
STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Last updated 12 September 2007

ST200 VLIW
Series

ST220 Core and
Instruction Set

Architecture
Manual

ii

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”)
reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services
described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST
assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any
part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such
third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any
manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS
UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE
SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN
PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT
SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall
immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any
manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

The ST220 core is based on technology jointly developed by Hewlett-Packard Laboratories and STMicroelectronics

© 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy -
Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Contents

Preface xi

1 Introduction 13

1.1 VLIW overview 14
1.2 ST220 overview 14
1.3 Document overview 16

2 Cluster 19

2.1 Integer units 20
2.2 Multiply units 21
2.3 Load/store unit (LSU) 21

2.3.1 Memory access 21
2.3.2 Addressing modes 22
2.3.3 Alignment 22
2.3.4 Control registers 22
2.3.5 Cache purging 22
2.3.6 Dismissible loads 22

iv

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

3 Architectural state 25

3.1 Program counter (PC) 25
3.2 Register file 25

3.2.1 Link register 25

3.3 Program status word (PSW) 26
3.3.1 Bit fields 26
3.3.2 USER_MODE 27
3.3.3 PSW Access 27
3.3.4 Supported method for changing the PSW 27

3.4 Branch register file 28
3.5 Control registers 28

4 Execution pipeline and latencies 29

4.1 Execution pipeline 29
4.2 Operation latencies 30
4.3 Additional notes 30

4.3.1 Restrictions on link register 30

5 Traps: exceptions and interrupts 31

5.1 Trap mechanism 31
5.2 Exception handling 32
5.3 Saved execution state 32
5.4 Interrupts 34
5.5 Debug interrupt handling 34
5.6 Exception types and priorities 34

5.6.1 Illegal instruction definition 35

5.7 Speculative load considerations 36
5.7.1 Misaligned implementation 38
5.7.2 Speculative load exceptions 38

v

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

6 Memory access protection units 39

6.1 Description 39
6.2 Operation 40

6.2.1 Example use of overlapping regions 41
6.2.2 Undefined address space 42

6.3 Protection unit registers 42
6.3.1 Region base registers 42
6.3.2 Region attribute registers 43
6.3.3 Cacheable field 46
6.3.4 Speculative load returns zero field 46
6.3.5 Operation when protection unit is disabled 46

7 Memory subsystem 47

7.1 Memory subsystem 48
7.2 I-side memory subsystem 48

7.2.1 Instruction buffer 49
7.2.2 Instruction cache 49
7.2.3 I-side bus error 50

7.3 D-side memory subsystem 50
7.3.1 Load store unit 50
7.3.2 Cached loads and stores 50
7.3.3 Uncached load and stores 51
7.3.4 Prefetching data 51
7.3.5 Purging data caches 52
7.3.6 D-side synchronization 52
7.3.7 D-side bus errors 53
7.3.8 Operations 53
7.3.9 Write buffer 53

7.4 Core memory controller (CMC) 54

vi

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

7.5 Additional notes 54
7.5.1 Forcing writes to external memory 54
7.5.2 Memory ordering 54
7.5.3 Coherency between I-side and D-side 55
7.5.4 Changing memory to uncacheable 55
7.5.5 Reset state 55
7.5.6 Cached data in uncached region 56
7.5.7 Prefetch performance 56

8 Streaming data interface (SDI) 57

8.1 Overview 57
8.2 Functional description 58

8.2.1 Data width 58

8.3 Communication channel 59
8.3.1 Timeouts 59

8.4 Registers 59
8.4.1 Input channel memory mapping 59
8.4.2 Output channel memory mapping 61
8.4.3 Protection 61

8.5 Exceptions, interrupts, reset and restart 62
8.5.1 Interrupts 62
8.5.2 SDI exceptions 63
8.5.3 Restart (or soft reset) 63

9 Control registers 65

9.1 Access operations 65
9.2 Exceptions 65
9.3 Control register addresses 66

vii

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

10 Timers 71

10.1 Operation 72
10.1.1 TIMEDIVIDE 72
10.1.2 TIMECNTRi 72
10.1.3 TIMECNSTi 73
10.1.4 TIMECNTLi 73
10.1.5 TIMESTART 74

10.2 Timer interrupts 74
10.3 Programming the timer 74

11 Peripheral addresses 75

11.1 Peripheral addresses 75
11.1.1 Interrupt controller & timer registers 76
11.1.2 DSU registers 77
11.1.3 DSU ROM 78

12 Interrupt controller 79

12.1 Architecture 79
12.2 Operation 80

12.2.1 Test register 80

12.3 Interrupt registers 80
12.3.1 Interrupt pending register 80
12.3.2 Interrupt mask register (INTMASK) 81
12.3.3 Interrupt test register (INTTEST) 82

12.4 Programming 83
12.4.1 Enabling/disabling interrupts 83
12.4.2 Test register 83
12.4.3 Interrupt priority 83
12.4.4 Timer interrupts 83

viii

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

13 Debugging support 85

13.1 Overview 85
13.2 Core 86

13.2.1 Debug interrupts 86
13.2.2 Hardware breakpoint support 87

13.3 Debug support unit 88
13.3.1 Architecture 88
13.3.2 Shared register bank 89
13.3.3 DSU control registers 90

13.4 Debug ROM 91
13.4.1 Debug initialization loop 91
13.4.2 Default debug handler 92

13.5 Host debug interface 95
13.5.1 Message format 95
13.5.2 Operation 97

14 Performance monitoring 99

14.1 Events 99
14.2 Access to registers 100
14.3 Control register (PM_CR) 101
14.4 Event counters (PM_CNTi) 102
14.5 Clock counter (PM_PCLK) 102
14.6 Recording events 102

ix

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

15 Execution model 105

15.1 Introduction 105
15.2 Bundle fetch, decode, and execute 106
15.3 Functions 108

15.3.1 Bundle decode 108
15.3.2 Operation execution 108
15.3.3 Exceptional cases 108

16 Specification notation 109

16.1 Overview 109
16.2 Variables and types 110

16.2.1 Integer 110
16.2.2 Boolean 111
16.2.3 Bit-fields 111
16.2.4 Arrays 111

16.3 Expressions 112
16.3.1 Integer arithmetic operators 112
16.3.2 Integer shift operators 113
16.3.3 Integer bitwise operators 114
16.3.4 Relational operators 115
16.3.5 Boolean operators 116
16.3.6 Single-value functions 116

16.4 Statements 118
16.4.1 Undefined behavior 118
16.4.2 Assignment 118
16.4.3 Conditional 120
16.4.4 Repetition 121
16.4.5 Exceptions 121
16.4.6 Procedures 122

16.5 Architectural state 122

x

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.6 Memory and control registers 124
16.6.1 Support functions 124
16.6.2 Memory model 125
16.6.3 Control register model 131
16.6.4 Cache model 133

17 Instruction set 135

17.1 Introduction 135
17.2 Bundle encoding 135

17.2.1 Extended immediates 136
17.2.2 Encoding restrictions 137

17.3 Operation specifications 137
17.4 Example operations 139

17.4.1 add Immediate 139

17.5 Macros 141
17.6 Operations 141

A Instruction encoding 313

A.1 Reserved bits 313
A.2 Fields 313
A.3 Formats 314
A.4 Opcodes 316

Index 325

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Preface

This document is part of the ST200 documentation suite detailed below. Comments
on this or other manuals in the ST200 documentation suite should be made by
contacting your local STMicroelectronics Limited sales office or distributor.

ST200 document identification and control
Each book in the ST200 documentation suite carries a unique ADCS identifier in
the form:

ADCS nnnnnnnx

Where, nnnnnnn is the document number and x is the revision.

Whenever making comments on a ST200 document the complete identification
ADCS nnnnnnnx should be quoted.

xii

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

ST200 documentation suite
The ST200 documentation suite comprises the following volumes:

ST220 Core and Instruction Set Architecture Manual (ADCS 7395369)

This manual describes the architecture and instruction set of the ST220
implementation.

ST200 User Manual (ADCS 8063762)

This manual describes the ST200 Micro Toolset and provides an introduction to
OS21. It covers the various cross tools and libraries that are provided in the toolset,
the target platform libraries. Information is also given on how to build the open
source packages that provide the compiler tools, base run-time libraries and debug
tools and how to set up an ST Micro Connect.

ST200 Compiler Manual (ADCS 7508723)

This manual describes the software provided as part of the ST200 tools. It supports
the development of ST200 applications for embedded systems. Applications can be
developed in either a stand-alone environment, or under the OS21 real-time
operating system.

ST200 Runtime Architecture Manual (ADCS 7521848)

This manual describes the common software conventions for the ST200 processor
runtime architecture.

OS21 User Manual (ADCS 7358306)

This manual describes the royalty free, light weight, OS21 multitasking operating
system.

OS21 for ST200 User Manual (ADCS 7410372)

This manual describes the use of OS21 on ST200 platforms. It describes how
specific ST200 facilities are exploited by the OS21 API. It also describes the OS21
board support packages for ST200 platforms.

ST200 ELF Specification (ADCS 7932400)

This document describes the use of the ELF file format for the ST200 processor.

STMicroelectronics Confidential
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

®

Introduction

The 32-bit ST220 is a member of the ST200 family of cores.

This family of embedded processors use a scalable technology that allows variation in
instruction issue width, the number and capabilities of functional units and register
files, and the instruction set.

The ST200 family includes the following features:

• Parallel execution units, including multiple integer ALUs and multipliers.

• Architectural support for data prefetch.

• Predicated execution through select operations.

• Efficient branch architecture with multiple condition registers.

• Encoding of immediate operands up to 32 bits.

• Support for register file and functional unit clustering.

• Support for user/supervisor modes and memory protection.

14 VLIW overview

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

1.1 VLIW overview
VLIW (very long instruction word) processors use a technique where instruction
level parallelism is explicitly exposed to the compiler which must schedule
operations to account for the operation latency.

RISC-like operations (syllables) are grouped into bundles (wide words). The
operations in a bundle are issued simultaneously. In the ST200 family operations
also complete simultaneously. While the delay between issue and completion is the
same for all operations, some results are available for bypassing to subsequent
operations prior to completion. This is discussed further in Chapter 4: Execution
pipeline and latencies on page 29.

A hardware implementation of a VLIW is significantly simpler than a corresponding
multiple issue superscaler CPU. This is due principally to the simplification of the
operation grouping and scheduling hardware, all this complexity is moved to the
instruction scheduling system (compiler and assembler) in the software toolchain.

1.2 ST220 overview
The ST220 is a single cluster member of the ST200 family (see Figure 1 on page 15).

Clustering is a technique in which functional units and registers are tightly coupled
in groups called, clusters. Multiple clusters can be instantiated in a processor with a
single program counter controlling execution. To date no ST200 varient contains
more than one cluster. No further discussion is made in this document of multiple
clusters.

ST220 overview 15

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Figure 1: ST220 processor diagram

Cluster

CMC

Exception Controller

ICache

DPUIPU

Prefetch
Buffer

Write
Buffer

Data
Cache

D-Side Memory
Subsystem

Control
Registers

Timers
Interrupt

Controller
Debug

Support Unit

4 x SDI

STBus

TaplinkInterrupt

STBus

SDI Ports

I-Side Memory
Subsystem

ST220 Core

Peripherals

16 Document overview

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

1.3 Document overview
This manual describes the architecture and instruction set of the ST220
implementation. This section gives an outline of the following document.

The processor is made up of a number of functional units described in Chapter 2:
Cluster which operate on data stored in the register files (Chapter 3: Architectural
state). These functional units are pipelined and subject to explicit observable
latencies (Chapter 4: Execution pipeline and latencies).

The handling of exceptions and interrupts are detailed in Chapter 5: Traps:
exceptions and interrupts.

The ST220 accesses memory through the memory subsystem (Chapter 7: Memory
subsystem) which has limited protection provided by a pair of simple protection
units for instruction and data accesses (Chapter 6: Memory access protection units).

The ST220 has 4 SDI ports (Chapter 8: Streaming data interface (SDI)) which allow
it to communicate rapidly with other devices and avoid cache pollution when
processing large amounts of data.

Control of the devices is performed using the memory mapped control registers
defined within the relevant chapters. The address of the control registers and PSW
are detailed in Chapter 9: Control registers.

The peripheral register addresses on the ST220 are detailed in Chapter 11:
Peripheral addresses on page 75.

A number of peripheral devices are also provided, including timers (Chapter 10:
Timers), interrupt control (Chapter 12: Interrupt controller) and debug support
(Chapter 13: Debugging support).

The execution model is described in Chapter 15: Execution model on page 105. The
execution of bundles is described in Section 15.2: Bundle fetch, decode, and execute
on page 106, including the behavior of the machine when exceptions or interrupts
are encountered.

Chapter 17 on page 135 describes the details of each operation, including the
semantics. The instruction set includes details of the instruction set encoding,
syntax and semantics. The encoding of bundles is defined in Section 17.2: Bundle
encoding on page 135.

The behavior of operations is specified using the notational language defined in
Section 16.1 through Section 16.4. The descriptions clearly identify where
architectural state is updated and the latency of the operands.

Document overview 17

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

A simple model of memory and control registers defined in Section 16.6.2 and
Section 16.6.3 is used when specifying the load and store operations.

18 Document overview

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics Confidential
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

®

Cluster

The ST220 cluster consists of the functional units and the two register files; the
branch registers and general purpose registers (for register files, refer to Chapter 3:
Architectural state on page 25). The cluster is the core of the processor but does not
include the instruction fetch mechanism, caches or control registers.

This chapter describes the functional units of the ST220 cluster including 4 integer
units, 2 multiply units, a load store unit and a branch unit (refer to Figure 2).

20 Integer units

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

2.1 Integer units
The ST220 has four identical integer units. Each integer unit is capable of executing
one operation per cycle. The results of the integer units can be used as operands of
the next bundle. This is equivalent to a pipeline depth of one cycle.

Each operation can take up to three operands in the form of two 32-bit values and a
single conditional bit. The IU then executes the appropriate operation and produces
up to two results in the form of a 32-bit value and a 1-bit conditional value. The
integer operations supported are detailed in the Chapter 17: Instruction set on
page 135.

Figure 2: ST220 cluster

Register
File

(64 registers
8 read
4 write)

Load
Store
Unit

(LSU)

IU IU IUIU

Mul Mul

Instruction
Buffer

128 bit
wide
Word

PC and Branch
Unit

Branch
Register File

I-Side
Memory

Subsystem

D-Side
Memory

Subsystem

Control
Registers

I-Side
Memory

Subsystem

Exception
Control

Debug
Support Unit

Multiply units 21

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

2.2 Multiply units
The ST220 has two identical multiply units. Each multiply unit is pipelined with a
depth of three cycles, executing an operation every cycle.

Each multiply units takes two 32-bit operands and produces a single 32-bit result.
The multiply operations supported are detailed in the Chapter 17: Instruction set on
page 135.

2.3 Load/store unit (LSU)
The ST220 has a single load store unit. The load store unit is pipelined with a depth
of three cycles, executing an operation every cycle.

The load store can take up to three 32-bit operands and may produce a single 32-bit
result depending on the operation. The load store operations supported are detailed
in the Chapter 17: Instruction set on page 135.

Memory access protection is implemented by the DPU (data protection unit), this is
part of the memory sub-system. The DPU also controls the cache behavior of data
accesses, Chapter 6: Memory access protection units on page 39.

Uncached accesses or accesses which miss the data cache cause the load store unit
to stall the pipeline to ensure correct operation.

2.3.1 Memory access

The ST220 addresses the external memory system via a single address space.
Peripheral devices and control registers are also mapped into the address space.

All cacheable memory transactions are made via the data cache. The data cache
then decides if it needs to go to external memory to satisfy the request.

Note: Cacheable memory transactions that miss are written to the write buffer not the data
cache.

Uncached accesses are performed directly on the memory system (refer to
Chapter 7: Section 7.3.3: Uncached load and stores on page 51).

22 Load/store unit (LSU)

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

2.3.2 Addressing modes

The ST220 supports one addressing mode – the effective address is an immediate
(constant) plus a register.

2.3.3 Alignment

1 All load and store instructions work on data stored on the "natural alignment"
of the data type; that is, words on word boundaries, half-word on half word
boundaries.

2 Load and store operations with misaligned addresses raise an exception which
makes possible the implementation of misaligned loads by trap handlers.

3 For a byte or half-word load, the data from memory is loaded into the least
significant part of a register and is either sign-extended or zero extended
according to the instruction defintion.

4 For a byte or half-word store, the data stored from the least significant part of a
register.

2.3.4 Control registers

The LSU maps a part of the address space that is devoted to control registers (see
the Control Registers chapter for details). The LSU control register block intercepts
loads and stores to this area of memory so that it can process the operation. No
access to the data cache is made for control register operations. Transactions are
made across the 32-bit control register bus to those control registers that live
outside the LSU.

2.3.5 Cache purging

Cache purging (flush and invalidate) operations are provided on the ST220.

They allow for purging lines and sets from the data cache, and invalidating the
entire instruction cache.

2.3.6 Dismissible loads

Dismissible loads are used to support software load speculation. This allows the
compiler to schedule a load in advance of a condition that predicates its use.

Load/store unit (LSU) 23

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Dismissible loads are required to return the same value as a normal load if such an
operation can be executed without causing an exception. Otherwise dismissible
loads return zero.

In the event that misaligned accesses are supported through a software trap
handler, the ST220 may be configured to trap non-aligned dismissible loads, see the
Chapter 5: Traps: exceptions and interrupts on page 31. The data protection unit can
be configured to return zero for dismissible loads in cases where they can be
executed without exception; this is to support peripherals which have destructive
read behavior.

24 Load/store unit (LSU)

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Architectural
state

This chapter describes the architectural state of the ST220 core.

3.1 Program counter (PC)
The PC contains a 32-bit byte address pointing to the beginning of the current
bundle in memory.

The two LSBs of the PC are always zero.

3.2 Register file
The general purpose register file contains 64 words of 32 bits, R0 ... R63.

Reading register zero, R0, always returns the value zero. Writing values to R0, has
no effect on the processor state.

3.2.1 Link register

Register 63, R63, is the architectural link register used by the call and return
mechanism. R63 is updated by explicit register writes and the call operation. Some
restrictions apply to accessing the link register, see Section 4.3.1: Restrictions on
link register on page 30.

26 Program status word (PSW)

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

3.3 Program status word (PSW)
The program status word (PSW) contains control information that affects the
operation of the ST220 processor.

3.3.1 Bit fields

The PSW contains the following bit fields:

Access to bits in the control register is restricted (read only or read write) dependant
on the value of USER_MODE at the time of access.

Name Bit(s)
Access

(U/S)
Reset Comment

USER_MODE 0 RO/RW 0x0 When 1 the core is in user mode,
otherwise supervisor mode.

INT_ENABLE 1 RO/RW 0x0 When 1 external interrupts are enabled.

Reserved 2 RO/RO 0x0 Reserved

Reserved 3 RO/RO 0x0 Reserved

SPECLOAD_MALIGNTRAP_EN 4 RO/RW 0x0 When 1 enables exceptions on
speculative load misalignment errors.

SPECLOAD_DPUTRAP_EN 5 RO/RW 0x0 When 1 exceptions on speculative load
DPU traps are enabled.

DPU_ENABLE 6 RO/RW 0x0 When 1 the DPU is enabled.

IPU_ENABLE 7 RO/RW 0x0 When 1 the IPU is enabled.

DBREAK_ENABLE 8 RO/RW 0x0 When 1 data breakpoints are enabled.

IBREAK_ENABLE 9 RO/RW 0x0 When 1 instruction breakpoints are
enabled.

Reserved 10 RO/RO 0x0 Reserved

Reserved 11 RO/RO 0x0 Reserved

DEBUG_MODE 12 RO/RW 0x0 When 1 the core is in debug mode.

Reserved [31:13] RO/RO 0x0 Reserved

Table 1: PSW bit fields

Program status word (PSW) 27

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

3.3.2 USER_MODE

The USER_MODE bit indicates whether the machine is in user mode or supervisor
mode. When in user mode, the processor has restricted access:

• The memory access protection units (see Chapter 6: Memory access protection
units on page 39) define the level of access to memory in both user and
supervisor modes.

• In user mode there is limited access to control registers (see Chapter 9: Control
registers on page 65).

• Certain instructions can not be executed in user mode (see Chapter 17:
Instruction set on page 135).

3.3.3 PSW Access

The PSW can be accessed as a control register, Section 3.5: Control registers on
page 28.

3.3.4 Supported method for changing the PSW

To update the PSW correctly the following method, using the rfi operation, is
recommended. The required status word should be stored into the SAVED_PSW and
the address of the code to be executed directly after the change should be stored in
the SAVED_PC. Then executing an rfi atomically copies the SAVED_PSW into the PSW
and the SAVED_PC into the PC. At least four bundles are required to ensure that the
changes to SAVED_PC and SAVED_PSW take effect before the rfi is executed.

Example: Procedure to write the PSW, (in ST220 assembler code),

_sys_set_psw:
 stw SAVED_PC[$r0.0] = $r0.63;; // Return address
 stw SAVED_PSW[$r0.0] = $r0.4;; // New value
 nop ;;
 nop ;;
 nop ;;
 nop ;;
 rfi ;;

Note: Interrupts must be disabled during this sequence.

28 Branch register file

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

3.4 Branch register file
The branch register file contains 8 single bit branch registers, B0 ... B7.

3.5 Control registers
Additional architectural state is held in a number of memory mapped control
registers, Chapter 9: Control registers on page 65. These registers include support
for interrupts and exceptions, and memory protection.

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Execution
pipeline and
latencies

This chapter describes the architecturally visible pipeline and operation latencies.

4.1 Execution pipeline
The ST220 uses a pipelined execution scheme. This pipeline is architecturally
visible in a number of areas:

• Operation latencies

• Bypassing

• Usage restrictions

The execution pipeline is three cycles long. It comprises of three stage E1, E2 and
E3. All operations begin in E1. Operands are read or bypassed to an operation at the
start of E1. All results are written at the end of E3.

This execution pipeline allows arithmetic and load/store operations to execute for
up to three cycles. The results of operations which complete earlier than E3 are
made available for bypassing as operands to subsequent operations, though strictly
operations do not complete until the end of the E3 stage. This is when the
architectural state is updated.

The pipeline is designed to efficiently implement the serial execution of the code (see
Chapter 15: Execution model on page 105).

30 Operation latencies

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

4.2 Operation latencies
ST220 operations begin in E1 cycle and complete in either E1, E2 or E3. The time
taken for an operation to produce a result is called the operation latency. For simple
operations like add and subtract the latency is a single cycle. For operations like
multiply and load the latency is three cycles.

Note: Operational latencies may vary between different members of the ST200 processor
family.

4.3 Additional notes

4.3.1 Restrictions on link register

As a performance optimization a speculative link register (SLR) has been added
which is a copy of possible future updates to R63. In the implementation this
register is updated earlier in the pipeline than R63. SLR is used as the source for
register indirect branch operations.

It is possible to observe that SLR is not a true copy of R63. This can only occurs in the
following cases;

• Register indirect call and goto operations. These require R63 to be stable.
Solution; R63 must not be modified in the three bundles preceding one of these
operations.

• The taking of an interrupt or exception just prior to an update of R63 but after
SLR has been changed speculatively. Solution; All interrupt and exception
handlers must explicitly write R63 prior to the execution of an rfi, icall or igoto.
This requirement can easily be met with a mov operation from R63 to R63 in one
of the first bundles of the trap handler.

A number of operations cannot target R63 for efficiency reasons. These include
multiply operations, byte and half word load operations (see Chapter 17: Instruction
set on page 135).

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Traps:
exceptions
and interrupts

In the ST220 architecture, exceptions and interrupts are jointly termed traps. This
chapter describes the trap mechanism.

5.1 Trap mechanism
The ST220 defines two types of traps:

• External asynchronous traps (interrupts).

• Internal synchronous traps (exceptions resulting from operation execution).

A trap point is the point in the program execution where a trap occurs. All bundles
executed before the trap point will have completed updating architectural state; and
no architectural state will have been undated by subsequent bundles. For an
exception, the trap point is the (start of the) bundle which caused the exception. For
an interrupt, the trap point is (the start of) the bundle whose execution has been
interrupted. Typically this is a bundle that had been executed shortly after the
interrupt was raised or enabled.

The flow diagram, Figure 14 in Section 15.2, defines when a trap is taken. The aim
of this chapter is to define the steps that are carried out when a trap is to be taken.

In effect, taking a trap can be viewed as executing an operation which branches to
the required handler, with a number of side effects. The side effects are defined by
the statements below. An external interrupt is treated as an EXTERN_INT exception,
with only debug interrupts being handled differently.

32 Exception handling

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

At the trap point, the ST220 transfers execution to the trap handler, starting at the
address held in the HANDLER_PC control register, and saves the execution state as
detailed in Table 5.3: Saved execution state . All operations issued before the
trapping bundle are allowed to complete. All operations issued after and including
the trapping bundle are discarded. The architectural state, with the exception of
saved execution state, is exactly that at the trap point. Hence ST220 interrupts and
exceptions can be considered precise.

Traps are handled strictly (in order), and indivisibly with respect to the bundle
stream.

5.2 Exception handling
Due to the fact that there may be more than one operation executing at once, it is
possible to have more than one exception thrown in a bundle. However, only the
highest priority exception is passed to the handler.

5.3 Saved execution state
Directly following a trap the saved execution state defines the reason for the trap
and the precise trap point in the execution flow of the processor. Control registers
are used to store these values for use by the handler routine.

Taking an exception can be summarized as:

NEXT_PC ← HANDLER_PC; // Branch to the exception handler

EXCEPT_CAUSE ← HighestPriority(); // Store information
EXCEPT_ADDR ← DataAddress(EXCEPT_CAUSE);// for the handler

SAVED_PSW ← PSW; // Save the PSW and PC
SAVED_PC ← BUNDLE_PC;

PSW[USER_MODE] ← 0; // Enter supervisor mode
PSW[INT_ENABLE] ← 0; // Disable interrupts
PSW[IBREAK_ENABLE] ← 0; // Disable instruction breakpoints
PSW[DBREAK_ENABLE] ← 0; // Disable data breakpoints

Saved execution state 33

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Where the function HighestPriority returns the highest priority exception from
those that have been thrown (please refer to Section 5.6). The DataAddress
function defines the value that is stored into the EXCEPT_ADDR control register. Its
return value will either be 0 or the effective address of data which has triggered the
exception.

Therefore,

Where value is the optional argument that will have been passed to the THROW
(see Section 16.4.5: Exceptions on page 121) when the exception was generated.

The rfi (return from interrupt) operation is used to recommence execution at the
trap point. An rfi operation will cause the following state updates:

variable ← DataAddress(exception);
is equivalent to:
IF ((exception = DBREAK) OR
 (exception = MISALIGNED_TRAP) OR
 (exception = CREG_NO_MAPPING) OR
 (exception = CREG_ACCESS_VIOLATION) OR
 (exception = DPU_NO_TRANSLATION) OR
 (exception = DPU_ACCESS_VIOLATION)) THEN
 variable ← value;
ELSE
 variable ← 0;

PC ← SAVED_PC;

PSW ← SAVED_PSW;

SAVED_PC ← SAVED_SAVED_PC;

SAVED_PSW ← SAVED_SAVED_PSW;

// Address execution control is
// transferred to by rfi. Can be
// altered during the exception
// handler routine.

// Restore saved_psw. Can be
// altered during the exception
// handler routine.

// Restore previous saved_pc

// Restore previous saved_psw

34 Interrupts

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

5.4 Interrupts
All interrupts are effectively treated by the ST220 as an exception of type
EXTERN_INT. Individual interrupt lines are indicated by registers in the interrupt
controller, Chapter 12: Interrupt controller on page 79.

5.5 Debug interrupt handling
Please refer to Chapter 13: Debugging support on page 85.

5.6 Exception types and priorities
The table below shows the possible exceptions and the bit number in the
EXCEPT_CAUSE control register that each corresponds to. Since only one exception is
raised at a time, simultaneous exceptions are prioritized. The table is listed in
exception priority order starting with the highest priority.

Name Bit(s)
Access

(U/S)
Reset Comment

STBUS_IC_ERROR 0 RO/RW 0x0 The Instruction Cache caused a bus
error.

STBUS_DC_ERROR 1 RO/RW 0x0 The Data Cache caused a bus error.

EXTERN_INT 2 RO/RW 0x0 There was an external interrupt.

IBREAK 3 RO/RW 0x0 The IPU has triggered a breakpoint on
an instruction address.

IPU_NO_TRANSLATION 4 RO/RW 0x0 There was no mapping in the IPU for the
given address.

IPU_ACCESS_VIOLATION 5 RO/RW 0x0 Permission to access an address
controlled by the IPU was not met.

SBREAK 6 RO/RW 0x0 A software breakpoint was found.

ILL_INST 7 RO/RW 0x0 The bundle could not be decoded into
legal sequence of operations or a
privileged operation is being issued in
user mode.

Table 2: EXCEPT_CAUSE bit fields

Exception types and priorities 35

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

5.6.1 Illegal instruction definition

An illegal instruction exception is caused when an illegal bundle is executed. A legal
bundle and all syllables contained in it must conform to the restrictions as detailed
in Chapter 17: Instruction set on page 135.

A legal bundle and all syllables contained in it must conform to the following:

• All syllables must be valid operations

• A bundle must have a stop bit that is, four zero stop bits are illegal.

• Unused opcode fields must be set to zero, including bit 30.

• Any branch or call operation must appear as the first syllable of a bundle.

• Multiply operations must appear at odd word addresses.

• Long immediate extensions must appear at even word addresses.

• Immediate extensions must associate with an operation that is in the same
bundle and has an immediate format that can be extended.

DBREAK 8 RO/RW 0x0 The DPU has triggered a breakpoint on
a data address.

MISALIGNED_TRAP 9 RO/RW 0x0 The address is misaligned and
misaligned accesses are not supported.

CREG_NO_MAPPING 10 RO/RW 0x0 The load or store address was in control
register space, but no control register
exists at that exact address.

CREG_ACCESS_VIOLATION 11 RO/RW 0x0 A store to a control register was
attempted whilst in user mode.

DPU_NO_TRANSLATION 12 RO/RW 0x0 There was no mapping in the DPU for
the given address.

DPU_ACCESS_VIOLATION 13 RO/RW 0x0 Permission to access an address
controlled by the DPU was not met.

SDI_TIMEOUT 14 RO/RW 0x0 One of the SDI interfaces timed out
while being accessed.

Name Bit(s)
Access

(U/S)
Reset Comment

Table 2: EXCEPT_CAUSE bit fields

36 Speculative load considerations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

• A privileged operation can only be executed in supervisor mode.

• Only one memory operation can be performed in each bundle.

• A sync operation must be alone in a bundle.

• An sbrk operation must have the stop bit set.

• Destination registers in a bundle have to be unique, with the exception of R0.

• ldb, ldh and mul operations must not have R63 as a destination register.

5.7 Speculative load considerations
Speculative (or dismissible) loads are defined such that they execute as normal
loads except in the following cases:

1 The address is in a peripheral region where a speculative load may be
destructive. This is indicated by the DPU[SPEC_ZERO]. In this case a zero is
always returned and no access is made to the peripheral region.

2 A normal load would cause an exception. Generally, in this case, the load is
considered to have been incorrectly speculated and the data will not utilized in
the correct execution of the program. Zero is returned by default, the following
two sub-sections detail the exceptions to this behavior.

3 If a dismissible load causes a bus error then a bus error exception is always
raised. The DPU should always be set up to prevent dismissible loads from
causing bus errors.

The overall speculative load behavior is summarized in Table 3: Summary of a
dismissible read of address “a” from memory .

Speculative load considerations 37

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

D
P

U
[S

P
E

C
_Z

E
R

O
]

P
S

W
[S

P
E

C
LO

A
D

_

M
IS

A
LI

G
N

_E
N

]

P
S

W
[S

P
E

C
LO

A
D

_

D
P

U
T

R
A

P
_E

N
]

M
is

al
ig

n
ed

(a
)

D
P

U
N

o
Tr

an
sl

at
io

n
(a

)

R
ea

d
A

cc
es

sV
io

la
ti

o
n

(a
)

Result

0 0 0 0 0 0 Data = ReadMemory(a)

0 0 1 Data = 0

0 1 x Data = 0

1 x x Data = 0

0 0 1 0 0 0 Data = ReadMemory(a)

0 0 1 DPU_ACCESS_VIOLATION

0 1 x DPU_NO_TRANSLATION

1 x x Data = 0

0 1 0 0 0 0 Data = ReadMemory(a)

0 0 1 Data = 0

0 1 x Data = 0

1 x x MISALIGNED_TRAP

0 1 1 0 0 0 Data = ReadMemory(a)

0 0 1 DPU_ACCESS_VIOLATION

0 1 x DPU_NO_TRANSLATION

1 x x MISALIGNED_TRAP

1 x x x x x Data = 0

Table 3: Summary of a dismissible read of address “a” from memory

38 Speculative load considerations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

5.7.1 Misaligned implementation

Application or system software may require misalignment support, with misaligned
accesses being correctly interpreted by the exception handler. To improve
speculative load support for misaligned addresses, a control value
PSW[SPECLOAD_MALIGNTRAP_EN] can be set which causes speculative loads to trap
on misaligned addresses rather than returning zero.

5.7.2 Speculative load exceptions

In some cases the software system may require a speculative load to cause a DPU
exception instead of returning zero. This can be indicated by setting the
SPECLOAD_DPUTRAP_EN bit in the PSW control register.

Note: Misaligned is not treated as a DPU trap.

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Memory access
protection units

The ST220 contains two memory protection units, one for instruction fetches (IPU)
and one for load and store accesses (DPU). These units restrict access to memory
according to whether the processor is in user or supervisor mode (see
Section 3.3.2: USER_MODE on page 27) and also controls cacheability of memory
accesses and the operation of speculative loads. The protection units do not provide
address translation.

Note: The DPU is not used for control register access.

6.1 Description
On reset the instruction and data protection units are disabled, they are enabled
and disabled through the PSW control register (see Section 3.3: Program status word
(PSW) on page 26). For further details on the behavior of the processor when a
protection unit is disabled (see Section 6.3.5: Operation when protection unit is
disabled on page 46).

Note: It is stongly recommended that the IPU and DPU are enabled as soon as possible to
protect against the generation of bus errors. Speculative loads should not be used
until the DPU is enabled.

40 Operation

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

The control registers of the protection units define a number of regions1 of address
space. Each region has information associated with it, including:

• base address of region,

• size of region,

• access permissions of the region.

Note: Refer to IPU attribute registers on page 44 for full details.

The size of a region is a ‘power of two’ number of bytes between 4 Kbyte and 4 Gbyte.
The base of a region must be aligned on a size of region boundary.

The DPU and IPU differ in the number of regions and the access permissions
supported. The IPU supports four regions (0-3) and the DPU supports eight regions
(0-7).

The protection units allow regions to overlap which makes it possible to achieve
complex mappings with a limited number of regions. If an address falls within more
than one region, the information from the highest numbered region is used by the
protection unit.

The protection units implement memory access restrictions including supervisor
and user modes. They do not provide support for memory translation.

6.2 Operation
When enabled, each protection unit works by checking the address against the
entries it holds. There are a number of possible outcomes:

1. The DPU/IPU should be disabled before making changes to the regions.

No mapping There is no mapping for the address in the protection unit.
One region hit The properties of the selected region are applied.
Multiple region hits The properties of the highest priority region are used.

Operation 41

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

6.2.1 Example use of overlapping regions

If 4 Kbyte of supervisor code and 28 Kbyte of user code need to be mapped into a
32 Kbyte area of memory, the number of regions required are:

Diagrammatically, this is shown in Figure 3.

Overlapping regions not supported Overlapping regions supported

One 4 K byte region for supervisor code One 4 K byte region for supervisor code

One 16 K byte region for user code One 32 K byte region for user code

One 8 K byte region for user code

One 4 K byte region for user code

Table 4: Overlapping regions

Figure 3: Overlapping regions

4 Kbyte

4 Kbyte

8 Kbyte

16 Kbyte

32 Kbyte

Overlapping
regions not
supported

Overlapping
regions
supported

Supervisor
code

User
code

4 Kbyte

42 Protection unit registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

With overlapping regions, the 4 Kbyte of supervisor code would be put into a
higher priority region. This ensures that the supervisor mapping takes precedence
over the user mapping.

6.2.2 Undefined address space

The provision of overlapping regions of memory allows the default protection for
otherwise unmapped memory to be programmed.

This can be done by setting region 0 to be 4 Gbyte in size, based at address 0. The
behavior of otherwise unmapped memory can be defined, that is, setting
permissions for no access in supervisor and user modes. By default an unmapped
area of memory will create a ‘no translation’ exception for addresses with no
translation.

6.3 Protection unit registers

6.3.1 Region base registers

Region base registers define the areas of memory that are controlled by the
protection unit. Each region register contains a field to describe the base address of
the memory region it is to cover.

Name Bit(s)
Access

(U/S)
Reset Comment

REGION_ZERO [11:0] RO/RO 0x0 Always zero.

REGION_BASE [31:12] RO/RW 0x0 Region base.

Table 5: DPU_REGION0 bit fields

Protection unit registers 43

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

6.3.2 Region attribute registers

A summary of the fields within attribute registers is as follows:

• The OFFSET field gives the size of the region.

• Protection information (PROT) is encoded into two bits,

• The ENABLE bit enables the region when set to 1, otherwise the region is
disabled.

• Cacheability is indicated by the CACHEABLE bit.

• The SPEC_ZERO bit indicates speculative load behavior in the region.

DPU attributes

Each DPU region has an attribute register that defines the properties and behavior
of that region.

Name Bit(s)
Access

(U/S)
Reset Comment

ENABLE 0 RO/RW 0x0 Enables this region.

PROT [2:1] RO/RW 0x0 Protection attributes of this region.

Reserved [6:3] RO/RO 0x0 Reserved

CACHEABLE 7 RO/RW 0x0 When set the region is cacheable.

SPEC_ZERO 8 RO/RW 0x0 When set speculative loads to this
region return 0.

Reserved [11:9] RO/RO 0x0 Reserved

OFFSET [16:12] RO/RW 0x0 The size of this region.

Reserved [31:17] RO/RO 0x0 Reserved

Table 6: DPU_ATR0 bit fields

44 Protection unit registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

IPU attribute registers

The attributes of each IPU region are slightly different.

Offset field

The base of the region has to be aligned to the size of the region given in OFFSET (in
the corresponding region attribute register). This restriction allows for faster
computation of a region hit in the implementation. For example, the smallest region
offset of 4 Kbyte must have a base address aligned to a 4 Kbyte boundary.

The offset value determines the size of the region, with the possible values given in
the Table 8.

An operating system (OS) can use large regions to set default permissions for the
entire memory space.

The IPU has four regions. The four region and attribute registers are numbered
from 0 to 3. If there are no matches between the given address and any described
region an IPU_NO_TRANSLATION exception is generated.

Name Bit(s)
Access

(U/S)
Reset Comment

ENABLE 0 RO/RW 0x0 Enables this region.

PROT [2:1] RO/RW 0x0 Protection attributes of this region.

Reserved [11:3] RO/RO 0x0 Reserved

OFFSET [16:12] RO/RW 0x0 The size of this region.

Reserved [31:17] RO/RO 0x0 Reserved

Table 7: IPU_ATR0 bit fields

Offset[4:0] 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101

Region
size

4
K byte

8
K byte

16
K byte

32
K byte

64
K byte

128
K byte

256
K byte

512
K byte

1
M byte

2
M byte

4
M byte

Offset[4:0] 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

Region
size

8
M byte

16
M byte

32
M byte

64
M byte

128
M byte

256
M byte

512
M byte

1
G byte

2
G byte

4
G byte

Table 8: Offset field

Protection unit registers 45

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

The DPU has eight regions. The eight region and attribute registers, numbered from
0 to 7. If there are no matches between the given address and any described region
a DPU_NO_TRANSLATION exception is generated.

DPU protection field

The DPU has the following encoding for its protection bits:

The generation of the DPU_ACCESS_VIOLATION exception is summarized as follows:

IPU protection field

The generation of the IPU_ACCESS_VIOLATION is conditional upon whether the
machine is in supervisor or user mode, on a region by region basis according to the
above table.

Value Supervisor User

00 No Access No access

01 Read/write No access

10 Read/write Read only

11 Read/write Read/write

Protection value Memory access

Supervisor mode User mode

Load Store Load Store

00 Access violation Access violation Access violation Access violation

01 OK OK Access violation Access violation

10 OK OK OK Access violation

11 OK OK OK OK

Value Supervisor User

00 Execute Execute

01 No access No access

10 Execute No access

11 Reserved

46 Protection unit registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

6.3.3 Cacheable field

This field is used by the D-side memory subsystem to determine whether it may
cache data from the region or not.

6.3.4 Speculative load returns zero field

In certain cases normal loads should return the data as expected but speculative
loads to the same location should return zero without doing a memory access. If the
SPEC_ZERO bit for the region is set in the attribute register, the LSU will be
instructed to return zero as data and not make a memory request.

For a detailed description of how exceptions are handled with respect to this bit
being set, see Section 5.7: Speculative load considerations on page 36.

6.3.5 Operation when protection unit is disabled

IPU Cached, no protection.

DPU Uncached, no protection. Speculative loads act as normal loads.

STMicroelectronics Confidential
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

®

Memory
subsystem

This chapter describes the operation of the ST220 processor memory subsystem. The
memory subsystem includes the caches, protection units, write buffer, prefetch cache
and the core memory controller (CMC).

The memory subsystem is split broadly into two parts, the instruction side (I-side)
and the data side (D-side). The CMC interfaces these two halves to the STBus port.
The I-side, containing the instruction cache and instruction protection unit (IPU),
supports the fetching of instructions. The D-side, containing the data cache, data
protection unit (DPU), prefetch cache and write buffer, support the storing and
loading of data.

The ST220 ensures that data access are coherent with other data accesses. There is
no guarantee of coherency between instruction and data accesses (see Section
7.5.3: Coherency between I-side and D-side on page 55) or between the core and
external memory. To ensure coherency data must be purged from the core as decribed
later in this chapter.

The functions of the IPU and DPU are described in detail in Chapter 6: Memory
access protection units on page 39, the streaming data interface (SDI) in Chapter 8:
Streaming data interface (SDI) on page 57.

48 Memory subsystem

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

7.1 Memory subsystem

7.2 I-side memory subsystem
Within the ST220 the instruction buffer is responsible for issuing instructions to the
processor core. The instruction cache fetches cache lines from memory, via the CMC
and sends bundles of up to four operations to the instruction buffer.

Figure 4: Memory subsystem block diagram

I-Side Memory
Subsystem

Cluster

Write Buffer

Prefetch Buffer

Data Cache

Instruction
Cache Write

Data

Prefetch
Request

Prefetch
Data

Writes &
(Reads/Prefetch/Sync/Flush)

Prefetches &
(Reads/Writes/Flush)

Fetched
Data

PC

Read
4x32 bit

Read
Request

Read Response
Cache Line

Read/Write/
Flush/Sync/Prefetch

Request

Read
Word

Busy

Busy

Instruction
Buffer

Load
Store
Unit

(LSU)

PC and
Branch Unit

CMC

Uncached
Read/Writes
& Cache Fill

D-Side
Memory
Subsystem

STBUS

I-side memory subsystem 49

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

7.2.1 Instruction buffer

The instruction buffer attempts to fetch ahead in the instruction stream in order to
keep its buffer full. When a branch is taken the instruction buffer is invalidated and
a fetch started from the target address.

After a branch the instruction buffer will take one cycle to fetch the next bundle from
the cache, this means the ST220 will stall for one cycle. If the branch is to a bundle
that spans two cache lines then it will take two cycles to fetch the bundle and thus
the ST220 will stall for two cycles.

7.2.2 Instruction cache

Instructions are always cached; there is no support for uncached instruction fetching.
Self modifying code (loaders for example) must invalidate the cache explicitly.

The instruction cache is a 32 Kbyte direct mapped cache with 64-byte lines. It
receives fetch requests from the instruction buffer and returns a group of up to four
32-bit operations (16 bytes).

When instructions are requested from the cache it uses the address to determine
whether they are already present in the cache. If the instructions are not in the
cache, they are fetched from memory and stored into the cache, during which time
the processor will stall. The requested instruction bundle is then returned to the
instruction buffer.

To invalidate the instruction cache safely, two operations must be executed:

• The first is prgins, which invalidates the whole instruction cache and causes any
subsequent instruction fetches to be made from memory rather than from the
cache.

• The second is syncins, which ensure that all previous bundles have completed,
and that their effects have completed, before any subsequent bundles are started.
This guarantees that the next bundle will be fetched with an invalidated cache,
and therefore from memory. If this operation is not performed the subsequent
bundle might have been prefetched and might not correspond to the instruction
in memory. Currently, the syncins operation is a pseudo operation implemented
as a goto the next bundle.

50 D-side memory subsystem

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

7.2.3 I-side bus error

If the I-side memory subsystem causes a bus error, an STBUS_IC_ERROR exception is
raised. Bus errors are asynchronous events and are not associated with a particular
bundle.

In this case the cache will not be updated.

7.3 D-side memory subsystem
All data accesses take place through the D-side memory subsystem which contains
the data cache, the prefetch cache and the write buffer. The data cache is 32 Kbyte
4-way associative with a 32-byte line. It is operated with a fixed write-back, no
allocate on write-miss policy.

At most one of the write buffer, the data cache or the prefetch cache can contain a
copy of the data for a particular address.

7.3.1 Load store unit

The load store unit (LSU) performs all data access operations. The cacheability is
dependent on the address of the access and is determined by the DPU. In addition to
load and store there are operations which prefetch data, flush and synchronize the
D-side memory subsystem.

The data cache sends write misses and dirty data to the write buffer (see Section
7.3.9: Write buffer on page 53).

The write buffer combines write transactions and sends them out to memory.

7.3.2 Cached loads and stores

Cached loads and stores are performed through the data cache.

The memory subsystem can optimize these operations for performance.

For example, the memory subsystem can transfer more data than specified by the
load (that is, a loading cache line), aggregate accesses (i.e. combining writes in write
buffer) and/or re-order accesses (i.e. cache causes word accesses to be re-ordered).

D-side memory subsystem 51

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

The memory subsystem presents a consistent view of cached memory to the ST220
programmer, that is, a store followed by a load to the same address will always
return the stored data. To guarantee ordering of accesses to external memory in
cached regions, purge and sync operations must be used.

7.3.3 Uncached load and stores

Uncached loads and stores are performed directly on the STBus. Data from an
uncached region of memory will never be brought into the data cache or prefetch
cache. Section 7.5.6: Cached data in uncached region on page 56.

The precise amount of data specified in the access is transferred and the access is
not aggregated with any other. The implementation does not optimize these
accesses.

To guarantee that an uncached store has completed, either a sync or an uncached
load to the same bus target must be issued.

7.3.4 Prefetching data

The prefetch cache prefetches and stores data from external memory and sends it to
the data cache when (and if) it is required.

A pft operation is a hint to the memory subsystem that the given item of data may
be accessed in the future. The operation specifies an address which can be
prefetched by the prefetch cache. Prefetches have no effect on the functionality of
the CPU but may change its performance. A pft operation may be ignored.

Prefetches to uncached areas, control registers and invalid addresses (that is, may
cause a DPU exception) are treated as nops.

The prefetch cache contains eight entries. Each entry contains an entry valid bit, a
prefetch address, a data valid bit and 32 bytes of data space.

When a pft request is made and accepted, it enters the prefetch cache as an
outstanding prefetch request, with the data valid bit clear. Older entries may be
discarded if the prefetch cache is full. The prefetch cache will attempt to access the
memory system to fetch the line containing the prefetch address. When a fetch
completes the data valid bit is set. The prefetch cache supports multiple outstanding
memory requests.

52 D-side memory subsystem

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Entries in the prefetch cache are tested when a data cache read miss occurs. If an
entry match occurs and the data valid bit is set, the prefetched line is loaded into the
data cache as if it were fetched from external memory. If the data valid bit is clear,
the data cache stalls until the data is returned from external memory. The entry in
the prefetch cache is then marked as empty and can be reused.

Entries in the prefetch cache are tested when a data cache write miss occurs. If an
entry match occurs the prefetch cache entry is invalidated.

7.3.5 Purging data caches

The following purge (flush and invalidate) operations are used to ensure a copy of a
particular data item is not cached in the D-side of the memory subsystem.

1 prgadd purges a line which hits the address operand from both caches (data
and prefetch).

2 prgset purges the lines in the data cache set indicated by the address operand
and purges the entire prefetch buffer.

These operations flush out the specified data. Dirty lines are written to the write
buffer and the line is invalidated. Purge addresses are treated as byte aligned.

Purge operations cannot cause DPU exceptions.

7.3.6 D-side synchronization

This is achieved by executing the sync operation. Once the bundle containing the
sync operation has completed, the following conditions hold:

1 All previous loads, stores and pfts have completed.

2 No future memory operations have started.

3 The write buffer is empty, all pending writes to external memory have
completed.

D-side memory subsystem 53

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

7.3.7 D-side bus errors

If the D-side memory subsystem causes a bus error, a STBUS_DC_ERROR exception is
raised. Bus errors are asynchronous events and are not associated with a particular
operation.

In the case of writes the data will have already been discarded and therefore the
write is lost. The write may or may not have completed.

In the case of reads the cache will not be updated.

7.3.8 Operations

The memory subsystem supports the following operations:

It is a requirement that half word load/stores are half word aligned (2 bytes) and
word load/stores are word aligned (4 bytes). Misaligned accesses will cause a
MISALIGNED_TRAP exception.

7.3.9 Write buffer

Writes that miss the data cache and dirty lines that are evicted from the cache are
held in the write buffer pending write back to external memory.

The write buffer is a write combining buffer that holds up to four entries. Each entry
has 32 bytes of data, an address and 32 bits of byte masks. The write buffer is
operated as an LRU (least recently used) buffer.

Type Word aligned Half word aligned Byte aligned

Load Load word Load half
unsigned

Load half
signed

Load byte
unsigned

Load byte
signed

Load Dismissible Load word Load half
unsigned

Load half
signed

Load byte
unsigned

Load byte
signed

Store Store word Store half Store byte

Prefetch Prefetch

Purge Purge address

Purge set

Sync Sync

54 Core memory controller (CMC)

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Write combining allows individual close proximity writes to be merged into a single
entry. Write combining improves performance significantly (for a no write allocate
cache) when performing sequences of writes to blocks of data which have not been
brought into the cache.

7.4 Core memory controller (CMC)
The CMC allows multiple masters to access the STBus via a single port. The CMC
arbitrates between multiple requestors and correctly routes responses.

7.5 Additional notes
The memory subsystem requires some additional explanation of some key
operations and methods of use. This section is intended to provide this information
without filling out the previous sections.

7.5.1 Forcing writes to external memory

After any purge operations have taken place a sync should be issued to ensure all
writes, including cache write backs, have completed. This combination of operations
will guarantee that the purged data will not be in the data cache, prefetch cache or
write buffer.

The sync operation should also be used to ensure that uncached writes have
reached external memory.

7.5.2 Memory ordering

The sync operation should be used:

• to ensure that all uncached writes have completed,

• to enforce a particular ordering of memory operations,

• to flush the write buffer of pending external memory writes.

Additional notes 55

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

7.5.3 Coherency between I-side and D-side

There is no coherency guaranteed between the external memory and the D-side and
I-side memory subsystems. If coherency is desired then the memory subsystem has
to be purged and synchronized.

This is achieved by the following sequence:

1 Flush the entire data cache by issuing prgset operations for every set of lines in
the cache.

2 Sync the D-side by issuing a sync.

3 Invalidate the entire instruction cache by issuing a prgins.

4 Sync the I-side by issuing a syncins.

This sequence can be modified to perform coherency on a smaller memory region.

7.5.4 Changing memory to uncacheable

Data memory can be cacheable or uncacheable. Instruction memory is always
cacheable.

To change an area of data memory from being cacheable to uncachable it is
necessary to:

1 Mark region uncacheable in the DPU.

2 Flush it by issuing prgadd or prgset operations.

3 Sync the data cache by issuing a sync.

The region is now uncached and all loads and store operations to data within it are
guaranteed to be uncacheable.

Note: Once a region is marked uncacheable no addresses from that region can become
cached; a load to an uncacheable address which misses the cache will not cause the
address to be allocated in the cache.

7.5.5 Reset state

After reset all lines in the instruction cache and data cache are marked as invalid.
The write buffer and prefetch cache entries are marked as empty.

56 Additional notes

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

7.5.6 Cached data in uncached region

Non-cacheable accesses also go to the memory system via the data cache tag ram
matching hardware. A side-effect of this implementation is that even non-cacheable
accesses will cause a hit if the requested address is already in the cache. This can
happen if the user changes an already cached location from cacheable to
non-cacheable status.

If data from an uncached region is left in the cache, due to a change in the region’s
cacheability, then any accesses to this data will be treated as cached.

To prevent this seemingly unpredictable behavior a region that is changed from
cacheable to uncachable must be purged from the cache. To change a region to
uncached see Section 7.5.4: Changing memory to uncacheable on page 55.

7.5.7 Prefetch performance

The prefetch cache is intended to improve performance. This is achieved by
explicitly fetching data which lies in external memory and hiding the latency
associated with that fetch. A number of points must be borne in mind to make the
prefetch cache work effectively.

1 Data must be prefetched well in advance of use. The latency of an external
memory access needs to be hidden between the pft operation and the first load
operation which uses data from the prefetched line. This latency is in the region
of 30 - 50 bundles for stall free bundles.

2 The prefetch cache size should be taken into account, such that the number of
outstanding prefetches does not exceed the number of entries in the prefetch
cache.

3 Unused prefetches increase bandwidth and waste entries in the prefetch cache.

The first two points indicate a window for which prefetches might be considered.

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Streaming
data interface
(SDI)
8.1 Overview

The ST220 SDI is designed to allow fast and easy connection of on-chip peripherals.
Each SDI is unidirectional and includes handshakes to prevent data loss and
improve data flow.

The ST220 implements four SDI interfaces, two input ports and two output ports.

Figure 5: SDI overview

SDI
Input

Data In
SDI

Input

SDI Output

SDI Output

Data Out

Data Out

Control
Registers

ST220 Core

Cluster

Data In

58 Functional description

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

The SDIs:

• provide a mechanism for attaching streaming hardware to the processor core

• reduce STBus traffic and associated processor stall cycles

• reduce cache pollution and control complexity

• prevent deadlock through a timeout mechanism

• allow communication between clock domains without complex synchronization
hardware

The SDI ports are accessed via control registers in the core.

8.2 Functional description
Data is communicated synchronously through either output port or input port to the
processor. Data is communicated in order, that is, the n-th data item communicated
will arrive after the (n - 1)th item and before the (n + 1)th data item.

Writes (stores) to an output port will block if the SDI is full. Conversely reads
(loads) from an input port will block if the channel is empty. The ST220 blocks
execution by stalling the entire processor. No execution proceeds until the channel
becomes ready for the requested communication, or an interrupt or timeout
exception occurs.

Interrupts can also be taken while waiting on the SDI.

8.2.1 Data width

The SDI interface is 32-bits wide.

External to the SDI port, however, the data width can be arbitrary. For example
connecting to a DCT peripheral which consumes 16-bits, data could be sent from the
ST220 as single 16-bit items. The ST220 can only write 32-bit data to control
registers, so writing a pair of 16 bit values in a packed word would be twice as fast.
Note in this case the peripheral has to expect pairs of 16-bit values.

Communication channel 59

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

8.3 Communication channel
In its basic form the SDI can be used as a communication channel to and from the
processor. It is fully synchronized, allowing idealized input and output to be dealt
with directly by the processor using load and store operations directly access the
processor registers.

The SDI accesses can be initiated from C program code as accesses to volatile
variables.

8.3.1 Timeouts

The timeouts operate as monitors to each individual SDI access. If an access
remains stalled for too long, as defined by the control registers, an exception will
occur.

8.4 Registers
The SDI interfaces directly to the ST220 load store unit. The interface is through a
number of memory mapped registers in the control register address space.

The addresses of these registers are detailed in Chapter 9: Control registers on
page 65.

8.4.1 Input channel memory mapping

SDIi_DATA The SDIi_DATA register is the location from which data is read
from the input channel. The processor control and channel logic
synchronize to ensure no data is lost. If the SDIi_DATA register is
empty the processor will stall. Writing this register has no effect
and the processor will not stall.

SDIi_READY The SDIi_READY register is implementation specific. If non zero it
indicates that the channel has data ready to be read.

This value indicates a minimum number of ready items.
Returning the exact amount of data ready to be read from the
channel may not be possible for a number of reasons, that is,
clock boundary issues, propagation delays, hence the looser
condition of the minimum number of ready items. In its simplest
form this ready value can be 1, indicating at least one item is
ready.

60 Registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

SDIi_CONTROL The SDIi_CONTROL register is used to reset the channel and the
SDIi_TIMEOUT register. The usage of the bits are defined in
Table 9. The definition of the privilege bits is given in Section
8.4.3: Protection on page 61.

SDIi_COUNT The SDIi_TIMEOUT register is reset to this value each time an SDI
data value is successfully accessed. The value may be read or
written. At reset it is set to a fixed value defined by the
particular implementation. Time-outs can be disabled via the
SDIi_CONTROL register.

SDIi_TIMEOUT The number of cycles an SDI data access will be allowed to stall
before a timeout exception will be raised. The value may be read
or written. This register will normally be set to the value of
SDIi_COUNT. Exceptions to this are when it has been specifically
set to another value, or when an SDI access has taken a timeout
exception or been interrupted. In the case of an SDI timeout the
SDIi_TIMEOUT register will contain the value zero.

Name Bit(s)
Access

(U/S)
Reset Comment

PRIV [1:0] RO/RW 0x0 Privilege bits.

RESETINPUT 2 RO/RO 0x0 RESETINPUT (Read Only) acts as
RESETREQUEST when slave,
RESETACK when master.

RESETOUTPUT 3 RO/RW 0x0 RESETOUTPUT, acts as
RESETREQUEST when master,
RESETACK when slave.

INPUTNOTOUTPUT 4 RO/RO 0x0 INPUTNOTOUTPUT (Read only).

Reserved 5 RO/RO 0x0 Reserved

MASTERNOTSLAVE 6 RO/RO 0x0 MASTERNOTSLAVE (Read only).

TIMEOUTENABLE 7 RO/RW 0x0 Timeout Disable (set to 1 to disable
timeout interrupts).

Reserved [31:8] RO/RO 0x0 Reserved

Table 9: SDI0_CONTROL bit fields

Registers 61

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

8.4.2 Output channel memory mapping

SDIi_DATA The SDIi_DATA register is the location from which data is written
to the output channel. The processor control and channel logic
synchronize to ensure no data is overwritten. If the SDIi_DATA
register is full, the processor will stall. Reading this value has no
effect and the processor will not stall. The value returned is
implementation specific.

SDIi_READY The SDIi_READY register is implementation specific. If non zero it
indicates that the channel has space where data can be written.

This value indicates a minimum number of empty spaces where
data can be written. In an implementation where the channel is
connected to a FIFO this register could indicate, full, notfull, the
FIFO is half empty by returning (for example) the values 0, 1, 32.
Returning the exact amount of data space available in the
channel may not be possible for a number of reasons, that is,
clock boundary issues, propagation delays, hence the looser
condition of the minimum number of ready items. In the simplest
form this ready value can be 1, indicating at least one item can be
written.

SDIi_CONTROL Bits defined as Section 8.4.1: Input channel memory mapping on
page 59.

SDIi_COUNT Defined as Section 8.4.1: Input channel memory mapping on
page 59.

SDIi_TIMEOUT Defined as Section 8.4.1: Input channel memory mapping on
page 59.

8.4.3 Protection

The SDI register space is protected from malicious usage via access permissions
held in each SDIi_CONTROL register. The reset behaviour is that accesses to the SDI
registers are only allowed in supervisor mode.

The protection can be loosened to allow user access to an SDIi_DATA and SDIi_READY
registers. This is achieved via the SDIi_CONTROL register, PRIV[1:0] two bit field,
indicating the access allowed for each SDI.

62 Exceptions, interrupts, reset and restart

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

8.5 Exceptions, interrupts, reset and restart

8.5.1 Interrupts

While stalled accessing the SDI, the processor can take any processor interrupt. The
interrupt will be taken as if it occurred just prior to the bundle accessing the SDI.

Return from interrupt

The rfi from the exception handler will continue, as is normal operation, at the
point prior to the interrupt.

If the SDI has become ready during execution of the interrupt handler the
SDIi_TIMEOUT register will be reset to the value in SDIi_COUNT.

If however the SDI is not ready, the processor will revert to the stalled state. This
will be waiting for the channel to become ready while counting down the
SDIi_TIMEOUT register from the value held prior to the exception.

Access to SDI registers

The interrupt handler can access all the SDI registers.

Note: Accessing the SDIi_DATA register may alter the state of the processor observed by the
interrupted processor.

SDI_Access_Priv Allowed privilege Comment

00 Supervisor
User

Any access allowed
Protected, will cause exception

01 Supervisor
User

Any access allowed
Allow access to data and ready register

10 Not defined Reserved

11 Not defined Reserved

Table 10: Access Privileges for SDI Ports

Exceptions, interrupts, reset and restart 63

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

8.5.2 SDI exceptions

In this case the EXCEPT_CAUSE register will indicate an SDI timeout exception. The
exception address will point to the SDI register on which the processor was waiting
when the exception occurred.

An ST220 communications SDI timeout exception will occur if the processor is
actively waiting for a response from the interface for longer than the interface’s
timeout period.

The ST220 exception handler, in the case of a SDI timeout exception, is able to
restart the communicating process. This is achieved by executing an rfi to the
instruction that caused the exception. This will cause re-execution of the instruction
accessing the SDI.

Note: The SDIi_TIMEOUT register will need increasing from the zero value that caused the
exception, otherwise the exception will be triggered again immediately.

The timeout exception is generated by the processor and not the channel.

8.5.3 Restart (or soft reset)

A channel can only be restarted by the master of the channel.

A master may be either an input or an output channel. Figure 6: Soft reset control
structure on page 64 shows how the reset structure is connected.

A reset is initiated by the master by setting the RESETREQUEST bit in the CONTROL
register. This causes the channel to begin the reset process. Once acknowledged (i.e.
RESETACK = 1) as having been received by the slave, and consequently the entire
channel structure being reset, the reset is removed (that is, RESETREQUEST = 0) is
communicated to the slave port. Once acknowledged (that is, RESTACK = 0), this
indicates that the entire channel has exited the reset state.

The slave reset can be used to reset a slave subsystem.

Normally the output channel will be the master. However in cases where the output
channel is connected to a dump peripheral it may be necessary to make the input
channel the master, particularly where this is a processor interface.

64 Exceptions, interrupts, reset and restart

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

The restart structure outlined will work across asynchronous clock boundaries.

1) Master requests reset. Subsystem resets itself and consumes all data
presented at inputs. RESETREQUEST is forwarded to other slave
side subsystems.

2) All units in reset. After subsystem has reset itself AND all slave side
subsystems have sent RESETACK, RESETACK can be forwarded to
master.

3) Master requests leave reset. Unit forwards removal of RESETREQUEST to all
slave-side subsystems. Unit leaves reset and stops consuming
data.

4) All units out of reset. On receipt of RESETACK from all subsytems, RESETACK is
forwarded to master. System can restart.

Figure 6: Soft reset control structure

Master

Data
Transport

Data
Transport

Slave

Control
Transport

Control
Transport

ResetAck

ResetReq

ResetReques
t

ResetAck

1

2

3

4

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Control
registers

The ST220 control registers contain processor state which is not commonly accessed
by application code. This includes accessing the protection units, PSW, exception
registers and breakpoint registers.

9.1 Access operations
Control registers1 are mapped into the address space, allowing access through
normal load and store operations.

All control register accesses are word (32-bit) operations. Byte and half word load
and stores to control registers are not supported and will generate
CREG_ACCESS_VIOLATION exceptions.

Dismissible loads to control register space always return zero. Control register
loads or stores are executed within the LSU without reference to the DPU regions.

9.2 Exceptions
The control register unit generates an exception when a load or store tries to:

• access a control register that does not exist (CREG_NO_MAPPING),

• write to a control register without correct permissions
(CREG_ACCESS_VIOLATION),

1. Control registers can not be accessed via the STBus.

66 Control register addresses

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

• perform a byte and half word accesses to control registers
(CREG_ACCESS_VIOLATION),

• perform a misaligned word access to a control register (CREG_NO_MAPPING)

For details of the exception cause register see Section 5.6: Exception types and
priorities on page 34.

9.3 Control register addresses
Below is a table of the control register addresses on the ST220.

The control registers start from a base of 0xFFFF0000, offsets listed in the table are
relative to this.

The Access column shows the access rights in user and supervisor mode.

NA No access (protection fault)

RO Read only

RW Read/Write

CF Configurable

Name Offset
Access

(U/S)
Comment

PSW 0xfff8 RO/RW The Program Status Word.

SAVED_PSW 0xfff0 RO/RW Saved PSW, written by hardware on
exception.

SAVED_PC 0xffe8 RO/RW Saved Program Counter, written by hardware
on exception.

HANDLER_PC 0xffe0 RO/RW The address of the exception handler code.

EXCEPT_CAUSE 0xffd8 RO/RW A one hot vector of trap (exception/interrupt)
types, indicating the cause of the last trap.
Written by the hardware on a trap.

Table 11: Control Registers - BASE: CREG_BASE

Control register addresses 67

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

EXCEPT_ADDR 0xffd0 RO/RW This will be the data effective address in the
case of either a DPU, CREG, DBREAK, or
MISALIGNED_TRAP exception. For other
exception types this register will be zero.

ST200_VERSION 0xffc8 RO/RO The version number of the core. For the
ST220 returns 0x01.

SAVED_SAVED_PSW 0xffc0 RO/RW PSW saved by debug unit interrupt.

SAVED_SAVED_PC 0xffb8 RO/RW PC saved by debug unit interrupt.

PERIPHERAL_BASE 0xffb0 RO/RO Base address of peripheral registers. The top
12 bits of this register are wired to the
peripheral base input pins.

SCRATCH1 0xffa8 RO/RW Scratch register reserved for use by the
interrupt handler.

SCRATCH2 0xffa0 RO/RW Scratch register reserved for use by the debug
interrupt handler.

DPU_REGION0 0xff80 RO/RW DPU region address.

DPU_ATR0 0xff78 RO/RW DPU region attribute.

DPU_REGION1 0xff70 RO/RW DPU region address.

DPU_ATR1 0xff68 RO/RW DPU region attribute.

DPU_REGION2 0xff60 RO/RW DPU region address.

DPU_ATR2 0xff58 RO/RW DPU region attribute.

DPU_REGION3 0xff50 RO/RW DPU region address.

DPU_ATR3 0xff48 RO/RW DPU region attribute.

DPU_REGION4 0xff40 RO/RW DPU region address.

DPU_ATR4 0xff38 RO/RW DPU region attribute.

DPU_REGION5 0xff30 RO/RW DPU region address.

DPU_ATR5 0xff28 RO/RW DPU region attribute.

Name Offset
Access

(U/S)
Comment

Table 11: Control Registers - BASE: CREG_BASE

68 Control register addresses

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

DPU_REGION6 0xff20 RO/RW DPU region address.

DPU_ATR6 0xff18 RO/RW DPU region attribute.

DPU_REGION7 0xff10 RO/RW DPU region address.

DPU_ATR7 0xff08 RO/RW DPU region attribute.

DBREAK_LOWER 0xfe80 RO/RW Data breakpoint lower address.

DBREAK_UPPER 0xfe78 RO/RW Data breakpoint upper address.

DBREAK_CONTROL 0xfe70 RO/RW Data breakpoint control.

IPU_REGION0 0xfe40 RO/RW IPU region address.

IPU_ATR0 0xfe38 RO/RW IPU region attribute.

IPU_REGION1 0xfe30 RO/RW IPU region address.

IPU_ATR1 0xfe28 RO/RW IPU region attribute.

IPU_REGION2 0xfe20 RO/RW IPU region address.

IPU_ATR2 0xfe18 RO/RW IPU region attribute.

IPU_REGION3 0xfe10 RO/RW IPU region address.

IPU_ATR3 0xfe08 RO/RW IPU region attribute.

IBREAK_LOWER 0xfdd0 RO/RW Instruction breakpoint lower address.

IBREAK_UPPER 0xfdc8 RO/RW Instruction breakpoint upper address.

IBREAK_CONTROL 0xfdc0 RO/RW Instruction breakpoint control.

PM_CR 0xf800 RO/RW Performance monitoring control.

PM_CNT0 0xf808 RO/RW Performance monitor counter 0 value.

PM_CNT1 0xf810 RO/RW Performance monitor counter 1 value.

PM_CNT2 0xf818 RO/RW Performance monitor counter 2 value.

PM_CNT3 0xf820 RO/RW Performance monitor counter 3 value.

PM_PCLK 0xf828 RO/RO Performance monitor core cycle counter.

Name Offset
Access

(U/S)
Comment

Table 11: Control Registers - BASE: CREG_BASE

Control register addresses 69

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

SDI0_DATA 0xe000 CF/RW SDI 0 data.

SDI0_READY 0xe008 CF/RW SDI 0 ready.

SDI0_CONTROL 0xe010 RO/RW SDI 0 control.

SDI0_COUNT 0xe018 RO/RW SDI 0 count.

SDI0_TIMEOUT 0xe020 RO/RW SDI 0 timeout.

SDI1_DATA 0xe400 CF/RW SDI 1 data.

SDI1_READY 0xe408 CF/RW SDI 1 ready.

SDI1_CONTROL 0xe410 RO/RW SDI 1 control.

SDI1_COUNT 0xe418 RO/RW SDI 1 count.

SDI1_TIMEOUT 0xe420 RO/RW SDI 1 timeout.

SDI2_DATA 0xe800 CF/RW SDI 2 data.

SDI2_READY 0xe808 CF/RW SDI 2 ready.

SDI2_CONTROL 0xe810 RO/RW SDI 2 control.

SDI2_COUNT 0xe818 RO/RW SDI 2 count.

SDI2_TIMEOUT 0xe820 RO/RW SDI 2 timeout.

SDI3_DATA 0xec00 CF/RW SDI 3 data.

SDI3_READY 0xec08 CF/RW SDI 3 ready.

SDI3_CONTROL 0xec10 RO/RW SDI 3 control.

SDI3_COUNT 0xec18 RO/RW SDI 3 count.

SDI3_TIMEOUT 0xec20 RO/RW SDI 3 timeout.

Name Offset
Access

(U/S)
Comment

Table 11: Control Registers - BASE: CREG_BASE

70 Control register addresses

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics Confidential
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

®

Timers

Three timers are provided on the ST220. These are controlled by registers mapped
into the ST220 memory space (see Chapter 11: Peripheral addresses on page 75).

Figure 7: Timers

TIMECNST

TIMECNTR

Mux Decrement

Test

0

Timer Reload

AND

Timer Interrupt

TIMECNTL

TIMESTART

Bit i

TIMEDIVIDE

72 Operation

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

10.1 Operation
For each of the three timers (i = 0, 1, 2), the TIMECNTRi register is the current value
of the timer. This value is decremented on each timer tick until zero is reached.
Upon the next tick, TIMECNTRi is loaded with TIMECNSTi and the ith timer interrupt
is raised if enabled. The TIMECNTLi register controls the enabling of interrupts for
each timer.

Timer counting is enabled by the ith LSB of the TIMESTART register. Counters are
not reset when disabled. Hence initial values can be written using the TIMECNTRi
registers.

The frequency of timer ticks is controlled by programming the TIMEDIVIDE register.

These registers are covered in more detail in the following subsections.

10.1.1 TIMEDIVIDE

The TIMEDIVIDE register sets the number of bus clock cycles between each timer tick.
This register can be programmed with values between 0 and 65535 (only the bottom
16 bits are used). The divide value is equal to the value of this register plus one. This
register will reset to zero (divide by 1). Writing this register sets the divide value
and reading it returns the current divide value.

It is expected that the boot code will setup the TIMEDIVIDE register so that timer ticks
occur every 1us.

10.1.2 TIMECNTRi

The TIMECNTRi registers hold the current values of the timer counters.

Writing to these registers can be used to set initial values for the counters.

Name Bit(s)
Access

(U/S)
Reset Comment

COUNT [31:0] RW 0x0 Current value of the timer counters.

Table 12: TIMECNTR0 bit fields

Operation 73

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

10.1.3 TIMECNSTi

The TIMECNSTi registers set the value to be reloaded into each corresponding timer
on reaching zero. If interrupts are enabled, this will define the number of ticks
between interrupts.

10.1.4 TIMECNTLi

The TIMECNTLi registers enable the timer interrupts the processor. The LSB of each
register (ENABLE) enables the corresponding timer interrupt.

Name Bit(s)
Access

(U/S)
Reset Comment

CONST [31:0] RW 0x0 Constant to be reloaded when the timer
reaches zero.

Table 13: TIMECNST0 bit fields

Name Bit(s)
Access

(U/S)
Reset Comment

ENABLE 0 RW 0x0 Enable the timer interrupt.

Reserved [31:1] RO 0x0 Reserved

Table 14: TIMECNTL0 bit fields

74 Timer interrupts

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

10.1.5 TIMESTART

The TIMESTART register contains enable bits for each timers, (T0 for timer 0, T1 for
timer 1 and T2 for timer 2), a set bit indicates enable and a clear bit disable. When
disabled, a timer value remains constant.

10.2 Timer interrupts
Timer interrupts use bits 2:0 of the Interrupt Test Register, Section 12.3: Interrupt
registers on page 80.

Note: These bits remain set when the interrupt is taken and must be explicitly cleared.

10.3 Programming the timer
The TIMECNSTi registers set the value to be reloaded into the corresponding timer.
The value is loaded on the timer tick after a zero is reached, such that, the duration
between timers reaching zero is (TIMECNSTi + 1). (For example, setting it to 99 will
cause a reload and timer interrupt (if enabled) every 100 ticks.

Name Bit(s)
Access

(U/S)
Reset Comment

T0 0 RW 0x0 Enable for timer 0.

T1 1 RW 0x0 Enable for timer 1.

T2 2 RW 0x0 Enable for timer 2.

Reserved [31:3] RO 0x0 Reserved

Table 15: TIMESTART bit fields

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Peripheral
addresses

On the ST220 the interrupt controller, DSU, DSU ROM and the timers are memory
mapped peripherals. Under normal usage these peripherals should, with the
exception of the DSU ROM, be mapped in an uncacheable region in the DPU.

11.1 Peripheral addresses
Below is a table of the peripheral register addresses on the ST220.

The peripheral registers start from the peripheral base address which can be found
by reading the PERIPHERAL_BASE register (see Chapter 9: Control registers on
page 65).

The Access column shows the access rights:

RO Read only

RW Read/write

CF Configurable

76 Peripheral addresses

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

11.1.1 Interrupt controller & timer registers

The interrupt controller and timer registers start from PERIPHERAL_BASE + 0x0.

Name Offset
Access

(U/S)
Comment

INTPENDING0 0x0 RO Interrupt pending bits 31:0.

INTPENDING1 0x8 RO Interrupt pending bits 63:32.

INTMASK0 0x10 RW Interrupt mask bits 31:0.

INTMASK1 0x18 RW Interrupt mask bits 63:32.

INTTEST0 0x20 RW Interrupt test register bits 31:0.

INTTEST1 0x28 RW Interrupt test register bits 63:32.

INTCLR0 0x30 RW Interrupt clear register bits 31:0.

INTCLR1 0x38 RW Interrupt clear register bits 63:32.

INTSET0 0x40 RW Interrupt set register bits 31:0.

INTSET1 0x48 RW Interrupt clear register bits 63:32.

TIMESTART 0x50 RW Timer start.

TIMECNST0 0x58 RW Timer constant.

TIMECNTR0 0x60 RW Timer counter.

TIMECNTL0 0x68 RW Timer control.

TIMECNST1 0x70 RW Timer constant.

TIMECNTR1 0x78 RW Timer counter.

TIMECNTL1 0x80 RW Timer control.

TIMECNST2 0x88 RW Timer constant.

TIMECNTR2 0x90 RW Timer counter.

TIMECNTL2 0x98 RW Timer control.

TIMEDIVIDE 0x100 RW Timer divide.

INTMASKCLR0 0x108 RW Interrupt mask clear bits 31:0.

INTMASKCLR1 0x110 RW Interrupt mask clear bits 63:32.

INTMASKSET0 0x118 RW Interrupt mask set bits 31:0.

Table 16: Interrupt Controller - BASE: INTCR_BASE

Peripheral addresses 77

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

11.1.2 DSU registers

The interrupt controller registers start from PERIPHERAL_BASE + 0x3000

INTMASKSET1 0x120 RW Interrupt mask set bits 63:32.

Name Offset
Access

(U/S)
Comment

Table 16: Interrupt Controller - BASE: INTCR_BASE

Name Offset
Access

(U/S)
Comment

DSR0 0x0 RO DSU version.

DSR1 0x8 RW DSU status.

DSR2 0x10 RW DSU output.

DSR3 0x18 RW DSU communication.

DSR4 0x20 RW DSU communication.

DSR5 0x28 RW DSU communication.

DSR6 0x30 RW DSU communication.

DSR7 0x38 RW DSU communication.

DSR8 0x40 RW DSU communication.

DSR9 0x48 RW DSU communication.

DSR10 0x50 RW DSU communication.

DSR11 0x58 RW DSU communication.

DSR12 0x60 RW DSU communication.

DSR13 0x68 RW DSU communication.

DSR14 0x70 RW DSU communication.

DSR15 0x78 RW DSU communication.

DSR16 0x80 RW DSU communication.

DSR17 0x88 RW DSU communication.

DSR18 0x90 RW DSU communication.

Table 17: Debug Support Unit - BASE: DSU_BASE

78 Peripheral addresses

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

11.1.3 DSU ROM

The DSU ROM starts from PERIPHERAL_BASE + 0x4000 (see Chapter 13: Debugging
support on page 85).

DSR19 0x98 RW DSU communication.

DSR20 0xa0 RW DSU communication.

DSR21 0xa8 RW DSU communication.

DSR22 0xb0 RW DSU communication.

DSR23 0xb8 RW DSU communication.

DSR24 0xc0 RW DSU communication.

DSR25 0xc8 RW DSU communication.

DSR26 0xd0 RW DSU communication.

DSR27 0xd8 RW DSU communication.

DSR28 0xe0 RW DSU communication.

DSR29 0xe8 RW DSU communication.

DSR30 0xf0 RW DSU communication.

DSR31 0xf8 RW DSU communication.

Name Offset
Access

(U/S)
Comment

Table 17: Debug Support Unit - BASE: DSU_BASE

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Interrupt
controller

The ST220 interrupt controller supports up to 64 interrupt sources. The system is
programmed via a number of 64-bit memory-mapped control registers.

12.1 Architecture
The structure of the interrupt controller is shown in Figure 8.

Figure 8: Interrupt controller

External

P
en

d
in

g
 R

eg
ister

OR
Interrupt Line

M
ask R

eg
ister

Events

To Processor

‘AND’

64 bits

64 lines

‘OR’

64 bits

64 lines
Test R

eg
ister

80 Operation

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

12.2 Operation
An interrupting event takes an interrupt line high. This is then sampled, causing
the corresponding bit in the 64-bit INTPENDING register to be set. The INTPENDING
register is then parallel AND-ed with the INTMASK register. The masked interrupts
are then OR-red into a single interrupt line that is presented to the processor core.

This architecture ensures that:

• all external interrupts will interrupt the processor,

• interrupts can be individually enabled or disabled.

Setting or clearing bits in the INTMASK register enables or disables the corresponding
interrupt lines.

12.2.1 Test register

External interrupts are wide OR-ed with the contents of the INTTEST register before
being sampled by the INTPENDING register. This allows the programmer to simulate
interrupts into the processor for test purposes.

12.3 Interrupt registers
For the addresses of these memory mapped registers see Chapter 11: Peripheral
addresses on page 75.

12.3.1 Interrupt pending register

The 64-bit INTPENDING register holds the current interrupt status. Bits in this
register are set by external interrupts or the INTTEST register.

A number of bits in the INTPENDING register are preassigned to ST220 peripherals.
The remaining bits can be assigned to other peripherals or external devices.

Name: INTPENDING0[31:0], INTPENDING1[63:32]

Interrupt registers 81

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

12.3.2 Interrupt mask register (INTMASK)

The INTMASK register is a 64 bit register whose contents are AND-ed with the
INTPENDING register. It is used to enable and disable external interrupts.

Name: INTMASK0[31:0], INTMASK1[63:32]

Reset Value: 0

Interrupts are enabled by setting, and disabled by clearing, the corresponding bits
the INTMASK register.

Bits 31:16 are fixed set, so that the corresponding interrupt lines are permanently
enabled.

Name Bit(s)
Access

(U/S)
Reset Comment

TIMER0 0 RO/RO 0x0 Interrupt is pending from timer 0.

TIMER1 1 RO/RO 0x0 Interrupt is pending from timer 1.

TIMER2 2 RO/RO 0x0 Interrupt is pending from timer 2.

Reserved [15:3] RO/RO 0x0 System defined - refer to data sheet.

Reserved [31:16] RO/RO 0x0 System defined non-maskable interrupts
- refer to data sheet.

Table 18: INTPENDING0 bit fields

Name Bit(s)
Access

(U/S)
Reset Comment

Reserved [31:0] RO/RO 0x0 System defined - refer to data sheet.

Table 19: INTPENDING1 bit fields

82 Interrupt registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

INTMASKCLR and INTMASKSET

Two 64-bit address locations in the interrupt controller memory space support
bit-wise access to the INTMASK register. A store to these locations causes the
corresponding bits in the INTMASK register to be cleared or set.

Name: INTMASKCLR0[31:0], INTMASKCLR1[63:32], INTMASKSET0[31:0],
INTMASKSET1[63:32]

Reset Value: 0

Using this method of accessing the INTMASK register avoids any problems caused by
interrupts occuring during a Read-Modify-Write sequence and therefore avoids the
need to have interrupts disabled while modifying these registers.

12.3.3 Interrupt test register (INTTEST)

The INTTEST register is a 64-bit register whose contents are OR-ed with external
interrupts. It provides a mechanism for simulating interrupts to the processor.

Name: INTTEST0[31:0], INTTEST1[63:32]

Reset Value: 0

Setting bits in the INTTEST register causes the corresponding bits in the INTPENDING
register to be set.

INTCLR and INTSET

Two 64-bit address locations in the interrupt controller memory space support
bit-wise access to the INTTEST register. A store to these locations causes the
corresponding bits in the INTTEST register to be cleared or set.

Name: INTCLR0[31:0], INTCLR1[63:32], INTSET0[31:0], INTSET1[63:32]

Reset Value: 0

Using this method of accessing the INTTEST register avoids the overhead in a direct
write of having to read, save and restore unaccessed bits.

Programming 83

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

12.4 Programming

12.4.1 Enabling/disabling interrupts

Interrupts are enabled and disabled by setting and clearing the appropriate bits in
the INTMASK register.

In the ST220 interrupts 31:16 are non-maskable and permanently enabled.
INTMASK register bits 31:16 are tied to high.

The INTMASK register can written to directly as two 32-bit words, or bit-wise using
the mask clear and mask set locations, see INTMASKCLR and INTMASKSET on
page 82.

12.4.2 Test register

Interrupts can be simulated for test purposes by setting bits in the INTTEST register.
This register is directly OR-red with the external interrupt signals into the
INTPENDING register.

The INTTEST register can written to directly as two 32-bit words, or bit-wise using
the test clear and test set locations, see INTCLR and INTSET on page 82.

Note: INTTEST register bits are not reset when the interrupt is taken and must be explicitly
cleared by the program.

12.4.3 Interrupt priority

The interrupt handling code is responsible for prioritization of interrupts. No
hardware support is provided.

12.4.4 Timer interrupts

The first three bits in the INTTEST register are also used in conjunction with the
timer. When a timer interrupt occurs the corrisponding bit in the INTTEST register is
set (timer 0 sets bit 0, timer 1 sets bit 1 and timer 2 sets bit 2). This prevents timer
interrupts from being lost. When a timer interrupt is serviced the software should
clear the correct bit in the INTTEST register.

84 Programming

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Debugging
support
13.1 Overview

Debugging support on the ST220 is provided by 4 main components.

• Core

The ST220 core includes a non maskable debug interrupt, and additional state to
support the taking of debug interrupts. The core also contains hardware
breakpoint support.

• DSU

Shared DSU registers and state machine which generates debug interrupts and
send responses over debug interface.

• Debug ROM

Default program run in response to debug interrupt. This program uses the DSU
registers to send higher level protocols over the debug interface. This program
implements the DSU_PEEK, DSU_POKE, DSU_CALL_OR_RETURN and DSU_FLUSH
operations.

• Host debug interface

The hardware link, using the TAPlink protocol, to any connected host target
interface (HTI). Supports peek, poke, peeked and event messages.

86 Core

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

13.2 Core

13.2.1 Debug interrupts

The ST220 can accept and service interrupts from the DSU. Debug interrupts are
higher priority than normal interrupts, cannot be masked, and place the ST220 in a
debug state.

Debug interrupt handling

A debug interrupt is handled differently to other external interrupts.

Taking a debug interrupt can be summarized as:

NEXT_PC ← DEBUG_HANDLER_PC; // Branch to handler

SAVED_SAVED_PSW ← SAVED_PSW; // Save the SAVED_PSW and
SAVED_SAVED_PC ← SAVED_PC; // SAVED_PC

SAVED_PSW ← PSW; // Save the PSW and PC
SAVED_PC ← BUNDLE_PC; //

PSW[USER_MODE] ← 0; // Enter supervisor mode
PSW[INT_ENABLE] ← 0; // Disable interrupts
PSW[IBREAK_ENABLE] ← 0; // Disable instruction breakpoints
PSW[DBREAK_ENABLE] ← 0; // Disable data breakpoints
PSW[IPU_ENABLE] ← 0; // Disable the IPU
PSW[DPU_ENABLE] ← 0; // Disable the DPU
PSW[DEBUG_MODE] ← 1; // Enter debug mode

Exiting debug mode

Debug mode is exited, and normal mode re-entered, when the DEBUG_MODE bit is
cleared in the PSW. The only supported method for writing the PSW is via the rfi
operation (see Section 3.3.4: Supported method for changing the PSW).

Note: Although clearing the DEBUG_MODE bit causes the ST220 to exit debug mode,
attempting to set the DEBUG_MODE bit when it is not already set does not cause the
core to enter debug mode and the DEBUG_MODE bit remains clear. Debug mode can
only be entered by taking a debug interrupt from the DSU.

Core 87

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

13.2.2 Hardware breakpoint support

Breakpoints are supported by:

• enable bits in the PSW,

• address registers to define memory ranges,

• control register to specify comparison operations.

The safe way to use the breakpoint registers is to disable the breakpoints and then
set the control and address registers before enabling the breakpoints again. This
will prevent spurious breaks due to inconsistent control and address registers.

Enable bits

Breakpoints are enabled though the PSW, one bit for instruction breakpoints and
another data breakpoints (see Section 3.3: Program status word (PSW)).

Address registers

Two 32-bit registers are used to define addresses for the instruction and data
breakpoints (IBREAK_LOWER, DBREAK_LOWER, IBREAK_UPPER, DBREAK_UPPER).
These registers are all reset to the value 0.

Control registers

Bits [3:0] in this register determine the comparison operations performed on the
breakpoint addresses. If the comparison is true then a breakpoint exception (IBREAK
or DBREAK) is signaled.

For instruction breakpoints the bundle address is used for comparison. For data
breakpoints, the data effective address is used for comparison. The following
comparison operations are defined.

Bit Break point comparison

0 Address <= Upper && Address >= Lower

1 Address > Upper || Address < Lower

2 Address == Upper || Address == Lower

3 Address & Upper == Lower

Table 20: Breakpoint register comparisons

88 Debug support unit

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

13.3 Debug support unit
The DSU allows both software and hardware to be debugged from a host by giving
direct access to the ST220 core.

13.3.1 Architecture

The architecture of the DSU is shown in Figure 9.

The DSU is controlled by a host via the debug interface. The DSU control block
interacts directly with the ST220 core via the DEBUG_INTERRUPT and
DEBUG_INTERRUPT_TAKEN signals, and the shared register block.

The shared registers can also be accessed via the STBus port.

Figure 9: DSU architecture

ST220 core

DEBUG_INTERRUPT_TAKEN

Control
block

Debug Support Unit

Shared
register

bank

DEBUG_INTERRUPT

STBus port

Debug
ROM

WRITEENABLE

Host
debug

interface
Host

Debug support unit 89

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

13.3.2 Shared register bank

The 32 shared registers consists of 3 reserved registers (DSR0-2) and 29 general
purpose registers (DSR3-31). These are used to implement communication between
the host and the target by the debug handler.

The shared register bank is 32-bits wide and only supports 32-bit STBus operations.

DSU shared registers are listed below.

The STBus addresses of the DSU registers are detailed in Chapter 11: Peripheral
addresses on page 75.

Shared access conventions

The DSU shared registers are accesable independently from both the DSU and the
STBus. The ST220 and DSU have no hardware support for synchronizing writes, so
software conventions are used to prevent write conflicts.

Register
Name

Description RW Comments

DSR0 DSU version
register

R Contains ID numbers for DSU, core, and chip
version.

DSR1 DSU status
register

Bits 0-5 R,
others RW

Contains DSU control and status bits.

DSR2 DSU output
register

RW Supports message transfer from target to HTI.

DSR3-31 RW General purpose registers.

90 Debug support unit

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

13.3.3 DSU control registers

DSU version register (DSR0)

The DSU version register is a read-only ID register:

DSU status register (DSR1)

The DSU status register contains the DSU status and control bits.

Name Bit(s)
Access

(U/S)
Reset Comment

PRODUCT_ID [15:0] RO 0x0002 Chip ID.

CORE_VERSION [23:16] RO 0x02 ST220 core version number.

DSU_VERSION [31:24] RO 0x02 DSU design version number.

Table 21: DSR0 bit fields

Name Bit(s)
Access

(U/S)
Reset Comment

DEBUG_INTERRUPT_TAKEN 0 RO 0x0 Value of DEBUG_INTERRUPT_TAKEN
signal, active high.

SUPERVISOR_WRITE_ENABLE 1 RW 0x1 STBus writes enabled if the core is in
supervisor mode (regardless of debug
mode).

USER_WRITE_ENABLE 2 RW 0x0 STBus writes enabled if the core is in
user mode (regardless of debug mode).

Reserved [4:3] RO 0x0 Reserved

OUTPUT_PENDING 5 RO 0x0 DSR2 contains a byte to be sent to the
HTI which has not yet been sent.

HW_FLAGS [15:6] RW 0x0 Reserved for future hardware purposes.

SW_FLAGS [31:16] RW 0x0 Reserved for future software use.

Table 22: DSR1 bit fields

Debug ROM 91

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

DSU output register (DSR2)

The lower 8 bits of the DSU output register are sent to the TAPlink (to any attached
host) on being written.

If OUTPUT_PENDING is non-zero then the byte most recently written has not yet been
sent to the HTI and additional writes to the DSR2 will not affect the byte being sent
even if they change the contents of the register.

Messages sent via the DSR2 may be delayed if the DSU is busy.

13.4 Debug ROM
The 1024-byte debug ROM is an ST220 peripheral. This contains the debug
initialization loop and the default debug handler.

13.4.1 Debug initialization loop

On reset the ST220 starts executing at the beginning of the boot ROM. However, if
the DEBUG_ENABLE signal is asserted execution starts at the debug initialization
loop (this is the first word of the debug ROM). This word contains a single syllable
bundle which loops back to the same location, allowing the DSU to intervene and
configure the core before it executes any code.

Note: Where the DEBUG_ENABLE signal cannot be asserted, the boot ROM should start with
a tight loop, or perhaps just a delay loop, to allow time for the DSU to interrupt the
processor before it takes any action.

Name Bit(s)
Access

(U/S)
Reset Comment

DATA [7:0] RW 0x0 Output data.

Reserved [31:8] RO 0x0 Always zero.

Table 23: DSR2 bit fields

92 Debug ROM

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

13.4.2 Default debug handler

The default debug handler program starts at the second word of the debug ROM. It
supports simple host-target debugging and the ability to install a more complex
debug handler. The STBus address of the ROM is given in Chapter 11: Peripheral
addresses on page 75.

Operation

On taking a debug interrupt, the default debug handler is executed. This first tests
if a user handler is installed, DSR3 non zero, and if so branches to this address.
Otherwise the handler waits in the command loop.

Command loop

The command loop reads and processes commands from a host, delivered via the
TAPlink, to the DSU shared registers. Usage of the designated registers is shown in
Table 24.

When the command is complete, the default debug handler stores the results in the
argument registers and sets a success code in the response register.

Default handler commands

DSU_PEEK (DSU_COMMAND =4)

Reads the 32-bit memory location addressed by DSU_ARG1 and returns the data
in DSU_ARG1. The address must be word aligned. If the operation is successful
DSU_RESPONSE is set to DSU_PEEKED (1) and a TAPLINK_EVENT_DEFAULT
(reason=7) event is sent to the HTI.

Note: Any code greater than 4 is interpreted as a DSU_PEEK command.

Register name Host use Target use

DSU_COMMAND Set with command Zeroed when command accepted

DSU_ARG1,2,3 Set with arguments for command,
before setting DSU_COMMAND

Set with response arguments before
setting DSU_RESPONSE

DSU_RESPONSE Zeroed after being read Set to indicate outcome of a command

Table 24: Command register usage

Debug ROM 93

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

DSU_POKE (DSU_COMMAND = 3)

Writes the 32-bit data word in DSU_ARG2 to the memory location addressed by
DSU_ARG1. The address must be word aligned. If the operation is successful
DSU_RESPONSE is set to DSU_POKED (2) and a TAPLINK_EVENT_DEFAULT
(reason=7) event is sent to the HTI.

DSU_CALL_OR_RETURN (DSU_COMMAND = 1)

Calls the routine addressed by DSU_ARG1. If the called routine does not return
this is effectively a branch. If DSU_ARG1 is zero this is a return call. Just before
calling the user routine, or returning from a call, DSU_RESPONSE is set to
DSU_RETURNING (3) and a TAPLINK_EVENT_DEFAULT (reason=7) event is sent to
the host.

DSU_FLUSH (DSU_COMMAND = 2)

Flushes the address range delimited by DSU_ARG1 and DSU_ARG2 from data and
instruction caches.

If a command was successful DSU_RESPONSE is set to DSU_FLUSHED (4) and a
TAPLINK_EVENT_DEFAULT (reason=7) event is sent to the host.

Trap handler

If a trap occurs while a command is being processed, for example, an invalid address
supplied on a peek or poke:

• the operation in progress is completed by loading the PC of the offending bundle,
the exception cause, and the exception address into DSR_ARG1, DSR_ARG2 and
DSR_ARG3 respectively.

• DSU_RESPONSE is set to DSU_GOT_EXCEPTION (Code=5) and a
TAPLINK_EVENT_DEFAULT (Reason=7) event is sent to the HTI.

• As for all exceptions, the SAVED_PC and SAVED_PSW registers will have been
updated when the exception occured.

Context restore

Prior to exit the default handler restores any state it has altered.

Note: The context may have been additionally altered by commands issued.

94 Debug ROM

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Default handler register usage

The following DSU registers are defined and used by the default debug handler
program:

DSR
number

Designation Comment

DSR3 DSR_USER_DEBUG_HANDLER Control switches to this address if content is non-zero.

DSR4-8a DSU_ARG4-8 Not used in current debug handler.

DSR9a DSU_ARG3 Command argument 3.

DSR10a DSU_ARG2 Command argument 2. Used by DSU_POKE and
DSU_FLUSH.

DSR11a DSU_ARG1 Command argument 1. Used by all DSU commands.

DSR12 DSU_COMMAND Command register. Written by HTI, cleared by target
when command accepted.

DSR13 DSU_RESPONSE Response register. Set by target to a completion code,
cleared by HTI before issuing next command.

DSR14 Context saving Saves SCR4_REGb

DSR15 Context saving Saves SCR1_REGb

DSR16 Context saving Saves SCR2_REGb

DSR17 Context saving Saves SCR3_REGb

DSR18 Context saving Saves the branch bits

DSR19 Context saving Saves LINK_REGb

DSR20 Context saving Saves HANDLER_PC

DSR21 Context saving Saves SAVED_SAVED_PSW

DSR22 Context saving Saves SAVED_SAVED_PC

DSR23 Context saving Saves SAVED_PSW

DSR24 Context saving Saves SAVED_PC

DSR25 Context saving Saves EXCAUSE

DSR26 Context saving Saves EXADDRESS

Table 25: DSU command registers

Host debug interface 95

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

13.5 Host debug interface
Exchange of information with the host is via a host target interface (HTI) adaptor.
The DSU connects to the HTI via a JTAG interface, and the HTI connects to the host
via Ethernet, USB, serial port or parallel port. This is illustrated in Figure 10.

All host-target communication is done with peek, poke, peeked and event
messages sent between the host and the DSU.

13.5.1 Message format

Commands are sent to the DSU in Taplink message format consisting of a
bidirectional byte stream which is interpreted by the DSU as a stream of commands.
Figure 11 shows the DSU commands in Taplink message format.

DSR27-30 Unused Unused

DSR31 Context saving Saves DSR1

a. Argument registers are placed before the command register in the address space so
that a command and its arguments can be loaded with a single poke operation.

b. As defined by the ABI (see ST200 Programming Manual)

DSR
number

Designation Comment

Table 25: DSU command registers

Figure 10: DSU overview

Host
HTI ST220 core

JTAG
DSUadapter

96 Host debug interface

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Note: Messages are transmitted little endian, independent of the endianness of the ST220
core.

Header bytes

Header bytes contain command-specific information such as the range of registers
to be accessed. Header byte formats for the 4 DSU commands are illustrated in
Figure 12.

Figure 11: DSU commands

Poke

HTI Initiated Messages

Response Messages

DSR Address First Data Word Second...

Peek DSR Address

Peeked First Data Word Second Data Word Third...

Event

Header
Byte

2nd
Byte

HTI or Target Initiated Messages

Figure 12: Header bytes

01234567

Poke 00word count

01234567

Peek 10word count

01234567

Peeked 01word count

01234567

Event 11

Header Byte
Subsequent Bytes

reasonchannel

Host debug interface 97

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Peek and poke operation

Peek and poke commands read and write the shared DSU registers. Each
command uses a 6-bit count and one byte as a register address. The byte address
references the first register in the range, and the count indicates how many
registers are accessed. Counts greater than 32 are interpreted as 32.

Register addresses wrap, so a peek or poke with an address of 30 and a count of 4
will access registers DSR30, DSR31, DSR0 and DSR1, in that order.

The result of a peek command is returned to the host using a peeked message.

Note: Peeked messages are not supported from the host to the target and their behavior is
undefined.

13.5.2 Operation

Generating debug interrupts

In order to interrupt the core, the host sends an event with reason=1. The event is
decoded by the DSU and a DEBUG_INTERRUPT signal is sent to the ST220. When the
ST220 takes the interrupt (as described in Debug interrupt handling on page 86)
the DEBUG_INTERRUPT_TAKEN signal goes high.

The functionality available to the host is then dependent on the debug handler
program running. The default handler uses designated shared registers to provides
the higher level operations detailed in Default handler commands on page 92.

Core initiated events

The core can also request service from the host by sending it an event message.
This is done by writing the event to the DSR2 (the output register). The channel and
reason fields of the event message are not examined by the hardware and can be
used as desired by the software.

98 Host debug interface

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Performance
monitoring

The ST220 provides a hardware instrumentation system which consists of a control
register (PM_CR), a core clock counter (PM_PCLK) and four event counters (PM_CNTi, i
= 0, 1, 2, 3). They are all mapped to addresses in the control register space as defined
in Section 9.3: Control register addresses on page 66.

The system allows the user to simultaneously monitor up to four of the sixteen
predefined events.

14.1 Events
The programmable events supported by the ST220 are the following:

Unit Encoding Event Description

Data cache

00000 DHit Data cache hits. The number of load and stores
that hit the cache. This includes uncached
accesses that hit the cache.

00001 DMiss The number of load and stores that miss the
cache. This includes stores that miss the cache
and are sent to the write buffer.

Uncached accesses are not included in this count.

00010 DMissCycles The number of cycles the core is stalled due to the
data cache being busy.

Table 26: Monitored events

100 Access to registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

All the events relating to the architectural state of the machine are sampled when
bundles commit.

14.2 Access to registers
As all the performance monitoring registers are mapped into the control register
space, writing to them is only supported in supervisor mode. An attempt to write to
a register in user mode will cause a CREG_ACCESS_VIOLATION exception.

Reading from the registers is permitted in both user and supervisor modes.

Data cache
(cont’d)

00011 PftIssued The number of prefetches that are sent to the
STBus.

00100 PftHits The number of cached loads that hit the prefetch
buffer.

00101 WBHits The number of writes that hit the write buffer.

Instruction
cache

00110 IHit The number of accesses the instruction buffer
made that hit the instruction cache.

00111 IMiss The number of accesses the instruction buffer
made that missed the instruction cache.

01000 IMissCycles The number of cycles the instruction cache was
stalled for.

01001 IBufInvalid Duration where IBuffer is not able to issue a
bundles to the pipeline.

Core

01010 Bundles Bundles executed

01011 LDST Load/Store instructions executed

01100 TakenBr Number of taken branches

01101 NotTakenBr Number of branches not taken

01110 Exceptions Number of exceptions and debug interrupts

01111 Interrupts Number of interrupts

Reserved 1xxxx Undefined These 16 event numbers are unused on the ST220
and are reserved for future usage.

Unit Encoding Event Description

Table 26: Monitored events

Control register (PM_CR) 101

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

14.3 Control register (PM_CR)
The control register is used to reset and enable all the counters, and define the
events of the four programmable count registers. The purpose of each of the fields is
given below:

Writing to the PM_CR updates the value and reading from the PM_CR returns the
register’s current value.

Name Bit(s)
Access

(U/S)
Reset Comment

ENB 0 RO/RW 0x0 When 1, counting is enabled. When 0
counting is disabled.

RST 1 RO/RW 0x0 When a 1 is written all the counters
(PM_CNT0-3 and PM_PCLK) are set to
zero. If a 0 is written it is ignored. This
field does not retain its value and so
always reads as 0.

Reserved [11:2] RO/RW 0x0 Reserved

EVENT0 [16:12] RO/RW 0x0 5-bit field specifying the event being
monitored for this counter. Only values
0-15 have defined events associated
with them.

EVENT1 [21:17] RO/RW 0x0 5-bit field specifying the event being
monitored for this counter. Only values
0-15 have defined events associated
with them.

EVENT2 [26:22] RO/RW 0x0 5-bit field specifying the event being
monitored for this counter. Only values
0-15 have defined events associated
with them.

EVENT3 [31:27] RO/RW 0x0 5-bit field specifying the event being
monitored for this counter. Only values
0-15 have defined events associated
with them.

Table 27: PM_CR bit fields

102 Event counters (PM_CNTi)

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

14.4 Event counters (PM_CNTi)
Each of the four event counters is incremented by one each time the countable event
specified in the PM_CR occurs. The four programmable event counters can record any
one of the events specified in Table 26 on page 99.

Reading from these registers return the current event count. Writing will change
the current count. If a counter is written at the same time as an event triggers the
counter to increment then the increment is ignored.

14.5 Clock counter (PM_PCLK)
The PM_PCLK register is read only. Reading the PM_PCLK register returns a 32-bit
value. Writes to PM_PCLK are ignored. This counter will silently wrap back to zero
when it overflows.

14.6 Recording events
To start recording, an ST220 general purpose register needs to be written with the
desired fields. This can be achieved by first reading the PM_CR register, then
modifying it as appropriate. The ENB bit needs to be set to 1. The RST bit needs to be
set to 1 if the counters are to be reset. The four programmable counter fields need to
be set or modified to reflect change in events being recorded. The value in the
register is then written to the memory mapped PM_CR for the operation to begin.

To stop recoding, the value of PM_CR be read, the ENB bit set to zero, and then
written back to PM_CR. No other bits must be changed. If the RST bit is set to 1 then
the PM_CNTi registers will be reset.

Whilst counting events over a long period of time, the 32-bit counters may overflow.
This overflow will happen silently and the values will wrap around to zero. To obtain
a continuous profile the counters must be read and reset at appropriate regular
intervals (depending on the core clock frequency).

Recording events 103

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Figure 13: Performance monitor hardware organization

PM_CNT0
(Incrementor 32-bit)

Instruction
Cache

Data
Cache

Core

32:1 Mux

32:1 Mux

32:1 Mux

32:1 Mux

Cntr2 Cntr1Cntr3 Cntr0 r0 (Res) e

/5

/5

/5

/5

PM_CNT1
(Incrementor 32-bit)

PM_CNT2
(Incrementor 32-bit)

PM_CNT3
(Incrementor 32-bit)

PM_PCLK
(Incrementor 32-bit)P Clk

/1

/1

104 Recording events

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Execution
model

15.1 Introduction
This chapter defines the way in which bundles are executed in terms of their
component operations.

In the absence of any exceptional behavior the execution is straightforward.

The bundle is fetched from memory. The operations within it are decoded, and their
operands read. The operations then execute and writeback their results to the
architectural state of the machine. It is important to note that all instructions in a
bundle commit their results to the state of the machine at the same point in time.
This is known as the commit point.

In the presence of exceptional behavior the commit point is used to distinguish
between recoverable and non-recoverable exceptions.

Exceptions which can be detected prior to the commit point are treated as
recoverable. They are recoverable because the machine state has not been updated,
hence the state prior to the execution of the bundle can be recovered. In some cases
the cause of the exception can be corrected and the bundle restarted.

Conversely non-recoverable exceptions are detected after the commit point.
Machine state has been updated and in some cases it may not even be clear which
bundle caused the exception. Non-recoverable exceptions are naturally of a serious
nature and cannot be restarted. The cause is normally an error in the external
memory system, these translate to a bus error exception. On the ST220 this is the
only non-recoverable exception.

106 Bundle fetch, decode, and execute

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

15.2 Bundle fetch, decode, and execute
The fetching, decoding and executing of bundles is specified using an abstract
sequential model to show the effects on the architectural state of the machine. In
this abstract model, each bundle is executed sequentially with respect to other
bundles. This means that all actions associated with one bundle are completed
before any actions associated with the next are started.

Implementations will generally make substantial optimizations over this abstract
model. However, for typical well-disciplined bundle sequences these effects will not
be architecturally visible. A fuller description of the behavior in other cases is
defined by the Chapter 5: Traps: exceptions and interrupts on page 31.

Note: This simple model does not take into account the latency constraints of operands, and
is therefore only valid for hazard free code. All code generated by the compiler is
hazard free.

The execution flow shown in Figure 14 uses notation defined in Chapter 16:
Specification notation on page 109. Additional functions that have been used to
abstract out details are described in Section 15.3.

Bundle fetch, decode, and execute 107

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Figure 14: Execution model

REPEAT oper FROM 1 FOR NUM_OPERS
 Commit(oper);

Bus error?

Debug
interrupt?

Yes
THROW

EXTERN_INT

No

Fetch bundle from memory

Start

Yes

Exception
detected?

No

Yes

NumWords(PC) > 4

No

THROW
ILL_INST

Yes

InitiateDebugIntHandler(); InitiateExceptionHandler();

REPEAT oper FROM 1 FOR NUM_OPERS
 Pre-commit(oper);

Interrupt?

No

No

THROW
STBUS_IC_ERROR

Data Cache?

THROW
STBUS_DC_ERROR

No

YesYes

BUNDLE_PC ZeroExtend 32 (PC);

NUM_OPERS NumWords(PC) - NumExtImms(PC);

BUNDLE_SIZE NumWords(PC) x 4;

PC Register(BUNDLE_PC + BUNDLE_SIZE);

108 Functions

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

15.3 Functions
The flow chart, Figure 14, contains a number of functions which abstract out some
the details. Those functions are described in this section. Starting with those used in
the decode phase, then execution of operations, and finally the exceptional cases.

15.3.1 Bundle decode

15.3.2 Operation execution

15.3.3 Exceptional cases

Function Description

NumWords(address) Returns the number of words in the bundle. The return value is
equal to the number of contiguous words, starting from address,
without their stop bit set + 1.

NumExtImms(address) Returns the number of extended immediates in the bundle
starting at address.

Table 28: Bundle decode functions

Function Description

Pre-commit(n) For the operation nth operation in the bundle, execute the

Pre-commit phase (Section 17.3)a.

a. Where n is in the range [1 .. number of operations in the bundle] inclusive.

Commit(n) For the operation nth operation in the bundle, execute the Commit

phase (Section 17.3)a.

Table 29: Operation execution functions

Function Description

InitiateExceptionHandler() Execute the statements defined in Section 5.3: Saved execution
state on page 32.

InitiateDebugIntHandler() Execute the statements defined in Debug interrupt handling on
page 86.

Table 30: Operation execution functions

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Specification
notation

16.1 Overview
The language used to describe the operations, exceptions and interrupts has the
following features:

• a simple variable and type system (see Section 16.2),

• expressions (see Section 16.3),

• statements (see Section 16.4),

• notation for the architectural state of the machine (see Section 16.5).

Additional mechanisms are defined to model memory (Section 16.6.2), control
registers (Section 16.6.3), and cache instructions (Section 16.6.4).

Each instruction is described using informal text as well as the formal language.
Sometimes it is inappropriate for one of these descriptions to convey the full
semantics. In such cases the two descriptions must be taken together to constitute
the full specification. In the case of an ambiguity or a conflict, the notational
language takes precedence over the text.

110 Variables and types

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.2 Variables and types
Variables are used to hold state. The type of a variable determines the set of values
that the variable can take and the available operators. The scalar types are integers,
booleans and bit-fields. One-dimensional arrays of scalar types are also supported.

The architectural state of the machine is represented by a set of variables. Each of
these variables has an associated type, which is either a bit-field or an array of
bit-fields. Bit-fields are used to give a bit-accurate representation.

Additional variables are used to hold temporary values. The type of temporary variables
is determined by their context rather than explicit declaration. The type of a temporary
variable is an integer, a boolean or an array of these.

16.2.1 Integer

An integer variable can take the value of any mathematical integer. No limits are
imposed on the range of integers supported. Integers obey their standard
mathematical properties. Integer operations do not overflow. The integer operators
are defined so that singularities do not occur. For example, no definition is given to
the result of divide by zero; the operator is simply not available when the divisor is
zero.

The representation of literal integer values is achieved using the following
notations:

• Unsigned decimal numbers are represented by the regular expression: [0-9]+

• Signed decimal numbers are represented by the regular expression: -[0-9]+

• Hexadecimal numbers are represented by the regular expression:
0x[0-9a-fA-F]+

• Binary numbers are represented by the regular expression: 0b[0-1]+

These notations are standard and map onto integer values in the obvious way.
Underscore characters (‘_’) can be inserted into any of the above literal
representations. These do not change the represented value but can be used as
spacers to aid readability.

Variables and types 111

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

16.2.2 Boolean

A boolean variable can take two values:

• Boolean false. The literal representation of boolean false is FALSE.

• Boolean true. The literal representation of boolean true is TRUE.

16.2.3 Bit-fields

Bit-fields are provided to define ‘bit-accurate’ storage.

Bit-fields containing arbitrary numbers of bits are supported. A bit-field of b bits
contains bits numbered from 0 (the least significant bit) up to b-1 (the most
significant bit). Each bit can take the value 0 or the value 1.

Bit-fields are mapped to, and from, unsigned integers in the usual way. If bit i of a
b-bit bit-field, where i is in [0, b), is set then it contributes 2i to the integral value of
the bit-field. The integral value of the bit-field as a whole is an integer in the range
[0, 2b).

Bit-fields are mapped to, and from, signed integers using two’s complement
representation. This is as above, except that the bit b-1 of a b-bit bit-field
contributes -2(b-1) to the integral value of the bit-field. The integral value of the
bit-field as a whole is an integer in the range [-2b-1, 2b-1).

A bit-field may be used in place of an integer value. In this case the integral value of
the bit-field is used. A bit-field variable may be used in place of an integer variable
as the target of an assignment. In this case the integer must be in the range of
values supported by the bit-field.

16.2.4 Arrays

One-dimensional arrays of the above types are also available. Indexing into an
n-element array A is achieved using the notation A[i] where A is an array of some
type and i is an integer in the range [0, n). This selects the ith. element of the array
A. If i is zero this selects the first entry, and if i is n-1 then this selects the last entry.
The type of the selected element is the base type of the array.

Multi-dimensional arrays are not provided.

112 Expressions

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.3 Expressions
Expressions are constructed from monadic operators, dyadic operators and
functions applied to variables and literal values.

There are no defined precedence and associativity rules for the operators.
Parentheses are used to specify the expression unambiguously.

Sub-expressions can be evaluated in any order. If a particular evaluation order is
required, then sub-expressions must be split into separate statements.

16.3.1 Integer arithmetic operators

Since the notation uses straightforward mathematical integers, the set of standard
mathematical operators is available and already defined.

The standard dyadic operators are listed in Table 31.

The standard monadic operators are described in Table 32.

The division operator truncates towards zero. The remainder operator is consistent
with this. The sign of the result of the remainder operator follows the sign of the
dividend. Division and remainder are not defined for a divisor of zero.

Operation Description

i + j Integer addition

i - j Integer subtraction

i × j Integer multiplication

i / j Integer division*

i \ j Integer remainder*

* These operators are defined only for j <> 0

Table 31: Standard dyadic operators

Operator Description

- i Integer negation

|i| Integer modulus (absolute value)

Table 32: Standard monadic operators

Expressions 113

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

For a numerator (n) and a denominator (d), the following properties hold where
d≠0:

16.3.2 Integer shift operators

The available integer shift operators are listed in Table 33.

The shift operators are defined on integers as follows where b ≥ 0:

Note that right shifting by b places is a division by 2b but with the result rounded
towards minus infinity. This contrasts with division, which rounds towards zero,
and is the reason why the right shift definition is separate for positive and negative
n.

n d n d⁄()× n\d()+=

n–() d⁄ n d⁄()– n d–()⁄= =

n–()\d n\d()–=

n\ d–() n\d=

0 n\d() d<≤ where n 0≥ and d 0>

Operation Description

n << b Integer left shift

n >> b Integer right shift

Table 33: Shift operators

n b« n 2b×=

n b»
n 2b⁄ where n 0≥

n 2b 1+–() 2b⁄ where n 0<⎩
⎪
⎨
⎪
⎧

=

114 Expressions

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.3.3 Integer bitwise operators

The available integer bitwise operators are listed in Table 34.

In order to define bitwise operations all integers are considered as having an
infinitely long two’s complement representation. Bit 0 is the least significant bit of
this representation, bit 1 is the next higher bit, and so on. The value of bit b, where
b ≥ 0, in integer n is given by:

Care must be taken whenever the infinitely long two’s complement representation
of a negative number is constructed. This representation will contain an infinite
number of higher bits with the value 1 representing the sign. Typically, a
subsequent conversion operation is used to discard these upper bits and return the
result back to a finite value.

Bitwise AND (∧), OR (∨), XOR (⊕) and NOT (∼) are defined on integers as follows,
where b takes all values such that b ≥ 0:

Note that bitwise NOT of any finite positive i will result in a value containing an
infinite number of higher bits with the value 1 representing the sign.

Operation Description

i ∧ j Integer bitwise AND

i ∨ j Integer bitwise OR

i ⊕ j Integer bitwise XOR

~ i Integer bitwise NOT

n<b FOR m> Integer bit-field extraction: extract m bits starting at bit b from integer n

n Integer bit-field extraction: extract 1 bit starting at bit b from integer n

Table 34: Bitwise operators

BIT n b,() n 2⁄ b()\2 where n 0≥=

BIT n b,() 1 BIT n– 1–() b,()– where n 0<=

BIT i j∧ b,() BIT i b,() BIT j b,()×=

BIT i j∨ b,() BIT i j∧ b,() BIT i j⊕ b,()+=

BIT i j⊕ b,() BIT i b,() BIT j b,()+()\2=

BIT ~i b,() 1 BIT i b,()–=

Expressions 115

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Bitwise extraction is defined on integers as follows, where b ≥ 0 and m > 0:

The result of n<b FOR m> is an integer in the range [0, 2m).

16.3.4 Relational operators

Relational operators are defined to compare integral values and give a boolean
result.

n b FOR m〈 〉 n b»() 2m 1–()∧=

n b〈 〉 n b FOR 1〈 〉=

Operation Description

i = j Result is TRUE if i is equal to j, otherwise FALSE

i ≠ j Result is TRUE if i is not equal to j, otherwise FALSE

i < j Result is TRUE if i is less than j, otherwise FALSE

i > j Result is TRUE if i is greater than j, otherwise FALSE

i ≤ j Result is TRUE if i is less than or equal to j, otherwise FALSE

i ≥ j Result is TRUE if i is greater than or equal to j, otherwise FALSE

Table 35: Relational operators

116 Expressions

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.3.5 Boolean operators

Boolean operators are defined to perform logical AND, OR, XOR and NOT. These
operators have boolean sources and result. Additionally, the conversion operator
INT is defined to convert a boolean source into an integer result.

16.3.6 Single-value functions

In some cases it is inconvenient or inappropriate to describe an expression directly
in the specification language. In these cases a function call is used to reference the
undescribed behavior.

A single-value function evaluates to a single value (the result), which can be used in
an expression. The type of the result value can be determined by the expression
context from which the function is called. There are also multiple-value functions
which evaluate to multiple values. These are only available in an assignment
context, and are described in Section 16.4.2: Assignment on page 118.

Functions can contain side-effects.

Arithmetic functions

Operation Description

i AND j Result is TRUE if i and j are both true, otherwise FALSE

i OR j Result is TRUE if either/both i and j are true, otherwise FALSE

i XOR j Result is TRUE if exactly one of i and j are true, otherwise FALSE

NOT i Result is TRUE if i is false, otherwise FALSE

INT i Result is 0 if i is false, otherwise 1

Table 36: Boolean operators

Function Description

CountLeadingZeros(i) Convert integer i to 32-bit bitfield and return the number of leading zeros in
the bitfield. For example:
If i<31> is 1 then the return value is 0.
If all bits are 0 then the return value is 32.

Table 37: Arithmetic functions

Expressions 117

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Scalar conversions

Two monadic functions are defined to support conversion from integers to
bit-limited signed and unsigned number ranges. For a bit-limited integer
representation containing n bits, the signed number range is [-2n-1, 2n-1) while the
unsigned number range is [0, 2n).

These functions are often used to convert between signed and unsigned bit-limited
integers and between bit-fields and integer values.

These two functions are defined as follows, where n > 0:

For syntactic convenience, conversion functions are also defined for converting an
integer or boolean to a single bit and to a value which can be stored as a 32-bit
register. Table 39 shows the additional functions provided.

Function Description

ZeroExtendn(i) Convert integer i to an n-bit 2’s complement unsigned range

SignExtendn(i) Convert integer i to an n-bit 2’s complement signed range

Table 38: Integer conversion operators

ZeroExtendn i() i 0 FOR n〈 〉=

SignExtendn i()

i 0 FOR n〈 〉 where i n 1–〈 〉 0=

i 0 FOR n 1–()〈 〉 2n
– where i n 1–〈 〉 1=

⎩
⎪
⎨
⎪
⎧

=

Operation Description

Bit(i) If i is a boolean, then this is equivalent to Bit(INT i).

Otherwise, convert lowest bit of integer i to a 1-bit value

This is a convenient notation for i<0>

Register(i) If i is a boolean, then this is equivalent to Register(INT i).

Otherwise, convert lowest 32 bits of integer i to an unsigned 32-bit value

This is a convenient notation for i<0 FOR 32>

Table 39: Conversion operators from integers to bit-fields

118 Statements

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.4 Statements
An instruction specification consists of a sequence of statements. These statements
are processed sequentially in order to specify the effect of the instruction on the
architectural state of the machine. The available statements are discussed in this
section.

Each statement has a semi-colon terminator. A sequence of statements can be
aggregated into a statement block using ‘{’ to introduce the block and ‘}’ to terminate
the block. A statement block can be used anywhere that a statement can.

16.4.1 Undefined behavior

The statement:

UNDEFINED();

indicates that the resultant behavior is architecturally undefined.

A particular implementation can choose to specify an implementation-defined
behavior in such cases. It is very likely that any implementation-defined behavior
will vary from implementation to implementation. Exploitation of
implementation-defined behavior should be avoided to allow software to be portable
between implementations.

In cases where architecturally undefined behavior can occur in user mode, the
implementation will ensure that implemented behavior does not break the
protection model. Thus, the implemented behavior will be some execution flow that
is permitted for that user mode thread.

16.4.2 Assignment

The ‘←’ operator is used to denote assignment of an expression to a variable. An
example assignment statement is:

variable ← expression;

The expression can be constructed from variables, literals, operators and functions
as described in Section 16.3: Expressions on page 112. The expression is fully
evaluated before the assignment takes place. The variable can be an integer, a
boolean, a bit-field or an array of one of these types.

Statements 119

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Assignment to architectural state

This is where the variable is part of the architectural state (as described in
Table 40: Scalar architectural state on page 122). The type of the expression and the
type of the variable must match, or the type of the variable must be able to
represent all possible values of the expression.

Assignment to a temporary

Alternatively, if the variable is not part of the architectural state, then it is a
temporary variable. The type of the variable is determined by the type of expression.
A temporary variable must be assigned to, before it is used in the instruction
specification.

Assignment of an undefined value

An assignment of the following form results in a variable being initialized with an
architecturally undefined value:

variable ← UNDEFINED;

After assignment the variable will hold a value which is valid for its type. However,
the value is architecturally undefined. The actual value can be unpredictable; that
is to say the value indicated by UNDEFINED can vary with each use of
UNDEFINED. Architecturally-undefined values can occur in both user and
privileged modes.

A particular implementation can choose to specify an implementation-defined value
in such cases. It is very likely that any implementation-defined values will vary
from implementation to implementation. Exploitation of implementation-defined
values should be avoided to allow software to be portable between implementations.

Assignment of multiple values

Multi-value functions are used to return multiple values, and are only available
when used in a multiple assignment context. The syntax consists of a list of
comma-separated variables, an assignment symbol followed by a function call. The
function is evaluated and returns multiple results into the variables listed. The
number of variables and the number of results of the function must match. The
assigned variables must all be distinct (that is, no aliases).

120 Statements

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

For example, a two-valued assignment from a function call with 3 parameters can be
represented as:

variable1, variable2 ← call(param1, param2, param3);

16.4.3 Conditional

Conditional behavior is specified using IF, ELSE IF and ELSE.

Conditions are expressions that result in a boolean value. If the condition after an
IF is true, then its block of statements is executed and the whole conditional then
completes. If the condition is false, then any ELSE IF clauses are processed, in
turn, in the same fashion. If no conditions are met and there is an ELSE clause then
its block of statements is executed. Finally, if no conditions are met and there is no
ELSE clause, then the statement has no effect apart from the evaluation of the
condition expressions.

The ELSE IF and ELSE clauses are optional. In ambiguous cases, the ELSE
matches with the nearest IF.

For example:

IF (condition1)
block1

ELSE IF (condition2)
block2

ELSE
block3

Statements 121

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

16.4.4 Repetition

Repetitive behavior is specified using the following construct:

REPEAT i FROM m FOR n STEP s
block

The block of statements is iterated n times, with the integer i taking the values:

m, m + s, m + 2s, m + 3s, up to m + (n - 1) × s.

The behavior is equivalent to textually writing the block n times with i being
substituted with the appropriate value in each copy of the block.

The value of n must be greater or equal to 0, and the value of s must be non-zero.
The values of the expressions for m, n and s must be constant across the iteration.
The integer i must not be assigned to within the iterated block. The STEP s can be
omitted in which case the step-size takes the default value of 1.

16.4.5 Exceptions

Exception handling is triggered by a THROW statement. When an exception is
thrown, no further statements are executed from the operation specification; no
architectural state is updated. Furthermore, if any one of the operations in a bundle
triggers an exception then none of the operations will update any architectural
state.

If any operation in a bundle triggers an exception then an exception will be taken.
The actions associated with the taking of an exception are described in Section 5.2.

There are two forms of throw statement:

THROW type;

and:

THROW type, value;

where type indicates the type of exception which is launched, and value is an
optional argument to the exception handling sequence. If value is not given, then it
is UNDEFINED.

The exception types and priorities are described in detail in Chapter 5: Traps:
exceptions and interrupts on page 31.

122 Architectural state

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.4.6 Procedures

Procedure statements contain a procedure name followed by a list of
comma-separated arguments contained within parentheses followed by a
semi-colon. The execution of procedures typically causes side-effects to the
architectural state of the machine.

Procedures are generally used where it is difficult or inappropriate to specify the
effect of an instruction using the abstract execution model. A fuller description of
the effect of the instruction will be given in the surrounding text.

An example procedure with two parameters is:

proc(param1, param2);

16.5 Architectural state
Chapter 3: Architectural state on page 25 contains a full description of the visible
state. The notations used in the specification to refer to this state are summarized in
Table 40 and Table 41. Each item of scalar architectural state is a bit-field of a
particular width. Each item of array architectural state is an array of bit-fields of a
particular width.

Architectural state
Type is a bit-field

containing:
Description

PC 32 bits Program counter; address of the current bundle

PSW 32 bits Program Status Word

SAVED_PC 32 bits Copy of the PC used during interrupts

SAVED_PSW 32 bits Copy of the PSW used during interrupts

SAVED_SAVED_PC 32 bits Copy of the PC used during debug interrupts

SAVED_SAVED_PSW 32 bits Copy of the PSW used during debug interrupts

RI where i is in [0, 63] 32 bits 64 x 32-bit general purpose registers

R0 reads as zero

Assignments to R0 are ignored

LR 32 bits Link Register, synonym for R63

Table 40: Scalar architectural state

Architectural state 123

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

BI where i is in [0, 7] 1 bit 8 x 1-bit Branch Registers

Architectural state
Type is an array of bit-
fields each containing:

Description

CRI where i is index of the
control register

32 bits Control Registers, for which some specifications
refer to individual control registers by their
names as defined in the Chapter 9: Control
registers on page 65.

MEM[i] where i is in [0, 232) 8 bits 232 bytes of memory

Table 41: Array architectural state

Architectural state
Type is a bit-field

containing:
Description

Table 40: Scalar architectural state

124 Memory and control registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

16.6 Memory and control registers

16.6.1 Support functions

The following functions are used in the memory and control register descriptions.

Function Description

DataBreakPoint(address) Result is TRUE if address is in the range defined by data
breakpoint control mechanism (Chapter 6: Memory access
protection units on page 39), otherwise FALSE

Misalignedn(address) Result is TRUE if address is not n-bit aligned, otherwise FALSE

DPUNoTranslation(address) Result is TRUE if the DPU has no mapping for address, otherwise
FALSE

DPUSpecLoadRetZero(address) Result is TRUE if the region containing address has the S bit of its
attribute field set (Chapter 6: Memory access protection units on
page 39), otherwise FALSE

ReadAccessViolation(address) Result is TRUE if read access to address is not permitted by the
DPU, otherwise FALSE

WriteAccessViolation(address) Result is TRUE if write access to address is not permitted by the
DPU, otherwise FALSE

IsCRegSpace(address) Result is TRUE if address is in the control register space,
otherwise FALSE

UndefinedCReg(address) Result is TRUE if address does not correspond to a defined
control register, otherwise FALSE

CRegIndex(address) Returns the index of the control register which maps to address

CRegReadAccessViolation(index) Result is TRUE if read access is not permitted to the given control
register, otherwise FALSE

CRegWriteAccessViolation(index) Result is TRUE if write access is not permitted to given control
register, otherwise FALSE

BusReadError(address) Result is TRUE if reading from address generates a Bus Error,
otherwise FALSE

IsDBreakHit(address) Result is TRUE if address will trigger a data breakpoint, otherwise
it is FALSE

Table 42: Support functions

Memory and control registers 125

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

16.6.2 Memory model

The instruction specification uses a simple model of memory. It assumes, for
example, that any caches are not architecturally visible. However, a fuller
description of the behavior in other cases is defined by the text of the architecture
manual.

Array slicing can be used to view an array as consisting of elements of a larger size.
The notation MEM[s FOR n], where n > 0, denotes a memory slice containing the
elements MEM[s], MEM[s+1] through to MEM[s+n-1]. The type of this slice is a
bit-field exactly large enough to contain a concatenation of the n selected elements.
In this case it contain 8n bits since the base type of MEM is byte.

The order of the concatenation depends on the endianness of the processor:

• If the processor is operating in a little endian mode, the concatenation order
obeys the following condition as i (the byte number) varies in the range [0, n):

This equivalence states that byte number i, using little endian byte numbering
(that is, byte 0 is bits 0 to 7), in the bit-field MEM[s FOR n] is the ith. byte in
memory counting upwards from MEM[s].

• If the processor is operating in a big endian mode, the concatenation order obeys
the following condition as i (the byte number) varies in the range [0, n):

This equivalence states that byte number i, using big endian byte numbering
(that is, byte 0 is bits 8n-8 to 8n-1), in the bit-field MEM[s FOR n] is the ith.
byte in memory counting upwards from MEM[s].

For syntactic convenience, functions and procedures are provided to read and write
memory.

Support functions

The specification of the memory instructions relies on the support functions listed in
Table 42 on page 124. These functions are used to model the behavior of the Data
Protection Unit and Instruction Protection Unit described in Chapter 6: Memory
access protection units on page 39.

MEM s FOR n[]() 8i FOR 8〈 〉 MEM s i+[]=

MEM s FOR n[]() 8 n 1– i–() FOR 8〈 〉 MEM s i+[]=

126 Memory and control registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Reading memory

The following functions are provided to support the reading of memory:

The ReadCheckMemoryn procedure takes an integer parameter to indicate the
address being accessed. The number of bits being read (n) is one of 8, 16, or 32. The
procedure throws any alignment or access violation exceptions generated by a read
access to that address.

ReadCheckMemoryn(a);

is equivalent to:

IF (Misalignedn(a))

THROW MISALIGNED_TRAP, a;
IF (PSW[DPU_ENABLE]) {

IF (DPUNoTranslation(a))
THROW DPU_NO_TRANSLATION, a;

IF (ReadAccessViolation(a))
THROW DPU_ACCESS_VIOLATION, a;

}

Function Description

ReadCheckMemoryn(address) Throws any non-BusError exception generated by an n-bit read from
address

ReadMemoryn(address) Issues an n-bit read to address (can generate BusError exception)

DisReadCheckMemoryn(address) Throws any non-BusError exception generated by an n-bit
dismissible read from address

DisReadMemoryn(address) Returns either n-bits from address or 0 (can generate BusError
exception)

ReadMemResponse() Returns the value of the read request issued

Table 43: Memory read functions

Memory and control registers 127

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Similarly, if the memory access is a dismissible read:

DisReadCheckMemoryn(a);

is equivalent to:

IF (Misalignedn(a) AND PSW[SPECLOAD_MALIGNTRAP_EN])

THROW MISALIGNED_TRAP, a;
IF (PSW[DPU_ENABLE] AND PSW[SPECLOAD_DPUTRAP_EN]) {

IF (DPUNoTranslation(a))
THROW DPU_NO_TRANSLATION, a;

IF (ReadAccessViolation(a) AND NOT DPUSpecLoadRetZero(a))
THROW DPU_ACCESS_VIOLATION, a;

}

The ReadMemoryn procedure takes an integer parameter to indicate the address
being accessed. The number of bits being read (n) is one of 8, 16, or 32. The required
bytes are read from memory, interpreted according to endianness, and the read
bit-field value assigned to a temporary integer. If the read memory value is to be
interpreted as signed, then a sign-extension should be used when accessing the
result using ReadMemResponse. The procedure call:

ReadMemoryn(a);

is equivalent to:

width ← n / 8;
IF (BusReadError(a))

THROW BUS_DC_ERROR, a; // Non-recoverable
mem_response ← MEM[a FOR width];

128 Memory and control registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

The DisReadMemoryn performs the same functionality for a dismissible read from
memory. The procedure call:

DisReadMemoryn(a);

is equivalent to:

width ← n / 8;
IF (NOT DPUSpecLoadRetZero(a) AND

NOT Misalignedn(a) AND

NOT ReadAccessViolation(a)) {
IF (BusReadError(a))

THROW BUS_DC_ERROR, a; // Non-recoverable
mem_response ← MEM[a FOR width];

}
ELSE

mem_response ← 0;

The function ReadMemResponse returns the data that will have been read from
memory. The assignment:

result ← ReadMemResponse();

is equivalent to:

result ← mem_response;

Memory and control registers 129

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Prefetching memory

The following procedure is provided to denote memory prefetch.

This is used for a software-directed data prefetch from a specified effective address.
This is a hint to give advance notice that particular data will be required.
PrefetchMemory, performs the implementation-specific prefetch when the
address is valid:

PrefetchMemory(a);

equivalent to:

IF (PSW[DPU_ENABLE])
IF (NOT DPUNoTranslation(a) AND NOT ReadAccessViolation(a))

Prefetch(a);

where Prefetch is a cache operation defined in Section 16.6.4: Cache model on
page 133. Prefetching memory will not generate any exceptions.

Function Description

PrefetchMemory(address) Prefetch memory if possible.

Table 44: Memory prefetch procedure

130 Memory and control registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Writing memory

The following procedures are provided to write memory.

The WriteCheckMemoryn procedure takes an integer parameter to indicate the
address being accessed. The number of bits being written (n) is one of 8, 16, or 32.
The procedure throws any alignment or access violation exceptions generated by a
write access to that address.

WriteCheckMemoryn(a);

is equivalent to:

IF (Misalignedn(a))
THROW MISALIGNED_TRAP, a;

IF (PSW[DPU_ENABLE]) {
IF (DPUNoTranslation(a))

THROW DPU_NO_TRANSLATION, a;
IF (WriteAccessViolation(a))

THROW DPU_ACCESS_VIOLATION, a;
}

The WriteMemoryn procedure takes an integer parameter to indicate the address
being accessed, followed by an integer parameter containing the value to be written.
The number of bits being written (n) is one of 8, 16, 32 or 64 bits. The written value
is interpreted as a bit-field of the required size; all higher bits of the value are
discarded. The bytes are written to memory, ordered according to endianness. The
statement:

WriteMemoryn(a, value);

is equivalent to:

width ← n / 8;
MEM[a FOR width] ← value<0 FOR n>;

Function Description

WriteCheckMemoryn(address) Throws any exception generated by an n-bit write to address

WriteMemoryn(address, value) Aligned n-bit write to memory

Table 45: Memory write procedures

Memory and control registers 131

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

16.6.3 Control register model

Reading control registers

The following procedures are provided to read from control registers.

Note: Only word (32-bit) control register accesses are supported.

The ReadCheckCReg procedure takes an integer parameter to indicate the
address being accessed. The procedure throws any alignment or non-mapping
exception generated by reading from the control register space.

ReadCheckCReg(a);

is equivalent to:

IF (UndefinedCReg(a))
THROW CREG_NO_MAPPING, a;

index ← CRegIndex(a);
IF (CRegReadAccessViolation(index))

THROW CREG_ACCESS_VIOLATION, a;

The control register file is denoted CR. The function ReadCReg is provided:

ReadCReg(a);

is equivalent to:

index ← CRegIndex(a);
mem_response ← CRindex;

Function Description

ReadCheckCReg(address) Throws any exception generated by reading from address in the
control register space

ReadCReg(address) Issues a read from the control register mapped to address

Table 46: Control register read functions

132 Memory and control registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Writing control registers

The following procedures are provided to read from control registers. Note that only
word (32-bit) control register accesses are supported

The WriteCheckCReg procedure takes an integer parameter to indicate the
address being accessed. The procedure throws any alignment, non-mapping or
access violation exceptions generated by writing to the control register space:

WriteCheckCReg(a);

is equivalent to:

IF (UndefinedCReg(a))
THROW CREG_NO_MAPPING, a;

index ← CRegIndex(a);
IF (CRegWriteAccessViolation(index))

THROW CREG_ACCESS_VIOLATION, a;

A procedure called WriteCReg is provided to write control registers:

WriteCReg(a, value);

is equivalent to:

index ← CRegIndex(a);
CRindex ← value;

Function Description

WriteCheckCReg(address) Throws any exception generated by writing to the address in the
control register space

WriteCReg(address, value) Writes value to the control register mapped to address

Table 47: Control registers write procedures

Memory and control registers 133

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

16.6.4 Cache model

Cache operations are used to prefetch and purge lines in caches. The effects of these
operations are beyond the scope of the specification language, and are therefore
modelled using procedure calls. The behavior of these procedure calls is elaborated
in the Chapter 7: Memory subsystem on page 47.

Procedure Description

PurgeIns() Invalidate the entire instruction cache

Sync() Data memory subsystem synchronization function

PurgeAddress(address) Purge address from the data cache

PurgeSet(address) Purge a set of lines from the data cache

Prefetch(address) Prefetch a data cache line if it is in cachable memory

Table 48: Procedures to model cache operations

134 Memory and control registers

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Instruction
set

17.1 Introduction
This chapter contains descriptions of all the operations and macros
(pseudo-operations) in the ST220 instruction set. Section 17.2 has been included in
order to describe how operations are encoded in the context of bundles.

17.2 Bundle encoding
An instruction bundle consists of between one and four consecutive 32-bit words,
known as syllables. Each syllable encodes either an operation or an extended
immediate. The most significant bit of each syllable (bit 31) is a stop bit which is set
to indicate that it is the last in the bundle.

A syllable will therefore look like:

31 30 29 0

stop bit operationreserved

136 Bundle encoding

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

17.2.1 Extended immediates

Many operations have an Immediate form. In general only small (9-bit)
immediates can be directly encoded in a single word syllable. In the event that
larger immediates are required, an immediate extension is used. This extension is
encoded in an adjacent word in the bundle, making the operation effectively a
two-word operation.

These immediate extensions associate either with the operation to their left or their
right in the bundle. Bit 23 is used to indicate the association:

The semantic descriptions of Immediate form operations use the following function
to take into account possible immediate extensions:

This function effectively performs the following:

If there is an immr word to the left (word address - 1) or an imml word to the right
(word address + 1) in the bundle, then Imm returns:

(ZeroExtend23(extension) << 9) + ZeroExtend9(i);

Where extension represents the lower 23 bits of the associated immr or imml.

Otherwise Imm returns:

SignExtend9(i);

31 30 29 24 23 22 0

imml s 010101 0 extension
immr s 010101 1 extension

Figure 15:

Function Description

Imm(i) Given short immediate value i, returns an integer value that
represents the full immediate.

Table 49: Extended immediate functions

Operation specifications 137

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

17.2.2 Encoding restrictions

There are a number of restrictions placed on the encoding of bundles. It is the duty
of the assembler to ensure that these restriction are obeyed.

1 Long immediates must be encoded at even word addresses.

2 Multiply operations must be encoded at odd word addresses.

3 There may only be one control flow operation per bundle, and it must be the first
syllable.

4 There may only be one load or store operation per bundle.

17.3 Operation specifications
The specification of each operation contains the following fields:

• Name: The name of the operation with an optional subscript. The subscript is
used to distinguish between operations with different operand types. For
example, there are Register and Immediate format integer operations. If no
subscript is used, then there is only one format for the operation.

• Syntax: Presents the assembly syntax of the operation (ST200 Programming
Manual).

• Encoding: The binary encoding is summarized in a table. It shows which bits are
used for the opcode, which bits are reserved (empty fields) and which bit-fields
encode the operands. The operands will either be register designators or
immediate constants.

• Semantics: A table containing the statements (Section 16.4) that define the
operation. The notation used is defined in Chapter 16 on page 109. The table is
divided into two parts by the commit point:

Pre-commit phase:

• No architectural state of the machine is updated.

• Any recoverable exceptions will be thrown here. ← Commit point
Commit phase - executed if no exceptions have been thrown:

• All architectural state is updated.

• Any exceptions thrown here are non-recoverablea.

a. For the ST220 the only non-recoverable exception is a bus error.

138 Operation specifications

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

• Description: A brief textual description of the operation.

• Restrictions: Contains any details of restrictions, these may be of the following
types:

- Address/Bundle: In encoding a bundle with the operation there are a number
of possible restrictions which may apply. They are detailed in Section 17.2.2.

- Latency: Certain operands have latency constraints that must be observed.

- Destination restrictions: Certain operations are not allowed to use the Link
Register (LR) as a destination.

• Exceptions: If this operation is able to throw any exceptions, they will be listed
here. The semantics of the operation will detail how and when they are thrown.

Example operations 139

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

17.4 Example operations

17.4.1 add Immediate

The specification for this operation is shown below:

The operation is given the subscript Immediate to indicate that one of its source
operands is an immediate rather than both being registers.

The next line of the description shows the assembly syntax of the operation.

 add Immediate

add RIDEST = RSRC1, ISRC2

Semantics:

Description:

Add

Restrictions:

No address/bundle restrictions.
No latency constraints.

s 0010 00000 ISRC2 IDEST SRC1

31 30 29 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 + operand2;

RIDEST ← Register(result);

140 Example operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Just below is the binary encoding table with fields showing:

• The opcode: Bits 29:21.

• The operands: An s in bit 31 represents the stop bit (Section 17.2).

- The 9-bit immediate constant, bits 20:12.

- The destination register designator, bits 11:6.

- The source register designator, bits 5:0.

• Unused bits: Bit 30.

The semantics table specifies the effects of the executing this operation. The table is
divided into two parts. The first half containing statements which do not affect the
architectural state of the machine. The second half containing statements that will
not be executed if an exception occurs in the bundle.

The statements themselves are organized into 3 stages as follows:

1 The first 2 statements read the required source information:

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

The first statement reads the value of the RSRC1 register, interprets it as a signed
32-bit value and assigns this to a temporary integer called operand1. The
second statement passes the value of ISRC2 to the immediate handling function
Imm (Section 17.2.1). The result of the function is interpreted as a signed 32-bit
value and assigned to a temporary integer called operand2.

2 The next statement implements the addition:

result ← operand1 + operand2;

This statement does not refer to any architectural state. It adds the 2 integers
operand1 and operand2 together, and assigns the result to a temporary
integer called result. Note that since this is a conventional mathematical
addition, the result can contain more significant bits of information than the
sources.

Macros 141

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

3 The final statement, executed if no exceptions have been thrown in the bundle,
updates the architectural state:

RIDEST ← Register(result);

The function Register (Section 16.3.6) converts the integer result back to a
bit-field, discarding any redundant higher bits. This value is then assigned to
the RIDEST register.

After the semantic description is a simple textual description of the operation.

The section listing restrictions for this operation shows that it has no restrictions at
all. This means that up to four of these operations can be used in a bundle, and that
all operands will be ready for use by operations in the next bundle.

Finally, this operation can not generate any exceptions.

17.5 Macros
The following are the currently implemented pseudo-operations.

17.6 Operations
Each operation is now specified. They are listed alphabetically for ease of use. The
semantics of the operations are written using the notational language defined in
Chapter 16 on page 109.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nop s 00 0 0 00000 000000 000000 000000

mov s 00 0 0 00000 DEST SRC2 000000
mtb s 00 0 1 1 1100 BDEST 000000 SRC1

mov s 00 1 0 00000 ISRC2 IDEST 000000

zxtb s 00 1 0 01001 011111111 IDEST SRC1

mfb s 01 1 001 SCOND 000000001 IDEST 000000
syncins s 11 0 001 0 00000000000000000000001

Figure 16: Macros

142 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

add Register

add RDEST = RSRC1, RSRC2

Semantics:

Description:

Add

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 + operand2;

RDEST ← Register(result);

Operations 143

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

add Immediate

add RIDEST = RSRC1, ISRC2

Semantics:

Description:

Add

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 + operand2;

RIDEST ← Register(result);

144 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

addcg

addcg RDEST, BBDEST = RSRC1, RSRC2, BSCOND

Semantics:

Description:

Add with carry and generate carry

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 01 0010 SCOND BDEST DEST SRC2 SRC1

31 30 29 28 27 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
carryin ← ZeroExtend1(BSCOND);
result ← (operand1 + operand2) + carryin;
carryout ← Bit(result, 32);

RDEST ← Register(result);
BBDEST ← Bit(carryout);

Operations 145

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

and Register

and RDEST = RSRC1, RSRC2

Semantics:

Description:

Bitwise and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 01001 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ∧ operand2;

RDEST ← Register(result);

146 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

and Immediate

and RIDEST = RSRC1, ISRC2

Semantics:

Description:

Bitwise and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ∧ operand2;

RIDEST ← Register(result);

Operations 147

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

andc Register

andc RDEST = RSRC1, RSRC2

Semantics:

Description:

Complement and bitwise and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 01010 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (~ operand1) ∧ operand2;

RDEST ← Register(result);

148 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

andc Immediate

andc RIDEST = RSRC1, ISRC2

Semantics:

Description:

Complement and bitwise and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (~ operand1) ∧ operand2;

RIDEST ← Register(result);

Operations 149

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

andl Register - Register

andl RDEST = RSRC1, RSRC2

Semantics:

Description:

Logical and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 1010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 ≠ 0) AND (operand2 ≠ 0);

RDEST ← Register(result);

150 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

andl Branch Register - Register

andl BBDEST = RSRC1, RSRC2

Semantics:

Description:

Logical and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 1010 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 ≠ 0) AND (operand2 ≠ 0);

BBDEST ← Bit(result);

Operations 151

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

andl Register - Immediate

andl RIDEST = RSRC1, ISRC2

Semantics:

Description:

Logical and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 1010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 ≠ 0) AND (operand2 ≠ 0);

RIDEST ← Register(result);

152 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

andl Branch Register - Immediate

andl BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Logical and

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 1010 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 ≠ 0) AND (operand2 ≠ 0);

BIBDEST ← Bit(result);

Operations 153

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

br

br BBCOND, BTARG

Semantics:

Description:

Branch

Restrictions:

Must be the first syllable of a bundle.

Instructions writing BBCOND must be followed by 2 bundles before this instruction
can be issued.

Exceptions:

None.

s 11 1 0 BCOND BTARG

31 30 29 28 27 26 25 23 22 0

operand1 ← ZeroExtend1(BBCOND);
operand2 ← SignExtend23(BTARG);
IF (operand1 ≠ 0)

PC ← Register(ZeroExtend32(BUNDLE_PC) + (operand2 << 2));

154 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

break

break

Semantics:

Description:

Break

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

ILL_INST

s 01 1111111

31 30 29 28 27 21 20 0

THROW ILL_INST;

Operations 155

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

brf

brf BBCOND, BTARG

Semantics:

Description:

Branch false

Restrictions:

Must be the first syllable of a bundle.

Instructions writing BBCOND must be followed by 2 bundles before this instruction
can be issued.

Exceptions:

None.

s 11 1 1 BCOND BTARG

31 30 29 28 27 26 25 23 22 0

operand1 ← ZeroExtend1(BBCOND);
operand2 ← SignExtend23(BTARG);
IF (operand1 = 0)

PC ← Register(ZeroExtend32(BUNDLE_PC) + (operand2 << 2));

156 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

bswap

bswap RIDEST = RSRC1

Semantics:

Description:

Byte Swap

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01110 000000010 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
byte0 ← operand1< 0 FOR 8 >;
byte1 ← operand1< 8 FOR 8 >;
byte2 ← operand1< 16 FOR 8 >;
byte3 ← operand1< 24 FOR 8 >;
result ← ((byte0 << 24) ∨ (byte1 << 16)) ∨ ((byte2 << 8) ∨ byte3);

RIDEST ← Register(result);

Operations 157

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

call Immediate

call LR = BTARG

Semantics:

Description:

Jump and link

Restrictions:

Must be the first syllable of a bundle.

No latency constraints.

Exceptions:

None.

s 11 0 000 0 BTARG

31 30 29 28 27 26 24 23 22 0

operand1 ← SignExtend23(BTARG);
NEXT_PC ← PC;
PC ← Register(ZeroExtend32(BUNDLE_PC) + (operand1 << 2));
LR ← NEXT_PC;

158 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

call Link Register

call LR = LR

Semantics:

Description:

Jump (using Link Register) and link

Restrictions:

Must be the first syllable of a bundle.

Instructions writing LR must be followed by 3 bundles before this instruction
can be issued.

Exceptions:

None.

s 11 0 000 1

31 30 29 28 27 26 24 23 22 0

NEXT_PC ← PC;
PC ← Register(ZeroExtend32(LR));
LR ← NEXT_PC;

Operations 159

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

clz

clz RIDEST = RSRC1

Semantics:

Description:

Count leading zeros

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01110 000000100 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
result ← CountLeadingZeros(operand1);

RIDEST ← Register(result);

160 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpeq Register - Register

cmpeq RDEST = RSRC1, RSRC2

Semantics:

Description:

Test for equality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 = operand2;

RDEST ← Register(result);

Operations 161

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpeq Branch Register - Register

cmpeq BBDEST = RSRC1, RSRC2

Semantics:

Description:

Test for equality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0000 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 = operand2;

BBDEST ← Bit(result);

162 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpeq Register - Immediate

cmpeq RIDEST = RSRC1, ISRC2

Semantics:

Description:

Test for equality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 = operand2;

RIDEST ← Register(result);

Operations 163

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpeq Branch Register - Immediate

cmpeq BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Test for equality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0000 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 = operand2;

BIBDEST ← Bit(result);

164 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpge Register - Register

cmpge RDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ≥ operand2;

RDEST ← Register(result);

Operations 165

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpge Branch Register - Register

cmpge BBDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0010 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ≥ operand2;

BBDEST ← Bit(result);

166 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpge Register - Immediate

cmpge RIDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ≥ operand2;

RIDEST ← Register(result);

Operations 167

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpge Branch Register - Immediate

cmpge BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0010 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ≥ operand2;

BIBDEST ← Bit(result);

168 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpgeu Register - Register

cmpgeu RDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0011 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 ≥ operand2;

RDEST ← Register(result);

Operations 169

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpgeu Branch Register - Register

cmpgeu BBDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0011 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 ≥ operand2;

BBDEST ← Bit(result);

170 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpgeu Register - Immediate

cmpgeu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 ≥ operand2;

RIDEST ← Register(result);

Operations 171

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpgeu Branch Register - Immediate

cmpgeu BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare equal or greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0011 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 ≥ operand2;

BIBDEST ← Bit(result);

172 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpgt Register - Register

cmpgt RDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0100 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 > operand2;

RDEST ← Register(result);

Operations 173

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpgt Branch Register - Register

cmpgt BBDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0100 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 > operand2;

BBDEST ← Bit(result);

174 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpgt Register - Immediate

cmpgt RIDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 > operand2;

RIDEST ← Register(result);

Operations 175

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpgt Branch Register - Immediate

cmpgt BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0100 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 > operand2;

BIBDEST ← Bit(result);

176 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpgtu Register - Register

cmpgtu RDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0101 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 > operand2;

RDEST ← Register(result);

Operations 177

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpgtu Branch Register - Register

cmpgtu BBDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0101 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 > operand2;

BBDEST ← Bit(result);

178 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpgtu Register - Immediate

cmpgtu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 > operand2;

RIDEST ← Register(result);

Operations 179

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpgtu Branch Register - Immediate

cmpgtu BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare greater than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0101 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 > operand2;

BIBDEST ← Bit(result);

180 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmple Register - Register

cmple RDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0110 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ≤ operand2;

RDEST ← Register(result);

Operations 181

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmple Branch Register - Register

cmple BBDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0110 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ≤ operand2;

BBDEST ← Bit(result);

182 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmple Register - Immediate

cmple RIDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ≤ operand2;

RIDEST ← Register(result);

Operations 183

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmple Branch Register - Immediate

cmple BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0110 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ≤ operand2;

BIBDEST ← Bit(result);

184 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpleu Register - Register

cmpleu RDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0111 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 ≤ operand2;

RDEST ← Register(result);

Operations 185

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpleu Branch Register - Register

cmpleu BBDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0111 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 ≤ operand2;

BBDEST ← Bit(result);

186 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpleu Register - Immediate

cmpleu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 ≤ operand2;

RIDEST ← Register(result);

Operations 187

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpleu Branch Register - Immediate

cmpleu BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare equal or less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0111 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 ≤ operand2;

BIBDEST ← Bit(result);

188 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmplt Register - Register

cmplt RDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 1000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 < operand2;

RDEST ← Register(result);

Operations 189

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmplt Branch Register - Register

cmplt BBDEST = RSRC1, RSRC2

Semantics:

Description:

Signed compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 1000 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 < operand2;

BBDEST ← Bit(result);

190 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmplt Register - Immediate

cmplt RIDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 1000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 < operand2;

RIDEST ← Register(result);

Operations 191

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmplt Branch Register - Immediate

cmplt BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Signed compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 1000 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 < operand2;

BIBDEST ← Bit(result);

192 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpltu Register - Register

cmpltu RDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 1001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 < operand2;

RDEST ← Register(result);

Operations 193

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpltu Branch Register - Register

cmpltu BBDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 1001 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result ← operand1 < operand2;

BBDEST ← Bit(result);

194 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpltu Register - Immediate

cmpltu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 1001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 < operand2;

RIDEST ← Register(result);

Operations 195

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpltu Branch Register - Immediate

cmpltu BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned compare less than

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 1001 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result ← operand1 < operand2;

BIBDEST ← Bit(result);

196 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpne Register - Register

cmpne RDEST = RSRC1, RSRC2

Semantics:

Description:

Test for inequality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 0001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ≠ operand2;

RDEST ← Register(result);

Operations 197

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpne Branch Register - Register

cmpne BBDEST = RSRC1, RSRC2

Semantics:

Description:

Test for inequality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 0001 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ≠ operand2;

BBDEST ← Bit(result);

198 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

cmpne Register - Immediate

cmpne RIDEST = RSRC1, ISRC2

Semantics:

Description:

Test for inequality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 0001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ≠ operand2;

RIDEST ← Register(result);

Operations 199

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpne Branch Register - Immediate

cmpne BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Test for inequality

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 0001 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ≠ operand2;

BIBDEST ← Bit(result);

200 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

divs

divs RDEST, BBDEST = RSRC1, RSRC2, BSCOND

Semantics:

Description:

Non-restoring divide stage

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 01 0100 SCOND BDEST DEST SRC2 SRC1

31 30 29 28 27 24 23 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
operand3 ← ZeroExtend1(BSCOND);
temp ← ZeroExtend32(operand1 × 2) ∨ (operand3 ∧ 1);
IF (operand1 < 0)
 {

result ← temp + operand2;
quotientBit ← 1;

 }
ELSE
 {

result ← temp - operand2;
quotientBit ← 0;

 }

RDEST ← Register(result);
BBDEST ← Bit(quotientBit);

Operations 201

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

goto Immediate

goto BTARG

Semantics:

Description:

Jump

Restrictions:

Must be the first syllable of a bundle.

No latency constraints.

Exceptions:

None.

s 11 0 001 0 BTARG

31 30 29 28 27 26 24 23 22 0

operand1 ← SignExtend23(BTARG);
PC ← Register(ZeroExtend32(BUNDLE_PC) + (operand1 << 2));

202 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

goto Link Register

goto LR

Semantics:

Description:

Jump (using Link Register)

Restrictions:

Must be the first syllable of a bundle.

Instructions writing LR must be followed by 3 bundles before this instruction
can be issued.

Exceptions:

None.

s 11 0 001 1

31 30 29 28 27 26 24 23 22 0

PC ← Register(ZeroExtend32(LR));

Operations 203

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

imml

imml imm

Semantics:

Description:

Long immediate for previous syllable

Restrictions:

Must be encoded at even word addresses.

No latency constraints.

Exceptions:

None.

s 01 01010 IMM

31 30 29 28 27 23 22 0

extension ← ZeroExtend23(imm);

204 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

immr

immr imm

Semantics:

Description:

Long immediate for next syllable

Restrictions:

Must be encoded at even word addresses.

No latency constraints.

Exceptions:

None.

s 01 01011 IMM

31 30 29 28 27 23 22 0

extension ← ZeroExtend23(imm);

Operations 205

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldb

ldb RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Signed load byte

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0011 0 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
ReadCheckMemory8(ea);

ReadMemory8(ea);
result ← SignExtend8(ReadMemResponse());
RIDEST ← Register(result);

206 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

CREG_ACCESS_VIOLATION

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 207

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldb.d

ldb.d RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Signed load byte dismissable

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0011 1 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT IsCRegSpace(ea))

DisReadCheckMemory8(ea);

IF (NOT IsCRegSpace(ea))
DisReadMemory8(ea);

IF (IsCRegSpace(ea))
result ← 0;

ELSE
result ← SignExtend8(ReadMemResponse());

RIDEST ← Register(result);

208 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 209

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldbu

ldbu RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Unsigned load byte

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0100 0 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
ReadCheckMemory8(ea);

ReadMemory8(ea);
result ← ZeroExtend8(ReadMemResponse());
RIDEST ← Register(result);

210 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

CREG_ACCESS_VIOLATION

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 211

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldbu.d

ldbu.d RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Unsigned load byte dismissable

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0100 1 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT IsCRegSpace(ea))

DisReadCheckMemory8(ea);

IF (NOT IsCRegSpace(ea))
DisReadMemory8(ea);

IF (IsCRegSpace(ea))
result ← 0;

ELSE
result ← ZeroExtend8(ReadMemResponse());

RIDEST ← Register(result);

212 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 213

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldh

ldh RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Signed load half-word

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0001 0 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
ReadCheckMemory16(ea);

ReadMemory16(ea);
result ← SignExtend16(ReadMemResponse());
RIDEST ← Register(result);

214 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

CREG_ACCESS_VIOLATION

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 215

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldh.d

ldh.d RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Signed load half-word dismissable

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0001 1 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT IsCRegSpace(ea))

DisReadCheckMemory16(ea);

IF (NOT IsCRegSpace(ea))
DisReadMemory16(ea);

IF (IsCRegSpace(ea))
result ← 0;

ELSE
result ← SignExtend16(ReadMemResponse());

RIDEST ← Register(result);

216 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 217

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldhu

ldhu RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Unsigned load half-word

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0010 0 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
ReadCheckMemory16(ea);

ReadMemory16(ea);
result ← ZeroExtend16(ReadMemResponse());
RIDEST ← Register(result);

218 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

CREG_ACCESS_VIOLATION

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 219

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldhu.d

ldhu.d RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Unsigned load half-word dismissable

Restrictions:

Cannot write the link register (LR).

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0010 1 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT IsCRegSpace(ea))

DisReadCheckMemory16(ea);

IF (NOT IsCRegSpace(ea))
DisReadMemory16(ea);

IF (IsCRegSpace(ea))
result ← 0;

ELSE
result ← ZeroExtend16(ReadMemResponse());

RIDEST ← Register(result);

220 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 221

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldw

ldw RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Load word

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0000 0 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

ReadCheckCReg(ea);
ReadCheckMemory32(ea);

IF (IsCRegSpace(ea))
ReadCReg(ea);

ELSE
ReadMemory32(ea);

result ← SignExtend32(ReadMemResponse());
RIDEST ← Register(result);

222 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

CREG_NO_MAPPING

CREG_ACCESS_VIOLATION

Operations 223

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

ldw.d

ldw.d RIDEST = ISRC2[RSRC1]

Semantics:

Description:

Load word dismissable

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

This instruction must be followed by 2 bundles before RIDEST can be read.

s 10 0000 1 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT IsCRegSpace(ea))

DisReadCheckMemory32(ea);

IF (NOT IsCRegSpace(ea))
DisReadMemory32(ea);

IF (IsCRegSpace(ea))
result ← 0;

ELSE
result ← SignExtend32(ReadMemResponse());

RIDEST ← Register(result);

224 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

Operations 225

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

max Register

max RDEST = RSRC1, RSRC2

Semantics:

Description:

Signed maximum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 10000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
IF (operand1 > operand2)

result ← operand1;
ELSE

result ← operand2;

RDEST ← Register(result);

226 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

max Immediate

max RIDEST = RSRC1, ISRC2

Semantics:

Description:

Signed maximum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 10000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
IF (operand1 > operand2)

result ← operand1;
ELSE

result ← operand2;

RIDEST ← Register(result);

Operations 227

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

maxu Register

maxu RDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned maximum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 10001 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
IF (operand1 > operand2)

result ← operand1;
ELSE

result ← operand2;

RDEST ← Register(result);

228 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

maxu Immediate

maxu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned maximum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 10001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
IF (operand1 > operand2)

result ← operand1;
ELSE

result ← operand2;

RIDEST ← Register(result);

Operations 229

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

min Register

min RDEST = RSRC1, RSRC2

Semantics:

Description:

Signed minimum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 10010 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
IF (operand1 < operand2)

result ← operand1;
ELSE

result ← operand2;

RDEST ← Register(result);

230 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

min Immediate

min RIDEST = RSRC1, ISRC2

Semantics:

Description:

Signed minimum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 10010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
IF (operand1 < operand2)

result ← operand1;
ELSE

result ← operand2;

RIDEST ← Register(result);

Operations 231

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

minu Register

minu RDEST = RSRC1, RSRC2

Semantics:

Description:

Unsigned minimum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 10011 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
IF (operand1 < operand2)

result ← operand1;
ELSE

result ← operand2;

RDEST ← Register(result);

232 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

minu Immediate

minu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Unsigned minimum

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 10011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
IF (operand1 < operand2)

result ← operand1;
ELSE

result ← operand2;

RIDEST ← Register(result);

Operations 233

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulh Register

mulh RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by upper-half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 10111 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← operand1 × (operand2 >> 16);
RDEST ← Register(result);

234 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulh Immediate

mulh RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by upper-half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 10111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← operand1 × (operand2 >> 16);
RIDEST ← Register(result);

Operations 235

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulhh Register

mulhh RDEST = RSRC1, RSRC2

Semantics:

Description:

Upper-half-word by upper-half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11101 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← (operand1 >> 16) × (operand2 >> 16);
RDEST ← Register(result);

236 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulhh Immediate

mulhh RIDEST = RSRC1, ISRC2

Semantics:

Description:

Upper-half-word by upper-half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← (operand1 >> 16) × (operand2 >> 16);
RIDEST ← Register(result);

Operations 237

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulhhs Register

mulhhs RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by upper-half-word signed multiply, returns top 32 bits of 48 bit result

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 10100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← (operand1 × (operand2 >> 16)) >> 16;
RDEST ← Register(result);

238 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulhhs Immediate

mulhhs RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by upper-half-word signed multiply, returns top 32 bits of 48 bit result

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 10100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← (operand1 × (operand2 >> 16)) >> 16;
RIDEST ← Register(result);

Operations 239

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulhhu Register

mulhhu RDEST = RSRC1, RSRC2

Semantics:

Description:

Upper-half-word by upper-half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11110 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← ZeroExtend16(operand1 >> 16) × ZeroExtend16(operand2 >> 16);
RDEST ← Register(result);

240 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulhhu Immediate

mulhhu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Upper-half-word by upper-half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← ZeroExtend16(operand1 >> 16) × ZeroExtend16(operand2 >> 16);
RIDEST ← Register(result);

Operations 241

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulhs Register

mulhs RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by upper-half-word unsigned multiply, left shifted 16

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11111 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← (operand1 × ZeroExtend16(operand2 >> 16)) << 16;
RDEST ← Register(result);

242 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulhs Immediate

mulhs RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by upper-half-word unsigned multiply, left shifted 16

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← (operand1 × ZeroExtend16(operand2 >> 16)) << 16;
RIDEST ← Register(result);

Operations 243

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulhu Register

mulhu RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by upper-half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← operand1 × ZeroExtend16(operand2 >> 16);
RDEST ← Register(result);

244 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulhu Immediate

mulhu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by upper-half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← operand1 × ZeroExtend16(operand2 >> 16);
RIDEST ← Register(result);

Operations 245

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mull Register

mull RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 10101 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend16(RSRC2);

result ← operand1 × operand2;
RDEST ← Register(result);

246 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mull Immediate

mull RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 10101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend16(Imm(ISRC2));

result ← operand1 × operand2;
RIDEST ← Register(result);

Operations 247

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mullh Register

mullh RDEST = RSRC1, RSRC2

Semantics:

Description:

Half-word by upper-half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11011 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← operand1 × (operand2 >> 16);
RDEST ← Register(result);

248 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mullh Immediate

mullh RIDEST = RSRC1, ISRC2

Semantics:

Description:

Half-word by upper-half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← operand1 × (operand2 >> 16);
RIDEST ← Register(result);

Operations 249

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mullhu Register

mullhu RDEST = RSRC1, RSRC2

Semantics:

Description:

Half-word by upper-half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← SignExtend32(RSRC2);

result ← operand1 × ZeroExtend16(operand2 >> 16);
RDEST ← Register(result);

250 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mullhu Immediate

mullhu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Half-word by upper-half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result ← operand1 × ZeroExtend16(operand2 >> 16);
RIDEST ← Register(result);

Operations 251

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mullhus Register

mullhus RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by lower-half-word signed multiply, returns top 16 bits of 48 bit result, sign
extended

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 01111 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend16(RSRC2);

result ← (operand1 × operand2) >> 32;
RDEST ← Register(result);

252 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mullhus Immediate

mullhus RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by lower-half-word signed multiply, returns top 16 bits of 48 bit result, sign
extended

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 01111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend16(Imm(ISRC2));

result ← (operand1 × operand2) >> 32;
RIDEST ← Register(result);

Operations 253

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulll Register

mulll RDEST = RSRC1, RSRC2

Semantics:

Description:

Half-word by half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11001 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend16(RSRC2);

result ← operand1 × operand2;
RDEST ← Register(result);

254 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulll Immediate

mulll RIDEST = RSRC1, ISRC2

Semantics:

Description:

Half-word by half-word signed multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend16(Imm(ISRC2));

result ← operand1 × operand2;
RIDEST ← Register(result);

Operations 255

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mulllu Register

mulllu RDEST = RSRC1, RSRC2

Semantics:

Description:

Half-word by half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 11010 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← ZeroExtend16(RSRC2);

result ← operand1 × operand2;
RDEST ← Register(result);

256 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mulllu Immediate

mulllu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Half-word by half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 11010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← ZeroExtend16(Imm(ISRC2));

result ← operand1 × operand2;
RIDEST ← Register(result);

Operations 257

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

mullu Register

mullu RDEST = RSRC1, RSRC2

Semantics:

Description:

Word by half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RDEST can be read.

Exceptions:

None.

s 00 0 0 10110 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend16(RSRC2);

result ← operand1 × operand2;
RDEST ← Register(result);

258 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

mullu Immediate

mullu RIDEST = RSRC1, ISRC2

Semantics:

Description:

Word by half-word unsigned multiply

Restrictions:

Cannot write the link register (LR).

Must be encoded at odd word addresses.

This instruction must be followed by 2 bundles before RIDEST can be read.

Exceptions:

None.

s 00 1 0 10110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend16(Imm(ISRC2));

result ← operand1 × operand2;
RIDEST ← Register(result);

Operations 259

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

nandl Register - Register

nandl RDEST = RSRC1, RSRC2

Semantics:

Description:

Logical nand

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 1011 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

RDEST ← Register(result);

260 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

nandl Branch Register - Register

nandl BBDEST = RSRC1, RSRC2

Semantics:

Description:

Logical nand

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 1011 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

BBDEST ← Bit(result);

Operations 261

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

nandl Register - Immediate

nandl RIDEST = RSRC1, ISRC2

Semantics:

Description:

Logical nand

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 1011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

RIDEST ← Register(result);

262 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

nandl Branch Register - Immediate

nandl BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Logical nand

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 1011 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

BIBDEST ← Bit(result);

Operations 263

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

norl Register - Register

norl RDEST = RSRC1, RSRC2

Semantics:

Description:

Logical nor

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 1101 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

RDEST ← Register(result);

264 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

norl Branch Register - Register

norl BBDEST = RSRC1, RSRC2

Semantics:

Description:

Logical nor

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 1101 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

BBDEST ← Bit(result);

Operations 265

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

norl Register - Immediate

norl RIDEST = RSRC1, ISRC2

Semantics:

Description:

Logical nor

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 1101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

RIDEST ← Register(result);

266 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

norl Branch Register - Immediate

norl BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Logical nor

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 1101 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

BIBDEST ← Bit(result);

Operations 267

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

or Register

or RDEST = RSRC1, RSRC2

Semantics:

Description:

Bitwise or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 01011 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ∨ operand2;

RDEST ← Register(result);

268 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

or Immediate

or RIDEST = RSRC1, ISRC2

Semantics:

Description:

Bitwise or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ∨ operand2;

RIDEST ← Register(result);

Operations 269

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

orc Register

orc RDEST = RSRC1, RSRC2

Semantics:

Description:

Complement and bitwise or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 01100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (~ operand1) ∨ operand2;

RDEST ← Register(result);

270 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

orc Immediate

orc RIDEST = RSRC1, ISRC2

Semantics:

Description:

Complement and bitwise or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (~ operand1) ∨ operand2;

RIDEST ← Register(result);

Operations 271

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

orl Register - Register

orl RDEST = RSRC1, RSRC2

Semantics:

Description:

Logical or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 0 1100 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 ≠ 0) OR (operand2 ≠ 0);

RDEST ← Register(result);

272 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

orl Branch Register - Register

orl BBDEST = RSRC1, RSRC2

Semantics:

Description:

Logical or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 1 1 1100 BDEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 ≠ 0) OR (operand2 ≠ 0);

BBDEST ← Bit(result);

Operations 273

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

orl Register - Immediate

orl RIDEST = RSRC1, ISRC2

Semantics:

Description:

Logical or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 0 1100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 ≠ 0) OR (operand2 ≠ 0);

RIDEST ← Register(result);

274 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

orl Branch Register - Immediate

orl BIBDEST = RSRC1, ISRC2

Semantics:

Description:

Logical or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 1 1 1100 ISRC2 IBDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 ≠ 0) OR (operand2 ≠ 0);

BIBDEST ← Bit(result);

Operations 275

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

pft

pft ISRC2[RSRC1]

Semantics:

Description:

Prefetch

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

No latency constraints.

Exceptions:

None.

s 10 01101 ISRC2 SRC1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);

PrefetchMemory(ea);

276 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

prgadd

prgadd ISRC2[RSRC1]

Semantics:

Description:

Purge the address given from the data cache

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

No latency constraints.

Exceptions:

None.

s 10 01110 ISRC2 SRC1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);

PurgeAddress(ea);

Operations 277

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

prgins

prgins

Semantics:

Description:

Purge the instruction cache

Restrictions:

Must be the only one operation in the bundle.

Must be followed by 3 bundles delay before issuing a syncins operation.

No latency constraints.

Exceptions:

None.

1 01 1111100

31 30 29 28 27 21 20 0

PurgeIns();

278 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

prgset

prgset ISRC2[RSRC1]

Semantics:

Description:

Purge a set of four cache lines from the data cache

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

No latency constraints.

Exceptions:

None.

s 10 01111 ISRC2 SRC1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
ea ← ZeroExtend32(base + offset);

PurgeSet(ea);

Operations 279

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

rfi
rfi

Semantics:

Description:

Return from interrupt

Restrictions:

Must be the first syllable of a bundle.

Instructions writing SAVED_PC must be followed by 4 bundles before this
instruction can be issued.

Instructions writing SAVED_PSW must be followed by 4 bundles before this
instruction can be issued.

Instructions writing SAVED_SAVED_PC must be followed by 4 bundles before
this instruction can be issued.

Instructions writing SAVED_SAVED_PSW must be followed by 4 bundles before
this instruction can be issued.

Instructions writing PSW must be followed by 4 bundles before this instruction
can be issued.

Exceptions:

ILL_INST

s 11 0 010 0

31 30 29 28 27 26 24 23 22 0

IF (PSW[USER_MODE])
THROW ILL_INST;

PC ← Register(ZeroExtend32(SAVED_PC));

PSW ← SAVED_PSW;
SAVED_PC ← SAVED_SAVED_PC;
SAVED_PSW ← SAVED_SAVED_PSW;

280 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sbrk

sbrk

Semantics:

Description:

Software breakpoint

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

SBREAK

1 01 1111101

31 30 29 28 27 21 20 0

THROW SBREAK;

Operations 281

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sh1add Register

sh1add RDEST = RSRC1, RSRC2

Semantics:

Description:

Shift left one and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00101 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 << 1) + operand2;

RDEST ← Register(result);

282 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sh1add Immediate

sh1add RIDEST = RSRC1, ISRC2

Semantics:

Description:

Shift left one and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 << 1) + operand2;

RIDEST ← Register(result);

Operations 283

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sh2add Register

sh2add RDEST = RSRC1, RSRC2

Semantics:

Description:

Shift left two and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00110 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 << 2) + operand2;

RDEST ← Register(result);

284 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sh2add Immediate

sh2add RIDEST = RSRC1, ISRC2

Semantics:

Description:

Shift left two and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 << 2) + operand2;

RIDEST ← Register(result);

Operations 285

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sh3add Register

sh3add RDEST = RSRC1, RSRC2

Semantics:

Description:

Shift left three and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00111 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 << 3) + operand2;

RDEST ← Register(result);

286 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sh3add Immediate

sh3add RIDEST = RSRC1, ISRC2

Semantics:

Description:

Shift left three and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 << 3) + operand2;

RIDEST ← Register(result);

Operations 287

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sh4add Register

sh4add RDEST = RSRC1, RSRC2

Semantics:

Description:

Shift left four and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 01000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← (operand1 << 4) + operand2;

RDEST ← Register(result);

288 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sh4add Immediate

sh4add RIDEST = RSRC1, ISRC2

Semantics:

Description:

Shift left four and accumulate

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← (operand1 << 4) + operand2;

RIDEST ← Register(result);

Operations 289

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

shl Register

shl RDEST = RSRC1, RSRC2

Semantics:

Description:

Shift left

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00010 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
distance ← ZeroExtend8(RSRC2);
IF (distance > 31)

result ← 0;
ELSE

result ← operand1 << distance;

RDEST ← Register(result);

290 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

shl Immediate

shl RIDEST = RSRC1, ISRC2

Semantics:

Description:

Shift left

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
distance ← ZeroExtend8(Imm(ISRC2));
IF (distance > 31)

result ← 0;
ELSE

result ← operand1 << distance;

RIDEST ← Register(result);

Operations 291

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

shr Register

shr RDEST = RSRC1, RSRC2

Semantics:

Description:

Arithmetic shift right

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00011 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
distance ← ZeroExtend8(RSRC2);
result ← operand1 >> distance;

RDEST ← Register(result);

292 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

shr Immediate

shr RIDEST = RSRC1, ISRC2

Semantics:

Description:

Arithmetic shift right

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
distance ← ZeroExtend8(Imm(ISRC2));
result ← operand1 >> distance;

RIDEST ← Register(result);

Operations 293

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

shru Register

shru RDEST = RSRC1, RSRC2

Semantics:

Description:

Logical shift right

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
distance ← ZeroExtend8(RSRC2);
result ← operand1 >> distance;

RDEST ← Register(result);

294 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

shru Immediate

shru RIDEST = RSRC1, ISRC2

Semantics:

Description:

Logical shift right

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
distance ← ZeroExtend8(Imm(ISRC2));
result ← operand1 >> distance;

RIDEST ← Register(result);

Operations 295

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

slct Register

slct RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description:

Conditional select

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 01 0 000 SCOND DEST SRC2 SRC1

31 30 29 28 27 26 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
IF (operand1 ≠ 0)

result ← operand2;
ELSE

result ← operand3;

RDEST ← Register(result);

296 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

slct Immediate

slct RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description:

Conditional select

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 01 1 000 SCOND ISRC2 IDEST SRC1

31 30 29 28 27 26 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(Imm(ISRC2));
IF (operand1 ≠ 0)

result ← operand2;
ELSE

result ← operand3;

RIDEST ← Register(result);

Operations 297

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

slctf Register

slctf RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description:

Conditional select

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 01 0 001 SCOND DEST SRC2 SRC1

31 30 29 28 27 26 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
IF (operand1 = 0)

result ← operand2;
ELSE

result ← operand3;

RDEST ← Register(result);

298 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

slctf Immediate

slctf RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description:

Conditional select

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 01 1 001 SCOND ISRC2 IDEST SRC1

31 30 29 28 27 26 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(Imm(ISRC2));
IF (operand1 = 0)

result ← operand2;
ELSE

result ← operand3;

RIDEST ← Register(result);

Operations 299

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

stb

stb ISRC2[RSRC1] = RSRC2

Semantics:

Description:
Store byte

Restrictions:
Uses the load/store unit, for which only one operation is allowed per bundle.

No latency constraints.

Exceptions:
DBREAK

CREG_ACCESS_VIOLATION

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

s 10 01100 ISRC2 SRC2 SRC1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory8(ea);

WriteMemory8(ea, operand3);

300 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sth

sth ISRC2[RSRC1] = RSRC2

Semantics:

Description:
Store half-word

Restrictions:
Uses the load/store unit, for which only one operation is allowed per bundle.

No latency constraints.

Exceptions:
DBREAK

CREG_ACCESS_VIOLATION

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

s 10 01011 ISRC2 SRC2 SRC1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory16(ea);

WriteMemory16(ea, operand3);

Operations 301

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

stw

stw ISRC2[RSRC1] = RSRC2

Semantics:

Description:

Store word

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

No latency constraints.

s 10 01010 ISRC2 SRC2 SRC1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

base ← SignExtend32(Imm(ISRC2));
offset ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
ea ← ZeroExtend32(base + offset);
IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

WriteCheckCReg(ea);
WriteCheckMemory32(ea);

IF (IsCRegSpace(ea))
WriteCReg(ea, operand3);

ELSE
WriteMemory32(ea, operand3);

302 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Exceptions:

DBREAK

DBREAK

MISALIGNED_TRAP

DPU_NO_TRANSLATION

DPU_ACCESS_VIOLATION

CREG_NO_MAPPING

CREG_ACCESS_VIOLATION

Operations 303

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sub Register

sub RDEST = RSRC2, RSRC1

Semantics:

Description:

Subtract

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 00001 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand2 ← SignExtend32(RSRC2);
operand1 ← SignExtend32(RSRC1);
result ← operand2 - operand1;

RDEST ← Register(result);

304 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sub Immediate

sub RIDEST = ISRC2, RSRC1

Semantics:

Description:

Subtract

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 00001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand2 ← SignExtend32(Imm(ISRC2));
operand1 ← SignExtend32(RSRC1);
result ← operand2 - operand1;

RIDEST ← Register(result);

Operations 305

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sxtb

sxtb RIDEST = RSRC1

Semantics:

Description:

Sign extend byte

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01110 000000000 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend8(RSRC1);
result ← operand1;

RIDEST ← Register(result);

306 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

sxth

sxth RIDEST = RSRC1

Semantics:

Description:

Sign extend half

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01110 000000001 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
result ← operand1;

RIDEST ← Register(result);

Operations 307

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

sync

sync

Semantics:

Description:

Ensure synchronisation

Restrictions:

Uses the load/store unit, for which only one operation is allowed per bundle.

Must be the only syllable in the bundle.

No latency constraints.

Exceptions:

None.

1 10 10000

31 30 29 28 27 23 22 21 20 12 11 6 5 0

Sync();

308 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

syscall
syscall

Semantics:

Description:

System call

Restrictions:

Must be the only syllable in the bundle.

No latency constraints.

Exceptions:

ILL_INST

1 01 1111110

31 30 29 28 27 21 20 0

THROW ILL_INST;

Operations 309

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

xor Register

xor RDEST = RSRC1, RSRC2

Semantics:

Description:

Bitwise exclusive-or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 0 0 01101 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result ← operand1 ⊕ operand2;

RDEST ← Register(result);

310 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

xor Immediate

xor RIDEST = RSRC1, ISRC2

Semantics:

Description:

Bitwise exclusive-or

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result ← operand1 ⊕ operand2;

RIDEST ← Register(result);

Operations 311

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

zxth

zxth RIDEST = RSRC1

Semantics:

Description:

Zero extend half

Restrictions:

No address/bundle restrictions.

No latency constraints.

Exceptions:

None.

s 00 1 0 01110 000000011 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
result ← operand1;

RIDEST ← Register(result);

312 Operations

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Instruction
encoding

A.1 Reserved bits
Any bits that are not defined are reserved. These bits must be set to 0.

A.2 Fields
Each instruction encoding is composed of a number of fields representing the
operands. These are detailed in the following table.

Field Name Offset Size Field represents

BCOND 23 3 Branch register containing the branch condition.

BDEST 18 3 Destination branch register for register format operations.

BTARG 0 23 Branch offset value from PC.

DEST 12 6 Destination general purpose register for register format operations.

IBDEST 6 3 Destination branch register for immediate format operations.

ICBUS 12 9 Intercluster bus.

IDEST 6 6 Destination general purpose register for immediate format
operations.

IMM 0 23 23-bit value used to extend a short immediate.

ISRC2 12 9 9-bit short immediate value.

SCOND 21 3 Source branch register used for select condition or carry.

SRC1 0 6 General purpose source register.

SRC2 6 6 General purpose source register.

Figure 17: Operand fields

314

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

A.3 Formats

B
u

n
d

le
 S

to
p

C
lu

st
er

 B
it

F
o

rm
at

O
p

co
d

e

Im
m

ed
ia

te
/

D
es

t

D
es

t/
S

rc
2

S
rc

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int3R s 00 0 0 Opcode DEST SRC2 SRC1

Int3I s 00 1 0 Opcode ISRC2 IDEST SRC1
Monadic s 00 1 0 01110 Opcode IDEST SRC1

Cmp3R_Reg s 00 0 1 0 Opcode DEST SRC2 SRC1

Cmp3R_Br s 00 0 1 1 Opcode BDEST SRC2 SRC1
Cmp3I_Reg s 00 1 1 0 Opcode ISRC2 IDEST SRC1

Cmp3I_Br s 00 1 1 1 Opcode ISRC2 IBDEST SRC1

Imm s 01 Opcode IMM

SelectR s 01 0 Opcode SCOND DEST SRC2 SRC1

SelectI s 01 1 Opcode SCOND ISRC2 IDEST SRC1

cgen s 01 Opcode SCOND BDEST DEST SRC2 SRC1
SysOp s 01 Opcode

Load s 10 Opcode ISRC2 IDEST SRC1

Store s 10 Opcode ISRC2 SRC2 SRC1
Call s 11 0 Opcode BTARG

Branch s 11 1 O
p
c
o
d
e

BCOND BTARG

Figure 18: Formats

315

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Several important points:

• The BUNDLE STOP bit indicates the end of bundle and is set in the last syllable of
the bundle.

• The CLUSTER bit is reserved; in ST220 it is set to zero.

• The format bits are used to decode the class of operation. There are four formats:

Integer arithmetic, comparison

Specific immediate extension, selects, extended arithmetic

Memory load, store

Control transfer branch, call, rfi, goto

• Additional decoding is performed using the most significant instruction bits.

• Int3 operations have two base formats, register (Int3R) and immediate (Int3I).
Bit 27 specifies the Int3 format, 0=register format, 1=immediate format. In
register format, the operation consists of RDEST = RSRC1 Op RSRC2. Immediate
format consists of RDEST = RSRC1 Op IMMEDIATE.

• Cmp3 format is similar to Int3 except it can have as a destination either a
general purpose register or a branch register (BBDEST). In register format, the
target register specifier occupies bits 12 to 17, while the target branch register
bits 18 to 20. In immediate format, bits 6 to 11 specify either the target general
purpose register or target branch register (bits 6 to 8).

• Load operations follow RDEST = Mem[RSRC1 + IMMEDIATE] semantics, while
stores follow Mem[RSRC1 + IMMEDIATE] = RSRC2. Thus bits 6 to 11 specify either
the target destination register (RDEST) or the second operand source register
(RSRC2), depending on whether the operation is a load or store.

316

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

A.4 Opcodes
* These operations are not supported by the hardware, but the opcodes are reserved
for software investigations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

add s 00 0 0 00000 DEST SRC2 SRC1

sub s 00 0 0 00001 DEST SRC2 SRC1
shl s 00 0 0 00010 DEST SRC2 SRC1

shr s 00 0 0 00011 DEST SRC2 SRC1

shru s 00 0 0 00100 DEST SRC2 SRC1
sh1add s 00 0 0 00101 DEST SRC2 SRC1

sh2add s 00 0 0 00110 DEST SRC2 SRC1

sh3add s 00 0 0 00111 DEST SRC2 SRC1
sh4add s 00 0 0 01000 DEST SRC2 SRC1

and s 00 0 0 01001 DEST SRC2 SRC1

andc s 00 0 0 01010 DEST SRC2 SRC1
or s 00 0 0 01011 DEST SRC2 SRC1

orc s 00 0 0 01100 DEST SRC2 SRC1

xor s 00 0 0 01101 DEST SRC2 SRC1
mullhus s 00 0 0 01111 DEST SRC2 SRC1

max s 00 0 0 10000 DEST SRC2 SRC1

maxu s 00 0 0 10001 DEST SRC2 SRC1
min s 00 0 0 10010 DEST SRC2 SRC1

minu s 00 0 0 10011 DEST SRC2 SRC1

mulhhs s 00 0 0 10100 DEST SRC2 SRC1
mull s 00 0 0 10101 DEST SRC2 SRC1

mullu s 00 0 0 10110 DEST SRC2 SRC1

mulh s 00 0 0 10111 DEST SRC2 SRC1
mulhu s 00 0 0 11000 DEST SRC2 SRC1

mulll s 00 0 0 11001 DEST SRC2 SRC1

mulllu s 00 0 0 11010 DEST SRC2 SRC1
mullh s 00 0 0 11011 DEST SRC2 SRC1

mullhu s 00 0 0 11100 DEST SRC2 SRC1

mulhh s 00 0 0 11101 DEST SRC2 SRC1

mulhhu s 00 0 0 11110 DEST SRC2 SRC1
mulhs s 00 0 0 11111 DEST SRC2 SRC1

cmpeq s 00 0 1 0 0000 DEST SRC2 SRC1

Figure 19: Instruction encodings

317

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

cmpne s 00 0 1 0 0001 DEST SRC2 SRC1
cmpge s 00 0 1 0 0010 DEST SRC2 SRC1

cmpgeu s 00 0 1 0 0011 DEST SRC2 SRC1

cmpgt s 00 0 1 0 0100 DEST SRC2 SRC1
cmpgtu s 00 0 1 0 0101 DEST SRC2 SRC1

cmple s 00 0 1 0 0110 DEST SRC2 SRC1

cmpleu s 00 0 1 0 0111 DEST SRC2 SRC1
cmplt s 00 0 1 0 1000 DEST SRC2 SRC1

cmpltu s 00 0 1 0 1001 DEST SRC2 SRC1

andl s 00 0 1 0 1010 DEST SRC2 SRC1
nandl s 00 0 1 0 1011 DEST SRC2 SRC1

orl s 00 0 1 0 1100 DEST SRC2 SRC1

norl s 00 0 1 0 1101 DEST SRC2 SRC1
cmpeq s 00 0 1 1 0000 BDEST SRC2 SRC1

cmpne s 00 0 1 1 0001 BDEST SRC2 SRC1

cmpge s 00 0 1 1 0010 BDEST SRC2 SRC1
cmpgeu s 00 0 1 1 0011 BDEST SRC2 SRC1

cmpgt s 00 0 1 1 0100 BDEST SRC2 SRC1

cmpgtu s 00 0 1 1 0101 BDEST SRC2 SRC1
cmple s 00 0 1 1 0110 BDEST SRC2 SRC1

cmpleu s 00 0 1 1 0111 BDEST SRC2 SRC1

cmplt s 00 0 1 1 1000 BDEST SRC2 SRC1
cmpltu s 00 0 1 1 1001 BDEST SRC2 SRC1

andl s 00 0 1 1 1010 BDEST SRC2 SRC1

nandl s 00 0 1 1 1011 BDEST SRC2 SRC1
orl s 00 0 1 1 1100 BDEST SRC2 SRC1

norl s 00 0 1 1 1101 BDEST SRC2 SRC1

add s 00 1 0 00000 ISRC2 IDEST SRC1
sub s 00 1 0 00001 ISRC2 IDEST SRC1

shl s 00 1 0 00010 ISRC2 IDEST SRC1

shr s 00 1 0 00011 ISRC2 IDEST SRC1
shru s 00 1 0 00100 ISRC2 IDEST SRC1

sh1add s 00 1 0 00101 ISRC2 IDEST SRC1

sh2add s 00 1 0 00110 ISRC2 IDEST SRC1

sh3add s 00 1 0 00111 ISRC2 IDEST SRC1
sh4add s 00 1 0 01000 ISRC2 IDEST SRC1

and s 00 1 0 01001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 19: Instruction encodings

318

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

andc s 00 1 0 01010 ISRC2 IDEST SRC1
or s 00 1 0 01011 ISRC2 IDEST SRC1

orc s 00 1 0 01100 ISRC2 IDEST SRC1

xor s 00 1 0 01101 ISRC2 IDEST SRC1
sxtb s 00 1 0 01110 000000000 IDEST SRC1

sxth s 00 1 0 01110 000000001 IDEST SRC1

bswap s 00 1 0 01110 000000010 IDEST SRC1
zxth s 00 1 0 01110 000000011 IDEST SRC1

clz s 00 1 0 01110 000000100 IDEST SRC1

mullhus s 00 1 0 01111 ISRC2 IDEST SRC1
max s 00 1 0 10000 ISRC2 IDEST SRC1

maxu s 00 1 0 10001 ISRC2 IDEST SRC1

min s 00 1 0 10010 ISRC2 IDEST SRC1
minu s 00 1 0 10011 ISRC2 IDEST SRC1

mulhhs s 00 1 0 10100 ISRC2 IDEST SRC1

mull s 00 1 0 10101 ISRC2 IDEST SRC1
mullu s 00 1 0 10110 ISRC2 IDEST SRC1

mulh s 00 1 0 10111 ISRC2 IDEST SRC1

mulhu s 00 1 0 11000 ISRC2 IDEST SRC1
mulll s 00 1 0 11001 ISRC2 IDEST SRC1

mulllu s 00 1 0 11010 ISRC2 IDEST SRC1

mullh s 00 1 0 11011 ISRC2 IDEST SRC1
mullhu s 00 1 0 11100 ISRC2 IDEST SRC1

mulhh s 00 1 0 11101 ISRC2 IDEST SRC1

mulhhu s 00 1 0 11110 ISRC2 IDEST SRC1
mulhs s 00 1 0 11111 ISRC2 IDEST SRC1

cmpeq s 00 1 1 0 0000 ISRC2 IDEST SRC1

cmpne s 00 1 1 0 0001 ISRC2 IDEST SRC1
cmpge s 00 1 1 0 0010 ISRC2 IDEST SRC1

cmpgeu s 00 1 1 0 0011 ISRC2 IDEST SRC1

cmpgt s 00 1 1 0 0100 ISRC2 IDEST SRC1
cmpgtu s 00 1 1 0 0101 ISRC2 IDEST SRC1

cmple s 00 1 1 0 0110 ISRC2 IDEST SRC1

cmpleu s 00 1 1 0 0111 ISRC2 IDEST SRC1

cmplt s 00 1 1 0 1000 ISRC2 IDEST SRC1
cmpltu s 00 1 1 0 1001 ISRC2 IDEST SRC1

andl s 00 1 1 0 1010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 19: Instruction encodings

319

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

nandl s 00 1 1 0 1011 ISRC2 IDEST SRC1
orl s 00 1 1 0 1100 ISRC2 IDEST SRC1

norl s 00 1 1 0 1101 ISRC2 IDEST SRC1

cmpeq s 00 1 1 1 0000 ISRC2 IBDEST SRC1
cmpne s 00 1 1 1 0001 ISRC2 IBDEST SRC1

cmpge s 00 1 1 1 0010 ISRC2 IBDEST SRC1

cmpgeu s 00 1 1 1 0011 ISRC2 IBDEST SRC1
cmpgt s 00 1 1 1 0100 ISRC2 IBDEST SRC1

cmpgtu s 00 1 1 1 0101 ISRC2 IBDEST SRC1

cmple s 00 1 1 1 0110 ISRC2 IBDEST SRC1
cmpleu s 00 1 1 1 0111 ISRC2 IBDEST SRC1

cmplt s 00 1 1 1 1000 ISRC2 IBDEST SRC1

cmpltu s 00 1 1 1 1001 ISRC2 IBDEST SRC1
andl s 00 1 1 1 1010 ISRC2 IBDEST SRC1

nandl s 00 1 1 1 1011 ISRC2 IBDEST SRC1

orl s 00 1 1 1 1100 ISRC2 IBDEST SRC1
norl s 00 1 1 1 1101 ISRC2 IBDEST SRC1

slct s 01 0 000 SCOND DEST SRC2 SRC1

slctf s 01 0 001 SCOND DEST SRC2 SRC1
addcg s 01 0010 SCOND BDEST DEST SRC2 SRC1

divs s 01 0100 SCOND BDEST DEST SRC2 SRC1

imml s 01 01010 IMM

immr s 01 01011 IMM

slct s 01 1 000 SCOND ISRC2 IDEST SRC1

slctf s 01 1 001 SCOND ISRC2 IDEST SRC1
prgins 1 01 1111100

sbrk 1 01 1111101

syscall 1 01 1111110
break s 01 1111111

ldw s 10 0000 0 ISRC2 IDEST SRC1

ldw.d s 10 0000 1 ISRC2 IDEST SRC1
ldh s 10 0001 0 ISRC2 IDEST SRC1

ldh.d s 10 0001 1 ISRC2 IDEST SRC1

ldhu s 10 0010 0 ISRC2 IDEST SRC1

ldhu.d s 10 0010 1 ISRC2 IDEST SRC1
ldb s 10 0011 0 ISRC2 IDEST SRC1

ldb.d s 10 0011 1 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 19: Instruction encodings

320

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

ldbu s 10 0100 0 ISRC2 IDEST SRC1
ldbu.d s 10 0100 1 ISRC2 IDEST SRC1

stw s 10 01010 ISRC2 SRC2 SRC1

sth s 10 01011 ISRC2 SRC2 SRC1
stb s 10 01100 ISRC2 SRC2 SRC1

pft s 10 01101 ISRC2 SRC1

prgadd s 10 01110 ISRC2 SRC1
prgset s 10 01111 ISRC2 SRC1

sync 1 10 10000

send * s 10 1 0 00100 ICBUS SRC2
recv * s 10 1 0 01000 ICBUS IDEST

asm,0 * s 10 1 1 00000 DEST SRC2 SRC1

asm,1 * s 10 1 1 00001 DEST SRC2 SRC1
asm,2 * s 10 1 1 00010 DEST SRC2 SRC1

asm,3 * s 10 1 1 00011 DEST SRC2 SRC1

asm,4 * s 10 1 1 00100 DEST SRC2 SRC1
asm,5 * s 10 1 1 00101 DEST SRC2 SRC1

asm,6 * s 10 1 1 00110 DEST SRC2 SRC1

asm,7 * s 10 1 1 00111 DEST SRC2 SRC1
asm,8 * s 10 1 1 01000 DEST SRC2 SRC1

asm,9 * s 10 1 1 01001 DEST SRC2 SRC1

asm,10 * s 10 1 1 01010 DEST SRC2 SRC1
asm,11 * s 10 1 1 01011 DEST SRC2 SRC1

asm,12 * s 10 1 1 01100 DEST SRC2 SRC1

asm,13 * s 10 1 1 01101 DEST SRC2 SRC1
asm,14 * s 10 1 1 01110 DEST SRC2 SRC1

asm,15 * s 10 1 1 01111 DEST SRC2 SRC1

asm,0 * s 10 1 1 10000 ISRC2 IDEST SRC1
asm,1 * s 10 1 1 10001 ISRC2 IDEST SRC1

asm,2 * s 10 1 1 10010 ISRC2 IDEST SRC1

asm,3 * s 10 1 1 10011 ISRC2 IDEST SRC1
asm,4 * s 10 1 1 10100 ISRC2 IDEST SRC1

asm,5 * s 10 1 1 10101 ISRC2 IDEST SRC1

asm,6 * s 10 1 1 10110 ISRC2 IDEST SRC1

asm,7 * s 10 1 1 10111 ISRC2 IDEST SRC1
asm,8 * s 10 1 1 11000 ISRC2 IDEST SRC1

asm,9 * s 10 1 1 11001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 19: Instruction encodings

321

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

asm,10 * s 10 1 1 11010 ISRC2 IDEST SRC1
asm,11 * s 10 1 1 11011 ISRC2 IDEST SRC1

asm,12 * s 10 1 1 11100 ISRC2 IDEST SRC1

asm,13 * s 10 1 1 11101 ISRC2 IDEST SRC1
asm,14 * s 10 1 1 11110 ISRC2 IDEST SRC1

asm,15 * s 10 1 1 11111 ISRC2 IDEST SRC1

call s 11 0 000 0 BTARG

call s 11 0 000 1

goto s 11 0 001 0 BTARG

goto s 11 0 001 1
rfi s 11 0 010 0

br s 11 1 0 BCOND BTARG

brf s 11 1 1 BCOND BTARG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 19: Instruction encodings

322

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

STMicroelectronics Confidential
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

®

Glossary

Branch registers The set of eight 1-bit registers that encode the condition for
conditional branches and carry bits.

Bundle Wide instruction of multiple operations always issued during the
same cycle and executed in parallel.

Cluster Collection of tightly coupled functional units and register files
that perform the computational tasks in an ST200.

Control register One of a set of address mapped registers maintained by the
hardware (or operating system or user). These registers may have
side effects and may require supervisor access permissions.

Dispersal The operation of extracting and routing the syllables of one
bundle stored in the I-cache line to the proper slots in the bundle
buffer. To avoid using I-cache space for empty syllables, only
non-empty syllables are stored in the I-cache lines. Hence, it is
necessary to “disperse” the syllable of each bundle to the full-size
bundle buffer.

General-purpose registers The set of directly addressed fixed-point registers.
ST200 contains one GR file per cluster organized as a bank of 64
32-bit registers. The compiler is responsible for explicitly
scheduling data transfers among GRs residing in different
clusters.

Level-1 I-cache Level-1 instruction cache also referred as the “closest” or “lowest”
cache. Similar notations apply to the Level-1 data cache. ST200
supports multiple Level-1 data caches.

Main memory This is the system-accessible memory, cached.

324

STMicroelectronics Confidential
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

Operation An operation is an atomic ST200 action, in general considered
roughly equivalent to a typical instruction of a traditional 32-bit
RISC machine.

Predication The operation of selectively quashing an operation according to
the value of a register (called predicate). One of the simplest forms
of predication is a select operation, which is supported in ST200.

Speculative A speculative operation (also known as “eager”) is an operation
executed prior to the resolution of the branch under which the
operation would normally execute. Special attention must be paid
to speculative memory load operations to handle the possible
resulting exceptions. Speculative memory load operation are
sometimes called “dismissible” as any exception deriving from the
operation has to be ignored (“dismissed”) by the system.

Superscalar An architecture with multiple functional units in which
instructions are scheduled dynamically by the hardware at
run-time.

Syllable Encoded component of a bundle that specifies one operation to be
executed by the machine functional units. Syllables are composed
of register and/or immediate fields and opcode specifiers. A bundle
in ST200 may contain multiple syllables, each of them 32-bit wide.
The syllable is also the indivisible unit for the bundle
compression/dispersal.

VLIW Very long instruction word: instructions (called “bundles” in
ST200 terminology) potentially encode multiple, independent
operations, and are fully scheduled at compile time.

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

Index

Numerics
R 25

A
AND 116
architecture 324

B
B 123
branch 324
bundle 323-324

C
cache 323
carry 323
cluster 323
Commit point 105, 137
compiler 323
compression 324
conditional 323
CR 123

D
dismissible 324
dispersal 324

DPU 45

E
ELSE 120
exception 324

F
FOR 114-115, 117, 121, 125, 127-128, 130
FROM 121
Function

Bit(i) 117
BusReadError(address) 124
Commit(n) 108
ControlRegister(address) 124
CregReadAccessViolation(index) 124
CregWriteAccessViolation(index) 124
DataBreakPoint(address) 124
DisReadCheckMemory(address) 126
DisReadMemory(address) 126
DPUNoTranslation(address) 124
DPUSpecLoadRetZero(address) 124
Imm(i) 136
InitiateDebugIntHandler() 108
InitiateExceptionHandler() 108
IsControlSpace(address) 124
IsDBreakHit(address) 124
Misaligned(address) 124
NumExtImms(address) 108

326

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

NumWords(address) 108
Pre-commit(n) 108
Prefetch(address) 133
PrefetchMemory(address) 129
PurgeAddress(address) 133
PurgeIns() 133
PurgeSet(address) 133
ReadAccessViolation(address) 124
ReadCheckControl(address) 131
ReadCheckMemory(address) 126
ReadControl(address) 131
ReadMemory(address) 126
Register(i) 117
SignExtend(i) 117
Sync() 133
UndefinedControlRegister(address) 124
WriteAccessViolation(address) 124
WriteCheckControl(address) 132
WriteCheckMemory(address) 130
WriteControl(address, value) 132
WriteMemory(address, value) 130
ZeroExtend(i) 117

I
IF 120, 127-128
immediate 324
instruction 323-324
INT 116
integer 13
IPU 45

L
load 324
LR 122

M
MEM 123, 125, 127-128, 130

N
NOT 116

O
operations 323-324
OR 116
or 323-324
Overlapping regions 41

P
parallel 323
PC 25, 122
PSW 122

R
R 122
register 323-324
REPEAT 121

S
SAVED_PC 122
SAVED_PSW 122
SAVED_SAVED_PC 122
SAVED_SAVED_PSW 122
select 324
speculation 324
STEP 121
stop bit 108, 135
syllable 323-324

T
THROW 121, 127-128

U
UNDEFINED 118-119
Undefined address space 42

327

STMicroelectronics
ADCS 7395369G ST220 Core and Instruction Set Architecture Manual

XYZ
XOR 116

328

STMicroelectronics
ST220 Core and Instruction Set Architecture Manual ADCS 7395369G

	ST200 document identification and control
	ST200 documentation suite
	Introduction
	1.1 VLIW overview
	1.2 ST220 overview
	1.3 Document overview

	Cluster
	2.1 Integer units
	2.2 Multiply units
	2.3 Load/store unit (LSU)
	2.3.1 Memory access
	2.3.2 Addressing modes
	2.3.3 Alignment
	2.3.4 Control registers
	2.3.5 Cache purging
	2.3.6 Dismissible loads

	Architectural state
	3.1 Program counter (PC)
	3.2 Register file
	3.2.1 Link register

	3.3 Program status word (PSW)
	3.3.1 Bit fields
	3.3.2 USER_MODE
	3.3.3 PSW Access
	3.3.4 Supported method for changing the PSW

	3.4 Branch register file
	3.5 Control registers

	Execution pipeline and latencies
	4.1 Execution pipeline
	4.2 Operation latencies
	4.3 Additional notes
	4.3.1 Restrictions on link register

	Traps: exceptions and interrupts
	5.1 Trap mechanism
	5.2 Exception handling
	5.3 Saved execution state
	5.4 Interrupts
	5.5 Debug interrupt handling
	5.6 Exception types and priorities
	5.6.1 Illegal instruction definition

	5.7 Speculative load considerations
	5.7.1 Misaligned implementation
	5.7.2 Speculative load exceptions

	Memory access protection units
	6.1 Description
	6.2 Operation
	6.2.1 Example use of overlapping regions
	6.2.2 Undefined address space

	6.3 Protection unit registers
	6.3.1 Region base registers
	6.3.2 Region attribute registers
	6.3.3 Cacheable field
	6.3.4 Speculative load returns zero field
	6.3.5 Operation when protection unit is disabled

	Memory subsystem
	7.1 Memory subsystem
	7.2 I-side memory subsystem
	7.2.1 Instruction buffer
	7.2.2 Instruction cache
	7.2.3 I-side bus error

	7.3 D-side memory subsystem
	7.3.1 Load store unit
	7.3.2 Cached loads and stores
	7.3.3 Uncached load and stores
	7.3.4 Prefetching data
	7.3.5 Purging data caches
	7.3.6 D-side synchronization
	7.3.7 D-side bus errors
	7.3.8 Operations
	7.3.9 Write buffer

	7.4 Core memory controller (CMC)
	7.5 Additional notes
	7.5.1 Forcing writes to external memory
	7.5.2 Memory ordering
	7.5.3 Coherency between I-side and D-side
	7.5.4 Changing memory to uncacheable
	7.5.5 Reset state
	7.5.6 Cached data in uncached region
	7.5.7 Prefetch performance

	Streaming data interface (SDI)
	8.1 Overview
	8.2 Functional description
	8.2.1 Data width

	8.3 Communication channel
	8.3.1 Timeouts

	8.4 Registers
	8.4.1 Input channel memory mapping
	8.4.2 Output channel memory mapping
	8.4.3 Protection

	8.5 Exceptions, interrupts, reset and restart
	8.5.1 Interrupts
	8.5.2 SDI exceptions
	8.5.3 Restart (or soft reset)

	Control registers
	9.1 Access operations
	9.2 Exceptions
	9.3 Control register addresses

	Timers
	10.1 Operation
	10.1.1 TIMEDIVIDE
	10.1.2 TIMECNTRi
	10.1.3 TIMECNSTi
	10.1.4 TIMECNTLi
	10.1.5 TIMESTART

	10.2 Timer interrupts
	10.3 Programming the timer

	Peripheral addresses
	11.1 Peripheral addresses
	11.1.1 Interrupt controller & timer registers
	11.1.2 DSU registers
	11.1.3 DSU ROM

	Interrupt controller
	12.1 Architecture
	12.2 Operation
	12.2.1 Test register

	12.3 Interrupt registers
	12.3.1 Interrupt pending register
	12.3.2 Interrupt mask register (INTMASK)
	12.3.3 Interrupt test register (INTTEST)

	12.4 Programming
	12.4.1 Enabling/disabling interrupts
	12.4.2 Test register
	12.4.3 Interrupt priority
	12.4.4 Timer interrupts

	Debugging support
	13.1 Overview
	13.2 Core
	13.2.1 Debug interrupts
	13.2.2 Hardware breakpoint support

	13.3 Debug support unit
	13.3.1 Architecture
	13.3.2 Shared register bank
	13.3.3 DSU control registers

	13.4 Debug ROM
	13.4.1 Debug initialization loop
	13.4.2 Default debug handler

	13.5 Host debug interface
	13.5.1 Message format
	13.5.2 Operation

	Performance monitoring
	14.1 Events
	14.2 Access to registers
	14.3 Control register (PM_CR)
	14.4 Event counters (PM_CNTi)
	14.5 Clock counter (PM_PCLK)
	14.6 Recording events

	Execution model
	15.1 Introduction
	15.2 Bundle fetch, decode, and execute
	15.3 Functions
	15.3.1 Bundle decode
	15.3.2 Operation execution
	15.3.3 Exceptional cases

	Specification notation
	16.1 Overview
	16.2 Variables and types
	16.2.1 Integer
	16.2.2 Boolean
	16.2.3 Bit-fields
	16.2.4 Arrays

	16.3 Expressions
	16.3.1 Integer arithmetic operators
	16.3.2 Integer shift operators
	16.3.3 Integer bitwise operators
	16.3.4 Relational operators
	16.3.5 Boolean operators
	16.3.6 Single-value functions
	Arithmetic functions
	Scalar conversions

	16.4 Statements
	16.4.1 Undefined behavior
	16.4.2 Assignment
	Assignment to architectural state
	Assignment to a temporary
	Assignment of an undefined value
	Assignment of multiple values
	16.4.3 Conditional
	16.4.4 Repetition
	16.4.5 Exceptions
	16.4.6 Procedures

	16.5 Architectural state
	16.6 Memory and control registers
	16.6.1 Support functions
	16.6.2 Memory model
	16.6.3 Control register model
	16.6.4 Cache model

	Instruction set
	17.1 Introduction
	17.2 Bundle encoding
	17.2.1 Extended immediates
	17.2.2 Encoding restrictions

	17.3 Operation specifications
	17.4 Example operations
	17.4.1 add Immediate
	add ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	17.5 Macros
	17.6 Operations
	add Register
	add rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	add Immediate
	add ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	addcg
	addcg rdest, bbdest = rsrc1, rsrc2, bscond
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	and Register
	and rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	and Immediate
	and ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	andc Register
	andc rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	andc Immediate
	andc ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	andl Register - Register
	andl rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	andl Branch Register - Register
	andl bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	andl Register - Immediate
	andl ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	andl Branch Register - Immediate
	andl bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	br
	br bbcond, btarg
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	break
	break
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	brf
	brf bbcond, btarg
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	bswap
	bswap ridest = rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	call Immediate
	call LR = btarg
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	call Link Register
	call LR = LR
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	clz
	clz ridest = rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpeq Register - Register
	cmpeq rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpeq Branch Register - Register
	cmpeq bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpeq Register - Immediate
	cmpeq ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpeq Branch Register - Immediate
	cmpeq bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpge Register - Register
	cmpge rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpge Branch Register - Register
	cmpge bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpge Register - Immediate
	cmpge ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpge Branch Register - Immediate
	cmpge bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgeu Register - Register
	cmpgeu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgeu Branch Register - Register
	cmpgeu bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgeu Register - Immediate
	cmpgeu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgeu Branch Register - Immediate
	cmpgeu bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgt Register - Register
	cmpgt rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgt Branch Register - Register
	cmpgt bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgt Register - Immediate
	cmpgt ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgt Branch Register - Immediate
	cmpgt bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgtu Register - Register
	cmpgtu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgtu Branch Register - Register
	cmpgtu bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgtu Register - Immediate
	cmpgtu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpgtu Branch Register - Immediate
	cmpgtu bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmple Register - Register
	cmple rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmple Branch Register - Register
	cmple bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmple Register - Immediate
	cmple ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmple Branch Register - Immediate
	cmple bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpleu Register - Register
	cmpleu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpleu Branch Register - Register
	cmpleu bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpleu Register - Immediate
	cmpleu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpleu Branch Register - Immediate
	cmpleu bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmplt Register - Register
	cmplt rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmplt Branch Register - Register
	cmplt bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmplt Register - Immediate
	cmplt ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmplt Branch Register - Immediate
	cmplt bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpltu Register - Register
	cmpltu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpltu Branch Register - Register
	cmpltu bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpltu Register - Immediate
	cmpltu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpltu Branch Register - Immediate
	cmpltu bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpne Register - Register
	cmpne rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpne Branch Register - Register
	cmpne bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpne Register - Immediate
	cmpne ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	cmpne Branch Register - Immediate
	cmpne bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	divs
	divs rdest, bbdest = rsrc1, rsrc2, bscond
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	goto Immediate
	goto btarg
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	goto Link Register
	goto LR
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	imml
	imml imm
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	immr
	immr imm
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldb
	ldb ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldb.d
	ldb.d ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldbu
	ldbu ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldbu.d
	ldbu.d ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldh
	ldh ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldh.d
	ldh.d ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldhu
	ldhu ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldhu.d
	ldhu.d ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldw
	ldw ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	ldw.d
	ldw.d ridest = isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	max Register
	max rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	max Immediate
	max ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	maxu Register
	maxu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	maxu Immediate
	maxu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	min Register
	min rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	min Immediate
	min ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	minu Register
	minu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	minu Immediate
	minu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulh Register
	mulh rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulh Immediate
	mulh ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhh Register
	mulhh rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhh Immediate
	mulhh ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhhs Register
	mulhhs rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhhs Immediate
	mulhhs ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhhu Register
	mulhhu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhhu Immediate
	mulhhu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhs Register
	mulhs rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhs Immediate
	mulhs ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhu Register
	mulhu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulhu Immediate
	mulhu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mull Register
	mull rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mull Immediate
	mull ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullh Register
	mullh rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullh Immediate
	mullh ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullhu Register
	mullhu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullhu Immediate
	mullhu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullhus Register
	mullhus rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullhus Immediate
	mullhus ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulll Register
	mulll rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulll Immediate
	mulll ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulllu Register
	mulllu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mulllu Immediate
	mulllu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullu Register
	mullu rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	mullu Immediate
	mullu ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	nandl Register - Register
	nandl rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	nandl Branch Register - Register
	nandl bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	nandl Register - Immediate
	nandl ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	nandl Branch Register - Immediate
	nandl bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	norl Register - Register
	norl rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	norl Branch Register - Register
	norl bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	norl Register - Immediate
	norl ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	norl Branch Register - Immediate
	norl bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	or Register
	or rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	or Immediate
	or ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	orc Register
	orc rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	orc Immediate
	orc ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	orl Register - Register
	orl rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	orl Branch Register - Register
	orl bbdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	orl Register - Immediate
	orl ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	orl Branch Register - Immediate
	orl bibdest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	pft
	pft isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	prgadd
	prgadd isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	prgins
	prgins
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	prgset
	prgset isrc2[rsrc1]
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	rfi
	rfi
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sbrk
	sbrk
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh1add Register
	sh1add rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh1add Immediate
	sh1add ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh2add Register
	sh2add rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh2add Immediate
	sh2add ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh3add Register
	sh3add rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh3add Immediate
	sh3add ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh4add Register
	sh4add rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sh4add Immediate
	sh4add ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	shl Register
	shl rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	shl Immediate
	shl ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	shr Register
	shr rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	shr Immediate
	shr ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	shru Register
	shru rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	shru Immediate
	shru ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	slct Register
	slct rdest = bscond, rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	slct Immediate
	slct ridest = bscond, rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	slctf Register
	slctf rdest = bscond, rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	slctf Immediate
	slctf ridest = bscond, rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	stb
	stb isrc2[rsrc1] = rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sth
	sth isrc2[rsrc1] = rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	stw
	stw isrc2[rsrc1] = rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sub Register
	sub rdest = rsrc2, rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sub Immediate
	sub ridest = isrc2, rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sxtb
	sxtb ridest = rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sxth
	sxth ridest = rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	sync
	sync
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	syscall
	syscall
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	xor Register
	xor rdest = rsrc1, rsrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	xor Immediate
	xor ridest = rsrc1, isrc2
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	zxth
	zxth ridest = rsrc1
	Semantics:
	Description:
	Restrictions:
	Exceptions:

	Instruction encoding
	A.1 Reserved bits
	A.2 Fields
	A.3 Formats
	A.4 Opcodes

	Glossary
	Index

