
BlackBerry Dynamics SDK for
iOS
Development Guide

5.0

2018-11-27Z

 | | 2

Contents

About this guide..6

BlackBerry Dynamics background... 7
BlackBerry Dynamics API reference... 7
FIPS 140-2 compliance..7
Easy Activation... 8
Securing cut-copy-paste on devices (Data Leakage Prevention, or DLP).. 8
Shared Services Framework..8
Support for fingerprint authentication.. 8
Support for Face ID..9
Support for certificates..9
Support for the "Do not require password" setting... 9
Bypassing the App Lock screen... 10
BlackBerry Dynamics contributor code on GitHub..10
Supported languages... 10

Requirements.. 12
BlackBerry Dynamics software versions..12
Compatibility with earlier releases..12
Software requirements...12
BlackBerry Dynamics entitlement ID and version..12

Distinction from and use with native language identifiers..14
Requirements: Frameworks and libraries...14
Requirement: URL scheme.. 15
Required build-time declarations: URL type... 15

Security changes in iOS 9 and later..16
Using NSURLSystem for KCD..17
GDAssets.bundle required in build phase.. 17
Compatibility with the BlackBerry Dynamics Launcher Library.. 17
App UI restrictions... 17
Supported and unsupported features on iOS.. 17

Support for Touch ID..17
Support for Face ID.. 18
Support for WKWebView..18
Support for 64-bit ARM architecture... 18
Support for IPv6..19
BitCode not supported... 19
SiriKit not supported...19
Support for the Apple Universal Clipboard... 19

Link for FIPS in Objective-C or C++..19
Link for FIPS in Swift..20
FIPS and 64-bit simulation...20
Troubleshooting FIPS... 20

 | | iii

Steps to get started with the BlackBerry Dynamics SDK..................................21
Downloading and installing the BlackBerry Dynamics SDK for iOS... 21

Download the BlackBerry Dynamics SDK... 21
Install the BlackBerry Dynamics SDK for iOS in the default location on macOS..................................21
Location of installed artifacts..22
Install the BlackBerry Dynamics SDK for iOS from a tar file...22
Uninstall the BlackBerry Dynamics SDK for iOS...22

Create an Objective-C or Swift project with the Xcode template... 23
Manually add the BlackBerry Dynamics SDK event-handler skeleton in Objective-C...................................... 23
Add the BlackBerry Dynamics SDK event-handler skeleton using notifications in Objective-C...................... 26

Programming with the BlackBerry Dynamics SDK and BlackBerry Enterprise
Mobility Server services.. 30

Sample apps in Objective-C.. 32

BlackBerry Dynamics and the Swift programming language............................ 34
Manually add the BlackBerry Dynamics SDK to your Swift project ...34
Link for FIPS in Swift... 35

Testing and troubleshooting... 36
Implementing automated testing for BlackBerry Dynamics apps..36

Automated testing with the BlackBerry Dynamics sample apps.. 36
Preparing for automated testing... 37
Components of a sample automated testing configuration... 38
Execute tests from the command line with Xcode tools.. 38
Execute tests from the Xcode IDE.. 40
Add automated testing to your BlackBerry Dynamics iOS app...40

Disable compliance settings that check for a compromised OS... 40
Setup enterprise simulation mode..40
Run application in enterprise simulation mode...41
Troubleshooting..42
Logging and diagnostics... 42

Log message categories..43
Configure detailed logging for the Xcode console.. 43
Configure selective logging for the Xcode console... 43
Configure logging in Good Control..44
GDLogManager class for log uploading... 44
GDDiagnostic API..44

Readying your app for deployment: server setup...45
Configuring library version compliance..45
iOS requires users trust your app's signing certificate... 46

Details of support for client certificates..47

 | | iv

BlackBerry Dynamics SDK support for personal certificates (PKCS12 or PKI certs)......................................47
Certificate requirements and troubleshooting..48

Client certificate sharing among BlackBerry Dynamics-based applications... 48
Kerberos PKINIT: User authentication with PKI certificates...49

Legal notice.. 52

 | | v

About this guide
This guide is an introduction to the BlackBerry Dynamics SDK for iOS. It focuses on how to install the SDK, how
to use the Xcode project template on the BlackBerry Developers for Enterprise Apps portal, and introduces the
sample apps that are packaged with the SDK.

This guide is intended for software developers who already have an understanding of developing software for the
iOS platform. It is not a basic tutorial.

For information about programming on iOS, see Start Developing iOS Apps on the Apple Developer site.

 | About this guide | 6

https://developer.apple.com/library/content/referencelibrary/GettingStarted/DevelopiOSAppsSwift/index.html

BlackBerry Dynamics background
The following sections provide some background information that can help you understand the features of the
BlackBerry Dynamics SDK.

The way that these features are implemented in your environment will depend on how your administrator has
configured your organization's servers, your network, and other infrastructure.

BlackBerry Dynamics API reference
The BlackBerry Dynamics SDK API reference describes the available interfaces, classes, methods, and much
more.

 You can access the iOS API reference online at https://developers.blackberry.com/us/en/resources/api-
reference.html.

FIPS 140-2 compliance
BlackBerry Dynamics apps must comply with U.S. Federal Information Processing Standards (FIPS) 140-2.
The BlackBerry Dynamics SDK distribution contains FIPS canisters and tools and, by default, enforces FIPS
compliance.

There are two components involved in enabling FIPS:

Component Description

BlackBerry Dynamics app The app must start in FIPS-compliant mode. The BlackBerry Dynamics
SDK determines whether a service is running in FIPS mode when the
app communicates with the server to receive policies. All apps must be
written for FIPS compliance.

Policy server (either standalone
Good Control or BlackBerry UEM)

For more details on FIPS policies, see Readying your app for deployment:
server setup.

FIPS compliance enforces the following constraints:

• MD4 and MD5 are prohibited. As a result, access to NTLM-protected or NTLM2-protected web pages and files
is blocked.

• Wrapped apps are blocked.
• In secure socket key exchanges with ephemeral keys, with servers that are not configured to use Diffie-

Hellman keys of sufficient length, BlackBerry Dynamics retries with static RSA cipher suites.

Note: When you enable FIPS compliance, user certificates must use encryption that meets FIPS standards.
If a user tries to import a certificate with encryption that is not compliant, the user receives an error message
indicating that the certificate is not allowed and cannot be imported.

 | BlackBerry Dynamics background | 7

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html

Easy Activation
The Easy Activation feature simplifies the provisioning process by allowing a BlackBerry Dynamics app to hand
off activation to an app that is already installed on the device and can act as the activation delegate. The user has
to retrieve and manually enter an access key only the first time the user installs a BlackBerry Dynamics app.

Securing cut-copy-paste on devices (Data Leakage Prevention, or
DLP)
You can use the BlackBerry Dynamics SDK to protect certain data copied and pasted between apps on your users'
devices.

For iOS, you don't need to do any additional programming to support secure cut and paste.

Server administrators must enable the Data Leakage Prevention policies in the management console.

To enable sharing among a group of apps, the apps must be provisioned from the same BlackBerry Control
service for each user.

If the Data Leakage Prevention settings are enabled in your environment, you can work around them when you
need to debug your app. For more information, see the BlackBerry Dynamics SDK API Reference.

Shared Services Framework
BlackBerry Dynamics-enabled apps can communicate with each other using the Shared Services Framework.
There are two kinds of shared services:

• Server-side services
• Client-side services

The BlackBerry Dynamics SDK contains sample apps that show how these services work.

For a conceptual background, see BlackBerry Dynamics Services Framework.

Support for fingerprint authentication
Support for fingerprint recognition is a supplement to standard BlackBerry Dynamics secure user authentication,
not a replacement for it. BlackBerry Dynamics includes the following policies related to fingerprint authentication.
These settings are configured using policies in the management console:

• Allow or disallow fingerprint authentication for BlackBerry Dynamics-based apps in general.
• If fingerprint authentication is allowed, you can also allow or disallow it for BlackBerry Dynamics apps

immediately after app coldstart. If you do not allow it after app coldstart, the user must enter the password for
the app.

• Require the end user to enter a password after a specified interval.

Note: For app developers, no additional programming work is necessary for fingerprint authentication.

For more information, see BlackBerry Dynamics and Fingerprint Authentication.

 | BlackBerry Dynamics background | 8

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/gd_services_framework.pdf
https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/whitepaper_fingerprint.pdf

Support for Face ID
The BlackBerry Dynamics SDK for iOS version 4.0 and later supports Face ID. An administrator can enable or
disable the feature in a BlackBerry Dynamics profile in UEM or security policy in Good Control.

For applications built for iOS 11 or later, each application must add the NSFaceIDUsageDescription key to the
Info.plist file. For more details about Face ID, see the BlackBerry Dynamics SDK for iOS API Reference.

If a BlackBerry Dynamics app is using version 4.0 of the SDK and the management console has not been
upgraded to UEM 12.8 or later, or Good Control 5.0 or later, access to the Face ID feature is controlled by the
Touch ID setting (Allow Touch ID for Idle Unlock).

Support for certificates

Type Description

PKI certificates BlackBerry Dynamics supports many popular uses of client-side Public Key
Infrastructure (PKI) certificates to secure apps and communications:

• General requirements for working with PKI certs
• Description of client certificate sharing among BlackBerry Dynamics apps

on a device
• Kerberos PKINIT: Client certificates in the Kerberos authentication model.

This is not Kerberos Constrained Delegation (KCD).

For more information, see Details of support for client certificates.

SCEP BlackBerry UEM version 12.10 and later support certificate enrollment using
SCEP with Entrust and Microsoft NDES for BlackBerry Dynamics apps.
Administrators can configure and assign a SCEP profile for BlackBerry
Dynamics apps in the UEM management console.

For more information, see “SCEP profile settings” in the UEM Administration
Guide.

Support for the "Do not require password" setting
The BlackBerry Dynamics Runtime supports the "Do not require password" setting in a BlackBerry Dynamics
profile in UEM or in a security policy in standalone Good Control. When this setting is enabled by an administrator,
users cannot set a password for a BlackBerry Dynamics app or BlackBerry Dynamics container. Note that this
setting does not apply to the device password.

This setting is available in BlackBerry UEM 12.7 or later and standalone Good Control 3.0.50.70 or later.

Security considerations

• Consider the security impact to your organization's environment before an administrator enables this setting.
If enabling this feature does not meet security standards, consider other options, including authentication
delegation or assigning the profile to specific users or groups that are already assigned device management
profiles or other controls.

• Do not enable the "Do not require password" setting and authentication delegation in the same policy set.

 | BlackBerry Dynamics background | 9

https://developers.blackberry.com/us/en/resources/api-reference.html
https://docs.blackberry.com/en/endpoint-management/blackberry-uem/
https://docs.blackberry.com/en/endpoint-management/blackberry-uem/

• When the "Do not require password" setting is enabled, authentication can be accomplished only through user
interaction or autonomously. For more information, see "canAuthorizeAutonomously" in the SDK programming
reference for iOS or Android.

User experience when the rule is enabled or disabled

If a BlackBerry Dynamics app requires a password and the administrator enables the "Do not require password"
setting, the next time the user opens the app, the app displays a message that a password is no longer required.
As long as the feature is enabled, the user is not prompted for a password.

If the administrator disables the "Do not require password" setting, the next time the user opens the app, the app
displays a message that a password is required. The user is prompted to specify a password.

iOS: Optional APIs for the "Do not require password" policy rule

You can call the [GDiOS sharedInstance].canAuthorizeAutonomously method to determine whether
this feature is enabled for a BlackBerry Dynamics app.

If the app has received an APNS message or a Background Fetch period, or has been launched in the background,
you can call the [GDiOS sharedInstance].authorizeAutonomously method to start the authorization
process.

The SecureStore sample app illustrates the use of these methods.

For syntax and details, see the SDK programming reference.

Bypassing the App Lock screen
BlackBerry Dynamics supports the ability of an app to bypass the BlackBerry Dynamics user authentication/lock
screen. Some organizations want this feature, particularly in VoIP apps where the user needs to respond quickly
to an incoming call.

Note: Enabling this policy weakens the security inherent to BlackBerry Dynamics.

For information about requesting this feature, the necessary programming for bypassing the lock screen, the
setup of a required app policy, and other details, see Bypass Unlock: BlackBerry Dynamics app Developer Guide.

BlackBerry Dynamics contributor code on GitHub
You can access contributed code samples for the BlackBerry Dynamics SDK on GitHub at https://github.com/
jhawkinsatgood/gdcontributor. BlackBerry encourages you to take advantage of contributed code for the
BlackBerry Dynamics SDK and to contribute your own code to share. The contributor code includes a number of
complete BlackBerry Dynamics apps.

Supported languages
The BlackBerry Dynamics SDK supports the following languages. No SDK calls are required to use a particular
language; the interface selects the appropriate language based on the language setting the user has configured
on their device.

• English (US)

 | BlackBerry Dynamics background | 10

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/BypassUnlock.pdf
https://github.com/jhawkinsatgood/gdcontributor
https://github.com/jhawkinsatgood/gdcontributor

• Chinese (Simplified)
• Danish
• Dutch
• French
• German
• Italian
• Japanese
• Korean
• Portuguese (Brazil)
• Portuguese (Portugal)
• Spanish
• Swedish

 | BlackBerry Dynamics background | 11

Requirements

BlackBerry Dynamics software versions
• BlackBerry Dynamics SDK for iOS 5.0.x
• BlackBerry Dynamics Launcher Library for iOS 2.9.0.218

Compatibility with earlier releases
The latest release of the BlackBerry Dynamics SDK is compatible with the previous two releases.

Note: You should always build with and test against the most recent release. The most recent release has bug
fixes and new features that you should test and deploy regularly.

Software requirements
iOS development

Item Requirement

Deployment target iOS 10 or later

iOS SDK 10.0 or later

Xcode Xcode 9 or later

Xcode 10 does not support docset archives for reference
documentation. As a result, the BlackBerry Dynamics SDK for iOS does
not include a docset archive.

Supported programming
languages

• Objective-C
• Swift 3
• Swift 4

BlackBerry Dynamics entitlement ID and version
BlackBerry Dynamics apps are uniquely identified by a BlackBerry Dynamics entitlement ID (GDApplicationID)
and entitlement version (GDApplicationVersion). The entitlement ID and entitlement version are used
to manage end-user entitlement for your apps, as well as for publishing and service provider registration.
The BlackBerry Dynamics entitlement ID was formerly known as the app ID or GD App ID.

The entitlement ID is used in the app, in the BlackBerry UEM or standalone Good Control management console for
app management, and in some administrative user interfaces on the application developer portal.

 | Requirements | 12

Note: The entitlement ID and entitlement version are different from the native application ID and native
application version. The native application ID is a unique identifier for the app that is used by the OS and
associated platforms (for example, the package name for Android or bundle identifier for iOS). The native
application version is the app version number that you must change if you want to distribute a new version of an
app. You only need to change the entitlement version if the app starts to provide a new shared service or shared
service version, or if the app stops providing a shared service or shared service version. For more information
about when to change the entitlement ID and entitlement version, see the BlackBerry Dynamics API reference.

Requirements for the entitlement ID and entitlement version

Requirement Description

Required for apps You must define both the entitlement ID and the entitlement version for all
your BlackBerry Dynamics apps, regardless of whether you use the BlackBerry
Dynamics Shared Services Framework. Developers and administrators should
ensure that the value specified for the GDApplicationVersion key in the
app configuration files is the same as the value the administrator specifies
in BlackBerry UEM or in standalone Good Control.

The entitlement version is independent of any native version identifier.
For more information, see Distinction from and use with native language
identifiers.

Represent the same app
across all platforms

The same entitlement ID must be used to represent the app across all
platforms. By default, access to apps varies by the type of app:

• By default, all versions of partner or ISV apps are available to all authorized
users in any organization that the app has been published to.

• By default, each version of a BlackBerry Dynamics app requires that the
administrator grant access in BlackBerry UEM or in standalone Good
Control before users can run the app on users' devices.

Naming scheme Develop a naming scheme to meet your needs. For example:

• Entitlement ID: com.manufacturingco.gd
• Entitlement version: 1.0.0.0
• Native application version: 2.0

Entitlement ID format • The general form of an entitlement ID is <company_name>.<app_name>.
• The ID must use reverse domain name form, for example,

com.company.example. Use a domain name owned by your organization.
• The ID must not begin with com.blackberry, com.good, com.rim, or net.rim.
• The ID can contain only lower-case letters, numeric digits, hyphens, and

periods.
• The string must follow the <subdomain> format defined in section 2.3.1

of RFC 1035, as amended by Section 2.1 of RFC RFC 1123.

Entitlement version value • The value must use one to four segments of digits, separate by periods
(x.x.x.x).

• Each segment can be up to three digits and must not use a leading zero
(for example, 01.02 is not valid). A segment can use a single 0.

• The first release of an app should use the entitlement version 1.0.0.0.

 | Requirements | 13

https://developers.blackberry.com/us/en/resources/api-reference.html
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1123.txt

Distinction from and use with native language identifiers
The Entitlement ID and Entitlement Version are BlackBerry Dynamics specific metadata and are independent of
the identifiers needed by the app platforms themselves. The key point is that the values and the native language
identifiers' values can be the same but they do not necessarily have to be. Listed below by platform are the
equivalent native identifiers, which are where the values of Entitlement ID and version are stored.

• Info.plist

• CFBundleIdentifier

• CFBundleVersion

Unique native identifiers for enterprise apps

If you are developing a private app for use in your enterprise, make sure that the value you choose for the app's
native identifiers (Bundle ID and others constructs used on other platforms) is unique, especially with respect to
apps that are available through the public app stores.

Duplicate native identifiers can prevent the proper installation or upgrade of your own app.

For all your native identifiers, devise a naming scheme that you can be relatively certain is unique.

Mapping BlackBerry Dynamics entitlement ID to native identifiers

To take advantage of many features, such as Easy Activation, multi-authentication delegation, and the shared
services framework, developers need to set up a map in the server between your defined Entitlement ID and the
native identifiers on the platforms for which your app is distributed. The native platforms have no knowledge of
the Entitlement ID; thus the mapping is needed for the operating systems to take over the actual function of the
app.

Native version identifiers: * wildcard allowed for blocking app

The SDK supports use of native version identifiers in keeping with the conventions described by the major
vendors. These same conventions apply to the use of the * wildcard in the server to deny apps by native version.

• Platform:iOSCFbundleVersion
• A series of integers separated by ".". No explicit limit on number of words.
• More information from Apple

The * character can be used in native version identifiers, but must always be preceded by a period (.) and must be
the last character in the native version string. Examples:

• Allowed: 2.3.*
• Not allowed: 2.*.3
• 2.* includes 2.*.*

Requirements: Frameworks and libraries
The BlackBerry Dynamics runtime static library requires the following frameworks and libraries to be included in
the Link Binary With Libraries build phase (not necessary for the BlackBerry Dynamics runtime dylib):

• CFNetwork.framework
• CoreData.framework
• CoreTelephony.framework

 | Requirements | 14

https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html

• GD.framework
• libz.dylib or libz.tbd
• LocalAuthentication.framework
• MessageUI.framework
• MobileCoreServices.framework
• Quartzcore.framework
• QuickLook.framework
• Security.framework
• SystemConfiguration.framework
• WebKit.framework

Requirement: URL scheme
Each application must add a custom URL scheme to the Info.plist file that consists of the bundle identifier with
".sc3" appended. Include the declaration in the same custom URL type declaration as the existing mandatory
declarations (for example, the .sc2 scheme).

Required build-time declarations: URL type
Your app must declare a URL type so that it can be discovered by other apps on the same user's device.
This enables BlackBerry Dynamics AppKinetics (shared services) communication, which is required for
many BlackBerry Dynamics features.

The URL type and schemes are declared in an iOS app's Info.plist file.

The URL type must be the same as the application's native bundle identifier. Within the URL type declaration,
the following URL schemes must be declared. For an example, if the native bundle identifier of the application
is com.example.gd.myapp and its BlackBerry Dynamics app version is 1, then the declared URL type
is com.example.gd.myapp and the schema declarations are shown below.

Table 1: URL type discovery schemes

Format Description Example

com.good.gd.discovery Always required Exactly as shown

com.good.gd.discovery.

enterprise

Required for in-house apps
developed by an enterprise;
see Security changes in iOS 9 and
later

Exactly as shown

<native_app_identifier>.

sc3

Always required com.example.gd.myapp.sc3

<native_app_identifier>.

sc2

Enables an app to use
authentication delegation and
is required for all BlackBerry
Dynamics apps

com.example.gd.myapp.sc2

 | Requirements | 15

Format Description Example

<native_app_identifier>.

sc2.<GD_app_version_#>

Required only if your app
provides a service that must be
discoverable

com.example.gd.myapp.sc2.

1.0.0.0

Security changes in iOS 9 and later
Apple introduced underlying security changes in iOS 9 that can impact BlackBerry Dynamics SDK apps, depending
on how the apps are deployed. The changes relate to service discovery and keychain sharing. Review the new
requirements below and modify your apps as necessary:

Requirement Description

Add an "enterprise"
discovery scheme

In the Xcode project's Info.plist file (or via the Xcode UI), in the URL
Schemes > CFBundleURLSchemes section, add the following line:
com.good.gd.discovery.enterprise

This scheme is in addition to the other required or optional schemes discussed in
Build-time required declarations: URL type.

Keychain group sharing
for multiple apps

Apple's keychain group sharing allows groups of apps to share information that
is stored on a device's keychain. Keychain group sharing is required when you are
developing multiple inter-related apps. The setting is part of a project's build.

To enable keychain group sharing in an Xcode project:

1. Open the app's project file.
2. Click the application target > Capabilities tab.
3. Turn on Keychain Sharing.

You may be asked for your developer password and to choose a development
team. The provisioning profiles for each app must come from the same team
and must share the same App ID prefix (see below).

4. In the Keychain Group field, type com.good.gd.data.

If the settings for keychain group sharing change, it is recommended to do a fresh
reinstall of the new version of the app, instead of upgrading the old version. This
ensures that the new keychain settings take effect.

Common application
identifier (App ID prefix)

An App ID prefix is a unique ID that groups a collections of apps and enables
those apps to share keychain and UIPasteboard data. Apps that share keychain
data must have a common App ID prefix from Apple.

Note: If your enterprise applications do not share the same App ID prefix,
BlackBerry Dynamics Easy Activation does not work because the apps cannot
discover each other.

For more information, see Technical Note TN2311: Managing Multiple App ID
Prefixes.

The Apple App ID prefix is completely independent of the BlackBerry
Dynamics entitlement ID.

 | Requirements | 16

https://developer.apple.com/library/content/technotes/tn2311/_index.html#//apple_ref/doc/uid/DTS40014135-CH1-OVERVIEW
https://developer.apple.com/library/content/technotes/tn2311/_index.html#//apple_ref/doc/uid/DTS40014135-CH1-OVERVIEW

Using NSURLSystem for KCD
The BlackBerry Dynamics GDHTTPRequest method does not support Kerberos Constrained Delegation (KCD). If
you plan to develop iOS apps for use with KCD, you can use the NSURLSystem provided by Apple instead.

GDAssets.bundle required in build phase
Ensure that GDAssets.bundle has been added to the Copy Bundle Resources build phase in Xcode and that the
copy of the bundle distributed with the framework has been added to the project.

Compatibility with the BlackBerry Dynamics Launcher Library
The BlackBerry Dynamics SDK and the BlackBerry Dynamics Launcher Library are mutually dependent. If you use
the BlackBerry Dynamics Launcher as a front-end for your apps, verify that you are using the latest compatible
versions of the BlackBerry Dynamics SDK and the BlackBerry Dynamics Launcher Library. See BlackBerry
Dynamics software versions for the required versions.

Note: Your apps may not run as expected if you do not use compatible versions of the BlackBerry Dynamics SDK
and the BlackBerry Dynamics Launcher Library.

App UI restrictions
The BlackBerry Dynamics Runtime monitors the app UI to enforce a number of enterprise security policies
configured in BlackBerry UEM or standalone Good Control. For example, a security policy may require the user to
enter a password when the app transitions from the background to the foreground, or may lock the app UI after a
certain period of inactivity.

The app UI must follow certain restrictions to enable monitoring by the BlackBerry Dynamics Runtime. For a
complete explanation of the restrictions, open the BlackBerry Dynamics SDK API Reference for your platform and
see the section “Application User Interface Restrictions” in the appendix.

Supported and unsupported features on iOS
Take into consideration these descriptions of supported or unsupported iOS features or constraints that might
affect the design of your application or its use after it is deployed.

For information about other requirements, see Requirements.

Support for Touch ID
Touch ID is a fingerprint recognition system for some iOS devices.

Touch ID can be allowed for user authentication in BlackBerry Dynamics apps in addition to standard password
authentication. For more information about Touch ID, see BlackBerry Dynamics and Fingerprint Authentication in
the BlackBerry Developers for Enterprise Apps portal.

 | Requirements | 17

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/whitepaper_fingerprint.pdf

Support for Face ID
The BlackBerry Dynamics SDK for iOS 4.0.0 and later supports Face ID. An administrator can enable or disable the
feature in a BlackBerry Dynamics profile in UEM or security policy in Good Control. For applications built for iOS
11 or later, each application must add the NSFaceIDUsageDescription key to the Info.plist file. For more details
about Face ID, see the BlackBerry Dynamics SDK for iOS API Reference.

Support for WKWebView
The BlackBerry Dynamics SDK for iOS version 4.2 and later supports secure WKWebView for displaying interactive
web content. The SDK supports WKWebView for devices running iOS 11.0 or later.

Note the following support details:

• The SDK supports only one secure WKWebView instance at a time. The instance must be created
programmatically.

• The supported versions of iOS require JavaScript injection by the BlackBerry Dynamics Runtime.
• The JavaScript Fetch API is not supported for iOS 11.2 and earlier.
• The JavaScript Fetch API is supported for iOS 11.3 and later, with the following known issue that will be

addressed in a future release:

• Requests with the raw file or blob binary object body content types do not work.

The SDK’s implementation of secure WKWebView currently supports:

• Loading HTTP and HTTPS data
• Redirection
• Basic, Digest, NTLM, Kerberos, and ClientCertificate authentication
• Cookies
• Video and audio playback
• Asynchronous XHR requests
• HTML5 non-persistent local storage
• Sending the following types of body data using XMLHttpRequest: ArrayBuffer, Blob, FormData,

URLSearchParams, USVString

The SDK’s implementation of secure WKWebView does not currently support:

• Secure WKWebView creation from UIStoryBoard, including WKWebView controls that are added with the
Xcode Interface Builder tool

• The JavaScript sendBeacon API
• The following Data Leakage Prevention (DLP) settings from BlackBerry UEM or standalone Good Control for

long-press or 3D touch actions:

• Do not allow copying data from BlackBerry Dynamics apps into non BlackBerry Dynamics apps
• Do not allow copying data from non BlackBerry Dynamics apps into BlackBerry Dynamics apps

• HTML5 persistent local storage
• HTML attributes for a link tag (for example, preconnect)
• WebSockets
• HTTP/2

Support for 64-bit ARM architecture
In addition to supporting 32-bit CPUs, the BlackBerry Dynamics SDK for iOS supports the 64-bit ARM (Apple A7)
architecture.

 | Requirements | 18

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developer.apple.com/documentation/webkit/wkwebview?changes=_8
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Support for IPv6
In addition to IPv4, the BlackBerry Dynamics SDK supports Internet Protocol (IP) version 6.

BitCode not supported
BitCode is an intermediate, architecture-independent binary object format that allows developers to submit a
"machine neutral" application to Apple for a final, architecture-dependent build.

However, the intermediate nature of BitCode is not compatible with the cryptographic requirements of
the BlackBerry Dynamics SDK for iOS, which relies on the delivery of libraries or other modules that are
cryptographically signed at build-time. The signatures of the libraries and modules are validated at runtime to
ensure integrity.

If you try to build an app using the BlackBerry Dynamics SDK for iOS and the directive ENABLE_BITCODE=YES
you will see the following linker error:

Application has BitCode build option enabled. BlackBerry Dynamics SDK does not
support BitCode. Please disable BitCode in your project Build Settings.

You must either remove the build directive ENABLE_BITCODE=yes or change it to ENABLE_BITCODE=no.

SiriKit not supported
SiriKit is an extension framework by Apple for integrating system voice control services with your application. If
the SiriKit framework is integrated, the application’s data could be sent out of its private space on the device and
even off the device to servers operated by Apple.

Data sent via SiriKit integration cannot be protected by BlackBerry Dynamics . The mechanisms to send the data
are private to Apple and cannot be secured by the BlackBerry Dynamics runtime on the device, nor can they be
sent by BlackBerry Dynamics secure communication.

For these reasons BlackBerry Dynamics does not support SiriKit.

Support for the Apple Universal Clipboard
This release introduces support for secure cut, copy, and paste operations using the Apple Universal Clipboard.
Users can copy and move data between BlackBerry Dynamics apps and devices that follow Apple Continuity
system requirements. The apps and devices must be activated for the same user account on the same instance
of BlackBerry UEM or standalone Good Control.

For more information about the Apple Universal Clipboard, see support.apple.com to read Set up Universal
Clipboard.

Link for FIPS in Objective-C or C++
Linking for FIPS is required. For background information, see FIPS 140-2 compliance.

If your application is written in Objective-C or C++, make the following project changes.

1. In the project's default.xcconfig file, add the following lines. (If you are not using an xcconfig file, add
one and configure your build options to use it.) This ensures that the FIPS canister linking script gd_fipsld is
called as part of the build process.

2. In your project build settings Configurations, make sure the Debug or other build configs point to
the default.xcconfig you created in the step above.

FIPS_PACKAGE=$(CURRENT_ARCH).sdk

 | Requirements | 19

https://support.apple.com/
https://support.apple.com/en-ca/HT204681#clipboard
https://support.apple.com/en-ca/HT204681#clipboard

 LDPLUSPLUS=$(HOME)/Library/Application Support/BlackBerry/Good.platform/iOS/
FIPS_module/$FIPS_PACKAGE/bin/gd_fipsld
 LD=$(HOME)/Library/Application Support/BlackBerry/Good.platform/iOS/
FIPS_module/$FIPS_PACKAGE/bin/gd_fipsld

3. Ensure that the deployment target is set to the currently required version detailed in Software requirements.
4. Make sure that the all_load linker option is not specified. Check the Other Linker Flags field in the target

build settings and remove this flag. Alternatively, you can use the ObjC linker flag.

Link for FIPS in Swift
If your project or app includes at least one Swift language source file, make the following project changes. Make
sure that you set up linking for FIPS in Objective-C or C++. For more information, see Link for FIPS in Objective-C
or C++. If you are not including source code in Objective-C, you must replace the contents of the xcconfig file, not
add to it.

1. In the project's default xcconfig file, add the following line. If you are not using an xcconfig file, add one and
configure your build options to use it.

FIPS_PACKAGE=$(CURRENT_ARCH).sdk
 LDPLUSPLUS=$(HOME)/Library/Application Support/BlackBerry/Good.platform/iOS/
FIPS_module/$FIPS_PACKAGE/bin/gd_fipsld
 LD=$(HOME)/Library/Application Support/BlackBerry/Good.platform/iOS/
FIPS_module/$FIPS_PACKAGE/bin/gd_fipsld

2. Ensure that the deployment target is set to the required version (see Software requirements).
3. In the project, go to Target > > Build Settings > Linking > Other Linker Flags and add the following:

-B ${LDUTILDIR}

FIPS and 64-bit simulation
When you build for testing with the X86 64-bit simulator (the iPhone 6 simulated device), FIPS mode is not
enforced, as it is when you build for the production architecture. Thus, you might perceive a difference in behavior
with the simulator from the behavior in actual operation. BlackBerry recommends that you always test your app
on actual iOS hardware and that you don't rely exclusively on the simulation.

Troubleshooting FIPS
If the app crashes it is probably because the FIPS canister has not been correctly linked to the application. If you
check the log output you should see a line like this:

Crypto::initialise: FIPS_mode_set failed: fingerprint does not match

To correct this, make sure that you have followed the steps to build and link your application and that no errors
have been reported.

If you see the following linker error when building for a device from Xcode

clang: error: invalid arch name '-arch armv7s'

For development or test, set Build Active Architecture Only to Yes.

For production release, be sure to set Build Active Architecture Only to No.

 | Requirements | 20

Steps to get started with the BlackBerry Dynamics SDK
Follow the steps below to start working with the BlackBerry Dynamics SDK. You can also see Getting Started
with the BlackBerry Dynamics SDK for a step-by-step walkthrough of the stages of developing a BlackBerry
Dynamics app.

1. Download and install the BlackBerry Dynamics SDK. See Downloading and installing the BlackBerry Dynamics
SDK for iOS.

2. Familiarize yourself with the features of the BlackBerry Dynamics SDK.

• See BlackBerry Dynamics background.
• For more information about code samples, see Sample apps in Objective-C or BlackBerry Dynamics and the

Swift programming language.
3. Understand the requirements and possible constraints on your programming.
4. Start working with the code. Do one of the following:

• Create an Objective-C or Swift project with the Xcode template . The template includes all the necessary
framework, required libraries, and the BlackBerry Dynamics SDK code for event handling and more.

• If you have an existing project, you can add to it. See Manually add the BlackBerry Dynamics SDK event-
handler skeleton in Objective-C, Add the BlackBerry Dynamics SDK event-handler skeleton using
notifications in Objective-C , or Manually add the BlackBerry Dynamics SDK to your Swift project .

5. Become familiar with available classes and methods in the BlackBerry Dynamics API reference.
6. Add your own code.
7. Build your application.
8. Setup enterprise simulation mode or your own testing methods.
9. If necessary, troubleshoot your application. You might want to setup logging and diagnostics.
10.Ready your application for deployment.

Downloading and installing the BlackBerry Dynamics SDK for iOS
For information about software and hardware requirements, see Software requirements.

Download the BlackBerry Dynamics SDK
Visit BlackBerry Developers for Enterprise Apps to register and create an account. After you create an ccount, you
can download the BlackBerry Dynamics SDK package and save the file on your computer.

Install the BlackBerry Dynamics SDK for iOS in the default location on macOS
The steps below install the BlackBerry Dynamics SDK in the default location. To change where the BlackBerry
Dynamics SDK is installed, see Install the BlackBerry Dynamics SDK for iOS from a tar file.

Before you begin: Download the BlackBerry Dynamics SDK.

1. In the macOS GUI (not a shell), uncompress the downloaded file BlackBerry Dynamics SDK for iOS package.
2. Double-click the sdk_version.pkg installation wizard. Follow the instructions on the screen.
3. Read the introduction and confirm that your system meets the minimum requirements listed, then click

Continue.
4. Read the Software License Agreement. Click Continue > Agree.
5. Click Continue to install the software on your computer or choose another network or peripheral drive if one is

appropriate. If another location is available, it will appear as an option.

 | Steps to get started with the BlackBerry Dynamics SDK | 21

https://developers.blackberry.com/us/en/resources/get-started.html
https://developers.blackberry.com/us/en/resources/get-started.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/
https://developers.blackberry.com/us/en/resources/downloads.html

6. Do one of the following:

• To use the standard installation, click Install.
• To use the advanced installation, click Customize. If you use the advanced installation, you must install the

Core SDK.

For both installation types, you can omit the code examples, but including them is recommended.
7. Click Install.
8. Click Close.

The SDK is installed in the default location detailed in Location of installed artifacts

Location of installed artifacts
For consistency with other BlackBerry Dynamics products, to comply with Apple guidelines, and to make way for
future cross-platform development the BlackBerry Dynamics SDK for iOS is now installed in the following default
directories. The .pkg file installs in the following default locations.

• Main artifacts of the SDK are installed in the Library subdirectory in your home directory: ~/Library/
Application Support/BlackBerry/Good.platform/iOS

• A softlink to the GD.framework directory from the above is created in the system directory /Library/
Frameworks

• The GD.framework directory is copied to the installed Xcode folder so that it is available for all iOS platforms.
(This might break the integrity check in Xcode.)

• The Xcode template is in ~/Library/Developer/Xcode/Templates

Install the BlackBerry Dynamics SDK for iOS from a tar file
You can install the BlackBerry Dynamics SDK from a tar archive into any directory you like.

Before you begin: Download the BlackBerry Dynamics SDK

1. Untar the file filename.tar into any directory you like, where filename.tar is the name of the BlackBerry
Dynamics SDK archive that you downloaded.

2. To install the BlackBerry Dynamics SDK in your current working directory, run the following commands. The
install.sh script first runs the uninstallation script.

a. cd Good.platform/iOS

b. sudo ./install.sh

The BlackBerry Dynamics SDK is installed in your current working directory.

After you finish: Adjust the paths in the .xcconfig file for your project to point to the FIPS_module folder in
the main artifacts directory, wherever you installed it.

Uninstall the BlackBerry Dynamics SDK for iOS
Run the following commands from Terminal to remove all BlackBerry Dynamics installed artifacts, including the
sample applications.

1. cd your_installation_directory
The default location is ~/Library/Application Support/BlackBerry/Good.platform/iOS.

2. sudo ./uninstall.sh

 | Steps to get started with the BlackBerry Dynamics SDK | 22

Create an Objective-C or Swift project with the Xcode template
You can use use the Xcode project template supplied with the BlackBerry Dynamics SDK to create a BlackBerry
Dynamics app. The template includes a single view controller, a storyboard (or nib) file and includes all necessary
frameworks and compile time directives.

Before you begin: Download the BlackBerry Dynamics SDK.

1. On your computer, start Xcode.
2. Select New > Project.
3. Follow the remaining prompts to finish creating the skeleton application.

All necessary frameworks and artifacts have been included in your stub.

Manually add the BlackBerry Dynamics SDK event-handler skeleton in
Objective-C
You do not need to manually add the code described here if you use the supplied project template. The project
template includes all this code automatically. See Create an Objective-C or Swift project with the Xcode template .

The application-delegate object UIApplicationDelegate manages the iOS app life cycle using events.

Many of the sample apps that are installed with the BlackBerry Dynamics SDK implement the event handling
lifecycle. There are several key parts to implementing the life cycle of events. You can decide how to approach the
life cycle of events. The following is one example.

• Specify the entitlement ID (also known as the app ID and version).
• Use GDAppEvent to process events.
• Special-case the onNotAuthorized events.
• On authorization, relying on GDErrorNone event, start the app UI.

This example is based loosely on Apple's Breadcrumbs sample app. However, there are significant differences in
declarations and elsewhere. The important point is the event handling, not the overall purpose of the app.

1. Specify the entitlement ID and version. Add the following key value pairs to the application's Info.plist. For
background, see BlackBerry Dynamics entitlement ID and version and Required build-time declarations: URL
type.
The values must correspond to the entitlement ID and version defined in standalone Good
Control or BlackBerry UEM.

2. Import GDiOS.h and implement a skeleton GDiOSDelegate protocol. The example here relies on a boolean
variable named started. An alternative approach is to declare the variable in your project's .m file.

 // AppDelegate.h
 #import <UIKit/UIKit.h>
 #import <GD/GDiOS.h>

 @interface AppDelegate : UIResponder <UIApplicationDelegate, GDiOSDelegate> {
 BOOL started;
 }

 @property (strong, nonatomic) UIWindow *window;
 @property (strong, nonatomic) GDiOS *good;

 | Steps to get started with the BlackBerry Dynamics SDK | 23

 - (void)onAuthorized:(GDAppEvent *)anEvent;
 - (void)onNotAuthorized:(GDAppEvent *)anEvent;

 @end

3. Build the application and ensure there are no warnings due to partial implementation or errors.
4. Use GDAppEvent to process events. Move the application launch code

from didFinishLaunchingWithOptions to GDAppEvent handler method.

 // AppDelegate.m
 - (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Override point for customization after application launch.
 self.good = [GDiOS sharedInstance];
 _good.delegate = self;
 started = NO;
 //Show the BlackBerry Authentication UI.
 [_good authorize];

 return YES;
 }

 #pragma mark BlackBerry Dynamics Delegate Method
 - (void)handleEvent:(GDAppEvent *)anEvent
 {
 /* Called from _good when events occur, such as system startup. */
 switch (anEvent.type)
 {
 case GDAppEventAuthorized:
 {
 [self onAuthorized:anEvent];
 break;
 }
 case GDAppEventNotAuthorized:
 {
 [self onNotAuthorized:anEvent];
 break;
 }
 case GDAppEventRemoteSettingsUpdate:
 {
 // handle app config changes
 break;
 }
 case GDAppEventPolicyUpdate:
 {
 // handle app policy changes
 break;
 }
 case GDAppEventServicesUpdate:
 {
 // handle services changes
 break;
 }
 case GDAppEventEntitlementsUpdate:
 {
 // handle entitlements changes
 break ;
 }
 default:

 | Steps to get started with the BlackBerry Dynamics SDK | 24

 NSLog(@"Unhandled Event");
 break;
 }
 }

5. Special-case the onNotAuthorized events. Make sure the application can handle problems such as
authorization errors or functionality like remote wipe, a lockout, or blocking events. Implement these events in
the onNotAuthorized function.

 - (void)onNotAuthorized:(GDAppEvent *)anEvent
 {
 /* Handle the BlackBerry Libraries not authorized event. */
 switch (anEvent.code) {
 case GDErrorActivationFailed:
 case GDErrorProvisioningFailed:
 case GDErrorPushConnectionTimeout:
 case GDErrorSecurityError:
 case GDErrorAppDenied:
 case GDErrorBlocked:
 case GDErrorWiped:
 case GDErrorRemoteLockout:
 case GDErrorPasswordChangeRequired: {
 // A condition has occurred denying authorization, an application
 may wish to log these events
 NSLog(@"onNotAuthorized %@", anEvent.message);
 break;
 }
 case GDErrorIdleLockout: {
 // idle lockout is benign & informational
 break;
 }
 default:
 NSAssert(false, @"Unhandled not authorized event");
 break;
 }
 }

6. On authorization, start the application. Initialize and start the application UI with the onAuthorized function.
The GDErrorNone event is returned by the BlackBerry Dynamics Runtime whenever a container is opened and
no error has been encountered; you could test for it as an alternative to the boolean started shown here.

 - (void)onAuthorized:(GDAppEvent *)anEvent
 {
 /* Handle the BlackBerry Libraries authorized event. */
 switch (anEvent.code) {
 case GDErrorNone: {
 // started was declared in first step.
 if (!started) {
 // launch application UI here
 started = YES;
 }
 break;
 } default:
 NSAssert(false, @"Authorized startup with an error");
 break;
 }
 }

 | Steps to get started with the BlackBerry Dynamics SDK | 25

7. Enable FIPS linking. See Link for FIPS in Objective-C or C++.
8. Include the GDAssets.bundle in the build phase. See GDAssets.bundle required in build phase.

Add the BlackBerry Dynamics SDK event-handler skeleton using
notifications in Objective-C
• Specify the entitlement ID (also known as the app ID and version).
• Use the GDState property of GDiOS to handle the state of the BlackBerry Dynamics Runtime.
• Special-case the onNotAuthorized events.
• On authorization, relying on the GDErrorNone event, start the app UI.

This example is based loosely on Apple's Breadcrumbs sample app. However, there are significant differences in
declarations and elsewhere. The important point is the event handling, not the overall purpose of the app.

1. Specify the entitlement ID and version. Add the following key value pairs to the application's Info.plist. For
background, see BlackBerry Dynamics entitlement ID and version and Required build-time declarations: URL
type.
The values must correspond to the entitlement ID and version defined in standalone Good
Control or BlackBerry UEM.

2. Add the BlackBerryDynamics dictionary with key 'CheckEventReceiver' and its Boolean value set
to NO.

 <plist version="1.0">
 <dict>
 ...
 <key>BlackBerryDynamics</key>
 <dict>
 <key>CheckEventReceiver</key>
 <false/>
 </dict>
 ...
 </dict>
 </plist>

3. Import GDiOS.h and GDState.h. The example here relies on a boolean variable named 'hasAuthorized'.
An alternative approach is to declare the variable in your project's .m file.

 // AppDelegate.h
 #import <UIKit/UIKit.h>
 #import <GD/GDiOS.h>
 #import <GD/GDState.h>

 @interface AppDelegate : UIResponder <UIApplicationDelegate> {
 BOOL hasAuthorized;
 }

 @property (strong, nonatomic) UIWindow *window;

 - (void)handleStateChange:(GDState *)state;
 - (void)onAuthorized;
 - (void)onNotAuthorized:(GDAppResultCode)code;

 | Steps to get started with the BlackBerry Dynamics SDK | 26

 @end

4. Build the application and ensure there are no warnings due to partial implementation or errors.
5. Make your AppDelegate an observer for state changing notifications.

 // AppDelegate.m

 - (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Override point for customization after application launch.
 [self addStateObserverUsingNotificationCenter];
 hasAuthorized = NO;
 [[GDiOS sharedInstance] authorize];

 return YES;
 }

 #pragma mark - BlackBerry Dynamics observer for state changes (Notification
 Center)

 - (void)addStateObserverUsingNotificationCenter
 {
 // register to receive notification center notifications for GD state
 changes
 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(receiveStateChangeNotification:)
 name:GDStateChangeNotification object:nil];
 }

 - (void) receiveStateChangeNotification:(NSNotification *) notification
 {
 if ([[notification name] isEqualToString:GDStateChangeNotification]) {
 NSDictionary* userInfo = [notification userInfo];
 NSString *propertyName = [userInfo
 objectForKey:GDStateChangeKeyProperty];
 GDState* state = [userInfo objectForKey:GDStateChangeKeyCopy];

 // For the purposes of this example, we want to log a different
 message so that it is known
 // these calls are coming from Notification Center
 if ([propertyName isEqualToString:GDKeyIsAuthorized]) {
 NSLog(@"receiveStateChangeNotification - isAuthorized: %@",
 state.isAuthorized ? @"true" : @"false");
 [self handleStateChange:state];

 } else if ([propertyName isEqualToString:GDKeyReasonNotAuthorized]) {
 NSLog(@"receiveStateChangeNotification - reasonNotAuthorized:
 %ld", (long) state.reasonNotAuthorized);

 } else if ([propertyName isEqualToString:GDKeyUserInterfaceState]) {
 NSLog(@"receiveStateChangeNotification - userInterfaceState: %ld",
 (long) state.userInterfaceState);

 } else if ([propertyName isEqualToString:GDKeyCurrentScreen]) {
 NSLog(@"receiveStateChangeNotification - currentScreen: %ld",
 (long) state.currentScreen);
 }
 }

 | Steps to get started with the BlackBerry Dynamics SDK | 27

 }

6. Use GDState to handle the state of the BlackBerry Dynamics Runtime .

 // AppDelegate.m

 #pragma mark - Good Dynamics handler methods for state changes

 - (void)handleStateChange:(GDState *)state
 {
 if (state.isAuthorized) {
 NSLog(@"gdState: authorized");
 [self onAuthorized];

 } else {
 GDAppResultCode errorCode = [state reasonNotAuthorized];
 NSLog(@"gdState: not authorized, error:%ld", (long) errorCode);
 [self onNotAuthorized:errorCode];

 }
 }

 - (void)onAuthorized
 {
 if (!hasAuthorized) {
 // launch application UI here
 hasAuthorized = YES;

 }
 }

 - (void)onNotAuthorized:(GDAppResultCode)code
 {
 /* Handle the Good Libraries not authorized event. */

 switch (code)
 {
 case GDErrorActivationFailed:
 case GDErrorProvisioningFailed:
 case GDErrorPushConnectionTimeout:
 case GDErrorSecurityError:
 case GDErrorAppDenied:
 case GDErrorAppVersionNotEntitled:
 case GDErrorBlocked:
 case GDErrorWiped:
 case GDErrorRemoteLockout:
 case GDErrorPasswordChangeRequired:
 {
 // an condition has occured denying authorization, an application
 may wish to log these events
 NSLog(@"gdState: not authorized, error:%ld", (long) code);
 break;
 }
 case GDErrorIdleLockout:
 {
 // idle lockout is benign & informational
 break;
 }
 default:
 NSAssert(false, @"Unhandled not authorized event");

 | Steps to get started with the BlackBerry Dynamics SDK | 28

 break;
 }
 }

7. Enable FIPS Linking (see Link for FIPS in Objective-C or C++).
8. Include the GDAssets.bundle in the build phase (see GDAssets.bundle required in build phase).

 | Steps to get started with the BlackBerry Dynamics SDK | 29

Programming with the BlackBerry Dynamics SDK and
BlackBerry Enterprise Mobility Server services
This section covers the general approach for programming with the BlackBerry Dynamics SDK and the BlackBerry
Enterprise Mobility Server services. The approach consists of two parts:

• Programming an app to interact with the desired BEMS services.
• Entitling users to the necessary applications.

BEMS services conform to the BlackBerry Dynamics shared services framework. A service consists of two
applications: A program that provides the service, and an app that consumes the service. BEMS is the service
provider that must be configured for use in BlackBerry UEM or in standalone Good Control. You create the app
that consumes this service.

BEMS services APIs

The BEMS services are described in the BEMS API Reference Guides.

Programming your service consumer app

You must define a unique BlackBerry Dynamics app ID for your application (for complete details, see BlackBerry
Dynamics entitlement ID and version). The BlackBerry Dynamics SDK has functions to discover services, and each
BEMS service has specific programming interfaces.

To discover the BEMS services, use GDServiceType. This API and other APIs for shared services are described
in other sections of this guide and in the BlackBerry Dynamics API reference.

After your consumer app discovers the service, the way the app communicates with the service depends on the
service definition.

Note: Most BEMS services run over SSL (HTTPS) on port 8443. Be sure your consumer application connects to
the correct server and port.

Discovering the BlackBerry Enterprise Mobility Server doc services

Described here is a general approach to using the BlackBerry Dynamics SDK and Server-based Services
Framework to programmatically discover the Docs services offered by your BEMS installation.

Item Description

Service identifier First you need to know the service identifier and version. For more information
about the available services, see Mobile Services.

Service discovery Next, code a service discovery query in your application program. The API for that
is GDServiceType in the GDAndroid, GDiOS, and GDMac classes.

 | Programming with the BlackBerry Dynamics SDK and BlackBerry Enterprise Mobility Server services | 30

http://help.blackberry.com/en/blackberry-enterprise-mobility-server-reference-guides/current/
https://developers.blackberry.com/us/en/resources/api-reference.html
https://apps.good.com/#/services

Item Description

Server cluster The result of the service discovery query is an array of GDServiceProvider objects.
Each object corresponds to a BlackBerry Dynamics entitlement identifier that is
registered as a provider of the service. Your best result is that the array has one
element.

If the array is empty, it means that the current end user isn't entitled to any App ID
that provides the service. In that case, your app shouldn’t use the service.

If the array has more than one element, it means that the end user is entitled to
more than one GD App ID that provides the service (likely a configuration error by
the enterprise). Your app would have to pick one of the GD App Ids, or try all of
them, or prompt the user to select.

In the GDServiceProvider object, there is a serverCluster attribute. It
contains an array of GDAppServer objects, each of which tells you the address
and port number of a server, and the priority of that instance within the cluster.

Server selection If the serverCluster array has only one element, then server selection is trivial.
Use the server address and port number of the first element.

If the serverCluster array is empty, that indicates an enterprise configuration
error.

If the serverCluster array has more than one element, then you must
implement a server selection algorithm. A sample algorithm is given on the
GDAndroid, GDiOS, and GDMac pages in the BlackBerry Dynamics API reference,
in the getApplicationConfig section. The algorithm is the same for
BlackBerry Dynamics SDK for Android and for BlackBerry Dynamics SDK for iOS.
The recommended selection algorithm is as follows.

For each priority value in the list, starting with the highest:

• Select a server that has that priority, at random.
• Attempt to connect to the server.
• If connection succeeds, use that server.
• If connection fails, try another server at the same priority, at random.
• If there are no more untried servers at that priority, try the servers at the next

lower priority.

 | Programming with the BlackBerry Dynamics SDK and BlackBerry Enterprise Mobility Server services | 31

https://developers.blackberry.com/us/en/resources/api-reference.html

Sample apps in Objective-C
Visit Dynamics SDK Samples to view and download the following sample apps. In the SDK package, the samples
are stored in ~/Library/ApplicationSupport/BlackBerry/Good.platform/iOS/Examples/objective-c.

Note: It is recommended to make a copy of the source code in another location before making any changes.
Reinstalling or upgrading will overwrite or even remove the sample apps in the default location.

Sample app Description

AppBasedCertImport Demonstrates how to create an app that can import a user's PKI credentials
using the BlackBerry Dynamics Certificate Credential Import API.

For more information, see Certificate Credential Import and "Creating user
credential profiles for app-based certifiactes" in the UEM Administration
Guide.

AppKinetics Demonstrates how to search for, create, and subscribe to client services
(AppKinetics). The sample demonstrates these concepts by implementing
a consumer and a provider for the Transfer File service. It is intended as a
starting point for developers making use of BlackBerry Dynamics AppKinetics
services.

AppKinetics save/edit client
and server

Demonstrates how to write a client and a server that use the BlackBerry
Dynamics Inter Container Communications API (also known as AppKinetics).

Bypass Unlock Demonstrates how part of the application user interface can remain
accessible after the BlackBerry Dynamics idle time out has expired. Bypass
Unlock can be allowed or disallowed by enterprise policy. This is implemented
using the GD Application Policies feature (GD Application Policies are
sometimes known as BlackBerry Dynamics Application-Specific Policies). The
ViewController that bypasses the unlock screen can be opened by pressing
the volume controls if the application is in the foreground, or by using the
auxiliary 'notifier' application (from the sub-project) if the application is in
background.

Core Data Demonstrates how to use BlackBerry Dynamics with a Core Data Incremental
Data Store backed by an encrypted SQLite database. The sample shows how
Core Data can be used to securely store a sample set of 20,000 fictional
employee details and their office locations.

Greetings client and
greetings server

Provides a client/server example of how to use the BlackBerry Dynamics
Services API to communicate securely between two applications.

Remote DB Demonstrates how to use BlackBerry Dynamics Remote Settings and DB
APIs. The sample allows you to configure remote settings in the management
console, and upon receipt, it stores them in the secure DB. Any changes to the
settings are automatically synchronized and stored.

RSS Reader Demonstrates how to use the BlackBerry Dynamics Secure Communications
APIs to access resources behind the enterprise firewall.

 | Sample apps in Objective-C | 32

https://developers.blackberry.com/us/en/resources/samples/blackberry-dynamics-sdk-samples.html
https://developer.blackberry.com/devzone/files/blackberry-dynamics/ios/group__clientcertificateimport.html
https://help.blackberry.com/en/blackberry-uem/
https://help.blackberry.com/en/blackberry-uem/

Sample app Description

Server-based Services Provides a starting point for developers making use of BlackBerry Dynamics
Server based Services. It retrieves the details of the google.timezone.service
using getServiceProvidersFor. The sample prompts the user to supply a
latitude and longitude and retrieves the corresponding results from Google.

Before running this sample, make sure serviceId is created and associated
with some existing app along with its endpoint details in the management
console. Also, a user who is running this sample must have permission in the
management console to run it.

The Google timezone service is a publicly available service:

• URL: https://maps.googleapis.com/maps/api/timezone/json?
location=37,122×tamp=85187&language=en&sensor=true

• BlackBerry Service ID: com.blackberry.example.gdservice.time-zone
• Latest Version: 1.0.0.0

 | Sample apps in Objective-C | 33

https://maps.googleapis.com/maps/api/timezone/json?location=37,122×tamp=85187&language=en&sensor=true
https://maps.googleapis.com/maps/api/timezone/json?location=37,122×tamp=85187&language=en&sensor=true

BlackBerry Dynamics and the Swift programming
language
The BlackBerry Dynamics SDK for iOS is compatible with the Swift programming language from Apple (for
supported versions, see Software requirements).

Note the following limitations and best practices:

Item Description

Xcode template The easiest way to use Swift with the BlackBerry Dynamics SDK is to create a
new Xcode project with the Single View template that includes all necessary
frameworks and compile-time directives. For more information about creating
the template, see Create an Objective-C or Swift project with the Xcode
template .

You can include your Swift source files into the project and build with Xcode.

Sample apps The BlackBerry Dynamics SDK includes the following sample apps in Swift.
The sample apps are stored in ~/Library/Application Support/BlackBerry/
Good.platform/iOS/Examples/. The Swift 3 versions are located in the "swift"
folder, and the Swift 4 versions are located in the "swift4" folder. iPhone X is
the default device for the Swift 4.0 sample applications.

• RSSReaderSwift: Demonstrates how to use the BlackBerry Dynamics
Secure Communication APIs for basic networking. The sample
shows how to use GET with the GDHttpRequest API (with and
without authentication) and the GDNSURLSesssion API. For session
management, only GDNSURLSesssion sharedSession is supported.

• ServicesServerSwift and ServicesClientSwift: Provides a complete client/
server app that demonstrates how to implement a service with the
BlackBerry Dynamics Shared Services Framework. The service enables
secure communication between two apps. The ServicesServerSwift app
provides the service and works in conjunction with the ServicesСlientSwift
app, which calls the service. The samples also demonstrate how the file
transfer service is used with the ServicesServeSwift app.

Manually add the BlackBerry Dynamics SDK to your Swift project
Follow the steps below if you have an existing project. Otherwise, for new projects, consider using the BlackBerry
Dynamics SDK Xcode template described in Create Objective-C or Swift project with BlackBerry Dynamics SDK
Xcode template.

Before you begin: Download and install the BlackBerry Dynamics SDK.

1. In the Link binary with binaries section or Build section of your Xcode project, add the GD.framework.
2. Add the frameworks and libraries listed in Software requirements to the project.
3. In your code, import the BlackBerry Dynamics runtime module:

import GD.Runtime

 | BlackBerry Dynamics and the Swift programming language | 34

https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/gd_services_framework.pdf

4. Modify the AppDelegate class to implement the GDiOSDelegate protocol to implement
a handleEvent (anEvent:) method, as shown here:

class AppDelegate: UIResponder, UIApplicationDelegate, GDiOSDelegate {
 [...]
 func handle(_ anEvent:GDAppEvent) {
 [...]
 }
 }

5. Add a variable to your AppDelegate:

var good: GDiOS?

6. Add the following code to the didFinishLaunchingWithOptions function:

self.good = GDiOS.sharedInstance() // Get BlackBerry Dynamics shared instance
 self.good!.delegate = self // Set delegate
 self.good!.authorize() // Authorize

7. Modify the app's Info.plist file to include the proper values
for GDApplicationID and GDApplicationVersion, as described in BlackBerry Dynamics entitlement ID
and version.

8. Define URL types with the same ID as the bundle ID, and URL schemes with the required discovery schemes
detailed in Required build-time declarations: URL type (and any other discovery schemes required by your app).

9. Enable FIPS Linking (see Link for FIPS in Swift).
10.Include the GDAssets.bundle in the build phase (see GDAssets.bundle required in build phase).
11.Build your project.

Link for FIPS in Swift
If your project or app includes at least one Swift language source file, make the following project changes. Make
sure that you set up linking for FIPS in Objective-C or C++. For more information, see Link for FIPS in Objective-C
or C++. If you are not including source code in Objective-C, you must replace the contents of the xcconfig file, not
add to it.

1. In the project's default xcconfig file, add the following line. If you are not using an xcconfig file, add one and
configure your build options to use it.

FIPS_PACKAGE=$(CURRENT_ARCH).sdk
 LDPLUSPLUS=$(HOME)/Library/Application Support/BlackBerry/Good.platform/iOS/
FIPS_module/$FIPS_PACKAGE/bin/gd_fipsld
 LD=$(HOME)/Library/Application Support/BlackBerry/Good.platform/iOS/
FIPS_module/$FIPS_PACKAGE/bin/gd_fipsld

2. Ensure that the deployment target is set to the required version (see Software requirements).
3. In the project, go to Target > > Build Settings > Linking > Other Linker Flags and add the following:

-B ${LDUTILDIR}

 | BlackBerry Dynamics and the Swift programming language | 35

Testing and troubleshooting

Implementing automated testing for BlackBerry Dynamics apps
The BlackBerry Dynamics SDK includes the BlackBerry Dynamics Automated Test Support Library (ATSL) to
support automated testing for your BlackBerry Dynamics apps. The library is delivered as source code.

The library includes helper functions for testing common user interactions in BlackBerry Dynamics apps, such as
activation and authorization. The configuration and structure of the library is compatible with the tools offered
by Apple for user interface testing. It makes use of the following components:

• XCTest framework
• Accessibility identifiers

For more information about these components and iOS user interface testing, see Apple Documentation Archive:
User Interface Testing.

You can use the BlackBerry Dynamics library and the native library components mentioned above to automate the
building, execution, and reporting of your application tests.

Since the BlackBerry Dynamics Automated Test Support Library is delivered as source code, you can make
your own changes to it. It is recommended that you make a copy of the source code before you make your own
changes. Later releases of the SDK may include changes that you want to merge with your own.

The BlackBerry Dynamics ATSL is located in the sub-directory AutomatedTestSupport of the BlackBerry Dynamics
SDK home directory. If you use the graphical installer to install the BlackBerry Dynamics SDK, the library is located
under the BlackBerry Dynamics home directory at ~/Library/Application Support/BlackBerry/Good.platform/iOS/
AutomatedTestSupport/. The library code is organized into a workspace file that also includes projects from every
sample application.

Automated testing with the BlackBerry Dynamics sample apps
The sample apps included in the BlackBerry Dynamics SDK have been integrated with the BlackBerry
Dynamics Automated Test Support Library (ATSL). Each sample app includes test code that executes automated
tests of processing and behavior.

You can use the integration of the ATSL in any of the sample apps as a guide for integrating the library with your
own BlackBerry Dynamics apps. Note the following details about ATSL integration:

Item Description

Build target for testing Each app has an <AppName>UITests build target that can be used by
the XCTest framework.

For more information about how to configure and run user interface tests and
view results, see Apple Documentation Archive: Running Tests and Viewing
Results.

Code for XCUITest tests The test code is located in the sub-directory <AppName>UITests.

The code is based on the XCTests framework. Most of the classes relate
to user interface testing as XCUIApplication.

 | Testing and troubleshooting | 36

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/05-running_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/05-running_tests.html

Item Description

Use of ATSL for
interaction with BlackBerry
Dynamics screens

The test code uses helper functions in the ATSL. For example,
the code calls the loginOrProvisionBBDApp method of
the BBDAutomatedTestSupport class, which executes the entire activation
process.

You can validate ATSL helper function operations using XCTAssert macros.
For example, this assertion will fail if activation fails:

XCTAssertTrue([ats loginOrProvisionBBDApp], @"Activation
Failed!");

Use of ATSL for general
interactions

The test code also uses helper functions in the ATSL for general interactions,
such as checking that an item exists in the user interface and then interacting
with that item. The ATSL functions handle this by using XCTestCase and
XCUIElement classes.

These functions are defined in the category XCTestCase
+Expectations and the group Event_Helpers.

Preparing for automated testing
You must activate a new installation of a BlackBerry Dynamics app before you can run automated tests. This
requires a user identifier (typically an email address), an access key, and a password. The ATSL can read
activation credentials from any file in JSON format with the .json extension in the application resource bundle.
Each sample app in the SDK includes a file named credentials.json in the test target.

For more information about the required content of the credentials file, see
the BBDAutomatedTestSupport class in the reference documentation of
the fetchCredentialsFromFileAtPath: method.

 There are different options to prepare the file:

• Manually generate an access key for a user in the UEM or standalone Good Control management console, then
manually edit the file.

• Manually generate and store a number of access keys in advance, then automatically edit the file and consume
a key from the store.

• Automatically generate an access key, and optionally a user, with the BlackBerry Web Services APIs, then
automatically edit the file.

Use the option that best suits your needs, based on your access to the management console and administrator
level permissions, your familiarity with the BlackBerry Web Services APIs, and your preference for using a new
activation for every test or running subsequent tests on the same app as an upgrade.

Please note the following:

• In the JSON file, the access key and unlock key have to be 15 characters and cannot have dashes.
• Automated testing works in Enterprise Simulation mode, but will have the same restrictions (for example, the

app cannot connect to any back-end servers).
• There is currently an iOS known issue where automated tests can fail because the keyboard disappears

occasionally in the simulator.
• In Xcode 8.3 and later, the XCTests framework executes tests in a random order, as a best practice. Tests

should be self-contained and independent.

 | Testing and troubleshooting | 37

https://docs.blackberry.com/en/development-tools/blackberry-web-services-for-blackberry-uem/
https://docs.blackberry.com/en/development-tools/blackberry-web-services-for-blackberry-uem/

• Every BlackBerry Dynamics app needs a one-time initialization to complete activation. To ensure that this is
executed first, define a dedicated test method that executes BlackBerry Dynamics activation and have that
activation test executed in isolation.

• The source code is provided in Objective-C. If any of the app or test code is written in Swift, you must configure
the code according to Apple standards for mixing Swift and Objective-C.

Components of a sample automated testing configuration
The following diagram illustrates the different components in a sample automated testing configuration:

Execute tests from the command line with Xcode tools
Follow these instructions to build the application and test code, run the tests on a connected iOS device or
simulator, and record the results. You can run the command from a continuous integration system such as
Jenkins.

Run the following command:

 xcodebuild test -project "${XCODE_PROJ_PATH}" -scheme "${APP_SCHEME}" \
 -sdk "${SDK_TYPE}" -configuration "${BUILD_TYPE}" \
 CLANG_ALLOW_NON_MODULAR_INCLUDES_IN_FRAMEWORK_MODULES=YES \
 DEVELOPMENT_TEAM="${TEAM_ID}" CODE_SIGN_IDENTITY="${CODE_SIGN}" \

 | Testing and troubleshooting | 38

 FRAMEWORK_SEARCH_PATHS="${FRAMEWORKS_PATH}" \
 HEADER_SEARCH_PATHS="${HEADERS_PATH}" \
 -destination "${DESTINATION}" \
 -only-testing:${APP_TARGET}/${CLASS}/${TESTCASE}

Define the following variables:

Variable Value

XCODE_PROJ_PATH The path to your project.

APP_SCHEME The name of your app scheme.

SDK_TYPE iphoneos or iphonesimulator.

BUILD_TYPE Release or Debug.

TEAM_ID The unique identifier of the team used for signing, as provided by
an Apple developer program.

CODE_SIGN iPhone Distribution or iPhone Developer.

FRAMEWORKS_PATH The path to the folder containing the GD.framework package. The typical value
is <Dynamics_SDK_home_folder>/Frameworks.

HEADERS_PATH The path to the ATSL headers. This does not need to be specified if the ATSL
is copied within the project folder.

DESTINATION A string that describes the device that will be used to run the tests.

For a physical device, it would be platform=iOS,name=${DEVICE_NAME},
where DEVICE_NAME is the name of the device as returned by instruments
-s devices.

For a simulator, it would be platform=iOS Simulator,name=
${SIMULATOR_NAME},OS=${IOS_VERSION}, where IOS_VERSION is
the version (for example, 10.3) and SIMULATOR_NAME is the name of the
hardware simulator as returned by instruments -s devices.

APP_TARGET The target for user interface tests.

CLASS The test class to be executed. This value is optional. If it is omitted, all test
classes in the target are executed.

TESTCASE The method within the test class to be run. This value is optional. If it is
omitted, all test methods in the class are run.

Test results are printed on standard output in the OCUnit format, and can be saved by a continuous integration
system. You might need to convert the format to JUnit or another format that is suitable for your continuous
integration system.

 | Testing and troubleshooting | 39

Execute tests from the Xcode IDE
The tests that you can run from the command line (Execute tests from the command line with Xcode tools) can
also be run from within the Xcode IDE. This can be useful for investigating test failures with breakpoints or for
running tests as you write the code.

The tests in the BlackBerry Dynamics sample applications for iOS can be run from within the IDE in the same way
as any other tests that use the XCTests framework. Test results will be available in the Result view.

For more information, see Apple Documentation Archive: Running Tests and Viewing Results.

Add automated testing to your BlackBerry Dynamics iOS app
The following steps assume that the target app is already configured to use the BlackBerry Dynamics SDK.

1. If necessary, create a target in the project to run user interface tests. The target must have the type “iOS UI
Testing Bundle”.

2. Add the ATSL to the test target.
To import the BlackBerry Dynamics ATSL, add the following folder to the application project:
BBD_SDK_HOME_FOLDER/AutomatedTestSupport/Core. Select the option to copy the ATSL folder into the
project folder.

3. Add or write code for your app tests. Use the helper functions in the ATSL in your test code.

You can use the code for the app tests in any of the sample apps as a starting point. The first app
test, testProvision, executes BlackBerry Dynamics activation and unlock as an automated test.

Disable compliance settings that check for a compromised OS
Compliance profiles in BlackBerry UEM and compliance policies in standalone Good Control provide the
ability to detect when a device OS is jailbroken and to initiate an enforcement action. This feature extends to
deployed BlackBerry Dynamics apps, compiled with SDK version 5.0 or later, where an active debugging tool
is detected. If the detect jailbroken compliance setting is enabled, the BlackBerry Dynamics Runtime stops
a BlackBerry Dynamics app if it detects an active debugging tool.

If you want to debug one of your BlackBerry Dynamics apps in an environment where a compliance profile or
policy is applied, the compliance setting to detect jailbroken devices must be disabled. Alternatively, you can use
a non-debug build of your app to test it with the compliance setting enabled.

The setting to detect jailbroken devices is disabled by default in UEM compliance profiles and enabled by default
in standalone Good Control compliance policies.

Setup enterprise simulation mode
Enterprise Simulation mode in the BlackBerry Dynamics SDK facilitates app development work ahead of a full
deployment to the BlackBerry Dynamics platform. It runs your app on an emulator (for example, one supplied with
the iOS SDK) to efficiently verify new or changing functionality and performance.

Note: Enterprise Simulation mode should be used in development environments only. It is not intended for use in
a production environment. In all cases, access to the BlackBerry Dynamics NOC is required.

1. In the Supporting Files folder in the Xcode project-navigator, open the associated .plist file.
The prefix of the file you want reflects the project name. Thus, if you named your project FirstProject, for
example, the .plist file is called FirstProject-Info.plist. The file consists of a number of key-value
pairs, including type.

 | Testing and troubleshooting | 40

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/05-running_tests.html

2. Add a new row with a two-finger tap (right-click) in the file and select Add Row.
3. Enter the following values in the new row:

• Key: GDLibraryMode
• Type: String (default)
• Value: GDEnterpriseSimulation

Enterprise Simulation mode is now enabled for the app. If you need to return to the default authentication mode,
simply delete the new row from the .plist file. Its absence means that the application will process default
enterprise authentication, which requires a fully deployed BlackBerry Dynamics platform.

Run application in enterprise simulation mode
Running your application in simulation mode serves as a basic test of the BlackBerry Dynamics SDK installation.

Before you begin: See Setup enterprise simulation mode.

1. Open your Xcode project and run it. This builds the application and launches the device simulator.
The Enterprise Activation screen appears.

2. Enter an email address.

• Enterprise Simulation mode does not require a working address.
• Any fictitious address is sufficient, including ‘a@b.com.’

3. Enter an access key.
Any sequence of 15 characters is acceptable.

4. Click Next or the play button.
The onscreen progress-carousel displays the various activation steps.

Note: In simulation mode no security policies are retrieved from the server during activation. Only default
policies are applied.

5. When prompted by the Security Password Setting screen, enter any password that meets your server's
password complexity requirements.
In simulation mode, even the default security policy requires a password.

6. Click the Next button to set the password and see the simulator’s display

Running the skeleton application in Enterprise Simulation mode verifies that the SDK was installed correctly and
that a connection to the BlackBerry Dynamics infrastructure is available.

Be aware that, when you are running a simulation, the BlackBerry Dynamics runtime makes no attempt to contact
the policy server, so there will be no user authentication at the enterprise level and therefore no communication
through the enterprise firewall. Depending on the version of the SDK you are using, if you build the application in
simulation mode and attempt to then run it on a device, you will receive a message to the following effect:

This application is in simulation mode and cannot be run on device

or

Application Access Denied, Wipe/Block NEM Mode

Additional connectivity restrictions and limitations in Enterprise Simulation mode include:

• Provisioning and policy set-up flow are merely simulated in the UI.
• Hardcoded set of security and compliance policies in operation; authentication is not delegated.
• If run on a real device, not a simulator, the application will be wiped.
• Any attempt to change the mode of an application that is already installed from default to simulated will also

result in a wipe.

 | Testing and troubleshooting | 41

• There is no lost password recovery.
• BlackBerry Dynamics Inter-Container Communication (ICC) cannot be used. This means that the BlackBerry

Dynamics Shared Services Framework cannot be used.

.

Troubleshooting

Problem Possible solution

Linking problems (for example,
undefined symbols)

To verify that you included the necessary frameworks and libraries,
check the appendix of the BlackBerry Dynamics SDK for iOS API
Reference.

Access and password screens are
poorly rendered

Verify that GDAssets.bundle has been added to the Copy Bundle
Resources build phase and that the copy of the bundle distributed with
the framework has been added to the project.

App crashes Initialize the BlackBerry Dynamics libraries before calling any
other BlackBerry Dynamics API.

Provisioning error The email address or access key (PIN) has been incorrectly entered,
or an old access key has been used. Double-check the credentials
and, if necessary, send a new access key from the BlackBerry
UEM management console.

Blank screen with keyboard when
the app is launched

The BlackBerry Dynamics user interface is not correctly integrated with
the app. Verify that awakeFromNib is implemented without warnings.

Blank screen after the password is
entered

The app was authorized but failed to continue because
the GDAppEventAuthorized event passed to handleEvent was not
handled correctly.

A device command
from BlackBerry UEM, such as
wipe or lock, did not go into effect
immediately

The app was unauthorized but failed to stop running because
the GDAppEventNotAuthorized event passed to handleEvent was
not handled correctly.

Logging and diagnostics
The processing activity of the BlackBerry Dynamics Runtime is logged by the runtime itself. The activity log is
written to the BlackBerry Dynamics secure container on the device after deployment. You can configure how
your BlackBerry Dynamics apps generate console log information. For more information about console logs
controlled by developers and container logs controlled by UEM or Good Control administrators, see BlackBerry
Dynamics Runtime activity log.

If your app uses SDK version 5.0 or later, and the UEM or Good Control administrator has turned off “Enable
detailed logging for BlackBerry Dynamics apps” in the BlackBerry Dynamics profile (UEM) or security policy (Good
Control), the app does not generate console log information. This provides additional protection against attacks
by malicious users. This change has no impact on how container logs are generated.

 | Testing and troubleshooting | 42

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developer.blackberry.com/devzone/files/blackberry-dynamics/ios/logging.html
https://developer.blackberry.com/devzone/files/blackberry-dynamics/ios/logging.html

The “Enable detailed logging for BlackBerry Dynamics apps” setting is off by default.

For BlackBerry Dynamics apps running SDK version 5.0 or later, console logs are generated only if this setting is
turned on or if the app is running in enterprise simulation mode.

Log message categories
Messages in the activity log are assigned to one of four categories:

• Errors: critical failures
• Warnings: failures that arise but from which the BlackBerry Dynamics Runtime has recovered
• Info: normal operational activity
• Detailed: additional diagnostic information used for troubleshooting complex problems

You can configure the logging system to filter some or all messages. By default, only messages that belong to the
Errors, Warnings, and Info categories are printed.

The logging locations on the IDE console and device container are configured differently and independently. In
principle, you control the console log and the BlackBerry UEM administrator controls the container log.

Configure detailed logging for the Xcode console
Messages printed to the Xcode console are configured in the build targets of the app project. Different targets
can have different activity logging configurations. You can set logging to be detailed or selective. Changes to
the console logging configuration take effect the next time the target is built and run. Changes made to console
logging do not affect the container log.

1. Open the app’s Info.plist file.
2. Add a row with GDConsoleLogger as its key.
3. Set String as the type of the new row.
4. Set GDFilterNone as the value of the new row.

After you finish: In Xcode 9.3 or later, to view the detailed logs you must open the console app (from Xcode go
to Window > Devices and Simulators, or from OSX go to Applications > Utilities > Console.app) and enable the
following settings in the Action menu:

• Include Info Messages
• Include Debug Messages

Configure selective logging for the Xcode console
If there are multiple Info.plist files, check that you are editing the correct one by opening the Info tab of the
app target being built to make sure the new settings are there.

As with detailed logging, the console will only include log messages that are not in any of the categories specified
in the Info.plist.

To set the target’s activity logging configuration to print a selection of message categories, do the following:

1. Open the app Info.plist file.
2. Add a row with GDConsoleLogger as its key or change the existing row as follows:

a) Set Array as the type of the logger row.
b) For each category you don’t want to include, add a row under the logger row as an item in the logger’s array.
c) Set the item to type String.
d) Set the value to one of the following:

• GDFilterDetailed
• GDFilterInfo

 | Testing and troubleshooting | 43

• GDFilterWarnings
• GDFilterErrors

Configure logging in Good Control
You can specify the message categories that are recorded in the container log file in the Good Control
management console. To configure logging, you must be a Good Control administrator. Container logging can be
set for a particular installation of the app provisioned for a specific user. Selective logging for the container is not
supported.

Changes that you make to container logging are effective immediately if the app is running and connected to the
BlackBerry Dynamics infrastructure. Otherwise, changes are effective as soon as app does connect. Changes to
container logging have no effect on the Xcode logging.

The app can export or upload the container log file using the BlackBerry Dynamics API. For more information,
see the function definitions in the GDFileSystem class reference in the BlackBerry Dynamics SDK for iOS API
Reference.

GDLogManager class for log uploading
You can use the GDLogManager class that is included with the BlackBerry Dynamics SDK to monitor app log
file uploads that are initiated by end users. This class does not manage or display information about log uploads
initiated by the BlackBerry UEM administrator's policies or explicit actions.

The following samples that are delivered with the SDK illustrate how to use GDLogManager:

• Objective-C samples: RSSReader, BypassUnlock, GreetingsClient and GreetingsServer
• Swift samples: all

GDLogManager's displayed information and functions include the following:

• Size of whole upload
• Amount of data uploaded so far
• Events that indicate the following states:

• Upload completed
• Upload abandoned or canceled
• Upload suspended
• Upload resumed after suspension

• Actions for managing a log upload:

• Cancel upload
• Suspend upload
• Resume upload

For more information, see GDLogManager in the BlackBerry Dynamics API reference.

When detailed logging is disabled by policy, calling any API in the GDLogManager class has no effect. It is a best
practice to check the setting of this policy in the app configuration using the getApplicationConfig API. If
detailed logging is enabled, present the log upload progress UI or any other related UI.

GDDiagnostic API
The BlackBerry Dynamics SDK includes an API that you can use to test connectivity to application servers and
other diagnostic functions. See the discussion of the GDDiagnostic class in the BlackBerry Dynamics API
reference.

The GreetingsClient sample is delivered with the SDK to illustrate how to use GDDiagnostic.

 | Testing and troubleshooting | 44

https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html
https://developers.blackberry.com/us/en/resources/api-reference.html

Readying your app for deployment: server setup
You want to test your app on a BlackBerry server before you deploy it into production. You need to become
familiar with how to setup and configure such a server. You have options available: either BlackBerry UEM or the
older Good Control.

Check with your IT or other department to see what test servers might already be available in your organization.

BlackBerry UEM preferred

BlackBerry UEM is the primary server configuration to test and deploy your app.

If you upgrade from Good Control to BlackBerry UEM, you not only get to use the great feature set that Good
Control provides but you also get to take advantage of an enhanced feature set such as:

• Support for more policies for operating systems
• Better app management
• More container types
• Improved administration and provisioning
• Advanced connectivity and networking
• Expanded compliance and integrity checking
• Additional email, content, location, and certificate features
• Access to BlackBerry Web Services APIs

For information on how to use BlackBerry UEM to manage BlackBerry Dynamics apps, see the BlackBerry
UEM Administration Guide.

Standalone Good Control

The standalone Good Control server is also available, but BlackBerry encourages you to use BlackBerry
UEM for your tests and deployment. For information about getting started with Good Control, see Developer
Bootstrap: Good Control Essentials.

Configuring library version compliance
In a compliance profile or compliance policy, an administrator can enable the BlackBerry Dynamics library version
verification compliance rule to specify an enforcement action if a BlackBerry Dynamics app is using a version
of the BlackBerry Dynamics library that is not permitted. The available enforcement actions are "Do not allow
BlackBerry Dynamics apps to run" and "Delete BlackBerry Dynamics app data."

In previous releases of UEM, standalone Good Control, and the SDK, BlackBerry Dynamics apps could be blocked
or deleted unintentionally if an app used a version of the library that was not available in the version list (for
example, a pre-release version of the SDK).

In UEM, by default the BlackBerry Dynamics library version verification compliance rule is not selected and all
versions are permitted. An administrator can enable this option and select specific versions to disallow.

In standalone Good Control 5.0, the following options have been added to this compliance rule:

• Allow all BlackBerry Dynamics library versions: Apps that use any version of the SDK library are allowed. If this
option is enabled, the administrator cannot select specific versions to allow or disallow. By default, this option
is disabled.

 | Readying your app for deployment: server setup | 45

http://help.blackberry.com/detectLang/blackberry-uem/current/administration/
http://help.blackberry.com/detectLang/blackberry-uem/current/administration/
https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/gd_bootstrap_dev_gc.pdf
https://developers.blackberry.com/content/dam/developer-blackberry-com/resource-assets/pdf/gd_bootstrap_dev_gc.pdf

• Allow unlisted BlackBerry Dynamics library versions: Apps that use versions of the SDK library that are newer
than the latest version listed in the compliance rule are allowed. The administrator can still allow or disallow
specific versions of the library from the version list. By default, this option is enabled.

Consult with the UEM or Good Control administrator to ensure that the compliance rule is configured
appropriately.

iOS requires users trust your app's signing certificate
When your end users launch an app deployed by your organization (any app that is not distributed through the
App Store), they must trust the organization that signed the app. Otherwise, if users do not trust the signing
organization, the iOS device displays a warning each time a user opens the app.

This is a feature of iOS.

 | Readying your app for deployment: server setup | 46

Details of support for client certificates

BlackBerry Dynamics SDK support for personal certificates (PKCS12
or PKI certs)
The BlackBerry Dynamics SDK has been enhanced to support personal certificates for authentication of
applications at runtime.

No programming is required by the BlackBerry developer on any of the client BlackBerry Dynamics SDK platforms
to take advantage of this feature. All operations are carried about by the BlackBerry Dynamics Runtime. The
app must use the BlackBerry Dynamics Secure Communication Networking APIs provided in prior releases, the
employee’s account must be correctly configured, and the GC must be the 2.0.xx.yy release later.

An enterprise can deploy corporate services requiring two-way SSL/TLS mutual authentication in order to
authenticate their employees. Through the enterprise, the employee may be issued or otherwise obtain a
password protected Personal Information Exchange file (PKCS12/p12/pfx) containing a SSL/TLS client certificate
and private key required by such services for authentication purposes. This file may be installed on various
machines and devices, including BlackBerry Dynamics apps, so that access can be granted to these services.

Setup in Good Control

Requirements of the certificates themselves are described in Certificate requirements and troubleshooting.

To deploy Personal Information Exchange files with BlackBerry Dynamics apps, the following steps must be taken
to configure the GC and employee’s account. For more information, see the Good Control and Good Proxy Admin
Help.

• After the GC is installed, an administrator may choose to extend the default 24-hour period that an employee’s
protected Personal Information Exchange file shall be cached by the GC server.

• An administrator must add all BlackBerry Dynamics apps that access services requiring client authentication
to the Certificates -> App Usage tab,

• An administrator must enable Use PKCS12 Certificate Management in the employee's security policy,
• An administrator or employee must upload their Personal Information Exchange files to the Certificates tab.

Behavior of personal certificates in the app

After the employee activates a BlackBerry Dynamics app enabled for access to server resources requiring client
authentication, it receives their Personal Information Exchange files, provided they are still cached on the GC. For
each file, the employee is asked to enter their password protecting the file contents, so the identification material
can be installed. Once installed, provided the identification is correct, the BlackBerry Dynamics app is granted
access to server resources requiring two-way SSL/TLS mutual authentication when connecting.

If there is more than one Personal Information Exchange file required per employee, the BlackBerry Dynamics
Runtime ensures that the certificate chosen to send to the server meets all of the following criteria:

1. Only client certificates suitable for SSL/TLS client authentication are eligible for sending to the server. That is,
certificates that have no Key Usage and Extended Key Usage, or Key Usage contains “Digital Signature" or "Key
Agreement”, or Extended Key Usage contain "TLS Web Client Authentication”, and those whose Key Usages
and Extended Key Usages do not contradict allowances for SSL/TLS client auth.

2. If the server advertises the client certificate authority in the SSL/TLS handshake, only client certificates issued
by these authorities will be considered

3. Only current client certificates will be considered (that is, certificates that have not expired or are not yet valid)

 | Details of support for client certificates | 47

http://help.blackberry.com/detectLang/good-control-good-proxy/current/
http://help.blackberry.com/detectLang/good-control-good-proxy/current/

Usually this is sufficient to identify the correct client certificate, but if there is still more than one certificate
meeting all of the above criteria then the first one is used. If the certificate chosen is not the desired one, the
administrator or employee can manage this by removing the undesired client certificate from Good Control. The
administrator can also increase the chance of success by ensuring the server is configured to advertise the client
certificate authority in the SSL/TLS handshake.

Certificate requirements and troubleshooting
Make sure your certificates conform to these requirements:

• Certificates must be in PKCS 12 format: Certificate Authority (CA), public key, and private key, all in the same
file.

• The PKCS12 file must end with the extension .p12 or .pfx.
• The PKCS 12 file must be password-protected.

There are many sources of certificates:

• Your own internal certification authority (CA)
• A well-known public CA
• Tools from the Internet, such as OpenSSL's keytool command. For example, the following is sufficient to

generate a PKCS 12 certificate that is usable with Good Control; substitute your own values for alias the
keystore name and the keystore password. If in doubt consult information on the Internet about all the
possible options on the keytool command:

keytool -genkeypair -alias good123 -keystore good123.pfx -storepass good123 -
validity 365 -keyalg RSA -keysize 2048 -storetype pkcs12

Beware of weak ciphers from export

Personal Information Exchange files are encrypted, and therefore must be encrypted with FIPS-strength ciphers if
to be used when FIPS is enabled on the employee’s security policy.

For their own maximum interoperability with other systems, it is common for third-party applications, for example
the macOS keychain, to export identity material (credentials) using weak ciphers.

The administrator or employee can use a tool such as the OpenSSL command line to re-encrypt the file with a
FIPS-strength cipher like so, which re-encrypts with the AES-128-CBC cipher:

openssl pkcs12 -in weak.p12 -nodes -out decrypted.pem
 <enter password>
 openssl pkcs12 -export -in decrypted.pem -keypbe AES-128-CBC -certpbe
 AES-128-CBC -out strong.p12
 <enter password>
 rm decrypted.pem

Client certificate sharing among BlackBerry Dynamics-based
applications
The BlackBerry Dynamics SDK supports the "sharing" of a single client certificate among all BlackBerry Dynamics-
based applications for an end-user.

If the security policy for authentication via client certificates is enabled in Good Control or UEM and one or more
client certificates have been uploaded to the server, those certificates are used for user authentication by all
BlackBerry Dynamics-based applications on the user's device.

 | Details of support for client certificates | 48

• No programming is required.
• Client certificates must be enabled in Good Control or UEM and at least one PKCS 12 certificate for a user

must be uploaded to server.

Kerberos PKINIT: User authentication with PKI certificates
The BlackBerry Dynamics SDK supports Kerberos PKINIT for user authentication using PKI certificates.

No programming is required to use Kerberos PKINIT.

Important: Kerberos PKINIT is distinct from Kerberos Constrained Delegation (KCD). PKINIT relies on the Key
Distribution Center (KDC), which should not be confused with "KCD".

Kerberos PKINIT Kerberos Constrained Delegation

Kerberos PKINIT authentication is between the
BlackBerry Dynamics app and the Windows Key
Distribution Center (KDC), which communicate
directly, and user authentication is based on
certificates issued by Microsoft Active Directory
Certificate Services.

Note: For PKINIT, Kerberos Constrained Delegation
must not be enabled.

If Kerberos Constrained Delegation has been
configured, a BlackBerry Dynamics app does not use
Kerberos PKINIT to access the defined KCD realms.
Instead, when Kerberos Constrained Delegation is
used, a trust relation has been previously established
between BlackBerry Control and the Key Distribution
Center, and BlackBerry Control communicates
with the service on behalf of the app. Kerberos
Constrained Delegation takes precedence over
Kerberos PKINIT, even if the user has a valid
certificate.

Key requirements for PKINIT

Organizations that want to use Kerberos for BlackBerry Dynamics apps must make sure the following
requirements are met.

Servers

• Kerberos Constrained Delegation must not be enabled.
• Windows Key Distribution Center (KDC) services for KDC server certificates issued by a Certificate Authority

(CA) via the Active Directory Certificate Services must come only from the following Windows Server versions.
No other server versions are supported.

• Internet Information Server with Windows Server 2008 R2
• Internet Information Server with Windows Server 2012 R2

• In BlackBerry Control:

• The KDC hosts must be in the Allowed Domains of the Connectivity Profile applied to the affected users'
policy sets.

• Valid KDC service certificates must be located either in the BlackBerry Dynamics Certificate Store or the
Device Certificate Store.

 | Details of support for client certificates | 49

Client certificates

• The minimum keylength for the certificates must be 2,048 bytes.
• Client certificates must include the User Principal Name (UPN) (for example, user@domain.com) in the Subject

Alternative Name (SAN) of object ID (OID) szOID_NT_PRINCIPAL_NAME 1.3.6.1.4.1.311.20.2.3, as specified by
Microsoft. See Microsoft Support: Object IDs associated with Microsoft cryptography.

• The domain of the UPN must match the name of the realm of the Windows Key Distribution Center (KDC)
service.

• The Extended Key Usage (EKU) property of the certificate must be Microsoft Smart Card logon
(1.3.6.1.4.1.311.20.2.2).

• Certificates must be valid. Validate them against the servers listed above.

Client applications

• In BlackBerry Work, to allow the use of client certificates, you must enable the useEASAuthCert setting.
• Apps must not send any password in the HTTP/HTTPS request.
• Apps must either set the HTTP/HTTPS header WWW-Authenticate: Negotiate, or not set any

authorization method in the HTTP or HTTPS request, to which the server has responded with 401
WWWAuthenticate: Negotiate. For more information, see SPNEGO-based Kerberos and NTLM HTTP
Authentication in Microsoft Windows.

Key points

The following are key points to note when integrating BlackBerry Dynamics and Kerberos infrastructure:

• The KDC host must be in the Allowed Domains of the Connectivity Profile applied to the affected users' policy
sets in BlackBerry Control.

• The KDC host must be listening on TCP port 88 (Kerberos default port).
• BlackBerry Dynamics does not support KDC over UDP.
• BlackBerry Dynamics does not use Domain Name System (DNS) records such as SRV, CNAME, or TXT to locate

the correct KDC. That is, the KDC must have an A record (IPv4) or AAAA record (IPv6) in your DNS.
• BlackBerry Dynamics does not use Kerberos configuration files (such as krb5.conf) to locate the correct

KDC.
• The KDC can refer the client to another KDC host. BlackBerry Dynamics will follow the referral, as long as the

KDC host that is referred to can be reached by BlackBerry Dynamics. This setting is defined in the Allowed
Domains of the Connectivity Profile that is applied to the affected users' policy sets in BlackBerry Control.

• The KDC can obtain the TGT transparently to BlackBerry Dynamics from another KDC host.

Background on PKINIT, with FAQ

Consider the interactions in this KDC diagram.

Kerberos PKINIT authentication requires the client (in the drawing, the human John, running a BlackBerry
Dynamics-enabled application) to be able to contact:

• When initializing the user session, the user's Key Distribution Center (KDC) Authentication Service (AS) to
obtain a Ticket-Granting Ticket (TGT)

• When establishing a connection to a resource (in the drawing, Service "A"), the resource’s KDC Ticket-Granting
Service (TGS)

In a large organization users and resources might belong to various realms and there may be many KDCs, so how
does BlackBerry Dynamics find the right one?

 | Details of support for client certificates | 50

https://support.microsoft.com/en-us/help/287547/object-ids-associated-with-microsoft-cryptography
https://www.ietf.org/rfc/rfc4559.txt
https://www.ietf.org/rfc/rfc4559.txt
http://www.ibm.com/developerworks/ibmi/library/i-sso/figure1.jpg

1. How does the client locate the user’s KDC Authentication Service when initializing the user’s session?

• Password-based authentication

The realm in the user name must contain the host name of the KDC AS. For example:

User: user@MY.REALM.COM

Password: myPassword
• Certificate-based authentication: This is PKINIT.

The realm in the UPN of the user’s certificate must contain the host name of the KDC AS. For example:

UPN (OID 1.3.6.1.4.1.311.20.2.3): user@MY.REALM.COM

2. How does the client locate the resource's KDC Ticket-Granting Service (TGS) when retrieving the resource?

BlackBerry Dynamics attempts to obtain a TGS from the host in the domain of the resources URL. For example:

URL: http://resource.myrealm.com/index.html

The client will connect to KDC TGS running on host myrealm.com on TCP port 88.

 | Details of support for client certificates | 51

Legal notice
©2018 BlackBerry Limited. Trademarks, including but not limited to BLACKBERRY, BBM, BES, EMBLEM Design,
ATHOC, MOVIRTU and SECUSMART are the trademarks or registered trademarks of BlackBerry Limited, its
subsidiaries and/or affiliates, used under license, and the exclusive rights to such trademarks are expressly
reserved. All other trademarks are the property of their respective owners.

iOS, Swift, OS X, Apple, and Xcode are trademarks of Apple Inc. Google Play is a trademark of Google Inc. RSA
is a trademark of RSA Security. Microsoft, Active Directory, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. GitHub is a trademark of GitHub
Inc. Xamarin is a trademark of Xamarin Inc. All other trademarks are the property of their respective owners.

This documentation including all documentation incorporated by reference herein such as documentation
provided or made available on the BlackBerry website provided or made accessible "AS IS" and "AS AVAILABLE"
and without condition, endorsement, guarantee, representation, or warranty of any kind by BlackBerry Limited and
its affiliated companies ("BlackBerry") and BlackBerry assumes no responsibility for any typographical, technical,
or other inaccuracies, errors, or omissions in this documentation. In order to protect BlackBerry proprietary and
confidential information and/or trade secrets, this documentation may describe some aspects of BlackBerry
technology in generalized terms. BlackBerry reserves the right to periodically change information that is contained
in this documentation; however, BlackBerry makes no commitment to provide any such changes, updates,
enhancements, or other additions to this documentation to you in a timely manner or at all.

This documentation might contain references to third-party sources of information, hardware or software,
products or services including components and content such as content protected by copyright and/or third-
party websites (collectively the "Third Party Products and Services"). BlackBerry does not control, and is not
responsible for, any Third Party Products and Services including, without limitation the content, accuracy,
copyright compliance, compatibility, performance, trustworthiness, legality, decency, links, or any other aspect
of Third Party Products and Services. The inclusion of a reference to Third Party Products and Services in this
documentation does not imply endorsement by BlackBerry of the Third Party Products and Services or the third
party in any way.

EXCEPT TO THE EXTENT SPECIFICALLY PROHIBITED BY APPLICABLE LAW IN YOUR JURISDICTION, ALL
CONDITIONS, ENDORSEMENTS, GUARANTEES, REPRESENTATIONS, OR WARRANTIES OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY CONDITIONS, ENDORSEMENTS, GUARANTEES,
REPRESENTATIONS OR WARRANTIES OF DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE,
MERCHANTABILITY, MERCHANTABLE QUALITY, NON-INFRINGEMENT, SATISFACTORY QUALITY, OR TITLE, OR
ARISING FROM A STATUTE OR CUSTOM OR A COURSE OF DEALING OR USAGE OF TRADE, OR RELATED TO THE
DOCUMENTATION OR ITS USE, OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE,
SERVICE, OR ANY THIRD PARTY PRODUCTS AND SERVICES REFERENCED HEREIN, ARE HEREBY EXCLUDED.
YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY STATE OR PROVINCE. SOME JURISDICTIONS MAY
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES AND CONDITIONS. TO THE EXTENT
PERMITTED BY LAW, ANY IMPLIED WARRANTIES OR CONDITIONS RELATING TO THE DOCUMENTATION TO
THE EXTENT THEY CANNOT BE EXCLUDED AS SET OUT ABOVE, BUT CAN BE LIMITED, ARE HEREBY LIMITED TO
NINETY (90) DAYS FROM THE DATE YOU FIRST ACQUIRED THE DOCUMENTATION OR THE ITEM THAT IS THE
SUBJECT OF THE CLAIM.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, IN NO EVENT SHALL
BLACKBERRY BE LIABLE FOR ANY TYPE OF DAMAGES RELATED TO THIS DOCUMENTATION OR ITS USE,
OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE, SERVICE, OR ANY THIRD
PARTY PRODUCTS AND SERVICES REFERENCED HEREIN INCLUDING WITHOUT LIMITATION ANY OF THE
FOLLOWING DAMAGES: DIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE,
OR AGGRAVATED DAMAGES, DAMAGES FOR LOSS OF PROFITS OR REVENUES, FAILURE TO REALIZE ANY
EXPECTED SAVINGS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF BUSINESS
OPPORTUNITY, OR CORRUPTION OR LOSS OF DATA, FAILURES TO TRANSMIT OR RECEIVE ANY DATA,
PROBLEMS ASSOCIATED WITH ANY APPLICATIONS USED IN CONJUNCTION WITH BLACKBERRY PRODUCTS OR

 | Legal notice | 52

SERVICES, DOWNTIME COSTS, LOSS OF THE USE OF BLACKBERRY PRODUCTS OR SERVICES OR ANY PORTION
THEREOF OR OF ANY AIRTIME SERVICES, COST OF SUBSTITUTE GOODS, COSTS OF COVER, FACILITIES OR
SERVICES, COST OF CAPITAL, OR OTHER SIMILAR PECUNIARY LOSSES, WHETHER OR NOT SUCH DAMAGES
WERE FORESEEN OR UNFORESEEN, AND EVEN IF BLACKBERRY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, BLACKBERRY SHALL
HAVE NO OTHER OBLIGATION, DUTY, OR LIABILITY WHATSOEVER IN CONTRACT, TORT, OR OTHERWISE TO
YOU INCLUDING ANY LIABILITY FOR NEGLIGENCE OR STRICT LIABILITY.

THE LIMITATIONS, EXCLUSIONS, AND DISCLAIMERS HEREIN SHALL APPLY: (A) IRRESPECTIVE OF THE NATURE
OF THE CAUSE OF ACTION, DEMAND, OR ACTION BY YOU INCLUDING BUT NOT LIMITED TO BREACH OF
CONTRACT, NEGLIGENCE, TORT, STRICT LIABILITY OR ANY OTHER LEGAL THEORY AND SHALL SURVIVE A
FUNDAMENTAL BREACH OR BREACHES OR THE FAILURE OF THE ESSENTIAL PURPOSE OF THIS AGREEMENT
OR OF ANY REMEDY CONTAINED HEREIN; AND (B) TO BLACKBERRY AND ITS AFFILIATED COMPANIES, THEIR
SUCCESSORS, ASSIGNS, AGENTS, SUPPLIERS (INCLUDING AIRTIME SERVICE PROVIDERS), AUTHORIZED
BLACKBERRY DISTRIBUTORS (ALSO INCLUDING AIRTIME SERVICE PROVIDERS) AND THEIR RESPECTIVE
DIRECTORS, EMPLOYEES, AND INDEPENDENT CONTRACTORS.

IN ADDITION TO THE LIMITATIONS AND EXCLUSIONS SET OUT ABOVE, IN NO EVENT SHALL ANY DIRECTOR,
EMPLOYEE, AGENT, DISTRIBUTOR, SUPPLIER, INDEPENDENT CONTRACTOR OF BLACKBERRY OR ANY
AFFILIATES OF BLACKBERRY HAVE ANY LIABILITY ARISING FROM OR RELATED TO THE DOCUMENTATION.

Prior to subscribing for, installing, or using any Third Party Products and Services, it is your responsibility to
ensure that your airtime service provider has agreed to support all of their features. Some airtime service
providers might not offer Internet browsing functionality with a subscription to the BlackBerry® Internet Service.
Check with your service provider for availability, roaming arrangements, service plans and features. Installation
or use of Third Party Products and Services with BlackBerry's products and services may require one or more
patent, trademark, copyright, or other licenses in order to avoid infringement or violation of third party rights. You
are solely responsible for determining whether to use Third Party Products and Services and if any third party
licenses are required to do so. If required you are responsible for acquiring them. You should not install or use
Third Party Products and Services until all necessary licenses have been acquired. Any Third Party Products and
Services that are provided with BlackBerry's products and services are provided as a convenience to you and are
provided "AS IS" with no express or implied conditions, endorsements, guarantees, representations, or warranties
of any kind by BlackBerry and BlackBerry assumes no liability whatsoever, in relation thereto. Your use of Third
Party Products and Services shall be governed by and subject to you agreeing to the terms of separate licenses
and other agreements applicable thereto with third parties, except to the extent expressly covered by a license or
other agreement with BlackBerry.

The terms of use of any BlackBerry product or service are set out in a separate license or other agreement with
BlackBerry applicable thereto. NOTHING IN THIS DOCUMENTATION IS INTENDED TO SUPERSEDE ANY EXPRESS
WRITTEN AGREEMENTS OR WARRANTIES PROVIDED BY BLACKBERRY FOR PORTIONS OF ANY BLACKBERRY
PRODUCT OR SERVICE OTHER THAN THIS DOCUMENTATION.

BlackBerry Enterprise Software incorporates certain third-party software. The license and copyright information
associated with this software is available at http://worldwide.blackberry.com/legal/thirdpartysoftware.jsp.

BlackBerry Limited
2200 University Avenue East
Waterloo, Ontario
Canada N2K 0A7

BlackBerry UK Limited
200 Bath Road
Slough, Berkshire SL1 3XE

 | Legal notice | 53

http://worldwide.blackberry.com/legal/thirdpartysoftware.jsp

United Kingdom

Published in Canada

 | Legal notice | 54

	Contents
	About this guide
	BlackBerry Dynamics background
	BlackBerry Dynamics API reference
	FIPS 140-2 compliance
	Easy Activation
	Securing cut-copy-paste on devices (Data Leakage Prevention, or DLP)
	Shared Services Framework
	Support for fingerprint authentication
	Support for Face ID
	Support for certificates
	Support for the "Do not require password" setting
	Bypassing the App Lock screen
	BlackBerry Dynamics contributor code on GitHub
	Supported languages

	Requirements
	BlackBerry Dynamics software versions
	Compatibility with earlier releases
	Software requirements
	BlackBerry Dynamics entitlement ID and version
	Distinction from and use with native language identifiers

	Requirements: Frameworks and libraries
	Requirement: URL scheme
	Required build-time declarations: URL type
	Security changes in iOS 9 and later

	Using NSURLSystem for KCD
	GDAssets.bundle required in build phase
	Compatibility with the BlackBerry Dynamics Launcher Library
	App UI restrictions
	Supported and unsupported features on iOS
	Support for Touch ID
	Support for Face ID
	Support for WKWebView
	Support for 64-bit ARM architecture
	Support for IPv6
	BitCode not supported
	SiriKit not supported
	Support for the Apple Universal Clipboard

	Link for FIPS in Objective-C or C++
	Link for FIPS in Swift
	FIPS and 64-bit simulation
	Troubleshooting FIPS

	Steps to get started with the BlackBerry Dynamics SDK
	Downloading and installing the BlackBerry Dynamics SDK for iOS
	Download the BlackBerry Dynamics SDK
	Install the BlackBerry Dynamics SDK for iOS in the default location on macOS
	Location of installed artifacts
	Install the BlackBerry Dynamics SDK for iOS from a tar file
	Uninstall the BlackBerry Dynamics SDK for iOS

	Create an Objective-C or Swift project with the Xcode template
	Manually add the BlackBerry Dynamics SDK event-handler skeleton in Objective-C
	Add the BlackBerry Dynamics SDK event-handler skeleton using notifications in Objective-C

	Programming with the BlackBerry Dynamics SDK and BlackBerry Enterprise Mobility Server services
	Sample apps in Objective-C
	BlackBerry Dynamics and the Swift programming language
	Manually add the BlackBerry Dynamics SDK to your Swift project
	Link for FIPS in Swift

	Testing and troubleshooting
	Implementing automated testing for BlackBerry Dynamics apps
	Automated testing with the BlackBerry Dynamics sample apps
	Preparing for automated testing
	Components of a sample automated testing configuration
	Execute tests from the command line with Xcode tools
	Execute tests from the Xcode IDE
	Add automated testing to your BlackBerry Dynamics iOS app

	Disable compliance settings that check for a compromised OS
	Setup enterprise simulation mode
	Run application in enterprise simulation mode
	Troubleshooting
	Logging and diagnostics
	Log message categories
	Configure detailed logging for the Xcode console
	Configure selective logging for the Xcode console
	Configure logging in Good Control
	GDLogManager class for log uploading
	GDDiagnostic API

	Readying your app for deployment: server setup
	Configuring library version compliance
	iOS requires users trust your app's signing certificate

	Details of support for client certificates
	BlackBerry Dynamics SDK support for personal certificates (PKCS12 or PKI certs)
	Certificate requirements and troubleshooting

	Client certificate sharing among BlackBerry Dynamics-based applications
	Kerberos PKINIT: User authentication with PKI certificates

	Legal notice

