V1-Vo
-
2.0
-
Output Resistance (lo = 250 mA)
Short-Circuit Current Limit (TJ = +25°C)
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, rf'C ~TA ~+125°C
ro
-
95
-
isc
-
115
-
A Vo/AT
-
-1.0
-
*Pmax = 7.5 W tor Case 313
Rmax = 5.0 W for Gase 79
Unit Vdc
mV
mV mV
Vdc mA mA
µV mV/1;Qk Hrs
dB Vdc mn mA mvt0 c
4-79
MC7700C Series
·
MC7718C ELECTRICAL CHARACTERISTICS IV1 = 27 V, to= 250 mA, o0 c < TJ < +125°c unless otherwise noted.I
Characteristic
Symbol
Min
Typ
Max
Output Voltage (TJ = +25°C)
Vo
17.3
18
18.7
Line Regulation ITJ = +25°c, lo= 50 mAl 21 Vdc.;; V1 .;; 33 Vdc 24 Vdc .;; Vt .;; 30 Vdc
Reg line
-
-
25
180
10
.90
ITJ = +25°c, lo = 250 mAl 21 Vdc .;; V1 .;; 33 Vdc 24 Vdc.;; V1.;; 30 Vdc
-
90
360
-
50
180
Load Regulation T J = +25°c, 5.0 mA :s;;;; lo :s;;;; 500 mA 125 mA :s;;;;10 ,s;;;;375 mA
Reg1oad
-
-
110
360
55
18.0
Output Voltage 21 Vdc.;; V_j.;;; 33 Vdc, 5.0 mA.;; lo.;; 500.mA, P.;; Pmax*
Input Bias Current (TJ = +25°C)
Vo
17 .1
-
18.9
11s
-
4.5
8.0
Input Bias Current Change 21 Vdc.;;; V1 .;; 33 Vdc 5.0 mA :s;;;;10 ,s;;;;500 mA
<?utput Noise Voltage (TA= +25°C, 10 Hz :s;;;;f :s;;;; 100 kHz)
Long·Term Stability
Al1s -
-
VN
-
A Vo/At
-
-
1.0
.-
0.5
110
-
-
72
Ripple Rejection (lo= 20 mA, f = 120 Hz)
RR
-
59
-
Input-Output Voltage Differential lo= 500 mA, TJ = +25°C
V1-)'o
-
2.0
-
Output Resistance (lo = 250 mA)
Short-Circuit Current Limit (T J = +25°C)
ro
-
110
-
lsc
-
100
-
Average Temperature Coefficient of Output ,Voltage lo= 5.0 mA, 0°C :s;;;;TA ,s;;;;+125°C
A Vo/AT
-
-1.0
-
Unit Vdc
mV
mV mV
Vdc mA mA
µV mV/1.0k Hrs
dB Vdc mn mA mV/°C
v, MC7720C ELECTRICAL CHARACTERISTICS (V1 = 29 lo= 250 mA ooc < TJ < +125°c unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Output Voltage (TJ = +25°C)
Vo
19.2
20
20.8
Line'Regulation (TJ = +25°C, lo= 50 mAl 23 Vdc .;;; Vi .;;; 35 Vdc 26 Vdc .;; VI .;; 32 Vdc ITJ ~ +25°C, lo= 250 mAl 23 Vdc .; VI .;;; 35 Vdc 26 Vdc.;;; Vi .;; 32 Vdc
Reg1ine
-
-
27
200
11
100
100
400
56
200
Load Regulation T J = +25°C, 5.0 mA :s;;;; lo :s;;;; 500 mA 125 mA :s;;;;10 :s;;;;375mA
Reg load -
-
123
400
65
200
Output Voltage 23 Vdc.;; Vi.;;; 35 Vdc, 5.0 mA.;;; lo.;; 500 mA, P.;;; Pmax*
Input Bias Current (TJ = +25°C)
Input Bias Current Change 23 Vdc .;;; VI .;; 35 Vdc 5.0 mA :s;;;;10 :s;;;;750 mA
Output Noise Voltage (TA = +25°c, 10 Hz :s;;;; f :s;;;; 100 kHz)
Vo
19
'1s
-
Alts -
-
VN
-
-
21
4.5 .
8.0
-
1.0
-
0.5
130
-
Long-Term Stability
I
Ripple Rtijection (lo= 20 mA, f = 120 Hz)
Input-Output Voltage Differential lo= soo mA, TJ = +25°c
Output Resistance (lo= 250 mA)
Short-Circuit Current Limit (TJ = +25°C)
Average Temperature Coefficient of Output Voltage
IQ = 5.0 mA, D°C :s;;;;TA ,s;;;; +125°C
A Vo/At
-
RR
-
V1-Vo
-
ro
-
.'sc
-
A Vo/AT
-
-
80
58
-
2.0
-
123
-
90
-
-1.0
-
*Pmax = 7.5 W for Case 313 Pmax = 5.0 W for Case 79
Unit Vdc
mV
mV mV
Vdc mA mA
µV mV/1.0kHrs
dB Vdc mn mA mvt0 c
4-80
MC7700C Series
MC7724C ELECTRICAL CHARACTERISTICS (V1=33, lo= 250 mA, o0 c < TJ < +125°c unless otherwise noted.)
Characteristic
Output Voltage (TJ = +25°C)
Line Regulation (TJ = +25°C, lo= 50 mA)
-
27 Vdc ,;;; Vi .;;; 38 Vdc
30 Vdc .;; VI .;;; 36 Vdc
(TJ = +25°c, lo = 250 mA)
27 Vdc .;;; VI .;;; 38 Vdc 30 Vdc .;; VI ..;;; 36 Vdc
Load Regulation TJ = +25°c, 5.0 mA <lo <500 mA 125 mA <10 <375 mA
Output Voltage 27 Vdc.;;; Vi,;;; 38 Vdc, 5.0 mA.;;; lo"'· 500 mA,P..;;; Pmax'
Input Bias Current (Tj = +25°C)
Input Bias Current Change 27 Vdc <Vi <38 Vdc 5.0 mA <10 <500 mA
Output Noise Voltage (TA= +25°C, 10 Hz <f < 100 kHz)
Long-Term Stability
Ripple Rejection (lo= 20 mA, f = 120 Hz)
Input-Output Voltage Differential lo= 500 mA, TJ = +25°C
Output Resistance Oo = 250 mA)
Short-Circuit Current Limit (TJ = +25°C)
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, OOc <TA <+125°C
Symbol Vo
Regline
Reg load
Vo 11B .:i.11B
VN t.Vo/t.t
RR V1-Vo
ro lsc t.Vo/t.T
Min 23
-
-
-
-
22.8
-
-
-
-
-
-
-
Typ 24
31 14
118 70
150 85.
-
'4.6
-
-
170
--
56 2.0
150 150 -1.0
Max 25
240 12()
480 240
480 240 25.2
8.0
1.0 0.5 96
-
-
-
-
*Pmax = 7.5 W for Case 313 Pmax = 5.0 W for Case 79
THERMAL INFORMATION
Unit Vdc
mV mV mV
Vdc
mA mA
µV mV/1.0k Hrs
dB Vdc
·
m.n mA mV/O'C
The maximum power consumption an integrated circuit can tolerate at a g·iven operating ambient temperature, can be found from the equation:
Where: Po(TA) = Power Dissipation allowable at a given operating ambient temperature.
T J(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section TA= Maximum Desired Operating Ambient Temperature ROJA (Typ) = Typical Thermal Resistance Junction to Ambient Is= Total Supply Current
DEFINITIONS
Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation - The change in output voltage for a change in
load curren.t at constan-t chip temperature.
Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.
Input Bias Current - That part of the input current that is not delivered to the load.
Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.
4-81
MC7700C Series
TYPICAL PERFORMANCE CURVES
FIGURE 1 - WORST CASE POWER DISSIPATION AMBIENT TEMPERATURE T0-220 (CASE 313i
FIGURE 2 -WORST CASE POWER DISSIPATION AMBIENT TEMPERATURE T0-39 (CASE 79)
·
cc
sLU:
0.5 0.4
~ 0.3
cP 0.2 I- VJC =50 C/W
~1_
I- Po(1AX) =j-5 w~·1-----1---+--+----+--__,_-.__.l..:.l.s..:..----1
0.1 .___..___..___.___.___.___..____._ ___.__,...__.___;.....,
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (OC)
FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE
1.25~-~-'--~---------------
""LU
cc
1.00
LU
Q.
::;;
~
I-
ffi
0.75
~
8
I- 0.50 ~
I-
;:)
0
!2 0.25
15 18 21 24 27 30 V1-Vo, INPUT-OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)
TA. AMBIENT TEMPERATURE (OC)
FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY
lOOr--r---r-r-r--r-rn-r--r--r~T"-rTTTr----.--,-,.-,--rT".;..,..,
901---+--+-1-+++-1-1+---+-+-+-+++H+--+--+-+-+.+-+.~
801---+--+-1-+++-1-1+---+-+-+-+++H+--+--+-+-+.+-+.~
~
z
1ot::::±::±~~FH---~rriTTfH~~;;;;;;:-t-l~ttirttt
~ :l---+--+-IH-+-+-l++----+----+-1--+-+++++---~~---+~""'l-+~+~~~f-!4
itLU 40
a: v 30 l---+.--1--1--1-+-1-1-1+----+--+-+-++-1-+4-I- V1=10
-+-
~
~=UV
20
10=20mA-+-
101---+-+--4-HH+++---+---+-++-++1++---~+-~+--4~-+-~
OL--.L..-...1-1-1...~i.u..--.1..--1.......1....L..J..j..J,.,L.L..--..1...-...1-.1..-1...u..w
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
4-82
MC7700C Series
APPLICATIONS INFORMATION
Design Considerations The MC7700C Series of fixed voltage regulators are designed
with· Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that·fimits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor i_f the regulator is connected
to the 'power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chbsen. The bypass capacitor should be mounted with the shorte~t possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops
since the regulator has no external sense lead.
FIGURE 5 - CURRENT REGULATOR
lnput.=t~L·-- 0.33µFt
Constant
Current to
lo
Grounded Load
The MC7700C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7705C is chosen in this application. Resistor R determines the current as follows:
IQ= 1.5 mA over line and load changes
For example, a 500 mA current source would require R to be a 10-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.
FIGURE 7 - CURRENT BOOST REGULATOR
Input
MJ2955 or Equiv
FIGURE 6 ADJUSTABLE OUTPUT REGULATOR >R Output
10 k
Vo,7.0Vto20V
v 1N - v 0 ;;..2.0 v
The addition of .an operational. amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with .this arrangement is 2.0 volts greater than the regulator voltage.
FIGURE 8 - SHORT-CIRCUIT PROTECTION
Input
MJ2955 or Equiv
·
XX= 2 digits of tYPe number indicating voltage.
The MC7700C series Cjiln be current boosted-with a PNP transis· tor. The MJ2955 provides current to 5.0 amperes. Resistor. R
in conjunction with the Vee of the PNP determines when the
pass transistor begins conc:tuctmg; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by
Vee of the pass transistor.
R Output
XX= 2 digits of type number indicating voltage.
The circuit of Figure. 7 can be modified to provide supply protec· tion against short circ~its by adding a short-circuit sense resistor, Rsc 1 and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the threeterminal regulator. Therefore, a tw0-ampere plastic power transistor is specified.
4-83
MC7800C
Series
·
MC7800C SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS
The MC7800C Series of three-terminal positive voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. Available in seven fixed output voltage options from 5.0to-24 volts, these regulators employ internal current limiting, thermal shutdown, and safe area compensation ...:.. making them essentially blow-out proof. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. The last two digits of the part number indicate nominal output voltage .
· Output Current in Excess of 1.0 Ampere
· No External. Components Required · Internal Thermal Overload Protection · Internal Short-Circuit Current Limiting
· Output Transistor Safe-Area Compensation
· Packaged in the Plastic Case 313 and Case 11 (T0-220 and Hermetic T0-3)
100 k 500
SCHEMATIC DIAGRAM
THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS
KSUFFIX METAL PACKAGE
CASE 11-01 (T0-3 TYPE)
Pins 1 and 2 electrically isolated from case. Case is third electrical connection.
T SUFFIX PLASTIC PACKAGE
CASE 313 T0-220 Type
Pin 1. Input 2. Ground 3. Output
3.3 k
2.7 k 500
Case is ground for Case 11, pin 3 for Case 199-04.
MC7805C 5.0 Volts MC7806C 6.0 Volts
TYPE NO./VOLTAGE
MC7808C 8.0 Volts MC7812C 12 Volts MC7815C 15 Volts
MC7818C 18 Volts MC7824C 24 Volts
STANDARD APPLICATION
lnput~MC78XXC. Output
CQi~n*µF
·· Co
A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output 'voltage even during the low point on the input ripple voltage.
XX = these two digits of the type number indi-
cate voltage.
* = Cin is required if regulator is located an appreciable distance from power supply filter.
** =Co is not needed for stability; however,
it does improve transient response.
XX indicates nominal voltage
ORDERING INFORMATION
DEVICE TEMPERATURE RANGE
MC78XXCK MC78XXCT
T J = o° C to +150° C TJ=o0 c10+1so0 c
PACKAGE Metal Power Plastic Power
4-84.
MC7800C Series
MC7800C Seri.es MAXIMUM RATINGS (TA=+ 5
Rating
Input Voltage (5.0 V -18 V) (24 Vl
Power Dissipation and Thermal Characteristics Plastic. Package TA= +25°c Derate above TA = +25°C Thermal Resistance, Junction to Air
Tc= +25°c Derate above Tc= +95°C (See Figure 1l Thermal Resistance, Junction to Case
Metal Package TA= +25°c Derate above TA = +25°C Thermal Resistance, Junction to Air
Tc= +25°C Derate above Tc= +65°C (See Figure 2) Thermal Resistance, Junction to Case
Storage Junc,tion Temperature Range
Operating Junction Temperature Range
un ess ot erw1se noted.)
Symbol Vin
Po 1/0JA
OJA Po 110Jc OJC
Po 1/0JA OJA
Po 110Jc
OJC Tstg TJ
Value 35 40,
Internally Limited 15.4 65
Internally Limited 200 5.0
Internally Limited 22.5 45·
Internally Limited 182 5.5
-65 to +150 0 to +150
Unit Vdc
Watts mwt0 c 0 ctw Watts mW/0 c· 0 ctw
Watts mW/0 c 0 ctw Watts mW/°C
0 ctw oc OC
MC7805C ELECTRICAL CHARACTERISTICS (Vin= 10 v, lo= 500 mA, o0 c <TJ < +125°c unless otherwise noted.)
Characteristic Output Voltage (TJ = +25°C)
~bol
Min
Tu.P..
Max
Unit
Vo
4.8
5.0
5.2
Vdc
Input Regulation (TJ = +25°C, lo= 100 mA) 7.0 Vdc SVin :!'.25 Vdc 8:0 Vdc SVin::;; 12 Vdc (TJ = +25°C, lo = 500 mA) 7.0 Vdc ~Vin::;; 25 Vdc 8.0 Vdc SVin S 12 Vdc
Reg in
mV
-
-
7.0
50
-
2.0
25
-
35
100
-
8.0
50
Load Regulation TJ = +25°C, 5.0 mA:S: lo :5: 1.5 A 250 mA :S:lo s750 mA
Regload -
-
-
mV
11
100
4.0
50
Output Voltage (7.0 Vdc S:Vin S20 Vdc, 5.0 mA s lo s 1.0A,Ps15W)
Vo
4.75
-
Vdc 5.25
Quiescent Current (TJ = +25°C)
19
-
4.3
8.0
mA
Ou iescent Current Change 7.0 Vdc .SVin ~25 Vdc 5.0mAS:lo S1.0A
Al9 -
mA
-
1.3
-
0.5
Output Noise Voltage (TA= +25°c, 10 Hz Sf :5:100 kHz)
VN
-
40
-
µV
Long-Term Stability
Ripple Rejection (lo= 20 mA, f = 120 Hz)
A Vo/At
-
RR
-
-
20
i:nV/1.0k HR_§
70
-
dB
Input-Output Voltage Differential (lo= 1.0 A, TJ = +25°C)
Output Resistance (lo= 500 mA)
Short-Circuit Current Limit (Tj = +25°C)
Average Temperature Coefficient of Output Voltage IQ= 5.0mA, 0°C ~TA~+125°C
Vin-Vo
Vdc
-
2.0
-
R....Q.
-
30
-
mn
.!s.c_
-
TC Vo -
750
-
mA
mvt0 c
-1.0
-
I
4-85
MC7800C Series
MC7806C ELECTRICAL CHARACTERISTICS (Vin= 11 V, lo= 500 mA,0°C<TJ < +125°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°c, lo= 100 mAl 8.0 Vdc S Vin !5:25 Vdc 9.0 Vdc SVin S 13 Vdc (TJ = +25°C, lo = 500 mA)
8.0 Vdc $Vin s 25 Vdc
9.0 Vdc S Vin S 13 Vdc
Vo
5.75
6.0
6.25
Vdc
Regin
mV
-
9.0
60
-
3.0
30
-
43
120
-
10
60
Load Regulation T J = +25°C, 5.0 mA ~lo~ 1.5 A.
250mA S lo 5750 mA
Regload -
-
mV
13
120
5.0
60
Output Voltage
Ps (8.0VdcSVinS 21Vdc,5.0 mASloc; 1.0 A, 15 W)
Vo
5.7
-
Vdc 6.3
Quiescent Current (TJ = +25°cJ
Quiescent Current Change 8.0 Vdc S Vin:$ 25 Vdc 5.0mASloS1.0 A
Is
-
Ala -
4.3
8.0
niA
mA
-
1.3
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz$ f '$100 kHz) Long-Term Stability
VN
-
A Vo/At
-
45
-
µV
·-
24
mV/1.0kHRS
Ripple Rejection (lo= 20 mA, f = 120 Hz)
Input-Output Voltage Differential (lo= 1.0 A, TJ = +25°C)
RR
-
65
-
dB
Vin-Vo
Vdc
-
2.0
-
Output Resistance (lo= 500.mA)
Short-Circuit Current Limit (TJ = +25°C)
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, 0°C ST A ~+125°C
Ro
-
isc
-
TCVo -
35
-
mn
550
-
mA
mV/0 c
-1.0
-
MC7808C ELECTRICAL CHARACTERISTICS (Vin= 14 v, lo= 500 mA, o0 c <TJ <+125°c unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°C, lo = 100 mA) 10.5 Vdc S Vin S 25 Vdc
11 Vdc s; Vin S 17 Vdc
(TJ = +25°C, lo = 500 mA)
10.5 Vdc S Vin .s; 25 Vdc
11 Vdc SVin S17Vdc
Vo
7.7
8.0
8.3
Vdc
Regin
mV
I
-
-·
12
80
-
5.0
40
-
50
160
-
22
80
Load Regulation TJ = +25°C, 5.0 mAS lo S1.5 A
s 250 mA lo S 750 mA
Regload -
-
mV
26
160
9.0
80
Output Voltage (10.5 Vdc SVin S 23 Vdc, 5.0 mA S lo S 1.0 A, P $15 W)
Vo
7_5
-
Vdc 8.4
Quiescent Current (TJ = +25°C)
Quiescent Current Change 10.5 Vdc S Vin S 25 Vdc 5.0 mASlo~ 1.0 A
Is
-
Ala -
4.3
8.0
mA
mA
-
1.0
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz Sf ~ 100 kHz) Long-Term Stability Ripple Rejection (lo= 20 mA, f = 120 Hz) lnput,Output Voltage Differential
(lo= 1.0 A, TJ = +25°C)
VN
-
A Vo/At
-
RR
-
Vin-Vo -
52
-
µV
-
32 mV/1.0kHRS
62
-
dB
Vdc
2.0
-
Output Resistance (lo= 500 mA) Short-Circuit Current Limit (TJ = +25°C) Average Temperature Coefficie_nt of Output Voltage
lo= 5.0 mA, 0°C STA'."> +125°C
Ro
-
lsc
-
TCVo -
40 450
-1.0
-
mfl.
-
mA
mV/°C -
4-86
MC7800C Series
< MC7812C ELECTRICAL CHARACTE RiSTICS I Vin = 19 v. lo = 500 mA, o0 c <TJ +125°c, unies~ otherwise noted.I
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°c, lo= 100 mAl 14.5 Vdc :S:Vin S 30 Vdc 16 Vdc SVin S22 Vdc
(TJ = +25°c. lo =500 mAl
14.5 Vdc SVin S30 Vdc 16 Vdc ~Vin S 22 Vdc
Vo
11.5
12
12.5
Vdc
Regin
mV
-
13
120
-
6.0
60
-
55
240
-
24
120
Load Regulation
TJ = +25°C, 5.0 mA S lo S 1.5 A
250 mA s lo S750 mA
Reg1oad
-
mV
46
240
17
120
Output Voltage
(14.5 Vdc SVin s;27 Vdc, 5.0 mA S lo S1.0 A, P s;15 W) Quiescent Current (TJ =+25°ci
Quiescent Current Change 14.5 Vdc :S:Vin S30 Vdc
5.0 mA s 10 s; 1.0 A
Output Noise Voltage (TA= +25°C, 10 Hz Sf ~lad kHz)
.Long-Term Stability
Ripple Rejection tlo = 20 mA, f = 120 Hz)
Input-Output Voltage Differential (lo= 1.0 A, TJ = +25°C)
Output Resistance tlo = 500 mA) Short-Circuit Current Limit (TJ = +25°Cl
Average Temperature Coefficient of Output Voltage
o llo = 5.0 mA, 0 c STA s;+125°Cl
Vo
11.4
--
19
-
4.4
Al13
-
-
-
-
VN
-
75
A Vo/At
-
-
RR
-
61
Vin-Vo
-
2.0
Ro
-
75
isc
-
350
TC Vo -
-1.0
12.6 8.0
1.0 0.5
-
48
-
-
-
-
Vdc
mA mA
µV mV/1.0kHRS
dB Vdc
mn mA mv/0 c
MC7815C ELECTRICAL CHARACTERISTICS IVin = 23 v, 10 = 500 mA, o0 c <TJ <+125°c, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = '+25°C, lo.= 100 mA) 17 ,5 Vdc s;vin s; 30 Vdc 20 Vdc SVin :5726 Vdc
tTJ = +25°c, lo= 500 mAl
11.5 Vdc .s-Vin s 30 Vdc
20 Vdc :S:Vin :s: 26 Vdc
Vo
14.4
15
15.6.
Vdc
Re9in
mV
-
14
150
-
6.0
75
-
57
300
-
27
150
Load Regulation TJ = +25°C, 5.0 mA ~lo s;1.5 A
250 mA :S:lo s;150 mA
Reg1oad
-
mV
68
300
25
150
Output Voltage (17.5 Vdc s;Vin S30 Vdc, 5.0 mA S lo s; 1.0A,P~15 W)
Quiescent Current (TJ = +2S°C)
Quiescent Current Change 17.5 Vdc s;Vin S30 Vdc 5.0 mA :S:lo S 1.0 A
Output .Noise Voltage (TA = +25°C, 10 Hz sf s 100 kHz)
Long-Term St~ility
.·
Ripple Rejection tlo = 20 mA, f = 120 Hz)
Vo
14.25
-
Vdc 15.75
19
-
4.4
8.0
mA
Ale
-
-
mA
-
1.0
-
0.5
Vi\I
-
AVC)/At
-
90.
-
µV
-
60 mV/1.0kHRS
RR
-
60
-
dB
Input-Output Voltage Differential
Oo = 1.0 A, TJ = +25°C)
Output Resistance tlo = 500 mA)
Short-Circuit Current Limit (T,J = +25°C)
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, OOc s;TA -s+125°C
Vin-Vo
-
Ro
-
isc
-
TCVo
-
2.0 95 230
-1.0
Vdc
-
-
mn
-
mA
mV/°C
-
·
4-87
MC7800C Series
·
MC7818C ELECTRICAL CHARACTERISTICS (Vin= 27 v, lo= 500 mA, o0 c <TJ < +125°C, unless otherwise noted.)
Characteristic
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°c. lo= 100 mA) 21 Vdc $'.Vin $'.33 Vdc 24 Vdc $'.Vin $'.30 Vdc (TJ = +25°c. lo= 500 mA) 21 Vdc:S:V;n$'.33Vdc 24 Vdc $'.Vin $'.30 Vdc
Load Regulation TJ = +25°C, 5.0mA $'.lo $'.1.0 A 250 mA:S:lo $'. 750 mA
Output Voltage (21 Vdc $'.Vin$'. 33 Vdc, 5.0 mA$'. lo $'.1.0 A, P $'.15 W)
Quiescent Current (TJ = +25°C)
Quiescent Current Change 21 Vdc $'.Vin$'. 33 Vdc 5.0 mA $'.lo $'.1.0 A
Output Noise Voltage (TA= +25°C, 10 Hz sf $'.100 kHz)
Long,Term Stability
Ripple Rejection (lo= 20 mA. f = 120 Hz.)
Input-Output Voltage Differential (lo= 1.0 A, TJ = +25°C)
Output Resistance (lo= 500 mA)
Short-Circuit Current Limit (TJ = +25°c)
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, 0°C $'.TA :"':+125°C
Symbol Vo
Regin
Min 17.3
-
-
-
-
Regload
-
-
Vo 17.1
Is
-
.6.ls
-
VN
-
.6.Vo/.6.t
-
RR
-
Vin-Vo
-
Ro
-
lsc
-
TCVo -
Typ 18
25 10
90 50
110 55
4.5
110
-
59
2.0 110 200
-1.0. ...,,.
Max 18.7
Unit Vdc mV
180 90
360 180
mV 360 180
Vdc 18.9
8.0
mA
mA 1.0 0.5
-
µV
72
mV/1.0kHRS
-
dB
Vdc
-
-
mn
-
mA
mV/°C
-
v, o MC7824C ELECTRICAL CHARACTERISTICS!Vin = 33 lo= 500 mA, 0 c<1TJ <+125°c, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
23
24
25
Vdc
Input Regulation (TJ = +25°C, lo= 100 mA) 27 Vdc $'.Vin$'. 38 Vdc 30 Vdc $'.Vin$'. 36 Vdc (TJ = +25°C, lo= 500 mA) 27 Vdc SVin :s;38 Vdc 30 Vdc S:Vin :s;36 Vdc
Regin
-
-
-
-
mV
31
240
14
120
118
480
70
240
Load Regulation TJ = +25°C, 5.0 mA S lo S 1.0 A 250 mA S lo S750 mA
Regload
-
-
mV
I
150
480
85
240
Output Voltage
(27 Vdc S Vin s; 38 Vdc, 5.0 mA :s: lo S 1.0A,P.S15 W)
Quiescent Current (TJ = +25°C)
Vo
Vdc
22.8
-
25.2
Is
-
' 4.6
8.0
mA
Quiescent Current Change 27 Vdc $'.Vin $'.38 Vdc
5.0 mA Slo .s 1.0 A
.6.ls
-
-
mA
-
1.0
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz :S:f :S: 100 kHz)
Long-Term Stability
Ripple Rejection (lo= 20 mA, f = 120 Hz)
input-Output Voltage Differential
(lo= 1.0 A, TJ.= +25°C)
Output Resistance (lo= 500 mA)
Short-Circuit Current Limit (TJ = +25°C)
'
Average Temperature·Coefficient of Output Voltage
lo= 5.0 mA, o0 c STA S+125°C
VN
-
.6.Vo/.6.t
-
RR
-
V;n-Vo
-
Ro
-
lsc
-
TCVo
-
170
-
µV:
-
96 mV/1.0kHRS
56
-
dB
2.0
-
Vdc
150
-
mn
1~0
-
mA
mV/°C
-1.0
-
4-88
MC7800C Series
TYPICAL CHARACTERISTICS (TA = +25°C unless otherwise noted.)
FIGURE 1 ..;. WORST CASE POWER DISSIPATION v~rsus AMBIENT TEMPERATURE (Case 313)
~ ~"'O 201.-----.---.,.-----r---.---.----.,T,---,....--.,..---.-~
t--f--- J 10 f---+---=f'-....t-1-----+-(JH
~ I
c;;
I-'
5.0
~"'s·ar./w~ r----.. C!1t;~ +-__.,IS~-+--<
I-'
~
2
;0:::
4.0 3.0
t==~~==!==jt~~1:::'.........._-'l".__50 C/w'b.
~~
2.0
~
f\.._
~ ~
1.0
5
a: 0.5
~ 0.4
f:2
0.3 OJc = 5°CIW
cP 0.2 OJA= 650C/W
TJMAX =15ooc
0·125
50
75
100
125
150
TA, AMBIENT TEMPERATURE (OC)
FIGURE 3- INPUT OUTPUT DIFFERENTIAL AS A FUNCTION OF JUNCTION TEMPERATURE
2.5
....
t----1
~
- t----1
l
I
IQ - 1.0 A ~
1
IQ - 500 m.JA
r -t--
2l
IQ= 200 mA"'
lo;20mA~
±
lo= OmA t----
l
t- tiVo = 2% of Vo
0 ll
0
25
50
1
75
100
125
Tj, JUNCTION TEMPERATURE (OC)
FIGURE 2 -WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE (Case 11)
2°F=t=:::+:=:r=T~T,-;T-ll-ll
10-
-
oHs"'o
-,--_~oHs"'so--<--+--+--~
-~~~-
5.0 t--11--.:::::p...._-i....=-1---J o
C41t__._~____..._.___._ _.
4.0
3.oi--
-:-----
' l J'r::H:v:s-:o"s' 1H50lC+4,1-t""~-~ '+----..-...-;;;1; ,~ ..,._--+---i
~ 2.0
11.0
~k~ ~-~ "' \
~
0.5 0.4
ll------++------++--------++----++----1l------ff--++----++------+--+~"~1~r~-~-~~~-r----ii
f:2
3 0. UJc = 5.5° C/W
~
cP 0.2 UJA = 45° C/W
TJ MAX= 1500 C 0·12.__ _ _5_0_ _.__.7...5-~-1"""00_ _.__ _.12._5_ _.....____,150
5
~A.AMBIENTTEMPERATURE (OC)
FIGURE 4 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE
·
en
~ 2.0
~
,______,,It---+--+--+-'------
~
i 1.5 l--ITf-+--+--+--+-"'---+--+--~-""'-,..+----+--~
i3
g ~
1.0
1---'-+---+--+-----'+--+---+----'"'lr----+---+-~""1
.::? 0.5
3.0 6.0 9.0 12 15 18 21 24 27 30 Vin-Vo. INPUT,OUTPUT VOLTAGE DIFFERENTIAL (VOL TS)
FIGURE 5 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY
100
90
~ 80
z 70
0
i 60 50
UJ
a:-cc..'.. 40 30 a:-
Vin= 10 V -h
a:
20
1----+-+-+-++++-1+--+---1f-+-+-4-++..+--
Vo=5.0V lo=20mA--t-
10
-1 _l_[_
0
10
100
1.0 k
10 k
I, FREQUENCY (Hz)
FIGURE 6 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLT AG ES
~~_# Yin t- MC7805 10V
MC7806 11 v 50 1- MC7808 14V
MC7812 19 v 1- MC7815 23 v
MC7818 27 v 40 MC7824 33 v
4.0 6.0 8.0 10 12 14 16 18 20 22 24 . Vo, OUTPUT VOLTAGE (VOLTS)
4-89
MC7800C Series
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 1 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE
620 i---+---+---+---+---+----T-1---T-1-----J
~
~--+---+---!----+--+--Vin= 11 V ~
o
Vo= 6.0V
?:. 6.10 1-----4---+---+------+--->-- IQ = 20 mA - - -
. ~
i--_
~ -!--+-. ...... _ > 6.00 t-----+--+----+--+=-......t~ :::---+----+---l
I-
~
""-, 1-
:::i
5.90 1----+---+----4---~-4-----l----l.-__;.1_J
0
6
>
I
5.80 ~--+---+---1----+--+---1-------1--_.T,_j
I
-25
+25 +50 +75 +100 +125 +150 +175
TJ, JUNCTION TEMPERATURE (DC)
FIGURE 9 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE
'a 5oo
t= f = 120 Hz --+---+---+---+--4---l---l
.!
~
300
1---+- IQ = 500 mA 1---+-CL=OµF
_+---+---+--+---1---1---l
z 200
~w~
1---+--+---+---+--+.--+---l--l---~1-~-d
-
~
100
__..+-----
~
~
50
0
~ 30
~
;.,.
.Y
20
10 I
I
4.0
8.0
12
16
20
24
Vo. OUTPUT VOLTAGE (VOLTS)
FIGURE 8 - QUIESCENT CURRENT AS A
.
FUNCTION OF TEMPERATURE
4.8 ,.--.,----r--~-~-~------~----
1I 46
·
Vin= 10 V
t-
1--;--+---+--+--+---lf---~ Vo = 5.0 V -
4.4
to= 20 mA
~ 4.2 t-p--+--+----~l--""'lo.rs::,---+---1--1---+---+---~
=:s:J ~3
4.0
t---t--+---+--+--+--"1....--1---+---+---~
"{._
3.8 .___ _,___ _.__ _.__ _.__ __,__ _.._ _,___~-..l---'
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (DC)
DEFINITIONS
Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation - The change in output voltage for a change in load current at constant chip temperature.
Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.
Quiescent Current - That part of the input current that is not
delivered to the load.
·
Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified fre- . quency range.
Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.
THERMAL INFORMATION
The maximum power' consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
PD(TA) =~TJJtAm(aTx)y-pT)A >vi Is - Vo lo
Where: PD(TA) = Power Dissipation allowable at a given operating ambient temperature.
T J(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section TA = Maximum Desired Operating Ambient Temperature ROJA (Typ) = Typical Thermal Resistance Junction to Ambient
Is = Total Supply Current
4-90
MC7800C Series
APPLICATIONS INFORMATION
Design Considerations The MC7800C Series of fixed voltage regulators are designed
with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. ·
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger. tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directlyacross the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistancedrops since the regulator has no external sense lead.
FIGURE 10 - CURRENT REGULATOR
FIGURE 11 - ADJUSTABLE OUTPUT REGULATOR
Input~.
0.33µFl
-- ~
Constant
Current to
lo
Grounded Load
The MC7800C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:
lo= 5-RV + ia
IQ~ 1.5 mA over line and load changes
For example, a 1-ampere current source would require R to be a 5-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.
FIGURE 12- CURRENT BOOST REGULATOR
Input
MJ2955 or Equiv
Output
10 k
Vo, 7.. 0 V to 20 V VIN - Vo ~2.0V
The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.
FIGURE 13 - SHORT-CIRCU.IT PROTECTION
Input
MJ2955 or Equiv
·
:J 1.0 µF
XX= 2 digits of type number indicating voltage.
The MC7800C series can be current boosted with a PNP transis-
tor. The MJ2955 provides current to 5.0 amperes. Resistor R
in conjunction with the VsE. of the PNP determines when the
pass transistor begins conducting; this circuit is not short-circuit'
proof. Input-output differential voltage minimum is increased by
VsE of the pass transistor.
'
Output
XX= 2 digits of type number indicating voltage.
The circuit of Figure 12 can be modified to provide supply protection against short Circuits by adding a short-circuit sense resistor, Rsc 1 and an addit'ional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the threeterminal regulator. Therefore, a four-ampere plastic power transistor is specified.
4-91
·
MC78LOOC,AC
·series
THREE-TERMINAL POSITIVE VOLTAGE REGULATORS
The MC78LOO Series of positive vol~age regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that, require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78MOO Series cousins, these regulators feature internal current limiting' and thermal shutdown making them remarkably rugged. No external components are required with the MC78LOO devices in many applications.
These devices offer a substantial performance advantage over the traditional zener diode-resistor combination. Output impedance is . greatly reduced and quiescent current is substantially reduced.
· Wide Range of Available, Fixed Output Voltages
· Low Cost
·
· Internal Short-Circuit Current Limiting
·· Internal Thermal Overload Protection
· No External Components Required
· Complementary Negative Regulators Offered
(MC79LOO Series)
· Available in Either ±5% (AC) or ±10% (C) Selections
REPRESENTATIVE CIRCUIT SCHEMATIC 15 k
Input
01 3.8 k
Output
THREE-TERMINAL POSITIVE FIXED
VOLTAGE REGULATORS
P SUFFIX CASE 29
T0-92
Pin 1. Input 2. Ground 3. Output
l 2
G SUFFIX CASE 79
T0-39
Pin 1. Input 2. Output 3. Ground
STANDARD APPLICA'l"ION
1.2 k 02
Z1 420
Common
Device No. Device No.
±10%
±.5%
-
MC78L02AC
MC78L05C MC78L05AC
MC78L08C MC78L08AC
MC78L.12C MC78L12AC
MC78L 15C MC78L15AC
MC78L 18C MC78L 18AC
MC78L24C MC78L24AC
Nominal Voltage
2.6 5.0 8.0 12 15 18 24
4·92
A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
* = C1 is required if regulator is located an
appreciable distance from power supply filter.
** =·Co is not needed for stability; however, it does improve transient response.
ORDERING INFORMATION
Device
Temperature Range
MC78LXXACG TJ = ooc to +150°C
Package Metal Can
MC78LXXACP TJ .': o0 c to +150°C Plastic Transistor
MC78LXXCG MC78LXXCP
TJ = ooc to +15o0 c
TJ = D°C to +150°c
Metal Can Plestic Transistor
XX indicates nominal voltage
MC78LOOC, AC Series
MC78LOO Series MAXIMUM RATINGS (TA = +125°c unless otherwise noted.)
Rating
Symbol
Value
Unit
Input Voltage (2.6 V - 8.0 V)
V1
(12V-18V)
(24 V)
Storage Junction Temperature Range
Tstg
Operating Junction Temperature Range
TJ
30
Vdc
35
40
-65 to +150
oc
Oto +150
oc
MC78LQ2AC ELECTRICAL CHARACTERISTICS (V1=9.0 V, lo= 40 mA, C1=0.33 µF, Co= 0.1 µF,
o0 c.;; T J .;; +125°C unless otherwise noted.)
MC7802AC
Characteristic Output Voltage (TJ = +25°Cl
Symbol
Min
Typ
Vo
2.5
2.6
Input Regulation (TJ = +25°C) 4.75 Vdc.;; Vt .;; 20 Vdc .5.0 Vdc.;; Vi.;; 20 Vdc
Regline
-
40
-
30
Load Regulation
.o (TJ = +25°c, 1 mA .;; lo .;; 100 mA)
(TJ = +25°C, 1.0 mA.;; lo Ei; 40 mA)
Regioad
-
10
-
4.0
Output Voltage (4.75 Vdc.;; V1.;; 20 Vdc, 1.0 mA.;; lo.;; 40 mA) (4.75 Vdc.;; V1.;; 20 Vdc, 1.0 mA.;; lo.;;; 70 mA)
Vo
2.45
-
2.45
-
Input 8ias Current (TJ ~ +25°C)
(TJ = +125°Cl
'a
-
3.6
-
-
Input Bias Current Change (5.0 Vdc .;; Vin .;; 20 Vdc) (1.0 mA <lo <40 mAl
Output Noise Voltage (TA= +25°C, 10 Hz.;;; f.;;; 100 kHz)
~la
-
-
-
-
VN
-
30
.Ripple Rejection (f = 120 Hz, 6.0 V.< Vin...;; 16 V, TJ = 25°Cl
Input-Output Voltage Differential (TJ = 25°Cl
RR
43
51
V1!Vo
-
1.7
Max 2.7
100 75
50 25
2.75 2.75
6.0 5.5
2.5 0.1
-
-
Unit Vdc mV
mV
Vdc
mA
mA
µV dB Vdc
MC78L05C, MC78L05AC ELECTRICAL CHARACTERISTICS (Vi= 10 V, 10 = 40 mA, c 1=0.33 µF, c 0 = 0.1 µF,
o0 c < T J < +125°C unless otherwise noted)
MC78L05C
MC78L05AC
Characteristic
Symbol Min
Typ
Max
M.in
T~
Max
Unit
Output Voltage (TJ = +25°C)
Vo
4.6
5.0
5.4
4.8
5.0
5.2
Vdc
Input Regulation (TJ = +25°C, lo= 40 mA) 7.0 Vdc...;; V1 ...;; 20 Vdc 8.0 Vdc <V1 < 20 Vdc
Regline
mV
-
55
200
-
55
150
-
45
150
-
45
100
Load Regulation (TJ = +25°C, 1.0 mA <lo...;; 100 mA) (TJ = +25°c, 1.0 mA.;; lo...;; 40 mA)
Reg1oad
mV
-
11
60
-
11
60
-
5.0
30
-
5.0
30
Output Voltage
Vo
Vdc
(7.0 Vdc.;; V1 < 20 Vdc, 1.0 mA < lo.;;; 40 mA)
4.5
-
5.5
4.75
-
5.25
(V1=10V, 1.0mA.;;; lo.;;; 70mA)
4.5
-
5.5
4.75
-
5.25
Input Bias Current (TJ = +25°C) (TJ = +125°C)
Its
mA
-
3.8
6.0
-
3.8
6.0
-
-
5.5
-
-
5.5
Input Bias Current Change (8.0 Vdc < V1 ""- 20 Vdc) (1.0mA< lo<40mA)
Output Noise Voltage (TA'.° +25°C, 10 Hz.;;; f.;;; 100 kHz)
Long-Term Stability
Ripple Rejection (lo = 40 mA, f = 120 Hl,. 8.0 V.;; Vt< 18 V, TJ = +25°C)
6 '1a -
-
VN
-
L»VJJ!L»t -
RR
40
-
1.5
-
-
0.2
-
40
-
-
12
-
-
49
-
41
mA
-
1.5
-
0.1
40
-
µV
12
-
mV/1.0 k Hrs
49
-
dB
Input-Output Voltage Differential (TJ = +25°C)
V1!Vo
-
1.7
-
-
1.7
-
Vdc
·
4-93
MC78 LOOC, AC Series
·
MC78L08C, MC78L08AC ELECTRICAL CHARACTERISTICS (Vj = 14 v, 10 = 40 mA, c1= 0.33 µF,Co = 0.1 µF, o0 c < TJ_ < + 125°C unIess otherw1se noted .I
MC78LOBC
MC78LOBAC
Characteristic
Svmbol Min
TYP
Max
Min
T..l'.I!_
Max
Unit
Output Voltage (TJ = +25°CI
V_o_
7.36
8.0
8.64
7.7
8.0
8.3
Vdc
Input Regulation (TJ = +25°C, lo= 40 mAI 10.5 Vdc.;.;; Vi .;.;; 23 Vdc 11Vdc.;;;V1.;;;23Vdc
Regline
mV
-
20
200·
-
20
175
-
12
150
-
12
125
Load Regulation (TJ = +25°C, 1.0 mA.;.;; lo.;.;; 100 mAI (l:J_ = +25°C, 1.0 mA .;.;; IQ_.;.;; 40 mA)
Reg1oad
mV
-
Hi
80
-
15
80
-
6.0
40
-
8.0
40
Output Voltage
Vo
Vdc
(10.5 Vdc.;.;; Vi.;.;; 23 Vdc, 1.0 mA.;.;; lo .;;;40mAI
7.2
-
8.8
7.6
-
8.4
(V1=14 V, 1.0 mA.;.;; I().;.;; 70 mAI
7.2
-
8.8
7.6
-
8.4
Input Bias Current
(TJ = +25°t) (TJ = +125°C)
118
mA
-
3.0
6.0
-
3.0
6.0
-
-
5.5
-
-
5.5
Input Bias Current Change (11 Vdc <Vi< 23 Vdc) (1.0 mA.;.;; lo.;.;; 40 mAI
6l1B
mA
-
-
1.5
-
-
1.5
-
-
0.2
-
-
0.1
Output Noise Voltage (TA= +25°C, 10 Hz,,,,; f.;.;;
VN
-
52
-
-
60
-
µV
100 kHz)
Long-Term Stability Ripple .Rejection (lo = 40 mA, f = 120 Hz,
12V<V1 <23V,TJ=+25°CI
6VJJ!.6t
-
20
-
-
20
-
mV/1.0k Hrs.
RR
36
55
-
37
57
-
dB
Input-Output Voltage .Differential (TJ = +25°C)
V1!Vo
-
1.7
-
-
1.7
-
Vdc
MC78L 12C, IVIC78L12AC ELECTRICAL CHARACTERISTICS (V1=19 v, lo= 40 mA, C1=0.33 µF, Co= O.lµF, o0 c < TJ <
+125°C unless otherwise noted I
MC78L12C
MC78L12AC
Characteristic
Syrribol Min
T...Ye_
Max
Min
T..Y.e_
Max
Uriit
Output Voltage (TJ = +25°CI
Vo
11.1
12
12.9
11.5
12
12.5
Vdc
Input Regi1lation
(TJ = +25°C, lo = 40 mAI 14.5 Vdc < Vj.;.;; 27 Vdc
16 Vdc,,,,; v 1 ,,,,; 27 Vdc
Load Regulation
= ffJ +25°c, 1.0 mA <lo.;.;; 100 mAI
(TJ = +25°C, 1.0 mA.;.;; lo.;.;; 40mAI
Regline
mV
-
120
250
-
120
250
-
100
200
-
100
200
Reg load
mV
-
20
100
-
'.?0
100
-
10
50
-
10
50
Output Voltage
Vo
Vdc
(14.5 Vdc.;.;; v 1 ~ 27 Vdc, 1.0 mA.;.;; lo.;.;; 40mAI
10.8
-
13.2
11.4
-
12.6
(V1=19V,1.0 mA <lo< 70mA)
10.8
-
13.2
11.4
-
12.6
Input Bias Current (TJ = +25°CI (TJ=+125°c1.:..
'1s
mA
-
4.2
6.5
-
4.2
6.5
-
-
6.0
-
-
6.0
Input Bias Current Change
(16 Vdc.;.;; v 1 ,,,,; 27 Voci
(1.0 mA.;.;; ~ < 40mAI
Output Noise Voltage (TA= +25°C, 10 Hz,,,,; f.;.;; 100 kHz)
6l1s -
-
VN
-
-
1.5
-
-
0.2
-
80
-
-
-
1.5
-
0.1
80
-
mA
I
µV
Long-Term Stability
6Vo/6t
-
24
-
Ripple Rejection {lo =40mA, f = 120 Hz, 15 V <
RR
36
42
-
-
24
-
mV /1.0 k Hrs.
37
42
-
dB
V1.;.;; 25 V, TJ = +25°CI Input-Output Voltage Differential
(TJ = +25°C)
V1/Vo
-
1.7
-
-
1.7
-
Vdc
4-94
MC78LOOC, AC Series.
MC78L15C, MC78L15AC ELECTRICAL CHARACTERISTICS
o(V 1 =23v,1 0 = 40 mA, C1=0.33 µF, Co= 0.1
0 c < T!...J. < +125°C un1ess otherw1·se noted .l
µF,
MC78L15C
MC78L15AC
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°c, lo= 40 mAl 17.5 Vdc.;; V1.;; 30 Vdc 20 Vdc.;; V1.;; 30 Vdc
Vo
13.8
15
16.2
14.4
15
15.6
Vdc
Regline
mV
-
130
300
-
130
300
-
110
250
-
110
250
Load Regula~ion (TJ = +25°c. 1.0 mA.;; lo.;; 100 mAl (TJ = +25°c, 1.0 mA.;; lo.;; 40 mAl
Regload
mV
-
25
150
-
25
150
-
12
75
-
12
75
Output Voltage
Vo·
Vdc
(17.5 Vdc.;; Vt.;; 30 Vdc, 1.0 mA.o;;; lo<;;40mA)
13.5
-
16.5
14.25
-
15.75
( V1 = 23 V, 1.0 mA.;; lb.;; 70 mA)
13.5
-
16.5 14.25
-
15.75
Input Bias Current (TJ = +25°Cl ffJ = +125°Cl
11B
mA
-
4.4
6.5
-
4.4
6.5
-
-
6.0
-
-
6.0
Input Bias Current Change (20 Vdc.;; V1 .;; 30 Vdcl (1.0mA.;;10.;; 40 mA)
"l1B
mA
-
-
1.5
-
-
1.5
-
-
0.2
-
-
0.1
Output Noise Voltage (TA= +25°C, 10 Hz ,,;; f .;;
VN
-
90
-
-
90
-
µV
100 kHz)
Long-Term Stability
"Vo/"t
-
30
-
-
30
-
mV /1.0 k Hrs.
Ripple Rejection Oo = 40 mA, f = 120 Hz, 18.5 V.;;
RR
33
39
-
34
39
-
dB
V1.;; 28.5 V, TJ= +25°C)
Input-Output Voltage Differential (TJ = +25°C)
V1/Vo
-
1.7
-
-
1.7
-
Vdc
MC78L 18C, MC7SL 18AC ELECTRICAL CHARACTERISTICS IV1 = 27 V, lo= 40 mA, C1=0.33 µF, Co= 0.1 µF,
o0 c < T J < +125°C unless otherwise noted.)
MC78.L18C
MC78L18AC
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°c. lo = 40 mA) 21.4 Vdc.;; Vi.;;; 33 Vdc 20.7 Vdc.;; Vi .;; ~3 Vdc 22 Vdc.;; Vi .;; 33 Vdc 21 Vdc.;; V1.;; 33 Vdc
Vo
16.6
18' 19.4
17.3
18
18.7
Vdc
Regline
mV
-
32
325
-
45
325
-
27
275
-
35
275
Load Regulation (TJ = +25°C, 1.0 mA.;; lo.;; 100 mA) (TJ = +25°C, 1.0 mA.;; lo.;; 40 mA)
Reg1~ad
mV
-
30
170
-
30
170
-
15
85
-
15
85
Output Voltage
Vo
Vdc
(21.4 Vdc.;; V1.;; 33 Vdc, 1.0 mA,,;; lo.;; 40 mA)
16.2
-
l7.8
(20.7 Vdc.;; Vt ,,;; 33 Vdc, 1.0 mA.;; lo,,;; 40 mA)
17.1
-
18.9
lV1=27V,1.0mA.;; lo .. 70mA)
16.2
-
17.8
<v1=27 V, 1.0mA.;; to,,;; 70mA)
17.1
-
18.9
Input Bias Current
(TJ =+25°Cl lTJ =+125°Cl
11B
mA
-
3.1
6.5
-
3.1
6.5
-
-
6.0
-
-
6.0
Input Bias Current Change
(22 Vdc.;; Vt .;;; 33 Vdc)
(21 Vdc.;; Vi =33 Vdc)
l1.0 mA.;; lo.;; 40 mAl
"l1B
mA
-
-
1.5
-
-
1.5
-
-
0.2
-
-
0.1
Output Noise Voltage lT A= +25°C, 1O Hz.;; f .;;
VN
-
150
-
-
150
-
µV
100 kHz)
Long-Term Stability Ripple Rejection llo = 40 mA, f = 120 Hz,
23V.o;;;V1 <;;33V,TJ=+25°Cl
"Vo/"t
-
45
-
RR
32
46
-
-
45
-
mV /1.0 k Hrs.
33
48
-
dB
Input-Output Voltage Differential (TJ" +25°C)
V1/Vo
-
1.7
-
-
1.7
-
Vdc
4-95
MC78LOOC, AC Series
·
MC78L24C, MC78L24AC ELECTRICAL CHARACTERISTICS IV 1=33 V, 10 = 40 mA, c 1= 0.33 µF, c 0 =0.1 µF, o0 c < TJ < +125°C unless otherwise noted l
MC78L24C
MC78L24AC
Characteristic
Output Voltage (TJ = +25°C)
Input Reg~lation (TJ = +25°C, lo = 40 mA) 27.5 Vdc.;;; V1 .;;; 38 Vdc 28 Vdc.;;; V1 .;;; 38 Vdc 27 Vdc..; Vi .;;; 38 Vdc
Symbol Min
Typ
Max
Min
~
Max
Vo
22.1
24
25.9
23
24
25
Regline
-
35
350
-
-
-
-
30
300
-
50
.300
-
-
-
-
60
J50
Unit Vdc mV
Load Regulation ffJ = +25°c, 1.0 mA.;;; lo.;;; 100 mA) (TJ = +25°C, 1.0 mA.;;; lo.;;; 40 mAl
Regload
mV
-
40
200
-
40
200
-
20
100
-
20
100
Output Voltage
Vo
Vdc
(28 Vdc.;;; V1 .;;; 38 Vdc, 1.0 mA.;;; lo.;;; 40 mA)
21.6
-
26.4
(27 Vdc.;;; Vi.;;; 38 Vdc, 1.0 mA.;;; lo.;;; 40 mA) (28 Vdc.;;; Vi.;;; 33 V,'1.0 mA.;;; lo.;;; 70 mA)
22.8
-
25.2
21.6
-
26.4
(27 Vdc.;;; Vi.;;; 33V,1.0mA.;;; lo.;;; 70mA)
22.8
-
25.2
Input Bias Current
(TJ = +25°CJ
(TJ = +125°Cl
llB
mA
-
3.1
6.5
-
3.1
6.5
-
-
6.0
-
-
6.0
Input Bias Current Change (28 Vdc ..;;; V1 .;;; 38 Vdc) (1.0 mA.;;; lo.;;; 40 mAl
6l1B
mA
-
-
1.5
-
-
1.5
-
-
0.2
-
-
0.1
Output Noise Voltage (TA = +25°c, 1o Hz .;;;
VN
-
200
-
-
200
-
µV
f.;;; 100 kHz)
Long-Term Stability
6VJJ/6t
-
56
-
-
56
-
mV /1.0 k Hrs.
Ripple Rejection (lo= 40 mA, f = 120 Hz, 29 V .;;;
RR
30
43
--
31
45
-
dB
V1.;;; 35 V, TJ = +25°CJ
Input-Output Voltage Differential
V1!Vo
-
1.7
-
-
1.7
-
Vdc
(TJ = +25°C)
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max)-TA PD(TA) = ReJArfyp) ;;;;: V1 Is -Vo lo
Where: PD(TA) = Power Dissipation allowable at a given operating ambient temperature.
TJ(max) = Maximum Operating Junction Temperature , as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ReJA(Typ) =Typical Thermal Resistance Junction to Ambient
Is= Total Supply Current
I
4-96
MC78LOOC, AC Series
TYPICAL CHARACTERISTICS
(TA = +25°C unless otherwise noted.)
FIGURE 1 - DROPOUT CHARACTERISTICS
8.0
T
en
1-MC78L05C -+---+---+---+---+---+---+---+----!
~
Vo= 5.0 V
0
2.
6.0 1- TJ =25°~ +---+---+---+---·-+---+---+----+-----1
UJ
"'<(
~
> 4.0
g ~
0 >
2.0
I
10 Vi, INPUT VOLTAGE (VOLTS)
FIGURE 2- DROPOUT VOLTAGE versus
U>
JUNCTION TEMPERATURE
~
2.5 ~-~-~-~-~-~-......---.---.---.--~
0
2.
UJ
"<'(
~
0
>
.....J
~ 5
tr---=:r+-=r.~tr---=tt--=i-,--c!:j~±~~t~- 1.
1
i lo 0 40 mA
7 Ci
1.0 1----+---t----+---+---1---+---+I--+---+-~
g ~
IQ= 1.0 mA
Dropout of Regulation is 0.5 I--- defined as when -+---+---+-____,1----1----t---+----i ' ·
~
Vo=2%otvo
O.__,_-""--""--....__....__-"----'---'--__.__ __,__ _,
0
~
0
25
50
75
100
125
>
TJ,JUNCTION TEMPERATURE (DC)
FIGURE 3 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE
4.2
s ~
4.0 ~
3.8 t----....
f-
ffi
er er
3.6
u=>
en
<co( 3.4
f-
it 3.2
...............
"""" ~ t--......
~ :ss
~ ~-,
f- MC78L05C
3.0 f- V1 = 10 V
t Vo= 5.0 V to = 40 mA
0
0
25
50
75
100
TA, AMBIENT TEMPERATURE (DC)
~
125
FIGURE 4 - INPUT BIAS CURRENT versus INPUT VOLTAGE
5.0 ~-~--~-'---~--~-~---.---~--
1 4.0 t-----+---+l------±.,..~ ..-.-"f=--t----t---t----
i ~ ~ 3.0 1------f'---+----+---+----+---+---+----
~
MC78L05C
~
t - - - - + - - - + - - - + - - - + - Vo = 5.0 V ___..._ _......___ ___,
co~
1 - - - - 1 t - - - + - - - - + - - - + - - IO = 40 mA -'----<>---------J
2.0
TJ = 2s0 c
~ 1----+1---+----+--+----+---+----f----!
~ 1.0 t-----t+---+---+---+----+---+---+------1
o.__~]_.._~~_,_~..___._~__._~.____.
0
5.0
10
15
20
25
30
35 40
V1, INPUT VOLTAGE (VOL TS)
FIGURE 5 -MAXIMl,JM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE -T0-92 Type Package 10,000
§:
s
2 1000
0 j:::
~
gj
Ci er
~ 100
~
~
1- RoJA = 200°c1w
I- Po (max) to 25°C = 62'5 mW
I No Heat Sink
- :t: -,....._ rs: "b..
50
75
100
125
TA. AMBIENT TEMPERATURE (DC)
~
~
]
150
FIGURE 6 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE -T0-39 Type Package
! ---,._ Infinite H Sink -1---1---1---1----1
' 10'-----''----'-~-'-~.........~-'-~.L..---'~--'--\..\__..____..l
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (°C)
4-97
MC78LOOC, AC Series
APPLICATIONS INFORMATION
Design Considerations
The MC78LOOC Series of fixed voltage regulators are designed
with Thermal Overload Protection that shuts down the circuit
when subjected to an excessive power overload condition, Internal
Short-Circuit Protection that limits the maximum. current the cir-
cuit will pass.
1
In many low current applications, compensation capacitors are
not required. However, it is recommended that the regulator
input be bypassed with a capacitor if the regulator is connected
- to the power supply filter with long wire'lengths, or if the output
load capacitance is large. An input bypass capacitor should be
a
FIGURE 7 - CURRENT REGULATOR
Constant Current to Grounded Load
The MC78LOOC regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:
118 ; 3.8 mA over line and load changes
For example, a 100 mA current source would require R to be a 50-ohm, 1/2-W resistor and the output voltage compliance would be the input voltage less 7 volts.
selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize grou'nd loops and leac;I resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.
FIGURE 8 - ±15 V TRACKING VOLTAGE REGULATOR
+20 v
1 0.33µF
+.Vo 10 k
-20 v
0.33 µFl
MPS-U55
10 k
FIGURE 9 - POSITIVE AND NEGATIVE REGULATOR
+Vo
4-98
MC78MOOC series
MC78MOOC SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS
The MC78MOO .Series positive voltage regulators are identical to the popular MC7800C Series devices, except that they are specified for only half the output curren1. Like the MC7800C devices, the MC78MOOC three-terminal regulators are intended for local, on-card voltage regulation.
Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remark~bly rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mA..
· No External Components Required · Internal Thermal Overload Protection · Internal Short-Circuit Current Limiting · Output Transistor Safe-Area Compensation
· Packaged in the Plastic Case ~13 and Case 79 (T0-220 and Hermetic T0-39)
THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS
Pin 1. Input 23.. O Grou untdp u t ' f t
·(°) i ,;,~
Bottom View
G SUFFIX METAL PACKAGE
CASE 79 T0-39
(Case connected to Pin 3)
3·
T SUFFIX PLASTIC PACKAGE
CASE 313 (T0-220 Type)
STANDARD APPLICATION
·
REPRESENTATIVE SCHEMATIC DIAGRAM
Gnd
4-99
A common ground is required between the input and the output voltages. The input volt· age must remain typically 2.0 V above the out· put voltage even during the low point on the input ripple voltage.
· = Cin is required if regulator is located an appreciable ·distance from power supply filter.
·· =Co improves stability and transient re-
sponse.
ORDERING INFORMATION
DEVICE
Il MC78MXXGG l MC78MXXCT
TEMPERATURE RANGE TJ = o° C to +150° C TJ=o0 c10+1so0 c
XX indicates nominal voltage
PACKAGE Metal Can Plastic Power
, TYPE NO./VOLTAGE
MC78M05C MC78M06C MC78MOBC MC78M12C MC78M15C MC78M18C MC78M20C MC78M24C
5.0 Volts 6.0 Volts 8.0 Volts 12 Volts 15Volts 18 Volts 20 Volts 24 Volts
MC78MOOC Series
·
MC78MOOC Series MAXIMUM RATING_S (TA= +25°c unless otherwise notec;t.l
Input Voltage (5.0 V - 18 V) (20 V- 24 V)
Power Dissipation (Package Limitation) Plastic Package TA= 25°c Derate above TA = 25°C
Tc= 25°c
o .Derate above Tc = 11 0 c
Metal Package TA= 25°c Derate above TA = 25°C Tc= 25°c Derate above Tc = 85°C
Operating Junction Temperature Range
Operating Ambient Temperature Range
Storage Temperature Range Plastic Package Metal Package
Rating
Symbol V1
Value
35 40
Unit Vdc
Po OJA Po OJC
Po OJA Po OJ_C TJ_ TA Tstg
Internally Limited 70
Internally Limited 5.0
0 ctw 0 ctwc
Internally Limited 185
Internally Limited 25
0 to +150 0 to +85
0 c1w
0 c1w oc oc
-65 to +150.
oc
-65 to +150
oc
l\l!C78M05C ELECTRICAL CHARACTERISTICS (V1 = 10 v, lo= 200 mA, o0 c < TJ < +1.25°c. Po.;;; 5.0 w unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
4.8
5.0
5.2
Vdc
Line Regulation (TJ = +25°C) (7.0 Vdc < V1 < 25 Vdc) (8.0 Vdc <;;; V1 .;;; 25 Vdc)
Regline
-
-
mV
3.0
100
1.0
50
Load Regulation (TJ = +25°C, 5.0 mA < lo< 500 mAl (TJ = +25°c. 5.0 mA.;; lo.;;; 200 mAl
Reg1oad
-
-
mV
20
100
10
50
Output Voltage
v (7.0 Vdc.;;; 1 .;;; 25 Vdc, 5.0 mA.;;; lo.;;; 200 mA)
Input Bias Current (TJ = +25°C)
Vo
4.75
-
5.25
Vdc
l1B
-
4.5
6.0
mA
Quiescent Current Change (8.0 Vdc <;;; V1 <;;; 25 Vdc) (5,0 mA .;;; lo .;;; 200 mA)
Al1B -
mA
-
0.8
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz .;;; f .;;; 100 kHz) Long-Term Stability
eon
-
;
A Vo/At
-
40
-
µV
-
20
mV/1.0kHrs
Ripple Rejection (lo= 100 mA, f.= 120 Hz, 8.0 V.;;; Vi.;;; 18 V) (lo= 300 mA, f = 120 Hz, 8.0.;;; V1.;;; 18 V, TJ"' 25°C)
RR
-
80
-
dB
-
80
-
Input-Output Voltage Differential (TA= +25°C)
V1-Vo
-
.2.0
-
Vdc
v Short-Circuit Current Limit (TJ = +25°C, 1 = 35 V)
Average Temperat<ire Coefficient of Outi:}ut Voltage (lo= 5.0 mA)
los
-
A Vo/AT
-
300
-
mA
-1.0
-
mV/°C
Peak Output Current ITJ = 25°Cl
lo
-
700
-
mA
4-100
.MC78MOOC Series
MC78M06C ELECTRICAL CHARACTERISTICS o !V1 = 11 v. lo= 200 mA, 0 c < T J < +125°c, Po.;; 5.0 w unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Line Regulation (TJ = +25°C) (8.0 Vdc.;; V1 .;; 25 Vdc) (9.0 Vdc.;; V1 .;; 25 Vdc)
Vo
5.75
6.0
6.25
Vdc
Regline
mV
-
5.0
100
-
1.5
50
Load Regulation (TJ = +25°c, 5.0 mA .;; Io .;; 500 mA) (TJ = +25°c. 5.0 mA .;; lo .;; 200 mA)
Output Voltage (8.0 Vdc.;; v 1 .;; 25 Vdc, 5.0 mA.;; lo.;; 200 mA)
Input Bias Current (TJ = +25°C)
Quiescent Current Change (9.0 Vdc.;; V1 <;; 25 Vdc) (5.0 mA .;; lo.;; 200 mA)
Reg1oad
-
-
mV
20
120
10
60
V(j
5.7
-
6.3
Vdc
l1B
-
AllB -
4.5
6.0
mA
mA
-
0.8
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz.;; f.;; 100 kHz)
Long-Term Stability
Ripple Rejection (lo= 100 mA, f = 120 Hz, 9.0 V.;; Vi.;; 19 V) (IO = 300 mA, f = 120 Hz, 9.0 V .;;; VI .;;; 19 V, TJ = 25°C)
Input-Output Voltage Differential (TA= +25°CI
eon
-
AVo/tl.t
-
RR
-
-
V1-Vo
-
45
-
µV
-
24
mV/1.0 kHrs
80
-
dB
80
-
2.0
-
Vdc
Short-Circuit Current Limit (TJ = +25°c, VI = 35 V)
io·s
-
270
-
mA
Average Temperature Coefficient of Output Voltage !lo= 5.0mAI
AVo/AT
-
-0.5
-
mV/0 c
Peak Output Current (TJ = 25°C) (TJ = 25°CI .-
MC78M08C ELECTRICAL CHARACTERISTICS
lo
-
700
-
mA
"--
o !V1=14 v.10 = 200mA, 0 c < TJ < +125°c, Po.;; 5.0W unless otherwise noted.I
Characteristic
Output Voltage (TJ = +25°C)
Line Regulation (TJ = +25°Cl (10.5 Vdc.;; V1 .;; 25 Vdc) (11 Vdc.;; V1 .;;; 25 Vdc)
Load Regulation (TJ = +25°c. 5.0 mA.;; lo.;; 500 mA) (TJ = +25°c. 5.0 mA.;;; lo.;;; 200 mAI
Output Voltage (10.5 Vdc.;; v 1 .;; 25 Vdc, 5.0 mA.;; lo.;; 200 mA)
Input Bias Current (TJ = +25°C)
Quiescent Current Change (10.5 Vdc.;; V1 .;; 25 Vdc) (5.0 mA.;; lo.;;; 200 mA)
Symbol
Min
Vo
7.7
Regline
Typ
Max
Unit
8.0
8.3
Vdc
mV
-
6.0
100
-
2.0
50
Regload
-
-
mV
25
160
10
80
Vo
7.6
-
8.4
Vdc
l1B
-
. Al1B -
-
4.6
6.0
mA
mA
-
0.8
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz.;;; f.;; 100 kHz)
Long-Term Stability
Ripple Rejection (lo= 100 mA, f = 120 Hz, 11.5 V.;; v 1 .;; 21.5 VI !lo= 300 mA, f = 120 Hz, 11.5 V.;; V1.;; 21.5 v. TJ = 25°c1
Input-Output Voltage Differential (TA= +25°C)
eon
-
A Vo/At
-
RR
-
-
V1-Vo
-
52
-
µV
-
. 32
mV/1.0 k Hrs
80
-
dB
80
-
2.0
-
Vdc
Short-Circuit Current Limit (TJ = +25°c, Vi= 35 V)
Average Temperature Coefficient of Output Voltage Oo = 5.0mAI
Peak Output Current (TJ = 25°C)
los
-
AVo/AT
-
lo
-
250
-
mA
-0.5
-
mV/0 c
700
-
mA
·
4-101
MC78MOOC Series
·
c MC78M12C ELECTRICAL CHARACTERISTICS o !V1 = 19 V, lo= 200 mA, 0 <TJ <+125°C,Po.;; 5.0 Wunlessotherwisenoted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
11.5
12
12.5
Vdc
Line Regulation (TJ = +25°C) (14.5 Vdc.;; Vi .;; 30 Vdc) (16 Vdc.;; V1 .;; 22 Vdc)
Regline
-
-
mV
8.0
100
2.0
50
Load Regulation (TJ = +25°c. 5.0mA.;; 10 .;; 500mAl !TJ = +25°C. 5.0 mA .;; Jo .;; 200 mA)
Output Voltage (14.5 Vdc.;; V1 .;; 27 Vdc, 5.0 mA .;; lo .;; 200 mA)
Reg1oad
-
-
mV
25
240
10
120
Vo
11.4
-
12.6
Vdc
Input Bias Current (TJ = +25°C)
tis
-
4.8
6.0
mA
Quiescent Current Change (14.5 Vdc.;; V1 .;; 30 Vdc) (5.0 mA.;; lo.;; 200 mA)
Al1a
-
mA
-
0.8
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz.;; f.;; 100 kHz)
eon
-
75
-
µV
Long-Term Stability
·Ripple Rejection Oo = 100 mA, f = 120 Hz, 15 V.;; V1 .;; 25 V) Oo = 300 mA, f = 120 Hz. 15 v .;; v 1 .;; 25 ·v, TJ = 25°Cl
Input-Output Voltage Differential (TA= +25°Cl
A Vo/At
-
RR
--
V1-Vo
-
-
48
mV /1.0 k Hrs
80
-
dB
80
-
2.0
-
Vdc
Short-Circuit Current Limit (TJ = +25°c, VI= 35 V)
Average Temperature Coefficient of Output Voltage
o (lo= 5~0 mA, 0 c .;; TA .;; +125°C)
Peak Output Current (TJ = 25°Cl
los
-
A Vo/AT
-
lo
-
240
-
mA
-1.0
-
mvt0 c
700
-
mA
MC78M15C ELECTRICAL CHARACTERISTICS v, o w (V1 = 23 lo= 200 mA, 0 c < T J < +125°c, Po.;; 5.0 unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
14.4
15
15.6
Vdc
Input Regulation
(TJ = +25°CI
(17.5 Vdc.;; v 1 .;; 30 Vdc)
(20 Vdc.;; Vt .;; 30 Vdc)
Reg line
-
-
mV
10
100
3.0
50
Load Regulation ITJ = +25°c, 5.0 mA.;; lo.;; 500 mA) (TJ = +25°c, 5.0 mA.;; lo.;; 200 mAI
Output Voltage 17.5 Vdc.;; v 1 .;; 30 Vdc, 5.0 mA.;; lo.;; 200 mAI
Input Bias Current (TJ = +25°C)
Quiescent Current Change (18.5 Vdc.;; Vi .;; 30 Vdc) (5.0 mA .;; lo .;; 200 mA)
Oµtput Noise Voltage (TA= +25°C, 10 Hz.;; f.;; 100 kHz)
Long-Term Stability
Ripple Rejection Oo = 100 mA, f = 120 Hz, 18.5 V.;; V1.;; 28.5 V) Oo = 300mA, f = 120 Hz, 18.5 V.;; V1.;; 28.5 V, TJ = 25°C)
Input-Output Voltage Differentia! (TA= +2s0 c1
Reg load -
mV
25
150
-
10
75
Vo
14.25
-
15.75
Vdc
tis
-
Al1B
-
-
eon
-
A Vo/At
-
RR
-
-
V1-Vo
-
4.8
6.0
mA
-
0.8
-
0.5
90
-
µV
-
60
mV/1.0 kHrs
70
-
dB
70
-
2.0
-
Vdc
Short.Circuit Current Limit (TJ = +25°C, V1 = 35 Vl
Average Temperature Coefficient of Output Voltage
o (lo= 5.0 mA, 0 c.;; TA.;; +125°Cl
los
-
AVo/AT
-
240
-
mA
-1.0
-
mV/0 c
Peak Output Current <TJ = 25°c1
lo
-
700
-
mA
4-102
MC78MOOC Series
MC78M18C ELECTRICAL CHARACTERISTICS o 1v1 = 27 v, 10 = 20QmA, 0 c< TJ < +125°c. Po.;; 5.0W unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
17.3
18
18.7
Vdc
Line Regulation (TJ = +25°C) (21 Vdc.;; V1 (24 Vdc.;; V1
...; 33 Vd_c) .;; 33 Vdc)
Regline
-
mV
10
100
40
50
Load Regulation (TJ = +25°c. 5.0 mA.;; lo.;; 500 mA) ITJ = +25°c. 5.0 mA.;; lo.;; 200 mA)
Output Voltage (21 Vdc.;; Vt .;; 33 Vdc, 5.0 mA.;; to.;; 200 mA)
Reg1oad
-
mV
30
360
10
180
Vo
17.1
-
18.9
Vdc
Input Bias Current (TJ = +25°C)
Quiescent Current Change (21 Vdc.;; V1 .;; 33 Vdc) (5.0 mA .;; lo .;; 200 mAl
Output Noise Voltage (TA= +25°c. 10 Hz.;; f.;; 100 kHz)
Long-Term Stability
Ripple Rejection (to= 100 mA, f = 120 Hz, 22 V.;; Vi.;; 32 V) Oo = 300mA, f = 120 Hz, 22V.;; v,.;; 32V, TJ = 250c)
Input-Output Volta!Je Differential (TA= +25°Cl
ltB
-
Alts
-
-
eon
-
AVQ/At
-
RR
-
-
V1'VQ
-
4.8
6.5
mA
mA
-
0.8
-
0.5
100
-
µ.V
-
72
mV/1.0 kHrs
70
-
dB
70
-
2.0
-
Vdc
Short-Circuit Current Limit (TJ = +25°c, Vi= 35 V)
Average Temperature coefficient of Output Voltage
o Oo =: 5.0 mA. 0 c .;; TA .;; +1 ;!5°Cl
Peak Output Current (TJ = 25°C)
~
MC78M20C ELECTfUCAL CHARACTERISTICS
tos
-
AVQ/AT
-
lo
-
240
-
mA
-1.0
-
mvt0 c
700
-
mA
o !Vt = 29 v. to= 200mA, 0c < TJ < +125°c, Po,,;;;;5.0 W unless otherwise noted.I
Characteristic
Symbol
Min
Typ
-Max
Unit
Output Voltage (TJ = +25°C)
Vo
19.2
20
20.8
Vdc
Line Regulation ITJ = +25°Cl (23 Vdc.;; V1 .;; 35 Vdc) (24 Vdc.;; V1 .;; 35 Vdc)
Regfine
-
-
mV
10
100
5.0
50
Load Regulation (TJ = +25°C, 5.0 mA .;; to .;; 500 mA) ITJ = +25°C, 5.0 mA .;; to .;; 200 mA)
Output Voltage (23 Vdc.;; V1 .;; 35 Vdc, !).O mA .;; IQ.;; 200 mA)
Input Bias Current (Tj = +25°c)
Quiescent Current Change
(23 Vdc.;; v 1 .;; 3!) Vqc)
-
(5.0 mA.;; to .;;_,200 mA)
Output Noise Voltage (TA= +25°c. 10 Hz.;; f.;; 100 kHz)
Long-Term Stabit"ity
Ripple Rejection (to= 100 mA, f = 120Hz,-24 V.;; V1.;; 34 V) Oo= 300mA, f = 120 Hz'. 24 V.;; V1:.;;; 34 V, TJ = 25°Cl
lnput-Ol!tput Voltage Differential
(TA = +25°C)
-
Re91oad
-
-
Vo
19
Its
-
AlfB
-
eon
-
AVQ/At
-
RR
-
-
V1-Vo
-
mV
30
400
10
200
-
21
Vdc
4.9
6.5
mA
mA
-
0.8
-
0.5
110
-
µ.\J
-
80
mV/1.0kHrs
70
-
dB
70
-
2.0
-
Vdc
Short-Circuit Current Limit (TJ = +25,°C, V1 = 35 V)
Average Temperature Coeffici;nt of Output Voltage
Oo = 5.0 mA, o0 c.;; TA.;; +125°Cl
Peak Output Current ITJ = 25°Cl
ios
-
AVQ/AT
-
240
-
mA
-1.1
-
mV/°C
io
-
700
-
mA
·
4-103
MC78MOOC Series
·
o MC78M24C ELECTRICAL CHARACTERISTICS (V1 = 33 V, lo= 200 mA, 0 c < TJ < +125°C, Po.;; 5.0 W unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max·
Unit
Output Voltage (TJ = +25°c)
Vo
23
24
25
Vdc
Line Regulation (TJ = +25°Cl (27 Vdc.;; V1 .;; 38 Vdc) (28 Vdc.;; V1 .;; 38 Vdc)
Reg1ine
-
-
mV
10
100
5.0
50
Load Regulation (TJ = +25°c, 5.0 mA.;; lo.;; 500 mA) ITJ = +25°c, 5.0 mA.;; lo.;; 200 mA)
Output Voltage (27 Vdc.;; v 1 .;; 38 Vdc, 5.0 mA.;; lo.;; 200 mA)
Input _Bias Current (TJ = +25°C)
Reg1oad
-
-
mV
30
480
10
240
Vo
22.8
-
25.2
Vdc
11s
-
5.0
7.0
mA
Quiescent Current Change (27 Vdc.;; V1 .;; 38 Vdc) (5.0 mA.;; lo.;; 200 mA)
Output Noise Voltage (TA= +25°c, 10 Hz.;; f.;; 100 kHz)
Long·Term Stability
Ripple Rejection (lo.= 100 mA, f = 120 Hz, 28 V.;; Vi.;; 38 V) llo = 300 mA, f = 120 Hz, 28 V.;; V1.;; 38 V, TJ = 25°C)
I nput·Output Voltage Differential (TA= +25°C)
~11s
-
-
eon
-
~Vo/~t
-
RR
--
V1-Vo
-
mA
-
0.8
-
0.5
170
' -
µ.V
-
96
mV/1.0 kHrs
70
-
dB
70
-
2.0
-
Vdc
Short-Circuit Current Limit (TJ = +25°C)
Average Temperature Coefficient of Output Voltage
(lo= 5.0 mA, o0 c.;; TA.;; +125°C)
· los
-
240
-
mA
~Vo/~T
-
-1.2
-
mv/0 c
Peak Output Current ITJ = 25°C)
lo
-
700
-
mA
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate ,at a given operating ambient temperature, can be found from the equation:
TJ(max)-TA~V I -V I
ROJA (Typ)
IS 0 0
Where: PonA) = Power Dissipation allowable at a given operating ambient temperature.
TJ(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ROJA (Typ) = Typical Therma.I Resistance Junction to Ambient Is= Total Supply Current
DEFINITIONS
Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation - The change in output voltage for a change in load current at constant chip temperature.
Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.·
Input Bias Current - That part of the input current that is not delivered to the load.
Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and 'maximum power dissipation.
4-104
MC78MOOC Series
TYPICAL PERFORMANCE CURVES
FIGURE 1 - WORST CASE POWER DISSIPATION
FIGURE 2 - WORST CASE POWER DISSIPATION
versus AMBIENT TEMPERATURE
versus AMBIENT TEMPERATURE
T0-220 (CASE 313)
T0-39 (CASE 79)
TA, AMBIENT TEMPERATURE (OC)
\
FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE
~ 0.75 ~
B
I-
~
1::> 0
!2 0.25
3.0 6.0 9.0 12 15 18 21 24 27 30 V1·VQ, INPUT-~UTPUT VOLTAGE DIFFERENTIAL (VOLTS)
~ ~:~1---1----=~-.._~IN,FfNtTE H~ATs J .
!~;;: ~
23o. 0+t---------+- t-----~+--1--o--~ot11 -c1rw-....I.N .t-"+K-----'"-"+'lo-.-"--.+,----+--+-+------1t
~
0 Hs
= 200~
~ 'h._
~ 0
1.0~~~~~ ~~~ ~~ ~ .
~a: 00..451-----lf----+--=...,..o:~ ::-IVd H~~N~1..1<1--11-----1---1f->'~ -l<--'"H-~"~t---i
rP ~ ~ ~ 0.31---+--+--+--+-.-"""lp~.......,-t---t---t-~--'\i,.-1,_\--+_.l.c-1
0.21- llJc = 25° C/W.
""'-
l O.
1l2._5 _
Po_(_M._A_X)_=l5.._70._ 5 W_ .-+-_--_+-7.-._5-_+-_-+_ --+_-10~_~0r_·+--~---1i2~_f~ 5+_-.'._.l.'.°_"\_"'-_.t150
·
A
TA. AMBIENl'TEMPERATURE (OC)
FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY
100
90
80
co
"O
z 70
0
i 60 50
w_, aaa..:
40 30
a:'
a: 20
10
..............b.J ~
V1=10 V H
t:l_ VQ = 5.0 V H IQ :20
0
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
4-105.
MC78MOOC Series
·
APPLICATIONS INFORMATION
Design Considerations The MC78MOOC Series of fixed voltage regulators are designed
with Thermal Overload Protection that shuts down the circuit when subjected to an excessive p0wer overload condition, ln.ternal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.
In many low current applications,.compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
to the power supply filter with long wire lengths, or if the output load ·capa<;itance is large; An input bypass· capacitor should be selected to provide good high-frequenc;:y characteristics to insure stable operation under all load conditions. A 0.3~ µF or larger tantalum, mylar, or other capacitor having low internal impedance
at high frequencies should be chosen. The bypass capacitor should
be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops
since the regulator has no external sense lead.
FIGURE 5 - CURRENT REGULATOR
FIGURE 6-ADJUSTABLE OUTPUT REGULATOR
Input
R ~
Constant Current to Grounded Load
The MC7800C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:
IQ = 1.5 mA over line and load changes
For example, a 500 mA current source would require R to be a 10-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.
FIGURE 7 - CURRENT B00$T REGULATOR
Input
MJ2955 or Equiv
Output
10 k
Vo.7.0Vto20V VIN - Vo ~2.0 V
The addition of an operation'al amplifier allows adjustment to higher or intermediate values while retaining regulation character1st1cs The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.
FIGURE 8 - SHORT.CIRCUIT PROTECTION
Input
MJ2955 or Equiv
::J: 1.0 µF
XX= 2 digits of type number indicating voltage.
The MC78MOOC series can be current boosted with a PNP trl!nsis· tor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VsE of the PNP determines when the pass transistor begins conauctmg; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by Vse of the pass transistor.
R Output
XX= 2 digits of type number indicating voltage.
The circuit of Figure 7 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, Rsc 1 and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the threeterminal regulator. Therefore, a two-ampere plastic power transistor is specified.
4-106
MC7900C Series;
MC7900C SERIES THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS
The MC7900C Series of fixed output negative voltage regulators are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage options as the MC7800C ·devices. In addition, two extra voltage options commonly employed in MECL systems are also available in the negative MC7900C Series.
Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 1.0 ampere.
· No External Components Required · Internal Thermal Overload Protection · Internal Short-Circuit Current Limiting · Output Trarisistor Safe-Area Compensation · Packaged in the Plastic Case 313 and Case 11
(T0-220 and Hermetic T0-3)
SCHEMATIC DIAGRAM
THREE-TERMINAL NEGATIVE FIXED_ VOLTAGE REGULATORS
K SUFFIX METAL PACKAGE
CASE 11-01 (T0-3 TYPE)
T SUFFIX PLASTIC PACKAGE
CASE 313
Pin 1. Ground 2. Input 3. Output
Gnd
STANDARD APPLICATION
·
. DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
MC7902C - 2.0 Volts MC7905C - 5.0 Volts MC7905.2C - 5.2 Volts
MC7906C - 6.0 Volts MC7908C - 8.0 Volts MC7912C - 12Volts
MC7915C - 15 Volts MC7918C - 18 Volts MC7924C - 24 Volts
A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple voltage.
XX = these two digits of the type number indicate voltage.
* = Cin is required if regulator i's located an appreciable distance from power supply filter.
** =Co improves stability and transient response.
ORDERING INFORMATION
I l DEVICE TEMPERATURE.RANGE PACKAGE
J MC79XXCK1 TJ=o0 .cto+150°C
Metal Power
I J MD79XXCT T J ='(JO C to +.1500 C
Plastic PoWer
XX indicates nominal voltage
MC7900C Series
·
MC7900C Series MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating
Symbol
Input Voltage (2.0 V - 18 V)
V1
(24 V)
Power Dissipation Plastic Package TA= +25°c Derate above TA = +25°C
Tc= +25°C Derate above Tc = +95°C (See Figure 1)
Metal Package TA= +25°c Derate above TA = +25°C
Tc= +25°c Derate above T__c_ = +65°c
Storage Temperature Range
Junction Temperature Range
Po 1/RoJA
Po 1/RoJC
Po 1/ReJA
Po 1/Ro.J_C.
Ts!ll_ TJ
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistal")ce, Junction to Ambient - Plastic Package - Metal Package
Thermal Resistance, Junction to Case
- Plastic Package - Metal Package
~mbol
ReJA
Re JC
Value -35 -40
Internally Limited 15.4
Internally Limited 200
Internally Limited 22.2
Internally Limited 182
-65 to +150 0 to +150
Max 65 45
-"-
5.0 5.5
Unit Vdc
Watts mW/°C Watts mW/°C
Watts mW/°C Watts mwt0 c
oc OC
Unit °C/W
°C/W
MC7902C ELECTRICAL CHARACTERISTICS ( v 1 = -10 V, lo= 500 mA, o0 c <T J < +125°c unless otherwise noted.)
Charact!!ristic
Sy~bol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
-1.92
-2.00
-2.08
Vdc
Line Regulation
(TJ = +25°c, lo ;, 100 mAl -7.0Vdc>V1 ;;;,-25Vdc -8.0Vdc>v 1 >-12Vdc (TJ = +25°C, lo= 500 mAl -7.0 Vdc> V1 >-25 Vdc -8.0 Vdc:;;;, V1 >-12 Vdc
Regline
-
-
mV
8.0
20
4.0
10
18
40
8.0
20
Load Regulation TJ = +25°c, 5.0 mA ~lo~ 1.5 A 250 mA ~lo ~750 mA
Reg1oad -
l
-
mV
70
120
20
60
Output Voltage -7.0 Vdc:;;;, V1 >-20 Vdc, 5.0 mA ~lo~ 1.0 A, P ~15 W
Input Bias Current (TJ = +25°C)
Vo
-1.90
-
-2.10
Vdc
11B
-
4.3
8.0
mA
Input Bias Current Change -7.0 Vdc:;;;, V1 >-25 Vdc 5.0mA ~lo ~1.5 A·
Outp~t Noise Voltage (TA = +25°c; 10 Hz~ f ~ 100 kHz)
6llB
-
eon
-
mA
-
1.3
-
0.5
40
-
µV
Long-Term Stability
A Vo/At
-
-
20
mV/1.0k Hrs
Ripple Rejection (lo= 20 mA, f = 120 Hz)
Input-Output Voltage Differe!htial 10 = 1.0 A, TJ = +25°c
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, a°C ~TA ~+125°C
RR
-
1v1-Vol
-
'°'Vo/t>T
-
65
-
dB
3.5
-
Vdc
-1.0
-
mv1°c
4-108
MC7900C Series
MC7905C ELECTRICAL CHARACTERISTICS (V1 v. o = -10 lo= 500 mA, 0 c <TJ < +125°c, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
-4.8
-5.0
-5.2
Vdc
Line Regulation (TJ = +25°C, lo= 100 mA) -7.0 Vdc > V1 >-25 Vdc -8.0 Vdc > Vi >-12 Vdc
(TJ = +25°C, lo = 500 mAI -7.0 Vdc > Vi ;;:;i:-25 Vdc -8.0 Vdc > V1 >-12 Vdc _
Regline
-
-
-
-
mV
7.0
50
2.0
25
35
100
8.0
50
Load Regulation TJ = +25°C, 5.0 mA ~lo~ 1.5 A 250 mA ~lo ~750 mA
Output Voltage
w -7.0 Vdc;;:;i: V1 ;;:;i:-20 Vdc, 5.0 mA ~lo~ 1.0A,P~15 1
Input Bias Current (TJ = +25°C)
Reg load
-
-
mV
11
100
4.0
50
Vo
-4.75
-
-5.25
Vdc
Its
-
4.3
8.0
mA
Input Bias Current Change -7.0 Vdc >Vin >-25 Vdc 5.0 mA ~lo~ 1.5 A
Output Noise Voltage (TA= +25°c, 10 Hz ~f ~ 100 kHz)
Long-Term Stability
l\fts
-
eon
-
A Vo/At
-
mA
-
1.3
-
0.5
40
-
µV
-
20
mV/1.0k Hrs
Ripple Rejection Oo = 20 mA, f = 12Q Hz)
RR
-
70
-
dB
Input-Output Voltage Differential lo = 1.0 A, TJ = +25°C
IV1-Vol
-
2.0
-
Vdc
Average Temperature Coefficient of Output Voltage
to= 5.0 mA, cf'C ~TA ~+125°C
l'.Vo/l'.T
-
-1.0
-
mV/°C
·
MC7905.2C ELECTRICAL CHARACTERISTICS (Vt = -10 V, to= 500 mA, cf'c <TJ < +125°c, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Vo
-5.0
-5.2
-5.4
Vdc
Line Regulation
(TJ = +25°c, to = 1oo mAI
-7.2Vdc>V1 ;;:;i:-25Vdc -8.0 Vdc >Vt >-12 Vdc
(TJ = +25°C, to= 500 mAl -7.2 Vdc > Vt >-25 Vdc -8.0 Vdc > Vt ;;:;i:-12 Vdc
Regline
-
-
-
mV
8.0
51
2.2
27
37
105
8.5
52
Load Regulation. T J = +25°c, 5.0 mA ~to~ 1.5 A 250 mA ~to ~750 mA
Output Voltage
v, w -7.2 Vdc ;;:;i: ;;:;i:-20 Vdc, 5.0 mA ~to~ 1.0 A, p ~15
Reg toad
-
mV
12
105
-
4~5
52
Vo
-4.94
-
-5.46
Vdc
Input Bias Current (TJ = +25°CI
Input Bias Current Change ~7.2 Vdc > V1 ;;:;i,-25 Vdc 5.0mA~lo~1.5 A
Output Noise Voltage (TA= +25°C, 10 Hz ~f ~100 kHz)
Long-Term Stability
Ripple Rejection (to =·20 mA, f = 120 Hz)
Input-Output Voltage Differential to = 1.0 A, TJ = +25°C
Average Temperature Coefficient of Output Voltage
to = 5.0 mA, cf'c ~TA ~ +125°c
ltB
-
e.t1s
-
-
eon
-
A Vo/At
-
RR
-
IV1-Vol
-
l'.Vo/l'.T
-
4.3
8.0
mA
mA
-
1.3
-
0.5
42
-
µV
-
20
mV/1.0k Hrs
68
-
dB
2.0
-
Vdc
-1.0
-
mvt0 c
4-109
MC7900C Series
·
MC7906C ELECTRICAL CHARACTERISTICS I V1 = -11 V, to= 500 mA, <>°C <TJ<+125°C unless otherwise noted.)
Charact·istic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°Cl
Vo
-5.75
-6.0
-6.25
Vdc
Line Regulation ,
= (TJ = +25°c, to 100mA)
-8.0 Vdc ;;;i: VI ;;;i: -25 Vdc -9.0 Vdc ;;;i: V1 ;;;i:-13 Vdc
ITJ = +25°c. to = 500 mAl -8.0 Vdc;;;i: Vt ;;;i=-25 Vdc -9.0 Vdc;;;i: V1 ;;;i=-13 Vdc
Reg1ine
-
-
-
mV
9.0
60
3.0
30
43
120
10
60
Load Regulation TJ = +25°c, 5.0 mA ..;;10.;;;;; 1.5A 250 mA ..;;10.;;;;; 750 mA
Output Voltage -8.0 Vdc;;;i: Vt ;;;i=-21Vdc,5.0 mA ..;;to ..;;1.0A, P ..,;;15 W)
Input Bias Current .(TJ = +25°C)
Reg load -
-
mV
13
120
5.0
60
Vo
-5.7
-
-6.3
Vdc
ltB
-
4.3
8.0
mA
Input Bias Current Change -8.0 Vdc ;;;i: v I ;;;i:-25 Vdc 5.0mA ..;;10 ..;;1.5 A
6 '1s
-
-
mA
-
1.3
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz ..;;f.;;;;; 100 kHz)
eon
-
45
-
µV
Long-Term Stability
Ripple Rejection Ito= 20 mA, f = 120 Hz)
Input·Output Voltage Differential lo= 1.0 A, TJ ~ +25°C
t:..Vo/t:..t
-
RR
-
IV1-Vol
-
-
24
mV/1.0k Hrs
65
-
dB
2.0
~
Vdc
Average Temperatbre Coefficient of Output Voltage lo= 5.0 mA, <>°C ..;;TA ..,;;+125°C
t>Vo/t>T
-
-1.0
-
mv1°c
MC7908C ELECTRICAL CHARACTERISTICS I V1 = -14 v. lo= 500 mA,o0 c<TJ < +125°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Line Regulation iTJ = +25°c.10 = 100mA) -10.5Vdc;;;i:v, ;;;i=-25Vdc -11 Vdc;;;i: Vi ;;;i:-17 Vdc
ITJ = +25°c. to= 500mA) -10.5Vdc;;;i:Vt ;;;i=-25Vdc -11 Vdc~V1 ;;;i:-11 Vdc
Vo
-7.7
-8.0
-8.3
Vdc
Regline
mV
-
12
80
-
5.0
40
-
50
160
-
22
80
Load Regulation TJ = +25°c. 5.0 mA ..;;10.;;;;; 1.5 A 250 mA.;;;;; to ..;;150 mA
Reg1oad
-
-
mV
26
160
9.0
80
Output Voltage -10.5 Vdc~ V1 ;;;i:-23 Vdc, 5.0mA ..;;to..,;; 1.0A,P..;;15w
Vo
-7.6
-
-8.4
Vdc
Input Bias Current (TJ = +25°C)
Its
-
4.3
8.0
mA
Input Bias Current Change -10.5 Vdc ;;;i: V1 ;;;i=-25 Vdc 5.0mA ..;;to ..;;1.5A
Output Noise Voltage ITA= +25°C, 10 Hz ..;;f.;;;;; 100 kHz)
Long-Term Stability ~ipple Rejection llo = 20 mA, f = 120 Hz)
Input-Output Voltage Differential lo= 1.0A, TJ = +25°C
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, <>°C ..;;TA ~+125°C
6 ·1s
-
-
eon
-
t:..Vo/t:..t
-
RR
-
IV1-Vol
-
t>V(J/t>T
-
mA
-
1.0
-
0.5
52
-
µV
-
32
mV/1.0k Hrs
62
-
dB
2.0
-
Vdc
-1.0
-
mV/°C
4-110
MC7900C Series
MC7912C ELECTRICAL CHARACTERISTICS ( V1 = -19 V, o lo= 509 mA, 0 c <TJ < +125°C, unless otherwise noted.I
Characteristic Output Voltage (TJ = +25°CJ
Symbol Vo
Min -11.5
Typ
Max
~12
-12.5
Unit Vdc
Line Regulation
(TJ = +25°c. lo= 100 mAl -14.5 Vdc ~ V1 ~-30 Vdc -16Vdc~V1 ~-22Vdc
Regline
-
-
mV
13
120
6.0
60
(TJ = +25°.C, lo = 500 mA) -14.5 Vdc ~ V1 ~-30 Vdc -16 Vdc ~ V1 ~-22 Vdc
-
55
240
-
24
. 120
Load Regulation TJ = +25°c, 5.0 mA ~10 ~ 1.5 A 250 mA ~lo ~750 mA
Regload
-
-
mV
46
240
17
120
Output Voltage -14.5 Vdc ~ V1 ~-27 Vdc, 5.0 mA ~lo ~1.0A, P ~15 W
Vo
-11.4
-
-12.6
Vdc
Input Bias Current (TJ = +25°C)
l1B
-
4.4
8.0
mA
Input Bias Current Change -14.5 Vdc ~ V1 ~-30 Vdc 5.0 mA ~lo ~1.5 A
Output Noise Voltage (TA= +25°c, 10 Hz ~f ~100 kHz)
6 11B
-
-
eon
-
mA
-
1.0
-
0.5
75
-
µV
Long-Term Stability Ripple Rejection Oo = 20 mA, f = 120 Hz) Input-Output Voltage Differential
lo= 1.0A, TJ = +25°C
fl Vo/flt
-
RR
-
IV1-Vol
-
-
48
mV/1.0 k Hrs
61
-
dB
2.0
-
Vdc
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, <>°C ~TA ~+125°c
L>Vo/L>T
-
-1.0
-
mVl°C
·
MC7915C ELECTRICAL CHARACTERISTICS ( V1 o = -23 v.10 = 500 mA, 0 c <T J < +125°c, unless otherwise noted.I
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°CI
Vo
-14.4
-15
-15.6
Vdc
Line Regulation · (TJ = +25°c, lo= 100 mAI
-17.5 Vdc ~ V1 ~-30 Vdc -20 Vdc ~Vi ~-26 Vdc (TJ = +25°C, lo= 500 mA) -17.5 Vdc~ Vi ~-30 Vdc
-20 Vdc ~· v 1 ~-26 Vdc
l,.oad Regulation TJ = +25°C, 5.0 mA ~lo ~1.5 A 250 mA ~lo ~750 mA
Output Voltage -'17.'5 Vdc~ Vi ~-30 Vdc, 5.0 mA ~lo ~1.0A, P ~15 W
Input Bias Current (TJ = +25°C)
Input Bias Current Change -17.5 Vdc ~Vi ~-30 Vdc 5.0 mA ~.lo~ 1.5 A
Output Noise Voltage (TA= +25°C, 10 Hz ~f ~100 kHz)
Long-Term Stability
Ripple Rejection (lo = 20 mA, f = 120 Hz)
Input-Output Voltage Differential lo = 1.0 A, TJ = +25°c
Regline
Reg1oad
Vo 11B 6 11B eon fl Vo/flt RR !V1-V0!
-
-
-
-
-
-14.25
-
-
-
-
-
·-
-
mV
14
150
6.0
75
57
300
27
150
mV
68
300
25
150
-
, -15.75
Vdc
4.4
8.0
mA
mA
-
1.0
-
0.5
90
_;
µV
-
60
mV/1.0 k Hrs
60
-
dB
2.0
-
Vdc
Average Temperature Coefficient of Output Voltage
lo= 5.0 mA, D°C ~TA ~+125°C
L>Vo/L>T
-
-1.0
-
mVfUC
4-111
MC7900C Series
·
< MC7918C ELECTRICAL CHARACTERISTICS <V1 = -27 v, lo= 500 mA, o0 c <TJ +125°c, unless otherwise noted.I
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°CI
Vo
-17.3
-18
-18.7 '
Vdc
Line Regulation
ITJ = +25°c, 10 = 100 mAI -21 Vdc;;;s Vi ;;;s-33 Vdc -24 Vdc;;;s V1 ;;;s-30 Vdc
Regline
-
-
mV
25
180
10
90
(TJ = +25°C, lo = 500 mAI
-21 Vdc;;;s Vi ;;;s-33 Vdc
-24 Vdc ;;;s v 1 ;;;s-30 Vdc
Load Regulation
TJ =+25°C, 5.0 mA <to <1.0A
250 mA <lo <;750 mA
-
Reg load
-
-
90
360
50
180,
mV
110
360
55
180
Output Voltage -21 Vdc;;;sv1 ;;;s-33Vdc,5.0mA<;lo<;1.0A,P<;15W
Vo
-17.1
-
-18.9
Vdc
Input Bias Current (TJ = +25°CI
l1B
-
4.5
8.0
mA
Input Bias Current Change -21 Vdc ;;;s Vi ;;;s-33 Vdc 5.0mA <;10 <;1.0A
6l1e
-
-
mA
-
1.0
-
0.5
Output Noise Voltage (TA= +25°C, 10 Hz <;f <; 100 kHz) Long-Term Stability
eon
-
b.Vo/At
-
110
-
µV
-
72
mV/1.0k Hrs
Ripple Rejection llo = 20 mA, f = 120 Hz)
RR
-
59
-
dB
Input-Output Voltage Differential 10 = 1.0 A, TJ = +25°c
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, cf'C <;TA <;+125°C
IV1-Vol
-
2.0
-
Vdc
ll.Vo/ll.T
-
-1.0
-
mv1°c
< MC7924C ELECTRICAL CHARACTERISTICS Iv~ = - 33 V · Io= 500 mA cf'C <TJ +125°C, un ess otherw1se noted)
Characteristic
~mbol
Min
Typ
Max
Unit
Output Voltage (TJ = +25°CI
Vo
-23
-24
-25
Vdc
Line Regulation
= (T.J +25°C, lo= 100 mAI
-27 Vdc ;;;s V1 ;;;s-38 Vdc
-30 Vdc ;;;s V1 ;;;s-36 Vdc
Regline
-
-
mV
31
240
14
120
(TJ = +25°c. lo= 500 mAI -27 Vdc ;;;s Vi ;;;s-38 Vdc -30 Vdc ;;;s V1 ;;;s-36 Vdc
-
118
480
-
70
240
Load Regulation TJ = +25°c. 5.0 mA <to <;1.0A 250 mA <;_!_o_ <;750 mA
Output Voltage
w -27 Vdc;;;s Vi ;;;s-38 Vdc, 5.0 mA <;10 .;;;;;1.0 A, P <;15
Input Bias Current (~ = +25°CI -
Input Bias Current Change -27 Vdc;;;s Vi ;;;s-38 Vdc 5.0mA <;lo <;1.0A
Output Noise Voltage (TA= +25°C, 10 Hz .,;;;f <; 100 kHz)
Long-Term Stability
Ripple Rejection (lo = 20 mA, f = 120 Hz)
Reg1oad
Vo
'18-
6l1e
eon A Vo/At
RR
-
-
-22.8
-
-
-
-
-
mV
150
480
85
240
-
-25.2
Vdc
4.6
8.0
mA
mA
-
1.0
-
0.5
170
-
µV
-
96
mV/1.0k Hrs
56
-
dB
Input-Output Voltage Differential . lo= 1.0 A, TJ = +25°c
Average Temperature Coefficient of Output Voltage lo= 5.0 mA, cf'C <;TA <+125°c
JV1-Vol
-
2.0
-
Vdc
AVo/AT
-
-1.0
-
mv1°c
4·112
MC7900C Series
. TYPICAL CHARACTERISTICS (TA = +25°C unless otherwise noted.)
FIGURE 1 - WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (T0-220)
~ 5.0~-+-~--""==-~~~~....,...--1-~L.---+--l
<( 4.0
~ 3.0t---t--+--+--+---"l....:::4---P~t-~-..,..~
i5 2.0 m:=+--+--+--+----l--+'"""""'----.P....-++--1
~~ 1.0
~ 0.5 t--+--+--+--+----1--+-+".......+--+~~
~ 0.4 ~ 0,3 i-e-J_c.=...-so_c_tw.1..--+--+--+--l----+--+~-1-4-1
tP 0·2 BJA = 650CfW
Po!Max) =15W
0-'125
50
75
100
125
150
TA, AMBIENT TEMPERATURE (OC)
FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE
i ~ f:3" 2.0 t---+-[Z--;t'-+---+-"'~..,...,]'-.....1-----t---t>----+---+---+---i
~ i.51---.I.T--1---1---+--.......__t'....1---'-'_1---__,,,____,,_--1_--1
a:
......... ['..,.
a~ :
~
~ 1.0t---+---t---t----11-----t---1>----+-"......._r-+i~---
~
1'
S Yl
'b.. 0
:}
0.51---+---t---t----11-----t---t~--+---+---+"""..--i
o.___....__,___.____..____,_ __,_ __,,_ __.._ __.._ _. 0 3.0 6.0 9.0 12 15 18 21 24 27 30 JV1-VQJ, INPUT·OUTPUT VOLTAGE DIFFERENTIAL (VOLTS)
FIGURE 2 - WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (T0-3)
t----1--+--'J.-___,_ 20.....--...---.--....--.--~-~-~-.-----.--.
INFINITE HEAT SINK
10-
r--,.....
~
i
;::
5° s.ot--J eHs-~ 1~ciW-f--~~
~:~1-lo--
8H-s4=1-5-°.Cl/W
~
~~
--,......,, .... h..
~ 20 ·
NOHEATSINK ~~~:\"
~ 1.0
r" ~~
Ci 0.5
hi..
~ 0.4
~~=\-
~ 0.3 t-0-J-C..,.=-5.5-:o-c~/W-+--t---+--+--+--t----111-1\--"-I
,P 0·2 OJA= 45°ctw Po(Max) =15 w
0·12·._5_ _ _5~0_.....___7._5__,.....____,,10_0_.....___12._5_....____,150
TA. AMBIENT TEMPERATURE (DC)
·
FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY
1QQ ,___,,....,_....,-....,..,........,,......,.....,-...,....,....,...,.T'TTl"-,--r-.,.....,...TT1"TTT'"-.-.,.......,,...,....T'TTTTI Vin=-t1V
~H--+-H-i+H1f-+-+-+-+-++++t+-++-+++t-i+tt- Vo =-6.0 V
80 1-<H--1-1-1-1-l-l-l<'-+-l--+-4-++l-++l--+4-~+H,+#--.,.:IQ~=-2~0~m~Ar+++l
oL-.1~....;....JL....W...u.J.1...,......~........................_ . . . . . _ . _ . _. . . . . . .~,....._.__.._._.........~
10
100
1 n k
10 k
100 k
I, FREQUENCY (Hz)
FIGURE 5 - RIPPLE REJECTION ASA FUNCTION OF OUTPUT VOLTAGES
I= 120 Hz
IQ =20 mA .-+--
AVin = 1.0 V(RMS)
40..__..__....__....__,___.___.___.___.____..____. 2.0 4.o 6.0 8.o 10 12 14 1s · 15 20 22 VQ, OUTPUT VOLTAGE (VOLTS)
FIGURE 6-'- OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE
6.26
g 6.22
0
3:
~w 6.18
§; ~ 6.14
=I>-
0
-vL ... ~ 6.10 ..__.,,,.
L....-..- i--i
~ ~
~
~
1
L
Lj- Vin=-11 V
VQ =-6.0VIQ=20mA
_l
6.06 -25
+25 +50 +75 +100 .+125 TJ, JUNCTION TEMPERATURE (DC)
+150 +175
4-113
MC7900C Series
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 7 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE
5.2
1 ' :_gi 5.0 ~
1-
ffi
~ 4.8 ~
""""t......~
Cl) <(
iii 4.6
I-
~
~
~ 4.4
f'-... ~·
~ ~
Vin=-11V Vo =-6.0VIQ =20 mA
.......................
~
4.2
0
25
50
75
100
125
TJ. JUNCTION TEMPERATURE (OC)
DEFINITIONS Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected·.
· Load Regulation - The change in output voltage for a change in load current at constant chip temperature.
Maximum. Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.
Input Bias Current - That part of the input current that is not delivered' to the Ioad.
Output Noise Voltage - The rrns ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be fou~d from the equation:
TJ(max) - TA · R()JA (Typ ) >v1 Is - Vo lo
Where: Po(TAl.= Power Dissipation allowable at a given operating ambient temperiiture.
T J(max) = Maximum, Operating Junction Temperature as listed in t~e Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature
R8JA ll:yp) ;,, Typical Thermal Resistance Junction to Ambient
Is= Total Supply Current
..1-11ll
MC7900C Series
APPLICATIONS INFORMATION
Design Considerations . The MC7900C Series of fixed voltage regulators are designed
with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that' limits the maximum current the cir· cuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.
ln·many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
FIGURE 8 - CURRENT REGULATOR -
-20 v Input
MC7902C
10
lo= 200 mA
R Vo,,;;;:; 10 V
to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shqrtest possible leads directly across the reg· ulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.
FIGURE 9 - CURRENT BOOST REGULATOR (-5.0 V@ 4.0 A, with 5.0 A current limiting)
-10V Input
-5.0V Output
1-1.0µF
Gnd e
]+1.0µF
e Gnd
The MC7902, -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:
lo =2RV+ IB
The quiescent current for this regulator is typicalry 4.3 mA. The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to· within 6.0 V below the input voltage.
FIGURE 10-0PERATIONAL AMPLIFIER SUPPLY (±15 V@ 1.0A)
+20 v
Input
+15 v
Output
0.33 µF Gnd
1N4001 or Equiv
Gnd
-20 v
Input
-15 v
Output
The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for oper· ational amplifiers. A clamp diode should be us!)d at the output of the MC7815 to prevent potential latch-up problems.
*Mounted on common heat sink, Motorola MS-10 or equivalent.
When a boost transistor is used, short·ci~cuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/Rsc· Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up
by the regulator.
FIGURE 11 - TYPICAL MECL SYSTEM POWER SUPPLY
(-5.2 V@ 4.0 A and -2.0 V@ 2.0 A; for PC Board)
-12 v
-5.2 v
Input
1.-----JV\f'v-------· 0 utput
-2.0 v
r--V\/\r----+- Output
Gnd
When current-boost power transistors are used, 47-ohm base-toemitter resistors (R) must be used to bypass the quiescent current at no load. These resistors, in conjunction with the VBE of the NPN transistors, determine when the pass transistors begin conducting. The 1-ohm and 4-ohm dropping r~sistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation.
·
@ MOTOROLA Semiconductor Products Inc.
4-115·
MC79LOOC,AC series
·
THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS
The MC79LOO Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to 100 mA. Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applicatiohs, no external components are required for operation.
The MC79LOO devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach.
· No External Components Required · Internal Short-Circuit Current Limiting · Internal Thermal Overload Protection · Low Cost · Complementary Positive Regulators Offered
(MC78LOO Series) · Available in Either ±5% (AC) or± 10% (C) Selections
REPRESENTATIVE CIRCUIT SCHEMATIC R9
Gnd R17
THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS
P SUFFIX CASE 29 T0-92
Pin 1. Ground 2. Input 3. Output
,f
2 3
G SUFFIX CASE 79
T0-39
Pin 1. Ground 2. Output 3. Input
102 3
Bottom View
STANDARD APPLICATION
R4
Device No. Device No.
±10%
±5%
MC79L03C MC79L03AC
MC79L05C MC79L12C MC79L15C MC79L18C MC79L24C
MC79L05AC MC79L12AC MC79L15AC MC79L18AC MC79L24AC
Nominal Voltage
-3.0 -5.0 -12 -15 -18 -24
Input
A common ground is required between the input and the output voltages. The input volt· age must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
c 1 Is required if regulator is located an appreciable distance from power supply filter.
Co improves stability and transient response.
ORDERING INFORMATION
Device
Temperature Range
o MC79LXXACG TJ = 0 c to +150°c
o MC79LXXACP TJ = 0 c to +1S0°c
MC79LXXCG TJ = o0 c to +1so0 c
MC79LXXCP TJ = o0 c to +1S0°c
XX indicates nominal voltage
Package
Metal Can Plastic Power Metal Can ~lastic P~r
4-116
MC79LOOC, AC Series
MC79LOOC Series MAXIMUM RATINGS ITA = +25°C unless otherwise noted.I
Rating
Symbol
Value
Unit
Input Voltage
(-3,-5 V) (-12,-15,-18 V) (-24 V)
V1
-30
Vdc
-35
-40
Storage Temperature Range Junction Temperature Range
Tstg
-65 to +150
oc
TJ
Oto +150
oc
MC79L03C, AC ELECTRICAL CHARACTERISTICS IV 1= -10 V, lo= 40mA, c 1 = 0.33µF, Co= 0.1 µF,
o0 c < TJ < +125°C unless otherwise noted.)
MC79L03C
MC79L03AC
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Output Voltage (TJ = +25°CJ
Input Regulation ITJ = +25°Cl -7.0 Vdc > V1 > -20 Vdc -8.0 Vdc > V1 > -20 Vdc
Vo Regline
,-2.76
-3.00
-3.24
-2~88
-3.0
-3.12
-
-
80
-
-
60
-
-
60
-
-
40
Load Regulation TJ = +25°C, 1.0mA..: to..: 100 mA 1.0 mA ..: lo ..: 40 mA
Reg1oad
-
-
72.
-
-
72
-
-
36
-
-
36
Output Voltage
Vo
-7.() Vdc >Vi> -20 Vdc, 1.0 mA..: lo..: 40 mA
-2.7
-
-3.3
-2.85
-
-3.15
V1 = -10 Vdc, 1.0 mA <>:lo..: 70mA
-2.7
-
-3.3
-2.85
-
-3.15
Input Bias Current ITJ = +25°CJ (TJ = +125°Cl
Its
-
-
-
6.0
-
-
5.5
-
-
6.0
-
5 ..5
Input Bias Current Change -8.0 Vdc >Vi> -20 Vdc 1.0 mA ..: lo..: 40 mA
Output Noise Voltage (TA= +25°C, 10 Hz..: f.;;; 100 kHz)
Long-Term Stability
Ripple Rejection (-8.0 >Vi > -18 Vdc, f = 120 Hz, TJ = 25°Cl
Input-Output Voltage Differential lo= 40 mA, TJ = +25°c
c.11s
-
-
VN
-
c.Vo/c.t
-
RR
44
IV1-Vo/ -
-
-1.5
-
-
-0.2
-
30
-
-
10
-
-
51
-
45
1.7
-
-
-
-1.5
-
-0.1
30
-
10
-
51
-
1.7
-
Unit Vdc mV
mV
Vdc
mA
mA
µV mV/1.0 k Hrs.
dB Vdc
·
4-117
MC79 LOOC, AC Series
·
MC79L05C, AC Series ELECT.RICAL CHARACTERISTICS (V1 = -10 V, lo= 40 mA, c 1=.0.33 µF, Co= 0.1 µ,F,
o0 c < TJ < +125°C unless otherwise noted.)
MC79L05C
MC79L05AC
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Output Voltage (TJ = +25°C)
Vo
-4.6
-.5.0
-5.4
-4.8
-5.0
-5.2
Input Regulation (TJ = +25°CI -7.0 Vdc;;. V1;;. -20Vdc -8.0 Vdc ;;. Vi;;. -20 Vdc
Reg1ine
-
-
-
200
-
-
150
-
-
150
-
100
Load Regulation TJ = +25°C, 1.0mA..,;; lo..,;; 100mA 1.0 mA..,;; lo..,;; 40mA
Reg1oad
-
-
60
-
-
60
-
-
30
-
-
30
Output Voltage
Vo
-7.0 Vdc;;. V1;;. -20 Vdc, 1.0mA.,;; lo..,;; 40mA
-4.5
-
-Q..5
-4.75
-
-5.25
v1 = -10 Vdc, 1.0 mA..,;; lo..,;; 70 mA
-4.5
-
-5.5
-4.75
-
-5.25
Input Bias Current (TJ = +25°C) (TJ = +125°C)
l1B
-
-
-
6.0
-
-
5.5
-
-
6.0
-
5.5
Input Bias Current Change -8.0 Vdc;;. V1 ;;. -20 Vdc 1.0 mA ..,;; IO ..,;; 40 niA
e:.11B
-
-
-
1.5
-
-
·0.2
-
-
1.5
-
0.1
Output Noise Voltage ITA= +25°C, 10 Hz..,;; f..,;; 100 kHz)
VN
·-
40
-
-
40
-
Long-Term Stability
t:.Vo/t:.t
-
12
-
Ripple Rejection
RR
40
49
-
(-8.0;;. Vi;;. 18 Vdc, f = 120 kHz, TJ = 25°C)
-
t2
-
41
49
-
Input-Output Voltage Differential . lo= 40 mA, TJ = +25°C
IV1-Vo/ -
1.7
-
-
1.7
-
Unit Vdc mV
mV
Vdc
mA
mA
µV mV /1.0 k Hrs.
dB Vdc
MC79L 12C, AC ELECTRICAL CHARACTERISTICS (Vi= -19 V, 10 = 40 mA, c 1= 0.33 µF, Co= 0.1 µF,
o0 c < T J < +125°c unless otherwise noted.)
MC79L12C
MC79t.12AC
Characteristic
Symbol Min
Typ· Max
Min
Typ
Max
Output Voltage (TJ = +25°C)
Vo
-11.1
-12
-12.9 -11.5
-12
-12.5
Input Regulation (TJ = +25°CI -14.5Vdc;;. V1;;. -27 Vdc -16 Vdc;;. Vi;;. -27 Vdc
Regline
-
-
250
-
-
200
-
-
250
-
200
Load Regulation T J = +25°C, ·1.0 mA..,;; lo..,;; 100 mA 1.0mA..,;; lo .,;;40mA
Reg1o~d -
-
-
100
-
-
50
-
-
100
-
50
Output Voltage
Vo
-14.5 Vdc;;. V1 ;;. -27 Vdc, 1.0 mA..,;; lo..,;; 40 mA
-10.8
-
-13.2 -11.4
-
. -12.6
V1 = -19 Vdc, 1.0 mA..,;; llJ..,;; 70mA
-10.8
-
-13.2 -11.4
-
-12.6
Input B.ias Current ITJ = +25°CI (TJ = +125°CI
110 -
-
-
6.5
-
-
6.0
-
-
6.5
-
6.0
Input Bias Current Change -16 Vdc;;. Vi ;;. -27 Vdc 1.0 mA ..,;; lo ..,;; 40 mA
"'llB
-
-
-
1.5
-
-
0.2
-
-
1.5
-
0.1
Output Noise Voltage
VN
-
80
-
-
80
-
(TA= +'25°C, 10 Hz..,;; f..,;; 100 kHz)
Long-Term Stability
t:.Vo/t:.t
-
24
-
-
24
-
Ripple Rejection
RR
36
42
-
37
42
-
(-15..,;; V1 ..,;; -25 Vdc, f = 120Hz, T J = +25°C)
Input-Output Voltage Differential
IV1-Vot -
1.7
-
-
1.7
-
lo= 40 mA, TJ = +25°C
Unit Vdc mV
mV
Vdc
mA
mA
µV mV/1.0 k Hrs.
dB Vdc
4-118
MC79LOOC, AC Series
MC79l15C, AC ELECTRICAL CHARACTERISTICS (V1 = -2J v, lo= 40 mA, C1 = O.JJ µF, Co= 0.1 µF,
o0 c < TJ < +125°c unless otherwise noted.)
MC79L15C
MC79L15AC
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Output Voltage (TJ = +25°C)
Vo
-iJ.8
-15
..:16.2 -14.4
-15
-15.6
Input Regulation ITJ = +25°CI -;17.5 Vdc;;. V1 ;;.-JO Vdc -20 Vdc;;. V1 ;;.-JO Vdc
Regline
-
-
-
JOO
-
-
250
-
-
JOO
-
250
Load Regulation TJ = +25°C, 1.0mA.;; lo.;; 100mA 1.0 mA.;; lo.;; 40mA
Re91oad
-
-
-
150
-
-
75
-
-
150
-
75
Output Voltage
Vo
-17.5 Vdc;;. Vi-;;. -JO Vdc, 1.0 mA.;; lo <;;40mA
-1J.5
-
Vi= -2J Vdc, 1.0 mA.;; lo.;; 70mA Input Bias Current
(TJ = +25°C)
-1J.5
-
,,..
l1B
-
-
(TJ = +125°C)
-
-
-16.5 -14.25
-
-16.5 -14.25
-
-15.75 -15.75
6.5
-
6.0
-
-
6.5
-
6.0
Input Bias Current Change
-20 Vdc;;. V1 ;;. -JO Vdc
1.0 mA .;; IO .;; 40 mA
.f
Output Noise Voltage ITA = +25°C, 1Q Hz.;; t.;; 100 kHz)
Long-Term Stability
Ripple Rejection (-18.5.;; V1 .;,;-28.5 Vdc, f = 120 Hz)
6l1B -
VN
-
-
1.5
-
-
0.2
-
90
-
-
-
1.5
-
0.1
90
-
6Vo/6t
-
JO
-
RR
J3
39
-
-
JO
-
34
39
-
Input-Output Voltage Differential lo= 40 mA, TJ = +25°C
IV1-Vo/ -
1.7
-
-
1.7
-
Unit Vdc mV
mV
Vdc
mA
mA
µV mV /1.0 k Hrs.
dB Vdc
MC!9L 18C, AC ELECTRICAL CHARACTERISTICS 1"'.i = -27 V, 10 = 40 mA, c 1 = 0.33 µF, Co= 0.1 µF.
o0 c < TJ < +125°C unless otherwise noted.)
MC79L18C
MC79L18AC
Characteristic
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°C) -20. 7 Vele ;;. V1 ;;. -3J Vdc -21.4 Vdc;;. V1 ;;.-JJ Vdc -22 Vdc ;;. V1 ;;. -J3 Vdc -21 Vdc ;;. V1 ;;. -33 Vdc
Symbol Vo
Regline
Min -16.6
-
--
Typ -18 .
Max -19.4
Min -17.3
-
-
-
-
J25
-
-
275
-
-
-
-
Typ
Max
-18
-18.7
-
325
-
-
-
-
-
275
Load Regulation TJ = +25°c, 1.0 mA.;; 10.;; 100 mA ,1.0 mA .;; lo .;; 40 mA
Regload
-
-
-
-
Output Voltage
Vo
-20.7 Vdc;;. V1 ;;. -JJ Vdc, 1.0 mA..: lo.;; 40 mA
-21.4 Vdc;;. V1;;. -JJ Vdc, 1.0 mA.;; lo.;; 40mA
Vi= -27 Vdc, 1.0mA.;; lo.;; 70mA
-
-
'-16.2
-
-16.2
-
Input Bias Current (TJ = +25°C) (TJ = +125°C)
l1B
-
-
-
-
Input Bias Current Change -21 Vdc;;. Vi;;. -JJ Vdc
6l1B
-
-
-27 Vdc ;;. V1 ;;. -3J Vdc 1.0 mA .;; lo .;; 40 mA
-
-
-
-
Output Noise Voltage (TA= +25°C, 10 Hz.;; f.;; 100 kHz)
VN
-
150
170
-
85
-
-19.8 -19.8
-17.1 -
-17.1
6.5
--:
6.0
-
-
-
1.5
-
0.2
-
-
-
-
-
-
-
. -
-
-
150
170 85
-18.9
-
-18.9
6.5 6.0
1.5
-
0.1
-
Long-Term Stability
c>Vo/6t
-
45
-
Ripple Rejection
RR
32
46
-
(-2J.;; V1 .;; -33 Vdc;f = 120 Hz, TJ = +25°C)
-
45
-
J3
,48
-
Input-Output Voltage Differential lo= 40 mA, TJ = +25°C
~
IV1-Vo/ -
1. 7
-
-
1.7
-
Unit Vdc mV
mV Vdc
mA mA
µV mV/1.0 k Hrs.
dB Vdc
·
4-119
·
MC79LOOC, AC Series
MC79L24C, AC ELECTRICAL CHARACTERISTICS 1v 1 = -3·3 v, 10 "'40mA, c 1 =0.33 µF, c0 = 0.1 µF,
o0 c < TJ < +125°c unless otherwise noted.·)
Characteristic
Output Voltage (TJ = +25°C)
Input Regulation ITJ = +25°Cl -27 Vdc ;;. VI ;;. -38 V -27.5 Vdc;;. V1;;. -38 Vdc -28 Vdc ;;. V1;;. -38 Vdc
Load Regulation TJ = +25°C, 1.0 mA.;;; lo.;;; 100 mA 1.0 mA .;;; lo .;;; 40 mA
Output Voltage -27 Vdc;;. Vi ;,,,-38 V, 1.0mA.;;; lo.;;; 40mA -28 Vdc;;. V1;;. -38 Vdc, 1.0mA.;;; 10..;40mA V1 = -33 Vdc, 1.0 mA.;;; lo.;;; 70mA
Input Bias Current
(TJ =+25°Cl
(TJ = +125°Cl
Input Bias Current Change -28 Vdc ;;. V1 ;;. -38 Vdc 1.0 mA.;;; lo..; 40mA
Output Noise Voltage ITA= +25°C, 10 Hz.;;; f.;;; 100 kHz)
Long-Term Stability
Ripple Rejection
(-29.;;; v 1 .;;; -35 Vdc, f = 120 Hz, TJ = 25°Cl
Input-Output Voltage Differential lo= 40 mA, TJ = +25°C
Symbol Vo
Regline
Min -22.1
MC79L24C
Typ
Max
-24 -25.9
Regload Vo
11s Lll1s VN
-
-
-21.4 -21.4
-
-
-
-
-
-
-
-
350
-
300
-
200
- . 100
-
-
-
-26.4
-
-26.4
-
6.5
-
6.0
-
1.5
-
0.2
200
-
LI Vo/Lit
-
56
-
AR
30
43
-
IV1-Vo/ -
1.7
-
MC79L24AC
Min
Typ
Max
-23
-24
-25
-
-
350
-
-
-
-
-
300
-
-
200
-
-
100
-22.8
-
-
-
-22.8
-
-25.2 -
-25.2
-
-
6.5
-
-
6.0
-
-
1.5
-
-
0.1
-
200
-
......
-
56
-
31
47
-
-
1.7
-
Unit Vdc mV
mV
Vdc
mA mA µV mV/1.0kHrs. dB Vdc
APPLICATIONS INFORMATION
Design Considerations
The MC79LOOC Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the cir· cuit will pass.
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
· to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be
selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance
at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output Is also recommended.
CURRENT REGULATOR
10
lo= 100 mA
Input - ~ ~· ., MC79L03C t-<:>---'V'VR'v---
0.33µF
Gnd I··-~---~------------·Grid
The MC79L03, -3.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:
lo =3RV+ Is
The quiescent current for this regulator is typically 3.8 mA. The -3.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.
4-120
POSITIVE AND NEGATIVE REGULATOR +Vo
MC79 LOOC, AC Series
TYPICAL CHARACTERISTICS
(TA =+25°c unless othi;rwise noted.)
FIGURE 1 - DROPOUT CHARACTERISTICS
8.0
1
c;;
1--MC79L05C
~
Vo=-5.0V
0
.2..:..
6.0 ~ TJ = 25°c
C< l
~
0
> 4.0
I-
~
~
0
ci >
2.0
~ 10 ~ ~-tmA A
'Ir~~
IQ=4~~
lo~OOmA
1
0
0
-.2.0
-4.0
-6.0
-8.0
V1. INPUT VOLTAGE (VOLTS)
FIGURE 2 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE
-2.5 .---,-----r----..--..--..--..---.----.---.....----.
':£
-~a:; - -2.0 t---r----+-
IQ= 70 mA
1
~~~ ~ 2:. -1.5
\
- ~~
~
iS 7 c5 I=>-< 1-
lo=40mA -1.01---+---....--+--+--+--+---+f---+---+----l
~ >
IO= 1.0 mA
~
Dropout of Regulation is
-0.5 t--defined as when -+--+--+--+--+--+---<r--~ Vo= 2%ot Vo
OL-_..___..___ _.__ _.__ _.__ _.__ _,__ _,__.....___~
-10
0
25
50
75
100
125
TJ,JUNCTION TEMPERATURE (DCI
FIGURE 3 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE
4.2
4.0
<..s 3.8
I-
~
cc 3.6
B
"<a;' 3.4
I-
~ 3.2
!:
~
MC79L05C +--t----+--+---+--+----it----+~~-"
3.0
.~
V1
~o0
=-10 V : 4~~~
+--+--+--->--->--+---+---+--~+---+---+--+--+--+---+---+--_--!
0 "-~"---"-~"-~..___...__...__..___......__...___.
0
25
50
75
100
125
TA, AMBIENT TEMPERA TU RE (OC)
FIGURE 4 - INPUT BIAS CURRENT versus INPUT VOLTAGE
5.0 ~----..------..---~---.---~-~
~ 4:0 1----+----++-----t-:;.-~ .-F-'--+----+-----+---I
~ ~
30
B ·
MC79L05C
~ ! - - - - + - - + - - - + - - + - Vo= -5.0 V__..._ _..___ ___.
~ 2.0
~~ : ;~o~A 4---+---"·
~
!:
~ 1.0 t----t+---+----+---+----+---+----1-...,--,
OL-_.........._ _...__ _.__ _..___ _.__ __.__ __._ ___.
0
-5.0 -10 -15 -20 -25
-30 -35 -40
V1. INPUT VOLTAGE (VOLTS)
·
FIGURE 5 - MAXIMUM AVERAGE POWER DISSIPATION
versu1AMBIENTTEMPERATURE -T0-92Type PaclC·ge 10,000
FIGURE 6 - MAXIMUM AVERAGE eOWER DISSIPATION versus AMBIENT TEMPERATURE -T0·39 Type Package
~
No Heat Sink
z 1000
Cl j::
f
iii
- ,._ :.:!
Ci
;cc 100
.1.
eic ~ RoJA = 200°ctw
l J.
~PD(maxl to 25°C = 625 mW
.l
~
~
50
75
100
125
TA. AMBIENTTEMPERATURE (OC)
~
~ :I 150
10.___..___..___ _.__....___....___ _.__.....___...._....___.__...&j
n
~
n
100
1~
~o
TA. AMBIENT TEMPERATURE (OC)
4-121
·
MONOLITHIC NEGATIVE VOLTAGE REGULATOR
The MLM104G, MLM204G, and MLM304G are functionally, electrically, and pin-for-pin equivalent to the LM 104, LM204 and LM304, respecitvely.
· · Regulation No Load to Full Load - 1.0 mV · Line Regulation - 0.01 %/V · Ripple Rejection-'- 0.2 mV/V · Temperature Stability Over Temperature Range - 0.3%
CIRCUIT SCHEMATIC
9
.-----------+------~~.-·GROUND
MLM104 MLM204 MLM304
NEGATIVE VOLTAGE REGULATOR
MONOLITHIC SILICON INTEGRATED CIRCUIT
METAL PACKAGE
CASE 603 (T0-100)
ROJA = 160°CtW
NO CONNECTION
ADJUSTME" N·OG,ROUND
REFERENCE ,
' ~~~~~;no
REF~~~~~~ '
' BOOSTER
COMPENSATION ' · ' CURRENT LIMIT UNREGULATED INPUT
TOP VIEW
Pin5Electrically
Connected to Case Through Substrate
FIGURE 1 - BASIC REGULATOR CIRCUIT R2
i--c~-vo.= 50o
TYPICAL APPLICATIONS
FIGURE 2 - SEPARATE BIAS SUPPLY OPERATION
ORDERING INFORMATION
Device Alternate Temperature Range
MLM104
-
-55°C to +125°C
MLM204 MLM304 LM304H
-25°c to +s5°c o 0 c to +7o0 c
Package
Metal Can Metal Can Metal Can
FIGURE 3 - HIGH CURRENT REGULATOR
5k
Vo= -10 V lo<2 A
!Solid Tantalum Trim RI for exact scale factor.
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
!Solid Tantalum
!Solid Tantalum
Vin<-12V
is believed to be entinaly reliable.. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described ary license under the patent rights of Motorola Inc. or others.
4-122
MLM104, MLM204, MLM304
MAXIMUM RATINGS ITA= +25°c unless otherwise noted)
Rating Input Vohage Input-Output Voltage
Differential Power Dissipation (See Note 1) Operating Temperature Range Storage Temperature Range Lead Temperature
(soldering, t = 10 s)
Symbol Vin
Vin-Vo
Po TA Tstg Ts
MLM104 50 50
MLM204 50 50
MLM304 40 40
680 -55 to t125 -65 to +150
300
680 -25 to +85 -65 to +150
300
680 Oto +70 -65to +150
300
Unit Vdc Vdc
mW oc OC OC
ELECTRICAL CHARACTERISTICS (See Note 21
Characteristic
Input Voltage Range
Output Voltage Range
Output-Input Voltage Differential 10 = 20 mA 10 = 5.0mA
Load Regulation
O ~1 0 ~20 mA, Rsc = 15n
Line Regulation
v0 ~-5.0 v. 6 Vin= 0.1 v
Ripple Rejection (See Figure 1)
= (C1=10 µF, f 120 Hz)
Vin< -15V -7.0V~ Vin~ -1.5V
Output Voltage Scale Factor R1 = 2.4 kn (See Figures 1,2 ~nd 3)
MLM104
Symbol
Min
MLM204
Typ
Max
Vin
-8.0
-
-50
Vo -0.015
-
-40
IVin-Vol
2.0
-
50
0.5
-
50
Reg1oad
-
1.0
5.0
Ragin
-
0.056
0.1
ReiR
-
0.2
0.5
-
0.5
1.0
SF
1.8
2.0
2.2
MLM304
Min
Typ
Max
-8.0
-
-40
-o.o3e
-
-30
2.0
-
40
0.5
-
40
-
1.0
5.0
-
0.056
0.1
-
0.2
0.5
-
0.5
1.0
1;8
2.0
2.2
Unit Volts Volts Volts
mV % mV/V
V/k n
Temperature Stability
V0 ~ -1.0 V Vo~ -1.0 V, o0 c ~TA~ +10°c
Output Noise Voltage ~See Figure 1) (10 Hz~ f~ 10 kHz)
< V0 -5.0V, C1 =,O
C1=10µF
Standby Current Drain (IL= 5.0 mA) V0 =0 V0 = -40V, Vo=-30V
Long Term Stability
V0 ~ -1.0V
TCV0
£>V0 /£>T
-
-
Vn
-
-
le
-
-
-
s
-
0.3
1.0
-
-
0.007
-
15
-
1.7
2.5
3.6
5.0
-
-
0.1
1.0
%
-
-
-
-
0.3
1.0
-
0.007
-
%
-
15
-
µV
7 mA
-
1.7
2.5
-
-
-
-
3.6
5.0
%
-
0.1
1.0
Note.1: The maximum junction temperature of the MLM104 is +150°C, for the MLM204 - +1oo0 c, and forthe M.LM304 - ,+8s0 c. For operating at elevated temperatures, the package must be derated based' on a thermal resistance of 150°Ctw - junction to ambient, or 45oc1w junction to case.
Note 2:
-"-2s These specifications apply for junction temperatures of -55°C to +150°C for the MLM104;
0 c to +1oooc for the MLM204; an~ o to
+85°C for the MLM304. The specifications also apply for input and output voltages within the indicated ranges (unless otherwise specified).
Load and line regulation specifications given are for c<>nstant junction temperature. Temperatu·re drift effects must be taken into account
separately when the device is operating under conditions of high power dissipation.
·
4-123
·
MONOLITHIC POSITIVE VOLTAGE REGULATOR
The MLM105, MLM205, and. MLM305 are functionally, electrically, and pin-for-pin equivalent to the LM105, LM205, and LM305 respective! y. · Output Voltage Adjustable from 4.5 V to 40 V · Output Currents in Excess of 10 A Possible by Addition of
External Transistors · Load Regulation Better than 0.1%, Full Load with Current
Limiting · DC Line Regulation, 0.03%/V · Ripple Rejectioh, 0.01 %/V
CIRCUIT SCHEMATIC
MLMIOS MLM205 MLM305
POSITIVE VOLTAGE REGULATOR SILICON MONOLITHIC INTEGRATED CIRCUIT
REGULATED OUTPUT 8
GROUND Note: Pin4connectedtocase
ITOPVIEWI
TYPICAL FIGURE 1 - BASIC REGULATOR CIRCUIT APPLICATIONS
Vin
ORDERING INFORMATION
Device Alternate Temperature Range Package
MLM105G
~ss0 c to +125°c Metal Can
MLM205G
-2s0 c to +as0 c Metal Can
o MLM305G LM305H
0 c to +10°c Metal Can
FIGURE 3- 1.0 A REGULATOR with PROTECTIVE DIODES
1N4001 OR EQUIV! r - - - f l l l f - - - - - - - - - - - . . . - t - . . . . . . - - V0·28V
FIGURE 2 - 10 A REGULATOR with FOLDBACK CURRENT LIMITING
0.2 2N3055 OR EQUIV
3lk
1%
1N4001 OR EQUIV+
tSolidTantalum "':" ·e1tctrolytic
4-124
2.13k 1%
tProtects1g1instshortedinputor inductiv1foads0Runregulated supply. ·Prouctsagainstinputvoltage ,......1 tProtectsagainstoutplitvoltage rt-I
MLM105, MLM205, MLM305
MAXIMUM RATINGS ITA = +25°c unless otherwise noted)
Ratint Input Voltage Input-Output Voltage
Differential Power-Dissipation (See Note 1) Operating Temperature Range Storage Temperature Range Lead Temperature
(soldering, t = 10 s)
Symbol
Vin
IVin·Vol
MLM105 50 40
MLM205 50 40
MLM305 40 40
Unit Vdc Vdc
Po
680
680
680
mW
TA -55 to +125 -25 to +85 0 to +70
oc
Tstg -65 to +150 1-65 to +150 1-65 to +150 Oc
T5
300
300
300
oc
ELECTRICAL CHARACTERISTICS (See Note 2)
Characteristic
Input Voltage Range
Output Voltage Range
Output-Input Voltage Differential
Load Regulation (See Figure 1)
(0~10 ~12 mAI
Ase =18 n. TA = +25°c
Rsc = 10 n, TA= Thigh* Rsc = 18 n. TA= T 10w**
Line Regulation Vin·V0 ~ 5.0 V Vin·V0 > 5.0 V
Ripple Rejection (See Figure 1) Cref = 10µF, f = 120 Hz
Temperature Stability Ttow**~ TA~ Thigh"
Feedback Sense Voltage
Output Noise Voltage (See Figure 1) (10Hz~ f~ 10kHz) CRet= 0 CRet> 0.1 µF
Standby Current Drain Vin= 50V Vin= 40V
Long Term Stability
Symbol Vin Vo
IVin·Vol R891oad
Regin
75V0 Vab.V1 TCV0
Vref Vn
le
5
llll1Jli'r105 MLM205
Min ""Typ IM&x
lWn
8.5
-
50
8.5
4.5
-
3.0
-
40 ' 4.5
30
3.0
-
0.02
0.05
-
-
0.03
0.1
-
-
0.03
0.1
-
-
0.025 0.06
-
-
0.015 0.03
-
-
0.003 0.01
1.0
-
0.3
1.0
-
1.63
1.7
1.81
1.63
-
0.005
-
-
-
0.002
-
-
-
0.8
2.0
-
-
-
-
-
-
0.1
1.0
-
MLM305 Typ
-
0.02 0.03 0.03
0.025 O.o15
0.003
0.3 1.7
0.005 0.002
-
0.8 0.1
Max 40
30 30
0.05 0.1 0.1
0.06 0.03
0.01
1.0 1.81
-
-
2.0 1.0
Unit Volts Volts Volts
%
~IV
%/V % Volts %
mA
%
*Thigh= +125°C for MLM105 +85°c for MLM205 +7cPC for MLM305
**T1ow = -55°C for MLM105
-25°c for MLM205
o0 c for MLM305
Note 1:
The maximum junction temperature of the MLM 105 is +150°C, for the MLM205 - +100°C, and for the MLM305 - +ssoc. For operating
at elevated temperatures, the package must be derated based on a thermal resistance of 150°C/W - junction to ambient, or 45°Ctw -
junction to case.
Note 2: These specifications apply for junction temperatures of -55°C to +150°C for the MLM 105, -25oC to +85°c for the MLM205, and 0 to +10°c for the MLM305. Speeifications also apply for input and ciutput voltages within the indicated ranges and for a divider impedance sensed by the feedback terminal of 2.0 kllohms (unless otherwise specified). Load and line regulation specifications given are for constant junction temperature. Temperature drift effects must be taken into account separately when the device is operating under conditions of high power dissipation.
·
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely· reliable. However. no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described anv license under the patent rights of Motorola Inc. or others.
4-125
·
MLM109 MLM209 MLM309
MONOLITHIC POSITIVE THREE· TERMINAL FIXl:D VOLTAGE REGULATOR
A versatile positive fixed +5.0-volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged.
In most applications only one external component, a capacitor, is required in conjunction with the M LM 109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator.
· High Maximum Output Current - Over 1.0 Ampere in T0-3 type Package - Over 200 mA in T0-39 Package
· Minimum External Components Required
· Internal Short-Circuit Protection
· Internal Thermal Overload Protection
· Excellent Line and Load Transient Rejection
· Designed for Use with Popular MOTL and MTTL Logic
POSITIVE VOLTAGE REGULATOR
KSUFFiX METAL PACKAGE
CASE 11-01 (T0-3Type)
output 2
lnputO 10 0 3 Ground
(BOTTOM VIEW) GSUFFIX METAL PACKAGE CASE 79·02
(TOi39)
CIRCUIT SCHEMATIC
ORDERING INFORMATION
DEVICE MLM109G MLM109K MLM209G MLM209K
ALTERNATE
-· -
MLM309G
LM309H
MLM309K
LM309K
TEMPERATURE RANGE
T...l = -55° C to +150° C
!J = -ss° C to +150° C
TJ = -55° C to +150°c
TJ = -55lfC to+1@C
TJ=-()<>C to+12s0 c TJ = 00 C to +12SoC
PACKAGE Metal Can Metal Power Metal Can Metal Power Metal Can Metal Power
TYPICAL APPLICATION FIXED 5.0 V REGULATOR
Input---~~
MLM109
5V Output
Ground
*Required if regulator is located an appreciable · distance from power supply filter.
Although .no output capacitor is needed for stability, it d0 es improve transient response.
4-126
MLM109, MLM209, MLM309·
MAXIMUM RATINGS
Rating Input Voltage Power Dissipation Junction Temperature Range
MLM109 llJ1LM209 MLM309 Storage Temperature Range Lead Temperature
(soldering, t =60 sl
Symbol Vin Po TJ
Tstg Ts
Value 35
Internally Limited
-55 to +150 -55 to +150
0 to +125 -65 to +150
300
Unit Vdc oc
oc oc
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
MLM109 I MLM209<!)
Min
Typ
Max
MLM309@
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
Input Regulation (TJ = +25°Cl
7.o.-;;vin<25V
Load Regulation (TJ = +25°Cl Case 11·01 (typeT0-315.0 mA ~ lo< 1.5A
Case 79-02 (T0-391 5.0 mA,.;;: lo .( 0.5A
Output Voltage Range
7.0 V .(Vin <25 V
5__.0 mA,.;;: lo.( lmax' P <Pmax
Quiescent Current (7.0 V <Vin .(25 Vl
Ou iescent Current Change (7.0 V .(Vin.( 25 Vl ~-0 mA .( !_Q_.( lmax
Output Noise Voltage (TA= +25°Cl
10 Hz .(f .( 100 kHz
Long Term Stability
Thermal Resistance, Junction to Case @
Case11-01 (typeT0-3)
I
Case 79-02 (T0·39l
Vo
4.7
Regin
-
Regload -
-
Vo
4.6
Is
-
Als
-
-
VN
-
s
-
OJC -
-
5.05
5.3
4.8
5.05
4.0
50
-
4.0
50
100
-
50
20
50
-
20
-
5.4
4.75
-
5.2
10
-
5.2
-
0.5
-
-
-
0.8
-
-
40
-
-
40
-
10
-
-
3.0
-
-
3.0
15
-
-
15
5.2
Vdc
50
mV
mV
100
50
5,25
Vdc
10
mAdc
0.5
0.8
-
µV
20
mV
0 ctw'
-
--
NOTES:
0 Unless otherwise specified, these specifications apply for -55°C .( TJ .( + 150° (-25 °c .( TJ .( + 150°C for the MLM209 ). For ·Case 79-02
(T0-39) Vin= 10 V, to= 0.1 A, 'max= 0.2 A and_ Pmax = 2.0 W. For Case 11 ·01 (typeT0-31 Vin= 10 V, lo= 0.5 A, 'max= 1.0 A and Pmax = 20 W.
@ Unless otherwise specified, these specifications apply for o0 c <TJ:;:;; +125°c, Vin= 10V. For Case 79-02 (TG-39) to= 0.1A, lmax = 0.2A
and Pmax = 2.0 W. For Case 11-01 (type T0-3) lo= 0.5 A, Imax = 1.0 A and Pmax = 20 W.
Without a heat sink, the thermal resistance of the Case 79-02 (T0-391 package is about 150°C/W, while that of the Case 11-01 (type T0-3) package is aoproximately 35°c1w. With a heat sink, the effective thermal resis.tance can only approach the values ·Pecified, depending on the efficiency of the heat sink.
TYPICAL CHARACTERISTICS
(Vin= 10 V, TA= +25°C unless otherwise noted.)
FIGURE 1 - MAXIMUM AVERAGE POWER DISSIPATION (MLM109K, MLM209KI
FIGURE 2 - MAXIMUM AVERAGE POWER DISSIPATION (MLM109G, MLM209GI
100 50
~ z
....
0 10
~ ~ c
5.0 .....
a::
.e~
~
1.0
o.5
0.1 25
WAKE FIELD
HEAT SINK
680-75 or EQUIV ~-
~I
~
INFINITE __,
~AT SINK ---I
--i--.J
NO HEAT SINK
~
..x
""'-
............
~ .:'S.. ~ :x
~ .I
50
75
100
125
150
TA. AMBIENT TEMPERATURE (OC)
10
-1--.J l""--t-..
INFINITE HEAT SINK WAKE FIELD ~
~ HEAT SINK
207 OR EQUIV
f - - -r-NO HEAT f - - -r- SINK 0.1
~
i
~ -.......
s ~
3:
::I
~
~
_l_
~ ~ ..1.
~:s::~~\
25
50
75
100
125:
150
TA· AMBIENT TEMPERATURE (OCI
·
4-127
MLM109, MLM209, MLM309
·
TYPICAL CHARACTERISTICS (continued) (Vin= 10 V, TA= +25°c unless otherwise noted.)
FIGURE 3 - MAXIMUM AVERAGE POWER DISSIPATION (MLM309K)
100
50
~
z
0
i==
10
...._ ;t
~
5.0
..___ 0
a:
~
1-No HEAT
~ 1.0 ~~-SINK
,p 0.5
.....
INFINITE -.....,HEAT SINK
- - :s ~
:;;;;;;"
~
WAKE FIELD, ~ HEAT SINK .......,,; 680-75 OR EQUIV~
ISO::
~
......
~ _)
0.1 25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (OC)
FIGURE 4-MAXIMUM AVERAGE POWER DISSIPATION (MLM309G)
10
WAKE FIELD
~
z
0
--- i;=t= """-
~ i5
1.0
f"'-..,..
HEAT SINK
680·75 OR EQUIV
~
\
'
~ INF °S_HEAT
INITE SINK
_ ~
a:
~
,p
::s; :x
r::x
=\ 1---NO HEAT........... :s t - - SINK
~
- I .l
~ ~ :1
~ .......:.::s: ~
0.1
K ~"~l
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (DC)
FIGURE 5 - OUTPUT IMPEDANCE versus FREQUENCY 10+1
FIGURE 6 - PEAK OUTPUT CURRENT (K PACKAGE)
~ IL -20 mA:;i
12'.
2
,;z_L
L
z
~
L. IL=500mA
10-2 10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0M
FIGURE 7 - PEAK OUTPUT CURRENT (G PACKAGE) 4.0 ....---.-----..----.-----.---.----.--.....----.
TA =+12s0c
l-'-''---+---1----+----!t----+---t-TA =+15o0c
0 ,___ V_o.=__ 4.5 _ V ....__ _,__ __....__ _._....__...__ _.__ __.
5.0
10
15
20
25
30
35
40
45
Vin, INPUT VOLTAGE (V)
FIGURE 8 - RIPPLE REJECTION
- 3.0 l----t::=--t----t---'-!!----+---'-!r----r----1 ~-
1-
ffi
~ ~ 2·0 l--l---t--__;:F""--.::::-+----ll----f"....._;::4rT-A-=--5--l5-:-°C---I
I-
~
!':.>§
TA=+25°c
1.01--11~+-~P"'----..r--__;;::::!111-.~-+----I---+----!
TA=+125°c
c 1----+-----<1---....+----11----+-__;;;"""'t-TA =+15o0
Vo=4.5V
5.0. 10
15
20
25
30
35
40
45
Vin. INPUT VOLTAGE (V)
aof---=F==--+-~~~===~---t-..._;;::,.~~~-t:=-=-l
~
z
0
~ 60 t---+---t---+---1--
~
w -'
lit
cc 40
........ 20-------..._~...__.___..._~..._~
-'--~....___,
10
100
1.0 k
10 k
100 k
1.0M
f, FREQUENCY (Hz)
4·128
MLM109, MLM209, MLM309
TYPICAL CHARACTERISTICS (continued)
FIGURE 9 - DROPOUT VOLTAGE
2.5 . - - - . . - - - . - - - . - - - - . - - - - . - - - - . - - - - - - - - - MLM109 and MLM209
'---4-- ONLY
MLM109 and
MLM209 ONLY --+--+--+--+--+--+---1---.1
-75 -50 -25
0 +25 +50 +75 +100 +125 +150 +175 TJ, JUNCTION TEMPERATURE (DC)
FIGURE 11 - OUTPUT VOLTAGE
5·2 .---..----,.---.----,r---.r-----.---.---,Mr--L-M-10..,1---.
1---1--~1---1--~1--~1--~-~1---MLM~os
~ - "N oNLv
~5.11---~-1---'----11----11----11----11----li----1--1 w
~~ ·5.0 l---+--+---+---1---1---b..1-"""""..,-1---1--_:._1----i
~
~
f'...r.-..
!j 4.9 t--MLM1091--4--+--+--+--+--+~-~-~
and
IL= 20 mA
J°NLJ t - - M L M 2 0 9 _ - - + - - + - - + - - + - - + - - + - - + - - . .
4.8 ...__..___..___..___...___...___.___...___...___.__---J
-75 -50 -25
+25 +50 +75 +100 +125 +150 +175
TJ, JUNCTION TEMPERATURE (DC)
FIGURE 10 - DROPOUT CHARACTERISTIC (KPACKAGE)
6.0 .----.....--.----.....--.----,---;----.-----,
2: 5.5
w
C!l
ct ~
~ 5.0 1-----l--'--+---1---1-==:::;:===i
~
I-
=>
0
~ 4.5
4.0 _ _..___ 1----'---L.~~_._ _.__ _..___
5.0
6.0
7.0
8.0
Vin. INPUT VOLTAGE (V)
_.__--J
9.0
·
FIGURE 12- OUTPUT NOISE VOLTAGE
0.01 .___..__,.i_J.....J...J...J..1.U..---L.--L--L....L-L..U...U....-..i_....1........L.-L...L..1U...U
10
100
1.0k
10 k
f, FREO.UENCY (Hz)
6.5
;;{ .§. 6:0 1-
ffi
aa::
:::>
~ 5.5 ffi
(..)
i::3 5 ~ 5.0
4.5 5.0
FIGURE 13 - QUIESCENT CURRENT
1
IL= 200 mA
1·
l
I
TA =+25DC
~
~
V'"
~ 10
TA= ::i.55DC
TA= J125DC
1
TA =~150DC
15
20
Vi'ii, INPUT VOLTAGE (V)
-
25
FIGURE 14- QUIESCENT CURRENT
6.5 ....--..---.---..---.---.---..---.---..--,-..--,--.
MLM109 1---+--+---+--+---+--+--+--MLM~os -
~
00~
.§. 6.0 1---1---1---1---1---1---1---l---f---r----I
I-
~
~
~
I-
5.5 t--t-,-_-_:_.::;;Pi--t-.....;::,___l:--t--t--t--t--t---1
~
~ ~'----+--.1..J.-.::---1'....
i::3
§
5.0
l
-
)7
--+---+
MLM109
-
-
-+
-
-
-
1
-
-
-
~L=O +---+1-'-::o..~ .,~µo..,..--!---1----1
I- M~~~09 -+---1---+----t---+- IL =1.0 A ~
4.5 o~,Ly
1
-75 -50 -25 0 . +25 +50 +75 +100 +125 +150 +l75 TJ, JUNCTION TEMPERATURE (DC)
4-129
MLM109, MLM209, MLM309
TYPICAL APPLICATIONS ',
FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR
FIGURE 16 - CURRENT REGULATOR
1--<o-----· INPUT-------0--1
MLM109
OUTPUT
C1 0.22 µF
·
FIGURE 17 - 5.0-VOLT, 3.0·AMPERE REGULATOR (with plastic boost transistor)
1!1 5 W MJE370 OR EQUIV
2.ll
aw
0.22'µF~
MLM109K
5.0 v
O· 3.0A
~lOµF
INPUT---.--c>--t C1 0.22µF~
MLM109
'----------~--OUTPUT
*DETERMINES OUTPUT CURRENT .
FIGURE 18 - 5.0 VOLT, 4.0·AMPERE TRANSISTOR (with plastic Darlington boost transistor)
1ov-...o-...r..-. -M-JE-1-09-0-O,,R EQUIV I
47 %W
5.0V + 0 · 4.0A ~lOµF
MLM109G
FIGURE 19 - 5.0·VOLT, 10-AMPERE REGULATOR
MJ2955 OR EQUIV MLM109K
5.0 v
0- lOA
*10µF
FIGURE 20 - 5.0-VOLT, 10-AMPERE REGULATOR (with Short-Circuit Current Limiting for Safe-Area Protection of pass transistors)
0.1,5W
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. Tlie information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any li,cense under the patent rights of fll!otorola Inc. or oth_ers.
4-130
·
INTERFACE CIRCUITS
Temperature Range
o to 10°c
-55 to 125°c
DS3645,75
DS3647 ,77 ,147,177
DS8641
MC1405
MC1505
MC1406
MC1506
MC1408
MC1508
MC1411,12,13,16*
MC1440
MC1540
MC1444
MC1544
MC1472
MC1488
MC1489,A
XC26S10,11
MC3232A
MC3245 MC3408 MC3410,C MC3416 MC3417,18
MC3510
MC3437 MC3438 MC3440,41 ,43 MC3446 XC3448 MC3450,52 MC3453 MC3459 MC3460,66 MC3461 MC3467 MC3468 XC3480 MC3486 XC3487 MC3490,94 MC3491,92 XC6875
Hex Three-State Latch/Driver . . . . . . . . . . . . . Quad Three-State MOS Memory 1/0 Registers .. . Quad Unified Bus Transceiver . . . . . . Analog-to-Digital Converter Subsystem Six-Bit Multiplying D-to-A Converter.... . Eight-Bit Multiplying D-to-A Converter .. . Peripheral Driver Arrays . . . . . . . . . Core Memory Sense Amplifiers ·..·. AC-Coupled 4-Channel Sense Amplifier Dual Peripheral NAN D Driver . . . Quad MOTL Line Driver . . . . . . . . . Quad MOTL Line Receiver . . . . . . . Quad Open-Collector Bus Transceivers . Memory Address Multiplexer/Refresh
Add!ess Counter . . . . . . . . . . . . . . Quad TTL-to-MOS Driver . . . . . . .. Eight-Bit Multiplying 0-to-A Converter ... Ten-Bit D-to-A Converter ..... . Crosspoint Switch.·......... Continuously Variable Slope Delta
Modulator/Demodulator .. Hex Unified Bus Receiver ... Quad Unified Bus Transceiver. Quad Interface Bus Transceivers . Quad Interface Bus Transceiver . . Quad Three-State Bus Transceiver Quad Line Receiver . . . . . . · Quad Line Driver . . . . . . . . Quad NMOS Memory Driver. . . . . . . · . . . Gate Controlled Four-Channel MOS Clock Driver Dual NMOS Memory Sense Amplifier . Triple Preamplifier ........... . Magnetic Read Amplifier. . . . . . Memory Controller Circuit.... . Quad RS-422/423 Line Receiver . . . . . . . . Quad RS-422 Line Driver . . . . . . . . . . . Seven-Digit Gas Discharge Display Driver .. Eight-Segment Visual Display Driver .. M6800 Clock Generator/Driver .....
Page
5-19 5-22 5-25 5-28 5-42 e-54 5-68 5-71 5-74 5-82
5~85
5-91 5-97
5-100 5-104 5-107 5-113 5·125
5-134 5-142 5-145 5-148 5-.152 5-155 5-159 5-166 5-170 5-174. 5-187 5-193 5-198 5-218 5-219 5-222 5-224 5-230 5-237
5-2
INTERFACE CIRCUITS (continued)
Temperature Range
o to 10°c
-55 to 12s0 c
MC6880A/MC8T26A MC6881 /MC3449 MC6885-88/MC8T95-98 MC6889/MC8T28 MC7524,25 MC7528,29
MC5524,25 MC5528,29
MC7534,35 MC7538,39 MC8T13,23 MC8T14,24 MC75107,8 MC75110 MC75140 MC75325 MC75365 MC75368,58 MC75450 MC75451-54 MC75461-64 MC75491,92 MCC1486,87 MMH0026C
MC5534,35 MC5538,39 MC55107,8 MC55325
MMH0026
Page
Quad Three-State Bus Transceiver . . . . . . . . . . . . . 5-238 Triple Bidirectional Bus Switch . . . . . . . . . . . . . "' . 5-243 Hex Three-State Buffer/Inverter . . . . . . . . . . . . . . 5-245 Non-Inverting Bus Transceiver. . . . . . . . . . . . . . . . 5-250 Dual Sense Amplifier . . · . . . . . . . . . . . . . . . · . . 5-252 Dual Sense Amplifier with Preamplifier
Test Points . . . . . . . . . . . . . . . . . . . . . . . . . 5-255 Dual Sense Amplifier with Inverted Outputs . . . . . . . 5-258 Sense Amplifier with Preamplifiet Test Points. . . . . . . 5-260 Dual Line Drivers . . . . . . . . . . . . . . . . . . . . . . . 5-262 Triple Line Receivers . . . . . . . . . . . . . . . . . . . · . 5-265 Dual Line Receivers. . . . . . . . . . . . . . . . . . . . . . 5-269 Dual Line Driver . . . . · . . · · . . . . . . . . . . . . . . 5-274 Dual Line Receiver . . . . . . . . . . . . . . . . . . . . . . 5-281 Dual Memory Driver . . . . . . . . . . . . . . . . . . . . . 5-285 Quad MOS Clock Driver . . . . . . . . . . . . . . . . . . . 5-291 Dual MECL-to-MOS Drivers . . . . . . . . . . . . · . . ., . 5-299 Dual Peripheral Driver . . . . . . . . . . . . . . . . · · . . 5-306 Dual Peripheral Drivers. · . . . . . · . . . . . . . . · . . . 5-311 High-Voltage Peripheral Drivers. . . . · . . . . . . . . . . 5-315 Light-Emitting Diode Drivers . . . . . . . · . . . . · . . . 5-320 Quad LED Digit Drivers . . · . . . . . . . . . . . . . . . . 5-326 Dual MOS Clock Driver . . . . . . · . . . . . . . · . . . . 5-328
*TA =O to 85°C
·
5-3
·
BUS INTERFACE
Computer Bus
Line drivers and receivers designed to operate compatibly. The MCBT13/MCBT14 combination is specified
DUAL LINE DRIVERS
MCBT13 - Open emitter driver; specified for general TTL systems.
MCBT23 - Open emitter driver; specified to meet IBM system requirements.
for general TTL system applications. The MCBT23/ MCBT24 combination is specifically oriented toward IBM 360/370 system requirements.
TRIPLE LINE RECEIVERS
MCBT14 - Hysteresis-equipped receiver; specified for general TTL systems.
MCBT24 - Hysteresis-equipped receiver; specified to meet IBM system requirements.
Ga~e Input A3
All four devices:
TA= o to 75°c
Packages: L Suffix - Case 620 P Suffix - Case 648
Receiver Input A1
Strobe Input 51
Gate Input A1
Gate Input 81
Output F 1
Gnd
Device Number
Me8T13 Me8T23
VoH @loH= -75 mA
@ loH =-59.3 n;iA*
Volts Max
2.4 3.11·
los @Vo=O mAMax ·
-30
I -30
tPLH @CL= 15 pF
nsMax
20 20
Device Number
Me8T14 Me8T24
VH(R) Volts Min
0.3 0.2
llH(RI @V1H(R) = 3.8 V @VIH(R)·"'3.11 V*
mAMax
0.17 0.11·
tPLH(R) @CL= 15 pF
nsMax
30 30
Minicomputer Bus Transceivers and receivers for
bus organized minicomputers employing 120-ohm terminated lines.
HEX RECEIVERS
MC3437 - Hysteresis-equipped for improved noise immunity. DS8837 equivalent.
QUAD TRANSCEIVERS
MC3438 - Open collector driver outputs allow wire-
058641
OR connection. MC3438 has hysteresis·
equipped receiver for improved noise immunity
(not available with DS8641). MC3438 is equivalent
DS8838.
Vee
All three devices:
TA= o to 10°c
Packages:
Sus 1 Input 1
MC3437
MC3438
OS6841
L Suffix - Case 620 - J Suffix P Suffix - Case 648 - N Suffix
Bus 2 Input 2 Output 2
ll(R) @V1(R) = 4.0 V
µ.A Max
50
Hysteresis Volts Min
0.5
tPLH(R) ®CL= 15 pF
nsMax
30
Receiver Hysteresis
Volts Min
0.25·
VL(BUS) ® leus·=
50mA Volts Max
0.7
·Me3438 only.
ieus @V1H(BUSI =
4.0V µ.A Max
100
tPLH(D) ®CL= 15 pF nsMax
25
tPLH(R) @CL= 15pF nsMax
30
5-4
BUS INTERFACE (continued)
Microcomputer_ Bus
This family of devices is designed to extend the limited drive capabilities of today's standard 6800 and 8080 type NMOS microproces.sors. All devices are fabricated with Schottky TTL technology for high speed.
General features include: ·
· Single +5.0 V Power Supply Requirement · Three-State Logic Output · Low Input Loading - 200 µA Max.
DATA BUS EXTENDERS
Quad, Bidirectional, with 3-State Outputs
MC6880A/MC8T26A#- Inverting
MC6889/MC8T28#- Non-inverting
RUeiver Enable 1 Input
Receiver Output 2
1
Driver 15 Enable
Input
14 Receiver Output 4
#These devices may be ordered by either of the paired numbers.
Receiver Enable 1 Input
Receiver Output 2
1
Driver 15 Enable
Input
14 Recei_v·r Output 4
Receiver Output 5 2
Driver
Receiver 11 Output
3
Both types:
TA= o to 75°c
Packages: L Suffix - Case 620 P Suffix - Case 648
Receiver Output 5 2
Driver Input 7
2
Receiver 11 Output
3
Device Number
MC6880A/MC8T26A MC6889/MC8T28
Input Current
l1H µ.A Max
25 25
l1L µ.A Max
-200 -200
IOHL Output Disabled Leakage Current - High Logic State
µ.A Max
100 100
fPLH·tPHL Propagation Delay Time - High to Low or
Low to High nsMax
14 17
ADDRESS AND CONTROL BUS EXTENDERS
Hex, Unidirectional, With 3-State Output$
MC6885/MC8T95#- Non-inverting MC6886/MC8T96#- Inverting
Two-input Enable controls all six buffers.
MC6887/MC8T97 #- Non-inverting
MC6888/MC8T98#- Inverting
Two Enable inputs, one controlling four buffers
and the other controlling the remaining two
buffers.
Enable 4 1
Vee
Input F
#These devices may be ordered by either of the paired numbers.
En86Te 2
Output F Input E Outp!Jt E Input 0
All four types:
TA= oto 75°C
Packages: L Suffix - Case 620 P Suffix - Case 648
Output C 7
·Add inverter for MC6886/MC8T96.
Vol ® loL =48mA
Volts Max
0.5
=VoH
@ loH -5.2 mA Volts Min
2.4
·Add inv11rter for MC6888/MC8T98.
ios mATyp
-80
tPLH nsTyp
6.0
tp(Enable) nsTyp
11
5-5
·
·
BUS INTERFACE (continued) Microcomputer Bus (continued)
BIDIRECTIONAL BUS SWITCH
MC6881/MC3449# - For exchanging TTL level digital information between selected pairs of ports in a 3-port network.
M6800 CLOCK GENERATOR
MC6875 - Provides the non-overlapping two-phase clock signals for M6800 MPU systems.
' Eri8bTe
A A1 A3 A2
Control (Direction)
Vee
Eri8bi8
c
C1 C3 C2 82 83
#This device may be ordered by either of the numbers.
Both types:
o TA= to 10°c
Packages: L Suffix - Case 620 P Suffix - Case 648
X1
X2
Ext In
4 x f0 2 x f0 Memory Ready Buslf>2 Ground
Vee MPU </)1 Reset MPU </)2 System Reset OMA/Ref Grant OMA/Ref Req Memory Clock
VoLC = 0.3 v Max VoHC =Vee - 0.3 v Min
fop= 2.0 MHz Typ
Gnd
VoL
loo
@loL =8.0mA @Vo=2.7V
Volts Max
µA Max
0.6
26
l1L
l1H
@V1L'"0.4V @V1H·2.7V
µA Max
µA Max
-200
40
MC6881/MC3449 TRUTH TABLE
Enable 0 0 0 0 1
Select 0 0 1 1
x
Control 0 1 0 1
x
Data Flow 2 ... 3 3-2 1-+3 3-1
High Impedance
X . Don't Care
Instrumentation Bus
HIGH-CURRENT PARTY-LINE BUS TRANSCEIVERS
MC26S10 - Inverting MC26S11 - Non-inverting
Devices for industrial control and data communication.
Quad transceivers with open-collector drivers and PNP-buffered inputs for MOS compatibility.
Both types:
TA= oto 10°c
Packages: L Suffix - Case 620 P Suffix - Case 648
Receiver Output
Driver Input A
Driver Input B Receiver . Output B
Gnd
14 Receiver Outpute
10
Receiver Output 0
Test VoL (D) lo(O) 101(0)
l1H (D) l1L (D) tp (D)
tp (R)
Condition
loL = 100 mA
VoH = 4.5 V
Vee= o v.
VoH·"' 4.6 V V1H=2.7V VIL= 0.4, V Me26S10 Me26511 Both Types
Limits 0,8 Volts Max 100µA Max 100µA Max
30 µA Max -0.54 mA Max 15 ns Max 19 ns Max 15 ns Max
·inverter on Me26S11 only.
5-6
BUS INTERFACE (c~ntinued) Instrumentation Bus (continued)
QUAD INTERFACE TRANSCEIVERS
These devices are designed to meet the HP-18 bus specification of IEEE Standard 488-1975, for the interconnection of Measurement Apparatus.
MC3440P - Three drivers with common Enable input; one driver without Enable.
Output and Termination -
Gnd
Vee
MC3441 P - Four drivers with common Enable input.
MC3443P - Four drivers with common Enable input; no termination resistors.
~~~;~~e~ w
Driver "" Input A
Driver en Input B
Receiver OI Output B
M~446P - For low-power instruments, including MOS.
MC3448P - For common Send-Receive bus; bidirectional.
Receiver o.utput A
Bus A Driver Input A Enable
ABC Driver Input B Bus B Receiver Output B
Gnd
Device Number Me3440P MC3441P Me3443P MC3446P Me3448P
Vee
Receiver Output D
Send/Rec. Input A
Data A
Bus D
Driver Input D
Enable o
Driver lnputC
Bus A
. Pull-Up
Enable
Input A-B Bus 8
Data B
.
.
Bus C
Receiver Output C
Send/Rec. ...
Input B
All types:
TA,,; Oto 10°c
Paekage - Case 648
Receiver Input
Hysteresis mVMin
400 400 400 400 400
Drive Output Voltage Cjil IOL =48 mA;
Volts Max
0.4 0.4 0.4 0.4 0.4
Bus Divider Voltage
Volts
2.6 to 3.75 2.6 to 3.75
-
2.5 to 3.7 2.5 to 3.7
Vee
Send/Rec. lnput·O
·Data D
BusD Pull-Up Enable lnpute-o Buse
Datae
Send/Rec. Input C
tPHL (Driver or Receiver)
nsMax 30 30
25(D) 22(R) 50 35
·
·
A-D/D-A CONVERSION
Low_-cost building blocks for construction of 0-A/ A-0 systems. Involves use of advanced technologies such as ion implantation, laser ,trimming and CMOS
processing where necessary to achieve the required functional capability, operating accuracy and production repeatability.
D-A Converters
-i----t . 10-Bit=f1
Bit A1 A2 A3A4 A5 AG A7 A8A9A10
Range Control
o--
Current Switches
Ladder Terminators and
Trimming Networks
A-2R Ladder
Vee Compen.
Gnd
Dotted terminals available on 6- and 8-bit units only.
Multiplying- D-A converters designed to supply an output current that is a linear product of an analog input reference voltage and a digital input word. Devices for 6-, 8- and 10-bit digital word inputs are available.
Vee
Device Number
Po @VEE= Error -5V
%Max mW Max
tsettling nsTyp
·o
@VRef = 2V mA
6-Bit
MC150G· ±0.78 120
MC1406
150 1-9 to 2.1
8-Bit
MC1508L8· +0.19
MC1408L8
MC1408L7 ±0.39 170 MC1408L6 ±0.78 MC3408 ±0.5
300 1.9 to 2.1
10-8it
MC3510·
MC3410
±0.05 220
250 3.8 to 4.2
MC3410C ±0.1
*TA= -55 to 125°C,
Devices without asterisk: TA = O to 10°c.
Suffix Case
L
632
L
620
L, p 620, 648
L
620
L
690
L, p 690, 648
A-D Subsystems
2-Chip A-0 Converter System Functional Diagram
These devices are relatively complex subsystems. The bipolar, dual-ramp A-D converter has up to 4-1 /2-digit conversion capability. The CMOS logic subsystem specifically adapts the A-D converter to a ~-1/2-digit DVM function.
MC1505/1405 - A-D Converter
MC1505L ""'TA= -55 to 125°C - Case 620
o MC1405L -TA= to 10°c
- Case 620
Linearity Error %Max
±0.05
Voltage Reference
Volts
1.15 to 1.35
Temperature Coefficient of Reference
%/OC
0.005
MC14435 - Digital Logic
(See Semiconductor Data Library Vol. 5 for data.)
MC14435EFL/EVL* -TA= -55 to 125°C- Case 620 MC1443_5FL/VL* - TA= -40 to 85°C - Case 620 MC14435FP/VP* -TA= -40 to 85°C - Case 648
·cc @Vee= 5.o v
mAMax
12
= Pc(quiescentl
@Voo 5.o v mW Max
1.75
IOL @Voo=5:ov (Digit Selects)
mAMin
IOL @v00 = 5.o v (BCD Outputs)
mAMin
IOL @v_00 = s.o v
(All Outputs)
mAMin
1.6
1.6
-0.2
·MC14435EFL/FL/FP: VDo = 3.0 to 18 Vdc MC14435EVL/VL/VP: Voo = 3.0 to 6.0 Vdc
5-8
MEMORY INTERFACE
NMOS Memories to MECL Systems
The high-speed capabilities of some NMOS memories (example: 7001A types) make them desirable for use i,n conjunction with MECL logic for some applications. Yet, the positive input requirements of NMOS memories are incompatible with the negative voltage levels charac· teristic of the MECL family. Hence, level conversion is required-for both input and output matching of the NMOS memory. The interface devices below include · driver/translators to feed the memory inputs and a.sense amplifier to match the output.
MECL Input
MECL Dafa Input
MECL Input
DRIVER/TRANSLATORS
Low Voltage Driver
MC10177
High Voltage Driver
MC75368
Sense Amplifier MC3461
MECL Output
MECL-to·MOS driver/translators convert standard MECL 10,000 input signals to suitable levels for NMOS
memory systems. The MC75358 and MC75's68 may also be use.d as positive logic NOR or non-inverting gates.
MMCC7755335688}- DuaI Clock Li.ne Dnv. e~s ~u1.t~ble for dri.vi.ng address, control, and timing inputs.
MC10177L - Triple Line Driver for driving address and control inputs.
TA = -30 to ss0 c
Package - Case 620
TA= o to 10°c
Packages: L Suffix - Case 632 P Suffix - Case 646
Maximum Supply Voltage:
MC75368 = 18 V MC75858 = 22 V
Device
VoH @ IQH Vol @ 101.. toHL @ CL
Number Volts Min mA Volts Max mA nsMax pf
MC75368 Vcc2- o.3 0.1
0.3
MC75358 Vcc2- o.3 0.1
0.3
MC10177
4.0
15
0.5
10 26 10 24 1.0 6.0
300 390 350
SENSE AMPLIFIER
MC3461 L - Dual Sense Ampl\fier with MECL 10,000·
compatible control inputs and complementary,
open-emitter outputs. Designed for 7001 and 2105
type NMOS 1K RAMs.
TA= Oto 75°c
Package Case 620
Output Gnd.
Output 1A
Output 2A
Outputs A Enable
ITH µA Max
±200
tpo (Amplifier) nsMax
10
tpo (Enable) ns Max ·
5.0
Input 1A
Latch Input
Vee
(-5.2 V)
Output 28
Output 18
Input 18
Input 28
Ampl. Input 0 Termination
(RT)
Vee
(+7.5 VI
·
5-9
·
MEMORY INTERFACE (continued)
NMOS Memories to TTL Systems
Address Refresh
The highly capacitive loads represented by NMOS memories are, in themselves, incompatible with the drive capabilities of conventional TTL logic circuits. So, also, are some of the voltage levels.. The devices shown .are used to match TTL capabilities to various types of popu· far NMOS memories.
and Control Inputs
TTL Clock/Chip Enable
TTL Output
High.Voltage Driver
CLOCK AND CHIP ENABLE .LINE DRIVERS
l . MC3460 Quad Clock Drivers
MC3466 l.. with Refresh Select
MC3245 Logic
(High Level)
MC75365 - Quad Clock Driver or High-Current NANO Gate
MMH0026 } MMH002SC -
. Dual Clock Driver
Voo1 1
Output A Channel Select A Enable 1 Refresh Select
Sei8ctB
Output B 7
Gnd
14 Chilim8i S8i9CtD
13 enable3
11 Chiinii8t
Select C
(Pin Connections for U or P1 Package)
.·MC3245 - no connection; Voo2 not required.
TA= oto 10°c
Packages: L Suffix - Case 620 P Suffix - Case 648
TA= oto 10°c
Packages: L Suffix - Case 620 P Suffix - Case 648
TA: MMH0026 - -55 to 125°c
MMH0026C - o to 10°c
Packages G Suffix - Case 601 L Suffix - Case 632 U Suffix - Case 693 P1 Suffix - Case62Ei (For MMH0026Conly)
Device Number MC3460
MC3466
MC3245
MC75365
MMH0026 MMH0026C
VQH
@l
Volts Min
Voo1 - t.o
IQH
mA
-2.0
Voo1 - 1.3
v 00 -0.5
-40
~1.0
Vcc2 -o.3
-0.1
Vc-1.0
0.4V*
Vol Volts Max
0.55
@l ·ot mA 40
0.55
40
0.45
5.0
0.3
10
Vee·+ 1.0
2.4 v·
tOHL nsMax
23
24
32
18
@l CL pF 480 480 250 200
Feature
Specified for·usewith 4K NMOS dynamic memories. Specified for use with 1 K NMOS dynamic memories (e.g., 7001 A types). Does not require second high voltage supply. Low input loading. DerivesVcc1 power from TTL 5-V supply, and Vcc2 and Vcc3 from Vss and V90 supplies from NMOS memories.
12
1000 For very high capacitance loads.
5-10
MEMORY INTERFACE (continued) NMOS Memories to TTL Systems (continued)
DATA AND ADDRESS LINE DRIVERS (Low Level)
MC3459 ·- Quad Address Line Driver
DDSS33667455} - Hex 3-State Latch/ Drivers. Output dump-
ing resistor on DS3675
MC3232A - Address Multiplexer and Refresh Counter
Vee
Input 10
Input 20
Output 0
Input 1C
Input 2C
OutPut c
Input Enable
~utput A
Vee
Output Disable
Data F Output
;:
Data E
Output
E'
COiJrlt 1
Refresh Enable
A1 J A? 4
A2 5 AB 6
AO 7
A6 8 00 9 02 10
0111
Gnd12
24Vcc 23Aow
Enable 22 AS 21 A11
20A4 19A10 18 AJ 17A9
16 03
15 04 14 05 13 NC
TA= Oto 10°c
Packages: L Suffix - Case 632 P Suffix - Case 646
TA =Oto 75°C
Packages: J Suffix - Case 620 N Suffix - Case 648
TA =Oto 75°C
Packages L Suffix - Case 649 P Suffix - Case 623
Device Number
MC3459 DS3645 DS3675 MC3232A
VoH
@
Volts Min
2.4
2.4 2.5 2.8
loH mA
Vol @ Volts Max
-2.0
0.7
-1.0
0.6
-1.0
0.3
-1.0
0.4
Propagation
IOL
mA
Delay
@ CL
nsMax
pf
Features
80
26
20 20
25Typ
50
25
360 High fan-out capability. Extremely low input currents for MOS
500 input compatibility.
250 Multiplexes the 12 address bits to the 6 input address pins of 16-pin 4K RAMs.
MEMORY 1/0 REGISTERS (Hex)
DS3647
B Output Inverting, 3-Stat~
DS3677 Non-inverting; 3-State
0836147 Inverting, Open Collector
DS36177 Nan-inverting, Open Collector
These registers, with two 1/0 ports per bit, can
·handle bidirectional data, with the direction of
data controlled by Input Enables. An Expansion
input disables both A and B outputs to permit
multiplexing of other registers.
Input Enable A
TA= oto 10°c
Packages: J Suffix - Case 620 N Suffix - Case 648
·
5-11
·
MEMORY INTERFACE (ccmtinued)
Magnetic Memories to TIL Systems
SENSE AMPLIFIERS
.·. for Magnetic Tape Memories
T
A
p E
TAPE AMPLIFIER SYSTEM
A two-component preamplifier/amplifier combination
that provides the interface between magnetic tape heads
1/3
MC3467 Pre-
Amplifier
Filters
MC3468 Read
Amplifier
and digital logic. Suitable for both open reel and cartridge tape systems. Triple preamp has individually adjustable gain controls. LSI Read Amplifier performs peak detection and. threshold detection functions, as
required for NAZI/phase encoded recording formats.
Electro·nic Gain Control
NRZl!<t> Code Select
MC_3467 - Triple Preamplifier
MC3468 - Read Amplifier
EGC 1
'" "'l' I 4
Input
7
1 Input
Channel Select (Aor 8)
!Output
Threshold Amplifier Input A
Threshold Amplifier Inverting Input
Threshold Amplifier Input B
!Output
EGC
Both types:
TA= oto 10°c
Packages:
~ Inputs A {
L Suffix - Case 726
P Suffix - Case 701
!Output
8
Inputs 8 {
Vee
Threshold Detector Output TD Threshold Level Input ZCD Output
Gnd
Differentiation } Components
Gain State Output
·.· for Core Memories
Feature adjustable threshold, time· and amplitude signal discrimination, dual inputs with independent outputs, and a range of options.
Representative Diagram (MC5528/291 *
TEST
TEST
POINT STROBE OUTPUT OUTPUT STROBE POINT
Vee
A
A
A
B
B
B
GND
16
IS
11
10
Ct Kt
____.
DIFFERENTIAL
INPUT A
.._,,REFERENCE
INPUT
-.:-.....-
Vee
DIFFERENTIAL
INPUTB
·Pin assignment slightly different for devices without test points.
T est
o TA= -55 to 125°C TA= to 10°c Points
{ AND Output
MC5524 MC5525 MC7524 MC7525 No MC5528 MC6529 MC7528 MC7529 Yes
{ NANO Output
MC5534 .MC5535 MC7534 MC7535 No MC5538 MC5539 MC7538 MC7539 Yes
VTH@ Vf!ef =
15 mV=
10 to 20 8 to 22 .11J:O19 8 to 22
mV
mV:
mv
mV
VTH@ VRef = 40mV
35 to 45 33 to 47 36 to 44 .33 to 47
mV
mV
mv
mV
Max 119 =
100µA 100µA 75µA 75 µA
Max tPLH@ CL= 15 pF =
40 ns
40 ns
40 ns
40 ns
Packages
L Suffix - Case 620 L Suffix - Case 620 P Suffix - Case 648
5-12
MEMORY INTERFACE (continued) Magnetic Memories to TTL Systems (continued)
SENSE AMPLIFIERS (continued)
... for Plated Wire and Thin-Film Memories and other low-level sensing applications.
MC1544 -TA= -55 to 125°c MC1444 - TA= o to 10°c
Features 4-channel input with decoded channel selection and strobed output capability.
Packages: MC1544 L Suffix - Case 620 F Suffix - Case 650 MC1444 L Suffix - Case 620
Device Number
MC1544 MC1444
VTH mV
VoH
Vol
@ loH = -400 µA @loL =10 mA tpD
Volts Min
Volts Max nsMax
0.5 to 1.5
2.4
0.3 to 2.3
2.4
0.5
25
0.5
25
1 Inputs Channel C {
3 Inputs Channel D {
Strobe Inputs Channel { 7 Select Inputs
CORE DRIVER
MC55325 ~ TA = - 55 to 125°c MC75325 - TA = o to 10°c
Contains two source switches and two sink switches. Source and sink selection is determined by one of two logic inputs, and turn-on is determined by the appropriate strobe.
Packages: L Suffix - Case 620 F Suffix - Case 650 P Suffix - Case 648 (MC75325 only)
Source Collectors
w
lS1
Strobes S2
Gnd
Vsat
Device @ ·sink or ·source = 600 mA
Number
Volts Max
MC55325 MC75325
0.70 0.75
Ioff @Vcc2 =24
v
µA Max
150 200
tPLH (Source) nsMax
50 50
tPLH (Sink) nsMax
45 45
5-13
·
Vcc2
Node
COMPUTER AND TERMINAL INTERFACE
Voltage Mode
LINE DRIVERS AND RECEIVERS for Modem/Terminal Applications
RS-232C SPECIFICATION
DRIVER
RECEIVERS
MC1488 - Quad; output current limiting.
MC1489 - Quad; 0.25 V input hysteresis. MC1489A - Quad; 1.1 V input hysteresis.
·
All devices:
TA= oto 10°c
Package: L Suffix - Case 632
VoH
VoL
v @VecNee = ±9.o v @ VceNee = ±9.o
·os
tPHL @CL= 15 pf
Volts Min
Volts Max
mA
nsMax
6.0
-6.0
±6.0 to 12
175
Device Number
MC1489 MC1489A
Input V1HL Volts
1.0 to 1.5 1.75 to 2.25
lnputV1LH Volts
0.75 to 1.25 0.75 to 1.25
tPHL
@RL =390 n
nsMax
sq
50
DRIVER
RS-422/423 SPECIFICATION·
RECEIVER
MC3487 - Quad; three-state outputs.
MC3486 - Quad;three-state outputs and input hysteresis.
- Input A
~
Al Channel
Outputs
. A/B Control
~
BI Channel
Outputs
Input B
Vee
Input D
) Channel D Outputs
CID Control
JChannel e Outputs
I -
Inputs A
Both devices:
TA= oto 10°c
Packages: L Suffix - Case 620 P Suffix - Case 648
A Output
y
. Output A(C
Control
Output C ~
IlnputlC °'
"' Input C
Vee
B ) Inputs
B Output
Output BID Control Output[).
) Inputs D
VoH
Vol
Voo(Differential)
@ loH =50 mA @loL =4BmA @ RL = 100 .n tPLHltPHL
Volts Min
Volts Max
Volts Min
nsTyp
2.0
0.5
2.0
15
VTH(O) @ V ICM = ±7 .0 V
Volts Max
±0.2
110 @V10= ±10 V
Vee =Oto 6.25 v
mAMax
±3.25
tPHLltPLH tp(eontrol)
ns Typ
nsTyp
20/25
25
5-14
COMPUTER AND TERMINAL INTERFACE (continued)
Differential Current Mode
DRIVERS
MC75110 - Dual; industry standard.
RECEIVERS
MC75107/MC55107 - Dual; active pull up output. MC75108/MC55108 - Dual; open collector output.
Inhibit Input
TA= o to 10°c
(MC75xxx)
-55 to 12s0 c
(MC55xxx)
Packages: L Suffix - Case 632 P Suffix - Case 646 (MC75xxx only)
Vee Vee
Inputs
2A
26
Output Strobe
NC
2Y
2G
lA 18
Logic Inputs
lC 2C
Inhibit Inputs
2A 28
Logic Inputs
Gnd
Inputs
lA
16
NC Output Strobe Strobe Gnd
1Y
lG
S
MC3453 - Quad; common inhibit input; current sink approximately 12 rriA.
MC3450 - Quad; active pullup outputs; common threestate enable.
MC3452 - Quad; open collector outputs.
y Output A
z
z
Output C y
Vee
Input B
y Output 6
z
z
Output 0 y
Input 0
All three devices: TA= o to 10°c
Packages: L Suffix - Case 620 P Suffix - Case 648 ,
·
BOTH DRIVERS
lo (on)
mAMin
lo (off)
µA Max
6.5
100
tPHL nsMax
15
lnputVTH mVMax
±25
ALL RECEIVERS
l1H @V10 =0.5 V
µA Max
l1L @V10= -2.0 V
µA Max
75
-10
tPLH nsMax
25
5-15
'--~~~-P_E_R_IP_H_E_R_A_L_l_NT_E_R_F_A_C_E~~~~~'
Dual Drivers
... for relays, lamps, and other peripherals requiring more power than generally available from logic gates.
Representative Diagrams
MC754xx Series
MC147x Series
Vee 20
2A
2Y
MC75450 - Similar to MC75451, but with uncommitted
output transistors.
Sub
Vee 2A
28 2e 2E
·
18
1 Y Gnd
(MC75451 /MC75461)
(MC1472)
Logic gates vary to provide output shown:
Logic Output (Including
Transistor Inversion)
30V
·BVcER
30 v
35V
AND NANO DR
MC75451 MC75452 MC75453
SN.754510· SN75452B' SN75453B'
MC75461. MC75462 MC75463
NOR
MC75454 SN75454B· MC75464
70V Hi·Z Input
MC1471 # MC1472 MC1473# MC1474#
·same as equivalent MC types, but with guaranteed switching limits. #To be introduced.
1e
Gnd
All Devices
TA= oto 10°c
Packaging: MC75450 L Suffix - Case 632 P Suffix - Case 646 MC75451-54/MC75461-64 P Suffix - Case 626 U Suffix - Case 693 MC1471-74 P1 Suffix - Case 626 U Suffix - Case 693
Driver Arrays
... Seven Darlington transistors with outpu~ clamp diodes.
Device Number MC1411 MC1412
MC1413 MC1416
Application General Purpose 14-25 V PMDS
5 V CMOS or TTL 8-18 V MOS
Input Element
Basic Zener and Series 10.5· kH
resistor Series 2.7 kU resistor Series 10.5 kH resistor
All Types: VMax = 50 V IMax.= 500 mA
TA= Oto as0 c
Packages: L Suffix - Case 620 P Suffix - Case 648
Dual Receiver
MC75140P1 - D,ual single-ended receiver with common strobe _and reference inputs for maximizing noise fmmunity. Useful for bus-organized (party line) TTL systems.
±100 v
1.5 to 3.5 V
tPLH(L) 35 ns
TA= o to 10°c
Package - Case 626
vcc Output . Ref Line 2 Input Input 2
Output Strobe Line Gnd Input Input 1
5-16
NUMERIC DISPLAY INTERFACE
... for mating multiplexed LED or gas discharge numeric displays to MOS or TTL logic systems..
LED Drivers fo.r Common-Cathode Displays
MC75491' ...,. Quad segment driver
MC75492 - Hex digit driver
Collector 2 Emitter 2
Input 4 Emitter 4 Collector 4
Vss
Collector 3
Both Devices:
TA= oto 10°c
'Packages:
L Suffix - Case 632 P Suffix - Case 646
Output 6 Input 6
Vss
Input 5
Device Number
MC75491 MC75492
11 @V1=10V
mAMax
3.3 3.3
Vol
@ loL
Volts Max
mA
1.2
250
1.2
50
Vss Volts Max
10 10
Gas Discharge Drivers
MC3491 MC3492
Eight segment cathode drivers with programmable current.
MC3490 - High Level MC3494 - Low Level
Seven digit anode drivers
Programming Current Input 1 Input 2
Input 6 Input 7
Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7
All Devices:
TA= o to 10°c
Substrate (Gnd)
Output A
Output 2 B
Output
c
Output D
Output E
Output F
Output G
VEE
lo Input A
14 Input B
13 Input
c
Input
12
D 11 Input
E
9 Input G
Package: P Suffix - Case 701
*Inverter on MC3494only.
Package: P Suffix - Case 648
Device Number
MC3491 MC3492
Output ON Current
mAMax
1.85 5.25
Breakdown Voltage
Volts Min
80 80
·current Deviation (All 8 Outputs)
%Max
Output Voltage Compliance Range Volts
10
5.0 to 50
10
5.0 to 50
Device Number
MC3490 MC3494
Breakdown Voltage
Volts Min
48 48
Input Voltage (OFF-Statel
Volts
-5.0 Min -2.0 Max
Input Voltage Input
(ON-State) Current
Volts
µA Max
-2.0 Max -5.0 Min
450 -350
·
5-17
·
COMMUNICATION INTERFACE (Telephony)
Crosspoint. Switch
MC3416 .:__ Low-cost solid-state crosspoint switch offers important advantages in modern telephone exchanges employing space-division switching. Features 4 x 4 two-wire monolithic structure for PABX applicatiofls. Select inputs are both CMOS and TTL compatible.
TA= oto 10°c
Packages: P Suffix - Case 649 L Suffix - Case 623
roff @VAK = 10V
Mn Min
100
ron
BVAK
@.IAK =20 mA BVKA
Ohms Max Volts Min
10
25
VAK @IAK = 20 mA
Volts Max
1.1
Anode A1
Cathode Y2
Row Select
z
Cathode Z2
Column Select A Column Select B Column Select C
Column Select 0 Cathode
Z1 Row Select
y
Cathode Y1
02
Cathode X2
Row Select
x
Cathode W2
. Anode A2
Anode 81
Anode 82
Anode C1
Anode C2
Anode 01
Cathode W1
Row Select w
Cethode X1
Voice Encoding/ Decoding
Simplifi.ed voice encoding/decoding using continuous Variable Slope Del.ta Modulator (CVSD) technique.
MC3417 - 3-bit algorithm; for military secure communication applications.
MC3418 - 4-bit algorithm; telephone quality.
TA = o to 10°c*
Packages: L Suffix - Case 620 P Suffix - Case 648
*Military temperature range devices (MC3517/18) to be offered in early 1977.
Device Number
MC3417 MC3418
Sample Rate Samples/s Typ
16 k 38 k
Total Loop Offset Voltage
mVMax
±5.0 ±2.0
CVSD Encoder
tpo. Clock Trigger to Output µsMax 2.5 2.5
Block Diagrams
Analog Input
Analog Syllabic
Filter Input(-)
Analog Output
vcc
Digital Input
~~~~:~old
Co1nc1dence Output vcc12 Output Digital Output
CVSD Decoder
Sampler
Algorithm
Slope Command
Integrator
Amplitude Modulator
(PAM)
Slope Command
Audio Out
Integrator
Amplitude Modulator
(PAM)
5-18
Product Preview
HEX LATCH/DRIVERS FOR MOS MEMORIES
These/iatch/drivers are intended to drive capacitive loads up to 500 pF associated with MOS memory systems. They feature PNP buffered inputs for low input loading, Schottky technology for high speed, and three-state configuration for bus type operation.
Fall-through latches are utilized-which capture the data in parallel with the output, thereby eliminating the delay encountered. in other latch circuits. The devices may be used either for the address or input/out data lines in MOS memory systems.
The DS3645 version provides an internal· 15 ohm series damping resistor on each output, while the DS3675 features a low impedance output for use with orwithout an external resistor.
· Low Input Loading Ensured by PNP Buffered Inputs · Heavy Drivers for Highly Capacitive Loads · Three-State Outputs Permit Multiplying Outputs · Schottky Technology for High Speed
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating
Power Supply Voltage Input Voltage, High Logic State Input Voltage, Low·Logic State Output Current, High Logic State Output Current, Low Logic State Operating Ambient Temperature Storage Temperature Junction Temperature
Plastic Package Ceramic Package
Symbol
Vee V1H VIL loH IQL TA Tstg TA
Value
Unit
7.0
Vdc
7.0
Vdc
-1.5
Vdc
-1.0
A
1.0
A
Oto 70
oc
-65 to 150
oc
oc
150 175
Input Enable
H H L
x
Output DiHble
L L L
H
TRUTH TABLE
Data Input
H l.
x
x
Output L H
a
z
Operation Data Feed Thru Data Feed Thru Latched to ·Data Present When Enable Went Low High Impedance Output
Thl1 l1 advance Information and 1peclflcetlon1 era subject to change without notice.
5-19
DS3645 DS3675
HEX THREE-STATE LATCH/DR IVERS
SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUIT
JSUFFIX
CERAMIC PACKAGE CASE 620
N SUFFIX
PLASTIC PACKAGE CASE 648
·
Input Enable
Data A
Output
.A
PIN CONNECTIONS
cOutput
Vee
Output Disable
Data F Output
F
Data E
Output
E
Data D
oOutput
ORDERING INFORMATION
Device
OS3645N DS3645J OS3675N DS3675J
Temperature Range
oto 10°c oto 10°c o to 10°c
o to 10°c
Paekaga
Plastic DIP Ceramic DIP Plastic DIP Ceramic DIP
083645, 083675
·
ELECTRICAL CHARACTERISTICS (Vee= +5.0 Vdc, TA= Oto +10°c, typical values measured at TA = 25°c unless otherwise noted.)
Characteristic
Input Voltage, Low logic State
Input Voltage, High logic State
Input Current, Low logic State
= (V1L 0.5 v. Vee= 5.5 V)
Enable Input Data Inputs
Input Current, High logic State
(V1H = 5.5 v. Vee= 5.5 V)
Enable Input Data Inputs
Input Clamp Voltage (Vee= 4.5 V, l1c = -18 mA)
Output Voltage, low logic State
<Vee= 4.5 v, loL = Ol
(Vee= 4.5 V, loL = 20 mA)
DS3645 DS3675
Output Voltage, High logic State
1vcc = 4.5.v, 10 H = 01 (Vee= 4.5 V, loH = 1.0 mA)
DS3645 DS3675
Output Driver Current, low logic State
<Vee =4.5 v, v0 = o vi (Add 15 n series resistor on DS3675)
Output Driver Current, High logic State
(Vee= 4.5 V, Vo= 4.5 V)
(Add 15 n series resistor on DS3675)
Ma><imum Power Supply Current
<Vee= 5.5 vi
Minimum Power Supply Current
<Vee= 5.5 vi
Symbol
Min
V1L
-
V1H
2.0
l1H
--
l1H
-
-
V1c
-
Vol
-
-
VoH 3.4
2.4
2.5
100
-
IDH
-
lcc(max)
-
lcclminl
-
Typ
-
-
-90 -180
0.1
-
-
0.25 0.6 0.3
4.25 3.5 3.5
170
170
60
40
Max 0.8
-
-250 -500
40 80
-1.2
0.45 1.1 0.5
-
-
-
-
Unit
v
V' µ.A
I ·- µ.A
v v
v
mA
mA
mA mA
SWITCHING CHARACTERISTICS (Add 15 n series resistor on DS3675 version.
Vee= 5.0 V, TA= 25°C, unless otherwise noted.)
Characteristic
Propagation Delay Time, Data Input to Output (Cl= 50 pF) (C1,. = 250 pF) (CL= 500pF)
Symbol
Typ
tPHL
7.0
15
25
(CL= 50pF) (Cl= 250 pF)
tPLH
7.0
15
(Cl= 500 pF)
25
Setup Tirpe on Data Inputs Before Input Enable Goes low
tsetup
0
Hold Time on Data Inputs After Input Enable Goes low
tho Id
10
Propagation Delay Time, Disable Input to Output
High Impedance to logic low
(Cl= 50 pF, RL = 2 kn to Vccl High Impedance to logic High
tpzL
15
(Cl= 50 pF, RL = 2 kll to Gnd) logic low to High Impedance
ICL = 50 pF, RL = 400 n to Vccl
logic High to High Impedance
tpzH
15
tpLz
15
(Cl= 50 pF, RL =400 fl to Gnd)
tpHz
15
Unit ns
ns ns ns
@ MOTOROLA Semiconductor Products Inc.
5-20
DS3645, DS3675
Data Input 0.4V
tPHL VoH Outpu_t
VOL
SWITCHING TIMES WAVEFORMS AND CIRCUITS
FIGURE 1 - DATA INPUT TO OUTPUT
1.5 v
tv
1.5 v
?L"2.2 v
Pulse
To scope (Input)
Data
51
To Scope (Output)
15
e
(DS3675I L
only) -=
Output (Low)
tpzH
Output (High)
1.5 v
tpzL
FIGURE 2 - HIGH IMPEDANCE TO OUTPUT LEVEL
To Scope (Input)
Disable
51
To Scope (Output)
Vee
Output 2 k
15
50 pF
-= (DS367iil: only)
Data
I High
! fLow
: -=
I High
O--OV1H
L~VIL
·
FIGURE 3 - LOGIC LEVEL TO HIGH IMPEDANCE
.3.0 v ------·--------
Disable Input
1.5 v
0.4V----"'
To Scope (Input)
To Scope (Output)
Output
Output (High)
15 Data
Output (Low)
tpLz--IJ_ J1.5V
----------------
MOTOROLA Semiconductor Product· Inc.
5-21
Vee
I.High
1Low
1
I
-=
I High
O--OV1H
O--OV1L Low
·
Product Preview
QUAD THREE.STATE MOS MEMORY 1/0 REGISTERS
These 4-bit bidirectional 1/0 buffer registers are well suited for MOS memory systems. They all employ Schottky technology for high speed fall-through latches which capture data in parallel with the output, and PNP buffered inputs for low input loading and MOS campatatibility.
The DS3647 and DS3677 feature three-state logic on the B nodes while the DS36147 and DS36177 use open-collector nodes. All types have three-stcite logic on the A nodes. Data flowing from node A to B is inverted on the DS3647 and DS36147 and not inverted on the remaining types.
The architecture of these registers with two pins per bit allows them to handle both input and output data. Direction of flow is controlled by the Input Enables. The latch control causes the register to hold the data present at the time Latch is taken low and to display the· data at the outputs. Data can be latched into the register without regard to the conditiori of the Output Disable or Expansion Inputs. The Output Disables may be used to take either or both outputs to the high impedance state (B node on DS3647 and DS3677 version only). The Expansion Input disables both A and B outputs to permit multiplexing other registers.
· Schottky Technology for High Speed - 15 ns (Typ) · Fall-Through Latches for Minimum Delay · PNP Buffered lnput'for Low Input Loading · Choice of Inverting or Non-Inverting Version · Bidirectional Data Flow · Provisions for Easy Expansion · Choice of Either Three-State or Open-Collector Line Driver
Type Output (B)
EQUIVALENT LOGIC (~of Device Shown)
DS3647,DS36147 DS3677,DS36177
QUAD THREE.STATE MOS MEMORY 1/0 REGISTERS
SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUIT
JSUFFIX CERAMIC PACKAGE
CASE 620
·LAS~l~::gAGE ryn1fl CASE 648
. . .1. ~.~
PIN CONNECTIONS
Device
053647 053617 OS36147 OS36177
Output
Disable A
Expansion
Input Input
Output Disable
Enable Enable
a
A Boutput
Inverting - Three State Nonlnvertlng - Three State Inverting - Open Collector
B NOTES:
1) Inverting for OS36147 and DS3647 only 2) Open Collector Output for OS36147 and
OS36177
Noninvertlng - Open Collector
This Is advance Information and specifications are subject to change without notice.
5-22
ORDERING INt:O_flM_A_I!.ON Temperature Range - (All Types) 0 to +70~C
Device
DS3647N, DS3677N DS36147N,DS36177N DS3647J, DS3677J DS36147J, DS36177J
Package
Plastic DIP Plastic DIP Ceramic DIP Ceramic DIP
083647, 083677, 0836147, 0836177
MAXIMUM RATINGS ITA= 25°c unless otherwise notedl.
Rating
Power Supply Voltage Input Voltage Operating Ambient Temperature Storage Temperature Junction Temperature
Ceramic Package Plastic Pack~
Symbol
Vee V1 TA Tstg TJ
Value 7.0
-1.5 to +7.0 o"to +70
-50 to +150
175 150
Unit
Vdc Vdc OC OC cic
ELECTRICAL CHARACTERISTICS IVcc= 5.0 v. TA= o to +10°c, tYpical values at TA= 25°c unless otherwise noted.I
Characteristic
Input Voltage - Low Logic State
Input Voltage - High Logic State
Input Current - Low Logic State (Vee= 5.5 V; V1L = 0.5 V) -Latch,. Disable Inputs Data Pins (A or B) Enable Inputs
Input Current - High Logic State
(Vee= 6.5 v. V1H = 6.6 V)
Latcl:l, Disable Inputs Data Pins (A or 8) Enable Inputs
Input Clamp Voltage (Vee:= 4.5 V, l1c = -18 mA)
Output Voltage - Low Logic State A Port IVcc =4.5 v.10 L = 2omAl B Port (Vee= 4.5 V, loL = 100 mA)
Output Voltage - High Logic State A Port (Vee= 4.5 V, loH = -1.0 mAl B Port (Vcc = 4.5 V, loH = -6.2 mA) DS3647, DS3677 only
Power Supply Current <Vee= 5.5Vl
SWITCHING CHARACTERISTICS (Vee= 5.0 v, TA= 25°Cl
Symbol V1L V1H l1L
l1H
V1c VoL
VoH
Ice
Min
Typ
Max
Unit
-
-
0.8
v
2.0
-
-
v
µA
-
-
-200
-
-
-400
-
-
-1250
µA
-
-
40
-
-
80
-
-
200
-
-
-1.2
v
v
-
-
0.5
-
-
0.7
v
2.7
3.4
-
2.4
3.3
-
-
-
100
mA
Propagation 'Delay Time - A to B or B to A (CL= 50pF)
Propagation Delay Time - Disable to A or B Output
ICL = 50 pF, RL = 390 n to Vee> DS3647, DS3677 only
(CL= 50 pF, RL = 390 0 to Gnd) D53647, DS3677 only (CL= 50 pF. RL = 2.0 k to Vee> DS3647, D53677 only ICL = 60 pF, RL = 2.0 k to Gnd) DS3647, DS3677 only Setup Time of Data Input Before Latch Goes Low Hold Time of Data Input After Latch Goes Low
ns
tPLH
-
7.0
-
tPHL
-
7.0
-
ns
tPLZ tPHZ tpzL
-
16
-
-
15
-
-
15
-
tpzH
-
15
-
tsetup
-
0
-
ns
th old
-
7.0
-
ns
@ MOTOROLA Semiconduc'f.:;,r Produc'fs Inc.
5-23
·
083647, 083677, .0836147; 0836177
·
TRUTH TABLE
Input Enables
A
B
H
L
L
H
H
L
L
H
H
L
L
H
x x
Latch H H L
L
x x x
Output Disables
A
B
L
L
L
L
L
L
L
L
L
H
H
'L
x x
Expansion L L L
L
L
L
H
A1·A4
z 8
Hi-Z
a
z
z
z
81-84 A
z
a
z
z z z
Comments
Data Input A, Output B Data lnput.B, Output A Data stored which is present when Latch
- - went low
Data stored which is present when Latch went low
Both A and B Hi-Z Data ·input on A, may be latched
Both A and B Hi-Z Data Input on B, may be latched
Both A and B Hi-Z
H = High Logic State
L = Low Logic State X = Don't Care
Z = High Impedance "Third" State
NOTES:
1) Hi-Z on DS3647 and DS3677 Three-State types only, 2) Data may be Latched into the register independent of the
Output Disables or Expansion.
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA PD(TAl = ROJA(Typ)
Where: PD(T Al = Power Dissipation allowable at a given operating ambient temperature. This must be greater than
the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature.
ROJA(Typ) =Typical Thermal R'esistance Junction to Ambient
@ MOTOROLA Semiconduc'for Produc'fs Inc.
5-24
Advance Information
QUAD UNIFIED TRANSCEIVER
Consists of four pair of drivers and receivers with the output of each driver connected to the input of its mating receiver. These devices are intended for use in bus organized data transmission system employing terminated 120 D. lines. A disable function consisting of a two-input NOR gate is provided to control all four drivers. Up to 27 driver/receiver pairs can share a common line. · Receiver Input Threshold ls Not Affected by Temperature · Open Collector Driver Outputs Allow Wire-OR · TTL Compatible Receiver Outputs and Disable and Driver Inputs · Driver Propagation Delay = 15 ns
· Receiver Propagation Delay = 20 ns
· Guaranteed Minimum Bus Noise Immunity = 0.6 V · Low Bus Terminal Current (Supply On or Off) = 30 µs typ
+5.0 v
FIGURE 1 - TYPICAL APPLICATION
+5.0 v
058641
QUAD UNIFIED BUS TRANSCEIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT
J SUFFIX CERAMIC PACKAGE
CASE 620
·
N SUFFIX PLASTIC PACKAGE
CASE 648
To Computer or Peripherals
TRUTH TABLES
RECEIVER SECTiON
Bus
> VtH(R) 1.7.V < VIL(R) 1.3 V
Output
L H
Where: L = Low Logic State H = High Logic State
DRIVER SECTION
Disable 1 Disable 2 Input Bus
L
L
L
H
L
L
H
L
L
H
L
H
L
H
H
H
H
L
L
H
H
L
H
H
H
H
L
H
H
H
H
H
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
Rating
Symbol
Value
Supply Voltage Input and Output Voltage
Vee
7.0
Vo. V1
5.5
Junction Temperature
Plastic
TJ
150
Ceramic
175
Operating Ambient Temperature Range
TA
0 to +70
Storage Temperature Range
Tstg
-65 to +150
Unit Vdc Vdc oc
DC De
This is advance information and specifications are subject to change without notice.
5-25
PIN CONNECTIONS
ORDERING INFORMATION
Device
Temperature Range
DS8641 N
Oto +70°·c
·Dss641J
Oto +10°c
Package Plastic DIP Ceramic DIP
DS8641
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 0 ,;:;_:;TA,;:;_:; 70°C and 4.75 ,;:;_:;Vee,;:;_:; 5.25 V.)
Characteristic Disable Input Voltage - High Logic State Disable Input Voltage - Low Logic State Driver Input Voltage - High Logic State Driver Input Voltage - Low Logic State Receiver Input Threshold Voltage - High Logic State.
(V1L(D) = 0.8 V, IOL(R) = 16 mA, Vol(R) ,;:;_:; 0.4 V)
Receiver Input Threshold Voltage - Low Logic State
(V1L(D) = 0.8 V, IOH(R) = -400 µA, VoH(R);:;;, 2.4 V)
Symbol V1H(DA) V1L(DA) V1H(D) V1L(D) V1LH(R)
\i1HL(R)
Min 2.0 2.0 1.70
-
Typ -
-
1.50
1.50
Max
Unit
-
v
0.8
v
-
v
0.8
v
-
v
1.30
v·
Disable Input Current - High Logic State
(VIH(Dl = 2.4 V; V1H(DA) = 2.4 V) (V1H(Dl = 5.5 V, V1H(DA) = 5.5 V)
l1H(DA)
-
-
-
40
µA
-
1.0
mA
Driver Input Current - High Logic State
(VIH(DA) = 2.4 V; V1H(D) = 2.4 V) (VIH(DA) = 5.5 V, V1H(D) = 5.5 V)
Disable Input Current - Low Logic State
.(VIL(DA) = 0.4 V, V1L(D) = 0.4 V)
Driver Input Current - Low Logic State
(V1L(D) = 0.4 V, V1L(DA) = 0.4 V)
Bus Current
(V1L(DA) = 0.8 V, V1L(D) = 0.8, V1H(BUS) = 4.0 V)
(Vee = 5.25 Vl
(Vee= o Vl
Bus Voltage - Low Logic State
(V1L(DA) = 0.8 V, V1H(D) = 2.0 V, IBUS = 50 mA)
Receiver Output Voltage - High Logic State
(V1L(DA) = 0.8 V, V1L(D) = 0._8 V, V1L(BUS) = 0.5 V, IOH(R) = -400µA)
Receiver Output Voltage - Low Logic State
(V1L(DA) = 0.8 V, V1L(D) = 0.8 V, V1H(BUS) = 4.0 V,
IOL(R) = 16 mA)
Receiver Output Short Circuit Current
(V1L(DA) = 0.8 V, VIL(D) = 0.8 V, V1L(BUS) Vee = 5.25 Vl
0.5 V,
Power Supply Current
(V1L(DA) = 0 V, V1H(D) = 2.0 V)
Input Clamp Diode Voltage
(ll(DA) = 11(0) = IBUS = -12 mA)
l1H(D)
-
-
llL(DA)
-
l1L(D)
-
I Bus
-
I
-
VL(BUS)
-
VoH(R)
2.4
Vol(R)
-
ios(Rl
-18
\
Ice
-
V1
-
-
20 2.0 0.4
-
0.25
-
50 -1.0
40
µA
1.0
mA
-1.6
mA
-1".6
mA
µA
100
100
0.7
v
-
v
0.4
v
-55
mA
70
mA
-1.5
v
SWITCHING CHARACTERISTICS (TA= 25°c, Vee= 5.0 v unless oth~rwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Propagation Delay Time from Disable Input to High Logic Level Output
tPLH(DA)
-
19
30
ns
Propagation Delay Time from Disable Input to Low Logic Level Output
tpHL(DA)
-
15
23
ns
Propagation Delay Time from Driver Input to High Logic Level Output
tPLH(D)
-
17
25
ns
Progpgation Delay Time from Drive Input to Low Logic Level Output
tPHL(D)
-
9.0
15
ns
Propagation Delay Time from Bus Input to High Logic Level Output
tp~H(R)
-
20
30
ns
Propagation Delay Time from Bus Input to Low Logic Level Output
tPHL(R)
-
18
30
ns
@ MOTOROLA Semiconduc'for Produc.'fs Inc.
5-26
088641
FIGURE 2 - DRIVER AND DISABLE TEST CIRCUIT AND WAVEFORMS
To Scope (Input)
Pulse Generator
To Scope (Output)
91
Disable Input (DA) OV
VoH ---+--------+--
Output
VoL--~"
200
3V Driver Input
(D) OV
VoH
Output VoL
To Scope (Input)
Driver Input
Disable Inputs
FIGURE 3 - RECEIVER TEST CIRCUIT AND WAVEFORM
To Scope (Output)
+5.0 v
Receiver Output
390
r5pFEquiv
Input (R)
ov
Output
REPRESENTATIVE CIRCUIT SCHEMATIC (1/4Shown)
·
Disable Inputs
Receiver Output
@ MOTOROLA Semiconductor Product· /nc.
5-27
. ORDERING INFORMATION
Device
MC1405L MC1505L
Temperature Range
0°C to +700C -55°C to +125°C
Package
Ceramic DIP Cerami.c DIP
MC1405L MC1505L
·
DUAL RAMP A/D CONVERTER SUBSYSTEM
The MC1505/MC1405 is intended to perform the dual ramp function for either a 3-1/2 or 4-1/2 digit DVM or use as a general-purpose analog-to-digital (A/D) converter. It can be combined with the McMOS MC14435 logic system to produce the complete 3-1 /2 digit DVM function.
The MC1505 uses the proven dual ramp A/D conversion technique. The subsystem consists of an on-chip voltage reference, a pair of voltage/current converters, an integrator, a comparator, a current switch and associated control and calibration circuitry. Only one capacitor and two calibration potentiometers are required for normal operation.
· Accuracies to 13 Bits · Low Power Consumption: 42 mW@ +5.0 V · Single Power Supply Operation - +5.0 V to +15 V · Low Power Supply and Temperature Sensitivity · Digital Inputs and Outputs Compatible with Both MTTL and
Mc MOS · Accept~ Either Positive or Negative Input Voltages · Combines with MC14435 to Produce 3-1/2 Digit AID Converter
FIGURE 1 - COMPLETE A/D CONVERTER SYSTEM
Vee
ANALOG-TO-DIG ITAL CONVERTER SUBSYSTEM
SILICON MONOLITHIC INTEGRATED CIRCUIT
[1:6 :::::I (top view)
J MC1505 Analog Subsystem Ampl;f;e" . Reference
Switch
[
Integrator
Comparator
-Comparator
Ramp Control
Zero Adjust
Dig;t } Select
BCD } Output
1/2 Digit
Display Overrange Update
CASE 620 CERAMIC PACKAGE
FIGURE 2 - PIN CONNECTIONS AND FUNCTIONAL DIAGRAM (as used in Figure 1l
TYPICAL APPLICATIONS
BCD A/D Converter: 2-1/2 to 4-1/2.Digits (LSI or.MSI Logic) Panel Meters Digital Voltmeters Portable Instruments Industrial Measurement and Control
Other Uses:
Data Acquisition Systems with Remote MC1505 Voltage to Frequency Conversion Delta Modulation and Signal Generation
Binary AID Converter: 8-to-13 Bits (LSI or MSI Logic)
Industrial Measurement and Control High Noise Environments (Integrating Converter with MTTL, MHTL, and McMOS Compatibility)
5-28
MC1405, MC1505
MAXIMUM RATINGS
Characteristic Power Supply Voltage Digital Input Voltage Reference Input Voltage Unknown Input Voltage Range
Zero Calibration Control Pin Voltage Power Dissipation (Package Limitation) Ceramic Dual In-Line Package
Derate above TA =·+25°C Operating Ambient Temperature Range
MC1505L MC1405L Storage Temperature Range
Symbol Vee V10 VA V1 V2 V4 Po
TA
Tstg
Value +16.5 +16.5
2.0 ±5.0 ±5.0 5.0 1000 6.0
-55 to +125 0 to +70
-65 to +150
Unit Vdc Volts Volts Volts
Volts mW
mw/0 c oc
Oc
ELECTRICAL CHARACTERISTICS (Vee= +15 Vdc, VA= 1.000 Vdc, V1 = 2.000 Vdc, V2 = 0.000 Vdc, V10 ;;;i: 2.0 Vdc,
TA= 25°C unless otherwise noted.) ·
MC1505
MC1405
Characteristic
Symbol Figure Min
Typ
Max
Min
Typ
Max
Unit
A/D CONVERSION SYSTEM (1)
Linearity: Deviation from Straight Line through Zero and Full Scale (2)
Mid-Scale Power Supply Sensitivity (PSS of IR-(IX + lol. V1=1.0 V)
Zero Calibration Power Supply Sensitivity
(V1 = V2= OV)
\
Input Common Mode Sensitivity (Vx = 2.0 V, VcM = V2 is varied)
Full Scale Temperature Drift
Zero Calibration Temperature Drift
Er
9,
11
PSSF
3
PSSZ
9
ICMSJxl
3
ITCFI
9
ITCZI
9
-
±am ±0.05
-
±0.01 ±0.05 %F.S.
-
0.002 ±0.02
-
0.002 ±0.02 %/%
-
0.001
-
-
0.001
-
%F.S./%
-
0.0006 0.0012
-
0.0006 0.0018 %/mV
-
0.001
-
-
0.0005
-
-
0.001
-
%/oC
-
0.0005
- %F.S./°C
VOLTAGE REFERENCE
Reference Voltage, Pin 11
VREF
3
Reference Voltage Power Supply Sensitivity
PSSVREF
3
Reference Voltage Temperature Drift
ITCVREFI
3
1.15
1.25
1.35
1.1
1.25
1.4
Vdc
-
0.003 ±0.01
-
0.003 ±0.02 %/%
-
0.005
-
-
0.005
-
%/oC
REFERENCE CURRENT CONVERTER Reference Current Input Bias Current Input Range of VA Input .Offset Voltage (V14-V15)
IA 114 V14 IVRRI
3
-
250
-
-
250
-
µA
3
-
10
40
-
10
40
nA
3
0.8
-
1.2
0.8
-
1..2
Vdc
3
-
1.0
2.5
-
2.0
5.5
mV
INPUT CURRENT CONVERTER Unknown Current Input Resistance Input Differential Range l'!e_ut Common Mode Range Input Bias Currents
Input Offset Voltage (V13-V3)
Ix
3
-
500
-
-
500
-
µA
R1
3
-
4.0
-
-
4.0
-
kn
Vx
3,10
0
2.0
-
0
2.0
-
Volts
CMR
3,10,12 -1.5
-
+1.5
-1.5
-
+1.5 Volts
11
3,9
-
200
-
-
200
-
µA
12
-
-300
-
-
-300
-
IV xx I
3
-
1.0
2.5
-
2.0
5.5
mV
RAMP OFFSET SOURCE
Ramp Offset Current
lo
4
25
25
(1) System parameters measured using external voltage reference, independent of Vt 1 = VA EF· Integrator Capacitor = 2.0 µ F Clock Frequency = 30 kHz
Vee= 15 v
(2) Does not include quanitizing error. See Figure 11 for calibration.
·
5-29
MC1405, MC1505
·
ELECTRICAL CHARACTERISTICS (Vee= +15 Vdc, VR = 1.000 Vdc, V1 = 2.000 Vdc, V2 = 0.000 Vdc, V10~2.0 Vdc,
TA= 25°C unless otherwise noted.)
MC1505
MC1405
Characteristic CURRENT SWITCH
Symbol
igure Min
Typ
Max
Min
Max
Di'gital Input Logic Levels, Pin 10 High Level, Logic "1" Low Level, Logic "O"
Digital Input Current High Level, Logic "1" Low Level, Logic "O"
V1H
3,18
2.0
-
-
2.0
-
-
V1L
3,18
-
-
0.8
-
-
0.8
l1H
3
-
0
1.0
-
0
1.0
l1L
3
-
-5.0
-50
-
-5.0
-50
INTEGRATOR Input Bias Current Output Voltage Swing
High Lovv
16
5
-
10
30
-
10
50
V7
-
12.8
13.0
-
12.8
13.0
-
-
0.2
0.35
-
0.2
0.35
COMPARATOR
Output Logic Levels, Pin 9
High Level, Logic "1" T =T to T . Low Leve, Logic "O" A low high
(Sink Current= 1.6 mA)
VoH Vol
3
13.5
14.0
-
13.5
14.0
-
3
-
0.35
0.5
-
0.35
0.5
Input Threshold
VTH(7)
-
0.9
1.0
1.1
0.9
1.0
1.1
POWER SUPPLV
Power Supply Current (Vee= +5.0 Vdcl (Vee= +15.0 Vdc)
Power Supply Voltage Range
Power Dissipation <Vee= +5.0 Vdc) <Vee= +15.o Vdc)
ice
3
-
8.4
12.0
-
8.4
12.0
3
-
9.0
13.0
-
9.0
13.0
Vee
-
4.75
-
16.5
4.75
-
16.5
Po
-
-
42
60
-
42
60
-
-
135
195
-
135
195
T1ow = -55°C for MC1505L, o0 c for MC1405L
c Thigh= +ns0 for MC1505L, +10°c tor MC1405L
Unit
Vdc Vdc µA µA nA Volts
Volts
Volts mA
Vdc mW
FIGURE 3- STANDARD TEST CONFIGURATION
Vee 1.000V
Vee
Note: A test for functional parts may be performed using a pulse generator on Pin 10.
R = Vec-VoL
1.6 mA
9
VoH
VoL
Note: Alf de supplies bypassed with 0.1 µF.
F.IGURE 4 - lo MEASUREMENT Vee 1.000 v 1.s v
100 pF
FIGURE 5 - 16 MEASUREMENT Vee 1.000 v 2.0 v
9
10 k
5-30
MC1606
9
4
10 k
MC1405, MC1505
GENERAL INFORMATION
Dual Ramp Analog-to-Digital Conversion
The dual ramp method of A/D conversion is a proven system which is capable of very high accuracy. The conversion is an integrating process which offers high noise rejection and immunity to changes in the clock rate and integrator capacitor value. The particular method used in the MC1505 is a non iterating dual slope technique which produces an ac~urate result after one conversion period.
Dual ramp conversion is accomplished with the system of Figure 2. The conversion begins at time t1, when current Ix causes the integrator output, or ramp, to cross the comparator threshold, as shown in Figure 6. The clock is activated and the counters begin counting from zero. The system counts for a fixed period T, with a ramp slope which depends on the input voltage, i.e., a steep slope is caused by a high input voltage.· When the counters have reached full scale, the overflow count triggers a 7 2 flipflop which changes the ramp control polarity current. IR
A/D Subsystem Circuit Description
The MC1505 incorporates special circuit features which allow all the analog functions of the dual ramp system to be performed on a single monolithic chip using standard bipolar processing.
Voltage-to-current conversion for both the input and reference voltages allows the use of a high-speed current switch and single supply operation. The unbuffered differential inputs have sufficiently high input impedance for power supply monitoring applications, and provide flexibility for other input formats since they will accept either positive or negative voltages.
The voltage reference, shown in Figure 7, is one of the six basic circuits in the subsystem. It provides a low impedance output which has excellent temperature stability, and high power supply rejection. Biasing for the other circuits in the MC1505 is derived from the voltage reference circuitry.
Integrator
Comparator
J
Ramp Control
FIGURE 6 - DUAL RAMP A/D CONVERSION WAVEFORMS
Lr L
11 .1i t3 AV on capacitor is equal in T1 and T2
-
t2 Ix dt = -
IR dt
c t1
c t2
Where Ix is opposite IR polarity. lxT1=1RT2
Since Ix and IR are proprotional to Vx and VR, Vx T1 = VR T2.
IT2=T1~ I
T2 corresponds to the number of counts in the output digital wo"rd.
T1 and T2 are derived from the clock, so their ratio is independent of clock frequ.ency.
·
now controls the integrator and the down ramp begins at t2. This ramp continues at a fixed slope for a time period which depends on the amplitude achieved by the up ramp. Thus T2 is determined by the input voltage. When the ramp crosses the comparator threshold at t3, the clock stops and the counter holds a digital value which is proportional to the unknown input voltage.
After the down ramp crosses the comparator threshold, a timing sequence in the digital section strobes the latches to store the data, resets the. counters, and reverses the ramp at t4 to begin a new conversion.
Since the voltage change across the capacitor is equal on the up and down ramps, an equal a'mount of charge is exchanged. The equations of Figure 6 show that the system output is the ratio of the unknown and reference currents, and long term changes in the clock rate and integrator capacitor do riot effect the reading,
The same basic amplifier circuit is used in both the reference and input voltage-to-current converters. It is an extremely well balanced amplifier with low input offset voltage temperature drift. The reference converter uses a pair of PNP transistors to derive current IR, in conjunction with a reference resistor which has the same temperature coefficient as those used in the input converter. The value of the reference current is VR/R5. The collectors of transistors 01, 02 and 03 in Figure 7 all track with a two diode temperature coefficient, which assures constant current ratios.
The reference resistor value can vary by 30% of 4.0 kn due to process variations. Moreover, these variations will also affect the input brid~ resistors. Thus, the ratio of reference to unknown current has a close tolerance for a wide range of-resistor values.
5-31
MC1405, MC1505
·
The input voltage-to-current converter is a bridge or bilateral current source whose output current is Vx/R1. If the bridge is perfectly balanced, its output impedance and common mode rejection are infinite. However, the design has the ability to tolerate bridge mismatches of approximately 0.5%. In order to tolerate this mismatch, the output of the bridge current source is connected to the current switch which is a low temperature coefficient, low impedance source of 1.25 volts. This technique effectively eliminates output current changes due to finite output impedance which is caused by. resistor mismatch. This input current converter makes possible the use of a single supply voltage and differential inputs which can be used at or below ground potential.
An important feature of the MC1505 is the ramp offset current source which is added to the unknown current and does not allow 'the ramp to reach zero slope when the input voltage is zero. The ramp range is shown in Figure 8. The ramp offset current has a value of IRI 10, so that the minimum ramp slope is 5% of the full sca·le slope. This allows reliable conversion at low input voltages by assuring a nearly constant comparator propagation delay and a good ramp signal-to-noise ratio. It also prevents turn-off
of the diode in the current switch at tow levels, re-
stricting -the voltage change at the output of the resistor
bridge. Still another feature is that it provides a con-
venient temperature compensated zero adjust which can
correct errors in the resistor bridge and input buffer
amplifiers when they are used. The ramp offset current is
compensated by 100 extra counts in the digital logic
during ramp down, so it does not a·ppear in the digital
output (see Figure 8).
.
The current switch uses current steering for very high
speed operation. A smooth transition occurs as one current
is turned on while the other is turned off. This minimizes
error during the ramp reversal at its peak, especially since
the ref.erence current source has a very high output im-
pedance and does not change value when switched. The
settling time of the input current converter is not a factor
in system accuracy. At the ramp peak, Ix is turned off, so
the amplifier settles after the unknown current is de-
cou pied from. the integrator. When the ramp is below the
comparator threshold, the unknown current is switched on
and thus the current can settle before the ramp enters the
active conversion range. The switch operates into a voltage
of 1.95 volts and is translated by a follower so its input
FIGURE 7 - A/D CONVERTER ANALOG SUBSYSTEM
Vee
16
Reference Output 11 VREF=1.25V
Reference 14 o---+-----< Input V R
Voltage Reference
Current
Ramp
Switch
Control l00--+-----1
Input
Analog (-) 2 1;>--+_,,..,.,.,._ _ _-1
Input (+) 1 0---+--""""----1
R1
4.0 k R3
1.0 k
0
0
ID
9 Comparator >---r--v Output
Vx = V1-V2 VR = V14 VREF = V11
Ix= Vx/R1 IR=VR/R5 lo= IR/10
3
Input Test
13 ...4_,_5., 12 .6
8
Ix Zero 10 Input Output
Adjust
~
Integrator
5-32
MC1405, MC1505
FIGURE 8 - MC1505 SYSTEM TIMING DIAGRAM (2.0 ,Volt Full Scale Input)
Integrator
I0 corresponds to ramp slope when Ix = 0.
OT;o~nts
~-i .'~~ 2 T2(max)
TO
.
2000 Counts
0 Counts
I I
t1
t2
t3 t4
Comparator
J
L
Ramp Control
L
t2
t4
(Ix+ lo) T1 =IA (T2 +TO)
J- ;r2 = T1 [ IXI: I0
TO
·
threshold is 1.25 volts. The integrator is a single stage, wide bandwidth ampli-
fier. Its low propagation delay and low output impedance minimize ramp spikes due to output current reversal during ramp turn-around. The input bias current is typically one part in 50,000 of the full scale current, so that its temperature change contributes negligible error. Gain and input offset voltage are not critical since the integrator is driven from current sources.
The comparator is designed for low hysteresis by maintaining a constant power dissipation regardless .of output state. This hysteresis is typically 0.1 mV and remains constant with temperature variations, so that no measurable system error is contributed. Temperature vari-
ations in the value of the comparator threshold are not an error factor, since . the only requirement is that the threshold remain constant during a given conversion cycle. Voltage gain of the comparator is 2,000,000when driving' CMOS, and 40,000 with one TTL load. The comparator output is slew rate controlled to provide output rise and fall times of approximately 80 ns. This minimizes noise generation which could affect system stability.
The system is zero,ed and full scale calibrated by potentiometers which provide temperature compensation. All the other resistors are diffused in close proximity, yielding reference and unknown currents which have a closely tracking resistive temperature coefficient.
5-33
MC1405, MC1505
·
APPLICATIONS INFORMATION
The input configurations for the MC 1505 are shown in Figure 10. Note that the differential input voltage must always remain the same polarity with Pin 1 positive with respect to Pin 2. Figures 10 and 12 will aid in the understanding of the input circuitry.
ihe input common mode rejection of the MC1505 is high enough to maintain rated accuracy with small changes in common mode voltage, such as would be seen with ground errors and noise .. The system must be recalibrated, however, for larger changes in common mode input voltage.
The MC1505 is arranged so that Ix = IR when Vx = VR, or so that the ramp slopes are equal for input and reference voltages of 1 volt. As shown in Figure 8, a system· with a 2 volt full-scale input requires twice as many digital counts during T2 as for Tl. A system with a 1 volt full scale would require an equal number of counts
in Tl and T2. Figure 9 illustrates a 3-1/2 digit system, but typical accuracies of the MCl 505 allow its use in 4 digit applications. It can also be used in systems which require 4-1/2 digit resolution.
The ramp offset current and 100 count delay are shown in Figure 8. In certain applications, a different number of counts may be used. The system will not always operate properly, however, with a 10 count delay since the ramp
offset current is used to zero the system and compensate
for error in the input resistor bridge. This error, known as
Ixo. is current which flows to or from the input con-
verter with zero volts applied to.the input. It is typically between ±5.0 µA, which is 1% of full scale in a 2 volt system. A 10 count delay would need a 0.5% ramp offset current, which would not always be able to cancel this error. Also, a 10 count delay does not provide enough signal-to-noise margin for consistently accurate low-level conversion.
The integrating capacitor is chosen with the equations
shown in Figure 9. The maximum ramp voltage should be used for best signal-to-hoise ratio, but temperature changes in Ix. IR and the capacitor should be anticipated to prevent in~egrator saturation. Variations in clock frequency should also be considered. A non-polar capacitor with low dielectric absorption should be used for highest accuracy.
The lower half of the diode current switch is split with
separate diodes for Ix and to. In most applications Pins
12 and 13 wil I be connected so that the two device emitters are effectively one, since the main purpose of these pins is for testing. Connecting these pins allows proper system zero adjustment and prevents turn-off of the switch diode with low unknown current levels. This yields better conversion accuracy.
FIGURE 9a - ACCURACY TEST 3-1/2 Digit Panel Meter
Vee
0.01 µF
R
10 k Full Scale Calibration
100
Analog
Input 0 to +2 V
-=
1
MC1505
VoD
vDD
Data Update
1/2 Digit 6 16 10
3
4 16 3
Digital Subsystem
-5
C1
MC14435 or Equiv.
See Figures
9b or 9c
Decoder/
Driver
13
12
MC14511
11
10
9
15
14
4
5'
10 k
8 1 15 2
Integrator Capacitor
:~? CJ= 1xtmax)
Zero Calibration
Where Tl= duration of initial ramp = (no, counts) (clock period)
DS3 LSD
C.V7 =ramp amplitude = V7(max) - VTH(7)
See Electrical Characteristics Table V7 (max) is typically Vee -2.0 V VTH(7) is typically 1.0 V
DS1 MSD
'Optional Clamp diode on Pin 13, may be needed for recovery from r"legative differential inp~ts.
5-34
Ramp Control MC1 505 Pin 10
D,.-.-_-_--4
0.1 µF
Comparator Input
MC1505 Pin 9
wU'I
U'I
------,C
MC14024
R,..
0
aN .
a M
a'ot. aIll
aCO
ra-
FIGURE 9b- McMOS DIGITAL SUBSYSTEM 3-1/2 Digit BCD A/D Converter
2 Volt Full-Scale Input 100 Count Delay
A
I 1:j vDo
DMC1/12 401~CMC1D401/1 2 3
c
A
A
A
c
MC14518
e1oa2~
,.. NM'ot E
0000
c
R R
c
MC14518
E
Voo
p
B
- -MC14519 z
1/2 Q ...__ _--t_-"'1C MC14027
Voo
K
Q
NOTES: 1. NOR Gates - MC14001 or equiv.
Inverters - MC14049 or equiv. NANO Gates - MC14011 or equiv.
2. The clock period should be greater than twice the worst case ripple delay through the counters to achieve full accuracy.
Voo
112 , 0 C MC14027
K
0
-- -- B x
y
-------1----~A
- -MC14519 z
Digit Select Outputs
Di 52 53
MSD LSD
6 u
N
6 u
"6'
u
c6o
u
ID ID ID ID
Multiplexed BCD Outputs
D
Q
1/2
MC14013
c
a:
To B
voD
Q
D 1/2
MC14013
c a:
A
Data
R
Update
1/2 Digit
-s:
C')
~
0 ..C. J1
-s:
C')
CJ1 0 CJ1
MC1405, MC1505
FIGURE 9c - .FUNCTIONAL DIAGRAM OF MC14435 McMOS DIGITAL SUBSYSTEM
c .-----------------4~ ~3 R
!----------+-----------------~~{)-~ DS1 DS2 DS3
·
Display 6 Update o-------1---( 0U)
Comparator 5 (Comp) '~------'
c
f - - - - - - - 1 Latch 1----------------------~
9 Overrange (OR)
7 Ramp Control (RC)
10 1/2 Digit (1/2 D)
-, 5-36
MC1405, MC1505
FIGURE 10- ANALOG INPUT RANGE
The input circuit for the MC1505 has a unipolar differential input range of +2 volts and a bipolar common mode input range of ±1.5 _volts.
Positive Input:
Vx = V1 - V2
VcM = V2
Vx Range Oto +2.0 V
VcM Range ±1.5 v
VcM = 0 V
30..55Vv Vx = 2.0 V 1.5 v
-1.5\i
~
2
L-~~~~~~~--'
Negative Input:
Vx = V1 - V2 VcM = V1
Vx Range 0 to +2.0 V
VcM Range ±1.5 v
. .uc=J
Vx = 2.0 V
~q -1.5 v 2
-0.5 v
-3.5 v
'--~~~~~~~~
VcM = ±1.5 V
Allowable Pin Voltages: Pin 1: -1.5 V to +3.5 V
Pin 2: -3.5 V to +1.5 V
FIGURE 11 - CALIBRATION SET-UP
DC Source
Standard
0.001% Accurate Measurement
1
l-o- MC1505
2
3-1/2 Digit
Ji. ~
Panel Meter
__._
Zero Calibration: Setstandard at 0.0005 V. Adjust zero potentiometer for panel meter display transition between 0.000 and 0.001 V. Note: Ah analog input of -1 mV yields a reading of 0.099.
Repeat zero and full scale calibration until meter is calibrated at both ends of the scale..
Full Scale Calibration: Set standard at 1.9995 V. Adjust full scale potentiometer for panel meter display transition between 1.999 and 1.000 V. (over.range)
Linearity. Test: Adjust standard for the desired panel meter transition and record the value of the standard.
5-37
·
MC1405, MC1505
TYPICAL PERFORMANCE CURVES
·
FIGURE 12 - MAXIMUM COMMON-MODE INPUT VOLTAGE versus TEMPERATURE
FIGURE 13- INPUT CURRENT versus INPUT VOLTAGE
5.0
7.0
~
c5
4.0
t--V~ = 2.0iolts
~
!w.i 3.0
':::;
0
> 2.0
I-
~
~ 1.0
-r- ~
c
0 ::&
:c2:
:::e& -1.0 8
Cl)
6.0 ':::; 0 ~
5.0 ~ < ':::;
4.0 ~
1::i
3.0 ~
<!)
0
Note: Vl limits the common mode capability of the input converter.-
2.0 ~ ~
1.0;·
~- -2.0
0
-55
25
75
125
175
T, TEMPERATURE (OC)
<
1.4 1.2
t-TA~
25°C~
T
i:
.§
it.i-i
1.0 0.8
t-t--
11
=
V1-1.25V 4k ·
12
=
v2-~·;5v
a~ 0.6 o.4 ~ 0.2
~
g-0.2
~ < z
-0.4 -0.6
~ -0.8
;._ -1.0
-1.2
L
~
~
~
L .L'1
y L
CZ iz:::
Note: Observe common mode and temperature_, l limitation shown in Figures 10 and 12
-1.4
-5.0 -4.0 -3.0 -2.0 -1.0
1.0 2.0 3.0 4.0 5.0
Vl or V2, ANALOG INPUT VOLTAGE {VOLTS)
FIGURE 14- UNKNOWN CURRENT versus ANALOG INPUT VOLTAGE
1.0..-----.---.....-----.---.---.,-----.---.-----,
0.91----+---+----lf----+---+----lf----!-----i
< 0.8
; 0.71----4-----+----lf-----+--
ai.:i:i 0.61----4-----+-----,f---
a o.s a:: 1----+----+----l---+-.......,~~~7"'!'---"'+----i z ~ 0.4~--+----+----l---,~~....,,..~-.......- - - + - - - - i z ~ o.3r--+--+--i~~;.f'--+---l---t----i
::i
~ o.2r--+--+~~"'---+---+---l---t----i
0.1 r---+--:~'F---+--+---+--+---+---i
o.___ _.,.___.....__ __..___ _.____.__ __..___ _.__ __,
-0.5
+o.5 +1.o +1.5 +z.o +2.5 +3.o +3.5
Vx. ANALOG INPUT VOLTAGE {VOLTS)
FIGURE 15 - REFERENCE CURRENT versus REFERENCE INPUT VOLTAGE
0.4 ..---...----.--~--..---..----.--..----.----..----,
~
5
0.3
I-
~
a 0.2
w
(,)
~
a:: 0.1
!E Note: Circuit may not function
>--+---+---+---+---+-
beyond VR ranges shown.
0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VR, REFERENCE INPUT VOLTAGE, PIN 14 {Vdc)
FIGURE 16 - TYPICAL POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE
10
<(
.§ 8.0
I-
i.ii
a:: a::
::i (,)
6.0
-r--
~
t - - Ramp Control High or Low TA= 25°c
~ 4.0
a::
~
~
:c3: 2.0
0
0
5.0
10
15
20
Vee. POWER SUPPL y {Vdc)
FIGURE 17 -TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE
10
~ 8.0
1-
ffi
a:: ~ 6.0
~
~ 4.0 a: ~ ~ 2.0
:c:3
~r - -
vc:c= 15 v
-55
+25
+75
+125
+175
T, TEMPERATURE (OC)
5-38
MC1405, MC1505
FIGURE 18 - CURRENT SWITCH TRANSFER CHARACTERISTIC
600~-~-~--.---.--~-~--~-..----..,._----.
500 ----,.,..---r---+--t----t--+--r---+----1
<( 400 3
5 300
i::~ 200,____....__-4--+-_,._._ __,__ _.._ __,i---I---+---+--~
0
5 xloo1----1---+--+-+----1---+---1e---+--+---1-__,
I- -
~ ~ O1---+---+---+-+----1-- ~~r!!'D~du~::a~~i~c:nstant ~
I-
~ 100
With Temperature·
~
~ ~
~
~
300+--+--+---1---1---1--~~---+---+---+f----+
400L---'--..J....---'---'-----L---''---'----'---'--~
0
1.0
2.0
3.0
4.0
5.0
VIO, RAMP CONTROL INPUT (VOLTS)
FIGURE 20 - COMPARATOR THRESHOLD versus TEMPERATURE
2.0
(/)
!:; 1.8
0
~ 1.6
~
0
1.4
1.2
*::c
Ia:
1.0
0
I-
~
0.8
ct
~
0.6
8 0.4
~ 0.2 !;'
-55
+25D
+75
T, TEMPERATURE (DC)
+125
+175
FIGURE 19 -.INTEGRATOR OUTPUT SWING versus TEMPERATURE
16
c;:; 14
!:;
0
~
12
C!J
z 10
~
~ 8.0 ~
~ 6.0 r---t-- Vee= 15v
I-
,~_· 4.0 >
2:0
V7..l(.Max)-
V7(Min)
-55
+25
+75
+125
+175
T, TEMPERATURE (DC)
FIGURE 21 - RAMP CURRENT RATIO venus POWER SUPPLY
4.0 lx+i
I
3.61--~ versus Vee
0
~ 3.2
~ 2:81-----41----+---~--+--+---~--+---'
~ 2.4
;;:: 2.ol--(._--=t=:::::t===t==:t==t==:_f-___,
::;;; ~ J.61-----+---+---+---+---+---t----+----1
::r::::i 1.21---+---+---+---+---t---t----+----!
0+ 0.81---+---+---+---+---+---+---+----! £ 0.41-----+---+---+---+---l---t----+----i
0L-~--'---'---"---'----'---'----'----'
0
5.0
10
15
20
Vee. POWER SUPPL y (Vdc)
·
FIGURE .22 - CURRENT MEASUREMENT CIRCUITRY
FIGURE 23- DVM VOLTAGE RANGING
1 k
Full Scale Current Readings 0.1 ,n 1. 1.999. mA
2. 19.99 mA 3. 199,9 mA 4. 1.999 A If a voltage drop of 2.0 V full scale can be tolerated. the resistors may .be increased by a factor of ten and a unity gain buffer may be employed.
Input Voltage
,.· ~.---· 9M ~
Output To
900k
MC1505/1405
100 k
Full Scale Voltage Range
1. 1.999 v 2. 19.99 v 3. 199.9 v
5-39
---
Ramp Control of MC1505 (Pin 10)
0.001 µF
~
N
ui
·
FIGURE 24 - MTTL DIGITAL SUBSYSTEM 12 Bit Binary A/D Converter
(1.0Volt Full Scale, 512 Count Delay)
0.001 µF
Clock Frequency =:<250 kHz
R :>----+--,
R >------+---i
01
.h.
0
-
Comparator Input
of MC1505 (Pin 9)
A
A
DO 01 02 03 ST MC7475 oo 01 02 03
DO 01 02 03 STMC7475 oo 01 02 o3
DO 01 02 03 ST MC7475 oo 01 02 o3
RO
LSB
MSB
0 0 0
A12 A11A10 A9
AS A7 AG A5
A4 A3 A2 A1
Strobe ~TOR
'---------1~ To A
Binary Outputs
Notes: 1. NANO 'Gates= MC7400 or equiv. NOR Gates= MC7402 or equiv. Inverters= MC7404 or equiv.
2. The clock period should be greater than twice the worst case ripple delay through the counters to achieve full accuracy.
3. The counter delay should be approximately 10% of T1, hence 512 counts.
s . .(.'.).
.p. .
..0
CJ'I
s
.(.'.).
CJ'I 0 CJ'I
MC1405, MC1505
AO' ">---+-----!
FIGURE 25- 12-BIT BINARY A/D LOGIC SUBSYSTEM USING McMOS
Ramp
AB A7A6 A5 A4 A3A2A1AO Outputs
FIGURE 26 - CIRCUIT TO PREVENT POSSIBLE LATCHUP WITH APPLICATION OF NEGATIVE INPUT VOLTAGES
·
The MC1405/1505 A/D analog subsystem is intended
for positive input voltages only (i.e., pin 1 positive with re-
spect to pin 2). However, should pin 2 become more than
100 mV positive with respect to pin 1, the internal input
amplifier may go into a latchup mode which will require
+
that the system power be turned off and then reapplied to
reset the system. To prevent this problem a PNP transistor
can be used as shown in the accompanying figure. The
base-emitter junction of the transistor clamps pin 13 at
one diode drop above the reference voltage (pin 11) to
prevent the latchup. The gain of the transistor insures that
the reference need not sink more than 500 µA of current.
The 47 k.Q resistor is required only if the AID system is to continue to convert under reverse polarity conditions To Pin 11
MC1405
such as for autopolarity schemes as shown in Engineering
Bulletin EB-35.
RC 10 }
Connections to
MC14435
MC1405 MC1505
Full Scale
·47 k.Q resistor required if conversions are to continue during input polarity reversal, otherwise tie pins 12 and 1-~ together.
5-41
·
ORDERING INFORMATION
Device
MC1406L MC1506L
Temperature Range
0°c to +70°C -55°C to + 125°C
Package
Ceramic DIP Ceramic DIP
MC1406L MC1506L
Specifications and Applications InforQiation
SIX BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
... designed for use where the output current is a line~r product
of a six-b·t digital word and an analog input voltage.
· Digital Inputs are MOTL.and MTTL Compatible · Relative Accuracy - ±0.78% Error maximum · Low Power Dissipation - 85 mW typical @ ±5.0 V · Adjustable Output Current Scaling · Fast Settling Time -- 150 ns typical · Standard Supply Voltage: +5.0 V and -5.0 V to -15 V
SIX BIT, MULTIPLYING DIGITAL-TO-ANALOG
CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT
CERAMIC PACKAGE CASE 632 T0-116
FIGURE 1 - OUTPUT CURRENT SETTLING TIME
(ALL BITS SWITCHED, RL =50 nl
2.0 v
ov
OmA
2.0mA
100 ns/DIV.
FIGURE 2 - 0-to-A TRANSFER CHARACTERISTICS 2.0 mA 1.0 mA
(000000)
INPUT WORD
(111111)
TYPICAL APPLICATIONS
· Tracking A-to-D Converters · Successive Approximation A-to-D Converters · Digital-to-Analog Meter Readout · Sample and Hold · Peak Detector · Programmable Gain and Atte(luation · Digital Varicap Tuning · Video Systems
· Stepping Motor Drive · CRT Character Generation · Digital Addition and Subtraction · Analog-Digital Multiplication · Digital-Digital Multiplication · Analog-Digital Division · Programmable Power Supplies · Speech Encoding
5-42
MC1406L, MC1506L
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating Power Supply Voltage
Digital Input Voltage Applied Output Voltage Reference Current_ Reference Amplifier Inputs Power Dissipation (Package limitation)
Ceramic Package Derate above TA = +25°C Operating Temperature Range
Storage Temperature Range
MC1506L MC1406L
ELECTRICAL CHARACTERISTICS IVcc= +5.0 Vdc, VEE
TA =Thigh to T1 0 w. unless otherwise noted.)
Characteristic Relative Accuracy (Error relative to full scale· lo)
Settling Time (within 1/2 LSB [includes tdl TA= +25°Cl Propagation Delay Time
TA= +25°C Output Full Scale Current Drift Digital Input Logic Levels
High Level, Logic "1" Low Level, Logic "O"
Symbol
Value
Unit
Vee VEE V5 thru V10 Vo 112 V12. V13 Po
+5.5 -16.5 +8.0, VEE ±5.0
5.0 Vee.VEE
1000 6.7
Vdc
Vdc Vdc mA Vdc
mW mW/°C
TA
-55 to +125
oc
0 to +70
Tstg
-65 to +150
.,,..c
-15. Vdc, RVr1e2f = 2.0 mA; all logic inputs in low logic state,
Figure Symbol
Min
Typ
Max
Unit
10
Er
9
ts
-
-
±0.78
%
-
150
300
ns
9
tPHL·
-
tPLH
ITClol
-
10
50
ns
80
-
PPM/°C
3,14 V1H VIL
2.4
-
-
-
, Vdc 0.8
Digital Input Current High Level, V1H = 5.0 V Low Level, V1L = 0.8 V
Reference Input Bias Current (Pin 13)
Output Current Range
Vee= -5.o v Vee= -6.0 to -15 v
Output Current Vref = 2.000 V, R12 = 1.000 k51
Output Current (all bits high)
Output Voltage Compliance IEr..;±0.78% at TA= +25°C)
Reference Current Slew Rate (TA= +25°Cl
Output Current Power Supply sensitivity
Power Supply Current A1 thru A6; V1L = 0.8 V A1 thru A6;V1H = 2.4 V
Power Dissipation (all bits high) Vee = -5.0 Vdc Vee= -15 Vdc
3,13
3 3
. l1H l1L 113 loR
3
lo
3
lo!min)
3,4,5 8,15
Vo+ Vo-
SR lref
10 3,11,12
PSRR (-)
ice IEE Po
-
0
+0.01
-
-0.7
-1.5
-
-0.002 -O:o1
0
2.0
2.1
0
2.0
4.2
1.9
1.97
2.1
-
0
10
-
+0.25
+0.1
-
-0.45
-0.3
-
2.0
-
-
. 0.002 0.010
-
+7.2
+11
-
-9.0
-11
-
85
120
-
175
240
mA
mA mA
mA µA Vdc mA/µs mA/V mA
mW
*Thigh= +10°c for MC1406L T1ow = 0°C for MC1406L
= +125°C for MC 1506L
= -55°C for MC1506L
5-43
·
MC1406L, MC1506L
·
TheMC1506L consists of a reference current amplifier, and R-2R ladder, and six high-speed current switches. For many applications, only a reference resistor an_d a reference supply voltage need be added.
The switches are inverting in operation; therefore a low state at the input turns on t_he specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active· load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.
The R-2R laqder divides the reference amplifier current into binarily-related components which are fed to the
switches. Note that there is always a remainder cur~ent
that is equal to the least significant bit. This current is shunted to ground, and the maximum curreht is 63/64 of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.
BLOCK DIAGRAM
MSB
LSB
A 1
A2
A3 A4
A5
AG
CURRENT SWITCHES
(+) Vretu---+-----~
(--) Vref o - - - t - - - 1
----NPN CURRENT
SOURCE PAIR
REFERENCE CURRENT AMPLIFIER
BIAS CIRCUIT
COMPLETE CIRCUIT SCHEMATIC (Digital Inputs; pins 5,6,7,8,9,10)
MSB
LSB
5-44
MC1406L, MC1506L
TEST CIRCUITS AND TYPICAL CHARACTERISTICS
FIGURE 3- NOTATION DEFINITIONS TEST CIRCUIT Vee
FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE
R12 Al
A2
DIGITAL A3 INPUTS
A4
MC1506L Me1406l
R12 °' R13
A5
t A6 +
1~0~-.,.-.--'~--'~-------~..a OUTPUT
Vin
-J_
V1 and 11 apply to inputs A1 thru A6
lo=
K{f2il
+~+gi+~+~+fili} 4 8 16 32 64
=K{A}
whereK '~
and AN = 0 if AN is at high level AN =1 if AN is at low level
FIGURE 5 - MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE
...~ +0.2 f---+-~.i....--\-~.->.--'1--,,__,,,..4...-+-C'-"--\-->.-l',_,,_~f--->----I
2
ii:
w co
<t
t::i
0
~> -0.2
g
t---·-t'<-~c-!t--\-->,c-'l-''0\--'d-'r'c-\t-~,.-\f~~~-+--+----j
6 -0.41---l-'c-'<-''<1'<--'r-'Hr-+.\,...,,_.~~"""---l-----1f---+--+-~ >
-55
50
100
150
T, TEMPERATURE (DC)
~
l
Al= Low
.01---+- A2-A6 = High
Vo RANGE FOR
6-BIT ACCURAC/ @ 25°C ·
J
.0
/'T
"T
7
7
0
~
-2.0
-1.0
1-0
Vo. OUTPUT VOLTAGE PIN 4 (Vdc)
FIGURE 6 - POSITIVE Vref
Vee 11
R12" R13
Al
12
R12
A2
13
A3
Me1506L
14
A4
Me1406l
A5 RL
A6
-10 -u-
VEE
2.0
·
FIGURE 7 - NEGATIVE Vref
Al A2 A3 A4 A5 A6 10
vee 11
Me1506L Me1406L
R12 0o R13
12 ..__ R12
13
14
R13
e See text for values of e.
.RL
Lr
FIGURE 8 - REFERENCE CURRENT SLEW RATE MEASUREMENT TEST ~IRCUIT
vce
Al
· 12
lk
A2 A3
=Jvt!-=o 13
14 20 pf
MC1506L
lk
A4
Me1406L
Slewing
- 2·0 mA
A5
Time
A6
5-45
. MC1406L,MC1506L
·
TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)
FIGURE 9 - TRANSIENT RESPONSE
2.4V
ein
1.5V
1.5V
o.4 v-l--~::::::::::::~-tr·tf.;lOns
·a
-100mV
50%
50%
1,.----+11
t~LH
FIGURE 10 - RELATIVE ACCURACY TEST CIRCUIT
MSB Al A2 12-Bit D·to·A Converter A3 A4 A5
Oto lOV Output Sk
FIGURE 11 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE
15 14
1
T
1 13 I---+-·
I- 12
f~5 11
B 10
Vee= +5.0 v
VEE= -15 V
.
_l
t
t---
~
IEE - ALL BITS LOW
~
a:
5~::
9.Ot-- IEE -ALL BITS HIGH
- 7 8.0
1
IZ
7.0
- 6.0r----··-I---· i.ow7 ice -;;:u-BITS
5.0
1
1
-
Ice ...l ALL}_'~s HIGH
T
-55
50
100 125
T, TEMPERATURE (DC)
FIGURE 12 - TYPICAL POWER SUPPLY CURRENT versus Vee 10.------'--.-----.---,----r---r---.------.-----,
1 Vee= +5.o v 9.0 1 - - - - 1 - - - - + - - - t - - - + - - - + - - - - t - - - + - - - 4
I-
~B B.O I----!-,--\l_E_E__l--A-L_L_B_ITl--S-H-1(3-H-+---+----t---+---'-4
~ "T
I
~ 7.01-----+- IEE ALL BITS LOW_
.a..:.
-
~ '--~-..:l~c;c=-~A;L;L;Bl~T~S~H~IG=H=F====:f:;;;;:;;:;:;:;;;~===r:~~__.j
6.0 i-
.1 1
~r +- 1cc,ALLBl,SLOW
-4.0 -6.0 -8.0 -10
12
VEE. NEGATIVE POWER SUPPLY (V.dc)
5~46
MC1406L, MC1506L
TYPICAL CHARACTERISTICS (continued)
FIGURE 13 - LOGIC INPUT CURRENT versus INPUT VOLTAGE
1.0
~
.S o.s
I-
~
B o.6
1-
5:
~ w 0.4
> i==
ffi
2: 0.2
l\.
\ 'i
_1J
/~
1
\
f; 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Vin. LOGIC INPUT VOLTAGE (Vdc)
FIGURE 14 - MSB TRANSFER CHARACTERISTICS versus TEMPERATURE (MSB IS "WORST CASE")
Vin. LOGIC INPUT VOLTAGE (Vdc)
FIGURE 15 - REFERENCE INPUT FREQUENCY RESPONSE
+2.0 J HE±ffi
l ·A
l~.
. Unless 1oth~rw\se1 s~~c\f1i~d:
-2.0 R12=R13=1.0kD
ii ~ l~r-1~~ ~-+1
~
RL = 50f?(pin 4 to GNO) Curve.A: Large Signal Bandwidth
1Jl1l1
~ -4.0
(Method of Figure 6)
_l_
I I=-> 0 0 I ~
-6.0
Vref = 2.0 V(p-p) offset 1.0 V above GNO
Curve B: (~~~~ ~ig~a~~~~~~;dth.
_
>
: I i==
Vref = 50 mV (p-p) offset 200 mVabove GNO
g-8.0 CurveC: Large and Small Signal Bandwidth
,\
'Q' (Method of Figure 22 with no op-am pl, R 5012)
1'
1\1
-10 -12
Rs=RL=50n
,
JI Vref = 2.0V
Vs= 120 mV(p-p) centered.at 0 V
l 1
0.01 0.02
0.1 0.2
1.0 2.0
5.0 10
I, FREQUENCY (MHz)
GENERAL INFORMATION
Output Current Range
The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 ·volts, due to the increased voltage drop across the 400-ohm resistors in the reference current amplifier.
Output Voltage Compliance
The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter· is near ground and a positive voltage on the output terminal can turn "on" the output diode.and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diode voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.
For example, at +25°C the allowable voltage compliance on Pin 4 to maintain six-bit accuracy is +0.1 to -0.3 Volts. With a full scale output current of 2.0 mA, the maximum resistor value that can be connected from Pin 4 to ground is 150 ohms.
·
Accuracy Absolute accuracy is the measure of each output current
level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full sc;ale current. The relative accuracy of .the MC.1506L is essentially constant with temperature .due to the excellent temperature tracking of the monolitl:'lic resistor ladder. The reference current may drift with temperature, causing a change. in the absolute accuracy of output current.
The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current sourc;e pair in the reference amplifier at the lowest possible ~olt age, matching and optimizing the output impedance of the pair.
The MC1506L/MC1406L is guaranteed accurate to within ±1/2 LSB at +25°C at a full scale output current of 1.969 mA. This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA, with the loss of one LSB = 31 µA that is the ladder remainder shunted to ground. The input current to Pin 12 has a guaranteed current range value of between 1.9 to 2, 1 mA, allowing
5-47
MC1406L, MC1506L
·
GENERAL INFORMATION (continued)
some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA. This is an optional step since the MC1506L accuracy is essential.ly the same between 1.5 to 2.5 mA. Then the MC1506L full scale current is trimmed to the same value with R 12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.
Two 6-bit 0-to-A converters may not be used to construct a 12-bit accurate 0-to-A converter. 12-bit accuracy implies a total error of ±1 /2 of one part in 4096, or ±.0.012%, which is more accurate than the ±0. 78% specification provided by the MC1506L.
Multiplying Accuracy The MC1506L may be used in the multiplying mode
with six-bit accuracy when the reference current is varied over a range of 64: 1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of 6.0 µ.A extra current at the output terminal. If the reference current in the multiplying mode ranges from 60 µ.A to 4.0 mA, the 6.0 µ.A contributes an error of 0.1 LSB. This is well within six-bit accuracy.
A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a de reference current is 0.5 to 4.0 mA.
Settling Time The "worst case" switching condition occurs when all
bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within ±.1/2 LSB, while the turn "off" is typically under 50 ns.
The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the 0-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition doe.s not occur, and a settling. time of less than 150 ns may be realized.
Reference Amplifier Drive and Compensation The reference amplifier provides a voltage at Pin 12 for
converting the reference voltage to a current, and a turn-
around circuit or current mirror for feeding the ladder.
The reference amplifier input current, 112, must al.ways
flow into Pin 12 regardless of the setup method or reference
voltage polarity.
.
Connections. for a positive reference voltage are shown
in Figure 6. The reference voltage source supplies the full
current 112. Compensation is accomplished by Miller feed-
back from Pin 14 to Pin 13. This compensation method
yields the best slew rate, typically better than 2.0 mA/µ.s,
and is independent of the value of R12. R13 must be used
to establish the proper impedance for compensation at
Pin 13. For bipolar reference signals, as in .the multiplying
mode, R13 can be tied. to a negative voltage corresponding
to the minimum input level. Another method is shown
in Figure 22.
It is possible to eliminate R 13 with only a small sacri-
fice in accuracy and temperature drift. For instance when
high-speed operation is not needed, a capacitor is connected
from pin 14to VEE· The capacitor value must be increased
when R12 is made larger to maintain a proper phase
margin. For R12 values of 1.0, 2.5, and 5.0 kilohms,
minimum capacitor values are 50, 125, and 250 pF.
Connections for a negative reference voltage are shown
in Figure 7. A high input impedance is the advantage of
this method, but Miller feedback cannot be used because
it feeds the input signal around the PNP directly into the
high impedance node, causing slewing problems and high
frequency peaking. Compensation involves a capacitor
to VEE on Pin 14, using the values of the previous para-
graph. The negative reference. voltage must be at least
3.0 V above VEE· Bipolar input signals may be handled
by connecting R12 to a positive reference voltage equal to
the peak positive input level at Pin 13.
When a de reference voltage is used, capacitive bypass
to ground is recommended. The 5.0 V logic supply is not
recommended as a reference voltage. If a well regulated
5.0 V supply which drives logic is to be used as the refer-
ence, R12 should be decoupled by connecting it to +5.0 V
through another resistor and bypassing the junction of
the two resistors with 0.1 µ.F to ground. For reference
voltages greater than 5.0 V, a clamp diode is recommended
between Pin 12 and ground.
If Pin 12 is driven by a high impedance such as a
transistor current source, none of the above compensation
methods apply and the amplifier must be heavily compen-
sated, thus decreasing the overall bandwidth.
5-48
MC1406L, MC1506L
APPLICATIONS INFORMATION FIGURE 16 - OUTPUT CURRENT VOLTAGE CONVERSION
Vref = 2.0 Vdc R12= R13~ 1.0k.Q Ro=5.0k n
Ro
Theoretical Vo
{A.} Vo=_Vit:ll_(- RO)- (~-+~+-~+~-+~+-~)=KR
R12
2 4 8 16 32 64
0
Adjust Rret so that Vo with all digital inputs at
low level is equal to 9.844 volts.
6 Vo =H(5 Kl (~+~+hl +~+ ~) = 10 v (~) =9.844 v
Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.
Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.
The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 µs.
FIGURE 17
65 pF
5.1 k
An alternative method is to.use the MC1539G and input compensation. Response of this circuit is also on the order· of 2.0 µs. See Motorola Application Note AN-459 for more details on this concept.
FIGURE 18
+15 v
35 pF
5k 10 k
(To pin 4 of Me1506L)
-15 v
The positive voltage range may be extended by cascoding the output with a high beta common base transistor, 01, as shown.
vee
5k
Me1506L
Ge
The output voltage range for this circuit is 0 volts to BVcso of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.
5-49
MC1406L, MC1506L
·
APPLICATIONS INFORMATION (continued)
Combined Output Amplifier and Voltage Reference
Bipolar or Negative Output Voltage
For many of its applications the MC1506L requires a' reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a commonmode signal to the reference amplifier in the D-to-A converter. This allovvs use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.
Since ±15 V and +5.0 V are normally available in a combination digital-to-analog .system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.
Full scale output. may be increased to as much as 32 volts by increasing Ro and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. Co may be decreased to maintain the same
The circuit of 'Figure 20 is a variation from the· standard voltage outp~t circuit and will produce bipolar output signals. A 'positive current may be sourced into the summing node to offset the output voltage in the negative direction. For e>,<ample, if approximately 1.0 mA is used a bipolar output signal results which ·may be described as a 6-bit "1 's" complement offset binary. Vref may be used as this auxiliary reference. Note that Ro has been doubled to 10 kilohms because of the anticipated 20 V (p-p) output range.
FIGURE 20 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT
, Vref
Vo
Vo=~ (Roi I~+¥·~·~·~· ~I - ~!Roi
RoCo product if maximum speed is desired.
Programmable Power Supply
The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1-vo.lt increments, ±0.05 volt; or 0 to 31.5 volts in 0.5-volt increments, ±0.25 volt.
FIGURE 19 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT
MSB Al 5 A2 S
A3 A
A4 A5 \ LSB AS
vcc ·5.ov
11
MC1506L MC1406L
Ro= 5 k
NC r - - - - ,
I
Ne
1i:>-j
MC1723G
I
4
2 I
t-0---0-.......-1
I I
Co= 25 pF
I
I
5k
s I
I
L ___ _J
I.Gk
Vo=Vref ~{ii}
VEE -15V
Settling lime for 10Vstep 21.0µs
Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter
Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6~bits magnitude plus a sign bit. In this configuration the operational amplifier is switched betwee.n a gain of + 1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.
FIGURE 21 - POLARITY SWITCHING CIRCUIT (6-Bit Magnitude Plus Sign D-to-A Converter)
FROM Vo OUTPUT - - - - . . J \ J l / \ r - - - 0 - - 1 OP·AMPL
POLARITY CONTROL BIT
vo = voi' - voP
5-50
MC1406L, MC1506L
APPLICATIONS IN FORMATION (continuedI Programmable Gain Amplifier or Digital Attenuator
When used in the multiplying mode the MC1506l can
be applied as a digital attenuator. See Figure 22. One ad· vantage of this technique is that if Rs = 50 ohms, no
compensation capacitor is needed and a wide large signal
bandwidth is achieved. The small and large signal band·
widths are now identical and are shown in Figure 15.
The best frequency response is obtained by not allowing I12 to reach zero. Rs can be set for a ±1.0 mA variation in relation to I12. I12 can never be negative.
The output current is always unipolar. The quiescent de output current level changes with the digital word that makes ac coupling necessary.
FIGURE 22 - PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT
Vref
R12 Rs
vs· ....vv;,..._o-i
1-1 When Vs· 0, 112· 2mA
Vo·
[
-v,.1
R12
+
-VsJ
Rs
A
Ro
Ra
CQ
f-4 OUTPUT
FIGURE 24- DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION vcc Vee
·
Vo
Panel Meter Readout The MC1506l can be used to read out the status of
BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R 12 or Vref·
FIGURE 23 - PANEL METER READOUT CIRCUIT
IQ· 101 -102 · ~Ti-1 jii} - ~rle;~ jsf
DigilalSubtraction
let~!]= Vrel2
Ml R121 R122
va · ~'i';: Ro Hiif-
Programmable Amplifier:
Connect digital inputssoA=B
·v.0 ·
Jii I
) (
l"'-'.1
R121
_ Vrei2J R122
This digital ·subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.
Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R121 and R122 or R131 and R132. Vo will bea bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R 121 and R 122 to a positive reference higher thari the most ·positive input, and drive R131 and R132. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.
5-51
·
MC1406L, MC1506L
APPLICATIONS INFORMATION (continued)
FIGURE 25 - DIGITAL SUMMING and CHARACTER
FIGURE 26- PEAK DETECTING SAMPLE and HOLD
GENERATION
(Features infinite hold time and optional digital output.)
Vrefl Vo
vo = 001+1021 Ro
{s}j ·[Vrefl {Al+ Vref2
Ro
R121 I R122
Vref2
In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12-bit D'to-A converter (see Accuracy Section).
FIGURE 27 - PROGRAMMABLE PULSE GENERATOR
CLOCK
0 ETECT /HO LO
12 13 14
Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output ampli.fier for unipolar operation.
FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE Vee
01
.._""'--_ _.v . o J L
(Oto 1 Volt in 16mV steps)
Vrel
Fast rise and fall times require the use of high speed switching transistors for the differential pair, 04 and 05. Linear ramps and sine waves may be generated by the appropriate reference input.
FIGURE 29 -ANALOG DIVISION BY DIGITAL WORD
Ro
vcc
10-
VO
Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.
FIGURE 30 -ANALOG QUOTIENT OF TWO DIGITAL WORDS
·l
MC1506L MC1406L
12
13
R13
14
NC
IQ= CONSTANT
IO R12
VO= {ii·}
This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, lo can be set at 62 µ.A so that I 12 will have a maximum value of 3.938 mA for a digital bit input configuration of 111110.
Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier ·· can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or. another wideband amplifier is used, the reference amplifier should always be overcompensated.
.5-52
MC1506L MC1406L
1 NC
if R121 =R122 {jj}
102=10101
MC1406L, MC1506L
APPLICATIONS INFORMATION (continued)
FIGURE 31 - ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)
NC
NC
_,,.._,
A
~; vo = 101 Ro=
{11} Ro
102 = Jsf 1vo1 R122 J!L {il}j RJ2i = R122 [RO (Vrefl)
since Ro= R122 and K = Vref/R12t
{A}{ii} 102 =K
K can be an analog variable
Two Digit BCD Conversion
MCl 506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD 0-to-A or A-to-0 converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the Q,to-A converter handling the least significant bits will be scaled down by a factor of ten.
·
FIGURE 32- DIGITAL QUOTIENT of TWO ANALOG VARIABLES or ~NALOG-TO-DIGITAL CONVERSION
CLOCK COMPARATOR
The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.
Ro
Vin ---....1\A/\,----e
R12
HEX INVERTER
RESET
6-BIT BINARY COUNTER
20 pf R13
1 2 .3
. _ . . _ _ c=Vin/Ro Vref/R12
LSB
MSB
c
5-53
·
ORDERING INFORMATION
Device
MC1408L6 MC1408L7 MC1408L8 MC1408P6 MC1408P7 MC1408P8 MC1500L8
Temperature Range
0°c to +75°C 0°C to +75°C 0°C .to + 75°C 0°c to +75°C 0°c to +75°C O"C to + 75°C -55°C to +125°C
Package
Ceramic DIP Ceramic DIP Ceramic DIP Plastic DIP Plastic DIP Plastic DIP Ceramic DIP
Specifications and Applications Information
EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
. designed for use where the output current is a linear product of an eight-bit digital word and an anal?g input voltage.
· Eight-Bit Accuracy Available in Both Temperature Ranges Relative Accuracy: ±0.19% Error maximum (MC1408L8, MC1408P8, MC1508L8)
· Seven and Six-Bit Accuracy Available wi~h MC1408 Designated by 7 or 6 Suffix after Package Suffix ·
· Fast Settling l'ime - 300 ns typical
· Noninverting Digital Inputs are MTTL and CMOS Compatible
· Output Voltage Swing - +o.4 V to -5.0 V
· High-Speed Multiplying Input Slew Rate 4.0 mA/µs
· Standard Supply Voltages: +5.0 V and -5.0 V to -15 V
FIGURE 1 - D-to-A TRANSFER CHARACTERISTICS
~
E
1z -
w a: a:
::::> 0 I-
:> a. I:> 0
MC1408. MC1508
EIGHT-BIT MULTIPLYING' DIGITAL-TO-ANALOG CONVERTER SI LICON MONOLITHIC INTEGRATED CIRCUIT
. . . LSUFFIX
CERAM°ic PACKAGE CASE 620
PSUFFIX PLASTIC PACKAGE
CASE 648
FIGURE 2 - BLOCK DIAGRAM
(00000000)
INPUT DIGITAL WORD
(11111111)
NPN Current Source Pair
TYPICAL APPLICATIONS
· Tracking A-to-D Converters · Successive Approximation A-to-D Converl:er.s · 2 1/2 Digit Panel Meters and DVM's · Waveform Synthesis · Sample and Hold · Peak Detector · Programmable Gain and Attenuation · CRT Character Generation
· Audio Digiti~ing and Decoding · Programmable Power Supplies · Analog-Digital Multiplication · Digital-Digital Multiplication · Analog-Digital Division · Digital Addition and Subtraction · Speech Compression and Expansion · Stepping Motor Drive
5-54
MC1408, MC1508
MAXIMUM RATINGS (TA= +25°C unless otherwise noted.)
Rating Power Supply Voltage
Digital Input Voltage Applied Output Voltage Reference Current Reference Amplifier Inputs Operating Temperature Range
Storage Temperature Range
MC1508 MC1408 Series
Symbol Vee VEE
V5 thru V12 Vo 114
V14.V15 TA
Tstg
Value +5.5 -16.5
-o to +5.o
+0.5,-5.2 5.0
Vee.VEE
-55 to +125 Oto +75
-65 to +150
Unit Vdc
Vdc Vdc rnA Vdc oc,
oc
Vref
ELECTRICAL CHARACTERISTICS (Vee= +5.0 Vdc, VEE= -15 Vdc, R 14 = 2.0 mA, MC1508L8: TA= -55°c to +125oC.
MC1408L Series: TA= 0 to +75°C unless otherwise noted. All digital inputs at h'1gh logic level.)
Characteristic
Figure Symbol
Min lYP
Max
Unit
Relative Accuracy (Error relative to full scale lo) MC1508L8, MC1408L8, MC1408P8 MC1408P7, MC1408L7, See Note 1 MC1408P6, MC1408L6, See Note 1
4
Er
%
-
-
±0.19
-
-
±0.39
-
-
±0.78
Settling Ji me to within ±1 /2 LSB [includes tPLH ](TA=+25°C)See Note 2
5
ts
-
300
-
ns
Propagation Delay Time TA= +25°C
Output Full Scale Current Drift
5
tPLH,tPHL
-
30
TC lo
-
-20
100
ns
-
PPM/°C
Digital Input Logic Levels (MSB) High Level, Logic "1" Low Level, Logic "O"
3
VJH
2.0
-
V1L
-
-
Vdc
-
0.8
Digital Input Current (MSB) High Level, V1H = 5.0 V Low Level, V1L = 0.8 V
Reference Input Bias Current (Pin 15)
3
mA
l1H
-
0
0.04
l1L
-
-0.4
-0.8
3
115
-
-1.0
-5.0
µA
Output Current Range VEE= -5.0 V VEE= -15 V, TA= 25°C
3
loR
mA
0
2.0
2.1
0
2.0
4.2
Output Current
Vref = 2.000 V, R14 = 1000 n
3
io
mA
1.9
1.99
2.1
Output Current
(All bits low)
'
Output Voltage Compliance (Er:<:; 0.19% at TA - +25°C)
Pin 1 grounded
Pin 1 open, VEE below -10 V
3
lo(min)
-
3
Vo
-
-
0
4.0
µA
Vdc
-
-0.55, +0.4
-
-5.0, +0.4
Reference Current Slew Rate
6
SR lref
-
4.0
-
mA/µs
Output Current Power Supply Sensitivity
PSRR(-)
-
0.5
2.7
µA/V
Power Supply Current (All bits low)
Power Supply Voltage Range (TA= +25°Cl
Power Dissipation All bits low VEE = -5.0 Vdc VEE= -15 Vdc
3
'cc
-
+13.5
+22
mA
IEE
-
-7.5
-13
3
VccR
+4.5
+5.0
+5.5
Vdc
VEER
-4.5
-15
-16.5
3
Po
mW
-
105
170
-
190
305
All bits high VEE = -5.0 Vdc VEE= -15 Vdc
-
90
-
-
160
-
Note 1. All current switches are tested to guarantee at least 50% of rated output current. Note 2. All bits switched.
@ MOTOROLA Semiconductor Products.Inc.
5-55
·
MC1408, MC1508
A1 A2 A3 Digital A4 Inputs A5 A6 A7 AS
TEST CIRCUITS
FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT
Vee
·'cc
13
Typical Values:
114 14- R14
R14= R15= 1 k Vref = +2.0 V
C = 15 pF
Vref (+)
VI and I 1 apply to inputs A 1 thru AS
The resistor tied to pin 15 is to temperature compensate the bias l::urrent and may not be necessary for all applications.
MC1408 Series
MC1508
3
f 'ee Vee
-'o
Vo Output
c
AL
(See text for values of C)
lo = K { ~~ + ~ + ~ + A4
2
4
8
16
where K ~ V re~
R14
AS A6 +- +- +
32 64
and AN = "1" if AN is at high level AN = "O" if AN is at low level
FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT
MSB
A1
A2
A3
12·Bit
A4
0-to-A
Coriverter A5
(±0.02%
A6
error max)
A7
AB A9 A10 A11 A12
LSB
0 to +10 V Output 5 k
100
Error (1 V = 1%)
8-Bit Counter
MC1408 Series MC1508
1K
FIGUR.E 5 - TRANSIENT RESPONSE and SETTLING TIME
13 +2.0 Vdc
r 0.1 µF Vee
ea 1--<:>---=---- ::a:::'~:n~~me
(All bits switched
low to high)
2.4 v
Use"RL to GND for
turn off measurement (Sae text).
TRANSIENT O +--!.f--------ti RESPONSE
-100 mV
@ MOTOROLA Semiconductor Products Inc.--------'
5-56
MC1408, MC1508
TEST CIRCUITS (continued)
FIGURE 6 - REFERENCE CURRENT SLEW RATE MEASUREMENT
13
Me1408 Series
Me1508
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(maxl -TA PD(TAl = ROJA(Typl
Where: PD(TAl =.Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition .
Vee
di
I dV 1
0
dt RL dt
Slewing Time
0 2.0 mA
TJ(maxl = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ROJA(Typl =Typical Thermal Resistance Junction to Ambient
·
FIGURE 7 - POSITIVE Vref
Vee
13 A1
A3
A4
Me1408
A5
Series
MC150B A6
A7
AB
R14=o R15 R14
R15
(+}Vref~
RL
See text for values of C.
FIGURE 8 - NEGATIVE Vref
13
Al 14
A2
A3
A4
Me140B
A5
Series
A6
MC150B
A7
AB
R14=" R15 R14
@ MOTOROLA Se1nfoonductor Products Inc.
5-57
MC1408, MC1508 -
MSB 5 A1
.6 A2
FIGURE 9 - MC1408, MC1508 SERIES EQUIVALENT CIRCUIT SCHEMATIC
DIGITAL INPUTS
7 A3
8 A4
9 A5
10 A6
11 A7
LSB 12 AS
J10
4
·
1 k
CURRENT SWITCHES
13
Vee
14 Vref(+)
800 400
800 400
800 400
800 400
800 400
800 400
800
REFERENCE CURRENT AMPLIFIER
800 R·2R LADDER
12.5 k
16
15
COMPENSATION Vref(-)
BIAS CIRCUIT
3
2
VEE OUTPUT GND
RANGE
CONTROL
CIRCUl·T DESCRIPTION
The MC1408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage- need be added.
The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides
a low impedance termination of equal voltage for all legs of the ladder.
The R-2R ladder divides the reference am·plifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.
@ MOTOROLA Se1niconductor Products Inc.-------~
5-58
MC1408, MC1508
GENERAL INFORMATION
Reference Amplifier Drive and Compensation
The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity.
Connections for apositive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R 15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.
The compensation capacitor value must be increased with in· creases in R14 to maintain proper phase margin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor should be tied to VEE as this increases negative supply rejection. ·
A negative reference voltage may be used if R 14 is grounded and the .reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative· reference voltage must be at least 3.0-volts above the VEE supply. Bipolar input signals may. be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.
When a de reference voltage is used, capacitive bypass to ground is recommended. The 5.0-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply which drives logic is to be used as the reference, R14 should be decoupled by
connecting it to +5.0 v through another resistor and bypassing
the junction of the two resistors with 0.1 µF to ground. For .reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground.
If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and. the ampl'ifier must be heavily compensated, decreasing the overall bandwidth.
Output Voltage Range
The voltage on pin 4 is restricted to a range of -0.55 to +0.4 volts at +25°C, due to the current switching methods employed in the MC1408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and,increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified sa-fe level will drive the low current device of- the Darlington. into saturation, decreasing the output current level.
The negative output v'oltage compliance of the MC1408 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more· negative than -10 volt_i;: Using a full scale c.urrent of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases ''worst case" settling time to 1.2 'µ.s (when all bits are switched on).
Refer to the subsequent text section on Settling Time for more details on output loading.
If a power supply value between -5.0 V and -10 Vis desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing.
Output Current Range
The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.
Accuracy
Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift; Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1408 has a very low full scale current drift with temperature.
The MC1408/MC1508 Series is guaranteed accurate to within±1/2 LSB at +25°C at a full scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 µA which is the ladder remainder shunted to ground. The input current to pin 14 has a guaran~eed value of between 1.9 and 2.1 · mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC1408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC1408 circuits' full scale current is trimmed to the same value with R 14 so that a zero value appears at the error amplifier output. The counter is activated and the error band, may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.
Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of ±1/2 of one part in 65, 536, or ±0.00076%, which is much more accurate than the ±0.19% specification provided by the MC1408x8.
Multiplying Accuracy
The MC1408 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256: 1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.6 µA extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 µA to 4.0 mA, the 1.6 µA contributiis an error of 0.1 LSB. This is well within eight-bit accuracy referenced to 4.0mA.
A monotonic converter is one which supplies an increase in current for each increment· in the binary word. Typically, the MC1408 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a de reference current is 0.5 to 4.0 mA.
·
@ MOTOROLA Sen>iconductor Products Inc.
5-59
MC1408, MC1508
·
GE;NERAL INFORMATION (Continued)
Settling Time
The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for settling to within± 1/2 LSB, for 8-bit accuracy, and 200 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These times apply when RL ~500 ohms and Co ~25 pF.
The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns. In applications where the D-to-A cbnverter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, arid a settling time of less than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns, while bit A6 turns "on" in 150 ns and "off" in 80 ns.
The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC1408. A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not
the output RC time constant that determines settling time for most applications.
Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 µF supply bypassing for low frequencies, and minimum scope lead length are all mandatory.
TYPICAL CHARACTERISTICS
(Vee= +5.0 V, VEE= -15 V, TA= +25°C unless otherwise noted.)
FIGURE 10 - LOGIC INPUT CURFH:NT versus INPUT VOLTAGE
FIGURE; 11 - TRANSFER CHARACTERISTIC versus TEMPERATURE (AS thru AS thresholds lie within range for A1 thru A4)
1.0
0.81---+---+----+---+--+----+---+---+---+-~
~s rr
~ 0.6 .,...'--.-+---+----1----1----1----1----1----1---+-~
r4~
~ Al.A2
~
0.2 ~-+--~-+-1+---+--'--+----+----+----+---+----i
o~
1.0
2.0
3.0
4.0
5.0
V1. LOGIC INPUT VOLTAGE (Vdc)
~+25°C-r---;--]5°C
r·o~
.§_
L r----+12s0 c-~~
Al
B o.8
~ 0.6
0
9 0.4
0.2
A2
hit
A3
IL
A4
0
ll l
0
1.0
2.0
3.0
v'1,. LOGIC INPUT VOLTAGE (Vrlc)
- - -+ - ·-+-
4.0
5.0
FIGURE 12 - OUTPUT CURRENT versus OUTPUT VOLTAGE (See text for pin 1 restrictions)
2.0
1.8
1 - - - -I -
Ali High Jvel l'
A2·A8@ low Level
;::~ 1.6
Vo Range for 8-bit
Accuracy
- 1.0
~~ 0.8
p 0.6
9
0.4
0.2
0
t--
pin 1 open VEE<; -10 Vdc
[
2~ l' pin' 1 grounded
rf
-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
+1.0 +2.0 +3.0
Vo. OUTPUT VOLTAGE, PIN 4 (Vdc)
FIGURE 13 - OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc ov~r full temperature range)
+1.0
" +0.8 t----+---+---+---+---+---+--+--+--+-----1 ~ +0.6 t----+---+---+---+---+---+--+--+--+-----1
~ +o.41--'7'~79~79W~~~{hW.Of7"~;+7<;M>l--+---1 u.i ~ +0.2 r--,f7'777f7'77'7'W~*7-?-77¥7''T?''Y7'W.HH.>t---+----i
~
> ~ -0.2 r--+W,'7'Sf7777
~ -o.4 f---7'W?7-';Wi77t7'77WW.W,"7'.:>f75~~~+--t---I
!j -o.st--7~77'.~~f.6~.f"~T--+-+-,--+-+-l
-0.81---==F----+--+---+---'-+---+--+--+--+--;
-1.0 L--l....i,.__J..__.....__.....__.....__....__....__....__....___,
-55
+50
+100
+150
T, TEMPERATURE (°C)
@ 1¥10TOROLA Semiconductor Products Inc. --------'
5-60
MC1408, MC1508
TYPICAL Ct-jARACTERISTICS (continued)
(Vee= +5.0 V, VEE= -15 V, TA= +25C>e unless otherwise noted.)
FIGURE 14 - REFERENCE INPUT FREQUENCY RESPONSE
FIGURE 15 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE (all bits low)
+8.0 ~-~,.--.--.-~rn-----r---,.--r-r-T-.,,,-r---.--r--r-r-.-r"TTI
20
+6.0 1----t-+-r-+-++H+----+--+-+-+-+++1+---+JL~l\.-+-+-;ri+ti
-1 ~
~
+4.o +2.o
fi------+--++-+---+t--++++++1-+tHt----·--+--+---++--+-+++--+H-3+..+.t_-,+L+_---t----_+t--~t1s-u+i---i+--tt-tt+tt11
~~ ~
·~
~
~ -2.0 >---+--+-t-+-+-++++------+-+--+4f-+'l'<+f-----\'+A---+·-+--il-~++t+i
~ -4-0f-----t--+--+-+-H-+++--+-+--+-+-+~iits I!
~ -6.0
- - - + - - + - + - + - + + - H - + - - - . . . , : - + - - -''-1+- - 1 H t 1 " t i 1
-8.0 f-----+--t-t-+++-t+l----
~{\
~ :~
t--1\
0
0.1
1.0
10
!, FREQUENCY (MHz)
6.0 l---+--+--+--+---+--+--+----t---t--1
4.0 .___J__J..___..___..___..___..___..,__...____,~___,
-55
+50
+100
+150
T, TEMPERATURE (OC)
Unless otherwise specified:
R14 = R15 = 1.0 kil C = 15 pF, pin 16 to VEE
RL = 50 Q, pin 4 to GND
Curve A: Large Signal Bandwidth
Method of Figure 7
.
Vre! = 2.0 V(p·p) offset 1.0 Vabove GND
Curve B: Small Signal Bandwidth
Method ill Figure 7 AL= 250 n
Vre! = 50 mV(p-p) o!!set 200 mV above GND
Curve C:
Large and Small Signal Bandwidth
Method of Figure 25 (no op-ampl, AL= 50 l1)
Rs= 50 n
Vret = 2.0 V Vs = 100 mV(p-p) centered at 0 V
FIGURE 16- TYPICAL POWER SUPPLY CURRENT
versus Vee (all bits low)
20
~ 18
i~ :
i r--t--12
ice
a: 10
~ 8.0
IEE 6.0
4.0 0 -2.0 -4.0 -6.0 -8.0 -10 -12 -14 -16 -18 -20
VEE, NEGATIVE POWER SUPPLY (Vdc)
APPLICATIONS INFORMATION FIGl.JRE 17 -OUTPUT CURRENT TO VOLTAGE CONVERSION
MSB Al A2 A3 A4 A5 A6 A7
LSB AB
Vee
13 14
15 MC1408 MCliOB
Series
Vref · 2.0 Vele A14·R15 =..1.0k!! ~o ·5.o k!!
R14
Vref
R15 Ro
Vo
Tt)e_oretrcal Vo
Vref
[Al. A2 A3 A4 AS A6 A 7 AB ]
v0
-. R14
1R 0 l
2
+ 4
+
B
16' 32'64'i2B'256
Adjust Vref· ·R14 or Ro so that Vo with all.digital inputs at high
level is equal to 9.961 volts.
v0
2 v =-
1 k
(1 1 1 1
1
1
1
(5k) - 1 · - + - ' - '~ ' - ·
2 4 B 16 32 64 128
1 · l_OV 2- 55] :=. 9.961 V 256
·
~------- @ -------~ MOTQROLA Semiconcfuctor Produc-ts. Inc.
5-61
MC1408, MC1508
·
APPLICATIONS INFORMATION (continued)
Voltage outputs of a larger magnitude are obtaina_ble with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1408 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.
Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.
The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 µs.
FIGURE 18
65 pF
5.1 k
The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q 1, as shown.
FIGURE 20 - EXTENDING ROSITIVE VOLTAGE RANGE
5 k ( Resisto,r and diode optional. see text)
Ge
(To pin 4 of MC1508L8)
An alternative method is to use the MC1539G and input compensation. Response of this' circuit is also on the order of 2.0µs. See Motorola Application Note AN-459 for more details on this concept.
FIGURE 19
+15 v
35 pF 5 k
(To pin 4 of MC1508L8)
-15 v
The output voltage range for this circuit is 0 volts to BVcao of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applica· tions. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to _the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (R) to VEE maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit..
Combined Output Amplifier and Voltage Reference
For many of its applications the MC1408 requires a reference voltage and an operational amplifier. Normally the operational amplifier. is _used as a current to voltage converter and its output need only go positive. With the popular MC 1723G voltage regula· tor both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode. signal to the reference amplifier in the 0-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non·inverting·input grounded.
Since ± 15 V and +5.0 V are normally available in a combine· tion digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5· is from -2.0 to -8.0 volts."' The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.
Full scale output may be ·increased to as much as 32 volts by increasing Ro and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be al~ered to comply with the ·maximum limit of 40 volts across the MC1723G. Co may be decreased to maintain the same RoCo product if maximum speed is desired.
@ MOTOROLA S.emiconductor Pcoducts Inc. --------'
5-62
MC1408, MC1508
APPLICATIONS INFORMATION (continued)
Programmable Power Supply
The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCDto-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 volts in 0.1-volt increments, ±0.05 volt; or Oto 5.1·volts in 20 mV increments,±10 mV.
FIGURE 21 -COMBINED OU1'PUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT
MSe A1
A2 A3 A4
AS AS
A7 AS LSe
Vee +5 v
13
Ro S k Co 2S pF
FIGURE 22 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT
Ro
15 R15 1K
Re= 2 R14 R15 = R14
v0
=
Vref -
(Rol
[t-\1+A-2+A-3+A-4+A-S+A-S+A-7
+
-AS]
-
Rt4
2 4 S 1S 32 S4 12S 25S
V- ref !Rol Re
FIGURE 23- BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT
A
·
Vee -1s v
=~ Vo= Vref =
{A}
Settling time for a 10·volt step§g 1.0 µs
Bipolar or Negative Output Voltage
The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 8-bit ''1's" complement offset binary. V ref
may be used as this auxiliary reference. Note that Ro has been
doubled to 10 kilohms because of the anticipated 20 V(p-p) output range.
Vee =
Vee -15 v
+5 v
bit configuration Vo= -Vref
For a±.5.0 volt ou.tput range:
-Vref
Vref = -5.00 volts R14=R1S=2.5kn
C =.37 pF (min) Ro= s kn
Decrease Ro to 2.5 k!l for a 0 to -5.0-volt output range. This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information.
® MOTOROLA Semiconductor Products Inc.
5-63
MC1408, MC1508
·
APPLICATIONS INFORMATION !continued)
Polarity Switching Circuit, 8-Bit Magnitude Plus Sign D-to-A Converter Bipolar outputs may also be obtained by using a polarity switch-
ing circuit. The circuit of Figure 24 gives S-bit magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.
FIGURE 24 - POLARITY SWITCHING CIRCUIT {8-Bit Magnitude Plus Sign D-to-A Converter)
Panel Meter Readout The MC1408 can be used to read out the status of BCD or
binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or Vref·
FIGURE 26- PANEL METER READOUT CIRCUIT
From v 0
Output --JVV>.......-<1-0!:.J Op-Amp!
p 5k Polarity Control Bit
V ref --'IRA.1'--4___.,,,_14~
R15
15
MC1408 Series MC1508
Observe internal meter resistance (for pin 4 voltage swing)
Programmable Gain Amplifier or Digital Attenuator When used in the multiplying mode the MC1408 can be
applied as a digital attenuator. See Figure 25. One advantage of this technique is that if Rs= 50 ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.
The best frequency response is obtained by not allowing I14 to reach zero. However, the high impedance node, pin 16, is clamped to. prevent saturation and insure fast recovery when the current through R 14 go!!S to zero. Rs can be set for a .±1.0 mA variation in relation to I14. I14 can never be negative.
The output current is always unipolar. The quiescent de output current level changes with the digital word which makes accoupling necessary.
FIGURE 25 - PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT
Rs
Vref
When Vs= o. 114 = 2.0 mA
FIGURE 27 - DC-COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION
Vee
Vref 2
14
R142
R152 15
13
MC1408 Series MC1508
Me1741G
S A ~
Vref 1
14
R141
R151 15
MC140S Series MC1508
10""'101-102==~ R141
Dig'ital Subtraction:
Let ~~~!)
R14 1
~ref 2
R142
Vref 2 {8}
R142
10 2 = - 1s
Is+ lo lo 1
Programmable Amplifier. Connect Digital Inputs so A = B
@ -------~ MOTOROLA Semiconductor Products Inc.
5-64
MC1408, MC1508
APPLICATIONS INFORMATION (continued)
This digital subtraction applic.ation is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.
Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R 141 and R 142
or R151 and R152. Vo will be a bipolar signal defined by the
above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R141 and R142 to a positive reference higher than th.e most positive input, and drive R151 and R152. This yields high input impedance, bipolar differential and common-mode range.
FIGURE 28 - DIGITAL SUMMING and CHARACTER GENERATION
A
FIGURE 30 - NEGATIVE PEAK DETECTING SAMPLE AND HOLD
Yo (load sensitive)
255)
VO(max) = - ( 256
114 Rin
Vo( max)= 0 to -5.0 volts
15
c
Vref 1
FIGURE 31 - PROGRAMMABLE PULSE GENERATION
Vref 2
Vee -15 v
...__ _ _.v...o_Il_
Oto 1 OVolt in 4.0 mV steps
·
In a character generation system one MC1408 circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 16-bit 0-to-A converter (see Accuracy Section).
Fast rise and fall times require the use of high-speed switching transistors for the differential pair, 04 and 05. Linear ramps and sine waves may be generated by the appropriate reference input.
FIGURE 32 - PROGRAMMABLE CONSTANT CURRENT SOURCE
+5.0 V (min)
FIGURE 291- POSITIVE PEAK DETECTING SAMPLE and HOLD (Features indefinite hold time and optional digital output.I
Clock Detect/Hold
Reset
Vref
-15 v +5.0 v
·The base of Q2 must be at least 4 V below supply voltage!.
NC
Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is
especially useful in curve tracer applications.
@MOTOROLA Semiconductor Products Inc. ---------' 5-65
MC1408, MC1508
·
APPLICATIONS INFORMATION (continued)
FIGURE 33- ANALOG DIVISION BY DIGITAL WORD
FIGURE 34 - ANALOG QUOTIENT OF TWO DIGITAL WORDS
- Vref(+) Ao lo
Vo
·!
R15
Vee
Io= Constant
Vee
lo A14 Vo={A}
Vee
vee
This c.ircuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, lo can be set at 16 µ.A so that I 14 will have a maximum value of 3.984 m.A for a digital bit input configuration of 00000001.
Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.
- . 101 R141
Vref = - -A
11 '02 - RV1r:~ { e}
if R141"' R142
~} 'o 2"' 10 1 .{ \A\
FIGURE 35 - ANALOG PRODUCT OF TWO DIGITAL WORDS !High-Speed Operation)
Vref
200 4
~lo 1
13
Vee
14 MC1408 Series MC1508
lo 2 4 15---~--~
R15
'----v--"
A
Vo= -lo, Ro= V- ref { A } Ro R141
.
·
Vref
Since
Ro=
R14 2
and
K
=
R141
{s}I l102=K {A}
Kcanbeananalogvariable.
@ MOTOROLA Semiconductor Products Inc. ---------J
5-66
MC1408, MC1508
APPLICATIONS INFORMATION (continued)
FIGURE 36 - TWO-DIGIT BCD CONVERSION
Vo
LSB
Most Significant {
8 ~
BCD Word
S
MSB 14 3 R141
Vref
LSB
'f°5! Least Significant
BCD Word
'---~--'
MSB 13
.Vee
Two, 8-bit, D·to-A converters can be used to build a two digit BCD 0-to-A or A-to·D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of
4.0 m.A and 0.4 mA with the outputs connected to sum the currents. The error of the 0-to-A converter handling the least significant
bits will be scaled down by a factor of ten and thus an MC1408L6 may be used for the least significant word.
FIGURE 37 - DIGITAL QUOTIENT OF TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION
Ro Vref
Clock
Reset
B·Bit Binary Counter
R14
14
15
-= 13 ,VEE
11
10
MC.1408 Series 9
MC1508
8
7
6
The circuit shown is a simple counterramp converter., An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.
LSB
MSB
~
G
c = Vin/Ro
VreflR14
Circuit diagr,ams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; conseql!ently, complete information sufficient for· construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies, Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
®MOTOROLA Serniconducf:or Producf:s Inc.
5-67
·
HIGH-VOLTAGE, HIGH·CURRENT DARLINGTON TRANSISTOR ARRAYS
The seven NPN Darlington connected transistors in these arrays are well suited for driving lamps, relays or ·printer hammers in a· variety of industrial and consumer applications. Their high breakdown voltage and internal suppression ti iodes insure freedom from problems associated with inductive loads. Peak inrush currents to 600 mA permit them to drive incandescent lamps.
The MC 1411 device is a general-purpose array for use with DTL, TTL, PMOS .or CMOS Logic. The MC1412 contains a zener diode, and resistor in series with the input to limit input current for use with 14 to 25 Volt PMOS Logic. The MC1413 with a 2.7 kQ series input resistor is well-suited for systems utilizing 5 Volt TTL or CMOS Logic. The MC1416 uses a series 10.5 kQ resistor and is useful in 8-18 Volt MOS systems.
MC1411 (ULN2001A)
MC1412 (ULN2002A)
MC1413 (ULN2003A)
MC1416 "
(ULN2004A)
PERIPHERAL DRIVER ARRAYS
SILICON MONOLITHIC INTEGRATED CIRCUITS
P OR PW SUFFIX PLASTIC PACKAGE
CASE 648
MAXIMUM RATINGS (TA= 25°C and rating apply to any one device in the package unless othetwise noted.)
Rating
Symbol
Value
Output Voltage Input Voltage (Except MC1411) Collector Current - Continuous
Vo
50*
V1
;30
le
500
Base Current - Continuous Operating Amb.ient Temperature Range Storage Temperature Range Junction Temperature
Is TA Tstg_ TJ
25 0 to +85 -55 to +150
150
Maximum Package Power Dissipation (See Thermal Information Section) *Higher voltage selection available. See your local representative .
.
Unit
v v
mA
mA
0 c 0 c 0 c
PIN CONNECTIONS
DEVICE CROSS-REFERENCE LISTING
9665 - SN75476 - ULN2001A-order MC1411P or PW
966.6 - SN75477 - ULN2002A - order MC1412P or PW
9667 - SN75478 - ULN2003A - order MC1413P or PW
9668 -
- ULN2004A - order MC1416P or PW
5-68
MC1411, MC1412, MC1413, MC1416
rT ELECTRICAL CHARACTERiSTICS A= 25°c unless otherwise noted)
Characteristic
Symbol
Output Leakage Current
. *(Vo= 50 V, TA= +70°C) *(Vo= 50 V, TA= +1o0 c. V1 = 6.0 V) *(Vo= 50 V, TA= +7o0c; Vi= 1.0 V)
All Types MC1412 MC1416
le EX
Collector-Emitter Saturation Voltage (le= 350 mA, Is= 500 µA) Oc = 200 mA, Is= 350 µAl Oc = 100 mA, Is= 250 µA)
VcE(satl I
Input Current -·on Condition (V1=17 V) (V1=3.85 V) (V1 = 5.0 V) (V1=12V)
MC1412 MC1413 MC1416 MC1416
ll(qn)
Input Voltage - On Condition
(VcE = 2.0 v, IC= 300 mA)
(VcE = 2.0 V, le= 200 mA) (VcE = 2.0 V, le= 250 mA) (VcE = 2.0 V, le= .300 mA) (VcE = 2.0 V, le= 125 mA) (VcE = 2.0 V, le= 200 mA) (VcE = 2.0 V, le= 275 mA)
(VcE =2.0 V, I(:= 350 mA)
MC1412 MC1413 MC1413 MCi413 MC1416 MC1416 MC1416 MC1416
V1(on)
Input Current - Off Condition
Oc =500 llA. TA= +70°Cl
ll(off)
DC Current Gain
(VcE = 2.0 V, le~ 350 mA)
hFE MC1411
Input Capacite.n'!e
C1
Turn-On Delay Time
ton
(50% EI to 50% Eb)
Turn-Off Delay Time
toff
(50% E1 to 50% Eol
Clamp Diode Leakage Current
IR
(VR =50 V)
Clamp Diode Forward Voltage
VF
(IF= 350 mA)
*Higher voltage selections available, contact your local representative.
Min
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50
1000
/ -
-
-
-
-
Typ
-
-
1.1 0.95 0.85
0.85 0.93 0.35 1.0
-
-
-
-
100
-
'15 1.0
1.0
-
1.5
TYPICAL PERFORMANCE' CURVES - TA= 2s0 c
Max
100 500 500
1.6 1.3 1.1
1.3 1.35 0.5 1.45
13 2.4 2.7' 3.0 5.0 6.0 7.0 8.0 -
-
30 5.0
5.0
50
2.0
Unit µA
v
mA
v
µA
-
pF µs µs µA
v
·
FIGURE 1 - OUTPUT CURRENT versus INPUT VOLTAGE
400
1 T
I Mc1J1
MJ416
1 ::;:- 300
~h- .5
I"
1- I - -
v ffi
MC1413
Li
~
v ./MC1412 ~
--
d ~ 200
rr
I-
=>
"~"
0 100
.9
1 i
0 0
JJ
LO 2.0
]
3.0 4.0
5.0-.r 8.0
1
9.0 10
11
12
V1. INPUT VOLTAGE (VOLTS)
FIGURE 2 - OUTPUT CURRENT versus INPUT CURRENT
400
1300 1z -
UJ
a: a: ~ 200
~ ~ .f? 100
1
l
ALLTFOUR TYPES
I/
1
1
1
50
100
150 200 250
300 350 400
11. INPUT CURRENT (µA)
@ MOTOROLA Se1niconductor Products Inc.
5-69
MC1411, MC1412, MC1413, MC1416
·
TYPICAL CHARACTERISTIC CURVES - TA.= 25°C (continued)
FIGURE 3 - TYPICAL OUTPUT CHARACTERISTICS
eoo.----.------,----.---.--.,-----.---..----,
FIGURE 4 - INPUT CHARACTERISTICS - MC1412 2.5 ~--.------,---.-----.---..----.---.-----,
< 600t----+----t---t---+--+---+--:~-b'J'~---j
_g
§ 500
1 Output Conducting at a Time
~ '-'
40.0 i------1-----l---+---+--+--l-.,NT----+---~
a:
~ 300
j 200 l----+-----1---+----t--~'t----+---t----t
8
~1001------1---~---+---+ll--+---+---+----t
0.2
0.4
VcE(sat)· SATURATION VOLTAGE (VOLTS)
2.0 1----+-----ll----+----t-~-+---.;'i-+,l'..---t-----t
<
.L_J
~
L'
-r5 1-----M1--A_x_1M_u_y,M,_~_.,_--+___,_,,_.L."",-v+P"--+----~~~--1---~
~ 1.0t----+--7"LdL.-t~l---::o~L...-<j~__._-t---+---+----+-----I
- 0.5
v ~
v
l } T Y P I C A L _ - + - - - + - - - 1
00 '" 12
14 16
18
20
22
24
26
V1. INPUT VOLTAGE (VOLTS)
FIGURE 5 - INPUT CHARACTERISTICS - MC1413 2'5 rT=cY-:::P-:::IC-,-A~L-----,r--....:::-~--.---r----rr--.-,.---,
2.0
<_g
Iz w
1.5
a:
a:
=>
'-'
~I- 1.0
- 0.5
BSERIES McMOS==---+---"r+ @5.0 v TA = 25oc--+----=:::::,.,~-1---1..+--~-.___,--+------1
MAXIMUM B SERIES McMOS @5.0V TA = 25oc
FIGURE 6 - INPUT CHARA(,:TERISTICS - MC1416 2.5 .----.------,---.-------.----"-..-----.---.----,
· 2.01------t----;r----+----t---+----+---t-----t
1.0 2.0 V1. INPUT VOLTAGE (VOL TS)
0 _.. ....
0
5.0
6.0 7.0
8.0
9.0
10
11
12
V1. INPUT VOLTAGE (VOLTS)
0
REPRESENTATIVE CIRCUIT SCHEMATICS
1/7MC1411
I
* * I
I
I L
'------4-"V\fYr--.... -
____ '"7' __ _
-
.J
1/7 MC1412
I
* I
'--------'V'VV----+---_J
/ 1/7 MC1413
I
I I
I
* I
'------'\/\/\,--+- - - _J
L---14--------
1/7 MC1416
I
* I
L___________ _ I
I
I
~---'V'VV----+- - - _J
® MOTOROLA Se,..icondutrtor Products Inc. ________,
5-70
ORDERING INFORMATION
Device
MC1440G MC1440L MC1540G MC1540L
Temperature Range
0°C to +75°C 0°c to +75°C -55°C to + 125°C -55°C to + 125°C
Package
Metal Can Ceramic DIP
Metal Can Ceramic DIP
SENSE AMPLIFIER
... consisting of a wideband differential amplifier, a de restoration circuit which also incorporates facilities to externally adjust the threshold, and an MDTL output gate which is strobed from saturated logic. It is designed to detect bipolar differential signals derived by a core memory with cycle times as low as 0.5 µs. · Differential Threshold Characteristics:
Adjustable Threshold - 10-25 mV Nominal Threshold - 17 mV@ Vadj = 6.0 V Input Offset Voltage-~ 1.0 mV typical
c Threshold Drift - -10 µV; 0 typical
· Fast Response Ti me - 20 ns typical
1
· Short Recovery Time : 50 ns max @ Vi ~ 1.8 V Common Mode 50 ns max@ V0 = 400 mV Differential Mode
MC1540/MC1440 BLOCK DIAGRAM
MC1440 MC1540
CORE MEMORY SENSE AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
~.~~·:~:. . ..[,!
Am,om., o""'"' , (ext. capacitor)
·
Gnd
Threshold Strobe Adjust Input
REPRESENTATIVE CIRCUIT SCHEMATIC
- L SUFFIX
CERAMIC PACKAGE
CASE 632
T0-116
-
.
Threshold
Vee · Adjust
(Vadjl
Strobe Input
Threshold Adjust (Vadj)
MC1440, MC1540
·
MAXIMUM RATINGS (TA= 25°c unless otherwise noted)
Rating
Symbol
Power Supply Voltages Differential Input Voltage Range
Vee Vee
V1DR
Common-Mode Input Voltage Range Output Load Current
V1cR IL
Power Dissipation (Package Limitation)
Po
Metal Can
Derate above 25°c
Flat Package Derate above 25°c
Plastic and Ceramic DIP Derate above 25°c
Operating Ambient Temperature Range
TA
, MC1540
MC1440
Storage Temperature Range
Tstg
Value +10 -10 ±5.0 ±5.0 25
Unit Vdc
Vdc Vdc mA
680
mW
4.6
mW/°C
500
mW
3.3
mW/°C
625
mW
5.0
rpW/°C
Oto 75
oc
-55 to 125
OC
-65 to 150
uc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, TA= 25°C, Vee= +6.0 Vdc ±1.0%, Vee= -6.0 Vdc ±1% and Cext = 0.01 µF)
MC1540
MC1440
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Input Threshold Voltage
<vadi = -6.0 v, TA= 25°CI
(Vadj = -6.0 V, TA= T1ow *) (Vadj = -6.0 V, TA= Thigh*)
Input Offset Voltage
Input Bias Current (TA,= 25°Cl (TA =Thigh to T1 0 wl
Input Offset Current
Output Voltage- High Logic State
Vth
.14
17
20
12
17
24
12
17
24
10
17
30
12
17
22
10
17
30
V10
-
' 1.0
5.0
-
1.0
6.0
l1s -
-
7.5
50
-
-
100
-
7.5
75
-
100
Ito
-
2.0
10
-
2.0
15
VoH
5.9
-
-
5.8
-
-
Output Voltage - Low l,ogic State OoL = 6.0 mA, V1H(G) = 6.0 VI (tA= Thigh)
Amplifier Voltage Gain (Vi= 15 mV peak)
Syobe Input Current.- Low Logic State (Vtl(S) = 0 V)
Vol -
-
Av
-
ltl(S)
-
-
350
-
-
400
-
85
-
-
-
1.2
-
-
400
-
450
85
-
-
1.5
Strobe lnputeurrent - ~1ghTog1c""State (V1H(S) = 5.0 V) (V1H(S) = 6.0 V, TA= Thighl
Power Consumption
l1H(S)
-
-
Pc
-
-
2.0
.:..
-
25
-
120
nm
-
-
5.0
-
30
120
250
o *Ttow = -55°c for Me1540, 0 c for MC1440
Thigh= 125°c for MC1540, 75°e for MC1440
SWITCHING CHARACTERISTICS(Unless otherwise noted, Vee= 6.0 V, Vee= -'6.0 V, TA= 25°C, Cext = 0.01 µF.l
Me1540
MC1440
Characteristic
Propagation Delay Time from Differential Input to Amplifier Output
Symbol Min
Typ
Max
Min
Typ
tPLH(A) -
10
15
-
10
Propagation Delay Time from Differential lnpµt to Low Logic State Output
tPHL(A) -
20
30
-
20
Propagation Delay Time from Strobe Input to Low Logic State Output
tPHL(S)
-
10
15
-
10
Differential Mode Recovery Time Common-Mode Recovery Time
tR(DM)
-
20
50
-
20
tR(CM)
-
20
50
-
20
Max 20
50
30
90 60
Unit mV
mV µA
µA Vdc mV
VIV mA µA
mw
Unit ns ns ns ns ns
5-72
MC1440, MC1540
FIGURE 1 - THRESHOLD VOLTAGE TEST CIRCUIT AND WAVEFORMS
To Scope (Input)
0.01 µF
FIGURE 2 -AMPLIFIER VOLTAGE GAIN TEST CIRCUIT AND WAVEFORMS
To Scope (Input)
0.01 µF
51 51 51
·Minimum differential voltage which causes output to swing from VoH to VoL level.
VoH~
,--
OVuoLt_ p u _t_ __\ _ _ J
FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DIFFERENTIAL
INPUTS TO AMPLIFIEf! AND GATE OUTPUTS
To Scope (Input)
To Scope 0.01 µF (Amplifier
Output) To Scope (Gate Output)
51 51
Output~
FIGURE 4-TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM STROBE INPUT
TQOUTPUT To Scope -6.0 V (Input)
tTHL.;;; 10 ns
·
Gate VoH Output
VoL~~~~-·--~~~
FIGURE 5 - TEST CIRCUIT AND WAVEFORMS FOR DIFFERENTIAL MODE RECOVERY TIME
To Scope (Input)
0.01 µF
FIGURE 6-TEST CIRCUIT AND WAVEFORMS FOR COMMON-MODE RECOVERY TIME
To Scope (Input)
50 50
tTHL.;;; 10 ns
-6.0 v
100mV
NOTE: The output shown is representative of that obtained, however, the two pulse amplitudes may not be equal
or even present. Input Pulse width equals2QO ns, f = 1.0 MHz.
5~73
ORDERING INFORMATION
Device
MC1444F MC1444L MC1544F MC1544L
Temperature Range
0°c to +75°C 0°C to +75°C -55°C to + 125°C
-ss0c to +125°C
Package
Ceramic Flat Ceramic DIP Ceramic Flat Ceramic DIP
MC1444 MC1544
·
HIGH-SPEED, LOW THRESHOLD SENSE AMPLIFIERS
The MC1544 and MC1444 are high-speed quad sense amplifiers for use with plated wire, thin film or other memory systems requiring very low threshold sensitivity and narrow pulse widths. Both devices feature internal capacitive coupling to reduce the effects of voltage offsets.
· Threshold Level - 1.5 mV (Typ), 100 ns Rectangular Pulse · Decoded Input Channel Selection · Output Strobe Capability · DC Level Restore Gate on Internal Capacitors Eliminates Repe-
tition Rate Limitations
FIGURE 1 - BLOCK DIAGRAM
13 14
12 vcc
AC-COUPLED FOUR-CHANNEL SENSE AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
rff!!1
1 Inputs { ·Channel C
3 Inputs Channel D {
Vee
Strobe Inputs
Channel { 1 Select Inputs
L Suffix CASE 620
4 0--'-__....._..._
CHANNEL i7 X ,..........._...___.__._~
SELECT INPUTS
18-
y 1----~----'
CAPACITOR1 RESTORE 11 < . > - - - - + - - - - - '
INPUT
9 OUTPUT
F Suffix CASE 650
6STROBE INPUT
rlOGROUND
Inputs· { ' ,Channel C
Inputs j '
Channel D l
Vee '
"Vee
Strobe Input ·
,, Capacitor
Channel{·,
··GRerosutonrdelnput
1~~~~ [~·~E::=~==:::_~~·!]Output
Channel Select
Pin Pin Channel
7(Xl 8(Yl Selected
H
H
A
L
H
B
H
L
c
L
L
D
TRUTH TABLES
H =high level (steady state, Vi ;;;.V1,H(min) or V10 >vth L =low level (steady state), Vi EO;; VIL(max) or V10 <vth X = irrelevant (any input, including transitions)
I= transition from low level to high level
"1.I= low-level output pulse
Strobe
L
x x x
H
H
_r
Inputs
Differential
Capacitor Input
Restore
x
H
x x
*Channel A
x x x x
L
H
L
H
L
H
Channel Selects
x x x x L x x L H _r _r H
H H
Output
H H H H
,--_uu..--.
·channel A used as an example, other channels function similarly. See channel sel8ct table.
5~74
MC1444, MC1544
MAXIMUM RATINGS (TA = +25°c unless otherwise noted).
Rating Power Supply VoltagesI 1)
Input Common-Mode Voltage Range
Symbol
Vee VEE V1cR
Input Differential-Mode Voltage Range(2)
V10R
Input Capacitor Restore, Channel Select, ar>d Strobe Voltage
Vl(CR) Vl(CS) Vl(S)
Power Dissipation (Package Limitation)
Po
Derate above TA = 25°c
Operating Ambient Temperature Range
MC1544
TA
MC1444
Storage Temperature Range
Tstg
Operating Junction Temperature
TJ
(11 All voltage values, except differential voltages, are with respect to the network ground terminal. (21 Differential input voltages are at A 1 with respect to A2, and similarly B1 to B2, C1 to C2, and 01 to 02.
Value +7.0 -8.0 +5.0, -6.0 +5.0, -6.0 +5.5
1.0 6.7 -55to +125 Oto +75 -65 to +150 +175
l,lnit Vdc
Vdc
Vdc
Vdc
Watt
mwt0 c
oc
OC oc
13 Al
~~t:c~EL X 7
INPUT
~~tE~~EL y 8 .
INPUT
FIGURE 2 - EQUIVALENT CIRCUIT SCHEMATIC
14 15 16 1 2 3 A2 Bl B7 Cl C2 01
9 OUTPUT
10 GROUND 1-----.;.6 STROBE
INPUT
·
CAPACITOR RESTORE
11 < > - - - - - - - - - - - - - - - - - - - '
INPUT
RECOMMENDED OPERATING CONDITIONS
Characteristic Power Supply Voltages
Input Common-Mode Current
Input Differential Current
Symbol
Min
Typ
Max
Unit
Vee
4.75
5.0
5.25
v
VEE
-5.7
-6.0
-6.30
11c
-
-
-
200
µA
-
-10
''°
-
-
I
200
µA
@ MOTOROLA Serniconduc·or Produc·s Inc.
5-75
MC1444, MC1544
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 V <:Vee.;; 5.25 V, -5.7 V;;. VEE;;.. -6.3 V,
TA= 25°C.I
MC1544
MC1444
Characteristic Input Threshold Voltage (Figure 41
(Vee= 5.0 v, VEE= -6.0 v. TA= Thigh to T1owl (1)
Input Bias Current (Selected Channel) Input Offset Current (~elected Channel)
Channel Select Input Current-High Logic State, (V1H_LCS) = 3.5 VI
Channel Select Input Current - Low Logic State, (V11,JCS_l = 0 V)
Capacitor Restore Input Current - High Logic State, (V1H_lCR_l = 3.5 VI
Capacitor Restore Input Current-Low Logic State, (V1L,j_CR_l = 0 V)
Strobe I npuf Current-High Logic State, (V1H(S) = 3.5 VI
Strobe Input Current-Low Logic State (V11,J_Sl_ = 0 V)
Channel Select Input Voltage-low Logic State Channel Select Input Voltage-High Logic State Capacitor Restore lnp11t Voltage-Low Logic State Capacitor Restore Input Voltage-High logic State Strobe Input VoltaQe-Low Lo11ic State Strobe Input Voltage-High Logic State Input Common-Mode Voltage Range
Input Differential Voltage Range O~tput Voltage-Low !-o!Jic State
OoL = 10mAl Output Voltage-High Logic State
UoH = -400 µ.A) Positive Power Supply Current Negative Power Supply Current
~mbol
Vth
l1s 110 l1H(CSI
l1L(CS)
l1H(CR)
l1L(CR)
l1H(SI
l1l(S)
V11.iCSl V1H(CS) V1L,1CRI V1H(CRI V1L(S) YIH(SI V1CR+ V1CR-
V1DR Vol
VOH
'cc IEE
Min
~
0.5
1.0
-
20
-
1.0
-
-
--
-
-
-
-
--
-
-
-
I -
2.1
-
-
-
2.0
-
-
-
2.0
-
-
4.7
-
-6.0
-
±.3.7
--
-
-
2.4
-
-
-
--
Max 1.5
50 1Q 2.6
1.0
10
-3.5
2()0
200
0.7 0.8
-
0.8
-
-
0.5 0.4
-
30 30
Min
T.n_
Max
0.3
1.0
2.3
-
20
50
-
1.0
10
-
-
2.6
-
-
1.0
-
-
10
-
-
-3.5
-
-
200
-
-
200
-
-
0.7
2.1
-
-
-
-
0.8
2.0
-
-
-
-
0.8
2.0
-
-
-
4.7
-
-
-6.0
-
-
±.3.7
-
-
-
0.5
-
-
0.4
2.4
-
-
-
-
30
-
-
30
Unit mV
µA µA mA
mA
µA
mA
µ.A
µA
v v v v v v v
v v
v
mA mA
SWITCHING CHARACTERISTICS (unless Qt erw1se noted , T'A= 25°c v'CC= 50V o V'EE_= -6 vI
MC1544
MC1444
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Propagation qelay Time
tPLH(DI
-
40
-
-
40
-
Differential ln_1>_uts to High Logic State Output
Propagation Delay Ti me Differential Input to Low Logic State Output
tPHL(D)
-
1~
25
-
18
25
Propagation Delay Time Strobe Input to .High Logic State Output
tPLH(SI
-
30
-
-
30
-
Propagation Delay Time
tPHL(S)
-
18
25
-
18
25
Strobe Input to tow Logic State Output
Lead Time from Channel Select Input to
tL(CS)
-
45
-
-
45
-
A_E2!ication of Differential Input :Voltage Lead Time from Application of a 50 mV Offset
tl(CROI
-
15
-
-
15
-
Signal to Application of the Capacitor Restore Signal
Lead Time froiri'Application of Strobe Input to
tL(SI
-
10
-
-
10
-
Application of Differential Input Signal
Lead Time from Application of Capacitor Restore
tL(CR)
-
19
-
-
10
-
Signal to Application of Differential Input Signal
Comrnon-Mi>de Recovery Time (ein1 = +2.0 VI (ei~1 = -2.0 VI
Differential-Mode Recovery Time (ein1 = +1.0 VI (ein1 = -1.0 VI
tcMR+
-
50
-
-
50
-
tcMR-
-
50
-
-
50
-
tDMR+ tDMR-
-
-
65 65
-
-
65
-
65
-
1s (1) Thigh= 125°C for MC1544, 0 c for MC1444.
T1ow = -55°C for MC1544, 0°C for MC144~.
Unit ns ns ns ns ns ns ris ns ns
ns
@ MOTOROl..A Semiconductor Products Inc. --------
5-76
MC1444, MC1544
FIGURE 3-THRESHOLD VOLTAGE TEST CIRCUIT
vee
vcc
560
11 CT 15pf.J
CHANNEL SELECT
CAPACITOR RESTORE
STROBE
50 Cr includes probe. wiring, and load cap~~itance.
FIGURE 4 - SWITCHING CHARACTERISTICS TEST CIRCUIT
VEE
vcc
·
CHANNEL SELECT
CAPACITOR RESTORE
50 STROBE
Diodes are 1N916 or equivalent Cr jncludes probe. wiring, and load capacitance
FIGURE 5 - THRESHOLD VOLTAGE TEST FIGL!RE 6 - tL(C~I· tL(CRI· tL(S); tPLHIDI
flGURi: 7 - tPLH(SI· tPt'fl(S)
'inl INPUT SIGNAL
'in2 CHANNEL SELECT X
Vth----n__
o - -.----..,.--1 DO ns
3V-~------
O _/'~ ____ _ , \ _ _ _
1 ein3 CHANNEL J_v,- ---~ -.SELECT Y O \... ____ _,
e·tn4 CAPACITOR JV~ . RESTORE O ___ _
:~ 3
'ins STROBE
·;n1 INPUT 5 mv- - - .:_-_-J\._
.
SIGNAL
~ l\___
_y-T--n 0
·;n2 CHANNEL J V- - - - -
I I
0 SELECTX ~1-1- \____
8;n 3 CHANNEL
3 V-- 1-_!S-~C~~ ~ ~~'II-TTI I_
SELECT Y __:::::_]. -, ·--1 \ . . . _ _
r - - 1.
.
'"4 c_APACITOR
RESTORE
einsSTROBE
3
3
~ tL(CS)~ I- I
~:-:__-_-t-_~-1";;.:;{~=:'"fJu\-.l3.f1_.-.-J.I:_I:.J
~
'in11NPUT SmV----~
SIGNAL O_ _ j
L_
'in2CH,ANNEL JV--~
SELECT x 0 _J
L
1
in3 CHANNEL
3V.~--
SELECT Y O
.
'in4 CAPACITOR 3 V \
f
RESTORE
___ _\ _ _ _ _ }
0
3 v - - ~:,- - y-----J,_
'in5 STROBE
~---L___
8
outMTTLlll
Vo~~
GATE
t.5V-
Ol)TPUT VOL----------
1out
NOTE: e;n and e;n to be normal or invened (dotted line)
2
3
Vo~ tL(S) --! 1--- I
--=rtr
VoL -iPHLiO;-::.=+:J f--+-tPLH(O)
'out OUTPUT
0
I·
I
VOH~:
1.sv-+ --~
Vol -tPH-L(-S)----i----l
1--J.--tPLH(S)
as necessary to select desired channel. For
'--------·@ e;n1- tins
ITLH }. . ITHL <; 10 ns
NOTE: ·in2 - ·in5 ITLH } tTHL .;; 10 ns
MOTOROLA Semiconductor Products Inc.---------'
5-77
MC1444, MC1544
'·
·
FIGURE 8 - tPLH(CSI· tPHL(CSI
e;nllNPUT 5mV-~- . ---
SIGNAL
.
0
e;n2 CHANNEL
JV~-------
50% _ _ ~ _
.
SELECT X ·O
1
e· 1"JcHANNEL
JV- --- - I -I ~
SELECTY 0 _ j
:
: \__
8
in 4
CAPACITOR
J · V I I1~.
RESTORE
I
I
0---- I
JV~I --I ·-.
e;n5 STROBE
I
1
0
I
I
eoutouTPUT V VoLo~lHi->--H--L--fj--CJ\S.1J=~5-v.l!~l-it-P/ LH(CSI
NOTE: To test other channel select input,
2 reverse e;~ and e;n3.
Bin1 - Bin5 rn~~ < lO ns
FIGURE 9 - tL(CRO)
·;n
1
ICNOPMUPTOSITE
5mV 50m~Vn--o--scal.e, )'Sii%.-.
SIGNAL
O SO%
;
VJ- e·
I
m2 CHANNEL 3
I
I I
\.
SELECT x
0
I
:
L
·;nJ CHANNEL
J I
3
Vo
1
I
'
SEL,_ECTY
1
L \
e in4CAPACITOR
RESTORE
"ins.STROBE
3
V
=
--1 -'t
1-tL(CS,O)
_ i
I
~:·:~~l_j__j
0
I
3Vm--
11
0
I
·out OUTPUT VVooHL-----~s_v_--=.I l} (
,
tPHL --1 f--
NOTE: Bin1· e;n2{~~~ < 10 ns
VOH VOL V1H(S) V1L(S)
Vth
V1cM+ V1CMV1H(CRI
V1L(CRI
V1H(CSI
V1L(CS)
V10 loH IOL l1H(Sl l1L(S) tcMR±
tL(CROI
DEFINITIONS
Output Voltage - High Logic State
Output Voltage - Low Logic State
The minimum high-level voltage at the strobe input which
will allow normal operation during the threshold test
The maxi mum low-level voltage at the strobe input which
will result in VoH at the output regardless of input signals
The minimum input signal MTTL Ill gates to obtain F~ure 5
(ein the
1e10
required to waveform
drive the shown in
'
The maximum common-mode input voltage that will
not saturate the amplifier
The minimum common-mode input voltage that will not break down the amplifier The minimum high-level voltage at the capacitor restore input required to insure that the capacitors are clamped i.e.. the input threshold voltage is greater than 10 mV The maximum low-level voltage at the capacitor restore input which will allow normal operation during the threshold test
The minimum high-level voltage at a channel select input required to insure that the total of the base currents of a.II unselected inputs is less than 1.0 µA The maximum low-level voltage at a channel select input required to insure that the total of the base currents of all unselected inputs is less than 1.0 µA '
The maximum differential-mode input voltage that will not saturate the amplifier
Output Source Current - High Logic State
Output Sink Current - Low Logic State The current into the strobe input when the input is at a high-level of 3.5 volts
The current into the strobe input when the input is at a
low-level of 0 volts
'
. tL(CR)
tPLH(CS) tPHL(CSI to MR±
tPLH(D) tPHL(D) tL(S) tPLH(SI tPHL(S)
The minimum time between the 50% level of the trailing edge of a+ or - 2 volt common-mode signal (tTLH· tTHL
:EO; 15 ns) and the 50% level of the leaging edge of a 5 mV input pulse when the capacitor restore and stroqe inputs are used in a normal manner as shown in Figure 22
The minimum time between the 50% level of the leading edge of a 50 mV input offset signal and the 50% level of the leading· edge of the capacitor restore pulse as shown in Figure 9
l1H(CS) l1H(CR) l1L(CSI l1L(CR)
The minimum time between the 50".1> level of the leading edge of the capacitor restore signal and the 50% level of the leading. edge of a 5 mV input signal as shown in Figure 6
The minimum time between the 50% level of the leading edge of the channel select and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 6
The delay time from the 50% level of the trailing edge of the channel select signal to the 1.5 volt level of the positive edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 8
The delay time from the 50",{, level of the leading edge of the channel select signal to the 1.5 volt level of the negative edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 8
The m.inim"lm time between the 56% level of the trailing edge of a + or - 1 volt differential-mode signal (tTLH· tTH L :E0; 15 ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 23
The delay time from the 50% level of the trailing edge of a 5 mV input signal to the 1.5 volt level of the positive edge of the output as shown in Figure 6
The delay time from the 50%, level of the leading edge of a 5 mV input signal to the 1.5 volt level of the negative edge of the output as shown in Figure 6
The minimum time between the 50% level of the leading edge of the strobe and the 50% level of the leading edge of the input signal as shown in Figure 6
The delay timefrom the 50",<, level of the trailing edge of the strobe to the 1.5 volt level of the positive edge of the output when the input is held at the High Logic Level as shown in Figure 7 The delay time from the 50% level of the leading edge of the strobe to the 1.5 volt ievel of the negative edge of the output when the input is held at the High Logic Level as shown in Figure 7
Tt:ie current into the channel select input when the input is at a high-level of 3.5 volts
The curr.ent out of the ,capacitor ..restore input when the input is at a low-level. of O volts
The input current to a channel select input when that input is at a high-level of 3.5 volts
The current into a channel select input when the input is at a low-level of 0 volts
@ MOTOROLA Semiconduc<or Products Inc.
5-78
MC1444, MC1544
TYPICAL CHARACTE,RISTICS
(TA = +2s0 c unless otherwise noted)
FIGURE 10 -THRESHO.LD VOLTAGE versus TEMPERATURE 2.0 r--r---ir----.,---....--....---.----.---.--~-~
>
.§ w
(ll
~ 9>0 1.0 t--t---ir----ii---t--+--+--+--+--+----l
0 :
:3
a:
:....
;}
-75
-25
+25
+75
+125
T, TEMPERATURE (°C)
FIGURE 11 - THRESHOLD VOLTAGE versus POWER SUPPLIES 1.6
> 1.4 ~ 1.2
<.:>
~ 1.0
> 0
9 0.8
0
~ 0.6
~ 0.4
> 0.2
vee =~6.6 v
_l Vee= -5.4 v
r---
4.5
4.75
5.0
5.25
5.5
Vee· POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 12 -THRESHOLD versus INPUT OFFSET VOLTAGE 8.0
7.01---4---~--+---+--+----t-----ir-----t
~ 6.0 ~--1----4-·-+---+--+----+----11----i
<.:>
~ 5.o
I /
'~~ 43.0»1----+---+--+---+--'-!-:.,,,.,,.~4~---+-I-L--_ -1
~ 2.01---+--+--+---::::~_,,/==---t-~--+----1f-----i
~ 1--~~.._,-----i~+--"
> 1.0 1 - - - - 1 - - - 4 - - + - - - 4 - - - 1 - - - - + - - - - i - - - - I
Via. INPUT OFFSET VOLTAGE (mV)
FIGURE 14 - OUTPUT VOLTAGE versus CURRENT and TEMPERATURE
FIGURE 13 - THRESHOLD VOLTAGE versus PULSE WIDTH 4.0
.>s
w 3.0 <<.:> !::; 0 >
c9. 2.0 ~
:a:
....= 1.0
>
~ ~
.........~ ~ ~
0
0
20
40
60
80
100
· f'W. PULSE WIDTH (ns)
(10% LEVEL OF TRIANGLE)
FIGURE 15 - SENSE AMPLIFIER RESPONSE
versus TEMPERATURE (See Figure 3 and 61
·
!
w
... - ~ 6001---1----1---1--+--+--+--+--+---+--~
~
~~ 400
-s_rc
~ ~
~ 200~-+---l+----+---+---+----+--+----t s0
~
1--+12s0 c-+---4----1----1---+---+---+--+---i
0 "i
0 2.0 4.0 6.0 8.0 JO 12 14 16 18 20
IOL OUTPUT CURRENT-LOW LOGIC STATE (mAI
@ MOTOROLA Semiconduc·or Produc·s Inc. --------'
5-79
MC1444, MC1544
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 16 - INPUT IMPEDANCE versus FREQUENCY
FIGURE 17 - CAPACITOR RESTORE TIME versus INPUT OFFSET VOLTAGE
3.0 1---+--ll--l--+--!-+-+-++++--+--+--l-+--1--1-+-+-1-H
g ~~· w~ 2.0 1---+-l--l--+--!-+-+-++++--+-"'"'--l-+--l--l-+-+-1-H
~
~
!
I"\
~
1.0
f----+--l-+-+--+--+-l-+-+++--+--l--1-4-~--4.......+-+-+-+-+-I r\..
~ lOt----t----1~-+---+--l----+--1-----<
I, FREQUENCY, MHz
FIGURE 18 - AMPLIFIER INPUT TO OUTPUT TRANSFER CHARACTERISTIC
5.0
5"f-' 4.0
C:.
"z ' ~- 3.0
~
~ 2.0
~ 5f-
1.0 >ci
0 0
~
\
'
1
1
1
'
I\.
0.5
1.0
1.5
2.0
V1, INPUT VOLTAGE (mV)
FIGURE 20 - CHANNEL SELECT X to OUTPUT TRANSFER CHARACTERISTICS
g 4.01----+---f---~l---+i-_+1_25_0+-C._V_E_E_=-+-6_.3_V_+--____,
~
H--+- +m~c. VEE= -6.0 v
~ 3.0l-----+--+-++H-jf--+--]+--_l+---+----1
.,;
t - - +25°C, VEE = -6.0 V
~ 2.01-----+--+--+++-tt-T----+--]+---~+-~-+---
;:
1-- -55°C, VEE= -6.3 V
~ 1.01-----+--+--++..i+-l--+--]+-__1+---+---
o
~
._.. -55~C. VEE = -6.0 V
ol__L_..L...:~~±::::::±]=::~]==::L__J
0
1.0
2.0
3.0
4.0
Vl(CS), CHANNEL SELECT INPUT VOLTAGE, Pin 7 (VOLTS)
0 0~--.._-~2~0----'---4~0--.._--6~0---''------'so
Vi0, INPUT OFFSET VOLTAGE (mV)
FIGURE 19 - STROBE TO OUTPUT TRANSFER CHARACTERISTICS
5.0
""\
ii> 4.0
~
~
~ 3.0
~ g>~ 2.0
ci 1.0 >
+125°C
-55'C and +25'C
0
0
1.0
2.0
3.0
4.0
Vl(S), STROBE INPUT VOLTAGE (VOLTS)
5.0
~
~ 4.0
"z '
It
,, l l FIGURE 21 - CHANNEL SELECT Y to
OUTPUT TRANSFER CHARACTERISTICS
H- +-- +126°C. VEE. -6.7'V i. +--- +126°C, VEE= -6.0 v
~ +126°C, VEE= -6.3 V
~ 3.0
~
0
J ~
+2s0 c, VEE = -6.0 v
;:: 2.0
g ~
-55°c, VEE = -6.7 v -55°C, VEE = -6.0 v
0 1.0 >
-s6°c. VEE ~ -6.3 v
·o
l l
0
1.0
2.0
3.0
4.0
Vl(CS), CHANNEL SELECT INPUT VOLTAGE, Pin 8 (VOLTS)
@ MOTOROLA Semiconductor Products Inc. --------'
5-80
MC1444, MC1544
FIGURE 22 - COMMON-MODE CHARACTERISTICS
Note: The 5mV Input Signal (Differential) is superimposed on the Common-Mode Input and is .shown separately for reference only .
....----~
~
COMMON-MODE INPUT 2 V/DIV
SIGNA INPUT 10 mV101v
FIGURE 23 - DIF.FERENTIAL·MODE CHARACTERISTICS
Note: The 5mV Input Signal is superimposed on the Differential Input and is shown separately for reference only.
·
@ MOTOROLA Semiconducf:or Producf:s Inc.
5-81
MC1472
·
P~oduct Preview
DUAL PERIPHERAL-HIGH-VOLTAGE POSITIVE "NANO" DRIVER*
The dual driver consists of a pair of PNP-buffered Schottky AND gates connected to the bases of a pair of high-voltage NPN transistors. They are similar to the MC75452 drivers but with the. added advantages of: 1) 70 Volt capability 2) output suppression diodes and 3) PNP buffered inputs for MOS compatibility. These features make .the MC1472 ideal for mating MOS logic or microprocessors to lamps, relays, printer hammers and incandescent displays.
· 300 mA Output Capability (each transistor) · 70 Vdc Breakdown Voltage · Internal Output Clamp Diode · Low Input Loading for MOS Compatibility (PNP buffered)
!;)UAL PERIPHERAL POSf'11VE "NANO" DRIVER
l\llONOLITHIC SILICON INTEGRATED CIRCUITS
U ~UFFIX CERAMIC PACKAGE
CASE 693
P1 SUFFIX PLASTIC PACKAGE
CASE 626
CROSS REFERENCE UDN-5712 - SN75475 - MC1472
iylAXIMUM RATINGS (TA= 25°c, Note 1).
Rating Supply Voltage Input Voltage Output Voltage Clamp Voltage Output Current (COf1tinuous) Operating Junction Temperature
Ceramic Package Plastic Package Storage Temperature Range
Value 7.0 5.5 80 80 300
+175 +150 -65 to +150
Unit Volts Volts Volts Volts mA
oc
Oc
Note 1:
"Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.
RECOMMENDED OPERATING CONDITIONS
Rating
Symbol Min
Max
Unit
Supply Voltage Operating Ambient Temperature
Vee
4.5
TA,
0
5.5
Volts
70
oc
Output Voltage Clamp Voltage
Vo
Vee
70
Volts
Ve
Vo
70
Volts
This is advance information and specifications are subject·to change without notice.
5-82
Positive Logic: Y=AB ·
TRUTH TABLE
A B
y
L I-
L H
H
L
H
H
H ("OFF" STATE) H ("OFF" STATE) H ("OFF" STATE) L ("ON" STATE)
H =Logic One L = Logic Zero
ORDERING INFORMATION
Device
Alternate
Temperature Range
MC1472U
-
o to +10°.c
MC1472P1
-
0 to +70°c
. Package
Ceramic DIP Plastic DIP
MC1472
ELECTRICAL CHARACTERISTICS o Unless otherwise noted min/max limits apply accross the 0 c to 10°c temperature range with
4.5 V ±Vee± 5.5 V. All typical values are for TA= 25°c, Vee= 5 Volts.
Characteristic
Input Voltage - High Logic State
Input Voltage - Low Logic State
Input Current - Low Logic State (V1L = 0.4V) A Input B Input
Input Current - High Logic State (V1H = 2.4V) A input B Input (V1H = 5.5V) A Input B Input
Input Clamp Voltage 01c = -12mA)
Output Leakage Current -,- High Logic State (Vo= 70V, See test Figure)
Output Voltage - Low Logic State (loL = 100 mA) OoL =300 mA)
Output Clamp Diode Leakage Current (Vc = 70V, See test Figure)
Output Clamp Forvitard Voltage llFC = 300 mA See test Figure)
Power Supply Current (All Inputs at V1Hl (All Inputs at V1Ll
Symbol
Min
V1H
2.0
V1L
0
l1L
-
l1H
-
-
-
-
Vic
-
IOH
-
Vol
-
-
loc
-
VFC
-
Ice
-
-
Typ
Max
Unit
-
5.5
Vdc
-
0.8
Vdc
'
-
-0.3
mA
-0.15
-
40
-
20
µA
-
200
-
100
-,
-1.5
v
-
100
µA
-
0.4
v
-
0.7
-
100
µA
-
1.7
v
-
15
mA
-
70
NOTE: All currents into device pins are sho)IVn as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted:
SWITCHING CHARACTERISTICS Vee= 5.0V, TA= 25°C
Propagation o·elay Time Output High to Low Output Low to High
Output Transition Time Output High to Low · Output Low to High
Characteristic
Symbol
Min
tPHL
-
tPLH
-
tTHL
-
tTLH
-
Typ
Max
Unit
-
1.0
µs
-
0.75
-
0.1
µs
-
0.1
·
@ MOTOROLA Semiconductor Products Inc.
5-8~
MC1472
·
TEST CIRCUITS
VIH & V1L [ Per Truth Table ------12
VoH
Vee
Vee
SWITCHING TEST CIRCUIT AND WAVEFORM
+5-0 v
To Scope (Output)
To Scope (Input)
100
Pulse 51
Generator
I 30pF Includes P.robe and Stray
3.0V
INPUT
VoH
~
tPLH
OUTPUT
VoL
~J .50% ~
10%
@ MOTOROLA Sem#conductor Products Inc.
5-84
ORDERING INFORMATION·
Device MC1488L
Temperature Range
0°c to +75°C
Package Ceramic DIP
·MC1488
QUAD LINE DRIVER
The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C. Features: · Current.Limited Output
±10 mA typ · Power-Off Source Impedance
300.0hms min · Simple Siew Rate Control with External Capacitor · Flexible Operating Supply Range
· Compatible with All Motorola MOTL and MTTL Logic Families
LINE DRIVER MC1488
_r-- ... "...
- i-t_ __ ,,,
TYPiCAL APPLICATION
INTERCONNECTING CABLE
LINE RECEIVER MC1489
I
~ _INTERCONNECTING I
MOTL LOGIC INPUT - - t - " CABLE :.::_.i---MDTL LOGIC OUTPUT
OUAD·MDTL LINE DRIVER RS-232C
SILICON MONOLITHIC INTEGRATED CIRCUIT
L Suffix CERAMIC PACKAGE
CASE 632 T0-116
PIN CONNECTIONS
·
PINS 4, 9, 12 OR 2 INPUT
INPUT PINS 5, 10. 13
CIRCUIT SCHEMATIC
(1/4 OF CIRCUIT SHOWN)
8.2k
3.6k
GN07~
!Ok
7k
70
300 OUTPUT
PINS 6,8, 11 OR 3
5-85
MC1488
·
MAXIMUM RATINGS ITA = +25°c unless otherwise noted.I
Rating Power Supply Voltage
Input Voltage Range
Symbol
Vee VEE V1R
Value
+15 -15 -15.;;;VIR.;;;7.0
Unit Vdc
Vdc
Output Signal Voltage
Vo
±15
Vdc
Power Derating (Package Limitation, Ceramic and Plastic Dual-In-Line Package) Derate above TA = +25°C
Operating Ambient Temperature Range Storage Temperature Range
Po 1/RoJA
TA Tstg
1000 6.7
0 to +75 -65 to +175
mW mw1°c
oc
oc
ELECTRICAL CHARACTERISTICS o (Vee= +9.0 ± 1% Vdc, VEE= -9.0 ± 1% Vdc, TA= to +75°c unless otherwise noted.I
Characteristic Input Current - Low Logic State (V1L = 0) Input Current - High Logic State (V1H = 5.0 VI Output Voltage - High Logic State
(V1 L = 0.8 Vdc, R L = 3.0 k.n. Vee= +9.0 Vdc, Vee= -9.0 Vdc)
Figure 1 1 2
Symbol
l1L l1H VoH
Min
-
+6.0
Typ 1.0
-
+7.0
Max 1.6 10
-
Unit mA µA Vdc
(V1L = 0.8 Vdc, RL = 3.0 kn, Vee= +13.2 Vdc, VEE= -13.2 Vdc)
+9.0
+10.5
-
!Output Voltage - Low Logic State
2
N1H = 1.9 Vdc, RL = 3.0 kn, Vee= +9.0 Vdc, VEE= -9.0 Vdc)
Vol
-6.0
(V1H = 1.9 Vdc, RL = 3.0 kn, Vee= +13.2 Vdc,. VEE= -13.2 Vdc)
-9.0
Positive Output Short-Circuit Current (1)
Negative Output Short-Circuit Current (1)
Output Resistance !Vee= VEE= 0, I Vo I= ±2.0 VI Positive Supply Current (R 1 = oo)
(V1H = 1.9 Vdc, Vee= +9.0 Vdc) !V1t = 0.8 Vdc, Vee= +9.0 Vdc) (V1H = 1.9 Vdc, Vee= +12 Vdc) (V1L = 0.8 Vdc, Vee= +12 Vdc) (V1H = 1.9 Vdc, Vee= +.15 Vdc) (V1L = 0.8 Vdc, Vee= +15 Vdc)
Negative Supply Current (R L = oo) (V1H = 1.9 Vdc, VeE = -9.0 Vdc) (V1L=0.8 Vdc, VEE= -9.0 Vdc) (V1H = 1.9 Vdc, VEE= -12Vdc) (V1L = 0.8 Vdc, VEE= -12 Vdc) (V1H = 1.9 Vdc, VEE= -15 Vdc) (V1L = 0.8 Vdc, VEE= -15 Vdc)
Power Consumption (Vee= 9.0 Vdc, VEE= -9.0 Vdc) (Vee= 12 Vdc, VEE= -12 Vdc)
3
ios+
+6.0
3
ios-
-6.0
4
ro
300
5
'cc
-
-
-
-
-
-
5
IEE
-
-
-
'
-
-
-
Pc
-
-
SWITCHING CHARACTERISTICS (Vee= +9.0 +- 1% Vdc, VEE= -9.0 +- 1% Vdc, TA= +25°C.I
Propagation Delay Time (z1 = 3.0 k and 15 pF)
6
tPLH
-
Fall Time
(z1 = 3.0 k and 15 pF)
6
tTHL
-
Propagation Delay Time (z1 = 3.0 k and 15 pF)
6
tPHL
-
Rise Time
(z.i = 3.0 k and 15~)
6
tTLH
-
(1) Maximum Package Power Dissipation may be exceeded if all outputs ar.e shorted simultaneously.
-7.0
-10.5
+10 ·-10
-
+15 +4.5 -+19 +5.5
-
-
-13
-
-18
-
-
-
-
-
275 45 110 55
-
-
+12 -12
-
+20 +6.0 +25 -+7.0 +34 +12
-17 -15 -23 -15 -34 -2.5
333 576
Vdc
mA mA Ohms mA
mA µ.A mA µ.A mA , mA mW
350
ns
75
ns
175
ns
100
ns
5-86·
MC1488
CHARACTERISTIC DEFINITIONS
FIGURE 1 - INPUT CURRENT
+9 v -9 v
14
FIGURE 2 - OUTPUT VOLTAGE
+9 v -9 v
14
10
13 12
+0.8 v
FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT
Vee VEE
+1.9 v
14
I
tos-
tos+ -
+0,8 v
FIGURE 4 -OUTPUT RESISTANCE (POWER-OFF)
10 12 13
Vo
·±2 Vdc
±6.6 mA Max
·
FIGURE 5 - POWER-SUPPLY CURRENTS Vee
+1.9 v
J
VtL 12
+0.8 v
FIGURE 6 - SWITCHING RESPONSE
Vo-----..
tnH tTH Land tTLH Measured 10% to 90%
5-87
MC1488
·
TYPICAL CHARACTERISTICS
(TA =+25°C unless otherwise noted.)
FIGURE 7 - TRANSFER CHARACTERISTICS versus POWER-SUPPLY VOLTAGE
FIGURE 8 - SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE
+12
+9.0
c.c..5;..; +6.0
2:.
~ +3.0
<(
~·LD--F ~
0
> .....
~ -3.0 I--
3 k
.....
:::>
~ -6.0 I--
>o -9.0
l
l
=
JJ J
Vee~ VEE :r± 12V
1 1 l
"'Vee=VEE=±9V
.r l.)lVee=
1
VEE=± 6
v
-12 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Vin. INPUT VOLTAGE (VOL TS)
"=i +12
tffi +9.o Ir-t---i--1--1~i-:~-fI;Q;~;;;~t:==ti
~ +6.0
:: +3.0 H----'----'---...L.---'----1-----<1----4--I -...~..
:::>
0.....
~ -3.0
C3 ~ -6.0 H----1---t----+----+---+----lf----+-~
0 :i:
IQS-
~
9
- .o
M~=j==:t:==:::r-1--r=1--11
-12 L....J:=:;;;;,.__J,_ _...J..._ _...L-_ _,__ _...L-_ __J_ _...L....J
-55
+25
+75
+125
T, TEMPERATURE (OC)
FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE
1000
:::si
~
~~ 100
0
2:. .U...J. ;:2
~ 10
~o
I=
t-
=:'.r CL
1.0 l! !!! 11 rn
1.0
10
100
~
N
~ """i
"""
1.000
10,000
CL CAPACITANCE (pF)
FIGURE 10 -OUTPUT VOLTAGE AND CURRENT-LIMITING CHARACTERISTICS
+20 +16 .......--+--+---+---+----11----+---i---~
+121--..3t.--+==::........-==,,_+---J---1----+.--+---~ "=i
..§. +8.0 1----lk---+----+---+--""""k--..... ~ +4.0 1----+~-+---+---+---f--~-+--E.:::---+-.;;_-I
c: :::>
(..)
..... ~ -4.0 ~--+--""-+--31.--+--+----l---+----l~-~ .....
5 -8.0 p -12
-16
-12 -8.0 -4.0
+4.~ +8.0 +12 +16
VQ, OUTPUT VOLTAGE (VOLTS)
FIGURE 11 - MAXIMUM OPERATING TEMPERATURE versus POWER-SUPPLY VOLTAGE
-55
+25
+75
+125
T, TEMPERATURE (OC)
5-88
MC1488
APPLICATIONS INFORMATION
Ttie Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.
The required driver voltages are defined as between 5 and 15volts. in magnitude and are positive for a logic "O" and negative for a logic "1 ". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488 meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.
The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488 is much too
FIGURE 13 - POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS
FIGURE 12 - SLEW RATE versus CAPACITANCE
FOR lsc = 10 mA
1000
4"'
~30V/µs
2 IZ
:s::
......
II"
I I
1.0
I 333 pF
1!.~
~
1.0
10
100
1000
10.000
C, CAPACITANCE (pF)
fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined
by using the relationship C = las x AT I AV from which Figure 12 is
derived. Accordingly, a 330-pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.
The interface driver is also required to withstand· an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15-volt, 500-mA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., Vcc;;;;,9.0 V; VEE.;;;:-9.0 V). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300-ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors
would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the ±25-volt limits specified in the earlier Standard RS2328.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.
The maximum short-c.ircuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.
Other Applications
The MC1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:
1. Output Current Limiting - this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488 used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.
2. Power-Supply Range - as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for dr.iving the negative pulldown
section) to the maximum specified i 5 volts. The negative supply
can vary from approximately -2.5 volts to the minimum specified -15 volts. The MC1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL.translation. Figure 15 shows one such combination.
·
5-89
MC1488
FIGURE 14 - MDTL/MTTL·TO-MOSTRANSLATOR
+12 v
MOTL MTTL INPUT
MOS OUTPUT
IO----...JV,Vk\r-----1! (WITH Vss = GNO)
10 k
·12'V
-12 v
FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS
·
-12V
+12V
5-90
ORDERING INFORMATION
Device
MC1489L MC1489AL
Temperature Range
0°C to +75°C 0°C to +75°C
Package
Ceramic DIP Ceramic DIP
MC1489L MC1489AL
QUAD LINE RECEIVERS
The MC1489 monolithic quad line receivers are designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.
QUAD MOTL LINE RECEIVERS
RS-232C
SILICON MONOLITHIC INTEGRATED CIRCUIT
· Input Resistance - 3.0 k to 7.0 kilohms
· Input Signal Range - ±30 Volts
· Input Threshold Hysteresis Built In
· Response Control a) Logic Threshold Shifting b) Input Noise Filtering
TYPICAL APPLICATION
LINE DRIVER
MC1488
...r--,
__ --l;_
/
LINE RECEIVER MC1489
I
MOTL
LOGIC
INPUTI .~INTERCCOANBNLEECTIN-Gj
I -
.
,
-
-
MOTL
LOGIC
OUTPUT
I
I
Response Control A
Response Control B
12
Response Control D
Response 9 Control C
~ ~~~!)!~ LSUFFIX ij CERAMIC PACKAGE CASE 632 T0-116
CIRCUIT SCHEMATIC (1/40F CIRCL!IT SHOWN)
14
9k
5 k
u - - - - - - - - - -..... RESPONSE CONTROL 2
--'\NY--+----~
1.6 k
,_...-----u 3 OUTPUT
3.55 k
INPUT 1 o---'\l\llr---+----_.,----1
MC 1489 I MC 1489A
RF !Ok!!
2 kn
!Ok
' - - - - - -....- - - - + - - - - - - + - - - -......- - - - - 0 7 GROUND
·
5-91
MC1489L, MC1489AL
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Rating
Power Supply Voltage Input Voltage Range Output Load Current Power Dissipation (Package Limitation, Ceramic and Plastic Dual In-Line
Package} Derate above TA = +25°C Operating Ambient Temperature Range Storage Temperature Range
Symbol
Vee VtR IL
Po 1/0JA
TA Tstg
Value 10 ±30 20
1000 6.7 0 to +75 -65 to +175
Unit Vdc Vdc mA
mW mW/°C
oc -uc
·
ELECTRICAL CHARACTERISTICS (Response control pin is open.) (Vee= +5.0 Vdc ±1%, TA= 0 to +75°C unless otherwise noted)
Characteristics
Positive Input Current
IV1H = +25 Vdc) (V1H = +3.0 Vdc)
Negative Input Current
(V1L = -25 Vdcl IVtL = -3.0 Vdc)
Input Turn-On Threshold Voltage (TA= +25°c, Vol ~ 0.45 V)
MC1489 MC1489A
Input Turn-Off Threshold Voltage (TA= +25°C, VoH :l!:' 2.5 V, IL= -0.5 mA}
MC1489 MC1489A
Output Voltage High
IV1H = 0.75 V, IL= -0.5 mA) (Input Open Circuit, IL= -0.5 mAl
Output Voltage Low
(V1L = 3.0 V, IL= 10 mAl
Output Short-Circuit Current
Power Supply Current
(V1H= +5.0 Vdc}
Power Consumption
(V1H= +5.0 Vdc)
Figure 1 1 2
2
2 2 3 4 4
Symbol l1H l1L V1HL
V1LH
VoH Vol ios Ice Pc
Min 3.6 0.43 .,-3.6 -0.43
1.0 1.75
0.75 0.75 2.6 2.6
-
-
-
-
Typ -
-
-
1.95
0.8 4.0 4.0 0.2 3.0 20 100
Max 8.3 -8.3
-
1.5 2.25
1.25 1.25 5.0 5.0 0.45
-
26 130
Unit mA mA Vdc
Vdc
Vdc Vdc mA mA mW
SWITCHING CHARACTERISTICS <Vee= 5.0 Vdc ± 1%, TA= +25°ct
Propagation Delay Time Rise Time Propagation Delay Time Fa[I Time
(RL = 3.9 k.!1) (RL = 3.9 k.!1) (RL=390.!1) (RL = 390 .!1)
5
tPLH
-
25
85
ns
5
tTLH
-
120
175
ns
5
tPHL
-
25
50
ns
5
tTHL
-
10
20
ns
5-92
MC1489L, MC1489AL
!llH,
Ill
FIGURE 1 - INPUT CURRENT
+5 Vdc 14
TEST CIRCUITS
VIHL
IV1HL
·OPEN
FIGURE 2-'- OUTPUT VOLTAGE and INPUT THRESHOLD VOLTAGE
+5 Vdc
14
· 5
10 12 13
=
10
12
13
11
VOL VOH
FIGURE 3- OUTPUT SHORT-CIRCUIT CURRENT
vcc
14
ios-
10
12
13
11
=
FIGURE 5 - SWITCHING RESPONSE+5 Vdc
FIGURE 4 - POWER-SUPPLY CURRENT
vcc
-tee
14
·
10
12
13
11
FIGURE 6 - RESPONSE CONTROL NODE
or equiv
tTLH and tTHL measured 10%-90%
tTHL 1.5 v
CT =15 pF =total parasitic capacitance. which includes
probe and wiring capacitances
5-93
Ci
1/4 MC1489A
RESPONSE NOOE
C, capacitor is for noise filtering. R, resistor is for threshold shifting.
MC1489L, MC1489AL
·
TYPICAL CHARACTERISTICS
IVee = 5.0 Vdc, TA= +25°e unless otherwise noted)
FIGURE 7 - INPUT CURRENT
+10 +8.0 1---1---1---1---1----11----11----11----1..----4---<
! ~ - +6.0 1---1---1---1---1----11----11----11----11----4___.L_......., +4.0 - - - - - - - - - - 1 - - - - - 1 - - - - " " v _-·1,jiii""l----1 z~ +2.0 1---~-~-~-~-1----,.....~,l!::..l---I--~>--~
~
./
·1y: ~ -2.0
z~ -4.0
v IL'~
11 '
..,
-6.0 ,................
-8.0 l----t---+---+---+---1-
~
-10 .___...._~_......___.____.__J......_.....1.J_J-'--_..J'L----.J
-25 -20 -15 -10 -5.0
+5.0 +10 +15 +20 +25
Vin. INPUT VOLTAGE (VOL TS)
FIGURE 8 - Me1489 INPUT THRESHOLD VOLTAGE ADJUSTMENT
6.0 .---r---r---r---r----ir----i~-s.ff-.-----.--.----
5.00 1---.....-+--_,...___,k'--+---~-f--1-,1,--y-1_--,-EoI-1-_--1
z 4.
~
1--RT ~RT ~RT 1--- RT I - -
~ 3.0 ~ 5 k I - + 13 k I- 00 t - - 11 k t - -
0
I- Vth I - + Vth
Vth t - -
~ 2.0 .1...-. _+_5_v_~--1,_+_5_v..__ _..,._-1--_5_v-1-11---1--'._
_
i =_ v 1h
g 1.0 1---~~>---4~--11+-~>---+1>------11----4---ll--~
ci ' >
' !_ - - _ _ _ _ _ _ _ 1---+-""-~-i---'--+.~-
I :--___
-!
o,1,.. -3.0 -2.0 -1.0
V1LH V1HL
1
+1.0 +2.0
,,
+3.0
V1, INPUT VOLTAGE (Vdc)
FIGURE 9 - MC1489A INPUT THRESHOLD VOLTAGE ADJUSTMENT
6. 0
5. 0
2"":' 4.0
w
Cl
t-1-RT
~ 3.0 t-r5k ·
0
>
1-t-Vth
~ 2.0 I- +5 v
.....
:;)
0 1.0
ci >
.__ ~
0
':t.
y=-Sf
RT- 1--- RT-1I-
-
00 t--- 11 k-1J-Vth--11-
-
RT
_
-5 v r
.f - -=-Vth -
-
,+--,+- +---+-
V1LH -vlHL
, ,-1.L
~
-3.0 -2.0 -1.0
+1.0 +2.0 +3.0 +4.0
V1, INPUT VOLTAGE (Vdc)
FIGURE 10 - INPUT THRESHOLD VOLTAGE versus TEMPERATURE
- 2.4
.., 2.2
2: 2.0
w
Cl <(
1.8
~ 1.6
0
- >
:l
1.4
0 1.2
~ 1:0 .;.;,,
::c
I-
0.8
I-
~ 0.6
'!x!:. 0.4 > 0.2
0
-60
- ; - - _t - - - -
Me1489A V1HL
r - -r - -i - -
--
Me1489 V1HL
--+---l __\ ..l _J
-
.L
M~1:89VILH 'j
-
j
_l Me1489AV1LH-
_j
j
+60
+120
T, TEMPERATURE (De)
FIGURE 11 - INPUT THRESHOLD versus POWER-SUPPLY VOLTAGE
2.0 V1HL Me1489A
"2":'
w
Cl
~
0 >
9 1.0 1---V1HL Me1489
0
VILH Me1489
~·
1--VILH Me1489A
::c
II-
~ '!!:
0
0
4.0
8.0
12
Vee. POWER SUPPLY VOLTAGE (Vdc,)
5-94
MC1489L, MC1489AL
APPLICATIONS INFORMATION
General Information
The Electronic Industries Association (E IA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but alsd the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receive·r, provide a complete interface system between DTL or TTL logic levers and the RS-232C defined levels. The RS-232C requirementY as applied to receivers are discussed herein.
The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open (\ircuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit volt-
age of one Vse (Ref. Sect. 2.4).
The receiver shall detect a voltage between -3.0 and -25 volts as a logic "1" and inputs between +3.0 and +25 volts as a logic "O" (Ref. Sect. 2.3). On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or logic "1" (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or logic "1" input.
Device Characteristics ·
The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise
rejection. The MC 1489 input has typical turn-on voltage of 1.25
volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV.
The MC1489A has typical turn-on of 1.95 volts and turn-off of
0.8 volt for typically 1.15 volts of hysteresis.
-
Each receiver section has an external response control node in
addition to the input and output pins, thereby allowing the design-
er to vary the input threshold, voltage levels. A resistor can be
connected between this node and an ex terrial power-supply. - Fig-
ures 6, 8 and 9 illustrate the input threshold voltage shift possible
through this technigue.
This response node can also be used for the filtering of high-
frequency, high-energy noise pulses. Figures 12 and 13 show
typical noise-pulse rejection for external capacitors of various sizes.
These two operations on the response node can be combined
or used individually for many combinations of interfacing appli-
cations. The MC1489 circuits are particularly useful for interfacing
between MOS circuits and MDTL/MTTL logic systems. In this
application, the input threshold voltages are adjusted (with the
appropriate supply and resistor values) to fall in the center of the
MOS voltage logic levels. (See Figure 14)
The response node may also be used as the receiver input as
long as the designer realizes that he may not drive this node with
a low impedance source to a voltage greater than one diode above
·
ground or less than one diode below ground. This feature is
demonstrated in Figure 15 where two receivers are slaved to the
same line that must still meet the RS·232C impedance requirement. '
FIGURE 12 - TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND
FIGURE 13 - TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND
MC1489AL
f'oN, INPUT PULSE WIDTH (ns)
1 ~~~~~~~~~~~~~~.........~~~~~~.......
10
100
1000
10,000
f'oN, INPUT PULSE WIDTH (ns) \
5-95
MC1489L, MC1489AL
·
APPLICATIONS INFORMATION !continued)
FIGURE 14 - TYPICAL TRANSLATOR APPLICATION MOS TO DTL OR TTL +5 Vdc
-VGG
MC1489 +5 Vdc
OTL or TTL
,....- -,
- - _J
-:
l -_l
+5 Vdc '="
FIGURE 15 - TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET RS-232C
RESPONSE-CONTROL PIN
INPUT
8 k
,- vcc - - - - - - - - -.----------.
I 1/2MC1489 2 k
I
OUTPUT
RESPONSE-CONTROL PIN
-:-
I
I I 2k I
I
I I
I I
I I I _ _ _ _ _ _ _ _J
OUTPUT
5-96
XC26S10 XC26Sll
Product Preview
QUAD OPEN-COLJ-ECTOR BUS TRANSCEIVERS
These quad transceivers are designed to mate Schottky TTL or NMOS logic to a low impedance bus. The Enable and Driver inputs are PNP buffered to ensure low input loading. The Driver·(Bus) output is open-collector and can sink up to 100 mA at 0.8 V, thus the bus can drive impedances as low as 100 Q. The receiver output is active pull-up and can drive teri Schottky TTL loads.
An active-low Enable controls all four drivers allowing the outputs of different device drivers to be connecte'd together for party-line operation. The line can be terminated at both ends and still give considerable noise margin at the receiveL Typical receiver threshold is 2.0 V.
Advanced Schottky processing is utilized to assure fast propagation delay times. Two ground pins are provided to improve ground
current handling and allow close decoupling between Vee and
ground at the package. Both .ground pins should be tied to the ground bus external to the package.
· Driver Can Sink 100 mA at 0.8 V (Max)
· PNP Inputs for Low-Logic Loading
· Typical Driver Delay= 10 ns
· Typical Receiver Delay = 10 ns
· Schottky Processing for High Speed
· Inverting Driver - XC26S10 Non-Inverting - XC26S11
Enable
Driver Inputs
Receiver Outputs
TYPICAL APPLICATION
5.0 v
100 100 100 100
XC25S10/ 11
Driver Inputs
Receiver Outputs
Driver Inputs
Receiver Outputs
XC25S10/ 11
Driver Inputs
Receiver "outputs
Enable
100 100 100 100
5.0 v
~
This is adva.nce information and specifications are subject to change without notice.
5-97
QUAD OPEN-COLLECTOR BUS TRANSCEIVERS
SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 620
PSUFFIX PLASTIC PACKAGE
CASE 648
·
PIN CONNECTIONS
Receiver Output A
Driver Input A
Driver l;,put B
Receiver Output B
Vee
Bus C
Enabi0 E
Driver Input D Receiver Output D
*Inverter on XC26S11 only.
Enable L L H
TRUTH TABLE
Driver
Bus
Input 26S10 26S11
L
H
L
H
L
H
x
y
y
Receiver Output
L
H y
L. =
H
X
Y =
Low Logic State High Logic State Irrelevant Assumes condition controlled by other elements on the bus
XC26S10, XC26S11
·
MAXIMUM RATINGS (TA= 25°C unless otherwise noted.)
Rating
Symbol
Power Supply Voltage
Vee
Input Voltage
V1
Input Current
11
Output Voltage - High Impedance State
Vo (Hi-z)
Output ,Current-Bus
lo(B)
Output Current-Receiver
lo(R)
Operating Ambient Temperature
TA
Storage Temperature
Tstg
Junction Temperature
TJ
Ceramic Package
Plastic Package
Value -0.5 to +7.. 0 -0.5 to +5.5 -3.0 to +5.0 -0.5 to Vee
200 30 0 to +70 -65 to +150
175 150
Unit Vdc Vdc mA
v
mA mA oc oc oc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted Vee= 4.75 to 5.25 V and TA= o to +7o0 c.
Typical values.measured at Vee= 5 0 V and TA= 25°C.)
Characteristic
Input Voltage - Low Logic State (Driver and Enable Inputs)
Symbol
Min
Typ
V1L
-
-
Input Voltage - High Logic State (Driver and Enable Inputs)
Input Clamp Voltage (Driver and Enable Inputs)
V1H
2.0
-
Vic
-
-
I
U1c = -18 mA)
Input Current - Low Logic State (VIL= 0.4 V) (Enable Input) (Driver Inputs)
l1L
-
-
-
-
Input Current - High Logic State (V1H = 2.7 V) (Enable Input) (Driver Inputs)
Input Current - Maximum Voltage (V1H1 = 5.5 V) (Enable or Driver Inputs)
l1H
-
-
-
-
l1H1
-
-
Driver Output Voltage - Low Logic State HoL = 40mA) (IOL = 70 mA) (loL = 100 mA)
VOL(D)
-
-
-
0.33 0.42 0.51
Driver (Bi.Js) Leakage Current (VOH =.4.5 V) (VOL= 0.8 V)
lo(D)
-
-
-
-
Driver (Bus) Leakage Current (Vee= OV, VoH = 4.5 V)
I01(D)
-
-
Receiv~r Input High Threshold (VIH(E) = 2.4 V)
VTH(R)
2.25
2.0
Receiver Input Low Threshold (VIH(E) = 2.4 V)
VTL(R)
-
2.0
Receiver Output Voltage - Low Logic State
UoL = 20mA)
'
VOL(R)
-
-
Receiver Output Voltage - High Logic State lloH=-1.0mA)
VOH(R)
2.7
3.4
Receiver Output Short-Circuit Current
ios(Rl
-18
-
Power Supply Current - Output Low State
(V1L(E) = 0 V)
XC26S10
XC26S11
Ice
-
45
-
-
Max 0.8
-
-1.2
-0.36 -0.54
20 30 100
0.5 0.7 0.8 100 -50 100
-
1.75 0.5
-
-60 70 80
Unit
v v v -
mA
µA
µ.A
v
µ.A
µA
v v v v
mA mA
@ MOTOROLA Serniconduc'for Produc'fs Inc.
5-98
XC26S10, XC26S11
SWITCHING CHARACTERISTICS (Vee= 5.0 v TA= 25°e unless otherwise noted.)
XC26S10
Characteristic
Symbol
Min
Typ
Max
Propagation Delay Time Driver Input to Output
tPLH(D)
-
tPHL(D)
-
-
15
-
15
Propagation Delay Time ~Input to Output
tPLH(E)
-
tPHL(E)
-
-
18
-
18
Propagation Delay Time Bus to Receiver Output
Rise and Fall Time of Driver Output
tPLH(R)
-
-
15
tPHL(R)
-
-
15
tTLH(D)
4.0
-
-
tTHL(D)
2.0
-
-
SWITCHING WAVEFORMS AND CIRCUITS
XC26S11
Min
Typ
---
-
-
-
-
-
-
-
4.0
' -
2.0
-
Driver Input
To 'Scope (Input)
tPLH{D)
VoH~~~---1--~---1~~!!'!!'!~--~9~0~%~
Driver
50
Output
tTLH(D)
Max
Unit
19
ns
19
20
ns
20
15
ns
15
-
ns
-
Vee
To 'Scope {Output)
50 pF (Includes probe and jig capacitance)
Driver Output
VoL------
To Scope +3.0 V (Input)
50
Vee
To 'Scope (Output)
50 pF (Includes probe and jig capacitance)
·
Driver Output (Input) VoL
tPHL(R) VoH------Receiver Output
tPLH(R)
To Scope (Input)
@ MOTOROLA Semiconductor Product· Inc.
5-99
MC3232A
·
Advance In.formation.
MEMORY ADDRESS MULTIPLEXER
The Motorola MC3232A is an address multiplexer and refresh counter for 16 pin 4!( dynamic RAMs that require a 64 cycle refresh. It multiplexes twelve system address bits to the six input address pins of the memory device. The MC3232A also contains a 6. bit refresh counter that is clocked externally to generate the 64 sequential addresses required for refresh. The high performance of the MC3232A will eritiance the high speed of the fast N-channel RAMs such as the MCM6604. · Simplifies 16 Pin 4K Dynamic Memory Design · Reduces Package Count · 6 Bit Binary Counter for 64 Refresh Address · Multiplexing: Row Address/Column Address/Refresh Address · High Input Impedance for Minimum Loading of Bus:
IF =·0.25 mA Max · Schottky TTL for High Performance Address
Input to Output Delay tpd = 20 ns@ CL= 250 pF
· Second Source to Intel 3232 (Detect Zero Function Not Included)
LOGIC DIAGRAM
A5o-~~-l-----'l--~~-----!r--.,
I I
12:
Total 1
I
Address I
I
Lines I
I
I I
I I Total
I
I
I
I
I
A60-l----H---!1-4---~---!,---.,
Output 5 I I
I I I
I 6.
: Total
I I I I I
Refresh Enable
R o w u - - - - - 4 1... Enable
6 Total
This i>;. advance information and specifications are subject to change without notice.
5-100
MEMORY ADDRESS MULTIPLEXER AND R.EFRESH
ADDRESS COUNTER
SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUITS
~
{
L SUFFIX CERAMIC PACKAGE
CASE 623
PSUFFIX PLASTIC PACKAGE
CASE 64.9
CoUnt 1
Refresh Enable
A1 3 A7 4 A2 5 AB 6 AO 7
A6 8 00 9 6210
0111 Gnd12
24Vcc 23Row
Enable 22 AS 21 A11 20A4 19A10 18A3 17 A9 16 03 1s 64 1405 13 NC
Note: AO Through AS Are Row Addresses A6 Through A 11 Are Column Addresses
TRUTH TABLE AND DEFINITIONS
Refresh 'Enable
Row Enable
Output
H
Refresh Address
(From Internal Counter)
L
H
Row Ad~ress
(AO tbrou h AS)
L
L
Column Address
(A6 through A 11 )
Count .....; Advances Intern~! Refresh Counter
ORDERING INFORMATION
Il Il ' Device
MC3232AL
Temperatur~ Range
o to 1s0 c
Package Ceramic DIP
Mi;:3232AP
o to 7s"'c
Plastic DIP
MC3232A
MAXIMUM RATINGS (TA= 25°C unless otherwise noted.)
Rating
Symbol
Value
Power Supply Voltage
Vee
-0.5 to +7.p
Input Voltage
V1
-0.5 to +7.0
Output Voltage
Vo
-0.5 to +7.0
Output Current
lo
100
Operating Ambient Temperature
TA
0 to +75
Storage Temperature
Tstg
-65 to +150
Junction Temperature Ceramic Package Plastic Package
TJ +175
+150
Unit
v v v
mA oc
oc
oc
o ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V < Vee< 5.5 V, 0 c <TA< 75°C;
typical values apply with Vee= 5.0 v, TA= 25°C.)
Characteristic
Symbol
Min
Typ
Max
Unit
Input Current, Low Logic State (VIL= 0.45 V)
l1L
-
-0.04
-0.25
mA
Input Current, High Logic State (V1H = 5.5 V)
l1H
-
-
10
µA
Input Voltage, Low Logic State Input Voltage, High Logic State Output Voltage, Low Logic State
<10L = 5.o mAl
V1L
-
-
0.8
v
V1H
2.0
-
-
v
VoL
-
0.25
0.4
v
Output Voltage, High Logic State 0oH = -1.0 mA)
VoH
2.8
4.0
-
v
Input Clamp Voltage (l1e = -12 mA)
V1c
-
-0.8
-1.5
v
Power Supply Current (Vee= 5.5V)
Ice
-
100
150
mA
SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 v < Vee < 5.5 V, o0 c <TA < 75°e;
typical values apply with Vee= 5.0 V, TA= 25°C.)
Characteristic
Propagation Delay Times Address Input to Output (Load= 1 TTL, CL= 250 pF) (Load= 1 TTL, CL= 15 pF, Vee= 5.0 V, TA= 25°Cl Row Enable to Output (L<><!d = 1 TTL, CL= 250 pF) (Load= 1 TTL, CL= 15 pF, Vee= 5.0 V, TA= 25°Cl
Refresh Enable to Output (Load= 1 TTL, CL= 250 pF) (Load= 1 TTL, CL= 15 pF, Vee= 5.0 V, TA= 25°C)
Symbol
Min
tAO -
too 12 7.0
tEO 12 7.0
Typ
Max
16
25
6.0
9.0
28
41
12
18
30
45
14
20
Unit ns ns ns
Count to Output (Load= 1 TTL, CL= 250 pF) (Load= 1 TTL, CL= 15 pF, Vee= 5.0 V, TA= 25°Cl
tro
ns
20
55
80
15
40
60
·
@ MOTOROLA Serniconduc-tor Produc-ts Inc.
5-101
MC3232A
·
FIGURE 1 -AC WAVEFORMS with MCM6604 NORMAL CYCLE
Row Enable
Address V1H - - - - - - . .
Input
1.5 v
(AO-A 11) VIL _ __.,_ __,
Outputs (00-05)
Refresh Enable - Low Logic State
FIGURE 2 - REFRESH CYCLE
Refresh Enable
V1L
V1H
CoUOt
V1L
Outputs (00-05)
VoH VoL
tcpw
1.5V
1.5 v
2.4V 0.8 v
Refresh Address
2.4 v 0.8 v
Refresh Address
@ MOTOROLA Se~iconducf:or Producf:s Inc.
5-102
MC3232A
TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU
MPU System
Clock XC6875
MPU MC6800
,M.C.
Ref Grant
Control Bus
Address Bus
Data Bus
----M.C.
t1
t2 Delay Circuit t3
t4 t5
Memory Control and Timing ,XC348.0
51
Address
Multiplex
and
Refresh
52
Counter
MC3232A
Data Buffer MC6880
/Memory Array
·
(f!) MOTOROLA Serniconducf:or Producf:s Inc.
5-103
ORDERING INFORMATION
Device
MC3245L MC3245P
Temperature Range
to 0°C to +75°C
0°c +1s0c
Package.
Ceramic DIP Plastic DIP
MC3245
·
QUAD TTL TO MOS DRIVER
This high-speed driver is intended as a clock (high-level) driver for 22 pin and 18 pin dynamic NMOS RAMs. It is designed to operate on nqminal +5 V and +12 V power supplies.
The channel control logic is organized so that all four drivers may be deactivated for STANDBY operation, or single driver may be activated for READ/WRITE operation or all four drivers may be activated for REFRESH operation. · Control Logic Optimized for Use in MOS RAM Systems · Output Voltages Compatible with Many Popular MOS RAMs · TTL and DTL Compatible Inputs
High-Speed Switching · Interchangeable with 3245.
TYPICAL APPLICATION WITH 4K NMOS RAM IN TTL SYSTEM
GATE CONTROLLED FOUR CHANNEL
MOS CLOCK DRIVERS
SI LICON MONOLITH IC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS
TYPICAL APPLICATION WITH '7001 RAM AND TTL SYSTEMS
MC10125 MECLtoTT Translator
Data Out
5-104
Channel Select A
1 Enable 4 l - l - - - - 6 i 4>----4-i
Refresh Select
Selects Output B 1
TRUTH TABLE
Control
Enabie 1 Emi6fe 2
Inputs Enable 3
Address
Channel Refresh Select Select
Output
H :: High Logic State L .,. Low Logic State I = Irrelevant
I H
H H
MC3245
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
Rating
Symbol
Value
Power Supply Voltages
Vee Voo
-0.5 to +7.0 -0.5 to +14
Unit Vdc Vdc
Output Voltage
Vo .-1.0 to Voo +1.0 Vdc
Input Voltage
Operating Ambient Temperature Range
Storage Temperature Range
Junction Temperature
Ceramic Package Plastic Package
Vi
-1.0 to Voo
Vdc
TA
Oto +75
oc
Tstg_ -65 to +150
oc
TJ
oc
·175
150
RECOMMENDED OPERATING CONDITIONS
Characteristic Power Supply Voltages
Operating Ambient Temperature Range
Symbol
Min
Typ
Max
Unit
Vee
4.75
5.0
5.25
Vdc·
Voo
11.4
12
12.6
Vdc
TA
0
-
75
oc
·
ELECTRleAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over r!lcommended power supply an_d tempera-
ture cond"1t.1ons. T yp1.caI vaIues measured at T'A= 25°C )
Characteristic Output Voltage - High Logic State
(V1 L = 0.8 V, loH = -1.0 mA)
Symbol
Min
Typ
VoH
v00 -o.5
-
Max -
Unit Vdc
Output Clamp Voltage - High Logic State
~
(loH = 5.0 mA, V1L = 0 V)
Vo He
-
-
Voo + 1.0
Vdc
Output Voltage - Low Logic State
v. (V1H = 2.0 loL = 5.0 mA)
VoL
-
-
0.45
Vdc
Ou.tPut Clamp Voltage - Low Logic State (V1H = 5.0 V, IOL -5.0 mA)
Vo Le
-1.0
-
-
Vdc
Input Voltage - High Logic State
V1H
2.0
-
-
Vdc
Input Voltage - Low Logic State Input Clamp Voltage
II 1c = -5.0 mA)
V1L
-
V1c
-
-
0.8
Vdc
-
-1.0
VQc
Input Current - High Logic State (V1=5.0 V) Channel Select Inputs Refresh Select and Enable Inputs
l1H
-
-
µA
-
10
-
40
Input Current - Low Logic State (VIL= 0.45 V) Channel Select Inputs Refresh Select and Enable Inputs
Power Supply Current - Output High Logic State (Vee= 5.25 V, V1L = 0 V, loH = 0 mA, Voo = 12.6 V)
l1L
-
-
lccH
-
looH
-
µA
-
-0.25
-
-1.0
23
30
mA
19
26
Power Supply Current - Output Low Logic State (Vee= 5.25, V1H = 5.0 V, IOL = 0 mA, Voo = 12.6 V)
lccL
-
looL
-
29
39
mA
12
15·
@ MOTOROLA Semiconduc'f:or Produc'f:s Inc.
5-105
MC3245
·
SWITCHING CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and tempera-
ture condI 'f10ns T y p·1caI vaIues measured at +25°C I
·
Characteristic
Symbol
Min (1)
Typ (2)
Max(3)
Unit
Delay Time Output High to Low Level (Rs = O n.I Output Low to High Level (Rs= On.I
ns
tOHL
3.0
7.0
-
tOLH
5.0
11
-
Transition Time Output High ~o Low Level (Rs= 20 11) Output Low to High Level (Rs= 20 11)
ns
tTHL
10
tTLH
10
17
25
17'
25
Propagation Delay Time Output High to Low Level (Rs = 0 n.I Output Low to High Level (Rs = 0 .n) (Rs= 20 .n)
tPHL
-
tPLH1
-
tPLH2
-
ns
18
32
20
32
27
38
(1) CL= 150 pF
= (2) CL 200 pF
(3) CL= 250 pF
CAPACITANCE* (Unless otherwise specified TA= +25°c f = 1 OMHz V1 = 2 OV and Vee= 0 V I
Input Capacitance Channel Select Inputs
Characteristic
Symbol
Min
Cin(CS)
-
T~ 5.0
Max
-::-
8.0
Unit pF
Input Capacitance Refresh or Enable Inputs
Cin(E)
-
8.0
12
pF
*Periodically sampled, but not 100% tested.
FIGURE 1 - SWITCHING TEST WAVEFORMS
Input Pulse Characteristics
PRR = 1 MHz
PW= 500 ns
= = tTLH tTHL 5.0 ns
FIGURE 2 ....; SWITCHING TEST CIRCUIT
To Scope (Input)
To Scope (Output)
Pulse Generator
CL Includes Jig and Probe Capacitance
@ MOTOROLA Semiconducf:or Producf:s Inc.
5-106
ORDERING INFORMATION
Device MC3408L
Temperature Range 0°c to +70°C
Package Ceramic DIP
MC3408
LOW-COST EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
. designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage.
· Relative Accuracy: ±0.5% Error Maximum · low Price Allows Use of a DIA in Many New Applications · Monotonicity Guaranteed to 8 Bits · Fast Settling Time - 300 ns typical · Noninverting Digital Inputs are MTTL and
CMOS Compatible ·,.Output Voltage Swing - +0.4 V to -5.0 V · High-Speed Multiplying Input
Slew Rate 4.0 mA/µs · Standard Supply Voltages: +5.0 V and
-5.0 V to -15 V
FIGURE 1 - 0-to-A TRANSFER CHARACTERISTICS
E ~ OJoco~+-~+-~-+-~-+-~-+-~-+-·r-:
~
1--~-F'---+-~--t
z
w
a:
a:
o::> 1.o l+if++#++-l+i1++++++H4-++-Ri'llo.id-++.i.++-+-1fA+++-h1++-H-++-++I
~
::> n.
~
::> 0
_92.01-~+-~-+-~-+~-t~--11--~+-~+-~-+-~-+~"""
(00000000)
INPUT DIGITAL WORD
(11111111)
EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT
· - c:i 16 ltopv1ew)
L SUFFIX
CERAMl.C PACKAGE
CASE 620
FIGURE 2 - BLOCK DIAGRAM
A3 A4 AS A6 A7
6
7
8
9
10
·
Bias Circuit
Reference Current Amplifier
16
'-~~~~~1--~~~~~~__JCQMPEN
NPN Current Source Pair
TYPICAL APPLICATIONS
· Tracking A-to-D Converters · Successive Approximation A-to-D Converters · 2 1/2 Digit Panel Meters and DVM's · Waveform Synthesis · Sample and Hold · Peak Detector · Programmable Gain and Attenuation · CRT Character Generation
· Audio Digitizing and Decoding · Programmable Power Supplies · Analog-Digital Multiplication · Digital-Digital Multiplication · Analog-Digital Division · Digital Addition _and Subtraction · Speech Compression and Expansion · Stepping Motor Drive ,
5-107
MC3408
·
MAXIMUM RATINGS ITA= +25°c unless otherwise not~d.I
Rating Power Supply Voltage
Digital Input Voltage Applied Output Voltage Reference Current Reference Amplifier Inputs Operating Ambient Temperature Range Storage Temperature Range Junction Temperature
Symbol Vee Vee
V5 thru V12 Vo· 114
V14.V15 TA
Tstg TJ
Value +7.0 -16.5 0 to +15 +0.5,-5.2 0:-0Vee.Vee 0 to.+70 -65 to +150
+175
Unit Vdc
Vdc ·Vdc
mA Vdc
oc oc oc
. v~
Ri4 ELECTRICAL CHARACTERISTICS !Vee= +5;0 Vdc, Vee= -15 Vdc,
= 2.0 mA, TA= o to +10°c unless otherwise noted.
I
All digltal inputs at h'1gh logic level )
Characteristic
Figure Symbol
Min
Typ
Max
Unit
Relative Accuracy (Error relative to full scale lol Note 1 Monotonicity
See Multiplying Accura~y on Page 6
Settling Time to within ±0.5% of Full Scale [includes tPLHI (TA=+25°C)See Note 2
Propagation Delay Time TA= +25°c
Ou_tput Full Scale Current Drift
4
Er
-
-
5
ts
-
-
±0.5
%
Guaranteed to 8 bits
-
-
300
-
ns
5
tPLH·tPHL
-
30
100
ns
TC lo
;_
-30
-
PPM'PC
Digital Input Logic Levels (MSBI High Level, Logic "1 " Low Level, Logic "O"
3
V1H
2.0
-
V1L
-
-
Vdc
-
0.8
Digital Input Current (MSBI High Level, V1H = 5.0 V Low Level, V1L = 0~8 V
Reference Input Bias Current (Pin 15)
3
mA
l1H
-
0
0.04
l1L
-
-0.4
-0.8
3
115
-
-1.0
-5.0
µA
Output Current Range
Vee= -5.o v Vee= ~15 v (TA= 2s0 c)
3
IOR
mA
0
2.0
2.1
0
2.0
4.2
Output Current
Vref = 2.000 V, R14 = 1000 n
3
'o
mA
1.9
1.99
2.1
Output Current (All bits low)
3
lo(minl
-
0
4.0
µA
Output Voltage Compliance !Er~ 0.5% at TA= +25°CI Pin 1 grounded Pin 1 open, Vee below -10 V
Reference Current Slew Rate
3
Vo
Vdc
-
-
-0.5,+0.4
-
-
-5.0,+0.4
6
SR lref
-
4.0
-
mA/µs
Output Current Power Supply Sensitivity
PSRR(-)
-
0.5
4.0
µA/V
Power Supply Current
I
(All bits low)
Power Supply Voltage Range (TA= +25°CI
Power Consumption All bits low Vee= -5.o Vdc Vee= -15 Vdc
All bits high Vee =.-5.o Vele Vee= -15Vdc
3
'cc
-
+13.5
+22
mA
'ee
-
-7.5
-13
3
VccR
+4.5
+5.0
+5.5
. Vdc
Ve ER
-4.5
-15
-16.5
3
Pc
mW
-
105
170
-
190
305
-
90
-
-
160'
-
Note 1. For devices with greater accuracy, see MC1508 Series data sheet. Note 2. All bits switched.
® MOTOROLA Sen'liconductor Products Inc. ---------'
5-108
MC3408
Al A'J. A3 Digital A4 Inputs A5 A6 A7 AS
TEST CIRCUITS
FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT
Vee
~ 1 cc
13
Typical Values:
114 14- R14
R14=R15=1k V,8 1=+2.0V
C = 15 pF
VI and I 1 apply to inputs J>:.1
thru AS
The resistor tied to pin 15 is to temperature compensate the bias.current and may not be necessary for all applications.
MC340S
3
t lee
Vee
c
(See text for values of C)
lo = K {
~ + ~ + ~+
A4
A5 A6 + -+ -+
2
4
8
16 32 64
where K =:: V ref
R14
and AN= "1" if AN is at high level AN =·"O" if AN is .at low level
FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT
MSS
Al
A2
A3
12-Sit
A4
D-to-A
Converter
A5
(±.0.02%
A6
error max}
A7
AS A9 A10A11 A12
LSS
0 to +10 V Output 5k
50 k
v,.1 =::2v
100
0.1 uF
~
950 R14
Vee
Error (1V=1%)
S~Bit Counter
·
FIGURE 5 - TRANSIENT RE.SPoNSE and SETTLING TIME
13 +2.0 Vdc
1.0 k
2.4 v
UM RL to GND for
turn off meHurement (···text).
~~-"-----+- 80
For settling time measurement.
(All bits switched low to highl
Vee
TRANSleNTO
RESPONSE
-ioo
mV
RL ··son
pin 4 to GND
@ .MOTOROLA Se,..iconduef:or Produef:s Inc. ________,
5-109
MC3408
·
TEST CIRCUITS !continued)
FIGURE 6 - REFERENCE CURRENT SLEW
RATE MEASUREMENT
Vee
13
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(maxl -TA PD(TAl = ROJA(Typl
Me3408
Where: PD(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
r-0 ~
dt
.
i.
RL
~dt -_1_\j .E~~-%-'.-----
2.0
mA
Slewing Time
TJ(maxl = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ROJA(Typl =Typical Thermal Resistance Junction to Ambient
FIGURE 7 - POSITIVE V ref
Vee
_ __.._1_3~ Al
A2
A3
R 14 "= R 15
R14
A5
MC3408
A7
FIGURE 8 - NEGATIVE Vref Vee
Al A2 A3 A4 AS AS
11. 12 AB
13 MC3408
R14:0R15
@ MOTORO&.A Semiconductor Products ,Inc. ________.
5-110
MC3408
MSB 5 Al
6 A2
7 A3
Fl<:;ORE 9 - MC3408 EQUIVALENT CIRCUIT SCHEMATIC DIGITAL INPUTS
8 A4
9 A5
10 A6
LSB 12 AS
3k
1 k
CURRENT SWITCHES
800 400
400
400
400
400
400
R·2R LADDER
. . . 13
Vcc<>---~----.......------t'"·--...~--~--- --P--...---~-----~-..;_-t..J
14 V ref(+)~--+-----.....+-----!
16
15
COMPENSATION Vref{-) ·
8,iAS CIRCUIT 3k
Vee OUTPUT GND
RANGE CONTROL
·
CIRCUIT DESCRIPTION
The MC3408 consists of a reference current amplifier, an R-2R ladder. and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.
The switches are noninverting. in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unitv gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides
a low impedance termination of equal voltage for all legs of the ladder.
The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. N.ote that there is always a remainder currerit which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.
@ ~--------' MOTOROLA Sen>iconductor Products Inc.
5-111
MC3408
·
GENERAL INFO~MATION
Reference Amplifier Drive and Compensation
The reference amplifier provides a voltage at pin 14 for con-
verting the reference voltage to a current, and a turn-around circuit
or current mirror for feeding the ladder. The reference amplifier
input current, 114, must always flow into pin 14 regardless of the
setup method or reference voltage polarity.
Connections for a positive reference voltage are shown in Figure
7. The reference voltage source supplies the full current 114. For 0
bipolar reference signals, as in the multiplying mode, R15 can be
tied to a negative voltage corresponding to the minimum input
level. It is possible to eliminate R15 with only a small sacrifice
in accuracy and temperature drift.
The compensation capacitor value must be increased with in-
creases in R14 to maintain proper phase margin; for R14 values
of 1.0, 2.5 and 5,0 kilohms, minimum capacitor values are 15,
37, and 75 pF. The capacitor should be tied to VEE as this
increases negative supply rejection.
A negative reference voltage may be used if R 14 is grounded
and the reference voltage is applied to_R15 as shown in Figure 8.
A high input impedance is the main advantage of this method.
Compensation involves a capacitor to VEE on pin 16, using the
values of the previous paragraph. The negative reference voltage
must be at least 3.0-volts above the VEE supply. Bipolar input
signals may be handled by connecting R 14 to a positive reference
voltage equal to the peak positive input level at pin 15.
When-a de reference voltage is used, capacitive bypass to ground
is recommended. The 5.0-V logic supply is not recommended as
a reference voltage. If a well regulated 5.0-V supply which drives
logic is to be used as the reference, R14 should .be decoupled by
connecting it to +5.0 V through another resistor and bypassing
the junction of the two resistors with 0.1 µf to ground. For
reference voltages greater than 5.0 V, a clamp diode is recommen-
ded between.pin 14-and ground.
.
If pin 14 is driven by a high impedance· such as a transistor
current source, none of the above compensation methods apply
and the amplifier must be heavily compensated, decreasing the
overall bandwidth.
Output Voltage Range
The voltage on pin 4 is restricted to a range .of -0.5 to +0.4 volts at +25°C, due to the current switching methods employed in the MC3408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the. termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive· the low current device of the Darlington into saturation, decreasing the output current level.
The negative output voltage compliance of the MC3408 may be, extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage· must be more negative than -lO volts. Using a full scale current of 1.9D2 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the c.onverter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage· swing. Values of R L up to 500 ohms do riot significaritlY affect performance, but a 2.5-kilohm load increases "worst case" settling time to 1.2 µs (when all bits are switched' on).
Refer to the subsequent text section on Settling Time for more details on output loading.
If a J)ower supply value between -5.0 V and -1 O V is desired, a voltage of ·between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the l'T)aximum allowable negative output swing.
Output Current Rarige
The output current maximum rating of 4.2 mA may be used only for negative supply voltages .typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.
Accuracy
Absolute ac;curacy is the measure of each output current level with respect tQ its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the meas~re of each output current level as a fraction of the full scale current. The relative accuracy of the . MC3408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC3408 has a very low full scale current drift with temperature.
The MC3408 is guaranteed accurate to within ±0.5% at +25°C at a full scale output current of 1.992 mA. This correspon.ds to a ' reference amplifier output current drive 'to the ladder network of '
2.0 mA, with the loss of one LSB = 8.0 µA which is the ladder
remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9. and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-_bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC3408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC3408 circuits' full scale current is trimmed to the same value with R 14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.
Two 8-bit D-to-A converters may not be used to construct a 16-bit accurilte D-to-A converter. 16-bit accuracy implies a total error of ±1/2 of one part in 65, 536, or ±0.00076%, which is much more accurate than the ±0.5% specification pr.ovided .bY the MC3408.
Multiplying Accuracy
The MC3408 may be used in the multiplying mode with good accuracy when the reference current is varied over a range
of 256: 1. The major source of error is the bias ·current of the
. termination amplifier. Under "worst case" conditions, these eight
amplifiers can contribute a total of 1;6 µA extra current at the
output terminal. If the reference current in the multiplying mode
ranges from 16 µA to 2.0 mA, the 1.6 µA contributes an error
of 0.2 LSB with respect to the 2.0 mA.
A monotonic converter is one which SYpplies an increase in current for each increment in the binary word. Typically, the MC3408 is monotonic for all values of reference current above
0.5 mA. The recommended range for operation with a de reference
current is 0.5 to 2.0 mA.
·
Circuit diagrams utilizing Motorola products are included as a means of illustrating _typical semiconductor applications; consequently. complete information sufficient for constr'uction purposes is not necessarily given. The information has been carefully checked and
is believed to ·be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semicond!Jctor devices described any license under the patent rights of Motorola Inc. or others.
@ MOTOROLA Semicondudor Produds ,Inc.
5-112
ORDERING INFORMATION
Device
MC3410L MC3410P MC3410CL MC3410CP MC3510L
Temperature Range
0°C to +70°C O"C to +70°C 0°C to +70°C
0°C to +10°c
-55°C to + 125°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP Ceramic DIP
Specifications and Applications Information.
TEN BIT D TO A CONVERTER
The MC3410 series devices are low-cost, high-accuracy monolithic D/A converter subsystems. Like their MC1408 series predecessors, they provide the logic controlled current switches, the R-2R resistor ladder network and output termination networks. The output buffer amplifier and reference voltage have been omitted from the circuit to allow greatest system speed, flexibiliby and lowest cost. This device is useful in industrial control and microprocessor based systems. · Relative Accuracy - ±0.05% Error Maximum
(MC3510and MC3410) · Fast Settling Time - 250 ns Typical · Noninverting Digital Inputs are MTTL and CMOS Compatible
(from 5 to 15 V CMOS) · Output Voltage Swing - +0.2 V to -2.5 V · High Speed Multiplying Input Slew Rate - 20 mA/µs · Standard Supply Voltages - +5 V and - 15 V · All Categories Guaranteed Monotonic · Reference Amplifier Internally Compensated
MC3410 MC3510 MC3410C
LASER TRIMMED
TEN BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX
CASE 690,07
P SUFFIX
(CERAMIC PACKAGE)
CASE 648-03
(PLASTIC PACKAGE) (MC3410, MC3410C ONLY)
PIN CONNECTIONS
·
TYPICAL APPLICATIONS
· Tracking A-to-D Converters
· Programmable Gain and Attenuation
· Successive Approximation A-to-D Converters· · Progr~mmable Power Supplies
· 3-Digit Panel fv'leters and DVM's
· Waveform Synth~sis
· Analog-Digital Multiplication · Digital-Digital Multiplication
· Sample and Hold
· Speech Compressiofl and Expansion
· Peak Detector
:· Sample Data Systems
""3.
'"'"'l
Digital Inputs
FIGURE 1 - 0-to-A TRANSFER CHARACTERISTICS
FIGURE 2 - TEN-BIT D/A CONVERTER
.
BLOCK DIAGRAM
~
E O r z w a: a:
::J () 2.0
r ~
r
::J 0
.? 4.0
(0000000000)
INPUT DIGITAL WORD
Current· switches
Ladder Terminators and
Trimming Networks
(1111111111)
R-2R Ladder
v{~f~(~+>'.+=::;::====:::;--r------,
15~~-·~
V ref(-)
Gnd
5-113
MC3410, MC3510, MC3410C
·
MAXIMUM RATINGS ITA= +25°C unless otherwise noted.)
0
R a t i ng
Symbol
Value
Unit
Power Supply Voltage
Vee
+7.0
Vdc
Vee
-18
Digital Input Voltage
V1
+15
Vdc
Applied Output Voltage
Vo
+0.7,-5.0
Vdc
Reference Current Reference Amplifier Inputs
IREF(16)
2.5
mA
VAeF
Vee. Vee
Vdc
Reference Amplifier Differential Inputs Operating Temperature Range
VREF(D)
0.7
Vdc
TA
·c
MC3510
-55 to +125
MC3410,C
Oto +70
Junction Temperature
TJ
oc
Ceramic Package
+175
Plastic Package
+150
ELECTRICAL CHARACTERISTICS !Vee= +5.0 Vdc, Vee= -15 Vdc,~= 2.0 mA, MC3510 TA= -55°C to +125°C.
MC3410 Series: TA= 0 to +70°C unless otherwise noted. All digital inputs at high logic level.I
Characteristic
Symbol
Min
Typ
Max
Unit
Relative Accuracy (Error relative to full scale lol TA= 25°c MC3510 MC3410 MC3410C
Relative Accuracy Temperature Drift (Relative to Full Scale lo) Monotonicity (TA.= 25°Cl
Settling Time to within !1/2 LSB (TA= 25°C) (All Bits Low to High)
Propagation Delay Time TA= +25°C
Output Full Scale Current Drift
Er
TC Er
-
ts tPLH tPHL TC lo
-·
-
±0.05
-
-
±0.05
-
-
±0.1
-
2.5
-
Monotonic to 10 Bits
-
250
-
-
35
--·
-
20
-
-
-20
--
%
PPM/0 c
-
ns ns PPMfC
Digital Input Logic Levels (All Bits) High Level, Logic "1" Low Level, Logic "O"
Digital Input Current (All Bits) High Level, V1H = 5.5V Low Level, V1L = 0.8V
Reference Input Bias Current (Pin 15)
Output Current Range
Output Current
Vref = 2.0,00 V, R1~ = 1000 n
Vdc
V1H
2.0
-
-
V1L
-
-
0.8
mA
l1H
-
-
0.04
l1L
-
0.05
0.4
IREF(15)
-
-1.0
-5.0
µA
IQR
0
4.0
5.0
mA
'o
mA
3.8
3.996
4.2
Output Current (All bits low)
MC3510; MC3410 MC3410C
lo(min)
-·
0
2.0
µA
-
0
4.0
Output Voltage Compliance (TA 25°C)
Er .;; 0.05% relative to FS -
MC3510, MC3410
Er ..: 0.10% relative to FS ~
MC3410C
Vo
Vdc
-
-
-2.5,+0.2
-2.5,+0.2
Reference Amplifier Slew Rate
Reference Amplifier Settling Time (0 ta 4.0 mA, ±0.1%)
SR lref
-
20
-
mA/µs
STIREF
-
2.0
-
µs
Output Current Power Supply Sensitivity MC3510, MC3410 MC3410C
Output Capacitance !Vo= 0)
Digital Input Capacitance (All Bits, Inputs High)
Power Supply Current (All Bits low)
Power Supply Voltage Range <TA= +25°c1
Power Consumption All Bits low All Bits high
PSRR(-)
-
0.003
O.Q1
%/%
-
0.003
0.02
Co
-
25
-
pF
c,
-
4.0
-
pF
'cc
-
+10
+18
mA
tee
-
-11.4
-20
VccR
+4.75
+5.0
+5.25
Vdc
VeeR
-14.25
-15
....:15.75
Pc
mW
-
-
220 200
-380
5·114
MC3410, MC3510, MC3410C
TEST CIRCUITS
FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUITS
Vi and 11 apply to inputsA1
A1
.thru A10
A2
The resistor tied to pin 1S is to temperature compensate the bias current and may not be necessary for all applications.
A3
A4 Digital AS Inputs A6
A7
1 where K => 2: r~f
and AN= "1" if AN is at high level AN= "O" if AN is at low level
AS
A9
Typical Values: A1S=A16=1k V ref(+) = +2.0 V Vref (--) = Gnd lo= 4.0 mA
rec Vee
14
MC3S10/ MC3410
16 R16
-116 -11s 1S R1S
Vref (+) Vref (-)
3 ..!2 Vo Output
,,,,................,,
--...,-
-0-
10-Bit
.,,....,,
Counter
,,...,
,~ ,........,
_.,........
_;.r...
FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT
MSB
"' A1
~
~
A2 A3
1- ..'.,._. A4
14-Bit
DI A Converter
(± 0.003%
0 to +10 V Output
-...".. AS
_;-" AG A7 -0 AS
A9 r-<?:-A10
LSB
MSB -" 4 ;:, s
_;5
Max Error)
_.,........
~ A14
A13 A12 A11
A16
-"
16
9SO ......
1y00)~
?~-2.S k
100 k
~or (1 V = 0.2S%) -=
~7 -~8
~9
-:10 -::::11 ;:,12 _;13
MC3S10/MC3410
14Vcc
f-<>-o Vref (+)
~ = 2V
"' 1 ~.:A
~El-:-
LSB
Vee
FIGURE 5 - SETTLING TIME
·
16 1k
1k
I 0.1µF
2.4 v
V1
RL For settling time 0.4 v ' - - - - + - - - - - - - - - - -
measurement.
1--<>-------.--0 (All bit switched O.? V
:t Vo low to high) Co.,; 2S pF
ts - 2SO ns Typical to± 1/2 LSB
Use RL to Gnd for Turn-Off Measurement
Vee
@ MOTOROLA Semiconductor Produc'fs Inc.
5-115
MC3410, MC3510, MC3410C
·
Vee 14
Me3S10/ Me3410
TEST CIRCUITS (Continued) FIGURE 6 - PROPAGATION DELAY TIME
1k
+2Vdc
1 k 10.1µF
-=
2.4V V1'
0.4V
For Propagation -1 Delay Time
-sov;:+JF=3r
Vee
Vee
FIGURE 7 - REFEREN.CE AMPLIFIER SETTLING TIME AND SLEW RATE
14
1 0.1µF
i
Vee
Vref (+) ....rl..:"" ~v
1k
l.;; 2SpF
I2.0V
V ref (+) 0 - - - - - - - - - - - - - 0.7V
0 ts= 2µs Typical to ±0.1%
Use AL= 2on to Gnd for Slew Rate Measurement
FIGURE 8 - POSITIVE Vref
FIGURE 9 - NEGATIVE Vref
A1 A2 A3 A4
AS
A6 A7
AS
A9 A10
Vee 14
Vee
R1S"' R16 ·
Vee
14
R16 A1
A2
A3
H>-JVll'v---o V ref (- l
A4
L...J
AS
A6
A7
AS
A9
R15"' R16
Vee
@ MOTOROLA Semiconduc'for Pr~duc'fs Inc.
5-116
MC3410, MC3510, MC3410C
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(maxl -TA Po(TAl - ROJA(Typl
Where· Po(TAl = Power Dissipation allowable at a given. operating ambient temperature. This must be greater than
the sum of the products of the supply voltages and supply currents at the-worst.case operating condition.
TJ(maxl =Maximum. Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum.Desired Operating Ambient Temperature
ROJA(Typl =Typical Thermal Resistance Junction to Ambient
FIGURE 10 - MC3410 10-BIT D/A CONVERTER EQUIVALENT CIRCUIT
12
13
·
CIRCUIT DESCRIPTION
The Me3410 consists of a reference current amplifier, a diffused R-2R ladder, a laser trimming network, and ten high-speed current switches. The trimming method employed makes it possible to improve the linearity attainable with modern dif· fusion technology by as much as a factor of ten so that a highly linear part results. The trim is performed by cutting aluminum links arranged to give incremental variations in voltage at the ladder termination amplifiers (See Figure 10). This yields a highly stable trim with no increase in fabrication complexity.
The switches are non-inverting in operation, so that a high' state on an input turns on the specific compon·ent of ou_tput current. The switches use ·current steering for speed, and inter-
face the R-2R ladder through unity gain feedback termination amplifiers, which provide low impedance terminations of equal voltage for all legs of the ladder.
The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to 'the current switches. The three least-significant bit switches derive their current through emitter scaling from the last leg of the ladder" The remaining current, equal to one LSB, is shunted to Vee at the LSB. switch. Therefore, the maximum output current is 1023/1024 of the reference amplifier current, or nominally 3.996 mA for a 2.000 mA reference input current.
5-117
MC3410, MC3510_, MC3410C
·
GENERAL INFORMATION
Reference Amplifier
The reference amplifier allows the user to provide a voltage and a resistor to Pin· 16 to convert the reference· voltage to a current. A current mirror doubles this reference current and feeds it to the A·2A ladder. Thus for a reference voltage of 2.0 Volts and 1 kn re$istor tied to Pin 16, the full-scale current is approximately 4.0 mA. The reference input current, 116, must flow into. Pin 16 regardless of the setup method or reference voltage polarity.
Cosmections for a positive reference voltage are shown in Figure 8. The reference voltage source supplies the full current 116. For bipolar refererence signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate A15 with only a small sacrifice in accuracy and temperature drift.
The reference amplifier is internally compensated with a 10 pF feed-forward capacitor, which gives it its high slew rate and fast settling time. Proper phase margin is maintained with all possible values of A16 and reference voltages which supply 2.0 mA reference current into Pin 16. The reference current can also be supplied by a high impedance current source of 2.0 mA. As R16 increases, the bandwidth of the amplifier decreases slightly and settling' time increases. For a current source with a dynamic output impedance of 1.0 MH, the bandwidth of the reference amplifier is approximately half what it is in the case of A16 = 1.0 k.11; and settling time is "" 10 µs. The reference amplifier phase· margin decreases as the current source value decreases in the case of a current source reference, so that the minimum reference current supplied from a current source is 0.5 mA for stability.
A negative reference voltage may be used if R16 is grounded and the reference voltage is applied to R15 as shown in Figure 9. A high input impedance is the main advantage of this method. The negative reference voltage must be at least 3 Volts above the Vee supply for proper operation. Bipolar input signals may be handled by connecting R 16_ to a positive voltage equal to the peak positive input level at Pin 15.
When a de reference voltage is used, capacitive bypass to ground is recommended. The 5·V logic supply is not recom· mended as a reference voltage. If a well regulated 5.0-V supply, which drives logic, is to be used as the reference, R16 should be decoupled by connecting it to the +5.0 V logic supply through another resistor and bypassing the junction of the two resistors with a 0.1 µF capacitor to ground.
Output Voltage Range
1.9 and 2.1 mA to produce a full scale output current of 3.996 mA. The relative accuracy test circuit is shown in Figure 4. The 14 bit D/A converter is calibrated for a full scale output of 3.996 mA. This is an optional step as the relative accuracy of the MC3410 is nearly constant between 3mAand 5 mAfull scale cur· rent. The MC3410 is calibrated at full scale with the 14-bit reference D/A by adjusting R 16 until the error voltage goes to zero. The counter is activated and the error band may be dis· played on an oscilloscope, detected by comparators, or stored on a peak detector.
Monotonicity
The MC3510, MC3410 and MC34.10C are all guaranteed to be monotonic at room temperature: This guarantees that for every increase in the input digital word, the output current either remains the same or increases, but never decreases. The MC3510 and MC3410 are typically monotonic over their respective temperature ranges. In the multiplying mode (when the reference current is varied), monotonicity is typically main· tained for all values of input reference current above 0.5 mA.
Settling Time
The worst case switching condition occurs when all bits are switched "on," which corresponds to a low-to-high transition for all bits. This time is typically 250 ns for the output to settle to within ± 112 LSB for 10-bit accuracy, and 200 ns for 8-bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (< 0.7 Volt) swing and the external output capacitance is under 25 pF.
The major carry (MSB off-to-on, all others on·to·ofO settles in approximately the same time as when all bits are switched off·to·on.
The slowest switches are bit A10 (LSB) and bit A9, which turn on and settle in typically 200 ns, and turn off in 100 ns.
In the test circuit of Figure 5, the output voltage is internally clamped in the MC3410 at about 0.7 Volts above ground. The output is thus limited to a 0.7 Volt swing. If a load resistor of 625 Ohms is connected to ground, allowing the output to swing to -2.5 Volts, tl:le settling time increases to 1.5 µs.
Extra care must be taken in board layout as this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100µF supply bypassin;i, and mini· mum scope lead length are all. necessary.
The voltage on Pin 3 is restricted to a range of -2.5 V to +o.2 V due to the current switching methods employed in the MC3410. When a c11rrent switch is turned off, the positive volt· age at the output terminal can turn on the output diode and in· crease the output current. When a current switch is on, the nega· tive output voltage range is restricted to the point at which the low current device of the termination amplifier Darlington be· gins to saturate, resulting in a decrease in output current.
The output voltage compliance is guaranteed at 25°C. Note from Figure 14 that the output compliance of the MC3410 is nearly constant over temperature.
Accuracy
MC3510 TERMINOLOGY
RELATIVE ACCURACY - Maximum output deviation from the straight line connecting zero and full scale, expressed as a percentage of full scale.
RELATIVE ACCURACY DRIFT - The average change in linearity error that will occur with a change in ambient temperature, expressed in parts per million of full scale per. degree C.
MONOTONICITY - For every increase in the input digital word, the output current either remains the same or increases.
SETTLING TIME -- The elapsed time from the input transition until the output has settled within an error band about its
Absolute accuracy is a measure of each output current level with respect to its intended value. It is dependent upon relative accuracy and full scale current drift. Relative accuracy, or linearity, is the measure of each output current with respect to its intended fraction of the full scale current. The relative accu· racy of the MC3410 is fairly constant owr temperature due to the excellent temperature tracking, of the diffused resistors·. The full scale current from the reference amplifier may drift with temperature causing a change in the absolute accuracy. However, the MC3410 has a low full scale current drift with temperature.
The MC3510 and MC3410 are guaranteed accurate to within ±1/2 LSB at 25°C and at a full scale current of 3.996 mA. Input reference current to Pin 16 is guaranteed to be between
final value. OUTPUT FULL SCALE CURRENT DRIFT - The average
change in full scale current between 25° C and either tempera· ture extreme, expressed in parts per·million of full scale per degree C. REFERENCE AMPLIFIER SLEW RATE - The maximum rate of change of the full scale output current expressed in milliamperes per microsecond. OUTPUT VOLTAGE COMPLIANCE - The maximum voltage that can be applied to the output pin so that the specified change in output current is not exceeded. POWER SUPPLY SENSITIVITY - The change in full scale current caused by a change in Vee, expressed as a percent of full scale current per percent change in VEE·
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ __..
5-118
MC3410, MC3510, MC3410C
TYPICAL CHARACTERISTICS
FIGURE 11 - LOGIC INPUT CURRENT versus INPUT VOLTAGE
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Vi. LOGIC INPUT VOLTAGE !VOLTS) '
FIGURE 12 - TRANSFER CHARACTERISTIC versus TEMPERATURE
v v 2.0
7
1.5 ,___.__.......,_
<_g .... ~ 1.0
cc :::>
(.)
7 V AJthru ~9 th~eshal1ds
_,___.__,_.....___,___,,_...___,_lie within the range for A1andA10
I
I-
~ ~ 0.5
0
:?
(0-4.0 µA)
J _l
0
l
0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Vt. LOGIC INPUT VOLTAGE (VOLTS)
FIGURE 13 - OUTPUT CURRENT versus OUTPUT VOLTAGE (Output Compliance)
4.0
1
. A1-A10 High (V1H = 2.0 V)
:g- 3.0
i.... 2.0
~ 1.0
r/-
i
~
7
0
p
J
]
d
L".r' A~A 10 NIL~ 0.8 V)
-1.0
-8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
1.0 2.0
Vo. OUTPUT VOLTAGE (VOLTS)
FIGURE 14 - MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE
_,(/)
I-
:0:::
w
<.!) <(
~ -1.01---+--+--+--+--+--+--+--+
0
>
I-
~
li5- -2.0 l--+--+--1---+-+--+--+--+
0 >
-3.0 '---'---l.--'---,l--,...,___.,...--'--
-75 -50 -25
25 50 75 100 125
TEMPERATURE (°C)
FIGURE 15 - REFERENCE AMPLIFIER FREQUENCY RESPONSE '
8.o~~-~~~~~~~--~-~~-~~
6.0 f-----+---11---+--+-+-lf-++H----+--+12:-~-=s+--4--+-4-~
~ It 4.0 l----t-t---+---1--+-+-++++---+---l--+-4--+-+-+4-+4
2.0 a>
l----t-t---+----1--+-+-++-+t~-+--+--+---i[\f+--l-t--+-+-H
_.µ-H- I\ .~... ~~ ~ l i5 -2.01--+-l---+-+-+-l-+-f~.e:::---+-"""rs:k--+-+,__.-++f-H
~ -4.0 l----t-t----t----1--+-+-++++---+--+-.-"l.~---i---1~.\-+-+-+-H
~ - 6.0 A Curve
B Curve
~ l\ . ·
cc -8.0 Large Signal BW t- Small-Signal BW --+--+---+--<U~_._......_._.....
-10
r0 = 20 n
Vref(+)=2Vp.p
r0 =. 100 H -vref(+)=50mVp-p-
R15 = R16 = 1.0 kf\
Vjref(-)J=OVJ ~l\+-
_12 Centered at +1.0V Centered at +200mv
I''
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
I, FREQUENCY (MHz)
FIGURE 16 - TYPICAL POWER SUPPL V CURRENTS versus TEMPERATURE
<_g
(/).
i
+--
t--t-- ,__..._ _,___._~ ____,__I_E_E~t----
1
--~
~ it ~
cc
~
;<>. 9.01--+--+--I---+-+--+--+--+
~ ~·
~~75,---~50:----~2~5----!,__~2~5----:5~0-~75,--~10~0--'125
TEMPERATURE ('Cl
@ MOTOROLA Serniconductor· Product· Inc.
5-119
·
MC3410, MC3510, MC3410C
·
APPLICATIONS INFORMATION
Voltage outputs are obtainable with this ci.rcuit ~hich uses an exte~nal operational amplifier as a curre'nt to voltage converter. This configuration automatically keeps the output of the MC3410 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational, amplifier. In addition, 'the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.
Note that this configuration results in a positive output volt· age only, the magnitude of which is dependent on the digital input.
The following circuit shows how the MLM301A can be· used in ·a feedforward mode resu:ting 'in a full scale settling time on the c;>rder of 2.0 µs.
FIGURE 19 - EXTENDING POSITIVE VOLTAGE RANGE
MC3410
FIGURE 17
65 pF
(To Pin 3 of MC34.10)
5.1 k
+15 v
An alternative method is to use the MC1539 and input
compensation. Response of this circuit· is also on the order of 2.0 µs. See Motorola Application Note AN-459 for more details on this concept.
VEE
-15 v
The output voltage range for this circuit is 0 volts to BVcso of the transistor. Variations in beta must be. considered for wide temperature range applications. An inverted output waveform may be olotained by using a load resistor from a positive refer-
0
ence voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage SI/Ying, because Pin 3 is held at a constant voltage. The resistor (R) to Vee maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.
FIGURE 20 - OUTPUT CUR~ENT TO VOLTAGE CONVERSION
FIGURE 18
~
(To Pin 3 of MC3410)
240
0.2 µF
+15 v
35 pF 5k 10k
10 Volts= 4mA
2'5k
A1
Vee R1 2.5 k R2
Vref = 5 Volt,s
Full Scale Adjust
150pF
Digital
Inputs
MC3410
CMOS
or TTL
Compatible
Vo
Vo A10
The positive voltage range may be extended. by cascading
a the output with high beta common base transistor, Q1. as
shown.
for 10 volt fullscale calibration
V 0
=2(2.5 k) S V I [1023]
2.5k
ots1024
v 0 = 10 Volts [0.9990)
@ MOTOROLA Semiconducf:or Producf:s Inc.
5-120
MC3410, MC3510, MC3410C
APPLICATIONS INFORMATION (Continued)
Bipolar or Negative Output Voltage
The circuit in Figure 21.is a variation of the standard output
voltage circuit in Figure 20 A negative or·offset biliary output
may be obtained by sourcing current from the reference into
the output thro.ugh RB· If RB allows 2 mA (R 9.= 2.5 k.11 from 5
Volts) then 1000000000 input will generate zero output
voltage.
·
FIGURE 21 - OFFSET BINARY OR BIPOLAR DAC
Vee
+5 v
Vref
14
R1 2.5k
Rs
16
15
Successive Approximation A to D
The fastest and most efficient means of A to D conversion using D · to A convertors is successive approximation (SA). Similar in appearance to staircase devices, the SA converter is capable of 100 times faster conversions for a 10-bit result. A complete 10-bit SA converter using MC3410 and MC14559/49 successive approximation registers is shown in Figure 22. The complexity which results in higher conversion speeds is contained in the MC14559/49 registers.. Quite simply, ~he register compares the DAC output resulting from activating each bit with the input voltage. This is done starting with most significant bit and after 10 comparisons generates the 10-bit binary
1
output representing that input. The accuracy of the conversion is fixed by the accuracy of the MC3410 and is not dependent on tolerances .of the other components. An EOC cutout is available and can be used to latch the parallel output or to synchronize the serial output which is also available. For more details on SA converters, see AN-716.
MC3410 3
15 v
Vee
For Offset Binary Output From +5 V to -5 V
Ro~ 2.5 k.ll R 6 ;,, 2.5 ~n
-15 v
L\2 rn v 0
-~Vrefr/A1
- R1
+ 4A2
+
A3 a+
1A64
+
3A.25
+
6A46
+
A7
+ 2A568+A519'2+A101204) - R2RB1J
·
1 FIGURE 22 - SUCCESSIVE APPROXIMATION CONVERTER USING MC3410
Free
~
eoc
Binary Output
@ MOTOROLA Semiconducf:or Producf:s Inc.
Serial Data Out
5.121
MC3410, MC3510, MC3410C
Staircase A to D
APPLICATIONS INFORMATION (Continued)
If high conversion speed is not required, a staircase A to D convertor can be built for somewhat lower cost. A complete staircase AID convertor is shown in Figure 23. Here the complicated SA registers are replaced with simple binary counters. Wjth an input voltage applied, the binary counter is reset by the convert command pulse and the begin accumulating counts. The DAC output steps upward until the comparator detects that the input is equal to· the DAC output. The counters are disabled and the conversion result is held at the output until the circuit is reset by the convert comn'land input.
One advantage of staircase convertors is the ease with which BCD outputs may be obtained. Figure 24 shows a 3-digit panel meter using the staircase technique and an MC14553 3-decade counter. The circuit function is similar to Figure 23 but Multiplexed BCD output is available from the MC14553 counters. Parallel BCD may be obtained with equal ease using
the MC14518 two decade CMOS counters. In both these staircase designs the system accuracy is deter-
mined by the specified accuracy of the MC3410.
FIGURE 23 - 1.0-BIT STAIRCASE A to D USING MC3410
·
11 15
-15V
Vee
6 4 MSB
LSB
FIGURE 24 - 3-DIGIT DVM USING MC3410
Overrange Binary Output MSB
5-122
MC3410, MC3510, MC3410C
APPLICATIONS INFORMATION (Continued)
FIGURE 25 - ALTERNATE APPROACH STAIRCASE A TOD
+5 v
500
+5 v
<Vrefl
15 2.5 k
+5 v
14
4 5 6 7 MC3410 8 9 10 11 12 13
-=
Over range
15 14 12 13
4
10
c
MC14040
5 6 7 9
-15 v
MSB
LSB
Convert Command
·
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ ___,
5-123
MC3410, MC3510, MC3410C
APPLICATIONS INFORMATION (Continued) BCD D to A <;:onverter
BCD output A to D conversions are most easily accomplished by accumulating the digital results in two different counters, but that concept does not extend to BCD Oto A techniques. Using the circuit in Figure 26 a three-digit BCD number can be con· verted to a 10-bit accurate voltage. The MC14008's perform the combinational BCD-to-Binary conversion. The accuracy of this circuit is also solely dependent on the accuracy of the MC3410.
FIGURE 26 - 3-DECADE BCD DAC
·
i M
~
BOO
~:CO 15
1~
1
S4 t--1_3_--+---+--------+-------=---ii
~ 2
400n--+--e;;;;.-1B3
200
3 A3
~
S3
t
12 ---
-
+
-
-
-
t
,
_
_
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
"
'
"
"
i
13
+5 v
{ 100
~~ ~ S 2 ~1..:..1--+--+--.
81
Hl:~~--+--. 20n----...1-5....
14 '"""""'13-+----'"--f
; l 10
SJ 12
1:10~.-1 :
S2 11
·
S1 10
9
-=
10
s11----+----+---------~
@ MOTOROLA Semiconductor Produc'fs Inc.
5-124
ORDERING INFORMATION
Device
MC3416L MC3416P
Temperature Range
O"C to +10°c 0°c to +70°C
Package
Ceramic DIP Plastic DIP
MC3416
Specifications and Applications Information
4 x 4 x 2 CROSSPOINT SWITCH
The MC3416 consists of a pair of 4 x 4 matrices of dielectrically isolated SCR's, triggered by a common selection matrix. The device is intended for switching analog signals in communication systems. The use of· dielectric isolation processing provides excellent crosstalk isolation while maintaining minimal insertion loss.
The selection array consists of PNP transistors with the input thresholds compatible with either Mc;MOS or MTTL ~ogic families.
The MC3416 is a monolithic pin-for-pin replacement for the discontinued MCBH7601 hybrid device.
· Low Series Resistance· - r0 n = 6.0 Ohms (Typ) @ IAK =20 mA · High Series Resistance - roff = 100 Mn (Min)
· Pin Compatible with MCBH7601 or RC4444 · High Breakdown V~ltage - 30 V (Typ) · Selection Matrix Compatible with TTL or CMOS Logic Levels · Dielectric Isolation Insures Low Crosstalk and Low Insertion Loss
4 x 4 x 2 CROSSPOINT SWITCH
DIELECTRICALLY ISOLATED MONOLITHIC
INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 623
~~
PSUFFIX PLASTIC PACKAGE
CASE 649
FIGURE 1 - REPRESENTATIVE CELL SCHEMATIC (Repeated 16 Times)
Anode A1
Anode A2
(B1,C1,D1
(B2,C2,D2
Row Select are Equivalent) are Equivalent)
w~ ( X, Y,Z are ,Equivalent) ·
Ca:~de'
SCR1
Q
1 . SCR2
(X1, Y1,:z1 are Equivalent)
Cathode W2 ·
D 1
02 (X2~ Y2,Z2 are Equivalent)
Column Select A
(B,C,D are Equivalent)
FIGURE 2- MATRIX CONFIGURATION AND NOMENCLATURE (X lnliicates a Possible Connection)
w
1 "2,...
A
1 2 ( Q
.
.L.
B Columns C
1 2
1 2
? ?
Q I
.~
.L~
L
lL
D
. ~ 2?'
,,.1 l Associated Pairs
,,.~
Triggered
Simultaneously
x
1 L
2,... .L
L~
i.l
.L
.L
.... ~
.,,.l
Rows .~
L y 1 2 "-
Lt
,,..
lA I./
, .... ...L
...l~
z 2 .... l..l
.~
_,I
_,t_
PIN CONNECTIONS
Anode A1
Cathode Y2
Row Select
z
Cathode Z2
Column Select A
Column Select B
Column SalectC
Column SelectD
Cathode Z1
Row Select y
Cathode YI
Anode 02
Cathode X2
Row Select
x
c.athoda W2
Anode A2
Anode 81
Anode 82
Anode
C1 Anode
C2 Anode
01 Cothodo
WI Row Select
w
Cethode XI
·
·5-125
MC3416
·
MAXIMUM RATINGS (Unless otherwise noted.TA"' 25°CI
Rating
Symbol
Value
Anode-Cathode Current - Continuous (only one SCR at a time)
IAK
150
Enable Current Operating Ambient Temperature Range
I En
10
TA
Oto +70
Storage Temperature Range Junction Temperature Range
Tst!L TJ
-65 to +150 150°c
ELECTRICAL CHARACTERISTICS !Unless otherwise noted, TA= o to 10°c1
Characteristic
Symbol
Min
Anode Cathode Breakdown Voltage llAK =25µA)
Cathode-Anode Breakdown Voltage llKA = 25µA)
Base-Cathode Breakdown Voltage llsK = 25µA)
Cathode-Base Breakdown Voltage llKB = 25µA)
Base-Emitter Breakdown Voltage lleE = 25µA)
Emitter-Cathode Breakdown. Voltage llEK = 25µA)
OFF State Resistance (VAK = 10V)
Dynamic ON Resistance (Center Current = 10 mA) (See Figure Bl (Center Current = 20 mA)
Holding Current (See Figure 101
Enable Current (VBE = 1.5 VI (See Figure 71
Anode-Cathode ON Voltage llAK = 10mAI (IAK =20 mAI
Gate Sharing Current Ratio @ Cathodes (Under Select Conditions with Anodes Open) (See Figure 3)
Inhibit Voltage (Ve = 3.0 VI (See Figure 91
Inhibit Current (Vs = 3.0 VI (See Figure 91
OFF State Capacitance (V AK = 0 VI ( See Figure 61
Turn-ON Time (See Figure 41
Minimum Voltage Ramp (Which Could Fire the SCA Under Transient Conditions)
BVAK
25
BVKA
25
BVsK
25
BVKB
25
BVse
25
BVeK
25
roff
100
ron 4.0
2.0
IH
0.7
I En
4.0
VAK
-
-
Gsh
0.8
Vinh
-
linh
-
Coff
-
ton
-
dv/dt
800
FIGURE 3 - TEST CIRCUIT
Unit mA
mA oc oc oc
Max
-
-
-
12 10 3.0
-
1.0 1.1 1.25
0.3
0.1
2.0
1.0
-
Unit Vdc Vdc Vdc Vdc Vdc Vdc MO
n
mA mA
v
mA/mA
v
mA pF µs V/µs
r
,;+
11
H- Gsh =
@ MOTOROLA Semiconductor Products Int:.
5-126
MC3416
FIGURE 4 - TEST CIRCUIT FOR dv/dt AND ton C l o c k < > - - - - - - - - - - - - - - - - -...
___ Ve Scope
----+----+----o9 Ve Scope
Each % MC7400
FIGURE 5 -TEST WAVEFORMS FOR dv/dt AND ton
6.25 µs--! -t-r--6.25 µs A B
Inputs
FIGURE 7 - ENABLE CURRENT (Both SCR's Must Turn On)
10V
le
10V
R
L
VL and VJ +10 V
+5 v
+0.8 v-----+-~
I
I I
- - / I dvtdt
<+8.5 v
- I Vc'and Ve
Output
<+2.5V-
I I
· t 0 n <; 1 µs
(at 50% AmpIitude Points)
dv/dt Test
SCR Must
Time<; 25 µs Remain OFF
for dv/dt < 800 V/µs
FIGURE 6-TESTCIRCUIT FOR OFF·STATE CAPACITANCE
FIGURE 8 - THE CROSSPOINT SCR l·V CHARACTERISTIC llG · OI
It
J Breakdown
x!..--- 'on .= y~
/Voltage
----------------·
-v
FIGURE 9 - INHIBIT VOLTAGE AND INHIBIT CUR RENT (Both SCR.'s Must Remain OFF)
Bias L/C
Meter· Low
Device Under Test
All Device Pins Other Than Pins Under Test Are Connected to Test Equipment Ground Terminal
·Three-Terminal, Guarded, Differential Capacitance Meter
·
@ MOTOROLA Se,.,iconducf:or Products Inc. ________.
5-127
MC3416
·
TYPICAL CHARACTERISTICS
FIGURE 10 - HOLDING CURRENT versus AMBIENT TEMPERATURE
2.0 .---...--...--...---...---...---...---...---...---,__~
FIGURE 11 - ANODE-CATHODE ON VOLTAGE versus CURRENT AND TEMPERATURE
1.1
11.6
~~ 1.i2-1----tt-:r:----l+---+-~---++t----+-_-·--+=~---"=+==---++---+--+-+----++----------1i
B
~
(!I
z
§ o.8i---+---+---+--+--+--+--+--+--+----1
~
~
0.4t---+---+---+--+--+--+--+--+--+----I
<n !:i
:0::. ~ 0.91--t,,..<~+--=~=-t--+--±--"F"'--+--+------i
~g 0 . 8 1 - - - + - - " " " " - + - - + - - + - - + - - + - - - + - - - + - - - - - !
z
<(
"": 0.71---+--+--+--+--+--+--+---+---+-----!
o..__..__..__.,.__...__...__ _.__ _.__ _.__ _.____.
-10
10 20 30 40 50 60 70 80 90
TA, AMBIENT TEMPERATURE (DC)
OL-_....__....__...__...__...__ _.__ _.__ _.__ _._____. 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
IAK. ANODE-CATHODE CURRENT (mA)
FIGURE 12 - DIFFERENCE IN ANODE-CATHODE ON VOLTAGE (Between Associate Pairs of SCR's) versus ANODE-CATHODE CURRENT
±100..---..---..---...--...--...--...--...--...---...--____,
±SDt---+---+-'---+---+---+--+--+--+--+---t
>~ ±Wt---+---+---+--+--+--+--+--+--+-----1
w
~
0 ±40t---+---+---+--+--+--+--+--+--+-----! >
~ ± 2 0 t - - - + - - - + - - - + - - + - - + - - + - - + - - + - - + - - - - : : : : ;
12 14 16 IAK. ANDDE·CATHDDE CURRENT (mA)
18 20
FIGURE 13- OFF-STATE CAPACITANCE versus ANODE·
-
CATHODE VOLTAGE
1.0
uc... 0.9
uw 0.8
z
<(
~ c::;
0.7
~ 0.6
;:3
w 0.5
~
<( ~
0.4
t-t-~
-..... ~
H ~~ ........
0.3
* 0.2
u 0.1
0 0.1 0.2
0.5 1.0 2.0
5.0 10 20
50 100
VAK. ANODE-CATHODE VOLTAGE (VOLTS)
FiGURE 14 - DYNAMIC ON RESISTANCE versus ANODE· CATHODE CURRENT
14
12
~"'
uwz 10 ~ 8.0
~
~ 6.0
-.,
:IE
i---t--t-~+---+---+--+--+--+--+-----4
~ 4.0
>
0
~ 2.0
0 D 2.0 4.0 6.0 8.0 10 12 14 16 IAK. ANODE-CATHODE CUR RENT (mA)
18 20
FIGURE 15 - DYNAMIC ON RESISTANCE versus AMBIENT TEMPERATURE
1or--...--...--...---...---T--...---_j_.-.1~-~-~-~
! 8.0 f--t;,....__.-f".--i=-+j--1--+!-r-l-+. i_--_l+A_K_=_lO+m_A_+--+---i
u z
~~ 6·0 r=1:1;;1=::r=:tIA=K~= 2~0 m~A ;J=J=J
-~ 4.0 t---+---+---+--+--+--+--+--+--+-----1 ~ ;;p; .o
-10
10 20 30 40 50 60 70 80 90
TA. AMBIENT TEMPERATU R.E (DC)
® fl/IOTOROLA Sel'niconductor Products Inc.
5-128
MC3416
FIGURE 16 - FEEDTHROUGH versus SIGNAL FREQUENCY
-60r---..--..,.-~~~-~-~~~~-~~~~~
-70t----+-+--+-+-+-+++1---+-1--+-+-++1H+----+--+--+--+-+++-H
vY i~
~~
g~ -90t------,---+-+--+-+-+-++++---+-l--+-+-++IH+-v-""""'-+--+--+-+++-H
~
~
~· - 100 t----+-+--+-+-+-++++---+-h-.-+1---..b.,o.fi-IH+----+--+--+-++++-H
o
ttl
I~I. ,/" (SeeFigure18)
... -110 1--~~t-+-t--J-++H-v~--1-":.J-+--+--+-+-H+lf----+--+-+-+++++l
-120
t----+-+--~"f~-+f"+++--+-1--+-+-++1-++----+--+--+--+-++++l
~
-130 --~~~~~-~-~~~~-~~~~~u
0.1
0.5 1.0
5.0 10
50 100
SIGNAL FREQUENCY (kHz)
FIGURE 17 - CROSSTALK versus SIGNAL FREQUENCY -60..-----r-.-r-r"T"TTTT---r---r--r--,-,...,........---..--.--..-........,......,
-70t---+-+-<-+-+++++----+----+---+-+-<>-+-+-++---+----+--+-+++111'1'*'
i vi~ -80t---t--t-t-+-t-t-+t+--+--t-+-+-IH-+-t+---+---+-r71l->l"++t-ti
L 3 -90t---+--+-f-l-+++t+---+---l-+-+-IH-+++---17i-..o.,,t.+-1-+++1-H
~~-100 ~ (See Figure 19)
-110 1--~f--t--+-+-t-H+t----+v~r"'"_,_-+-1-++++---+--+--+-+-+++++
-120
1---+--+-+-+~l'i'vl----+--+++++t-++--+--+-+-++++H
~
SIGNAL FREQUENCY (kHz)
FIGURE 18 - TEST CIRCUIT FOR FEEDTHROUGH versus FREQUENCY
600
~
600
Wave Analizer
IL __ JI U2 TA= 25°C, v; = 12 dBm, Crosspoints Off Feedthrough = 20 Log10 (v0 /v;)
FIGURE 19 - TEST CIRCUIT FOR CROSSTALK versus FREQUENCY
·
600
tJ
600
Wave Analizer
LL __ JI UB
TA = 25°C, v; = 12 dBm, Crosspoints On Crosstalk= 20 Log10 (v0 2/v0 1l
@ MOTOROLA S<>n>iConductor Products Inc.
5-129
I
s:
(")
w
~ ....
0)
@
~
a
~
~
~
(I)
<fl
~
w
0
"a3n·
= t
,,..a(..')..
a..
t
.(.')..
flt
S'
~
Anode A1
Anode Anode
A2
81
An8o2de AnCo1de
Anode Anode C2 01
Anode 02
'Tl
Cathode
Q
W2
c
. . . . ........ --;-~-r-~~-r-~~ -t~--t-~~+-~~ ---l~-+~~--l-~~_._~l-..J22
21 m
~
I
,,21
m
21
m
Cathode X2
zm(I)
-f
..._-r---r~~t-~__..--jr---t-~--t~~.._-+-~l----....:_-+-~--J~J_j24
~
< m
~
:r
m
Cathode V2
~
n
c
2 ~--t-~--t-~~--t1--~---<----t-~--t-~~--t~~---<---.~--1-~~--1~~~----t---1
i
>21
i:
Cathode Z2
.__~~~~-r-~-+~~~~--!.j-~~+---~~~~-1-~~.____J4
Column Select
A
Column Select
8
Column
Select
c
Column Select
0
MC3416
TELEPHONE APPLICATION OF THE CROSSPOINT SWITCH
The MC3416 crosspoint switch is designed to provide a low-loss analog switching element for telephony signals. It can be addressed and controlled from standard binary decoders and is CMOS compatible. With proper system organization the MC3416 can significantly reduce the size and cost of existing crosspoint matrices.
SIGNAL PATH CONSIDERATIONS The MC3416 is a balanced 4 x 4 2-wire crosspoint array.
It is ideal for balanced transmission systems, but may be applied effectively in a number of single ended applications. Multiple chips may be interconnected to form larger crosspoint arrays. The major design constraint in usi'ng SCR crosspoints is that a forward de current must be main·
tained through the SCR to retain an ac signal path. This requires that each subscriber-input to the array be capable of sourcing de current as well as its ac signal. With each subscriber acting as a de source, each trunk output then acts as a current sink. The instrument-to-trunk connection in Figure 21 shows this configuration. However, with each subscriber acting as a de source, some method of interconnecting them without a trunk must be provided. Such a local or intercom termination is shown in Figure 22. Here both subscribers source de current and exchange ac signals. The central current sink accepts current from both subscribers while the high output impedance of the current sink does not disturb the system.
These configurations are system compatible. The de
FIGURE 21 - INSTRUMENT-TO-TRUNK CONNECTION
Emitter Selects
+15
McMOS Outputs'
'
Operated From
+15V Power Supply
_ _,..__ _....__._,5 Volts
McMOS Ouptuts Base Selects
FIGURE 22 -TYPICAL INSTRUMENT TO INSTRUMENT CONNECTION
----e-----------------------'----------1~----4+15V
Emitter Selects are Active High McMOS Outputs
·
Disconnect Enable
1 k
Base Selects Are Active Low McMOS Outputs
All McMOS Logic Operated From +15V
Power Supply ·
500
MC3416
·
current restriction is not a restriction in the design of an efficient crosspo.int array. Because of the current sink terminations, a signal path may use differing numbers of crosspoints in any connection or in two sides of the same connection further relaxing restrictions in array design.
Figure 23 demonstrates circuit operation. S1. S2, and S3 are open. The Crosspoint SCR·s are off as they have no gate drive or de current path through S1. By closing S2 and S3, gate drive is provided, but the SCR's still remain off as there is no de current path to hold them on. Close S1 and the circuit ·is enabled, but with S2 and S3 off there is still no signal path. Closing S2 and S3 with S1 closed - current is injected into both gates and they switch on. DC current through RL splits around the center·tapped winding and flows through each SCR, back through the lower winding and through S1 to ground. If S2 and S3 are opened, that · current path still remains and the SC Rs remain on. If an ac signal is injected at' either G1 or G2, it will be transmitted to the other signal port with negligible loss in the SC R's. To disconnect the ac signal path the SCR's must be commutated off. By opening S1 th'e de current path is inter-
rupted and the SCR's switch off. The ac signal path is dis· connected. With S1 closed the circuit is enabled and may be addressed again from S2 and S3. This circuit demon· strates a balanced transmission configuration. The trans· .mission characteristics of the SCR 's simulate a relay con· tact in that the ac signal does not incur a contact voltage drop across the crosspoint. The memory characteristics of the crosspoint are demonstrated by the selective application of S1, S2, and S3.
The selection of RL is governed by the power supply voltage and the desired de current. If 10 mA is to flow
through each SCR then RL must pass 20 mA. Thus, (Vee - VAK)IR L = 20 mA. The selection of Rp is governed by the characteristics for crosspoint turn on. Adequate enable current must be injected into the column select and Rp should drop at least 1.5 Volts. The PNP transistor has a typical gain of one. Thus, Rp should pass at least 2 mA to provide 4 mA column select current.
.c:GJ2
FIGURE 23- CROSSPOINT OPERATION DEMONSTRA:noN CIRCUIT
Vee
S1 S2 S3
x ON
OFF
x ON OFF
LINE CONDITION Enabled, Not Connected Ejnabled, Not Connected
A1
ON ON ON
Addressed and Connected
ON x x
G1 Connected to G2
OFF x x
Disconnected.
X = irrelevant Ap
W1
ADDRESSING CONSIDERATIONS
The MC3416 crosspoint switch is addressed by selecting and turning on the PNP transistor that controls the SCA pair desired. The drive requirements of the MC3416 can be met with standard McMOS outputs. A particular crosspoint is addressed by putting a logical "1" on the emitter and a logical "O" on the base of the appropriate transistor. A resistor in the base circuit of the transistor is required to limit the current and must also drop 1.5 Volts to assure forward bias of the two diodes in the collector circuits.
The gate current required for SCR turn on is 1 mA typically. The McMOS one-6f-n decoders listed in Table I provide both active high and active low outputs and are well suited for standard addressing organizations. The major design constraint in organizing the addressing structure is that any signal path which is to be addressed must create a de path from a source to a sink. If that path requires two crosspoints they must be addressed simultaneously. Of course, once the path is selected, the addressing hardware is free to initiate other signal paths. To meet the de path
® MOTOROLA Se,.,,iconductor Products Inc. _______....
5-132
MC3416
APPLICATIONS INFORMATION (continued)
requirement, crosspoint arrays should be designed in blocks
such that any given de path requires only one crosspoint per block. A signal path, however, may still use two cross. points in the same block by sequentially addressing two de paths to the same terminator. For example, the left or right pairs of crosspoints in Figure 22 must be addressed simultaneously but the left pair may be addressed in sequence after addressing the right pair. This is not a difficult constraint to meet and it does not require unnecessary addressing hardware.
IDool BiMOf " 1 of 4 4-bit latch/4 to 16 BCD to Decimal Decode
TABLE I
Active High Outputs MC14555 MC14514 MC14028
Active Low Outputs MC14_556 MC14515
DISCONNECT TECHNIQUES Since the crosspoint swi~ch maintains signal paths by
keeping de currents through active SCR's, disconnects are easily accomplished by interrupting the de current path. This can be done anywhere in the circuit, but if the disconnect is done at the terminator then all signal paths established to that terminator are broken simultaneously. In both Figures 21 and 22 this is done by turning off the current sink circuit with a McMOS buffer gate. MC14049 or MC14050 buffers will drive the transistor switch. Once a disconnect is completed, the terminator may be re-enabled and used for another call. Usage of the terminators may be easily monitored with optoelectronic couplers in the collectors of the current sinks without disturbing transmissi~n characteristics.
See Application Note AN-760 for additional applications suggestions.
·
THERMAL INFORMATION
The maximum power consumption an integrated circuit
can tolerate at a given operating ambient temperature can
be found from the equation:
·
TJ(maxl -TA
PD(TAl = R{)JA(Typ)
Where: PD(TA) = Power Dissipation allowable at a given operating ambient temperature. This must be greater than
the sum of the products of the supply voltages and sLJpply currents at the worst case operating condition.
TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
R{)JA(Typ) =Typical Thermal Resistance Junction to Ambient
Circu;t diagrams utilizing Motorola products are included. as a means of illustratjng typical semiconductor applications; consequently, complete information s4fficient for construction purposes 1s not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However. no respons1b1l1ty is assumed for inaccuracies. Furthermore. such information does not convey to-. the purchaser of the semic'onductor devices described any license under the patent rights of Motorola Inc. or others.
® MOTORO&.A Senoiconductor Products Inc. --------'
5-133
MC3417 MC3418
·
Advance In.formation
CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR
· Encode and Decode Functions on the Sarne Chip with a Digital Input for Selection
· Utilization of Compatible 12L - Linear Bipolar Technology
· CMOS Compatible Digital Output
Vee
· Digital Input Threshold Selectable (-- reference provided
on chip)
2
· MC3417 Has a 3 Bit Algorithm (General Communications)
· MC3418 Has a 4 Bit Algorithm (Commercial Telephone)
External Components Required: · Integrating Network - Typically 1 ms Time Constant · Syllabic Filter - Typically 5 ms Time Constant ~ "Minimum Step Size Adjust" Resistor
· Gain Control Resistor · Analog Input Capacitor and Resistor for Level Shifting if Input
Signal Is Not Centered at Vee
2
CVSD BLOCK DIAGRAM INCLUDING EXTERNAL COMPONENTS
To Vcc12 Encode/
Decode Analog Input
o-j,i--.--v-r---; "
Digital Input
Clock
Vee
Syllabic Rp Filter
l---'--+--<>--11-iRs Min Step Size
CONTINUOUSLY VARIABLE SLOPE DELTA
MODULATOR/DEMO~ULATOR
LASER-TRIMMED INTEGRATED CIRCUIT
LSUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS
Analog Input
Analog Feedback
Syllabic Filter
Gain Control 4
Ref Input(+)
Filter Input(-) 6
Analog Output
Vee 8
16 Vee
Encode/
16 i5iCode
14 Clock
Digital Data 13 Input(-)
Digital 12 Threshold
Coincidence 11 Output
10
vcc12
Output
9
Digital Output
vcc12
Output
11 Untegrating
Cuttent)
This is advance information and specifications are subject to change without notice.
5·134
ORDERING INFORMATION
Temperature Range
o (All Types) = to +10°c
Device
Package
MC3417L MC3418L MC3417P MC3418P
Ceramic DIP Ceramic DIP Plastic DIP Plastic DIP
Note: MC3617 to be offered later In 1977.
MC3417, MC3418
MAXIMUM RATINGS (All voltages referenced to VEE· TA= 25°C unless
otherwise noted.)
Rating
Symbol
Value
Power Supply Voltage
Vee
-0.4 to +18
Differential Analog Input Voltage Digital Threshold Voltage
V1D VTH
±6.0 -0.4 to Vee
Logic Input Voltage (Clock, Data, Encode/Decode)
Vii_ogic
-0.4 to +18
Coincidence Output Voltage
Vo(con)
-0.4 to +18
Syllabic Filter Input Voltage Gain Control Input Voltage
V1(Syl) V1(GC)
-0.4 to Vee -0.4 to Vee
Reference Input Voltage
VI( Ref)
Vee ---1.0to+18
2
Unit Vdc Vdc Vdc Vdc
Vdc Vdc Vdc
Vdc
Vee -.-- Output Current
2
lo
-25
mA
TARGET ELECTRICAL CHARACTERISTICS (Vee= 12 v, VEE= Gnd, TA= 25°c unless otherwise noted.)
MC3417
MC3418
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Power Supply Voltage Range
Power Supply Current (Idle Channel) !Vee= 5.o Vl !Vee= 15 Vl
Clock Rate Integrating Current Range
<Vee~ 6.o Vl <Vee;;, 6.o vl
Analog Input Range 14.75 v ~Vee.;;; 15 vl
VccR ice
SR llR
V1
4.75
-
-
-
0.01 0.01
1.3
12
16.5
4.75
3.0
5.0
-
4.0
10
-
16 k
200 k
-
-
1.5
0.01
-
3.0
O.Q1
- Vee -1.3 i.3
12
3.0 4.0 38 k
-
-
-
16.5
Vdc
mA
5.0 10 200 k.
Samples/s
mA 1.5 3.0
Vdc Vcc-1.3
Analog Output Range (4.75 v ~Vee.;:; 15 vl
Vo
Vdc
1.3
-
vcc-1.3 1.3
-
vcc-.1.3
Iilput Bias Currents {Comparator. in Active Region:
Vpin 1 = Vpin 10) (Analog Input) (Analog Feedback) (Syllabic Filter Input) (Reference Input)
113
µA
-
0.3
1.5
-
0.3
1.5
-
0.3
1.5
-
0:3
1.5
-
0.05
0.2
-
0.05
0.2
-
-0.05 -0.15
-
-0.05
-0.15
Input Offset Current {Comparator in Active Region: Vpin 1 = Vpin 1"0) (Analog Input/Analog Feedback)
110
µA
-
0.1
0.4
-
0.1
0.3
Input Offset Voltages (Input Voltage Converter) {Integrator Amplifier)
V10
mV
--
2.0
6.0
-
2.0
6.0
-
1.0
4.0
-
1.0
4.0
Transductance
gm
A/V
(Input V/I Converter (0 to 3.0 mA))
0.2
0.3
-
0.2
0.3
-
(Integrator Amplifier (0 to !5.0 mAil
1.0
2.0
-
1.0
2.5
-
Propagation Delay Times (Clock Trigger to Digital Output) (Trigger Falling Edge, Vee to +0.4 V) {Clock Trigger to Coincidence Output) (Trigger F·alling Edge, Vee to +0.4)
, (Clock Trigger to Ramp Reversal) (Trigger Falling Edge, Vee to 0.4 V; I Ramp = 100 µA)
Coincidence Output Voltage Low Logic State OQL(Con) ~ 3.0 mA)
Applied Digital Threshold Voltage Range
tPLH tPHL tPLH tpHL
tp
VoL(Con)
V1R!th)
-
-
-
-
-
-
+1.2
µs
1.5
2.5
-
1.5
2.5
1.0
2.5
-
1.0
2.5
2.0
4.0
--
2.0
4.0
2.0
4.0
-
2.0
4.0
1.0
-
-
1.0
-
-
0.25
-
-
0.25
Vdc
-
Vcc-2.0 +1.2
-
Vee -2.0 Vdc
@ MOTOROLA Semiconductor Products Inc.
5-135
·
MC3417, MC3418
·
ELECTRICAL CHARACTERISTICS (continued)
Characteristic Digital Threshold Input Current
(1.2 v.;;;; Vth.;;;; Vee= 2.0 V) IV1L applied to pins 13, 14 and 15) (V1H applied to pins 13, 14 and 15)
Maximum Integrator Output Current
2Vee, Gener.ator Maximum Output Current
Symbol l1L(th)
loL(lnt) lo
MC3417
MC3418
Min
Typ
Max
Min
Typ
Max
-
-
5.0
-
-
5.0
-
-10
-50
-
-10
-50
±5.0
-
-
±5.0
-
-
-10
-
-
-10
-
-
Unit µ.A
mA mA
Vee - Generator Output Impedance
2 (Q to +10 mA)
Vee - Generator Error
2
Logic Input Voltage (Low Logic State) (High Logic State)
Total Loop Offset Voltage (Note 1) !11 = 33 µA, V CC = 5.0 V) (11=12 µ.A, Vee= 12 V)
Digital Output Current
(Low Logic State (Vol,;;;; 0.4 V)) (High Logic State (VoH;;;. Vee - 1.0 V)) Syllabic'Filt~r Applied Voltage
Integrator Output Current (Gain Control Input Curre'nt = 12 µA) (Low Logic State Output) (High Logic State Output) (Gain Control Input Current = 3.0 mA) (Low Logic State Output) (High Logic State Output)
Integrator Output Current Matching (Note 2) 0Gain Control= 1.5 mA)
Input Current - Low Logic State (V1L=OV)
Input Current - High Logic State (V1H = 18 V) (Digital Data Input) (Clock Input) (Encode/Decode Input)
Input Current - Low Logic State (V1L=OV) (Digital Data Input) (Clock Input) (Encode/Decode Input)
Zo
er
V1L V1H "'E.Vo
IOL IOH V1(Syl)
'OL(lnt) loH(lnt) IOL(lnt) loH(lnt)
110 l1L 1 l1H
l1L
-
3.0
5.0
-
3.0
5.0
-
-
±2.0
-
-
±2.0
Gnd Vth+0.4
-
-
3.6 -0.35 +3.0
-
Vth - 0.4 Gnd
-
-
+18 vth+0.4
-
Vth - 0.4 +18
±3.0
±7.0
-
-
±2.0
-
-
±1.0
±2.0
5.0 -1.0
-
-
Vee
3.6 -0.35
+3.0
5.0 -1.0
-
-
Vee
8.0 -11.5
2.77 -3.05
-
-
10 -10
2.9 -2.9
-
-
11.5 -8.0
8.0 -11.5
3.05 -2.77 ±2.0
2.77 -3.05
-
-
-
10 -10
2.9 -2.9
-
-
11.5 -8.0
3.05 -2.77 ±2.0
-
-
-
+5.0
-
-
+5.0
-
-
+5.0
-
-
+5.0
-
-
+5.o
-
-
+5.0
I
-
-
-10
-
-
-10
-
-
-360
-
-
-360
-
-
-36
-
-
-36
n
% Vdc mV mA Vdc µA
mA % µA
µA
(Clock Input, V1L = 0.4 V)
-
-
-36
-
-
-36
Note: 1. Total Loop Offset is defined as the summation of the offsets of the integrator amplifier and the analog comparator plus the effect of the integrator amplifier's bias currents fldwing through 10 k input resistors and the effect of the mismatch in the positive and negative integrator currents. This mismatch causes an additional de voltage drop in the 10 k integrator resistor. Idle channel performance is guaranteed if this total loop offset is less t~an one-half of the change in integrator output voltage during one clock cycle (ramp step size). Laser tr.imming techniques are utilized to ensure good idle channel performance.
2. The output current matching is observed with the .circuit of Figure 4 by connecting pins 9 and 13 together, tieing pin 15 to a logic low level, setting up 1.5 mA into the gain control input and measuring the average voltage at pin 7 with respect to pin 10.
@ MOTOROLA Semiconduc'for Products .Inc.
5-136
MC3417, MC3418
DEFINITIONS AND FUNCTION OF PINS
Pin 1 - Analog Input This is the inverting comparator input where the
voice signal is applied. It may be ac or de coupled depending on the application. If the voice signal is to be level shifted to the internal reference voltage, then a bias resistor between pins 1 and 10 is used. The resistor is used to establish the reference as the new de average of the ac coupled signal.
Pin 7 - Analog Output This is the integrator op amp output. It is capable of
Vee driving a 600-ohm load referenced to 2 to +6 dBm
and can otherwise be treated as an op amp output. "Pins 5, 6, and 7 provide full access to the integrator op amp for designing integration filter networks.
Pin 2 - Analog Feedback
,
This is the non-inverting input to the analog signal
comparator within the IC. In an encoder application it
should be connected to the analog output of the encoder
circuit. This may be pin 7 or a low pass filter output con-
nected to pin 7. In a decode circuit pin 2 is not used and
may be tied to Vcc/2 on pin 10, ground or left open.
The analog input comparator has bias currents of 1.5
µA max, thus the driving impedances of pin 1 and 2
should be nearly equal to avoid disturbing the idle
channel characteristics of the encoder.
Pin 3 - Syllabic Filter This is the point at which the syllabic filter voltage is
returned to the IC in or'der to control the integrator step size. It is an NPN input to an op amp. The syllabic filter consists of an RC product between pins 11 and 3. Typical values of 6 ms to 50 ms are used in voice code.cs.
Pin 4 - Gain Control Input The syllabic filter voltage appears across Cs of the
syllabic filter and is the voltage between VCC and pin 3. The active voltage to current (V to I) operational amplifier in the MC3417/18 drives pin 4 to the same voltage. Thus the current injected in the integrator is the syllabic filter voltage divided by the Rx resistance. The Rx resistor is then varied to adjust the loop gain of the codec and is connected to pin 4.
Pin 8-VEE The MC3417 /18 are designed to work in either single
or dual power supply applications. Pin 8 is always connected to the most negative supply, which will be ground in a single supply system.
Pin 9 - Digital Output The digital output provides the results of the delta
moduiator's conversion. It swings between VCC and VEE and is CMOS or TTL compatible_ Pin 9 is inverting with respect to pin 1 and non-inverting with respect to pin 2. It is clocked on the falling edge of pin 14.
Pin 10 - Vcc/2 Output An internal low impedance mid-supply reference is
provided for use of the MC3417/18 in sfngle supply applications. The internal regulator is a current source and must be loaded with a resistor to insure its sinking capability. If a +6 dBmo signal is expected acr:oss a 600 ohm input bias resistor, then pin 10 must sink 2.2 V/600£2 = 3.66 mA. This is only possible if pin 10 sources 3.66 mA into a resistor normally and will source only the difference under peak load. The reference load resistor is chosen accordingly. A 0.1 µF bypass capacitor from pin 10 to VEE is also recommended. The Vcc/2 reference is capable of sourcing 10 mA arid can be used as a reference elsewhere in the system circuitry.
Pin 5 - Reference Input Th is pin is the non inverting. input of the integrator
output. It is used to reference. the de level of the output signal. In an encoder circuit it must reference the same voltage as pin 1 and is commonly tied to the Peference of pin 10. In a decoder application, it may be connected to signal ground, the reference, or any de level within the common-mode range of the integrating op amp. It is a PNP input with a bias current of -0.15 µA maximum.
Pin 6 - Filter Input, This inverting op amp input is used to connect the
integrator external components. Single integration systems. require a 0.1 µF and 10 kS1 resistor between pins 6 and 7. Multipole configurations will have different circuitry, but the resistanc~ between pins 6 and 7 should always be between 5 kS1 and 15 kS1 to maintain good idle channel characteristics. ·
Pin 11 - Coincidence Output The duty cycle of this pin is proport~onal to the
voltage- across C5. The coincidence output will be low whenever the content of the internal shift register is all '1 's or all O's. In the MC3417 the register is 3 bits long, while the MC3418 contains a 4 bit register. Pin 11 is an open collector of an NPN device and requires a pull-up resistor. If the syllabic filter is to have equal charge and discharg~ time constants, the value of Rp should be much less than R5. In systems requiring different charge and discharge constants, the charging constant is R5Cs while the decaying constant is (Rs+RplCs. Thus longer decays are easily achieveable. The NPN device should not be required to sink more than 3 mA in any configuration.
·
@ MOTOROLA Semiconducf:or Pr~ducf:s Inc.
5-137
MC3417, MC3418
·
DEFINITIONS AND FUNCTIONS OF PINS (CONT)
Pin 12 - Digital Threshold Tbis input sets the switching threshold in pins 13, 14,
and 15. It is intended to aid in .interfacing different Iog ic families without external parts. Often it is connected to the Vcc/2 reference for CMOS interface or can be biased two diode drops above VEE for TTL interface.
Pin 13 - Digital Data Input In a decode application, the digital data stream is
inputed through pin 13. In an encoder it may be unused or may be used to transmit signaling message under the control of pin 15. It is an inverting input with respect to pin 9. When pins 9 and 15 are connected, a toggle . flip-flop is formed and a forced idle channel pattern can be transmitted. If pin 9 is connected to pin 11, a non 50% repetitive pattern can be transmitted and integrated at the receive end without diverging the integrator output to saturation. An MC3417 will produce a 001 pattern and the MC3418 will produce a 0001 pattern.
Pin 15 - Encode /Decode This pin controls the connection of the analog input
comparator and the digital input comparator to the internal shift register. If high, the result of the analog comparison will be clocked into the register on the falling edge at pin 14. If low, the digital input state will be entered. This allows use of the IC as an encoder-decoder or simplex codec without external parts. Furthermore, it allows non-voice patterns to be forced onto the' transmission line through pin 13 in an encoder.
Pin 16 - Vee
·The power supply range of the MC3417/18 is from 5
to 15 volts between pin Vee and Vee. Guaranteed loop
offset of the MC3417 is tested at 5 volts while the specification on the MC3418 is tested at 12 volts.
Pin 14 - Clock Input The clock input determines the data rate of the codec
circuit. A 32k bit rate requires a 32 kHz clock. The switching th'reshold of the clock input is set by pin 12.
The shift register circuit toggles on the falling edge of the clock input.
FIGURE 1 - BLOCK DIAGRAM OF THE CVSD ENCODER Clock
Audio In
Comparator
Sampler
-------------·Digital Out
Integrator
Pulse Amplitude Modulator
(PAM)
Slope Command
@ MOTOROLA Semiconduc'l:or Produc'fs Inc.
5-138
MC3417, MC3418
FIGURE 2 - CVDS WAVEFORMS
FIGURE 3 - BLOCK DIAGRAM OF THE CVSD DECODER Clock
Digital In
Sampler
'Algorithm
Slope Command
Audio Out
Integrator
Pulse Amplitude Modulator
(PAM)
@ MOTOROLA Semiconductor Produc'fs Inc.
5-139
·
MC3417, MC3418
·
FIGURE 4 - 16 kHz SIMPLEX VOICE CODEC
(Using MC3417, Single Pole Companding and Single Integration)
Push - ~+ 5.0
to Talk ><'._
Key
No
Digital Input Digital.Output
16 k-bits
Analog Input
10 k
+5.0
15
9
14 16
Vee
Clock
Clock 16 kHz
600 0.1 µF
13 600
12
5 Ref Input
Coin
3.3 k Rp
Out 11
~::~~~ n - - - - - - - - + - - <
Current Steering
Filter Ref
0.1 µF
6
8
10 k
CIRCUIT DESCRIPTION
The continuously variable slope delta modulator ( CVSD) is a simple alternative to more complex conventional conversion techniques in systems requiring digital _communication of analog signals. The human voice is analog, but digital transmission of any signal over great distance is attractive. Signal/noise ratios do not vary with distance in digital transmission and multiplexing, switching and repeating hardware is more economical and easier to design. However, instrumentation A to D .converters do not meet the communications requirements. The CVSD A to D is well suited to the requirements of digital communications and is an economically efficient means of digitizing analog inputs for transmission.
The Delta Modulator The innermost control loop of a CVSD converter is a
simple del.ta modulator. A block diagram CVSD Encoder is shown in Figure 1. A delta modulator consists of. a comparator in the forward path and an integrator in the feedback path· of a simple control loop. The inputs to the comparator are the input ·analog ·signal and the integrator output. The comparator output reflects the sign of _the difference between the input voltage and the integrator output. That sign bit is the digital output and
also controls the direction of ramp in the integrator. The comparator is normally clocked so as to produce a synchronous and band limited digital bit stream.
If the clocked serial bit stream is transmitted, received, and delivered to a similar integrator at a remote point, the remote integrator output is a copy of the transmitting control loop integrator output. To the extent that the integrator at the transmitting locations tracks· the input signal, the remove receiver reproduces the input signal. Low pass filtering at the receiver output will eliminate most of the quantizing noise, if the clock rate of the bit stream is an octave or more above the bandwidth of the input signal. Voice bandwidth is 4 kHz and clock rates from 8 k and up are possible. Thus the delta modulator digitizes and transmits the analog input to a remote receiver. The serial, unframed nature of the data is ideal for communications networks. With no input ·at the transmitter, a continuous one zero alternation is transmitted. If the two inte.grators are made leaky, then during any loss of contact the receiver output decays to zero and receive restart begins without framing when the receiver reacquires. Similarly a delta modulator is tolerant of ·sporatic bit errors. Figure 2 shows the delta modulator waveforms while Figure 3 shows the corresponding CVSD decoder block diagram.
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor. applications; consequently, complete rnformation sufficient for construction purposes is not necessarily given. The information has been carefully checked and
. is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the s~micbnductQr devices described an~ ·1icense under the patent rights of Motorola Inc. or others.
MC3417, MC3418
CIRCUIT ,DESCRIPTION (CONT)
The Companding Algorithm ·The fundamental advantages of the delta l\lOdulator
are its simplicity and the serial format of its output. Its limitations are its ability to accurately convert the input within a limited digital bit rate. The analog input must be band limited and amplitude limited. The frequency limitations are governed by the nyquist rate while the amplitude capabilities are set by the gain of the integrator.
The frequency limits are bounded on the upper end; that is for any input bandwidth there exists a clock frequency. l~rger than that bandwidth which will transmit the signal with a specific noise level. However, the amplitude limits are bounded on both upper and lower ends. For a signal level, one specific gain will achieve an optimum noise level. Unfortunately, the basic delta modulator has a small dynamic range over which the noise level is constant.
The continuously variable slope circuitry provides increased dynamic range by adjusting the gain of the integrator. For a given clock frequency and input bandwidth the additional circuitry increases the delta modulator's dynamic range. External to the basic delta modulator is an algorithm which monitors the past few outputs of the delta modulator in a simple shift register. The register is usually 3 or 4 bits long depending on the application. The accepted CVSD algorithm simply monitors the contents of shift register and indicates if it contains all l's or O's. This condition is called coincidence. When ir occurs, it indicates that the gain of the integrator is too small. The coincidence output charges a single pole low pass filter. The voltage output of thi.s syllabic filter controls the integrator gain through a pulse amplitude modulator whose other input is the sign bit or up/down control.
The simplicity of the all ones, all zeros algorithm should not be taken lightly. Many other control algorithms using the shift register have been tried. The key to the accepted algorithm is that is provides a measure of the average power or level of the input signal. Other techniques provide more instantaneous information about the shape of the input curve. The purpose of the algorithm is to control the gain of the integrator and to increase the dynamic range. Thus a measure of the average input level is what is needed.
The algorithm is repeated in the receiver and thus the level data is recovered in the receiver. Because the algorithm only operates on the .past serial data, .it·
changes the nature of the bit stream without changing the channel bit rate.
The effect of the algorithm is to compand the input signaL If a CVSD encoder is played into a basic delta modulator, the output of the delta modulator will reflect the shape of the input signal but all of the output will be at an equal level. 1Thus the algorithm at the output is needed to restore the level variations. The bit stream in the channel is as if it were from a standard delta modulator with a constant level input.
The de Ita modulator encoder with the CVSD algorithm provides an efficient method for digitizing a voice input in a manner which is especially convenient for digital communications requirements.
CVSD DESIGN CONSIDERATIONS
A simple CVSD encoder using the MC3417 or MC3418 is shown in. Figure 4. These ICs are general purpose CVSD building blocks which allow the system designer to tailor the encoders transmission characteristics to the application. Thus, the achievable transmission capabilities are constrained by the fundamental limitations of delta modulation and the design of encoder parameters. The performance is not dictated by the internal configuration of the MC3417 and MC3418. There are seven design considerations Involved in. designing these basic CVSD building blocks into a specific codec application.
These are listed below:
1. Selection of clock rate
2. Required number of shift register bits
3. Selection of loop gain
4. Sele,ction of minimum step size
5. Design of integration filter transfer function
6. Design of syllabic filter transfer function
7. Design of low pass filter at the receiver
The circuit in Figure 4 is the most basic CVSD circuit possible. For many applications in secure radio or other intelligible voice channel requirements it is entirely sufficient. In this circuit, items 5 and 6 are reduced to their simplest form. The syllabic and integration filters are both single pole networks. The selection of items 1 through 4 govern the codec performance.
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
p . TJ(max) -TA D{TAl = ROJA {Typ}
Where: PD(TAJ = Power. Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply
voltages and supply currents at the Vl(Orst-case operating condition.
TJ{max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum' Desired Operating Ambient Temperature
ROJA{Typ) =Typical Thermal Resistance Junction to Ambient
@ MOTOROLA .semiconduc'f~r Produc'fs Inc.
5-141
·
ORDERING INFORMATION
Device
MC3437L MC3437P
Temperature Range
0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Plastic DIP
MC3437
·
HEX BUS RECEIVER WITH INPUT HYSTERESIS These high-speed bus receivers are useful in bus organized data transmission systems employing terminated 120 fl lines. The receivers feature input hysteresis to obtain improved noise immunity. The' receivers low input current requirement allows up to 27 driver/ receiver pairs to share a common bus. A pair of Disable Inputs are provided. These Disable Inputs along with the receiver outputs are MTTL compatible. · Built in receiver hysteresis · Receiver input threshold is not affected by temperature · Propagation delay time - 20 ns (Typ) · Direct Replacement for DS8837
FIGURE 1 - TYPICAL APPLICATION
To Computer or Peripherals
HEX BUS RECEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT
16
c::~::~] (top view)
L SUFFIX CERAMIC PACKAGE
CASE 620
-~'1!rrn t
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
Rating
Symbol
Value
Supply Voltage
Vee
7.0
Input Voltage
Vi
5.5
Power Dissipation Derate above 25oc
Po
625
3.85
Operating Ambient Temperature Range
TA
Oto 70
Storage Temperature Range
Tstg
-65 to +150
"'nit Vdc Vdc
mW mw/0 c
oc
oc
TRUTH TABLE
< Input Disable Output
t - - -- - t - - - L - - t - - H - - O = 1.05 V
0
O
H
L
I= >2.5 V
1-----t-----t----1 H = High Logic State
1 - - - - t - - - L - - t - _ L_ _ L = Low Logic State
H
L
5-142
MC3437
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for O~TA ~7o0c and 4.75 V ~Vee ~5.25 V.)
Characteristic
Symbol
Min
Typ
Max
Unit
Receiver Input Threshold Voltage - High Logic State (V1L(DA) = 0.8 V, 'oL = 16mA, Vol ~0.4 V)
Receiver Input Threshold Voltage - Low Logic State (V1L(OA) = 0.8 V, loH = -400µA,VoH ~2.4 V)
V1LH(R)
1.80
2.25
2.50
v
V1HL(R)
1.05
1.30
1.55
v
Receiver Input Current (V1(R) = 4.0 V, Vee= 5.25 V)
(V1(R)=4.0 v, Vee= 0 V)
Disable Input Voltage - High Logic State
(V1(R) '= 0.5 V, Vol ~0.4 V, loL = 16 rnA)
Disable Input Voltage - Low Logic State (Vl(R) = 0.5 V, VoH ~2.4 V, loi-f = -400µA)
ll(R)
-
-
µA
15
50
1.0
50
V1H(DA)
2.0
-
-
v
V1L(DA)
-
-
0.8
v
Output Voltage - High Logic State (Vl(R) = 0.5 V, V1L(DA) = 0.8 V, IOH = -400µA)
VoH
2.4
-
-
v
Output Voltage - Low Logic State (V1 (R) = 4.0 V, V1L(DA) = 0.8 V, IOL = 16 mA)
Vol
-
0.25
0.4
v
Disable Input Current - High Logic State (V1H(DA) = 2.4 V) (V1H(DA) = 5.5 V)
Disable Input Current - Lovv Logic State (V1(R) = 4.0 V, V1L(DA) = 0.4 V)
Output Short Circuit Current
(V1(R) = 0.5 v, V1L(DA) = ov, Vee= 5.25 V)
Power Supply Current (V1(R) = 0.5 V, V1L(DA) = 0 VI
l1H(DA)
-
l1L(DA)
-
-
80
µA
-
2.0
mA
-
-3.2
mA
ios
-18
-
-55
mA
'cc
-
45
65
mA
Input Clamp Diode Voltage (ll(R) = -12 mA, ll(OA) = -12 mA,
Vi
-
-1.0
-1.5
v
·
SWITCHING CHARACTERISTICS (TA= 25°c. Vee= 5.0 v unless otherwise noted.)
-
Characteristic
Symbol
Min
Typ
Max
Unit
Propagation Delay Time from Receiver Input to High Logic State Output
tPLH(R)
-
20
30
ns
Propagation Delay Time from Receiver Input to Low Logic State Output
tPHL(R)
-
18
30
ns
Propagation Delay Time from Disable Input to High Logic State Output
Propagation Delay Time from Disable Input to Low Logic State Output
tPLH(DA)
-
9.0
15
ns
tPHL(DA)
-
4.0
12
ns
5~143
. llj
MC3437
·
To Scope (Input)
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS
+5.0 v
390
1N916 or Equiv
Input
3.ov---2.3 v
ov3.0V
To Scope (Output)
Disable (DA)
ov-
tPHL(R) VoH
Output Vol
1.5 v
1.3 v 1.5 v
To Scope (Disable)
FIGURE 3 -TYPICAL HYSTERESIS
5.0
~ 4.0
-i---T"
TA= 25oe
SHADED AREA REPRESENTS
Vee= 5.0 v - + - - + - - - + - -
~PEelFIED LIMITS
..,~ 1----t---+---+---t----+---t-----r---
'.;i! 3.0 !-----+----+
VOH
~
>
~ 2.0 1----+----+
g
~ 1.0 I----+----+
o.___ _.__ _ VOL + -_ _.__ _.___ _.__ _.___
0
1.0
2.0
3.0
V1(R). INPUT VOLTAGE (VOLTS)
_ . __
___.
4.0
REPRESENTATIVE° Cl RCUIT SCHEMATIC (1/6 Shown)
1.5 v
1.5 v
5-144
ORDERING' INFORMATION
Device
MC3438L MC3438P
Temperature Range
0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Plastic DIP
MC3438
QUAD BUS TRANSCEIVER Consists of four pair of drivers and receivers with the output of each driver connected to the input of its mating receiver. These devices are intended for use in bus organized data transmission
system employing terminated 120 n Ii nes. The receivers feature
hysteresis to improve noise immunity.' A disable function consisting of a two-input NOR gate is provided to control all four drivers. · Recei,ver input threshold is not affected by temperature · Receiver input hysteresis - 1.0 V (Typ) · Open collector driver outputs allow wire-OR · MTTL compatible receiver outputs and disable and driver inputs · Driver propagation delay -:- 20 ns · Receiver propagation delay - 20 ns · Direct replacement for DS883.8
FIGURE 1 -TYPICAL APPLICATION
To Computer or Peripherals
QUAD BUS TRANSCEIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT
16
- · ·[::::] (top view) ... ··
LSUFFIX CERAMIC PACKAGE
CASE 620
-
P SUFFIX PLASTIC PACKAGE
CASE 648
Bus 3
Bus 4 Input 4 Output 4
PIN CONNECTIONS Vee Bus 1 Input 1 Output 1 Bus 2 Input 2 Output 2
·
MAXIMUM RATINGS ITA = 25°c unless otherwise noted,)
Rating
Symbol
Value
Supply Voltage
Vee
7.0
Input and Output Voltage
power Dissipation Cerate above 25°C
Vo.Vi
5.5
Po
625
3.85
Operating Ambient Temperature Range
TA
Oto +70
Storage Temperature Range
Tstg -65 to +150
Unit
Vdc
Vdc
mW mwt0 e
Oc
oe
5-145
TRUTH TABLES
DRIVER SECTION
Disable 1 Disable2 Input Bus
L
L
L H
L
L
H
L
L
H
L H
L
H
H H
H
L
L H
H
L
H H
H
H
L .H
H
H
H
H
RECEIVER SECTION
Bus
Output
V1H(R) >2.6 V L V1L(R) <1.06 V H
Where:
L = Low Logic State
H · High Logic State
·
MC3438
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for o ~TA~ 10°c and 4.75 ~ v cc ~5.25 v.l
. Characteristic
Disable Input Voltage - High Logic State
< (V1H(D) = 2.0 V, V1H(BUS) = 4.0 V, lsus 100µA)
Disable Input Voltage - Low Logic State
= = (V1H(D) 2.0 V, V1 L(BUS) ~0.7 V, lsus 50 mA)
Driver Input Voltage - High Logic State (V1L(DA) = 0.8 V. lsus= 50mA. V1L(BUS)~0.7 V)
Driver Input Voltage-· Low Logic State
< v. (V1 L(DA) = 0.8 V, V1H(BUS) = 4.0 lsus 100 µA)
Receiver Input Threshold Voltage - High Logic State (V1L(D) = 0.8 V, IOL(R) = 16 mA, VoL(R) ~0.4 V)
Receiver Input Threshold Voltage - Low Logic State (Vtl(D) = 0.8 V, IOH(R) = -400µA, VOH(R) ~2.4 V)
Symbol V1H(DA) V1UDA) V1H(D) V1L(D) V1LH(R) V1HL(R)
Min 2.0
-
2.0
-
1.80 1.05
Typ
-
-
2.25 1.30
Max
-
0.8
-
0.8 2.50 1.55
Unit
v v v v v v
Disable Input Current - High Logic State fVtH(D) =·2.4 V, VtH(DA) = 2.4 V) (V1H(D) = 5.5 V, V1H(DA) = 5.5 V)
l1H(OA) -
-
-
40
µA
-
1.0
mA
Driver Input Current - High Logic State (V1H(DA) = 2.4 V, V1H(D) = 2.4 Vl
(V1H(DA) = 5.5 V, V1H(D) = 5.5 V)
l1H(D)
-
-
40
µA
-
-
1.0
mA
Disable Input Current - Low Logic State
(V1L(DA) ='0.4 V, VtL(D) = 0.4 V)
Driver' Input Current - Low Logic State (V1L(D) = 0.4 V, VIL(DA) = 0.4 V)
l1L(DA)
-
l1L(D)
-
-
-1.6
mA
-
-1.6
mA
Bus Current (VIL(DA) = 0.8 V, V1L(D) = 0.8, V1H(BUS) = 4.0 V) (Vee= 5.25 Vl
(Vee= o vi
Bus Voltage - Low Logic State (Vtl(DA) = 0.8 V, V1H(D) = 2.0 V, lsus = 50 mA)
Receiver Output Voltage - High Logic State
(V1L(DA) = 0.8 v. V1L(D) = 0.8 v. V1L(BUS) = 0.5 v.
IQH(R) = -400µA)
Receiver Output Voltage - Low Logic State (VIL(DA) = 0.8 V. V1L(D) = 0.8 V, VtH(BUS) = 4.0 V, IQL(R) = 16 mA)
lsus
-
VL(BUS)
-
µA
20
100
2.0
100
0.4
0.7
v
VoH(R)
2.4
-
-
v
VoL(R)
-
0.25
0.4
v
Receiver Output Short Circuit Current
(V1L(OA) = 0.8 V, VtL(D) = 0.8 V, V1L(BUS) = 0.5 V, Vee= 5.25 vi
Power Supply Current
(VIL(DAI = 0 V, VtH(D) = 2.0 V)
Input Clamp Diode Voltage
(ll(DAI = ll(D) = lsus = -12 mA)
ios(Rl
-18
-
-55
mA
ice
-
50
70
mA
v,
-
-1.0
-1.5
v
REPRESENTATIVE CIRCUIT SCHEMATIC (1/4Shown)
Disable Inputs
5-146
Receiver Output
MC3438
SWITCHING CHARACTERISTICS (TA= 25°e. Vee= 5.0 v unless otherwise noted.I
Characteristic
Propagation Delay Time from Disable Input to High Logic Level Output
Propagation Delay Time from Disable Input to Low Logic Level Output
Symbol
Min
Typ
tPLH(DA)
-
19
tPHL(DA)
-
15
Propagation Delay Time from Driver Input to High Logic Level Output
tPLH(D)
-
17
Propagation Delay Time from Driver Input to Low Logic Level Output
Propagation Delay Time from Bus Input to High Logic Level Output
Propagation Delay Time from Bus Input to Low Logic Level Output
tPHL(D)
-
9.0
tPLH(R)
-
20
tPHL(R)
-
18
To Scope (Input)
FIGURE 2 - DRIVER AND DISABLE TEST CIRCUIT AND WAVEFORMS
+5.0 \I Disable
To Scope (Output)
+5.0 v
91
Disable Input (DA) 0 V
VoH
Output
VOL--_.._.,,
Pulse Generator
200
3V Driver Input
(D) av
Output
Max 27 27 25 20 30 30
Unit ns ns ns ns ns ns
·
FIGURE 3 - RECl:IVER TEST CIRCUIT AND WAVEFORM
To Scope (Input)
To Scope (Output)
+5.0. v
Driver Input
Receiver Output
390
Disable Inputs
I15pFEquiv
Input
(Rl ov
Output
VoL~~~+-~~~~~~~~~..,1
tPLH(R)
FIGURE 4 - TYPICAL RECEIVER HYSTERESIS
- 5.0
I
~ 1- TA= 25oe
0
Vee= 5.ov
~ 4.0
Cl
~
§; 3.0
-i
!:;
IZ 'Ll
~ ~
z z VQH
~ ~
~
0.a..:. 2.0
> ~ ~ 1.0 ~
i 0
~~ ~ ~ ~~ ~-z~z
~ ~ ~~ ~~ ~ ~~ ~ '/, 7, VOL
0
1.0
2.0
3.0
4.0
Vl(R), RECEIVER INPUT VOLTAGE (VaLTS)
5-147
·
, ORDERING INFORMATION
Device
·MC3440P MC3441P MC3443P
Temperature Range
0°c to +10°c 0°C to +10°c 0°c to +70°C
Package
Plastic DIP Plastic DIP Plastic DIP
QUAD GENERAL PURPOSE INTERFACE BUS
(G.P.LB.) TRANSCEIVERS
.
The MC3440, MC3441, MC3443 are quad bus transceivers intended for usage . in instruments and programmable calculators equipped for interconnection into complete measurement systems. These transceivers allow the bidirectional flow of digital data and commands between the various instruments. Each of the transceiver versions provides four open-collector drivers and four receivers featuring input hysteresis;
The MC3440 version consists of three drivers controlled by a common Enable input and a single driver without an Enabl.e input. Termination resistors are provided in the device.
The MC3441 differs in that all four drivers are controlled by the Common Enable Input. Again, the termination resistors are provided.
The MC3443 is identical to the MC3441 except that the termi, nation resistors have been omitted. As such it is pin compatible, and functionally equivalent to the SN75138.. It does offer the advantage
of receiver input hysteresis.
· Receiver Input Hysteresis Provides Excellent Noise Rejection.
· Open-Collector Driver Outputs Permit Wire-OR Connection.
· Tailored to Meet the Proposed Standards Set by the IEEE and. IEC Committees on Instrument Interface (488-1975).
· Termination Resistors Provided (except MC3443 version).
· Provides Electrical Compatibility with Hewlett Packard Interface Bus (HP-18).
TYPICAL APPLICATION - G.P.l.B. MEASUREMENT SYSTEM
MC3440 MC34·4l MC3443
QUAD INTERFACE BUS TRANSCEIVERS
SI LICON MONOLITHIC INTEGRATED CIRCUITS
P SUFFIX PLASTIC PACKAGE
CASE 648
Output and Termination _.
Gnd
Receiver Output A w
Driver .,. Input A
Driver <n Input B
Receiver m
Output B
Driver Input C
Enable E
Output and Termination _.
Gnd
Receiver
Output A w
Driver .,. Input A
l~~~vte~ <II
Receiver m
Output B
MC3441
Instrument A
(with GPIB)
Instrument B
(with GPIB)
1 16 Lines Total
Programmable Calculator (with GPIB)
Receiver Output A
Driver Input A
Driver lnputB
Receiver Output B
5-148
MC3440, MC3441, MC3443
MAXIMUM RA Tl NGS (TA 25°C unless otherwise noted.I
Rating
Symbol
Value
Power Supply Voltage Input Voltage
Vee
7.0
V1
5.5
Driver Output Current Power Dissipation (Package Limitation)
Derate above 25°c
IO(OI
150
Po
830
6.7
Operating Ambient Temperature Range Storage Temperature Range
TA Tstg
0 to +70 -65 to +150
Unit Vdc Vdc mA mW mw1°c oc OC
ELECTRICAL CHARACTERISTICS !Unless otherwise noted, 4.75 V.;; Vee.;; 5.25 V and 0.;; TA.;; 10°c, typical values are at
TA=, 25°C; Vee= 5.0 V)
.
DRIVER PORTION
Characteristic
Symbol
Min
Typ
Max
Unit
Input Voltage - High Logic State lnpufVoltage - Low Logic State [TnputCurrent - tligh Logic State
!V1H = 2.4 VI
V1H(O)
2.0
-
v1uo1
-
-
l1H(O)
-
-
-
v
0.8
v
40
µA
Input Curref\t - Low Logic State
(V1L = 0.4 v. Vee= 5.0 V, TA= 25°Cl
Input Clamp Voltage
11 1c = -12mAl
Output Voltage - High Logic State ( 1) (V1H(S) = 2.4 v or VrL(O) = 0.8 VI
'Output Voltage - Low Logic State (V1H(S) = 2.0 V, V1L(E) = 0.8 v. loL(D) = 48 mAI (V1H(O) = 2.0 V, V1L(E) = 0.8 V, IOL(D) = 100 mA)
l1L(Dl
-
-
-1.6
mA
V1C(O)
-
-
-1.5
v
, VciH(O)
2.6
-
-
v
VoL(D)
-
-
v
-
0.4
-
0.80
Output Leakage Current - MC3443 Only (VIH(E) = 2.0 V or V1L(DI = 0.8 V)
loH(O)
-
-
250
µA
RECEIVER PORTION Input Hysteresis Input Threshold Voltage - Low to High Output Logic State
!Vee= 5.0 v. TA= 25°c1 Input Threshold Voltage - High to Low Output Logic State
!Vee= 5.o v, TA= 25°c1
Output Voltage - High Logic State
(V1L(R)'= 0.8 V. loH(R) = -400µA)
-
400
550
-
mV
VILH(R)
0.6
-
1.1
v
V1HL(RI
1.5
-
-
v
VOH(R)
2.4
-
-
v
Output Voltage - Low Logic State
(V1H(R) = 2.0 V, IOL(R) = 16 mAI
Output Short-Circuit Current (V1L(R) = 0.8 Vl (Only one output may be shorted at a time)
VOL(R)
-
-
ios!Rl
-20
-
0.4
v
-55
mA
BUS TERMINATION PORTION (Does not apply to MC3443 version)
Bus Divider Voltage (V1L(Dl = OVI
Bus Short-Circuit Current (VIL(D) ~ 0 V, V(BUS) = 0 Vl
V(BUS)
2.6
3.3
3.75
v
.IOS(BUS)
1.25
-
2.08
mA
TOTAL DEVICE POWER CONSUMPTION
Power Supply Current (VIH(O) = 2.4 V, V1L(EI = 0 VI
'cc
56
75
mA
SWITCHING CHARACTER IS.TICS !Vee= 5.0 v. TA= 25°c1
DRIVER PORTION
Characteristic
Symbol
Propagation Delay Time from Driver Input to Low Logic State Bus Output Propagation Delay Time from Driver Input to High Logic State Bus Output Propagation Delay Time from Enable Input to Low Logic State Bus Output Propagation Delay Time from Enable Input to High Logic State Bus Output RECEIVER PORTION
tPHL(D) tPLH(O) tPHL(El tPLH_i~
Propagation Delay Time from Bus Input to High Logic State Receiver Output Propagation Delay Time from Bus Input to Low Logic"State Receiver Output
(1) 1 3.0 k resistor from the bus terminal to Vee required on the MC3443 version.
MC3440, 3441
MC3443
Min Typ Max Min Typ. Max Unit
-
13 30 -
13 25 ns
-
17 30 -
17 25 ns
-
- 25 40
25 32 ns
-
25 40 -
25 32 ns
l5 30 15 30
15 22 ns 15 22 ns
·
5-149
MC3440, MC3441, MC3443
·
- - - ' " - - 1 . - - - - - GENERAL PURPOSE INTERFACE BUS APPLICATION
INSTRUMENT A
~ a· -
1 - - - ~
INSTRUMENT B
l 0101 I 0102
0101
I
.J.
I
ri-
0102
I
I
MC3441
l 0103
r
j
0104
I
E
J I I
0103
REN (Always
Enabled)
I I MC3440
}
~
I
r-1
I L I
l
Instruments TLoogic (Typical)
E
I DI05J
I 0106 ~
I
0104
j_
I 0105
.
MC3441
l '
l
0107)
1
""I..
I 0108 ~
I '
E
J I
I
j
REN-2
I EOI )
l .. MC3441
\.
ATN J
l IFC )
""I..
E
J
I
I (Always
I Enabled)
_L
SRO J
I
""I..
l
DAV-<
I
0106
+MC3440
4 - SRO
(Always
Enabled)
I
1
I
E
I
!0107
0108
DAV
EOI (Always
~ MC3440
I
~
Enabled)
I
1
E
(Always Enabled) ATN
IFC
+ I
~
· MC3440
l
NRFO
NRFO
l
MC3440
I NOAC
NOAC
I
1
1
]. I
E - - - __ _J
' , , · * ~ It '
---- I l
E
16 Lines Total
L_ ----
G.P.1.B. SIGNALS:
8 Line Data Bus: 0101 - 0108
5 General Interrupt Transfer Control Bus: REN - Remote Enable SRQ - Service Request EOI - End or Identify ATN -.Attention I FC - Interface Clear
3 Data Byte Transfer Control Bus DAV - Data Valid NRFO - Not Ready for Oat.a NOAC - Not Data Accepted
16 Total Signal l.,ines
5-150
MC3440, MC3441, MC3443
Input
ov
FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUSI TO OUTPUT
To Scope
(lnpu~)
To Scope (Output) +5 ·0 V
400
15 pf
Pulse
Input
or equiv
FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)
To Scope 3.0 V (Input)
Input
+5.0 v
To Scope (Output)
50 Bus
50%
VoH -----· , . - - - - - - - -
Output
·1.5 v
VoL----
·
FIGURE 3 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS
FIGURE 4 - TYPICAL BUS LOAD LINE
5.0
T
1 - - -f-VCC = 5.0 V
~ 4.0
TA= 25°c
0
2:
w
~<!) 3.0
0.>.. ...a=>. 2.0
=>
0
6 >
1.0
--:a;
t
J
6.0
4.0
< 2.0
.§. .z.... aU:J -2.0
0::
:u::> -4.0
(/)
:::> -6.0
"~" -8.0
10
12
0
0
0.5
1.0
1.5
2.0
V1, INPUT VOLTAGE (VOLTS)
veus. BUS VOLTAGE (VOLTS)
5-151
ORDERING INFORMATION
Device MC3446
Temperature Range
· 0°C to +10°c
Package Plastic DIP
MC3446
·
QUAD'GENERAL PURPOSE INTERFACE BUS· · {G.P.LB.). TRANSCEIVER
The MC3446 is a quad bus transceiver intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. This transceiver allows the bidirectional flow of digital data and commands between the· various instruments. The transceiver provides four opencollector drivers and four receivers featuring hysteresis.
· Tailored to Meet the IEEE Standard 488-1975 (Digital Interface for Programmable Instrumentation) and the Proposed IEC Standard on Instrument Interface
· Provides Electrical Compatibility with Hewlett Packard Inter· face Bus. (HP-18)
· MOS Compatible with High Impedance Inputs · Driver Output Guaranteed Off During Power Up/Power Down · Low Power - Average Power Supply Current= 12 mA · Termination Resistors Provided
QUAD INTERFACE, BUS TRANSCEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT
P SUFFIX PLASTIC PACKAGE
CASE 648
TYPICAL MEASUREMENT SYSTEM APPLICATION
l Instrument A (with GPIB)
[
I
Jnstrument
B
r [ (with GPIB)
I
~ ~
~ '~
-- - -
----
,1 t ~
16 Lines Total
I
J
·ro,,.m_O,, Calculator
~I
(with GPIB)
PIN CONNECTIONS
Receiver Output A
Driver Input A
Enable ABC
Driver Input B
Bus B Receiver Output B
Gnd
R1 = 2.4 k R2 = 5.0 k
Vee
Recei'ver Output D
Bus D Driver lnpu·t D
Enable D
Driver lnputC
Bus C
Receiver Output C
5-152
MC3446
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
R·ting Power Supply Voltage Input Voltage Driver Output Current Junction Temperature
Symbol Vee V1 IO(D) TJ
V.tu· 7.0 5.5 150 150
Operating Ambient Temperature Range Storage Temperature Range
TA Tstg
Oto +10 ~5 to +150
Unit Vdc Vdc mA oc
oc Oc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 v.;; Vee.;; 5.25 V and o..:; TA.;; 10°0, typical values are at .
TA=25°C,Vcc=5.0V)
.
l
Characteristic
l I I I I Symbol
Min
Typ
Max
Unit
DRIVER PORTION
Input Voltage - High Logic State Input Voltage - Low Logic State Input Current - High Logic State
(V1H = 2.4 V)
VtHJDl
2.0 '
-
-
v
VtLJQl
-
-
0.8
v
ltH(D)
-
5.0
20
µA
Input Current - Low Logic State (VIL= 0.4 V, Vee= 5.0 V, TA= 25°C)
Input Clamp Voltage U1c = -12 mA)
l1L(D)
-
V1c(D)
-
0.2
0.36
mA
-
-1.5
v
Output Voltage - High Logic State ( 1) (V1H(S) = 2.4 V or V1H(D) = 2.0 V)
Output Voltage - Low Logic State !VtL(S) = 0.8 V, VtL(D) = 0.8 V, IOL(O) ~ 48 mA)
VoH(D)
2.5
3.3
3. 7
v
VoL(D)
-
-
0.4
Input Breakdown Current (Vt(O) = 5.5 V)
ltB(D)
-
-
1.0
mA
RECEIVER PORTION Input Hysteresis Input Threshold Voltage - Low to ,High Output Logic State Input Threshold Voltage - High to Low Output Logic State Output Voltage - High Logic State
(VIH(R) = 2.0 V, IOH(R) = -400µA) Output Voltage - Low Logic. State
(V1L(R) = 0.8 V, IOL(R) = 8.0 mA) Output Short-Circuit Current
(V1H(R) = 2.0 V) (Only one output may be shorted at a time)
-
400
ViLH(R)
-
V1HL(R)
0.6
VoH(R)
2.4
VoL(R)
-
'os(Rl
4.0
900 1.78 Q.88
-
-
-
-
mV
2.0
v
-
v
-
v
0.4.
v
14
mA
BUS LOAD CHARACTERISTICS
Bus Voltage
(V1H(E) = 2.4 V) (IBUS = -12 mA)
V(BUS)
2.5
3.3
3.7
v
-
-
-1.5
Bus Current
(VtH(O)= 2.4 V, VBus;;.5.0 V)
l(BUS)
0.7
-
-
mA
JV1H(D) =_2.4 V, VBUS = 0.4 V)
-1.3
-
-3.2
!VBus"" 5.5 Vl
-
-
2.5
TOTAL DEVICE POWER CONSUMPTION
Power Supply Current (All Drivers OFF) (All Drivers ON)
tee
12
19
.mA
32
39
SWITCHING CHARACTERISTICS (Vee= 5.0 V, TA= 25°C)
Characteristic
Symbol
Min
Typ
Max
Unit
DRIVER PORTION
Propagation Delay Time from Driver Input to Low Logic State Bus Output tPHL(D)
-
Propagation Delay Time from Driver Input to High Logic State Bus Output tPLH(D)
-
Propagation Delay Time- from E.nable Input to Low Logic State Bus Output tPHL(E)
-
Propagation Delay Time from Enable Input to High Logic State Bus Output tPLH(E)
-
34
50
ns
17
40
ns
39
50
ns
32
50
ns
RECEIVER PORTION
Propagation Delay Time from Bus Input to High Logic State Receiver Oµtput tPLH (R)
37
50
ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output tPHL(R)
22
40
ns
@ MOTOFiOL.A Se1niconductor Products Inc.
5-153
·
MC3446
Input
ov
Output
Vol
FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUSI TO OUTPUT
To Scope (Input)
To Scope
(Output) +5 .0 V
400
15 pF
Pulse
Input
·
FIGURE 2-TESTCIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)
To Scope 3.0 V (Input)
50 Input
+5.0 v
To Scope (Output)
100 Bus
Output
Vol----
FIGURE 3 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS
5.0
i::
I - - -t-VCC · 5.0 V
g 4.0
TA· 25°C
--::iiO
~ w
. ~ 3.0
.0>..
_,
l
~ 2.0
0
~ 1.0
0
0
0.5
1.0
1.5
2.0
V1. INPUT VOl TAGE !VOL TS)
FIGURE 4 - TYPICAL BUS LOAD LINE
6.0 4.0
1... 2.0
~ -2.0
a -4.o
~ -6.0
.,.; ~ -8.0
10
12
-2.0
. 0
2.0
4.0
6.0
Veus. BUS VOLTAGE (VOLTS)
® MOTOROLA Seniiconductor Products Inc. -------
5-154
XC3448
Product Preview
BIDIRECTIONAL INSTRUMENTATION BUS (HP-IB) TRANSCEIVER
This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1975 often referred to as HP-IB). The required bus termination is internally provided.
Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector or active pull-up configuration. The receivers have input hysteresis to improve on noise margin and their input loading follows the bus standard specifications.
· Four Independent Driver/Receiver Pairs · Three State Outputs · High Impedance Inputs - l1H = 40 µA (Typ) · Receiver Hysteresis - 650 mV (Typ) · Fast Propagation Times - 20 ns (Typ} · TTL Compatible Receiver Outputs · · Single +5 Volt Supply · Open Collector Driver Output Option · Power Up/Power Down Protection (No Invalid Information
Transmitted to Bus) · No Bus Loading When Power Is Removed From Device · Required. Termination Characteristics Provided
MAXIMUM RATINGS (TA= 25°C unless otherwise noted.I
Rating
Symbol
Value
Unit
Power Supply Voltage Input Voltage
Vee
7.0
Vdc
V1
5.5
Vdc
Driver Output Current
Junction Temperature
Operating Ambient Temperature Range
Storage Temperature Range
. ~
~
--- -
[ Instrument A (with HP-IBJ
[
T
IQ(O)
150
mA
TJ
150
oc
TA
Oto +70
oc
Tstg -65 to +150
oc
~
TYPICAL MEASUREMENT
SYSTEM APPLICATION
J :
J
"""~moO·· Calculator
(with HP-IB)
[ Instrument B (with HP-IBJ
[
1
----
·' ~ ~ 16.Llnes Total
This is advance information and specifications are subject to change without notice.
5·155
QUAD THREE-STATE BUS TRANSCEIVER WITH
TERMINATION NETWORKS
Silicon Monolithic Integrated Circuit
CASE648 PSUFFIX l>LASTIC PACKAGE
·
Send/Rec. Input A
Data A
Bus A
.. Pull-Up
Enable Input A-B
. Data 8
Send/Rec. ~ Input B
Vee
Send/Rec. lnpu~ D
Data D
BusD Pull-Up Enable lnputC-D Bus C
Data C
Send/Rec. Input C
TRUTH TABLE
Send/Rec. 0 1 1
Enable
>< 1 0
Info. Flow 8u1-+D1to
01ta-l'fily1 D1t1 -l>!Jya
x · Don't Car·
Commenn
-
Aetive Pull·Up
Open Col.
XC3448
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 v.;;; Vee.;;; 5.25 V and o.;;; TA.;;; 10°c,
typical values are at TA= 25°C, Vee= 5.0 V)
Characteristic
Symbol
Min
Bus Voltage (Bus Pin Open) (V1(S/R) = 0.8 V
lleUS) =-12 mA)
Bus Current (V(BUS);;;. 5.5 VI (V (BUSI = 0.4 V)
(Vee =O V, 0 v .. V(BUS) .. 5.25 V)
Receiver Input Hysteresis (V1(S/Ri = 0.4 V)
V(BUS) V1c(BUS)
2.5
-
l(BUS)
0.7
-1.3
-
-
400
Receiver Input Threshold (Vl(S/R) = 0.4 V, Low to High) (V1(S/R) = 0.4 V, High to Low)
Receiver Output Voltage - High Logic State (V1(S/R) = 0.4 V, loH(R) =400 µ.A; V(BUS) = 2.0 V)
VILH(R)
-
V1HlJ.A..l
0.8
VoH(R)
2.7
Receiver Output Voltage - Low Logic State
= (V1(S/R) = 0.4 V, IOL(R) 16 mA, V(BUS) = 0;8 V)
VoL(R)
-
Receiver Output Short Circuit Current (Vl(S/R) = 0.4 V, V(BUS) = 2.0 V)
los(Rl
-20
Driver Input Voltage - High Logic State (Vl(S/R) = 2.0 V)
Driver Input Voltage - Low Logic State (V1(S/R) = 2.0 V)
VIH(D)
2.0
V1L(D)
-
Driver Input Current (V1(S/R) = 2.0 V, 0.4 V.;; V1(D).;; 4.5 V) (Vl(S/R) = 2.0 V, 0.4 V.;; V1(D) = 5.5 V)
Driver Input Clamp Voltage (V1(S/R) = 2.0 V, l1c(D) = -18 mA)
ll(D)
-40
-
V1c(D)
-
Driver Output Voltage - High Logic State
VoH(D)
2.5
(Vl(S/R) = 2.0 V, V1H(D) = 2.0 V, V1H(E) = 2.0 V, loH = -5.2 rnAl
Driver Output Voltage - Low Logic State (Vl(S/R) = 2.0 V, IOL(D) = 48 mA)
VoL(D)
-
Output Short-Circuit Current
= (V1(S/R) = 2.0 V, VIH(D) 2.0 V, VIH(E) = 2.0 V)
los(Dl
-20
Power Supply Current !Listening Mode - All Receivers On) (Talking Mode - All Drivers On)
Ice
-
-
SWITCHING CHARACTERISTICS (V cc= 5.0 v, TA= 25°C unless otherwise noted.)
Typ
3.3 -0.5
-
-
650
1.75 1.1
-
-
-
-
-
-0.5
3.8
-
-
65 95
Characteristic
Propagation Delay of Driver (Output L,.ow to High) (Output High to Low)
P~opagation Delay of Receiver (Output Low to High) (Output High to Low)
Symbol
Min
Typ
tPLH(D)
-
13
tPHL(D)
-
26
tPLH(R)
-
23
/
tPHL(R)
-
21
Propagation Delay Time - R/W to Data Logic High to Third State Third State to Logic High Logic Low to Third State Third State to Logic Low
Propagation Delay Time - R/W to Bus
Logic High to Third State Thir<I State to Logic High Logic Low to Third State Third State to Logic Low
tPHZ(R)
-
20
tpzH(R)
-
7.0
tPLZ(R)
-
30
tpzL(R)
-
20
tPHZ(D)
-
20
tpzH(D)
-
20
tPLZ(D)
-
40
tpzLIDl
-
25
Max
3.7 '-1.5
2.5 -3.2 -0.04
-
2.0
-
0.4
-55
-
0.8
40 2000 -1.5
-
0.4
-55
90 120
Max
25 35
35 35
-
-
-
-
-
Unit
v v
mA
mV
v v v
mA
v v
µ.A
v v v
mA mA
Unit ns
·ns
ns
ns
@ MOTOROLA Semiconductor Products Inc. _ _ _ ____,_ __.
5-156
XC~448
Input
ov
Output Vol
PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS
FIGURE 1 - BUS INPUT TO DATA OUTPUT (RECEIVER)
To Scope
(Output) +5.o v
tPLH(R)
To Scope (Input)
240
1N916 or equiv
To Scope (Input)
Pulse
FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER I
2.4 v
To Scope Send/Rec (Output) 5.0 V
Send/ Rec
Bus
30 pFl
1N916 or Equiv
VoH - - - Output
Vol _ _ ___,
High
~w
To Scope (Input) Pulse
4.0V High
Data
FIGURE 3 - SEND/RECEIVE INPUT TO BUS OUTPUT (DRIVER)
4.0V
3.0 v
Input 0
Output
500
High to Open
1N270 Output or Equiv Low to Open
..__ __....___ 0.9 v
f=1.0MHz tTLH = tTHL =.;; 10 ns
Duty Cycle= 50%
FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)
To Scope (Output)
5.0 v
1 k 250
Input OV
Outpu't High to Open
Output Low to Open
·
Pulse
f=1.0MHz tTLH = tTHL.;; 10 ns
DutV' Cycle= 50%
@ MOTOROLA Semlconducf:or Producf:s ·inc~ - - - - - - - -
5-157
XC3448
·
FIGURE 5 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS
s.o ..----,.-..,.,v,_.cc-="-'5::-:.o'""'v..,.-.---...,......-....,...--.---...,......--,
i-----t- TA = 25°c --r--t----t------+--t----t
~ 4.0
0
2:. ~ 3.0 l-----+----+·--t----+-+---+---t----1---l < '::; 0 > ~ 2.0
g l-----+---+--t----+-+---+--1-'---1---l
6 1.0r---r----+--t------+-+---+---i------1---; >
O~-~--~=---.___......__~_-__.___......__ __.
0
0.5
1.0
1.5
2.0
Vt. INPUT VOLTAGE (VOLTS)
6.0
4.0
< 2.0
_g 1z ~ -2.0
B -4.o
en
iii: -6.0
fcfii> -8.0
10
12
FIGURE 6 - TYPICAL BUS LOAD LINE
Veus. BUS VOLTAGE (VOLTS)
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA Po(TA) = ReJA(Typ)
Where: Po(TAl = Power Dissipation allowable at a given operatin6 ambient temperature. This must be greater than
the sum of the products of the supply voltages and supply currents at the.worst case operating condition.
TJ(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
R8JA(Typ) ·=Typical Thermal Resistance Junction to Ambient
@ MOTOROLA Semloonduo'for Produo'f· Inc.
·
5-158
ORDERING INFORMATION
Device
MC3450L MC3450P MC3452L MC3552P
Temperature Range
0°c to +70°C 0°c to +70°C 0°C to +700C O°C to +70°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MC3450 MC3452
Specifications and Applications
Info~mation
QUAD MTTL COMPATIBLE LINE RECEIVERS
The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the higti impedance state.
The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" functi.on.
The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices. · Receiver Performance Identical t.o the Popular
MC75107/MC75108 Series · Four Independent Receivers with Common Strobe Input · Implied "AND" Capability with Open Collectorputputs · Useful as a Quad 1103 type Memory Sense Amplifier
QUAD LINE RECEIVERS WITH COMMON THREE-STATE
STROBE IN.PUT
SILICON MONOLITHIC INTEGRATED CIRCl)ITS
LSUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
·
CONNECTION DIAGRAM
FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES
l·K WORO MOS MEMORY
1-K WORD MOS MEMORY
200
200
DATA BIT OUTPUT #2.
200
DATA BIT OUTPUT #1
20()
Only four MC3450 devices are required for a 4-k word by 16-bit memory system.
DATA BIT #3 DATA SIT :#2' DATA BIT #1
TRUTH TABLE
OUTPUT
INPUT
STROBE MC3450 MC3452
V10~
L
H
Off
+25 mV
H
z
Off
-25 mV ~
L
Vto <+25 mV
H
I
I
z
Off
V10<
L
L
L
-25 mV
H
z
Off
L = Low Logie State
= H High Logic; State
· Z =Third (High Impedance) State
I ~ Indeterminate State
5-159
MC3450, MC3452
·
MAXIMUM RATINGS (TA =Oto +7D°C unless otherwise noted.)
Rating Power Supply Voltages Differential-Mode Input Signal Voltage Range Common-Mode Input Voltage Range Strobe Input Voltage Power Dissipation (Package Limitation)
Ceramic Dual In-Line Package Derate above TA = +25°C
Plastic Dual In-Line Package Derate above TA = +25°C
Operating Temperature Range Storage Temperature Range
Symbol Vee.VEE
VioR V1cR V1(S)
Po
TA Tstg
RECOMMENDED OPERATING CONDITIONS (TA= o to +10°c unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Power Supply Voltages Output Load Current
Vee VEE loL
+4.75 -4.75
-
+5.0 -5.0
-
Differential-Mode Input Voltage Range Common-Mode Input Voltage Range Input Voltage Range (any input to Ground)
V1DR
-5.0
-
V1cR
-3.0
-
V1R
-5.0
-
Value ±7.0 ±6.0 ±5.0 5.5
1000 6.6 1000 6.6 Oto +70 -65 to +150
Max +5.25 -5.25
16 +5.0 +3,0 +3.0
Unit Vdc Vdc Vdc Vdc
mW
mwt0 c
mW
mwt0 c
oc oc
Uri it Vdc
mA Vdc Vdc Vdc·
ELECTRICAL CHARACTERISTICS (Vee= +5.0 Vdc, VEE= -5.0 Vdc, TA= 0 to +70°C unless otherwise noted.)
MC3450
MC3452
Characteristic
Symbol
Fig.
Min
Typ
Max
Min
Typ
High Level Input Current to Receiver Input
l1H(I)
7
-
-
75
-
-
Low Level Input Current to Receiver Input
. l1L(I)
8
-
-
-10
-
-
High Level Input Current to Strobe Input
l1H(S)
5
V1H(S) = +2.4 V
-
-
40
-
-
V1H(S) = +5.25 V
-
-
1.0
-
-
Low Level Input Current to Strobe Input
l1L(S)
5
-
-
-1.6
-
-
V1H(S) = +0.4 V
High Level Output Voltage High Level Output Leakage Current
VoH
3
2·.4
-
-
-
-
· lcEX
3
. -
-
-
-
-
Low Level Output Voltage Short-Circuit Output Current Output Disable Leakage Current
Vol
3
-
-
0.4
-
-
ios
6
-18
-
-70
-
-
Ioff
9
-
-
40
-
-
High Logic Level Supply Current from Vee
iccH
4
-
45
60
-
45
High Logic Level Supply Current from VEE
IEEH
4
-
-17,
-30
-
-17
SWITCHING CHARACTERISTICS (Vee= +5.0 Vdc, VEE= -5.0 Vdc, TA= +25°C unless otherwise noted.)
MC3450
MC3452
Characteristic
Symbol
Fig.
Min
Typ
Max
Min
Typ
High to Low Logic Level Propagation Delay tPHL(D)
10
-
-
25
-
-
Time (Differential Inputs)
Low to High Logic Level Propagation Delay tPLH(D)
10
-
-
25
-
-
Time (Differential Inputs)
Open State to High Logic Level Propagation tpzH(S)
11
-
-
21
-
-
Delay Time (Strobe)
High Logic Level to Open State Propagation tPHZ(S)
11
-
-
18
-
-
Delay Time (Strobe)
Open State to Low Logic Level Propagation tpzL(S)
11
-
-
27
-
-
Delay Time (Strobe)
'
Low Logic Level to Open State Propagation tPLZ(S)
11
-~-
29
-
-
Delay Time (Strobe)
High Logic to Low Logic Level Propagation
tPHL(S)
12
-
-
-
-
-
Delay Time (Strobe)
Low Logic to High Logic Level Propagation
tPLH(S)
12
-
-
-
-
-
Delay Time (Strobe)
Max 75 -10
40 1.0 -1.6
250 0.4 -
-
60 -30
Max 25
25
-
-
-
-
25
25
Unit µA µA
µA mA mA
Vdc µA Vdc mA µA mA mA
Unit ns
ns
ns
ns
ns ··
ns
ns
ns
5-160
MC3450, MC3452
FIGURE 2 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)
1.6 k
120:,~·
I ,,,-------4
........
,
I
-<·...'-i
I
I )'
I
~
~----1
4 k :~ r-...,
...
---+------<J 0 UTPUT
4k
4k
TO OTHER RECEIVERS
Dashed components apply to the MC3450 circuit only.
·
TEST CIRCUITS FIGURE 3 - lcEX· VoH· AND Vol
~----+--<JSTROBE
v1-----u-< v2-----o---!
V3 ---+-----<>---<
v4 --+-+---'-<o--1
MC3450 MC3452
(MC3452)
+5.25V-& 1cEx 11+
(MC3450)
TEST TABLE
V1
V2
V3
V4
MC3450· MC3452 MC3450 MC3452 MC3450 MC3452 MC3450 MC3452 11
Vo H ~+..:.~3:.::.·~~:...::::...::V.+-----+-+.:._3;.:._0.:._V-l----1-+...:.3:.::..0...:.V-+---~--3-.0-V-+----l +0.4 mA
1cex
+2.975 v
-2.975 v
GND -3.0 v
~·3~.0~V:.._+...:.+3~.o~v:.._++:...::2..:..9:...::75~V:..i.:...::+2=.9.:..75~V:+-..:.G:.::.ND=-l-=G:.::.ND=-!~+..:.3..:..0...:.V--1-+...:.3:...::.o:...::v~-16mA
VoL -2.975 V -2.975 V -3.0 V -3.0 V -3.0 V -3.0 V
GND
GND
Channel A shown under test. Other channels are tested similarly.
·
FIGURE 4 - lccH AND IEEH
FIGURE 5 - l1H(S) AND llL(S)
+3.0 v--------------.
MC3450 MC3452
+5.25 v -5.25 v
I1-6<>---- +5.25 v H>---- +3.0 V
MC3450 MC3452
5-161
MC3450, MC3452
FIGURE 6 - ·os
+25 mV +O.B V
MC3450
TEST CIRCUITS (continued)
+5.25 v +3.0 v -5.25 v
V1 V1 -2.0 V
+3.0 v
FIGURE 7 - l1H
MC3450 MC3452
+5.25 v -5.25 v
·
Channel A shown under test, other channels are tested similarly. Only one output shorted at a time.
V1 -2.0 V V1
+3.0 v
FIGURE 8 - l1t
MC3450 MC3452
+5.25 v -5.25 v
Channel A(-) shown under tast, other channels are tested similarly. Devices are tested with V1 from +3.0 V to -3.0 V.
+3.0 v +2.0 v
FIGURE 9 - loff
MC3450
+5.25 v -5.25 v
Channel A(-) shown under test, other channels are tested similarly." Devices are tested with V1 from +3.0 V to -3.0 V.
Output of Channel A shown under test, other outputs are
tested similarly for V1 = 0.4 V and +2.4 V.
FIGURE 10- RECEIVER PROPAGATION DELAY tPLH(D) Al\iD tPHL(D)
+5.0V
MC3450 MC3452
Output of Chan.nel B shown under test, other channels ar!!I tested similarly. S1 at "A" for MC3452 S1 at "B" for MC3450 CL= 15 pF total for MC3452 CL = 50 pF total for MC3450
Etn 200mV~----50%
ov
t~-~ - - -~(~~)tpHL(D)
Eo
VoL
1.5 V
Ein waveform characteristics:
tTLH and tTHL.,.; 10 ns measured 10% to 90% PRR = 1.0 MHz Duty Cycle= 500 ns
5-162
MC3450; MC3452
TEST CIRCUITS (continued)
FIGURE 11 - STROBE PROPAGATION DELAY TIMES tPLZ(S) tpzL(S) tPHZ(S) and tpzH(S)
v1------<:J--1
v2----1---o-:::..i
MC3450
+5.0 v
Outpu't of Channel B shown under test, other channels are tested similarly.
tPLZ(S) tpzL(S) tPHZ(S) tpzH(S)
V1
V2
100 mV GND
100mV GND GND 100mV
GND 100 mV
S1 Closed Closed Closed Open
S2 Closed Open Closed Closed
CL
15 pF 50 pF 15 pF 50 pF
CL includes jig and probe capacitance. Ejn waveform characteristics:
tTLH and tTH L:;;;;; 10 ns measured 10% to 90%. PRR=1.0MHz Duty Cycle = 50%
tpzL(S)
3.0V~ 50%
° Ejn
v.:..._____
tpzL(S)
5.0V-VD1
{ Eo
1.5 V
VoL--------------
tpHZ(S){Ein 3.::~------50%
.
VoH Eo
VoH-0.5 v :::::1.5v
50% 3.ov~
E;n
v::_____,. tpzH(S) {
tpzH(S)
Eo
:::::ov
1.5 V
·
FIGURE 12 - STROBE PROPAGATION DELAY tPLH(SI AND tPHLISI +5.0 v
MC3452
390
15 pF l(Totall
Output of Channel B shown under test, other channels are tested similarly.
Ein waveform characteristics:
'TLH and 'THL.,;;; 10 ns measured 10% to 90% · PAR= 1.0MHz Duty Cycle = 500 ns
5-163
MC3450, MC3452
APPLICATIONS INFORMATION
FIGURE 13- IMPLIED "AND" GATING
Vref
FIGURE 14- BIDIRECTIONAL DATA TRANSMISSION
+5.0 v .--------,
1/4 (MC4042)
180
CIRCUIT
co~~~TER...._,,__+-<>-r-~
380
STROBE
1/4 (MC3450) CIRCUIT
The three·state capability of the MC3450 permits bidirectiona'I data transmission as illusvated.
MEMORY BUS
·
The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to +5.0 volts. In this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.
FIGURE 15 - SINGLE-ENDED UNI-BUS* LINE RECEIVER. APPLICATION FOR MINICOMPUTERS
or equiv
180
DATA DATA
ADDRESS
CONTROL
I
I
I
~ S T R O B E - - - - - - - ! - - < > - ' - :
I
1 ·Tra~emark of Digital
l_ _ _ _ _ _ _ _ _J Equ1pmentCorp.
TO ADDITIONAL RECEIVERS
The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applications, such as'. are encountered in ·minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates Vref· should be designed so that the Vref voltage is halfway between VoH(min) and VoL(max). The maximum input overdrive reqUired to guarantee a given logic st~te iS extr~mel~ small,. 25 m_v ~aximu_m. This low-in~u~ _overdrive enhances d1fferent1al noise immunity. Also the h1gh-mput impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects.
FIGURE 16 - WIRED "OR" DATA SELECTION USING THREE-STATE LOGIC
1 ... le
...
· · -
DATA
· LINES ·
.....
.-..
~
STROBE
l_
~
_,..,, MC3450 _,..,,
_,.,,
f.-o---,
1-<>-i
STROBE _2_
-0
~
-0
-0
MC3450
J>.
-0
-0
-0 -0
MC;3450 -0
J>.
j STROBE
-0
~
f--o-1
_,.,,
~
MC3450
J>.
-0
~ STROBE
~
f-o-+-1-o-
.... DATA
... OUTPUT ~
01 02 03 04
x ( t 9¢
A1 A2
y
J 1/2 MC4007 CIRCUIT
... _,.,
]
-
5-164
MC3450, MC3452
APPLICATIONS INFORMATION (continued)
FIGURE i7 - PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING
....
-- DATA
· INPUTS ·
· · DATA
- INPUTS .._ .._
..._ .._
- DATA
- INPUTS
·
.._
· DATA
-- INPUTS
-.._
~ROBE
_,...
_,
-."...-, _.,.....,.
~ ~
](
--,
MC3453 ~
-"_,.".. '
~ ~ ~
H....
STROBE,___
~
-.r.._
~i-. ~
-0-
:x
l
MC3453
-.'.".,",-
~
_..,....,.
~
·~
K...
'--------'
,_
1'
" _.,......,
- r~_;;.,_
_.,.....,.
~ MC3453 ·~
.,...,...
-~ ~
_, J,,'
STROBn-
,..._
_.,.....,.
f~ -o-+-'
-0-
,......,.,-
MC3453
_~;;:
~....,
_,...
~
~....,
--,_
J
'~ .--.--,
1
,
!-o-1
02 2/3
1/2
x
1-<>l L--0- MC7404
MC4007 H:).
t-<>-- Q3 CIRCUIT
CIRCUIT
L--o-
1-o-j
Q,...4.
-.r
t-o1
y
L---
· · A.1
A2
A1
A2
DATA OUTPUTS
DATA OUTPUTS
DATA OUTPUTS
DATA OUTPUTS
·
5-165
ORDERING INFORMATION
Device
MC3453L MC3453P
Temperature Range
0°c to +70°C 0°C to +70°C
Package
Ceramic DIP Plastic DIP
MC3453
·
MTTL COMPATIBLE QUAD LINE DRIVER
The MC3453 features four MC75110 type line drivers with a common inhibit input. When the inhibit input is high, a constant output current is switched between each pair of output terminals in response to the logic le.vel at that channel's input. When the inhibit is low, all channel outputs are nonconductive (transistors biased to cut-off). This minimizes loading in party-line systems where a large number of drivers share the same line. · Four Independent Drivers with Common Inhibit Input · -3.0 Volts Output Common-Mode Voltage Over Entire Operating
Range · Improved Driver Design Exceeds Performance of Popular MC75110
FIGURE 1. - PARTY-LINE DATA TRANSMISSION SYSTEM WITH ·MULTIPLEX DECODING
DATA INPUTS
DATA INPUT.S
DATA INPUTS
DATA tNPUTS
QUAD LINE DRIVER WITH COMMON INHIBIT INPUT
SI LICON MONOLITHIC INTEGRATED CIRCUIT
LSUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
CONNECTION DIAGRAM
INPUT A
y OUTPUT A
z z
OUTPUT C y
INHIBIT
INPUT C
GNO
Vee
INPUT B
...,
OUTPUT B
z z
OUTPUT 0 y
INPUT 0
Vee
TRUTH TABLE · (positive logic)
LOGIC INHIBIT INPUT INPUT
OUTPUT
CURRENT
z
y
H
H
On
Off
L
H
Off
On
H
L
Off
Off
L
L
Off
'Off
L = Low Logic Level H = High Logic Level
5-166
MC3453
MAXIMUM RATINGS (TA = 0 to +7o0 c unless otherwise noted.)
Ratings Power Supply Voltage
Logic and Inhibitor Input Voltages Common-Mode Output Voltage Range Power Dissipation (Package Limitation)
Plastic and Ceramic Dual In-Line Packages Derate above TA = +25°C Operating Ambient Temperature Range Storage Temperature Range Plastic and Ceramic Dual In-line Packages
Symbol Vee VEE Vin VocR Po
TA Tstg
Value +7.0 -7.0 5.5 -5.0 to +12
#
1000 6.6 Oto +70 -65 to +150
Unit
T
Volts
Volts Volts
mW mW/°C
oc
OC
RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2 l
Characteristic
Symbol
Power Supply Voltages
Vee VEE
Common-Mode Output Voltage Range Positive Negative
VocR
Note 1. These voltage values are in respect to the ground terminal. Note 2. When not using all four channels, unused outputs must be grounded.
Min +4.75 -4.75
0 0
Nom +5.0 -5.0
-
-
Max +5.25 -5.25
+10 -3.0
Unit Volts
Volts
DEFINITIONS OF INPUT LOGIC LEVELS*
Characteristic
·Symbol
Min
Max
Unit
High-Level Input Voltage (at any input) Low-Level Input Voltage (at any input)
V1H
2.0
5.5
Volts
Vil
0
0.8
Volts
*The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.
ELECTRICAL CHARACTERISTICS !TA = o to +10°c unless otherwise noted.)
Characteristic##
Symbol
Min
High-Level Input Current (Logic Inputsl (Vee= Max, VEE= Max, V1HL = 2.4 V) !Vee= Max, VEE= Max, V1HL =Vee Max)
l1HL
-
-
Low-Level Input Current (Logic Inputsl .(Vee·= Max, VEE= Max, V1LL = 0.4 V)
l1LL
-
High-Level Input Current (Inhibit Input) !Vee= Max, Vee= Max. V1H 1= 2.4 Vl (Vee= Max, VEE = Max, V1 H_i = Vee Max)
Low-Level Input Current (Inhibit Input)
v, (Vee= Max, VEE= Max, L1 = 0.4 V)
l1H1
-
-
l1L1
-
Output Current ("on" state) !Vee= Max, VEE= Max) (Vee= Min, VEE= Min)
Output Current ("off" state) (Vee= Min, VEE= Min)
Supply Current from Vee (with driver enabled) (V1 LL= 0.4 V, V1 Hi = 2.0 Vl
Supply Current from VEE (with driver enabled) (V1LL = 0.4 V, V1Hi = 2.0 V)
Supply Current from Vee (with driver inhibited)
= (V1LL 0.4 V, V1Li = 0.4 V)
lo(on)
-
6.5
IO(off)
-
'cc( on)
-
IEE(or.il
-
lec(off)
-
Supply Current from VEE (with driver inhibited) (V1LL = 0.4 V, V1Li = 0.4 Vl
IEE(off)
-
Typ#
-
-
-
-
-
Ma i t
40 1.0 -1.6
40 1.0 -1.6
11
15
11
-
5.0
100
35
50
65
90
35
50
25
40
Unit µA mA mA
µA mA mA
mA
µA mA inA mA mA
#All typical values are at Vee= +5,0 V, VEE= -5.0 V, TA= +25°e. ##For conditions shown as Minor Max, use the appropriate value specified under recommended operating
conditions for the applicable device type. Ground unused inputs and outputs.
5-167
·
MC3453
SWITCHING CHARACTERISTICS (Vee= +5.0 V, VEE = -5.0 V, TA= +25°c.)
Characteristic Propagation Delay Time from Logic lhput to
Output Y or Z (AL= 50 ohms, CL= 40 pF)
Propagation Delay Time from Inhibit Input to Output Y or Z (R L = 50 ohms. CL= 40 pF)
·Symbol
Min
Typ
Max
Unit
tf>LHL
-
9.0
15
ns
tPHLL
-
9.0
15
tPLH1
-
tPHL1
-
16
25
ns
20
25
FIGURE 2 - LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS
·
3.0 v
OUTPUT y
ov
OUTPUT
z
FIGURE 3 - INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS
3.0 v
INHIBIT INPUT
ov
OUTPUT y
OUTPUT Z
ov
TEST CIRCUITS
FIGURE 4- LOGIC INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT
FIGURE 5 - INHIBIT INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT
Ein to Scope
Vee= +5.o v
Vee= +5.o v
15
tTHL
·~10ns ~ Y
Output ....J
to
z
Scope·
MC3453
1 k
Channel A shown under test, the other channels are tested similarly.
=-5.0
v
Output
sctoopT .y..--~
I 40 pF
z
(total) -=
MC3453
50
_Ein tTLH '." tTHL ·.,;;; 10 ns
VEE=
-5.0 v
Channel A shown under test, the other · channels are tested similarly.
5-168
MC3453
Vee
FIGURE 6 -CIRCUl.T SCHEMATIC (1/4 Circuit Shown)
To Other Drivers
3.5 k
y
.-----r---t---<.J puts
z
Inhibit Input
To Other Drivers
To Other Drivers
·
5-169
ORDERING INFORMATION
Device
MC3459L MC3459P
Temperature Range
0°c to +70°C 0°c to +10°c
Package
Ceramic DIP Plastic DIP
MC3459
·
Specifications and Appl.cations Information
QUAD NMOS MEMORY ADDRESS DRIVER
The MC3459 is designed for high-speed driving of the highly capacitive Address select inputs for NMOS Memories. It is also useful in numerous applications requiring a high-current MTTL NANO gate. It is pin-compatible with the popular MC7400 Quad NANO gate. · Fast Propagation Delay Time -
20 ns Typical with 360 pF Load · Output Voltages Compatible with NMOS Memories · Inputs Compatible in MTTL and MOTL Logic Families · Output Loading Factor - 50
REPRESENTATIVE CIRCUIT SCHEMATIC (1/4 of Circuit Shown)
Vee
Rl
R2
R5
05 04
OUTPUT R4
05
QUAD NMOS ADDRESS LINE DRIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT
LSUFFIX
~
CERACMAISCEP6A3C2KAGE ' - ·. · . .
T0-116
'
Input 1A
Input 2A
Output A
Output B Gnd
Vee
Input 10
Input 20
Output 0
Input 1C
Output
c
PSUFF..IX PLASTIC PACKAGE
CASE 646
TYPICAL OPERATION
GND
Input 2.5
V/div 2.5
V/div Output
Vee= s.o v ·so· cL.= 360 pF
TA = 250C ns/div Rs ~ 0 n
5-170
MC3459
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
Rating
Symbol
Power Supply Voltage Input Voltage Power Dissipation (Package Limitation
Ceramic Package@ TA= 25°C Derate above TA = 25°c
Plastic Package@ TA = 25°C Derate above TA = 25°c
Ceramic Package@ Tc= 25°c De_rate above Tc = 25°c
Vee Vi
Po 1/ReJ~
Po 1/ReJA
Po 1/ReJC
Plastic Package@ Tc= 25°c
Po
Derate above Tc = 25°c
1/ReJc
Operating Ambient Temperature Range
TA
Junction Temperature
TJ
Ceramic Package
Plastic Package
Storage Temperature Range
Tstg
Value 8.5 5.5
1000 6.6 830 6.6 3.0 20 1.8 14 Oto 70
175 150 -65 to +150
Unit Vdc Vdc
mW mw/0 c
mW mw/0c Watts mW/°C Watts mW/0 c
oc oc
OC
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4. 75 v ..;;; v cc .;; 5.25 v and o..;;; TA ..;;; 10°c)
Characteristic
Symbol
Min
Typ(1)
Input Voltage - High Logic State Input Voltage - Low Logic State Input Curren.t - High Logic State
(Vee= 5.25 V, V11-r= 2.4 V) (Vee= 5.25 V, V1H = 5.5 V) Input Current - Low Logic State (Vee= 5.25V, V1L = 0-4 V)
V1H
2.0
-
V1L
-
-
l1H1
-
-
l1H2
-
-
l1L
-
-
Input Clamp Voltage 01c = -12 mAI
'V1c
-
-
Output Voltage - High Logic State
(Vee= 4.75 v' V1L = 0.8 V, loH = -640 µA)
(Vee= 4.75 V, V1L = 0.8 V, loH = -2.0 mA)
Output Clamp Voltage (Vee= 5.25 V, V1L = 0 V, toe= 5.0 mAI
VoH1
3.2
-
VOH2
2.4
-
Voe
-
5.8
Output Voltage - Low Logic State
(Vee= 4.75 V, VtH = 2.0 v. 'oL = 640 µA)
(Vee =.4.75 V, V1H = 2.0 V. loL = 80 mA)
'"Fower Supply-C-urrent -:Uutputs High Logic State (Vee= 5.25 V, V1L = 0 VI
Vou
-
-
VOL2
-
-
iccH
-
12
Power Supply Current - Outputs Low Logic State (Vee= 5.25V, V1H= 5.0V)
iccL
-
85
Max
-
0.8
80 2.0 -3.6
-1.5
-
6.75
0.3 0.7 18
122
Unit
v
v
µA mA mA
v
v
v v
mA
mA·
SWITCHING CHARACTERISTICS (Unless otherwise noted Vee= 5.0 V TA= 25°C. CL= 360 pF)
Characteristic
Symbol
Min
Typ
Propagation Delay Time - High to Low Logic State
tPHL
-
21
Propagation Delay Time - Low to· High Logic State
tPLH
-
16
(1I Typical values measu_red at TA = 25°C, V cc = 5.0 V.
Max 32 '26
Unit ns ns
·
5-171
MC3459
·
FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES
- tTLH .;;; 5.0 ns
- tTHL .;;; 5.0 ns
90%
t~ 1.0MHz · PW ~ 500 ns
1.5 v
To Scope (Input)
1/4-MC3459
To Scope (Outp.ut)
51
All four drivers
tested simultaneously
+5.0 v
J 360 pF
(includes probe and jig capacitance)
TYPICAL PREFORMANCE CURVES
FIGURE 2 - POWER CONSUMPTION versus OPERATING FREQUENCY
__,.-1--=,.......,,, 370 pF (eacli driver)
_
400 _ I----+----+---+--~--+----+ 1 -___
I~ ~z~ w~~
_..1..---1 -r--
300 1-----1---+----d.-=--+----"---+---~-~
__.-i----
~ ~ => => i..--
200 t - - - - + - - - + - - - ; . - - - - t - - - ' - - 1 f - - - - t - - - + - - - - - i
(..)Li-
wa: _0 ,
~~~g 100:=========================:_o_u_T_~_,_c_v_6E_~_~_._~_o0_%v-__,
_ __.__ o,_~_.. __,_ __.__ _.___ _.__ _~_ _.
0
1.0
2.0
3.0
4.ci
f, FREQUENCY (MHz)
FIGURE 3 - OUTPUT VOLTAGE - HIGH LOGIC STATE
en
versus OUTPUT CURRENT
!::;
0 ~
w
8.0
1
7.0 l---+--+---+---+---+---+---4-i;:~~~-t--
I\:: I-
<t
t:; 6.0
<->
Vee= 7.5 v
Ci
:3
5.0
I
:c
~ C:cl 4.o
I
w
Cl
3.0
:<;t
0> 2.0
I-
~
1.0
~
~
50 100 150 200 250 300 350 400 450 500
>
IOH. OUTPUT CURRENT - HIGH LOGIC STATE (mA)
FIGURE 4 - OUTPUT VOLTAGE - HIGH LOGIC STATE
versus OUTPUT CURRENT
(Expanded Scale)
~ 8.0
0
~
w I-
~
~ 7.0 ~
6.0
vcl =7.51
1 I
V1L=0.8V _ ~A= 25°C
(..)
rs: § 5.0
:c
~ 4.0 "'-.. I
~ .3.0
~
0 2.0 >
I-
=~> 1.0
v Vee= 5.o
0
0
i: > 0
0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
IOH. OUTPUT CURRENT - HIGH LOGIC STATE (mA)
FIGURE 5- OUTPUT VOLTAGE - LOW LOGIC STATE versus OUTPUT CURRENT
400r---.---.-----,---r---..---.---.-,---~
>
.§.
~ /
~ 3001----+--+---l---+---+---2""~"'4-~--+--~
~
10
40
50
60
70
80
IOL. OUTPUT CURRENT - LOW LOGIC STAtE (mA)
5-172
MC3459
APPLICATIONS SUGGESTIONS
A majority of the new N-Channel MOS memories have TTL logic compatible inputs that exhibit extremely low input current and capacitance (typically 5 pF to 10 pF). However, in a typical memory system (Figure 6) where some of the inputs such as Address lines have ·to be common, the total parallel input capacitance can be over 300 pF. Standard TTL logic gates have insufficient current drive capability to rapidly switch a high capacitive load; a high speed buffer, such as the MC3459, is required.
A considerable amount of noise can be generated during switching due to the high speed and high current dr.ive capability of the MC3459. The high capacitive discharge current during the high to low transition, plus current spikes can result in a considerable amount of noise being generated on the ground lead. Current spikes are due to both the upper and lower output drive transistors being on for a short period of time during switching. This causes a very low impedance path between Vee and ground.
In order to minimize the effects of these currents, the following layout rules should be followed:
1. The Vee supply pin of each package should be bypassedwith a low inductance 0.01 µF capacitor. The 0.01 µF capacitor will sustain the high surge currents required during switching.
2. There is a large amount of current out of the ground node during switching - tlie noise seen at this node
will be proportional to the ground impedance. The impedance of the ground bus can be reduced by increasing its width. At least a 50 mil ground width is recommended. Some of the NMOS memories with TTL logic compatible inputs do not actually meet the TTL logic level requirements in the input high sta~e voltage (VI H). There are N-Channel MOS memories with a Vt H minimum ranging from 2.4 V to 4.0 V. The MC3459 can dfrectly interface with those N-Channel memories having a V1H minimum of 3.0 V. The higher driver output levels can be accomplished by addin9 a pull-up resistor to Vee or by
increasing the Vee voltage. There are some N-Channel MOS memories, such as the MCM7001, that have a supply requirement of 7.5 V. The high maximum supply voltage
rating of the Me3459 can accommodate a 7.5 V Vee
supply without affecting its input TTL logic compatibility. Figure 4 gives the typical VQH versus IQH characteristics
for both Vee = 5.0 V and Vee = 7.5 V. An expanded
output characteristic curve of Figure 4 is illustrated in Figure 5.
The Me3459- can be used in a variety of applications including, high fan-out buffer (drives 50 standard TTL loads) and low impedance transmission line driver.
FIGURE 6 - TYPICAL APPLICATION 16K X N Memory System Employing MCM6605 4K RAMS
·
Chip Select 1 Chip Select 2 Chip Select 3 Chip Select 4
·
· ORDERING INFORMATION
Device
MC3460L MC3460P MC3466L MC3466P
Temperature Range
0°C to +700C 0°c to +70°C 0°c to +70°C 0°C to +70°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MC3460 MC3466
Specifications ·and Applications Information·
QUAD NMOS MEMORY CLOCK DRIVE.RS WITH REFRESH SELECT ~OGIC
The MC3460 and MC3466 are quad drivers for use with high-level clock lines in NMOS RAM systems. The MC3460 version is specified for 4K memory applications with a Voo1 power supply voltages to +13 V. The MC3466 version is specified for mating with the MCM7001 A 1KRAM and is guaranteed with a supply voltage Voo1 to 18 V. Both versions may be used with the Voo2 pin connected to a separate supply> Voo1 to increase the high logic state output voltage.
The channel control logic is organized so that all four drivers may be deactivated f_or STANDBY operation, or single driver. may be activated for READ/WRITE operation or all four drivers may be activated for REF.RESH operation. · Control Logic Optimized for Use in MOS RAM Systems · High Speed Switching -· Voo1 and Voo2 Variable Over Wide Range of Voltage to
18 and 22 V Respectively (MC3466) · Output Voltages Compatible with Many Popular MOS RAMs · MTTL and MOTL Compatible Inputs
TYPICAL APPLICATION WITH 4K NMOS RAM IN TT.L SYSTEM (See Figure 17 for Detailsl
TYPICAL APPLICATION WITH MCM7001 1K RAM AND TTL SYSTEMS (See Figures 22, 23 for Detailsl
MC10125 MECLtoTT Translator
Data Out
GATE CONTROLLED FOUR CHANNEL
MOS CLOCK DRIVERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
LSUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS
Output A
Channel Select A
·Enable 1
14~
Select D
1-+---·11.__--H13 Enable 3
Refresh Select
Channel Select B
Output B 7
Gnd
TRUTH TABLE
Inputs Control
Address
-1
H I L
H = High Logic State L · ,Low Logic State I = Irrelevant
,L L
H I L
5-174
MC3460, ·.MC3466
MAXIMUM RATINGS (TA = 25°c unless otherwise noted.I
Rating
Symbol
Value
Power Supply Voltages
Vee
+7.0
MC3460
Voo1
+14
MC3466
+19
MC3460
Voo2
+18
MC3466
+23
Input Voltage
V1
+5.5
Power Dissipation (Package Limitation)
Ceramic Package@ TA = 25°C Derate above TA= 25°c
Po 1/ReJA
1000 6.6
Plastic Package@ TA = 25°c Oerate above TA = 25°C
Po
830
1/ReJA
6.6
Ceramic Package@ Tc= 25°C Derate above Tc = 25°c
Pi)
3.0
1/ReJC
20
Plastic Package@ Tc= 25°C Derate above T....c_ = 25°c
Po
1.8
1/ReJC
14
Operating Ambient Temperature Range
TA
0 to +70
Storage Temperature Range
Junction Temperature
Ceramic Package Plastic Package
Ts!!!.. TJ
-65 to +150
175 150
Unit Vdc Vdc
Vdc
Vdc
mW mwt0c
mW mwt0 c Watts mwt0 c Watts mW/°C
oc oc Oc
RECOMMENDED OPERATING CONDITIONS
Characteristic Power Supply Voltages
(Note 1) Operating Ambient Temperature Range
Symbol
Vee Voo1 Voo2 Voo2Voo1
TA
Note 1: Not to Exceed Maximum Recommended Operating Voltages
Min 4.75 4.75 Voo1
0
0
MC3460 Typ 5.0
-
-
-
Ma.x 5.25
13 17 10
70
Min 4.75 4.75
Voo1 0
MC3466 Typ
5.0 -
-
-
Max 5.25
18 22 10
0
-
70
Unit Vdc Vdc Vdc Vdc
oc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and . temperature ranges Typical values measured at TA - 25°C)
MC3460
MC3466
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Output Voltage - High Logic State (Voo2 = Voo1 + 3.0 V, Vi L = 0.8 V) loH = -2.0 mA
VoH1
Voo1- Voo1-
1.0
0.8
-
-
-
-
loH = -40mA
. Voo1- Voo1-
-
-
-
1.3
1.1
Output Voltage - High Logic State IV002 = Voo1. V1L = 0.8 VI (See Applications Section oJ Data Sheet) loH = -100 µA loH = -40mA
Output Voltage - Low Logic State IV1H = 2.0 V, loL = +10 mA)
VoH2
Vou
Voo1- Voo1-
1.0
0.8
-
-
-
-
-
-
0.35
-
-
-
Voo1- Voo1-
"2.5
1.6
-
-
-
0.35
Output Voltage - Low Logic State
IV1H = 2.0 V, loL = 40 mA)
11 v.:. v002 .:. 11 v .
11 V<. Voo2<. 22V
VOL2
-
-
-
0.55
-
-
-
-
-
-
-
0.55
Unit Vdc
Vdc
Vdc Vdc
@ MOTOROLA SeTniconductor Products Inc.
5-175
·
MC3460, MC3466
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and
temperature ranges. Typical values measured at TA = 25°C)
Characteristic
MC3460
Symbol Min
Typ
Max
· MC3466
Min
Typ
Max
Output Clamp Voltage (V1 L = 0 V, loc = 5.0 mA)
Input Voltage - High Logic State Input Voltage - Low Logic State
Input Clamp Voltage (l1c = -12 mA)
Voe
-
V1H
2.0
V1L
-
V1c
-
vDD1+
-
1.0
-
-
-
2.0
-
0.8
-
-
-1.5
-
VDD1+
-
1.0
-
-
-
0.8
-
-1.5
Input Current - High Logic State (V1=5.0V) Channel Select Inputs Refresh Select and Enable Inputs
Input Current - Low Logic State (V1L = 0.4 V) Channel Select Inputs Refresh Select and Enable Inputs
Power Supply Current - Output - High Logic State (Vee= 5.25 V, V1L = OV, IOH = 0 mA,
MC3460Vi::>D1=13V, VDD2= 17V, MC3466-VDD1 = 18 V, VDD2 = 22 V)
Power Supply Current - Output - Low Logic State (Vee= +5.25, V1H = 5.0 V, IOL = 0 mA, MC3460 VDD1 = 13 V, VDD2 = 17 v. MC3466 VDD1 = 18 V, VDD2 = 22 V)
Power Supply Current - Output - High Logic State
(Vee= +5.25 V, V1L = 0 V, IOH = 0 mA, MC3460 VDD1=VDD2=13 V, MC3466 VDD1 = VDD2 = 18 V)
l1H
-
-
l1L
-
lccH
-
IDD1HP
-
IDD1HN -
IDD2H
-
iccL
-
IDD1L
-
IDD2L
-
IDD1H
-
IDD2H.
-
-
20
-
-
80
-
-
-1.6
-
-
-6.4
-
-
28
-
-
0.5
-
-
-6.0
-
-
6.0
-
-
48
-
-
2.0
-
-
23
-
-
0.5
-
-
0.5
-
-
20
-
80
-
-1.6
-
-6.4
-
28
-
0.5
-
-6.0
-
6.0
-
48
-
2.0
-
30
-
0.5
-
0.5
Unit Vdc Vdc Vdc Vdc µ.A
mA
mA
mA
mA
SWITCHING CHARACTERISTICS (TA= 25°c. Vee= 5.0 V; MC3460: Voo1 = VDD2 = 12 V, CL= 480 pF;
MC3466: VDD1 = VDD2 = 17 v. VDD = 15 V, CL= 480 pF) '
MC3460
MC3466
Characteristic
Symbol Min
Typ
Max
Min
Typ
Propagation Delay Time - READ/WRITE Mode Output High to Low Level Output Low to High Level
Transition Time - READ/WRITE Mode Output High to Low Level Output Low to High Level
Propagation Delay Time - REFRESH Mode Output High to Low Level Output Low to High Level
Transition Time - REFRESH Mode Output High to Low Level Output Low to High Level
tDHL1
-
15
24
-
15
- toLH1
-
15
23
-
15
tTHL1
-
14
23
-
15
tTLH1
-
14
23
-
15
tDHL2
-
20
35
-
-
tDLH2
-
16
27
-
-
tTHL2
;-
20
36
-
-
1TLH2
-
16
27
-
-
Max
24 23
24 24
-
-
-
Unit ns
ns
ns ns
@ MOTOROLA Semiconductor Products Inc. --------'
5-176
MC3460, MC346,6
FIGURE 1 - SWITCHING TEST WAVEFORMS - MC3460
Input Pulse Characteristics PRR = 1 MHz READ/WRITE Mode PRR = 100 kHz REF RE.SH Mode PW= 500 ns
tTLH = tTHL < 5.0 ns
FIGURE 2 - SWITCHING TEST WAVEFORMS - MC3466
tTHL < 5.0 ns 3.0 v
Input
·
Output
Input Pulse Characteristics PRR = 1 MHz, READ/WRITE Mode PW= 500 ns
tTLH = tTHL.;;; 5.0 ns
FIGURE 3 - SWITCHING TEST CIRCUIT FOR READ/WRITE MODE - MC3460
To Scope (Input)
To Scope (Output)
FIGURE 4 - SWITCHING TEST CIRCUIT FOR REFRESH MODE - MC3460
To.Scope (Input)
To Scope (Output)
Pulse Generator
Pulse Generator
CL Includes Jig and Probe Capacitance
+2.4 v
@ MOTOROLA Semfoonductor Products Inc.
CL Includes Jig and Probe Capacitance
5-177
MC3460, MC3466
·
FIGURE 5 - SWITCHING TEST CIRCU.IT FOR READ/WRITE MODE - MC3466
To Scope (Input)
To Scope (Output)
lN914
Pulse Generator
CL Includes Jig and Probe Capacitance
FIGURE 6 - REPRESENTATIVE CIRCUIT SCHEMATIC (1/4 of Circuit Shownl
Vee
Voo2
Voo1
Channel
Select.__ _.;..._~. . .-~~__,.,.__-+-1---+----1-~
08
Refresh Select-----~--~1----'
"'~ Eriabi91e---<f--4a-----M--4--4---4-~
Q Enable 2 -........j.--i---'_.___.._-"-..._--1-....l
.Qr:l
0
(!_ Enable 3 e---<1--1---+-_-M.___---r, .....___;__ __,
TYPJCAL PERFORMANCE CURVES
FIGURE 7·- DELAY TIMES versus LOAD CAPACITANCE (READ/WRITE MODEi
FIGURE 8 - TRANSITION TIMES versus LOAD CAPACITANCE jREAD/WRITE MODEi
20.--.-~.--.--.--.--.--...--r---...-~
2
1a1-~t-~+--+--+--+--+--+-~+--+---l
0
16
- 14
IDLH--+-
-
LU
::;;
;::
12
g> 10 8.0
-;§
6.0 1--1--~1---1--~1---I--~+-- Vcc=+5V
-
l : 4.0 ~-+--+--+--'-+--+--+-VDf ~~o~~i"=+~~~z -
P.W. = 500 ns
2.0
Sei Figure 3 I -
0
1
0
100
200
300
400
500
8
!1 6
::;;
;:: 4 . ~i= 12
~ 10
<(
:= 8.0
~ 6.0
*4.0 0 0
-~
1...--r
- __.b::::::~~1~-J-4H----
I
Vcc=+SV
...,
MHz_, voo1 =voo2 =+12 v TA= 2soc. t = 1
srigurr P.W. =500 ns
...,
l
100
200
300
400
500
CL. LOAD CAPACITANCE (pF)
CL. LOAD CAPACITANCE (pF)
@ MOTOROLA Se1niconductor Products Inc. ________,
fi-17s:t
MC3460, MC3466
TYPICAL PERFORMANCE CURVES
FIGURE 9 - DELAY TIMES versus LOAD CAPACITANCE (REFRESH MODEi
4~-~--.---.--~--~--~--~--~--~--~
21----1---------+----1-----1----+----1----1---~
20
:! 18
w
::E i=
> ~
16 14
1----l-""'1---::::1...-~-,~-tD~---+----+----+--+---+---1 ~
c 12
';9 10
vcc=+5V
VDDl = VDD2 = +12 v
8.0 1----1--------+----1---+- TA= 25oc, f= 100 kHz
P.W.= 500 ns
6.00~
l SiFigureJ
0
100
200
300
400
500
' CL, LOAD CAPACITANCE PER DRIVER (pF)
FIGURE 10 - TRANSITION TIMES versus LOAD CAPACITANCE (REFRESH MO[)EI
24
22
20
! 18
:Iii
i= 16 z ~ 14
~
~
12
c:t- 10
8.0
4.0
04<
0
1,....--1~
~
ITH'v
L
i..---1
L'
1.--i--1
:L_
i--
1---i--;:;LH - 1- Vcc=5v
-<
voD1=VDD2=12 v
TA= 25oc, f = 100 kHz-'
P.W. = 500 ns
See;igure~
-I
_J_
100
200
300
400
500
CL, LOAD CAPACITANCE PER DRIVER (pF)
FIGURE 11 - SWITCHING TIMES versus TEMPERATURE
(READ/WRITE MODE)
.
22r'--..--l~l--..-l-----..l--r--r--,.--l..--...-.....--.---.--~
t-- vcc =+5 v
-+---1-1--~"'"Ii---+---1---~-+--+---1
201t--
VDo 1 = c\:
ViD~DJ2:=
+12
V--++----+---1.-..-.~j-1-+----1-+f---~-++-----+1----11----_4-1+--------11
] 181- P.W.=500ns ~ I- SeeFigure3
-+----+---tDLH ·~
+--+,--"-"t::::ll--::::bo-t~+-+-l--+--1
~
~ ~
16
1----1:::=-+--=J-~-+-.-___,t-_--.+--,-+-
I
ITLH
141.c:::1"""
~t- 12E:J~~~==t::t::1::::±:~t~D~HL~=3:::~;t~r--~ 1---1---t-+--+---t---+-.,-+-ITH L
10 l--+--+--+--+--+--+-1--±+--+--+--t--+--+--i
. . 8.0 ...__....___.___,,_...__.___._____..__.l..._.__...___,___.,_~
0
10
20
30
40
50
60
70
TA, AMB.IENT TEMPERATURE (OC)
FIGURE 12- SWITCHING TIMES versus TEMPERATURE (REFRESH MODEi
14 ~-+--l-+-~IT~L~H-1--1--+--+--t---+--+--+--+---1
10
20
30
40
50
60
70
TA, AMBIENT TEMPERATURE (DC)
·
FIGURE 13 - POWER DISSIPATION versus FREQUENCY
800 1--TA =.0 to +fooc
700 t--v~g~::~2vv
.s~ t--VDD2 =+12 v 600 t- Duty Cycle = 50%
c z
~·
.I500 t-
R/W Mode 1 Channel Switching 3 Channels Low Output State
~
i5 400
a:
~
~ 300
""'
JI51oV
[L
1
'~
~ v .....-!
z v L
r- ~ ~
200 10
pp~~~--++--
50p
P~-t-
~
200
100 0.1
0.5
1.0
f, FREQUENCY (MHz)
5.0
10
FIGURE 14- OUTPUT VOLTAGE - LOW LOGIC STATE
versus OUTPUT CURRENT
.>s 5!10 ~
ti; 400
u
-~
~
1:7 17" ~.L'
TA=+70o~_/
;;:: 300
I .A"_........,
g
o c ~ 0 ----+----+---t
~<I 200t----t-----7...,,j~~~~,..,_~J..-"'--.,-+--t----+-----t----+--~
~
~
~
~
100 ~~---~ +----+----+----+----+---+---v1+v-~Hg_~=:_2~_~.~o2~v=-1-2-v+-----;~
:::>
0 _j
0 ,____...___.._ __.._ __.____,,,___..,,___..._~------~
~ 0
20
40
60
80
100
IOL. OUTPUT CURRENT - LOW LOGIC STATE (mA)
® MOTOROLA Serr1iconductor Products Inc.
5-179
MC3460, MC3466
TYPICAL PERFORMANCE CURVES
FIGURE 15 - OUTPUT VOLTAGE - HIGH LOGIC OUTPUT STATE versus OUTPUT CURRENT
FIGURE 16 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT
·
g'-'
w
vcc=+sv
"' 1--Voo2=voo1+Jv~..........++>_._-_.__1-1-++-+..,____.._,_._._._._....,
~ ri:wrui ~> Voo -1.5
~ voo1-t.o
:c
I
~
1-o_, Voo1 -1.5
->~
1----Jvvi~c}ct==I+~1s·~v1~2
TA= 70oc
_ljjl
]'....~~
"1"~ -. ITJooTjc ++t++++-~ r.._~.±-l°"'+ll"'+fl'l't
~
g
0.01
>
0.1
1.0
10
IOH. OUTPUT CURRENT - HIGH LOGIC STATE (mA)
g5 Vo O1-2.0 ,___;__JL.L.wlul.lIllIJl..____.___,_w...L.1.J..LL--'-..J.....Jw...LJ.W.--'-..1....J....U..WJ
100
0.01
0.1
1.0
10
100
>
IOH. OUTPUT CURRENT - HIGH LOGIC STATE (mA)
FIGURE 17 - TYPICAL 16K WORD BY N BIT MEMORY ARRAY
+5 v
vDD
4K Memory Chip: MCM6605
TMS 4030-----1NTE L 2107A or;----,...
Rs
CPU Memory Request Refresh }
Memory REF >-------o
Request
Memory J A13 Address l A14 >-------t
Rs
MC3460 MC3466
J Data In
Bit O l Data Out
Bit N {
Data In Data Out
· · · ·
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ _ ___,
5-180
MC3460, MC3466
APPLICATIONS INFORMATION
The MC3460 and MC3466 are designed specifically for dynamic N-Channel MOS random access memories (RAM's) ~hat require a single high-voltage clock. The unique design and electrical characteristics of these clock drivers will enhance the performance, as well as reduce the cost, of dynamic MOS RAM systems.
Dynamic N-Channel MOS RAM's that require a high voltage clock have extremely low standby power when the clock is in the logic "O" state (Gnd). To take advantage of this low-power mode, the memory syst~m should be partitioned such that only the memory chips of a selected word receive a clock signal (see memory system in Figure 17). However, to reduce the amount of time spent refreshing the memory system, all memory chips of the system should be clocked for each refresh cycle.
The logic necessary to accomplish this desirable system feature has bee'! incorporated in the clock drivers. Note . from the plock diagram and the truth table (on the front page of this data sheet) that the selection of a cloc.k driver is dependent on the logic state of the REFRESH and CHANNEL SELECT inputs. All foµr drivers are selected when the REF RESH SELECT input (Pin 5) is at a logic "O" state. However, when the REFRESH SELECT input is at a logic "1" state, only those drivers that have their respective CHANNEL SELECT inputs at a logic "O" state will be selected. The timing and clock driver output pulse width are controlled by a logic "O" signal applied to one of the three ENABLE inputs. The other two ENABLE inputs allow the memory system to be expanded without additional ~ddress decoding.
Figure 17 illustrates one possible clock driver configuration that can be employed to drive a 16K word memory system comprjsed of 4K dynamic MOS RAM's. The MC4007 is a one-of-four decoder that decodes the memory address sent from the CPU. Since the decoder outputs drive the clock driver SELECT inputs. only one of the four clock drivers will be selected. The timing and clock driver output pulse width can be accomplished with a simple one-shot (MC8602). The Q output of the MC8602
drives an ENABLE input of the MC3460/MC3466 and the clock pulse width is determined by the RC component values.
For a memory refresh cycle, the REFRESH SELECT input of the MC3460/MC3466 is switched to a logic "O" state which will select all of the clock drivers as noted earlier. On the falling edge of the REFRESH SELECT signal, the one-shot is fired and at the same time all four clock drivers are selected for the refresh cvcle since the Rj:FRESH SELECT signal is jn the zero state (See Figure 17). At the end of the refresh cycle, the REFRESH SELECT signal is switched to·the logic "1" state and the memory system is set to accommodate another CPU memory request. The memory system access time will be enhanced with this scheme because no additional gating is required to accommodate.the refrllsh cycle.
SYSTEM CONSIDERATIONS
Bypass and Layout - A considerable .amount of noise can be generated during switching due to the high speed and high current drive capabili.ty of these drive.rs. The _high charge or discharge current spikes during transitions can result in a considerable amount of noise being generated on the ground and Voo1 leads. These current spikes are primarily due to capacitive load current. However, there is an additional component to ~he total current spike which is due to both the upper and lower output driver transistors conducting for a short period of time during switching. This causes a low impedance path between the Voo1 supply and ground during part of the transition time.
In order to minimize the effects of these surge currents, the following layout rules should be followed:
1. The Voo1 supply pin of each package should be bypassed with a low inductance 0.1 µF capacitor. The 0.1 µF capacitor will sustain the high surge currents required during switching.
2. The surge current that flows out of the driver ground pin during switching will generate noise. This noise will be· proportional to the ground impedance at the ground pin. To insure minimum ground noise, the ground path to this pin should be as wide as possible. At least a 50 mil to 100 mil ground line is recommended.
Fanout Considerations - In a memory system, the number of memory CH IP ENABLE inputs that can be driven by a single clock driver will depend on the input capacitance and the input leakage current required at a specified minimum logic "1" state (V CEH ). Since the memory CHIP ENABLE input capacitance will affect the clock transition times, the total parallel input capacitance should not exceed that value which will cause the clock driver transition ti mes to be slower than those specified for the memory. For a majority of the 4K RAM's, the chip enable input capacitance is less than 40 pF. With a 30 pF loading, each driver of this device can drive up to sixteen 4K memory chips.
Although the input leakage current of each memory CH IP ENABLE is extremely small, the total leakage current of the CHIP ENABLE inputs when paralleled in a memory system can exceed the output current ot the clock driver in the high output state (VQH). With the MC3460/MC3466 there are two methods that can be employed to inaease the output current. The MC3460/ MC3466 has split high voltage power supplies (Voo1 and Voo2l as noted in Figure 18. With Voo1 "' Voo2. the maximum output current, that guarantees a minimum VoH of Voo1 -1.0 Volt, is -100 µA. However, the output cummt can be greatly increased if a voltage greater than Voo1 is applied to VoD2· For Voo2"' Voo1
@ MOTOROLA Semiconductor Products Inc. ---------'
·
5-181
- MC3460, MC3466
·
+3.0 Volts, IQH can be increased to -2.0 mA for a VoH
minimum of Voo1 -1.0 Volt. For most 4K RAM's, this
current is sufficient to drive to 20.0 memory chips.
However, if ahigher voltage is not available for Voo2 then the current can be increased by employing a pull-up
resistor to Voo1. The following formula can be used to determine wha~ value of pull-up resistor is needed to meet
a given fanout requirement ..
Voo1 - VQH(min)
R:;;;;-------
(1)
IR
where
IR= N(l1cE) - loH
(2)
IQH is the clock driver output current for VQH(min) ~ VCEH(min)
in series with the clock line, (See Figure 17). The critical value of Rs can be calculated from the formula:
Rs=::2~
(4)
where Ls is the clock line inductance and CL is the load capacitance.
For most memory systems the value of Rs will range from 10 ohms to 50 ohms.
The series damping resistor will also affect the transition times of the damped output waveform. Thus, the maximum value that may be used for Rs will be determined by the maximum switching times specified for the CHIP ENABLE input. The following equation can be used to determine the maximum value of Rs.,
tT (max) :;;;; 2.2 Rs CL
(5)
I ICE is the memory CH IP ENABLE input leakage current specification.
N is the number of CH IP ENABLE inputs to be driven by th~ clock driver.
For the memory system given in Figure 17, assume that each word has 16 bits. If the MCM6605 4K RAM were employed, then the pull-up resistor value would be calculated in the following manner.
From the MCM6605 Specifications; VcEH(min) = Voo-1.0Volt@ l1cE = 10µA.
From the MC3460 Speeifications;
ForV001 =Voo2theminimumVoH is Voo1 - 1.0 Volt@ an IQH = 100 µA
Since the VoH (min) required by the MCM6605 is Voo1 -1;0 Volt, equation (1) reduces to:
R..::: Voo1-(Voo1 -1.0 Volt)
...,.
IR
In some high performance memory systems the switch· ing.'times required may be too fast to accomodate the addition of a damping resistor. For these systems the overshoot can be limited by placirig clamp diodes at the far end of the CHIP ENABLE line as noted in Figure 19. Fast recovery diodes are required to insure proper clamping on both the leading and trailing edges of the CLOCK pulse.
Power Considerations - Circuit· performance and long· term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissi· pated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference 'point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on 1 the thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into
0
junction temperature is:
TJ =TA+ Po (ROJC + RocAl
(6)
or
TJ =TA+ Po (ROJA)
(7)
or (3)
From equation (2), since N = 16, IR = 16 (10 µA) -100 µA = 60 µA. Substituting in this value of IR into Equation (3) yields the following value for R:
where
TJ =junction temperature TA = ambient temperature Po = power dissipation RoJC= thermal resistance, junction to case ROCA= thermal resistance, case to ambient
ROJA =thermal resistance, junctian to ambient
0 R:;;;; 1·~ v;: = 16.6 k
' The power dissipation of the device (Pol is dependent on the following system requirements: frequency of
Overshoot - The finite inductance of the memory chip ENABLE line can cause the clock driver to overshoot during switching. With fast switching clock drivers, the overshoot can exceed the maximum logic' levels specified
operation, capacitive loading, output voltage swing, and duty cycle. ·The power dissipation as a function of capacitive loading and frequency can be obtained from Figure 13. The value found in Figure ·13 should not yield
for the CH IP ENABLE input. To insure that the overshoot voltage does not exceed the maximum CH IP ENABLE in-
a junction temperature, TJ, greater than TJ (max) at the maximum encountered ambient temperature. TJ (max) is
put ratings the following two techniques can be employed:
specified for the integrated circuit packages. in the, maxi·
The simplest scheme is to place a damping resistor Rs
mum ratings section of this data sheet.
. . _______ ·@ MOTOROLA Semiconductor Products Inc. ________,
5-182
MC3460, MC3466
/
FIGURE 18-SIMPLIFIED OUTPUT CONFIGURATION
Voo2
Voo1 Voo1
FIGURE 19 - APPLICATION OF CLAMPING DIODES TO LIMIT OVERSHOOT
E E 1---=___,..._M_e;m~o1}irvArrVoaov~,~~~~l=~t
E3 1 o2 A
CSA
~ 8
CSB P
1N914'or
Equivalent
csc u c
cso To
MC3460
or
MC3466
THE MC3466 IN HIGH PERFORMANCE '7001 SYSTEMS
The MC3466 is specified to meet the more stringent driving requirements of high speed N-channel memories such as the MCM7001A. Figures 20 and 21 show photo· graphs of oscilloscope waveforms for the MC3466 driving up to six MCM7001A memories. The memories were oper· ated with a +15 Volt supply and the MC3466 used a +17 Volt supply tied to VDD1 and VDD2· Two clamp diodes were used at the end of the line to clamp the overshoot as noted previously in Figure 19.
With this driver connection, where the VDD1 supply is at a higher voltage than the memory VDD supply, the VDD1 and VDD supplies should track each other within the following range 3.0 V ~ VDD1 -VDD ~ 1.5 V to insure the minimum output VoH level and to limit the amount of current the clamp diode has to sink during the clock high state period.
For the MC3466 driving two MCM7001A memories, Figure 20 shows the driver supplying about 250 mA peak current when the CHIP SELECT voltage switches from a "low" to "high", with a transition time of 15 ns (1.5 V to 13.5 V level) and a high to low transition time of only 8 ns. When driving four MCM7001A memories, the peak current' reaches about 400 mA with a CH IP SELECT rise time of 22 ns.
1 Figure 21 shows that for a fanout of 6 memories, the transition time increases to 28 ns; The MC3461 (dual NMOS memory sense amplifier) is used to detect the data
of the output memory and translate to MECL 10,000
levels. The use of the MC10125 will translate the MECL levels to TTL le~els in only 5 ns. The total delay from the 50% level of the falling clock edge at1:he MC3466 input to the 50% point at the data output of the MC10125 is only 62 ns when driving two memories and 67 ns for four memories.
Figure22 shows the logic diagram for building a 32K x 1 memory board with TTL interface and MCM7001A mem· ories using a multiplex approach. Addresses AO to A9 and the DIN signals go to all the memory devices. The address bits A 10 and A 11 are used to select 1 of 4 rows (WRITE ENABLE lines) when writing into the memory. The addresses, A12, A13, and A14 are decoded using the MC3466 to drive the CHIP SELECT lines. Only two MC3466's are required. Each driver in the MC3466 drives the CHIP SELECT line connected to four memories. During a read operation, the data from 4 of the 32 mem· ories are latched into the MC3461. Addresses A 10 and A 11 are used t.o select which one of the four memories is to be read on the DATA OUT line. This configuration is especially usefu'I in interweaving of fast, large memory systems so that the data can be read out consecutively in one CPU cycle time.
A 4K x 18 memory board is shown in Figure 23 with TTL interface using a more straightforward approach. Only six MC3466's are required to drive the CH IP SELECT lines. The memory can be expanded to 256K words by using two 1-of-8 decoders on the control board and con· necting the outputs to the proper BOARD ENABLE.
·
@ MOTOROLA Semiconductor Products Inc.
5-183
MC3460, MC3466
·
FIGURE 20 - CURREl\!T AND VOLTAGE CHARACTERISTICS FOR THE MC3460 DRIVER DRIVING 2 AND 4 MCM7001A MEMORIES
ENABLE 1 Input to MC3466 (5 V/Div)
CH IP SELECT voltage with a loading of 2, and 4. MCM7001A memories driven by an MC3466 driver. (10 V/Div.)
DATA OUT of the MC10125 (5 V/Div)
CHIP SELECT current out of the MC3466 driver (500 mA/Div.)
(20 ns/Div.)
FIGURE 21 - RISE TIME AND ACCESS TIME VARIATIONS FOR AN MC3466 DRIVER DRIVING 1,2,4, AND 6 MCM7001A MEMORIES
ENABLE 1 INPUT to MC3466(5 V/Div)
CHIP SELECT voltage with a loading of 1,2,4 and 6, MCM7001A memories driven by an MC3466 driver (5 V/Div.)
DATA OUT of the MC3461 (1 V/Div)
DATA OUT of the MC10125 (2 V/Div)
(10 ns/Div)
@ MOTOROLA Senriconductor Products Inc. --------'
5-184
MC3460, MC3466
FIGURE 22-32K x 1 MEMORY BOARD (TTL INTERFACE)
1/2 MC4007
1/6 MC7404, 6 places
ADDRESS A11
ADDRESS A10
WRITE E.NAB~E
CHIP SELECT
oo
B
01
A
02
03
MC3466
DATA
'-+--,--,-~~~~OUT
·
AO~
A1~ A2~
oo 01 02 03
MC4006
E
A BC
1/4 MC10124
A3~ A4~
A12 A13 A14
A5~ A6~ A7~
Connect to All
'7001A's
'Note: Unused Inputs Should Be Tied To +5 V.
AS~
A9~
Dataln~
\ .
1/4 MC3459: 15 places
@ MOTOROLA
Semiconductor Products Inc. _ _ _ _ _ _ __,
5-185
MC3460, MC3466
FIGURE 23 - 4K >e, 18 MEMORY BOARD (TTL INTERFACE I
1i2 MC4007
....-------,
:! _. -------+------+-----......-------. ! A10>----A O 01O 0-~P~-----.---I-++ -~-~-~-----+...-...~~~---+~~~--<t--1-1~~---'-~----1-~~~......
A 11 >---- B 02
_l
J
J
_l
+rlx~,~t-i; 0~,!f- D_!!,~ JD_!!~-°-J ~.J n·_!!1
Select ]
BOARD
Ef ABCD
ABCD
ABCD
Outputs
Outputs
Outputs
~ t-
r rABC D Outputs
ABC D
Outputs
L
A BCD
Outputs
MC3466,,
ENABLE1B
BOARD
'------
6 places
·ENABLE 2
~ r\~:1
CHIP
SELECT >'----+-_SJ__, 1/4
ELNATACBHLE">,--~--1-0+1~-21/-44!
~124
DATA,..
~
'---
VALID
~ DO
·~~--+-rt--ht--+--+--+-+-+-+-+--+-1>-+-+--+--+--+M -+--+l --+-+-<1-+-+-+--r+t-.<
.:+:: ::t:: 1/2MC346~~~t==:J=i.. ~t-+h+-+-t-11-t-+-+-t~h-+-+-11-t--+-+-t-t+-+-+-+-11-t-+-H~-+-+-t-;-q
1Bplaces D1
n
2 +---1-I
14 MC3459, D ~
~1::::1::!-':::t-t-t-lt-t--+-t-~t-':::l-t-1t-t--+r--+--t:l::::l--+-+-t-1-tr--t--t:±::lr+-+-+--t-+-~
.-+-.
rt.
r+-,
rt.
AO
~ 30 places " ~
D3,·~'~·~1t1-+>-----µ--14----l--++:-t~=+"~-±F-.;-J---4-i+---+----+++t-----+--i-1+-+-----f-++-+----++-r-+%+:--J~-"+1+----i-++--+--+-r1-+------f4-<"-"l'+---+-+i+---+--+-Hl:~ ~ <-::-++-l:-:+:---++t----+--1-i----+++----++++----+l++-+t~ ~ +--:-4l-t-4--t+-i--t-+-+-t-t-t-"'O"'
:]=+=h Al~
A2 ~
D4~ ~ D5
4r---+-+f'-~~=-j~µ;-t+~:':;l+_.=:~ ~f:-_=j;~-_=::t~;-~-t-t:i:---tt.::t-:1=-==-l!.:'j+=::~:$t'-~=:$:--=l:~:t';-h-ttt:::-+=::~:~ +· -rt::h:~ :1~-::~t:~1-~=::=-:=..~.==:+_tj;=--~ $l:',=:.+.:;:~-;'-,~-t-t~-l-t-!:-;~tt----+--+~-t--+-qOI
>-Lf AA-3 4~
A51Y 6 -l___)"""
DDD 87.~"g":~ :":l:_::_:r~ :l1.-1ji:'oi:~-~}~=.==-qt=-:4i::~t°I_=',t~:~:1l:--.--i1i~-=-ti-:=~-=t1==-==-:~t:~-:=~lqtl:=:-::ltf:-=.t~:'o:~l:~-t-:h:-tt1=:-!=-:1=:-:=-ltl=~.='.,,'"~ r:-~----:+:++±~r !~:----.+=:,t,''-.:t+:- ~+f-:~:-~:-=t-:=+:=-:+~l-:=+:t:-:=-l+t..:.-c,~ -'=tc-.++ri:.i~.:-:;"-:=:-~"i1-t,l'- -
r=K A A- 6 7 -i_~ __~ _,/'~
l~b---J:~~l-,~ i=+----+-l--lr~ l~~i=+-----l.H.-r-:;±:+::i+:_+-_-_-+-1--1r~ -+H-i
D9~
:=::::
~
'-t-'
'-t-'
As -l___~)"""
A9~
DD1110· "I ""..lr_~_b~ ---~i~:=:=:~:~::-~:1::::=:=:=:=H=-=-i-:-=+:-:l~-=-:.l:_.:;__::.=:=:=f=-=:~:::::~:=Ht-~-~-'rr'=---t!h t=----=I''l=H=-=+t+=+i-:-=-i+:-!+:-:Hrr.':_-.t-.:+t_--_i-!I,'.
D·39 ::: ::: C
o-nl_ne_c_tt/o"T"oDp12' ~ ~::_>~ :::::::fr'-~hj::t:~ :::::::::::::::::::::::t~t=i'~1-h1+--1---_.
.
-= :-. ---------_,1--++-++-i-+_---------------+I---..+r-:1:-+±-t:H:i
~
~
..
H aoJ <AJ'""'
D14~~==~~=~=======~=;;~=======~=t;'r+++-='i ======~='+,--t+~--',,
'-'-'
L..L..1.
~
~
WE2~. :::~1----1'-1-t-'t-+------1'-11-t-'1-+------+-+-i-----++-i WE1
J ~0---1M1-l-i1--1---'---~1-+-rlh-1------r-h+-i-+------++,.-;-1-,
'-1-'
'-!-'
_c:±:i
_r±:-1
.
. . ~~~ ::t=: ~ D 1 7~f"'::::::.:/~t°t:::::::::::::::::::::::::::~~tt:::::::::::::::::::::::::_::d,=t.=:t:.:f~::::::::::::::::::::::_::'r:-±:!::--t1~'
~:~n;;~~~a~ottom ~ ~ '-'-'......._MCM700-;:r. 72 places
~
@ MOTOROLA Semiconductor Products Inc. ----------'
5-186
ORDERING INFORMATION
Device MC3461L
Temperature Range O°C to +75°C
Package Ceramic DIP
MC3461
HIGH-SPEED NMOS/MECL SENSE AMPLIFIER
The MC3461 is a dual current sense amplifier with MECL 10,000 compatible control inputs and open emitter complementary outputs. The device is designed for use with Motorola MCM7001 or Intel 2105 NMOS 1K RAMs. A common latch input retains information in the amplifier at the time of latch closure. Separate channel output enables are provided to force the outputs to predetermined states until amplifier information exchange is desired.
When the latch input goes to a logic "O" the outputs are locked in their present state unless the output enable is at, goes to, logic "1 ". In this event, the Output 1 and Output 2 remain at, or go to, logic "O" and logic "1" respectively.
· Complete NMOS Sense Amplifier - No External Components Required
· Minimum Propagation Delay Amplifier Response - 5.0 ns Typ Enable Response - 2.5 ns ·Typ Latch Response - 1.0 ns Typ
· Power Supplies Compatible With MCM7001/MECL10,000 Systems · Amplifier Input Termination Voltage Range from Gnd to VREF
Supply on MCM7001
APPLICATION WITH MCM7001 MEM~RV
VREF = 7.5 Vdc
1/2 MC3461
MCM7001 or equiv.
Output o-+--Enable
-2.0 Vdc
DUAL NMOS MEMORY SENSE AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 620
PIN CONNECTIONS
·
Output Gnd.
Output 1A
Output 2A
Outputs A Enable
Input 2A
Input 1A
Latch Input
Vee (-5.2 V)
Output 28
Output 18
Input 18
Ampl. Input 10 Termination
(RT) Vee (+7.5 V)
I TRUTH TABLE for latch input at logic 1
Input
Output Output
Enable
1
1(1);;;. -200 µA
0
0
1(2) = OµA
1
0
1(1) =OµA
0
1
1(2) >200µA
1
0
Output 2 1 1
0 1
Negative Currents Defined as Flowing into Device Pin.
5-187
·
MAXIMUM RAT·INGS (Unless otherwise noted, TA= 25°e1
s
("')
Rating Power Supply Voltages
Symbol Value
Unit
Vee
8.5
v
~
0)
VEE
-6.0
v
..Ji
Termination Voltage
VT o to Vee
-
Operating Ambient Temperature Range
TA
0 to 75
-ue
Package Power Dissipation Still Air Derate above 25°e
Po
woo
mW
6.7
mW/Oe
ELECTRICAL CHARACTERISTICS
Transverse Air flow;;., 500 linear fpm Derate above 25°e
2000
mW
13.3
mwt0 e
This device has been designed to.meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on· a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.· Test procedures are shown.for only one sense amplifier. The other half is tested in the same manner.
TEST VOLTAGE/CURRENT VALUES
(Volts)
@Test Temperature
o0 c
lsl!nse V1Hmax V1lmin V1HAmin V1LAmax Vee
;;.200µA -0.850 -1.870 -1.155 -1.485
+7.5
25°c ...200µA -0.810 -1.850 -1.105 -1.475
+7.5
VEE -5.2 -5.2
~
(X)
(X)
Characteristic
Power Supply Drain Current
Input Current
I Pin Under Sy·mbol Test
1cc
IEE
linH
o0 c
T Min
Max
T T Min
MC3461 Test Limits
+25°c
T Typ
Max
T 40
50
-50
-60
500 500
75°c
Min
Max
75°C <;>200µA -0.720 -1.830 -1.045 -1.445
+7.5
-5.2
Unit mAdc mAdc µAde µAde
TESTVOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:
I sense 6.12 6,12
5, 11 5. 11
V1Hmax V1Lmin VIHAmin V1LAmax
4 7
Vee 9, 10 9, 10 9, 10 9, 10
VEE 8 8
8 8
Gnd 1, 16 1, 16 1, 16 1, 16
Logic "1" Output Voltage
linl VoH
logic "O" Output Voltage
Vol
·Logic "1" Threshold V.oltage
VoHA
Logic "O" Threshold Voltage
Vo LA
·Switching Times (50-ohm load)
Propagation Delay
Amplifier
t++
t-+
t+-
-1.010
-0.850
0.1 0.1 ·-0.960
+
-1.870
+
-1.030
+
+
-1.660
+ .
+
-1.850
·-0.980
-1.640
·
+
µAde ,uAdc
5, 11 5, 11
-0.810 -0.900 -0.720 Vdc
6
7
5
7
+ + + · -1.650 -1.830 -1.620 Vdc
5 5
7, 4 7
6
7
+ + -0.920
· + Vdc
5 6
7, 4
5
-1.630
+
· -1.600 Vdc
5 5
6
+
++ 5
5.0
10.0
ns
l i
i
4
9, 10
8
1, 16
7
9, 10
8
1, 16
9, 10
8
1, 16
++ +
9, 10
8
1, 16
++ +
7
4
9, 10
8
1, 16
7
4
4,7
++ +
7
4
9, 10
8
1, 16
7
4
4,7
+
Pulse In Pulse Out
·
+
6
2
9, 10
8
1, 16
i i ~ 2
3
·3
J
Enable t++ t-+ t+-
2.5
5.0
ns
i i
i
4
3
9, 10
8
1, 16
~
3 2
-~ ~
~
*Negative currents are defined as currents leaving the device
MC3461
FIGURE 1 - SWITCHING RESPONSE TEST CIRCUIT AND WAVEFORMS @l 25°C (Other Section Tested Similarly)
Enable Input u - - - - - - - i_ _ _~ Enable Input
Test Point o----<o---~---~
50
Vee= +7.5 Vdc
G~rt1
50
"'------'i-----.N "v-----....------o -2.0 Vdc
I0.1 5 0
25µFl
µF
Amplifier Input o-----i~--
Amplifier Input u----<1~
Test Point
~--~
50
J0.1 µF
VEE= -5.2 Vdc
~-------------0 Output 1 A
Unused oµtputs connected thru a 50-ohm resistor to -2.0 Vdc
·Denotes equal lengths of 50-ohm coaxial cable. Wire length should be.;;;; 1/4" from test point to pin or BNe connector.
·
Amplifier Response Waveforms
Amplifier Input Test Point
Output 1A
Output 2A
0
Enable input held at -1.69 Vdc for Amplifier Response Tests.
Enable Response Waveforms
Enable Input Test Point
Output 2A
Output 1A
Amplifier input held at. +0.5 Vdc for Enable Response Tests.
5-189
MC3461
Addres,A10I Address· A 11 Write Enable
FIGURE 2 - 32K x 2 MEMORY BOARD (MECL SYSTEM) 1/2 MC10171
..__ _........__ ____. B Q1 2 o-~----'--~ E 1 Q1 1 o------~
MCM7001, 64 places
·
~ Chip Select Address A12 AddressA13 AddressA14
MC10161Veeo--+---+-~-+---1-4---l-<t.---l_.-+-+--+-+-+-t.---l_.-I-~
QOr>---+---+---+---+----4
EO Q11>---f--+---+---+---l-_.
Q2r>---+---+---+---+---l--+-_. E1 Q3r>---+---+---+---+---l--+--+-___.
A
Q4t>---f--+---+---+---l--+--+-~--l-__.
asP---f--+---+---+---l--+--+--+-----1-_.
B
DO out
Data Output
D1out
Latch Enable ~---·' _,,, Connect to all MCM7001 's
fr fr fr fr fr fr fr fr fr fr 1/2MC76358 or 1/3 MC10177, 12 Places
AO A 1 A2 , A3 A4 A5 A6 A 7 AS A9
Connect to Top Array (32K x 1)
Connect to Bottom Array (32K x 1)
fr
Data Inputs
5-190
Board Enable A 1 Chip Select
AddressAlO Address Al 1 Board Enable Bl
MC10161
Latch Enable >--+--+-----\ Data Valid~
AO Al
Connect
-Cf'
co
to all
MCM7001's
AS
A9
DO 01
Connect each line
to one Row
of 4-MCM7001's
013
WEl (to top 36 devices) WE2 (to Bottom 36 devices)
\
1/2 MC3461, 18 Places
MCM7001, 72 Places
I
ns:
(:,.) ~
a>
...a
I
.,,
15 c:
::D m
w
I
~
"')(
m
3::: m
~
g<::D
::D 0
i
m 0 r-
(1)
~
m
!
MC3461
Amplifier Input
Termination R1 200
R2 200
REPRESENTATIVE CIRCUIT SCHEMATIC
Simplified MC3461 (1/2 Shown)
R11
R12
·
--Inputs R3
-..Outputs
u--------1 Latch
Input
R9
Internal V99
Reference
Outputs Enable
R5 50 k
11
12
R14 50 k
Veev---..__ _.__ __.._ _ _ _ _ _ _ _ _ ____._ _.__ _..__ ___..____J
5-192
ORDERING INFORMATION
Device
MC3467L MC3467P
Temperature Range
cb0 to +70°C
0°C to +10°c
Package
Ceramic DIP Plastic DIP
MC3467
TRIPLE WIDEBAND PREAMPLIFIER WITH ELECTRONIC GAIN CONTROL (EGC)
The MC3467 provides three independent preamplifiers with individual electronic gain control in a single 18-pin package. Each preamplifier has differential inputs and outputs allowing operation in completely balanced systems. The device is optimized for use in 9track magnetic tape memory systems where low noise and low distortion are paramount objectives.
The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately 100V/V.
The MC3467 is intended to mate with the MC3468 read amplifier to provide the entire magnetic tape read function.
· Wide Bandwidth -15 MHz (Typ) · Individual Electronic Gain Control · Differential Input/Output
TRIPLE MAGNETIC TAPE MEMORY PREAMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
P SUFFIX PLASTIC PACKAGE
CASE 701
L SUFFIX CERAMIC PACKAGE
CASE 726
--
·
TYPICAL APPLICATION HIGH PERFORMANCE 9-TRACK OPEN REEL
TAPE SYSTEM
Vl(EGC)
NRZl/<i> Select
'"'"' l 2
Active Differentiator
4
T
A
1/3 MC3467
NAZI
p
Preamplifier
Filters
'"'"'I
Phase Encode Filters
See MC3468 Data Sheet For Systems Applications Information
LSI Formatter MC8500 MC8501 MC8502 llliC8520
'"'"'I '
!o"""'
lo"""'
EGC
lo"""'
10 VEE
5-193
MC3467
·
I
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
Rating Power Supply Voltages
Positive Supply Voltage Negative Supply Voltage EGC Voltages (Pins 1, 6 and 13)
Input Differential Voltage Input Common-Mode Voltage Amplifier Output Short Circuit
Duration (to Ground) Operating Ambient Temperature Range Storage Temperature Range Junction Temperature
Symbol
Vee VEE V1(EGC) VtD Vtc
ts
TA Tstg TJ
Value
6.0 -9.0 -5.o to Vee ±5.0 ±5.0
10
0 to +70 -65 to +150
+150
Unit
v
v v v
s
oc oc oc
ELECTRICAL CHARACTERISTICS (Vee= 5.0 V, VEE= -6.0 V, TA= o to +7o0 c unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Power Supply Voltage Range Positive Supply Voltage Negative Supply Voltage Operating EGC Voltage
Differential Voltage Gain (Balanced) (Vl(EGC) = 0, ei = 25 mVp-p) (See Figure 1)
VccR VEER V1(EGC)
AvD
4.75 -5.5
0
85
5.0 -6.0
-
100
5.25 -7.0 Vee
115
Differential Voltage Gain (V1(EGC) = Vccl
Maximum Input Differential Voltage (Balanced) (TA= 25°C)
AvD
-
0.5
2.0
V1DR
0.2
-
-
Output Voltage Swing (Balanced) (Figure 1) (ei = 200 mVp-p)
Input Common-Mode Range
Differential Ou~put Offset Voltage (TA= 25°C)
VoR
6.0
8.0
-
V1cR
±1.5
±2.0
-
VooD
-
500
-
Common-Mode Output Offset Voltage (TA= 25°C)
Voce
-
500
-
Common Mode Rejection Ratio (Figure 2) Vl(EGC) = 0, VcM = 1.0 Vpp (f = 100 kHz) (f = 1.0 MHz)
Small-Signal Bandwidth (Figure 1) (-3.0 dB, ei = 1.0 mVp-p, TA = 25°C)
CMRR
60 40
BW
10
-
100
-
100
-
15.
-
Input Bias Current
11B
-
5.0
15
Output Sink Current (Figure 5)
los
1.0
1.4
-
Differential Noise Voltage Referred to Input (Figure 3)
en
-
(V1 (EGC) = 0, Rs= 50 .n, BW = 10 Hz to 1.0 MHz, TA= 25°C)
3.5
-
Positive Power Supply Current (Figure 4) Negative Power Supply Current (Figure 4) Input Resistance (TA= 25°Cl Input Capacitance (TA= 25°Cl Output Resistance (Unbalanced)
(TA= 25°C)
tee
-
30
40
IEE
-·
-30
-40
q
12
25
-
Ci
-
2.0
-
ro
-
30
-
Unit
v v v
VIV
VIV
Vpp
Vpp
v
mV
mV
dB
MHz
µA mA µVRMS mA mA k.11 pF Ohms
@ MOTOROLA Semiconductor Products Inc.
5-194
MC3467
FIGURE 1 - DIFFERENTIAL VOLTAGE GAIN, . BANDWIDTH AND OUTPUT VOLTAGE SWING
TEST CIRCUIT (Channel A under test, other channels tested similarly)
5.0 v
51
51
18 i--o---e1 i--o---e2
Me3467
10
-6.0 v
FIGURE 2 - COMMON-MODE REJECTION RATIO (Channel A under test, ather amplifiers tested similarly)
5.0 v
18
Me3467
Voo
~..r---
eMRR = 20 log Voo
Av V1
= 20 log 1pVoovo1
-6.0 v
FIGURE 3- DIFFERENTIAL-NOISE VOLTAGE REFERRED TO THE INPUT
5.0 v
FIGURE 4 - POWER SUPPL V CURRENT TEST CIRCUIT Vee
51 51
Me3467
Krohn· Hite 3202 Filter
hp 3400A
Assume Uncorrelated Noise Sources en (Differential Noise at l_nput) '= e0 .J2/100
-6.0 v
Low Pass Filter With BW = 1.0 MHz
FIGURE 5 - OUTPUT SINK CURRENT-TEST CIRCUIT (Channel A under test, other channels tested similarly)
+5.0 v +2.0 v
Me3467
FIGURE 6 - TOTAL HARMONIC DISTORTION TEST CIRCUIT
(Channel A under test, other channels tested similarly)
5.0 v
Me3467
51 f=100kHz
Me3467
hp 334A Distortion Analyzer
·
-6.0 v
-6.0 v
@ MOTOROLA Semiconductor Products Inc. _______,
5.195
MC3461
·
TYPICAL CHARACTERISTICS (Vee"' 5.0 V, VEE= -6.0 V, TA= 25° unless otherwise noted)
FIGURE 1 - TOTAL HARMONIC DISTORTION (THO) versus INPUT VOLTAGE
~
z
0
8.0t---+--+--+---+---+----+---+---+---+---1
~
0
~ 6.0 t---+---+--Vl(EGC) = 1.8 V-+---+---+---+---+-rz--#-1.L.
~
f1= 100kHJ
1
~
~ 4.0
(See Figure 6)
l..Z 7
~
1----+--+--+-----+--+~j/7--.,.~-+--+-~
~ 2.0 t---+---+---+---+-~--+v~~--+--+----1---1
~..
~---
1-
V1, INPUT VOLTAGE (mVp-p)
FIGURE 8 - NORMALIZED VOLTAGE GAIN versus FREQUENCY
+5.0
N
-5.0
~
-10
-15 t---t- Vj = 1.0 mV p-p
-20
Jorl } r- Av
-25
J·11lilll~ rtt -30
I lllllll_,ij ~Voa
K:( "' . 2jjjj]1.0
50 50
JU
l l
0.1
1.0
10
100
f, FREQUENCY (MHz)
FIGURE 9 - NORMALIZED VOLTAGE GAIN versus AMBIENT TEMPERATURE
1.04
~
t-----+---1----+-- Vee= 5.o v VEE= -6.0 V
~
~
1.02.._---+---1-----1-- V1 = 10 mV RMS_--t---t-----1 f1=100 kHz
0 z
< z
(!)
w
(!)
~1~ o.98""'---+--
Av(T) _
n = Av (25°C)
~· Voo
"' VI 50
./ 0.96 .___....__
0
10
_...__ _.....__ _.__ _...__~.....__
20
30
40
50
60
TA, AMBIENT TEMPERATURE (OC)
_.__~
70
80
FIGURE 10 - NORMALIZED POSITIVE POWER SUPPLY CURRENT versus POSITIVE POWER SUPPLY VOLTAGE
1.04
I::
1.021---+---+---+--+---+--+---+---+---+----I
>--
"--' w0
CL N
~~::;
ffi ~ ~
~ ~
LOO l::=:b::;:~=~=-+--+--t~V~E~E:=~6.~0~v:::f~
rI-
-
+
-
-
+
-
-
+
-
-
+
-
-
+
-
-
-
+
-
TA
=
2I5C°CC(T)
---+-----
~ 0.98
n =ICC (25°C) -+----I
~
TlST Cl'JUIT ilGUR~ 4
~
0.96 .___.___....__....__'--_....__,,__ _.____...____,,..____,
4.75 4.8 4.85 4.9 4.95 5.0 5.05 5.1 5.15 5.2 5.25
Vee. POSITIVE POWER SUPPLY VOLTAGE (Vdc)
FIGURE 11 - NORMALIZED NEGATIVE POWER SUPPLY CURf'tENT versus NEGATIVE POWE.A ~UPPLy. VOLTAGE
1.04
~
3 1.02 l---+---+---+--+---+---+---+---+---+---1
~- ~~ 0.. 0
~
~~~~ 1.00 l--+--+-~ -+---:~=-+--+-V-c-c=+5-.o-v-+---+----1
~ ~
.._-+---+---1---+----+-- TA= 25°c
~
IEE (T)
ffi 0.98 1---+---+---+--+---+-- n =IEE (250C) --+---t----1
; z
TEST CIRCUIT= FIGURE 4
0.96 L -_ _.____ _.____ _.__ _.__ _.__ _,__ _.__.....__.....__ _,
-5.0
-5.5
-6.0
-6.5
-7.0
-7.5
VEE. NEGATIVE POWER SUPPLY VOLTAGE (Vdc)
FIGURE 12 - NORMALIZED POWER SUPPLY CU~RENTS versus AMBIENT TEMPERATURE
1.02
"I-'
I_ 1.01
~
~~5~3 ~ ~ 1.00
v
L_ ·
/
vcc=5.ov VEE = -6.0 V
-~ ~
~
VL_
lcc(T) IEE(T) n = l~C (250C) ~IEE (250C)-
L <~:B:: l0.l9~9J1--~-L+<-..-+--+---+--+--..---++---+--+--F~~StE-ET-EFSIJTGU-J'RR-EC-U4I+T-1 -----1-
0.98 L - - - - L - - - ' - - - - - - ' - - - - ' - - - - - ' - - - ' - - - - ' ' : - - - - '
0
10
20
30
40
50
60
70
80
TA, AMBIENT TEMPERATURE (OC)
@ MOTOROLA Semiconductor Products. Inc. ------~
5-196
MC3467
FIGURE 13 - DIFFERENTIAL VOLTAGE GAIN versus ELECTRONIC GAIN CONTROL VOLTAGE (V1(EGC)I
100
UJ
"<'t
~ 80
>
...J
<t
~
UJ
-<::
60
~~ u. z
i5 ~ 40
j
a::
~ 20
c:i >
<t
0
0
~
\ \ ~
_Sl
IS
F::::::::J
0.5 1.0 1.5
2.0
2.5
3.0
3.5 4.0
Vl(EGC). ELECTRONIC GAIN CONTROL VOLTAGE (VOLTS)
FlGlJRE 14 - COMMON-MODE REJ_ECTION RATIO (CMRRI versus FREQUENCY
~ -100
;0:: ~
~ -80
!
vcc=5.ov
gUJ
VEE= -6.0 V
::;; -60 1--TA = 25°G
z :0:;;
V1cM = 1.0 Vp·p
8
~- -40
--..... ~
~ r-
Vo CMRR = 20 log Av V1cM l---Av=100VN=40d8 TEST CIRCUIT= FIGURE 2
~
0.1
1.0
10
100
f, FREQUENCY (MHz)
FIGURE 15 - PHASE SHIFT versus FREQUENCY
I ~ -40t---+--+-+-+-+-++++---+-t-+--+-_,__H+---+---+-+--+-+-++-H -80t---+--+-+-+-+-++++---+-t-+--+-+-HH+-~~'\J~+--+-+-+-+-++H
;:-120
1\.1
:r
I ~
~ -160f---+--+-+-+-+++++---+-f-+-+-+-HH+---+---+~'1-+-+-++H
~
\
a.._ -200 1---+--+-+-+-+++++---+-f-+-+-+-HH+---+---+--+-L~*-+·-++H
~
~i
-240t---+--+-+-+-+++++---+-t-+--+-+-HH+---+---+-+--+-t-++-H
FIGURE 16 - Tf'PICAL EGC INPUT CURRENT versus EGC INPUT VOLTAGE
4.0
;;(
-5
y
I 3.0
>-
~ 2.0
'-'
"U'J
c::;
V
vcc=5.ov
~ . £ 1.0 1---+--+--+17'~_,_--+--+--+-VEE = -6.0 V TA_: 25°Ci
f, FREQUENCY (MHz)
0
100
0
1.0
2.0
3.0
4.0
5.0
Vl(EGC), EGC INPUT VOLTAGE (Vdc)
REPRESENTATIVE CIRCUIT SCHEMATIC
1/3 MC3467
·
@ MOTOROLA Semiconducf:or Producf:s Inc. ________,
5-197
ORDERING INFORMATION
Device
MC3468L MC3468P
Temperature Range
0°c to +70°C 0°c to +10°c
Package
Ceramic DIP Plastic DIP
MC3468
·
Specifications and Applications, Information
MAGNETIC TAPE MEMORY READ AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
LSI MAGNETIC MEMORY READ SUBSYSTEM
The MC3468 READ Subsystem when used with the MC3467 triple preamplifier provides the interface between magnetic. tape heads and digital logic. This system is well suited for open-reel and cartridge magnetic tape systems. The MC3468 performs peak detection, and threshold detection functions as required for NAZI, PhaseEncoded or Group-Encoded recording formats. The device consists of: 1) Input Multiplex function, 2) Gain Stage with Electronic Gain Control (EGC), 3) Activ(l Differentiation Amplifier, 4) Zero Crossing Detector (ZCD), 5) Threshold D~tector Amplifier with Multiplexed Inputs and 6) Trreshold Detector.
1
f
· Complete READ Function in One LSI Device · Two Pair of Differential Inputs Allow Logically Controlled Selec-
tion of Input Filter or Tape Head Configuration · Low Recovered Error Rate · Input/Outputs are Low Power Schottky TTL Compatible
LSUFFIX CERAMIC PACKAGE
CASE 726
PLASPTSICUFPFAICXKAGE - . ·
-
CASE 701-01
Channel Select (Aor B) ·
Threshold Amp·
Threshold Oetec-
lifier Input A -'Hr,.-,,...,.~,.._.. 17 tor Output fl)
Th~e~,~~~~t~n';~~~~~ 13,~f;_:iJt!::::_--t,;ie ~~~=f~~~'!.t
Ariiotifi!hr~:~~1g 4
1& ZCD Output
EGC ·
Inputs A { :
e{ : Inputs
" ) Differentiation ,2 Components
11 Gain Stage Output
MC3468 TYPICAL APPLICATION AND WAVEFORMS
"fape Head Prea~plifier
Zero Crossing Detector Output
ZCD MC3468
Threshold Detector Output
5'-198
MC3468
MAXIMUM RATINGS ITA= 25°c unless otherwise noted)
Rating
Power Supply Voltages Positive SupJ>IY Voltage Negative Supply Voltage
Pin Voltages EGC Voltage (Pin 5) Threshold Voltage (Pin 16) ZCD Output (Pin 151 Channel Select A/B Input (Pin 1) Threshold Output TD (Pin 17)
Differential Input Voltage Threshold Amplifier Gain Amplifier
Symbol
Vee VEE
V1(EGC) V1(T)
Vo(ZCDI Vl(CS) Vo(TD)
v1Dm V_rn_
Value
Unit
+7.0
v
-8.0
v
-5.0to +7.0 v +1.0to -3.5 v
+7.0
v.
+7.0 to -2.0 v
+7.0
v
±5.0
v
±5.0
v
MAXIMUM RATINGS (continued)
Rating
Common Mode Input Voltage Threshold Amplifier Gain Amplifier
Amplifier Output Short Circuit Duration (To Ground, Pin 11)
Operating Ambient Temperature Range
Storage Temperature Range Junction Temperature
Symbol
V1c(T) V1c ts
TA T stg TJ
Value
Unit
±5.0
v
±5.0
v
10
s
Oto +70
oc
-65 to +150 oc
150
oc.
ELECTRICAL CHARACTERISTICS IVcc= 5.0 V, VEE= -6.0 V, TA= Oto +10°c unless otherwise noted)
Characteristic
TOTAL DEVICE
Power Supply Voltage Range@ TA= 25°C Positive Supply Voltage Negative Supply Voltage
Positive Supply Current Negative Supply Current Channel Select Input Voltage - Low Logic State Channel Select Input Voltage - High Logic State Channel Select Input Current - Low Logic State
(V1L(CSI = 0, Vee= 5.25 VI Channel Select Input Current - High Logic-State
(V1H(CS) =Vee= 5.25 VI
GAIN AMPLIFIER SECTION
Voltage Gain (Unbalanced) (ai = 10 mVp-pl
Voltage Gain (Unbalanced) (V1(EGC) =Vee. Si= 800 mVp-pl
Operating EGC Voltage Range Maximum Diff.erential Input Voltage
ITA = 25°CI Common Mode Rejection Ratio
(V1(EGC) = 0, VcM = 1.0 Vpp, f = 100 kHz, TA= 25°CI Bandwidth (-3.0 dB, TA= 25°CI Input Resistance Channel Isolation (f = 100 kHz) Input Bias Current Input Common Mode Voltage Range Output Resistance (Pin 11 I ITA = 25°CI Output Sink Current (Pin 11) Output Voltage Swing (Pin 11) Output Offset Voltage ITA = 25°CI
Figure
Symbol
Min
Typ
Max
VccR VEER
4.75 -5.5
5.0 -6.0
5.25 -7.0
7
ice
-
35
45
7
IEE
-
V1L(CS)
-
30
45
-
0.8
V1H(CS)
2.0
-
-
6
llL(CS)
-
-
-100
6
l1HICSI
-
-
10
1
Av
I 6.5
1
Avs
-
V1R(EGCI
0
V10R
0.8
3
CM.RR
40
1
BW
-
fj
30
40
4
~B
-
V1cR
±1.0
ro
-
5
los-
1.2
1
VoR
2.25
Voo
-
7.5
0.05
-
-
80
15
60 60
5.0 ±1.5 15
2.1 3.0 ±400
8.5
0.1
5.25 -
-
-
-
-
15 30
-
·Unit
v v mA mA v
v
µA
.µA
VIV
VIV
v Vpp
dB
MHz
kll dB
µA v Ohms
mA Vpp mV
··
@ MOTOROLA Semiconducf:or Producf:s Inc.
s~199
MC3468
·
ELECTRICAL CHARACTERISTICS v. v. o !Vee= 5.0 VEE= -6.0 TA= to +10°e unless otherwise notedl (Continued)
Characteristii:
Figure
Sy_mbol
Min
Typ
Max
Unit
ACTIVE DIFFERENTIATOR SECTION
Timi,ng Distortion (I= 1.0 mA, A= 1.5 Vpp, f = 100 kHz, TA= 25°CI
Zero erossbet~ctor - High Level Output Current (VoH =5.5 VI
Zero Cross Detector - Low Li!vel.Output lloL= 8.0 rriAI
Differentiator Output Sink Current (Pins 12 and 131
Differentiator Output Resistance (Unbalanced) <TA= 25°c1
12
-
8
loH(ZeDI
-
9
VoL(ZeDI
-
5
lo1D1-
1.0
ro(D)
-
1.0
3.0
%
-
150
µA
-
0.45
v
1.4
-
mA
20
-
Ohms
THRESHOLD AMPLIFIER SECTION
Differential Voltage Gain Maximum Differential Input Voltage Without
Distortion (TA= 25°CI Maximum Differential Input Voltage Before
Timing Shift (TA = 25°CI Maximum Threshold Voltage (Linear Operation) Threshold Voltage Required to Disable Threshold
Comparators (Vffi > 2.5 V, TA= 25°CI
Bandwidth 1-3.0 dB, TA= 25°c1
Input Resistance Threshold Amplifier Bias Current Channel Isolation Ratio
(f = 100 kHz) Threshold Detector Output Voltage - Low Logic State
lloL = 8.0 mA, Pin 17) Threshold Detector Output Current - High Logic State
(VoH = 5,5 V, Pin 17)
AvD
s.5
V1DR(TI
-
V1DR(T)
-
VIR(TI
-
V1(T)
-
BW
-
r[ilNT)
25
11BITI
-
40
10
VoL(T)
-
11
loL(T)
-
10 -
-
-
-2.0
15
50 5.0 60
-
-
11.5 400
1.4
-1.0 -2.5
-
-
15 -
0.45
150
VIV mVpp
Vpp
v v
MHz
k.IL µA dB
v
µA
Threshold Voltage Input Current (Pin 16)
ITHC
-
'.
25
50
µA
DESCRIPTION OF FUNCTION
Input Multiplex - Input multiplexing allows logiccontrolled (TTL compatible) selection of either of a pair of differential gain stages. Two separate tracks or one track processed through different filter networks for different recording formats can be selected (e.g., Phase Encoded/N RZI, Group-Coded/PE).
Gain Stage - The gain stage is controlled by Electronic Gain Control (EGC) and differential outputs are provided for the active differentiator and a single output is available for the threshold. function. The EGC range is from es5entially zero to 7'.5 (unbalanced).
Active Differentiation - Active differentiation requires minimum ex.ternal passive componeht count. The procedure for selecting component values insures linear operation and optimum zero-crossing detector p~r formance for excellent noise rejection.
Zero Crossing Detector (ZCD) - The zero-crossing detector generates an output transition corresponding to the peak of the incoming signal to the MC3468. Careful attention has been paid to avoid timing distortion between the outputs of the active differentiator and the inputs of the zero crossing comparator. The output is open collector Schottky TTL.
Threshold Amplifier and Detector - The gain stage output is ac coupled or differentiated into the Threshold Amplifier multiplexer. This allows logic-controlled (TTL compatible) selection of either of a pair of single-ended to differential gain stages. Thus, the possibility of 5electing between a differentiated or straight capacitive coupled signal for thresholding.· The select line is the same as for the Gain Stage multiplexing. The unbalanced gain of the threshold amplifier is 5. An inverting input is available for balancing the input signal to minimize the effects of offset current. The differential outputs of the threshold amplifier are compared to an external threshold in the threshold comparators. An oCltput signal is provided whenever the signal exceeds the threshold setting in the positive or negative direction. The output is open collector Schottky TTL.
The versatility of the MC3468 facilitates the design of dual mode (NAZI/PE, Group/PE) tape drives with the ability of dynamically s\iVitch gain, active differentiator components, and thresholds for different recording speeds or interchanged tapes.
@ MOTOROLA Semiconducf:or Producf:s Inc.
MC3468
MC3468 BLOCK SCHEMATIC
15 ZCD Output
Gain State Output
Oooou A { : o--------11------'
VEE o-_..__4-_..___4----'
8
Inputs B { o--------11------------+------'
13 } Differentiation
L---------J> 12 Components
Channel Select
Vee
Channel 1 Select
·
Threshold Amplifier
Input A
Inverting Input
Threshold 4 0------------------------1
Amplifier Input B
@ MOTOROLA Sernlconduc'for Produc'f· Inc. - - - - - - -
5-201
MC3468
·
FIGURE 1 - VOLTAGE GAIN, BANDWIDTH AND OUTPUT VOLTAGE SWING
5.0 v
MC3468
-6.0~
FIGURE 3 - COMMON MODE .REJECTION RATIO (CMRRI
5.0 v
FIGURE 2 - CHANNEL ISOLATION RATIO
2.0 v
5.0 v
MC3468
-6.0V
eo
ea
CIR= 20 log--= 20 log--·
Ave;
7.5 e;
FIGURE 4 - INPUT BIAS CURRENT TEST CIRCUIT
5.0 v
MC3468
MC3468
= CMRR
20
e0 log-·-=
20
l o ge-0 -
Ave;
7.5 e;
-6.0 V
FIGURE 5-0UTPUT SINK CURRENT AND DIFFERENTIATOR OUTPUT SINK CURRENT TEST CIRCUIT
5.0 v
/
-6.0 v
FIGURE 6 - CHANNEL SELECT INPUT CURRENT TEST CIRCUIT 5.25 v
18
MC3468
MC3468
10
-6.0V
@ MOTOROLA Semlconducf:or Producf:s Inc.
5-202
-6.0V
MC3468
FIGURE 7-POSITIVE AND NEGATIVE SUPPLY CURRENT
TEST CIRCUIT Vee
Me3468
FIGURE 8 - ZERO CROSS DETECTOR OUTPUT CURRENT HIGH LOGIC STATE TEST CIRCUIT
5.0 v
18
5.5 v
Me3468
FIGURE 9 - ZERO CROSSING DETECTOR OUTPUT VOLTAGE LOW LOGIC STATE TEST CIRCUIT
5.0 v
Me3468
0.2 v
FIGURE 10 - THRESHOLD DETECTOR OUTPUT VOLTAGE - LOW LOGIC STATE TEST CIRCUIT
5.0 v
-6.0 v
-6.0 v
FIGURE 11 - THRESHOLD DETECTOR OUTPUT CURRENT - HIGH LOGIC STATE TEST CIRCUIT
5.0 v
5.5 v
·
5.0 v eo
1.5 v OV
Me3468
Me3468
10
-6.0 v
FIGURE 12 - TIMING DISTORTION TA = 25°C
Timing Distortion (tD) = :~ -:-:: X 100%
-6.0V
5.0 v
18
Me3468
1-.n,.;.;..._ ___;..:..;...;..;..;;..;..._ _ A (1.5 Vpp)
1.0mA
e : (1.5 Vpp) 21' 100kHz= lOOOpF
A:
1
40n=1200hms
211 (1 MHz) 1000pF
@ MOToROLA Semiconductor Product· Inc.
5-203
MC3468
·
TYPICAL PERFORMANCE CURVES
FIGURE 13- NEGATIVE POWER SUPPLY CURRENT versus NEGATIVE POWER SUPPLY
VOLTAGE
TA= 25°c I
Vee= 5.25 v,,.
I
Vee= 5.o v- ~
vcc =4.75 v"'
5.5
6.0
6.5
7.0
VEE. NEGATIVE POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 14 - NORMALIZED VOLTAGE GAIN versus EGC INPUT VOLTAGE
100
%
~ 80 <
Cl
w
Cl
~ 60 > 0
:ffli 40
co:
:0
~ 20 .f
0 0
~
LS:
1 l
~
T
vcc = 5.o v Vee= -6.ov
TA= 25°c -
[
~ ~ I'--
0.5
1.0 1.5
2.0 2.5
3.0
3.5 4.0
VJ(EGC), ELECTRONIC GAIN CONTROL VOLTAGE (VOLTS)
FIGURE 15 - ELECTRONIC GAIN CONTROL . INPUT CURRENT versus VOLTAGE
5.0
.~.s 4.0
f-
~
i3 3.0
f:::i
"z ;:; 2.0
ffi u ~ 1.0
0 0
Pi~~ T
vcc=5.0V ~ vee=-s.ov _ TA= 25°C
L..v ~
L'
v ~
/ vf
1.0
2.0
3.0
4.0
5.0
VJ(EGC), ELECTRONIC GAIN CONTROL INPUT VOLTAGE (VOLTS)
FIGURE 16 - CHANNEL ISOLATION RATIO versus FREQUENCY
~ i~:=
40 ff-
Cl
R
=
20
log
AV.oV. v
"H+---+---+-+-+-~ +-+-H""~--+--+-+--+-+-+++< 1+++---l-t--1-+-H+~~f--"""'"l--..._,l-+-+-+'f-H
"to..
~ 30 f- Assume Av = 7.5
L':'!I.
z f- V1 = 0.8 Vp-p
~"' 20f- vcc = 5.o v
~-
f10 f-
~1/~i~~\: ~.~
Vee= -6.o v
v
r- TA= 25°c
0
J_ ..i ..iJ.J_J_
100kHz
1.0 MHz
10MHz
f, FREQUENCY (Hz)
lOOMHz
FIGURE 17 - PHASE versus FREQUENCY Gain Amplifier Inputs to Active Differentiator
(Pins 6, 7 to 12, 131
"'* - 3 0 1 - - - + - - + - - + - - + - - . P . " " " " " i t - . : : - - + - - + - - + - - - i
ffi
e-401---+--+--+--+--+--+---i'>oe"'itt..::-+----J
w
"~' -50
Oifferentiator Network
o-4H~ -f$ -tiO
2-10 µF (Solid Tantalum)
-ao...._~...__~...__~...__~...__~...__~..._~...._~...._~.......~
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 f, FREQUENCY (MHz)
FIGURE 18 - GAIN AND PHASE versus FREQUENCY FROM Pins 6, 7 to Pins 12, 13
~ 'I -5.0t=t--===-~ --+-o:!:-Ht---+-+ttl--+-+-l-+.J~~N--t-,r J P~ase
-10
~
r\.
~- 15
,..., ~L -i
a8 -~251---+--+-1-+-+-+-H-+---+--+-+--+-+~>+--T'.Gai~~ ~ I'-
~ -30
~
-0.1
0.2
0.3 ~
z
-0M.5~~
~ -0.6
.f -f$ -351---1--+--l-+-++-H+---+~-!-++++.if+--+--+-+-!-+v+l-l -0.7
-40 l---l--+--1-+-++-H+---+~-!-++..J+Jf+--+--+-+-1-H.v-+1-0.8
-45
-50 10 kHz
100 kHz
1.0 MHz
f, FREQUENCY (Hz)
-0.9
-1.0 10 MHz
@ MOTOROLA Semiconductor _Product· Inc.
5-204 _
MC3468
SYSTEM PARAMETERS
The following system parameters are characteristic of not only the device but external component values and circuit layout. Detailed test circuits and m~asured
parameters are provided only as a guide to expected system performance. These parameters are not readily measureable on a production volume basis.
FIGURE 19-TEST CIRCUIT FOR MEASURING PROPAGATION DELAYS
From Gain Stage Input to Zero Crossing Detector Output
(Pin 6 to Pin 15) (Subtract 8 ns from measurement for probe and cable delays)
Vee
36"
Capacitances are solid Tantalums
6 Wavetek Model 164 Function Generator
Note: Symmetry is adjusted@ 50 kHz and 50 mVpp
13 Vee
6 Feet
A
TeK 475 Scope
MC3468
680 15
X10Probe
I ~put 1.:------J,,....---......
Pm 6 -lo~.------,.1'-"'-----'""'--
0utput tpLH(ZCD) ~ i-.;
---: '-- tPHL(ZCD)
I I
I I
ZCD~
Pin 15
I
I
Typical Measured Values: tPLH(ZCD) = 40 ns tpH L(ZCD) = 50 ns
·
FIGURE 20 - TEST SETUP FOR MEASURING PHASE JITTER
Vee
Note: Use of a serie, inductor in the differentiator network significantly improved phase jitter performance.
Capacitances are solid Tantalums
12
.--------.. rv 500 kHz
6
Wavetek Model 164
Function Generator
H
MC3468
13 Vee 15
TeK 475 Scope
8
X10Probe
'1IJ" 111. zeo Output .. Pin 15 1.5
\\\
ITT
Typical Meas1,1red Values:
I
= 0.6 Vp-p@ Pins 12, 13 0.5% I
25 mVp-p @l Pins 12, 13 = 6.0% :
I
I
I
I
--1 t .--
I I I
I
------ T -----1
% Phase Jitter =+X 100%
Note: The jitter window, t, is defined as the 3 <J points on a Gussion curve.
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ ___.
5-205
MC3468
Wavetek Model 164 Function Generator
FIGURE 21 -.TEST SE1UP FOR THRESHOLD AMPLIFIER DELAY AND THRESHOLD COMPARATOR EQUIVALENT OFFSET MEASUREMENTS
X10Probe
6 Feet
A
Vee
TEK 475 Scope
680
6 Feet
B
17
X10 Probe
·
Input
Pin 2
100 kHz
O
I
Typical Measured Values: tPLH(TD) = 43 ns
tpH L(TD) = 43 ns V1o(TD) = 38 mV
Threshold Detector Output Pin 17
:
-100 mV
..,.. t-- tPLH(TD)
I
, I
_
I
I
tPLH(TD) ---t 1-:
I
1·
I
Note: For Delay measurements, V is fixed at -250 mV; for equivalent comparator offset voltage measurements, V is adjusted until Pin 17 goes low. The voltage, V, is the equivalent offset, V IO(TD). '
Note: Some compensation is possible using a resistor from Pin 3 to ground.
FIGURE 22 - TEST SETUP FOR GAIN AND PHASE versus FREQUENCY (1 MHz to 10 MHz) FROM INPUT TO DIFFERENTIATOR (Pin 6, 7 to Pin 12, 131
Actual Test Measurements (Calibrat~ Instrumentation for Phase Compensation)
Solid Tantalums 2-lOµF
HP8405A Vector
Voltmeter
Wavetek l\llodel 164
Function Generator
.__'--'~~-+--I + TEK P6046 Differentiator .Probe and Amplifier
12
Me3468
(See Figure 1,7 for plot of data)
® MOTOROLA. sen'liconductor Products Inc.---------'-'
5-206
·MC3468
FIGURE 23 - TEST SETUP FOR GAIN AND PHASE versus FREQUENCY (5 kHz to 1 MHz) FROM INPUT TO DIFFERENTIATOR (Pin 6, 7 to Pin 12, 131
Actual Test Measurements (Calibrate Instrumentation for Phase Compensation)
Solid Tantalums 2-10 µF
HP3575A Gain Phase
Meter
B
Wavetek Model 164
Function Generator
.__.j......4~-4--.:+--I + TEK P6046 Differentiator Probe and Amplifier
12
MC3468
(See Figure 18 for plot of data)
DESIGN SUGGESTIONS
G,ain Stage Bias Current
One must consider supplying 15 µA of bias current to the Gain Stage when designing a filter network. A good design value for the equivalent resistance from each input leg to ground is 5 k.Q.
II Adjusting Peak Shift to Zero (See Figure 24)
The worst peak shift observed on the ZCD output occurs for the smallest slew rate provided by the Active Differentiator at the ZCD inputs. In Turn, the Active Differentiator produces the smallest slew rate when the gain-bandwidth product applied at its inputs is the smallest. Current sottrce, resistors, and diode imbalances will exhibit the maximum peak shift under this condition..Using the resistor network shown, these imbalances are adjusted out for the worst case condition.
FIGURE 24 - PEAK SHIFT NETWORK
·
Note: The 100 kil resistors should be close to the IC to suppress noise.
@ MOTOROLA Semico;..ductor Products Inc.
5-207
MC3468
·
MC3468 APPLICATIONS INFORMATION
MC3468 For NAZI Encoded Magnetic Tape
NRZI Encoding was one of the first popular recording formats and is formalized as an American National Standard for the purpose of facilite1ting the interchange of magnetic tapes. Although the Phase-Encoded format is now more widely accepted than NRZI, vast libraries of NRZI tapes still exist. Computers will be reading these tapes for years to come, and in some cases, re-writing them in phase-encoded format. Thus, the ability of the tape drive 'electronics to read both NRZI and PE tapes is a feature often sought in new designs.
For NRZI recording, the magnetic surface of the tape is magnetized to saturation in one direction or the other each time a logical "1" is to be recorded. The magnetization remains unchanged for a logical "O". The resulting signal from the read head for a typical NRZI data stream is shown in Figure 25. The NRZI data stream consists of a continuum of Fourier components up to a maximum frequency of 5fH, where fH is numerically equal to
one-half the maximum flux changes i:>er second (FCPS).
For long strings of zeroes, the lowest Fourier component could theoretically be near de, but on a typical tape a long interval with no "l's" is not allowed. Consequently, most of the energy in the pulse train is around fH and its hannonics (up to the fifth)°: A suitable corner frequency for ac coupling from the preamplifier is 60 Hz, although· for high speed systems it could be considerably higher (1/10 fH). The -3 dB frequency of a low pass filter is usually placed at a frequency greater than fH. In most systems, this low pass filter must do more than provide a roll-off for high-frequency transients. It also equalizes the read amplifier chain and differentiation network for linear phase versus frequency response. Once the transfer function· of this equalization filter is known, it may be incorporated either as part of the ac coupling between the preamplifier and amplifier or as part of the differei;itiation ne~ork.
The American National Standard specifies that NRZI be recorded at 800 BPI (Bits Per Inch) on open reel magnetic tape. Typical read/write tape speeds range from 12.5 to 300 IPS (Inches Per Second). Examples 1and4 show MC3468 NRZI designs.
MC3468 For Phase-Encoded (PE) Magnetic Tape
Of the numerous methods for encoding digital data
on magnetic'· tape, phase ercoding is currently most
popular. As shown in Figure 25, data is represented by
transitions occurring in the middle of a "data cell". A
low-to-high flux transition (toward the magnetization
level· representing erased tape) is defined as a logical
"one" and a high-to-low transition is defined as a logical
"zero". For consecutive "one's" or "zero's" phase
transitions are introduced as needed at the "data cell"
bor9ers. Phase transitions are not required when the en-
coded data consists of "one-zero" patterns.
The read head signal resulting from mixed data
streams consists of two fundamental frequencies, fH and
fL which represent most of the harmonic content (with
some energy at harmonics up to the fifth). These are
numeri.cally
equal
to -FC2-PI
x
IPS
and
FCPI x 4
I. PS
(where
FCPI is maximum flux changes per inch and IPS is tape speed in inches per second). In high-speed, low-level sy'iir terns, the amplitude of these read head signals is only a few millivolts and conditioning with a preamplifier such as the MC3467 followed by a passive bandpass filter is required. The bandpass ·characteristic sets the lower -3 dB frequency below fl and the upper -3 dB frequency above fH. In most systems, the bandpass filter must do
more than filter out noise. The low-pass portion also equalizes the read amplifier chain and differentiation network for a linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated as part of the filter between the preamplifier and amplifier or as part of the differentiation network.
The American National Standard specifies that PE data be recorded at 1600 BPI (Bits Per Inch) on open reel magnetic tape. Typical read/write tape speeds range from 6.25 to 200 IPS (Inches Per Second). Cartridges use 1600 BPI and have tape speeds of 30 IPS for read/ write. Examples 2, 3, and 4 show MC3468 designs for PE systems.
MC3468 For Group Code Recorded (GCR) Magnetic Tape
Basically, Group-Coded Recording (GCR) is a high
density recording scheme which uses the NRZI conven-
tion for "l's" and "O's", but adds the restriction that
flux changes occur at least once in every three bit cells
(Figure 25). The read head signal resulting from mixed
data streams consists primarily ·of F.ourier components
from fL to 3fL = fH and their harmonics up_ to the fifth.
The frequencies fL and fH are numerically equal to
FCPI
x 2
IPS
and
FCPI x 6
IPS ,
respecti.vely
(where
FCPI
.1s
maximum flux changes per inch and IPS is tape speed in
inches per second). The amplitude of the read head sig-
nals is only a few millivolts or less and conditioning with
a preamplifier such as the MC3467 followed by a passive
bandpass filter is requfred. The banqpass ch<1racteristic
sets the lower -3 dB frequency below fL and the upper
-3 dB frequency above fH. The bandpass filter must do
more than filter out noise. The low pass portion equal-
izes the' read amplifier chain and differentiation network
for linear phase versus frequency response. Once the
transfer function of this equalization filter is known; it
may be incorporated as part of the filter between the
preamplifier and amplifier or as part of the differentia-
tion network.
The proposed American National Standard specifies
that GCR data be recorded at 9042 FCPI (Flux Changes
Per Inch). Because of the data format, the usable data
density is 6250 BPI rather than 9042 .BPI. The "6250
BPI" is a throughput specification and should not be
used in read amplifier calculations. The original GCR
concept was intended for high speed drives (200 IPS).
However, it is also being applied to lower speed (125
IPS) systems. Examples 5 and 6 illustrate the use of the
M.C3168 in GCR systems.
@ MOTOROLA Semiconductor Products Inc.
5-208
MC3468
FIGURE 25 - MOST POPULAR MAGNETIC TAPE RECORDING FORMATS
Bit Stream In a Track-
+M
NAZI
0 -M...,.__ ___._ _.
(800 B/IN., 800 Fe/IN.) +M
0
PE
-M
(1,600 B/IN., 3,200 Fe/IN.1-+M
GeR
-M0 _ _ __,....___,
(6,260 B/IN., 9,042 Fe/IN.)
0
0
CIRCUIT OPERATION
(See Figure 26 for component wiring and Figures 27 and 28 for Timing Diagrams)
The operation of the MC3468 is similar for NAZI, PE, and GCR data formats. The preampHfier and filtered signal is applied differentially to either Channel A or B G.ain
Stages. The Gain Stage output differentially feeds an Active Differentiator and a single-ended output is available for /straight capacitive or differentiated (active or passive) coupling into either Channel· A or B inputs to the Threshold Amplifier.
For the circuit configuration shown, the Active Differentiator output leads th~ input by almost 90°. The Active Differentiator output is applied to a Zero-Crossing Detector, which goes low for positive levels and high for negative levels, changing state at the zero crossings. The
Threshold Circuit amplifies the Gain Stage output and compares positive ahd negative signals to a threshold level. When the level is exceeded, the TD output is low. From the waveforms, it is seen that the ZCD output makes a transition approximately in the m'iddle of the
period when TD is low. Wiring ZCD "anded" with TD to the set ihput and ZCD "anded" with TD to the "reset" input of the R-S type flip-flop reconstructs the data stream encoded on the tape. This circuit works for zero clip (zero threshold) operation, but has the disadvantage that timing distortion re5ults from capacitive loading. Digital circuits for reconstructing the data stream which utilize pipe-line delays to overcome capacitive loading timing distortion are shown in Figure 29.
FIGURE 26 - TYPICAL MC3468 COMPONENT HOOKUP
11
I Channel A
Prea::~fier and Filter
v cc
l"\---1---1
Vee Vee
680 15
·
Data
<f!) MOTOROLA Sernlconductor Products Inc.
5-209
MC3468
·
FIGURE 27 -WAVEFORMS SHOWING MC3468 OPERATION FOR NRZI DATA
Magnetization + Level on Tape _
I I I
Channel A Gain Stage
Input
Active Differentiator
Output
,zco
0
0
0
FFQ
FIGURE 28 - TIMING DIAGRAM WAVEFORMS SHOWING MC3468 OPERATION FOR PHASE-ENCODED DATA
Magnetizatlon Level on Tape
Channel A Gain Stage
Input
I
1.-T= 1/fH~ I
0
0
I I
14--
I
T = 1/fL ---..:
Active Differentiator
Output
ZCD
FFQ
@ MOTPROLA Semiconductor Products Inc.
5-210
MC3468
FIGURE 29 - OTHER DIGITAL CIRCUITS FOR RECONSTRUCTING DATA STREAMS FROM THE MC3468 1) Dual Output Circuit (Pipeline Delay for Negative Edge Must Be the Same for Both Outputs)'
Negative Peak
--uuu Positive Peak
2) Single Output Circuit (Operation Independent of Capacitive Loading Effects on Delays)
ru --i-+---i
lJlIU1.f
Composite of
Positive and Negative
Peak Pulses
Group Delay Distortion
The ultimate purpose of the magnetic read amplifier chain in Figure 30 is to produce a digital signal with transitions corresponding to the peaks of a read head signal. Because the active ·and passive elements in the chain exhibit phase characteristics, there will be a "pipe-line" delay between peaks at thf1 read head and the digital output from the zero-crossing detector. Variations in this delay with frequency or amplitudes cause timing distortion which translates directly into increasing error rates. The primary consideration in the read chain implementation is to equalize the read chain for almost flat delay over the frequencies and amplitudes of required operation. Figure 30 depicts one of several possible read chain configurations which can be equalized for best-flat time delay performance.
The determination of the component values is relatively straight forward provided the active elements have negligible phase characteristics in the frequency range of operation. Below 1 MHz, the MC3467/MC3468 read chain active elements have negligible phase characteristics. Although phase effects start showing above 1 MHz, phase versus frequency is linear (constant time delay) as shown in Figure 17 for the MC3468 Gain Stage.
Other read chain configurations have a band-pass filter between the preamplifier and Gain Stage. It is possible to move some of the poles of the filter into the active differentiator. The technique suggested in Figure 30 transfers poles into the active differentiator to minimize component count. The insertion loss of the technique is also less than an equalization filter ahead of the READ amplifier.
MC3468/69 Peak Detector Section
High Pass
Preamplifie~
Filter
@u:t-------'-~--t FIGURE 30 - GRciUP DELAY DISTORTION
------+--1,,..-----1
ZCD
THROUGH READ CHAIN
[ MC3~':.
Active
D ifferentiato·
·
To~ --~~~-~-~~--~~---'
TGD ±.ATGD
@ MOTOROLA Semiconclucf:or Proclucf:s Inc.
5-211
MC3468
·
Determining Ro. Co. and Lo For the Active
Differentiator
For the equalized read chain shown in Figure 30, Co, Ro and Lo are determined respectively in that order. The phase charai:teriSt:ics of the active elements are assumed to be negligible.
An active differentiator is formed by Ro. Co and Lo coupling the emitters of a differential amplifier having current sources loo in each leg. If a differential voltage AvEp cos wt is applied to the Active Differentiator, the resulting current through Ro and Co is:
I =
2AvEp.
. cos{wt - arctan c~ -1/wCo)}
+(- + J RT2 wC1-o wLo)2
Active O ifferentiator
Also,
. solving
we=
.1 RTCD
for
RT,
1 RT= wcCo
Assuming the output impedance of 01 and 02 combined is 40 Ohms,
.-,R-o-=_w-_d_c_o___4_0.....,
where WC= 3.WH.
As shown in Table 1, the addition of an inductor, Lo, significantly improves phase linearity versus frequency as well as providing a roll off for high frequency noise. This optimum solution requires the following relationships:
rearranging,
when wLo <w-c-1 0- < RT
I 2' 2Av Ep Co w sin Wt
where 2AvEp is the product of the differential input to the Gain Stage Ep and its unbalanced gain, Av. where RT is the total of RD and the output impedances of 01 and 02. The combined output i~pedances of 01 and 02 is 40 0 hms.
This condition is ,approximated for R;Co = we =
3WH (where WH is the maximum applied frequency of appreciable Fourier content).
The peak value of I (i.e., 2Av Ep Co w) is important. As I approaches IO(D). the transistor 02 turns off and the waveform at Pin 12 distorts. The circuit no longer behaves as a differentiator and peak distortion results.
For best zero crossing detector performance, it is essential that I be maximized. A design value of I which results in good noise performance and minimum peak shift is 900 microamperes.1
I= 2Av Ep Cow= 900 x.10-6 Rearranging the equation for I.,
900 x 10-6 Co=-,--.,,,.--
2Av Ep w
1 For optimum zero-crossing detector performance, dl/dt should be as large as possible at zero-crossing. Motorola guarantees a minimum IQ(D) of 1.0 mA.
TABLE 1 - PHASE LINEARITY (CONSTANT TIME DELAY) PERFORMANCE FOR RC versus RLC ACTIVE
DIFFERENTIATOR NETWORK
We; - Ro-1c-o; 3WH
w
w
we
e
AO
Wn
e
e:.e.
1.0
+45.00
0.9
+48.01
0.8
+51.34
0.7
+55.01
0.6
+59.04
0.5
+63.43
0.4
+68.20
0.3
+73.30
0.2
+78.69
0.1
+84.29
1.0 +3.01 0.9 +3.33 0.8 +3.67 0.7 +4.03 0.6 +4.39 0.5 +4.77 0.4 +5.10 0.3 +5.39 0.2 +5.60 0.1
0 +8.49 +17.65 +27.26 +37.03 +46.69 +56.04 +65.00 +73.58 +81.87
+8.49 +9.16 +9.61 +9.77 +9.66 +9.35 +8.96 +8.58 +8.29
@ MOTOROLA Semiconductor Products Inc.
5-212
MC3468
Threshold Considerations
The threshold circuitry is used in read after write ~fr terns to insure that good data was written, to set up gain during an ID burst, and sometimes to indicate a minimum signal voltage for invalid data. Optimum thresholding requires a lar!JEI swing at the threshold amplifier inputs. A good design value for V1NTA is 1.0 Vp-p, and should not exceed 1.4 Vp-p. If it does, a timing shift results. Internal clipping is provided for all signals greater than 400 mVp-p. The distortion resulting from clipping has no effect on thresholding because only peaks are clipped.
As shown in Figure 26, the Gain Stage output at Pin 11 is ac coupled to the threshold amplifier so that volt· age offsets do not influence thresholding. An attenuator, R 1/R2, is often required in the ac coupling networks because the gain stage output is between 1.6 Vp-p and 2.4 Vp-p for optimum zero-crossing-detector performance.
R1
V1NTA = R1 ~1R2 Vo
The magnitude of R1 should be less th<!n 5 kn to minimize the effects of Threshold Amplifier Bias current OTHA "' 15 µA). Also, R 1 + R2 must be greater than 3 kn because the minimum output sink current Oosl of the Gain Stage is 1.5 mA. A resistance equal to R1 should be wired to ground from the - leg of the Threshold Amplifier (minimize offset bias current effects).
Note that only the selected amplifier input contributes to bias current. Each output of the Threshold Amplifier is 5 V1NTA, and is applied to its resepctive Threshold comparator. Each comparator sees 2.5 V1NTA· Thresholding is based on a percentage of the nominal voltage applied to the comparators, 2.5 V1NTA· Both positive and negative references are derived from VEE as follows:
0.1 µF
R3
R4
a 2.6 VINTA x %
Vee
R3 should be less than 1 kn to minimize the effects of Threshold Comparator Bias Current llTHC = 50 µA). A 0.1 µF decoupling capacitor is required for transients.
The following circuits are useful for multi-channel and/or dynamic threshold switching applications.
-Vee
26% Threshold
60% Threshold
To Pin 16 of Each Channel
To Pin 16 of Each ChannJI
Ba;ie Line Shift in PE Systems
In phase-encoded recording, the read signal may not
make symmetrical transitions about the zero bias level.
A lower amplitude signal with a low frequency compo-
nent is often superimposed. Although a highpass filter
attenuates some of this component, its frequency is
often close to the -3 dB frequency of the filter and may
be only -6 dB down from signal amplitudes. This base-
line shift has no adverse effects on the performance of
the Active Differentiator. However, the Threshold De-
tector is sensitive to the unequal signal peaks. Signal-to-
noise ratio can be improved by performing a. passive
differentiation into the Threshold Amplifier. With the
corner frequency, fc, placed at fL, the fL signal is at-
tenuated -3 dB; the fH "' 2fL signal is for all practical
purposes unattenuated. Figure 31 shows the 45o phase
lead introduced by passive differentiation. Note that this
technique is not directly applicable to high thresholds
because the ZCD transitions fall outside the thresholding
window. However, the threshold window can be delayed
7·.:·' to overcome this drawback.
~ :~ 0
(2A, E )
:··· '"- Lood)
o--t~Jl\A--------1
fc = 21r~C = 21r(R1 + R2)C
·
5-213
MC3468
·
The design of the attenuator, R1/R2, follows as described previously. Example 3 shows ,. typical applica· · tion of passive differentiation to overcome base-line shift.
FIGURE 31 - RESULTING OPERATION FOR PASSIVE
Out±put~~~~/ \ DIFFERENTIATION INTO THRESHOLD AMPLIFIER
. GainStage
· forfL
I
.
.
--1 '4-45°
: I
I
I
~5\ (+
VIN 450
sTAhif~ t)-~----------~.__~ _ _ _~........,_
_
ZCD
5. Keep all signal runs as short as possible. The lead on Pin 15 will radiate and can couple back into the active differentiator. This will result in excessive phase jitter. The tell-tale behavior is a ringing at Pin 11 corresponding to the transitions at Pin 15. To overcome this coupling problem, keep· the lead on Pin.15 short and isolated from the other Input/Output lines to the MC3468. Preferably, put it over or next to a ground plane. For long distance runs, use a twisted pair or coaxial cable. When evaluating the device for phase jitter and fre-
quency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation. Instrumentation test set-ups must be calibrated at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.
FIGURE 32 - POWER AND GROUND DISTRIBUTION FOR MC3468 PRINTED. CIRCUIT BOA.RD LAYOUT
0.1 µF Monolithic Ceramic
FFQ
Board Layout and Testing Considerations
A~ ~SI package has _man~ input/ou~put pins in close prox1m1ty, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will .optimize the performance of the device.. See Figure 32. 1. Build all circuits on printed circuit boards (including
breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in 3dimensions..
2. Use a ground plane under the IC and over as much of the printed circuit board surface as po~sible without exceeding practical limits.
3. Avoid signal runs under the IC, also avoid parallel runs of 1 inch or greater on the opposite or same side of board.
4. Use monolithic ceramic 0.1 µF capacitors for de-
coupling power supply transients. One from Vee to
ground and one from VEE to ground for each IC package. Keep lead lengths to Y. inch or less and place in close proximity to the IC.
-- - - - - - - - - - - - - - -
/' 000000000 \
I
I
:
:
\
I
-----------------
/
I
l
:
I
I
,,- - a_a o-o- o 0-0 o.-o--\
I
I
I
I
I
' .... - - - - - - - - - - - - - - - _/
- ,- - - - - - - - - - - - - - - - ....
I
I
I
I
I
I
I
I
_o_ g _q_/0~9 _o_ .Q
,.,.--0-0 0-0- 0-0-0 0-0--\
I
I
I
I
I
I
I
I
Note: Dotted Lines Outline Ground Plane on Back Side of Printed Circuit Board
.<f!J MOTOROLA Semiconductor Pr~ducte Inc.
5-214
MC3468
EXAMPLES
Ex~mple #1 (See Figure 26 for Component Hookup)
Tape Drive Type: Open Reel Encoding: NAZI Recording Density: 800 BPI (800 FCPI) Tape Speed: 200 IPS Signal into Gain Stage
Epp = 0.3 to 0.6 Vp-p@ 80 kHz
Threshold: 25% of minimum voltage peaks
The voltage from the Gain Stage is designed for 1.6 Vp-p at Pin 11.
' ~:: = A.v = 2.7
\:pp = 0.2 Vp-p@ 320 kHz
0.4 Vp-p@ 160 kHz
Threshold: 25% of minimum voltage peaks
The voltage from the, Gain Stage is designed for 1.6 Vp-p at Pin 11.
~=Av =4
0.4
Set the EGC for a gain of 4, unbalanced.
The maximum p-p voltage to the Threshold Amplifier, V1NTA· is designed for 1 Volt. The requi.red attenuati.on f actor .1s 11.6 .
, V1NTA
R1
1
---vQ = R1 + R2 =T.'f
Set the EGC for a gain of 2.7, unbalanced.
The maximum p-p voltage to the Threshold Amplifier, V1NTA·
;:a· -.
1
is designed for 1 Volt. The required attenuation factor is
V1NTA
R1
-V0 = R1 + R2 =ii
R1 + R2;;;. 3 kn and R1 .;;; 5 kn (See text)
These constraints are satisfied when R1 = 4.7 kn and R2 = 3 kn. This is an optimum solution for a minimum coupling capacitor value.
Now consider the minimum yoltage applied to the Threshold
Amplifier
1
.
V1NTA(MIN) = L 6 x 2.7 x 0.3 = 0.5 Vp-p,
The threshold comparator reference voltage, VR, is set at 25% of 2.5V1NTA(Mll'J)
VR = 0.25 x 2.5 x 0.5 e. 300 mV
....:'3
R3
-300 x 10 = R3 + R4 (-6)
R3 <;;; 1 kn (See text)
Let R3 = 470 n; then R4 e. 10 kn
The values of Ro and Co are determined from the equations given in the. text.
Co = 900 x 10-6 = 900 x 10-6 2Av Ep w Av Epp w
900 x 10-6 2.7 x 0.6 x 2rr x·80 x 103
Coe. 1000 pF
Assume f c = 3f
R = -1- - 4 0 -
1
40
D wcCo
2rr x 3 x 80 x J03 x 10-9 ·
Ro= 670 - 40 e. 600 n
·
RT2 Co (670)2 x 10-9
Lo = - -- =
2
2
224µH
Example #2 (See Figure 26 for Component Hookup)
Tape Drive Type: Open Reel Encoding: Phase-Encoded Recording Density: 1600 BPI (3200 FCPI) Tape Speed: 200 IPS Signal Into Gain Stage
R1 + R2;;;. 3 kn arid R1 <;;; 5 kn (See text)
These constraints are satisfied when R1 e. 4.7 kn and R2 e. 3 kn. This is an optimum solution for a minimum coupling capacitor value. Now consider the minimum voltage applied to the Threshold Amplifier.
1 V1NTA(MIN) =1:6x 4 x0.2 = 0.5.Vp-p
The threshold comparator reference voltage, VR, is set at 25% of 2.5 V1NTA(MIN)
VR = 0.25 x 2.5 x 0.5 e. 300 mV
-300 x 10-3 = ~ (-6)
R3+ R4 R3...;; 1 kn (See text)
. Let R3 = 470 n; then R4 e. 10 kil
The values of Ro and Co are determined from the equations given in the text.
900 x 10-6 900 x 10-6
900 x 1o-6
Co - 2Av Epp - Av Ep
4 x 0.4 x 2rr x 160 x 1o3
Coe. 560 pF
Assume fc = 3fH
Ro=-1- - 4 0 wcco
40 -2rr x 3 x 320 x 103 x5.6 x 10-10
Ro = 295 ohms - 40 e. 250 n
RT2 Co (295)2 x 560 x 10-12
Lo = - -- =
- 24 µH
2
2
-Example #3 (See Figure 26 for Component Hookup)
Same as Example #2, but consider base-line shift.
In addition to ac coupling between the Gain Stage and Threshold, . a passive differentiation is· performed to attenuate the lower fre-, quencies producing base-line shift. This improves sig"al-to-noise ratio. The corner frequency is chosen at fL = 160 kHz where the attenuation is 0.707 (-3 dB) and the phase angle is +45°.
-
1
.
3
fL- 2rrC (R1 + R2) 160 x 10
For C = 200 pF
R1 + R2 e. 5 kil
R1
1
Now R 1 + R2 = 1.6 x 0.707 = 0.9
Let R1 ;: 4.7 kil, then R2 = 470 n
@ MOTO~OLA Semiconducf:or·Producf:s Inc.
5-215
·
MC3468
Example #4 (See Figure 33 for Component Hookup)
Tape Drive Type: Open Reel Encoding: Dual Mode (Phase-Encoded/NAZI) Recording Density: 1600 BPI (3200 FCPI) for PE mode and
800 BPI (800 FCPI) for NAZI mode Tape Speed: 200 IPS Signal Into Gain Stage
Same as Examples 1 and 2
Threshold:, 25% of minimum voltage peaks
NOTE: Consider base-line shift for PE mode.
This tape drive performs either the NAZI or the PE functions of Examples #1 and #3, under control of the SEL A/B line. Using the Gain Stage and Threshold Amplifier Channel A, Channel B inputs, the hook-up for a single track is implemented as shown in Figure 33. Note that an electronic switch is required for Gain switching when the mode is changed. This particular design did not require the threshold voltage to be switched, although in a typical system it probably would be.
It is necessary to electronically switch differentiator components. A low impedance MOSFET switch is shown.
Example #5 (See Figure 26 for Component Hookup)
Tape Drive Type: Open Reel Encoding: Group Code Recording Density: 6250 BPI, 9042 FCPI Tape Speed: 200 IPS Signal Into Gain Stage
Epp= 0.1 Vp-p@ 900 k.Hz = fH
Epp= 0,-3 Vp-p@ 300 kHz= fl
Considerations for setting Gain Stage EGC, coupling (passive dif-
ferentiatiol) for base-line shift or straight ac) into the Threshold Amplifier, and Threshold setting are similar to the previous examples. For Group-coded data the EGC setting can be electronically locked during the ID burst in conjunction with Threshold setting. (See Figure 34.)
Values for Co and Ro
900 x 10-6· Co= 2Av Ep w
900 x 10-6
900 x 10-6
Av Epp w 5.3 x 0.3 x 27T x 300 x 103
Co°" 300 pF
Assume fc = 3fH
1
1
Ro= wcCo - 40 = 27T x 3 x 900 x 103 x 300 x 10-12 40
Ro= 200 - 40 = 160 Ohms
RT2 Co (200)2 x 300 x 10-12
Lo = - -- =
.
-6µH
2
2
Example #6 (See Figure 26 for Component Hookup) Same as Example #5 except 125 IPS tape speed. Signal Into Gain Stage
Epp= 0.3 ~p-p@ 565 kHz Epp= 0.6 Vp-p@ 188 kHz
Co= 300 pF' Ro= 250 .n
Lo= 12.6µH
FIGURE 33 - MC3468 COMPONENT HOOKUP FOR DUAL MODE PE/NAZI EXAMPLE #4
250 11
Channel A (PE)
E~_5->---· · - - - - - .
~ 0.1 JJF
0-g-t----t
Channel B (NAZI)
1000 pF
680
Vee= +5 VdcVee = -6 Vdc-=-
@ MOTOROLA Semiconductor Products Inc.
5-216
MC3468
FIGURE 34 - APPLICATIONS CIRCUITS
Digital Attenuator for Setting MC3468 Gain Stage Automatically During ID Burst
Vee
Initialize----------------
PE P1 P2 P3P4
P5 P6 P7 PS
Advance Clock------~--------t Cik
lnh
Settling Time Delay
01020304
Down Counter
os oso1 as
AS A7A6 A5
A1 A2A3 A4
MC140SL-6 DAC
lo
Threshold Detect (From MC346S)
">-----Vo= Vee, A 'RR1o4
(To EGC of MC346S Gain Stage)
·
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
Where: Po(TAl =Power Dissipation allowable at a given operating ambient tel'llperature. This must be greater than the sum of the products of the supply
voltages and supply currents at the worst-case oper· ating condition.
TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature
R8JA(Typ) =Typical Thermal Resistance Junction to Ambient
@ MOTOROLA Semiconductor Products Inc.
5-217
XC3480
·
Product Preview
16 PIN 4K DYNAMIC MEMORY CONTROLLER
The memory controller chip is designed to greatly simplify the interface logic required to control the popular 16 pin 4K dynamic NMOS RAM in a microprocessor system such as the MC6800. The controller will generate, on command from the microprocessor, the proper timing signals required to successfully transfer data to the microprocessor from the NMOS memories. The controller, in conjunction with a 32 kHz oscillator, will also generate the necessary signals required to ir)sure that the dynamic memories are refreshed for the retention of data.
· Greatly simplify the MPU - dynamic memory interface. · Reduce package count. · CHIP ENABLE for expansion to larger WORD CAPACITY. · Generate 1 of 4 RAS signals for an optimum 16K memory system. · High input impedance for minimum loading of MPU·bus. · Schottky TTL technology for high performance. · Upward compatible with future 16K X 1 bit memories.
BLOCK DIAGRAM
MEMORY CONTROLLER CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUIT
P SUFFIX PLASTIC PACKAGE
CASE 649
A13 A12
Signals From MPU
32 kHz Ref Grant Ref Request
CE MC R/-W
Address Decode
Refresh Logic
Address Control
Logic
1-----Row Enable ..-------Refresh Enable
MPU Interface
And Memory Control
Logic
1 - - - - - RAS1
t-----R'As2 t----<-RAS3 i - - - - - RA'S'4
Signals To Memory ('l.rray
i-----~ i-----R/W
MOT1T2T3T4T5
Four methods may be employed to generate the required time delay:
1) One shots 2) High frequency counters 3) High frequency shift registers 4) Delay lines
This is advance information and specifica,ti<;>ns are subject to change without notice.
5-218
MC3486
QUAD RS-422/423 LINE RECEIVER
Motorola's Quad RS-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits; Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include:
· Four Independent Receiver Chains
· Three-State Outputs
· High Impedance Output Control Inputs (PIA Compatible)
· Internal Hysteresis - 100 mV (Typ)
· Fast Propagation Times - 25 ns (Typ)
· TTL Compatible
· Single 5 V Supply Voltage
QUAD RS-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS
LSUFFIX CE,AAMIC PACKAGE
CMES>O , , .
·
PSUFFIX PLASTIC f'.ACKAGE
CASE 648
RECEIVER CHAIN BLOCK DIAGRAM
Differential Inputs
Three-State Control In Put
Output
Hvsterests
Level Translator
Level Translator
5-219
PIN CONNECTIONS
Inputs A
O.utput A
3-State Control
A/C
Output
c
Inputs
c
Inputs B
OutPUt B
3-State. 12 Control
B/D
Inputs D
ORDERING INFORMATION
l DEVICE TEMPERATURE RANGEj PACKAGE
MC3486L} MC3486Pl
0 to +70°c Oto +1ooc
Jceramic DIP jPlastic DIP
MC3486
·
ABSOLUTE MAXIMUM RATINGS !Note 1)
Rating Power Supply Voltage Input Common Mode Voltage Input Differential Voltage Three-State. Control Input Voltage Output Sink Current Storage Temperature Operating Junction Temperature
Ceramic Package Plastic Package
Symbol
Vee V1cM
v,VrD
lo Tstg TJ
Value 8.0 ±15 ±15 8.0 50
-65 to +150
+175 +150
Unit Vdc Vdc Vdc Vdc mA oc 0(:
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.
RECOMMENDED OPERATING CONDITIONS
Rating
Symbol
Power Supply Voltage Operating Ambient Temperature Input Common Mode Voltage Range Input Differential Voltage Range
Vee TA VrcR VrDR
Value 4.75 to 5.25
Oto +70 -7.0 to +7.0
6.0
Unit Vdc oc
Vdc Vdc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and
power supply voltage ranges. Typical values are for TA= 25°C, Vee= 5.0 V and Vrc = O V. See Note 1.)
Characteristic Input Voltage - High Logic State
!Three-State Control) Input Voltage - Low Logic State
<Three-State Control)
Symbol
Min
Typ
Max
Unit
V1H
2.0
-
-
v
VrL
-
-
0,8
v
Differential Input Threshold Voltage (-7.0 V.;;; Vic.;;. 7.0 V, V1H(3C) = 2.0 V) (lo= 0.4 mA, VoH;;. 2.7 V) (lo= 8.0, mA, VOL;;. 0.5 V)
VTH(D)
v
-
0.05
0.2
-
-0.05
-0.2
Input Bias Cur.rent (Vee= OV or 5.25) (Other Inputs at OV) (V1 =-10 V) (Vr = -3.0 V) (V1 = +3.0 V) lVr =+1-0V)
Input Balance
(-7.0 v.;;; Vrc.;;; 7.0 v. VrH(3C) = 2.0 v.
See Note 3) (IQ= 0.4 mA, V1D-= 0.4 V) (IQ= 8.0 mA, V1D = 0.4 V)
l1B(D) -
-
-
-
2.7
-
mA
-
-3.25
-
-1.50
-
+1.50
-
+3.25
v
-
-
-
0.5
Output Third State Leakage Current
loz
(Vl(D) = +3.0 v. V1L(3C) = 0.8 v.voL = 0.5 V)
-
v. (Vl(D) = -3.0 v, VrL(3C) = 0.8 VoH = 2.7 Vl
-
µA
-
-40
-
40
Output Short-Circuit Current
(V l(D) = 3.0 V, v;H(~C) = 2.0 v. Vo= 0 V,
ios
-15
-
-100
mA
See Note 2)
Input Current - Low Logic State (Three-State Control)
ltL
-
-
-100
µA
(V1H(3S) = 0.5 V)
Input Current - High Logic State (Three-State Control) (V(H(3S) = 2.7 V) IV1H(3S) = 5.25 Vl
Input Clamp Diode Voltage (Three-State Control)
lrH
-
-
Vic
-
µA
-
20
-
100
-
-1.5
v
(IC(3S) = -10 mA) Power Supply Current
(V1L(3S) =OV)
·cc
-
-
80
mA
@ MOTOROLA Semiconductor Products Inc.
5-220
MC3486
ELECTRICAL CHARACTERISTICS (continued)
SWITCH ING CHARACTERISTICS (Unless otherwise noted, vcc= 5.0 v and TA =2s0 c.l
Characteristic
Symbol
Min
Typ
Max
Unit
Propagation Delay Time - Differential Inputs to Output (Output High to Low) (Output Low to High)
Propagation Delay time - Three-State Control to Output (Output Low to Third State) (Output High to Third State) (Output Third State to High) (Output Third State to Low)
ns
tpHL(D)
-
20
-
tPLH(D)
-
25
-
ns
tPLZ
-
tpHz
-
tpzH
-
tpzL
-
23
-
25
-
18
-
20
-
NOTES:
1. All currents into device pins are shown as positive, out of device pins ar.e negative. All voltages referenced to ground unless otherwise noted.
2. Only one output at a time should be shorted. 3. Refer to EIA RS-422/3 for exact conditions.
FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVE,FORMS Propagation Delay Differential Input to Output
To Scope (Input)
To Scope (Output)
Inputs 51
I-= CL= 15 PF (Includes Probe and Stray Capacitance)
3-State Control
+1.5 v +2.0 v
30
' v1n;.;-F\1.5 v'
-J-;: tpL~(~;-=:,r-~-
tPLH(D)
VoH ---+-,--......_
v VoLOutput 1.3
1.3V
ov-----------
1nput Pulse Characteristics
tTLH = tTHL = 6.0 ns (10%to 90%) = PRR 1,0 MHz, 50% Duty Cycle
FIGURE 2 - PROPAGATION DELAY THREE-STATE CONTROL INPUT TO OUTPUT
To Scope (Input) 3-State
To Scope (Output)
Pulse Generator
+1.5 V for tpHz and tpLz -1.5 v for tpLz and tpzL Input Pulse Characteristics
tTLH = tTHL = 6.0 ns (10% to 90%) = PRR 1.0 MHz, 50% Duty Cycle
I CL= 15 pF
(Includes
-= Probe and Stray
Capacitance)
- 2.0 k
SW1
+5.0 v
All Diodes 1N916 or
Equivalent
ysw2,
tpLz
Input 3. . 0 1.5 V V 1.5 V~ ·
r- o v - --i
SW1 Closed tPLz.. SW2 Closed
... 1.3v--f~·
Output
~V L _
VoL - - -1-;p~; - - -Q V
3.0V~
tnput
. 1.5. V 1.5 V SW1 Open
OV~--- SW2Closed
3.0V
1.5 V SW1 Closed
O V - ± ; - -S-W2 Closed
VoH-
Eout ... 1.3
v
=-=-=--.....:.
-
-
--
0
v
tpzL
VoH
v av
@ MOTOROLA Serniconduc'for Produc'fe Inc. ---------'
·
5-221
XC3487
·
Product Preview
QUAD LINE DRIVER WITH THREE-STATE OUTPUTS
Motorola's Quad RS-422 Driver features four independent driver chains which comply with EIA Standards for the Electrical Characteristics of Balanced Voltage Digital Interface Circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condi, tion. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up aod power down. A summary of MC3487 features include:
· Four Independent Driver Chains · Three-State Outputs · PNP High Impedance Inputs (PIA Compatible) · Power Up/Down Protection · Fast Propagation Times (Typ 15 ns) · TTL Compatible · Single 5 V Supply Voltage · Output Rise and Fall Times Less Than 20 ns · Equivalent to DS 3487
DRIVER BLOCK DIAGRAM
Input
Output Controi
-
-
-
-
-
-
-
-
-
f
Non-Inverting Outputs
Inverting
This is advance information and specifications are subject .to change without notice.
5-222
QUAD RS-422 LINE DRIVER WITH THREE-STATE OUTPUTS
SILICON MONOLITHIC INTEGRATED CIRCUIT
-16 1
LSUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS
Input A 1
Out~uts A{:
A/B Control 4
Outputs B {:
Input B 7 Gnd e
UI Vee 15 Input D
::} Outputs D
12 C/D Control
:~}outputs C
9 Input C
TRUTH TABLE
Input'
Control Input
Non-Inverter Output
Inverter Output
H
H
L
H
x
L
H
L
L
H
z
z
L = Low Logic State H = High Logic State
X = Irrelevant
Z =Third-State (High Impedance)
XC3487
*ABSOLUTE MAXIMUM RATINGS
Rating
Power Supply Voltage Input Voltage Operating Ambient Temperature Range Operating Junction Temperature Range
Ceramic Package Plastic Package Storage Temperature Range
Symbol
Vee V1 TA TJ
Tstg
Value
8.0 5.5 Oto +70
175 150 -65 to +150
u'nit
Vdc Vdc oc oc
oc
*"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.
ELECTRICAL CHARACTERISTICS {Unless otherwise noted specifications apply 4.75 v.;;; Vee.;;; 5.25 V and o0 c.;;; TA~ 10°c.
Typic~I values measured at VCC ; 5.0 V, and TA ; 25°C.)
-
Characteristic Input Voltage - Low Logic State
·input Voltage - High Logic State
Input Current - Low Logic State (V1L; 0.5 VI
Input Current - High Logic State
(V1H = 2.4 V)
(V1H; 5.5 V)
I
Input Clamp Voltage Ilic= -t2 mAI
Output Voltage -.Low Logic State
lloL =48mAl
Output Voltage - High Logic State _lloH; -10mAI lloH =-50mAl
Output Short-Circuit Current (V1H = 2.0 VI 2
Output Leakage Current - Hi-Z State V1L = 0.4 V, V1L(Z) = 0.8 Vl V1H = 2.4 V, V1L(Z) = 0.8 Vl
Output Leakage Current - Power OFF
(VoH = 6.0 v. Vee= 0 VI (VoL = -0.25 v! Vee= 0 V)
Output Offset Voltage 1
Output Differential Voltage 1 Output Differential Voltage Difference 1
Power Supply Current
Symbol
Min
V1L
-
V1H
2.0
l1L
-
l1H
-
-
V1c
-
Vol
-
VoH
2.5
2.0
los
-50
IOL(ZI
-
-
loL(offl
-
-
Vos
-
VT
2.0
VT-VT
-
·cc
-
~ -
-
-
Max
0.8
-
-200
Unit Vdc Vdc µ.A
µ.A
-
-50
-
-50
-
-1.5
v
-
0.5
v
-
-
v
-
-150
mA
µ.A
-
±100
-
±100
µ.A
-
+100
-
-100
-
±0.4
v
-
-
v
-
±0.4
v
-
95
mA
1. See EIA Specification RS-422 for exact test conditions. 2. Only one putput may be shorted at a time.
·
@ MOTOROL_A Semiconduc-tor Produc-ts Inc.
5-223
·
ORDERING INFORMATION
Device
MC3490P MC3494P
Temperature Range
0°C to +70°C 0°C to +70°C
Package
Plastic DIP Plastic DIP
SEVEN-DIGIT GAS-DISCHARGE DISPLAY DRIVERS
Seven channel digit· (anode) drivers, the MC3490 and MC3494 are specifically conceived to be used with high-voltage, gas-discharge numeric displays such as the Burroughs' Panaplex®, Beckman (Sperry) Cherry, or Diacon displays.
The MC3490 version is configured such that a high logic level input causes the driver to turn on while the MC3494 requires a low logic level to turn the drivers on. Both devices are designed to mate with the MC3491 cathode (segment) driver.
. With a low input current requirement of only 300 µA typically, these devices are compatible with popular MOS chips.
Minimum breakdown voltage is specified at 48 V and output drive current capability is typicall'Y 30 mA per channel. · High Breakdown Voltage - 55 V Typical · Low Input Current for MOS Compatibility · Available with Either Active High or Active Low Inputs · Operable from Either Positive or Negative Supply Voltages · Input Clamp Diodes on MC3494 Version for DC Restoration · Internal Pull-down Resistors
TYPICAL APPLICATION WITH CAPACITIVE LEVEL SHIFT TO CATHODE DRIVER
MC3490 MC3494
ANODE (DIGIT) DRIVERS FOR GAS-DISCHARGE DISPLAYS
SILICON MONOLITHIC INTEGRATED CIRCUIT
~
ryf(fffl},
PIN CONNECTIONS MC3490
Output
P SUFFIX
A
PLASTIC Output ,,_.., ,,.,
PACKAGE
B Output ,
CASE 648
c
Output ,
D
Output , E
Output ,
F Output ,
G
VEE '
" Vee
15 Input A
u Input B
1J Input
c
11 Input D
11 Input E
1u Input F
, Input G
MC3494
Output
A Output
B Output ,
c
Output
D Output
E Output "
F Output
G
VEE '
"· Input A
14 Input
B 11 Input
c
12 Input D
11 Input
E 10 Input
F Input
G
*0.1 µF
MOS
i:::::::g~ :;1
I--< H 3
iM lH-,H ...-.0.-..->_-_ --,-f--+------------~----.
Calculator or Clock Circuit
1--<H ~
4 .9
or
9 4
H !-<:>----+----,
!--<HO
4 ~
.._.,..~-~~~~-~~
~-1~-~ 16
·v-~c----+--'
Gas-Discharge Visual Display
Segment Outputs
Digits
l:J2 ,- ',-1-,r (Anodes) [
-'::J '-/ .:lj Ct I ]
100 k
·vcc is tied to the most positive
voltage of the MOS circuit
-180 v
lo
M
c
H
3 4
H H
H
9
H
1 H
11
lprog
Segments (Cathodes)
(8)1 M
..Av_v_v
-·,A
·Av_ _v6
.......;:
1 M
..AA
.....---.
]~
8 ov
·-180 v
®Registered Trademark of Burroughs Corporation
5-224
MC3490, MC3494
MAXIMUM RATINGS (TA =25°C unless otherwise noted)
Rating
Symbol
Negative Supply Voltage (Current Limited to -5 mA)
VEE
Negative Supply Current
IEE
Input Voltage
Vi
Output Current
·10
(Vo= -5 V)
Package Power Dissipation
Po
Derate above 25°c
Junction Temperature
TJ
Operating Ambient Temperature Range
TA
Storage Temperature Range
Tstg
Value -SO
-5.0 Vcc-20,vcc
-50
830 6.7 150 0 to +70 -65 to +150
Unit Vdc
mAdc Vdc mAdc
mW mW/°C
oc oc oc
ELECTRICAL CHARACTERISTICS (TA= 25°C, Vee= Gnd VEE= -50 V, unless otherwise noted.)
MC3490
MC3494
Characteristic
Symbol Min
Typ
Max
Min
Typ
Substrate Breakdown Voltage Pin 16, Vee= Gnd Pin 8 connected to -60 V thru 5 kn
Vs(BR) -48
-55
-
-48
-55
Input Current - On State
V1 = 0.0 V (See Figure 4)
Vi = -7.0 V (See Figure 3)
ll(on) -
-
250
450
-
-
-
-
-
-200
Input Current - Off State V1=-15V V1 = 0.0 v
Input Voltage - Off State Vo= VEE (See Figures 3 and 4)
Input Voltage - On State Vo= Vcc-5.0 V (See Figures 3 and 4)
ll(off) V1(off) V1(on)
-5.0
<-1.0
-
-
-
-
-45
-
-2.0
-
-
-
<1.0
-
-
-5.0
-
Output Voltage - Off State Vi= 0.0 v v, = -7.0 v
Vo(off) -
VEE +5.0
-
VEE
- VEE +5.0 VEE
-
-
-
Output Voltage - On State
lo= -20 mA, v 1= o.o v
lo= -20 mA, v 1= -7.0 v
Vo(on)
-3.5
-2.5
-
-
-
-
-
-
-5.0
-3.5
Max
-
-
-350
-
45 -2.0
-
-
-
-
Unit Vdc
µA
µA
Vdc Vdc Vdc
Vdc
·
SYSTEM DISCUSSION
The MC3491 and MC3490/MC3494 high voltage driver system is designed such that it can be floated and any
point in the system may be tied to circuit ground. In a MOS system, normally either the ground pin on the MC3491 is tied to the most negative MOS voltage; or
the Vee pin on the MC3490/MC3494 is connected to
the most positive MOS voltage. In the electrical characteristics table, this VCC voltage is assumed to be 0.0 volts.
The MC3490/MC3494 provides its own internal voltage reference when a current (-100 µA to -5 mA) is drawn at the. VEE pin (Pin 8). Thii' can be provided by connecting a resistor from Pin 8 to the high voltage reference on the cathode driver or any other voltage more negative than VCC -60 V. This voltage (Pin 8) is approximately -55 V and provides a reference for the pull-down function for each channel.
@ MOTOROLA Semiconductor Products Inc.
5-225
MC3490, MC3494
·
TYPICAL PERFORMANCE CHARACTERISTICS
FIGURE 1 - SUBSTRATE CURRENT versus SUBSTRATE VOLTAGE
-4.0
<e -3.5
;: -3.0 ~
a·~ -2.5
~ -2.0 ~
. ~ -1.5
'I
i
t
~ -1.0 -0.5
z i
vee -10
-20
-30 .-40
-50
-60
-70
-80
VEE. SUBSTRATE VOLTAGE !VOLTS)
FIGURE 2 - PERMISSIBLE OPERATING RANGE
250 ~--~----~-------~---.---1----+--+--t----t---+----t---+.. - -- - - t - - -
-100 .____.._ 0
__._ _ 40
_.__
_ _.__...__~..____.
80
120
Vee. VOLTAGE (VOLTS)
__.._ 160
__.__~
200
FIGURE 3 - OUTPUT VOLTAGE and INPUT CURRENT versus INPUT VOLTAGE
FIGURE 4 - INPUT CURRENT and OUTPUT VOLTAGE versus INPUT VOLTAGE
-70
Ci> -60
~
?. -50
w
"~' -40
0
>
~ -30
0 -20 ci >
-10
vee
-700
700
VO"' VEE
L
.1 1 1
), VO
r2r l
l 1 I J.1....-:'
~
MC3494 -600
600
-500~ ~ 500
>zw- >z-400 ~ ~ 400
11
.,.... -300 ~ ~ 300
~
....!--""
-200::: ::: 200
i:;.;.;.o
-100
100
- LO -2.0 -3.0 -4.0 -5.0 -6.0 -7 .0 -8.0
vee
V1, INPUT VOLTAGE (VOL TS)
Vo"' VEE~
IS .L L l
- ± 11
N
I\
~
Vo
~
rt-~ ~
-1.0 -2.0 -3.0 -4.0 -5.0 -6.0
V1, INPUT VOLTAGE (VOLTS).
Me3490
-70
-60
~ -50 ~
w
-40 "~'
-30 ~
-20 25 ~
-10
-7.0 -8.0
MC3494 Vee
REPRESENTATIVE CIRCUIT SCHEMATIC (1/7 Shown)
Vee
02
01'
03
02
04
03
05
04
06
05
07
06
oa·
07
09
R4
R3
MC3490 Input
Output
@ MOTOROLA Semiconduct.or Products /he. ________,
5-226
MC3490, MC3494
12-DIGIT Mc:MOS GAS DISCHARGE DISPLAY
When the number of digits for a gas discharge display system is greater than the number of segment drivers, it is generally more economical to level translate down to the cathode segments than to translate up to the digit anodes. An example of this technique is shown in the 12 digit display system where the display anodes and cathodes are referenced to ground and -180 V respectively.
The positive' logic CMOS address circuits are powered
by -10 V (VDD = 0, Vss = -10 VI with the MC14558
decoder outputs capacitor-coupled to the MC3491 Segment ' Drivers and the scan circuit directly-coupled to the MC3490 Anode Drivers. Thus, only eight· capacitors (seven segments, otle decimal point) are required as com-
pared to 12 capacitors, if the strobed digit drivers were ac coupled.
The MC3491 has input clamp diodes allowing for de restoration of the segment address pulse. This high voltage driver (80 VI also features programmable segment current by the selection of a single external resistor.
The MC3490 Anode Drivers are selected by the positive going output of the digit scan circuit. (If the scan circuit outputs were negative going, the low logic level input MC3494 Anode Driver should be used.) The internal zener diode string of the MC3490 references the off
drivers (and display anodes) to -50 .V without the need of pull-down resistors.
Digit scanning for this example is derived from two cascaded MC 14022 Octal Counter/Drivers. The 12 sequenced output pulses are achieved by resetting the counters with the second counter 07 output. In addition to driving the two MC3490s, the counter output should also control the system multiplexer (not shown) to properly synchronize the entire display system.
The. MC14558 BCD-to-Seven Segment Decoder has an Enable input which readily provides for display cathode blanking. For the illustrated display, the cathode drivers should be turned off prior to anode switching and maintained off for some period after the next anode is strobed.
This cathode blanking overlap is derived by trailing edge time delaying the Gate 1 output of the non-symmetric 4 kHz scan oscillator with the integrated network and
inverter Gate 3. The high voltage power supply rise and fall times should
be greater than the charge time of the coupling capacitors to prevent large tran.sients from possible degrading the
interface electronics. For this example, power supply rise and fall time of
50 ms minimum will suffice.
FIGURE 5 - 12-DIGIT McMOS GAS. DISCHARGE DISPLAY SYSTEM
Reset
.-t-1---t--t--t--t---+---+-+-+-+-+_-_ +-_ ---_...---OTo _.__~System Multiplexer
·
4 kHz Scan Oscillator Cathode Blanking
5 6
7 8 9 10 11 12
12 Digit Gas Discharge Display Burroughs 8R13251
56 k
(8)390 k
56 k
12345678 Outputs
MC3491
390 k
P1
330 k
Current Programming
1N5267
75 v
1/2W
Inputs
OP
7 8
P10
-1BOV
-10V
(8)0.05 µF 200V,
5-227
MC3490, MC3494
·
3-1/2 DIGIT VOLTMETER
This specific application provides a 3·1/2 digit DVM utilizing the MC1505 dual ramp subsystem and CMOS MC14435 digital subsystem. Interfacing· between ·low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the 3· 1/2 Digit DVM .uses directly coupled high voltage (200 V) transistors to translate upwa;-d to the MC3494 Anode Drivers. Three of the transistors comprising the MPQ7042.high voltage quad transistor are used for this function. These transistors, connected in a common-base, constant-current configuration, are turned on l>Y the negative going digit select output pulses of the MC14435. The current of approximately 330 µA is compatible with 200 µA typical input current of the MC3494 and the sink current capability of the MCl 4435.
The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 Segment Driver. Cathode blanking is accomplished by taking the clock signal from Pin 4 of the MC14435 (approximately 50% duty cycle) and tying it to the Enable input of the MC14458. The display segment current is increased accord· ingly to 1.1 mA (manufacturers maximum specified current
equals 1.25 mA) for this relatively large cathode blanking period.
The positive and negative polarity signs are direct driven b°y the fourth transistor of the MPQ7043 and MPS-A42 transistor, Q2, respectively. Their de Sf!gment currents are scaled to produce the same brightness as the multiplexed digits.
The 1/2 digit segments are driven by transistor Ql. Its emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Over· range Oscillator.
When an overrange situation occurs, the oscillator is enabled, thus causing the display to flash at the oscillator rate (approximately 8 Hz). This is accomplished by blank· ing the 1/2 digit through 01 and the multiplexed digits through diode D1 to the decoder enable input.
See the MC1405 and MC14435 data sheets for more details of DVM system.
FIGURE 6 - 3-% DIGIT DIGITAL VOLTMETER
Buffer, Filter
MP07043
-..---------1 +12 v
,-----~
I
I
------1HI---
~ · MC3494
P Anode u Drivers
t
Outputs
+180·V 2.2 k 0.01 µF
Beckman SP-355 or SP351
r - - - - ' - - - ' - - - . - - - ' - - - - - ' ' - - a - n . . , dSP-352
1 - - - - - - - - - - - - - - 1 4 Inputs
Outputs
MC3491 Segment Driven
P10 Substrate
1N5267
75 v
l>W
5-228
MC3490, MC3494
12-HOUR CLOCK WITH GAS DISCHARGE DISPLAYS
-The MC3491 cathode driver and MC3494 anode
driver, greatly simplify the interfacing of a clock chip (MOSTEK MKS0250) to a gas discharge clock display (Burroughs C060733-CM).
The MK50250 has a 6 digit clock display with multiplexed 7 segment outputs. The MC3491 cathode drivers switch each display cathode between ground (on condition) and +75 Volts (off condition) with current limiting for the display provided via the current programming pin on the MC3491. The +75 Volt reference is obtained from a 75-Volt zener diode. Zl. Rl. and a 50-Volt zener diode internal to the MC3494 anode driver. ·
The programming curre.nt is reduced during the time when the "two seconds" indicator digits are ON, to reduce the current through these smaller digits of the display. Four diodes attached to each of the "hours" and "min· utes" digits, provide a voltage of +1.80 Volts across the 680 kn resistor. During the "seconds" digits display time, the voltage is reduced to +130 Volts, thus reducing the programming current.
The anodes for each of the six digits are switched between the +180 Volt positive supply and +130 Volts via the MC3494 anode privers. Inter-digit blanking is
provided in the anode circuits. Level translation from the clock chip output to the input to the MC3494 uses two MPQ7042 quad high voltage transistor packages oper· ating in an emitter follower current source mode. Each current source turns on one of the MC3494 drivers by sinking 300 µA to ground for the proper "on" digit.
The AM/PM clock output is in the hiqp state when PM is indicated and has a 85'/b duty cycle corresponding to each anode on time. A MC14001 Quad NOR Gate decodes this output to turn on the appropriate AM or PM indicator during the 06 digit. These Gates control the AM/PM display indicators with the remaining MP07042 high voltage transistors which were not used in anode selection.
The colon separating hours and minutes is switched on during the units of hours digit on time. The colon cathodes are switched from +75 Volts to ground via Tl during the 05 digit time while the anodes are switched between +180 and +130 Volts.·
Further information concerning operation or technical specifications on the MOSTEK clock chip, MK50250, and the Burroughs clock display, C060733-CM is obtainable from the manufacturers.
FIGURE 7 - 12 HOUR CLOCK WITH GAS DISCHARGE DISPLAY SYSTEM
51 k 51 k _i;1 k 51 k
MP07042
~
6
7
2
1
9
8
13
14
5 31012
33 k
33 k
-=-
51 k 51. k
*
i2 r j6MPQ117204271
5
3 1
33I}3k
J.
f---0 Inputs
Gnd
+180 v
MC3494
...
Outputs Vee
\
~
06 05 04030201 MK50250
1/4 MC14001
~ ~
~
_ct h
Anodes 8 6 574 3 2 1
~on
R1 2 7k
AM/PM~
!8 ~=BB BB AM
PM
CD 60733-CM
680 k
A M pM A 8 c 0E FG
coionl-
A BC 0 EF G
~
~$ 36 kk k
_!!!0 k
~ 51 k
*
RJ - ......
·p;:_;;
-
~ ._
,_. lOO k
4 2
..__
1/4 MPQ7042
-=-
A Bc DE F G
G
Outputs
...... .,,
390 k
+75 v
*Z1
1-=l;:-
~
F ~
Ep
ou
MC3491
ct s
B
A Current
r -~~k
91 k
91 k ~
......__
..!:- Program
D~~ From MK50250
01
-
·
5-229
MC3491 MC3492
·
EIGHT-SEGMENT VISUAL DISPLAY DRIVERS
The MC3491 and MC3492 are eight-segment cathode drivers for use with gas-discharge displays, such as the Burroughs' Panaplex®, Beckman, Cherry or Diacori types. Both devices are directly compat· ible with MOS logic outputs due to their low 300 µA input current requirement.
All eight driver output currents are simultaneously programmable by selection of a single external resistor. As programmed, all eight currents match to within typically 1% of each other.
Both devices provide de restoration. The units are specified for a· minimum breakdown voltage of 80 V.
The MC3492 device is mad~ for larger and higher intensity dis· plays requiring higher segment current. · High Breakdown Voltage -· 80 V Min'
· Drives Seve~ Cathode Segments plus Decimal Point
· All Currents Simultaneously Programmable with One Resistor · MC3491 is Pin-for-Pin and Functionally _Equivalent to DM8889 · Output Current/Programming Current Ratio -
Typically 4.5:1 for MC3491 9:1 for MC3492
· Companion with MC3490 and MC3494 Anode Drivers · MC3492 Provides Increased Output Current for High
Intensity Displays
*Higher Voltage Selection Available
FIGURE 1 - TYPICAL CALCULATOR APPLICATION WITH CAPACITIVE LEVEL SHIFT AND ANODE DRIVER
SEGMENT DRIVERS FOR GAS-DISCHARGE DISPLAYS
SILICON MONOLITHIC INTEGRATED CIRCUIT
-
P SUFFIX PLASTIC PACKAGE
CASE 701
PIN CONNECTIONS
Programming Current Input 1 2 Input 2, 3 Input 3 Input 4 5 Input 5 6 Input 6 Input 7 8 Input 8
1s Output 1
" !Output 2 16 Output 3 15 1output 4 14 Output 5 13 Output 6 12 Output 7 11 Output 8 10 Substrate (Gnd)
ORDERING INFORMATION
DEVICE MC3491P MC3492P
TEMPERATURE RANGE
o to +70°c o to +10°c
PACKAGE Plastic DIP Plastic DIP
vDo1
Vss1
is Anode
o'utputs
*0.1 µF
MOS Clock or Calculator
Chip
~ 1----<H
~
!----< H MC3490
~H or
H
1---<H 1---<H
MC3494
~
~H
H>-
~egment
Outputs
*:;; 0.1 µF
250 v
i',.,
·Vee is tied to the . most positive levels
of the MOS circuit.
·<}_16
'Vee Digits
Gas-Discharge V isua;l 'Display
~ 100 k
'**-
,- 'Tl (Anodes)
2 -' [ I
-180 v
[
::J '-/ ::1 Ci I J
lo
Segments (Cathodes)
8-390 k
,--4
~
>-
0-
H
H
MC3491 H
or
H
MC3492
..AAA ."A/y-
..~
~VAVAV
·_v_
-~~/\
]~ 8 OV
H
;/y
~1
lprog
1 M
..A
·-180 v
®Registered Trademark of Burroughs Corporation
5-230
MC3491, MC3492
MAXIMUM RATINGS (Unless otherwise noted, TA= 25°c)
Rating
Output OFF Voltage (Current Limited to 0.5 mA)
Output ON Voltage (Current Limtied to 2.0 mA)
Input Voltage
Programming Current
Junction Temperature Operating Ambient Temperature Range St'orage Temperature Range
MC3491 MC3492
Symbol Vo(offl
Vo(on)
V1 lprog
TJ TA Tstg
Value 95
50
20
400 2500 150 0 to 70 -65 to +150
Unit
v v
v
µA
OC OC OC
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Vee..;;; 80 V, TA= 25°C, Pin 10 = Gnd. All voltages with respect to Gnd.l
MC3491
MC3492
Characteristic
Symbol ·Min
Typ
Max
Min
Typ
Max
Unit
Input Current (V1H = 7.0 V)
Input Clamp Voltage
0 1c = -1.0 mA)
Input OFF Voltage
Input ON Voltage
Output OFF Current (V1L = 0 V, Vo= Vee)
l1H
200
300
400
200
300
400
µ.A
V1c
-
-
-1.0
-
-
-1.0
v
V1L
1.0
1.5
-
1.0
1.5
-
v
V1H
-
2.4
3.5
-
2.4
3.5
v
lo(off)
-
-
5.0
-
-
5.0
µ.A
Output ON Current Oprog = 100 µ.A) Oprog = 350 µ.A) (lprog = 300 µ.A) (lprog = 500 µ.A)
Output Current Matching (All eight outputs)
Output OFF Voltage
llprog = 100 µ.A, AL= 1.0 Mfl., V1L = 0 VI . Oprog = 300 µ.A, AL= 1.0 Mn, V1L = 0 V)
Output ON Voltage (lprog = 100 µ.A, AL= 1.0 Mfl., VrH =, 7.0 V)
Output Saturation Voltage Oprog = 300µ.A, AL= 1.0 Mn, V1H = 7.0 V)
Output Voltage Compliance Range Oprog = 10.0 µA, IO(on) = 450 µ.A, V1H = 7.0 V) (See Figure 3)
llprog = 300 µ.A, lo(on) = 2.8 mA, V 1H = 7 .o V)
(See Figure 3)
IO(or:i)
400
450
500
-
1450 1650 1850
-
µA
-
-
-
-
-
-
-
1.3
1.6
1.9
mA
-
-
-
3.75
4.5
5.25
~10
-
.;;1
,,;; 10
-
.;;1
..;;; 10
%
Vo(off)
v
Vcc-5.o Vee
-
-
-
-
-
-
-
Vcc-5.o Vee
-
Vo(on)
-
3.0
5.0
-
-
-
v
Vo(sat)
-
-
-
-
3.0
5.0
v
VOA(on)
v
5.0
-
50
-
-
-
-
-
-
5.0
-
50
-
·
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequentlY. complete information sufficient for construction purposes- is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the serfliconductor devices described any license under the patent rights of Motorola Inc. or others.
@ MOTOROLA Bemlconduc'for Products Inc.
5-231
MC3491, MC3492
·
2.0
1.75
< 1.50
i.§ 1.25
B 1.0
I-
~ 0.75
1::>
0 · 0.50 !?
0.25
L
TYPICAL PERFORMANCE CHARACTERISTICS
FIGURE 2 - OUTPUT CURRENT versus PROGRAMMING CURRENT (TA= 25°C)
MC3491
~ L L ~ ~
/ /
100
200
300
400
lprog. PROGRAMMING CURRENT (µA)
MC3492
6.0 ..----,---.,-----,.----.-----r--.-;,~--,,----,
r
~
l----+--+-----+j----L_---+..-7-'+ -· ----1--1---
~B 3.o
g
v _y--+-~,,c.--+--+----+--+----1
91.5~
0 L_
100 200 300 400 500 600 700 800
lprog. PROGRAMMING CURRENT (µA)
700
600
g~ 500 ]
-B 400 I
J I-
~ 300 !:;
052 200
100
0 l7
0
10
FIGURE 3 - OUTPUT CURRENT versus OUTPUT VOLTAGE
MC3491
IV1H=7.0V,TA=25oC)
7.0
MC3492
Rang~ of O~tput Voltage Compliance
_..
lp1g =loo if_,
20
30
40
50
Vo. OUTPUT VOLTAGE (VOLTS)
60
70
6.0
~ 5.0
f ~
- 4.0
B
I-
~ 3.0 ~
0
9 2.0
1.0 j
I 0
0
10
Range of Output Voltage Compliance
-
lp~og = 450 µA~
20
30
40
50
Vo, OUTPUT VOLTAGE (VOLTS)
60
70
FIGURE 4 - TYPICAL INPUT CURRENT AND OUTPUT VOLTAGE versus INPUT VOLTAGE
soo.---l,-,----,----.--M-C-34°1-1A_N_o_J'c-3-49-2-.--.---,so
v~i5 7001---~--+---+--+---+---+----!---170
600 l-------+---+--+---+----tv---..c;.--+----160
! 5001----+---+---+--+---+--,,L"""--t----+----150 2~!:.
y ~ !Z
I
~ 4001---~--+---+--+vl
40 5>
! ~ B-
TA= 25°c 3001------+---+-.,..L'-+---+----1----+----;30
~
200 t----+t---_L_'.j-+v-,,.L"-+v--+----+----+----1r--.....,20
o100._1._,-,,,-.r-::;-._.H..1K.~~"·~":.,:_.,t:...:~.:-.-:+i'-:-.::.-:-.+:.-t-:-.:+.-:-.":1v:-.::.-0:-.:r.-t:-.:-.;:.r:!-:-.:-.1:.1~o0
0
2.0 4.0 6.0
8.0 10
12
14
16
V1,INPUTVOLTAGE(VOLTS) ,
@ MOTOROLA Semiconducf:o;Produc'fs Inc.
5-232
MC3491, MC3492
TYPICAL PERFORMANCE CHARACTERISTICS
FIGURE 5 - TYPICAL PROGRAMMING CURRENT versus VOLTAGE ON PROGRAMMING PIN (TA= 25°C)
MC3491
:;(
i..3 ::t--~-+-~---J~~-+-~-+~~+-~--+~t--+--~-;
~ 400t--~-+-~---J~~-+-~-+~~+-~--+1:7"-7J~+--~--t
~
.A'
~ 300t--~-+-~---J~~-+-~-+~~+j::7'-7"'.L'.'.:_J~-t--~----t-~--j
~ 2001--~-+-~---J~~-+-~-+~~"---·-+----~--+~~+--~--t
_[
1001--~-+-~---J~~~~~~-+----+~~-t--~----t-~--j
0'------'------"'~1------'-~.l..-----'-~-'--_._---'
0
1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0
RESULTING VOLTAGE ON PROGRJ\MMING PIN
2.0
<
-5
:>z- 1.5
cc cc :::> u
"':z
~ 1.0 ::;:
i 0.5
-~
0 0
MC3492
-
~"1
/
~
~
~
1
1.0
2.0
3.0
4.0
5.0
6.0
7.0 8.0
RESULTING VOLTAGE ON PROGRAMMING PIN
THERMAL INFORMATION
The maximum power consumption an integrated circuit
can tolerate at a given operating ambient temperature, can
be found from the equation;
-
TJ(max) -TA PD(TA) = ReJA{Typ)
Where: PD(TAl = Power Dissipation allowable at a given . operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply ·currents at the. worst case operating condition.
TJ(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ReJA(Typ) = Typical Thermal Resistance Junction to Ambient
REPRESENTATIVE CIRCUIT SCHEMATIC
Programming Current
01
,--""'-----,
I
I
I Cell repeated
8 times
Output
02
03 R2
R1
L---+--+-------+--r-o Substrate
L=_
_ _ _J
·
·@ ~-----.,..-
MOTOROLA Semiconductor Products Inc.
5-233
MC3491, MC3492
·
12-DIGIT McMOS GAS DISCHARGE DISPLAY
When the number of digits for a gas discharge display system is greater than the number of segment drivers, it is generally more economical to level translate down to the cathode segments than to translate up to the digit anodes. An example of this technique is shown in the 12 digit display system where the display anodes and cathodes are referenced to ground and -'180 V respectively.
The positive logic CMOS address circuits are powered
by -10 V (VDD = 0, Vss = -10 VI with the MC14558
decoder outputs capacitor-coupled to the MC3491 Segment Drivers and the scan circuit directly-coupled to the MC3490P Anode Drivers. Thus, only eight capacitors (seven segments, one decimal point) are required as com-
pared to 12 capacitors, if the strobed digit drivers were ac coupled.
The MC3491 and MC3492 have input clamp diodes allowing for de restoration of the segment address pulse. These high voltage drivers (80 V) also feature programma· ble segment current by the selection of a single external resistor.
The MC3490P Anode Drivers are selected by the positive going output of the digit scan circuit. (If the scan circuit outputs were negative going, the low logic level input MC3494P Anode Driver should be used.) The internal
zener diode string of the MC3490P references the off drivers (and display anodes) to -50 V without the need of pull-down resistors.
Digit scanning for this example is derived from two cascaded MC14022 Octal Counter/Drivers. The 12 sequenced output pulses are achieved by resetting the counters with the second counter 07 output. In addition to driving the two MC3490P's, the counter output should also control the system multiplexer (not shown) to properly synchroniz,e the entire display system.
The MC14558 BCD-to-Seven Segment Decoder has an Enable input which readily provides for display cathode blanking. For the illustrated display, the cathode drivers should be turned off prior to anode switching and main· tained off for some period after the next anode is strobed.
This cathode blanking overlap is derived by trailing edge time delaying the Gate 1 output of the non-symmetric 4 kHz scan oscillator with the integrated network and
inverter Gate 3. The high voltage power supply rise and fall times should
be greater than the charge time of the coupling capacitors to prevent large transients from possible degrading the interface electronics.
For this example, power supply rise and fall time of 50 ms minimum will suffice.
FIGURE 6 -12-DIGIT McMOS GAS DISCHARGE DISPLAY SYSTEM
Reset MC14022
4 kHz Scan Oscillator Cathode Blanking
345 67 Inputs
MC3490P Outputs
34 5 6 7
P16 0.001 µF
PB
7 8 9 10 11 12 12 Digit Gas Discharge Display
Burroughs 8R13251 DP a b c d e f g
tBl 390 k
56 k
56 k
390 k
1N5267
12345678 Outµuts
MC3491 or MC3492
P1
330 k
Current Programming
75 v
1/2W
Inputs
DP
P10
180 v
·10V
18) 0.05 µF
200 v
5-234
MC3491, MC3492
3-1/2 DIGIT VOLTMETER
This specific application provides a 3-1 /2 digit DVM utilizing the MCl 505 dual ramp subsystem and CMOS MC14435. digital subsystem. Interfacing· between low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the 3-1 /2 Digit DVM uses directly coupled high voltage (200 V) transistors to translate upw;;.d to the MC3494 Anode Drivers( 1). Three of the transistors com· prising the MP07042 high voltage quad transistor are used for this function. These transistors, connected in a com· mon-base, constant-current configuration, are turned on by the negative going digit select output pulses of the MC14435. The current of approximately 330 µA is compatible with 200 µA typical input current of the MC3494 and the sink current capability of the MC14435.
The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 or MC3492 Segment Drivers. Cathode blanking is accomplished by taking the clock signal from Pin 4' of the MC14435 (approximately 50% duty cycle) and tying it to the Enable input of the MC14458. The display segment current is increased accordingly to 1.1 mA (manufacturers
maximum specified current equals 1.25 mA).for this relatively large cathode blanking period;
Th~ positive and negative polarity signs are direct driven by the fourth transistor of the MP07043 and MPS-A42 transistor, 02, respectively. Their de segment currents are scaled to produce the same brightness as the multiplexed digits. , The 1/2 digit segments are driven by transistor 01. Its emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Over· range Oscillator.
When an overrange situation occurs, the oscillator is enabled, thus causing the rlisplay to flash at the oscillator rate (approximately 8 Hz). This is accomplished by blank· ing the 1/2 digit through 01 and the multiplexed digits through diode Dl to the decoder enable input.
See the MC1405 and MC14435 data sheets for more details of DVM system.
FIGURE 7 - 3-% DIGIT DIGITAL VOLTMETER
Buffer, Filter
Po1ar1ty &
Overrange Detector
MPQ7043
:1 ° MC3494
Comp. Voo 6s11'""NV-t;----;-:;,.-1-_ _ _ _ _ _ __J 2 ~ -~,7~e~:
AC MC14435
3y, Digit
1
~~RAIO Log1~-S2t-"'l\/'v-++--:--::....!---------13 Outputs
Subsystem
C2
OS3
ao 01 0203 ~·,/\A,.-+----'
0.01 µF
B~c:kman SP 355 or SP351
,_..-..JL----.L--,---'----..J'---<:tr1-,<lSP 352
·
Outpuu.
MC3491 or MC3492 Segment Drivers
P10 Substrate
1N5267
75 v :,w
@ MOTOROLA Semiconductor Produc'fs Inc.
5-235
MC3491, MC3492
·
12-HOUR CLOCK WITH GAS DISCHARGE DISPLAYS
The MC3491 or MC3492 cathode drivers and MC3494P anode driver, greatly simplify the interfacing of a clock chip (MOSTEK MK50250) to a gas discharge clock dis· play (Burroughs CD60733·CM).
TheMK50250has a 6 digit clock display with multiplexed 7 segment outputs. The MC3491 cathode drivers switch each display cathode between ground (on condition) and +75 Volts (off condition) with current limiting for the display provided via the current programming pin on the MC3491 or MC3492. The +75 Volt reference is obtained from a 75-Volt zener diode, Z1, Rt, and a 50-Volt zener diode internal to the MC3494P anode driver.
The programming current is reduced during the time when the "two seconds" indicator digits are ON, to reduce the current through_ these smaller ·digits of the display. Four diodes attached to each of the "hours" and "minutes" digits.· provide a voltage of +180 Volts across the 680 kH resistor. During the "seconds" digits display time, the voltage is reduced to +130 Volts, thus reducing the programmi·ng current.
The anodes for each of the six dig.its are switched between the +180 Volt positive supply and +130 Volts via the MC3494P anode drivers. Inter-digit bl_anking is·
provided in the anode circuits. Level translation from the clock chip output to the input to the MC3494P uses two MP07042 quad high voltage transistor packages operating in art emitter follower current source mode. Each current source turns on one of the MC3494P drivers by sinking 300 µA to ground for the proper "on" digit.
The AM/PM clock output is in the high state when PM is indicated and has a 85% duty cycle corresponding to each anode on time. A MC14001 Quad NOR Gate decodes this output to turn on the appropriate AM or PM indiq1tor during the 06 digit. These Gates control the AM/PM display indicators with the remaining MPQ7042 high voltage transistors which were not used in anode selection.
The colon separating hours and minutes is switched on during the units of hours digit on time. The colon cathodes are switched from +75 Volts to ground via Tl during the 05 digit time wl:iile the anodes are switcped between +180 and +130 Volts.
Further information concerning operation or technical specifications on the MOST EK clock chip, M K50250, and the Burroughs clock display. CD60733-CM is obtainable from the manufacturers.
FIGURE 8 - 12-HOUR CLOCK WITH GAS DISCHARGE DISPLAY SYSTEM
51k 51 k 51 k 51 k
,M-P-07-0-42,
6
7
2
1
9
8
13
14
5 31012
33 k
33 k
-=-
5J,k 51 k
-:;:-
11 J6 112
J r MPQ7042
r l2 s
3 1
33kt }3k
Inputs MC3494
.r-o · Gnd
180,V
Outputs Vee
....
...~ ~ .
06 05 D403D2bT MK50250
114 MC14001
1,..:.i.:' r ,..,
AM/PMf--
=a BBR Anodes 8 6 5 7 4 3 2 1
AM ~a ~08
PM
lhM= b =
A Bc D e F G
~
680 k
c A M p M A 8
De F G
~" 36 36 kk k 4
/
.
51 k
*
~ - .....
' - +. _-
100 k
42
~
MPQ7042
-=-
AB cD E F G
G
Outputs
F I
n
e p
MC3491
DU
c !
or MC3492
B
Colon
1--
CD 60733 CM
Colon t-
390 k
RT 27 k
·v ·v
·v 390';;
75 v
t Z1
-:;:-
~
r-'~~k
91 k
91 k
A Current Program
·*
t-
D;~ From MK50250
·
01
-
@ MOTOROL;. Selfticonduc'tor Produc't· Inc.
5-236
XC6875
Product Preview
M6800 CLOCK GENERATOR
Intended to supply the non-overlapping </>1 and </>2 clock signals required by the 111icroprocessor. Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion.
Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are required. The Plastic-packaged version lists for $3.49 at 100-up.
MPU CLOCK GENERATOR
· 4xfo · 2xfo
A free running oscillator at four times
(two times) the MPU's clock rate useful
for a system sync signal.
,
· OMA/REF REG
An asynchronous input used to freeze the MPU clocks in the </>1 high, </>'2. low state for dynamic memory refresh or cycle steal OMA (Direct Memory Access).
· OMA/REF GRANT - , A synchronous output used to synchro-
nize the refresh or OMA operation to the
M-PU.
-
· MEMORY READY -
An asynchronous inpu~ used to freeze the MPU clocks in the </>1 low, </>2 high state for slow memory interface.
· MPU</>1 MPU</>2
· BUS</>2
· MEMORY CLOCK -
Capable of driving the </>1 and ¢2 inputs on two MC6800's.
An output nominally in phase with MPU </>2 having .MC8T26 type drive capability which follows MPU </>2.
An output nominally in phase with MPU </>2 having MC8T26 type drive capability which. free runs during a re·fresh request cycle.
· SYSTEM RESET
A- Schmidt. trigger input for attaching a
capac.itor to ground (power on reset) and/
or a switch to ground (reset switch).
Internal resistor to Vee.
· RESET · X1, X2
~n output to the MPU and 1/0 devices.
Provision to attach a series resonant crystal or RC network.
· EXT IN
Allows driving by an external TTL signal to synchronize the MPU to an external · system.
This is advance information and specifications are subject to change without notice.
5-237
MC6800 TWO PHASE CLOCK GENERATOR/DRIVER
SCHOTTKY MONOLITHIC INTEGRATED CIRCUITS
PSUFFIX PLASTIC PACKAGE
CASE 648
L SUFFIX CERAMIC PACKAGE
CASE 620
·
PIN CONNECTIONS
X1
X2
Ext In
4 x fo
2 x to Memory
Ready Bus <fJ2
Ground
Vee
MPµ<(J1 Reset MPU</>2 System Reset OMA/Ref Grant OMA/Ref Req Memory Clock
·
QUAD THREE-STATE BUS TRANSCEIVER
This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.
The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices: The maximum input current of 200 'µ.A at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.
The MC8T26A is identical to the NE8T26A and it operates from a single +5 V supply.
· High Impedance Inputs · Single Power Supply · High Speed Schottky Techno.logy · Three-State Drivers and Receivers · Compatible Wtih M6800 Family Microprocessor
MICROPROCESSOR BUS EXTENDER APPLICATION (Clock)
GND +5 V tf>1 t/>2
MC6880A MC8T26A
This device may be ordered under either of the above type numbers.
QUAD THREE-STATE BUS TRANSCEIVER
...
CERALMSIUCFPFAICXKAGE CASE 620
16 1
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS - MC6880A MC8T26A
Receiver Output 2
1
Driver Input 4
1 Receiver
Output 5 2
Driver Input 7
2 Gnd
Vee
Driver Enable Input
Bus4
Driver Input
4 Receiver Output
3
Bus3
ORDERING INFORMATION
Device
Temperature
Alternate
Range
Package
MC8T26AL MC6880AL 0 to +75°C Ceramic DIP MC8T26AP MC6880AP Oto +75°C Plastic DIP
5-238
MC6880A/MC8T26A
MAXIMUM RATINGS ITA = 2s<>c unless otherwise noted.)
Rating
Symbol
Value
Power Supply Voltage
Vee
8.0
Input Voltage Power Dissipation@ TA= 2scrc
Derate above 2s<>c
V1
5.5
Po
1000
6.7
Operating Ambient Temperature Range
TA
0 to +75
Storage Temperature Range
Tstg
-65 to+150
Unit
Vdc Vdc mW mW/°C oc uc
ELECTRICAL CHARACTERISTICS (Unless Otherwise Noted Specifications Apply
Characteristic
Symbol
Input Current - Low Logic State (~Enable Input, V1L(RE) = 0.4 V) (Driver Enable Input, VIL(DE) = 0.4 V)
(Driver Input, V1L(D) = 0.4 V)
(Bus (Received Input, Vt L(B) = 0.4 V)
11ufil) l1L(DE) l1L(D) I 1L(B)
Input Disabled Current - Low Logic State (Driver Input, V1L(D) = 0.4 V)
l1L(D) DIS
o 4.75 V < Vee.; 5.25 v and 0 e..; TA< 75°Cl
Min
Typ
Max
Unit
-
-
-200
µA
-
-
-200
-
-
-200
-
-
-200
-
-
-25
µA
Input Current-High Logic State (Receiver Enablt'! Input, Vt HIRE)= 5.25 V) !Driver Enable Input, V1H(DE)·= 5.25 V) (Driver Input, Vi H(D) = 5.25 V)
Input Voltage-. Low Logic State
(ReCei'Ver Enable Input)
(Driver Enable Input (Driver Input)
<Receiver Input)
Input Voltage - High Logic State (Receiver Enable Input) (Driver Enable Input) (Driver Input) (Receiver Input)
l1H(REJ
-
l1H(DE)
-
11H(D)
-
V1L(RE)
-
V1L(DE)
-
V1L(D)
-
VIL(B)
-
-
25
µA
-
25
-
25
-
0.85
v
-
0.85
-
0.85
-
0.85
V1H(REJ
2.0
-
-
v
VIH(DE)
2.0
-
-
V1H(D)
2.0
-
-
VtH(B)
2.0
-
-
Output Vol_tage - Low Logic State (Bus Driver) Output, IOL(B) = 48 mA) (Receiver Ou~put, loL(Rl = 20 mA)
Output Voltage - High Logic State (Bus (Driver) Output, IQH(B) = -10 mA) (Receiver Output, loH(RI = -2.0 mAI (Receiver Output, toH(R) = -100µA, Vee= 5.0 VI
VQL(B)
-
VQL(R)
-
-
0.5
v
-
0.5
VQH(B)
2.4
3.1
-
v
VoH(R)
2.4
3.1
-
3.5
-
-
Output Disabled Leakage Current - High Logic State (Bus Driver) Output, VoH(B) = 2.4 VI (Receiver Output, VoH(R) = 2.4 VI
IOHL(B)
-
IOHL(R)
-
-
100
µA
-
100
Output Disabled Leakage Current - Low Logic State (Bus Output, VoL(B) = 0.5 VI (Receiver Output, VOL(R) = 0.5 V)
IOLL(B)
-
IOLL(R)
-
-
-100
µA
-
-100
Input Clamp Voltage (Driver Enable Input llD(DE) = -12 mAI (Receiver Enable Input l1C(REI = +12 mA) (Driver Input l1C(D) = -12 mAI
Output Short-Circuit Current, Vee = 5.25 V-fTf (Bus (Driver) Output) (Receiver Output)
Power Supply Current <Vee= 5.25 V)
V1C(DE)
-
V1C(RE)
-
V1c(D)
-
toslB)
-50
IQS(RI
-30
'cc
-
-
-1.0
v
-
-1.0
-
-1.0
-
-150
mA
-
-75
-
87
mA
( 1) Only one output may be short-circuited at a time.
@ ------~ MOTOROLA Se,.,;conductor Products Inc.
·
5-239
MC6880A/MC8T26A
·
SWITCHING CHARACTERISTICS (Unless otherwise noted, specifications apply at TA= 25°e and Vee= 5.0 V)
Characteristic
Symbol
Figure
Min
Max
Propagation Delay Time from Receiver (Busl Input.to
tPLH(RI
1
-
14
High Logic State Receiver Output
Propagation Delay Time from Receiver (Busl Input to
tPHL(R)
1
-
14
Low Logic State Receiver Output
Propagation Delay Time from Driver Input to
tPLH(D)
2
-
14
High Logic State Driver (Bus) Output
Propagation Delay Time from Driver Input to
tPHL(D)
2
-
14
Low Logic State Driver (Bus) Output
Propagation Delay Time from Receiver Enable Input to
tPLZ(RE)
3
-
15
High Impedance (Open) Logic State Receiver Output
Propagation Delay Time from Receiver Enable Input to
tpzL(RE)
3
-
20
. Low Logic Level Receiver Output
Propagation Delay Time from Driver Enable Input to
tPLZ(DE)
4
-
20
High Impedance Logic State Driver (Bus) Output
Propagation Delay Time from Driver Enable Input to
tpzL(DE)
4
-
25
Low Logic State Driver ,I Bus) Output
Unit ns
ns
ns
ns
ns
ns
ns :.::...
ns
FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT ,tPLH(R)'tPHL(RI
To Scope (Input)
Pulse
51
-Generator
~r e;;-;ble
Input
Receiver (Bus) Input
Driver Enable
Input
Input Pulse Frequency= 10 MHz Duty Cycle= 50%
Receiver Output
To Scope (Input)
2.6 v
92 1N916 or Equiv.
1.3 k
30pF
@ Inc.-~------ MOTOROLA Semiconductor Products
5-240
MC6880A/MC8T26A
FIGURE 2 -TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT ,tPLH(D) AND tPHL(D)
Input Output
tTLH.;;; 5.0 ns
Input Pulse Frequency= 10 MHz Duty Cycle = 50%
To Scope (Input)
2.6 v
Driver Enable Input
Driver Input
Driver (Bus) Output
To Scope (Output)
2.6 v
30
1N916 or Equiv.
51 Input
260
300 pf
FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tPLZ(RE)· AND tpzL(RE)
·
Input Output
To Scope (Input)
2.6 v
Receiver Enable Input
Pulse Generator
51
Receiver (Bus)
Input
Driver Enable Input
To Scope (Output)
5.0 v
Receiver Output
2.4 k
240
5.0 k
30 pf
1N916 or Equiv.
® MO'rORbLA Se,.,iconductor Products Inc.
5-241
MC6880A/MC8T26A
FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TOD.RIVER (BUSI OUTPUT ,tPLO(DEI AND tPOL(DEI
·
Input Output
Input Pulse Frequency= 5.0 MHz Duty Cycle= 50%
tPLZ(DEI
+2.6 v
To scope
Driver Enable
( lnpu~t'-l_________,l-'-__1_ncp>-u_ t _-i
. J L Pulse
51
Generator
Driver Input
Receiver Output
To Scope (Output)
5.0 v
Driver (Bus) Output
5.0 k
70
1N916 or Equiv.
FIGURE 5- Bl-DIRECTIONAL BUS A~PLICATIONS
Receiver Outputs
Driver Inputs
To Other Drivers/Receivers
Driver E11able
Receiver Enable
@ MOTOROLA S<!"'iconductor Producu Inc. --------
5-242
MC6881
MC3449
This device may be ordered 1under either of the above type numbers.
TRIPLE Bl-DIRECTIONAL BUS SWITCH
The MC6881/3449 is a three channel, non-inverting, bi-directional Bus Extender. It is designed to allow the bi-directional exchange of TTL level digital information between a selected pair of ports in a three port network. All three ports of each channel may be forced to a high impedance condition through that channel's Enable input.
Port pair selection and listener/talker status for the three channels is determined through the Control and ·Select inputs. All inputs are PNP buffered, M6800 Family compatible, and protected with Schottky-Barrier diode clamps to suppress undershoot ·voltages.
·A summary of MC6881/3449 features include:
· Three Channels · Noninverting Data Exchange · Bi-Directional Operation · Active Pull-Up with Three-State Capability · High Impedance Inputs · TTL Compatible · High Speed Schottky Technology · Single Power Supply
FUNCTIONAL DIAGRAM To Other Switches
Bl-DIRECTIONAL BUS EXTENDER/SWITCH
LSUFFIX CERAMIC PACKAGE
CASE 620
PSUFFIX PLASTIC PACKAGE
CASE 648
TRUTH TABLE
Enable 0 0 0 0 1
Select 0 0 1 1
x
Control 0 1 0 1
x
Data Flow 2-+3 3-+2 1-+3 3-1
High Impedance
X - Don't Care
PIN CONNECTIONS
·
3
, Select 0------....----+-+--+-+-+-+-"' Control o------f.---+-+--+-+----'
5-243
ORDERING INFORMATION
Temperature
Ranae
Package
IL 0 to +70°C Ceramic DIP
MC6881 /MC3449
·
ELECTRICAL CHARACTERISTICS (4.75 v.;;;; Vee.;;;; 5.25 V, 0°e.;;;; TA.;;;; 10°e)
Characteristic Input Current - Low Logic State
(VIL= 0.4 VI Input Current ·-High Logic S~ate
(V1H = 2.7 VI !V1H = 5.25 VI Input Voltage - Low Logic State Input Voltage - High Logic State Output Voltage - Low Logic State OoL = 8.0mA) OoL = 16 mAI Output Voltage - High Logic State OoH = -1.0 mAI
Output Disabled Current (VoH = 2.7 VI (Vol= 0.4 VI
Power Supply Current
Symbol
Min
l1L
-
l1H
-
V1L
0.8
V1H
-
Vol -
-
VoH
2.4
loo
-
ice
-
Max -200
40 100
-
2.0
0.5 0.6 -
25 -40
50
Two MPUs SHARING a Common Main-Memory
ADDRESS AND CONTROL BUS
</>1
MC6800
DATA
</>2
ADD. AND CONT.
DATA
c:::J
T
</>1 XC6875 CLOCK </>2
MC6885-MC6B88
HIGH SPEED MAIN MEMO.RY
Unit µA µA
v
v
v
v
µA
mA
DATA BUS
MC6881 MC3449
ADD. AND CONT
l/.>1 DATA
</>2 MC6800
DATA
ADDRESS AND CONTROL BUS
@ MOTOROLA SenJiconductor Products In<:.--------
5-244
Advance Info:rmation
HEX THREE-STATE BUFFER INVERTERS
. This series of devices combines four features usually found desirable in bus oriented systems. These features are: 1) - high impedance logic inputs insure that these devices do not seriously load the bus, 2) - three-state logic configuration allows buffers not being utilized to be effectively removed from the bus, 3) Schottky technology allows high-speed ·operation and 4) High-imp·edance output state maintained during power up/down.
The devices differ in that the non-inverting MC8T95/MC6885 and inverting MC8T96/MC6886 provide a two-input Enable which controls all six buffers, while the non-inverting MC8T97/MC6887 and inverting MC8T98/MC6888 provide two Enable inputs - one controlling four buffers and the other controlling the remaining two buffers.
The units are well-suited for Address buffers on the M6800 or similar microprocessor application.
· High Speed - 8.0 ns (Typ) · Three-State Logic Configuration · Single +5 V Power Supply Requirement · Compatible with 7~S Logic or M6800 Microprocessor Systems · High Impedance PNP Inputs Assure· Minimal Loading of the Bus
MICROPROCESSOR BUS EXTENDER APPLICATION (Clock)
GND +5 V </>1 1J2
I/
MC6885/MC8T95 MC6886/MC8T96 MC6887/MC8T97 MC6888/,MC8T98
This device may be ordered under either of the above type numbers.
HEX THREE-STATE BUFFER/INVERTERS
CASE 620
CASE 648
INPUT EQUIVALENT CIRCUIT
·
OUTPUT EQUIVALENT CIRCUIT
AND CONTROL
BUS
,This is advance information and specifications are subject to change without notice;
ORDERING INFORMATION
(Temperature Range for the following devices =
0 to +75°C)
DEVICE
AL.TERNATE
PACKAGE
MC6885L MC6886L
MCBT95L MC8T96L
Ceramic DIP Ceramic DIP
MC6887L MC6888L MC6885P MC6886P MC6887P · MC6888P
MC8T97L MC8T98L MC8T95P MC8T96P MC8T97P MC8T98P
Ceramic DIP Ceramic DIP Plastic DIP Plastic DIP Plastic DIP Plastic DIP
5-245
MC6885-88/MC8T95-98
·
PIN CONNECTIONS AND TRUTH TABLES MC6885/MC8T95
MC6886/MC8T96
Vee Eii8bie 2 Input F Output F Input E Output E Input D
Input A Gnd
Vee Enable 2 Input F Output F Input E Output E Input D
Eiiiilili 2
L L L H H
Eiiiilili 1
L L H L
H
Input
L
H
x x x
Output
L H
z z z
MC6887/MC8T97 .
Enable 2
L
L
L
H
H
Enable 1
L
L H
L H
Input
L
H
x x x
Output
H L
z z z
MC6888/MC8T98
Enable
L L H
Input
L
H
x
Output
L H
z
L =.Low Logic State H = High Logic State Z =Third (High Impedance) State X = Irrelevant
Enable
L L
H
Input
L
H
x
Output
H
L
z
MAXIMUM RATINGS (TA= 25°C unless otherwise noted.)
Rating
Symbol
Value
Unit.
Power Supply Voltage
'{c_c_
8.0
Vdc -1
Input Voltage
Vi
5.5
Vdc _
Operating Ambierit Temperature Range
TA
Oto +75
oc
Storage Temperature Range
Ts.!!l -65 to +150
oc
Operating Junction Temperature
TJ
oc
Plastic Package
150
®Ceramic Package
175
MOTOROLA Se,..iconductor Products Inc. ---------'
5-246
MC6885-88/MC8T95-98
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, o0 c ~TA ~75°C and 4.75 V ~Vee ~5.25 Vl
Characteristic
Symbol
Min
Typ
Input Voltage - High Logic State (Vee= 4.75 V, TA= 25°C)
Input Voltage - Low Logic State (Vee= 4.75 V, TA= 25°C)
Input Current - High Logic State (Vee= 5.25 V, V1H = 2.4 Vl
Input Current - Low Logic State (Vee= 5.25 V, V1L = 0.5 V, Vi L(E) = 0.5 V)
V1H
2.0
-
V1L
-
-
l1H
-
-
l1L
-
-
Input Current - High Impedance State (Vee= 5.25 V, V1L(I) = 0.5 V, V1H(El= 2.0 Vl
Output Voltage - High Logic State (Vee= 4.75 V, loH = -5.2 mAl
Output Voltage - Low Logic State (IOL = 48mAl
l1H(E)
-
-
VoH
2.4
-
Vol
-
-
Output Current - High Impedance State (Vee= 5.25 V, VoH = 2.4 V) (Vee= 5.25 V, Vol= 0.5V)
ioz
-
-
-
-
Output Short-Circuit Current
(Vee= 5.25 v. v0 = 01
(only one. output can be shorted at a time)
'os
-40
-80
Power Supply Current
(Vee= 5.25 vi
MC8T95, MC8T97, MC6885, MC6887 MC8T96, MC8T98, MC6886, MC6888
'cc
-
65
-
59
ll)put Clamp Voltage (Vee= 4.75V,I1c = -12 mA)
Output Vee Clamp Voltage
(Vee= o. ioc" 12mAl
Output Gnd Clamp Voltage (Vee= 0, loc = -12 mA)
Input Voltage (II= 1.0mA)
Vic
-
-
Voe
-
-
Voe
-
-
Vi
5.5
-
Max 0.8 40 -400 -40 0.5
40 -40 -115
98 89 -1.5 1.5 -1.5
-
Unit
v v
µA µA µA
v v
µA
mA
mA
v
v v v
SWITCHING CHARACTERISTICS (Vee= 5 o v TA= 25°C unless otherwise noted l
MC8T95/97
MC6885/87
Characteristic
Symbol
Min
Typ
Max
Propagation Delay Time - High to Low State (CL= 50 pF) (CL= 250 pF) (CL= 375 pF) (CL= 500 pF)
tPHL
3.0
-
12
-
16
-
-
20
-
-
23
-
Propagation Delay Time - Low to High State (CL= 50 pF) (CL= 250 pF) (CL= 375 pF) (CL= 500pF)
tPLH
3.0
-
13
-
25
-
-
33
-
-
42
-
Transition Time - l-ligh to Low State \ (CL= 250 pF)
(CL= 375 pF) (CL= 500 pF)
tTHL
-
10
-
-
11
-
-
14
-
Transition Time - Low to High State (CL= 250 pF) (CL= 375 pF) (CL= 500 pF)
tTLH
-
32
-
-
42
-
-
60
-
MC8T96/98 MC6886/88
Min
Typ
Min
4.0
-
11
-
15
-
-
18
-
-
22
-
3.0
-
10
-
22
-
-
-
,__
35
-
-
10
-
-
13
-
-
15
-
-
28
-
-
38
-
-
53
-
Unit ns
ns
ns ns
·
@ MOTOROLA SemicOnduc·or Produc·s Inc. _______,:;.._.
5-247
MC6885-88/MC8T95-98
SWITCHING CHARACTERISTICS ('{c_c_ = 5.0 V, TA= 250 C unless otherwise noted.
MC8T95/97
MC6885/87
Characteristic
Symbol
Min
TVP Max
Propagation Delay Time - High State to Thir~ State
tPHZ(E)
3.0
-
10
(CL= 5.0 pF)
Propagation Delay Time - Low State to Third State
tPLZ(E)
3.0
-
12
(CL= 5.0 pF)
Propagation Delay Time - Third State to High State
tPZH(E)
8.0
-
25
(CL= 50 pF)
Propagation Delay Time - Third State to Low State
tpzL(E)
12
-
25
(CL= 50 pF)
MC8T96/98 MC6886/88
Min
Typ· Min
3.0
-
.10
5.0
-
16
7.0
-
22
11
-
24
Unit ns ns ns ns
·
FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS
To Scope (Input)
To Scope Output
FIGURE 2 - WAVEFORMS FOR PROPAGATION DELAY TIMES INPUT TO OUTPUT
Input or Enable
50
CL Includes Probe and Jig Capacitance
Open for tpzH(El Test Only
+5 v
~ Output
200
MCBT96, MC6886
1 N3064
MCBT98 or MC6888
or Equivalent
l1.0 k
Open for
Output MCST95.,MC6885 MC8T97 or MC6887
tpzL(e) Test Only
Input Pulse Conditions
! tTHL = tTLH.,;; 10 ns f = 1.0 MHz
FIGURE 3 -WAVEFORMS FOR PROPAGATION DELAY TIMES - ENABLE TO OUTPUT
VoH _____......,__J_
o"""'
<eHziE>--i'Ei-f_v___ .;;1.5 v
)t,1".-5-V----- 3.0 V
- - - - - - \ - _ - .-.- V - - - - - 3.0 V
~1 5
~ 'nL!Ei_j
Enable
------'·------~o
\'-1_.5_v____ Vo L Output
-------.\--1-.5-.v-.- - - - - 3.0 VEnable
- - - f - - tf>ZH(E)--..1 . V,~v-.
o VoH
T
Output
------..J
H = High-Logic State, _L =Low-Logic State, Z =High Impedance State
'--------, ® MOTOROLA Serniconduc·or Produc·s Inc. _________,
5-248
MC6885-88/MC8T95-98
FIGURE 4 - ADDRESS MULTIPLEXER FOR 16-PIN 4K NMOS MEMORY
Row Enable ~
Row Address From MPU
Column Address From MPU Column Enable 0
E
-- l ......:... MC8T97
_.,
-:~=
or Other 1---
1---
:J
-:.:.:.:::.:
1--MCST97 t-----'
or
_::
Other
-=~-
j E
I
Ao MCM6604 NMOS Memory Array
A5
·
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(maxl -TA PonAl = 'RoJA(Typl
Where: PD(TAl = Power Dissipation allowable at a given operating ambient temperature. l'his must be greater than
the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(maxl =Maximum Operating Junction Temperature as listed-in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient
Temperature ReJA(Typl =Typical Thermal Resistance Junction to
Ambient
® MOTOROLA Semiconduc~or Prod~cts Inc.
5-249
·
NON-INVERTING QUAD THREE-STATE BUS TRANSCEIVER
This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.
The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum
0
input current of 200 µA at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with ·Schottky-barrier diode clamps to suppress excessive undershoot voltages.
Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns for tpH L and 17 ns for tPLH. The MC8T28 is identical to the NE8T28 and it operates from a single +5 V supply. · High Impedance Inputs
· Single Power Supply
· High Speed Schottky Technology
· Three-State Drivers and Receivers · Compatible with M6800 Family Microprocessor · Non-Inverting
MICROPROCESSOR BUS EXTENDER APPLICATION
(Clock) GND +5 V t/i1 l/>2
MC6889 MC8T28
This device may be ordered under either of the above type numbers.
NON-INVERTING BUS TRANSCEIVER
-16 1 LSUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNE<tTIONS - MC6889 MCBT28
Input
Receiver Output 2
1
Vee
Driver Enable Input
Receiver Output 5 2
Gnd
Bus 4
Driver Input
4 Receiver Output
3
Bus 3
ORDERING INFOt\MATION
Device
Temperature
Alternate 'Range
Package
MC8T28L MC8T28P
MC6889L MC6889P
o to +75°C Ceramic DIP 0 to +75 C Plastic DIP
5-250
MC6889/MC8T28
MAXIMUM RATINGS (TA = 2s<>c unless otherwise noted.I
Rating
Symbol
Valu·
Power Supply Voltage Input Voltage
Vee
8.0
Vi
5.5
Power Dissipation @ TA = 25°C Derate above 25°C
Po
1000
6.7
Operating Ambient Temperature Range Storage Temperature Range
TA Tstg
Oto +75 -65 to+150
Unit
Vdc Vdc mW mwt0 c oc uc
ELECTRICAL CHARACTERISTICS !Unless Otherwise Noted Specifications Apply 4 75 v < Vee·~ s 25 v and o0 c r TA.;; 1s0 c1
.Characteristic
Symbol
Min
Typ
Max
Unit
Input Current - Low Logic State (Receiver Enable Input, V1L(REl = 0.4 V) (Driver Enable Input, V1L(DE) = 0.4 V) (Driver Input, V1L(D) = 0.4 V)
(Bus (Receiver) Input, V1L(Bl = 0.4 Vl
11ufiE1 . 11L(DEI
11L1DI l1L(BI
-200
µA
-200
-200
-200
Input Disabled Current - Low Logic State (Driver Input, V1L(D) = 0.4 V)
llL(D) DIS
-25
µA
Input Curtent-High Logic State (~Enable Input, VIH(RE) = 5.25 VI (Driver Enable Input. V1 H(DE) = 5.25 VI (Driver Input, Vi H(D) = 5.25 VI
Input Voltage - Low Logic State !ReCei"Ver Enable lnputl (Driver Enable Input (Driver Input)
(Receiver Input)
l1H(REl l1H(DE) 11H(D)
V1LIREl V1L(DEl V1L(D) VIL(B)
25
µA
25
25
0.85
v
0.85
0.85
0.85
Input Voltage - High .Logic State !ReCei"Ver Enable Input) (Driver Enable Input) (Driver Input) (Receiver ln'put)
V1H(Re)
2.0
v
V1H(DE)
2.0
V1H(D)
2.0
V1H(B)
3.0
Outi>ut Voltage - Low Logic State (Bus Driver) Output, IOL(Bl = 48 mA) (Receiver Output, loL(Rl = 20 mA)
Output Voltage - High Logic State (Bus (Driver) Output, IOH(B) = -10 mA) (Receiver Output, IOH(R) = -2.0 mA) (Receiver Output, IOH(R) = -100µA, Vee= 5.0 Vl
VOL(Bl VOL(R)
0.5
v
0.5
VOH(B)
2.4
3:1
v
VQH(R)
2.4
3.1
3.5
Output Disabled Leakage Current - High Logic State (Bus Driver) Output, VoH(B) = 2.4 V) (Receiver Output, VoH(R} = 2.4 Vl
loHL(B) loHL(R)
100
µA
100
Output Disabled Leakage Current - Low Logic State . (Bus Output, VOL(Bl = 0.5 V) (Receiver Output, VoL(R) = 0.5 Vl
IOLL(R} loLL(Rl
-100 -100
""'
Input Clamp Voltage (Driver Enable Input l1D(DE) = -12 mAl (Receiver Enable Input l1c(REl = -12 mA) (Driver Input l1C(D) = -12 mA}
Output Short-Circuit Current, Vee= 5.25 vl1T (Bus (Driver) Output) (Receiver Output)
Power Supply Current (Vee= s.25 vi
V1c(DEI V1C(REl V1cm1
10S(B)
-SO
ios(Rl
-30
ice
-1.0
v
-1.0
-1.0
-150
mA
-75
110
mA
( 1) Only one output may be shon-circui111d at a time.
SWITCHING CHARACTERISTICS (Unless otherwise noted, Vee= 5.0 V and TA= 25oc1
Characteristic
Symbol
Min
MaK
Unit
Propagation Delay Time-Receiver (CL= 30 pf) Propagation Delay Time-Driver (CL= 300 pf) Propagation Delay Time-Enables (CL= 30 pf)
(CL.; 300pf} I
tPLH(R)
-
IPHL(R}
IPLH(Ol
-
tPHL(O)
IPZL(R)
-
IPLZ(R)
-
tpzL(O)
-
IPLZ(O)
-
17
ns
17
ns
23
ns
18
28 23
@ MOTOROLA Sent/conductor Products Inc. ---------'
·
5-251
·
ORDERING INFORMATION
Device
MC5524L MC5525L MC7524L. MC7524P MC7525L MC7525P
Temperature-Range
-55°C to + 12s0 c -55°C to + 12s0 c
0°c to +70°C
0°c to +10°c
0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
DUAL SENSE AMPLIFIERS
This dual sense amplifier is designed for use with high-speed memory systems.. Low level pulses originating in the memory are converted to logic ievels compatible with MOTL and MTTL circuits.
· Adjustable Threshold Voltage Levels · High-Speed, Fast Recovery Time · Time and Amplitude Signal Discrimination · High de Logic Noise Margin
1.0 Volt typ · Good Fan-Out Capability · Independent Strobing · Separate Logic Outputs
SCHEMATIC DIAGRAM
2 k Input
·1c1s24 MCss·24 MC7525 MC5525
DUAL HIGH-SPEED SENSE AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
-
L SUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648 (MC7524 and MC7525
Only)
PIN CONNECTIONS
Strobe Output Output Strobe
Vee A
A Gnd B
B N.C. Gnd
16
10 9
D ifferen tia I Input A
Differential Input B <>---+---t---+--t
Gnd
Output A
Output B
8
Cext
VEE
Differential Reference Differential
Input A
. Input
Input B
TRUTH TABLE
Differential Input
0 1 0 1
Strobe Input
L L H H
Output
L L
i..
H
Where:
H = High Logic State L = Low Logic State
0= V;n < VTH
1 =Vin> VTH
\
5-252
MC7524, MC7525 / MC5524, MC55215
MAXIMUM RATINGS !TA= +25°c unless otherwise noted.) Rating
Power Supply Voltage
Differential Input Voltages Power Dissipation
Derate above TA= +25°«:; Operating Ambient Temperature Range
Storage Temperature Range
MC5524, MC5525 MC7524, MC7525
Symbol Vee Vee
Vin or Vref Po
TA
Tstg
Value +7.0 -7.0 ±5.0
575 3.85
-55 to+125 0 to +70
-55 to +150
ELECTRICAL CHARACTERISTICS (Vee= +5.0 V. Vee= -5.0 V, TA= Thigh to T1ow unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Input Threshold Voltage·
Vth
IV ref= 15 mV) (Vref = 40 mV)
} MC5524, MC7524
MC5525, MC7525 MC5524, MC7524
TA= oto 10°c
11
15
19
8.0
15
22
36
40
44
(Vref= 15mV) (Vref = 40 mV)
MC5525, MC7525 MC5524 MC5525.
MC5524 MC5525
..,
o TA = -55°C to 0 c and
TA= 10°c to 125°c
o TA = -55°C to 0 c and
TA= 10°c to 125°c
o TA = -55°C to 0 c and
TA= 10°c to 125°c
o TA = -55°C to 0 c and
TA= 10°c to 125°c
33
40
47
10
15
20
8.0
15
22
35 \
40
45
33
40
47
Input Common-Mode Firing Voltage (Vref = 20 mV, V1H(S) = 5.0 VI
V1cF
-
±3.0
-
Input Bias Current
v. o (Vee= 5.25 v. VEE = -5.25 TA= -55°C to 0 cl MC5524,MC5525
l1s
-
o <Vee= 5.25 v. Vee = -5.25 v. TA= 0 c to Thighl MC7524.,MC7525
-
l.nput Offset Current <Vee= 5.25 v. Vee= -5.25 Vl
110
-
-
100
30
75
0.5
-
Differential Input Impedance (f = 1.0 kHz)
Strobe Input Voltage - High Logic State
Strobe Input Voltage - Low Logic State
Strobe Input Current - Low Logic State IV1 LISI= 0.4 VI
Strobe Input Current - High Logic State (V1 H(S) = 2.4 VI (V1H(S) = 5.25 V)
Output Voltage - High Logic State
v. IVcc= 4.75 Vee= -4.75 v.1 0 H = -400µAI
'output Voltage - Low Logic State , (Vee= 4.75 V, Vee= -4.75 V. IQL = 16 mAI
Short-Circuit Output Current
v. IVcc= 5.25 Vee= -5~25 Vl
Zid
-
V1H(S)
2.0
V1L(S)
-
l1L(SI
-
l1H(S)
-
-
VoH
2.4
Vol
-
los
2.1
2.0
-
-
-
-
0.8
-1.0
-1.6
-
40
-
1.0
3.9
-
0.25
0.4
-
3.5
Power Supply Currents <Vee= 5.25V, Vee= -5.25V,TA = 25°c1
'
ice
-
lee
-
25
40
-15
-20
*Thigh= 125°C for MC5524 and MC5525 Thigh= 10°c for MC7524 and MC7525
Tiow = -55°C for MC5524 and MC5525
o T10 w = 0 c for MC7524 and MC7525
Unit Vd.c Vdc Vdc mW mwt0 c OC OC
Unit mV
Volts µA
µA k ohms Volts
Volt mA
µA mA Volts Volt mA mA
5-253
·
MC7524, MC7525 / MC5524, MC5525
SWITCHING CHARACTERISTICS (V~= 50V vEE= - 5.·0 VTA=
un ess otherw1se noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Propagation Delay Time - Differential Input to 0 utput
ns
tPLH(D)
-
tpHL(D}
-
15
40
40
-
Propagation Delay Time - Strobe Input to Output
Differential-Mode Input Overload Recovery Time Common-Mode Input Overload Recovery Time Minimum Cycle Time
ns
tPLH(S}
-
tPHL(S}
-
15
30
35
-
toR(DM}
-
20
-
ns
toR(CM)
-
20
-
ns
tc(min}
-
200
-
ns
·
PROPAGATION DELAY TIME DIFFERENTIAL INPUT to OUTPUT
PROPAGATION DELAY TIME STROBE INPUT to OUTPUT
Oiff
Output
Vol
Input Pulse Characteristics
tTLH = tTHL = 15 ns f= 1.0MHz
To Scope (Diff Input)
Oiff 40m~.
Input
20 mV
20 mV
O V
300 ns
Strobe Input 0 V
PROPAGATION DELAY TIMES TEST CIRCUIT
To Scope
+5.0 v (Output)
288
Pulse Gen.
50 50
15 pF
I (Include Probe and Jig Capacitance)
50
5-254
ORDERING INFORMATION
Device
MC5528L MC5529L MC7528L MC7528P MC7529L MC7529P
Temperature Range
-55°C to +125°C -55°C to + 125°C
0°c to +10°c 0°C to +10°c 0°c to +10°C 0°c to +70°C
Package
Ceramic DIP Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MONOLITHIC DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST POINTS
This dual sense amplifier is designed for use with high-speed memory systems. Low 'ievel pulses originating in the memory are converted to logic levels compatible with MOTL and MTTL circuits. External preamplifier test points provide for very accurate timing of the strobe with the input signal. · Adjustable Threshold Voltage Levels · High-Speed., Fast Recovery Time · Ti~e and Amplitude Signal Discrimination · High de Logic Noise Margin
1.0 Volt typ · Good Fan-Out Capability · Independent Strobing · Separate togic Outputs · Test Points Available for Accurate Strobe Timing
SCHEMATIC DIAGRAM
16 ~----------------...-cvcc
t---+---...--t----+---+-----+-C Cext
REFERENCE· INPUT -
OIFFERENTIAl.
INPUTA
2
o
-1
-
-
+
-
-
-
1
-
-
1
14
STROBE A O - - - + - - - + - - + - - - - - - '
MC7528 MC5528 MC7529 MC5529
DUAL HIGH-SPEED SENSE AMPLIFIER WITH PREAMPLIFIER
TEST POINTS
MONOLITHIC SILICON INTEGRATED CIRCUIT
16
· - ~~:::::::1 (top view) L SUFFIX CERAMIC PACKAGE CASE 620
·
P SUFFIX PLASTIC PACKAGE
CASE 648 (MC7528.and MC.7529 only)
TEST
TEST
POINT STROBE OUTPUT OUTPUT STROBE POINT
Vee
A
A
A
B
B
8
GND
16
DIFFERENTIAL INPUT86
O---+---+-r---t
._..._ _,__ _.___..__..__..._-OGN9 O
11 STROSEB
' - - - - - O I O TESTPOINTB
' . veeo-------+---<1>----'
Cext - . . - OIFFERENTIAL
INPUT A
REFERENCE INPUT
,___.,
VEE
DIFFERENTIAL
INPUTS
5-255
MC7528, MC7529, MC5528, MC5529
·
MAXIMUM RATINGS (TA= +25°C unless otherwise noted.)
Rating Power Supply· Voltage
Differential Input Voltages Power Dissipation
Derate above TA= +25°e Operating Temperature Range
Me5528, MC5529 Me7528, MC7529 Storage Temp_erature Range
Symbol Vee VEE
Vin or Vref Po
TA
Tstg
Value +7.0 -7.0 ±5.0 575 3.85
-55 to +125 0 to +70
-55 to +150
Units Vdc Vdc Vdc mW mw0 e Oe
Oe
ELECTRICAL CHARACTERISTICS (Vee= +5.0 V ±5%, VEE= ,-5.0 V ±5%, TA= T1 0 w# to Thigh# unless otherwise noted.)
© MC5528 #
MC7528 #
MC5529
Me7529
Characteristic
Symbol Min
Typ
Max
Min
Typ
Differential Input Threshold Voltage (VinS = +5.0 V, V10 = ±Vthl
Vth
(Vref = 15 mV, IL= 16 mA, Vo <0.4 V)
Me5528,MC7 528.
10
MC5529,MC7529
8.0
(Vref = 40 mV, IL= 16 mA, Vo <0.4 V)
MC5528,MC7528
35
MC5529,MC7529
33
(Vref = 15 mV, IL= -400µA, Vo >2.4 V)
MC5528,MC7528 MC5529,MC7529
(Vref = 40 mV, IL = -400 µA, Vo >2.4 V)
MC5528,MC7528 MC5529,MC7529
Differential and Reference Input Bias Current
l1s
(VID = Vref = OV, VinS = +5.25 V, Vs= ±5.25 V)
Differential Input Offset Current (V10 = Vref= 0 V, VinS = +5.25 V, Vs= ±5.25 V)
1100
Input Voltage, Logic "1" (V10 = 40 mV, Vref = 20 mV, YinS = 2.0 V, IL= 400 µA, Vs= ±4.75 V, Vo >2.4 V)
Vin"l" 2.0
Input Voltage, Logic "O" (V10 =40mV, Vref =20mV, Vins= 0.8 V, IL= 16 mA, Vs= ±4.75 V, Vol <0.4 V)
Vin"O"
Input Current. Logic "1"
(V10 = 0 V, Vref = 20 mV, VinS = 2.4 V, Vs= ±5.25 V) MC5528,MC5529
(V10 = 0 v. Vref = 20 mV, VinS = +5.25 V,
MC7528,MC7529
Vs= ±5.25 V)
1in"1"
lnput'Current, Logic "O" (V10 = 40 mV, Vref = 20 mV, VinS = 0.4 V, Vs= ±5.25 V)
lin''.0"
Output Voltage, Logic "1" (V10 = 40 mV, Vref = 20 mV, VinS"' 2.0 V, IL =-400µA, Vs=±4.75 V)
VO"l" 2.4
Output Voltage, Logic "O" (V10 = 40 mV, Vref = 20 mV, VinS = 0.8 V, IL= 16 mA, Vs= ±4.75 VI
Vo"O"
Short-Circuit Output Current
(V10 = 40 mV, Vref = 20 mV, VinS ..=,,. +5.25 V, Vs= ±5.25 V)
Vee Supply Current (V10 = VinS = 0 V, Vref = 20 mV, Vs= ±5.25 V)
lose -2.1
Ice
VE.E Supply Current
IEE
(V10 = VinS = 0 V, Vref = 20 mV, Vs= ±5.25 V)
15
11
8.0
40
36
33
15
20
22
40
45
47
30
100
0.5
2.0
0.8
5.0
40
-1.0
-1.6
3.9
2.4
0.25
0.40
-2.8
-3.5
-2.1
29
40
-13
-1a
15 40 15 40 30 0.5
0.02
~1.0
3.9 0.25 -2.8
29 -13
Max
19 22 44 47 75
0.8
1.0 -1.6
0.40 -3.5 40 -18
Unit mV
µA µA.
v v
µA mA mA
v v
mA mA mA
CD For o 0 c :5 TA S 10°c operation; electrical characteristics for MC5528 and
MC5529 are guaranteed the same as MC7528 and MC7529 respectively.
o # T1ow = -55°c for MC5528, MC5529, 0 c for MC75::18, MC7529
Thigh= +125°c for MC5528, MC5529; +7o0 c for MC7528, MC7529
5-256
MC7528, MC7529, MC6528, MC5529
ELECTRICAL CHARACTERISTICS (Vee= +5.0 V ±5%, VEE= -5.0 V f.5%, TA= +25°C unless otherwise noted.)
Characteristic
AC Common-Mode Input Firing Voltage (Vref = 20 mV, VinS = 5.0 V)
Propagation Delay Time, Differential Input to Logic "1" Output
(Vref = 20 mV)
·
Propagation Delay Time, Differential Input to Logic "O" Output (Vref = 20 mV)
Propagation Delay Time, Strobe Input to Logic "1" Output (Vref = 20 mV)
Propagation Delay Time, Strobe Input to Logic "O" Output (Vref = 20 mV)
Overload Recovery Time, Differential Input
Overload Recovery Time, Common-Mode Input
Minimum Cycle Time
MC5528 MC5529
Symbol Min
Typ
Max
VcMF
±2.5
tPHLD
20
40
28
tPHLS
.tRCM t(min)
10
30
20 10 5.0 200
® Positive current is defined as current into the referenced pin.
@ Pin 1 to have ~100 pF capacitor connected to ground.
© Each test point to have $15 pF capacitive load to ground.
MC7528 MC7529
Min
Typ
Max
±2.5
20
40
28
10
30
20 10 5.0 200
Unit
v
ns
ns ns ns ns
·
5-257
·
ORDERING INFORMATION
Device
MC5534L MC5535L MC7534L MC7534P MC7535L. MC7535P
Temperature Range
-55"C to +125°C -55°C to +125°C
0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
DUAL SENSE AMPLIFIERS WITH INVERTED OUTPUTS
This dual sense amplifier is designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MOTL and MTTL circuits. These circuits are identical to the MC7524 except that an additional stage has been added to each output gate to provide an inverted output.
· Adjustable Threshold Voltage Levels · High-Speed, Fast Recovery Time · Time and Amplitude Signal Discrimination · High de Logic Noise Margin
1.0 Volt typ · Good Fan-Out Capability · Independent Strobing · Separate Logic Outputs · Normally High Outputs Accomodate the Wired-OR of
Several Sense Amplifiers
SCHEMATIC.DIAGRAM
16 ~-----t----------,--~vcc
1----1----+---+----+--+----+-<>Ce~I
MC7534, MCS534 MC7535, MC5535
DUAL HIGH-SPEED SENSE AMPLIFIER
WITH INVERTED OUTPUTS SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX li'LASTIC PACKAGE
CASE 648
STROBE OUTPUT
OUTPUT STROBE N.C.
Vee
A
A
GNO 2 B
B
GND 1
16
MOTL and MTTL are trademarks of Motorola Inc.
Cex1 DIFFERENTIAL
INPUT A
REFERENCE INPUT
VEE DIFFERENTIAL
INPUT B
5-258
© MOTOROLA INC., 1974
OS 9225
MC7534, MC7535, MC5534, MC5535
MAXIMUM RATINGS {TA= +25°C unless otherwise noted.) Rating
Power Supply Voltage
Differential Input Voltages ·Power Dissipation
Derate above TA= +25°C Operating Ambient Temperature Range
MC5534, MC5535 MC7534 MC7535 Storage Temperature Range
Symbol Vee VEE
Vin or Vref Po
TA
Tstg
Value +7.0 -7.0 ±.5.0 575 3.85
-55 to +125 0 to +70
-55 to +150
Units Vdc Vdc Vdc mW mw0 c OC
OC
ELECTRICAL CHARACTERISTICS (Vee= +5.0 V ±5%, VEE= -5.0 V ±5%, TA= T1 0 w# to Thigh# unless otherwise noted.)
MC5534 G) #
MC5535
MC7534# MC7535
Characteristic
jsymbol Min
Typ
Max
Min
Typ
Differential Input Threshold Voltage (VinS =+5.0 V, V10 =±Vth)
Vth
(Vref = 15 mV, Vl =+5.25 V, IL< 250 µA)
MC5534, MC7534
10
15
MC5535, MC7535
8.0
11
15
8.0
!Vref =40 mV, VL =+5.25 V, IL <250µA)
MC5534, MC7534 MC5535, MC7535
35
40
33
36
40
33
!Vref = 15 mV, IL= 20 mA, Vo =<0.4 V)
MC5534, MC7534 MC5535. MC7535
15
20
15
22
(Vref =40 mV, IL= 200 mA, Vo =<0.4 V)
MC5534, MC7534 MC5535, MC7535
40
45
40
47
Differential Reference Input Bias Current
(Vm = Vref =o V, VinS =+5.25 v. Vs= ±5.25. V>
'is
30
100
30
Differential l.nput Offset Current
(V10 = Vref =o v. VinS =+5.25 v. Vs= ±5.25 V)
Input Voltage, Low Logic State
(V10 =40 mV, Vref =20 mV, VinS =0.8 V, VL =+5.25 V,
Vs= ±4.75 V, IL =<250µA)
1100
0.5
0.5
v,b
0.8
Input Voltage, High Logic State
V1H
(V10 ~ 40 mV, Vref =20 mV, VinS =2.0 V, IL= 20 mA,
2.0
2.0
Vs= ±4.75 v. Vo =<0.4 V)
Input Current, Low Logic Sta<e
!V10 = 40 mV, Vref =20 mV, VinS =0.4 V, Vs= ±5.25 V)
Ill
-1.0
-1.6
-1.0
Input Current, High Logic State
(V10 = 0 v. Vref =20 mV, VinS = 2.4 .v. Vs= ±5.25 V) MC5534, MC5535
l1H
MC7534, MC7535
5.0
40
0.02
Output Voltage, Low Logic State
(Vm = 40 mV, Vref = 20 mV. VinS =2.0 v. IL= 20 mA, Vs= ±4.75 V)
Vol
0.25
0.40
0.25
Output Leak age Current
loH
(V10 = 40 mV, Vref =20 mV, VinS = 0.8 V. VL = 5.25 V, Vs= i4.75 V)
0.01
250
0.01
Vee Supply Current
(V1 D = VinS = 0 V, Vref = 20 mV, Vs= ±5.25 V)
'cc
28
38
28
VEE Supply Current !Vm = VinS = 0 V, Vref = 20 mV, Vs= ±5.25 Vl
'EE
-13
-18
.. 13
Max
19 22 44 47 75
0.8
-1.6 1.0 0.40 250 38 -18
Unit mW
µA µA
v v
mA µA mA
v
µA mA mA
o G) For 0 c <;;;TA,,;;; 70°C operation., electrical characteristics for MC5534 and
MC5535 are guaranteed the same as MC7534 and MC7535 respectively.
@ Positive current is defined as current into the referenced pin. @ Pin 1 to have ?>100 pF capacitor connected to ground.
# Tiow = -55°C fo~ MC5534, MC5535, 0°C for MC7534, MC7535 Thigh= +125°C for MC5534, MC5535, +70°C for MC7534, MC7535
SWITCHING CHARACTERISTICS !Vee= +5.0 V ±5%, Vf:E = -5.0 V ±5%, TA= +25°c unless otherwise noted.)
Characteristic
Symbol
MC5534
MC5535
Min
Typ
Max
MC7534
MC7535
Min
Typ
Max
Unit
AC Common-Mod_e Input Firing Voltage (Vref = 20 mV, VinS = 5.0 V)
Propagation Delay Time, Differential Input to Logic "1" Output !Vref = 20 mV)
Propagation Delay Time, Differential lriput to Logic "O" Output (Vref = 20 mV)
Propagation De.1.ay Time, Strobe Input to Logic "1" Output (Vref = 20 mV)
Propagation Delay Time. Strobe Input to Logic "O" Output (Vref = 20 mV)
Overload Recovery Time, Differential Input
Overload Recovery Time, Common-Mode Input
Minimum Cycle Time
@ MOTOROLA
VcMF tPLHD tPHLD tPLHS tPHLS
tRD tRCM t(min)
±2.5
24
20
40
16
10
30
10
5.0
200
v
±2.5
24
20
40
16
10
30
10
5.0
200
Semiconductor Products Inc. _ _ _ _ _ _ ___.
·
5-259
·
ORDERING INFORMATION
Device
MC5538L.
MC5539L MC7538L MC7538P MC7539L MC7539P
Temperature Range
-55°C to +125°C
-55°C to +12s0 c 0°C to +10°c
0°C to +70°C 0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST POINTS
AND INVERTED OUTPUTS
This dual sense amplifier js designed for use with high-speed memory systems. Low level pulses originating in the memory are converted to logic levels compatible with MOTL and MTTL circuits. These devices are identical to MC5528/MC7528 with the .exception of the inverted outputs.
· Adjustable Threshold Voltage Levels · High-Speed, Fast Recovery Time · Time and Amplitude Signal Discrimination · High de Logic Noise Margin
1.0 Volt typ · Good Fan-Out Capability · Independent Strobing · Separate Logic Outputs · Test Points Available for Strnbe Timing · Inverted Outputs to Accomodate Wired-OR Outputs of
Several Sense Amplifiers
SCHEMATIC DIAGRAM
MC7538, MC5538 MC7539, MC5539
DUAL HIGH-SPEED SENSE AMPLIFIER
WITH PREAMPLIFIER TEST POINTS
AND INVERTEDOUTPUTS SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFiX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648 (MC7538 and MC7539 only),
TEST
TEST
POINT STROBE OUTPUT OUTPUT STROBE POINT
Vee
A
A
A
B
B
B
GNO
16
Cexl DIFFERENTIAL
INPUT A
REFERENCE INPUT
DIFFERENTIAL INPUT B
5-260
I
MC7538, MC7539, MC5538, MC5539
MAXIMUM RATINGS (TA=, +25oc \lnless otherwise noted.')
Rating Power Supply Voltage
Differential Input Voltages Power Dissipation
Derate above TA = +25°C Operating Ambient Temperature Range
MC5538, MC5539 MC7538, MC7539 Storage Temperature Range
Symbol Vee VEE
Vin or Vref Po
TA
Tstg
Value +7.0 -7.0 ±5.0 575 3.85
-55 to +125 0 to +70
-55 to +150
Units Vdc Vdc Vdc mW mw0 c Oc
OC
ELECTRICAL CHARACTERISTICS I Vee= +5.0 V ±5%, VEE= -5.0 V ±5%, TA= T1 0 w# to Thigh# unless otherwise noted.)
Characteristic
Differential Input Threshold Voltage (VinS = +5.0 V, V.ID = ±Vthl
(Vref = 15 mV, VL = +5.25 V, IL< 250 µAl
MC5538, MC7538
MC5539, MC7539
IVref= 40 mV, VL = +5.25 V, IL< 250 µA)
MC5538, MC7538 MC5539, MC7539
(Vref = 15 mV, IL= 120 mA, VL <0.4 Vl
MC5538, MC7538 MC5539, MC7539
(Vref = 40 mV, IL= +20 mA, VL <0.4 V)
Differential and Reference Input Bias Current (V10 = Vref = 0 V, VinS = +5.25 V, Vs= ±5.25 V)
MC5538, MC7538 MC5539, MC7539
Differential Input Offset Curreri\ (V10·= Vref = 0 V, VinS = +5.25 V, Vs= ±5.25 VI
Input Voltage, High Logip State
(Vm = 40 mV, Vref = 20 mV, VinS = +2.0 V, IL= ·2o mA;
Vs= +4.75 V, VL <0.4 VI
1 Input Voltage, Low Logic State (V10 = 40 mV, Vref = 20 mV, VinS = +0.8 V, VL = +5.25 V,
Vs= +4.75 V, IL<: 250 µAl
Input Current, High Logic State
(V10 = 0 V, Vref = 20 mV, VinS = 2.4 V, Vs= ±5.25 vr MC5538, MC5539
(V10 = 0 V, Vref = 20 mV, VinS = +5.25 V,
MC7538, MC7539
Vs= +5.25 VI
Input Current, Low Logic State IV10 = 40mV, Vref = 20mV, VinS = 0.4 V, Vs= +5.25 VI
Output Voltage, Low Logic State (V10 = 40 mV, Vref = 20 mV, VinS = 2.0 V, IL= 20 mA, Vs= +4.75 Vl
Vee Supply Current (V10 = VinS = 0 V, Vref = 20 mV, V...s_ = +5.25 VI
VEE Supply Current
lVm =Vin~= o v, Vs= ±5:25 VI
Symbol
11a 1100 V1H V1L l1H l1L VoH ice IEE
MC5538]}# MC5539
Min
Typ
Max
10
15
8.0
35
40
33
v 15
40
30 0.5
20 22 45 . 47
100'
2.0
0.8
5.0
40
-J.O
0.25 28 -13
-1.6 0.40
38 -18
MC7538# MC7539
Min
T.yp
Max
11
15
8.0
36
40
33
15
19
22
40
44
47
30
75
0.5
2.0
0.8
0.02
1.0
-1.0 0.25
28 -13
-1.6 0.40
38 -18
Unit mV
µA µA
v v
µA mA mA
v
mA mA
G) For 0°C<;;TA<;;70°C operation, electrical characteristics for MC5538 and
MC5539 are guaranteed the same as MC7538 and MC7539 respectively.
o II T1ow = -55°C for MC5538, MC5539; 0 c for MC7538, MC7539
.Thigh= +125°C for MC5538, MC5539; +70°C for MC7538, MC7539
SWITCHING CHARACTERISTICS (Vee= +5.0 V ±5%, VEE~ -5.0 V ±5%, TA= +25°C unless otherwise noted.I
Characteristic
AC Common-Mode Input Firing Voltage (Vref = 20 mV, VinS_= 5.0 V)
Propagation Delay Time, Differential I npu't to Logic "1" Output (Vref = 20 mVI
Propagation Delay Time, Differential l.nput to Logic "O" Output
(Vref = 20 mVI
·
Propagation DelayTime, Strobe Input to Logic "1" Output (V_ref = 20mVI
Propagation Delay Time, Strobe Input to Logic "O" Output (Vref = 20 mVI
Overload Recovery Tim!', Differential Input
Overload Recovery Time, Common-Mode Input
Minimum Cycle Time
Symbol VcMF
tPLHD
tPHLD
tPHLS tPHLS
tRD tRCM t(min)
MC5538
MC5539
Min
Typ
Max
±2.5
24
28
40
16
10
30
10
5.0
200
MC7538
MC7539
Min
Typ
Max
±2.5
24
20
40
16
10
30
10
5.0
200
Unit
v·
ns
ns
@ Positive curr11nt is defined as current into the referenced pin.
@ MOTOROLA
@ Pin 1 to have ~100 pF capacitor connected to ground.
© Each test point to have :S15 pF capacitive load to ground.
Semiconductor Products Inc.
5-261
·
·
ORDERING INFORMATION
Device
MC8T13L MC8T13P MC8T23L MC8T23P
Temperature Range
O"C to + 75°C 0°c to +75°C 0°c to +75°C 0°C to +75°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MC8T13 MC8T23
DUAL LINE DRIVERS
The MC8T13 and MC8T23 are designed to drive transmission lines with impedances of 50 Q to 500 U. The MC8T23 specifically meets all of the input/output requirements of the I BM System 360/System 370 specifications (I BM Specification GA 22-6974-0).
· High Output Drive Capability -
v - lo= -75 mA (Min)@ Vo= 2.4 MC8T13
lo= -59.3 mA (Min) @Vo= 3.11 v - MC8123
· High Speed Operation -
tPU-1 = tPHL = 20 ns (Max) with 50 Q Load e MTTL and MOTL Compatible Inputs
· Uncommitted Emitter Output Structures Permit Party-Line Operation
· Designed to Operate with MC8T14 or MC8T24 Line Receivers · Outputs are Short-Circuit Protected · Equivalent to SN75121 and SN75123 Respectively.
DUAL LINE DRIVERS
SILICON MONOLITHIC INTEGRATED CIRCUIT
16
r~==i
~"'~"'~~) 1
(top view)
L SUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
PIN CONNECTIONS
1/2 MC8T13 or
1/2 MC8T23
TYPICAL APPLICATION Vee
1/3 MC8T14 or
1/3 MC8T24
5-262
TRUTH TABLE
Inputs
3 4 5 6 Output
HHHXX
H
XX XHH
H
All Other Combinations
H = High Logic State
L = Low Logic State X. = Irr!llevant
MC8T13, MC8T23
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating Power Supply Voltage Input Voltage Output Voltage Power Dissipation@ TA = +25°C
Derate above 25°c Operating Ambient Temperature Range Storage Temperature Range
Symbol Vee V1 Vo Po
TA Tstg
Value 7.0 5.5 7.0 1000 6.7
0 to +75 -65 to +150
Unit Vdc Vdc Vdc mW mW/°C
OC OC
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 V ~Vee ~5.25 V and o0 c ~TA~ 75°Cl
MC8T13
MC8T23
Characteristics Input Voltage - Low Logic State Input Voltage - High Logic State Input Current - Low Logic State
(VIL= 0.4 V)
Symbol VIL V1H l1L
Min Typ Max Min Typ Max
-
- 0.8 -
-
0.8
2.0 -
-
2.0 -
-
-0.1 - -1.6 -0.1 - -1.6
Input Current - High Logic State (V1H = 4.5 V) (V1H = 5.5 V, Vee= 5.0 V)
Input Clamp Voltage (II= -12 mA, Vee= 5.0 V)
l1H1
-
l1H2
-
- V1(clamp)
-
40 -
-
10 -
- -1.5 -
-
40
-
10
- -1.5
Output Voltage.- High Logic State (V1H = 2.0 V, loH = -75 mA) (Vee= 5.0 V, V1H = 2.0 V, loH = -59.3 mA) (TA= 25°Cl
Output Current - High Logic State (V1H = 4.5 V, Vee= 5.0 V, Vo= 2.0 V, TA= 2s0 c)
VoH1 VoH2
IOH
2.4 -
--
-
-
-100 -
-- - 2.9 - 3.11 -
- -250 -100
-
-
-250
Output Current - Low Logic State
(VIL= 0.8 V, '(O = 0.4 V)
(V1L = 0.8 V, Vo= 0.15 V)
Output Reverse Leakage Current - Low Logic State (V1L = 0 V, Vo= 3.0 V)
(V1L =;__O v:vo = 3.0 V, Vee= 0 V)
Output Short-Circuit Current
v. (V1H = 4.5 Vee= 5.0 V, Vo= 0 V, TA= 25°Cl
IOL1 IOL2
IOR1 IOR2 ios
- - -800 -
-
-
-
-
-
-
- -240
-
-
80 -
- - 500 -
--
-
40
-
- -30 -
- -30
Power Supply Currents
llo = OmAl
Outputs - Low Logic State, VIL= 0.8 V
Outputs - High Logic State, V1H = 2.0 V
lccL lccH
-
- 60 -
-
60
- - 28 - - 28
Unit
v v
mA
µA mA
v
v v
mA
µA µA
µA µA mA
mA mA
·
SWITCHING CHARACTERISTICS (Vee= 5.0 v, TA= 2s0 c unless otherwise noted.) Figure 1
Characteristic
Symbol
MC8T13
MC8T23
Min Typ Max Min Typ Max
Propagation Delay Time - Low to High Level Output (RL=37il,CL= 15pF) (RL = 37 n, CL= 1000 pF) (RL = 50 n, CL= 15 pF) IRL = son,cL = 1oopFl
tPLH
-
11 20 -
-
-
- 22 50 -
-
-
-
--
-
12 20
- - - - 20 35
Propagation Delay Time - High to Low Level Output (RL = 37 n, CL= 15pF) (RL = 37 n, CL= 1000 pF) !RL = son,cL = 15pFl (RL = 50 n, CL= 100 pF)
tPHL
- 8.0 20 -
-
20 50 -
- ---
- ---
--
-
-
12 20
15 25
Unit ns
ns
5-263
MC8T13, MC8T23
To Scope (Input)
FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS
To Scope (Output)
Pulse Generator
Vee
· . l'"·"~ 01
Gnd
·cl Includes Jig
Capacitance
Output
1.5 v
Vo L ----+---'
Input Pulse Width 200 ns, 50% Duty Cycle
FIGURE 2 - REPRESENTATIVE SCHEMATIC DIAGRAM (1/2 Shown)
R5 R6
06
04
07 08
0709
010
Cl
R7
011
R11 Output
FIGURE 3- TYPICAL OUTPUT CURRENT versus OUTPUT VOLTAGE
2so~--.----...-~-~-~-.,.----,.-------.1--_1.-.---.
1---+.,--+----1---+---+---+--+-vcc = s.o ~ ___,
TA= 2soc
2.0
3.0
4.0
5.0
Vo. OUTPUT VOLTAGE (VOLTS)
5-264
ORDERING INFORMATION
Device
MC8T14L MC8T14P MC8T24L MC8T24P
Temperature Range
0°C to +75°C 0°c to +75°C 0°C to +75°C 0°C to +75°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MC8T14 MC8T24
TRIPLE LINE RECEIVERS WITH HYSTERESIS
... specifically designed to meet the input/output specifications for I BM 360'/370 Systems (I BM specification GA 22-6974-0). Each receiver incorporates hysteresis to provide high noise immunity and also high input impedance to minimize loa?ing on the related driver.
· Each Channel Can Be Independently Strobed
· High Speed~ tPLH = tPHL = 20 ns
· Input Gating Provided on Each Line · Operates on a Single +5.0 V Power Supply · Fully Compatible with MTTL or MOTL Logic Systems · Input Hysteresis Results in High Noise Immunity
1/2 MC8T13 or
1/2 MC8T23
TYPICAL APPLICATION
Vee
1/3 MC8T14 or
1/3 MC8T24
TRIPLE LINE RECEIVERS WITH HYSTERESIS
SILICON MONOLITHIC INTEGRATED CIRCUIT
r==-.J 16
~T
(top view)
""""'1···.·
LSUFFIX
CERAMICPACKAGE CASE 620
. ~·.r.r. ~,~
P SUFFIX PLASTIC PACKAGE
CASE 648
Gate Input 1A
Gate Input 2A
Receiver ln_put B
Strobe Input B
Gate Input 1 B
Gate Input 28
Output B
Gnd
PIN CONNECTIONS
TRUTH TABLE
Inputs
Output
Receiver Strobe Gate 1 Gate2
x
x
H
H
L
L
H x x L
H
x
L
x
H
x
L
L
x H
H
x
x
L
H
x
L
x
L
H
Where:
L = Low Logic State H = High Logic State X = Don't Care
·
5-265
MC8T14,MC8T24
·
MAXI MUM RATINGS (TA = 25°c unless otherwise not~d )
Rating Power S~ Volt~ Receiver Input Voltage
(Vee_= 01 Strobe or Gate Input Voltage
Output Voltage Output Current Power Dissipation (Package Limitation)
Ceramic Package Derate abOve 25°c
Plastic Package Derate above 25°c
Junction Temperature Ceramic Package Plastic Package
Operating Ambient Temperature Range
Storage Temperature Range
Symbol V_ec V1(R)
V11s1 or IGl Vo lo Po
TJ
TA Tstg
Value 7.0 7.0 6.0 5.5 7.0 ±100
1000 6.7 830 6.7
175 150 0 to +75 -65 to +150
Unit Vdc Vdc
Vdc Vdc mA
mW
mwt0 c
mW mwt0 c
OC
oc oc
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75..;; Vee..;; 5.25 v and o0 c..;; TA..;; 75°Cl
MC8T14
MC8T24
Characteristic
Gate or Strobe Input Voltage-'- High Logic State Gate or Strobe Input Voltage - Low Logic State R~eiver Input Voltage - High Logic State Receiver Input Voltage - Low Logic State Receiver Input Hysteresis (1)
o. (Vee= 5.0 V, TA= 25°c. V1L(G) = V1H(S) = 4.5 VI
Input Clamp Voltage (Vee= 5.0 V, TA= 25°C, I 1= -12 mA) (Strobe or Gate Inputs)
Input Breakdown Voltage (Vee= 5.0V.i1 = 1O mA) (Strobe or Gate Inputs)
Symbol
Min Typ Max Min· Typ Max Unit
- V1H(G) or (S) 2.0
- 2.0 -
-
v
V1L(G) or (SI -
-
V1H(R)
- 2.0
0.8 - - 1.7 -
0.8 v - Vdc
V1L(R)
-
- 0.8 -
- 0.7 Vdc
VH(R)
0.3 0.5 -
0.2 0.4 -
v
- V!C(G) or !SI
- 1.5 -
--'
1.5 v
- V1(G) or (S) 5.5
- 5.5 -
-
v
Receiver Input Current - High Logic State (V1H(R) = 3.8 V) (V1H(R) = 3.11 V) (V1H(R) = 7,0 VI I
(V1H(R) = 6.0 v' Vee= 0 VI
l1H(R)
mA
- - 0.17 - - -
--
-
-
- 0.17
-
-
-
-
- 5.0
-
-
-
-
- 5.0
Gate or Strobe Input Current - High Logic State IV1HISI = 4.5 V, V1H(R) = 3.11 VI IV1H(Gl = 4.5 VI
Gate or Strobe Input Current - Low Logic State
l1H(Gl or (S)
-
-
40 -
µA
- 40
-
- 40 -
- 40
- - l1L(Gl or (SI -0.1
-1.6 -0.1
-1.6 mA
IVIL(GI or (SI= 0.4 V, V1L(R) = 0 VI
Ou.tput Voltage - High Logic State
(V1H(R) = 2.0 v. V1H(S) = 2.0 v. V1L(G) = o.8 V. loH = -800µA)
(VIH(R) = 0.8 V. VIL(S) = 0.8 V, V1L(G) = 0.8 V, loH = -800µA) (VIH(R) = 1.7 V, V1H(S) = 2.0 V,V1L(G) = 0.8 V, IOH = -800µA)
(V1H(R) = 0.7 V, V1L(Sl = 0.8 V, V1L(G) = Q.8 V, loH = -800µA)
VoH
v
2.6 3.5 -
-
--
2.6 3.5 -
-
-
-
- - - 2.6 3.4 -
-
-
-
2.6 3.4 -
Output Voltage - Low L1Jgic State
(VIL(R) =0 . 8 V, V1H(S) = 2.0 V, V1.L(G) =0.8 V, IOL = 16 mA)
(V1L(R) = 0.8 v. V1L(S) = 0.8 V, V1H(G) = 2.0 V, loL = 16 mA)
(V1L(R) = 0.7 v. V1H(S) = 2.0 V, V1L(G) = 0.8 v. loL = 16 mA)
(V1L(R) = 0.7 V, V1L(S) = 0.8 V, V1H(G) = 2.0 V, IOL = 16 mA)
Vol
v
- - 0.4 - - -
- - . 0.4 - - -
-
-
-
- / - 0.4
- - - - - 0.4
Output Short-Circuit Current (2)
.
o. (V1H(R) = 3.8 V, V1L(G) = 0 V, V1L(S) = Vee= 5.0 v.'TA = 25°CI
v. (V1H(R) = 3.11 V1L(G) = 0 V, V1L(S) = 0 v. Vee= 5.0 V, TA= 25°CI
Power Supply Current
<Vee= 5.25 V, TA= 25°C)
·os
mA
-50 - -100 - - -
-
-
- - -50
-100
Ice
-
60 72 -
60 72 mA
(1) The Input Hysteresis is defined as the difference the input voltage at which the output begins to go from the high logic state to the low logic state and the input voltage which causes the output to begin to go from the low logic state to the high logic state.
(2) Only one output may be shorted at a time.
5-266
MC8T14,MC8T24
SWITCHING CHARACTERISTICS !Vee= 5.0 v, TA= 2s0 c unless otherwise noted.)
Parameter Propagation Delay Time - Receiver Input to High Logic State Output Propagation Delay Time Receiver Input to Low Logic State Output Propagation Delay Time Stroqe Input to High Logic State Output Propagation Delay Time Strobe Input to Low Logic State Output Propagation Delay Time Gate Input to High Logic State Output Propagation Delay Time Gate Input to Low Logic State Output
Symbol tPLH(R) tPHL(R) tPLH(S) tPHL(S) tPLH(G) tPHL(G)
MC8T14, MC8T24
Min
Typ
Max
-
20
30
-
20
30
-
-
-
-
-
-
-
-
-
-
-
-
Unit ns ns ns ns ns ns
FIGURE 1 - RECEIVER PROPAGATION DELAY TIMES 1pLH(RI and 1pHL(R) TEST CIRCUIT AND WAVEFORMS
. Pulse Generator
To Scope (Output)
·2 ·6 V
84.5 n
Input
0 VoH~~---1~~-r------+-~ Output VoL--~f---' I
Input Pulse Width= 200 ns _Duty Cycle= 50%
FIGURE 2 - GATE AND STROBE PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS
To Scope +5 ·0 v
To Scope (Gate) (Strobe)
To Scope (Output)
2.6 v
84.5
·
Pulse Generator
Strobe Input
ov
Gate
Input ov
Output
VoH VoL
Input Pulse Width = 200 ns
Duty Cycle = 50 ns
lTLH = tTHL" 5.0 ns
5-267
MCBTJ 4,MC8T24
·
\
FIGURE 3 -TYPICAL RECEIVER HYSTERESIS
CHARACTERISTIC
5.0
I I
I
I
-~
TA~ 25°c
l:-WORST-CASE--t-t----1----11---t-----t+-vcc = 5.0 v -
~ 4.0t-~~ERC~~~EODLD...::;:
~ H~~T:~~SIS= -
~ 1- ~~~:g4 _ 1-V2";.+:=::;r::or1:4i;.:V~l.!==l+:;;=+;;;=+=;;;i
~ 3.0 t---+---+-----tt---+--++--++----+----1---i
:;
> 0
~ 2.0 t---+---+---tt-,---,H---t--++--++----+----1---i
I-
p
=>
0
~ 1.01---~-+-----tt---t--++--tt----+----l---i
FIGURE 4 - HYSTERESIS TEST CIRCUIT Vee= 5.o v
Curve Tracer
Receiver Tektronix 575 or equiv 3 >----~Inputs
11
141-----
15
101--------------ic
5
6
B
0.33 1.0
µF
µF
ot-~+-i~+-~++-~+1-~-+----t
0
0.5 0.7 1.0
1.5 1.7 2.0
2.5
V1, INPUTVOLTAGE (VOLTS)
REPRESENTATIVE CIRCUIT SCHEMATIC
Receiver Input
Inputs .
5-268
ORDERING INFORMATION
Device
MC55107L MC55108L MC75107L MC75107P MC75108L MC75108P
Temperature Range
-55°C to + 125°C -55°C to + 125°C
0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
DUAL LINE RECEIVERS
The MC55107/MC75107 and MC55108/MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC55107/MC75107 circuit features an active pull-up (totem-pole) output. The MC55108/MC75108 circuit feature.s an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL: gate or additional MC55108/ MC75108 receivers). Thus a level of logic,is implemented without extra delay.
The MC55107/MC75107 and MC55108/MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.
· High Common-Mode Rejection Ratio · High Input Impedance · High Input Sensitivity · Differential Input Common-Mode Voltage Range of :±c3.0 V · Differential Input Common-Mode Voltage of More Than :±c 15 V
Using External Attenuator · Strobe Inputs for Receiver Selection · Gate Inputs for Logic Versatility · MTTL or MOTL Drive Capability · High DC Noise Margins
CIRCUIT SCHEMATIC _ _.. Vcco---+--<1~--e~~~~--+---.......---~--<,_
14
186
4 k 1.6 k
MC75107- MC55107 MC75108 MC55108
DUAL LINE RECEIVERS SILICON MONOLITHIC INTEGRATED CIRCUITS
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
P SUFFIX PLASTIC PACKAGE
CASE 646
(MC75107 MC75108 only)
·
Vee
VEE
· INPUTS
2A
26
oUTPUT STROBE
-2 Y
2G
2.5 k 13 VEEo--+--___._ _ _ _.,.__ __..,.-+--+--~----~.
2.5 k 11
2Y
186
4k
Components shown with dashed lines are applicable to the 1\11C55107 and MC75107 only.
INPUTS 18
OUTPUT STROBE STROBE
lG
S
TRUTH TABLE
DIFFERENTIAL INPUTS A·B
V10-·25mV
STROBES
G
S
OUTPUT y
-25 mV' V10 ~ 25 mVl------+---+-------1
H ~ INDETERMINATE
v 10 ,,,_,-_25 mv
5-269
·
MAXIMUM RATINGS (TA= T1ow· to Thigh· unless otherwise notedl
Rating
Power Supply Voltages
Differential-Mode Input Signal Voltage Range Common-Mode Input Voltage Range Strobe Input Voltage Power Dissipation (Package Limitation) Plastic and Ceramic Dual-In· Line Packages
Derate ab.ove TA= +25°C Operating Ambient Temperature Range
MC55107, MC55108 MC75107, MC75108 Storage Temperature Range
Symbol Vee VEE V1D V1CR V1($) Po
TA
Tstg
Value +7.0 -7.0 +6.0 +5.0 5.5
625 3.85
-55 to +125 0 to +70
-65 to +150
Unit Vdc
Vdc Vdc Vdc
mW mwt0 c
OC
oc
RECOMMENDED OPERATING CONDITIONS
Characteristic Power Supply Voltages
Output Sink Current Differential-Mode Input Voltage Range Common-Mode Input Voltage Range Input Voltage Range, any differential input to ground Operating Temperature Range
Symbol
Vee VEE ios V10R V1CR V1R TA
MC55107. MC55108
Min
Typ
Max
+4.5 -4.5
+5.0 -5.0
+5.5 -5.5
-16
-5.0 -3.0
. +5.0 +3.0
-5.0
+3.0
-55
-·
+125
MC75107, MC75108
Min
Typ
Max
+4.75 -4.75
+5.0 -:-5.0
-
+5.25 -5.25
-16
-5.0
-
+s.o
-3.0
-·
t3.0
-5.0
+3.0
0
-
+70
DEFINITIONS OF INPUT LOGIC LEVELS
Characteristic
Symbol
Test Fig.
Min
Max
High-Level Input-Voltage (between differential inputs) Low-level Input Voltage (between differential inputs) High-Level Input Voltage (at strobe inputs) Low-Level Input Voltage (at strobe inputs)
V10H
1
V10L
1
V1H(S)
3
V1L(S)
3
0.025 -5.0t
2.0 0
5.0 -0.025
5.5 0.8
tThe algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level (VioLl
Unit Vdc
mA Vdc Vdc Vdc oc
Unit Vdc Vdc Vdc Vdc
ELECTRICAL CHARACTERISTICS (TA = Tiow · to Thigh· unless otherwise noted)
·characteristic
High-Level Input Current to 1A or 2A Input
(Vee= Max. VEE= Max. V10 = 0.5 V, Vic= -3.0 v
to +3.0 V) t
Low-Level Input Current to 1A or 2A Input
v. v (Vee= Max, YEE= Max, V10 = -2.0 Vic= -3.0
to +3.0 Vl t High-Level Input Current to 1G or_ 2G I ripu t
(Vee= Max, Vee= Max, V1H(Sl = 2.4 Vlt IVcc= Max, VEE= Max, V1H(S) = Vee Max)t
Low· Level Input Current to 1G or 2G Input <Vee= Max, Vee= Max, V1us1 = 0.4 Vlt
High-Level Input Current to S Input (Vee= Max, VEE= Max, V1HISl = 2.4 Vlt !Vee= Max, Vee= Max, V1H(SI =Vee Maxlt
Low-Level Input Current to S Input I Vee= Max, Vee= Max, V1LCSI = 0.4 V):j:
High-Level Output Voltage (Vee =.Min, VEE= Min, l1oad = -400µA,
v v 1c = -3.0 to +3.0 Vlt
Low-Level Output Voltage IVcc= Min, VEE = Min, I sink = 16 mA
v Vic= -3.0 to +3.0 Vlt
High-Level Leakage Current (Vee= Min, Vee= Min, VoH =Vee Maxlt
Short-Circuit Output Current # # IVcc= Max, Vee= Maxlt
High Logic·Level Supply Current from Vee (Vee= Max, Vee = Max, V10 = 25 mV, TA= +25°Cl :j:
High LogiC Level Supply Current from Vee IVcc =Max, Vee= Max, V10= 25mV, TA=+2s°Clt
Symbol l1H
l1L
Test Fig. 2
MC55107,MC75107 MC55108,MC75108 Min Typ# Max Min Typ# Max
30 75
-
30 75
-
2
-
- -10 -
- -10
Unit µA
·µA
l1H
4
l1L
4
l1H
4
Ill VoH
4 I
3
Vol
3
leex
3
·osc
5
ieeH
6
IEeH
6
-
- 40 -
- 40
µA
-
- 1.0 -
-
1.0
mA
mA
-
- -1.6 -
- -1.6
-
- 80 -
- . 80
µA
-
- 2.0 -
- 2.0
mA
- - -3.2 -
- -3.2
mA
v 2.4 - - -. - -
v
- - 0.4 -
- 0.4
µA
- - -
- - 250
mA
- -18
-70 - - -
mA
- 18 30 - 18 30
0 -8.4 -15 0 8.4 -15
mA
:t for conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable davice.wpe.
#All typical values are at Vee= +5.0 v. Vee= -5.0 v, TA= +25°e.
I #Not more than one output should be shorted at a time.
·T1ow =55°C for MC55107 and MC55108, =0 for MC75107 and MC75108
Thigh= +12s0 c for MC55107 and MC55108
= +10°c for MC75107 and MC75108
5-270
MC75107, MC55107, MC75108, MC55108
SWITCHING CHARACTERISTICS (Vee~ +5.0 v. VEE.~ -5.0 v. TA,_ -+25°el
Characteristic
Propagation Delay Time, low-to-high level from differential inputs A and B to output
(RL = 390 n, cl= 50 pFl (RL = 390 n, cl= 15 pf)
Propagation Delay Time, high-to-low level from differential inputs A and B to output
lRL = 390 n. cl= 50 pf) (RL = 390 n. cl= 15 pFl
Propagation Delay Time, low-to-high level, from strobe
= input G or S to output (RL 390 n, cl= 50 pf) (RL = 390 n. cl= 15 pFI
Propagation Delay Time, high-to-low level, from strobe input G or S to output
(RL = 390 n, CL= 50 pf) (RL = 390 n, CL= 15 pf)
Symbol tPLH(D)
Test Fig. 7
tPHL(D)
7
tPLH(S)
7
tPHL(S)
7
MC55107,MC75107 MC55108,MC75108 Min Typ Max Min Typ Max
- 17 25 - - - - - - 19 25
- 17 25 - - -
- - - - 19 25
- 10 15 - - -
- - - - 13 20
-
8.0 15 -
-- -
--
13 20
Unit ns
ns
ns
ns
FIGURE 1 - V10H and V1DL Vee 2G
TEST CIRCUITS
fri·~No..
Vic
!
-l1oad
I sink
I
291
I
L---·--g-~N-;; __ _J
-l1oad 2V
I sink VO
!
1Y
Vo
1
FIGURE 2 - l1H and l1L
·
NOTE: When testing one channel, the inputs of the other channel are grounded.
NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair are grounded
VIH(S)~ 1G TSeeset s
V1L(S) Table -2-G - - - - - - .
i r. Voo TSeeset Table Vic
FIGURE 3 - V1H(S)· V1L(S)· VoH. VOL· and. loH
TEST TABLE
1.s.i.n..k.·._'cEx
---+
l1oad
MC55107 MC55108 MC75107 MC75108
TEST
VoH VoH VoH Vol
'cex 1cex _
'cex VoL
V10 STROBE 1G or 2GI STROBES
+25 mV -25 mV ·25 mV -25mV
APPLY
V1H(S) V1L(S) V1H(S) V1H(S)
r V1H($)
I VtH(S)
1 VtL(S) V1H(S)
Vo NOTES: 1. Vic= -3.0 v to +3.0 v.
1
2. When testing one channel, the inputs of the other channel should be grounded.
5-271
MC751.07, MC55107, MC75108, MC55108
·
TEST CIRCUITS (continued)
FIGURE 4 - l1H(G). llL(G)· l1H(Sl·and l1L(S)
V1H(S)J See Test
1G
s
--- V1L(S)
Table 2G .
l1L(S)
t
See
V10
Test
i
Table
OPEN
::-
TEST 11 H at Strobe 1G l1H at Strobe 2G I 1H at Strobe S I 1L at Strobe 1G I 1L at Strobe 2G l1L atStrobeS
INPUT 1A +25 mV Gnd +25 mV -25 mV Gnd -25 mV
INPUT2A Gnd
+25 mV +25 mV
Gnd -25 mV -25 mV
STROBE 1G
VIH(S) Gnd Gnd
V1us1 Gnd
4.5 v
STROBES Gnd Gnd
V1H(S)
4.5 v 4.5 v
VIL(S)
STROBE 2G Gnd
VIH(S) Gnd Gnd
VIL(S)
4.5 v
FIGURE 5 - los
FIGURE 6 - Ice and IEE
Vee
- VEE
,_J_2~ ~ ~~-1-,
25 mV
1A I -
I 1Y
I
I
I
I
I
I
I I 2Y
251
I I
·
1os tI
':' L______!GND____ _J
25mV
NOTES: 1. Each channel is tested separately. 2. Not more than one output should be tested at one time.
5-272
DIFFERENTIAL INPUT
TEST CIRCUITS (continued)
FIGURE 7 - PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS
PULSE GENERATOR 1-411--+--t---i
See Note 1
OUTPUT MC55107 MC75107
INPUT A
Vee
STROBE INPUT ------4.,..._--'V'!JV--~
See Note 2 PULSE
GENERATOR See Note 1
"= See Note 4
390 390
15pF -=See Note~
STROBE
I
I
INPUT
I
I
1.5 v
G ors
I
I
I
~ t--- tpHL(D)
tpLH(D) ...., t--
I
I
OU~UT
~,_H_(-Sl_-of _ _
_
,
;
OV
NOT~S: 1. The pulse generators have the follo'wing characteristics: z 0 = 50 fl., tr= tf = 10 _:t5 ns, tp 1 = 500 ns, PAR= 1 MHz tp2 = 1 ms, PAR= 500 kHz.
2. Strobe input pulse is applied to Strobe 1G when Inputs 1A-1 B are being tested, to Strobe S when Inputs 1A-1 B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.
3. CL includes probe and jig capacitance. 4. All diodes are 1N916 or equivalent.
TYPICAL APPLICATION
FIGURE 8 - MOS- TO-TTL TRANSLATOR
+5 v
18 k
- - - - - - - . DATA MOS MEMORY OUT [MC1103 TYPE)
200
200
1/2 MC75107 OR MC75108
STROBES
·
ORDERING INFORMATION
Device Temperature Range
MC75110L MC75110P
0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Plastic DIP
MC75110
·
DUAL LINE DRIVER
The MC75110 dual line driver features independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input.terminals. Output current can be switched "off"'(inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally 12 mA. ·
The inhibit feature permits use in party-line_ or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, IO(off), is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).
All driver outputs have acommqn-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.
· Insensitive to Supply Variations Over the Entire Operating Range · MTTL Input Compatibility · Current-Mode Output (12 mA typical)
· High Output Impedance · High Common-Mode Output Voltage Range (-3.0 V to +10 V}
·· Inhibitor Available for Driver Selection
DUAL LINE DRIVER SILICON MONOLITHIC INTEGRATED CIRCUIT
LSUFFIX CERAMIC PACKAGE
CASE 632 (T0-116)
P SUFFIX PLASTIC PACKAGE
CASE 646
Vee
OUTPUTS 1Y 1Z
INHIBIT
INPUT OUTPUTS
Vee 0 2Z 2Y
1A 1B LOGIC INPUTS
1C 2C INHIBIT INPUTS
2A 2B GND LOGIC INPUTS
TRUTH TABLE
INHIBITOR
LOGIC.INPl.:tTS
A
B
INPUTS
c D
Lor H Lor H L
Lor H
Lor H Lor H Lor H L
L
Lor H H
H
Lor H 'L
H
H
H
H
H
H
OUTPUTS
y z
H
H
H
H
L
H
L
H
H
L
Low output represents the "on" state. High output represents the "off" state.
MC75110
MAXIMUM RATINGS (TA= Oto +7o0 c unless otherwise noted.I
Ratings
Power Supply Voltages (See Note 1)
Logic and Inhibitor Input Voltages
(See Note ti
Common-Mode Output Voltage Range (See Note 11
Power Dissipation ·(Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above TA = +25°C
Operating Temperature Range
Storage Temperature Range
(
Ceramic Dual In-Line Package Plastic Dual In-Line Package
Symbol Vee VEE Vin
VocR
Po
TA Tstg
Value +7.0 -7.0 5.5
-5.0to+12
1000 3.85 Oto +70
-65 to +150 -65 to +150
Unit Volts
Volts
Volts
mW mW/0 c
oc oc
RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.l
Characteristic
Symbol
Power Supply Voltages
Vee VEE
Common-Mode Output Voltage Range Positive Negative
VocR
Min +4.75 -4.75
0 0
Note 1. These voltage values are in respect to the ground terminal. Note 2. When using only one channel of the line drivers, the other channel should be
inhibited and/or its outputs grounded.
Norn '+5.0
-5.0
-
-
-,-
Max +5.25 -5.25
+10 -3.0
Unit Volts
Volts
·
DEFINITIONS OF INPUT LOGIC LEVELS*
Characteristic
Symbol
Test Fig.
Min
High· Level Input Voltage (at any input)
VtH
1,2
2.0
Low-Level Input Voltage (at any input)
V1L
1,2
0
* The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.
Max
Unit
5.5
Volts
0.8
Volts
5-275
MC75110
·
ELECTRICAL CHARACTERISTICS (TA= o to +7o0 c unless otherwise noted.)
Characteristic # #
Symbol Test Fig.
MC75110 Min Typ #
High-Level Input Current to 1A, 18, 2A or 28
l1HL
1
(Vee= Max, VEE= Max, V1HL = 2.4 V)# (Vee= Max, VE:::= Max, V1HL =Vee Max)
-
-
-
-
_Low-Level ,Input Current to 1A, 18, 2A or 28
l1LL
1
(Vee =,Max, VEE= Max, V1LL = 0.4 V)
-
-
High-Level Input Current into 1C or 2C (Vee= Max, VEE= Max, V1H1 = 2.4 V)
l1H1
2
-
-
(Vee= Max, VEE= Max, V1H 1 =Vee Max)
-
-
Low-Level Input Current into 1C or 2C (Vee= Max, VEE= Max, V1 Li = 0.4 V)
l1L1
2
-
-
High-Level Input Current into D (Vee= Max, VEE= Max, V1H1=2.4 V)
l1H1
2
-
-
(Vee= Max, VEE= Max, V1 Hi =Vee Max)
-
-
Low-Level Input Current into D (Vee= Max, VEE= Max, V1 L1 = 0.4 V)
l1L1
2
-
-
Output Current ("on" state) (Vee= Max, VEE= Max) (Vee= Min, VEE= Min)
IO(on)
3
-
12
6.5
-
Output Current ("off" state) (Vee= Min, VEE =Min)
lo(offl
3
-
Supply Current from Vcc (with driver enabled)
1.CC(on) 4
(V1LL=0.4 V, V1Hi = 2.0 Vl
-
28
Supply Current from VEE (with driver enabled) (V1LL=0.4 V, V1 Hi = 2.0 V)
IEE(on) 4
-
-41
Supply Current from Vee (with driver inhibited) Ieeloff) 4
(V1 LL= 0.4 V, V1 Li = 0.4 V)
-
21
Supply Current from VEE (with driver inhibited) IEE(off) 4 (V1L_1. = 0.4 V, V1 Li= 0.4 V)
-
-17
Max
40 1.0
--3.0
40 1.0
-3.0
80 2.0
-6.0
15 -
100
'
35
-50
-
-
#All typical values are at Vee= +5.0 V, VEE= -5.0 V. ##For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditio~s for the applicable qevice type.
Unit
,,.A mA mA
µA mA mA
µA mA mA mA
µA mA mA mA mA
SWITCHING CHARACTERISTICS (Vee= +5.0 V, VEE= -5.0 V, TA= +25°C.)
Characteristic
Symbol
Test Fig.
Propagation Delay Time from Logic Input A or 8 to Output Y or Z (R L = 50 ohms, CL= 40 pF)
5
tPLHL tPHLL
Propagation Delay Time from Inhibitor Input C or D . to Output Yor Z (RL =. 50ohms, CL= 40 pF)
tPLH1 tPHL1
5 /
Min
-
-
-
Typ
9.0 9.0
16 13
Max
15 15
25 25
Unit ns
ns
MC75110
TEST CIRCUITS
Vee
VEE
----L11Y
-lo(on)
See Table
OUTPUTS
-lo(off)
TEST AT ANY LOGIC INPUT
V1HL
LOGIC INPUTS NOT UNDER TEST
Open
V1LL
Vee
l1HL l1LL
4.5 v
Gnd
TEST TABLE
ALL INHIBITOR INPUTS V1H1
V1H1
V1H1 V1H1
OUTPUT 1Y or 2Y
H (See Note 1)
L (See Note 1)
Gnd
Gnd
OUTPUT 1Zor2Z
L (See Note 1)
H (See Note 1)
Gnd
Gnd
NOTES: 1. Low output repre5ents the "on" state, high output represents the "off" state.
2. Each input is tested separately.
'
3. Arrows indicate actual direction of current flow.
FIGURE 2 - VIH· VIL· l1H. l1L
Vee
VEE
j ____ l-.
r 1A
11Y
-lo(on)
See Table
OUTPUTS
-lo(off)
TEST AT ANY INHIBITOR INPUT
V1H1
V1L1 l1H1 l1L1
ALL LOGIC INPUTS
VIH_J
v,l:J.
V1HL
v,l:J.
Gnd
Gnd
TEST TABLE
INHIBITOR INPUTS NOT UNDER TEST
Open Open
Vee Vee
4.5 v
Gnd
OUTPUT 1Y or 2Y
H(See Note 1) L(See Note 1) H(See Note 1) H(See Note 1)
Gnd Gnd
OUTPUT 1Z or 2Z __L(See Note 1) H(See Note 1) H(See Note 1) H(See Note 1)
Gnd Gnd
5-277
·
MC75110
·
TEST CIRCUITS (continued)
FIGURE 3- lo(on) and lo(off)
Vee
Vee
j ____l,
r 1A
1Y
-lo(onl
See Table
OUTPUTS
-lo(offl
TEST Ground all output pins
not under test.
lo(on) lo(on) lo(offl
at output 1Yor 2Y
at output 12 or 22 at output 1Y or 2Y
lo(offl
at output 12 or 2Z
· lo(off)
at output 1Y, 2Y, 12, or 2Z
TEST TABLE
LOGIC INPUTS 1A.or 2A 1Bor 2B
VIL VIL V1H
VIL V1H VIL
V1H
V1H
V1H
VIL VIL V1H
Either state
V1H
VIL VIH VIL
Either state
INHIBITOR INPUTS
1C or 2C
D
V1H
V1H
V1H V1H
V1H '""1
V1H
V1H
VIL VIL V1H
V1H
VJL V1H VIL
FIGURE 4- Ice and IEE
lee(onl
lee(on) lee<offl
1 lee<offl
TEST TABLE
TEST Driver e'nabled Driver enabled Driver inhibited Driver inhibited
ALL LOGIC INPUTS
ALL INHIBITOR INPUTS
V1L
VIH
VIL
V1H
VIL
VIL
VIL
J
VIL
J
5-278
MC75110
TEST CIRCUITS (continued)
FIGURE 5- PROPAG.ATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS
LOGIC INPUT
Pulse Generator
#1
Pulse Generator
#2
INHIBITOR INPUT
Vee Vee
890
_ _...._..... -....-~J-4.__.,__...,.
0UTPUT
y
I
140CL pF
I I
._________..,_.. z OUTPUT
I D
I TO OTHER
. I
-G-:-Dr-- L! CHANNEL
__j
LOGIC INPUT A or B
INHIBIT
~NPUT
C or D tPLH(L)
OUTPUT y
OUTPUT
z
tPHL(L)
. /\-3V
~
\.__OV
tp2---,----3V
--------.-·+----~ov tPHL(IN)
tPHL(L)
·
NOTES:
1. The pulse generators have the following characteristics: z0 = 50 fl, t, = tf = 10 ±.5 ns, tp1 = 500 ns, PAR = 1 MHz,
tp2 = 1 ms, PAR= 500 kHz.
2. CL includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.
5-279
MC75110
·
:E
<(
a:
<:}
<(
E
1-
uu3a:
5-280
ORDERING INFORMATION
Device MC75140P1
Temperature Range 0°C to +70°C
Package Plastic DIP
DUAL LINE RECEIVER
The MC75140P 1 is a dual line receiver with common Strobe and Refererice inputs. The Reference voltage is externally applied. This voltage may range from 1.5 to 3.5 volts, thus allowing for adjustment of maximum noise immunity in a given system design. The MC75140P1 is intended for use as a single-ended receiver in MTTL systems. U;;e in a party-line (bus-organized) system is aided by the low input current of the receiver. · Single +5.0-Volts Power Supply · ±100-mV Sensitivity · Low Input Current · MTTL Compatible Outputs · Adjustable Reference Voltage · Commo~ Output Strobe
CIRCUIT SCHEMATIC (1/2 Circuit, Shown)
INPUTS
470 REFERENCE
INPUT
STROBE INPUT
TYPICAL APPLICATION HIGH FAN-OUT FROM A STANDARD MTTL GATE
STROBE INPUT
MC5400 OR MC7400 LOGIC
*Most MC5400/MC7400 devices are capable ot maintaining
a 2.4-voltlevelunderloadsupto7.5mA.
·
MC75140
DUAL LINE RECEIVER MONOLITHIC SILICON INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 626
PIN CONNECTION$
Vee OUTPUT REF. LINE
?
INPUT INPUT 2
·
OUTPUT STROBE LINE GND
1
INPUT INPUT 1
FUNCTION TABLE
LINE INPUT STROBE OUTPUT
Vref - 100 mV
L
H
Vref + 100 mV
x
L
x
H
L
Positive Logic
= = H High Level, L Low Level,
X = Nonsignificant
5-281
MC75140
·
o MAXIMUM RATINGS ITA= to +10°c unless otherwise noted.I
Rating Supply Voltage Reference Voltage Line Input Voltage (with respect to Ground) Line Input Voltage (with respect to Vrefl Strobe Input Voltage Power Dissipation (Package Limitation)
Plastic Dual In-Line Package Derate above TA = +25°C
Operating Temperature Range (Ambient) Storage Temperature Ral)ge
Symbol Vee Vref V1(L)
V1(L)-Vref V1(S) Po
TA Tstg
Value 7.0 5.5
-2.0 to +5.5 ±5.0 5.5
830 6.6 Oto +70 -65 to +150
Unit Volts Volts Volts Volts Volts
mW, mW/°C
oc oc
RECOMMENDED OPERATING CONDITIONS Rating
Symbol
Min
Nom
Max
Power Supply Voltage Reference Voltage Range Input Voltage Range (Line or Strobe) Operating Ambient Temperature Range
Vee
4.5
5.0
5.5
Vref R
1.5
-
3.5
V1R
0
-
5.5
TA
0
-
+70
ELECTRICAL CHARACTERISTICS !Vee= 5.0 v ±10%; Vref = 1.5 to 3.5 V, TA= Oto +7o0 c unless otherwise noted.I
Characteristic
Symbol
Mi.n
Typ*
Max
High-Level Line Input Voltage
V1H(L) Vref + 100
-
-
Low-Level Line Input Voltage High-Level Strobe Input Voltage Low-Level Strobe Input Voltage
VJL(L)
-
V1H(S)
2.0
VJL(S)
-
-
Vref -100
-
-
-
0.8
High-Level Output Voltage VIL(L) = Vref -100 mV, VJL(S) = 0.8 V, loH = -400 µA
VoH
2.4
-
-
Low-Level Output Voltage V1H(L) = Vref + 100 mV, VJL(S) = 0.8 V, IOL = 16 mA V1L(L) = Vref -100 mV, V1H(S) = 2.0 V, IOL = 16 mA
Vol
-
-
-
0.4
-
0.4
Strobe Input Clamp Voltage ll(S) = -12 mA
V1(S)
-
-
-1.5
Strobe Input Current (at max Input Voltage) V1(S) = 5.5 V
l1(S)
-
-
2.0
High-Level Input Currents
Strobe (V11s1 = 2.4 \fl
Line (V1(L) =Vee. Vref = 1.5 VI Reference IVref =·3.5 V, V1(L) = 1.5 V)
.
llH(S)
-
llH(L)
-
l1H(refl
-
-
80
35
100
70
200
Low-Level Input Currents Strobe (V11s1 = 0.4 VI Line (Vl(L) = 0 V, Vref = 1.5 VI. Reference (Vref =.O V, V1(L) = 1.5 VI
l1L(S)
-
l1L(L)
-
l1L(ref)
-
-
-3.2
-
-10
-
-20
Short-Circuit Output Current**
v Vee =.5.5
ios
-18
-
-55
Supply Current (output high) V1(S) = O·V, V1(L) = Vref -100 mV
iccH -
18
30
Supply Current (output low) V1(S) = 0 V, V1(L) = Vref + 100 mV
iccL
·-
2Q
35
Unit Volts Volts Volts
oc
Unit mV mV Volts Volt Volts
Volt
Volts
mA
µA
mA µA µA mA
mA
mA
SWITCHING CHARACTERISTICS!Vcc = 5.0 V, Vref = 2.5 V, CL= 15 pF. R L = 400 n. TA= +25°C unless otherwise noted.I
See Figure 1
Characteristic
Symbol
Min
Typ
Max
Unit
Propagation Delay Time (low-to-high level output from Line input)
tPLH_l_Ll
-
Propagation Delay Time (high-to-low level output from Line input)
tPH_IJ_L_l
-
Propagation Delay Time (low-to-high level output from Strobe input)
tPLH(S)
-
22
35
ns
22
30
ns
12
22
ns
Propagation Delay Time (high-to-low level output from Strobe input)
tPHL(S)
-
8.0
15
ns
*All typical values are at Vee= 5.0 V, TA= +25°c. **Only one output should be shorted at a time.
5-282
MC75140
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS
Vref
2.5 v
Vee
OUTPUT
LINE INPUT --t-<>--:---f".......___...--.
STROBE --<>-t-----t..._-- I
INPUT
L----1- - I I
MC75140P1 I
.
_J
CL= 15pF or equiv
-=
-= (include stray and jig capacitance)
ITLH "1005 --l 14--
f I
I
I
LINE INPUT l0% I
lsetnoteA)
I
I
I
STROBE
I
INPUT
I
IPHL(L)
OUTPUT
VOH
l.5V
'-----'-----Vol Note: lnputpulsesaresuppliedbygeneratorshavingthefollowing
characteristics: PAR= 1.0 MHz. duty cycle.;;; 50%, z0 ~ 50.U.
FIGURE 2-0UTPUT VOLTAGE versus LINE INPUT VOLTAGE
5.0
----------...+---+---+- g 4.0
Ve~= 5.0 ~ Vref =2.5 V --1
_, vi~~: ~2~oc
:0::.
w
3.0
"<'t
~
.>0... 2.0
.~...
~
0 1.0
>c:i
0
0
1.0
2.0
3.0
4.0
5.0
Vin(L), LINE INPUT VOLTAGE (VOLTS)
·
FIGURE 3- SCHMITT TRIGGER
SIGNAL INPUT
STROBE
FIGURE 4 -TRANSFER CHARACTERISTIC$ FOR
SCHl\lllTT TRIGGE~
4.0
1
1
TA 7+250c
~ 3.0
:0::.
w
~"' 2.0
> 0
i-
~Q 1.0
>ci
0 0
~-
0.6
1.0
1.5
2.0
2.5
3.0
3.6
V1n. ltllf'UTVOLTAGE (VOLTS)
5-283
MC75140
FIGURE 5- GATED OSCILLATOR
Vref
OUTPUT
15 k
STRO~
·
FIGURE 6 - GATE OSCILLATOR FREQUENCY versus RC TIME CONSTANT
lOO~~~~~~~~tl~~~~~~~=t~~f:t~
tw=¥
40
-\-
Vee= 5v
Vref = 1.5 V
'~ 20r-;....
J.-"'
g 10 1---t--+---l:::i-t-t-t-
TA=+25°c
=>
:Y-
~ l===t=t Vref - 2.5 V
-·- 4.0 ~-+-+--~"----1--1-+-+-Hf-l--+---l---'-1--+--+--+-+-+-H
2.0 ~-+--1-----1--l---l--1-+.+4-1----1----1----1---+--+-+-t-+--H
1.0 ._____.__.._____,_..__...._......._....._._,__..___.__..__.__.__._........_.......
0.1
0.2
0.4
1.0
2.0
4.0
10
RC TIME CONSTANT (µs)
tw
FIGURE 7 - DUAL BUS TRANSCEIVER +5 v
5-284
ORDERING INFORMATION
Device
MC55325F MC55325L MC75325F MC75325L MC75325P
Temperature Range
-55°C to +125°C -55°C to + 125°C
0°c to +10°c 0°c to +70°C 0°c to +10°c
Package
Ceramic Flat Ceramic DIP Ceramic Flat Ceramic DIP Plastic DIP
Specifications and Applications Information
DUAL MEMORY DRIVER
The MC55325/75325 is a monolithic integrated circuit memory driver with logic inputs, and is designed for use with magnetic memories.
The device contains two 600-mA source-switch pairs and two 600-mA sink-switch pairs. Source selection is determined by one of two logic inputs, and source turn-on is determined by the source strobe. Likewise, sink selection is determined by one of two logic inputs, and sink turn-on is determined by the sink strobe. With this arrangement selection of one of the four switches provides turn·on with minimum time skew of the output current rise. · 600-mA Output Capability · Fast Switching Times · Input Clamp Diodes · Dual Sink and Dual Source Outputs · MDTL and MTTL Compatibility · 24-Volt Output Capability
TYPICAL APPLICATION
I
+
MC75325 MC55325
DUAL MEMORY DRIVER
SILICON MONOLITHIC. INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 620
F SUFFIX
CERAMIC PACKAGE
· ·1
P SUFFIX
CASE 650
PLASTIC PACKAGE
CASE 648
.(MC75325 only)
·
1/2 MC75325 Each
1/2 MC753'25 Each
Source Collectors
w
$1 Strobes
1S2
Gnd
Node
MC75325, MC55~25
·
MAXIMUM RATINGS ITA = 25° unless otherwise noted)
Rating
Symbol
Value
Supply Voltage (Note 1) Input Voltage
Vcc1
7.0
Vcc2
25
V1
5.5
Power Dissipation (Package Limitation) Ceramic and Plastic Packages Derate above TA= +25°C
Po 1.0
6.6
Operating Ambient Temperature Range MC55325 MC75325
TA -55 to +125 0 to +70
Storage Temperature Range
Ts!ll_ -65 to +150
Note 1. Voltage val1:1es are with respect to the network ground ter1:11inal.
Unit Vdc Vdc Vdc
w
mW/°C oc
oc
TRUTH TABLE
ADDRESS INPUTS
SOURCE
A
B
L
H
H
L
x x
x x
x x
H
H
SINK
c D
x x x x
L H
H L
x x
H H
STROBE INPUTS
SOURCE SINK
51
S2
L
H
L
H
H
L
H
L
H
H
x
x
OUTPUTS
SOURCE SINK
wx yz
·On Off Off Off Off On Off Off Off Off On Off Off Off Off On Off Off Off Off Off Off Off Off
H = high level, L = low level, X = irrelevant
NOTE: Not more than one output is to be on at any one time.
ELECTRICAL CHARACTERISTICS (TA= Tiow to Thigh unless otherwise notedl 111
Characteristic
Input Voltage - High Logic State
Input Voltage - Low Logic State
Input Clamp Voltage IVcc1=4.5 V, Vcc2 = 24 V, 11 = -10 mA, TA= 25°Cl
Output Current - Off State 1vcc1 = 4.5 v. Vcc2 = 24 vi
TA = T10 w to Thigh TA= 25°c
Output Voltage - High Logic State 1vcc1 = 4.5 v. vcc 2 = 24 v. 10 = 01
Saturation Voltagel31 Source Outputs
IVcc1=4.5 V, Vcc2 = 15 V, lsource"" -600 mA, AL= 24 ohms,
Note 4)
TA = T1ow to Thigh
TA= 25°c
Sink Outputs
= CVcc1 =4.5 v, Vcc2 15 V, lsink ""600 mA, AL= 24 ohms,
Note 4)
TA= T1ow to Thigh
TA= 25°C
Input Current at Maximum Input Voltage
(Vcc1 = 5.5 v, Vcc2 = 24 V, V1 = 5.5 V) Address Inputs Strobe Inputs
Input Current - High Logic State
cvcc1 = 5.5 v. Vcc2 = 24 v. V1 "'2.4 vi
Address Inputs Strobe Inputs
Input Current - Low Logic State
(Vcc1 "'5.5 V, Vcc2"' 24 v. V1"'0.4 V) Address Inputs Strobe Inputs
MC55325
MC75325
Symbol Min Typl21 Max Min Typ(2) Max Unit
- - - V1H 2.0
2.0
-
v
V1L
- - 0.8 - - 0.8
v
v,
- -1.3 -1.7 - -1.3 -1.7
v
I off
µA
- - 500 - - 200
- 3.0 150 - 3.0 200
VoH 19 23
-
19 23
-
v
Vsat
v
- - 0.9
- 0.43 0.7
- - 0.9
- 0.43 0.75
- - 0.9 - 0.43 0.7
- - 0.9
- 0.43 0.75
11
mA
- - - 1.0 -
1.0
- - 2.0 - - 2.0
l1H
µ.A
- - 3.0 40
3.0 40
- 6.0 80 - 6.0 80
l1L
mA
- -1.0 -1.6
- -2.0 -3.2
- -1.0 -1.6
- -2.0 -3.2
Supply Current - Output Condition Off
' c c Cott
IVcc1=5.5 V, Vcc2- 24 V, TA.= 25°CI From Vcc1 From Vcc2
Supply Current from Vcc1. Either Sink "On"
v. IVcc1·5.s.v.· Vcc2 = 24 'sink= 50 mA, TA· 25°CI
Supply Current from Vcc2. Either Sourc:e "On"
v. v, c1 IVcc1 .. S.5 Vcc2 .. 24 lsourc:e = -60 mA, TA= 2s0
1cc1 1cc2
--
1
14 7.5
22 20
- 55 70
- 32 60
( 11
=-ss c o c Tiow
0 for MC55326, 0 for MG76326
Thigh,. +125°c tor MC55325, +7o0 c for MC75325
(21 All typicei values are at TA"' 26°C
(3) Not more then one output is to be "on" at any one time.
(4) Sat.ur.ation voltage must be measured using pulse techniques: Pulse Width = 200 µ.s, Duty Cycle < 2%
- 14
- 7.5 ·- 65
- 32
mA
22. 20 70 mA
60 mA
5-286
MC75325, MC55325
SWITCHING CHARACTERISTICS (Vcc1 = 5.0 V, CL= 25pF, TA= 25°c1
Characteristics
Propagation Delay Time to Source Collectors !Vcc2=15 V, RL = 24 ohms) Low-to-High Level High-to-Low Level
Transition Time
(Vcc2 = 20 v, RL = 1 k ohms)
Low-to-High Level High-to-Low Level
Propagation Delay Time to Sink Outputs
(Vcc2 = 15 v, RL = 24 ohmsl Low-to-High L:evel
High-to-Low Level
Transition Time (Vcc2 = 15 V, RL = 24 ohms)
Low-to-High Level Output High-to-Low Level Output
Storage Time to Sink Outputs (Vcc2 = 15 V, RL = 24 ohms)
Symbol
tPLH tPHL
tTLH tTHL
tPLH tPHL
tTLH tTHL
ts
MC55325/MC75325
Min
Typ
Max
-
25
50
-
25
50
-
55
-
-
7.0
-
-
20
45
-
20
45
-
7.0
15
-
9.0
20
-
15
30
FIGURE 1 - SWITCHING TIMES TO SOURCE COLLECTORS AND SINK OUTPUTS
Unit
ns ns
ns ns
ns ns
ns ns ns
Pulse
Input OUtput
FIGURE 2 - PROPAGATION TIME TO SOURCE COLLECTORS
V CC2 = + 15 V T~u~~~~~
24
w x
Pulse
CL Includes Probe and J°ig Capacitance
Source W Shown Under Test
Input Pulse Characteristics: z0 = 50il, Pulse Width = 200 ns, tTLH = tTHL.;;; 10 ns, Duty Cycle.;:; 1%
FIGURE 3 - PROPAGATION TIME, TRANSITION TIME AND STORAGE TIME
TO SINK OUTPUTS
To Scope (Output)
Vcc2 =+1s v----~
24 y
·
z
C1.,. 25 pF
Gnd
CL Includes Probe and Jig Capacitance Sink Y Shown l)nder Test
FIGURE 4 - SWITCHING TIMES ON SOURCE OUTPUTS (See Figure 5)
3.0V~
I
Input
. \
0 v
. ---------
Output :::___...1_0-~-1t~LH ~HL~
Input Pulse·Characterlstics: tTHL.. = tTLH.;;; 10 ns, Duty Cycle<: 1%
Pulse Width = 200 ns
5-287
MC75325, MC55325
FIGURE 5 - TRANSITION TIME ON SOURCE OUTPUTS
To Scope (Input)
350
----'VVI......--- V Cc2 = 20 V
·
Pulse Generator
1 k
1 k CL Includes Probe and Jig Capacitance
Source W Shown Under Test
TYPICAL PERFORMANCE CURVES
FIGURE 6 - SOURCE COLLECTOR CURRENT (Off-State) versus AMBIENT TEMPERATURE
100 0
r:= 500 vcc1=4.5 v i--- vcc2 = 24 v
-z
17
vr ·
71
.v7
~
~
L ~
2.0
1.0 -60 -40 -20
20 40 60 80 100 120 140
TA, AMBIENT TEMPERATURE (OC)
FIGURE 7 - SINK OUTPUT VOLTAGE-HIGH STATE VoH
versus AMBIENT TEMPERATURE
en
:; 24
0
~ 21
-
I<l;; 18
(.J
'~3 15
:I:
~ 12
uJ
:;<C!:l 9.0
0
>
6.0 ~ vcc1 =4.5V
\
~
v_t2=24t
~ 3.0
0
:i 0 ~ -75 -50 -25
25
50
75 100 125
TA, AMBIENT TEMPERATURE (OC)
FIGURE 8 - SOURCE OR SINK SATURATION VOLTAGE versus AMBIENT TEMPERATURE
0.8 ,..---.....,..--,.------,..---.,..--~--~-vcc1 = 4.5 v
sen 0.1 vcc2 = 15 v lsource or Isink= IS :0::. 0.6 1 - - - - - + - - - - + - - - - < t - - - - + - - - + - - - ' - - _ , __ _ w
C!:l
~ 0.5
0
s~ 0.41---+~......~:::::::.-jb--+""""-~:::::::.~---+-"""""'= 0.31---+=---1=-~~::::::::t==-_j_,~~====:::t:==:=:j
=> ~ 0.2 l---....::+='---+--/!--l'-----1----+
.:J 0.11----+--+----l---+--""""'-+----l---+----I
-75 -50
-25
25
50
75
TA, AMBIENT TEMPERATURE (OC)
100 125
FIGURE 9 - SOURCE OR SINK SATURATION VOLTAGE versus SOURCE OR SINK CURRENT
0.8 ~-.....,..----,---~-~---.-'-----~-~
vcc1=4.5 v
e:n; 0.7 vcc2=15v-+--+----l'----'-+---+----1---
0
:::. 0.61----+--+---l----+--+----l~--+--w
C!:l
~ 0.51---+=--~--t-\---+.--4\~.-.""""lf-=-oq..-~
> 0 z
0.4
s 0 0.3
=>
~ 0.2
0.1 Rext RL
0 -
250 300
620 540 470 425 385
41
36
31
28 ' 26
350 400 450 500 550 Is, SOURCE OR SINK CURRENT (mA)
350 24
600 650
MC75325, MC55325
APPLICATIONS INFORMATION BASE DRIVE RESISTOR
An internal 575 .Q resistor connected between the Vcc2 and the Rint terminals is provided in the MC55325/ 75325 to supply sufficient base drive for source currents to 375 mA at Vcc2 of 15 Volts or 600 mA at Vcc2 of 24 Volts. Connecting the R node to the Rint node selects this internal resistor. ff source currents greater than 375 mA are required, the Rint node should be left open and an appropriate resistor connected between Vcc2 and the R node. This method allows source base drive currents regulated to typically within ± 5%. This tias an added advantage of removing the power dissipated in the resistor from the IC package, allowing the device to source greater currents at a given junction temperature.
The value of the required external resistor in a "particular memory application may be computed using the following equation:
16 (Vcc2 min-Vs-2.2)
Rext IL -1.6 (VCC2 min-Vs-2.9)
(1)
Where: Rext = k.Q. Vs =the source output voltage referred to ground. IL = rriA.
During the load current pulse the power dissipated in the resistor, Rext is
PRext
~
IL
(VCC2 min-Vs-2) 16
(2)
Where: PRext = mW.
The source collector current lcs is approximately 94%
of total load current, IL· The remaining current flows in
the base of the source transistor through the external
resistor Rext or the source gate. See Figure 10 for added
, details.
·
An internal puff-up resistor in parallel with a clamping diode to VCC2 is provided at each si nd-output collector to protect against voltage surges generated by switching reduction loads.
FIGURE 10 - TYPICAL CIRCUIT USED FOR RextCALCULATION
l 'cs
One Source
Section of MC75325
Vs
Memory Element
~
·
Section of Another MC75325
SELECTION MATRIX
The combination of current source and sink pairs within the MC75325 is often utilized to implement a selection matrix for core memory systems. A typical, simplified system is shown in Figure 11.
The selection of any particular line (line 7, for example) is made by activating a particular, unique combination of two source/sink pairs. For an example, with
the Mode Select input high and ITT low, current source X
of #1 MC75325 will be activated. This selects lines 4-7. When inp~t C4 goes low, on #4 MC75325, current will
flow through line 7 from source X (of device #1) to sink y of device #4.
Changing the logic state of device #1 to input D1 low, device. #4 to input A4 low, and applyitlg a low to the Mode Select input, reverses the direction of the current in line 7 with the #1 MC75325 sinking the current and the #4 device sourcing it.
Drive line inductance and capacitance only limits the number of drive lines a source/sink pair can drive and thus the size of a matrix possible.
5-289
·MC75325, MC55325
·
Al, Irr> CT,
A
r--c 51
,, B
M c
7
,., 5
-q c 3
w 1 ,, 1r1rj_o
y
~~j 3
x
r1r}_4
Drive Lines & Cores
15l
rl S2
2 5
D
z
,, 1r t j 1
FIGURE 11 - TYPICAL .
~.,
w t~ A
rl-< S1 M
2
~
*1~·x 8
M'>
B C 7 y
t ,r j 1 1
C2 ... in"
6
c
3 2
t-< S2 6
c
x .tifi12
z
fu1s
~
'~ ~
~
APPLICATION· CORE MEMORY SELECTION MATRIX
A3> 83
C3 ~"
A
w
3 ~,r - t j _ 1 s
~ 51 B
M
c
7 y
jo.:!r-t_j19
6
c
3 2
x
-~, ''tJ:.20
t--<= S2 5
D
z
jo ~r t j 2 3
1:: ~
·o--It> Mode
Select
4~5~
w lw MCv75x32_5 zl
MCv75x325 zj
A 51 B C S2 D A 51 B C S2 0
1]I m
l l
_y:y:y J 1J
~Pl
l l T1 l 1
5-290
ORDERING INFORMATION
Device Temperature Range
MC75365L MC75365P
0°c to +70°C 0°c to +70°C
Package
Ceramic DIP Plastic DIP
MC75365
Specifications and Applications Information
QUAD MOS CLOCK DRIVER OR HIGH-VOLTAGE, HIGH-CURRENT NANO DRIVER
The MC75365 is intended for driving the highly capacitive Address, Control and Timing inputs on a variety of MOS RAMs such as the "1103" and "7001" types. It is designed to operate from the MTTL 5.0 V power supply and the Vss and Vss power supplies used with the memories in most applications. Operation is recommended at VcCJ ~ Vcc2 + 3 V, but the part is useable over a wide latitude of supply voltages. Vcc2 may be tied directly to Vcc3 in many conditions. , · Pin Compatible with Intel 3207 and Interchangeable with T. I.
SN75365 · MTTL and MOTL Compatible, Diode-Clamped Inputs · Two Common Enable Inputs per Gate Pair · Low Standby Power Consumption Transient · Capable of Driving High Capacitive Loads · Fast Switching Operation
QUAD MOS CLOCK DRIVER
SILICON MONOLITHIC INTEGRATED CIRCUITS
l SUFFIX.
CERAMIC PACKAGE CASE 620
PSUFFIX
PLASTIC PACKAGE CASE 648
PIN CONNECTIONS
·
5,0 v 19 v
TYPICAL APPLICATION with '7001" Type 1 K RAM
7.5V 15V
5,0V
Vcca
MTTL { fnputs
Chip Select
Vsx
-3,0 v
MTTL Inputs
5-291
TRUTH TABLE
INPUT
1
2
3 OUTPUT
H
H
H
L
L
I
I
H
l
L
I
H
I
I
L
H
Where: H = High Logic State L s Low Logic State I = I "' Irrelevant
MC75365
5.0 v Vcc3
TYPICAL APPLICATION with "1103" Type 1 K RAM
19.5V 16V
5.0 v
·
IMnpTuTtLs { ,
Vcc2 Data In
MC75365
Precharge
Chip Enable
"1103" Type 1--<J------<..>-1 PMOS RAM
Read/Write
Gnd
Voo
Lines
Grid
MTTL Inputs
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Power Supply Voltages
Rating
Input Voltage Input Differential Voltage (see Note 1) Power Dissipation (Package Limitation)
Ceramic Package @TA = 25°C Derate above TA = 25°.c
Plastic Package@ TA= 25°C Derate above TA = 25°C
Ceramic Package @Tc =, 25°C
Derate above Tc = 25°C
Plastic Package@ Tc = 25°C
Derate above Tc = 25°C
Operating Ambfent Temperature Range Junction Temperature
Ceramic Package Plastic Package
Storage Temperature Range
Note 1, This is the differential voltage between any two inputs to any single gate.
RECOMMENDED OPERATING CONDITIONS
Characteristic Power Supply Voltages
Difference between Vcc3 and Vcc2 Operating Temperature Range
Symbol
Vcc1 Vcc2 Vcca Vcc3-Vcc2
TA
Min 4.75 4.75 Vcc2
0 0
5-292
" Symbol Vcc1 Vcc2 Vcc3 Vi V10
Po 1/ReJA
Po 1/ReJA
Po 1/HeJC
Po 1/ReJC
TA TJ
Tstg
Value -0.5 to 7.0 --0.5 to 25 -0.5 to 30
5.5 5.5
1000 6.6 830 6.6 3.0 20 1.8 14 Oto 70
175 150 -65 to +150
Unit ,V
v
v
mW mW/°C
mW mwt0 c Watts mW/°C Watts mW/°C
oc oc
oc
Typ
Max
Unit
5.0
5.25
v
20
24
24
28
4.0
10
v
-
70
oc
MC75365
ELECTRICAL CHARACTERISTICS (Unless otherwise noted TA= 25°c, Vcc1 = 5.0 V, Vcc2 = 20 V, Vcc3 = 24 V,
CL= 200 pF, Ro= 24.11, See Figures 1 and 2.l
Characteristic Input Voltage - High Logic State
Input Voltage - .Low Logic State Input Clamp Voltage
(l1c = -12 mA)
Input Current - Maximum Input Voltage (V1H = 5.5V)
Input Current - High Logic State (V1H (1) = 2.4 V) (V1H (2) or V1H (3) = 2.4 V)
Input Current - Low Logic State (VIL (1) '.' 0.4 V) tV1L (2) or V1L (3) = 0.4 V)
Output Voltage - High Logic State IVcc3 = Vcc2 + 3.0 V, V1L = 0.8 V, 'oH = -100 µA) (Vcc3 = Vcc2 + 3.0 V, V1L = 0.8 V, IOH = -10 mA)
v, (Vcc3 = Vcc2. L = 0.8 V, loH = -50 µA)
(Vcc3 = Vcc2. V1L = 0.8 V, IOH = -10 mA) Output Clamp Voltage
(V1L = 0 V, loc = 20 mA)
Output Voltage - Low Logic State (V1H = 2.0 V, IOL = 10 mA) (15 V <;;; Vcc3 <;;; 28 V, V1H = 2.0 V, IOL = 40 mA)
Power Supply Currents - Outputs High Logic State 1Vcc1 = 5.25 v. Vcc2 = 24 v, Vcc3 = 28 v. V1L =O V, loH = OmA)
1Vcc1 = 5.25 v. Vcc2 = 24 v, Vcc3 = 24 v V1L = 0 V, loH = 0 mA) Power Supply Currents - Output Low Logic State 1Vcc1 = 5.25 v, Vcc2 = 24 v. Vcc3 = 28 v V1H = 5.0 V, loL = 0 mA)
Power Supply Currents - Standby Condition
1Vcc1 = o v, Vcc 2 = 24 v ·. vcc3 = 24 v
V1H"' 5.0V, loL= OmA)
Symbol V1H V1L V1c
llH1
l1H2
l1L
VoH1 VOH2 VoH3 VoH4 Voe
Vol1 VQL2
ICC1(H) 1cc21Hl 'cc31Hl lcC2(H) lcC3(H)
1cc11u 'cc21u icc3(Ll
'cc21si lcC3(S)
Min 2.0
-
-
I-
-
-
Vcc2 -0.3 Vcc2 -1.2 Vcc2 -1.0 Vcc2 -2.3
-
-
-
-
-
-
-
Typ*
Max
-
-
-
0.8
-
1.5
-
1.0
-
-1.0 -2.0
Vcc2 -0.1 Vcc2 -0.9 Vcc2 -0.1 Vcc2 -1.8
-
40 80
-1.6 -3.2
-
-
Vcc2 +1.5
0.15 0.25
4.0 -2.2 2.2
-
31 16
-
0.3 0.5
8.0 -3.2/+0.25
3.5 0.25 0.5
47 2.5 25
0.25 0.5
*Typical Values at 25°c, Vcc1 = 5.0 V, Vcc2 = 20 v and Vcc3 = 24 v
Unit v v v mA µA mA v
v v mA
mA
mA
SWITCHING CHARACTERISTICS (Unless otherwise noted TA= 25°C, Vcc1 = 5.0 V, Vcc2 = 20 V, Vcc3 = 24 V,
CL= 200 pF, Ro= 24.11, See Figures 1 and 2.)
·
Characteristic
Symbol
Min
Typ
Max
Propagation Delay Time, Low to High State Output
tPLH
10
31
48
Propagation Delay Time, High to Low State Output
tPHL
10
30
46
Delay Time, Low to High State Output Delay Time, High to Low State Output
toLH
-
toHL
-
11
20
10
18
Transition Time,·Low to High State Output Transition Time, High to Low State Output
tTLH
-
tTHL
-
20
33
20
33
Unit ns
ns
ns
·
5~293
MC75365
FIGURE 1 - SWITCHING CHARACTERISTIC TEST CIRCUIT
FIGURE 2 - SWITCHING CHARACTERISTICS WAVEFORMS
To Scope (Output)
24
I 200 pF
(Includes Probe and Jig
-= Capacitance)
Input Pulse Characteristics:
PAR s 1.0 MHz, PW= 500 ns, tTLH = tTHL..; 10 ns
·
TYPICAL PERFORMANCE CURVES
FIGURE 3 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT
vcc2
::c vcc2 -0.5 v
x g(!)
.1, VCC2-1.0V
"'!'-..... R
~o :; ~ Vcc2-1.5 v
~~
!::; t; vcc2 -2.0 v
~.~
~(!)
~ 9 VCC2 -2.5 V.t-vcc1 =s.o v
0
>
vcc2=2ov
vcc2-3.o v vcc3=24V
vcc2-3.5 v ~L~~
-0.01
-0.1
-1.0
TA= 1_0,\ic
TA= ooc j
-10
IOH. OUTPUT CURRENT - HIGH LOGIC STATE (mA)
. -100
FIGURE 4 - OUTPUT VOLTAGE - HIGH LOGIC STATE versus OUTPUT CURRENT
:c vcc2 -0.5 v 1-'---+-1-+++++++--+-+-+++++H--'--+-+-+++11-1++--+-+-+-H-H
(!)
§~ ii>
w!:;
~ o (!)
vm
2 vcc
-1.0v1--+-+-++ttttt-.....,.--='l'~~i:+H+l+--+--+-J-1.+++1±---+-++++H
-
t
5 .
v
l"ilttttt1141ttITT~ ~-fS' t-~-t--~:TtA;I=S2~5~l°l=C-1TiA(=l1t01°1ctH
~ ~ vcc2 -2.0 v
!:; 13
~ ~'!---
T1=o0 c
0 · '3 VCC2 -2.5 Vl--+-+-++B+l+--+-+++~~-+-+-1-t+++tt---l-+-+-1-~
5
vcc1=5.o v
> vcc2 -3.o v1- Vcc2 = vcc3 = 20 v +-+-+++H*--1--+-J-1+++++--+-+-J..++tj
~I Vm-3.5 V JLJjj Ill
-0.01
-0.1
-1.0
-10
IOH. OUTPUT CURRENT - HIGH LOGIC STATE (mA)
FIGURE 5 .- OUTPUT VOLTAGE - LOW LOGIC STATE versus OUTPUT CURRENT
0.5...-~..1....-.-...--r-......--..----...--......--....--.....--.....--
Vcc1 =s.ov 1--vcc2=2ov"'---1---1---1---1---1---1---1----1
~
I ii)
0.41
--VCC3 = 24 V V1H=2.0V
-+--+--+--+--+--+--=~~~~
~
~!::;
TA=?ODC~
;:: ~ 0.3t--+--+--+--+~----1-r,.........L::...;..f0~"---+---+--+---i
_,~
~~
1-1-
~ TA=0°C
Egg ~ ~ 0.21--+---r....~'f---+--+--+--+--+--+----1
- 7 ..J-'
~- 0.1 '"'P';c--+--+--+--+--+--+--+--+--+---i.
OL--_...__..._'--....._~...__...__.....__.....__.....__.....____,
0
20
40
60
80
100
IOL OUTPUT CURRENT - LOW LOGIC STATE (mA)
FIGURE 6-TOTAL POWER DISSIPATION versus FREQUENCY (All Four Drivers)
L I
800·...__~~~.J
I1Jo ~~
11-.1 [7
L
L
_rcL=50pF
~~600
V7J,'v~y!L _y
~
J-7_..;.P~ ~
ffi 400
~
~ :i;:;o '-" 1-l- +--
~
200
1---t-1---+-..+-+-+-+++1-
vcc1=5.o v Vcc3 = 24 v
No Load
l 1
vcc2 = 20 v TA= 25oc
~--1--1-----1--1--+-1-+-+++- 50% Duty Cycle 0-3.0 V Input Pulse
o~_.__.~~~J~J~l~J~J~JJJ~J
0.1
0.2
0.5
1.0
2.0
5.0
10
f, FREQUENCY (MHz)
5-294
MC75365
TYPICAL PERFORMANCE CURVES
FIGURE 7 - PROPAGATION DELAY TIME LOW TO HIGH STATE OUTPUT versus AMBIENT TEMPERATURE
40
CL~ 200 ~F
---i
cI =5o1F
vcc1 = 5.o v vcc2 = 20 v
vcc3=24v- Ro=2m t-----1
0
lll l
0
20
40
60
80
TA, AMBIENT TEMPERATURE (DC) .
FIGURE 9- PROPAGATION DELAY TIME LOW TO HIGH STATE OUTPUT versusVcc2SUPPLY VOLTAGE
FIGURE 8- PROPAGATION DELAY TIME . HIGH TO LOW STATE OUTPUT versus AMBIENT TEMPERATU RE
s :UEJ "'
i= I-
:>- ~ 30
<I-W' :o:>
Cl w z Io<
t= t; 20
~;;:
~~
Oo
g:_ ~
e:-c-'
<-!:I ::c
10
v v !---+--+
vccl VCC3
= =
s2.4ov
- v cRc 2o==
20 24n--t--
0
Ill l
0
20
40
60
80
l°A. AMBIENT TEMPERATURE (DC)
FIGURE 10- PROPAGATION DELAY TIME HIGH TO LOW STATE OUTPUT versus Vcc2 SUPPLY VOLTAGE
0.__~.._~..._~_._~_._~_._~_._~__,_~__.~~'----'
4.0
8.0
12
16
20
24
Vcc2. SUPPLY VOLTAGE (VOLTS)
FIGURE 11 - PROPAGATION DELAY TIME LOW TO HIGH LOGIC STATE . versus LOAD CAPACITANCE
::c
-E~ ~ ~ ~ ] 30t---+--+---+---+---+ CL)200 pF~:;1;...--"'1"".---lo:::_~~---l
::55 w~ ·~o 20 i= .t;
~;;:
~
,,.
~
..J....---:
--i,------,r-----~
CL= 100 pF-+---+---+---1
;t
~
:l
~ ·
10
vcc1 i---+--+---+---+---+--+--vcc3
= =
5.o v
Vcc2
+
4.o
v-
::c_,·
Ro= 2 4 n r
2:-
TA= 2J5oc
0~~~~~~~~-'-~-'-~-'-~--'"~--'~~'----'
4.0
8.0
12
16
20
24
Vcc2.SUPPLYVOLTAGE (VOLTS)
FIGURE 12- PROPAGATION DELAY TIME HIGH TO LOW STATE OUTPUT versus LOAD CAPACITANCE
sg :
~~ 40
:.;;:-
;:: !;
>-a.. <_,( :t:>- 30 wO
0 UJ
5~
i=
<(
":c'
20
:!:><!:I
:<i.(. :- c
i=:
>o I-
10
~
0 0
100
200
300
CL. LOAD CAPACITANCE (pF)
~g 40
I- I-
>- ::>
::5 ~
~o 30
zW
~~
I- t-
<"'
<!:I;;:
20
< a..o _,
~ r=
1-----+---+----1f----+-- vcc1 = 5.o v v Vcc2 = 20 TA= 25oc
~~ 10 1-----+---+----1'----+-- vcc3 = 24.v
fr :c '
0
400
0
100
200
300
400
CL, LOAD CAPACITANCE (pF)
·
5-295
MC75365
·
APPLICATIONS SUGGESTIONS
POWER CONSIDERATIONS
Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature in· crease depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temper· ature is:
Tj =TA+ Po (ReJc + RecA)
(1)
or
Tj =TA+ Po (ReJAl
(2)
where
TJ = junction temperature TA= ambient temperature Po = power dissipation
ReJC = thermal resistance, junction to case RecA = thermal resistance, case to ambient ReJA =thermal resistance, junction to ambient.
Power Dissipation for the MC75365 MOS Clock Driver:
The power dissipation of the device (Po) is dependent
on the following system requirements: frequency of op-
eration, capacitive loading, output voltage swing, and duty cycle. The variation of power dissipation with
frequency and load capacitance for the MC75365 is
illustrated in Figure 6. The power dissipation, when
substituted into equation (2), should not yield a junction
temperature, TJ, greater than TJ(max) at the maximum encountered ambient temperature. TJ(max) is specified for two integrated circuit packages in the ma~imum
ratings section of this data sheet.
,
With these maximum junction tempernture values, the
maximum permissible power dissipation at a given
ambient temperature may be _determined. This can be
done with equations (1) and (2) and the maximum
thermal resistance values given in Table 1 shown on
the following page.
5-296
MC75365
TABLE 1 - THERMAL CHARACTERISTICS OF "L" AND "P" PACKAGES ·
PACKAGE TYPE (Mounted in Socket)
"L" (Ceramic Package) "P" (Plastic Package)
ROJA 1°C/W) Still Air
MAX TYP
150
100
150
100
RoJC 1°C/W) Still Air
MAX TYP
50
27
70
40
If the power dissipation. determined by a given system produces a junction temperature in excess of the recommended maximum rating for a given package type, something niust be done to reduce the junction temperature.
There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring TJ to an acceptable value .. Secondly, the ROCA term can be reduced. Lowering the ROCA term can be accomplished by increasing the surface area of the package with the addition ofa heat sink or by blowing air across the package to promote improved heat dissipation.
Heat Sink Considerations:
Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 13.
FIGURE 13- THERMALLOY* HEAT SIN.KS
60128
6007A ·Manufactured by Thermalloy Co. of ·Texas.
From Table l, ROJA(max) for the ceramic package with no heat sink and in a still air envi'ronment is 150°c;w.
For the following example the Thermalloy 60128 type heat sink, or equivalent, is chosen. With this heat sink, the
ROCA for natural convection from Figure.14 is 44oc;w.
From Table 1 ReJc(max) = 50°C/W for the ceramic
package. Therefore, the new ROJA(max) with the
60128 heat sink added becomes:
RoJA(max) =50°c;w + 44°c;w =94oc;w.
Thus the addition of the heat sink has reduced ROJA (max) from 150°C/W down to 94oc;w. With the heat
sink, the maximum power dissipation by equation (2)
at TA = +70°C is:
175oc - 1ooc
Po -
= 1.11 watts.
+94°c;w
This gives approximately a 60% increase in maximum power dissipation over the power dissipation which is allowable with no heat sink.
FIGURE 14- CASE TEMPERATURE RISE ABOVE AMBIENT versus POWER DISSIPATED USING NATURAL CONVECTION
0 0.._~_.___.,___..o.~s~--'-~~1~.0~~1--~-1L.s~--l'--____J2.o Po. POWER DISSIPATED (WATTS)
Forced Air Considerations:
As illustrated in Figure 15, forced air can be employed to reduce the ROJA term. Note, however, that this curve is expressed in terms of typical ROJA rather than maximum ROJA· Maximum ROJA can be determined in the following manner:
From Table 1 the following information is known:
(al ROJA(typ) = 100°c;w (b) RoJc(typ) = 21°c;w
Since:
ROJA= ROJC + RecA
(3)
Then:
ROCA= ROJA - ROJC
(4)
Therefore, in still air
RocA(typ) =100°c/W- 21°c;w =73oc;w
From Curve 1 of Figure 14 at .500 LFPM and eq-
uation (4),
ROCA(typ) = 53°C/W- 21°c;w =260C!W.
Thus ROCA(typ) has changed from 73oc;w (still air) to
26°C/W (500 LFPM), which is a decrease in typical
ROCA by a ratio of 1:2.8. Since the typical value of
ROCA was reduced by a ratio of 1:2.8, RecA(max) of 100°C/W should also decrease by a ratio of 1:2.8.
This yields an RecA(max) at 500 LFPM of 35oc;w. Therefore, from equation (3):
ROJA(max) = 50°C/W + 35oc;w = 860CfW.
Therefore the maximum allowable power dissipation at
500 LFPM and TA = +10°c is. from equation (2):
11s0 c - 10°c
P o = - - - - - = 1.2 watts. 86°c;w
·
5-297
MC75365
r
FIGURE.15 -TYPICAL THERMAL RESISTANCE (ReJAI OF ''L" PACKAGE versus AIR VELOCITY
RoJA = lOODC/WATT }No AIR FLOW-+-----+---1-----< R11JC = 27°C/WATT
2 0 ' - - - - ' - - - - ' - - . . __ _,__ _..__ _,__ _._____ ~
0
200 400 600 800 1000 1200 1400 1600
AIR VELOCITY (LINEAR FEETPER MINUTE)
Heat Sink and Forced Air Combined:
Some heat sink manufacturers provide data and curves of
RecA for still air and forced air such as illustrated in
Figure. 16. For example the. 60128 heat sink has an
RecA = 17°C/W at 500 LFPM as noted in Figure 15.
From equation (3):
·
Max R8JA = 50°C/W + l7°C/W =67°C!W
From equation (2) at TA= +7o0 c
175°c - 10°c
Po =
1.57 watts.
67°c;w
FIGURE 16 - THERMAL RESISTANCE RocA versus AIR. VELQCITY
10 ~~~~~JN~1~~LoL~~.iiaitu1Nv-?i~t"'"......;F:;;:t::::JE'-1 I ,__~,____.._ __,__ DIPWITH THERMALLOY'--~'""'----"'----' #6007A HEAT SINK 0 R EQUIV
200
400
600
800
1000
AIR VELOCITY (LINEAR FEET PER MINUTE)
Note from Table 1 and Figure 15 that if the 16-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath). thattypjcal ROJA is considerably less than for socket mount with still air and no heat sink. .The following procedure can be employed to determine the maximum power dissipation for this condition.
Given data from Table 1:
typical ROJA = 100°Ctw
typical ROJC = 27°C/W From Curve 2 of Figure 15, A8JA(typ) is 75octw for a PC mount and no air flow. Then the typical ROCA ls
75octw - 21°c;w =48°C/W. From Table 1 the typical
value of RocA for socket mount is 1QQOCfW - 27octw = 73°Ctw. This shows that the PC board mount results in a decrease in tVpical R9 CA by a ratio of 1: 1.5 below the .typical value of Ro CA in a socket mount. Therefore, the maximum value of socket mount RecA of 100°C/W should also decrease by a ratio of 1:1.5 when the device· is mounted in a PC board.. The maximum RecA be· · comes:
100°c;w. ROCA = -·-··- - . = 66°C/W for PC board mount
1.5
Therefore the maximum R8JA for a PC mount is from equation (3).
Ro JA =so0 ctw + 66°ctw = 11 a0 ctw.
With maximum ROJA known, the maximum power dis·
sipation can be found. If TA = 10°c then from
equation (2) the maximum power dissipation may 'be .found to be 905 ·mw.
In most cases, heat sink manufacturer's publish only Ro CA socket mount data. Although data for PC mounting is generally not available, this should present no problem. Note in Figure 15. that an air flow greater than 250 LFPM yields a socket mout'lt ROJA approxi· mately 6% greater than for a PC mount. Therefore,, the socket mount data can be used for. a PC mount with a slightly greater safety factor. Also it should be noted t.hat thermal resistance measurements. can vary .widely. These measurement variation$ are due to the dependency of ROCA of the type environment and measurement techniques employed. For example, ROCA would be greater for an integrated circuit mouotE1d on a PC board with little or no ground plane versus one with a sub· stantial ground plane. Therefore, if the maximum cal· culated junction temperature is on the border line. of being' tcfo high for a given system application; then thermal resistance measurements should be done on the system to be absolutely certain that the .maximum junction temperature is not exceeded.
5·298
ORDERING INFORMATION
Device
MC75358L MC75358P MC75368L MC75368P
Temperature Range
0°c to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MC753&8 MC75358
Specifications and Applications Information
DUAL MECL-to-MOS DRIVERS
The MC75368 and MC75358 are dual MECL-to-MOS driver and interface circuits. The devices accept standard MECL 10,000 and ' IBM grounded-reference ECL input signals and create high-current and high-voltage output levels suitable for driving MOS circuits. Specifically, they may be used to drive address, control, and timing inputs for several types of MOS RAMs including high-speed MCM7001 1K NMOS RAM. The devices may also be used as MECL-to-MTIL translators.
These two devices differ in that the MC75368 is optimized for higher voltage capability and the MC75358 version is made to operate at somewhat reduced maximum voltages.
· Dual MECL-to-MOS Driver · Dual MECL-to-MTTL Driyer · Versatile Interface Circuit for Use Between MECL and High-
Current, High-Voltage Systems
DUAL MECL-to-MOS DRIVERS
SILICON MONOLITHIC INTEGRATED CIRCUITS
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
·
FIGURE 1 - TYPICAL APPLICATION WITH MCM7001 1 K NMOS RAM (See Figure 8 and 9 for details)
T 0
M E
c
, L
0 0 0 0
L 0 G I
c
MC10161
AO MC75368
A1
A2 MC75368
A3
A4 MC75368
A5
AS MC75368
A7
AB MC75368
A9
Write Enabhi MC75368
Data Input
Chip Select MC75368
Chip Select
· MC3461 Dual Sense Amplifier to be announced 1st Quarter 1975.
Output Enable
Data Output (MECL 10,000)
PSUFFIX PLASTIC PACKAGE
CASE 646
Datii i5UtPUt
Latch Enable
FUNCTION TABLE
Input Voltage Conditions
Differential (More positive of
A or Bl -C
(V10>150mV)
(-150 mV < V10 <
150mV) (V1D <-150 mV)
Logic Level
A B c
L H L ·H L H
H H L
x x x
L L H
H = high logic level, L"' low logic level, X = irrelevant
Output y
L
lndeterminate
H
5-299
MC75368,MC75358
·
.MAXIMUM RATINGS (Unless otherwise noted, voltages measured with respect to GNO terminals, TA= 25°C.I
Rating
Symbol
Value
Power Supply Voltages
MC75368 MC75358
MC75368 MC75358
vcc1 Vcc2
vcc3
.::0:5 to 7.0
-0.5to 22 -0.5 to 18
-0.5 to 30 -0.5 to 24
Most Negative of Vcc1. Vcc2. or Vcc3 with respect to Vee
Input Voltage
Vee
-8.0 to 0.5
-
-u.o
V1
-is.ufo-U.5
Inter-Input VoltageTIT
0.0
Most negative Input Volt119e with respect to Vee
v1 ·Vee
-5.0
Power Dissipation (Package Limitation)
Ceramic Package @ TA "' 25°C
Deriite above TA =25°C
Plastic Package@ TA = 25°C
Derate above TA = 25°C
Ceramic Package @ Tc = 25°C Derate above Tc = 25°C
Plastic Package @tc = 25°C
Derate above Tc =25°c
Po 1/RiJJA
Po 1/ReJA
Po 1/RoJc
Po
1/ReJC
1000 6.6
830 6.6
3.0 20
1.8 14
Operating Ambient Temperature Range
TA
Storage Te~perature Range
.~"
Tstg
(1) With respect to any pair of inputs to either of the input gates.
0 to 70 -t)O tO H>U
Unit Vdc Vdc
Vdc
Vdc Vdc
Vdc Vdc Vdc
mW mwt0 c
mW mW/°C
Watts mW/°C
Watts mwt0 c
-uc
~
RECOMMENDED OPERATING CONDITIONS
MC75358
MC75368.
Characteri~ic
Power SupplyVoltages
;·_;_
1Yperating Ambien~ Temperaturelfange DEFINITION OF INPUT LOGIC LEVELS Input Voltage -:- Higl') L09ic State (Any. Input)~ 1) lnP,ut Voltage - Low Logic State (Any Input) (1) Tnput Oifferent11.ll Voltage-:- High L091c Stat_e 1'21 -Input Dlfferent1al Voltage - Low L091c State l:.ll
Symbol
Vcc1 Vcc2
vcc3 vcc3·Vcc2
Vee TA
Min
4.J5 4.75
Vcc2
0
-4.68
0
lyp
5.0 16
20 4.0 -5.2
-
Max
5.25 18
22 10 -5.72
70
Min
4.75 4.75
Vcc2 0
-4.68
0
VtH V1L VtDH V10L
-1.5
Vee 150 -_150
-
-0.7
-1.5
- l"IH-150 Vee
-
-
150
-
-
-150
Typ Max Unit
5.0
5.25
v
20
22
v
24
28
v
4.0
10
v
-5.2 -5.72
v
-
10' -ere
-
-0.1
v
- V1H-150 mV
-
-
mV
-
-
mV
(1) The !tefinition of these Logic Levels use Algebraic System of notation.
(2) The input differential voltage is measured from the more positive inverting input (A or Bl with respect to the non-inverting
input (Cl of the same gate.
·
5-300
MC75368, MC75358
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specific;itions apply over recommended power supply and temperature
ranQiis. Typical values measured at Vcc1 = 5.0 V, Vee = -5.2 V, TA= 25°C and Vcc2"' 20,
= Vcc3 = 24 v for MC75J68-and Vcc2 16, Vcc3 = 20 v for MC75358.
Characteristic
Output Voltage - High Logic State
1Vcc3 = Vcc2 + 3.0 v. VioL = -150 mV, IOH = -100 µAl
(Vcc3 = Vcc2 + 3.0 V, V10L = -150 mV, IOH = -10 mAI
(Vcc3 = Vcc2. V1DL = -150 mV, IOH = -50µAI
(VCC3 = Vcc2. VmL = -150 mV, !_oH_ = -10 mA}
~mbol
Min
MC75368 Typ
Max
VQH1 Vcc2·0.3 Vcc2·0.1
-
VoH2 vcc2· 1.2 Vcc2·0.9
-
VQH3 Vcc2 -1.o Vcc2 · 0.1
-
VoH4 Vcc2. 2.3 Vcc2· 1.8
-
MC75368
Min
~
Max
Vcc2·0.3 Vcc2· o.1
-
vcc2-1.2 Vcc2· o.9
-
Vcc2· 1.~ Vcc2· o.1
-
Vcc2· 2.3 Vcc2· 1.8
-
Output Voltage -_Low Logic State (V10H = 150 mV, loL = 10 mAI (V10H = 150 mV, IOL = 30 mA} 10 v.;;; Vcc3 .;;; 22 v 10 v.;;; vcc2 .;;; 2a v
Output Clamp Voltage (V10H = 500 mV, Ice= 20 mA}
Input Current .,. High Logic State (Vee= -'5.72 v. V1L = -5.72 V, V1H = -0.7 VI
V.QLI_
-
VOL2
-
Voe
-
l1H
-
0.15
0.3
-
0:2
0.4
-
-
-
-
-
Vcc2+1.5 v
-
300
800
-
0.15
-
0.2
-
300
0.3
-
0.4 vcc2+1.5 v
800
Input Current - Low Logic State (V1H = -0.7 V, V1L =-2.0 VI (Vee= -5.72 V, V1H = -0.7 v. V1L = -5.72 V}
11u
-
ltL2
-
-
-10
-
-
-100 '
-
-
-10
-
-100
Power Supply Current - Both Outputs
High Logic State
!Vee= 5.25 v, Vee= -5.72 v,
V1L(AI and (Bl= -2.0 V,
V1H(CI = -0.7 V, loH = 01 MC75368 - Vcc2 = 22 V,
Vcc3 = 26 v
MC75358 - Vcc2 = 18 V,
Vcc3 = 22 v
lccHHl
-
lcc2(HI
-
lcC3(HI
-
IEE(H)
-
21
38
-
-1.1
+0.25
-
-1.6
0.6
1.0
-
-21
-38
-
21
38
-1.1
+0.25
-1.6
0.6
1.0
-21
-38
Power Supply Current - Both Outputs
Low Logic State
(Vcci = 5.25 V, Vee= -5.72 V,
V1H(A) and (B) = -0.7 V,
V1uc1 = -2.0 v, 'oL = o1 MC75368 -VCC2 = 22 V,
vcc3 = 28 v MC75358 - Vcc2 = 18 V,
VccJ = 22 v
lcC1(L)
-
lcC2(LI
-
13
24
-
0.5
1.0
-
13
24
0.5
1.0
lcC3(LI
-
3.0
5.7
-
4.0
7.0
IEE(LI
-
-21
-38
-
-21
-38
Power Supply Current - Both Outputs
High Logic State
(Vcc1 = 5.25 V, VEE= -5.72 V,
V1L(Al-and (Bl= -2.0 V, V1H(CI = -0.7 V, IQL = 01 MC75368 - Vcc2 = 22 V, Vcc3 = 22 v MC75358 -Vcc2 = 18 v
lcc2tHl
-
lcc3!HI
-
-
0.25
-
-
0.25
-
-
0.25
-
0.25
Vcc3 = 18 v
Power Supply Current - Stand By
Condition
(Vcc1 = 0 V, Vee= 0 V, V1H(AI
and (Bl = -0.7 V, V1L(CI =
-2.0 V, IOL = 0}
MC75368 - Vcc2 = 22 V, Vcc3 ,,;22 v
MC75358 - Vcc2 = 18 v.
Vcc3 =18 v__
ICC2(SI
-
ICC3(SI
-
-
0.25
-
-
0.25
-
-
0.25
-
0.25
Unit v
v
v
µA µA
mA mA mA mA
mA mA mA mA
lliA mA
mA mA
·
5-301
MC75368, MC76358
SWITCHING CHARACTERISTICS\ (Unless otherwise noted, Vcc1 = 5.0 V, VEE= -5.2 v. TA= 25°c and Vcc2 = 20 v for MC75368 and Vcc2 = 16 V for Mc 753581
MC75368
MC78368
Chl!racteristic
Symbol Min
Typ
Max
Min
Typ
Max Unit
Delay Time - Low to High Output Logic Level
(Vcc3= 24 VI
(Vcc3= 20 VI
I
(Vcc3= 16 VI
toLH
-
-
---
13
24
-
14
26
-
ns
12
24
13
25
--
Delay Time - High to Low Output Logic Level IVcc3= 24 VI IVcc3= 20 VI (Vcc3= 16 VI
Transition Time, Low-to-High Output Logic Level (Vcc3 = 24 VI (Vcc3 = 20 VI (Vcc3=16 VI
Transition Time, High-to-Low Output Logic Level (Vcc3=24 VI (Vcc3 = 20 VI (Vcc3= 16 VI
Propagation Delay Time, Low-to-High Logic Level ,(Vcc3 = 24 VI (Vcc3= 20 VI
. (Vcc3 = 16 VI
Propagation Delay Time, High-to-Low Logic Level (Vcc3= 24 VI 1Vcc3 = 2ov1 (Vcc3= 16 VI
tDHL
-
-
-
-
-
13
24
-
15
26
-
ns
13
24
15
. 26
-
-
tTLH
ns
-
-
-
-
19
30
-
17
29
-
20
30
-
18
30
-
-
-
tTHL
-
-
-
-
-
-
17
29
-
16
29
-
ns
2p
33
18
30
--
tPLH
-
-
-
-
30
53
-
32
56
-
ns
31
54
33
55
-
-
tPHL
-
\
·- - -
30
53
-
31
55
-
ns
33
57
33
56
-
-
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
To Scope (Input) ~1.3 V _2 .0 V
. To Scope (Output)
10
FIGURE 3-SWITCHING TIMES WAVEFORM
tTHL
...--------·I -!-"--I" 5 ns
90%
90% -11- - - - - - -0.90 v
Input
I
I
I I
I I
10 i -- -%----1.70
v
~tPLH-1
II I
I tTLH VoH
I
Vcc2 -3.0 v
50
The pulse generator ha5 the following characteristics:
n. PRR = 1 MHz. z0 "'50
Dutv Cycle = 50%
pFI 390
(Includes Probe and Jig
Capacitance) ~
Output 1Vcc3 .= Vcc2 + 4.o VI
r - - - - - - - 1 - J I - 2::._0~ - - VoL
l-tPLH.....J
II I
I
I
5-302
MC75368,MC75358
APPLICATIONS INFORMATION MODES OF OPERATION
FIGURE 4- POSITIVE-NOR GATE
Y · A+e
FUNCTION TABLE
INPUTS
CONFIGURATION A B c
cat Vee
L L· Vee
H x Vee x H Vee
OUTPUT y
H L L
H - High Level, L - Low Level, X - Irrelevant Velj! - Reference Supply voltage for MECL 10,000.
FIGURE 5 - DIFFERENTIAL MECL LINE RECEIVER
C=Aand/ore.~
c
. y
·
Y=C
FUNCTION TABLE
CONFIGURATION
INPUTS
A Bc
A ant:! e connected together
A not uset:I but connected low
H ·H L L LH
L H L L L H
e not used but connected tow
H L L L LH
OUTPUT y
L H
L H
L H
FIGURE 6 - NON-INVERTING GATE
c-[>-v
Y=C FUNCTION TABLE
CO NF IG URATION
INPUTS OUTPUT
A BC
y
A a.nd e at Vee
A at Vee. e connected low Bat Vee. A connected low
Vee V'ee L
L
Vee Vee H
H
Vee L L
L
Vee L H
H
L Vee L
L
L Vee H
H
FIGURE 7 - USE OF DAMPING RESISTOR TO REDUCE OR ELIMINATE OUTPUT TRANSIENT QVERSHOOT IN
CERTAIN MC7535S AND MC75368 APPLICATIONS
,I,---.M,.C-7-5-35-8-----,I
I
or·
I
. I
MC75368
I
I
I
I
I
I
I
J
I
L.--...-------J
Note: Ro"' 10Sl to 30Sl (optional)
r------,
I MOS I l I System
I
I
ICL
I
I
I
I
I
I
IL __-: __ .JI
·
The MC75368 and MC75358 are identical except that the MC75368 version has been selected for slightly higher voltage capability. The two devices are interchangeable in most applications. Both can operate over a wide range of Vcc2 and Vcc3 supply voltages.
The need for four separate power supplies Vcc1, Vcc2, · Vcc3 and Vee can be avoided in many cases by tying
Vcc2 to Vcc3. However, performance advantages can be obtained by connecting either one or both VCC3 pins to an additional power supply of higher voltage than VCC2· Both Vcc3 pins do not have to be held at the same voltage. For MECL·to-TTL level converter.applications both Vcc2 and Vcc3 are generally connected to a +5.0 V power source.
By providing two out-of-phase (A and 8) inputs and one in-phase (C) input, .each gate can be used as positive NOR, or as a inverting or non-inverting gate. This flexibility is achieved by connecting an externally supplied MECL 10,000 Series reference supply voltage (Veal to the appropriate input as shown in Figures 4 thru 6. An
unused out·of·phase input should be tied low or connected to the other out-of-phase input of the same gate. The required Vee voltage source may be obtained from MECL 10,000 Series devices such as the MC10115 line receiver, or by connecting the output of a MeCL 10,000 gate, like the MC10102, to the respective out·of·phase inputs (as an example connect pins 4 and 5 to 2 of the MC10102 to obtain a Vea reference voltage).
When driven differentially, the MC75368 and MC75358 may be used as a differential MECL line receiver, without the need for the Vee reference voltage..
Undesirable output transient overshoot due to load or wiring inductance and the· fast switching speeds of the MC75368 and MC75358 can be eliminated or reduced by adding a small amount of series resistance. The.value of this damping resistjlnce is dependent on specific load characteristics and switching speed but typical values lie in the range of 10 to 30 ohms. This is illustrated in Figl.lre 7.
5-303
MC7536~,MC75358
Address A10 ' Address A 11 Write Enable
FIGURE 8 - 32K x 2 MEMORY BOARD (MECL SYSTEM) 1/2 MC10P1
'-----+----IB 01 2 0-------~
MCM7001, ·54 places
·
~
Chip ~elec.t Address A12 Address.A 1.3 Address A14
MC10161Vsso--+---+---+-----li--+-+-~---+-+--+-+-+-~---+-'
000---+---+---+---+-_. 010---+---+---+---+---1,__-.
020-~-+---+---+---+-----l--+--1
030---+---+---+---+---ti---+--+-__.
04D---+---+---t---+~--t,__-+--+--+--..
05<>---+---+---+---+---<f----+--+--+--f----e
DO out
Data Output
D1out
Connect to Top Array (32K x 1)
Connect to Bottom Array (32K x 1)
fr fr fr fr fr fr fr fr fr fr 1/2l\AC75358 or 1/3 MC10177, ·12 Pl~ces
AO A 1 A2 A3 A4 A5 A6 A 7 AS A9
fr
Data Inputs
·i:o be announced 1st Quarter 1975
5-304
lih· S·~o;·~~·~d~E~~~·A~·l~~m .
l ii lr llh 1111 l
lr 1AI 1 I ii ii 1 v··· J 1J J
1
1J 1kl I
l 1
l·1 1
~
j
ns...:..
112 MC75368 I I ,.a.....L,\ I Y I I I I ,.a.....L, \ I Y I I . I I ~ \ I Y I I I I .-'2-J-,\ I Y I I
C11
cw.n
Latch Enable >--t-t--\ '--
V I
I I I V I I I I I V I I I I IV
I I I I
C0
Dat8Viiiid ~
.,,
MC10109
j5
00
i
m
co
01
t
~~~ t-"I
02
~
>C
03
co
9~'1
O't
~ ~I Co!~ect 04
_ c
- MCM7001's 05
~~.
<.
AS
M
51IS l>
M
OO
CD
~
~m
.
~
oo n.= loo
01
O
01
9!~
.
~
-~
n
r-
09
~
~
Connect 010
;
each line
-
'\..
r ----ij~"
~
m
l
-
I l
to one Row
011
.,
· -
of
012
4'MCM7001's 013
017
WE1 (to top 36 deyices). . WE2 _(to Bottom 36 d.evices)
*To be annQunced 1st Ouarter.1975
\ · 1/2 MC3461, 18 Places·
MCM7001, 72 Places.
· :,: .,,
ORDERING INFORMATION
Device
MC75450l MC75450P
Temperature Range
0°.c to + 70°C 0°c to +70°C
Package
Ceramic DIP Plastic DIP
MC75450
··
DUAL PERIPHERAL POSITIVE "AND" DRIVER
The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MOTL and MTTL type systems. Th is device features two standard MT·TL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.
· MOTL and MTfL Compatibility . · 300 mA Output Current Drive Capability
(each transi~tor) · Separate Gate and Output Transistor for Maximum Design
Flexibility · High Output Breakdown Voltage:
VcER = 30 Volts minimum
DUAL PERIPHERAL POSITIVE "AND" DRIVER
SI LICON MONOLITHIC INTEGRATED CIRCUITS
L SUFFIX CERAMIC PACKAGE
CASE 632 (T0·11_6)
P SUFFIX PLASTIC PACKAGE
CASE 646
sue-
2A 2V 28 2C 2E STRATE
MAXIMUM RATINGS (TA= o to +7o0 c unless otherwise noted)
Rating
Symbol
Value
Power Supply Voltage (See Note 1) Input Voltage (See Note 1)
Vee
+7.0
Vjn
5.5
Vcc·to-Substrate Voltage '-
35
Coilector-to·Substrate Voltage
35
Collector-Base Voltage Coilector·Emitter Voltage (See Note 2)
Vee
35
Vee
30
Emitter·Base Voltage Collector Current (continuous) (See Note 3)
vee
5.0
300
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Oerate above TA= +25°C
Po 830 6.6
Operating Temperature Range Storage Temperature Range
TA
Oto +70
Tstg -65 to +150
Unit Vdc Vdc Vdc Vdc Vdc Vdc Vdc mA
mW
mwt0 c
oc oc
G 1A 1V 18 1C 1E GNC) Positive Logic: Y = AG (gate only)
C = AG (gate and transistor)'
CIRCUIT SCHEMATIC
NOIE:S: 1. Voltage values are with respect to network ground terminal. 2. This value applies wtien the base-emitter resistance (Ree·> is equal to or less tha.n 500 ohms. 3. Both halves of these dual circuits may conduct the rated current simultane· ously.
5-306
MC75450
RECOMMENDED OPERATING CONDITIONS ISee Note 4)
Characteristic Su I Voltage
S mbol
v
Min 4.75
Nom 5.0
Note 4.' The substrate, pin 8, must always be at the most negative device v1;>ltage for proper operation.
ELECTRICAL CHARACTERISTICS IT = o to +10°c unless otherwise noted.)
Characteristic
Symbol Test Fig. Min
MTTLG·ATES
Hijffi-Level ll'IQ_ut Volt@lll!_
V1H
1
2.0
Low·L.eveUnput Voltage
High:Level Ou~put Voltage
v. (Vee= 4.5 V1L = 0.8 V, 'OH =-400 µA)
V1L VoH
2
-
2 2.4
Low·Level Output Voltage (Vee= 4.75 V, V1H = 2.0 V, IOL = 16 mA)
Vol
1
-
High-Level Input Current (Vee= 5.25 V, Vin= 2.4 V)
v. (Vee= 5.25 Vin= 5.5 V)
Low-Level Input Current
'·
v. (Vee= 5.25 Vin= 0.4 Vl
Input A Input G Input A Input G
Input A Input G
l1H
3
-
-
-
-
l1L
4
-
-
Short-Circuit Output Current** ·
IVcc =5.25. Vl
Supply Current High-Level Output I Vee=;: 5.25 V, Vin= 0) Low-Level Output IVcc= 5.25 V, Vin= 5.0 Vl
Input Clamp Voltage (Vee= 4.75 V, ·rin = -12 mA)
OUIP_U_IIRANSISTORS
Characteristic
'os.
5
6
·ccH ·ccL
Vifi
4
Symbol
Min
-18
-
-
Typ
Collector-Base Breakdown Voltage (.!.!;_ = 100µA, le= Ol
Collector-Emitter Breakdown Voltage. lie = 100 µA, Ase= 500 ohms)
Emitter-Base Breakdown Voltage lie= 100µ.A, re= 01
Static Forward Transfer Ratio (See Note 5) (Vee= 3.0 V, le= 100 mA, TA= +25°C)
= (Vee 3.0 V, re= 300 mA, TA= +25°e)
(Vee = 3.0 V, le= 100 mA, TA= e>°C) (Vee.= 3.0 V, le= 300 mA, TA= o°C)
Base-Emitter Voltage (See Note 5) Os= 10 mA, le= 100 mA) (Is= 30 mA, le= 300 mA)
Collector-Emitter Saturation Voltage (See Note 5) Os= 10 mA, re= 100 mA) (Is= 30 mA, re= 300 mAl
Vcso
35
-
Vee A
30
-
Ve so
5.0
-
hfE
25
-
30
-
20
-
25
-
Vse
-
0.85
-
1.05
Vce(sat)
-
0.25
-
0.5
Note 5. These parameters must be measured using pulse techniques; tw = 300 µs, duty cycle S 2%. ·All typical values at V cc = 5.0 V, TA = +25°C.
**Not more than one output should be shorted at a time.
Max 5.25
Typ*
Max·
-
-
-
0.8
3.3
-
0.22
0.4
-
40
-
80
-
1.0
-
2.0
-
-1.6
-
-3.2
-
-55
2.0
4.0
6.0
11
-
-1.5
Max
-
-
-
-
1.0 1.2
0.4 0.7
Unit Vdc
Unit Vdc Vdc Vdc Vdc
µA mA mA mA mA
v
Unit Vdc Vdc Vdc
Vdc
Vdc
·
5-307
MC75450
SWITCHING CHARACTERISTICS <Yee= 5.0 v. J A= +25°c unless otherwise noted.)
Characteristic
S mbol
Max
Unit
MTTL GATES
Propagation Delay Time (CL= 15 pF, RL = ~00 ohms) 1-ow·to·High·Level Output High-to-Low"Level Output
7
ns
14
6.0
OUTPUT TRANSISTORS "
Switching Times !le= 200 mA, 18(1) = 20 mA, 18(2) = -40 mA, V8Eloffl = -1.0 V, CL= 15 pF, RL = 50 ohms) Delay Time Rise Time Storage Time Fall Time
8
ns
td
-
9.0
-
tr
-
11
-
ts
-
14
-
tf
-
8.0
-
GATES AND TRANSISTORS COMBINED#;
Propagation Delay Time lie= 200 mA, CL= 15 pf; AL= 50 ohms) Low-to-High-Level Output High-to-Low Level OutPut
9
ns
tPLH tPHL
-
21
-
-
16
-
Transition Time# lie= 200 mA_, CL= 15 pF, AL= 50 ohms) Low-to-High-Level Outpul High-to-Low-Level Output
9
ns
tTLH tTHL
-
7.0
-
-
8.0
-
#Voltage and current values are nominal; exact values vary slightly with transistors parameters.
DC TEST CIRCUITS FOR MTTL GATES
FIGURE 1 - VIH· Vol
FIGURE 2 -VIL· VoH
Vee
Vee
--loH
Both inputs are tested simultaneously.
Each input is tested separately.
(Arrows indicate actual direction of current flow. Current into a terminal is a positive val\.le.)
FIGURE 3 - l1H
FIGURE 4 - Ill· Vin
Vee
4.5 v
Each input is t~sted separately.
Vin9--}
i v i - I·
1 in
~in L SUBSTRATE
.b ~
Each input is tested separately.
5-308
MC75450
DC TEST CIRCUITS FOR MTTL GATES (continued)
FIGURE 5 - los
Vee
FIGURE 6 - lcCH· ·ccL
Vee
Each gate is tested separately
Both gates are te$ted 11imultaneously.
(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)
FIGURE 7 - PROPAGATION DELAY TIMES, J:ACH GATE
+2.4 v
INPUT
Vee
OUTPUT +5 .0 V
PULSE GENERATOR
(See Note A)
I CL= 115 pF
-::;- (See Note 8)
.NOTES: A. The pulse generator has the following characteristics: tw = 0.5 µs, PRR = 1.0 MHz, z0 ~ 50 il.
B. CL includes probe and jig capacitance.
VOLTAGE WAVEFORMS
·
5-30~
MC75450
TEST CIRCUITS lcontinuedl .
FIGURE 8 - SWITCHING TIMES. EACH TRANSISTOR 10V
-1.0 v
'INPUT
PULSE GENERATOR (See Note Al
1.0 k
0.1 µF
50
62
.__.,..-_._..,__·OUTPUT
.I I
1CL= 15 pF (See Note Bl
___I .J _, SUBSTRATE
NOTES: A. The. pulse generetor has the following characteristics: tw =0.3 µs, duty cycle~ 1%, z0 ~ 50 Sl.
B. CL includes probe and Jig capacitance. VOLTAGE WAVEFORMS
INPUT
·
FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR 10V
2.4 v
Vee
PULSE GENERATOR (See Note Al
------·OUTPUT
j
l CL= 15 pF (See Note Bl
I
.J
= = ':'10TES: A. The pulse generator has the following characteristics: tw 0.5 µs, PRR 1.0 MHz, z0 ~ 50 Sl.
B. CL includes probe and Jig capacitance.
VOLTAGE WAVEFORMS
INPUT
5-310
ORDERING INFORMATION
Device
MC75451P MC75451U MC75452P MC75452U MC75453P MC75453U MC75454P MC75454U
Alternate SN75451BP SN75452BP SN75453BP SN75454BP
Temperature
Range
O°C to +70°C 0°C to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C 0°c to +70°C 0°C to +700C 0°c to +70°0
Package
Plastic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP Cera~ic DIP Plas c DIP Ceramic DIP
MC75451 MC75452 MC75453 MC75454
DUAL PERIPHERAL DRIVEA:S
These versatile devices. are useful for interfacing digital logic to industrial electronic systems. They are useful as lamp drivers, relay drivers, logic buffers, line drivers, or MOS drivers.
Each of these devices consists of a pair of MTTL gates with the output of each gate internally connected to the base of a transistor.
MC75451 provides the AND function MC75452 provides the NANO function MC75453 provides the OR function MC75454 provides the NOR function
· 300 mA Output Current Capability · Output Breakdown Voltage - 30 V Min · MTTL compatible Inputs
DUAL PERIPHERAL DRIVERS
SILICON MONOLITHIC INTEGRATED CIRCUITS
U SUFFIX CERAMIC PACKAGE
CASE 693
P SUFFIX PLASTIC PACKAGE
CASE 626
Vee 28
MC75451 - Positive AND 2A 2Y
1A
18
1Y GNO
Positive Logic: Y = AB
TRUTH TABLE
A B
y
L L ("on" state)
L
H L ("on .. statel
H
L ("on" state I
H
H H ("off" state)
H high level, L "· low level.
MC75452 - Positive NANO
TRUTH TABLE
A B
y
L H (".off" state)
H H ("off" state}
H
L H ("off" state)
H
H L ("on" state)
H =high lever, L = low level
1A
16
1Y GNO
Positive Logic: Y = AB
·
MC76453 - Positive OR
MC75454 - i:;ositive NOR
TRUTH TABLE
A
B
y
L (''on" state)
L
H H ("off" state)
H
H ("off" state)
H
H H ("off" state)
H high level.. L low level
Positive L\'>gic: Y =A+ B
TRUTH TABLE
A B
y
L
H ("oH" state)
L
H L ("on" state}
H
L
L ("on" state)
H
H L ("on" state)
H =high level, L = low level.
1A
18
1Y GND
Positive Logic: Y = A+B
5-311
MC75451, MC75452, MC75453, MC75454
·
MAXIMUM RATINGS (TA = 00 C to 700 C unless otherwise noted,)
Rating
Symbol
Value
Unit
Power Supply Voltage( 1) Input Voltage lnteremitter Voltage(2)
Vee
7.0
Vdc
V1
5.5
Vdc
-
5.5
Vdc
Output Voltage(3) Output Current(4) Power Dissipation @TA = 25°c
Derate above TA= +25°C Operating Ambient Temperature Range Storage Temperature Range
Vo
30
Vdc
io
300
mA
Po
830
mW
6.6
mW/OC
TA
0 to +70
oc
Tstg -65 to +150
oc
( 1I Voltage values are with respect to network gro4nd terminal. (21 This is the voltage between two emitters of a multiple-emitter transistor. (31 This is the maximum voltage which should be applied to any output when it
is in the "off" state. (41 Both halves of these dual circuits may conduct rated current simultaneously;
however, power Clissipation averaged over a short time interval must fall within the continuous dissipation rating.
ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply for 4 75;;. Vee;;. 5 25 v and o0 c.;; TA.;; 10°cl
Characteristic
Input Voltage - High Logic State
Input Voltage - Low Logic State
Input Clamp Voltage
IV...c.c = 4.75V, 11 = -12 mAI
Output Current - High Logic State
(Vee= 4.75 v, VoH = 30 v. V1H = 2.0 VI
(Vee= 4.75 v. VoH = 30 V, V1L = 0.8 VI
MC75451, MC75453 MC75452, MC75454
Figure Symbol Min
1,2
V1H
2.0
1,2
VIL
-
4
V1
-
2
IOH
-
Typ (11
-
-1.2
Max 0.8
-1.5
-
·100
Unit Vdc Vdc Vdc
µA
Output Voltage - Low Logic State
(Vee= 4.75 v. v,L = 0.8 VI
(Vee= 4.75V, V1H= 2.0VI
lloL = 100mAI
lloL = 300mAI
MC75451, MC75453 MC75452, MC75454
1
VOL
-
-
Vdc
0.25
0.4
0.5
0.7
Input Current - High Logic State (Vee= 5.25 V, v, = 2.4 VI
(Vee= 5.25 v. Vj = 5.5 V)
Input Current - Low Logic State (~ = 5.25 V, V1=0.4 VI
3
l1H
-
-
-
40
µA
-
1 ~o
mA
4
l1L
-
-1.0
-1.6
mA
Power Supply Current - Output High Logic State
(Vee= 5.25 V, Vi= 5.0 VI
IVcc = (Vee=
5.25V,
5.25 v,
v1=01
Vi= 5.0
VI
v IVcc = 5.25 v. 1= 01
MC75451 MC75452 MC75453 MC75454
Power Supply Current - Output Low Logic State
<Vee= (Vee=
5.25 5.25
v.
v.
vv,1
=01 = 5.0
VI
MC75451 MC75452
<Vee= (Vee=
5.25 v.
5.25V,
vv,1
= =
01 5.0
V)
MC75453 MC75454
5
iccH
-
-
-
-
5
ICCL
-
-
-
-
mA
7.0
11
11
14
8.0
11
13
17
mA
52
65
56
71
54
68
61
79
(1) Typical Values Measured with. Vee= 5.0 V, T~ = 25°C.
TEST CIRCUITS
FIGURE 1 - Vol·
(Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.)
FIGURE 2 - IOH·
V1H - MC75452 and MC75454 VIL - MC75451 and MC75453
V1H - MC75451 and MC75453 V1L - MC75452 and MC75454
Vee
Vee
VtH or
VtL
IQL
~
Me75452
MC75451 MC75454
loH .,.__ VoH
rI1\
Q
-
J
MC75453
·see Page 1 for specific gate type.
E.ach input is tested separately.
MOTOROLA Semiconductor Products Inc. ---------'
5-312
MC75451, MC75452, MC75453, MC75454
SWITCHING CHARACTERISTICS (Vee= 5.0 V, TA= +25°c unless otherwise noted.I
Characteristic
Symbol Test Fig. Min
Typ
Max
Unit
Propagation Delay Time llo ~200 mA, CL= 15 pF, RL = 50 ohms)
MC75451 Low-to-High-Level Output High-to-Low-Level Output
MC75452 Low-to-High-Level Output High-to-Low-Level Output
tPLH
6
-
17
-
ns
tPHL
-
18
-
tPLH
6
tPHL
-
18
-
-
16
-
ns
MC75453 Low-to-High-Level Output High-to-Low-Level Output
tPLH
6
-
.15
-
ns
tPHL
-
17
-
MC75454 Low-to-High-Level Output High-to-Low-Level Output
tPLH
6
-
25
-
ns
tPHL
-
19
-
Transition Time llo~200mA,CL= 15pF, RL=50ohms)
MC75451 Low-to:High-Level Output High-to-Low-Level Output
tTLH
6
-
6.0
-
ns
tTHL
-
11
-
MC75452 Low-to-High-Level Output High-to-Low-Level Output
tTLH
6
-
8.0
-
ns
tTHL
-
9.0
-
MC75453 Low-to-High-Level Output High-to-Low-Level Output
tTLH
6
-
5.0
-
ns
lTHL
-
8.0
-
MC75454 Low-to-High-Level Output High-to-Low-Level Output
tTLH
6
-
5.0
-
ns
tTHL
-
8.0
-
·
FIGURE 3 - l1H (ALL DEVICE TYPES)
TEST CIRCUITS (Continued) (Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.) FIGURE 4 - l1L.V1
(ALL DEVICE TYPES)
Vee
Open
l~* H --- ,-- --- 1
Vi
.
I '
. L~-- ~----}
Me75453 Me75454
Open
Each input is tested separately.
FIGURE 5 - lcCH· lccL (ALL DEVICE TYPES)
Vee
Open
Each input is tested separately.
Me75451 MC75452
·see page 1 for specific gate type.
Bo~h gates are tested simultaneously.
@ MOTOROLA Semiconductor Products Inc. ---------'
5-313
MC75451, MC75452, MC75453, MC75454 ·
To Scope (Input)
FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS
2.4 v
0.4 v
r /... T
MC75453 MC75454
/vcc
1ov
EO;s.o ns
MC75452
Input
50
·
NOTES:
A. Pulse generator characteristics: tw = 0.5 µs,
PAR= 1.0MHz,z 0 ~son B. CL includes probe and test fixture capacitance.
and MC75453
Output All
Types
MC75451
REPRESENTATIVE SCHEMATIC DIAGRAMS (1/2 Circuits Shown)
MC75452
A B
·3 v ov 3.0 v OV
Vol.
Vee
MC75453
MC75454
4.0 k
2.0 k
4.0 k
Vee
Circuit diagrams utilizing Motorola products are included as a means
of illustrating typical semicOnd.uctor applications; .consequently, complete. information ~ufficient for constructron purposes is· not necessarily given. The information has been carefully. checked and
is believed to be entirely reliable. However, rio responsibility is assumed for inaccuracies. F·urth~rmore, such informatiOI') does· not
convey to the pu.rchaser of the s.emiconductor·device.s descri.bed any license under the patent ritJhts of Motorola Inc.' or. o.the'rs.
® MOTOROLA Se1T1iconductor Products Inc. --------
5-314
ORDERING .INFORMATION
Device
MC75461P MC75461U MC75462P MC75462U MC7.5463P MC75463U MC75464P MC75464U
Temperature Range
0°C to +700C 0°C to +700C 0°C to +700C 0°c to +70°C O°C to +70°C
0°c to +1oob
0°C to +700C 0°C to +700C
Package
Plastic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP Ceramic DIP
DUAL HIGH-VOLTAGE PERIPHERAL DRIVERS
The MC75461 thru MC75464 series is similar to the MC75451 thru MC75454 series peripheral drivers; however, the MC75461 series features greater voltage capability allowing operation with higher output voltages or with inductive loads.· These devices are useful as lamp drivers, relay drivers, logic buffers, line drivers, or MOS drivers.
Each of these devices consists of ·a pair of MtTL gates with the ·output of each gate internally connected to the base of a transistor.
MC75461 provides the AND function MC75462 provides the NANO function MC75463 provides the OR function MC75464. provides the NOR function
· 300 mA Output Current Capability
· No Output Latch-up at 30 V
· MTTL compatible, Inputs
MC75461 MC75462 MC75463 MC75464
DUAL HIGH-VOLTAGE PERIPHERAL DRIVERS
SILICON MONOLITHIC INTEGRATED CIRCUITS
U SUFFIX
CERAMIC PACKAGE CASE 693
P SUFFIX
PLASTIC PACKAGE CASE 626
MC75461 - Positive AND
28
2A
2Y
1A
18. 1Y GND
Positive Logic: Y =AB
TRUTH TABLE
A B
y
L
L L ("on" state)
L
H L ("on" state I
H
L L ("on" state)
H,
H H ("off" state)
H high level, L "' low level.
MC75462 - Positive NANO
Vee
28
2A
2Y
1A
18
1Y GND
Positive Logic: Y = AB
TRUTH TABLE
A
B
Y
L
L H ("off" state)
·L
H H ("off" state)
H
L H ("off" state)
H
H L ("ori" state)
H = high level, L = 1ow level 1
·
MC75463 - Positive OR
28
2A
2Y
1A
18
1Y GND
Positive Logic: Y = A + B
TRUTH TABLE
A B
y
L ("on" state)
L
H H ("off" state)
H
H ("off" state)
H
H H ("off", state)
H ~· high Jevel, L ~ low level
MC75464 - Positive NOR
Vee 20 2A 2Y
:TRUTH TABLE
A B
y
L
H ("off" state)
L
H L ("on" state)
H
L L ("on" state)
H
H L ("on" state)
H = high level, L = low level.
1A
18
1Y GND
Positive Lcigic: Y = ATB
5-·315
MC75461, MC75462, MC75463, MC75464
·
o MAXIMUM RATINGS (TA= 0 c to 10°c unless otherwise noted.)
Rating
Symbol
Value
Unit
Power Supply Voltage( 1) Input Voltage lnteremitter Voltage(2)
Vee
7.0
Vdc
V1
5.5
Vdc
-
5.5
Vdc
Output Voltage(3) Output Current(4) Power Dissipation @TA = 25°c
Derate above TA= +25°C Operating Ambient Temperature Range Storage Temperature Range
Vo
35
Vdc
ia
300
mA
Po
830
mW
6.6
mwt0 c
TA
0 to +70
oc
Tstg
-65 to +150
oc
( 1l Voltage values are with respect to network ground terminal. (2) This is the voltage between two emitters of a multiple-emitter transistor.
(3) This is the maximum voltage which should be applied to any output when it is in.the "off" state.
(4) Both halves of these dual circuits may conduct rated current simultaneously; tiowever, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.
o ELECTRICAL CHARACTERISTICS I Unless otherwise noted, specifications apply for 4.75;;;;, Vee;;;;, 5.25 V and 0 c ..,;;TA ..,;;10°cl
Characteristic
Figure Symbol Min
T~ll Max
Unit
Input Voltage - High Logic State Input Voltage - Low Logic State Input Clamp Voltage
1,2
V1H
2.0
-
-
Vdc
1,2
V1L
-
-
0~8
Vdc
4
Vi
-
-1.2
-1.5
Vdc
(Vee= 4.75 V, 11 = -12 mA)
Output Current - High Logic State
(Vee= 4.75 V, VoH = 35 v, V1H = 2.0 V)
MC75461, MC75463
2
IOH
-
-
100
µA
(Vee= 4.75 V, VoH = 35 V, V1L = 0.8 V)
MC75462, MC75464
Output Voltage - Low Logic State
(Vee= 4.75 V, V1L = 0.8 V)
(Vee= 4.75 v, V1H = 2.0 V)
loL = 100 mA loL = 300 mA
MC75461, MC75463 MC75462, MC75464
1
Vol
Vdc
-
0.15
0.4
-
0.35
0.7
Input Current - High Logic State (Vee = 5.25 V, V1 = 2.4 V) (Vee= 5.25 V, Vi= 5.5 V)
3
l1H
-
-
-
40
µA
-
1.0
mA
lnpu·t Current - Low Logic State (Vee= 5.25 V, V1 = 0.4 V)
4
l1L
-
-1.0
-1.6
mA
Power Supply Current - Output High Logic State
(Vee= 5.25 V, V1H = 5.0 V)
MC75461
(Vee= 5.25 V, V1L = 0)
MC75462
(Vee= 5.25 V, V1H = 5.0 V)
MC75463
(Vee= 5.25 V, V1L = 0)
MC75464
5
iccH
-
-
-
-
mA
8.0
11
13
17
8:0
11
14
19
Power Supply Current - Output Low Logic State (Vee= 5.25 V, V1L = 0) (Vee= 5.25 V, V1H = 5.0 V) (Vee= 5.25 V, V1L = 0) (Vee = 5.25 V, V1H = 5.0 V)
MC75461 MC75462 MC75463 MC75464
5
lccL
-
-
-
-
mA
61
76
65
76
63
76
72
85
(1) Typical Values Measured with Vee= 5.0 V, TA= 25°c
TEST CIRCUITS
(Current into terminal is shown as a positive va.lue.
FIGURE 1 - VoL
Arrows indicate actual direction of current flow.)
FIGURE 2 - IOH·
V1H - MC75462 and MC75464
V1H - MC75461 and MC75463
VIL - MC75461 and MC75463
VIL - MC75462 and MC75464
Vee
Vee
MC75461
V1H or
VIL
Me75462 ~
Me75461 MC75464
v,H o· v , f.____
MC75463
@ ·see Page 1 for specific gate type.
Each input is tested separately.
_MOTOROLA Semiconductor Products Inc.
5-316
MC75461, MC75462, MC75463, MC75464
SWITCHING CHARACTERISTICS !Vee= 5.0 v, TA= +25°c unless otherwise noted.I
Characteristic
Symbol Test Fig. Min
Typ
Max
4nit
Propagation Delay Time (lo~ 200 mA, CL= 15 pF, RL = 50 ohms) MC75461 Low-to-High-Level Output High-to-Low-Level Output
tPLH tPHL
6
-
. -
45
55
ns
30
40
MC75462 Low-to-High-Level Output High-to-Low-Level Output
MC75463 Low-to-High-Level Output High-to-Low-Level Output
tPLH
6
-
50
65
ns
tPHL.
-
40
50
tPLH
6
-
45
55
ns
tPHL
-
30
40
MC75464 Low-to-High-Level Output Hi_gh-to-Low-Level Output
Transition Time (lo~ 200 mA; CL= 15 pF, RL = 50 ohms) MC75461 Low-to-High-Level Output High-to-Low-Level Output
tPLH
6
-
50
65
ns
tPHL
-
40
50
tTLH
6
tTHL
-
8.0
20
ns
-
10
20
MC75462 Low-to-High-Level Output High-to-Low-Level Output
MC75463 Low-to-High-Level Output High-to-Low-Level Output
MC75464 Low-to-High-Level Output High-to-Low-Level Output
Output Voltage - High Logic Level after Switching (Latch-up Test) (V5 = 3Q V 10 ""300mA)
tTLH
6
-
12
tTHL
-
15
tTLH
6
tTHL
-
8.0
-
1Q
tTLH
6
-
12
tTHL
-
15
VoH
7
V5-10
-
25
ns
20
25
ns
2~
20
ns
20
-
mV
FIGURE 3- l1H (ALL DEVICE TYPES)
TEST CIRCUITS (Continued) (Current into terminal is shown as a positive value.. Arr?ws indicate actual direction of current flow.) FIGURE 4 - l1L.V1
(ALL DEVICE TYPES)
·
Each input is tested separately.
FIGURE 5 - ·ccH· ·eel
(ALL DEVICE TYPES)
Vee
Open
Each input is tested separately.
·see page 1 for specific gate type.
Both gates are tested simultaneously.
@ -----,-..---~ MOTOROLA Semiconductor Products Inc.
5-317
MC75461, MC75462, MC75463,. MC75464 .
FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS
2.4 v
0.4 v
MC75461 MC75462
To Scope (Input)
Pulse
10 v
50
··
NOTES: A. Pulse generator characteristics: tw = 0.5 µs,
PRR = 1.0 MHz, Zo ""'50 n
B. CL includes probe and test fixture capacitance.
Input
MC75461 and
MC75463
Output All
Types
FIGURE 7 - OUTPUT. VOLTAGE AFTER SWl.TCHING TEST CIRCUIT AND WAVEFORMS (LATCH-UP TEST)
Vs= 30 V
OV 3.0 v OV
VoL
To Scope (Input)
MC75463 MC75464
2 mH
100 n
Pulse Generator (See Note Al
CL=15pF
(See Note B)
----1 i-- ~ 5 ns
Input
I I
- - j :--- E:;; 10 ns
I I
3 V
9~% MC75461 .
:
I and
1.5V I
if.' 90% · 1 1.5V
-= 1- __ _: ___ MC75463.
: ....1.._0%_ _ _ _ _ _ _ _1_o·_Yo_,
O V
i I-- ----i :~'~i -~~~1~0 -ns40µ5~~~-~---I.1
E:;;1 0 ns
MC754~;utJiI ' 90%
90% ~:-:------- 3 v
and
1 1.5 V
MC75464 lO%
1.5 V I
·
·
10% .
0 v
·see Page 1 for specific gate t~pe.
Output---All Types
@
NOTES:
VoL
n A. The pulse gene·rator has the following characteristics: PRR = 12.5 kHz, Zout = 50
B. CL includes probe and jig capacitance.
MOTOROLA SemicOnductor Products Inc., _ _ _ _ _ _____.
5-318
MC75461, MC75462, MC75463, MC75464
MC75461
A B
MC75463
REPRESENTATIVE SCHEMATIC DIAGRAMS
( 1/2 Circuits Shown) MC75462
MC75464
Vee
·
Vee
@ MOTOROLA. SemiConductor Products Inc. ______..___,
5.319
·
O~DERING INFORMATION
, Device
Temperature Range
MC754Q1P MC75492P
0°C to +70°C 0°C to +700C
Package
Plastic DIP Plastic DIP
MC75491 MC75492
Specifications and Applications I n fo r i n a t i o n
QUAD LED SEGMENT DR!VER - MC75491 HEX LED DIGJT DRIVER - MC75492
The MC75491 and MC75492 are designed to interface MOS logic to common cathode light-emitting diode readouts in serially ad· dressed multi-digit displays. Using a segment address and digit scan LED drive method in a time multiplexing system results in a minimizing of the number of re9uired drivers, · Low Input Current Requirement for MOS Compatibility · Low Standby Power Drain · Source or Sink Current Capabiljty of 50 mA for MC75491 · Sink Current Capability of 250 mA for MC75492 · Four High·Gain Darlington Drivers in a Single Package - MC75491 · Six High-Gain Darlington Drivers in a Single Package - MC75492
MULTIPLE LIGHT-EMITTING DIODE (LED)
DRIVERS SILICON MONOLITHIC INTEGRATED CIRCUITS
P SUFFIX PLASTIC PACKAGE
CASE 646
MC75491 CIRCUIT SCHEMATIC,
c
(1/4,Circuit Shown)
Vss
INPUT H
TRUTH TABLE
OUTPUT E OUTPUT C
L
H
H
L
6,8 k GND
MC75492 CIRCUIT SCHEMATIC (1/6 Cjrcuit Shown)
4k
INPUTO-~..._.l\A"'--~---~~
6.8 k
OUTPUT
Vss
TRUTH TABL'E
0
INPU1: JouTPUT
J L
H
1 H
L
310 GND
CONNECTION DIAGRAMS
Emitter 1 Collector 1
Collector 2 Emitter 2
MC75491
Input 4 Emitter 4 Collector 4
Vss
MC75492
5-320
MC75491, MC75492
MAXIMUM RATINGS (TA= Oto +7o0 c unless otherwise noted.)
Rating Bias Supply Voltage (See Note 1l Input Voltage (See Note 21 Collector Voltage (See Note 31 Collect.or-to-Emitter Voltage Collector-to-Input Voltage Emitter Voltage (Vin ;;;i. 5.0 Vdcl Emitter-to-Input Voltage Continuous Collector Current (Each Collector)
(All Collectors) Power Dissipation (Package Limitation)
Ceramic and Plastic Dual In-Line Packages Derate above T_A = +25°C
Operating Temperature Range Storage Temperature Range
Symbol Vss Vin Ve Vee Vc1 Ve Ve1 le
Po
TA T stJI.
Value
MC75491
MC75492
10
-5.0 to v55
10 10
10 -5.0 to Vss
10
-
10
10
10
-
5.0
-
50
250
200
600
830 6.6 0 to +70 -65 to +150
Unit Vdc Vdc Vdc Vdc Vdo Vdc Vdc mA mA
mW mW!°C
oc oc
Note 1. V55 terminal voltage is with respect to any other device terminal. Note 2. With the exception of the inputs, the GND terminal must always be the most negative device voltage for proper operation. Note 3. Voltage values are with respect to GND terminal unless otherwise noted.
ELECTRICAL CHARACTERISTICS (Vss = 10 Vdc, TA= o to +10°c unless otherwise noted.)
MC75491
MC75492
Characteristic ·c
Symbol
Min
Typ
Max
Min
Typ
Max
Low-Level Collector-to-Emitter Voltage
(Vin= 8.5 V thru 1.0 kn, loL = SO mA,
Ve= 5.0 VI
TA= +25°C
TA = o to +10°c
VceL
-
0.9
1.2
-
-
-
-
-
1.5
-
-
-
High-Level ,Collector Current
VcH = 10 V, Ve= O, lin = 40µ.A
VcH = 10 v. Ve= 0, Vin= 0.7 v
ltH
-
-
100
-
-
-
-
-
100
-
-
-
Low-Level Output Voltage
(Vin= 6.5 V thru 1.0 kn, loL = 250 mAl
TA= +25°C
TA = oto +10°c
VOL
-
-
-
-
0.9
1.2
-
--
-
-
1.5
High-Level Output Current VoH = 10 V. ljn = 40µ.A
VoH = 10 v. Vin= 0.5 v
Input Current at Maximum Input Voltage Vin= 10 V, lo(.= 20 mA
Emitter Current - Reverse Bias
ic = o, Yin= o. Ve= 5.o v
Bias Supply Current (Vss = 10 VI
IOH
-
-
-
-
-
200
-
-
-
-
-
200
lin
-
2.2
3.3
-
2.2
3.3
IER
-
-
100
-
-
-
155
-
-
1.0
-
-
1.0
SWITCHING CHARACTERISTICS (V55 = 7.5 v. TA= +25°c unless otherwise noted.I
Propagation Delay Time, High-to-Low Level
RL = 200 n. V1H = 4.5 v. c.L = 15 pF, Ve= 0
= RL 39 n, V1H = 7.5 V, CL= 15 pF
20* 40
Propagation Delay Time, Low-to-High Level
CL= 15 pF, Ve= o. RL = 200 n. V1H = 4.5 Vdc
CL= 15pF,RL = 39 n. V1H= 7.5Vdc
40* 80
*To collector output.
Unit Vdc
µA Vdc
µA mA µA mA ns ns
·
5-321
·MC75491, MC75492
TYPICAL CHARACTERISTICS
(Vss = +10 Vdc, TA= +25PC unless.otherwise noted.I
MC75491
FIGURE 1 - COLLECTOR CURRENT versus INPUT VOLTAGE
so vc12.5v
VpO
0
0
..L_
0
0.5
1.0
1.5
2.0
2.5
Vin, INPUT VOLTAGE (Vdcl
MC75492.
FIGURE 2 -OUTPUT CURRENT ver1Us INPUT VOLTAGE
250
c.s 200
t;
~ a:
150
B
!;
~ 100
:I 0
!?
50
0 0
1
1
Ve= 2.5 V
~
J
1 1
1 y 1
0.5
1.0
1.5
2.0
2.5
Vin. INPUT VO~TAGE (VOLTS)
·
FIGURE 3 - COLLECTOR CURRENT versus INPUT CURRENT
.,. 50
1 vc =2.5 v
I 40 '
lz
~a: 30 :u:I
Ve =O
1
1
7
1
a:
tw 20
::l
1
I
u 0
!;} 10
]_
17
40
BO
120
160
200
lin. INPUT CURRENT (I.IA)
FIGURE 4 - OUTPUT CURRENT ver1Us INPUT CURRENT
250
I/
roo
.z...
~ a:
150
B
5
== 100
::I 0
!}
50
Ve= 2.5 V
J.
1 1 1 1
l
J
I
7
50 100 150 200 ' 250 300 350 400 l;n, INPUT C\JRRENT (J.cAI
FIGURE 5- COLLECTOR·TO·EMITTER VOLTAGE (ONI
ver91.1s COLLECTOR CURRENT
:i 1.0
-.....- ::::
w
c:I
'L g~..... 0.8
~
~ 0.6 ;"""'
'::.).l ::I
~T~=+7001 ' -
~TA=+25°C TA=D°C -
:i
~
t~ 0.4
Ve=O
t-- hlput 3.5 V·
g w
thru 1.0kn
0.2
u
1
~ 00
10,
20
30
40
50
IC, COLLECTOR CURRENT (mAI
FIGURE 6 - OUTPUT VOLTAGE LOW ver1Us OUTPUT CURR ENT,
1.0
-.;
- -i ~
~
0.8
·::;:; ~
.,,,,,.,.
~
w
c~:I 0.6
- ~
''\
\
~~T~·+7~~~TA=+250C TA·0°C -
g....
~ 0.4
6
~
..l ~
0.2 I - - -
Input· 6.5 V thr,u ~fOkn
·.
50
100
150
200
250'
IQ, OUTPUT CURRENT (mA)
5..322
MC75491, MC75492
TYPICAL CHARACTERISTICS and SWITCHING TIME CIRCUITS
FIGURE 7 - MC75491/MC75492 INPUT CURRENT
versus INPUT VOLTAGE
2.5 1 1 1
1- Vss=1ov Ve= 0 (MC75491)
7
2.0 I - RL = 220nto lOV
1
/
1-
ffi :;
1.5
L L
:::>
c.>
~ 1.0
!!!:
L
L
0.5
L J7'
v L'
2.0
4.0
6.0
8.0
10
Vin. INPUT VOLTAGE (Vdc)
FIGURE 8 - MC75491 SWITCHING CIRCUIT
7.6 v
Vee
Pulse Generator (See Figure 9)
RL = 200 fl
GNO (CL includes probe and jig capacitance.)
FIGURE 9 - SWITCHING WAVEFORM DEFINITIONS
--JI
tTLH ~ 10 ns
I
-I
Input
I I
10%
Output
_____,!.-(-~-°_-:-'_--V ---o-VH oe
I
I
'--+i-tPLH
Ttie pulse generator has tile following characteristics:
z0 =50.11,PRR= 100kHz,PW= 1.0µs.
FIGURE 10 - MC75492 SWITCHING CIRCUIT
7.5 v Vee
Pulse Generator (See Figure 9)
GNO (CL includes probe and jig capacitance.)
·
TYPICAL APPL.ICATIONS
FIGURE 11 - QUAD-OR-HEX RELAY DRIVER
FIGURE 12- OUAO-OR-HEX LAMP DRIVER
Vee
Vee
. MC75491
or Vss
c
(MC75491 only)
Relay
Input.
MC75491 or
MC75492
V55
E (MC75491 only)
5-323
MC75491, MC75492
TYPICAL APPLICATIONS (continued)
FIGURE 13- MOS-TO-MTTL LEVEL TRANSLATOR
FIGURE 14-QUAD HIGH-CURRENT NPN TRANSISTOR DRIVER
Vee
MOS Input
c
R1
Output To MTTL
R2 01
·
FIGURE 15 - QUAD-OR-HEX HIGH-CURRENT PNP TRANSISTOR DRIVER
Vee
FIGURE 16- BASE-EMITTER SELECT TRANSISTOR DRIVER
Vcc2
01
(Suitable for use with common-anode VLED displays)
FIGURE 17 - MOS CALCULATOR CHIP-TO-LED INTERFACE CIRCUIT
Vss
:gsSeA l
::8 ~~.
=8~~1
..
SG
-l
8 (1/4 MC75491 Circuit)= 2 Packages
c
E
MOS Calculator
Chip
Display (N Digits)
::g_j_
-<>-+---
2 Packages if N = 12
---11---D~N,__~:~~~~~~~---t~~~~~~~--'
Vss
- - --1·-=· I -VD_D_ ;....I
exan.:~1e dis~lay This
uses time multiplexing of the individual digits in a visible
to minimize display
circuitry. Up to twelve digits, each of .which use a seven-segment display with decimal point, may
be displayed using only two MC75491 and two MC75492 drivers.
5-324
MC75491, MC75492
TYPICAL APPLICATIONS (continued) FIGURE 18 - STROBED "NOR" DRIVER
Vee
2-MC75491 Circuits
R L = Lamp or Relay
Input 1
+10 v
FIGURE 19 - DC MOTOR SPEED/DIRECTION CONTROL CIRCUIT
Speed/Direction Control
50 k
1N4001
1 k
1N4001
·
1N914 or Equiv
1N4001 or Equiv
1N4001 or Equiv
Each amplifier symbol represents 1 /4 MC75491 circuit (two packages total).
5-325
·
ORDERING INFORMATION·
Device
MCC1486 MCC1487
Temperature Range
0°C to +700C OOC to +70°C
Package
Chip Only 9hip Only
MCC1486 "MCC1487
Advance Information
QUAD LED DIGIT DRIVERS
The MCC1486/MCC1487 consists of four (4) medium current (70 mA) CMOS· compatible digit drivers. Each circuit has been specially designed for use with digital watch display applications employing demand display CMOS watch circuits, or other applications requiring CMOS or equivalent input compatibility. Both are designed to serve as digit drivers for driving 4-digit common cathode LED watch displays. Each driver serves as a current sink for a particular digit cathode, providing convenient time multiplex operation. The time-multiplexecl_· display system allows a single driver to serve as a current sink for all segments of a particular digit, resulting in a significant decrease in interface circuit requirements.
The MCC1487 differs from the MCC1486 in that a two-stage high-gain driver circuit is used. The increased gain of the MCC1487 circuit permits operation with very low output curre_nt CMOS watch circuits. Also, the MCC1487's improved input threshold (approximately 2 VsEl provides greater immunity to characteristic CMOS output leakage currents. Together, the increased gain and improved input threshold allows use of relaxed watch chip specifications and a more stable, noise free operation.
MAXIMUM RATINGS ITA= 25°c unless otherwise noted.)
Rating
Symbol
Power Supply Voltage
!
Vss
Input Voltage
v,
Output Voltage
Vo
Output Current
lo
Operating Ambient Temperature Range Storage Temperature Range
TA Tstg
Vallie 5.0 5.0 5.0 100
0 to +70 --65 to +150
Unit
v v v
mA oc
oc
FIGUR.E 1 - 1/4 of MCC1486
FIGURE 2 - 1/4 of MCC1487 Vss Vo
QUAD LED DIGIT DRIVERS
SILICON MONOLITHIC INTEGRATED CIRCUITS
vDD
I
\
Vss
(MCC1487 only) Available in Chip Form Only -1 Suffix Indicates Multiples of 10 -2 Suffix Indicates Multiples of 100 MCC1487 Metal Pattern Shown. Pad Locations Same For Both Devices.
MCC1486 __ MCC1487
Digit Driver
I!ldilt,'I Common
Cathode LED Display
CROSS REFERENCE BOMAR BD5030 - MCC1486 BOMAR BD5031 - MCC1487 This_ ls advance informa1ion and specifications are subject to change without notice.
5-326
Segment Drivers
TYPICAL APPLICATION
MCC1486, MCC1487
ELECTRICAL CHARACTERISTICS
Characteristic Output Voltage-:- Low Logic State
!V1=1.2 V, l'o = 70 mAI !11=840 µ.A, lo= 56 mA) (V1 = 2.0 VI lo= 70 mA, Vss_ = 3.0 VI Output Current - High Logic State (Total of all Outputs) !V1=0.2 V, Vo= 3.0 VI (V1=0.2 V, Vo= Vss = 3.0 VI Input' Current-:- Ori State IV1=1.2VI IV1 = 2.0 VI Input Current- Off State iv 1;..o.2v1 (V1=0.5 V)'
Power Supply Current (Vl"' 2,0V, lo= 70 mA, Vss = 3.0 VI
Propagation DelayTime Low to High State Output High to Low State Output
Symbol VoL
loH
l1(onl ll(off)
lss tPLH tPHL
MCC1486
Min
Max
-
0.4
-
0.4
-
-
-
1.0
-
-
840
-
-
-
-
20
-
-
-
-
-
10
-
10
MCC1487
Min
Max
Unit
Vdc
-
-
-
-
-
0.4
µ.A
-
-
-
1.0
µ.A
-
-
300
-
-
-
µ.A
-
200
nA
mA
-
7.0
-
10
µ.s
-
10
µ.s
FIGURE 3 - SWITCHING TEST CIRCUIT ANO WAV.EFORMS (For Reference Only)
(Not Used On · vss
r -M-C-C1-48-6)- -
1·
51
±5%
20pF :t10%
2.0 Vdc Vi
tf = 1.0 µ.s
tr= 1.0·µ.s
·
CHIP OUTLINE DIMENSIONS
Pad Location Dimensions Referenced to Center Line of Pad V11
n~::.1
0.0030
-o-·--- ---o- --------.-1-[J - I
........--......-.....--- V11
·1~1±.1_. ::: ~·¢-0 0.0090
I
0;01soi v 12
DI -
¢-
t :_?-Q ?~
MCC1487 metal pattern shown. Pad loc11tlons same tor both devic111.
.J. ' v s (' No't Used With' I+- MCC14S6l
0.0332
'
Ole Size is ·0.044 x 0,044 Nominal
Oxide Free Bonding Area Is 0.046 x 0.0046
@11110-rOROLA Semiconductor Products .Inc.
5-327
·
ORDERING INFORMATION
Device
MMH0026G MMH0026L MMH0026U MMH0026CG MMH0026CL MMH0026CP1 MMH0026CU
Temperature Range
-55"C to +125°C -55°C to + 12s0 c -55°C to + 12s°C
0°c to +70°C 0°c to +70°C 0°c to +10°c 0°c to +70°C
Package
Metal Can Ceramic DIP Ceramic DIP
Metal Can Ceramic DIP Plastic DIP Ceramic DIP
Specifications and Applications Information
DUAL MOS CLOCK DRIVER
... designed for high-speed driving of highly capacitive loads in a MOS system.
· Fast Transition Times - 20 ns with 1000 pF Load · High Output Swing - 20 Volts · High Output Current Drive - ± 1.5 Amperes · High Repetition Rate - 5.0 to 10 MHz Depending on Load · MTTL and MOTL Compatible Inputs
· Low Power Consumption when in MOS "o" State - 2.0 mW
· +5.0-Volt Operation for N-Channel MOS Compatibility
FIGURE 1 - CIRCUIT SCHEMATIC (1/2 CIRCUIT SHOWN)
MMH0026 MMH0026C
DUAL MOS CLOCK DRIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX
METAL PACKAGE CASE 601-02 T0-99
i
Vee
TYPICAL OPERATION
(Rs= 10 .n, CL= Cjn = 1000 pF. f = 1.0 MHz,
PW= 500 ns, Vee= 0 V, VEE= -20 V)
+5.0 v
>
Ci
OV
~·
.J
ov
0
>
.0n
100 ns/DIV.
-20 v
5-328
(Top View)
NC OUTPUT A
INPUT A
l SUFFIX CERAMIC PACKAGE
CASE 632-02 T0-116
Vee
NC OUTPUT B NC INPUT B
(Top View)
P1 SUFFIX
PLASTIC PACKAGE CASE 626
(MMH0026C Only)
U SUFFIX CERAMlc; PACKAGE
CASE 693
I
N NPUT A
C 2
B
7 8
NC OUTPUT
A
Vee 3
INPUT B 4
s Vee
5 OUTPUT B
(Top View)
MMH0026, MMH0026C
MAXIMUM RATINGS (TA= +25°e unless otherwise noted.)
Rating
Differential Supply Voltage
Input Current
Input Voltage Peak Output Current fJunct1on "Temperature
Operating Ambient Temperature Range
MMH0026 MMH0026C
Storage Temperature Range
Symbol
Value
Vee-Vee
+22
11 Vi IOpk IJ
+110
+100 Vee+ 5.5
±1.5 +175
+150
TA
G
U,L
P1
-55 to +125 55 to +125
-
0 to +70 Oto +70 Oto +70
Tstg
1-65 to +150 65 to +150 -65 to +150
Unit Vdc mA
voe
A
"C"
oe
oc
ELECTRICAL CHARACTERISTICS !Vee-Vee= 10 V to 20 V, CL = 1000 pF, TA= -55 to +125°e for MMH0026 and Oto +10°c
for MMH0026C for min and max values; TA = +25°e for all typlcal values unless otherwise noted.)
C~racteristic
Logic "1" Level Input Voltage Vo= Vee+ 1.0 Vdc
Symbol V1H
Min
Typ
Vee+ 2.0 Vee+l.5
Max
-
Unit Vdc
Logic "1" Level Input Current
v1 -Vee= 2.4 Vdc, Vo= Vee+ 1.0 Vdc
Logic "O" Level Input Voltage
Vo= Vee -1.0 Vdc
l1H
-
10
15
mA
V1L
-
Vee +0.6 Vee+ 0.4
Vdc
Logic "O" Level Input Current
v 1 -Vee=() Vdc, v0 =Vee -1.0 Vdc
l1L
-
-0.005
-10
µA
Logic "O" Level Output Voltage
v Vee= +5.o Vdc, Vee= -12 Vdc, 1 =-11.6Vdc
V1 -Vee= 0.4 Vdc
VoH
Vdc
4.0
4.3
-
Vee -1.0 Vce-0.1
-
Logic "1" Level Output Voltage
v Vee= +5.0 Vdc, Vee= -12 Vdc, 1 = -9.6 Vdc
V1 -Vee= 2.4 Vdc
"On" Supply Current
v Vee-Vee= 20 Vdc, 1 -Vee= 2.4 Vdc
"Off" Supply Current
v v Vee-Vee= 20 Vdc, 1 -Vee= o
MMH0026C MMH0026
Vol
. iccL
lecH
Vdc
-
-11.5
-11
-
Vee +0.5 Vee+ 1.0
-
30
40
mA
-
10
100
µA
-
-
500
SWITCHING CHARACTERISTICS (Vee-Vee= 10 v to 20 V, CL= 1000 pF. TA= 25°C)
.....
Propagation Time
High to Low
(Fi[!ure 2) (Figure 3)
tPHL
5.0
7.5
12
ns
-
11
-
Low to High
(Figure 2) (Figure 3)
tPLH
5.0
12
15
-
13
-
Transition Time (High to Low) Vee-Vee= 20 Vdc, CL= 250 pF Vee-Vee= 20 Vdc, CL= 500 pF
Vee-Vee= 20 Vdc, CL= 1000 pF
(Figure 2) (Figure 2) (Figure 3) !Figure 2) (Figure 3)
tTHL
ns
-
12
-
-
15
18
-
30
40
-
20
35
-
36
50
Transition Time (Low to High) Vee-Vee= 20 Vdc, CL= 250 pF Vee-Vee= 20 Vdc, CL= 500 pF
Vee -Vee= 20 Vdc, CL= 1000 pF
(Figure 2) (Figure 2) (Figure 3) (Figure 2) (Figure 3)
tTLH
ns
-
10
-
-
12
16
-
28
35
-
17
25
-
31
40
·
@ MOTOROLA Se,.,;conductor Pr<;1ducts Inc. _______........
5-329
MMH0026, MMH0026C
·
+5 Vdc
= V1 5.0 Vdc
PRF = 1.0. MHz PW= 0.5 µs tTLH = tTHL.;; 10 ns
TEST CIRCUIT FIGURE 2 - AC TEST Cl RCUIT AND WAVEFORMS
+20 v
-----0.1 µF i
5.0 µF
*
Vo
_£:EgO% +5.0V
V1
10%
tPHL
. -
tPLH. . .
Vo
Pulse
t5.0 v
t
FIGURE 3 - AC TEST CIRCUIT AND WAVEFORMS
+20 v
.....----5_...,o µF:;;); :;;); o. 1 µF
V1~·.·
~ t-tPHL.~~
v, = 3.0 v
PRF = 1.0 MHz
50
PW= 0.5 µs
t"tLH=tTHL.;;1ons
Circuit. diagrams utilizing Motor<:Jla products are i·nc1uded at~ means of illustrating typical semiconductor applications; consequently, complete information sufficient for. construction purposes is not necessarily given. The information has been carefully ch9cked and
is b~lieved to be. entirely reliable. However.- no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semicondu.ctor de.vices described any license under the patent rights of Motorola Inc. or others.
® MOTOROLA Senriconductor Products"lnc. __________....
5-330
MMH0026, MMH0026C
TYPICAL CHARACTERISTICS <Vee=+ 20 V, Vee= O v, TA= +25°c unless otherwise noted.)
FIGURE 4 - INPUT CU.ARENT versus INPUT VOLTAGE 16
141---1----11----1--+--+---+---+--+--t---i
- 121---t----IP---l--+--+---+---+--+--+---1
!
~ 10
~
B s.o t---1----1r---1r--+--+---+---+--+17---:,..,...--1
y I-
ie 6.0 1---1----11----1--+--+---+---+17--.,~--t---i
~ 4.o 1---+--+--+--'-+---+--..._..L'-+-,.....--'-+--i--~
L17 2.0 1---1----li----1----+v----!.~-+--+--+--+--~
Oi........l---=:r;~=-..J..__J_-...L----1--1--L-~
0
0.5
1.0
1.5
2.0
2.5
Vin, INPUT VOLTAGE (V)
FIGURE 6 - OPTIMUM INPUT CAPACITANCE versus OUTPUT PULSE WIDTH
700
600
]:
:c Ic -
500
IL
/-
§:
"~.w.'. 400
~ 300
IL:
z z lL
- I:c:>- 200
f.
100
~
_..r- ~
0
0
200
400
600
800
1000 1200 1400
,Cin, OPTIMUM INPUT CAPACITANCE (pf)
FIGURE 5 - SUPPLV CURRENT versus TEMPERATURE
9.0
OUT~
1 CYCLE =20"/o
f- I= t MHz
! CL= 0 pf 8.0
~
t--
B 1.0
>
~
~
~ 6.0
i--
Vee-VEE= +20 v
_.!...---
l vie-VEE +17 v
....+---
5.0
-75 -50 -25
0
+25 +50 +75 +100 +125
T, TEMPERATURE (OC)
FIGURE 7 -TRANSITION TIMES versu.s LOAD CAPACITANCE 28.---..----,----.---r---,----.----r--.--.--,
t----t- Vcc-v~~ : ~~ ~ -+---+---+--+--+--+---1
·
400
600
800
CL, LOAD CAPACITANCE (pF)
FIGURE 8-PROPAGATION DELAY TIMES versus TEMPERATURE
Vee-VEE= 20 v
]: 13
Cin =CL= 1000 p f - - + - - + - - - - + - - + - - - t
Ro =son
w
~ 121----+---+--+---+--+---+---::..--1---~
j::
~ 111-----t---+--+---+--......,..c--1---t---~
~ l01-t_P_HL-..rl---t----+---,,.F---1---1----t----1
c
~ 9.0 Cl
1-----1----"'..,...-,.,C.4---+--+----+---1---~
f f 8.0 l---:..!-'"'---t:-----=l"-o..::---+--+---+---1---1
!f .0 tPLH
7
6.0 ....__ _.__ __._ _...__ __.__ _ _ __...__ _.___ _, ~
-75 -50 -25
0
+25 +50 +75 +100 +125
T, TEMPERATURE (DC)
FIGURE 9 - YRANSITION TIMES versus TEMPERATURE
25.-----...,.----,----.-----.---r---r---..---~
Vee-VEE= 20 v CL= 1000 pf
! 22i-:---r---t---r---i--r--=::t:;;;;;;;;;;;;o;;t"-,,..~
:w::;; j:: z ~ 181---t-:----t--+-----+-=--i"""''---+---ll---~ u; z
~
I~ 14t----+---+--+----+--+----+---t---~
10.___ _75
_ _.__~ __.__ __.__ _~-~--'----
-50 -25
0
+25 +50 +75 +100 +125
T, TEMPERATUA~ (DC)
'--------.@ MOTOROLA Se1T1iconduc·or Produc.·s Inc.·--------'
5-331
MMH0026, MMH0026C
TYPICAL CHARACTISTICS lcontinuedl (Vee=+ 20 V, Vee= o V, TA= +25°C unle~s otherwise noted.)
FIGURE 10 - TRANSITION TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)
FIGURE 11 - PROPAGATION DELAY TIME versus
TEMPERATURE FOR +5 VOLT DC-cou'PLED
OPERATION (See Figure 4.1
·
13'--~~-'-~~~~~-~~~~'---~~~-'
-55
-25
+25
+50
+75
+100 +125
T, TEMPERATURE (°C)
10'----~-~~~~-~~~~~-~~~~
-55
-25
+25
+50 . +75 +100 +125
T, TEMPERATURE (OC)
FIGURE 12 - DC-COUPLED SWITCHING RESPONSE versus Rin (See Figure 4.)
38
30
t--
lTHL
CL= 1000 pF _ Cin=510pF _
VEE= 0 V vcc=11v -
~
20
lTLH lPHL
tPLH
10
0
2.0
4.0
6.0
8.0
10
Rin. RESISTANCE (kn)
FIGURE 13 - DC-COUPLED SWITCHING versus Cin (See Figure 4.)
50
Rin = 1 kn
g
!40 l
CL= 25 pF -t-----i
vcc=+11v
1+----+---1----+-----+---+-vEE=OV ---t-----1
30
1-tnH
LU
:;:
~ j:: 20 ~
z ktPLH
.L.
~ 10
..... o..._~~~-'--~~~~--~~~-~~~
0
100 200 300
400
500
600
700 800
Cjn. CAPACITANCE (pF)
FIGURE 14 - MAXIMUM DC POWER DISSIPATION versus DUTY CYCLE (SINGLE DRIVER)
o 1s1ow 700 I- I
I
I
1 TTME uTPJT
1
I
I .- 600 <-DUTY CYCLE=
X 100 %-+---+-+---+---l
TOTALJIM) J.
~ .% 500
~ J T 1 V ~ ~ 400 1---+---+-+---+--f-vcc-VEE = 20 v
~
c;, ~300
z f
~
l....-j
~ _2001-+--+--+-+v-7'![.....-"'.F-+v-1:7-"fv~rvcc-vE~
~ 100
z...y-r
~ i---1-
~ Vcc-VEE=12V
1 l 1-
0 ~
0
10
20
30
40
50
60
70
DUTY CYCLE(%)
FIGURE 15 -AC POWER DISSIPATION versus FREQUENCY (SINGLE DRIVER)
0.2
0.4 o.7 1.0
rn
4.0
7.0 10
f, FREQUENCY (MHz)
@ MOTOROLA Semiconductor Products Inc. _ _ _ _ _ _ __.
5-332
.MMH0026, MMH0026C
APPLICATIONS INFORMATION
OPERATION OF THE MMH0026 The simplified schematic diagram of MMH0026, shown in Figure 16, is useful in explaining the operation of the device. Figure 16 illustrates that as the input voltage level goes high, diode 01 provides an 0.7-volt "dead zone" thus ensuring that 02 is turned "on" and 04 is turned "off" before 07 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if 07 and 04 were allowed to be "on" simultaneously for an instant of time. Diode 02 prevents "zenering" of 04 and provides an initial discharge path for the output capacitive load by way of 02. As the input voltage level goes low, the stored charge in 02 is used advantageously to keep 02 "on" and 04 "off" until 07 is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of Cin goes negative with respect to v·EE causing 09 to conduct momentarily thus assuring rapid turn "off" of 07.
FIGURE 16 - SIMPLIFIED SCHEMATIC DIAGRAM {Ref.: Figure 11
Vee
R6
02
e;n
R3
V I o----jt--._,\/V'v--1 02
01 Q7
RS'
Vee
The complete circuit, Figure 1, basically creates Dar· lington devices of transistors 07, 04 and 02 in the simplified circuit of Figure 16. Note in Figure 1 that when the input goes negative with respect to VEE· diodes 07 through 010 turn "on" assuring·faster turn "off" of transistors 01, 02, 06 and 07. Resistor R6 insures that the output will charge to within one VsE voltage drop of the Vee supply.
SYSTEM CONSIDERATIONS
Overshoot:
In most system applic(ltions·the output waveform of the MMH0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount
of resistance required is given'.lby: Rs= 2.j LICL where
L is the inductance of the line and CL is the load capacitance. In most cases a series of damping resistor in the range of 1O-to-50 ohms will be sufficient. The damping resistor also affects the tnmsition times of the outputs. The speed reduction is given by the formula:
tTHL""' tTLH = 2.2 Rs CL (Rs is the damping resistor).
Crosstalk:
The MMH0026 is sensitive to crosstalk when the output
voltage level is high (Vo""' Vccl. With the output in the
high voltage level state, 03 and 04 are essentially turned "off". Therefore, negative-going crosstalk .will pull the output down until 04 turns "on" sufficiently to pull the
output back towarc:ls Vee. This problem can be min-
imized by placing a "bleeding" resistor from the output to ground. The· "bleeding" resistor should be of sufficient size so that 04 concfucts only a few milliamperes. Thus, when noise is coupled, 04 is already "on" and the line is quickly clamped by 04. Also note that in Figure 1
06 clamps the output one diode-voltage drop above Vcc
for positive-going crosstalk.
Power Supply .Decoupling:
The decoupling of Vee and VEE is essential in most systems. Sufficient capacitive decoupling is requireq to supply the peak surge currents during switching. At least a 0.1-µF to 1.0-µF low inductive capacitor should be placed as close to each driver package as the layout will permit.
Input Driving:
For those applications requiring split power supplies
< (VEE GNO), ac coupling, as illustrated in Figure23,
should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performancc:i is attained when the voltage at
·
@.MOTOROLA Semfoonductor Products Inc. 5-333
MMH0026, MMH0()26C
·
APPLICATIONS INFORMATION (continued)
the input of the MMH0026 discharges to just abo've the
device's threshold voltage (about 1.5 V). Figure 6 shows
optimum values for Cin versus the desired output pulse
width. The value for Cin may be roughly predicted by:
Cin;,, (2 x 10-3) (PWQ).
(1)
For an output pulse width of 500 ns, the optimum value for Cin is:
Cin = (2 x 10-3) (500 x 10-9) = 1000 pF.
If single supply operation is required (Vee= GNO), then de coupling as illustrated in Figure24can be employed. For maximum switching performance, a speed-up capac· itor should be employed with de coupling. Figures 12 and 13 show typical switching characteristics for various v.alues of input resistance and capacitance.
POWER CONSIDERATIONS
Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatlJres
low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source ,increases the . temperature of the die relative to some reference point, normally the -ambient temperature. The temperature in·
crease depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temper-
ature is:
TJ =TA+ Po ( RoJC+RocA)
(2)
or
TJ= TA+ PO (ROJA)
(3)
where
TJ = junction temperature
TA = ambient temperature
Po = power dissipation RoJC = thermal resistance, junction t~ case RocA= thermal resistance, case to ambient RoJA = thermal resistance, junctio~ to ambient.
Power Dissipation for the MMH0026 MOS Clock Driver:
The power dissipation of the device (PO) is· dependent. on the following system requirements: frequency of op· eration, capacitive loading, output voltage sWing, and duty cycle. This power dissipation, when substituted into equation (3), should not yield a junction temperature, TJ, greater than TJ(max) at the maximum encountered ambient temperature. TJ(max) is specified for three integrated circuit packages in the maximum ratings section of this data sheet.
TABLE 1 -THERMAL CHARACTERISTICS OF "G", "L", "P1", AND "U" PACKAGES
PACKAGE TYPE (Mounted in So'c:ketl
RoJA 1°C/Wl Still Air
MAX
TY~
"G" (Metal Package)
220
175
"L" (Ceramic Package) 150
100
"P1 ''.(Plastic Package) 150
100
"U" (Ceramic Package) 150
100
RoJC 1°C/Wl Still Air
MAX
TYP
70
40
50
27
70
40
50
27
FIGURE 17 - MAXIMUM POWER DISSIPATION versus AMBIENT TEMPERATURE (As related to package)
1.4 .-----,.----.-._,.-.......- .......--.-~-...--.........-......--....
Vi 1.2 l----lt----1---+--+--+--+--+---+---+--~
s~ 1.0 1---".L".a-nd-"-U-" P-A-C.KA-G-E-+--+-PA~~~~~SE~0 ~KET _
~ 1---~Pl"P.JKAGi ~~ 1 STILLAIR -
.~..-. 0.8
-
_
~~0.6
"G"PACKAGE
' " ......
~ ~""'-
~~~ """~ "
~
ft
0.41-----1------+--4--._....... ..~ _~-~IS~ l--->~---+--i
~ ·~ 0.2 1----11-----1--'--+--+--+--+-+--+---+---+--~
o.____...____._......._ _ . . _.......~_,_--_.__ _.__ _.__~ .75 -50 -25 0 +25 +50 +75 +100 +125 +150 +175
TA, AM81ENT TEMPERATURE (OC),
With these maximum junction temperature values, the maximum 'permissible power dissipation at a given ambient temperature may be determined. This can be
done with equations (2) or (3) and the maximum thermal resistance values given in Table 1 or alternately, by using the curves plotted in Figure 17. If, however, the power dissipation· determined by a given system produces a calculated junction temperature in excess of the recom· .mended maximum rating for a given package type, some. thing must be done to reduce the junction temperature.
There are two methods of lowering the junction tern· perature ·without. changing the system requirements. 'First, the ambient temperature may be reduced su~ ficiently to bring TJ to an acceptable value. Secondly,
the RocA term can be reduced. Lowering the ROCA term
can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.
@ MOT'.OROl.A Semiconductor Products Inc.--------'
5-334
MMH0026, MMH0026C
APPLICATIONS INFORMATION (continued)
The following examples illustrate the thermal consider· ations necessary to increase the powe,r capability of the MMH0026.
Assume that the ceramic package is to be used at a
maximum ambient temperature (TAl of +70°C. From
Table 1: ROJA( max)= 1S0°C/watt, and from the max·
imum rating section of the data sheet: TJ(max) = +11soc.
Substituting the above values into equation (3) yields a
maximum allowable power dissipation of 0:7 watts. Note
that this same value may be read from Figure 17. Also
note that this power dissipation value is for the device
mounted in a socket.
·
Next, the ma>cimurn power consumed for a given system application must be determined. The power dissipation of the MOS cloek driver is conveniently divided into de and ac components. The d& power dissipation is given by:
Pde= (Vee - Veel x (tccLl x (Duty Cycle) (4)
·
where
ICCL
=40
mA
vcc (
-Vee ),
·
20V
Note that Figure 14 is a plot of equation (4) for three values of (Vcc-Veel. For this example, suppose that the MOS clock driver is to be operated with Vcc = +16 V
= and Vee GND and with a 50% duty cycle. From
equation (4) or Figure 14, the de power dissipation (per driver) may be found to be. 256 mW. If both drivers within the package are used in an identical way, the tqtal . de power is 512 mW. Since the maximum total allowable power dissipation is 700 mW, the maximum ac power that can be dissipated for this example becomes:
Pac= 0.7 - 0.512 = 188 mW \
The ac power for each driver is given by:
Pac= (Vee - Veel 2 x f x CL
(5)
where f = frequency of operation
CL= load capacitance (including all strays and
wiring).
using the previous formulas and constants, a new safe
operating area can be generated for any output voltage
swing and duty cycle desired.
·
Note from Figure 18, that with highly capacitive loads, the maximum switching frequency is very low. The switching frequency can be increased by varying the following factors:
(a) decrease TA , (bl decrease the duty cycle
(cl lower package thermal resistance (ROJA)
In most cases conditions (a) and (bl are fixed due to system requirements. This leaves only the thermal re· sistance ROJA that can be varied.
Note from equation (2) that the thermal resistance is ' comprised of two parts. One is the junction·to·case
thermal resistance (ROJC) and the other is the case·to· ambient thermal resistance (ROCA). Since the factor ROJC
is a function of the die size and type of bonding employed, it cannot be varied. However, the Ro CA term can be changed as previously discussed, see Page 7.
FIGURE 18 - LOAD CAPACltANCE verius FREQUENCY.
FOR "L" PACKAGEC>NLV.
(Both drivers used in idantiCilll way)
700 ...-----..----.----A,-SD-CK_ET.,..MO-U-NT.,...,..._ _8: ..P.C-8-0A-RD..M. -OU-NT-.
U..
~_e 600
~ SOO
NO HEAT SINK
c ~N~O~A~IR~~F~L~OgW~1012e :~A:,:·~to~R EDUIV
NO HEAT SINK
0~N~OcA!IiR~tFLsO~W~:T ~~ ~~~
~ ~ 400
E: ~~~~~A~~g~1912a
~O~A~F~~K OR EOUIV
~ 1----i.....---lfo-'loc-+..,.,_....,,.._-+......_;:o...- AIR FLOW
53001-----~~1--~-~~....+--t-..::ii..a.:,..--+~-+--1
~
52001----i1--~~"-t--'?"1C"....+. . ."""'1::="'"'.....~-+--+-""I
Q
~~1001---1----11---t.;;m......c::'.:-t--+-;;:p---.........==i;;1
~
2.0
4.0
6.0
8.0
10
I, SWITCHING FREQUENCY (MHz)
Figure 16 gives the maximum ac power dissipation versus switching frequency for various capacitive loads with
= Vee 16 V and Vee = GND. Under the above con·
ditions, and with the aid of Figure 15, the safe operating area beneath Curve A of Figure 18 can be generated.
Since both drivers have a maximum ac power dissi· pation of 188 mW, the maximum ac power per driver· becomes 94 mW; A horizontal line intersecting all the capacitance load lines at the 94 mW level of Figure 15 will yield the maximum frequency of operation for each
av of the capaci~ive loads at the specified power level.
Heat Sink Considerations: ,
Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 19. In the previous example, with the ceramic package, no heat sink and in a still air environment,AOJA(max)was 150°C/W. '
For the following example the Thermalloy 60128 type heat sink, or equivalent, is chosen. With this heat sink, the RocA for natural convection from Figure 20 is 44°C/W.
From Table 1 RoJc(maxl =·50°C/W for the ceramic
@ MOTOROLA Se,..iconductor Producu Inc.
5.335
·
MMH0026, MMH0026C
APPLICATIONS INFORMATION (continued)
FIGURE 19 -THERMALLOY* HEAT SINKS
·
60126
6007A ·Manufactured by Thermalloy Co. of Texas.
2230·5
package. Therefore, the new ReJA(max) with the 60128 heat sink added becomes:
ReJA(max) = 50°C/W + 44°CIW = 94°C/W. Thus the addition of the heat sink has reduced ReJA(max) from 150°C/W down to 94°C!W. With the heat sink, the maximum power dissipation by equation (3) at TA = +10°c is:
115°c - 1ooc
Po=
= 1. 11 watts.
94°c;w
This gives approximately a 58% increase in maximum power dissipation. The safe operating area under Curve C of Figure 18 can now be generated as before with the aid of Figure 15 and equation (5).
FIGURE 20 -CASE TEMPERATURE RISE ABOVE AMBIENT versus POWER DISSIPATED USING NATURA~ CONVECTION
~
w~80t----+---t----+-:---+--+---+---t-::;.--~
en::>
C:1-
w<C cc CC
::> ~ 60 !;;:~ cc .... ~~ ~ ~ 40 t----+----11----t--7"'"--t---'7"''!'-:;;;.---+---t------1
I- CD w:O
~~
~201----t---,""9::~.....,,f----t--"'
<
o..__ _,.__~.__,...-~-~--~-~--~-~
0
0.5
1.0
1.5
2.0
Po. POWER DISSIPATED (WATTS)
Forced Air Considerations:
As illustrated in Figure 21, forced air can be employed to reduce the ROJA term. Note, however, that this curve is expressed in terms of typical ROJA rather than max·imum ROJA Maximum ROJA can be determined in the following manner:
From Table 1 the following information is known:
Since:
(a) ReJA(typ) = 100° C/W (bl R8JC(typ) = 27° C/W
ReJA = ReJc + RecA
(6)
Then:
RecA = ReJA - ReJc
(7)
Therefore, in still air
RecA(typ) = 100°c;w - 21°c;w = 73°c;w
From Curve 1 of Figure 21 at 500 LFPM and equation (7),
.RecA(typl = 53°C/W - 21°c;w = 26°CIW.
Thus RecA(typ) has changed from 73°C/W (still air) to 26°C/W (500 LFPM), which is a decrease in typical RecA by a ratio of 1: 2.8. Sinc:e the typical value of Re CA was reduced by a ratio of 1: 2.8, Re CA (max) of 100°C/W should also decrease by a ratio of 1:2.8.
This yields an RocA(max) at 500 LFPM of 36°C!W.
Therefore, from equation (6):
ReJA(max) = 50°C/W + 36°C!W = 86°C/W.
· Therefore the maximum allowable power dissipation at
500 LFPM 11nd TA = +10°c is from equation (3):
175°c - 10°c
Po =
- 1.2 watts.
+86°C/W
@ -------~ MOTOROLA Sernfoonductor Products Inc.
5-336
MMH0026, MMH0026C
APPLICATIONS INFORMATION (continued)
FIGURE 21 -TYPICAL THERMAL RESISTANCE (RoJAI OF "L" PACKAGE versus AIR VELOCITY
As with the previous examples, the de power at 50% duty cycle is subtracted from the maximum. allowable device dissipation (Po) to obtain a maximum Pac· The safe operating area under .Curve 0 of Figure 18 can now be generated from Figure 15 and equation (5).
Heat Sink and Forced Air Combined:
Some heat sink manufacturers provide data and·curves of ROCA for still air and forced air such as illustrated in Figure 22. For example the 60128 heat sink has an RocA = 17°C/W at 500 LFPM as noted in Figure 22.
From equation (6): Max ROJA= 5o0c;w + 11°c;w = 67°C/W
From equation (3) at TA = +70°C
175°c - 10°c Po = 670 C/W 1.57 watts.
FIGURE 22 -THERMAL RESISTANCE RocA versus AIR VELOCITY
,_
z w
a:> :2' <! ~ 30>---4.---~+-""~-+----+----+---+---+---+----+--~ w en
~ ~~
~~2oi---t-;;:::--t-~t-'-"""';;j;;;::::--t-"-t-'=-1'"'-.;;;;~::::::t::=~
~~
10 ~ri~'~~ J:i~,~~L~~~nuitu1iVv-:7'f· -=i---~;;:;;:::4:::::t:~I I >---+---+---+- DIP WITH THER MALLOYt---Y"---t-----l
=6007A HEAT SINK 0 R EQUIV
0 0
200
400
600
800
1000
AIR VELOCITY (LINEAR FEET PER MINUTE)
As before this yields a safe operating area under Curve E in Figure 18.
Note from Table 1 and Figure 21 that if the 14-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath), that typical ROJA is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine a safe operating area for this condition: Given data from Table 1:
typical ROJA= 100°C/W
typical Ro Jc= 27°C/W
From Curve 2 of Figure 21, ROJA(typ) is 75°C/W for a PC mount and no air flow. Trnn the typical RocA is 75°c;w - 27°c;w = 48°c;w. From Table 1 the typical value of ROCA for socket mount is 100°c;iN - 21°c;w = 73°C/W. This shows that the PC board mount results in a decrease in typical RecA by a ratio of 1: 1.5 below the typical value of ROCA in a socket mount. Therefore, the maximum value of socket mount RecA of 10ooc;w should also decrease by a ratio of 1: 1.5 when the device is mounted in a PC board. The maximum ROCA becomes:
100°c;w ROCA= - - - = 66°C/W for PC board mount
1.5 Therefore the maximum ROJA for a PC mount is from equation (6).
ROJA= 50°C/W + 66°C/W = 116°C/W. With maximum ROJA known, the maximum power dissipation can be found and the safe operating area de· termined as before. See Curve B in Figure 18.
CONCLUSION In most cases, heat sink manufacturer's publish only RocA socket mount data. Although RocA data for PC mounting is generally not available, this should present no problem. Note in Figure 21 that an air flow greater than 250 LFPM yields a socket mount ROJA approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater sa.fety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are que to the dependency of RocA on the type environment and measurement techniques employed. For example, ROCA would be greater for an integrated circuit mounted or: a PC board with little or.. no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border Iine of being too high for a given system application, then thermal resistance measure· ments should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.
@ MOTOROLA Semiconductor Products Inc.
5-337
·
MMH0026, MMH0026C
·
TYPICAL APPLICATIONS
FIGURE 23 - AC.COUPLED MOS CLOCK DRIVER
v1
Vcc=+5v
Vo
:oLi---o-+-tln. ~
~~ln~oQ-+-t ·~.-i-o-~--~.......,
MTTL MC7400 Serles Gates
Vee=-1;zv
Pins not shown are not connected.
FIGURE 24 - DC.COUPLED RAM MeMORV ADDRESS OR PRECHARGE DRIVER (POSITIVE·SUPPLV ONL VI
Pins not shown a~e not connected.
VOLTAGE COMPARATORS
Temperature Range
o to 10°c -55to 12s0 c
Other
MC1414 MC1710C MC1711C
MC1514 MC1710 MC1711
XC3411 MC3430-33 MLM311 MLM339 MLM339A
MLM111 MLM139 MLM139A
MC3302
MLM211 MLM239 MLM239A MLM2901
Page
Dual MC1710 Differential Comparator. . . . . . . . . . . . Differential Comparator . . . . . . . . . . . . . . · . . . . . Dual Differential Comparator . . . . . . . . . . . · . . . . . Quad Comparator. . . . . . . . . . . . . . . . . . . ~ . . . . Dual Comparator . . . . . . . . . . . . . . . . . . · . . . . . High-Speed Quad Comparators . . . . . . . . . · . . . . . . High-Performance Comparator . . . · . . . . . . . . . . . . Quad Comparator (Single Supply) . . . . . . . . . . . . . . Quad C9mparator (Single Supply) . . . . . . . . · . . . . . Quad Comparator. .
6-5 6-9 6-13 6-17 6-21 6-23 6-31 G-35 6-39 6-43
·
6-2
VOLTAGE COMPARATORS
General Purpose Comparators
... for detecting the polarity relationship between two analog levels and giving a corresponding TTL output.
MC1710 -TA=-55to125°C MC1710C - TA= 0to10°c
Single comparators
MC1711 -TA=-55to125°c MC1711C-TA =Oto 10°c
Dual comparators with strobes and wire-ORed outputs
N.C
Gnd Non Inv.
Input Inv. Input
N.C
N.C
NC
N.C Packages: G Suffix - Case 601
I nputs1
N.C
F Suffix - Case 606
L Suffix - Case 632
v
Vee
P Suffix - Case 646 (for
EE
MC171 OC, MC1n1 Conly)
N.C
Inputs 2
Output
NC*
NC Strobe 1
Gnd
Vee
Output Strobe 2 NC
'Connected to pin 6 via the substrate on some plastic units.
'Connected to pin 4 via the substra~e on some plastic units.
MC1514 -TA= -55to125°C MC1414-TA=0to10°c
Dual comparators with strobes.
Non- Inverting 5 input
Inverting Input
Inverting Input
Non-Inverting Input
Gnd
Device Number
MC1710C MC1710
MC1711C MC1711
MC1514 MC1414
V10 mVMax
5.0 2.0
5.0 3.5
2.0 5.0
Its µA Max
25 20
100 75
20 25
AvoL
VIV Min 1000 1250 100 700
1250 1000
·
Packages: F Suffix - Case 607 L Suffix - Case 632 P Suffix - Case 646 (MC1414 only)
6-3
·
VOLTAGE COMPARATORS (continued)
Precision Comparators
MC3411 - TA = oto 1ooc
. . . featuring low input loading, high voltage gain, and a
Dual 311-type comparator.
choic_e of either dual or single positive power supply
operation.
Emitter Output ..1 ~- ---~
Collector 4 Output
MLM111 -TA= ..:55to125°c
Packages:
Non-Inverting 2 Input
MLM211 - TA= -25 to 85°C
L Suffix - Case 632
Inverting 3
MLM311 - TA= 0 to 10°c
P Suffix - Case 646
Single comparators; high gain, high input imped-
Input
Vee 4
ance; strobe and balance inputs provided.
Balance 5
13 ~~~~~~e/
Inverting 11 Input 0 7~$~~nvertlng
In:~: ; ~ ~ ~~~ut
3 -
6 Balance/Strobe
Vee 4
.
5 Balance
Packages: G Suffix - Case 601 F Suffix - Case 606 L Suffix - Case 632 P1 Suffix - Case 626 (MLM311 only)
Device Number
MLM111 MLM211 MLM311
MC3411
s;~~~~~ 6
Collector 1 Output
V10 mVMax
3.0 3.0 7.6
7.6
·1e nAMax
100 100 250
250
9 Emitter Output
VoL @loL ·50mA
Volts Max 1.5 1.6 1.6 1.6
Quad Comparators ... for applications requiring multiple comparators.
MMCc33443310 _} -
H1' gh-speed quad- comparators w.ith t hreestate Enable common to all four devices;
±5 volt supply; TA= o to 10°c.
MMCc33443332 } ·-
Ouad comparators with open collector·. outputs, common st.robe input; ±5 volt
supply; TA= Oto 10°c.
Inputs A
Packages: L Suffix - Case 620
v cc P Suffix - Case 648
Inputs B
} MLM139
MLM139A
c - TA = -55 to 12s0
l MC3302
MLM239 MLM239A
TA = -40 to ss0 c
}- MLM339
MLM339A
TA= Oto 10°c
Single supply voltage comparators.
Output 3 Output 4 Gnd Input 4
Output C
Input 4
Inputs
c
Inputs 0
Device Number
MC3430 MC3431 MC3432 MC3433
V1s mVMax
±6.0 ±10 ±6.0 ±10
·1e µA Max
20 20 20 20
tPHL nsMax
46 46 50 -'50
Packages:
L Suffix - Case 632 P Suffix - Case 646 (For
all devices except . MLM139, MLM139A)
Device Number
MC3302 MLM139 MLM139A MLM239 'MLM239A MLM339 MLM339A
V10 @2soc mVMlix
2.0 6.0 2.0 5.0 2.0 6.0 2.0
·1e @2soc nAMax
1000 100 100 260 260 260 250
I sink @VoL·500mV
mAMin
-
6.0
6.0
6.0
.6.0
6.0
6.0
VoL @ loL = 2.0 mA* @loL =4.0mA
mVMax
400· 600 500 600 600 600 500
6-4
ORDERING INFORMATION
Device
MC1414L MC1414P MC1514L
Temperature Range
0°c to +75°C 0°c to +75°C -55°C to +125°0
Package
Ceramic DIP Plastic DIP Ceramic DIP
DUAL DIFFERENTIAL VOLTAGE COMPARATOR
... designed for use in level detection, low-level sensing, and memory applic~tions.
· Two Separate Outputs ·
· Strobe Capability
· High Output Sink Current 2.8 mA Minimum{Each Comparator) for MC1514 1.6 mA minimum (Each Comparator) for MC1414
· Oifferential Input Characteristics Input Offliet Voltage= 1.0 mV for MC1514 = 1.5 mV for MC1414 Offset Voltage [)rift= 3.0 µVJ°C for MC1514 = 5.0µV/°C for MC1414
· Short Propagation Delay Time - 40 ns typical
· OutputCompatible with.All Saturating Logic Forms Vo = +3.2 V to -0.5 V typical
MAXIMUM RATINGS (TA= 25°C unless otherwise noted.)
Rating
Symbol
Power Supply Voltages
Differential Mode Input Voltage Range Common Mode·lnput Voltage Range Peak Load Current
Vee Vee V10R V1cR IL
Power Dissipation (Package Limitation)
Po
Ceramic Dual In-Line Package
Derate above TA = 25oc
Ceramic Flat Package
Derate above TA= 2s<>c Pl11stic·oual In-Line Package
Derate aboveTA '" 25°C
Operatiiig Temperature Range MC1514
TA
MC1414
Storage Temj)erature Range
Tstg
Value +14 -7.0 ±5.0 ±7.0 10
Unit Vdc
Vdc Vdc mA
1000 6.0 500 3.3 625 5.0
-55 to +125 Oto +75
-65 to +150
rrNV
mw1°c
mW mw1°c
mW mW/°C
oc
oc
Vee 3
CIRCUIT SCHEMATIC
Strobe
Strobe
2
50
9
Vee 10
MC1414 MC1514
DUAL DIFFERENTIAL COMPARATOR
(DUAL MC1710) MONOLITHIC SILICON INTEGRATED CIRCUIT
LSUPFIX CERAMl.C PACKAGE
CASE 632 T0-116
PSUFFIX PLASTIC PACKAGE
CASE 646 (MC1414 only)
·
11 Vei: Gnd
Outputs
6-5
MC1414, MC1514
·
ELECTRICAL CHARACTERISTICS !Vee= +12 Vdc, Vee= -6 Vdc, TA= 25°c unless otherwise noted.) !Each Comparator)
MC1514
MC1414
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Input Offset Voltage !Vo = 1.4 Vdc, TA= 25°c1 !Vo= 1.8 Vdc, TA =T1ow*I (~ = 1.0 Vdc, TA= Th.i.g!l*l
Temperature Coefficient of Input Offset Voltage
V10
-
-
-
~V10/~T
-
1.0
·2.0
-
-
3.0
-
-
3.0
-
3.0
-
-
1.5
5.0
-
6.5
-
6.5
5.0
-
Input Offset Current !Vo = 1.4 Vdc, TA = 25°Cl (Vo= 1.8 Vdc, TA= T10 wl (Vo= 1.0 Vdc, TA= Th!.g_h)
110
-
1.0
3.0
-
1.0
5.0
-
-
7.0
-
-
7.5
-
-
3.0
-
-
7.5
Input Bias Current <Vo = 1.4 Vdc, TA= 25°Cl (Vo= 1.8 Vdc, TA= T19wl (Vo= 1.0 Vdc, TA= ThJ.g_hl
l1B
-
-
12
20
-\
-
45
-
-
20
-
~5
25
18
40
-
40
Open Loop Voltage Gain (TA =25°Cl (TA= T1ow to ThJ.g_hl
Output Resistance Differential Voltage Range
Avol
1250 1700
-
1000
-
-
Ro
-
200
-
V1DR
±5.0
-
-
1000 1500
-
800
-
-
-
200
-
±5.0
-
-
High Level Output Voltage (V1D ;;;i.5.0 mV, O<lo <5.0 mA)
VoH
2.5
3.2
4.0
2.5
3.2
4.0
Low Level Output Voltage (V1D ;;;i,-5.0 mV, los = 2.B mA) (V1D ;;;i:-5.0 mV, los = 1.6 mA)
VoL
-1.0
-0.5
-
-
0
-
-
-
-
-1.0
-0.5
0
Output Sink Current
ios
2.8
3.4
-
1.6
2.5
-
(VID;;;i,-5.0 mV, VoL < 0.4 V, TA= T10wtoTh~h)
Input Common Mode Voltage Range
V1cR
±5.0
-
-
±5.0
-
-
<Vee= -7.0 Vdcl Common-Mode Rejection Ratio
CMR~
80
100
-
70
100
,_
!Vee= -7.o Vdc, Rs <200 .nl
Strobe Low Level Current
l1L
-
-
2.5
-
-
2.5
(VIL =0)
Strobe High Level Current
(V1 H = 5.0 Vdcl
l1H
-
-
1.0
-
-
1.0
Strobe Disable Voltage
V1L
-
-
0.4
-
-
0.4
!VoL .s;;;o.4 Vdcl
Strobe Enable Voltage
V1H
3.5
-
6.0
3.5
-
6.0
(VoH ;;;i.2.4 Vdc)
Propagation Delay Time (Figure 1)
tPLH
-
20
-
-
20
-
tPHL
-
40
-
-
40
-
Strobe Response Time (Figure 2)
tso
-
tsr
-
15
-
6.0
-
-
15
-
-
6.0
-
Total Power Supply Current, Both Comparators (Vo<Ol
ice
-
12.8
18
-
12.8
18
li:e
-
11
14
-
11
14
Total Power Consumption, Both Comparators
Po
-
230
300
-
230
300
Unit mVdc
µ.V/°C µ.Ade
µ.Ade
VIV
ohms Vdc Vdc Vdc
mAdc Vdc dB mA µ.A Vdc Vdc ns ns
mAdc mW
*T10 w = -55°C for MC1514,'o0 c for MC1414 Thigh= +125°C for MC1514, +7s0 c for MC1414
FIGURE 1 - PROPAGATION DELAY TIME
FIGURE 2- STROBE RESPONSE TIME
e;n
e.out
b
':"" ':'
':""
vb= 95 mV - V10
Input
Output
Output
6-6
MC1414, MC1514
TYPICAL CHARACTERISTICS
(Each Comparator)
FIGURE 3- VOLTAGE TRANSFER CHARACTERISTICS
FIGURE 4- INPUTOFFSET VOLTAGE versus TEMPERATURE
3.0 . - - - - . - - - - . - - - - r - - - r - - - r - - r - - - i
-1.o.___.....__....__ _..___ __.__ __._ _-._s_s_·c_-:i...__J.-1 ___,
-6.0 , -6.0 -4.0 -2.0
2.0 4.0 6.0 8.0
V; 0 , INPUT VOLTAGE (mV)
FIGURE 5 - INPUT OFFSET CURRENT
versus TEMPERATURE
. 5.U
4~0
:?
~ .,_3
z
13.0 ~ ~o,_ 2.0
~ ::>
z
s2
- 1.0
~
r "!--... -,-__
0
~
-55
-25
25
50
75
100 125
TA. AMBIENT TEMPERATURE (DC)
FIGURE 7 - GAIN VARIATION
WITH POWER SUPPLY VOLTAGE
3000~-~-~-~-~-~--~-~~
.>s
w
"~' 2.0
t;;
*,_
~C1414
::>
~ 1.01----~l----l~-=---+---+--~=--t-~--t---1
> L
MC?--
_ ___.._ _.....__ _.__ _ O'----~-_._
....__~
-55
-25
25
50
75
100 125
TA, AMBIENTTEMPERATURE (OC)
FIGURE 6 - INPUT BIAS CURRENT versus TEMPERATURE
~~ 1 20~~~---+-----l---+---+---t----r----;
~15 ~
i h
~
~
~ 101---~f-----l---+--""""'--+---t-------i
·
5-.055'------2-5'~--L---..2J5.---5:0~--±-7-5 -..,1.00,":-m~
TA, AMBIENT TEMPERATURE (OC)
FIGURE 8 -VOLTAGE GAIN versus TEMPE RATUR E
2500~--'---,.---~---.---.....----..----r---i
~ 20001---+---+----+--------+,_._--<~-+---< z ~
~ 15001----+------.,;r::...---'-+-~,......:----"f-.---+----I
~
g 1000.-.-"t--------+----+----+---<~-+---<
<(
Vee. POSITIVE SUPPLY VOLTAGE (Vdc)
~2000~
~ ~
~·
~MC11514
> Jl500
!"--M- C14I 1~ ~ ~
10~05'-5--_...,2':-5-~--~25,..---,..,5::'::0---:7'!:5-~100=--7..125
TA, AMBIENT TEMPERATURE (OC)
6-7
MC1414, MC1514
·
FIGURE 9 - RESPONSE TIME
4.0.----.----.----~--~~-~-~
FIGURE 10- POWER DISSIPATION versus TEMPERATURE
300~--~-~--~-~--~--...----.
[-1.0~=I11=11=I··I
.;; 0
20
40
60
80
100
120
t. TIME (ns)
~ ~250t----+----+----+---+---+---+---1 ~ ;::
~ ~ c
a:
~
~200t----+----+---+---+--+---+---1
,fl
150...__ _......__ _.__ _...___ __,__ _...___......._ _
-55
-25
25
50
75
100 125
TA, AMBIENT TEMPERATURE (OC)
FIGURE 11 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS
~e 50t----+--+--+--+-+
FIGURE 12 - SINK CURRENT versus TEMPERATURE
4.0 ,...----.----.------.---.---,----,-----.
3.0 l - - - - + - - - + - - - - 1 - - - + - - - + - - - - + - - - t
1-----t--+--+-+-+-+-N+mW MRTL+---t--+-+-+-+-+-H
5.0t----+-~--"lr[:s;J-11'--+-+-t-H-f'-..~..~. =--~-+---t-+--+-+-t-t-+1
Med.Power.·~
~
:::~ r11-+++'ld--~-+-'--~f'h-+-+-N++-H
0.1
0.2
0.5
1.0
2.0
Rs. SERIES RESISTANCE (kn)
5.0
10
!
1z -
'W
~ 2.0
z""
~
1.0t----+---+----1---+---+----+-'---t
o...__ __,__ __.__ __._ __.__ _..___ _.._ ___,
-50
-25
25
50
TA. TEMPERATURE (ac)
100 125
FIGURE 13 - CROSSTALKt
·~
r
I
1
I
:f
I
I
_3\ :
$-
ili.
j
-1
e
TIME, 50 ns/dlv tworst case condition shown - no load.
e;0 ·±50mV
51 Induced output signal in amplifier #2 due to output signlilatamplifier#t.
6-.8
ORDERING INFORMATION
Device
MC1710F MC1710G MC1710L MC1710CF MC1710CG
MC1710CP MC1710CL
Alternate
LM710CH, µA710HC
Temperature
R~nge
-55°C to +125°C -55°C to +125°C -55°C to +125°C
0°c to +75°C 0°c to +75°C
0°c to +75°C 0°C to +75°C
Package
Ceramic Flat Metal Can
Ceramic DIP Ceramic Flat
Metal Can
Plastic DIP Ceramic DIP
DIFFERENTIAL VOLTAGE COMPARATORS
.·. designed for use in level detection, low-level sensing, and memory applications.
· Differential Input Cbaracteristics Input Offset Voltage= 1.0 mV - MC1710 = 1.5 mV - MC1710C · .Offset Voltage Drift= 3.0 µV!°C - MC 1710 = 5.0µV/°C - MC1710C
· Fast Response Time - 40 ns · Output Compatible with all Saturating Logic Forms -
Vo = +3.2 v to -0.5 v (Typ)
··Low Output Impedance - 200 Ohms
MAXIMUM RATINGS !TA= +25°c unless otherwise noted.I
Rating
Symbol
Value
Power. Supply Voltage
Differential Input Signal Voltage Common Mode Input Swing Voltage Peak Load Current
Vcc!maxl Vee( max)
V10 V1cR
IL
+14 -7.0 ±5.0 ±7.0 10
Power Dissipation (Package Limitations) Metal Package Derate above TA = +25°C
Flat Package Cerate above TA = +.25°c
Ceramic Dual In-Line Package Derate above TA= +25°C
Po 680 4.6
500 3.3
625 5.0
Operating Temperature Range MC1710 MC1710C
TA
'-55 to +125
Oto +75
Storage Temperature Range
Tstg
-65 to +150
Unit Vdc Vdc Volts Volts mA
mW mwt0 c
mW mwt0 c
mw mwt0 c
Oc
oc
EQUIVALENT CIRCUIT
MC1710 MC1710C
DIFFERENTIAL COMPARATORS MONOLITHIC SI LICON INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
F SUFFIX CERAMIC PACKAGE
CASE 606-04 T0-91
L SUFFIX ) CERAMIC PACKAGE
CASE 632-02 T0-116,
·
·connected to pin 6 via th· substrate on someplastlc units
VEE
6-9
PSUFFIX PLASTIC PACKAGE
CASE 646 (MC1710C Only)
MC1710, MC1710C
·
ELECTRICAL CHARACTERISTICS (Vee= +12 Vdc, VEE= -6.0 Vdc, TA= +25°e unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Input Offset Voltage IVo = 1.4 Vdc, TA= +25°C)
(VO = 1.8 Vdc, TA = -55°c1 IVo = 1.0 Vdc, TA= +125°C (Vo= 1.5 Vdc, TA= d°CI (Vo= 1.2 Vdc, TA= +7?°CI
V10
MC1710
-
1.0
MC1710C
-
1.0
MC1710 MC1710
-
-
-
-
MC1710C MC1710C
-
-
-
-
Temperature Coefficient ()f Input Offset Voltage
AV10/AT
-
3.0
Input Offset Current IVo = 1.4 Vdc, TA= +25°CI
(Vo= 1.8 Vdc, TA= -55°CI
= IVo 1.0 Vdc, TA= +125°c>
(Vo= 1.5 Vdc, TA= o0 cl IVo = 1.2 Vdc, TA= +75°CI
110
MC1710 MC1710C
-
1.0
-
1.0
MC1710 MC1710
-
-
-
-
MC1710C MC1710C
-
-
-
-
Input Bias Current (Vo= 1.4 Vdc, TA= +25°CI
<Vo= 1.8 Vdc, TA= -55°CI (Vo= 1.0 Vdc, TA= +125°c1 (Vo = 1.5 Vdc, TA= 0°CI (Vo= 1,2 Vdc, TA= +75°C)
11B
MC1710
-
12
MC1710C
-
12
MC1710 MC1710
-
-
-
-
MC1710C
-
-
MC1710C
-
-
Voltage Gain (TA= +25°C)
(TA= T1ow to Thighl Ii)
Output Resistance Differential Voltage Range Positive Output Vol~ge
(Vio ~5.0 mV, O~lo ~5.0 mA)
MC1710 MC1710C
MC1710 MC1710C
Avol
ro V10 VoH
1250 1000 1000 800
-
±5.0
2.5
1700 1700
-
-
200
-
3.2
Negative Output Voltage IV10 ~-5.0 mVI
Vol
-1.0
-0.5
Output Sink Current <Vio ~-5.0 mV, Vo ~0)
IVto ~-5.0mV, Vo~o. TA= T1owl
Input Common-Mode Voltage Range !Vee= -1.0 Vdcl
los
MC1710
2.0
2.5
MC1710C
1.6
2.5
MC1710 MC1710C
1.0
2.0
0.5
-
V1c.R
±5.0
-
Common-Mode Rejection Ratio <Vee= -7.0 Vdc, Rs ~200 Ohmsl
Propagation Delay Time for Positive and Negative Going Input Pulse
CMRR
MC1710
80
100
MC1710C
70
100
tp
-
40
Power Supply Current
(Vo~O)
. Polllier Consumption
lo+
-
6.4
lo-
-
5:5
Po
-
115
o (1) T1ow = -55°C for MC1710, 0 c for MC1710C
Thigh= +125°C for MC1710, +75°C for MC1710C
Max
2.0 5.0 3.0 3.0 6.5 6.5
-
3.0 5.0 7.0 3.0 7.5 7.5
20 25 45 20 40 40
-
-
4.0
0
-
-
-
-
-
9.0 7.0 150
Unit mVdc
µV/°C µAde
"µAde
VIV
Ohms · Vdc Vdc Vdc mAdc
Volts dB ns
mAdc mW
' 6-10
MC1710, MC1710C
TYPICAL CHARACTERISTICS
FIGURE 1 - VOLTAGE TRANSFER
CHARACTERISTICS
0
L -55DC
Z.L.f-+25 De
3.0 -,-
- ~ \_ +125 DC
~ 1\\1 ;:;; 2.0
~ -...i
: \1 ....
~
0 1.
' \ ~
~
-toi:---:~-.,.,...-':":--~--:L:,--_,..,....-5-5D_c-:!-P':--.....,....
-8 0 -6.0 -4.0 -2.0
+2.0 +4.0 +6.0 +8.0
V;n,INPUTVOLTAGE (mV)
FIGURE 2- INPUT OFFSET VOLTAGE versus TEMPERATURE
--~cmo. 3.01~--...--....----.---...--....----.-----. Jcmoc ---MC1710 Only
> ~ 2.01----4---1---+---4---1---+-----I
~
~
~
....
-- ~ 1.01-----11-,-,,-,-,-+~-=-+-------=:o-+-__--__+---l
~
,,,,.,.""
.........
1,/"
TA, AMBIENTTEMPERATURE (OC)
FIGURE 3 - INPUT OFFSET CURRENT versus TEMPERATURE
5.0r---.--.,.---.-----,.--...,-~--.------,
- - MC1710, MC1710C - - - MC1710 Only
FIGURE 4 - INPUT BIAS CURRENT versus TEMPERATURE
5 - - MC1710, MC1710C - - - MC1710 Only
4.01-----t--+---+---le----+---+---l
~
~ffia:
I\ 3.01-'_...,._,_+---+--+--+---+--+---I
tu ',,
1£0
""' ~
""'----i- ~~5---~25=---+---.2~5---:'+5~0--+~75--+1~00_-_-_;-12-5
TA, AMBIENT TEMPERATURE (DC)
FIGURE 5-.GAIN VARIATION V\llTH POWER SUPPLY VOLTAGE
30001r---.--....---,---r---r---.--..--~
0'
j z....
' ' '"
""' '",
1:l 15
<(
.;..;.
~ !#. 10
'~
""'..... ~ ....._... ...
5.0 -55
250 0
-25
+25 +50
+75 +100 +125
TA. AMBIENT TEMPERATURE (DC)
FIGURE 6 - VOLTAGE GAIN versus TEMPERATURE
1 - - Mcmo. Jcmoc ---MC1710 Only
~ 20001---+--+---+--7'F----+.,..e:.--+---le----l
z
~
~15001---+-r-~--::.,;F---+-~""F--+---1i----l !::;
J ~ 1000boo"'c...,,"F---::al""'---+---+--+--+---1---l
~~~o--'----'11--'---1~2-......1----113_ _1..-.--114 Vee. POSITIVE SUPPLY VOLTAGE (Vdc)
r-...... ~ 2000
z
~
.............. ._..
.... .._ ......
~"'
~ ~
11500
t...........,
..1-..... ~
1000 -55
-25
+25 +50 +75 +100 +125
TA. AMBIENT TEMPERATURE (DC)
·
6-11
MC1710, MC1710C
·
FIGURE 7 - RESPONSE TIME
+4.o.----~--.,----..----r----.-----.
~ +a.ol--=~:t::=~.L----L..---1----L--_J
~
w ~ +2.0l----+----W"""'--+----1----l----l
~
§;
20 mv OVERDRIVE
i+l. 10 mV OVERORIVE
~ Ot----+---+4"'"41,...._,...,_ _-+---+---l
l~I -1.0
i:3:::==:::::==:::1I:::.·=·.=:::1::=·=:::·
I
.;; 0
20
40
60
80
100
120
t, TIME(ns)
FIGURE 9 - RECOMMENDED SERIES RESISTANCE versus MRTL* LOADS
10 0
0
~~RTL
0
MC1710C
0
gQ"' 1 0
~
1 '~
mW MRTL
5. 0 2. 0 1. 0
"' ~ ~
!-....:. :s.:
MED. POWE~~
[S
1Tlt ~ ""~
0.1
0.2
0.5· 1.0
2.0
5.0
10
Rs. SERIES RESISTANCE (k OHMS)
*Trademark of Motorola, Inc
FIGURE 8 - POWER DISSIPATION versi,is TEMPERATURE
150
---2"MC1710, ~C1710C
---MCl7100nly
.~.s 125
.. --- z
Q
~
~
1-----~
~\
.~e 100
- --.----i---
75
-55
-25
+25 +50
+75 +100 +125
TA. AMBIENT TEMPERATURE (OCf
FIGURE 10..,. FAN-OUT CAPABILITY
WITH MOTL* OR MTTL* OUTPUT SWING +5.0.-----------.-----------.
~ ACTUAL OUTPUT
SWING
+4.0t----------,..,,..----------1
~
> ;:; +l.Ot-----M-TT-L--~,r-....V.i'.Ao---------1
i
w
~ +2.0i-------f-----1
i5 INPUT VOLTAGE
~
LIMITS
~ +t.011------\·--::>
Q
·>c:i
MTTL, MOTL
-1.0'-----------'----------1OR2 FAN·OUT CAPABILITY
6-12
ORDERING INFORMATION
Device
MC1711CG MC1711G MC1711CL MC1711L MC1711CF MC1711F MC1711CP
Altemate LM711 CH,µA711 HG
Temperature
Range
ooc to +75°C -55°C to + 125°C
ooc to +7S°C -55°C to +125°C
0°C-to +75°C
-55°C to +125°C 0°c to +75°C
Package
Metal Can Metal Can Ceramic DIP Ceramic DIP Ceramic Flat Ceramic Flat Plastic DIP
MC1711 MC1711C
DUAL DIFFERENTIAL VOLTAGE COMPARATOR
... designed for use in level detection, low-levei sensing, and memo'ry applications. Typical Characteristics: · Differential Input
Input Offset Voltage= 1.0 mV
Offset Voltage Drift= 5.0 µV; 0c
· Fast Response Time - 40 ns · Output Compatible with All Saturating Logic Forms
V0ut = +4.5 V to -0.5 V typicc: · Low Output Impedance - 200 ohms
MAXIMUM RATINGS ITA= +2S0 c unless otherwise noted.I
Rating
Symbol
Value
Power Supply Voltage Differential Input Signal Voltage
vcc Vee
V10R
+14 -7.0
±5.0
Common·Mode Input Swing Voltage Peak Load C1.1rrent
V1cR IL
±7.0 50
PQwer Dissipation (Package limitation)
Metal Package
Derate above TA .. +2s0 c
Po 680 4.6
Flat Ceramic Package
500
Derate above TA .. +25°C
3.3
Ceramic and Plastic Dual In-Line Packages
625
Derate above TA .. +25°c
5.0
Operating Temperature Range
MC1711 MC1711C
TA
-55 to +125
Oto +75
Storage Temperature Range
Tstg -65 to +160
Unit Vdc
Volts Volts mA
mW mWl°C
mW mwt0 c
mW mWl°C
oc
Oc
CIRCUIT SCHEMATIC
DUAL DIFFE'RENTIAL COMPARATOR
SI LICON MONOLITHIC INTEGRATED CIRCUIT
F SUFFIX CERAMIC PACKAGE
. CASE 606
gT0-91
lnputs1
Vee
lnpun2
' .
s_·····_·
Gnd
Vee
OutpuJ ·
Strob·2
G SUFFIX MeTALPAcKAGE
CASE 603 T0·100
Vee
2 S"obo l G~~10 d'~'ut:u~"obe 2
3 Inputs. 1
4
." ·
1 & lnpuU 2
Vee
!.Top V1ewt
LSUFFIX CERAMIC PACKAGE
C::ASE 632 T0·116
PSUFFIX PL.ASTIC PACKAGE
CASE 646 (MC1711C !)nly)
6-13
·conneeted to. pin 4 via the substrate on iOme pla9tie_units.
MC1711, MC1711C
·
ELECTRICAL CHARACTERISTICS (each comparator) (Vee= +12 Vdc, VEE= -6.0 Vdc, TA= +25°c unless otherwise noted.)
MC1711
MC1711C
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Unit
In.put Offset Voltage (V1cR = 0 Vdc, TA= +25°C) (V1cR"' 0 Vdc, TA= +25°C) (V1cR = 0 Vdc, TA= T1ow to Thigh*} (V1cR "' 0 Vdc, TA= T1ow to This_h)
Temperature Coefficient of Input Offset Voltage
V10
-
-
-
dV10/dT -
1.0
3.5
-
1.0
5.0
-
-
4.5
-
-
6.0
-
5.0
-
-
mVdc
1.0
5.0
1.0
7.5
-
6.0
-
10
5.0
-
µV/°C
Input Offset Current
(Vo= 1.4 Vdc, TA,,; +25~C)
<Vo= 1.8 Vdc, TA= -55°Cl (Vo= 1.5 Vdc, TA= 0°C) (Vo= 1.0 Vdc, TA= +125°ci (Vo= 1.2 Vdc, TA= +75°C)
'10
-
0.5
'10
-
µAde
0.5
15
-
-
20
-
-
-
-
-
-
-
-
25
-
-
20
-
-
-
-
-
-
-
-
25
Input Bias Current (Vo= 1.4 Vdc, TA= +25°Cl (Vo= 1.8 Vdc, TA= -55°cl (Vo = 1.5 Vdc,TA= o°C) (Vo= 1.0 Vdc, TA= +125°Cl (Vo= 1.2 Vdc, TA= +75°C)
Voltage Gain (TA= +25°Cl (TA = T1ow to Thighl
Output Resistance
Differential Voltage Range
High Level Output Voltage (V10>10 mVdc, O~lo~5.0mAl
115
-
-
-
25
75
-
-
150
-
-
-
-
-
150
-
-
-
-
µAde
25
100
-
-
-
150
-
\_
-
150
Avol
VIV
700
1500
-
700
1500
-
500
-
-
500
-
-
Ro
-
200
-
-
200
-
ohms
V10R
±5.0
-
-
±5.0
-
-
Vdc
VoH
2.5
3.2
5.0
2.5
3.2
5.0
Vdc
low level Output Voltage (V10 >-10 mVdc)
Strobed Output level (Vstrobe~0.3 Vdc)
Output Sink'current (Vin >-10 mV, Vo >Ol
Strobe Current
(Vstrobe = 100 m Vdc)
Input Common-Mode Range (VEE= -7.0 Vdc)
Vol
-1.0
-0.5
0
-1.0
-0.5
0
Vdc
VoL(st) -1.0
-
0
-1.0
-
0
Vdc
los
0.5'
0.8
-
0.5
0.8
-
mAdc
1st
-
1.2
V1cR
±5.0
-
2.5
-
1.2
-
±5.0
-
2.5
mAdc
-
Volts
Response Time (\lb= 5.0 mV +Viol
Strobe Release Time
Power Supply Current <Vo ~o Vdcl
Power C<>nsumption
tR
-
tsR ·
-
'cc
-
IEE
-
-
40
-
-
12
-
-
8.6
-
-
3.9
-
-
130
200
-
40
-
ns
12
-
ns
8.6
-
mAdc
3.9
-
130
200
mW
o *T1 0 w = -55°C for MC1711, 0 c for MC1711C
Thigh= +125°C for MC1711, +75°C for MC1711C
6-14
MC1711, MC1711C
TYPICAL CHARACTERISTICS
FIGURE 1 - VOLTAGE TRANSFER CHARACTERISTICS
+5.0 . - - r - - r - - , - - r - - . - - - . - - - . - - , - - - . - - - - ,
FIGURE 2 - INPUT BIAS CURRENT ver·sus TEMPE RATURE
10
~ ~ i'A=+2~oe +4.0 1---t-----,~-t----~<e-1-----+---+--+---+---+--J
8.0
~+3.0
\-
<{" .:i..
~ +2.0 r--r------1r--,-r--r--1~t--t--t--t--t---I
0
>
i 6.0
f-
~
a
>
+1.001---t--t---t--+---~~-T--+--+--+--+-~ ~
"<'(
a; 4.0
~
~ 2.0
-1.0 r--r---r----i---t--~+---+---+--+--+---1
-2.0 -10 -8.0 -8.0 -4.0 -2.0
+2.0 +4.0 +6.0 +8.0 +10
V; 0 , INPUT VOLTAGE, (mV)
FIGURE 3-VOLTAGE GAIN versus TEMPERATURE
1800
>
~ 1700
z
~
w 1600
t!J <(
!::::;
0
> 1500
"0 0
z w
1400
"-
0
0
<l 1300
-40 -20
+20 +40 +60 +80 +100 +120 +140
TA, AMBIENT TEMPERATURE, (°C)
FIGURE 5 -VOLTAGE GAIN VARIATION WITH POWER SUPPLV VOLTAGE
140
-40 -20
+20 +40 +60 +80 +100 +120 +140
TA, AMBIENT TE.MPERATURE, (°C)
FIGURE 4 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES
+150
w
~"' +100 §; > +50
f- E
~-
T TT
Vee= +12 v ---1
r=t l--I VEE= -6.0 V 0
c
>w -50
lL
l 11
~
+60...---.--.---,--.,.---,----.---,---.----,---r--.--~~
~ g+4.01--->---+---+-
:f:-:oO>
~ - +2.01--+--t---t-T--..Y.-J,,C..--f---f"'.:7'"1"":
0
>
_ -2.0'---'--~_..__.....___. _.___._ _.___._ _.__.___.___,
-10
+20
+40
+60
+80
+100
+120
t, TIME(ns)
FIGURE 6 - STROBE RELEASE Tllll!E FOR VARIOUS INPUT OVERDRIVES +4.0 . - - - - . - - - - - - - , - - - - - - - , - - - . - - - - . - - - - - - ,
·
I
z 0 130 i'.= ~
gj
Ci
a:
~
~ 120
-40 -20
+20 +40 +60 +80 +100 +120 +140
TA, AMBIENT TEMPERATURE, (°C)
CJ
~
>
v +2.o 1-----+--_,._-+-----.~-- Vee = +12
VEE= -6.0 V TA= +25DC
w
al
0 a:
f-
UJ
+30
w
t!J
<~(en +2.0
>~
s:f- 0 +1.0 2:.
~ a
5..A 0~ m2.~0 mV
~
"""""'_./
OmV -1.0mV
> -1.0
-10
+10
+20
+30
+40
+50
t, TIME(ns)
6-15
MC1711, MC1711C
FIGURE 7 - COMMON·MODE PULSE RESPONSE
·
~IIIH~ II irfftl.--.1..-..l........___.___.! -20 0 +20 +40 +60 +80 +100 +120 +140 +160 +180 t,TIME{ns)
FIGURE 9 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS
100
50
~-&MRTL .
MC1711C
0
' ~~
mW MRTL
0
"" 3 "S ~
~1TlJ ~ ~ 0
MEO. POWEl;i.
"""
I. 0
0.1
0.2
0.5
1.0
2.0
5.0
10
Rs. SERIES RESISTANCE (k·DHMS)
FIGURE 8 - OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING
ro
"'~
g,... 01--+f---+--c~i·--O-pF_l.'-.-i"."..*..°.-.:+:>-1'-_~_.-i.~......:-:+i.-1---t-l---~~
L~ --l--t---+--1---f--{
100
200
300
400
500
t,TIME(m)
FIGURE 10 - FAN·OUT CAPABILITY WITH MOTL OR MTTL OUTPUT SWING
+s.01~---------------~
~ ACTUAL OUTPUT SWING
+4.011---------
MTTL, MOTL
-1.01...-_ _ _ _ _ _ __.__ _ _ _ _ _ _.... 1or2
FAN·OUT CAPABILITY
6·16
ORDERING INFORMATION
Device
MC3302L · MC3302P
Temperature Range
-ss0c to +125°C
-40°C to +as0c
Package
Ceramic DIP Plastic DIP
MC3302P ,\
QUAD SINGLE-SUPPLY COMPARATOR
These comparators are designed specifically for single pos1t1vepower-supply Consumer Automotive and Industrial electronic applications. Each MC3302P conta_ins four independent comparators suiting it ideally for usages requiring high density and low-cost.
· Wide Operating Temperature Range - -40 to +ss0 c
· Single-Supply Operation - +2.0 to +:l8 Vdc · Differential Input Voltage= ±Vee · Compare Voltages at Ground Potential · MTTL Compatible · Low Current Drain - 700µAtypical@ Vee +5.0 to +28 Vdc · Outputs can be Connected to Give the Implied AND Function
QUAD COMPARATOR SILICON MONOLITHIC INTEGRATED CIRCUIT
(top view)
MAXIMUM RATINGS (TA =+25°c unless otherwise noted.)
Rating
Symbol
Value
Power Supply· Range Output Sink Current (See Note 1)
Vee
io
+2.0 to +28 20
Differential Input Voltage
V10R
±Vee
Common-Mode Input Voltage Range (See Note 2)
Power Dissipation (Package Limitation) Derate above TA= +25°c
V1CR Po
-0.3to+Vcc
625_ 5.0
Operating Temperature Range
TA
-40 to +85
Storage Temperature Range
Tstg
-65 to +150
Unit Vdc mA Vdc Vdc mW mwt0 c oc oc
.Note 1. Note2.
Requires an external resistor, AL, to limit current below maximum rating.
If _either(+) or(-) inputs of any comparator go more than several tenths of a volt below ground, a parasitic transistor turns "on" causing high input current and possible faulty outputs.
PL.AST IC PACKAGE C-ASE 646
FIGURE 1 - EQUIVALENT CIRCUIT
4~ a~· eOMPT.R
. 2
COMPTR
. 14
5
+ 2
9
+ 4
Vee- PIN 3
GROUNO - PIN 12
FIGURE 2 - CIRCUIT SCHEMATIC
3 vee
·
INPUTS!:f: <>-+---+---4---+----+---1------1----+-----J..-
S+ <>-1---t---+-----+------+~ 6- <>-1---t---+-----+-----.
7+
·~--+--+-.i----,1---~:;}
1/""---lr--+-t----t---+--t-----+--+---+--+---+--+--o~ OUTPUTS
6-17
MC3302P
·
ELECTRICAL CHARACTERISTICS (Vee= +15 Vdc, TA= +25oc (each comparator) unless otherwise notedJ
Characteristic Definitions (1/4 Circuit Shown)
11
- 1~, --
Vrela 12
vee
AL I
VO
l1Q 0 \11e1-l1B2l
110· 1!.;.Y
V1Q !Vrel -Vml
Characteristic
Input Offset Voltage (Vref = 1.2 Vdcl (TA= +25°CI
n A = -40 to +85°c l
Input Offset Current
Input Qias Current (TA= +25°C) (TA= -40 to +85°C)
Symbol V10
110 118
Min
Typ
-
3.0
-
-
-
3.0
-
30
-
-
r-
L
-=
.,.;_ s_r.,.._
I 12
=
vee
·o
AVol '·n
AL
1 ·o
vee
-
Vm
·
6
J. ~ 12
.· loll
AL __::._
I VQ
-=
vee
6 RL
I =J I
~v,,,
12
=
Voltage Gain ITA = +25°C, RL = 15 kU)
.Avol
2,000 30,000
Transconductance
gm
-
2.0
Input Differential Voltage Range
Output Leakage Current (Output Voltage High)
Output Voltage - Low Logic State '(Is= 2.0 mA, Vee= +5.0 to +28 Vdc
Output Sink Current (Vee= +5.0 Vdc) (TA= +25°C; Vol= 400 mV) (TA= -40 to +85°c. Vol= 800 mV)
Input Common-Mode Voltage Range (Vee= +28 Vdc)
V10R IOL
VOL lsink
V1cR
±Vee
-
-
-
-
150
-
6.0
2.0
-
0-26
-
Common-Mode Rejection Ratio
CMRR
-
60
Max 20 40
-
500 1000
-
-
1.0 400
-
-
-
-
Unit mVdc nAdc nAdc
VIV
mhos Vdc µAde mVdc mAdc
Volts
dB
~-
~
~
-
-
-
IPLH--j
·300mV_r-
-300mV ein
·
ro vee
6
Vm..-
i -
~J 12 '::"
AL I
Propagation Delay Time For Positive and Negative-Going Input Pulse
Slew Rate (R L = 15 k.n)
Power Supply Current <Total of four comparators)
(Is= o, Vee= +5.0 to +28 Vdc)
tPHL/LH
SR
ice
lee
-
2.0
-
200
-
50
-
0.7
.
µs
-
-
V/µs
-
mAdc 1.5
6-18
MC3302P
TYPICAL CHARACTERISTICS
(Vee= +15 Vdc, TA= +25°C (each comparator} unless otherwise noted.)
FIGURE 3- INPUT OFFSET VOLTAGE
FIGURE 4 - OFFSET BIAS CURRENT 2.20 r---r-..---r-..----r-..----r-..----r-..----r--r---.-----,
UJ
~ ~ ~ 1.20 1---+-+---+-+--+-+---+-+--+-+---+-+-,~--i
0 >
i
~ 1.00 ~-+--+--l-+i...--J...-1---~""'f--+-+---+---+~-+-_,
ffi ~ 0
:N:::; 0.80 ....=+-+--+-+--+-+--+-+--+-+--+-+--+~ <t
~ Slope can be either polarity.
z 0.60 1---+-+---+---+---+--+---+-+--+-+---+-+--+--I
~I- 1.80~
a
i---r~...,..:+1'--.-+--+-+--+-+--+-+--+-+--+-+--l
~tu 1.40
~
~1.00
" "1'... ~
~
<t
~
z
0_60 1--Sl+op_e_ca+n_b_e+eit_h_er+p-ol_ar+ity_.-+-+--+-+r"'-+-i--.-+-,___;;+-::::..+--l
0.40 .____,__...___.__...___,__...___,__...___.._...___.._..._..........__,
-40
-20
+20
+40
+60
+80 +100
TA, AMBIENT TEMPERATURE (Oe)
0.20.__........_ . . . _ _ _ . . . _ . . . _ _ _ . . . _ . . . _ _ _ , _ _ . . . _ _ _ , _ _ . . . _ _ _ , _ _ . . . _.........._ _ ,
-40
-20
+20 +40
+60
+80
+100
TA· AMBIENT TEMPERATURE (Oe)
FIGURE 5 - INPUT BIAS CURRENT
361--+-l--+-+--+-+--+-+-~ -+-+--+-+--+---I
o.____.._...___.__...__.__...___.._...___.._...___,__..._..........----'
0
4.0
8.0
12
16
20
24
28
Vee (Vdc)
TYPICAL APPLICATIONS
FIGURE 6 - FREE-RUNNING SQUARE-WAVE OSCILLATOR
FIGURE 7 -TIME DELAY GENERATOR
1Mn
Vee
vce
Vee
Rt
"ON"lort>to+'t
Vee
:::~1v.cc~·
51 k
51 k
51 k vcclne_. . Vo
1-n '-----------·v,e1 v~ :1,.· - n ~r r---p oVO --!-H :I-
0 --·---
--:-t- _ , __ I vto oc I~-!!, -I Y-LI'_=_1-_-V1-1 --~Y
I I
·
6·19
MC3302P
·
TYPICAL APPLICATIONS lcontinuedl
FIGURE 8 - COMPARATO.R WITH HYSTERESIS
FIGURE 9 - THE COMPARATOR AS AN OPERATIONAL AMPLIFIER
vee
Vee
AL 15 k
. >--<>-_.~ ...--VO
R1
I R2
Rs"R1 llA2
v -v +<Vee-VretlRl
th!- ref Al+A2+RL
(Vref -Vo Low) Al Vth2= Vref- Al+ A2 +AL
---vm---.. *Input common-mode voltage range includes ground (0 Vdc) and Vo can go to approximately 0 Vdc.
6-20
XC3411
Product Preview
DUAL '111 TYPE COMPARATOR
The MC3411 single/split power sup13ly comparators are dual versions of popular MLM 111 series single· comparators. These versatile devices feature low input currents and low offsets. Outputs can sink currents up to 50 mA.
SUGGESTED COMPARATOR DESIGN CONFIGURATIONS
. SPLIT POWER-SUPPLY with OFFSET BALANCE
SINGLE SUPPLY
OUTPUT
GROUND-REFERRED LOAD
LOAD REFERRED to NEGATIVE SUPPLY
DUAL HIGH PERFORMANCE VOLTAGE COMPARATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
PIN CONNECTIONS
Emitter Output 1 1-----,
Collector 4 Output
Non·I nverting 2 Input
lnverti.n.g 3 Input
Vee 4
13
Balance/ Strobe
Balance
Inverting 11 Input
Balance 5
10 ~~Pn~~nverting
s s;~~~~:'
C<;>llector 7 Output
'-----.-1g Emitter Output
·
Input polarity is reversed whim' GNO pin is usad as an output.
LOAD REFERRED to POSITIVE SUPPLY
OUTPUT "GNO
Input polarity is reversed when GND pin is used as an output.
STROBE CAPABILITY
Vee
TTL. STROSE
P SUFFIX PLASTIC PACKAGE
CASE 646
Pin compatible to LH2111 Series. (Move XC3511 back in socket to leave pins 1 and 16 open.)
This is advance information and specifications are subject to change without notice.
6-21
XC3411
·
MAXIMUM RATINGS (TA= 2s0 c unless otherwise noted.)
Rating
Symbol
Value
Total Supply Voltage
Vee+ IVEEI
36
Output to Negative Supply Voltage
Vo-VEE
40
Ground to Negative Supply Voltage Input Differential Voltage
Input Voltage (1) Power Dissipatiorr
Plastic and Ceramic Packages Cerate above TA = +25°C
VEE V10 Vin Po
30 ±30 ±15
625 5.0
Operating Ambient Temperature Range
TA
0 to +70
Storage Temperature Range
Tstg
-65'to +150
Unit Vdc Vdc Vdc Vdc Vdc
mW mW/°C
_oc oc
ELECTRICAL CHARACTERISTICS (Vee= +15 V, VEE= -15 V, TA= +25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Input OffSet Voltage (2)
Rs ..;;; 50 k.n, TA = +25°c
Rs ..;;; 50 k.n, o0 c..;;; TA .;;; 10°c
IV1ol
-
2.0
-
-
Input Offset Current (2)
TA= +25°c
o0 c .,; TA .;;; 10°c
11101
-
6.0
-
-
Input Bias Current TA= +25°c
o0 c .;;; TA ..;;; 10°c
Voltage Gain
Response Tim_e (3)
Saturation Voltage TA= +25°c. V10..;;; -10 mv, lo= 50 mA
o0 c. .,; TA.;;; 10°c. Vee;;;. 4.5 v. VEE= o.
V10..;; -10 mV, lsink.;; 8.0 mA
119
-
100
-
-
Av
-
200
tTLH
-
200
Vol
-
-
0.75 0.23
Strobe "On" Current
Is
-
3.0
Output Leakage Current TA= +25°C, V10;;;. 10 mV, Vo= 35 V
Input Voltage Range
o0 c..;; TA..: 10°c
loL
-
0.2
V1R
-
±14
Positive Supply Current Negative Supply Current
'cc
-
IEE
-
7.0 -5.0
Max
7.5 10
50 70
250 300
-
-
1.5 0.4
50
-
10 -8.0
Unit mV
nA
nA
V/mV ns
v
mA nA
v
mA mA
Notes: 1. This rating applies for ± 15-volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less. 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0-mA load. Thus, these parameters define an error band and take into account the "worst-case" effects of voltage gain and input impedance. 3. The response time specified is for a 100-mV input step with 5.0-mV overdrive.
THERMAL INFORMATION
The maximum power consumption an integrated -circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA Po(TAl = ROJA(Typ) .
Wh,ere: Po(TAl = Power Dissipation allowable at a given operating ~mbient temperature. This must be greater than
the sum of the products of the supply voltages and suppty currents a_t the worst case operating condition.
TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature
R&JA(Typ) =Typical Thermal Resistance Junction to Ambient
@ MOTOR.OLA Semiconduc'for Produc'fs Inc.
6-22
ORDERING INFORMATION
Device
MC3430L MC3430P MC3431-L MC3431P MC3432L MC3432P MC3433L MC3433P
Temperature Range
0°c to +10°c 0°C to +70°C 0°C to +70°C 0°c to +70°C 0°c to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C
Package
Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP .Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
QUAD DIFFERENTIAL VOLTAGE COMPARATOR/SENSE AMPLIFIERS
The MC3430 thru MC3433 high-speed comparators are ideal for application as sense amplifiers in MOS memory systems. They are specified in a unique way which combines the effects of input offset voltage, input offset current, voltage gain, temperature varia,tions and input common-mode range into a single functional parameter. This parameter, called Input Sensitivity, specifies a minimum differential input voltage which will guarantee a given logic state. Four variations are offered in the comparator series.
The MC3430 and MC3431 versions feature a three-state strobe input common to all four channels which can be used to place the four outputs in a high-impedance state. These two devices use active-pull-up MTTL compatible outputs. The MC3432 and MC3433 are open-collector types which permit the implied AND connection. The MC3430 .and MC3432 versions are specified for a ±7.0 mV input sensitivity over the 0 to 10°c temperature range, while the MC3431 and MC3433 are specified for .±12 mV.
· Propagation Delay Time - 40 ns
· Outputs Specified for a Fanout of 10 (MC7400 type loads)
· Specified for all conditions o.f ±5% Power Supply Variations, Operating Temperature Range, Input Common-Mode Voltage Swing from -3.0 V to 3.0 V, and Rs~ 200 ohms.
MC3430 thru
MC3433
QUAD HIGH-SPEED VOLTAGE COMPARATORS
SILICON MONOLITHIC INTEG.RATED CIRCUITS
L SUFFIX CERAMIC PACKAGE
CASE 620
P SUFFIX PLASTIC PACKAGE
CASE 648
CONNECTION DIAGRAM
FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103TYPE MEMORY DEVICES
1-K WORD
Only four devices are required for a 4-k word by l6-bit memory system.
DATA BIT #;J DATA BIT ::!t2 DATA BIT 'f1
6-23
TRUTH TABLE MC3430 and MC3432
Input
Strobe Output
Device
V10~7.0mV
L
L TA= 0 to'70°C
H
H
z
MC3430
Off
Off
MC3432
-7.0mv~v 10
MC3430
~ 7.0mV
L
TA= 0 to 70°C H
V10 ~-7.0mV
L
H·
TA= o to 10°c
I MC3432
Off MC3430
On MC3432 Off
TRUTH TABLE MC3431 and MC3433
Input
Strobe Output
V10~12mV
L
H
H
TA= 0 t~ 70°C
Off
H
Off
-12mV~V10
L
H
.;;+12mv
L
I
TA= o to 10°c H
Off
L
v10 =s;;-12 mv
Device MC3431 MC3433 MC3431 MC3433 MC3431
TA= 0 to 70°C
On MC3433
Off
L"' Low Logic State Z"" Third (High Impedance)
H =High Logic State
I= Indeterminate State
As<;2oon
MC3430, MC3431/, MC3432, MC3433
·
MAXIMUM RATINGS (TA=Oto+7o"C un ess otherw1.se noted I
Rati~
Power Supply Voltage Differential Mode Input Signal Voltage Range Common-Mode Input Voltage Range Strobe Input Voltage Output Voltage (MC3432 -33 versions)
Symbol ~V_EE
V1DR VjkR V1(S) Vo
Value ±7.0 ±6.0 ±5.0 5.5 +7.0
Unit Vdc Vdc Vdc Vdc Vdc
Junction Temperature Ceramic Package Plastic Package
TJ
175
oc
150
Operating Temperature.Range Storage Temperature Range
TA
0 to +70
oc
Tstg
-65 to +150
oc
RECOMMENDED OPERATl NG CONDITIONS (TA= oto +10°c unless otherwise noted.I
Characteristic
Symbol
Min
Power Supply Voltages
Output Load Current Differential-Mode Input Voltage Range Common-Mode Input Voltage Range Input Voltage Range (any input to Ground)
Vee Vee IOL V1DR V1eR V1R
+4.75 -4.75
-
-5.0
-3.0
-5.0
Typ
+5.0 -5.0
-
-
Max +5.25 -5.25
16 +5.0 +3.0 +3.0
Unit Vdc
mA Vdc Vdc Vdc
ELECTRICAL CHARACTERISTICS (Vee= 5.0 Vdc, Vee=; -5.0 Vdc, TA=: o0c to +10°c unless otherwise noted.I
Typical Values are Measured at TA = 25°e
MC3430, Me3431
MC3432, Me.3433
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Unit
Input Sensitivity (See Discussion on Page 31
Vis
mV
(Rs ..;;200 Ohms)
(Common Mode Voltage Range = -3.0 V ,.;;v1n ,.;;3.0 VI
4.75E;;;Vcc -4.75~Vee
..;;5.25 v ~-5.25 v
TA=
250c
~ MC3430, MC3432 MC3431, MC3433
-
-
±6.0
-
-
±6.0
-
-
±10
-
-.
±10
(Common Mode Voltage Range= -3.0 V ,.;;vin ,.;;3.0 VI
4.75..;; Vee ..;;5.25 v TA = 0 to 7o"C { MC3430, MC3432
-
-4.75~~Vee ~-5.25 v
MC3431, MC3433
-
Input Offset Voltage
V10
-
(Rs ..;;200 Ohms)
-
±7.0
-
-
±12
-
2.0
-
-
-
±7.0
-
±12
2.0
-
mV
Input Bias Current
l1e
µA
(VcG = 5.25 V, Vee= -5.25 VI
MC3430, MC3432
-
-
20
-
-
20
MC3431, MC3433
-
-
20
-
-
20
Input Offset Current Voltage Gain Strobe Input Voltage (Low State) Strobe Input Voltage (High State)
110
-
1.0
-
Aval
-
1200
-
V1L(SI
-
-
0.8
V1H(S) 2.0
-
-
-
1.0
-
µA
-
-
1200
-
VIV
-
0.8
v
2.0
-
-
v
Strobe Current (Low State)
l1L(S)
-
-
-1.6
-
-
-1.6
mA
(Vee= 5.25 V, Vee= -5.25 v. Vin= 0.4 VI
Strobe Current (High State) IVcc= 5.25V,Vee=-5.25V,.Vin= 2.4VI (Vee= 5.25 V, Vee= -5.25 v. Vin= 5.25 VI
Output Voltage (High State) Oo = -400µA, Vee= 4.75 v, Vee= -4.75 VI
Output Voltage (Low State) - Oo = 16 mA, Vee= 4.75 V, Vee= 4.75 VI
Output Leakage Current IVcc= 4.75 v. Vee= -4.75 v.'v0 = 5.25 v1
Output Current Short Circuit IV cc= 5.25 v. Vee= -5.25 v1
Output Disable Leakage Current (Vee= 5.25 V, Vee= -5.25 VI
High Logic Level Supply Currents
® IVec = 5.25 v. Vee= -5.25 v1 MOTOROLA
l1H(SI -
-
40
-
-
40
µA
-
-
1.0
-
-
1.0
mA
VoH
2.4
-
-
-
-
-
v
VoL
-
-
0.4
-
ieex
-
-
-
-
los
-18
-
-70
-
-
0.4
v
-
250
µA
-
-
mA
Ioff
-
-
40
-
-
-
µA
ice lee
-
-
45
60
-
-17
-30
-
45
60
mA
-17
-30
mA
Se,.,iconductor Products Inc. _,_-------'
6-24
MC3430, MC3431, MC3432, MC3433
A UNIQUE FUNCTIONAL PARAMETER FOR COMPARATORS
A unique approach is used in specifying the MC3430-33quad comparators. Previously, comparators have been specified as linear devices with common operational amplifier type parameters such as voltage gain (Avo1I. input offset voltage (Viol. input offset current 11101 and common-mode rejection ratio (CMRR). This is true despite the fact that most comparators are seldom operated in their linear region because it is difficult to hold a high gain comparator in this narrow region. Comparators are normally used to "detect" when an unknown voltage level exceeds a given reference voltage.
The most desirable comparator parameter is what minimum differential input voltage is required at the comparator's input terminals to guarantee a given output logic state. This new and important parameter has been called input sensitivity (V1sl and is analagous to the input threshold voltage specification on a core memory sense amplifier. The input sensitivity specification includes the effects of voltage gain, input offset voltage and input offset current and eliminates the need for specifying these three parameters.
In order to make this parameter as inclusive as possible on the MC3430-3;3 se.ries quad comparators, the input sensitivity is specified within the following conditions:
Commercial Temperature Range - Oto 10°c Power Supply Variations - ±5% (all conditions) Input Source Resistance - ..;;;200 Ohms Cdmmon-Mode Voltage Range - -3.0 V to +3.0 V
Note: Typical values have been included on the omitted parameters for applications where the offset voltages ar.e externally nulled.
Voltage gain is defined as the ratio of the resulting AVo to a change in the VioR using condi~ions at which the V10 and 110 are nulled. Thus, for worst case MTTL logic levels, the required output voltage change is 2.0 V (VoHmin -: VoLmax = 2.4 V -
0.4 V). If 2.0 mV are required at the input terminals to induce this change in logic state, the voltage gain would be 1000 VIV.
Gain however is not the only factor affecting the logic transition. Normally input offset voltages, that are not externally nulled, can add an appreciable error that drastically· overshadows the comparator gain. Therefore, the 2.0 mV for example, required to cause the logic transition is .often masked. An input offset voltage of up to 7.5 mV might be required to reach the linear region. A further consideration is the input offset current of up to ±10 µA flowing through the matched 200-0hm source resistors at the input terminals which can create an additional error of ±2.0 mV. In order to determine a worst case input sensitivity, it must be assumed that minimum specified gain and maximum specified offset voltage and current conditions exist. Also it must'be assumed that these three factors are cumulative, requiring a worst case input of:
Logic Transition = 2.0 mV V10 =· 7.5 mV 110 of ±10 µA thru 200-0hm resistor= 2.0 mV
Therefore, 2 + 7.5 + 2 = 11.5 mV.
The effects of power supply voltage variations, temperature changes and common-mode input voltage· conditions have not been considered, as they are not present in the gain and offset specifications on most comparators.
Thus, the input sensitivity specification greatly reduces the effort required in determining the worst case differential voltage required by a given comparator type.
Table I compares the worst case input sensitivity of three popular comparator types at both room temperature and over the specified commercial temperature range (0 to 1ooc1. This sensl· tivity was computed from the specified voltage gain, offset voltage and offset current limits.
TABLE I - WORST CASE COMPARISONS
V10 Type mV Number Max
MC3430, MC3432
MC3431, MC3433
MC1711C 5.0
MLM311 7.5
Avo1* VIV Typ
1500 200 k
Differential Input Voltage Required for 3.0 V Output
Change
. 2.0mV O.G15mV
TA= 25°c
lio
Rs= 2oon 1JA Max
Error Voltage Generated Into 200 n Source
Resistors
15
6.o·~
3.0mV 0.0012 mV
Total Sensitivity
mV
6.0
10
10 7.516
V10 mV Max
Avo1* VIV Typ
TA= Oto 10°c
Differential Input Voltage Required for 3.0 V Output
Change
110
Error Voltage
Rs= 200Sl Generated Into
µA
2oon Source
Max
Resistors
5.0 1000 10 100 k
3.0mV 0.030 mV
25 10··
5.0mV 0.014mV
Total Sensitivity
mV
7.0
12 13 10.04
*Typical values given, as minimum gain not always specified. ··110 measured in nA
FIGU.RE 2 - GUARANTEED OUTPUT STATE versus DIFFERENTIAL INPUT VOLT·AGE
FIGURE 3 - GUARANTEED OUTPUT STATE versus INPUT VOLTAGE
·
-35 -30 -25 -20 -15 -10 -5 DIFFERENTIAL INPUT VOLTAGE (mV)
@ MOTOROLA
3.0 l - - - - - + - - - + - - - - 1 - -
~o 2.01----+--+---+--
2:.
~ 1.0t---+--+---+--+--,,,.,.~-+---t---1
~
> 0
~ 1.0l---+--+---,,4E--.J.-.---1----l----+---I
~
Rs.;; 2oon
iii· -2.0
-3.0 V.;; V1eR.;; 3.0 V
~ __
ooe .;;TA.;; 1ooe
301----"----l----+---1----+- 4.75 v.;; Vee"' 5.25 v
-4.0
-4.75 V;;. VEE;;. -5.25 V
35
-4.0 -3.0 -2.0 -1.0
1.0
2.0 3.0 4.0
Vin(A), INPUT VOLTAGE (VOLTS)
Semiconduc·or Produc·s Inc.--------'
6-25
MC3430, MC3431, MC3432, MC3433
·
SWITCHING CHARACTERISTICS (Vee= +5.0 Vdc, Vee= -5.0 Vdc, TA= +25°e unless otherwise noted.I
.
MC3430, MC3431
MC3432, MC3433
Characteristic
Symbol
Fig.
Min
Typ
Max
Min
Typ
Max
High to Low Logic Level Propagation Delay tPHL(D) 6,8-11
-
20
45
-
27
50
Time (Differential lnputsl5.0 mV +Vis
Low to High Logic Level Propagation Delay tPLH(D) 6,8·11
-
33
55
-
40
65
Time (Differential Inputs) 5.0 mV + V!S.
Oi>!!n State to High Logic Level Propagation tpzH(SI
4
-
-
35
-
-
-
Delay Time (Strobel
High Logic Level to Open St~te Propagation
tPHZ(S)
4
-
-
35
-
.-
-
Delay Time (Strobel
Open State to Low Logic Level Propagation tpzL(SI
4
-
-
40
-
-
-
Delay Time (Strobel
Low Logic Level to Open State Propagation
tPLZ(S)
4
-
-
35
-
-
-
Delay Time (Strobel
High Logic to Low Logic Level Propagation
tPHL(S)
5
-
-
-
-
-
40
Delay Time (Strobel
Lov(, Logic to High Logic Level Propagation , tPLH(SI
5
-
-
-
-
-
35
Delay Time (Strobel
Unit ns ns ris ns ns ns ns ns
lEST CIRCUITS FIGURE 4 - STROBE fROPAGATION DELAY TIMES tpLZ(S)· tpzL(S), tPHZ(S), anli tpzH(S) .
v1------'---<>--'-1 v2----+---o---i
MC3430 MC3431
+5.0 v
Output of Channel B shown under test, other channels are tested similarly.
/
tPLZ(S) tpzL(S) tPHZ(S) tpzH(S)
V1 100mV 10.0mV
GND GND
V2 GND GND 100mV 100mV
51 Closed Closed Closed 0J18n
52 Closed Open Closed Closed
CL
15 pf 50pf 15 pf 50pf
CL Includes j lg and probe capacitance. e1n waveform ch8racter:istics;
tTLH and tTHL .;;; 10 ns measured 10% to 90%.
PAR= 1.0 MHz Duty Cycle = 50%
3.0 v-----·------
tPLZl51 { Ein . 0 V Eo
~ZL(Sl{"'"3·::~
5.ov-vo1
Eo
1.5_V
VoL--------·'"-----
. 3.0 v------
Ejn
O·V tpHZ(5)
{
VoH---..-1----_._
Eo
::::::1.5v
{ VoH~------ . tpzH(S)
E~ 3.ov~.~..%-.-. - .
ov
-tPZH(S)
.
Eo
. . . 1.5 V
ov
@ MOTOROLA SeniicOnductor Products Inc. ---------'
6-26
MC3430, MC3431, MC3432, MC3433
FIGURE 5- STROBE PROPAGATION DELAY tPLH(S) AND tPHLISI
+5.0 v
MC3432 MC3433
15 pf l(Total)
O.utput of Channel B shown under test, other channels are tested similarly.
E;n + 3 . 0 V ; J : b - - - - 5 0 %
ov
~~L:~-~----tPHL(S;
Eo
1.5 V
VoL
E1n waveform characteristics: tTLH and tTHL <; 10 ns measured 10% to 90%.
PRR = 1.0 MHz Duty Cycle · 50%
FIGURE 6 - DIFFERENTIAL INPUT PROPAGATION DELAY tPLH(D) AND tPHL(D) +5.0 v
MC3430 thru
MC3433
Output of Channel B shown under .test, other channels are tested similarly.
51 at ··A" for MC3430, MC3431 51 at "B" for MC3432, MC3433 CL= 50 pF total for MC3430, MC3431 CL= 15 pF total for MC3432, MC3433
Device MC3430 MC3431 MC3432 MC3433
VREF mV, 11 15 11 15
e in waveform characteristics:
tTLH and tTH L <; 1,0 ns measured 10% to 90%. PRR = 1.0MHz Duty Cycle · 50%
FIGURE 7 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)
·
--+-----<.>OUTPUT
4k
'4 k
TO OTHER COMPARATORS
Dashed components apply to the MC3430 and MC3431 circuits only.
@ MOTOROLA Senifoonductor Products Inc. _ _ _ _ _ _ __.
6-27
MC343Q, MC3431, MC3432, MC3433
TYPICAL PERFORMANCE CURVES
RESPONSE TIME Vlll'llll OVERDRIVE - MC3430, MC3431
FIGURE 8 ... OUTPUT LOW TO HIGH
FIGURE 9 - OUTPUT HIGH TO LOW
! : i---- vc1=5}, v +---4---1--.-11--+---1---+-"--'--+---1
i---- vf ~~:cv+--+--+-.-11--+--+--+-~-+--+---1
·
-20
-10
10
20
30
40
50
TIME(ns)
200V~~ !---+--+---+-+--+--+- rrrL "'10.5 i-t---t--~--+--1
100 mVL.--'---'---J'--..i.--L---L-L--..J_...J...--1-"--..J--L.--1
-20
-10
10
20
30
40
50
TIME(ns)
RESPONSE TIME vllt'sus OVERDRIVE - MC3432, MC3433
FIGURE lO - OUTPUT LOW TO HIGH
FIGURE 11 - OUTPUT HIGH TO LOW
5.0V
-1 °" I-- ~~T~ :_}~"5~ovvT z 1-- TA=25°c
1 "'f
oo mlv
i:: T
//I ZV.i.
i...._
'/ YLlL
"""IVJ ~
C~"'l
0 > ~
~
~ z {°ml'i...._j
1 T
20mV~
77
7~
7~
7
Z1 I
/1~
l°m~-1
-
-
177 7 )?°J 71 /
i"--..I.om~-1--
0
VLl7 17 ~
Vo l
~
7-7
100mV 0
IT~H"'~.5111
-10
10
20
30
40
50
60
TIME (ns)
5.0V
1--1- vcc = 5.o v
1 - -1-
vee = -5.o v TA= 25°C
VOL 200mV 100mV
-20
-10
"\u l~ v '"""' 20I~V-.f--
\~ ~
11--~
I 1 0 _ i v -1 - -
~ tl lo ~tr: 1
1_
\ ~
5~V-f - -
my 1 H \ \
\ooJv
V""I _l 1: 1 _l 1
I\.._\ _\, ...l.;
ITHJ"'°lns
lO
20
30
40
50
TIME Ins)
FIGURE 12...,. AVERAGE INPUT OFFSET VOLTAGE
v·m· TeMPERATURE
3.5
3.0
>~ 2.5
Cl
~ 2.0
> 0 ~I- 1.5
:: 1.0 ~
~
0.5
rs.
' ~ ~
l
/,
_. /Z-
0
-25
25
50
75
100
AMBIENT TEMPERATURE (OC)
FIGURE 13- RESPONSe TIMe versus TEMPERATURe
35
30
tP7H j.-_ IPLH MC3432-33- MC3430-31
~i..
25
] 20 w
:E
;:: 15
10 1- vcc=5.ov
VEE = -5.0 V
IPHL
IPHL
I- Vref = 100 mV j-....--, MC34310-31- MC3432-33
5.0 1--0ver~nve =~00 mV
01...-__._ _,__-'--.J--1---L--L--..J_-"----l
-20
20
40
60
80
AMBIENT TEMPERATURE (OC)
@ MOTORO,l.A Semiconductor Products Inc. _________.
6-28
MC3430, MC3431, MC3432, MC3433
APPLICATIONS INFORMATION
22
~·ov
1N9 14
904 or equiv.
0 r. , equ
h Vref = 3.0 V
;,
.0.1 µF
FIGURE 14 - 4-SIT PARALLEL A/D CONVERTER
20= (A+ Bl (C + 0) (E + F) (H + J) (K + L) (M + N) (p + R) (S)
21" =(B + 0) (F"+ J) (L + N) (A)
22° = (0 + JI <NI
5.0VC
-=-
~lo= 60 mA
23= J
/Each Comparator 1/4 of MC3432
Conversion Time =: 50 ns·
R
l
2 70
R~S
~ Fi
RN
R
~ p
~ iii
Rh-J
R 8C: M
R P.c. L
~ R~
K
R 8C: J
R P+C. H
R P+c. F
-_._
E
R
~
0
R F+lC+
-L
c
R
~
B
R P:C+
R
~ A
~
-
~
I ~ r=o-
~
Hy
T
L. {)rl +--r.."..'.P./
1--'\.
T
'--
~T-Ln/")..
"""[ :r -L..:.r
~30-018\......- .
R =3.0 fl± 5%
MC3004
FIGURE 15- LEVEL DETECTOR WITH HYSTERESIS
FIGURE 16..., TRANSFER CHARACTERISTICS AND EQUATIONS FOR FIGURE 15
Vref
3 ....,._ _ _ _,..,1;..__._,..--.....
·
-~
..J
0
~
·+--
1-+-VH
0 1 t-,....----1--+-l--+-+------l
>
Vr11f
R s~R1R+1 -RR22
@ ~------
MOTOROLA
0
3
4
V;n (VOLTS)
v . v =
+ R2 !Vo(max) - VReFI
h·h
~
R1+R2
v
R2 !Vo(mln) - VReFI
Viow= ref+
R 1 +R2
Hysteresi$ Loop (Vh)
Rt~ R 2 Vh"' Vhigh - V1ow =
2 [Vo(ma>1) -
Vo(miniJ
Se1nicond<1ctor Products Inc. --------'
6-29
MC3430, MC3431, MC3432, MC3433
·
FIGURE 17 - DOUBLE ENDED LIMIT DETECTOR +5.0V
FIGURE 18 - VOLTAGE TRANSFER FUNCTION
Vout
-1- s.o
-1- 4.0 v
-+- 3.0 v
-t-'2.0 v
-t- 1.0 v
-Vin ~~~~~~~~..L.;o~.O;...._V~~~~~~
Vref (low)
Vref (high)
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient tempe.rature, can be found from the equation:
TJ(max) -TA PD(TAl = ROJA(Typ)
Where: PD(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than
the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max1·= Maximum Operating Juncti.on Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ROJA(Typ) =Typical TherfT1al Resistance Junction to Ambient
Circuit diagrams utilizing Motorola products are included as a means is believed to be entirely reliable. However, no responsibility is of illustrating typical semiconductor applications; consequently. assumed for inaccuracies. Furthermore, such information does not complete information sufficient for construction purposes is not convey to the purchaser of the semicondµctor devices described any
.®necessarily given. The information has been carefully checked and license under the patent rights of Motorola Inc. or others. llllOTOROLA Semiconductor Producf:s Inc.
6-30
ORDERING INFORMATION
Device
Temperature
Alternate
Range
MLM311G MLM311P1 MLM311L,U MLM311F MLM211G MLM211L,U MLM211F MLM111G MLM111L,U MLM111F
LM311H LM311N
0°C to +700C 0°c to +70°C 0°C to +70°C 0°c to +70°C -2s0c to +as0c -25°C to +as0c -25°C to +as0c -55°C to + 12s0c -55°C to + 12s0c -55°C to + 12s0c
Package
Metal Can Plastic DIP Ceramic DIP Ceramic Flat Metal Can Ceramic DIP Ceramic Flat Metal Can Ceramic DIP Ceramic Flat
HIGHLY FLEXIBLE VOLTAGE COMPARATORS
The ability to operate from a single power supply of 5.0 to 30 volts or ±15-volt split supplies, as commonly used with operational amplifiers, makes the MLM 111 /M LM211 /M LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the Vee or the VEE supply. This flexibility makes it possible to. drive MOTL, MRTL, MTTL, or MOS logic. The output can also switch voltages to 50 volts at currents to 50 mA. Thus the MLM111/MLM211/MLM311 can be used to drive relays, lar:_npsor solenoids.
SUGGESTED COMPARATOR DESIGN CONFIGURATIONS
SPLIT POWER-SUPPLY with OFFSET BALANCE
SINGLE SUPPLY
GROUND-REFERRED LOA!)
LOAD REFERRED to NEGATIVE SUPPLY
MLM111 MLM211 MLM311
HIGH PERFORMANCE VOLTAGE COMPARATORS
SILICON MONOLITHIC INTEGRATED CIRCUIT
F SUFFIX CERAMIC PACKAGE
CASE 606 T0-91
~~. ~~~::~:E./S.TROBE 1
~ ··: : : Vee 5
. 6 BALANCE
(Top View)
G SUFFIX METAL PACKAGE
CASE 601
Vee
I
i
Vee
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
(Top Vi81N)
·
Vee
Input polarity .ls reversed when GNO pin is used as an output.
LOAD REFERRED to POSITIVE SUPPLY
Input polarity is reversed when GNO pin is used as iin output.
STROBE CAPABILITY
OUTPUT MTTL
STROBE
6-31
(Top View)
P1SUFFIX · . PLASTIC PACKAGE
CASE 626
I
(MLM311 Only)
r I 1 I
USUFFIX
~
CERAMIC PACKAGE
CASE 693
GN01§8Vcc
2
+
INPUTS 3
-
7 OUTPUT 6 BALANCE/STROBE
Vee 4
.
5 BALANCE
(Top View)
MLM111, MLM211, MLM311
·
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating
Total Supply Voltage Output to Negative Supply Voltage
Ground to Negative Supply Voltage Differential Input Voltage Input Voltage (See Note 1) Power Dissipation (Pkg. Limitation)
Metal Package Derate above TA = +25°C
Flat Package Derate above TA = +25°C
Plastic* and Ceramic Dual In-Line Packages · Derate above TJ.\ = +25°C
Operating Temperatures Range
Storage Temperature Range
MLM111 MLM211 MLM311
*MLM311 P1 only is available in the plastic dual in-line package.
Symbol Vee+ 1vee~
Vo -vee
Vee V10 Vin Po
TA
Tstg
Value
MLM111 MLM211
MLM311
36
36
50
40
30
30
±30
±30
±15
±15
680 4.6 500 3.3 625 5.0
-55 to +125 -25 to +85
-
-65 to +150
-
-
0 to +70
-65 to +150
Unit
Vdc Vdc Vdc Vdc Vdc
mW mw1°c
mW mw1°c
mW mw/0 c
oc
Oc
ELECTRICAL CHARACTERISTICS IVcc= +15 v, Vee"' -15 V, TA= +25°c unless otherwise noted.)
MLM111
Characteristic
MLM211
Symbol
Min
Ty_p
Max
Min
Input Offset Voltage (See Note 2.)
Rs ~50 kn, TA= +25°c
Rs ~50 kn, T1ow* ~TA ~Thigh*
1v1ol
-
0.7
3.0
-
-
-
4.0
-
Input Offset Current (See Note 2.) TA= +25°c T1ow ~TA ~Th.!2_h
Input Bias Current
c TA= +2s0
T1ow ~TA ~Thigh Voltage Gain
Response Time (See Note 3.)
11101
-
4.0
10
-
-
-
20
-
'1s
-
60
100
-
-
-
150
-
Av
-
200
-
-
tTLH
-
200
-
-
Saturation Voltage TA= +25°C, V1D ~-5.o mV, 10 "'50 mA V10 ~-10 mV, IQ= 50 mA Tiow ~TA ~Thigh· Vee ~4.5 V, Vee= O V10 ~-6.0 rnV, lsink ~8.0 mA V1D ~-iO mV, lsink ~8.0 mA
Strobe "On" Current
Output Leakage Current TA= +25°C, V10 ~5.0 mV, Vo"' 35 V V1D ~10 mV, VO= 35 V
v T1ow ~TA ~Thigh· V10 ~5.0 mV, Vo= 35
Vol
-
o.75
1.5
-
-
-
-
-
-
0.23. 0.4
-
-- --
's
-
3.0
-
-
IOL
-
0.2
10
-
-
-
-
-
-
0.1
0.5
-
Input Voltage Range T1ow ~TA ~Thigh
Positive Supply Current
Negative Supply Current
V1R
-
±14
-
-
'cc
IEE
-
-
.+5.1
+6.0
-
4.1
-5.0
-
MLM311
Typ
2.0
-
6.0
-
100
-
200 200
0.75
-
0.23 3.0
-
0.2
-
±14 +5.1 4.1
Max
7.5 10
50 70
250 300
-
-
-
1.5
-
0.4
-
-
50
-
~
+7.5 -5.0
Unit mV
nA
nA
V/mV ns
v
mA nA nA µA
v
mA mA
*T1ow = -55°C for MLM111
= -2s0 c for MLM211
= 0 for MLM311
Thigh= +125°C for MLM111
= +s5°c for MLM211
c = +7o0 for MLM311
Note 1. Note 2. Note 3.
This rating applies for ±15·volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less.
The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0·mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.
The response 'time specified is for a 10()..mV input step with S.0-mV overdrive.
6-32
MLM111, MLM211, MLM311
BALANCE _ _ _ _ _ ___ BALANCE/CM~""-,...._
STROBE
FIGURE 1 - CIRCUIT SCHEMATIC
OUTPUT
TYPICAL CHARACTERISTICS
FIGURE 2 - INPUT BIAS CURRENT and INPUT OFFSET CURRENTversusTEMPERATURE 10
8.o1
I-
~
s.oB ~
4.0 :5 ~
z
2.0~
0 -60 -40 -20
0 +20 +40 +60 +80 +100 +120 +140 T, TEMPERATURE (DC)
FIGURE 3 - COMMON-MODE LIMITS versus TEMPERATURE
-40 -20
~ ~
-0.5 ~
!::>
-1.0~ ~ ~~ ~8
-1.5 ~;:;
:;: I-
:;:
8
-2.0 ~
+20 +40 +60 +80 T, TEMPERATURE (OC)
+100
j:: u; 0 -2.5 ....
+120 +140
·
FIGURE 4 - OUTPUT SATURATION VOLTAGE versus OUTPUT CURRENT
1.0
~ MLM111 0.8I - -t-MLM211
<:>
MLM311
~
~ 0.6 z
0
TA=+250C
_..!....-".i.--
~
~
~ 0.4
.J.-7 ~
L ' v >iii 0.2
.L.
,/""'1--""'
0 0
10
20
30
.. 40
50
IQ, OUTPUT CURRENT (mA)
FIGURE 5- EQUIVALENT OFFSET ERROR versus INPUT RESISTANCE
IOOk
1.0M
IOM
Rj0 , INPUT RESISTANCE (O)
6-33
MLM111, MLM211, MLM311
·
APPLICATIONS INFORMATION, ,
FIGURE 6 - ZERO-CROSSING DETECTOR DR.IVING MOS LOGIC
Vee= 5.o v
3k
INPUT
OUTPUT >-e>--4.,_~,. OUTPUT
TO MOS LOGIC 10 k
Vee=-1ov
FIGURE .7 - RELAY DRIVER WITH STROBE CAPABILITY
UJ
·01
··zener Diode 01
protects the comparator
from inductive kickback
and voltage transients
MTTL
cc on the V 2 supply line.
STROBE
6-34
ORDERING INFORMATION
Device
MLM139L MLM239L MLM239P MLM339L MLM339P
Alternate LM339N
Temperature Range
-55°C to + 125°C -40°C to +85°C -40°C to +as0 c 0°c to +70°C 0°C to +70°C
Package
Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MLM139 MLM239 MLM339
QUAD SINGLE-SUPPLY COMPARATORS
. These comparators are designed for use in level detection, lowlevel sensing and memory applications in Consumer Automotive and Industrial electronic applications.
· Power Supply Options Single Supply = 2.0 to 36 Vdc Split Supplies= ±1.0-±18 Vdc
· Wide Operating Temperature Range - -55 to +125°C · Low Supply Current Drain - 2.0 mA (Max) · Low Input Biasing Current - 25 nA (Typ) · Low Input Off.set Voltage - 5.0 mV (Max) · TTL and CMOS Compatible
MAXIMUM RATINGS
Rating Power Supply Voltage
Input Differential Voltage Range Input Common Mode Voltage Range Output Sink Current
Power Dissipation @ TA = 25°C Ceramic Package Derate above 25°C Plastic Package Derate above 25°c
Operating Ambient Temperature Range MLM139 MLM239 MLM339
Storage Temperature Range
Symbol'·
Vee V10R V1cR. I sink
Po
Value +36or ±18
36 -0.3 to +36
20
1.25 10 1.25 10
TA -55 to +125 -40 to +85 0 to +70
Tstg
-65 to +150
Unit Vdc Vdc Vdc mA
Watts mwt0 c Watts mW/0 c
oc
Oc
QUAD COMPARATORS SILICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
(~~~;~: :~~y)
-
CERALMSICUFPFAICXKAGE CASE 632 T0-116
Output 2
Output 1
Input 1-
lnput 1+
Input 2-
Input 2+
PIN CONNECTIONS
Output 3
Output 4
Gnd
Input 4+
Input 4-
lnpu_t 3+
Input 3-
FIGURE 1 - CIRCUIT SCHEMATIC (Diagram shown is for 1 comparator)
2.1.k
·
·6-35
MLM139, MLM239, MLM339
·
ELECTRICAL CHARACTERISTICS tVcc = +5.0 Vdc, TA= 25°C41nless otherwise noted.I
MLM139
MLM239
MLM339
Chwacteristic
Symbol Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage (V_rtf .. 1.4 Vdc, V_g_ - 1.4 Vdc, As = Ol
Input Offset Current Input Bias Current Input Common Mode Voltage Range (Note 1l
Supply Current (AL= oo)
Response Time (Note 2) IVRL = 5.0 Vdc, AL= 5.1 knl
V10
110 '1e V1cA
ice IEE -
mVdc
- - - ±2.0 ±5.0
±2.0 ±5.0
±2.0 ±5.0
- - - ±3.0 ±25
±5.0 ±50
±5.0 ±50 nA
- - 25 100
- 25 250
25 250 nA
0
- Vee 0
- Vee 0
...,. Vee v
-1.5
-1.5
-1.5
- - - 0.8 2.0
0.8 2.0
0.8 2.0 mA
- 1.3 - - 1.3 - - 1.3 - µs
Output Sink Current (V1(-);;. +1.0 Vdc, VI(+)= 0, Vo..; +1.5 Vdc) (V1(-);;. +1.0 Vdc, V1(+) = 0, Vo.;; 500 mVdc)
ls i n k
mA
6.0 16 - 6.0 16 - 6.0 16 -
6.0 - - 6.0 -
- 6.0 -
-
Saturation Voltage IV1(-);;. +1.0 Vdc, V1(+) = 0, lsink..; 4.0 mAdc) IV1(-);;;, +1.0 Vdc, VI(+)= 0, lsink.;; 6.0 mAdc)
Voltage Gain (Vee= 15 Vl (AL ;;.15 k.11)
Output Leakage Current (V1(+);;. +1.0 Vdc, V11-1=0, Vo= 5.0 Vdc)
Vsat Av IOL
mV
-
- 500 -
- 500 -
- 500
- - 500 - - 500 - - 500
- 200 -
- 200 - - 200 -
k
- 0.1 - - 0.1 - - 0.1 - µA
PERFORMANCE CHARACTERISTICS - Guaranteed Over Temperature Range IV~= +5.0 Vdc)
-55 to +125°c -40°c to +85°c
o0 to10°c
Characteristic Input Offset Yoltage
IVref = +1.4 Vdc, Vo= 1.4 Vdc, Rs= 0) Input Offset Current Input Bias Current Input Common Mode Voltage Range
Saturation Voltage IV1(-) ;;. 1.0 Vdc, V1 (+) = 0, Isink .;; 4.0 mAdc)
Symbol Min Typ Max Min Typ Max Min Typ Max Unit
Y10
- - ±9.0 -
- ±9.0 -
- ±9.0 mV
110
-
- ±100 -
- ±150 -
- ±150 nA
110
-
- 300 -
- 400 -
- 400 nA
V1cR
0
- Vee 0
- Vee 0
- Vee Vdc
-2.0
-2.0
-2.0
Vsat
-
- 700 -
- 700 -
- 700 mV
Output Leakage Current IV1(+) ;;. 1.0 Vdc, Vi(-) = 0, Vo= 30 Vdc)
Input Differential Voltage (All V1;;. 0 Vdc)
IOL' -
V10 -
- 1.0 -
- 36 -
-
1.0 -
- 36 -
- 1.0 µA
- 36 Vdc
Notes 1. The input com~on-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 mV. The upper end of the common-mode voltage range is Vee -1.5 V, but either or both inputs can go to +30 Vdc without damage.
2. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger signals, 300 ns is typical.
FIGURE 2:.... INVERTING COMPARATOR WITH HYSTERESIS
V1NI"\.. +veec-
R3 10 k
v~
RAEF
.AA
+Vee
t ~
10 k -OVo
VREF 10 k
-= R2
.AA
1M R1
*
VREF""~
RAEF+ R1
R3"" R1 II RAEF// R1
R1//RREF
. VH= R1//RREF + R2 (Vomax -Vomin)
FIGURE 3 - NON-INVERTING COMPARATOR WITH HYSTERESIS
+Vee
0
RAEF~
VREF
10 k ~ R1
-;::-
V1NO
.A y
10 k
~l . -= R3
1M
< 10 k
~
<}Vo
VREF - Vee R1 RAEF+ R1
R2"" R1//RREF
Amount of Hysteresis VM R2
, VH - R2 + R3 (Vomax - Vominl
MOTOROLA Setniconductor Products Inc.
6-36
MLM139, MLM239, MLM339
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, TA= +25°C (each comparator) unless otherwise noted.)
FIGURE 4 - INPUT OFFSET VOLTAGE
FIGURE 5 - INPUT BIAS CURRENT
w
~ !:;
1.20 1---1---1-+--+-+--+---l-+--+-t-~ --+---t=-+--t
0 >
i
:; ~
I:!! 0.80 J,.oO!q.:.--lf--+---+-+--1---11--+---+-+--+---l-+--t
::::;
<
~
Slope can be either polarity.
~ 0.60 '---+---'-->--+--+---1---4--+--+--l---+---t-+---1
24 ~~i--::E...-3r-==i=r~-r+~~r-t-t11ff-1 1----+--;--r---f"-TA=+Bs0c+--+----<1---+---f"-+---+---i
0· 4~4L.o-'---'_2-o__,__....__.___.+2._o__._+..4...0_....__+6..o..__..._+""':8":""0__.._+~100 TA, AMBIENT TEMPERATURE (OC)
FIGURE 6 - OFFSET BIAS CURRENT
Slope can be either polarity.
r----1- r--t--
0.601---+---4--+--+-f---+---l-+--+-f---+--t-+--t
0.20L-~--l-...1..-..-L-L---'---'--'----'--'---'---1.--'----'
-40
-20
+20
+40
+60
+80 +100
TA. AMBIENTTEMPERATURE (DC)
01,--.l....-1'---'---'--"'----'---''-'-...1..--'--~-'---'-~--'
0
4.0
8.0
12
16
20
24
28
Vee Mel
FIGURE 7 - OUTPUT CURRENT versus OUTPUT VOLTAGE
~ 7
.o
1--
-
r--r
-
-;---
J
-
--r-
TA
=125°e
_
_,___.....__ _
...J.
~cc 5.o
~VA
A L L TA. ::: 4.0 1---1----lf----t~L-4-,.c..+-->ri---+---+--'--+·--!
1-
= 85oc __,__ _,______,"---_
~ 3.01---1-----<h6_~J..'-!-z-L.,c..+---+--+---+---+---+--1
9 L./' o
2.01----+-h_~.'.L.l Z'-AL~4---+-+--+--+---+--1---1
1.0 cz;7A
ofLL
100
200
300
400
500
VOL OUTPUT LEAKAGE .VOLTAGE (mV)
·
FIGURE 8 - DRIVING LOGIC Vee
FIGURE 9 - SOUAREWAVE OSCILLATOR +Vee ;.4v
100 k
10 k
1/4 MLM139
Rs '." Source Resistance R1 "'Rs
LOGIC CMOS TTL
®
DEVICE 1/4MC"i4001 1/4MC7400
Vee Volts
+15 ...:._ +5
MOTOROLA
c
: c n n ->----u Vo
330 k
330 k
R4 330 k
.~*'-
T1 = T2 = 0.69 RC
RL
k.n
f"' -22_
100
C(µF)
10
R2 = R3 = R4 ·
R 1 "' R2//R3//R4
Sen>iconductor Products Inc.--------'
6-37
MLM139, MLM239, MLM339
APPLICATIONS INFORMATION
The MLM139, MLM239 and MLM339 are quad comparators having high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs . are capacitively coupled to the inputs vi,a stray capacitance.
This oscillation manifests itself during output transitions (VOL to VQH). To alleviate this situation input resistors
<10 kQ should be used. The addition of posit~ve feedback (<10 mV) is also recommended.
It is good design practice to ground all unused pins. Differential input voltages may be larg~r than supply voltage without damaging the comparator's input voltages. More.negative than -300 mV should not be used.
·
FIGURE 10- ZERO CROSSING DETECTOR (Sjngle Supply)
+15 v
V1N
1
R1 8.2 k
R1
"\.,
01
R4 220 k
R5 220 k
6.8 k R2
10 k Vo
15 k R3
10 M
01 prevents input from going negative by more than 0.6 V. R1 + R2 = R3
R3 <;;; ~ for small error in zero crossing
FIGURE 11 - ZERO CROSSING DETECTOR (Split Supplies)
VtNmin "'0.4 V peak for 1% phase distortion ("8).
+Vee
Vo
Vee
---'--1-----1--(-)
-1-.&..0
L@MOTORO~ Semiconducf:or Producf:s Inc. 6-38
ORDERING INFORMATION
Device
MLM139AL MLM239AL MLM239AP MLM339AL MLM339AP
Alternate LM339AN
Temperature Range
-55°C to +125°C
-40°C to c +ss0 -40°C to +ss0c
0°C to+7011C O°C to +70°C
Package
Ceramic DIP Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP
MLM139A MLM239A MLM339A
QUAD SINGLE-SUPPLY COMPARATORS
These comparators are designed for use in level detection, lowlevel sensing and memory applications in Consumer Automotive and Industrial electronic applications:
· Power Supply Options Single Supply = 2.0 to 36 Vdc Split Supplies= ± 1.0-±18 Vdc
· Wide Operating Temperature Range - --55 to +125°C · Low Supply Current Drain - 2.0 mA (Max) · Low Input Bia~ing Current - 25 nA (Typ) · Low Input Offset Voltage - 2.0 mV (Max) · TTL and CMOS Compatible
MAXIMUM RATINGS
Rating Power Supply Voltage
Input Differential Voltage Range
Input Common Mode-Voltage Range
Output Sink Current Power Dissipation @TA ~ 25-0-C
Ceramic· Package Derate above 25°C .
Plastic Package Derate above 25°C
Operating Ambient Temperature ·Range MLM139A MLM239A MLM339A
Storage Temperature Range
Symbol Vee V1DR V1cR Isink Po
TA
Tstg
Value +36or±18
36 -0.3 to +36
20
1.25 10 1.25 10
-55 to +125 -40 to +85
0 to +70 -65 to +150
Unit Vdc Vdc Vdc mA
Watts
mw1°c
Watts mW/°C
oc
oc
QUAD COMP ARATORS
SILICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646 (MLM239A and MLM339A only)
-
CERALMSICUFPFAICXKAGE -
I
1
CASE 632
T0-116
.Output 2
Output 1
Input 1-
Input
H-
Input 2-
Input 2+-
PIN CONNECTIONS
Output 3
Output 4
Gnd
In.put 4+
Input 4-
Input 3+
Input 3-
'FIGURE 1 - CIRCUIT SCHEMATIC (Diagram shown is for l'comparatorl
·
6-39
MLM139A, MLM239A, MLM339A
·
ELECTRICAL CHARACTERISTICS (Vee= +5.0 Vdc, TA= 250 <;,ul')less ~herwise noted.
MLM139A
MLM239A
MLM339A
Characteristic
Symbol Min :Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage
(~f = 1.4 Vdc, Vo= 1.4 Vdc, As = Ol
Input Offset Current
Input Bias Current
Input Common Mode Voltage Range (Note 1)
' Supply Current
(RL = oo)
Response Time (Note 2) (VAL= 5.0 Vdc, RL = 5.1 kH)
V10
'10 l1B V1cR
'cc
IEE -
mVdc
- - - ±1.0 ±2.0
±1.0 ±2.0
., ±1.0 ±2.0
- - ±3'.0 ±25 ·- ±5.0 ±50
±5.0 ±50 nA
-
25 100 -
25 250 -
25 250 nA
0
-- Vee 0
- Vee 0
- Vee v
-1.5
-1.5
-1.5
-
0.8 2.0 -
0.8 2.0 -
0.8 2.0 mA
- 1.3 -
-
1.3 -
- 1.3 -
µs
Output Sink Current
o. (V1(-) .. +1.0 Vdc. V1(+) = Vo" +1.5 Vdc)
(Vli-1_;;. +1.0 Vdc. Vli+l = 0, V_Q < 500 mVdc)
ls i n k
mA
6.0 16
-
6.0 16
-
6.0 16
-
6.0 -
- 6.0 -
- 6.0 -
-
Saturation Voltage
(V1(-) > +1.0 Vdc, V1(+) = 0, Isink< 4.0 mAdc) (V1(-);;, +l.O Vdc, V1(+) = 0, lsink < 6.0 mAdc)
Voltage Gain (Vee= 15 V) (RL;i.15kH)
Vsat Av
mV
-
- 500 -
- 500. -
- 500
-
- 500 -
- 500 -
- 500
50 200 -
50 200 -
50 200 -
k
Output Leakage Current
o. (VI(+)> +1.0 Vdc, V1(-) = Vo= 5.0 Vdc)
IOL
- 0.1 -
- 0.1 -
-
0.1 -
µA
PE RFORMANCE CHARACTERISTICS - Guaranteed Over Tern~ erature Range (Vee= +5.0 Vdcl
-55 'to +125°c -40°C to +as0 c
o0 to 70°C
Characteristic
Symbol Min Typ Max Min Typ Max Min Typ Max Unit
)nput Offset Voltage (Vref = +1.4 Vdr:. Vo = 1.4 Vdc, Rs= Ol
V10
-
- ± 4.0 -
- ±4.0 -
- ± 4.0 mV
Input Offset Current Input Bias Current Input Common Mode Voltage Range
l_J.Q.
-
- .tlOO -
- ±150 --
! 150 nA
l1s
-
- - 300
-
400 --
- 400 nA
V1cR
0
- Vee 0
- Vee 0
- Vee Vdc
-2.0
-2.0
-2.0
Saturation Voltage
= (V1(-);;.. 1.0 Vdc, V1(+) 0, .lsink < 4.0 mAdc)
Output Leakage Current
o. (V1(+) .. 1.0 Vdc, V1(-) = Vo= 30 Vdc)
Input Differential Voltage (All V1;;;. 0 Vdc)
Vsat
-
- 700. -
- 700 -
-
700 mV
IOL
-
- 1.0 -
-
1.0 -
-
1.0 µA
V10
-
-
36 -
-
36 -
-
36 'v'dc
Notes 1. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 mV. The upper end of the common;mode voltage range is V CC -1 .5 V. but either or both inputs can go, to +30. Vdc without damage.
2. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger signals, 300 ns is typical.
FIGURE 2 - INVERTING COMPARATOR WITH HYSTERESIS +Vee
FIGURE 3 - NON-INVERTING COMPARATOR WITH HYSTERESIS
+Vee
10 k R1
R2
10 k
1M R1
VREF"' Vee R1 RAEF+ R1
10 k
VREF~ -V-ee-R-1 ·
1M
RREF + R1
R2"' R1//RREF
R3"' A1 // RREFI/ R1 ..
Amount of Hyst.eresis VM
VH = Rt//RREF R1/IRREF + R2
(Vomax -Vomin>
·
R2
VH = R 2 + R3
@ MOTOROLA Semiconductor,Products Inc.
(Vomax - Vomin>
6·40
MLM139A, MLM239A, MLM339A
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, TA= +25°C (each comparator) unless otherwise noted.)
FIGURE 4 - INPUT OFFSET VOLTAGE
l;IGURE 5 - INPUT BIAS CURRENT
w
~ ~ ~ 1.20 t---+---+-+--+-t---+---+-+--+-t---t---f..,,,...-t----1
> 0
~
1.00 t--+--+-+--+i.,.--V1---:~ b"""'--+--+-t---+--+-+-~
~
N
0.80 ...:.,.~,.~J· ...-'l--4i.-----+--+-l---+--+-+--+-t---+--+-+-~
::::;
<(
~
Slope can be either polarity.
0z 0.60 +---+---+-+--+-+---1---+--+--4--1---1---+-+----l
0.40 ,___,____._....___.__..__....._--''---'----'--..__.....___._....__.
-40
-20
+20
+40
+60
+80 +100
TA, AMBIENT TEMPERATURE (OC)
FIGURE 6 - OFFSET BIAS CURRENT
....
z~f1.'8~0-:"lP-.,-,-.-++----++---++----l-+----l--11----+-+----++---++----l-+----t--1-1---+4-----+4---+----~<
~
~
1.40
t---+--"'-l~----+-+---+----11---+--+-+---+----1--+-~
~
~
~ 1.00 t---l----l--+--+-f::::+---""".--1--+--+--+--1---+--+----<
~
z
0. 60 1--S-,lol-p-eca-+n_h_e+ei_1h_er+-p-ola-ri1-1y_.-+--+-+---+N_+-i:=:::t~==.:t-=:...+----1
0.20...._........__._....___.__.__.....___,_....__...._..___,____._....__.
-40
-20
+20
+40
+60
+80
+100
TA. AMBIENT TEMPERATURE (OC)
36 TA= +25°C
CI 24 I--r--
r--
TA= +ss0 c
12
l - -+ - -
i..---
0
0
4.0
8.0
12
16
20
24
28
Vee ·(Vdc)
FIGURE 7 - OUTPUT CURRENT versus OUTPUT VOLTAGE
7.0 r - - -
--+- TA =l 25°C
6.0
TA= ~4ooe lLL
'..27- ~~ L ..). ~
L- _L[L TA= B5°e
./z- L
:d £ f-----1
/ L
1.0
~
-~ L
0 lLLJ
0
100
200
300
400
500
VoL. OUTPUT LEAKAGE VOLTAGE (mV)
·
FIGURE 8 - DRIVING LOGIC Vee
FIGURE 9 - SQUAREWAVE OSCILLATOR +Vee :;i..4v
10 k
c
V e n n _,,_.._--u Vo
1/4 MLM139A
Rs == Source Resistance R1"" Rs
Vee
RL
LOGIC
DEVICE
Volts
kH
CMOS 1/4 MC14001 +15
100
TTL
1/4MC7400
+5
10
330 k
330 k
R4 330 k
-1*1-
Tl = T2 = 0.69 RC
f<><~
C(µF)
R2 = R3 = R4
R 1 "" R2//R3//R4
@ MOT'ORO&.A Setnlconductor Producu Inc. ---------'
6-41
MLM139A, MLM239A, MLIVl339A
·
APPLICATIONS INFORMATION
The MLM139A, MLM239A and MLM339A are quad . comparators having high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VQL to VQH). To alleviate this situation input
resistors <10 kQ should be used. The addition of positive feedback (<10.mV) is also recommended.
It is good design practice to ground all unused pins. Differential input voltages may be. large_r than supply voltage without damaging the comparator's input voltages. More negative than -300 mV should not be used.
FIGURE 10...: ZERO CR.OSSING DETECTOR (Single Supply)
+15 v
Al 8.2 k
01
15 k R3
10M
D1 prevents input from going negative by more than 0.6 V.
R1+R2=R3
1-5 R3 ~
for small error in zero crossing
FIGURE 11 - ZERO CROSSING DETECTOR (Split Supplies)
VINmin ""0.4 V peak for 1% phase distortion (M:l).
@ MOTOROLA Semlconduc'for Products Inc.
6-42
·ORDERING INFORMATION
Device MLM2901P
Temperature Range
-40°C to +as0c
Package Plastic DIP
MLM2901
QUAD SINGLE-SUPPLY COMPARATOR
This comparator is designed for use in level detection, low· level sensing and memory applications in Consumer Automotive and Industrial electronic applications.
· Power Supply Options Single Supply= 2.0 to 36 Vdc Split Supplies'= ±1.0 to ±18 Vdc
· Wide Operating Temperature Range - -40 to +85°C · Low Supply Current Drain - 2.0 mA (Max) · L?w Input Biasing Current - 25 nA (Typ) · Low Input Offset Voltage - 2.0 mV (Max) · TTL and CMOS Compatible
QUAD COMPARATOR
SILICON MO,NOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
MAXIMUM RATINGS
Rating Power Supply Voltage Input Differentia! Voltage Range Input Common Mode Voltage Range Output Sink Current Power Dissipation @TA = 25°C
Plastic Package Derate above 25°C
Ollerating Ambient Temperature Range
Storage Temperature Range
Symbol Vee V10R V1eR Isink Po
TA Tstg
Value +36 or ·18
36 -0.3 to +36
20
1.25 10 -40 td +85 -65 to +150
Unit Vdc V,dc Vdc rnA
Watts rnW/0 e
oc oc
I
Output 1
Output 2
- Input 2·
+Input
- Input
+Input
PIN CONNECTIONS
Output 3
Output 4
Gnd
+Input 4
-Input 4
+Input 3
-Input 3
·
FIGURE 1 - CIRCUIT SCHEMATIC
10-<>-1r---+--+----+----+-----+-----+-----+------I----+---~
ll+o-t--+--+----+----f-----+-----+-----+------'-8- o-;--;-t--+-=----+----t-----+-----1-----1---~ . ·9+<>-t--+~-+----+-----11-----t----~-l-. . .h
INPUTS
4- <>-t--+--+----+-----11-----t----~ 5+o-+--+---+----+-----lh
6-o-+--+--+----+--~
6-43
MLM2901
·
ELECTRICAL CHARACTERISTICS (Vee= +5.0 Vdc, TA= 2s0 c unless otherwise noted.l
Characteristic
Input Offset Voltage
!Vm = 1.4 Vdc, Vo= 1.4 Vdc, Rs= 01
Input Offset Current Input Bias Current Input Common Mode Voltage Range (Note 1)
Symbol
Min
V10
-
110
-
11s
-
V1cR
0
Typ 2.0
±5.0 25
-
Supply Current (AL= oo)
Response Time (Note 2) (VAL= 5.0 Vdc, AL= 5.1 k.n)
ice
-
0.8
iee
-
-
1.3
Output Sink Current
I sink
(V1(-) ~ +1.0 Vdc, V1(+) = 0, Vo.;; +1.5 Vdc)
6.0
16
Saturation Voltage !V1(-) ~ +1.0 Vdc, V1(+) = O, lsink = 3.0 mAdc)
Vsat
-
-
Output Leakage Current
IQL
-
0.1
(V1(+) ~ +1.0 Vdc, VI{-)= 0, Vo= 5.0 Vdi:)
Max 7.0
±50 250 Vee -1.5 2.0
-
-
400
-
Unit mVdc
nA nA
v
mA
µs
mA
mV
µA
NQtes 1. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 m V. The
upper end of the common-mode voltage range is Vee -1.5 V, but either or both inputs can go to +30 Vdc without damage.
2. The response time specified is for a 100 mV input step with 5 mV overdrive. For large signals, 300 ns is typical. ·
FIGURE 2- INVERTING COMPARATOR WITH HYSTERESIS
+Vee
FIGURE 3 - NON-INVERTING COMPARATOR WITH HYSTERESIS
+Vee
10 k
1M 10k R1
v
"' Vee R1
REF RREF + R1
R3"" R1 II RAEF// Rt
R 1//RREF R1//RREF + R2
(Vomax -Vominl
> - -.......-uvo
_ Vee R1 VREF - RAEF+ R1 1M R2"' R1//RREF Amount of Hysteresis VM
~2
VH = R2 R3 (Vomax - Vom;nl
® MOTOROLA Setnicondu_ctor Producb Inc.
6-44
MLM2901
TYPICAL CHARACTERISTICS (Vee= +15 Vdc, TA= +25°C unless otherwise noted.)
FIGURE 4 - INPUT OFFSET VOLTAGE
.... ~<:i 1.20 t--+---t---+---1-+--+-+--+-+--+-+~ --+-':::-+---I
> 0
...~ 1.00
- .J.-t-1 0 l---+---li---1--.,,...-=l'--+---+-+---+-+--1--+--+--'-+---I
fi}
....}-""'
N 0.80 .....9--t-+-f-+-l"""--f--l--!--+-+--+-+-~
:::;
~a:
Slope can be either polarity.
~ 0.60 t---t--t---t-'---..,t---t---i--+---i--t--+-+--+-+--1
0.40 - - -.................~~....-.__._....___._............._ .............._....._......
-40
-20
+20
+40
+60
+80 +100
TA. AMBIENT TEMPERATURE (Oe)
FIGURE 6 - OFFSET BIAS CURRENT
...
~ 1.80~
·B~
lI--~-+'~"""l~~i---1---11--+---+-+---+--+--+-+--1--+---1
~ 1.40t-.o+~r--'""""'-.......::-1t-....r--+--+-+--+-+--+-+--+--+---I
f ' l r~e 1.00t--+---lt---+---ll-'"+--t:....,.i.......,"'-+--+-+--+--.j.--1-----1
~ 0 z
O.SOi--sr,..op_e_cat-n-be~er-it_he_rt-po_ra-irit_v_.-+--+-+--+N-+t--+t---+l--'-+--1
0.20..._....._..._....___,...__....___._ _.___._...._......._....__..._...___.
-40
-20
+20 +40
+60
+80
+100
TA. AMBIENT TEMPERATURE (OeJ
60 48
FIGURE 5 - INPUT BIAS CURRENT
Tl· Jooe ~ H
1 - -I""""
i ; . -1 - -i - - r
-~ ~
36
TA =+2s0e
____,
24
~
TA= +8s0e
12
0
0
4.0
8.0
12
16
20
24
28
vee (VdcJ
FIGURE"/ - OUTPUT CURRENT versus OUTPUT VOLTAGE
7.0
\
TAJ2s0c
6.0 5.0 4.0 3.0
TA =~o0c ZLi 2
L /'J
~
z 17
~ ~
-L JL
TA= as0c
~ ~
2,0
~L
LL L
1.0
-h
V-Ll 7
0 lLL
0
100
200
300
400
500
VoL OUTPUT SATURATION VOLTAGE (mV)
·
FIGURE 8 - DRIVING LOGIC
Vee
FIGURE 9 - SQUAREWAVE OSCILLATOR
+Vee ;;, 4 v
100 k
10 k
e
>--~-ovo
1/4 MLM2901P
Rs = Sourte Resistance R1 ""Rg
LOGIC CMOS
TTL
DEVICE 1/4MC14001 1/4Me7400
Vee Volts
+15 +5
------- @ MOTOROLA
Venn
330 k
330 k
R4 330 k
~~1-·
T1 = T2 = 0.69 RC
RL
kn
f"=~
e(µFJ
100
10
= = R2 R3 R4
R 1 "' R2//R3//R4
Sel'nicc>nduct:or Product:s Inc.
6·45
MLM2901
·
APPLICATIONS INFORMATION
The .M LM2901 P is a quad comparator having high gain, wide bandwidth characteristics. This gives the device oscillator tendencies if the outputs capacitively couple to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VQL to VQH). To alleviate this situation input resistors <10 kQ should
not be used. The addition of positive feedback (<10 mV) is also recommended
It is good design practice to ground all unused pins. Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than -300 mV should not be used.
FIGURE 10 - ZERO CROSSING DETECTOR (Single Supply)
+15 v
01 prevents input from going negative by more than 0.6 V. R1 + R2 ~ R3
R3 .;: ~ for small 0r"ror in zero crossing
FIGURE 11 - ZERO CROSSING DETE_CTOR (Split Supplies)
VIN min ""0.4 V peak for 1% phase distortion (Nol).
+Vee
Vo Vee
Vo
(·)
-VEE
-VEE
@'MOTOROLA Semiconducf:or Products Inc.
6-46
CONSUMER CIRCUITS
MC1302 MC1303 MC1306 MC1310 MC1312,14,15 MC1323 MC1324 MC1327 MC1330A MC1331 MC1344 MC1349 MC1350 MC1351 MC1352 MC1355 MC1356 MC1357 MC1358 MC1364 MC1375 MC1384 MC1385 MC1391,94 MC1393 MC1398 MC1399 MC3301 MC3302 MC3310 XC3315 XC3316,17 MC3320,21 MC3325 MC3330 MC3333 MC3340 MC3344 MC3346,86 MC3360 MC3380 MC3390 MC3391 MLM239 MLM239A MLM2901 TDA1190Z
Page
Seven-Stage Divider · . . . . · . · . · · . · . . · . · · . . . . . ; .·.·····.··..· 7-7 Dual Stereo Preamplifier. . . . · . . · . . · . · . . . . . · · . . . . · · . . . . . · . · . 7-9 1/2-Watt Audio Amplifier . . · . . · . . · · . · . . · . . . . · · . . · . . . . . , . . . . 7-13 FM Stereo Demodulator . · . . . . . . · · · . . . . . . · . · . . . . · · · . · . · · · · · 7-18 Four-Channel SQ Logic Decoder System· · . · · . · . . . . · . . · , .·. r ······ 7-26 Triple Doubly Balanced Chroma Demodulator . . · . . . . · . . . · · · . . · . . . . . 7-38 Dual Doubly Balanced Chroma Demodulator . . . · . . . . . . . . . . . . . · . . . . · 7-43 , Dual Doubly Balanced Chroma Demodulator · · . . . . · , · · . . · · . . · . · . . · . 7-47 Low-Level Video Detector . . · . . . . . · · . . · . · . . . . . · . . . · · · . · · . . · · 7-51 Low-Level Video Detector · · . . · . . · · . . · . · · · . . . .' . . . · · · . . . · . . . . 7·57 TV Signal Processor. · . . . . · · . . . . · · . . · . . . · . . . . . . · · . . . . · . · . . 7-64 IF Amplifier · . · . . · . · . . . . , · . . . · . · · · . · . . . . · . . . · . . . . · . . · . 7-67 IF Amplifier . . . · · . . . . · . . . . . . . · . · . . . . . . . . . . . . · . . . . · . . . . 7-72 TV Sound Circuit. . . . . . . . . . . . . · · . . . . . · . . . . . . . . · · . . . . . . . . 7-76 TV Video IF Amplifier . . . . . . · . . . , · . · . . . . . . . . . . . · . · . . · . . . . . 7-80 Limiting FM IF Amplifier. . . . . . · . · . . . . . . . . . . . . . . . . · . . . . . . . · 7-85 FM Detector/Limiter · . . . . . .. . . . · . · . . . · . . · . . . · . . · . · . · · . . · · . 7-89 IF AmpIifier and Quadntture Detector. . . . . . . . . . . . . . . . . · . . · . . . . . . 7-93 TV Sound IF Amplifier · . · . . · . . . · . . . . . · . . . . . · . . . . . . · . . ····. 7-99 Automatic Frequency Control . . · . . . · . . . . · . . . . . . · . . . . . . . · . , . . 7-104 FM IF Circuit . . · · . . . . . · . . . . . · . . . . . · . . · . . · . · · . . · . · . . . . . 7-108 5-Watt Audio Power Amplifier . · · . . · . . . . . . . . . . · · . . . · · . . · . . . · . 7-112 Class B Audio Driver ·... ·. . . . . . . · . . . . . . · · . · '. . · · . · · · · . . · · · . 7-114 TV Horizontal Processor . . · . . . . . · . · . . . . . · . . . . . · . · . . . · · · . . · . 7-120 TV Vertical Processor . . . · · . . . . . · · . . . . . . . · . . . . . · . . . . · . . . . . 7-125 TV Color Processing Circuit . . . . . . · . . . · · . . · . . . . · · . . . · . . · . . . · . . 7-128 TV Color Processing Circuit . · . . . . . · . . . . . . · . . . . · . · · · . . . . . . · . . 7-134 Quad Operational Amplifier . . · . · . . · . · . . · . . . . . . · . · . . · . . · . · . · . 3-100 Quad Comparator. . . . · · . . · .. . · . · · . . . . · . . . · . . . . . · . . · · . . · . · 6-17 Wide-Band Amplifier . . · . · . . , . . · . · . . . . · . . · · . · . . · . . . · . · · . · . 7-139 Frequency-to-Voltage Converter ....·..·..··..· , ...·......··.· 7-143 Dual Frequency-to-Voltage Converters . . . . . . · . · . . . . · . . . . . . . . . . . . . 7-149 Class B Audio Drivers· . . · . . . . · . . · . . . . . . · . . · · . . . · · · . · . . . , .· 7-156 Automotive Voltage Regulator . · . · . . · . . · . . . . · · . . . . · . . . . . . . . · . 7-160 Differential/Cascode Amplifier . . . . . . · . . , . . . . . . · . . . · · · . . . · · . · . 7-164 Vari-Dwell Ignition ·....·.··.··......·....··.··.·.·.··..· 7-166 Electronic Attentuator . . . . . . . . · . . . . . . . . . . . , . , . . · . . . · . . . . . ,. . 7-169 Programmable Frequency Switch . . · . . . . . . . . . . · · · . · . · . · . . · . . · . . 8-109 General-Purpose Transistor Array · · . · · . . . . . , . . · . · · . · . . . · . . · . · · . 7-172 1/4-Watt Audio Amplifier · · . · · · . . · · . · . . · . . · . . . . '. · . · . . · . · · . . 7-175 Emitter Coupled Astable Multivibrator.··.· , . . . . . . . · . . · . . · · · · . , ·. 7-178 Phase-Locked Loop Frequency Synthesizer for CB Radio. , ·. ·. · . . . · · . . · . . 7-184 Remote Controller and Display Driver for CB Radio . . . . . . . . . . . , ··.· ~ · . 7-185 Quad Comparator (Single Supply) · . . . · . . . . . . · . . . . · . . . . · · . . · . . · 6-35 Quad Comparator (Single Supply) . · . . · . . . · . · . · . . . . . . . . · . . .· · . . . 6-39 Quad Comparator . · . . ; · . · · · . · · · . · · . · · . . · . · · . · . . . · ·. · · . · . . 6-43 TV Sound System · · . . · . · . . . . · . · · · · · . · . . · . · · · . · · · . , ···.. 7-186
7-2
Circuits for Consumer Applications
... reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. This tabulation is arranged to .simplify first-order selection of consumer
integrated circuit devices that satisfy the primary functions for Television, Audio, Radio, Citizens Band, Automotive and Organ applications.
TELEVISION CIRCUITS
SOVND
Function
Sound IF, Detector, Limiter, Audio Preamplifier
Sound IF Detector Sound IF Detector, de Volume Control, Preamplifier Sound IF, Low Pass Filter, Detector, de Volume Control, PreAmplifier, Power Amplifier
Features
80 uV, 3dB Limiting Sensitivity, 3.5 V(RMS) Output, Sufficient for Single Transistor Output Stage
Interchangeable with ULN21.11 A
Excellent AMR, Interchangeable with CA3065
Complete TV Sound System 100 uV 3 dB Limiting Sensitivity 4 Watts Output, Vee= 24V, RL = 16.11
Case 646,647
Type MC1351
646,647 646,647
722A
MC1357 MC1358
TDA1190Z
VIDEO
1st and 2nd Video IF Amplifier
1st and 2nd Video IF, AGC Keyer and Amplifier 3rd IF, Video Detector, Video Buffer, and AFC Buffer
3rd IF, Video Detector, Sound IF Detector. and Sync Separator AGC Keyer, AGC Amplifier, Noise Gate, Sync Separator
Automatic Fine Tuning
IF Gain @ 45 MHz-60 dB Type AGC Range-70 dB min
IF Gain @ 45 MHz-46 dB typ, AGC Range-60 dB min
IF Gain @ 45 MHz-53 dB typ, AGC Range-65 dB min, "Forward AGC" Provided for Tuner
Low-Level Detection Low Harmonic Generation Zero Signal de Output Voltage of 7.0 to 8.2 V Same as MC1330A1 except zero signal de output ~oltage of 7.8 to 9.0 V
Low-Level Detection. Separate Sound Detector, Differential Inputs
High-Quality Noise Gate, One IF AGC Output and Two Tuner AGC Outputs. Adjustable AGC Delay
High Gain AFT System, Interchangeable with CA3064
626 626 646,647 626
626 646 646 646
MC1349 MC1350 MC1352 MC1330A1
MC1330A2 MC1331 MC1344 MC1364
CHROMA
Chroma IF Amplifier and Subcarrier System Chroma IF Amplifier and Subcarrier System (PLL) Dual Chroma Demodulators
Triple Chroma Demodulator
Includes Complete Chroma IF, AGC, de Gain
646
and Tint Controls, Injection Locked Oscillator.
Low Peripheral Parts Count
Includes Complete Chroma IF, AGC, de Chroma
648
and Hue Controls, Phase Locked Loop (PLL) Oscillator,
Color Killer Threshold A~ustment.
Dual Doubly Balanced Demod1.1lator with
646
RGB Matrix and Chroma Driver Stages
Dual Doubly Balanced Demodulator with . RGB Output Matrix and PAL Switch
Triple Doubly Balanced Demodulator with Adjustable Output Matrix, Contains Three Independent Demodulators.
646.647 648
MC1398 MC1399 MC1324 MC1327 MC1323
II
7-3
·
DEFLECTION
Function Horizontal Processor
Vertical Processor
Features
Includes Phase-Detector, Oscillator and Predriver: Linear Balanced Phase Detector Adjustable de Loop Gain
Same as MC1391 except designed to accept negative1. sawtooth sync pulse
Includes Oscillator and Complementary Driver, Low Thermal Drift, Retrace Pulse for Effective Blanking
Case 626 626 648
Type MC1391 MC1394 MC1393
AUDIO CIRCUITS
PREAMPLIFIERS
Function Dual Preamplifier
Vee Vdc Max
±15
Avol dB Min
80
THO %Typ
0.1
zo ·Ohms Typ
100
Case 646
Type MC1303
DRIVERS
Function
B Class Audio Drivers
vc.c
Vdc Max
,35 20 25
Drive Current
mA
150 pecik 150 peak 50 max
Avol dB
89 typ 87 typ
-
Case
626 626 646
Type
MC3320 MC3321 MC1385
POWER AMPLIFIERS
Function Audio Power Amplifiers
Po Watts
0.5 0.25 4.0
Vee Vdc Max
12 12 18
· cin
@rated P0 mVTyp
3.0 3.0 22.0
lo mATyp
4.01 3.0 12
RL Ohms
8.0 16 4.0
Case
: 626 626
72.2..
Type
MC1306 MC3360 MC1384
RADIO CIRCUITS
IF AMPLIFIERS
Function
Recovered
Gain
3 dB Limiting
Audio Output Power
@ 10.7 MHz @ 1.0.7 MHz AMR f = ±75 kHz Supply
dB Typ mV (RMS) typ dB Typ mV(RMS) Volts Max
IF Amplifier
58
0.175
60
690
18
Limiting FM-IF Amplifier
-0.600
45
480
18
Limiting IF Ampl/Ouadrature
0.4
42
450
16
Detector with Built-In
Regulator
Limiting IF Ampl/Ouad Detector
53
0.4
45
480
16
IF Amplifier, Limiter, Detector,
21
0.25
55
625
16
Audio Preamplifier
IF Amplifier
42
60
50
500
18
/
Case 626 646,647 646
646, 647 646 626
Type MC1350 MC1355 MC1356
MC13!;i7 MC1375
MC3310
7-4
DECODERS
Function
Channel
Stereo-Indicator
Separation THO Lamp Driver
dB Typ %Typ
mA Max
FM MultjQlex Stereo Decoder
40
0.3
75
Four Channel SOt Decoders
45
0.1
Four Channel SOt Gain and Balance Control
Four Channel Sot Logic Circuit
tTrademark of Columbia Broadcasting System, Inc.
Features
Coilless Operation ~ = 20Vdc nom
Master Volume Control and LF/RF, LB/RB, E/B Balance Control
Interface with..MC1314 and MC1312 to increase FIB Separation and Supply Gain
and Balance Control to MC1314.
Case Type 646 MC1310 646 MC1312 648 MC1314
648 i-MC1315
ORGAN CIRCUITS
FREQUENCY DIVIDER
Function 7-Stage Divider
ATTENUATOR
c
Functil;>n Electronic Attenuator
Vee Range
Vdc 9.0to 18
Vee Range
Vdc 6-16
1Tog MHz Typ
1.0
VOH Vdc Min
12.0/15.0
Case 646
Type MC1302
THO %Typ
0.6
Av dB Typ
13
Attenuation Range dB Typ 90
Case 626
Type MC3340
AUTOMOTIVE CIRCUITS
OPERATIONAL AMPLIF~ER
Function Quad Operational Amplifier
Vee Range
Vdc 4.0-28
Avo1 V/V Min
1000
'·B AM11x
0.3
Unity Gain Bandwidth MHz Typ
4.0
Case 646
Type MC330,1
COMPARATORS
Function Quad Comparators
vcc Range
Vdc 2.0-28
2.0-36
VIO mVMax
±20 ±7.0 ±5.0 ±2.0
'10 nA Max
±50
'·B na Max
500
250
VOLTAGE REGULATOR
Function Automotive Voltage Regulator
Features
Designed for use with NPN Darlington Overvoltage Protection "Open Sense'' Shut Down Selectable Temperature Coefficient
Sink Current mATyp
6.0
16.0
v Case
Type
646, 632 646
646.632 '646, 632
MC3302 MLM2901.
MLM239 MLM239A
Case 646
Type MC3325
·
7-5
·
ELECTRONIC IGNITION
Function Electronic Ignition Circuit
Features
Designed for use in High EnergyVariable Dwell Electronic Ignition Systems with Variable Reluctance Sensors. Dwell and Spark Energy are Externally Adjustable.
Case 646
TRANSISTOR ARRAYS
GENERAL PURPOSE
Function
1c (max) mA
One Differentially connected pair and 50 Three Isolated Transistors
One Differentially Connected Pair
50
with Associated Constant Current
Transistor
Vceo Volts Max
15
20
Vceo Volts Max
20
20
VEBO Volts Max
5.0
5.0
Case 646
626
Type MC3333
Type MC3346 MC3386 MC3330
SPECIAL FUNCTIONS
Function Emitter-Coupled Astable Multivibrator Phase Lock Loop Frequency to Voltage Converter Dual Frequency to Voltage Converters
Programmable Frequency Switch
Features
Useful as DC-DC Converter,. Power Regulator or
= Multivibrator. Toggle Freq 100 kHz (typ).
Contains Voltage Controlled Oscillator and Double Balanced Phase Detector
Frequency Doubling for Low Output Ripple Programmable Threshold and Hysteresis
Frequency Doubling for Low Output Ripple Programmable Threshold and Hysteresis Two Independent Channels
Same as MC3316 ... Plus Fail Check Indication for Open Sensor High and Low Select Outputs
Wide Input Frequency Range (10 Hz to 100 kHz) Adjustable Hysteresis Wide Supply Operating Range (7 to 24V)
Case 626 646 646
648
701
646,632
CITIZENS BAND CIRCUITS
SYNTHESIZER.
Function \
Phase Lock Loop Frequency Synthesizer
Features
Requires only One Crystal to Generate All Transmit and Receive Frequencies Can be used with Binary Coded Switch Designed for Double or Single Conversions Receivers
CONTROLLER
Remote Controller and Display Driver
Designed for use with a Push Button Switch for Incremental up/down Channel Selection of the MC3390 Provides Display Drive Current
Case 724
724
Type MC3380 MLM565 MC3315 MC3316 MC3317 MC3344
Type MC3390
MC3391
MC1302
7-STAGE DIVIDER
This monolithic circuit is designed for use as a frequency divider
in electr~nic organs. It contains 7 flip-flops with all inputs and
outputs externally accessible.
· Wide Operating Voltage Range - 6.0 to 16 Volts · Regulated Supply Not Required · Maximum Design Flexibility - Allows for Two to Seven-Stage
Cascades
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating Power Supply Voltage Output Sinking Current Negative Input Voltage Junction Temperature Operating Temperature Range
Value 19 10 0.5 150
0 to +75
Volts Vdc mA Vdc oc oc
7-STAGE DIVIDER
SILICON MONOLITHIC INTEGRATED CIRCUIT
P SUFFIX
PLASTIC PACKAGE CASE 646
FIGURE 1 - CIRCUIT SCHEMATIC
PIN CONNECTIONS
Output
1---------------------------------,
:
I
I
I I
I I I
I
Vee
!
I
1
l
!
: :
:
1 L_R_'.'~':l~t_?~
L-------,
Input
i
I
:
I
I
!
!
Single Cell
: 1
: .1 Gnd
,L-----""----~-""------"-" -----""---------------(O-n-e--o-f -S-ev-e-n-) ~1 ""
Gnd Vin1 Vin3 Vin5 Vin6 V;n7 Vee
Vout1 Vout2 Vout3
·
vout4
Vout5
ORDERING INFORMATION
·Device
Temperature Range
MC1302P
Oto +75
Package Plastic DIP
7-7
MC1302
·
ELECTRICAL CHARACTERISTICS (Vee= 16 Vdc, Vin= 4.0 V, Square Pulse, f = 10 kHz, 50% Duty Cycle, tPHL 0 1.0 V/µs,
TA ~- +25°C unless otherwise noted )
Characteristic Operating Power Supply Voltage Toggle Frequency
Min
Typ
Max
Unit
6.0
-
16
Vdc
-
1.0
-
MHz
Output Voltage (High) Pins 8, 9, 10, 11, & 13
Vdc
!Vee = 6.0 Vdc) (Vee= 16 Vdc)
5.5
-
-
15.0
-
-
Output Voltage (High) Pins 12 $ 14 (Vee= 6.0 Vdc) (Vee = 16 Vdcl
4.5
-
12
-
Vdc
-
Operating Drain Current _ (Vee= 16 Vdc)
mAdc
-
26
-
Output Sinking Current (Vo< 0.5 Vdc)
Rise Time Propagation Delay Fall Time Input Resistance Output Resistance. (Output High)
mAdc
-
10
-
' -
100
-
ns
-
700
-
ns
-
50
-
ns
10
-
-
kn
-
-
5.0
kn
INPUT PULSE REQUIREMENTS
V!H
VIL 0
Characteristic Pulse Magnitude Zero Level Leading Edge Trailing Edge dv/dt
Min +4.0
-1.0
Max
+1.0 No Requirement
Unit Volts Volts
Volts ms
THERMAL INFORMATION
The maximum po~er consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
Pon l - TJ(max) -TA A - ROJA (Typ)
Where: Po(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply
voltages and supply currents at the worst-case operating condition.
TJ(max) = M~xiryium Operating Junction Temperature as listed in the Maximum ratings Section
TA ;, Maximum Desired Operating Ambient Temperature
R&JA(Typ) =Typical Thermal Resistance Junction to Ambient
@ MOTOROLA Semiconduc'for Produc'fs Inc.
7-8
ORDERING INFORMATION
Device MC1303P
Temperature Range
0°C to +75°C
Package Plastic DIP
MC1303.
DUAL STEREO PREAMPLIFIER
... designed for amplifying low-level stereo audio signals with two preamplifiers built into a single monolithic semiconductor.
Each Preamplifier Features: · Large Output Voltage Swing - 4.0 V (RMS) Min · High Open-Loop Voltage Gain = 6000 min
· Channel Separation= 60dB min at 10 kHz
· Short-Circuit-Proof Design
DUAL STEREO PREAMPLIFIER INTEGRATED CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUIT
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating
Value
Power Supply Voltage
+15
-15
Junction Temperature
+150
Operating Ambient Temperature Range
0 t0'+75
Unit' Vdc
OC
oc
P SUFFIX PLASTIC PACKAGE_
CASE 646
7.-9
MC1303
·
ELECTRICAL CHARACTERISTICS (Each Preamplifier) !Vee= +13 Vdc, Vee .. -13 Vdc, TA ·+25°c unless~therwise noted).
Chlracterittic Definitions (linur operations)
Characteristic
Min
Typ
Max
Unit
j_~A- ,o1·-ee.omut
·1n
-,-
+
8out
':'
iF
Open Loop Voltage Gain
6,000 10,000
-
VIV
~
12~
·1 -
+
·2~
·1
+
Output Voltage Swing (RL .. 10kOI
Input Bias Current t1+t2
· 1 B =2--
Input Offset Current
Ciro= t1 -121
4.0
5.5
- V(RMSI
-
1.0
10
µA
-
0.2
'0.4
µA
~ V10 0
·1n~·out1
., f::t>-~
Input Offset Voltage DC Power Dissipation
(Power Supply= ±.13 V, Vo= 01
Channel Separation (f = 10 kHz)
-
1.5
10
mV
-
-
400
mW
60
70
-
dB
THERMAL INFORMATION
The maximum power consumption i\n integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA Po(TA) "" RoJA(Typ)
Where: Po(TA)·= Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature
ROJA(Typ) =Typical Thermal Resistance Junction to Ambient
@ MOTOROLA Semlconduc'for Produc'f· Inc.
7-10
MC1303
TYPICAL PREAMPLIFIER APPLICATIONS
FIGURE 1 - MAGNETIC PHONO PLAYBACK PREAMPLIFIER/RIAA EQUALIZED .
820pf
FIGURE 2 - BROAD BAND AUDIO AMPLIFIER
680pf
OUTPUT
.
.
_--
----- +----.e. .
vcc
VEE
OUTPUT
"
-
'------1-+-----·-
vee
VEE
·20
-+-+-
·10
1---t--'
' ~
~
10
·f'..
-20 10
100
I.Ok
"" !Ok
FREQUENCY (Hz)
TYPICAL PERFORMANCE CHARACTERISTICS
VonageGain lnputOverloadPoin1 Output Voltage Swmg OutpUt Noise Level
34 dB 150)@ 1.0 kHr
100 mVRMS@ 1.0kHt 5.0 VRMS@ 1.0 kHt @0.1% THO. Better Than 70 dB Below 10 mV Phono
Input llnputShorted)
Pins not shown are not connected.
IODk
Voltage G1in: 40 dB (100)@ 1.0 kHz relerem:e Output Voltage Swing: 5.0 V(rmsl
[811llllll lllll lllll lffilll
10
100
I.Ok
!Ok
IDOk
FREQUENCY (Hz)
SUGGESTE-0 POWER SUPPLY CIRCUIT
Zl · Mz.500.19 (13Vnom.>
SelectserinRby altowing11mAfor ierser,ande;n:hdual l/CPreamptifier
-V;0 o--~------<.1VE£
Pins Rot shown are not c~nnected.
FIGURE 3 - NAB TAPE HEAD EDUALIZATJON
·
Jlloin/s
~
-10 l-H-+++H-+-l-+-H-l-f+l-1f-+-+-++-l~"++I-~
Lil"'
100
300 500 1000
3000 5000 10,000 20,000
FREQUENCY (Hz)
Pinsnotlhawnorenotl:annlcttd.
l----t---· vcc
----i----·VEE
C·910pffor71/2inh voi.,. Goin: 3S dB· 1.0 kHz OutiiutVoi.,tSwing: 5.0VlllMSI
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical" semiconductor applications: consequently. complete information sufficient for construction purposes iS not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However. no responsibility is
assumed for inaccuracies. Furthermore. svch information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Ille. or others.
@ MOTOROLA Bernlc:onduc:tor Prod1i1c:m Inc.
·
400
l 300
~ ;::
iti.i 200
Ci a:
~
Cl.. 100
FIGURE 4 - POWER DISSIPATION versus SUPPLY VOLTAGE
z /
17
/
)7
v v
7'
0
0
4.0
8.0
12
16
SUPPLY VOLTAGE (Vdc)
FIGURE 5 - OUTPUT LINEARITY
1 ; o.5~--~--....----.---.....----...,----,
Q
I
1
@°; 0.4 1-------l-VCC = ±13 V - - + - - - 4 - - - - + - - - + - 1
~ ~ ~ 0.3
Av= 100 ---l----l-'----1----1~ I= 1.0kHz
AL= 100 k ohm
Ci
<..>
;§ 0.2 i-:.---+---+----+----+---+--t--t
~
~
J
~ o.11-----+----+---+--__,L----1f----+p-~~
0 I-
OUTPUT VOLTAGE IV !AMS))
6.0~----
FIGURE 6 - INFLUENCE OF OUTPUT LOADING
~5.0
1
v '?: ~-----+------+---+THO= 1~
~4.0
~ ..L._~
y
~> 3.o
L z
.v /THD=0.1%
17
~ 7 JZ -1--~--+-----'f ~ ~o
2.0
~IL__
vcc=±1Jv
~---,,,,..L'~--+---+----:1,,c---1--+--+-t--+-+--- Av= 100 "
'
-
*
+
-
-
-
-
-
+----1
z 7 V__ 1.0 1-.Lc:_.._ _ _ _-+_ _/_4
I= 1.0kHz
+--+--+-+--+--+--+---RF= 1ooku
~---,-1-----1
-=-
Rs
As= 1.0k!l
L
RF -=
1.0
2.0
5.0
10
20
LOAO A~SISTANCE (k ohms)
50
100
NOISE CHARACTERISTICS
FIGURE 7A- INFLUENCE OF SOURCE ·RESISTANCE & BANDWIDTH
200
500 1000 . 2000
5000 10,000
SOURCE RESISTANCE (OHMS)
FIGURE 78 - INFLUENCE OF VOLTAGE GAIN
& BANDWIDTH
~ ~ -1000
.
~ 500
7
~10kHz
1"71"'
, / ! 7 -"'
~~· ~"·
L
Z
YT'T
/~
~~ 10t 0~~~~~~~~~~~~~~~~~~10~0Hz~
-~ 50
P'
~ 7 p Vcc=R±13V.
~
J" --:;;;;
Av., Rf
20
17
Ffs=l.Okll
Low fco · 10 Hz
10
high fco =100 kHz
10
20
50
100
200
500 1000
VOLTAGE GAIN (VIV)
@ MOTOROLA Semiconductor Products Inc.
7-12
ORDERING INFORMATION
Device MC1306P
Temperature Range 0°C to +75°C
Package Plastic DIP
MC1306
I
1/2-WATT AUDIO AMPLIFIER The MC l306P is a monoIith ic complementary power ampIifier and
preamplifier designed to deliver 1/2-Watt into a loudspeaker with a 3.0 mV(r111s) typical input. Gain and bandwidth are externally adjustable. Typical applications include portable AM-FM radios, tape recorder, phonographs, and intercoms.
· 1/2-Watt Power Output (9.0 Vdc Supply, 8-0hm Load) · High Overall Gain - 3.0 mV(rms) Sensitivity for 1/2-Watt Output · Low Zero-Signal Current Drain_- 4.0 mAdc@ 9.0 V typ · Low Distortion - 0.5% at 250 mW typ
1/2-WATT AUDIO AMPLIFIER
PLASTIC PACKAGE CASE 626
TYPICAL APP... ICATIONS
FIGURE 1 -AM-FM RADIO, AUDIO SECTION
FIGURE 2 - PHONOGRAPH AMPLIFIER (CERAMIC CARTRIDGE)
1.0 k
1.0 k
1.0Megn
15 pF
51;{'1-µ_,,.;o...,..k__,6.,___---1
l Volume
-=Control
.J>reamplifier
1.4 k
8.0 D
100 pF
200 µF
Tone ControlL 1.0Megn
XTA=~l.. .O Meg n _ _-0--1 ~ll--"'\,,,,,_
0.05 µF
0.002 µFLO.Meg n
Volume Control
CIRCUIT SCHEMATIC
PowerAmplifier '
s.on
·
1.4 k 1.6k
GND
Preamplifier Output
Power Amplifier Input
7-13
MC1306
MAXIMUM RATINGS (TA =+2soc unless otherwise noted)
Rating Power Supply Voltage Load Current Power Dissipation (Package Limitation)
TA =+25°c D_erate above TA = +25°c Operating Temperature Range Storage Temperature Range
Symbol
v+
IL Po
1/fJJA TA Tstg
Value 12 400
625 5.0 Oto +75 -65 to +150
Unit Vdc mAdc
mW mW/OC
oc oc
·
ELECTRICAL CHARACTERISTICS (V+ = 9.0 V, RL =8.0 ohms, f = 1.0 kHz, (using test circuit of Figure 3), TA= +25oc
unless otherwise noted.)
Characteristic
~bol
·Min
112.
Max
Unit
Open Loop Voltage Gain ·Pre·amplifier RL = 1.0 k ohm
= Power-amplifier RL 16 ohms
Sensitivity (P0 =500mW)
Output Impedance (Power-amplifier)
Signal to Noise Ratio (P0 = 150 mW, f = 300 Hz to 10 kHz)
Total Harmonic Distortion IP0 = 250mWI
Quiescent Output Voltage
Output Power (THDS10%)
Curtent Drain (zero signal)
Power Dissipation (zero slgnall
AvoL
-
270
-
360
s
-
3.0
Zo
-
0.5
S/N
-
55
THO
-
0.5
Vo
-
v+12
Po
500
570
io
-
4.0
Po
-
36
VIV
-
-
mV(rmsl
-
Ohm
-
dB
-
%
-
Vdc
-
mW
-
n'IA
-
mW
FIGURE 3 - TEST CIRCUIT
1.0k
v+
'47pf
~,~+;........Y-A--+---6-~-l 1.0µf 4.7 k
CL= 200µF
·~
'"i 1.0
lO.OSµF
FIGURE 4 - ZERO SIGNAL BIAS CURRENT
10.----...--.,------..--...----.----r----ir----.
J TAJzs0c s.o 1----'--1---+---+---+---+---+----1----1
1-
a:i
gj 6.0 l----i---+---+--+---+---+-----1----1
::::i
~
~
~ 4.0 ~-+---+--+i-----+-1---"'=-+~=-i--+---1
~~
~ 2.0 to-!=--+--+---+--+---t-~+--ir----i §
...... ..... 01--~.....i..----I-.---'----"~--.._-- ~--..._~
4.0 5.0 6.0 7.0 8.0 9.0 10
l1
12
v+. POWER S~PPLY VOLTAGE (Vdcl
7-14
MC1306
TYPICAL CHARACTERISTICS
= = (V+ 9.0 V, f = 1.0 kHz, TA +~5oc unless otherwise noted)
FIGURE 5 - EFFICIENCY
THD·1%
Rt a8.0ohms
10 ' - -......"--__.____.__-..i.__......__......__.....___......__....___~ 3.0 4.0 5.0 6.0 7.0 . 8.0 9.0 10 11 12 13
v+. POWER SUPPLY VOLTAGE (Vdc)
FIGURE 6 - OUTPUT POWER
i::: 0.8 r---t----1'------!f-
i
ffi o.&i----1----+-~
.~..
~ 0.4 r - - - 1 - - - - - 1 - - - - - 1 - - - i - - - 1 - - - - - - - - - - - - - t - - - 1
=>
0
~ 0.2 r---t----1'----1....,.."-t---..IF-.,.-+---t---+---t---I
ol.__..J....~~c:::.:_J__L._J~L__l__l_;_J 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12 13
y+, POWER SUPPLY VOLTAGE {Vdcl
. 4.0
£
c 2
..0~.,.,
3.2
.C.,i 2.4
z
c
:E
a:
c(
:c
1.6
...-c(' .c.. 0.8 r.::.c:.i
0.1
FIGURE 7 - TOTAL HARMONIC DISTORTION
l
\
P~= IO~m~
l\
~
RL = 8.D Ohms CL= 20011F
f\.
~
~
~
~ r-...1
D.2
0.3
0.4 0.5
0.7
1.0
2.0
f, FREQUENCY (kHz)
-
i..--H
3.0
4.0 5.0 6.0 7.D 8.0 9.010
FIGURE 8 - EFFECT OF BATTERY AGING ON LOW-LEVEL DISTORTION
4.0
~
t~--+---+---+---+RL=8n
c z i==
a:
Cl· 50µF Po= 10 mW" 3.0 t----+---+---1--.-..--+-- f = 1 kHz
0
!;;
.C.,i
z0 2.0
:aE:
c(
:c
Simulated Battery
..-<0...(.'
r::i
:..i:.:.
v+, SUPPLY VOLTAGE {Vdc)
FIGURE 9 - DISTORTION
10
~ 9.0 z
...~ 8.D
~a: 7.0
~ 6.D
~ 5.D
::E
~ 4.0 :c
.:.c.t 3.0
~ 2.0
c:i
i:
1.0
v+=9.0V Rt= 8.0 Ohms
1
~
0
0.01
0.02 0.03 D.05
0.1
0.2 0.3 0.5
1.0
P0, POWER OUTPUT (WATTS)
·
7-15
MC1306
FIGURE 10 -TYPICAL.CIRCUIT CONNECTION
Ap/2
Rp/2
v·
C4
470.pF
C2
Cp
--
1
I I I I
"'j
Cl Rs : ~l-'\Mr-.+----4---0---l Input
MC1306
DESIGN CONSIDERATIONS
The MC1306P provides the designer with a means to control preamplifier gain, power amplifier gain, input impedance, and frequency response. The following relationships will serve as guides.
1. Gain The Preamplifier Stage Voltage Gain is: Rt
AvA,~ A;
and is limited only by the open-loop gain (270 VIVI. For good
preamplifier de stability Rf should be no larger than 1.0-megohm.
The Power Amplifier Voltage Gain is controlled in a similar manner where:
10 k AvB~"Rp
The 10-k ohm feedback resistor is provided in the integrated circuit.
Recommended values of Rp range from 500-ohms to 3.3-k ohms. The low end is limited primarily by low-level distortion and the upper end is limited due to the voltage drive capabilities of the pre-amplifier. (A resistor can be added in the de feedback loop, from pin 6 to ground, to increase this drive); The Overall Voltage Gain, then, is:
2. Input Impedance The Preamplifier Input Impedance is:
and.the Power Amplifier Input Impedance is:
3. Frequency Response
The low frequency response is controlled by the cumulative effect of the series coupling capacitors C1, C2, and C3. Highfrequency response can be determined by the feedback capacitor,
Cf, and thei-3.0 dB point occurs when
Xcf =Rt
Additional high frequency roll-off and noise reduction can be achieved by placing a capacitor from the center point of Rp to ground as shown in Figure 10.
Capacitor C4 and the RC network shown in dotted lines may be needed to prevent high frequency parasitic oscillations. The RF choke, shown. in series with the output, and capacitor C6 are used to prevent the high-frequency components in a large-signal clipped audio output waveform from radiating into the RF or IF sections of a radio (Figure 101.
.4. Battery Operation
The increase of battery resistance with age has two undesirable effects on circuit performance. One effect is the increasing of amplifier distortion at low signal levels. This is readily corrected by increasing the size of the filter capacitor placed across the battery (as shown in Figure 8; a 300-µF filter capacitor gives distortions at low-tonal levels that are comparable to the "stiff" supply). The second effect of supply impedance is a lowering of power output capability for steady signals. This condition is not correctable, but is of questionable importance for music and voice signals.
5. Application Examples: (1 I The audio section of the AM-FM radio (figure 1I is adjusted for a preamplifier gain of 100 with an input impedance of 10-k ohms. The power amplifier gain is set at 10, which gives an overall voltage gain of 1000. The bandwidth has been set at 10-kHz. (2) The phono amplifier (Figure 21 is de. signed for a preamplifier gain of unity and a power amplifier gain of 10. The input impedance is 1.0-megohm. An adjustable treble control is provided within the feedback loop.
7-16
MC1.306
TYPICAL PRINTED CIRCUIT BOARD LAYOUT
LOCATION OF COMPONENTS
C2
Rl. R:i
R3
C3
C5
See Fig~re 3 for schematic diagram.
PARTS LIST
Component
C1 C2 C3
C4 ·.
cs
R1 R2 R3 R4 MC1306 PC Board
Value
I 200µF 0.1 µF 0.05 µF 1.0µF 47 pF 1 ollm
1 k ohm 4.7 k ohms 270 k ohms
-
7-17
·
ORDERING INFORMATION
Device MC1310P
T8Jnperature Range -40°C to +85°C
Package Plastic DIP
MC1310
·
Specifications and Applications Information
FM STEREO DEMODULATOR
... a monolithic device designed for use in solid-st~te stereo rec.eivers. · Requires no Inductors · Low External Part Count · Only Oscillator Frequency Adjustment Necessary '· Integral Stereo/Monaural Switch 75 mA Lamp Driving Capability · Wide Dynamic Range: 0.5-2.8 V(p·p) Composite
Input Signal · Wide Supply Range: 8-14 Vdc · Excellent Channel Separation Maintained Over Entire Audio
Frequency Range · Low Distortion: Typically 0.3% THO at 560 mV (RMS)
Composite Input Signal
· Excellent SCA Rejection
FM STEREO DEMODULATOR SILICON MONOLITHIC INTEGRATED CIRCUIT
CASE 646
FIGURE. 1 - TYPICAL APPLICATION AND TEST CIRCUIT
19 kHz
cs
Output
Pin Functions
Pin 1 .. Vee
Pin 8 = Switch F llter
-=
Pin 2 =Input Pin 3 = Amplifier Output
Pin 9 =Switch Filter
Pin 10 = 19 kHz Output
Pin 4 = Left Channel Output Pin 11 =Modulator Input·
Pin 5 = Right Channel Output Pin 12 =Loop Filter
Pin 6 · Lamp Indicator
Pin 7 = Ground
Pin 13 = Loop Fllter Pin 14 = Oscillator RC Network
Peru List
C1"2.0µF C2"' 0.Q~ µF C3=0.02J,CF
C4 · 0.251'F C5 = 0.051'F C6 · 0.5 J,CF
C7 = 470pF
ca .. 0.25 "F
R1=3.9kSl
R2"'3.9kSl R3= 1.0 kSl R4=16kSl
R5= 5.0 kSl
C1
Input~·-·------
C5
C4
MC1310
Left Channel Output
Right Channel Output
7-18.
MC1310
MAXIMUM RATINGS ITA= +25° unless otherwise noted.)
Rating
Power Supply Voltage
Lamp Current
Power Dissipation (Package limitation)
c Derate above TA= +2s0
Operating Temperature Range (Ambient)
Storage Temperature Range
Value 14 75 625
5.0 -40 to +85 -65 to +150
Unit Volts mA
mW
mwt0 c
oc OC
= ELECTRICAL CHARACTERISTICS Unless otherwise noted; Vee +12 Vdc. TA"' +25°C. 560 mVIRMSl 12.8 Vfp·pl l standard
multiplex composite signal with l. or A channel only modulated at 1.0 kHz and with 100 mVIRMSl pilot level ( 10%}. using circuit of Figure1.
Characteristic
Maximum Standard Composite lnpu~ Signal (0.5% THO)
Maximum Monaural Input Signal (1.0% THO)
Input Impedance
Stereo Channel Separation
Audio Output Voltage (desired channel)
Monaural Channel Balance (pilot tone "off")
Total Harmonic Distortion
Ultrasonic Frequency Rejection
19 kHz 38kHz
Min
Typ
Max
Unit
2.8
-
-
V(p-p)
2.8
-
-
V(p-p)
20
50
-
kn
30
40
-
dB
-
485
-
mV(RMS)
-
-
1.5
dB
-
0.3
-
%
-
34.4
-
dB
-
45
-
Inherent SC A Rejection If= 67 kHz; 9.0 kHz beat note measured with 1.0 kHz modulation "off")
dB
-
75
-
Stereo Switch Level 19 kHz input level for lamp "on" 19 kHz input level for lamp "off"
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)
Current Drain (lamp "off")
-
-
5.0
-
mVIRMS)
20
-
-
±3.5
-
%
-
13
-
mAdc
·
7-19
·
s
n
FIGURE 2 - CIRCUIT SCHEMATIC
~
w
...a.
0
Input 2
Ampl Output 9 3
Modulator Loop
Input
Filter
r--.. 11 13'?'? 12
Osc RC Ntwk
14
10
1 k
-...J ~
1 k
0
1 k
595
4 Left Channel Output
5 Right Channel Output
9...b_,__b_..8,
Switch Filter
)-
5 k
Lamp Indicator
5 k
1 k
10 19 kHz Output
MC1310
TYPICAL CHARACTERISTICS
Unless otherwise noted: Vee; +12 Vdc, TA; +25°C; 560 mV(RMSJ (2.8 V[p-p)) standard multiplex
composite signal with Lor R channei'only modulated at 1.0 kHz and with 100 mV(RMS)
pilot level (10%), using circuit of Figure 1.
FIGURE 3 - CHANNEL SEPARATION versus
COMPOSITE INPUT LEVEL
FIGURE 4 - CHANNEL SEPARATION versus FREQUENCY
50~~~~~J~u-~~...,........,..-....--r-.........
1 f = kHz
g v30
'Jo DETlfNED
2 <I:
5 201----1--..+---+---l---+--+--+---'I---+----!
10L---J'----L~--1...~~~...l-~_,__~'----'~--'-~-'~
0.5
1.0
1.5
2.0
2.5
3.0
COMPOSITE INPUT LEVEL (V[p·p])
Vin= 2.8_v(p·p)
~40 ); ~
\
6 ~
l
~m
1
~
[
1-+--++++---+--+--+-<l-+-H+t-~( l ,?;:
'-'-++++----+--+-~>-+-++++- 13
5 0. µ F
12 --+-+-1
FIL TER NETWORK
0L.J....l..LJ.j___ _J_..J......LJW-Ll..LL-~-L--L-.L.J.-LIJ..1..'----'---'-"'--'
50 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k
FREQUENCY (Hz)
FIGURE 5 - CHANNEL SEPARATION versus VCO FREE-RUNNING FREQUENCY
t = 1 kHz
18.2
18.6
19
19.4
19.8
VCO FRE(RUNNING FREQUENCY (kHz)
FIGURE 7 ~THO versus COMPOSITE INPUT LEVEL* 0.5
0.4 1----l----l----+---+---+--+---1--1---+-~ t = 1 kHz
0.3 1--~--1---1--~--+--+---l--1---+---I
~
c
i=
0.21--~--1---1--~--+--+---l1--~""'__.....~-+J..-~
_,P
1.0
1.5
2.0
2.5
3.0
COMPOSITE INPUT LEVEL (V [p·p])
*Measured with Low Pass Filter (BW; 15 kHz).
FIGURE 6 - CHANNEL SEPARATION versus SUPPLY VOLTAGE
60
I= 11Hz
~ 50
Vin= 2.8 V(p·p) + - -
B l---+---+---1----+--+----1---1--__,
j:::
~
40
~
...J 30
UJ
2 2 <I:
5 20
v:
10
8.0
10
12
14
SUPPLY VOLTAGE (Vdc)
·FIGURE 8 - DISTORTION versus FREQUENCY*
2.8 H
2.4 ff-
2.0 fif-
6 1.s f~ f-
~ 1.2 Ci
0.8
TI TTl!lll l
t-
0.25µF
=~~
I
]_
I
+-~I~
1 k 0.5 µF ~I~
I
~
FILTER NETWORK
i
-/---
vj =L~ ~(!fr/lJ/
... 0.4
I- 1-- - -1- ,...
:rw
~J Vin=11V(p-P/
0
50 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50k
FREQUENCY (Hz)
II
7-21
MC1310
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 9 - DISTORTION versus FREQUENCY*
2.8
2.4 H 1;--1
2.0 h
~ H
~ 1.6 ci=c . ~ 1.2 Ci
0.8
0.4 ....
0 50
Ji[
t-- I I I 111111
'
100 0.25µF
~p~f-:i>N 12
t-- FILTER NETWORK
II
Ll
~:i_~
'J
l
v?f 1t Vin~ 2.8
-.,..,.'I
1
i·~.
,_ f'H
(.V
-ffivin = 1.5 V(p-p)-1~
~
Jilli l
100 200 500 I.Ok 2.0k 5.0k !Ok 20k 50k
FREQUENCY (Hz)
FIGURE 10 - VCO FREE-RUNNtNG FREQUENCY versus TEMPERATURE
;:; 19.4
~ u>ffi 19.2
::J Cl LU
~ c:l 19
z z
z :::> ~ 18.8
~
0
§! 18.6
'b..
~ s
VCO NONCOMPENSATED
c:s;J
~
..............!'."..
~
-55 -35 -15 +5.0 +25 +45 +65 +85 +105 TEMPERATURE (DC)
FIGURE 11 - CURRENT DRAIN versus SUPPLY VOLTAGE 14.5
114
....
~ 13.5
cc u::J
z ~ 13 c >
~~ 12.5
12
LAMP"OFF"
rz
~
k/'
CZ]
~ ~
8.0
10
12
14
SUPPLY VOLTAGE (Vdc)
*Measured with Low Pass Filter (BW = 15 kHz)
FIGURE 12 - PILOT LEVEL REQUIRED FOR VCO LOCKUP versus VCO FREE-RUNNING FREQUENCY
V)
~
> 60
.§ .....
LU
ga.....'....;. 40
;;::
20
Rp R4+R5
18
18.5
19
19.5
20
VCO FREE-RUNNING FREQUENCY (kHz)
FIGURE 13 - SYSTEM BLOCK DIAGRAM
Input
19 kHz Quadrature
19 kHz
Outputs .
= External to Decoder
7-22
MC1310
CIRCUIT OPERATION
Figure 13, on the previous p11ge, shows the system block diagram. The upper line, comprising the 38-kHz regeneration loop operates as follows: the internal oscillator running at 76-kHz and feeding through two divider stages returns a 19-kHz signal to the input modulator. There the returned signal is multiplied with the incoming sigrial so that when a 19-kHz pilot tone is received a de component is produced. The de component is extracted by the low pass filter and used to control the frequency of the internal oscillator which con· sequently becomes phase-locked to the pilot tone. With the oscillator phase-locked to tre pilot the 38-kHz out· put from the first divider is in the correct phase for decoding a stereo signal. The decoder is essentially another modulator in which the incoming signal is multiplied by
the regenerated 38-kHz signal. The regenerated 38-kHz signal is fed to the stereo decoder via an internal switch, which closes when a sufficiently large 19 kHz pilot tone is received.
The 19-kHz signal returned to the 38-kHz regeneration loop modulator is in quadrature with the 19-kHz pilot tone when the loop is ·locked. With the third divider state appropriately connected, a 19-kHz signal in phase with the pilot tone is generated. This is multiplied with the incoming signal in the stereo switch modulator yielding a de component proportional to the pilot tone amplitude. This component after filtering is applied to the trigger circuit which activates both the stereo switc.h and an indicator lamp.
APPLICATIONS INFORMATION
(Component numbers refer to Figure 1)
External Component Functions and Values
Cl
Input coupling capacitor; 2.0 µF is
recommended but a lower value is
permissible if reduced separation at low
frequencies is acceptable.
R1, R2, C2, C3 See Maximumload Resistance section.
C4
Filter capacitor for stere.o switch level
detector; time constant is C4 x 53
kilohms ±30%, maximum de voltage
appearing across C4 is 0.25 V (pin 8
positive) at 100 mV(RMS) pilot level.
The signal voltage across C4 is neg-
ligible.
C5
See Phase Compensation section.
R3, C6, CS
Phase-locked loop filter components;
the following network is recommended:
·2T:J'3 R3
C6
R4, R5, C7
cs
0.25 µ.F
When less performance is required a
simpler network consisting of R3 = 100
ohms and C6 = 0.25 µF may be used
(omit CS). See Figure 9.
Oscillator timing mended values: C7 = 470 pF R4=16kH R5= 5 kU
network;
1% 1% Preset
recom·
Stereo Lamp 19-kHz Output
These values give ±3.5% typical capture range. Capture range may be increased by reducing C7 and increasing R4, R5 proportionally but at the cost of in· creasing beat·note distortion .(due to oscillator-phase jitter) at high-signal levels. See Figure 12.
Nominal rating up to 75 mA at 12 V; the circuit includes surge limiting which restricts cold-lamp current to approximately 250 mA.
A buffer output providing a 3.0-Vpk square wave at 19 kHz is available at pin 10. A frequency counter may be connected to this point to measure the oscillator free-running frequency for alignment. See Alignment section.
External Monaural/Stereo Switching
If it is desired to maintain the circuit in monaural mode, the following procedure must be followed. First, the stereo switch must be disabled to prevent false lamp triggering. This can be accomplished by connecting pin 8 negative or pin 9 positive by 0.3 volt. Pin 8 may be grounded directly if desired. Note that the voltage across C4 increases to approximately 2 volts with pin 9 positive when pin 8 is grounded.
Second, the 76-kHz oscillator must be killed to prevent· interference when on AM .. This can be ac· complished by connecting pin 14 to ground via a current limiting resistor (3.3 kilohms is recommended).
Phase Compensation/IF Roll-off Compensation ·
Phase-shifts in the circuit cause the regenerated 38· kHz sub-carrier to lead the original 38 kHz by approximately 2°. The coupling capacitor CS generates an
·
7-23
MC1310
·
· APPLICATIONS INFORMATION (continued)
additional lead of 3.5° (for C5 = 0.05J,LF) giving a total lead of 5. 5o.
The circuit is so designed that phase lag may be generated by adding a capacitor from pin 3 to ground. The source resistance at this point is 500 ohms. A capacitance of 820 pF compensates the 5.5° phase lead: increase above this value causes the regenerated subcarrier to lag the original. Howe.ver, a 5.5o phase error if left noncompensated - wi.11 not degrade separation appreciably.
Note that these phase shifts occur within the phaselocked loop and affect only the regenerated 38-kHz sub-carrier: the circuit causes no significant phase or amplitude variation in the actual stereo signal prior to decoding.
Most IF amplifiers have a frequency response that limits separation to a value significantly lower than the capability of the MC1310. For example, if the response produces a 1-dB rol.1-off at 38 kHz, the separation will be limited to about 32 dB. This error can be compensated by using an RC lead network as shown in Figure 14. The exact values will be determined by the IF amplifier design. However, the values shown in Figure 14 are suitable for use with the MC1357 and MC1375 IF amplifiers.
FIGURE 14- IF COMPENSATION NETWORK
From FM Demodulator ·
0.005 µF
FIGURE 15 - PILOT SENSITIVITY versus POTENTIOMETER ROTArlON
70
60
~ 50
~ 40
___,
UJ
~ 30
I-
.___,__________,_ -"""'-'-
~ 20 c:
OL-~.1.-~.1.-~.1.-~.1.-~..._~..._~..._~~~-'-~
FULL CW
CENTER
FULL CCW
R (POTENTIOMETER ROTATION)
Alignment Procedure
The optimum alignment procedure, with no input signal applied, is to adjust R5 until 19.00 kHz is read at pin 10 on the frequency counter.
Another procedure requiring no equipment, other than the receiver itself, will result in separation of within a_ few dB of optimum. This latter method is merely to tune the receiver to a stereo bro,adcast and adjust R5 until the pilot lamp turns "on". To find the center of the_ lock·in range, rotate the potentiometer back and forth until the center of the lamp "on" range is found. This completes the alignment.
Alternate Timing Network
The alternate timing network shown, incorporating a trimmer capacitor rather than a potentiometer, may be used if desired. Again, to provide correct temperature compensation, the temperature coefficient of the timing network must be approximately -300 PPM.
Voltage Control Oscillator Compensation
Figure 10 illustrates noncompensated Oscillator Drift versus temperature. The recommended Tc of the R4, R5, C7 combination is -300 PPM. This will hold the oscillator drift to approximately ±1% over a temperature range of -40 to +85°C. Allowing ±2% for aging of the timing comp~nents acceptable performance is still ob· tained.
Lamp Sensitivity
It may be desirable in some cases, to change the lamp sensitivity due ~to differing signal levels produced by various FM detectors. The lamp sensitivity can be changed by making use of the external circuit shown. Typical sensitivities versus potentiometer rotation are also shown in Figure 15.
FIGURE.16 Pin 14
Maximum Load Resistance The curve shown gives absolute maximum load r:e-
sistance values versus supply voltage used for full-signal handling capability. With desired_ load resistance choose C2, C3 capacitors to provide standard 75 µs de-emphasis.
7-24
MC1310
APPLICATIONS INFORMATION (continued)
FIGURE 17 - MAXIMUM LOAD RESISTANCE versus SUPPLY VOLT AGE
11
;g_ 9.0
uLU 2
<( I-
~ 7.0
·c::i
~ 5.0
::;: ' ::::>;:
~ 3.0
::;:
L
L
L_
7 C2::
C-2:::
1.0 8.0
Audio Output The ratio G
10
12
14
SUPPLY VOLTAGE (Vdc)
p-p audio output (one-channel) - - - - - - - - - - - - - for
p-p input signal
different types of input is as follows: INPUT
Single-Channel Composite Signal
0.45
Monaural Signal 0.5
These figures are for 3.9-kilohm load resistors and for low-audio frequencies where de-emphasis roll-off is insignificant.
Capiure Range versus Timing Components The capture range can be changed to some extent by
use of different timing components. Typical values are shown in Figure 12.
Composite Signal
Due to confusion concerning the measurement of the st~reo composite signal, a curve showing both RMS and p-p composite levels versus pilot level follows, see Figure 18.
FIGURE 18 - COMPOSITE LEVEL versus PILOT (Lor R Modulation Only)
f"i'
w
1000
500
1~: ~~a~mfr~±R~MS±1 am§zz.r~lr~l--r7-;~~nm
10
5.0
~
7 1-----+-1---+---1--1++-f-+ 8% Pl LOT f-t....'~
~
- w > ~ ~~ ~ 200
1RM0S%PILOTt-.-I~,~-~_";r,J;
t"---- (p-p)
8%PILOT
~ -
7 __,
~~I~Inl~~~g~g~~~E~E1111.0 ~~ _<g(
2 t:J
v;
100 ,___,____._.._._.....,_,.....,.J.t'_.,".L~JIC.'.L~_,_+-< (p-p)
50 1l---.-,-1------1j---+1--1J--~+i.+.+i'.:lif...lIZ<<l---z~7 ~A~-----++---+--+1-1+0-%f-PTILMO-Tr--j-+-f-+++f-H0.5
~ ~ -
UJ
i¥- 8 I-
I'
]/)/ J;Y' ~
::;:
20 l--+v~~vAv-.vf71J;g,if-l+--+-+--+-H-++++-+-+-t-+H+H o.2
8
10 L........cL...tf..,V---L.v·L...Y"J...J....L.1..J.J...._---1---1--1..........._.1-L.U-----1--'-..J.....Wu..i..u 0.1
1.0 2.0
5i1J 10 20
50 100 200 500 1000
PILOT LEVEL (mV[RMS])
·
7-25
ORDERING INFORMATION
Device
MC1312P MC1314P MC1315P
Temperature Range
O"C to +70"C O"C to +70°C 0°C to +70"C
Package
Plastic DIP Plastic DIP Plastic DIP
MC1312P MC1314P MC1315P
CBS SO* LOGIC DECODER SYSTEM
. . . a matrix system designed to decode so encoded program
material into four separate channels. This system conforms to specifications for decoding quadraphonic records produced by' the largest record companies in the world.
MC1312P ·DECODER
... consists of two high input impedance preamplifiers which are fed
with left total, LT· and right total, RT. signals. The preamplifiers
each feed. two all-phase networks which generate two LT signals
in quadrature and two RT signals in quadrature. The four signals are
matrixed to 'yield l.eft front. left back, right front, and right back
signals (LF', La'. RF'· Rs'l.
·
MC1314P ·VOLTAGE CONTROLLED ATTENUATOR
... a gain control and balance adjustment unit for use with any quadraphonic system. It has four channels whose gain can be varied by an external de voltage. In addition, the relative gain between channels can be set by 3 external de voltages. Thus with four variable resistors the master volume LFIRF, l.BIRB and F/B bal· ance may be controlled;
MC1315P · LOGIC CIRCUIT
. . . provides the basic logic function to (lnhance the front to back separation in the CBS SQ four channel decoding system. This device is designed to interface with the MC1312 decoder and MC1314. The MC1315 provides de logic enhancement control signals which extends the performance of the basic SO system to the levels desired ·for top-of-the-line systems.
FOUR CHANNEL SO LOGIC DECODER SYSTEM
SILl~ON MONOLITHIC INTEGRATED CIRCUIT
L Phase Shift
Network
LF' Output 2
PSUFFIX PLASTIC PACKAGE
CASE 646
RF Output
PSUFFIX PLASTIC PACKAGE
CASE 648
FIGURE 1 - SQ LOGIC DECODER SYSTEM
<D Master Volume.
@ F/B Balance @ LF/RF Balance @ La/Rs Balance
G) @ @ @
Volume
........~~~~~~--.~L~e.__~~~--i~
MC1312P
LF.
Basic Matrix
Re
Decoder
MC1314P Four Channel
2 Channel Input
Front Control
Back Control
MC1315P SQ Logic
Circuit
Quadraphonic Output
Logic Control
Front to Back Separation 15·20dB
RF' Input 1
Logic Control Control Front GF
Control Back GB
Filter Back Filter Front
·Trademark of CBS Inc.
This component is so.Id· without patent indemnity and any infringe-
ment resulting from use o.r resale thereof snall..be the sole responsibility of purchaser and shall not be the responsibility of manufacturer or distributor even though such use is in. accordance with manufacturer's recomm11ndations.
7-26
MC1312P, MC1314P, MC1315P MC1312P ·CBS SQ DECODER UNIT
MAXIMUM RATINGS <TA= +25°c unless otherwise noted.I
Rating Power Supply Voltage Power Dissipation @TA = 25°C
Derate above +25°c Operc1ting Temperature Range Storage Temperature Range
Value 25 750 6.7
0 to +70 -65 to +150
Unit Vdc mW mW/°C oc oc
ELECTRICAL CHARACTERISTICS IVee= +20 Vdc, Vin = 0.5 VIRMSl@ 1 kHz, TA= +25°c unless otherwise noted.)
Characteristic
Min
Typ
Max
Supply Current Drain Input Impedance Output Impedance Channel Balance (LF/Rfl
11
16
21
1.8
3.0
-
-
5.0
-
-1.0
0
+1.0
Voltage Gain LFILT or RFIRT
-1.0
0
+1.0
Relative Voltage Gain LB'ILF'· RB'ILF'· LB'IRF'·RB'IRF'
-2.0
-3.0
-4.0
LF' measurements made with LT input, RF· measurements made with
R_iinput.
I
Maximum Input Voltage for 1%THD at Output R_ior LI_
2.0
-
-
Total Harmonic Distortion R_ior LI_
-
0.1
-
Signal to Noise Ratio (Short-Circuit Input Vo= 0.5 V(RMS)
-
80
-
with Output Noise Referenced to Output
Voltage, Vol (BW = 20 Hz to 20 kHz)
Unit mA
Mn
kn dB dB dB
V(RMS) % dB
Fl GURE 2 - MC1312P TEST Cl RCUIT Vee
1.0µF
Ls' Output
LT
Input ,___9-'\N\I"'-~
· R1 is used for Input Impedance measurement. S1 Is normnlly closed.
FIGURE 3- EIA STANDARD BLEND
.Ill
~Vee
' " " ! ! " · " 27 k~
~ 27 k
L ,...._ F -
.A ......
-.. RF"
7.5 k
39 k
0
Pin 2
0
Pin 11
Pin 3
Pin 14
Note: In applications where tone arm pick-up is connected directly to the MC1312P inputs, a 300 k resistor should be inser.ted in series with RT (Pin 8), end LT (Pin 6) inputs.
7-27
MC1312P, MC1314P, MC1315P MC1312P ·CBS SQ DECODER UNIT
APPLICATiONS INFORMATION
FIGURE 4 - DECODING PROCESS DIAGRAM
1------------~ LF' = LF + 0.707 R9 -j0.707 Lg= LT
FLF 0.707 R9
0.707 Lg
1/1- -90°
~B: .j ,___ __,t-----oCJ =Lg+ j0.707 Lf -0.707 RF
0.707 Lf
0.707 Rf._LL9
----o ·i R9·= R9+ 0.707 LF -j0.707 RF
+0.707
0.707 Lf 0.707 Rf
·
LT= LF + 0.707 R9 -j 0.707 Lg RT= Rf -0.707 Lg+ j 0.707 R9
LT and RT are composite signals from SQ encoded records or SQ broadcast.
The decoding process is shown schematically in Figure 4. The MC1312P circuits that perform this function consists of two preamplifiers which are fed with left total, LT, and right total, RT, signals. The preamplifiers each feed two all-pass* networks that are used to generate two LT signals in quadrature and two RT signals in quadrature. The four signals are matrixed to yield left-front, left-back, right-front, and right-back signals-ILF'. Ls'. RF'; Rs').
The all-pass networks are of the Wein bridge form with the resistive arms realized in the integrated circuit and the RC arms formed by external components. The values shown in Figure 1
are for a 100-Hz to 10-kHz bandwidth and a phase ripple of ±8.5° on a 90° phase difference.
It is generally desirable to enhance center-front to center-back separation. This is accomplished by connecting a resistor between pins 2 and 11 (front outputs) and 3 resistor between pins 3 and
14 (back outputs). For a 10% front channel blending t and a 40% back channel blendingt ,·47 kilohms between pins 2 and 11 and
7.5 kilohms between pins 3 and 14 is required and results in the fol lowing equations: tRF" = 0.912 LT+ 0.088 RT
LF" = 0.912 RT+ 0.088 LT
Rs" ='4 [0.714 (JRT - LT)+ 0.286 (RT -JLT))
Ls"='%- [0.714 (JLT- RT)+ 0.286 (LT- JRT))
To meet the EIA matrix standards with 10/40 blend use the circuit of Figure 5, which results in the following equations:
RF"= 0.772 (0.995 RT+ 0.0972 LT)
"4 LF" = 0.772 (0.995 LT+ 0.0972 RT)
.
Rs"= (0.76g) [0.928 (JRT- LT)+ 0.372 (RT- JLTI]
'Ls"=~ J~T)] (0.769) [0.928 (JLT- RT)+ 0.372 (LT -
*An all-pass network produces phase shift without amplitude variations.
7-28
MC1312P, MC1314P, MC1315P MC1314P · GAIN CONTROL AND BALANCE ADJUSTMENT UNIT
MAXIMUM RATINGS (TA= +25°C unless otherwise noted.)
Rating Power Supply Voltage Input Voltage Swing Volume Control Range Balance Control Voltage Output Current Sinking (de) Output Current Sourcing (de) Power Dissipation @TA = +25°C
Derate above +25°C Operating Temperature Range Storage Temperature Range
Value 28
±6.0 -0.3 to +8.0 -4.0 tq +10.
0 1.0 750 6.7 0 to +70 ~5 to +150
Unit Vdc
Vpp
v
v
mA
mA mW mW/°C oc
oc
FIGURE 5 - MC1314P TEST CIRCUIT
, Front Gain Control 0.6 V V4'
LF/RF Balance
1.5k Fis Balance Volume
LF' Input ~...~---o-µ""'F+----+--.
---+-+----+-t-----o RF Output
RF' Input~ ; 0 µF 1
S
LF Output
MC1314P
~ RB' Input
..;.-.o-µ""F-+--+-...-....
Ls' lnpute>--71-;-.o-µ_F_-+-t----+-
Ls Output
~---------oRs Output
Vee Ls/Rs
Balance
1.5 k
Back Gain Control 0.6 V V12'
ELECTRICAL CHARACTERISTICS (Vee= +20 V, V4' = V12' = 0.60 Vdc, TA= +25°C, V1N = 1.0 V(rms)@ 1.0 kHz, balance control
'
pins open, unless otherwise noted.)
Characteristic
Min
Typ
Max
Unit
Maximum Gain (Vs= 6 V)
-1.0
1.0
+3.0
dB
Minimum Gain !Vs= 0 V)
-60
-
-
dB
Gain Spread@ Gain = Max @Gain= -20 dB
-
1.0
3.0
dB
-
-
3.0
dB
@ Gain ;= -40 dB
-
-
3.0
dB
Signal Handling (THO < 1%)
1.3
-
-
Vrms
Signal .Handling (V4' = V12' = 0.42 Vdc balance controls set for max
0.4
-
-
Vrms
gain in channel . undertest) THO< 1%)
Total Harmonic Distortion (Vin= 0.4 Vrms, max gain)
-
0.2
-
%
Signal/Noise Ratio (20 Hz· 15 kHz Bandwidth) Note 1.
-
so
-
dB
V1N = 0.4 Vrms (ref)
Channel Separation Note 2
-
60
-
dB
Balance Control Range - 20 dB gain Vs= 6.0 V (""Max Gain)
-
20
-
dB
Vs = 3.0 v ("" 6.0 dB Gain)
1S
26
-
Vs= 1.0V (... 20dB Gain)
-
32
-
Gain Enhancement (V4' = V12' = 0.42 Vdc compared to
2.0
-
4.0
dB
V4' =Vs'.= 0.60 Vdc)
Gain Reduction (V4' = V1f = 1.86 Vdc compared to
V4' = V12' = .0.60, Vdc)
Gain Reduction (V4' = V12' = 3.12 Vdc compared to V4' = V12' = 0.60 Vdc, Vee= 25 Vdc)
Supply Current (max gain) ( V1 N = 0 V)
.!min gain) (VIN > 0 V)
Input Impedance
Output Impedance
Control Current I4 or I12
7.0
-
11
dB
-
14
-
dB
-
19
25
mA
-
9.0
15
mA
-
13
-
kn
-
2.0
-
kn
-
-20
-
µA
Balance Control Reference Voltage (relative to Vee) LFIRF & Ls/Rs Controls !V1qlVcc & V1sqlVccl FIB Control (V7q!Vcc>
Intermodulation Distortion (f1 = 7 kHz, f2 = 60 Hz)
-
15
-
%
-
13
-
%
-
0.6
-
%
Note 1: All Inputs ac shorted Note 2: Input to 3-Channels driven, 4th Cha~ne! open.
7-29
·
f
MC1312P, MC1314P, MC131~ MC1314P ·TYPICAL CHARACTERISTICS
·
FIGURE 6 - ATTENUATION versus CONTROL VOLTAGE +10
FIGURE 7 - IDLE CURRENT versus SUPPLY VOLTAGE
50..---...----,.~'-r--r---.---r--...---r---ir---i
-10
v ii -20
:5!.
L ~ -30
z ~ -40
tz::>
~ -50 c( -60
-70
-80
_.j..---"~
40
1
.... 30 ffi .:aa:.>.::,
w 20
e...J
10
Balance Control = 3.0 Vdc
Pins 4 and 12 = 0.42 V r - l. Jain= ~ax
-900 l.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 CONTROL VOL TAGE@PIN 8 (VOL TS)
08.0
12
16
20
24
28
SUPPLY VOLTAGE (VOL TS)
DISTORTION CHARACTERISTICS
FIGURE 8 - TOTAL HARMONIC DISTORTION versus ATTENUATION
1. 0
v
~
~ 0.8 c
~
c !;; 0.6
.C..i,
2 ~ 0.4 a: ~
...J
~ 0. 2
.c...
7
v I
Vee= 20Vdc
~
-- ~
ejn = 1.0 V (rms)
v~ L
ein = 0.4 V (rms)
t= 1.0kHzV4andV12= 0.6V
Note 3 -t----1
0
5.0 10 15 20 25 30 35 40 45 50
ATTENUATION (dB)
FIGURE 9- INTERMODULATION DISTORTION versus INPUT VOLTAGE
4.o..----....--..--,-~T-..---l-...--~~-~~~
t--t- Vol~~:~~~6.0 V
z
Frequency 1.0 kHz
~ 3.0t--t- :m~~~~:v =0.6 v
~
i5
~ 2.01----'f----+---+--+---+---4--4---+---f----I
~
g::>
v A
~ 1.0
....
:!:
v ~
.-1
0o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
INPUT VOLTAGE (VOLTS RMS)
FIGURE 10 - TOTAL HARMONIC DISTORTION
versus INPUT VOLTAGE
2.0
1.8
~ c z
1.6
j: 1.4
CZ:
~ 1.2
111
V4and V12 = 0.6 V
Cl
zc.> 1.0 i 0.8 ~ 0.6 ~ 0.4
0.2
~
Vo1,=6.0V
t
z 1
I
Ii'
i..-1"'
00
0.1
1,0
10
INPUT VOLTAGE (VOLTS RMS)
Note 3: Major component of THO beyond 20 dB attenuation Is noise.
1.0 ~ z 0.8
~
gw· 0,6 -Cl
u z i 0.4 ~
..I
::~ 0.2
FIGURE 11 - LOGIC VOLTAGE EFFECTS ON TOTAL HARMONIC DISTORTION
WM ~ LOGIC= 0.4 V _.,
~ rJJEjV_I/.,/,/..,,Wt///l/hIN'ff'i;'!lZm~ ~~
Vjfl//1
~
LOGIC·IJ;6V
0.2
0.4
0.6
0.8
1.0
IN'PUTVOLTAGE (VOLTS RMS)
7-30
MC1312P, MC1314P, MC1315P MC1315P ·DC LOGIC ENHANCEMENT CONTROL UNIT
MAXIMUM RATINGS ITA"' +25°c unless otherwise noted.)
Supply Voltage (Note 1l Input Signal Voltage Bias Terminal Current Output Current
Rating
Value 25 ±4.0 ±2.0 ±2.0
Power Dinipation @TA "' 25°c Derate above +25°C
Operating Tam~rature Range Storage Temperature Range
750 6.7 Oto +70 ~5 to +150
Unit
v
Vpk
mA
mA mW
mwt0c
oc
oc
ELECTRICAL CHARACTERISTICS ITA= +25°c, Vee= 20 Vdc, Logic Control= 50%, V1N = 0.5 Vrms, f =2.0 kHz, unless
otherwise noted Note 1)
Characteristic
Min
Typ
Max
Unit
Supply Current (Pin 12)@ V1N;. 0 @V1N = 1.4 Vrms
Input Resistance@ Pin 1, 15, 16 Output Resistance @Pin 3, 5 Paraphase Filter Re·istence@ Pin 9, 10 Front-Bec;k Logic Discharge Resistance@ Pin 7, 8 Sias Voltage ( 10 k to ground) @Pin 13 L.ogic Control Input Current@ Pin 2
IV2= V13or V2· 0) Quiescent Input Voltage (V1N = 0)@ Pin 1, 15, 16 Quiescent Output Voltage(V1N = 0)
= Quiescent Output Offset (V1N 0)
....,.
7.0
13
mA
-
15
-
mA
-
20
-
kn
-
1.5
-
kn
-
4.0
-
k.n
-
5.0
-
k.n
-
1.4
-
Vdc
-
±0.5
-
mA
-
7.0
-
Vdc
0.48
-
0.72
Vdc
-
±0.02
±0:1
Vdc
Relative Output Change Front outp1,1t with Ls or Re inputs or back output with LF or RF inputs
2.1
2.8
5.0
VIV
7.5
9.0
14
dB
Back output with Cf input
1.9
2.5
3.5
VIV
5.5
8,0
11
dB
Front output with Lf, Cf or Rf inputs or back output with Ls. or Rs input
0.8
0.67
0.56
VIV
2.2
3.5
5.0
dB
AGC Leveling· VtN = 1.4 Vrms to V1N = 50 mVrms (Note 2) Figure 8 (AGC1, AGC2)
-
1.0
3.0
dB
Quiescent Output Voltage at Max Logic (S1 in Position 1, Figure 12)
0.45
-
0.83
Vdc
(V1N'" 0, V2 = V13)
Max Logic Relative Output Change (V2'" V13l Front output with Le or Re inputs or back outputs with Lf, CF or RF inputs
Front output with LF, CF or RF inputs or back outputs with Ls or Re inputs
-
5.0
-
VIV
-
14
-
dB
-
0.67
-
VIV
-
3.5
-
dB
Note 1: When testing with well regulated supplies, current should be limited to 25 mA. Note 2: For example, this is the decrease in the back control voltage, V5 with a right front input signal as this signal is varied
from 1.4 Vrms to 50 mVrms.
II
7-31
MC1312P, MC1314P, MC1315P MC1315P ·DC LOGIC ENHANCEMENT CONTROL UNIT
FIGURE 12 - MC1315P TEST Cl RCUIT
1.0 M
1.0 M
50
5.0 k· RB LF
0.02?0.o~ ':' µFJ:µ(f,,
Sl shown in normal position unless otherwise specified.
·Resistors matched to within 1%.
·
TABLE 1 -·DEFINITION OF INPUT SIGNALS: (f = 2.0 kHz)
v,
Name
RF
LF
LB
RB
Signal Description
0.5 Vrmsto0 0.35 V rms!:=fil'f.
(1)
(1) 0.35 V rms 10° 0.5 V rms /0°
0.35 V rms /180° (1)
0.35 V rms /-900
.0.35 V rmsf.filf!..
0.5 V rms ID°
0.35 Vrms.~
Apply To Pin
1 16 15
1 16 15
1 16 15
1 16 15
V1 Name
CF
AGC1 AGC2
Signal Descr.iption 0.35 V rms!Jt:.. 0.35 V rms /-45°
0.35 V rms /Jt:..
rn
1.0 V rms /-900 1.4 Vrms~
( 1)
35 ~V rms /-90°
50mV rms/0°
( 1) All unµsed inputs shall be ac grounded. (2) This signal not ~sed at present.
Apply To Pin
1 16 15
15 16
1 15 16
1
7-32
..
MC1312P, MC1314P, MC1315P MC1315P ·DC LOGIC ENHANCEMENT CONTROL UNIT
WHY LOGIC?
Enhances front to back separation from 6 dB to 20 dB. Front-to-back separation of SQ material can be enhanced by the MC1315 logic circuit which detects the presence of dominant front or back signals and adjusts the front-back gain relationship of the MC1314P to enhance the relative gain of the dominant channels.
LOGIC DECODER
Encoded 2 Channel, Input
MC1312P L'F
2/4 Matrix Decoder
L's R's, R'F
Enhanced 4 Channel Output
Front
Front and back control voltages (from the MC1315P) are connected to the MC1314P. Although the relative gains of the front and .back channels are altered with these control signals, they vary in a complementary manner to maintain constant power output from the MC1314P.
·
CHANNEL SEPARATION
Basic Matrix
~-00-~
t t t
3
0
3
~-!_J
Basic Matrix 10-40 Blend
~-20-~
t t t
3
5
3
~-!_J
Num9ers Indicate Channel Separat~on ii'! dB
10-10 Blend F-8 and W-M Logic
~-20-~
t t t
20
20
20
J~-20J;._4_J
7-33
·
FIGURE 13-CBS~Q LOGIC SYSTEM (L1a)
3:
~~+20V
0
5k
..a
910 +6V
Linear
~
w....
N
0 ~
i 0 . 1 !
Vol. 5k
).. 750
..-o
s:
@
3.9 k ~
SemiLog
FIB Bal.
LR/RF Ls/Rs
Bal.
Bal.
0....
560:
~ ,...--:
~·:~
.w...
!
a 0
* 0.00
> 4.7 k >
1r!":~t o----1·IL~5
4.7 k
*o.o-is
Ls' LF'
0,l'.J.
-=
76 543 2 1
~
2.2µ.F +_IL
"11\ +.JL
'"2.2#-lF
*
8
J J
T l
r Tl r
7 65 4 3 21
tJ'E--<> .J
LF Output.
Ok
--.E--<> RF Output
..~
n3...:.
.w...
.SD
)i
MC1312P
MC1314P
(/)
~
w"""1
.a::.
.3..
-n ()
::s
~
n...
.0..
.~.. 0c.
.tn..
..~..
::s ~
ln~~t
o--
-
-
1d_5 1"
* .~ 0.018 4.7 k:
8 9 10 11 12 13 14
J
s::::
0
r:
ci
4.7
k: ·
Rs' RF'
.: 3.9 k
!0.1
3.9 k. 0.018!
1500*
10k
1500*
>
10 k
2.2µF +.JL .JL 1\ + "l\ 2.2 µ.F
1500:::j::
1 l1 ~ 9 _10 11 12 13 14 15 16
l;
10k
r--t:J
- 1- - ~10~.8 + 2.2
k J10
'I' ·vv
1234 56 7
B
MC1315
_..._-_-I.{--o Rs Output
8 2k
f--o I.
l
Ls Output
·Note
Coupling capacitor value depends on loa~ of following circuit. Zout of MC1314 is 2 kSl (Typ), a nominal capacitance value of 1.0 µF is suggested.
Com Dnent Tolerances MC1 1.2P Phase Shih Networks -- ±5% R & C's Allot
Non Electrolytic ±10% Electrolytic -20%
+100%
16 15 14 13 12 11
10 9
J~ ~~ I'> 10 k
QI SI +
2.2
0.15
1.0J1.0
Dimension± Control -::-
L:d< --=.
50 ~:.
120
=0+20 v
s:
NOTES: (Unless otherwise specified) 1. 01,2,3,4,9 are MPS-A18
2. as Is 2N5461
FIGURE 14- CBS LOGIC SYSTEM WITH VARIABLE BLEND IL2a)
0.... .w...
3. 07,8,10 are MPS-ASS 4. All Diodes are 1N456 5. Vol. Semi-Log; F/8 Bal, LF/RF Bal;
R26 470k
N
..-o
@)
Le/Re Bal. are S k Linear Pots 6. All Capacitors Marked" are 5% Tolerance
7. Coupling Capacitor Value Depend on Load of Following Circuit (1.0 µF Nominal is Suggested).
n 8 .. Adjust 2SO Rheostat so that 09 is Conducting
+20V
C15
C16
C30 3.9 µF
s:
0.... .w...
for an Input of LT= O.S VRMS and
~
a
RT= o.oa VRMS @ 1 kHz. With LT= 0.5 VRMS
and RT = 0.06, 09 should be Cut-Off.
9. Power Supply; +20 Vdc@ 7S mA r-;-:-
10. All Resistor Values are in Ohms,
I L 'F
1/4 Watt, S%.
~
~
.l l C1
C3*
·0.018 µF"1' 0.1 µF -
.J:. -
-=
09
-=
. t
-=
s:
0....
w....
SE
:ti.
3.9 k
Cl)
R1
~
....,
w
(J1
n3 ·
0
.=~
n
C4
4.7 k
*3300pF
R3 pF
4.7 k R4
·
·
'\IV\,
1111 · 0+2o·v
0
~
Le'
a ~
~
R'F
n ;
;-
~
C10
R's
R-47
LB/ Re Bal Sk
R48 560
111 III1 I
C40 See Note 7
I l)~~FF~:~uu~ See
Note 7
C41
R7
39ki
T C13.* O.fµF i
13.9k
T 0.018µF· C14
I
MC1312P, MC1314P, MC1315P
TYPICAL SYSTEM PE!UORMANCE CHARACTERISTICS (MC1312P, MC1314P, MC1315P)
Power Supply Requirements: Nominal Signal Level: Maximum Input Voltage: Input Impedance: Output Impedance: Total Harmonic Distortion:
at 1 Hz Voltage Gain (at quiescent): 4 Channel Volume Control
4 Channel Balance Control:
60 mA (L 1a), 75 mA (L2a)@ 20 V
0.5 v
'1.9 v
2MQ 2kf2 0.2% at nominal input 1.0% at maximum input 1.0 Range - 70 dB Tracking - within 3 dB -35 dB at -20 dB gain
·
NOTES
MC1314P 1. If volume control is not used.connect Pin 8 to +6.0 V. 2; If balance controls are not used, open Pins 1, 7, and 15. 3. LFIRF and Ls/Rs balance controls can be ganged by connecting
Pins 1 and 15. 4. Signal handling capability is reduced at maximum logic (20 dB
front to back separation) unless Vee= 25 Von MC1314.
MC1315P 1. The logic control will provide enhancement of front to back
separation from 6 dB typical to 20 dB max (15 dB typical at the recommended operating level of 50% control) . 2. To defeat the logic use the circuit connections as shown on right.
MC1315 13
1.5 k. 5%:
1.5 k 5% ;.
To pins 4 and 12 MC1314
SYSTEM CHARACTERISTICS
FIGURE 15 - GAIN versus F/B BALANCI;
FIGURE 16 - GAIN versus Lf/Rf BALANCE CONTROL
+8.0 ..---.---,--..---.---,--..---.---,--..---.---,--....----.---,
+4.01---+---+-+---+---+-+---+---+-+---+---+~+---t---;
,! -4.ol---l---t-2--71"-IZ_IZ::t---+--+--+-rs:-+!S----""l-~-+--+---+---t---1
~ -8.0 l---+--_L-+.IL-l-~f--+--1---lf--+--+-.~...-+---+-+---+--;
V -12~ LFIRF=Ls/Rs=3.0V
I'\. '
-16 V
v~~: ~~~ -+1-+---+--+__,,__+.S.,.__1---+--i
LF =L s = 0.68 V.--+---+--+--+---+--'--+---+---1
J 1 -20 .___.___.__..___1,___.__..___,___.__,___,___.__..___.___.
0
1,0
2.0
3.0
4.0
5.0
6.0
7.0
F/S BALANCE CON)'ROL VOLTAGE (VOL TS)
·~
-4.o
-s.o
11--~-L+r-:-.-_1L~-L+----1--1~-~*--1----~t>-t+t----++---++----++----+----t1
' ~ -121---.i.-1IL~--1---+---1---1~>r--+--+--+---t-----1
-16 .L
\
Vee= 20 v. vs= 6.o v -+-1:+-+---+---+--+----1
F/S= 2.7 V
~
-20
Ls/Rs= CF= Cs= 0.63 v-+----'t-RF o,R RB
LFIRF BALANCE CONTROL VOLTAGE (VOLTS)
7-36
MC1312P, MC1314lp, MC1315P
Signal Definitions for Total System Test signals ~hall have the following relative phase and amplitude characteristics.
Source Location
LF CF RF Ls Rs Where LF is left front, Rs is right back, CF is center front, etc.
Input Signals
LT
RT
i
0
.71
.71
0
.71/-90° .71/180°
.71
.71/90°
1. System Tests: MC1312P, MC1314P, MC1315P
a) LF source - connect signal to LT input, ac ground RT input of MC1312P. b) RF·source - apply signal to RT. ac ground LT· c) Cf source - apply equal signals to LT and RT inputs.
NOTES:
Balance control inputs of MC1314 may be opened for co_nvenience or set for perfect balance with CF and Cs inputs; set logic control to 50%: Max signal should be limited to 1.6 Vrms LT or Rr MC1314P outputs give system performance, typically 15 dB front back separation for corners, 12 dB for center front, center back.
2. Logic Circuit Tests: MC1315P
al LF source - apply LF' = .!2Rs', RF'= O; de voltage at Pin 3 should decrease by 3 dB, at Pin 5 should increase by 9 dB. bl Rs source - apply RF'= .!2Rs', RF'= O; de voltage at Pin 3 should increase by 9 dB, at Pin 5 should decrease by 3 dB.
3. Voltage Controlled Amplifier Tests: MC1314P
al Volume control - with balance controls open or balanced, gain should be +0.5 dB at 6 Von P.in 8 and less than -60 dB_
atOV.
b) Balance _controls - with. balance controls at Pins 1 and 15 at 15% of supply and Pin 7 at 13% of supply, system is nom-
inally balanced. Taking Pin 1 to ground should increase LF gain by 3 dB and decrease RF gain by greater than 12 dB
at maximum volume and 30 d_B at lower volume levels.
'
·
-7-37
·
ORDERING INFORMATION
Device
MC1323P MC1323PW
Temperature Range
O"C to +75°C 0°c to +75°C
Package
.Plastic OIP Heat Spreader
Plastic DIP
TRIPLE DOUBLY BALANCED CHROMA DEMODULATOR WITH ADJUSTABLE OUTPUT MATRIX
... designed for use in solid-state color television receivers. May be used in any conventional color picture tube application.
For next generation single-gun color picture tube applications, the MC1323P/PW features three independent demodulators with each gain adjustable.with no change to de output levels.
The MC1323PW package is suited for higher power, higher ambient temperature applications.
· Low Differential Output DC Offset Voltage -
< 50Q mV (Max)
· Complete Freedom in Choice of Demodulation Axes · High Biue Output Voltage Swing -
10 V(p-p) (Typ) · Guaranteed Chroma Sensitivity -
450 mV(p-p) (Max) · Brightness Input Provided · Blanking Input Provided · Circuit Regulated - 16 to 22 V Operating Window · Power Dissipation @TA = 25°c -
Po= 2.2 W - MC1323PW = 1,25 W - MC1323P
MC1323P MC1323PW
TRIPLE DOUBLY BALANCED CHROMA DEMODULATOR WITH ADJUSTABLE OUTPUT MATRIX SILICON MONOLITHIC INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 648
FIGURE 1 - TYPICAL APPLICATION
820
Vee= 1s v
1
1.5 k
820
-v n n 63.5 Jls 1--J
.J L.J &3.:-
0.1 ,.,F ~
2
3
4
12
9
.
0.01 µF 0.01 µF
2.4 k
Blanking Input
Ref~ence · 0.01 µF
0 ·01 ~F 470
e_hroma' ,..,.. ' jR·Y Input _._j Subcarrier
i :"::r-: ":- @> 106°
7 µH 35 pF
16 _4 H
· ·
1
2
µ 3p
F1
8
8
pF-::-
7-38
Red Video Output
Green Video Output
Blue Video Output
Luminance Driver
MC1323PI MC 1323PW
l MAXIMUM RATINGS !TA - +25°C unless otherwise0 noted I
Rating
MC1323P MC1323PW
Power Supply Voltage
22
Blanking Signal Input Voltage
6.0
Minimum Load Resistance (Pins 6,7,10)
2.2
Brightness Input Range - Max
...:. Min Operating Ambient 'Temperature Range
10.7 4.5 0 to +75
Storage Temperature Range
Power Dissipation @ TA = 25°C Derate above +25°c
-65 to +150
l 1.25
2.2
10
17
Unit Vdc V(p1J) kH Vdc
oc oc
w
mW/'!J;,.
THERMAL CHARACTERIST1CS
Characteristic ·
Max
Unit
Thermal Resistance, Junction to Ambient MC1323PW
59
°C/W
ELECTRICAL CHARACTERISTICS (Vee= +18 Vdc ..RL = 2.i l<n, VREF = 1.0 V(p-p), TA= +25°C unless otherwise noted.I
I
Characteristic
I I l I I Pin No.
Min
Typ
Max
Unit
STATIC CHARACTERISTICS (Figure2) S1 $2 and S3 in Position 1)
Quiescent Input Current From Supply
13
-
37
-
mA
Quiescent Output Voltage
6,7,10
9.8
10.8
11.8
Vdc
Differential Output Voltage Differential Voltage
6-7,7-10,6-10
-
15,16
1.5
200
500
1.65
-
mVdc Vdc
Pin 15 Output Voltage
15
10.6
11.3
12
Vdc
DYNAMIC CHARACTERISTICS (Figure 2)
Chroma Input Voltage (Pin 6 Output = 5 V(p·p) S1 in Position 21
Detected Output Voltage (Pin 6 Output = 5 V(p-p) 51 in Position 2
Blanking Output Voltage 153 in Position 21 Maximum Output Voltage Swing
(S1 in Position 2)
Brightness Output Swing (S2 in Position 21
3
-
0.35
0.45
V(p-p)
7
4.6
5.0
5.4
V(p-p)
10
o.92
1.0
1.08
V(p-p)
6,VO
5.2
6.4
5.6
V(p-p)
6
-
10
-
V(p-p)
6,7,10
2.9
-
-
V(p-p)
FIGURE 2:... TEST CIRCUIT WITH REFERENCE INPUt SIGNAL (Quiescent Current, DC Output Voltage, Difference Voltage)
Vee= 18 Vdc
220
3 Ypp=rL____IL
10 k
1- I 1-12µ.· 63.5 µs-.j
Demodulator Loads
1 53
-(B-Y) i-,;6-o.-------4>-R-Y-0
10
G-Y
8-Y
Note: All switches in Position 1 unless otherwise noted.
AL= 2.2 k for
Electrical Characteristics
·
@ MOTOROLA Semlconducror Producrs Inc.
7-39
MC1323P, MC1323PW
CIRCUIT DESCRIPTION
The MC1323P is a doubly balanced chroma demodu-
the demodulator output (Pin 6). The ability to change
lator that offers several novel features. Three separate
gain, together with a complete choice of demodulation
independent demodulator sections are used to obtain the (R-Y), (8-Y) and (G-Y) outputs allowing complete freedom in the choice of demodulation axes and individual
axes, allows the designer to compensate for non-standard CRT phosphors, different color temperatures, and allows easy implementation of automatic hue or color level
demodulator conversion gain.
control circuits.
The (R-Y) demodulator is shown in Figure 10 (both
In order to provide temperature stability of the output
(8-Y) and (G-Y) are similar), and is a conventional doubly
de levels, a reference voltage for the load resistors (Pins
balanced circuit. The chroma input, which is common to
5, 8, and 11) is supplied at Pin 15 with a nominally zero
all three demodulators, is applied at Pin 3 to the balanced
TC. Since the demodulator output de levels are defined
pair 015, 016, whil(h are evenly dividing the 1 mA bias
by the voltage source to which the load resistors are re-
current from the current source 014. The upper switching
turned, another voltage source is provided at Pin 16 and
pairs 017, 018, 019 and 020 are driven with approxi-
· is approximately 1.5 volts lower than Pin 15. Returning
mately 1 Vpp of reference subcarrier applied at Pin 4. If
the load resistors to the wiper arms of potentiometers
the. subcarrier at Pin 4 has a relative angle of 109°, then
connected between Pins 15 and 16 will allow the output
the output from the switching pairs will be the desired
de level of each demodulator to be changed independently
(R·Y) signal. Similar!'{, for the (B-Y) demodulator, the
over a 1.5 V range. If the potentiometers have a com-
reference phase at Pin 9 is approximately 3°. To. avoid
paratively low resistance compared to the load resistors,
unnecessarily wide phase shift networks to provide the
negligible change in ac gain will occur with wiper arm ro-
256° reference phase for the (G-Y) de'modulator, the chroma input is phase reversed and the reference angle becomes 76° at Pin 12.
The demodulator is unique in the manner in which the demodula.ted signals are connected to the output pins. Instead of feeding load resistors returned to the supply voltage rail, the collectors of 017, 019 are coupled to the current mirror 021, 022, 023. At balance, with no chroma input signal, 017, 019 current (mirrored in 023) matches 018, 020 and the net curren~ at Pin 5 is zero. If a load resistor is connected from Pin 5 to some convenient voltage source, the base of 025 will be at that voltage regardless of the size of load resistor. Therefore, the conversion gain of the demodulator (defined by the size of the resistor' at Pin 5) can be easily changed, yet changes in
tation and the de shift can be used to help set up the picture tube grey. scale tracking. The voltage source at Pin 16 is obtained by providing a temperature compensated current in 05 emitter load. This current is "mirrored" in 08, producing the 1.5 V difference between the bases of011 and012.
The brightness input at Pin 14 allows the de output level of all three demodulators to be changed and is a convenient point for a brightness control or brightness range/brightness limiter function.
Output blanking during retrace is achieved by applying a +3 V .pulse at Pin 2 (013 base). The outputs become clamped to 02 emitter voltage preventing the demodulator upper pairs from becoming saturated during blanking and giving a. very well defined blanking pulse amplitude.
gain do not result in a change of the de voltage level at
TYPICAL DESIGN. CHARACTERISTICS (Vee= +18 Vdc, RL = 2.2 k.11, VREF = 1.0 V(p-p), TA= +25°C)
Characteristic Output Voltage Temperature Coefficient
(Reference Input Voltage= 1.0 V(p·p), TA "'° +25 to +75°C) Chroma Input Voltage Reference Input Voltage Brightness Input Voltage Differential Blanking Output Voltage (53 in Position 2)
Pin No.
Min
Typ
6,7,10
-
1.5
3
-
1.8
4,9,12.
-
3.2
14
-
9.2
6-7,7-10,6-10 -
200
Max -
-
-
-
Unit mv1°c
Vdc Vdc Vdc mV(p-p)
FIGURE 3 - POWER DISSIPATION CHARACTERISTICS
17
18
19
20
21
22
23
SUPPLY VOLTAGE (Vdc)
® - - - - - - - . . J MOTOROLA Semiconductor Products Inc.
7-40
MC1323P, MC1323PW
TYPICAL CHARACTERISTICS (TA= 25°C unless otherwise noted. Refer fo Figure 2 except where noted.)
FIGURE 4 - DEMODULATOR GAIN LINEARITY AND TOTAL HARMONIC D~STORTION CHARACTERISTICS
14 .....-v-~'=__,IB_V_d~c-.,--,.--..---.-----.,.....-.,--,.-.---.--..--~ 14
z
0
~
SUBCARRIER = 1 Vp·p DEMODULATOR LOAD= 10 kn, 51 pF
12
lOt---+--DE-iM~O-D-+U-LA-T40-R~G+A-IN-+--~~--il-"""r::.oln---t-+--+--t-~ 10
c 0
-i
~
±P-t---+------1>--+--< ~ 2~--... 8.0 l----t--+--+----+---17..'."..
rm -
8.0~
~
VL
V1"
~6.0
~
7J
<
6.0~
<
i--+--+--+-~~--+-1--+IL+-+-1--+--+--+---+--1
~
~
4 .0l---+---t~-,,....-t-+--+-~-E:.t+-i,........,t-1-:T~H~D---+-+--+--t-~
4.0~ ~
v ~2.01---+--~_L1Y'Jii'"--+--+-+--+-l---+----t--+--+~+--+--i 2.0~
o~
o
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
CHROMA INPUT (mVp-p)
+3.0
+2.0
_+1.0
~ 0 ~ -1.0
s-2.0 ~ -3.0 ~ -4.0
i3 -5.0
~ -6.0
~j<::
-7.0 -8.0
-9.0
-10
FIGURE 5 - CHROMA BANDWIDTH #l+--+---i-+--+---t
100
200
300
400
500
600
CHROMA MODULATION FREQUENCY (kHz)
FIGURE 6 - DETECTED OUTPUT VOLTAGE 7.0
~6.0
~
rr-
Vee= 18 Vdc RL=2.2kn Chroma Input Voltage=
360
mVp·p
~ 5.0
~
~ 4.0 ~
i ,.;...-' - -
~ ~
z ~ 3.0
Demodulator Load= 10 kn Demodulator Load= 5 kn
0
8 '.,..r 2.0
~
I-
~ 1.0
P" 1--'1
Demodulator Load= 2 kn
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
REFERENCE INPUT SIGNAL AMPUTUDE (Vp·p)
FIGURE 8 - DC OUTPUT VOLTAGE versus LUMINANCE INPUT
,c:~ 12 t---+---if---+---t-+--+--+---+---i,_-+---t-+--+---i
2:: ~ 111---+----if---+--+-+--+--+---+----i.l-..-1417"~-+--+-+--I
c~: v9'" 101---+----if---+--+-+--+--+--+--.,...q.._.....-+l--1--+--+--i
~9.0
~
~ 8.0 >---+----<f---+k-'"--+P"---+--+----+----<--+---+--+--+----<
;:: 7.0 l--+-1-~-P1"-"-----+--+--+---t--l--li---1--.j--.j--+---f
~ 6.0 1----t-~-t---+---t-+--+-+--+--t---+---t-+--+--t
0~L\-'---'----'-..__-'--'---'---''--"'--_._.-"---'---'..__.,
0
5.0
6.0
7.0
8.0
9.0
10
11
PIN 14- LUMINANCE INPUT VOLTAGE (VOLTS)
FIGURE 7 - DETECTED OUTPUT VOLTAGE versus SUPPLY VOLTAGE
7.0
l
Chroma Input Signal= 360 mV(p·p) 6.0
· 15.0
ro1-
::>
ffi 3.0 ~
t;:; 2.0
0
1.0
0 ~L
0
4.0
v i
v ~
IL ..Ll
~
8.0
12
16
20
SUPPLY VOLTAGE (Vdc)
RL = 10 kn
)
RL = 5 kn RL = 2 kn
24
28
FIGURE 9 - DC OUTPUT VOLTAGE versus SUPPLY VOLTAGE
11.8
·l
"~'11.6
2::
~11.4
~
~11.2 I~ ~11.0
RL = 2.2 k, 3.3 k, 4.7 kn
.....
~
!..--"'
~
I ~10.8
..............
...J7
k"':
fi""
0 ~
16
17
18
19
20
21
22
23
SUPPLY VOLTAGE (Vdc)
@ MOTOROLA Semiconductor Products Inc.
7-41
·
I
FIGURE 10 - CIRCUIT SCHEMATIC
I
-s
(')
w
13
Output Bias Amplifier
?15?16?2 ?5
ys ya
rr1
10
.w.N-0
@
!
0
~
Voltage Reg1.1lator
r----1
r----1
150
3:
I
I
I I
(')
~
w
I
I
I
I
N w
I
I
-0
~
I
I
I
I
-=-
I
I
,:01.J. 5.0 k
:a:.
.I,
I
I
I
I
J
I
(.I)
14
lb
-....!
J:,.
3....
(')
I\.)
()
::
Q.
500
c:
Z1
(.'.).
,,()
"'t
"'t ()
Q.
c:
.(.').
Ill
:..:...
(')
-=- -=
1.0 k
-=-
R-Y Demodulator
To 8-Y G-Y
Demodulators
2.0 k 2.0 k
2.0 k 2.0 k
015 330
I
I
I
I
I
I
I
B-Y
I
Demodulator!
I
I
I
I
I
I
I
I
I
To B-Y
I G-Y
Demod
I I
I ula~ors
I
IG-Y
I
ID~:~~ulatorl
I Chroma I
I ::~~:=r~::, 1
I Pin 4 is I
I ~~~~;~:se I
I inThis · I
I Section.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100~ 1.6k~
~2.7 k
To 8-Y G-Y
Demodulators
),oo
I
I
I I
I
I
L_ _J
I
I
I
L_
_JI
30 04
9
L2
ORDERING INFORMATION
Device
Temperature Range
MC1324P
0°C to +75°C
Package Plastic DIP
MC1324
DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH_R GB MATRIX
AND CHROMA DRIVER STAGES
... a monolithic device designed for use in solid-state color television receivers.
· Luminance Input Provided · Good Chroma Sensitivity - 0.36 Vp-p Input for 5 Vp-p Output
· Low Differential Output DC Offset Voltage - 0.6 V max · DC Temperature Stability - 3 mV/°C typ · Negligible Change in Output Voltage Swing and Varying
3.58-MHz Reference Input Signal · High Ripple Rejection Achieved with MOS Filter Capacitors · High Blue Output Voltage Swing -10 V(p-p) typ · Blanking Input Provided · Improved MCl 326 · Short-Circuit Protected Outputs
DUAL DOUBLY BALANCED CHROMA DEMODULATOR
WITH R GB OUTPUT MATRIX
MONOLITHIC SILICON INTEGRATED CIRCUIT
(top view)
PLASTIC PACKAGE CASE 646
·
FIGURE 1 - MC1324 TYPICAL APPLICATION
Vee +24 Vdc
I 151-25-?'1 ~:~
LU~~~~~eE ~ 1.0µF 14 8 ..,---1--~-'-~~.._,
GREE.N
REQ
+250 Vdc
SIGNAL INPUT 1 V(p-p)
3.3 k 3.3 k 3.3 k
47 pf
470
A typical application is given above to indicate the requirements and output functions of this chroma demodulator.
·
7-43
·
MAXIMUM RATINGS (TA = +25°c unless otherwise noted.I
Rating Power S~ Volt~ Chroma _Signal Input Voltage Reference Signa~ Input Voltage Minimum Load. Resistance Luminance Input Voltage Blanking in~ut Voltage Power Dissipation (Package Limitation)
Plastic Package . Derate.above T_A = +25°c Operating Temperature Range (Ambient) Storage Temperature Range
Value 30 5.0 5.0 2.2 12 7.0
625 5.0 0 ta +75 -65 to +150
Unit Vdc V(pk) V(pk) kohms V(p-p) V(p-p)
mW
mW/0 c
OC oc
ELECTRICAL CHARACTERISTICS (Vee= 24 Vdc, Vref = 1.0 V(p-p), R L = 3.3 k ohms, TA= +25°C unless otherwise noted.I
I .
Cha~acteristic
l l Pin No. f Min J Typ J Max
Unit
STATIC CHARACTERISTICS (See Figure 2.)
Quiescent Output Voltage
1,2,4
14.3
15
16.3
Vdc
. Quiescent Input Current IRL = oo) (R L = 3.3 k ohms)
Reference Input de Voltage
Chroma Input de Voltage
Differential Output Voltage
Output Temperature Coefficient (Reference Input Voltage= 1.0 V(p-p), +25° to +65°CI
mA
-
6.0
-
16.5
19
25.5
5,12,13
-
6.8
-
Vdc
8,9,10
-
3.6
-
Vdc
1,2,4
-
0.3
0.6
Vdc
1,2,4
-
3.0
-
mV/0 c
DYNAMIC CHARACTERISTICS (See Figure 3.)
Detected Output Voltage (See Note 1.)
+(B-Y) -(B-YI
Chroma Input Voltage (B-Y Out_put = 5.0V[p-p) I (See Note 2.1
Luminance Input Resistance
Luminance.Gain From Pin 3 to Outputs (@de) (@5.0 MHz)
Blanking Input Resistance 1.0 Vdc OVdc
Detected Output Voltage (Adjust B-Y Output to 5.0 V(p-p), Luminance Voltage= 23 V)
G-Y Output R-Y Output
Relative Output Phase (B-Y Output= 5.0 V(p-p), Luminance Voltage= 23 VI
3.8 V(p-p)
B-Y to R-Y Output B-Y to G-Y Output
256°
4
8 3 1,2,4
6
4 1 2
4,2 4,1
4.0 4.0
-
100
-
-
0.75 3.5
101 248
5.0 5.0 0.36
-
0.95 0.5
1.1 75
1.0 3.8
106 256
V(pk)
-
-
0.7
V(p-p)
-
kn
-
-
-
kn
-
V(p-p)
1.25 4.2
Degrees
111 264
106°
--5.0 V(p-p)
I 1.0V(p-p)
I Demodulator Unbalance Voltage (no Chroma Input
Voltage and normal Reference Signal Input Voltage)
Residual .Garrier and Harmonics Output Voltage (with Input Signal Voltage, normal- Reference Signal Voltage and B-Y. Output= 5.0 V[p-p) I
Reference Input Resistance Reference Input Capacitance
Ghroma Input Resistance Chroma Input Capacitance
1,2;4
-
1,2,4
-
12,13
-
12;13
-
9,10
-
9,10
-
100
500
mV(p-p)
-
1.0
V(p-p)
2.0
-
kn
6.0
-
pF
2.0
-
kn
2.0
-
pF
NOTES:
1. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 V(p-p). 2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage= 5 V(p-p). The. Chroma
Input Voltage at this point'Should be equal to or less than 0.7 V(p-pl,
7-44
MC1324:
TEST CIRCUITS
!Vee= 24 Vdc, AL= 3.3 Kilohms, TA = +25°C unless otherwise noted.)
FIGURE 2-DC OUTPUT VOLTAGE TEST CIRCUIT WITH NORMAL REFERENCE INPUT VOLTAGE (B, R, AND GI
2.2 k
l 0.lµF
'--------<11~---vcc 0.05µF
f-----( B-Y REFERENCE INPUT
f-----< R-Y REFERENCE INPUT
0.05µF
FIGURE 3 - DYNAMIC TEST CIRCUIT
GREEN OUTPUT
._ uu -~-------:~---4_-"----'-'0.-1 µ-F---T LUMINANCE INPUT
O
v
2.2 k
INPUT
-= vcc
...__,.__ _ _~·---t01:o..-----e+24V
l0.01 µF
470
47pF
3.58 MHz REFERENCE INPUT 1.0V(p-p)
TYPICAL CHARACTERISTICS
FIGURE 4 - DETECTED OUTPUT VOLTAGE (Test Circuit of Figure 3)
8.0 .----..----r----r---.---~--~-~-~
FIGURE 5 - POWER DISSIPATION
1 70 ·
.1 l . T
1-"-
~
Chroma Input Signal= 360 mV(p-p)
w 6.0 ~Luminance Input= 0
--+---+----+--__,
tll
~
5.0 t---+--=,.._-"'"""__+-_ _.__.i-- B
t--
~· ~
;s J . - - 1 !:; 4.01-1--1::::==+:==f-==4"==4;- R +-------,
~
3.0 f--;.,.'ll""""'t---t---+.,---'-+--+----l--'--+----1
fi1
~ 2.0 r - - - r - - : - t - - - t - - - t - - - + - - - + - - - + - - - l
~ 1.0 r---:io--.'1---t---+--"'"""--+-G -+----!
0 /1
0
0.2 0.4 0.6 0.8
1.0 1.2
1.4 1.6
REFERENCE INPUT ~iGNAL AMPLITUDE (V [p-p])
~
~
300
t----t---+----1t----t--~.,,../""----1vf----+--~
~
~
~
1.cw.,i 200~
~
Q 1001---'--t--'--t---A---+---+--+----I--~
0
~
20
21
22
23
24
25
26
SUPPLY VOLTAGE (Vdc)
27
28
·
7-45.
MC1324
'LUMINANCE INPUT 30---.JVIA---
B OUTPUT
FIGURE 6 - CIRCUJT SCHEMATIC
G 1 OUTPUT
R OUTPUT
12 R-Y REFERENCE 14
INPUT
Vee
B·Y REFERENCE INPUT 130-----+--t-f
DC REFERENCE
--1------+----.... INPUT
5 0 - - - - - + - - - - - + - -....---11----.....
----+----~..---.--1---+-.
BLANKING INPUT l k 6 0-.JVIAI--·
B·Y CHROMA 8 INPUT '
CHROMA DC lO INPUT
·R·Y CHROMA g INPUT
2 k
6.3 k
·
7-46
ORDERING INFORMATION
Device
MC1327P· MC1327PQ
Temperature Range
-2o°C to +75°C -20°C to +75°C
Package
Plastic DIP Plastic
MC1327
DUAL DOUBLV BALANCED CHROMA DEMODULATOR WITH RGB MATRIX, PAL SWITCH, AND CHROMA DRIVE.R STAGES
... a monolithic device designed for use in solid-state colortelevision receivers. · Good Chroma Sensitivity - 0.28 Vp-p Input Typical
for 5.0 Vp-p Output
· Low Differential Output DC Offset Voltage - 0.6 V Maximum
· Differential DC Temperature Stability - 0.7 mV/oc · High Blue Output Voltage Swing - 10 Vp-p Typical · Blanking Input Provided · Luminance Bandwidth Greater than 5.0 MHz
DUAL DOUBLY BALANCED CHROMA DEMODULATOR
with RGB OUTPUT MATR.IX
AND PAL SWITCH
SILICON MONOLITHIC INTEGR~TEO CIRCUIT
P SUFFIX PLASTIC PACKAGE
CASE 646
PO SUFFIX PLASTIC PACKAGE
·CASE 647
FIGURE 1 - TYPICAL APPLICATION CIRCUIT
PAL
1.SWITCH
~~::ruLrL
.
0.047µF
+230V
LUMINANCE SIGNAL Y INPUT
6.8k,10W,5%
+24V
/'7"""-.J"V'"YV'--~~......,:
~+--~~~~~~~--~--------'--<
:
D; 1µ F i
GREEN CATHODE
NC 6
14
47
y ..~.~.._y
12k
~
12
REFERENCE SIGNAL
MCl.327
12k
220pF 6.8k, 10W,5%
II
10
47
4.lk
0.22µF O.OlµF O.Dl µF
12k
I II
R·Y
B·Y
CHROMA SIGNAL
7-47
6.8k, 10W,5%
II
MC1327
MAXIMUM RATINGS ITA= +25°c unless otherwise notedI
Rating Power SuPJ:!IV Voltage Chroma Signal Input Voltage Reference Signal I npu_t Voltage Minimum Load Resistance Luminance Input Voltage Blanking Input Voltage Power Dissipation (Package Limitation)
Plastic Packages Derate above TA = +25°C
Operating Temperature Range (Ambient)
Storage Temperature Range
Value 30 5.0 5.0 3.0 12 7.0
625 5.0 -20 to +75 -65 to +150
Unit V~c Vpk Vpk k ohms. Vp-p Vp-p
mW mW/°C
OC OC
ELECTRICAL CHARACTERISTICS !Vee= 24 Vdc, RL = 3.3 k ohms, TA= +25°c unless otherwise noted)
Characteristic STATIC CHARACTERISTICS
Pin No.
Min
Typ
Quiescent Output Volta9e (See Figure 2)
Quiescent Input Current from Supply (Figure 2) (RL=oo) (RL = 3.3 k ohms)
Reference Input DC Voltage (Figure 2)
Chroma Reference Input DC Voltage (Figure 2)
Differential Output Voltage (See Note 1 and Figure 2)
1,2,4
5,12, 13 8,9,10 1,2,4
13.2
-
16 -
14.5
7.5 19 6.2 3.4 0.3
/
Max
15.8
26
-
0.6
Unit
Vdc mA
Vdc Vdc Vdc
Differential Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25°c to +p5°C)
Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25°C to +65°C)
1,2.4 -
1,2.4
-
0.7 +0.5
-
±5.0
mVt°C
mvt0 c
DYNAMIC CHARACTERISTICS (Vee= 24 Vdc, RL = 3.3 k ohms, ~eference Input Voltage= 1.0 Vp-p, TA= +25°C unless otherwise noted)
Blue Output Voltage Swing (See Note 2 and Figure 3)
4
8.0
10
-
Vp-p
Chroma Input Voltage (B Output= 5.0. Vp-p) (See Note 3 and Figure 3)
Luminance Input Resistance
Luminance Gain From Pin 3 to Outputs (@de) (@ 5.0 MHz, reference.at 100 kHz)
Differential Luminance Gain, RGB Outputs (@5.0 MHz)
8
3 1,2,4
-
280
100
-
-
0.95
-
-i.8
-
0.3
550
mVp-p
-
kn
-
-
-
dB
dB -
Blanking Input Resistance (1.0 Vdc) (OVdc)
6
kn
-
1.1
-
-
75
-
Detected Output Voltage (Adjust B Output to 5.0 Vp-p, Luminance
Voltage= 23 V)
(See Note4)
G Output
R Output
4
Vp-p
1
1.4
1.8
2.2
2
2.5
2.9
3.3
PAL Switch Operating Voltage Range (7.8 kHz Square Wave)
R-V Output de Offset with PAL Switch.Operation Demodulator Unbalance Voltage (no Chroma Input Voltage and
normal Reference Signal Input Voltage) Residual Carrier and Harmonics Output Voltage (with Input Signal
Voltage, normal Reference Signal Voltage and B Output= 5.0 Vp-p) Reference Input Resistance (Chroma Input= 0) Reference Input Capacitance (Chroma Input= 0) Chroma Input Ra1i1tanca Chroma Input Capacitance
11 0.3
-
1,2,4
-
1,2,4
-
12,13
-
12,13
-
8,9,10
-
8,9,10
-
-
3.0
-
100
200
300
·.':
0.6
1.0
L.
2.0
-
6.0
-
2.0
-
2.0
-
Vp-p
mVdc mVp-p
Vp-p
kn pF
kn
pF
NOTES: 1. Chrome Input Signe! Voltage· O end normal Reference Input Signal Voltage· 1.0 Vp-p. 2. With normel R1f1r1nc1 Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 Vp-p. 3. With normel Reference Input Signal Voltage, adjust Chrome Input Signal Voltage until the Blue Output Voltega · 5.0 Vp-p. 4. With normel R1f1r1nce Input Signe! Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage· 5.0 Vp-p. At this point, the !!led end GrHn volt1g1s will fell within the specified limits.
7-48
MC1327
MC1327 CHROMA DEMODULATOR (PAL)
DC INJECTION
G·Y OUTPUT
3.0k
BLANKING 6 l.O k INPUT
B B·Y CHROMA
10 CHROMA
DC REFERENCE
R·Y CHROMA
11 PAL SWITCH SIGNAL
·
7-49
IV!C1327
TEST CIRCUITS
(Vcc = 24 Vdc, RL = 3.3 kilohnis, TA =+25°c unless otherwise noted)
0.lµF
FIGURE 2 - DC OUTPUT VOLTAGE TEST CIRCUIT WITH NORMAL REFERENCE INPUT VOLTAGE (B, R, ANDGI vee
BLUE OUTPUT
FIGURE 3 - DYNAMIC TEST CIRCUIT
·
CHROMATO.lµF INPUT
50
7-50
ORDERING INFORMATION
Device
MC1330A1P MC1330A2P
Temperature Range
0°c to +75°C O°C to +75°C
Package
Plastic DIP Plastic DIP
MC1330AlP MC1330A2P·
LOW-LEVEL VIDEO DETECTOR
... an integrated circuit featuring very linear video characteristics and wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and AFC buffer. · Conversion Gain - 33 dB (Typ) · Excellent Differential Phase and Gain · High Rejection of IF Carrier Feedthrough · High Video Output - 8.0 V(p-p) · Fully Balanced Detector · Output Temperature Compensated · Improved Versions of the MC1330P
LOW-LEVEL VIDEO DETECTOR
SI LICON MONOLITHIC INTEGRATED CIRCUIT
CIRCUIT DESCRIPTION
The MC1330A video detector is a fully balanced multiplier detector circuit that has linear amplitude and phase characteristics. The signal is divided into two channels, one a linear amplifier and the other a limiting amplifier that provides the switching carrier for the detector.
a The switching carrier has buffered output for use in providing
the AFT function. The video amplifier output is an improved design that reduces
the differential gain and phase distortion associated with previous
video output systems. The output is wide band, > 8.0 MHz, with
normal negative polarity. A separate narrow bandwidth, positive video output is also provided.
PLASTIC PACKAGE CASE1626
OUTPUT VOLTAGE SELECTION The MC1330A1P is identical to the MC1330A2P with the following exception:
ZERO SIGNAL DC OUTPUT VOLTAGE
MC1330A1P MC1330A2P
7 .0 to 8.2 Vdc 7.8 to 9.0 Vdc
FIGURE 1 - CIRCUIT SCHEMATIC
...... Rl
4.8k
TUNED CIRCUIT
.....-.JV\l'v-......~.---.~---~-+-~-----~-+-
6 --.~~.-~-t..--+--~----+-~vcc
R7
RB
2.2k
2.2k
R9 6.95k
Rll 4.35k
3.6k R2
·--------t---Q AFT
BUFFER
Cl19
OUTPUT
·
7
IF er--+--+----.
INPUT
R3 2.0k
R19
R20
2.5k
Bk
R27
3pF
R24 25k
112k
R2B
~ ~""
7-51
MC1330A1P, MC.1330A2P
·
MAXIMUM RATINGS
Power Supply.Voltage DC Video Output Current DC AFT Output Current Junction Temperature Operating Ambient Temperature Range Storage Temperature Range
Ra~ing
Value 24
5.0 2.0
t5o o to 75
-65 to+150
Unit Vdc mAdc l"flAdc oc oc oc
ELECTRICAL CHARACTERISTICS (Vee= +20 Vdc, a= 40, fc = 45.75 MHz, TA= +25°c unless otherwise noted)
Zero Signal de Output Voltage
Characteristic
Supply Current Maximum Signal de Output Voltage Conversion Gain for 1.0 Vp-p Output
(30% Modulation) AFT Buffer Output at Carrier Frequency
Pin
MC1330A1P
4
MC1330A2P
4
5,6
4
7 1
Min
TYP
7.0.
-
7.8
-
11
17.5
-
·o
25
36
300
475
Max 8.2 9.0. 20 0.5
65 650
Unit Vdc Vdc mA Vdc
mVrms mVp-p
FIGURE 3 - INPUT ADMITTANCE
FIGURE'2 - TEST FIXTURE CIRCUIT
Vee
CARRIER INPUT>----~!---..., 50
MC1330A
*50µf
4.3 k AUXILIARY OUTPUT
20V[~J
lOV - - - -
Ll
AFT OUTPUT
PRIMARY OUTPUT
3.9 k
3.3 k
Cl
Ll, Cl: See General Information Number 3, page 5 of this specification.
COIL Q "'40 0.8 1----+-+---+~+-+-i-+-+++-.....,..,t--+---t---+--+-t-+-++i
I
i o.s vcc 12 Vd~7 t----+-+---+-+-+-i-+-+++-__,t--+---t---+-F,.,'.#.'#1--f-t-H
=·~
l/Jf
o.4 1----+-+---i-+-+-i-+-+++--t-g1-1+---1--~VLL1~ l'-V+-e+e-=-2f0-Vtd-cH
~ vcc=20Vdc
l i bl_!...J/ 0.2 1---+--+-+--+-~-++++--+--.._.L_--+D--l'--+-ti-1_1.-Hi
~
Vee= 12Vdc . ,,,
ot::=:::l:=:±::=±::r:::r:::JLLJ...LL~L-~......._:.,,...:...:_LLUl...l.lJ
1.0
3.0
5.0 10
30 50
100
FREQUENCY (MHz)
FIGURE 4 - VIDEO DETECTOR OUTPUT RESISTANCE
550
~ ~ 500
~.450
z
0:: 400
g350
q:
\
[
tu;; 300
~
~ 250
1-
:=::l 200
£=> 1~0
~ ~
~
9 100
>
50
0.1
0.3 0.5
1.0
j.-
3.0 5.0
10
VIDEO OUTPUT CURRENT, PIN 4 (mAdc)
@ MOTOROLA Semiconducf:or Prodµc'fs Inc.
7-52
MC1330A1P, MC1330A2P
DESIGN CHARACTERISTICS !Vee= +20 Vdc, a= 40, fc = 45.75 MHz, TA= +2!)°C unless otherwise noted)
Characteristic
Pin
Input Resistanc~
7
Input Capacitance
7
Internal Resistance (Across Tuned Circuit)
2, 3
Internal Capacitance (Across Tuned Circuit)
2,3
Negative Video Output B!jndwidth (Figure 10)
4
Positive Video Output Bandwidth (Figure 10)
5
Differential Phase@ 3.!)8 MH:z, 100% Modulated
· Staircase, 3.0Vp-p Detected Video Pin 5 Tied to Pin 6
4
Differential Gain@ 3.58 MHz, 100% Modulated
$ta'ircase, 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6
4
Differential Phase@ 3.58 MHz, 100% Modulated
Staircase, 3.0 Vp-p Detected Video, A Pin 5 = 4.3 k.11
4
Differential G11in @.. 3.58 MHz, 100% Modulated
Staircase, 3.0 Vp-p Detected Video, A Pin 5 = 4.3 k.11
4
920 kHz Beat Output (dB Below 100% Modulated Video, See Figure 11 l
4.
45.75 MHz= Reference
42.17 MHz= - 6 dB
41.25 MHz= -20 dB
Video Output Resistance@ 1 MHz, 2 mA
4
Input Overload (Carrier Level at Input to Caused Detector Output, Pin 4, To Go Positive 0.1 Vdc From Ground.)
Vee= 12 Vqc
7
Vee= 15 Vdc
Vee= 20 Vdc
Vee= 24 Vdc
Power Supply Voltage Range
6
Typ 4.9 1.5 4.4 1.0 10.8 2.2
7.0
4.0
8.0
6.0 -38
94 2.0 2.6 3.6 4.6 10 to 24
FIGURE 5 -DIFFERENTIAL PHASE AND GA!N TEST SET UP
10 dB 50 !l PAO
MODULATION MONITOR
TEKTRONIX 475 OSCILLOSCOPE 50
BAL~NCE[I
MODULATOR
t---o-..a----IF :~~~~ Rf..._-----~
LO
ADJUST FOR OTO 3 V PEAK
AT OUTPUT OF VIDEO DEMODULATOR
6.8 k
SIX STEP MODULATED STAiRCASE GENERATOR TEKTRONIX
144 NTSC
SUBCARRIER
150 lOOmV INTO LOAD -:;:- BOONTON 910
6 dB 50>! PAO
45.75 MHz GENERATOR
H.P. 608E.
VIDEO DEMODULATOR
TEST FIXTURE ALoad"' 3 k TYP.
LOW CAPACITANCE RESISTOR PROBE DIVIDER H.P. 10020A
-1---------t VECTOR SCOPE TEKTRONIX
VECTOR SCOPE PREAMPLIFIER
520 NTSC
Unit k.11 pF k.11 pF MHz MHz
Degrees %
Degrees % dB
n
Volts
Volts
·
@ MOT'OROLA ~emicond1.1.ctor Products Inc. _ _ _ _ _ ____.
7-53
MC1330A1P, MC1330A2P
·
TYPICAL CHARACTERISTICS (Vee"' +20 Vdc, TA= +25°e Unless Otherwise Noted)
FIGURE 6 - OUTPUT VOLTAGE TRANSFER FUNCTION
a.oD.. I
-~
;~-
:77:..7:6f~ ~fiPo~JO,1~1STET~E--+---4--~---+--+---1
~ !::;
0
;:'.
7.5 ' I, OE~A~ L'..".A-_C~TUAL TRANSFER FUNCTION
r - 7.4 LINEAR --+""'""'""',""0,.-+---+---+--+-'---+----i
~
g
7 _3 .
r-
TRANSFER-+-_ _...;_,~~~·o : - - t - - - - + - - - + - - - - + - - - l
FUNfTION
~
~ 7 2
7.1 t----+-'---+---+---+--'--+l::!!o.--~-b-...1----1-----1
1·00.__ _2......0_ _4.....0_ _6.....o._ _a....o_ _.1. .0--'"'12--'"'14----'16
CARRIER INPUT VOLTAGE (mV[rms])
FIGURE 7 - OUTPUT VOLTAGE TRANSFER FUNCTION
.. ...,.._-+"_______,.. u
~ 6.0 .-.--+----+----+---+---+---+------t---< i2i: 5.0
w·
t:I
~ 4.0
0
> 3.0
I-
~ ~ 2.0 1----+----+-o
20
40
CARRIER INPUT VOLTAGE (mV[rms))
FIGURE 8-0UTPUT VOLTAGE, SUPPLY CURRENT
10
1000
FIGURE 9 - AFT LIMITING
9.0 1----+--+---+--+---+--+---+---~24
.:g
;::.
8.0
+---+-...,_F'---+----122
7.0 t----+--+---+--+-:::;-::..+--+---t--:;;;J'"""-i20 ~·
2
ii:
6.0 t----+--+---:....t"~-+---+---;,,...c....::;;o+"""'---;18
~
w·
t<:I 5.0 l----+-7"C:..+---+--+--~..,,,.~+---4---il6 ~
!::;
0
4.0 t----+--+---±::-=:;,,..'F---ouTPUT VOLTAGE
14 !i
>
I-
~
3.0
1-----1-.-..:::::...+-~,.q..--1--1--CARRIER 1
INPUT=somV(rms)
12
~
~
~ 2.0 t----+---'+---+-SUPPLY CURRENT
10 -
0
CARRIER INPUT= 0
1.0
: 500 > .§ 300
~ 200
.....
~ 100
::>
0
L
ffi 50
5~ 30
t;: 20 <
~
i:;;;;'
L P"
_..i.-
0
8.0
10
12
14
18
20
22
SUPPLY VOLTAGE (Vdc)
10
1.0
2.0 3.'o 5.0
10
20 30 50
100
CARRIER INPUT (mV[rms])
FIGURE 10 - VIDEO OUTPUT RESPONSE
+6.o~-~--~-~--~-~--~-~-~
+4.0 ~ +2.0t----+---
2 0
i= <~ -2.0
::: -4.0t----+~-+---+--t=----+~~+---+----i <
~ -6.0t----+---"'k---+--r+----+-~+---+----1
i= ~ -8.0 a: - 1 0 1 - - - - + - - - + - - - + - - - + - - - - -............,_-+---<
2.0
4.0
6.0
8.0
10
12
14
16
VIDEO OUTPUT RESPONSE (MHz)
FIGURE 11 - VIDEO OUTPUT PRODUCTS
~ O .z
REFERENCE,; 3.58 MHz OUTPUT
45.75
I
MHz
I
INPUT=
25
mV~Ims)
~ -10r-----t""'-...:::---r!~:~~ :~: :~~~i ~ ~E5L~Tlt~5fO 45.75 MHz INPUT
::> 2 ~-20
<
t;-30t:"'"-....::-+-~-""';....,,---+--+--~--+----1---1
i5 .
~-40!-""'.......::+--'"""-"2'>.......::+---=;....=---+--+----==1"'-'~~
~-5ot--=-~=---t-"'.....;;;:t--""""-i.2"""""'.::::+-.....:::::..,.,_;:----I--~
~
~-6or----+-=---~-=="'+----+-==---+--=--i-:"'----1--""~
-10.___~_ _ _.___~~--"----'------'----;;_-~
-10
-20
-30
RELATIVE 41.25 MHz INPUT LEVEL (dB)
@ MOTOROLA Semiconductor Products Inc;.
7--54
MC1330A1P, MC1330A2P
TV-IF Amplifier Information
A very compact high performance IF amplifier con-
structed as shown in Figure 14 minimizes the number of
overall components and alignment adjustme.nts.' It can be
readily combined with normal tuners and input tuning-
trapping circuitry to provide the performance demanded
of high quality receivers. This configuration will provide
approximately 93 dB voltage gain and can accomodate the
usual low impedance input network or, if desired, can
take advantage of an impedance step-up from tuner to
MC1349P input.
,
The burden of selectivity, formerly found between the
third IF and detector, must now be placed at the inter-
stage. The nominal 3 volt peak-to-peak output can be
varied from 0. to 7.0 V with e,xcellent linearity and free-
dom from spurious output products.
Alignment is most easily accomplished with an AM gen-
erator, set at a carrier frequency of 45.75 MHz, modulated
with a video frequency sweep. This provides the proper
realistic conditions necessary to operate to low-level
detector (LLD). ihe detector tank is first adjusted for
maximum detected de (with a CW inp'ut), next, the video
sweep modulation is applied and the interstage and input
circuits aligned, step by step, as in a standard IF amplifier.
Note: A normal IF sweep generator, essentially an FM
generator, will not serve properly without modification.
The LLD tank attempts to "follow" the sweep input fre-
quency, and results in variations of switching ampli-
tude in the detector. Hence, the apparent overall response
becomes modified by the response of the LLO tank,
which a real signal doesn't do.
This effect can be prevented by resistively adding a.
45.75 MHz CW signal to the output of the sweep genera-
tor approximately 3 dB greater than the sweep amplitude.
See Figures 12 and 13 below. For a more detailed descrip-
tion of the MC1330AP see application note AN-545.
MC1330A General Information
The MC 1330A offers the designer a new approach to an pld problem; Now linear"detection can be performed at
FIGURE 12 - BYPASS DISPLAYED BY CONVENTIONAL SWEEP
ryiuch lower power signal levels than possible with a detector diode.
Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some specific features and information on systems design with this device are given below:
1. The device provides excellent linearity of output versus input, as shown in Figures 6 and 7. These graphs also show that video peak-t9~peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a ·giveh variation qf input CW and use the figure as a transfer function.)
2. The de output level does change Iinearly with supply voltage shown in Figure 8. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply.
3. The choice of 0 for the tuned circuit of pins 2 and 3 is not critical. The higher the 0, the better the rejection of 920 kHz products but the more critical the tuning accuracy required. See Figure 11. Values of Q from 20 to 50 are recommended. (Note the. internal resistance.)
4. A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so it must be handled with greater' care. If not used, pin 5 may be connectep directly to the supply voltage (pin 6).The video response will be altered som·ewhat. See Figure 10.
5. A.n AFT output (pinl) provides 460 mV of IF carrier output, sufficient voltage to drive an AFT ratio. detector, with only one additional stage.
6. AGC lockout can occur if the input signal presented in the MC1330A is greater than that shown in the input overload section of the design characteristics shown on Page 3. If these values are exceeded, the turns ratio between the primary and secondary of T 1 should be increased. Another solution to the problem is to use an in-
put clamp diode o1 shown in Figure 14.
7. The total 1.F; noise figure at high-gain reductions can be improved by reflecting ""=' 1 k source impedance to the input of the MC1330AP. This will cause some loss in overall IF voltage gain.
FIGURE 13 - BYPASSDISPLAY WITH THE ADDITION OF CARRIER INJECTION
·
@ MOTOROLA Semiconducf:or Producf:s Inc.
7-55
MC1330A1P, MC1330A2P
·
FIGURE 14-TYPICAL APPLICATION OF MC1349P VIDEO IF AMPLIFIER and MC1330A LOW-LEVEL VIDEO DETECTOR CIRCUIT
[-A --] +20Vdc
R5 AUXILIARY'VID:~v
4,3k
---
-
-
- 1 0 OUTPUT
v
- - .,..J iv-v-w
PRIMARY VIDEO
AND SOUND OUTPUT
::.'JYJ
C10 56 pF
c ' - - r - - . - - - - r - - - r - ' 14
1 3,0 pF
._-u-1--... AFT OUTPUT
RS 3,9k
T1
AGC
·1fdb1eij
TU2RNS.,~_,,-
t -- 3
TURNS
#lO
r 13" 16 I
I~10-I .Lr_
TURNS
16
All windings 22 AWG tinned nylon acetate wire tuned with Coilcraft #61 slugs, size 10-32, or equivalent
L1 wound with 26 AWG tinned nylon acetate wire tuned by distorting winding,
*See Note 1 (page 3), and C4, Parts list (page 4) for this specification on the MC1349P Data Sheet. **See Input Overload Section of the Design Characteristics Page 3, and General Information, Page 5, Note 6,
FIGURE 15 - PRINTED CIRCUIT BOARD PARTS LAYOUT
FIGURE 16 - PRINTED Cl RCUIT BOARD LAYOUT
@ MOTOROLA Semiconducto~ Products Inc. _ _ _ _ _ ____,
7-56,
ORDERING INFORMATION
Device MC1331P
Temperat~re Range
0°C to +75°C
Package
Plastic DIP
MC1331P
LOW-LEVEL VIDEO DETECTOR
... an integrated circuit featuring very linear video characteristics and wide bandwidth. Designed for color and monochrome television receivers, r(:lplacing the third IF, detector, video buffer, AFC buffer, sound IF detector, and sync separator. · Conversion Gain - 34 dB typical · Video Frequency Response at 8.0 MHz< 3.0 dB · Input of 36 mV Produces 3.0 V (p-p) Output · High Video Output - 6.0 V (p-p) · Fully Balanced Detector · Separate Sound Detector · Differential Inputs
LOW-LEVEL VIDEO DETECTOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
CIRCUIT DESCRIPTION
The MC1331 video detector is a fully balanced multiplier detector circuit that has linear amplitude and phase characteristics. The signal is divided into two channels, one a linear amplifier and the other a limiting amplifier that provides the switching carrier for the detector. The input signal level is senseo by an overload protection circuit and clamps the video output amplifier, preventing AGC system lock out,
The switching carrier is also used in the sound detector, converting the 41.25 MHz sound carrier into the .4.5 MHz IF frequency. The sound detector has a tuned 4.5 MHz tank circuit to develop the narrow band sound carrier output.
The switching carrier has a buffered output for use in providing the AFT function.
The video amplifier output is an improved all NPN design that reduces the differential gain and phase distortion associated with previous video output
systems. The output is wide band, > 8.0 MHz, with normal negative polarity.
A separate, narrow bandwidth, positive video output is also provided. Internal regulatiOFf. maintains the video output de reference essentially independent of supply voltage variations and reduces the variation in the absolute value of the reference level.
The circuit includes an inexpensive sync separiitor circuit.
4.5 MHz Tank Circuit
10
FIGURE 1 - MC1331P BLOCK DIAGRAM
Sound Output
AFT
Carrier Output
45.75 MHz Tank Circuit
9
8
6
PLASTIC PACKAGE CASE 646
Vee
·
Sound Input 11
Sync Separator
Input
0 -+ - - + - 1
3
Sound Detector
Sync Separator
2
Sync Separator Output
MC1331
Video Detector
Overload Protection
Circuit
Positive Video Output
Negative Video Output
13
14
Video IF Inputs NOTE:: See Fi!lure 2 for External Component Values
7-57
MC1331
·
MAXIMUM RATINGS
Rating Power Supply Voltage . Input Voltage Maximum DC Video Output Current Maximum DC Sync Separator Current (Pin 2) Power Dissipation @ TA = 25°C
Derate above 25°c Operating Ambient Temperature Range Storage Temperature- Range
Value 15 2.0 5.0 4.0 1.2 1'0
Oto 75 -65 to +150
Unit Vdc V(RMS)
mAdc mAdc Watts mW/0 c
O(;
oc
ELECTRICAL CHARACTERISTICS (Vee= +12 Vdc, a= 20, fc = 45 MHz, TA= 25°C unless otherwise noted.)
Characteristic
Pin
Min
Typ
Max
Unit
Supply Voltage Range
-
10.5
-
15
Vdc
Supply Current Rarige (Zero Signal Input)
:?:ero Signal de Output Voltage (Figures 3, 4)
Video Output Transfer Gain (Figure 3)
"
(VPin 13 = 60 mV(rms)@ 45.75 MHz)
High F.requency Video Output Voltage Swing (@4.5 MHz) (VPin 13 = 60 mV(rms) @45.75 MHz), (VPin 14 = 30 mV(rms) @41.25MHz)
RF Rejection (Vpjn 13 = 60 mV(rms)@ 45.75 MHz)
Maximum Signal Output (V2,See Figure 3)
Available Positive Video Output Swing
12
26
30
34
mA
5
6.8
7.8
8.8
Vdc
5
2.0
3.0
-
Vdc
5
1.6
2.4
-
V(p-p)
5
-
150
450
mV(p-p)
5
-
-
100
mVdc
4,1,2
8.0
10.5
-
V(p-p)
(VPin 12 -- VEin4l
AFT Output Voltage Swing
I
Transfer Function Negative Offset Voltage (Figure4)
(Vin= 0 to 5 mV)
4.5 MHz Sound Detector Conversion Gain (BW = 200 kHz)
(VPin 13 = 60 mV(rms) @45.75 MHz), (VPin 11 = 5 mV(rms) @41.25 MHz)
Sync Separator Leakage
o (Vee - VPin 2· RL = 1 kf2, Pin 3 Open)
Sync Separator Voltage Swing
(Vee - VPin 2. IPin 3 = 50 µA)
8
75
150
-
mVdc
~
-
-
100
mVdc
9
35
50
-
mV(rms)
2
-
-
2
10
-
10
µAde
-
Vp-p,
FIGURE 2 - TEST CIRCUIT SCHEMATIC
C1 33 pF
C2 150 pF
50µ.A
L 1 7 1/? Turns AWG #22,
Input
Core -3/8" Carbonyl E Material
L2 40 Turns AWG #36
+Vee
Core -1/2" Carbonyl E Material
·
+Vee 10 k
!f" Sync Se6~~~~;
45.75 MHz-Tank
L 1
· k Circuit 10
I
10 k
I I
IL ________ .JI
+Vee 10 k
45.75 MHz
Signal
Generator
41.25 MHz Signal
Generator
7-58
MC1331
DESIGN CHARACTERISTICS (Vee= +12 Vdc, a= 20. fc =45 MHz, TA= 2s0 c unless otherwise noted.I
Characteristic
Pin
Input Resistance Input Capacitance
13,14
I
13,14
Input Resistance
11
Input Capacitance
11
Internal Resistance (Across Tuned Circuit)
6,7
Internal Capacitance (Across Tuned Circuit)
6,7
Video Output Resistance@ 4.5 MHz
5
Sound Detector Output Resistance
9
Negative Video Output Bandwidth (Figure 71
5
Positive Video Output.Bandwidth (Figure 71
4
Differential Gain @ 3.58 MHz
5
Differential Phase@ 3.58 MHz
5
920 kHz Beat ciinput (Below 100",{, Modulated Video) (1)
5
(45. 75 MHz = Reference)
(42.17 MHz= ~.OdBI
(41.25 MHz= -20 dB)
Video Output Supply Rejection
-
(d Pin 5 Vold Vccl
Carrier Rejection (Sound Channel)
9
Modulation Rejection in AFT Output (2)
-
(1 kHz Sideband)
Typ 3.0 3.0 3.0 3.0 5.0 4.0 25 100 8.0 3.0 5.0 5.0 36
20
-20 30
(1 I Undesired beat product between 42.17 MHz subcarrier (~dB) and the 41.25 MHz soundcarrier (-20 dB) relative to the 3.58 MHz output. Carrier levels are relative to the 45.75 MHz carrier.
(2) Residual at 90% double sideband modulated at 1 kHz on 45.75 MHz video carrier.
Unit kn pf kn pf kn pf n n MHz MHz %· Degrees dB
dB
dB dB
TYPICAL OUTPUT CHARACTERISTICS
FIGURE 3 - OUTPUT VOLTAGE TRANSFER FUNCTION
10
I
9.og-p5vo
~~-o 87·.0 0~ F==31,""S"e'e .Fi.gu+r~e -4 -+---l---+---l-~-+----+-----l
~ 6 .0
~ .L.!5V 1
~ ""&. > 5.0 t-----t----t--....,..,;;::-t;tF---r------t---+----+----1
~ 4.0
~
.,;
c
ii:
3.0 2.0
t---(-rN-p+jn_S_=_V_o-+V-1-I-
+
-
-
-
+
-
-"· "+ ""'"'-~ '.~. . ~+----+p5v2-1
1.0 0------i------+--+-----i----+--+-~-~----+-_),.___,.~,......,
OL-_ _.__.:...._.i.__-1-_ _...__-1-_ _...1...._ _..i;t...~-,,-~__,~
0
20
40
60
80 100 120 141! 160
Pin 13, 45.75 MHZ INPUT (mV(RMS))
' FIGURE 4 - OUTPUT VOLTAGE TRANSFER FUNCTION
7.82 .......-1 Psvq
,---r-.- 7.80
-.J
I
~7.78
ii7.76
LS:. ~--
,....
~
~~7.74
~,
7.721---J.L---
Negative
Offset---1-"-i-i -1~-~---l----lf--~
!~:; 7.701--_~J-?4+---+--+-.---1----1----'+--[S---+----4---I
~ 7.68 i-:"--+--+---+---+---+--+--+--'......i~---l---1 ~ 7.66t---+--,--+---:-+---+---+----t--+----t~---t---t
7.641-----1--+----1----1---1-----+-~---+--',~--I
_ _.__ _ _ __, 7.62.....__..__..__~-~-~-_.__..._ 0 1.0 2.0 3,0 4.0 5.0 6.0 7.0 8.0 9.0 10 Pin 13, 45,75 MHz INPUT (mV(RMS))
·
Circuit diagrams utilizing Motorola products are i~cluded as .a means of illustrating. typical semiconductor applications; consequently, complete information sufficient for construC:tion -purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, such information does not' convey to the purchaser of the sem~conductor devices described any license under the patent rights of Motorola Inc. or others.
@ MOTOROLA Se1niconducfor Products Inc.-~-------'
7-59
MC1331
·
TYPICAL CHARACTeRl~TIC~
FIGURE 5 - SOUND DETECTOR OUTPUT versus Pin 13 Vc,>LTAGE
en,_
so
1---+-+-+-+++H---+-Piri
9'.
Ji'.N~Hz
1n~ut
1
=5
~v
(AMSlL~
~
L
! 201--+-f-+-+-hl~~~V""--+----+--+-~H++----l-+-l-f-H-+++---l
?g- 101:::~ :ll~~!t:ttt===Pi.nJ9,/.4/1.t25.M~H~z~In~p~u~t=~1~m~V~(~R~fSa):===l ! 5.0 ..,.L..'-+-+--t-+-t+"t-tJZ-;iL--t--t-+-H-H++--..._.,t--+-+-+++t-tt---i
~
~
£
~
2.0v
1.0 .__..__.._................._ _..._........_._._._......__ _.__.._.._......._...._.....____,
0.2
0.5 1.0 2.0
5.0 10 20
50 100 200
Pin 13, 45.75 MHz INPUT (mV-RMS!
100
90
c;;
~ 80
:>
.§
70
~ 60
I::>- 50
~::;; 40
"..,': 30
c,;
c: ii:
20
10
FIG!JRE 6. - SOUND DETECTOR OUTPUT versus
Pin 11 VOLTAGE
Pin 11, 41.25 MHz INPUT (mV-RMS)
FIGURE 7 - VIDEO OUTPUT RESPONSE +1.0 ..--..---..---..---..---..---.....--.....--.....--...----.
FIGURE~ - VIDEO OUTPUT PRODUCTS
-r--i-- ~ ~
-..,.....__ ~~-
-1.0 -2.0
1l-----tt---"f''~~.~'.~.-.+--t--+--+-.+.-.-:':'~ =3-1-oo-l...;::-:-:;:--P--i-n+'-5---;+--N-e-g-Ta.+t,i-~.-e.-V.rid.+e.-o.-,+,T----;I
~ l----+--+---!~----"~lr+--+--+--l---+~--+'"""""':-1 ;; -3.01--t--t---"'li:--+--+--+-:--+-""""'-k::::-+---i
'
~ ~
-4.0 -5.0
l---+--+---+--+~~"",-+--+--+--+---+---~1
~'.5 -6.0
W
~.,~in 4 - Positive Video
a: -7.01---+--+---+--+--+-",-+---+--+--+----l
-8.0 l----+--+---+--+--1-~---'ll..----t---+---t
-9.0 ....__......__......__...__...__ _,___..l-"-"~~_,___...__...___,
0 1.0 2,0 3.0 4.0 5.0 6.0 7.0 8.0 -9.0 10
VIDEO OUTPUT RESPONSE (MHz)
co
~ ·10
~ ·20 ,___.____,_~~
::> 2. ~ -301.?~:low:-:::--t--+--+-=-~-+--+--+--+--~ I-
<(
~ -40
~ ~
5 ·0
920 kHz
·SO 1-_-_-_-=-p1-in-=-s.-=-7-!da'-m-pi-ng-!ch_a_ng_ed+---?~-t-;-':'"2.=-=ss*M""H:-z-+--+--l
_70
to 2.0 k
10
20
30
40
50
60
RELATIVE 41.25 MHz INPUT LEVEL (dB)
FIGURE 9 - VIDEO IF APPLICATION CIRCUIT
820
AFT Carrier
Sync Output
.i 0.01 µF
0.0011 µF -:
820
0.0011 µF T1
10 k
100
10 k
270 10k . k
6.8 pF
3k
T1 -.j l--1/8"
'r.rrn m' Turns Turns
Sound Output
45 MHz L.1
[~] . v 7 2
-=-Video
Output
0
T1 winding~ #26 AWG tinned L.1 Coilcraft unicoil or T-form, L.2 Coilcraft T-form, 40 turns
L.3 Coilcraft unicoil, 5-1/2 turns
nylon acetate wire.
7-1/2 turns of AWG #22,
of AWG #36, core - 1/2 inch
of AWG #22, Core - 3/8 incti
Cores 3/8" - Carbonyl E Material core - 3/8 inch Carbonyl E
Carbonyl E Material
Carbonyl J Material
@ Material MOTOR~i.A Sernit:onduc~or Produ_cu Inc. .,...--------'
7-60
MC1331
APPLICATION INFORMATION (For further information, see AN-751)
The video IF amplifier shown in Figure 9 provides excellent system performance required in TV receivers. Typical L·C input selectivity and trapping network may be added or the selectivity element could be a block filter. The sys~em shown has a gain in the video channel of 85 dB, measured from the input of the MC1349. The unique interstage shown eliminates the previous performance trade-off between adequate 41.25 MHz rejection in the video channel and sufficient 4.5 MHz·detection for good sound performance. Figure 4 shows the interstage response of double tuned t~ansformer T1 and the 41.25 MHz take· off circuit. The 41.25 MHz rejection in the video channel is 10 dB. With a total sound carrier attenuation of 26 dB in the video channel, the 920 kHz rejection of the MC1331 is in excess of 40 dB. The outpµt frpm the sound detector is greater than 5 millivolts, sufficient to maintain the sound IF system in hard limiting.
The alignment of the system is similar to that previously used in the MC1330 operation. A signal, comprised of a 45.75 MHz carrier, modulated with video sweep information, provides ~he simplest alignment. The detector coil, L1, is peaked for maximum detected de with the unmodulated carrier. Then the video sweep modulation is applied and the interstage and possible input circuits are aligned. The 41.25 MHz trap coil, L3, is then adjusted temporarily for minimum 41.25 MHz. The output of the sound detector is then monitqr~ed (Figure 5). The 4.5 MHz coil, L2, is ?ligned for maximum output. The trap coil, L,3, can then be optimized for maximum 4..5 MHz output. ·
Note: A ·normal IF sweep generator, essentially an FM generator, will not serve properly without rnodificat.ion. The petector tank attempts to "follow" the sweep input frequency, and results in variations of'the switching i,:arrier amplitude in the detector. Hence, -the apparent overall response becomes modified by the response of the detector tank circuit.· This does not occur when a normal video IF signal _is applie~; as a true fixed carrier is available to "lock"
the detector tank circuit.
Thi's effect can be prevented by resistively adding a 45.75 llllHz CW signal to the output of the sweep generator at approximately~ dB weater than the sweep amplitude.
The circuit described in Figure 12 is capable of providing the high performance required of quality TV receivers. The sound IF carrier (41.25 MHz) is separated from the video IF information early in the system, avoiding inter· modulation in the video channel and any degradation of the sound noise figure performance. The signal is recombined in the MC1331 for normal intercarrier demodulation. The separate 41.25 MHz amplifie·r has 40 dB voltiige gain, sufficient for driving the sound detector, which provides at least ff millivolts of 4.5 Ml;iz with normal picture carrier to sound carrier ratios. The L3 circuit Q is approxi· mately 20 (see Figure 12). narrowing slightly at maximum gain; this requires alignment of this sound amplifier at maximum gain.
The video channel incorporates the MC1352, which includes the AGC function. The AGC for the sound ampli· fier is derived from Pin 14 of the MC1352. In-set partitioning which includes a separate AGC-sync circuit (jungle)
aothe amplifier could be the MC1349. The circuit shown has dB gain, including the block filter insertion loss of
fo dB. The video response, shown in Figure 14, is mainly
determined by the bandpass filter; which could be an acoustic surface wave filter as shown, a block L-C filter, or a discrete component L-C network. The pre-amplifier is included to improve the noise figure of the system, and to provide isolation of the 41 ;25 llJ!Hz trap from the block filtering. The interstage is broad tuned with fixed chokes. Since the system includes high attenuatiqn of the 41.25 MHz, the detector coil (LlOf could be heavily damped, i.e., Rd = 2 kQ, allowing for the possibility of pre-tuning the detector coil. This will show a slight degradation of beat product rejection as shown.in Figure 4, The detector alignment is the same as described.
F.IGU.RE 10 - VIDEO CHANNEL OUTPUT - PIN 5
FIGURE 11 - SOUND CHANNEL OUTPUT - PIN 9.
Ill
>
C>i
>
> 0
E
E
0
0
Ill
0
Ill
@ MOTOROLA Semiconductor Products Inc. --------'
7-61
·
FIGURE 12- APPLICATION CIRCUIT USING MC1352
·24 o Vee
8.2 k 0.0015 µF
@t~ J
-8 V Pulse
+24Vcc
560
1.5 k
330
4.5 MHz AFT
45.75 MHz 33 pF
+24o Vee
L10 Rd= 10 k
!@4
a 0
~
2.7 k
l:ai
-.:
41.25 MHz
-=
(I)
Trap
tb
+24 Vee
~
o,
n3 ·
I\.)
Q::
~
100 pF
fun er AGC
=
AGC
Tuner
Delay
3.9 k
+246V-cc
C..').
Q
~
'1
MPS-H32
~
Q
Q,
E:
~ L1
10 µH Choke
J
(n L2
:..:..
~ L3
gy, Turns, AWG #18 Copper Wire PAUL SMITH CO Coil Form SK308 3/8" 10-32 Core· Carbonyl J Material 4Y, Turns, AWG #22 Copper Wire PAUL SMITH CO. Coil Form SK478
L10 L11
7Y, Turns, AWG #22 Copper Wire PAUL SMITH CO. Coil Form SK-478 3/8" 10·32 Core - Carbonyl E Material 31/6 Turns, AWG #20 Copper Wire
4.7 K
J 0.001µF
3/8" 10-32 Core - Carbonyl E Material
COILCRAFT T-Form [Start at Pin 3(MC1364)J
L4 21 Turns, AWG #36Copper Wira Ov.er
3/8" 10-32 Core - Carbonyl T Material
3.3 kH Resistor, 1 /2 W L5,L6 0.47 µH Choke
L 12 21/3 Turns, AWG.#20 Copp_er Wire
Over Bottom End of L 11 l Finish at Pin 9 (MC 1364) I
L7,L8. 8 Turns, Center Tapped, Air Core
3/8" 10-32 Core - Carbonyl T Material
AWG ,#36 Single Cell Copper Wire
L 13 3 1/6 Turns, AWG #20 Copper Wire
L9
40 Turns, AWG #36 Copper Wire
PAUL SMITH CO. Coil Form EF186
Center Tapped. 3/8" 10-32 Core - Carbonyl T Material
3/8" 10-32 Core - Carbonyl E Material
rpF
4.5 MHz Output
330
3 ·k
> Video
1 k
Output
~ -= -=-
MC1364
AFT 1 k Output
I I
I _J
I0.001µF
-=-
-s
(')
w
W·
...a.
MC1331
FIGURE 13 - SOUND CHANNEL OUTPUT
FIGUR.E 14 - VIDEO CHANNEL OUTPUT
>
,;
> 0
E
0 Ill
> 0
E
0 IO
' t
,
II ,
4 5
M·~z
.3 $8 MHl
0.5 MHziDiv 8
FIGURE 15- CIRCUIT SCHEMATIC
R19 250
1.0 MHz/Div
R33 400
R35 300
R34 200
·
12 6.2 k
R31 3.0 k
R32 3.0 k
055
13
@ llllOTI:>ROLA
R39 300 14
Sen1iconductor'Products Inc. _ _ _ _ _ _ __,,
7-63
ORDERING INFORMATION
Device MC1344P
Temperature Range 0°c to +70°C
Package Plastic DIP
MC1344
TV SIGNAL PROCESSOR
. . . a monolithic TV circuit with sync separator, advanced noise inversion, AGC cpmparatpr, and versatile RF AGC delay amplifier for use in color or monochrome· TV receivers.
· Video Internally Delayed for Total Noise Inversion · Low Impedance, Noise Cancelled Sync Output · Refined AGC Gate · Small IF AGC Output Change During RF AGC Interval · Positive and l',ltigative Going RF AGC Outputs · Noise Threshold May Be Externally Adjusied · Time Constants for:sync Separator Externally Chosen · Stabilized for± 10% Supply Variations
TV SIGNAL PROCESSOR SILICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
0.002µF 470
FIGURE 1 -TYPICAL MC1344 APPLICATION CIRCUIT
220
+18Vclc
3.3k
68pF
lOV - - - -
Tl
PRIMARY VIDEO
ANO SOUND 0 UT PUT
MC1330A1/2
lVJ 1
1Gkc
All windings #30 AWG tinned nylon acetate wiretunedwithhighpermeabilitycores. Completetra!lsformerisavailablefrom Coilcraft. Type R4786.
IF AGC
Rl 0.1 µF
RF AGC TO TUNER
+18Vdc
~~;~N;Ul~UT
~+------~---!--- SYNC OUTPUT
J +
50 µF
L1 wound with #26 AWG tinned nylon
acetatewire.tuned~ydistortingwinding.
]][]
2.2 k 20 k L-.-4--4---.<: RF AGCOELAY
39MHz 45 MHzj 58 MHz
Cl 24pF
J 15pf lOpF
C2 18pF 12pF] lOpF
Cl 33pF 33pF] 18pF
L1
12 Turns
to Turns
Rl
Select
7-64
MC1344
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating Power Supply Voltage (Pin 11) Video Input Voltagf! (Pin 1) Negative RF AGC Supply Voltage (Pin 3) Gating Voltage (Pin 9) Sync Separator Drive Voltage (Pin 12) Power Dissipation (Package Limitation)
Plastic Package Derate above TA = +25°C
Operating Temperature Range (Ambient) Storage Temperature Range
Value +22 +10 -10 15 7.0
625 5.0 0 to +70 -55 to +150
Unit
Vdc Vdc
Vdc
Vp-p Vp-p
-.
mW
mwt0 c
Oc
oc
ELECTRICAL CHARACTERISTICS (Vee= +18 Vdc, TA= +25°C unless otherwise noted.)
Characteristic Sync Tip de Level of Input Signal Temperature Coefficient of Sync Tip (Input) Sync Output Amplitude Sync Output Impedance Sync Tip to Noise Threshold Separation (Input) IF AGC VOitage Change During RF Interval Peak AGC Charge Current Peak AGC Discharge Current IF AGC Voltage Range Positive RF AGC Voltage Range Positive RF AGC Minimum Voltage Negative RF AGC Voltage Range Negative RF AGC Maximum Voltage Total Supply Current, Is (Circuit of Figure 1)
Min 3.4
-
0.45
-
-
-
, 9.0
-
0.5 9.0
-
"t:YP , 3.9
-
16
-
0.7 0.10 15 0.9
-
10 1.5 10 10.2 22
Max 4.2 1.0 100 0.95 0.5
-
2.0 12
-
Unit Vdc mvt0 c Vp-p Ohms Vdc Vdc mAdc mAdc Vdc Vdc Vdc Vdc Vdc mAdc
NORMAL SYNC SEPARATION NETWORK
TEST CIRCUIT FOR AGC AMPLIFIER MEASUREMENTS
·
0.1 µF 3.3 k
270 k +18 Vdc
l.O µF 270
13 MC1344
12
+J8 Vdc
7-65
MC1344
(,)
~
:w:i:Ec
.~..
5
a(,:)
u
·
f
ORDERING INFORMATION
Device MC1349P
Temperature Range
0°C to +70°C
Package Plastic DIP
MC1349P
IF AMPLIFIER
... an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and television applications over the temperature
range 0 to +7o0 c.
· Power Gain - 60 dB typ at 45 MHz (pin 3 open) - 56 dB typ at 58 MHz (pin 3 open) __, 61 dB typ at 45 MHz (pin 3 bypassed) - 59 dB typ at 58 MHz (pin 3 bypassed)
· AGC Range -.80 dB typ, de to 45 MHz · High Output Impedance · Low Reverse Transfer Admittance · 15-Volt Operation, Single-Polarity Power Supply · Improved Noise Figure versus AGC
IF AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
8
00,.
(topview)
~
PLASTIC PACKAGE CASE 626
FIGURE 1 - TYPICAL APPLICATION OF MC1349P VIDEO IF AMPLIFIER and MC1330 LOW-LEVEL VIDEO DETECTOR CIRCUIT
10.002µF
-:-
0.002 µF
+18 Vele
1.8 k
A- -] v10~~ AGx1L1ARY
v[-
OUTPUT
wJ h,,vw
-------14V - ---
PRIMARY VIDEO ANO SOUND OUTPUT
MC1330A 1/2P
56 pF'
- - - - t - · AFT OUTPUT
5.1 k
3.9 k
AGC
r 13" 16 1
(I Y
Y"
10
"
=I
)-
-.-
L
3'' _
, TURNS
16
"- All windings #22 AWG tinned nylon
L1 wound with =26 AWG tinned nylon
acetate wire tuned with Coilcraft #61
acetate wire tuned by distorting winding.
slugs, size 10-32, or equivalent.
*See Note 1 (page 31. and C4, Parts List (page 4) of this specification.
7-67
·
MC1349P
·
MAXIMUM RATINGS CTA = +25°c unless otherwise noted).
Ret'ng
Value
PC?Wer Supply Voltage (Vcc1I
+18
Output Supply Voltage <Vcc2I AGC Supply Voltage
+18 ~ Vcc1 (pin 21
Differential Input Voltage
5.0
Power Dissipation (Package Limitation)
Plastic Package
625
Derate above TA = +25°C
5.0
Operating Temperature Range
Oto +70
Storage Temperature Range
-65 to +150
Unit Vdc Vdc Vdc Vdc
mW mW/°C
oc
-oc
ELECTRICAL CHARACTERISTICS (Vcc1 = +12 Vdc [pin 21, Vcc2 = +15 Vdc [pins 1 and 81, TA= +25°c unless otheiwi~ n()ted.)
Characteristic AGC Range, 45 MHz (5.0 V to7.5 V) (Figure 31
Min
Typ
Max
Unit
70
80
-
dB
Power Gain (Pin 5 grounded via 5.1 kfl resistor, input pin 41 f = 45 MHz, BW (3 dBi= 4.5 MHz, Tuned Input, pin 3 open Untuned Input, pin 3 bypassed f = 58 MHz, BO (3 dBi= 4.5 MHz, Tuned Input, pin 3 open Untuned Input, pin 3 bypassed
dB
52
60
-
-
61
-
-
56
-
-,
59
-
Maximum Differential Output Voltage Swing
-
6.0
-
Vp-p
Output Stage Current (pins 1 and 81 Amplifier Current (pin 21 Power Dissipation
-
9.0
-
mA
-
15
20
mAdc
-
315
400
mW
Noise Figure
-
8.5
-
dB
f = 45 MHz, Tuned lriput, pin 3 open, Gain Reduction = 15 dB
DESIGN PARAMETERS (Vcc1 = +12 Vdc, [pin 2], Vcc2 = +15 Vdc, [pins 1 and 8). TA= +25()C unless otherwise noted.I
Parameter
Single-Ended Input Admittance, input pin 4, AGC min Pin 3 open Pin 3open Pin 3 bypassed Pin 3 bypassed
Symbol
g11 b11 g11 b11
Frequency
45 MHz
.
58MHz
0.74
0.95
1.9
2.4
4.1
5.4
6.5
6.9
Unit mmhos
Differential Output Admittance, AGC max
,µmhos
g22
5.5
8.3
b22
270
360
Reverse Transfer Admittance (magnitude)
1.5
2.0
µmhos
Forward. Transfer Admittance Magnitude, pin 3 open Angle (0 dB AGC), pin 3 open Magnitude, pin 3 bypassed Angle (0 dB AGC), pin 3 bypassed
Sihgle-Ended Input Capacitance, AGC min Pin 3 open Pin 3 bypassed
520 100 1020 120
6.8 2.3
400
mmhos
130
degrees
800
mmhos
400
degrees
pF 6.7 20
Differential Output Capacitance (AGC maxi
1.0
1.0
pF
7-68
MC1349P
FIGURE 2 - CIRCUIT SCHEMATIC
Vcc1
2
.-~~--1~~~------.-.---.1~---.-.-~..._----~-----~·
06
900
900
4.2 k
(+)
.....-~-+--~-~-~~-<>8
OUTPUTS
---------01
(-)
4.7 k
50---J\J'V\l---+--+--INPUT
2.3 k
010
600
2.8 k
011
012
2.8 k
30--------+-----
(+) 6C>-----t
0!5
12 k
01
100
180 180
INPUTS
40---.~---+-----+---~ (-)
1.8 k
1.8 k
02
03
04
\ GND
180
GENERAL INFORMATION
The Md1349P is an improill!d version of the MC1350P. Featuring . higher gain, a lower n,oise figure, and greater AGC range; in addition, an emitter of the input amplifier is availablil for by· passing. This provides a low input impedance with good gain, useful .tor untuned input configurations.
Both. input and output IF ampIifier sections are gain-controlled in the MC1349P, with the input amplifier also serving as an AGC amplifier for the output section. During the initial part.of AGC g'ain reduction, the gain of the input amplifier decreases only a feW dB while the output section. decreases· 15 dB; further AGC acts upon the input section. Although the gain reduction curve was taken with 5.1 kilohms at pin 5, higher series resistance can be used to reduce the voltage and temperature sensitivity of the AGC. Pin 5 currents are shown on the AGC curve, see Figure 10.
In use, it is important to bypass pin 2, both for IF frequencies
and for low frequencies, (as shown in. the test circuits!. This is due to the dual function of the input amplifier. If replacing MC1350P take precaution not to ground pin 3, (not used in the MC1350Pl. Due to the significantly higher gain of the MC1349P, extra care in layout should be exercised.
NOTE 1: The references to bypasses at pin 3 do not give specific values (C4, see Figures 1 and 4). In all cases, measurements were taken with. a bypass at a standard value as near as possible to series resonance. The values are dependent on test frequency and circuit layout. Fully bypassing pin 3 reduces the input signal handling capability before distortion from over 100 mVIRMS) to approximately 25 mV(RMS). C4 '." 0.002 µF at f = 45 MHz is a typical value for printed circuit applications.
·
7-69
MC1349P
TEST CIRCUITS
FIGURE 3 - TUNED INPUT (PIN 30PENI
·
INPUT·
Rs= 50 n.
FIGURE 4 - UNTUNED INPUT (PIN 3 BYPASSED TO GROUND)
Cp 50
I
I
r C4
I I
I
I 4 3
2
I
MC1349P
I
5
8
5.1 k Cp
Vcc1
Vcc2
+12V
+15V
C3
L __
I
I
OUTPUT
T1
I AL= 50 rl.
I I
_J
VAGC
PARTS LIST
COMPONENT
C1 C2 C3 C4 Cp L1 Lp
45 MHz
8-60 pF 3-35 pF 1-7.0 pF 82-470 p~ 0.0015 µF 0.84µH 10µH
58 MHz
50-100 pF 3-35 pF 1-7.0pF
82-470 P.F 0.001 µF 0.33µH
10µH
T1 Primary
14 turns center-tapped
Second·ary 2Y:i turns (45 MHz.tuned input
pin #3 open) 1Y, turns (all
other fixtures) wound over
primary
Wire: #26 AWG tinned nylon acetate wound
on 1/4" diameter coil form
Core: Arnold Type TH, 1/2" long or equivalent.
7-70
. MC1349P
TYPICAL CHARACTERISTICS
FIGURE 5 - SINGLE-ENDED INPUT ADMITTANCE (PIN 3 OPEN)
FIGURE 6- SINGLE-ENDED INPUT ADMITTANCE (PIN 3 BYPASSED TO GROUND)
es 4.0
.§
· w 'z-'
~
t-
~ 3~0 1-----1---1-----it---t---t.bl 1 min AGC 1 1-----1---1-----it---+bl l max AGC
~ ~
ii
j_,b1 Q
<I:
2.0
~gllminAGC
r-----+--r---11--11'-"':1-::::;.1or.---'~~ gl 1 max AGC.,-1\.4::1
~ l ~
,~~.....!
1.0
>
F'""-"
0
10
20
30
50
70
100
FREQUENCY (MHz)
8 e
.§
w
'z-' <I:
6.0
t-
t-
ii
5.0
·Q
<I: 4.0
~ 3.0
2.0
>
1.0
20
30
50
70
100
FREQUENCY (MHz)
FIGURE 7 - SINGLE-ENDED FORWARD TRANSFER ADMITTANCE
2000~--~--~"--o-~~--~-~~-~~
~
"-
L_Ly21A
a:
s za:<t
r---~/Ly21B
t- 1600
~
~ ~~~~8
Hv21IB
1200
~ ?~ '-.... "'b.."
tt'.
-40 ~
~g
Hca:
-80
~~
~I:: 800
~~ Hv211A ~ 400
~ ~ f'.:..
~~
~~ 120_~ ~
~~~~~ 160~<1:.
t-_A =pin 3 open
_
B = pin 3 bypassed to ground
0
10
20
30
~ ~ _
:;
200
50
70
100
FREQUENCY (MHz).
FIGURE 9 - NOISE FIGURE 20
18
FIGURE 8 - DIFFERENTIAL OUTPUT ADMITTANCE (MAXIMUM AGC)
s v o.061------+---+--+----+-...,.....t--+--1---1--1--+V1-#-1 o:t> 8
E
~~Eo~
i0.04
r A~L
E
i~-E
0.4~
8 0.o3 ~
y v
_L!f7i 0.3 i5l ~
1 g21 ~ _o.02~---1-----+--..........i-l-~--==~+--+--1--+---1V1--!7'-+-10.2 ~
~-0.Dli----
i-- I
I~
0.1 ~N-
~I
0
0
10
20
30
50
70
100
FREQUENCY (MHz)
FIGURE 10 - GAIN REDUCTION
·
80
-120 -160
16
~
w
14
a:
:::>
"u":: 12
w
~Cl) 10
8.0
6.0
-10
~ -20
~ -30
t
~
z -50
~
-70
GAIN REDUCTION (dB)
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 VAGC (Vdc)
7-71
ORDERING INFORMATION
Device MC1350P
Temperature Range 0°c tp +75°C
Package Plastic DIP
MC1350
·
MONOLITHIC IF AMPLIFIER
... an integrated circuit featuring wide range AGC for use as an IF
amplifier in radio and TV over the temperature range 0 to +75°t.
The MC1352 is similar in design but has a keyed-AGC amplifier as an integral part of the same chip.
· Power Gain - 50 dB typ at 45 MHz, - 48 dB typ at 58 MHz
· AGC Range -- 60 dB min, de to 45 MHz · Nearly Constant Input and Output Admittance Over the Entire
AGC Range · Y21 Constant (-3.0 dB) to 90 MHz
· Low Reverse Transfer Admittance - << 1.0 µmho typ
· 12-Volt Ope~ation, Single-Polarity Power Supply
IF AMPLIFIER .
MONOLITHIC SILICON INTEGRATED CIRCUIT
8
D 0
(topview)
PLASTIC PACKAGE CASE 626
0.002 µF
FIGURE 1 -TYPICAL MC1350 VIOEO IF AMPLIFIER and MC1330 LOW-LEVEL VIDEO DETECTOR CIRCUIT
470
220
+18 Vdc
3.3 k
A- -] v10~~ AUXILIARY
v[-
OUTPUT
..,..J hJwi..
------·1ov ----
PRIMARYVIOEO AND SOUND OUTPUT
MC1330
,..''JV]
- - - " 1 - - A F T OUTPUT 3.9 k
TJ
AGC
ffiJ!·~~r TURNS~
TURNS
4
r3"
161-1
!:IL_!'
TURNS
16
All windings #30 AWG tinned nylon
L1 wound with #26 AWG tinned nylon
acetate wire tuned with Arnold Type
acetate wire tuned by distorting winding.
TH slugs.
7-72
MC1350
MAXIMUM RATINGS (TA = +25°C unless otherwise noted)
Rating
Power Supply Voltage Output Supply Voltage AGC Supply Voltage
Differential Input Voltage Power Dissipation (Package Limitation)
Plastic Package Derate above 25°c Operating Temperature Range
Symbol
y+
V1. Vs VAGC
Vin Po
TA
Value +18 +18 v+ 5.0
625 5.0 Oto +75
ELECTRICAL CHARACTERISTICS (V+ = +12 Vdc; TA= +25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
AGC Range, 45 MHz (5.0V to 7.0 V)(Figure 1)
Power Gain (Pin 5 grounded via a 5.1 kn resistor)
f =58 MHz, BW =4.5 MHz f =45 MHz, BW =4.5 MHz
}
See Figure 5
} f = 10.7 Mtiz, BW =350 kHz
f =455 kHz, BW =20 kHz
See Figure 6
Maximum Differential Voltage Swing OdBAGC -30dB AGC
Output Sta~ Current (Pins 1 and 8)
Total Supply Current (Pins 1, 2 and 8)
Power Dissipation
Ap
Vo 11 +lg
Is
Po
60
68
-
48
46
50
-
58
-
62
-
I
20
-
8.0
-
5.6
-
14
-
168
DESIGN PARAMETERS, Typical Values (V+ = +12 Vdc, ,TA = +25°C unless otherwise noted) Frequency
Parameter
Symbol
455kHz
10.7MHz
45MHz
Single-Ended Input Admittance
Input Admittance Variations with AGC (Oto 60d8)
Differential Output Admittance
Output Admittance Variations with AGC (Oto 60dBI
Reverse Transfer Admittance (Magnitude) Forward Transfer Admittance
Magnitude Angle (0 dB AGC) Angle (-30 dB AGC) Single.Ended Input Capacitance Differential Output Capacitance
0
g11 b11 A911 . Ab11
. 922 b22 Ag22 Ab22
I Y12I
IY21 I
< Y21 < Y21
Cin Co
0.31 0.022
-
-
4.0 3.0
-
-
<<1.0
160 -5.0 -3.0
7.2
1.2
0.36 0.50
-
-
4.4 110
-
<<1.0
160 -20 -18 7.2
1.2
0.39 2.30 60
0 30 390
4.0 90 «1.0
200 -80 ~9 7.4
1.3
Unit Vdc Vdc Vdc Vds
mW mW/OC · ..
oc
Max
-
-
-
-
-
17 204
~
Unit dB dB
Vp-p
mA mAdc mW
58MHz
0.5 2.75
-
-
60 510
-
<<1.0
180 -105 -90
7.6 1.6
Unit mmhos
µmhos
µmhos
µmhos
µinho
mmhos
degre~
degrees pF. pF
·
FIGURE 2 -TYPICAL GAIN. REDUCTION (Figures 5 and 6)
"..".
c z
20
t;
:c::> 40
~
z
<C 60
Cl!
80 4.0
5.0
6.0
VAGC lVl
22 20
.".". 1~
w 16
a:
:::> Cl!
14
i'.i::
ewn 12
0z 10
8.0
7.0
FIGURE 3 - NOISE FIGURE (Figure 5)
10
20
30
40
GAIN REDUCTION (dB)
7-73
MC1350
GENERAL OPERATING INFORMATION
a2l The input amplifiers (01 ~nd
operate at constant emitter
currents so that in-put impedance remains independent of AGC
action. Input signals may be applied single-ended or differentially
(for ac) with identical results. Terminals 4 and 6 may be driven
from a transformer, but a de path from either terminal to ground
is not permitted.
AGC action occurs as a result of an increasing voltage on the
base of 04 and 05 causing these transistors to conduct more
heavily thereby shunting signal current from the interstage ampli-
fiers 03 and 06. The output amplifiers are supplied from an active
current source to maintain constant quiescent bias thereby holding
output admittance nearly constant. Collector voltage for the out-
put amplifier must be supplied through a center-tapped tuning
coil to Pins 1 and 8. The 12-volt supply (V+) at Pin 2 may be used
for this· purpose, but output admittance remains more nearly con-
stant if a separate 15-volt supply (v++) is used, because the base
voltage on the output amplifier varies with AGC bias.
FIGURE 4 ~CIRCUIT SCHEMATIC
·
FIGURE 5:.. POWER GAIN, AGC and NOISE FIGURE TEST CIRCUIT (45 MHz and 58 MHz)
INPUT AMPLIFIER SECTION
BIAS SUPPLIES
OUTPUT AMPLIFIER StCTION
FIGURE 6.., POWER GAIN and AGC TEST CIRCUIT (455 kHz and 10.7 MHz)
Input Rs= 50 II
~-~----~.............12 v
*Connect to ground for maximum power gain test. All power-supply chokes (Lp). are self-resonate at input frequency. Lp ~ 20 kn See Figure 10 for frequency response curve.
Lt @.45 MHz= 7 1/4 Turns on a 1/4" coil form. @58 MHz= 6 Turns on a 1/4" coil form
T 1 Primary Winding= 18.Turns on a 1/4" coil form, center-tapped Secondary Winding= 2 Turns centered over Primary Winding@45 MHz
=1 Turn@58MHz Slug= Arnold TH Material 1/2" Long
45 MHz
Lt
I 0.4µH
Q ~ 100
j Tt 1.3-3.4µH Q ~100@2µH
Ct
50-160pf
C2 .
8- 60 pf
58MHz
l 0.3µH
Q ~ 100
j · 1.2 -3.8 µH Q ~ 100 @2iiH
8 - 60 pf
3- 35 pf
Output
RL =50 !1
*Grounded for maximum _ _ _ _..,._ _ _ _ _ _ _ _ __. power gain.
Note 1: Primary: 120 µH (center-tapped) Ou = 140 at 455 kHz Primary: Secondary turns ratio~ 13
Note 2. Primary: 6.0 µH Primary winding = 24 turns #36 AWG (close-wound on 1/4" dia. form) Core= Arnold Type TH or equiv. Secondary winding = 1-1/2 turns #36 AWG, 1/4" dia: (wound over center-tap)
Frequency
Component 455 kHz 10.7 MHz
C1
-
00.:...450 pF
C2
-
5.0-80 pF
C3
0;05/,1.F 0.001 µF
C4
0.05µF 0.05µF
C5
0.001 µF _36pF
C6
0.05µF 0.05µF
C7
0.05µF 0.05µF
L1
-
4.6µH
T1
Note1
Note2
7-74
MC1350
TYPICAL CHARACTERISTICS
(V+ = 12 V, TA= +25°CI
FIGURE 1 - SINGLE·ENDED INPUT ADMITTANCE
5.0
rf-
4.0
f2 b11
-500
400
~e 3.0
.§.
]/
1L
1Z :.,., 2.0
---1.0
_.,....,,...p lLp
i--"'"
v
~ ~
]" 300
..es
~ 200
100
0
10
20
30
40 50
70
100
1.0
FREQUENCY (MHz)
FIGURE 8- FORWARD TRANSFER ADMITTANCE
LY21 (-30 dB gain)
-i==== ~
'.
LY21 (max gain)
'~
-40
"~
\\ '~
en -80 ~
eff.l
i...J...--v
~
-120 ;;; ~
i'Y2~
~ -160
2.0 3.0 5.0
10
20 30 50
FREQUENCY (MHz)
too-200
FIGURE 9 - DIFFERENTIAL OUTPUT ADMITTANCE
1.0
t-
<~;~:~;:~·~' :~:~im~·
'
--
-+-.,+-
-+--
+
--+
--+-
-+-l
-_}
-4
[) #-l
0.8 t- twice these values.)
f
~ y 0.6 !-----+---+--+--+-!--+--+--b22
J7 .§. y £!
~0.4
~
_.v
p
FIGURE 10-TEST CIRCUIT RESPONSE CURVE {45 and 58 MHz)
-scale: 1 MHz/cm-.,..---
10
20
30
40 50
70
100
FREQUENCY (MHz)
FIGURE 11 - DIFFERENTIAL OUTPUT VOLTAGE
i 7 ~ a.ors :rs:r-=s--+-~--1'--t---V-J+-.=-1_4_V-1---1----+---+---1 1
;: 5.0 '
J
~~ 4.0
"' ~Iv++ =12 V-1----l~-~--L---.....1
cc 3.0 1---+---!--=~----+----'--....:..+----L-__J
t=
~ifi 2.0
Ci 1.0 t---+---+---+---+---+--+--~--
0..__ _...._ _.....__.....;..._ _..___ _..._ _.1--_......1.._---J
0
10
20
30
40
50
60
70 80
GAIN REDUCTION (dB)
For addltlonal Information - "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits,
December 1968.
·
7-75
ORDERING INFORMATION ,
Device
MC1351P MC1351PQ
Temperature Range
0°c to· +75°C OOC to +75°C
Package
Plastic DiP Plastic·
· ·
'I
WIDE-BAND FM-AMPLIFIER; LIMITl;R, DETECTOR, AND AUDIO AMPLIFIER
... designed for IF limiting, detection, audio preamplifier· and driver for the sound portion of a TV receiver.
· Excellent Limiting with 80 µV(rms) Input Signal typ · Large Output-Voltage Swing.,... to 3.5 V(rms) typ · High IF Voltage Gain - 65 dB typ · Zener Power-Supply Regulation Built-In · Short-Circuit Protection · A Coincidence Discriminator that Requites Only One RLC Phase
Shift Network · Preamplifier. to Drive a Single External-Transistor Class-A Audio-
Output Stage ·
BLOCK DIAGRAM
r--....., goo ±L>ef> ~----1""4 PHASE SHIFT
L.:_X~A~
MULTl~LIER
CIRCUIT SCH~MATIC
MC1351
TV SOUND CIRCtJIT
MO!\IOLITHIC SI LICON INTEGRATED CIR,CUIT
P SUFFIX PLASTIC PACKAGE
CASE 646· PO SUFFIX PLASTIC PACKAGE
CASE 647
10 250
1.0 k 3.0 k 1.0 k . 3.0 k 1.0 k
50
7-76
I 7
MC1351
MAXIMUM RATINGS (TA = +25° unless otherwise noted)
Rating
Symbol
Power Supply Voltage Input Voltage Power Dissipation (Package Limitation)
Plastic Packages Cerate above-+25oc Operatir!i Temperature Range
Storage Temperature Range
Vee Vin
Po
1/BJA TA Tstg
Value +16 0.7
625 5.0 Oto+75 -65 to +150
Unit
Vdc V(rms)
mW mW/°C
oc Oc
ELECTRICAL CHARACTERISTICS (Vee= 12 Vdc, TA= +25°C, f = 4.5 MHz, Deviation= ±25 kHz unless otherwise noted.)
Characteristic Input Voltage (-3.0 dB Limiting)
Min
Typ
Max
Unit
-
80
160
µV(rms)
AM Rejection (Vin= 20 mV(rmsl, AM= 30%) (See Note 1)
AMR= 201og VoFM ~ f = 4.5 MHz, Deviation= ±25 kHz, QL = 24 VoAM · f = 5.5 MHz, Deviation = ±50 kHz, QL = 30
-
-
Total Harmonic Distortion ('QL = 241 (See Note 1l
-
(7 .5 kHz Deviation)
Maximum Undistorted Audio Output Voltage (Pin 10) (See Note 1)
-
(Audio Gain Adjusted Externally) (Q = 24)
dB
45
-
45
-
1.0
-
%
3.5
-
V(rms)
Recovered Audio (Pin 2) (See Note 1) (f = 4.5 MHz, Deviation= ±25 kHz, QL = 24) (f = 5.5 MHz, Deviation = ±50 kHz, QL = 30)
Audio Preamplifier Open Loop Gain IF Voltage Gain Parallel Input Resistance. Parallel Input Capacitance
Nominal Zener.Voltage llz = 5.0 mAdcl
Power Supply Current llz = 5.0 mAdcl Power Dissipation (lz = 5.0 mAdcl
0.35
0.50
-
0.80
V(rmsl
-
-
-
25
-
dB
-
65
-
dB
-
9.0
-
kO
-
6.0
-
. pF
-
11.6
-
Vdc
-
31
-
mAdc
-
300
·375
mW
Note 1 : QL is loaded circuit Q.
FIGURE 1 - TEST CIRCUIT (Vee= +12 Vdc, TA= +25°C)
AUDIO GEN.
BAL. MOO.
...:i.o.....
Vcc~~'V\l\r~-:-~--<ip-~-,
12 VRegt 0.1 µF±
lz -+
4
3300 pF
(
·
c.w~
GEN.
50
100 k
F.M. GEN.
I-= L=45-80. µH, (Coil-Craft 01030 or equiv.)
Cl= 60 liom at 2.5 MHz Ade = 3.8 ohms
O.lµF
J; O.OlµF
0.1 µF
1.0 k 47k
7-77
MC1351
TYPICAL CHARACTERISTICS
FIGURE 2 - DETECTED AUDIO OUTPUT versus INPUT LEVEL @f =4.5 MHz, ±25 kHz DEVIATION
1000
II'
}'
~
71
T
i
l
FIGURE 3 - DETECTED AUDIO OUTPUT versus INPUT LEVEL@f = 5.5 MHz, ±.50 kHz DEVIATION
1000
~
~
v L
j
I
:I
10
10
10
100
1.0 k
10 k
10
100
1.0k
10k
INPUT VOLTAGE (µV[rms])
INPUT VOLTAGE (µV[rms])
FIGURE 4 - DETECTOR "S" CURVE @f = 4.5 MHz, BW = 200 kHz, Q = 24
= FIGURE 5 - DETECTOR "S" CURVE @f 5.5 MHz,
BW = 220 kHz, Q = 30
·
FIGURE 6 - IF VOLTAGE GAIN versus FREQUENCY 90
80
70
v ~ 60
z
<Cl SD
~ ~
w
Cl
~ 40
/
··c
> 3Dt----t~-+~-t-~-+-~+---1f---+~--+~-+-~-+---1
2D1----t~-+~-t-~-+-~+---1c---+~-1-~-+-~-+---1
10..___..___.,~_._~...._~.....__~...............~__._~_,_~...._~ 1.D 2.D 3.D 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12 FREQUENCY (MHz)
FIGURE 7 - AM REJECTION
~+40 y vi'~ ~ +501--~t--t-l-+t+Ht-~-+--t-+~-l"F~+--::::=!l~~!--+-+-1-++~
z
~ +301---1'
·~ +201--~t---+-1-+++,H+-~-+-4-++4~1-+-~-+---+-4-l'-l-l*'"I
:E ~ +1oi--~t---t-t-t--t--Hrtt-~-+--t--++-+++1H-~-+---+-+-i~+H
, Oi--~t---t-t-t-T-Hrtt-~-+--t--++-t-t-fiH-~-+---+--1-i~+H
-10,__~~....._.......................~_.._..................................._~....._.............._...........
100
1.ok
1ok
1ook .
. INPUT VOLTAGE (µV[rms))
7-78
MC1351
0.01 µF INPUT~
FIGURE 8 - 4.5 MHz TYPICAL APPLICATION
50µH
Vee
140 Vdc
Po =0.5 Wat 7.5 kHz Deviation Po =3.5W at 25 kHz Deviation
J 0.1µ.F
0.01
27k
OIWl ·~W 0.1 I·µF IOk
47k
25 k VOLUME CONTROL
R= vcc-11.6 0.031
·
7-79
·
ORDERING INFORMATION
Device
MC1352P MC1352PQ
Temperature Range
0°c to +70°C 0°c to +10°c
'
Package
Plastic DIP Plastic
MC1352
TV VIDEO IF AMPLIFIER WITH AGC AND KEVER, CIRCUIT
... a monolithic IF amplifier with a complete gated wide-range AGC system for use as the 1st and 2nd IF stages and AGC keyer and amplifier in color or monochrome TV receivers.
· Power Gain at 45 MHz, 52 dB typ
<< · Extremely Low Reverse-Transfer Admittance - 1.0 µmho typ
· Nearly Constant Input and Output· Admittance Over AGC Range · Single-Polarity Power-Supply Operation · High-Gain Gated AGC System for Either Positive or Negative-
Going Video Signals · Control Signal Available for Delayed AGC of Tu'ner
TV VIDEO IF AMPLIFIER WITH AGCAND KEYE.R CIRCUIT SI LICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
PQ SUFFIX PLASTIC PACKAGE
CASE.647
FIGURE 1 -TYPICAL VIDEO IF AMPLIFIER APPLICATION
.-----e--------- Vee 12 Vdc
T~~~~~R__..,___-+-----1----.
--c3
I(Note 2)
3·9 k 2k
JO.lµF 220
*O.lµF
MCJ:j!j2
18V[£J vee
18 Vdc
lOV . - - - -
3.3 k
.._-1----1---_. VIDEO
OUTPUT
MC1330A 1/2P
PRIMARY VIDEO AND
SOUND OUTPUT 4.7
k ''JV]
0.001 0.1 µF 50 µF
20 pF
0.001 µF
AFT
3.9 k
OUTPUT
FL YBACK WINDING -8.0 V PULSE
All windings #30 AWG tinned nylon acetate wire tuned with Arnold Type TH slugs.
L1
M3" _l
rY'YY"'I
'.__I~·
t
16
10 TURNS
Wound with #26 AWG tinnep nylon acetate wire tuned by distorting winding.
1-ao;
MC1352
MAXIMUM RATINGS (Voltages referenced to pin 4, ground; TA= +25°C unless otherwise noted)
Rating Power Supply (Pin 11 l Outj:iut Supply (Pins 7 and 8) Signal Input Voltage (Pin 1 or 2, other pin ac grounded) AGC Input Voltage (Pin 6 or 10, ~ther pin ac grounded) Gating Voltage, Pin 5 Power D1ss1pation
Derate above TA = +25°C Operating Temperature Range Storage Temperature Range
Value +18
+18
10 +6]Y
+10, -20 ~5 5.0
0 to +70
~
-55 to +150
Unit Vdc Vdc
Vp·p Vdc Vdc mW mW/°C oc -u-c
ELECTRICAL CHARACTERISTICS (vcc = +12 Vdc, Voltages referenced to pi~ 4, ground; TA= +25°C unless.otherwise noted.)
Characteristic
Min
Typ
Max
Unit
AGC Range
-
75
-
dB
Power Gain f = 35 MHz or 45 MHz
f = 58 MHz
dB
-
52
-
-
50
-
Maximum Differential Output Voltage Swing OdB AGC
-30 dB AGC
Vp·p
-
16.8
-
-
8.4
-
Voltage Range for RF·AGC at Pin 12 Maximum Minimum
Vdc
-
7.0
-
-
0.2
-
IF Gain Change Over RF·AGC Range Output Stage Current (17 +lg) Total Supply Current (17+lg+I11)
-
10
-
dB
-
5.7
-
mAdc
-
21 ·
31
mAdc
Total Power Dissipation
-
325
370
mW
DESIGN PARAMETERS, TYPICAL VALUES (Vee= 12 Vdc, TA= +25°c unless otherwise noted.)
Parameters
Symbol
f=35MHz f=45MHz
Single-Ended Input Admittance
Input Admittance Variations with AGC (0 to 60 dB)
Differential Output Admittance
Output Admittance Variations with AGC (0 to 60 dB)
Reverse Transfer Admittance Forward Transfer Admittance
Magnitude Angle (Q dB AGC) Angle (-30 dB AGC) Single-Ended Input Capacitance Differential Output Capacitance
g11 bt1 Ag11 Ab11
g22 b22 Ag22 Ab22
IY12I
IY12I LY21 LY21
-
-
0.55 2.25
50 0 20 430 3.0 80 «1.0
260 -73 -52 9.5 2.0
0.70 2.80 60
0 40 570 4.0 100 <<1.0
240 -100 -72 10 2.0
-
f=58MHz
1.1 :i.75
-
-
75 780 -
<<1.0
Unit mmhos µmhos µmhos µmhos µmho
210 -135 -96
10.5
2.5
mmhos degrees
pF pF
·
@ - - - - - ' ..._________ MOTOROLA Semiconduct:or Products Inc.
7-81
MC1352
.
\
Keying Section
FIGURE 2- CIRCUIT SCHEMATIC
KEVER AND AGC AMPLIFIER
RF·AGC Amplifier and Delay Section
·
AGC Controlled Section
IF AMPLIFIER Bias Section
IF Output Section
® MOTOROLA SemicondciCtor Products Inc.
7-82
MC1352
FIGURE 3 - POWER GAIN, AGC AND NOISE TEST CIRCUIT
AGCINPUT
TUNER AGC OUTPUT ~II chokes(Lpl are self-resonate
at input lrequencv. Lp :· 20 k~! Seefigure41orResponseCurve
Ve, is maintained across the external capacitor. e2. for a particular video level and de reference setting. The voltage Ve, is the result of the charge delivered through 01 and the charge drained by Q1. The charge delivered occurs during the time of the gating pulse, and its magnitude is determined by the amplitude of the video signal relative to the de reference level. The voltage Ve is delivered via the IF-AGe amplifier and applied to the variable gain stage of the IF signal amplifier and is also applied to the RF.-AGC amplifier, where it is compared to the fixed RF·AGe delay voltage reference by the differential amplifier, 02 and 03. The following stages
amplify the output signal of 02 and shift the de levels causing the RF-AGC voltage to vary.
The input amplifiers (Q4 and 05) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac). Terminals 1 and 2 may be driven from a transformer, but a de path from eithefterminal to ground is not permitted.
AGC action occurs as a result of an increasing voltage on the b,ase of Q6 and 07 causing those transistors to conduct more heavily
thereby shunting signal current from the interstage amplifiers as
and 09. The output amplifiers are fed from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant.
58MHz
0.3µ.H
0'°'100
40-80F 12-45 F
LlandT1=-126AWGTinnedNytonAcetateWire
Lt@35or45MHz=7·114Turnsonal/4"coillorm @58MHz=6Turosonal/4"coilform
Tl PrimaryWinding=18Turnsona1/4"coilform
SecondarvWinding=2TurnsWoundEvenlyoverPrimary Windinglor35or45MHzand1 Turn for SS MHz
Slug:ArnoldTHMa1eriall/2"long
GENERAL OPERATING INFORMATIO~
The MC1352 consists of an AGC section and an IF signal amplifier (Figure 2) subdivided into different functions as indicated by the illustration.
A gating pulse, a reference level, and a composite video signal are required for proper operation of the AGe section. Either positive or negative-going video may be used; necessary connections and signal levels are shown in Figure 1. The essential difference is that the video ,is fed into Pin 10 and the AGC reference level is applied to Pin 6 for a -video signal with positive-going· sync while the input connections are reversed for negative-going sync.
The acti~n of tile gating section is such that the proper voltage,
FIGURE 4 - TEST CIRCUIT RESPONSE CURVE (45 and 58 MHz)
NOTES:
1. The 12·V supply must have a low ac impedance to prevent low· frequency instability in the RF-AGe loop. This can be achieved by a 12-V zener diode and a large decoupling capacitor. (5 µf).
2.- Choices of C1, e2 and C3 depend somewhat on the set designers' preference concerning AGe stability versus AGe recovery speed.
Typical values are C1 =0.1 µF, e2 =0.25 µF, e3 = 10 µF.
3. To set a fixed IF-AGC operating point (e.g., for receiver align· mentl connect a 22 kn resistor from pin 9 to pin 11 to give mini· mum gain, then bias pin 14 to give the correct operating point using a 200 kn variable resistor to ground.
4. Although the unit will normally be operating with a very high power gain, the pin configuration has been carefully chosen so that shielding between input and output terminals will not nor·mally be necessary even w~en a standard Socket is used.
FIGURE 5 - TYPICAL AGC APPLICATION CHART
Video Polarity
Negative· Going Sync.
Positive· Going Sync.
Pin 6 Voltage
Pin 10 Voltage
5.5~ Adj. 1.0-4.0 Vdc
2.0 - - - 0
Norn 2.0 V
Adj. 1.0-8.0 Vdc Nom4.5 V
·~J:b
Pin 5 Rl (!1)
0
I
3.9 k
Scale: 1 MHz/cm
II
®MOTOROLA SemlconduC'for ProduC'fs Inc.
7-83
MC1352
·
TYPICAL ·CHARACTERISTICS (Vee= +12 Vele, TA= +25°e unless otherwise noted.)
FIGURE 6- SINGLE-ENDED INPUT ADMITTANCE
5.0 4.0 .___
IL
_ . __ _ ___.____.___,.-+-->--+./-'-+--+--+-<
L
1.0 L----4"" ~
10
20
30
40 50
FREQUENCY (MHz)
70
100
FiGURE 7 - DIFFERENTIAL OUTPUT ADMITTANCE
1.0
J. .!.
.17
t--(SINGLE-ENDED OUTPUT+--+-l--+----'l---t-!Z~-l--1H
ADMITTANCE EXHIBITS
0.8 I- TWICETHESE VALUES) +---+-+-+--+--7_,.__,l--+--+-i
o
..
b22~V
~ 0.6 1----+----+--+-+--t--+]7~~'-t---t---t--t----t-""1
.§
.....
.Q
y
~ 0.4
0.2 i - - -
20
30
40 50
FREQUENCY (MHz)
70
100
FIGURE 8 - FORWARD TRANSFER ADMITTANCE
FIGURE 9 - DIFFERENTIAL OUTPUT VOLTAGE
50Q
400
. "0 i
::i.
~
Q
300 ~ly21i
:::>
!z::
C!)
~ 200
100
I
0
1.0
2.0
~ J ~ TM-
Ly21 @ 30 dB Gain
11 T !"~~eduction
-20 -40
Ly21 @ Max Gain
60
5.0
10
'!.\.~
"'~[\
-80 "j
i' -100 ~
I\~~ -120 ~
140
N I\ 160
N -180 -200
20
50
100
FREQUENCY (MHz)
~ 8.0
~
c:: 7.0
?;
~1 ' ~ ~ 6.o
<(
~ 5.0 .>...
~ 4.o
5
"'.:; 3.0
"-........,.._
r·o<(
i=
vcc2 =14 v
12V
:::: 1.0
0
0
0 10
20
30
40
50
60
GAIN REDUCTION (dB)
70 80
FIGURE 10-AGC CHARACTERISTICS
FIGURE 11 - TYPICAL NOISE FIGURE
]
;
z
>> > > > >
r - + "' ~"'f-0~ ~"'t-0~ .....
0
t;
,....~
:::>.
~ 20
~ 40
C!)
r-.....
f\ rs
u. 60 TUNER
~
. 80 AGC
8.0 c;;
> TUNER
0
"..:'
AGC
7.0 ~
> 6.0 ;;:;-
C!) <(
5.0 :;
4.0 .0>...
:::>
I
3.0 5~
<.>
*Tuner AGC Delay -! 2.0 ~
I I I cc
~GAIN REDUCTION 1.0 ~
22 20
18
"' 16
~
:::>
C!)
u::
14
w
"~' 12
10
100
.l :r
....
8.0
li u u u u u u ~ ~ ~ u 6.0
AGC INPUT VOLTAGE (VOLTS)
0
10
20
30
40
AGC GA1N REDUCTION (dB)
'·
® MOTOROLA Semiconductor Products Inc.
7-84
ORDERING l~FORMATION
Device
MC1355P MC1355PO
Temperature Range
0°C to +75°C 0°Cto +75°C
Package
· Plastic DIP Plastic
MC1355
BALANCED FOUR-STAGE HIGH-GAIN FM/IF AMPLIFIER
... desighed for use with Foster-Seeley discriminator or ratio detector in high quality FM systems. · High AM Rejection (60 dB typ) · Wide Range of Supply Voltages (8 to 18 Vdc) · Low Distortion (0.5% typ)
LIMITING FM IF AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
IF INPUT 470 Rs= 50
4.7pF
PO SUFFIX PLASTIC PACKAGE
CASE 647 1
FIGURE 1 - DUAL MC1355 FM IF APPLICATION
+15V 33
100
33
33
NON-OE-EMPHASIS OUTPUT
·
10 k
10
0.01 0.01
k
·All other pins grounded T-Ratio Detector (input impedance~ 1.5 k) G.1. #36231 or equivalent
7-85
MC1355
MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)
Rating Output Voltage (pins 7 & 8)· Supply Current to pin 11 Input Signal Voltage (single-ended) Input Signal Voltage (differential) Power Dissipation (package limitation)
Cerate above TA = +25°C Operating Temperature Range (Ambient) Stor~ Temperature Range
Value 40 20 5.0 10 625 5.0
0 to +75 -65 to +150
Unit Vdc mA Vp-p Vp-p mW mW/°C oc oc
·
ELECTRICAL CHARACTERISTICS Nee = 1_5 Vdc, f = 10.7 MHz, TA= +25°c1
Characteristic
Min
Power Supply Voltage Range
8.0
Total Circuit Current
-
Total Output Stage Current
-
Device Dissipation
-
Internal Zener Voltage
-
Input Signal for. 3 dB Limiting
-
Output Current Swing
3.5
AM Rejection (10 mv to 1.0 v (rms)
-
input, FM@ 100%, AM@ 80%, Foster Seeley detector)
Admittance Parameters
Y11
-
Y12
-
Y21
-
Y22
-
Typ
Max
15
18
16
-
4.2
-
125
-
5.2
-
175
250
4.2
5.0
60
-
120 + j320
-
j0.6
-
8+ j5.9
-
15 + j230
-
Units Vdc mAdc mA mW· Vdc µV(rms) mAp-p dB
µmhos µmho mhos µmhos
FIGURE 2 - CIRCUIT SCHEMATIC 11 Vee
7k 7k
tik 500 6 k
6 k 500 6 k
Pins 2, 3, 6, 9, 12, and.13 are not internally connected
10
5
4
but should be grounded for maximum stability.
FEEDBACK
GNO
7-86
MC1355
TYPICAL CHARACTERISTICS
FIGURE 3 - TEST CIRCUIT
RFl~NPUT.
C2
R2
R3
Rl 820 ohms R2 50 ohms R3 100 ohms R4 5 kilohms R5 12 kilohms
Vee= 15 Vdc
Cl 50 pf
01 Small Signal Germanium Diode
C2 0.01 µF
(1 N542 or equiv)
T1 10.7 MHz Foster-Seeley Discriminator, Primary Impedance = 3.9 k,
Specifications are given for a Foster-Seeley discriminator. Im-
, Peak-to-Peak Separation = 600 kHz
proved AM rejection at low signal levels can be obtained with a
ratio detector.
For optimum circuit stability it is important to ground pins 2,
3, 4, 6, 9, 12, and 13.
FIGURE 4 - AM REJECTION TEST BLOCK DIAGRAM
RF (10.7 MHz)
I
1----1 L
HP 10514A
MIXER RI---
OR ED.UIV
230-A
BOOTON POWER AMPL.
1-e
DR EQUIV
TEST CIRCUIT (Figure 3)
HP 340014 RMS
METER OR EQUIV
MODULATION 1 kHz
51 k
y
10 k
·
V DIODE BIAS
FIGURE 5 - LIMITING
1000
I ·I _I
~Vcc=15Vdc-+--+--+~-+-+--t~-+--t~+-~t--t----t
§ SOOt---t(U~s-eTre-st~C-irc_u_it+of_F+ig_u~ie~3)~-+--+--+~-+--+--t~-+-+--t
>
1
1
75 kHz beviation
~.§ 600t---t~t---+-~~..L-t-i.--1--lt----t--lt--+-~t--+--+-~-t--+-~
~
i400
i j_
0
~
200
l--l..L.-i.VJ"t!-2J--1.~::t:::::::t::::t::t::2:5::ktH:z::D:etv=i:atti=o:n:::t::t:::l
~ o--=::::i;;...;...L.--'-~.1-..1........1-~....1-....i..~~--'-~--1~......r........r..--'
0.01
0.1
1.0
1000
SIGNAL INPUT VOLTAGE (mV[rms})
F M GENER ATOR
FIGURE 6 - AM REJECTION
·
........ 10._~.__..__..._~..._...__._~...._
_..~_.__..__...___.__.__.
0.01
0.1
1.0
10
100
1000
SIGNAL INPUT VOLTAGE (mV[rms})
7-87
MC1355
TYPICAL CHARACTERISTICS (continued)
FIGURE 7 - OUTPUT DISTORTION
10
8.0 ~ c z cja::: 6.0 t; Ci I- 4.0
:::i
~ c::I
2.0
0 0.01
1 l
' L_ l ~ \ K ~ ......
J 1 Vee= 15 Vdc1 (1 1 , k~ Deviaf°1_,
(Use Test Circuit of Figure 3)
0.1
1.0
10
100
1000
SIGNAL INPUT VOLTAGE (mV(rms])
FIGURE 8 - SIGNAL-TO-NOISE RATIO SIGN:#(L
100 r--....--.-......---.--.---.---.--.........,.--I.,..--,-I--..l---..l~
~80
:=
111 l Jvcc=15Vdc
s v 1 1 1 1 c 1----+--+--11---+-+--+--+--+--+-75 kHz DEVIATION 1--
so1--+-+-+--+--+--+-:_...~i.-:...+...--+-4I-+I--1I--Ii---l--l
~
.A-L..--4-~251-k~H1-z.D-E+-V-IA-T-t0l-N-tt--""""'I
~40
L~
~
~
L YV L
llll
(Use Test Circuit of Figure 3)
2o0 VvLF
II'l 1 lIl 1
0.01
0.1
1.0
10
100
1000
SIGNAL INPUT VOLTAGE (mV(rms])
FIGURE 9 - TOTAL SUPPL Y·CURRENT
·
4.0t---t----+---+---+---+---<---+---+---+----1
2.01---r---t--T--+--+---t---t---t---1----t
_ 0---~~-----_._ __.__ _.__ _.__...__..____.
8.0
10
12
14
16
18
SUPPLY VOLTAGE (VOL TS)
7-88
ORDERING INFORMATION
Device MC1356P
Temperature Range -25°C to +85°C
Package Plastic DIP
MC135&P·
FM DETECTOR AND LIMITER
FM DETECTOR AND LIMITER
SILICON MONOLITHIC INTEGRATED CIRCUITS
... includes a limiting amplifier, a quadrature discriminator, and a voltage regulator; and is designed primarily for FM receiver appli· cations. It is similar to the MC1357 and includes built-in regulation capable of supplying 20 mA to external circuitry.
P SUFFIX
PLASTIC PACKAGE CASE 646
Features: · Good Line and Load Regulation · Low Harmonic Distortion · Single Tuning Coil Design · Direct Replacement for ULN2136
FIGURE 1 - TYPICAL AUTOMOTIVE APPLICATIONS CIRCUIT 120 pF __!:.!__ 4.7 pF
3
2
5
14
· 0.1 µF
0. 1 µF 0.01 µF
14
L 1 =Coil Craft 0-1031 (14 µH)
Typical Performance 1 mV rms Input 5 Watts Output
r Regulated Voltage
(8 V, 20 mA max)
+
l 10µF
4.7 k
20k
+~k
0.001 µF
De-Emp. Vreg Det. In Test Point
Ampl. Out I.ow
Line Filter
·
MJE2050 or .equivalent
~~~;"·I;:
equivalent
7-89
MC1356P
·
MAXIMUM RATINGS
Rating Supply Voltage Power Dissipation @TA= +25°C IP,ackage Limitation)
Derate above 25°c Operating Temperature ~ange Storage Temperature Range, Regulator Load (Pin 13)
Value +16 1.0 7.7
-25 to +85 -65 to +150
20
ELECTRICAL CHARACTERISTICS !Vee= 12 Vdc, TA= 25°c unless otherwise noted.)
Characteristic
Pin
Recommended Operating Voltage
3
Drain Current
3
Amplifier Input Reference Voltage
6
Detector Input Reference Voltage
2-
Detector Output Voltage
1
Amplifier Input Resistance
I
4
Amplifier Input Capacitance
4
Amplfier Output Resistance
1o
De-Emphasis Resistance
14
Temperature Sensitivity of Power Supply
13
Temperature Sensitivity of Output Voltage
1
R~gulation Voltage
13
DYNAMIC CHARACTERISTICS (FM Modulation Frequency= 1.0 kHz, TA= 25°Cl
(Vee= 12 Vdc, f0 = 10.7 MHz, f = ±75 kHz)
'
Characteristic
Pin
AM Rejection
1
(V1N = 10 mVrms)
Input Limiting l'hreshold Voltage
4
(-3 dB, V1N@ 10 mVrms)
Recovered Audio Output Voltage
1
(V1N = 10 mV(rms)
Output Distortion
1
(VfN = 10 mVrms)
Signal to Noise (V1N = 10 mV, rms)
1
11°' lnput,o------c-.....
1
40µF
'='
F,IGURE 2 - MC1356P TEST CIRCUIT
Coll craft
L 1
Q-1031
3,9 k I 14
Unit Vdc
w
mwt0 c
oc oc
mA
Min
Typ
10
-
14
16
1.3
1.4
3.3
3.5
3.0
3.8
-
15
-
7.0
-- 90
7.0
8.8
-
+0.2
-
+0.3
7.9
8.1
Min
Typ
36
42
-
400
350
450
-
1.0
-
70
Max
Unit
16
Vdc
19
mA
1.5
Vdc
3.7
Vdc
4.6
Vdc
-
kn
-
pF
-
Ohms
10.5
kn
-
mvt0 e
-
mV/°C
8.3
Vdc
Max
Unit
-
dB
500 µV(RMS)
550 mV(RMS)
2.0
%
-
dB
2 k C3
,2
3
4
51
C4
5
T-= J ,0.01 µF
' - - 0 - - - - - - t - - -. . - - - - ,
390
CS
I-=
·: Max Load ~ Regulated {=-Output
6 0.1µFJ
Capacitors C1 -thru C5
8
are selected for max
impedance of 1 Ohm at
10.7 MHz
7-90
MC1356P
FIGURE 3 - AM REJECTION
5
0
.
I
5
50
z 45
0
~ 40
17
a: 5
y
v ~ 0 5~ . /
20 ;:j.
~
J....-'t-..!2V
fM At= 75 kHz AM MOD 30% 1 kHz
" ~ """'
1.0
2.0
5.0
10
20
INPUT SIGNAL VOLTAGE (mVrms)
50
100
FIGURE 4 - SIGNAL-TO-NOISE RATIO 100
~ 80
0
i= ~ 60
w
"Cz ' i
6 40 ~ <z ! ~ 20
v v v ~
12 v .....
j...
Af = 75 kHz MOD f = 1 kHz
BW= 60 kHz
0.1
1.0
10
INPUT SIGNAL VOLTAGE (mVrms)
FIGURE 5 - RECOVERED AUDIO OUTPUT versus SIGNAL INPUT VOLTAGE
~ ,
t---t--+-+-+41-++H- 12 ~.Y
~ 100
.L_·
~
~ 501----t-t-+-bl'l+H+ ~ 75 kHz DEVIATION.....__ _,__,__._,._._,......_.
=I>-
0
0
Ci
:::> <!
fil
E
t;:; c
1.0~~~~1...........o. ~-J~...__._1_.__._~_ _.__._...__._~
0.01
0.1
1.0
10
INPUT SIGNAL VOLTAGE (mVrms)
9.0-
~
~ 8.6
FIGURE 6 - REGULATED VOLTAGE versus SUPPLY VOLTAGE
ac : w
c:I
~ 8.0
0 > c ~ 7.6
:3
:::>
~
_/"'
I
7 If
7.0
j
_J
7.0 8.0 9.0 10 11 12 13 14 15 16 17
SUPPLY VOLTAGE (VOLTS)
FIGURE 7 - DETECTOR TRANSFER CHARACTERISTIC
2.5
2.0 c;; ~ 1.5 > 0
1.0
az: 0.5
w
(!)
<! ~
~ -0.5
~ -1.0
gl-
-1.5
-v
--- p
~
~
__,.v
I L V= 12 V
-
~ Input= 1.0 mVrms
-2.0
-2.5 10.45 10.5 10.55 10.6 10. 65 10.7 10.75 10.8 10.85 10.9 10.95
FREQUENCY (MHz)
·
7-91
MCi356P
RF
Amplifier
FIGURE 8 -TYPICAL FM RADIO RECEIVER BLOCK DIAGRAM USING MC1356P
Mixer
IF
MC1350 Amplifier
r - - - - - - MC1356P - - ,
Regulated
I Regulator
r----+~u Voltage
I
(8 Vdc, 20 mA max)
I
I Limiter
- - - - - - 1 Oscillator
AFC
FIGURE 9 - MC1356P TEST CIRCUIT SCHEMATIC
·
4n--------------1
60--------------+--4-11--~l----41.+--+---.~--'---......- . + - - - l - - - i l - - - - - - + - . , . . . . . . . . .
50--------------+--+i--f-'VV'v+--+---+-~~-+--+--+-f
7-92
ORDERING INFORMATION
Device
MC1357P MC1357PO
Temperature Range
0°c to +75°C 0°c to +75°C
Package
Plastic DIP Plastic
MC1357
TV SOUND IF OR FM If AMPLIFIER
WITH QUADRATURE DETECTOR
· A Direct Replacement for the ULN2111A · Greatly Simplified FM Demodulator Alignment
· Excellent Performance at Vee= 8.0 Vdc
IF AMPLIFIER AND QUADRATURE
DETECTOR
SILICON MONOLITHIC INTEGRATED Cl RCUIT
· I P SUFFIX
-
. . .PLASTIC PACKAGE CASE 646
~]~~]
PO SUFFIX
PLASTIC PACKAGE CASE 647
+ TSOµF
i
O.lµF
I
!J.1 µF
413
e--11. . . . . ._ - - o - 1
INPUT
51
FIGURE 1 -TV TYPICAL APPLICATION CIRCUIT
820
+22 v
Cl Ll
3.0 pF
10 MC1316
· 5iiFi
150µF 1611
Typical Performance: 2 Watts Output
2% Distortion 250 µV Sensitivity (3 dB Lim.)
Cl= 120pF L1=14µH RI =20kn 0=30
7-93
MC1357
MAXIMUM RATINGS (TA= +25°C unless otherwise noted)
Polll.'er Supply Voltage
Rating
Input Voltage (Pin 4)
Power Dissipation (Package Limitation) · Plastic Packages Cerate above TA = +25°c
Operating Temperature R~nge (Ambient)
Storage Temperature Range
Value 16 3.5 625
5.0 0 to +75 -65 to +150
Unit Vdc v:..Q.. mW
mW!°e oe oc
II
ELECTRICAL CHARACTERISTICS (Vee= 12 Ydc, TA= +25°C unless otherwi5e noted.)
Characteristic Drain Current
Amplifier Input Reference Voltage Detector Input Reference Voltage Amplifier High Level Output Voltage Amplifier Low Level Output Voltage Detector Output Voltage
Amplifier Input Resistance Amplifier Input Capacitance Detector Input Resistance Detector Input Capacitance Amplifier Output Resistance Detector Output Resistance De-Emphasis Resistance
Vee= 8 v Vee= 12v,
Vee= av
V...c.c..= 12V
Pin
Min
T.ni_
13
10
12
-
15
6
-
1.,45.
2
-
3.6~ ..
10
1.25
.l.45
9
-
0.145
1
-
3.7
-
5.4
4
-
5.0
4
-
11
12
-
70
12
-
2.7
10
-
60
1
-
200
14
-
8.8
Max
19 _2.t
-
-
1.65
0.2
-
-
-
-
-
-
-
Units mA
Vdc Vdc Vdc Vdc Vdc
kn pF kn pF ohms ohms kn.
DYNAMIC CHARACTERISTl,CS (FM Modulation"Freq. = 1.0 kHz, Source Resistance= 50 ohms, TA= +25°C for all tests.)
(Vee= 12 Vdc, f0 = 4.5 MHz, ~f = ±25 kHz, Peak Separation= 150 kHz)
Characteristics
Pin
Min
AlllQ!ifier VolY!.!l..e Gain.lV..in.~ 50..H.VJ.rmtll AM Rejection* (Vin= 10 mV[rms] I ln..Q_ut Limitif!S..Threshold VolY!.!l..e Recovered Audio Ou!Q.ut Volt~ (VJn = 10 mV [rms] I
10
-
1
-
4
-
1
-
Output Distortion (V_in_ = 10 mV[rms] I
1
-
= (Vee= 12 Vdc, f 0 = 5.5 MHz, ~f = ±50 kHz, Peak Separa.tion 260 kHz) ·
Typ
60 36 250 0.72 3
Max
Units
-
dB
-
dB
-
..H.V(rmsl
-
V(rmsl
-
%
Am~ifier Voltage Gain (V_in_S 50µV[rms] I AM Rej_ection* (Vm. = 10 mVlrms] I I'!Q_ut Limitif!S..Threshold VoltlJ!m! Recovered Audio Output Voltage (V_m= 10 mV[.rms] I Output Distortion (Vin= 10 mV[rms] I
10
-
60
-
dB
1
-
40
-
dB
4
-
250
-
~V(rms)
1
-
1.2
-
V(rms)
1
-
5
-
%
(Vee= 8.0 Vdc, f 0 = 10.7 MHz, ~f = ±75 kHz, Peak Separation= 550 kHz)
Amplifier Voltl!l,e Gain (Via.~ 50 µVlrms]J AM Rej_ection* (Vm. = 10 mV_lrmtll l'!Q.ut Limitil}g_ Threshold Vol~ Recovered Audio Output Vol~e (V_m = 10 mV[rms]) Output Distortion (VJn = 10 mV[rms])
10
-
53..
-
dB
1
-
37
-
dB
4
-
600
-
..H.V.lrm~
1
-
0.30
-
V(rms)
1
-
1.4
-
%
(Vee= 12 Vdc, f0 = 10.1 MHz, ~f = ±75 kHz, Peak Separation= 550 kHz)
Am_Qlifier Volt~e Gain (V;n f;; 50gV[rmsl l
'
10
-
AM Rejection* (VJn.= 10 mV[rms]_)
1
-
10.Ql!t Limiting. Threshold Voltcige
4
-
Recovered Audio Ou!Qut VoltllQe (Vin= 10 mV(rms] I
1
-
Output Distortion (V_in_ = 10 mV[rms])
1
-
53
-
dB
45
-
dB
600
-
µV(rms)
0.48
-
V(rms)
1.4
-
%
0 100% FM, 30% AM Modulation
7-94
MC1357
TYPICAL CHARACTERISTICS
(Vee=, 12 V, TA= +25°C unless otherwise noted)
(fo = 4.5 MHz)
1 (Use Test Circuit of Figure 13)
(fo = 5.5 MHz)
FIGURE 2 - AM REJECTION
FIGURE 3 - AM REJECTION
60
llli
50
~
<XI
"z '
0
~
~
:;:
<
u['
40
I'
30
v ~ -
...
.,...
1..V
z y
v ~v
20
REF SIGNAL INPUT
-·-+-
' ' (Pin 10) .,... t"'
':i.. t-+-+"'
.r- J.,...1_L17'
~EFSIGNAL INPUT
(Pin 9)-+-
100% FM, 30% AM
(1 =11'11ill
10
111
0.05 0.1 0.2
0.5 1.0 2.0
5.0 10 20
50
10L...L..L.LLl....---L--L_,L...L...L..L.LL'-----'--'_,l..............L.LI.'-----'--'...........
0.05 0.1 0.2
0.5 1.0 2.0
5.0 10 20
50
INPUT VOLTAGE (mV[rms))
INPUT VOLTAGE'(mV [rms))
FIGURE 4 - DETECTED AUDIO OUTPUT
1.0
'o.9
0.8
0. 7
§o.s ~0.5
C~l 0.4 ~ 0.3
00..21~
vV
' 1"J
;z_1
REF SIGNAL INPUT (PIN 9) ±25kHz DEVIATION
0 0.04 0.1
I
0.4
1.0
4.0
10
40
INPUT VOLTAGE (mV[rms))
FIGURE 6 - DE!ECTOR TRANSFER CHARACTERl.STIC
, 4.58 MHz
I ·~
1.3
] 1.2
!'.'.. w 1. 1
Cl
~ 1.0
0
> 0.9
I-
=> ~ 0.8
~ 0.7
Ci :<:>
0.6
~ 0.5
8~ 0.4
0.3 0.02
FIGURE 5 - DETECTED AUDIO OUTPUT
v JI
17
J IT -
REF SIGNAL INPUT (PIN 9)
:
r/_
)
7
v 7
0.1 0.2
±50 kHz DEVIATION
]Il
llll
1.0 2.0
10 20
INPUT VOLTAGE (mV [rms))
·
FIGURE 7 - DETECTOR TRANSFER CHARACTERISTIC.
lliiiiiiil!!
~ 4.50 MHz
'~M4.42 MHz
C2 24
I!
~
7-95
MC1357
TYPICAL CHARACTERISTICS (continued) (f0 = 10.7 MHz, TA= +25°C unless otherwise noted.)
(Use Test Circuit of Figure 13) · FIGURE g -·AFC VOLTAGE DRIFT
FIGU.RE 8 - AM REJECTION
(1.0mV INPUT CARRIER@ 10.7 MHz)
50
~
2:
0
~
~
40
z
zL~ r' t--
-.......
.....
,... ~ ~
30 iL'
~1~
100"/o FM, 30% AM
20
121 Vee} t-
~
a'~
~
::;: <
10
0
0.5
2.0
5.0 10 20
50 100 200 500
INPUT VOLTAGE (mV[rms))
::::: 600
>§ 400
.§ ~ 200
i::':
~ 1.00
I-
ii: 60 ~
0 40
0
§
< 20
w 0
~ 10
~
0
6.0
0.01 0.02
ill
Lill J.
u
Lil
1-f'f
v vcc = 12 ~ IT~I )"I 8
L II
±75 kHz DEVIATION=
rLL
~
v ~
li
0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
INPUT SIGNAL VOLTAGE (mV[rms))
II
FIGURE 10 - LIMITING
1.05
1.04
t.>
0
"'+''
1.03
0 I-
F ~~
1.02 1.01
~-+--+---+--.,...~I "'-~ -+----+--+---1--1----1
y ~ 1.00
DC LEVEL= 5.36 V@ +25°C
~ 0.99 ,___ _..f7__,._.._ ___..___.,___INPUT CARRIER= 1.0mV-t---
w
A
Vee= 12 Vdc
~ 0.981-7-....+---+---+---ll-----..---+---+---+---I
~ 0.9717
0.96 t---+--+---+---+---+----+--+---+---11----1 0.95 .___..___..___...___ _.___ __.__ _.__ __,__ __._ __.._____.
-30 -10 +10 +30 +50 +70 +90 +110 +130 +150 +170
AMBIENT TEMPERATURE (OC)
FIGURE 11 - SIGNAL-TO-NOISE RATIO 100 r----r--.-r-r-r-11..,.,il-.----..----.--.-r-r-M"TT"--.---.--,-,-.-.-.-.,
80 1----+--+--+-++J+Hll+---+--+--+-+-+++++----+---+-+-+++i+i
~
0
l\.f = 25 kHz
t - - + - Mod f =1.0 kHz-t--+-t-++++++---+-t-t-+-++1-ti
j::
vcc ~ 60 ~--+--+--H-+-t-++1---+-+-+-+-+.-!-++I'--
= ~ 2 +-
~
I~ +--~l-1-+
6 '.::;
40!---+--+--H-+-t-+!+l:-::::~~~~-L...O..!--++-f-+tt+---t-8-+-
~
C!l
ii5
0 ~, 0.01 0.02 0.05 0.1 0.2
0.5 1.0 2.0
5.0 10
INPUT SIGNAL VOLTAGE (mV)
FIGURE 12- DETECTOR TRANSFER CHARACTERISTIC +1.5
g +1.0
~/ +0.5
w c::>
~
> 0 ~ -0.5
~ -1.0
10.5 10.55 10.6 · 10.66 10.1 10.75 10.8 10.85' 10.9· 10.95 FREQUENCY (MHz)
INPUT
·1
0.1 µF
FIGURE 13- TEST CIRCUIT
vcc
Cl
* C2 isconnectedtoPin9
unless otherwise noted.
L1
50
OUl 2k C3
7-96
MC1357
0 = 20@ 10.7 MHz *L = 1.5 - 3.0µH
**5 POLE FILTER, TRW #25579 OR EQUIV
IO.lµF
FIGURE 14- FM RADIO TYPICAL APPLICATION CIRCUIT + 12V
50!2 INPUT
0.1 µF
AUDIO OUTPUT
Note 1: Information shown in Figures 15, 16, and 17 was obtained
using the circuit of Figure 14.
Note 2: Optional input to the quadrature coil may be from either
pin 9 or pin 10 in the applications shown. Pin 9 has commonly been used on this type of part to avoid overload with various tuning techniques. For this reason, pin 9 is used in tests on the preceding pages (except as noted). However, a significant improvement of limiting sensitivity can be obtained using pin 10, see Figure 17, and no overload problems have been incurred with this tuned circuit configuration.
FIGUR!: 16 - SIGNAL-TO-NOISE RATIO
REF SIGNAL INPUT (Pin 10)
.A7iF ~o 60 L-LJ_Ud~.:..:..:.,.tJ3:EI tT=n=Et=i=Ei~
_11 ~i== 50v
REF SIGNAL INPUT (Pin 9)
~ /17'
'.:; v 6 40t--.~~+-+-l--+-+-+-t-+-H-~+--l--l--+--+-+-++-f.-H
~
1---t~+-+-l---t--t-+-t-+-1-+-~-t--1--t--+--+-+-++-f.-H
<.::I ~ 30t---t~+-+-l---t--t-+-t-+-H-~+--t--t--+--+-+-++-f.-H
1000 INPUT SIGNAL VOLTAGE (iiV[rms])
FIGURE 15 - OUTPUT DISTORTION
I\
z
0
~
0
~
NREF11G~~fl [\
INPUT
REF SIGNAL
I \ f-(Pin 10) ~ INPUT (Pin 9)
Ci
u
2
0
~
<(
:i::
...J
<(
lo -
I-
INPUT SIGNAL VOLTAGE (µV[rms])
FIGURE 17 - RECOVERED AUDIO OUTPUT
~ 1000
> § 900
.L5LJ 800
<.::I
<(
~ ~00
--- >0 600
I-
::>
~ 500
::>
g 0
0
400
REF SIGNAL INPUT (Pin 10)
' j./"'
j {..!
REF SIGNAL INPUT (Pin 9) ~
300
<(
~ 200
..YF
[:7
~> 100 v L 0
10
30
100
300
1000
INPUT SIGNAL VOLTAGE (µV(rms])
·
7-97
MC1357
FIGURE 18 - CIRCUIT SCHEMATIC
INPUT SIGNAL VOLTAGE (mV)
12
13
8.8 k
200 200
' - - - - - + - -0 14
5k
4k
500
2k
500
2k 500
10
11
·
7-98
ORDERING INFORMATION
Device
MC1358P MC1358PQ
Temperature Range
-20"C to +75°C -20°C to +75°C
Package
Plastic DIP Plastic
MC1358
TV SOUND IF AMPLIFIER
... a versatile monolithic device incorporating IF limiting, detection, electronic attenuation, audio amplifier, and audio driver capabilities.
· Direct Replacement for the CA3065
· Differential Peak Detector Requiring a Single Tuned·Circuit
· Electronic Attenuator Replaces Conventional ac Volume
Control - Range> 60 dB
·
· Excellent AM Rejection@ 4.5 and 5.5 MHz
· High Stability
· Low Harmonic Distortion
· Audio Drive Capability - 6.0 mAp·p
· Minimum Undesirable Output Signal@ Maximum Attenuation
IF AMPLIFIER, LIMITER, FM DETECTOR, AUDIO DRIVER,
ELECTRONIC ATTENUATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFI)( PLASTIC PACKAGE
CASE 646
PO SUFFIX PLASTIC PACKAGE
CASE 647
FIGURE 1 - TYPICAL TV APPLICATION CIRCUIT
vcc = 24 v
Rs
390 1/2W
NC 11
50kn
DC VOLUME CONTROL!
SOU NO
TRANSFORMER 2
- - 4i~~~z Cl
f
L2
MC1358P,PO
10.0lµF
'= OE·EMPHASIS
10
0.05µFI_
·u = 16 µH NOMINAL, 50 D(UNLOAOEO);;.
Cl ·nd L2 component values are to be selected at the discretion of the designer.
·
7-99 -
MC1358
·
MAXIMUM RATINGS (TA = +25°C unless otherwise noted)
Ra~i'!i_ Input Signal Voltage (Pins 1 and 2) Power Supply Current Power Dissipation (Package Limitation)
Plastic Packages Derate above TA = +25°C
Operating Temperature Range (Ambient) Storage Temperature Range
Value ±3.0
50
625 5.0 -20 to +75 -65 to +15Q
Unit Vdc mA
mW
mw1°c
oc Oc
ELECTRICAL CHARACTERISTICS (Vee= 24 Vdc, TA= +25°c unless otherwise noted).
. Characteristic
Regulated Voltage DC Supply Current (v+ = 9 Vdc, R_s_ = Ol Quiescent Output Voltage
Pin
Min
l'.YI!
5
10.3
11
5
10
16
12
-
5.1
DYNAMIC CHARACTERISTICS (Vee= 24 Vdc, TA= +25°c unless otherwise noted).
Characteristic
Min
IF AMPLIFIER AND DETECTOR
f0 = 4.5 MHz, Af = ±25 kHz
Al\l1 Rejection* (Vin= 10 mV [rms] l
40
Input Limiting Threshold Voltage
-
Recovered Audio Output Voltage (Vin= 10 mV[rms])
0.5
Ou!£.1.ft Distortion (VJn. = 10 mV [rms])
-
- ·o= 55MH Z, Af-±50kHz
AM Rejection* (Vin= 10 mV [rms])
40
Input Limiting Threshold Voltage
-
Recovered' Audio Output .Voltll!J0 (Vin= 10 mV [rms])
0.5
Output Distortion (Vin= 10. mV [rms])
-
Input Impedance Components (f = 4.51\11Hz, measurement between pins 1 and 2)
Parallel Input Resistance
-
Parallel Input Capacitance
-
Output Impedance Components (f = 4.5 MHz, measurement between pin 9 and GND)
Parallel Output Resistance
-
Parallel Output Capacitance
-
Outgut Resistance, Detector
Pin 7
-
Pin 8
-
ATTENUATOR
Volume Reduction Range (See Figure 8)
-50
(de Volume Control = oo)
Maximum Undesirable Signal (See Note 1)
-
(de Volume Control= oo)
AUDIO AMPLIFIER
Voltage Gain
17.5.
(Vin= 0.1 V(rms), f = 400 Hi)
Total Harmonic Distortion
-
(V0 = 2.0 V(rms), f = 400 Hz)
Output Voltage
2.0
(THO= 5%, f = 400 Hz)
Input Resist11nce (f = 400 Hz)
-
Output Resistance (f = 400 Hz)
-
,,
0 100% FM, _30% AM Modulation.
'
Note. 1. Undesirable signal is measured at pin 8 when volume control is set for minimum output.
Max 12.2 24
-
Typ
51
-
200
400
0.70
-
0.4
2.0
53
-
200
400
0.91
-
0.9
-
17
-
4.0
-
3.25
-
3.1
-
7.5
-
250
:-
-
-
0.07
1.0
20
-
2.0
-
3.0
-
70
-
270
~
-
7-100
Unit Vdc mA Vdc
Unit
dB µV(rms) V(rmsl
% dB µV(rms) V(rms) %
kn pF
kn pF
kn n
dB
mV
dB
%
V(rms)
kn n
,'
MC1358
TY_PICAL CHARACTERISTICS
(Vee= 24 Vdc, TA= +25°e unless otherwise noted)
(f0 =4.5 MHz)
(f0 = 5.5 MHz)
FIGURE 2 - AM REJECTION 60
FIGURE 3 - AM REJECTION 60
50
~
z 40
0
~
~ 30
::;;
< 20
y
... v / 17"
V'
100% FM, 30% AM
v
,...
50
~
CCI
z 40
0
~ 30
:;;;
<
fJ
,,rj ~
v .J'
100% FM, 30% AM
20
10 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
INPUT VOLTAGE (mV[rms])
10
0.05 ' 0.1 0.2
0.5 1.0 2.0
5.Q 10 20
50
INPUT VOLTAGE (mV[rms])
FIGURE 4 - DETECTED AUDIO OUTPUT
1000
800
>.s
~ 600
5
0
~ 400
:;;)
<
200 ""p
lY
lZ
j
±25 kHz DEVIATION
L
0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
INPUT VOLTAGE (mV[rms])
FIGURE 6- IFAMPLIFIER AND DETECTOR THO
o.._...~...,._......,,.,,__.._......_...u..i..u..~_...__.-1....L..1...u..u....~...1-...J...-1-1
0.05 0.1 0.2 0.5
1.0 2.0
5.0 10 20
50
INPUT VOLTAGE (mV[rms])
FIGURE 5 - DETECTED AUDIO OUTPUT
1000
y
800
>
E
;: 600
i...t.
:;;) 0
11
1
i · ±50 kHz DEVIATION
0 400 0
y
:;;)
<
y rJ
200
0
0.05 0.1 0.2
0.5 1.0 2.0
5.0 10 20
50
INPUT VOLTAGE (mV[rms])
FIGURE 7 - IF AMPLIFIER AND DETECTOR THO ., 2.5
~
~ 2.0
j:: I\
0:::
0
~
1.5
j\
;c.z.> :·
0
~ 1.0
:<_:c, b.<... 0.5
±50 kHz DEVIATION
1"'
Mod f =1kHz
0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
INPUT VOLTAGE {mV[rms])
·
7-101
TYPICAL CHARACTE~ISTICS (continued)
·
FIGURE 8-GAIN REDUCTION OF ATTENUATOR 140
120
~ 100
z
0
~
80
::i
sffi 60
40
20
0 1.0 2.0
~... .+--
~
v I
" ~ 5.0 10 20
50 100 200
OCVOLUMECONTROL~OHM~
500 1000
5.0
~ z 4.0
0
~
0
!;; 3.0 i5
z(.)
~ 2.0 :<c
g...J 1.0
I-
0 0.05
FIGURE 9-AUDIO AMPLIFIER THO
f =400 Hz
~
~
lL L
i,..J.-~
0.1
0.2
0.5
1.0
2.0 3.0 5.0
OUTPUT VOLTAGE (VOLTS[rms])
100
90
80
... 70
CD
z 60
~< 50
tll
~< 40 §! 30
20
10 0 0.1
FIGURE 10- IF FREQUENCY RESPONSE
~ ~
0.2
0.5
1.0
2.0
5.0
10
FREQUENCY (MHz)
FIGURE 12 - AM REJECTION, DETECTED AUDIO, THO, ATTENUATION TEST CIRCUIT
Vee= 24v
WAVE ANALYZER (HEWLETT-PAC.KARO
TYPE302A DR EOUIVALENTI
UNIVERTER (BOONTON TYPE207H OR EQUIVALENT)
AM·FM GENERATOR (BOONTON TYPE202H OR EOUIVALENTI
51
0.1.1
l1=10-16µH O(unloaded)>50
DISTORTION ANALYZER (HEWLETTPACKARD TYPE334A
OR EQUIVALENT)
Pins 11, 12, 13, 14 no connection.
FIGURE 11 - IF F.REQUENCY RESPONSE TEST CIRCUIT
RF GENERATOR
6 (HEWi~::;; ~KARD 1---11--__,-,,__;,..j OR EQUIVALENT) 51
so.FI _ _ _
p;ns6,7,8, 10, 11, 12, 13, 14noconnectioR.
RF VOLTMETER
!BOONTON TYPE 91-C OR EQUIVALENT)
.
FIGURE 13 - AUDIO VOLTAG'E GAIN, , AUDIO THO TEST CIRCUIT
AUDIO GENERATOR (HEATH TYPE 1G·72
OR EQUIVALENT)
OISTDRTION ANALYZER (HEWLETT· PACKARD TYPE334A
OR EQUIVAHNT)
RMS VOLTMETER (BALLANTINE TYPE320
OR EQUIVALENT)
7-102
MC1358
FIGURE 14 - CIRCUIT SCHEMATIC
r - - - - - - - - - - - - - - R-EG-UL-A-TED- P-OW-ER-SU-PP-L-Y -- - -· - - - ·- - ---4
1
I
1k
I
I
I
I
I
GND
31
I
1I ------------
ELECTRONIC ATTENUATOR
BUFFER
11
11
II
SOUND IF~·
-- - - - - -- INPUT I CY.--L-------------------------_-_,....._-_--_.,-._-_-_-_-_-_~_
r---- --- - - - - - - - ---- - - --- - IF AMPLIFIER LIMITER --- ----
11 11-
11
-- I
I
1
I Bk
11
I
I I
11
11
11
,1
l1k
,,
,1
I I I
II
1 I
150
1,
1 I
:1
::
ii
11
::
11
· :
---' L - - - - - - - - - - - - - - - - _J L ______ _J
AUDIO INPUT
14
':" TONE 13
CONTROL
AUDIO AMPLIFIER
AUDIO· 12 . OUTPUT
DETECTOR
·
7-103
ORDERING 'INFORMATION
Device MC1364P
Temperature Range 0°c to +75°C
Package Plastic DIP
TV AUTOMATIC FREQUENCY CONTROL
· High Gain Amplifier - 18 mV Input for Full Output · Direct Replacement for the CA3064 · Also Availabl~ in the 14-Lead Dual In-Line Package
MC1364
AUTOMATIC FREQUENCY CONTROL.
SILICON MONOLITHIC INTEGRATED CIRCUIT
FIGURE 1 - TYPICAL APPLICATION CIRCUIT
10 k 3W
P SUFFIX CASE 646 PLASTIC PACKAGE
82 pF
FROM 3rd VIDEO IF AMPLIFIER
4~.~~~THz ~t-------1t--1~2-t
0.001 µF
l 0.00lµF
5.6 pF
l
14
1 k
t'I 0.001 µF 1 k
See page 3 of this specification for Coil Data (L 1, L2, L3).
AFC OUTPUTS
Circuit diagrams utilizing Motorola products are included as a ·means of .illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes .is not necessarily given. The information has been carefully checked and
is believed to b.e entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the pat1>nt rights of Motorola Inc..or others.
7-104
MC1364
MAXIMUM RATINGS (TA= +25°C unless otherwise noted.)
Rating
:
Input Signal Voltage (Pin 12 to 14)
Output Collector Voltage (Pins 3 and 14)
Power Dissipation (Package Limitation) Derate above TA = +25°C
Operating Temperature Range
Storage Temperature Range
MC1364P +2.0, -10
20 625 5.0 0 to +75 -65 to +125
Unit Vdc Volts mW mW/°C oc oc
ELECTRICAL CHARACTERISTICS (Vee= +30 Vdc, TA= +25°c, see Test Circuit of Figure 4 unless otherwise noted.)
Characteristic Total Device Dissipation Total Supply Current Current Drain, Total
(Reduce Vee so that V10 = 10.5 Vdc)
Zener Regulating Voltage
Quiescent Current to Pin .3 Quiescent Voltage at Pin 5 or Pin 8 Output Offset Voltage\Pinotot>in"""ITT
Min 4.0
10.9 1.0 5.0 -1.0
Typ 140 12 6.5
11.8 2.0 6.6 0
Max
-
g])
12.8 4.0
8.o
+1.0
Unit m--W mA mA
v
rriA
-v v
DESIGN PARAMETERS, TYPICAL VALUES (Vee= +30 Vdc, Rs= 1.5 k, f = 45.75 MHz)
Parameter Input Admittance Reverse Transfer Admittance Forwa·rd Transfer Admittance Output Admittance (Pin 3)
Symbol Y11 Yf2 Y21 Y22
Typ 0.4+ j1 0 + j3.4 110 + j140 0.02 + j1
Unit mm ho µmho m m hos mm ho
TYPICAL CHARACTERISTICS
(See Test Circuit of Figure 2)
FIGURE 2 - TYPICAL NARROW BAND DYNAMIC CHARACTERISTICS
FIGURE 3 - TYPICAL WIDE BAND DYNAMIC CHARACTERISTICS
16
Vin~ 18 mV(~MS)
14
~ ~
12 r----t--
10
R a <~ 8.0
v ~> 6.0
v v" _tg- 4.0
- 2.0
L
J_...----'
.---~
VPin5
~
~1'--
0 45.71 4o.72 45.73 45.74 45.75 45.76 45.77 45.78 45.79
INPUT FREQUENCY (MHz)
V;n = 18 mV(RMS)
44.75
45.75
1.NPUT FREQUENCY (MHz)
47.75
·
@ MOTOROLA SenJiconductor Products Inc. _________,
7-105
MC1364
·
FIGURE 4 - TEST CIRCUIT
Rs= 1.5 k
Vee
.--,--~..-..~--.~~~-'Vv.r-~~~~·+30V
0.001
L1
µFl
68
pf
COIL DATA FOR DISCRIMINATOR WINDINGS FOR FIGURES 1 AND 4
L1 - Discriminator Primary: 3-1 /Gturns; AWG #20 enamel-covered wire - close-wound, at bottom of coil form. Inductance of
L 1 =0.165 µH; 0 0 = 120 at f0 =45.75 MHz.
Start winding at Terminal #6; finish at Terminal #1. See Notes below.
L2 - Tertiary Windings: '2-1/6 turns; AWG #20 enamel-covered wire - close-wound over bottom end of L 1. Start winding at Terminal #3; finish at Terminal #4. See . Notes below.
L3 - Discriminator Secondary: 3-1/2 turns; AWG #20 enamel-
covered wire, center-tapped, space wound at bottom of coil
form.
1 k
* 5
~µF0 001 1--~~~~~~~_:-0-_,,,.,1~°k·_00_1_µ,F,.___o.u~~~TS
14
J 0.001 µF
'-
Start winding at Terminal #2; finish at Terminal #5, connect center tap to Terminal #7. See Notes below.
Notes: 1. Coil Forms; Cylindrical; -0.30" Dia. Max. 2. Tuning Core: 0.250" Dia. x 0.37" Length. Material: Carbinal J or equivalent. 3. Coil Form Base: See drawing below. 4. End of coil nearest terminal board to be designated the
winding start end.
Rs =vOee.o- 1u1.-8 ohms
1:·:·j 5. Mount the coils 3/4" apart, center to center.
(Bottom view of coil form)
FIGURE 5 - CIRCUIT SCHEMATIC
100 2k
5 k 900
500
@ MOTOROLA Semiconductor Products Inc' ________.
7-106
MC1364
FIGURE 6-PRINTED CIRCUIT BOARD AND PARTS ARRANGEMENT (Copper Side)
+30 v
OUTPUT
·
® MOTOROLA Semiconductor Products Inc.
7-107
·
/ ORDERING INFORMATION
Device · MC1375P
Temperature Range -40°C to +85°C
Package Plastic DIP
MC1375P
FM IF AMPLIFIER, LIMITER, FM DETECTOR,
.
.AND AUDIO PREAMPLIFIER
... a monolithic device designed for use in solid-state FM receivers. · Excellent Sensitivity: Input Limiting Voltage (Knee)= 250µV
typical · Excellent AM Rejection: 55 dB typical at 10.7 MHz · Internal Zener Diode Regulation for the IF Amplifier Section · Low Harmonic Distortion · Differential Peak Detection: Permits Simplified Single-Coil Tuning · Audio Preamplifier Voltage Gain: 21 dB typical · Minimum Number of External Parts Required · Direct Replacement for CA3075
FM IF AMPLIFIER, LIMITER, FM DETECTOR
AND AUDW PREAMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 646
IO.OlµF
FIGURE 1 - TYPICAL FM APPLICATION
+12 v
100
l 0.olµF
10.7MHz INPUT Rs= 330.Q
510
430
*10.7 MHz Filter; Vernitron FM-4 or equivalent **L = 6.0 µH nom
Adjust Rfor llL "' 55
12
'""I 6.8 k
Pins not shown are not connected.
7-108·
AUDIO OUTPUT
MC1375P
MAXIMUM RATINGS ITA= +25°c unless otherwise noted.I
Rating
Power Supply Voltage Power Dissipation (Package Limitation)
Plastic Package Cerate above TA= +2s°C Operating Temperature Range Storage Temperature Range
Value +16
625 5.0 -40 to +85 -65 to +150
Unit Vdc
mW mW/°C
Oc oc
ELECTRICAL CHARACTERISTICS (Vee= +11.2 Vdc, Vee= Gnd, TA=_ +25°C unless otherwise noted.)
Characteristic Current Drain DC voltage at pin 8.(Vin = 01 Amplifier Input Resistance (Vin= 20 mV, 10.7 MHz) Amplifier Input Capacitance (Vin= 20 mV, 10.7 MHz)
Min
Typ
Max
-
19,
29
-
5.4
-
-
5.0
-
-
5.0
-
-Unit mA Vdc
kn
pF
DYNAMIC CHARACTERISTICS (Vee= +11.2 Vdc, Vee= Gnd, fniod = 1.0 kHz.TA= +25°c unless otherwise noted.)
Characteristics
Min
Typ
Max
Unit
IF AMPLIFIER AND DETECTOR (to= 10.7 MHz, At=± 75 kHz)
AM Rejection· (Vin= 10 mV)
-
Input Limiting Threshold Voltage
-
, Reco'vered Audio Output Voltage
500
Output Distortion (Vin= 10 mV[RMS))
-
I Signal-to-Noise Ratio (Vin = 1.0 mVI
-
AUDIO AMPLIFIER (Audio Test Frequency; t = 1.0 kHz)
Voltage Gain (Vin= 100 mV)
-
Total Harmonic Distortion (Vo= 2.0 V[RMS))
-
Input Impedance (pin 14)'
-
55 250 625 0.75 68
21 1.2 100
-
dB
600
µV(RMS)
-
mV(RMS)
-
%
-
dB
-
dB
-
%
-
kn
*100% FM, 30% AM Signal
·
7-l09
MC1375P
·
TYPICAL CHARACTERISTICS
(All measurements at TA= +25°C, Vee= 11.2 V; see test circuits of Figure 9 and 10.)
FIGURE 2 - AM REJECTION
FIGURE 3- RECOVERED AUDIO OUTPUT
100
1000
80
C..D.
cz 60
~
~ 40
:IE
c(
20 p
j...
v ~
~
-
1.- .......
_.,,,,..
100% FM, 30%AM
~ 800
>a:
.§.
c0 600
:::>
v
l 7 c(
Q
ffi 400
>
§
a: 200
±75 kHz DEVIATION
00.2
0.5 1.0 2.0
5.0 10 20
50 100 200
INPUT SIGNAL VOLTAGE (mV!RMS])
0
0.2
0.5
1.0
2.0
5.0
10
20
INPUT SIGNAL VOLTAGE (mV[RMSJ)
FIGURE 4 - IF AMPLIFIER AND DETECTOR THO
FIGURE 5 - SIGNAL TO NOISE
~
z 2.0
c
~
0
t;;
.iz.5..
~ 1.0
a:
·.c..(..
t'-,....
:~=
±75 kHz DEVIATION
fmod =1.0 kHz
00.2
0.5 1.0 2.0
5.0 10 20
50 100 200
INPUT SIGNAL VOLTAGE (mV [RMS])
FIGURE 6- AUDIO AMPLIFIER THO 5.0
l
~ 4.0
j::
a:
i~5 3.0 .z...
0
~ 2.0
c(
:.:.J.:.
:~= 1.0
r,............_
f =1.0kHz
. J -!-+""
11
11
y 7
L./
0o.os 0.1
0.2
0.5
1.0
2.0
5.0
OUTPUT SIGNAL VOLTAGE (V [RMS))
~ 60 ~ +-
~ L-7
z
±75 kHz DEVIATION
0 ~ 40;1--+-l-+++H+-~-+--l-+-+-l-l-i--l-l-~-l--l---+--1--1--+-l+l--~
c(
z
(!I
c;;
00.2
0.5 1.0 2.0
5.0 10 20
50 100 200
INPUT SIG,~1',L VOLTAGE (mV[RMS))
~~
FIGURE 7 - CURREl\tl" DRAIN versus SUPPLY VOLTAGE
30
! 26
z
~
y
:: 22
~ a.... 1s
~-
0 1-
14
y
)../
v v v ~-;
8.0
9.0
10
11
12
13
15
POWER SUPPLY VOLTAGE (V de)
7-110
MC1375P
FIGURE 8-CIRCUITSCHEMATIC
FIGURE 9 - AM REJECTION, THO, RECOVERED AUDIO, AND S/N TEST CIRCUIT
FIGURE 10 - AUDIO VOLTAGE GAIN AND 'THO TEST CIRCUIT
II
+1L2Vdc
·l=6.0µHrrnm Adjust R for OL ~ 55
7-111
MC1384
·
Advance Information
5-WATT AUDIO POWER AMPLIFIER
The MC1384 is a monolithic integrated circuit intended for use as a low frequency class B amplifier. It provides 5 watts typical of audio power output at 16 volts and 4 ohms, 4 watts typical at 14.4 volts and 4 ohms, 2 watts typical at 9 volts and 4 ohms, and works with a wide range of supply voltages (4 to 20 volts) .
· Thermal Shutdown · Wide Supply Voltage Range
(4 to 20 Volts) · High Current Capability · "Angel" Power Package
MAXIMUM RATINGS ·
Rating
Symbol
Value
Unit
Supply Voltage
Vee
20
v
Output Peak Current (Non-Repetitive)
lo
3.5
A
Output Current (Repetitive)
lo
2.5
A
- Maximum Junction Temperature
Storage Temperature Range Operating Temperature Range
TJ
150
oc
Tstg
-65 to +150
oc
TA
0 to +70
--o-c
FIGURE 1 -TYPICAL APPLICATION CIRCUIT
5-WATT AUDIO POWER AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
· PQM SUFFIX
PLASTIC PACKAGE CASE 722
PO SUFFIX ,
PLASTIC PACKAGE CASE 722A
PIN CONNECTIONS
R3 100
C9 *0.1µF
R2 100 k
This 11 advance lnfornietion and specification~ are subject to change without notice.
7-112
ORDERING INFORMATION
Device MC1384PQ MC1384PQM
Temperature Range 0 to +10°c Oto +10°c
Package Plastic Plastic
MC1384
ELECTRICAL CHARACTERISTICS IVcc= 14.4 Vdc, AL= 4.0 n, t = 1.0 kHz, TA= 25°C unless otherwise noted,
see Figure 1 test circuit.)
Characteristic
Quiescent Drain Current (ein = 01
Qu~escent Output Voltage lein,:,, 0)
Bias Current
Power Output (10% Distortion) Vee= 16 v Vee= 14.4 v Vee =9.o v
Sensitivity, Input Voltage IPo = 4.0 watts)
Rt= 56 n Rt =.22 n
Input Resistance
Frequency Response (-3.0 dB) C3 =820 pF C3=1500pF
Distortion (P0 = 50 mW to 1.0 WI
Open-Loop Voltage Gain
Closed-Loop Voltage Gain
Equivalent Input Noise (As = 0, Bandpass = 20 Hz to 20 kHz)
Power Supply Rejection Ratio ltripple = 1.0 kHz)
Symbol lo Vo lb Po
ein
fj
ta
d AvoL AvcL
en PSAR
Min
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
l
Typ
Max-
Unit
12
20
mA
7.4
-
v
0.4
--
µ.A
w
5.0
-
4.0
-
2.0
-
mV
50
-
22
-
5.0
-
Mn
Hz
40-20,000
-
40-10,000
-
;
0.4
-
%
80
-
dB
38
-
dB
2.0
-
µ.V
38
-
dB
II
@ MOTOROLA Semiconduc1:or Produc1:s Inc.
7-113
ORDERING INFORMATION
Device MC1385P
Temperature Range -40°C to +85°C
Package Plastic DIP
MC1385
CLASS B AUDIO DRIVER
The MC1385 Class B Audio Driver is ideai for low voltage singlesupply audio driver applications as found in consumer and indus~ trial electronics.
Along with excellent audio reproduction, care has been taken to design in features significant to the automotive radio such as short circuit protection, supply line transient protection (commonly called "load dump"). Because of the current limiting shut down circuit, the requirement for .a large heat sink has been significantly reduced.
· Internal Power Supply Transient Protection · Built-In Programmable Short-Circuit Current Limiting · Reduced Heat Sink Requirement · Excellent Power-Supply Ripple Rejection - 35 dB Typ · Typical Operation from 9.0 Vdc to 16 Vdc · Excellent Sensitivity - 4.0 mV (Typ) for 1 W · 5-Watt Driving Capability
CLASS B AUDIO DRIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 646
II
FIGURE 1 - TYPICAL APPLICATION CIRCUIT
+ 10j..tF/16V
15µF/16V
14.4 Vdc
1000µF116 V
I
MJE2050· or equiv
0.24
1000µF/16 Vdc
+~ MJE2150*
AL
or equiv -::- 3.2
1 k
+ 10µF/16Vi
20 k 2k 0.001 µF
0.24
·For idle current considerations, pbwer transistors used with the MC 1385
driver require VsE(on)@ le= SO mA, 0.65 V-0.69 V, VcE = 5.0 Vdc, Tc= 2s0 c.
7-114
MC1385
MAXIMUM RATINGS (TA = +25°c unless otherwise noted.I
Rating
Value
Power Supply Voltage
· Steady State
25
Transients of 50 ms or less ( 1)
40
Maximum Sink or Source Current
50
Pin 5 or 8
Power Dissipation (Package Limitation)@ TA= 25°C
625
Derate Above +25°c
5.0
Operating Ambient Temperature Range
-40 to +85
Storage Temperature Range
-65 to +150
Unit Vdc
mA
mW mW/°C
oc oc
ELECTRICAL CHARACTERiSTICS IV cc= 14.4 Vdc, RL = 3.2 ohms, t = 1.0 kHz, TA= +25°c unless otherwise noted.I
Characteristic
Voltage Gain (Vin= 10 mVRMS, Vee= 14.4 Vdc, R2 = 160 n, f = 1.0 kHz)
Total Harmonic Distortion (V0 ut=4.0VRMS,R2= 160U,f= 1.0kHzl
Power Supply Overvoltage Shutdown (1) Drain Current Power Output
(THO= 10%)
Input Sensitivity Voltage (Po= 1.0W) -'-
Total Harmonic Distortion (Po= 1.0W).
Output Noise (BW = 50 Hz to 6.0 kHz, Input Shorted)
Figure
Min
Typ
Max
2
400
-
-
2
-
-
5.0
-
-
22
-
2
-
10
-
1
-
6.7
-
1
-
4.0
-
1
-
0.5
-
1
-
2.0
-
Power-Supply Rejection (Ripple= 1.0 V(p-p)@ f = 1.0 kHz)
Input Impedance Efficiency @ 5-Watts Recommended Heat Sink Temperature Coefficient
for Output Device Mounting (Figure 15)
2
-
35
-
-
-
5.0
-
1
-
69
-
1
-
6.0
-
(1) These specifications were developed to meet typical automotive load dump requirements.
Unit Vdc
%
Vdc mA
w
mV(RMS)
%
mV(RMS)
dB
kn %
0 c1w
FIGURE 2 - TEST CIRCUIT
10 µF/50 V 10µF
V ; n : p 1.0µ+F Al. 600
J 470 pF 150 pF
1.0k
+
~':-,_µF
· ..L
_T_ 1
+
.Vout
1601
20 k 0.001 µF 2 .0k
Ill
7-115
MC1385
Cl RCUIT DESCRIPTION The total system is shown in Figure 3. The signal path
consists of two closed-loop blocks: the preamplifier and the output amplifier. This configuration allows improved ripple rejection and a faster turn-on time than with a single closed-loop system..The two principal fault modes of ove.rvoltage and overcurrent are avoided by the "load dump" and "short circuit" blocks respectively. The regylator provides the preamplifier with immunity to the noise injected on the supply line.
FIGURE 3 - SYSTEM BLOCK DIAGRAM
Supply Line
Input 1/C
Short Protection
II
The regulator circuitry is shown in Figure· 5. Noise voltage on the supply line is attenuated by the RC filter network of R1 + H2 and C1. The preamplifier supply line noise is further attenuated by the ratio of R3 to the small
signal impedance of Z1 which is about 40 st. The noise
injected at the base of Sl is determined by the ratio of R14 to the impedance on the base of Sl.
The output impedance of 05-is small compared to C2 and the input impedance of Sl is large, so the impedance at the base of Sl is C2 in parallel with R 15.
The preamplifier is a two stage amplifier with localized feedback. Device 02 provides bias for the first gain stage 03 which is directly coupled to the second gain stage 04. The output device 05 is an emitter follower with feedback provided by R11.
The output amplifier is a differential amplifier driving a Darlington, common-emitter stage.
The short circuit protection_ is provided by 010 and 012 in conjunction with two external resistors. The value of the external resistor is set by the choice of desired output peak current and Equation 1.
VBE(on)010or012
()
RE=
Ip
1
where Ip= desired ·output peak current VsE(on) = 720 mV at 25°C RE= value of current limit resistor
Load dump protection, illustrated in Figure 5, is provided by three zener diodes, Z2, Z3 and Z4 and 09. Wh.en
the supply voltage exceeds the combined breakdown voltage of the three zener diodes (22 V typically) and the turn-on voltage of 09,' the base of 015 and the collector of 011 are ·pulled to the saturation voltage of 09 or less than one volt. This completely turhs off both external discrete devices which places them in a BVcER condition. With R26 across the base-emitter junction of the MJ E2050, the device will remain off and unharmed as long as the transient voltage excursion is below 40 volts.
PERFORMANCE OF PROTECTION CIRCUITS
The MC1385 incorporates shut down circuits to prevent destruction of the MC1385 and outputs. under these conditions.
As was shown in Figure 5, the supply line transient voltage shutdown circuit is a function of zener diodes Z2, Z3, Z4. The circuit shuts down the outputs for voltages on Pin 9 of 22.0 Vdc (typically).
The current limiti~g is adjustable by means of the re·
sistors in the emitter of the MJ~2050 and the collector of the MJE2150. Equation 1 may be used to select these resistors given the limit of peak output current, Ip, desired.
The selection of these resistors and consequently the short circuit current determines the amount of heat sinking required for the output devices. For example, with the resistors selected in the application circuit of Figure 1, ·the Ip is approximately 3.0 A with an average current of ' about 1.1 A. This circuit requires a heat sink of about 6.0oC/watt on the combined output devices to provide short circuit protection at V supply of 14.4 Vdc and TA = 25°C. It is suggested that the user measure the heat being develope·d in the output devices under his required short circuit test to make certa.in the output device T Jmax of 150°C is not being exceeded.
FIGURE 4 - CONVENTIONAL A-LINE FIL TE RING
Automotive
390 µH
Voltage ~ · - ___T __ .. __ . ...!! o CircRuaitdsio
Supply
1 1000µF/1&V
SUPPLY LINE FILTERING (ALTERNATOR WHINE)
Figure 4 represents the conventional method of filtering the automotive supply line.
The combination of the choke and 1000 µF capacitor _ attenuated the voltage transients (primarily alternator whine) on the A-line to a point where they are inaudible at the speaker output. However, the A-line choke represents a bulky, expensive component at a time when reduction of radio size is an important design goal.
Also due to its placement in series with the output devices, the impedance of the choke provides an undesirable voltage drop and therefore a. reduction in audio power output.
Figure 6 illustrates a suggested A-line filtering scheme for use with the MC1385.
Experiments regarding alternator whine indicate that
the. 10 n series resistor an_d the existing 1000 µF A-line
s:
FIGURE 5 - TOTAL SYSTEM SCHEMATIC
n
w ~
0c.0n
- - - - - - - - - - - - - - - MC1385 - - - - - - - - - - - - -
+-0-----+-<> Battery
!
I
I
I
I
I
I
I
--_.'.....!
I
-....!
I
I
I
I
I
I
R'
1000
+13 RL MJE2150 _
R'
-=
J_
i
· R Current Limit Resistors
MC1385
·
FIGURE 6 - SUGGESTED A-LINE FIL TE RING WITH, MC1385
1N4001
dther Radio
..,_._ _...._
__,,i!V'..,......._,.____-<> ~~~:Iv
Circuits
electrolytic are effective in attenuating alternator whine. The diode is included to permit the load dump portion of the 1/C to be connected directly to the Aline and thus remove the time delay associated with the 10 rl/1000 µF circuit. The diode is _necessary if load dump protection is required.
PERFORMANCE AND APPLICATION INFORMATION
The following section covers performance characteristics and application information OIJ the· MC1385/ MJE2050/MJE2150.
Figure 1 illustrates the typical circuit configuration that was used to generate the performance curves and data shown in Figures 7 thru 14. Performance measurements were made at 14.4 V; however, the test circuit in Figure 1 will operate satisfactorily over the automotive voltage range of 9-16 Vdc.
FIGURE 7 -TOTAL HARMONIC DISTORTION versus POWER OUTPUT
10
9.0
1.h ~
z
8.0
t-
-
R
I= L =
3.2
kHz Ohms
'
0
~ 7.0
o>
!;; 6.0
0
z(,,) 5.0
~ 4.0
~ 3.0 ~-' 2.0
0
I- 1.0
0
1.0
2.0
t
I
JJ
f
I
Vee =12.0 Vdc
1
JL
3.0 4.0
l
] Vee= 14.4 Vdc
1
.Y
6,0 8.0 10
POWER OUTPUT (WATTS)
FIGURE 8 - POWER OUTPUT versus SUPPLY VOLTAGE
10.-----.---,---.--,---.--,--~----.
lo L 8.0t
---
t= --+-RL =
3.2
kHz Ohms
+----+---+--......-l-+-V~"---'f------i
~~ 6.o
v~ . L
!:;
TH0=10%~ ~
i;~=5 4.0
......--1'...L.'°.1.v ..Y" ~ THO = 1% -+---t----1
~ 1---'"".'"J..--1
2.01""'"
_ _ _ . o..,_~_.,~~,._~....,..,.~~,.,._~....,..,.~~...,._-_...,
9.0
10
11
12
13
14
15
16
17
POWER SUPPLY VOLTAGE (VOLTS)
FIGURE 9 - POWER OUTPUT versus FREQUENCY@ 10% TOTAL HARMONIC DISTORTION
10
9.0
8.0 c;:; ~ 7.0 ct ~ 6.0
I-
I~- 5.0
::>
I ~ 4.0
a~: 3.0 I
2.0
Lk
~
RL =1-26h~s
Vee= 14.4 Vdc
-r-T""
1.0
0
20
50 100 200 500 1.0 k . 2.0 k 5.0 k 10 k 20 k
FREQUENCY (Hz)
FIGURE 10 - TOTAL HARMONIC DISTORTION versus FREQUENCY@ 1.0 WATT OUTPUT
2.0
~ 1.8
i!5 1.6 ~ 1.4
0
~ 1.2
~ 1.0
0
r- ~ 0.8
ct
~
:; 0.6
g 0.4
I-
0.2
RL1,,3Jo1~s
Vee= 14.4 Vdc
020
50 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k
FREQUENCY (Hz)
7-118
MC1385
FIGURE 11 - POWER OUTPUT versus AMBIENT TEMPERATURE
9.0.------.----..-----.--~--..-----r---r---..--..
8.01----+---+----+---+----+--+----+---l
c;; 1.01-1----:::::::;;~=-;o;;;;;;;;;;;;;t::=--!--1-1-1
5~
~
~ 6.0
~ ~ 5.01----+---+----+---+-----+--+---+-----t
:::> 0
ffi 4.0
~
v~~: J~~~~~ 3.0t---+-
+----+---+----+---+----i
I= lOkHz
2.0t-----+---+----+---+-----+----+----+----i
1 ·~30
+30
+60
+90
AMBIENT TEMPERATURE (OC)
FIGURE 12 - IDLE CURRENT versus AMBIENT TEMPERATURE 1.2
~ 1.1 ~
vcc
1 = 14.4
v
::;
J <(
ho.""-.,
12 Vdc
~
K 0z
~ ~
j:' 1.0
~ .....
B
~ 0.9 !2
.L
1owc
.l
0.8
-3.0
'
OUTPUT DEVICE IDLE CURRENT
TYPICALLY RANGES BETWEEN ----1
10mA-25mA
.l .l l
l
+30
+60
+90
AMBIENT TEMPERATURE (OC)
FIGURE 13 - POWER OUTPUT versus LOAD RESISTANCE @ 10% TOTAL HARMONIC DISTORTION
10.-------.---...---.-----..----r---.---..----.
9.0t------+----+---+---+----+----+----+----<
THO= 10%
i.-:::- 8.0
--
~~
Vee= 14.4vdc+-f = 1.0 kHz
7.01----+-::s:-+---+---+---+---+---+---4
j:' 6.0t----1---"""--+~--f---+--'--+---+---t
.~... 5.01-----+--+I_.-.....,...--+----+---+----+--+----I
....,...,,, 2:a:
~
4 . 0 t - - - - - + - - + - - - + '..... . . . . . . . . _ . - - - - + - - - + - - - - + - - + - - - - 1
~
!2 3.0r----+--+---+---+.::..........:....-. +~--+""'~-+---1
2.or----r--1r---r---r--t---r--1;;;;;;;:-==:l
1.01-----+--+---+---+----+---+---+---4
00
2.0 4.0 6.0 8.0 10
12
14
16
LOAD RESISTANCE (OHMS)
FIGURE 14- POWER SUPPLY REJECTION versus POWER SUPPLY RIPPLE FREQUENCY
m ~
I~
401--~-+-~-t-t-i-::b....,.~....---::__-t-l-+--t--+-+-t-+t-H
~~ 30~--+.....~l....-1=--~ 4f""-~-l--l--+-1-+++---+--l--4--l--l--+-+-l-+I
a:
w
...J
;aa;..:.. 20 t-+- ~N~~1_~~i~~Eo
~
~
t--t- Vee= 14.4 Vdc
+,-+-1-+--+--+--+--+--+-~~H
R_fPLE j_0. ~(~M_T
10
~
1----t-+----t-+-+-i-+-+++----i~+---i~+-+-t-+-++-t
O'----'-"----'-"--...._.__._.._._..____._....___..__..._..._..............,....,
100
200 300 500
1.0 k
2-.0 k 3.0 k 5.0 k
10 k
POWER SUPPLY RIPPLE FREQUENCY (Hz)
FIGURE 15 -CALCULATING TOTAL SURFACE AREA OF FABRICATED HEAT SINK FROM REQUIRED VALUE OF THERMAL RESISTANCE
soo.-------.---.---.--.,--.-.---~-~-..------.
4001-----+---+---t--i--+-+---+-----+-----4
- l1 200
\ I
1-1I- 1/8-IN. THICK SQUARE SHEET, 8RIGHT ALUlMINUM 11
\
C~LIND,RICAL T
~ 150
\
~
HORIZONTAL FINS,
-I
<i'i 1201---__l_--+---+-'Ll.~--i--+8LACK ALUMINUM
-I
~:I: 100
~ ..~N 80 60
~
~ \ I
_}j
L \
v A
\
-\
~I\
(FINS HELD VERTICAL IN TEST)
FLJJ'\ \"' ~ ~
_. 30rVERTICAL FINS, +--+-~1-t---+---+------1
~
BLACK tUMllUM
\ ~
20
~\ ~ CYLORIL
VERTICAL FINS,
~ I\ '
81.0,0_t__ --_-B-_-L~TA_-CK-_A-L~tU~-M_-IN-~U1_M1-+----+-t~L-l+--4t~L-l_+_.-__-_ -\_ ~-+ ---+-----------1i
·
2.0 3.0 4.0 5.0 7.0 10
20
50
THERMAL RESISTANCE (OC/W)
7-119
ORDERING INFORMATION
Device
MC1391P MC1394P
Temperature Range
0°C to +75°C 0°C to +75°C
Package
Plastic DIP Plastic DIP
MC1391P MC1394P
·
TV HORIZONTAL PROCESSOR
... low-level horizontal sections including phase detector; oscillator and pre-driver - a device designed for use in all types of television receivers.
· Internal Shunt Regulator · Preset Hold Control Capability · ±300 Hz Typical Pull-In · Linear Balanced Phase Detector · Variable Output Duty Cycle for Driving Tube or Transistor · Low Thermal Frequency Drift · Small Static Phase Error · Adjustable de Loop Gain · MC1391P - Positive Flyback Inputs · MC1394P - Negative Flyback Inputs
TV HORIZONTAL PROCESSOR
MONOLITHIC SILICON INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 626
Vnonreg
+30 v
FIGURE 1 - TYPICAL APPLICATION CIRCUIT
470
470'
3k
'®"'ICA
+ Rd 2.7 k
Hold
Rel
12 k
0.0068
µF
A'E 2.4 k
:rB
Rx
4k
Ry
3.3 k
10W
Cc +
µF
1µ~
.JL
o
igh oltage ripler
[
8
6
6
MJ105 . or Equiv
MC1391P or
MC1394P·
Rz t
82 k
1.5 k
0.001 µF
3
4
39 k
0.003 µF
15.3:1
MAO
1140
or
Equiv
0.2
µF
5.0µF
1.5
MPS-U04
or Equiv
·MC1394P designed to accept reverse polarity sawtooth at
·4 Pin if sync pulse not derived
from MJ105 collector.
t A z = 6.8 k per 100 V of flyback amplitude.
-20 V Sync This circuit has an oscillator pull-in range of ±300 Hz, a noise bandwidth of 320 Hz, and a damping factor of 0.8.
7-120
MC1391P, MC1394P
MAXIMUM RATINGS (TA= +25°c unle5s otherwise noted.I
Rating
Value
Supply Current
40
Output Voltage
40
Output Current
30
Sync Input Voltage (Pin 3)
5.0
Flyback Input Voltage (Pin 41
5.0
Power Dissipation (Package Limitation)
Plastic Package
625
Derate above TA = +25°C
5.0
Operating Temperature Range (Ambientl
0 to +75
Storage Temperature Range
-65 to +150
Unit mAdc
Vdc mAdc V(p-p) ' V(p-p)
mW mW/°C
oc oc
ELECTRICAL CHARACTERISTICS {TA= +25°C unless otherwise noted.) (See Test Circuit of Figure 2, all switches in position 1.)
Characteristic
Min
Typ
Max
Unit
Regulated Voltage (Pin 6) Supply Current (Pin 6)
8.0
8.6
9.0
\f;dc
-
20
-
mAdc
Collector-Emitter Saturation Voltage (Output Transistor 01 in Figure 6) lie= 20 mA, Pin 1) Vdc
Voltage (Pin 4)
Oscillator Pull-in Range (Adjust RH in Figure 2)
Oscillator Hold-in Range (Adjust RH in Figure 2)
Vdc
-
0.15
0.25
-
2.. 0
-
Vdc
-
±300
-
Hz
-
±900
-
Hz
Static Phase Error (Af = 300 Hz)
µs
-
0.5
-
F-ree-running Frequency-Supply Dependance (S1 in position _2)
'--
Hz/Vdc
-
±3.0
-
Phase Detector Leakage (Pin 5) (All switches in position 2)
Sync Input Voltage (Pin 3)
µA
-
-
±1.0
2.0
-
5.0
V(p-p)
Sawtooth Input Voltage (Pin 4)
1.0
-
3.0
V(p-p)
·
7-121
MC1391P, MC1394P
·
r ...'fg=---2 - 1.0µF
3.3 k
µA
~l ~
-=
+4.0 v
1 6
R_l, 12 k
)'3 k
';. 150k
..7.,
1 k
·Vee +30 V
6800 pF;:;::
-""
r
1 k
"lvM
~
(See Figure 5)
8
~
'"" 2k
TYPICAL CHARACTERISTICS (TA = +25°C unless otherwise noted.)
FIGURE 2 - TEST CIRCUIT
Me1391P or
.Me1394P*
1, I 4 O.Jt'F
J>._
3.3 k
-· - 2 S2
"9 -.....
1
0.1µ.F*
3
.,, --- ...... ~ ,,,
2· S3 If
39 k 0.003 1
µF
2
1- Output
Pulse
+30 v
~
~
1 T
Pulse Generator
...... output = +50 v ·
12 µs
· Pulse Generator Sync Pulse
=-20 v, = 5.0µs, fo
15,750 Hz
·Use -50 V for MC1394P
FIGURE 3 - FREQUENCY versus TEMPERATURE
+30
+20
+10
g 0
1'.; -10 ffi ~ -20 :i:. -30 <1 -40
-50
r - -t-.....
~
- REFERENCE FREQUENCY= 15,750 Hz
S3 in Position 2
f".J
~
~
~
-60
-70
0
10
20
30
40
50
60
70 80
AMBIENT TEMPERATURE (OC)
FIGURE 4 - FREQUENCY DRIFT versus WARM-UP TIME +40
, /J..o-
f
T +10
REFERENCE FREQUENCY=
15, 750Hz j
I 1
30
60
90
120
TIME (s)
FIGURE 5 - MARK-SPACE RATIO
4.75
17"
L 4.5
T T lL 4.25
I
-
- -t - -
to
t
=15,750 Hz
= 63.5 µs
~ ~ 4.0
w
(.!)
v ~ 3.75
0
~ ~ 3.5
>
[ ZI7 3.25
3.0
2.75
L
0
10
20
30
40
50
POSITIVE PULSE WIDTH (µs)
7-122
MC1391P, MC1394P
Oscillator
FIGURE 6 - CIRCUIT SCHEMATIC
4 MC1394P Only
4 MC1391P Only
CIRCUIT OPERATION
The MC1391P and MC1394P contain the oscillator, phase detector and predriver sections needed for a television horizontal APC loop.
The oscillator is an AC type with one pin (Pin 7) used to control the timing. The basic operation can be explained easily. If it is assumed that 07 is initially off, then the capacitor connected from Pin 7 to ground will be charged by an external resistor (Re) connected to Pin 6. As soon as the voltage at Pin 7 exceeds the potential set at the base of 08 by resistors AS and A10, 07 will turn on and 06 will supply base current to 05 and 010. Transistor 010 will set a new, lo~er potential at the base of 08 determined by RS, R9 and R10. Then, transistor 05 will discharge the capacitor through R4 until the base bias of 07 falls below that of 08, at which time 07 will turn off and the cycle repeats.
The sawtooth generated at the base of 04 will appear across R3 and turn. off 03 whenever it exceeds the bias set on Pin 8. By adjusting the potential at Pin 8, the duty cycle (MSR) at the
predriver output pin (Pin 1) can be changed to accommodate either
tube or transistor horizontal output stages. The phase detector is isolated from the remainder of the circuit
by R14 and Z2. The phase detector consists of the comparator 015, 016 and the gated current source 017. Negative going sync pulses at Pin 3 turn off 012 and the current division between 015 and 016 will be determined by the phase relationship of the sync and the sawtooth waveform at Pin 4, which is derived from the horizontal flyback pulse. If there is no phase difference between the sync and sawtooth, equal currents will flow in the collectors of 015 and 016 each for half the sync pulse period. The current in 015 is turned around by 018 so that there is no net output current at Pin 5 for balanced conditions. When a phase offset occurs, current will flow either in or out of Pin 5. This pin is connected via an external low-pass filter to Pin 7, .thus controlling the oscillator.
Shunt regulation for the circuit is obtained with a zero temperature coefficient from the series combination of 01, 02 and Z1.
·
7-123
MC1391P, MC1394P
·
APPLICATION INFORMATION
Although it is an integrated circuit, the MC1391 P and MC1394P have all the flexibility of a conventional discrete component horizontal APC loop.
The internal temperature compensated voltage regulator allows a wide supply voltage variation to be tolerated, enabling'operation from nonregulated power supplies. A minimum value for supply current into Pin 6 to maintain zener regulation is about 18 mA. Allowing 2mA for the external dividers
A +A _ Vnonreg(min) -8.8 A S - 20 x 10-3
Components RA, Rs and CA are used for ripple rejection. If the supply voltage ripple. is expected to be less than 100 mV (for a 30 Volt supply) then RA and Rs can be combined and CA omitted.
The output pulse width can be varied from 6 µs to 48 µs by changing the voltage at Pin 8 (see Figure 5). However, care should be taken to keep the lead lengths to Pin 8 as short as possible to prevent ringing which can result in erroneous output pulses at Pin 1. The parallel impedance of Ro and Re should be close to 1 k.n to ensure stable pulse_widths.
For 15 mA drive at saturation
A - V nonreg - 0.3 F - 15-x 10-3
The oscillator free-running frequency is set by Ac and Cs connected to Pin 7. For values of Ac~ Adischarge (A4 in Figure 6), a useful approximation for the free-running frequency is
1 fo=---
o.sRccs
Proper choice of Ac and Cs will give a wide range of oscillator frequencies - operation at 31.5 kHz for count~down circuits is possible for example. As long as the product Recs::::: 10-4 many combinations of values of Re and Cs will satisfy the free-running frequency requirement of 15.734 kHz. However, the sensitivity of the oscillator (13) to control-current from the phase detector is directly dependent on the magnitude of Re. and this provides a
convenient method of adjusting the de loop gain (fc).
For a given phase detector sensitivity (µ) =· 1.60 x 1o- 4 A/rad
fc = µ{3 and f3 = 3.15 x Re Hz/mA
Increasing Re will raise the de loop gain and reduce the static phase error (S.P.E.) for a given frequency offset. Secondary effects are.to increase the natural resonant frequency of the loop (wnl and give a wider pull-in range from an out-of-lock condition. The loop will also tend to be underdamped with fast pull-in times, producing good airplane flutter performance. However, as the loop becomes more underdamped impulse noise can cause shock excitation of the loop. Unlimited increase in .the de loop gain will also raise the noise bandwidth excessively causing horizontal jitter with thermal noise. Once the de loop gain has been selected for adequate S.P.Ei. perform;mce, the loop mter can be used to produce the balance between other desirable characteristics. ' Damping of the loop is achieved most directly by changing the r.esistor Rx with respect to Ry which modifies the ac/dc gain ratio (m) of the loop. Lowering this ratio will reduce the pull-in range and noise bandwidth (fnnl. (Note: very large values of Ry will limit the control capability of the phase detector with a corresponding reduction in hold-in range).
Static phasing can be adjusted simply by adding a small resistor between the flyback pulse integrating capacitor and ground. The sync coupling capacitor should not be too small or·it can charge during the vertical pulse and this may result in picture bends at the top of the CRT.
NOTE:
In adjusting the loop parameters, the following equations may prove useful:
=~
wn y11+XI1
X2Twc .K = -4- · -
x=R-x Ry we= 2 rr fc T= Ry Cc where: K = loop damping coefficient
7~124
MC1393
TV VERTICAL PROCESSOR
... designed for universal use in black and white as well as large· screen color television receivers.
· Injection Locked Oscillator · Greater Than 12 Hz Injection · Low.Thermal Drift · Eliminates Centering Control · Independent Vertical Hold and Size Controls · Scan Current Independent of Yoke Variations · Retrace Pulse for Effective Blanking · Linear Sawtooth Amplification
TV VERTICAL PROCESSOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 648
ORDERING INFORMATION
Device
Temperature Range
MC1393
0 to +70°c
Package Plastic DIP
FIGURE 1 - TYPICAL APPLICATION CIRCUIT
2.0M
-y- 0.01 µF ~__,----<>-~ 470 k +25V
YOKE 3mH 3Sl
2000 j.IF
0.82
·
7-125
. MC1393
MAXIMUM RATINGS ITA = +25°C unless otherwise noted)
Rating
Value
Unit
Power Supply Voltage
30
Vdc
Junction Temperature
150
oc
Operating Ambient Temperature Range
Oto +70
oc
Storage Te.mperature Range
-65 to +150
oc
ELECTRICAL CHARACTERISTICS <Vee= +25 v, TA= +25°Cl (Figure 1l
Characteristic
Typ
Unit
Supply Drain< 1)
525
mAdc
Oscillator Frequency (Pin 16)
60
Hz
Oscillator Supply Sensitivity
0.3
Hz/V
Oscillator Drift
130
PPM/°C
Oscillator Injection (Pull-In)
12
Hz
Driver Input Sawtooth Amplitude (Pin 21
3.0
VIJ>:QI
Output Current (Yokel
3.0
A(p·pJ
Scan Non-Linearity
8.0
%
Note 1: Total Current Includes Current in Circuit External to the IC.
·
CIRCUIT DESCRIPTION
Oscillator
The oscillator employs two differential amplifiers (01, 02, and 07, 08). A capacitor at Pin 16 is charged by a current source 06 until it reaches a voltage that turns on 01. 07 is turned on by 01 providing a discharge path for the voltage stored at Pin 16. 012 is on during the same period as 01, and provides a discharge path for a ramp generated at Pin 2. 01 stays on until the capacitor voltage is discharged to a level that turns 07.off. A ne'gative sync pulse at Pin 1 turns 010 on and increases the oscillator frequency by lowering the 01 switching voltage.
Complementary Driver A sawtooth generated at Pin 2 jg level shifted to the
J:lriver inputs 024 and 027. 017 and an NPN output transistor at Pin 6 are a current driver function for one-half
of the output. 020 acts as a current amplifier providing base current for the NPN output transistpr. The current gain between 020 and the qutput transistor is inversely proportional to the resistance ratio of R37 and the output emitter resistor. 1.0 mA of current through R37 will pro· · duce 1.0 A through a 1.0 ohm output-emitter resistor, thus providing a gain of 1000. 020, 031 and a PNP out· put transistor at Pin 10 are a second current driver func· tion, making up the other half of the complementary output. OJ5 provides base current for the output. The maximum amount of base curre.nt drive is determined by the current in the voltage divider on Pins 7 and 11. Pin 3 is a return path for the de and provides for automatic centering. Pin 8 is the collector output of 018 providing a positive blanking pulse.
® MOTO~OLA SenJiconductor Produc~s Inc.
MC1393
12
FIGURE 2 - CIRCUIT SCHEMATIC
15
14
13
R7
RB
5 k
6k
4
R37 1 k
5
·
IR36
24 k 8
Circuit diagrams utilizing Motdrola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked a~d
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information ·does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
@ -------~ MOTOROLA Semiconduc"tor Produc"ts.lnc.
7-127.
ORDERING INFORMATION
Device MC1398P
Temperature Range
-20°C to +75°C
Package Plastic DIP
MC1398
TV COLOR PROCESSING CIRCUIT
... a chroma IF amplifier with automatic chroma control, color killer, de chroma control, and injection lock reference system followed by de hue control.
MCl 398P is a monolithic device designed for use in solid-state color television receivers.
· Minimum Number of External Components ·DC Control of Both Chroma Amplitude and Hue Shift ·Crystal-Controlled Internal Feedback Oscillator ·Built-in Noise Immunity · Schmitt Trigger Color Killer · Automatic Chroma Control · Internal Burst Gate and Gate Pulse Shaping Circuit · High Oscillator Lock·in Sensitivity · Built-in Supply Regulation
TV COLOR PROCESSING CIRCUIT
SILICON M9NOLITHIC INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 646
·
FIGURE 1 - TYPICAL CHROMA APPLICATIONS CIRCUIT (MC1398P, MC1326 and MPSU10)
ACC/KILLERCONTROL r----<1>----,
_l
.~J3LV :!
CHROMA INPUT
H '.·.-·-,__.....,
µ~'"
Tl.T2:Seefiqure101orcoildala
8.2µH
TOPIN14 !MC13981
7-128
MC1398
MAXIMUM RATINGS (TA= +25°e unless otherwise noted)
Rating
Power Supply Current
"
Horizontal Pulse Input Current
Power Dissipation (package limitation) Derate above TA = +25°C
Operating Temperature Range (Ambient)
Storage Temperature Range
Value
35 250
625 5.0 -20to+75 -65 to +150
ELECTRICAL CHARACTERISTICS !Vee= +20 Vdc, Rs= 390 ohms, TA= +25°C unless otherwise noted.)
Characteristic
Min
Typ
Regulated Voltage (Is= 35,mA)
9.0
9.6
(Is= 27 mA)
-
9.2
Maximum Undistorted Chroma Output, See Note 1.E(pin 3) = E(pin 14)
0.8
1.75
Maximum Chroma Gain E(pin 3) = E(pin 14)· See Note 1
Automatic Chroma Control Range (ACC) -3.0 dB down from maximum undi~torted output ,see Note 1
Chroma Burst Level to Kill, See Note 1
34
40
-
19
-
1.4
Manual Chroma Gain Control Range (A·V(pin 3) (V(pin 14) to 0 Vdc)
50
60
Chroma In put Resistance
-
2.3
Chroma Input Capacitance
-
13
Chroma Output Impedance
-
15
Horizontal Input Pulse Oscillator Output
2.2
3.0
100
-
Oscillator Output Impedance
-
15
Hue Control Range (6 V(pin 12) (V(pin 14) to 4.3 Vdc)
Oscillator Pull-In Range
Oscillator Noise Bandwidth (fN)
100
126
1200
-
-
900
Static Phase Error with Oscillator Detuning 25 mV(p-p) Burst Amplitude 2.0 mV(p-p) Burst Amplitude
-
0.20
-
0.25
Note 1: With 5.0 mV(p-p) burst input at pin 5 set E(pin 101 to just "unkill".
FIGURE 2 - MC1398P TEST CIRCUIT
Unit mAdc µA Peak
mW mW/°C
oc oc
Max
11.5
-
-
Unit Vdc
V(p-p) dB
-
dB
-
mV(p-p)
dB
-
-
k ohms
-
pF
-
ohms
4.0
Vp
-
mV(RMSl
-
ohms
degrees -
-
Hz
-
l:lz
· degrees/Hz
-
-
180pf 1.8k
I'
OSCILLATOR PEAKING
I r- 2.2 k
4 µs
- 10 k ~----u-t
~0LJL
250 pf
C~~~~A··--------111-----o-i
r 0.01 µF
Ll: SEE FIGURE 10 FOR COIL DATA.
MC1398P
14
RS= 390
K>---.--'VI/'..,..--. +20 Vdc
Rs =(Ve~~ -9.l kilohms
*0.05µf -IS
100~. . - DSC
. · ~--.------t, ~
.l_
- OUTPUT
I 1.8 k
'
lOOOpF
HUE
t - < . ; - - - - - - - - - - - - - - - - = _ c _ o _ N T _ R _ O _ L_ _ _< l O k
q l l ~~l~~HASE 120 pF
4.7k
ACC/KILLEll 15 k CONTROL
2ND ACC FILTER
0.01 µF ~
0.05µF
n~~"'' 5.0µF
·
7-129
MC1398
u
f<(
2
lJ.J
I u
rj)
t: :uaJ:.
u
00
~ u 2
M
alJ:.J.
:J
S2
LL.
7-130
MC1398
TYPICAL CHARACTERISTICS
(TA = +25°C unless otherwise noted) (Figures 4 through 9, See Test Circuit of Figure 2.)
FIGURE 4 - INPUT/OUTPUT CHARACTERISTICS
- 2.61----11---1-+--+-H-++----+--+-f--+-1-+-H+----i
c;;: 2.41-----11---+--+--+-f-+-++-~-+---+-t---t--1--+-+-t-+----t
~ 2·2
I I I_ I I_
~ 2.0t- E(pin 10) =Note I +++----+--+-E(pin 3) = E(pin 14)------1
~ 1.8t---1r"t---t-T-lttt---t~-::.::t;;;;;;;F-T-1r-1"...,-;-;;;;;;;;;;;:;"""'l::1 §; t.61-----1-+-+-t-+-++-+--L__,,...,._..,___-t---1--1--t-+-+-+-t------1
I- t.41-----1-+--+-+-!-l-l-+-L--.,,___--+--+---lf--_1---1,,-+-+,++-----i
~ 121-----11---+--+-+-f-+-++V->---+---+-1-7.6 vd~-+-t-+----1
2~ :
1.ok-~-+---t-W-W.f------=J....~~:t:+:+1H:tt:~=~
0.8
ld'll" ~
1T ~
Q
0.6 0.4
KILLER ONt:::
~ I .¥II~
Kl~~iR-l---l--+-5,8 Vdc'-+++----1
0.2 0
-~ r I
2.0 3.0 5.0
10
20 30 50
100
200
CHROMA INPUT VOLTAGE (mV[p-p))
35
-<_g" 30
I-
~
aa: 25
w
(..)
a:
::::>
~ 20
FIGURE 5 - REGULATED VOLTAGE
if
L.
f
-- v v
15 6.0 6.5 7.0 7.5 8.0 8_5 9.0 9.5 10
PIN 14 REGULATED VOLTAGE (Vdc)
·FIGURE 6 - HUE CONTROL OPERATION
*1401-----+---+---t----+---+----lt----+-~
!~;~11- 201-----r-_,~ ,.--...,-+---+---+----le-jn-=-+20-m-V-(+p--p-) --I
~~ ~ o ~ 1001------+---+----'f"'o.~--+---+-- E(pin 10) = Note 1_
5-~ 80t----t----+--~t---t-1--+----lf-----+-~
_, ::::>
~~
'
~~ 60
\
~~ ' ~~ 40t-----+---+----it----+---H\---+---+----1
~ o..__ _.._ _ _ _ c 201-----+'----+---!----+--~~1-----l---+----1
~
.......__ ...__--4~-~~ _.._ _~
3.0 4.0 5.0 6.0
7.0 8.0 9.0
10 11
PIN 12 VOLTAGE (Vdc)
FIGURE 8 - STATIC PHASE ERROR
+25.---~-~-~-~-~----~-~-~-~
+201----.P,,--+---l----+--4---il---+--+---+---!
fil +15+--.....--..P...............--+---+---i.....-P+has-e -Er.ro.r.un-ac-c-ep-ta-bl-e i
aff:i +lOt----+---+-__,____.._ _,__ __,._.,__+----+---+---<
Cl
;; +5.0 l--+--+-+~~~-+---11--r--.,....-..,..--i
0
ffi I Ol---+---+---t----+-......r----1.....-+--+---+---t
w ~
-5.01--------i---+--+--""l"""'-+--+---+---t
~ -10 t---+---+---t---t----t---r
j::
< - 1 5 + - - - - - -.......- - + - - - - - i.....-
t;;
Phase Error unacceptable
-201----+---+----+---t---i--t----+--
-25 .__...__....__ _.__ _.__ _.,~__.'--~.,,....-~-~~~
-100 -80 -60 -40 -20
+20 +40
FREQUENCY OFFSET (Hz)
FIGURE 7 ~OSCILLATOR OUTPUT versus PIN 12 VOLTAGE
180
§160
>
.§.
~ 140 < ~ 0 > ~ 120
I::::> Cl
i-----1---+---+-----4----1-- ejn = 20 mV(p-p) --1
E(pin 10) =No~ 1
~ 100
1
Cl
80
3.0
4.0
5.0 6.0
7.0 8.0
9.0
10 11
PIN 12 VOLTAGE (Vdc)
FIGURE 9 -TEMPERATURE STABILITY of the MC1398 OSCILLATOR
(I /C only .subjected to temperature change)
·
AMBIENT TEMPERATURE (OC)
7-131
MC1398
FIGURE 10 - PRINTED CIRCUIT LAYOUT OF MC1398P, MC1326, and MPSU 10 TRANSISTORS
KILLER/ACC ADJUST
HUE CONTROL . +24 Vdc
+250 Vdc
·
4in.
CHROMA INPUT
27
~ ~/% : )
BOTTOM HORIZONTAL HUE CONTROL INPUT
. LIMIT
NOTES: All resistors are 1/4 Wunless otherwise noted. (Copper Side Shown)
LUMINANCE INPUT
L1: SLUG
-=-1 0.2
i 5
J~ 0.80.57I 5- j 0
.1815
L1: 80 TURNS OF
EXTRACTED~
I II
_i=i-· STANDARD #38 AWG HEAVY POLYTHERMALEZ
---j 0.5 t-r-1.0---i
WIRE.
MC1398P APPLICATIONS INFORMATION
MC1398P is. a multifunction circuit with considerable gain associated with the chroma amplifier and oscillator sections. It is important to the circuit layout utilizing the MC1398P that ·the chroma amplifier, oscillator, and oscillator output/hue section grounds are separated from each other. Ground loop problems will interfere with .oscillation stability and lock-up if this precaution is not observed.
Care must be. exercised to avoid coupling from the oscillator output to the crystal circuitry connected to pin 8. Stray coupling of these two points can result in excessive oscillator shift; or in some cases, oscillator drop-out during adjustment of the hue control.
A suitable circuit layoutforthe.MC1398P is shown in Figure 10. An adjustable capacitor (1.5-20 pF in parallel with a fixed 22 pF capacitor) is shown in series with the 3.58 MHz crystal. This capacitor is used to adjust the oscillator exactly on frequency, and ensures excellent oscillator lock-up. However, acceptable oscillator performance can be obtained with a fixed value of capacitance (thi_s value is dependent on the designers' choice of crystals).
BLANKING INPUT
TOP
TAP
'¥
BOTTOM VIEW
1
}69.6 TURNS
F}5.3TURNS
COILCRAFT FORM #10-32 OR EQUIV UNIVERSAL AWG #36 WI RE OR EQUIV L = 26 µH
INPUT
OUTPUT
£$TTOM
- VIEW)
P R I M A S D fSYE C O N D A R Y
WINDING
WINDING
82 !URNS
55 TURNS
COILCRAFT FORM #10-32 OR EQUIV UNIVERSAL AWG #36 WIRE OR EQUIV Lp = 12 µH primary winding Ls= 8.8 µH secondary winding
K = 0.4
This coil data is intended as an aid only. It is expected that many designers will want to use other approaches.
7-132
MC1398
MC1398P CIRCUIT DESCRIPTION
The MC1398P is capable of providing the entire color processing function between the second detector and the demodulator for television color receivers.
A band pass filter from the second detector provides a 50 mV (p-p) signal (for a saturated color bar pattern) at the input to the first chroma amplifier stage (02, 03, Og, 09). Because of 02 emitter load resistor the input impedance is determined primarily by the bias resistor (R3) and is about 2.3 kilohms. Since 02 is the current source for the differential pair (03 and 09), the chroma information will pass to the load resistor (R7) and then to the second chroma amplifier (017). To avoid overload of 017, the maximum gain to 017 base is only X3 and by varying the bias at the base of 09 it is possible to reduce the stage gain by 23 dB without signal distortion; the signal being "dumped" by 09 collector into the supply. Since this automatic chroma control action ~ill vary the de bias at 017 base the emitter load of 017 is the current source 01g, maintaining the de operating current. 018 collector is bypassed externally to prevent ac signal attenuation.
During picture scan time, the chroma signal passes through the output level control amplifier (010, 011. 015, 021). By changing the bias on 011 and 015 bases the signal can either pass to the output pin 2 or be "dumped" into the supply through 011 ·The
o use of buffer stages 01 and 021 prevent distortion at low-signal
levels and the control range is better than 70 dB. The signal output is also buffered by 014 and 020. thus providing a low impedance drive of up to 2.0 V (p-p) to the demodulator, with an overall gain between pins 5 and 2 of 40 dB. To enable the chroma signal
output to reach the amplifiers from 017 collector, 012 is held in conduction by 05 which in the absence of any input on pin 4 is not conducting. This high collector voltage also holds 025 in conduction, clamping the input to the burst channel and preventing chroma information reaching the oscillator. During picture retrace time, a .positive-going 4.0 µs pulse from the line sweep transformer will turn 05 "on" and 07 "off". When 05 collector goes low, 012 will become "cut-off" preventing the burst signal at 017 coll.ector from reaching the output pin 2. At the same time, 025 turns "off" opening the burst channel. The high collector voltage of 07 turns on 015 and 022· 015 passes the burst signal from 017 collector to the subcarrier regenerator and 022 "fills-in" for 012 during the gate period to prevent a .de shift in th'e pin 2 output voltage.
The gated burst signal is applied to the oscillator through 027
and 028· 029, 050 and. 035 together with 027 and 02a form an injection loi;ked oscillator circuit. At series resonance of the crystal connected to pin 8 the impedance of pin 8 is very low, thereby reducing the 3.579545 MHz carrier level at the base of 050. The signal at the base of 029 is not reduced but the output voltages in R33 and R42 will change. Any signals outside the
response band of, the crystal will appear equally at 050 and 029 bases and be suppressed in the output by the differential amplifier common-mode rejection ratio (about 40 dB). To maintain oscillation, a feedback signal with the correct phase is passed by 035 back to the input· of 027. Careful control of the resistor ratios ensures t.hat 029 and 050 are operated linearly with about 350 mV (p-p) at R33 and R42. due to self oscillation. A burst signal as low as 2.0 mV (p-p) at the chroma input is sufficient to cause the oscillator to lock to the reference phase and frequency.
As the burst amplitude increases, the level at 029 and 050 collectors changes and this shift is used to provide the automatic chroma control function. 042 and 045 form a modified differential amplifier and with zero offset bias 045 conducts most of the current from 043. As an increasing burst level swings 029 and 050 collectors, the current from 043 is shunted into 042. At a point predetermined by the setting of the automatic chroma control connected to pin 10, the composite lateral PNP of 047 and 045 will be biased into conduction. This amplifier has a gain of unity and a filter capacitor (connected to 045 base) prevents any tendency to oscillations. Diode CR9 provides thermal compensation to ensure a steady color-killer threshold point. The increasing current through 013 emitter is used to control 09 base, attenuating the input signal as the burst amplitude increases. The current from 013 also keeps 019 in saturation. When the input signal becomes too small for satisfactory color rendition, 013 current· falls and 019 comes out of saturation. This means 025 will saturate, clamping 021 base and "killing" the chroma output stage. R24 in the Schmitt trigger circuit ensures that the colorkiller will have hysteresis to prevent fluttering between "on" and "off" states.
The oscillator output voltages at R33 and R42 are used to drive 03g and 039 into limiting so that as the burst amplitude increases the oscillator activity to around 700 mV (p-p), there will be no change in the oscillator output amplitude at pin 13. 03g and 039 are used as current sources with a 180° phase difference for the differential pairs 030 and 031, 034 and 037. A small capacitor attached externally to 039 collector adjusts the total phase difference to 135°. Since the signal appearing in the load resistor R51 will be the vector sum of .031 and 037 signals,
varying t[ie base bias of 038 and 034 will change the oscillator
output phase over the 135 range. 040 and 041 buffer the oscillator output providing a low impedance drive at pin 13 for . the demodulator.
To minimize crosstalk between the burst and chroma channels, separate bias chains are used. Further, the oscillator bias chain is zener regulated to prevent phase shifts in the reference output with power-supply variations.
·
7-133
MC1399
·
Advance Information
TV COLOR PROCESSING CIRCUIT
The MC1399 contains a chroma IF amplifier with automatic chroma control, color killer, linear de chroma control, and a phase lock loop subcarrier regenerator system followed by a de hue control.
· High Gain Automatic Chroma Control (ACC) · High Gain Phase Lock Loop Subcarrier Regenerator System · Color Killer with Externally Defined Threshold · Critical Design Parameters Externally Adjustable · Linear de Chroma Control · DC Hue Control with Well Defined Range and Center · Internal Gating for Color Burst · Built-In Supply Regulator · Compatible with Most Existing Demodulators
TV COLOR PROCESSING CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUIT
...
PSUFFIX PLASTIC P,ACKAGE
CASE 648
ORDERING INFORMATION
Device MC1399P
] -, Temperature Range
Package
1 1 -20 to +75°C
Plastic: DIP
FIGURE 1- MC1399 BLOCK DIAGRAM
r - - -,...-_..3..._____
I I
Amplifi:Or
ACC Detector
10
- 12 ------,
Volqge Regul·tor
I 1
*i ., 13
GmtingPulse Amplifier
APC
De--
Oscllletor Amplifier
I I I
I 1e
I
I
I 5
I
I
I
l
I
I
Phase
6
Shift Amplifier
9
This is advanc:e information and spec:ifications are subject to change without notic:e.
MC1399
MAXIMUM RATINGS ITA = 25°C unless otherwise noted.)
Rating
Value
Unit
Power Supply Current
60
mA
Horizontal Pulse Input Current
4.2
mA
Minimum Load Resistance (Pins 11, 13)
2.7
kn
Junction Temperature Operating Ambient Temperature Range Storage Temperature Range
150
oc
-20to +75
oc
~5 to +150
oc
ELECTRICAL CHARACTERISTICS See Test Circuit, Figure 5. (All Switches in Position 1 Unless Otherwise Noted.)
Characteristic Regulated Voltage (Vcl (Pin 12) Load Regulation (Pin 121 (Vee from +22 V to +26 V) APC Set Up Voltage (R2) ACCSet Up Voltage (R11
Min
T)'~
-
12.6
-
100
_"_
0.61
-
0.57
-
Max -
-
0.81 0.. 79
Chroma Control Output Voltage
(81 Position 21 (51 Position 31 (81" Position 41
-
1.25
-
-
625
-
-
12
-
Oscillator Output (82 Position 21 (82 Position 11 (S2 Position 31
-
2.2
-
-
1.6
-
-
2.2
-
Oseillator Output Phase (Referred to Chroma Output Pin 131 (82 Position 11 (82 Position 21 ($2 Position 31
Static Phase Error (SPEI with Oscillator Detuned
Automatic Chroma Control (ACC) Chroma Output for Input of: +6.0 dB (360 mVp·p Burst) -14 dB (36 mVp-p Burst)
Chroma Output Voltage (Pin 131 for Input of -20 dB (Killer On) (18 mVp-p Burst@ Pin 21
-
231
-
-
185
-
-
268
-
-
0.02
-
-
2.65
-
-
2.1
-
-
10
-
Unit Vdc mVdc %V...cc_ %'lee_
Vp-p mVp-p mVp-p
Vp-p Vp-p Vp-p
Deg. Deg. D_l!g. Degrees/Hz
Vp-p Vp-p mVp-p
·
@ MOTOROLA Semiconduc'for Produc'fs Inc.
7-135
MC1399
·
TYPICAL DESIGN CHARACTERISTICS (Figure 51 Characteristic
Input Impedance Pin 2
Pin 7
Pin 9
Output Impedance Pins 6, 11, 13 Oscillator Drift with Temperature (D~vice Only) Oscillator ll.f with Vee Chroma Output Level Drift with Temperature
(Device Only, 25 to 75°Cl Chroma Output Level Sensitivity to Vee (Device Only) Pull-In Range Noise Bandwidth lfnnl Oscillator Control Sensitivity (jl) APC Phase Detector Sensitivity (µ)
Tue.
2.0 2.0 10 2.0 10 2.0 50 0.7 +20 10
2.0 ±500 150 1.2 42
Unit kn ·pF kn pF kn
..e.F n
PPM/OC Hz/Volt
%
%/Volt Hz Hz
Hz/mV mV/Degree
FIGURE 2 - ACC CHARACTERISTICS
140
120
100
- l
.~...
80
.............
'7- :::>
~ 60
z ~
" 40 7-
i - -J7' IZ'
_.;-
r_[
20
50 Acc omcroR LoAo = kn I I II I ACC DETECTOR LOAD = 390 kO
0 0 20 40 60 80 · 100 120 140 160 .180 200 220 240 260 280
INPUT SIGNAL 100% =180 mVp.p Burst
FIGURE 3 - GAIN CONTROL CHARACTERISTICS
120 t---+--t---t---tl---+---t--i--+-+--+--i---1---4---1
1001---+--t---l---tl---+--4-4--+-~-.1--1---1-~---1
t--+--+--+--'-+-+--t-+--~.oGY--+/Y?--tf--+--4---1---l l~ 80
~
v1 60t---+--t---t---tl---+---t~.,£_'""'-+-+--+-+--+---tl---+---I
1 / 401---+--t---t---t"""""+---t-4--+-+--+--i---1---4---1
~ 20t--+--t-:::~~F---+---l--+--+-+--+-+---+---ll-'-4--I
0 0~--""--2~0--''--~40___.__..60_...__8~0--"'--10~0--'--~12~0--'---'140
OC VOLTAGE AS% OF SUPPLY ON CHROMA CONTROL ARM
FIGURE.4 - TINT CONTROL CH~RACTERISTICS
+70
+60
+50
+40
+30
~ +20
if +10
w
>
0
~ -10
a: -20
-30
IZ
_L
-40 -50
~
-60t--+--t---+---t--+---t--i---t--+--+--t---+---t--i - 7 0 , _ _ _ , _ _ . _ _ _ , _........_~___._...__.,.,._,.,.....~--...,._~......,..,..,.........
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
DC CONTROL VOLTAGE AS% OF SUPPLY
@ MOTOROLA Semiconduc'tor Produc'fe Inc.
7-136
MC1399
FIGURE 5 - DYNAMIC CHARACTERISTIC TEST CIRCUIT
4.7 k
R1
390 k 0 ·
_r-=1
= 0.1 µF
5k<----""""--~---
6.1 k 0
12 k
2
5.1 k 0
3 k0
S2 3
5.1 k·
3 k0
0.1 µF
Chroma
4
Control
20 k
2
1.3 k"
+
...---------1-.... Chroma Output
ACC 13 k
1.oµFl
4 32
16 15 14 13
2.7 k
MC1399
4.7 k
R2
390 k
5kS.--MIY-------~
APC 15 k 8.2 k
1.oµFl
9 10 11 12 --+--------oscillator Output
2.7 k
I 20pF
2k
1.0 µFl
125v
Set-Up:
Apply 6 µs, 15.734 kHz Horizontal Pulse 3 Vp-p, Centered on Burst. Adjust APC Control for 3.579545 MHz with No Chroma Input. Apply NTSC 75% Bar Chart, (Luminance, Sync and Set-up Removed) and Adjust ACC Control for 2.5 Vp-p Red Bar at Chroma Output.
· 1% Resistor Tolerance .. Determines ACC loop gain, see Figure 2. ···Value determined by crystal.
·
@ ~------
MOTOROLA Semiconductor Products Inc.
7-137
s
(")
..a.
fg co
©
~
a
~
: ~
;.i ~
0=:as·
ex> Q.
t
0
i
~
0
t ~
5'
~
24V ·Determined by crystal.
ORDERING INFORMATION
Device MC3310P
Temperature Range
0°c to +75°C
Package Plastic DIP
MC3310P
WIDE-BAND AMPLIFIER
... designed for FM/IF and low-level audio applications.
· High Audio Gain - 60 dB minimum · Useful as a Microphone Amplifier and in Tape Recorders and
Cassettes · Excellent Performance as a 10.7 MHz FM/IF Amplifier · High Transconductance (gm) Ideally Suited to Low Impedance
Ceramic Filters · Formerly MFC4010A in Case 206A Package
WIDE-BAND. AMPLIFIER
SILICON MONOLITHIC FUNCTIONAL CIRCUIT
CASE 626-03
FIGURE 1 - FM/IF AMPLIFIER Vee= 12 Vdc
Input
20 pF
0.01 µF '1'-:-
10. 7 MHz ~1---------.
....L
50 Ohms
20pF
3.0 k 6
0.01 µF
Clevite
Output
FM4 1----010.7 MHz
Filter
"Ioo·
13 k
. 390
330
L1 - 5.4µH
36 Turns, #30 AWG Wire Wound on 1/4" Slug Tuned Form, Tapped 8 Turns from Ground End. Slug: T.H. Material 1/4" Dia., 1/2" Length
1.8 k "':"'
FIGURE 2 - RECORD/PLAY PREAMPLIFIER FOR CASSETTE AND PORTABLE TAPE RECORDERS
·
50µF 1+' 0 Play
Recordl
1 0.1µF·
7.5 k
7-139
MC3310
MAXIMUM RATINGS (TA= 25°e unless otherwise noted).
Rating
Value
Power Supply Voltage
21
Power Dissipation @TA= 25°e
1.2
(Package Limitation)
Derate above 25°e
10
Operating Ambient Temperature Range
0 to +75
Unit Vdc Watts
mw/0 e oe
ELECTRICAL CHARA'CTERISTICS (Vee= 6.0 Vdc, TA= 25°e unless otherwise noted).
Characteristic
Min
Typ
Open Loop Voltage Gain (Figure 3) (f = 1.0 kHz)
60
68
I
h Parameters( 1)
h11
(f=1.0kHz)
h12
h21
h22 Output Noise Voltage (Figure 3)
(BW = 20 Hz to 20 kHz, Rs= 1.0 k ohms)
-
1.0
-
10-6
-
1000
-
10-5
-
3.0
-
3.0
Current Drain
-
3.0
Max -
-
-
-
-
HIGH FREQUENCY CHARAClERISTICS !Vee= 12 Vdc, f = 1() 7 11{1Hz, TA= 25°e unless otherwise noted).
Power Gain (Figure 1)
42
ein = 0.1 mVRMS)
Noise Figure (Figure 1)
6.0
(Rs::::: 740 Ohms)
y Parameters( 1)
Y11
(f = 10.7 MHz, 12 = 2.0 mA)
Y12
Y21
¥22
.1.3 + j1.5 -3.4 + j8.1 -0.33 + j0.68 120 + jO
( 1) Device only, without external passive components.
Unit dB
k ohms -
mhos mV(RMS)
mA
dB·
dB
m m hos µmhos mho µmhos
J0.1µF
FIGURE 3-AUDIO TEST CIRCUIT Vee 6.0 Vdc
3
FIGURE 4. - BIASING RECOMMENDATIONS Vee
! "IQ/5
R1
L------------~ E;n = 0. 74 V
R2 lo/51
Select: Vee ·. E0 , and lo
Solve for: AL= (Vee - E0 )/lo
Let:
R2 = 5(0.74)/1 0
Then:
R1 = R2 (E 0 -0.74)/0.74
'-------- ·® MOTOROLA Senriconductor Products Inc. _________.
7-140
MC3310
TYPICAL CHARACTERISTICS
AUDIO PERFORMANCE CHARACTERISTICS (for Test Circuit Figure 3)·
*TAPE PREAMPLIFIER PERFORMANCE (for Circuit Figure 2)
FIGURE 5 -VOLTAGE GAIN versus FREQUENCY 90
80
;. 70
< z
V"
::: 60
~0 50
>
40
~ 1\
~
~
30
20 10 40 100 400 1.0 k 4.0 k 10 k 40 k 100 k 400 k 1.0 M4.0 M10 M FREQUENCY (Hz)
FIGURE 7 - RECORD VOLTAGE GAIN versus FREQUENCY
+30
CD
<:z5! +25
~ +20 <c.:i
~ +15
>
0
:::!:::l; +10 <:;:
~ +5.0
Vee= 6.0 v Av 500 Hz= 30 dB
v
k2:
v ~
-5.0 0.02
0.05 0.1
0.3 0.5 1.0. FREQUENCY (kHz)
3.0 5.0 10 20
·ao
CD 60 :5! z
<
c.:i
w
~c.:i 40
> 0
- FIGURE 6 -VOLTAGE GAIN versus POWER SUPPLY I-L
L
~
f = 1.0 kHz
l
20
0
0
4.0
8.0
12
16
20
SUPPLY VOLTAGE (VOLTS)
FIGURE 8 - PLAYBACK VOLTAGE ~AIN versus FREQUENCY
+25
lz[ ~ +20
< z
~ +15
c.:i
~ +10
0
>
0
:!:l +5.0
::::; <
~
z
~
r\ 1'
~
~.,..
Vce=6.0V Av 500 Hz= 35.6 dB
t---
-5.0
~
-10 0.02
0.05 0.1
0.3 0.5 1.0
3.0 5.0 10 20
FREQUENCY (kHz)
Note: The record/playback characteristics shown in Figures 8 and 9
were taken with the preamplifier driven by a 50 ohm source. The curves are typical of a desired response for the preamplifier; however, every type of tape recording and playback head is different and this circuit will not necessarily satisfy alrrequirements·. No particular tape heac;I was used as a basis for circuit design. The circuit is only an exampll!l showing the equalization network configuration.
The ideal preamplifier will have an input impedance approximately 10 times the highest impedance of the tape head and every preamplifier circuit must be designed using a test tape, to verify · the response of the design.
·
® MOTOROLA Se1niconductor Pr,oducts Inc. _________,_,
7-141
MC3310
10.7 MHz y PARAMETERS
FIGURE 9-; INPUT ADMITTANCE
> 0.5 t----+---11--+--+-t--T--+-1-+----t--+--t--t--t-lt-t-ti
0.1
0.2
0.5
1.0
2.0
PIN 2 CURRENT (mA)
5.0
10
FIGURE 10 - REVERSE TRANSFER ADMITTANCE
~ 10
!
b12
z~ 8.0
<(
I-
I-
~ 6.0
<(
a: wu.
"~' 4.0
-1.!12
1-
w
"~ '
2.0 1--1--~i--
~
~ 0
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
PIN 2 CURRENT (mA)
FIGURE 11 - FORWARD TRANSFER ADMITTANCE
FIGURE 12 - OUTPUT ADMITTANCE
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
0.1
0.2
PIN 2 CURRENT (mA)
10.7 MHz PERFORMANCE (Circuit of Figure 1)
0.5
1.0
2.0
PJN 2CURRENT (mA)
5.0
10
FIGURE 13- POWER GAIN versus SUPPLY VOLTAGE 80
701---....+---t----+---~--+---l----+---l
FIGURE 14 - VOLTAGE TRANSFER CHARACTERISTIC 400.--r-i 1---H 200t--i-1
60>---+---t-----+---+---+--->----+--~ .L
50t----+----+-- ejn=0.1 mVrms - + - - - + - - - + - - - - i
301----+---t----+---+---+---l----+---l
'·
201-----+---t----+---~--+---1----+--~
10.1----+---+---+---l----+--4------"---~
o.___....___...__ _.___..__ _.___~_ _..._ ___,
4.0 6.0 8.0 10
12
14
16
18
20
1.0 ..__.__.. 0.01 0.03 0.1 0.3 1.0 3.0 10 30 100 300 1000
SUPPLY VOLTAGE (VOLTS)
INPUT VOLTAGE (mVRMS)
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily gi11_en. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
.@ MOTOROLA se,.,,.iconducf:or Products Inc.
7-142
ORDERING INFORMATION
Device XC3315P
Temperature Range -40°C to +85°C
Package Plastic DIP
Advance Information
FREQUENCY-TO-VOLTAGE CONVERTER
This monolithic frequency-to-voltage converter uses a frequency doubling technique prior to integration in order to provide a low output ripple. · Threshold and hysteresis of input comparator programmed with
single external resistor · Pulse-width programmed with external capacitor · Output voltage proportional to supply voltage · Zero frequency output voltage provided for use as reference
XC3315
FREQUENCY-TO-VOLTAGE CONVERTER
MONOLITHIC SILICON INTEGRATED CIRCUIT
PLASTIC PACKAGC: CASE 646
Vee
14
BLOCK DIAGRAM
c
AB
12
11 10
Frequency Doubling
Circuit
Zero Frequency Voltage Ref
8
VRef
Gnd
Output
PIN CONNECTIONS
·
This is advance information and specifications are subject to change without notice:
7-143
· XC3315
MAXIMUM RATINGS (TA= +25°e unless otherwise noted)
Rating
Operating Voltage Range
Voltage at RH Pin
I
Sensor Input Voltage
I
Junction Temperature
Operating Temperature Range
Storage Temperature Range
Symbol
Vee VRH V1N
TJ_ TA Tstg_
Value 6.0to16
4.0 24 150 -40 to +85 -65 to +150
Unit Vdc Vdc Vdc oe oe oe
ELECTRICAL CHARACTERISTICS Nee= 9.0 Vdc, VRH = +1.0 Vdc, TA= +25°C unless otherwise noted)
Characteristic
Current Drain
Amplifier (Norton Type) Open Loop Voltage Gain Input Bias Current Output Current Source Capabinty Sink Capability Output Voltage High Voltage Low Voltage Unity Gain Bandwidth Phase Margin
Zero Frequency Reference Voltage Reference Voltage Current Sink Capability Current Source Capability Reference Matching to Integrator Amplifier
Symbol
'a
AvoL '1B
I source Isink
VoH VoL BW
OM
VRef Isink I source VReftoffset)
Min
-
-
2.0 0.3
vcc-1.5 -
-
-
500 1.0 1.0
-
Typ
-
66 -
-
-
2.0 70
600
-
10
Max 16
-
200
-
-
0.4
-
700
-
Unit mA
dB nA
mA mA
Vdc Vdc MHz degree
mV mA mA mV
INPUT SPECIFICATIONS
CrlRCUIT INFORMATION
Threshold of Input Comparator
The trip point of the input comparator is programmed by adjusting the voltage at the terminal RH.
This threshold is symmetric about the zero signal level
and can be determined with the design equation: Vth =
VRH/8. A 50 µA± 30% current source is provided at terminal RH such that the thresholds can be programmed
with a single resistor to ground. If greater accuracy is desired, the voltage at terminal RH can be forced with a resistor divider to a reference voltage such as a regulated supply. For proper circuit operation, the threshold should be greater than ±50 mV, but less than ±500 mV corresponding to programming voltages of 400 mV to 4.0 volts at terminal RH. The options for programming the input threshold are illustrated below.
Vee
l
14
_I __.
I.e. 2 RH
~R
6
*
~
Vth = .!!!_
8
1=50µA±30%
Vee
~ l
14
-I
1.e. 2 RH'
\
.> R1
> R2
6
-f
~
R2
(R1) (R2)
Vth = 1/8 (Vee R1 + R2 + I ~ )
MOTOROLA Serniconduci:or Produci:s Inc. 7-144
XC3315
Maximum Input Amplitude at Pin 13
To avoid false failure indication during the peak swing ·of the sensor signal, the voltage at Pin 13 must remain at least one volt above ground and one volt below Vee. This implies that the peak sensor amplitude be less than % Vcc-1 volts. To accomplish this the input filter, RS-CS, should be adjusted accordingly.
To avoid damage to the IC the voltage at the input Terminals, S, and SC should not swing more than 16 volts above their % Vee bias level. External resistors should guarantee that the clamp current sourced by the IC at S1 or S2 does not exceed .1.0 mA.
TIMING CIRCUIT SPECIFICATION
The voftage on the capacitor at terminals (Pin 12) are ramped upward and downward to produce pulses of current for integration at twice the input signal frequencies. The pulse widths can be adjusted by adjusting the capacitor using the relationship:
.
210µs
Pulse width ::::::O.OOJ µF= 70 ms/µF
To avoid saturating the converter at high frequencies
.
1
the pulse widths should be less than 2 fmaxwhere fmax
equals the maximum input signal frequency.
ONE POLE INTEGRATOR DESIGN
To obtain a single pole at the frequency Wo an external resistor and capacitor should be connected as shown in Figure 1.
After adjusting the gain of the converter with the resistor RI (RI ~ 100 kil). the capacitor Cl should be chosen such that:
1 Wo= RI Cl
FIGURE 1 - ONE POLE INTEGRATOR
A
B
11
10- - - - - - - -,
I
I
I
Cl
RI
I
+
I
I
I
I
.._--9--0-------------0 Output
I
I
I
Current Pulses
I
I
---------------~-----~
·
@ MOTOROLA Semiconductor Products ,',,c.
7-145
XC3315
·
TWO POLE INTEGRATOR DESIGN
To obtain two real and equal poles at the frequency Wo using the circuit shown in Figure 2 proceed as follows:
1. Set integrator gain with resistor R4 (R4 =: 100 kS1). 2. Choose R3 and C2 from the equation:
R3+ R4 Wo = 2 (R3) (R4) (C2)
Note: Let R3 ~ 5.0 kS1 to avoid saturating the current source at terminal A.
3. For real and equal poles let: C5 = 4 (R3) (R4) (C2) (R3 + R4)2
FIGURE 2 - TWO POLE INTEGRATOR
C2i R3
R4 C5
A
B
10- - - - - - - - .., 11
I
I
I
I
I I
91
----o------4...._-0 Output
JlJ1 i
I I I
I
I
._ - -
--
-
--
-
- ~-
---
I -·---...J
ACCURACY SPECIFICATIONS The tachometer has been designed to provide accurate
frequency trip points when used with the comparator circuit shown in Figure 3.
For this purpose the tach output must be' described by the equation:
Vo= K (Vee - BRef) f + 8Ref
where K = converter gain constant f = frequency of sensor signal
The accuracy and linearity of the converter can be
determined by how well the tach characteristics fit this equation. Using measured values of Vo, Vee, 8Ref, and f the gain constant K can be calculated at various operating points. The converter accuracy can be expressed as the percent change in K due to supply voltage, temperature, and frequency variations. The following tolerances are typical.
Variation in gain with supply voltage (average for 6.0 V to 16 V operation)
Variation in gain with frequency (linearity from 50 Hz to 2.0 kHz)
·variation in gain with temperature (-40°c to +85°C)
+0.5%/Vo!t ±1% ±1%
@ ~------
MOTOROLA Semiconductor Products Inc,,
7-146
XC3315
FIGURE 3 - COMPARATOR CIRCUIT FOR ACCURATE FREQUENCY TRIP POINTS
14 l.C.
A
11-----~
R1
10 B
8 1-- VRef -----------'
6
TYPICAL APPLICATION
N.C. N.C. N.C.
Vee s
c
A B
Output
N.C.
TACHOMETER
Vee
*
+~
Cs Rs Ro
-=
~
~------@ MOTOROLA Semiconduc'for Produc'fs Inc.
7-147
·
XC3315
TYPICAL CIRCUIT WAVEFORMS
·
Input From Sensor
0·~·· ~
of Comparator ~
Voltage on Capacitor,
~----Vee · t
t n n D D D [--~: Current
Pulses to Integrator
Output
Voltage
t
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(maxl -TA PD(TAl = ROJA(Typl
Where: PD(tAl = Power Dissipation allowable at a given operating ambient temperature, This must be greater than
the sum of the products of the supply voltages and supply currents at the worst case oper~ting condition.
TJ(maxl = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient 'Temperature
ROJA(Typl =Typical Thermal Resistance Junction to Ambient
@ MOTOROLA Semiconduc'tor Produc'ts Inc.
7-148
ORDERING INFORMATION
Device
XC3316P. XC3317P
Temperature Range
-40 to +ss0 c -40 to +as0 c
Package
Plastic DIP Plastic DIP
XC3316 XC3317
Advance Information
DUAL FREQUENCY-TO-VOLTAGE CONVERTER
This monolithic dual frequency-to-voltage converter uses a frequency doubling technique prior to integration in order to provide a low output ripple. High select, low select and fail indication outputs are available with the XC3317 only.
· Two independent channels · Threshold and hysteresis of input comparators programmed for
both channels with single external resistor · Pulse-width programmed with external capacitor for each channel · Output voltages proportional to supply voltages · Zero frequency output voltage provided for use as reference · Fail check indication for open sensor (XC3317 only) · Hi and low select outputs with less than 100 mV offset frqm actual
output voltage (XC3317 only)
BLOCK DIAGRAM
Vee
DUAL
FREQUENCY-TO-VOLTAGE
CONVERTER
.
MONOLITHIC SILICON INTEGRATED CIRCUIT
XC3316 PSUFFIX PLASTIC PACKAGE CASE 648
XC3317 PSUFFIX PLASTIC PACKAGE CASE 701
-
CH 1
Frequency Doubling
>----t----1--<JOutput 1
Circuit S1
Zero Frequency Voltage Ref Sc
·
CH2
Frequency
Doubling
S2
-Circuit
FAIL: This is advance Information and specifications are subject to change without notice.
7-149
Gnd Shaded Areas Are Included With The XC3317 Only
XC3316, XC3317
·
MAXIMUM RATINGS ITA = +25°c uniess otherwise notedI
Rating
Operating Voltage Range
Voltage at RH Pin
Sensor Input Voltage
Junction Temperature Operating Tem~rature Range
-
Storage Temperature Range
Symbol
Vee VRH VtN
TJ_ TA T...rui.
Value 6.0 to 16-
4.0 24 150 -40 to +85 -65 to +150
ELECTRICAL CHARACTERISTICS !Vee= +9.0 Vdc, VRH = +1.0 Vdc, TA= +25°c unless otherwise noted.I
Characteristic
Current Drain
'
Amplifiers (Norton Type)
Open Loop Voltage Gain
Input Bias Current
OutPut Current
Source Capability
Sink Capability
OutPut Voltage
High Voltage
Low Voltage
Unity Gain Bandwidth
Phase Margin
OutPut Terminal Specifications Hi Select Output Offset From High Channel OutPut Current Source'Capability Current Sinking Capability Lo-8elect Output Offset From Lower Channel Output Current Source Capability Current Sink Capability
Failure Indication OutPut Failure Indication Resistance Normal Resistance Current Sink Capability
Zero Frequency Reference Voltage Reference Voltage Current Sink Capability
Current Source Capability Reference· Matching to Integrator Amplifiers
Symbol
·o
AvoL ·1B
·source ·sink
VoH Vol BW OM
V10 I source
·sink
V10 ·source
·sink
RFAIL Rnorm
·sink
VRef I sink ·source VRef(offsetl
Min.
-
-
-
2.0 ' 0.3
vcc-1.5
-
-
-
2.0 0.3
-
2.0 0.3
-
-
-
500 1.0 1.0
-
Typ.
-
66
-
-
-
-
2.0 70
-
-
-
-
1.0 50 2.0
600
-
-
10
Max. 16
-
200
-
-
0.4
-
100
-
-
'100
-
-
-
-
-
700
-
-
-
PIN CONNECTIONS
Unit Vdc Vdc Vdc oc oc oc
Unit mA
dB nA
mA mA
Vdc Vdc MHz degree
mV mA mA
mV mA· mA
Mn ohms mA
mV mA mA mV
@ MOTORO~A Sel'l"llconductor Producf:· Inc.
7-150
XC3316, XC3317
CIRCUIT INFORMATION
INPUT SPECIFICATIONS
Thresholds of·lnput Comparators
The trip points of the input comparators are programmed for both channels by adjusting the voltage at the terminal RH. These thresholds are symmetric about the zero signal level and can be determined with the design equation: Vth = VRH/8. A 50 µA± 30% current source is provided at terminal RH such that the thres-
holds can be programmed with a single resistor to ground. If greater accuracy is desired, the voltage at terminal RH can be forced with a resistor divider to a reference voltage such as a regulated supply. For proper circuit operation, the thresholds should be greater than ± 50 mV, but less than ± 500 mV corresponding to programming voltages of 400 mV to 4.0 volts at terminal RH. The options for programming the input thresholds are illustrated below:
Vee
1
_I _...
l.C. RH i-----
Vee
£_ l
1.e. RHi----~>' R2
I= 50 µA± 30%
R2
(R1) (R21
Vth = 1/8 (Vee;;-:-;;+ I-;:;:-;;; )
Maximum Input Amplitude at S1 and S2
To avoid false failure indication during the· peak swing of the sensor signal, the voltage at terminals S1 and 52 must remain at least one volt above ground and one volt below Vee. This implies that the peak sensor amplitude be less than % Vcc-1.0 volts. To accomplish this the input filters, RS1-CS1 and RS2-CS2, should be adjusted accordingly.
To avoid damage to the IC the voltage at the input terminals S1, S2, and SC should not swing more than 16 volts above their % Vee bias level. The fail check circuit will not allow S1 or 52 to go below ground, but external resistors should guarantee that the clamp current sourced by the IC at 51 or 52 does not exceed 1.0 mA.
SENSOR FAILURE CHECK SPECIFICATIONS
'Open Sensor Check
Resistors R01 and R02 pull S1 and S2 respectively to
ground if a sensor opens. This trips a fail check comparator on the IC and drives the FAIL terminal output to its high state (high impedance). Let R01, Ro1,.;;;2ookn.
TIMING CIRCUIT SPECIFICATION
The voltages on the capacitors at terminals Cl and C2 are ramped upward and downward to produce pulses of current for integration at twice the input signal frequencies. The pulse widths can_ be adjusted by adjusting the capacitors usirig the relationship:
210µs Pulse width =:: 0_003 µF= 70 ms/µF
To avoid saturating the tach at high frequencies the 1
pulse widths should be less than 2 fmax where fmax equals the maximum input signal frequency.
@ MOTOROLA Semiconductor Products Inc.
7-151
·
XC3316, XC3317
ONE POLE INTEGRATOR DESIGN
To obtain a single pole at the frequency Wo, an external resistor and capacitor should be connected as shown below.
After adjusting the gain of the'·tach with the resistor R1(R1 =: 100 kil), the capacitor C1 should be chosen such that:
-B1 -------,
I I I I I
Cl
RI
·
._---0----~..._------o Channel One
01
Output
I
I
I
Current Pulses
'::'
I
I
------~--------------~
TWO POLE lNTEGRATOR DESIGN To obtain two real and equal poles at the frequency
Wo using the circuit shown below proceed as follows:
1. Set integrator gain with resistor R4 (R4 =: 100 kn). 2. Choose R3 and C2 from the equation:
R3+ R4 '
Wo =2(R3)(R4)(C2)
Note: Let R3 ~ 5.0 kil to avoid saturating the current source at terminal A.
3. For real and equal poles let: CS_ 4(R3)(R4)(C2)
(R3 + R4)2
R4
R3
C5
-B1 --------,
I
I I
I
I
I
I
6---..0..---_..-.o Channel One
I o1
Output
I
I
Current Pulses '::'
'::'
'::'
I
I
___________________ JI
'------- @ MOTOROLA Semiconduc'for Produc'fs.Inc.
7-152
XC3316, XC3317
ACCURACY SPECIFICATIONS
The tachometer has been designed to provide accurate frequency trip pojnts when used with the comparator circuit shown below. For this purpose the tach output must be described by the equation:
equation. Using measured values of Vo, Vee. 8 Ref. and f the gain constant K can be calculated at various operating points. The tachometer accuracy can be expressed as the percent change in K due to supply voltage, temperature, and frequency variations. The following tolerances are typical.
Vo= K (Vee_, 8 Retl f + 8 Ref
where K = tachometer gain constant f = frequency of sensor signal
Th~ accuracy and linearity of the tach can be deter-
mined by how well the tach characteristics fit this
Variation in gain'with supply voltage (average for 6.0 V to 16 V operation)
Variation in gain with frequency (linearity from 50 Hz to 2.0 kHz)
Variation in gain with temperature (-4o0 c to +s5oc1
+0.5%/Volt ±1% ±1%
COMPARATOR CIRCUIT FOR ACCURATE FREQUENCY TRIP POINTS
Vee
R1 2
VRef= R1: R2 (Vcc-ORef)+llRef
Gnd
=
Vo R2.
Reft--~~~~~~~~~~-'
TYPICAL APPLICATION +
·
DUAL WHEEL VELOCITY TACHOMETER
~------@ MOTOROLA Semiconductor Products Inc.
7-153
XC3316, XC3317
·
TYPICAL CIRCUIT WAVEFORMS
Input From Sensor
Ou~u< ~
of Comparator
Voltage on Capacitor
L_r-t_F-- - -vae
· t
ID D D D D [--~: Current
Pulses to Integrator
Output
Voltege
t
·t
@ MOTOROLA Se1nlconduc'for Produc'f· Inc.
7-154
XC3316, XC3317
0
> 0
0
;;
:(
CJ
t=
<(
:2wz:
,.~..
5
aC:J
(j
0
----111
N
0
"a:i >
,..:
::;
(')
:0;:
l'i -;
c ;
i5 ti
'i .e
c >
0 CD
'O
! ~
0
0
>
----111
~
ii
:I
i
:i
'O
> :~;
a; u.
e:I
I:!
:I ~ (j
0 0
0 a;
u.
;'O
~-
..>..
ci
II
w
QI
iii
:(
u > 0
_J
..:<Ill
:c ~
iii
! .: l'i ri
:c z0 a:
·
..---------1H11
~ N
I
8
>
iii
8
>
Jf
([!} MOTOROLA Sern!conductor ·Produot· Inc.
7-155
ORDERING INFORMATION
Device Temperature Range
MC3320P MC3321P
-10°C to +75°C -10°c to +75°C
Package
Plastic DIP Plastic DIP
MC3320P MC3321P
CLASS B AUDIO DRIVERS
... designed as preamplifiers and driver circuits for complementary output transistors.
· Driver for Auto Radios - and up to 10-Watt Amplifiers · High Gain - 7.0 mV for 1.0 Watt, AL= 3.2 Ohms · High Input Impedance - 500-Kilohm Capability · Output Biasing Diodes Included · No Special hFE Matching of Outputs· Required · Formerly MFC8020A and MFC8021A in .
Case 644A Package
CLASS B AUDIO DRIVERS
SILICON MONOLITHIC FUNCTIONAL CIRCUITS
·
MAXIMUM RATINGS (TA = +25°C unless ottierwise noted.)
Rating Power Supply voltage Peak Output Current (Pins 4 and 1)
Symbol Vee Ip
MC3320P} MC3321P
J 35
20
150
Operating Ambient Temperature Range
TA
-10 to +75
Stor"'ge Temperature Range
Tstg
-55 to +125
Junction Temperature
TJ
150
Unit Vdc mA oc oc oc
FIGURE 1 - CIRCUIT SCHEMATIC
PLASTIC PACKAGE CASE 626
4
7-156
MC3320, MC3321
ELECTRICAL CHARACTERISTICS ITA = +25°c unless otherwise noted) (See Figure 2)
Characteristic
Min
Typ
Drain Current (ein = 0) (Vee= 30 Vdc) (Vee= 14 Vdcl
Me3320P Me3321P
-
10
-
7.0
Sensitivity (Po = 1.0 Watt, f = 1.0 kHz) (e0 = 8.95 V(RMS), RL = 165 nl (e0 = 3.2 V(RMS), RL = 65 n)
Total Harmonic Distortion (f = 1.0 kHz) (Vee= 30 V, eo = 8.95 V(RMS), RL = 165 n) (Vee= 14 V, eo = 3.2 V(RMS), RL = 65 n)
Me3320P Me3321P
Me3320P Me3321P
-
89
-
32
-
0.7
-
1.0
Open-Loop Gain
(Vee= 30 V, RL = 165 n)
(Vee= 14 v, RL =65 n)
Me3320P Me3321P
-
89
-
87
Ripple Rejection (f = 60 Hz, Av= 100, ein = 0, Power Supply Ripple= 1.0 V(RMS)
Equivalent Input Noise (ein = O, Rs= 1.0 kn, BW = 100 Hz - 10 Hz)
-
27
-
18
Quiescent Output Voltage (ein = 0)
(Vee= 30 vi (Vee= 1.4 vi
Me3320P Me3321P
-
15
-
7.0
Max
30 30
112 40
5.0 5.0
-
-
-
-
-
-
Unit mA mV % dB dB
J;LV Vdc
FIGURE 2 - TEST CIRCUIT
Vee
270 k
10µF
---11-----e>-1
tein
270 k
-l-
1.0 k + i10µF
3.o k . +1100 µF
2
= 1N4002
4 or equiv
l100 µF 1·.
50 pF
100 k 10
i0.1µF
THERMAL INFORMATION
The maximum power consumption an integrated circuit
can tolerate at a given operating ambient temperature, can
be found from the equation:
·
TJ(maxl-TA
Po(TAl = R&JA(Typl
Where: Po(T Al = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at-.the worst case operating condition.
TJ(maxl = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA= Maximum Desired Operating Ambient Temperature
ReJA(Typl =Typical Thermal Resistance Junction to Ambient
Ill
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for 'construction purposes is not necessarily given. The information has been carefully checked and
is beli~ved to be entirely reliable. How~ver, no responsibility is assumed for inaccuracies. Furthermor-e, such information does not convey to the purchaser of the Semiconductor devices described any license under the patent rights of Motorola Inc. or others.
@ MOTOROLA Semic,onductor Products Inc.
7-157
MC3320, MC3321
II
TYPICAL AUTO RADIO AUDIO APPLICATIONS and CHARACTERISTICS (TA = +250 unless otherwise noted.I
FIGURE 3-APPLICATIQN CIRCUIT FOR MC33.21P* 14 v
82 k
A1 68 k
Ae=1.2k
A3 150 k
FIGURE 4-TOTAL HARMONIC DISTORTION
versus OUTPUT POWER .
10
~ 8.0
~
I= 1]kHz
1I/}
E~ OUT;LTOEVlh hfE f-hfE=80
t; 6.0
1
0
z'-'
~ 4.0
~
~ 2.0
;A-
.Lfilt
____+---+- )'J
= 50 = 25
1.0 k
Sensitivity for 1 watt= 7.2 mV
0
1.0
2.0 3.0
4.0
5.0
6.0
7.0 8.0
OUTPUT POWER (WATTS)
FIGURE 5 - TOTAL HARMONIC Dl.STORTION versus FREQUENCY
~ 4.0 H+f-H*--+-+-+t+tttt--+--t-tt-t-tttt-11
0
~
t; 3.0 H-+-if-++H-- P0 = I Watt ~+--+---+-t-++ttt-t---t-1
~
-E=50
~
~ 2.0
~.~...
~r-+-~f++---+-+-++++H+--+-'-+-+-t+t+tt--1-
1.0 LJj_l...i...l-ll.r---.l--_+-J::=t=l~:t:t:m::::::::t:=;=1=:f:t::t:f1FF::::=t---J
50 100 200· 500 1.0 k 2.0 k 5.0 k 10 k 20 k
FREQUENCY (Hz)
+5.0 +4.0 +3.0 ~ +2.0
FIGURE 6 - FREQUENCY RESPONSE
l l
l ~ :r T0
d!B
J}o 1~.W.,
1.0
1
kHz
~ +1.0
-~
I-
v
ii ~ -1.0
g -2.0
II
-3. 0
-4.0
-5.0 50 100 200
500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k FREQUENCY (Hz)
APPLICATIONS INFORMATION for MC3321P (AUTO RADIO AUDIO)
The MC3321P combines all the voltage gain required for an automotive radio audio amplifier into one package reducing the circuit-board area requirement. The circuit shown in Figure 3 has an input sensitivity of approximately 7.2 millivolts for a onewatt output. Sensitivity can be adjusted by changing the value of ·R4. The circuit performance is a function of the output device hFE· as shown in Figure 4. Figure 4 can be used to determine the minimum hfE of the output transistors. The bandwidth of the amplifier is determined by the capacitor, C1. If C1 is Increased tp 390 pf the high frequency 3.0 dB pojnt is typically 20 kHz.
* Differences may be found in idle current when matching this device to various output transistor types.. It Is suggested that a 10k potentiometer be placed between Pins 1 and 4 in series
with a 100 Ohm resistor. Th ls will allow for a reduction in quiescent current. Care should be taken not to allow the idle current to fall below 1 mA to avoid crossover distortion.
"--__.;.___ (f!} MOTOROLA Semlconduc'for Produc'fe Inc.
7-158
MC3320, MC3321
TYPICAL 10-WATT AMPLIFIER APPLICATION AND CHARACTERJSTICS (TA = +25°C unless otherwise noted.)
FIGURE 7 - APPLICATION CIRCUIT*
Vee
0.1 µ..F
~
e;n10µF
820 k R2
10-Watt Amplifier
Rs=4.7ki1
RE= 0.33 i1
Vee= 30 v
47 k
R1
100
FIGURE 8 - TOTAL HARMONIC DISTORTION
versus OUTPUT POWER
+Cg 10 µF
Q1
10
~ z 8.0 0
~
J
~OkHz
Q2
,;g,~+
0
t;:; c;
6.0
sn
;§
~ 4.0
~
~ 2.0
;:,.
g
'->
~ s:'
IL
·select
10-Watt Amplifier Q1 - MJE521 or equiv
Q2 - MJE371 or equiv
(Select e1 to provide desired bandwidth.
C1 = 47 pF minimum)
1l
0.5
1.0
2.0
5.0
10
20
0 UT PUT POWER (WATTS).
FIGURE 9 - TOTAL HARMONIC'DISTORTION versus FREQUENCY
2.5
~ ;; 2.0
~
ct;:;; 1.5
(..)
~
~ 1.0 ~
g....J 0.5
I-
1 1
Po= 2.0 W
hFE =50
~
I
'I
50 100 200 500 1.0 k 2.0 k 5.0 k 1.0 k 20 k FREQUENCY (Hz)
+5.0 +4.0 +3.0 . ~ +2.0
FIGURE 10 - FREQUENCY RESPONSE
n~
OdB = 2.0 Watts at 1.0 kHz
;:; +1.0
~
~ -1.0
;; -2.0
I
~
iZ
:
-3.0 _l_
-4.0
l
-5.0 20
50 100 200 500 1.0 k 2.0 k 5.0 k FREQUENCY (Hz)
10 k 20 k
APPLICATIONS INFORMATION for MC3320P. (10 Watt Amplifiers)
The MC3320P is a high-voltage device capable of driving 10 Watt audio amplifiers. The gain of the ·circuit shown in Figure 7 changes .when the value of R4 is varied and the bandwidth is determined by C1. Emitter resistors are required at the higher voltages used for 10 Watt audio amplifiers to provide thermal stability. The value of RE is a function of the heatsink thermal resistance and supply voltage. The heatsink requirements for operation at +65°c (with both devices mounted on the same heatsink) is about 14°C/W for the 10-Watt amplifier. If the maximum ambient operating temperature is reduced then the heatsink can be reduced in· size as calculated by
Po =Maximum power dissipation of transistors
(This occurs at about 60% of maximum output power) 6.0Wfor 10W, 7.2Wfor 12W
TA = Maximum ambient temperature
·
where
IJSA ; Heatsink thermal resistance
TJ ; Maximum junction operating temperature
IJJS = Junction to heatsink thermal resistance (includes all surface Interface components for thermal resistance such as the insulating washer)
* Differences may be found in idle current when matching this device to various output transistor types. It is suggested that a 10k potentiometer be placed between Pins 1 and 4 in series with a 100 Ohm ·resistor. Thi swill allow for a reduction in quiescent current. Care should be taken not to allow the idle current to fall below 1 mA to avoid crossover distortion.
@ MOTOROLA Semicon,duc'for Products Inc.
7-159
MC3325
·I._-.....,.....~A~d_v_·_a_n_c_e~I_n~f_o_·_r_m~a_t_i_o__n _____.
AUTOMOTIVE VOLTAGE REGULATOR ... designed for use in conjunction with an NPF\l Darlington transistor in, a floating field alternator charging system. · Overvoltage Protection · Shut-Down on Loss of E;lattery Sense · Selectable Temper1;1ture Coefficient · Available in Chip Form for Hybrid Assembly
AUTOMOTIVE VOLTAGE REGULATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
,P SUFFIX PLASTIC PACKAGE
CASE 646 T0-116
CIRCUIT SCHEMATIC
·
5
4
PIN CONNECTIONS
Gnd 1
Output Drive
Adjust
2
Battery Sense 5 Battery Sense 6 Battery Sense 7
14 NC 13 NC
NC NC 10 Output 9 Feedoack Diode TC 8 Adjust
9
This is advance information and specifications are subject to change without notice.
7-160
ORDERING INFORMATION
Device MC3325P
Temperature Range
-40 to +ss0 c ·
Package Plastic DIP
MC3325
MAXIMUM RATINGS Rating
Current Into Pins 5, 6, and 7 Current Into Pin 3 Current Into Pin 4 Current Into Pin 2 Current Into Pin a Current Into Pin 9 Current Into Pin 10 Junction Temperature Operating Temperature Range Storage Temperature Range
Symbol
15,6,or 7 13 14 12 la lg 110 TJ TA
Tstg
Value 50 20 20 120 50 50 50 150
-40 to +a5 ~as to +150
Unit mA mA mA mA mA mA mA oc oc oc
ELECTRICAL CHARACTERISTICS ITA= 25°C unless otherwise specified.)
Characteristic
Diode TC Adjust: Threshold Voltage on Pin a (Figure 1)
Battery Sense: Threshold Voltage on Pin 5 (Figure 1)
Symbol
Min
Va
7.9
Typ
Max
-
a.a
Unit
v
V5
11.a
-
13.3
v
Battery Sense: Threshold Voltage on Pin 6 (Figure 1)
Vs
11.1
-
12.6
v
Battery Sense: Tnreshold Voltage on Pin 7 (Figure 1)
Battery Sense Loss Detect: Threshold Current Into Pin 4 (Figure 2)
Battery Sense Loss Detect: Threshold Voltage at Pin 4 114 .;;; 400 µ.A, Figure 2)
V7
10.5
-
11.a
v
14
-
-
400
µ.A
V4
1.3
-
1.7
v
Overvoltage Sense: Threshold Current Into Pin 3 (Figure 2)
13
-
-
400
µ.A
Overvoltage Sense: Threshold Voltage at Pin 3 I 13 .;;; 400 µ.A, Figure 2)
Output Drive Adjust: Voltage Drop from Pin 2 to Pin 10 112 = 10 mA, Figure 3)
Low State Output Voltage at Pin 10 113 = 12 mA, 12 = 120 mA, Figure4)
V3
6.7
-
V2
1.9
-
V10
-
-
9.0
v
2.4
v
0.7
v
·
@MOTOROLA Semiconducf:or.Producf:s Inc. 7-161
MC3325
TEST CIRCUITS
FIGURE 1
14
3
12
4
11
4.7 ~
6
=
16 k
-=
FIGURE 2
+14 v
500 13-
= 2 V3 13
4 5
6
14
13
12
11
V10 10
4.7 k
9
8
=
·
FIGURE ;3
14
= 13
10mA
3
12
4
11
= 10
6
9
=
8
FIGURE 4
=
3 4
=
6
14
13
12
11 V10
10 4.7 k
=
8
@ MOTOROLA Efemiconducf:or Products Inc.
7-162
MC3325
To Battery
FIGURE 5 - APPLICATION CIRCUIT
To D.iode Trio
RS
R4
R3
R2
R6
To 5, 6, or 7'
13+
4
3
8 R1
10 9
C1
C2
01 1N4003
Power Darlington
I
I I I I I IL ___ _;_ _____ _
I I I I I
I I I I
_ _JI
R7
To Alternator Field
*Note: The temperature coefficient of the battery voltage sense terminal is determined by the number of diodes used in
the diode string (i.e., whether Pin 5, 6, or 7 is used). The approximate temperature coefficient for a diode at 1.0 mA is
-2.0 mV ; 0 c, and for a zener diode it is +3.0 mV/0 c. Counting from ground (see circuit schematic) we have -2.0 mV for
05, -2.0 mV for 04, +3.0 mV for 21, -8.0 mV for 05 thru 08, and an additional -2.0 mV each for 09 and 010 if used.
The total temperature coefficient can be varied from approximately -9.0 mv/0 c to -13 mV!°C depending on the number
of the diodes in the diode string that are utilized.
APPLICATIONS CIRCUIT INFORMATION (See Figure 5)
R1 Determines the temperature coefficient by setting the value of current in the diode string. As the value of R1 decreases, so does the effective TC. R1 should be chosen so that the current in the diode string is between 0.5 mA and 1.0 mA.
R5 This resistor determines the Vreg voltage as defined by the fol~owing equation:
Vreg = (1 +ITRT5 ) 8.4 + (n + 5R5k) (0.7)
n = number of diodes used in diode string (4,;;;; n ,;;;;5)
R4 Used as a current limiting resistor on Pin 4 in case of an open battery voltage sense lead.
R3 Used as a current limiting resistor on Pin 3 in case of overvoltage at the .diode trio. Voltage at Pin 3 will run approximately 7.5 volts. R3 should be chosen so that the current (13) at maximum overvoltage is between 2.0 mA and 6.0 mA.
R2 This resistor determines the output drive current. Refer to specifications for the darlington driver and select the value for R2 that will provide enough drive to the output when the diode trio voltage is at a minimum.
Vmin - 2.8 V IDrive:::;: R2 + 50 Q
R6 This resistor in conjunction with R3 is used to set the maximum overvoltage.
Max.imum overvoltage:::;: ~ R3 + R6 (7.5)
R7 Used for compensation (Approximately 3.0 kQ)
Cl, Used for compensation·
C2
(Approximately 0.01 µF)
@ MOTOROLA Semiconducf:or Producf:s Inc.
7-163
·
ORDERING INFORMATION
Device MC3330P
Temperature Range 0°C to +75°C
Package Plastic DIP
MC3330
DIFFERENTIAL/CASCODE AMPLIFIER
... designed for applications requiring differential or cascode amplifiers. · Ext~emely Flexible Amplifier · Diode Available for Biasing · Economical 8-Pin Dual In-Line Package · Formerly MFC8030 In Case 644A Package
DIFFERENTIAL/CASCODE AMPLIFIER
SILICON MONOLITHIC FUNCTIONAL CIRCUIT
·
MAXIMUM RATINGS (TA= 2s0 c unless otherwise noted)
Power Supply Voltage
Rating
Input Differential Voltage
Power Dissipation @TA = 25°e (Package Limitation!. Derate above 25°e
Operating Ambient Temperature Range
Symbol Vee V1 Po
1/ReJA TA
Value 20 ±.5.0 L2
10 Oto +75
Unit Vdc Vdc Watts
mW/0 e oe
P SUFFIX
PLASTIC PACKAGE CASE 626-03
·FIGURE 1 - CIRCUIT SCHEMATIC
5
4
Substrate
2
7-164
· MC3330
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Circuit
ctuirKteristic
100µF
r-4 +
·in· 1.0 V(rms) 50
· 1.0kHz
~
+6.0 Vdc
AC Common-Mode Rejection
-6.0 Vdc
(einl CMR = 201og~
Symbol
Min Typ Mu Unit
35
d8
600 ..__ _ _ _.. -6.0 Vdc
Differential-Mode Voltage Gain
~<e. Av Diff = 20 log ~
11 em 1
l·in · 1.0 kHz, 1.0 mV[rms)) lein · 10 MHz, 1.0 mV[rms)) lein · 50 MHz, 1.0 mV[rms))
dB
32 26 10
......__ _ _ _,., -6.0 Vdc
Cascode·Mode Voltage Gain
Av
Cascode
= 20
log
(Te0i
1l
;)
Av(cscd)
lein =1.0 kHz, 1.0 mV[rms)) (e;n =10 MHz, 1.0 mV[rmsJ)
lein = 50 MHz, 1.0mV[rmsl)
+6.0 Vdc
Input Offset Voltage
Vto
dB
36 31.5 15
5.0
10
mV
·
270
+6.0 Vdc
DC Current Gain Match 1101·102>
hfE1
0.8
hFE2
1.25
" 7-165
·
MC3333
VARI-DWELL IGNITION CIRCUIT
... designed for use in conjunction with a flux averaging sensor and a high energy ignition coil to provide regulated current pulses to the coil from information supplied by the sensor.
· Wide Supply Voltage Operating Range (4 to 24 Vl · Externally Adjustable Overvoltage Shutdown · Externally Adjustable Dwell Time and Spark Energy · Extremely ,Stable Output Current Pulses · Variable Input Threshold Compensates for Low Supply
Voltage Conditions · Low Static Current Drain · Also Available in Flip-Chip (MCCF3333) and Standard Chip
(MCC3333) Form
VARI-DWELL IGNITION CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
PIN CONNECTIONS
14
2
13
3
12
4
11
5
10
6
9
8
ORDERING INFORMATION
Device
Temperature Range
Package
MC3333P
-40 to +85
. Plastic DIP
e
14
FIGURE 1 - BLOCK DIAGRAM
Vee
3
s2
12
Pump Up
2 S1 o--+------+----t
1
cc 0----1--.-.-.J\lltv--e
Clamp, Bias and References
Input Comp. with Hysteresis
6
...----+--<> P1
Power Output and OVP
7 ,....----0.01
Current Sense and Regulator
9 '---+-002
8 L----+--<>K
10
4
5
Gnd
Vs
7-166
MC3333
MAXIMUM RATINGS
Rating
Power Supply Voltage
Steady State
(Through 400 n, see Fig. 2)
Transients of 300 ms or less
Peak Output Sink Current
Transients of 300 ms or less
Junction Temperature
Operating Ambient Temperature Range
Storage Temperature Range
Symbol Vee
Value 24
Unit Vdc
90
IS(PEAK)
A
1.3
TJ
150
oc
TA
-40 to +85
oc
Tstg
-65 to +150
oc
ELECTRICAL CHARACTERISTICS <Vee= 14 5 v TA= 25°c unless otherwise specified· Figure 2 I
Characteristic
Pin(s) Symbol Under S1 S2 S3 S4 S5 S6 Min Typ Max
Test
Current Drain
lo
3
A
A
A
A
A
A 8.0
15
25
Pre-Driver On 01, 02 Output On Kelvin Contact
Vp1
6
Vo1 02 7&9
VK
8
A
A
A
A
A
A
-
A
A
A
A
A
A
-
A
A
A
A
.A
A
-
.90 2.0 110 500 40 200
CC Charge Circuit
V1
1
B A A A A E 700 800 900
S1 Follower C Clamp High
Vs1
2
Ve
14
A
B
A
A
A
c
1.4
1.6 1.8
AA A A A D -
8.4 8.8
S2 Turn On (measure Vs2 ramp value at P1 switch point. I
Overvoltage Protection Current Limit Trip
Vs2
12
Vs
5
V1L
4
A A A A B A 1.6
1.9 2.1
A
A
A
B c
A 8.0
9.1
10
A
A
B
A
c
B 150
180 220
Unit
mA
v
mV mV mV
v v v
v
mV
FIGURE 2 - TEST CIRCUIT
e100µ.A
B 0
50µA
8
B 0
S2
2
14.5 v
3
400 A
4 S3
":;"
5 S4
B
6
1.0V
OB QC 1.5 v
0
El-. e D
100µ.A
14
13 NC
12
11 NC
A Open Y..25V Ram
Os
SS
co
e1.0V
100µ.A
10
":;"
9 50 2W
8
·
1 k
@ MOTOROLA Semloonduo'tor Produc'ts Inc.
7-167
MC3333
·
14.5 v
FIGURE 3-TVPICAL APPLICATION CIRCUIT (
5p0F0
15 k
20 k
Pick-Up
Sensor
1.35 h
;51~~~~z I I L __ J
S1 CC
400
2w
Vee
Ro 6.8 k Re 3.3 k
Vs 6
P1 D1
I 0.125µF 20 k
C S2
12 11 NC 10 8 K D2
1 k 0.1 µF
20 k
70 10W
Ignition Coil
Primary Impedance ~0.43!2. inductance ·~7.5 - 8.5 mH@ 5 A
,- --,
1
I
I
I
I
I
I
I
LM~~2--
I
_J
345 Rs 654
All resistor values are in Ohms and are 1/4 Watt rating unless otherwise specified. Values are typical only.
0.05
Notes:
1. The ratio of RA to Rs controls the ignition coil regulated current:
~ (RA~+s Rs~ lco1L 3.6
Rs)
RA+
1 k!l
2. The ratio of Ro to Re sets the over-voltage shutdown point with respect to S+.
S+overvolt'age ~ 8 ( ~ Re+ Ro)
Rc+Ro~10kU
3. Re is active region dwell control. Re= 70 k!l results in -output current limit time of approximately 10% at 1000 RPM (with respect to one distributor cycle in an 8 cylinder engine). Values less than 70 k!l lengthen this limit time and values higher shorten this limit time.
4. The 0.1 µF capacitor at pin 4. may be eliminated and stability maintained. A readjustment of the RA and .Rs resistors wjll be required.
@ MOTOROLA Semiconduc1:or Produc1:· Inc.
7-168
ORDERING INFORMATION
Device MC3340P
Temperature Range 0°C to +75°C
Package Plastic DIP
MC3340P
ELECTRONIC ATTENUATOR
· Designed for use in: DC Operated Volume Control Compression and Expansion Amplifier Applications
· Controlled by DC Voltage or External Variable Resistor · Economical 8-Pin Dual In-Line Package · Formerly MFC6040 in Case 643A Package
ELECTRONIC ATTENUATOR
SILICON MONOLITHIC INTEGRATED CiRCUIT
MAXIMUM RATINGS (TA.= +25°c unless otherwise noted.)
Rating
Value
Power Supply Voltage
20
Power Dissipation @ TA = 25°c
1.2
Derate above TA = 25°c
10
Operating Ambient Temperature Range
0 to +75
Uri it
Vdc Watts mW!°C
oc
v,Noo Vee
Control
Vo
Gnd
Rolloff
NC
NC
PLASTIC PACKAGE CASE 626
FIGURE 1 - TYPICAL DC "REMOTE" VOLUME CONTROL
·
7-169
MC3340
ELECTRICAL CHARACTERISTICS (ein = 100 mV (RMS), f = 1.0 kHz, R1=0, Vee= 16 Vdc, TA= +25°C unless otherwise noted.)
Circuit
Characteristic
Min
Typ
Max Unit
Operating Power Supply Voltage
9.0
-
18
Vdc
I
ein
1
~~-µ0F
2
-=
1'\..
~
* Jr·c 50µF ~I "'?cs
~
l ~
eo
3¢ 16
E20pF
"'? -=
Control Terminal Sink Current (ein = 0)
Maximum lnput,Voltage
-
-
2.0 mAdc
-
-
0.5 V(RMS)
Voltage Gain
11
13
--
dB
Attenuation Range
. me= 33 k ohms)
70
90
-
dB
Total Harmonic Distortion (Pin 2 Gnd)
-
0.6
1.0
%
(ein = 100 mV (RMS), e0 =Av x ein)
FIGURE 2 - CIRCUIT SCHEMATIC 8
..... .--~ ~~~.--~~-+-~...-~~.--~~~~~~-..~__.,__~~...-~~....-"""vcc
6
·
Control
3 ~ Input
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete JnformatiOn sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed (o be entirely reliable .. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
@ MOTOROLA Semiconductor Products Inc.
7-170
MC3340
TYPICAL ELECTRICAL CHARA.CTERISTICS (Vee= 16 Vdc, TA= +25°e unless otherwise noted.)
FIGURE 3 - ATTENUATION versus DC CONTROL VOLTAGE
FIGURE 4 - ATTENUATION versus CONTROL RESISTOR
20
~
2 40
;0::
~ 60
f-
0 dB Reference= 13 dB Gain
~
<(
~ f =1.0 kHz -+-_;_----+-----+-----+---"~.--:s:--;
80
JOQ.___ _ _.___ _ _..___ _ _,__,_ _ _..___ _ ~
3.5
4.0
4.5
5.0
5.5
6.0
V2, CONTROL VOLTAGE !VOLTS)
\
20
)\
~
z 40
0
;::
~<( 60 ~ ~~ ~e:~:nce = 13 ~~in
~ J
80 1-----1----+--Re-i-s +fro-m--p+in-2+t-o-g+ro-un-d-!---l-~~kl"--'L+-_-+--l
100L---'-...,...,.---'-J--1.......J.,..----:-':"'---:'':---'-~-'---:'
4.0
6.0
8.0 10
15
20
30
40
Re. CONTROL RESISTOR (k OHMS)
FIGURE 5 - FREQUENCY RESPONSE
14
12
~ 10
z ~ 8.0 t--t-t-
UJ C!l
~ 6.0
0
> 4.0
Input voltage leinl =.JO mV
Pin 6 uncompensated
I
~
~ ~ ~
2.0 0 100
\
1
l
1.0 k
10k
100k
1.0M
10 M
FREQUENCY (Hz)
100 M
FIGURE 6 - OUTPUT VOLTAGE SWING
~ ~
8.0
f--f--li---l~-l~-l~-l-=~--i~-=--11--1~-l ~
~~ 6.0
~
~
~ 4.0
~ l----il----l---i'----ll----lf----1---1---1---lf-----i
2.o 0---1----;,____,,____,.____,,__--i_--i>----i,__--i,____,
3,___,___.___.___,___.___.___.___..__..___. 8.0 9.0 10 11 12 13 14 15 16 17 18
SUPPLY VOLTAGE !VOLTS)
FIGURE 7 - TOTAL HARMONIC DISTORTION
4.0~-~----~----~----~-~
~
z
0
~ 3.0
a
u
~ 2.0
~ ~_,
~ 1.0
J_
f
1 0 dB Reference = 13 dB Gain :0==i~sk~tR M1l
i----1"'
0 o'----1~0--2~0---,3~0---,4~0--5~0--6~0--7~0-~80
ATTENUATION (dB)
@ MOTOROLA Semiconduc<or Produc·s Inc. _________,
·
7-171
ORDERING INFORMATION
Device
MC3346P MC3386P
Temperature Range
-40°C to +85°C -40°C to +85°C
Package
Plastic DIP Plastic DIP
'
;
ONE DIFFERENTIALLY-CONNECTED
PAIR AND THREE
ISOLATED TRANSISTOR ARRAY
The MC3346 and MC3386 are designed for general-purpose, low power applications for consumer and industrial designs.
· Guaranteed Base-Emitter Voltage Matching · Operating Current Range Specified - 10 µA to 10 mA
e Five General-Purpose Transistors in One Package
MC3346 MC3386
GENERAL-PURPOSE TRANSISTOR ARRAY
SiLICON MONOLITHIC INTEGRATED CIRCUIT
·
MAXIMUM RATINGS Rating
Collector-Emitter Voltage Collector-Base. Voltage Emitter-Base Voltage Collector-Substrate Voltage Collector Current ..:.. Continuous Total Power Dissipation @TA. ; 25°C
Derate above 25°C Derate Each Transistor@ 25°C Operating Temperature Range Storage Temperature Range
Symbol VcEO Vcso VEB Vc10
le
Po
TA Tstg
Value 15 20 5.0 20 50 1.2 10 300
-40 to +85 -65 to +150
Unit Vdc ' Vdc Vdc Vdc mAdc Watts mW/°C mW/0 c oc oc
· . u
PSUFFIX PLASTIC PACKAGE
CASE 646
7-172
MC3346, MC3386
ELECTRICAL CHARACTERISTICS
Characteristic STATIC CHARACTERISTICS Collector-Base Breakdown Voltage
(le= 10 µAdel Collector-Emitter Breakdown Voltage
Oc = 1.0 mAdc) Collector-Substrate Break.down Voltage
!le= 10µA) Emitter-Base Breakdown Voltage
(IE= 10µAdc) Collector-Base Cutoff Current
(Vea= 10 Vdc, IE= 0) DC Current Gain
!le=-10 mAdc, VcE = 3.0 Vdel (le= 1.0 mAdc, VcE = 3.0 Vdc) (le= 10 µAde, VcE = 3.0 VdcJ Base-Emitter Voltage (VcE = 3.0 Vdc, IE= 1.0 mAdc) (VcE = 3.0 Vdc, IE= 10 mAdc) Input Offset Current for Matched Pair 01 and 02 !VcE = 3.o Vdc, le:._1.0 mAdc) Magnitude of Input Offset Voltage !VcE = 3.0 Vdc, le= 1.0 mAdcl Temperature Coefficient of Base-Emitter Voltage !Vee= 3.0 Vdc, le= 1.0 mAdcJ Temperature Coefficient
Collector-Emitter Cutoff Current
(VeE = 10 Vdc, ~8 = 0)
DYNAMIC CHARACTERISTICS
Low Frequency Noise Figure !VcE = 3.0 Vdc, le= 100 µAde, Rs= 1.0 kn, f = ,1.0 kHz)
Forward Current Transfer Rafio (VeE = 3.0 Vdc, le= 1.0 mAqi;, f = 1.0 kHz)
Short-Circuit Input lmpedan.ce !VeE = 3.0 Vdc, le= l.O mAdc!
Open-Circuit Output Impedance (VcE = 3.0Vdc, le= 1.0 mAdc)
Rever~e Voltage Transfer Ratio
= !VeE 3.0 Vpc, le= 1.0 mAdc)
Forward Transfer Admittance !Vee= 3.0 Vdc, le= J.O mAdc, f = 1.0 MHz)
Input Admittance !VeE = 3.0 Vdc, le= 1.0 mAdc, f = 1.0 MHz)
Output Admittance !VcE = 3.0 Vdc; le= 1.0 mAdc, f = 1.0 MHz)
Current-Gain - Bandwidth Product (VcE = 3.0 Vdc, IC= 3.0 mAdc)
-"-
Emitter~Base Capacitance (VEB = 3.0 Vdc, IE= 0)
Collector-Base Capacitance (Vea= 3.0 Vdc, le= Ol
Collector-Substrate Capacitance !Vcs = 3.0 Vdc, le= Ol
Symbol Min
BVcso 20
BVcEO
15
BVc10
20
BVEBO 5.0
lcso
-
hFE
-
40
-
VBE -
-
11101-
-
11021
-
-
-6-V;;8;Ey
-
-1;°V;:1rol-
-
lcEO
-
MC3346P Typ
Max
60
-
-
-
60
-
7.0
-
-
40
140
-
130
-
60
-
0.72
-
0.80
-
0.3
2.0
0.5
5.0
-1.9
-
1.0
-
-
0.5
NF
3.25
hFE
110
hie
3.5
hoe
15.6
hre
1.8
Yte
31-jl.5
Yie
0.3+j0.04
Yoe
0.001+j0.03
tr
300
550
Ceb
0.6
Ccb
b.58
Cc1
2.8
MC3386P
Min
Typ
Max
Unit
20
.60
-
Vdc
15
-
-
Vdc
20
60
-
Vdc
5.0
7.0
-
Vdc
-
-
100
nAdc
-
-
-
-
40
130
-
-
-
-
Vdc
-
0.72
-
-
0.80
-
-
0.3
-
µAde
-
0.5
-
mVdc
-
-1.9
-
mV!°C
-
1.0
-
µV/°C
-
-
5.0
µAde
3.25
110 3.5 15.6 1.8 31-jl.5 0.3+j0.04 0.001 +j0.03 550 0.6 0.58 2.8
dB
kn µmhos x10-=4
MHz pF pF pF
·
@ MOTOROLA Se,.,iconductor Products lnC.
7-173
MC3346, MC3386
TYPICAL CHARACTERISTICS
FIGURE 1 - COLLECTOR CUTOFF CURRENT versus TEMPERATURE (Each Transistor)
102 i===l==:f=:==t:==i===t==f=:::::jF;LiL~=l==l
1-- IB = 0-1---+-+--l----+-z~L'-+7~L'--1----+----i
~ 101
LL'IL_Z
2 1.0 i---+-----it---+ VCE =1~ -tz"'.-L----+--+-...::..--t-----1
. §
r - 4 VcE=5.0V
~10-1 ~ z ~....,
8 ::z 10-2 .......
~ 10-3 ...__..___....__....__.__...___....__....__,___,____.....__
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (DC)
FIGURE 2 - COLLECTOR CUTOFF CURRENT versus TEMPERATURE (Each Transistor)
TA, AMBIENT TEMPERATURE (DC)
FIGURE 3 - INPUT OFFSET CHARACTERISTICS FOR Q1 and a2
1.0
:g 0.7
< 0.5
i.3 ~::
'*~ 0.1
~
0.07 0.05
~ 0.03 i--
-
g 0.02
12~
z Lvv
I LP"'
0.01 0.01
0.02 0.03 0.05
0.1
0.2 0.3
le, COLLECTOR CURRENT (mAdc)
0.5 0.7 1.0
FIGURE 4 - BASE-EMITTER AND INPUT OFFSET VOLTAGE CHARACTERISTICS
g .
~
~ 0.8 t---t--+--1-+-t-H-tt---+--+-t--+-++++t---+---~f-+-t-Ht,;W4.0 :§.
~
j...t-'
~
~ 0.7
>
v~ v--F1 .
~ 3.0 >
·~ _r-H-f"i
~
k - r I~- 0.6
~
u'.J
I~ IL"
2.00~
~z·
\ ~~ o.5 r---!=f::l::j:t:t:J:tt:=~:::j;;;f-rtmi v10 -+--~>-t-t-++'H1 .o -;;;
>
>
Q4'---'--"--'-'-~-'-'---'----'--'-'--"--LI..l.'---'--..L-J-'--.L..LIU.J0
0.01
0.05 0.1
0.5 1.0
5.0 10
IE, EMITTER CURRENT (mA)
140
130 z
<
Cl
i 110
uc 90
~ 70 L
50 0.01
FIGURE 5 - DC CURRENT GAIN
vrhFE id'1
L
·L
~
\
L11
~IL~ ,...
~ r-.i--
I I I hFEJ
hFEi
DrlhFhE~2l1
3.5
3.0 Q f::
2.5 ;ii
z
2.0 ~
I1.5
1.0
0.95
u c
0.9 ~
i 0.85 ~
0.8
0.05 0.1
0.5 1.0
0.75 5.0 10
IE, EMITTER CURRENT (mAdc)
-------~ @·MOTOROLA. Seniiconductor Products Inc.
7-174
ORDERING INFORMATION
Deylce MC3360P
Temperature Range -10°c to +75°C
Package Plastic DIP
MC3360P
1/4-WATT AUDIO AMPLIFIER
. ; . designed for the output stage of battery-powered portable radios.
· 250 mW of Audio Output Power · Low Standby Current - 3.5 mA typical · Low Harmonic Distortion · Reduces Component Count in Portable Radios · Formerly MFC4000B Packaged in Plastic Case 206A.
1/4-WATT AUDIO AMPLIFIER
SILICON MONOLITHIC FUNCTIONAL Cl RCUIT
MAXIMUM RATINGS (TA = +25°C unless othe;wise noted.)
Rating
Value
Power Supply Voltage
12
Power Dissipation (Package Limitation)
1.2
Derate above TA =+25.°C
10
Operating Ambient Temperature Range
-10 to +75
Unit
Vdc
Watts
mwt0 c
oc
PLASTIC PACKAGE CASE 626
TYPICAL APPLICATION
Mixer
Oscillator
PreArnpl
MC3360P
Audio
Amplifier
·
7-175
MC3360
·
ELECTRICAL CHARACTERISTICS* (Vee; 9.0 Vdc, RL; 16 Ohms, TA; +25°C unless otherwise noted.)
Characteristic
Zero Signal Current Drain
Sensitivity Po ; 250 mW(RMS)
Output Power Total Harmonic Distortion~ 10%
Total Harmonic Distortion Po ; 50 mW( RMS) Po; 50 mW(RMS), Vee; 6.0 Vdc
·As measured in test circuit shown in Figure 1.
Min
-
250
-
-
Typ 3.0 -
350
0.7 4.5
Max 5.0 240
-
-
-
Audio Oscillator
FIGURE 1 - TEST CIRCUIT
,--- ;;;-36-;-I
1
I
I
I
I
I
I 5.0
I
I
I
I
I
I I
IL __ _
4
0.005 µF
Unit mAdc mV(RMS) mW(RMS)
%
Circuit diagrams utilizing Motorola productS are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been 1...arefu lly checked and
is believed to be enti.rely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
@ Semiconduc~or MOTOROLA
Products Inc. -----------'
7-176
1VJC3360
TOTAL HARMONIC DISTORTION versus OUTPUT POWER
10
g 8.0
~
0 I-
~ 6.0
u
~
~ 4.0 ~
§<{ 2.0
10
FIGURE 2 - Vee : 9.0 Vdc
u
I/
I
I-
L
vY
20 30 50
100
200 300 500 1000
OUTPUT POWER, mW(RMS)
10
'#'
~- 8.0
I-
cc
0 I-
c;. 6.0
u
~
~ 4.0 ~
§ 2.0
FIGURE 3 - Vee : 6.0 Vdc
[
vJ'
~
--i--+-""
3.0 5.0
10
20 30 50
100
0 UTPUT POWE A, mW(rms)
200 300
FIGURE 4 - CURRENT DRAIN versus OUTPUT POWER 20~
10
;Ji'.
~- 8.0
~ 6.0
Ci
u
2
0
~
4.0
~
~ 2.0
I0 I-
FIGURE 5 - TOTAL HARMONIC DISTORTION versus SUPPLY VOLTAGE
l
10
20 30 50
100
200 300
500 1000
OUTPUT POWER, mW( RMS)
2.0
4.0
6.0
8.0
10
Vi.SUPPLY VOLTAGE (VOLTS)
FIGURE 6 - TYPICAL CIRCUIT APPLICATION
r----------1 r-
1
.---------i...+-------c.__-· Vee
I
I
I
I I
I
56 k
'1
I I
I
5.0µF
II~ ~-- -~-------+--i
I
1'
10 k
I
I I
I
1'
1.0 k
I
I
33 k
,I ,
I
I I
0.005 µF
I
1'
I
1'
I
PREAMPt.:IFIER
I I
POWER AMPLIFIER
L---------~L---~--------~----~-
@ MOTOROLA Semfoonductor Products Inc. ________.
·
7-177
·
ORDERING INFORMATION
Device MC3380P
Temperature Range 0°C to +75°C
Package Plastic DIP
MC3380P
EMITTER COUPLED ASTABLE MULTIVIBRATOR With Programmable Pulse Width and CurrentControlled Pulse Repetition Rate
The MC3380P is a monolithic device designed for use as a general building block in control and power supply applications. ·
Its extremely flexible design makes it useful in de-de converter applications and power supply regulator circuits. Its fixed pulse width, variable frequency mode of operation makes it useful in switching regulator applications with either fixed or variable loads. This 'device is capable 'of stepping up (Figures 5 and 9) or stepping down (Figure 14) de input voltages, and can produce regulated multiple output de voltages of. either positive or negative polarity (Figure 14).
This device can also be used as a frequerrcy source when configured as a multivibrator.
As a DC-DC Converter Differential Line Regulation (Figure 9) =1 V(Max)@Vcc=3to7.5V
As a Power Regulator Load Regulation (Figure 5) 0.2% (Typ) @Po= 1 to 3 Watts
As a Multivibrator High Toggle Frequency= 100 kHz (Typ)
EMITTER COUPLED AST ABLE
MULTIVIBRATOR
SILICON MONOl,.ITHIC INTEGRATED CIRCUIT
PLASTIC PACKAGE CASE 626
V Div.o l1 t a g e O8 Vee
Freq.uency Control 1
2.
.
~~e~~~7~v 3 ·
. 7
Frequ.ency comparator
6 Feedback
Gnd 4
5 Oscillator Output
· FIGURE 1 - CIRCUIT SCHEMATIC
2 3
6
7-17A
MC3380P
MAXIMUM RATINGS (TA= +25°c unless otherwise noted)
Rating Power Supply Voltage Output Current - Pin 8 Power Dissipation @TA = 25°c
Derate above 25°c Operating Ambient Temperature Range Storage Temperature Range
Symbol Vee to Po
TA Tstg
Value 10 100 300 3.0
0 to +75 -55 to +125
Unit
Vdc
mA
mW
mw1°c
oc
oc
ELECTRICAL CHARACTERISTICS (TA= 25°c, Vee= 5.0 Vdc, unle$s otherwise noted.!
Characteristic
Symbol
Min
Typ
EMITTER-COUPLED ASTABLE MUL TIVIBRATOR
Rise Time
tr
(C = 0.0034µF,R1 = R2 = 10 kn, f = 100 kHz, Figure 4)
Fall Time
tf
(C= 0.0034µF, R 1=R2=10 kn, f = 100kHz, Figure 4)
Toggle Frequency
-
(C = 0.002µF, R1=R2=10 k, Figures 2, 3,4)
-
12
-
45
-
100
3-WATT REGULATOR Power Efficiency (Figure 5)
(Vo= 200 Vdc@ 15 mAdc) Load Regulation (Figure 5)
(Pout< 3.0 W) Line Regulation (Figure 5)
(Vee = ·4.0 -6.0 Vdcl Output Voltage (Figure 5)
-
-
60
R.egload
-
0.2
Regline
-
0.3
Vo
-
200
Output Current (Figure 5)
lo
-
15
Supply Voltage (Figure 5)
Supply Current (Figure 6)
(IFs=O,RL=~)
Output Voltage.High (Figure 6)
Oo = 2.0 mA, I FB = 250 µA) Oo = 25 mA, 'Fa= 250µA)
Output Voltage Low (Figure 6) (lo= -1.0 mA, 'FB = 600 µA)
Rise Time
On Time Fall Time
(Figure 7)
Off Time
DC - DC CONVERTER
Zener Bias Current (Figure 10) (Vee= 5.0 Vdc, Vo> 2.4 Vdcl (Vee= 5.0 Vdc, Vo< OAVdc)
Output Current (Figure 11) I (Vee= 5.0 Vdcl
Output Resistance (Figure 12) (Vee= 5.0 Vdc, 10 = -1.0 mAl
Shutdown Voltage (Figure.13) (Vo< 0.5 V) j
Supply Voltage (Figure 9)
Differential Line Regulation (Figure 9) (A.Vee= 3.0 to 7.0 Vdcl
Feedback Voltage (Figure 9) !Vee= 5.0Vdc)
Voltage Efficiency (Figure 9) !Vee= 5.0 Vdc, Eff!%l = <Vout2/(3.3 kl Occl (Vccll
Vee to
VoH
Vol tr ton tf
toff
IFB1 IFB2 IOH
ro
Vee
AV reg VF
-
3.0 -
2.4 1.2 -
-
-
-
-
-
600 25
150
-
3.0 -1.0
0.6
40
20
3.5 1.5 150
12 20 45 20
-
35
220
-
-
-
-
7-179
Max
Unit
-
ns
-
ns
-
kHz
-
%
-
%
-
%
-
v
-
mA
10
v
30
mA
v -
300
mV
'
-
ns
-
µs
-
ns
-
µs
250
µA
-
µA
-
mA
300
n
1.6
v
7.0
v
+1.0
v
1.1
v
-
%
·
MC3380P
·
FIGURE 2 -TYPICAL CAPAG!TANCE
versus FREQUENCY
1.0 MH z
--""" b.
100 kH z
""'
TTI Il
:c
;:;
~ 10 kH z
~
.,... ff1,-,,·1?1 .~.U.Q
R1 ;-;r-. -r -...":?,,, 1() kq
Il TIJ
,...;;: '!--..
1.0 kH z
100
0.001
0.01
0.1
CAPACITANCE (µF)
FIGURE 3 - TYPICAL DUTY CYCLE and FREQUENCY CHARACTERISTICS
500
15
Frequency i___..-
~ 100
w
!;;ii'
u- '
;:; 50
>-
1-
~
Cl
~v Duty Cyci;...
10
~
E2
.--
7
~
5.0 1.0 k
2.0 k
~
";?" ~
Rl + R2 = 11 kn
C=O.OlµF
:r
5.0 k
Rl, RESISTANCE (OHMS)
t - -t - 1.0
0.5 !Ok
FIGURE 4 - ASTA~LE MULTIVIBRATOR TEST CIRCUIT
5 Vo
l
FIGURE 5 - 3-WATT SWITCHING REGULATOR APPLICATION CIRCUIT
V ref for System
0.01
1.0
µF
µF
+
+
Vee-=- · 590 µF ·
2
0.01 µF
2.7 K
0.02 µF
15
Q1
T1
Np
·
II ·
IN4937
+
Vo= 200 V·@ 15 mA
Q2 2N6495
T1 - FERROXCUBE Pot Core
47
#2213P-L003B7 (6 mil gap)
Np - 8 Turns #22 AWG
Ns- 80 Turns lf26 AWG
3-"'.lfatt Switching Regulator - converts 5 V to 200 V for gas discharge displays such as Burroughs Panaplex and Beckman.
7-180
MC3380P
FIGURE 6-,STATIC TEST CIRCUIT
FIGURE 7 - DYNAMIC TEST CIRCUIT
lo-
Vee-=-
10 µF 6
-10 k IFS
0.01 µF
1
Vee-=-
-=-Vs
2
AL lo
3.3 k
µF
1 k
Vo*ton
tr
/
tf toff
1 k
FIGURE 8 -SWITCHING WAVEFORMS AT 02 Collector Current and Voltage WaVl!forms of 2N6495 (02) From Figure 5
l >
~
<( N ()
>
:
>
~ w
()
>
V I
10 ,us/div
FIGURE 9 - TYPICAL APPLICATION IN 3 - 25 V DC-DC COl\!VERTER CONFIGURATION
·
1.0 k
4 5
3-7 v
50/25
.01/25
-Ice
3
6
2
8
=
Notes: 1. All resistor values in ohms,± 1%, 1/4 W 2. All capacitor values in µF, = 20%, except · ± 5%. 3. All inductors± 4%.
1N3601
+
----1-------,__~--u +25 V
5/35
3.3 k Vo
MZ92-27C
7-181
MC3380P
·
DC· DC CONVERTER TEST CIRCUITS
FIGURE 10 - ZENER BIAS CURRENT TEST Vee
6
IFS
-=
8
5
Vo
4
-1-
FIGURE 11 - OUTPUT CURRENT TEST Vee
8
--o----o Vo
'----.....---' I0 H 4
48 n
FIGURE 12 - OUTPUT. RESISTANCE TEST Vee 8
Vout 4
Vout (Note: r0 =1;:;:;A)
FIGURE 13- SHUTDOWN VOLTAGE AND TEST (NOTE: Decrease Vee until Vo< 0.5 V) Vee
8
5
Vo
4
-=
i
7-182
MC3380P
FIGURE 14 - TYPICAL APPLICATION AS MULTIPLE OUTPUT SWITCHING REGULATOR FOR USE WITH MPU'S
680 2W
500 µF
50 v
MDA920·2
0.01
10
µF
µF
IN5850A
500 µF
50 v
MC3380
3750
~--1---+-----<1---0 Pout 2
+12 v
~-..~...------11----VPout3 -3.0 v
10 k 50
800
IM10ZS3
10 v
3% 1W
1.0M
1.0 k
Al= MC1741CP1
Tl: W1 = 30 Turns of 1126 AWG W2 = 5 Turns of 1120 AWG W3 = 3 Turns of 1126 AWG W4 = 12 Turns of 1126 AWG
FERROXCUBE Pot Core #3019P·L00,3B7 Air Gap= 0.010"
TYPICAL PERFORMANCE Poutl = 4 Watts
(Vo= 5 V ± 5%) 5 V Ripple Component= 50 mV
(120 Hz+ 20 kHz) Pout2 =,600 mW
(Vo= 12 V ± 10%)
Pout3 = 3 mW (Vo = -3 V ± 10%)
·
,_
7-183
·
MC3390
Product Previe"V'V
PHASE LOCKED LOOP F.REOUENCY SYNTHESIZER
The MC3390 is a phase locked loop frequency synthesizer designed specifically for single crystal, Class-D citizen band radio applications. By· utilizing recently developed circuit techniques, the IC incorporates high speed and high density logic in combination with standard linear functions and is processed with the same techniques and materials common to the Motorola low-cost consumer linear IC line.
· Developed Specifically for Class-D Citizen Band Radio Applications
· Targeted for Low Cost, High Volume Requirements · Directly Compatible with the New 40 Channel Frequency Alloca-
tion · Requires Only One Crystal to Generate All Transmit and Receive
F requencjes · Compatible with the MC3391 Remote Controller and Display
Driver · A Low-Cost Binary Coded Switch Can Be Used Directly for
Channel Selection · Compatible with Digital Display Techniques
· Linear Co~patible 12L Is Utilized for Optimum Cost Effectiveness
· Designed for Double or Single Conversion Receivers
PHASE LOCKED LOOP FREQUENCY SYNTHESIZER
FOR CITIZEN'S BAND RADIO
P SUFFIX PLASTIC PACKAGE
CASE 724
ORDERING INFORMATION
Device MC3390P
Tem·perature Range
-40 to +85
Package Plastic DIP
CB RADIO USll'l!G IV!C3390 SYNTHESIZER
RF Amp
1st Mixer
2nd Mixer
MC3390 Synthesizer
IF Amp & Det
Channel Selector Indicator
Exciter
Audio Amp
This is advance information and specifications are subj"!ct to change without notice.·
7-184
MC3391
Product :Previevv
REMOTE CONTROLLER AND DISPLAY DRIVER FOR CITIZEN'S BAND RADIO
REMOTE CONTROLLER AND
D.ISPLAY DRIVER FOR
CITIZEN'S BAND RADIO
The MC3391 is a remote control.ler and display driver IC designed to be used in conjunction with the. MC3390 frequency synthesizer for Class-D citiz~n's band radio applications.
The MC3391 provides .the user the capability of incremental stepping from one channel to another by merely engaging a push . button switch. Last channel memory is provided during power switch off conditions. The IC also provides the decoding and drive required by seven-segment light emitting diode or liquid crystal displays for channel number indication. It is fully compatible with the new 40 channel frequency allocation.
P SUFFIX
PLASTIC PACKAGE CASE 724
ORDERING INFORMATION
Device
MC3391 P
Temperature Range
--40 to +85
Package
Plastic DIP
TYPICAL APPLICATION 40 Channel CB Transceiver with remote and manual control capability and LED/LCD display
RF
Amp
1st Mixer
2nd Mixer
IF Amp. & Det.
MC3390 Synthesizer
·
Power Amp
Exciter
Audio Amp
MC3391 Controller and Display Driver
J:i
----· ·
Up Down
ltJJ
This is advance information anc specifications are subject to change without notice.
7-185
·
Advance lnf"ormatton
TV SOUND SYSTEM
The TDA 1190Z 4.0 watt sound system is designed for television and related applications. Functions performed by this circuit include: IF Limiting, IF amplifier, low pass filter, FM detector, DC volume control, audio preamplifier, and audio power.amplifier.
· 4.0 Watts Output Power (Vee= 24 V, RL = 16 n)
· Linear Volume Control · High AM Rejection · Low Harmonic Distortion · High Sensitivity
· BLOCK QIAGRAM
Regulated Power Supply
15
14
Low-Pass Filter
TDA1190Z
TV SOUND SYSTEM
SILICON MONOLITHIC INTEGRATED CIRCUIT
· · --
.
~~
PLASTIC .PACKAGE CASE 722A
PIN CONNECTIONS
3
6
8
16
This is advance information and specifications are subject to change without notice.
7-186
ORDERING INFORMATION
Device Tl;>A1190Z
Temperature Range 0 to +75°C
Package Plastic
TDA1190Z
MAXIMUM RATINGS
Rating Supply Voltage Range Input Signal Voltage Output Peak Current. (Non-repetitive)
(Repetitive) Operating Temperature Range Junction Temperature
Symbol Vee V1 lo
TA TJ
Value 9.0 to 28
1.0 2.0 1.5 0 to +75 150
Unit
v v
A
oc oc
ELECTRICAL CHARACTERISTICS !Vee,,; 24 V, f 0 = 4.5 MHz, M = ±25 kHz, TA= 25°C unless otherwise noted.
Characteristic
Symbol
Min.
Typ.
Max.
Quiescent Output Voltage (pin 11)
Vee= 24 v Vee= 12 v
Quiescent Drain Current (P1 = 22 kn)
Vee= 24 v
Vee= 12v
Output Power (d = 10%, fm = 400 Hz) VCC = 24 V, R L = 16 n
Vee= 12 v, RL = 8.0 n
(d = 2%, fm = 400 Hz)
Vee= 24 V, RL = 16 n
v. Vee= 12 RL ~a.on
Input Limiting Threshold Voltage (-3.0 dB) at pin 1 M = ±7.5 kHz, fm = 400 Hz, P1 = 0
Vo 11 5.1
lo
11 -
Po
-
-
-
V1
-
12
13
6.0
6.9
(
22
35
19
-
4.2
-
1.5
-
3.5
-
1.4
-
40
100
Distortion (Po= 50 mW, fm = 400 Hz, M = ±7.5 kHz) VCC = 24 V, R L = 16 n
Vee= 12 v. RL = 8.o n
Frequency Response of Audio Amplifier (-3.0 dB) (RL = 16 n, C10 = 120 pF, C12 =470 pF, P1=22 kn) Rt= 82 n Rt= 47 n
Recovered Audio Voltage (pin 16)
(V1;;;., 1 mV, tm =400 Hz, M = ±7.5 kHz, P1=0)
Amplitude Modulation Rejection (V1;;;., 1.0 mV, fm = 400 Hz, m = 30%)
Signal and Noise to Noise Ratio (V1;;;., 1.0 mV, V 0 = 4.0 V, fm =400 Hz)
External Feedback Resistance (between pins 9 and 101
Input Resistance (pin 1) (V1=1.0mV)
Input Capacitance (pin 1) (V1=1.0 mV)
Power Supply Rejection Ratio (RL = 4.0 n, fripple = 100 Hz, P1=22 kn)
DC Volume Control Attenuation (P1 = 12 kS1)
d
\
B
Vo
AMR
S+N ·N Rt q
Ci
PSRR
-
-
0.75
-
-
1.0
-
-
70 to 12 k.
-
-
70 to 7.0 k
-
-
120
-
-
55
-
50
65
-
-
-
22
-
30
-
-
5.0
-
-
46
-
-
90
-
Unit
v
mA
w
µV %
Hz
mV dB dB kn kn pF dB dB
@ MOTOROLA. Semiconductor Products Inc.
7-187
·
TDA1190Z
·
TEST CIRCUIT
--L-1--·
-L= 10µH
C7
-C12
C10 ~-----C-9------ovcc
t---r-t= i Q 0 = 60 ,
f o = 4.5 Mt\z
--UC·6--4t-9-.~0
pF
~ 470 pF 120 pF i----1 i--+-----1o_o_nF
~~~ µF/35, v
C1
<>-1100 nF
Input
t----<--u---t
120 pF
10
14
11
C11 1000 µF/16 V
R1
5011 R4 1.0
C2 47 nF
3
16
Volume
15
TABS
P1 22 ki1
lin.
CB 7.5 nF
·~c = 75 µs
Vee 12 24 v
RL
8 16 .n
~f
82 47 .n
TYPICAL CIRCUIT CONFIGURATION
R3 C4 C5
~
r - - - - - - - - - - - - - -15
Regulated Power Supply
Ceramic Filter
@ MOTOROLA Semiconduc'for Producf:s Inc.
7-188
·
; '
OTHER LINEAR CIRCUITS
Page
Video Amplifier. . . . · . . . . . . . . . . . . . . · . . . . . 8-6
Timing Circuit with Adjustable Threshold .....·.·... 8-10
Power Boost.er . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17
Wideband Amplifier .... : . . . . . . . . . . . . . . . . . 8-23
RF-IF Amplifier......................... 8-29
Video Amplifier ........... .
8-35
1-Watt Power Amplifier ...... .
8-39
Timing Circuit. · . . . . . . . . . . . . . · . . . . . . . . . . 8-43
NPN Power Darlington Driv.er. . . . . . . . . . . . . . . . . 8-50
Wideband Amplifier with AGC . . . . . . ·. . . . . . . . . . 8-52
Four-Quadrant Multiplier . . . . . . . . . . . . . . . . -.. ·. 8-61
Four-Quadrant Multiplier . . . . . . . . . . . . . . . . . . . 8-75
Balanced Modulator-Demodulator . . . . . . . . . . . . . . 8-91
Differential Video Amplifier. . . . . . . . . . . . . . . . . . 8-101
Programmable Frequency Switch ............... 8-109
Zero Voltage Switch ...........·.......... 8-114
Dual Operational Amplifier plus Dual Comparator ..... 8-118
Overvoltage Sensing Circuit . . . . . . . · . . . ~ ., . . . . . 8-123
Ground Fault Interrupter .......·........... 8-127
Dual Timing Circuit· . . . . . . . . . . . . . . . . . . . . . . 8-134
Phase-Locked Loop. . . . . . . . . . . . . . · . . . . . . . 8-141
Video Amplifier . . . . . .- . . . . . . . . . . . . . . . . . . . 8-145
8-2
High Frequency Amplifiers
A variety of high-frequency circuits with features ranging from low-cost simplicity to multifunction versatility marks Motorola's line of integrated RF/IF amplifiers. Devices described here are intended for industrial and cummunications applications. For devices especially dedicated to consumer products, i.e., TV and entertainment radio, see page 7- 3.
NON-AGC AMPLIFIERS
SE/NE592 - Differential Two Stage Video Amplifiers
A monolithic, two state differential output, wide-
band video amplifier. It offers fixed gains of 100
and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.
MC1733/MC1733C - Video Amplifier
Differential input and output amplifier provides three fixed gain options with bandwidth to 120 MHz. External resistor permits any gain setting from 10 to 400 v/v. Extremely fast rise time (2.5 ns typ) and propagation delay time (3.6 ns typ) makes this unit particularly useful as pulse amplifier in tape, drum, or disc memory read applications.
MC1552/MC1553 - Low Distortion Amplifier
Extremely high performance amplifier with internal series feedback for stable voltage gain and low distortion. Temperature compensation stablizes operating point. Has selectable gain option and well characterized data that permits accurate response shaping. Useful ·for critical applications such as wideband linear amplifiers or fast-rise pulse amplifiers.
MC1510/MC1410 - General-Purpose Differential
·
Amplifier
Differential amplifier with flat response to 40 MHz. Provides excellent performance and simple design for most video and communications purposes.
AGC AMPLIFIERS
MC1550 - Low Cost Building Block
Single-stage cascade connected amplifier with delayed AGC characteristics, for operation at frequencies to 100 MHz. Has typical power gain of 25 dB@ 60 MHz.
MC1545/MC1445 - Gated 2-Channel Input
Differential input and output amplifier with gated 2-channel input for a wide variety of switching purposes. Typical 75 MHz bandwidth makes it suitable for high-frequency applications such as video switching, FSK circuits, multiplexers, etc. Gating circuit is useful for AGC control.
MC1590 - Wide~Band General Purpose Has differ'ential inputs and outputs with unneutralized power gain as high as 35 dB typical at 100 MHz in tuned amplifier service. Effective AGC voltage range from 5 to 7 volts for a 30 dB gain reduction.
ELECTRICAL SPECIFICATIONS AGC AMPLIFIERS
Operating
Tem~erature Range
-55to +125°C
0 to
+1s0 c
Band Vee/
Av
width
VEE
dB
MHz
Vdc
Case
MC1550 MC1590
MC1545
-
-
MC1445
22 Min 44 Typ. @
4 Typ @ 19 Typ @
22 10 100 75
+6/- 6028,606
+12/-
601
+5/-5 602A,607 632
NON AGC AMPLIFIERS
MC1733
MC1510 MC155.3 MC1552 SE592
MC1733C 52 40 20
MC1410
40
-
46
52
-
34
40
NE592
55
45
@ 40 90 120
40
@ 35 15
@ 40 @ 35
@ 40 @ 90
+6/--6 603,632
+6/--6 +6/--6
601 6028
+6/-6 602E!
+6/--6 603.632
·
PACKAGE STYLES
CASE MATERIAL SUFFIX after type number
601 Metal
G
602A Metal
G
: 6028 Metal
G
603 Metal
G
606 Ceramic
F
607 Ceramic
F
14
CJ 1
632 Ceramic
L
8-3
Special Purpose Circuits
The linear-integrated-circuits listed in this section were developed by Motorola for the system design engineer to fill special-purpose requirements. Temperature ranges and package availability are tailored to provide price/performance versatility.
·
LINEAR FOUR-QUADRANT MULTIPLIERS
MC1594/1494 This device is designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic; gain control. The MC1594/MC:1494 is a variable transconduc· tance multiplier ··with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages ate provided to simplify offset adjustment and improve powersupply rejection.
MC1595/MC1495 Similar to the MC1594/1494, but without internal level shift and voltage regulator circuits.
BALANCED MODULATOR-DEMODULATOR
MC1596/MC1496 Designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitu<;te modulation, synchronous detection, FM detection, phase deteetion and choppE!r applications.
TIMING CIRCUITS
MC 1555/MC 1455/MC1422 These devices are highly stable timing circuits capable of producing accurate time delays or oscillation. Aqditional terminals are provided for triggering or re~etting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as ~n oscillator, the free running frequency and the duty cycle_ are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits. Timing from Microseconds through Hours.
The MC1422 has variable threshold level, (!djust-
able externally.
Timing Error (typ)
MC1555 MC1455
0.5% 1.0%
MC1422
1.0%
MC3556/MC3456 Dual Version of the MC1555/MC1455
Operating
Tem_e_erature Ra119e
-55 to +125°c
oto +10°c
MC1554
MC1454
MC1555
MC1455
MC1594
MC1494
MC1595
MC1495
MC1596
MC1.496
MC1422
MC3505
MC3405
MC3556
MC3456
MC3523
MC3423
MC3426
MC3370
Case 6028 601, 693 601, 626, 693 620 632 602A, 632 602A, 632, 646 601, 626 632 632; 646 632 632, 646 693 626, 693 632 626
GROUND FAULT INTERRUPTED CIRCUITS
MC3426 (Latching)
This circuit provides ground fault and grounded neutral protection for 120 VAC, 15 and 20 Amp. lines. Useful in wall socket and circuit breaker applications. ·Trip Times in Ac;cordance with U.L. · High Noise Immunity · Resistance to False Tripping ·Minimum Trip Leakage Current-5 ±,mA ·Trips for Neutral Gnd. Resistance> 2
8-4
OVERVOLTAGE PROTECTION CIRCUIT
MC3423/MC3523 Protects sensitive electronic circuitry from over voltage conditions' by short circuiting the supply current when an overvoltage occurs. This causes circuit breaker to trip or fuse to open. ·Adjustable Threshold Voltage ·Adjustable Energy Threshold · Remote Activation · Activation Indication ·
POWER CONTROL CIRCUITS
MC3370 Electronic switch for triac triggering applications. Features zero-crossing detector to eliminate RFI, differential input with dual sensor inputs, input open arid short protection, and built-in regulator permitting AC line operation.
MONOLLTHIC DUAL OP AMP-DUAL COMPARATOR
MC3505/MC3405
This device contains two differential input operational amplifiers and two comparators each set capable of single supply operation. This operational amplifier-comparator circuit will find its applications as a general purpose product for automotive circuits and as an industrial "building block". ·Op Amp Equivalent in Performance to MC3403 · Comparator Similar in Performance to M LM339 ·Op Amps are Internally Frequency Compensated ·Supply Operation 3.0 Volts to 36.0 Volts · Dual Supply Operation also Available
CASE MATERIAL SUFFIX after type number
PACKAGE STYLES
W:·:· b $:~·.1
0
1
.0 0 2
2
1
14
14
CJ CJ
1
8
5
0
4
601 Metal
G
602A Metal
G
6028 Metal
G
626 Plastic Por P1
632 Ceramic
L
646 Plastic
p
693 Ceramic
u
'
·
8-5
ORDERING INFORMATION
Device
MC1410G MC1510G
Temperature Range
0°C to +75°C -55°C to + 125°C
-Package
Metal Can Metal Can
MC1410 MC1510
·
WIDEBAND VIDEO AMPLIFIER
.. designed for use as a high-frequency differential amplifier with operating characteristics that provide a flat frequency response from de to 40 MHz.
· High Gain Characteristics Av= 93 typ
· Wide Bandwidth - de to 40 MHz typ · Large Output Voltage Swing
4.5 Vp-p typical@ ±6.0 V Supply · Low Output Distortion
THD <:;;; 1.5% typ
FIGURE 1 - VOLTAGE GAIN versus FREQUENCY
0
·
0
o~
I - - - -f.--....j0.1
µF
~Vin~ o~
51
.,.
1-----J
Oi-----1---<
51
-
0
1.0
1.0
5.0
Vee· Js.o v1c
~ N
VEE· -6.0 Vdc
0.1 µF V
~Ok
Av(se)'~
]
1
N
!\
~
~
10
20
50 100
200
f, FREQUENCY (MHz)
500 1000
REPRESENTATIVE CIRCUIT SCHEMATIC
INPUT ti
(+) 1
(I-N)PU3T021-:.,-----<~----'
I
I
I
I
I
I
m
L - -'- - - - - - - -VEE" s - - - - - - - - - c"ASET - - GNO
4
6
VIDEO AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 601
Vee
Case (Top View)
FIGURE 2 - LIMITING CHARACTERISTICS @ 1.0 kHz
Ci. 3.0 l---hl---+---+--1---l----l---l----<
0.
Vee 0 ·6.0 Vdc
2:.
VEE 0 -6.0 Vdc
....J <{
z ~ 2.0
g ~
0 1.0 >
20 40 60 80 100 120 140 160 V;n. INPUT SIGNAL (mVp·p)
8-6
MC1410, MC1510
MAXI MUM RATINGS ITA = +25°C unless otherwise noted.I
Rating
Symbol Value
Unit
Power Supply Voltage
Vee
+8.0
Vdc
VEE
-8.0
Differential Input Voltage Range Common Mode Input Voltage Range Load Current
V10R V1cR
IL
±5.0 ±6.0
10
Volts Volts mA
-Output Short Circuit Duration
ts
5.0
s
Power Dissipation (Package Limitation)
Po
Metal Can
Derate above TA = +25°c
680
mW
4.6
mW/°C
Operating Temperature Range MC1410 MC1510
TA
oc
0 to +75
-55 to +125
Storage Temperature Range
Tstg -65 to +150 oc
ELECTRICAL CHARACTERISTICSIVcc = +6.0 Vdc, VEE= -6.0 Vdc, RL = 5.0 kn, TA= +25°c unless otherwise noted.)
Characteristic Single Ended Voltage Gain Output Impedance
(f = 20 kHz)
Input Impedance
\
(f = 20 kHz)
Bandwidth (-3.0 dB)
Output Voltage Swing (Single Ended) ( f = 100 kHz)
Single Ended Output Distortion
(ein < 0.2% Distortion)
Input Common Mode Voltage Range
Common Mode Voltage Gain (Vin= 0.3 V rms, f = 100 kHz)
Common Mode Rejection Ratio
Input Bias Current .·
~119= ~ 112- +12) , Differential Output= 0
Input Offset Current 1110=11-12)
Output Offset Voltage Differential Mode (Vin = 0) Common Mode (Differential Output= 0)
Step Response
Average Temperature Coefficient of Input Offset Voltage
(Rs= 50 n, TA= T1ow*to Thigh **I
(Rss; 10 k U, TA_= T1ow to Thigh)
DC Power Consumption (Power Supply= ±6.0 V)
Equivalent Average Input Noise Voltage (f = 10 Hz to 500 kHz, Rs= 0)
Symbol Av(se)
Zo
Zi
BW Vo
THO
V1cR AVcM CMRR llB
MC1510
Min
Typ
Max
75
93
11Q
-
35
-
-
6.0.
-
-
40
-
-
4.0
-
-
-
1.5
5.0
-
±1,0
-
-30
-45
-
-
85
-
-
20
80
110 -
3.0
20
Voo(DM) -
0.5
1.3
Voo(CM)
2.6
3.1
3.5
tTHL
-
tPHL,tPLH -
1TLH
-
AV10JAT
-
Ve
-
Vn -
9.0
12
9.0
-
9.0
12
±3.0
-
±6.0
-
150
220
5.0
-
MC1410
Min
Typ
Max
60
90
120
-
35
-
-
6.0
-
-
40
-
-
4.0
-
-
2:-0
-
-
±1.0
-
-20
-40 '
-
-
85
-
-
50
100
-
5.0
30
-
0.5
2.0
2.0
3.0
4.0
-
10
15
-
9.0
-
-
10
15
-
±3.0
-
-
±6.0
-
-
165
220
-
5.0
-
Unit VIV
.n k.n MHz Vp-p %
v
dB dB µA
µA Vdc
ns
µV/°C
mW µV
*T1ow = o0 c for MC1410
,
or -55°C for MC1510
**Thigh= +75°C for MC1410 or +125°Cfor MC1510
8-7
MC1410, MC1510
·
TYPICAL CHARACTERISTICS (Vee= +6.0 Vdc, VEE= -6.0 Vdc, TA= +25°c unless otherwise noted.)
FIGURE 3 POWER DISSIPATION versus SUPPLY VOLTAGE
FIGURE 4 VOLTAGE GAIN versus SUPPLY VOLTAGE
I
z
:~? 200
gj
Ci
~
~
a:
~ 1oo~=====:::i=:=====+====~~--+----l-----l
~
6.0
8.0
10
12
1.4
16
1vcc1. IVEEI. SUPPL y VOLTAGE (Vdc)
~ 40
z;;c
~ 38t------l---+~----+..f<---f w
~ <(
':i0 36~-------+-----+----I
>
"i
:f 341------l-+--+~--+---f
0.1 µF V
1-
32L-..~....L.~~L-~.....L~-=:c:====:c:====:c:::==::::!l
4.0
8.0
10
12
14
16
18
1vcc1. IVEEI. SUPPL y VOLTAGE (Vdc)
FIGURE 5 VOLTAGE GAIN versus TEMPERATURE
CD
-c
30 ......~......-~...__ _.__ __...._.._ _.__ __._ _.....__ __,
-55 -25
0 +25 +50 +75 +100 +125 +150
TA. AMBIENT TEMPERATURE (OC)
FIGURE 6 DC OUTPUT VOLTAGE versus TEMPERATURE
3.5~-~--~--~--~---+---..-----.
-c ~ w
~ <(
'~I:i ''~~~·1~
c3
>
02
2.5-----~--~--~----------
-55 -25
+25
+50
+75 +100 +125
TA; TEMPERATURE (OC)
FIGURE 7 INPUT BIAS CURRENT versus TEMPERATURE
~ ..3.
1z ~ 301----",----+---+-i'
...::::>
Cl) <(
iii
1~ 20~---<---+---------<---+-----<~---< ~
~
10 ........_ __._ __.__ __.__ _.....__ _..___ __..___ __,
-55 -25
+25
+50
+75
TA, TEMPERATURE (OC)
+100 +125
FIGURE 8 OUTPUT NOISE VOLTAGE versus SOURCE IMPEDANCE
7.0
§ 6.0
>
.§. w ~ 5.0 0 z
I::>
~ 4.0
::::> 0
~3.0
>
I
I
BANOWIOTl;I - 5.0 Hz to 10 MHz
v v
i..-i-H
~
IL
V1
2.0 1.0
10
100
1.0 k
10 k
Rs, SOURCE RESISTANCE (OHMS)
100 k
8-8.
MC1410, MCi5iO
TvPiCAL CHARACTERISTICS
, . . FIGURE 9
LIMITING CHARACTERISTICS@ 30 MHz
800
T T TT
f- VCC = +6.0 Vdc
VEE= -6.0 Vdc
§ 600 f- TA= 25°C
v
+-
~
~ 400
lZJ
i ~
0
300
y ~ 200
> I-"
rJ
l..1 II
v
F :0 ;:~ 1." ~'I v,
-
51
'::'
lrT
]
10
100
1000
V;n, INPUT VOLTAGE (mV[rms))
FIGURE 10 LIMITING CHARACTERISTICS versus FREQUENCY
1000 ,
l _I .1..1
f- ~~~: ~;:~ ~~~
>~ 8001- TA= 25°C
..§.
......
£ r-t--
1fJ
w
~ 600
~
0
>
~ ~
v I-
~ 400 t--f=25M~
::~T,". ~
:io MHz 1
.j 200
~q5 MHz
Vin"' '="
"::"
51
HP606
» r-
or Equiv .,,.
~l l l
.,,.
]
1.0
100
1000
V;n. INPUT VOLTAGE (mV(rms))
FIGURE 11 ENVELOPE DETECTOR
+6 Vdc
TYPICAL APPLICATIONS
FIGURE 12 SINGLE STAGE WIDEBAND AMPLIFIER
+6 Vdc
(AV= 39 dB)
0.1 µF ein~·---~,......
0.1 µF
E----eo
51
-6 Vdc
-6 Vdc
FIGURE 13 WEIN BRIDGE OSCILLATOR
+6 Vdc f = 10 kHz to 10 MHz--: 1/2 rrRC
·
3.3 k -6 Vdc
8-9
MC1422
·
Specifications ·and Applications Information
MONOLITHIC TIMING CIRCUIT WITH EXTERNALLY ADJUSTABLE THRESHOLD LEVEL
The MC1.422 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits. · Useable as a Differential Comparator Timer · Timing From Microseconds Through Hours · Operates in Both Astable and Monostable Modes · Adjustable Duty Cycle · High Current Output Can Source or Sink 200 mA · Output Can Drive MTTL
· Temperature Stabi'lity of 0.005% per 0 c
· Normally "On" or Normally "Off" Output
TYPICAL APPLICATIONS
· Time Delay Generation · Precisioi::i Timing · Missing Pulse Detection
· Sequential Timing
· Pulse Generation · Pulse Width Modulation
· Linear Sweep Generation · Pulse Shaping · Pulse Pos.ition Modulation
MAXIMUM RATINGS (TA= +25°C unless otherwise noted.)
Rating
Symbol
Poyver Supply Voltage
Vee
Discharge- Current (Pin 7)
17
Power Dissipation (Package Limitation)
Po
Metal Can
Derate above TA =+25°C
Plastic Dual In-Line Package
Derate above TA =+25°C
Operating Temperature. Range (Ambient)
TA
Storage Temperature Range
Tstg
Value +16 200
680 4.6 625 5.0 0 to +70 -65 to +150
Unit Vdc rnA
mW rnW/°C
mW
mwt0 c
oc oc
FIGURE 1 - BLOCK DIAGRAM
TIMING CIRCUIT WITH ADJUSTABLE THRESHOLD
MONOLITHIC SILICON INTEGRATED CIRCUIT
P1 SUFFIX PLASTIC PACKAGE
CASE 626 (Top View)
1. Ground 2. Trigger 3. Output 4. Reset 5. Variable Threshold
Reference 6- Threshold 7. Discharge
s.Vcc
·
0 4
G SUFFIX METAL PACKAGE
CASE 601 T0-99
0 0 6 0 5 (Top View)
1. Ground 2. Trigger 3. Output 4. Reset 5. Variable Threshold
Reference 6. Threshold 7. Discharge
s. Vee
ORDERING INFORMATION
Type MC1422G MCC1422P1
Temperature Range
o to +10°c o to +10°c
Package
Metal Can Plastic DIP
Threshold o---t------------; Discharge u----;-----,
Comparator 1------------11----uTrigger
Flip-Flop
4 >------+-u Reset
8-10
1 · Ground
MC1422
ELECTRICAL CHARACTERISTICS (TA= +25°C, Vee= +5.0 v to +14 v unless otherwise noted.I
Characteristics Supply Voltage
Supply Current Vcc=5.0V,RL=oo Vee= 14 V, AL= 00 Low State (Note 1)
Symbol
Min
Typ
Vee
4.5
-
lo
-
3.0
-
10
Timing Error (Note 2)
RA. Rs= 1.0 kn to 100 kn Initial Accuracy C = 0.1 µF Drift with Temperature Drift with Supply Voltage
Threshold Voltage (Figure 2)
TriQ_ger Voltage
Vee= 14 v Vee= s.o v
-
1.0
-
50
-
O.Q1
Vth
-
2/3
VT
-
5.0
-
1.67
Trigger Current
Discharge Leakage Current
- Reset Current
Threshold Current (Note 3)
Output Voltage Low
!Vee= 14 vi
lsink = 10 mA lsink = 50·mA lsink = 100 mA lsink = 200 mA
!I.
--
0.5
I dis
-
-
lfi
-
0.1
...::.
Ith
-
-
Vol
-
0.1
--
0.4
-
2.0
-
2.5
Output Voltag_e High
(lsource = 25 mA)
Vee= 14 v Vee= 5.o v
VoH
12.75 2.75
13.3 3.3
Rise Time of Output Fall Time of Output
tOLH
-
100
tOHL
-
100
Max
14
6.0 15
-----
--
---
250 -1.0
0.35 1.0 3.5 -
-
--
-
Unit
v
mA
"
% PPM/°C %/Volt xVec
v
µA nA mA µ.A
v
v
ns ns
NOTES: 1. ~upply current when output is high is typically 1.0 mA less. 2.. Tested at Vee= 5.0V and Vee= 14 V.
3. This will determine the maximum value of RA +Re for 15 V operation. The maximum total R = 20 megohms.
FIGURE 2 -- DC TEST CIRCUIT
FIGURE 3 - AC TEST CIRCUIT
5.0 k
±1%
Reset
Vee
Control
u.. ::i.
10 k: 5
Voltage
Discharge
0
c:i
±1%
Outpu_t
D.U.T. -Threshold
Gnd
Trigger
I sink I source
IL, IR1, IR2
2.0K
5 k ±1%
RL
Reset
u--------<>----t Control Voltage
~----if--t:r--1 Output
10 k ±1%
Gnd
8
Discharge D.U.T.
6 Threshold 1--0---e-----,
I Trigger ..-----C___,= o. 1 µF
Pulse
-:-
Generator
RA= 100 k
t = 1.1 RAC seconds
External components must be bridged so that exact values are used in the frequency formula.
Notes:
V cc = Supply Voltage: 5.0 V < V cc < 14 V ·Range
Vs= Switching Voltage: 1.4 V <:;;Vs<:;; 11.0 V Range
When Vs;. 2/3 Vee. v 0 is low~ oat RL = oo When Vs< 1/3 Vee. v 0 is high~ Vee ~t RL = 00 V R = Reset Voltage: V R = 0.4 V or 1.0 V during Reset Test
During other tests, Pin 4 tied to Vee·
@ MOTOROLA Semiconduc'for Produc'fs Inc.
8-11
·
MC1422
·
TYPICAL CHARACTERISTICS (TA = +25°C unless otherwise noted.)
FIGURE 4 -TRIGGER PULSE WIDTH
FIGURE 5 - SUPPLY CURRENT
125 >---+-----t--.---+--+---+-......->----<
·ce g 100 >---+-----t--t----+--'
:c f~ 751---+--+~~-+-
~
t
0.1
0.2
0.3
0.4
VT(min). MINIMUM TRIGGER VOLTAGE
!X Vee= Vdcl
18.o t--+-+--+-t-if-t-:.,,fffJ"'l--+---l
....
~ ~ 6.0 t--+-++-,,1i~r--1--~::+-+---l
roG
~
u !:3 2.0 t--+--t--+--+---t-t--+--+--t---1
10
15
Vee. SUPPL y VOLTAGE 1Vdc)
FIGURE 6- HIGH OUTPUT VOLTAGE
2.0.----.-..................-.,................~~v-~
1.8 t---+-+---t 15oe +-_-t_::;:l..-+""=----1
" ~ g:i.
i.6
1.4
lt===:=:t:=tt:=~t=+:Ri5l~o=-e=t+-:":'+9~ -=--tt---t1--l~r7~~1
1.2 t-----1---1-+J+2-5-to-e---+-~ -+-t-:io.L..J---t
1.oti--=:::t:::FH,;;;..4-===t-t-tt--1
c'.., 0.8 t-----1---1-+-t--+-----t--t-t-+-----I
!;: 0.6 t----1---1-+-t--+-----t--t-t-+-----I
0.41----1---1-+-t--+-----t-+-t-+-----I 5v,;;.vee,;;.15v
0.2 >-----<i--<,.....+--+--+----+--+-+-+-----<
O.____.___.._,_.....__.____.__._._,,____.
1.0 2.0 5.0 10 20
50 100
lsource(mA)
FIGURE 7 - LOW OUTPUT VOLTAGE @ Vee = 5.0 Vdc
O.Ql ..____.,__.,_._....__..____.,__._._....___.
1.0 2.0 5.0 10 20
50 100
ISINK. lmA)
FIGURE 8 - LOW OUTPUT VOLTAGE @Vee= 10 Vdc
t----+--+-++---t---+-+-55° S;::::
+125°e~5oe
o.11---t-tt::;;-t-~t~~-!lii5jlll5o""'e::....._~+++--1
0.01 ..____.__._,_.....__.____.___._,_..._____,
1.0 2.0
5.0 10 20
50 100
ISINK. (mA)
FIGURE9 - LOW OUTPUT VOLTAGE@ Vee= 15 Vdc
10
1
1.0
:::.
...:.
0
>
0.1 +125°e
,....
J_
J t~e l
7
~ +25°~P-'°55oe
~
0.0 1 1.0 2.0
5.0 10 20 ISINK. (mA)
50 100
FIGURE 10 - DELAY TiME versus SUPPLY VOLTAGE
1.015 r---.--.--.--.--.--.---.----.
Cl
~ 1.010 >---P--->----+----<>---+----<--+---<
<(
::;: . ~ 1.005 l----Hr--t---+--t---+--1---+---I
2~ i.ooo 1--1--'-'\d-,..__,-i--t--:::..+-""'~o...~ H1---t- --t---i
g>-
<(
0.995
:!?
0.990 t---+--t---+--t---+--1---+---I
5.0
10
15
20
Vee. SUPPLY VOLTAG'E (Vdc)
FIGURE 11 - DELAY TIME versus TEMPERATURE
1.015 .---+--.----.--.---.---.--r---.
Cl
~ 1.010 1---1->--1---1--t---t---1--+----I
i::;
<(
1.005
UJ
t--~
g~ ~ :;; 1.000 t--t--t---t-:::::O..t--d---lr---+---1 0.995
;9 0.990 t---+--l---+--l---t---11---+---I
0 ·98 ~75 -50 -25 0 +25 +50 +75 +100 +125
TA. AMBl~NT TEMPERATURE (0 e)
FIGURE 12 - PROPAGATION DELAY versus TRIGGER VOLTAGE
~250t---+--i---t---<i---t-~~-+----I :;;
;:::
~ 200
·~ 1501-...,....,,F--b...S-~+-;r-+-;
i;:::
<(
100
a.. 50
~
o.__.__..___.__.___.___.....__,_~.
0
0.1
0.2
0.3
0.4
VT(min). MINIMUM TR~GGER VOLTAGE
(X Vee= Vdcl
·
@ MOTOROLA Semiconductor Producf:s Inc.
MC1422
FIGURE 13 - CIRCUIT SCHEMATIC CONTROL VOLTAGE
Variable 5 Threshold
Reference
THRESHOLD COMPARATOR
TRIGGER COMPTR
FL.IP-FLOP
OUTPUT
Output
Trigger 2 u--------+----r
RESET
Gnd
100
220 4.7 k
GENERAL INFORMATION
Tlie Me1422 is a monolithic timing circuit similar in performance and function to the Me1455 timer. It can be used .in ·both the astable and monostable modes with frequency and c:juty cycle controlled by the 'capacitor and resistor values. While the timing ,is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated Cir:cuit are two comparators, one for the input sjgnal and the other for capacitor voltage; also a flip-flop and digital output are offered. The reference voltage of the trigger comparator is a fixed ratio of the supply voltage while the reference volti!ge of the threshold comparator is completely adjustable.
The Me1422 offers a completely independent variable threshold terminal. This feature allows it to be used as a modulation terminal as well as a synchronization terminal giving an additional degree of freedom in circuit design. The reference voltage pin (pin 5) for the threshold comparator is completely adjustable.
A reset pin. is provided to pischarge the capacitor thus interrupting the timing cycle. As long as th~ reset pin is low, t~e capacitor discharge transistor is turned ''on" and prevents the capacitor from charging. YJhile the reset volt-
age is applied the digital output will remain low. The reset pin should be tied to the supply voltage when not in use.
Monostable Mode
In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 Vee the comparator outp\Jt triggers the flip-flop so trat it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which ·is set by the RC time constant. When the capacitor voltage r~aches the external reference voltage the threshold comparator resets the flip-flop. This discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. Tne time that the output is high is given by the equation t = 1.1 RA e. Various combinations of· R ·and e and their associated times are shown in Figure 15. The trigger pulse width must be less than the timing period.
<f!J MOTOROJ.A Semiconduc'tor Produc'ts Inc.
8-13·
·
MC1422 ·
·
FIGURE 14 - MONOSTABLE CIRCUIT
+Vee (5 to 15 V)
I l
~AL
Reset
'I I
4
I
I
I
I
l
Trigger
I
I
8 MC1422
RA Discharge
Threshold
ic
I Output l :..RL
1
-'-
.Variable 10,01 µF
Threshold
-=
Control Vcc2
APPLICATIONS INFORMATION
In general, the MC1422 can be used in any application where the MC1455/NE555 is currently being used as long as an external reference is supplied. (Refer to MC1455 data sheet for these applications.) The applications listed below are unique to the MC1422 and its design.
Zero Crossing Cycler
This circuit (see Figure 15) is most useful where it is necessary to cycle a thyristor at some frequency and duty cycle at line zero crossing only. This cycling at zero crossing only will reduce EMI, and current surges if capacitive loads are used.
Circuit Description
In .order to have exact zero crossing cycling a phase shift network (R3)(C2) is used. Diodes CR1 and CR2 limit
the line voltage to V- and V+. This limited line voltage,
which appears somewhat like a square wave, is used as a
sync pulse when differentiated by C1 and attenuated to
1/3 by R1 and R2. Cycle time is dependent on R4 and
C3. The duty cycle is set by potentiometer R4.
,
It should be. noted that this zero crossing cycler is in-
tended for low frequency cycling, much lower than the
line frequency used.
1.44 Tcycle = 0.69 (R4)(C3) or fcycle = (R 4 ){C3 )
FIGURE 15 - ZERO CROSSING CYCLER
1N4001 CR1
R1 150 k R2 270 k
V+ MC1422
1N4001 CR3
Output
Period "' 5 seconds Duty Cycle Range '8% to 99%
R4
VLine ·120 Vac
C1
0.002 µF
1N4001 CR2
C2 0.1 µF 200 V R3 300 k
V-
C3
5.0 µF
All Resistors 114 W v+ to V~ is 5 V to 14 V floating supply
@ ' MOTOFIOLA Semiconductor Products Inc.
8-14
MC1422
FIGURE 16 - PULSE WIDTH MODULATOR
Vee 5.o v - 14 v
4 Astable
l 1
C
0.01 µF
Me1455 6
R1 33 K 3
R2 1.5 k
C2 0.01 µF
8 PWM 3
MC1422
6
le3
0.01 µF
Note 1. MC1422 can be utilized as an_astable if an eKternal 2/3 ratio resistive divider is used at pin 5.
2. See waveforms
Modulation Input
Output
MSS1000 CR1
R3 22 k
C4
0.002
All Resistors 1/4 Watt
FIGURE 17 - PULSE WIDTH MODULATOR WAVEFORMS
Modulation Input 5 V /Div.
Vc3 Ramp 5 V/Div. PWM Input 10 V/Div.
Hor. ~ 0.5 ms/Div.
PWM Output 10 V/Div.
PulseWidth Modulator
The MC1422 is used as a pulse. width modulator (PWM) with the MCl455 being utilized as an astable. The Me1422 can be used as an astable in place of the Me1455 if an external reference of approximately 2/3 Vee is used at Pin 5.
The transistors 01 and 02 are configured as a current mirror to provide a linear voltage ramp across C3. This constant current scheme attributes a relatively Ii near transfer characteristic for the pulse width modulator.
Several considerations must be made when using this circuit.
1. The minimum duty cycle out is limited to the com· plement of the input signal. (i.e., a 95% duty cycle astable driving the PWM will give a minimum duty cycle output of"" 5%.)
2. For the astable frequency: 1.44
3. Duty cycle (D.e.) for the astable:
De=-R_2_ R1+2R2
For best results the charge time of C3 in the pulse. width modulator should be equal to the period of the astable.
101
1
Vee - VsE
e3 (Vee, 1) =fin= Tc3 101 ""' 102 = R3
The maximum duty cycle out will also be limited to the maximum duty cycle in.
Vee= 10 V linearity typically 3% rnodul_ation input from 2 volts to 8 volts.
@ MOTOROLA Semiconduc'for Produc'fs Inc.,
8-15
·
MC1422
·
Voltage Controlled Oscillator
The VCO circuit, which has a nonlinear transfer characteristic will operate satisfactorily up to 200 kHz. The VCO input range is effective from 1/3 Vcc to Vcc - 2 V, with the highest control voltage producing the lowest output frequency. The equation for the frequency is:
fout ""'
V5-1/3Vcc
vs-1/3Vcc
1n(1- 2/3Vcc )(R1+R2)C1+1n( V5 _)R2C1
V5 = VCO input control voltage
It should be noted that, the output duty cycle will vary somewhat over the VCO inpu.t control range.
FIGURE 18 - VOLTAGE CONTROLLED OSCILLATOR Vee 5.o v - 14 v
FIGURE 19 Vee 5.0V -14V
Comparator with Time Out
The MC1422 is used as a comparator with the capability of a timing output pulse when the inverting input (Pin 6) is~ the non-inverting input (Pin 5). The frequency of the pulses for the values of R2 and Ci as shown ·in Figure 19 is approximately 2.0 Hz, ~nd the pulse width 0.3 ms, fp = frequency of pulses while Pin 6 voltage is above voltage at Pin 5.
The function of Rl is to limit di/dt, when charging Cl_.
1 fp""' R2Cl or T p""' R2C1
Comparator Input
~ . 6
Vref
. 4
8
MC1422
1N4001
Output
-o-----.LJ ·
Comparator
IV rn ef p- ut---~-
-
-
-
-
-
-
-
'
'
-
-
-
-
Comparator Output -_
Schmitt Trigger
The MC1422 is very useful as a Schmitt Trigger as .shown in Figure 20. The lower trigger point is fixed at 1/3 Vee. but the upper trigger point is adjustable by means of Pin 5 from 1/3 Vee to slightly less than Vee. The Schmitt
trigger will operate with input frequencies up to qO kHz.
FIGURE 20
Vee 5.o v - 14 v
4
8
MC1422
3 LI
Output
5
Upper Trigger Point Control
(Input Range 1/3 Vee to Vee>
Note: Lower Trigger Point is
fixed at 1/3 Vee·
@ MOTORO,LA Semicond1Jc'for Products Inc.
8-16
ORDERING INFORMATION
Device
MC1438R MC.1538R
Temperature Range
0°c to +10°c -55°C to +12s0c
Package
Metal Power Metal Power
MC1438R t:
MC1538R
POWER BOOSTER
The MC1538/MC1438 is designed as a high current gain amplifier (70 dB), with unity voltage gain that Cl)n deliver load currents up to ±300 mAdc. This device is ideally suited to follow an operational amplifier (such as MC1556/MC1456) for driving low impedance loads and improving the overall circuit performance.
· High Input Impedance - 0.4 Meg-Ohm typ - when driving the MC1538/MC1438, the gain of an operational amplifier will approach the unloaded open-loop gain. Internal power dissipation of the operational amplifier will be independent of output voltage and therefore thermal drift will be reduced.
· large Power Bandwidth - 1.5 MHz typ - considerably better than present operational amplifiers. Bandwidth and slew rate will be limited by the operational amplifier, not the MC 1538/MC1438.
· low Output Impedance - 10 Ohms typ - allows the MC 1538/ · MC1438 to drive a capacitive load with greatly reduced phase shift compared with an operational amplifier. Output voltage swing capability is much increased when driving small load impedances.
· Adjustable Current limit - ±5.0 mAdc to ±300 mAdc · Excellent Power-Supply Rejection - 1.0 mVIV typ · Current Gain - 3000 typ
OPERATIONAL AMPLIFIERS POWER BOOSTER SI LICON MONOLITHIC INTEGRATED Cl RCUIT
R SUFFIX CASE 614
I
Positive Current Limit Adjust
TYPICAL APPLICATIONS
OPERATIONAL AMPLIFIER BOOST CIRCUIT
DIGITAL OR ANALOG LINE DRIVER
Vo
30V
Floating
l'oMr Supply
POWER SUPPLY SPLITTER
30 RA
Vee= RA+ Ro
SERVO/POWER AMPLIFIER
RA 1.0k
·
Under some conditions of circuit layout and loading, the MC1538R/MC1438R will oscillate when driven into current limiting. Oscillation during
positive current· 11mitlng can usually be suppressed by placing a 0.02 µ.F capacitor between· Pins 7 and 5. Oscillations during negative current limit
can· usually be suppre-d by placing a 0.02 µF i::apacitor between Pins 1 and 2. 100 Ohms in series with this capacitor will reduce any cross-over
distortion occurring when driving extremely low Impedance loads.
·
8-17
MC1438R, MC1538~·
MAXIMUM RATINGS (Tc = +25°C unless otherwise noted.I
Rating Power Supply Voltage
Input Voltage Swing
Load Current
I
·. · Power Dissipation @ TA = +25°C Derate above TA = +25°c
Power Dissipation@ Tc= +25°c Derate above Tc = +25°C
Operating.Ambient Temperature Range MC1438R MC1538R
Operating and Storage Junction Temperature Range
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case
Symbol Vee VEE IV in I IL Po
1/RoJA Po
1/RoJC TA
T J,Tstg
Symbol RoJA Ro JC
MC1538R MC1438R
+22
+18
-22
-18
Vee or VEE 350
3.0 24
17.5 140
Oto+70 -55 to +125
-65 to +150
Max 41.6 7.15
Unit Vdc
Vdc mAdc Watts mW/°C Watts mwt0 c
OC
oc
Unit 0 c;w 0 ctw
·
ELECTRICAL CHA~ACTERISTICS
(R L = 300 ohms, Tc= +25°C unless othe-rwise noted.)
Characteristic (Linear Operation) Fig
Voltage Gain (f = 1.0 kHz)
1
Current Gain IA1 = ~lo/~11)
1
Output Impedance (f =. 1.0 kHz)
1
Input Impedance (f= 1.0kHz)
1
Output Voltage Swing (See Note 3) 1
Input Bias Current
2
Output Offset Voltage
2
Small. Signal Bandwidth
1
(RL = 300ohmsl
(V1 = 0 Vdc, V1=100 mV[rms])
Power Bandwidth (See Note 3)
1
(Vo= 20 Vp-p· THO= 5%)
Total Harmonic Distortion(Note 3) 1 (f = 1.0 kHz, Vo= 20 Vp-pl
Output Short-Circuit Current
(R1 = R2=:_oo)
3
(Al= R2 = 3.3, ohms)·
3
Adjustable Range
4,5
Pow1;1r Supply Sensitivity
2
(VEE constant)
(Vee constant)
Power Supply Current
2
(RL oo, V1 = 0)
Power Dissipation, (See Note 3)
2
(RL""·V1=0)
Note
-
-
3
-
1
-
Symbol 'Av A1 Zo Zi Vo 11B v6o BW
-
BWp
-
THO
los 2
-
PSRR
-
ice
IEE
3
Pc
MC1538R 5.0V.;;; Vee= IVEEI.;;; 20V
Min
Typ
Max
0.9
0.95
1.0
-
3000
-
-
10
-
-
400
-
±12
±13
-
-
60
200
-
25
150
-
8.0
-
-
1.5
-
-
0.5
-
75
95
125
-
300
-
-
5.0to 300
-
-
1.0
-
-
1.0
-
4.5
6.0
10
150
180
300
I
MC1438R
Vee - +15 V.VEE - -15 v
Min
Typ Max
Unit
0.85
-
-
±11
-
0.95 3000
10 400 ±12 60 25
1.0 VIV
-
A/A
- Oh.ms
- kohms
-
Vdc
300 µ.Ade
200 mVdc
-
'8.0
-
MHz
-
1.5
-
MHz
-
0.5
-
%
mAdc
65
95 140
-
300
-
- 5.0to 300 -
mV/V
-
1.0
-
-
1.0
-
2.5
6.0
15 mAdc
15
180 450 mW
Note 1. Note 2.
Note3.
Output offset Voltage is the quiescent de output voltage with the Input grounded.
Short-Circuit Current, lsc. is adjustable by varying A 1, R2, R3 and R4. The positive current limit is set by R 1 or A3, and the negative current limit is set by R2 or A4. See Figures 4 and 5 for curves of short-circuit current versus R 1, R2, A3 and R4. Vcc=+15V,VEE=-15V.
8-18
MC1438R, MC1538R
FIGURE 1
TEST CIRCUITS FIGURE 2
CIRCUIT SCHEMATIC
FIGURE 3
ios
=ii
VEE i470pF
Vee
- Positive Current Limit Adjust
Positive Output
Positive Current Sense
Negative Current Sense
Negative Output
Negative Current Limit Adjust
Compensation
~
~~_:_.,,::v
(bottom view)
Case Is connected to VeE
TYPICAL CHARACTERISTICS
(Vee= +15 Vdc, Vee= -15 Vdc, TA= +25°e unless otherwise noted.)
FIGURE 4 - SHORT-CIRCUIT CURRENT v~rsus R1 OR R2
FIGURE 5 - SHORT-CIRCUIT CURRENT versus R3 OR R4
(100 mA to ~00 mA)
(5.0 mA to 100 mAt
400
;:;
1 300
I
!; 200
~
I 1201----1---1---1-~--1-
.z...
iaII:
601--4'4-'--1--l--I--+-
100
0
1l
RI Limitsicc R2Limits1EE
10
20
30
RI OR R2 (OHMS)
40
50
20
40
60
80
100
120
140
R3 OR R4 !OHMS)
8-19
·
MC1438R, MC1538R
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 6 - POWER SUPPLY CURRENT versus SHUNT RESISTANCE
13.----~--~---~--~----.------.
v)o :g
'-
~ :§_ 12 t-----P~'-....,.--+l---+----t--1-R3=RRl4=R=20-*---i
~ "'i--_ TA= +1250C a .11 1---t---t----=~;---+===l=:=:---i
::;
~ 10 1-----+----+---+----++75oc - + - - - - i
a:
~ 9.0= -=r=+2::;5:oc:===f---t--==::f::==~==
t::: 8.0 r------1 _55oc - + - - - - + - - - - - i - - - - t - - - - - - 1
~ 7.0 ...__ _.....__ ___,__ _ _.....___ _......__ _~--~
4.0
6.0'
8.0
10
12
14
16
Al OR R2, SHUNT RESISTANCE (OHMS)
FIGURE 1 - SMALL SIGNAL GAIN AND PHASE RESPONSE
- to t---+l----+t---+i--Rl""'l..,t--1...d-H-1r....Y-""i-=~F't-.::--l--H-+++-+~L+i~ -10
a; -2.0
~~ ~Gain·"ll'ic--t"'-.-+---++-+-+-+-+-+-1 -20 fil
Ll l\ ; -J.O t---+---+-+--+-'r-+--+-+-++++--""1-1--!..-++-+-+-+-+-+-1 -JO ~
~;;: -4.o
Phase Shift I\. !
~ w
-40
~ -5.0
I\ ~,
~ -50
i>" -6.0
1
RL=300ohms
-7.0r--+--+-v1 = 70 mV(rms)
['\l l
-60"~·'
~
-7o ~
-8.o t---+-t--t-1+H+l+--+-J.-+-J.+1+++-+--+-+-+-+-+~++-+--+-<!-+-! -80
-9.0 .___.___..__,_...,._......__._........._._......___._...._..,_,__._\..__.._............... -90
1.0
2.0
5.0
10
20 JO 50
100
I, FREQUENCY (MHz)
FIGURE 8 - POSITIVE OUTPUT
VOLTAGE SWING versus LOAD CURRENT
10
J
i----1--+---+---+-R1=1 R2=~·---+--+--++---<
2::.
w
+ R3 = R4 =0 J1.
CJ
,_....___,>----<---+-VI adjusted tor Vo= +10 Vdc
<(
!::;
with IL= 0.
0
>
5.0
~
~
0
0 >
2'..
w
CJ <(
!:::;
0
>
-5.0
~
~
0
> 0
FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD CURRENT
1 R1=~2=~!
R3 = R4 = 0 I
+ + +
V1 adjusted tor Vo= -10 Vdc with IL= 0.
0
0
20
40
60
80
100
IL. LOAD CURRENT (mAdc)
-10 0
20
40
60
80
100
IL, LOAD CURRENT (mAdc)
FIGURE 10 - OUTPUT OFFSET VOLTAGE versus TEMPERATURE
30.---~--~-~--~-~----~-----.
Vee= 5.0 Vdc, VEE= -5.0 Vdc
> .§. 25
Vee= 15 Vdc, VEE= -15 Vdc - - F - - + - - - - + - - - - 1
w
CJ <(
Vee = 20 Vdc/VEE = -20 Vdc
!::; 201---~~~~===:t:====:t====t====~~~~-~
0 >
~ 15t-----+---+---+--+---+---+---+--'~
0
~ 10t-----+---t---+---+---+--_,_--+--~
~
g 0 5.0 t - - - - - + - - - + - - - + - - + - - - + - - - + - - - + - - - i >
-75 -50 -25
25
50
75 100 125
TA. OPERATING AMBIENT TEMPERATURE RANGE (OC)
·see figures 4 and 5 ~or definition of A 1, R2,R3, and R4.
FIGURE 11 - INPUT BIAS CURRENT versus TEMPERATURE 70
;;(: ..:;
.....
~ 60
~
"<'(
ia; 501----+-~--"=~-.,+---t=-~-+--+7"---+-----i
~
40...__ _.__ _..___ _.__ _..__ __,__ __.__ __._~~
-75 -50 -25
25
50
75
100 125
TA. OPERATING AMBIENT TEMPERATURE RANGE (OC)
8-20
MC1438R, MC1538R
TYPICAL CHARACTERISTICS (continued) (Vee= +15 Vdc, VEE= -15 Vdc, TA= +25°e unless otherwise noted.)
FIGURE 12 - PULSE RESPONSE CHARACTERISTICS
1or---rr-~r---.---~-~--,----,---.--,-----..,
8.0 l---i:++--r-4_1--_-1_..._-l--+----+-_._--+-____,,___---I
11
1----.:'"""''---+-~~t---+---+---+--l-----l---+----4 (/) 6.0
·l "'~ y_ I ~ _w> 4.0 i---..+r--+---ir~l0utput -+--+--+--+--+---I
1 ~
RL, 300 ohms
J1 i5:; -~ ~ ~ 2.0 1---.-t---t---+f--\--+----+----+----+----+----+------1 Input I
f\ rl ;~:: §~;
dV T -2.01---t---t----+----+---++-l--, 250 V/µs
-:=_,_=ir--11------i
-r;l z
-=:-:
a~..
dt -4.0 l---t---t---t----+---+--+---+----+----+hl---+------1
>~ l i1 -6.0
I
~~, --~--~ _8_01-----1---+-
l l ~ ·s:~ -10
75 Vfµs
.!..\..----+-_ _[,__--+----<
0
200
400
600
800
1000
t, TIME (ns)
FIGURE 13 - DC SAFE OPERATING AREA
500~-~~~~--,-.--.~~~---r-----r--,J---r--.---i
4001----+---+--+-+--+---+--+-+-+-H--l---+--1-+--+--+----I
- 3250010-1---+----++------++---+--+-----l-+l----l+--+--++---4--++---+---+--+----H+-----t'-~----++l-'-\:+~-,.-.-.-.+.+-_-_+,
~- 200
! I'\;
I~ 1501---+---+--+--+--+--+--+-+--+-H--1---+--T+I-+--+-__. 1~~1---+---+--+--+--+--t--t-+-+-H--1---t--l-+--t--t-Hr--1
~ i 0 501---+---+--+--+-+--+--+-+--+-H--f---+-~'l+--+-.......e-i
~
~
20 1---+--+---+--+--+--+--+--+-+-+-1---+- MC 1438 -+-1 1--i
=i=:Pi 1---+--+---+--+--+---+--+--+--+-+-1---+- MC 1538
1--i
10 ..___..____._~__.__..__.__._..__._.____.___._l_._l__,___._.."'-'
1.0
2.0
5.0
10
20 30 40 50
Vee - V7 0 R V2 - VEE (Vdc)
TYPICAL APPLICATIONS
FIGURE 14 - NON-INVERTING AC POWER AMPLIFIER
+
= 0.11:
µF
vcc=+3ov
20k
5.lk
FIGURE 15 - NON-INVERTING POWER AMPLIFIER Rs
RA+ Rs l.Av=~··20 11. las= 200mA
Ill. z0 =0.6ohms
IV. Zj::o 1.0kohm V. BWp= 1.0MHz
5.0µF
FIGURE 16- NON-INVERTING VOLTAGE FOLLOWER
VEE Ill. Zj ~ 30 megohm for f < 20 Hz
IV. ias= 200mA
FIGURE 17 - INVERTING POWER AMPLIFIER Rs Vee
·
Characteristics
(Vo-Vin) 102 1 - - - - - - - - - '
I. %Error=-v-;n-~0.001%
ll.z0 ~ 10-4n,f<20 Hz Ill. z;;;. 30 Megohms, f <20 Hz
IV.las= 200 mAdc
Characteristics
-Rs 1. Av=RA
II. Zo ~ RAR+ARB 10-4 n,
Ill. z;~RA IV. IOS ~ 200 mA
8-21
MC1438R, MC1438R
TYPICAL APPLICATIONS (continued)
FIGURE 18 - PROGRAMMABLE VOLTAGE SOURCE
Vee
FIGURE 19 - CONSTANT CURRENT SOURCE 'OR TRANSCONDUCTANCE AMPLIFIER
Rs 100
11. z0 << 1.0 milli-ohm, I= 20 Hz FIGURE 20 - SIGNAL DISTRIBUTION
Characteristics
ft 1
mA
l.-=-=10-
V1 Ro
V
11. Foroptimumlinecirity: RA_ Ro
Ail-RC"
FIGURE 21 - ASTABLE MULTIVIBRATOR
'o lOk
·
V1
Characteristics I. ~ower supplies are protected
from the output fault; IQS = 200 mA II. The small input current when CASE
in output currentlimit{Q.5mA) will isolate V1. Vol and Vo2 fromthefaultatVQ3.
Charactedstics
Rs
1.
l.fo=2 r 0 e0 1n(l+~A)
Rs
II. ios= 200mA Ill. VO(pk) = '(Vz + 0.7) Volts
FIGURE 22-WIEN BRIDGE OSCILLATOR
Characteristics 1
I. fo =-.- - from 0.01 Hz to 10 kHz 2nroC0
11. ios= 200mA
8-22
ORDERING' INFORMATION
Device
MC144SF MC144SG MC144SL MC1S4SF MC154SG MC1S4SL
Temperature Range
0°C to +7S°C 0°C to +7S°C 0°c to +7S°C -SS°C to + 12S°C -SS°C to +12S°C -SS°C to + 12s0c
Package
Ceramic Flat Metal Can
Ceramic DIP Ceramic Flat
Metal Can Ceramic DIP
GATE CONTROLLED TWO-CHANNEL-INPUT WIDEBAND AMPLIFIER
... designed for use as a general-purpose gated wideband-amplifier, video switch, sense amplifier, multiplexer, modulator, FSK circuit, limiter, AGC circuit, or pulse amplifier. See Application Notes AN475 and AN491 for design details.
·Large Bandwidth; 50 MHz typical
·Channel-Select Time of 20 ns typical
·Differential Inputs and Differential Output
TYPICAL APPLICATIONS
VIDEO SWITCH OR DIFFERENTIAL AMPLIFIER WITH AGC
MULTIPLEX OR FSK
Signal Input ·
lnp.ut
AMPLITUDE MODULATOR
R F ...-j:i-.--0---1 Input
PULSE-WIDTH MODULATOR
5.0 k ~
BALANCED MODULATOR·
. . . - j . . . . .- - 0 - - - l Carrier Input
51
5.0 k Bias Adjt.i~t
Open
ANALOG SWITCH
...-ji-.--0---1 rv Signal Input
'8-23
MC1445 MC1545
GATE CONTROLLED TWO-CHANNEL-INPUT WIDEBAND AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
Vee
Inv. Input A
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
II
MC1445, MC1545
·
MAXIMUM RATINGS (TA= +25°c unless otherwise noted l
Rating
Symbol
Power Supply Voltage
Vee VEE
Input Differential Voltage Range Load Current
V10R IL
Power Dissipation (Package Limitation)
Po
Flat Package
Derate above TA = +25°C
Ceramic Dual In-Line Package Derate above TA = +25°c
Metal Can Derate above TA = +25°C
Operating Ambient Temperature Range MC1445
TA
MC1545
Storage Temperature Range
Tstg
Value +12 -12 ±5.0 25
500 3.3 625 5.0 680 4.6 0 to +75 -55 to +125 -65 to +150
Unit Vdc Vdc Volts mA
mW mw/0 c
mW mw/0 c
rriw
mvy1°c
oc
oc
ELECTRICAL CHARACTERISTICS (Vee= +5.0 Vdc, VEE= 5.0 Vdc, at TA= +25°c, specifications apply to both input channels
unless otherwise.noted.)
MC1545
'MC1445
Characteristic
Fig. No. Symbol Min
Typ
Max
Min
Typ
Max
Unit
Single-Ended Voltage Gain Bandwidth
1,12
Avs
16
19
21
1,12
BW
45
50
-
16
19.5
23
dB
-
50
-
MHz
Input Impedance (f = 50 kHz)
5,14
Zi
4.0
10
-
3.0
10
-
k ohms
Output Impedance (f = 50kHz)
Output Differential Voltage Range (R L = 1.0 k ohm, f = 50 kHz)
Input Bras Current InputOffset Current Input Offset Voltage Quiescent Outpu.t de Level Output de Level Change
(Gate Input Voltage Change: +5.0 V to 0 Vl Com.mon-Mode Rejection Ratio
(f = 50 kHz) Input Common-Mode Voltage Range Gate Characteristics
Gate Input Voltage - Low Logic State (Note 1) Gate Input Voltage - High Logic State (Note 2) Gate Input Current - Low Logic State (V1L(G) = O Vl Gate Input Current - High Logic State (V1H(G) = +5.0 V) Step Response (ein = 20 mV)
6,15
4,13 16 16 17 17 17
9,18 18 8
18
18 19
Wideband Input Noise (5.0 Hz - 10 MHz, Rs= 50 ohms)
DC Power Consumption
·10.20 11,20
Zo
VooR
l1s 110 V10 Vo t::..Vo
CMRR
V1cR V1L(G)
V1H(G) liL(G)
l1H(G)
tPLH tPHL tTLH tTHL
en
Pc
-
1.5
-
-
-
-
0.45
-
-
-
-
-
-
-
-
25
2.5
15 2.0 1.0 0.2 ±15
85
±2.5 0.70
1.5
-
-
6.5 6.3 6.5 7.0 25
70
-
-
-
1.5
25
-
-
-
5.0
:...
-
-
-
-
-
-
-
-
-
0.2
2.2
-
2.5
-
2.0
-
10
-
10
-
15
-
15
-
-
-
110
-
25
2.5
15 2.0
-
0.2 ±15
85
±2.5 0.4
1.3
-
-
6.5 6.3 6.5 7.0 25
70
-
Ohms
-
Vp·p
30
µAde
-
µAde
7.5
mVdc
-
Vdc
-
mV
-
dB
-
Vp
-
Vdc
3.0
4.0
mA
4.0
µA
-
ns
-
-
-
-
µV(rms)
150
mW
Note 1. V1L(G) is the gate voltage which results in channe.1 A gain of unity or less and channel B gain of 16 dB or greater. Note 2. V1H(G) is the gate voltage which results in channel B gain of unity or less and channel A gain of 16 dB or greater.
8-24
MC1445 , MC1545
FIGURE 1 - SINGLE-ENDED VOLTAGE GAIN versus FREQUENCY
25
~
FIGURE 2 - SINGLE-ENDED VOLTAGE GAIN versus TEMPERATURE
25
co
;"z;:' 20
C!)
u.J
C!)
<(
~
15
0
?
0
u.J
0
~
10
~
C!)
z ;;; 5.0
J
0 0.01
~
1
\
0.1
1.0
10
100
1000
f, FREQUENCY (MHz)
FIGURE 3 - VOLTAGE GAIN versus POWER SUPPLY VdLTAGES
"'
;z;: 20
C!) u.J
,..._.
C!)
-
<(
~
>. 15
~
~
~
C!)
z
10
;;;
j
5.0
-55
-25
+25
+50
+75 +100 +125
TA, TEMPERATURE (OC)
FIGURE 4 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
25
~
z
;;:
C!)
20 UJ
C!) <(
~
0
> ~
~
~ 15
C!)
z ;;;
j
±4.0 ±5.0 ±6.0 ±7.o ±8.0 ±9.0 ±10 ±11 ±12
Vee. VEE. POWER SUPPL y VOLTAGE (Vdc) FIGURE 5 - INPUT Cp AND Rp versus FREQUENCY
(BOTH CHAN NE LSI
5.0
u.J
~C!)
~
v 4.0 t---t---+--t--+--+-+-t-t-t+---+--;-..,,J...df'---t-1--1-+-+-jf-H+--__,f--I
~ %: 3.0 t---+--t--t--+-t-+-t-+-lf+l7--,'9--t--+-+-+-1-+-+++--+--l
ffi~
U- u.J
U- C!)
g .vr ;2 ~0 z
~ 2.0 t---+--t--,-t--+--1,-+t-vi#-t-l~-+--+---i--i-+-+-r+l+---+--;
~ i.o t---+---+--11./-vt-"7"1r-t-+-t-t+-+--+--+--+-t-+--HH+--+--i
>
~·
f=50kHz
11111
0.1 . 0.2
0.5
1.0
5.0
10
20
RL, LOAO RESISTANCE (k OHMS) FIGURE 6 - OUTPUT IMPEDANCE versus FREQUENCY
14
7.0
200
ti;"
..-,
~ 12~==::::::t===:l==t=-~4""~"'1.::----+--+--J~~-l-+-l-l 6.0;,
~ r----- ~ § ~
t--
10
Rp
;;
""""
)>
5.0
~ ~ ~ 4.0 ~
NN ~ ~ 8.o
c .-.-l,
~ 6.o 1----+--+---+--+-+-i"'d-++----+--+---t--;-+--1Nr+'?-.J'ld 3.0 ~
~
~
"--·····+- j 4.0 t----+--+---+--+-+-i-+-++-".'..-.
~ :::;; ,-+---+---+-+-'f-4--+-l 2.0 ~
~~ l l (" h ~o ;'t 2.0 1-- Vi(rms) =30 mV -+--+-+-i-+-++----+---+---+--;-+-+-+-H 1.0 ~
180
~ 160 ~ 140 ~ 120
~ 100
f-
~ 80
gf- 60
.§ 40
20
1.0
5.0
10
50
100
0.01
f, FREQUENCY (MHz)
Jill ll
VO(rms) = 20 mV
lJ]
v v
0.1
1.0
10
100
f, FREQUENCY (MHz)
II
8-25
IVIC1445, MC1545
FIGURE 7 - CHANNEL SEPA.RATION versus FREQUENCY 140
20
II
fin. INPUT FREQUENCY (Hz)
FIGURE 9 - COMMON MOOE REJECTION RATIO versus FREQUENCY
100 "-..
"'I~ : 90
1'),,
;::: 80
'}.
~
;
70
ro
l--1--1-+++H~~-~'t-.p..,iH-++1+1+--l--+-4-+++++l---+--+-4-+-i+H<
~ ~
~ 50 l---+--+-+++++++----1---11-+H-!-++l--+'>~r-4~-+++++l---+--l-++1-+++1
~ 40 l--l--+-+++H+l----l---l-+-++1+1+--l--+-4-++-R-1.~l--~·1--1-+-+-H~
z
l'h_
~ 30 l---+--+-+++H++----l---l-+-1-++++1-~+-~-++~l---+'~r;;;;;rl-N-H-!~
25 20
er:" ~~ 10 l--+--+-+-+++++l---l--l-+-H+-H+-+-+-++++++1e----+-+-1-HH+H
0.01
0.1
1.0
10
100
f, FREQUENCY (MHz)
FIGURE 11 - CIRCUIT SCHEMATIC
A Input
B Input ""----+---->--------<
FIGURE 8- GATE CHARACTERISTICS +20
~ +10
2
~
LU C!l
-10
<(
~ a
-20
>
Cl LU
-30
~
~
c;; -50
.;;
-l -60
-70
0.5
1.0
1.5
2.0
2.5
VG, GATE VOLTAGE (VOLTS)
FIGURE 10 - INPUT WIDEBAND NOISE versus SOURCE RESISTANCE
33 ,.---,---,-11~111~111111~111~11~--.--mrn--r-~
Bandwidth; 5.0 Hz to 10 MHz
10
100
. 1.0 k
10 k
100 k
Rs, SOURCE RESISTANCE (OHMS)
FIGURE 12 - SINGLE-ENDED VQ.LTAGE GAIN ANO BANDWIDTH TEST CIRCUIT
Signal ,.._. Generator
Vi= 20 mV(rms)
CL= 15· p.F and includes j.ig and voltmeter capacitance.
Boonton RF Voltmeter or Equivalent
8-26
MC1445 , MC1545
FIGURE 13 - OUTPUT VOLTAGE SWING TEST CIRCUIT
f=50kHz Vi= 200 mV(rms)-=
FIGURE 14 - INPUT IMPEDANCE TEST CIRCUIT
f = 50 kHz Vi= 50 mV(rms)
To ac Voltmeter
To ac Voltmeter
FIGURE 15 - OUTPUT IMPEDANCE TEST CIRCUIT To ac
FIGURE 16 - INPUT BIAS CURRENT AND INPUT OFFSET CURRENT TEST CIRCUIT
Open
f = 50 kHz Vi= 50.mV(rms)
FIGURE 17 - INPUT OFFSET VOLTAGE AND QUIESCENT OUTPUT LEVEL TEST CIRCUIT
-5.0 v
+5.0 v
Adjust R1 until V1 reads 0 Volts then
R1 100 k 10 Turns
-5.0 v
A.Vo= Change in V2 Reading .
s v· Switch 1 and readjust R 1 for 1=o
+5.0 v
I1o is the difference in current reading when either S1 or S2 is switched.
FIGURE 18 - GATE CURRENT (HIGH AND LOW), COMMON-MOOE REJECTION AND
COMMON-MODE INPUT RANGE TEST CIRCUIT
·
CMRR = 20 log[Avs] Ave
+5.0 v
8-27
MC1445 I MC1545
FIGURE 19 - PROPAGATION DELAY AND RISE AND FALL TIMES TEST CIRCUIT
To "A" Channel of Scope
+5.0 v
Pulse Gen.
Scope Tektronix 567
FIGURE 20 - POWER DISSIPATION AND WIDEBAND INPUT NOISE TEST CIRCUIT
True rrns Voltmeter with Bandwidth of 5.0 Hz to 10 MHz
V; = 20mV
tTLH = tTHL < 5.0 ns
of Scope
Open
CL = 15 pF includ Ing probe and
jig capacitance
·
FIGURE 21 - LIMITING CHARACTERISTIC
u= JOU~ 7o L tPHL
I
I
Ci. 5.0
6.
2':
r-0UJ f---1-----l-----l--+--l."""'--4---+---1---+----I
13> 0 i---r----t--;"".--~--i
;;;_ 2.0 t---t----1--;'---I ....L
~
:: 1.0 Ci
lOk Vo
100
500
Vi· SINGLE-ENDED INPUT VOLTAGE (mVp-p)
·
8-28
ORDERING INFORMATION
Device
MC1550F MC1550G
Temperature Range
-55°C to +12s0 c -55°C to + 125°C
Package
Ceramic Flat Metal Can
RF - IF AMPLIFIER
... a versatile,common-emitter,common-base cascode circuit for use in communications applications. See Application Note AN-215A for additional information.
· Constant Input Impedance ove,r entire AGC range · · Extremely Low y 12 - 4.3 µmhos at 60 MHz · High Power Gain - 30 dB@ 60 MHz (0.5 MHz BW) · Good Noise Figure - 5 dB@ 60 MHz
MC1550
RF - IF AMPLIFiER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 6038
Bypass
MAXIMUM RATINGS ITA= +25°e unless otherwise noted)
Rating
Symbol
Value
Power Supply Voltage, Pin 9
AGC Supply Voltage
Input Differential Voltage, Pin 1 to Pin 4 (Rs = 500 ohms)
Power Dissipation (Package Limitati-On) Metal Can Derate above TA= +25°e Flat Package Derate above TA = +25°C
Operating Ambient Temperature Range
Storage Temperature Range
Vee VAGe
V10 Po
tA Tstg
20 20 ±5.0
qso
4.6 500 3.3 -55 to +125 -65 to +150
Unit Vdc Vdc V(rins)
mW mW/0 e
mW
mw1°c
oe oc
AGC
F SUFFIX CERAMIC PACKAGE
CASE 606-04 T0-91
"'"'"~"~.~.~·-,- ,,,.,~
Gnd
Vee
Gnd
Bypass
AGC
Output
CIRCUIT SCHEMATIC
,------
5
Vee
---------,
'I R, 3k
I
I
I
I
I
I
I
-----*I
2
7
CIRCUIT DESCRIPTION
The MC1550 is built with monol,ithic fabrication techniques utilizing diffused resistors and small-geometry transistors. Excellent AGC performance is obtained by shunting the signal through the AGC transistor Q, maint(!ining the operating point of the input transistor Q,. This keeps the input impedance constant over the entire AGC range..
The amplifier is intended to be used in a common·emitter, common-base configuration (Q, and.Q,) with. Q, acting as an AGC transistor. The input signal is applied between pins 1 and 4, where pin 4 is ac·coupled to ground. DC source resistance between pins 1 and 4 should be small (less than 100 ohms). Pins 2 and 3 should be connected together and grounded. Pins 8 and 10 should be bypassed to ground. The positive supply voltage is applied at pin 9 and at.higher frequencies, pin 9 should also be bypassed to ground. The output is taken be· tween pins 6 and 9. The substrate is connected to pin 7 and should be grounded. AGC voltage is applied to pin 5.
J 8-29
·
MC1550
ELECTRICAL CHARACTERISTICS (V+ = +6 Vdc, TA= +25°Cl
Characteristic
Conditions
Figure Symbol
Min
Typ
Max
Unit
DC CHARACTERISTICS Output Voltage Test Voltage Supply Drain Current AGC Supply Drain Current
VAGC =0 Vdc VAGC =+6 Vdc
VAGC =0 Vdc VAGC = +6 Vdc
VAGC = OVdc VAGC = +6 Vdc
VAGC =0 Vdc - VAGC =+6 Vdc
1
Vo
3.80
5.90
-
4.65
Vdc
6.00
1
vs
2.85
'-
3.40
Vdc
3.25
-
3.80
1
lo
-
-
-
2.2
mAdc
-
2.5
1
IAGC
-
-
-
-0.2
mAdc
-
0.18
SMALL-SIGNAL CHARACTERISTICS
Small-Signal Voltage Gain Bandwidth
f = 500 kHz -3.0 dB
2
Ay
22
-
29
dB
2
BW
22
-
-
MHz
Transducer Power Gain
f = 60 MHz, BW = 6 MHz
3
Ap
-
25
-
dB
f = 100 MHz, BW = 6 MHz
-
21
-
TYPICAL CHARACTERISTICS
(Vee= 6.0 Vdc, TA·= +25°e unless otherwise noted.)
FIGURE 1 - DC CHARACTERISTICS TEST CIRCUIT
FIGURE 2-VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT
VAGe +6Vdc
R1 ~ 50 Q R2 = 620[1 C1thru C6 = 0.1 µf
VAGe +-6 Vdc
?''c,
~J...---+--~~
··" '° mv1~1
Rr
II
FIGURE 3 - POWER GAIN TEST CIRCUIT@ 60 MHz
':"
FIGURE 4 - DRAIN CURRENT TEMPERATURE CHARACTERISTICS
1.20 Vee"'!, 6 V
VAGe=OV
l.10
-~
ejn = 10 mV(rms) Ci
R1 =50Q
0.90
Cr, C2 and C1 = 0.001 µf C4andC5 = 0.1 pf C6 and C9 = 9-35 pf
C1=9-180pf Ce = 25-280 pf
L1=0.22 t.tH L2 = 0.26 t.tH
0.80 -55
-25 -
+25 +so +75
TA, AMBIENT TEMPERATURE (°C)
+100 +125
@ - - - - - - -. . MOTOROLA Se1nieonductor Products Inc.
8-30
MC1550
TYPICAL CHARACTERISTICS (continued)
FIGURE 5 - INPUT RESISTANCE AND CAPACITANCE versus FREQUENCY
2800
2400
12000
~1600
~ . il200
-., 800
ci!
400
0 0.1
14
"'""' ~ !'\.. ~
12 Vee= 6 V VAGe=OV
10 ~
~ ri
~ r
~
:\
~
~C;"
R;, '\.
_'\.
~ 8.0 ~
6.0 ~ 4.0
<3
~
~
~
~
0
1.0
10
JOO
1000
I, FREQUENCY IMHzl
FIGURE 7 - OUTPUT RESISTANCE AND CAPACITANCE versus FREQUENCY
100 k
100
Rout
~ VAGe = 6~ NlvAGe=OV
...._...,
10 z:
·~
VAGe = Oand6V
Cout
~
1--
:::>
_}
§ 1.0
l
<.>
I
l
100 0.1
0.1
1.0
10
100
1000
I, FREQUENCY IMHzl
FIGURE 6 - INPUT RESISTANCE AND CAPACITANCE versus AGC VOLTAGE
800....---,..-----,..-----.,-'---~--~-~ 14
~
(~;)
7 0 0 t - - - t - - - t - = - . , _~-, -==--+----t-----112
C;,
30 MHz - 1 - - - 4 - - - - I
~ ~ 6 0 0 i - - - - t - - - - t - - - - + - - - + - - - + - - - - l 10
~ ~
§ u
i~
R;,
i8.0
c
ci!
400t----t-- C;,
60MHz 6.0
300..__ _....__ _....__ _..___ _....__ _....__ ____. 4.0
0
1.0
2.0
3.0
4.0
5.0
6.0
VAGe. AGCVOLTAGE IVOLTSI
\ FIGURE 8- OUTPUT RESISTANCE AND
CAPACITANCE versus AGC VOLTAGE
110
t\
l Rout@ 30 MHzy-
..~.._..., 901-----4--+--+--+-'\....._+-__,l-\l,--+--+-v-7'«'-+----l 4.0 G:
~'\.Iz~ri z:
'\ TI z.LI t;; 70
~
....\. _l
3.0 ~
1--
:::>
~
50
_"1~ I i 1--
:::>
0
Cout@ 30 and 60 MHz
2.0
j 30t---+---+--+---+--+--T--\-~71t---t-----r----1 l.O j
Rout@ 60 MHz __l
100
1.0
2.0
3.0
4.0
5.0
VAGe. AGC VOLTAGE IVOLTSI
FIGURE 9 - MAXIMUM TRANSDUCER POWER GAIN
versus FREQUENCY
30
~ 25
z: .
~ 20
f:f;;f:i:
V~G~ = b I
BW = 6 MHz
N
f\
I\
\
5.0
01.0 2.0
5.0 10 20
50 100 200
I, FREQUENCY IMHzl
500 1000
FIGURE 10 - TRANSDUCER POWER GAIN versus TEMPERATURE
~
z: 25i--~
"~ '
"' 20t---+--+----+----+----+--+----+----+---+~
.._,
:::> 0 (z/): <
."'f 15
10..__.__ _....__ _.__ _.__ __.._ _....__ _.__ _.__ __.._
-55 -40 -20
+20. +40 +60 +80 +100 +125
TA. AMBIENT TEMPERATURE (PC)
@ MOTOROLA Semiconductor Products Inc.--------
8-31
MCi550
TYPICAL CHARACTERISTICS (cdntinued)
FIGURE 11 - TRANSDUCER POWER BANDWIDTH versus AGC VOLTAGE
cc
:g
~ +15
ffi ~ +101--~~~-+----f----:~~~<---+--7C....~......:-1f---+~~-.,.--;-~~""""=----t-----+----:-1f-----~
ffi
g+5.0l------+---~f'7"!:__-7'-<._-+-7'-:+--~-==:--~f--~:------'~:::---~""'-:--'"""'-~-+----:-1f-----~
~ ~ .f
90 I, FREQUENCY (MHz)
14
12
cc 10
:g
~ 8,0
..::
(I)
~
6,0
~ 4.0
2.0
FIGURE 12- NOISE FIGURE AND OPTIMUM SOURCE RESISTANCE versus FREQUENCY
~ceL'vl '1400
VAGc=OV -1 1200~
e
+
1000~
VNF(opl)
~
800 ~
(.)
~
c:.IC
r-... ~ "'Rs(opt)
~
600 ~
::;:
400 ~
~
200 cf
0
20
50
100 200
500 1000
I, FREQUENCY !MHz)
FIGURE 13-NOISE FIGURE versus SOURCE RESISTANCE
1 14~-~~~~--~-~-~-~~~~
13 t----t- Vee= 6 V-+---+---1----+---+----+--·
VAGc=OV
~ 121---+---+---t--f---+---+--=-I--_,,_'!===~
§_ -
11~ "-
~1-
-
200MHz
~ 101---"'"'+-o~.-...--"""'!=--f---+---+-:-1f----t--~
~ s.o t-----+---1---+--+----1,___--+---f--.L..--+v__,~--i
~ 8,0 t----+---+---t--!----+---+l,..-/---i~'--+---l ~ 7.0 1----4~~::~:_1o_s~M_H_~::t-:-__._-_-ri--:::::..""""'"---+---+----1
6.0
5.0
60 MHz
4.0 100 200 300 400 500 600 700 800 900 1000
Rs. SOURCE RESISTANCE !OHMS)
II
FIGURE 14-Y21· FORWARD-TRANSFER ADMITTAN,CE versus FREQUENCY
FIGURE 1s-v21. FORWARD-TRANSFER ADMITTANCE versus AGC VOLTAGE
] +35
~E +30
z +25
ci:
I= +20
~ +15
~~ci:
+10 +5,0
l----+-1--4--+-l--l-+-+-l-+-hv!-F--I+L--+--+--+--+l-\.-~~~-+-l-H
1-
921, -b21 VAGC "6 Vdc I '
~ :s.o t'-N ~·
Vee.& 6 Vdc
t----t-t--t---t-;--t-t--t-T-t--t----t--t--t--1--t--+-i-++-H
25 T I
t - - 92,1 @ 30 MHz--+---+---+--1---1----T+---T-+------<
L
-'-
Vee 6 Vdc
u. -10 l----+-1--41--+-l--l-+-+-l-+-l----+-1--41--1-l--l--l-l-l-H
~ -15.___.._.__.._..._.__.__.._._._,_.____.__...._...._._.__.__._._,_._.
1.0 "
3,0
6.0 10
30
f, FREQUENCY (MHz)
60 100
1.0
2.0
3.0
4.0
5.0
VAGC. AGC VOLTAGE (VOL TS)
® MOTOROLA Semiconductor Products Inc. --------
8-32
MC1550
TYPICAL CHARACTERISTICS
(Vee= 6.(}Vdc, TA= +25°C unless otherwise noted.)
FIGURE 16-Y12· REVERSE TRANSFER-ADMITTANCE versus FREQUENCY
FIGURE 17-y11, INPUT-ADMITTANCEversus FREQUENCY 10
f, FREQUENCY (MHz)
0
.~s
w
(..)
< z
~
ii
1.0
0
i
>
0.1
L;il
IL
k""
L
v k"
~
1.0
3.0
6.0
~
kd""".._,,,....P"~
~
~
~
10
30
60 100
f. FREQUENCY (MHz)
FIGURE 19 - s11 AND s22. INPUTAND OUTPUT REFLECTION COEFFICIENT
The Y12 shown in Figure 16 illustrates the extremely low feedback of the MC1550 with no contribution from the external mounting circuitry. However, in many cases the external circuitry may contribute as much or more to the total feedback than does the MC1550.
~:e~!~~: ~i°~~ ~~~~~~::~~g; :~!~u:~!i~:~i~~l:i~i·:ia:!~!i~~~: :~:ut~;a~~:~'.
back of device plus circuitry.
This can be done in one of two ways:
(I) Measure the total y12 or s12 of the MC 1550 installed in its mounting circuitry, or
(2) Measure the Y12 of the circuitry alone (without the MC1550 installed) and add the circuit Y12 to the Y12 for the MC1550 given in Figure 16.
FIGURE 18-v22.0UTPUT-ADMITTANCE versus FREQUENCY
1.0
I
..LI L
J.
bz~ L
~
v z L1
c
~
2
.Ll
_y~
~
~ ~
O.ol
-"-
1.0
3.0
6.0 10
g~~
30
60 100
f, FREQUENCY (MHz)
MOTOROLA
SeTniconductor Products Inc.
®
8-33
·
MC1550
TYPICAL CHARACTERISTICS (continued) (Vee= 6.0 Vdc, TA= +25°c unless otherwise noted.)
FIGURE 20-s11,INPUTREFLECTION COEFFIClf:NT versus FREQUENCY
0.95
0.9998
0.90
~l".!,s1T1.!
z
0.9994
>-I-
~ ffi 0.85 u~.LuI: ~ ::t 0.80
cO ::Ju
~ £? 0.75
"'1<('U
~ ~ 0.70
;; cc
-0.65
0.60
i--i-
J..J-'
~ ~
,,~
.L T"
/
017 T7
~
v
8 0
I-
-20 Ci) ~ ~ 0.9990
u: -18 ~
-16 cwcC<C!)
e -14 o~..,_
~~
o~
~ ~ 0.9986
WO 0(.)
-12 .~,_wz ~ g 0.9982
:;_ i -10 0 c::;
-8.0 ~ff: <!>W
~ti
0.9978
6.0 ~ 8 NW
4.0 ::: ~a: 0.9974
2.0 "'
0.9970
1.0
3.0
6.0 10
30
60 100
1.0
f, FREQUENCY (MHz)
FIGURE 21-s22.0UTPUT REFLECTION COEFFICIENT versus FREQUENCY
-7.0
i . -~
3.0
6.0
-6.013
;::
1s221
i""h...
~
-5.0 ~ fil u.. w Wrr
l\IJ
rr<!>
-4.o ~
L.i'' 8 --'
0222 v lL
11.
=>>->z-3.00 W
~
u..(3
.~ft
-2.0-' w
~8
,A r:;7
<(
-1.0 ~
0
10
30
60 100
f, FREQUENCY (MHz),
FIGURE 22 - s21. FORWARD TRANSMISSION COEFFICIENT (GAIN)
FIGURE 23-s12. REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)
II
@ MOTOROLA Semlcondudor Producf:s Inc.
8-34
ORDERING INFORMATION
Device
MC1552G MC1553G
Temperature Range
-55°C to + 125°C
-55'oC to -t;125°C
Package
Metal Can Metal Can
VIDEO AMPLIFIERS
These· devices consist of a three-stage, direct-coupled, common· emitter cascade incorporating series feedback to achieve stable voltage gain, low distortion, and wide bandwidth.· They employ a temperature-co'mpensated de feedback loop to· stabilize the operating point and a current-biased emitter follower output and are intended for use as either wide-band linear amplifiers or as fast rise pulse amplifiers.
· High Gain - 34 dB± 1 dB (MC1552) 52 dB± 1 dB (MC1553)
· Wide Bandwidth - 49 MHz (MC1552) 35MHz (MC1553).
· Low Distortion - 0.2% at 200 kHz · Low Temperature Drift - ±0.002 dB/°C
MC1552G MC1553G
HIGWFREQUENCY VIDEO AMPLIFIER
SI LICON MONOLITHIC INTEGRATED CIRCUIT
- CASE 6038 METAL PACKAGE
PIN CONNECTIONS
· MAXIMUM RATINGS (TA= +25°e unless otherwise noted.)
Rating
Symbol
Value
Power Supply Voltage, Pin 9 Input Differential Voltage, Pin 1 to Pin 2
(Rs = 500 ohms) . Power Dissipation (Package Limitation) /
Derate above TA= +25°e
Vee
9.0
V10
1.0
Po
680
4.6
Operating Arnbient Temperature Range Storage Temperature Range
TA Tstg
-55 to +125 -'65 to +150
Unit Vdc V(rms)
mW rriw1°e
oe oc::
Ext. Capacitor
(Top View)
REPRESENTATIVE CIRCUIT SCHEMATICS
FIGURE 1 - MC1552 (LOW GAIN)
FIGURE 2 - MCl553 (HIGH GAIN)
---1---__.--0Vo
V; 6.0 k
130 Output
G~t Ext. C Gnd Inputs
_ _ _ _ _- o v o
12 k' Output
Gain Select Ext.C Gnd Inputs
·
MC1552G, MC1553G
·
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, TA= 25°c, Vee= 6.0 V and specification _applies for all
Gain Selection options
MC1552G
Characteristic
Test
Figure Symbol
Min
Typ
Max
Voltage Gain (Gain Option= 50) (Gain Option = 1001 (Gain Option = 200) (Gain Option = 4001
Av
44
50
56
87
100
113
-55°c;;; TA;;; 125°c (Gain Option= 50) (Gain Option = 100) (Gain Option = 200) (Gain Option= 400)
42
58
83
117
Voltage Gain Variation (-55°C ;;; TA ;;; 125°Ci
r-.Av
±0.2
Small-Signal Bandwidth (Gain Option = 50) (Gain Option= 100) (Gain Option= 2001 (Gain Option= 400)
3,6
BW
21
40
17
35
Input Impedance (I= 100 kHz, RL = 1.0 kfl.)
Zi
7.0
10
Output Impedance (f = 100 kHz, Rs= 50 fl.)
Zo
16
50
DC Output Voltage (-55°c ;;; TA ;;; 125°c1
Vo
2.5
2.9
3.2
2.3
3.4
DC Output Voltage Variation (-55°c ;;; TA ;;; 125°c1
·>Vo
±0.05
Output Voltage Range (zl ;;; 1.0 kfl., Ci= 100 mV rms) (-55°C;;; TA;;; 125°c1
VoR
3.6
4.2
Power Supply Current (-55°c .; TA ;;; 125°c1
'cc
12.5
20
-
24
Propagation Delay Time (Gain Option = 50) (Gain Option·= 100) (Gain Option= 200) (Gain Option= 400)
3.4
tPHL
8.0
9.0
Transition (Rise) Time (Gain Option= 50) (Gain Option= 100) (Gain Option= 200) (Gain Option = 400)
3.4
tTHL
9.0
16
12
20
Overshoot
3.4 100 llQs!Vp
5.0
Noise Figure (Rs= 400 fl., 10 = 30 MHz.SW= 3.0 MHz) (See Figure 14)
Total Harmonic Distortion (V0 = 2.0 V P·P, f = 200 kHz, R L = 1.0 kfl.)
NF
3.0
THD
0.2
MC1553G
Min
Typ
Max
Unit VIV
175
200
225
350
400
450
171
230
342
461
±0.2
dB MHz
17
35
7.5
15
7.0
10
kfl.
16
50
n
2.5
2.9
3.2
Vdc
2.4
3.3
±0.05
Vdc
3.6
4.2
V P·P
3.4
12.5
20
mA
23
· 10 25
11,
20
30
45
5.0
%
3.0
dB
0.2
%
NOTES
1. Ground Pin 6 as close to package as possible to minimize
overshoot. Best results are usually obtained by directly
grounding the package.
2. If large input and output coupling capacitors are used,
place a shield between them to avoid input-output coupling.
3. A high-frequency capacitor must always be used to by·
pass the power supply. This capacitor should be as close to
the circuit as possible.
·
4. Voltage gain can be adjusted to any value between 50 and
.3000 by connecting an external resistor from Pin 4 to ground
on MC1 552, or from Pin 3 to.ground on MC15S3, as shown in
Figure 8. Under these conditions, the following equations must be used to determine C1 and C2 rather than the circuits shown in Figure 5.
Fig.
Sb C1
=
7Tfc( _
2
17
X
104)
Farads; C2 = 8 C1(V0 /Vi)
Farads
V 0 /Vi
Fig. Sc C1
= 1Tfc( .
2
15
X
104)
Farads
V 0 /Vi
FIGURE 3 - TEST CIRCUIT
FIGURE 4 - PULSE RESPONSE DEFINITIONS
Type MC1552 MC1553
Voltage Gain 50 100 Ground Pin 3 200 Connect Pin 3 to Pin 4 . 400 Pins 3 and 4 Open
....._----...,...--- MOTOROLA
Semiconductor Products Inc.
® -------~
8-36
MC1552G, MC1553G
TYPICAL CHARACTERISTICS
TA= +25°C
FIGURE Sa - FR EQUENCY RESPONSE
FIGURE 6 -VOLTAGE GAIN versus FREQUENCY
3A-+- 4A
Vo Vi
400
38-+-- 48 +---+- +- 200
3c=ft '1"4c i=t= :j:: 100
:::n:
[[
30-+I- '40 +--+- t-50
rz:
2 10
0
100
1.0
- k 4.0 k 10
k'
100 k
1.0M
10 M 100 M
f, FREOUENCY (Hz)
TEST CIRCUITS FOR FREQUENCY RESPONSE
FIGURE Sb - CAPACITIVE COUPLED INPUT (Rs< 5 k.11)
0
Curve No. C1 (µF)
1A
0.1
18
0.1
1C
0.1
10
0.1
C2 (µFl
25 0 15 0 70 40
Curve No. Cl (µF) C2 (µF)
2A
0.01
30
28
0.01
18
2C
0.01
8.0
20
0.01
4.0
~
3A ~ 3.0
38
1000
1.8
3C
1000
0.8
30
1000
0.4
4A
100
0.3
48
100
0.18
4C
100
0.08
40
100
0.04
FIGURE Sc - CAPACITI VE COUPLED INPUT (Rs< 500 .11)
CurveNo. Cl (µF)
1A
20
18
10
1C
7.0
10
3.0
2A
3.0
28
1.0
2C
0.8
20
0.5
Curve No. Cl (µF)
3A
0.4
38
0.2
3C
0.1
30
0.06
4A
0.04
48
0.02
4C
0.01·
40
0.007
FIGURE Sd - TRANSFORMER COUPLE_D INPUT
~II
Curve No. C2(µF
1A
200
18
100
1C
70
10
30
2A
20
28
10
2C
7.0
20
3.0
Curve No. Cl (µF)
3A
2.0
38
1.0
3C
0.7
30
0.3
4A
0.2
48
0.1
4C
0.07
40
0.03
60
~ 50
z
~ 40
"~' 30
>
.j 20
10
Uv!J400 200 100 50
Vee= 6.o v Rs= 50 n
""h ~ r----. ~~ !!.,I\. - t'I ~ ' ~
0
0.1 0.2 0.4 1.0 2.0 4.0 10 20 40 100 200
1000
f, FREQUENCY (MHz)
FIGURE 7 - MAXIMUM NEGATIVE SWING SLEW RATE
versus LOAD CAPACITANCE
~25o~~~~r-~~~.--~~~.--~~~.--~~---,
!::;
Cl
Vee= 6.o v
>
~2001-~~...,...t--~~~+-~~~+-~~~+-~~---1
~
ai
~1501-~~~t--~----'""""'+-~~~+-~~~+-~~---1
"z '
3:
~1001--~~~1--~~~+--~~~+--~--'"""'"+---=----l >;:::
§
~ 501--~~--1~~~~+--~~~+--~~~+-~~----1
~
x:;;;
~ OL------'----'-----'---~-...,._--__,
:;;; 0
5.0
10
15
20
25
LOAD CAPACITANCE (pF)
FIGURE 8 - VOLTAGE GAIN ADJUSTMENT BY USE OF EXTERNAL RESISTOR
3000
2500
~2000
~
w
\
;1500
Cl
>.1000
~
> 500
1
~C1553 Ext. R from Pin 3 to Gnd)
~ N.J J"'..MC1552 (Ext R from Pin 4 t,p Gnd~
ill1 ...
,_
0
1.0 2.0 4.0 10 20 40 100 200
1.0 k 2.0 k
10 k
EXTERNAL RESISTANCE (OHMS)
·
@ MOTOROLA Semiconductor Products Inc.--------'
8-37
MC1 ss2G, Mc1 ssaG
INPUT ADMITTANCE (Vee = 6.0 Vdc, RL = 1.0 kn, TA = +25°e)
FIGURE 9 - GAIN= 50
FIGURE 10 - GAIN= 100
~~.o,..-"'-2~.o-___._....__.s~.o.....1.....0~·~1·0--'--2~0-"---..._s.._o_,_1~0....1...0. g
f, FREQUENCY (MHz)
FIGURE 11 - GAIN= 200
f, FREQUENCY (MHz)
FIGURE 12 - GAIN= 400
~ 1.5~~~-~~~~~~~-'-,-~~~~~15
"E
.§
·
o,~_.___._......__....__._..._.._._.~__.,..-..__.___._._._._._._o
1.0
2.0
5.0 7.0 10
20
50 70 100
f, FREQUENCY (MHz)
01L-.....i........L-......1.--J........1.-.J...J.....1....1.-'---'---~-'-.....i......t....L-L.J.J-JO
1.0 2.0
5.0 7.0 10
20
50 70 100
f, FREQUENCY (MHz)
FIGURE 14 - .BANDWIDTH versus SOURCE RESISTANCE
FrGURE 13 - OUTPUT IMPEDANCE versus FREQUENCY
50
I/
c;; .40
~
~·-
w ~ 30
~
~ 20
~
I-
)
~
·~
j 10
0 10 k
100k
1 M f, FREQUENCY (Hz)
10 M
100 M
01,,_0_ _ _2.._o_ _,__.__5...,o-'-1..,o.._..1.._oo---2·00-......1.-.....i...;.5..1.o_o..1..o.o..L..l.Jo1oo Rs, SOURCE RESISTANCE (0 HMS)
@ MOTOROLA Semicortduetor Products Inc.
8-38
ORDERING INFORMATION
Device·
MC1454G MC1554G
Temperature Range
0°c to +70°C -55°C to +12s0c
Package
Metal Can Metal Can
MC1454G MC1554G
1-WATT POWER AMPLIFIERS
... designed to amplify signals to 300-kHz with 1-Watt delivered to a direct coupled or capacitively coupled load.
· Low Total Harmonic Distortion - 0.4% (Typ)@ 1 Watt · Low Output Impedance - 0.2 Ohm · Excellent Gain - Temperature Stability
1-WATT POWER AMPLIFIER INTEGRATED CIRCUIT
SILICON MONOLITHIC EPITAXIAL PASSIVATED
fib~~:~~V·'.c~~~<":~~':::::··,
Bias Re/
7
VEE
.
·
6
,
External
Gain
Compensation
Options
G SUFFIX
CASE 6038
VOLTAGE GAIN versus FREQUENCY (RL = 16 OHMS)
35
0
m::r VF' ..-1
Gain Option #2
T 18 VIV
~ 25
z 4:
Y rr1o~tion #3
1
10 VIV
C> 20
UJ
:<C;> 15
0
>
.j 10 r-----+-+--t--t-t-H-++----t---1f--t-l-+++++--+--+--t-+-Hl-+-l+------ji----l---l---l--.1-1--W--1Pout =1.0 W(rms) -+-+--l-+-~
RL = 16 OHMS
5.0 r-----+-+--+--t-t-H-++-----+---1f--t-l-+++++---+--+--t-+-Hl-+-l+------jl----l---l---l--+-1-l-W-Vcc=1sv
(see Figr 1i
0
1
10
100
1.0 k 2.0 k
5.0 k 10k
100k
1.0M
f. FREQUENCY (Hz)
CIRCUIT SCHEMATIC
io vee
·
I INPUT
9 l-+"VVl.4----~1----.._--<> OUTPUT
~ [o.:-.___ _.._ __.
8-39
AL. LOAD RESISTANCE (OHMS)
MC 1454G I MC 1554G
ELECTRICAL CHARACTERISTICS (Tc= +25°C unless otherwise noted)
Frequency compensation shown in Figures 6 and 7.
Characteristic
RL
Gain
Figure (Ohms) Option* Symbol
MC1554 (-55 to +125°C)
Min Typ Max
MC1454
to to+10°c1
Min Typ Max Unit
Output Power (for e0 ut<5.0% THO) Power Dissipation (@Pout= 1.0 WI" Voltage Gain
Input Impedance Output Impedance Power Bandwidth
(for eout<5.0% THDi
Total Harmonic Distortion (for ein<0.05% THO, f = 20 Hz to 20 kHz)
Pout = 1.0 Watt (sinewave) Pout = 0.1 Watt (sinewave) Zero Signal Current.Drain Output Noise Voltage Output Quiescent Voltage
(Split Supply Operatic~) Positive Supply Sensitivity
(VEE constant) Negative Supply Sensitivity
(Vee constant)
1
16
-
Pout
1.0 1.1
-
-
1.0
-
Watt
1
16
-
Po
-
0.9
1.2
-
0.9
-
Watt
1
16 16
10 18
Av
8.0
10
12
-
10
-
V/V
- 18 -
-
18
-
16
36
-
36
-
-
36
-
1
-
10
Zin
7.0
10
-
3.0
10
-
kn
1
-
10
~
-
0.2
-
-
0.4
-
n·
2
16
10
BW
- 27b -
-
270
-
kHz
16
18
-
250
-
-
250
-
16
36
-
210
-
-
210
-
2
THO
%
16
10
-
0.4
-
-
0.4
-
16
10
-
0.5
-
-
0.5
-
3
00
-
lo
-
11
15
-
11
20 mAdc
3
16
10
Vn
-
0.3
-
-
0.3 - riverms
4
16
-
V 0 (de)
-
±10 ±30
-
±10
- mVdc
5
00
-
s+
-
-40
-
-
-40
- mV/V
5
00
-
s-
-
-40'
-
-
-40
- mV/V
·To obtain the voltage gain characteristi_c des!red, fJSe the following pin connections: Voltage Gain 10 18 36
Pin Connection Pins 2 and 4 open, Pin 5 to ac ground Pins 2 and 5 open, Pin 4 to ac ground Pin 2 connected to Pin 5, Pin 4 to ac ground
·
FIGURE 1 +16V
Characteristic Definitions (Linear Operation)
FIGURE 3
+16V
FIGURE 4 +8V
9
open
V0 (dcl
L
7
-8V
FIGURE 5
Vee
open
e,,,_LJ~_f_OVdc ~ v~
@ _______ _ . MOTOROLA Semiconductor Products Inc.
8-40
MC1454G, MC1554G
MAXIMUM RATINGS (Tc= +25°C unless otherwise noted)
Rating
Symbol
Total Power Supply Yoltage Peak Load Current Audio Output Power Power Dissipation (package limitation)
TA= +25°c Derate above 25°c
Tc= +25°C Derate above 25°c
Operating Temperature Range
Storage Temperature Range
MC1454 MC1554
IVccl + IVeel lout Pout
Po
1/6JA
Po
1/eJc TA
Tstg
Value
18 0.5 1.8
600 4.8 1.8 14.4 Oto +70 -55 to +125 -55 to +150
Unit Vdc Ampere Watts
mW
mwt0 c
watts
mwt0 c
oc
oc
TYPICAL CONNECTIONS
FIGURE 6 - SPLIT SUPPLY OPERATION VOLTAGE GAi~ (Av) = 10, fLOW ~25 H;i .
FIGURE 7 - SINGLE SUPPLV OPERATION VOLTAGE GAIN (Av) = 10, fLow::::: 100 Hz
Vee 39 pF
RECOMMENDED OPERATING COND1TIONS
In order to avoid local VHF instability, the following set of rules must be adhered to:
I. An R·C stabilizing network (0.1 µFin series with 10 ohms) should be placed directly from pin 9 to ground, as shown· in Figures 6 and 7, using short leads, to eliminate local VHF instability caused by lead inductance to the load.
2. Excessive lead inductance from the Vee supply to pin 10 can cause high frequency instability. To prevent this, the Vee by-pass capacitor should be connected with short.leads from the Vee pin to ground. It this capaci· tor is remotely located a series R-C network (0.1 µ.F and 10 ohms) should be used directly from pin 10 to ground as shown in Figures 6 and 7.
· 3. Lead lengths from the external components to pins 7, 9, and 10 of the package should be as short as possible to insure good VHF grounding for these points.
Due to the large bandwidth of the amplifier, coupling must be avoided be-
tween the output and input leads. This can be ·assured by either (a) use of
short leads which are well isolated, (b) narrqw-banding the overall amplifier
by placing a capacitor from pin 1 to ground to form a low-pass filter in com·
bination with the source impedance, or (c) use of a shielded input cable. In
applications which require upper band-edge control the input low-pass filter
is recommended.
·
TYPICAL CHARACTERISTICS
FIGURE 8 -TOTAL HARMONIC DISTORTION versus LOAD RESISTANCE
FIGURE 9 - TOTAL HARMONIC DISTORTION
'
versus FREQUENCY
2.0
t--H
~
LUl.1i1~=1oln I ~
llWill l
I ! 13~~ '1~ n I
1--1
I I 'irnn I
"--""
lo.. I-+;.
I 1~~W-n '
......
1-1-
,. 10, '10 n
RL, LOAO RES.ISTANCE {OHMS)
lli" l
Pout= 1W(rms)
0
10
. 100
1.0 k 2.0 k 5.0 k 1Ok
100k
f, FREQUENCY (Hz)
Circuit diagrams utilizing Motorola products ~re included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for ·inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the pate11t rights of Motorola' Inc. or others.·
@ MOTOROLA Se,,,icqnductor Pro<1.ucts Inc. ----------'
·
8-41
MC1454G, MC1554G
·
TYPICAL CHARACTERISTICS (continu~d)
FIGURE 10 ~VOLTAGE GAIN versus TEMPERATURE
50
45
~ 40
~
z Ci
3 5~
: 30
Cl
~ 25
§: 20
.t 15
10
Av= 36 J/V
18 VIV 10VIV
5.0
0
-55
-25
25
50
75
100
125
TA, AMBIENT TEMPERATURE (Oe)
FIGURE 11 - OUTPUT VOLTAGE CHANGE
....
~ +4.o.-----.----~--~---,--~--~-~
.S
RL = 16 OHMS
~
Vee=BVdc
:i!
VEE= -8 Vdc
li +2.0·t----+-----+---+---+-----+--(See Figure&) -
w
Cl
<(
v...- !::;
0
>
!:~=; ~
-
~ -2.0
fil. 3 0-fr-4.o..___ _..___ __.__ __,__ _.___ __..__ _~--...J
~ .55 >
·25
25
50
75
100
125
TA, AMBIENT TEMPERATURE (Oe)
FIGURE 12 -VOLTAGE GAIN versus FREQUENCY (RL o;ooo)
35
730
~
z
25 ""7
~
<Cl
w
20
/
Cl
~ 15
>
.i 10
5.0 0 10
Av=36VIV
::r
18 VIV
10V/~
"T""'
~
,.
~
AL= oo
V0 = 12 Vp-p Vee= 1s v (See Figure 7)
100
1.0k 2.0k
5.0 k 10k
100k
1.0M
I, FREQUENCY (Hz)
FIGURE 13 - MAXIMUM DEVICE DISSIPATION (Sll"EWAVE)
en ~:~r--,A'"""ss=sc'"'""L"'""U=E,..,M"'"'A"""X""M"I"'""D""'EV'""l=cE=-;D"'IS~s=1P,...AT"'"!!"'ll...-n
'25 -
1 ~
;3
1.01-~--1N--T1'.\~.'.1+-\~i.~.-'1HW'~~-~~-~'lt-"~~--~.+--++++t+t
4600
~~
~ ~ -
~~ 0.71---1--+-1~H+-111-~!~-io.' -·""-! -"k-·~ ~'lr+++t+t
~ 0.5~-+--+--+-+-~tt-,....~-l'~'r-t'~~~--"t+I
~~~G 110~~
60 ~
::;;_
~w<:::===:=::=::::=:·:~:I\.:':l\=:~:~:,...:l": ~ ~
CS:: rsJs N 1'
I \ 1-
"\
!\ !!!:
1ov1'
t: SUPPLYVOLTAGE,IVec1+1VEEi=18v1'X1
r u 0.1
_l _l
__J__LJjj
"i
14V 12V
100 ~ 125 <
1-
1.0 2.0
5.0 10 20
50 100
RL, LOAD RESISTANCE (OHMS)
ORDERING INFORMATION
Device
MC1455G MC1455P1 MC1455U MC1555G MC1555U
Alternate NE555V
Temperature Range
0°C to +70°C 0°C to +70"C 0°C to +70°C -55°C to +125°C
· -55°C to + 125°C
Package
Metal Can Plastic DIP Ceramic DIP Metal Can Ce.ramie DIP
Specifications and Applications Information
TIMING CIRCUIT
The MC1555/MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate ti me delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. in the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable' operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits. · Direct Replacement for NE555/SE555 Timers · Timing From Microseconds Through Hours · Operates in Both Astable and Monostable Modes · Adjustable Duty Cycle · High Current Output Can Source or Sink 200 mA · Output Can Drive MTTL
c · Temperature Stability of 0.005% per 0
· Normally "On" or Normally "Off" Output
FIGURE 1 - 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT
MC1455 MC1555
TIMING CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUIT
P1 SUFFIX PLASTIC PACKAGE
CASE 626 (Top View) (MC1455P1 only)
. D
1. Ground 2. Trigger 3. Output 4. Reset 5. Control Voltage 6. Thresho Id 7. Discharge 8. Vee
0.1 µF
U SUFFIX CERAMIC PACKAGE
CASE 693
FIGURE 2 - BLOCK DIAGRAM Vee 5 Control Voltage
2 t-------+--<>Trigger
4 t-----t---oAe·t
(Top View)
0..6 5
G SUFFIX METAL PACKAGE
CASE 601
1. Ground 2. Trigger 3. Output 4. Reset 5. Control Voltage 6. Threshold 7. Discharge 8. Vee
·
TYPICAL APPLICATIONS
· Time Delay Generation · Precision Timing · Missing Pulse Detection
· Sequential Timing
· Pulse Generation · Pulse Width Modulation
· Linear Sweep Generation · Pulse Shaping · Pulse Position Modulation
8-43
MC1455, MC1555
·
MAXI MUM RA Tl NGS (TA = +25°c unless otherwise noted.)
FIGURE 3 - GENERAL TEST CIRCUIT
Rating
Symbol
Power Supply Voltage Discharge Current (Pin 7)
Vee 17
Power Dissipation (Package
Po
Limitation)
Metal Can
Derate above TA = +25°C Plastic Dual ln·Line Package Derate above TA = +25°C
Operating Temperature
TA
Range (Ambient)
MC1555
MC1455
Storage Temperature Range
Tstg
Value +18 200
680 4.6 625 5.0
-55 to +125 0 to +70
-65 to +150
Unit Vdc mA
mW
mwt0 c
mW mW/°C
oc
oc
µFI 0.01
~ Control Voltage
-;:;-
3
Output
1sink 1source
Vee
MC155ti MC1455
Gnd
Test Circuit for Measuring de Parameters:
(to set output and measure parameters) al. When v 5 ~ 2/3 Vee. Vo is low. b). When v 5 :s; 1/3 Vee. Vo is high. cl. When v 0 is low, pin 7 sinks current. To test for Reset, set v 0 , high, apply Reset voltage, and test for current flowing into pin 7. When Reset is not in use, it should
be tied to VCC·
ELECTRICAL CHARACTERISTICS (TA= +25°C, Vee= +5.0 v to +15 v unless otherwise noted.)
Characteristics
Symbol
MC1555
Min
Typ
Max
MC1455
Min
Typ
Max
Unit
Supply Voltage
Supply Current Vcc=5.0V,RL= 00 VCC = 15 V, RL = oo Low State, (Note 1)
Vee
4.5
-
18
4.5
-
16
v
'cc
-
3.0
5.0
-
3.0
6.0
rriA
-
10
12
-
10
15
Timing Error (Note 2) R = 1.0 kn to 100 kn Initial Accuracy C;. 0.1 µF ()rift with. Temperature Drift with Supply Voltage
Threshold Voltage
Trigger Voltage Vee= 15 v Vee= 5.o v
Trigger Current Reset Voltage
Reset Current Threshold Current (Note 3)
Contro! Voltage Level Vcc=15V Vee= 5.o v
-
0.5
2.0
-
1.0
-
-
30
100
-
50
-
-
0.05
0.20
-
0.10
-
% PPM/°C %/Volt
Vth
-
2/3
-
-
2/3
-
xVcc
VT
v
\
4.8
5.0
5.2
-
5.Q
-
1.45
1.67
1.9
-
1.67
-
IT
-
0.5
-
-
0.5
-
µA
VR
0.4
0.7
1.0
0.4
0.7
1.0
v
IR
-
0.1
-
-
0.1
-
mA
Ith
-
0.1
0.25
-
0.1
0.25
µA
VcL
v
9.6
10
10.4
9.0
10
11
2.9
3.33
3.8
2.6
3.33
4.0
Oµtput Voltage Low (Vee= 15 Vl lsink = 10 mA lsink = 50 mA Isink= ·100 mA Isink= 200 mA !Vee= 5.o Vl lsirik = 8.0 mA lsink = 5.0 mA
Output Voltage High
Osource = 200 mA)
Vee= 15 v
(I source= 100 mA)
Vee= 15 v
Vce=5.ov
Rise Time of Output
Fall Time of Output
VoL
v
-
0.1
0.15
-
0.1
0.25
-
0.4
0.5
-
0.4
0.75
-
2.0
2.2
-
2:0
2.5
-
2.5
-
-
2.5
-
-
0.1
0.25
-
-
-
-
-
-
-
0:25
0.35
VoH
v
-
12.5
-
-
12.5
-
13
13.3
-
12.75
13.~
-
3.0
3.3
-
2.75
3.3
-
tOLH
-
100
-
-
100
-
ns
toHL
-
100
-
-
100
-
ns
NOTES:
1. Supply current when output is high is typically 1.0 mA less.
v. 2. Tested at Vee= 5.0 Vand Vee= 15
Monostable mode
3. This will determine the maximum value of RA+ Rs for 15 V operation.
The 111axi!'Tlum total R =: 20 megohms.
·
8-44
MC1455, MC1555
TYPICAL CHARACTERISTICS (TA = +25°C unless otherwise noted.)
FIGURE 4-TRIGGER PULSE WIDTH
150 .----.--..---.--,...-.--.---..--.M"""---.
1251---+--+---+--+---+---l~l-+---I
FIGURE 5 - SUPPLY CURRENT
1 8.0 t-+--+--+--lt--+-+---:>Jl!Pf-+--1
~
~ 6.0
~ 4.0 t-7.llll"'l--+--lt--+-+--+--+-+--I
~ c.:, .;> 2.0 l--+--+---+---lt--+--+---+---+-l----1
o~~-~~-~~~--~~
0
0.1
0.2
0.3
0.4
VT(min), MINIMUM TRIGGER VOLTAGE
(X Vee; Vdc)
o.........__.__.___...__..___.__._........_L......f
5.0
10
15
Vee, SUPPL y VOLTAGE (Vdc)
FIGURE 6- HIGH OUTPUT VOLTAGE
12.8.,o__-_-__-...--.+,-_.. -_5-5,oe~+~---Lt.-..~-:-::-::-3o"-"".'".'F-V~-,'--I
1.6~::i=:+t~=5ote:+::~ +:~~+I-~
~ 1.4l=t"'""::::1:=F#;;..:;..t"""T-tt-t~~
~ 2 1.
~ +\25oe
8~1.0~ 0~81---t---<>--+-+---+--+--+-<-+----t
> 0.6 t----lt--1--+-+--+--+-+--1-+----i
0.4 t---t--1--+-+--+--+--+--1-+----i
5v.;vee.;15 v
0.2 t----tt--1--+-+--+--+--+--1-+----i
o.____...___..__.__.__..__.__.__._....___.
1.0 2.0 5.0 10 20
50 100
lsource{mA)
FIGURE 7 - LOW OUTPUT VOLTAGE
@ Vee = 5.o. Vdc
FIGURE 8 - LOW OUTPUT VOLTAGE @ Vee = 10 Vdc
~ 1.0 t---+--+-+-+-·'~?1_l1f_tt:flJ"j,&.~~-+-+---<
~
I Jl~-+-t-+---1
o >
~ I IZ
0.1 t----~ t-t-t----+--+-+-+-+---1
0.01 ':--:'-:--..._.~_....,.__.._..._........_ _,
1.0 2.0
5.0 10 20
50 100
ISINK)mA)
·1.o
+25oea:t:::J
t---+-+-+-+---11---+-+l,.....L/t.!125oe
o.1 t---t--1r-++12_,s7oe~~_.,.~"---+r2.:..50-.=e-t-1---;
~soc
0.01._____..__.._.__.__ _.__,__....._,'-'-_ _, 1.0 2.0 5.0 10 20 50 100
lsink, (mA)
FIGURE 9 - LOW OUTPUT VOLTAGE@ Vee= 15 Vdc
10
I_i5I~eT1
1.0
~
0.1 +125°e
~
+25o'Wt::i':'55oc
~
~ J_ 0.01
1.0 2.0
5.0 10 20 lsink. (mA)
50 · 100
FIGURE 10 - DELAY TIME ver~sSUPPL Y VOLTAGE
1.015
0
~ 1.010 :::::;
<(
::;: ~ 1.005 z
, ~ 1.000 I-
>-
<(
~ 0.995
0
':3
0.990
~
\
' t--I-""
i--i--I- -
5.0
10
15
20
Vee.SUPPLY VOLTAGE (Vdc)
FIGURE 11 - DELAY TIME versus TEMPERATURE
1.015 ---~~-~~-~---
~ 1.010 t---+--+---+--+--+--+--+---t
:::::;
<(
~ 1.005 t---+--+--+--+--+-+---+---i
~ r- - r--t--4-..
~::;;:·
i==
1.000 t--+--+--+"""'-+-d· :-+-...~ ....+--l
0.995 t---+--+--+--+--+-+---+---i
; 0.990 t--"_l+-'-+---t---t--+--+---t--;
0·98~75 -50 -25 0 +25 +50 +75 +100 +125
TA, AMBIENT TEMPERATURE (0 e)
FIGURE 12 - PROPAG_ATION DELAY versus TRIGG ER VOLTAGE
300 r---r---r--r--r---r-...-..r-r--.
~250+---+--+--+--+---+----.. . . .- + - - ;
::;: i==
~ 200
~15Ql--""1"...,'F--t:..-5~~-+--t~~
~
~ 100
~ 0.. 50
j.
o.___.__.._........._...__.__....___.~~
0
0.1
0.2
0.3
0.4
VT(min), MINIMUM TRIGGER VOLTAGE
{X vee = Vdc)
8-45r
MC1455, MC1555
FIGURE 13- REPRESENTATIVE CIRCUIT SCJ1EMATIC
GENERAL OPERATION
The Me1555 is a monolithic timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor. and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete ti ming circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip~flop and digital output are included. The comparator reference voltage.s are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage.
Monostable Mode '
In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer. to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 Vee the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off," and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 Vee the threshold comparator resets the flip-flop. This action discharges the ti ming capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the. present timing period has been completed. The time that the output is high is given by the equation t "' 1.1 RA C, Various combinations of R and C and their associated times are shown in Figure 16. The. trigger pulse width must be less than the timing period.
A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.
FIGURE 14- MONOSTABLE CIRCUIT
+Vee (5 to 15 V)
>rL Reset
I I
4
I
I
2
I
0--
I I
.Trigger
I
I
3
~-~
Output
;.:AL
MC1555 MC1455
8 Discharge 7
µFI 0.0'1
Control
Voltage
8-46
MC1455, MC1555
GENERAL OPERATION (continued)
FIGURE 15 - MONOSTABLE WAVEFORMS
FIGURE 17 - ASTABLE CIRCUIT
+vcc(5 to 15 v>
I
~RL
I I I I I I I I
0 utp·~>-t·~_______,n3-t
I
8
MC1555 MC1455
t = 50µs/cm (RA= 10 kn, e = 0.01 µF, RL = 1.0 k.!1. Vee= 15 V)
..tRL
FIGURE 16 -TIME DELAY
FIGURE 18 - ASTABLE WAVEFORMS
Output Voltdge 10 V/crn
lL1 0.001 IL1 lL'1 L lOµs 100 µs 1.0 ms 10 ms 100 ms 1.0 td, TIME DELAY (s)
10
100
Astable Mode
In the astable mode the timer is connected so that it will retriglier itself and cause the capacitor voltage to oscillate between 1/3 Vee and 2/3 Vee· See Figure 17.
The external capacitor charges to 2/3 Vee through RA and Rs and discharges to 1/3 Vee through Rs. By .varying the ratio of these resistors the ··duty cycle can be varied. The charge and discharge times are independent of the supply voltage. The charge time (output high) is given by: t1 = 0.695 (RA+Rel C The discharge time (output low) by: t2 = 0.695 (Rsl e Thus the total period is given by: T = t1+t2='0.695 (RA+2Rsl e
.!. The frequency of oscillation is then: .f = = 1.44 T (AA+2Rsl C and may be easily found as shown in Figure 19.
~ The duty cycle is given by: DC = RA+2Rs To obtain the maximum duty cycle RA must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mA).
The minimum value of RA is given by: ;;;;i, Vee (Vdcl ~ Vee (Vdcl
RA l7(AI ~
t = 20 .us/cm (AA= 5.1 k.!1, C = O.Q1µf;RL=1.0 k.!1;
Rs= 3.9 k.!1, Vee= 15 VI
FIGURE 19 - FREE-RUNNING FREQUENCY 100 .....-~~--~~---..,.....-~--.~~--.~~-.
;:;:: 3
w ~ 1.0
u<t-
~5 0.1
,_;
1.0
10
100 1.0 k 10 k
f, FREE-RUNNING FREQUENCY (Hz)
8-47
·
MC_1455, MC1555
·
APPLICATIONS INFORMATION
Linear Voltage Ramp
In the monostable mode, the resistor can be replaced by a con-
stant current source to provide a linear ramp voltage. The capaci-
tor still-.charges from 0 to 2/3 Vee: The linear ramp time is given
bv t= ~ Vee
\
3
where I = Vee - Vs - VsE
RE
If Vs is much larger than VsE·
then t can be made independent of Vee·
Missing Pulse Detector
The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequen.cy or a missing pulse allows completion of the timing cycle, causing a change in the output level.
FIGURE 20 - LINEAR VOLTAGE SWEEP CIRCUIT
2 Trigger
4 Reset
Vee
8
Me1555 Me1455
R1 2N4403·
FIGURE 22 +Vee (5 to 15 V)
Output
4
8
3
Me1555 MC1455
5
2
Input
2N4403 or Equiv
=
FIGURE 21 - LINEAR VOLTAGE RAMP WAVEFORMS (Re = 10 kn, R2 = 100 kn, R1=39 kn, c = 0.01 µF' Vee= 15 VI
Input Voltage 5 0 V cm
FIGURE 23 ..- MISSING PULSE DETECTOR WAVEFORMS
= = = (RA 2.0 kn, R L 1.0 kn, c 0.1 µF' Vee= 15 VI
. . . - . .. . 0 u_:put Vo !tage 5 0 V cm
t = 100 µs/cm
8-48
t = 500 µs/cm
MC1455, MC1555
APPLICATIONS INFORMATION (continued)
Pulse Width Modulation If the timer is triggered with a continuous pulse train in the
monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 5. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.
FIGURE 24
+Vee (5 to 15 VI
FIGURE 25,... PULSE WIDTH MODULATION WAVEFORMS IRA= 10 kn., e = 0.02 µF' Vee= 15 VI
Modulation Input Voltage ::i 0 V crn
3 Output
2 Clock Input
4
Me1555 Me1455
Modulation Input
t = 0.5 ms/cm
Test Sequences Several timers can be connected to drive each other for sequen-
tial timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 rns. The output then- switches low momJntarily and starts the second timer which runs for 50 ms and so forth.
9.1 k 8
I 1.0 µF·
FIGURE 26
Vee (5 to 15 Vl
4
27 k
9.1 k
8
4
27 k
18.2 k
8
4
MC1555
Me1455
2
..,0.001 µF
1
Load
Load
MC1555 MC1.455
3
Load
·
8-49
3.0 AMPERE NPN POWER DARLINGTON DRIVER
... designed for use as an output device in complementary general purpose amplifier applications.
The MC1464 can also be usep for driving lamps,. relays,. or printer hammers in a variety of industrial and consumer applications.
· High DC Current Gain hFE = 2000 (Min)@ le= 3.0 A
· Can Be Voltage or Current Driven · High Collector-Emitter Breakdown Voltage
BVcEO = 80 v (Min) @ le= 100 mA · Includes Current Limit Control
MC1464
NPN POWER DARLINGTON
DRIVER1
SILICON MONOLITHIC INTEGRATED CIRCUIT
CIRCUIT SCHEMATIC
5
QB
c
2
3
1
D
E
This is advance information and specifications are subject to change without notice.
8-50
1. Emitter 2. Current Drive (Base) 3. Current Limit Control 4. Voltage Drive 5. Collector
FIGURE 1 - POWER DERATING
;n
~ 80~------~~.....-~-.-----,..-----.~~---.
<!
~
z
670011--------1+~"~"-"+"'"t-::+.~.-.+.-.-.~_+--1---~-+i-~l1--------t1~~--++------1i
0 " " " " ~ 501----1~--l-~-l'o.~~+-~l----I~-+~~
~~ 430011--------+1~~--+-~1--+-~~-~1~-~'~~-cJs":":--~-1-----+-~--1+~---+-~-~I
~~ ~0~L=.=.=-=-=-=L=~=-=.=L=.=.=~=~=~=-='=-=~='=--=-~-=L=~:-:~=~:....:.... 0 20 40 60 80 100 120 140 160 Tc. CASE TEMPERATURE (°C)
ORDERING INFORMATION
Device
Temperature Range
Package
MC1464P 0 to +125°C
Plastic
MC1464
MAXIMUM RATINGS
Rating 'Collector-Emitter Voltage Collector.-Base Voltage Emitter-Base Voltage Collector Current Base Current
Total Device Dissipation@ Tc= 2s0 c Derate above 2s0 c
Operating Junction Temperature Range Storage Temperature Range Operating AmbienfTemperature Range
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Thermal Resistance, Juction to Ambient
Symbol VcEo Vcs VEB
le Is
Po
TJ Tstg TA
Value 80 80 5.0 3.0 0.1 70 0.56
-55 to +150 -55 to +150
0 to +70
Unit
Y,dC Vi!c
:!Mt'
.l\d#
Ade
Watts
w1°c
oc
oc
oc
Symbol OJc OJA
Max 1.8 50
Unit
0 c1w 0 c1w
ELECTRICAL CHARACTERISTICS (TA= 25°c unless otherwise noted.)
Characteristic
Symbol
Min
Typ
OFF CHARACTERISTICS
Diode Breakdown Voltage (I= 1.0mA)
Bv
5.0
-
Diode Forward Voltage (If= 5.0 mA) (IF= 0.5 mA)
Input Resistor Input Resistor Dissipation
Vf
0.7
-
0.64
-
Rin
1400
-
Po
100
-
Collector-Emitter Breakdown Voltage (le= 100 mA, Is= 0)
Collector Cutoff Current <Vc1: = 40 Vdc, Is= Ol
SVcEo
65
-
ICEO
-
-
Collector Cutoff Current
<Vcs = 80V, IE= 0, TA= 25°C)
o. (VcB = 80 v.1E = TA= 100°cl
icBo
-
-
-
-
Emitter Cutoff Current (VBE = 5.0 Vdc, le= 0)
·1EBO
-
-
0 N CHARACTERIST CS
DC Current Gain11)
hFE
(le= ,3.0-Adc, VcE = 3.0 V) Collector-Emitter Saturation Voltage
-
1500
-
· VcE(satl
He= 3.0 Ade, Is= 12 mAdc)
-
-
Base-Emitter On Voltage( 1) DYNAMIC CHARACTERISTICS
VBE(on)
1.7
-
Small-Signal Current Gain (le= 3.0 Ade, VcE = 3.0 Vdc, f = 1.0 MHz) :
hfe 1.0
(1 l Pulse Test: Pulse Width~ 300 µs, Duty Cycle~ 2.0%.
Max
-
0.8 0.76 1800
-
-
500
0.2 2.0 2.Q
7000 2.5 1.9
Unit . Vdc Vdc
n
mW Vdc µAde
·-
mAdc
mAdc
-
Vdc
-
·
@ MOTOROLA Semiconducf:or Producf:s Inc.
8-51
ORDERING INFORMATION
Device
MC1590F MC1590G
Temperature Range
-55°C to +125°C -55°C to +125°C
Package
Ceramic Flat Metal Can
MC1590
RF/IF/AUDIO AMPLIFIER
... an integrated circuit featuring wide:range AGC for use in RF/IF amplifiers and audio. amplifiers over the temperature range, - 55 to +125°C. See Motorola Application Note AN-513 for design details.
· High Power Gain - 50 dB typ at 10 MHz 45 dB typ at 60 MHz 35 dB typ at 100 MHz
· Wide-Range AGC - 60 dB min, de to 60 MHz
< · Low Reverse Transfer Admittance -- 10 µmnos typ at60 MHz
· 6.0 to 15-Volt Operation, Single-Polarity Power Supply
MAXIMUM RATINGS (TA = +25°C unless otherwise noted)
Rating Power Supply Voltage Output Supply AGC Supply Differential Input Voltage Operating Temperature Range Storage Temperature Range Junction Temperature
Symbol* Vee Vo
V1 (AGe) V1 TA Tstg TJ
" Value
+18 +18
Vee 5.0 -55 to+12!? -65 to+150 +175
Unit Vdc Vdc Vdc Vdc oe oe oe
REPRESENTATIVE CIRCUIT SCHEMATIC 7 Vee
12.1 k
(+) 5 Outputs
~-+-+-~~-+~~+-~-+---t~~-+~~ (-)6
Pins 4 and 8 should both be connected to circuit ground. Substrate 4
WIDEBAND AMPLIFIER WITHAGC
SILICON MONOLITHIC INTEGRATED CIRCUIT
PIN CONNECTIONS
G SUFFIX
METAL PACKAGE
Substrate
CASE 601
Ground
T0-99
~ FSUFFIX
CERAMIC PACKAGE
-~.::::::-r
Connec~ion~ CASE 606 (Same Pin
as Above)
ADMITTANCE PARAMETERS (Vee = +12 Vdc, TA= +2SoCI
Parameter
Symbol
Single-Ended Input Admittance
Single-Ended Output Admittance
Forward Transfer AdmittatJce (Pin 1 to Pin 5)
g11 b11
g22 b22
/Y21/ 821
f=MHz
Typ
Unit
30 60.
0.4 0.75 mmhos
1.2 3.4
0.05 0.1 mmho 0.50 1.0
150 150 mmhos -45 -105 degrees
Reverse Transfer Admittance*
g12 -0 -0 µmhos b12 -5.0 -1.0
*The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance (including test circuit) is 0.025 pF and is a more practical value for design calculations than the internal feedback of the·device alone. (See Figure 10.)
SCATTERING PARAMETERS (Vee =+12 Vdc. TA= +250C, Z0 = 50 nl
Parameter Symbol
Input Reflectio~ 511
Coefficient
811
f =MHz Typ
30
60
0.95 0.93
-7.3 -16
Unit
-
degrees·
Output Reflection Coefficient
522 0.99 0;98
-
822 -3.0 -E?.5 degrees
Forward Transmission Coefficient
S21 16.8 14.7
-
821
128 64.3 degrees
Reverse. Transmission Coefficient
's12 0.00048 o.op09:.1 -
812 84;9 79.2 degrees
8-52
MC1590
, ELECTRICAL CHARACTERISTICS (Vee= 12 Vdc, f = 60 MHz, BW = 1.0 MHz, TA= -55oc to 125oc unless otherwise noted)
Characteristic
Symbol
MC1590
Min
Typ
Max
Unit
AGC R-ange
(V1 (AGC) = 5.0 V to 7.0 V) (V1 (AGC) = 5.0 V to 7.0 V, TA= 250c)
-
58
-
-
dB
6(}
68
-
Single-Ended Power Gain (Figure 24)
Gp
37
--
-
dB
(TA= 250C)
40
45
Noise Figure
(R 5 optimized for best NF)
(TA= 25°C)
NF
-
6.0
7.0
dB
Output Voltage Swing (Pin 5)
Differential Output (Figure 25) (0 dB AGC)
Vo DR
10
-
·-
Vpp
(0 dB AGC, TA = 25oC)
13
14
-
(-30 dB AGC)
4.0
-
--
(-30 dB AGC, TA = 250C)
6.6
6.0
-
Single-Ended Outpu,t (Figure 24) (0 dB AGC) (0 dB AGC, TA = 250C)
i (-30dB AGC) (-30 dB AGC, TA= 250C)
VocR
5.0
-
Vpp -
6.5
7.0
-
2.0
-
-·-
2.5
3.0
-
Output Stage Current
lo
(Sum of Pins 5 and 6)
(TA= 250C)
3.5
-
8.0
mA
4.0
5.6
7.5
Output Current Matching
(Magnitude of Difference of Output Currents)
.6.lo
-
0.7
-
in A
(TA= 250C)
Power Supply Current (Vo= OV)
I 1v0 =ov,T,;.=25oc) Power Consumption (V1 =OV) (V1=0 V, TA= 250C)
Ice
-
-
20
mA
-
14
17
Pc
-
-
240
mW
-
168
200
FIGURE 1 - UNNEUTRALIZED POWER GAIN versus FREQUENCY (Tuned Amplifier, See Figure 24)
-- 70 r---vc1c· 12Vd~
r-t.....
~ ~
~ ~ ~ ~
0
10
20
50
100
200
I, FREQUENCY (MHz)
FIGURE 2- VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 26)
50
""'O
z
< 40
(!)
w
(!)
:<; 30
> 0
i·~ 20
c;; 10
< >
0.1
;L~W~1
~
N
N
! Ve~
d 1
=
J~c1
RL = IOOU
RL =IOU
1.0
10
~
~
~'~~
100
1000
I, FREQUENCY (MHz)
·
@ MOTOROLA Semiconductor Produc'f· Inc.
8-53
MC1590
·
TYPICAL CHARACTERISTICS (V1 (AGC) = 0, Vee= 12 Vdc, TA = +2$°C unless otherwise noted)
FIGURE 3 -~ INPUT
·!' ft'C: RANGE: OUTPUT VOLTAGE vers~s
~iE"CVideo Amplifier, See Figure 261 ·!
-r
IZ
0.01 ~--'----'--'--'-........,-'-'----'---'---'-''-.U<LLI----'---''--.L--'--'--!-L-LJ
0.1 0.2· 0.5 1.0 2.0 5.0 10 20
50 100
e;; INPUT VOLTAGE (mVRMS)
FIGURE 5 - VOLTAGE GAIN AND SUPPLY CURRENT versus SUPPLY VOLTAGE (Video Amplifier, See Figure 26)
FIGURE 4 - VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 26}
50
j u
Vee-= 6.3 Vdc
RL =LOkll
~
I I 100 !2
"' ~
~
~
0 0.3 0.5 1.0
3.0 5.0 10
30 50
f, FREQUENCY (MHz}
'100
300
FIGURE 6 - TYPICAL GAIN REDUCTION versus AGC VOLTAGE
5.0 ' - - - - - ' - - - ' - - ' - - - - - 1 - - - - ' - - - ' - - - - L - - - ' - - - - 0 .
0
2.0 4.0 6.0 8.0 10
12
14 16
Vee. SUPPL y VOLTAGE (VOi, TS)
FIGURE 7....: TYPICAL GAIN REDUCTION versus AGC CURRENT
~
101-----1---+-~..._::-+--+---+---+---+---+-~
.·" 20 f---+--+---+---_i".1--_...... 100< JAGc J100 kl -:....
.~.. ~ ~ 301----l---+---+--+---+---1'..1-3oo.-'--11----1--+---"
!~ 401----1---+---+--+---+---!---1-'~...._--1---1---I 501----1---+---+--+---+---l----1-~-~~--+--1
~.· 60 1----1---+---+--+---+----+----l----l-_,.,..l-~-101----1---+---+--+---+----+----l----l---'--l---I
W W 00 00 100 m MO 1~
IAGC AGC CURRENT (µA)
20L:.-1_....J...l__J__~~j_l:>--JV\l'v--O-i
~
~ 30 ~~ 40~--1---llf-+--+--+--+--+-~-+
*2 501--"'-11----1-1-4--+--+--+--+--+'lr----I---+-~
~ 601----'1----1.L-~--+---+---+----+--'--+---+-----" RAGC = 5.6 n 701--__,f----+---+--+---+---+---+---+---+--___, 80'----J'----'---'--'---'---'--'-'----1--_.___. 0 3.0 6.0 9.0 12 15 18 21 24 27 30 VAGC· AGC VOLTAGE (Vdc) FIGURE 8 - FIXED TUNED POWER GAIN REDUCTION versus TEMPERA'TURE (See Test Circuit, Figure 24)
u u u u u u u u u u -20L--l...----'l....---'---'----l.~--'---'-~-'---'---' ~ V1 (AGC).AGCVOLTAGE (VOLTS)
@ MOTOROLA Semiconductor Producf:s Inc.. - - - - - - -
8-54
MC1590
TYPICAL CHARACTERISTICS (continued)
FIGURE 9- POWER GAIN versus SUPPLY VOLTAGE (See Test Circuit, Figure 24)
FIGURE 10- REVERSE TRANSFER ADMITTANCE versus FREQUENCY (See Parameter Table, Page 1)
24
70 f----+-----<J--.-+--------i--+---+----+---1 :g
f = 60 MHz
!<(
18
~
B
12 ~
~
a:
6.0 ~
9
2.0
4.0 6.0
8.0
10
12
Vee. POWER SUPPL y VOLTAGE (Vdc)
14
16
] -50
E 3
UJ
~ -40
<(
I::
SE
0
<( -30 a: Uu.J.
"z '
~ -20
UJ
"a:'
~ -10
...;,
> 0
10
;z_
-+--!-"'
/
v b12
v l . k ~t1
912"' 0
30
100
200
f, FREQUENCY (MHz)
FIGURE 11 - NOISE FIGURE versus FREQUENCY
9.0 ..._---+----+--+----+--+--+--+--+->--t--+r-7----__,
8.0 1------+----+---+-+--+---+--+---+---+-+-p------I
~ 7.0 1----+---+--+--+--+---+--+--+-"71-"l"-f-i----<
L~U6.0
~ /
~ 5.o 1-===*==+-+--t"""T==--+-+-t-t-Hr----l
~ 4.0 t-----+----+---l----+--4--+-_.__.._.__._..,___ __,
~- 3.0 1----+---+--+--+--+---+--+--+-f---f--l----j
2.0 1----+---+---+--+--+----+--+--+-f---f--l----j 1,.0 .___ __.__ __.__..____,___.._-+--+--+-..........>-+----<
0 ..__ 15
_.__ 20
_.__..__.___._ __.__...&...'-__.___."--''--'---~
25 30 35 40 50 60 70 80 90 100
150
I, FREQUENCY (MHz)
FIGURE 12 - NOISE FIGURE versus SOURCE RESISTANCE
2or----.-'--..-.--..-..-'T"""1-r............--.----..-.....,r--.--..-r-r""T"T"1
181--4-+-!f-l-+-~-++++--l--+-+-!f---+-+-I-++~
Vee= 12 Vdc
)/
161--+-~t-i-+-~-++++--l--+-+-!T7'hol':+-+-I-+++.
v V' ~ .141--4-+-!1-t-+-~-++++--l--f'7''f-1f----t-+-~"t+
v yY' ~ 12r--t-+-il-t-t-+-i-+++rI:=..~1.0c5.M9H--zt--t--t---tp>""t--+-:7'f,'!+)-''
~ 10~+-+-++-+-±.~·~J..Ht+++~1---t-~Yt"'YF-t~y~VH-t+ w v ~8.0
%1 ~- 6.0
_.._._.,__,.i--, I= 60MHz.Y
~ -,--,
...H+1-+"
v
= 30 MHz --+--+-+-+--H
4.o l--L--++t:=::t::::t:::i=l-l-W--L---i--+-i--l-W--U-l-1
1
2.0 l---+--<f--lf--+--i--+-+-+.+-++---+---+--+--+---+--+-+-+-++-1
o._...... ....... _....._.__.~.._ _._......,_1.____.'--.__..._._.._.....................,_,
100
1.0 k
10 k
Rs. SOURCE RESISTANCE (Ohms)
FIGURE 13 - NOISE FIGURE versus AGC GAIN REDUCTION
40 f = 30TMHz
35
30
...
~ 25
gwa: 20
u::
~ 16
v Czi ~ 10
6.0
~ ~
~·
C2J
Test Circuit Hftl Tuned'lnput Providing e Source Resistance --1 OptimJed for B_ist Noise ligure.
10
20
30
40
60
60 . 70
80
GAIN REDUCTION (dB)
·
<f!J MOTOROLA Semiconductor Produot· Ina.
8-55
MC1590
·
TYPICAL CHARACTERISTICS (continued)
FIGURE 14 - SINGLE·ENDED OUTPUT ADMITTANCE 2.5
i
s i
z u w
2.0
-------1------+---t--t-'ilV'1[Z_b22 --+----1
< i:::
1.5
i
Q
<
~ 1.0
I!:
::i
0
~
)o
0.5
i - -i---
0 20
40
100
200
f. FREQUE~CY (MHz)
FIGURE 15 - SINGLE·ENDED INPUT ADMITTANCE
10
9.0
l z 8.0
..ws..
z <
7.0 6.0
l---+-1--+__,1--+~-+-'-+--+--+-+--+-~--,,~.Lv"'b11~
I:
i 5.0
C< l
I-
4.0
~
!!: 3.0
> 2.0
1.0
.o
20
40
100
200
f, FREQUENCY (MHz)
FIGURE 16 - HARMONIC DISTORTION versus AGC GAIN REDUCTION FOR AM CARRIER (ForT&!!t Circuit, See Figure 17)
40..---.---.,...--'--T---~-~--~-~--~
~ ~
35 ~:d~l~~~o~:H~O% AM, fni =1.0 kHz -~-+----t-----+----1
Load at Pin 5 = 2.0 kf!
Ii:; j'.: 30
:!:zc ~o::z
E0 = Peak:to·Peak Envelope of
25
Modulated 10.7 MHz
o ~
Carrier at.Pin 5
~~20t-----+--+----+--+--+---+--l---+--l----I--~
........ ~S15t----+---+----+--ff----+-+---+....f----1-'--~ ~g
~ :E 10
~ 5.0 t----+---+------+--+---.l'-+--+-+---+-""'_)---1
10
20
30
40
50
60 10 ·ao
GAIN REDUCTION (dB)
FIGURE 17 --10.7-MHz AMPLIFIER Gain "" 55 dB, BW "" 100 kHz
5.6k V1 IAGCI O--'VVV-....-+---11--0-~
36pF
.---o-....-1E-'--o ~~!~
0.002J
0.002
J
L1 · 24 Turns, No. 22 AWG Wire onaT12·44MicfoMetal Toroid Core(-124pF)
L2 · 20 Turns, No. 22 AWG Wire onaT12·44MicroMetal Toroid Core(-100pF)
FIGURE 18- V21. FORWARD TRANSFER ADMITTANCE RECTANGULAR FORM
FIGURE 19 - V21. FORWARD TRANSFER ADMITTANCE POLAR FORM
... ~2T l~~Ji -Pi~ ~ 200
~ .§. w
1
160 120
FR=:f=:F::l:=+=+:+:f==l;,~ :;;;;~llltlouTPUT
-Pin
5 -
< z
I-
80
I-
i C< l
40
.aw...:. · 0 I - b21
lL:J"I
"z~' -40
I- -80
N L
:i1
~-120
JL
~-160
200 .--..--._~-2-1.,...-..--.-r--r-r.....--.--.,...-.,...-.---.--.-........."T"T-r--.,...-.., +45
*. c-;;;180
I I
~-+-~
t~ 160 t-+- 1Y211-+-+-H++-,--¥t-:..~..P.~N:-+t-...-1''-l...+J\+-1++----+-!-45
g :; ~ 140
~ 1
-90
2
~
rr-.N ..... u
c 6.
~ -~ 120
-135 ~ :S
§ ~ 100
._c
~ ~ 80
~
~ ~
~' ~
:=
60 40
I-++-
INPUT - P!n 1 o1urru1r1--1Pml5l
i
i i~ ~ h..~' ~
-180 -225
~L&..t-
-270 ~ ~
\
2
---\... 1-315-::
w
~~=
~-200 > 2.0
5.0
10
20
0
50
100
200
2.0
5.0
10
20
-405
50
100
200
f. FREQUENCY (MHz)
f, FREQIJENCY (MHz)
@ MOTOROLA Semiconductor Products Inc. - - - - - - -
8-56
MC1590
TYPICAL CHARACTERISTl~S (continued)
FIGURE 20 - S11 AND S22. _INPUT AND OUTPUT REFLECTION COEFFICIEfl!T
FIGURE 21 - S11 AND S22. INPUT AND _OUTPUT REFLECTION COEFFICIENT_
FIGURE 22- S21. FORWARD TRANSMISSION COEFFICIENT (GAIN)
FIGURE 23 - S12. REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)
@ MOTOl'lOLA Se,.,iconduc·or Produc<s Inc. --------
8-57
MC1590
TYPICAL APPLICATIONS
FIGURE 24 - 60-MHz POWER GAIN TEST CIRCUIT
Input (50n)
F,IGURE 25 - DIFFERENTIAL OUTPUT VOLTAGE SWING, (V5, V6) {60 MHz)
V6
l IVee Gnd O.OOiµF
'S]''
V1 (AGC)
Ll = 7 Turns, #20 AWG Wire, 5/16" Dia.,
5/8"Long
.
L2 = 6 Turns, #14 AWG Wire, 9/16" Dia.,
3/4" Long
C1,C2,C3 = (1·30) pF C4=(1·10)pF
Ll: 7Turns, # 22 AWG Wire on5/16" Dia. Form, 5/8"Long
Tl: Close Wound Over 1/4" Form Primary Winding= 16 Turns # 26 AWG, Center Tapped SecondaryWinding=2Turns # 26AWG.
FIGURE 26 - VIDEO AMPLIFIER
1.0 µF
0.001
·
0.001 µF +12 Vdc
FIGURE 27 - 30-MHz AMPLIFIER (Power Gain = 50 dB, BW ~ 1.0 MHz)
(1·30) pF
:~~~) --i-----f--<>--1
38 pF
L1=12 Turns #22 AWG Wire on a Toroid Core, (T37-6 Micro Metal or Equiv)
Tl: Primary= 17 Turns#20 AWG Wire on a Toroid Core, (T44·6 Micro Metal or Equiv)
Secondary = 2 Turns #20 AWG Wire
FIGURE 28 - 100-MHz MIXER
Input from Local Oscillator
(70 MHz) 100
VAGC "'6.0 V
Signal Input ---j.ic.---e...----o--' (100 MHz)
0·30) pF
LI= 5 Turns, #16 AWG Wire, 1/4" 10, 5/8" Long
L2 = 16 Turns. #20 AWG Wire on a Toroid Core, (T44·6 Micro Metal or Equiv)
@ MOTOROLA Semiconduc~or Produc~s Inc.--------
8-58
MC1590
V1 (AGC)
TYPICAL APPLICATIONS (continued)
FIGURE 29 - TWO-STAGE 60 MHz IF AMPLIFIER (Power Gain"'=' 80 dB, BW""' 1.5 MHz) 10 k
Input (500) 24 pF
~
200µH
(1·10) pF
0.002 µF
T1: Primary Winding; 15 Turns, #22 AWG Wire, 1/4" ID Air Core Secondary Winding; 4 Turns, #22 AWG Wire, Coefficient of Coupling "' 1.0
T2: Primary Winding; 10 Turns, #22 AWG Wire, 1/4" ID Air Core Secondary Winding; 2 Turns, #22 AWG Wire, Coefficient of Coupling "' 1.0
FIGURE 30 - SPEECH COMPRESSOR
+12 v 25µfP-i
D.GDl
'
1k
"='
RJ 15k
DESCRIPTION OF SPEECH COMPRESSOR
The amplifier drives the base of a PNP MPS6517 operating common-emitter with a voltage gain of approxi-
mately 20. The control R 1 varies the quiescent 0 point of this transistor so that varying amounts of signal
exceed the level Vr· Diode D1 rectifies the positive peaks of Q 1's output only when these peaks are greater
than Vr""' 7.0 Volts. The resulting output is filtered by Cx, Rx.
Rx controls the charging time constant or a.ttack time. Cx ~s involved in both charge and discharge. R2 (the
150 k.U and input resistance of the emitter-follower 02) controls the decay time. Making the decay long and
attack short is .accomplished by making Rx small and R2 large; (A Darlington emitter-follower may be needed
if extremely slow decay times are required.)
.
.
The emitter-follower 02 drives the AGC Pin 2 of the MC1590 and reduces the gain. R3 controls the slope · of signal compression. The following graph details performance with R3 set to 15 k.Q~
@ MOTOROLA Semiconductor Products Inc.
8-59
·
MC1590
FIGURE 31- OUTPUT VOLTAGE .versus INPUT VOLTAGE
1.0
0.7
-~ 0.5
0 ~
w 0.2
(lJ
~
0
>
0.1
::z
!:; 0.07 I'~
~ 0.05 =>
0
....
~
v ~
~ 0.02
0.01
0.1
0.3 0.5
-~v ~
lL ~
RI= 100kn
15Mi
0
Measurad from 100 Hz to 1.0 MHz for Values of Attack from
30 t°i_4.0_tiH{' J WJ1 l
1.0
3.0 5.0 10
8j, INPUT VOLTAGE (mV)
30 50 100
TABLE I - DISTORTION versus FREQUENCY
FREQUENCY
blSTORTION
DISTORTION
10 mV ei 100 mV ei 10 mV ei 100 mV ei
100 Hz
3.5%
12%
15%
27%
300 Hz
2%
10%
6%
20%
1.0kHz
1.5%
8%
3%
9%
10 kHz
1.5%
8%
1%
3%
100 kHz
1.5%
8%
1%
3%
Decay = 300 ms Attack= 20 ms
Cx=7.5µF Rx=() (Short)
Decay= 20 ms Attack= 3 ms
Cx = 0.68 µF
Rx=1.5kfl.
·
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA Po(TA) = . ReJA (Typ)
Where: Po(TA) = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply
voltages and supply currents at the worst-case operating condition.
TJ(max) = Maximum· Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desi~ed Operating Ambient Temperature
ReJA (Typ) = Typical Thermal Resistance Junction to Ambient
Circuit diagrams utilizing Motorola products are included as a means
of illustrating· typical semiconductor applications; con~equerYtly,
complete information sufficient for construction purposes is not necessarily given. The information has been car8fully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any licen.se under the patent rights of Motorola Inc. or others.
@·MOTOROLA· Semiconducf:or Producf:s Inc. _ _ _ _ _ ____, 8-60
ORDERING INFORMATION
Device
MC1494L MC1594L
Temperature Range
0°c to +70°C -55°C to +125°C
Package
Ceramic DIP Ceramic DIP
Specifications and Applications In.formation.
MCl494L. MC1594L
MONOLITHIC FOUR-QUADRANT MULTIPLIER
... desigl)ed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.
The MC1594/1494 is a variable transconductance multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection.
· Operates With± 15 V Supplies
· Excellent Linearity - Maximum Error (X or Y): ± 0.5% (MC1594)
· Wide Input Voltage Range - ± 10 volts
± 1.0% (MC1494)
· Adjustable Scale Factor, K (0.1 nominal)
· Single-Ended Output Referenced to Ground
· Simplified Offset Adjust Circuitry
· Frequency Response (3 dB Small-Signal) - 1.0 MHz
· Power Supply Sensitivity - 30 mVIV typical
FOUR-QUADRANT MULTIPLIER TRANSFER CHARACTERISTIC
LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED
CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED
,,,,,,..
(top view)
,.'?l1~~1 t ~
CERAMIC PACKAGE CASE 620
TYPICAL LINEAR.ITV ERROR versus TEMPERATURE
~ +6.0
.:::: +4.0 1---f-"~--"'lr---+--I
UJ ~ +2.0""-=l-c----l---=!""""'~.,.--+-....,;,t.:C..,,..4--
~
> ~ -2.0
gl- -4.0t---~~--~--+--+--+---- ........~t----1
+2.0 +4.0 +6.0 +8.0 +10 Vx, INPUT VOLTAGE (VOLTS)
; 0.75 >-
1-
~ 0.50 ~--+----f---+---+---+----l---t
:::;
$
::; 0.25
g
TA, AMBIENT TEMPERATURE (OC)
Subject Sequence
Maximum Ratings Electrical Characteristics Test Circuits Characteristic Curves Circuit Description Circuit Schematic DC Operation
CONTENTS Specification
Page No. Subject Sequence
AC Operation
2
DC. Applications
3
AC Applications
4
Definitions
5
General Information Index
5 6
Specification Page No.
8
11 13 14
II
8-61
MC1494, MC1594
II
MAXIMUM RATINGS ITA= +25°c unless otherwise noted)
Rating Power.Supply Voltage
Differential Input Signal
Common-Mode Input Voltage Vciv1Y = Vg = V5 VcMX = V10 = V13
Power Dissipation (Package Limitation) TA= +25°c Derate above TA = +25°C
Operating Temperature Range MC1594 MC1494
Storage Temperature Range
Symbol v+ v-
V9-V5 V10-V13
Value +18 -18 ± 16+I1 Ryj < 30 ±l6+11Rxl<30
VcMY VcMx
±11.5 .±11.5
Po 1NJA
TA.
Tstg
750 5.0
-55 to +125 0 to+ 70
-65 to +150
'Unit Vdc Vdc Vdc
mW mw/0 c
oc
oc
ELECTRICAL CHARACTERiSTICS 1v' ,15 V, v- = -15 V, TA-·+ 25°c, R 1 = 16 k!!, Rx :.30k!LRy · 62 k!!, RL : 47 k!!.
unless otherwise noted)
MC1594
MC1494
Characteristic
Fig, Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Linearity Output error in Percent of full scale -10 V<Vx<+10V (Vy= ±10 V) -10 V<Vy<+10 V IVx = ±.10 V) TA= +25°C
CD TA~. Thigh
ERxorERY
±. 0.3
:t 0.5 ± 0.8
%
:t 0.5
±. 1.0 ± 1.3
TA =T1ow@ Input
Voltage Range IVx = Vy= Vini Resistance {X or Y Input) Offset Voltage IX Input) (Note 1)
IY Input) (Note 1) Bias Current IXorY Input) Offset Current IX or Y Input)
Output Voltage Swing Capability Impedance Offset Voltage !Note 1) Offset Current (Note 11
Temperature Stability (Drift)
TA= Thigh to T1ow Output Offset IX= 0, Y ~ 01 Voltage
X Input Offset (Y = 0)
Current
Y Input Offset IX= 0)
Scale Factor
Total de Accuracy Drift IX= 10, Y = 10)
Dynamic Response Small Signal (3 dB) x y
Power Bandwidth (47 k I 3° Relative Phase Shift 1% Absolute Error
Common Mode Input Swing IX or Y)
Gain
IXorY)
Power Supply Current
Quiescent Power Dissipation Sensitivity
Regulated Offset Adjust Voltages Positive
Negative
Temperature Coefficie~t (\/R or Vfil
2,3.4 3.4
Vin Rin IVioxl IVioyl lb lliol
Vo Ro IVool llool
:t 0.8
:t. 1.3
±10
±10
Vpk
300
300
MH
0.1
1.6
0.2
2.5
v
0.4
1.6
0.8
2.5
0.5
1.5
1.0
2.5
µA
28
150
50
400
nA
±10
±10
Vpk
850
850
kH
0.8
1.6
1.2
2.5
v
17
34
25
52
µA
ITCV00 I ITCl 00I ITCV;0 xl ITCVioyl ITCKI ITCEJ
1.3 27 0.3
'1.5 0.07 0.09
1.3
mv1°c
27
nAi°C
0.3
mV/OC
1.5
0.07
%/OC
0.09
BW3d8 (X)
0.8
sw3dBIYJ
1.0
Psw
440
f¢
240
ta
30
0.8 1.0' 440 240 30
MHz kHz
CMV AcM
±10.5 -65
±.10.5
Vpk
-65,
dB
td+
6.0
9.0
6.0
12
mAdc
1d-
6.5
9.0
6.5
12
pd
185
260
185
350
mW
s+
13
50
13
100
mV/V
s-
30
100
30
200
vfi Vfi TCVR
+3.5 -3.5
+4.3 -4.3 0.03
+5.0 -5.0
+3.5 -3.5
+4.3
+5.0
Vdc
-4.3
-5.0
0.03
mv1°c
Power Supply Sensitivity 1vfi or Vfil
sfi,Sfi
0.6
0.6
mV/V
Note 1: Offsets can be adjusted to zero with external potentiometers.
©Thigh= +125°C for MC1594 + 70°C for MC1494
@T10 w = -55°C tor MC1594 o0 c for MC 1494
8-62
MC1494, MC1594
FIGURE 1 - LINEARITY
TEST CIRCUITS
FIGURE 2 - INPUT .RESISTANCE
f=
FIGURE 3 - OFFSET VOLTAGES, GAIN
-15 v
Rin X'= [~ - 2] Megohm
[* - Rin y =
21 Megohm
FIGURE 4 - INPUT BIAS CURRENT/INPUT OFFSET CURRENT, OUTPUT RESISTANCE
FIGURE 5 - FREQUENCY RESPONSE
vx
Vy
S.2k
FIGURE 7 - POWER,SUPPLY SENSITIVITY
S.2k
FIGURE 6 - COMMON-MODE
S.2k FIGURE .8 - BURN-IN
MC1594l (MC1494ll
·
8-63
MC1494, MC1594
TYPICAL CHARACTERISTICS
(Unless otherwise noted, v+ =~15 V, v- = -15V,,R1=16 kn, Rx= 30 kn, Ry·= 62 kn, RL =47 kn, TA =+25°CI
FIGURE 9 - FREQUENCY RESPONSE OF Y INPUT versus LOAD RESISTANCE
+15r--~~~~-~~~~-~T~R~~-:'.'~7~~m[~-~~rn~~II~~
~ ++510.t0-1----t----t1-1+-+ltt-t+t-tl-+-+-++-l-l+---++-t+t-t+t-tl----lti-+-wt-+--+-++i-t+tf-t+t+-t-+-lHlV'~l-2-1+.l~~~+1+f~tttl
...
~ RL =33 kn
~ ot---+-+-++Httt--+--+-++Httt--+i~"FF-~++++++-...:;..+-1-+of.1++H
~
:'.5
LU
-5.o
t---+--+-++tttt+---+--+-++tttt+---+--+-++irtttN+---~tz::1-+-1-+'l"1.1+H
71 RL=47.kn
CC-lQt----+-+-++t+++l---l--h++t+++l----+-+-~t+++l---1--+-++H+H
Vy= 1 V(rms): Vx = 10 Vdc
plL-1........Lll....L.L.U.llllfil.L..:---'--'--L~~ _151----+-+-f-+-+Rx
= 30 6
kn.
Ry=
6.2
kn
-20 .____.__,_.....L.L.U.lufil..___=
103
104
105
106
107
+15
+10
~ +5.0 z
~
w
> f:: -5.0
~ -10
-15 -20
103
FIGURE 10 - FREQUENCY RESPONSE OF . X INPUT versus LOAD RESISTANCE
~lkJ
~kn
~yr
L
~
"''"""1°' t,\...
RL = 33 kn?!!
r--.....j
~
~I
Vx = 1 V(rms), Vy= 10 Vdc
LI l l Rx =30 kn, Ry =62 ksi 6 .. :i1u= pt
105
RL =47kn
1ill
I, FREQUENCY (Hz)
I, FREQUENCY (Hz)
FIGURE 11- LARGE SIGNAL VOLTAGE versus FREQUENCY
FIGURE 12 - LINEARITY versus Rx OR Ry WITH K = 1/10
0.
2.
LU <.!>
1----+--+-i-+-+++++--+-+-+-++-h+++--~--+-+-l+N_
<(
':i
0
>
i
l N
I'
10
T f'
1---1--+-+-+-<>-++++-(j) With MC1556 Buffer Op·Ampl.-+-
> 6
~ No Op·Ampl., RL = 47 krl
H
100
1.0 k
10 k
100 k
I, FREQUENCY (Hz) ·
0.6 l----i---.l---+---+---+--T+--Tl---,-1----il----i
~
~
RL Adjusted for K; 1/10
a:
\
Vin= 20 Vpp
-+--I
~
>-
i 0.51----l---t-_1.--+--+--+--+--+--l---1----11----i
l-
f~ \ ~a: 0.41----l---t--"-+~~-+---+---+---+--+---t---~ 0.3 1----1---1---+--+~.~..-+--+--1---1----11----i
E ""+-- 0. 2 1---1----11----1----4--+--+--':=to--+--+-~--1
20
30
40
50
Rx (kn)
40
60
80
100
Ry(kn)
II
FIGURE 13 - LINEARITY versus Rx QR.Ry WITH K = 1
~ 0.4 t---!--+----+---+----+--t---tl-.-11--11-.---!
cc 1---1rl'l;:----+---1---+--+---+-- RL Ad1usted for K = 1 --1
~
>~ -
o.
3
1---1-~~~--1---+---+--+--V-i+n=_2_v_P+P--+---1
~
~
~ ~ ;;5 0.2 1---1----il----i---f-,.-+--+---+---+--+---l
LU~
cc 0.1
0
E
~
2.0
4.0
6.0
8.0
10 Rx (kn)
4.0
8.0
12
16
20 Ry (kn)
FIGURE 14 - SCALE FACTOR (K) versus TEMPERATURE
0.108 r---.----..,---.--..,.----....---.---.-,---.---.---,
.0.106~
~~ 0.104 0.102
~
~0.1
~
~
~
~
"C:::s ,,< 0.0981--1---t---t--t--+--f""""'""""'=--t---t---i 0.09 6
0.09 4
~
-55 -35 -15 +5.0 +25 +45 +65 +85. +105 +125 +145
TA.AMBIENT TEMPERATURE (DC)
8-64
MC1494, M<;:1594
GENERAL INFORMATION
1. CIRCUIT DESCRIPTION
1.1 Introduction
with the offset adjust circuits to virtually elimlnate sensitivity of the offset voltage nulls to changes in supply voltage.
The MC1594 is a monolithic, four-quadrant multiplier that operates on the principle of variable transconductance. It features a single-ended current output referenced to ground
As shown in Figure 15, the MC1594 consists of a multiplier
proper and associated peripheral circuitry to provide these
features.
·
and provides two complementary regulated voltages for use
FIGURE 15
r-------------------------------, (Recommended External Circuitry is Depicted With Dotted Lines)
15
I
BLOCK DIAGRAM
I
v+
I
2 +4.3V
I
14
+VR 3
CURRENT ANO VOLTAGE
1 I
------~-----! DIFFERENTIAL+
-:;!::-
REGULATOR
I :
Vy 9 0----1
4 -VR
-4.3V
'-----~------1Rl:~
1 ·
Go---:...,....---.~~--,......
vx
CURRENT
11
I I
v-
-~,
50---------------....,.----------------------------i-------
15
SIMPLIFIED CIRCUIT SCHEMATIC
+VR =+4.3 V 20------
J o - - - - - - _ ; . . .. . . . ._ .
-l:
-VR 0 -4.3V
.---+----+---010
Vy
vx
13
5v0- ---'-_...,__.___...,.__ _ _.,....._ _ _.,.__ _ _.,.__,.._ _.__ ___...___ _ _-+--------'
150-+---+----+---+-..---+-+-------<P.--------..,.-------t--..-----+--1>-----<P.----,
V'
COMPLETE CIRCUIT
SCHEMATIC
I I ,______________ 14
11
_ _ _ _......_ _......_ _ _ _ _...__ _ ._ _ _ _ _ _ _ _ __... v-o-_._._...__._...__.,_~_.....;.....
I
REGULATOR
L -- - - ---- - --- - ------ ---l
MULTIPLIER
DIFFERENTIAL CURRENT CONVERTER
8-65
MC1494, MC1594
1.2 Regulator (Figure 15) The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides two convenient regulated supply voltages which can be used in the offset adjust circuitry. Ttie regulated output voltage
at pin 2 is approximately +4.3 V while the regulated voltage
at pin 4 is approximately -,4.3 V. For optimum temperature stability of these regulated voltages, it is recommended that
1121 = 1141 = 1.0 mA (equivalent load of 8.6 kn). As will be
shown later, there will normally be two 20 k-ohm potentiometers and one 50 k-ohm potentiometer connected between pins 2 and 4. The regulator also' establishes a constant current reference that controls atl of the constant current sources in the MC1594. Note that all current sources are related to current I 1 which is determined by R1. For best temperature performance, R 1should be 16 kn so that I 1 """ 0.5 mA for all applications.
1.3 Multiplier (Figure 15)
The multipiier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and is discussed in detail in Application Note Al\l-489, "Analysis and Basic Operation of the MC1595". The result of this analysis is that the differential output current of the multiplier is given by:
Therefore, the output is proportional to the product of the two input voltages.
1.4 Differential Current Converter (Figure 15) This portion of the circuitry converts the differential output current (I A-Isl of the multiplier to a single-ended output current (1 0 ):
or 2vxvy
lo= RxRyl1
The output current can be easily converted to an output voltage by placing a load resistor RL from the output (pin 14).-to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by:
V = 2RL Vx Vy 0 RxRyl1 KVxVy
2RL where K (scale factor) = RX Ry
11
2. DC OPERATION
2.1 Selection of External Components
For low frequency operation the circuit of Figure 16 is recommended. For this circuit, Rx= 30 kn, Ry= 62 kn. R1 = 16 kn and hence I 1 ~ 0.5 mA. Therefore, to set the scale factor, K, equal to. 1/10, the value of R L can be calculated to be:
1
2RL
K=-=---
10 RxRy1 1
Rx Ry I 1 (30 k) (62 k) (0.5 mA)_
or RL= (2) (10) =
20
AL= 46.5 k
Thus, a reasonable accuracy in· scale factor can be achieved by making RL a fixed 47 kn resistor. However, if it is desired
FIGURE 16 - TYPICAL MULTIPLIER CONNECTION
Vx
'""1 R* 510
II
Vy
'"] R' 510
«-R is not necessary ff inputs are decoupled.
Pl 20 k P3 50 k
P4 10 pF
+15 v
-15 v
Vo= -Vx Vy -10--
-1ov.-vx.;;+10v -10Vo;;Vy.;;+10V
8·66
MC1494, MC1594
that the scale factor be exact, R L can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to 1/10. This is merely a convenient factor to use if the Vx and Vy input voltages are expected to be large, say±10 V. Obviously with Vx =Vy= 10 V and a scale factor of unity, the device could not hope to provide a 100 V output, so the scale factor is set to 1/1 Oand provides an output scaled down by a factor of ten. For many applications it may be desirable to set K = 1/2 or K = 1 or even K = 100. This can be accomplished by adjusting Rx, Ry and RL appropriately.
The selection of R L is arbitrary and can be chosen after resistors Rx and Ry are found. Note in Figure 16 that Ry is 62 k.!1 while Rx is 30 k.!1. The reason for this is that the "Y" side of the multiplier exhibits a second order nonlinearity whereas the "X" side exhibits a simple non-linearity. By making the Ry resistor approximately twice the value of .the Rx resistor, the linearity on both the "X" and "Y" sides are made equal. The selection of the Rx and Ry resistor values is dependent upon the expected amplitude of Vx and Vy inputs. To maintain a specified linearity, resistors Rx and Ry should be selected according to the following equations:
Rx~ 3 Vx (max) in k.!1 when Vx is in volts
Ry~ 6 Vy (max) in k.!1 when Vy is in volts
For example, if the maximum input on the "X" side is ± 1 volt, resistor Rx can be selected to be 3 k.!1. If the maximum input on the "Y" side is also ± 1 volt, then resistor Ry can be selected to be 6 k.!1 (6.2 k.!1 nominal value). If a scale factor of K = 10 is desired, the load resistor is found to be 47 k.!1. In this example, the multiplier provides a gain of 20 dB.
2.2 Operational Amplifier Selection
The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor RL to provide a low impedance output voltage from the op-ampl. Since the offset current and bia.s currents of the op-amp!. will cause errors in the output voltffge, particularly with temperature, one with very low bias and offset currents is recommended. The MC1556/MC1456 or MC1741/ MC1741C are excellent choices for this application.
Since the MC1594 is capable of operation at much higher frequencies than the op-ampl., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-amp!.
2.3 Stability
The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stra'y or input capacitance at the multiplier output adds addi-
tional phase shift. It may therefore be necessary to add
(particularly in the case of internally compensated op-am pis.) II small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with R L should be adequate to insure stability over production and temperature variations, etc.
An externally compensated op-ampl. might be employed using slightly heavier compensation than that recommended for unity-gain operation.
2.4 Offset Adjustment
The non-ir;i_verting input of the op-am pl. provides a convenient point to adjust the output offset voltage. By connecting this point to th.e wiper ari;n of a potentiometer (P3), the output
offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure).
The input offset adjustment potentiometers, P1 and P2 will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, 22, 24 and 25).
2.5 Offset and Scale Factor Adjustment Procedure
The adjustment pro.cedure for the circuit of Figure 16 is:
A. X Input Offset
(a) connect oscillator (1 kHz, 5 Vppsinewave) to the "Y" input (pin 9)
(b) connect "X" input (pin· 10) to ground
(c) adjust X-offset potentiometer, P2 for an ac null at the output
B. Y Input Offset (a) connect oscillator (1kHz,5 Vpp sinewave) to the "X" input (pin 10) (b) connect "Y" input (pin 9) to ground
(c) adjust Y-offset potentiometer, P1 for an ac null at the output
C. Output Offset (a) connect both "X" and "Y" inputs to ground (b) adjust output offset potentiometer, P3, until the Ol-!tput voltage V 0, is zero volts de
D. Scale Factor (a) apply +10 Vdc to both the "X" and "Y" inputs (b) adjust P4 to achieve -10.00 Vat the output (c) apply -10 Vdc to both "X" and "Y" inputs and check for V0 = -10.00 V
E. Repeat steps A through Das necessary.
The ability to accurately adjust the MCl 594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash.
2.6 Temperature Stability
While the MC1594 provides excellent performance in itself, overal I performance depends to a large degree on the_ qua! ity of the external components. Previous discussion shows the direct dependence on Rx, Ry, and RL and indirect dependence on R 1 (through t 1), Any circuit subjected to temperature variations should be evaluated with these effects in mind.
2.7 Bias Currents
The MC1594 multiplier;tike most linear !C's, requires a de bias current into its input terminals: The device cannot be capacitively coupled at the input without regard for this bias current. If inputs Vx and Vy are able to supply the small bias current ( <:::: 0.5 µA) resistors, R (Figure 16) can be omitted. If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor R can be any reasonable value up to 100 k.!1. For minimum noise and optimum temperature performance, the value of resistor R should·be as low as practical.
2.8 Parasitic Oscillation
When long leads are used on the inputs, oscillation may occur. In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using sho.rt leads. The purpose of the network
II
8-67
MC1494, MC1594
II
is to reduce the "Q" of the source-tuned circuits which cause the oscillation. Inability to adjust the circuit to within the specified accuracy may be an indication of oscillation.
3. AC OPERATION
3.1 General
For ac operation, such as balanced modulation, frequency doubler, AGC, etc., the op-ampl. will usually be omitted as well as the output offset.adjust potentiometer. The Ol;Jtput offset adjust potentiometer is omitted since the output will normally be ac-coupled and the de voltage at the output is of no concern providing it is close enough to zero volts that it will not cause clipping in the output waveform. Figure 17
FIGURE 17 - WIDEBAND MULTIPLIER
3k
6.2k
+15 v -15 v
11
·y
MC1594L' (MC1494L).
·x
I
I
I
:.~ i°~~Co
I
~
_,...,..,/·,,..
20 k K= 1
·x(max) =ey(max)= 11 V1
shows a typical ac multiplie"r circuit with a scale factor K~ 1.
Again, resistor Rx and Ry are chosen as outlined in the previous section, with RL chosen to provide the required scale factor.
The offset voltage then existing at the output will be equal to the offset current times the.load resistance. The output offset current of the MC1594 is typically 17 µA and 35 µA maximum. Thus, the maximum output offset would be about 160 mV.
3.2 Bandwidth ·
The bandwid.th of the MC1594 is primarily determined by two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the ou!put· terminal. For the circuit shown in Figure 17, assuming a total output capacitance (C0 ) of 10 pF, the 3 dB bandwidth would be approximately 3.4 MHz. If the load resistor were 47 kn, the bandwidth would be approximately 340 kHz.
Secondly, a "zero" is present in the frequency response characteristic for both the "X" and "Y" inputs which causes the output signal to rise in amplitude at a 6 dB/octave slope at frequencies beyond the breakpoint of the "zero". The "zero" is caused by the parasitic and substrate capacitance which is related to resistors Rx arid Ry and the transistors associated with them. The effect of these transmission
"zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the !wpassing of Rx and Ry at high frequencies. Since the Ry resistor is approximately twice the value of the Rx resistor, the zero associated with the "Y" input will occur at approximately one octave below ·the zero associat.ed with the "X" input. For Rx = 30 kn and Ry = 62' kn, the zeros occur at 1.5 MHz for the "X" input and 700 kHz for the "Y" input. These two measured breakpoints correspond to a shunt capacitance of about 3.5 pF. Thus, for the circuit of Figure 17, the "X" input zero and "Y" input zero will be at ap1;1roximately 15 MHz and 7 MHz respectively.
It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found. by means of complex convolut.ion in the frequency (Laplace) domain. This means thatif the "X" input does not involve afrequency, it is not necessary to consider the "X" side frequency response in the output product. Likewise, for the "Y" side. Thus, for applications such as a wideband linear AGC ampli-
fier which has a de voltage as one input, the multiplier fre-
quency response has one zero and one pole. For applications which involve an ac voltage on both the "X" and "Y" side, such as a balanced modulator, the product voltage response will have two zeros and one pole, hence, peaking may be present in the output.
From this brief discussion, it is evident that for ac applications; (1) the value of resistors RX· Ry and R L should be kept as small as possible to achieve maximum frequency response, and (2). it is possible to select a load resistor R L such that the dominant pole (RL, C0 ) cancels the input zero (Rx. 3.5 pF or Ry, 3.5 pF) to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10. Examination of the frequency characteristics of the "X" and "Y" inputs will demonstrate that for wideband amplifier applications, the best tradeoff with frequency response and gairi is achieved by using the "Y" inpu·t for the ac signal.
For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recommended. For modulator-demodulator applications, the MC1596 may be used up to 100 MHz. For wideband multi· plier applications, the MC1595 (using small collector loads and ac coupling) can be used.
3.3 Slew-Rate
The MC1594 multiplier is not slew-rate limited in the ordi· nary sense that an op-ampl. is. Since.all the ·signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. H6wever, it should be noted that the quiescent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation:
Slew-Rate
t!.Vo
~
= Clo
Thus, if C0 is 10 pF, the maximum slew-.rate would be:
A~V0
0.5 x 10-3 = 10 x 10-12
= 50 V/µs
This can be improved if necessary by addition of an emitterfollower or other type of buff,er.
3.4 Phase-Vector Error All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per se. The phase-vector
8-68
MC1494, MC1594
error is best explained by an example. If the "X" input is described in vector notation as
and the "Y" input is described as
.Y=B40° then the output product would be expected to be
o V 0 =AB ~ 0 (see Figure 18)
However, due to a relative phase shift between the "X" and "Y" channels, the'output product will be given by
Notice that the magnitude is correct but the phase angle of the product is in error. The vector, V, associated with this error is the "phase-vector error". The ·startling fact about the phase-vector error is that it occurs and accumulates much more rapidly than the amplitude error associated with fre· quency response. In fact, a relative phase shift of only 0.57° will result in a 1% phase-vector error. For most applications, this error is meaningless. If phase of the output product is not important, then neither is the phase-vector error. If phase is important, such as in the case of double sideband modulation or demodulation, then a 1% phase-vector error will represent a 1% amplitude error at the phase angle of interest.
FIGURE 18 - PHASE-VECTOR ERROR
ABl(OO
3.5 Ci.rcuit Layout If wideband operation is desired, careful circuit layout must be observed. Stray capacitance across Rx and Ry should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit).
4. DC APPLICATIONS 4.1 Squaring Circuit
If the two inputs are connected together, the resultant function is squaring:
V0 = KV2
where K is the scale factor (see Figure 19). · However, a more careful look at the multiplier's defining
equation will provide some useful information. The output voltage, without initial offset adjustments is given by:
Vo= K(V~ +Viox -Vx off) (Vy+ Vioy- Vy off)+ Voo
(See "Definitions" for an explanation of terms). With Vx =Vy= V (squaring) and defining
Ex= Viox -,Vx off
Ey = Vioy - Vy off
The output voltage equation becomes
V0 =KV~+ KVx kx .+ eyl + K~xey + Voo
This shows that all error terms can be eliminated with only
three adjustment potentiometers, eliminating one of the in·
put offset ·adjustments. For instance, if the "X" input offset
adjustment is ,eliminated, ex is determined by the internal
offset, Viox· but ey is adjustable to the extent that the
lex + eyl term can be zeroed. Then the output offset adjust·
ment is used to adjust the V 0 0 term and thus zero the remain· ing error terms. An ac procedure for nulling with three
adjustments is:
-
A. AC Procedure:
1. Connect oscillator (1 kHz, 15 Vpp) to input
2. Monitor output at 2 kHz with tuned voltmeter and
adjust P4 for desired gain .(Be sure to peak response of voltmeter)
3. Tune voltmeter to 1 kHz and adjust P1 for a minimum output voltage
4. Ground input and adjust P3 (output offset) for zero volts de out
5. Repeat steps 1 through 4 as necessary.
FIGURE 19 - MC1594 SQUARING CIRCUIT
30 k
62 k
+15 v -15 v
MC1594L (MC1494L)
14
50 k
22 k
·
lOpFI
510
16 k
-
"
'l
.2
NOk'll--e
OINFFPSUETT
P3
·15V +15 v
8-69
MC1494, MC1594
B. DC Procedure: 1. Set Vx = Vy = 0 V and adjust P3 (output offset potentiometer) such that V 0 = 0.0 Vdc 2. Set Vx = Vy = 1.0 V and adjust P1 (Y input offset potentiometer) such that the output voltage is -0.100 volts 3. Set Vx = Vy = 10 Vdc and adjust P4 (load resistor) such that the output voltage is -10.00 volts
4. Set Vx = Vy= -10 Vdc and check that Vo= -10V Repeat steps 1 through 4 as necessary.
4.2 Divide
Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element .in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21. The characteristic "failure" mode of the divide circuit is latch-up. One way it can occur is if Vx is allowed to go negative or, in some cases, if Vx approaches zero.
Figure 20 illustrates why this is so. For Vx > 0 the transfer
function thr.ough the multiplier is non-inverting. Its output is fed to the inverting input of 'the op··ampl. Thus, operation is in the negative feedback mode and the circuit is de stable. Should Vx change polarity, the transfer function through the multiplier becomes inverting, the amplifier has positive feedback and latch-up results. The problem resulting from
FIGURE 20 - BASIC DIVIDE CIRCUIT USING MULTIPLIER
Vx
K vxvv
MC1594L (MC1494L)
Vz
Vz = -K VXVY
OR -Vz
Vo= KVX
Vx being near zero is a result qt the transfer through the
multiplier being near zero. The op-ampl. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up.
The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated, phase reversal tesults, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clamoing the output swing of the op-ampl. to approximately± 10.7 volts. Five-percent tolerance, 10-volt zeners are used to assure adequate output swing but still limit the output voltage of the op-ampl. from exceeding the common-mode input range of the MC1594.
Setting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself: One approach, however, is to break the feedback loop, null out the multiplier circuit, and then close the loop.
A simpler approach, since it does not.involve breaking the loop (thus making it more practical on a production basis), is:
1. Set Vz = O volts and adjust the output offset potentiometer (P3) until the output voltage (V 0 ) remains at some (not necessarily zero) constant value as Vx is varied between +1.0 volt and +10 volts.
2. Maintain Vz at 0 volts, set Vx at +10 volts and adjust the Y input offset potentiometer (P1) until V 0 = 0 volts.
3. With Vx = Vz, adjust the X input offset potentiometer
(P2) until the output voltage remains at some (not necessarily -10 volts) constant value as Vz = Vx is varied between +1.0 volt and +10 volts.
4. Maintain Vx = Vz and adjust the scale factor potentiometer (R Ll until the average value of V 0 is -10 volts as Vz = Vx is varied between +1.0 volt and +10 volts.
5. Repeat steps 1 through 4 as necessary to achieve opti· mum performance.
Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomi·
II
FIGURE 21 - PRACTICAL DIVIDE CIRCUIT
30 k
62k
Vz
Vx
-10 Vz Vo=vx-
+15 v
-·15 v
O<Vx<+lOV -lOV<;Vz<;+JOV
8-70
MC1494, MC1594
FIGURE 22 - BASIC SQUARE ROOT CIRCUIT
Kvo2
MC1594L (MC1494Ll
Vz
KVo2 = -Vz OR
Vo=~
· Vz <:O V
nator voltage. As a result, if Vx is set to 10 volts and 0.5% accuracy is available, then 5% accuracy can be expected
x when V is only 1 vqlt.
In accordance with an earlier statement, V x. may have only
one polarity, positive, while Vz may be either polarity.
4.3 Square Root
A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 23) protects against accidental latch-up.
This circuit too, may be adjusted in the closed-loop mode:
1. Set Vz = -0.01 Vdc and adjust P3 (output offset) for
Vo = 0.316 Vdc.
2. Set Vz to -0.9 Vdc and adjust P2 ("X" ~djust) for Vo= +3 Vdc.
3. Set Vz to -10 Vdc and adjust P4 (gain adjust) for Vo= +10 Vdc.
Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.
Note: Operation near zero volts input may prove very inaccurate, hence, it may not be possible to adjust Vo to 0 but rather only to within 100 to 400 mVof zero.
5. AC APPLICATIONS
5.1 Wideband Amplifier With Linear AGC
If one input to the MC1594 is a de voltage and a signal voltage is applied to the other input, the amplitude of the output signal can be controlled in a linear fashion by varying the de voltage. Hence, the multiplier can function as a de coupled, wideband amplifier with linear AGC control.
In addition to the advantage of Linear AGC control, the
multiplier has three other distinct advantages over most other
types of AGC systems. First, the AGC dynamic range is
theoretically infinite. This stems from the basic fact that
with zero volts de applied to the AGC, the output will be
zero regardless of the input. In practice, the dynamic range
is limited by the ability to adjust the input offset adjust
potentiometers.. By using cermet rnulti·turn potentiometers,
a dynamic range of 80 dB can be obtained. The second
advantage of the multiplier is that variation cf the AGC volt-
age has no effect on the signal handling capability of the
signal port, nor does it alter the input impedance of the
· signal port. This feature is particularly important in AGC
systems which are phase sensitive. A third advantage of the
multiplier is that the output-voltage-swing capability and
output impedance are unchanged with variations in AGC
voltage.
·
The circuit of Figure 24 demonstrates the linear AGC amplifier. The amplifier can handle 1 V(rms) and exhibits a gain of approximately 20 dB. It is ·AGC'd through a 60 dB dynamic range with the application of an AGC voltage from 0 Vdc to 1 Vdc. The bandwidth of the amplifier is' deter· mined by the load resistor and output stray capacitance. For this reason, an emitter-follower buffer has been added to extend the bandwidth in excess of 1 MHz.
5.2 Balanced Modulator When two-time variant signals are used as inputs, the result·
FIGURE 23 - SQUARE ROOT CIRCUIT
11
·
P3 20 ~
8-71
MC1494, MC1594
II
e'in VAGC
ing output is suppressed-carrier double-sideband modulation. In terms of sinusoidal inputs, this can be seen in the following equation:
FIGURE 25- BALANCED MODULATOR +15V -15V
V 0 = K ( e1 coswm t) (e2 coswctl
where wm is the modulation frequency and we is the carrier frequency. This equation can be expanded to show the suppr~ssed carrier or balanced modulation:
Ke1e2 V0 = - 2- [cos( we+ wml t +cos (we - wmltl
Unl.ike many modulation schemes, which are non-linear in nature, the modulation which takes place when using the MC1594 is linear. This means that for two sinusoidal inputs, the· output will contain only two frequencies, the sum and difference, as seen in· the above equation. There will be no spectrum centered about the second harmonic of the carrier, or any multiple of the carrier. For this reason, the filter requirements of a modulation system are reduced to the minimum. Figure 25 shows ·the MC1594 configuration to perform this function.
16k
ec~±l Vpk em.;;±2Vpk
15
MC1594L (MC1494L)
14 RL 4.7 k
20 k
. FIGURE 24 - WIDEBAND AMPLIFIER WITH LINEAR AGC
-15 v +15 v
3k
6.2 k
11
IO.lµF 15 ":"
MC1594L IMC1494L)
2N3946 (2N3904)
OR EQUIV -
The adjustment procedure for this circuit is quite simple.
(1) Place the carrier signal at pin 10. With no signal applied to pin 9, adjust potentiometer P1 such that an ac null is obtained at the output.
(2) Place a modulation signal at pin 9. With no signal applied to pin 10, adjust p.otentiometer' P2 such that an ac null is obtained at the output.
Again, the ability to make careful adjustment of these offsets will be a function of the type of potentiometers used for P1 and P2. Multiple tum cermet type potentiometers are recommended.
5.3 Frequency Doubler
If for Figure 25 both inputs are identical;
em= ec = Ecoswt
~J.·.·.r·
-15V
Then the output is given by
16 k
20 k
ea= emec = E2 cos2wt
20k
which reduces to
E2
2 e0 = (1 + cos2wt)
Notice that the resistor values for Rx, Ry, and RL have been modified. This has been done primarily to increase the bandwidth by lowering the output impedance of the MC 1594 and then lowering Rx and Ry to achieve a gain of 1. The ec can be as large as 1 volt peak and em as high as 2 volts peak .. No output offset adjust is employed since we-are interested only in the ac output components.
The input R's are used to supply bias current to the multiplier inputs as well as provide matching input impedance. The output frequency range of this configuration is determined by the 4.7 k ohm output impedance and capacitive loading. A5suming a 6 pF load, the small-signal bandwidth is5.5 MHz.
The circuit of Figure 25 will provide a typical..carrier rejection of ~ 70 dB from 10 kHz to 1.5 MHz.
This equation states that the output will consist of a de term equal to one half the peak voltage squared and the second harmonic of the input frequency. Thus, the circuit acts as a frequency doubler. Two facts about this circuit are worthy of note. First, the second harmonic of the input frequency is the only frequency appearing at the output. The fundamental does not appear. Second, if the input is sinusoidal, the output will be sinusoidal and requires !!Q filtering.
The circuit of Figure 25 can be used.as a frequency doubler with input frequencies in excess of 2 MHz.
5.4 ·Amplitude Modulator
The circuit of Figure 25 is also easily used as an amplitude modulator. This is accomplished by simply varying the input offset adjust potentiometer (P1) as~ociated with the modu-
8-72
MC1494, MC1594
lation input. This procedure places a de offset on the modulation input of the multiplier such that the carrier stilf passes thru the multiplier when the modulating signal is zero. The result is amplitude modulation. This is easily seen by examining the basic mathematical expression for amplitude modulation given below. For the case under discussion, with K = 1,
where E is the de input offset adjust voltage. Th is expression can be written as:
e0 = E0 ( 1 + M coswctl coswct
where and
E0 = EEc
E M
=
Em
=
.. modulat)On index
This is the standard equation for amplitude modulation. From this, it is easy to see that 100% modulation can·be achieved by adjusting th!! input offset adjust voltage to be exactly equal to the peak value of the modulation, Em·. This is done by observing the output waveform and adjusting the input offset potentiometer, P1, until the output exhibits the familiar amplitude modulation waveform.
5.5 Phase Detector
If the circuit of Figure 25 has as its inputs two signals of identical frequency but having a relative phase shift the output will be a de signal which is directly proportional to the cosine of phase difference as well as the double frequency term.
em= Emcos(wct+</J)
. eo = ecem = EcEmcoswctcos(wct+¢)
EcEm .
or
e0 = -
2
(cosq,+cos(2wct+¢]
The addition of a simple low pass filter to the output (which
eliminates the second cosine term) and return of R L to an
offset adjustment potentiometer will result in a de output
voltage which is proportional ·to the cosine of the phase dif-
ference. Hence, the circuit functions as a synchronous
detector.
'
6. DEFINITIONS OF SPECIFICATIONS
Because of the unique nature of a multiplier, i.e., two inputs and one output, operating specifications are difficult to define and interpret. Indeed the same specification may be defined in several completely different ways depiinding upon which manufacturer is doing the defining. In order to clear up some of this mystery, the following definitions and examples are presented.
6.1 MultiJ>lier Transfer Function
The output of the multiplier may be expressed by this equation:
Vo= K (Vx± Viox -VxoffHVy± Vioy -Vy off)± Voo (1)
where K = scale factor (see 6.5)
V x = ;,x" input voltage Vy= "y" input voltage Viox = "x" input offset voltage Vioy = "y" inpµt offset voltage Vx off= "x" input offset adjust voltage .
Vy off= "y" input offset adjust voltage V00 = output offset voltage
The voltage transfer characteristic below indicates "·X", "Y" and output offset voltages.
FIGURE 26
(Vy=± 10 V)
(Vx =± 10 V)
6.2 Linearity
Linearity is defined to be the maximum deviation of output voltage from a straight line transfer function. It i's expressed as a percentage of full-scale output and is measured for V x and Vy separately either using an "X·Y" plotter (and checking the deviation from a straight line) or by using the method shown in Figure 1. The latter method nulls the output signal with the input signal, resulting in distortion components proportional to'the linearity.
Example: 0.35% linearity means
1 0 VxVy
V0 =
± (0.0035) (10volts)
6.3 Input Offset Voltage
The input offset voltage is defined from Equation (1). It is· measured for Vx and Vy separately and is defined to be that ·de input offset adjust voltage ("x" or "y") that will result in minimum ac output when ac (5 Vpp, 1 kHz) is applied to the other input ("y" or "x" respectively). From Equation(1) we have:
Vo(ac) = K (0± Vio~ -Vx off) (sinwt)
adjust Vx off so that(± Viox -Vx off)= 0.
6.4 Output Offset Current and Voltage Output offset current. (1 00 ) is the de current flowing in the output lead when Vx; Vy = 0 and "X" and "Y" offset voltages are adjusted to. zero.
Output offset voltage (V0 0 ) is:
Voo =loo AL
where R L is the load resistance.
Note: Output offset voltage is defined by many manufacturers with all inputs at zero but without adjusting "X" and "Y" offset voltages to zero: Thus it includes input offset terms, an output offset term and a scale factor term.
6.5 Scale Factor
Scale factor is the K term in Equation (1). It determines the "gain" of the multiplier and is expressed approximately by the following equation.
2RL
'
kT
>> K = RxRyl 1 where Rx and Ry
ql 1
and I 1 is the current out of pin 1.
·
8-73
MC1494, MC1594
6.6 Total DC Accuracy
The total de accuracy of a multiplier is defined as error in multiplier output with de (±. 10 Vdc) applied to both inputs. It is expressed as a percent of full scale. Accuracy is not specified for the MC1594 because error terms can be nulled by the user.
6.7 Temperature Stability (Drift) Each term defined above will have a finite drift with tempera· ture. The temperature specifications are obtained by readjusting the multiplier offsets and scale factor at each new temperature (see previous definitions and the adjustment procedure) and noting the change. Assume inputs are grounded and initial offset voltages have been adjusted to zero. Then output voltage drift is given by:
tN 0 = ±.[K±.K (TCK) (L>T) I [ (TCVioxl ("T) I [ (TCVioyl
(L>T) J ±. (TCV 00 ) (AT)
6.8 Total DC Accuracy Drift This is the temperature drift in output voltage with 10 volts applied to each input. The output is adjusted to 10 volts at TA = +25°C. Assuming initial offset voltages have been adjusted to zero at TA= +25°C, then:
V 0 = [K±K (TCK) (L>T) ] [10 ±. (TCVioxl (AT) ] [10 ±. (TCVioyl (L>T) I ±. (TCV 00) (AT)
6.9 Power Supply Rejection
Variation in power supply voltages will cause undesired variation of the output voltage. It is measured by super· imposing a 1·volt, 100-Hz signal on. each supply (±15 V) with each input grounded. The resulting change in the out· put is expressed in mV /V.
6.10
Output Voltage Swing
Output voltage swing capability is the maximum output voltage swing (without clipping) into a resistive load (note· output offset is adjusted to zero).
If an op·ampl. is used, the multiplier output becomes a virtual ground - the swing is then determined by the scale factor ' and the op-ampl. selected.
GENERAL INFORMATION INDEX
1, CIRCUIT DESCRIPTION
1.1 Introduction 1.2 'Regulator 1.3 Multiplier 1.4 Differential Current Converter
2. DC OPERATION
2.1 Selection of External Components 2.2 Operational Amplifier Selection 2.3 Stability 2.4 Offset Adjustment 2.5 Offset and Scale Factor Adjustment Procedure 2.6 Temperature Stability 2.7 Bias Currents 2.8 Parasitic Oscillation
3.
AC OPERATION
3.1 General
3.2 Bandwidth
3.3 Slew-Rate 3.4 Phase-Vector Error 3'.5 Circuit Layout
4. DC APPLICATIONS
4.1 . 4.2
Squa~ing Circuit Divide
4.3 Square Root
5.
AC APPLICATIONS
5.1 Wideband ·Amplifier with Linear AGC
5.2 Balanced Modulator
5.3 Frequency Modulator
5.4 Amplitude Modulator
5.5 Phase Detector
6. 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10
DEFINITIONS OF SPECIFICATIONS
Multiplier Transfer Function Linearity Input Offset Voltage Output Offset Current and Voltage Scale Factor Total DC Accuracy Temperature Stability (Drift).· Total DC Accuracy Drift Power Supply Rejection Output Voltage Swing
8-74
ORDERING INFORMATION
Device
MC1495L MC1595L
Temperature Range
0°C to +70°C -55°C to +125°C
Package
Ceramic DIP Ceramic DIP
MC1495L MC1595L
=:=] Specifications and Applications Information
WIDEBAND MONOLITHIC FOUR-QUADRANT MULTIPLIER
. designed for uses where the output is a linear product of two input voltages. Maximum versatility is assured by allowing the user to select the !evel shift method. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency· doubler, balanced modulator/demodulator, electronic gain control.
*When used with an operational amplifier.
· Wide Bandwidth
· Excellent Linearity- 1% max Error on X-lnput, 2% max Error on Y-lnput - MC1595L
· Excellent Linearity - 2% max Error on X-lnput, 4% max Error on Y-lnput - MC1495L
· Adjustable Scale Factor, K
· Excellent Temperature Stability
· Wide Input Voltage Range - ± 10 Volts
· ± 15 Volt Operation
LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED
CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED
(top view)
CERAMIC PACKAGE CASE 632 T0-116
FIGURE 1 - FOUR-QUADRANT MULTIPLIER TRANSFER CHARACTERISTIC
VX, INPUT VOLTAGE (VOLTS)
FIGURE 2- TRANSCONDUCTANCE BANDWIDTH
+20
+1 0
0
~ ,...;~ N
0
h..
I' l
Vy
Vxl
-20
-30 1.0
10
100
1000
I, FREQUENCY (MHz)
FIGURE 3 - CIRCUIT SCHEMATIC
Output (KXY)
II
Y Input
X Input 12
t - - - < 0 - - - - - 0 11 _ ~---_,_ _ _ _____..,10
~-+--+---+------<>13
8-75
·
ELECTRICAL CHARACTERISTICS (Vi:= +32v.v- = -15 v. TA= +25°C, 13=113 = 1 mA, Rx= Ry= 1.5 kQ,
R L = 11 kQ unless otherwise noted)
Characteristic
Linearity: Output Error in Percent of Full Scale: TA= +25°c -10< Vx< +10 (Vy =±10 V)
-10< Vy< +10 !Vx =±10 V)
TA= o to +10°c -10< Vx< +10 (Vy =±10 V) -:10< Vy< +10 (Vx =.±10 V)
TA = -55°C to +125°C -10< Vx< +10 (Vy =±10 V) -10< Vy< +10 !Vx =±10 V)
MC1495 MC1595 MC1495 MC1595 MC1495
MC1595
Squaring Mode Error: Accuracy in Percent of Full Scale After Of.fset and Scale Factor Adjustment
TA= +25°c
TA = o to +10°c TA = -5s0 c to +125°c
MC1495 MC1595 MC1495
MC1595
Scale Factor (Adjustable)
2RL (K=---)
13 Rx Ry
Input Resistance (f=20Hz)
MC1495 MC1595·
MC1495 MC1595
Differential Output Resistance (f = 20 Hz)
Input Bias Current
!lg+ 112l
114 +isl
lbx = --2-.-' lby = -2-
MC1495 MC1595
MC1495 MC1595
Input Offset Current 119 - 1121
114 - Isl
MC1495 MC1595
MC1495 MC1595
Average Temperature Coefficient of Input Offset Current (TA= 0 to +70°C)
(TA= -5_5°c to +125°c1
MC1495 MC1595
Output Offset Current 1114-121
MC1495 MC1595
Average Temperature Coefficient of
Output Offset Current
..
(TA= 0 to +70°C)
(TA = -55°c to +125°Cl
MC1495 MC1595
Frequency Response 3.0 dB Bandwidth, RL = 11 kQ
3.0· dB Bandwidth, R L = 50 r2 (Transconductance Bandwidth)
3o Relative Phase Shift Between Vx and Vy 1% Absolute Error Due to Input-Output Phase Shift
Common Mode Input Swing (Either Input)
MC1495 MC1595
Common Mode Gain (Either Input)
MC1495 MC1595
Common Mode Ouie5cent Output Voltage
Differential Output Voltage Swing Capability
I
Power Supply Sensitivity
Power Supply Current
DC Power Dissipation
-
Figure 5
Symbol
ERX ERV
ERX ERV
ERX ERV
5
Eso
-
K
7
R1NX
R1NY
8
Ro
Min
Typ
Max
Unit
%
-
±. 1.0 ±. 2.0
-
'±. 0.5 ±. 1.0
-·
±. 2.0 :t.4.0
-
±. 1.0 ±. 2.0
-
±. 1.5
-
-
±.3.0
-
·-
± 0.75
-
--
±. 1.50
-
%
-
+ 0.75
--
-
±o.5
-
-
±. 1.0
-
--
±. 0.75
'
0.1.
-
-
-
20
-
MegOhms
-
35
-
--
20
-
-
35
-
-
300
-
k Ohms
6
6
·6
6 6
9,10
11 11 12 9 1(2 12 12
lbx
--
lby
-
-
hioxl
-
-
ilioyl
-
-
ITCliol
-
-
ilool -
-
ITC1 00 1
-
-
BW3dB TBW3dB
ft/J fo CMV
AcM
Vol Vo2 Vo s+
s-
17
Po
-
-
-
-
±10.5 ±1.1.5
.:-40 -50 -
-
-
-
2.0 2.0 2.0 2.0
0.4 0.2 0.4 0_2
2.0 2.0
20 10
1.0 1.0
3.0 so 750 30
±12 ±13
-50 -60 21 21 ±.14 5_0 10 6.0 135
12
µA
s.o
12 s.o
2.0
µA
1.0
2.Q 1.0
nA/OC
-
-
µA 100 50
nA/°C
--
-
-· -
-
-
-, -
-
7.0 170
MHz MHz kHz kHi Vdc
dB
Vdc
Vpeak mV/V
mA . mW
8-76
MC1495L, MC1595L
MAXIMUM RATINGS ITA= +250 C unless otherwise noted
Rating
Applied Voltage (V2-V1. V14-V1. V1-V9, V1-V12. V1-V4, V1-Vs. V12-V7. V9-V7, Vs-V7, V4-V7)
Differential Input Signal
Symbol t>V
V12-V9 V4-Vs
Maximum Bias Current
13
113
Power Dissipation (Package Limitation)
Po
Ceramic Package
Derate above T_A = +25°c
Operating Temperature Range
TA
MC1495 MC1595
Storage Temperature Range
Tstg
Value 30
±(6+l13Rx) ±(6+13 Ry)
10 10
750 5.0
Oto +70 -55 to +125 :_55 to +150
Unit Vdc
Vdc Vdc mA
mW
mW/°C
oc oc
OC
TEST CIRCUITS
FIGURE 4 - LINEARITY (USING NULL TECHNIQUE)
,.........--.-.--....,.-..-----"-------4---...-------·v·=+tsv
D.lµF~
3k
!Dk
3k
4Dk
!Dk
MC1595L (MC1495LI
14
OFFSET _ _ __.
ADJUST SEE FIGURE 13
SCALE FACTOR ADJUST
13
33k
12k
OUTPUT
!Dk
OFFSET
ADJUST
Sk t-------------+---------"'---.......-------e v-=-15V
'l'D.lµF
NOTES:
Adjust"ScalefactorAdjust''foranullinVe. This schematic for illustrative purposes on.Iv notspacifiedfortenconditions.
FIGURE 5 - LINEARITY (USING X-Y PLOTTER TECHNIQUE)
Vy
Vx
ly
OFFSET ADJUST. . (SEE FIGURES 13 & 14) X
Ry=15k Rx= 15k
32V 11
Ru= 11 k
Vo
14
X·Y PLOTTER
RtJ· 13.7k
-15V
8-77
·
MC1495L, MC1595L
·
TEST CIRCUITS (continued)
FIGURE 6 - INPUT AND OUTPUT CURRENT
Ry=15k Rx=15k
+32 v
0.1 µF
FIGURE 7 - INPUT RESISTANCE
el =·1.0 V (rms) 20 Hz
Ry=15k Rx=15k
1.0 M
1.0M
+32 v
9.1 k 11 k 11 k
R1Nx = R1NY =RI~ - 21
0.1 µF
-15 v
'J' 0.1 µF
FIGURE 8- OUTPUT RESISTANCE
Ry = 15 k Rx = 15 k
+32 v
0.1 µF
0.1 µF
-= -15 v
. I I R0 =RLeel -2 2
FIGURE 10 - BANDWIDTH IRL = 50 ill Ry=510 Rx=510
V.,.=+15V
FIGURE 9 - BANDWIDTH (R L =: 11 k!11
Ry=15k Rx=15k
+32 v
9.1 k llk
0.1 µF
SCALE FACTOR ADJUST.
-= -15 v
""fo
-
~I CL;;3.0pF
·-t:.·
FIGURE 11 - COMMON-MODE GAIN and COMMON-MODE INPUT SWING
1'5 k
15 k
+32 v
9.1 k
K =40
SCALE FACTOR ADJUST.
-= -15 v
8-78
-15 v
0.1 µF
Vo
AcM =20 log CM Vy
Vo or 20 log CMVx
MC1495L, MC1595L
TEST CIRCUITS (continued)
FIGURE 12 - POWER SUPPL V SENSITIVITY
+32 v
15 k
15 k
+32 v
FIGURE 13-:- OFFSET ADJUST CIRCUIT
v+
2.0 k
1N753
6.2 v
2N2905A OR EQUIV
22 k
-15 v
-15 v
0.1 µF
s+; IA (Vol - Vo2ll
c,.v+
s-; IA (Vol - Vo2ll
c,.v-
Pot #1
~oo~'~s~r ADJ_,..... 10 k 10 k
v+ 15 v 32 v
R lOk 22k
2.0 k 10 k
-1s Ii
FIGURE 14 - OFFSET ADJUST CIRCUIT (ALTERNATE)
v+
5.1 v
Pot #1
%~'~s~T ADJ _,..... 10 k 10 k
v+ 1s v 32 v
R 2 k 5.1 k
2k
-15 v
5.1 v
·
8-79
MC1495L, MC1595L
TYPICAL CHARACTERISTICS
·
FIGURE 15 - LINEARITY versus TEMPERATURE
2.0~
":: ~
>- 1.4
..............
~ 1.2t-----+-~-~..~. ,..-----+----+-----1--+-~
:::;1.0~
E,E oo..ssr----r~ ~-,."..'...i..".."..;..;;;;;;;;;:::t::::~~=-tE -'""R ""=t~ ---;
0.4 t-----+---+---+------lf-----+----+----1
0.o2 .i..-....-_--_-+_._-_--_+.-..-_-_+_-_--_--_-l_f.-._--_--__+._--_--_+.__---_-1 _,
-55
-25
+25
+50
+75 +100 +125
TA, AMBIENT TEMPERATURE (°C)
FIGURE 16 - SCALE FACTOR versus TEMPERATURE
0.110.----,----y-----,,--~---r---.-----,
0.105 t-+----+----+-----lf-----+---+---+---~
a:
0
t;
K ADJUSTED TO 0.100 AT +250C
<(
~ 0.100f----T"'--t---lf-...:::::-4:----+--+---1
~
>t!.
r=1
-55
-25
+25
+50
+75 +100 +125
TA, AMBIENT TEMPERATURE (OC)
FIGURE 17 - ERROR CONTRIBUTED BY INPUT DIFFERENTIAL AMPLIFIER
1.0~---~---~---~---~--~
Vx =Vy= ±10 V Max
~
I
I
13 = 113 = 1.0 mAdc
~ 0.8 t-----+------+---.,.---+--~--+-------i
~__,,
i:r 0.6 t-----+--+------+-----+-----+-------i
Iu..
0
0.4
rt£ ~ 0.2
0
10
12
14
16
18
20
RX OR Ry (k OHMS)
FIGURE 18 - ERROR CONTRIBUTED BY INPUT DIFFERENTIAL AMPLIFIER
1.0 ~---~---~---v-x~-~-V-y_=_±_5-.o-v~M-a-x--~
1
13 = 113 = 1.0 mAdc ~ 0 . 8 1 - - - - - " f - - - - - - r - - - - - T - - - - - + - - - -.....
~_,
~ 0.6 t - - - - \ ' \ " - 1 - - - - - - 1 - - - - - + - - - - - + - - - - 1
S0.4
~
a:·
~
~0.2
~
0 .___ _ _,___ _ _...___ _ _......__ _ __,__ _ __..
4.0
6.0
8.0
10
12
14
Rx OR Ry (k OHMS)
14
12
"';;<
! 10
~
x
<(
8.0
:::;:
>=
~
6.0
a:
0
x 4.0
~
2.0
FIGURE 19 - MAXIMUM ALLOWABLE INPUT VOLTAGE versus VOLTAGE AT PIN 1 OR PIN 7
MINIMUM.~ ~
L.,~ ~
~I ~ RECOMMENDED
-~~ 1
0
0
2.0
4.0
6.0
8.0
10
12
14
16
18
1v11 OR 1v11 (VOLTS) .
MC1495L, MC1595L
OPERATION AND APPLICATIONS INFORMATION
1. Theory of Operation
The MC1595 (MC1495) is a monolithic, four-quadrant multiplier which operates on the principle of variable transconductance. The detailed theory of operation. is covered in Application Note AN-489, Analysis and Basic Operation of the MC1595. The result . of this analysis is that the differential output current of the multiplier is given by
where IA and Is are the currents into pins 14 and 2, respectively, and Vx and Vy are the X and Y fnput voltages at the multiplier input terminals.
2. Design Considerations
2.1 General
The MC1595 (MC1495) permits the desjgner to tailor the multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidth) which may in turn restrict another parameter (e.g. maximum output voltage swing). Each important parameter is discussed .in detail in the following paragraphs.
2.1.1 Linearity, Output Error, ERx or ERY
Linearity error is defined as the maximum deviation of output voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below).
Vo
__j_
f .,~"
vemax
~
For example, if the maximum deviation, VE(max)· is ± 100 mV and the full scale output is 10 volts, then the
percentage error is
ER = VE(max) x 100 = 100 x 10-3 x 100=±1.0%.
Vo( max)
10
Linearity error may be measured by either of the following methods:
1. Using an X - Y plotter with the circl.i it shown in Figure 5, obtain plots for X and Y similar to the'one shown above.
2. Use the circuit of Figure 4. This method nulls the.level shifted output of the multiplier with the original input. The peak output ·of the null operational amplifier will be equal to the error voltage, VE(max)·
One source of linearity error can arise from large signal nonlinearity in the X and Y-input differential amplifiers. To avoid introducing· error from this source, the emitter degeneration resistors Rx and Ry must be chosen large enough so that nonlinear base-emitter voltage variation can be ignored. Figures 17 and 18 show the error expecfed from this source as a function of the values of Rx and Ry with an operating current of 1.0 mA in each side of the differential amplifiers (i.e.; 13=I1_3 = 1.0 mA).
2.1.2 3 dB-Bandwidth ;md Phase Shift
Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low value load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout.
Phase shift in the multiplier circuit results from two sources: phase shift common to both X and Y channels (due to the load resistor-output capacitance pole mentioned above) and relative phase shift between X and Y channels (due to differences in transadmittance in the X and Y channels). If the input to output phase shift is only 0.6°, the output product of two sine waves will exhibit a vector error of 1%. A 3° relative phase shift between Vx and Vy results in a vector error of 5%.
2.1.3 Maximum Input Voltage
Vx(maxl· Vv(max) maximum input voltages must be such that:
Vx(max) <113 Ry
Vy(max) <13 Ry.
Exceeding this value will drive one· side of the input amplifier to
"cutoff" and cause non-linear operation.
Currents I3 and I 13 are chosen at a convenient value (observ-
ing power dissipation limitation) between 0.5 mA and 2.0 mA,
approximately 1.0 mA. Then Rx and Ry can be determined by
considering the input signal handling requirements.
·
For Vx(max) = Vy(max) = 10 volts;
Rx= Ry>~= 10 kn ·
1.0mA
.
2vxvv
The equation IA - Is= - - -
RxRyl3
2VxVy
is derived from IA - Is =
(Rx+~) (Ry+ 2kT) 13
ql13
ql3
with the assumption Rx~ 2kT and Ry~ 2kT ·
ql13
ql3
AtTA = +25°Cand 113= 13= 1 mA,
2kT =2kT = 52 n. ql13 ql3
Therefore, with Rx= Ry= 10 kn the above assumption is valid. Reference to Figure 19 will indicate limitations of Vx(max) or Vy(max) due to V1 and V7. Exceeding these limits will cause saturation or "cutoff" of the input transistors. See Step 4 of Section 3 (General Design Procedure) for further details.
2.1.4 Maximum Output Voltage Swing
The maximum output voltage .swing is dependent upon the factors mentioned below and upon the particular circuit being considered.
For Figure 20 the maximun:i output swing is dependent upon v+ for positive swing _and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quiescent level for transistors 05, Q5, 07, and Qg. This potential
·
8-81
MC1495L I MC1595L
OPERATION AND APPLICATIONS INFORMATION (continued)
should be related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials.
FIGURE 20..,.. BASIC MULTIPLIER
v·
Ry
R1
RL
lVx lVy
10
12 MC1595L (MC1495U
RL
l'· 14 Vo= K Vx Vy K =2R-L Rx Ry 13
v-
If an operational a~plifier is used for level shift, as shown
in Figure 21, the output swing (of the multiplier) is greatly reduced. See Section 3 for further details.
3. General Design Procedure
Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the X and
Y inputs to limit the maximum multiplier input to ±5.0 volts (Vx =
VY[maxVfor a±10-volt input (Vx' = Vy'[max]). (See Figure 211. If an overall scale factor of 1/10 is desired, then
Vx' Vy' _(2Vxl (2Vy} - 4/10 v v
V=---
-
XY·
0
10
10
Therefore, K = 4/10 for the multiplier (excluding the divider network).
Step 1. The first step is to select current I3 and current I 13. There are no restrictions on the selection of either of these currents except the power dissipation of the device. I3 and I 13 will normally be one or two milliamperes. Further', 13 does not have to be equal to I 13, and there is normally no need to make them different. For this example, let
I3 = I 13 = 1 mA.
To set currents 13 and 113 to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3,
FIGURE 21 - MULTIPLIER WITH OP-AMPL. LEVEL SHIFT
-15 v
-15 v
8-82
MC1495L, MC1595L
OPERATION AND APPLICATIONS INFORMATION (continued)
it can t:ie seen that. the resistor values necessary are given by:
R13 + 500 n = 1v-1-o.1 v
113
R3 + 500 n = 1v-1-o.1 v
13
Let v- = -15 V
Then
R13
+
500
=
14 3 ·
VorR13
= 13.8
kn
1 mA
Let R13 = 12 kn
Similarly, R3 = 13.8 kn
Let R3 = 15 kn
However, for applications which require an accurate scale factor, the adjustment of R3 and consequently, 13, offers a convenient method of making a final trim of the scale factor. For this reason, as shown in Figure 21, resistor R3 is shown as a fixed resistor. in series with a potentiometer.
For applications not requiring an exact scale factor (balanced modulator, frequency doubler, AGC amplifier, ·etc.), pins 3 and 13 can be connected together and a single resistor 1rom pin 3 to ground can be used. In this case, the single resistor would have a value of one-half the above calculated value for R 13·
Step 2. The next step is to select Rx and Ry. To insure that the input transistors will always be active, the following conditions should be met:
A good rule of thumb is to make .l3Ry > 1.5 VY(max) and 113 RX> 1.5 Vx(max)·
The larger the l3Ry and l13Rx product in relation to Vy and Vx respectively, the more accurate the multiplier will be (see Figures 17 and 18).
Let Rx= Ry= 10 kn
Then l3Ry = 10 V
since Vx(max) = VY(max) = 5.0volts the value of Rx= Ry= 10 kn is sufficient.
Step 3. Now that Rx, Ry and 13 have been chosen, RL can be determined:
2RL
4
K= - - - =-
RxRyl3 10
or
(2) (RLI
= ~
(10 k) (10 k) (1 mA) 10
Thus RL = 20 kn.
Step 4. To determine what power-supply voltage is necessary for th.is application, attention must be given to the circuit schematic shown in Figure 3. From the circuit schematic it can be seen that in order to maintain transistors 01, 02, 03 and 04 in an active
region when the maximum input voltages are applied (Vx' =Vy'=
10 V or Vx = 5.0 V, Vy = 5:0 V). their respective collector voltage
should be at least a few tenths of a volt higher than the maximum input voltage. It should also be noticed that the collector voltage of transistors 03 and ~are at a potential which is two diode-drops below the voltage at pin 1. Thus, the voltage at pin 1 should be about
two volts higher than the maximum input voltage. Therefore, to. handle +5.0 volts at the inputs, the voltage at pin 1 must be at least
+7 .0 volts. Let V1 = 9.0 Vdc. Since the current following into pin 1 is always equal to
213, the voltage at pin 1 can be set by placing a resistor, R 1 from pin 1 to the positive supply:
Let v+ = +15 v
v v Then
R 1
- 15 -(2) (1
-9 mA)
Note that the voltage at the base of transistors 05, 05, 07 and 08 is one diode-drop below the voltage at pin 1. Th.us, in order that these transistors stay active, the voltage at pins 2 and 14 should be approximately halfway between the voltage at pin 1 and the positivesupply voltage. For this example, the voltage at pins 2 and 14 should be approximately 11 volts.
Step 5. Level Shifting
For de applications, such as the multiply, divide a11d squareroot functions, it is usually desirable to convert the differential output to a single-ended output voltage. referenced to ground. The circuit shown in Figure 22 performs this function. It can be shown that the output voltage of this circuit is given by:
21x1y 2 VxVy And since .IA -Is= 12-I14 = - 1-3- - 13RxRy
2RLVx'Vy'
Then
V0
= ----4RxRx13
where
Vx'Vy' is the voltage at the
input to the voltage dividers.
FIGURE 22 - LEVEL SHIFT CIRCUIT v+
Ro
Ro
V2 12
Vo V14 114
RL
RL
·
8-83
MC1495L, MC1595L
OPERATION AND APPLICATIONS INFORMATION (continued)
The choice of an operational amplifier for this application·
should have low bias currents, low of.fset current, and a high common-mode input voltage range as well as a high common-mode rejection ratio. The MC1556, and MC1741 operational amplifiers meet these requirements.
will Referring to Figure 21, the level shift components be de-
termined. When Vx =Vy= 0, the currents 12 and I 14 will be equal to I13. In Step 3, RL was found to be 20 kn and in Step 4, V 2 and V14 were found to be approximately 11 volts.· From this informa·
tion, R0 can be found easily from the following equation (neglect· ing the operational amplifiers bias curren.t):
And for this example, ~ + 1 mA = 15 V -11 V
20 kn
R0
Solving for R0 , R0 = 2.6 kn Thus, select R0 = 3.0 kn For R0 = 3.0 kn, the voltage at pins 2 and 14 is calculated to be
V2 = V14 = 10.4 volts.
The linearity ofthiscircuit (Figure 21) is likely to be as good or better than the circuit of Figure 5. Further improvements are
possible as shown in Figure 23 where Ry has been increased sub·
stantially to improve the Y linearity, and Rx decreased somewhat
so as not to materially affect the X linearity, this avoids increasing
R L significantly in order to maintain a K of 0.1.
Th-e versatility of the MC1595 (MC1495) allows the user to
to optimize its performance for. various input and output signal
levels.
·
4. Offset and Scale Factor Adjustment
4.1 Offset Voltages Within the monolithic multiplier (Figure 31 transistor base·
emitter junctions are typically matched within 1 mV and resistors are typically matched within 2%. Even with this careful match· ing, an output error. can occur. This output error is comprised of X-input offset voltage, Y·input offset voltage, and output· offSet voltage. These errors can be adjusted to zero with the techniques shown in Figure 21. Offset terms can be shown ana· lytically by the transfer function:
V0 = KIVx ± V1ox±Vx ottl (Vy± V1oy±Vy off)± Voo (1)
Where K
= scale factor
Vx = X input voltage
Vy = Y input voltage
Viox = X input offset voltage
V1ov = Y input offset voltage Vx off= X input offset adjust voltage
Vy off= Y input offset adjust voltage V00 =output offset voltage.
FIGURE 23 - MULTIPLIER WITH IMPROVED LINEARITY
-15V
-15V
3 k
3 k
Vo-v=xlvOv
12
X OFFSET ADJUST
15 k
8-84
MC1495L, MC1595L
OPERATION AND APPLICATIONS INFORMATION (continued)
X, Y and Output Offset Voltages
utput ff set
Vx
X Off
Y Offset
For most de applications, all three offset adjust potentiometers IP1, P2, P4) will be necessary. One or more offset adjust potentiometers can be eliminated for ac applications (See Figures 28, 29, 30, 31).
If well regulated supply voltages are available, the offset adjust circuit of Figure 13 is recommended. Otherwise, the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes.
4.2 Scale Factor
The scale factor, K, is set by P3(F igure 21). P3 varies 13 which inversely controls the scale factor K. It should be noted that current I3 is one-half the current through R1· R1 sets the bias
level for 05, 05, 07, and Os (See Figure 31. Therefore, to be
sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting P3 over wide voltage ranges (see Section· 3, General Design Procedure).
,4.3 Adjustment Procedures
The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21)
1. X Input Offset (a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the
"Y" input (pin 4) (b) Connect "X" input (pin 9) to ground (c) Adjust X offset potentiometer, P2. for an ac null
at the output 2. Y Input Offset
(a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input {pin 91·
{b) Connect "Y" input (pin 4) to ground {c) Adjust "Y" offset potentiometer, P1,for an ac null at the output 3. Output Offset {a) Connect both "X" and "Y" inputs to ground {b) Adjust output offset potentiometer, P4, until the output voltage V0 is zero volts de 4. Scale Factor {a) Apply +10 Vdc to both the ''X" and "Y" inputs {b) Adjust P3 to achiev11 + 10.00 V at the output. 5. Repeat steps 1 through 4 as necessary.
The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers P1 through P4. Multi-turn, infinite resolution potentiometers with low-temperature coefficients are recommended.
5. DC Applications
5.1 Multiply The circuit shown in Figure 21 may be used to multiply
signals from de to 100 kHz. Input levels to the actual multi· plier are 5.0 V (max). With resistive voltage dividers the maxi... mum could be very large - however, for this application two· to-one dividers have been used so that the maximum input level is 10 V. The maximum output level has also been designed for 10 V {max).
5.2 Sqyaring Circuit
If the two inputs are.tied together, the resultant function is squaring; that is V 0 = KV2 where K is the scale factor. Note that all error terms can be eliminated.wittJ only three adjustment
potentiometers, thus eliminating one of the input offset adjust·
ments. Procedures for nulling with adjustments are given as - follows:
1. AC Procedure:
(a) Connect oscillator (1 kHz, 15 Vpp) to input
{b) Monitor output at 2 kHz with tuned voltmeter
and adjust P3 for desired gain {be sure to peak response
of the voltmeter)
(c) Tune voltmeter to 1 kHz and adjust P1 for a min·
imum output voltage
{d) Ground input and adjust P4 {output offset) for
zero volts de output
(e) Repeat steps a through d as necessary.
2. DC Procedure:·
{a) Set Vx = Vy = 0 V and adjust P4 (output offset
potentiometer) such that V 0 = 0.0 Vdc
(b) Set Vx "' Vy = 1.0 V and adjust P1 (Y ·input
offset potentiometer) such that the output voltage is
+0.100volts '
-
(cl Set Vx =Vy= 10 Vdc and adjust P3 such that the
output voltage is+ 10.00 volts
{d) Set Vx =Vy = -10 Vdc. Repeat steps a through
d as necessary.
FIGURE 24 - BASIC DIVIDE CIRCUIT
5.3 Divide Circuit
Consider the circuit shown ir:i Figure 24 in which the multi· plier is placed in the feedback path of an operational amplifier'. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-) input. Assuming that the bias current of the operational amplifier is negligible, then I 1 = 12 and
KVxVv -Vz
{1)
R1
R2
-R1 Vz
(2)
Solving for Vy,
Vy =R2'K Vx.
If R1 = R2
-Vz
Vy=-KVx
(3)
If
R1 = KR2
-Vz
Vy=-vx·
(4)
II
8-85
\
MC1495L, MC1595·L
OPERATION AND APPLICATIONS INFORMATION (continued)
II
Hence, the output voltage is the ratio of Vz to Vx and provides adivide function. This analysis is, of course, the ideal condition. If the multiplier error is taken into account, .the output voltage is found to be
.Vy=-[~] .Vz + L\E ·
(5)
R2 K Vx KVx
where L\E is the error voltage. at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set, particularly at small values of Vy. For example, ass.ume that R 1 = R2. and K = 1/10. For these conditions the output of the divide circuit is given by:
-10 Vz 10 AE
Vy=---+--
(6)
Vx
Vx
From equation 6, it is seen that only when Vx = 10 V is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when Vx is small, (0.1 volt) the error voltage of the divide circuit can be expected to .be a hundred times the error of the basic multiplier circuit.
In terms of p_ercentage error.
percentage error = error x 100% actual
or from equation (5);
i:>E
R1 KVx [R2]6E
P.E.o =r R1 ] Vz =
Vz_.
(7)
lR2 K Vx
From equation 7, the percentage error is inversely related to voltage Vz (i.e., for increasing values of Vz, the percentage error decreases).
A circuit that performs the divide function is shown in Figure 25.
Two things should be emphasized concerning Figure 25. 1. The input voltage ( V' xi must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of Vz.
2. Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connection shown in Figure 21; necessitated to insure negative feedback around the loop.
A ·suggested Adjustment Procedure for the Divide Circuit
1. Set Vz = 0 volts and adjust the output offset potentiometer (P4) until the output voltage (V 0) remains at some (not necessarily zero) constant value as Vx' is varied between +1.0 volt and +10 volts.
2. Keep Vz at 0 volts, set Vx' at +10 volts and adjust the Y input offset potentiometer (Pl) .until V 0 = 0 volts.
3. Let Vx' = Vz and adjust the X input offset potentiometer (P2) until the output voltage "remains at some (not necessarily - 10 volts) constant value as Vz = Vx' is varied between +1.0 and +10 volts.
4. Keep Vx' = Vz ano adjust the scale factor potentiometer (P3) until the average value of V 0 is - 10 volts as Vz = Vx' is varied between +1.0 volt and +10 volts.
5. Repeat steps 1 through 4 as necessary to achieve optjmum.performance.
5.4 Square Root
A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function
FIGURE 25.,... DIVIDE CIRCUIT
-15V
-15V
3.9 k
3k
3k
14
0.1 µF
t :r1µF
10 k
13
12
13k
5 k
SCALE
P3
FACTOR
ADJUST
12 k
TO OFFSET
ADJUST
5 k
(SEE FIGURE 13)
OUTPUT OFFSET AOJ UST
vo . >---O>----~~--t......,_ . .
-10 Vz Vo= _V_x_
20 k 0< V'x <;+10 V -10 V<;Vz<;+10 V
8-86
MC1495L, MC1595L
OPERATION AND APPLICATIONS INFORMATION (continued)
FIGURE 26 - BASIC SQUARE ROOT CIRCUIT Vz
6. AC Applications
The applications that follow demonstrate the versatility of the mo.nolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units hllve circuits that, although they optimize de multiplication operation, can hinder ac applications.
6.1 Frequency doubling often is done with a diode where the ·fundamental plus a series of harmonics are generated. However, extensive filtering. is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually
is small in magnitude and requires amplification. ' When a multiplier is used to double frequency the second
harmonic is obtained directly, except for a de term, which can be removed with ac coupling.
as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 27) protects against accidental latch-up.
This circuit also may be adjusted in the closed-loop mode as follows:
1. Set Vz to - 0.01 volts and adjust P4 (output offset) for V 0 = +0.316 volts. being careful to approach the output from the positive side to preclude the effect of the output diode <;lamping.
2. Set Vz to -0.9 volts and adjust P2 (X adjust) for V 0 =
+3.0 volts.
3. Set Vz to -10 volts and adjust P3 (scale factor adjust) for V 0 = +10volts.
4. Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.
KE2 eo = - - (1 +cos 2wtl.
2
A potted multiplier can be used to obtain the double frequency co~ponent, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted.
In a typical doubler circuit, conventional±. 15-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allowed. The circuit generates wave-forms that are double frequency; less than 1% distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kH·z; reducing the scale factor by decreasing the load resistors can further expand the bandwidth.
A slightly modified version of the MC1595 (MC1495) the MC1596 (MC1496) - has been successfully used as a doubler to obtain 400 MHz. (See Figure 28.l
6.2 Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is 1.6 kHz and the carrier is 40 kHz.
FIGURE 27 - SQUARE ROOT CIRCUIT
-15 v
-15 v
!Ok
Rx
Ry
IOk
IOk
I
MC1595L (MC1495U
3.9k
3k
3k
14
10k
5 k SCll~E FACTOR ADJUST ":'
12k
TO OFFSET
ADJUST
!SEE FIGURE 131
OUTPUT
OFFSET ADJUST
0.1 µF
+0.lµf +
+15 v
Vo
Vo o ,'llfVl
MZ92-118 OR EQUIV
Vz
20k AL
"10 V ·;: Vz.: +O V
II
8-87
MC1495L I .MC1595L
OPERATION AND APPLICATIONS INFORMATION (continued)
II
FIGURE 28 - FREQUENCY DOUBLER
Ry
Rx
8.2k
8.2k
Vee= +15 v
Ecoswt 1<5Vp-p)
OFFSET ADJUST
12
Rl 1 3.0 k
Rl 2 3.3k
Rl
14
3.3k
I C1 ·
·SELECT
6.Bk
E2
e0 ~ 20 cos2 wt
-15 v
When two equal cosine waves are applied to x'and Y. theresultisawaveshapeoftwicetheinputfrequency Forthisexampletheinputwas·a lOkHzsignal,output was2D kHz.
FIGURE 29 - BALANCED MODULATOR
+15 v
(Al
Ry
Rx
B.2k
B.2k
JlµF
ey= E cos...:mt
1 3k
OFFSET ADJUST
MC1595L IMC1495U
RL 3.3k
13
r1· 'SELECT
6.8 k
l.OµF
I
·o
-15 v
(Bl
The defining equation for balanced modulation is
KEcEm - - - [cos (we+ wml t +cos (we - wm)t]
2
where we is the carrier frequency, wm is the modulator fre-
quency and K is the multiplier gain constant. AC coupling at the output eliminates the need for level trans-
lation or an operational amplifier; a higher operating frequency results.
A problem common to communications is ,to extract the intelligence from single-sideband received signal. The ssb signal is of the form
essb =A cos (we+ wm)t
and if multiplied by the appropriate carrier waveform, cos wet,
essbecarrier = AK [cos (2wc + wm)t +cos (welt]. 2 .
If the frequency of the band-limited carrier signal, we, is ascertained in advance the designer can insert a low-pass filter and obtain the (AK/2) (cos wctl term with ease. He also can use an operational amplifier for a combination level shift-active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not ·accessible, so the user must accept the level shifting provided, and still add a low-pass filter.
6.3 Amplitude Modulation The multiplier performs amplitude modulation, similar to
balanced modulation, when a de term is added to the modul,ating signal with the Y offset adjust potentiometer. (See Figure 30.)
Here, the identity is
Em( 1. + m cos wmtl Ee cos wet = KEmEccos wet +
KEmEcm - -- - [cos( we+ wmlt +cos (we - wmlt]
2
where m indicates the degree of modulation. Since m is adjustable, via potentiometer P1, 100% modulation 'is possible. Without extensive tweaking, 96% modulation may be obtained where we and wm are the same as in the balanced-modulator example.
6.4 Linear Gain Control To obtain linear gain control, the designer can feed to one
of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose ·a 200 kHz sine wave, 1.0 volt peak-to-peak, is the signal to which a gain control will be added.
The dynamic range of the control voltage Ve is 0 to +1.0 volt.
These must be ascertained and the proper values of Rx and Ry can be selected for optimum performance. For the 200-kHz operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency. (See Figure 31.)
8-88
MC1495L, MC1595L
OPERATION AN·o APPLICATIONS INFORMATl.ON (continued)
FIGURE 30 - AMPLITUDE MODULATION
Ry
Rx
8.2k
8.2k
vcc '15 v
ey =- E cos,,:mt
ex"" E cos~..., 01 t
%MODULATION ADJUST 12
OFFSET ADJUST
MCl595L (MCl495Ll
11
R1 I 3.0k
Ru 2 3.3k
Ru
14
3.3k
ex. ey 5 Vpp 6.Bk
13 IUµF~
Tei·
"SELECT
15 v
(Bl
The signal is applied to the unit's Y input. Since the total input range is limited to 1.0 volt p-p, a 2.0-volt swing, a current source of 2.0 mA and an Ry value of 1.0 kilohm is chosen. This takes best advantage of the dynamic range and insures linear operation in the Y-channel.
Since the X input varies between 0 and +1.0 volt, the current
source selected was 1.0 mA and the Rx value chosen was 2.0
kilohms. This also insures linear operation over the X input dynamic range.
Choosing RL = 100 assures wide-bandwidth operation. Hence, the scale factor for this configuration is
___1_o_o __ v-1
(2 k)(1 kll2 x 10+31
= _!__ v-1.
40
The 2 in the numerator of the equation is missing· in this scalefactor expression because the output is single-ended and ac coupled.
To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been
used with frequen~y compensation to allow a gain of 40 at
200 kHz. The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly.
FIGURE 31 - LINEAR GAIN CONTROL ·12 v
2k
lk
10 Vin
l lµf
510
1.5k
(Al
(8)
51
Ve 0.lµFJ
OFFSET ADJUST
'3k bk
MC1595L IMC1495L)
k ~ tir
13 llk
100 100
14 0.33 µF
~lµF
-12V
50 µF >---O.->JVv~t-:e Vo
I,, .
VAGC(VO LTS)
NOTE Linear gain.control of a l·volt peak-to-peak signal is performed withaO-to-1-voltcontrolvoltage. If Vcis 0.5volttheoutputwillbe0.5voltp·p.
8-89
II
MC1495L I MC1595L
II
OPERATIONS AND APPLICATIONS INFORMATION INDEX
1. THEORY OF OPERATION
2. DESIGN CONSIDERATIONS 2.1 General 2.1.1 Linearity, Output Error, ERX or ERY 2.L2 3-dB Bandwidth and Phase Shift 2.1.3 Maximum Input Voltage 2.1.4 Maximum Output Voltage Swing
3. GENERAL DESIGN PROCEDURES
4. OFFSET AND SCALE FACTOR ADJUSTMENT 4.1 Offset Voltages 4.2 Scale Factor 4.3 Adjustment Procedure
5. DC APPLICATIONS 5.1 Multiply 5.2 Squaring Circuit 5.3 Divide Circuit 5.4 Square Root
6. AC APPLICATIONS 6.1 Frequency Doubler 6.2 Balanced Modulator 6.3 Amplitude Modulation 6.4 Linear Gain Control
8-90
ORDERING INFORMATION
Device
MC1496G MC1496L MC1496P MC1596G MC1596L
Temperature Range
0°C to +70°C 0°c to +70°C ,0°C to + 70°C -55°C to +125°C -55°C to + 125°C
Package
Metal Can Ceramic DIP Plastic DIP
Metal Can Ceramic DIP
MC1496 MC1596
BALANCED MODULATOR - DEMODULATOR
. designed for use wh.ere the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier arid amplitude modulation, synchronous detection, °FM detection, phase detection, and chopper applications. See .Motorola Application Note AN-531 for additional design information. · Excellent Carrier Suppression - 65 dB typ@ 0.5 MHz
-50dBtyp@10MHz · Adjustable Gain and Signal Handling · Balanced Inputs and Outputs · High Common-Mode Rejection - 85 dB typ
FIGURE 1 -SUPPRESSED-CARRIER
OUTPUT WAVEFORM
BALANCED MODULATOR - DEMODULATOR
SI LICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 603
VEE
10
S i g n a l l n p u @ 1o o1u 1 p u 1
Gain A(!1ust 2
. -
8 Carrier lnpu!
Gain AdJuSt 3 Signal Input 4
· ·
7 Carrier Input
6 Output 5
- PLASPTSICUPFAFCIXKAGE CASE 646
(MC1496 only)
CERALAMSSICUEFPFA1XCKAGE
C
632
TO 116
.I_)
FIGURE 2 -SUPPRESSED-CARRIER
SPECTRUM
FIGURE 4 - AMPLITUDE-MODULATION SPECTRUM
II
FIGURE 3 AMPLITUDE-MODULATION
OUTPUT WAVE FORM
8-91
II
MAXIMUM RATINGS* (TA= +25°C unless otherwise noted)
Rating Applied Voltage
(V5 - V7, Vg - V1. Vg - V7, Vg - Vg, V7 - V4, V7 - V1, Va - V4, Vs - Vg, V2 - V5, V3 - V5) Differential Input Signal
Maximum Bias Current Power Dissipation (Package Limitation)
Ceramic Dual In-Line Package Derate above TA = +25°c
Metal Package Derate above TA = +25°C
Operating Temperature Range
Storage Temperature Range
.,
.,,
MC1496 MC1596
Symbol D.V
Value 30
V7 - Vg V4 - V1
15 Po
1 /:·'
TA
Tstg
+5.0 t(5+15Rel
'10
575 3.85
·,·,,,
. '6BO' ,, '
4.6
0 to +70 -55to+125
-65 to +150
Unit Vdc
Vdc
mA
mW mW/°C
mW mW/°C
oc
OC
ELECTRICAL CHARACTERISTICS* !Vee= +12 Vdc, VEE= -8.0 Vdc, 15 = 1.0 mAdc,' RL = 3.9 kS'2, Re= 1.0 kQ.
TA= +25°C unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted.)
MC1596
MC1496
Characteristic
Fig Note Symbol Min Typ Max Min Typ Max
Carrier feedthrough Ve= 60 mV(rms) sine wave a~d offset adjusted to zero
fc = 1.0 kHz fc = 10 MHz
5
1
VcfT
-
40
-
-
140 -
-
40
-
-
140 -
Ve= 300 mVp-p square wave: offset adjusted to zero offset not adjusted
fc = 1.0 kHz fc = 1.0 kHz
- 0.04 0.2
- . 20 100
- 0.04 0.4
-
20 200
Unit µV(rms)
mV(rms)
Carrier Suppression
Is = 10 kHz, 300 mV(rms)
tc = 500 kHz, 60 mV(rms) sine wave
le= 10 MHz, 60 mV(rms) sine wave
5
2
Vcs
dB
50 65 -
40 65 -
-
50 -
-
50 -
k
Transadmittance Bandwidth (Magnitude) (R L = 50 ohms)
8
8
BW3dB
Carrier Input Port, Ve= 60 mV(rms) sine wave
- 300 -
Is= 1.0 kHz, 300 mV(rms) sine wave
Signal Input Port, Vs= 300 mV(rms) sine wave
-
80 -
Ivel= 0.5 Vdc
-
300 -
-
80 -
MHz
Signal Gain Vs= 100 mV(rms), f = 1.0 kHz; Ivel= 0.5 Vdc
10
3
Avs
2.5 3.5 -
2.5 3.5 -
VIV
Single-Ended Input Impedance, Signal Port, f = 5.0 MHz .Parallel Input Resistance Parallel input Capacitance
Single-Ended Output Impedance, f = 10 MHz Parallel Output Resistance Parallel Output Capacitance
Input Bias Current
11+14
17+!3
lbs= -2-; lbC = -2--
Input Offset Current 'ioS = '1 -14; lioC = 17-13
Average Temperature Coefficient of Input Offset Current (TA = -55°C to + 125°Cl
6
-
6
-
7
-
7
-
7·
-
rip Cip
rop Cop
'bs 'be
lliosl lliocl ITC1iol
- 200 -
-
- 2.0 -
--
- 40 -
-
-
5.0 -
-
-
12 25
-
-
12 25
-
-
0.7 5.0 -
-
0.7 5.0 -
-
2.0 -
-
200 -
2.0 -
40 -
5.0 -
12 30 12 30
0.7 7.0 0.7 7.0
2.0 -
k1! pf kn pf µA
µA
nA/0 c
Output Offset Current (15 - lg)
7
-
Average Temperature Coefficient of Output Offset Current 7
-
(TA = -55°c to +125°Cl
llool
-
ITC1ool -
14 50 -
90 -
-
14 80 90 -
µA nA/0 c
Common-Mode Input Swing, Signal Port, fs = 1.0 kHz
9
4
CMV
-
5.0 -
-
5.0 -
Vp-p
Common-Mode Gain, Signal Port, fs = 1.0 kHz, Ivel = 0.5 Vdc
9
-
Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9)
10
-
Differential Output Voltage Swing Capability
10
-
Power Supply Current 15+ lg
7
6
'10 DC Power Dissipation
7
5
ACM
Vo . Vout
'cc IEE Po
-
-85 -
-
-
8.0 -
-
-
8.0 -
-
-
2.0 3.0 -
'-
3.0 4.0
-
-
33 -,
-
-85 -
8.o/ 8.0 -
2.6 4.0 3.0 5.0
33 -
dB
I
Vdc Vp-p mAdc
mW
*Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of th is specification sheet.
8-92
MC1496, MC1596
GENERAL OPERATING INFORMATION*
Note 1- Carrier Feedthrough
Carrier foedthrough is defined as the output voltage at carrier frequency with only the carrier applie.d (signal voltage= 0).
Carrier nµll is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer (R 1 of Figure 5).
Note 2 - Carrier Suppression
Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.
Carrier suppression is very dependent' on carrier input level, as shown in Figure 22. A low value of the carrier d9es not fully . switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A_ higher than optimum carrier level results in unnecessary device and circuit carrier feedthrough, which again degenerates 'the suppression figure. The MC1596 has been characterized with a 60 mV(rms) sinewave carrier input signal. This level provides optimum carrier suppression ·at carrier frequencies in the vicinity of 500 kHz, and is generally recommended for balanced modulator applications.
Carrier feedthrough is independent of signal level, Vs. Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair - or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement p.laces an upper limit on input-signal amplitude (see Note 3 and Figure 20). Note also that an optimum carrier level is recommended ·in Figure 22 for good carrier suppression and minimum spurious sideband generation.
At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.
Note 3 - Signal Gain and Maximum Input Level
Signal gain (single-ended) at low fre·quencies is defined as the voltage gain,
base current, Po= 2 15 (V5 - V10) + 15 (V5 -V10) where subscripts refer to pin numbers.
Note 6 - Design Equations
The following is a partial list of design equations needed to operate the circuit with other supply· voltages and input conditions. See Note 3 for Re equation.
A. Operating Current The internal bias currents are set by· the conditions at pin 5.
Assume:
then:
I B<<I c for all transistors
where: Rs is the resistor between pin 5 and ground
¢i = 0.75 V at TA= +25°c
The MC1596 has been characterized for the condition I 5 = 1.0 mA and is the generally recommended value.
B. Common-Mode Quiescent Output Voltage
Note 7 - Biasing
The MC1596 requires three de bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least-2 volts· collector-base bias on al I transistors while not exceeding the voltages given in the absolute maximum rating table;
30 Vdc ::?- [(V5, Vg) - (V7, Vsll ~ 2 Vdc
A constant de potential is applied to tne carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" (Ve = 0.5 Vdc). This in effect forms a cascode differential amplifier.
Linear operation requires that the signal input be below a critical value determined by RE and the bias current 15
Vs ~ 15 RE (Volts peak)
Note that in the test circuit of Figure 10, Vs corresponds to a maximum value of 1 volt peak.
Note 4 - Common-Mode Swing
The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit ·and biasing conditions chosen (see Note 6).
Note 5 - Power Dissipation
Power dissipation, Po, within the integrated circuit package should be calculated as the summation of the voltage-.-:urrent products at each port, i.e. assuming Vg = V5, 15 = 15 =lg and ignoring
The foregoing conditions are based on the following approximations:
Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.
Note 8 - Transa'dmittance Bandwidth
Carrier transadmittance bandwidth is the 3-dB bafldwidth of
the device forward transadmittance as defined by:
Y21C
I i0 (each sideband)
Vs (signal)
V0 = 0
Signal transadmittance bandwidth is the 3-dB bandwidth of the
device forward transadmittance as defined by:
I , i0 (signal)
Y21S =vs (signat)
V c = 0.5 Vdc, V 0 = 0
*Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.
II
8-93
MC1496, MC1596
Note 9 - Coupling and Bypass Capacitors C1 and C2 Capacitors C1 and C2 (Figure 5) should be selected for a re-
actance of less than 5.0 ohms at the carrier frequency.
Note 10 - Output Signal, V 0 The output signal is taken from pins 6 and 9, either balanced
or single-ended. Figure 12 shows the output levels of each of the two output sidebands resu Iting from variations in both the carrier and modulating signal inputs with a single-ended output connection.
Note 11 - Signal Port Stability Under certain values of driving source impedance, oscillation
may occur. In this event, an RC suppression network should be
connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.
1 SIGNAL INPUT O>----~~~--(PINS 1 &4) r·OP'
An alternate method for low-frequency applications is to insert a 1 k-ohm resistor in series with the inputs, pins 1 and 4. In this case input current drift may cause serious degradation of carrier suppression.
TEST Cl RCUITS
FIGURE 5 - CARRIER REJECTION AND SUPPRESSION
vcc
+12 Vdc
1 k
lk
51
C2 CARRIER 0.1 µF
INPUTVC-1
Vs MODULATING
SIGNAL INPUT 10 k
C1
i 0.1.uF
51
CARRIER NULL
Re
MCl 596 MC1496
RL 3.9 k
t--<:>---~+Vo
t--<:>----Vo
t t 110 I 5 6.8 k v-
-8 Vdc VEE
FIGURE 6 - INPUT-OUTPUT IMPEDANCE
Zin-
Re= 1 k
10 -8 Vdc
t-<:>-----e +Vo +--Zout -Vo
6.8 k
a
FIGURE 7 - BIAS AND OFFSET CURRENTS
vcc
+12 Vdc
FIGURE 8 - TRANSCONDUCTANCE BANDWIDTH
vcc
lk
lk
Re= 1 k 2k
Re
i 0.1µF
CARRIER 0.1 µF INPUT VC-1
vs,
MODULATING SIGNAL INPUT 10 k
-8 Vdc VEE
6:8 k
6.8 k
CARRIER NULL
v-
-8 Vdc VEE
Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numb~rs for plastic or ceramic packaged dev.ices refer to the first page of this specification sheet.
8-94
MC1496, MC1596
TEST Cl RCUI TS (continued)
FIGURE 9 - COMMON-MODE GAIN
Vee
+12 Vdc
FIGURE 10 - SIGNAL GAIN AND OUTPUT SWING
vcc
+12 Vdc
3.9 k
1-<)-.4.-+---e+vo
VS
1-<>------e -Vo
50
6.8 k
ACM; 20 log !Vol
-8 Vdc
VS
-8 Vdc
VEE
VEE
Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin
numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.
TYPICAL CHARACTERISTICS (continued) Typical characteristics were obtained with circuit shown in Figure 5, fc = 500 kHz (sine wave),
Ve= 60 mV(rms), fs = 1 kHz, Vs= 300 mV(rms), TA= +25°C unless otherwise noted.
FIGURE 11 - SIDEBAND OUTPUT versus CARRIER LEVELS
:;;;:2.0~-~--~-~--~--~-~--~~-
E
'?:
~ 1.6r----t---·+----+---+---f----+--+-----l
~
~o 1.2 f----f---f--.L.--1SI+G.N-AL-I:N_P_U_T-; -60d0-m-V-+J-=~=~~--i
: 1-----+-·-.L"'._-+V7'~.c._-1--~'---400mv--+---+----<
':~.::: 0.8 ~-~LIrL//_ ~VI1""_-~.,-..-~,_-==3-00-m+V -~==~=t=~
~
~
0. 4
1---~t;:.:I:L:._.~..-.i~-~--~-~:::-,_.----:::::b--12-0=01m0V:::;;rf=m=:V=~==*===
~
i=
r--
5 00
50
100
150
200
FIGURE 12 - SIGNAL-PORT PARALLEL-EQUIVALENT
1.0 M
~ 500 : 9
UJ
u
~ 100 t;;
~ 50
~
...J 10
UJ ...J
-: 5.0
INPUT RESISTANCE versus FREQUENCY
+rip y r?
_J:::1
,.
\
\ -fip
."' ......
..s
'it
~ 1.0
1.0
5.0
10
h. ,....
50
100
CARRIER LEVEL (mV[rmsl)
f, FREQUENCY (MHz)
FIGURE 13 - SIGNAL-PORT PARALLEL-EQUIVALENT INPUT CAPACITANCE versus FREQUENCY
5.0
uc...
~ 4.0
< le-:;
<(
~ 3.0
....
;:;;)
0.
~ 20
~-
,...
J)'
i/'
~ ~
<
~
1.0
.I
0
1.0
2.0
5.0
10
20
60
100
f, FREQUENCY (MHz)
FIGURE 14 - SINGLE-ENDED OUTPUT IMPEDANCE versus FREQUENCY
140
120
I I 14
12~
100
l\
~
z
10
~
u
~
80
J'1 rop
8.05
60
Cop
~
40
20 0
a.o5s
Cl
...I
~
t-;; ,...
4.0~
2.04fi! 0 i
0
1.0
10
100
f, FREQUENCY (MHz)
8-95
MC1496, MC1596
TYPICAL CHARACTERISTICS (continued)
Typical characteristics were obtained with circuit shown in Figure 5, fc = 500 kHz (sine wave), Ve= 60 mV(~ms), fs= 1 kHz, V5=30,0 mV(rms), TA= +25°Cun.lessotherwisenoted.
FIGURE 15 - SIDEBAND AND SIGNAL PORT TRANSADMHTANCES versus FREQUENCY
1.0
lllll
o 0.9 r--+-lJiilillRT
! :: I
."l h
, !l> ,. ~
~ ll ~ 0.6 t---+-SIOEBANO-
SIDEBAND
"'-. 1 \
0.5
TAANSADMI TTAN CE -+++t+tt--,-"-'+h.."'d-+-t+t+++
~
~
;;2
i-,.
.;:<
I ~ 0.4
_lout (EACH S,rDEBANDI Y21 - . Vin (SIGNAL)
V out
=
0
' --1----lH--++H
~ ~~~ 0.3 t----+-t-+++++t+--_l+ I k1
IPD RT I i+--+il+_l++Jl++'t---+---tl-i'HH-tt-H
11 TRANSADMITTANCE
I 0.2
1
r+-+-n~11+Tttt-1---1--+-++tt+ti
0.1 t----+-t-+++++t+- Y21 = 1~ Vout = 0 IV CI = 0.5 Vdc +----t-+-t\-l+tt-H
0
l lillwl l l illill
0.1
1.0
10
100
1000
le. CARRIER FREQUENCY (MHz)
FIGURE 16 - CARRIER SUPPRESSION versus TEMPERATURE
~ 10
z 0
20
I 30
cc
cw c
40
;c:c; 50
~ > 60
70 -75
MC1596
~MC1496-i
(+700C)
............
........
~
_i.-
~/ X
-50 -25
+25 +50 +75 +100 +125
TA, AMBIENT TEMPERATURE (OC)
+150 +175
FIGURE 17 - SIGN.AL·PORT FREQUENCY RESPONSE
+20r-~-r-~~~-~-r-~~-~~"'T'T'TT'Mr--,---r-'r"T""T'T'TTI
RL = 3.9 k
~ l==t:+nmn::=1~::+:mm~Jcl'\_j__(._ ~e = 500 n
~ +10
-r
w
.L
.~
RL = 3.9 k (Standard
§; r--t- Re= 1 k Test Circuit)
' ~
~I'~
~l: ;·~ k-t-l""N~H+--t-+-+++++H
WW~ ~:: -10
I:tlillli ~ ~1 1
=
_l__J
tori
nrr--+--t-+++t+-~-..-,~t-+-+++++t
~C!l -20
rn ; - IVCI = 0.5 Vdc ,
R~Re= 1k -1
~ ~
<(
-30
~__.__._.w..lL..U.].._____.1--'~_v._i~Rl.w.
l~lu.
.i.li-eJ ++-:-~~__. +-::_:---'-+--+-'--+-i.L..j,.J
i-,.r_._++J-1,...++++........,
0.01
0.1
1.0
10
100
I, FREQUENCY (MHz)
FIGURE 18 - CARRIER SUPPRESSION versus FREQUENCY
le. CARRIER FREQUENCY (MHz)
II
FIGURE 19 - CARRIER FEEDTHROUGH versus FREQUENCY
10
§
>
.§.
w
(!) <(
~ 1.0
....
0
>
~
~
0
ffi 0.1 cc
;a::;
..d-"' IL H
iT
~
~
> 0.01 H
0.05 0.1
0.5 1.0
5.0 10
50
le, CARRIER FREQUENCY (MHz)
FIGURE 20 - SIDEBAND HARMONIC SUPPRESSION versus INPUT SIGNAL LEVEL
--'
<ff(i 10
2 ~~20t----+--+-----t---l----+-----+---+------t
z 'O
~i30t----+--+-----t---+---+----tv-~...d~.-----t
C..> co
j / 7 ' ~~ ~~401----+----+------+--tc-±+J-.3t-s--+---,_.---+-----<
p: ~====:::::-1:1--1::::~n":"=c=-±r-2-fs_-_t~--~i~---r--J ~ ~50t---t----t----!---:±..-=..,,....-'--·+----+----+-----i ..
~ BO~~.......r...----~......_~__.~---'-~-..__~__.-~......_-___,
0
200
400
600
800
Vs, INPUT SIGNAL AMPLITUDE (mV!r.ms])
8-96
MC1496, MC1596
TYPICAL CHARACTERISTICS (continued)
FIGURE 21 ~SUPPRESSION OF CARRIER HARMONIC SIDEBANDS versus CARRIER FREQUENCY
FIGURE 22 - CARRIER SUPPRESSION versus CARRIER INPUT LEVEL
70 .................."4--_....__._...._......._LI-L.1..---'-...._.J.......J.-LI..1..1.J'---.l..--'---.1...1
0.05 0.1
0.5 1.0
5.0 10
50
tc. CARRIER FREQUENCY (MHz)
~ 10
2
t---+--+---+---+---+---+--+--+--1-----4
i D
;;-;
:1----1---'-'-~-'-----+-~-+--~~ tc=lOMHz~
~~ 40---......
17 ~
~;-3 50
>
"""'
7
"""""1 y 7~
tc = 500 kHz~ --r-
60,
_..,.P
70'---'---'----'-----'----'---'----J.---1--J____J
0
100
200
300
400
500
Ve. CARRIER INPUT LEVEL (mV[rms))
OPERATIONS INFORMATION
The MC1596/MC1496, a monolithic balanced modulator cir-
cuit, is shown in Figure 23. This circuit consists of an upper quad differential amplifier
driven by a standard differential amplifier with dual current · sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the. product of the two input signals.
Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.
The lower differential amplifier has its emitters connected to the package pins so that an, external emitter resistance may be used. Also, external .load resistors are employed at the device output.
Fl.GURE 23 - CIRCUIT SCHEMATIC
'1-19
1+16
81-1
~NAPR:.:ER Ve 0 - - - - - - 4 - - - 4 - - - - - - 4 - - - _ _ _ J
lltl
SIGNAL INPUT
41-1 Vs~------1-------+--~
11tl
Signal Levels
The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.
For low-level operation at both input ports, the output signal wi,11 contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes.
For high-level ·operation at the carrier input po.rt and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harm.onics of the carrier frequency.· The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output.
FIGURE 24- TYPICAL MODULATOR CIRCUIT
lk
lk
Ve 0.1 µF
CARRIER ~1--__.._-------r'""-l I N P U T - - ·---------~-I Vs
MODULATING
SIGNAL INPUT
10k
MC1596G 10
·
Pin number refer,ences pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.'
8-97
MC1496, MC1596
OPERATIONS INFORMATION (continued)
The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions.
Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the follow.ing exp~ession:
V ~(15) (RE)volts peak.
This expression may be used to compute the minimum value of RE for a given input voltage amplitude.
FIGURE 25 - TABLE 1 · VOLTAGE GAIN AND OUTPUT FREQUENCIES
. Carrier Input Signal (Vcl
Approximate Voltage Gain·
Output Signal Frequency( s)
RL Ve
Low-level de
2(RE + 2rel(~T)
fM
High-level de Low-level ac
RL RE + 2re
RL Vc(rms)
2J2(~T)mE + 2rel
fM fc±fM
High-level ac
0.637 RL RE+ 2re
fc ±fM. 3tc ±tM,
5fc±fM · . .
The gain from the modulating signal input port to the output is the MC 1596/MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.
As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1596/ MC1496 for a low-level modulating signal input and the following carrier input conditions:
1) Low-level de 2) High-level de 3) Low-level ac 4) High-level ac
These gains are summarized in Table 1, along with the frequency components contained in the output signal.
NOTES: 1. Low-level Modulating Signal, VM. assumed in all cases .
Ve is Carrier Input Voltage. 2. When the -output signal contains multiple frequencies,
the gain expression given is for the output amplitude of each of the two desired outputs, fc + fM and fc - fM.
3. All gain expressions are for a. single-ended output. For
a differential output connection, multiply each expression by two. 4. RL =Load resistance. 5. RE =Emitter resistance between pins 2 and 3. 6. re = Transistor dynamic emitter resistance, at +25°C;
26 mV re~ 15 (mA)
7. K = Boltzmann'·s Constant, T = temperature in degrees
Kelvin, q =the ch.arge on an electron.
KqT ~ 26 mV at room temperature
·
APPLICATIONS INFORMATION
Double sideband suppressed carrier modulation is the basic application of the MC1596/MC1496. The suggested circuit tor this application is shown on the front page of this data sheet. ' In some applications, it may be necessary to operate the MC1596/MC1496 with a single de supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed tor operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.
AM Modulator
The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.
All that is required to shift from suppressed carrier tp AM · operation. is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal.
However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modifiecl for A.M operation by changing two rvsistor values in the null circuit as shown in Figure 28.
Product Detector
The MC1596/MC1496 makes an excellent SS6 product detec· tor (see Figure 29).
This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operat{ng at an intermediate frequency of 9 MHi.
The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50
kHz the 0.1 µF capacitors on pins i and 8 should be increased to
1.0 µF. Also, the output filter at pin 9 cap be tailored to a specific intermediate frequency and ·audio amplifier input impedance.
As in all applications of the MC1596/MC1496, the emit.ter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.
This circuit may also be used as an AM detector by introducing carrier signal at the carrier input and an AM signal at the SSB input.
The carrier signal may. be derived from the intermediate fre· quency signal or generated locally. The carrier signal may be introcluced with or without modulation, provided its level is sufficiently high to saturate the upper quad- differential ampllf!et.
If the Garrier signal is modulated, a 300 mV(rms) input level is recommended.
8-98
MC1496, MC1596
APPLICATIONS IN FORMATION (continued)
Doubly Balanced Mixer
The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks:
The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV(rms).
Figure 30 shows a mixer with a broadband input and a tuned output.
Frequency Doubler
The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.
Figures 31 and 32 show a broadband frequency doubler and a tuned output .very high frequency (VHF) doubler, respectively.
Phase Detection and FM Detection
The MC1596/MC1496 will function as aphase detector, Highlevel input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals.
An FM detector may be constnicted by using the phase detector principle. A tuned circuit is addeq at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then prol.'ide an output which is a function of the input signal frequency.
Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for· plastic or ceramic packaged devices refer to the first. page of this specification sheet.
TYPICAL APPLICATIONS.
FIGURE 26 - BALANCED MODULATOR (+12 Vdc SINGLE SUPPLY)
FIGURE 27 - BALANCED MODULATOR-DEMODULATOR
lk
820
vcc
1.3k
+12 Vdc
lk
lk
10.lµF
RL
3 k
3.9 k
,...._..___ __,.......,~0-1--_-0<· 1, .µ._F....._.o.ss
- Ve 0.1 µF
-=- 7
CARRIER INPUT
OUTPUT CARRIER ~r------------<.>--1
60 mV(rms) --i--t--i--11----41--<J~
INPUT --->---------u--+
Vs
MODULATI~ +
MODULATING
SIGNAL INPUT
10 k
SIGNAL INPUT 10 µF
10
.300m.V(rms) 15 v
25µF
15 v
6.8k
10k
CARRIER r--ANV--1---'
NULL
10 k
100
~------... VEE
CARRIER NULL
-8 Vdc
50 k
FIG'URE 28 - AM MODUl:.ATOR CIRCUIT
lk
lk
Ve 0.1 µF CARRIER ~l----+--'------<>--1
INPUT
Vs
MODULATING
8i~~~f 1so
15 ..___ _ _ _ _ _.. Vee
-8Vdc
6.~ k
FIGURE 29 - PRODUCT DETECTOR (+12 VdcSINGLE SUPPLY)
Vee +12 Vdc
3k
·
8-99
MC1496, MC1596
·
TYPICAL APPLICATIONS (continued)
FIGURE 30 - DOUBLY BALANCED MIXER
(BROADBAND INPUTS, 9.0 MHz TUNED OUTPUT)
vcc
lk
lk
.::r 0.001 µf
LOCAL
-::-
OSCILLATOR 0.001 µF
;~~~:(,:;---Jl----O---l
RF INPUT
51
RFC lOOµH
n9
·
5-80 pF
OOlµF
9.0 MHz OUTPUT RL - SOU
-480 pF
6.8k
-::-
-::-
'
-
-
-
-
-
-
-
·
-
sVEE_ Vdc-
Ll = 44 TURNS AWG NO. 28 ENAMELED WIRE, WOUND ON MICROMETALS T,YPE 44·6 TOROID CORE.
FIGURE 31 - LOW-F.REQUENCY DOUBLER
lk
+ lOOµF 15 Vdc I
MC1596 MC1496
10k
10k
50k
10
100
100
15
VEE -8Vdc
6.8k
OUTPUT
FIGURE 32 .:_ 150 to 300 MHz DOUBLER
vcc
1k
100
0.001 µF 150 MHz INPUT-...-..>-----<.J>---1
100 BALANCE
6.8 k
L1=1 TURN AWG NO. 18WIRE, 7/32" ID
t
~ ~
I u
+ u
~ I u
DEFINITIONS
~ ~
I
+
u (J}
N
u
5
~
I u
N
u 5
+ u
N
~ ~
u; c:::;
c I c c a u
I u
£!
u
+ u
u; ;:;; +
u
FREQUENCY -----BALANCED MODULATOR SPECTRUM ,
tc CARRIER FUNDAMENTAL ts MODULATING SIGNAL fc ±ts FUNDAMENTAL CARRIER SIDEBANDS
tc ± nts FUNDAMENTAL CARRIER SIDEBAND HARMONICS ntc CARRIER HARMONICS
ntc ± nts CARRIER HARMONIC SIDEBANDS
Pin number references pertain to· this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the·first page of this specification sheet.
8-100
ORDERING INFORMATION
Device
MC1133G MC1733L MC1733CG MC1733CL MC1733CP
Temperature Range
-55°C to +125°C, -55°C to +125°C
.0°c to + 70°C 0°C to +70°C 0°c 'to, + 70°C
Package
Metal Can Ceramic DIP
Metal Can Ceramic DIP Plastic DIP
MC1733 MC1733C
DIFFERENTIAL VIDEO AMPLIFIER
... a wideband amplifier with differential input and differential output. Gain is fixed at 10, 100, or 400 without external components or, with the addition of one external resistor, gain becomes adjustable from 10 to 400.
· Bandwidth - 120 MHz typical@ Avd = 10 · Rise Time - 2.5 ns typical@ Avd = 10 · Propagation Delay Time - 3.6 ns typical@ Avd = 10
DIFFERENTIAL VIDEO WIDEBAND AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL·PACKAGE
CASE 603 T0-100
FIGURE 1 - BASIC Cl RCUIT
GAIN SELECT
FIGURE 2 - VOLTAGE GAIN ADJUST CIRCUIT
Aadi
INPUT 1 INPUT 2
OUTPUT I OUTPUT 2
VEE G1A G2B GAIN SELECT
INPUT 1
INPUT 2
O.lµf f.ouTruT k
T-ouT;uT 0.2
VEE G1,\ G2s
FIGURE 3 - EQUIVALENT CIRCUIT SCHEMATIC
G2A GAIN SELECT.
GJA GAIN SELECT
INPUT 1
OUTPUT 1
INPUT 2
Gm GAIN SELECT
OUTPUT 2 (top view!
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
P SUFFIX PLASTIC PACKAGE
CASE 646
INPUT 2 NC
G2B GAIN SELECT
NC 6 OUTPUT 2
INPUT 1 NC G2A GAIN SELECT
(top view)
·
8-101
MC1733, MC1733C
·
MAXIMUM RATINGS (TA~ 125°C unless otherwise noted)
Rating Power Supply Voltage
Differential Input Voltage
Common-Mode Input Voltage
Output Current
Internal Power Dissipation (Note 1) Metal Can Package Ceramic Dual In-Line Package
Operating Temperature Range
MC1733C · MC1733
Storage Temperature Range
Symbol Vee VEE Vin V1cM
io
Po
TA
Tstg
Value +8.0 -8.0 ±5.0 ±6.0
10
500 500 0 to +70 -55 to +125 -65 to +150
Unit Volts
Volts Volts mA
mW
oc
oc
ELECTRICAL CHARACTERISTICS (Vee~ +6.0 Vdc, VEE= -6.0 Vdc, at TA= +25°C unless otherwise noted.)
....:.
MC1733
MC1733C
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)
Avd
300
400
500
250
400
90
100
110
80
100
9.0
10
11
8.0
10
Bandwidth Gain 1 Gain 2 Gain 3
(Rs =50 nl
BW
-
40
-
-
40
-
90
-
-
90
-
120
-
-
120
Rise Time Gain 1 Gain 2 Gain 3
(Rs= 50 n., V0 = 1 Vp-p)
tTLH tTHL
-
10.5
-
-
10.5
-
4.5
10
-
4.5
-
2.5
-
-
2.5
Propagation Delay Gain 1 Gain 2 Gain 3
(Rs= 50D., V0 = 1 Vp-p)
tPLH tPHL
-
7.5
-
-
7.5
-
6.0
10
-
6.0
-
3.6
-
-
3.6
Input Resistance Gain 1 Gain 2 Gain 3
Input Capacitance (Gain 2)
Rin
-
. 4.0
-
-
4.0
20
30
-
.10
30
-
250
-
-
/ 250
Cin
-
2.0
-
-
2.0
Input Offset Current (Gain 3)
Input Bias Current (Gain 3)
Input Noise Voltage
(Rs= 50 n., BW ~ 1 kHz to 10 MHz
1110! 11s Vn
-
0.4
3.0
-
0.4
-
9.0
20
-
9.0
-
12
-
-
12
Input Voltage Range (Gain 2)
Vin
±1.0
-
-
±1.0
-
Common-Mode Rejection Ratio
Gain 2
(VcM = ±1 V, f ~ 100 kHz)
Gain 2
(VcM=±1 V,f=5MHz)
Supply Voltage Rejection Ratio
Gain 2
(~ V 5 =±0.5 V)
Output Offset Voltage
Gain 1
Gain 2 and Gain 3
CMRR PSRR Voo
60
86
-
60
86
-
60
-
-
60
'
50
70
-
50
70
-
0.6
1.5
-
0.6
-
0.35
1.0
-
0.35
Output Common'Mode Voltage !Gain3) Output Voltage Swing (Gain 2)
VcMO Vo
2.4
2.9
3.0
4.0
3.4
2.4
2.9
-
3.0
4.0
Output Sink Current (Gain 2) Output Resistance
'o Rout
2.5
3.6
-
2.5
3.6
-
20
-
-
20
Power Supply Current (Gain 2)
lo
-
18
24
-
18
Max
600 120 12
-
-
-
12
-
10
-
-
-
-
-
5.0 30
-
-
-
-
-
1.5 1.5 3.4
-
-
..:. 24
Units VIV
MHz
ns
ns
kn.
pF µA µA µV(rms)
v
dB
dB
"
v
Vp-p mA
n
mA
8·102
MC 1733, MC 1733C
ELECTRICAL CHARACTERISTICS (Vee - +6 o Vdc Vee - -6 o Vdc at T A-T h.!·9_h to T low unless otherwise noted)*
MC1733
MC1733C
Characteristic
Symbol Min
Typ
Max
Min
Typ
Max
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4}
Avd
200
-
80
-
8.0
-
600
250
-
600
120
80
-
120
12
8.0
-
12
Input Resistance Gain 2
Rin
8.0
-
-
8.0
-
-
Input Offset Current (Gain 3}
Input Bias Current (Gain 3)
Input Voltage Range (Gain 2)
Common-Mode Rejection Ratio
Gain 2
(VcM=±1 V,f.;;;;;100kHz)
Supply Voltage Rejection Ratio
Gain 2
(Li Vs= ±0.5 V)
11101
-
-
118
-
-
Vin
±1.0
-
CMRR
50
-
PSRR
50
-
5.0
-
-
6.0
40
-
-
40
-
±1.0
-
-
-
50
-
-
-
50
-
-
Output Offset Voltage Gain 1 Gain 2 and Gain 3
Voo -
-
-
1.5
-
-
1.2
-
-
1.5
-
1.5
Output Voltage Swing (Gain 2)
Vo
2.5
-
-
2.5
-
-
Output Sink Current (Gain 2)
lo
2.2
-
-
2.5
-
-
Power Supply Current (Gain 21
lo
-
-
27
-
-
27
o *T1ow = 0 c for MC1733C, -55°G for MC1733
Thigh= +10°c for MC1733C, +125°c tor MC1733.
Units VIV
kn
µA µA
v
dB
dB
v
Vp-p mA mA
FIGURE 4 - MAXIMUM ALLOWABLE POWER DISSIPATION
NOTES 'Note 1:
Note 2: Note 3: Note 4:
Derate metal package at 6.5 mW/0 c· for operation at ambient temperatures above 75°C and dual in-line package at 9 mW/°C for operation at ambient temperatures above 100°c (see Figure 41. If operation at high ambient temperatures is required (MC1733) a heatsink may be neces'sary to limit maximum junction temperature to 150°C. Thermal resistance, junction-to-case, for the metal package is 69.4°C per Watt. Gain Select pins G1A and G1B connected together. Gain Select pins G2A and G2B connected together. All Gain Select pins open.
800
~ .§
z
0
t==
600
~
~
1---+--+---ti,......-+----!-CERAMIC DUAL-
", I\ Ci
a:
~
400
'\ \
IN-LINE PACKAGE
+ - - ..£.. 9 mW/OC
~ '< ~
0 ;;(
1----1- METtL~~7 ~AGE ___,..,
5
~ ' 200
.
\ ~
I~
~
0
+50
+100
+150
+200
TYPICAL CHARACTERISTICS
TA, AMBIENT TEMPERATURE (OC)
(Vee= +6.0 Vdc, Vee = -6.0 Vdc, TA = +25°C unless otherwise noted.)
FIGURE 5 - SUPPLY CURRENT versus TEMPERATURE
FIGURE 6 - SUPPLY CURRENT versus SUPPLY VOLTAGE
20.---..--..----.---,----.---.----.--~-~-~
28
TA,AMBIENTTEMPERATURE (OC)
24
.~s
~ 20
a:
L
::;)
'-'
i 16
9 12
~
.L1v L v Y'
L ' 8.0
3.0
4.0
5.0
6.0
v L
/ vL
7.0
8.0
Vcc. IVEEI. SUPPLy VOLTAGE. (VOLTS)
·
8-103
MC1733, MC1733C
TYPICAL CHARACTERISTICS (continued)
(Vee= +6.0 Vdc, Vee = -6.0 Vdc, TA= +25°C unles~ otherwise noted.)
FIGURE 7 - GAIN verus TEMPERATURE
1.15
~
1.10
SAIN1
z
~ 1.05
w C!l
~ 1.0
--
0 >
w 0.95
>
~ 0.90
0.85
. 0.80 -60
~
~
GAIN 3-1~
'~ .....,..._
~
~11NH~
~
~
~
~
-20
+20
+60
+100
+140
T, TEMPERATURE (OC)
60
~ 50
z;;:
C!l 40
LU C!l <(
~ 30 0 > ~ 20
0
ri'i
~ 10
cz;; ~
<(
1.0
FIGURE 8 - GAIN versus FREQUENCY
JJ
R[JJJJ
~
GAIN 2
~
I .I
~
~ GAIN 3 ~
~~
~
10
100
1.0k
f,FREOUENCY (MHz)
FIGURE 9 - GAIN versus SUPPLY VOLTAGE
FIGURE 10 - GAIN versus RADJUST
·
0.4.....__....__......__....__.___......__.___.___....__.____.
3.0
4.0
5.0
6.0
7.0
8.0
Vcc. IVEEI. SUPPLY VOLTAGE (VOLTS)
FIGURE 11 -GAIN versus FREQUENCY and SUPPLY VOLTAGE
+60
~
z +50
~
~ '-+40
<
~ ~ +30 c w
~ +20
"z' +10
Ci5
J
-10 1.0
Vs].±8.~J l!. l
J GAIN 2
RL=l.OkU
~
~ I!'
~1·1i
UN ~ -1. .i_l_l
I '
10
100
1.0 k
f, FREQUENCY (MHz)
FIGURE ·12 - GAIN versus FREQUENCY and TEMPERATURE
60
~
;z;: 50
C!l
LU
C!l <(
40
~
0
>
0 LU 0
ri'i
39
20
r---+-1-+-H++~-+-+-+-+++~~i·l
~
A ~
c;; ~
10 ,____,,__.__.-+->-+-+++---+--+-+25oc fikl-++:l-"':iflllllll--h+-1H-t-++t
l1Jo~}'
<(
-10 1.0
10
100
1.0k
f, FREQUENCY (MHz)
8-104
MC1733, MC1733C
TYPICAL CHARACTERISTICS,(continued) (Vee= +6.0 Vdc, VEE= -6.0 Vdc, TA= +2s0 e unless otherwise noted.)
FIGURE 13 - PULSE RESPONSE versus GAIN
+1.6
g +1.2
0 ~
w ~ +0.8
s
0 > ~ +o.4
gl~ 0
b GAIN 3
w~ _Jj"""21
GAIN1i::±_
T
11!~ l'GAIN 1 J/
J T
RL; 1.0k!1-
-0.4 -15 -10 -5.0
+5.0 +10 +15 +20 +25 +30 +35 t, TIME (ns)
FIGURE 15 - PULSE RESPONSE versus TEMPERATURE
+1.6
g +1.2
0 ~
~·+0.8
<f
~
> ~ +0.4
!:::;
0
~ 0
T GAIN 2
RL; 1.0kn--1
TA; -55°c-.
ale ]fh~/ ~
( L 1////...17'b_+25°C
j V ' " 'I'- +75°CI ~+125°c1
i
l l
-0.4 -15 -10 -5.0
+5.0 +10 +15 +20 +25 +30 +35 t, TIME (ns)
FIGURE 14 - PULSE RESPONSE versus SUPPLY VOLTAGE
+1.6 h - - , .----.....---.---r---r--.----..---..--..,..1--~
1
1-----t---+---+--1-----+---+---+--'GAIN 2 _ RL; 1.0 k!1
g+l.2
~ 1---+-VS; ±8.0 V ~
~
~_,'"0.8
10 y I\:
S
> 0
1---1----t---+----1t11(---7_"'"..L+--t-L\"\--+-±6.0 V-t--±3.0 v
~+0.4
P/
.YI 0~ Ol--___,~-+--+..-.-+--+--+--+--+--+---1
-0.4 ._____.._____._ __.._ __.__ _.__ _.__.....__.....___....__~
-J5 -10 "5.0
+5.0 ii10 +15 +20 +25 +30 +35
t, TIME (ns)
FIGURE 16 - DIFFERENTIAL OVERDRIVE RECOYERY TIME
200
>
..§. w
160
t!l <f I-
~ > 120
i
-' <f
80
! 40
Ci
GAIN2
.Y ·
0
0
10
20
30
40
50 ·so
70
80
OVERDRIVE RECOVERY TIME (ns)
FIGURE 17 - PHASE SHIFT versus FREQUENCY
~
G~2
-5.0 1----+--+-"""'~-.+...-. - + - - + - - - - - + - - - + - - + - - - + - - l
~
~~
ffi -101---1----1--+---l---""'-'l-~--+-I--+--'---+--+---l
e ~
L....._, t~;: -151---+---l'-----l--+---l---+---l"o-.........,--+---+----i
~
<f
if
" - ~ '-"'"
-20 f---1-----1---1--+--+--+--+---+---+-".~..rl
-25 .___.____._ __._ __..._ _,__ _.__ _.__....__....._____.
0
2.0
4.0
6.0
8.0
10
I, FREQUENCY (MHz)
FIGURE 18 - PHASE SHIFT versus FREQUEN~Y
~
-50 -100
l----4--l--~N-l~+-~-"'~-t::d,..--.+-+-~l+---+--+-+-+-++tt1 '~~ 1----11--1--+-+-H+++--+-~+l\~JrI..'\h..._.I.\ .,.~.+HH---+-+-t-+-++1-H
s-150
I\
t~;:-200
i~ ~GAIN 3
~ -250 f----ll--!--+-+-1-++++--+-+-+-+-++-Mil~.-----'\H--+-t-+-t-ttt1
l_._. . . . . ~ -300 1----1'---1--+-+-f·++++--+--+-+-+-+++t-fll\r-+\' G~IN 2-+-
_350 .___.__...._._._.....__......__....__._........_........_........._.U:_._G_A_IN_l......
1.0
10
100
1.0 k
f, FREQUENCY (MHz)
·
8-105
MC1733, MC1733C
·
TYPICAL CHARACTERISTICS (Continued) (Vee= +6.0 Vdc, VEE= -6.0 Vdc, TA= +25°C unless otherwise noted.)
FIGURE 19 - INPUT RESISTANCE versus TEMPERATURE
70
t--GATN 2
60
-UJ 50
u z
<(
.tn 40
~
~ 30
" 20
i£
z ~ z L
L L
.....d
L
L
10 L
0
-60
-20
+20
'+60
+100
+140
TA,AMBIENTTEMPERATURE (OC)
70
60
~
~ 50
UJ
~<.:i 40
0
>
UJ
30
"~ ' ~
20
~ 10
FIGURE 20 - INPUT NOISE VOLTAGE
BWG=A;~ ~JJ
il
v ~
i -~
1.0
10
100
1.0 k
10k
SOURCE RESISTANCE (n)
FIGURE 21 - OUTPUT VOLTAGE SWING and SINK CURRENT versus SUPPLY VOLTAGE
FIGURE 22 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE
o.___.___.___.____J.___...___J...___,...___,'---__,_ __,
3.0
4.0
5.0
6.0
7.0
8.0
Vee. SUPPLY VOLTAGE (VOLTS)
Ci 6.0 t---t--+-t-++++++---+-+-+-+-+++H--.+---t-~'4-14-1-! 6. 2'..
~ 5.0 i---t--+-t-++++++---+-+-+-+-+++H--.+---t-~'4-14-1-!
~
~ 4.0 t--t-+-1-t--r+ttt---+--+-+-t,-.t.il-"~1+--+--+-+-11-+!-++4
~
JZ1
1i' ~ 3.0 r---r--r-+-+-rt+tt---+---+-,11-+-11-H-+++--+--+--+-+-+++-H
g ~ 2.0
y..LJVI
~ 1.0 t---t---t--1t-++++++-17-,LJ,..._+--+-+-+-+++++--+,---if-+-+-i-+++1
1.0 k
10 k
RL LOAD RESISTANCE (H)
FIGURE 23 - OUTPUT VOLTAGE SWING versus FREQUENCY
7.0
aQ.. 6.0 2:.
~ 5.0
~
~ 4.0
<(
~ ~ 3.0
I-
~
I-
2.0
:::;,
0
~ 1.0
JLJJ;UT
~ ......... ~
~
t\
1.0
10
100
1.0 k
f, FREQUENCY (MHz)
FIGURE 24.- COMMON-MODE REJECTION RATIO
~ lQO
~ 901---+--+++Httt---+-+-++ll+f+l----+-+-++l+f+l----+-l-++l-i-#I
~
~ 801---+--+++Htt~l---4"..d--++ll+f+l----+-l-+4-l+f+l---+--l-++l-i-#I
§
~
~ 70t---+-t-++ttttt---+-t-++1ftffk~o--+-'-l--++++~-+-ll-+-H+Hl
w
g
60t--+-t-T-t-Httt--+-t-++1r+ttl----+~!b'j-.l. -i"oktt++l--t-1--+H+!+I
~=i' 501---+--+++H-1+1---+-+-++ll+++l----+-+-++-l+f+~l---""h,...l-++l-i-#I
8
~
~ 40
~
·lOM
lOOM
f, FREQUENCY (Hz)
8-106
MC1733, MC1733C
APPLICATIONS INFORMATION
FIGURE 25- VOLTAGE CONTROLLED OSCILLATOR
FIGURE 26 - OSCILLATOR .FREQUENCY FOR VARIOUS CAPACITOR VALUES
Vee C R2
>-0-----4.._--<> Output
Control Voltage
Ve
By changing the voltage Ve the gain will vary over a range of 10 to 400. This will give a frequency variation about the value set. by the capacitor and shown in Figure 26.
TAPE,DRUM OR DISC MEMORY READ AMPLIFIERS
The first of several methods to be discussed is shown in Figure 27. This block diagram describes a simple Head circuit with no threshold circuitry. Each block represents a basic function that must be performed by the Read circuit. The first block, referred to as "amplfiication", increases the level of the signal available from the Read head to a level adequate to drive the peak detector. Obviously, these signal levels will vary depending on factors such as tape speed, whether the system used is disc or tape, and the type of head and the circuitry used. For a representative tape system, levels of 7 to 25 mV for the signal frorn the Read head and 2 V for the signal to the peak detector are typical. These signal levels are "peak-to-peak" unless otherwise specified. On the basis of the signa I levels men- · tioned above, the overall amplification required is 38 to 49dB.
How the overall gain requirement is implemented will depend somewhat on the system used. For instance, a tape cassette system with variable tape speed may utilize a first stage for gain and a second stage primarily for gain control. Thus, a typical circuit would utilize 35 dB in the first stage and 10to 15 dB in the second stage.
Devices suitable for use as amplifiers fall into one of two categories, operational amplifiers or wideband video amplifiers. Lower speed equipment with low transfer rates commonly uses low cost operational amplifiers. Examples of these are the MC1741, MC1458, MC1709, and MLM301. Equipment requiring higher transfer rates, such as disc systems normally use wideband amplifiers such as the MC1733. The actual cross-over point where wideband amplifiers are used exclusively varies with equipment de-
FIGURE 27 - TYPICAL READ CIRCUIT (METHOD 1)
'output
100
10 k
100 k
l M
10 M
FREQUENCY (Hz)
sign. For purposes of comparison, the MLM301 has slightly less than a 40 dB. open-loop gain at 100 kHz; the MCl 741, a compensated op-amp, has approximately 20 dB open loop gain at 100 kHz; the MCl 73;3 has approximately 33 dB of gain out to 100 MHz (depending on gain option and ioading).
There are a number of ways to implement the peak detector function. However, the simplest and most widely used method is a passive differentiator that generates "zerocrossings" for each of the data peaks in the Read signal.
The .actual circuitry used to differentiate the Read signal varies from a differential LC type in disc systems to a simple RC type in reel and cassette systems. Either type, of course, attenuates the signal by an amount depending on the circuit used and system specifications. A. good approximation of attenuation using the RC type is 20 dB. Thus, the 2 V signal going into the differentiator is reduced to 200 mV.
The next block in Figure 27 to be discussed is the zero-crossing detector. In most cases detection of the zerocrossings is combined with the limiter. These functions serve to generate a TTL compatible pulse waveform with "edges" corresponding to zero-crossings. For low transfer rates, the circuit often used consists of an operational amplifier with s.eries or shunt limiting. For higher transfer rates (greater than 100K B/S) comparators are used.
The method described above is often modified to include threshold sensing. In Figure 28, the function called "double-ended, limit-detector" enables the output NANO gate when either the negative or positive data peaks of the Read signal exceed a predetermined threshold. This function can be implemented in either of two ways. One method first rectifies the signal before it is applied to a comparator with a set threshold. The other method utilizes two comparators, one comparator for positive-going peaks and the other for negative-going peaks. These comparator outputs are then combined in the output logic gates.
·
8-107
MC1733, MC1733C
APPLICATIONS INFORMATION (continued)·
FIGURE 28 - READ CIRCUIT (METHOD 2)
Another common technique. is shown in Figure 29. The branch labeled rectifiers, peak detector, etc., provides a clock transition of the D flip-flop that corresponds to the peak of both the positive and negative-going data peaks. This branch may include threshold circuitry prior to the peak detector. The detector in the lower path detects whether the signal peaks are positive or negative and feeds this data to the flip-flop. This detector can be implemented using a comparator with pre-set threshold.
may be implemented with two comparators and two passive differentiators.
Eac.h of the methods shown offer certain intrinsic a-jvantages or disadvantages. The overall decision as to which method to use however often involves other important considerations. These could include cost and system requirements or· circuitry other than simply the Read circuitry. for instance, if cost is the predominate overall factor, then approach one may be the only feasible alternative.
Method four was included as a design example because it illustrates several unique advantages. First, it uses threshold sensing to reduce noise peak errors. Second, it may be implemented using only integrated circuits. Third, it offers separate, direct threshold sensing for both positive and negative peaks.
FIGURE 29 - READ CIRCUIT (METHOD 3)
FIGURE 30 - READ CIRCUIT (Method 4)
The technique shown in Figure 30 uses separate circuits with 'threshold provisions for both negative and positive peaks. The peak detectors and threshold detectors
Output
·
8-108
ORDERING INFORMATION
Device
MC3344L MC3344P
Temperature Range
-40°C to +85°C -40°C to +85°C
Package
Ceramic DIP Plastic DIP
MC3344
Advance Information
PROGRAMMABLE FREQUENCY SWITCH WITH ADJUSTABLE HYSTERESIS
The MC3344 is a general purpose programmable frequency switch designed for use in systems where a load must be switched on or off at a predetermined frequency. Switch frequency is determined by an external resistor (RR) and capacitor (CR). Hysteresis is adjustable and determined by an external resistor (RH). · Isolated Driver Transistor · Complementary Outputs · Adjustable Hysteresis · Wide Supply Operating Range (7 to 24 Volts) · Wide Input Frequency Range,(10 Hz to 100 kHz) · Internal Regulator · Ideal for Automotive and Industrial Applications
FIGURE 1 - CIRCUIT BLOCK DIAGRAM
PROGRAMMABLE FREQUENCY SWITCH SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 632 TO - 116
P SUFFIX 'PLASTIC PACKAGE
CASE 646
VReg 9
RH 12
2k CR 1'0
6k Current Driven Input Sense ·
Gnd
03 6
This is.advance information ·and specifications are subject to change without notice.
8-109
PIN CONNECTIONS
·
Gnd
CA
NC
Ca
04
RH
Vout
Vin
01
CR
03
02
MC3344
MAXIMUM RATINGS ITA = 25°c unless otherwise noted)
Rating
Symbol
Value
Power Supply
Vee
24
Peak Input Current Junction Temperature
11
10
TJ
150
Operating Ambient Temperature Range
TA
-40 to+85
Storage Temperature Range
Tstg
-65 to +150
Unit Vdc mA oc oc oc
ELECTRICAL CHARACTERISTICS ITA= 25°c, Vee= +15 Vdc unless otherwise specified)
Cha~acteristic
Supply Current
Test
Ckts
Symbol
Min
Typ
2
lo
-
2.5
Trigger Reset Voltage ljn =200µA lin = 600 µA
3
VcR1
0.25
-
VcR2
-
-
Regulator Output Voltage Threshold Output Voltage
VTCR = VcRIVReg
4
VR!ll_
4.0
4.5
5
VTCR
·0.739
0.750
Hysteresis Sink Current
6
IH
100
400
Second Comparator Output 01 Leakage D2 Source 01 Source D2 Leakage
7
ID1L
-
-
ID2s
.100
250
ID1S ID2L
100
-
200
-
Output Driver Gain le= 5.0 mA
8
hfE1
50
100
Output Driver Voltage Standoff lo= 5.0 mA
9
BVcEO
25
30
Integrator Transistor Gain
hFE2 = 41c/418 , let = 0.4 mA, lc2 = 0.6 mA
10
hfE2
50
200
Max 4.0
-
0.25 5.0 0.761
-
100
-
100
-
-
300
Unit mA Vdc
Vdc VIV
µA
nA µA µA nA
-
Vdc
-
·
@ MOTOROLA SemlcondL1cf:or Prod&lcf:e Inc.
8-110
MC3344
FIGURE 2 - SUPPLY CURRENT
TEST CIRCUITS
FIGURE 3 - TRIGGER RESET VOLTAGE
FIGURE 4 - REGULATOR OUTPUT VOLTAGE
Vee
Vfn VAeg CA AH Gnd
Vout 04 03 01 02 CA Cs
+
-=- 15 v
f
+ VAeg
Vee
V1n VReg CR AH Gnd
Vout 04 03 01 02 CA Ce
lfn; 200 µ.A, VcR ;;;i. 0.25 V l1n = 600 µ.A, VcA.,.; 0.25 v
FIGURE 5 -THRESHOLD VOLTAGE RATIO FIGURE 6 - HYSTERESIS SINK CURRENT
-=-15V
i
+
VReg
Vee
V1n VAeg CA AH Gnd
Vout 04 03 01 02 CA Ce
15 V..::..
f
Vee
V1n VAeg CA AH Gnd
Vout 04 03 01 02 CA Cs
l0.1µ.F VTCA = VcRIVAeg
FIGURE 8 - OUTPUT DRIVER GAIN
FIGURE 9-BVcEO OF OUTPUT TRANSISTOR
Vee
V1n
03
VReg
01
CA
02
AH
CA
Gnd
Ce
Vfn
AH Gnd
Vout 04 03 01 02 CA Ce
1 51 2
Vee
V1n VAeg CA AH Gnd
Vout 04 03 01 02 CA Ce
":'
I01Lii025 - 51 In position 1 lo2Lllo15 - 51 In position 2
FIGURE 10 - INTEGRATOR TRANSISTOR GAIN
Vee
Vin VReg CR AH Gnd
Vout 04 03 01 02 CA Ce
·
@ MOTOROLA Semiconductor Produc~· Inc.
8-111
MC3344
·
APPLICATIONS INFORMATION
The voltage regulator and bias section provides the proper biasing and regulated supply voltage to the integrated circuit.
A square wave, when applied to the RC differentiator, provides input current pulses to the IC. The input circuit discharges and clamps, for a predetermined time, the voltage across capacitor CR· This establishes the initial ramp voltage (Vsatl and allows initiation of a new voltage ramp after each positive transistion of the input waveform.
The voltage, VCR· ramps from Vsat to the final value, VReg· charging through RR.
If VCR is never allowed to reach VRef due to quick reset pulses, th~ second integrator amplifier will not be activated, and capacitor CAB is allowed to charge through the 12 k!l resistor until VcA is greater than VRef· At this point, 01 will switch ON and 02 will switch OFF. By connecting either 01 or 02 to the 03 drive pin, the output drive transistor may be either, switched ON or OFF at the switch point.
If VcR is allowed to ramp above VRef before being reset, the second integrator amplifier is driven ON which discharges and resets capacitor CAB keeping, VcA low with respect to VRef·
VCA will always be low with respect to VRef if the time from reset CR to VcR = VRef is less than the time
from reset CAB to VcA =VRef·
Resistor RH provides hysteresis around the switch
point (i.e., frequency to switch the output driver ON,
when connected to the 01 terminal, is higher than the
frequency required to switch the output driver OFF). If
no hysteresis is desired then the RH resistor should be
omitted and pin 12 grounded.
·
Circuit Equations:
The first integrator time constant is
T1 = RH II RR CR. If RH is omitted then
T1 =RR CR.
The second integrator time constant is T2 = (12 k) (hFE2l (CAB)·
f1 = S,witch Point frequency ::::: 1.39 ~R CR
= f2 Hysteresis Switch Point frequency ~
1
FIGURE 11 - TYPICAL APPLICATION
+
10µFl
Relay
8 Vee
4 Vout
3 k 11
10 v
I 0.047 µF
9
o v.JL.Sl_ ,
91 k
flR 10
Vin VReg, CR
3 04
5 01 03
CR 0.1 µFl
12
RH
02
681 k
RH
Gnd C9
f1 "" 77 Hz f2 ""65 Hz
14 0.1 µF
,_______.., @ MOTOROLA Semicon_~ucf:or Producf:s Inc.
8-112
MC3344
FIGURE 12 - CIRCUIT SCHEMATIC
THERMAL INFORMATION
The maximum power consumption an integrated circuit
operating ambient temperature. This must be greater than
can tolerate at a given operating ambient temperature, can
the sum of 'the products of the supply voltages and supply
be found from the equation:
currents at the worst case operating condition.
P
TJ(max) - TA
D(TA) - ROJA(Typ)
Where: Po(TA) = Power Dissipation allowable at a given
TJ(max) = Maxim'um Operating Junction Temperature · as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature ROJA(Typ) =Typical Thermal Resistance Junction to
Ambient
·
'-------- @ MOTOROLA Semiconducf:or Produc'fs Inc.
8-113
ORDERING 1NFORMATION
Device MC3370P
Temperature Range -10°c to +75°C
Package Plastic DIP
MC3370P
·
ZERO VOLTAGE SWITCH
... designed for use in ac power switching applications with output drive capable of triggering triacs. Other operational features. include; (1) a built-in voltage regulator that allows direct ac line operation, (2) a differential input with dual sensor inputs capable of testing the condition of two external sensors and controlling the gate pulse to a triac accordingly; (hysteresis or proportional control to this section may be added if desired) (3) sensor input "open and short" protection; this insures that the triac will never be turned "on" if either of the inputs are shorted or obened (4) a zero crossing detector that synchronizes the triac gate pulses with the zero crossing of the ac line voltage. This eliminates radio frequency interference (RFI) when used with resistive loads.
· Heater Controls
· Valve Control
· Photo Controls
· On-Off Power Controls
· Threshold Detector
· R~lay Driver
· Lamp Driver
· Flasher Control
· Formerly MFC8070 in Case 644A Package
ZERO VOLTAGE SV\flTCH
SI LICON MONOLITHIC FUNCTIONAL CIRCUIT
P SUFFIX PLASTIC PACKAGE
CASE 626
FIGURE 1 - CIRCUIT SCHEMATIC
4 Ground
5 Collector
Referel)ce
Input Input Vac
8-114
MC3370
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
Rating
Symbol
Value
DC Voltage
V4.1
15
DC Voltage
V5.1
15
DC Voltage
- V2.1
15
Peak Supply Current
13
35
Power Dissipation · Derate above TA = +25°C
Operating Ambient Temperature Range
Po 1/ReJA
TA
1.2 10
-10 to +75
Storage Temperature Range
Tstg
-55 to +150
Unit
Vdc Vdc Vdc mA Watts
mw1°c
oc oc
FIGURE 2 - OUTPUT PULSE DEFINITION
ELECTRICAL CHARACTERISTICS (TA = +25°C unless otherwise noted.)
Characteristic Definitions
r.:Jll
Vs
I
u.F
L
9 I k
:Jll
[
91k
vs
l ,.F
:Jll [
Vg
l µF
Characteristic
Vs with Inhibit Output !Sw 1 Aor Bl
Output Lt!akage Current (Sw 1: A or Bl
Input Current 8
(Sw 1: Al Viel
Input Current 7
8'
(Sw 1: B)
Inhibit Threshold Voltage
(Sw1: A or B)
Vs with Pulse Output (Sw.1: A or B)
Peak Output Current (Sw 1: A or Bl
Pulse Threshold Voltage
(Sw 1: A or B)
Viet
Output Pulse Width
8>
(Sw 1: A or B, See Figure 2)
Output Current With Input Short (Sw 1: B;Sw 2: A) (Sw.1: A;Sw2: B)
Vret 8 k
Symbol Min
Typ
Max
Vs10
9.0
11
loL
5.0
100
lg
5.0
15
17
5.0
15
VTHI
Vref
Vref
+100 mV +10mV
Vs po
6.0
8.5
lopk
50
80
VTHP
TA, TB VrA, VTB
Vref
Vref
-10mV -100 mV
70 ±4.5
Unit Vdc, µA µA µA Vdc Vdc mA Vdc µs
v
isc
µA
5.0
100
5.0
100
·
Circuit diagrams utilizing Motorola prod~cts are included as a means of illustrating typical semiconductor applications: consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and
is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
® MOTOROLA Se,..iconductor Products Inc. ---------'
8-115
MC3~70
TEST CIRCUIT AND TYPICAL CHARACTERISTICS
FIGURE 3 - CIRCUIT WITH INCREASED PULSE WIDTH AND TRIAC DRIVER TO CONTROL HIGH-CURRENT SCR's
FIGURE 4 - OUTPUT PULSE WIDTH versus SOURCE RESISTANCE (See Figure ~-1
Rl
1001 µF 5 Vele
::c
f-
0 1 µF
400 v
0~ c 300 I--+-- TA = +2s0 --1----+--+---+---+---+--i1--1--+J7-.k'.r1
~
~
v ~
~ 200L.--l--4--4--l--l-4---+--+----+-l---,,.+~~+:i::7--f--f-+-t-1
~ 100~4---l--l--l-l-l--=--.i.---==i:l---=---4+----1j...-'"'l-'--+-+---t-t--1-t-i
i
~
0L.-...L....:...L....:...L-L..L..i--_L..--'---l-1----L--'-~-L--'-'-'
4.0 6.0
10
20
30 40
60 100
Rs. PROGRAM RESISTOR (<I LOHMS)
II
TYPICAL ZERO VOLTAGE SWITCH APPLICATIONS FOR TRIAC CONTROL
FIGURE 5- TRIAC CONTROL CIRCUIT
FIGURE 6 - TR IAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING DC SUPPLY
I 100 µF + -
120 VIRMS) ..-.-.. l 5 Vdc 60 Hz
I
10 k 2W
R 1 8V DC SUPPLY
R2
01
IAC
LINE COAD
R1 or R2 1san external sensor
Basic triac trigger circuit utilizing the zero crossing detector and the input comparator to control triacs with gate current requirements to 500 mA.
R1 or R2 is an external sensor
Rs
\ __ ~;s~~1~t~otlri~g~N~~~~~~f:1 ~'t;1~r:1~:h:~~u~a~~·~~~:t~;
approximately 0.5 A.
Suggested circuit to vary output pulse width by value
of Rs (See Figure 4).
R2 must be the external senso~ for the internal short and open protection to be operative.
FIGURE 7 - TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING AC SUPPLY
lOOµF 15V
Al 10 k
R2 10 k
5 ki4W for 120 Vac ( 10 k/8W for 230 Vac) Zero crossing triac control circuit for gate current requirements to 100 mA.
Recommended Motorola triacs for u5e in circuit
Maximum Continuous Current (A [RMS] I
Triac Family
Case No.
10
2N6151/2N6153
90 (Plastic)
2N6346A/2N6349A 221-024 (Plastic)
10
2N6139/2N6144
86, 250
25
2N6157 /2N6165
174, 175,
235
40
2N5441/2N5446
237, 238,
239
@ MOTOROLA Sen1iconductor Products Inc. _________.
8-116
MC3370
PIN COMPARISON OF MC3370P AND GEL300F1 (PA424/CA3059l
Input
R R Reference Collector GEL300F 1/CA3059
VEE Output
8+ Ground
·
b
Input
I
f-__=.J Input
b Reference _ p Collector
MC3370
II
@ MOTOROLA Semiconductor Products Inc.
8-117
Advance Information
DUAL OPERATIONAL AMPLIFIER AND DUAL COMPA~ATOR
The MC3405/3505 contains two differential-input operational amplifiers and two comparators, each set capable of single supply operation. This operational amplifier-comparator circuit, better known as the "Operator" will find its applications as a general purpose product for_ automotive circuits and as an industrial building block.
The MC3405 is specified over the commercial operating temperature range of 0 to +10°c while the MC3505 is specified over the military operating range of -55 to +125°C.
· Operational Amplifiers Equivalent in Performance to MC3403
· Comparators Similar in Performance to MLM339
· Operational Amplifiers are Internally Frequency Compensated
· Supply Operation - 3.0 Volts to 36 Volts
· Dual Supply Operation also Available
II
PIN CONNECTIONS
MC3405 MC3505
DUAL OPERATIONAL AMPLIFIER
AND DUAL VOTAGE COMPARATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX CERAMIC PACKAGE
CASE 632 T0-116
[14:::::1 1 (top view)
This is advance information and specifications are subject to change without notice.
8-118
P SUFFIX PLASTIC PACKAGE
CASE 646 ·
ORDERING INFORMATION
Device Temperature Range
·MC3405L MC3405P
o to +1ooc o to +1ooc
MC3505L
-55 to +125oc
Package
Ceramic DIP Plastic DIP Ceramic DIP
©
!
a
~
~ 9, 13
:a.
fl
CD
a3 ·
cp :0s
- t c.o .C.) . ~
021-+---
' t 0
;-C)
A4
2.0 k
pS'
+ 10, 13
C1 5.0 pF
CIRCUIT SCHEMATIC (1/2 OF CIRCUIT SHOWN)
8, 14
I
2, 6
AS 100
s:
w 0
~
0
.U. 'I
s:
w 0
3, 5
U'I
0
U'I
1, 7
Opetational Amplifier Side
I
I
I ·
· ·
Bias Circuitry
Common to Op Amp
and Comparator
·
· ·
Comparator Side
040
A7 700
' ·
· 011
I
MC3405~ MC3505
·
OPERATIONAL AMPLIFIER SECTION
MAXIMUM RATINGS Power Supply Voltage
Rating
Input Differential Voltage Range Input Common Mode Voltage Range Operating Ambient Temperature Range - MC3505
MC3405 Storage Temperature Range - Ceramic Package
Plastic Package Operating Junction Temperature Range - Ceramic Package
Plastic Package. Thermal Resistance, Junction to Ambient
Symbol Vee Vee VEE VIDR V1cR TA
Tstg
TJ
RoJA
Value
36 +18 -18 ±30 ±15 -55 to +125 0 to +70 -65 to +150 -55 to +f25 175 150 100
Unit Vdc
Vdc Vdc oc
oc
oc
0 ctw
ELECTRICAL CHARACTERISTICS (Vee= +15 v, Vee= -15 v, TA= 25°c, unless otherwise noted.)
MC3505
MC3405
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Input Offset Voltage (TA= T1ow to Thijih)(1)
V10
-
2.0
5.0
-
2.0
-
-
6.0
-
-
Average Temperature Coefficient of Input
AV10/AT
-
15
-
-
15
Offset Voltage
Input -Offset Current (TA= T1ow'to Thigh)(1)
Input Bias Current (TA = T1ow to ThighH1)
\
110
I
l1B
-
-
50
-
-
-
-
200
-
-
-
200
500
-
200
-
300
1500
-
-
Large Signal Open Loop Voltage Gain (Vo= ±10 V, RL = 2.0 kn) (TA = T1ow to Thigh)( 1)
Power Supply Current (2)
Common Mode Rejection Ratio Power Supply Rejection Ratio
AvoL
50
200
-
20
200
25
100
-
15
-
Ice
-
2.8
4.0
-
2.8
IEE
-
2.8'
4.0
-
2.8
CMAR
70
90
-
70
90
PSRR+
-
30
150
-
30
Output Voltage (RL = 10 kn) (RL = 2.0 kn) (RL = 2.0 kn, TA= T1ow to TtiighH1)
Input Common Mode Voltage Range Outpu~ Short-Circuit Current Phase Margin
Small-Signal Bandwidth (Av'= 1, AL= 10 kn, Vo= 50 mV)
Vo
V1cR los tl>m BW
±12 ±10 ±10
+13 - VEE ±10 -
± 13.5 ±13.0
-
-
±30
60
1.0
-
±12
±13.5
-
±10
±13.0
-
±10
·-
-
+13-VEE
-
±45
±10
±20
-
-
60
-
-
1.0
Power Bandwidth
BWp
-
9.0
-
-
9.0
(Av= 1, AL= 2.0 kn, Vo= 20 v (p-p),
THO= 5%)
Rise Time
tTLH
-
0.35
-
-
0.35
Fall Time
tTHL
-
0.35
-
-
0.35
Overshoot
10S
-
20
-
-
20
(Av= 1, AL= 10 kn, Vo= 50 mV)
Slew Rate
SR
-
0.6
-
-
0.6
Max 10 12 -
Unit mV
µV/°C
50
nA
200
500
nA
800
V/mV
-
7.0
mA
7.0
mA
-
dB
-
dB
Vdc
-
-
-
-
Vdc
±45
mA
-
oc
-
MHz
-
kHz
-
µs
-
µs
-
%
-
V/µs
(continued)
@ MOTOROL~ Semiconduc'for Producf:e Inc.
8-120
MC3405, MC3505
OPERATIONAL AMPLIFIER SECTION (continued)
ELECTRICAL CHARACTERISTICS (continued)
(Vee= 5.0 V, Vee= Gnd, TA= 25°C unless otherwise noted.)
MC3505
Characteristic Input Offset Voltage Input Offset Current Input Bias Current Large-Signal Open-Loop Voltage, Gain
(RL = 2.0 kn)
Power Supply Rejection Ratiq
Symbol
Min
Typ
V10
-
2.0
110
-
30
l1B
-
-200
AvoL
20
200
PSRR
-
-
Output Voltage Range (3) (AL: 10 kn, Vee: 5.0 V) (RL: 10 kn, 5.0 v.;; Vee.;; 30 V)
Power Supply Current(4)
Channel Separation f =1.0 kHz to 20 kHz (Input Referenced)
VoR
ice
-
3.3 Vee - 1.7
-
-
3.5 Vcc-1.~
2.5
-120
Max 5.0 50 -500
-
150
-
4.0.
-
MC3405
Min
Typ
-
2.0
-
30
-
-~00
20
200
-
-
3,.3 Vcc-1.1
-
-
3.5 vcc-1.5
2.5 -120
Max 10 50 -500 -
150
7.0
-
(1) T1ow = -55°C for MC3505
= o0 c for MC3405
Thigh =. +125°C for MC3505 = +10°c for MC3405
(2) For Operational Amplifier and Comparator
(3) Output will swing to ground.
(4) Not to exceed miximum package power dissipation.
Unit mV nA nA V/mV
µVIV Vp-p
mA . dB
·
.________ @ MOTOROLA Semiconducf:or Producf:s Inc.
8-121
MC3405, MC3505
·
COMPARATOR SECTION
MAXIMUM RATINGS
Rating Power Supply Voltage Input Differential Voltage Range Input Common Mode Voltage Range Sink Current Operating Ambient Temperature Range - MC3503
MC3405 Storage Temperature Range - Cer.amic Package
Plastic Package Operating Junction Temperature Range - Ceramic Package
Plastic Package Thermal Resistance, Junction to Ambient
Symbol Vee V1DR V1cR I sink TA
Tstg
TJ
ReJA
Value 36 36
-0.3 to +35 20
-55 to +125 0 to +70
-65 to +150 -55 to +125
175 150 100
Unit Vdc Vdc Vdc mA oc
oc
oc
oc/W
ELECTRICAL CHARACTERISTICS (Vee= 5.0 V, VEE= Gnd, TA~, 25°C unless otherwise noted.)
MC3505
MC3405
Characteristic
Symbol
Min
Typ
Max
Min Typ
Max
Input Offset Voltage (TA= T1ow to Thigh) (1 ), (3)
V10
-
-
Average Temperature Coefficient of Input
AV10/AT
-
Offset Voltage
Input Offset Current (TA= T1ow to Thigh) (1)
110
-
-
Input Bias Current (TA= T1ow to Thigh) (1)
110
-
-
Large-Signal Open Loop Voltage Gain (AL= 15 kn)
AvoL
-
2.0
5.0
-
2.0
10
-
9.0
-
-
12
15
-
-
15
-
50
75
-
50
100
-
150
-
-
200
25
500
-
25
500
-
1500
-
-
800
200
-
-
200
-
Input Common Mode Voltage Range (TA= T1ow to Thighl (1)
Input Differential Voltage (All Vin ;;. 0 Vdc)
Sink Current (Vin (-) ;;, 1.0 Vdc, Vin (+) = 0, Vo.;; 1.5 V)
Saturation Voltage (Vin (-) = 1.0 Vdc, Vin (+) = 0, lsink .;; 4.0 mAdc} (TA= T1ow to Thigh) (1)
Output Leakage Current (Vin (+) ;;, 1.0 Vdc, Vjn (-) = O· Vo= 5.0 Vdcl (TA= T1ow to Thigh) (1)
Large-Signal Respon·se
Response Time i2) (VAL= 5.0 Vdc, AL= 5.1 kn)
Low Level Output Voltage (Vin(+}= 0 V, Vin(-)= 1.0 V, lsink = 4.0 mA) ITA= T1 0 w to Thighl (1)
V1cR V1D Isink
Vsat
loL
-
-
VoL
0
Vcc-1.5 Vee - 1.7 0 vcc:..1.5 vcc-1.1
0
Vcc-1.1 Vcc-2.0 0 ~cc - 1.7 Vcc-2.0
-
-
36
-
-
36
6.0
16
-
6.0
16
-
-
250
500
-
250
500
-
-
700
-
-
700
-
0.1
1.0
-
0.1
1.0
-
0.1
1.0
-
0.1
1.0
-
300
-
-
300
-
-
1.3
-
-
1.3
-
-
-
500
-
-
500
-
-
700
~
-
700
Unit mV µV/°C nA nA V/mV v
v
mA
mV
µA
ns J.IS mV
( 1) Ti ow= -55°C for MC3505
o = 0 c for MC3405
Thigh= +125°C for MC3505 = +10°c for MC3405
(2) The response time specified is for a 100 mV input step with 5.0 mV,overdrive. For larger signals 300 ns is typical.
.n (3) Vo" 1.4 V, Rs= 0 with V+ from 5.0 Vdc to 30 Vdc, and o'ver the input common mode range 0 to V+ -1.7 V.
'--------@ MOTOROLA Semlconducf:or Produc'fs Inc.
8-122
Advance In.formation.
OVERVOLTAGE "CROWBAR" SENSING CIRCUIT
These overvoltage protection circuits (OVP) protect sensitive electronic circuitry from overvoltage transients or· regulator failures when used in conjunction with an external "crowbar" SCR. They sense the overvoltage condition and quickly "crowbar" or short circuit the supply, forcing the supply into current limiting or opening the fuse or circuit breaker.
The protection voltage threshold is adjustable and the MC3423/
of 3523 can be programmed for minimum duration overvoltage
condition before tripping, thus supplying noise immunity.
MC3423 MC3523
OVERVOLTAGE SENSING CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUIT
Pl SUFFIX PLASTIC PACKAGE
CASE 626
MAXIMUM. RATINGS
Rating
Differential Power Supply Voltage Serue Voltage (1) Sense Voltage (2)
Remote Activation Input Voltage
Output Current Operating Ambient Temperature Range
MC3423 MC3523 Operating Junction Temperature Range Plastic Package Ceramic Package
Symbol V...cc:Yee VSense 1 Vsense 2
Vact lo TA
TJ
Value
Unit
45
Vdc
s;s
Vdc
6.8
Vdc
c 7.0
Vdc
300
mA
oc
0 to +70 -55 to +125
oc
150 175
U SUFFIX CERAMIC PACKAGE
CASE 693
PIN CONNECTIONS
Vee
TYPICAL APPLICATION
Current Limited
DC Power Supply
Cout
NOTE: A 2N6504 or equivalent is suggested for 01.
Vout
Current Source
Indicator Output Remote Activation
II
ORDERING INFORMATION
DEVICE TEMPERATURE RANGE PACKAGE
MC3423P1 MC3423U MC3523U
0 to +70°C 0 to +70°C
-55 to +125° c
Plastic DIP Ceramic DIP Ceramic DIP
This is advance information and specifications are subject to change without notice.
8-123
MC3423, MC352~
:
·
ELECTRICAL CHARACTERISTICS (Vee - VEE= 5.0 V, T1ow < TJ <Thigh unless otherwise noted.)
Characteristic
Supply Voltage Range
.Outp\Jt Voltage
Indication Output Current (VoL = 0.4 V)
Reference Voltage (TA= 25°C)
Temperature Coefficient of Reference Voltage
Remote Activation Input Current (V1H = 2.0 V)
Source Current
Output Current Risetime (TA= 25°C)
Propagation Delay (TA= 25°C)
Supply Current
T1 0 w
=
-55°C 1
for
MC3523
= 0° C for MC3423
Symbol Vee
Vo IO(lnd)
Vref
Min
Typ
4.5
-
-
3.0
-
. 10
-
2.6
Max Unit
36
Vdc
-
Vdc
-
mA
-
Vdc
TCVref
-
I in( Ind)
-
0.08 0.1
-
%7C
-
mA
I source tr
-
0.22
-
mA
~
400
-
mA/µs
tpd
-
0.5
-
µs
lo
-
5.0
-
mA
Thigh= +125°C for MC3523 and MC3423
FIGURE 1 - BLOCK DIAGRAM
Vee
2 Vsense 1
VRef -2.6V
Current 4 Source
Output 8
Activation
FIGURE 2A'- BASIC CIRCUIT CONFIGURATION for Vref.;; Vtrip.;; 36 V
-\. :,.--~~------------~,- +
F1 R1
R2
I
I
I
I
01
I
I
I
I
I
~',
rs;'.
I
(- Sense Lead)
I
To Load
Vtrip = Vref (1+~) "'2.6 V (1+;¥)
R2.;; 10 kfl for minimum drift
For minimum value of RG, see Figure _5
01 is 2N6504 or equivalent ·see text for explanation Note 1: If Vtrip i$ belOllV 4.5 V,
the MC3423/3523 should be powered (vie Pin 1) from an external 4.5 V to 36 V supply.
@ MOTOROLA Se,.,iconductor Products Inc. _________,
8-124
MC3423, MC3523
FIGURE 2B - CIRCUIT CONFIGURATION FOR SUPPLY VOLTAGE ABOVE 36 V
Ag
Power Supply
IN4740 10 v
(+Sense Lead)
+10µF
15 v
MC3523 MC3423
*R2 7 5 (-Sense
Lead)
a~
Vs
)
To Load
As= (vs 2~ 10> k.11
Vtrip = Vraf (~+~) "'2.6 V (1+~)
*R2,,;;; 10 k.11
01: Vs,,;;; 100 V; 2N6505 or equivalent Vs,,;;; 200 V; 2N6506 or equivalent Vs,,;;; 400 V; 2N6507 or equivalent Vs,,;;; 600 V; 2N6508 or equivalent Vs,,;;; 800 V; 2N6509 or equivalent
APPLICATIONS INFORMATION
Basic Circuit Configuration
The basic circuit configuration of the MC3423/3523 ·OVP is shown in Figure 2A for trip voltages from 2.5 V to 36 V, and in Figure 28 for trip voltages above 36 V. In this circuit, the voltage sensing inputs of both internal amplifiers are tied together for sensing. the overvoltage condition. The shortest possible propagation delay is obtained with this configuration. The threshold or trip voltage at which the MC3423/3523 will trigger and supply gate drive to the crowbar SCR, 01, is determined by the selection of R 1 and R2. Their values can be determined by the equation given in Figures 2A and 28, or by the graph shown in Figure 4. The minimum value of the gate current limiting resistor, RG, is given in Figure 5. Using this value of RG, the SCR, 01, will receive the greatest gate current possible without damaging the MC3423/3523. If lower .output currents are required, RG can be increased in value. The switch, S1, shown in Figure 2A may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCA is connected, must be shut down to reset the crowbar. If a non current-limited supply is used, a fuse or circuit breaker, F 1, should be used to protect the SCR and/or the load.
FIGURE 3 - BASIC CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE
CONDITION BEFORE TRIP
A2
A3;;;., Vtrip 10mA
2N6504°or equivalent
Configuration for Programmable Minimum Duration of Overvoltage Condition Before Tripping
In many instances; the MC3423/3523 OVP will be used in a noise environment. To prevent false tripping of the OVP circuit by noisewhich would not normally harm the load, MC3423/3523 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 3 is used. In this configuration, a capacitor is connected from Pin 3 to VEE· The value of this capacitor determines the minimum duration of the overvoltage condition which is necessary' to trip the OVP.
' V10 1-------------,
~ =1Vsoruarfcxe c"" (1.2 x103] C (Saa Figura 6)
@ MOTOROLA Se1niconduc<or Products Inc. _ _ _ _ _ _ __.
8-125
MC3423, MC3523
The value of C can be found from Figure 6. The circuit operates in the following manner: When Vee rises above the trip point set by A1 and A2, an internal current ·source begins charging the capacitor, C, connected to Pin 3. If the overvoltage condition remains present long enough for the capacitor voltage, Ve, to reach Vref, the output is activated. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate== 10 times faster than the charging rate, resetting the timing feature until the next overvoltage condition occurs.
Additional Features
1. Activation l.ndication Output
An additional output for use as an indicator of OVP activation is provided by the MC3423/3523. This out· put is an open collector transistor which saturates when the OVP is activated. It will remain in a saturated state until the SCA crowbar pulls the supply voltage, Vee, below 4.5 Vas in Figure 3. This output
FIGURE 4 - R1 versus TRIP VOLTAGE
R2=2.7k
Ly IZ
can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCA.
2. Remote Activation Input Another feature of the MC3423/3523 is its remote
activation input, Pin 5. If the voltage on this CMOS/ TTL compatible input is held below 0.7 V, the MC3423/3523 operates normally. However, if it is raised to a voltage above 2.0 V, the OVP output is activated independent of whether or not an overvoltage condition is present. This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition; In addition, the activation indication output of one MC3423/3523 can be used to activate another MC3423/3523 if a· single transistor inverter is used to interface the formers indication output to the latter's remote activation input.
FIGURE 5 - MINIMUM RG versus SU.PPLY VOLTAGE
35~~~~~.--~-r-~--r~~-r-~--.-~~,~~"""71
301--~-+-~--l~~+-~-+~~+--~-+17"~~~-t-~-;
T
II
VT, TRIP VOLTAGE !VOLTS)
lOV
0
10
20
30
40
50
60
70
80
AG. GATE CURRENT LIMITING RESISTOR (OHMS)
FIGURE 6 - CAPACITANCE versus MINIMUM OVERVOLTAGE DURATION
1 2 3 571 1.0
~ 121..oi!
0.1
0.01
z<,_ u
~
~ 0.001
i.,,P
1.-.! ~
lillil ~ J.l llll
,;r
[ l..oll!l'::~JilI
JIITII
I
0.0001 I Z .1..1..l.~ .l. llllll
.l..l.
1
0.001
0.01
0.1
1.0
10
,Id, DELAY TIME (ms)
--~-----.@ MOTOROLA Semiconduct:or Product:s Inc. _________,
8-126
MC3426
Advance Information
GROUND FAULT INTERRUPTER SUBSYSTEM (Latching)
The MC3426 is designed to pr<?vide ground fault and grounded neutral protection for 120 Vac, 15 and 20 ampere Iines.
· Minimum n\,lmber of external components · Includes full wave bridge · Designed for use with inexpensive ferrite cores or low perme-
ability differential transfers · Will operate properly if "hot" and neutral input wires are reversed · Designed to be used in systems meeting UL943 specifications for
Class A Ground Fault Circuit Interrupters · Trips at a minimum leakage current of 5 mA ± 1 mA over a tem-
perature range of -40°C to +70°C and line voltage variations from 102 V to 132 V. Also trips for a neutral grounding resistance.
less than 2 n.
· Trip times are in accordance with UL curve · High noise immunity and resistance to false tripping
FIGURE 1 - TYPICAL TRIP CURRENT THRESHOLD versus TEMPERATURE
8.0 7.0
6.0
<
.§. 5.0
Izw-
cc: cc:
4.0
:::>
(.)
a:Cl.. 3.0
I-
2.0
1.0
0 -60
,..-
-40 -20
+20 +40 +60
T, TEMPERATURE (OC)
+80 +100
This is advance information and specifications are subject to change without notice.
8-127
GROUND FAULT INTERRUPTER SUBSYSTEM
MONOLITHIC SILICON INTEGRATED CIRCUIT
L SUFFIX
CERAMIC PACKAGE CASE 632 T0-116
PIN CONNECTIONS
1 Inputs{
Prot. Diode
Amp Output
II
This component is sold without patent indemnity and any infringement resulting'from use or resale thereof shall be the sole responsibility of purchaser and shall not be the responsibility of manufacturer or distributor even though such use is in accordance with manufacturer's recommendations.
ORDERING INFORMATION
Device Temperature Range Package
MC3426L
-40 to +10°c Ceramic DIP
MC3426
II
MAXIMUM RATINGS (TA= 25°c unless otherwise noted.)
Rating
Symbol
Current through pins 9 and 10
l1N
!TA= 10°ci
Thermal Resistance, Junction to Air
8JA
Operating Ambient Temperature Range
TA
Storage Temperature Range
Tstg
Maximum Operating Junction Temperature
TJ
Value 20
Unit mA RMS
100 -40 to +70 -65 to +150
125
·0 c1w oc oc
oc
ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted.)
Characteristic
I Symbol
OPERATIONAL AMPLIFIER SECTION
Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage Input Offset Current Input Bias Current Large Signal Open Loop Voltage Gain Power Supply Current
(Vo set to 25 V, Latch OFF, 2.7 Mn from pin 2 to pin 5, Note 4)
V10 AV10/AT
110 l1B AvoL+ lo
Power Supply Current (Vo Set to 25 V, Latch ON, pin 14 tied to pin 1 3, Note 6)
lo (L0 nl
Power Supply Rejection Ratio
PSRR±
Output Quiescent Voltage of Operational Amplifier minus V mid (2.7 Mn from pin 2 to pin 5, Notes 2 and 5)
V5 -Vmid
REGULATOR/BRIDGE SECTION
Power Supply Output Voltage
Vo
(Note 1)
LATCH/TRIGGER SECTION
Latch Trigger Voltage· (Notes 2 and 7)
Latch Trigger Current (Note8)
Vs (L0nl -Vmid
l1(Lonl
Output Drive Current
v @V14 = 1.0 (TA= -40°c, Note 3)
114 (Lonl
Output Drive Voltage with Latch Off (Note 9)
V14 (Loff)
Power Supply Voltage to Turn Off Latch (Note 10)
Vo !Loffl
Min
-
-
-
15
-
-
60 -2.0
27.5
6.7 0.5 0.2
Typ
3.0 15 30 300
-
1.4
-
-
-
29.9
7.4 50
-
-
2.0
Max
-
-
2.25
Unit
mV µV/°C
nA nA . V/mV mA
9.0
mA
-
dB
1.0
v
32.3
v
8.1
v
-
µA
-
mA·
0.05
v
3.0
v
DEFINITION OF TERMS
Note:
1. POWER SUPPLY OUTPUT VOLTAGE-Vo
This is the voltage between pins 13 and 8 that is set up by the zener string with the latch turned off and a current of 17 mAdc (approximately the maximum peak current from the ac line with a 10 kQ 5% dropping resistor) is flowing between the pins.
2. MIDPOINT VOLTAGE -Vmid This is the voltage at the midpoint of the zener
string-between pins 12 and 8-with 17 mAdc .flowing and the latch turned off.
3. OUTPUT DRIVE CURRENT - l14(Lonl This is the current sourced from pin 14 with the latch
on and tbe gate resistor (RGate. 1 kQ) connected (pin 11 shorted to pin 14).
4. POWER SUPPLY CURRENT, LATCH OFF - lo
This is . the power supply · drain' current of the operational amplifier section with the latch turned off, a 2.7 MQ resistor between pins 2 and 5, and Vo set to 25
@ MOTOROLA Semiconduc'f:or Produc'f:s Inc.
·8-128
MC3426
V so that no current goes through the zener string. lo max assures proper quiescent operation of the operational amplifier.
5. OUTPUT QUIESCENT VOLTAGE -Vs
This is the quiescent output voltage of the operational amplifier with a. 2.7 MQ resistor between pins 2 and 5. The Va - Vmid specification assures proper trip threshold with specified V10 and llB·
6. POWER SUPPLY CURRENT, LATCH ON - lo(L0 nl This is the power supply drain current of the
operational amplifier section and the latch section with the, latch turned on, Vo set to 25 V, pin 1.4 tied to pin 13, RGate not connected, and the ac line polarity such that the SCR cannot fire. lo(L0 nl max assures the latch remaining latched before the SCR fires.
7. LATCH TRIGGER VOLTAGE - V5(L0 nl This is the threshold voltage between pins 6 and 8 at
which the latch turns on and pin 14 begins sourcing current.
8. LATCH TRIGGER CURRENT - l1(Lonl
This is the threshold current through resistor R11 (5 kn) at which the latcti turns on and pin . 14 begins sourcing current.
9. OUTPUT DRIVE VOLTAGE, LATCH OFF V14(Lottl This is the voltage between pins 14 and 10 with the
latch off, RGate connected (pin 11 shorted to pin 14), and 17 mAdc flowing between pins 9 and 10. V14(Loff) max assures that the SCR will not be turned on when the latch is off.
10. POWER SUPPLY VOLTAGE TO TURN OFF LATCH - Vo(Loffl
This is the voltage to which pin 13 must be dropped after the latch has ~een turned on to turn the latch off and cause pin 14 to stop sourcing current.
13 05 06
9
3 4
CIRCUIT SCHEMAT~C
016 R4 200 300 k 017
020
C1 10 pF
033
621
031
R11 5 k 028
029
030
R12 032 16 k
C2 10 pF R13
100 14
11 RGate
R16 1 k
II
8
6
@ MOTOROLA Semiconductor Products Inc.
8-129
MC3426
FIGURE 2 - BLOCK DIAGRAM (External Components within dotted lines)
r C-3 --, ±20%
A1
10k, 1 w ±r6%- - ,
r- .,
1 I
I
I Breaker
I
!Coil
L_ J
AC10
13 1.0 35V
., C1 :.20% r I I L J
r -,
C6 ·1
I
_, o.001L
I 200
2 ±5%
300 k
4
...... ....,
L2 1000
I
I
I
I
200 k
Turns I I
L J
6
3
122/4 v Jc~20%
12 120 k
r
I
lea
L _J0.001
8 Neutral ground detection not shown.
1 I
J
11
r -, I I I I I I L J
MOV
r I
L
1 I
_J
C5 0.005
II
CIRCUIT OPERATION
Circuit operation is best understood by referring to the complete block diagram in Figure 2.
Power Supply The circuit is powered from the ac line through the
breaker coil and R1 (an external 10 k ohm dropping resistor) to pins 9 and 10, which are connected to the internal full wave bridge rectifier. Four on-chip zeners clamp the de output voltage between pins 13 and 8 to about 30 V, and an external capacitor (C1) filters this voltage. During normal quiescent operation less than 10
mA is drawn through the breaker .coil, which is not enough to energize it.
Operational Amplifier Biasing The operational amplifier has two fee!'.iback paths,
depending on whether its output is more positive or more negative than its inputs. The de gain is relat"ively small, less than 15 when the output swings up and abciut 1.5 when the· output swings down. The non-inverting input to the op amp is tied to the midpoint of the zener string through a 120 k ohm resistor, and therefore the
@ MOTOROLA Semiconducf:or Producf:s Inc.
8-130
MC3426
quiescent output voltage of the op amp is approximately that voltage, about 15 volts. A 200 k ohm internal resistor between the inputs provides a path for bias current from the inverting input terminal and helps set the de feedback. It also provides a discharge path for C2 after high level faults to make reset quicker.
Fault Sensing and Breaker Tripping If a ground fault occurs, the imbalance of current in
the two ac primary wires of L2 will generate a signal in the secondary. This signal is ac coupled through an external 22 µF capacitor (C2) to the inputs of the op amp. An external 0.1 µF capacitor (C3) acts as an integrating capacitor; it charges up slightly more each time that the signal causes the op amp to swing positive (i.e., every other half cycle of the at:: line). When the signal polarity reverses and the op amp swings down, the only discharge path for C3 .is through the external set resistor (R2). With a 5 mA ground fault it takes about 2 seconds for C3 to integrate up so that the positive swings of the op amp become larger and larger until they reach a "steady state" value of about 7 V above the quiescent output voltage of the op amp and increase no further. This is just the threshold voltage of the .latch, which turns it on and causes pin 14 to be pulled toward the positive supply voltage and turns on the SCR. When the SCR is turned on, enough current is drawn through the breaker coil to energize it and cause the breaker to disconnect power from the load side of the ac line. (The breaker is a mechanically latching type and it must be mechanically reset to reapply power to the load side of the ac line.)
The purpose of the feedback on negative swings of the output of the op amp is to equalize positive and negative swings so that coupling capacitor C2 does not charge up and drive the output one way or the other.
If the line side black and white wires to the GFI system are reversed such that the black is now the neutral and the white is now the hot wire, the result is that the signal at the output of the op amp is not the correct phase to tire the SCR since the· SCR is a half-wave device connected across the line. However, the latch takes care ·of this problem by turning on and staying on until the SCR can fire during the next half-cycle of the ac line.
High Faults The purpose of the 120 k ohm internal resistor
between pins 12 and 1 is to reduce the trip time at higher fault currents. As the fault current increases, the voltage drop across this resistor increases and since the output of the op amp follows the voltage at the non-inverting input this means that C3 will integrate less and therefore the trip time will be faster.
The on-chip protection diodes across the sense coil serve two purposes, but only during extremely high fault currents. First, they prevent C2 from charging to a large voltage during this condition whiCh would make the reset or the return to quiescent operation slow. Second, they prevent excessive voltage from "zenering" or otherwise damaging junctions on the circuit.
Use of Ferrites or Low-Permeability Torroids The sense coil in this circuit is looking into a
relatively low impedance (i.e., the impedance between the two inputs to the op amp), which is the feedback resistance divided by the open loop gain of the op amp (an impedance of a few hundred ohms) in series with a 22 µF capacitor and a 200 ohm resistor. As long as this loading resistance is low compared to the secondary reactance of the torroid, the transformer acts as a current transformer and the output remains constant with changes in core permeability. Therefore, ferrite cores or other low permeability cores may be used as long as these conditions are met. The purpose of the 200 ohm on-chip resistor is to counteract the tendency for the circuit to become more sensitive at low temperatures with ferrite cores due to the reduction in secondary inductance with the reduction in core permeability.
Noise, DV/OT, and Transient Protection External 0.001 µF capacitors C6, C7, and CB have
been added to increase the circuit's resistance to false tripping due to noise spikes. The internal 1 k ohm resistor from gate to anode and the external 0.005 µF capacitor C5 from anode to cathode of the SCR reduce the SCR's sensitivity to DV /OT turn on. The purpose of the MOY (metal oxide varistor) is to absorb energy from very high voltage line transients to prevent d(lmage to the IC or SCR.
Latching Characteristics (Auxiliary Switch Requirements)
Note that this device requires a third pole or auxiliary contact on the breaker when used in a wall socket application. This is because the latch remains latched when the circuit is tripped and would continue to energize the breaker coil. Note also that a single contact breaker may be used in circuit breaker applications when line side "hot" and when neutral wires cannot be reversed.
Grounded Neutral Detection Methods Figures 3 and 4 are schematics for wall socket
applications showing the different methods of grounded neutral detection.
Figure 3 is the 60 Hz method; the high-µ core is connected across the line and acts as a 60 Hz source.for both black and white wires. If the neutral is grounded (load white essentially connected to line white, or if line wires are reversed and load black essentially connected to line black) this 60 Hz signal is coupled to the 1000 turn sense coil and the circuit trips just as it does with a ground fault.
Figure 4 is the external oscillator method of grounded neutral detection. A 2 to 4 kHz signal is fed into the left ferrite coil and this signal is sourced for both the black and white wires. If the neutral is grounded this signal is. coupled to the 1000 turn sense coil and the circuit trips just as with the previous method except that the signal is now the 2 to 4 kHz supplied by the external oscillator.
([!} MOTOROLA Semiconduc"for Produc"fs Inc.
8-131
·
MC3426-
Blk 120 Vac·
Wht
FIGURE 3- GROUNDED NEUTRAL DETECTION USING A 60 Hz TRANSFORMER
Core (1000 Turns) Ferronics 11-260 B Material or Equivalent
MCA 130
10k (1 W)
0.005 µF 8
9
0.001 µF 6
10
5
11 MC3426 4
12
3
13
2
14 1.0µF, 35 V
±20%
2.7 M __+5%
0.1 µF ±.20%
0.001 µF 0.001 µF
22 µF, 4 V ±20%
·
@ MOTOROLA Semic::onduc::f:or-Produc::f:s ln,c::.
8-132
MC3426
FIGURE 4- GROUNDED NEUTRAL DETECTION USING AN EXTERNAL OSCILLATOR
Blk 120 Vac
Load
Wht
0.001 µ.F
Ferronics
11-260 B Material or Equivalent
0.005 µ.F
10 k (1W)
MC3426
8
7
9
6
2.7 M ±5%
~--------e--ir---;---110
--+---<11
41----"-"-'--+--'
12
3 1 - - - - - - - 1 1 - - -...
22 µ.F, 4 V
+ ±20%
1.0 µ.F, 35 V ±20%
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given .operating ambient temperature, can be found from the equation:
p
TJ(max) -TA
D(TA) = ROJA (Typ)
Where: Po(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply
voltages and supply currents at the worst-case operating condition.
TJ(max.) = Maximum Operating Junction · Temperature as listed in.the Maximurn ratings Section
TA = Maximum De~red Operating Ambient Temperature
ROJAffyp) =Typical Thermal Resistance Junction to Ambient '
·
@.MOTOROLA Semlconducf:or Produc'fs Inc. 8-133
·
O~DERING INFORMATION
Device
MC3456L MC3456P MC3556L
Alternate NE556A
Temperature Range
0°c to +70°C O°C to +70°C ,-55°C to + 125°C
Package
Ceramic DIP Plastic DIP Ceramic DIP
MC3456 MC3556
Specifications and Applications Information
DUAL TIMING CIRCUIT
The MC3556/MC3456 dual timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor per timer. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external res.istors and one capacitor per timer. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits. ·, Direct Replacement for NE556/SE556 Timers · Timing From Microseconds Through Hours · Operates in Both Astable and Monostable Modes · Adjustable Duty Cycle · High Current Output Can Source or Sink 200 mA · Output Can Drive MTTL
c · Temperature Stability of 0.005% per 0
· Normally "On" or Normally "Off" Output · Dual Version of the Popular MC1555/MC1455 Timer
FIGURE 1 - 22-SECONDSOLID-STATE TIME DELAY RELAY CIRCUIT
4.0 A IRMSl
10 k
DUAL TIMING CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUIT
L SUFFIX
CERAMIC P A C K A G E .
CASE 632-02
~.
'Yim T0"6
Y;;
Discharge A Threshold A ~
Control A w Reset A
Output A ~ Trigger A m
Gnd '
Vee
Discharge B Threshold B Control B Reset B ~ Output B ~ Trigger B
0.01 µF
Time delay (t) is variable by changing R and C. (See Figure 16.)
FIGURE 2- BLOCK DIAGRAM (1/2 SHOWN)
Discharge
I-------+--<> Trigger
R·oot
P SUFFIX
PLASTIC PACKAGE
CASE 646
(MC3456 only)
·
TYPICAL APPLICATIONS
· Time Delay Generation · Sequential Timing · Linear Sweep Generation · Precision Timing · Pulse Generation · Pulse Shaping · Missing Pulse Detection · · Pulse Width Modulation
· Pulse Position Modulation
8-134
MC3456,, MC3556
MAXIMUM RATINGS (TA= +25°c unless otherwise noted.)
FIGURE 3 - GENERAL TEST CIRCUIT
Rating
Symbol
Power Supply Voltage Discharge Current
Vee I dis
Power Dissipation (Package
Po
Limitation)
Ceramic Dual-In-Line Package
Derate above TA = +25°C
Plastic Dual In-Line Package
Derate above TA = +25°c
Operating Ambient Temperature
TA
Range
MC3556
MC3456
Storage Temperature Range
Tstg
Value +18 200
1000 6.6 625 5.0
-55 to +125 0 to +70
-65 to +150
Unit Vdc mA
mW
mwt0 c
mW mwt0 c
OC
oc
Test Circuit for Measuring de Parameters: (to set output and measure parameters)
a. When v 5 > 2/3 Vee. Vo is low b. When v 5 ~ 1/3 Vee· v 0 is high c. When Vo is low, pin 7 sinks current. To test for Reset,
set v 0 · high, apply Reset voltage, and test for current flowing into discharge pin, When Reset is not in use, ·it
should be tied to V CC·
ELECTRICAL CHARACTERISTICS !TA= +25°C, Vee= +5 o v to +15 v unless otherwise noted J
Characteristics
Supply Voltage
Supply Current (Per timer, double for both halls) Vee= 5.0V, RL = 00 Vee= 15V,RL= 00 Low State, (Note 1)
Timing Error (Note 2) Monostable Mode RA= 2.0 k!1to100 k!1 Initial Accuracy C = 0.1 µF Drift with Temperature Drift with Supply Voltage
Astable Mode RA= Rs= 2.0 k!lto 100 k!1 C = 0.01 µF Initial Accura~y Drift with Temperature Drift with Supply Voltage
Threshold Voltage
Trigger Voltage vcc=15V Vee= 5.o v
Trigger Current Reset Voltage
Reset Current Threshold Current (Note 3)
Control Voltage Level Vee= 15 v Vee= 5.o v
Output Voltage Low !Vee= 15 vi fsink = 10mA lsink = 50mA fsink = 100 mA Isink= 200 mA !Vee= 5.ovi lsink = 8.0 mA lsink = 5.0 mA
Output Voltage High Osource = 200 mA) Vee= 15v Osource = 100 mA) Vee= 15 v Vee= 5.o v
Toggle Rate (Figures 17, 19) RA= 3.3 k!1, Rs= 6.B kn, c = 0.003 µF
Discharge Leakage Current
Rise Time of Output Fall Time of Output
Match.ing Characteristics Bet\Neen Sections (Monostable) Initial Timing Accuracy Timing Drift with Temperature Drift with Supply Voltage
Symbol
Min
Vee
4.5
'cc
Vth VT
IT VR IR Ith VcL
Vol
4.8 1.45 0.4
9.6 2.9
VoH
13 3.0
'dis lOLH IOHL
MC3556 Typ
3.0 10
0.5 30 0.15
1.5 90 0.15 2/3
5.0 1.67 0.5 0.7 0.1 0.03
10 3.33
. 0.1 0.4 2.0 2.5 0.1
12.5 13.3 3.3
100 20 100 100
0.05 ±10 0.1
Max 18 5.0 11
1.5 100 0.2
5.2 '1.9
1.0 0.1 10.4 3.8 0.15 0_.5 2.25 0.25
100
0.1 0.2
MC3456
Min
Typ
4.5
3.0 10
0.75 50 0.1
2.25 150 0.3
2/3
5.0 1.67
0.5
0.4
0.7
0.1
0.03
9.0
10
2.6
3.33
0.1 0.4 2.0 2.5
0.25
12.75 2.75
12.5
13.3 3.3
100
20 100. 100
0.1 ±10 0.2
NOTES: 1. Supply current when output is high is typically 2.0. mA less. 2. Tested at Vee= 5.0 v and Vee= 15 v.
3. This will determine the maximum value of RA +Rs for 15 V operation. The maximum total R = 20 megohms.
Max 16 6.0 14
1.0 0.1 11 4.0 0.25 0.75 2.75 0.35
100
0.2 0.5
Unit v mA
% PPM/°C %/Volt
% PPM/°C %/Volt
xVcc v
µA v mA µA v
v
v
kHz nA
% ppm/°C
%/V
II
8-135
MC3456, MC3556
TYPICAL c·HARACTERISTICS (TA = +25°C unless otherwise noted.)
FIG,URE 4 -TRIGGER PULSE WIDTH 150 .....-....---.-...--.--~-.-..........--....
FIGURE 5 -SUPPLY CURRENT
.·es 100 >---+---'--'---+-!
:i: I-
~ 751---+---+-....,::;_.....
~
~
O'--'-......JL---'---L--'--'--'--~
0
0.1
0.2
0.3
0.4
VT(min). MINIMUM TRIGGER VOLTAGE
(X vee = Vdcl .
~· ~ 6.0
~~ 4.0
t3 !::: 2.0 l--+--t--+--+----l-1--+--+---+---i
O'---'--'--'----'---'-'---'--'--'---'
5.0
10
15
Vee. SUPPLY VOLTAGE (Vdc)
FIGURE 6 - HIGH OUTPUT VOLTAGE
12i..96.10~-.-~.-f--1-:--:-.-l-1-=-...t.....:.1...t.+~-:~~T=sso-orcc:-+-=.-=-f-:-:+:._:.~ j,i.:o-_-+i."~ ..f=-.Vt:--.-_6-~~1
8u~
~-I.
t.4t=:±;;:F~;..;;;.;t-9"=-t-t+7~
1.2' l-l---+--+--1~-245-o-el---~ +--....1-+4."--< 1.or..-=::t;*:Fi,;;..-t""""=t--rtt--1
0.8; ..__1---11-4--+---+------l--+-l-+---I
> 0.61-----1----l-l-....1--1----+-+--+-I--~
0.41------l----l-1--1--1---+-+--+-I--~
5v.;vee.;15 v 0.21---f--f-+-1---1---+-+--+-+---I
~~.0~~2.~0-'-~5~.0--1L0-2~0---L-'-5L0---1100
lsource(mA)
FIGURE 7 - LOW OUTPUT VOLTAGE @ Vee= 5.o Vdc
10
~ 1.0
q._h.i/..{f)l.",:, ~:~ '-Hf--
2:.
7T::y
~
> 0.1
7I ... 7 rT
~
~
7
e."'.
0.01 1.0 2.0
5.0 10 20 ls1NK. (mA)
50 100
FIGURE 8 - LOW OUTPUT VOLTAGE ·@ Vee = 10 Vdc -55'.l::::
O.ot '----'--'-'--'--'----'---'--'--'---' 1.0 2.0 5.0 10 20 50 100 ISINK. (mA)
FIGURE 9 - LOW OUTPUT VOLTAGE @Vee= 15 Vdc
10
1.0
] i-5f"1oeT
';/
0. 1 +125°c
i...---.--
Iii"'
~
+25°~ P..55oe
~
0.0 1 1.0 2.0
5.0 10. 20 ISINK.(mA)
50 100
II
FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE
1.015 - - - - - - - - - - - . . . . . . - - - - - .
c
l:!l 1.010 1----1----+--l----+--l---+----I
::::;
~
\
~ 1.005
\
J.-+-+ -
~ 1.0001-+-':..J-,...._-.._...1--:::...i-....:::F-+-lf--I
g>-
<(
0.995
- 0.990 i---1--+---l--1---1--1----+----I
5.0
10
15
20
Vee. SUPPLY VOLTAGE (Vdc)
FIGURE 11 - DELAY TIME versus TEMPERATURE
lc:!l 1.010 1---1-----<l---+----lf---+-----l--+---t
::::;
<(
~ 1.005 l---+--1---+----lf---+---+--+---t
~ 1-~---1,t-----1i-'--+"'-:::.:.;-o;;1::--1f-+---I
~ 1.000
j::
t--t--r-
~
0.995 1---+--1---+----11---+---'-l-....1-~
i> 0.990 l---+--l---+--t---+----11---+-----l
0.9B:75 -50 -25 0 +25 .+~O +75 +100 +125
TA. AMBIENT TEMPERATURE (OC)
FIGURE 12 - PROPAGATION DELAY verS\JS TRIGGER VOLTAGE
300 .---.--..---.----.---.---.................
! 250 l--+---<f---+---fl--+--#jf--f--1
~
j::
~ 200
~15oi-.;;~~r===~~~:+---!-+--l
~
~ 100 c
g: 50 ].
o,.__.__..__-'--'---'---''---'-~
0
0.1
0.2
0.3
0.4
VT(min). MINIMUM TRIGGER VOLT~GE
(X Vee= Vdcl
8-136
MC3456, MC3556
· . f Control Voltage
r THRESH-OLD-- - -, r'TRIGG"E'Ri rf!uP-=-i=C-oP--, iOuTP'U'T1
COMPARATOR
eOMPTR I I
11
Vee
FIGURE 13-1/2REPRESENTATIVE Cl RCUIT SCHEMATIC
Thre$hold
Trigger Reset
Discharge GND
L_ ____
I
- - _j I I I!.r - - - - '
I
,,II
J1
r----- 1r
: RESET
ii
I
11
I
'I
I I
DISCH 111 -------
°i:-f----:-J100
GENERAL OPERATION
The MC3556 is a dual timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage.
Monostabl11 Mode
In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 Vee the comparator output triggers t_he flip-flop so that it's output sets· 1ow, This turns the capadtor discharge transistor "off" al')d drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 Vee the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered untU the present timing period has been completed. The time that the output is high is given by the equation t = 1.1 RA e. Various combinations of R and C and their associated times are shown in Figure 16. The trigger pulse width must be. less than the timing period.
A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.
FIGURE 14- MONOSTABLE CIRCUIT +Vee (5 to 15 V)
Reset
Vee Discharge
Trigger
1/2-MC3556 1/2·Me3456
Output Gnd
Control
O.Ol µFr Voltage
·
8·137
MC3456, MC3_556
II
GENERAL OPERATION (continued)
FIGURE 17 - ASTASLE CIRCUIT
t · 50 µ.stem IRA= 10 kn, c = 0.01 µF. RL = 1.0 kn · Vee= 15 V)
:.
~AL
I I I I I I I I Output I
+vcc(5 to 15 Vl
Reset
Vee
Output
1/2-MC3556 1/2·MC3456
I
.t~ L
FIGURE 16-TIME DELAY 100
FIGURE 18 -ASTABLE WAVEFORMS
10
u.. .3
w
<z.>
1.0
<(
Iu-
~ 0.1 ~
u·
0.01
kdLILZL
0.001 lOµs
lOOµs 1.0ms 10ms 100ms 1.0 Id. TIME DELAY (s)
10
100
Astabla Mode
In the astable mode the timer is connected so that it will
retrigger itself and cause the capacitor voltage to oscillate between 1/3 Vee and 2/3 Vee- See Figure 17.
The external capacitor charges to 2/3 Vee through RA and Rs and discharges to 1/3 Vee through R5. By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.
The charge time (output, high) is given by: q = 0.695 (RA +Rs) C
The discharge time (output low) by: t2 = 0.695 (Rs) C
Tpusthe total period is given by: T = t1 + t2 = 0.695 IRA+2Rsl C
!. The frequency of oscillation is then: f = = 1·44
·
T (RA+2RslC
and may be easily found as shown in Figure 19.
~ The duty cycle is given by: DC =
·
RA+2Rs
To obtain the maximum duty ·cycle RA must be as small as possible; but it must also be large enough to limit the .discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mA).
The minimum value of RA is given by: :;;, Vee IVdcl ::;;; Vee (Vdcl
RA~17W ~~
t = 20 µs/cm IRA= 5.1kn,c=0.01 µF, RL = 1.0kn;
Rs= 3.9 kn, Vee= 15 VI
FIGURE 19 - FREE-RUNNING FREQUENCY
..:;
t.U ~ 1.0~-;---t~'"7""-+'~-o--+"..--::--+"o.--::---'f--~-4~~--I
<
ut-
5Cf. 0.1
c.:i
1.0
10
100
1.0 k
10 k 100k
f, FREE-RUNNING FREQUENCY (Hz)
8-138
MC3456, MC3556
APPLICATIONS INFORMATION
TONE BURST GENERATOR
For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse at Pin 6. The second timer i,s enabled by the high output of the monostable.. It is connected as ·an astable and determines the frequency of the tone.
DUAL ASTABLE MULTIVIBRATOR
This dual astable multiwi brator provides versatility not available with single timer circuits. The duty cycle can be adjusted from 5% to 95%. The two outputs provide two phase clock signals often required in digital systems. It can also be inhibited by use of either reset terminal.
FIGURE 20 - TONE BURST GENERATOR
Trigger
RT
4
Vee
Trigger
5 Output
6
10
1
1/2 MC3556
Discharge
9
2 Thres-
C1·
hold
Gnd
Control
0.01 µF
Output
14 Vee
13 Discharge
1/2 MC3556
12 Threshold
Control 7 Gnd 0,01 µF
RA Re
C2
Gnd
t = 1.1 RT C1
f = 1.44
(RA+ 2R9) C
FIGURE 21 - DUAL ASTABLE MULTIVIBRATOR
Reset 4 ThresR1,
hold
2
14 + 10 k
1/2 MC3556
10 k 9
10 Reset R2
Threshold
1/2 MC3556
Control C1
Voltage
Gnd
Output
Control
11 Voltage
C2
'i'
'T'
I I
I
I I
....._~~~---t..._~~._~~~~~~~~~~~~~~~~~~~~~~~---<11-~~~~~-+--0Gnd
f = (R~-;~ 2 ) C for C1 = C2
1 2 Duty Cycle R ~~
·
8-139
MC3456, MC3556
APPLICATIONS INFORMATION (continued)
Pulse Width Modulation lf the timer is triggered with a continuous pulse trai11 in the
monostable mode of operation, fhe charge time of the capacitpr can be varied by changing the control voltage at pin 3 . In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.
FIGURE 22
+Vee (5to 15 Vl
FIGURE 23- PULSE WIDTH MODULATION WAVEFORMS (RA= 10 kn, e = 0.02 µF, Vee= 1.5 V)
Mod1Jlat1on Input Vultaqe 5 0 V c 111
Reset
Output
Output
Clock
Input
Trigger
1/2·MC3556 1/2-MC3456
Gnd
Control
Modulation Input
t = 0.5 ms/cm
Test Sequences Several timers can be connected to drive each other for sequen-
tial timing. An example is shown in Figure 24where the sequence is started by triggering the first timer which runs for 10 ms.· The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.
II
FIGURE 24
Vee (5 to 15 V)
9.1 k
Reset
Threshold ~-'-------'---.
27 k
9.1 k
Vee
Reset
27 .k
1/2-MC3556 1/2-MC3456
r .
1/2-MC3556 1/2-MC3456
r·.0.001 µF
Gnd
Load
Load
50 k
Vee
Reset
1/2-MC3556 1/2-MC3456
0.01 µF
Contr~
Output
Gnd
Load
8-140
, ORDERING INFORMATION
Device MLM565CP
Alternate NE565A ·
Temperature Range
0°C to +70°C
Package Plastic DIP
MLM565C
PHASE-LOCKED LOOP
The MLM565C is designed for general-purpose phase-locked loop applications to 500 kHz.
. PHASE-LOCKED LOOP SI LICON MONOLITHIC
INTEGRATED CIRCUIT
PSUFFIX PLASTIC PACKAGE
CASE 646
· Stable Center Frequency - 200 ppm/°C (Typ) · Flexible Power Supply Range -
±5 to ±.12 Volts with Small Frequency Drift - 1'00 ppm/% (Typ)
· Low Total Harmonic Distortion of Demodulator Output -1.5% (Max)
· Linear Triangle Wave Output - 0.5% (Typ)
· TTL, DTL Compatible Inputs and Outputs
· Adjustable Hold In Range - ±1% to >±60%.
vco
Output Phase
Comparator 5 VCO Input
Reference Output
vco
Voltage
FIGURE 1 - REPRESENTATIVE CIRCUIT SCHEMATIC
Phase Comparator
5
10
+Vee
NC NC
+Vee External
Cfor VCO External R for VCO
4 VCO output
4.3 k
·
Input
200 200
8-141
MLM565C
·
MAXIMUM RATINGS
Rating Power Supply Voltage Power Dissipation (Package Limitation)
Derate above 25°c Operating Ambient Temperature Range Storage Temperature Range
Symbol Vee Po
TA Tstg
Value ±12 825 6.6 0 to +70 '-65 to +150
Unit
Vdc mW mwt0 c .,,..c
-u-c
ELECTRICAL CHARACTERISTICS (Test Circuit Figure 2, TA= 25°C, Vee= ±6.0 Vdc unless otherwise noted.)
Characteristic
Min
Typ
Max
Power Supply Current
-
8.0
12.5
Input Impedance (Pins 2, 3)
-4.0 V < V2, V3 < 0 V
Input Level Required for Tracking
f 0 = 10 kHz, ±10% Frequency Deviation
VCO Maximum Operating Frequency
-
5.0
-
10
-
-
-
500
-
C0 =2.7pF Operating Frequency Temperature Coefficient Frequency Drift with Supply Voltage
-
200
-
-
200
-
Triangle Wave Ouptut Voltage Triangle Wave Output Linearity Square Wave Output Level VCO Output Impedance (Pin 4)
2.0
2.4
3.0
-
0.5
-
4.7
5.4
-
-
5.0
-
Square Wave Duty Cycle Square Wave Rise Time Square Wave Fall Time Output Current Sink (Pin 4) VCO Sensitivity Demodulated Output Voltage (Pin 7)
40
50
60
-
20
-
-
50
-
0.6
1.0
-
-
6600
-
200
300
-
f 0 = 10 kHz, ±10% Frequency Deviation Total Harmonic Distortion
f 0 = 10 kHz, ±10% Frequency Deviation Output Impedance (Pin 7)
-
0.2
1.5
-
3.5
-
DC Output Voltage Level (Pin 7)
4.0
4.5
5.0
Output Offset Voltage (Input= 0)
-
50
200
/V7-V6/ Temperature Drift of /V7·V6/ AM Rejection Phase Detector Sensitivity Ko
-
. 500
-
-
40
-
-
0.68
-
Input (Frequency Modulated
Signal)
FIGURE 2 - TEST CIRCUIT SCHEMATIC +6.0 v
i10µ.F
600 499 k
Unit mA kn
mVrms
kHz
ppm/UC ppm/%
Vp-p %
Vp·p kn % ns ns mA Hz/V mVp·p
%
kn \I mV
µ.V/°C dB
V/radian
Triangle Wave
Demodulated Output
Offset Voltage (V7·V6)
Square Wave Output
@ MOTOROLA Semiconducf:qr Products Inc. --------'
8-142
MLM565C
FIGURE 3 - POWER SUPPLY CHARACTERISTICS
14
3
12
< 11
.§
~ 10 9.0
::>
(..) 8.0
i 7.0 6.0
R1=2.0k~
TOTAL SUPPLY VOLTAGE (VOLTS)
FIGURE 4 - VCO CONVERSION GAIN
J 2.0 Vee= ±6.o
~ 1.67
0
~ 1.33
0 w
N
~ 1.0
~
2
0.67
~ v
~ 0.33
0.5
1.0
v
kd
C2J
lL:J
v k2:
1.5
2.0
2.5
VOLTAGE BETWEEN Pins 7 and 10 (V10-V7)
L
3.0
FIGURE 5 - LOCK RANGE versus INPUT VOLTAGE
1.7
~ 1.6
1-'i
~ 1.5
""'(..)
0
~ 1.4
vcc =± 12 vtL:k'.'.
z ~
~ 1.3 ~ ~ 1.2
ll k'I v :L~
± 6.0 v
~1-M
!,?I"'
1.1 ./1
1.0 1.0
5.0 10
50 100
PEAK-TO-PEAK INPUT VOLTAGE (mV)
500 1000
FIGURE 6- OSCILLATOR OUTPUT WAVEFORMS
+6.0 .---.---.---.---.---.---,.---.---,.--,.-~
~ +4.0
V'h. ~ +2.0 A
_y ~ .A
A
Y"
7 ~ -2.o ~ -""' ::S: Z :S:~[Z
~ +6.0 r-+---i
~
,........+----,
ii'. +4.0 l--l--+---l---+-1-+---J.--~-+--11---+-----l
~ +2.0 l--l--+---t---+-1-+---J.--~-+----+-----I
~
0
-2.0 l---+---+-----'+--+--+--+--+--+--+-----1 4.o.__v_c_c~=-±6_.o_v...__..__..__..__....__..__....__....___.
FIGURE 7 - LOCK RANGE (As a Function of Gain Setting Resistance)
FIGURE 8 - AM REJECTION CHARACTERISTICS
l : S l R= ~ 10 k 2.0 k 0 I"'-. .
t---+- 25 k -5.0 k
~LS!:
' N -1.0 l---+---+---+---+---+---+--+--+-'-+-----1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
RELATIVE FREE RUNNING VCO FREQUENCY
75
70 65 60
~ 55 2 50
~a:0 45 40 35 ~ 30
25
20 15 10 5.0
0
_..+...--
b:::'.:::::
~v ..,J/
L iz:
/ 7
l7
z
v L
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10
INPUT VOLTAGE (mV)
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete .information sufficient for construction p·urposes is not necessarily given. The information .has been carefully checked and
is believed to be entirely reliable. However. no responsibility is assumed for inaccuracies. Furthermore. such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
p
@ MOTOROLA Semlco;...ductor Produc'fs Inc.
8-143
II
MLM565C
·
GENERAL APPLICATIONS' INFORMATION
The following formulas are useful when designing with the MLM565.e:
1. eent~r Frequency -
f <:::::--1_ _ 0 3.. 7 Roco
Where: f 0 is the frequency of the veo without input signal. For Ro. Co circuit location see Figure 2.
2. Loop Gain - KoKD~ Definitions: Ko - veo Conversion Gain - the conversion factor between vco frequency and control voltage. Ko = 4.12 f 0 (units are in radians/sec/volt) Example: for VCO Sensitivity @ 10 kHz (in, Hz/volt) K = 4.12 ~ 104 = 6600 Hz/Volt O 2 rr radians
Ko -Phase Detector Gain Factor - the conversion factor betw.een the phase detector output voltage and the phase difference between input and veo signals. Units are in volts/radian.
K _ 8.1 ·A
o- Vee
Where: A= f(R6 to R7)
Hence: Ko=~ [f(R6-R7))
Vee
Where: Vee is total system supply voltage, f(R6-R7) is i.nternal amplifier gain (See Fig· ure 9). Vee ' total supply voltage to the circuit.
3. Lock Range - f = + ·afo L -Vee
Where: fL is the range of frequencies in the area of f 0 over which the VCO, once locked to the input signal, will remain locked.
4. Capture Range - ~ f0 :::::: ± 211 J /2t-ii=fL-
Where: fc is that range of frequencies around fo over which the loop will acquire lock with an input signal initially starting out of lock..
(T = lime Constant at Pin 7)
FIGURE 9 - INTERNAL AMPLIFIER GAIN CHARACTERISTICS
1.27 1.18 1.09 1.0
0.91
0.82 ~ 0.73 ~ 0.64 :: 0.55
0.46 ...-
0.37 0.28
0.19 0.10 0.01
1.0
-"""
i--1
A-1l-f""I
........-r
~
3.0 5.0
10
30 50 100
RESISTANCE BETWEEN Pins 6 AND 1 (kll)
8-144
NE592 SE592
Advance Information
DIFFERENTIAL TWO-STAGE VIDEO AMPLIFIER
The SE/NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed to that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications,, magnetic memories, display and video recorder systems. The 592 is a pin-for-pin replacement for :the MC1733.
· 120 Ml;lz Bandwidth · Adjustable Gains From 0 to 400 · Adjustable Pass Band · No Frequency Compensation Required
CIRCUIT SCHEMATIC
2.4 k 2.4 k
10 k
Input 2
Input 1
7 k
G1A G1e
G2A G2e
50
50
Vee
Output 1 Output 2
600 600
1.4 k
300
400 400
Thi· Is advance information and specifications are subject to change without notice.
8-145
VIDEO AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT
G SUFFIX METAL PACKAGE
CASE 603 ·
G1 B Gain Select (top view)
Pin 5 connected to case
L SUFFIX CERAMIC PACKAGE
CASE 632
.NC
G2e Gain 3 Select
G1e Gain 4 Select,
G2A Gain Select
G1A Gain Select
Output 7 1----~ 2-
9 NC
----1 8 Output
(top view)
ORDE'RING INFORMATION
Device NE592L NE592G
Temperature Range
o to 10°c o to 7o0 c
Package ·ceramic OIP
Metal Can
SE592L -50 to +125oc Ceramic OIP
SE592G -55 to +125°c Metal Can
II
NE592, SE592
II
MAXIMUM RATINGS (TA= +25°c unless otherwise noted)
Rating
Symbol
~ower Supply Voltage
Differential Input Voltages Common-Mode Input Voltage Output Current
Vee Vee V10 V1c
lo
Operating Ambient Temperature Range
TA
Se592
Ne592
Operating Junction Temperature Range
TJ
Storage Temperature Range
Tstg
Value +8.0 -8.0 ±5.0 ±6.0
10
-55 to +125 Oto +70 175
-65 to +150
Unit Volts
Volts Volts mA
oc
oc oc
ELECTRICAL CHARACTERISTICS (Vee= +6.0 V o Vee= -6.0 V, VcM = TA= 25°c unless otherwise noted.)
SE592
NE592
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Differential Voltage Gain (Gain 1, AL= 2 k.n Note 1) (Gain 2, Vout = 3 Vp-p Note 2)
Avd
300
400
500
250
400
600
90
100
110
80
100
120
Bandwidth (Gain 1, Note 1) (Gain 1, Note 2)
BW
-
40
-
-
40
-
-
90
-
-
90
-
Rise Time (Gain 1, V 0 = 1 Vp-p, Note 1) } (Gain 2, V0 = 1 Vp-p, Note 2)
Propagation Delay (Gain 1, V 0 = 1 Vp-p, Note 1) (Gain 2, V 0 = 1 Vp-p, Note 2)
Input Resistance (Gain 1, Note 1) (Gain 2, Note 2)
tTLH tTHL
tPLH tPHL
Rin
-
10.5
-
·-
10.5
-
-
4.5
10
-
4.5
12
-
7.5
-
-
7.5
-
-
6.0
10
-
6.0
10
-
4.0
-
-
4.0
-
20
30
-
10
30
-
Input Capacitance (Gain 2, Note 2)
Input Offset Current
Input Bias Current
Input Noise Voltage (BW = 1 kHz to 10 MHz)
Input Voltage Range Common-Mode Rejection Ratio
(Gain 2, VcM = ± 1V,f~100 kHz) (Gain 2, VcM = ±1v,f=5 MHz)
Cin 110 110 Vn
Vin CMRR
-
2.0
-
-
2.0
-
-
0.4
3.0
-
0.4
5.0
-
9.0
20
-
9.0
30
-
12
-
-
12
-
±1.0
-
-
±1.0
-
-
60
86
-
60
86
-
-
60
-
-
60
-
Supply Voltage Rejection Ratio (Gain 2, l:i. V 5 = ±0.5 V)
Output Offset Voltage (Gain 3, AL = oo, Note 3)
PSRR Voo
50
70
-
50
70
-
-
0.35
0.75
-
0.35
0.75
Output Common-Mode Voltage (AL= oo)
VcMO
2.4
2.9
3.4
2.4
2.9
3.4
Output Voltage Swing (AL= 2k)
Output Resistance
Power Supply Current (AL= oo)
Vo
3.0
4.0
-
,3.0
4.0
-
ro
-
20
-
-
20
-
lo
-
18
24
-
18
24
Note 1. Note 2. Note 3.
Gain select pins G 1A and G1B connected together. Gain select pins G2A and G2B connected together. All gain select pins open.
Units VIV
MHz
ns
ns
k.n
pF µA µA µV(rms) v dB
dB v v Vp-p .n mA
@ MOTOROLA Semiconductor Product· Inc.
8-146
NE592, SE592
GENERAL TEST CIRCUITS 0.2 µF
0.2 µF 51
1 k
1 k
THERMAL INFORMATION
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
TJ(max) -TA Po(TA) = RoJA(Typ)
Where: Po(TAl = Power Dissipation allowable at a given operating ambient temperature. This must be greater than
the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max) =Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
TA = Maximum Desired Operating Ambient Temperature
ROJA(Typ) =Typical Thermal Resistance Junction to Ambient
@MOTOROLA Sernlconduc'for·Produc'fs Inc. 8-147
CASE OUTLINE DIMENSIONS
The packaging availability for each device type is indicated on the .individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section. Outline dimensions for non-encapsulated standard linear device chips and flip-chip devices are found in the Chips Data Book.
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:
TJ(max) -TA PD(TA) = ReJA(Typ)
where: PD(TA)
Power Dissipation allowable at a given operating .ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for TJ(max) information.
TA= Maximum Desired Operating Ambient Temperature
ROJA(Typ) = Typical Thermal Resistance Junction to Ambient
CASE 11 (T0-3)
Metal Package
ROJA= 45° C/W(Typ)
AoJc = 5.5° C/W(Typ)
L f ESEA~ rTIN(, ~~ i PLANE
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A B
--
c 6.35
D 0.99
E -
F 29.90
G 10.67
.::!! 5.33 J 16.64
K 11.18
Q 3.84
R -
39.37
21.08 7.62 1.09 3.43 30.40 11.18
5.59 17.15 12.19 4.09 26.67
-
-
0.250 0.039
-
1.177 0.420 0.210 0.655 0.440 0.151
-
1.550
0.830 0.300 0.043 0.135 1.197 0.440 0.220 0.675 0.480 0.161 1.050
CASE 29 (T0-92)
Plastic Transistor ROJA = 200° C/W
·
l-t'~· MB A
T. --- . SEAPTLINAGNE
H. L
F ___l K
!
Dj1t ~
~ r-rR C SECT.A-A
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 4.32
B 4.44
c 3.18
D 0.41
F 0.41
G 1.14
H -
J 2.41 K 12.70
L 6.35 N 2.03 p 2.92 R 3.43
s 0.36
5.33 0.170 0.210
5.21 0.175 0.205
4.19 0.125 0.165
0.56 0.016 0.022
0.48 0.016 0.019
1.40 0.045 0.055
2.54 - 0.100
2.67
-
o0.309il5[
0.105
-
- 0.250 -
2.92 0.080 0.115.
- 0.115 -
nn!i
0.41 ::o:ill: o.o:ii
9-2
CASE 79 (T0-39)
Metal Package ROJA= 185° C/W(Typ)
MILLIMETERS
DIM MIN MAX
A 8.89 9.40 B 8.00 8.51
c _§,10 6.60
0 0.406 0.533 E 0.229 3.18 F 0.406 0.483 G 4.83 5.33 H 0.711 0.864 J 0.737 1.02
K 12.70 L 6.35 -
M 450 NOM p - J_ 1.27 Q 90° NOM
R 2.54 -
INCHES
MIN MAX
0.350 0.370 0.315 0.335 0.240 0.260 0.016 0.021 0.009 0.125 0.D16 0.019 0.190 0.210 0.028 0.034 0.029 0.040
0.500 -
0.250 -
450 NOM
- 0.050
goo NOM 0.100 -
All JEDEC dimensions and notes apply.
CASE 199
Plastic Package
s--
ROJA = 65° C/W
RoJc = 5.o0 c;w
1. DIM "G" IS TO CENTER LINE OF LEADS.
CASE 313 (T0-220 Type)
Plastic Power ROJA= 65° C/W (Typ)
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 16.08 16.33 B 12.57 12.83
c 3.18 3.43
0 0.51 0.76 F 3.61 3.86
G 2.54 BSC H 2.67 J_ 2.92 J 0.43 0.69 K 14.73 14.99
l 2.16 2.41 M 30 TYP N 1.47 1.73
Q 4.78 5.03
R 1.91 2.16
s 0.81 0.86
T 6.99 7.24
u 6.22 6.48
0.633 0.643 0.495 0.505 0.125 0.135 0.020 0.030 0.142 0.152
0.100 BSC 0.105 0.115 0.017 0.027 0.580 0.590 0.085 0.095
30-TYP
0.058 0.068 0.188 0.198 0.075 0.085 0.032 0.034 0.275 0.285 0.245 0.255
MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 15.49 15.88 0.610 0.625 _!_ 9.65 J.1!:67 1[380 0.420
c 4.06 4.83 0.160 0.190
(} 0.51 1.02 0.020 0.040 G 2.29 2.79 0.090 0.110 J 0.38 0.64 O.D15 0.025 K 12.70 - 0.500 L 2.03 2.92 0.080 0.115
Q ~ _±.73 O.f39 <rm
R 0.89 1.40 0.035 0.055 R 9.02 9.40 0.355 0.370
s ~ J:05 0.100 0.120
T 9.02 9.39 0.355 0.370
·
9-3
CASE 601
Metal Packa~eC/W(Typ)1
AlJ.JA = 160
CASE 6038
Metal Can o C/W RlJJA = 160
. CASE
RlJJA =
603C
1500
(T0-100 Type)
C/W(Typ)
·
9-4.
CASE 606 (T0-91)
Ceramic Package ReJA = 165° C/W(Typ)
L_
[" G
NO~FLEADS WITHIN 0.25 mm (0.010)
TOTAL OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION (AT BODY)
r::
-,
I 6 I 7 I 8
5 4'
31 I
9
2 ,,
'10
-1
_j t A
lol
MILLIMETERS INCHES DIM · MIN MAX MIN MAX
A 6.10 7.36 8 6.10 6.60
c 0.762 1.77
0 0.254 0.482 F 0.077. 0.152
G 1.15 1.39 H 0..121 0.889 K. 1.78 R - 0.381
0.240 0.240 0.030 0.010 0.003 0.045 0.005 0.070 -
0.290 0.260 0.070 O.o19 0.006 0.055 0.035 0.015
All JED EC dimensions and notes apply
CASE 607 (T0-86 Type)
Ceramic Package RtJJA = 165° C/W(Typ)
f R
I L
A lo
l c
-11--R
8 I I
:
: :
14--
-=\ 'ii
I I
:
l
I I
=;; ~ -n:=-.,
I
~
·1 s G 1 1
MILLIMETERS INCHES
DIM MIN MAX· MIN MAX
A 6.10 6.60 0.240 0.260
c 0.76 1.78 0.030 0.070
0 0.33 0.48 0.013 O.D19
F 0.08 0.15 0.003 0.006
G
1.27 BSC
.0.050 BSC
H 0.30 0.89 0.012 0.035
- J - 0.38
0.015
K 6.35 9.40 0.250 0.370
L 18.80 - 0.740 -
N 0.25 - 0.010 -
- R
0.38 - 0.015
s 7.62 8.38 0.300 0.330
CASE 614 (T0-66 Type)
Metal Package R8JA.= 35° C/W(Typ) ReJc = 6° C/W(Typ)
9:-5
MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A - 31.80 - 1.252
·B 11.94 12.70 0.470 0.500
c 6.35 8.64 0.250 0.340
0 0.71 0.81 0.028 0.032
E 1.27 1.90 0.050 0.075
F
36° BSC
36° BSC
G 8.26 BSC
o.32([sc
H 24.33 24.43 0.958 0.962
J 12.17 12.22 0.479 0.481
K 9.14 - 0.3601 -
p
1.40 BSC
0.055 BSC
Q 3.61 J_ 3.86 0.142 0.152
- R
17.78 - 0:100
·
CASE 620
Ceramic Package
At:JJA ·= 100° C/W(Typ)
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 19.05 19.81 0.750 0.780
B 6.22 6.98 0.245 0.275
c 4.06 5.08 0.160 0.200
0 0.38 0.51 0.015 0.020
F 1.40 1.65 0.055 0.065
G
2.54 BSC
0.100 BSC
H 0.51 1.14 0.020 0.045
J 0.20 0.31 0.008 0.012
K 3.18 0.30 0.125 0.160
l 7.37 7.87 0.290 0.310
- M - 150
150
N 0.51 1.02 0.020 0.040
NOTES: 1 LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION' PKG. INDEX: NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT' DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL'
CASE 623
Ceramic Package At:JJA = 53° C/W(Typ)
-1
B
~ITTTT"TTTTTT"TT"TT"'~_j
~ ~ -la~ 0.Jl-oC""NJJ'-/fl-1Mm--,·J_~....\\-
NOTES: 1. DIM "L"TO CENTER OF LEADS WHEN FORMED PARALLEL. 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARA~LEL)
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 31.24 32.26 1.230 1.270
B 12.70 13.72 0.500 0.540
c 4.06 5.59 0.160 0.220
0 0.41 0.51 0.016 0.020
F 1.27 1.52 0.050 0.060.
G 2.54 BSC
0.100 BSC
J 0.20 0.30 0.008 0.012
K 3.18 4.06 0.125 0.160
l
15.24 BSC
M 50 l 150
0.600 BSC 50 150
N 0.51 1.27 0.020 0.050
CASE 626
Plastic Package At:JJA = 100° C/W(Typ)
·
NOTES: 1. LEADS WITHIN 0.13 mm (0.005)
RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION. 2. DIM "L" TO CENTER OF
LEAOSWHEN FORMEO PARALLEL.
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 9.40 10.16 0.370 0.400
B 6.10 6.60 0.240 0.260
c 3.94 4.45 0.155 0.175
D 0.38 0.51 0.015 0.020
F 1.02 1.52 0.040 0.060
G
2.54 BSC
0.100 SSC
H 0.76 1.27 0.030 0.050
J 0.20 0.30 0.008 0.012
K 2.92 3.43 0.115 0.135
l 7.37 7.87 0.290 0.310
M -
- 10°
10°
N 0.51 0.76 0.020 0.030 p 0.13 0.38 0.005 0.015
Q 0.76 1.02 0.030 0.040
9-6
CASE 632 {T0-116)
Ceramic Package ROJA= 100° C/W(Typ)
b.::::m
~~ --iGl-- __j~SEA~NG J L PLANE
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 16.8 19.9 0.660 0.785
B 5.59 7.11 0.220 0.280
c - 5.08 - 0.200
D 0.381 0.584 0.015 0.023
F 0.77 1.77 0.030 0.070
G 2.54 BSC
0.lOOBSC
J 0.203 0.381 0.008 0.015
K 2.54 - 0.100 -
L 7.62 BSC
M - 15°
0.300 BSC
- 150.
N 0.51 J. 0.76 0.020 0.030 p - J. 8.25 - 0.325
All JEDEC dimensions and notes apply.
DIMENSION "L" TO CENTER OF LEADS V\'HEN FORMED PARALLEL.
CASE 646
Plastic Package ROJA= 100° C/W(Typ)
NOTES: 1. LEAOSWITHIN0.13mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL
i:::::::Q
~A ll--p
F
. r,L~
~J__jJ[..~ RJ'L J l-- Hii-- -1'G
D PLANE
M
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 18.16 18.80 0.715 0.740
B
c
6.10 4.06
6.60 0.240 0.260 4.57 0.160 0.180
D 0.38 0.51 0.015 0.020
F 1.02 1.52 0.040 0.060
G
2.54 BSC 0.100 BSC
H 1.32 1.83 0.052 0.072
J 0.20 0.30 0.008 0.012
K 2.92 3.43 0.115 0.135
L 7.37 7.87 0.290 0.310
M - 100 - 10°
N 0.51 1.02 0.020 0.040 p 0.13 0.38 0.005 0.015
Q 0.51 0.76 0.020 0.030
CASE 647
Plastic Package ROJA= 100° C/W(Typ)
NOTE: 1. LEA OS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 18.16 18.80 0.715 0.740
B 6.10 6.60 0.240 0.260
c 3.30 3.81 0.130 0.150
D 0.38 0.51 0.015 0.020
F 1.02 1.52 0.040 0.060
G
2.54 BSC
0.100 BSC
H 1.32 1.83 0.052 0.072
J 0.20 0.30 0.008 0.012
K 2.79 4.06 0.110 0.0160
L 9.52 10.92 0.375 0.430
N 1.02 1.52 0.040 0.060
p 0.13 0.38 0.005 0.015
n 0.51 0.76 0.020 0.030
R 4.70 5.97 0.185 0.235
s 2.54 3.43 0.100 0.135
·
9-7
·
CASE 648
Plastic Package Rl:JJA = 100° C/W(Typ).
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 20.70 21.34 0.815 0.840
B 6.10 6.60 0.240 0.260
c · 4.06 4.57 0.160 0.180
0 0.38 0.51 0.015 0.020
F 1.02 1.52 0.040 0.060
G
2.54 BSC
0.100 BSC
H 1.32 1.83 0.052 0.072
J 0.20 0.30 0.008 0.012
K 2.92 3.43 0.115 0.135
L 7.37 7.87 0.290 0.310
M -
100 -
10°
N 0.51 1.02 0.020 0.040 p 0.13 0:38 0.005 0.015
Q 0.51 0.76 0.020 0.030
NOTE: 1. OIM "L" TO CENTER OF LEAOS WHEN FORMED PARALLEL.
CASE 649
Plastic Package
Al:JJA = 9o° C/W(Typ)
PJI
24
13~
Q
B
,o
12LJ
~l"r..--Hi-,.....,.......,..,..,..,....,.TTT"T"TT"T°TT'·
~ ~-ic
--JG~
SEATING
PLANE
, . ,__ . .r!
I I
'
1
·~ .
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 31.50 32.13 1.240 1.265
8 13.21 13.72 0.520 0.540
c 4.70 5.21 0.185 0.205
D 0.38 0.51 0.015 0.020
F 1.02 1.52 0.040 0.060
G 2.54 BSC
O.lOOBSC
H 1.65 2.16 0.065 0.085
J 0.20 0.30 0.008 0.012
K 2.92 3.43 0.115 0.135
L 14.99 15.49 0.590 0.610
M - 100 - 100
N 0.51 1.02 0.020 0.040 · p 0.13 0.38 0.005 0.015
Q 0.51 0.76 0.020 0.030
NOTES: 1. LEADS WITHIN 0.13 mm(0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "'L"TO CENTER OF LEAD_S WHEN FORMED PARALLEL.
CASE 650
Ceramic Package
Rl:JJA = 140° C/W(Typ).
I 9
BI
~·
I
I
I
I
I
I
I 16
1'
-Ii-;
L
f
-] i_J_
t
A
G
] TN
NOTES: 1. LEAO NO. 1 IOENTIFIEO BY TAB ON LEAO OR DOT ON COVER.
2. LEADS WITHIN 0.13 mm (0.005) TOTAL OF TRUE POSITION AT MAXIMUM MATER1:4L CONDITION.
MILLIMETERS INCHES DIM MIN MAX MIN MAX
A 9.40 10.16 0.370 D.400
8 6.22 6.60 0.245 0.260
c 1.52 2.03 0.060 0.080
D F G H K L N
0.38 0.48 0.08 0.15
1.27 BSC
~:~H rn ! - 18.92l -
- - T o.51
~
0.006 I
~~~;51
0.250 0.370 0.745
o.ozg_
R - -, 0.38 - 0.015
9-8
CASE 690
~eramic Package OJA= 1000 C/W(Typ)
CASE 693
CRerami_c Package f}JA - 1 OOo C/W( Typ)
CASE 701
PRlastic_Pack age OJA - 1000 C/W(Typ)
NOTE
;::m 1. ~LFEATDRSUWE IPTOHSINITOIO1N3 (0.005) RADIUS T MAXIMUM MATERTIASLEACTOINNGDITPILOANN.E
NOTES:
1. LREAAODOSFWTIRTHUIENPOO~~ mm I0.005)
SEATING PLAN TION AT MATERIAL CONEDAT M,l\XIMUM
2. DIMENSION" " ITIQN.
OF LEADS WHLENTO CENTER
PARALLEL.
FORMED
NOTES:
~':T~ER~T MAX~~~~G 1.
P~OOES~OIT~~IO~N~"'rAi:T~N~0O.1F3
mm TRUE
(QIM "G'~L CONDITION
2· DOFIMLEENASDISOWNH"LE., TD CENTER PARALLEL. N FORMED
·
·
CASE 722
Plastic Package ROJA = 60° C/W(Typ)
MILLlllliETERS
DIM MIN MAX A 20.70 21.34 B 6:10 6.60
c 4.06 4.57
D 0.4.3 o,56 F 1.02' 1.52 G 2.41 2.67
H 1.32 1.83 J 0.33 0.46 K 2.92 3.43 L 25.15 27.94 N 0.51 1.02 p 6.27 6.53 Q 3.48 3.73 R 4.83 5.33
s 9.91 10.41
T 16.26 16.76
!!'!_CHES
MIN MAX 0.815 0.840 0.240 0.260 0.160 0.180 0.017 0.022 0.040 0.060 0.095 0.105 0.052 0.072 0.013 0.018 0.115 0.135 0.990 1.100 0.020 0.040 0.247 0.257 0.137 0.147 0.190 0.210 0.390 0.410 0.640 0.660
CASE 722A
Plastic Package ROJA= 60° C/W(Typ)
~J L.J
MILLIMETERS
DIM MIN MAX A 20.70 21.34 B 6.10 6.60
c 4.06 4.57
D 0.43 0.56 F 1.02 1.52 G 2.41 2.67 H 1.32 1.83 J 0.33 0.46 K 2.92 3.43 L 16.94 17.45 N 0.51 1.02 p 6.27 6.53
R 4.83 5.33
s 9.91 10.41
INCHES
MIN MAX 0.815 0.840 0.240 0.260 0.160 0.180 0.017 0.022 0.040 0.060 0.095 0.105 0.052 0.072
0.0.13 O.D18 0.115 0.135 0.667 0.687 0.020 0.040 0.247 0.257 0.190 0.210 0.390 0.410
CASE 724
Plastic Package
ROJA = 100° C/W(Typ)
I '
A
I
~::::::::::~[]
~H~ ,
¥i@fRJj~ r_~-fC r;L~'
MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 31.24 32.13 1.230 1.265
B 6.10 6.60 0.240 0.260
c 4.06 4.57 0.160 0.180
D F
G H
I 0.38 0.51
1.02 1.52 2.54 SSC
1.60 2.11
~ ~ ,s~.~83 I
J 0.18 0.30 0.007 0.0.!1_
K 2.92 3.43 0.115 0.135
L 7.37 7.87 0.290 0.310
M - 10° - 100
N 0.51 1.02 0.020 0.040
NOTE: 1. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) OIA AT SEATING PLANE AT MAXIMUM MATERIAL CONOITION (DIM 0):
CASE 726
Ceramic Package ROJA."" 100° C/VV(Typ)
r-r4. ~ ~D 'l_J I
-'~Ull___ J
I
-I
.
r-
:
A- -
~,~.__J_.?. - i
ll LJF~ -:---r .
Hj
I
\U
__j -o lsEATING PLANE
NOTES:
1. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) DIA.
AT SEATING PLANE, AT
MAXIMUM MATERIAL CONDITION.
2. OIM "L" TO CENTER OF ·
LEADS WHEN FORMED PARALLEL.
3. DIM "A" & "S" INCLUDES MENISCUS.
MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 22.35 23.11 0.880 0.910
B 6.63 · 7.24 0.261 0.285
c -
5.0S - 0.200
D 0.41 0.51 0.016 0.020
F 1.40 1.65 0.055 0.065
G 2.54 SSC
0.100 BSC
H 0.76 1.02 0.030 0.040
J 0.13 0.38 0.005 0.015
K -
4.44 - 0.175
L M
7o.3o7
S.00 15°
0.290 0.315
o· 1[·
N 0.51 0.76 0.020 0.030
9-10
ltllOTOROLA Semiconduc"fors
BOX 20912 ·PHOENIX, ARIZONA 85036
*NO. 6 SHEET METAL SCREWS B51564F003
MOUNTING
HARDWARE
T0-3
This hardware is applicable to the following packages.
INSULATOR (3 OPTIONS AVAILABLE)
MICA-B52600F011 FIBERGLASS-B51080A001
ANODIZED ALUMlNUlll'B51078A001
POWER TRANSISTOR MOTOROLA CASE 1
CHASSIS OR HEAT SINK
CASE 1 (T0·3) CASE 3 CASE 11A CASE 11 (T0-3) CASE 12 CASE 54 CASE 197
·Longer screws (not available from Motorola) and multiple bushings may be required for thick chassis or heat sink.
MOUNT ON FRONT OF CHASSIS
MOUNT ON BACK OF CHASSIS
0
FRONT TEMPLATE B51087A001
0
0 0
0
0
0 0
0
0
BACK TEMPLATE B51087A002
·
9-11
MOUNTING HARDWARE T0-3
i
1.140 D0..442355
1.030
0.003 TEFLON-COATED FIBERGLASS INSULATOR
B51080A001
1.000 :::!:0.010
l
TRANSISTOR SOCKET B51084A001
.020 ALUMINUM INSULATOR B51078A001
0.166 DIA. (2 HOLES)
XP PHENOLIC, VACUUM WAX IMPREGNATED
BRASS, CADMIUM PLATED 0.0002 THK
u .060±.0051
.002MICA INSULATOR B52600F011
][~,!3±.003
{]-----w
·-i .177 ±.003 DIA
NYLON INSULATING BUSHING B51547F002
:E~-C===n @
~:~~~~0~~93j I~~- 1 N0.6SHEETMETALSCREW B51564F003
MOUNT ON FRONT OF CHASSIS
·
BACK TEMPLATE B51087A002 FRONT TEMPLATE B51087A001
@ MOTOROLA Semiconduc'for Produc'fs Inc.
9-12
MOTOROLA
Semiconduc-tors
BOX 20912 ·PHOENIX, ARIZONA 85036
Part numbers in this column for
NON-INSULATED MOUNTING
Part numbers in this column for
INSULATED MOUNTING
T==---- ~ 6-32 HEX HEAD SCREW B09489A035
4-40 HEXHEADSCREW B09489A034
I
' Ii /
,
crLlf
\I RECTANGULAR STEEL WASHER I B09002A001
/NYLON INSULATING BUSHING B51547F015
'
.---.----'---r---'·; ~ S(ECMASICEO2N2D1,U2C2T1OAR)
.
>
MOUNTING HARDWARE T0-220AB
HEAT SINK OR CHASSIS "
?.----~
, "\,_RECTANGULAR MICA INSULATOR B08853A001
NYLON BUSHING ' B51547F005
.
"-..,_ .--~-'---.----.
).___,.,___,__,,i___~,·
_ / COMPRESSION WASHER
_/
B52200F005
~\--r-'-ir---("'7
I -------- . ~ 6-32 HEX NUT B09490A006
'---L-!,....J..--'
. . . .) (,......,J:~J:
------- 4-40 HEX NUT B09490A005
TORQUE REQUIREMENTS
INSULATED 0.68 N-M (6 IN-LBS) MAX NON-INSULATED 0.9 N-M (8 IN-LBS) MAX
MILLIMETERS INCHES .
DIM MIN MAX MIN MAX
A 15.49 15.88 0.610 0.625
::c!:
9.65 10:;[1 0.380 o.rui 4.06 4.83 0.160 0.190
D 0;51 1.02 0.020 0.040
G 2.29' 2.79 0.090 0.110
- J 0.38 0.64 0.Q15 0.025
K 12.70 - 0.500
L 2.03 2.92 0.080 0.115 Q 3.53" 3.13" JJ.139 ~ R 0.89 1.40 0.035 0.0~
R 9.02 9.40 0.355 0.370
s 2.54 3.05" O.~ JI:!.?!!._
T 9.02 9.39 0.355 0.370
CASE 313-01 T0-220 Type
·
9-13
·
MOUNTING HARDWARE TO ~ 220AB
HEX HEAD SCREW CARBON STEEL
CADMIUM-PLATED
1\-1lR
fy=f
lJ~ ~- "'-- M
HEX NUT CARBON STEEL CADMIUM-PLATED
(QIMENSION MILLIMETER) INCH
MICA INSULATOR B08853A001
3.68-3.81
o.i45-0.i50
3.05-3.28
~I 0·20-om'
_ J 1.47-1.57 0.058-0.062
13.84-14.10 0.545:0.555
L'-----+----1--'
0.375-0.39.:=J
s===rs=
l 1.14-1.40
0.045-0.055
4.83-5.33
1.40-1.65
0.190-0.210
0.055-0.065
21.08-21.59
- - - - - - -_JiM02-0.003 0.830-0.850
0.05-0.08
STEEL COMPRESSION WASHER
B52200F005
RECTANGULAR STEEL WASHER
B09002A001
NYLON INSULATING BUSHING
TYPE 4-40 6-32
0~ 0"~'~"''*'" 3.58-3.68
_ _ i 10.16-10.41
0.400-0.410
0.215-0.225
I ! !I
J 1.52-1.62
0.060-0.064
DIMENSIONS - MILLIMETER (INCH)
c
NYLON BUSHING
PART NO.
DIMA
DIMB
DIMC
DIMD
DIME
B51547F005
9.40-9.65
3.84-4.09
(0.370-0.380) '(0.151-0.161)
2.16-2.41 (0.085-0.095
6.10-6.35 (0.240-0.250)
1.02-1.27 (0.040-0.050)
5.59-6.10
3.05-3.15
1.57-1.68
3.56-3.66
0.51-0.64
B51547F015 . (0.220-0.240) (0. 120-0. 124) (0.062-0.066) (0.140-0.144) (0.020.0.025)
PART.NO. B09490A005 B09490A006
DIMG 6.12-6.35 (0.241-0.250) 7.67-7.9210.302-0.312)
HEX NUT DIMH 6.98· 7.34 (0.275-0.289) 8.74·9.17 10.344-0.361)
DIMJ 2.21-2.49 (0.087-0.098) 2.59-2.90 (0.102-0.114)
DIMK 2.84 NOM W.112 NOM) 3.50 NOM (0.138 NOM)
TYPE 4-40
PART NO. B09484A034
DIMM 0,112·40
HEX HEAD SCREW
DIMP
DIMQ
0
1.24-1.52 (0.049·0.060) 5.13 MIN (0.202 M IN)
DIMR 4.60-4.75 (0.181·0.187)
6-32 B09484A035 0.138-32 2.03-2.36 (0.080-0.093) 6.91 MIN (0.272 MIN) - 6.20-6.35 10.244-0.250)
@ MOTOROLA Semiconducf:or Producf:s Inc.
9-14
APPLICATION/ NOTE. ABSTRACTS
-
The application notes listed in this section' have been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list th~ AN number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.
II
AN-204A The MC1530, MC1531 Integrated Operational Amplifiers
· Two new high performance monolithic operational amplifiers feature exceptionally high input impedance and high open loop gain. This note describes the function of each stage in the circuit, methods of frequency compensating and DC biasing. Four applications are discussed: a summing circuit, ari integrator, a DC comparator, and transfer fun~tion simulation.
AN-245A An Integrated Core Memory Sense Amplifier
This application note discusses core memories and related design considerations for a sense amplifier. Performance and environmental specifications for the amplifier design are.· carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and1 measured performance is discussed. The amplifier features a small uncertainty region (6 mV max), adjustable voltage gain, and fast cycle· time (0.5 µ.s).
AN-261A Transistor logarithmic Conversion Using an Operational Amplifier
The design of a log amplifier using a common base transistor configuration as the feedback element of an integrated circuit operational amplifier circuit is discussed in this application note. Six decades of logarithmic conversion are obtained with less than l % error of output voltage. The possible causes of error are discussed followed by two applications: direct multiplication of two numbers, and solution of the
= z equation xn.
AN-273A More Value out of Integrated Operational Amplifier Data Sheets
The operational amplifier is rapidly becoming a basic building block in present 'day solid ·state electronic systems. The purpose of this applicatfon note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also, each parameter is defined and reviewed with'respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed· at length. Input offset circuits are also reviewed wfrh respect to closed loop operation.
AN-2908 Mounting Procedure for, and Thermal Aspects of, Thermo pad Plastic Power Devices
Many Motorola power devices are now available in the · Plastic Thermopad packages. Three package types are presently available. This application note provides information· concerning the handling and
mounting of these packages, as well as information on some thermal aspects.
AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier
This application note discusses four different applications for the MC 1554, along with a circuit description including DC characteristics, frequency response, and distorti6n. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet
AN-403 Single Power Supply Operation of IC Op Amps
A split zener biasing technique that permits use of the MC 1530/1531, MC 1533, and MC 1709 operational amp.lifiers and their restricted temperature ,counterparts 'MC 1430/143 l, MC 1433 and MC I709C from a single power supply voltage is discussed in detail. General circuit considerations as well as specific AC and DC device considerations are outlined to minimize operating and design problems.
AN-404 A Wideband Monolithic Video Amplifier
This note describes the basic principles of AC and DC operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.
AN-407 A General Purpose IC Differential Output Operational Amplifier
This application note discusses four different applications for the MC1520 and a complete description of the device itself. The final sections of the note discuss such topics as operation from single and split power supplies,. frequency compensation, and various feedback schemes.
AN-411 The MC1535 Monolithic Dual Op Amp
This note discusses two dual operational amplifier applications and an input compensation scheme for fast slew rate forthe MC1535. A C()mplete AC and DC circuit analysis is presented in addition to many of the pertinent electrical characteristics and how they might affect the system performance.
AN-421 Semiconductor Noise Figure Considerations
A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figt,lfe, and noise figurefrequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various
10-2
methods of data ,sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.
AN-439 MC1539 Op Amp and its Applications
This application note discusses the MC 1539, a second generation operational amplifier. The general use and operation of the amplifier is discussed with special mention made of improved operation over that of its first generation predecessor-the 709 type amplifier. ·
In addition to the detailed discussion on the DC and AC operation of the device, considerable emphasis is placed on operational performance. Many applications are offered to demonstrate the device capability, including a high frequency feed-forward scheme, and a source follower application.
AN-459 .ASimple Technique for Extending Op Amp Power Bandwidth
The design of fast response ~mplifiers is presented without the use of "trick/' compensation procedures ·
AN-460 Using Transient Response to Determine Operational Amplifier Stability
Analysis and an example are given for a technique that evaluates the stability of any particular feedback amplifier configuration by analyzing its response to a step-function input.
AN-471 Analog-to-Digital Conversion Techniques
The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms from a system point of view and is .intended to assist the reader in determining which conversion technique is best suited for a given application.
AN-473 A Monolithic High-Power Series Voltage Regulator
This note discusses MC1560/MC1561 voltage regulator in terms of internal operation, development of these circuits, and how they are advantageously used in supply fabrication.
.AN-474 The MC1541-A Gated Dual-Channel Sense Amplifier for Core Memories
The· MC 1541 sense amplifier can provide many magnetic core memory systems with lower system ·cycle times and a lower package count than ·with previous sense amplifiers. Circuit operation, design considerations, interface problems and typical applications are discussed.
AN-475 Using the MC1545-A Monolithic, Gated-Video Amplifier
Because of the unique design of the MC 1545, this amplifier can be used as a gated video amplifier, sense amplifier, ampli.tude modulator, frequencrshift keyer, balanced modulator, pulse ampltfier, and many other applications. This note describes the AC and DC
operation of the circuit and presents applications of the device as a video switch, amplitude modulator, balanced modulator, pulse amplifier, and others.
AN-489 Analysis and Basic Operation of the MC1595
. The. MC 1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the, device. A few basic applications are given to assist the designer in system design.
AN-491 Gated Video Amplifier Applications The MC1545
This application note reviews the basic operation of the MC 1545 and discusses some of the more popular applications for the MCI 545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.
AN-498 Voltage and Current Boost Techniques Using The MC1560-61
The stability requirements for the current boosted MC1560-61 are discussed. Both internal and external compensation techniques. are shown, along with heat"sink design information and typical circuits, including a self-oscillating switching regulator, and a voltage 0oost circuit.
AN-499 Shutdown Techniques/ 1or the MC1560-61/69 Monolithic Voltage Regulators
This note discusses the many ways one can use the shutdown control for the MC1560 Monolithic Voltage Regulator. These include logic control, short circuit detection, over voltage detection, junction temperature control, and thermal feedback. Also discussed, are current foldback and methods of restarting automatically from the shutdown state. The techniques discussed apply equally to the MCI560, MC1561, and MCI569 positive voltage' regulators.
AN-513 A High Gain Integrated Circuit RF-IF ·Amplifier with Wide Range AGC
This note describes the operation and. application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.
AN-522 The MC1556 Operational Amplifier and its Applications
This application note discusses the MC 15 56, a second .generation, internally compensated monolithic operational amplifier. .Particular emphasis is placed on its distinct advantages over the early 709-type' amplifier and the more recent 741-type amplifier.
Along with a description of its operation this note presents a discussion on various applications of the MC1556, highlighting its capabilities, and points out its characteristics so the reader may make. effective use of the device.
·
10-3
·
AN-531 MC1596 Balanced Modulator The MC 15-96 monolithic circuit is a highly
versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Appli· cations include modulators for AM, SSB, and· suppressed carrier AM; demodulators for the previously mentioned modulation forms; frequency doublers and HF/VHF double balanced mixers.
AN-533 Semiconductors for Plated-Wire Memories An introduction. to the operation and electrical
characteristics of plated-wire memories is provided in conjunction with the applications of semiconductors that interface with the plated-wire memories.
Devices discussed include drivers, sense ampli· fiers, and decoders. Memory organization and memory-related semiconductor applications are also mentioned.
an unknown analog input vohag_e is·. successively compared to a reference voltage to determine each bit of the digital output.
AN-559 Simple RAMP A/D Converter A simple single ramp A/D converter which
' incorporates a calibration cycle to insure an accuracy of 12 bits is discussed. The circuit uses standard ICs and requires only one precision part-the reference voltage used in the calibration. This converter is useful in a number of instrumentation and measurement applications.
AN-564 An ADF Frequency Synthesizer Utilizing Phase Locked-Loop Integrated Circuits This application note describes ah IC phase
locked-loop frequency synthesizer suitable for the. local osciallator function in aircraft Automatic Di· rection Finder (ADF) equipment.
AN-543A Integrated Circuit IF Amplifiers for AM/FM and FM Radios This application note discusses the design and
performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.
AN-545 Television Video IF Amplifier Using Integrated Circuits This applications note considers the require-
ments bf the video IF amplifier section of a television receiver' and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, MC1353 and the MC1330.
AN-547 A High-Speed Dual Differential Comparator, The MC1514 This application note discusses a few of the
many uses for the MC 1514 dual comparator. Many applications such as sense amplifiers, multivibrators, and peak level detectors are presented.
AN-553 A New Generation of Integrated Avionic Synthesizers The need to generate signals of a multitude of
different frequencies for avionic systems has resulted ih complex solutions in the past. With the introduction of certain standard produe<t integrated circuits, frequency synthesis using digital phase locked loop techniques presents a more practical solution. Several different types of servo phase locked loop systems are discussed and a practical design example is given. Results of design examples are presented alqng with possible applications.
AN-557 Analog-to-Digital Cyclic Converter The A/D cyclic converter discussed in this note
provides medium speed (1-Sµs/ bit) and medium accuracy (7 .or 8 bits) operation. A Cyclic converter uses the successive approximation technique in which
AN-587 Analysis and Design of the Op Amp Current Source A voltage controlled current source utilizing an
operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section ori analysis of the effects of op amp parameters and temperature variations on circuit. performance is presented.
AN-588 A 20 kHz, 1kW Line Operated Inverter This report describes a 1 kilowatt ultrasonic
inverter for use in 208-volt, line-operated, computer main-frame power supply systems. This particular design has an output capability of 5 Volts at 200 Amperes.
AN-589 Generate Custom Waveforms Digitally A method of generating custom waveforms
using IC counters, a read-only memory, and a new monolithic D/A Converter is described. Performance of a prototype model is noted as well as. possible applications.
AN-590 Servo Motor DriVe Amplifiers The design of transformerless, AC servo ampli·
fiers using power darlington transistors and IC op amps are discussed. Two types of p.ower amplifiers are illustrated, one using single +28 Volt power supply, the second using high voltage transistors in complementary configuration ·for operating directly off the line.
Four different op amp preamplifiers and 90 phase shifters are also described.
AN-594 A Frequency Synthesizer for Aircraft Automatic Direction Finding Systems This report describes a phase locked loop
frequency synthesizer suitable as the local oscillator in an ADF system. The synthesizer is designed for receivers using a 455 kHz IF system. Motorola application note AN-564 describes a similar system for receivers using a l 0.7 MHz IF.
10·4
·AN-597 Power Control Using the Zero Voltage Switch
This application note discusses the advantages of zero-voltage switching using the Motorola MFC8070. A temperature control circuit is shown which demonstrates the design flexibility of CMOS and opticalcoupler combinations. -
AN-713 Binary D/A Converters can Provide BCD-Coded Conversion
This note describes the application and use of integrated circuit D/A converters for use in providing a BCD-coded conversion. The· technique is illustrated using a 2-1/2 digit digital voltmeter.
AN-599 Mounting Techniques For Metal Packaged Power Semiconductors
For cooler, more reliable. operation, proper mounting procedures must be followed if the interface thermal resistance between the semiconductor package and heat sink is to be minimized. Discussed are aspects of preparing the mounting surface, using thermal compounds, and fastening techniques. Typical interface thermal resistance is given for a number of packages.
AN-702 High Speed Digital-To-Analog and Analog-ToDigital Techniques
A brief overview of some of the more popular techniques for accomplishing D/A and A/D techniques. In particular those techniques which lead themselves to high speed conversion.
AN-703 Designing Digitally-.Controlled Power Supplies
This application note shows two design approaches; a basic low voltage supply using an inexpensive MCI 723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in any application.
AN-705 Pulse Width Modulation for Small DC Motor Control
This application note explains the use of modem pulse width modulation techniques as an efficient and economical solution to small DC mot_or control. Several practical circuit· design approaches using discrete, operational amplifier and integrated circuit devices are described and illustrated.
AN-710 Communication System Transmission Losses
This report shows the derivation of the equations used to calculate the insertion loss associated with various component parts of a communications channel. The combinations of components form a system whose overall loss may not be equal to the sum of the lo.sses of the various parts.
AN-711 The Recovery of Recorded Digital Information in Drum, Disk and Tape Systems
The use of magnetic recording techniques has long been an important means of sorting digital information, as evidenced by the wide variety of equipment currently in use. Representative systems utilize drums, disks and tape as the recording medium.
All three techniques share the common problem of recovering the recorded digital inforrnation. The analog signal obtained by passing the recording medium by a magnetic sensor (Read Head) must be converted to a suitable digital format.
This application note reviews the general problem and discusses a number of specific circuit approaches.
AN-714 A Personalized Heart-Rate Monitor with Digital Readout
Using the micropower operational amplifier MCI 776 and CMOS digital integrated circuits, entirely self-contained ·portable electro-medical monitoring equipment can be built. This note details the construction of a heart-rate monitor giving a digital indication, beat-by-beat.
AN-716 A/D Conversion Series - Part V Successive Approximation AID Conversion
Recent advances in integrated circuit design and technology have resulted in reduced cost of high performance successive approximation analogto digital converters. This note describes and illustrates two examples ofhow modem IC components have changed this well known technique.
AN-717 - Battery Powered 5-MHz Frequency Counter
This application note describes a battery-powered 5-MHz frequency counter using the McMOS logic family for low-power operation. The ·basic counter is optimized, at a 12-volt supply for maximum performance with a linear input-signal conditioner. Several options are discussed which optimize the basic counter for minimum power dissipation. These options include a CMOS· input signal-conditioner· and multiplexed LED displays.
AN-719 A New Approach to Switching Regulators
This article describes a 24-Volt, 3-Ampere switching mode supply. It operates at 20 kHz from a 120 Vac line with an overall efficiency of 70%. New techniques are' used to shape the load line. The control portion uses a quad comparator and an opto coupler and features short circuit protection.
AN-720 Interfacing with MECL 10,000
This article describes some of the MECL circuits used to interface with signals not meeting Mf;CL input or output requirements. The characteristics of these circuits such as; input impedance, output drive, gain, and bandwidth allow the system designer to use these parts to optimize his system. MECL interface circuits overcome a problem area of many system designs, which is the efficient coupling on non-compatible signals.
AN-732A A Non-Volatile Microprocessor Memory Using 4K N-Channel MOS RAMs
NMOS semiconductor technology has made inroads into high density/high performance circuit design. The one-chip microprocessor, Random Access Memories, and Read Only Memories, are changing system implementation from random logic designs to software and firmware programmable microcomputing systems. Such systems frequently require relatively
·
10-5
·
large amounts of memory. This paper describes the design of an ~192-byte
non-volatile Randpm Access Memory system using the MCM66QS 4K x 1 RAM. The system is designed to work with the Motorola MC6800, an 8-bit microprocessor. r
AN-737 SWitched Mode Power Supplies - Highlighting A 5-V, 40-A Inverter Design
This application note identifies the features of various regulator circuits that are in use today in AC to DC power supplies. The note also illustrates how these circuits may be used as complementary building blocks iri a system design. Primary emphasis is on switched mode regulators because they fill the present need for energy and space savings.
A complete 5-V, 40-A line operated inverter supply is described in detail including design procedures for the magnetic components. The inverter itself is a "state~of-the-art" design which features CMOS logic, high voltage power transistors, Schottky rectifiers and an opto-electronic coupler. It operates with a full load efficiency of 80% at a frequency of 20 kHz.
AN-739 A Synthetic Spectrum Tuning System for TV
A .tuning system is described which uses a complete spectrum of TV channel markers to achieve precise tuning to any channel.
AN-741 Interface Considerations for Numeric Display Systems
This application note describes several methods of multiplexing multi-digit, seven-segment displays. The logic devices illustrated are primarily CMOS with two· examples describing TTL. The displays discussed are liquid crystal, LED, gas discharge, incandescent an:l fluorescent. How to interface between the logic and these displays, and what the interface considerations are, are described in detail.
AN-744 A Phase-Locked Loop Tuning System for Television ·
This note describes a frequency domain tuning system which utilizes direct digital countdown of the varactor tuner's local oscillator to obtain the proper local oscillator frequency for the channel number selected. The system features direct channel access with equal ease of tuning and an exact channel readout for all VHF and UHF channels.
AN-746 A 3% Digit DVM Using an Integrated Circuit Dual Ramp System
This application note describes -the design of a 3~-digit DVM (digital voltmeter) using the MC1405 and the MC1443S dual ramp A/D system. The performance criteria is that of a lab quality DVM with both 3~-digit resolution and accuracy while still retaining a low cost and low parts count instrument. Features of the DVM Include circuitry for a high impedance input, autopolarity and overrange indication.
AN-748 ,Applications of MC1405/MC14435 In Digital Meters
The MC1405/MC14435 two chip dual slope Analog-to-Digital system is discussed in ,d_etail with emphasis on their use in digital metering applications. Front enp filter/buffers are presented and autopolarity circuits are included. Display interfaces for LED, LCD and gas discharge are shown in three different DVM designs. This application note is intended to provide .the designer with a complete applications reference for the MCl405/MCl4435 i.n DVM systems.
AN-751 A Disassociated lntercarrier Television Video IF Amplifier
This application note discusses a unique video IF system, incorporating the MC 1331, low-level multiplier detector. Problem areas in IF design are discussed and the specific solutions are shown.
AN-752 An 80-Watt Switching R'egulator for CATV and Industrial Applications
This application note describes a 24-Volt, 3Ampere switching, regulated power supply that operates above 18 k.Hz from a 40-to 60-Volt, 60-Hz square wave source (CATV power line from a ferroresonant transformer) or a de standby source with input output isolation. The control circuit consists of a. dual operational amplifier and a linear integrated circuit timer which are used to vary the on time of a new high-speed power transistor. The circuit provides good efficiency, good .regulation, low -output ripple and incorporates input and output voltage over shutdown protection.
AN-757 Analog-to-Digital Conversion Techniques with the MC6800 Microprocessor System
This application note describes several analogto-digital conversion systems implemented with the M6800 microprocessor and external linear and digital IC's. Systems consisting of an 8- and I0-bit successive approximation approach, as well as dual ramp techniques of 3~-and 4~-digit BCD and 12-bit binary, are shown with flow diagrams, source programs and hardware schematics. System tradeoffs of the various schemes and programs for binary-to-BCD and BCDto-7 segment code are discussed.
AN-760
The operation and application of the MC3416 4 x 4 balanced crosspoint· switch is described in detail. Special emphasis is given to balanced switching systems like those in space division PABX. DHicussion of the total system design using the MC3416 is also included.
AN-761
This note describes video amplifier desigp considerations for unitized gun and conventional picture tubes. Some unique design techniques·· are discussed
10-6
taking advantage of Motorola's MC 1323 chroma de- · modulator. Finally, design objectives of video amplifiers are discussed.
AN-763
The MC 1323 is a monolithic integrated circuit demodulator specifically designed for decoding the NTSC color television signal, even ,when non-standard receiver display tube phosphor primaries· are used. The unique design allows independent adjustment of demodulator conversion gains and demodulation axes.
This note describes the circuit operation of the MC 1323 and several applications including low cost driving of unitized. gun picture tubes and obtaining R-G-B demodulated outputs.
AN-765
This note describes a technique of measurement of the IF contribution and ways of minimization of the IF noise. An IF design, following these procedures, is described to meet the desired noise performance.
l:iJi11eeri:t1?ulletr,,__ ABSTRACTS
EB-13 Switching Regulators Head 'Em Off At The Series Pass
In EB-13, you'll find a switching regulator design. From a line which can fluctuate from 100 to 140 Vac, it's capable of providing a regulated 24 Vdc to a load varying from 1.5 to 3.0 amperes.
EB-14 Simple Linear Voltage Sweep Uses The MC1555 Timer
EB-14 shows how the MCI SSS timer can be used with five simple external components to make a linear voltage sweep useful in ramp, deflection and function generator designs.
EB.-20 Multiplier/Op Amp Circuit Detects True RMS
Two op amps and two multipliers are used in the circuit described by EB-20 to obtain the true rms of an input voltage ranging from 2 to 10 Vpk.
EB-21 DAC .Key To. Inexpensive 2-2/3 Digit Voltmeter
EB-21 presents an idea for the core of a11 economical 2-2/3 digit voltmeter. Built around Motorola's MC 1408 8-bit D/A converter, the meter can measure to 2.55 V in 10 mV steps.
EB-24 Input Buffer Circuits For The MC1505 Dual Ramp A·to·D Converter Subsystem
Several bipolar op amp buffers of mediumhigh impedance are described in this bulletin. It also discusses FET input op amp buffers providing high impedance and temperature drift under I mV over the O?C to 50°C range.
EB-35 Autopolarity Circuits For The MC1405 Dual-Slope AID Converter System
Engineering Bulletin EB-35 provides three input stage designs, each of which will provide the autopolarity function for the unipolar MC 1405 A/D converter subsystem.
EB-36 4-1/2 Digit DVM System Using The MC1505.Dual-Slope Converter
The circuits required for implementing a 4-1/2 digit DVM based on the MC1505 dual slope A-to-D converter are presented in EB-36. With this design, a 4-1/2 digit accurate system with excelient . environmental stability is possible.
EB-43
A 9-1/2 Digit Gas Discharge Display System With Leading Zero Suppression
The 9-1/2 digit multiplexed gas discharge
display system described in EB-43 was designed for
use in· a 1.2 GHz frequency counter. The display
system features leading zero blanking and constant
current segment drives. Its logic supply is +5 V.
EB-50 Build This Simple, Battery-Powered 3-1/2 Digit DVM From Standard Parts EB-50 d~scribes a simple, battery-powered
3-1/2 digit DVM capable of measuring up to 20 volts that can be built from readily obtained standard parts. Sufficient infonnation is provided to construct the circuit including schem'atic, PC board layout, parts list and calibration instructions.
·
10-7
ENGINEERING BULLETIN ABSTRACTS (continued)
.EB-51 Successive Approximation BC.D A/D Converter A successive approximation A/D converter in
which a digital-to-analog converter in a feedback loop produces a BCD digital output from an analog input is described in EB-S 1.
EB-52 Control Your Switching Regulator With The
MC3380 Astable Multivibrator
Engineering Bulletin EB-S2 describes the
operation and characteristics of the MC3380
astable multivibrator and details the design of a
200 volt switching regulator circuit for gas dis-
charge displays using this d~vice as the control
element.
'
EB-55 Battery-Powered 3-1 /2 Digit Multimeter Using the information provided in EB-SS, a
battery-powered 3-1/2 digit multimeter can be built and packaged in a pocket calculator case. The bulletin discusses the theory of design and describes the basic meter, buffer and autopolarity '<ircuit, multimeter functions, choice of batteries and packaging in detail. Layouts for the two PC boards, a complete parts list and calibration procedures are also given.,
EB-57 An Economical FM Transmitter Voice Processor from a Single IC An MC3401 Quad OP-Amp is used as a
Microphone/Modulation interface in an FM transmitter.
EB-58 Analog Data Ac·quisition Network for Digital Processing Using the MC1405-MC14435 A/D System An MC1405-MC14435 combination is used
to form a dual-slope A/D converter for analog data acquisition.
EB-64 Bus Transceivers For The General Purpose
Interface Bus (GPIB)
This bulletin discusses the use of the MC3440,
41, 43, and 46 general purpose interface bus (GPIB)
· transceivers. Also included are an introduction to
the GPIB, a description of the hardware required
for a GPIB-equipped instrument, GPIB bus electri·
cal characteristics, and the IEEE 488 standard for
GPIB,
.
EB-65 Switchmode Power Supply This bulletin describes a line-operated 5 V,
50 A, 20 kHz switching power supply intended for use as a logic supply in computer and industrial applications. It has a constant current limiting,
inrush surge current limiting, and a soft-start feature to prevent output voltage overshoots during start-up.
·
10-8
a Master Index ,and· Cross Reference Guide
IJI MIL-M~38S10 Program and Chip Information I I Operational Amplifiers
I I Voltage Regulators ·
11·Interface Circuits
I I Voltage Comparators Ill Consumer Circuits
I J Other Linear Circuits I J Pacl:<age Information and Mounting Hardware Im Application Notes.
Acrobat 11.0.23 Paper Capture Plug-in