
Steel: Proof-oriented Programming
in a Dependently Typed Concurrent Separation Logic

AYMERIC FROMHERZ, Carnegie Mellon University, USA

ASEEM RASTOGI,Microsoft Research, India

NIKHIL SWAMY,Microsoft Research, USA

SYDNEY GIBSON, Carnegie Mellon University, USA

GUIDO MARTÍNEZ, CIFASIS-CONICET, Argentina
DENIS MERIGOUX, Inria Paris, France
TAHINA RAMANANANDRO,Microsoft Research, USA

Steel is a language for developing and proving concurrent programs embedded in F
★
, a dependently typed

programming language and proof assistant. Based on SteelCore, a concurrent separation logic (CSL) formalized

in F
★
, our work focuses on exposing the proof rules of the logic in a form that enables programs and proofs to

be effectively co-developed.

Our main contributions include a new formulation of a Hoare logic of quintuples involving both separation

logic and first-order logic, enabling efficient verification condition (VC) generation and proof discharge using

a combination of tactics and SMT solving. We relate the VCs produced by our quintuple system to solving

a system of associativity-commutativity (AC) unification constraints and develop tactics to (partially) solve

these constraints using AC-matching modulo SMT-dischargeable equations.

Our system is fully mechanized and implemented in F
★
. We evaluate it by developing several verified

programs and libraries, including various sequential and concurrent linked data structures, proof libraries,

and a library for 2-party session types. Our experience leads us to conclude that our system enables a mixture

of automated and interactive proof, making it productive to build programs foundationally verified against a

highly expressive, state-of-the-art CSL.

CCS Concepts: • Theory of computation→ Separation logic; Program verification; • Software and its
engineering → Formal software verification.

Additional Key Words and Phrases: Program Proofs, Separation Logic, Concurrency

1 INTRODUCTION
Structuring programs with proofs in mind is a promising way to reduce the effort of building

high-assurance software. There are many benefits: the program structure can simplify proofs,

while proofs can simplify programming too by, for example, eliminating checks and unnecessary

cases. Programming languages of many different flavors embrace this view and we use the phrase

proof-oriented programming to describe the paradigm of co-developing proofs and programs.

Dependently typed programming languages, like Agda and Idris, are great examples of languages

that promote proof-oriented programming. As Brady (2016) argues, the iterative “type-define-refine”

style of type-driven development allows programs to follow the structure of their dependently

typed specifications, simplifying both programming and proving. From a different community,

languages like Dafny (Leino 2010), Chalice (Leino et al. 2009), and Viper (Müller et al. 2016) enrich

imperative languages with first-order program logics for program correctness, driving program

development from Floyd-Hoare triples, with proof automation using SMT solvers. Hoare Type

Theory (Nanevski et al. 2008) combines these approaches, embedding Hoare logic in dependently

This work is licensed under a Creative Commons Attribution 4.0 International License

© 2021 Association for Computing Machinery.

XXXX-XXXX/2021/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

let swap (#v1 #v2:ghost int) (r1 r2:ref int)
: SteelCore unit

(pts_to r1 #v1 ∗ pts_to r2 #v2)
(𝜆 _→ pts_to r1 #v2 ∗ pts_to r2 #v1)

= let x1 = frame (read r1) (pts_to r2 #v2) in
commute_star (pts_to r1 #v1) (pts_to r2 #v2);
let x2 = frame (read r2) (pts_to r1 #v1) in
frame (write v2 x1) (pts_to r1 #x2);
commute_star (pts_to r2 #x1) (pts_to r1 #v1);
frame (write r1 x2) (pts_to r2 #v2);

let swap (r1 r2:ref int) : Steel unit
(ptr r1 ∗ ptr r2) (𝜆 _→ ptr r1 ∗ ptr r2)
(requires 𝜆_→⊤)
(ensures 𝜆s _ s'→

s'.[r1]=s.[r2] ∧ s'.[r2]=s.[r1])
= let x1 = read r1 in
let x2 = read r2 in
write r2 x1;
write r1 x2

Fig. 1. SteelCore implementation of swap (left); Steel version (right)

typed Coq with tactic-based proofs, while F
★
(Swamy et al. 2016) follows a similar approach but,

like Dafny, Chalice and Viper, uses an SMT solver for proof automation.

In this paper, we aim to design a proof-oriented programming language based on SteelCore (Swamy

et al. 2020), a recent concurrent separation logic (CSL) (O’Hearn 2004; Reynolds 2002) for depen-

dently typed programs formalized in F
★
. Our goal is to integrate the expressive power of the

SteelCore logic within a higher-order, dependently typed programming language with shared-

memory and message-passing concurrency, with proof automation approaching what is offered by

Dafny, Chalice, and Viper, but with soundness ensured by construction upon the foundations of

SteelCore.

We have our work cut out: SteelCore, despite providing many features as a logic, including an

impredicative, dependently typed CSL for partial-correctness proofs, with a user-defined partial

commutativemonoid (PCM)-basedmemorymodel, monotonic state, atomic and ghost computations,

and dynamically allocated invariants, all of whose soundness is derived from a proof-oriented,

intrinsically typed definitional interpreter in F
★
, is far from being usable directly to build correct

programs.

SteelCore’s main typing construct is a Hoare type, SteelCore a p q, describing potentially divergent,
concurrent, stateful computations returning a value of type a and whose pre- and postconditions

are p:slprop and q:a → slprop, where slprop is the type of separation logic propositions. Figure 1

shows, on the left, a SteelCore program that swaps the content of two references. Calls to frame
wrapping each action combined with re-arrangements of slprops with commute_star overwhelm the

program—the pain is perceptible.

Through several steps, we offer instead Steel, an embedded domain-specific language (DSL)

within F
★
based on SteelCore, which enables writing the swap program on the right of Figure 1.

We briefly call out some of its salient features. First, we introduce a new “quintuple” computation

type, shown below:

Steel a (p:slprop) (q:a → slprop) (requires (r:pre p)) (ensures (s:post p a q))

The additional indices r and s are selector predicates, that depend only on the p-fragment of the

initial memory and q-fragment of the final memory, i.e., they are self-framing, in the terminology

of Parkinson and Summers (2012). These predicates are SMT encodeable and allow a useful interplay

between tactic-based proofs on slprops and SMT reasoning on the content of memory. In swap, these

predicates also remove the need for existentially quantified ghost variables to reason about the

values stored in the two references (i.e., the function arguments v1 and v2). Next, through the use

of F
★
’s effect system, we encode a syntax-directed algorithm to automatically insert applications

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 3

of the frame rule at the leaves of a computation, while a tactic integrated with the DSL solves for

frames using a variant of AC-matching (Kapur and Narendran 1987).

Freed from the burden of framing, the program’s intent is evident once more. The swap program
in Steel is perhaps close to what one would expect in Chalice or Viper, but we emphasize that

Steel is a shallow embedding in dependently typed F
★
and the full SteelCore logic is available

within Steel. So, while Viper-style program proofs are possible and encouraged, richer, dependently

typed idioms are also possible and enjoy many of the same benefits, e.g., automated framing and

partial automation via SMT. Indeed, our approach seeks only to automate the most mundane

aspects of proofs, focusing primarily on framing. For the rest, including introducing and eliminating

quantifiers, rolling and unrolling recursive predicates, writing invariants, and manipulating ghost

state, the programmer can develop lemmas in F
★
’s underlying type theory and invoke those lemmas

at strategic points in their code—the Steel library provides many generic building blocks for such

lemmas. The result is a style that Leino and Moskal (2010) have called auto-active verification, a
mixture of automated and interactive proof that has been successful in several other languages,

including in other large F
★
developments, but now applied to SteelCore’s expressive CSL.

1.1 Contributions
Quintuples: Selectively separating separation and first-order logic. We develop for Steel a veri-

fication condition generator and hybrid tactic- and SMT-based solver for a separation logic of

quintuples whose main judgment involves a computation type { 𝑃 | 𝑅 } 𝑥 :𝑡 { 𝑄 | 𝑆 }, where 𝑃,𝑄
are slprops as usual, but 𝑅, 𝑆 are first-order logic encodeable self-framing selector predicates. Proof

obligations in our formulation are in two classes: separation logic goals, relating the slprops in
a judgment, and SMT encodeable goals relating the selector predicates. This allows us to write

efficient reflective tactics that focus on the former, while the latter are encoded efficiently to SMT by

F
★
, as usual. In a style reminiscent of Nelson and Oppen’s (1979) cooperating decision procedures,

we show how tactics and SMT share information through equalities on uninterpreted symbols. Of

course, proof obligations remain undecidable and what automation we do provide is partial, but

being embedded in F
★
, additional lemmas can always be developed interactively.

A type-and-effect directed frame rule. To control the placement of frames, wemodel the application

of the frame rule as an effect. In particular, we formulate the system using a second related

computation type that contains metavariables for an unsolved frame introduced by an application

of the frame rule. This allows us to build a type-and-effect directed elaborator for Steel, inserting

frames only at the leaves of a derivation, while proving that this strategy of leaf-framing is complete.

Our approach enables interactions among several fragments of Steel modeled in an effect hierarchy,

including atomic and ghost code.

Automating frame inference through AC-matching. Automatically appplying the separation logic

frame rule in the right places only solves half of the problem; generated frames must also be

inferred. We prove that our type-and-effect system yields a unitriangular system of constraints on

the ?𝐹 frame variables that can be solved by AC-matching (§4). Compared to standard AC-matching

algorithms, we favor an incomplete but efficient and predictable non-backtracking approach that

only solves problems with unique solutions, while accounting for equalities, theory reasoning, and

existentially quantified ghost variables—the interaction with theory reasoning is enabled by the

quintuple formulation.

Evaluation: Steel programs and libraries. To conclude, we evaluate how this work impacts the

programmability and expressiveness of Steel programs. We first port several SteelCore libraries to

Steel, and compare the quantity of proof annotations needed in both cases—the difference is marked,

, Vol. 1, No. 1, Article . Publication date: March 2021.

4 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

in some cases reducing the proof overhead by an order of magnitude. We then develop several new

libraries, including linked structures of various flavors and highlight a verified implementation of

mutable AVL trees, showing how quintuples enable reasoning independently about the tree shape

and the balanced property of the mutable data structure. Next, we present proof idioms packaged

as dependently typed libraries, including a library for disposable invariants. Using our invariant

library, we verify a lock-free version of the standard Owicki-Gries parallel increment. We also

show how locks and invariants can interoperate to verify an implementation of Michael and Scott’s

(1996) racy 2-locks concurrent queue. Finally, we develop a novel PCM-based encoding of 2-party

dependently typed sessions, packaging our encoding as a library for message-passing concurrency

on dependently typed channels.

Mechanization. Steel is entirely implemented in the F
★
proof assistant, with proofs fully mecha-

nized upon the SteelCore program logic. All of our code and proofs are open-source, and publicly

available at anonymized.

2 BACKGROUND: F★, STEELCORE, AND VC GENERATION FOR SEPARATION LOGIC
Our goal is to shallowly embed the SteelCore logic as a DSL for programming in F

★
’s type theory.

This involves exposing the proof rules of the logic as dependently typed combinators and instructing

F
★
’s typechecker to apply those combinators during type inference and elaboration, coupling the

program with a proof of its correctness. To make this process algorithmic we rely on F
★
’s user-

defined effect system, which through our encoding, provides the needed structure. Rather than

focus on the syntactic detail of our encoding, we present a more abstract view of the elaboration

problem and our solution in standard mathematical notation, relating back to the specifics of F
★

and SteelCore only when essential. Nevertheless, we start with a short primer on F
★
and its syntax

for the reader to refer back to periodically, if necessary.

2.1 A Primer on F★

F
★
is a program verifier and a proof assistant based on a dependent type theory with a hierarchy

of predicative universes (like Coq or Agda). F
★
also has a dependently typed metaprogramming

system inspired by Lean (Ebner et al. 2017) and Idris (called Meta-F
★
(Martínez et al. 2019)) that

allows using F
★
itself to build and run tactics for constructing programs or proofs. More specific to

F
★
is its effectful type system, extensible with user-defined effects, and its use of SMT solving to

automate some proofs. F
★
syntax is roughly modeled on OCaml (val, let, match etc.) although there

are many differences to account for the additional typing features.

Syntax: Binders, lambda, arrows, computation types. Binding occurrences b of variables take the
form x:t, declaring a variable x at type t; or #x:t indicating that the binding is for an implicit argument.

The syntax 𝜆(b1) ... (b𝑛)→ t introduces a lambda abstraction, whereas b1 → ... → b𝑛 → c is the shape of
a curried function type. Refinement types are written b{t}, e.g., x:int{x≥ 0} is the type of non-negative

integers (i.e., nat). We abbreviate _:unit{p} as squash p, the type inhabited by the unit value () only

in a context where p is valid. As usual, a bound variable is in scope to the right of its binding; we

omit the type in a binding when it can be inferred; and for non-dependent function types, we omit

the variable name. A distinctive feature of F
★
is its user-defined effect system. The c to the right

of an arrow is a computation type. An example of a computation type is Tot bool, the type of total
computations returning a boolean. By default, function arrows have Tot co-domains, so, rather than

decorating the right-hand side of every arrow with a Tot, the type of, say, the pure append function

on vectors can be written #a:Type→ #m:nat → #n:nat → vec a m→ vec a n→ vec a (m + n), with the

two explicit arguments and the return type depending on the three implicit arguments marked with

, Vol. 1, No. 1, Article . Publication date: March 2021.

anonymized

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 5

‘#’. We often omit implicit binders and write vec a m→ vec a n → vec a (m + n) treating all unbound
names as implicitly bound at the top.

Effectful computations. Users can define their own computation types, encapsulating various

indexed-monad constructions to model computational effects. One example is the computation

type from the introduction, SteelCore a p q, representing potentially divergent, concurrent, non-

deterministic, and stateful computations. F
★
’s effect system isolates effectful code from its total

core language to ensure that effects like divergence do not compromise soundness.

Notation for pairs. The type of pairs in F
★
is represented by a & b with a and b as the types of

the first and second components respectively. In contrast, dependent tuple types are written as

x:a & b where x is bound in b, and a dependent pair value is written (| e, f |). We use x.1 and x.2 for
projecting the first and second components from both pairs and non-dependent pairs.

2.2 Verification Condition Generation for Separation Logic
Like any separation logic, SteelCore has rules for framing, sequential composition, and consequence,

shown below in their first, most simple forms, where the type stc a p q represents a Hoare type with
a:Type, p:slprop, and q:a → slprop. These proof rules are implemented in SteelCore as combinators

with the following signatures:

let stc a p q = unit→ SteelCore a p q (∗ represents { 𝑝 } 𝑥 :𝑎 { 𝑞 𝑥 } ∗)
val frame (_:stc a p q) : stc a (p ∗ f) (𝜆 x→ q x ∗ f)
val bind (_:stc a1 p q') (_: (x:a1 → stc a2 (q' x) r)) : stc a2 p r
val conseq (_:stc a p' q') (_:squash (p –∗ p' ∧ q' –∗ q)) : stc a p q

Our goal is to shallowly embed Steel as a DSL
1
in F

★
, whereby Steel user programs are constructed

by repeated applications of combinators like frame, bind and conseq. The result is a program whose

inferred type is a judgment in the SteelCore logic, subject to verification conditions (VCs) that must

be discharged, e.g., the second argument of conseq, squash (p –∗ p' ∧ q' –∗ q), is a proof obligation.
For this process to work, we need to make the elaboration of a Steel program into the underlying

combinator language algorithmic, resolving the inherent nondeterminism in rules like Frame and

Consequence by deciding the following: first, where exactly should Frame and Consequence be

applied; second, how should existentially bound variables in the rules be chosen, notably the frame

f; and, finally, how should the proof obligations be discharged.

The standard approach to this problem is to define a form of weakest precondition (WP) calculus

for separation logic that strategically integrates the use of frame and consequence into the other rules

in the system. Starting with Ishtiaq and O’Hearn’s (2001) “backwards” rules, weakest precondition

readings of separation logic have been customary. Hobor and Villard (2013) propose a ramified

frame rule that integrates the rule of consequence with framing, while Iris’ (Jung et al. 2018) “Texan

triples” combine both ideas, integrating a form of ramified framing in the WP-Wand rule of its WP

calculus. In the setting of interactive proofs, Texan triples are convenient in that every command is

always specified with respect to a parametric postcondition, enabling it to be easily applied to a

framed and weakened (if necessary) postcondition.

Prior attempts at encoding separation logic in F
★
(Martínez et al. 2019) followed a similar

approach, whereby a Dijkstra monad (Swamy et al. 2013) for separation logic computes weakest

preconditions while automatically inserting frames around every function call or primitive action.

1
A note on terminology: From one perspective, Steel is not domain-specific—it is a general-purpose, Turing complete

language, with many kinds of computational effects. But, from the perspective of its host language F
★
, Steel is a domain-

specific language for proof-oriented stateful and concurrent programming.

, Vol. 1, No. 1, Article . Publication date: March 2021.

6 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

constant 𝑇 ::= unit | () | Type | prop | slprop | . . .
term 𝑒, 𝑡 ::= 𝑥 | 𝑇 | 𝜆𝑥 :𝑡 . 𝑒 | 𝑒1 𝑒2 | 𝑥 :𝑡 → 𝐶 | ret 𝑒 | bind 𝑒1 𝑥 .𝑒2

| 𝑒1 ∗ 𝑒2 | 𝑒1 –∗ 𝑒2 | 𝑒1 ∧ 𝑒2 | ∀𝑥 .𝑒 | . . .
computation type 𝐶 ::= Tot 𝑡 | { 𝑃 | 𝑅 } 𝑦:𝑡 { 𝑄 | 𝑆 }
program 𝑑 ::= val 𝑓 (𝑥 : 𝑡) : 𝐶 = 𝑒

Fig. 2. Simplified syntax for Steel

However, Martínez et al. (2019) have not scaled their prototype to verify larger programs and we

have, to date, failed to scale their WP-based approach to a mostly-automated verifier for Steel.

The main difficulty is that a WP-calculus for separation logic computes a single (often quite

large) VC for a program in, naturally, separation logic. F
★
aims to encode such VCs to an SMT

solver. However, encoding a separation logic VC to an SMT solver is non-trivial. SMT solvers like

Z3 (de Moura and Bjørner 2008) do not handle separation logic well, in part because slprops are
equivalent up to Associativity-Commutativity (AC) rewriting of ∗, and AC-rewriting is hard to

encode efficiently in SMT. Besides, WP-based VCs heavily use magic wand and computing frames

involves solving for existential quantifiers over AC terms, which again is hard to automate in SMT.

Viper (the underlying engine of Chalice) does provide an SMT-encoding for a permission system

with implicit dynamic frames that is equivalent to a fragment of separation logic (Parkinson and

Summers 2012), however, we do not have such an encoding for SteelCore’s more expressive logic.

While some other off-the-shelf solvers for various fragments of separation logic exist (Brotherston

et al. 2012; Iosif et al. 2014), using them for a logic like SteelCore’s dependently typed, impredicative

CSL is an open challenge.

Martínez et al. (2019) confront this problem and develop tactics to process a separation logic

VC computed by their Dijkstra monad, AC-rewriting terms and solving for frame variables, and

finally feeding a first-order logic goal to an SMT solver. However, this scales poorly even on their

simpler logic, with the verification time of a program dominated by the tactic simply discovering

fragments of a VC that involve non-trivial separation logic reasoning, introducing existentially

bound variables for frames, solving them and rewriting the remainder of the VC iteratively.

Our solution over the next several sections addresses these difficulties by developing a verification

condition generator for quintuples, and automatically discharging the computation of frames using

a combination of AC-matching tactics and SMT solving, while requiring the programmer to write

invariants and to provide lemmas in the form of imperative ghost procedures.

3 A TYPE-AND-EFFECT SYSTEM FOR SEPARATION LOGIC QUINTUPLES
In this section, we present our elaboration and VC generation strategy for Steel as a small idealized

calculus. We transcribe the rules omitting some side conditions (e.g., on the well-typedness of some

terms) when they add clutter—such conditions are all captured formally in our mechanization. As

such, these rules are implemented as combinators in F
★
’s effect system and mechanically proven

sound against SteelCore’s logic in F
★
. In §4, we study the metatheory of the system from the

perspective of completeness and the solvability of the constraints it produces.

3.1 Syntax
Figure 2 presents the syntax of a subset of the internal desugared, monadic language of Steel in F

★
.

Our implementation supports the full F
★
language, including full dependent types, inductive types,

pattern matching, recursive definitions, local let bindings, universes, implicit arguments, a module

system, typeclasses, etc. This is the advantage of a shallow embedding: Steel inherits the full type

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 7

system of F
★
. For the purposes of our minimalistic presentation, the main constructs of interest

are slprops and computation types, though an essential preliminary notion is a memory, which we

describe first.

Memories. A memory mem represents the mutable heap of a program and SteelCore provides an

abstract memory model of mutable higher-order typed references, where each memory cell stores

an element in the carrier type of a user-chosen PCM. We return to the specifics of the memory

model in our case studies (§5). For now, it suffices to note that mem supports two main operations:

• disjoint (m0 m1: mem) : prop, indicating that the domains of the two memory maps are disjoint

• join (m0:mem) (m1:mem{disjoint m0 m1}) : mem, the disjoint union of two memories

What is an slprop? An slprop is a typeclass that encapsulates two things: an interpretation as a

separation logic proposition and a self-framing memory representation called a selector. Specifically,
it supports the following operations:

• An interpretation as an affine predicate on memories, namely interp (_: slprop) : mem → prop
such that interp p m ∧ disjoint m m' =⇒ interp p (join m m').Wewrite fpmem (p:slprop) for amem-

ory validating p, i.e., m:mem { interp p m }.

• A selector type, type_of (p:slprop) : Type
• A selector, sel (p:slprop) (m:fpmem p) : type_of p, with the property that sel depends only on the

p fragment of m, i.e., (∀(m0:fpmem p) m1. disjoint m0 m1 =⇒ sel p m0 = sel p (join m0 m1)).
• slprops have all the usual connectives, including ∗ , –∗ , ∧, ∨, ∀, ∃ etc. We observe that the

selectors provide a form of linear logic over memory fragments as resources. For instance,

the selector type for p ∗ q corresponds to a linear pair type_of p ∗ type_of q, while the selector
type for p –∗ q is a map from memories validating p ∗ (p –∗ q) to the type of q. However, we
do not yet exploit this connection deeply, except to build typeclass instances for ∗ and –∗ and

to derive from the double implication p ∗-∗ q a bidirectional coercion on selectors.

It is trivial to give a degenerate selector for any slprop simply by picking the selector type to be

unit. But, more interesting instances can be provided by the programmer depending on their needs.

For example, given a reference r:ref a, the interpretation of ptr r : slprop could be that r is present in
a given memory; type_of (ptr r) = a; and sel (ptr r) m : a could return the value of the reference r in m.

Computation types. The type Tot t is the type of total computations and is not particularly

interesting. The main computation type is the quintuple { 𝑃 | 𝑅 } 𝑥 :𝑡 { 𝑄 | 𝑆 }, where
• P : slprop is a separation logic precondition

• R : fppred P, where R is a predicate on P’s selector, i.e. fppred p = type_of p→ prop, where the
predicate is applied to sel p on the underlying memory.

• x : t binds the name x to the t-typed return value of the computation.

• Q : slprop is a postcondition, with x:t in scope.

• S: fppost P Q is an additional postcondition, relating the selector of P in the initial memory, to

the result and the selector or Q in the final memory. It also has x:t in scope.

fppost (p:slprop) (q:slprop) = type_of p→ type_of q→ prop

SteelCore’s logic also provides support for a form of quintuples, but with one major difference:

instead of operating on selectors, SteelCore uses memory predicates with proof obligations that

they depend only on the appropriate part of memory. Steel’s quintuples with selectors are proven

sound in the model of SteelCore’s “raw” quintuples, and the abstraction they provide yields useful

algebraic structure while freeing the user from proof-obligations on the framing of memory

predicates—proof-oriented programming at work!

, Vol. 1, No. 1, Article . Publication date: March 2021.

8 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

App

Γ ⊢ 𝑒 : Tot 𝑡 Γ ⊢ 𝑓 : 𝑥 :𝑡 → 𝐶

Γ ⊢ 𝑓 𝑒 : 𝐶 [𝑒/𝑥]

Frame

Γ ⊢ 𝑒 : { 𝑃 | 𝑅 } 𝑦:𝑡 { 𝑄 | 𝑆 }
Γ ⊢𝐹 𝑒 : { 𝑃 ∗ ?𝐹 | 𝜆(𝑠𝑝0 , 𝑠𝑓0).𝑅𝑠𝑝0 } 𝑦:𝑡 { 𝑄 ∗ ?𝐹 | 𝜆(𝑠𝑝0 , 𝑠𝑓0) (𝑠𝑞1 , 𝑠𝑓1).𝑆 𝑠𝑝0 𝑠𝑞1 ∧ seleq ?𝐹 𝑠𝑓0 𝑠𝑓1 }

let pre 𝜒 𝑅1 𝑆1 𝑅2 ?𝑎 ?𝑏 = 𝜆𝑠𝑝1 . 𝑅1 𝑠𝑝1 ∧ ∀𝑥 𝑠𝑝2 . ?𝑎 ∧ 𝑆1 [𝑦/𝑥] 𝑠𝑝1 (𝜒 𝑠𝑝2) =⇒ 𝑅2 𝑠𝑝2 ∧ ∀𝑧. ?𝑏
let post 𝜒1 𝜒2 𝑆1 𝑆2 = 𝜆𝑠𝑝1 𝑠𝑞 . ∃𝑥 𝑠𝑝2 . 𝑆1 𝑠𝑝1 𝑠𝑝2 ∧ 𝑆2 (𝜒1 𝑠𝑝2) (𝜒2 𝑠𝑞)

Bind

Γ ⊢𝐹 𝑒1 : { 𝑃1 | 𝑅1 } 𝑦:𝑡1 { 𝑄1 | 𝑆1 } Γ, 𝑥 :𝑡1 ⊢𝐹 𝑒2 : { 𝑃2 | 𝑅2 } 𝑧:𝑡2 { 𝑄2 | 𝑆2 }
Γ, 𝑥 :𝑡1, ?𝑎 ⊨𝑡𝑎𝑐 𝑄1 [𝑥/𝑦] ∗−∗ 𝑃2 : 𝜒1 Γ, 𝑥 :𝑡1, 𝑧:𝑡2, ?𝑏 ⊨𝑡𝑎𝑐 𝑄2 ∗−∗?𝑄 : 𝜒2 𝑥 ∉ 𝐹𝑉 (𝑡2, ?𝑄)

Γ ⊢𝐹 bind 𝑒1 𝑥 .𝑒2 : { 𝑃1 | pre 𝜒1 𝑅1 𝑆1 𝑅2 ?𝑎 ?𝑏 } 𝑧:𝑡2 { ?𝑄 | post 𝜒1 𝜒2 𝑆1 𝑆2 }

Val

Γ, 𝑥 : 𝑡1 ⊢𝐹 𝑒 : { 𝑃 ′ | 𝑅′ } 𝑦:𝑡 { 𝑄 ′ | 𝑆 ′ }
Γ, 𝑥 :𝑡1, ?𝑎 ⊨𝑡𝑎𝑐 𝑃 ∗−∗ 𝑃 ′

: 𝜒𝑝 Γ, 𝑥 :𝑡1, 𝑦:𝑡2, ?𝑏 ⊨𝑡𝑎𝑐 𝑄
′ ∗−∗ 𝑄 : 𝜒𝑞

Γ, 𝑥 :𝑡1 ⊨𝑠𝑚𝑡 ∀𝑥 𝑠𝑝 . (𝑅 𝑠𝑝 =⇒ ?𝑎 ∧ 𝑅′ (𝜒𝑝𝑠𝑝)) ∧ (∀𝑦 𝑠𝑞 . 𝑆
′ (𝜒𝑝𝑠𝑝) (𝜒𝑞𝑠𝑞) =⇒ ?𝑏 ∧ 𝑆 𝑠𝑝 𝑠𝑞)

Γ ⊢ val 𝑓 (𝑥 : 𝑡1) : { 𝑃 | 𝑅 } 𝑦:𝑡2 { 𝑄 | 𝑆 } = 𝑒

Fig. 3. Core rules of Steel’s type and effect system

3.2 VC Generation for Steel
Figure 3 presents selected rules for typechecking Steel programs. There are 3 main ideas in the

structure of the rules.

First, there are two kinds of judgments ⊢ and ⊢𝐹 . The ⊢ judgment applies to terms on which no

top-level occurrence of framing has been applied. The ⊢𝐹 judgment marks terms that have been

framed. We use this modality to ensure that frames are applied at the leaves, to effectful function

calls only, and nowhere else. The application of framing introduces metavariables to be solved and

introduces equalities among framed selector terms.

Second, the rule of consequence together with a form of framing is folded into sequential

composition. Both consequence and framing can also be triggered by a user annotation in a val.
Although Steel’s separation logic is affine, Steel aims at representing and modeling a variety

of concurrent programs, including programs implemented in a language with manual memory

management, such as C. To this end, we need to ensure that separation logic predicates do not

implicitly disappear. As such, our VC generator uses equivalence ∗−∗ where otherwise a reader
might expect to see implications (−∗). Programmers are expected to explicitly drop separation logic

predicates by either freeing memory or calling ghost functions to drop ghost resources.

Finally, the proof obligations corresponding to the VCs in the rules appear in the premises in

two forms, ⊨𝑡𝑎𝑐 and ⊨𝑠𝑚𝑡 . The former involves solving separation logic goals using a tactic, which

can produce auxiliary propositional goals to interact with SMT. The latter are SMT-encodeable

goals—all non-separation logic reasoning is collected in the other rules eventually dispatched to

SMT at the use of consequence triggered by a user annotation.

We now describe each of the rules in turn.

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 9

App. This is a straightforward dependent function application rule. F
★
internal syntax is already

desugared into a monadic form, so we need only consider the case where both the function f and the
argument e are total terms. Of course, the application may itself have an effect, depending on C. The
important aspect of this rule is that it is a ⊢ judgment, indicating that this is a raw application—no

frame has been added.

Frame. This rule introduces a frame. Its premise requires a ⊢ judgment to ensure that no repeated

frames are added, while the conclusion is, of course, in ⊢𝐹 , since a frame has just been applied. The

rule involves picking a fresh metavariable ?𝐹 and framing it across the pre- and postconditions.

The effect of framing of the memory postcondition S is particularly interesting: we strengthen

the postcondition with seleq ?F 𝑠𝑓0 𝑠𝑓1 , which is equivalent to sel ?F 𝑠𝑓0 = sel ?F 𝑠𝑓1 . We’ll present this

predicate in detail in §3.5.

Bind. Themost interesting rule is Bind, with several subtle elements. First, in order to sequentially

compose 𝑒1 and 𝑒2, in the first two premises we require ⊢𝐹 judgments, to ensure that those computa-

tions have already been framed. The third premise encodes an application of consequence, to relate

the slprop-postcondition 𝑄1 of 𝑒1 to the slprop-precondition 𝑃2 of 𝑒2. Strictly speaking, we do not

need a double implication here, but we generate equivalence constraints to ensure that our constraint

solving heuristics do not implicitly drop resources. This premise Γ, 𝑥 :𝑡1, ?𝑎 ⊨𝑡𝑎𝑐 𝑄1 [𝑥/𝑦] ∗−∗ 𝑃2 : 𝜒1
is a VC that is discharged by a tactic and, importantly, ?𝑎 is a propositional metavariable that the

tactic must solve. For example, in order to prove Γ, 𝑥 :𝑡1, ?𝑎 ⊨𝑡𝑎𝑐 (𝑟 → 𝑢) ∗−∗ (𝑟 → 𝑣), a tactic could
instantiate ?𝑎 := (𝑢 = 𝑣), i.e., the tactic is free to pick a hypothesis ?𝑎 under which the entailment

is true. The fourth premise is similar, representing a use of consequence relating the postcondition

of e2 to a freshly picked metavariable ?𝑄 for the entire postcondition, again not dropping resources

implicitly. A technicality is the use of the selector coercions 𝜒1, 𝜒2 witnessing the equivalences,

which are needed to ensure that the generated pre- and postconditions are well-typed. Notice

that this rule does not have an SMT proof obligation. Instead, we gather in the precondition the

initial precondition 𝑅1 and the relation between the intermediate post- and precondtiions, 𝑆1 and

𝑅2. Importantly, we also include the tactic-computed hypotheses ?𝑎 and ?𝑏, enabling facts to be

proved by the SMT solver to be used in the separation logic tactic. Finally, in the postcondition, we

gather the intermediate and final postconditions.

Val. The last rule is similar to most elements of Bind. As shown by the use of the entailment ⊢𝐹 ,
it requires its premise to be framed. The next two premises are tactic VCs for relating the slprop-pre-
and postconditions, with the same flavor as before, allowing the tactic to abduct a hypothesis under

which the goal is validated. Finally, the last premise is an SMT goal, which includes the freshly

abducted hypotheses, and a rule of consequence relating the annotated pre- and postconditon to

what was computed. Annotated computation types are considered to not have any implicit frames,

hence the use of ⊢ in the conclusion.

We prove in the supplement that the addition of the ⊢𝐹 modalities and the removal of a nonde-

terministic frame and consequence rule do not compromise completeness—we can still build the

same derivations, but with the additional structure, we have set the stage for tactics to focus on

efficiently solving slprop goals, while building carefully crafted SMT-friendly VCs that can be fed as

is to F
★
’s existing, heavily used SMT backend.

3.3 Why it works: Proof-oriented Programming
In §2, we claimed that prior attempts at using a WP-based VC generator for separation logic in F

★

did not scale. Here, we discuss some reasons why, and why the design we present here fares better.

As a general remark, recall that we want the trusted computed base (TCB) of Steel to be the same

, Vol. 1, No. 1, Article . Publication date: March 2021.

10 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

as SteelCore, i.e., we trust F
★
and its TCB, but nothing more. As such, our considerations for the

scalability of one design over another will be based, in part, on the difficulty of writing efficient,

untrusted tactics to solve various kinds of goals. Further, we aim for a Steel verifier to process an

entire procedure in a single go and respond in no more than a few seconds or risk losing the user’s

attention. In contrast, in fully interactive verifiers users analyze just a few commands at a time and

requirements on interactive performance may be somewhat less demanding.

WP-based VCs are large and require non-reflective tactics. Separation logic provides a modular

way to reason about memory, but properties about memory are only one of several concerns

when proving a program. VCs for programs in F
★
contain many other elements: exhaustiveness

checks for case analysis, refinement subtyping checks, termination checks, hypotheses encoding

the definitions of let-bound names, and several other facts. In many existing F
★
developments a VC

for a single procedure can contain several thousand logical connectives and the VC itself includes

arbitrary pure F
★
terms. Martínez et al.’s (2019) tactics for separation logic process this large term,

applying verifiable but slow proof steps just to traverse the formula—think repeated application of

inspecting the head symbol of the goal, introducing a binder, splitting a conjunction, introducing

an existential variable—even these simple steps are not cheap, since they incur a call to the unifier

on very large terms—until, finally an slprop-specific part of a VC is found, split from the rest and

solved, while the rest of the VC is rewritten into propositional form and fed to the SMT solver.

Although F
★
’s relatively fresh and unoptimized tactic system bears some of the blame, tactics like

this are inherently inefficient. Anecdotally, in conversations with some Iris users, we are told that

running its WP-computations on large terms would follow a similar strategy to Martinez et al.’s

tactics and can also be quite slow. Instead, high-performance tactics usually make use of techniques

like proof-by-reflection (Gonthier et al. 2016), but a reflective tactic for processing WP-based VCs is

hard, since one would need to reflect the entire abstract syntax of pure F
★
terms and write certified

transformations over it—effectively building a certified solver for separation logic.

Structured VCs separate concerns. A proof-oriented programmingmindset suggests that producing

a large unstructured VC and trying to write tactics to recover structure from it is the wrong way

to go about things. Instead, our proof rules are designed to produce VCs that have the right

structure from the start, separating slprop reasoning and other VCs by construction. The expensive

unification-based tactics to process large VCs are no longer needed. We only need to run tactics on

very specific, well-identified sub-goals and the large SMT goals can be fed as is by F
★
to the SMT

solver, once the tactics have completed.

Reflective tactics for slprop goals. Our tactics that focus on slprop implications are efficient because

we use proof-by-reflection. Rather than reflect the entire syntax of F
★
, we only reflect the slprop

skeleton of a term, and then can use certified, natively compiled decision procedures for rewriting

in commutative monoids and AC-matching to (partially) decide slprop equivalence and solve for
frames. What calls we make to the unifier are only on relatively small terms.

3.4 Correspondence to our implementation
The two judgments ⊢ and ⊢𝐹 correspond to two new user-defined computation types in F

★
, namely

Steel and SteelF. F★’s effect system provides hooks to allow us to elaborate terms written in direct

style, let x = e in e' to bind_M_M' [[e]] (𝜆x→ [[e']]) when e elaborates to [[e]] with a computation type

whose head constructor is M, and when the elaboration [[e']] has a type with a head constructor M'.

This allows us to compose, say, un-framed Steel computations with framed SteelF computations by

first applying the frame around the first computation and then calling the Bind rule. As such, we

provide 4 binds for each of the combinations, rather than a single bind and a factored frame. The

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 11

precise details of how this works in F
★
are beyond the scope of this paper—Rastogi et al. (2020)

describe the facilities offered by F
★
’s effect system which we use in this work.

Steel has two other kinds of computation types, for atomic computations and for ghost (proof-

only) computation steps. We apply the same recipe to generate VCs for them, inserting frames at

the leaves, and including consequence and framing in copies of Bind and Val used for these kinds

of computations. Ultimately, we have six computation types, three of which are user-facing: Steel,
SteelAtomic and SteelGhost. Behind the scenes, each of these has a framed counterpart introduced

by the elaborator and eliminated whenever the user adds an annotation. These computation types

are ordered in an effect hierarchy, allowing smooth interoperation between different kinds of

computations; SteelAtomic computations are implicitly lifted to Steel computations when needed,

while SteelGhost can be used transparently as either SteelAtomic or Steel.

3.5 An SMT-friendly Encoding of Selectors
Soundness of quintuples. We prove the soundness of our quintuples with selectors by reducing

them to raw quintuples in SteelCore. In SteelCore quintuples { 𝑃 | 𝑅 } 𝑥 :𝑡 { 𝑄 | 𝑆 }𝑟𝑎𝑤 , we have
R:mempred P and S:mempost P Q, capturing that R and S depend only on the P and Q fragments of

the initial and final memories, respectively.

mempred (p:slprop) = f:(fpmem p→ prop){∀ (m:fpmem p) (m':mem{disjoint m m'}). f m ⇐⇒ f (join m m')

mempost (p:slprop) (q:slprop) = f:(fpmem p→mempred q){∀ (m0:fpmem p) (m0':mem{disjoint m0 m0'})
(m1:fpmem q). f m0 m1⇐⇒ f (join m0 m0') m1}

Thus every user annotation in SteelCore’s raw quintuples comes with an obligation to show that

the R and S terms depend only on their specified footprint—these relational proofs on specifications

can be overwhelming, and require reasoning about disjoint and joined memories, breaking the

abstractions that separation logic offers. In comparison, selector predicates are self-framing by

construction: the predicates𝑅 and 𝑆 can only access the selectors of 𝑃 and𝑄 instead of the underlying

memory, which are themselves self-framing. By defining selector predicates as an abstraction on

top of the SteelCore program logic, we thus hide the complexity of the self-framing property from

both the user and the SMT solver.

A more efficient encoding of seleq. To preserve the modularity inherent to separation logic rea-

soning when using selector predicates, the postcondition of the Frame rule previously presented

contains the proposition seleq ?F 𝑠𝑓0 𝑠𝑓1 , capturing that sel ?F 𝑠𝑓0 = sel ?F 𝑠𝑓1 .
Using this predicate, the SMT solver can derive that the selector of any slprop contained in the

frame is the same in the initial and finalmemories, leveraging the fact that sel (p ∗ q) m = (sel p m, sel q m)

for any m:fpmem (p ∗ q). But as the size of the frame grows, this becomes expensive; the SMT solver

needs to deconstruct and reconstruct increasingly large tuples.

Instead we encode seleq as the conjunction of equalities of the atomic slprops selectors contained
in the frame, where an atomic slprop does not contain a ∗. For instance, p and q are the atomic

slprops contained in p ∗ q Our observation is that most specifications pertain to atomic slprops; the
swap function presented in the introduction for instance is specified using the selectors of ptr r1
and ptr r2, instead of (ptr r1 ∗ ptr r2).

Once the frame has been resolved using the approach presented in §4, generating these equalities

is straightforward using metaprogramming; we can flatten the frame according to the star operator,

and generate the conjunction of equalities to pass to the SMT solver.

Limitations of selectors. Selectors can alleviate the need for existentially quantified ghost variables;
the value stored in a reference for instance can be expressed as a selector, decluttering specifications.

But, not all slprops have meaningful selectors, nor do we expect that they should. For example,

, Vol. 1, No. 1, Article . Publication date: March 2021.

12 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

when using constructions like PCMs to encode sharing disciplines, it is not always possible to

define a selector that returns the partial knowledge of a resource. However, as illustrated §5.2,

when applicable, selectors can significantly simplify specifications and proofs.

4 AUTOMATICALLY DISCHARGING STEEL VERIFICATION CONDITIONS
In this section, we show how to discharge separation logic VCs generated during the elaboration of

Steel programs; namely, how to solve frame metavariables ?𝐹 and separation logic entailments ⊨𝑡𝑎𝑐 .
We start by presenting a quick overview of our methodology on the simple (though artificial)

example below:

val write (r:ref a) (x:a) : Steel unit (ptr r) (𝜆 _→ ptr r)
let two_writes (r1 r2:ref int) : Steel unit (ptr r1 ∗ ptr r2) (𝜆 _→ ptr r1 ∗ ptr r2) = write r1 0; write r1 1

For clarity, we will omit the ⊨𝑠𝑚𝑡 constraints when typechecking this program; they are irrelevant

to this example. First, the APP rule from Fig. 3 is applied to both writes. The function applications are

then sequentially composed using the BIND rule. This rule requires ⊢𝐹 computations as premises;

frames ?F1 and ?F2 are automatically inserted by applying the FRAME rule to each application. When

composing sequentially, a fresh metavariable ?Q as well as the constraints ptr r1 ∗ ?F1 ∗−∗ ptr r2 ∗ ?F2
and ptr r2 ∗ ?F2 ∗−∗ ?Q are generated. Finally, the VAL rule ensures the inferred type matches the

user’s signature, generating the constraints ptr r1 ∗ ptr r2 ∗−∗ ptr r1 ∗ ?F1 and ?Q ∗−∗ ptr r1 ∗ ptr r2.
Determining whether two terms containing an arbitrary number of metavariables can be unified

up to associative-commutative rewriting is a hard problem (Fages 1984). Constraints for Steel

programs fit this description, using only one AC-function: the separation logic ∗. Our observation is

that we can instead reduce constraint solving in Steel to a simpler problem, namely, AC-matching.

By solving constraints in a particular order, it is possible to only consider constraints that contain at

most one metavariable. This happens when considering constraints generated by a linear traversal,

in either forward or backward program order. In our example, going forward we would first solve

?F1 in ptr r1 ∗ ptr r2 ∗−∗ ptr r1 ∗ ?F1, then ?F2 in ptr r1 ∗ ?F1 ∗−∗ ptr r2 ∗ ?F2 (?F1 having been solved

previously), and finally ?Q through ptr r2 ∗ ?F2 ∗−∗ ?Q. Once we reach the last constraint ?Q ∗−∗
ptr r1 ∗ ptr r2, ?Q has already been solved and checking AC-equivalence is straightforward.

We first formalize this intuition in §4.1, proving that the rules presented in Fig. 3 ensure that

a scheduling suitable for AC-matching exists for any well-typed Steel program. We then present

our approach to AC-matching in the context of our auto-active prover. Compared to complete,

but expensive algorithms for AC-matching previously proposed (Kapur and Narendran 1987),

our algorithm is efficient, providing quick feedback to the programmer when unification fails. In

exchange, it is incomplete; when results are inconclusive, the programmer can provide hints and

annotations to help the unifier make progress.

4.1 A Unitriangular AC-Matching Problem
In this section, we show that the constraints generated in Fig. 3 can be split into a unitriangular set
and an unrestricted set of equations. This property ensures that a scheduler can always pick an

AC-matching constraint, while guaranteeing progress and termination.

For notational purposes, we write the metavariables ?F, ?Q etc. as variables ?u in this section.

We also write Γ ⊢ 𝑒 : 𝐶 | 𝑈 ;X to mean that a typing judgment Γ ⊢ 𝑒 : 𝐶 from Fig. 3 generates the

set of metavariables 𝑈 and the set of ⊨𝑡𝑎𝑐 constraints over them denoted by X (similarly for ⊢𝐹
judgments). We begin by defining a unitriangular system of equations.

Definition 4.1 (Unitriangular system of equations). An ordered set ofmetavariables𝑈 = {?𝑢𝑖 }𝑖∈[1,𝑛]
and an ordered set of equations X = {X𝑖 }𝑖∈[1,𝑛] form a unitriangular system of equations if

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 13

(1) ∀𝑖 ∈ [1, 𝑛]. ?𝑢𝑖 occurs exactly once in X𝑖 , and

(2) ∀𝑖, 𝑗 ∈ [1, 𝑛]. ?𝑢 𝑗 does not occur in X𝑖 if 𝑗 > 𝑖 .

Our main theorem is then as follows:

Theorem 4.2. If Γ ⊢ 𝑒 : { 𝑃 | 𝑅 } 𝑧:𝑡 { 𝑄 | 𝑆 } | 𝑈 ;X then X = X1 ∪X2 and there exists an ordering
of𝑈 and X1 s.t. (𝑈 ,X1) is unitriangular.

To prove theorem 4.2, we need to reason about the metavariables and constraints generated

by the framed computations. To that end, we work with a notion of once-removed-unitriangular
system of equations. Intuitively, given a unitriangular system of equations, we can obtain a once-

removed-unitriangular system of equations by removing the first constraint.

Theorem 4.3. If Γ ⊢𝐹 𝑒 : { 𝑃 | 𝑅 } 𝑧:𝑡 {𝑄 | 𝑆 } | 𝑈 ;X thenX = X1∪X2 and there exists an ordering
of𝑈 and X1 s.t. (𝑈 ,X1) is once-removed-unitriangular with exactly one occurrence of ?𝑢1 in 𝑄 .

The proofs for these theorems rely on the following auxiliary lemmas.

Lemma 4.4. If Γ ⊢ 𝑒 : { 𝑃 | 𝑅 } 𝑧:𝑡 { 𝑄 | 𝑆 }, then 𝑃 and 𝑄 do not contain any metavariables.

Lemma 4.5. If Γ ⊢𝐹 𝑒 : { 𝑃 | 𝑅 } 𝑧:𝑡 { 𝑄 | 𝑆 }, then 𝑃 and𝑄 each contain exactly one occurrence of a
metavariable.

The proofs for Theorem 4.2 and Theorem 4.3 proceed by simultaneous induction on the two

typing derivations. The intuition behind this proof is that we can construct the unitriangular system

by traversing the derivation backwards, starting from the postcondition. The choice is arbitrary

but convenient for the proof—one could also structure the proof to go forwards instead.

A constraint scheduler for Steel. The unitriangular shape of the set of equations allows us to solve
the ?𝑢𝑖 sequentially while finally verifying that the solutions are consistent with the equations 𝐶𝑖 .

In practice, when typechecking a Steel program, we do not reorganize the generated constraints

to extract a unitriangular system. We instead implement a simpler scheduling, solving the first

remaining constraint which contains only one occurence of a metavariable. The existence of the

unitriangular system ensures the progress and termination of this scheduling.

4.2 Solving AC-Matching Instances
In the previous sections, we showed how we could schedule equations to be solved sequentially, so

that each scheduled equation contains at most one frame metavariable. In this section, we present

the last missing piece of the puzzle: how to actually solve such an equation.

Consider below a simplified grammar for a subset of slprops.

𝑣 ::= 𝑐 |?𝑣 𝑡 ::= emp | 𝑓 𝑣 |?𝑢 | 𝑡 ∗ 𝑡
We assume the existence of a set of constants 𝑐 and uninterpreted function symbols 𝑓 . Terms

t can be the unit emp, a function 𝑓 whose argument is either a constant or metavariable ?𝑣 , an

slprop-metavariable ?𝑢 (typically the frame variable), or a separating conjunction of two terms. The

other connectives are uninterpreted by our AC-matching solver. One main point of interest here

is that we have two sorts of metavariables, ?𝑣 variables may arise due to implicit arguments in a

program and, unlike the ?𝑢 variables, may have a type other than slprop.
When considering a scheduled equation, we will denote the frame metavariable ?𝑢, and assume

without loss of generality that it is on the left-hand-side of the equality. Similarly to AC-matching

algorithms in the literature, we consider flattened representations of both sides of the equation.

Our algorithm proceeds by trying to match each symbol on the left with a rigid head symbol (c or
f) with a term on the right, and finally sets the metavariable ?𝑢 to the conjunction of the remaining

, Vol. 1, No. 1, Article . Publication date: March 2021.

14 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

terms on the right once matching is over, or the unit emp if no such term is left. Let us first present

the simple case where all terms different from ?𝑢 are constants. If a constant on the left has no

counterpart on the right, then the equation cannot be solved, raising a unification error. We present

below some simple examples to illustrate—constants 𝑐𝑖 , 𝑐 𝑗 are distinct and non-matchable.

• 𝑐1∗?𝑢 = 𝑐2 ∗ 𝑐1 ∗ 𝑐3. The 𝑐1 on both sides match and are removed. ?𝑢 is set to the conjunction

of leftover terms on the right side, i.e. 𝑐2 ∗ 𝑐3
• 𝑐1∗?𝑢 = 𝑐1. The 𝑐1 on both sides match and are removed. There is no leftover term on the

right side, so ?𝑢 is set to the unit emp
• 𝑐1∗?𝑢 = 𝑐2. A unification error is raised, since 𝑐1 cannot be matched with any term on the

right side.

Now consider the equation f ?v ∗ f v2 ∗ ?u = f v2 ∗ f v1. By applying naively the matching algorithm

presented previously, the first term on the left, f ?v, would be matched with the first term on the

right, f v2. This would prevent the second term on the left, f v2 to be matched with the remaining

terms on the right, which in turn would return a unification error to the programmer, pointing to

f v2 not being matched, and leading to confusion since a matching term does exist on the right side.

A natural solution to this problem would be backtracking, attempting to match f ?v with a

different term on the right side. As previously stated, this is a solution we wish to avoid; the cost of

backtracking can become prohibitive, and hinder the interactivity required for program verification.

We instead only match a left-hand-side term 𝑡𝑙 if there is a unique term on the right that it can be

unified with. If this is not the case, we delay the matching of 𝑡𝑙 and attempt to match the rest of

the terms on the left side. If no progress was made once we retry matching 𝑡𝑙 , an error message

prompts the programmer to instantiate more implicit arguments.

Again, we present below several examples illustrating the behaviour of our algorithm.

• f v1 ∗ f ?v ∗ ?u = f v2 ∗ f v1. We first attempt to match f v1 with a term on the right. There is a

unique solution, so matching is performed. We then attempt to match the second term, f ?v.
Only f v2 is left on the right, so there is a unique solution and we can set ?u to emp.

• f ?v ∗ f v1 ∗ ?u = f v2 ∗ f v1. We first attempt to match f ?v with a term on the right. Both terms

on the right are valid solution, so we delay this matching. We then attempt to match f v1,
which has a unique solution. Matching on all terms on the left different from ?u has been
attempted and progress has been made, we retry with delayed term. f ?v now has a unique

solution on the right side. We finally set ?u to emp.
• f ?v ∗ f ?v' ∗ ?u = f v1 ∗ f v2. Both f ?v and f ?v' have several solutions on the right side. Since no

progress is made after attempting matching for terms on the left side, an error is raised.

4.3 Cooperating with the SMT solver
Our AC-matching algorithm is entirely implemented as an F

★
tactic. It relies on the F

★
unifier to

determine whether two terms can be matched, thus solving relevant metavariables when matching

occurs. As in other systems, F
★
tactics are not trusted—the terms they generate are guaranteed to

be well-typed, thus ensuring soundness of the decision procedure.

Since the decision procedure for AC-matching is not trusted, there is no need to restrict its

complexity. As such, our decision procedure is designed to be easily extensible with additional

heuristics and user customization. In the following section, we present one such extension, which

enables equality rewriting during AC-matching by interacting with the SMT solver.

Consider the simple case where we wish to solve the equation f b = f true. Here, the unification
procedure presented so far would fail even if the equality b = true is valid, due to, say, a control flow
hypothesis. The only solution would be for a programmer to manually trigger a rewrite by calling

a ghost procedure. Instead, we implement heuristic abduction of equalities (the ?a and ?b in ⊨𝑡𝑎𝑐 in

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 15

Fig. 3) in our tactic that allows us to match f b = f true via a SMT provable equality. This is powerful

and allows an interplay between arbitrary theories and AC-matching, allowing, for example, our

algorithm to match f (x − x) = f 0 or f (2∗x) = f (x + x), i.e., a kind of AC-matching modulo theories.

However, this is in tension with the basic structure of our AC-matching algorithm. If even 𝑐𝑖 = 𝑐 𝑗
is possible with theory reasoning, even the most basic steps of our matching algorithm will always

fail, since there is no unique solution even to a simple problem like 𝑐𝑖∗?𝑢 = 𝑐𝑖 ∗ 𝑐 𝑗 . Hence, deciding
which equalities to abduct and delegate to SMT requires program-specific knowledge, which we

allow the programmer to configure.

When defining a separation logic predicate, the programmer can annotate some arguments to

mark them as candidates for SMT-based rewritings. Consider for instance the standard separation

logic predicate pts_to r v, which indicates that the reference r stores the value v. When reasoning

about the functional correctness of a program using this predicate, equalities on the value v are
common while equalities on the reference r itself are more rare. As such, a programmer could decide

to mark values v as candidates for SMT-based rewriting, but not references r in pts_to predicates.
Thus, unifying pts_to r v1 = pts_to r v2 would automatically succeed if the SMT solver can prove

v1 = v2, but unifying pts_to r1 v = pts_to r2 v would require a manual rewrite when r1 = r2. A library

designer can makes some of these choices once and for all, so that all clients benefit from smart

equality abduction and our library for references with fractional permissions does indeed mark the

value and the permission as abduction candidates.

When the AC unifier cannot make progress anymore, ideally after having matched some of the

left-hand-side terms that had a unique solution on the right-hand-side, it retries a similar unification

while generating equalities to be discharged by SMT. These equalities propagate to the SMT solver

using the ?𝑎 and ?𝑏 abduction variables from Fig. 3. When falling back on the SMT solver is not

necessary, these metavariables are set to ⊤, ensuring that no metavariable is left unsolved. Similarly

to the main algorithm, solutions that are not unique are not accepted, so as to provide accurate

error reporting to the programmer.

• pts_to r v1 ∗ pts_to r v2 = pts_to r v1 ∗ pts_to r v3. The decision procedure first attempts exact

matching, and removes pts_to r v1 from both sides. It is then left with two terms that cannot

be unified, and fallbacks on SMT rewritings. Since the value argument of pts_to has been
marked as candidate for SMT-based rewriting, the AC unifier queries the SMT solver to check

whether v2 = v3.
• pts_to r v1 ∗ pts_to r v2 = pts_to r v3 ∗ pts_to r v4. No exact matching is possible, the AC unifier

fallbacks directly on SMT rewritings. Since both v1 and v2 could possibly be rewritten into v3
or v4, the unicity of the solution cannot be guaranteed. The AC unifier fails, and asks the

programmer to provide manual rewrites to disambiguate.

5 STEEL IN ACTION
In this section, we present several verified libraries in Steel, evaluating the various styles of program

proof it enables and the level of proof automation and control it provides.

As regards expressiveness, being embedded in F
★
, Steel offers a large variety of styles of program-

ming with a dependently typed CSL, ranging from Viper-style permission accounting with implicit

dynamic frames, to more dependently typed libraries for invariants, concurrent data structures and

message-passing protocols.

As regards automation, we find that our hybrid tactic- and SMT-based program verifier eliminates

all mundane proofs step related to framing. Equality abduction in our tactics automatically delegates

extensional conversions of slprops to SMT in many though not all cases. Programmers must still

invoke lemmas to roll and unroll recursive predicates, to trigger certain rewritings, and also call

, Vol. 1, No. 1, Article . Publication date: March 2021.

16 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

ghost procedures for proof steps and to maintain stateful invariants. We believe that the overhead

is comparable to other SMT-based program verifiers, though in comparison to prior developments

in F
★
(verifying sequential imperative programs), Steel proofs are significantly more abstract due

to the more powerful logic and the automated support for framing.

To be fair, not all is rosy: we still have work to do to improve error reporting and there are many

opportunities for better integration with F
★
’s emacs-based IDE—the verifier has lots of information

about the slprops available at every program point, and surfacing this to the user as a tooltip would

help boost productivity significantly. Yet, all the main technical pieces are in place for us to address

these user issues.

5.1 Basic Concepts
Most of the prior sections do not depend much on the specifics of the SteelCore logic itself, but

here, we need to introduce several concepts before the case studies themselves.

Steel inherits from SteelCore several basic concepts, however we have re-packaged SteelCore’s

libraries for easier use. In the process, we were able to simplify the proofs of many of these libraries,

reducing in some cases the proof overhead by an order of magnitude. We review the key concepts

here and, where relevant, also report on our experience upgrading the libraries.

Reference and executable semantics. Steel’s semantics is formally based on a definitional interpreter

that provides a non-deterministic interleaving of actions. An action is a single step of stateful

computation, reading or writing to a memory mem and returning a result. While our interpreter

provides a reference semantics, we do not intend to actually run Steel programs on it. Although we

have yet to do so, we intend to reuse F
★
’s existing backends to OCaml, F#, and C, to execute Steel

programs efficiently. As such, these backends are also part of F
★
’s and Steel’s TCB. All our code is

written with extraction in mind, e.g., all code that should be erased is indeed marked for erasure

and checked as such by F
★
.

Erased types. The type erased (t:Type) in F
★
describes a computationally irrelevant value which

will be extracted by F
★
to (). These types are useful to describe ghost values for use in specifications

only, while ensuring that passing such values around does not incur any runtime cost. The function

hide (v:t) : erased t builds an erased version of t, while its inverse, reveal (erased t) : t, is checked by

F
★
to be used only in code that is computationally irrelevant.

Three kinds of computations: SteelAtomic, SteelGhost and Steel. As mentioned in §3.4, we have three

related user-facing computation typeswith the signatures shown below,where pre p = type_of p→ prop
and post p a q = type_of p → x:a → type_of (q x)→ prop:

• SteelAtomic (a:Type) (i:inames) (p:slprop) (q:a→ slprop) (r:pre p) (s:post p a q)
• SteelGhost (a:Type) (i:inames) (p:slprop) (q:a → slprop) (r:pre p) (s:post p a q)
• Steel (a:Type) (p:slprop) (q:a → slprop) (r:pre p) (s:post p a q)

SteelAtomic and SteelGhost have the same signature and carry an additional index (i:names) which
wewill explain shortly. SteelAtomic is used to classify computationally relevant codewhose effects on

memory are atomic, e.g., an atomic compare-and-set (CAS) instruction would have type SteelAtomic.
SteelGhost describes code that has no observable computational effect, e.g., this could involve a

proof step such as unrolling a recursive predicate, calling a lemma, or reading, writing or allocating

to ghost state. Steel is the general purpose computation type for Steel code, and involves a mixture

of pure computations, multiple atomic steps composed in sequence or parallel, and ghost code—

SteelAtomic and SteelGhost are implicitly lifted to Steel. Parallel composition in Steel is implemented

by the following combinator

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 17

par (f : unit→ Steel a p q r s) (g: unit→ Steel a' p' q' r' s') : Steel (a & a') (p ∗ p') (𝜆 (x,x')→ q x ∗ q' x')
(requires 𝜆(t,t') → r t ∧ r' t')
(ensures 𝜆(t,t') (x,x') (u,u')→ s t x u ∧ s' t' x' u')

In case the r:pre p or q:post p a q are trivial we simply omit it; otherwise, as in par above, we tag the

selector predicates with requires and ensures to improve readability.

Memory. In its most basic form, the memory mem of a Steel program contains a map from

abstract typed references pref (a:Type) (p:pcm a) to values of type a, where p:pcm a is some partial

commutative monoid (PCM) over the carrier type a. By choosing suitable PCMs, Steel’s libraries

provide various flavors of derived reference types, the most commonly used of which are references

with fractional permissions, with the signatures below.

• ref t, is a reference to a t-typed value

• f : frac is an erased, real-valued fraction between 0 and 1.

• r
f↦→ v : slprop asserts ownership of an f-fraction of r poiting to v, while r ↦→ v = r

1.0↦→ v.

• r
f↦→ is equivalent to ∃v. r f↦→ v, with the selector type type_of (ptr r f) = t, when r:ref t.

• pure p is equivalent to emp in a context where the proposition p is valid.

Additionally, we have ghost references, ghost_ref (t:Type)which refer to erased t values inmemory—

both the references and the values they point to are computationally irrelevant. The slprop for ghost

references is written r
f
d v, but is otherwise identical to ↦→ . In §5.6 we show how to use references

with other PCMs.

Invariants. Any slprop can at some point in a computation be designated an invariant, and is from
then on enforced by the logic to be maintained by all susbequent computation steps. Invariants in

Steel are closely related to invariants in Iris. The main constructs are shown below:

• inv (p:slprop) : Type, is the type of an invariant enforcing p. Note, inv p is value that can be

freely duplicated and shared among threads. It represents a kind of token witnessing the

validity of p.
• Invariants are named, with name (i:inv p) : iname, and inames = set iname.
• new_inv (p:slprop) : SteelGhost (inv p) i p (𝜆_→ emp), consumes the initially valid p:slprop and

returns a new token for it.

• Invariants can be opened and restored in atomic code using the following combinator, which

states that f can assume p𝑖 and restore it in an atomic step and return x, while also transforming

p to q x. The index us:inames is used to ensure that f does not itself internally open i, which
would be unsound. A similar combinator, with_inv_ghost, allows using and restoring an

invariant in SteelGhost code.

with_inv (i:inv p𝑖) (f: unit→ SteelAtomic a is (p𝑖 ∗ p) (𝜆 x→ p𝑖 ∗ q x)) : SteelAtomic a (name i ⊎ us) p q

Improving other SteelCore libraries. Based on the core constructs above, SteelCore provided

libraries for spin locks, fork/join parallelism, and message passing on unidirectional channels, or

simplex channels.We reimplemented the proofs of those libraries while retaining their specifications.

As presented in Table 1, the improved automation in SteelCore shrunk the proofs dramatically,

e.g., our proof of simplex channels is several times shorter than the previous proof, which, like

swap from §1, was previously utterly overwhelmed by manual proof steps for framing and slprop
rewriting. The new proofs use the same invariants as in SteelCore, but are thankfully significantly

more maintainable. In §5.6, we present a new PCM-based construction for 2-party session types

on bidirectional channels, subsuming SteelCore’s simplex channel library. The spin lock library

provides the following idiomatic interface, which we use in several examples later in the section.

, Vol. 1, No. 1, Article . Publication date: March 2021.

18 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

SteelCore Steel Total file size (LoC, SteelCore implementation)

SpinLock 34 13 150

Fork/Join 33 9 130

Simplex 340 70 933

Table 1. Comparison of the number of separation logic lemma calls in SteelCore and Steel.

val lock (p:slprop) : Type (∗ type of a lock, a first−class value, locks can even be stored in the mem ∗)
val new_lock (p:slprop) : Steel (lock p) p (𝜆 _→ emp) (∗ give up the slprop p to create a new lock ∗)
val acquire (l:lock p) : Steel unit emp (𝜆 _→ p) (∗ acquire the lock and gain p ∗)
val release (l:lock p) : Steel unit p (𝜆 _→ emp) (∗ release the lock and give up p ∗)

5.2 Balanced trees: Selectors at work
As a first case study, we present a verified implementation of self-balancing AVL trees. To specify this

implementation, our first step is to define a tree : slprop capturing the essence of a mutable tree. In the

following code, Spec is the name of the F
★
module containing a standard, pure specification of binary

trees, represented as an inductive datatype whose constructors are Leaf and Node data left right.
We begin by setting up the various types and representation invariants:

type node (a: Type) = { data: a; left: t a; right: t a }
and t (a: Type) = ref (node a) (∗ The type of the binary linked trees ∗)
(∗ A recursive predicate for binary trees ∗)
let rec tree_interp' (ptr: t a) (n: Spec.tree (node a)) = match n with
| Spec.Leaf → pure (ptr = null) (∗ Leaves are represented by null pointers ∗)
| Spec.Node data left right→ tree_interp' data.left left ∗ tree_interp' data.right right ∗ ptr ↦→ data

let tree_interp (ptr:t a) = ∃n. tree_interp' ptr n (∗ We existentially quantify over the spec tree ∗)
(∗ The selector only keeps the data in the nodes, returning a Spec.tree a ∗)
val tree_sel (ptr:t a) (m:fpmem (tree_interp ptr)) : Spec.tree a
(∗ We finally collect the different components to define the slprop tree, indexed by the pointer to the root ∗)
let tree (ptr:t a) : slprop = { interp = tree_interp ptr; type_of = Spec.tree a; sel = tree_sel ptr }

Note that the interpretation of tree is an existentially quantified, recursive predicate. Asmentioned

previously, we expect to make ghost procedure calls to manipulate quantifiers and to roll and unroll

recursive predicates. The signature of roll_tree is below.

val roll_tree (root: t a) (left: t a) (right: t a) : SteelGhost unit u
(tree left ∗ tree right ∗ ptr ↦→ root) (𝜆 _→ tree root)
(requires (𝜆 s→ s.[ptr].left == left ∧ s.[ptr].right == right))
(ensures (𝜆 s _ s'→ s'.[ptr] == Spec.Node s.[ptr].data s.[left] s.[right]))

Proofs of such lemmas are a bit mechanical—we open the existentials for tree, instruct the F
★

normalizer to reduce the recursive function tree_interp' and then fold it back to introduce tree_interp,
then pack the existential, and return. In the future, we believe some of this boilerplate can be

reduced through metaprogramming. Now, with our roll and unroll lemmas in hand, we can turn to

the code itself.

Using tree selectors, we can define concise specifications operating on pure F
★
trees. For example,

the specification for height relates the returned value x to the height of the F
★
tree returned by

tree_sel, while ensuring that the function did not modify the tree.

let rec height (ptr:t a) : Steel int (tree ptr) (𝜆 _→ tree ptr) (requires 𝜆_→⊤)

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 19

(ensures 𝜆s x s'→ s.[ptr] == s'.[ptr] ∧ Spec.height s.[ptr] == x)
= if is_null ptr then (unroll_leaf ptr; 0) else (

let node = unroll_tree ptr in
let hleft = height node.left in
let hright = height node.right in
roll_tree ptr node.left node.right;
if hleft > hright then (hleft + 1) else (hright + 1))

With the exception of three ghost calls that roll and unroll the definition of the slprop, the code
is fairly canonical and the proof is automated by the hybrid of tactics and SMT in about a second.

One of the main benefits of this approach is that tree can be used as a basis to define more

involved notions of trees at a minimal cost. For instance, one can define mutable AVL trees as a

pure predicate over the selector of an tree, without needing to modify the representation invariant.

Under this requirement, we can specify a self-balancing insertion operation, insert_avl, which is

parameterized by a comparison function cmp needed to perform a binary search. This operation

builds on the same memory layout for the tree, but with a different logical layer over it (e.g AVL

balancing) . The Spec.is_avl function checks that the tree meets our specification for an AVL, e.g.,

every subtree is balanced and the tree is a binary search tree. The full implementation and proof of

insert_avl follows:

let rec insert_avl (cmp:Spec.cmp a) (ptr: t a) (v: a) : Steel (t a) (tree ptr) (𝜆 ptr'→ tree ptr')
(requires 𝜆s → Spec.is_avl cmp s.[ptr])
(ensures 𝜆s ptr' s' → Spec.is_avl cmp s.[ptr] ∧ Spec.insert_avl cmp s.[ptr] v == s'.[ptr'])
= if is_null ptr then (unroll_leaf ptr; (∗ unroll the tree slprop ∗)

let node = {data = v; left = ptr; right = null} in let new_tree = alloc node in
roll_leaf (); roll_tree new_tree ptr null; new_tree (∗ roll the tree slprop and return tree ∗)

) else (
let node = unroll_tree ptr in if cmp node.data v ≥ 0 then (

let new_left = insert_avl cmp node.left v in
let new_node = {data = node.data; left = new_left; right = node.right} in
write ptr new_node; roll_tree ptr new_left node.right; rebalance_avl cmp ptr

) else (
let new_right = insert_avl cmp node.right v in
let new_node = {data = node.data; left = node.left; right = new_right} in
write ptr new_node; roll_tree ptr node.left new_right; rebalance_avl cmp ptr))

The Steel implementation of insert_avl follows the flow of a textbook binary search tree insertion;

it creates a new node if the tree is empty, or recursively inserts v in the correct subtree if not

before finally rebalancing the tree. All verification conditions related to the shape of the tree are

discharged automatically by SMT, while separation logic VCs only require minimal user interaction;

calling stateful lemmas in a few specific, predictable places is sufficient. The procedure is checked

in about 6 seconds.

5.3 A Library of Disposable Invariants
To illustrate how common proof idioms can be packaged as dependently typed libraries in Steel,

we present a library for disposable invariants. Disposable invariants, like invariants, package an

slprop and provide a similar with_invariant combinator to work with the slprop in the atomic code.

The main novelty of disposable invariants is that, similar to locks, they may be reclaimed,

thereby returning the underlying slprop back to the context. But since disposable invariants are

still computationally irrelevant, unlike locks, they don’t have a computational overhead.

, Vol. 1, No. 1, Article . Publication date: March 2021.

20 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

We present the library interface below. The main slprop provided by the library is active perm i,
where perm is a permission over the disposable invariant i. share and gathermay be used to split and

collect the invariant permissions, while dispose enforces that the caller must have full permission

over the invariant. We elide the with_invariant combinator, its signature is similar to the signature

shown in Section 5.1 with active perm i in the pre- and postcondition of the combinator.

val inv (p:slprop) : Type (∗ the type of disposable invariants ∗)
val name (i:inv p) : iname
val active (f:perm) (i:inv p) : slprop
val new_inv (p:slprop) : SteelGhost (inv p) _ p (𝜆 i→ active 1.0 i) (∗ consumes p ∗)
val share (i:inv p) : SteelGhost unit _ (active perm i) (𝜆 _ → active perm/2 i ∗ active perm/2 i)
val gather (i:inv p) : SteelGhost unit _ (active perm0 i ∗ active perm1 i) (𝜆 _→ active (perm0 + perm1) i)
val dispose (i:inv p{not (name i ∈ u)}) : SteelGhost unit u (active 1.0 i) (𝜆 _ → p) (∗ destroys i, recovers p ∗)

The implementation of the library packages a normal invariant with a ghost_ref bool. Depending
on the value that the reference points to (true or false resp.), this invariant either encapsulates the
underlying slprop p or emp. Thus, a disposable invariant starts with the ghost ref pointing to true,
while disposing it sets the value of the ref to false, returning the slprop p back to the context.

let inv p = r:ghost_ref bool & Steel.Memory.inv (∃ (b:bool). r
0.5
d b ∗ (if b then p else emp))

let active perm i = i.1
perm/2
d true

5.4 Parallel Increment à la Owicki-Gries with Disposable Invariants
For our next case study, we present a Steel implementation of the Owicki-Gries counter (Owicki

and Gries 1976) using disposable invariants. In this example, the main thread spawns two worker

threads, both of which increment a shared counter by 1. The goal is to prove in the main thread that

once the worker threads finish, the value of the shared counter is incremented by 2. Owicki and

Gries’s solution is for each thread to use a ghost reference to track its contribution to the counter,

with an invariant that the value of the shared counter is equal to the sum of the values of the two

contribution variables. Since each ghost reference is incremented by 1, the main thread can now

prove that the assertion about the counter value holds. Here’s the invariant:

let og' (ctr:ref int) (r1 r2:ghost_ref int) w → r1
0.5
d (fst w) ∗ r2 0.5

d (snd w) ∗ ctr ↦→ (fst w + snd w)
let og ctr r1 r2 : slprop = ∃w. og' ctr r1 r2 w

Since the invariant needs to only be in place while the threads are active, this is a good candidate

for a disposable invariants, so long as the threads use only atomic instructions to increment the

counter. The main thread creates the two ghost references and splits their permissions. It then

creates the disposable invariant sealing ogwith it. Next, it splits the disposable invariant and spawns
the two worker threads passing them the invariant and the remaining half permission to their

respective ghost ref. Once the worker threads finish, the main thread gathers the permissions of

the invariant and the ghost refs, and disposes them. With og back in the context, it is able to prove

the required assertion about the counter.

let incr_main (v:erased int) (ctr:ref int) : Steel unit (ctr ↦→ v) (𝜆 _ → ctr ↦→ (v + 2)) =
let r1 = ghost_alloc 0 in let r2 = ghost_alloc v in (∗ allocate the ghost refs:: r1 d 0 ∗ r2 d v ∗ ctr ↦→ v ∗)
ghost_share r1; ghost_share r2; (∗ split permissions ∗)

intro_∃ (hide 0, v) (og' ctr r1 r2); (∗ r1
0.5
d 0 ∗ r2 0.5

d v ∗ og ctr r1 r2 ∗)
let i = new_inv (og ctr r1 r2) in (∗ allocate the disposable invariant sealing og:: ... ∗ active 1.0 i ∗)

share i; (∗ split the invariant permission:: active 0.5 ∗ r1
0.5
d 0 ∗ active 0.5 i ∗ r2

0.5
d v ∗)

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 21

let _ = par (incr_with_invariant ctr r1 r2 0 true i) (incr_with_invariant ctr r2 r1 v false i) in (∗ workers ∗)

gather_invariant i; dispose i; (∗ dispose the invariant:: r1
0.5
d 1 ∗ r2 0.5

d v + 1 ∗ og ctr r1 r2 ∗)

let w = open_∃ () in (∗ r1
0.5
d 1 ∗ r2 0.5

d v + 1 ∗ og' ctr r1 r2 w ∗)
ghost_gather (incr 0) r1; ghost_gather (incr v) r2; (∗ r1 d 1 ∗ r2 d v + 1 ∗ ctr ↦→ v + 2 ∗)
drop () (∗ drop the ghost refs:: ctr ↦→ v + 2 ∗)

Imperative lemmas as ghost code. We show some of the relevant triples in comments to highlight

how the use of ghost code manipulates ghost state as well as the logical context. Note, for instance,

the use of intro_∃ and open_∃ to manipulate quantifiers. Getting “your hands on” an erased witness

is possible due to frame-passing semantics of SteelCore’s definitional interpreter together with

a classical axiom from F
★
’s library.

2
The drop function call at the end drops the frame, which in

our case consists of the ghost_pts_to predicates for the two ghost refs. Since our separation logic is

affine, we can implement such a combinator. It is possible to restrict it so that drop is allowed only

for certain predicates, e.g., those that describe ghost state only.

Finally, the worker threads open the invariant, thereby getting full permission to the counter and

to their respective ghost ref. They increment the counter and the ghost ref, repackage the invariant,

and return. Given an atomic operation to increment a ref (or a CAS), we implement the worker

threads with the following signature.

let incr_with_invariant (ctr:ref int) (mine other:ghost_ref int) (n:erased int) (b:bool) (i:inv _)

: Steel unit (active 0.5 i ∗mine
0.5
d n) (𝜆 _ → active 0.5 i ∗mine

0.5
d (incr n))

= with_invariant i (incr ctr mine other n b (name i))

5.5 Michael-Scott 2-LockQueues
In this section, we present the verification of a more realistic concurrent data structure, a queue

by Michael and Scott (1996) which enables enqueuers and dequeuers to proceed in parallel. We

prove the main invariants of the algorithm, including that the queue is always connected and that

the head and tail point to first and last elements of the queue.

The main idea of the data struture is illustrated by the diagram alongside. A queue is im-

plemented as a linked list that always contains at least one element (the last element cannot be

dequeued) and a pair of pointers to the head and tail of the list. These head and tail pointers

are each protected by a lock. Enqueuers take the tail lock, add a node at the end of the list,

update the tail pointer, and release the lock. De-

queuers take the head lock, try to dequeue from

the head of the list, and if successful, swing the head

pointer to the next node, and release the lock. The

interesting case is when the queue has only one el-

ement in it. In this case, the head and tail pointer

point to the same node. Enqueing and dequeueing

threads race on the next pointer of this node, with

the enqueuer trying to update it while the dequeuer

tries to read it. However, so long as reading or writing the next pointer is atomic, the algorithm

correctly maintains the queue invariants.

To prove this in Steel, we follow a style similar in spirit to the Owicki-Gries parallel increment

from the previous section, though this time we relate the invariants of the two locks with an atomic

invariant on the queue itself by using two pieces of ghost state. Here’s the invariant:

2
SteelCore’s logic is classical anyway, for several reasons, not least the use of SMT. So, this isn’t particuarly onerous.

, Vol. 1, No. 1, Article . Publication date: March 2021.

22 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

let lock_inv ptr ghost = ∃v. ptr ↦→ v ∗ ghost 0.5
d v

let queue_invariant hd tl = ∃h t. hd.ghost
0.5
d h ∗ tl.ghost 0.5

d t ∗Q.queue h t
type q_ptr a = { ptr : ref (Q.t a); ghost: ghost_ref (Q.t a); lock: lock (lock_inv ptr ghost) }
type t a = { head : q_ptr a; tail : q_ptr a; inv : inv (queue_invariant head tail) }

The type t a represents the structure of two fields at the top of the picture. The head and tail

pointers are q_ptrs, holding the concrete pointer ptr to a queue node Q.t a, a ghost pointer, and a

lock relating the two. The queue itself bundles the head and tail q_ptrs with an invariant token inv.
The lock_inv holds full permission to the concrete pointer but only half the ghost pointer, while

synchronizing them to hold the same value v. Meanwhile, the queue_invariant holds the other half
of the ghost pointers together with the invariant Q.queue h t, which states that we have a valid

non-empty linked list from h to t. These types and invariants drive the code that follows.

Creating a queue. To allocate a new queue, we allocate the underlying linked list withQ.new_queue
and an initial element x. Then, we allocate the two queue pointers for head and tail, introduce the

queue invariant, package it and return. The main proof effort involved is in allocating and sharing

the ghost state, and introducing the existential quantifers.

let new_queue (x:a) : Steel (t a) emp (𝜆 _ → emp)
= let new_qptr (q:Q.t a) : Steel (q_ptr a) emp (𝜆 qp→ ghost_pts_to qp.ghost half q) =

let ptr = alloc q in
let ghost = ghost_alloc q in
ghost_share ghost;
intro_∃ _ (𝜆 q→ pts_to ptr full q ∗ ghost_pts_to ghost half q); (∗ need to introduce ∃, explicitly ∗)
let lock = Steel.SpinLock.new_lock _ in
{ ptr; ghost; lock}

in
let hd = Q.new_queue x in
let head = new_qptr hd in
let tail = new_qptr hd in
pack_queue_invariant _ _ head tail; (∗ need to package the invariant, 2 intro_∃ ∗)
let inv = new_invariant _ _ in
{ head; tail; inv }

Enqueueing. The enqueue procedure below is also fairly clean. We start by acquiring a lock on

the tail pointer. Then, we call a ghost computation from the library, open_∃ to return a witness for

the existentially quantified lock_inv as an erased value. We then read the tail pointer and allocate a

new cell with its next pointer properly initialized to null and ready for enqueuing.

let enqueue (hdl:t a) (x:a) : Steel unit emp (𝜆 _→ emp)
= Steel.SpinLock.acquire hdl.tail.lock;
let v = open_∃ () in
let tl = read hdl.tail.ptr in
let cell = Q.({ data = x; next = null}) in
let node = alloc cell in
let enqueue_core #inames () : SteelAtomic unit inames

(queue_invariant hdl.head hdl.tail ∗ (ghost_pts_to hdl.tail.ghost half tl ∗ pts_to node full cell))
(𝜆 _→ queue_invariant hdl.head hdl.tail ∗ ghost_pts_to hdl.tail.ghost half node)

= let h = open_∃ () in
let t = open_∃ () in

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 23

ghost_gather tl hdl.tail.ghost; (∗ fuse the two half permissions and get t=tl ∗)
Q.enqueue tl node;
ghost_write hdl.tail.ghost node; (∗ update the ghost state ∗)
ghost_share hdl.tail.ghost;
pack_queue_invariant _ _ _ _

in
with_invariant hdl.inv enqueue_core;
write hdl.tail.ptr node;
intro_∃ _ (𝜆 n → pts_to hdl.tail.ptr 1.0n ∗ ghost_pts_to hdl.tail.ghost half n);
Steel.SpinLock.release hdl.tail.lock

The main work is done by the atomic computation enqueue_core which opens and restores the

queue invariant, by calling Q.enqueue, which itself is an atomic update of tl→ next := node, but the
proof involves exploiting the synchronization of the ghost and concrete state, updating it and

restoring the invariant. Once we exit the atomic block, we update the tail pointer, introduce the

lock invariant’s existential, and release the lock. Dequeue is similar, we leave it out of the paper for

lack of space.

Overall, with some carefully chosen types and invariants, the code mostly just writes itself,

echoing Brady’s type-define-refine slogan but with SteelCore’s CSL specifications. The proof

overhead compares favorably with other automated F
★
developments—the framing is entirely

automated, quantifier instantiation requires some manual intervention but the style we have here

is very predictable, rather than relying on E-matching triggers for SMT. Yet, the interplay between

SMT and tactics is profitable, with many small proofs done automatically behind the scenes. The

whole procedure verifies in around 2 seconds including solving 25 SMT goals due to equality

abduction in around 300 milliseconds.

5.6 PCMs for 2-party Session Types
As a final example, we illustrate how Steel can be used to build dependently typed libraries that

provide both a foundational semantics as well as usable abstractions for embedded session-typed

programming. SteelCore provided some steps in this direction, but only provided a library for

unidirectional channels, which are of limited utility in comparison to the duplex channels we

build here. Actris (Hinrichsen et al. 2019) is a full system that provides duplex channels with more

features than we do here, but being a library in Iris, they stop short of providing dependently typed

libraries for programming. Also, a technical novelty in comparison to Actris which provides a

model based on locks and ghost state, our construction is “lock-free”, in the sense that it is done

simply by designing an appropriate PCM for 2-party dependent session types.

To set the goal posts, we offer the following interface for duplex channels.

val ch : Type
val ep (name:party) (c:ch) (p:prot) : slprop
val new (p:prot) : Steel chan emp (𝜆 _→ ep A c p ∗ ep B c p)
val send (c:ch { is_send_next next }) (x:msg_t next) : Steel unit (ep n c next) (𝜆 _→ ep n c (step next x))
val recv (c:ch { is_recv_next next }) : Steel (msg_t next) (ep n c next) (𝜆 x → ep n c (step next x))
val close (c:ch) : Steel unit (ep c done) (𝜆 _→ emp)

A channel is associated with a protocol p:prot via ep n c p, an slprop governing the use of one of

the channel’s named endpoints. A protocol is a free monad over basic actions to send and receive

messages:

type tag = | Send | Recv

, Vol. 1, No. 1, Article . Publication date: March 2021.

24 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

type prot : Type→ Type =
| Return : #a:Type→ v:a→ prot a
| Msg : tag→ a:Type→ #b:Type→ k:(a → prot b)→ prot b

For example, a simple two-message protocol could be

reply_larger =Msg Send int (𝜆 x→Msg Recv (y:int{y>x}) (𝜆 _→Return ()))

To allocate a channel, one calls new and obtains two separate endpoints A and B, who interprets
the protocol dually to A, flipping sends and receives.

If an endpoint’s protocol p is Msg Send t k, then send c x can be called with x:t, and the endpoint

transitions to the next state of the protocol, step p x = k x. Dually, recv c blocks until it can return a

x:t when the protocol is currently Msg Recv t k and the protocol continues as k x. For instance, the
following code typechecks, since the protocol type guarantees that Bmust reply with a value larger

than what it received from A.

let pingpong (c:chan) : Steel unit (ep A reply_larger) (ep A done) = send c 17; let y = recv c in assert (y > 17)

This interface to channels is simple, intuitive and also quite powerful—protocols are monadic terms

over the basic actions, and so support arbitary dependence on the values exchanged, including
branching for internal and external choice, and recursion. The question that remains is how to

implement this interface.

Background on PCMs. Our main insight is that one can design a PCM for protocols to orchestrate

the temporal sharing of resources. As explained in §5.1, Steel’s memory model includes PCM

references, pref a p, a reference to a value of type a, where p:pcm a. The slprop associated with a

pref is (r:pref a p){(v:a), where r{v ∗ r{u is equivalent to r{v ⊕ u, where ⊕ is the composition

operator of the PCM p. Further, r{v is validated by a memory m only when there exists a frame

f that is composable with v and m(r) = f ⊕ v. In other words, PCMs offer a form of rely-guarantee

reasoning: a thread can rely on r{v being stable, but must in turn guarantee that its actions on r
preserve other threads’ assertions on r.

A PCM for temporal sharing of protocols endpoints. At the core of our model of 2-party sessions is

to define a PCM on t p, a type that captures each participants knowledge of the partial traces of a

protocol p and to model a channel allocated with protocol p as a pref (t p) q, where q: pcm (t p) is to
be defined shortly.

type t (p:prot) = | Nil (∗ unit of the PCM: no knowledge ∗) | V : partial_trace_of p→ t p (∗ full knowledge ∗)
| A_W, B_R : q:prot {is_send q}→ trace p q → t p (∗ A_W: A to send next, B_R: B to recv next ∗)
| A_R, B_W : q:prot {is_recv q} → trace p q→ t p (∗ A_R: A to recv next, B_W: B to send next ∗)
| A_Fin, B_Fin : q:prot{is_ret q}→ trace p q→ t p (∗ A is finished, B is finished ∗)

Each case in t p is intended to represent some knowledge of the state of the channel from the

perspective of some participant. For example, given a channel reference c : pref (t p) q, the assertion
c{A_W p tr is intended to model the knowledge that c is currently in a state where the protocol

trace so far is tr and the next action on the trace is for A to send a message.

To complete the construction, we need to define which elements of t p are composable and how

to compose them.

let composable #p : symrel (t p) = 𝜆t0 t1→
match t0, t1 with | _, Nil | Nil, _ →⊤(∗ unit composes with everything ∗) | V, _ | V, _ →⊥(∗ V with nothing ∗)
| A_Fin q s, B_Fin q' s' | B_Fin q s, A_Fin q' s'→ q == q' ∧ s == s' (∗ both sides finished, traces agree ∗)
| A_Fin q s, B_R q' s' | B_R q' s', A_Fin q s→ ahead A q q' s s' (∗ A is finished, B still has to read ∗)
| A_W q s, B_R q' s' | B_R q' s', A_W q s → ahead A q q' s s' (∗ A is writing, B is reading: A is ahead ∗)

, Vol. 1, No. 1, Article . Publication date: March 2021.

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 25

| A_R q s, B_R q' s' | B_R q' s', A_R q s → ahead A q q' s s' ∨ ahead B q' q s' s (∗ Both reading, either ahead ∗)
| A_R q' s', B_Fin q s | B_Fin q s, A_R q' s'→ ahead B q q' s s' (∗ B is finished, A still has to read ∗)
| B_W q s, A_R q' s' | A_R q' s', B_W q s → ahead B q q' s s' (∗ B is writing, A is reading: B is ahead ∗)

let compose (s0:t p) (s1:t p{composable s0 s1}) = match s0, s1 with
| a, Nil | Nil, a→ a

(∗ Just build V with the longer of the two traces ∗)
| A_Fin q s, _ | _, A_Fin q s | B_Fin q s, _ | _, B_Fin q s→V (mk_trace q s)
| A_W q s, B_R q' s' | B_R q' s', A_W q s | B_W q s, A_R q' s' | A_R q' s', B_W q s→V (mk_trace q s)
| A_R q s, B_R q' s' | B_R q' s', A_R q s→ if len s ≥ len s' then V (mk_trace q s) else V (mk_trace q' s')

Taking these definitions as the basis of q:pcm (t p), the essence of our 2-party session typed channels

is done. With the knowledge that, say, c{A_W p tr, and endpoint can only advance the channel to

an extension of the trace tr. Conversely, with the knowledge that, say, c{A_R p tr, an endpoint can

rely on the fact that either the current value of the channel is already or will be extended to be

ahead of the protocol state p, and the value expected by the receiver can be read from the trace.

This provides a semantic basis for our session-typed interface, and although it is executable, it is

not a particularly efficient implementation of a channel in shared memory. In the future, we plan

to integrate our channel API with the concurrent queue from §5.5. Since with the session-typed

API, write privilege on the channel is only ever held by one endpoint at time, we speculate that we

may actually be able to eliminate the use of locks in our two-lock queue.

6 RELATEDWORK
We have discussed several strands of related work throughout the paper, especially in §2, and

provide a few more perspectives here. Steel’s impredicative CSL of PCMs and dynamically allocated

invariants is a descendent of Iris (Jung et al. 2018). Whereas Iris provides a logical framework in

which users can embed and reason about programming languages, Steel’s approach is the converse:

we embed a program logic into a full-fledged dependently typed programming language, providing

an effectful foundation for CSL for partial correctness, as opposed to Iris’ step-indexed models. Our

goals are also perhaps complementary: Iris’ expressive power and interactive proof environment

make it very suitable for formalizing programming language semantics and tricky concurrent

algorithms, while for Steel we aim to provide pragmatic automation for simpler code through

dependently typed proof-oriented libraries. As a case in point, consider Vindum and Birkedal’s

(2021) impressive recent proof of contextual refinement of the Michael-Scott lock-free queue based

on Iris: contextual refinement proofs are beyond what is possible in Steel, though we offer instead

a simple proof of Michael-Scott’s two-lock queue with a high level of automation.

Steel’s shallow embedding of a CSL in a dependently typed language makes it also closely

related to HTT (Nanevski et al. 2008) and its more recent variants like FCSL (Nanevski et al. 2019).

The main differences lie, first, in the underlying logics—unlike FCSL, Steel is impredicative and

supports dynamically allocated invariants—and in the proof automation provided—FCSL proofs are

interactive tactics in Coq, whereas Steel integrates a variety of automation techniques as part of a

DSL package. While others provide frameworks to verify sequential (Charguéraud 2011; Chlipala

2011) and concurrent imperative programs (Appel 2011; Sammler et al. 2021) in Coq, their work

applies to languages embedded in Coq rather than Coq itself. As far as we are aware, Steel and

HTT/FCSL, are the only systems that offer to develop dependently typed programs in CSL.

Many tools and solvers aim to automate various fragments of separation logic, including tools

like Smallfoot (Berdine et al. 2005) or Cyclist (Brotherston et al. 2012) and frameworks for heap

shape analysis (Yang et al. 2008). Much of the work on automation has focused on full automation,
including handling recursive predicates and quantifiers while aiming to scale lightweight analyses

, Vol. 1, No. 1, Article . Publication date: March 2021.

26 A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux, T. Ramananandro

and bug finding tools to large codebases. In contrast, we focus on simple automation for user-

assisted proofs of functional correctness. This goal has allowed us to focus on exploiting tactics and

SMT to solve AC-unification constraints modulo theories, a design point that has been understudied

in the literature seeking to automate separation logic.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

No. nnnnnnn and Grant No. mmmmmmm. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the author and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES
A. W. Appel. Verified software toolchain. In Proceedings of the 20th European Conference on Programming Languages and

Systems: Part of the Joint European Conferences on Theory and Practice of Software. 2011.
J. Berdine, C. Calcagno, and P. W. O’hearn. Smallfoot: Modular automatic assertion checking with separation logic. In In

International Symposium on Formal Methods for Components and Objects. 2005.
E. Brady. Type-driven Development With Idris. Manning, 2016.

J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In R. Jhala and A. Igarashi, editors,

Programming Languages and Systems. 2012.
A. Charguéraud. Characteristic formulae for the verification of imperative programs. ICFP . 2011.
A. Chlipala. Mostly-automated verification of low-level programs in computational separation logic. 2011.

L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. TACAS. 2008.
G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura. A metaprogramming framework for formal verification. Proc.

ACM Program. Lang., 1(ICFP), 2017.
F. Fages. Associative-commutative unification. In R. E. Shostak, editor, 7th International Conference on Automated Deduction.

1984.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for the Coq system. Research Report RR-6455,

Inria Saclay Ile de France, 2016.

J. K. Hinrichsen, J. Bengtson, and R. Krebbers. Actris: Session-type based reasoning in separation logic. Proc. ACM Program.
Lang., 4(POPL), 2019.

A. Hobor and J. Villard. The ramifications of sharing in data structures. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. 2013.

R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding entailments in inductive separation logic with tree automata. In F. Cassez

and J.-F. Raskin, editors, Automated Technology for Verification and Analysis. 2014.
S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. POPL. 2001.
R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer. Iris from the ground up: A modular foundation for

higher-order concurrent separation logic. J. Funct. Program., 28:e20, 2018.
D. Kapur and P. Narendran. Matching, unification and complexity. SIGSAM Bull., 21(4):6–9, 1987.
K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. LPAR. 2010.
K. R. M. Leino and M. Moskal. Usable auto-active verification, 2010.

K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with Chalice. In A. Aldini, G. Barthe, and

R. Gorrieri, editors, Foundations of Security Analysis and Design V. 2009.
G. Martínez, D. Ahman, V. Dumitrescu, N. Giannarakis, C. Hawblitzel, C. Hriţcu, M. Narasimhamurthy, Z. Paraskevopoulou,

C. Pit-Claudel, J. Protzenko, T. Ramananandro, A. Rastogi, and N. Swamy. Meta-F*: Proof automation with SMT, tactics,

and metaprograms. ESOP . 2019.
M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In

Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing. 1996.
P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for permission-based reasoning. In

B. Jobstmann and K. R. M. Leino, editors, Verification, Model Checking, and Abstract Interpretation (VMCAI). 2016.
A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymorphism and separation. JFP , 18(5-6):865–911, 2008.
A. Nanevski, A. Banerjee, G. A. Delbianco, and I. Fábregas. Specifying concurrent programs in separation logic: morphisms

and simulations. PACMPL, 3(OOPSLA):161:1–161:30, 2019.
G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst., 1(2):

245–257, 1979.

, Vol. 1, No. 1, Article . Publication date: March 2021.

http://www.worldcat.org/isbn/9781617293023
http://dx.doi.org/10.1145/2034773.2034828
http://dx.doi.org/10.1145/1993498.1993526
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/3110278
https://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1145/3371074
http://dx.doi.org/10.1145/2429069.2429131
http://dl.acm.org/citation.cfm?id=360204
http://dx.doi.org/10.1017/S0956796818000151
http://dx.doi.org/10.1017/S0956796818000151
http://dx.doi.org/10.1145/36330.36332
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dx.doi.org/10.1007/978-3-030-17184-1_2
http://dx.doi.org/10.1007/978-3-030-17184-1_2
http://dx.doi.org/10.1145/248052.248106
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
http://dx.doi.org/10.1145/3360587
http://dx.doi.org/10.1145/3360587
http://dx.doi.org/10.1145/357073.357079

Steel: Proof-oriented Programming in a Dependently Typed Concurrent Separation Logic 27

P. W. O’Hearn. Resources, concurrency and local reasoning. In P. Gardner and N. Yoshida, editors, CONCUR 2004 -
Concurrency Theory. 2004.

S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach. Commun. ACM, 1976.

M. J. Parkinson and A. J. Summers. The relationship between separation logic and implicit dynamic frames. Logical Methods
in Computer Science, 8(3:01):1–54, 2012.

A. Rastogi, G.Martínez, A. Fromherz, T. Ramananandro, and N. Swamy. Layered indexed effects: Foundations and applications

of effectful dependently typed programming, 2020. In submission.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science. 2002.

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg. RefinedC: A foundational refinement type

system for C based on separation logic programming. In to appear in Programming Languages Design and Implementation
(PLDI). 2021.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying higher-order programs with the Dijkstra monad.

PLDI , 2013.
N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss,

J.-K. Zinzindohoué, and S. Zanella-Béguelin. Dependent types and multi-monadic effects in F*. POPL. 2016.
N. Swamy, A. Rastogi, A. Fromherz, D. Merigoux, D. Ahman, and G. Martínez. Steelcore: An extensible concurrent separation

logic for effectful dependently typed programs. Proc. ACM Program. Lang., 4(ICFP), 2020.
S. F. Vindum and L. Birkedal. Contextual refinement of the michael-scott queue (proof pearl). In Proceedings of the 10th

ACM SIGPLAN International Conference on Certified Programs and Proofs. 2021.
H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, and D. Distefano. Scalable shape analysis for systems code. In In CAV,

2008.

, Vol. 1, No. 1, Article . Publication date: March 2021.

https://www.fstar-lang.org/papers/layeredeffects/
https://www.fstar-lang.org/papers/layeredeffects/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.fstar-lang.org/papers/mumon/
http://dx.doi.org/10.1145/3409003
http://dx.doi.org/10.1145/3409003
http://dx.doi.org/10.1145/3437992.3439930

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background: F, SteelCore, and VC Generation for Separation Logic
	2.1 A Primer on F
	2.2 Verification Condition Generation for Separation Logic

	3 A Type-and-Effect System for Separation Logic Quintuples
	3.1 Syntax
	3.2 VC Generation for Steel
	3.3 Why it works: Proof-oriented Programming
	3.4 Correspondence to our implementation
	3.5 An SMT-friendly Encoding of Selectors

	4 Automatically Discharging Steel Verification Conditions
	4.1 A Unitriangular AC-Matching Problem
	4.2 Solving AC-Matching Instances
	4.3 Cooperating with the SMT solver

	5 Steel in Action
	5.1 Basic Concepts
	5.2 Balanced trees: Selectors at work
	5.3 A Library of Disposable Invariants
	5.4 Parallel Increment à la Owicki-Gries with Disposable Invariants
	5.5 Michael-Scott 2-Lock Queues
	5.6 PCMs for 2-party Session Types

	6 Related Work
	Acknowledgments
	References

