
Starting out with App Inventor for Android
Tony Gaddis • Rebecca Halsey

GlobAl
edITIon

Starting Out with

App Inventor for Android
First

Edition
global
Edition

This page intentionally left blank.

 First a-head 3

tony gaddis
and

rebecca halsey

Boston Columbus Indianapolis New York San Francisco
Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan

Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney
Hong Kong Seoul Singapore Taipei Tokyo

Starting Out with

App Inventor for Android
First

Edition
global
Edition

Vice President and Editorial Director, ECS: Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Program Manager: Carole Snyder
Project Manager: Rose Kernan, RPK Editorial Services, Inc.
Project and Program Manager Team Lead: Scott Disanno
Media Team: Steve Wright
R&P Project Manager: Rachel Youdelman
Publishing Administrator and Business Analyst,

Global Edition: Shokhi Shah Khandelwal

Assistant Acquisitions Editor,
Global Edition: Aditee Agarwal

Assitant Project Editor, Global Edition: Sinjita Basu
Senior Manufacturing Controller,

Production, Global Edition: Trudy Kimber
Operations Specialist: Vincent Scelta
Full-Service Project Management: iEnergizer Aptara®, Ltd.
Cover Design: Lumina Datamatics
Cover Photo: Shutterstock/My Life Graphic
Cover Printer: Ashford Colour Press

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Tony Gaddis and Rebecca Halsey to be identified as the authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Starting Out with App Inventor for Android, 1st Edition,
978-0-132-95526-3, by Tony Gaddis and Rebecca Halsey, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, withouteither the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability, whether
express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft and/
or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/
or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full
within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is
not sponsored or endorsed by or affiliated with the Microsoft C orporation.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-1-292-08032-1
ISBN-10: 1-292-08032-9

Typeset in Sabon LT Std by iEnergizer Aptara®, Ltd.

Printed and bound by Ashford Colour Press in the United Kingdom.

http://www.pearsonglobaleditions.com

 First a-head 5

 Preface 13

Chapter 1 Introduction to Programming and
App Inventor 25

Chapter 2 Working with Media 97

Chapter 3 Input, Variables, and Calculations 153

Chapter 4 Decision Blocks and Boolean Logic 211

Chapter 5 Repetition Blocks, Times, and Dates 271

Chapter 6 Procedures and Functions 311

Chapter 7 Lists 343

Chapter 8 Storing Data on the Device 395

Chapter 9 Graphics and Animation 439

Chapter 10 Working with Text 485

Chapter 11 Text to Speech and Text Messaging 533

Chapter 12 Sensors 555

Chapter 13 Other App Inventor Capabilities 585

appendix a Setting Up App Inventor 621

appendix B Connecting an Android Device to
App Inventor 627

Brief Contents

5

appendix C Uploading Your Application to App Inventor
Gallery and Google Play Store 637

appendix D Component Reference 643

appendix E Answers to Checkpoints 673

 Index 685

6 Brief Contents

 Preface 13

Chapter 1 Introduction to Programming and App Inventor 25

1.1 introduction . 25
1.2 what is a Computer Program? . 28
1.3 introducing app inventor . 32
TUTORIAL 1-1: Starting App Inventor and Creating a

New Project. 32
1.4 getting hands-On with app inventor . 46
TUTORIAL 1-2: Creating the Screen for the Hello World App 61
TUTORIAL 1-3: Completing the Hello World App . 75
TUTORIAL 1-4: Creating the Good Morning Translator App 79
review Questions . 88

Chapter 2 Working with Media 97

2.1 Displaying images . 97
TUTORIAL 2-1: Changing the Screen’s Background Image 100
TUTORIAL 2-2: Switching the Screen’s Background Image

in Code . 104
TUTORIAL 2-3: Using the Image Component . 109
TUTORIAL 2-4: Creating the Flags App . 114
2.2 Duplicating Blocks and using Dropdowns . 120
2.3 Sounds . 123
TUTORIAL 2-5: Creating the Guitar App . 126
TUTORIAL 2-6: Making the Phone Vibrate . 130
2.4 Color Blocks . 133
2.5 Layout Components . 136
TUTORIAL 2-7: Using Layout Components and Color Blocks. 140
2.6 Commenting Blocks . 143
TUTORIAL 2-8: Adding Comments . 144
review Questions . 145

Contents

7

8 Contents

Chapter 3 Input, Variables, and Calculations 153

3.1 the textBox Component . 153
3.2 Performing Calculations . 159
TUTORIAL 3-1: Calculating Fuel Economy . 162
TUTORIAL 3-2: Creating the Restaurant Tip Calculator App 168
3.3 Storing Data with Variables . 173
TUTORIAL 3-3: Creating the Kilometer Converter App 182
TUTORIAL 3-4: Creating the Change Counter App . 193
3.4 Creating Blocks with typeblocking . 198
3.5 the Slider Component . 200
3.6 Math Functions . 204
review Questions . 206

Chapter 4 Decision Blocks and Boolean Logic 211

4.1 introduction to Decision Blocks . 211
4.2 relational Operators and the if Block . 216
TUTORIAL 4-1: The Test Average App . 218
4.3 the if then else Block. 226
TUTORIAL 4-2: Modifying the Test Average App . 227
TUTORIAL 4-3: Creating the Wages App . 229
4.4 a First Look at Comparing Strings . 236
4.5 Logical Operators . 237
TUTORIAL 4-4: Creating the Range Checker App. 240
4.6 nested Decision Blocks . 242
TUTORIAL 4-5: Creating the Grader App . 243
4.7 the if then else if Block. 245
4.8 working with random numbers . 248
TUTORIAL 4-6: Simulating Coin Tosses . 250
4.9 the Screen’s Initialize Event . 253
4.10 the ListPicker Component. 254
TUTORIAL 4-7: Creating the Time Zone App . 256
4.11 the CheckBox Component . 259
review Questions . 265

Chapter 5 Repetition Blocks, Times, and Dates 271

5.1 the notifier Component . 271
5.2 the while Loop . 279
TUTORIAL 5-1: The Ending Balance App . 282
5.3 the for each Loop . 287
TUTORIAL 5-2: Calculating a Sum of Consecutive Numbers 291
5.4 the Clock Component . 294
TUTORIAL 5-3: Creating a Clock App . 297

 Contents 9

5.5 the DatePicker Component . 303
review Questions . 306

Chapter 6 Procedures and Functions 311

6.1 Modularizing Your Code with Procedures . 311
6.2 Procedures . 312
TUTORIAL 6-1: Creating the Lights App. 316
6.3 Passing arguments to Procedures . 322
TUTORIAL 6-2: Creating the AreaCircle App . 327
6.4 returning Values From Procedures . 331
TUTORIAL 6-3: The Cups To Ounces App . 334
review Questions . 338

Chapter 7 Lists 343

7.1 Creating a List . 343
TUTORIAL 7-1: Creating a List . 345
7.2 iterating Over a List with the for each Loop 350
TUTORIAL 7-2: Iterating Over a List with the for each Loop 353
7.3 Selecting an item . 356
TUTORIAL 7-3: Selecting an Item in a List . 356
TUTORIAL 7-4: Using the length of list Function. 361
7.4 inserting and appending items . 365
TUTORIAL 7-5: Add Items to a List . 367
7.5 removing items . 372
7.6 replacing items. 374
TUTORIAL 7-6: Replacing and Removing List Items . 376
7.7 Searching for an item . 384
TUTORIAL 7-7: Creating a Number-Guessing Game. 385
7.8 Other List Functions . 390
review Questions . 391

Chapter 8 Storing Data on the Device 395

8.1 app inventor Storage Components . 395
8.2 the application Sandbox . 396
8.3 File Component . 396
TUTORIAL 8-1: Creating a File . 399
8.4 retrieving a File. 402
TUTORIAL 8-2: Retrieving a File. 402
TUTORIAL 8-3: Appending a File . 405
8.5 tinyDB . 407
8.6 tag-Value Pairs . 408
8.7 Storing a tag-Value Pair . 409

10 Contents

TUTORIAL 8-4: Storing Names and Phone Numbers 409
8.8 retrieving a Value . 410
TUTORIAL 8-5: Storing and Retrieving Values . 411
8.9 tag-Value Pairs when the Value is a List. 413
TUTORIAL 8-6: Storing a List as a Value in a Tag-Value Pair 414
8.10 tinyDB across Multiple Screens. 421
TUTORIAL 8-7: TinyDB across Multiple Screens. 423
review Questions . 433

Chapter 9 Graphics and Animation 439

9.1 the Canvas Component . 439
TUTORIAL 9-1: Drawing on the Canvas . 442
9.2 the Ball and imageSprite Component. 448
TUTORIAL 9-2: Bouncing Ball. 448
TUTORIAL 9-3: Fishbowl - Using the ImageSprite Component 456
9.3 using the Clock Component to Create animations 458
TUTORIAL 9-4: Crack the Egg . 458
9.4 Dragging Sprites . 463
TUTORIAL 9-5: Drag Ball Sprite Example. 463
TUTORIAL 9-6: Drag the Ball into the Box . 464
9.5 Detecting Collisions . 469
TUTORIAL 9-7: Popping Balloons. 471
review Questions . 479

Chapter 10 Working with Text 485

10.1 Concatenating Strings. 485
10.2 Comparing Strings . 491
TUTORIAL 10-1: Comparing Strings . 494
10.3 trimming a String . 499
10.4 Converting Case . 500
TUTORIAL 10-2: Trim and Convert to Format Tags . 501
10.5 Finding a Substring . 505
TUTORIAL 10-3: Validate an Email Address . 508
10.6 replacing a Substring . 513
10.7 Extracting a Substring . 513
10.8 Splitting a Substring . 515
TUTORIAL 10-4: Validating Email – Valid Name and Top-Level Domain . . . 519
review Questions . 529

Chapter 11 Text to Speech and Text Messaging 533

11.1 the texttoSpeech Component. 533
TUTORIAL 11-1: Text to Speech . 536

 Contents 11

11.2 the texting Component . 540
11.3 receiving text Messages . 543
TUTORIAL 11-2: Creating the Speak Messages from Family App 544
11.4 Sending text Messages . 547
TUTORIAL 11-3: Reply to Family . 548
review Questions . 550

Chapter 12 Sensors 555

12.1 the LocationSensor . 555
TUTORIAL 12-1: Display Location . 559
12.2 the OrientationSensor . 566
TUTORIAL 12-2: Cat and Mouse . 569
12.3 the accelerometer . 574
TUTORIAL 12-3: Shake to Clear Canvas . 576
12.4 using the activityStarter Component to launch google Maps 578
TUTORIAL 12-4: Open Google Maps . 580
review Questions . 581

Chapter 13 Other App Inventor Capabilities 585

13.1 recording audio . 585
TUTORIAL 13-1: Record and PlayBack Audio. 587
13.2 taking a Photo with the Phone’s Camera . 591
13.3 the Camcorder Component . 592
13.4 using the imagePicker Component . 593
TUTORIAL 13-2: Using the ImagePicker . 593
13.5 Playing Video . 596
TUTORIAL 13-3: Playing Video. 597
13.6 Selecting Contacts from the Contact List and Placing Phone Calls . . . 600
TUTORIAL 13-4: Using the Contact and Phone Number Pickers 601
TUTORIAL 13-5: Using the PhoneCall component . 604
13.7 Scanning a Barcode. 608
13.8 using Voice recognition . 609
TUTORIAL 13-6: Speak a Text Message . 609
13.9 Connecting to a twitter account . 613
TUTORIAL 13-7: Building a Twitter Application. 614
13.10 tinywebDB . 616
review Questions . 617

appendix a Setting Up App Inventor 621

appendix B Connecting an Android Device to App Inventor 627

12 Contents

appendix C Uploading Your Application to
App Inventor Gallery and Google Play Store 637

appendix D Component Reference 643

appendix E Answers to Checkpoints 673

 Index 685

13

Preface

Cell phones have become an important part of most students’ lives. Even students with
limited computer experience have no trouble using their phones to send text messages,
check their email, and update their Facebook statuses. Of course, the typical cell phone
today is much more than a mere phone. It’s a powerful computer with many unique
capabilities, including the ability to run thousands of available programs, or apps.

Even though students regularly download, install, and use apps on their phones, they
do not typically think of their phones as computers. In fact, students have a unique
relationship with their phones that is different, and more personal, than the relation-
ship they have with their laptop computers. When students learn that they can cre-
ate their own mobile apps—especially apps that take advantage of a phone’s unique
capabilities (such as text messaging, location sensing, etc.)—they become excited and
motivated to learn.

This book capitalizes on that excitement and motivation by using App Inventor 2 to
teach introductory programming skills. App Inventor 2 is a free, cloud-based devel-
opment platform that is provided by The MIT Center for Mobile Learning. It allows
users with no prior programming experience to make their own Android apps. It is
extremely easy to use, and it combines a visual GUI designer with a drag-and-drop
code editor. An on-screen Android emulator or an actual Android device that is con-
nected to the computer (either wirelessly or with a USB cable) runs apps as they are
created. Because App Inventor 2 allows students to create apps and see them running
on a phone, programming becomes a personally meaningful skill.

Programming With Blocks
For many beginning students, learning the syntax of a programming language can
be a daunting task. Precious time that should be devoted to learning the fundamen-
tals of programming is often spent tracking down missing semicolons or unbal-
anced braces.

Syntax errors in App Inventor are never a problem, because they never happen! You
build an app by dragging and dropping “blocks” into an editor. The blocks, which
represent actions and data, can be snapped together, like the pieces of a puzzle, to cre-
ate fully functional programming statements. Because you don’t have to spend time
locating and fixing syntax errors, you can concentrate on planning the actions that
you want your app to perform and arranging them into the proper sequence.

14 Preface

Runtime and logic errors can still occur, of course, because the student can use the
wrong instruction or get instructions out of order. But because syntax is not an issue,
the student devotes his or her time to developing and debugging algorithms.

Using the Emulator or Android Devices
You use a Windows, Mac, or Linux computer to develop apps with App Inventor 2,
but to test your apps, you use either the Android emulator, which is included with
App Inventor, or an actual Android device such as a smartphone or a tablet. An
Android device can be connected to the computer either wirelessly (via Wi-Fi) or with
a USB cable. This book can be used with either approach.

The emulator, which is shown in Figure P-1, is a simulated Android phone. As you
are using App Inventor to develop an app, the app appears and runs on the emula-
tor’s screen. You can interact with the emulator in many of the same ways that you
interact with an actual smartphone. Although the emulator is limited (for example, it
does not have a GPS sensor to report its location, and it cannot make phone calls), it
does provide many of the basic features of an actual smartphone.

Most of the topics that are covered in Chapters 1 through 11 can be taught using the
emulator. The topics covered in Chapters 12 and 13 require an Android device.

Figure P-1 the android Emulator

 Preface 15

App Inventor in the Classroom
App Inventor can be used in a variety of ways in the classroom, and this text is
designed to accommodate all of them. Here are some examples:

● You can use this text with App Inventor 2 for the first part of an introductory
programming course, and then switch to a traditional programming language.
Depending on the amount of time you want to devote to App Inventor, you can
use the entire book, or you can omit some of the latter chapters.

● You can use this text with App Inventor 2 for a brief introduction to program-
ming in a computer concepts course or an introduction to technology course.
The latter chapters can be omitted to fit the amount of time that you have.

● You can use this text by itself in a semester-long course that uses only App
Inventor 2 to teach programming fundamentals.

● You can use this text in short courses or summer programs that use App
 Inventor 2 to teach programming.

VideoNotes to Accompany This Book
A full set of VideoNotes has been developed to accompany each tutorial in the book.
Students can follow along with the authors as they work through tutorials in the videos.
Also, one exercise or programming project at the end of each chapter has an accompanying
VideoNote that shows the student how to create the solution. To access these supplements,
go to www.pearsonglobaleditions.com/Gaddis and click on the image of this book’s cover.

Brief Overview of Each Chapter

Chapter 1: Introduction Programming and App Inventor 2

This chapter explains what algorithms and programs are, and why we use program-
ming languages. App Inventor 2 is introduced and the student learns the fundamental
steps for creating an app’s user interface, using the Blocks Editor to program the app,
and using the emulator to test an app.

Chapter 2: Working With Media

In this chapter, the student learns to create apps that use images and sound. Topics
include setting the background image for the device’s screen and displaying images
in image components, as well as on buttons (to create clickable images). The Sound
component is introduced for playing sound effects, and techniques for working with
colors are presented. The chapter discusses the visual arrangement of components in
the app’s user interface and the importance of commenting code.

Chapter 3: Input, Variables, and Calculations

In this chapter, the student learns to use TextBox components to read user input.
 Variables are introduced as a way to store data in memory. App Inventor’s math

http://www.pearsonglobaleditions.com/Gaddis

16 Preface

operator blocks are introduced, and the student learns to create math expressions.
The Slider component is also discussed.

Chapter 4: Decision Blocks and Boolean Logic

In this chapter, the student learns about App Inventor’s decision structures: the
if then block, the if then else block, and the if then else if block. The rela-
tional operators are introduced, as well as logical operators. The chapter discusses
random numbers, their applications, and how to generate them in App Inventor. The
Screen component’s Initialize event is introduced. The chapter concludes with a
discussion of the ListPicker and CheckBox components.

Chapter 5: Repetition Blocks, Times, and Dates

This chapter shows the student how to use loops to create repetition structures.
A pp Inventor’s while and for each loops are presented. Counters, accumulators, and
running totals are also discussed. The chapter introduces the Clock component as
a way to work with dates and times, and also as a way to create a timer. The chapter
concludes with a discussion of the DatePicker component.

Chapter 6: Procedures and Functions

In this chapter, the student first learns how to write procedures. The chapter shows
the benefits of using procedures to modularize programs and discusses the top-down
design approach. Then, the student learns to pass arguments to procedures. Finally,
the student learns to write functions, or procedures that return a result.

Chapter 7: Lists

This chapter introduces lists. The student learns to create lists, insert and append
items, select items at specific and random positions, remove items, replace items,
search for items, and more.

Chapter 8: Storing Data on the Device

This chapter discusses the File component and the TinyDB component. The File com-
ponent allows you to read and write text files on the device or emulator. TinyDB is a
simple database component that allows you to store data as tag-value pairs.

Chapter 9: Graphics and Animation

App Inventor provides components for creating graphics and animations. In this
chapter, the student first learns to draw primitive graphics with the Canvas compo-
nent. Then, the Ball and ImageSprite components are discussed. Simple games are
created that use collision detection, the Clock component, and sprites.

Chapter 10: Working with Text

In this chapter, the student learns to process strings at a detailed level. Various text-
processing capabilities are discussed, such as concatenation, comparing strings,
trimming strings, converting case, finding, replacing, and extracting substrings, and
string splitting.

 Preface 17

Chapter 11: Text to Speech and Text Messaging

This chapter begins with an introduction to the TextToSpeech component, which
converts text to spoken words. (The component reads text aloud.) Next, the student
learns to use the Texting component to send and receive text messages.

Chapter 12: Sensors

This chapter focuses on the sensors that are found on an Android device. The sensors
that are introduced are: The LocationSensor, for determining the device’s physical
location, the OrientationSensor, for determining the device’s orientation in 3D space,
and the AccelerometerSensor, for determining the device’s acceleration in 3D space.
This chapter concludes with a discussion of using the ActivityStarter component to
launch Google Maps.

Chapter 13: Other App Inventor Capabilities

This chapter presents various components that work on Android devices. The compo-
nents that are covered in this chapter give capabilities such as recording audio, t aking
photos, selecting images from the device’s gallery, playing videos, selecting entries
from the contact list, scanning barcodes, using voice recognition, connecting to a
Twitter account, and storing data on a Web server with a TinyWebDB component.

Appendix A: Setting Up App Inventor

Appendix B: Connecting an Android Device to App Inventor

Appendix C: Uploading Your Application to App Inventor
Gallery and Google Play Store

Appendix D: Component Reference

Appendix E: Answers to Checkpoints

Features of the Text

Concept Statements

The major sections of the text starts with a concept statement. This statement con-
cisely summarizes the main point of the section.

Example Apps

The text has an abundant number of complete and partial example apps, which are
each designed to highlight the topic currently being studied.

Tutorials

Each chapter has several hands-on tutorials that lead the student through the process
of developing or completing an app. These tutorials give the student experience per-
forming the tasks discussed in the chapters.

18 Preface

VideoNotes

Online videos developed specifically for this book are available for viewing at www.
pearsonglobaleditions.com/Gaddis. Icons appear throughout the text, alerting the
student to videos about specific topics.

Notes

Notes appear at several places throughout the text. They are short explanations of
interesting or frequently misunderstood points relevant to the topic at hand.

Tips

Tips advise the student on the best techniques for approaching different program-
ming problems.

Checkpoints

Checkpoints are questions placed at intervals throughout each chapter. They are
designed to query the student’s knowledge quickly after learning a new topic.

Review Questions

Each chapter presents a thorough set of multiple-choice and short-answer review
questions.

Exercises

Each chapter offers a set of exercises for developing apps. The exercises are designed
to solidify the student’s knowledge of the topics presented in the chapter.

Online Resources
This book’s online resource page contains numerous student supplements. To access
these supplements, go to www.pearsonglobaleditions.com/Gaddis and click on the
image of this book’s cover. You will find the following items:

● A link to the App Inventor site
● The book’s example apps
● Graphics and audio files that can be used in student projects
● Access to the book’s companion VideoNotes

Instructor Resources
The following supplements are available to qualified instructors only:

● Answers to the Review Questions
● Solutions for the exercises
● PowerPoint presentation slides for each chapter

Visit the Pearson Instructor Resource Center (www.pearsonglobaleditions.com/Gaddis)
or send an e-mail to computing@pearson.com for information on how to access them.

http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
mailto:computing@pearson.com

 Preface 19

Acknowledgements
The authors would like to thank Dr. Hal Abelson of MIT for his inspiring work, and
particularly for creating App Inventor. We want to thank the entire App Inventor
team at MIT for the amazing job they are doing. We also want to thank everyone
at Pearson Education for making this book possible. We are extremely grateful that
Matt Goldstein is our editor. He and Kelsey Loanes, editorial assistant, guided us
through the process of writing this book. We are also fortunate to have Demetrius
Hall and Bram Van Kempen as marketing managers. They do an amazing job of get-
ting computer science books out to the academic community. The production team,
lead by Camille Trentacoste, worked tirelessly to make this book a reality. We could
not have done it without their patience and hard work. Thanks to you all!

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributor:
Passent M. El-Kafrawy, Menoufia University, Egypt

Reviewers:
Muthuraj M., Android Developer, Bangalore
Arup Bhattacharjee, RCC Institute of Technology, India
Soumen Mukherjee, RCC Institute of Technology, India
Manasa Rangarer, NMAM Institute of Technology, Nitte, India
Professor Harsh Bhasin, Jamia Hamdard

This page intentionally left blank.

 First a-head 21

Tony Gaddis
Tony Gaddis is the author of the Starting Out with series of textbooks. Tony has
nearly twenty years of experience teaching computer science courses, primarily at
Haywood Community College. He is a highly acclaimed instructor who was pre-
viously selected as the North Carolina Community College “Teacher of the Year”
and has received the Teaching Excellence award from the National Institute for Staff
and Organizational Development. The Starting Out with series includes introductory
books covering C++, Java™, Microsoft® Visual Basic®, Microsoft® C#®, Python,
Programming Logic and Design, and Alice, all published by Pearson Education.

Rebecca Halsey
Rebecca Halsey is an Associate Professor at Guilford Technical Community College
where she teaches classes in Computer Science and Mobile Application Develop-
ment. She is also developing and leading the new Mobile Application Development
curriculum at GTCC. She also has twenty years of industry experience as a software
developer.

about the authors

21

This page intentionally left blank.

CHAPTER 1

Starting App Inventor and
Creating a New Project 32

Creating the Screen for the
Hello World App 61

Completing the Hello World App 75

Creating the Good Morning
Translator App 79

The Presidential Trivia App 94

CHAPTER 2

Changing the Screen’s
Background Image 100

Switching the Screen’s
Background Image in Code 104

Using the Image Component 109

Creating the Flags App 114

Creating the Guitar App 126

Making the Phone Vibrate 130

Using Layout Components
and Color Blocks 140

Adding Comments 144

Creating an App to Vibrate the Phone 147

CHAPTER 3

Calculating Fuel Economy 162

Creating the Restaurant
Tip Calculator App 168

Creating the Kilometer Converter App 182

Creating the Change Counter App 193

The Average of Three Test Scores App 208

CHAPTER 4

The Test Average App 218

Modifying the Test Average App 227

Creating the Wages App 229

Creating the Range Checker App 240

Creating the Grader App 243

Simulating Coin Tosses 250

Creating the Time Zone App 256

The Mass and Weight App 268

CHAPTER 5

The Ending Balance App 282

Calculating the Sum of
Consecutive Numbers 291

Creating a Clock App 297

The Sum of Numbers App 308

CHAPTER 6

Creating the Lights App 316

Creating the AreaCircle App 327

Creating the Cups To Ounces App 334

Creating the Retail Price
Calculator App 339

Videonotes
VideoNote

23

CHAPTER 7

Creating a List 345

Iterating Over a List with
the for each Loop 353

Selecting an Item in a List 356

Using the length of list Function 361

Adding Items to a List 367

Replacing and Removing List Items 376

Creating a Number-Guessing Game 385

Creating the Entrée List App 393

CHAPTER 8

Creating a File 399

Retrieving a File 402

Appending a File 405

Storing Names and Phone Numbers 409

Storing and Retrieving Values 411

Storing a List as a Value in
a Tag-Value Pair 414

TinyDB Across Multiple Screens 423

Creating the Daily Special App 435

CHAPTER 9

Drawing on the Canvas 442

Bouncing Ball 452

The Fishbowl App 456

Crack the Egg 458

Drag Ball sprite Example 463

Drag the Ball into the Box 464

Popping Balloons 471

TouchedDown and TouchedUp 481

CHAPTER 10

Comparing Strings 494

Validate an Email Address 507

Validating Email – Valid Name
and Top-Level Domain 519

The Alphabetize Names Project 532

CHAPTER 11

Text to Speech 536

Creating the Speak Messages
From Family App 544

Reply to Family 548

The Forward Message App 552

CHAPTER 12

Display Location 559

Cat and Mouse 569

Shake to Clear Canvas 576

Open Google Maps 580

Crossing the State Line 584

CHAPTER 13

Record and Play Back Audio 587

Using the ImagePicker 593

Playing Video 597

Using the Contact and
Phone Number Pickers 601

Using the PhoneCall Component 604

Speak a Text Message 609

The Show Spoken Message App 619

24 Videonotes

TOPICS

1.1 Introduction

1.2 What is a Computer Program?

1.3 Introducing App Inventor

1.4 Getting Hands-On with App Inventor

Introduction to Programming
and App Inventor

 1.1 Introduction
This book teaches fundamental programming skills using an exciting application known
as App Inventor 2. (We will refer to it simply as App Inventor.) App Inventor allows
you to quickly and easily create applications, or “apps,” for Android smartphones and
tablets. It is not necessary to have prior programming experience or knowledge to use
this book. App Inventor was created for beginners who have never programmed before.

You might find it surprising that with no previous programming experience, you can
learn to create apps for a smartphone or a tablet. Perhaps you have heard that you need
to know a lot about programming in languages such as Java to create mobile apps.
While it is true that apps are typically created with high-level programming languages,
App Inventor takes a different approach. With App Inventor, you use a screen designer
to visually create an app’s screen, as shown in Figure 1-1. Then, you use a special editor
known as the Blocks Editor to create the actions that the app performs. With the Blocks
Editor, you do not have to know a language such as Java to program the app. Instead,
you visually assemble code blocks to create the app’s actions. Figure 1-2 shows an
 example of the Blocks Editor.

With App Inventor, you use a standard computer, like a Windows PC, a Mac, or a
Linux system, to create an app. You can connect a supported Android smartphone or
tablet to the computer either wirelessly or with a USB cable. As you develop the app, you
will see it running on the connected device. (See Appendix B for more information about
connecting your Android device to App Inventor.)

C
H

A
P

T
E

R

1

25

26 Chapter 1 Introduction to Programming and App Inventor

Figure 1-1 The App Inventor Designer (Source: MIT App Inventor 2, Pearson Education, Inc.)

Figure 1-2 The Blocks Editor (Source: MIT App Inventor 2)

 1.1 Introduction 27

If you do not have a supported Android device to connect to your computer, App
Inventor provides an Android emulator that runs on your computer. The emulator,
which is shown in Figure 1-3, is a simulated Android phone. As you are using App
Inventor to develop an app, the app appears and runs on the emulator’s screen. You
can interact with the emulator in many of the same ways that you interact with an
actual smartphone. Although the emulator is limited (for example, it does not have
a GPS sensor to report its location, and it cannot make phone calls), it does provide
many of the basic features of an actual smartphone.

App Inventor Runs in the Cloud
Although you will need to install a program on your computer to run the Android
emulator, App Inventor runs in the cloud. This simply means that it runs on
a remote server that you are accessing over the Internet. App Inventor is part of
MIT’s Center for Mobile Learning, so it is hosted on servers that are managed by
MIT. Additionally, the projects that you create with App Inventor are stored on the
remote servers.

Figure 1-3 The Android Emulator (Source: MIT App Inventor 2, Pearson Education, Inc.)

28 Chapter 1 Introduction to Programming and App Inventor

There are several advantages to this cloud-based approach. For example, you can
access App Inventor and your projects from any computer that is properly set up and
connected to the Internet. In addition, the files that you create with App Inventor are
maintained and backed up by the host. Also, you can be sure that you are always run-
ning the most recent version of App Inventor. Of course, this approach requires that
you have an Internet connection to use App Inventor.

Setting Up App Inventor
Before you can work through the tutorials in this book, you must set up App Inventor
to work with either the Android emulator or an actual Android device. If you haven’t
already done so, turn to Appendix A and follow the instructions to set up App
Inventor. Appendix A also has an accompanying VideoNote that demonstrates the
set up process. You can access the VideoNote from the book’s companion website
at www.pearsonglobaleditions.com/Gaddis. If you have an Android device that
you want to connect to App Inventor, read Appendix B after you have set up App
Inventor on your computer.

 1.2 What Is a Computer Program?

CONCEPT: A computer program is a set of instructions that a computer follows
to perform a task.

Before jumping straight into App Inventor, you should take a moment to learn some
basic concepts about computer programming. The concepts that we discuss in this
section apply to all types of computer programming, regardless of whether the com-
puter is a laptop, a supercomputer, or a mobile device.

The title of this section poses the question “What is a computer program?” Before
we can answer that, first we should answer the question “What is a computer?” To
learn programming, you do not need a deep understanding of how computers work,
but you do need to understand in the most basic terms what a computer is. Here’s a
definition that we can start with:

A computer is a device that follows instructions.

A computer doesn’t know how to do anything on its own. It only follows the
instructions that are given to it. Having said that, you must realize that a com-
puter cannot follow just any kind of instruction. For example, you can’t wake up
in the morning and say to your computer, “Make an omelet and serve it to me in
bed.” That’s not an instruction that a computer can understand. That’s the kind
of instruction that a human (like a butler, if you’re lucky enough to have one) can
understand. Unfortunately, common computers like the ones you and I have on our
desktops don’t make breakfast. Their purpose is to work with data. They do things

http://www.pearsonglobaleditions.com/Gaddis

 1.2 What Is a Computer Program? 29

like adding and multiplying numbers, displaying data on the screen, storing data so
it can be retrieved later, and so forth. Knowing this, we can expand our definition
of what a computer is, as follows:

A computer is a device that follows instructions for manipulating and storing data.

When a computer is designed, it is equipped with a set of operations that it can per-
form on pieces of data. Most of the operations are very basic in nature. For example,
the following are typical operations that a computer can do:

● Add two numbers
● Subtract one number from another number
● Multiply two numbers
● Divide one number by another number
● Move a number from one memory location to another
● Determine whether one number is equal to another number
● And so forth . . .

A computer instruction is merely a command for the computer to perform one of the
operations that it knows how to do.

Although an instruction exists for each operation that a computer is able to
 perform, the individual instructions aren’t very useful by themselves. Because
the computer’s operations are so basic in nature, a meaningful task can only be
accomplished if the computer performs many operations. For example, if you
want your computer to calculate the amount of interest that you will earn from
your savings account this year, it will have to perform a large number of instruc-
tions, carried out in the proper sequence. Now we can understand what a compu-
ter program is:

A computer program is a set of instructions that the computer follows to perform
a task.

So, if we want the computer to perform a meaningful task, such as calculating our
savings account interest, we must have a program, which is a set of instructions. The
instructions in a program must be carefully written so they follow a logical sequence.
When a computer is performing the instructions in a program, we say that the com-
puter is running or executing the program.

Algorithms and Programming Languages
Computer programmers do a very important job. Their job is important because
without programs, computers would do nothing! When a programmer begins the
process of writing a program, one of the first things he or she does is develop an algo-
rithm. An algorithm is a set of well-defined, logical steps that must be taken in order
to perform a task. For example, suppose we are writing a program to calculate an
employee’s gross pay. Here are the steps that should be taken:

 1. Get the number of hours that the employee worked, and store it in memory.
 2. Get the employee’s hourly pay rate, and store it in memory.

30 Chapter 1 Introduction to Programming and App Inventor

 3. Multiply the number of hours worked by the hourly pay rate and store the
result in memory.

 4. Display a message on the screen that shows the amount of money earned. The
message must include the result of the calculation performed in Step 3.

Notice that the steps in this algorithm are sequentially ordered. Step 1 should be
performed before Step 2, and so forth. It is important that these instructions are per-
formed in their proper sequence.

The steps shown in the pay-calculating algorithm are written in English. Although
you and I might easily understand the algorithm, it is not ready to be executed on a
computer. The instructions have to be translated into machine language, which is the
only language that computers understand. In machine language, each instruction is
represented by a binary number. A binary number is a number that has only 1s and
0s. Here is an example of a binary number:

1011010000000101

When you or I look at this number, we see only a series of 1s and 0s. To the com-
puter, however, this number is an instruction, which is a command to perform some
operation. A computer program that is ready to be executed by the computer is a
stream of binary numbers representing instructions.

As you can imagine, the process of translating an algorithm from English state-
ments to machine language instructions is very tedious and difficult. To make the
job of programming easier, special programming languages have been invented.
Programming languages use words instead of numbers to represent instructions.
A program can be written in a programming language, which is much easier for
people to understand than machine language, and then be translated into machine
language. Programmers use special software called compilers or interpreters to per-
form this translation.

Over the years, many programming languages have been created. If you are work-
ing toward a degree in computer science or a related field, you are likely to study
languages such as Java, Python, C++ (pronounced “C plus plus”), and Visual Basic.
These are only a few of the languages that are used by professional programmers
to create software applications. Each of these languages has its own set of words
that the programmer must learn in order to use the language. The words that make
up a programming language are known as keywords. For example, the word print
is a keyword in the Python 2 language. It prints a message on the screen. Here is
an example of how the print keyword might be used to form an instruction in a
Python 2 program:

print “Hello Earthling!”

This causes the message Hello Earthling! to be displayed on the computer screen.
Compare this instruction to the binary number we saw earlier. You can see from
this simple example why programmers prefer to use programming languages
instead of machine language. Using words to write a program is much easier than
using binary numbers.

 1.2 What Is a Computer Program? 31

In addition to keywords, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators
that perform arithmetic. In Java, as well as most other languages, the 1 sign is an
operator that adds two numbers. The following would add 12 and 75:

12 + 75

In addition to keywords and operators, each language also has its own syntax, which
is a set of rules that must be strictly followed when writing a program. The syntax
rules dictate how keywords, operators, and various punctuation characters must be
used in a program. When you are learning a programming language, you must learn
the syntax rules for that particular language.

When you write a program with a traditional programming language, you convert
your algorithm into a series of statements. A programming statement consists of key-
words, operators, punctuation, and other allowable programming elements, arranged
in the proper sequence to perform an operation. Programmers call these statements
code. Typically, you type your programming statements into a text editor, save them
to a file, and then use a compiler to translate the statements into an executable pro-
gram. An executable program is a file containing machine language instructions that
can be directly executed by the computer.

Programming with App Inventor
One way that App Inventor makes programming easy to learn is by eliminating many
of the errors that beginning students commonly make. With a traditional program-
ming language, like Java or C++, beginners frequently make typing mistakes that
result in misspelled keywords, missing punctuation characters, and other such errors.
These types of mistakes are known as syntax errors. If a program contains even one
syntax error, it cannot be translated into an executable program. As a result, students
and professional programmers alike spend a lot of time tracking down syntax errors
and fixing them. In App Inventor, however, syntax errors never happen, because you
do not type programming statements.

Instead, you drag and drop code blocks, which are graphical building blocks, into an
editor. The blocks, which represent actions and data, can be “snapped” together, like
the pieces of a puzzle, to create fully functional programming statements. Because
you don’t have to spend time locating and fixing syntax errors, you can concentrate
on planning the actions that you want your app to perform, and arranging them into
the proper sequence.

Perhaps the greatest reason that programming is easy with App Inventor is that it’s
fun! Rather than writing boring programs that perform calculations or analyze data,
you will be creating mobile apps that you can run on your own smartphone or tablet,
assuming it is a supported Android device. So if you have a great idea for an app, you
can create it and install it on your device. If you want to share your apps with others,
you can upload them to the Google Play Store or the App Inventor Gallery. (For more
information about submitting your App Inventor apps to the Google Play store and
the App Inventor Gallery, see Appendix C.)

32 Chapter 1 Introduction to Programming and App Inventor

Checkpoint

 1.1 What is a computer?

 1.2 What is a program?

 1.3 What is an algorithm?

 1.4 What is the only language that computers understand?

 1.5 Why were programming languages invented?

 1.3 Introducing App Inventor
App Inventor is a Web application that runs in your browser. The following browsers
work with App Inventor:

● Google Chrome 4.0 or higher
● Apple Safari 5.0 or higher
● Mozilla Firefox 3.6 or higher

Each time you work with App Inventor to create or modify an app, you will perform
the following general steps:

● You will open your browser and go to the App Inventor website.
● You will either create a new project or open an existing project.
● You will open the Blocks Editor.
● You will connect either the Android emulator or an actual Android device to

App Inventor.

In Tutorial 1-1, you will perform these steps, using the Android emulator. Before
performing this tutorial, make sure you have set up App Inventor on your computer.
(If you have not already set up App Inventor, see Appendix A for instructions.)

VideoNote
Starting App
Inventor and
Creating a New
Project

Tutorial 1-1:
Starting App Inventor and Creating a New Project

Step 1: Open your Web browser and go to the following address:

 http://appinventor.mit.edu

Step 2: You will see a screen similar to the one shown in Figure 1-4. Click the
Create button that appears in the upper right area of the screen.

Step 3: If you are not currently signed into your Google account, you will see
a screen similar to the one shown in Figure 1-5. (If you are already
signed into your Google account, skip to Step 4.) Enter your email
address and Google account password, and then click Sign In.

http://appinventor.mit.edu

 1.3 Introducing App Inventor 33

Figure 1-5 Login to Your Google Account (Source: Google and the Google logo are

registered trademarks of Google Inc., used with permission.)

Figure 1-4 App Inventor Main Screen (Source: MIT App Inventor 2)

34 Chapter 1 Introduction to Programming and App Inventor

Click here to display the My Projects screen.

Figure 1-7 The My Projects Link (Source: MIT App Inventor 2)

Figure 1-6 The My Projects Screen (Source: MIT App Inventor 2)

NOTE: If this is the first time you have used App Inventor with the
Google account that you are signed in as, you will see a screen in-
dicating that App Inventor is requesting permission to access your
Google account. Click the Allow button.

Step 4: Next, you will see the My Projects screen, as shown in Figure 1-6. This
screen normally displays a list of all the App Inventor projects that you
have created. From this screen, you can open a project, delete a project,
download and upload projects, and perform other actions. There are
no projects listed in the screen shown in Figure 1-6 because we haven’t
created any yet. Any time that you want to display this screen, you
simply click the My Projects link, as shown in Figure 1-7.

 1.3 Introducing App Inventor 35

Step 5: To create a new project, click the New Project button, as shown in
Figure 1-8. This will display the dialog box shown in Figure 1-9,
prompting you to enter the name of the project that you are creating.
You must follow these rules when naming a project:
● The project name must begin with an alphabetical letter.
● After the first letter, the remaining characters can be alphabetical

letters, numbers, or underscore characters (_).
● You cannot have spaces in a project name.

When you create a project, you should give it a name that describes it.
Because this is your first project, enter MyFirstProject as the name, and
then click the OK button.

Figure 1-8 Click the New Button to Start a New Project (Source: MIT App Inventor 2)

Figure 1-9 Specify a Project Name (Source: MIT App Inventor 2)

Step 6: You should now see the screen shown in Figure 1-10. This screen is
known as the Designer. When you are developing an app, you will use
the Designer to create the app’s screen. We will discuss the Designer in
greater detail later in the chapter.

Next you will open the Blocks Editor. Click the Blocks button in the
upper-right area of the screen, as shown in Figure 1-11. The Blocks
Editor will appear as shown in Figure 1-12.

36 Chapter 1 Introduction to Programming and App Inventor

Click here to open
the Blocks editor.

Figure 1-11 Click the Open the Blocks Editor Button (Source: MIT App Inventor 2)

Figure 1-10 The Designer (Source: MIT App Inventor 2)

Step 7: The next step is to create a new Android emulator. As shown in
Figure 1-13, click Connect at the top of the screen, and then click

 1.3 Introducing App Inventor 37

Figure 1-12 The Blocks Editor (Source: MIT App Inventor 2)

Emulator on the menu that appears. It might take several minutes for the
emulator to be created in the computer’s memory. Once the emulator has
been created and initialized, it will appear as shown in Figure 1-14.

NOTE: In the Windows task bar, the emulator will be represented by
an Android Icon ().

Figure 1-13 Click Connect and then Click Emulator to Create a New
Android Emulator (Source: MIT App Inventor 2)

38 Chapter 1 Introduction to Programming and App Inventor

Step 8: If you plan to continue with the next tutorial at this time, leave App
Inventor open in your browser and the emulator running. If you plan
to continue with the next tutorial at a later time, close the emulator
and sign out of App Inventor by clicking your account email, which
appears in the upper-right corner of the window, and then clicking
Sign out. This is shown in Figure 1-15.

Figure 1-14 The Android Emulator (Source: Microsoft Corporation)

Figure 1-15 Signing Out (Source: MIT App Inventor 2)

Let’s take a closer look at the various parts of App Inventor.

 1.3 Introducing App Inventor 39

The Designer
When you create an app with App Inventor, you will use the Designer to create the
app’s screen. The Designer is organized into the following columns, which are identi-
fied in Figure 1-16:

● The Palette column
● The Viewer column
● The Components column
● The Media column
● The Properties column

Figure 1-16 The Designer (Source: MIT App Inventor 2)

The Palette column The Viewer column The Components column The Properties column

The Media column

Let’s take a closer look at each of these columns.

The Palette Column

The leftmost column in the Designer is known as the Palette. The Palette provides a list
of components that you can use to build your app. A component is an item that per-
forms a specific purpose within an app. For example, an Image component displays an
image on the screen, a Button component appears as a button that the user can touch,
a Texting component sends and receives text messages, a PhoneCall component causes
the phone to dial a number, and so forth. When you are creating an app, you select the
components that you need from the Palette, and insert them into the app.

The Palette is divided into sections that each contain a group of components. Each
section represents a category of components. The different sections, or categories, are:

User Interface—These are the fundamental components for building an app’s
screen. If you want the app to have a button that the user can click, an image

40 Chapter 1 Introduction to Programming and App Inventor

that is displayed on the app’s screen, a text box that the user can type input into,
or various other basic components, you will find them here.

Layout—This section provides components for organizing other components on
the app’s screen. They provide ways to arrange components horizontally, verti-
cally, or in rows and columns.

Media—This section provides components for taking photos, recording and play-
ing videos, recording and playing sounds, picking images from the phone’s gal-
lery, recognizing speech, and converting text to speech.

Drawing and Animation—This section provides components for creating simple
drawings and animations.

Sensors—These components allow your app to access the device’s accelerometer (to
detect shaking and movement), location sensor (to detect the device’s location via
GPS and/or network data), and orientation sensor (to detect the device’s orienta-
tion, or the manner in which it is tilted). There is also a barcode scanner component
and a near field communication sensor that allows two phones to exchange data.

Social—These are components that work with the phone’s contact list, make phone
calls, send and receive text messages, and perform certain operations with Twitter.

Storage—These are components that store data locally on the device or remotely
on a Web server.

Connectivity—This section provides components for launching external applica-
tions, connecting with Bluetooth devices, and browsing the Web.

LEGO® MINDSTORM®—These specialized components are used to connect an
app with a LEGO® MINDSTORM® NXT robot using Bluetooth.

You open a section in the Palette column simply by clicking its name. In Figure 1-16,
you can see the User Interface section is open.

The Viewer Column

The Viewer column appears next to the Palette column. The Viewer column shows
a rectangular area that represents the app’s screen. You design an app’s user inter-
face (the part of the app that the user sees, and interacts with) by dragging compo-
nents from the Palette and dropping them onto the simulated screen in the Viewer.
Figure 1-17 shows a Button component being created by dragging it from the
Palette to the Viewer. You can arrange the components on the simulated screen to
make the app’s interface look the way you want it.

Figure 1-17 Creating a Component by Dragging it from the Palette to the
Viewer (Source: MIT App Inventor 2)

 1.3 Introducing App Inventor 41

Keep in mind, however, that the Viewer column does not truly show a WYSIWYG
(What You See Is What You Get) display. The components that you place on the
simulated screen in the Viewer might appear slightly different on the emulator screen,
or on the device that you have connected to your system. You will be aware of any
differences quickly because the components that you drop onto the simulated Viewer
screen appear immediately on the emulator or the connected device. For example,
Figure 1-18 shows an app screen in the Viewer, and the same screen displayed in the
emulator. Notice that the shapes of the text boxes (the rectangles that let the user
enter data) and the button are slightly different between the two screens, and the
spacing between the components is also different. Think of the Viewer as a tool for
arranging components on an app’s screen, but always compare your layout with the
actual display on the emulator or your connected device.

NOTE: A subtle, but important concept to keep in mind is that the icons that are
shown in the Palette are the types of components that you can create. When you drag
a component from the Palette, you are selecting the type of component that you want.
When you drop it into the Viewer, an actual component of the selected type is created.

Figure 1-18 A Screen in the Viewer and the Emulator (Source: MIT App Inventor 2)

Screen design in the viewer. Actual output in the emulator.

42 Chapter 1 Introduction to Programming and App Inventor

The Components Column

The Components column shows a hierarchical tree listing all of the components that you
have placed in your app. Each time you drag a component from the Palette and drop
it onto the Viewer, an entry representing that component appears in the Component
column. You can use the Component column to select any component in your app.

The Media Column

Just below the Components column is the Media column. The Media column allows
you to manage the media files (images, videos, and audio files) that you want to use
in your app. Because App Inventor stores your apps in the cloud, you have to upload
any media files that you want to use in an app. The Media column allows you to
upload such files to the App Inventor server, download them from the server to your
computer, and delete them from the server when they are no longer needed.

The Properties Column

A component’s appearance and other characteristics, are determined by the compo-
nent’s properties. Here are just a few examples:

● If you want to display text on your device’s screen, you will use a Label com-
ponent. The Label component has a property named Text. You set the Label
component’s Text property to the text that you want to display.

● If you want to display an image on your device’s screen, you will use an Image
component. The Image component has a property named Picture that deter-
mines the image that is displayed. You set the Picture property to the name of
the image file that you want displayed.

● If you want an app to play a sound, you will use a Sound component. The
Sound component has a property named Source that determines the audio file
that is played. You set the Source property to the name of the audio file that you
want to play.

Once you have added a component to an app, you use the Properties column to
examine and change the component’s properties.

The Blocks Editor
The Blocks Editor appears in its own window, separate from the Designer. The Blocks
Editor is where you assemble code blocks that perform actions. A code block, or simply a
block, is a shape that looks something like a puzzle piece. Figure 1-19 shows an example.
App Inventor provides numerous blocks that represent actions and data. The blocks are
shaped in such a way that you can snap them together to make a program. For example,
Figure 1-20 shows several blocks snapped together to make a complete programming
statement. (Don’t worry about understanding the blocks shown in Figures 1-19 and
1-20. They are just meant to show you examples of how blocks appear.)

Figure 1-19 A Code Block (Source: MIT App Inventor 2)

 1.3 Introducing App Inventor 43

The Blocks Editor is shown in Figure 1-21. Notice that a workspace is provided for
assembling blocks. You drag blocks onto the workspace, and snap them together to
create programming statements.

The column on the left side of the Blocks Editor provides access to the blocks that you
can use. Notice in Figure 1-22 that the Blocks column is organized in the following
manner: Built-In, Screen1, and Any component. Each of these provides a separate set
of blocks that you can use in your app. Here is a summary of each:

Built-In—The blocks that you find here are the basic blocks that make up the
App Inventor language. You have the built-in blocks available to you in
every app.

Screen1—Each time you add a component to Screen1 in the Designer, a set of
component blocks are added to this section. Component blocks are blocks that
perform an action on a specific component that you have added to the app.

Any component—This section contains advanced blocks that allow us to work
with any component in the app.

Figure 1-20 A Programming Statement Constructed from Code Blocks
(Source: MIT App Inventor 2)

Figure 1-21 The Blocks Editor (Source: MIT App Inventor 2)

Workspace

Blocks column

44 Chapter 1 Introduction to Programming and App Inventor

The Built-In Blocks

Notice in Figure 1-22 that the Built-in Blocks section is organized into the following cat-
egories: Control, Logic, Math, Text, Lists, Colors, Variables, and Procedures. When you
click one of the categories, a drawer containing blocks opens. For example, Figure 1-23
shows what happens when you click Math. A drawer containing various math blocks
opens. When you open a drawer, you can click and drag a block onto the workspace.

Figure 1-22 The Blocks Column (Source: MIT App Inventor 2)

Built-in blocks

Screen1 component blocks

Any component blocks
(Advanced)

Figure 1-23 The Math Drawer Opened (Source: MIT App Inventor 2)

The Math drawer

 1.3 Introducing App Inventor 45

The topmost area of the App Inventor screen is shown in Figure 1-24. The bar at the
top shows the following items:

Project—When you click this item, a menu appears. The Project menu allows you
to start, save, import, and export projects.

Connect—When you click this item, a menu appears. The Connect menu allows
you to connect to an Android device or the Android emulator.

Build—When you click this item, a menu appears. The Build menu allows you to
package an app so it can be shared with others.

Help—When you click this item, a menu appears. The Help menu provides access
to documentation, tutorials, and the App Inventor forum.

My Projects—When you click this item, the My Projects screen is displayed. (The
screen was previously shown in Figure 1-6.) The My Projects screen displays a list of
all the App Inventor projects that you have created. From this screen, you can open a
project, delete a project, download and upload projects, and perform other actions.

Guide—Clicking this item opens a separate Web page containing the App Inventor
documentation.

Report an Issue—Clicking this item takes you to the App Inventor support forum.

TIP: You can also delete a block by selecting it and then pressing the Delete key
on the keyboard.

Figure 1-24 Top Part of the App Inventor Screen (Source: MIT App Inventor 2)

Figure 1-25 The Trash Can Icon (Source: MIT App Inventor 2)

A trash can icon appears in the lower-right corner of the Blocks Editor, as shown on
the left in Figure 1-25. You can delete blocks that you no longer need by dragging
them onto the trash can, as shown on the right in Figure 1-25.

46 Chapter 1 Introduction to Programming and App Inventor

Checkpoint

 1.6 True or false: My First Project is a legal project name in App Inventor.

 1.7 What part of App Inventor do you use to create an app’s screen?

 1.8 What is a user interface?

 1.9 Does the Viewer show a WYSIWYG (What You See Is What You Get)
representation of an app’s screen?

 1.10 What is the Palette column?

 1.11 What is the Viewer column?

 1.12 What is the Components column?

 1.13 What is the Media column?

 1.14 What is the Properties column?

 1.15 What is the Blocks Editor?

 1.16 What is a code block (or simply, a block)?

 1.17 How do you create an emulator and connect to it?

 1.4 Getting Hands-On with App Inventor
You are almost ready to create your first app with App Inventor. There are a few more
fundamental concepts and procedures that we need to discuss, however. We will cover
those, and then in Tutorial 1-2 and Tutorial 1-3, you will create the Hello World app.

Managing Projects
You manage all of your App Inventor projects from the My Projects screen, which is
shown in Figure 1-26. When you go to appinventor.mit.edu and click the Create
button, you will be taken to the My Projects screen, unless you were actively work-
ing on a project the last time you used App Inventor. If that is the case, you will be

Figure 1-26 The My Projects Screen (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 47

Notice that near the top of the My Projects screen (shown in Figure 1-26) there are
buttons labeled New Project and Delete Project. The New Project button creates
a new project. You used this in Tutorial 1-1, when you created the project named
MyFirstProject. The Delete Project button deletes the project or projects that are
currently selected in the project list. (You select a project by checking the checkbox
that appears next to its name in the project list.)

Below these buttons, you see a list of your projects. The list shows each project’s
name and the date and time that it was created. To open a project, you simply click
its name, and it is opened in the Designer. If you want to select a project (so you can
delete it, or download its source), you click the checkbox that appears to the left of
the project’s name.

The App’s Screen1 Component
In App Inventor, the most fundamental type of component that an app can have
is a Screen. In fact, every app must have a Screen component, which acts as a
container for all the other components making up the app’s user interface. When
you start a new project, App Inventor automatically creates an empty Screen
component.

Each component in an app must have a unique name that identifies it. When a
component is added to an app, App Inventor automatically gives the component a
default name. The empty Screen component that is automatically created in an app
is named Screen1. Figure 1-28 shows the Screen1 component, as displayed in the
viewer.

Each time you add a component to an app, the component’s name appears in
the Component column. You can see in Figure 1-28 that Screen1 is listed in the
Component column. If you need to work with a particular component, you can select
its name in the Component column.

NOTE: The Component column allows you to rename components. Normally,
you will want to change the default name that App Inventor gives a component,
because the default name does not indicate the component’s purpose. The only
exception is the Screen1 component. App Inventor does not allow you to change
the name of the Screen1 component.

Figure 1-27 The My Projects Link at the Top of the App Inventor Screen
(Source: MIT App Inventor 2)

taken directly to your most recent project in the Designer. From the Designer or the
Blocks Editor, you can click the My Projects link at the top of the screen, as shown in
Figure 1-27, to go to the My Projects screen.

48 Chapter 1 Introduction to Programming and App Inventor

Working with the Properties Column
The appearance and other characteristics of a component are determined by the compo-
nent’s properties. When you select a component (either by clicking the component in the
Viewer, or clicking its name in the Components column), that component’s properties
are displayed in the Properties column. For example, when the Screen1 component is
selected, its properties are displayed in the Properties column as shown in Figure 1-29.

For example, look at the Properties column in Figure 1-29 and notice that one of
Screen1’s properties is named Title. The Title property determines the text that is
displayed in the screen’s title bar (the bar that appears at the top of the screen). As you can
see from the figure, the default value of this property is Screen1. The text that is entered
for the Screen1 component’s Title property is displayed in the screen’s title bar, both in
the Viewer, and in the emulator or other connected device. This is shown in Figure 1-30.

In most cases, you will want to change the value of the Screen1 component’s Title
property to something that makes more sense to the user. For example, Figure 1-31
shows the Viewer, the Properties Column, and the emulator after we have changed
the Title property to My First App. (The Screen1 component has several other prop-
erties, and a summary of all of them appears at the end of this chapter.)

Name of the screen component
currently displayed in the viewer.

Name of the
screen component.

The screen’s title

Figure 1-28 An App’s Screen in the Viewer (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 49

The Screen1
component
is selected.

The Screen1 component’s
properties are displayed.

The Viewer The Properties column The Emulator

The text displayed here is
determined by the Screen1
component’s Title property.

The text displayed
here is determined

by the Screen1
component’s
Title property.

Figure 1-29 The Properties Column, Showing the Selected Component’s
Properties (Source: MIT App Inventor 2)

Figure 1-30 The Screen1 Component’s Title Property Set to the Text Screen1
(Source: MIT App Inventor 2)

50 Chapter 1 Introduction to Programming and App Inventor

Label Components
Another basic component is the Label. A Label component displays text on
the app’s screen. You create a Label component by dragging it from the User
Interface section of the Palette and onto the app’s screen in the Viewer, as shown
in Figure 1-32. When you create Label components in an app, they are given
default names such as Label1, Label2, and so forth. For example, Figure 1-33
shows the Components column after a Label component has been created in an
app. As you can see in the figure, the name of the component is Label1. (Also,
notice that the name Label1 is highlighted in the Components column, and in the
Viewer, the component is outlined with a green border. This indicates that the
component is currently selected.)

Once you have created a Label component, you set its Text property to the text
that you want the component to display. For example, in Figure 1-34, the Label1
component’s Text property (look in the Properties column) is set to the value Text
for Label1. As a result, Text for Label1 is displayed on the app’s screen in the viewer
and on the emulator or other connected device. To change the text that is displayed

The Viewer The Properties column The Emulator

The text displayed here is
determined by the Screen1
component’s Title property.

The text displayed here
is determined by the
Screen1 component’s

Title property.

Figure 1-31 The Screen1 Component’s Title Property Set to the Text My First
App (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 51

by a Label component, just make sure the component is selected in the Components
tree, and then change the value of the component’s Text property in the Properties
column. (If the component is not currently selected, simply click its name in the
Components column to select it.)

For example, Figure 1-35 shows an app with a Label component, with its Text prop-
erty set to Apps are fun to create! The text is displayed by the component in the
Viewer and on the emulator.

Figure 1-32 Creating a Label Component (Source: MIT App Inventor 2)

Name of the
label component.

Figure 1-33 The Name of the Component Shown in the Components Column
(Source: MIT App Inventor 2)

52 Chapter 1 Introduction to Programming and App Inventor

Label Width and Height

Label components have two properties, Width and Height, that determine the label’s
size on the app’s screen. Figure 1-36 shows where a Label component’s Width and
Height properties are located in the Properties column. Notice that both properties
are set to the value Automatic by default.

Figure 1-34 A Label Component’s Text Property Determines the Text that the
Component Displays (Source: MIT App Inventor 2)

Figure 1-35 A Label Component Displaying the Text Apps are fun to create!
(Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 53

When you click the Width or the Height properties, a small dialog box appears,
as shown in Figure 1-37. (The dialog box is the same for both the Width and
the Height properties.) The possible values that you can set the Width and Height
properties to are:

Automatic—When a component’s Width property is set to Automatic, the
component’s width will automatically adjust to accommodate the size of the
label’s text.

When a component’s Height property is set to Fill Parent, the label’s height will
automatically adjust to accommodate the size of the label’s text.

Fill parent—When a component’s Width property is set to Fill Parent, the com-
ponent will be as wide as the container (such as the Screen1 component) that

Figure 1-36 The Label Component’s Width and Height Properties
(Source: MIT App Inventor 2)

54 Chapter 1 Introduction to Programming and App Inventor

it is enclosed in. When a component’s Height property is set to Fill Parent, the
component will be as high as the container (such as the Screen1 component)
that it is enclosed in.

A Specified Number of Pixels—You can specify a specific number of pixels for a
component’s width and/or height. You should avoid this in most cases, because
different devices have different screen sizes. Specifying a specific number of pix-
els for a component’s width or height will cause the component to appear dif-
ferently on different devices.

Figure 1-37 Dialog Box to Set the Width Property (Source: MIT App Inventor 2)

Changing a Component’s Name
A component’s name identifies the component in blocks that make up the app’s
code, and in the App Inventor environment. When you create a component, App
Inventor automatically gives it a name (we refer to this as the default name). For
example, suppose you created three Label components in an app. App Inventor
would name these components Label1, Label2, and Label3. Default names are
not very descriptive, so you should always change a component’s name to some-
thing that is more meaningful. A component’s name should reflect the purpose of
the component.

For example, suppose you are creating an app that has several Label components, and
one of them is used to display a phone number. A default name such as Label1 does
not convey the component’s purpose. A name such as LabelPhoneNumber would
be much better. When you are working with the app’s code blocks, and you see the
name LabelPhoneNumber, you will know precisely which Label component the code
block is referring to.

In the Designer, you can use the Components column to change the name of any com-
ponent (except the Screen1 component). Here are the steps:

 1. Click the name of the component in the Components column to select it.
 2. Click the Rename button at the bottom of the Components column.
 3. The Rename Component dialog box shown in Figure 1-38 will appear. Enter

the component’s new name and click OK.

In Figure 1-38, we are changing the name of the Label1 component to
LabelMessage. Figure 1-39 shows the Components column after the component’s
name has been changed.

 1.4 Getting Hands-On with App Inventor 55

Rules and Conventions for Naming Components
When naming a component, you must follow these simple rules:

● Component names can contain only letters, numbers, and underscores (_).
● The first character of a component name must be a letter.
● Component names cannot contain spaces.

Table 1-1 lists some example component names and indicates whether each one is
legal or illegal.

Figure 1-38 Rename Component Dialog Box (Source: MIT App Inventor 2)

Figure 1-39 The Component’s Name is Changed to LabelMessage
(Source: MIT App Inventor 2)

Table 1-1 Legal and illegal component names (Source: Pearson Education, Inc.)

Name Legal or Illegal?

3rdTestScoreLabel Illegal because component names must
start with a letter

Label*Mobile*Number Illegal because the * character is not
allowed. Component names can contain
only letters, numbers, and underscores.

Label Contact Name Illegal because component names
cannot contain spaces

Label_Contact_Name Legal

Optional Conventions Used in this Book

Because a component’s name should reflect the component’s purpose, programmers
often find themselves creating names that are made of multiple words. In this book,

56 Chapter 1 Introduction to Programming and App Inventor

we always begin a component’s name with a word that indicates the type of compo-
nent. For example, a Label component’s name will always begin with the word Label.
This is not a requirement, but rather a convention that we follow in this book.

In addition, we use the Pascal naming convention, which makes names easier to read
when they contain multiple words. For example, look at the following names, which
are written in all lowercase letters:

labelcontactname
labeltotalpoints
labelmobilenumber

Unfortunately, these names are not easily read by the human eye because the words
are not separated. Because we cannot have spaces in component names, we need to
find another way to separate the words in a multiword name to make it more read-
able to the human eye. In this book, we address this problem using the Pascal case
naming convention. In a Pascal case name, the first letter of each word is capitalized.
Here are some examples:

LabelContactName
LabelTotalPoints
LabelMobileNumber

Deleting Components
If you add a component to an app and later decide that you don’t want the compo-
nent, it’s easy to delete it. Just click on the component’s name in the Components
column to select it, and then click the Delete button that appears at the bottom of the
Components column.

Button Components
Buttons are common components in mobile apps, as well as desktop applications.
The user can click a button to make some action take place. In App Inventor, you cre-
ate a Button component by dragging it from the User Interface section of the Palette
to the app’s screen in the Viewer. This is shown in Figure 1-40.

Button components have a Text property, which holds the text that is displayed on
the face of the button. When you create a Button component, it is given a default
name such as Button1, Button2, and so forth, and its Text property will be set to
Text for Button1, Text for Button2, and so forth. Once you create a Button compo-
nent, you should change its name to something that is more descriptive. You should
also change the component’s Text property to indicate what the button will do when
it is clicked. For example, a button that calculates an average might have the text
Calculate Average displayed on it. To change a Button component’s Text property,
just select the component in the Components tree, and then change the value of the
component’s Text property in the Properties column.

Figure 1-41 shows an example of an app with a Button component. Notice in
the figure that we have renamed the component to ButtonExample, and we have
changed its Text property to Click Me! The value of the Text property is displayed
on the face of the button in both the viewer and the emulator.

 1.4 Getting Hands-On with App Inventor 57

Figure 1-40 Creating a Button Component (Source: MIT App Inventor 2)

Figure 1-41 A Button Component Displaying the Text Click Me! (Source: MIT App Inventor 2)

58 Chapter 1 Introduction to Programming and App Inventor

Screen Alignment
When you place components on an app’s screen, the components are arranged verti-
cally, from the top of the screen to the bottom of the screen. By default, they are also
aligned along the left edge of the screen. For example, Figure 1-42 shows an app with
three Button components. The image on the left shows the app’s screen in the Viewer,
and the image on the right shows the app in the emulator.

Figure 1-42 An App with Three Button Components (Source: MIT App Inventor 2)

Screen components have an AlignHorizontal property (shown in Figure 1-43)
that determines how the components that are contained in the screen are hori-
zontally aligned. You can set the AlignHorizontal property to one of the fol-
lowing values:

● Left—Components are aligned along the left edge of the screen
● Center—Components are aligned in the center of the screen
● Right—Components are aligned along the right edge of the screen

Figure 1-44 shows examples of how each of these settings affect the contents of the
screen. The default setting for the AlignHorizontal property is Left.

 1.4 Getting Hands-On with App Inventor 59

Screen components also have an AlignVertical property (shown in Figure 1-45)
that determines how the components that are contained in the screen are vertically
aligned. You can change the AlignVertical property only if the screen is not scrollable
(the Scrollable property is not checked). If this is the case, you can set the AlignVertical
property to one of the following values:

● Top—Components are aligned along the top of the screen
● Center—Components are aligned in the center of the screen
● Bottom—Components are aligned along the bottom of the screen

Figure 1-46 shows examples of how each of these settings affect the contents of the
screen. (In each example, the AlignHorizontal property is set to Center.) The default
setting for the AlignVertical property is Top. If the Scrollable property is checked, the
components are automatically aligned to the top of the screen.

Figure 1-43 The AlignHorizontal Property (Source: MIT App Inventor 2)

The Screen1 component
is selected.

Figure 1-44 Examples of the AlignHorizontal Property Settings (Source: MIT App Inventor 2)

AlignHorizontal set to Left AlignHorizontal set to Center AlignHorizontal set to Right

60 Chapter 1 Introduction to Programming and App Inventor

Figure 1-45 The AlignVertical Property (Source: MIT App Inventor 2)

The Screen1 component
is selected.

The Scrollabe property
is not checked.

Figure 1-46 Examples of the AlignVertical Property Settings (Source: MIT App Inventor 2)

AlignHorizontal set to Center
AlignVertical set to Bottom

AlignHorizontal set to Center
AlignVertical set to Center

AlignHorizontal set to Center
AlignVertical set to Top

 1.4 Getting Hands-On with App Inventor 61

At this point, you know enough to design the screen for your first app. Tutorial 1-2
leads you through the steps to create the screen for the Hello World app.

Figure 1-47 The Completed App (Source: MIT App Inventor 2)

The app initially appears like this. When the button is clicked, Hello World is displayed.

Tutorial 1-2:
Creating the Screen for the Hello World App

When a student is learning computer programming, it is traditional to start by
learning to write a Hello World program. A Hello World program is a simple
program that merely displays the words “Hello World” on the screen. In this
tutorial and the next, you will use App Inventor to create a Hello World app.
The app will initially appear as the image on the left in Figure 1-47. Notice that

VideoNote
Creating the
Screen for the
Hello World App

62 Chapter 1 Introduction to Programming and App Inventor

the screen contains a button that reads Click Here To See a Message. When you
click the button, the message Hello World will appear, as shown in the image on
the right in the figure.

The process of creating this app is divided into two parts. In this tutorial you
will create the app’s screen. In the next tutorial you will use the Blocks Editor
to write code that displays the Hello World message to appear when the user
clicks the button.

Step 1: If App Inventor is already running on your computer, go to the My
Projects page, which will appear similar to Figure 1-48. (Your list of
projects will be different.)

If App Inventor is not running on your computer:
● Go to appinventor.mit.edu with your browser.
● Click the Create link that appears on that page.
● If prompted, log into your Google account.
● Go to the My Projects page, which will appear similar to Figure 1-48.

(Your list of projects will be different.)

Figure 1-48 The My Projects Page (Source: MIT App Inventor 2)

Step 2: Click the New Project button that appears above the list of projects.
In the dialog box that appears, enter HelloWorld as the project
name, as shown in Figure 1-49, and click the OK button. The
project will be created, and the Designer will appear, as shown in
Figure 1-50.

Figure 1-49 Enter the Project Name (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 63

Step 3: The Screen1 component should already be selected in the Components
column. In the Properties column, change the AlignHorizontal prop-
erty to Center, and change the Title property to read My Hello World
App. This is shown in Figure 1-51.

Step 4: Drag a Label component from the Palette to the Viewer, as shown in
Figure 1-52. This creates a Label component named Label1, with its
Text property set to Text for Label1.

Step 5: Because the name Label1 is not very descriptive, you should
change the component’s name. Make sure the Label1 component
is selected in the Components column, and click the Rename but-
ton (which appears at the bottom of the Components column). The
dialog box shown in Figure 1-53 will appear. Enter LabelMessage
as the component’s new name, and click OK. The component’s new
name should now appear in the Components column, as shown in
Figure 1-54.

Step 6: Make sure the LabelMessage component is selected in the Components
column, and in the Properties column, delete the contents of the Title
property. (The Title property should appear empty.) This is shown

Figure 1-50 The HelloWorld Project in the Designer (Source: MIT App Inventor 2)

64 Chapter 1 Introduction to Programming and App Inventor

Figure 1-51 Setting the Screen1 Component’s Properties
(Source: MIT App Inventor 2)

in Figure 1-55. Notice that the label now appears as a small dot in the
viewer. This is because the label’s Width and Height properties are both
set to Automatic. Recall that this means the label’s size will automatically

 1.4 Getting Hands-On with App Inventor 65

Figure 1-52 Creating the Label Component (Source: MIT App Inventor 2)

adjust to match the size of the text that it displays. Because the Text
property is now empty, the label displays nothing, and its size automati-
cally shrinks down to nothing. In fact, the only way that you can see the
label in the Viewer is to select it in the Components column. The green
border that indicates the component is selected will appear as a dot.

Figure 1-53 Renaming the Label1 Component (Source: MIT App Inventor 2)

66 Chapter 1 Introduction to Programming and App Inventor

Figure 1-54 The Component Renamed (Source: MIT App Inventor 2)

Figure 1-55 The Label’s Text Property is Empty (Source: MIT App Inventor 2)

Step 7: Now you will create a Button component. Drag the Button compo-
nent from the User Interface section of the Palette to the Viewer. Notice
that as you drag the component, a thin blue line appears in the viewer,
showing where the component will be inserted. You want the blue line
to appear below the Label component, as shown in Figure 1-56, when
you release the mouse button. This creates a Button component named
Button1, with its Text property set to Text for Button1.

Step 8: Make sure the Button1 component is selected in the Components col-
umn, and change the component’s name to ButtonDisplayMessage.
Then, in the Properties column, change the Text property to Click Here
To See a Message. This is shown in Figure 1-57.

Step 9: You’ve added all of the components that you will need for this app.
Although you haven’t written any code, this would be a good time to
preview the app’s screen in the emulator. Click the Connect button in
the upper area of the App Inventor screen, and then click Emulator on
the menu that appears. It might take several minutes for the emulator
to be created in the computer’s memory. Once the emulator has been
created and initialized, it will appear as shown in Figure 1-58.

 1.4 Getting Hands-On with App Inventor 67

Figure 1-56 Creating a Button Component (Source: MIT App Inventor 2)

The blue line shows where the
component will be inserted.

Figure 1-57 The Button Renamed and its Text Property Changed
(Source: MIT App Inventor 2)

68 Chapter 1 Introduction to Programming and App Inventor

If possible, leave the project open in App Inventor. You will finish
the app in the next tutorial.

Figure 1-58 The App in the Emulator (Source: MIT App Inventor 2)

NOTE: Although the app is running in the emulator, it is not capable
of doing anything other than displaying the screen. If you click the
Button component, nothing will happen. That is because you have not
yet written the code that executes when the button is clicked. You will
do that in the next tutorial.

 1.4 Getting Hands-On with App Inventor 69

Programming with Blocks
Before you continue with the next tutorial, we will discuss the steps that you must
take to complete the Hello World app. Carefully read this section, and then perform
the steps in Tutorial 1-3.

First, you need to understand that apps are event-driven programs. This means that
when an app is running, it waits for specific events to happen, and then it responds
to those events. What do we mean by event? An event is an action that takes place,
such as the user clicking a button, or sliding his or her finger across the device’s
screen. An incoming text message is also an event, as well as when the user tilts or
shakes the phone. When you are creating an app, you decide which events the app
will respond to, and then you write the code that executes when those events take
place. (Obviously, there are limitations to the events that the emulator can respond
to, because it isn’t a physical device. For example, emulators can’t receive incoming
phone calls, and they can’t be tilted or shaken.)

Recall that the Hello World app has a Button component named ButtonDisplay
Message, and a Label component named LabelMessage. We want the app to display
Hello World in the label when the user clicks the button. So, we need a block that
executes when the user clicks the ButtonDisplayMessage component.

Assuming the HelloWorld project is currently open in the Blocks Editor, notice that the
Blocks column has entries for Screen1, LabelMessage, and ButtonDisplayMessage.
This is shown in Figure 1-59. Because you want to create a block that executes
when the ButtonDisplayMessage component is clicked, you need to click
ButtonDisplayMessage entry. This causes a “drawer” to open, revealing blocks that
are related to the ButtonDisplayMessage component, as shown in Figure 1-60.

Figure 1-59 The Component Entries in the Blocks Column (Source: MIT App Inventor 2)

70 Chapter 1 Introduction to Programming and App Inventor

There are numerous blocks in this drawer. If you scroll through the drawer’s con-
tents, you will see that some of the blocks are brown, some are light green, and some
are dark green. Here is a summary of the meaning of the colors:

● Brown blocks that are shaped like this:

These are event handlers that work with the component. An event handler is a
block that automatically executes when a specific event takes place.

● Light green blocks that are shaped like this:

These blocks represent values that are related to the component.
● Dark green blocks that are shaped like this:

These blocks are commands that perform actions with the component.

Figure 1-60 The ButtonDisplayMessage Drawer Open (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 71

Figure 1-61 shows the topmost block inside the drawer (an event handler). Look at it
carefully and notice that it reads:

when ButtonDisplayMessage.Click do

This block is the event handler that executes when the ButtonDisplayMessage compo-
nent is clicked. The notation ButtonDisplayMessage.Click is simply a way of refer-
ring to the event of the ButtonDisplayMessage component being clicked. So, when you
read the title of this block, think when ButtonDisplayMessage is clicked, do this block.

Figure 1-62 The Workspace with a when ButtonDisplayMessage.Click
do Block Inserted (Source: MIT App Inventor 2)

Figure 1-61 The when ButtonDisplayMessage.Click do Block
(Source: MIT App Inventor 2)

To insert the block into the workspace, simply click and drag it from the drawer.
The workspace will appear similar to Figure 1-62. (It does not matter where you
place the block in the workspace.)

72 Chapter 1 Introduction to Programming and App Inventor

Notice that the when ButtonDisplayMessage.Click do block has an odd-shaped
empty space in its middle, as shown in Figure 1-63. You can snap another block or a
set of blocks into this space. Then, when the ButtonDisplayMessage component is
clicked, the block or blocks that are snapped into this space will execute.

Figure 1-63 You Complete the Block by Snapping Other Blocks into the Empty
Space. (Source: MIT App Inventor 2)

Insert other blocks here.

When the button is clicked, you want to display a message in the LabelMessage
component. Earlier you learned that a Label component has a Text property that
determines what the component displays. So, you need to find a block that sets the
LabelMessage component’s Text property to a specified value. Once you have found
that block, you can snap it into the when ButtonDisplayMessage.Click do block.

If you open the drawer containing the blocks for the LabelMessage component, you
will see one that reads

set LabelMessage.Text to

This is shown in Figure 1-64. The notation LabelMessage.Text is a way of referring
to the LabelMessage component’s Text property. When you read the title of this
block, you should think set the LabelMessage component’s Text property to . . . So,
this is the block that you are looking for.

To insert the block, you simply click and drag it to the empty space inside the
when ButtonDisplayMessage.Click do block. There will be an audible click

Figure 1-64 The set LabelMessage.Text to Block (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 73

indicating that the blocks are snapped together. The workspace will appear
 similar to Figure 1-65.

Figure 1-65 The set LabelMessage.Text to Block Inserted
(Source: MIT App Inventor 2)

Figure 1-66 An Empty Socket (Source: MIT App Inventor 2)

Socket

The set LabelMessage.Text to block is not a complete instruction until you
specify the value that you want to set the property to. Notice the opening on the
right edge of the set LabelMessage.Text to block, as shown in Figure 1-66.
This opening is known as a socket. A socket is a place where another block can
be snapped. To make this block a complete instruction, you need to snap another
block specifying a value into the socket. In this case, you want to set the property
to the text Hello World.

If you click Text under Built-in in the Blocks column, a drawer will open, as shown in
Figure 1-67. The topmost block shown in the figure is the text string block. (It appears
with a set of quotation marks.) You use the text string block any time you need to spec-
ify a text value. Click and drag the block to the workspace, and snap it into the socket of
the set LabelMessage.Text to block. You will hear a click indicating that the blocks
are snapped together, and the workspace should appear similar to Figure 1-68.

Take a closer look at the text string block that you just inserted. Notice that it shows
a set of quotation marks with an empty space between them. You need to insert the
message Hello World in the empty space. To do this, simply click the empty space,
type Hello World, and press Enter. This changes the value of the block to Hello
World, as shown in the image on the right in Figure 1-69.

At this point, the instruction is complete. In Tutorial 1-3, you will perform the steps
that we just discussed.

74 Chapter 1 Introduction to Programming and App Inventor

Figure 1-67 The Built-in text string Block (Source: MIT App Inventor 2)

Figure 1-68 The Text String Block Snapped into the Socket of the set
LabelMessage.Text to Block (Source: MIT App Inventor 2)

Figure 1-69 Changing the Value of the Text String Block to Hello World
(Source: MIT App Inventor 2)

Click the empty space in the text string block. Change the value to Hello World.

 1.4 Getting Hands-On with App Inventor 75

Figure 1-71 The when ButtonDisplayMessage.Click do Block Created
(Source: MIT App Inventor 2)

Figure 1-70 The Blocks for the ButtonDisplayMessage Component
(Source: MIT App Inventor 2)

Tutorial 1-3:
Completing the Hello World App

Step 1: This tutorial resumes where Tutorial 1-2 ended. Make sure the Hello
World project is open in App Inventor, the Blocks Editor is opened,
and an emulator is created and connected to App Inventor.

Step 2: In the Blocks column, click ButtonDisplayMessage. As shown
in Figure 1-70, a drawer will open, containing blocks related to
the ButtonDisplayMessage component. Click and drag the when
ButtonDisplayMessage do block to the workspace. The workspace
should now appear as shown in Figure 1-71.

VideoNote
Completing the
Hello World App

76 Chapter 1 Introduction to Programming and App Inventor

Step 3: In the Blocks column, click LabelMessage. As shown in Figure 1-72, a
drawer will open, containing blocks related to the LabelMessage com-
ponent. Drag the set LabelMessage.Text to block into the empty
space inside the when ButtonDisplayMessage do block. There will
be an audible click indicating that the blocks are snapped together. The
workspace will appear similar to Figure 1-73.

Figure 1-72 The Blocks for the LabelMessage Component
(Source: MIT App Inventor 2)

Figure 1-73 The set LabelMessage.Text to Block Created
(Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 77

Step 4: In the Blocks column, click Text (which appears under Built-in). A drawer
will open, as shown in Figure 1-74. Drag the text string block to the
workspace, and snap it into the socket of the set LabelMessage.Text
to block. You will hear a click indicating that the blocks are snapped
together, and the workspace should appear similar to Figure 1-75.

Figure 1-74 The Built-in Text Blocks (Source: MIT App Inventor 2)

Text string
block

Figure 1-75 The Text String Block Inserted (Source: MIT App Inventor 2)

78 Chapter 1 Introduction to Programming and App Inventor

Step 5: Now you will change the value of the text string block to Hello World.
Click the empty space that appears between the quotation marks, type
Hello World, and press Enter. The block should now appear as shown
in Figure 1-76.

Figure 1-76 The Value of the Text String Block Changed to Hello World
(Source: MIT App Inventor 2)

Step 6: You are ready to test the app. In the emulator, click the Click Here To See a
Message button. The app’s screen should appear as shown in Figure 1-77.

Figure 1-77 The App’s Screen after the Button has been Clicked
(Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 79

NOTE: In this chapter, you’ve learned that you write code in the Blocks Editor
by snapping blocks together. You have probably noticed that each type of block
has its own shape, like a puzzle piece. Just like real puzzle pieces, only certain
shapes fit together. This is shown in Figure 1-78.

Because only certain shapes fit together, you cannot connect blocks that do not
belong together. This makes programming in App Inventor much easier for begin-
ners than programming in a traditional language, where you have to type the cor-
rect words in the correct order and use correct punctuation. With App Inventor,
you only need to determine which blocks to use and snap them together!

Figure 1-78 Certain Shapes Fit Together (Source: MIT App Inventor 2)

This shape fits here.

This shape fits here.

You should be getting more comfortable with the Designer and the Blocks Editor, so
it’s time to move on to a more interesting project. In Tutorial 1-4, you will create an
app that displays the phrase “Good Morning” in different languages. In the process,
you will explore additional component properties. Here is a summary of what you
will do in the tutorial:

● You will change the Screen1 component’s BackgroundColor property to
change the color of the app’s screen.

● You will insert a Label component, and change its FontSize property to make
the component’s text larger.

● You will insert three Button components. Each one, when clicked, will cause a
different phrase to be displayed in the Label component.

Tutorial 1-4:
Creating the Good Morning Translator App

In this tutorial, you will create an app that displays the phrase Good Morning in
different languages. The app’s screen will have three buttons: one for Italian, one
for Spanish, and one for German. When the user clicks any of these buttons, the
translated phrase will appear in a Label component.

VideoNote
Creating the Good
Morning Translator
App

80 Chapter 1 Introduction to Programming and App Inventor

Step 1: Start App Inventor and begin a new project named GoodMorning.
Create a new emulator.

Step 2: In the Designer, change the Screen1 component’s AlignHorizontal
property to Center and change the Title property to Good Morning App.

Step 3: The Screen1 component’s BackgroundColor property determines the
background color of the app’s screen. By default, it is set to White.
Click the property’s current setting and select a color from the list that
appears, as shown in Figure 1-79. (In the example, we will use the color
light gray, but you can pick another color if you wish.) Figure 1-80
shows all of the Screen1 properties that we have changed.

Figure 1-79 Changing the Screen1 Component’s BackgroundColor
Property (Source: MIT App Inventor 2)

Step 4: Insert a Label component onto the screen and change the component’s
name to LabelPhrase. Set the component’s Text property to Good
Morning. Because we want the label’s text to appear larger on the
app’s screen and easier to read, you will make it boldface and increase
its size. Enable the FontBold property to make the label’s text boldface,
and change the FontSize property to 24 to make the label’s text larger.
All of these settings are shown in Figure 1-81.

 1.4 Getting Hands-On with App Inventor 81

Figure 1-80 The Screen1 Component’s Properties that We have Changed
(Source: MIT App Inventor 2)

Step 5: Insert the following components, and set their properties as described:
● Insert a Button component, change its name to ButtonItalian,

and set its Text property to Italian.
● Insert another Button component, change its name to

ButtonSpanish, and set its Text property to Spanish.
● Insert another Button component, change its name to ButtonGerman,

and set its Text property to German.

82 Chapter 1 Introduction to Programming and App Inventor

Figure 1-81 The LabelPhrase Component’s Property Settings
(Source: MIT App Inventor 2)

Change the Label
component’s name
to LabelPhrase.

Set these
properties.

Figure 1-82 shows the Viewer and the Components column at this point.

Figure 1-82 Three Button Components Inserted (Source: MIT App Inventor 2)

Step 6: Now you will write the app’s code. These are the actions the app will
 perform:
● When the user clicks the ButtonItalian component, the

LabelPhrase component’s Text property will change to
Buongiorno.

 1.4 Getting Hands-On with App Inventor 83

● When the user clicks the ButtonSpanish component,
the LabelPhrase component’s Text property will change to
Buenos Dias.

● When the user clicks the ButtonGerman component,
the LabelPhrase component’s Text property will change to
Guten Morgen.

Open the Blocks Editor, and click ButtonItalian in the Blocks col-
umn (it appears under Screen1). Drag the when ButtonItalian do
block from the drawer and drop it into the workspace, as shown in
Figure 1-83.

Figure 1-83 The when ButtonItalian do Block Inserted
(Source: MIT App Inventor 2)

Step 7: In the Blocks column, click LabelPhrase (it appears under Screen1).
Drag the set LabelPhrase.Text to block from the drawer and
drop it inside the when ButtonItalian do block, as shown in
Figure 1-84.

Step 8: In the Blocks column, click Text (which appears under Built-in). Drag
the text string block to the workspace, and snap it into the socket of
the set LabelPhrase.Text to block. You will hear an audible click
indicating that the blocks are snapped together, and the workspace
should appear similar to Figure 1-85.

Step 9: In the text string block, click the empty space that appears between the
quotation marks, and type Buongiorno. The blocks should appear as
shown in Figure 1-86. That completes the Click event handler for the
ButtonItalian component.

84 Chapter 1 Introduction to Programming and App Inventor

Figure 1-84 The set LabelPhrase.Text to Block Inserted
(Source: MIT App Inventor 2)

Figure 1-85 The Text String Block Snapped to the set LabelPhrase.
Text to Block (Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 85

Figure 1-86 The Value of the Text String Block Changed to Buongiorno
(Source: MIT App Inventor 2)

Step 10: Now you will complete the Click event handler for the ButtonSpanish
component. Perform the following actions:
● In the Blocks column, click ButtonSpanish (it appears under

Screen1). Drag the when ButtonSpanish do block from the
drawer and drop it into the workspace.

● In the Blocks column, click LabelPhrase (it also appears under
Screen1). Drag the set LabelPhrase.Text to block from the
drawer and drop it inside the when ButtonSpanish do block.

● In the Blocks column, click Text (which appears under Built-in).
Drag the text string block to the workspace and snap it into the
socket of the set LabelPhrase.Text to block’s socket.

● In the text string block, click the empty space that appears between
the quotation marks and type Buenos Dias.

That completes the Click event handler for the ButtonSpanish com-
ponent. The workspace should appear similar to Figure 1-87.

Step 11: Now you will complete the Click event handler for the ButtonGerman
component. Perform the following actions:
● In the Blocks column, click ButtonGerman (it appears under

Screen1). Drag the when ButtonGerman do block from the
drawer and drop it into the workspace.

● In the Blocks column, click LabelPhrase (it also appears under
Screen1). Drag the set LabelPhrase.Text to block from the
drawer and drop it inside the when ButtonGerman do block.

86 Chapter 1 Introduction to Programming and App Inventor

Figure 1-87 The Workspace with Click Event Handlers for the Button
Italian and ButtonSpanish Components (Source: MIT App Inventor 2)

Figure 1-88 The Workspace with Click Event Handlers for the Button
Italian, ButtonSpanish, and ButtonGerman Components
(Source: MIT App Inventor 2)

 1.4 Getting Hands-On with App Inventor 87

● In the Blocks column click Text (which appears under Built-in).
Drag the text string block to the workspace, and snap it into the
socket of the the set LabelPhrase.Text to block’s socket.

● In the text string block, click the empty space that appears between
the quotation marks, and type Guten Morgen.

That completes the Click event handler for the ButtonGerman com-
ponent. The workspace should appear similar to Figure 1-88.

Step 12: Test the app in the emulator. Figure 1-89 shows how the app’s screen
should appear when you click each button.

Figure 1-89 Output of the App (Source: MIT App Inventor 2)

When the user
clicks Italian

When the user
clicks Spanish

When the user
clicks German

Checkpoint

 1.18 What App Inventor screen do you go to when you want to start a new project
or manage existing projects?

 1.19 In App Inventor, what component must every app have?

 1.20 What Screen component property sets the text that is displayed in the screen’s
title bar?

 1.21 What does a Label component do?

 1.22 What Label component property determines the text that the component
displays?

88 Chapter 1 Introduction to Programming and App Inventor

 1.23 What are the possible values for a Label component’s Width and
Height properties?

 1.24 How do you rename a component? Why would you want to change a
component’s name from the default name that App Inventor gives it?

 1.25 What rules must you follow when naming a component?

 1.26 What Button component property determines the text that is displayed on the
button?

 1.27 What are the possible values for a Screen component’s
AlignHorizontal property?

 1.28 What are the possible values for a Screen component’s
AlignVertical property?

 1.29 What is an event-driven program?

 1.30 In the Blocks column of the Blocks Editor, where do you find the blocks for
the components that you have added to a project?

 1.31 In the Blocks Editor, what is a drawer?

 1.32 What Screen property do you use to change the background color of
the screen?

 1.33 What Label component property do you set to change the size of the text
displayed by the component?

 1.34 What Label component property do you set to make the component’s
text boldface?

Review Questions

Multiple Choice

 1. This is what an emulator is.

a. A device simulator
b. A developing environment
c. A GUI designer
d. A code assembler

 2. This is what typical computers perform.

a. Logical operations
b. Arithmetic operations
c. Relational operations
d. All of the above

 3. This is a set of well-defined logical steps that must be taken in order to perform a task.

a. Algorithm
b. Programming language
c. Compiler
d. Execution

 4. This is the only language that a computer understands.

a. Java
b. Machine language
c. Keywords
d. Android

 5. This is a number that consists of only 1s and 0s.

a. Binary
b. Decimal
c. Floating-point
d. Unary

 6. This is a set of well-defined, logical sequential instructions.

a. Algorithm
b. Methodology
c. Programmer
d. Programming language

 7. This is an example of a high-level programming language.

a. Java
b. Latin
c. Assembly
d. Machine language

 8. A program written in programming language must be translated into this.

a. Human language
b. Arithmetic instructions
c. Machine language
d. Java code

 9. This is a set of rules that must be strictly followed when writing a program.

a. Rules of order
b. Syntax
c. Procedural rules
d. Rules of thumb

 10. If a program contains even one of these, it cannot be translated into an execut-
able program.

a. Syntax error
b. Keyword
c. Compiler
d. Binary number

 11. App Inventor minimizes syntax errors by _________.

a. Minimizing code
b. Predefining programming statements
c. Using graphical building blocks
d. Using design tools before programming

 Review Questions 89

 12. A Compiler is performs this function.

a. Fixes syntax errors
b. Designs and develops a program
c. Translates statements into an executable program
d. All of the above

 13. This is a legal project name.

a. This project
b. This_project
c. 1Project
d. _Project_1

 14. This column is not a part of the Designer that is used to create the app’s screen.

a. The Viewer column
b. The Components column
c. The Media column
d. The Template column

 15. You insert this when you need to add a specific task in your app.

a. The Palette
b. A Section
c. A Component
d. A Block

 16. This section provides components for organizing other components on the app’s
screen.

a. User Interface
b. Layout
c. Media
d. Storage

 17. This section contains the fundamental components for building an app’s screen.

a. GUI
b. Viewer
c. User interface
d. Window

 18. Each time you add a component to an app in the Designer, a set of component
blocks is added to this part of the Blocks Editor.

a. The Blocks column
b. The Components column
c. The Workspace
d. The Designer column

90 Chapter 1 Introduction to Programming and App Inventor

 Review Questions 91

 19. The basic blocks that make up the App Inventor language are found in the Blocks
column, under .

a. Built-in
b. Screen1
c. AI components
d. Any component

 20. One can package an app by using the ________ item, which is displayed on the
bar at the top.

a. Project
b. Connect
c. Build
d. My Projects

 21. This is why we package an app.

a. In order to share it with others
b. In order to connect it with a device
c. In order to test it
d. In order to download it

 22. When you want to display text on an app’s screen, you use this type of
 component.

a. Button
b. Message
c. Output
d. Label

 23. To see and manage all the App Inventor projects you have created, you click
the ________ item.

a. File
b. My Projects
c. List Projects
d. Projects

 24. Which component is a container for all other components and must be present
all apps?

a. Button1
b. Title1
c. Screen1
d. Interface1

 25. To display text on a device’s screen we use the ________ component.

a. Label
b. Text
c. Button
d. TextBox

92 Chapter 1 Introduction to Programming and App Inventor

 26. A Label component will be as wide as its container when its Width property is set
to _________.

a. Automatic
b. Fill Parent
c. A Specified Number of Pixels
d. None of the above

 27. This Label component property makes the component’s text boldface.

a. Bold
b. FontBold
c. Boldface
d. Font

Short Answer

 1. What is a computer program?

 2. Why were programming languages invented?

 3. What is the use of an emulator?

 4. What rules must you follow when naming a project in App Inventor?

 5. What is the purpose of using algorithms while developing programs?

 6. What are the main steps that need to be followed to develop an app?

 7. What rules must you follow when changing a component’s name?

 8. Suppose you have the Designer open and you want to create a Button component
on the app’s screen. Describe how this is done.

 9. How do you specify the text that a Label component displays on the screen?

 10. What effect does the Automatic setting have on a component’s Width and Height
properties?

 11. What are the possible settings for a Screen component’s AlignHorizontal
property?

 12. What are the possible settings for a Screen component’s AlignVertical
 property?

 13. What is an event-driven program?

 14. Assume an app has a Button component named ButtonClickMe and a
Label component named LabelOutput. Describe what the blocks shown in
Figure 1-90 do.

Figure 1-90 Blocks in an App (Source: MIT App Inventor 2)

 Exercises 93

Exercises
 1. Use the Designer to create the screen shown in Figure 1-91.

Figure 1-91 Screen for Exercise 1 (Source: MIT App Inventor 2)

 2. Use the Designer to create the screen shown in Figure 1-92. The font size for the
topmost Label component is 24. For the middle Label component, it is 32, and for
the bottom Label component, it is 38.

Figure 1-92 Screen for Exercise 2 (Source: MIT App Inventor 2)

 3. Use the Designer to create the screen shown in Figure 1-93. Here are some spe-
cific property settings for the components:
● The Screen1 component’s Scrollable property is unchecked.
● The topmost Button component’s Width property is set to Fill Parent, and its

Height property is set to Automatic.

94 Chapter 1 Introduction to Programming and App Inventor

● The middle Button component’s Width property is set to Automatic, and its
Height property is set to 50 pixels.

● The bottom Button component’s Width property is set to Fill Parent, and its
Height property is set to Fill Parent.

Figure 1-93 Screen for Exercise 3 (Source: MIT App Inventor 2)

 4. Enhance the Good Morning Translator app that you created in Tutorial 1-4 by
adding an English button that displays Good Morning when the user clicks it.

Programming Projects
 1. Presidential Trivia App

Create the app shown in Figure 1-94. The app initially appears as the image on
the left, displaying the question Who was the 4th U.S. president? When the user

VideoNote
The Presidential
Trivia App

 Programming Projects 95

clicks the Show Answer button, the answer is displayed as shown in the image
on the right.

Figure 1-94 Presidential Trivia App (Source: MIT App Inventor 2)

 2. Easy Multiplier

Look at the following multiplication table for number 3:

Multiple Result

3 × 1 3

3 × 2 6

3 × 3 9

Create an app that displays the result of multiplying 3 to any number. The
app’s screen should have a listing of the multiples of 3 between 1 and 9 as
 buttons. When the user clicks one of the buttons, the application should
 display the corresponding multiplication result in a Label component.

96 Chapter 1 Introduction to Programming and App Inventor

 3. Joke and Punch Line

A joke typically has two parts: a setup and a punch line. For example, this might
be the setup for a joke:

How many programmers does it take to change a light bulb?

And this is the punch line:

None. That's a hardware problem.

Think of your favorite joke and identify its setup and punch line. Then, create
an app that has two Button components. One of the buttons should read Setup
and the other button should read Punch line. When the Setup button is clicked,
display the joke’s setup in one or more Label components. (If the setup con-
tains a large amount of text, you might need more than one Label component.)
When the Punch line button is clicked, display the joke’s punch line in the Label
component(s).

TOPICS

2.1 Displaying Images

2.2 Duplicating Blocks and Using Dropdowns

2.3 Sounds

2.4 Color Blocks

2.5 Layout Components

2.6 Commenting Blocks

Working with Media

C
H

A
P

T
E

R

2

97

 2.1 Displaying Images

CONCEPT: There are various ways to display an image in an App Inventor app.
An image can be displayed as the background for a screen, in an Image
component, or on a Button component. An image must be uploaded to a
project on the App Inventor server before it can be displayed. The Media
column in the Designer lets you manage the image files that you have
uploaded for a project.

Displaying an Image as a Screen Background
App Inventor gives you a variety of ways to display images on your app’s screen. If you
want to display an image as the background for an app’s screen, you can use the Screen
component’s BackgroundImage property. Before you can display an image, however, it
must be uploaded to your project on the App Inventor server. App Inventor supports a
variety of graphics file formats, but the recommended formats are .png and .jpg.

To display an image as a screen’s background image, make sure the Screen1 component
is selected in the Components column. In the Properties column, set the BackgroundColor
property to None. (In the emulator, the BackgroundColor property will override the
BackgroundImage property. So, if you want to display a background image, you need to
make sure you are not also displaying a background color.)

98 Chapter 2 Working with Media

Set BackgroundColor
to None.

Click BackgroundImage

Figure 2-1 Changing the BackgroundImage Property (Source: MIT App Inventor 2,

Pearson Education, Inc.)

Figure 2-2 An Image Set as the Screen’s Background (Source: MIT App Inventor 2)

Then, as shown in Figure 2-1, in the Properties column, click the BackgroundImage
property. The dialog box in the center of the figure appears, allowing you to select
a previously uploaded image or upload a new image. In the example shown in the

figure, no files have been uploaded, so you would click the Upload File . . . button to
upload a file. This causes the Upload File . . . dialog box shown on the right side of
the figure to appear. You would click the Choose File button to select a file from your
local computer and then click the OK button to upload it. The file will automatically
be set as the screen’s background image.

Figure 2-2 shows Screen1 in the Viewer, Screen1’s properties in the Properties col-
umn, and the emulator after a file named Boston01.png has been uploaded as the
screen’s background image.

You can continue to place components on the screen after setting the screen’s
BackgroundImage property. For example, Figure 2-3 shows a screen with a background

 2.1 Displaying Images 99

Figure 2-3 A Screen with a Background Image and Four Button Components
(Source: MIT App Inventor 2, Pearson Education, Inc.)

image and four Button components. (Notice in the figure that the Screen1 component’s
AlignHorizontal property is set to Right, which causes the buttons to appear on the
right edge of the screen.)

Using the Media Column to Upload Files
When you upload an image to a project, the image file’s name will appear in the Media
column, which is at the bottom of the Components column. Figure 2-4 shows an
e xample. As you can see in the figure, we have uploaded a file named Boston01.png.

Notice that the Media column has an Upload File . . . button. This button allows you
to select and upload media files to your project without assigning them to any specific
property. For example, you could use this button to upload all of a project’s media
files, and later select those files for their intended purposes.

Figure 2-4 The Media Column (Source: MIT App Inventor 2)

If you click the name of a file in the Media column, you see the menu pop up as
shown in Figure 2-5. The menu lets you delete the file (if you no longer need it in the
project), or download the file to your local computer.

100 Chapter 2 Working with Media

Figure 2-5 Using the Media Column to Delete or Download a File
(Source: MIT App Inventor 2)

Figure 2-6 Upload a File to Change the BackgroundImage Property
(Source: MIT App Inventor 2)

Tutorial 2-1:
Changing the Screen’s Background Image

Step 1: Make sure you have downloaded the media files from this book’s com-
panion website at www.pearsonglobaleditions.com/Gaddis.

Step 2: Start a new App Inventor project named ScreenBackground.

Step 3: In the Designer, the Screen1 component will be selected in
the Components column. In the Properties column, change the
BackgroundColor to None. (You don’t want to display a background
color because you are going to display an image instead.)

Step 4: Click the BackgroundImage property in the Properties column. The dialog
box shown in Figure 2-6 will appear. Click the Upload File . . . button.

Step 5: The Upload File . . . dialog box shown in Figure 2-7 will appear. Click
the Choose File button.

Navigate to the location on your system where the book’s media files
are located. You will find a folder named Gradients that contains sev-
eral .png files. Select the Gradient01.png file.

The Upload File . . . dialog box will now look like Figure 2-8, showing
that you have selected the Gradient01.png file. Click the OK button.

VideoNote
Changing the
Screen’s
Background Image

http://www.pearsonglobaleditions.com/Gaddis

 2.1 Displaying Images 101

Step 6: You will see the message Uploading Gradient01.png to the App Inventor
server displayed momentarily at the top of the Designer. It will take a mo-
ment for the file to upload. Once it has uploaded, you will see it displayed
in the Viewer as the screen’s background, as shown in Figure 2-9. Notice
in the Properties column that the filename is shown for the value of the
BackgroundImage property and the BackgroundColor property is set to
None. Also notice that the filename is listed in the Media column, indicat-
ing that it has been uploaded to the project on the App Inventor server.

Step 7: Create a new emulator (click Connect at the top of the App Inventor screen
and then click Emulator). The background image should be displayed in
the emulator, as shown in Figure 2-10. (Alternatively, you can connect to
an Android device and see the background image displayed on its screen.)

Figure 2-7 The Upload File . . . Dialog Box (Source: MIT App Inventor 2)

Figure 2-8 The Upload File . . . Dialog Box Showing the Name of the Chosen
File (Source: MIT App Inventor 2)

Figure 2-9 The Gradient01.png File Displayed as the Screen’s
Background (Source: MIT App Inventor 2)

102 Chapter 2 Working with Media

Switching the Screen’s Background Image in Code
In Tutorial 2-1 you learned how to use the Properties column to set the screen’s
BackgroundImage property. You can also create code in the Blocks Editor that
sets the screen’s BackgroundImage property while the app is running. For exam-
ple, suppose you have used the Media column to upload the two .png files shown
in Figure 2-11 and the screen’s BackgroundImage property is set to Gradient01.
png. Furthermore, you want the user to be able to click a button to change the
background image to Gradient02.png. So, you add a Button component named
ButtonChangeBackground, and in the Blocks Editor you create the event handler
shown in Figure 2-12.

Figure 2-10 The Background Image Displayed in the Emulator
(Source: MIT App Inventor 2)

 2.1 Displaying Images 103

Let’s take a closer look at the blocks shown in Figure 2-12:

 1 This is the when ButtonChangeBackground.Click do event handler. It exe-
cutes when a Click event occurs for the ButtonChangeBackground compo-
nent (In other words, when the user clicks the button).

 2 This is the set Screen1.BackgroundImage to block. The purpose of this block
is to set the Screen1 component’s BackgroundImage property to a value. This
block has a socket that receives another block, specifying the value.

 3 This is a text string block and its value is set to Gradient02.png. This block is
plugged into block 2 , so this is the value that we are setting the screen’s
BackgroundImage property to.

The result of this set of blocks is as follows:

When the ButtonChangeBackground button is clicked, set the Screen1 component’s
BackgroudImage property to Gradient02.png.

Figure 2-11 Two .png Files Uploaded (Source: MIT App Inventor 2)

1

2 3

Figure 2-12 The Click Event Handler for the ButtonChangeBackground
Button (Source: MIT App Inventor 2)

NOTE: In this example, the Gradient02.png file must already be uploaded to
the App Inventor server before the user clicks the button. If the Gradient02.png
file has not been uploaded, an error will occur when the button is clicked.

In Tutorial 2-2 you will create an application that uses this technique to switch the
screen’s background image among three images that you will upload to the App
Inventor server.

104 Chapter 2 Working with Media

Tutorial 2-2:
Switching the Screen’s Background Image in Code

Step 1: Make sure you have downloaded the media files from this book’s com-
panion website at www.pearsonglobaleditions.com/Gaddis.

Step 2: Start a new App Inventor project named MultipleBackgrounds.

Step 3: In the Designer, the Screen1 component will be selected in
the Components column. In the Properties column, change the
BackgroundColor to None. (You don’t want to display a background
color because you are going to display an image instead.)

Step 4: Set Screen1’s Title property to Multiple Backgrounds and set the
AlignHorizontal property to Center.

Step 5: In the Media column, click the Upload File . . . button. The Upload
File dialog box that was previously shown in Figure 2-7 will appear.
Click the Choose File button, and then navigate to the location on your
system where the book’s media files are located. Select the Gradient01
.png file that is in the Gradients folder. Once you have selected the file,
click the OK button in the Upload File dialog box to upload the file.

Step 6: Repeat the procedure you followed in Step 5 to upload the Gradient02
.png and Gradient03.png files. Once these files are uploaded, the
Media column should appear as shown in Figure 2-13. (Note that you
have uploaded these files to your project on the App Inventor server,
but none of them are displayed at this time. Uploading them makes
them available to your project.)

Step 7: Add three Button components to the screen. The Button components’
names will be Button1, Button2, and Button3. Perform the following:
● Change the Button1 component’s name to ButtonBackground1

and change its Text property to Show Background 1.
● Change the Button2 component’s name to ButtonBackground2

and change its Text property to Show Background 2.
● Change the Button3 component’s name to ButtonBackground3

and change its Text property to Show Background 3.

The Viewer and the Components column should appear as shown
in Figure 2-14

VideoNote
Switching the
Screen’s
Background
Image in Code

Figure 2-13 The Media Column Showing the Three Files Uploaded
(Source: MIT App Inventor 2)

http://www.pearsonglobaleditions.com/Gaddis

 2.1 Displaying Images 105

Figure 2-14 Buttons Added to the Screen (Source: MIT App Inventor 2)

Step 8: Now you will program the Click event handlers for the buttons. The
idea is that each button will display a different image as the screen’s
background:
● When the user clicks the ButtonBackground1 button, the app will

display the Gradient01.png image.
● When the user clicks the ButtonBackground2 button, the app will

display the Gradient02.png image.
● When the user clicks the ButtonBackground3 button, the app will

display the Gradient03.png image.

First you will program the Click event handler for ButtonBack
ground1. Open the Blocks Editor and in the Blocks column click Button
Background1. Select the when ButtonBackground1.Click do event
handler, as shown in Figure 2-15.

Figure 2-15 Create a Click Event Handler for ButtonBackground1
(Source: MIT App Inventor 2)

106 Chapter 2 Working with Media

Step 9: In the Blocks column, click Screen1, and then scroll down in the drawer
and select set Screen1.BackgroundImage to, as shown in Figure 2-16.

Figure 2-16 Select the set Screen1.BackgroundImage to Block
(Source: MIT App Inventor 2)

Step 10: In the workspace, snap the set Screen1.BackgroundImage to block
inside the Click event handler, as shown in Figure 2-17.

Figure 2-17 Snap the Blocks Together (Source: MIT App Inventor 2)

Step 11: Now you will create a text string block that specifies the name of an
image file. Select Text (under Built-in). A drawer will open, and as
shown in Figure 2-18, click the text string block.

 2.1 Displaying Images 107

Figure 2-18 Select the Text String Block (Source: MIT App Inventor 2)

Step 12: Now you will change the value of the text string block that you just
created. Click the empty space that appears between the quotation
marks and type Gradient01.png, as shown in Figure 2-19.

Figure 2-19 Change the Value of the Text String Block to Gradient01.png
(Source: MIT App Inventor 2)

Step 13: Snap the text string block into the empty socket of the set Screen1.
BackgroundImage to block, as shown in Figure 2-20. This completes
the Click event handler for the ButtonBackground1 component. As a
result, when the user clicks the button, the screen’s background image
will be set to the Gradient01.png file.

Figure 2-20 The Completed Click Event Handler for ButtonBackground1
(Source: MIT App Inventor 2)

108 Chapter 2 Working with Media

The Image Component
When you use the screen’s BackgroundImage property to display an image, the image
occupies the entire screen and components are placed on top of the image. Another
way to display an image is with the Image component, which is found in the User
Interface section of the Designer’s palette. The Image component allows you to spec-
ify the image’s size with its Width and Height properties. Because it is a component,
it is positioned on the screen like any other component.

The Image component has the following properties:

Picture—This property specifies the image file that the component displays.
The file must be uploaded to the project on the App Inventor server.
Visible—This property can be set to showing or hidden. When it is set to
 showing, the image is visible on the screen. When it is set to hidden, the image
is not visible.
Width—This property specifies the image’s width on the screen. It can be set to
Automatic, Fill parent, or a specific number of pixels.

Step 14: Repeat steps 8 through 13 to create the Click event handlers for the
ButtonBackground2 and ButtonBackground3 components. The
Click event handler for ButtonBackground2 should set the screen’s
background image to Gradient02.png and the Click event handler
for ButtonBackground3 should set the screen’s background image to
Gradient03.png. The completed workspace should appear as shown
in Figure 2-21.

Figure 2-21 The Completed Workspace (Source: MIT App Inventor 2)

Step 15: Create an emulator. Test the app in the emulator by clicking each but-
ton and verifying that the screen’s background image changes when
you click each one.

TIP: The term programmatically means to use code to perform something while a
program is running. For example, in Tutorial 2-2 you created an app that program-
matically changes the screen’s background image when the user clicks a button.

 2.1 Displaying Images 109

Height—This property specifies the image’s height on the screen. It can be set to
Automatic, Fill parent, or a specific number of pixels.

The Width and Height properties have the same settings as they do with Button and
Label components. Automatic means that the size is set automatically to match the
size of the image. Fill parent means that the image will be as wide and/or high as the
container (such as Screen1) that the component is enclosed in. You can also specify
a number of pixels for the image’s width and/or height.

Tutorial 2-3 takes you through the steps of creating an Image component that dis-
plays poker cards.

Tutorial 2-3:
Using the Image Component

Step 1: Make sure you have downloaded the media files from this book’s com-
panion website at www.pearsonglobaleditions.com/Gaddis. One
of the media folders that you have downloaded is named Poker Cards
Small. This folder contains small images of the cards in a deck of poker
cards. In this tutorial you will use two of the card images.

Step 2: Start a new App Inventor project named CardImages.

Step 3: In the Designer, the Screen1 component will be selected in the
Components column. In the Properties column, set the Title property
to Cards and set the AlignHorizontal property to Center.

Step 4: In the Media column, use the Upload File . . . button to upload the
2_Clubs.png and 2_Diamonds.png files from the Poker Cards Small
folder. After you have uploaded the files, the Media column should ap-
pear as shown in Figure 2-22.

Figure 2-22 The Media Column after the Image Files have been Uploaded
(Source: MIT App Inventor 2)

Step 5: Find the Image component in the User Interface section of the Palette col-
umn and drag it onto the screen. This creates an Image component named
Image1. Change the component’s name to ImageTwoClubs. Figure 2-23
shows the Viewer and the Components column at this point.

Step 6: Make sure the ImageTwoClubs component is selected, and in the
Properties column, click the Picture property. As shown in Figure 2-24,
select the 2_Clubs.png image file and click OK. The image of a Two of
Clubs card should be displayed in the Viewer, as shown in Figure 2-25.

VideoNote
Using the Image
Component

http://www.pearsonglobaleditions.com/Gaddis

110 Chapter 2 Working with Media

Figure 2-23 An Image Component Added and Renamed (Source: MIT App Inventor 2)

Figure 2-24 An Image Component Added and Renamed (Source: MIT App Inventor 2)

 2.1 Displaying Images 111

Figure 2-25 The Two of Clubs Card Displayed (Source: MIT App Inventor 2)

Step 7: Place another Image component on the screen, just below the first one
that you created. Change the component’s name to ImageTwoDiamonds
and set its Picture property to 2_Diamonds.png. The Viewer should
now appear as shown in Figure 2-26. If you have an emulator con-
nected, it should appear similar to Figure 2-27.

Figure 2-26 The Two of Diamonds Card Displayed (Source: MIT App Inventor 2)

112 Chapter 2 Working with Media

Making Clickable Images with Button components
A clickable image is an image that the user can click to make an action happen. In App
Inventor, you can use Button components to make clickable images. Button compo-
nents have an Image property that causes an image to be displayed on the button.
For example, Figure 2-28 shows a project that has a Button component displaying
an image of a switch that is in the up position. Notice that in the Components column
the Button (which is named ButtonSwitch) is selected and that in the Properties
 column its Image property is set to SwitchUp.png.

When you display an image with a button, the image will be resized to fit the button
according to the button’s Width and Height properties. Also, buttons can display
both text and an image. Notice that in Figure 2-28 the button’s Text property has
been cleared. If its Text property were set to a value, the text would be displayed on
top of the image.

Figure 2-27 The App’s Screen Displayed in the Emulator (Source: MIT App Inventor 2)

 2.1 Displaying Images 113

When the user clicks the ButtonSwitch component, the app performs two actions:
it changes the image displayed on the button to a switch in the down position and it
changes the text that is displayed in the LabelOutput component to The switch is
down. The button’s Click event handler is shown in Figure 2-29. (Of course, the
image SwitchDown.png has already been uploaded to the project on the App Inventor
server.) Figure 2-30 shows the app running in the emulator. The image on the left
shows the emulator before the user clicks the button and the image on the right shows
the emulator afterward.

This is a
button component

displaying an image.

Figure 2-28 A Button Component Displaying an Image (Source: MIT App Inventor 2)

Figure 2-29 The ButtonSwitch Component’s Click Event Handler
(Source: MIT App Inventor 2)

114 Chapter 2 Working with Media

Tutorial 2-4 gives you a chance to practice clickable images with Button components.
In the tutorial, you will create an app with three buttons, displaying images that you
can download from the book’s companion website.

Figure 2-30 The App Running (Source: MIT App Inventor 2)

Tutorial 2-4:
Creating the Flags App

In this tutorial you will create an app that displays the flags of Finland, France,
and Germany on Button components. When the user clicks any of these buttons,
the name of that flag’s country will appear in a Label component.

Step 1: Make sure you have downloaded the media files from this book’s com-
panion website at www.pearsonglobaleditions.com/Gaddis. One
of the media folders that you have downloaded is named Flags. This
folder contains the images of flags that you will use in this tutorial.

Step 2: Start a new App Inventor project named Flags.

VideoNote
Creating the Flags
App

http://www.pearsonglobaleditions.com/Gaddis

 2.1 Displaying Images 115

Step 3: Set Screen1’s Title property to Flags and set its AlignHorizontal prop-
erty to Center.

Step 4: In the Media column, use the Upload File . . . button to upload the
Finland.png, France.png, and Germany.png files from the Flags folder.

Step 5: Add three Button components to the screen.

Step 6: Change the name of the Button1 component to ButtonFinland.
Clear the contents of its Text property and change its Image property
to Finland.png.

Step 7: Change the name of the Button2 component to ButtonFrance. Clear the
contents of its Text property and change its Image property to France.png.

Step 8: Change the name of the Button3 component to ButtonGermany. Clear the
contents of its Text property and change its Image property to Germany.png.
At this point, the Viewer should appear as shown in Figure 2-31.

Figure 2-31 The Flags Displayed on the Button Components
(Source: MIT App Inventor 2)

116 Chapter 2 Working with Media

Step 9: Add a Label component below the flags. Change the component’s
name to LabelCountry and change its Text property to Click a flag.
Change the FontSize property to 20 and enable the FontBold property.
The Viewer should appear as shown in Figure 2-32.

Figure 2-32 The Flags and Label Displayed (Source: MIT App Inventor 2)

Step 10: Open the Blocks Editor. Now you will program the Click event han-
dler for the ButtonFinland button. When the user clicks the button,
the app will change the LabelCountry component’s Text property to
Finland. Perform the following:
● In the Blocks column, click ButtonFinland, and then select the when

ButtonFinland.Click do block, as shown in Figure 2-33. This creates
an empty when ButtonFinland.Click do block in the workspace.

● In the Blocks column, click LabelCountry, and then select the set
LabelCountry.Text to block, as shown in Figure 2-34. Drag the
set LabelCountry.Text to block and snap it inside the when
ButtonFinland.Click do block, as shown in Figure 2-35.

 2.1 Displaying Images 117

● In the Blocks column, under Built-in, click Text, and then select the
text string block, as shown in Figure 2-36. Drag the text string block
and snap it into the socket of the set LabelCountry.Text to
block, as shown in Figure 2-37.

● Change the value of the text string block to Finland, as shown in
Figure 2-38.

Figure 2-33 Select the when ButtonFinland.Click do Block
(Source: MIT App Inventor 2)

Figure 2-34 Select the set LabelCountry.Text to Block .
(Source: MIT App Inventor 2)

118 Chapter 2 Working with Media

Figure 2-35 The set LabelCountry.Text to Block Snapped Inside the
Click Event Handler (Source: MIT App Inventor 2)

Figure 2-36 Select the Text String Block (Source: MIT App Inventor 2)

Figure 2-37 The Empty Text String Block Snapped into the Socket of the
set LabelCountry.Text to Block (Source: MIT App Inventor 2)

Figure 2-38 The text Block’s Value Changed to Finland (Source: MIT App Inventor 2)

Change the value of the
text block to Finland.

 2.1 Displaying Images 119

Step 11: Repeat the procedures that you performed in Step 10 to program the
Click event handlers for the ButtonFrance and ButtonGermany
components. When finished, your workspace should look similar to
Figure 2-39.

Figure 2-39 The Completed Blocks (Source: MIT App Inventor 2)

Step 12: Create a new emulator and test the app. Figure 2-40 shows the app
running in the emulator, with each flag being clicked.

Figure 2-40 The App Running (Source: MIT App Inventor 2)

Checkpoint

 2.1 What Screen property causes an image to be displayed as the screen’s
background?

 2.2 Where can you find a list of the media files that you have uploaded to a
project?

120 Chapter 2 Working with Media

 2.3 If you want to change Screen1’s background image programmatically, what
block would you use?

 2.4 What Image component property specifies the name of the image file to display?

 2.5 What happens if a Button component’s Image property specifies an image
and its Text property is also set to a value?

 2.2 Duplicating Blocks and Using Dropdowns

CONCEPT: You can quickly duplicate an existing block by right-clicking it, and
then selecting Duplicate from the resulting menu. A Dropdown Block
is a block that you can change so it performs a different action, or is
associated with a different component.

Sometimes the easiest way to create a block is to duplicate one that you already have
in the workspace. For example, if an app has several buttons, you can create a Click
event handler for the first one, and then duplicate it for the remaining buttons.

When you right-click a block, the menu shown in Figure 2-41 appears. If you select
Duplicate from the menu, a copy of the block will be created, as shown in Figure 2-42.
Notice in Figure 2-42 that a red triangle with an exclamation mark () appears on
both of the blocks. When this symbol appears on a block, it means the block is caus-
ing some sort of error. If you click the symbol, an error message will appear, as
shown in Figure 2-43.

Figure 2-41 The Block Menu (Source: MIT App Inventor 2)

Figure 2-42 Duplicate Blocks (Source: MIT App Inventor 2)

 2.2 Duplicating Blocks and Using Dropdowns 121

The error message shown in Figure 2-43 is This is a duplicate event handler for this
component. This is happening because, for each component, you can have only one
event handler for each specific event. In this case, you can have only one Click event
handler for each button.

This error can be easily fixed. We simply need to change one of the blocks into a Click
event handler for a component other than Button1. Notice that a small down-arrow
(▼) appears next to Button1 on each of the blocks. If you click the down-arrow, a
dropdown menu will appear, as shown in Figure 2-44. The dropdown menu has the
names of all the components in the app that can have a Click event handler. In this
case, it shows the names Button1, Button2, and Button3. If we select Button2,
the block will become a Click event handler for Button2, as shown in Figure 2-45.
Notice in Figure 2-45 that the error symbol is no longer shown on the blocks.

Figure 2-43 Error Message for Duplicate Blocks (Source: MIT App Inventor 2)

Figure 2-44 Changing the Duplicate Block’s Component (Source: MIT App Inventor 2)

Figure 2-45 The Modified Block (Source: MIT App Inventor 2)

122 Chapter 2 Working with Media

Many of the blocks in App Inventor are known as Dropdown Blocks, which means
that they have dropdown menus that let you change the action that the block per-
forms, or the component that the block is associated with. As you progress through
this book, you will see other examples of Dropdown blocks.

Errors and Warnings
At the bottom of the workspace in the Blocks Editor is a set of “counters” that report
the number of warnings and errors that are present in the workspace. Figure 2-46
shows an example. The yellow triangle () indicates warnings and the red triangle
() indicates errors. A warning is usually the result of an incomplete block (such
as a block with an empty socket, or a block that needs to be plugged into another
block’s socket). An error is something that is illegal, such as duplicate event handlers.

Figure 2-46 The Warnings and Errors Counters (Source: MIT App Inventor 2)

When an error occurs, a red error triangle will appear on the block or blocks that
cause the error. You previously saw how to display a block’s error message: you click
the red triangle that appears on the block.

When warnings are present, however, the warning triangles do not automatically
a ppear on the blocks that have the warnings. To see which blocks have warn-
ings, you must first click the Show Warnings buttons that appears below the
counters. This causes warning triangles to appear on the blocks that have warnings.
Figure 2-47 shows an example. In the image on the left, the warning counter shows
that there is one warning present. When you click Show Warnings, a warning trian-
gle will appear on the offending block, as shown in the image on the right. To see
the actual warning message, click the warning triangle that appears on the block,
as shown in Figure 2-48. (Also notice, in Figure 2-47, that when you click Show
Warnings, it changes to Hide Warnings. When you click Hide Warnings, the warn-
ing triangles are hidden.)

Figure 2-47 Showing Warnings (Source: MIT App Inventor 2)

 2.3 Sounds 123

 2.3 Sounds

CONCEPT: The Sound component is used for playing short audio files, such as
sound effects, and for vibrating the phone. You use the Player compo-
nent for playing longer audio files, such as songs.

App Inventor provides two components for playing sound files: The Sound compo-
nent and the Player component. The Sound component is recommended for small files
containing short sound effects, and the Player component is recommended for larger
files, such as those containing music. Both the Sound and the Player component can
make the phone vibrate. These components support a variety of sound file formats,
but .mp3 and .wav are recommended.

The Sound Component
In the Designer, the Sound component is found in the Media section of the Palette, as
shown in Figure 2-49. You create a Sound component like any other component: you
drag it from the palette to the Viewer. Unlike other components, the Sound compo-
nent is a nonvisible component, which means that it is not visible on the app’s screen.
The Sound component sits in memory and does work for the app, but it does not ap-
pear in the app’s user interface.

When you drop a Sound component onto your app’s screen, it appears in the area
below the screen, as shown in Figure 2-50. The component also appears in the
Components column, as shown in the figure. (When you create a Sound component,
it will be given a default name, such as Sound1. As usual, you should change the com-
ponent’s name to something more meaningful.)

Sound components have a Source property that specifies the name of an audio
file. The audio file must be uploaded to the App Inventor server before it can be
used. You can use the Media column to upload audio files; the process is exactly

Figure 2-48 A Warning Message Displayed (Source: MIT App Inventor 2)

TIP: You can also duplicate a block by copying and pasting it. Simply click the
block to select it, press Ctrl-C to copy it to the clipboard, and then press Ctrl-V to
paste it.

124 Chapter 2 Working with Media

Figure 2-49 The Sound Component is in the Media Palette (Source: MIT App Inventor 2)

Figure 2-50 The Sound Component is a Nonvisible Component
(Source: MIT App Inventor 2)

Nonvisible components appear
in this area of the Viewer.

Nonvisible components
appear in the Components

column.

 2.3 Sounds 125

like the process of uploading image files. Alternatively, you can use the
Source property to upload a file. As shown in Figure 2-51, clicking the Source
property in the Properties column causes a dialog box to appear. You can either
select a previously uploaded file or you can click the Upload File . . . button to
upload a file.

Figure 2-51 The Source Property (Source: MIT App Inventor 2)

In the Blocks Editor, you use the Sound component’s Play method to play the audio file
specified by the Source property. You will find the block for the Play method by click-
ing the name of the Sound component in the Blocks column, as shown in Figure 2-52.

Figure 2-52 The Sound Component’s Play Method (Source: MIT App Inventor 2)

126 Chapter 2 Working with Media

Tutorial 2-5:
Creating the Guitar App

In this tutorial you will create an app that displays an image of a guitar on a Button
component. When the user clicks the button, the app plays the sound of a guitar.

Step 1: Make sure you have downloaded the media files from this book’s com-
panion website at www.pearsonglobaleditions.com/Gaddis. One
of the media folders that you have downloaded is named Instruments.
This folder contains the image that you will use in this tutorial.

Step 2: Start a new App Inventor project named Guitar.

Step 3: Set Screen1’s Title property to Guitar and set its AlignHorizontal
property to Center.

Step 4: In the Media column, use the Upload File . . . button to upload the
Guitar.png and Guitar.wav files from the Instrument folder.

Step 5: Add a Button component to the screen. Clear the button’s Text property
and set its Image property to Guitar.png.

Step 6: Open the Media palette and drag a Sound component to the Viewer and
drop it onto the screen. A component named Sound1 will be created in the
Nonvisible components area just below the screen. Perform the following:
● Use the Components column to change the component’s name to

SoundGuitar.
● Change the component’s Source property to Guitar.wav.

At this point, the Viewer, Components, Media, and Properties columns
should appear as shown in Figure 2-53.

Figure 2-53 The Guitar Project (Source: MIT App Inventor 2)

VideoNote
Creating the
Guitar App

http://www.pearsonglobaleditions.com/Gaddis

 2.3 Sounds 127

Step 7: Open the Blocks Editor. Now you will program the Click event han-
dler for the ButtonGuitar button. When the user clicks the button,
the app will use the SoundGuitar component to play its sound file.
Perform the following:
● In the Blocks column, click ButtonGuitar, and then select the

when ButtonGuitar.Click do block. This creates an empty when
ButtonGuitar.Click do block in the workspace.

● In the Blocks column, click SoundGuitar, and then select the call
SoundGuitar.Play block, as shown in Figure 2-54. Drag the call
SoundGuitar.Play block and snap it inside the when Button
Guitar.Click do block, as shown in Figure 2-55.

Figure 2-54 The call SoundGuitar.Play Block (Source: MIT App Inventor 2)

Figure 2-55 The Completed Click Event Handler for the ButtonGuitar
Component (Source: MIT App Inventor 2)

Step 8: Create an emulator and test the app. Figure 2-56 shows the app run-
ning. When you click the image of the guitar, you should hear sound of
a guitar playing.

128 Chapter 2 Working with Media

Figure 2-56 The Guitar App Running (Source: MIT App Inventor 2)

Pausing, Resuming, and Stopping the Sound
In addition to the Play method, the Sound component provides other methods that
control a sound that is currently playing. These methods are Pause, Resume, and
Stop. Figure 2-57 shows the blocks for all of the Sound component methods. Here is
a summary of these methods:

● Pause—This method pauses an audio file that is currently playing.
● Resume—After you have used the Pause method to pause an audio file, you

can use the Resume method to start it playing again at the point where it was
paused.

● Stop—This method stops the audio file that is currently playing

 2.3 Sounds 129

Vibrating the Phone
In addition to playing audio files, you can also use a Sound component to vibrate
the phone. (Of course, the emulator doesn’t vibrate. This works only if you have an
actual phone connected to App Inventor.) To vibrate the phone, you call the Sound
component’s Vibrate method.

The Vibrate method will cause the phone to vibrate for a specified number of milliseconds.
(A millisecond is 1/1000th of a second, so, a full second is 1000 milliseconds, and a half
second is 500 milliseconds.)

Figure 2-58 shows an example of the Sound component’s Vibrate method. Notice
that a number block specifying 250 is plugged into its socket. As a result, this block
will cause the phone to vibrate for 250 milliseconds, or a quarter of a second.

Figure 2-57 The Sound Component Methods (Source: MIT App Inventor 2)

Sound component
methods.

Figure 2-58 The Sound Component’s Vibrate Method (Source: MIT App Inventor 2)

You use the number block any time that you need to specify a number in a program.
In the Blocks column, you will find the number block under Built-In, in the Math
drawer, as shown in Figure 2-59. When you create a number block, it has the default
value of 0. You can click on the value and change it to any number you need.

130 Chapter 2 Working with Media

In Tutorial 2-6 you will create an app that has two buttons to vibrate the phone. One
button will cause the phone to vibrate for a short period of time (250 milliseconds)
and the other button will cause the phone to vibrate for a long period of time (1000
milliseconds).

Figure 2-59 The Number Block (Source: MIT App Inventor 2)

NOTE: You will be able to test this app only if you have a smart-
phone connected to App Inventor.

Tutorial 2-6:
Making the Phone Vibrate

Step 1: Start a new App Inventor project named Vibrate.

Step 2: Set Screen1’s Title property to Make the Phone Vibrate and set its
AlignHorizontal property to Center.

Step 3: Add a Button component to the screen. Change the button’s name to
ButtonShortVibrate and change its Text property to Short Vibration.

Step 4: Add another Button component to the screen. Change the button’s name
to ButtonLongVibrate and change its Text property to Long Vibration.

VideoNote
Making the Phone
Vibrate

 2.3 Sounds 131

Step 5: Add a Sound component and change its name to SoundVibration.
Figure 2-60 shows the app design at this point.

Step 6: Now you will program the Click event handlers for the buttons. You
will start with the ButtonShortVibrate button, which will make the
phone vibrate for 250 milliseconds (one quarter second). Open the
Blocks Editor, then open the My Blocks palette and perform the fol-
lowing to create the first event handler:
● Click ButtonShortVibrate in the Blocks column and select the

when ButtonShortVibrate.Click do block.
● Click SoundVibration in the Blocks column and select the

call SoundVibration block. Snap the block inside the when
ButtonShortVibrate.Click do block.

● In the Blocks column, under Built-In, click Math. Select the number
block () and snap it into the socket of the call SoundVibration
block.

● Click the 0 value that appears in the number block and change it
to 250.

The event handler should now appear as shown in Figure 2-61.

Figure 2-60 The Vibrate App (Source: MIT App Inventor 2)

132 Chapter 2 Working with Media

Figure 2-61 The Completed Click Event Handler for the ButtonShort
Vibrate Component (Source: MIT App Inventor 2)

Step 7: Follow the same procedure that you did in Step 6 to create a Click
event handler for the ButtonLongVibrate button, which will make
the phone vibrate for 1000 milliseconds (one second). Figure 2-62
shows both of the completed Click event handlers.

Figure 2-62 The Completed Click Event Handlers (Source: MIT App Inventor 2)

Step 8: Test the app on a smartphone that you have connected to App Inventor.

The Player Component
The Sound component is recommended for playing short audio files (such as sound
effects). If you want to play a long audio file, such as an entire song, it is recom-
mended that you use the more efficient Player component instead. In the Designer,
the Player component is found in the Media section of the Palette. It is similar to the
Sound component. Here is a summary of its properties:

● You use the Source property to designate an audio file.
● It has a Volume property that can be set to a value from 0 through 100, to con-

trol the volume of the device’s speaker.
● It has a Loop property that can cause the audio file to loop, or play repeatedly,

if the property is enabled.

Here is a summary of the Player component’s methods:

● You use the component’s Start method to start the audio file playing.
● You use the component’s Pause method to pause an audio file that is currently

playing.

 2.4 Color Blocks 133

● You use the component’s Stop method to stop an audio file that is currently
playing.

● You use the component’s Vibrate method to vibrate the phone a specified
number of milliseconds.

In addition, when the Player component’s audio file finishes playing, a Completed
event occurs. You can create a Completed event handler to execute when the end of
the file is reached.

Checkpoint

 2.6 In what section of the Palette will you find the Sound component? The Player
component?

 2.7 What property of the Sound component do you use to specify the name of an
audio file?

 2.8 How do you play a sound with the Sound component?

 2.9 What Sound component method pauses the currently playing sound?

 2.10 If you want to vibrate the phone for a full second, how many milliseconds
will you specify to the Sound component’s Vibrate method?

 2.11 When would you choose to use the Player component instead of the Sound
component?

 2.4 Color Blocks

CONCEPT: In code, you use Color blocks to represent and work with colors.

Many of the user interface components in App Inventor have properties that deter-
mine the component’s color. For example, Screen, Button, and Label components
all have a BackgroundColor property that determines the component’s background
color. Button and Label components also have a TextColor property that determines
the color of the text that the component displays. You can easily change the values of
these properties in the Designer. You can also create code that changes the value of a
color property while the app is running.

App Inventor provides a selection of Color blocks that you can use in the Blocks
Editor to set the value of a color property. As shown in Figure 2-63, you click Colors,
which appears under Built-in. This opens a drawer that contains blocks representing
thirteen basic colors. (The two methods that appear at the bottom of the drawer are
used when you want to make up your own colors.)

NOTE: The Player component can also be used to play video. However, the
VideoPlayer component provides greater functionality with videos.

134 Chapter 2 Working with Media

For example, Figure 2-64 shows the blocks for programmatically setting Screen1’s
BackgroundColor property to orange and Figure 2-65 shows the blocks for setting a
Button component’s TextColor property to white.

Figure 2-63 The Color Blocks (Source: MIT App Inventor 2)

Figure 2-64 Setting Screen1’s BackgroundColor Property to Orange
(Source: MIT App Inventor 2)

 2.4 Color Blocks 135

The Color blocks that are found in the Color drawer represent only a basic set of
t hirteen colors. You can click on a Color block, however, and open a palette of
70 colors, as shown in Figure 2-66. You can then select any color from the palette for
that block.

Figure 2-65 Setting a Button Component’s TextColor Property to White
(Source: MIT App Inventor 2)

Figure 2-66 The Color Palette (Source: MIT App Inventor 2)

In Tutorial 2-7 you will use Color blocks to program a set of buttons that each change
the screen’s background color.

Checkpoint

 2.12 Where do you find the Color blocks in the Blocks Editor?

 2.13 How many blocks representing basic colors does App Inventor provide in the
Color drawer?

 2.14 You can set property values in the Designer, using the Properties column.
Why would you ever need to use Color blocks to set a color property?

136 Chapter 2 Working with Media

 2.5 Layout Components

CONCEPT: A layout component is a container that governs the positions of the
components it contains.

An important part of designing an app’s user interface is determining the layout of the
components that are displayed in the application’s windows. In App Inventor, you do
not specify the exact location of a component on a screen. Instead, you let a layout
component control the positions of components for you. Table 2-1 summarizes the
layout components provided by App Inventor.

Table 2-1 Layout Components (Source: Pearson Education, Inc.)

Component Summary

HorizontalArrangement Components that are placed inside a
HorizontalArrangement are arranged horizontally,
across the screen.

TableArrangement Components that are placed inside a
TableArrangement are arranged in a table, with rows
and columns.

VerticalArrangement Components that are placed inside a
VerticalArrangement are arranged vertically.

The layout components are found in the Layout section of the Palette. To use one of
the components, you drag it from the Palette to the Viewer and drop it on the app’s
screen. Then, you place other components inside of it.

HorizontalArrangement
When you place components inside a HorizontalArrangement, the components are
arranged horizontally, in a row across the screen. Figure 2-67 shows a screen that
has a HorizontalArrangement component. Three Button components are inside the
HorizontalArrangement. Notice that the buttons appear across the screen, horizontally.

Take a closer look at the Components column and notice the hierarchical structure.
Screen1 is the outermost component. It contains the HorizontalArrangement com-
ponent, which contains the three Button components.

Also notice that the HorizontalArrangement component has Width and Height
properties and each is set to Automatic. This means that the width and height of the
HorizontalArrangement is determined by the width and height of the components
inside of it.

The HorizontalArrangement component also has AlignHorizontal and AlignVertical
properties. These properties determine the alignment of the components inside the
HorizontalArrangement component. They work like the Screen c omponent properties
of the same name. The AlignHorizontal property can be set to Left, Center, or Right.
The AlignVertical property can be set to Top, Center, or Bottom.

 2.5 Layout Components 137

For example, Figure 2-68 shows three HorizontalArrangement components, each with
its Width property set to Fill parent. The screen on the left has its AlignHorizontal
property set to Left, the one in the middle has its AlignHorizontal property set to
Center and the one on the right has its AlignHorizontal property set to Right.

TableArrangement
Components that are placed inside a TableArrangement are arranged in a grid, with
rows and columns. TableArrangements have a Rows property that determines the
number of rows and a Columns property that determines the number of columns.
By default, the Rows and Columns properties are both set to 2. Figure 2-69 shows
an example of a screen with a TableArrangement component that has 3 rows and 3
columns. The TableArrangement has a total of 9 cells, each of which can hold a com-
ponent. In the figure, each cell of the TableArrangement holds a Button component.

NOTE: The HorizontalArrangement component’s AlignVertical property has no
effect if the component’s Height property is set to Automatic.

Figure 2-67 Three Buttons Inside a HorizontalArrangement (Source: MIT App Inventor 2)

Figure 2-68 HorizontalArrangement Settings (Source: MIT App Inventor 2)

Width = Fill parent
AlignHorizontal = Left

Width = Fill parent
AlignHorizontal = Center

Width = Fill parent
AlignHorizontal = Right

138 Chapter 2 Working with Media

VerticalArrangement
When you place components inside a VerticalArrangement, the components are
arranged vertically, in a column on the screen. Figure 2-70 shows a screen that
has a VerticalArrangement component. Three Button components are inside the
VerticalArrangement. Notice that the buttons appear vertically, in a column on
the screen.

Figure 2-69 A TableArrangement with 3 Rows and 3 Columns (Source: MIT App Inventor 2)

Figure 2-70 Three Buttons Inside a VerticalArrangement (Source: MIT App Inventor 2)

NOTE: If you do not place a layout component on the screen, the screen acts as
a VerticalArrangement.

 2.5 Layout Components 139

Using Multiple Layout Components in the Same Screen

Quite often, to get the particular screen layout that you desire, you will have to
use multiple layout components. You can even nest a layout component inside of
another layout component. For example, Figure 2-71 shows a screen that has a
TableArrangement component with a VerticalArrangement component nested inside
of it. Here are some details about the components in the figure (as illustrated in
Figure 2-72):

● The TableArrangement has 2 columns and 1 row.
● The Button component is in the TableArrangement’s left column and the

VerticalArrangement is in the TableArrangement’s right column.
● The Image components are in the VerticalArrangement.

Figure 2-71 A Screen with Nested Arrangement Components (Source: MIT App Inventor 2)

Figure 2-72 The Screen Layout (Source: MIT App Inventor 2)

TableArrangement with
2 columns and 1 row. VerticalArrangement

Button component

Image component

Image component

140 Chapter 2 Working with Media

Tutorial 2-7:
Using Layout Components and Color Blocks

In this tutorial you will create an app that has six buttons, each of which
will change the screen’s background color. The buttons will be arranged in a
TableArrangement that has two columns and three rows.

Step 1: Start a new project named BackgroundColors.

Step 2: Set Screen1’s AlignHorizontal property to Center and its Title prop-
erty to Change the Background Color.

Step 3: Open the Layout section of the Palette, as shown in Figure 2-73, and
drag a TableArrangement component to the screen. This creates a
TableArrangement component named TableArrangement1. (We will
not change the name of this component.)

Figure 2-73 The Layout Section of the Palette (Source: MIT App Inventor 2)

Step 4: The TableArrangement1 component has properties named Columns
and Rows that determine the number of columns and rows in the lay-
out. By default both of these properties are set to 2. Change the Rows
property to 3. At this point, the Viewer, Components column, and
Properties columns should appear as shown in Figure 2-74.

VideoNote
Using Layout
Components and
Color Blocks

 2.5 Layout Components 141

Figure 2-74 The TableArrangement1 Component Created
(Source: MIT App Inventor 2)

Step 5: Create six Button components and place them inside the
TableArrangement. Change the names of the buttons and the values of
their Text properties, as shown in Figure 2-75.

Figure 2-75 The Buttons Created and Placed Inside the TableArrangement
(Source: MIT App Inventor 2)

Step 6: Now you will program the Click event handlers for the buttons. Open the
Blocks Editor and perform the following to create the first event handler:
● Click ButtonRed in the Blocks column and select the when

ButtonRed.Click do block.
● Click Screen1 in the palette and select the set Screen1.

BackgroundColor to block. Snap the block inside the when
ButtonRed.Click do block.

● Click Colors, under the Built-In section of the Blocks column. Select
the block for the color red and snap it into the socket of the set
Screen1.BackgroundColor to block.

The event handler should now appear as shown in Figure 2-76.

142 Chapter 2 Working with Media

Figure 2-76 The Completed Click Event Handler for the ButtonRed
Component (Source: MIT App Inventor 2)

Step 7: Complete the Click event handlers for the rest of the buttons, as you
did in Step 6. When you are finished, your workspace should appear
as shown in Figure 77. (The arrangement of the event handlers in your
workspace may be different.)

Figure 2-77 The Completed Workspace in the Blocks Editor
(Source: MIT App Inventor 2)

Step 8: Figure 2-78 shows the app running in the emulator. Test the app (on the
emulator, or on your device, if you have one connected). Click each button
to confirm that it changes the screen’s background to the desired color.

Figure 2-78 The App Running in the Emulator (Source: MIT App Inventor 2)

 2.6 Commenting Blocks 143

Checkpoint

 2.15 How are components arranged on the screen when they are placed inside a
HorizontalArrangement?

 2.16 How are components arranged on the screen when they are placed inside a
VerticalArrangement?

 2.17 How are components arranged on the screen when they are placed inside a
TableArrangement?

 2.18 What is the default arrangement for the screen, if you do not place an
arrangement component on it?

TIP: If you want to edit an existing comment, click the question mark ().
The note editor will appear and you can edit its contents. If you want to delete
an existing comment, right-click the block and select Remove Comment from
the menu.

Figure 2-79 Right-click a Block to Get this Menu

 2.6 Commenting Blocks
A comment is a note that the programmer writes into a program, explaining some
part of the code. Programmers consider comments a crucial part of a program
because they help someone who is reading the program’s code to understand the
instructions.

In the Blocks Editor, you can add a comment to any block by right-clicking the
block, and then selecting Add Comment from the menu that pops up (as shown
in Figure 2-79). This causes a small question mark () to appear on the block.
When you click the question mark, a small note editor will appear, attached to
the block. You can type any information you wish into the note editor, as shown
in Figure 2-80. When you are finished, click the small question mark to hide
the comment. From that point forward, you can click the question mark to pop the
comment up.

144 Chapter 2 Working with Media

Tutorial 2-8:
Adding Comments

Step 1: Open the BackgroundColors project that you created in Tutorial 2-7.

Step 2: Open the Blocks Editor.

Step 3: Perform the following procedure with each Click event handler:
● Right-click on the event handler block.
● Select Add Comment from the menu that pops up.
● Type a brief comment describing the event handler.

Figure 2-81 shows an example of your workspace after you have added
comments to each event handler.

Figure 2-81 The Workspace with Comments Added (Source: MIT App Inventor 2)

Comments do not affect the execution of your app in any way, but they are important
because they make your program more understandable. Tutorial 2-8 will give you
some practice working with comments. In the tutorial you will insert comments into
the app that you created in the previous tutorial.

Figure 2-80 Note Editor for Comments (Source: MIT App Inventor 2)

VideoNote
Adding Comments

 Review Questions 145

Checkpoint

 2.19 Why are comments important?

 2.20 Do comments affect the way a program runs?

 2.21 How do you create a comment in App Inventor?

Review Questions

Multiple Choice

 1. In an App Inventor app, this is how we can display an image.

a. As the background for a screen
b. In an Image component
c. On a Button component
d. All of the above

 2. This property of the Screen1 component is used to display an image as the back-
ground for a screen.

a. BackgroundFile
b. BackgroundColor
c. BackgroundImage
d. ScreenBackground

 3. The Upload File . . . button is located in this column.

a. Component
b. Media
c. Property
d. Viewer

 4. These are some of the Image component properties.

a. Picture, Visible, and Length
b. Width, Height, and Image
c. Width, Height, and Picture
d. Width, Length, and Visible

 5. This value of the Width property makes the width of the image as wide as the
container that it is enclosed in.

a. Fill parent
b. Hidden
c. Automatic
d. Specific number of pixels

 6. You call this Sound component method to play a sound.

a. Start
b. Play
c. Engage
d. Begin

 7. When duplicating a block, an error message appears because of this.

a. We cannot have a duplicate event handler.
b. We cannot have more than one button.
c. We cannot have several buttons on the same view.
d. We cannot handle an event in buttons.

 8. This is what usually results in a warning.

a. An illegal block
b. A duplicate block
c. An incomplete block
d. An incomplete event

 9. This type of arrangement formats components in a column across the screen.

a. HorizontalArrangement
b. LinearArrangement
c. VerticalArrangement
d. TableArrangement

 10. The Sound component’s Vibrate method needs this block to be plugged into its
socket.

a. Number
b. Seconds
c. Math
d. Value

 11. If you do not place a layout component on the screen, the screen acts as this type
of arrangement.

a. HorizontalArrangement
b. TableArrangement
c. VerticalArrangement
d. A combination of TableArrangement and HorizontalArrangement

 12. This is what happens when we reach the end of the Player component.

a. The app stops
b. A Completed event handler can be created
c. Another event starts
d. The phone vibrates

Short Answer

 1. If you want to display an image on an app’s screen, and be able to place compo-
nents on top of the image, would you use an Image component or the screen’s
BackgroundImage property?

 2. Suppose you want to display an image as the background for an app’s screen.
Describe two ways that you can upload the image to the project on the App
Inventor server.

 3. Using blocks, how would you switch the screen’s background image while the
app is running?

 4. How do you create a clickable image?

146 Chapter 2 Working with Media

 Exercises 147

 5. What happens if a Button component’s Text property is set to a value, and the
component’s Image property is set to the name of an uploaded image?

 6. Once you add a Sound component to a project, how do you specify a particular
audio file as the component’s sound source?

 7. What is the difference between the Sound component and the Player component?

 8. What is a millisecond? If you want to use a Sound component to vibrate the
phone for three-fourths of a second, how many milliseconds to you specify when
using the Vibrate method?

 9. Where are the Color blocks located in the Blocks Editor?

 10. Which layout component would you use in each of these situations?
● You want to display components in a grid, with rows and columns
● You want to display components in a row, across the screen
● You want to display components in a column

 11. Why are comments an important part of a program?

 12. How do you create a comment for a block?

Exercises
 1. Modify the MultipleBackgrounds app that you created in Tutorial 2-2 so it plays

a sound effect each time the user switches the background image. (If you have
downloaded the book’s media files, you will find a Sounds folder with a variety
of sound files to choose from.)

 2. Create an app that plays a sound media file and vibrates when the song is
 complete.

 3. Use the Designer to recreate the screens shown in Figure 2-82, Figure 2-83,
Figure 2-84, and Figure 2-85. (The card images in Figure 2-85 can be found in the
book’s media files, in the Poker Cards Extra Small folder.)

Figure 2-82 Screen Layout for Exercise 3 (Source: MIT App Inventor 2)

VideoNote
Creating an App to
Vibrate the Phone

Figure 2-83 Screen Layout for Exercise 3 (Source: MIT App Inventor 2)

Figure 2-84 Screen Layout for Exercise 3 (Source: MIT App Inventor 2)

148 Chapter 2 Working with Media

 Programming Projects 149

Figure 2-85 Screen Layout for Exercise 3 (Source: MIT App Inventor 2)

Programming Projects
 1. Clickable Number Images

Make sure you have downloaded the media files from this book’s companion
website at www.pearsonglobaleditions.com/Gaddis. In the Numbers folder,
you will find the image files shown in Figure 2-86. Create an app that displays
these as clickable images. The app should perform the following actions:
● When the user clicks the 1 image, the app should display the word One in a

Label component.
● When the user clicks the 2 image, the app should display the word Two in a

Label component.
● When the user clicks the 3 image, the app should display the word Three in a

Label component.
● When the user clicks the 4 image, the app should display the word Four in a

Label component.
● When the user clicks the 5 image, the app should display the word Five in a

Label component.

Figure 2-86 Image Files (Source: MIT App Inventor 2)

One.png Two.png Three.png Four.png Five.png

http://www.pearsonglobaleditions.com/Gaddis

 2. Say the Number

Included in this book’s media files, available from the book’s companion website
at www.pearsonglobaleditions.com/Gaddis, you will find a Sounds folder.
In the Sounds folder, you will find audio files named one.wav, two.wav, and so
forth. Modify the app that you created for Programming Project 1 so it plays the
one.wav file when the user clicks the 1 image, plays the two.wav file when
the user clicks the 2 image, and so forth.

 3. Card Identifier

Make sure you have downloaded the media files from this book’s companion
website at www.pearsonglobaleditions.com/Gaddis. In the Poker Cards
Extra Small folder you will find image files for a complete deck of poker cards.
Create an app displaying five different cards from the set of images. When the
user clicks any of the images, the name of the card should be displayed in a Label
component. Figure 2-87 shows an example of the app running. The image on the
left shows the app’s screen when it starts running. The image on the right shows
the screen after the user has clicked the eight of diamonds card.

Figure 2-87 Card Identifier App (Source: MIT App Inventor 2)

150 Chapter 2 Working with Media

http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis

 Programming Projects 151

 4. Heads or Tails

Make sure you have downloaded the media files from this book’s companion
website at www.pearsonglobaleditions.com/Gaddis. In the Coins folder you
will find image files showing the heads and tails sides of a coin. Create an app
with a Show Heads button and a Show Tails button. When the user clicks the
Show Heads button, an image of the heads side of a coin should appear. When
the user clicks the Show Tails button, an image of the tails side of a coin should
appear. Figure 2-88 shows examples of how the app’s screen might appear.

Figure 2-88 Heads or Tails App (Source: MIT App Inventor 2)

 5. Instruments

Make sure you have downloaded the media files from this book’s companion
website at www.pearsonglobaleditions.com/Gaddis. In the Instruments folder
you will find images of a guitar, a horn, and a drum. You will also find audio files
for each of these instruments. Create an app that displays the instrument images,
and when the user clicks an image, it plays the sound for that instrument.

http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis

 6. Audio Player

Create an app that uses either a Sound component or a Player component to play
an audio file. The app should have the following buttons:
● A Play button that plays the audio file
● A Pause button that pauses the audio file
● A Resume button that resumes the audio file, if it is currently paused
● A Stop button that stops the audio file

152 Chapter 2 Working with Media

Topics

3.1 The TextBox Component

3.2 Performing Calculations

3.3 Storing Data with Variables

3.4 Creating Blocks with Typeblocking

3.5 The Slider Component

3.6 Math Functions

Input, Variables, and
Calculations

 3.1 The TextBox component

concepT: The TextBox component is a rectangular area that can display text, and
can also accept keyboard input from the user.

Many of the programs that you will write from this point forward will require the
user to enter data. The data entered by the user will then be used in some sort of
operation. One of the primary components that you will use to get data from the user
is the TextBox component.

A TextBox component appears as a rectangular area on an app’s screen. When the app
is running, the user can type text into a TextBox component. The app can then retrieve
the text that the user entered and use that text in any necessary operations.

In the Designer, the TextBox is located in the User Interface section of the Palette. When
you create TextBox components, they are automatically given default names such as
TextBox1, TextBox2, and so forth. It is usually a good idea to change a component’s
default name to something more meaningful.

When the user types into a TextBox component, the text is stored in the component’s
Text property. In the Blocks Editor, if you want to retrieve the data that has been typed
into a TextBox, you simply retrieve the contents of the component’s Text property.

C
H

A
P

T
E

R

3

153

154 Chapter 3 Input, Variables, and Calculations

Figure 3-1 shows the screen from example project (the TextBoxDemo project) in the
Viewer. Here is a summary of the components:

● TableArrangement1—A TableArrangement with 1 row and 2 columns.
● LabelEnterYourName—A Label that displays the text Enter your name:.
● TextBoxName—A TextBox component for the user to enter his or her name.
● ButtonReadInput—A Button component that, when clicked, reads the input

that the user typed into the TextBoxName component, and displays that text in
the LabelOutput component.

● TableArrangement2—A TableArrangement with 1 row and 2 columns.
● LabelYouEntered—A Label that displays the text You entered:.
● LabelOutput—A Label component that initially displays nothing. When the

user clicks the ButtonReadInput component, the text that the user entered into
the TextBoxName component is displayed in this label.

TableArrangement1
(2 columns, 1 row)

TableArrangement2
(2 columns, 1 row)

TextBoxName

ButtonReadInput

LabelEnterYourName

LabelYouEntered

LabelOutput

Figure 3-1 Example Project Using a TextBox Component (Source: MIT App Inventor 2)

The purpose of the app is to let the user enter his or her name into the TextBoxName
component, and then click the ButtonReadInput component. When the button is
clicked, the text that was entered into the TextBox is displayed in the LabelOutput
component.

Figure 3-2 shows the app running in the emulator. In the figure, the user has clicked
the TextBox to select it, but has not yet entered his or her name. Notice that when

Tip: When entering TextBox input with the emulator, you can either click the
keys that appear on the screen, or you can type keys on the computer’s physi-
cal keyboard. Either way, you must first select the TextBox by clicking it on
the app’s screen.

 3.1 The TextBox Component 155

the user clicks a TextBox, the emulator’s virtual keyboard pops up on the screen. The
same thing happens with an actual device.

The Click event handler for the ButtonReadInput component is shown in
Figure 3-2. The blocks inside the event handler set the LabelOutput component’s

Figure 3-2 The Example App Running in the Emulator (Source: MIT App Inventor 2)

Tip: You might want to create this app on your own, as a quick exercise.
After you create the TextBoxName component in the Designer, you will find
the TextBoxName.Text block in the Blocks column of the Blocks Editor, in the
TextBoxName drawer.

156 Chapter 3 Input, Variables, and Calculations

Figure 3-3 The ButtonReadInput Click Event Handler (Source: MIT App Inventor 2)

Text property to the value of the TextBoxName component’s Text property. In
other words, it gets the text that the user entered into the TextBoxName com-
ponent, and displays it in the LabelOutput component. Figure 3-4 shows the
app running in the emulator after the user has entered Kathryn Smith into the
TextBox and clicked the button.

Figure 3-4 The App after the User has Entered Input and Clicked the Button
(Source: MIT App Inventor 2)

 3.1 The TextBox Component 157

other TextBox properties
In addition to the Text property, the TextBox component has several other proper-
ties. Here is a summary:

● BackgroundColor—Sets the TextBox’s background color.
● Enabled—If this property is checked in the Properties column, the user is able

to enter input into the TextBox. If this property is not checked, the user cannot
enter input into the TextBox. When the Enabled property is not checked, the
TextBox can be used like a Label to display text.

● FontBold, FontItalic, and FontSize—These properties affect the font of the text
displayed in the TextBox.

● Hint—Displays a hint for the user. When a TextBox’s Text property is cleared,
the value of the Hint property is displayed in light gray text inside the TextBox.
This property reminds the user of what input is expected in the TextBox. (If you
do not want to display a hint, simply clear this property.)

● MultiLine—If this property is checked, the TextBox will allow the user to enter
multiple lines of input. If the property is not checked, the TextBox will only
accept a single line of input.

● NumbersOnly—If this property is checked, the TextBox will only allow num-
bers to be entered.

● TextAlignment—Specifies how the text inside the TextBox is aligned. May be
set to left, center, or right. The default value is left. (This property can be set
only in the Designer. It cannot be set programmatically, using blocks.)

● TextColor—Sets the color of the text displayed in the TextBox.
● Visible—Specifies whether the component is visible on the screen or hidden.

Can be set in the Designer to either showing or hidden.
● Width and Height—Determines the component’s width and height. May be set

to Automatic, Fill parent, or a specific number of pixels.

Using TextBox components to Display Text
The primary purpose of a TextBox component is to get input from the user. TextBox
components can also be used to display text, however. For example, in the
TextBoxDemo app previously discussed, we might consider using a TextBox compo-
nent instead of a Label component to display the user’s name when the button is
clicked. The image on the left in Figure 3-5 shows the app’s screen in the Viewer.
Notice that we have removed the LabelOutput component and replaced it with a
TextBox named TextBoxOutput.

As you can see in the image on the right in Figure 3-5 (the app running in the emula-
tor), the TextBox component appears clearly on the screen as a rectangular area, even
when its Text property is cleared. Compare this to the Label component, which does
not appear on the screen if its Text property is cleared. Sometimes it is helpful to the
user to see the area on the screen where output will be displayed, even when there
is no output to display. When this is the case, consider using a TextBox component
instead of a Label component.

When you are using a TextBox component to display text (and not to read input), it
is a good idea to uncheck the component’s Enabled property. That prevents the user
from selecting it and entering input into it.

158 Chapter 3 Input, Variables, and Calculations

TextBoxOuput

Figure 3-5 The Modified TextBoxDemo Project (Source: MIT App Inventor 2)

noTe: App Inventor also provides a PasswordTextBox component that
works just like a regular TextBox, except the characters typed by the user are
not displayed.

If we modify the TextBoxDemo app to display its output in a TextBox instead of a
Label, we will need to also modify the Click event handler for the ButtonReadInput
component. Figure 3-6 shows the new event handler. Figure 3-7 shows the app run-
ning in the emulator after the user has entered Kathryn Smith into the TextBoxName
component and clicked the button.

Figure 3-6 The Modified Click Event Handler for the ButtonReadInput
Component (Source: MIT App Inventor 2)

 3.2 Performing Calculations 159

 3.2 performing calculations

concepT: You can use math operators to write expressions that perform simple
 calculations. The result of a math expression can be assigned to a variable.

Most programs require calculations of some sort to be performed. A programmer’s
tools for performing calculations are math operators. In the Blocks column of the

checkpoint

 3.1 What component can be used to gather text input from the user?

 3.2 In code, how do you retrieve data that has been typed into a TextBox component?

 3.3 What happens when you uncheck a TextBox component’s Enabled property?

 3.4 How do you make sure that the user enters only numbers into a TextBox?

Figure 3-7 The App after the User has Entered Input and Clicked the Button
(Source: MIT App Inventor 2)

160 Chapter 3 Input, Variables, and Calculations

Math
operators

Figure 3-8 The Math Operator Blocks (Source: MIT App Inventor 2)

Table 3-1 Math Operator Blocks (Source: Pearson Education, Inc.)

Operator Name of the Operator Description

Addition Adds two numbers and gives
the result

Subtraction Subtracts one number from
another and gives the result

Multiplication Multiplies one number by another
and gives the result

Division Divides one number by another
and gives the result

Exponent Raises one number to the power of
another number and gives the result.

Blocks Editor, you will find the math operators by going to the Built-In section, then
opening the Math drawer. This is shown in Figure 3-8. There are a lot of blocks in
this drawer, but the math operators are the four blocks shown in Table 3-1.

 3.2 Performing Calculations 161

Notice that each of the operator blocks has its math symbol displayed in the center,
along with two sockets: one on the left of the symbol, and one on the right. The two
sockets are used to hold operands, which are the values that the operator works with.
For example, Figure 3-9 shows the + operator block with two number blocks plugged
in as operands: the number 10 is plugged into the left side, and the number 2 is
plugged into the right side. These blocks create a math expression that gives the result
of 10 1 2. (An expression is simply a clump of code that gives you a value.)

Tip: The number block () is found in the Math drawer, which is in the Built-
in section of the Blocks column.

Figure 3-9 Using the + Operator Block (Source: MIT App Inventor 2)

The + operator block shown in Figure 3-9 calculates the result of 10 1 2, and gives us
that value. However, the block is incomplete because we have to do something with
the value. This means that we have to plug the + operator block into another block.
For example, suppose we have a Label component named LabelResult, and we
want to display the result of the + operator block in the label. Figure 3-10 shows how
we can set the label’s Text property to the value of the + operator block. As a result,
the value 12 will be displayed in the label.

Figure 3-10 Displaying the Result of the + Operator in a Label (Source: MIT App Inventor 2)

Figure 3-11 shows other examples of how the results of operator blocks can be dis-
played in a Label component. The topmost blocks display the result of 600 2 200 (the
label will display the value 400). The middle blocks display the result of 100 3 1.5
(the label will display the value 150). The bottom blocks display the result of 20/5
(the label will display the value 4).

Figure 3-11 Displaying the Results Various Operators in a Label (Source: MIT App Inventor 2)

In Tutorial 3-1 you will use a math operator block to perform a calculation. You will
create an app that reads input from TextBox components, performs a calculation
using the input, and displays the result of the calculation in a Label component.

162 Chapter 3 Input, Variables, and Calculations

LabelMilesPrompt

LabelGallonsPrompt

LabelMPG

Figure 3-12 The App’s User Interface (Source: MIT App Inventor 2)

Figure 3-13 The App Running in the Emulator (Source: MIT App Inventor 2)

Tutorial 3-1:
Calculating Fuel Economy

In the United States, a car’s fuel economy is measured in miles per gallon, or
MPG. You use the following formula to calculate a car’s MPG:

MPG 5 Miles driven 4 Gallons of gas used

In this tutorial, you will create an app that lets the user enter the number of miles he
or she has driven and the gallons of gas used. The app will calculate and display the
car’s MPG. Figure 3-12 shows the app’s screen in the Viewer, along with the names
of the components. Figure 3-13 shows how the screen appears in the emulator.

When the app runs, the user enters the number of miles driven into the TextBoxMiles
component and the gallons of gas used into the TextBoxGallons component.

VideoNote
Calculating Fuel
Economy

 3.2 Performing Calculations 163

When the user clicks the ButtonCalculate component, the application calculates
the car’s MPG and displays the result in the TextBoxMPGDisplay component.

step 1: Start a new project named MilesPerGallon.

step 2: Set up the app’s screen with the components shown in Figure 3-12. Refer
to Table 3-2 for the relevant property settings for each component.

Table 3-2 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings
Screen1 AlignHorizontal 5 Center

Title 5 MPG Calculator

Scrollable 5 unchecked
TableArrangement1 Columns 5 2

Rows 5 2

Width 5 Fill parent

Height 5 Automatic
LabelMilesPrompt Text 5 How many miles did you drive?
LabelGallonsPrompt Text 5 How many gallons did you use?
TextBoxMiles Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Enter the miles

Width 5 Automatic

Height 5 Automatic
TextBoxGallons Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Enter the gallons

Width 5 Automatic

Height 5 Automatic
ButtonCalculate Text 5 Calculate MPG
HorizontalArrangement1 AlignHorizontal 5 Center

Width 5 Fill parent

Height 5 Automatic
LabelMPG Text 5 Your MPG is:
TextBoxMPGDisplay Enabled 5 unchecked

Width 5 Automatic

Height 5 Automatic

step 3: Now you will program the Click event handler for the
ButtonCalculate component. The event handler will divide
TextBoxMiles.Text by TextBoxGallons.Text and store the result
in TextBoxMPGDisplay.Text.

164 Chapter 3 Input, Variables, and Calculations

Open the Blocks Editor. In the Blocks column, open the
ButtonCalculate drawer and select the when CalculateButton.
Click do block. This creates the empty Click event handler shown
in Figure 3-14.

Figure 3-15 Division Block Snapped into Place (Source: MIT App Inventor 2)

step 4: Open the TextBoxMPGDisplay drawer and select the set
TextBoxMPGDisplay.Text to block. Snap the block inside the
ButtonCalculate component’s Click event handler.

step 5: Open the Math drawer and select the division (/) block. Snap it into
the socket of the set TextBoxMPGDisplay.Text to block, as shown
in Figure 3-15.

step 6: Complete the division block by snapping the TextBoxMiles.Text
block into its left socket, and the TextBoxGallons.Text block into
its right socket. The block should appear as shown in Figure 3-16.
(You will find the TextBoxMiles.Text block in the TextBoxMiles
drawer, and you will find the TextBoxGallons.Text block in the
TextBoxGallons drawer.)

Figure 3-16 The Completed Event Handler (Source: MIT App Inventor 2)

step 7: Test the app in the emulator or with a device. Enter 270 for the miles
and 10 for the gallons. Click the Calculate MPG button. As shown in
Figure 3-17, the app should display the MPG as 27. Experiment with
other values to confirm that the app is correct.

Figure 3-14 Empty Click Event Handler for ButtonCalculate
(Source: MIT App Inventor 2)

 3.2 Performing Calculations 165

Mutator Blocks
Notice that the 1 and 3 operator blocks have a blue box () in their upper-left
corner. When a block has this symbol, it means that the block is a mutator block.
A mutator block has the ability to change in some way. The 1 and 3 operator blocks
have the ability to expand to accommodate additional operands.

When you create a 1 operator block, the block has two slots for operands. So, it can add
two numbers. But what if you want to add more than two numbers? First, you click the
blue box that appears in the block’s upper-left corner. This causes the mutator bubble
shown in Figure 3-18 to appear. Next, you click and drag the number block ()

Figure 3-17 The App Running in the Emulator (Source: MIT App Inventor 2)

Figure 3-18 Mutator Bubble (Source: MIT App Inventor 2)

166 Chapter 3 Input, Variables, and Calculations

Figure 3-19 Adding an Additional Operand (Source: MIT App Inventor 2)

Figure 3-20 The 1 Block with Three Operands (Source: MIT App Inventor 2)

Figure 3-21 The 1 Block with Three Operands (Source: MIT App Inventor 2)

1 - Click the blue box.

2 - Drag the number block and insert it.
3 - The multiplication block now has
 three operands.

Figure 3-22 Expanding the 3 Block (Source: MIT App Inventor 2)

from the left side of the bubble, and insert it on the right side of the bubble as shown
in Figure 3-19. This adds an additional operand to the block, as shown in Figure 3-20,
allowing it to calculate the sum of three numbers. For example, Figure 3-21 shows a
1 operator block that gives the result of 10 1 12 1 14.

You can expand the 3 block in a similar way. Figure 3-22 shows how to add a third
operand to the 3 block.

 3.2 Performing Calculations 167

combining operator Blocks
You can combine operator blocks to create more complex expressions. For example,
suppose you need to calculate the average of 80, 85, and 90. First you get the sum of
80 1 85 1 90. Then, you divide that sum by 3. Figure 3-23 shows how to create the
expression by combining a 1 block with a / block. (Note that the 1 block that is
shown in the figure has been expanded to use three operands.)

Figure 3-23 Calculating the Average of 80, 85, and 90 (Source: MIT App Inventor 2)

Formatting numbers to a specified number of
Decimal places
You might not always be happy with the number of decimal places that a number is
displayed with. For example, suppose we have a label named LabelResult, and we
want the label to display the value of 10/3. Figure 3-24 shows the block that we
would have (inside some event handler), and the way that the result would appear on
the emulator’s screen. Notice that several digits are displayed after the decimal point.

Figure 3-24 Displaying the Result of 10/3 (Source: MIT App Inventor 2)

App Inventor provides a Math block named format as decimal that you can use to
round a number to a specified number of decimal places. (When you open the Math
drawer, you will have to scroll down, almost to the bottom of the drawer, to find the
block.) The block is shown in Figure 3-25.

Plug a number, or an expression
that gives a number, here.

Plug the number of decimal
places here.

Figure 3-25 The format as decimal Block (Source: MIT App Inventor 2)

168 Chapter 3 Input, Variables, and Calculations

Notice that it has two sockets: number and places. The number socket requires a
number or an expression that gives a number. This is the value that you want to
round. The places socket requires the number of decimal places.

When you plug the desired values into the number and places sockets, the block per-
forms the necessary rounding and gives you the result. We say that the block returns
the result. Figure 3-26 shows how we can use the block to format the value of 10/3 to
one decimal place. (Assume that the set LabelResult.Test to block shown in the
figure is located inside an event handler that has executed.)

Figure 3-27 shows another example. Again, assume the set LabelResult.Text to
block shown in the figure is located inside an event handler that has executed. The
label displays the value of 123.456789 rounded to two decimal places.

Tutorial 3-2:
Creating the Restaurant Tip Calculator App

In this tutorial, you will create an app that calculates a 15%, 20%, or 25% tip
on a meal purchased at a restaurant. Figure 3-28 shows the app’s screen in the
Viewer along with the names of the components. Figure 3-29 shows how the
screen appears in the emulator.

In Tutorial 3-2, you will create an app that uses a math expression to calculate the tip on
a meal purchased at a restaurant, and displays the result rounded to two decimal places.

VideoNote
Creating the
Restaurant Tip
Calculator App

Figure 3-26 Rounding the Result of 10/3 to one decimal place
(Source: MIT App Inventor 2)

Figure 3-27 Rounding the Value 123.456789 to Two Decimal Places
(Source: MIT App Inventor 2)

 3.2 Performing Calculations 169

When the app runs, the user enters the total amount of the bill into the TextBoxBill
component and then clicks one of the buttons to calculate the tip. There are three
buttons; Button15Percent calculates a 15 percent tip, Button20Percent cal-
culates a 20 percent tip, and Button25Percent calculates a 25 percent tip. The
amount of the tip is displayed in the TextBoxTipDisplay component.

step 1: Start a new project named TipCalculator.

step 2: Set up the app’s screen with the components shown in Figure 3-28. Refer
to Table 3-3 for the relevant property settings for each component.

Button15Percent

Button20Percent

Button25Percent

Figure 3-28 The App’s User Interface (Source: MIT App Inventor 2)

Figure 3-29 The App Running in the Emulator (Source: MIT App Inventor 2)

170 Chapter 3 Input, Variables, and Calculations

Table 3-3 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

TBL Screen1 AlignHorizontal 5 Center

Title 5 Tip Calculator

LabelPrompt FontBold 5 checked

FontSize 5 20

Text 5 Amount of Bill

Width 5 Automatic

Height 5 Automatic

TextBoxBill Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Enter the bill amount

Width 5 Automatic

Height 5 Automatic

HorizontalArrangement1 Keep all default property settings

Button15Percent Text 5 15%

Width 5 Automatic

Height 5 Automatic

Button20Percent Text 5 20%

Width 5 Automatic

Height 5 Automatic

Button25Percent Text 5 25%

Width 5 Automatic

Height 5 Automatic

LabelOutputDescription FontBold 5 checked

FontSize 5 20

Text 5 Amount To Tip:

Width 5 Automatic

Height 5 Automatic

TextBoxTipDisplay Enabled 5 unchecked

TextAlignment 5 Center

Width 5 Automatic

Height 5 Automatic

step 3: Now you will program the Click event handlers for the buttons, start-
ing with the Button15Percent component. The event handler for the
Button15Percent component will display the amount of the bill mul-
tiplied by 0.15 in the TextBoxDisplay component. The result will be
rounded to two decimal places.

 3.2 Performing Calculations 171

Open the Blocks Editor and assemble the blocks shown in
Figure 3-30. When you have assembled the blocks, the Click event
handler for the Button15Percent component should appear as
shown in Figure 3-31.

Figure 3-30 The Blocks Needed for the Button15Percent Component’s
Click Event Handler (Source: MIT App Inventor 2)

step 4: Complete the Click event handlers for the Button20Percent and
Button25Percent components. Figure 3-32 shows all of the com-
pleted Click event handlers.

Figure 3-31 The Completed Click Event Handler for the
Button15Percent Component (Source: MIT App Inventor 2)

Figure 3-32 The Completed Click Event Handlers for the Buttons
(Source: MIT App Inventor 2)

172 Chapter 3 Input, Variables, and Calculations

step 5: Test the app in the emulator, or with a device. Enter 100 for the
amount of the bill and click each button to see the amount of the tip.
As shown in Figure 3-33, the app should display 15.00 as 15%, 20.00
as 20%, and 25.00 as 25%. Experiment with other values to confirm
that the app is correct.

Figure 3-33 The App Running in the Emulator (Source: MIT App Inventor 2)

Terminology: Functions, calling Functions, and
passing Arguments
Now that you have used the format as decimal block, we can introduce some
important programming terms that you will regularly encounter. The format as dec-
imal block is a special type of method known as a function. A function is a method that
performs an operation and then gives you a value. We say that a function returns a
value. As you already know, the format as decimal block rounds a number to a
specified number of decimal places and returns that value.

When you execute a function (or any type of method), we say that we are calling it.
So when you use the format as decimal block, you can say that you are calling the
format as decimal function.

Quite often, functions require additional pieces of data in order to operate. These addi-
tional pieces of data are known as arguments. For example, the format as decimal
function requires two arguments: the number that is to be rounded and the number of
decimal places. Recall that the format as decimal block has two sockets for these
arguments on its right edge. When we provide arguments to a function, we say that we
are passing the arguments to the function.

checkpoint

 3.5 What is an expression?

 3.6 What is an operand?

 3.7 What does the format as decimal block do?

 3.8 What is a function?

 3.9 What do you mean when you say you are calling a function?

 3.10 What is an argument?

 3.3 Storing Data with Variables 173

 3.3 storing Data with Variables

concepT: A variable is a name that represents a value stored in the computer’s
memory.

Most programs store data in the computer’s memory and perform operations on that
data. For example, consider the typical online shopping experience: you browse a
website and add the items that you want to purchase to the shopping cart. As you add
items to the shopping cart, data about those items is stored in memory. Then, when
you click the checkout button, a program running on the website’s computer calcu-
lates the cost of all the items you have in your shopping cart, applicable sales taxes,
shipping costs, and the total of all these charges. When the program performs these
calculations, it stores the results in the computer’s memory.

So far, the apps that you have created have stored data only in component properties.
For example, a TextBox’s Text property is used to hold input that the user has typed,
and it can also be used to hold data that you want to display on the app’s screen. A
Label component’s Text property is also used to hold data that you want to display.

Sometimes, you need to store data in memory without putting it in a component.
For example, suppose an app needs to perform a series of calculations and save the
results, but you do not want those results displayed on the screen. Instead of using
component properties, you would use variables to store the results.

A variable is a name that represents a value that is stored in the computer’s memory.
For example, a program that calculates the sales tax on a purchase might use the vari-
able name Tax to represent that value in memory. And a program that calculates the
distance between two cities might use the variable name Distance to represent that
value in memory. When a variable represents a value in the computer’s memory, we
say that the variable holds the value or references the value.

Local Variables and Global Variables
App Inventor allows you to create two types of variables: local and global. A local
variable is created inside a method or function, and it can be accessed only by blocks
that are also in that method or function. A global variable is created outside of all the
methods and functions in the workspace, and it can be accessed by any blocks in the
workspace, regardless of which method or function they belong to.

creating a Local Variable
To create a local variable in App Inventor, you must initialize it. This simply means
that you are storing a starting value in the variable. To create and initialize a local
variable, you open the Variables drawer, which is in the Built-in section of the Blocks
column. As shown in Figure 3-34, the drawer contains various blocks. You select the
one that reads initialize local name to. (Notice that there are two blocks
labeled this way, but they are shaped slightly differently. For now, you want to use
the one that is circled in Figure 3-34.) This creates a variable initialization block in
the workspace, as shown in Figure 3-35.

174 Chapter 3 Input, Variables, and Calculations

Remember, local variables have to be created inside a method or function. When you
create an initialize local name to block, you should place it inside the method
or function that it will belong to. Figure 3-36 shows an initialize local name to
block placed inside a button’s Click event handler.

Figure 3-34 Creating a Variable Initialization Block (Source: MIT App Inventor 2)

Figure 3-35 Variable Initialization Block (Source: MIT App Inventor 2)

Figure 3-36 An initialize local name to Block Placed Inside a Button’s
Click Event Handler (Source: MIT App Inventor 2)

The variable initialization block isn’t complete yet. We need to do two more things:

● Change the variable’s name to something that describes the variable’s purpose
● Assign an initial value to the variable

changing the Variable’s name

When you create an initialize local name to block, the variable’s default name
is name. This isn’t very descriptive, so you should change it to something that
i ndicates what the variable is used for. For example, a variable that holds the

 3.3 Storing Data with Variables 175

t emperature might be named Temperature, and a variable that holds a car’s speed
might be named Speed. You may be tempted to give variables short, nondescript
names such as x or b2, but names such as these give no clue as to the purpose of
the variable.

In addition, the following rules apply to variable names in App Inventor:

● The variable name must begin with an alphabetical letter.
● After the first letter, the remaining characters can be alphabetical letters, num-

bers, or underscore characters (_).
● You cannot have spaces in a variable name.
● Variable names must be unique within a project. You cannot have two or more

variables with the same name.

To change a variable’s name, simply click the word name that appears on the ini-
tialize local name to block (as shown in Figure 3-37), and type the name that
you wish to give the variable. For example, in Figure 3-38 we have changed the vari-
able’s name to Temperature.

Figure 3-37 Changing the Variable Name (Source: MIT App Inventor 2)

Figure 3-38 The Variable Name Changed to Temperature (Source: MIT App Inventor 2)

Assigning an initial Value to the Variable

When you create a variable, you must also set the variable’s starting value. When we
set a variable to a value, we say that we are assigning a value to the variable.

Notice that the variable initialization block in Figure 3-38 has a socket labeled to.
This socket requires a value of some sort to be plugged in. The value that you plug
into this socket is the variable’s initial, or starting, value. The blocks that you can
plug into this socket are:

● number blocks
● text string blocks
● Boolean blocks (true or false)
● List blocks (discussed in Chapter 7)
● Color blocks

176 Chapter 3 Input, Variables, and Calculations

For example, Figure 3-39 shows two variable initialization blocks. The upper
block defines a variable named Age and sets its initial value to the number 25. The
lower block defines a variable named FirstName and sets its initial value to the
text Johnny.

Figure 3-39 Two Complete Variable Initialization Blocks (Source: MIT App Inventor 2)

In this chapter we will use variables to hold numbers and text, so let’s briefly cover
the steps necessary to create a variable that is initially assigned each of those types
of data.

creating a Local Variable That Holds a number

Suppose we have a Click event handler for a button, and inside that event handler
we want to create a local variable to hold a car’s speed. We also want to initially
assign the number 0 to the variable. Here are the steps:

 1. In the Blocks Editor, go to the Built-in section of the Blocks column and click
Variables. Then select the initialize local name to block, as shown in
Figure 3-40.

Figure 3-40 Creating a Variable Initialization Block (Source: MIT App Inventor 2)

 3.3 Storing Data with Variables 177

 2. This creates an initialize local name to block in your workspace. Place
the block inside the desired event handler, as shown in Figure 3-41.

Figure 3-41 Insert the initialize local name to Block Inside the Desired
Event Handler (Source: MIT App Inventor 2)

 3. Now you will change the variable’s name to Speed (since this variable will be
used to hold a car’s speed). Click the word name that appears on the block (as
shown in the image on the left in Figure 3-42) and change the name to Speed (as
shown on the right in Figure 3-42).

Figure 3-42 Renaming the Variable (Source: MIT App Inventor 2)

 4. Now you will create a number block to assign to the Speed variable. Go
to the Built-In section of the Blocks column, click Math, then click the
 number block (). Plug the block into the to socket of the Speed variable
initialization block, as shown in Figure 3-43. The variable initialization is
now complete.

Figure 3-43 Assigning the Number 0 (Source: MIT App Inventor 2)

creating a Variable That Holds Text

Suppose we have a Click event handler for a button, and inside that event handler we
want to create a variable that holds the text Dark Roast Coffee. Here are the steps:

 1. In the Blocks Editor, go to the Built-in section of the Blocks column, and click
Variables. Then select the initialize local name to block, as shown in
Figure 3-44.

178 Chapter 3 Input, Variables, and Calculations

 2. This creates an initialize local name to block in your workspace. Place
the block inside the desired event handler, as shown in Figure 3-45.

Figure 3-44 Creating a Variable Initialization Block (Source: MIT App Inventor 2)

Figure 3-45 Insert the initialize local name to Block Inside the Desired
Event Handler (Source: MIT App Inventor 2)

 3. Now you will change the variable’s name to Beverage (since this variable will
hold the name of a beverage). Click the word name that appears on the block
(as shown in the image on the left in Figure 3-46) and change the name to
Beverage (as shown on the right in Figure 3-46).

Figure 3-46 Renaming the Variable (Source: MIT App Inventor 2)

 4. Now you will create a text string block to assign to the Beverage variable. Go
to the Built-In section of the Blocks column, click Text, then click the text string
block (). Plug the block into the to socket of the Beverage variable

 3.3 Storing Data with Variables 179

 initialization block. Click the empty space that appears between the quotation marks,
as shown on the left in Figure 3-47, and change the value to Dark Roast Coffee, as
shown on the right in the figure. The variable initialization is now complete.

Figure 3-47 Assigning the Text Dark Roast Coffee (Source: MIT App Inventor 2)

Working With a Local Variable
After you have created and initialized a local variable, you can create blocks that
work with the variable. The blocks that work with a local variable must be inserted
inside the variable’s initialization block, as shown in Figure 3-48.

The Speed variable can be accessed
only by blocks that are inserted here.

Figure 3-48 Where to Insert Blocks that Work with a Variable (Source: MIT App Inventor 2)

There are two instructions that you will use often when working with variables: get and
set. You use a get instruction to get a variable’s value, and you use a set instruction
to store a value in the variable. You will find the get and set blocks in the Variables
drawer (in the Built-in section of the Blocks column), as shown in Figure 3-49.

Figure 3-49 Blocks for Setting and Getting the Value of the Beverage Variable
(Source: MIT App Inventor 2)

180 Chapter 3 Input, Variables, and Calculations

The get block returns the value of a specified variable. When you create a get block,
you do two things with it:

● You plug the get block into the block that needs to get the value.
● On the get block, you select the variable that you need to get.

This is shown in Figure 3-50.

This plugs into the block
that needs to get the
variable’s value.

Select the variable that
you need to get.

Figure 3-50 Using the get Block (Source: MIT App Inventor 2)

For example, suppose we have a Label component named LabelFavoriteDrink, and
we want to display the value of the Beverage variable in that label. We would need
to set the Label component’s Text property to the value of the variable. Figure 3-51
shows that we have created a get block and we are going to plug it into the set
LabelFavoriteDrink to block. Next, we need to complete the get block by select-
ing the Beverage variable. As shown in Figure 3-52, you click the down arrow ()
that appears on the get block and select Beverage. Figure 3-53 shows the completed
instruction.

Figure 3-51 Plugging a get Block into Another Block (Source: MIT App Inventor 2)

This instruction gets the value of the
Beverage variable and assigns it to the
Text property of the LabelFavoriteDrink

component.

Figure 3-53 The Completed Instruction (Source: MIT App Inventor 2)

Figure 3-52 Selecting the Beverage Variable for the get Block
(Source: MIT App Inventor 2)

 3.3 Storing Data with Variables 181

If you need to change the value of a variable, you use the set block as shown in
Figure 3-54. When you create a set block for a local variable, you do the follow-
ing things:

● Insert the set block into the desired variable’s initialization block.
● On the set block, select the name of the variable that you want to set.
● Plug a value into the to socket of the set block.

noTe: When you create a get block, you cannot select the name of a local
variable until you plug the get block somewhere inside that local variable’s
initialization block.

Select the variable that
you need to set.

Plug in the value that you
want to assign to the variable.

Figure 3-54 Using the set Block (Source: MIT App Inventor 2)

For example, suppose we have a local variable named Speed, initialized with
the value 0, and we want to change its value to 75. We need to do the follow-
ing things:

● Create a set block and insert it into the Speed variable’s initialization block.
This is shown in Figure 3-55.

● On the set block, select the Speed variable. This is shown in Figure 3-56.
● Create a number block for the value 75 and plug it into the set block. This is

shown in Figure 3-57.

Figure 3-55 The set Block Created (Source: MIT App Inventor 2)

Figure 3-56 Selecting the Speed Variable on the set Block (Source: MIT App Inventor 2)

182 Chapter 3 Input, Variables, and Calculations

Figure 3-57 Plugging the Value 75 into the set Block (Source: MIT App Inventor 2)

noTe: When you create a set block, you cannot select the name of a local vari-
able until you plug the set block somewhere inside that local variable’s initializa-
tion block.

Tip: A quick way to create a get or set block for a variable is to hover the
mouse cursor over the variable’s name in its initialization block, like this:

A popup will appear, allowing you to select a get or set block for the variable.

In Tutorial 3-3 you will create an app that uses a local variable to hold the result of
a calculation.

Tutorial 3-3:
Creating the Kilometer Converter App

In this tutorial, you will create the Kilometer Converter app. The app lets
the user enter a distance in kilometers into a TextBox and then converts that
distance to miles and displays the results in another TextBox. The conversion
formula is:

Miles 5 Kilometers 3 0.6214

Figure 3-58 shows the app’s screen in the Viewer, with the names of all the com-
ponents. Figure 3-59 shows the app running in the emulator.

VideoNote
Creating the
Kilometer
Converter App

 3.3 Storing Data with Variables 183

Figure 3-58 The Kilometer Converter App (Source: MIT App Inventor 2)

step 1: Start a new project named KilometerConverter.

step 2: Set up the app’s screen with the components shown in Figure 3-58.
Refer to Table 3-4 for the relevant property settings for each
component.

Figure 3-59 The Kilometer Converter App Running in the Emulator
(Source: MIT App Inventor 2)

184 Chapter 3 Input, Variables, and Calculations

Table 3-4 Component Property Settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings
Screen1 AlignHorizontal 5 Center

Title 5 Kilometer Converter

LabelPrompt FontBold 5 checked

FontSize 5 20

Text 5 Enter a Distance in Kilometers

Width 5 Automatic

Height 5 Automatic

TextBoxKilometers Enabled 5 checked

FontBold 5 checked

FontSize 5 20

NumbersOnly 5 checked

TextAlignment 5 Center

Width 5 Automatic

Height 5 Automatic

ButtonConvert Text 5 Convert

Width 5 Automatic

Height 5 Automatic

LabelOutputDescription FontBold 5 checked

FontSize 5 20

Text 5 Converted to Miles:

Width 5 Automatic

Height 5 Automatic

TextBoxMilesDisplay Enabled 5 unchecked

FontBold 5 checked

FontSize 5 20

TextAlignment 5 Center

Width 5 Automatic

Height 5 Automatic

step 3: Now you will program the Click event handlers for the ButtonConvert
component. When the ButtonConvert component is clicked, it will do
the following:
● It will create a local variable named Miles, initialized to 0.
● It will multiply the value entered into the TextBoxKilometers com-

ponent by 0.6214 and assign the result to the local Miles variable.
● It will display the value of the local Miles variable in the

TextBoxMilesDisplay component.

 3.3 Storing Data with Variables 185

Figure 3-60 shows the blocks that you will create and assemble for
the Click event handler. Figure 3-61 shows how the completed Click
event handler should appear.

Figure 3-60 The Blocks Needed for the ButtonConvert Component’s
Click Event Handler (Source: MIT App Inventor 2)

step 4: Test the app in the emulator or with a device. Enter 100 for the kilom-
eters and click the Convert button. As shown in Figure 3-62, the app
should display 62.14 miles. Experiment with other values to confirm
that the app is correct.

Figure 3-61 The Completed Click Event Handler for the ButtonConvert
Component (Source: MIT App Inventor 2)

Figure 3-62 The App Converting 100 Kilometers to Miles (Source: MIT App Inventor 2)

186 Chapter 3 Input, Variables, and Calculations

Variable scope
Programmers commonly use the term scope to describe the part of a program in
which a variable may be accessed. A variable is visible only to instructions inside
the variable’s scope. When you create a local variable with an initialize local
name to block, the variable’s scope is limited to that block. In other words, the
variable can be accessed only by the instructions that are inside the initialize
local name to block.

Figure 3-63 shows an example. The figure shows an initialization block for a local
variable named Speed. Only instructions inside the initialization block can access the
Speed variable. Instructions outside the initialization block cannot access the vari-
able. This explains why you cannot access a local variable with a get block or a set
block until the get block or set block is plugged somewhere inside the variable’s
initialization block.

Only instructions here can
access the Speed variable.

Instructions here cannot
access the Speed variable.

Figure 3-63 The Scope of a Local Variable (Source: MIT App Inventor 2)

creating Multiple Local Variables
Sometimes you need more than one variable in a method or function. The initial-
ize local name to block can be modified to create and initialize multiple variables
at once. Just click the blue box () that appears in the block’s upper-left corner to
display the mutator bubble shown in Figure 3-64. Next, you click and drag the name

Figure 3-64 Mutator Bubble (Source: MIT App Inventor 2)

block () from the left side of the bubble and insert it on the right side of the
bubble as shown in Figure 3-65. This adds an additional variable named x to the
block, as shown in Figure 3-66. Then you double-click the variable name to change it
to something more descriptive. For example, Figure 3-67 shows an initialization
block that creates two variables named Tax and Total. The last step is to plug ini-
tialization values into each variable. Figure 3-68 shows that the Tax and Total vari-
ables are initialized to the value 0.

 3.3 Storing Data with Variables 187

Figure 3-65 Adding Another Variable to the Initialization Block
(Source: MIT App Inventor 2)

Figure 3-66 Another Variable Added to the Initialization Block (Source: MIT App Inventor 2)

Figure 3-67 The Variable Names Changed to Tax and Total (Source: MIT App Inventor 2)

Figure 3-68 The Tax and Total Variables Initialized to the Value 0
(Source: MIT App Inventor 2)

188 Chapter 3 Input, Variables, and Calculations

When the app is running, the user can enter the retail price of an item that is being
purchased into the TextBoxRetail component, and then click the ButtonCalculate
component. The app will calculate and display the sales tax (using 7% as the tax rate)

Let’s look at an example project that uses two local variables in an event handler.
Figure 3-69 shows the screen from the SalesTaxCalculator project in the Viewer,
and Figure 3-70 shows the app’s screen as it initially appears in the emulator.
Table 3-5 lists each component with its relevant property settings.

Figure 3-69 The SalesTaxCalculator Project (Source: MIT App Inventor 2)

Figure 3-70 The SalesTaxCalculator App Running in the Emulator
(Source: MIT App Inventor 2)

 3.3 Storing Data with Variables 189

Table 3-5 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings
Screen1 AlignHorizontal 5 Center

Title 5 Sales Tax Calculator
TableArrangement1 Columns 5 2

Rows 5 3

Width 5 Automatic

Height 5 Automatic
LabelPrompt Text 5 Enter the Retail Price:
TextBoxRetail Enabled 5 checked

NumbersOnly 5 checked

Width 5 Automatic

Height 5 Automatic
LabelTaxDescription Text 5 Sales Tax:
TextBoxTaxDisplay Enabled 5 unchecked

Width 5 Automatic

Height 5 Automatic
LabelTotalDescription Text 5 Total:
TextBoxTotalDisplay Enabled 5 unchecked

Width 5 Automatic

Height 5 Automatic
ButtonCalculate Text 5 Calculate Tax & Total

Figure 3-71 Example Screen as the App Runs (Source: MIT App Inventor 2)

and the total of the sale. An example screen is shown in Figure 3-71. The user has
entered $100 as the retail price. The app has calculated the sales tax as $7.00 and the
total of the sale as $107.00

190 Chapter 3 Input, Variables, and Calculations

The Click event handler for the ButtonReadInput component is shown in Figure 3-72.
The blocks inside the event handler set the LabelOutput component’s Text property
to the value of the TextBoxName component’s Text property. In other words, it gets
the text that the user entered into the TextBoxName component and displays it in the
LabelOutput component. Figure 3-4 shows the app running in the emulator after the
user has entered Kathryn Smith into the TextBox and clicked the button.

Here is a description of the blocks that are in the event handler:

 1 This is an initialization block that creates and initializes two local variables: Tax
and Total. Both variables are initialized to the value 0.

 2 This block sets the Tax variable to the value of TextBoxRetail.Text × 0.07.
(TextBoxRetail.Text holds the retail price that was entered by the user.)

 3 This block sets the Total variable to the value of TextBoxRetail.Text + the
value of the Tax variable.

 4 This block sets TextBoxTaxDisplay.Text to the value of the Tax variable,
rounded to 2 decimal places.

 5 This block sets TextBoxTotalDisplay.Text to the value of the Total vari-
able, rounded to 2 decimal places.

Global Variables
A global variable is created outside of all methods and functions. The scope of a glo-
bal variable is the entire workspace, so it is accessible to all of the code in the work-
space. For example, suppose you have an app with five event handlers, and you create
a variable and assign it a starting value. All five of the event handlers will be able to
get the value that the variable holds and be able to change the variable’s value.

To create and initialize a global variable, you open the Variables drawer, which is
in the Built-in section of the Blocks column. As shown in Figure 3-73, select the one

1

2

3

4

5

Figure 3-72 Click Event Handler for the ButtonCalculate Component
(Source: MIT App Inventor 2)

 3.3 Storing Data with Variables 191

Remember, global variables must be created outside of all methods and functions. When
you create an initialize global name to block, you can place it anywhere in the
workspace that is not inside a method or function. Figure 3-75 shows an initialize
global name to block in a workspace that has three Click event handlers. Notice
that the initialize global name to block is not inside any of the event handlers.

Figure 3-73 Creating a Global Variable Initialization Block (Source: MIT App Inventor 2)

Figure 3-74 Global Variable Initialization Block (Source: MIT App Inventor 2)

that reads initialize global name to. This creates a global variable initialization
block in the workspace, as shown in Figure 3-74.

Figure 3-75 Global Variable Initialization Block Outside of All Methods
(Source: MIT App Inventor 2)

192 Chapter 3 Input, Variables, and Calculations

Once you have created a global variable’s initialization block, you need to do two
more things:

● Change the variable’s name to something that describes the variable’s purpose
● Assign an initial value to the variable

To change a variable’s name, simply click the word name that appears on the ini-
tialize global name to block (as shown in Figure 3-76), and type the name that
you wish to give the variable. For example, in Figure 3-77 we have changed the vari-
able’s name to Population.

Figure 3-76 Changing the Name of a Global Variable (Source: MIT App Inventor 2)

Figure 3-77 A Global Variable Named Population (Source: MIT App Inventor 2)

Notice that the global variable initialization block shown in Figure 3-77 has a
socket labeled to. This socket requires a value of some sort to be plugged in. The
value that you plug into this socket is the variable’s initial, or starting, value.
For example, Figure 3-39 shows two global variable initialization blocks. The
upper block defines a variable named InterestRate and sets its initial value to
the number 0.03. The lower block defines a variable named Balance and sets its
initial value to the number 5,000.

Figure 3-78 Two Complete Global Variable Initialization Blocks
(Source: MIT App Inventor 2)

Once you have created and initialized a global variable, you can use the get block to
get the variable’s value and the set block to assign a value to the variable. The get
blocks and set blocks can be placed in any method or function in the workspace.

In Tutorial 3-4, you will create an app that uses a global variable to hold the total of
several values selected by the user.

 3.3 Storing Data with Variables 193

Upload these
image files.

Figure 3-79 The Change Counter App (Source: MIT App Inventor 2)

Tutorial 3-4:
Creating the Change Counter App

In this tutorial, you will create the Change Counter app. The app displays im-
ages of four coins, having the values 5 cents, 10 cents, 25 cents, and 50 cents.
Additionally, the app will have a global variable named Total that starts with the
value 0. Each time the user clicks on a coin image, the value of that coin is added
to the Total variable, and then the value of the Total variable is displayed.

Figure 3-79 shows the app’s screen in the Viewer with the names of all the com-
ponents. Figure 3-80 shows the app running in the emulator.

VideoNote
Creating the
Change Counter
App

194 Chapter 3 Input, Variables, and Calculations

Figure 3-80 The Change Counter App Running in the Emulator
(Source: MIT App Inventor 2)

step 1: Start a new project named ChangeCounter.

step 2: Make sure you have downloaded the media files from this book’s
companion website at www.pearsonglobaleditions.com/Gaddis.
Navigate to the location on your system where the book’s media files
are located. You will find a folder named Coins that contains several
.png files. Use the Media column to upload the following image files:
5cents.png, 10cents.png, 25cents.png, and 50cents.png.

step 3: Set up the app’s screen with the components shown in Figure 3-79. Refer
to Table 3-6 for the relevant property settings for each component.

step 4: Open the Blocks Editor and create the global variable initialization
block shown in Figure 3-81. This creates a global variable named
Total and gives it an initial value of 0. The Total variable will be used
to keep the total value of the coins that the user clicks.

As a reminder, these are steps to follow to create the variable initialization:
● Go to the Built-In section of the Blocks column, click Variables, and

then select the initialize global name to block.
● Click the word name that appears on the block and change the name

to Total.
● Go to the Built-In section of the Blocks column, click Math, and

then click the number block (). Plug the block into the socket of
the Total variable initialization block.

http://www.pearsonglobaleditions.com/Gaddis

 3.3 Storing Data with Variables 195

Table 3-6 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Change Counter

LabelPrompt FontBold 5 checked

FontSize 5 20

Text 5 Click the Coins

Width 5 Automatic

Height 5 Automatic

TableArrangement1 Cols 5 2

Rows 5 2

Width 5 Automatic

Height 5 Automatic

Button5Cents Text 5 clear

Image 5 5cents.png

Button10Cents Text 5 clear

Image 5 10cents.png

Button25Cents Text 5 clear

Image 5 25cents.png

Button50Cents Text 5 clear

Image 5 50cents.png

TextBoxTotalDisplay Enabled 5 unchecked

FontBold 5 checked

FontSize 5 20

Text 5 0.0

TextAlignment 5 Center

Width 5 Automatic

Height 5 Automatic

Figure 3-81 Definition of the Total Variable (Source: MIT App Inventor 2)

step 5: Now you will program the Click event handlers for the buttons,
starting with Button5Cents. When the Button5Cents component is
clicked, it will do the following:
● It will add 0.05 to the Total variable.
● It will display the value of the Total variable, rounded to two deci-

mal places, in the TextBoxTotalDisplay component.

196 Chapter 3 Input, Variables, and Calculations

Figure 3-82 shows the completed Click event handler. Note that the
set and get blocks are found in the Variables drawer of the Built-in
section of the Blocks column.

step 6: Now you will program the Click event handler for the
Button10Cents. When the Button10Cents component is clicked,
it will do the following:
● It will add 0.10 to the Total variable.
● It will display the value of the Total variable, rounded to two deci-

mal places, in the TextBoxTotalDisplay component.

Figure 3-83 shows the completed Click event handler.

step 7: Now you will program the Click event handler for the Button25Cents.
When the Button25Cents component is clicked, it will do the following:
● It will add 0.25 to the Total variable.
● It will display the value of the Total variable, rounded to two deci-

mal places, in the TextBoxTotalDisplay component.

Figure 3-84 shows the completed Click event handler.

These set and get blocks are
found in Built-in -> Variables.

Figure 3-82 The Click Event Handler for the Button5Cents Component
(Source: MIT App Inventor 2)

Figure 3-83 The Click Event Handler for the Button10Cents Component
(Source: MIT App Inventor 2)

 3.3 Storing Data with Variables 197

step 8: Now you will program the Click event handler for the Button50Cents.
When the Button50Cents component is clicked, it will do the following:
● It will add 0.50 to the Total variable.
● It will display the value of the Total variable, rounded to two deci-

mal places, in the TextBoxTotalDisplay component.

Figure 3-85 shows the completed Click event handler.

step 9: Test the app in the emulator or with a device. Click the coin images in
any order you wish. The total shown on the app’s screen should update
by the correct amount each time you click a coin.

Figure 3-84 The Click Event Handler for the Button25Cents Component
(Source: MIT App Inventor 2)

Figure 3-85 The Click Event Handler for the Button50Cents Component
(Source: MIT App Inventor 2)

A Word of caution About Global Variables
Most programmers agree that you should restrict the use of global variables when
possible. Here are some reasons:

● Global variables make debugging difficult. Any instruction in a program can
change the value of a global variable. If you find that the wrong value is being
stored in a global variable, you have to track down every instruction that
accesses it to determine where the bad value is coming from. In a large program
with thousands of instructions, this can be difficult.

● Global variables make a program hard to understand. A global variable can be
modified by any instruction in the program. If you are to understand any part
of the program that uses a global variable, you have to be aware of all the other
parts of the program that access the global variable.

When possible, you should create variables locally to avoid these and other problems
that can arise from the use of global variables.

198 Chapter 3 Input, Variables, and Calculations

checkpoint

 3.11 What is a variable?

 3.12 Where in the Blocks column do you find the variable initialization blocks?

 3.13 How do you change a variable’s name from the default name that App
Inventor gives it?

 3.14 How do you set a variable’s initial value?

 3.15 What is the purpose of the get block? What is the purpose of the set block?

 3.16 What does the term scope mean?

 3.17 What is the scope of a local variable? What is the scope of a global variable?

 3.4 creating Blocks with Typeblocking

concepT: Typeblocking is a shortcut method for quickly creating blocks using
the keyboard.

The usual way of creating a block in the workspace is to open the drawer that con-
tains the block and then click and drag the block into the workspace. After you have
created a few apps, you will become familiar with various blocks that are commonly
used, and you will be able to take advantage of App Inventor’s typeblocking feature.

Typeblocking is a shortcut method of creating blocks with the keyboard. In the Blocks
Editor, you simply click anywhere in the workspace and type part of the name of the
block that you want to create. For example, suppose you have a Button component
named Button1 and you want to create a Click event handler for it. You can click
anywhere in the workspace and type click. As shown in Figure 3-86, a popup list of

Figure 3-86 Creating a Click Event Handler with Typeblocking
(Source: MIT App Inventor 2)

 3.4 Creating Blocks with Typeblocking 199

Type 25 and press Enter to create this number block.

Figure 3-87 Creating a Number Block with Typeblocking (Source: MIT App Inventor 2)

Type “Hello World and press Enter to create this text string block.

Figure 3-88 Creating a Text String Block with Typeblocking (Source: MIT App Inventor 2)

blocks will appear. Simply select the one you want from the list or press Enter when
the one that you want is highlighted. The block will be created in the workspace.

You can use typeblocking to quickly create number blocks and text string blocks. For
example, suppose you want to create a number block with the value 25. Simply click
inside the workspace, type 25, and press Enter. This is shown in Figure 3-87.

To create a text string block, click inside the workspace, type a quotation mark (“),
then type the text that you want to set as the block’s value, then press Enter. (Do not
type an ending quotation mark, however. If you do, the ending quotation mark will
become part of the text string.) Figure 3-88 shows an example. In the figure, the user
has typed “Hello World to create a text string block with the value Hello World.

200 Chapter 3 Input, Variables, and Calculations

A good way to learn about typeblocking is to experiment with it. For example:

● You can type any of the math operators (+ - * / ^) to create math operator
blocks.

● You can type format to create a format as decimal block.
● You can type the name of a color (such as red) to create a Color block.

 3.5 The slider component

concepT: The Slider component is a horizontal track with a thumb slider that
the user can move left or right. It is typically used to adjust a value
within a range of values.

The Slider component provides a visual way to adjust a value within a range of val-
ues. It displays a small thumb slider that may be dragged left or right along a horizon-
tal track. In the emulator, you use the mouse to move the thumb slider, but on a
touchscreen device, you use your finger. Figure 3-89 shows an example of a Slider
component. In the Designer, you will find it in the User Interface section of the Palette.

Figure 3-89 A Slider Component (Source: MIT App Inventor 2)

The Slider component has a MinValue property and a MaxValue property that must
be set to numeric values. By default, the MinValue property is set to 10.0, and the
MaxValue property is set to 50.0. The MinValue property is the Slider’s minimum
value, and the MaxValue property is the Slider’s maximum value. When the thumb
slider is all the way to the left, its position is the same as MinValue. As you drag the
thumb slider to the right, its position increases. When the thumb slider is all the way
to the right, its position is the same as MaxValue.

Here is a summary of the Slider component’s properties:

● ColorLeft—Specifies the color of the part of the horizontal track that is to the
left of the thumb slider.

● ColorRight—Specifies the color of the part of the horizontal track that is to the
right of the thumb slider.

● MaxValue—The Slider component’s maximum value.
● MinValue—The Slider component’s minimum value.
● ThumbPosition—The position of the thumb slider.
● Visible—Determines whether the component is visible on the screen. In the

Designer, this can be set to either showing or hidden.
● Width—The width of the component. Can be set to Automatic, Fill parent, or a

specific number of pixels.

Each time the user moves the thumb slider, a PositionChanged event occurs. You
can create a PositionChanged event handler to perform an action any time the user
moves the thumb slider. You create the event handler in a similar fashion for creating

 3.5 The Slider Component 201

other event handlers: In the Blocks Editor, you open the drawer for the Slider and
then select the block for the PositionChanged event handler. An example of this is
shown in Figure 3-90, assuming we have a Slider component named Slider1.

Figure 3-91 shows an empty PositionChanged event handler that has been created
in the workspace. Notice that it has a rectangle labeled thumbPosition. This is a
special type of local variable known as a parameter variable. The purpose of a param-
eter variable is to hold a piece of data that is passed to the event handler. When the
PositionChanged event handler executes, the thumbPosition parameter variable
will hold the current position of the thumb slider.

The scope of the thumbPosition parameter variable is the PositionChanged event
handler. Inside the PositionChanged event handler you can use get and set blocks
to access the thumbPosition parameter variable.

Let’s look at an example project that uses a Slider component. Figure 3-92 shows the
screen from the SliderDemo project in the Viewer, and Figure 3-93 shows the app’s
screen as it initially appears in the emulator. Table 3-7 lists each component with its
relevant property settings.

Figure 3-90 Creating a PositionChanged Event Handler (Source: MIT App Inventor 2)

Parameter

Figure 3-91 The Slider Component’s PositionChanged Event Handler
(Source: MIT App Inventor 2)

202 Chapter 3 Input, Variables, and Calculations

Figure 3-92 The SliderDemo Project (Source: MIT App Inventor 2)

Figure 3-93 The SliderDemo App Running in the Emulator (Source: MIT App Inventor 2)

Table 3-7 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings
Screen1 AlignHorizontal 5 Center

Title 5 Slider Demo
Slider1 MaxValue 5 100

MinValue 5 0

ThumbPosition 5 50

Width 5 Fill parent
LabelSampleText Text 5 Hello

FontSize 5 50
LabelSliderPosition Text 5 50.0

 3.5 The Slider Component 203

When the app is running, the user can move the thumb slider to adjust the font size
of the LabelSampleText component. Example screens are shown in Figure 3-94. The
thumb slider starts at position 50, and the label’s font size starts at 50. If the user
drags the thumb slider to the right, the font size increases. If the user drags the thumb
slider to the left, the font size decreases. The position of the thumb slider is always
displayed by the LabelSliderPosition component.

Figure 3-94 Example Screens as the App Runs (Source: MIT App Inventor 2)

Figure 3-95 shows the Slider1.PositionChanged event handler. Here is a descrip-
tion of the two sets of blocks that are in the event handler:

 1 The first set of blocks sets the LabelSampleText component’s FontSize prop-
erty to the value of the thumbPosition variable. For example, if the position
of the thumb slider is 90, this set of blocks sets the LabelSampleText compo-
nent’s FontSize property to 90.

 2 The second set of blocks sets the LabelSliderPosition component’s Text
property to the value of the thumbPosition variable. This displays the thumb
slider’s position in the label.

checkpoint

 3.18 How do you set the minimum and maximum values for a Slider component?

 3.19 What event occurs each time the user moves a Slider component’s thumb
slider?

 3.20 What is the thumbPosition variable that is discussed in this section?

1

2

Figure 3-95 The Slider1.PositionChanged Event Handler
(Source: MIT App Inventor 2)

204 Chapter 3 Input, Variables, and Calculations

 3.6 Math Functions

concepT: App Inventor provides numerous advanced math functions for
 complex calculations.

The Math drawer in the Blocks Editor provides numerous functions that are useful
for performing advanced mathematical operations. Most of them are shown in
Figure 3-96. Table 3-8 gives a summary of several of the Math functions. (We will
cover the random number functions in Chapter 4, so we will not go over them here.)

Figure 3-96 Math Functions (Source: MIT App Inventor 2)

Figure 3-97 Using the sqrt Function (Source: MIT App Inventor 2)

Figure 3-98 Using the remainder Function (Source: MIT App Inventor 2)

Figure 3-97 shows an example use of the sqrt block. Assume an app has a TextBox
named TextBoxNumber, and the user has entered a number into it. The blocks in the
figure calculate the square root of the value entered by the user and display the result
in the LabelResult component.

Figure 3-98 shows another example. It sets the variable MyVar to the remainder of 17
divided by 2.

 3.6 Math Functions 205

Table 3-8 Many of the Math functions (Source: Pearson Education, Inc.)

Math Method Description

sqrt Returns the square root of the argument.

—(negate) Returns the negative of the argument.

min Allows you to plug in multiple arguments. (When
you plug a value into the slot, another slot appears.)
Returns the smallest value of the given arguments.

max Allows you to plug in multiple arguments. (When
you plug a value into the slot, another slot appears.)
Returns the largest value of the given arguments.

quotient You plug in two arguments. Returns the result of
dividing the first argument by the second argument.
The value returned is an integer. Any fractional part of
the result will be thrown away.

remainder You plug in two arguments. Divides the first argument
by the second argument and returns the remainder.

abs Returns the absolute value of the argument.

round Rounds the argument to the nearest integer and
returns the result. If the number is halfway between
two integers (such as 1.5 or 7.5), this function rounds
the nearest even integer and returns the result.

floor Returns the largest integer that is less than or equal to
the argument.

ceiling Returns the smallest integer that is less than or equal
to the argument.

log Returns the natural logarithm of the argument.

sin Returns the sine of the argument in degrees.

cos Returns the cosine of the argument in degrees.

tan Returns the tangent of the argument in degrees.

asin Returns the arc sine of the argument in degrees.

acos Returns the arc cosine of the argument in degrees.

atan Returns the arc tangent of the argument in degrees.

atan2 Takes two arguments, x and y. Returns the arc tangent
of x / y in degrees.

convert radians to

degrees
Takes an argument that is an angle in radians. Returns
the argument converted to degrees.

convert degrees to

radians
Takes an argument that is an angle in degrees. Returns
the argument converted to radians.

206 Chapter 3 Input, Variables, and Calculations

Review Questions

Multiple choice

 1. When the user types into a TextBox component, the text is stored in the
component’s property.

a. Input
b. Text
c. String
d. Data

 2. The property of the TextBox component determines whether
the user can enter input into the component, or not.

a. Input
b. AllowInput
c. Enabled
d. ShowKeyboard

 3. By doing this, we can limit the user to enter only numbers in the TextBox
component.

a. Unchecking the TextOnly property
b. Checking the NumbersOnly property
c. Checking the DigitsOnly property
d. Plugging a number component into the TextBox

 4. Math operator blocks with a mutator symbol are able to do this.

a. Expand for additional operands
b. Use constant numbers only
c. Merge different operands in a component
d. Add one more operand

 5. Math expressions use ________ to hold operands on the sides of the operator.

a. Plugs
b. Sockets
c. Blocks
d. Drawers

 6. The format as decimal block has these two sockets.

a. Expression and decimal
b. Number and decimal
c. Number and places
d. Expression and places

 7. This is a method that performs an operation, and returns a value.

a. function
b. void method
c. procedure
d. subroutine

 8. This is why we need arguments.

a. To pass pieces of data to functions
b. To execute functions
c. To define the math operator
d. To take output from the function

 9. A is a name that represents a value stored in the computer’s memory.

a. tag
b. label
c. argument
d. variable

 10. This component is a horizontal track with a thumb slider that the user can move
left or right.

a. Slider
b. ScrollBar
c. HorizontalSlider
d. ThumbSlider

short Answer

 1. In what section of the Pallete is the TextBox component located?

 2. How do you prevent the user from entering input into a TextBox component?

 3. How different is the PasswordTextBox component from a TextBox component?

 4. What component would you use if you did not want the user’s input to be visible
on the screen?

 5. What are the sockets on the left and right sides of a math operator block called?

 6. What is a function?

 7. What math function do you use to round a number to a specified number of deci-
mal places?

 8. What are arguments?

 9. What is a variable?

 10. What event happens when the user changes the position of a Slider component’s
thumb slider?

exercises
 1. In the Blocks Editor, use a math operator block to create an expression that gives

the result of 100 1 50.

 2. In the Blocks Editor, use math operator blocks to create an expression that gives
the result of 100 1 50 1 10.

 3. In the Blocks Editor, use math operator blocks to create an expression that gives
the result of (100 1 50 1 10) / 4.

 4. Modify the TipCalculator app that you created in Tutorial 3-2 to use a Slider
component instead of buttons. The Slider should let the user see tip amounts
 between 15% and 25%.

 Exercises 207

208 Chapter 3 Input, Variables, and Calculations

 5. In the Blocks Editor, create blocks that initialize a variable named Age to the
value of 25.

 6. In the Blocks Editor, create blocks that initialize a variable named MiddleName to
the value of Suzanne.

 7. Create an app with a slider that displays values in the range of 100 to 200.

 8. In the Blocks Editor, use math operator blocks to create an expression that gives
the result of 43 3 25 3 6.

 9. Create an app that enters three numbers and finds their maximum and minimum
values.

 10. Create an app that lets the user enter an angle, measured in degrees. The app
should display the sine, cosine, and tangent of the angle.

programming projects
 1. Distance Traveled

Assuming there are no accidents or delays, the distance that a car travels down an
interstate highway can be calculated with the following formula:

Distance 5 Speed 3 Time

Create an app that allows the user to enter a car’s speed in miles per hour. The
application should have buttons that display the following:
● The distance the car will travel in 5 hours
● The distance the car will travel in 8 hours
● The distance the car will travel in 12 hours

 2. Circle Dimensions

Create an app that allows the user to enter a radius r of a circle. The program
should then calculate the area and perimeter of the circle. The program should
display the radius, the surface area, and the perimeter of the circle (the surface
area is equivalent to p 3 r2 and the perimeter is equivalent to 2 3 p 3 r).

 3. Celsius and Fahrenheit Temperature Converter

Assuming that C is a Celsius temperature, the following formula converts the
temperature to Fahrenheit:

F 5 5/9C 1 32

Assuming that F is a Fahrenheit temperature, the following formula converts the
temperature to Celsius:

C 5 5/9(F 2 32)

Create an app that allows the user to enter a temperature. The app should have
Button components described as follows:
● A button that reads Convert to Fahrenheit. If the user clicks this button,

the app should treat the temperature that is entered as a Celsius temperature
and convert it to Fahrenheit.

VideoNote
The Average
of Three Test
Scores App

● A button that reads Convert to Celsius. If the user clicks this button, the app
should treat the temperature that is entered as a Fahrenheit temperature, and
convert it to Celsius.

 4. Body Mass Index

Create an app that lets the user enter his or her weight (in pounds) and height
(in inches). The app should display the user’s body mass index (BMI). The
BMI is often used to determine whether a person is overweight or under-
weight for his or her height. A person’s BMI is calculated with the following
formula:

BMI 5 weight 3 703 4 height 2

 5. Cookie Calories

A bag of cookies holds 40 cookies. The calorie information on the bag claims
that there are 10 servings in the bag and that a serving equals 300 calories. Create
an app that lets the user enter the number of cookies he or she actually ate and
then reports the number of total calories consumed.

 6. Calorie Counter

Create an app with a screen that resembles Figure 3-99. The screen displays the
images of four fruits (a banana, an apple, an orange, and a pear) and each fruit’s
calories. You can find these images in the Fruit Symbols folder of the book’s media
files, available for download at www.pearsonglobaleditions.com/Gaddis.

When the application starts, the total calories displayed should be zero. Each
time the user clicks one of the fruit images, the calories for that fruit should be
added to the total calories, and the total calories should be displayed. When the
user clicks the Reset button, the total calories should be reset to zero.

Figure 3-99 Calorie Counter App (Source: MIT App Inventor 2)

 Programming Projects 209

http://www.pearsonglobaleditions.com/Gaddis

210 Chapter 3 Input, Variables, and Calculations

 7. Calories from Fat and Carbohydrates

A nutritionist who works for a fitness club helps members by evaluating their
diets. As part of her evaluation, she asks members for the number of fat grams
and carbohydrate grams that they consumed in a day. Then, she calculates the
number of calories that result from the fat, using the following formula:

calories from fat 5 fat grams 3 9

Next, she calculates the number of calories that result from the carbohydrates,
using the following formula:

calories from carbs 5 carb grams 3 4

 The nutritionist asks you to create an app that will make these calculations.

 8. Measurement Converter

Create an app that will convert miles to kilometers and pounds to kilograms. To
get the most correct exchange rates, search the Internet using the term measurement
conversions. If you cannot find the correct conversion rates, use the following:

 1 Mile 5 1.852 Kilometer
 1 Pound 5 0.45 Kilogram

Display your output amounts rounded to two decimal places.

TOPICS

4.1 Introduction to Decision Blocks

4.2 Relational Operators and the if Block

4.3 The if then else Block

4.4 A First Look At Comparing Strings

4.5 Logical Operators

4.6 Nested Decision Blocks

4.7 The if then else if Block

4.8 Working with Random Numbers

4.9 The Screen’s Initialize Event

4.10 The ListPicker Component

4.11 The CheckBox Component

Decision Blocks
and Boolean Logic

 4.1 Introduction to Decision Blocks

CONCEPT: Sometimes a program needs to “decide” whether or not to execute certain
instructions. App Inventor provides three blocks for making decisions.

Computer programs work with many kinds of data. You’ve already created apps that
work with values such as 1, 2, and 0.25. These values are numbers. You’ve also created
apps that work with values such as Hello and Enter the distance. These are text values,
which are also known as strings.

Programs can also work with the values true and false. These two values, true and
false, are known as Boolean values, in honor of the English mathematician George Boole.
In the 1800s Boole invented a system of mathematics in which the abstract concepts of true
and false can be used in computations. Today, computer programming languages allow
you to store the values true and false in memory and use those values in algorithms.

In a computer program, the values true and false are commonly used in decision
 making. Quite often, you will test a Boolean expression (an expression that gives either
true or false as its value) and you will perform one set of instructions if the expression
is true, or another set of instructions if the expression is false.

C
H

A
P

T
E

R

4

211

212 Chapter 4 Decision Blocks and Boolean Logic

The if then Block
App Inventor provides the if then block for making decisions. In the Blocks column
it is found in the Built-in section, in the Control drawer, as shown in Figure 4-1.

The if then block is shown in Figure 4-2. Notice that the if then block has two
sockets: one for the if part, and one for the then part. The if socket holds a Boolean
expression. If the Boolean expression is true, the instructions that appear in the then
socket will be executed. If the Boolean expression is false, nothing happens (the
instructions that appear in the then socket will be skipped). Figure 4-3 shows a way
that might be helpful to think about the if then block.

Figure 4-1 The Decision Blocks (Source: MIT App Inventor 2)

Plug a Boolean expression here.

The blocks that you plug here will be
executed ony if the Boolean test
expression is true.

Figure 4-2 The if then Block (Source: MIT App Inventor 2)

 4.1 Introduction to Decision Blocks 213

The if then else Block
The if then block is a mutator block. Recall from Chapter 3 that a mutator block has
the ability to change in some way. When you click the blue box () that appears in
the upper-left corner of the block, the mutator bubble shown in Figure 4-4 appears. If
you click and drag the else block () from the left side of the bubble and insert
it on the right side of the bubble as shown in Figure 4-5, you change the if then
block to an if then else block. Figure 4-6 shows an if then else block.

If this is true...

Then do the blocks that appear here.

Figure 4-3 How to Think About the if then Block (Source: MIT App Inventor 2)

Figure 4-4 The if then Block’s Mutator Bubble (Source: MIT App Inventor 2)

Figure 4-5 Changing the if then Block to an if then else Block
(Source: MIT App Inventor 2)

Plug a Boolean expression here.

If the Boolean test expression is
true, the blocks that appear here
will be executed.

If the Boolean test expression is
false, the blocks that appear here
will be executed.

Figure 4-6 The if then else Block (Source: MIT App Inventor 2)

214 Chapter 4 Decision Blocks and Boolean Logic

Notice that the if then else block has three sockets: one for the if part, one for
the then part, and one for the else part. The if socket holds a Boolean expression.
If the Boolean expression is true, the instructions that appear in the then socket will
be executed. If the Boolean expression is false, the instructions that appear in the
else socket will be executed. Figure 4-7 shows a way that might be helpful to think
about the if then else block.

If this is true...

Then do the blocks that appear here.

Else, do the blocks that appear here.

Figure 4-7 How to Think About the if then else Block (Source: MIT App Inventor 2)

The if then else if Block
You can use the if then block’s mutator bubble to change the block into an if
then else if block. An if then else if block is used to test a series of Boolean
expressions. In the mutator bubble, click and drag the else if block () from
the left side of the bubble and insert it on the right side of the bubble as shown in
Figure 4-8. Then, drag the else block () from the left side of the bubble and
insert it on the right side of the bubble as shown in Figure 4-9. This creates an if
then else if block like the one shown in Figure 4-10.

Figure 4-8 Changing an if then Block to an if then else if Block
(Source: MIT App Inventor 2)

Figure 4-9 Adding an else Section to an if then else if Block
(Source: MIT App Inventor 2)

 4.1 Introduction to Decision Blocks 215

When the if then else if block executes, Boolean expression #1 is tested. If
Boolean expression #1 is true, the instructions in the then socket that immedi-
ately follow are executed and the rest of the block is ignored. If Boolean expres-
sion #1 is false, however, the program jumps to the very next else if section
and tests Boolean expression #2. If it is true, the instructions in the then socket
that immediately follow are executed and the rest of the block is then ignored.
If none of the Boolean expressions are true, the instructions in the else socket
are executed.

You can use the mutator bubble to add as many else if sections as you need. For
example, Figure 4-11 shows an if then else if block that can test three Boolean
expressions.

If this Boolean expression is true, then
execute the blocks here (and no others).

Otherwise, if this Boolean expression is true, then
execute the blocks here (and no others).

Otherwise, if none of the Boolean expressions above
are true, then execute the blocks here (and no others).

Figure 4-10 An if then else if Block (Source: MIT App Inventor 2)

Plug Boolean expression #1 here.

Plug Boolean expression #2 here.

Plug Boolean expression #3 here.

Figure 4-11 An if then else if Block that Can Test Three Boolean Expressions
(Source: MIT App Inventor 2)

We will take a closer look at these decision blocks, but first we must discuss Boolean
expressions in greater detail.

Checkpoint

 4.1 The values true and false are what type of values?

 4.2 What is a Boolean expression?

216 Chapter 4 Decision Blocks and Boolean Logic

 4.3 What decision blocks can you create with App Inventor?

 4.4 Where do you find the decision blocks in the Blocks column?

 4.5 The decision blocks have an if socket. What type of block do you plug into
the if socket?

Figure 4-12 The Relational Operator Blocks (Source: MIT App Inventor 2)

 4.2 Relational Operators and the if Block

CONCEPT: A relational operator compares two numbers and determines whether
one value is greater than, less than, equal to, greater than or equal to,
less than or equal to, or not equal to the other value. The relational
operators are commonly used to create Boolean expressions that are
tested by decision blocks.

Typically, the Boolean expression that is tested by an if decision block is formed
with a relational operator. A relational operator determines whether a specific rela-
tionship exists between two values. For example, the equal to operator (5) deter-
mines whether two values are equal. The greater than operator (>) determines
whether one value is greater than another.

You access the relational operators by opening the Math drawer (in the Built-in sec-
tion of the Blocks column) and selecting the 5 operator. This is shown in Figure 4-12.
Once you create an 5 operator block, you can change it to any other relational opera-
tor by clicking the down-arrow (), as shown in Figure 4-13.

 4.2 Relational Operators and the if Block 217

Figure 4-13 The Relational Operator Dropdown Menu (Source: MIT App Inventor 2)

Table 4-1 The Relational Operator Blocks (Source: Pearson Education, Inc.)

Operator Block Description

This is the greater than operator. It returns
true if the operand on the left is greater
than the operand on the right. Otherwise, it
returns false.

This is the greater than or equal to operator.
It returns true if the operand on the left is
greater than or equal to the operand on the
right. Otherwise, it returns false.

This is the less than operator. It returns true
if the operand on the left is less than the
operand on the right. Otherwise, it returns
false.

This is the less than or equal to operator. It
returns true if the operand on the left is less
than or equal to the operand on the right.
Otherwise, it returns false.

This is the equal to operator. It returns true
if the operand on the left is equal to the
operand on the right. Otherwise, it returns
false.

This is the not equal to operator. It returns
true if the operand on the left is not equal
to the operand on the right. Otherwise, it
returns false.

Table 4-1 summarizes each of the relational operator blocks. Notice that each rela-
tional operator block has two sockets for operands.

218 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-14 shows some examples of relational operators with operands plugged in:

Is the length variable greater than the width variable?

Is the sales variable greater than or equal to 5,000?

Is the TextBoxTemperature component’s Text property less than 32?

Figure 4-14 Relational Operator Block Examples (Source: MIT App Inventor 2)

● The top example in the figure determines whether the length variable is greater
than the width variable. If length is greater than width, the operator block
returns true. Otherwise, it returns false.

● The middle example in the figure determines whether the sales variable is
greater than or equal to 5,000. If sales is greater than or equal to 5,000, the
operator block returns true. Otherwise, it returns false.

● The bottom example in the figure determines whether the TextBoxTemperature
component’s Text property contains a value that is less than 32.0. If it does, the
operator block returns true. Otherwise, it returns false.

Now look at Figure 4-15, which shows an example of a complete if then block.
This example assumes we have a TextBox component named TextBoxTemperature
and a Label component named LabelMessage. The Boolean test expression uses
the less-than operator (<) to determine whether TextBoxTemperature.Text is
less than 32. If the Boolean expression is true, then the text It’s cold! is a ssigned to
LabelMessage.Text. If the Boolean expression is not true, n othing happens.

Figure 4-15 Example if then Block (Source: MIT App Inventor 2)

Tutorial 4-1:
The Test Average App

In this tutorial you will create an app that allows the user to enter three test
scores and calculates the average of the test scores. If the average is greater than

VideoNote
The Test Average
App

 4.2 Relational Operators and the if Block 219

95, the app also displays a message congratulating the user. Figure 4-16 shows
the app’s screen in the Viewer, along with the names of the components. Figure
4-17 shows how the screen appears in the emulator.

When the app runs, the user enters the three test scores into the TextBoxScore1,
TextBoxScore2, and TextBoxScore1 components. When the user clicks the
ButtonCalculate button, the app calculates the average of the three scores and
displays the result in the TextBoxAverageDisplay component. If the average is
greater than 95, the app also changes the LabelPrompt component’s Text prop-
erty to Great Job!

The app also has a button named ButtonStartOver that clears the TextBox
components and restores the LabelPrompt component’s Text property to the
value Enter Three Test Scores.

Step 1: Start a new project named TestAverage.

Step 2: Set up the app’s screen with the components shown in Figure 4-16. Refer
to Table 4-2 for the relevant property settings for each component.

Figure 4-16 The App’s User Interface (Source: MIT App Inventor 2)

220 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-17 The App Running in the Emulator (Source: MIT App Inventor 2)

Table 4-2 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings
Screen1 AlignHorizontal 5 Center

Title 5 Test Average

LabelPrompt FontBold 5 checked

FontSize 5 20

Text 5 Enter Three Test Scores

TextAlignment 5 Center

TextBoxScore1 Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Enter score 1.

Width 5 Automatic

Height 5 Automatic

 4.2 Relational Operators and the if Block 221

Component Relevant Property Settings
TextBoxScore2 Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Enter score 2.

Width 5 Automatic

Height 5 Automatic

TextBoxScore3 Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Enter score 3.

Width 5 Automatic

Height 5 Automatic

ButtonCalculate Text 5 Calculate Average

LabelAverage FontBold 5 checked

FontSize 5 20

Text 5 Average:

TextAlignment 5 Center

TextBoxAverageDisplay Enabled 5 unchecked

FontBold 5 checked

FontSize 5 20

Hint 5 cleared

TextAlign 5 Center

Width 5 Automatic

Height 5 Automatic

ButtonStartOver Text 5 Start Over

Step 3: Now you will program the blocks for the app. Open the Blocks Editor
and create a Click event handler for the ButtonCalculate compo-
nent, as shown in Figure 4-18. When the event handler is complete, it
will calculate the average of the three test scores that were entered by
the user and assign that value to the average variable. If the average is
greater than 95, a special message will be displayed.

Figure 4-18 Click Event Handler Block for ButtonCalculate
(Source: MIT App Inventor 2)

Step 4: Now you will create a local variable to hold the average of the test
scores. Open the Variables drawer and select the initialize local
name to block. This creates an initialization block in the workspace.

222 Chapter 4 Decision Blocks and Boolean Logic

Plug the initialization block into the ButtonCalculate.Click event
handler, as shown in Figure 4-19.

Figure 4-19 Variable Initialization Block Created (Source: MIT App Inventor 2)

Step 5: Change the variable’s name to Average and set the average variable’s
initial value to 0, as shown in Figure 4-20.

Change the variable’s name to Average.

Initialize the variable to 0.

Figure 4-20 The Completed Variable Initialization Block (Source: MIT App Inventor 2)

Step 6: In a different area of the workspace, assemble the blocks shown in
Figure 4-21. These blocks will calculate the average of the test scores
e ntered by the user. (Note that you will have to use the 1 operator’s muta-
tor bubble to add a third operand to the 1 operator block.) When you
have the blocks assembled, they should appear as shown in Figure 4-22.

Use the + operator’s mutator
bubble to add another operand.

Figure 4-21 Assembling the Math Blocks to Calculate the Average
(Source: MIT App Inventor 2)

Figure 4-22 The Completed Calculation (Source: MIT App Inventor 2)

 4.2 Relational Operators and the if Block 223

Step 7: You want to assign the result of the calculation to the Average vari-
able. Open the Variables drawer, select the set block, and plug it into
the ButtonCalculate.Click event handler as shown in Figure 4-23.
Next, select the Average variable in the set block’s dropdown. The
block should now appear as shown in Figure 4-24.

Figure 4-23 The set Block Placed (Source: MIT App Inventor 2)

Figure 4-24 The Variable Name Selected in the set Block (Source: MIT App Inventor 2)

Figure 4-25 Plug the Calculation into the set Average to Block
(Source: MIT App Inventor 2)

Step 9: Next, the ButtonCalculate component should display the average in
the TextBoxAverageDisplay component. Add the blocks shown in
Figure 4-26. (You will find the get block in the Variables drawer.)

Add these blocks for Step 9.

Figure 4-26 Displaying the Average (Source: MIT App Inventor 2)

Step 8: As shown in Figure 4-25, plug the math blocks for the calculation into
the socket of the set Average to block.

224 Chapter 4 Decision Blocks and Boolean Logic

Step 10: Now you will begin assembling the if then block that determines
whether the average is greater than 95. Open the Control drawer (in
the Built-in section) and select the if then block. Place it as shown in
Figure 4-27.

Add this block for Step 10.

Figure 4-27 The if then Block Placed (Source: MIT App Inventor 2)

Step 11: Now create the Boolean test expression shown in Figure 4-28. Here are
some hints and reminders:
● To create the > operator block, select the 5 block in the Math

drawer, then use the block’s dropdown to change it to a > operator
block.

● You will find the get block in the Variables drawer.

Add these blocks for Step 11.

Figure 4-28 The Boolean Test Expression Placed (Source: MIT App Inventor 2)

Step 12: Complete the if then block as shown in Figure 4-29.

Add these blocks for Step 12.

Figure 4-29 The if then Block Completed (Source: MIT App Inventor 2)

 4.2 Relational Operators and the if Block 225

Step 13: Now you will create the Click event handler for the ButtonStartOver
button, as shown in Figure 4-30. When this button is clicked, the
TextBox components will be cleared and the LabelPrompt compo-
nent’s Text property will be set to Enter Three Test Scores.

Figure 4-30 The Completed ButtonStartOver.Click Event Handler
(Source: MIT App Inventor 2)

Step 14: Test the app in the emulator or on your device. First, as shown in
the image on the left in Figure 4-31, enter the values 70, 75, and 80
as the test scores. Click the Calculate Average button and you should
see the average as shown in the figure.

Next, click the Start Over button. The text boxes should clear. Enter the values
100, 99, and 98 as the test scores. Click the Calculate Average button and you
should see the average as shown on the left in the figure. You should also see the
message Great Job! displayed at the top of the screen.

Continue to test the app as you wish.

Figure 4-31 The App Running in the Emulator (Source: MIT App Inventor 2)

226 Chapter 4 Decision Blocks and Boolean Logic

Checkpoint

 4.6 What types of relationships between numeric values can you test with rela-
tional operators?

 4.7 Where in the Blocks column do you find the relational operators?

 4.8 When an if then block executes, what happens if the Boolean expression is
true? What happens if the Boolean expression is false?

 4.3 The if then else Block

CONCEPT: An if then else block will execute one set of blocks if its Boolean
expression is true or another set of blocks if its Boolean expression is
false.

As shown in Figure 4-32, you can use the if then block’s mutator bubble to convert
the block into an if then else block. As shown in Figure 4-33, the if then else
block has three sockets: an if socket, a then socket, and an else socket. The if
socket holds a Boolean expression. If the Boolean expression is true, the instructions
that appear in the then socket will be executed. If the Boolean expression is false,
the instructions that appear in the else socket will be executed.

Figure 4-32 Changing the if then Block to an if then else Block
(Source: MIT App Inventor 2)

If this is true...

Then do the blocks that appear here.

Else, do the blocks that appear here.

Figure 4-33 The if then else Block (Source: MIT App Inventor 2)

Figure 4-34 shows an example of the if then else block. This example assumes
we have a TextBox component named TextBoxTemperature and a Label component
named LabelMessage. The Boolean test expression uses the less-than operator (<)
to determine whether TextBoxTemperature.Text is less than 40.0. If the Boolean

 4.3 The if then else Block 227

Figure 4-34 Example of the if then else Block (Source: MIT App Inventor 2)

 expression is true, then the text A little cold, isn’t it? is assigned to LabelMessage.
Text. If the Boolean expression is false, the text Nice weather we’re having! is
a ssigned to LabelMessage.Text.

Tutorial 4-2:
Modifying the Test Average App

In this tutorial you will modify the Test Average app that you created in
Tutorial 4-1. After you modify the app, it will display the message Great Job! if
the test score average is greater than 95, or the message Keep Trying! if it is not.

Step 1: Open the TestAverage project that you created in Tutorial 4-1.

Step 2: Open the Blocks Editor.

Step 3: As shown in Figure 4-35, use the if then block’s mutator bubble to
convert the if then block to an if then else block.

Figure 4-35 Converting the if then Block to an if then else Block
(Source: MIT App Inventor 2)

Step 4: Add the blocks shown in Figure 4-36 to the else socket of the if then
else block. The if then else block works like this: it determines
whether the value of the Average variable is greater than 95. If it is,
the text Great Job! is assigned to LabelPrompt.Text. If it is not, the
text Keep Trying! is assigned to LabelPrompt.Text.

VideoNote
Modifying the Test
Average App

228 Chapter 4 Decision Blocks and Boolean Logic

Add these blocks.

Figure 4-36 The Modified ButtonCalculate.Click Event Handler
(Source: MIT App Inventor 2)

Step 5: Test the app in the emulator or on your device. First, as shown in the
image on the left in Figure 4-37, enter the values 70, 75, and 80 as
the test scores. Click the Calculate Average button and you should
see the average as shown in the figure, along with the message Keep
Trying! displayed at the top of the screen.

Next, click the Start Over button. The text boxes should clear and the
message at the top of the screen should switch back to Enter Three
Test Scores. Enter the values 100, 99, and 98 as the test scores. Click
the Calculate Average button and you should see the average as shown
in the figure. You should also see the message Great Job! displayed at
the top of the screen. Continue to test the app as you wish.

Figure 4-37 The App Running in the Emulator (Source: MIT App Inventor 2)

 4.3 The if then else Block 229

Tutorial 4-3:
Creating the Wages App

At a particular business, if an employee works more than 40 hours in a week, it
is said that the employee has worked overtime. For example, an employee that
has worked 45 hours in a week has worked 5 overtime hours. Employees that
work overtime get paid their regular hourly pay rate for the first 40 hours plus
1.5 times their regular hourly pay rate for all hours over 40.

In this tutorial you will create an app that calculates an employee’s gross pay,
including overtime pay. The app allows the user to enter the number of hours
worked and the hourly pay rate into text boxes. Figure 4-38 shows the app’s
screen in the Viewer, along with the names of the components. Figure 4-39
shows how the screen appears in the emulator.

LabelHoursPrompt

LabelPayRatePrompt

Figure 4-38 The App’s User Interface (Source: MIT App Inventor 2)

When the user clicks the ButtonCalculate button, the gross pay is calculated in
the following manner:

If the hours worked is greater than 40:
regular pay 5 hourly pay rate 3 40
overtime hours 5 hours worked 2 40
overtime pay 5 overtime hours 3 hourly pay rate 3 1.5
gross pay 5 base pay 1 overtime pay

Else:
gross pay 5 hours worked 3 hourly pay rate

As you can see, there are two very different calculations, depending on whether
the user has worked more than 40 hours. Regardless of which calculation is
used, the result is the gross pay. In this app we will use an if then else block
to determine whether the user has worked overtime and perform the correct
calculation.

VideoNote
Creating the
Wages App

230 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-39 The App Running in the Emulator (Source: MIT App Inventor 2)

Step 1: Start a new project named Wages.

Step 2: Set up the app’s screen with the components shown in Figure 4-38. Refer
to Table 4-3 for the relevant property settings for each component.

Table 4-3 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Wage Calculator
HorizontalArrangement1 AlignHorizontal 5 Center

Width 5 Fill parent

Height 5 Automatic

LabelHoursPrompt Text 5 Hours Worked:

 4.3 The if then else Block 231

Component Relevant Property Settings

TextBoxHours Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Hours Worked

Width 5 Automatic

Height 5 Automatic

HorizontalArrangement2 AlignHorizontal 5 Center

Width 5 Fill parent

Height 5 Automatic

LabelPayRatePrompt Text 5 Hourly Pay Rate:

TextBoxPayRate Enabled 5 checked

NumbersOnly 5 checked

Hint 5 Hourly Pay Rate

Width 5 Automatic

Height 5 Automatic

ButtonCalculate Text 5 Calculate

LabelGrossPay FontBold 5 checked

FontSize 5 20

Text 5 Gross Pay:

TextAlignment 5 Center

TextBoxGrossPayDisplay Enabled 5 unchecked

FontBold 5 checked

FontSize 5 20

Hint 5 cleared

TextAlignment 5 Center

Width 5 Automatic

Height 5 Automatic

ButtonClear Text 5 Clear

Step 3: Now you will program the blocks for the app. Open the Blocks Editor.

Step 4: Create a Click event handler for the ButtonCalculate button, as
shown in Figure 4-40.

Figure 4-40 Click Event Handler for the ButtonCalculate Component
(Source: MIT App Inventor 2)

232 Chapter 4 Decision Blocks and Boolean Logic

Step 5: Now you will create and initialize the local variables needed to calcu-
late the gross pay. Create an initialize local name to block and,
as shown in Figure 4-41, insert it into the ButtonCalculate.Click
event handler.

Figure 4-41 The initialize local name to Block Created
(Source: MIT App Inventor 2)

Figure 4-42 Variable Initialization Blocks (Source: MIT App Inventor 2)

Step 6: Use the variable initialization block’s mutator bubble to add three
more variable names to the block. (The initialization block should have
a total of four variables.) Change the variable names to those shown in
Figure 4-42. Initialize each variable to the value 0.

Step 7: Create an if then block and use its mutator bubble to change it to an
if then else block. Insert the if then else block into the variable
initialization block, as shown in Figure 4-43.

Figure 4-43 Begin the ButtonCalculate.Click Event Handler
(Source: MIT App Inventor 2)

 4.3 The if then else Block 233

Step 8: Insert the Boolean expression shown in Figure 4-44 into the if socket
of the if then else block.

Figure 4-44 Boolean Expression Created (Source: MIT App Inventor 2)

Step 9: The if then else block determines whether the hours worked is
greater than 40. If that is true, the blocks in the then section will calcu-
late the gross pay with overtime and assign the result to the GrossPay
variable. Add the blocks shown in Figure 4-45 to the if then else
block’s then section.

Figure 4-45 Overtime Calculation (Source: MIT App Inventor 2)

Step 10: If the hours worked is not greater than 40, the if then else block’s
else section will calculate the gross pay without overtime and
a ssign the result to the GrossPay variable. Add the blocks shown in
Figure 4-46 to the if then else block’s else section.

234 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-46 The Completed if then else Block (Source: MIT App Inventor 2)

Step 11: The last action to be performed by the ButtonCalculate component
is to display the gross pay. Add the blocks shown in Figure 4-47.

Add these blocks in Step 11.

Figure 4-47 The Completed ButtonCalculate.Click Event Handler
(Source: MIT App Inventor 2)

Step 12: The ButtonClear button will simply clear the Text property of the
TextBox components. Create the button’s Click event handler as
shown in Figure 4-48.

 4.3 The if then else Block 235

Figure 4-48 The Completed ButtonClear.Click Event Handler
(Source: MIT App Inventor 2)

Step 13: Test the app in the emulator or on your device. First, as shown in the
image on the left in Figure 4-49, enter 40 for the number of hours
worked and 20 for the hourly pay rate. Click the Calculate Gross Pay
button and the app should display 800.00 as the gross pay. No over-
time hours were worked, so the gross pay is simply calculated as hours
worked 3 hourly pay rate.

Next, click the Clear button. The text boxes should clear. Enter 50 for
the number of hours worked and 20 for the hourly pay rate. Click the
Calculate button and the app should display 1100 as the gross pay, as
shown in the image on the right in Figure 4-38. This time, more than
40 hours were worked, so the app c alculated the gross pay to include
overtime pay. Continue to test the app as you wish.

Figure 4-49 The App Running in the Emulator (Source: MIT App Inventor 2)

236 Chapter 4 Decision Blocks and Boolean Logic

Checkpoint

 4.9 In an if then else block, under what circumstances do the blocks that
appear in the then section execute?

 4.10 In an if then else block, under what circumstances do the blocks that
appear in the else section execute?

Figure 4-50 The compare texts Block (Source: MIT App Inventor 2)

 4.4 A First Look At Comparing Strings

CONCEPT: The compare texts block compares two strings. It can determine
whether one string is alphabetically less than, greater than, or equal to
another string.

Figure 4-50 shows a block named compare texts, which is found in the Text drawer of
the Built-in section of the Blocks column. The compare texts block lets you compare
two strings and determine whether one string is alphabetically less than, greater than, or
equal to another string. When you create the block you can select one of the compari-
son operators (<, 5, or >) from the block’s dropdown menu, as shown in Figure 4-51.

In Chapter 10 you will read more about this block, but we will take this opportunity
to introduce one of them: the compare texts 5 operator.

 4.5 Logical Operators 237

The compare texts 5 operator has two sockets. You simply plug two pieces of
text into these sockets and the operator returns true if they are equal. Otherwise, it
returns false. For example, the if then else block shown in Figure 4-52 compares
a TextBox’s Text property to a text block. It works like this:

If TextBoxSecretWord.Text is equal to “prospero” then
set LableResult.Text to “That is the correct secret word.”

else
set LableResult.Text to “That is NOT the secret word.”

Figure 4-51 The compare texts Block Dropdown (Source: MIT App Inventor 2)

Figure 4-52 Comparing Two Strings (Source: MIT App Inventor 2)

We will discuss string comparisons in greater detail in Chapter 10, but until then, you
will occasionally see examples that use the compare texts 5 operator.

 4.5 Logical Operators

CONCEPT: The logical and operator and the logical or operator allow you to
connect multiple Boolean expressions to create a compound
e xpression. The logical not operator reverses the truth of a Boolean
e xpression.

App Inventor provides a set of operator blocks known as logical operators, which
you can use to create complex Boolean expressions. Table 4-4 describes these opera-
tor blocks.

238 Chapter 4 Decision Blocks and Boolean Logic

Table 4-4 Logical Operator Blocks (Source: Pearson Education, Inc.)

Operator Block Description

This is the logical and operator. It has sockets
for two Boolean expressions. The and block
returns true if both of the Boolean expressions
are true, or false otherwise.

This is the logical or operator. It has sockets
for two Boolean expressions. The or block
returns true if either of the Boolean expressions
are true. If both of the Boolean expressions are
false, the or block returns false.

This is the logical not operator. It is a unary
operator, meaning it works with only one
operand (you can plug only one Boolean
expression into this block). The not operator
reverses the truth of the expression that is
plugged into it. If it is applied to an expression
that is true, the operator returns false. If it
is applied to an expression that is false, the
operator returns true.

Figure 4-53 shows some examples using the logical operator blocks:

● The top example in the figure determines whether the x variable is greater than
the y variable, and the a variable is less than the b variable. If both expressions
are true, the operator block returns true. Otherwise, it returns false.

● The middle example in the figure determines whether the x variable is equal to
the y variable, OR the x variable is equal to the a variable. If either expression
is true, the operator block returns true. Otherwise, it returns false.

● The bottom example in the figure negates the Boolean value of the expression
x > y. If the expression is true, the operator block returns false. Otherwise, it
returns true.

Figure 4-53 Logical Operator Block Examples (Source: MIT App Inventor 2)

 4.5 Logical Operators 239

Checking Numeric Ranges with Logical Operators
Sometimes you need to determine whether a numeric value is within a specific range
of values or outside a specific range of values. When determining whether a number
is inside a range, it is best to use the and operator. For example, the if block shown
in Figure 4-54 checks the value in x to determine whether it is in the range of
20 through 40.

The compound Boolean expression being tested by the if block in Figure 4-54 is true
only when x is greater than or equal to 20 and less than or equal to 40. The value in
x must be within the range of 20 through 40 for this compound expression to be true.

Blocks plugged here will be executed
only if x > 20 and x < 40.

Figure 4-54 Determining Whether a Number is Inside a Numeric Range
(Source: MIT App Inventor 2)

When determining whether a number is outside a range, it is best to use the or opera-
tor. The if block shown in Figure 4-55 determines whether x is outside the range of
20 through 40.

Blocks plugged here will be executed
if x < 20 or x > 40.

Figure 4-55 Determining Whether a Number is Outside a Numeric Range
(Source: MIT App Inventor 2)

It is important not to get the logic of the logical operators confused when testing
for a range of numbers. For example, the compound Boolean expression shown in
Figure 4-56 would never test true. Obviously, x cannot be less than 20 and at the
same time be greater than 40.

Blocks plugged here will never execute!

Figure 4-56 Logic Error (Source: MIT App Inventor 2)

240 Chapter 4 Decision Blocks and Boolean Logic

Tutorial 4-4:
Creating the Range Checker App

In this tutorial you will create a simple app that checks a number entered by
the user to determine if it is in the range of 1 through 100. Figure 4-57 shows
the app’s user interface in the Viewer and Figure 4-58 shows the app run-
ning in the emulator. When the app runs, the user enters a number into the
TextBoxNumber TextBox and then clicks the ButtonCheckNumber button. If
the number is within the range of 1 through 100 (inclusive), the app changes the
LabelStatus component to read Pass! If the number is not within the range of 1
through 100, the app changes the LabelStatus component to read Fail!

Figure 4-57 The App’s User Interface (Source: MIT App Inventor 2)

Figure 4-58 The App Running in the Emulator (Source: MIT App Inventor 2)

VideoNote
Creating the
Range Checker
App

 4.5 Logical Operators 241

Step 1: Start a new project named RangeChecker.

Step 2: Set up the app’s screen with the components shown in Figure 4-57. Refer
to Table 4-5 for the relevant property settings for each component.

Table 4-5 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Range Checker

LabelPrompt Text 5 Enter a number in the range
of 1 through 100

TextBoxNumber Enabled 5 checked

NumbersOnly 5 checked

Hint 5 cleared

Width 5 Automatic

Height 5 Automatic

LabelStatus FontBold 5 checked

FontSize 5 20

Text 5 Waiting. . .

TextAlignment 5 Center

ButtonCheckNumber Text 5 Check the Number

Step 3: Now you will program the Click event handler for the ButtonCheck
Number button. Open the Blocks Editor and create the event handler as
shown in Figure 4-59.

Figure 4-59 Click Event Handler for ButtonCheckNumber
(Source: MIT App Inventor 2)

Step 4: Test the app in the emulator or on your device. First, as shown in the
image on the left in Figure 4-60, enter 50 and click the button. The app
should display Pass! Then, as shown in the image on the left, enter 101
and click the button. The app should display Fail! Continue to test the
app with other numbers.

242 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-60 The App Running in the Emulator (Source: MIT App Inventor 2)

Checkpoint

 4.11 You have created a compound Booelan expression with the logical and
operator. Under what circumstance will the compound expression be true?

 4.12 You have created a compound Booelan expression with the logical or
operator. Under what circumstance will the compound expression be true?

 4.13 Describe how the logical not operator works.

 4.6 Nested Decision Blocks

CONCEPT: To test more than one condition, a decision block can be nested inside
another decision block.

It is common for a program to test a Boolean expression and, depending on the result,
test another Boolean expression. This type of logic usually requires that a decision
block be nested inside another decision block. (A nested decision block is written
inside the then or else section of another decision block.)

For example, in Tutorial 4-5 you will create an app that reads a test score and dis-
plays a grade (such as A, B, etc.). The following 10-point grading scale is used to
determine the grade:
 Test Score Grade
 Below 60 F
 60–69 D
 70–79 C
 80–89 B
 90 and above A
The logic of determining the grade can be expressed like this:

If the test score is less than 60, then the grade is F.
Else, if the test score is less than 70, then the grade is D.

 4.6 Nested Decision Blocks 243

Else, if the test score is less than 80, then the grade is C.
Else, if the test score is less than 90, then the grade is B.
Else, the grade is A.

The user will enter a numeric test score into a TextBox named TextBoxTestScore and
the app will display corresponding grade in a TextBox named TextBoxGradeDisplay.
Figure 4-61 shows how you will assemble the nested decision blocks.

Figure 4-61 Assembling the Nested Decision Blocks in the Grader App
(Source: MIT App Inventor 2)

Tutorial 4-5:
Creating the Grader App

Figure 4-62 shows the Grader app’s user interface in the Viewer and Figure 4-63
shows the app running in the emulator.

Figure 4-62 The App’s User Interface (Source: MIT App Inventor 2)

VideoNote
Creating the
Grader App

244 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-63 The App Running in the Emulator (Source: MIT App Inventor 2)

Step 1: Start a new project named Grader.

Step 2: Set up the app’s screen with the components shown in Figure 4-62. Refer
to Table 4-6 for the relevant property settings for each component.

Table 4-6 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Grader

LabelPrompt FontBold 5 checked

FontSize 5 20

Text 5 Enter A Test Score:

TextAlignment 5 Center

TextBoxNumber Enabled 5 checked

NumbersOnly 5 checked

Hint 5 cleared

TextAlignment 5 center

Width 5 Automatic

Height 5 Automatic

ButtonGetGrade Text 5 Get the Grade

TextBoxGradeDisplay Enabled 5 unchecked

Hint 5 cleared

TextAlignment 5 center

Width 5 Automatic

Height 5 Automatic

 4.7 The if then else if Block 245

Step 3: Now you will program the Click event handler for the ButtonGetGrade
button. Open the Blocks Editor and create the event handler as shown
in Figure 4-64. (If necessary, refer to Figure 4-61 for additional help
assembling the nested if then else blocks.)

Figure 4-64 Click Event Handler for ButtonGetGrade
(Source: MIT App Inventor 2)

Step 4: Test the app in the emulator or on your device. Enter a variety of
numeric test scores to verify the correct grades are displayed.

 4.7 The if then else if Block

CONCEPT: The if then else if block tests a series of conditions. It is often
simpler to test a series of conditions with the if then else if block
than with a set of nested if then else blocks.

Even though the Grader app that you created in Tutorial 4-5 is a simple example, the
logic of the nested decision structure is fairly complex. App Inventor provide a special
version of the decision structure known as the if then else if block, which makes
this type of logic simpler to write.

As shown in Figure 4-65, you can use the if then block’s mutator bubble to convert
the block into an if then else block. In the mutator bubble, click and drag the

246 Chapter 4 Decision Blocks and Boolean Logic

else if block () from the left side of the bubble and insert it on the right side
of the bubble. Then, as shown in Figure 4-66, drag the else block () from the
left side of the bubble and insert it on the right side of the bubble. This creates an if
then else if block like the one shown in Figure 4-67.

Figure 4-65 Changing an if then Block to an if then else if Block
(Source: MIT App Inventor 2)

Figure 4-66 Adding an else Section to an if then else if Block
(Source: MIT App Inventor 2)

If this Boolean expression is true, then
execute the blocks here (and no others).

Otherwise, if this Boolean expression is true, then
execute the blocks here (and no others).

Otherwise, if none of the Boolean expressions above
are true, then execute the blocks here (and no others).

Figure 4-67 An if then else if Block (Source: MIT App Inventor 2)

 4.7 The if then else if Block 247

When the if then else if block executes, Boolean expression #1 is tested. If
Boolean expression #1 is true, the instructions in the then socket that immediately
follow are executed and the rest of the block is ignored. If Boolean expression #1 is
false, however, the program jumps to the very next else if section and tests Boolean
expression #2. If it is true, the instructions in the then socket that immediately follow
are executed and the rest of the block is then ignored. If none of the Boolean expres-
sions are true, the instructions in the else socket are executed.

You can use the mutator bubble to add as many else if sections as you need.
For e xample, Figure 4-68 shows an if then else if block that can test three
Boolean expressions.

Plug Boolean expression #1 here.

Plug Boolean expression #2 here.

Plug Boolean expression #3 here.

Figure 4-68 An if then else if Block that Can Test Three Boolean Expressions
(Source: MIT App Inventor 2)

Figure 4-69 An Alternative Version of the ButtonGetGrade.Click Event
Handler, from the Grader App (Source: MIT App Inventor 2)

Figure 4-69 shows how the ButtonGetGrade.Click event handler, from the
Grader app that you created in Tutorial 4-5, could be rewritten to use an if then
else if block.

248 Chapter 4 Decision Blocks and Boolean Logic

 4.8 Working with Random Numbers

CONCEPT: Random numbers are used in a variety of apps. App Inventor
p rovides math blocks that you can use in your apps to generate
r andom numbers.

Random numbers are useful for lots of different programming tasks. The following
are just a few examples.

● Random numbers are commonly used in games. For example, computer games
that let the player roll dice use random numbers to represent the values of the
dice. Programs that show cards being drawn from a shuffled deck use random
numbers to represent the face values of the cards.

● Random numbers are useful in simulation programs. In some simulations, the
computer must randomly decide how a person, animal, insect, or other living
being will behave. Formulas can be constructed in which a random number is
used to determine various actions and events that take place in the program.

● Random numbers are useful in statistical programs that must randomly select
data for analysis.

● Random numbers are commonly used in computer security to encrypt sensi-
tive data.

App Inventor provides the blocks shown in Figure 4-70 for generating random num-
bers in an app. In the Blocks Editor, the blocks are found in the Math drawer. Here is
a summary of each block:

● The random integer block is a function that takes two arguments: from and
to. The function returns a random integer between the two arguments (inclu-
sively). When you create this block, App Inventor automatically provides the
values 1 and 100 for the arguments, which means the function returns a value
within the range of 1 through 100. You can change the from and to arguments
as you wish.

● The random fraction block is a function that returns a random fractional
number between 0 and 1.

● The random set seed function lets you specify a seed value for random number
generation. You will not use this function very often, but it is helpful for test-
ing purposes. If you call this function at the beginning of a program and always
pass the same value for the seed argument, it will cause the program to always
generate the same sequence of random numbers.

Figure 4-70 The Random Number Blocks (Source: MIT App Inventor 2)

 4.8 Working with Random Numbers 249

Let’s look at an example app that generates random numbers. Figure 4-71 shows
the screen for the RandomNumberDemo project. When the user clicks the Generate
Random Fraction button, the app displays a random fraction between 0 and 1 (by
calling the random fraction function). When the user clicks the Generate Random
Integer button, the app displays a random integer within the range of 1 and 100 (by
calling the random integer function). Figure 4-72 shows the Click event handlers
for the two buttons and Figure 4-73 shows the app running in the emulator.

Figure 4-71 The RandomNumberDemo Project (Source: MIT App Inventor 2)

Figure 4-72 The Click Event Handlers (Source: MIT App Inventor 2)

Figure 4-73 The App Running in the Emulator (Source: MIT App Inventor 2)

250 Chapter 4 Decision Blocks and Boolean Logic

In Tutorial 4-6 you will use random numbers to determine whether the heads or tails
side of a coin is facing up after the coin has been tossed.

Tutorial 4-6:
Simulating Coin Tosses

In this tutorial you create an app that simulates the tossing of a coin. The app
will display an image of a coin on a button. Each time the user tosses the coin
(clicks the button) the app calls the random integer function to get a random
integer in the range of 0 through 1. If the random number is 0, the image on the
button changes to the tails side of the coin. If the random number is 1, the image
on the button changes to the heads side of the coin.

Figure 4-74 shows the app’s screen in the Viewer, with the names of all the com-
ponents. Notice that the images you will upload are named Heads2.png and
Tails2.png. The image that is initially displayed is Heads2.png. Figure 4-75
shows the app running in the emulator.

Figure 4-74 The App’s Screen in the Viewer (Source: MIT App Inventor 2)

Upload these
image files.

VideoNote
Simulating Coin
Tosses

 4.8 Working with Random Numbers 251

Figure 4-75 The CoinToss App Running in the Emulator (Source: MIT App Inventor 2)

Step 1: Start a new project named CoinToss.

Step 2: Make sure you have downloaded the media files from this book’s
companion website at www.pearsonglobaleditions.com/Gaddis.
Navigate to the location on your system where the book’s media files
are located. You will find a folder named Coins that contains several
.png files. Use the Media column to upload the following image files:
Heads2.png and Tails2.png.

Step 3: Set up the app’s screen with the components shown in Figure 4-74. Refer
to Table 4-7 for the relevant property settings for each component.

Table 4-7 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Coin toss

ButtonCoin Image 5 Heads2.png

Text 5 clear (blank)

LabelPrompt FontBold 5 checked

FontSize 5 20

Text 5 Click the Coin To Toss It

Width 5 Automatic

Height 5 Automatic

http://www.pearsonglobaleditions.com/Gaddis

252 Chapter 4 Decision Blocks and Boolean Logic

Step 4: Now you will program the blocks for the app. Open the Blocks Editor and
create the global variable initialization block shown in Figure 4-76. This is
the variable that will hold the random number each time it is generated.

Figure 4-76 Variable Definition (Source: MIT App Inventor 2)

Step 5: Create a Click event handler for the ButtonCoin button and program
it as shown in Figure 4-77. Here is a summary of the blocks shown in
the figure:
● First, a random number in the range of 0 through 1 is generated and

assigned to the SideUp variable.
● Next, an if then else block determines if the SideUp variable is

equal to 0. If so, the then section changes the ButtonCoin compo-
nent’s Image property to Tails2.png. If not, the else section changes
the ButtonCoin component’s Image property to Heads2.png.

Figure 4-77 Click Event Handler for the ButtonCoin Button (Source: MIT App Inventor 2)

Step 6: Test the app in the emulator or on your device. Click the coin image sev-
eral times. You should see the image change randomly to tails or heads.

Checkpoint

 4.14 Where are the random number blocks found in the Blocks Editor?

 4.15 What does the random fraction block return?

 4.16 What two arguments does the random integer function require? What does
the function return?

 4.9 The Screen’s Initialize Event 253

 4.9 The Screen’s Initialize Event

CONCEPT: The Screen1 component’s Initialize event is triggered when the
app starts running.

When an app begins running, the Screen1 component’s Initialize event is trig-
gered. If you need to perform setup operations when the app starts, you can create an
event handler for the Initialize event and perform the operations there.

To create an Initialize event handler for the Screen1 component, go to the
Screen1 drawer in the Blocks column, as shown in Figure 4-78, and select the when
Screen1.Initialize do block.

Figure 4-78 The Screen1 Component’s Initialize Event Handler
(Source: MIT App Inventor 2)

Figure 4-79 shows an example of a Screen1.Initialize event handler. It sets the
screen’s background color randomly to either blue, yellow, or green. It does this by
generating a random number from 1 to 3. If the number is 1, it sets the screen color
to blue. If the number is 2, it sets the screen color to yellow. If the number is 3, it sets
the screen color to green.

254 Chapter 4 Decision Blocks and Boolean Logic

 4.10 The ListPicker Component

CONCEPT: A ListPicker component displays a list of items and allows the user to
select an item from the list.

A ListPicker component initially appears as a button on an app’s screen. When the
user clicks the ListPicker button, a list of items appears that the user may select from.
For example, Figure 4-80 shows an example app (ListPickerDemo) running in the
emulator. The image on the left shows how the app’s screen initially appears.
The component that looks like a button, displaying the text Pick a Fruit, is the
ListPicker. When the user clicks the ListPicker button, the screen changes to show a
list of items, as shown in the image in the middle. When the user selects an item from
the list, the app’s screen reappears, as shown in the image on the right. As you can
see, the app displays the item that the user selected from the list.

Figure 4-79 Example Screen1.Initialize Event Handler (Source: MIT App Inventor 2)

Figure 4-80 The ListPickerDemo App Running in the Emulator (Source: MIT App Inventor 2)

 4.10 The ListPicker Component 255

The ListPicker has all of the same properties as a Button component, plus a couple of
extra ones:

● The ElementsFromString property: This property holds the list of items that
is displayed when the user clicks the ListPicker. You simply type the items
that you wish to appear in the component’s list, separated by commas, into
the ElementsFromString property. For example, Figure 4-81 shows the
ListPickerDemo app in the Designer, with the ListPicker selected. You can see
part of the ElementsFromString property in the figure.

● The Selection property: Once the user selects an item from the list, the s elected
item is copied into the Selection property.

Figure 4-81 The ListPicker Component’s ElementsFromString Property
(Source: MIT App Inventor 2)

When the user selects an item from a ListPicker’s list, an AfterPicking event is
triggered. If you want to get the item that the user selected, you can create an event
handler for this event. In the event handler, you can get the value of the Selection
property. For example, Figure 4-82 shows the AfterPicking event handler for the
ListPicker in the ListPickerDemo app shown in Figures 4-80 and 4-81.

256 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-82 The AfterPicking Event Handler (Source: MIT App Inventor 2)

Tutorial 4-7:
Creating the Time Zone App

In this tutorial you create an app that allows the user to select a city with a
ListPicker. When the user selects a city, the app displays the name of the city’s
time zone in a TextBox. Figure 4-83 shows the app’s screen in the Viewer and
Figure 4-84 shows the app running in the emulator.

Figure 4-83 The App’s Screen in the Viewer (Source: MIT App Inventor 2)

LabelCity

LabelTimeZone

Figure 4-84 The App Running in the Emulator (Source: MIT App Inventor 2)

VideoNote
Creating the Time
Zone App

 4.10 The ListPicker Component 257

Step 1: Start a new project named TimeZone.

Step 2: Set up the app’s screen with the components shown in Figure 4-83.
(The ListPicker component is in the Basic palette.) Refer to Table 4-8
for the relevant property settings for each component.

Table 4-8 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Time Zone

HorizontalArrangement1 Keep default property settings

ListPickerCity ElementsFromString 5 New York,
San Francisco, Honolulu

Text 5 Select a City

LabelCity FontBold 5 checked

FontSize 5 20

Text 5 You Selected:

TextBoxCityDisplay Enabled 5 unchecked

FontBold 5 checked

Hint 5 cleared

TextAlignment 5 center

Width 5 Automatic

Height 5 Automatic

HorizontalArrangement2 Keep default property settings

LabelTimeZone FontBold 5 checked

FontSize 5 20

Text 5 Time Zone:

TextBoxCityDisplay Enabled 5 unchecked

FontBold 5 checked

Hint 5 cleared

TextAlignment 5 center

Width 5 Automatic

Height 5 Automatic

Step 3: Now you will program the AfterPicking event handler for the
ListPickerCity component. Open the Blocks Editor and create the
event handler as shown in Figure 4-85.

258 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-85 AfterPicking Event Handler for the ListPickerCity
Component (Source: MIT App Inventor 2)

Step 4: Test the app in the emulator or on your device. Figure 4-86 shows the
list of cities that appears when you click the ListPicker. Figure 4-87
shows the app’s screen after you have selected each of the cities.

Figure 4-86 The ListPicker’s List Displayed (Source: MIT App Inventor 2)

Figure 4-87 Each City Selected (Source: MIT App Inventor 2)

 4.11 The CheckBox Component 259

Checkpoint

 4.17 How do you add items to a ListPicker component’s list?

 4.18 How do you get the item that the user selected with a ListPicker?

 4.11 The CheckBox Component
A CheckBox component appears as a small box with some accompanying text.
Figure 4-88 shows an example. A CheckBox component can be either checked,
or unchecked. Clicking on an empty CheckBox causes a check mark to appear
in the box. If a check mark already appears in the box, clicking it removes the
check mark.

Figure 4-88 A CheckBox component

In the Designer, CheckBox components are found in the User Interface section
of the Palette. CheckBox components have many properties that you are already
f amiliar with, but the two that you will be most concerned with are the Text and the
Checked properties. The Text property determines the text that is displayed next to
the small box. The Checked property indicates whether the component is checked,
or unchecked. When a CheckBox component is checked, its Checked property is
set to true. When a CheckBox component is unchecked, its Checked property is set
to false. In the Blocks Editor, you can use a decision block such as if or if then
else to test a CheckBox component’s Checked property and determine whether it is
checked or unchecked.

NOTE: When you create a CheckBox component, its Checked property is set
to false by default, so the component initially appears unchecked. If you want
a CheckBox component to initially appear checked, you can change the Checked
property in the Properties column.

Let’s look at an example. Figure 4-89 shows the PizzaToppings app in the Designer
and Figure 4-90 shows how it initially appears in the emulator. The user checks the
pizza topping items and then clicks the ButtonTotal component to see the total cost
of the selected items.

260 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-91 shows the app’s workspace in the Blocks Editor. The app has a variable
definition and a Click event handler for the ButtonTotal button. Here is a sum-
mary of the blocks that are labeled with numbers in the figure:

1 This block initializes a local variable named Total, with the initial value of 0.
The app uses this variable to hold the total of the items that the user has selected.

2 This if then block determines whether the CheckBoxPepperoni component is
checked. If so, 3.00 is added to the Total variable.

3 This if then block determines whether the CheckBoxCheese component is
checked. If so, 2.00 is added to the Total variable.

4 This if then block determines whether the CheckBoxAnchovies component is
checked. If so, 1.00 is added to the Total variable.

5 This block displays the value of the Total variable, rounded to two decimal
places, in the TextBoxTotalDisplay component.

Figure 4-90 The PizzaToppings App Initially in the Emulator (Source: MIT App Inventor 2)

Figure 4-89 The PizzaToppings App in the Designer (Source: MIT App Inventor 2)

 4.11 The CheckBox Component 261

1

2

3

4

5

Figure 4-91 The App’s Workspace in the Blocks Editor (Source: MIT App Inventor 2)

Figure 4-92 shows four different screenshots from the app running in the emulator.
Each screenshot shows the app after the user has made selections and then clicked
the ButtonTotal button. The total of the selected items is displayed in the TextBox.
(In the upper-left screen, the user has selected no items and then clicked the button.
The resulting total is 0.00.)

Figure 4-92 The App Running in the Emulator (Source: MIT App Inventor 2)

262 Chapter 4 Decision Blocks and Boolean Logic

The Changed Event
Any time a CheckBox component’s Checked property changes, a Changed event hap-
pens for that component. If you want some action to immediately take place when the
user checks (or unchecks) a CheckBox component, you can create a Changed event
handler for the component and place the desired blocks in that event handler. (You
create a Changed event handler in the same manner that you create other event han-
dlers: In the Blocks column, click on the name of the CheckBox component and then
select the block for the Changed event handler.)

Let’s look at an example. Figure 4-93 shows the PizzaToppings2 app in the Designer
and Figure 4-94 shows how it initially appears in the emulator. This app serves the
same purpose as the PizzaToppings app that we previously discussed, except it does
not require the user to click a button to calculate the total cost. This app updates the
total each time the user clicks one of the CheckBox components.

Figure 4-93 The PizzaToppings2 App in the Designer (Source: MIT App Inventor 2)

Figure 4-94 The PizzaToppings App Initially in the Emulator (Source: MIT App Inventor 2)

 4.11 The CheckBox Component 263

This app creates a global variable named Total, initialized to 0. The app uses this
variable to hold the total of the items that the user has selected. The app also has a
Changed event handler for each of the CheckBox components. Each time a CheckBox
is clicked, its Changed event handler determines whether the component became
checked, or unchecked, and then adjusts the value of the global Total variable ac-
cordingly. Figure 4-95 shows the initialization block for the Total variable and the
Changed event handler for the CheckBoxPepperoni component.

Figure 4-95 The CheckBoxPepperoni.Changed Event Handler
(Source: MIT App Inventor 2)

The event handler works like this:

If CheckBoxPepperoni is checked, then add 3.00 to the Total variable.

Otherwise, subtract 3.00 from the Total variable.

Display the Total variable rounded to two decimal places.

Figure 4-96 shows the CheckBoxCheese.Changed and CheckBoxAnchovies.
Changed event handlers, which work in a similar fashion.

Figure 4-96 The CheckBoxCheese.Changed and CheckBoxAnchovies.
Changed Event Handler (Source: MIT App Inventor 2)

264 Chapter 4 Decision Blocks and Boolean Logic

Figure 4-97 shows four different screenshots from the app running in the emulator.

Figure 4-97 The App Running in the Emulator (Source: MIT App Inventor 2)

Checkpoint

 4.19 What CheckBox property determines the text that is displayed next to the
component’s box?

 4.20 How do you determine whether a CheckBox is checked or not?

 4.21 What event happens when the user clicks a CheckBox?

 Review Questions 265

Review Questions

Multiple Choice

 1. The value of a Boolean expression is either __________.

a. True or false
b. Number or text
c. Yes or no
d. 0 or 1

 2. The symbols ., ,, and 5 are all __________ operators.

a. relational
b. logical
c. conditional
d. ternary

 3. The if then block can be found in the ________ drawer of the Blocks column.

a. Variables
b. Text
c. Control
d. Math

 4. A(n) __________ block tests a Boolean expression and then executes one set of
blocks if the expression is true, or another set of blocks if the expression is false.

a. select
b. if
c. if then else
d. ifcall

 5. An if then block is a mutator block, which means that we can add more
_______.

a. else sockets
b. else if sockets
c. both else and else if sockets
d. if sockets

 6. and, or, and not are __________ operators.

a. relational
b. logical
c. conditional
d. ternary

 7. A compound Boolean expression created with the __________ operator is true
only if all of its connected expressions are true.

a. and
b. or
c. not
d. both

266 Chapter 4 Decision Blocks and Boolean Logic

 8. A compound Boolean expression created with the __________ operator is true if
any of its connected expressions are true.

a. and
b. or
c. not
d. either

 9. The logical _______ operator is a unary operator, which means it has only one
operand.

a. and
b. or
c. not
d. either

 10. A ____________ decision block is written inside the then or else section of
a nother decision block.

a. nested
b. tiered
c. dislodged
d. hierarchical

 11. This property holds the list of items that is displayed by a ListPicker.

a. List
b. Items
c. Text
d. Elementsfromstring

 12. This CheckBox property determines the text that is displayed next to the compo-
nent’s box.

a. Caption
b. Selection
c. Text
d. Description

 13. This CheckBox property is true when the CheckBox is checked, or false other-
wise.

a. Checked
b. Selected
c. Unchecked
d. Completed

 14. This event happens when the user clicks a CheckBox component.

a. Checked
b. Changed
c. Selected
d. Clicked

 Exercises 267

Short Answer

 1. You need to test a Boolean expression and then execute one set of blocks if the
expression is true. If the expression is false, you need to execute a different set of
blocks. What decision block will you use?

 2. Briefly describe how the and operator works.

 3. Briefly describe how the or operator works.

 4. Briefly describe how the not operator works.

 5. When determining whether a number is inside a range, which logical operator is
it best to use?

 6. What is a nested decision block?

 7. When does the Screen1 component’s Initialize event happen?

 8. How do you add items to a ListPicker’s list?

 9. How do you determine which item the user selected with a ListPicker?

 10. How can we make a CheckBox component appear checked by default?

 11. What event happens when the user clicks a CheckBox component?

Exercises
 1. Open the Blocks Editor and define two variables, x and y. Create an if then

block that determines whether the variable y is equal to 20. If it is, assign 0 to the
variable x.

 2. Open the Blocks Editor and define a variable called temperature. Create an
if then block that determines whether the user’s temperature is above normal
(98.6 °F). If it is, display the message You have fever; go to the doctor.

 3. Open the Blocks Editor and define three variables: x, y, and z. Create an if then
block that assigns 20 to the variable y and assigns 40 to the variable z if the vari-
able x is greater than 100.

 4. Open the Blocks Editor and define two variables: a and b. Create an if then
else block that assigns 0 to the variable b if the variable a is less than 10.
Otherwise, it should assign 99 to the variable b.

 5. In the Designer, add a ListPicker to an app’s screen. Change the component’s
name to ListPickerPizza. Add the following pizza types to the component’s list:

Cheese
Pepperoni
Vegetable
Chicken

268 Chapter 4 Decision Blocks and Boolean Logic

 6. Modify the MPG Calculator app that you created in Tutorial 3-1 (from Chapter 3)
to display the message That is an efficient auto if the MPG is greater than 32.

 7. Modify the Wages app that you created in Tutorial 4-3 in such a way that when
the user works overtime, the app also displays the number of overtime hours
worked, the amount of regular pay, and the amount of overtime pay.

Programming Projects
 1. Roman Numeral Converter

Create an app that allows the user to enter an integer between 1 and 5 into
a TextBox. The program should display the Roman numeral version of that
number. If the number is outside the range of 1 through 5, the program should
display an error message.

The following table lists the Roman numerals for the numbers 1 through 5.

 Number Roman Numeral
 1 I
 2 II
 3 III
 4 IV
 5 V

 2. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in newtons. If you
know the amount of mass of an object, you can calculate its weight, in newtons,
with the following formula:

Weight 5 Mass 3 9.8

Create an app that lets the user enter an object’s mass and then calculates its
weight. If the object weighs more than 1000 newtons, display a message indicat-
ing that it is too heavy. If the object weighs less than 10 newtons, display a mes-
sage indicating that it is too light.

 3. Magic Dates

The date June 10, 1960, is special because when it is written in the following
format, the month times the day equals the year:

6/10/60

Create an app that lets the user enter a month (in numeric form), a day, and a
two-digit year. The program should then determine whether the month times the
day equals the year. If so, it should display a message saying the date is magic.
Otherwise, it should display a message saying the date is not magic.

 4. Body Mass Index Program Enhancement

In Programming Project 4 in Chapter 3 you were asked to create an app that
calculates a person’s body mass index (BMI). Recall from that exercise that
the BMI is often used to determine whether a person is overweight or under-
weight for his or her height. A person’s BMI is calculated with the following
formula:

BMI 5 Weight 3 703 4 Height 2

VideoNote
The Mass and
Weight App

 Programming Projects 269

In the formula, weight is measured in pounds and height is measured in inches.
Enhance the program so it displays a message indicating whether the person has
optimal weight, is underweight, or is overweight. A person’s weight is considered
to be optimal if his or her BMI is between 18.5 and 25. If the BMI is less than
18.5, the person is considered to be underweight. If the BMI value is greater than
25, the person is considered to be overweight.

 5. Dice Rolling

Create a dice game that lets the user roll a dice 3 times. If the rolls have two
 repeated numbers then a double is reached. The program should let the user click
a button to roll the dice in order to get 3 random numbers from 1 to 6. If a
number is repeated, then it should display a message indicating a double with the
repeated number displayed.

 6. Fat Percentage Calculator

One gram of fat has 9 calories. If you know the number of fat grams in a particu-
lar food, you can use the following formula to calculate the number of calories
that come from fat in that food:

Calories from fat 5 fat grams 3 9

If you know the food’s total calories, you can use the following formula to calcu-
late the percentage of calories from fat:

Percentage of calories from fat 5 Calories from fat 4 total calories

Create an app that allows the user to enter:
● The total number of calories for a food item
● The number of fat grams in that food item

The app should calculate and display:
● The number of calories from fat.
● The percentage of calories that come from fat.

Also, the app’s screen should have a CheckBox that the user can check if they
want to know whether the food is considered low fat. (If the calories from fat are
less than 30% of the total calories of the food, the food is considered low fat.)

Use the following test data to determine if the app is calculating properly:

Calories and Fat Percentage Fat
200 calories, 8 fat grams Percentage of calories from fat: 36%
150 calories 2 fat grams Percentage of calories from fat: 12% (a low-fat food)
500 calories, 30 fat grams Percentage of calories from fat: 54%

 7. Storage Calculator

Create an app that lets the user enter a number of bytes (B) and works as follows:
● A Kilobyte (KB) has 1024 bytes. If the number of bytes entered by the user is

greater than or equal to 1024 B, the program should display how many KB are
in that number.

● A Megabyte (MB) has 1024 KB. If the number of KB calculated are more
than or equal to 1024, the program should display how many MB are in that
number.

270 Chapter 4 Decision Blocks and Boolean Logic

● A Gigabyte (GB) has 1024 MB. If the number of MB calculated is greater
than or equal to 1024, the program should display how many GB are in that
number.

 8. Workshop Selector

The following table shows a training company’s workshops, the number of days
of each, and their registration fees.

Workshop Number of Days Registration Fee
Time Management 2 $800
Supervision Skills 3 $1,500
Negotiation 5 $1,300

The training company conducts its workshops in the three locations shown in the
following table. The table also shows the lodging fees per day at each location.

Location Lodging Fees per Day
Chicago $225
Dallas $175
Orlando $300

When a customer registers for a workshop, he or she must pay the registration fee
plus the lodging fees for the selected location. For example, here are the charges
to attend the Supervision Skills workshop in Orlando:

Registration: $1,500

Lodging: $300 3 3 days 5 $900

Total: $2,400

Create an app that lets the user to select a workshop from one list box and a
location from another list box. When the user clicks a button, the app should
calculate and display the registration cost, the lodging cost, and the total cost.

TOPICS

5.1 The Notifier Component

5.2 The while Loop

5.3 The for each Loop

5.4 The Clock Component

5.5 The DatePicker Component

Repetition Blocks, Times,
and Dates

 5.1 The Notifier Component
A Notifier is a nonvisible component that allows an app to display dialog boxes.
A dialog box is a small window that displays a message or prompts the user to pro-
vide some sort of input. The Notifier component can display the following types
of dialog boxes:

● Message dialog—A window that displays a title and a message and waits for the
user to click a button.

● Text dialog—A window that displays a title and a message, and allows the
user to enter some text as input and then click an OK button, and optionally a
Cancel button.

● Choose dialog—A window that displays a title and a message, and lets the user
click one of two buttons, and optionally a Cancel button.

 Figure 5-1 shows examples of each type of dialog box.

In the Designer, the Notifier component is found in the User Interface section of the
Palette. It is a nonvisible component, and it has no properties. It does, however, provide
several methods and event handlers that you can use to display dialog boxes. Let’s take
a closer look at how you display each type of dialog box with a Notifier.

C
H

A
P

T
E

R

5

271

272 Chapter 5 Repetition Blocks, Times, and Dates

The Message Dialog
A message dialog simply displays a message and waits for the user to click a button.
When the user clicks the button, the dialog box closes. You display a message dialog
by calling the Notifier component’s ShowMessageDialog method.

Let’s look at an example. Figure 5-2 shows the MessageDialogDemo project in
the Designer. Notice that the project has a button named ButtonMessage, and a

Figure 5-1 Dialog Boxes Displayed by the Notifier Component (Source: MIT App Inventor 2)

Message Dialog Text Dialog Choose Dialog

Figure 5-2 The MessageDialogDemo Project in the Designer (Source: MIT App Inventor 2)

 5.1 The Notifier Component 273

Notifier named Notifier1. When the app runs, the user clicks the button and a mes-
sage dialog appears. Figure 5-3 shows the button’s Click event handler.

Figure 5-3 The ButtonMessage Component’s Click Event Handler
(Source: MIT App Inventor 2)

In the Click event handler, we call the Notifier1.ShowMessageDialog method. (In
the Blocks Editor, you will find the block for the method in the My Blocks->Notifier1
drawer.) Notice in Figure 5-3 that the method takes three arguments:

● message—The text of the message to display. In this example, the message is
Something happened . . .

● title—The title to display. In this example, the title is Important message.
● buttonText—The text to display on the dialog box’s button. In this example,

the button text is OK.

 Figure 5-4 shows the message dialog box displayed in the emulator. When the user
clicks the OK button, the dialog box closes.

Figure 5-4 The Message Dialog Box (Source: MIT App Inventor 2)

274 Chapter 5 Repetition Blocks, Times, and Dates

The Text Dialog
A text dialog displays a message and provides a box (like a TextBox) for the user to
type input. After the user has typed the requested input, he or she clicks a button to
close the dialog box. When the dialog box closes, an AfterTextInput event occurs.
If you want to retrieve the text that the user entered into the dialog box, you can cre-
ate an event handler for the AfterTextInput event. (App Inventor passes the user’s
input to the event handler as an argument.)

Let’s look at an example. Figure 5-5 shows the TextDialogDemo project in the
Designer. Notice that the project has a button named ButtonTextDialog, a TextBox
named TextBoxDisplay, and a Notifier named Notifier1. When the app runs,
the user clicks the button and the text dialog shown in the image on the left in
Figure 5-6 appears. The dialog prompts the user to enter his or her name. The user

Figure 5-5 The TextDialogDemo Project in the Designer (Source: MIT App Inventor 2)

 5.1 The Notifier Component 275

types input (in this case Jamie Jones) and clicks the OK button to close the dialog
box. Notice in the image on the right in Figure 5-6 that the user’s input is displayed in
the TextBoxDisplay component.

Figure 5-7 shows the app’s workspace in the Blocks Editor. Notice that we have a
Click event handler for the ButtonTextDialog button and an AfterTextInput
event handler for the Notifier component.

In the ButtonTextDialog.Click event handler, we call the Notifier1.
ShowTextDialog method. (In the Blocks column, you will find the block for
the method in the Notifier1 drawer.) Notice in Figure 5-7 that the method takes
three arguments:

● message—The text of the message to display. In this example, the message is
Enter your name.

● title—The title to display. In this example the title is Input Needed.
● cancelable—A true or false value. If the argument is true, the dialog will

have a Cancel button. If the argument is false, the dialog will have only an OK
button. In this example we have plugged a true block in to this socket to cause
a Cancel button to be displayed. (The true and false blocks can be found in
the Logic drawer of the Built-In section of the Blocks column.)

When the user clicks either the OK or the Cancel button, the dialog box closes
and an AfterTextInput event occurs. Notice in Figure 5-7 that we have created
an event handler for the AfterTextInput event. (You will find the block for the

Figure 5-6 The Text Dialog Displayed (Source: MIT App Inventor 2)

276 Chapter 5 Repetition Blocks, Times, and Dates

NOTE: If the user clicks the Cancel button on a text dialog, the value of
the response parameter in the AfterTextInput event handler will be the
text Cancel.

The Choose Dialog
A choose dialog lets the user make a choice by clicking one of two buttons. You can
decide the text that you want to display on the buttons. For example, if you want the
user to answer a yes/no question, you can display Yes on one button and No on the
other. Optionally, you can also have a Cancel button.

When the user clicks a button on the dialog box, the dialog box closes and the
AfterChoosing event occurs. To determine which button the user clicked, you can
create an event handler for the AfterChoosing event. App Inventor passes the text of
the button that was clicked as an argument to the event handler.

Let’s look at an example. Figure 5-8 shows the ChooseDialogDemo project in
the Designer. Notice that the project has a button named ButtonChooseDialog,
a TextBox named TextBoxDisplay, and a Notifier named Notifier1. When the
app runs, the user clicks the button and the choose dialog shown in the image on
the left in Figure 5-9 appears. The dialog waits for the user to click the Yes button,
the No button, or the Cancel button. Notice in the image on the right in Figure 5-9
that the user’s choice is displayed in the TextBoxDisplay component.

Figure 5-7 The App’s Workspace in the Blocks Editor (Source: MIT App Inventor 2)

event handler by clicking the name of the Notifier component in the Blocks
column.) The event handler has a parameter named response, which holds
the input that the user typed into the text dialog. As you can see in Figure 5-7, the
event handler assigns the value of the response parameter to TextBoxDisplay’s
Text property.

 5.1 The Notifier Component 277

Figure 5-8 The ChooseDialogDemo Project in the Designer (Source: MIT App Inventor 2)

Figure 5-10 shows the app’s workspace in the Blocks Editor. Notice that we have a
Click event handler for the ButtonChooseDialog button and an AfterChoosing
event handler for the Notifier component.

In the ButtonChooseDialog.Click event handler, we call the Notifier1.
ShowChooseDialog method. (In the Blocks column, you will find the block for
the method in the Notifier1 drawer.) Notice in Figure 5-10 that the method takes
five arguments:

● message—The text of the message to display. In this example, the message is
Do you want to continue?

● title—The title to display. In this example, the title is Confirm.
● button1Text—The text to display on the first button. In this example, the but-

ton text is Yes.

278 Chapter 5 Repetition Blocks, Times, and Dates

● button2Text—The text to display on the second button. In this example, the
button text is No.

● cancelable—A true or false value. If the argument is true, the dialog will have
a Cancel button in addition to the other two buttons. In this example, we have
plugged a true block into this socket to cause a Cancel button to be displayed.
(The true and false blocks can be found in the Logic drawer of the Built-In
section of the Blocks column.)

Figure 5-10 The App’s Workspace in the Blocks Editor (Source: MIT App Inventor 2)

Figure 5-9 The Choose Dialog Displayed (Source: MIT App Inventor 2)

 5.2 The while Loop 279

When the user clicks any of the buttons on the dialog box, the dialog box closes
and an AfterChoosing event occurs. Notice that in Figure 5-10 we have cre-
ated an event handler for the AfterChoosing event. (You will find the block
for the event handler by clicking the name of the Notifier component in
the Blocks column.) The event handler has a parameter named choice that holds
the text of the b utton that the user clicked. As you can see in Figure 5-10, the
event handler assigns the value of the choice parameter to TextBoxDisplay’s
Text property.

Checkpoint

 5.1 What are the three types of dialog boxes that a Notifier component can
display? How do you display each type?

 5.2 When does the AfterTextInput event happen?

 5.3 When does the AfterChoosing event happen?

 5.4 How do you retrieve the input that the user entered into a text dialog?

 5.5 How do you determine which button the user clicked in a choose dialog?

 5.2 The while Loop

CONCEPT: The while loop causes a statement or set of statements to repeat as
long as a Boolean expression is true.

Some programming tasks involve actions that must be repeated several times.
Programming languages provide special tools known as loops that repeat opera-
tions as many times as necessary. One of these is the while loop. The while loop
gets its name from the way it works: While a Boolean expression is true, do some
task. The loop has two parts: (1) a Boolean expression that is tested for a true or
false value, and (2) a statement or set of statements that is repeated as long as the
Boolean expression is true.

In the Built-in section of the Blocks column, you will find the while loop in the
Control drawer, as shown in Figure 5-11. The while loop is shown in Figure 5-12.
Notice that the while loop block has two sockets: test and do. The test socket
holds a Boolean expression. When the while loop executes, the Boolean expression
is tested. If the Boolean expression is true, the blocks that appear in the do socket are
executed, and then the while loop starts over. If the Boolean expression is false, the
while loop ends. Each time the loop executes the blocks in its do socket, we say the
loop is iterating or performing an iteration.

Let’s look at an example that uses a while loop to display a message dialog five
times. Figure 5-13 shows the WhileLoopDemo project in the Designer. Notice
that the project has a button named ButtonLoopDemo and a Notifier named
Notifier1. In the emulator or an actual device, when the user clicks the button,

280 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-13 The WhileLoopDemo Project in the Designer (Source: MIT App Inventor 2)

The blocks that appear here execute as
long as the Boolean expression is true.

Plug a Boolean expression here.

Figure 5-12 The While Loop (Source: MIT App Inventor 2)

Figure 5-11 The While Loop Block (Source: MIT App Inventor 2)

 5.2 The while Loop 281

Figure 5-14 Message Dialog is Displayed Five Times (Source: MIT App Inventor 2)

the message dialog shown in Figure 5-14 is displayed. When the user clicks OK to
close the dialog, another identical dialog is displayed. This repeats until the dialog
is displayed five times.

Figure 5-15 shows the project’s workspace in the Blocks Editor. Let’s take a closer
look at the blocks in the project’s workspace.

 1 This initializes a local variable named count to the value 0. Each time the user
clicks the ButtonLoopDemo button, the count variable will keep count of the
number of times the message dialog is displayed.

 2 This while loop uses the Boolean expression count < 5. This means that the
loop will repeat as long as the value of the count variable is less than 5.

 3 This block displays a message dialog.
 4 This block adds 1 to the count variable.

The while Loop Is a Pretest Loop
The while loop is known as a pretest loop, which means it tests its condition before
performing an iteration. Because the test is done at the beginning of the loop, you
usually have to perform some steps prior to the loop to make sure that the loop
executes at least once.

282 Chapter 5 Repetition Blocks, Times, and Dates

For example, in Figure 5-15, notice the first action to take place in the
ButtonLoopDemo.Click event handler is that the count variable is set to the
value 0. If count had been set to a value that is not less than 5, the loop would
never execute. For example, if we had set the count variable to 5, or 6, or any
greater value, the loop would not iterate.

An important characteristic of the while loop is that the loop will never iterate if its
Boolean expression is false to start with. To be sure that a while loop executes the
first time, you must initialize the relevant data in such a way that the Boolean expres-
sion starts out as true.

Counter Variables
In the WhileLoopDemo app, the count variable is set to the value 0 and then 1 is
added to the count variable during each loop iteration. The loop executes as long
as count is less than 5. The count variable is used as a counter variable, which
means it is regularly incremented in each loop iteration. In essence, the count vari-
able keeps count of the number of iterations the loop has performed.

Counter variables are commonly used to control the number of times that a loop iter-
ates. Tutorial 5-1 will give you some practice writing a loop and using a counter vari-
able. In the tutorial, you will write a while loop that calculates the amount of interest
earned by a bank account each month for a number of months.

Tutorial 5-1:
The Ending Balance App

In this tutorial, you will create an app that calculates the ending balance of
a savings account. The user will enter the account’s starting balance and the
number of months that the account will be left to earn interest. When the
user clicks a button, the app will calculate the account’s balance at the end of
the time period. The monthly interest rate is 0.005 (i.e., 0.5%), and the interest
is compounded monthly.

1

2

3

4

Figure 5-15 The Project’s Workspace in the Blocks Editor (Source: MIT App Inventor 2)

VideoNote
The Ending
Balance App

 5.2 The while Loop 283

Figure 5-16 The EndingBalance App in the Designer (Source: MIT App Inventor 2)

Figure 5-17 The App Running in the Emulator (Source: MIT App Inventor 2)

Step 1: Start a new project named EndingBalance.

Figure 5-16 shows the app’s screen in the Viewer along with the names of the
components. Figure 5-17 shows how the screen appears in the emulator.

284 Chapter 5 Repetition Blocks, Times, and Dates

Table 5-1 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings
Screen1 AlignHorizontal = Center

Scrollable = checked

Title = Ending Balance

HorizontalArrangement1 AlignHorizontal = Center

Width = Fill parent

Height = Automatic

LabelStartingBlancePrompt Text = Starting Balance:

TextBoxStartingBalance Enabled = checked

NumbersOnly = checked

Width = Automatic

Height = Automatic

HorizontalArrangement2 AlignHorizontal = Center

Width = Fill parent

Height = Automatic

LabelNumberMonthsPrompt Text = Number of Months:

TextBoxNumberMonths Enabled = checked

NumbersOnly = checked

Width = Automatic

Height = Automatic

HorizontalArrangement3 AlignHorizontal = Center

Width = Fill parent

Height = Automatic

LabelEndingBalance Text = Ending Balance:

TextBoxEndingBalanceDisplay Enabled = unchecked

Width = Automatic

Height = Automatic

ButtonCalculate Text = Calculate Ending Balance

ButtonReset Text = Reset

Step 3: Now you will program the blocks for the app. Open the Blocks Editor.

Step 4: Create the Click event handler for the ButtonCalculate button. Inside
the event handler, create the local variable initialization block shown in
Figure 5-18. The variables are needed to calculate the ending balance.

Step 2: Set up the app’s screen with the components shown in Figure 5-16. Refer
to Table 5-1 for the relevant property settings for each component.

 5.2 The while Loop 285

Figure 5-18 Variable Definition Blocks (Source: MIT App Inventor 2)

(You will need to use the initialization block’s mutator bubble to add all
of the necessary variables.) Here is a summary of each variable’s purpose:
● The Balance variable will hold the account balance. Notice that in

Figure 5-18, it is initialized with the value the user has entered into
the TextBoxStartingBalance component.

● The Months variable will hold the number of months that the account
will earn interest. Notice in Figure 5-18 that it is initialized with the value
the user has entered into the TextBoxNumberMonths component.

● The Count variable will be used to count the months as a loop
 iterates. Notice that in Figure 5-18, it is initialized to the value 0.

● The InterestRate variable holds the monthly interest rate, which
is 0.005.

Figure 5-19 The ButtonCalculate.Click Event Handler
(Source: MIT App Inventor 2)

1

2

3

4

Step 5: Complete the ButtonCalculate.Click event handler as shown in
Figure 5-19. The blocks that are pointed out are described here:

1 The while loop executes as long as Count is less than Months.

2 This block calculates the monthly interest and adds it to the balance.

3 This block adds 1 to the Count variable.
4 This block displays the balance, rounded to two decimal places.

286 Chapter 5 Repetition Blocks, Times, and Dates

Step 6: Create the Click event handler for the ButtonReset button as shown
in Figure 5-20. The event handler sets each of the TextBox compo-
nents’ Text properties to blank text.

Figure 5-20 The ButtonReset.Click Event Handler (Source: MIT App Inventor 2)

Step 7: Test the app in the emulator or on your device. First, enter 1000 as the
starting balance and 48 as the number of months. Click the Calculate
Ending Balance button, and 1270.49 should appear as the ending bal-
ance, as shown in the image on the left in Figure 5-21. Think about the
value that you entered for the number of months. How many times did
the while loop shown in Figure 5-19 iterate? (Answer: 48 times.)

Figure 5-21 The App Running in the Emulator (Source: MIT App Inventor 2)

Next, click the Reset button to clear the TextBoxes and the ending
balance. Now, enter 100 as the starting balance and 1 as the number
of months. Click the Calculate Ending Balance button and $100.50
should appear as the ending balance, as shown in the image on the
right in Figure 5-21. How many times did the while loop shown in
Figure 5-19 iterate this time? (Answer: 1 time.)

Continue to test the app as you wish.

 5.3 The for each Loop 287

Infinite Loops
In all but rare cases, loops must contain a way to terminate within themselves. This
means that something inside the loop must eventually make the loop’s Boolean expres-
sion false. The loop in the EndingBalance app (Tutorial 5-1) stops when the expression
Count < Months is false. If a loop does not have a way of stopping, it is called an infinite
loop. An infinite loop continues to repeat until the program is interrupted. Infinite loops
usually occur when the programmer forgets to write code inside the loop that makes the
Boolean expression false. In most circumstances, you should avoid writing infinite loops.

The blocks shown in Figure 5-22 demonstrate an infinite loop. First, the Count variable
is set to the value 0. The while loop executes as long as Count is less than 5. There is
no code inside the loop to change the count variable’s value, so the Boolean expression
Count < 5 is always true. As a consequence, the loop has no way of stopping.

Figure 5-22 An Infinite While Loop (Source: MIT App Inventor 2)

Checkpoint

 5.6 What is a loop iteration?

 5.7 What is a counter variable?

 5.8 What is a pretest loop?

 5.9 Does the while loop test its condition before or after it performs an iteration?

 5.10 What is an infinite loop?

 5.3 The for each Loop

CONCEPT: The for each loop is designed to increment a counter variable over a
range of values. It is ideally suited for problems requiring a loop that
iterates a specific number of times.

The for each loop is ideal for situations that require a counter because it initializes,
tests, and increments a counter variable. It is particularly useful for creating loops
that must iterate a specific number of times.

288 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-23 The for each Block (Source: MIT App Inventor 2)

1

2

3

4

5

Figure 5-24 The for each Loop Block (Source: MIT App Inventor 2)

The different parts of the block are pointed out in the figure. Here is a description of
each part:

 1 This is the loop’s counter variable. When you create a for each loop, a variable
named number is automatically created. The variable’s scope is limited to the
for each loop, so you cannot access it outside of the loop. In most cases, you
should change the variable’s name so that it is more descriptive. (To change the
variable’s name, simply click the existing name and then type the new name.)

 2 The from socket specifies the counter variable’s starting value. When the loop
begins executing, the counter variable will be set to this value. The value 1 is
plugged into this socket by default, but you can change it to another value.

 3 The to socket specifies the counter variable’s ending value. When the counter
variable reaches this value (or is greater than this value), the loop ends. The value 5
is plugged into this socket by default, but you can change it to another value.

In the Blocks column, you will find the for each loop in the Control drawer, as
shown in Figure 5-23. The for each loop block is shown in Figure 5-24.

 5.3 The for each Loop 289

 4 The by socket specifies the amount added to the counter variable at the end of
each iteration. The value 1 is plugged into this socket by default, but you can
change it to another value.

 5 The blocks that are plugged into the do socket will execute each time the loop
iterates.

Figure 5-25 shows three very straightforward examples of the for each loop. In the
each example, we have changed the name of the number variable to Counter. The
topmost example uses the default values for each of the block’s sockets. The Counter
variable starts with the value 1 and ends with the value 5. At the end of each loop iter-
ation, 1 is added to the Counter variable, so the loop will execute five times. (As the
loop executes, the Counter variable will have the values 1, 2, 3, 4, and 5.)

Figure 5-25 Examples for the for each Loop (Source: MIT App Inventor 2)

When this loop executes, the Counter
variable starts with the value 1,

The blocks that appear here will
execute �ve times.

ends with the value 5,

and 1 is added to the Counter variable
at the end of each iteration.

When this loop executes, the Counter
variable starts with the value 1,

The blocks that appear here will
execute three times.

ends with the value 3,

and 1 is added to the Counter variable
at the end of each iteration.

When this loop executes, the Counter
variable starts with the value 1,

The blocks that appear here will
execute ten times.

ends with the value 10,

and 1 is added to the Counter variable
at the end of each iteration.

In the middle example, the Counter variable starts with the value 1 and ends with the
value 3. At the end of each loop iteration, 1 is added to the Counter variable, so the
loop will execute three times. (As the loop executes, the Counter variable will have
the values 1, 2, and 3.)

In the bottom example, the Counter variable starts with the value 1 and ends with
the value 10. At the end of each loop iteration, 1 is added to the Counter variable, so
the loop will execute ten times. (As the loop executes, the Counter variable will have
the values 1, 2, 3, and so forth, up to 10.)

290 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-26 shows two simple but less straightforward examples of the for each
loop. In the top example, the Counter variable starts with the value 0 and ends
with the value 5. At the end of each loop iteration, 1 is added to the Counter vari-
able, so the loop will execute six times. (As the loop executes, the Counter variable
will have the values 0, 1, 2, 3, 4, and 5.)

In the bottom example in Figure 5-26, the Counter variable starts with the value 10
and ends with the value 100. At the end of each loop iteration, 10 is added to the
Counter variable, so the loop will execute ten times. (As the loop executes,
the Counter variable will have the values 10, 20, 30, and so forth, up to 100.)

Figure 5-26 Examples for the for each Loop (Source: MIT App Inventor 2)

When this loop executes, the Counter
variable starts with the value 0,

The blocks that appear here will
execute six times.

ends with the value 5,

and 1 is added to the Counter variable
at the end of each iteration.

When this loop executes, the Counter
variable starts with the value 10,

The blocks that appear here will
execute ten times.

ends with the value 100,

and 10 is added to the Counter variable
at the end of each iteration.

Calculating a Running Total
A running total is the sum of a series of numbers. Running totals are commonly calcu-
lated in programs. An application that calculates a business’s total sales for a week is
an example. The program would get each day’s sales and add that amount to a vari-
able that accumulates the sum of all the days’ sales.

Programs that calculate the total of a series of numbers typically use two elements:

● A loop that reads each number in the series.
● A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accu-
mulator. It is very important that the accumulator variable be initialized with the
value 0 before the loop starts executing. Each time the loop reads a number, it adds it
to the accumulator. If the accumulator starts with any value other than 0, it will not
contain the correct total when the loop finishes.

In Tutorial 5-2, you will create an app that calculates the sum of a series of numbers
from 1 to an upper limit specified by the user.

 5.3 The for each Loop 291

Tutorial 5-2:
Calculating a Sum of Consecutive Numbers

In this tutorial, you will create an app that uses a for each loop to calculate the
sum of a series of numbers. The range will always start at 1, but the user will
specify the upper limit of the range. (For example, if the user specifies 100 as the
upper limit, the loop will calculate the sum of 1 through 100.)

Figure 5-27 shows the app’s screen in the Viewer along with the names of the
components. Figure 5-28 shows how the screen appears in the emulator.

Figure 5-27 The SumOfNumbers App in the Designer (Source: MIT App Inventor 2)

Figure 5-28 The App in the Emulator (Source: MIT App Inventor 2)

VideoNote
Calculating
the Sum of
Consecutive
Numbers

292 Chapter 5 Repetition Blocks, Times, and Dates

Step 1: Start a new project named SumOfNumbers.

Step 2: Set up the app’s screen with the components shown in Figure 5-27. Refer
to Table 5-2 for the relevant property settings for each component.

Table 5-2 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal = Center

Title = Sum of Numbers

LabelPrompt FontBold = checked

FontSize = 20

Text = Enter the Upper Limit:

TextBoxUpperLimit Enabled = checked

FontBold = checked

FontSize = 20

Hint = cleared

NumbersOnly = checked

TextAlignment = Center

Width = Automatic

Height = Automatic

ButtonCalculate Text = Calculate

LabelSum FontBold = checked

FontSize = 20

Text = Sum:

TextBoxSumDisplay Enabled = unchecked

FontBold = checked

FontSize = 20

Hint = cleared

TextAlignment = Center

Width = Automatic

Height = Automatic

Step 3: Now you will program the blocks for the app. Open the Blocks Editor.

Step 4: Create the Click event handler for the ButtonCalculate button.
Inside the event handler, create the local variable initialization block
shown in Figure 5-29. The variables are needed to calculate the sum.
(You will need to use the initialization block’s mutator bubble to add
an additional variable to the block.)

 5.3 The for each Loop 293

Figure 5-29 Variable Definition Blocks (Source: MIT App Inventor 2)

Here is a summary of each variable’s purpose:
● The Total variable is the accumulator. It will hold the sum of the

series of numbers. The Total variable is initialized to 0 so the loop
will calculate the correct sum.

● The UpperLimit variable will hold the upper limit of the range of
numbers. Notice that the UpperLimit variable is initialized with the
value entered by the user into the TextBoxUpperLimit component.

Step 5: Complete the Click event handler for the ButtonCalculate button as
shown in Figure 5-30. The blocks that are pointed out in the figure are
described here:

1 In the for each loop, the Counter variable starts at 1 and ends at
the value of UpperLimit. 1 is added to the Counter variable at
the end of each loop iteration.

2 This adds the value of the Counter variable to the Total variable.
3 This block executes after the loop has finished. It displays the value

of the Total variable in the TextBoxTotalDisplay text box.

Figure 5-30 The ButtonCalculate.Click Event Handler
(Source: MIT App Inventor 2)

1

2

3

Step 6: Test the app in the emulator or on your device. First, enter 100 as
the upper limit and click the Calculate button. You should see 5050
 appear as the sum, as shown in Figure 5-31. Continue to test the app
with other values as the upper limit.

294 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-31 The App Running in the Emulator (Source: MIT App Inventor 2)

Checkpoint

 5.11 Describe the following parts of the for each loop:
● number variable
● from socket
● to socket
● by socket

 5.12 A program that calculates the total of a series of numbers typically has what
two elements?

 5.13 What is an accumulator?

 5.14 Should an accumulator be initialized to any specific value? Why or why not?

 5.4 The Clock Component

CONCEPT: The Clock component gets the date and time from the internal sys-
tem clock and provides methods and functions for working with
dates and times. It also works as a timer that can perform opera-
tions at specific intervals.

App Inventor’s Clock component allows you to get the current date and time from
the device’s internal clock and perform various operations with dates and times.

 5.4 The Clock Component 295

It also serves as a timer that performs operations at regular time intervals. It is a
nonvisible component, found in the User Interface section of the Palette.

Let’s first look at the Clock component as a way to get the date and time. The Clock
component works with dates and times using a special value known as an instant.
An instant is a number that represents an instant in time. An instant contains both
a date and a time. If you want to know the current date and time, you call the
Clock component’s Now function. The Now function returns the current date and
time as an instant.

You use instants to work with dates and times. For example, you can compare
instants with an if then block, extract the day of the week from an instant, add
seconds, minutes, and hours to an instant, and perform many other operations.
However, you can’t print an instant on the screen. If you want to print the date and/
or time that is contained in an instant, you need to use one of the Clock functions
described in Table 5-3 to format it as text.

Table 5-3 Date and Time Formatting Functions (Source: MIT App Inventor 2)

Function Description

Formats the instant that is
plugged into the instant socket
as text describing the time only.

Formats the instant that is
plugged into the instant socket
as text describing the date only.

Formats the instant that is
plugged into the instant socket
as text describing both the date
and the time.

Let’s look at the ClockDemo project as an example. When the app executes, it sim-
ply displays the time that the app started. Figure 5-32 shows the app’s screen in the
Designer, and Figure 5-33 shows the app’s workspace in the Blocks Editor.

Notice that in Figure 5-33, the Screen1.Initialize event handler calls Clock1.Now
block to get the current time as an instant. That block is plugged into the Clock1.
FormatTime block, which formats the instant as text describing the time. That block
is assigned to the LabelTimeDisplay.Text property, which displays the time on the
screen. Figure 5-34 shows the app running in the emulator.

You can also use the Clock component as a timer that performs an operation at spe-
cific time intervals. It works like this: When the Clock component’s TimerEnabled
property is set to true (checked in the Properties column), a Timer event will happen
at regularly scheduled intervals. The intervals are determined by the TimerInterval
property, which is set to a value in milliseconds. For example, if the TimerInterval

296 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-32 The ClockDemo App in the Designer (Source: MIT App Inventor 2)

Figure 5-33 The ClockDemo Project’s Workspace (Source: MIT App Inventor 2)

property is set to 1000 and the TimerEnabled property is set to true, then a Timer
event will happen once every 1000 milliseconds (once every second).

Once you have enabled the timer and set the desired timer interval, you create an
event handler for the Timer event. In the event handler, you place the blocks that you
want to execute each time the Timer event occurs. To create the Timer event handler
in the Blocks Editor, you go to My Blocks, click the name of the Clock component,
and then select the block for the Timer event handler.

 5.4 The Clock Component 297

For example, suppose an app has a Clock component named Clock1 and a Sound
component named Sound1. The event handler shown in Figure 5-35 will play the
Sound1 component’s sound every time the Timer event happens.

Figure 5-34 The App Running in the Emulator (Source: MIT App Inventor 2)

Figure 5-35 Example Timer Event Handler (Source: MIT App Inventor 2)

In Tutorial 5-3, you will create a clock app that displays the time, updated every sec-
ond, on the screen.

Tutorial 5-3:
Creating a Clock App

In this tutorial, you will create an app that uses a Clock component to display the
current time on the screen. The app will update the display once every second. You
will set the Clock component’s TimerInterval property to 1000 milliseconds and
create a Timer event handler that gets the current time, formats it, and displays it.

Figure 5-36 shows the app’s screen in the Viewer, along with the names of the
components. Figure 5-37 shows how the screen appears in the emulator.

VideoNote
Creating a Clock
App

298 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-36 The MyClock App in the Designer (Source: MIT App Inventor 2)

Figure 5-37 The MyClock App Running in the Emulator (Source: MIT App Inventor 2)

 5.4 The Clock Component 299

Table 5-4 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal = Center

Title = My Clock

LabelCurrentTime FontBold = checked

FontSize = 32

Clock1 TimerEnabled = checked

TimerInterval = 1000

Step 3: Open the Blocks Editor. Open the Clock1 drawer and select the block
for the Clock1.Timer event handler.

Step 4: Complete the event handler as shown in Figure 5-38.

Figure 5-38 The Completed Clock1.Timer Event Handler
(Source: MIT App Inventor 2)

Step 5: Test the app in the emulator or on your device. The time should update
once every second.

Step 1: Start a new project named MyClock.

Step 2: Set up the app’s screen with the components shown in Figure 5-36.
Refer to Table 5-4 for the relevant property settings for each compo-
nent. (You do not have to change the default Text property for the
LabelCurrentTime component because it will be updated automati-
cally in the Timer event handler that you will create next.)

Other Clock Methods
The Clock component provides many other methods and functions for working with
dates and times. We will take a look at a few of these now, although we will not cover
all of them. (You can refer to the online App Inventor documentation to learn more
about the other Clock methods and functions.)

300 Chapter 5 Repetition Blocks, Times, and Dates

We will take a look at the Clock functions that let you add units of time to an instant
to get an instant that will occur in the future.

Table 5-5 The Clock component’s Add functions (Source: MIT App Inventor 2)

Function Description

Requires two
arguments: an instant
and a number of days.
This function returns
an instant in time that
is the specified number
of days after the given
instant.

Requires two arguments:
an instant and a number
of hours. This function
returns an instant in
time that is the specified
number of hours after the
given instant.

Requires two arguments:
an instant and a number
of minutes. This function
returns an instant in
time that is the specified
number of minutes after
the given instant.

Requires two arguments:
an instant and a number
of months. This function
returns an instant in
time that is the specified
number of months after the
given instant.

Requires two arguments:
an instant and a
number of seconds.
This function returns an
instant in time that is
the specified number of
seconds after the given
instant.

 5.4 The Clock Component 301

Function Description

Requires two arguments:
an instant and a number
of weeks. This function
returns an instant in
time that is the specified
number of weeks after the
given instant.

Requires two arguments: an
instant and a number of
years. This function returns
an instant in time that is the
specified number of years
after the given instant.

For example, Figure 5-39 shows the ClockAddTime project in the Viewer, and
Figure 5-40 shows how it initially appears in the emulator (the image on the left)
and how it appears after the user has clicked the Update button (the image on the
right). When the user clicks the Update button, the app displays the current date and
time, the date and time 60 seconds from now, the date and time one day from now,
and the date and time six months from now. Figure 5-41 shows the ButtonUpdate
component’s Click event handler.

Figure 5-39 The ClockAddTime Project in the Viewer (Source: MIT App Inventor 2)

302 Chapter 5 Repetition Blocks, Times, and Dates

Figure 5-40 The ClockAddTime App in the Emulator (Source: MIT App Inventor 2)

Figure 5-41 The Button1.Click Event Handler (Source: MIT App Inventor 2)

Checkpoint

 5.15 What is an instant?

 5.16 How do you get the current date and time?

 5.17 What clock function do you use to format an instant in the following ways?
● As a date
● As a time
● As a date and time

 5.5 The DatePicker Component 303

 5.18 How do you specify the time interval for a Clock component’s Timer event?

 5.19 What Clock component function would you use to get an instant that is three
days from the current date and time?

 5.5 The DatePicker Component

CONCEPT: The DatePicker component appears as a button on an app’s screen.
When the user clicks the DatePicker button, it displays a dialog box
that allows the user to select a date.

The DatePicker component (found in the User Interface section of the Palette) pro-
vides a much simpler and more reliable way for users to enter dates on a form than
typing them into a TextBox. The image on the left in Figure 5-42 shows a DatePicker
component before the user has clicked it. The image on the right shows how the
screen appears after the user has clicked the DatePicker. A dialog box appears that
allows the user to select a date.

Figure 5-42 The DatePicker Component (Source: MIT App Inventor 2)

In the Designer, the DatePicker component has many of the same properties as the
Button component. For example, you use the Text property to set the text that is dis-
played on the component. In the Blocks Editor, there are four properties in particular
that you will work with. These properties are described in Table 5-6.

304 Chapter 5 Repetition Blocks, Times, and Dates

Table 5-6 DatePicker properties (Source: MIT App Inventor 2)

Property Description

The Day property is set to
the day of the month that
was last selected using the
DatePicker.

The Month property is set
to the number of the month
that was last selected using
the DatePicker. The months
are numbered starting with
1, so January is 1, February
is 2, and so forth.

The MonthInText property
is set to the name of the
month (such as January,
February, and so forth) that
was last selected using the
DatePicker.

The Year property is set to
the year that was last selected
using the DatePicker.

When the user clicks the Set button in the DatePicker’s dialog box, an AfterDateSet
event occurs. If you want to retrieve the date that the user selected, you can create an
event handler for the AfterDateSet event. Let’s look at an example app that uses a
DatePicker component. Figure 5-43 shows the DatePickerDemo app’s screen in the
Designer, and Figure 5-44 shows the app’s workspace in the Blocks Editor.

Figure 5-43 The DatePickerDemo App (Source: MIT App Inventor 2)

 5.5 The DatePicker Component 305

Figure 5-44 The DatePickerDemo App’s Workspace in the Blocks Editor
(Source: MIT App Inventor 2)

Figure 5-45 The DatePickerDemo App Running in the Emulator (Source: MIT App Inventor 2)

Notice in Figure 5-44 that the app has one event handler: DatePicker1.
AfterDateSet. This event handler executes after the user has selected a date with the
DatePicker. It displays the name of the selected month in the TextBoxMonthDisplay
component, the selected day in the TextBoxDayDisplay component, and the selected
year in the TextBoxYearDisplay component.

Figure 5-45 shows an example of the app running in the emulator. The screenshot on
the left shows the app’s screen as it initially appears. The user clicks the DatePicker
component and the dialog box shown in the middle screenshot appears. The user
selects a date and clicks the Set button. The selected date is displayed, as shown in the
screenshot on the right.

Checkpoint

 5.20 What event occurs when the user clicks the Set button in a DatePicker’s
dialog box?

 5.21 What DatePicker property holds the number of the last month selected in the
DatePicker?

 5.22 What DatePicker property holds the name of the last month selected in the
DatePicker?

 5.23 What DatePicker property holds the day of the month that was last selected
in the DatePicker?

 5.24 What DatePicker property holds the last year selected in the DatePicker?

306 Chapter 5 Repetition Blocks, Times, and Dates

Review Questions

Multiple Choice

 1. This type of Notifier dialog displays a message and lets the user enter input.

a. text dialog
b. message dialog
c. choose dialog
d. warning dialog

 2. This type of Notifier dialog displays lets the user click one of two buttons, and
optionally a Cancel button.

a. text dialog
b. message dialog
c. choose dialog
d. warning dialog

 3. When the Cancel button on a text dialog is clicked, the value of the response
parameter in the _________ will be _________.

a. AfterText; Cancel
b. AfterTextInput; Cancel
c. TextDialogClosed; Closed
d. AfterChoosing; Closed

 4. In the _________ method, cancelable is a value that will enable the dialog to
have a Cancel button if an argument is true.

a. ShowMessageDialog
b. ShowTextDialog
c. ShowOptionDialog
d. ShowChooseDialog

 5. A set of actions are repeated if the test socket in the while loop holds ______

a. A Boolean expression that is true
b. A Boolean expression that is false
c. A math expression that is positive
d. A math expression that has a non-zero value

 6. A __________ is commonly used to control the number of times that a loop iterates.

a. counter variable
b. test expression
c. control clause
d. controlled variable

 7. A(n) __________ tests its condition before performing an iteration.

a. preemptive loop
b. pretest loop
c. infinite loop
d. logical loop

 Review Questions 307

 8. A(n) __________ loop has no way of ending and repeats until the program is
 interrupted.

a. indeterminate
b. interminable
c. infinite
d. timeless

 9. A(n) __________ variable keeps a running total.

a. sentinel
b. sum
c. total
d. accumulator

 10. This Clock component property specifies the time interval at which the Timer
event occurs.

a. Interval
b. TimerInterval
c. Timer
d. TimerEvent

 11. This Clock component function returns the current date and time as an instant.

a. Now
b. CurrentDateTime
c. CurrentInstant
d. RightNow

 12. This event occurs when the user selects a date with the DatePicker component.

a. AfterDateSelected
b. DateSelected
c. AfterDateSet
d. ValueSet

 13. This DatePicker component property holds the number of the last month selected
by the user with the DatePicker component.

a. Month
b. MonthNumber
c. SelectedMonth
d. MonthAsANumber

 14. This DatePicker component property holds the name of the last month selected
by the user with the DatePicker component.

a. Month
b. MonthInText
c. SelectedMonth
d. MonthName

308 Chapter 5 Repetition Blocks, Times, and Dates

Short Answer

 1. If you want to simply display a message to the user in a dialog box, which Notifier
method would you call?

 2. If you want to get some input from the user with a dialog box, which Notifier
method would you call to display the dialog box?

 3. If you want to use a dialog box to get a yes/no answer from the user, which
Notifier method would you call to display the dialog box?

 4. How many iterations will occur if the Counter variable of a while loop never
changed?

 5. Describe the following parts of the for each loop:
● number variable
● from socket
● to socket
● by socket
● do socket

 6. What is a running total?

 7. Why is it critical that accumulator variables are properly initialized?

 8. What is an instant?

 9. How do you get the current date and time?

 10. What Clock component function would you use if you wanted to format an
 instant as text describing the time only?

Exercises
 1. Create an app that displays a test dialog asking the user if he or she wants to register

for a course. If yes is clicked, then the user is asked to enter the desired course’s name.

 2. Create an app that displays a choose dialog with two buttons: one labeled Yes
and one labeled No. After the user clicks one of the buttons, the app should
d isplay a message dialog indicating which button the user clicked.

 3. Create an app that uses a while loop to display its number of iterations in a
 message dialog.

 4. Create an app that uses a for each loop to calculate the sum of the numbers 10,
20, 30, 40, and so forth, up to 500.

Programming Projects
 1. Pennies for Pay

Susan is hired for a job, and her employer agrees to pay her every day. Her
employer also agrees that Susan’s salary is 1 penny the first day, 2 pennies the
second day, 4 pennies the third day, continuing to double each day. Create an
app that allows the user to enter the number of days that Susan will work and
calculates the total amount of pay she will receive over that period of time.

VideoNote
The Sum of
Numbers App

 Programming Projects 309

 2. Calculating the Factorial of a Number

In mathematics, the notation n! represents the factorial of the nonnegative
integer n. The factorial of n is the product of all the nonnegative integers from
1 through n. (The factorial of 0 is 1.) For example,

4! 5 1 3 2 3 3 3 4 5 24

and

7! 5 1 3 2 3 3 3 4 3 5 3 6 3 7 5 5,040

Create an app that lets the user enter a nonnegative integer and then uses a
loop to calculate the factorial of that number. Display the factorial in a label
or a text box.

 3. Oldest Student

Write an app that takes a number of birth dates and finds the oldest of them.
The app should read a number of dates until the user does not want to enter any
more. Then it should find the oldest (the lowest in value) among them. Finally it
should display the oldest date in a message dialog.

 4. Alarm App

Write a simple alarm app that lets the user enter a number of seconds. When the
user clicks a button, the app will wait for the specified number of seconds and
then play a sound.

 5. Stop Watch App

Write a simple stop watch app that has two buttons: Start and Stop. When the
user clicks the Start button, the app gets the current time from the system. When
the user clicks the Stop button, the app gets the current time again and displays
the number of seconds that have elapsed since the Start button was clicked. (Hint:
You can use the Clock component’s duration function to get the number of mil-
liseconds between two instants.)

 6. Day Of The Week App

The Clock component has a function named WeekdayName that takes an instant
as its argument and returns the name of the day of the week for the specified
instant (Sunday, Monday, etc.). Create an app that gets the current date and time
and displays the name of the day of the week.

 7. Day of The Week For a Specified Date

The Clock component has a function named MakeInstant that takes, as an argu-
ment, text containing a date in the form of MM/DD/YYYY. The MakeInstant
function returns an instant representing the specified date. Create an app that lets

310 Chapter 5 Repetition Blocks, Times, and Dates

the user enter a date in the form MM/DD/YYYY, and then displays the day of the
week for that date. (Hint: Use the Clock component’s WeekdayName function to
get the name of the day of the week.)

 8. Age Calculator

Create an app that has two DatePicker components. The user should select
his or her birthdate with the first DatePicker and some date in the future with
the second DatePicker. The app should display how old the user will be on the
second date.

TOPICS

6.1 Modularizing Your Code With Procedures

6.2 Procedures

6.3 Passing Arguments to Procedures

6.4 Returning Values From Procedures

Procedures and Functions

 6.1 Modularizing Your Code With Procedures

CONCEPT: Procedures can be used to break a complex program into small, manage-
able pieces. A procedure simply executes a group of statements and then
terminates. A procedure-with-result, which is also known as a function,
returns a value to the block that called it.

In a general sense, a procedure is a collection of statements that performs a specific task.
So far you have experienced procedures in the following ways:

● You have created event handlers. An event handler is a special type of procedure
that responds to events, such as the clicking of a button.

● You have executed built-in procedures and functions, such as the Sound compo-
nent’s Play procedure and the random integer and random fraction functions.

In this chapter you will learn how to create your own procedures that can be executed
just as you execute App Inventor’s built-in procedures and functions.

Procedures are commonly used to break a problem into small, manageable pieces.
Instead of writing one long procedure that contains all of the blocks necessary to solve a
problem, several small procedures that each solve a specific part of the problem can be
written. These small procedures can then be executed in the desired order to solve the
problem. This approach is sometimes called divide and conquer because a large problem
is divided into several smaller problems that are easily solved.

C
H

A
P

T
E

R

6

311

312 Chapter 6 Procedures and Functions

In general terms, a program that is broken into smaller units of code, such as pro-
cedures, is known as a modularized program. Modularization tends to simplify
code. If a specific task is performed in several places in a program, a procedure
can be written once to perform that task and then be executed any time it is
needed. This benefit of using procedures is known as code reuse because you are
writing the code to perform a task once and then reusing it each time you need to
perform the task.

Procedures and Procedures With Results
(Functions)
In this chapter you will learn to write procedures and procedures with results.

● When you call a procedure, it simply executes the blocks it contains and then
terminates.

● When you call a procedure with results, it executes the blocks that it contains
and then it returns a value back to the block that called it.

The random integer and random fraction blocks are good examples of proce-
dures with results. Procedures with results are also known as functions, and in
this book we typically use the term function to refer to a procedure that returns
a result.

The first type of procedure that you will learn to write is the regular procedure (the
type that does not return a result).

 6.2 Procedures

CONCEPT: A procedure performs a task and then terminates. It does not return a
value back to the statement that called it.

A procedure is a block that contains other blocks. To create a procedure, you
must define it. In the Blocks Editor you go to the Built-in section of the Blocks
c olumn and then select Procedures. As shown in Figure 6-1, you select the to
p rocedure do block from the drawer. (We will usually just refer to it as the
 procedure block.)

Figure 6-2 shows an empty procedure block. You insert other blocks inside the pro-
cedure block’s do socket. When the procedure is called, the blocks that you have
inserted inside the procedure will execute.

The word procedure that appears at the top of the block is the procedure’s default
name. You can click on the name to change it to something more meaningful. When
you create a procedure block, you should always change its name to something that
describes what the procedure does. For example, Figure 6-3 shows a procedure block
after we have changed its name to DisplayMessage. The procedure shown in the
figure is still empty but its name suggests that it will display a message. (We will see
the completed procedure in a few moments.)

 6.2 Procedures 313

You execute a procedure with a call block. When you create a procedure block,
App Inventor automatically creates a call block for the procedure, which you
will find by opening the Procedures drawer of the Blocks column. For e xample,
Figure 6-4 shows the call block for a procedure named DisplayMessage.
When you use a call block to call a procedure, the blocks that are inside the
p rocedure are executed.

NOTE: You cannot have two procedures with the same name in the same work-
space. All of the procedures in the same workspace must have unique names.

B

Figure 6-1 The procedure Block (Source: MIT App Inventor 2)

Click here to change the procedure’s
name to something meaningful.

Insert blocks here.

Figure 6-2 A procedure Block (Source: MIT App Inventor 2)

Figure 6-3 A Procedure Named DisplayMessage (Source: MIT App Inventor 2)

314 Chapter 6 Procedures and Functions

Let’s look at an example app that uses a procedure. Figure 6-5 shows the
ProcedureDemo app in the Designer. The app has a Button component on its screen
and a Notifier component for displaying messages. Figure 6-6 shows the app’s blocks
in the Blocks Editor.

The app has a Click event handler for the ButtonShowMessage component and
a procedure named DisplayMessage. Notice that the DisplayMessage procedure
simply uses the Notifier component to display a message dialog.

Let’s step through the actions that take place when the user clicks the button. Inside
the ButtonShowMessage.Click event handler, we have a call block that calls the
DisplayMessage procedure. As shown in Figure 6-7, the program jumps to
the DisplayMessage procedure and executes the blocks inside of it. There is only
one block in the DisplayMessage procedure, which displays a message dialog.
When the procedure ends, as shown in Figure 6-7, the program jumps back to the
part of the program that called the DisplayMessage procedure and resumes execu-
tion from that point.

Figure 6-8 shows the app running in the emulator. Screenshot 1 (the leftmost image)
shows the app with the user about to click the button. Screenshot 2 (the center image)
shows the message dialog that is displayed by the DisplayMessage procedure. The user
is about to click the dialog box’s OK button to dismiss it. Screenshot 3 (the rightmost
image) shows the app’s screen after the dialog box has been dismissed.

Figure 6-4 The call Block for a Procedure Named DisplayMessage
(Source: MIT App Inventor 2)

NOTE: When a program calls a procedure, programmers commonly say that
the control of the program transfers to that procedure. This simply means that the
procedure takes control of the program’s execution.

 6.2 Procedures 315

Figure 6-5 The ProcedureDemo App in the Designer (Source: MIT App Inventor 2)

Figure 6-6 The ProcedureDemo App’s Blocks (Source: MIT App Inventor 2)

316 Chapter 6 Procedures and Functions

The program jumps to the DisplayMessage procedure
and executes the blocks inside it.

When the procedure
ends, the program jumps
back to the part of the program
that called it.

W

Figure 6-7 Calling a Procedure (Source: MIT App Inventor 2)

1 2 3

Figure 6-8 The App Running in the Emulator (Source: MIT App Inventor 2)

Tutorial 6-1 takes you through the process of creating a simple app that uses a procedure.

Tutorial 6-1:
Creating the Lights App

In this tutorial, you will create an app that simulates a light that can be turned on
or off with a switch. Figure 6-9 shows the app’s screen in the Viewer, along with
the names of the components. Figure 6-10 shows how the screen appears in the
emulator. Initially, the light bulb is off, as shown in the left image in Figure 6-10.
When the user clicks the image of the switch, the light bulb turns on, as shown in
the right image in Figure 6-10. Subsequently, each time the user clicks the switch,
the bulb’s state is reversed.

Notice the Media column in Figure 6-9. The following image files have been
uploaded to the project:

● LightOff.png—This is an image of a light bulb that is off.
● LightOn.png—This is an image of a light bulb that is on.
● SwitchDown.png—This is an image of a switch that is in the down position.
● SwitchUp.png—This is an image of a switch that is in the up position.

VideoNote
Creating the
Lights App

 6.2 Procedures 317

 Figure 6-9 The Lights App in the Designer (Source: MIT App Inventor 2)

Initially, the ImageLight component’s Picture property is set to LightOff.png
and the ButtonSwitch component’s Image property is set to SwitchDown.png.
This makes the light bulb appear to be off and the switch to be in the down
position.

When the light is turned on, the following actions will take place:

● The ButtonSwitch component’s Image property is set to SwitchUp.png.
● The ImageLight component’s Picture property is set to LightOn.png.

318 Chapter 6 Procedures and Functions

The light turned off The light turned on

Figure 6-10 The App in the Emulator (Source: MIT App Inventor 2)

When the light is turned off, the following actions will take place:

● The ButtonSwitch component’s Image property is set to SwitchDown.png.
● The ImageLight component’s Picture property is set to LightOff.png.

To modularize the code, you will create a procedure named TurnLightOn
(containing the blocks to turn the light on) and another named TurnLightOff
(containing the blocks to turn the light off). When you need to turn the light
on, you will call the TurnLightOn procedure and when you need to turn the
light off you will call the TurnLightOff procedure.

Step 1: Make sure you have downloaded the media files from this book’s com-
panion website at www.pearsonglobaleditions.com/Gaddis.

Step 2: Start a new project named Lights.

Step 3: Use the Media column to upload the following image files from the
book’s media collection:
● LightOff.png—You will find this file in the Lights folder.
● LightOn.png—You will find this file in the Lights folder.
● SwitchDown.png—You will find this file in the Switches folder.
● SwitchUp.png—You will find this file in the Switches folder.

Step 4: Set up the app’s screen with the components shown in Figure 6-9. Refer
to Table 6-1 for the relevant property settings for each component.

Step 5: Now you will program the blocks for the app. Open the Blocks Editor.

Step 6: Create a procedure block named TurnLightOn by performing these steps:
● Open the Procedures drawer (in the Built-in section of the Blocks

column) and select the to procedure do block. This creates an
empty procedure block in the workspace.

http://www.pearsonglobaleditions.com/Gaddis

 6.2 Procedures 319

● Click the word procedure that appears at the top of the procedure
block and change it to TurnLightOn.

The procedure block should now appear as shown in Figure 6-11.

Figure 6-11 The Empty TurnLightOn Procedure (Source: MIT App Inventor 2)

Step 7: Complete the procedure by adding the blocks shown in Figure 6-12.
When this procedure is called, it will set the ButtonSwitch compo-
nent’s Image property to SwitchUp.png and it will set the ImageLight
component’s Picture property to LightOn.png.

Figure 6-12 The Completed TurnLightOn Procedure (Source: MIT App Inventor 2)

Step 8: Create a procedure block named TurnLightOff by performing these steps:
● Open the Procedures drawer (in the Built-in section of the Blocks

column) and select the to procedure do block. This creates an
empty procedure block in the workspace.

● Click the word procedure that appears at the top of the procedure
block and change it to TurnLightOff.

Table 6-1 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Lights

HorizontalArrangement1 AlignHorizontal 5 Center

Width 5 Fill Parent

Height 5 Automatic

ButtonCalculate Text 5 Cleared

Image 5 SwitchDown.png

ImageLight Picture 5 LightOff.png

The procedure block should now appear as shown in Figure 6-13.

Figure 6-13 The Empty TurnLightOff Procedure (Source: MIT App Inventor 2)

320 Chapter 6 Procedures and Functions

Figure 6-16 The Completed ButtonSwitch.Click Event Handler
(Source: MIT App Inventor 2)

Step 9: Complete the procedure by adding the blocks shown in Figure 6-14.
When this procedure is called, it will set the ButtonSwitch com-
ponent’s Image property to SwitchDown.png and it will set the
ImageLight component’s Picture property to LightOff.png.

Figure 6-14 The Completed TurnLightOff Procedure (Source: MIT App Inventor 2)

Step 10: Now you will create the Click event handler for the ButtonSwitch
component. In a nutshell, the event handler will follow this logic:

If the image of the light bulb is LightOn.png, then
 Call the TurnLightOff procedure
Else
 Call the TurnLightOn procedure

Create the ButtonSwitch.Click event handler and add the if then
else block shown in Figure 6-15. (The compare texts block is found
in the Text drawer.)

Figure 6-15 Creating the ButtonSwitch.Click Event Handler
(Source: MIT App Inventor 2)

Step 11: In the if then else block’s then section you want to call the
TurnLightOff procedure and in the else section you want to call
the TurnLightOn procedure. Complete the if then else block as
shown in Figure 6-16. (You will find the call TurnLightOff and
call TurnLightOn blocks in the Procedures drawer.)

 6.2 Procedures 321

Top-Down Design
In this section, we have discussed and demonstrated how procedures work. You’ve
seen how the program jumps to a procedure when it is called and returns to the part
of the program that called the procedure when the procedure ends. It is important
that you understand these mechanical aspects of procedures.

Just as important as understanding how procedures work is understanding how to
use procedures to modularize a program. Programmers commonly use a technique
known as top-down design to break down a program into procedures. The process of
top-down design is performed in the following manner:

● The overall task that the program is to perform is broken down into a series of
subtasks.

● Each of the subtasks is examined to determine whether it can be further broken
down into more subtasks. This step is repeated until no more subtasks can be
identified.

● Once all of the subtasks have been identified, they are written in code.

This process is called top-down design because the programmer begins by looking at
the topmost level of tasks that must be performed, and then breaks down those tasks
into lower levels of subtasks.

The app’s complete workspace is shown in Figure 6-17.

Figure 6-17 The Complete Workspace (Source: MIT App Inventor 2)

Step 12: Test the app in the emulator or on your device. Click the switch image
several times to simulate turning the light on and off.

NOTE: The top-down design process is sometimes called stepwise refinement.

322 Chapter 6 Procedures and Functions

Checkpoint

 6.1 What is the difference between a procedure and a procedure with results?

 6.2 Is the random integer procedure an example of a procedure or a procedure
with results?

 6.3 To define a procedure, where do you find the procedure block in the Blocks Editor?

 6.4 What does a call block do?

 6.5 If you have already defined a procedure, where do you find the call block
for the procedure?

 6.6 When a procedure is executing, what happens when the end of the procedure
is reached?

 6.7 Describe the steps involved in the top-down design process.

 6.3 Passing Arguments to Procedures

CONCEPT: An argument is any piece of data that is passed into a procedure when
the procedure is called. A parameter is a variable that receives an
a rgument that is passed into a procedure.

Sometimes it is useful not only to call a procedure, but also to send one or more pieces of
data into the procedure. Pieces of data that are sent into a procedure are known as argu-
ments. The procedure can use its arguments in calculations or other operations.

Arguments

Figure 6-18 Arguments Passed to the random integer Function
(Source: MIT App Inventor 2)

You’re already familiar with how to use arguments in a procedure call. For example,
Figure 6-18 shows the random integer block, which requires two arguments. The
a rguments specify the minimum and maximum values for a random integer.

If you are writing a procedure and you want it to receive arguments when it is called,
you must equip the procedure with one or more parameter variables. A parameter
variable, often simply called a parameter, is a special variable that receives an argu-
ment when a procedure is called.

To equip a procedure block with a parameter variable, you open the procedure’s
mutator bubble by clicking the blue box () that appears in the block’s upper-
left corner. Click and drag the input block () from the left side of the
bubble and insert it on the right side of the bubble as shown in Figure 6-19. This
adds a parameter variable named x to the procedure, as shown in Figure 6-20.

Remember that parameters are variables, and variables should have meaningful names.
The name x is not a very descriptive name, so you should change it to something that

 6.3 Passing Arguments to Procedures 323

Figure 6-19 Adding a Parameter to a Procedure (Source: MIT App Inventor 2)

Parameter variable

Figure 6-20 A Procedure with a Parameter Named x (Source: MIT App Inventor 2)

describes the parameter’s purpose. (You change a parameter’s name by simply clicking
the name and then typing the new name.) For example, Figure 6-21 shows a procedure
named DisplayValue. The procedure has a parameter named ValueToDisplay.

Figure 6-22 Selecting the get Block from the Variables Drawer (Source: MIT App Inventor 2)

Figure 6-21 A Procedure with a Parameter Named ValueToDisplay
(Source: MIT App Inventor 2)

A parameter is a special type of local variable, and its scope is limited to the proce-
dure that it belongs to. To get the value of a parameter, you must use a get block
inside the procedure. You can use the Variables drawer of the Blocks column to cre-
ate a get block, as shown in Figure 6-22, or you can hover the mouse cursor over the
parameter’s name, as shown in Figure 6-23.

324 Chapter 6 Procedures and Functions

Figure 6-24 Getting the Value of a Parameter (Source: MIT App Inventor 2)

Figure 6-25 Socket for an Argument

You must plug an argument
into this socket.

Figure 6-26 The Number 5 Passed as an Argument into the Valuetodisplay
Parameter (Source: MIT App Inventor 2)

Let’s look at an example app that uses this procedure. Figure 6-27 shows the
ArgumentDemo app in the Designer and Figure 6-28 shows the app’s workspace in
the Blocks Editor. The app’s screen has three buttons and a Click event handler has
been written for each one. In addition to the event handlers, the workspace has the
DisplayValue procedure that we previously discussed.

If the user clicks the Display 5 button, the ButtonDisplay5.Click event handler ex-
ecutes. The event handler calls the DisplayValue procedure, passing 5 as an argument.
Inside the DisplayValue procedure, the ValueToDisplay parameter is set to the value
5. This causes the value 5 to appear in the text box, as shown in Figure 6-29.

If the user clicks the Display 10 button, the ButtonDisplay10.Click event handler
executes. The event handler calls the DisplayValue procedure, passing 10 as an argu-
ment. Inside the DisplayValue procedure, the ValueToDisplay parameter is set to the
value 10. This causes the value 10 to appear in the text box, as shown in Figure 6-30.

Figure 6-23 Hovering the Mouse Cursor Over the Parameter Name
(Source: MIT App Inventor 2)

For example, inside the DisplayValue procedure shown in Figure 6-24, we assign
the value of the ValueToDisplay parameter to a label’s Text property.

When a procedure has a parameter, you must pass an argument into that parameter
when you call the procedure. The call block for the procedure will have a socket
with the same name as the parameter. For example, if an app has the DisplayValue
procedure that is shown in Figure 6-24, the procedure’s call block will have a socket
named ValueToDisplay, as shown in Figure 6-25. When you call the procedure, you
must plug an argument into the socket, as shown in Figure 6-26. In the figure, we are
passing the number 5 as an argument.

 6.3 Passing Arguments to Procedures 325

Figure 6-27 The ArgumentDemo App in the Designer (Source: MIT App Inventor 2)

Figure 6-28 The ArgumentDemo App Workspace (Source: MIT App Inventor 2)

Figure 6-29 Passing the Number 5 as an Argument (Source: MIT App Inventor 2)

326 Chapter 6 Procedures and Functions

If the user clicks the Display 15 button, the ButtonDisplay15.Click event handler
executes. The event handler calls the DisplayValue procedure, passing 15 as an
argument. Inside the DisplayValue procedure, the ValueToDisplay parameter is
set to the value 15. This causes the value 15 to appear in the text box, as shown in
Figure 6-31.

Figure 6-30 Passing the Number 10 as an Argument (Source: MIT App Inventor 2)

Figure 6-31 Passing the Number 15 as an Argument (Source: MIT App Inventor 2)

Tutorial 6-2 takes you through the process of creating a simple app that passes an
argument to a procedure.

 6.3 Passing Arguments to Procedures 327

Figure 6-32 The AreaCircle App in the Designer (Source: MIT App Inventor 2)

Figure 6-33 The AreaCircle App in the Emulator (Source: MIT App Inventor 2)

Tutorial 6-2:
Creating the AreaCircle App

The formula for calculating the area of a circle is:

area 5 Pi 3 r2

where Pi is the value 3.14 and r is the radius of the circle.

In this tutorial you will create an app that lets the user enter a circle’s radius,
click a button, and see the circle’s area. Figure 6-32 shows the app’s screen in the
Viewer, along with the names of the components. Figure 6-33 shows how the
screen appears in the emulator.

VideoNote
Creating the
AreaCircle App

328 Chapter 6 Procedures and Functions

Step 1: Start a new project named AreaCircle.

Step 2: Set up the app’s screen with the components shown in Figure 6-32. Refer
to Table 6-2 for the relevant property settings for each component.

Table 6-2 Component property settings (Source: Pearson Education, Inc.)

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Area of a Circle

LabelPrompt FontBold 5 Checked

FontSize 5 20

Text 5 Enter the Circle’s Radius

TextBoxRadius FontBold 5 Checked

FontSize 5 20

Hint 5 Radius

NumbersOnly 5 Checked

TextAlignment 5 Center

ButtonCalculate Text 5 Calculate the Area

LabelArea FontBold 5 Checked

FontSize 5 20

Text 5 Area:

TextBoxAreaDisplay Enabled 5 Unchecked

FontBold 5 Checked

FontSize 5 20

Hint 5 Cleared

TextAlignment 5 Center

Step 3: Open the Blocks Editor.

Step 4: Now you will create a procedure that accepts the radius of a circle as an
argument and uses that argument to calculate the area of the circle. The
procedure will display the area in the TextBoxAreaDisplay component.

Create a procedure block named DisplayArea by performing these
steps:
● In the Blocks column, open the Procedures drawer and select the to

procedure do block. This creates an empty procedure block in the
workspace.

● Click the word procedure that appears at the top of the procedure
block and change it to DisplayArea.

 6.3 Passing Arguments to Procedures 329

Step 5: Now you will add a parameter variable to the DisplayArea procedure
block. The parameter will accept the radius of a circle. Perform the
 following:
● Open the procedure block’s mutator bubble by clicking the blue box

() that appears in the block’s upper-left corner.

● Click and drag the input block () from the left side of
the bubble and insert it on the right side of the bubble as shown
in Figure 6-34. This adds a parameter variable named x to the
 procedure.

Figure 6-34 Adding a Parameter Variable to the DisplayArea Procedure
(Source: MIT App Inventor 2)

● Change the name of the parameter to r. The procedure block
should now appear as shown in Figure 6-35.

Figure 6-35 The DisplayArea Procedure with its Parameter r
(Source: MIT App Inventor 2)

Step 6: Complete the DisplayArea procedure as shown in Figure 6-36. The
blocks calculate the area of the circle, using the parameter r as the
radius, and assign the result to the TextBoxAreaDisplay component’s
Text property.

Figure 6-36 The Completed DisplayArea Procedure (Source: MIT App Inventor 2)

330 Chapter 6 Procedures and Functions

Step 8: Test the app in the emulator, or on your device. Enter several values as
the radius, such as the ones shown in Figure 6-38, to confirm that the
app is working.

Figure 6-37 The Completed Click Event Handler for the ButtonCalculate
Component (Source: MIT App Inventor 2)

Figure 6-38 The App Running in the Emulator (Source: MIT App Inventor 2)

Checkpoint

 6.8 What is an argument?

 6.9 What is a parameter variable?

 6.10 How do you add a parameter to a procedure block?

 6.11 To use a parameter inside a procedure, what type of block do you use?
Where do you find this block in the Blocks Editor?

 6.12 When you call a procedure that has a parameter, how do you pass an
argument?

Step 7: Create a Click event handler for the ButtonCalculate component,
as shown in Figure 6-37. The event handler calls the DisplayArea
procedure, passing TextBoxRadius.Text as an argument.

 6.4 Returning Values From Procedures 331

 6.4 Returning Values From Procedures

CONCEPT: A procedure with result (also known as a function) is a procedure that
returns a value to the part of the program that called it.

A procedure with result, or function, is like a regular procedure in the following ways:

● It contains a group of statements that perform a specific task.
● When you want to execute the function, you call it.

When a function finishes, however, it returns a value to the part of the program
that called it. The value that is returned from a procedure can be used like any other
value: it can be assigned to a variable, displayed on the screen, used in a mathematical
 expression (if it is a number), and so on.

You have already used several functions that are built into App Inventor. For example,
the random integer function, shown in Figure 6-39, returns a value. To use the value
that is returned from the random integer function, you plug it into another block.
Figure 6-40 shows an example in which the random integer function is plugged
into a variable’s set block. As a result, the value that is returned from the random
 integer function is assigned to the variable.

A random number
is returned.

Figure 6-39 The random integer Function Returns a Value (Source: MIT App Inventor 2)

The value that is returned is
assigned to the MyVar variable.

Figure 6-40 Assigning the Returned Value to a Variable (Source: MIT App Inventor 2)

In App Inventor, you create a function in the same way that you create a regular
 procedure, with two exceptions:

● You use the to procedure result block instead of the to procedure do block.
● You must plug a value into the block’s result socket. This is the value that is

returned from the procedure.

The to procedure result block is in the Procedures drawer, as shown in Figure 6-41.
Figure 6-42 shows an empty to procedure result block. Notice that the block has
a result socket. The value that is plugged into the result socket is returned from
the function.

332 Chapter 6 Procedures and Functions

Figure 6-41 The to procedure result Block (Source: MIT App Inventor 2)

Figure 6-42 An Empty to procedure result Block (Source: MIT App Inventor 2)

Figure 6-43 shows an example function. The function’s name is Add and its purpose
is to add two numbers. The function has two parameters, Num1 and Num2, so you
must pass two arguments when you call the function. The function returns the value
of Num1 1 Num2.

Figure 6-43 An Example Function (Source: MIT App Inventor 2)

Of course, the Add function shown in Figure 6-43 is for only demonstration purposes.
It isn’t necessary to write a function for adding numbers, but this serves as a simple
example to show you how functions work. Let’s look at a complete app that uses the

 6.4 Returning Values From Procedures 333

Add function. Figure 6-44 shows the FunctionDemo app in the Designer. The app lets
you enter your age into TextBoxAge1 and your best friend’s age into TextBoxAge2.
When you click the Calculate Combined Age button, the app displays the sum of the
two ages in TextBoxCombinedAgeDisplay. Figure 6-45 shows an example of the
app running in the emulator.

Figure 6-44 The FunctionDemo App in the Designer (Source: MIT App Inventor 2)

Figure 6-45 The FunctionDemo App Running in the Emulator (Source: MIT App Inventor 2)

Figure 6-46 shows the app’s workspace in the Blocks Editor. At the top of the
 workspace is the Add function that we previously discussed. Below that is the Click

334 Chapter 6 Procedures and Functions

event handler for the ButtonCalculate component. In the event handler we set the
TextBoxCombinedAge component’s Text property to the value that is returned from
the Add function. The arguments that are passed to the Add function are the Text
properties of the TextBoxAge1 and TextBoxAge2 components.

Figure 6-46 The FunctionDemo App’s Workspace in the Blocks Editor
(Source: MIT App Inventor 2)

In the example of the app running in the emulator, in Figure 6-45, the user entered
the value 25 into TextBoxAge1.Text and 23 into TextBoxAge2.Text. Figure 6-47
shows how these are passed as arguments to the Add function, and how the function
returns a value back to the block that called it.

25

23

48

Figure 6-47 Arguments Passed to the Add Function and a Value Returned
(Source: MIT App Inventor 2)

In Tutorial 6-3 you will create an app that converts a value from one unit of measure-
ment to another. You will use a function to perform the conversion.

Tutorial 6-3:
The Cups To Ounces App

Cups and fluid ounces are common units of measurement for food items.
Sometimes, when a recipe calls for an item measured in cups, you find that in the

VideoNote
Creating the Cups
To Ounces App

 6.4 Returning Values From Procedures 335

grocery store the item is sold in fluid ounces. To know how much you need to
purchase for the recipe, you need to convert the required number of cups to fluid
ounces. The formula is:

ounces 5 cups 3 8

In this tutorial you will create the CupsToOunces app. Figure 6-48 shows the
app in the Designer and Figure 6-49 shows the app running in the emulator. The
app lets you enter a number of cups into the TextBoxCups component, click the
ButtonConvert button, and see the equivalent number of fluid ounces displayed
in the TextBoxOuncesDisplay component.

Figure 6-48 The CupsToOunces App in the Designer (Source: MIT App Inventor 2)

Figure 6-49 The CupsToOunces App in the Emulator (Source: MIT App Inventor 2)

336 Chapter 6 Procedures and Functions

Step 1: Start a new project named CupsToOunces.

Step 2: Set up the app’s screen with the components shown in Figure 6-48. Refer
to Table 6-3 for the relevant property settings for each component.

Component Relevant Property Settings

Screen1 AlignHorizontal 5 Center

Title 5 Cups To Ounces Converter

LabelPrompt FontBold 5 Checked

FontSize 5 20

Text 5 Enter a number of cups:

TextBoxCups FontBold 5 Checked

FontSize 5 20

Hint 5 Cups

NumbersOnly 5 Checked

TextAlignment 5 Center

ButtonConvert Text 5 Convert

LabelOunces FontBold 5 Checked

FontSize 5 20

Text 5 Fluid Ounces:

TextBoxOuncesDisplay Enabled 5 Unchecked

FontBold 5 Checked

FontSize 5 20

Hint 5 Cleared

TextAlignment 5 Center

Table 6-3 Component property settings (Source: Pearson Education, Inc.)

Step 3: Now you will program the blocks for the app. Open the Blocks Editor.

Step 4: Create the CupsToOunces function as shown in Figure 6-50. Here are
detailed steps for creating the function:

● Get the to procedure result block from the Procedures drawer
in the Blocks column.

Figure 6-50 The CupsToOunces Function (Source: MIT App Inventor 2)

 6.4 Returning Values From Procedures 337

● Change the name of the procedure to CupsToOunces.
● Open the procedure block’s mutator bubble and create a parameter

variable named Cups.
● Create the math expression using a multiplication (3) block and

plug it into the function’s result socket.

Step 5: Create a Click event handler for the ButtonConvert compo-
nent, as shown in Figure 6-51. In the event handler you set the
TextBoxOuncesDisplay component’s Text property to the value that
is returned from the CupsToOunces function. The TextBoxCups.Text
property is passed as an argument to the function.

Figure 6-51 The Completed Click Event Handler for the Buttonconvert
Component (Source: MIT App Inventor 2)

Step 6: Test the app in the emulator or on your device. Enter several values as
the number of cups, such as the ones shown in Figure 6-52, to confirm
that the app is working correctly.

Figure 6-52 The App Running in the Emulator (Source: MIT App Inventor 2)

Checkpoint

 6.13 What is the difference between a regular procedure and a function?

 6.14 What block do you use to create a function? Where is the block found in the
Blocks Editor?

 6.15 In a function’s block, what is the name of the socket that holds the f unction’s
return value?

338 Chapter 6 Procedures and Functions

Review Questions

Multiple Choice

 1. In general terms, a program that is broken into smaller units of code, such as
procedures, is known as a(n) __________.

a. object-oriented program
b. modularized program
c. procedural program
d. procedure-driven program

 2. A procedure-with-result is also called a __________.

a. Method
b. Task
c. Function
d. Block

 3. This is another name for a procedure that returns a result.

a. valuable procedure
b. function
c. generator procedure
d. operator procedure

 4. Every time you define a procedure a _________ block is created in order to
 execute it.

a. perform
b. call
c. execute
d. invoke

 5. Programmers commonly use a technique known as __________ to break down
program into procedures.

a. prototyping
b. procedure modeling
c. program division
d. top-down design

 6. Pieces of data that are sent into a procedure are known as __________.

a. arguments
b. references
c. procedure variables
d. data entries

 7. A(n) __________ is a special variable that receives an argument when a procedure
is called.

a. reference variable
b. argument variable
c. parameter variable
d. procedure variable

 8. You create functions with this type of block.

a. to procedure do
b. function

 Programming Projects 339

c. functionProcedure
d. to procedure result

 9. This type of block has a result socket.

a. to procedure do
b. function
c. functionProcedure
d. to procedure result

Short Answer

 1. What do you call a procedure that executes the statements it contains and then
returns a value back to the statement that called it?

 2. What does a call block do?

 3. What is another name for the top-down design process?

 4. How do we assign values to parameters?

 5. How do you create a parameter variable in a procedure?

 6. What is the purpose of the result socket in a function?

Exercises
 1. Modify the AreaCircle app that you created in Tutorial 6-2. Add a procedure that

clears the two TextBoxes that appear on the app’s screen. Add a Button to the
screen that calls the procedure.

 2. Create an app that calculates the tax to be paid. The app should have a function
to calculate the tax value and takes the total income as an argument. The user
should be able to enter the total income and click a button to display the tax due.

 3. Open the Wages app that you created in Chapter 4’s Tutorial 4-3.

 4. Create an app that allows the user to enter the depth of a reservoir. The app
should calculate the temperature in Celsius in that depth and then convert it to
Fahrenheit. The app should have two functions one to calculate the temperature
at depth by the formula

Celsius 5 10 3 depth 1 20

And another one to convert to Fahrenheit by the formula

Fahrenheit 5 32 1 1.8 3 Celsius

Programming Projects
 1. Retail Price Calculator

Create an app that lets the user enter an item’s wholesale cost and its markup
 percentage. It should then display the item’s retail price. For example:

● If an item’s wholesale cost is 5.00 and its markup percentage is 100 percent,
then the item’s retail price is 10.00.

● If an item’s wholesale cost is 5.00 and its markup percentage is 50 percent,
then the item’s retail price is 7.50.

VideoNote
Creating the Retail
Price Calculator
App

340 Chapter 6 Procedures and Functions

The app should have a function named CalculateRetail that receives the
wholesale cost and the markup percentage as arguments and returns the retail
price of the item.

 2. Falling Distance

When an object is falling because of gravity, the following formula can be used to
determine the distance the object falls in a specific time period:

d 5 1/2 gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8,
and t is the amount of time in seconds that the object has been falling. Create an
app that allows the user to enter the amount of time that an object has fallen
and then displays the distance that the object fell. The app should have a func-
tion named FallingDistance. The FallingDistance function should accept
an object’s falling time (in seconds) as an argument. The function should return
the distance in meters that the object has fallen during that time interval.

 3. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The follow-
ing formula can be used to determine a moving object’s kinetic energy:

KE 5 1/2 mv2

In the formula KE is the kinetic energy, m is the object’s mass in kilograms, and
v is the object’s velocity in meters per second. Create an app that allows the
user to enter an object’s mass and velocity and then displays the object’s kinetic
e nergy. The app should have a function named KineticEnergy that accepts an
object’s mass (in kilograms) and velocity (in meters per second) as arguments.
The f unction should return the amount of kinetic energy that the object has.

 4. Calories from Fat and Carbohydrates

A nutritionist who works for a fitness club helps members by evaluating their
diets. As part of her evaluation, she asks members for the number of fat grams
and carbohydrate grams that they consumed in a day. Then, she calculates the
number of calories that result from the fat, using the following formula:

Calories from Fat 5 Fat Grams × 9
Next, she calculates the number of calories that result from the carbohydrates,
using the following formula:

Calories from Carbs 5 Carb Grams × 4

Create an app that will make these calculations. In the app, you should have the
following functions:

● FatCalories—This function should accept a number of fat grams as an
argument and return the number of calories from that amount of fat.

● CarbCalories—This function should accept a number of carbohydrate
grams as an argument and return the number of calories from that amount
of carbohydrates.

 5. Present Value

Suppose you want to deposit a certain amount of money into a savings account,
and then leave it alone to draw interest for the next 10 years. At the end of

 Programming Projects 341

10 years you would like to have $10,000 in the account. How much do you need
to deposit today to make that happen? You can use the following formula, which
is known as the present value formula, to find out:

P 5
 F

 (1 1 r)n

The terms in the formula are as follows:
● P is the present value, or the amount that you need to deposit today.
● F is the future value that you want in the account. (In this case, F is $10,000.)
● r is the annual interest rate.
● n is the number of years that you plan to let the money sit in the account.

Write a function named PresentValue that performs this calculation. The func-
tion should accept the future value, annual interest rate, and number of years as
arguments. It should return the present value, which is the amount that you need
to deposit today. Demonstrate the function in an app that lets the user experi-
ment with different values for the formula’s terms.

 6. Dice Game

Create an app that lets the user play a dice game against the Android device or
emulator. The app should work as follows:

1. When the app begins, a random number in the range of 1 to 6 is generated,
which represents the face of a dice after a roll.

2. When the user clicks a Button component to roll the dice, another number
from 1 to 6 is generated. The face of the dice should be displayed.

3. The face of the dice after the Android device or emulator’s roll is then displayed.

4. A winner is selected according to the following rules:

● The player with the larger number wins.
● If both players get the same number, the game must be played again to deter-

mine the winner.

 7. Joe’s Automotive

Joe’s Automotive performs the following routine maintenance services:
● Oil change—$25.00
● Lube job—$20.00
● Radiator flush—$30.00

342 Chapter 6 Procedures and Functions

Joe also performs other non-routine services and charges for parts and labor ($30
per hour). Create an app that displays the total for a customer’s visit to Joe’s. The
app’s screen should resemble the one shown in Figure 6-53.

Figure 6-53 Joe’s Automotive App (Source: MIT App Inventor 2)

The app should have the following functions:
● OilLubeCharges—Returns the total charges for an oil change and/or a lube

job and/or a radiator flush.
● OtherCharges—Returns the total charges for other services (parts and

labor), if any.
● TaxCharges—Returns the amount of sales tax, if any. Sales tax is 6% and is

only charged on parts. If the customer purchased services only, no sales tax is
charged.

● TotalCharges—Returns the total charges.

TOPICS

7.1 Creating a List

7.2 Iterating over a list with the
for each loop

7.3 Selecting an item

7.4 Inserting and appending items

7.5 Removing items

7.6 Replacing items

7.7 Searching for an item

7.8 Other list operations

Lists

 7.1 Creating a List

CONCEPT: A list is a single object that contains multiple items of related data. You
can think of a list in App Inventor just as any other list you use in every-
day life such as a grocery or to-do list. Another common list we use often
on our smartphones is our contact list. We use our contact list for phone
calls, emails, text messages, and other interactions.

A list is an object that contains multiple data items. To create a list in App Inventor you
first need to create a variable. Recall that you create variables in the Blocks Editor by
choosing the initialize global name to block located in the Variables drawer. The
list variable will hold the list of multiple items. As always, you should give the variable a
meaningful name that describes the purpose of the list.

Once you create a variable to store the list, you then need to begin creating the list. To
create a list in App Inventor, you need to plug the make a list block into the list vari-
able. The make a list method is located in the List drawer.

Next, you can begin adding items to your list. You can add text, numbers, and Boolean
values to your list. You can mix the data types in a list and have some text, some num-
bers, and so forth. You can also add variable data. To add a text item to your list, you

C
H

A
P

T
E

R

7

343

344 Chapter 7 Lists

will simply drag a text block (from the Text drawer), change the value to the data
that you wish to add to the list, and plug it in. You will take the same series of steps
for the other data types.

Figure 7-1 Create a Variable that Holds a List (Source: MIT App Inventor 2)

Variable name

Figure 7-2 Add a Text Item to a List (Source: MIT App Inventor 2)

There are two simple steps to make your list visible in App Inventor. You must use a
component such as a Label to display your list, and you must have an event that pop-
ulates that Label once the list is created. The Screen.Initialize event will work if
you want to show the list when your application loads.

Let’s take a look at the app you will develop in Tutorial 7-1. Figure 7-3 shows the app
in the Designer. There are two Labels added, one for the title Contacts so that it is clear
what we are displaying, and then another to hold the list. The LabelContactList’s
Text property is set to a blank string to start with.

Figure 7-3 Create a List–Design View (Source: MIT App Inventor 2)

In Figure 7-4, we have created a list of names using the make a list block. We put
the names in simple text blocks, plugged those into the make a list block, and then
stored the entire list in a variable named ContactList. Notice the variable is named
in such a way that it describes what the list is: a contact list.

We used the Screen1.Initialize event to set the LabelContactList.Text prop-
erty to the value of the ContactList variable. By using the Screen.Initialize
event, the Label on the Screen will be populated with the three names as soon as the
application loads in the emulator or on your device.

 7.1 Creating a List 345

Figure 7-4 Creating a List–Blocks Editor (Source: MIT App Inventor 2)

Tutorial 7-1:
Creating a List

Step 1: Create a new project in App Inventor. Drag two Labels from the User
Interface Palette and place them on the Screen.

Step 2: Rename the Labels. Recall that components should have meaningful
names that indicate both the type of component (in this case, Label) and
the purpose of the component. Rename the Labels by selecting Label1 in
the Components column and click Rename. Name it LabelTitle. Then,
select Label2 and click Rename. Name that one LabelContactList.

Your completed Design Screen should look like Figure 7-3.

Step 3: Open the Blocks Editor

Step 4: Create a variable in the Blocks Editor to hold the list. First, under the
Built-In category on the left hand side of the screen, click Variables.

Figure 7-5 Add a variable Block (Source: MIT App Inventor 2)

Click on
Variables to
open the drawer
Then choose
“initialize global”
block.

VideoNote
Creating a List

346 Chapter 7 Lists

This will open the Variables drawer. Choose the initialize global
name to block to add it to the workspace.

Step 5: Click on the initialize global name to block and change its name
to contactList. Next, click Lists under Built-In category to open the
Lists drawer. As shown in Figure 7-6, find the make a list block. Click
on the make a list block and plug it into the contactList variable
initialization block, as shown in Figure 7-7.

Figure 7-6 Find the make a list Block (Source: MIT App Inventor 2)

make a list
block

Figure 7-7 Plug in make a list (Source: MIT App Inventor 2)

Step 6: Now let’s add some text items to the list. Notice in Figure 7-7 that there
are only two slots to add items into the list. We want three names, so
we will have to use the mutator tool to add another slot. Click the
mutator tool and add an item slot to the list. See Figure 7-8.

Figure 7-8 Use the Mutator to Add an Item Slot (Source: MIT App Inventor 2)

We want three items
in our list, so click the
blue mutator and drag a
new item block into the list
to give the block three
slots.

mutator

 7.1 Creating a List 347

As shown in Figure 7-9, in the Built-In category, click Text. Choose
the text block.

Click the text block three times so that we can add three names to
our list.

Figure 7-9 Add Text Items to the List (Source: MIT App Inventor 2)

Click “Text” and
then click the
empty text
block three
times.

Step 7: Now change the values of the text blocks to three names you’d like on
your contact list. For now, we will put both first and last name in each
block. When you are finished with your names, plug them into the list
as shown in Figure 7-10.

Figure 7-10 Create Your List (Source: MIT App Inventor 2)

Step 8: We have a list! However, if you were to test the app now, you would
not see anything on your device or emulator. We need to display the
contents of the list in a component, such as a Label. That’s why you
created the LabelContactList component. To display the list contents
in the Label, we need to assign the List to the Label’s Text property.

We also need an event. Without an event, the app does not know when
to set the Text property with the contents. For our example, we will
use the Screen1.Initialize event. This event fires when you start
the app, and its purpose is to load the screen. Click Screen1 to open
its drawer. Look for the Screen1.Initalize event and then click it to
add it to your blocks editor. See Figure 7-11.

348 Chapter 7 Lists

Next, find the block for your LabelContactList’s Text prop-
erty. Click LabelcontactList to open its drawer. Find the set
LabelContactList.Text to block, as shown in Figure 7-12.

Figure 7-11 Open the Screen1 Component’s Drawer (Source: MIT App Inventor 2)

Choose the
Screen1.Initialize
event.

Figure 7-12 Find Set LabelContactList.Text to (Source: MIT App Inventor 2)

Set LabelContactList.Text
property block.

Next, plug that block into the Screen1.Initialize event block.

Step 9: The last step in this tutorial is to plug in the value of the contactList
(this is the list with the three names) into the set LabelContactList.
Text to block. To do this, we need to hover over the name contactList
in the initialize global contactList to block. Once you hover
over the name, choose the get global contactsList block. That block
holds the value, or contents, of the list. See Figure 7-13.

 7.1 Creating a List 349

Figure 7-13 Find the get global contactsList Block (Source: MIT App Inventor 2)

Hover over contactList, then choose the “get global contact list” block.

Plug that into the set LabelContactList to block, as shown in
Figure 7-14.

Figure 7-14 Complete set LabelContactList.Text to Block
(Source: MIT App Inventor 2)

Figure 7-15 Display Your List (Source: MIT App Inventor 2)

Step 10: Now it’s time to run and test your app on your device or emulator.
Your output will look something like Figure 7-15.

Notice while our list displays, it doesn’t look exactly like we expect it
to. This is because App Inventor, by default, displays list items hori-
zontally, from left to right, enclosed in a set of parentheses. We will
address this issue in the next section and show how we can display it in
a sequential vertical list by iterating through the list.

350 Chapter 7 Lists

Figure 7-16 The for each Loop (Source: MIT App Inventor 2)

“item” is a variable name.
Click it to change it to
something meaningful.

Notice that the for each block has a variable named item after the words “for
each.” This is a variable that represents each individual item in your list as you iterate
through it. For example, if the list you are looping through is a list of contacts, you
might rename this variable contact rather than item. Then you can use that variable
inside the loop to process the current contact in your list. The slot at the top right
requires a variable that holds a list.

The for each loop executes in the following manner: The item variable is assigned
the first value in the list, and then the blocks that appear inside the for each block
are executed. Then, the item variable is assigned the next value in the list, and the
blocks that appear inside the for each block are executed again. This continues until
the item variable has been assigned the last value in the list.

Of course, as previously mentioned, it is a good idea to change the name of the item
variable to something that better describes the values that it will hold.

Test Scores Example
Before we begin to modify our Contact List app, let’s take a look at another example
and examine the anatomy of the for each loop.

Checkpoint

 7.1 Why do you need a variable initialization block to make a list?

 7.2 What kinds of data can you add to a list?

 7.3 Can you have a list that has both number items and text items?

 7.4 How do you display a list on the App Inventor screen?

 7.2 Iterating Over a List with the for each Loop

CONCEPT: Iteration means to repeat the same process over and over until you
reach the result you are looking for. To iterate a list generally means
to step through all the list items, one at a time, until you reach the end.

 In this section, we will iterate through lists using the for each loop.
You can think of it this way: For each item in my list, I am going to do
something, one item at a time, until I reach the last item.

The for each loop is designed to work with a list. When the loop executes, it iterates
once for each item in the list. Figure 7-16 shows how the for each block appears
when you create it in the Blocks Editor.

 7.2 Iterating Over a List with the for each Loop 351

In the Test Scores example, a list of a class’s test scores is created and stored to a variable
named TestScores. We will use a for each loop to iterate through the list and accu-
mulate the sum of the scores. After the sum is calculated, we will divide that number by
the number of items in the list to determine the class average. Last, we will populate the
label on the design screen with the average so that it will display on the app.

Consider the design in Figure 7-17. Notice two labels: one to prompt the user and one
to show the average of the class test scores.

Figure 7-17 Test Scores App Design (Source: MIT App Inventor 2)

Next, consider the code shown in the blocks in Figure 7-18.

Figure 7-18 Test Scores Code in the Blocks Editor (Source: MIT App Inventor 2)

Remember to hover over a variable to get their “get” and “set” blocks.

Remember to use
the “mutator” to
create more slots
in your list.

In Figure 7-18, notice the following:

 1. We create a variable named testScores to hold the list.
 2. We make the list and populate the scores with number blocks rather than text blocks.
 3. We create a variable named sum to hold the sum of numbers.
 4. As previously mentioned, the for each block has an item variable and also

requires a block, which is a variable that holds a list, to be plugged into it. The
variable that is renamed score will hold a value from the list as the loop iter-
ates. By default, App Inventor names that block item, but we have changed its
name to score, which is a much more descriptive name. In this example, in the
first iteration score = 89, in the second iteration score = 92, and so forth.

 5. The block get global testScores represents the list that holds the scores, and
its “get” block is plugged into the for each block.

352 Chapter 7 Lists

After the for each iterates through the list, the sum variable will equal all the test
scores added together. This is a good start, but we are still missing a few things.

First we need to keep track of how many scores we have, and then of course we need
to attach the for each loop to an event to make it run. Last, we will need to divide
the sum by the number of tests and place that back into the Text property of the
Label. Take a look at Figure 7-19.

Figure 7-19 Calculating the Average (Source: MIT App Inventor 2)

To complete this example, we took just a few more steps:

 1. We added a variable named count, for the count.
 2. We plugged the for each loop into the Screen1.Initialize event.
 3. We added a statement to count by one in each iteration and assign the result

to the count variable. (Note: we could have simply used the length of list
block to determine the number of tests, but using a count variable at this point
is clearer. We will cover length of list later in this chapter.)

 4. We set the result of the sum variable divided by the count variable to the
LabelAverage.Text property.

In summary, you can access each list item individually by iterating through the list
with a for each loop. The variable in the for each block will hold an individual
list item’s value, and this variable will change with each iteration (to match the item
in the list). The block plugged into the for each loop is the name of the variable that
holds the list. This tells the for each loop which list it is going to iterate through.

Contact List Example
Let’s go back to our contact list. In order to view the list vertically, with one name
per line, we need to step through the list and treat each item in the list individually.
Again, the way to do this is to iterate or step through the list, one item at a time.

We are going to print out each list item’s value (i.e., the name) with the return char-
acter \n, one at a time, so that there will be only one name on each line. The return
character \n (also known as the new line escape sequence) used in a program is the
same as typing the Enter or Return key for the carriage return on your keyboard. It
will advance you to the next line on your screen.

We will need to make the changes in the Blocks Editor, as shown in Figure 7-20.

Figure 7-20 Adding the Carriage Return (Source: MIT App Inventor 2)

In Figure 7-20, you will see that we iterate through our list one item at a time and
use the join block to add the item plus the return character \n to the Label’s Text
property. Because we are not outputting the entire list all at once, we will not see the
items enclosed in parentheses as before.

Tutorial 7-2:
Iterating Over a List with the for each Loop

In this tutorial, we will iterate through our contact list and display each name
one by one so that our list is displayed vertically.

Step 1: Slide the block set LabelContactList.Text to out of the Screen1.
Initialize event. Click Control to open its drawer. Select the for
each loop block, as shown in Figure 7-21.

 7.2 Iterating Over a List with the for each Loop 353

Figure 7-21 The for each Loop Block (Source: MIT App Inventor 2)

“for each”
block

“Control”
drawer

VideoNote
Iterating Over a
List with the for
each Loop

354 Chapter 7 Lists

Step 2: Now notice the variable item in the for each block. Change this
to contact or something that is meaningful to represent each item in
your list.

Next, find the get global contactList block, which represents the
value of your list. Remember: hover over the word contactList in
its declaration block to find its “get” block. Plug that into the bottom
block of the for each loop. Your Blocks Editor screen should look
similar to Figure 7-22.

Figure 7-22 Set Up the for each Block (Source: MIT App Inventor 2)

Step 3: We now have to do a bit of formatting on our text output, using the join
block and the return key using \n to advance to the next line of our label.

To find the join block, click Text to open the drawer. Click the join
block in it to place it in your Blocks Editor. See Figure 7-23.

Figure 7-23 Find the join Block (Source: MIT App Inventor 2)

The “Text”
drawer

“Join” block

You’ll notice that initially the join block only has two places to plug in
a value. You will use the mutator to add more slots to the list, like we
did in Figure 7-8. The process of combining strings (or text) together
is called string concatenation. String concatenation is the process of
combining strings together into one larger string, and is an important
concept in computer programming.

Let’s concatenate the current value of the label, the return key \n, and
the current value of the name in our list.

Open the LabelContactList drawer to find the block containing the
value of the label, LabelContactList.Text (light green block). Plug
this block into the make text block.

Figure 7-24 Formatting the List Elements (Source: MIT App Inventor 2)

Hover over “contact” to find the “get contact” block.

 7.2 Iterating Over a List with the for each Loop 355

1. Open the Text drawer and choose a text block. Double-click on the
empty center of the block and change its value to \n by typing over it.

2. Hover over the loop variable contact (see Figure 7-22) and select
the get contact block. Plug that block into the third slot of the
join block. See Figure 7-24.

Step 4: Test your app on the emulator or device and notice the new result:

Figure 7-25 A Better Looking List (Source: MIT App Inventor 2)

Checkpoint

 7.5 What is the significance of the variable block plugged into the top of the
for each block? What does this variable represent with each iteration of
the for each loop?

 7.6 How does the for each iteration help us display a list in App Inventor?

 7.7 Consider our Test Scores example: what would be the impact if both text
and number data were in the list?

 7.8 What sequence of characters are used as the return character? What kind of
block (data type) do you use to hold this sequence?

356 Chapter 7 Lists

Being able to select an item from a list is essential so that we can interact with or use
the information of an individual item in the list. For example, if we want to call or
text a person in our contact list, we must first select that individual and then place the
call or send a message.

In order to select an item from the list, we must know its index. Later we will learn
about searching lists, but for now we need to assume that we will know the index of
the item to select.

We must be careful not to try and select an index that is not in the range of the list.
For example, if you only have 10 items in a list and you try to select the item at posi-
tion 11, your app will crash. To avoid this, we can use the list’s length of list
function to determine how many items are in the list and then use if/then logic to stop
the attempt if it is out of range.

To demonstrate this concept, we are going to modify the Contact List app in the fol-
lowing ways:

 1. We will add a number to the left of each name to show the index or place in the list.
 2. We will add a Label and TextBox for the user to select a contact by entering the

index of the person they would like to select.
 3. We will add a Button to the design and create an event handler to do the

selection.
 4. We will display back to the user the contact they selected.
 5. We will add logic to check the length of the list before trying to select an item so

that we can avoid a crash if the selection is out of range.

Figure 7-26 select list item Block (Source: MIT App Inventor 2)

Tutorial 7-3
Selecting an Item in a List

Step 1: First we need to display the index of each item in the list so that the
user knows the index of the contact that they want to select. So, we’ll

 7.3 Selecting an Item

CONCEPT: If you would like to choose a particular item in the list to work with, you
can use the select list item block. List items each have an index,
or place in the list. The first item is at index 1, the second is index 2, and
so forth. Once you know the index of the item you wish to select, you
can extract the item easily using the select list item block.

VideoNote
Selecting an Item
in a List

 7.3 Selecting an Item 357

modify the program output to show the number and then the name.
For example:

1. Jim Jefferson

2. Janet Jones

3. Joe Smith

To do this, we will need a variable for the index to display. In the
Blocks Editor, go to the Variables drawer and click on a variable
 initialization block. Rename it contactNum. Set the initial value of
the variable to 1, as shown in Figure 7-27.

Figure 7-27 contactNum Variable (Source: MIT App Inventor 2)

Step 2: Now we will modify the LabelContactList output so the index
number, followed by a period and a space, appears before the name, as
described in Step 1. In the Screen1.Initialize event handler, mod-
ify the join block as shown in Figure 7-28.

You will need to use the join block’s mutator tool to add two more
slots to the block. (It may be easiest to unplug all of the existing items
from the join block, and then add them back one by one.)

To find the get global contactNum block, hover over the vari-
able name contactNum in the variable initialization block shown in
Figure 7-27.

To make the period, go to the Text drawer and click on a regular
text block. Double-click in the middle and then type a period and
a space.

Figure 7-28 Add Item Number to List (Source: MIT App Inventor 2)

If you test your app now, you’ll see that the number before each name
is the number one. To fix this, we need to increment the contactNum
variable with each loop iteration.

358 Chapter 7 Lists

Figure 7-30 Format Output (Source: MIT App Inventor 2)

Figure 7-29 Increment the Contact Number (Source: MIT App Inventor 2)

Next, place this block after each display of the name and before the
end of the for each block, as shown in Figure 7-30.

Now, test and run your app to ensure that your numbers and contacts
display correctly as in Figure 7-31.

Figure 7-31 A Numbered List (Source: MIT App Inventor 2)

To increment means to add to a number (or up its value), generally by
one. To change the contactNum to match the actual index of the list
item, we need to add one to the previous value of contactNum after
each time a name is displayed.

To do this, create the block shown in Figure 7-29, which adds one
to the value of contactNum, and then stores that result back to the
contactNum variable, as shown in Figure 7-29.

 7.3 Selecting an Item 359

Figure 7-32 Select Contact Design Screen (Source: MIT App Inventor 2)

Step 3: Now let’s give the user the ability to pick one of these contacts by
entering the associated index.

We will need to go to the Designer and add several components to
make this possible. See Figure 7-32.

1. Add a HorizontalArrangement component to your design and
populate it with a Label and a TextBox. Rename the Label com-
ponent to LabelSelectIndex and the TextBox to TextBoxIndex.
Change the Label’s Text property to Enter Contact Number:. Clear
the TextBox’s Text property and change the Hint to Enter number.

2. Under the HorizontalArrangement1 component, add a Button
and change the name of the Button to ButtonSelect. Change the
Button’s Text property to Select.

3. Add another HorizontalArrangement below the Button and add
two Labels to it. Rename the Labels to LabelPrompt and Label
Selection. Change LabelPrompt’s Text property to You Selected:
and clear the Text property of the second label.

Compare your design with Figure 7-32.

Step 4: Now we can put in the code to select the item. Go back to the
Blocks Editor, open the ButtonSelect drawer, then click the when
ButtonSelect.Click do block.

Step 5: Find the set LabelSelection.Text to block in the LabelSelection
drawer, and insert that into the button click event from Step 4.

Step 6: Find the select list item block in the List drawer and plug that
into the block from Step 5.

Step 7: Plug the required elements—the get global contactList and the
TextBoxIndex.Text blocks—into the select list item block.

360 Chapter 7 Lists

The get global contactList is found by hovering over the name
contactList in the initialize global contactList block, and
the TextBoxIndex.Text is in the TextBoxIndex drawer.

(TextBoxIndex.Text represents the value that the user types into the
user interface.)

Check your work to make sure the Button’s Click event block looks
similar to Figure 7-33.

Figure 7-34 Out of Bounds Error (Source: MIT App Inventor 2)

The length of list Function
Being able to determine the length of a list before processing begins can be helpful in
many ways. For example, if you think about the Test Scores example in section 7.2,
rather than accumulating the number of test scores we iterated through, we could
have just used the length of list function. Also, as you are about to see, we often
use the length of list function to avoid common errors that try to access an item
in a list that does not exist.

Figure 7-33 ButtonSelect.Click Event (Source: MIT App Inventor 2)

Step 8: Run and test your app in the emulator or on your device. Enter a number
between one and three and see how the correct item is displayed.

Step 9: Now run your app and enter a number that is over 3. Note the error
that is displayed. See Figure 7-34. How can you use decision logic to
avoid this error? We will consider that next.

 7.3 Selecting an Item 361

Step 1: Go to the Control drawer and pull out two if then blocks. See
Figure 7-36.

Figure 7-35 Validate with is a number and length of list
(Source: MIT App Inventor 2)

Figure 7-36 Find the if then Blocks (Source: MIT App Inventor 2)

From the “Control”
drawer, pull out two
“if then” blocks.

Step 2: Use the mutator tool to change the blocks to if then else blocks. See
Figure 7-37.

Tutorial 7-4:
Using the length of list Function

This tutorial is a continuation of Tutorial 7-3. We begin by adding the logic to
first ensure that the value typed in by the user is in fact a number. We will use
the is a number block that you will find in the Math drawer. Then we will
make sure that if it is a number, the number is not too large for the list. If there
are errors, we will prompt the user to enter the correct input. Figure 7-35 shows
how the ButtonSelect.Click event handler should appear when you are fin-
ished with this tutorial.

VideoNote
Using the length
of list Function

362 Chapter 7 Lists

Figure 7-37 Change the Blocks to if then else (Source: MIT App Inventor 2)

Step 3: Place one inside the other’s then socket. Then, place this nested
if then else block in the ButtonSelect.Click event handler, as
shown in Figure 7-38.

Figure 7-38 Nested if then else Statement (Source: MIT App Inventor 2)

Step 4: In the Math drawer, find the is a number? block. Plug it into the test
socket of the outer if else block. Plug the value of the TextBoxIndex.
Text into the is a number function as shown in Figure 7-40.

Step 5: Find the join block in the Text drawer. Pull out an empty text block
as well. Change the text block to prompt the error message Please enter
a number between 1 and.

Step 6: Find the length of list block in the Lists drawer, as shown in
Figure 7-39. Place that in the workspace and plug in the get global
contactList block. (You can find the get global contactList
block by hovering the mouse cursor over the word contactList in the
variable’s initialization block.)

 7.3 Selecting an Item 363

Figure 7-39 Find the length of list Block (Source: MIT App Inventor 2)

“length of list”
block

TIP: If there is a block or series of blocks in your editor that you
need to re-use, you can select the block (which will include any blocks
that are plugged into it) and copy and paste them to save time by using
right-click->copy (or Ctrl-C) and then right-click->paste (or Ctrl-V).

Compare your work with Figure 7-40.

Figure 7-40 Program the Error Message (Source: MIT App Inventor 2)

Step 7: Now, select the set LabelSelection.Text to block that you see in
Figure 7-40 and copy and paste it. Plug the copy into the else of the
inner if then. See Figure 7-41.

364 Chapter 7 Lists

Figure 7-41 Program the Number Out of Range Error Message
(Source: MIT App Inventor 2)

Paste the same set of blocks here.

Select and copy this set of blocks.

Step 8: We now need to enter our second test condition, making sure the
number the user entered is not larger than the length of the list. Find
the less-than-or-equal-to operator block in the Math drawer and
insert it into the workspace. Copy and paste the TextBoxIndex.
Text block into the left side of the operator. Then, copy and paste the
length of list block (with the get global contactList argument)
into the right side of the operator. The block should appear as shown
in Figure 7-42.

Figure 7-42 The Completed Test Condition (Source: MIT App Inventor 2)

Plug the completed test condition into the test socket of the inner
if then block, as shown in Figure 7-43.

Figure 7-43 Completed Error Handling (Source: MIT App Inventor 2)

Step 9: Last, let’s plug in the block to execute when the input is valid. Populate
the LabelSelection.Text with the item selected from the list as in
the last tutorial. See Figure 7-44.

 7.4 Inserting and Appending Items 365

Checkpoint

 7.9 What happens if we try to select an item in the list that is not there or out
of range?

 7.10 What is a list index? Why is it important to be sure the variable in the index
field of the select list item is a number?

 7.11 How can knowing the length of a list help us avoid errors?

Figure 7-44 Complete Button Click Event (Source: MIT App Inventor 2)

NOTE: Actually, we are still missing some error handling. What if
the user enters a zero or negative number? We’ll save that one for our
chapter exercises.

 7.4 Inserting and Appending Items

CONCEPT: Adding items to a list comes in two different forms. You can add
items to the end of the list, and you can add items somewhere in the
middle of the list. Adding to the end of a list is called appending. You
can append either a single item or an entire list of items. Adding items
somewhere in the middle of a list is called inserting.

When we append to a list, we add either a single item or several items to the end of
a list. With App Inventor, we can use the add items to list block, as shown in
Figure 7-45, to add a single item at a time. This block requires the name of the list
that is being added to and the item to add.

Figure 7-45 add items to list Block (Source: MIT App Inventor 2)

366 Chapter 7 Lists

Inserting items into a list means to place new items somewhere specific in the list.
For example, you may want to insert an item in position 3. App Inventor has an
insert list item block, shown in Figure 7-46, that requires you specify the list to
insert into, the index or position of where you want to insert, and then the new item
that you would like to insert.

Figure 7-46 insert list item Block (Source: MIT App Inventor 2)

Figure 7-47 append to list Block (Source: MIT App Inventor 2)

Figure 7-48 Add Item Design Screen (Source: MIT App Inventor 2)

To append an entire list to the end of a list, App Inventor has a function block named
append to list. This block, shown in Figure 7-47, requires that you plug in two lists.
list1 is the list to append to, and list2 is the list that will be added to the end of list1.

To demonstrate adding items to a list, consider an app that allows the user to enter
grocery items to a list. We will provide the user with a TextBox to enter an item and a
Button to click to execute the add items to list function. See Figure 7-48.

In Figure 7-48 there is a TextBox for the grocery item, a Button to add an item to the
list, and a Label (LabelGroceryList) to output the list. For this example, we will
simply display the entire list each time the user adds an item. Remember, list contents
will be shown enclosed in a set of parentheses.

 7.4 Inserting and Appending Items 367

Figure 7-49 Add Item Blocks Editor (Source: MIT App Inventor 2)

These are the steps to create the blocks shown in the figure:

 1. First, create a global variable, groceryList, and plug in the create empty
list block to define the variable as a list. The create empty list block is
used when you want to let App Inventor know that the variable will hold a list,
but you aren’t ready to populate it yet. Since we are going to let the user popu-
late the list, we leave it empty to start.

 2. Next, use the when ButtonAdd.Click do event handler to call the add items
to list function. This function will allow you to add one or multiple items,
but each item is added individually when this function executes.

 3. Plug get global groceryList and TextBoxItem.Text (this is what the user
entered) into the add items to list argument slots. This adds the item that
the user entered to the groceryList list.

 4. Clear out the TextBoxItem.Text property so the user can add another item if
he or she chooses, and then redisplay the groceryList that now contains the
new item.

Tutorial 7-5:
Add Items to a List

This tutorial will walk us step-by-step through the grocery list example previ-
ously described, and it explains how to append items to a list.

Step 1: Design the user interface as shown in Figure 7-50.

1. Add a HorizontalArrangement and put a TextBox and a Button
side-by-side.

2. Rename the TextBox to TextBoxItem and change the Hint property
to Enter Item.

3. Rename the Button to ButtonAdd and change the Text property
to Add.

4. Add a Label under the HorizontalArrangement and delete the Text
property contents. Rename the Label to LabelGroceryList.

5. Compare your design to Figure 7-50.

Now examine the blocks shown in Figure 7-49.

VideoNote
Adding Items
to a List

368 Chapter 7 Lists

Figure 7-50 Add Item Design (Source: MIT App Inventor 2)

Step 2: Open the Blocks Editor and create the variable to hold the list. Remember,
to do this, you click on the Variables drawer, then click initialize
global name to. Once the variable initialization block is in the Blocks
Editor, click on the word name and change the name to groceryList.

Step 3: Once you have a variable to hold your list, find the create empty list
block by opening the Lists drawer. Click on the create empty list
block and plug it into the groceryList variable initialization block.

Compare your workspace to Figure 7-51.

Figure 7-51 Declare and Initialize the GroceryList Variable
(Source: MIT App Inventor 2)

Step 4: Now program the Button’s Click event handler. Go to the ButtonAdd
drawer. Choose the ButtonAdd.Click event to place it in the editor.

Step 5: When the user clicks the Add button, we want to retrieve the input
that was typed into the TextBox and add it to the end of the list. So,
we need the add items to list block, which is located in the List
drawer. Plug that into the when ButtonAdd.Click do event handler
as shown in Figure 7-52.

Figure 7-52 The add items to list Block in the ButtonAdd.Click do Event
(Source: MIT App Inventor 2)

 7.4 Inserting and Appending Items 369

Step 6: Next we want to give the add item to list function the name of the
list and the item to add. Find the get global groceryList block (by
hovering the mouse cursor over the word groceryList in its initializa-
tion block), and plug that into the first argument slot of the add items
to list function. Compare your workspace to Figure 7-53.

Figure 7-53 Provide the List Argument (Source: MIT App Inventor 2)

Step 7: Now grab the TextBoxItem.Text block from the TextBoxItem
drawer. Plug that in as the item to add to the list. Compare your work-
space to Figure 7-54.

Figure 7-54 Add Item to List (Source: MIT App Inventor 2)

Step 8: We have our item added to the list now, but we need to format the
TextBox and display the list. To do this, go to the TextBoxItem drawer
and select the set TextBoxItem.Text to block to place it in the
workspace. Plug it in under the add item to list function. Then, go
to the Text drawer and click the empty text block. Plug that into the
set TextBoxItem.Text to block to clear the TextBox for the user.

Step 9: To display the list, we need to set the label LabelGroceryList
to the value of the list (global ContactList block). Go to the
LabelGroceryList drawer, click the set LabelGroceryList.Text to
block, and plug that in under the block in Step 8. Then, plug the get
global groceryList block into it.

Compare your Blocks Editor to Figure 7-55.

Figure 7-55 Clear the Textbox and Set Label (Source: MIT App Inventor 2)

370 Chapter 7 Lists

Step 10: Test your app. Start and/or connect to your device or emulator and add
a few items.

Figure 7-56 Run Your App (Source: MIT App Inventor 2)

Inserting Items into a List
Inserting an item into a list means to place an item in a specific position in the list. We
use the insert list item block to accomplish this, and we need to know beforehand
the index, or position, of where we want to insert the item.

The item will be inserted at the position we tell it, and the item that was in that
place beforehand will move down, as will every item whose index is higher than
the insertion point. For example, let’s say we have a list with milk, bread, and
eggs. Bread is at position two. If we use the insert list item block and give
it two as the index and jam as the item to insert, our list will now be milk, jam,
bread, eggs. Jam took over position two, bread is now at position three, and so on.

Appending to a List
Appending to a list is similar to adding items, except that you append an entire list to
the end of another list using the append to list block.

To demonstrate this, consider an app that has two lists, List1 and List2, and we
want to add the entire List2 to the end of List1. Now List1 will contain the con-
tents of both lists.

Consider the design screen in Figure 7-57.

We will populate two lists in the Blocks Editor. List1 will contain milk, eggs, and
butter. List2 will contain apples, lemons, and oranges. We will display the contents
of those lists on the emulator using the Screen1.Initialize event.

 7.4 Inserting and Appending Items 371

Figure 7-57 Append Lists Design (Source: MIT App Inventor 2)

Then we will append List2 to List1 in the ButtonAppend.Click event handler.
List1 will be modified and now contain milk, butter, eggs, apples, lemons and
oranges. List2 will not change. Figure 7-58 shows the blocks for this example.

To create the blocks shown in Figure 7-58, take the following steps:

 1. First, two variables, List1 and List2, are created to hold the lists.
 2. The make a list function block is used to create the initial lists: see Figure 7-58.
 3. The Screen1.Initialize event is used to display the lists in the Labels when

the app loads.
 4. The ButtonAppend.Click event is used to append List2 to the end of List1

and then redisplay the modified List1. See the Screen display after the Button is
clicked in Figure 7-59.

Figure 7-58 Append List Blocks Editor (Source: MIT App Inventor 2)

372 Chapter 7 Lists

Figure 7-59 Before and After the Append (Source: MIT App Inventor 2)

Checkpoint

 7.12 What is the difference between adding and inserting items in a list?

 7.13 If an item is inserted into a list at position ten, what happens to the item that
was in that position before the insert?

 7.14 When you append ListA to ListB, what happens to ListA? What happens
to ListB?

 7.15 If you want to add one item to the end of a list, which block will you use, the
add item to list or append item to list?

Figure 7-60 Remove a List Item (Source: MIT App Inventor 2)

 7.5 Removing Items

CONCEPT: Removing an item from a list is just as it sounds; it is deleting an item
from the list. Remember that each item in a list has an index, or a
position, in that list. When an item is removed, the indexes are recal-
culated starting from position one, and each item in the list after the
deleted item will have a new index based on the new position.

To remove an item from a list, you simply need to know the position in the list for the
item you would like to remove. Remember, the first item in the list is at position one,
the next at position two, and so forth.

So if you know you’d like to remove the third item in a list, you would use the remove
list item block. Figure 7-60 shows an example.

In Figure 7-60, the third item is removed and the item originally in position four
now is in position three.

 7.5 Removing Items 373

Let’s look at another grocery list example. This time, we will create a list of five
items and use the for each loop to display the list vertically and with the associated
number, which will show the index position (recall section 7.2).

We will add a TextBox so that the user can choose what item to remove, and then we
will provide a Remove Button. Once the item is removed, we will redisplay the list
with the number to show the new index positions. Figure 7-61 shows an example of
the app’s design.

Figure 7-61 Remove Item Design (Source: MIT App Inventor 2)

In Figure 7-61 we have a Label, LabelTitle, for the “Grocery List:” prompt. The
Label, LabelGroceryList, is used to display the list. We also have a TextBox and
Button so that the user can indicate which item (by the index number) they would like
to remove from the list.

The Blocks Editor workspace is shown in Figure 7-62.

Figure 7-62 Remove Item and Display List (Source: MIT App Inventor 2)

374 Chapter 7 Lists

 1. Two variables are created: one to store the list (groceryList), and one to store
the index, or position (itemIndex).

 2. Two events are used: the Screen1.Initialize and the ButtonRemove.
Click.

 3. Both the initialize and button click events will need to display the list item-by-
item, so we will put that code into a procedure that can be called multiple times.

 4. The procedure will first clear out the LabelGroceryList component’s Text
property and set the index to zero.

 5. The for each loop iterates through the list, displaying the grocery list index
and item one at a time.

 6. The ButtonRemove.Click event will remove an item from a list, clear out the
input field (TextReplaceItem), and then call the displayList procedure to
redisplay the new list.

In the next section, we will demonstrate replacing an item and walk through a tuto-
rial on both removing and replacing.

 7.6 Replacing Items

CONCEPT: Replacing an item in a list means to change the value of one item to a
new value. The index positions are unchanged and the size of the list
is unchanged. Simply, the item which is replaced will be updated with
a different value than before.

To replace an item in a list with a new value, App Inventor includes a replace list
items block, which requires a list variable, an index of the item to replace, and a new
value. Figure 7-63 shows an example.

Figure 7-63 Replacing an Item (Source: MIT App Inventor 2)

In this example, the item in position 3 will be changed to Cucumbers. Keep in mind
that the indexes of the list items will not change as they do when you remove an item.
Only the value of the item will be changed.

Consider the design in Figure 7-64. In this screen design, we have a place for the
user to indicate the index, or position, of the item they would like to replace in

 7.6 Replacing Items 375

Figure 7-64 Grocery List App Screen Design (Source: MIT App Inventor 2)

Figure 7-65 Blocks in the Grocery List App (Source: MIT App Inventor 2)

This figure contains essentially the same blocks as section 7.5, Removing Items. The
only difference is the ButtonReplace.Click event handler shown in Figure 7-66.

a grocery list, and a TextBox field for the value of the new item. There is also a
Button that causes the item to be replaced and then redisplays the list.

Let’s take a look the blocks for this example, shown in Figure 7-65.

376 Chapter 7 Lists

In Figure 7-66 we use the replace list item function block and supply it with the
 groceryList for the list, TextReplaceItem.Text for the index (this is the number
that the user will type in), and the TextBoxNew.Text for the replacement. The
TextBoxNew.Text will hold the value that the user entered for the replacement text.

Just like the Remove Items example in section 7.5, once we replace the item, we
should clear out TextReplaceItem.Text and TextBoxNewItem.Text and then call
the procedure to redisplay the list.

Figure 7-67 shows this app as it runs.

Figure 7-67 Replace Item Test (Source: MIT App Inventor 2)

Tutorial 7-6:
Replacing and Removing List Items

In this tutorial we are going to write an app that will allow a user to remove or
replace items in a grocery list. We will set up the list with several items and then
give the user the ability to select an item to remove or replace. If the user chooses
to replace an item, a TextBox will be available for the new value to be entered.

Step 1: Create the design with the components shown in Figure 7-68.

Figure 7-66 ButtonReplace.Click Event Handler (Source: MIT App Inventor 2)

VideoNote
Repalcing and
Removing List Items

 7.6 Replacing Items 377

Figure 7-68 Replace and Remove Design (Source: MIT App Inventor 2)

1. Place a Label for the title Grocery List:. Change the Label’s name
to LabelTitle, its font size to 20, and its Text property to Grocery
List:.

2. Place a Label beneath the title to display the grocery list, name it
LabelGroceryList, change its font size to 20, and clear the Text
property contents.

3. Add a HorizontalArrangement component and place a Label and
TextBox inside it. Name the Label LabelReplacePrompt, change
its font size to 20, and its Text property to Replace. Name the
TextBox TextBoxReplaceItem, change its font size to 20, clear
its Text property, and change the Hint property to Item number to
replace.

4. Add another HorizontalArrangement component and place a La-
bel and TextBox inside it. Name the Label LabelWithPrompt.
Change its font size to 20 and its Text property to With:. Name
the TextBox TextBoxNewItem, change its font size to 20, clear
its Text property, and change the Hint property to Name of
new item.

5. Add a Button, name it ButtonReplace, and change its Text property
to Replace.

6. Add another HorizontalArrangement component and place a Label
and TextBox inside it. Name the Label LabelRemovePrompt, change
its font size to 20, and change its Text property to Remove. Name
the TextBox TextBoxRemoveItem, change its font size to 20, clear
its Text property, and change the Hint property to Item number to
remove.

7. Add a Button, name it ButtonRemove, and change its Text property
to Remove.

378 Chapter 7 Lists

Figure 7-69 Make the Grocery List (Source: MIT App Inventor 2)

Step 2: Recall that we need a variable to hold our list of grocery items. Once
our variable is created, we should use the make a list function
block and fill it in with text items that represent grocery items.

Because we are displaying the list numbered by the index of each item
(1., 2., etc.) we also need a variable to hold the number, or index. Take
a look at Figure 7-69.

Figure 7-70 Display the Grocery List (Source: MIT App Inventor 2)

Use the following steps to create the blocks shown in Figure 7-69:

1. Go to the Variables drawer and select an initialize global name
to block. Do this twice so that you have two in your workspace.

2. Change the name of the first variable to groceryList (click on the
word name and type groceryList on top of it).

3. Change the name of the second variable to itemIndex.
4. Go to the Lists drawer and select the make a list block. Plug that

into the initialize global groceryList to block.

5. Go to the Text drawer and select a text block. Repeat or copy and
paste the block in the Blocks Editor until you have five text blocks.
Change their names to your favorite grocery items. Plug the items
into the make a list function block.

6. Go to the Math drawer, click on the number block, change the value
to zero, and plug it into the itemIndex variable block to initialize
this variable to zero.

Step 3: In this step you will program the for each loop shown in Figure 7-70,
to iterate and display the list. When you complete this loop, you will

 7.6 Replacing Items 379

plug it into a procedure block so it is called each time the user updates
the grocery list by replacing or removing items.

1. Go to the Control drawer and select a for each item in list block.
Rename the item element that is named at the top of the loop to
groceryItem (double click and type over the word item).

2. Hover over the name groceryList in the initialize global
groceryList to block. Once you hover over the name, choose the
get global groceryList block. That block holds the value, or
contents, of the list. Plug it into the slot at the top of the loop.

3. Hover over the name itemIndex in the initialize global item
Index to block. Once you hover over the name, choose the get
global itemIndex block. Increment it by one by using a Math plus
block (+), a Math number block, and the get global itemIndex
block. Figure 7-71 shows how the block should appear. Plug this
block structure into the for each loop block.

Figure 7-71 Increment Item (Source: MIT App Inventor 2)

4. Now, in the LabelGroceryList drawer, find the set Label
GroceryList.Text to block and plug that in the for each loop under
the itemIndex increment block. In the Text drawer, select the join
block and plug in the following: LabelGroceryList.Text, get
global itemIndex, a text block containing a period with a space,
a get groceryItem block, and a text block containing the carriage re-
turn \n. See Figure 7-72.

Figure 7-72 Set Grocery List Label (Source: MIT App Inventor 2)

Step 4: Create a procedure called displayList to display the items in the list.
By creating a procedure, we can call it multiple times after each update.

The first steps in this procedure are to reset the itemIndex to 0 and the
LabelGroceryList.Text to blank so that our list starts from scratch.

Then we will plug in the for each loop from Step 3, and that’s it!

1. Go to the Procedures drawer and select a to procedure do block
(you do not need a procedure with result). Double click on the
name procedure and rename it to displayList.

2. Hover over the name itemIndex in the initialize global
itemIndex to block to get a set global itemIndex block.

380 Chapter 7 Lists

Figure 7-73 Create displayList Procedure (Source: MIT App Inventor 2)

Step 5: Now you will create the Screen1.Initialize event handler. Open
the drawer Screen1 and select the Screen1.Initialize block. Next,
open the Procedures drawer and select the call displayList block.
Plug the procedure call block into the Screen1.Initialize event
handler. The Blocks Editor workspace should have the components
shown in Figure 7-74.

Run and test your app. As shown in Figure 7-75, it should display the
list and show the TextBoxes and Buttons. The Buttons will not work
yet; we just want to make sure that the list is showing.

Step 6: Now let’s make the Replace Button work by creating the blocks
shown in Figure 7-76. You will use the ButtonReplace.Click event
handler and the replace list item block. You will also clear the
two TextBoxes (to clear any existing user input) when the Replace
Button is pressed.

The last block in the ButtonReplace.Click event handler will be
to call the displayList procedure so that the new list with the item
removed is displayed.

1. Find the when ButtonReplace.Click do event handler in the
B uttonReplace drawer and place it in the workspace.

3. Plug a number block (from the Math drawer) set to 0 into the set
global itemIndex block. Plug that into the procedure. (See the
first set of blocks in the to displayList procedure in Figure 7-73.)

4. Next, pull out a set LabelGroceryList.Text to block from the
LabelGroceryList drawer and an empty text block from the Text
drawer. Plug those blocks together, and then plug the resulting
block into the procedure. (See the second set of blocks inside the to
 displayList procedure in Figure 7-73.)

5. Now, take the for each block from Step 4 and plug it in as shown
in Figure 7-73.

 7.6 Replacing Items 381

Figure 7-74 Call the displayList Procedure from the Screen1.Initialize
Event Handler (Source: MIT App Inventor 2)

2. Find the replace list item block in the List drawer; place it inside
the ButtonReplace.Click event handler.

3. Plug in the get global groceryList block found by hovering over
groceryList in its variable initialization block.

4. Plug the TextReplaceItem.Text block into the index slot; this is
the index that the user typed into the TextBox. It can be found in
the TextBox ReplaceItem drawer.

5. Plug the TextBoxNewItem.Text block into the replacement slot.
This block is found in the TextBoxNewItem drawer.

6. Now find the set TextReplacementItem.Text to and the set Text
BoxNewItem.Text to blocks and place them in the editor. From the
Text drawer, pull out two empty text blocks. Plug the text blocks
into the set blocks, and plug those in under the replace list
item block.

7. Find the call displayList block in the Procedures drawer and place
it as the last item in the Click event handler.

Run and test your app. Now you should be able to choose an item by
its number and replace it with another item.

382 Chapter 7 Lists

Figure 7-76 ButtonReplace.Click Event Handler (Source: MIT App Inventor 2)

Figure 7-75 The First Run (Source: MIT App Inventor 2)

Step 7: Now you will program the Remove Button to remove an item from
a list. As with the Replace button, you will need to reset the screen
e lements and call the displayList procedure to redisplay the list with
the item removed. Figure 7-77 shows the blocks that you will create.

1. Find the when ButtonRemove.Click do event handler in the Button
Remove drawer and place it in the workspace.

2. Find the remove list item block in the List drawer and place it
inside the ButtonRemove.Click event handler.

 7.6 Replacing Items 383

3. Now find the set TextRevmoveItem.Text to and place it in the
workspace. From the Text drawer, pull out an empty text block.
Plug the text block into the set TextRevmoveItem.Text to block
and plug those in, under the remove list item block.

4. Find the call displayList block in the Procedures drawer and
place it as the last item in the ButtonRemove.Click event handler.

Finally, your full workspace for this app should look like that shown
in Figure 7-78.

Figure 7-77 Remove Button (Source: MIT App Inventor 2)

Run and test your app.

Figure 7-78 Replace and Remove Items Complete Blocks Editor
(Source: MIT App Inventor 2)

Checkpoint

 7.16 What is the difference between inserting and replacing items in a list? What
happens to the indexes of the items in a list when we replace an item?

 7.17 What happens to the indexes of list items when we remove an item in a list?

 7.18 What are the elements that a remove list item block requires? What about the
replace list item block? How are they similar and how are they different?

384 Chapter 7 Lists

 7.7 Searching for an Item

CONCEPT: Often we will encounter large lists and will need to search for a par-
ticular item. Remember that items in a list each have an index, or
position, in the list. When we search for an item in a list, generally we
are interested in two things: Does the item exist in the list? If so, where
or in what position is it?

To search a list in App Inventor, we will be interested in two new blocks from the List
drawer, is in list? and index in list.

Figure 7-79 Searching Blocks (Source: MIT App Inventor 2)

Both of these blocks require that you plug a “thing” in to search for and a list to search in.

The is in list? block will return a true or false value and is often used as an
if/then test expression. The index in list will return an integer representing the
index or placement in the list.

NOTE: It is important to consider checking first to see if the item is in the list
before asking for the position. By ensuring that the item is in the list, we avoid
unwanted results and/or processing if there is no position for the index in list
block to return.

Let’s look at an example. In Figure 7-80, we have a variable named position, a
list with a few items named List1, and the when Screen1.Initialize do event
handler. These blocks are used to find the position of Jam, which is not in the list.
When this example runs, the result is simply 0. It does not cause an error, but it may
be beneficial to check whether or not the item exists first, as shown in Figure 7-81.

Figure 7-80 Searching For an Item (Source: MIT App Inventor 2)

 7.7 Searching for an Item 385

By adding the check is in list? before trying to find the position, we avoid any
processing time if the value is returned false and the item does not exist in the list
(recall that if the test condition is false, the blcoks in the then socket are never
executed).

Figure 7-81 Checking if an Item Exists (Source: MIT App Inventor 2)

Tutorial 7-7:
Creating a Number-Guessing Game

In this tutorial, we will use a for range loop to generate a list of ten numbers
with a value between 1 and 25. We will then ask the user to enter a number
between 1 and 25 and check to see if the number is in the list. If the number is in
the list, we will display Win! and display the index of the number (the position in
the list). If the number is not in the list, we will display Try Again.

Examine the blocks shown in Figure 7-82. In the figure, we have a procedure
named loadlist that uses a for each number from loop to build a list of ten
random numbers whose values are between one and twenty-five. We also cre-
ate a list variable (in this example, numbersList) by initializing with a create
empty list block. Using an empty list block will initialize the variable as a list
type, even if there are no items in the list yet.

In the Button’s Click event handler, we first call the loadList procedure to
build the list. In case the list was previously loaded, we will set it back to empty
before we load it again. Then we use an if then else block to check if the item
that the user entered is in the list of random numbers using the is in list?
block. If the item is in the list, we populate a Label with Win! The position is and
then show the user the position in the list. If the item is not in the list, we display
Try Again in the Label. Last, we clear the Label so that the user can try again.

VideoNote
Creating a Number-
Guessing Game

386 Chapter 7 Lists

Figure 7-82 Number-Guessing Game (Source: MIT App Inventor 2)

NOTE: The list will be randomly generated with each button click,
so the user is guessing against a new list each time.

Step 1: Design the user interface with the following elements: A Label to prompt
the user to guess a number between 1 and 25, a HorizontalArrangement
with a TextBox and Button, and a Label to show the results. Figure 7-
83 shows an example.

Figure 7-83 Guessing Game Design (Source: MIT App Inventor 2)

Step 2: In the Blocks Editor, go to the Variables drawer to find an initialize
global name to block. Change the name to numbersList, go to List,
and select a create empty list block. Plug that into the initialize
global numbersList to block. See Figure 7-84.

 7.7 Searching for an Item 387

Figure 7-84 Initialize numbersList (Source: MIT App Inventor 2)

Figure 7-85 Reset numbersList (Source: MIT App Inventor 2)

Figure 7-86 for each number from Loop (Source: MIT App Inventor 2)

Figure 7-87 Guessing Game Blocks Editor (Source: MIT App Inventor 2)

Step 3: Go to Procedures to select a to procedure do block. Change the
name to loadList.

Step 4: Hover over the numbersList variable declaration block (Figure 7-84)
and find the set global numbersList to block. Plug a create
empty list block into it and place it in the loadList procedure. We
do this so that if the user wants to try again, the list will be emptied out
before it is reloaded. See Figure 7-85.

Step 5: Go to the Control drawer and add a for each number from loop to the
procedure. Give it a from value of 1, a to value of 10, and a by value of 1
using Math number blocks. See Figure 7-86.

Compare your blocks editor to Figure 7-87.

Step 6: Go to the List drawer and select an add items to list block.

Step 7: Now find the random integer from to block in the Math drawer,
plug in the number 1 in the from slot and the number 25 in the to slot.
Your procedure is complete and should be set up like Figure 7-88.

388 Chapter 7 Lists

Figure 7-88 The Guessing Game Procedure (Source: MIT App Inventor 2)

Step 8: Next we need to program the Button’s Click event handler. Go to the
ButtonGo drawer and find the when ButtonGo.Click do block in the
ButtonGo drawer. Select it to place it on the blocks editor.

Step 9: Go to the Procedures drawer and select the call loadList block,
plug that into the when ButtonGo.Click do block. Under that, place
an if then else block, found in the Control drawer. Remember,
you will have to use the mutator tool to add the “then” portion of the
block. See Figure 7-90.

Figure 7-89 An if then else Block (Source: MIT App Inventor 2)

Drag an “else” block into the “if”

Figure 7-90 Guessing Game Button Click (Source: MIT App Inventor 2)

Step 10: Find a is in list? block in the List drawer and plug it into the if slot
of the if then else block. For the thing slot of the is in list?, place

 7.7 Searching for an Item 389

Figure 7-91 (Source: MIT App Inventor 2)

the TextBoxGuess.Text value block and the get global numberList,
which can be found by hovering over its initialization block (Figure 7-85).

Compare your Button’s Click event handler with Figure 7-90.

Step 11: Now you will program the then and else slots. For the then slot, you
will create the block structure shown in Figure 7-91. To create these
blocks, set the LabelResult component’s Text property to a join
block that joins the text Win! Position: with the index in list block.
The index in list block will need two parameters, the TextGuess.
Text block and the list variable numbersList.

Plug the block structure shown in Figure 7-91 into the then section.

For the else, simply fill in the LabelResults.Text block with a
Try Again text block.

Step 12: The last thing we need to do is clear the TextBox before the user tries again.
Simply set TextGuess.Text to an empty text block.

Compare your completed Blocks Editor to Figure 7-92.

Figure 7-92 Number-Guessing Game Blocks Editor (Source: MIT App Inventor 2)

Test your app on the emulator or your device.

390 Chapter 7 Lists

Pick Random Item
Another useful List block is the pick random item block. This block requires that
you give it a list to pick from and will return a random index. This random picking,
like the random number generator in the guessing game, is useful in gaming and simu-
lation projects. It will allow the device to generate different scenarios (like a different
list each time we run the Number-Guessing Game) which allows for interesting and
challenging gaming apps.

Checkpoint

 7.19 When we are searching a list, why do is in list? and position in list
go hand in hand?

 7.20 What happens if you use the position in list block without checking
is in list? first? What will the position in list return if an item is
not found?

Figure 7-93 (Source: MIT App Inventor 2)

 7.8 Other List Functions
App Inventor provides other blocks that can be used to create and write lists. For
example, you can consider a comma-separated value file, or CSV. This is a standard
file format and can be read and written to by App Inventor with the List CSV blocks.

The blocks do what their name implies and are as follows:

The first, list to csv row block, will take a list and return text that represents a
single row of comma-separated values. Each list item will have quotes around it and
will be separated by commas. There is no line separator in the text that the list to
csv row block returns.

The list to csv table block assumes that each item in the list is a text block of
comma-separated values and that each list item will represent an entire row. For
example, list item one may be eggs, ham, bacon, toast, which will represent a row.
There is a line separator written after each list item to indicate a new row.

The list from csv row block will return a list made from comma-separated values.
Each item in between the commas will be a single list item.

The list from csv table block will make a list that holds an entire row of the
table in each list item.

 Review Questions 391

Review Questions

Multiple Choice

 1. A list can have the following types of data.

a. Only text
b. Numbers and text
c. Numbers, text, and variables
d. Only numbers

 2. Before making a list we need to create a ________.

a. Variable to hold the list by choosing the initialize global name to block
b. Variable to hold the list by choosing the make a list block
c. Text item to hold the list by choosing the text block
d. Procedure to hold the list by choosing the initialize global name to block

 3. The _________ event is used to display the lists in the Labels when the app loads.

a. AfterTextInput
b. Screen1.Initialize
c. ButtonSelect.Click
d. ButtonAppend.Click

 4. We use the _______ loop to iterate through a list, one item at a time, and use the
________ block to format the text output.

a. for each; if then
b. initialize local name to; for each
c. for each; join
d. while; for each

 5. To find out how many items are in a list, you will need to use this block:

a. list count
b. list number
c. size of list
d. length of list

 6. The select list item block returns:

a. The value of the list item
b. The index of the list item
c. A Boolean value
d. Nothing

 7. The is in list item block returns:

a. The value of the list item
b. The index of the list item
c. A Boolean value
d. Nothing

 8. When the append to list block is used:

a. It will add a single or more items to the end of a list
b. It will add a single item anywhere in the list
c. It will add and entire list to the end of a list
d. It will add an entire list to the beginning of a list

392 Chapter 7 Lists

 9. When you use the add item to list block, items are added at _______ of the list.

a. The beginning
b. A certain index
c. The middle
d. The end

 10. When the insert list item block is used:

a. It will add a single or more items to the end of a list
b. It will add a single item anywhere in the list
c. It will add and entire list to the end of a list
d. It will add an entire list to the beginning of a list

Short Answer

 1. What are the steps you need to take in order to create a list and display it on your
App Inventor user interface (app screen)?

 2. Why do you have to iterate through a list in order to display each item one at
a time?

 3. Why should you check to see if the variable that holds the list is actually a list
before you try to select an item from it?

 4. What happens if your list is only ten items long and you attempt to retrieve an
item at index fifteen?

 5. When you insert an item into position three in a list, what happens to the item
that was previously in position three? What about the item that was originally in
position four?

 6. When you remove an item in a list, how does it impact the indexes of the items
that remain in the list?

Exercises
 1. Select an Item

Complete Tutorial 7-3, Selecting an Item, and modify it to ensure that the user
enters a valid index between one and the length of the list.

 2. Animals

Write an app that has a list of your favorite animals (at least five, created in the
Blocks Editor). Allow the user of your app to insert animals at the beginning of
the list. Display the list after each insert. Be sure to display each animal with their
associated index. See Tutorial 7-2.

 3. Animals Modification 1

Modify the Animals app to allow the user to choose where in the list they
want to insert the next animal. Have Buttons for “Insert at the Beginning”
and “Add to End”, and a TextBox and “Insert Here” Button to insert in the
middle of the list. Be sure to put the TextBox and “Insert Here” Button in a
HorizontalArrangement and use the Hint property of the TextBox to prompt
the user to enter the index.

 Programming Projects 393

 4. Animals Modification 2

Modify the Animals project in Exercise 2 to allow the user to remove animals.

 5. Animals Modification 3

Modify the Animals project in Exercise 2 to allow the user to replace animals.

 6. Number Guessing

Complete Tutorial 7-7, Number-Guessing Game, to allow the user to put in three
numbers instead of one. Then, let the user know which, if any, are in the hidden
list and what the found indexes are.

Programming Projects
 1. Entrée List

Write an application that will allow a restaurant chef to make a list of the week’s
entrees. Start with a blank list in the Blocks Editor and allow the chef to enter
each entrée. As each item is added, display the new list.

 2. Weekly Special

Complete Exercise 1, Entrée List. Then, allow the chef to pick a random entrée
as the weekly special.

As long as there are more than two items in the list, show a button to choose
weekly special. Once a weekly special has been randomly picked, be sure to show
the special on your app screen (you should have a label that indicates a weekly
special, and then a label to display the selected entrée).

 3. Grocery CRUD application

CRUD sounds bad, but in computer science it is an acronym that means Create,
Read, Update, and Delete. When we add, insert, and append, we are in the create
processes (creating the list), as well as when we manually create a list using the
make a list block. You can think of displaying the list as reading the list. Replacing
can be thought of as the update processes. Finally, removing items is the delete
portion of the CRUD acronym.

Write a complete CRUD application for a Grocery List. Review Tutorial 7-6.
Start with a blank list and allow a user to add, insert, replace, and remove items.
After each change to the list, redisplay the new list. Be sure that each grocery item
is displayed with its associated index. Use HorizontalArrangements to lay out
your screen effectively.

 4. Class Performance Parallel Lists

Our contact list leaves a bit to be desired: phone numbers, for example. We could
add the phone number in the same item as each name, but then we will not be
able to treat it separately in order to make a phone call or other perform any
other operation on it.

Consider the concept of parallel lists. This means that item one in the first list
relates to item one in the second list. Item two in list one relates to item two in
list two, and so forth.

If we have a list of names of students and each name has a corresponding test
grade in the same position (index) but in a separate list, then we can consider the
name and number lists parallel.

VideoNote
Creating the Entrée
List App

394 Chapter 7 Lists

Write an app which creates class performance parallel lists, with one listholding
the students’ names and one holding the grades (this can be done in the Blocks
Editor with make a list blocks).

Include a procedure that will iterate through both lists and display the class’
 performance with the index, student name, and grade:

 1. Jane Smith 85

 2. John Evans 92

Hint: You only need one for each loop.

Use the Screen Initialize event to call the procedure and display the list on the
user interface.

 5. Tick Tack Too Game

Create an app that lets the user play the Tick Tack Too game against the Android
device or emulator. Create 9 buttons in a 3 3 3 matrix to set the game board.
The game should be implemented in 3 parallel lists (one for each column), each
containing 3 items (one for each row). Number the buttons from 1 to 9.

Assign X to the user and O to the device, when the user clicks one of the buttons
the button will display X and be disabled (so that the chance cannot be reversed).

When it is the device’s turn, generated a random number between 1 to 9, which
represents the location of the cell to be played by the device. If the location is
empty, then display the device’s symbol, otherwise generate another number.

A button in the game when clicked should set the corresponding list and item in
that list to symbol X or O depending on whose turn it is.

After that, call a function that checks whether this move generated a winner. At
each turn check whether a vertical, horizontal, or diagonal line of matching sym-
bols is formed by the last changed cell. This will call the winner. If all symbols in
a line are the same (i.e. they all belong to the same player) then that player is the
winner. This line could be horizontal (all items in the same index in the 3 lists),
vertical (all items in the same list), or diagonal (item 1 in list 1, item 2 in list 2,
and item 3 in list 3, or alternatively, item 1 in list 3, item 2 in list 2 and item 3 in
list 1).

TOPICS

8.1 App Inventor Storage Components

8.2 The Application Sandbox

8.3 File component

8.4 Retrieving a File

8.5 TinyDB

8.6 Tag-Value Pairs

8.7 Storing a Tag-Value Pair

8.8 Retrieving a Value

8.9 Tag-Value Pairs when the Value is a List

8.10 TinyDB across Multiple Screens

Storing Data on the Device

 8.1 App Inventor Storage Components
Most of the applications that we create will have data that needs to be saved or p ersisted.
For example, the contact list on your smart phone or tablet is saved on your device. This
is good, because if it weren’t, you would have to re-enter your contacts each time you
started your device. It simply would not be practical.

Much data in the real world is stored in files or databases. Databases are structured files
that hold data in an organized way so that computers can read the information quickly.
Some examples of data stored in databases that you may already access are your online
banking, online stores, Facebook pages, and Twitter posts.

App Inventor provides several ways to store and interact with data. The File component
allows you to read and write files on your device. With the File component, you can
 create new files, read and modify existing files, and save files to your device. The TinyDB
component allows you to store a list of tag-value pairs. The FusionTablesControl is
a powerful control that allows you to interact with Google’s Fusion Tables, a robust
online data management tool. Finally, you can also store tag-value pair data with the
TinyWebDB component. This component is similar to TinyDB, except that the data
is stored in the cloud and sharable between applications (more on this in section 8.4
and Chapter 13).

C
H

A
P

T
E

R

8

395

396 Chapter 8 Storing Data on the Device

In this chapter, we will cover the components that store data on your device: the File
and the TinyDB components.

 8.2 The Application Sandbox

Application Isolation
Each Android application runs in its own isolated space, or sandbox. The isolation
of applications does not permit applications to share resources, which allows for
e ffective security measures. This means that without specific permissions, applica-
tions cannot see, read, or write to each other’s files and programs. Sandboxing, or
separating and isolating, protects your application from being adversely impacted by
other applications on the device.

You can think of this sandbox as a protected folder on your device for each applica-
tion. All the files in that folder are isolated from other folders on the device unless
there are specific permissions set.

This concept of application isolation is important to understand before we begin
learning how the File and TinyDB components work when they store information on
the device. The TinyDB only stores information in the sandbox. By default, the File
component stores files in this sandbox too. However, the File component can write to
your device’s SD card as well.

 8.3 File Component

CONCEPT: App Inventor allows you to read, create, and modify files on your
d evice. You can store files in the private application folder or on the
SD card in your device. You can also read files packaged with another
application, assuming the correct permissions are granted.

Reading and writing files, often referred to as file input/output, is an important
topic in computer programming. It’s important to learn how to create files within a
 program, and then save them for later use or processing.

App Inventor’s File component is a nonvisible component. Once it is added to a
project, its blocks are able to save, read, append to, and delete files. You simply need
to provide the blocks with the name of the file you want to interact with. Let’s take a
look at the component and its blocks.

File Component Methods and Events
The File component’s methods include SaveFile, AppendToFile, Delete, and
ReadFrom. The ReadFrom method reads text from a file and causes a GotText event to
occur. To access the text that was read from the file, create a GotText event handler.

 8.3 File Component 397

The SaveFile method block does just what it says; it saves a file. This is also the
method used to create a new file. It has two necessary parameters: the text i nformation
that makes up the file and the file’s name. Both parameters require string arguments.
It’s important to remember how you name a file, so you can retrieve it later. It’s also
important to note that if a file with the same name already exists, this block will over-
write the file with the new information.

If you name a file without a preceding forward slash (/), the file will be saved in
the a pplication sandbox. If you put a forward slash, it will be saved to the device’s
SD card. So /theFile.txt will be stored in the root folder of the SD card, /s dcard/
theFile.txt. If you simply name it theFile.txt it will be stored in the root folder of the
a pplication sandbox.

The “File”
component

Figure 8-1 File Component (Source: MIT App Inventor 2)

Figure 8-2 SaveFile Method (Source: MIT App Inventor 2)

Figure 8-3 Delete Method (Source: MIT App Inventor 2)

398 Chapter 8 Storing Data on the Device

The Delete method deletes a file. You only have to provide the file name. If the file
name starts with a (/), App Inventor will delete the file from the SD card (if it’s found,
of course), otherwise it will delete the file from the application sandbox.

The AppendToFile method will add text to the end of an existing file. You need
to provide the text you want to append and the name of the file that you want to
a ppend it to.

Figure 8-4 AppendToFile Method (Source: MIT App Inventor 2)

The ReadFrom method will open and read the contents of an existing file. It will i nvoke
the GotText event handler, which will give you access to the contents of the file. Call
this method, and then create a GotText event handler to do any processing on the file.

Figure 8-6 shows the GotText event handler. This block is used to process the file con-
tents after the ReadFrom method is called. If the file indicated in the ReadFrom block
e xists, the GotText event is fired. To access the contents of the file, you need to find the
get text block. You do this by hovering the mouse cursor over the text parameter
of the GotText block, and clicking the get text block, as shown in Figure 8-7. Note
that you can change the text parameter name in the GotText block if you choose to.

Figure 8-5 ReadFrom Method (Source: MIT App Inventor 2)

Figure 8-6 GotText Event Handler (Source: MIT App Inventor 2)

Hover
over the
“text”
parameter
to get the
contents.

Figure 8-7 Finding the get text Block (Source: MIT App Inventor 2)

 8.3 File Component 399

Creating a File
Let’s look at an example of how we can use these blocks to create and save a file.

Figure 8-8 Design Components to Save a File (Source: MIT App Inventor 2)

Step 1: Start a new project in App Inventor.

Step 2: From the Storage Palette, add a nonvisible File component to your
project.

Step 3: From the User Interface Palette, add a TextBox to your screen.

Step 4: Rename the TextBox TextBoxFileContents.

Step 5: Change the following properties of the TextBoxFile component:
● Change the Hint property to enter file contents
● Click the MultiLine checkbox to enable that property
● Clear out the Text property
● Set the Height property to 200 pixels

VideoNote
Creating a File

Tutorial 8-1:
Creating a File

To create a file in App Inventor, we will first need a place for the user to enter the text
that we want to save in the file. For this, we will use a multiline TextBox. We will
also need a place for the user to specify the name of the file (another TextBox) and
an event handler to invoke the save process. (We will use a Button in this example.)

Consider the design in Figure 8-8.

400 Chapter 8 Storing Data on the Device

See Figure 8-9.

Figure 8-9 TextBoxFileContents Property Settings (Source: MIT App Inventor 2)

Step 6: From the Layout Palette, add a HorizontalArrangement to the screen
under the TextBox.

Step 7: From the User Interface Palette, add a TextBox and a Button to the
HorizontalArrangement.

Step 8: Rename the TextBox TextBoxFileName. Clear out the Text property
and set its Hint property to enter file name.

Step 9: Rename the Button ButtonSave and set its Text property to Save File.
Compare your design to Figure 8-8.

Step 10: Let’s program the blocks. Open the Blocks Editor and take a look at
Figure 8-10.

Step 11: Find the ButtonSave.Click event in the ButtonSave drawer and select it.

 8.3 File Component 401

Step 12: In the File1 drawer, find the File1.SaveFile block and place it in the
Click event handler that you just created.

Step 13: In the TextBoxFileContents drawer, find the TextBoxFileContents.
Text block and plug this into the text argument slot of the
File1.SaveFile method block.

Step 14: In the TextBoxSaveFileName drawer, find the TextBoxSaveFileName.
Text block and plug that into the fileName argument slot. See
Figure 8-11.

Figure 8-10 The ButtonSaveFile Event Handler (Source: MIT App Inventor 2)

The contents of this text box will be saved as the file
 contents.

A file with the name supplied in this text box will be
written to the device.

Figure 8-11 Program the File1.SaveFile Block (Source: MIT App Inventor 2)

Step 15: Create the set TextBoxFileContents.Text to and the set
TextBoxSaveFileName to blocks and plug empty text blocks into
them so that after each save, the components are re-set. This helps the
user see that their save was completed.

Figure 8-12 Reset the User Interface Components (Source: MIT App Inventor 2)

Step 16: Compare your blocks to Figure 8-10, then run and test your app on
your device or emulator. Remember your file names so that you can
retrieve them, as shown in Tutorial 8-2!

402 Chapter 8 Storing Data on the Device

Tutorial 8-1 shows how you can store files to your device. The text that is typed into
the TextBox will be the contents of the file.

Checkpoint

 8.1 What does it mean to persist data? Why is it necessary?

 8.2 What are some applications that you commonly use that have data stored in
databases?

 8.3 When we click the “Save File” Button from Tutorial 8-1, what is stored to
the device? Where?

 8.4 Retrieving a File
Now that we have begun storing files, let’s see how to retrieve the file so that the
a pplication from Tutorial 8-1 makes a little more sense.

Tutorial 8-2:
Retrieving a File

To retrieve a file, we need to give App Inventor the name of an existing file. This
tutorial is a continuation of Tutorial 8-1. We will modify Tutorial 8-1 so that a
user can enter a file name and choose to load that file. If the user loads a file, the
contents of the existing file will be displayed in the multiline TextBox.

We just need to add a couple of things to the previous design. Take a look at the
design in Figure 8-13.

We will program the
 “Load File” button to
search for and open
the file from the device,
and then populate the
the TextBox with its
contents.

Figure 8-13 Design Components to Retrieve a File (Source: MIT App Inventor 2)

VideoNote
Retrieving a File

 8.4 Retrieving a File 403

Step 1: Open the project from Tutorial 8-1 in App Inventor.

Step 2: From the Layout Palette, add a HorizontalArrangement to the screen
under the save file components.

Step 3: From the User Interface Palette, add a TextBox and a Button to the
HorizontalArrangement.

Step 4: Rename the TextBox to TextBoxLoadFileName. Clear out the Text
property and set its Hint property to file name to retrieve.

Step 5: Rename the Button to ButtonLoadFile and set its Text property to
Load File. Compare your design to Figure 8-13.

Step 6: Let’s program the blocks. Open the Blocks Editor and take a look at
Figure 8-14.

Figure 8-14 Program Blocks to Retrieve a File (Source: MIT App Inventor 2)

Remember that retrieving a file is usually a two-step process. First,
you read the contents of the file, and then you perform some proc-
ess on the file’s contents. We are going to read the file requested
and then we are going to display the contents in the TextBox as our
“processing” step.

Step 7: First find the ButtonLoadFile.Click event handler in the
ButtonLoadFile drawer and place it in the editor.

Step 8: Next, go to the File1 drawer and select the File1.ReadFrom method
block and place it into the ButtonLoadFile.Click event handler.

Step 9: Now find the TextBoxLoadFileName.Text block in the
TextBoxLoadFileName drawer and plug it into the File1.ReadFrom
block as shown in Figure 8-15.

Figure 8-15 ButtonLoadFile.Click Event (Source: MIT App Inventor 2)

404 Chapter 8 Storing Data on the Device

Appending a File
Next, we are going to demonstrate appending to a file. App Inventor’s File.Append
block appends text to the end of an existing file. Behind the scenes, it a ccomplishes
the following steps: retrieves the existing file, modifies it by appending text to it, and
then re-saves the file.

Let’s take a look in Tutorial 8-3. We will continue on from Tutorials 8-1 and 8-2.

Step 10: Now find the File1.GotText block in the File1 drawer and place it
in the editor. Remember that as soon as the ReadFrom method f inishes
reading the file, the GotText event handler is automatically invoked.

Step 11: Find the set TextBoxFileContents.Text to block and plug that into
the GotText event handler. See Figure 8-16.

Figure 8-16 (Source: MIT App Inventor 2)

Step 12: Now we need to populate that Text property with the contents of the
file. Hover the mouse cursor over the text parameter of the GotText
event handler, and then click on the get text block when it comes up
as shown in Figure 8-17.

Hover over “text” and click the “get text” block.

Figure 8-17 Find the get text Block (Source: MIT App Inventor 2)

Step 13: Once you have the get text block, plug it into the set
TextBoxFileContents.Text to block, as shown in Figure 8-18.

Figure 8-18 The File1.GotText Block (Source: MIT App Inventor 2)

Step 14: Compare your blocks to Figure 8-14, then run and test your applica-
tion on your device or emulator. Save a couple of files, and then load
a couple of files. Remember your file names so you can load them in!

 8.4 Retrieving a File 405

Tutorial 8-3:
Appending a File

To append a file, we need to give App Inventor the name of an existing file, as
well as the text that we want to add to the end of it. This tutorial is a continua-
tion of Tutorial 8-2. We will modify the app so a user can enter a file name, and
choose to append the text typed in the multiline TextBox to the end of the file.

This time we are again going to add a HorizontalArrangment that contains a
TextBox and a Button.

Step 1: Open the project from Tutorial 8-2 in App Inventor.

Step 2: From the Layout Palette, add a HorizontalArrangement to the screen
under the existing HorizontalArrangment that contains the TextBox
and Button to load the file.

Step 3: From the User Interface Palette, add a TextBox and a Button to the
HorizontalArrangement.

Step 4: Rename the TextBox TextBoxAppendTo. Clear out the Text property
and set its Hint property to file to append to.

Step 5: Rename the Button ButtonAppend and set its Text property to Append
File. Compare your design to Figure 8-19.

The contents of the
TextBox will be added to the
end of the file indicated
in TextBoxAppendTo.

Figure 8-19 Design Components to Retrieve a File (Source: MIT App Inventor 2)

VideoNote
Appending a File

406 Chapter 8 Storing Data on the Device

Step 6: Let’s program the blocks. Open the Blocks Editor and take a look at
Figure 8-20.

Figure 8-20 The ButtonAppend.Click Event Handler (Source: MIT App Inventor 2)

Step 7: First, find the ButtonAppend.Click event in the ButtonAppend
drawer and select it.

Step 8: In the File1 drawer, find the File1.AppendToFile block and place it
in the Click event handler that you just created.

Step 9: In the TextBoxFileContents drawer, find the TextBoxFileContents.
Text block, and plug it into the text argument slot of the File1.
AppendToFile method block, as shown in Figure 8-21.

Figure 8-21 Program the File1.AppendToFile Block (Source: MIT App Inventor 2)

Step 10: In the TextBoxAppendTo drawer, find the TextBoxAppendTo. Text
block and plug it into the fileName argument slot. See Figure 8-21.

Step 11: Find the set TextBoxFileContents.Text to and the set
TextBoxAppendTo.Text to blocks and plug empty text blocks into
them so that after each append, the components are re-set. This helps
the user see that their append was completed.

Step 12: Compare your blocks to Figure 8-20 and then run and test your app on
your device or emulator. Add content to one of your files, then load it
and see the differences!

Figure 8-22 Reset the User Interface Components (Source: MIT App Inventor 2)

 8.5 TinyDB 407

 8.5 TinyDB

CONCEPT: App Inventor allows you to store data on your device by using
a database called TinyDB. This database lives on your device and
 allows you to store data in tag-value pairs. Using TinyDB will allow
your app to store data and then retrieve it later. This ability to save
data is essential to most useful mobile applications.

App Inventor provides a database called TinyDB. Being able to store and r etrieve data
will allow you to create applications that may be more practical and u seful. Think
back to the grocery list application we wrote in Chapter 7. To make the app more
useful, we should keep the grocery list items persisted (or stored), so that when we
get to the physical grocery store, we can start our app back up and see what we need
to buy.

You should only have one TinyDB per application. You can add more, but they will
use the same data storage space, so you won’t get the effect of two separate storage
spaces. This is also true if you have multiple screens in your application.

Because of the isolation described in Section 2, each TinyDB can only be seen by the
application it applies to, and you cannot share the data store between two different
applications. So, in a nutshell, you should only have one TinyDB per app and you
cannot share it with another application. To share data between apps, you should use
TinyWebDB, covered in Chapter 13.

To use TinyDB in your App Inventor project, you will need to add it to your applica-
tion by dragging the TinyDB component from the Storage Palette. It will be added as
a nonvisible component, as shown in Figure 8-23.

TinyDB Component

Figure 8-23 TinyDB Component (Source: MIT App Inventor 2)

408 Chapter 8 Storing Data on the Device

Take a look at Figure 8-24 and note that each tag must be unique. For example,
Mark Little has only one value: a phone number. You cannot add another value for
Mark Little in the TinyDB table. If you try, his existing number will be overwritten.
If you want to have two values, both a home and a mobile number, you would have
to i ndicate that somehow in the tag. Instead of Mark Little, your tag could be Mark
Little—Home and then you could add a Mark Little—Mobile. See Figure 8-25:

Checkpoint

 8.4 How many TinyDB components should you have in a mobile application? Why?

 8.5 Can you share TinyDB data between applications?

Figure 8-24 TinyDB with Tag-Value Pairs (Source: MIT App Inventor 2)

Figure 8-25 Each Tag is Unique (Source: MIT App Inventor 2)

Another way of adding multiple numbers to a tag would be to have a list as the value.
If you have a single list that contains several values like home phone, mobile phone,
and email, you can supply that list as the value. By using a list, you have the opportu-
nity to store multiple data items to one single tag.

 8.6 Tag-Value Pairs

CONCEPT: A tag-value pair consists of a tag and a value. The tag is used to iden-
tify the data item and the value is the data that you want to associate
with that tag. In a TinyDB, the tag is a text item and the value can
be any data type (number, text, Boolean, or list). The tag is unique in
each TinyDB and cannot be entered twice. If you try to store the same
tag with a different value, the original value will be overwritten.

You can picture a TinyDB as a table of tags and values. For example, in Figure 8-24 a
TinyDB for contacts might hold a name as the tag and a phone number as the value.

 8.7 Storing a Tag-Value Pair 409

Figure 8-26 StoreValue Block (Source: MIT App Inventor 2)

Tutorial 8-4:
Storing Names and Phone Numbers

Let’s write an app that will store the names and associated phone number shown
in Figure 8-24.

First, take a look at Figure 8-27 for the user interface design.

 8.7 Storing a Tag-Value Pair
To store data, App Inventor provides the TinyDB.StoreValue block. This block
r equires that you supply a tag and an associated value. Once you’ve added a TinyDB
component to your project, you find this block in the TinyDB1 drawer.

Figure 8-27 TinyDB User Interface (Source: MIT App Inventor 2)

VideoNote
Storing Names and
Phone Numbers

410 Chapter 8 Storing Data on the Device

Step 1: Add two TextBoxes, rename them TextBoxTag and TextBoxValue.
Change the Hint property for TextBoxTag to Enter Tag. Change the
Hint property for TextBoxValue to Enter Value.

Step 2: Add a Button to your Screen and change the name to ButtonSave.
Change the Text property of your Button to Save.

Step 3: Add a Label and change the name to LabelShowTinyDB. (We will use
this later to display the contents of the TinyDB.)

Step 4: From the Storage Palette, drag a TinyDB component to your app and
note that it will be added as a nonvisible component.

Step 5: In the Blocks Editor, create the blocks shown in Figure 8-28. Drag the
when ButtonSave.Click do block onto the editor and then plug in
the call TinyDB1.StoreValue method block. Plug in TextBoxTag.
Text as the tag argument and the TextBoxValue.Text as the
valueToStore argument.

Figure 8-28 TinyDB Blocks Editor (Source: MIT App Inventor 2)

Step 6: Test your app by running it on your device or emulator and entering
the data in Figure 8-24.

 8.8 Retrieving a Value
To retrieve a value from a TinyDB, you must provide it with the tag of the element.
App Inventor provides the TinyDB.GetValue block, which takes in the tag as pa-
rameter and will return the value that is stored in the TinyDB for that tag.

Figure 8-29 shows an example of how to retrieve a value stored in your TinyDB.

Figure 8-29 Retrieving a Value (Source: MIT App Inventor 2)

 8.8 Retrieving a Value 411

This figure shows how to use the TinyDB1.GetValue block to retrieve the value
for Mark Little (the tag). It joins the value returned with a plain text prompt and
then stores it to the Label’s Text property. Assuming the data in Figure 8-2 was
stored in the TinyDB, the resulting Label would show Mark Little: 336-555-4343.

Notice the slot for valueIfTagNotThere. This slot gives you the ability to
 provide a default value if the tag happens to not be in the TinyDB. In Figure 8-7,
the slot is an empty text block, however, we could have put Not found or 0 in that
slot, depending on what we want to display when the tag is not in the TinyDB.

Tutorial 8-5:
Storing and Retrieving Values

Let’s create an app that allows the user to enter any number of products and
prices that they wish. They will also have the ability to look up a product and see
the associated price.

First, we need a place for the user to add products and store them to the TinyDB.
Let’s give the application two TextBoxes to enter the product name (tag) and
price (value). We will also provide a save Button which we can use to store the
tag and value.

Next, we need to provide a lookup mechanism for the user. We will provide a
TextBox so the user can enter the product name (tag) and a find Button that we
can use to retrieve the price (value).

Figure 8-30 shows the app’s screen design.

Figure 8-30 Product Design Screen (Source: MIT App Inventor 2)

VideoNote
Storing and
Retrieving Values

412 Chapter 8 Storing Data on the Device

Step 1: Add a Label for the title, rename it LabelTitle, and replace the Text
property with Products and Prices. Make the font size 20 and boldface.

Step 2: Add two HorizontalArrangement components. In the first, put a
TextBox, a Label, and another TextBox. Name the first TextBox
TextBoxProduct, name the Label LabelColon and the second TextBox,
TextBoxPrice. Replace the Hint property of the TextBoxProduct with
Enter Product Key, replace the Text property of the Label with a colon
(:), and replace the Hint property of TextBoxPrice with Price.

Step 3: Drag a Button and a Label between the two HorizontalArrangement
components. Name the Button ButtonSave and change the Text
p roperty to Save. Drag a Label in between the save Button and the
s econd HorizontalArrangement. Rename it LabelLookUp and change
the font size to 20, bold, and set the Text property to Look Up:.

Step 4: Add a TextBox and a Button to the second HorizontalArrangement.
Name the TextBox TextBoxTag and change the Hint property to Enter
Product. Name the Button ButtonFind and replace the Text property
with Find.

Step 5: Add a Label under the second HorizontalArrangement to display the
price. Name it LabelPrice and set the Text property to Price:.

Step 6: Add a TinyDB to your project and name it TinyDBProducts. Compare
your design to Figure 8-30.

Now let’s program the Blocks Editor as shown in Figure 8-31

Step 7: Drag the when ButtonSave.Click do and when ButtonFind.Click
do blocks from the ButtonSave and ButtonFind drawers.

Step 8: Program the when ButtonSave.Click do event handler:
● Find the TinyDBProducts.StoreValue block under its drawer and

plug in the Text property blocks for the TextBoxProduct and the
TextBoxPrice, as shown in Figure 8-31.

Figure 8-31 Product Blocks Editor (Source: MIT App Inventor 2)

 8.9 Tag-Value Pairs when the Value is a List 413

Checkpoint

 8.6 What is the purpose of the valueIfTagNotThere parameter of the TinyDB
GetValue Block?

 8.7 What must you provide to retrieve a value from a TinyDB?

 8.9 Tag-Value Pairs when the Value is a List
Now let’s consider creating a list of information about our tag. You can create this
list and then store it as the value of the tag in your TinyDB. This will allow you to
store more information about your contact in your database.

To demonstrate this, you will create another Contact application, but this time you
will gather the contact’s name, home phone, mobile phone, and email. You will make
a list of the home phone, mobile phone, and email, and store it as the value for the
name, which we will use as the tag.

● Once the save is complete, we should clear out the TextBoxes so that
the user can easily add another. Find the set TextBoxProduct.
Text to and the set TextBoxPrice.Text to blocks in their associ-
ated drawers.

● Set each to a blank text block and add them to the when ButtonSave.
Click do event handler, as shown in Figure 8-31.

Step 9: Program the when ButtonFind.Click do event handler:
● Find the set LabelPrice.Text to block and place it in the

ButtonFind.Click block.
● Find the TinyDBProducts.GetValue block in the TinyDBProducts

drawer.
● Plug the TextBoxTag.Text block into the TinyDBProducts.

GetValue block.
● Place a text block with the value Not Found in the

 valueIfTagNotThere slot.
● Use a join block to join the Price: prompt text block and the value

returned by the TinyDBProducts.GetValue block.
● Plug the joined text blocks into the set LabelPrice.Text to

block.

Test and run your application. Notice that once you save the price of a product,
you can later find the price by typing the product name or key into the TextBox
and clicking the find Button. If this app were packaged and deployed to your
android device the TinyDB would be persisted and you would have access to
the price information for as long as the app lives on your phone. Using your
emulator, your products and prices will stay available only during the life of the
e mulator session.

414 Chapter 8 Storing Data on the Device

Tutorial 8-6:
Storing a List as a Value in a Tag-Value Pair

First, let’s design and code the elements we need to add our contact. We will
ask the user for a name, home phone, mobile phone, and email address. We will
have an Add Button, which we will use as the event to save the information to
the TinyDB. Before saving the data, we will store the phone numbers and email
values to a list. Figure 8-32 shows the app’s screen.

Figure 8-32 Add Contact Interface (Source: MIT App Inventor 2)

Step 1: Add a Label and change the Text property to Add New Contact.
Change the font size to 20 and mark it as bold.

Step 2: Add a TableArrangement from the Layout Palette. Set the Columns
property to 2 and the Rows property to 4 to give the arrangement two
columns and four rows.

Step 3: Add four TextBoxes. Rename the first TextBoxName and change the
Hint property to Enter Name. Rename the second TextBoxHomePhone
and change the Hint property to Enter Home Phone. Rename the third
TextBoxMobilePhone and change the Hint property to Enter Mobile
Phone. Rename the fourth TextBoxEmail and change the Hint prop-
erty to Enter Email.

For this application, it will be important to create each contact’s list in a consistent
manner. For example, the first element in each list should always be the home phone,
the second should be the mobile phone, and the third should always be the email
a ddress. This is important so that when we retrieve the values, we can be sure that
data is in the correct place.

VideoNote
Storing a List
as a Value in
a Tag-Value Pair

 8.9 Tag-Value Pairs when the Value is a List 415

Step 4: Add a Button, rename it ButtonAdd, and change the Text property to
Add Contact.

Step 5: Add the TinyDB to the project and rename it TinyDBContacts.

Step 6: Program the blocks to add a contact to your TinyDB. Open the Blocks
Editor, create a variable, ContactInfo, and plug in the create empty
list block found in the Lists drawer. This will let App Inventor know
that ContactInfo will store a list. See Figure 8-33.

Figure 8-33 Contact Info Variable (Source: MIT App Inventor 2)

Step 7: Now you will program the when ButtonAdd.Click do event handler.
When the user clicks the Add Button, we want to store the values they
typed in for the home phone, mobile phone, and email into a list and
store it to the ContactInfo variable. Then, we will save the name as
the tag and ContactInfo as the value to your TinyDB.

Go to ButtonAdd and select the when ButtonAdd.Click do block.

Step 8: Hover over the variable name ContactInfo in the initialize
global ContactInfo block and select a set global ContactInfo
to block. Go to the List drawer and select the make a list block,
plug that into the ContactInfo block and then plug the ContactInfo
block into the when ButtonAdd.Click do block.

Step 9: Add the TextBoxHomePhone.Text, TextBoxMobile.Text, and the
TextBoxEmail.Text blocks into the make a list block.

Step 10: Now store the information to the TinyDB by going to TinyDBContacts
and selecting the TinyDBContacts.StoreValue block. Plug in the
TextBoxName.Text block as the tag value and global ContactInfo
block as the valueToStore value. You can find the global
ContactInfo block by hovering over the variable name ContactInfo
in the initialize global ContactInfo block.

Compare your when ButtonAdd.Click do event with Figure 8-34.

Figure 8-34 Add Contact Button (Source: MIT App Inventor 2)

416 Chapter 8 Storing Data on the Device

Step 11: You can run and test your application now, but you’ll notice that you
need to clear out the TextBoxes after you save a contact to make your
application more user-friendly. Set each TextBox’s Text property to an
empty text block, as seen in Figure 8-35. Plug this set of blocks into
the when ButtonAdd.Click do event handler at the bottom under the
TinyDB.StoreValue block.

Figure 8-35 Clear the Textboxes (Source: MIT App Inventor 2)

Your Button event is complete when the when ButtonAdd.Click do
event handler resembles Figure 8-36.

Figure 8-36 ButtonAdd.Click Event (Source: MIT App Inventor 2)

Step 12: Run and test your application using the emulator or a device and save
a few contacts.

Step 13: Now let’s modify the interface as described in Figure 8-37 so that a
user can type in a name, press the Find Button, and then have that con-
tact’s information pulled back out of the TinyDB and presented back
onto the device.

 8.9 Tag-Value Pairs when the Value is a List 417

Figure 8-37 Add Find Function to Design (Source: MIT App Inventor 2)

Step 14: Add a Label, rename it LabelFindContact, and change its Text prop-
erty to Find Contact. Set the font size to 20 and mark it as bold.

Step 15: Add a TextBox, rename it TextBoxFindName, and set the Hint prop-
erty to Enter Name.

Step 16: Add a Button, rename it ButtonFind, and set the Text property to Find.

Step 17: Add four Labels and rename them LabelName, LabelHomePhone,
LabelMobilePhone, and LabelEmail. Clear the Text properties of each.

Step 18: Now you will program the when ButtonFind.Click do event han-
dler. When the user clicks the Find Button, we will first retrieve the
value from the TinyDB using the name that was entered as the tag.
Because the value was stored as a list, we will have to iterate through
the list to extract the values. As we extract each value, we will populate
the Labels on the interface (Figure 8-37).

Go to ButtonFind and select the when ButtonAdd.Click do block.

Step 19: Now let’s set up an empty list variable to hold the results (name, home
number, mobile number, and email) after we search and find a value
in the TinyDB. Go to the Variables drawer, select an initialize

418 Chapter 8 Storing Data on the Device

global name to block, click on name and rename the variable
Results, and plug a create empty list block from the Lists drawer
as shown in Figure 8-38.

Figure 8-38 Set up Results Variable (Source: MIT App Inventor 2)

Step 20: Retrieve the value from the TinyDB, as follows:
● Hover over the variable name ContactInfo in the initialize

global ContactInfo block and select a set global ContactInfo
to block.

● Go to TinyDBContacts and select the TinyDBContacts.GetValue
block. Plug in the TextBoxFindName.Text block as the tag, and
then plug the get value block into the ContactInfo block.

● Create an empty text block to use for the valueIfTagNotThere slot.
● Plug the entire block into the when ButtonFind.Click do block,

as shown in Figure 8-39.

Figure 8-39 Retrieve List from the TinyDB (Source: MIT App Inventor 2)

Step 21: Now you will fill in the LabelNameResult.Text property with the
contact name. This will clarify who was last searched for. Find the set
LabelNameResult to block and plug in the TextBoxFindName.Text.

Figure 8-40 Set up the Name Results Label (Source: MIT App Inventor 2)

Step 22: Now we want to pull out the information in the list that we stored
as our value for the tag. Remember that the first item in the list was
the home phone, the second item was the mobile phone, and the
third item was the email address. We can use the select list item
in list block from the Lists drawer to retrieve the items and populate
the a ppropriate Labels.

 8.9 Tag-Value Pairs when the Value is a List 419

● Find the set LabelHomeResult.Text block from its drawer and
place it in the Blocks Editor.

● In the Lists drawer, select the select list item in list block
and plug it into the set LabelHomeResult.Text block.

● Hover over the variable name Results in the initialize
global Results block and select a get global Results block.
Plug that into the select list item in list block in the first
slot.

Because the home number is the first thing stored in the results list, use
a number 1 block for the index argument.

Step 23: Repeat Step 22 for set LabelMobileResult .Text and
LabelEmailResult.Text, but be sure to change the index arguments
to 2 and 3 respectively. Compare your blocks to 8-41.

Figure 8-41 Label Setter Blocks (Source: MIT App Inventor 2)

Step 24: Place the Label set blocks into the ButtonFind.Click event handler
as shown in Figure 8-42.

Figure 8-42 Complete when ButtonFind.Click do Event Handler
(Source: MIT App Inventor 2)

420 Chapter 8 Storing Data on the Device

Figure 8-43 Tutorial 8-5 Complete workspace (Source: MIT App Inventor 2)

Compare your code blocks to Figure 8-43.

Checkpoint

 8.8 Why would you want to store a list as the value of your TinyDB tag? What
are the advantages?

 8.9 What kind of variable will you need to retrieve a list from your TinyDB?

 8.10 Once you retrieve the list and store it to your variable, what additional steps
will you need to take to extract the list elements?

 8.11 Why is it important to know how your list was created before it was stored
into the TinyDB?

 8.10 TinyDB Across Multiple Screens 421

 8.10 TinyDB Across Multiple Screens

CONCEPT: Many applications that we use have more than one screen. App
Inventor makes it easy to create multiple screen applications, but con-
sideration should be taken of how media and storage components (like
TinyDB) are impacted. Storage and media components are shared on
the application level and shared between screens.

Remember the application sandbox, or application isolation, concept from section
1, which explains that each application has a single storage space that is isolated
from other applications. However, when you add media or storage components to an
a pplication, those same components are visible to all the screens in that application
sandbox. For example, if you add picture files for Screen1 of your app, those same
files are available in Screen2—you don’t have to upload them twice.

We are going to create an application that uses the ListPicker to choose an instru-
ment, (drum, guitar or horn) on the first screen. Once an instrument is chosen, the
app will forward to a second screen that shows an image of the instrument and a but-
ton, which will play a sound file. We will use a TinyDB to store information about
the instrument’s picture and sound file names.

The ListPicker’s elements will be populated from the TinyDB on the first screen. The
picture and sound files will be retrieved from the same TinyDB on the second screen.

Figure 8-44 Get All Tags (Source: MIT App Inventor 2)

App Inventor provides a procedure block for the TinyDB that returns a list of all tags
(see Figure 8-44). We will use this block to populate the ListPicker’s elements. This
block is very helpful because it will show you all of the tags that are currently stored
in your TinyDB.

Figure 8-45 Clear All (Source: MIT App Inventor 2)

There is also a ClearAll block for the TinyDB that will clear all elements from the
storage space. When working with the emulator, you may notice that information
from previous applications is left stored in the TinyDB. So, if you want “fresh” ele-
ments in your TinyDB, you should clear it out.

422 Chapter 8 Storing Data on the Device

Adding a Second Screen
To add a second screen in App Inventor, you simply click the Add Screen Button at
the top of the Designer or Blocks Editor.

Figure 8-46 Add Screen (Source: MIT App Inventor 2)

Once you click the Add Screen Button, you will be prompted to name the new screen.
You can name it something meaningful or leave it Screen2, as shown in Figure 8-47.

Figure 8-47 Name the New Screen (Source: MIT App Inventor 2)

NOTE: You can, and probably should, rename additional screens, however, you
cannot rename Screen1. You can change the Title of Screen1, so that it displays
nicely on your app, but the name Screen1 is unchangeable.

Each screen has its own unique Designer and Blocks Editor spaces. To switch be-
tween the two, you click the Screen1 Button (next to the Add Screen button) and it
will drop down with a list of each screen in the application. In Figure 8-48, notice
that the e xample shown is an app with two screens, Screen1 and Details.

Figure 8-48 Switching between Screens during Development (Source: MIT App Inventor 2)

There are a few noteworthy blocks that allow you to programmatically nav-
igate between screens at runtime. The blocks are found in the Control drawer
of the Blocks Editor. When placed in an appropriate event handler, these blocks
will allow your app to load and unload the different screens of your application.
See Figure 8-49.

Figure 8-49 Navigating between Screens at Runtime (Source: MIT App Inventor 2)

The first block in Figure 8-49 allows you to simply load a different screen by sup-
plying its screen name. The second block allows you to send a start value to that
screen. This start value can be a Text, Number, or List component. Finally, there is
a close screen block that will allow you to close the current screen and return to
the previous screen.

NOTE: Applications with multiple screens work best when deployed to a
d evice. Tutorial 8-7 will work best if you download your project’s .apk file
to your device and install it, rather than work with the companion website or
the emulator. This is especially true if you are sending values from one screen
to another. The following tutorial passes values between screens, so it’s best
to download and install the .apk. Downloading an .apk file is simple; to learn
more about deploying the .apk to your device, see http://appinventor.mit.edu/
explore/ai2/share.html.

Tutorial 8-7:
TinyDB across Multiple Screens

First, let’s design and code the elements we need to invoke the ListPicker. It will
be a very simple interface with a single HorizontalArrangement and a ListPicker
component.

Step 1: Add a HorizontalArrangment from the Layout Palette. Set the Width
property to Fill parent and the Height property to 250 pixels. Set the
AlignHorizontal property to Center and the AlignVertical property to
Center. See Figure 8-51.

 8.10 TinyDB Across Multiple Screens 423

VideoNote
TinyDB Across
Multiple Screens

http://appinventor.mit.edu/explore/ai2/share.html
http://appinventor.mit.edu/explore/ai2/share.html

424 Chapter 8 Storing Data on the Device

Figure 8-50 Instrument Application Interface (Source: MIT App Inventor 2)

Figure 8-51 HorizontalArrangement Properties (Source: MIT App Inventor 2)

Step 2: Add a ListPicker component to the HorizontalArrangement. Rename
the ListPicker to ListPickerInstrument. Set the Text property to Choose
Instrument. See Figure 8-52.

Figure 8-52 Add and Rename ListPicker (Source: MIT App Inventor 2)

Drag a ListPicker Component into
the HorizontalArrangement.

Step 3: Add a TinyDB from the Storage Palette to your application.

Step 4: Upload image and sound files. Download the following files from the
companion website to your computer:
● drum.png
● drum.wav
● guitar.png
● guitar.wav
● horn.png
● horn.wav

Step 5: Upload the files through the Media panel into your application.

TIP: Unfortunately you can only upload one file at a time. See
Figure 8-53.

Figure 8-53 Media Files (Source: MIT App Inventor 2)

 8.10 TinyDB Across Multiple Screens 425

426 Chapter 8 Storing Data on the Device

Now let’s program the blocks for Screen1.

Before the application starts (in the Screen1.Initialize event), a TinyDB will
be populated with a tag and a value for each instrument. The value will be a list
containing the instrument’s picture and sound file names.

Step 6: Clear out any lingering values in the TinyDB space from other practice
applications. (This is especially necessary when using the emulator.)

Step 7: Find the Screen1.Initialize event handler block and place it in the
Blocks Editor.

Step 8: Find the TinyDB1.ClearAll block and place it inside the Screen1.
Initialize block. See Figure 8-54.

Figure 8-54 Clear TinyDB1 (Source: MIT App Inventor 2)

Step 9: Now we will store the information for each instrument into our
TinyDB. See Figure 8-55.

Figure 8-55 Store Instrument Information (Source: MIT App Inventor 2)

Step 10: For each instrument, use a TinyDB1.StoreValue block. Plug a Text
block containing the tag into the tag slot. The tag for the drum will be

Drum, the tag for the guitar will be Guitar and the tag for the horn will
be Horn. See Figure 8-55.

Step 11: Create three make a list blocks from the Lists drawer. Set up each
with the name of the picture file as the first element and the sound
file as the second element. It’s important that the picture is always
first and the sound is always second. You can switch the order as long
as you do the same for all three instruments. Be sure there are no
s pelling mistakes!

Step 12: Plug each of the make a list blocks in the valueToStore slot of the
appropriate TinyDB1.StoreValue block, as shown in Figure 8-55.

Step 13: Now that we have our TinyDB populated, use the TinyDB.GetTags
block to populate the ListPicker’s elements, as shown in Figure 8-56.

Figure 8-56 Populate ListPicker (Source: MIT App Inventor 2)

Step 14: Place the block from Figure 8-56 at the bottom of the Screen1.
Initalize event. See Figure 8-57. For testing purposes, you can run
the app on the emulator or companion website after this step. Notice
how the ListPickers’ elements are populated with the tags stored in the
TinyDB.

Figure 8-57 Completed Screen1.Initialize Event Handler
(Source: MIT App Inventor 2)

 8.10 TinyDB Across Multiple Screens 427

428 Chapter 8 Storing Data on the Device

Step 15: Next we are going to program the ListPicker.AfterPicking event.
This event is fired once the user selects an item on the list. We will
need the ListPickerIntrument.AfterPicking block, found in the
ListPickerInstrument drawer. See Figure 8-58.

Figure 8-58 ListPickerInstrument.AfterPicking Block
(Source: MIT App Inventor 2)

Step 16: Once the user has selected an instrument, the AfterPicking
event is fired. Now open the second screen (which we will develop
in a m oment) and send it a start value of the instrument that was
s elected.

Find the open another screen with start value block, located in
the Control drawer.

Step 17: Place the block inside the ListPickerInstrument.AfterPic
king block. Plug a Text block that is set to the string Details into
the screenName slot (this is the same name we will give our new,
or second, screen). Plug a ListPickerInstrument.Selection prop-
erty value block into the startValue slot. This will send the value
of whatever the user s elected to the Details screen. For example, if
a user selects Drum from the ListPicker, Drum will be the start value
that is sent to the second screen.

Compare your blocks to Figure 8-59.

Figure 8-59 AfterPicking Event (Source: MIT App Inventor 2)

Step 18: We are now finished with Screen1. Compare your blocks to
Figure 8-60.

Step 19: Now let’s develop the second screen. Press the Add Screen button at the
top of the App Inventor site. Name the new screen Details, as shown in
Figure 8-61.

Figure 8-60 Complete Screen1 Blocks (Source: MIT App Inventor 2)

Figure 8-61 Add the Details Screen (Source: MIT App Inventor 2)

To add a new screen to your app,
click the “Add Screen” button.

Name your new
screen “Details”

 8.10 TinyDB Across Multiple Screens 429

430 Chapter 8 Storing Data on the Device

Step 20: Let’s design the user interface for Screen2. Follow Figure 8-62 to
 complete your design.

Figure 8-62 Details Screen User Interface (Source: MIT App Inventor 2)

Remember to add the nonvisible components:
TinyDB1 from the Storage Palette, and Sound1 from the
Media Palette.

Step 21: From the Layout Palette, add a HorizontalArrangement. Set the Width
property to Fill parent and the Height property to Automatic. Set the
AlignHorizontal property to Center.

Step 22: From the User Interface Palette, add an Image component. Set the
Width property to 50 pixels and the Height property to 50 pixels.
Leave the Picture property set to None.

Step 23: Add another HorizontalArrangment. Set the Width property to Fill
 parent and the Height property to Automatic. Set the AlignHorizontal
property to Center.

Step 24: From the User Interface Palette add a Button into the second
HorizontalArrangement. Set the Text property to Play.

Step 25: From the Storage Palette, add a TinyDB component to the design.

Step 26: From the Media Palette, add a Sound component to the design.
Compare your design to Figure 8-62.

NOTE: Even though it seems that we’ve added two different TinyDB
components, they actually share the same storage space and act like
one component.

Figure 8-63 The Details.Initialize Event Block (Source: MIT App Inventor 2)

Step 27: Program the Details.Initialize event block. See Figure 8-63.

Step 28: Find the Details.Initialze block in the Details drawer. Click to
place it in the Blocks Editor. See Figure 8-64.

Figure 8-64 Add the Details.Initialize Event Block (Source: MIT App Inventor 2)

Click on “Details”
to find the screen
events.

Step 29: Add two get start value blocks, found in the Control drawer.

Step 30: Add two empty text blocks, found in the Text drawer.

Step 31: Add two TinyDB1.Get Value blocks, found in the TinyDB1 drawer.
Plug in the get start value blocks into each tag slot and the empty
text blocks into each valueIfTagNotThere slot. See Figure 8-65.

 8.10 TinyDB Across Multiple Screens 431

432 Chapter 8 Storing Data on the Device

Figure 8-65 TinyDB1.GetValue Blocks (Source: MIT App Inventor 2)

Step 32: Create two select list item blocks, found in the Lists drawer. Plug
the TinyDB1 blocks shown in Figure 8-65 into the top slot. See Figure
8-66.

Figure 8-66 select list item Blocks (Source: MIT App Inventor 2)

Step 33: For the first select list item block, plug a number 1 block in the
item slot. For the second select list item block, plug a number 2
block in the index slot. See Figure 8-66.

Step 34: Now find the set Image1.Picture to block from the Image1 drawer
and plug in the first set of blocks shown in Figure 8-66.

Step 35: Create the set Sound1.Sound to block, found in the Sound1 drawer,
and plug in the second set of blocks from Figure 8-66. Figure 8-67
shows how the blocks should appear at this point.

Figure 8-67 Set Image and Sound Properties (Source: MIT App Inventor 2)

Step 36: Place the block set shown in Figure 8-67 into the Details.Initialize
block and compare your blocks to Figure 8-63.

Step 37: Program the Button1.Click event. Find the Button1.Click event
handler in the Button1 drawer and place it in the Blocks Editor.

Step 38: Place a call Sound1.Play block in the Button1.Click event.
Find the call Sound1.Play in the Sound1 drawer. Place it into the
Button1.Click event. See Figure 8-68.

Figure 8-68 Button1.Click Event (Source: MIT App Inventor 2)

Step 39: Build and download the .apk to your device and test your app!
Compare your complete Details Screen Blocks Editor workspace to
Figure 8-69.

Figure 8-69 Complete Details Screen Blocks (Source: MIT App Inventor 2)

Review Questions

Multiple Choice

 1. What application(s) store data into a database?

a. Facebook
b. Twitter
c. Online banking applications
d. All of the above

 2. What is the name of the component that App Inventor provides to store data on
a device?

a. SmallDB
b. TinyDB

 Review Questions 433

434 Chapter 8 Storing Data on the Device

c. TinyWebDB
d. MyAppDB

 3. How many databases should you have per App Inventor application:

a. One
b. Two
c. As many as you wish
d. None

 4. When a file is stored in the sandbox, how many applications can share that file?

a. One
b. Two
c. Infinite
d. None

 5. How many values can you have for a single tag in a TinyDB?

a. One
b. Two
c. As many as you wish
d. None

 6. The __________ method will add text to the end of an existing file.

a. UpdateFile
b. SaveFile
c. AppendToFile
d. ReadFrom

 7. How can we add multiple items to a tag?

a. By having a list as a value
b. We can’t add multiple items to a single tag
c. By appending the items in a text box
d. By making two lists

 8. What TinyDB block is used to save data to a TinyDB?

a. AddInfo
b. StoreValue
c. SaveInfo
d. None of the above

 9. To store information to a TinyDB, you must provide which item(s)?

a. Tag
b. Number and tag
c. Number and value
d. Tag and value

 10. What happens if we find a tag missing while retrieving a value from the TinyDB?

a. The value of defaultTagValue is returned
b. The value of valueIfTagNotThere is returned
c. “Not found” is returned
d. Nothing is returned

 Programming Projects 435

Short Answer

 1. What are databases? Give three examples that explain how they are useful to
mobile applications.

 2. What would happen if you include two TinyDBs into an App Inventor project?
Would you get errors? What would be the effect?

 3. There can only be one value per tag in a TinyDB. Why do you think this is?

 4. What is the advantage of storing a list as the value of a tag in a TinyDB? Can you
think of any potential problems with this approach?

 5. Why are Android applications isolated from each other? How can this protect
your application? How does it limit your application?

 6. If you want to share data between applications, where must that data live?
What kind of database can you use for shared data between App Inventor
a pplications?

Exercises
 1. Vehicle VIN Number

Review Tutorial 8-4. Write a similar app that stores a vehicle’s VIN number and
make. Which value should be the tag? Why?

 2. Vehicle VIN Number Modification 1

Review Tutorial 8-5. Expand the VIN number application from Exercise 1 to
allow your user to type in a VIN and find the make of the vehicle.

 3. Vehicle VIN Number Modification 3

Review Tutorial 8-6. Expand the VIN project further by adding the ability to
store the make, model, and year of the vehicle.

 4. Contact List Modification

Review Tutorial 8-6, step 11. What would happen if we did not clear the labels
each time?

 5. Product/Price Modification

Modify the Product/Price application from Tutorial 8-5 so that the user can
search for and determine the price of a product and how many are in stock.

Programming Projects
 1. Daily Special

Write an application that allows a restaurant manager to enter the seven daily
specials and store the information into a TinyDB using the day of the week as
the tag and the special entered on the screen as the value. Provide a search under-
neath the entry portion that will allow the user to enter the day of the week in a
textbox, click a button, and see the special for that day.

See Tutorial 8-5 for a similar example.

VideoNote
Creating the
Daily Special App

436 Chapter 8 Storing Data on the Device

 2. Area of a Donut

Write an app to calculate the area of a donut; i.e., the difference between the
areas of its inner and outer circles. Your application should calculate all radii
from 1 to 1000 and store them in the TinyDB. When the user enters his donut’s
radii, retrieve the areas and calculate the difference.
 a. Use a for range loop in the Screen.Initialize event, iterating from

1 to 1000. During each iteration store the loop iteration number and the
area taking the iteration number as the radius.

 b. Include two TextBoxes for the user to enter the inner and outer radii
(whole numbers between 1 and 1000), a button as the event trigger, and a
Label to display the result.

 c. On the Button.Click event, retrieve the areas from the TinyDB and find
their difference to populate the result Label.

 3. Product By SKU (Stock Keeping Unit)

Often products are stored in databases by a unique identifier called an SKU.
An SKU is generally a string of characters and letters.

Write a Product application that generates a TinyDB on Screen.Initialize
of five or more SKUs and associated product names, prices, and quantity
in stock. When storing items to the TinyDB, the tag should be the SKU of
the product and the value should be a List containing the name, price, and
q uantity in stock.

Provide the user an interface allowing entry of a SKU, an search Button, and
Labels to show the resulting product information.

 4. Custom Colors

App Inventor provides us with several built-in colors to work with, which you
can see in the Color drawer in the Blocks Editor. Behind the scenes, App Inventor
colors are stored as numbers. The color black is actually stored as the number
−16777216. You can see the number of a color by printing the color out as text.
See Figure 8-70.

Figure 8-70 Determining the Number of a Color (Source: MIT App Inventor 2)

To create a color in App Inventor you can use the make color block found in
the Color drawer. You will need to provide the block three or four e lements, the
numbers for the amount of red, green, and blue in the color and optionally the
number for the opacity, or transparency. Each of the four numbers needs
to be in the range of 0 through 255. You can use the Web to search for

 Programming Projects 437

RGB color charts. For example, the color Dark Orchid has the RGB value
of 153-50-204. These numbers represent the amount of red, green, and blue,
 respectively. The optional fourth number represents the opacity, which is the
transparency of the color. If you supply 0 for this value, the color will be
 completely transparent and will not be visible. If you supply the maximum value
of 255, the color will be completely solid and block out anything that it covers.

 5. Make a Color

To make a color, you first need to create a list with the three or four num-
bers. You can use the mutator to change the number of parameters the make
color block accepts. They must be in the proper order of red, green, blue, and
opacity. To make a semi-transparent Dark Orchid you can follow the steps below:

Step 1: Create a variable to hold your color. Name it DarkOrchid.

Step 2: Find the make color block in the Colors drawer. Plug this in as the value
of your DarkOrchid variable.

Step 3: Create your list. Go to the List drawer and select the make a list block.
Supply the list with the RGB colors for Dark Orchid. Plug the list into the
make color block in the components slot. See Figure 8-71.

Figure 8-71 Make a Color (Source: MIT App Inventor 2)

You can use the chart below (Figure 8-72) as reference or create your own colors
to write an application that will store several custom colors by their name and
number. Allow users to find the number for a certain color by searching the
color’s name. Include a component on the screen that displays the color in addi-
tion to the number that represents it.

See full color chart: http://beta.appinventor.mit.edu/learn/reference/blocks/
c olorchart.html.

 5. Load and Display Contact List TinyDB

Complete Tutorial 8-6 and review Tutorial 8-7. Modify Tutorial 8-3 by adding a
ListPicker component at the bottom. This ListPicker should load all the contacts
that are stored in the TinyDB to a list that the user can choose from.

Once the contact is chosen, forward the user to a second screen that shows the
detailed information (Name, Home Number, Mobile Number, and Email). Use
the TinyDB.GetTags block.

http://beta.appinventor.mit.edu/learn/reference/blocks/colorchart.html
http://beta.appinventor.mit.edu/learn/reference/blocks/colorchart.html

438 Chapter 8 Storing Data on the Device

 6. Notes App

Complete Tutorials 8-1 through 8-3, and 8-7. Write an app that stores text notes
as files in your application sandbox.

Each time the user saves or appends to a note, store the file name to a TinyDB.

Add a ListPicker to the bottom of the screen in Tutorial 8-3. The elements should
be the files that the user has stored using the app.

When the user chooses a file (or a “note”), open up that note for editing on a new
screen. Allow the user to save modifications to the note and transfer control back
to the original screen. Do not ask the user to re-enter the filename.

Figure 8-72 Partial App Inventor Color Chart (Source: MIT App Inventor 2)

TIP: Make your app more user-friendly by enabling the ShowFilterBar property.
This allows the user to begin typing in a contact, and as they do, the list will filter
appropriately.

CHALLENGE: To your second screen, add the nonvisible PhoneCall com-
ponent. If you are running on a device, have the app place a call to the phone
n umbers relevant to the contact shown on the second screen. Don’t call them too
many times!

c
h

a
p

t
e

r

TOPICS

9.1 the canvas component

9.2 the Ball and ImageSprite
components

9.3 Using the clock component to create
animations

9.3 Dragging sprites

9.5 Detecting collisions

Graphics and animation

c
h

a
p

t
e

r

439

 9.1 The Canvas Component

CONCEPT: The Canvas is an App Inventor component that allows you to create
two-dimensional graphics. You can use the Canvas to draw points, lines,
and circles in different colors and sizes. You can also use ImageSprites
on the Canvas. ImageSprites are images or animations that can move
around on the Canvas.

Many of the mobile applications that we write will require some sort of graphics or
animation. For example, most games require animation, moving images or touch screen
interaction. With App Inventor, games are fun and easy to create, but the graphic and
animation functionality can be applied to many other types of applications too. To get
started, the first component to learn is the Canvas.

The App Inventor Canvas component is the starting point for creating graphics and
animations. It allows us to create games and other graphical applications because it is
touch-sensitive and allows us to move images and animations around.

The Canvas, found in the Drawing and Animation Palette, is like a sub-panel inside
the Screen component. It is a rectangular panel with a specified height and width.
The locations inside a Canvas are represented in pixels by a pair of x, y coordinates.

9

440 chapter 9 Graphics and animation

The x coordinate is the number of pixels from the left edge of the Canvas. The x
coordinates at the left edge are 0, and they increase as you move to the right across
the Canvas. The y coordinate is the number of pixels down, from the top edge of the
Canvas. The y coordinates at the top edge of the Canvas are 0, and they increase as
you move down the Canvas. This is illustrated in Figure 9-1.

Point 0,0

Point 0, 40

Point 100,100

Point 199,199

Canvas with a 200 Pixel Height and 200 Pixel Width

Figure 9-1 the canvas coordinate System (Source: tony Gaddis/pearson education, Inc.)

Figure 9-1 shows that the top left corner of the Canvas is point 0, 0 because it is zero
pixels from the left edge and zero from the top edge. The point 0, 40 is down a bit on
the left edge (the x coordinate is zero pixels away from the left edge, and the y coor-
dinate is 40 pixels down from the top). The point at 100, 100 is at the approximate
center of the Canvas because it is both 100 pixels to the right of the left edge and 100
pixels down from the top edge.

Canvas Properties
The Canvas component has several properties, but as you can see in Figure 9-1, the
Height and Width properties are important because they set the size of the Canvas,
which is the stage of your application. By setting the Canvas’s Height equal to 200
you are making the Canvas 200 pixels tall; likewise, setting the Width equal to 200
makes the Canvas 200 pixels wide. You can also set the Height and Width to Fill par-
ent, which will set it to equal the Height and/or Width of your Screen1 component.

The PaintColor property sets the color for the points, lines, and circles that are drawn
on the Canvas.

There are two properties that we can use to set the background of the Canvas,
BackgroundColor and BackgroundImage. If we set the BackgroundColor, the color we
specify will fill in the entire background of the Canvas. To set the background of the
Canvas to be an image, we must first upload the image to our App Inventor project.
Uploading an image for the BackgroundImage property is covered in Tutorial 9-1.

You can set all of these properties, Height, Width, PaintColor, BackgroundColor,
and BackgroundImage at design-time or programmatically in the Blocks Editor.

 9.1 the canvas component 441

Drawing Methods
Once you add a Canvas component to your design, you will find method blocks in
the Blocks Editor that will allow you to draw on the Canvas. These are found in the
Canvas1 drawer.

The DrawPoint method block will draw a one-pixel point on the Canvas. It requires
that you specify where on the Canvas to draw it by supplying the x, y coordinates.

The DrawCircle method block will draw a circle on the Canvas. The circle is drawn
filled in with the color specified by the PaintColor property value. The method re-
quires that you tell it where to draw the circle by supplying the x, y coordinates of the
center of the circle. This method also requires that you give it a radius in pixels so that
it knows how big to draw the circle. If you give it a value of 1 for the radius, you will
have a very small, two-pixel-wide circle. If you give it a large value, such as 100, you
will have a very large circle that is 200 pixels wide and 200 pixels tall.

The DrawLine method block will draw a line in the color specified by the PaintColor
property. This method needs to know at what point to start and at what point to
end, so it needs two sets of x, y coordinates. The DrawLine method also uses the
LineWidth property, which sets the width of the line in pixels.

The Clear method block clears all graphics from the Canvas except for the back-
ground image.

Touch and Dragged Event Handlers
The Canvas component’s Touched event handler acts just as it sounds: it will execute
when a user touches the Canvas. It records the x, y coordinates where it was touched.
Using this event will allow you to do something programmatically when the screen is
touched—for example, draw a circle at the point where the user touched the screen,
as you will see in our first tutorial. If the Canvas has a sprite and the sprite is touched,
this event handler will set the touchedSprite parameter to true.

Figure 9-2 touched event handler (Source: MIt app Inventor 2)

Figure 9-3 Dragged event handler (Source: MIt app Inventor 2)

442 chapter 9 Graphics and animation

The Dragged event handler will execute when a user drags across Canvas. This event
handler will record where the drag started and where it ended by keeping track of the x,
y coordinates. If the user drags from the top left corner to the bottom right corner of a
200 by 200 pixel Canvas, the previous (prevX, prevY) coordinates are 0, 0 and the cur-
rent coordinates (currentX, currentY) are updated as the drag occurs and finally ends
with 199, 199. This event handler also has a startX and startY set of coordinates which
 indicates the position where the user first touched the screen. There is also a Boolean vari-
able named draggedSprite that is set to true if the user drags a sprite on the Canvas.

There are more properties, methods, and events to learn and explore in the Canvas
component, but this gives us enough information to start drawing some graphics!

NOTE: For this tutorial you can use any image that you wish; you
will still be able to complete the following steps just fine.

Step 4: Be sure you have the Canvas component selected in the Designer and
click the PaintColor property in the Properties panel. Change the color
to Green.

Tutorial 9-1:
Drawing on the Canvas

In this tutorial, we will introduce the Canvas component by accomplishing the
following tasks:

 1. Add the Canvas to the Screen
 2. Set the Height and Width properties
 3. Set the BackgroundImage property
 4. Set the PaintColor property
 5. Use the Touched event handler to draw circles
 6. Use the Dragged event handler to draw lines
 7. Use the Clear method to clear the Canvas

Step 1: Start a new project, and in the Designer drag a Canvas component
from the Drawing and Animation Palette to the screen.

Step 2: In the Properties panel, set the Width property to Fill parent and the
Height property to 200.

Step 3: Download the BlueGradient.png file from the companion website.
Save it on your computer in a place that you will remember. Then, set
the background image by clicking on the BackgroundImage property
in the Properties panel. You will then get a dialog box, as shown in
Figure 9-4.

Click the Upload file button and browse to select the BlueGradient.
png file.

VideoNote
Drawing on the
Canvas

 9.1 the canvas component 443

Step 5: Drag a Button from the User Interface Palette to the screen beneath the
Canvas and rename it ButtonClear. Set the Button’s Text property to
Clear.

Step 6: Compare your Viewer and Components column with Figure 9-5 and
your Canvas properties with Figure 9-6.

Figure 9-4 Background Image Dialog Box (Source: MIt app Inventor 2)

Figure 9-5 Viewer and components (Source: MIt app Inventor 2)

444 chapter 9 Graphics and animation

Figure 9-6 canvas properties panel (Source: MIt app Inventor 2)

Step 7: Now we are going to program the application to draw circles wher-
ever the user touches (on the device) or clicks (using the emulator).
Open the Blocks Editor and select the when Canvas1.Touched do
block in the Canvas1 drawer.

Step 8: Now select the Canvas1.DrawCircle method found in the Canvas1
drawer. Place that inside the when Canvas1.Touched do block and
compare your blocks to Figure 9-7.

Step 9: Now we must fill in the parameters for the DrawCircle method.
We want to use the values for x and y from the Canvas1.Touched
event handler because it records the location of where the user
touched the screen.

Step 10: Fill in the r (radius) parameter with a number block, found in the Math
drawer, set to 15, as shown in Figure 9-8.

 9.1 the canvas component 445

Figure 9-7 Touched event handler (Source: MIt app Inventor 2)

TIP: To find the value of x, hover over the x in the Canvas1.
Touched block (do not click it). Once you see the get x block pop
up, select it to place it in the editor. Follow the same process to find
the value of y.

Figure 9-8 complete Touched event handler (Source: MIt app Inventor 2)

Step 11: Next, let’s program the Canvas1.Dragged event handler to draw a
line when a user drags their finger across the device or when a mouse is
dragged while using the emulator. Find and select the when Canvas1.
Dragged do block in the Canvas1 drawer.

Step 12: Find and select the Canvas1.DrawLine method block and place it
in the when Canvas1.Dragged do block. Notice that it needs four
 parameter values for the starting point (x1, y1) and the ending point
(x2, y2). Recall from the description of the Canvas1.Dragged event
handler (Figure 9-3) that the prevX and prevY parameter values in-
dicate where the drag started and the currentX and currentY indi-
cate where it is going. Hover over these parameters on the Canvas1.
Dragged block, remember not to click them, and wait for the get

446 chapter 9 Graphics and animation

blocks to pop up. Once you see the get block for the parameter,
click it to place it in the editor and plug it into the correct slot of the
Canvas1.DrawLine method.

Figure 9-9 complete Dragged event handler (Source: MIt app Inventor 2)

Step 13: Now you will program the Clear Button to clear the Canvas. Find
the when ButtonClear.Click do block in the ButtonClear drawer.
Select it to place it in the workspace.

Step 14: Find the Canvas1.Clear method block in the Canvas1 drawer. Place
it in the when ButtonClear.Click do block.

Compare your Blocks Editor for this tutorial to Figure 9-10.

Figure 9-10 tutorial 9-1 complete Blocks editor (Source: MIt app Inventor 2)

 9.1 the canvas component 447

Drawing using Specific values
The examples shown in Tutorial 9-1 use the x, y values associated with the Touched and
Dragged event handlers. You can also hard code or use variable data to draw on a Canvas.

For example, if you’d like to draw a line from the coordinates 20, 20 to 20, 40 when
the user presses a Button, you can supply the DrawLine method block with those
 specific values, as shown in Figure 9-12.

Figure 9-12 Drawing with hard coded Values (Source: MIt app Inventor 2)

In Figure 9-12 you see that we can specifically tell the Drawline method block where
to draw the line. Which points will you need to complete a red square in this example?
How many Drawline method calls will you need?

Step 15: Run and test your application on your device or emulator. See if you
can draw some flowers, or a face, as shown in Figure 9-11.

Figure 9-11 Draw (Source: MIt app Inventor 2)

448 chapter 9 Graphics and animation

You can also use variable data with the drawing methods. Take a look at the example
in Figure 9-13.

Figure 9-13 Drawing with Variable Data (Source: MIt app Inventor 2)

In this DrawCircle example, we set up two variables for the x and y coordinates.
We also use a variable i, the for range loop counter, for the radius. The result in
the emulator shows that the coordinates are variable (the circles are drawn across the
screen) and that the radius is variable (the circles get bigger).

Checkpoint

 9.1 On a 300 by 300 pixel Canvas, what are the x, y coordinates of the top right
corner? What are the coordinates of the bottom left corner?

 9.2 What are the coordinates of the mid-point of a 160 by 160 pixel Canvas?

 9.3 When calling the DrawLine method from the Dragged event handler, where
do we find the prevX and prevY blocks to connect to the x1 and y1 sockets?

 9.4 Using the example in Figure 9-12, give the coordinates to complete a square.

 9.2 The Ball and ImageSprite Component

CONCEPT: A sprite is a two-dimensional graphic, picture, or animation that can
be moved about the Canvas. Even though it is a separate object, when
your application is running a sprite, it looks as if it is part of the Canvas.

App Inventor has two different types of sprite components. The first is the Ball
component, which is essentially a two-dimensional circle that can move around the
Canvas. The second is the ImageSprite component, which acts very similar to the

 9.2 the Ball and ImageSprite component 449

Ball component, except that rather than looking like a ball, you select an image for
it to display. Both of these components are found in the Animation Palette, in the
Designer.

Whether you use the Ball or ImageSprite component, you can touch it, move it,
bounce it, and drag it. Balls and ImageSprites can also interact with each other and
the edges of the Canvas by colliding with each other and reaching the edges.

NOTE: All of the methods and event handlers for the Ball component work the
same for the ImageSprite component. The components vary in only a few properties.

The Ball and ImageSprite Component
Properties
The sprite components have X and Y properties that indicate the sprite’s posi-
tion on the Canvas. These properties hold the x and y coordinates of the sprite’s
top left corner. This must be taken into consideration when moving the sprite so
you do not attempt to move it off of the Canvas. For example, assume you have a
Canvas that is 300 by 300 pixels, and a sprite that is 20 by 20 pixels. If you want
to position the sprite in the Canvas’s lower-right corner, you would position it at
the coordinates 279, 279.

The sprite components also have properties that tell it them how to behave. These are
Interval, Heading, and Speed, summarized here:

● The Interval property sets how often the sprite will move, and is in milliseconds.
For example, 1,000 milliseconds equal one second, so the larger you set this
property, the slower your sprite will move.

● The Heading property will set the direction of the sprite in degrees. So,
90 (degrees) will set the direction of the sprite to straight up, 180 will set the
direction to left, 270 is down and 0 is right. For example, if you want the sprite
to move from the bottom left corner to the top right corner in a straight line of
a 200 by 200 pixel canvas, you will set the Heading to 45.

● The Speed property is the number of pixels to move each interval. So, if you
have your Speed set to 10 and the Interval set at 1,000 milliseconds, your sprite
will move 10 pixels every second (in the direction set by the Heading).

The Ball Component Properties
You can change how the Ball sprite appears by changing some of its basic properties.
Change the PaintColor property to set the color, the Radius property to set the size,
and the Visible property to either show or hide it.

The Ball and ImageSprite Component Methods
The sprite components have a Bounce method that simulates the sprite bouncing
off an edge or corner. It is important that we first understand edges before using
this method.

450 chapter 9 Graphics and animation

Edges
Edges are represented by numbers and are used in both the Bounce method and the
EdgeReached event handler. The edges are represented as follows:

● North or Top Edge = 1
● South or Bottom Edge = −1
● East or Right Edge = 3
● West or Left Edge = −3
● Northeast Edges = 2
● Southwest Edge = −2
● Southeast Edge = 4
● Northwest = −4

Figure 9-14 Bounce with east edge (Source: MIt app Inventor 2)

Assume we are using a Ball component, and the Bounce Button shown in the figure
calls the Bounce method with a number 3 as the edge parameter. At the point in
which it is invoked, the Bounce method will act as if there is an East edge to bounce
off of (represented in Figure 9-14 by the dotted line). The Ball will appear to bounce
off of it and travel in the opposite direction.

The MoveTo method will allow you to move the sprite to a specific x, y coordinate on
a Canvas. For example, assume that you have a 200 by 200 pixel Canvas. You can

 9.2 the Ball and ImageSprite component 451

use the MoveTo method to put the sprite in the approximate center by assigning 90 to
both the X and Y parameters (assuming the Ball radius is 10).

Sometimes sprites may accidentally move out of bounds (off of the Canvas). You can
use the MoveIntoBounds method block to put them back onto the Canvas.

There is one additional method block, the Boolean CollidingWith method, that we
will cover later in this Chapter in Section 9.5, Detecting Collisions.

The Ball and ImageSprite Component Events
The Dragged event handler has the same arguments and works the same as the
Canvas Dragged event handler. See Figure 9-3. This event will be executed when a
user drags the sprite with their finger or mouse and will keep track of where the drag
began and where it ended. It will hold these values in the prevX, prevY, currentX,
and currentY argument values.

Figure 9-15 EdgeReached event handler (Source: MIt app Inventor 2)

The EdgeReached event handler is executed when the sprite reaches an edge of the
Canvas. The edge argument value will indicate which edge was reached by a number.
See the number representation of edges above Figure 9-14. If the bottom edge was
reached, the edge argument would have a value of -1.

Like the Canvas Touched event handler, the sprite Touched event handler will
execute when the sprite is touched and will record the x, y coordinates of the
 position where the touch occurred.

Figure 9-16 Flung event handler (Source: MIt app Inventor 2)

A fling is a quick swipe of the Canvas and will invoke the Flung event handler. The
event records the x, y coordinates of where the fling started and also provides the x
and Y velocities of the fling (xvel and yvel). The speed and heading values of the
flung Ball1 are also available.

452 chapter 9 Graphics and animation

Figure 9-17 Screen Design (Source: MIt app Inventor 2)

Step 4: Add a Ball component (from the Drawing and Animation Palette) to
the Canvas and set the properties as shown in Figure 9-18.

Set the Heading to 45 degrees, the Interval to 500 (half second), the
color to Magenta (or whatever you wish), the Radius to 10 and the X,
Y coordinates to 0, 0.

Tutorial 9-2:
Bouncing Ball

Let’s create an app that will make a ball bounce around a Canvas. We will also
let the user control when to start over, speed up, and slow down. We will give
the user a Button that will bounce the ball down from wherever it is at the time.

Step 1: Design the user interface. Start a new project and add a Canvas to the
screen

Step 2: Add a HorizontalArrangement under the Canvas and then add four
Buttons to it.

Step 3: Rename your Buttons and set their Text properties to match Figure 9-17.

VideoNote
Bouncing Ball

 9.2 the Ball and ImageSprite component 453

Figure 9-18 Ball component properties (Source: MIt app Inventor 2)

Step 5: Now Let’s program the blocks, starting with the when ButtonStart.
Click do event handler. Open the ButtonStart drawer and find the
when ButtonStart.Click do block. Open to the Ball1 drawer and
select three method blocks: set Ball1.Interval to, set Ball1.X to
and set Ball1.Y to. Place all three in the when ButtonStart.Click
do event handler. From the Math drawer, select three number blocks and
set the first two to zero and the third to 500. Plug the zeros into the X
and Y slots, and the 500 into the Interval slot as shown in Figure 9-19.

Step 6: Now you will program Ball1 to move slower. Remember that the higher
the interval the slower Ball1 will move. So, we will simply increase
the interval by two times each time the user clicks the Slower Button.

454 chapter 9 Graphics and animation

Figure 9-19 Start Button (Source: MIt app Inventor 2)

(You can also decrease the Speed to accomplish this step, but we are going
to manipulate the Interval in this example.) Open the Ball1 drawer and
find the set Ball1.Interval and the value of Ball1.Interval to
blocks. Multiply the Interval by 2 by using a multiplication block and a
number block found in the Math drawer. Plug the Ball1.Intervalblock
into the first slot of the multiplication block, and the number 2 block
into the second slot. Plug the multiplication block into the set Ball1.
Interval to block as shown in Figure 9-20.

Figure 9-20 Slower Button (Source: MIt app Inventor 2)

Step 7: Now you will program Ball1 to move faster. This step is almost identi-
cal to Step 6, but it uses the division math operation instead. We want to
cut the interval in half to make the Ball travel faster. See Figure 9-21.

Figure 9-21 Faster Button (Source: MIt app Inventor 2)

Step 8: Now let’s program Ball1 to bounce on any of the edges it reaches. Find
the Ball1.EdgeReached event handler in the Ball1 drawer. Inside that
event, place a Ball1.Bounce method block, also found in the Ball1
drawer. Plug a get edge block (found by hovering the mouse cursor
over the edge parameter) into the edge socket of the Bounce method
block. Compare your event handler to Figure 9-22.

Figure 9-22 Bounce the Ball (Source: MIt app Inventor 2)

Hover over the edge parameter
to find the “get edge” block.

 9.2 the Ball and ImageSprite component 455

Step 9: The last action we need to program is the bounce down which happens
when the user presses the ButtonDown Button. In the when ButtonDown.
Click do event handler, call the Ball1.Bounce method. The call is similar
to what we did in Step 8, but instead of using the value of the edge argu-
ment we will just put in a number 1 block which represents the top edge.

Figure 9-23 Bounce Down (Source: MIt app Inventor 2)

Step 10: Compare your blocks to Figure 9-24.

Figure 9-24 tutorial 9-2 complete Blocks editor (Source: MIt app Inventor 2)

Step 11: Run and test your application on your device or emulator. Test speed-
ing Ball1 up and slowing it down. What happens when you click the
ButtonDown Button quickly and consecutively?

ImageSprite Component Properties
The ImageSprite component essentially works the same as the Ball compo-
nent. The differences stem just from the appearance of the sprite. For example,
 instead of a radius, there are Height and Width properties to indicate the size in

456 chapter 9 Graphics and animation

pixels. There is also no PaintColor property because the sprite is associated with
an image.

The image is indicated in the Picture property. As with other images in App Inventor,
you must upload the image to App Inventor before you use it. The ImageSprite has a
Boolean Rotates property. If the value is set to true, the image will rotate in the direc-
tion of the Heading property.

Tutorial 9-3:
Fishbowl - Using the ImageSprite component

In this tutorial, we will simulate a fish swimming in a bowl. After this tutorial,
the fish will swim around, inside and outside of the bowl. We will learn how to
keep the fish in the bowl with skills learned in Sections 9.3 and 9.4.

You will need to download two image files, Fishbowl.png and Fish.png, from this
book’s companion website (go to www.pearsonglobaleditions.com/Gaddis).

Step 1: Start a new project and add a Canvas to the screen. Set the Canvas
component’s Width to Fill parent and the Height to 300 pixels. Set the
BackgroundImage of the Canvas to Fishbowl.png.

Step 2: Add an ImageSprite component to the Canvas. Change its name to
ImageSpriteFish. Set the properties as follows:
● Heading - 300 degrees
● Interval - 100 milliseconds
● Picture - Fish.png
● Rotates - checked (true)
● Speed - 10
● Width - 60 pixels
● Height -30 pixels

Step 3: Now let’s program the fish to switch directions when it reaches the
edge of the Canvas. Use the when ImageSpriteFish.EdgeReached
do event handler from the ImageSpriteFish drawer. Inside that event
handler, place an ImageSpriteFish.Bounce method block, also
found in ImageSpriteFish drawer. Plug a get edge block (found by
hovering the mouse cursor over the edge parameter) into the edge
socket of the Bounce method block. Compare your event handler
to Figure 9-25.

Step 4: Run and test this app on your device or emulator. Notice that the
ImageSprite component works similar to the Ball sprite. However, note
how the nose of the fish points in the direction it is traveling due to the
Rotates property being set to true. Figure 9-26 shows an example of
the app running in the emulator.

VideoNote
The Fishbowl App

http://www.pearsonglobaleditions.com/Gaddis

 9.2 the Ball and ImageSprite component 457

Figure 9-25 Swimming Fish (Source: MIt app Inventor 2)

Figure 9-26 ImageSprite rotates (Source: MIt app Inventor 2)

Checkpoint

 9.5 What is the purpose of the sprite Heading property? If you want your sprite
to move down and left across the Canvas, what value would you use for
the Heading?

 9.6 Why is there no PaintColor property for the ImageSprite component?

 9.7 If you want your sprite to speed up, do you increase or decrease the
Interval property?

 9.8 If you want to make your sprite appear to bounce away from an edge to its
left, what numeric value will you plug into the edge slot?

 9.9 What method will you use if your sprite moves off of the Canvas and you
want it back on?

 9.10 What is the purpose of the Rotates property?

458 chapter 9 Graphics and animation

 9.3 using the Clock Component to
Create Animations

CONCEPT: The Clock Component is a timer that executes an event based on a
time interval. You can use this timer to program events to happen
repeatedly at each interval.

App Inventor’s Clock component is found in the User Interface Palette and acts as
a nonvisible component in your application. It has three properties and one event
 handler, Timer. The App Inventor Clock component also has many methods to show
and manipulate dates. This chapter’s coverage of the component will focus on the
properties and the Timer event handler.

Clock Component Properties
The TimerEnabled property can be true or false. If it is set to true, the Timer event
handler will execute repeatedly at the currently set interval. If this property is set to
false (meaning the timer is disabled), the Timer event handler will not execute.

The TimerInterval is the interval period for the Timer event handler. Its value is in
m illiseconds. For example, if it is set at 1000, the Timer event handler will execute every
second. If it is set at 500, the Timer event handler will execute every one-half second.

The TimerAlwaysFires property, if set to true, will cause the Timer event handler to
execute even if the application is not active on the screen and is running behind the
scenes on your device.

Clock Timer Event Handler
The Timer event handler is the only event handler that the Clock component has. If
the TimerEnabled property is set to true, this event handler executes at each inter-
val specified by the TimerInterval property.

Tutorial 9-4:
crack the egg

To demonstrate how the Clock can be used for animations, we are going to cre-
ate a farm game where eggs randomly move around the screen at a set interval.
The goal is to crack the eggs.

We will programmatically change the ImageSprite’s Picture and Enabled proper-
ties and use the MoveTo method block when the sprite is touched.

You will need three images from the book’s companion website: farm.png,
egg.png, and brokenEgg.png.

VideoNote
Crack the Egg

 9.3 Using the clock component to create animations 459

Step 1: Start a new project and add a Canvas component. Set the Width to
300 pixels and the Height to 300 pixels. Set the BackgroundImage to
farm.png.

Step 2: Add three ImageSprites. Set all of their Picture properties to the same
picture, egg.png. Rename them ImageSpriteEgg1, ImageSpriteEgg2
and ImageSpriteEgg3. Make sure they are all enabled, but do not
worry about the Heading, Interval and Speed properties. We will han-
dle their movement with the Clock.

Step 3: Drag a Clock component from the User Interface Palette onto the
screen. Make sure the TimerEnabled property is checked and set the
TimerInterval property to 1000.

Compare your design with Figure 9-27. Do not worry about the initial
position of the eggs.

Figure 9-27 crack the egg Design (Source: MIt app Inventor 2)

Step 4: Now you will program the actions that randomly move the eggs
at the set time interval. Open the Blocks Editor and Find the when
Clock1.Timer do event handler in the Clock1 drawer. Place it in
your editor.

Step 5: Find the ImageSpriteEgg1.MoveTo method block in the
ImageSpriteEgg1 drawer. Select it and place it inside the when Clock1.
Timer do event handler.

Step 6: For the x parameter of the MoveTo method, randomly generate a
number between 0 and 267 using the random integer from 1 to 100
block (found in the Math drawer). Change the 100 value to 267 and
the 1 value to zero. Do the same for the y parameter.

460 chapter 9 Graphics and animation

Step 7: Complete steps 5 and 6 for the other sprites, ImageSpriteEgg2 and
ImageSpriteEgg3.

Compare your workspace to Figure 9-28.

Figure 9-28 randomly Move the eggs (Source: MIt app Inventor 2)

Step 8: Run your application on the emulator or your device and watch the
eggs move around!

Step 9: Now we want to program each sprite’s Touched event handlers to per-
form the following tasks:
● Change the picture to a broken egg
● Move the sprite to the bottom of the screen
● Disable the sprite

Find the when ImageSpriteEgg1.Touched do event handler in the
ImageSpriteEgg1 drawer and place it in the blocks editor.

Step 10: Find the ImageSpriteEgg1.MoveTo method block in the
ImageSpriteEgg1 drawer, and place it inside the ImageSpriteEgg1.
Touched event handler. Keep the x parameter the same as when it
was touched. To do this, create a get x block (found by hover-
ing the mouse cursor over the x parameter of the Touched event
handler) and plug it into the x socket of the MoveTo method block.
Then, plug a number block with the value 261 (the brokenEgg.
png is 38 pixels tall) into the y socket. This step will drop the egg
straight down.

Step 11: Find the set ImageSpriteEgg1.Picture to block in the
ImageSpriteEgg1 drawer. Use an empty text block and change the value
to brokenEgg.png. Plug the text block in the socket. See Figure 9-29.

 9.3 Using the clock component to create animations 461

Step 12: Disable the ImageSprite by setting its Enabled property to false.

Compare your work to Figure 9-29.

Figure 9-29 egg touched event handler (Source: MIt app Inventor 2)

Step 13: Repeat Steps 10 through 12 to program the event handlers for the
ImageSpriteEgg2.Touched and ImageSpriteEgg3.Touched events.

TIP: To repeat Steps 10 through 12, you may want to select the
entire set of blocks in Figure 9-29 and duplicate it by right-clicking
and choosing “duplicate” or by using copy and paste. Then, you will
simply need to change ImageSpriteEgg1 in the new set of blocks to
ImageSpriteEgg2 using the drop-down menu (remember to change
all four). You can repeat these steps for ImageSpriteEgg3.

Step 14: Now let’s program the Timer event handler to move the egg only
if it is enabled. Find an if then block in the Control drawer. Use
the value of the ImageSpriteEgg1.Enabled property found in the
ImageSpriteEgg1 drawer. Put the MoveTo method block inside the if
then block as shown in Figure 9-30.

Figure 9-30 test for enabled (Source: MIt app Inventor 2)

Step 15: Create similar if then blocks that call the ImageSpriteEgg2.MoveTo
and the ImageSpriteEgg3.MoveTo methods. Your Timer event
 handler should now look like Figure 9-31.

462 chapter 9 Graphics and animation

Figure 9-31 Updated Timer event handler (Source: MIt app Inventor 2)

Step 16: Figure 9-32 shows the completed workspace. Run and test your appli-
cation, and try to break all the eggs!

Figure 9-32 tutorial 9-4 complete Blocks editor (Source: MIt app Inventor 2)

We will expand this game in the Exercises and Projects at the end of the Chapter.

 9.4 Dragging Sprites 463

Checkpoint

 9.11 How can you make this game more challenging? How can you keep score
and track levels? When you increase difficulty will you make the sprites move
faster? Will you add more sprites to the Screen?

 9.12 Assume you want to allow the user to pause the game. What property would
you set in which component?

 9.13 In Tutorial 9-4, when you randomly generate the x and y coordinates of a sprite,
why can you start at 0 but only go to 267 for the 300 by 300 pixel Canvas?

 9.4 Dragging Sprites
To drag a sprite, we use the Dragged event handler in conjunction with the MoveTo
method block. As the sprite is dragged, we update the MoveTo method’s x and y
arguments with the value of the currentX and currentY values. An example is
shown in Figure 9-33.

Figure 9-33 Using the Dragged event handler and the MoveTo Method Block
(Source: MIt app Inventor 2)

Figure 9-33 shows the Ball1 sprite’s Dragged event handler used with the Ball1.
MoveTo method. Recall that a sprite’s Dragged event handler will keep track of where
the drag started with prevX and prevY values, and also keeps track of the current x and
y values as it goes along. We can use the currentX and currentY values (remember
these are found by hovering the mouse cursor over the currentX and currentY
 parameters of the Ball1.Dragged event handler) to move the ball as the drag occurs.

Tutorial 9-5:
Drag Ball Sprite example

To demonstrate an example of dragging sprites, let’s create an app that allows us
drag a ball around a Canvas.

Step 1: Start a new project and add a Canvas to the Screen. Make the Canvas
300 by 300 pixels by setting the Height and Width properties.

VideoNote
Drag Ball sprite
Example

464 chapter 9 Graphics and animation

Step 2: Place a Ball sprite onto the Canvas, set the Heading to 45, the Speed to
10 and the Interval to 100. Make sure it is enabled and visible.

Step 3: In the Blocks Editor, create the blocks shown in Figure 9-33. Find the
Ball1.Dragged event handler and the Ball1.MoveTo method in the
Ball1 drawer. To find the get currentX and get currentY blocks,
hover the mouse cursor over the parameters in the Ball1.Dragged
event handler.

Step 4: Run and test your app on your device or emulator. Drag the ball
around and watch it move!

Tutorial 9-6:
Drag the Ball into the Box

This tutorial will allow us to practice dragging a Ball sprite into a box. Once the
ball is in the box, it will disappear.

To accomplish this, we will place a static image of a box on the Canvas. We will
then use the Clock component to continually check the position of the ball, and
if it happens to be positioned anywhere over the box, we will disable it and make
it nonvisible, simulating it being placed in the box.

Step 1: Drag a Canvas onto the screen and make both the Height and Width
300 pixels.

Step 2: Download box.png from the book’s companion website. Place an
ImageSprite on the Canvas and set the Height and Width to 50 pixels.
Set the Picture property to box.png and set both the X and Y properties
to 150. Rename the ImageSprite to ImageSpriteBox.

Step 3: Place a Ball sprite on the Canvas. Set the Heading to 45, the Interval to
0 and the Speed to 0 (because we only want this ball to move when we
drag it). Set the X coordinate to 90 and the Y coordinate to 90.

Step 4: Add a HorizontalArrangement below the Canvas. Add three
 labels and rename them LabelX, LabelComma and LabelY. Set
the Text property of LabelX to X, LabelComma to a comma, and
LabelY to Y.

Step 5: Add a Button to the HorizontalArrangement, rename it ButtonReset,
and set its Text property to reset.

Step 6: Add a Clock component to your screen. Make sure the TimerEnabled
property is checked and set the TimerInterval to 40.

Compare your Design to Figure 9-34.

VideoNote
Drag the Ball into
the Box

 9.4 Dragging Sprites 465

Step 7: In this step you will create the global variables shown in Figure 9-35.
These global variables will hold the currentX and currentY values.
We already have the currentX and currentY values in the Dragged
event handler, but we also need to access these values elsewhere. To
create the global variables, open the Variables drawer and click on the
initialize global name block twice. Name the first one gCurrentX
and the second gCurrentY. From the Math drawer, get two number
blocks and set them each to zero. Plug the number blocks into the
sockets of the gCurrentX and gCurrentY initialization blocks.

Figure 9-34 Drag Ball into Box Design (Source: MIt app Inventor 2)

Figure 9-35 Initialize Global Variables (Source: MIt app Inventor 2)

466 chapter 9 Graphics and animation

Step 8: Program the Ball1.Dragged event handler as shown in Figure 9-36.
You will find the Ball1.Dragged event handler and the Ball1.MoveTo
method block in the Ball1 drawer. To create the get currentX and
get currentY blocks, hover the mouse cursor over those parame-
ters of the Ball1.Dragged event handler. To create the set global
 gCurrentX and set global gCurrentY blocks, hover the mouse cur-
sor over those variables’ global initialization blocks.

Figure 9-36 Ball1.Dragged event handler (Source: MIt app Inventor 2)

Notice that as the drag is happening, we are updating the values in our global
variables. We are next going to set up a timer on our Clock component that
will periodically check the value of the currentX and currentY. If the Ball
sprite’s x and y coordinates move over the box ImageSprite, we will disable it
and make it nonvisible. This will make it appear as if we’ve dropped the ball
into the box.

Step 9: Now you will program the Timer event handler. Find and select the
when Clock1.Timer do event handler in the Clock1 drawer.

Step 10: Find and select the set LabelX.Text to and the set LabelY.
Text to blocks from their respective drawers, the LabelX drawer and
LabelY drawer. Assign the value of gCurrentX and gCurrentY to the
LabelX and LabelY label’s Text properties, respectively. Place these
blocks in the Clock1.Timer event handler, as shown in Figure 9-37.

Figure 9-37 Clock1.Timer event handler (Source: MIt app Inventor 2)

Step 11: You aren’t done, but take a minute to run and test on your phone or em-
ulator. Watch the X and Y Labels change as you drag the ball around.

 9.4 Dragging Sprites 467

Step 12: Now we are going to use a timer to see if the Ball sprite is in the same
location as the box. Because the box’s top left corner is at position 150,
150 on the Canvas and the box is 50 pixels tall and wide, we are going
to check and do the following:

If the x coordinate of the Ball is greater than 150 and less than 200 and
the y coordinate of the Ball is greater than 150 and less than 200 then
we want to make the Ball disappear (because the ball will be over the
box). Note: In this set of blocks, you want to use the global gCur-
rentX and gCurrentY values.

Set up your if then block like Figure 9-38. The most efficient way to
check the range of both the X and Y coordinate values is to use nested
if then blocks. The first is the outer if then block checking the X
coordinate range. If that passes, then we check for the Y coordinate
range. If both conditions pass, the Ball is over the box. When the Ball
is over the box, we want to simulate it “disappearing” by making it
invisible and disabling it.

Figure 9-38 Determining if the Ball is Over the Box (Source: MIt app Inventor 2)

Step 13: Put the blocks shown in Figure 9-38 inside the Clock1.Timer event
handler. From the Ball1 drawer, find and select the set Ball1.
Enabled to and the set Ball1.Visible to blocks, and set them
both to false. Place the two statements in the then portion of the
inner if then block, as shown in Figure 9-39.

Figure 9-39 completed timer event (Source: MIt app Inventor 2)

468 chapter 9 Graphics and animation

Step 14: Now you will program the ButtonReset.Click event handler as
shown in Figure 9-40. Find the ButtonReset.Click event handler in
the ButtonReset drawer and place it in the editor. In the Ball1 drawer,
find the following blocks and place them in the ButtonReset.Click
event handler:
● set Ball1.Enabled to, plug a logic true block into its socket
● set Ball1.Visible to, plug a logic true block into its socket
● set Ball1.X to, plug a number 20 into its socket
● set Ball1.Y to, plug a number 20 into its socket
● set gCurrentX, plug a number 20 into its socket
● set gCurrentY, plug a number 20 into its socket

Figure 9-40 reset Button (Source: MIt app Inventor 2)

Step 15: Run and test your app. As an exercise, consider adding more Ball sprites.

Figure 9-41 tutorial 9-6 complete Blocks editor Workspace
(Source: MIt app Inventor 2)

 9.5 Detecting collisions 469

 9.5 Detecting Collisions

CONCEPT: You can detect when a sprite collides with another component. You
can detect the specific component that a sprite collides with and then
program your animation to do various things upon this collision such
as play sound, change images, update scores, and more.

The App Inventor sprite components have CollidedWith and NoLongerCollidingWith
event handlers. A sprite’s CollidedWith event handler will execute when any colli-
sion happens, regardless of which component it collides with. Therefore, if you are
interested in exactly what your sprite collided with, you must have an if then block
inside the event handler to determine what it collided with.

You may not have noticed, but in each component’s drawer, the last block shown is
the component block for that particular component. The component block is simply
a block that represents that component. Assume we have an ImageSpriteBalloon1
component in our design. Figure 9-42 shows how its component block appears.

Figure 9-42 component Block for ImageSpriteBalloon1 (Source: MIt app Inventor 2)

You will use component blocks to determine which component was hit in a collision.
Next, let’s also assume that our project has an ImageSpriteDart that we want to
pop the balloon with.

Figure 9-43 CollidedWith event (Source: MIt app Inventor 2)

In Figure 9-43, you see that the ImageSpriteDart.CollidedWith event handler has
a parameter named other. The other parameter refers to the other component that
the ImsgeSpriteDart has collided with. We can get the value of the other param-
eter and compare it with the ImageSpriteBalloon1 component’s component block
to determine whether the two have collided.

If you simply want to detect that your sprite collided with something, and you don’t
care what it is, you use this event handler without the if then block.

Let’s make two sprites collide.

470 chapter 9 Graphics and animation

Figure 9-44 colliding Sprites Design (Source: MIt app Inventor 2)

Notice in this design we have two Ball sprites, one blue and one yellow. They each
have an Interval of 500, Radius of 15, and Speed of 5. They are also lined up together
on the x coordinate value of 150. The Canvas size is set to Fill parent for the Width,
and its Height is 300 pixels.

The blue ball will travel straight down; its Heading property is set to 270. The yellow
ball will travel straight up; its Heading is set to 90.

In the Blocks Editor, we will program the application to turn both balls green when
the collision occurs. We will also set one’s direction to 0 and the other’s to 180 so that
they will appear to bounce off in different directions.

In Figure 9-45, you see that we use the Ball1.CollidedWith event handler to change
the balls to green and switch their direction. See Figure 9-46 for a depiction of the
application.

Figure 9-45 programming the collision (Source: MIt app Inventor 2)

 9.5 Detecting collisions 471

Figure 9-46 colliding Ball Sprites (Source: MIt app Inventor 2)

Tutorial 9-7:
popping Balloons

You will need to download three images from the book’s companion website,
Balloon.png, Spiral.png, and Dart.png.

In this tutorial, we are going to simulate three balloons falling from the sky.
We are giving the user a dart to pop the balloons. The balloons will travel
straight down at different speeds. The user can drag the dart from left to
right and when the drag is stopped, the dart will travel straight up to pop the
 balloon (we hope).

The app’s user interface will appear as shown in Figure 9-47.

Step 1: Add a Canvas component to the screen and set the Width to 300 and
the Height to 300.

Step 2: In the Media panel, upload the three images. Balloon.png, Spiral.
png, and Dart.png.

Step 3: Add four ImageSprite components from the Drawing and Animation
Palette to the Canvas. Align them as shown in Figure 9-47.
Rename the sprites ImageSpriteDart, ImageSpriteBalloon1,
ImageSpriteBalloon2, and ImageSpriteBalloon3.

VideoNote
Popping Balloons

472 chapter 9 Graphics and animation

Figure 9-47 Balloon and Dart User Interface (Source: MIt app Inventor 2)

Step 4: Set the Picture property of the balloon sprites to Balloon.png and set
the Picture property of the dart sprite to Dart.png.

Step 5: The Height and Width of the balloon sprites should be 25 pixels. The
Height of the dart sprite should be 40 and the Width 20.

Step 6: The Heading of the balloon sprites should all be set at 270 (straight
down). The Heading for the dart should be 90 (straight up).

Step 7: Set the Interval for the balloon sprites to 500. Set the Interval of the
dart sprite to 100.

Step 8: Set the Speed properties of the balloon sprites to various values. For
example, set one to 5, one to 7, and one to 10. Set the Speed of the
dart to zero.

Step 9: Add a HorizontalArrangement (from the Layout Palette) under the
Canvas, set its Width to Fill parent, and then set the AlignHorizontal
property to Center.

Step 10: Place a Button (from the User Interface Palette) in the
HorizontalArrangement. Rename it to ButtonReset and change the
Text property to Reset.

 9.5 Detecting collisions 473

Step 12: For the x socket of the MoveTo method, hover the mouse cursor over
the currentX parameter in the Dragged event handler, and then
click the get currentX block. Use a number block set to the value 255
for the y socket. By using an unchanging number for the y argument,
we allow the user to drag side to side but not upwards.

Figure 9-48 Drag the Dart Sprite Side to Side (Source: MIt app Inventor 2)

Hover over the
“currentX”
parameter to
find the
“get currentX”
block.

Figure 9-49 Dart TouchUp event handler (Source: MIt app Inventor 2)

Step 13: In the ImageSpriteDart drawer, find the TouchUp event handler and
the set blocks for the Heading, Interval and Speed properties. Set the
properties according to Figure 9-49. The TouchUp event handler will
execute when the user lets go of the drag. This is the point where we
want to let the dart fly up the screen to pop a balloon.

Step 14: In the ImageSpriteDart drawer, find the CollidedWith event handler
and the set ImageSpriteDart.Picture to method block.

Step 15: Place an if then block inside the event handler, and use the Math
equals block to compare the other argument with the component
blocks of each of the balloon sprites. Remember each component’s
component block is the last block in its drawer.

Step 11: Now you will program the Dragged event handler, as shown in
Figure 9-48, to allow the user to drag the dart sprite left and right. In
the ImageSpriteDart drawer, find the Dragged event handler and the
MoveTo method block. Place them in the editor and place the MoveTo
method block inside the Dragged event handler.

474 chapter 9 Graphics and animation

Figure 9-50 the CollidedWith event handler (Source: MIt app Inventor 2)

Figure 9-51 test Which component collided With (Source: MIt app Inventor 2)

Hover over “other” to
find the “get other” block
which represents the object
that the dart collided with.

Remember the ImageSpriteBalloon
component block is the last block
in its drawer.

Step 16: Place two more if then blocks inside the event handler. Use the
equals block (from the Logic drawer) to compare the other argu-
ment with the component blocks of the other balloon sprites. It may
be easiest to copy and paste the first if then block and then change
the value of the component blocks to ImageSpriteBalloon2 and
ImageSpriteBalloon3. This is shown in Figure 9-52.

Step 17: For each balloon sprite, place their set ImageSprite.Picture prop-
erty blocks in the proper if then condition. If a balloon has been hit,
we are going to temporarily change its Picture property to a red spiral,
helping indicate to the user that it has been hit.

Step 18: Change the Visible property of ImageSpriteDart to false to tempo-
rarily hide it.

Compare your blocks with Figure 9-50.

 9.5 Detecting collisions 475

Figure 9-52 test the Other components (Source: MIt app Inventor 2)

Figure 9-53 Dart top edge reached (Source: MIt app Inventor 2)

Step 19: Now you will program the ImageSpriteDart.EdgeReached event
handler as shown in Figure 9-53. When the dart hits the top edge of
the Canvas (remember that the top edge is “1”), we want to put it back
down to the bottom so the user can try again. In the ImageSpriteDart
drawer, find and select the EdgeReached event handler, the set Speed
to property block, and the MoveTo method block.

Step 20: In the Control drawer select an if then block and place it in the
ImageSpriteDart.EdgeReached event handler. For the test socket
use a Math equals block to determine if the value of the edge is equal
to one. You can find the get edge block by hovering the mouse cur-
sor over the edge parameter of the EdgeReached event handler.

Step 21: In the if then block’s then socket, set the Speed property of the dart
sprite to 0 to stop it, and move the dart to the x and y coordinates 100
and 255 respectively. (See Figure 9-53.) This will stop the sprite and
place it back to the bottom of the screen.

476 chapter 9 Graphics and animation

Figure 9-54 the NoLongerCollidingWith event handler
(Source: MIt app Inventor 2)

Step 22: Now you must program the application to take away the balloons
and disable them once they have been popped. You are about
to program the ImageSpriteDart.NoLongerCollidingWith
event handler shown in Figure 9-54. In the ImageSpriteDart drawer,
find the NoLongerCollidingWith event handler, the MoveTo
method, the set Visible to property block, and the set Speed to
property block.

Step 23: Program the first if then block shown in Figure 9-54. This if
then block determines whether a collision has ocurred with
ImageSpriteBalloon1. Use the equals block from the Logic
drawer to compare the get other block (hover the mouse
 cursor over the other parameter to find that block) with the
ImageSpriteBalloon1 component block (remember this is the last
block in the ImageSpriteBaloon1 drawer).

Find the ImageSpriteBalloon1 set Enabled to and set Visible
to property blocks and set them both to false in the if then
block. At this point the event handler should appear as shown in
Figure 9-55.

 9.5 Detecting collisions 477

Step 24: Grab two more if then blocks from the Control drawer, or use copy
and paste by copying the if then block from Figure 9-55, to program
the conditions for ImageSpriteBalloon2 and ImageSpriteBalloon3
(see Figure 9-56).

Figure 9-55 Disable ImageSpriteBalloon1 (Source: MIt app Inventor 2)

Figure 9-56 Disable ImageSpriteBalloon2 and ImageSpriteBalloon3
(Source: MIt app Inventor 2)

Step 25: For each of the balloons, place their set Visible to and set
Enabled to blocks in the proper if then block. Set each of these
properties to false as shown in Figure 9-56. Take care to make sure
that each balloon block is in the proper spot. (It’s easy at this point to
mix the blocks up because they look similar, especially if you are using
the copy and paste approach.)

478 chapter 9 Graphics and animation

Step 26: Use the dart sprite’s MoveTo method block to place it toward the
bottom of the screen at X, Y coordinates of 100, 255. Set the dart
sprite’s Visible property to true and set the Speed property to zero.
The NoLongerCollidingWith event handler should now match
Figure 9-54.

Step 27: The last event handler we need to program is the Click event hander
for the reset Button, as shown in Figure 9-57. In the ButtonReset
drawer, find the ButtonReset.Click event handler and place it in
the editor.

Figure 9-57 reset the Game (Source: MIt app Inventor 2)

Step 28: For each of the balloon ImageSprites, find their Picture, Enabled and
Visible property set blocks, and place them in the ButtonReset.
Click event handler. Reset them as shown in Figure 9-57 by setting
their Picture property back to a balloon and their Enabled and Visible
properties to true.

Step 29: For each of the balloon ImageSprites, use their MoveTo methods to
place them back at the top of the screen in their starting positions
(see Figure 9-57).

 review Questions 479

Review Questions

Multiple Choice

 1. What is the X, Y coordinate position of the top right corner of a 100 × 100 pixel
Canvas?

a. 0,0
b. 0,99
c. 99,0
d. 99,99

 2. What is the X, Y coordinate position of the bottom right corner of a 100 × 200 pixel
Canvas?

a. 0,0
b. 100,200
c. 199,99
d. 99,199

 3. What properties are used to set the size of the Canvas?

a. Height
b. Width
c. A and B
d. Neither A nor B

Figure 9-58 tutorial 9-7 complete Blocks editor (Source: MIt app Inventor 2)

Step 30: That’s it! The complete Blocks Editor is shown in Figure 9-58. Run and
test your game on your device or emulator. Begin thinking about how you
can keep score and increase difficulty.

480 chapter 9 Graphics and animation

 4. The PaintColor property sets the colors for which of the following?

a. Lines
b. Points
c. Circles
d. All of the above

 5. If you are using the DrawPoint method to draw a circle, what Radius will you
use if you want the circle to be 10 × 10 pixels in size?

a. 1
b. 5
c. 10
d. None of the above

 6. We can find the value of the X coordinate of the user’s touch on the screen from
the get x block pop up, which can be found in the _________ block.

a. Canvas.Touched
b. Canvas1.Touched
c. Screen1.Touched
d. Canvas1.Dragged

 7. What property makes an ImageSprite face in the direction that it is heading?

a. Facing
b. Rotates
c. Looks
d. None of the above

 8. To place a sprite of 20 × 20 at the center of a 200 × 200 canvas, the X, Y co-
ordinates of the ImageSprite should be set to ________.

a. 89,89
b. 90,90
c. 99,99
d. 109,109

 9. A Ball sprite’s X, Y coordinates represent where the Ball’s ___ is relative to the
Canvas?

a. Middle
b. Top right
c. Top left
d. Bottom right

 10. If sprites accidentally move out of the Canvas, we use the ________ method to
put them back.

a. MoveTo
b. Ball1.Bounce
c. MoveIntoBounds
d. Bounce

 11. If an ImageSprite reaches the bottom edge of the screen, that edge is represented
by which number?

a. 1
b. 3

 exercises 481

c. −1
d. −3

 12. What event is invoked when a user does a very quick swipe across the screen?

a. Swiped
b. Dragged
c. Flung
d. Toss

 13. What event is used to determine if two sprites run into each other?

a. Hit
b. Collide
c. CollidedWith
d. HitSprite

Short Answer

 1. What does it mean when we set the Canvas Height and Width to Fill parent?

 2. When we use the Dragged event, we have access to the current x and y coordi-
nates as the drag is happening. If we want to use these values, where do we find
the blocks to use?

 3. If we use a for range loop block to loop 100 times and we set the radius of
a circle that we draw with each iteration equal to the loop counter, what will
happen?

 4. Why does a Ball sprite not have Height and Width properties? Why does an
ImageSprite not have the PaintColor property?

 5. What are the uses of the Heading and Rotate properties of the ImageSprite?

 6. Why is there a NoLongerCollidingWith event? What might you handle in
this event?

Exercises
 1. Change Line Width

Complete Tutorial 9-1. Add buttons on the bottom of the screen for three dif-
ferent line widths: 1 pixel, 10 pixels, and 20 pixels. If the user clicks one of the
buttons, change the LineWidth property accordingly. Practice drawing with the
different widths.

 2. TouchedDown and TouchedUp

The sprite’s TouchedDown event executes when a user first touches the sprite.
The sprite’s TouchUp event executes when a sprite’s touch has stopped (finger or
mouse is lifted).

Program a Ball sprite on a Canvas. Use the TouchedUp and TouchedDown events
to make the ball yellow while it is being touched or dragged and then green when
it is let go.

VideoNote
TouchedDown and
TouchedUp

482 chapter 9 Graphics and animation

 3. Ball Touched

Program a Canvas with a Ball sprite that moves in random directions with its
size changing in a random fashion. When the ball is touched, it should stop
moving.

 4. Flashing Ghosts

Download ghost.png from the companion website. Program a Canvas with five
ImageSprites, using the ghost image for each of them. Set their size to 35 × 50.
Use a Clock component to toggle the sprites visibility property every half-second.

 5. Flashing Ghosts 2

Complete Exercise 4 and then use the Clock component to randomly move each
of the ghosts when they are not visible.

 6. Change Color

Program a Canvas with a Ball sprite. As the user drags the ball, change the color
based on which area of the Canvas it is on. If it is on the left half, make the ball
green. If it is dragged over to the right half of the Canvas, make the ball blue. Use
the Clock component, the Dragged event, and the MoveTo method. See Tutorial 9-4.

 7. Change Color 2

Expand Exercise 6 by changing the color of the ball based on which quadrant it
is in. For example, if the ball is dragged to the top left quadrant, change it to red.
Change the colors as follows:
● Top Left - Red
● Top Right - Blue
● Bottom Left - Yellow
● Bottom Right - Green

Programming Projects
 1. Keep the Fish in the Bowl

Complete Tutorial 9-3. Review Tutorial 9-5. Expand the Fishbowl project to
keep the fish in the bowl. There are different approaches you can take.

One might be to find the approximate coordinates to keep the fish in the bowl.
For instance, if the Y value falls below a certain number, the fish will be out of
the bowl. Use the clock’s timer to check coordinates and the manually bounce off
an edge if it has gone too far. For example, stop the fish from going too high by
having it bounce off of a North edge. Stop to the fish from going too far to the
left, right, or bottom in the same manner.

Another approach may be to use clear (no image) ImageSprites outlining the
bowl, then use the colliding and bounce events to keep the fish in the bowl. Make
sure your ImageSprites are at least a pixel in width.

 2. Primary Colors

Write an application that has nine Ball sprites each with a radius of 10: three red,
three blue, and three yellow. Have the Balls bounce around a 300 3 300 pixel

 programming projects 483

Canvas. (Hint: Use the EdgeReached event and the Bounce method, and set your
Interval, Speed and Direction appropriately.) Use a Clock Timer and collision
 detection to change the sprites to their mixed color if they collide. (Blue and
Yellow 5 Green, Red and Yellow = Orange, and so forth.) Once a ball has col-
lided and changed color, have it drop to the bottom of the Canvas. If a sprite
collides with a ball that is already mixed, take no action.

 3. Balloons

Complete Tutorial 9-6, Popping Balloons. Enhance this game by keeping score
and a level of difficulty. Score as follows:
● If a balloon is popped, add 3.
● If a balloon hits the ground, subtract 5.
● If the score is above 20, add three more balloons and make some drop faster.

(Hint: Add the extra balloons at the start, but disable them and make them
nonvisible until you need them.)

● If the score drops below 10, change it back to level 1 with three balloons.

Show both the score and the level on the screen beneath the Canvas

 4. Kick the Ball

Download the playground.png and ball.png from the companion website.

Build a game where you drag the ball and bounce it into the basket on the other
side.

Combine skills learned in this Chapter to accomplish the following:
● Put a Canvas on your screen. Set the Width to Fill parent, and the Height to

300 pixels.
● Set the BackgroundImage property to playground.png.
● Add two to four balls by adding the ball.png and set its Width to 30 pixels

and Height to 30 pixels.
● Use a Clock Timer event handler to move the balls randomly around the

Canvas. Set the Timer Interval to 1 second.
● Allow the user to drag the ball (if they can catch it) to the basket. Where he or

she scores a basket, display how many baskets have been scored.
● If the user can get the ball into the basket, disable it and make it nonvisible.
● Allow the user to reset the game.

 5. Catch the Eggs

ForYou will need four images from the companion website, farm.png, egg.png,
basket.png, and brokenEgg.png.

Design your game similar to Tutorial 9-4, Crack the Egg, where a Canvas is
added with a background image of farm.png. Make your Canvas fill the parent
for the Width property and 300 for the Height.

Program five egg ImageSprites to move down the Canvas, from the top, at vari-
ous speeds.

Provide one basket ImageSprite starting out toward the bottom of the C anvas.
Set its Height and Width to 30 pixels each. Use the Dragged event with the
MoveTo method to allow the user to drag the basket to catch some eggs.

484 chapter 9 Graphics and animation

If the basket and an egg collide, disable the egg and up the score. If the
egg reaches the bottom, crack it and leave it there.

Allow the user to reset the screen after all eggs are disabled.

Keep and show the score by adding 3 if an egg is caught and subtracting 5 if an
egg hits the ground. Keep the score even after the screen is reset.

Use Tutorials 9-4, 9-5, and 9-6 for reference.

TOPICS

10.1 Concatenating strings

10.2 Comparing strings

10.3 Trimming a string

10.4 Converting case

10.5 Finding a substring

10.6 Replacing a substring

10.7 Extracting a substring

10.8 Splitting a string

Working with Text

 10.1 Concatenating Strings

CONCEPT: To concatenate simply means to join or link together. To concatenate
strings means to join strings together. You can concatenate two strings
or more to make a single string.

To concatenate two strings in App Inventor you use the Text join block. The join
block has parameter sockets that will allow you to join multiple text blocks together; the
values will be appended in order. These blocks can either be literal, like the word hello,
or the number five, or can be variable blocks.

C
H

A
P

T
E

R

10

485

486 Chapter 10 Working with Text

You can find the join block in the Text drawer. See Figure 10-1.

Figure 10-1 The Text join Block (Source: MIT App Inventor 2)

As stated previously, the join block appends text in order. Consider Figure 10-2. The
first text block is “Hi” and the second is “ Sam” (notice the preceding space). The
r esult of this join will be “Hi Sam”. If there were not a space either after the word
“Hi” in the first block, or before the word “Sam” in the second block, the words
would run together and the result would be “HiSam”.

Figure 10-2 Concatenation (Source: MIT App Inventor 2)

The join block makes use of the mutator tool and allows for more slots of text to
join. See Figure 10-3.

Figure 10-3 Using the Mutator to Add More Slots (Source: MIT App Inventor 2)

Click on the
blue
mutator box
to show
the tool.
Drag string blocks to add slots.

Any block that is plugged into the join block will be treated as text. For example, if
you join the number 12 with the word “hello”, the resulting string will be “12hello”. If
both arguments are numbers, they are still treated as strings. For example, concatenating
the string “12” and the string “17” will result in the string “1217”, not the number 29
(29 would be the result of plugging 12 and 17 into the math addition block).

 10.1 Concatenating Strings 487

Concatenating String Literals (or Text Blocks)
In programming terminology, a string literal is a sequence of characters that is written into
an application’s code. In App Inventor, you use the text block to create a string literal.

In Figure 10-4 we are joining two string literals, or text blocks. The first text block plugged
into the join block contains the five characters H-e-l-l-o. This, joined with the text block
containing the characters W-o-r-l-d, results in “HelloWorld”, as shown on the emulator.

Figure 10-4 Join Two String Literals (Source: MIT App Inventor 2)

Notice that there is no space between “Hello” and “World”. This is because the join
block concatenates the two string literals into one string literal and will not place a
space b etween them.

We can add a space between “Hello” and “World” in a few different ways. One
would be to add a space at the end of the word “Hello”. This would work fine but
may not be the best solution. An additional solution would be to create another string
literal containing just a space and then joining that in the middle of the other two.

To join three string literals with App Inventor, you first need to use the mutator to build
a join block with three slots (remember Figure 10-3). Then you make the text blocks
that you want to join together, in this case Hello and World. Take a look at Figure 10-5.

Figure 10-5 Joining Three String Literals (Source: MIT App Inventor 2)

Click the mutator and
then drag a string block
between the two which

are already there.

Once you have the slots that you need, add a text block containing a single space
(“ ”) in the middle of “Hello” and “World”. See Figure 10-6.

488 Chapter 10 Working with Text

Figure 10-6 Adding a Space (Source: MIT App Inventor 2)

Figure 10-6 shows a space between the words “Hello” and “World”. To complete the
join blocks shown follow the steps:

Step 1: Make a text block with a single space. Go to the Text drawer and select a
text block. By default, the text block already contains the single space that
you need, you won’t need to change it.

Step 2: Join the word “Hello” with the space. Go to the Text drawer and select the
join block, plug in the word “Hello” and the text block with a single space.

Step 3: Use the mutator tool to add a third slot to the join block. See Figure 10-5. Go to
the Text drawer and find another text block. Fill it in with the word “World”.

You can join as many string literals as you wish, but beware, it won’t take long before
your join blocks will be really large! If you find this is the case, consider storing your
strings into variables and then concatenate the variable strings.

Concatenating Variable Strings
You can also concatenate variables. If you have variables that contain strings you
 simply plug the variable’s get block into the join block the same way we did with
the text blocks. The resulting string will be made up of the values of the variables.
Look at Figure 10-7.

Figure 10-7 Joining Variable Strings (Source: MIT App Inventor 2)

In Figure 10-7, three variables have been created that contain text. Note that the
text block plugged into the string2 variable contains a blank space. Next, you see
that we join the variables string1, string2 first, and then join those with string3.

 10.1 Concatenating Strings 489

Because these blocks are variables and not literals, the value of each variable is used
to create the resulting string “Hello World”.

Remember, to find the value of a variable, you hover the mouse cursor over the name
of the variable in its initialization block. When you see the get and set blocks pop-up
for the variable, click on the block you need. For an example, look at Figure 10-8,
which explains how to find the get global string1 variable block, which holds the
value of string1.

Figure 10-8 Finding a Variable’s get Block (Source: MIT App Inventor 2)

Hover over the variable
name “string1” and then
click the
“get global string1”
block.

Concatenating Strings with Numbers
As previously stated, when you use the join block for concatenation, all data plugged
into it will be treated as text. For example, if you have a number block that contains
the value 12, the join block treats it as a string literal with the characters “1” and “2”.

Treating all data as text may have unexpected results, so it is important to understand
the effect of concatenating numbers with strings, numbers with numbers, and also the
effect of concatenating Boolean values.

To demonstrate the effect of concatenating strings with numbers, see Figure 10-9.

Figure 10-9 Concatenating a Number and a String (Source: MIT App Inventor 2)

In this figure, you’ll notice that we have two variables, string1 and number1. Even
though the variable number1 is a number, the concatenation still works, but the
number is treated as text.

490 Chapter 10 Working with Text

Concatenating Boolean Values
Boolean blocks are also treated as text if they are concatenated. For example, if you
concatenate the word “Hello” with a Boolean true block, your resulting string will
be “Hellotrue”.

If you were to concatenate the Boolean block true with the Boolean block false, the
resulting string will be “truefalse”. This is shown in Figure 10-11.

Concatenating Two Numbers
It’s important to understand the difference between concatenating two numbers versus
adding two numbers. When you mathematically add the numbers 12 and 17, of course
the result will be the number 29. However, when you concatenate the string “12” with
the string “17”, the result will be a string containing the characters 1-2-1-7. This is not the
same as the number 1,217. You cannot perform math operations on the resulting string.

Examine Figure 10-10, which demonstrates concatenating numbers. Here you can see
the effect of concatenating two numbers.

Figure 10-10 Concatenating Two Numbers (Source: MIT App Inventor 2)

Figure 10-11 Concatenating Two Boolean Values (Source: MIT App Inventor 2)

 10.2 Comparing Strings 491

Checkpoint

 10.1 When the Text join block is used, all elements are treated as what data type?

 10.2 What is the result of concatenating the numbers 100 and 200?

 10.3 What is the result of concatenating two variables?

 10.4 What would the result be if you concatenate four Boolean blocks, each with
the value of true?

 10.2 Comparing Strings

CONCEPT: We can perform string comparison operations that allow us to deter-
mine whether two strings are equal or not. We can also use these com-
parison operations to determine if a string is greater than or less than
another. These comparison functions serve many purposes, including
data validation and ordering or alphabetizing lists of strings.

We can compare two strings to determine whether they are equal, whether one is
greater than the other or whether one is less than another. An example of compar-
ing two strings for equality would be password verification. An example of using the
greater than or less than comparison would be to alphabetize a list of names.

The compare texts Block
App Inventor provides the compare texts block, which will allow us to determine
whether two strings are equal or whether one is less than or greater than the other.
The compare texts block is in the Text drawer. See Figure 10-12.

Figure 10-12 Compare Texts Block (Source: MIT App Inventor 2)

The “compare
texts” block

492 Chapter 10 Working with Text

To change the operator so that it tests for equality, less than, or greater than, you
click on the down arrow in the middle of the block. See Figure 10-13.

Figure 10-13 Change the Operator (Source: MIT App Inventor 2)

Equal Strings
As shown in Figure 10-13, we use the compare texts block to determine whether
two strings are equal. This block requires that you plug in two text blocks to compare
and it will return true or false based on the result of the comparison. Just like the
Text join block, if you plug in a number or other data type, the compare texts
block will treat it as text.

For two strings to be equal they must be identical. This includes case sensitivity,
meaning “Hello” is different than “hello” because of the uppercase “H” in the first
string and lowercase in the second. See Figure 10-14.

Figure 10-14 String Equality and Case Sensitivity (Source: MIT App Inventor 2)

Notice in Figure 10-14 how the return value of the compare texts block is false
when comparing “Hello” to “hello”.

In order for two strings to be identical they also must have the same number of char-
acters. So, “Hello” will not be equal to “Hello ” (with an extra space at the end).
Actually, the word “Hello” without the space will be less than the word “Hello ”
with the space. This is because, if a string is identical up to a point, the shorter string
will always be less than the one with more characters.

After we remove the extra space, we finally have two truly identical strings. Figure 10-16
shows an example of using the compare texts block to evaluate two strings that are
identical and returns the value of true to the Label1.Text property.

 10.2 Comparing Strings 493

Greater Than or Less Than Comparisons
In computing, every printable character has an associated number represented in
the ASCII table. ASCII stands for the American Standard Code for Information
Interchange and is a set of 128 numeric codes that represent the English letters,
 various punctuation marks, and other characters. For example, the ASCII code for
the uppercase letter A is 65. When you type an uppercase A on your computer key-
board, the number 65 is stored in memory.

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67,
and so forth. Uppercase letter values are less than their corresponding lowercase values.
For example, the lowercase “a” is 97. Therefore the lowercase “a” is greater than the
uppercase “A”. You can research the Web if you’d like to see the full ASCII table.

This numerical representation of characters is what allows us to determine whether
one string is greater than or less than another. Characters are compared one by one,
meaning the first characters of each string are compared, the second two are com-
pared, and so forth until there is a difference. As soon as there are different characters
in the same position of the string the determination is made about which string is
greater than or less than.

Figure 10-16 Equal Strings (Source: MIT App Inventor 2)

Figure 10-15 Extra Space in Otherwise Equal String (Source: MIT App Inventor 2)

These strings look equal, but
there is actually an extra space
in the second one.

494 Chapter 10 Working with Text

So, when we compare “Hello” and “hello”, the “H” and “h” are compared first and
right away we have different characters. At this point it is determined that “Hello” is
less than “hello”. Keep in mind that the string “Hello There” is also less than “hello”,
even though it has more characters. This is because the first character that is different
in the two strings determines which string is greater-than or less-than the other string.

As shown in Figure 10-17 we can change the operator of the compare texts block to
change whether we want test for equal, less than or greater than. Figure 10-17 shows
that “Hello” computes to a value less than “hello”.

Figure 10-17 Less than String Comparison (Source: MIT App Inventor 2)

Tutorial 10-1:
Comparing Strings

In this tutorial we will create an app that allows the user to enter two strings.
We will let the user know whether the first string is equal to, less than, or greater
than the second. We will also use the text join block to format our output to
the user.

Consider the design in Figure 10-18.

Figure 10-18 Tutorial 10-1 Design (Source: MIT App Inventor 2)

VideoNote
Comparing Strings

 10.2 Comparing Strings 495

Step 1: Place two TextBoxes on the screen, rename them to TextBox
FirstString and TextBoxSecondString. Change the Hint property
of the first to enter string one and the Hint property of the second to
enter string two.

Step 2: Put a Button on the screen under the two TextBoxes and rename it
ButtonCompare. Change its Text property to Compare.

Step 3: Put a Label under the Button and rename it LabelResult. Clear its
Text property.

Compare your design to Figure 10-18.

Step 4: Now let’s program the blocks. Consider Figure 10-19.

Figure 10-19 Tutorial 10-1 Blocks (Source: MIT App Inventor 2)

Step 5: Find the when ButtonCompare.Click do event handler and place it
in the workspace.

Step 6: Program the if then else if decision block. Notice Figure 10-19.
First we will check to see if the strings are equal. If they are, then we
will populate the Label and move on. If they are not equal, we will
have an else if slot to determine whether the first is less than the
other. If so, then we will populate the Label and be done. If that condi-
tion is false, we will then deduce that the first string is greater than
the other, so in the final else slot, we populate the Label that way.

To find and program the if then else if block, first go to the
Control drawer and select the if then block. See Figure 10-20.

496 Chapter 10 Working with Text

Step 7: Use the if then block’s mutator to set it up to handle an else if and
a final else condition as shown in Figure 10-21.

Figure 10-20 if then Block (Source: MIT App Inventor 2)

Figure 10-21 Set Up the if then else if (Source: MIT App Inventor 2)

Use the mutator
and drag an
else if and then an
else into the
if-then block.

Figure 10-22 The Compare Texts Block (Source: MIT App Inventor 2)

Step 8: Plug the if then else if block into the ButtonCompare.Click
event.

Step 9: From the Text drawer, select the compare texts block and place it in
the editor.

Step 10: Plug the compare texts block into the first if condition slot and
change the operator to =. See Figure 10-22.

 10.2 Comparing Strings 497

Step 11: From the TextBoxFirstString drawer, find the TextBoxFirstString.
Text block and place it in the first slot of the compare texts block.

Step 12: From the TextBoxSecondString drawer, find the TextBoxSecondString.
Text block and place it in the second slot of the compare texts block .

Figure 10-23 compare texts Block (Source: MIT App Inventor 2)

Figure 10-24 compare texts Less than (Source: MIT App Inventor 2)

Step 13: Copy and paste your compare texts block and change the operator in
the second one to less than. Plug this set into the else if slot as shown
in Figure 10-24.

Step 14: Now that our testing is done, we can program the actions we want
to perform if the strings are equal, or if the first string is less than the
second string, or if the first string is greater than the second string.

 You want to use the text join block to create a string that you can
display on the screen. The desired result is to show the user the first
string concatenated with the word(s) equals, is less than, or is greater
than, and then concatenated with the second string. For example, if the
user typed in “Hello” and “Hello” the app will display “Hello is equal
to Hello”. If the user types in “Hello” and “hello” the app will display
“Hello is less than hello”. Figure 10-25 shows the join block for the
condition where the two stings are equal.

TIP: Copying and pasting block sets will speed up this tutorial. Once
you get the blocks in Figure 10-23 done, consider copying and past-
ing that set (and just change the operator) for your other comparison.

Figure 10-25 Join for the Equals is true Condition (Source: MIT App Inventor 2)

498 Chapter 10 Working with Text

Step 15: Create a set LabelResult.Text to block, and plug the join block
that you created in Step 14 into its socket. Figure 10-26 shows the
r esulting blocks.

Figure 10-26 Populate the LabelResult.Text Property
(Source: MIT App Inventor 2)

Figure 10-27 The Results Blocks Sets (Source: MIT App Inventor 2)

Step 16: Now, copy and paste (twice) the block set shown in Figure 10-26.
Change the middle text block that reads “equals” to “is less than” in
one, and “is greater than” for the other. You should have the blocks
shown in Figure 10-27.

Figure 10-28 Tutorial 10-1 Complete Blocks Editor (Source: MIT App Inventor 2)

Step 17: Plug each result block set from Figure 10-27 into the appropriate con-
dition of the if then else if statement. See Figure 10-28.

 10.3 Trimming a String 499

Notice in Figure 10-29 that there are a few leading and trailing spaces surrounding
the string literal. However, once the string is trimmed, the spaces are gone and the
result is shown on the emulator.

By trimming unwanted spaces from a string, we can ensure that our data is accurate
and our comparison functions return the result we expect. Keep in mind that this will
depend on your business rule, or the problem you are trying to solve. There are times
when you may not want to trim strings, such as for password verification.

Checkpoint

 10.5 Explain the numerical representation of characters in the ASCII table. How
does this allow us to compare strings?

 10.6 What does it mean when two strings are equal?

 10.7 If you have two strings that are the same except one string is in uppercase
and the other is in lowercase, which is greater?

 10.8 What data type does the compare texts block return?

Figure 10-29 Using the trim Function Block (Source: MIT App Inventor 2)

 10.3 Trimming a String

CONCEPT: Sometimes we need to remove spaces surrounding a string. Trimming
a string means to remove any leading or trailing spaces from it.
Leading spaces are blank space characters before a string begins.
Trailing spaces are the spaces after the string ends.

When we are working with data from a user interface or file, we need to remove unwanted
spaces in order to effectively use the data. For example, remember that “Hello” with no
spaces is not equal to “Hello ” with a trailing space. Even though technically these strings are
not equal, in practical terms, they both read “Hello” so we may want to treat them as equal.

Unwanted spaces can be a result of human error (typos), an issue with how data is
stored in a file, or how the data is extracted. In order to accommodate for unwanted
spaces we can use the trim function block. This block will remove both leading and
trailing spaces from a string and return the resulting string. For example, using the
trim block with the string “Hello ”, with the trailing space, will return “Hello” with
no space. See Figure 10-29 for an example of using the trim function block.

500 Chapter 10 Working with Text

Figure 10-30 upcase / downcase Block (Source: MIT App Inventor 2)

“upcase/downcase”
block. Use the down
arrow to change the
block’s behavior.

The “Text”
drawer

Use the down arrow
to change between
up and down case.

It is also important to note that trimming only removes leading and trailing spaces
and not any spaces within the string. For example, trimming the “ Hello” “World ”
text block in Figure 10-29 does not remove the space between “ Hello” and “World ”.

One final thing to consider is that like the comparison blocks, all data plugged into a
trim function block will be treated as text—you can plug in a number for example,
but the program will treat it as if it were a text block.

 10.4 Converting Case

CONCEPT: Converting case means to convert a lowercase letter to an upper-
case letter or vice versa. When you convert the case of a string, you
will convert all of the alphabetic letters in the string into either all
u ppercase or all lowercase letters.

App Inventor has a function block that we can use to convert the case of a string: the
upcase / downcase block found in the Text drawer. This function block takes one
text argument and returns the same string converted with all alphabetic letters either
in uppercase (upcase) or lowercase (downcase) letters. See Figure 10-30.

 10.4 Converting Case 501

If you convert a string to uppercase with the upcase block, the function will return
the string with all capital letters. “Hello World” will convert to “HELLO WORLD”.
Because the H and the W were already in uppercase, no changes were made to those
characters. See Figure 10-31.

Figure 10-31 Converting Case of a String (Source: MIT App Inventor 2)

It shows in Figure 10-31 that converting a string with mixed case letters to upper-
case will result in all alphabetic letters in uppercase. Conversely, using the downcase
o ption will convert the string so that all the letters in the string are lowercase.

It’s important to note that any character in a string conversion that is not an alpha-
betic character will be unaffected by the upcase and downcase function blocks. See
Figure 10-32.

Figure 10-32 Only Alphabetic Characters Convert (Source: MIT App Inventor 2)

Figure 10-32 shows that converting a string that contains characters other than
a lphabetic characters will leave the non-alphabetic characters unaffected.

Tutorial 10-2:
Trim and Convert to Format Tags

App Inventor comes with a database in the Storage Palette that we can use to
store data called TinyDB. Information stored to a TinyDB must be a tag-value
pair. Recall that the tag is a unique identifier for a record of data you want

502 Chapter 10 Working with Text

Figure 10-33 User Interface (Source: MIT App Inventor 2)

to store. For example, for product data your key may be a SKU (Stock Keeping
Unit), for vehicle data it may be a VIN number, for a contact the key may be an
email address, phone number, or a name.

It may be beneficial to ensure that a key stored to the TinyDB does not have lead-
ing or trailing spaces. After all, if a key is put in with spaces surrounding it, those
same spaces will have to be in the string to retrieve the data. Let’s also consider
that we may want to allow the user to search for a key without worrying about
being case sensitive. To handle this, we will convert the tag to all uppercase let-
ters and trim any spaces before we save the tag.

Figure 10-33 shows the user interface for the app that you will create in this tutorial.

Step 1: Add a Label to the Screen, rename it LabelProducts. Change its Text
property to Store Product Name & Price.

Step 2: Add a HorizontalArrangement and place two TextBoxes inside.
Rename the first TextBox to TextBoxProductName and change
the Hint property to product name. Rename the second TextBox
to TextBoxProductPrice and change the Hint property to price.

Step 3: Add a Button under the HorizontalArrangement and rename it to
ButtonSave. Change the Text property to Save.

Step 4: Add a Label under the save Button and rename it to LabelFindProduct.
Change the Text property to Find Product Price.

Step 5: Add a HorizontalArrangement and place a TextBox and Button inside
of it. Rename the TextBox to TextBoxFindProduct and change the
Hint property to product name. Rename the Button to ButtonFind
and change the Text property to Find.

 10.4 Converting Case 503

Step 6: Add a Label under the HorizontalArrangement. Rename the Label to
LabelPrice and change the Text property to Price:.

Step 7: Add a TinyDB to the project and rename it TinyDBProductPrices.

Step 8: Now you will program the when ButtonSave.Click do event handler
as shown in Figure 10-34. Find and select the event handler block in
the ButtonSave drawer.

Figure 10-34 Button Save Click Event (Source: MIT App Inventor 2)

TIP: Look at Figure 10-34 and consider how copying and pasting
blocks might make this tutorial quicker.

Step 10: Select an upcase block and a trim block from the Text drawer.

Step 11: Select the TextBoxProductName.Text block from the TextBox
ProductName drawer.

Step 12: Assemble the blocks that you created in Steps 10 and 11 as shown in
Figure 10-35. Then, plug the resulting set of blocks into the tag socket
of the TinyDBProductPrices.StoreValue block (see Figure 10-34).

Figure 10-35 Trim String and Change to Uppercase (Source: MIT App Inventor 2)

Step 13: Copy and paste the blocks that you assembled in Step 12 (shown in Figure
10-35). Change TextBoxProductName to TextBoxProductPrice.

Step 14: Plug the resulting set of blocks into the valueToStore socket of the
TinyDBProductPrices.StoreValue block. Your blocks should look
like Figure 10-34.

Step 9: Get the TinyDBProductPrices.StoreValue block from the
TinyDBProductPrices drawer. Plug it into the ButtonSave.Click block.

504 Chapter 10 Working with Text

Checkpoint

 10.9 Name some reasons that you would want to trim strings. Can you think of
situations when you would not want to trim a string?

 10.10 When we combine the text blocks upcase and trim, does it matter which
order they are in? Why or why not?

 10.11 When you convert a string to lowercase, what happens to the characters that
are not alphabetic letters? What happens to the uppercase alphabetic letters?
What about the lowercase letters?

 10.12 What is the result of converting a number to uppercase? What data type is
the result?

Step 15: Now you will program the when ButtonFind.Click do event handler
as shown in Figure 10-36. Find and select the block in the ButtonFind
drawer.

Figure 10-36 ButtonFind.Click Event Handler (Source: MIT App Inventor 2)

Step 16: Select the set LabelPrice.Text to block from the LabelPrice
drawer and plug it into the ButtonFind.Click event handler.
Next, select the TinyDBProductPrices.GetValue block from the
TinyDB ProductPrices drawer. Plug it into the set LabelPrice.Text
to block.

Step 17: Select an upcase and a trim block from the Text drawer.

Step 18: Plug in the text blocks as shown in Figure 10-36 (trim plugged into the
tag socket, and upcase plugged into the trim block). This will format
the input from the user by trimming any spaces and converting any let-
ters in their input to uppercase letters.

Step 19: Select the TextBoxProductName.Text block, from the TextBox
ProductName drawer, and plug it into the upcase block as shown in
Figure 10-36.

Step 20: Run and test your app. Try storing products with a leading or a trailing
space. Try to search for a product with a mixed case string. For exam-
ple, store “Apples” (with leading spaces), with a price of 2.99, then
search for it by typing in apPLes and check that it retrieves the price
from the TinyDB.

 10.5 Finding a Substring 505

 10.5 Finding a Substring

CONCEPT: A substring of a string is a set of characters that exists as part of that
string.

Programs commonly need to search for substrings, or strings that appear within other
strings. For example, suppose you have a document open in your word processor and
you need to search for a word that appears somewhere in it. The word that you are
searching for is a substring that appears in a larger string, the document.

App Inventor provides two blocks that can help us find substrings. One is used to
determine whether a string contains a substring (the contains block), the other will
tell us where that substring begins (the starts at block).

The contains function block returns a Boolean value of true or false based on
whether or not the substring exists in the string. The contains block is useful b ecause
sometimes your program will need to know simply whether or not the string contains
the substring before any processing begins.

The contains function block requires two arguments, text and piece. If the value
of the piece argument exists in the text argument the function will return true, if it
does not exist, it will return false. Let’s look at an example in Figure 10-37.

Figure 10-37 Contains Example (Source: MIT App Inventor 2)

Figure 10-38 Starts at Block (Source: MIT App Inventor 2)

This function would return false because the string Grapes does not exist in the
string Oranges and Apples.

The next block that is useful for finding substrings is the starts at function block
which is also found in the Text drawer. It requires the same two arguments as the
contains block, text and piece.

The function will return a number representing the position in the string (text
p arameter) where the substring (piece parameter) starts. If the substring is in the
string more than once, only the position of the first occurrence is returned. If the
substring does not exist in the string, the function will return zero. Let’s look at an
example in Figure 10-39.

506 Chapter 10 Working with Text

 10.14 Explain the differences between the starts at and contains blocks.
Explain how they similar.

 10.15 Consider the parameters text and piece. Which represents the substring to
search for and which represents the string to search?

 10.16 How does the fact that the starts at and contains blocks are case sensitive
affect whether or not a substring is found in a string?

Figure 10-39 Substring Example (Source: MIT App Inventor 2)

Checkpoint

 10.13 Evaluate the following function calls:

 a)

 b)

 c)

 d)

 e)

The function call in Figure 10-39 will return the number 8 because the substring
Orange does exist in the string and it starts in the 8th position. The character A is in
position 1, p is in position 2, and so forth. Each space will take up a position so you
need to remember to count those too.

Keep in mind that both the starts at and contains blocks are case sensitive, mean-
ing that the characters must be identical in the substring and string in order to find a
match. For example, the substring orange with a lower case o would not be found in
the Apples Oranges Bananas string.

 10.5 Finding a Substring 507

Figure 10-40 User Interface (Source: MIT App Inventor 2)

Step 1: Drag a Label from the Basic Palette onto the screen. Rename it
LabelConfirmation. Clear the Label’s Text property.

Step 2: Place a TextBox on the screen and rename it TextBoxEmail. Change
the Hint property to Enter Email.

Step 3: Place a Button on the screen and rename it ButtonGo. Change the Text
property to Go.

Tutorial 10-3:
Validate an Email Address

Suppose we have an application that requires the user to enter an email address.
Email addresses have a syntax that requires a name, the @ symbol, the first-level
domain name, the dot (.) and then the top level domain (some familiar top level
domain names are com, edu, org, and net). Generally, the format looks like this:
name@domain.com.

In this tutorial we are simply going to check that the string entered by the
user contains both the @ symbol and the dot. Once it is verified that the string
contains those two characters, we will then check that the @ symbol comes
before the dot.

To make this tutorial simple, we will assume that no valid email addresses
contain a dot in the name. We will also skip validating that there are charac
ters before and after the @ and dot characters. We will use other text blocks to
validate the address more thoroughly later in this chapter.

If the email address is in correct format, in our case meaning that it contains the
@ symbol before a period, we will populate a Label saying Thank you. If those
conditions are not met, we will populate the Label with Please enter a valid email
so that the user knows to try again.

The user interface design for this project is fairly simple. As shown in Figure 10-40,
we’ll just have a Label, TextBox, and a Button.

VideoNote
Validate an Email
Address

mailto:name@domain.com

508 Chapter 10 Working with Text

Figure 10-41 Check for Required Characters (Source: MIT App Inventor 2)

In Figure 10-41 we are using the contains blocks to verify that both
c haracters exist in the string entered by the user and then prompt the user
appropriately.

If you were to read the if then else set of blocks logically in pseudo-code or
English it would sound like this:

If the TextBoxEmail.Text string contains both “@” and “.”, then set
LabelConfirmation.Text to the string Thank you.

Otherwise, set LabelConfirmation.Text to the string Please enter a valid
email.

Step 5: Go to the ButtonGo drawer and select the when ButtonGo.Click do
event handler.

Step 6: Go to the Control drawer and select an if then block. Use the m utator
tool to change it to an if then else block. See Figure 10-42.

Figure 10-42 if then else Block (Source: MIT App Inventor 2)

Click the blue
mutator tool and

then drag an
“else” block into

the “if” block.

Step 4: Now you will program the blocks to check that both the @ symbol
and a dot (.) exist in the string. We’ll verify later that the @ comes
before the dot.

Step 7: Go to the Logic drawer and select an and block. See Figure 10-43.

 10.5 Finding a Substring 509

Figure 10-43 The Logic and Block (Source: MIT App Inventor 2)

The Logic
“and”
block

Step 8: Plug the and into the if socket and the if then else block into the
ButtonGo.Click event handler. See Figure 10-44.

Figure 10-44 Insert the Control and Logic Blocks

Step 9: Select two contains blocks in the Text drawer. Plug in the TextBox
Email.Text value block into both of the text sockets. Then make text
blocks of the @ symbol and the dot and plug those into the piece sockets.
Refer to Figure 10-45. (Tip: You can program just one of these block sets
and then copy and paste it to make the other, just change the @ to a period.)

Figure 10-45 Check if the Symbols Exist (Source: MIT App Inventor 2)

510 Chapter 10 Working with Text

Figure 10-46 Complete the Test Block (Source: MIT App Inventor 2)

Step 10: Plug both contains blocks into the and block as shown in Figure 10-46.
(The order doesn’t matter.)

Step 11: Find and place two set LabelConfirmation.Text to blocks, found
in the LabelConfirmation drawer, into the workspace and plug the text
Thank you into one and Please enter a valid email into the other. See
Figure 10-47.

Figure 10-47 Set up the LabelConfirmation.Text (Source: MIT App Inventor 2)

Step 12: Plug the blocks shown in Figure 10-47 into the if then else block.
Compare your work to Figure 10-48.

Figure 10-48 Plug Label Information into the Control Block
(Source: MIT App Inventor 2)

Step 13: Run and test your app with valid emails and invalid emails. Remember
at this point it simply checks for a dot and the @ symbol, it doesn’t
check that they are in the correct order.

Step 14: Now we need to take the next step and validate that the @ symbol
comes before the dot. To do this we will use the starts at block to
tell us the position of each symbol. See Figure 10-49.

 10.5 Finding a Substring 511

Figure 10-49 Ensuring the Order of Characters (Source: MIT App Inventor 2)

Figure 10-49 shows that we embed the starts at blocks (which return
the position of a character) into a less than Math block. Remember
the starts at block returns a number, so it makes sense to use the
Math block to compare the two values.

If the position of the @ is less than the position of the dot, that means
the email address is in the format that we want and we will prompt the
user with “Thank you”. Otherwise, the email address is not in the cor-
rect format so we will prompt the user to enter a valid email address.

Step 15: Go to the Control drawer and find an if then block and place it in
the workspace.

Step 16: Use the mutator to change the block to an if then else block (see
Figure 10-42).

Step 17: Go to the Text drawer and select two starts at blocks.

Step 18: Go to the Math drawer and select a math equality block (=). Change it
to a less than block by clicking the down arrow and selecting the less
than symbol. See Figure 10-50.

Step 19: Configure each argument of the math less than block as shown in
Figure 10-51. This will return true if the @ symbol comes before the
dot in the string.

Figure 10-50 Math less than Block (Source: MIT App Inventor 2)

Figure 10-51 Comparing the Positions (Source: MIT App Inventor 2)

512 Chapter 10 Working with Text

Step 20: Plug the entire comparison in the new if then else block from Steps
15 and 16. See Figure 10-52.

Figure 10-52 Program the Test Condition (Source: MIT App Inventor 2)

Step 21: Temporarily remove the set LabelConfirmation.Text to Thank you
block from the first if then else block. Nest the block from Figure
10-52 into the first if then else block as shown in Figure 10-53.

Figure 10-53 Nest the if then else Blocks (Source: MIT App Inventor 2)

Step 22: Place the set LabelConfirmation.Text to Thank you block into
the then slot of the inner if then else block. (See Figure 10-54.)

Step 23: Select and duplicate the set LabelConfirmation.Text to Please
enter a valid email block and place it in the else slot of the inner if
then else block. (See Figure 10-54.)

Step 24: Compare your complete tutorial with Figure 10-54. Run and test your
app. Try different string combinations and ensure your app performs
as expected, requiring that the email at least has the @ symbol and a
dot, in that order.

Figure 10-54 Tutorial 10-3 Complete Blocks Editor (Source: MIT App Inventor 2)

 10.7 Extracting a Substring 513

 10.6 Replacing a Substring
App Inventor has a replace all block that returns a copy of a string, where every
occurrence of a specified substring has been replaced with another string. Look at the
example in Figure 10-55.

Figure 10-55 Replace All Block (Source: MIT App Inventor 2)

The function call in Figure 10-55 will return barking up the right tree. It works by
searching for all occurrences of the value plugged into the segment socket and replac-
ing all of those values with what is plugged into the replacement socket. If there
were more occurrences of the word wrong, all of them would be replaced with the
word right. Look at the example in Figure 10-56.

You can see in the emulator that in the retuned string all occurrences of two in the
original string are replaced with three.

The replace all block is case sensitive like the other text blocks. If you acciden-
tally plugged the text Two, with a capital T, in the segment socket nothing would be
r eplaced and the string returned will match the original.

 10.7 Extracting a Substring
In addition to finding and replacing substrings, you can also extract a substring from
a string. To do this you will need to know the starting point and the length of the
substring.

Figure 10-56 Replace All Example (Source: MIT App Inventor 2)

514 Chapter 10 Working with Text

App Inventor includes the segment block that will allow you to extract a substring by
giving it three arguments the entire string (text), the starting position of the substring
(start), and the length of the substring (length).

Figure 10-58 Extracting a Substring (Source: MIT App Inventor 2)

Figure 10-57 Segment Block (Source: MIT App Inventor 2)

Keep in mind that both the start and length arguments of the segment block
r equire numerical data.

For example, let’s say you have a string of product data that contains the name, prod-
uct number, and price. Also, let’s assume that the product number begins with the
letters “PN” and is followed by six digits. If we want to extract the product number
from the string we can first find where the substring begins by using the starts at
block. Next, because we know the product number is eight characters total, we can
use the length of eight to extract the product number. See Figure 10-58.

In this application we first created a variable ProductString to hold the product
string. Then, in the Screen.Initialize event we populate a Label with the product
number extracted from the variable ProductString. To extract the product number
we used the segment block and gave it the variable that holds the string, the start-
ing point, and the length. To determine the starting point, we used the starts at
block, which scans the ProductString variable to determine where the characters
PN occur first.

 10.8 Splitting a Substring 515

Checkpoint

 10.17 What block do you use when you want to change part of a string to
something else?

 10.18 When you replace part of a string with a different set of characters, what
information must you provide the block?

 10.19 When you want to extract a substring from a string, what information must
you provide to the segment block?

 10.20 When you are extracting a substring, how does App Inventor know when to
start and when to stop extracting?

 10.21 When you are replacing or extracting from a string, what happens to the
original string?

 10.8 Splitting a Substring
App Inventor allows us to split strings into list items by providing us several split
functions. There is a single split block, but you can change it to handle the other
functions by using the drop down arrow in the middle. See Figures 10-59 and 10-60.

Figure 10-59 The split Block (Source: MIT App Inventor 2)

Figure 10-60 Accessing the Other Functions (Source: MIT App Inventor 2)

Click the down arrow
then choose the
function you need.

Two of these functions, the split at first and the split at first of any,
return a simple two-item list. The other functions, split, split at any, and split
at spaces, return a list that can be more than two items depending on the contents
of the string and the division-point.

The divisionpoint is the argument you supply to tell App Inventor where you want to
split the string. For example, we may want to split a string of information separated by
commas, in which case your division-point would be the comma character (,).

For the split at first and split blocks, the division point you supply will be a
single string or character, like a comma, period, or word.

If you use the split at first of any or the split at any blocks, your division-
point argument will be a list. Assume you want to split information in a string that is
between commas and/or periods. In this case, you would make a two-item list with

516 Chapter 10 Working with Text

The split at first of any block will return a two-item list also. You can think
of this set of blocks as “Split the string in two at the first occurrence of a comma
or a period.” The first step is to make a list of the division-points and store it to a
List variable. Then use the List variable as the division-point in the at argument of
the block.

In this example, the split function returns a two-item list. It will split the string in two
at the first occurrence of a comma or period. Look at the vowels variable closely (A
E.I, O, U, y). The first occurrence of a comma or period happens to be between the E
and I, so the first element will be A E and the second element will be I, O, U, y.

Notice again that the division-point is removed from the result.

split

Next, let’s look at the split and split at any functions. The difference between
these functions and the split at first blocks is that these functions will split the
string at all locations of the division-point.

This block will return a two-item list. You can think of this set of blocks as “Split
the string in two at the first occurrence of a comma.” The first element will be A and
the second will be the string E, I, O, U. Notice that the comma that was the division-
point of the split has been removed from the result.

Figure 10-62 split at first of any Block (Source: MIT App Inventor 2)

the division-points, a comma as one element, and a period as the other. Now you can
split the string with the two division-points.

split at first

The split functions that contain the words “at first” will return the two-item lists.
They will only split at the first occurrence of the division point and hence we will only
have two items. Let’s take a look at the split at first and the split at first
of any blocks.

Figure 10-61 split at first Block (Source: MIT App Inventor 2)

 10.8 Splitting a Substring 517

The split function block shown in Figure 10-63 will return a list of 5 elements (A E
I O U). The division-point is a comma, so any information in the list that is between
commas will be a separate list item. This set of blocks reads “split the contents of the
vowels variable by commas.”

Figure 10-63 split Block (Source: MIT App Inventor 2)

In Figure 10-64 you’ll notice that both commas and periods separate the vowels.
Because both the comma and period are in the list of things to split by (spiltList
variable) the list that is returned from the split at any block will have five elements
(A E I O U). The logic of this set of blocks can be read as “split the contents of the
vowels variable at each comma or period.”

split at spaces

You can certainly use a space character as your division point with the split blocks
covered so far, but App Inventor also provides a split at spaces function that will
make it a little easier to split a text block by spaces. It only requires one string argu-
ment and it will return a list of the items between any spaces in the string.

Figure 10-64 split at any Block (Source: MIT App Inventor 2)

Figure 10-65 Split at Spaces (Source: MIT App Inventor 2)

In Figure 10-65, the split at spaces function block will return a list of 5 elements
(A E I O U) with no spaces. This is because the spaces are the division-points, which
are excluded from the result.

Length of a String
We often will need to know the length of a string, especially after splitting a string.
We may want to know how long each substring is or if a string is empty. App Inventor
provides two blocks that will help us determine the length of a string. The first is a

518 Chapter 10 Working with Text

Checkpoint

 10.22 Evaluate the following function calls by identifying the items in the resulting lists:

a)

b)

c)

d)

simple Boolean block that will let us know if a string is empty or not, the is empty
block. The second is the length block. The length block will return a number equal
to the number of characters in the string.

Often, your program will need to know if a string is empty or not before you try to
process it further. Look at the example in Figure 10-66.

In this example the function would return false because the name is not empty. This
block is often used in conjunction (as the test argument) with an ifthen block.

The example in Figure 10-67 shows the length block.

This function will return the number 5 because there are five characters in the name Sally.

Figure 10-67 length Block
(Source: MIT App Inventor 2)

Figure 10-66 is text empty Block
(Source: MIT App Inventor 2)

 10.8 Splitting a Substring 519

 10.23 Explain the term divisionpoint. What happens to the division-point
characters in a string after a split or split at any?

 10.24 Explain how the split at first and the split at first of any
blocks perform differently than the split or split at any blocks.

 10.25 Why doesn’t the split at spaces block require that you give it a
division-point argument?

 10.26 What would the length function return if you supplied it with a text
block containing Go the Whole 9 Yards.

Tutorial 10-4:
Validating Email – Valid Name and Top-Level Domain

We are going create another application to validate an email address. This time,
we are going to focus on making sure that the user supplies a name (at least
two characters long) before the @ symbol and that they have entered a top-level
d omain (after the last dot) which must also be least two characters long.

There is more to validating an email address, but this is an example of how you
can use the split blocks to examine a string. Later, we will have exercises and
projects to validate further that a host is entered and that the email address starts
with an alphabetic letter.

The first three steps are exactly like those in Tutorial 103. If you’ve already
completed that tutorial you can start from that project and save a little time.

The user interface design for this project is fairly simple. We’ll just have a Label,
TextBox and Button. See Figure 10-68.

Figure 10-68 User Interface (Source: MIT App Inventor 2)

VideoNote
Validating Email –
Valid Name and
Top-Level Domain

Step 1: Drag a Label from the Basic Palette onto the screen. Rename it
LabelConfirmation. Clear the Text property.

Step 2: Place a TextBox on the screen and rename it TextBoxEmail. Change
the Hint property to Enter Email.

Step 3: Place a Button on the screen and rename it ButtonGo. Change the Text
property to Go.

Step 4: Open the Blocks Editor. The first thing we will need to do is create a
Boolean variable that will store whether or not the email address is
valid. Create the variable as shown in Figure 10-69.

520 Chapter 10 Working with Text

Figure 10-69 Initialize emailValid Boolean Variable (Source: MIT App Inventor 2)

Step 5: Go to the Variables drawer and choose an initialize global to
block. Change the name to emailValid.

Step 6: Go to the Logic drawer and find a false block, plug that into the
emailValid variable. (See Figure 10-69.)

Step 7: Now you will create a variable to hold the list that is returned when we
split the email input. Go to the Variables drawer and choose an ini
tialize global to block. Change the name to emailList.

Figure 10-70 EmailList Variable (Source: MIT App Inventor 2)

Step 8: We need to plug in a create empty list block from the List drawer
to make this a List variable.

Validate the Name

In the following steps you will create a procedure that validates the name. When
you are finished, the procedure will look like Figure 10-71.

Figure 10-71 Validate Name Procedure (Source: MIT App Inventor 2)

In this figure you can see that we first reset the emailValid variable to false.
Then we split the list by the @ symbol. Next we check two conditions; is the
length of the list after the split greater than one (this indicates that the @ s ymbol
is in the string) and is the string in the first half of the split greater than one
c haracter (we are requiring that the name be at least two characters). If those
conditions are met, we can safely set the EmailValid variable to true.

Step 9: Go the Procedures drawer and choose a to procedure do block. See
Figure 10-72.

Step 10: Click on the name procedure and change the name to validateName.
We will use this procedure to set the value of the emailValid to either
true or false based on whether there is an @ symbol and that there is
text before the @ symbol. See Figure 10-73.

 10.8 Splitting a Substring 521

Figure 10-72 The to procedure do Block (Source: MIT App Inventor 2)

“to procedure
do” block

Procedures
drawer

Figure 10-73 Change the Procedure Name to validateName
(Source: MIT App Inventor 2)

Change procedure
name to validateEmail.

Step 11: The first step in the procedure is to set the emailValid variable to false.
You can find the set global emailValid block by hovering the mouse
cursor over the name emailValid in its initialization block. You will
find the false block in the Logic drawer. Plug that set of blocks into the
procedure. See Figures 10-74 and 10-75.

Figure 10-74 Find the set global emailValid to Block
(Source: MIT App Inventor 2)

Hover over the
emailValid name
to find the set
block.

Figure 10-75 Set emailValid to false (Source: MIT App Inventor 2)

Step 12: Now you will split the list at the first @ symbol. Like you did for
emailValid, hover over the name emailList in its initialization block
to find the set global emailList to block.

522 Chapter 10 Working with Text

Step 13: Go to the Text drawer and select the split block, change it to split at
first and plug it into the set global emailList to block from Step 12.

Step 14: Put the TextBoxEmail.Text block in the text argument slot and the
@ symbol in the at argument slot. See Figure 10-76.

Figure 10-76 Split the Email Address (Source: MIT App Inventor 2)

Step 15: Go to the Control drawer and select an ifthen block.

Step 16: Go to the Logic drawer select an and block.

Figure 10-77 The Logic and Block (Source: MIT App Inventor 2)

The Logic
“and” block

Step 17: Plug the and into the ifthen block.

Step 18: Now let’s program the two conditions: Is there a name in front of the
@ symbol? and Is it more than one character long? (the name needs to
be at least two). See Figure 10-78 and 10-79.

Figure 10-78 Test if Text is Before the @ Symbol (Source: MIT App Inventor 2)

Figure 10-79 Test if the Length of the Name is Greater Than 1
(Source: MIT App Inventor 2)

 10.8 Splitting a Substring 523

In Figure 10-78 we determine that there is indeed an @ symbol in the
string if the length of emailList is greater than one. Remember that
we split the string using the @ symbol as the division-point. If there is
not an @ symbol in the string, then the list will be one element long and
this test will not return true.

Step 19: Go to the Math drawer and create a greater than block.

Step 20: Go to the List drawer and select the length of list block.

Step 21: Hover the mouse cursor over the name emailList in its initialization
block and get the get global emailList block.

Step 22: Go to the Math drawer and select a number block, change its value to 1.

Step 23: Configure the blocks in Steps 19–22 as shown in Figure 10-78.

Step 24: Go to the Math drawer and find a greater than (.) block.

Step 25: Go to the Text drawer and find the length block.

Step 26: Go to the List drawer and find the select list item block.

Step 27: Hover the mouse cursor over the name emailList in its initialization
block and get the get global emailList block.

Step 28: Go to the Math drawer and select two number blocks, change their
values to 1.

Step 29: Configure the blocks in Steps 24–28 as shown in Figure 10-79.

Step 30: Plug both test conditions into the Logic and block, as shown in Figure
10-80.

Figure 10-80 Test the Name Length (Source: MIT App Inventor 2)

Step 31: If both test conditions are true, set the emailValid variable to true.
Compare your work so far with Figure 10-71.

Validate the Top-Level Domain

In the following steps you will create the blocks to validate that the top level
 domain is at least two characters. First, you will create the variable shown in
Figure 10-81, naming it topDomain and setting it equal to a blank text block.

Step 32: Go to Variables and choose an initialize global name to block.
Change the name to topDomain.

Step 33: Go to the Text drawer and find an empty text block plug it into the
topDomain initialization block. See Figure 10-81.

Figure 10-81 topDomain Variable (Source: MIT App Inventor 2)

524 Chapter 10 Working with Text

The top-level domain name will come after the last dot in the string. So, we will
use the split block with a dot as the division-point. We will then use the length
of the resulting list to select the last item in the list, which should be at least two
characters long. Look at the procedure in Figure 10-82.

In the procedure in Figure 10-82 we first re-set the emailValid variable to
false. Then we create a list of the string elements split by all dots in the string.
Once we verify that the resulting list is greater than one (validating that the
string does contain a dot), we can select the last item in the list to isolate the last
portion (substring) of the string to validate the domain. Once that substring is
extracted we can then verify that its length is at least two characters long.

Step 34: Go to the Procedures drawer and choose a to procedure do block
Change the name to validateTopDomain. The block should appear as
shown in Figure 10-83.

Step 35: The first step in the procedure is to set the emailValid variable to
false. You can find the set global emailValid block by hovering
the mouse cursor over the name emailValid in its initialization block,
and you will find the false block in the Logic drawer. Plug that set of
blocks into the procedure as shown in Figure 10-84.

Step 36: Split the list at the first period. Like you did for emailValid, hover the
mouse cursor over the name emailList in its initialization block to
find the set global emailList to block.

Figure 10-82 Validating the Top-Level Domain (Source: MIT App Inventor 2)

Figure 10-84 (Source: MIT App Inventor 2)

Figure 10-83 validateTopDomain Procedure Block (Source: MIT App Inventor 2)

 10.8 Splitting a Substring 525

Step 37: Go to the Text drawer and select the split block, change it to split at
first, and plug it into the set global emailList to block from Step 12.

Step 38: Plug the TextBoxEmail.Text block into the text argument slot and
the period into the at argument slot. See Figure 10-85.

Step 39: Go to the Control drawer and select an if then block.

The condition that you will test in the if then block is shown in Figure 10-86.
This will determine whether there is a period (or dot) in the string. Remember
that we split the string using the period as the division-point. If the string con-
tains a period, the length of emailList will be greater than one. If the string
does not contain a period, the list will contain only one element.

Step 40: Go to the Math drawer and create a greater than (>) block.

Step 41: Go to the List drawer and find the length of list block.

Step 42: Hover the mouse cursor over the name emailList in its variable initiali-
zation block and click the get global emailList block.

Step 43: Go to the Math drawer and select a number block, change its value to 1.

Step 44: Configure the blocks in Steps 40–43 as shown in Figure 10-86.

Step 45: Plug the set of blocks from Figure 10-86 into the if then block that you
created in Step 39, and then plug the if then block into the validate
TopDomain procedure as shown in Figure 10-87.

If the length of list test shown in Figure 10-87 is true, we can assume that the
string contains a dot. We can extract the string after the last dot by selecting the

Figure 10-85 Split the Email Address (Source: MIT App Inventor 2)

Figure 10-86 Test if Text is Before the Period (Source: MIT App Inventor 2)

Figure 10-87 (Source: MIT App Inventor 2)

526 Chapter 10 Working with Text

last item in the list. We can then test this substring to ensure that it is at least two
characters long. Look at Figure 10-88.

Step 46: To select the last item in the list, create a select list item block
found in the List drawer.

Step 47: Find the get global emailList block by hovering the mouse cursor
over the name emailList in its variable initialization block. Plug it
into the list socket of the select list item block.

Step 48: Next, create a length of list block from the List drawer. Plug
a nother get global emailList block into it, and plug these com-
bined blocks into the index socket of the select list item block.
See Figure 10-88.

Step 49: Now we need to assign the last list item to our variable topDomain.
Find the set global TopDomain to block by hovering the mouse cur-
sor over the name topDomain in its variable initialization block. Plug
the set of blocks from Step 48 into it.

Compare your work for Steps 46 through 49 to Figure 10-88. Place the set of
blocks shown in Figure 10-88 into the then socket of the if statement that is
shown in Figure 10-87. At this point, the procedure should appear as shown in
Figure 10-89.

Step 50: Now that we have the last item, let’s use an if statement to test that it is the
right length. Go to the Control drawer and select another if then block.

Step 51: You need to test that the length of topDomain is greater than 1. Use
the Math greater than block and a number 1 block plugged into the
right socket.

Step 52: Go to the Text drawer and find a length block.

Step 53: Hover the mouse cursor over the name topDomain in its variable
initiali zation block to find the get global topDomain block. Plug
that into the left slot of the greater than block. See Figure 10-90.

Step 54: Place this set of blocks into the socket of the if then block from Step 51.

Figure 10-88 Get Last Item in List (Source: MIT App Inventor 2)

Figure 10-89 Make Sure Domain is Valid (Source: MIT App Inventor 2)

 10.8 Splitting a Substring 527

Step 55: If this condition is true, set the emailValid variable to true, as shown
in Figure 10-91.

Now that we have the procedures written, we will need to call them. We will use
the ButtonGo.Click event handler as shown in Figure 10-92.

As shown in Figure 10-92, each time the button is clicked we will per-
form the following steps:
● Call validateEmail
● If emailValid is false, set the LabelConfirmation.Text to

Invalid email
● If emailValid is true, call validateTopDomain
● If emailValid is false, set the LabelConfirmation.Text to

Invalid email
● If emailValid is still true, set the LabelConfirmation.Text to

Thank you

Figure 10-90 (Source: MIT App Inventor 2)

Figure 10-91 (Source: MIT App Inventor 2)

Figure 10-92 Call the Procedures in ButtonGo.Click (Source: MIT App Inventor 2)

528 Chapter 10 Working with Text

Step 56: Create the ButtonGo.Click event block from the ButtonGo drawer.

Step 57: Find the set LabelConfirmation.Text to block in the Label Confir
mation drawer. You will need three of these. Set the first two to a text
block with the value Please enter a valid email. Set the third to Thank you.

Step 58: Find the call validateName block in the Procedures drawer. Place it
in the ButtonGo.Click event handler.

Step 59: Find the if then block in the Control drawer and the get global
emailValid value block by hovering the mouse cursor over the name
emailValid in its variable initialization block. Connect the two and
place in the ButtonGo.Click event handler, under the block that calls
the validateName procedure.

Step 60: Find the call validateTopDomain block in the Procedures drawer.
Place it in the if then block.

Step 61: Create an if then block from the Control drawer, and a get global
emailValid value block by hovering the mouse cursor over the name
emailValid in its initialization block. Connect the two and place them
in the ButtonGo.Click event handler, under the block that calls the
validateTopDomain procedure.

Step 62: Place the set LabelConfirmation.Text to Thank you block into the
then socket from Step 61.

Step 63: Place the other set LabelConfirmation.Text to blocks in the other
two then slots.

Compare your ButtonGo.Click event blocks to Figure 10-92.

Step 64: Run and test your app on your device or emulator. Test valid and
invalid scenarios.

Figure 10-93 shows the entire Blocks Editor for Tutorial 10-4.

Figure 10-93 Tutorial 10-4 Complete Blocks Editor (Source: MIT App Inventor 2)

 Review Questions 529

Review Questions
 1. A join block can do these things.

a. Match two strings
b. Concatenate two strings
c. Add a string to the end of another one
d. Both b and c

 2. What data types can you place in a join block?

a. number
b. text
c. Boolean
d. All of the above

 3. What is the result of joining the numbers 150 and 450?

a. 600
b. 700
c. 150450
d. 1,50450

 4. What is the result of comparing “Text” to “text ”?

a. “Text” equal “text ”
b. “Text” shorter than “text ”
c. “Text” longer than “text ”
d. “Text” greater than “text ”

 5. What is the result of trimming “ Text ”?

a. “Text ”
b. “ Text”
c. “Text”
d. “ Text ”

 6. What is the result of using the contains block with Four score and seven years
ago as the text argument and score as the piece argument?

a. 6
b. 5
c. True
d. False

 7. What is the result of using the starts at block with Four scores and one score
as the text argument and score as the piece argument?

a. 6
b. 21
c. True
d. False

 8. What is the result of using the contains block with Four score and seven years
ago as the text argument and f as the piece argument?

a. 0
b. 1
c. True
d. False

530 Chapter 10 Working with Text

 9. What is the result of using the starts at block with Four score and seven years
ago as the text argument and f as the piece argument?

a. 0
b. 1
c. True
d. False

 10. What block is used for replacing all occurrences of a substring within a string
with something else?

a. replace
b. replace all
c. replace next
d. replace string

 11. If you want to extract a date in the format mm/dd/yyyy from a string and you
know the date starts at the third position of the string, you would use:

a. The segment block with 1 as the start and 3 as the length
b. The segment block with 1 as the start and 8 as the length
c. The segment block with 3 as the start and 8 as the length
d. The segment bock with 3 as the start and 10 as the length

 12. Suppose you use the split at first function, using the string one, two, three,
four, five as the text and a comma (,) as the division point. How many elements
are in the resulting list?

a. 1
b. 2
c. 4
d. 5

 13. Suppose you use the split function, using the string one, two, three, four, five
as the text and a comma (,) as the division point. How many elements are in the
resulting list?

a. 1
b. 2
c. 4
d. 5

 14. What is the value of the second element in the list when you use the split at
first function, using the string one, two, three, four, five as the text and a
comma (,) as the division point?

a. two,
b. two
c. , two
d. two, three, four, five

 15. Suppose you use the split at any function, using the string apples, bananas.
green beans. carrots, beets as the text, and the division-point list includes a
comma and a period. How many items will the resulting list have?

a. 2
b. 5
c. 6
d. 7

Short Answer

 1. What is the effect of concatenating two numbers?

 2. What role does the ASCII table and the numeric representation of characters play
when we compare strings?

 3. Why is it important to trim strings before evaluating them?

 4. What is the result of comparing two strings with the same text, but one in upper
case and the other in lowercase?

 5. Does App Inventor provide a block that will allow you to replace just the first
instance of a substring with something else? If not, what steps would you take to
handle this scenario?

 6. Explain the length parameter used in the segment block. Explain the start
parameter.

 7. Explain the difference between the split blocks that contain the words “at first”
and those that don’t.

 8. Explain the difference between the split blocks that contain the words “at any”
and those that don’t.

Exercises
 1. Create an application that asks for an array of characters. Have a Button on the

screen that will return the string to a Label in uppercase if the first character is in
lower case, and will return it in lower case if the first character is in uppercase.

 2. Create an application that asks for a string of characters. Have a Button on the
screen that will return the last five characters of the string to a Label.

 3. Create an application that asks the user for a phone number in the following for-
mat (999)9999999. Verify that the entered values are numbers. (Hint: a character
is a digit if it is between 0 and 9).

 4. Store a list of usernames and passwords in a TinyDB. Create an application that
requires a username and password.
 a. Allow the usernames entered to have extra leading or trailing spaces and

have them be case insensitive.
 b. Make the passwords be case sensitive and do not allow for leading and/or

trailing spaces.
 c. Provide a Button as the event to check the login.
 d. Prompt to the screen whether the login is successful or not. If the login is

not successful, indicate whether it’s the username or password, or both,
that is incorrect.

 5. After completing Tutorials 10-3 and 10-4, combine the two by adding a third pro-
cedure in Tutorial 10-4 to handle the validation that was accomplished in 10-3.

 6. Add functionality in Tutorial 10-4 to validate that there is a host name provided
between the @ symbol and the last dot. Ensure that the host name is at least three
characters long.

 7. Allow the user to enter a paragraph (contains more than 2 statements). Then split
the paragraph into lines, where each line is a statement (statements can end with
a period, question mark, or exclamation mark).

 Exercises 531

532 Chapter 1 An Introduction to Alice and Objects532 Chapter 10 Working with Text

Programming Projects
 1. Alphabetize Names

Write an application that will take three names as input. Provide a Button for the
user to submit their entries. Return the strings to the screen in alphabetical order.

 2. Create an application that asks the user for a password. The password should
not be less than 8 characters and should contain both alphabets and digits. Check
each character and verify that there is at least one alphabetic and one numeric
character.

 3. Remove Characters

Write an application that will take a string of input that has commas, periods,
question marks, and spaces. Provide a Button to kick of the application. Return a
string with all of the commas, periods, question marks, and spaces removed from
the string. For example, the input Hi, my name is Sally. What is yours? would
return HimynameisSallyWhatisyours.

 4. Find Product Information

Write an application that extracts a product name, the SKU, and the price from
a string of product information. Assume that the name starts at position one
and goes until the first space. The SKU starts with characters SKU and continues
until the next space. The price starts at the dollar sign and will go until two char-
acters after the next period. So, if the input is WidgetX PromotionZ SKU1234
$3.993334454, the application would display WidgetX SKU1234 $3.99.

 5. String Guessing Game

Create a string guessing game. Start by storing a string in a variable and show the
user only dashes for the letters. Also, present a clue. For example, you may have
Man’s best friend as the clue and three dashes _ _ _ on the screen for the user to
guess (of course, our word in this example is Dog). Allow the user to enter one
character at a time pressing a Button to submit their guess. If they guess a letter in
the string, fill in the letter. If our string is Dog and they guess an “o”, then show
o on the Label. Let the user know if they have guessed right or wrong and let
them also know when they’ve completed the word.

TIP: Convert the strings to upper case before alphabetizing, but return them to the
screen in mixed-case (first letter capital).

VideoNote
The Alphabetize
Names Project

TIP: Consider using the segment block to redefine your string as you go along
from _- _- _ , to _- o- _ , to d-o- _ and finally d-o-g (as an example).

TOPICS

11.1 TextToSpeech Component

11.2 The Texting Component

11.3 Receiving Messages

11.4 Sending Messages

Text to Speech and
Text Messaging

 11.1 The TextToSpeech Component

CONCEPT: Smartphone Text to Speech is a technology that allows your app to speak
text words and phrases based on of text input.

The App Inventor TextToSpeech component is found in the Media Palette. This compo-
nent uses advanced technology that allows your app to “speak” a block of text. This is
a powerful component, and it is very easy to use.

As you will see by its properties, you can set the language and the country of the
TextToSpeech component, allowing your app to be usable in several different languages.

TextToSpeech Component Properties

Language and Country

The TextToSpeech component has properties that you can set for the language and
country. The pronunciation of a word may be different depending on the combination
of these two properties. For example, if we select English as the language and the United
States as the country and ask our app to speak the word “Hello”, it may sound quite
different than if we used English combined with Australia.

The languages that are supported are Czech, Spanish, German, French, Dutch, Italian,
Polish, and English. To select a language, you set the Language property to the three-letter

C
H

A
P

T
E

R

11

533

534 Chapter 11 Text to Speech and Text Messaging

code that stands for that language. Then, to select a country, you set the Country
property to the three-letter code that stands for that country. Table 11-1 shows a few
examples of language and country codes. (A complete list of the codes can be found
in the Component Reference, Appendix D.)

For example, to select English as the language and the United States as the country,
you would set the Language property to eng and the Country property to USA. To
select French as the language and Canada as the country, you would set the Language
property to fra and the Country property to CAN.

Table 11-1 Example language and country codes (Source: Tony Gaddis/Pearson Education, Inc.)

Language Countries

eng (English) AUS (Australia)

CAN (Canada)

GBR (Great Britain)

USA (United States of America)

and others . . .

spa (Spanish) ESP (Spain)

USA (United States of America)

fra (French) BEL (Belgium)

FRA (France)

CAN (Canada)

and others . . .

ita (Italian) CHE (Switzerland)

ITA (Italy)

NOTE: The Language codes are in lowercase letters and the Country codes are
in uppercase.

Figure 11-1 shows that in code, you use a text block to set the values of the Language
and Country properties.

Figure 11-1 Setting Language and Country in Code (Source: MIT App Inventor 2)

TIP: Keep in mind that App Inventor does not translate text. So if you want to
say Hello in English you supply it the text block Hello, but if you want to say the
greeting in Spanish you must give it the text block in Spanish, Hola.

 11.1 The TextToSpeech Component 535

Pitch and Speech Rate

The TextToSpeech component also has properties that you can set for the pitch and
speech rate of the speech. The Pitch property will lower or raise the pitch of the speech
based on a number that you give it between 0 and 2. If you set it to zero, the voice is
low-pitched. If you set it to 2, the voice is high-pitched. The SpeechRate property will
either slow down the rate at which the speech is spoken or speed it up. Again, you can
give it values between 0 and 2. If you set this property to zero, the speech is very slow,
and conversely setting it to 2 will make the speech very fast!

Figure 11-2 shows how you would set your properties to have the speech as slow and
low as possible.

NOTE: If you fail to set the language and/or country code, or supply an invalid
code, your app won’t stop; it will simply use the default Text to Speech settings on
your device or keep the previous programmatic setting.

Figure 11-2 Slow and Low (Source: MIT App Inventor 2)

The Speak Method Block
The TextToSpeech.Speak method makes the app speak. It has one argument,
m essage, that you must supply it. Whatever is plugged into the message socket will
be spoken when this method is invoked.

The Speak method block will interpret blocks of different types such as text, num-
bers, lists, and Boolean and variable data. For example, if you create a number vari-
able named test and give it the value 123, plugging the value of the test variable
into the message socket will result in the app speaking “one hundred twenty-three.”
The example in Figure 11-3 programs the app to speak the word Hello There.

Figure 11-3 Speak Method with Literal Text (Source: MIT App Inventor 2)

Figure 11-4 demonstrates how to use a global variable as the message for the Speak
method. It matches the example mentioned previously and will speak the message
“one hundred twenty-three.”

Figure 11-4 Speak Method with Variable Data (Source: MIT App Inventor 2)

536 Chapter 11 Text to Speech and Text Messaging

If you were to use a math expression such as 5*5 as the message argument, the
expression would be evaluated first and the result would be for the app to speak
“twenty-five.”

TextToSpeech Event Handlers
App Inventor provides two event handlers associated with the TextToSpeech component,
the BeforeSpeaking and AfterSpeaking event handlers. They are self-explanatory
and simply allow processing to occur directly before the Speak method block executes
and directly after. We will show an example of using these events in Tutorial 11-1.

Tutorial 11-1:
Text to Speech

This will be a simple tutorial demonstrating the TextToSpeech.Speak
method with a phrase (entered by the user) and will show how and when the
BeforeSpeaking and AfterSpeaking events can be used. It will also allow the
user to choose the pitch and speech rate. Refer to Figure 11-5 as you design the
user interface for this app.

Figure 11-5 User Interface (Source: MIT App Inventor 2)

Step 1: Start a new App Inventor project named TextToSpeechDemo .

Step 2: In the Designer, go to the Media Palette and drag the TextToSpeech
component onto the screen. Notice it is a nonvisible component.

Step 3: From the User Interface Palette, add a TextBox to your screen. Rename
it TextBoxPhrase. Set the Width property to Fill parent. Clear the Text
property and set the Hint property to enter a phrase.

Step 4: From the Layout Palette, add a HorizontalArrangement.

Step 5: From the User Interface Palette, add a ListPicker to your Horizontal-
Arrangement. Rename it ListPickerPitch. Set its ElementsFromString
property to Low, Regular, High. Change its Text property to Select
Pitch. See Figure 11-6.

VideoNote
Text to Speech

 11.1 The TextToSpeech Component 537

Figure 11-6 Set the ElementsFromString Property (Source: MIT App Inventor 2)

Step 6: Repeat Step 4 to add another ListPicker to your HorizontalArrangement.
Rename it ListPickerRate. Set its ElementsFromString property to
Low, Regular, High. Change its Text property to Select Rate.

Step 7: From the User Interface Palette, add a Button to your Horizontal-
Arrangement. Rename it ButtonSpeak and change its Text property
to Speak!

Step 8: Add a Label beneath the HorizontalArrangement, rename it
LabelStartStop, and clear the contents of its Text property. Compare
your design to Figure 11-5.

Step 9: Open the Blocks Editor and create an event handler for the Screen1.
Initialize event. We will use this event to set the language to English
and the country to the United States. (Alternatively, you can set it to
any language and country as you like.) See Figure 11-7.

Figure 11-7 Screen1.Initialize Event (Source: MIT App Inventor 2)

Step 10: To demonstrate the BeforeSpeaking event, let’s program the event
handler to populate our Label with the text Starting speech. . . . Select
the BeforeSpeaking event handler in the TextToSpeech1 drawer to
place it in the editor.

Step 11: Select the set LabelStartStop.Text to block in the LabelStartStop
drawer. Place this block inside the BeforeSpeaking event handler.

Step 12: Create a text block containing the words Starting speech . . . and plug it
into the Label’s socket as shown in Figure 11-8.

Figure 11-8 BeforeSpeaking Event Handler (Source: MIT App Inventor 2)

538 Chapter 11 Text to Speech and Text Messaging

Each time the method TextToSpeech1.Speak is called, the event handler
in Figure 11-8 will execute before the actual speaking begins.

Step 13: Now you will program the AfterSpeaking event handler. This
event handler is executed when the TextToSpeech1.Speak method
completes. You will program this event handler to change the
LabelStartStop to show Stopped.

Select the AfterSpeaking event handler in the TextToSpeech1 drawer
to place it in the editor.

Step 14: Select the set LabelStartStop.Text to block in the LabelStartStop
drawer. Place this block inside the AfterSpeaking event handler.

Step 15: Create a text block with Stopped as its value and plug it into the Label’s
socket. See Figure 11-9.

Figure 11-9 AfterSpeaking Event Handler (Source: MIT App Inventor 2)

Figure 11-10 ListPickerPitch.AfterPicking Event Handler
(Source: MIT App Inventor 2)

Step 16: Examine Figure 11-10. We are now going to program the
ListPickerPitch.AfterPicking event handler.

Notice that we set the TextToSpeech1.Pitch property equal to the
ListPickerPitch.SelectionIndex minus 1. This is because we pro-
grammed three elements for the ListPicker: Low, Regular, and High.
If the user selects Low, the SelectionIndex is 1. Regular is 2 and
High is 3. Remember, however, that the Pitch property accepts a range
from 0 to 2. Therefore we have to subtract 1 from the SelectionIndex
property’s value.

Step 17: Go to the ListPickerPitch drawer and select the ListPickerPitch.
AfterPicking block.

Step 18: Go to the TextToSpeech1 drawer and select the set TextToSpeecch1.
Pitch block and place it in the AfterPicking event handler.

Step 19: From the Math drawer, select a subtraction block. Plug it into the set
TextToSpeecch1.Pitch to block.

 11.1 The TextToSpeech Component 539

Step 20: Go to the ListPickerPitch drawer and select the ListPickerPitch.
SelectionIndex block. Place it in the left-hand side of the subtraction
block.

Step 21: Place a number 1 block in the right-hand side of the subtraction block.
Compare your work to Figure 11-10.

The next set of blocks is very similar to the blocks in Figure 11-10. It’s
just a different ListPicker; everything else is the same.

Step 22: Go to the ListPickerRate drawer and select the ListPickerRate.
AfterPicking block.

Step 23: Go to the TextToSpeech1 drawer, select the set TextToSpeech1.
SpeechRate block, and place it in the AfterPicking event handler.

Step 24: From the Math drawer, select a subtraction block. Plug it into the set
TextToSpeech1.Rate to block.

Step 25: Go to the ListPickerRate drawer and select the ListPickerRate.
SelectionIndex block. Place it in the left-hand side of the subtraction
block.

Step 26: Place a number 1 block in the right-hand side of the subtraction block.
Compare your work to Figure 11-11.

Figure 11-11 ListPickerRate.AfterPicking Event Handler
(Source: MIT App Inventor 2)

Figure 11-12 ButtonSpeak.Click Event Handler (Source: MIT App Inventor 2)

Step 27: The final step is to program the ButtonSpeak.Click event handler.
Examine Figure 11-12.

Step 28: In the ButtonSpeak drawer, select the ButtonSpeak.Click event handler.

Step 29: In the TextToSpeech1 drawer, select the TextToSpeech1.Speak
method to place it into the ButtonSpeak.Click event handler.

Step 30: From the TextBoxPhrase drawer, select the TextBoxPhrase.Text
block and plug it into the Speak method block. This will make the app
“speak” the message that the user types into the TextBox. Compare
your entire blocks editor to Figure 11-13.

540 Chapter 11 Text to Speech and Text Messaging

Step 31: Run the app on your device or emulator and test it! It’s fun to play
around with the different rate and pitch combinations!

Figure 11-13 Tutorial 11-1 Complete Blocks Editor (Source: MIT App Inventor 2)

Figure 11-14 Example TextToSpeech Block (Source: MIT App Inventor 2)

 11.2 Are country codes for the TextToSpeech component set in lowercase letters
or uppercase? What about the language codes?

 11.3 Assume you have a variable that indicates which language your app speaks
in. You want your app to say Hello if it’s set to English and Hola if it’s set to
Spanish. If the variable is set to one, your app will speak in English. If it is set
to two, your app will speak in Spanish. Where might you put the logic to set
the appropriate language and text?

 11.4 If you want your app to “speak” the same word in different languages, why
do you need a separate text block for the word in each different language?

 11.2 Texting Component

CONCEPT: Text messaging with a smartphone means sending short lines of text
to another device.

Many of us rely on text messaging to communicate with our families, friends, and
colleagues throughout each day. Text messaging is a powerful capability of a mobile
device, and App Inventor provides blocks for us to program apps that both send and
receive text messages.

Checkpoint

 11.1 What do you think an app would speak based on the set of blocks in
Figure 11-14?

 11.2 Texting Component 541

The App Inventor Texting Component is found in the Social Palette, and it is
s urprisingly easy to use. This component has one method, one event handler, and just
a few properties. The Texting component uses the SendMessage method to send a
message. The MessageReceived event handler executes when the device receives an
incoming text.

Texting Component Properties
The Message property holds the message text that the SendMessage method will
send. Before sending a message, you set the Message property to a value that can be
literal text, a variable, a list, a number, or a Boolean value. Like the TextToSpeech
component’s Speak message argument, any block or set of blocks plugged into its
socket is evaluated first and then treated as text.

Figure 11-15 shows an example of setting the message to the value of a variable. This
example will send the text “Hi There!” once the SendMessage method is called (not
shown yet). Of course there are other things that will need to be set, like the text’s
destination phone number.

NOTE: For best results, use a device such as a smartphone to execute apps built
with the Texting Component. If you have a Google Voice account, the emulator
will work. Otherwise, this section assumes that you have a device with text mes-
saging capabilities to run your applications. For more information about Google
Voice, see https://support.google.com/voice/answer/115061?hl=en

Figure 11-15 Texting Message Property (Source: MIT App Inventor 2)

The PhoneNumber property holds the phone number of the recipient of the message.
This property is a text string of digits that can include only digits, dashes, dots, and
parentheses. It should not include any other special characters or alphabetic charac-
ters, including spaces.

Figure 11-16 shows an example valid phone number. Notice that it is a text block, not
a number block, and that it only contains numbers, dashes, and parentheses. Note that
any dashes, parentheses, and dots are allowed, but they are actually ignored by the
SendMessage method.

Figure 11-16 PhoneNumber Property (Source: MIT App Inventor 2)

You can set your app to ignore messages, receive them only when your app is run-
ning, or receive them even if your app is not active using the ReceiveEnabled prop-
erty. This property takes the numeric values 1, 2, and 3, which are defined as follows:

https://support.google.com/voice/answer/115061?hl=en

542 Chapter 11 Text to Speech and Text Messaging

● 1-Off
● 2-Foreground
● 3-Always.

If this property is set to 1, the app will ignore all messages. If set to 2, messages will
be received when the app is running, but not when the app is inactive. If set to 3,
the app will receive the messages while running and queue the messages if it is not
running or inactive. If the messages are queued, the actions in the MessageReceived
event handler will happen when the app becomes active. This may result in several
messages being processed at once.

Figure 11-17 shows a combination of blocks you might use to set a “do not disturb”
feature in your app. The blocks test the value of a variable, and based on the result
will set the ReceivedEnabled property to 1, which means to ignore all messages.

Figure 11-17 ReceivingEnabled Property (Source: MIT App Inventor 2)

Figure 11-18 Using the SendMessage Method (Source: MIT App Inventor 2)

SendMessage Method
The Texting component has one method, SendMessage. When you call this method,
your device will send a text message to the phone number set in the PhoneNumber
property. The message it sends to that device will be whatever is stored in the Message
property. It is important to remember to set both the PhoneNumber and Message
properties before calling the SendMessage method. Figure 11-18 shows an example.

By examining Figure 11-18, we see how to set the phone number and message
that we want to send before calling the SendMessage method. These properties
can be set elsewhere in an app, but you may often see the blocks together, as
shown in Figure 11-18.

The MessageReceived Event Handler
The MessageReceived event handler is executed when a text message is received by
your device. Based on the ReceivingEnabled property value (previously described),
this event will listen for text messages when the app is active or dormant.

Figure 11-19 shows an example of an application that has a Texting component and
a TextToSpeech component. This example shows how to program the app to speak
text messages as they are received.

 11.3 Receiving Text Messages 543

Figure 11-19 MessageReceived Example (Source: MIT App Inventor 2)

The MessageReceived event handler gives app developers a chance to program behav-
ior when a text message comes in. For example, let’s say we don’t want to be distracted
at work with unimportant text messages, but we want to hear anything that comes
from family. We can use this event handler to program an app that will filter incoming
messages. Using a TextToSpeech component, we will program the app so that it will
speak text messages from family members and ignore all others. This way, we can set
our phone beside us and hear any important messages rather than picking up the phone
to look at who the text message is from and what it says. We will create this app in
Tutorial 11-3, and it will demonstrate using the MessageReceived event handler to
listen for, filter, and speak messages.

Checkpoint

 11.5 Which palette is the Texting component found in?

 11.6 If the ReceivingEnabled property is set to 2 and the app is not running, will it
eventually respond to messages? What about if it’s set to 3?

 11.7 What two things must you do before calling the SendMessage method?

 11.8 What will happen if you assign the PhoneNumber property a string of digits
representing a phone number, but you leave out the parentheses and dashes?

 11.3 Receiving Text Messages
If you’d like your app to “do” something when text messages come in, you simply add
the Texting component to your project and use the MessageReceived event handler.
The MessageReceived event handler will execute when a text message is received.

Figure 11-20 shows another example of the MessageReceived event handler. Notice
that the event handler has two parameters, number and messageText. The number
parameter stores the phone number from which the message was sent, and the
 messageText parameter is the text that was sent.

Figure 11-20 MessageReceived Event Handler (Source: MIT App Inventor 2)

544 Chapter 11 Text to Speech and Text Messaging

The next tutorial will demonstrate how to use this event by programming an app to filter
family members’ text messages and speak those out using a TextToSpeech component.

The number parameter you see in Figure 11-20 will hold a typical 10 digit number in
the format xxx-xxx-xxxx. Notice three digits, a dash, three more digits, a dash, and
then four digits. We want to be sure to use the same format when we are filtering for
certain numbers.

Figure 11-21 shows the MessageReceived event handler that you will create in
Tutorial 11-2. An if then block is used to evaluate who the text message is from,
and if it meets the condition, then we use a TextToSpeech component to speak the
message. (In this case, we’ll make up a number: 333-444-5555. You can use a number
that you know, especially if you want to test.)

Figure 11-21 Receiving Text (Source: MIT App Inventor 2)

Tutorial 11-2:
Creating the Speak Messages From Family App

Step 1: Start a new project named SpeakMessagesFromFamily. As shown in
Figure 11-22, this app has one of the easiest interfaces we will design
because there isn’t anything visible on the Screen. Simply put a Texting
component and a TextToSpeech component on the Screen. They will
both be nonvisible. Remember the TextToSpeech component is in the
Media Palette and the Texting is in the Social Palette.

Figure 11-22 User Interface (Source: MIT App Inventor 2)

VideoNote
Creating the Speak
Messages From
Family App

 11.3 Receiving Text Messages 545

Step 2: Open the Blocks Editor and place the Texting1.MessageReceived
event handler, found in the Texting1 drawer, in the editor.

Step 3: Next, we will need an if then block to compare the number of the
message to see if it’s a family member. The if then block is in the
Control drawer. Select it and place it inside the MessageReceived
event handler.

Figure 11-23 if then Block (Source: MIT App Inventor 2)

The “if then”
block

Step 4: Use a text compare texts block to compare the number argument’s
value with 333-444-5555 (or your own number for testing).

Figure 11-24 compare texts Block (Source: MIT App Inventor 2)

The
“compare
texts”
block

Step 5: Plug the compare texts block into the if then block in the
MessasgeReceived handler. Click the middle of the compare texts
block to make it an equal comparison, as shown in Figure 11-25.

Figure 11-25 Make compare texts Block Equal Comparison
(Source: MIT App Inventor 2)

546 Chapter 11 Text to Speech and Text Messaging

Step 6: To find the get number and get messageText blocks, hover the
mouse cursor over the parameter names in the MessageReceived
block, as shown in Figure 11-26.

Figure 11-26 Find the Get Number and get messageText Blocks
(Source: MIT App Inventor 2)

To find the get and set blocks of the MessageReceived
parameters, hover the mouse cursor over the parameter names.

Figure 11-27 Filter the Phone Number (Source: MIT App Inventor 2)

Make sure the number is in the
xxx-xxx-xxxx format.

Use your own valid number
here for testing.

Figure 11-28 Filter and Speak Incoming Messages (Source: MIT App Inventor 2)

Step 7: Fill in the compare texts block as shown in Figure 11-27.

Step 8: Select the TextToSpeech1.Speak method in the TextToSpeech1
drawer. Place that in the then socket of the if then block.

Step 9: Find the get messageText by hovering the mouse cursor over its pa-
rameter name as shown in Figure 11-26. Place it in the socket of the
Speak method, as shown in Figure 11-28.

Step 10: That’s it! Run and test your app. If you are using your own number for
testing, text the phone running your app and hear it speak the message
you sent.

TIP: You can use the same number as the one tied to your device and
“text yourself” and this app will work. Just make sure the number is
correct in the compare texts block shown in Figure 11-28.

 11.4 Sending Text Messages 547

 11.4 Sending Text Messages
Sending a text message in App Inventor is a simple process of telling the app who to
send it to, what message to send, and then calling the SendMessage method. (Recall
Figure 11-18.)

Let’s look at an example of an app that sets up a list of numbers belonging to
a group, like friends or family. It will allow a user to type in a message and
then click a Button to send the message to everyone in the list. In the Button
c omponent’s Click event handler, the app will use a for each loop to iterate
through the list of numbers and send the message to each number. Take a look at
Figures 11-29 and 11-30 showing the user interface and the Blocks Editor work-
space for this app.

Figure 11-29 User Interface (Source: MIT App Inventor 2)

Figure 11-30 Blocks Editor Workspace (Source: MIT App Inventor 2)

NOTE: Please review the Lists chapter if you have trouble understanding the
list or the iteration shown in Figure 11-30.

548 Chapter 11 Text to Speech and Text Messaging

While this looks a little more complicated than Figure 11-18, the blocks used to send
the message are the same. You see that we set the Texting component’s Message
property to the Text property of the TextBoxMessage TextBox. This is text entered
by the user, so this will be a custom message.

Also, you will set the Texting component’s PhoneNumber property set to an element
in the list. When we have those two things set, we call SendMessage.

This app will iterate through the list and send four text messages. If you have a d evice,
try it out; just be sure to ask your family or friends for permission to use their phone
numbers (and ask them to be patient while you are testing!). You can also use your
own phone number for each element in the list if you want to test with just your device.

Tutorial 11-3:
Reply to Family

Let’s expand on Tutorial 11-3 and add a response to any incoming messages
from family. Recall in Tutorial 11-3 that any incoming message from fam-
ily is spoken aloud using a TextToSpeech component. We are going to keep
that, but add another action after calling the Speak method. Once the Speak
method is called, we are going set the Texting1.PhoneNumber property
to the number that sent the incoming message. We will set the Texting1.
MessageText to I heard your message. I am working now, but will call you
at 5pm. Then, we will use the SendMessage method to reply to our family
member.

Step 1: Open your Tutorial 11-3 project and open the Blocks Editor.

Step 2: Go to the Texting1 drawer and select three blocks, as shown in
Figure 11-31:
● set Texting1.MessasgeText to
● set Texting1.PhoneNumber to
● Texting1.SendMessage

Step 3: Place all three in the MessageReceived event handler, beneath the
Speak method, as shown in Figure 11-32.

Step 4: Be sure that you set the phone number and message text before you call
SendMessage.

Step 5: Hover the mouse cursor over the parameter name number on the
Texting1.MessageReceived block to select the get number block,
and plug that into the set Texting1.PhoneNumber to block.

Step 6: Go to the Text drawer and select a text block. Replace the block’s value
with the message you want to send: I heard your message. I am work-
ing now, but will call you at 5pm. Plug that into the set Texting1.
Message to block.

VideoNote
Reply to Family

 11.4 Sending Text Messages 549

Figure 11-31 Finding the Texting Blocks (Source: MIT App Inventor 2)

Remember the steps:
1. set the message
2. set the phone
number
3. call SendMessage

Figure 11-32 (Source: MIT App Inventor 2)

550 Chapter 11 Text to Speech and Text Messaging

Checkpoint

 11.9 If you are using the MessageReceived event handler and you want to check
the value of the message sent to you, what block will you use in your check,
and where will you find it?

 11.10 If you are using the MessageReceived event handler and you want to
reply to messages coming into the phone, what block will you use to set
the Texting.PhoneNumber property? Where do you find this block?

Step 7: Run and test your app. You can run this app on your device. Ask a
friend to text you (make sure your friend’s number is in the if then
block test condition) and test the functionality. You can also text your-
self by using the same number that is tied to the device running the
app, and test that way.

Review Questions

Multiple Choice

 1. To make the device’s speech high-pitched and slow, the Pitch and SpeechRate
properties have to be set to _________ respectively.

a. 0 and 0
b. 1 and 1
c. 2 and 0
d. 2 and 1

 2. What is the method that is used in App Inventor to make a device speak?

a. TextToSpeech.MessageSpeak
b. TextToSpeech.SpeakMessage
c. TextToSpeech.Speak
d. TextToSpeech.Talk

Compare your work to Figure 11-33.

Figure 11-33 Tutorial 11-43 Complete Blocks Editor (Source: MIT App Inventor 2)

 Review Questions 551

 3. If you want to handle some processing after the TextToSpeech component
speaks, which event handler can you use?

a. TextToSpeech.BeforeSpeaking
b. TextToSpeech.AferSpeaking
c. TextToSpeech.Last
d. TextToSpeech.After

 4. What will an app speak if you use a TextToSpeech component to speak the
 expression shown here?

a. “One hundred twenty-three”
b. “One hundred twenty-three plus one hundred twenty-three”
c. “Two hundred forty-six”
d. None of the above

 5. Which property of the Texting component controls the receiving of messages?

a. ReceiveEnabled
b. ReceivingEnabled
c. ReceivingMessage
d. ControlMessage

 6. What value do you set a Texting component’s ReceivingEnabled property to if
you’d like your app to receive all messages, even when your app is asleep?

a. 0
b. 1
c. 2
d. 3

 7. Which strings are valid for the a Texting component’s PhoneNumber property?

a. 3365556767
b. (336)5556767
c. 336-555-6767
d. All of the above

 8. How does the Texting component treat any block or set of blocks that are plugged
into its socket?

a. It is treated as text
b. It is concatenated and then treated as text
c. It is evaluated first and then treated as text
d. It ignores non-text items

 9. The PhoneNumber property is a _________.

a. Text block
b. A number block
c. A text block that includes only numbers
d. A text string that includes only digits, dashes, dots, and parantheses

552 Chapter 11 Text to Speech and Text Messaging

 10. If you want to filter incoming messages according to certain keywords, which
event would you use, and which block would you search for keywords?

a. Texting.SendMessage event and messageText block.
b. Texting.RecieveMessage event and messageText block.
c. Texting.GotMessage event and messageText block.
d. Texting.MessageReceived event and messageText block.

Short Answer

 1. What kind of processing might you do in the TextToSpeech.BeforeSpeaking
event handler? What are some properties you might set in this event handler?

 2. What kind of processing might you handle in the TextToSpeech.AfterSpeaking
event handler?

 3. What two properties must be set before calling the Texting.SendMessage
method? What do you think will happen if each is not set?

 4. Review Figures 11-29 and 11-30. How might you change this app to allow a
user to send text messages to different groups, for example family, friends, or
 colleagues? How can you modify this app to store the data on your device?

 5. Review Figure 11-33. How might you write an app to filter by what a message
says, rather than who it is from?

Exercises
 1. Change Language

Write a small app that will send a message to the user saying Wake up based on
the user’s choice of English or French.

 2. Text a Group

Review Figures 11-29 and 11-30. Modify this app to handle three groups:
Friends, Family, and Colleagues. You will need three different buttons, but still
only one text box.

 3. Forward Message

Write an app that uses the MessageReceived event to forward incoming mes-
sages to a different number. Modify the message to include the “from” number
at the beginning.

 4. Forward Message - Modification

Modify the Forward Message app from exercise 3 to only forward messages
from a group of family numbers. Added at beginning of the message, the text
from should be followed by the name of the family member instead of the
phone number (use two parallel lists to have the name and number in corre-
sponding lists).

 5. Ignore and Receive Messages

Review Tutorial 11-3 and modify the app to:
● Speak all messages (remove the filter by number)
● Let the user decide to ignore messages, hold messages, and receive messages

Provide Buttons for the user to choose their receiving options.

VideoNote
The Forward
Message App

 Programming Projects 553

Programming Projects
 1. Translate

Write an app that translates certain phrases into Spanish:
 a. Love you: Usted ama
 b. Hate you: te odio
 c. I’m happy: Estoy feliz
 d. I’m sad: Estoy triste
 e. I’m in the office: Estoy en la oficina
 f. I’m a sleep: Yo soy un sueño
 g. I’ll call you: Te llamaré

Use a VerticalArrangement and show a Button for each phrase. When the user
presses the Button for a phrase, have the app speak the translation. Bonus: add
two buttons to switch the translation option between two different languages
(such as French and Spanish).

 2. English to Spanish, Spanish to English

Write an app that stores English to Spanish Translations in a TinyDB:
● Hello: Hola
● Goodbye: Adiós
● How are you: Cómo estás
● What time is it: Qué hora es

Program app so that the user can choose their native language. If they choose
Spanish, program the app to have buttons with the Spanish words and phrases
from the TinyDB. Once they choose a word or phrase, populate the English spell-
ing in a Label, and speak the word in English.

Conversely, if they choose English as their native language, show the English
words and phrases as Buttons. If they choose a word or phrase, populate a Label
with the Spanish spelling, and say the word in Spanish.

 3. Wake Up

Write an app that will send a text message to a friend every morning at 6 am that
says Wake Up and remember to feed the dog.

Add the Clock component to your project and set the interval to 100,000. Also
add the Texting component.

On each interval, check the current hour of the day; the current hour is d etermined
by using the Clock component’s Hour method with the Now method plugged into
its socket. Put the current hour in the first socket of a Math equals block, and
Math number 6 in the other socket. Use an if then block to handle the compari-
son in order to determine if it is 6 am.

If the condition is met:
● Set the interval up to 3,600,000 - one hour. From this point on, we only want

to check every hour.
● Set the Message property of the text to Wake up and remember to feed the dog.
● Set the PhoneNumber property to the appropriate phone number
● Send the message

554 Chapter 11 Text to Speech and Text Messaging

 4. I Landed

Write an app that will let a user type in a location on their phone in a TextBox.
Once they are done typing, they will hit a Button that says I Landed. This button
will send a text message to a list of people stored in a List. The message should
say Hi, I landed in Toronto, assuming the user typed in Toronto as the location.

 5. What’s for Dinner?

Write an app that will receive text messages. If the text message contains the
words what and dinner, reply to the message with a string entered by the user
on the interface. Provide a TextBox and a Button on the interface for the user to
enter the answer.

For example, if the user is having spaghetti that night, she will type spaghetti in
the TextBox on the interface and then hit a submit button. The app will listen for
any text messages that come in. If a message comes in containing what and dinner,
the app will automatically reply with her input of spaghetti. If the user did not
supply an input, the reply should be I don’t know, how about you decide?

Have the app manipulate the text message before it looks for what and dinner
so that it is case insensitive by using either the text upcase or downcase blocks.

 6. What time will you be home?

Write an app that will allow the user to pick a person set in a predefined family/
friends list using a ListPicker (see Tutorial 11-1). Also provide a TimePicker that
will allow the user to select a time.

Provide a “send” button that will send the person selected a text message that
says, “Hi, I just want to let you know that I will be home at hh:mm” (where hh
is the hour and mm are the minutes).

Challenge: Refine the app to allow the user to pick just one person or all people
in the List.

Challenge 2: Refine the app to allow the user to put in a custom method
that will override the default message. If no custom message is used, keep
the default message above.

NOTE: You may need to modify the hour from 6 am to your current hour for
testing. Also, if you are using the emulator, the time may be a few hours different
from your current time.

TOPICS

12.1 The LocationSensor

12.2 The OrientationSensor

12.3 The AccelerometerSensor

12.4 Using the ActivityStarter component to
launch Google Maps

Sensors

 12.1 The LocationSensor

CONCEPT: Most smart phones have the capability to tell you the location of the
device at any given time. The location is usually presented by the global
latitude and longitude values and may also include the physical address.
Location services must be available and enabled on a device in order for
the LocationSensor to work.

The App Inventor LocationSensor can be found in the Sensors palette and is a nonvisible
component. Once it is added to your application, you can use it to determine your device’s
physical location.

C
H

A
P

T
E

R

12

555

NOTE: The LocationSensor will only work with App Inventor applications that
have been packaged and downloaded to a device.

There are three sources that the LocationSensor can use to obtain information: GpS,
Wi-Fi, and cellular towers. GpS providers use satellite technology. Your device will
need to be outside and in the line of sight (LOS) of at least three satellites to use this
source. If you are in the proper LOS, your device can receive the latitude, longitude,
and altitude values of its location. If you are inside a building or other structure, your

556 Chapter 12 Sensors

device may attempt to use location information from a Wi-Fi router if you are
connected to one. If your device is obtaining information from Wi-Fi, the actual
latitude and longitude read is that of the Wi-Fi router. Your device can also ob-
tain location information from cellular towers by determining the strength of the
signals from the closest towers to your device. It uses the strength of the signals to
determine how far away your device is from the towers and from that determines
the location information.

There are many ways that you can use this sensor in your applications: to store an
address to remember where you’ve been, to alert yourself once you are a certain
distance from a specific place, to track your travels, or to notify others of your
current location.

LocationSensor Component Properties
The LocationSensor has an Enabled property that must be set to true for the sen-
sor to work. You can set this property at design-time or programmatically in the
Blocks Editor.

You can set the Enabled
property at design time
or with the blocks.

Figure 12-1 The Enabled Property (Source: MIT App Inventor 2)

The Latitude and Longitude properties hold the latitude and longitude of the device’s
current location.

Figure 12-2 Latitude and Longitude Property Blocks (Source: MIT App Inventor 2)

There is also a property, HasLongitudeLatitude, which will indicate whether or not
the device can report the latitude and longitude values. If this property is true, you
will be able to see and use the latitude and longitude values.

Sometimes a device does not have the ability to show location values, or possibly
 location services are turned off on the device. If this is so, the value of this property
will be false. Notice that there is not a set block for this property, it is read only
and is determined by the device.

 12.1 The LocationSensor 557

If your device has the capability, the Altitude property holds the altitude of the
device. The LocationSensor provides a Boolean HasAltitude property that will be
true if the device is able to report altitude and false if it cannot. Similar to the
HasLongitudeLatitude property, this property is read-only because the device deter-
mines its value.

Figure 12-3 HasLongitudeLatitude Property Block (Source: MIT App Inventor 2)

Figure 12-4 The Altitude Blocks (Source: MIT App Inventor 2)

The Accuracy property holds the level of accuracy, in meters, of the device’s
 location information. Similar to the other LocationSensor properties, there is
a corresponding Boolean HasAccuracy property that can be used to check if the
 device is able to report accuracy. It will be true or false based on the device’s
capability and is read-only.

Figure 12-5 The Accuracy Blocks (Source: MIT App Inventor 2)

You can set the LocationSensor to update location information after the device has
moved a certain distance by setting the DistanceInterval property. The interval is in
meters, and if it were set to 10, the location information would be updated when the
device moves at least ten meters from the location of the previous update. While this
property can be useful, keep in mind that it does not update at every ten-meter move
exactly. It only indicates that it will not update before a ten meter change. This prop-
erty can also be set at design time.

Figure 12-6 The DistanceInterval Blocks (Source: MIT App Inventor 2)

The TimeInterval property allows you to set the minimum time interval, in milli-
seconds, between updates. There are 1,000 milliseconds in a second, so setting the
TimeInterval property to 600,000 will cause the device to wait ten minutes before

558 Chapter 12 Sensors

another update. Note that this does not mean the update will occur every ten minutes
exactly, only that it won’t happen before ten minutes have passed since the previous
update. This property can also be set at design time.

Figure 12-7 The TimeInterval Blocks (Source: MIT App Inventor 2)

The CurrentAddress property provides the physical street address in text format. The
address information is provided by Google Maps. Because it is set by Google Maps
and based on the current location of the device, this property is read-only.

Figure 12-8 The CurrentAddress Block (Source: MIT App Inventor 2)

LocationSensor Component Methods
The LocationSensor has two methods, which both relate to the sensor’s geocoding
capabilities. Geocoding is the ability to take a given address and determine the
latitude and longitude values. For example, if you were to supply a value of “1600
pennsylvania Avenue NW, Washington, D.C.” to the LatitudeFromAddress
method, it would return the latitude of the White House, which is 38.8971.
Similarly, that same text block supplied to the LongitudeFromAddress method
will return the longitude of the White House, which is −77.03654. See Figure 12-9
for an example of how to use these geocoding methods.

Figure 12-9 LocationSensor Methods (Source: MIT App Inventor 2)

Note that you cannot use the LatitudeFromAddress or LongitudeFromAddress
methods in an initialization block, as demonstrated in Figure 12-10.

 12.1 The LocationSensor 559

Location Changed Event Handler
The LocationSensor’s LocationChanged event handler executes when the applica-
tion first starts and whenever the device reports a new location. The device will send
the event the current latitude, longitude, and altitude as arguments (assuming those
properties are supported). The values for the latitude, longitude, and altitude can be
found by hovering the mouse cursor over the parameter names on the event handler
block, as shown in Figure 12-11.

Figure 12-10 Do Not Use in a Variable’s Initialization Block (Source: MIT App Inventor 2)

Figure 12-11 Finding LocationChanged Parameter Values (Source: MIT App Inventor 2)

Hover over the
parameter names to get the get and set blocks.

Figure 12-12 shows for an example of the LocationChanged event handler. In the
figure, the event handler updates labels with the device’s current latitude, longitude,
and altitude each time the location is updated.

Figure 12-12 LocationChanged Event Handler (Source: MIT App Inventor 2)

Tutorial 12-1:
Display Location

In this Tutorial we will practice using the LocationSensor’s properties to display
the current location information based on the device’s capabilities. We will have
labels to show the latitude, longitude, altitude, and accuracy.VideoNote

Display Location

560 Chapter 12 Sensors

Before attempting to display these values, we will check the HasLongitudeLati-
tude, HasAltitude, and HasAccuracy properties. Take a look at Figure 12-13.

Figure 12-13 Displaying Location Information (Source: MIT App Inventor 2)

Figure 12-13 shows how to check whether the location information is available,
before attempting to show the information on the phone. Rather than showing a
zero for unavailable values, we will give the user a better explanation by stating
that the information is not available.

Step 1: Start a new project named DisplayLocation. Design the user interface
as shown in Figure 12-14. First, add Labels for the latitude, longitude,
altitude, accuracy, and address. Rename the Labels and Text proper-
ties as shown.

Step 2: Go to the Sensors palette and drag a LocationSensor component to
your project.

 12.1 The LocationSensor 561

Figure 12-14 User Interface (Source: MIT App Inventor 2)

Step 3: Open the Blocks Editor and find the LocationSensor1.
LocationChanged event handler in the LocationSensor1 drawer.

Step 4: From the Control drawer, create three if then blocks.

Step 5: Use the mutator tool to modify each of the if then blocks so they are
if then else blocks, as shown in Figure 12-15.

Figure 12-15 The Mutator Tool (Source: MIT App Inventor 2)

Click the
mutator tool.

Drag an
“else” block
into the “if
then”.

Step 6: place the first if then else block in the LocationSensor1.
LocationChanged event handler block.

Step 7: Find the value of the LocationSensor1.HasLongitudeLatitude
property in the LocationSensor1 drawer. plug this block into the socket
of the if then else block. Remember, the HasLongitudeLatitude
block returns a Boolean value, so you can simply use this value as your
test. See Figure 12-16.

TIP: If you are good at copying and pasting blocks, you may want to
take a look at Figure 12-13 to determine how you might speed
up these steps.

562 Chapter 12 Sensors

Figure 12-16 (Source: MIT App Inventor 2)

Step 8: Use a join block, found in the Text drawer, to join together a string
containing Latitude: followed by the value of the latitude. You can
find the value of the latitude by hovering the mouse cursor over the
latitude parameter name. (Refer back to Figure 12-11.)

Figure 12-17 Configure the Label Contents (Source: MIT App Inventor 2)

Step 9: plug the set of blocks from Step 8 into the set LabelLat.Text to
block found in the LabelLat drawer. place this set of blocks in the
then section of the if then else block.

Step 10: Now show the longitude. Use a join block, found in the Text drawer, to
join together a string containing Longtitude: followed by the value of the
longitude. You can find the value of the longtitude by hovering the mouse
cursor over the longitude parameter name. (Refer back to Figure 12-11.)

Step 11: plug the set of blocks from Step 10 into the set LabelLon.Text to
block found in the LabelLon drawer. place this set of blocks in the
then section of the if then else block, beneath the blocks from
Step 9, as shown in Figure 12-18.

Figure 12-18 Show Latitude and Longitude (Source: MIT App Inventor 2)

 12.1 The LocationSensor 563

Step 12: Now program the else section of the if then else block by setting
the set LabelLat.Text to and set LabelLong.Text to with text
blocks explaining Latitude: not available and Longitude: not available,
respectively.

Compare your first if then else block to Figure 12-19.

Figure 12-19 Show Latitude and Longitude (Source: MIT App Inventor 2)

Step 13: Now program the application to show the altitude of the device. Find
the value of the LocationSensor1.HasAltitude property in the
LocationSensor1 drawer. plug this block into the test socket of the sec-
ond if then else block.

Step 14: Use a join block, found in the Text drawer, to join together a prompt
for the user, Altitude:, and the value of the get altitude block,
which is found by hovering over the parameter name, altitude, on
the LocationChanged event handler block.

Step 15: plug the set of blocks from Step 14 into the set LabelAlt.Text to
block found in the LabelAlt drawer. place this set of blocks in the then
section of the if then else block.

Step 16: Now program the else section of the if then else block by s etting
the LabelAlt component’s Text property to the text Altitude: not
available.

Compare your second if then else block to Figure 12-20.

Step 17: Now program the application to show the accuracy of the device.
Find the value of the LocationSensor1.HasAccuracy property in
the LocationSensor1 drawer. plug this block into the test socket of the
third if then else block, as shown in Figure 12-21.

564 Chapter 12 Sensors

Step 18: Use a join block, found in the Text drawer, to join together a prompt
for the user, Accuracy:, and the value of the LocationSensor1.
Accuracy property in the LocationSensor1 drawer.

Step 19: plug the set of blocks from Step 18 into the set LabelAccuracy.Text
to block found in the LabelAccuracy drawer. place this set of blocks
in the then section of the if then else block.

Step 20: Now program the else section of the if then else block by setting
the LabelAccuracy component’s Text property to the text Accuracy:
not available.

Compare your third if then else block to Figure 12-21.

Figure 12-20 Show Altitude (Source: MIT App Inventor 2)

Figure 12-21 Show Accuracy (Source: MIT App Inventor 2)

Step 21: The last step is to display the address. Find and select the block for the
value of the LocationSensor1.CurrentAddress property, found in
the LocationSensor1 drawer.

Step 22: Select the set LabelAddress.Text to block, found in the LabelAddress
drawer. plug in the block from Step 21, and then place the resulting
blocks inside the Location Changed event handler beneath the last if
then else block.

Step 23: Compare your Blocks Editor to Figure 12-22.

Step 24: To test this application you must build and package the application
for your device. Go to the Build menu link at the top of the screen and
either choose to provide a QR code for the .apk (you can scan and
download the .apk with a QR reader) or to save the .apk to your

 12.1 The LocationSensor 565

Figure 12-22 Tutorial 12-1 Complete Blocks (Source: MIT App Inventor 2)

 computer (you can then email it to an email address on your phone and
download it that way). See Figure 12-23.

Figure 12-23 Build and Package the App (Source: MIT App Inventor 2)

Once downloaded to your device, test the application and check if
the current address is correct. Move a few meters and check that the
 location updates.

566 Chapter 12 Sensors

Checkpoint

 12.1 How would you modify Tutorial 12-1 to only show updates if an hour has
passed and the phone has moved at least one mile?

 12.2 Why is the accuracy of the device important to know? What if you want updates
when the device moves twenty meters, but your device’s accuracy is fifty meters?

 12.3 What will happen to your location information if the Enabled property is set
to false?

 12.4 How can you find the latitude and longitude of your home address, even
when you are at a different location?

 12.2 The OrientationSensor

CONCEPT: The OrientationSensor allows you to determine how a device is ori-
ented. It will determine tilts of the device: back and forth, left to right,
and up to down. It can also show the direction that the device is point-
ing (north, south, east, and west) in degrees.

OrientationSensor Component Properties
Similar to the LocationSensor, the OrientationSensor is a nonvisible component and
has an Enabled property that must be set to true for the sensor to work. You can set
this property at design-time by checking or unchecking it in the properties column, or
programmatically in the Blocks Editor.

Figure 12-24 Orientation Sensor Enabled Property (Source: MIT App Inventor 2)

Some devices do not have an orientation sensor available, therefore App Inventor pro-
vides the read-only Boolean Available property that will be true or false depending
on the device’s capabilities.

Figure 12-25 The Available Property (Source: MIT App Inventor 2)

 12.2 The OrientationSensor 567

The three basic properties of this sensor are the Roll, pitch, and Azimuth. From these
three properties, the OrientationSensor also provides Magnitude and Angle proper-
ties to help in determining how much the device is being tilted and in which direction.
All of these properties are read-only, because their values are set by the orientation
and movement of the device.

The Roll shows the amount of tilt left to right in degrees. If the device is lying flat,
the Roll is 0 degrees. As the device tilts up and onto its left side, the value increases
from 0 to 90 degrees. If the device is standing straight up on the left side, the Roll is
90 degrees. Conversely, as the device is rolled up onto its right side the Roll will range
from 0 to −90 degrees. If the device is standing straight up on its right side, the value
of the Roll will be −90 degrees.

Figure 12-26 The Roll Property (Source: MIT App Inventor 2)

The value increases from 0 to 90 as
device rolls from �at to up on the
left edge. It decreases from 0 to −90
when rolls from �at to the right edge.

The pitch indicates the tilt of the device from the bottom edge to the top edge. When
the device is lying flat, the pitch is zero. As the device is lifted up onto its top edge, as
the bottom edge is lifted up, the value of the pitch increases from zero to 90 degrees.
If the device is standing straight up on its top edge, the pitch is 90 degrees. If the
device is tilted so that the bottom edge is down and the top is lifted up, the degrees
will decrease down to −90 degrees. If the device is standing up on its bottom edge the
pitch is −90 degrees.

Value increases from 0 to 90 as
device rolls from flat to up on the
top edge. Decreases 0 to –90 when
rolls flat to bottom edge.

Figure 12-27 The Pitch Property (Source: MIT App Inventor 2)

The Azimuth property is the direction of the phone in degrees. For example, 0 degrees
indicates it is pointing north; it will be 90 degrees if it is pointing east, 180 degrees if
it is pointing south, and 270 degrees if it is pointing west.

North = 0

East = 90

South = 180

West = 270

Figure 12-28 The Azimuth Property (Source: MIT App Inventor 2)

568 Chapter 12 Sensors

The Magnitude is used to determine how much the phone is being tilted in any direc-
tion. Remember that when the device is lying flat the Roll and pitch are zero. The
magnitude is zero also. As the degrees of the Roll and pitch move away from zero
degrees toward 90 or −90, the Magnitude increases.

The Magnitude will have a value between 0 and 1, with zero being no tilt and 1 being
completely vertical. As we will see in Tutorial 12-2, the Magnitude can be used with
sprites to make them move slower or faster based on the amount of tilt, similar to an
object rolling on a tilting table.

Value between 0 and 1 indicating
the magnitude of tilt. 0 being �at,
1 being vertical.

Figure 12-29 The Magnitude Property (Source: MIT App Inventor 2)

The Angle property uses the Roll and pitch to determine in what direction the device
is being tilted and returns a number that we can use to move objects in the titled di-
rection. Like the Magnitude, we can use the angle to simulate an object rolling on a
tilting table by knowing the direction to send it.

Figure 12-30 The Angle Property (Source: MIT App Inventor 2)

OrientationChanged Event Handler
The OrientationSensor’s OrientationChanged event is called each time the device’s
orientation changes. The device will send it the azimuth, pitch, and roll as argu-
ments and the values of these can be used within the event. Their values can be found
by hovering the mouse cursor over their parameter names once the event is added to
the project in the Blocks Editor.

Parameters passed into the event.

Hover over the parameter names to �nd the
values of the properties passed in.

Figure 12-31 OrientationSensor’s OrientationChanged Event Handler
(Source: MIT App Inventor 2)

 12.2 The OrientationSensor 569

Tutorial 12-2:
Cat and Mouse

In this tutorial, we will practice using the OrientationSensor by creating a Cat
and Mouse game. The tutorial will use concepts learned in Chapter 9, Graphics
and Animation.

We will create an application that has a Canvas component and two ImageSprite
components, one cat and one mouse. The cat sprite will move about the Canvas
as the user tilts the phone, and the mouse will stay put. The further the tilt, the
faster the cat will go. If the cat reaches the mouse (a collision of the two sprites)
the mouse will become invisible. We will provide a reset button that makes the
mouse visible again so that the user can start over.

We will also put Labels under the Canvas for all of the OrientationSensor prop-
erties. These Labels will update as the device is tilted and rotated to show how
the values change.

Step 1: Start a new project named CatAndMouse. Make sure you have down-
loaded the media files from this book’s companion website at www.
pearsonglobaleditions.com/Gaddis. Navigate to the location on
your system where the book’s media files are located. You will find a
folder named Cat and Mouse that contains the cat.png and mouse.
png image files. Use the Media column to upload the files to the project.

Step 2: Add a Canvas component to the Screen. Set the Width to Fill parent
and the Height to 300 pixels.

Step 3: Add an ImageSprite from the Drawing and Animation palette onto
your Canvas. Rename it ImageSpriteMouse.

Step 4: Set both the Height and Width properties to 50. Set the Image property
to the mouse.png file.

Step 5: Keep the Speed set to zero; we do not want this sprite to move yet.

Set the X property to 250 and the Y property to 70.

Step 6: Add another ImageSprite from the Drawing and Animation palette
onto your Canvas. Rename it ImageSpriteCat.

Step 7: Set both the Height and Width properties to 50. Set the Image property
to the cat.png file.

Step 8: Keep the Speed set at zero. Set the X property to 1 and the Y property
to 245. Uncheck the Rotates property. Compare your design work so
far to Figure 12-32.

Step 9: From the User Interface palette, add a Button to the Screen under the
Canvas. Rename it ButtonReset and change the Text property to reset.

Step 10: From the Layout palette, place a TableArrangement under the
ButtonReset component. Set the Columns to 2 and the Rows to 5.

Step 11: Review Figure 12-33 and add ten Labels to the TableArrangement.
The first five will display the text Roll, Pitch, Azimuth, Magnitude, and

VideoNote
Cat and Mouse

http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis

570 Chapter 12 Sensors

Figure 12-32 Cat and Mouse Design (Source: MIT App Inventor 2)

Figure 12-33 Add Labels (Source: MIT App Inventor 2)

 12.2 The OrientationSensor 571

angle. Next to each of the five Labels, add a Label to display the value of
the property once the application is running.

Step 12: Add an OrientationSensor component, found in the Sensors palette.

Step 13: Let’s begin to program the cat to move as the device is tilted. Find
the OrientationSensor1.OrientationChanged event handler in the
OrientationSensor1 drawer and place it in the Blocks Editor.

Figure 12-34 Set the Speed to Equal the Magnitude (Source: MIT App Inventor 2)

Step 14: Set the cat ImageSprite’s Speed property to the Magnitude of the
OrientationSensor. Go to the ImageSpriteCat drawer and find the set
ImageSpriteCat.Speed to block. place it in the OrientationChanged
event handler as shown in Figure 12-34.

Step 15: Find the OrientationSensor’s Magnitude property in the
OrientationSensor1 drawer. Recall that the Magnitude returns a value
between 0 and 1. To make this more usable as a speed for the cat, use a
Math block and multiply it by 100 to have a more accurate value. plug
this set of blocks into the set Speed block from Step 14.

Note: By setting the speed to the magnitude of the tilt, the cat will
move faster the more the device is tilted.

Step 16: Recall that you set the direction of an ImageSprite by the Heading
property. Find the set ImageSpriteCat.Heading to block in the
ImageSpriteCat drawer and place it in the OrientationChanged event
handler under the Speed setting.

Step 17: Find the OrientationSensor’s Angle property in the OrientationSensor1
drawer. plug this block into the set Heading block from Step 16 as
shown in Figure 12-9.

Note: By setting the heading equal to the OrientationSensor’s angle,
the cat will move in the direction the device is tilted.

Figure 12-35 Move the Cat (Source: MIT App Inventor 2)

If you’d like, you can go ahead and connect your project to your device
and notice how the cat moves around the Canvas based on how you
tilt your device.

572 Chapter 12 Sensors

Step 18: populate the value Labels by finding the blocks to set each Label’s
Text property in their component drawer. place all five in the
OrientationChanged event handler. Then, find the values for the event
arguments, azimuth, pitch, and roll by hovering the mouse cursor
over their names in the event block. plug those values into the appro-
priate labels. In the OrientationSensor1 drawer, find the value for the
Magnitude (Step 11) and the Angle (Step 13) and plug them into their
appropriate Labels. See Figure 12-36.

Figure 12-36 Update Labels (Source: MIT App Inventor 2)

Figure 12-37 CollidedWith Event Handler (Source: MIT App Inventor 2)

CollidedWith

Step 21: Find the set ImageSpriteMouse.Visible to block in the
ImageSpriteMouse drawer. place that in the CollidedWith event
and plug in a logic false block. This will hide the mouse if the cat
“catches” it. See Figure 12-38.

Step 22: program the reset Button by setting the ImageSpriteMouse.Visible
to true. Go to the ButtonReset drawer and find the ButtonReset.
Click event handler. place it in the Blocks Editor.

Step 19: Test your application on your device and examine the value of the
Orientation Sensor properties.

Step 20: Now you will program the collision of the cat and mouse. In the
ImageSpriteCat’s drawer, find the ImageSpriteCat.CollidedWith
event handler and place it in the Blocks Editor. See Figure 12-37.

 12.2 The OrientationSensor 573

Figure 12-38 Cat and Mouse Collision (Source: MIT App Inventor 2)

This will “hide” the
mouse if the cat hits it.

Step 23: Select the set ImageSpriteMouse.Visible to block in the
ImageSpriteMouse drawer. place that in the ButtonReset.Click
event handler and plug in a logic true block. This will show the mouse
again when the user resets the game.

Step 24: To reset the cat’s position, you need to move the cat back to the left
and bottom of the screen by updating the X and Y coordinates. Set X
to 1 and Y to 245, as shown in Figure 12-39.

Figure 12-39 Button Reset (Source: MIT App Inventor 2)

Figure 12-40 Tutorial 12-2 Complete Blocks Editor (Source: MIT App Inventor 2)

Step 25: That’s it! Connect your application to your device and tilt your phone
around to make the cat catch the mouse. You can try again after using
the reset Button.

574 Chapter 12 Sensors

Checkpoint

 12.5 Read the explanation of the pitch property. When you lift the top edge of
the phone and stand it up on the bottom edge, what is the value of the pitch?
What do you think happens to the value of the pitch if you continue to tip
the phone so that it lies flat, front-side down?

 12.6 Read the explanation of the Azimuth property. What do you think the value
of this property would be if the device is pointing northwest?

 12.7 Which property of the OrientationSensor might you use to set the Speed of a
sprite? Which would you use to set the Heading?

 12.8 Why did we multiply the Magnitude by 100 in Tutorial 12-2?

 12.3 The Accelerometer

CONCEPT: An accelerometer is a sensor that detects whether the device is shaking and
will report the acceleration of the shake in three dimensions: the X, Y, and
Z accelerations. The AccelerometerSensor component in App Inventor
allows you to read the values reported by the device’s accelerometer.

AccelerometerSensor Properties
The AccelerometerSensor is found in the Sensors palette with the LocationSensor and
the OrientationSensor. It is used to perform actions when the device is being shaken.
It is a nonvisible component and has an Available property that is set to true if the
device has an accelerometer on it. There is also an Enabled property that must be set
to true for the sensor to work.

Figure 12-41 Enabled and Available (Source: MIT App Inventor 2)

The AccelerometerSensor should be both Enabled
and Available in order to work.

The AccelerometerSensor has properties that return the acceleration values: XAccel,
YAccel, and ZAccel. The XAccel property has a positive value when the device is
tilted to the right and negative when it is tilted left. Figure 12-42 shows an example
of the XAccel property block.

 12.3 The Accelerometer 575

Figure 12-42 XAccel Property (Source: MIT App Inventor 2)

Has a positive value when tilted to
right, negative when tilted left.

The YAccel property value is positive when the bottom of the phone is raised and nega-
tive when the top is raised. Figure 12-43 shows an example of the YAccel property block.

Figure 12-43 YAccel Property (Source: MIT App Inventor 2)

Has a positive value when bottom is
tilted up, negative when top is tilted up.

The ZAccel property is positive when the device is lying on its back facing upwards
and negative when it is facing downwards. Figure 12-44 shows an example of the
ZAccel property block.

Figure 12-44 ZAccel Property (Source: MIT App Inventor 2)

Has a positive value when facing
upwards, negative when downwards.

Figure 12-45 AccelerationChanged Event Handler (Source: MIT App Inventor 2)

This event is triggered each time the device’s
acceleration changes, and the parameters are
updated with each change.

You can use the MinimumInterval property to set the minimum time between shakes
in milliseconds. If you’ve programmed an action based on a phone shake, but you
don’t want to perform that action more than once per second, you would set the
MinimumInterval to 1000 milliseconds, or one second. As a result, if someone is
shaking the phone very fast, your action won’t happen more than you want it to.

AccelerometerSensor Event Handlers
There are two event handlers associated with the AccelerometerSensor: the
AccelerationChanged event and the Shaking event. The AccelerationChanged
event will be executed whenever there is a change in the device’s acceleration and the
device will send this event the xAccel, yAccel, and zAccel arguments. Figure 12-45
shows an example of an AccelerationChanged event handler.

The Shaking event is executed when there is a quick shake of the device and gives develop-
ers a chance to program actions based on a shake of the phone. Figures 12-46 and 12-47
demonstrate using the AccelerometerSensor’s Shaking event handler to play music.

576 Chapter 12 Sensors

In Figure 12-46, notice that an AccelerometerSensor and a Sound component are
added to the project. Though not shown, the MinimumInterval for the accelerometer
is set at 6000, equaling six seconds (this is about the length of the sound used in the
Sound object).

If you’d like to try this example, the book’s media files (available for download from
the book’s companion website, at www.pearsonglobaleditions.com/Gaddis)
 contain various sound files that you can set as the Source property of the Sound com-
ponent, or use your own sound source.

Figure 12-47 shows how to use the Shaking event handler of the AccelerometerSensor
to play a sound. It’s very simple and a fun application to try out.

Figure 12-46 Shaking App User Interface (Source: MIT App Inventor 2)

Figure 12-47 Shaking Event Handler (Source: MIT App Inventor 2)

Tutorial 12-3:
Shake to Clear Canvas

This tutorial will use the AccelerometerSensor to detect shaking to clear a can-
vas. We will create a simple application that will allow drawing on a Canvas. If
the user wants to clear the Canvas and start over, they can simply give the phone
a quick shake.

Step 1: Start a new project named ShakeToClear. Create the user interface by
simply adding two components, a Canvas and an AccelerometerSensor.
Examine Figure 12-48 for reference as you complete the design.

Step 2: From the Drawing and Animation palette, add a Canvas to the Screen.

Step 3: Set the Canvas Width to Fill parent and the Height property to 300.

Step 4: From the Sensors palette, add an AccelerometerSensor to the Screen.
Notice it is a nonvisible component.

Step 5: Open the Blocks Editor and program the Canvas1.Dragged event han-
dler. See Figure 12-49 as a reference as you program this event.

VideoNote
Shake to Clear
Canvas

http://www.pearsonglobaleditions.com/Gaddis

 12.3 The Accelerometer 577

Figure 12-48 Shake to Clear Design (Source: MIT App Inventor 2)

Figure 12-49 Canvas1.Dragged Event Handler (Source: MIT App Inventor 2)

Step 6: Go to the Canvas1 drawer and click the Canvas1.Dragged event han-
dler to place it in the Blocks Editor.

Step 7: Go to the Canvas1 drawer and click the Canvas1.DrawLine method.
place it inside the Dragged event handler.

Step 8: Find the values for prevX, prevY, currentX, and currentY by hov-
ering the mouse cursor over their parameter names in the event handler
block, as shown in Figure 12-50.

Step 9: plug in prevX and prevY for the x1 and y1 arguments of the DrawLine
method. plug in the currentX and currentY for the x2 and y2 argu-
ments. See Figure 12-49.

Step 10: program the Shaking event by finding the Accelerometer1.Shaking
event handler in the Accelerometer1 drawer and placing it in the Blocks
Editor.

578 Chapter 12 Sensors

Figure 12-50 Find the Argument Values (Source: MIT App Inventor 2)

Hover over the parameter names to
�nd their “get” blocks.

Step 11: Find the Canvas1.Clear method in the Canvas1 drawer and place it
inside the Shaking event handler. See Figure 12-51.

Figure 12-51 Shaking Event Handler (Source: MIT App Inventor 2)

Step 12: Connect the application to your device and practice drawing on the screen
with your finger. When you want to, shake the device to clear the screen.

Checkpoint

 12.9 What are the steps to change the Cat and Mouse game to reset the game with
a shake rather than a button?

 12.10 If you’ve programmed your application to play a 6-second music clip and
you’ve also set the MinimumInterval to 4000 (4 seconds), what do you think
will happen if the user continually shakes the phone?

 12.4 Using the ActivityStarter Component to
launch Google Maps

CONCEPT: You can use the ActivityStarter component to launch other apps on
your device.

The ActivityStarter component allows you to open up other apps from your App
Inventor project. These apps can be those that come preloaded on the phone such as
the Camera App, the Internet Browser, email, and Google Maps. You can also use
this component to open up apps that you’ve built or downloaded onto your phone.
You just have to know a few parameters to get going.

 12.4 Using the ActivityStarter Component to launch Google Maps 579

We are going to demonstrate the ActivityStarter by using it to open up Google Maps.
If you know the latitude and longitude of a location, you can open up Google Maps
and have it zoom to that location. You can also open a more general location by simply
knowing the ZIp code of the area you want to display. You can also open up a location
based on an address, but because there is some formatting involved, you may find it
easier to use the LocationSensor’s geocoding capabilities. Simply retrieve the latitude and
longitude of an address, and then use that information to open Google Maps.

ActivityStarter Properties
To open up Google Maps from your application you will need to set just a few prop-
erties of the ActivityStarter. The first is the Action property, which is a string rep-
resenting the activity that will be launched. For our example, we will use the value
android.intent.action.VIEW.

The next property that we will need to set is the ActivityClass. This value for Google
Maps is com.google.android.maps.MapsActivity. The Activitypackage is com.
google.android.apps.maps.

The final property that we need to set is the DataUri. This is where we use the infor-
mation we know about the address, either ZIp code or latitude and longitude values.
This string is passed to Google Maps, and then that application will interpret it and
decide how to open.

Recall that the latitude and longitude of the White House is 38.8971, −77.03654. We
can format a string for the DataUri that looks like this:

geo:38.8971,-77.03654?z=23

The string would be fine without the ?z=23 portion of the string—this simply indi-
cates the zoom level. You can zoom out by setting a lower number (?z=1) and zoom
all the way in using the largest number, 23.

If you’d rather use a ZIp code in the DataUri property, you will use the q parameter.
For example, the following specifies the ZIp code 28540:

geo:0,0?q=28540

You can use the zoom level with the ZIp code, as shown here:

geo:0,0?q=28540&z=10

This indicates that the zoom level is 10 and the ZIp code is 28540. There should be
no spaces in the DataUri string.

See Figure 12-52 for a summary of the properties needed to open Google Maps
zoomed into a specific location.

Figure 12-52 Google Maps App Properties for Activity Starter (Source: MIT App Inventor 2)

580 Chapter 12 Sensors

Tutorial 12-4:
Open Google Maps

This tutorial will demonstrate opening Google Maps and zooming into a specific
location based on latitude and longitude.

Step 1: The user interface will be fairly simple with just a Button and an
ActivityStarter. Drag a Button from the User Interface palette onto the
Screen. Rename it ButtonOpenMap and update the Text property to
“Open Map”.

Step 2: Add an ActivityStarter component from the Connectivity palette to the
project. See Figure 12-53.

Figure 12-53 User Interface (Source: MIT App Inventor 2)

Step 3: Set the properties for the ActivityStarter. Review the values in Figure
12-52 and enter them into the project as shown in Figure 12-54.

Figure 12-54 ActivityStarter Properties (Source: MIT App Inventor 2)

Step 4: Open the Blocks Editor and program the ButtonOpenMap.Click
event handler. Go to the ButtonOpenMap, drawer and find the Click
event handler and place it in the Blocks Editor.

VideoNote
Open Google
Maps

 Review Questions 581

Step 5: place the ActivityStarter1.StartActivity method inside the
ButtonOpenMap.Click event handler. You can find the method in the
ActivityStarter1 drawer. See Figure 12-55.

Figure 12-55 Blocks Editor (Source: MIT App Inventor 2)

Step 6: Connect the application to your phone and test it. Notice that Google
Maps opens up zoomed in to the White House.

Review Questions

Multiple Choice

 1. Where can location information come from on an Android device?

a. GpS
b. Wi-Fi
c. Cellular towers
d. All of the above

 2. What LocationSensor property will tell you if the latitude and longitude values
are available on your device?

a. HasLatitude
b. GotLatitude
c. HasLatLong
d. HasLongitudeLatitude

 3. What LocationSensor property will tell you if the altitude value is available on
your device?

a. HasAltitude
b. GotAltitude
c. HasAlt
d. None of the above

 4. What property of the LocationSensor can give you the street address of a location?

a. MyAddress
b. Address
c. CurrentAddress
d. StreetAddress

 5. If the DistanceInterval property is set to 50, this means that the location in-
formation ________.

a. Will be updated after every fifty-meter move
b. Will not be updated unless the device has moved at least fifty meters since the

last update
c. Will be updated for fifty meters
d. Will not be updated after a fifty-meter move

582 Chapter 12 Sensors

 6. What should we do if we want the LocationSensor to send an update only after
half an hour?

a. Set the TimeFrame property to 30,000
b. Set the TimeFrame property to 1,800,000
c. Set the TimeInterval property to 1,800,000
d. Set the TimeInterval property to 1800

 7. How would you define geocoding?

a. It is the ability to determine the address of a location
b. It is the ability to determine a location by using the ZIp code of the area
c. It is the ability to determine the longitude and latitude of a given address
d. It is the ability to determine an address from a location’s longitude and lati-

tude values

 8. To simulate an object rolling fast on a tilting table using a sprite on a Canvas, we
set the ________.

a. Magnitude to 0
b. Magnitude to 1
c. Angle to 90
d. Angle to −90

 9. To simulate an object rolling on a tilting table using a sprite on a Canvas, what property
of the OrientationSensor is used to set the direction of the sprite based on the tilt?

a. Angle
b. Heading
c. Direction
d. Azimuth

 10. The following are true of the AccelerometerSensor properties:

a. They are found in the Sensors palette with the LocationSensor and the
OrientationSensor

b. They are used to perform actions when the device is being shaken
c. They are part of a nonvisible component
d. All of the above

 11. What component can be used to open up the camera application on your phone?

a. MyCamera
b. ShowCamera
c. Camera
d. ActivityStarter

Short Answer

 1. What does it mean to be in the line of sight to obtain location information for
your device?

 2. Why is App Inventor not able to change location properties at times?

 3. What value is displayed when you attempt to show the altitude, but it is not
available on your phone?

 4. How might you use the OrientationSensor to write a compass application for
your phone?

 Programming Projects 583

 5. In Tutorial 12-2 we multiply the magnitude by 100. What differences in the
 application would you notice if we multiply it by 10 instead?

 6. What components would you need in your project to open up you current loca-
tion in Google Maps by a shake of your phone?

Exercises
 1. Show State

Write an application that will determine the state of the current location and prompt
the user Welcome to the state of xxxx. For example, assume you are in North Carolina
and search the CurrentAddress for the string, NC. If the string exists, display Welcome
to North Carolina. Use your current state for testing. Hint: Use the Text contains
block. How might you write an application that can determine any US state?

 2. Change Mangitude

Complete Tutorial 12-2. Change the multiplier of the Magnitude property (Step 11).
What happens when you use a number larger than 100? What about less than 100?

 3. Change Color

Modify Tutorial 12-3 to change the color of the line on the Canvas when the
Canvas is cleared with a shake. The Canvas will clear and the next time it is
drawn upon, the color of the line will be different. Consider storing colors in a
List and randomly choosing a new color each time the device is shaken.

 4. Cat and Mouse, Reset with a Shake

Complete Tutorial 12-2. Change it so that the application resets by a shake of the
device and remove the reset button.

 5. Show Map of Airports

Allow the user to enter an airport code (for example, JFK for John F. Kennedy
Airport, U.S.A.) in a text box. Add a button to launch Google Maps showing the area
around the airport. Hint: You will need to use geocoding to build the DataUri string.

 6. Eiffel Tower

Use the Web to determine the latitude and longitude values of the Eiffel Tower.
Open Google Maps up, zoomed in at level 10, showing the map area surrounding
the Eiffel Tower.

 7. Flip and Navigate Surroundings

Write an app that opens Google Maps when the device is flipped over. The map
should be zoomed in at level 10 and showing the area around the current location
of the device.

Programming Projects
 1. Display of Magnitude

place three Ball Sprites in the bottom right corner of a Canvas that is the width of
the parent and is 300 pixels tall; you can stack them on top of each other. Change
the colors of each Ball sprite so that they each have their own color.

Add an OrientationSensor to the project and each time the orientation changes,
program the application to set the Ball sprite’s Heading and Speed properties.
The Heading property will be set to the OrientationSensor’s Angle property

584 Chapter 12 Sensors

for each Ball sprite. The Speed will be set to the Magnitude times ten for the first
sprite, to the Magnitude times fifty for the second sprite, and to the Magnitude
times 100 for the third sprite.

Run the application and observe how the sprites move about the canvas when the
device is tilted.

 2. Crossing the State Line

Write an application that alerts you verbally (Text to Speech) when you cross
a state line and enter a new state. It should say You’ve now entered the state of
xxxx. Store the state codes and names in a TinyDB or parallel Lists, and use the
LocationSensor to check for a new state every 20 minutes.

 3. Location Broadcasting App

Since travelling and texting is often difficult, create an app for a group of friends
which would help them know each others’ locations when they are driving or
travelling. If one person sends a text message to another, a broadcast message
should be sent to all the others (on a list of stored numbers) with the location of
the recipient. The app should respond automatically when a message is received
from any one of these numbers. A text message that includes the phrase Send
current location should be sent to the whole group (the entire list of numbers)
with the current location of the device.

 4. Track your Route

Write an application that will store your location information, latitude, longitude,
and street address to a TinyDB with a shake of the phone. The tags of the pairs
stored to the TinyDB should be point1, point2, and so on. The values should be a
three-item list for the latitude, longitude, and street address. Each time you store
an address, you should also increment and store the number of points stored so
far. The tag would be numberOfPointsStored and the value will be a number.

place a Button on the Screen that will retrieve the points in order and show the
latitude and longitude values stored. (In addition to this chapter, use skills learned
in Chapters 7, 8, and 10 for this project.)

 5. Address Verification

Write an application that will let the user verify addresses. Let the user write an
address in a TextBox and then click a Button. The app should check the accuracy
of the address using the geocoding methods. If 0 is returned, then the address is
incorrect. The app should return the longitude and latitude of the address if it is
correct, and Not available if 0,0 is returned.

 6. Cat and Mouse Modification

Complete Tutorial 12-2. Add two additional mouse sprites and have all three
move randomly around the Canvas every 1 1/2 seconds. Continue to use the
OrientationSensor to move the cat about the canvas.

Keep score by starting at zero and adding one to the score every time a mouse is
caught. Remember to remove the sprite (make it invisible and disabled) if the cat
“catches” it by colliding with it.

Allow the user to reset the game by shaking the phone. When the phone is shaken,
reset the score to zero and show all the mice. (See the Graphics and Animation
chapter for information on ImageSprites and animation.)

VideoNote
Crossing the State
Line

TOPICS

13.1 Recording Audio

13.2 Taking a photo with the phone’s
camera

13.3 The Camcorder component

13.4 Using the ImagePicker component to
select an image from the phone’s gallery

13.5 Playing video

 13.6 Selecting contacts from the contact list
and placing phone calls

 13.7 Scanning a barcode

 13.8 Using voice recognition

 13.9 Connecting to a Twitter account

 13.10 Using TinyWebDB to create a Web
database

Other App Inventor
CapabilitiesC

H
A

P
T

E
R

13

585

 13.1 Recording Audio
App Inventor provides a SoundRecorder component that allows you to record audio
sounds using your device. Once a sound is recorded you can use it in various ways in
your application. For example, you may want to play back sounds or store them in a
List or TinyDB. The SoundRecorder component is found in the Media Palette and is a
nonvisible component.

There are no properties associated with the recorder, but the component provides
three event handlers and two methods. The two methods are SoundRecorder.Start
and SoundRecorder.Stop. They are called to start and stop recording and do not
have any arguments.

Figure 13-1 shows an example of an application that starts and stops recording based on
Button Click events.

The event handlers associated with the recorder are StartedRecording,
StoppedRecording and AfterSoundRecorded. These event handlers give developers a
chance to program behaviors around the recording process.

586 Chapter 13 Other App Inventor Capabilities

If you want to perform an action as soon as recording starts you can use the
SoundRecorder.StartedRecording event. For example, once recording has started
you may want to give an indication that recording is on by flashing a message on the
screen, or you may want to disable buttons until recording has stopped. Similarly,
if you want to perform an action once the recording has stopped, you will use the
SoundRecorder.StoppedRecording event.

Figure 13-2 shows an example of using the StartedRecording and StoppedRecording
event handlers to enable and disable the appropriate buttons. For example, if the
application is currently recording, the user should not be able to press the button to
start recording, so it is disabled. Also, if the application is not recording at the time, it
does not make sense to allow the stop recording button to be pressed.

Figure 13-1 Start and Stop Recording Methods (Source: MIT App Inventor 2)

Figure 13-2 Started Recording and Stopped Recording Events (Source: MIT App Inventor 2)

The SoundRecorder also has an AfterSoundRecorded event handler. This event has
one argument, sound, which is the Sound component of the recording. This event can
be used to “do” something with the SoundRecorder component. Maybe you want to
store it to a variable, or into a List or TinyDB. Perhaps you want to write it to your
file system. See Figure 13-3 for an example of storing the recording to a variable.

Figure 13-3 shows how to store a recording to a variable in the AfterSoundRecorded
event handler. You can then use the variable elsewhere in your application to access
the recording.

Figure 13-3 Store a Recording to a Variable (Source: MIT App Inventor 2)

 13.1 Recording Audio 587

TIP: To find the set global mySound to block shown in Figure 13-3, hover the
mouse cursor over the name mySound in its initialization block. See Figure 13-4.

Figure 13-4 The set global mySound to Block (Source: MIT App Inventor 2)

Hover over the name to find the get and set
blocks for a variable.

TIP: To find the get sound block shown in Figure 13-3, hover the mouse cursor
over the sound parameter name in the event handler block. See Figure 13-5.

Figure 13-5 The get sound Block (Source: MIT App Inventor 2)

Hover over the parameter name to �nd the
“get” block (this holds the sound recorded).

Figure 13-6 User Interface (Source: MIT App Inventor 2)

Tutorial 13-1:
Record and Play Back Audio

This tutorial will demonstrate a simple application that will record audio and
then play back the recording.

VideoNote
Record and Play
Back Audio

588 Chapter 13 Other App Inventor Capabilities

Refer to Figure 13-4 to design the user interface for this application.

Step 1: Start a new project named SoundRecord and add three
Buttons to the screen. Rename them ButtonStartRecording,
ButtonStopRecording, and ButtonPlayBack. Change the Text prop-
erties to Record, Stop, and Play Back respectively.

Step 2: From the Media Palette, add a SoundRecorder component and notice
that it is a nonvisible component.

Step 3: Also, from the Media Palette, add a Player component. This compo-
nent will be used to play back the recording and is also a nonvisible
component.

Refer to Figure 13-7 as you program the blocks for this tutorial.

Figure 13-7 Record and Playback Blocks Editor (Source: MIT App Inventor 2)

Step 4: Initialize a variable to hold the recording by going to the Variables
drawer and select a initalize global name to block. Rename it to
mySound. Go to the Text drawer and select an empty text block, plug
that into the variable mySound block. See Figure 13-8.

Figure 13-8 Initialize mySound Global Variable (Source: MIT App Inventor 2)

Step 5: Now you will program the ButtonStartRecording.Click
event handler. Go to the ButtonStartRecording drawer and select
the Click event handler to place it the Blocks Editor. Go to the
SoundRecorder1 drawer and find the SoundRecorder1.Start
method, place it inside the ButtonStartRecording.Click event
handler. See Figure 13-9.

 13.1 Recording Audio 589

Figure 13-9 The ButtonStartRecording.Click Event Handler
(Source: MIT App Inventor 2)

Step 6: Now you will program the ButtonStopRecording.Click event han-
dler. Go to the ButtonStopRecording drawer and select the Click
event handler to place it the Blocks Editor. Go to the SoundRecorder1
drawer and find the SoundRecorder1.Stop method. Place it inside the
ButtonStopRecording.Click event handler. See Figure 13-10.

Figure 13-10 The ButtonStopRecording.Click Event Handler
(Source: MIT App Inventor 2)

Step 7: Now you will program the StartedRecording event handler to disable
the start Button and enable the stop Button. Go to the SoundRecorder1
drawer and find the StartedRecording event handler and place it in
the Blocks Editor.

Step 8: Go to the ButtonStopRecording drawer and find the set
ButtonStopRecording.Enabled to block. Place it inside the
StartedRecording event handler.

Step 9: Go to the Logic drawer and find a true block. Plug it into the set
ButtonStopRecording.Enabled to block.

Step 10: Go to the ButtonStartRecording drawer and find the set
ButtonStartRecording.Enabled to block. Place it inside the
StartedRecording event handler.

Step 11: Go to the Logic drawer and find a true block. Change it to false, then
plug it into the set ButtonStartRecording.Enabled to block. At
this point, the event handler should appear as shown in Figure 13-11.

Figure 13-11 The StartedRecording Event Handler (Source: MIT App Inventor 2)

Step 12: Now you will program the StoppedRecording event handler to enable
the start Button and disable the stop Button. Go to the SoundRecorder1
drawer, find the StoppedRecording event handler, and place it in the
Blocks Editor.

Step 13: Go to the ButtonStopRecording drawer and find the set
ButtonStopRecording.Enabled to block. Place it inside the
StoppedRecording event handler.

590 Chapter 13 Other App Inventor Capabilities

Figure 13-12 The StoppedRecording Event Handler (Source: MIT App Inventor 2)

Step 17: Now you will program the AfterSoundRecorded event handler. Go to
the SoundRecorder1 drawer and click the event handler to place it in the
Blocks Editor. Hover the mouse cursor over the mySound variable name
in its initialization block (see Figure 13-4), and find the set global
mySound to. Place it in the the AfterSoundRecorded event handler.

Step 18: Hover the mouse cursor over the parameter name sound in the
AfterSoundRecorded event handler, and find the get sound block
(see Figure 13-5). Plug that into the set global mySound to block. At
this point, the event handler should appear as shown in Figure 13-13.

Figure 13-13 The AfterSoundRecorded Event Handler (Source: MIT App Inventor 2)

Step 14: Go to the Logic drawer and find a true block. Change it to false,
then plug it into the set ButtonStopRecording.Enabled to block.

Step 15: Go to the ButtonStartRecording drawer and find the set
ButtonStartRecording.Enabled to block. Place it inside the
StoppedRecording event handler.

Step 16: Go to the Logic drawer and find a true block. Plug it into the set
ButtonStartRecording.Enabled to block. At this point, the event
handler should appear as shown in Figure 13-12.

Step 19: The last step is to program the play back Button. Before the player will play,
we need to give it a source. The source will be the value of the mySound
variable. Go to the ButtonPlayBack drawer, find the ButtonPlayBack.
Click event handler, and click it into place in the Blocks Editor.

Step 20: Next, go to the Player1 drawer and find the set Player1.Source to
block. Place it inside the ButtonPlayBack.Click event handler.

Step 21: Hover the mouse cursor over the mySound variable name in its declara-
tion block (see Figure 13-4) and find the get mySound block. Plug it
into the set Player1.Source to block.

Step 22: Finally, find the Player1.Start method block in the Player1 drawer.
Place it in the ButtonPlayBack.Click event handler as shown in
Figure 13-14.

 13.2 Taking a Photo with the Phone’s Camera 591

Figure 13-15 Camera Example User Interface (Source: MIT App Inventor 2)

 13.2 Taking a Photo with the Phone’s Camera
App Inventor has a Camera component in the Media Palette that will allow you to
add picture-taking capabilities to your application. It works by invoking the camera
on your device. Once you accept a photo from your camera application, control is
passed back to your App Inventor application.

The Camera component is nonvisible and has one property, one method, and one event.
The single property is the UseFront property. If this property is enabled (true) then the
front-facing camera will open on the device. If there is no front-facing camera available
on the device, this property will be ignored, and the camera will open as it normally does.

The single method of the Camera component is Camera.TakePicture and is used to
invoke the device’s camera.

The single event handler is Camera.AfterPicture. This event handler allows
developers to program actions after the picture is taken. It has a single argument
named image. The image is the picture that was taken, and you can use it in the
AfterPicture event handler to store and display the image.

To demonstrate how to use the Camera component, let’s look at a simple application
that stores pictures to a “Wish List.” Figure 13-15 shows the user interface, which
has a Button, some Labels, and a Camera component.

Figure 13-14 The ButtonPlayBack.Click Event Handler
(Source: MIT App Inventor 2)

Compare your blocks to Figure 13-7 at the beginning of this tutorial.
Connect the application to your device and test the recorder!

592 Chapter 13 Other App Inventor Capabilities

We will use the Button to invoke the camera, and we will program the application to
store each picture to a Wish List. As each picture is stored, the Label on the screen
will update to show how many pictures are in the list.

Figure 13-16 demonstrates using the ButtonTakePicture.Click event to invoke
the Camera component using the Camera1.TakePicture event handler. Also, you
see in Figure 13-16 that a list variable, wishList, is created using the create empty
list block, which is found in the List drawer. After the picture is accepted from the
device’s camera application, the Camera1.AfterPicture event is triggered so we can
perform processing on the image. In this case, we add the image to wishList and
then update the Label on the user interface to show the picture was added.

Figure 13-16 Camera Example Blocks Editor (Source: MIT App Inventor 2)

Checkpoint

 13.1 List the components and steps needed to create an application that records
audio. What are some of the things you can do with audio files in your
application?

 13.2 In Tutorial 13-1, why do we store the sound to a global variable in the
AfterSoundRecorded event handler?

 13.3 When using the Camera component to take a picture, at what point is control
passed back to your application?

 13.3 The Camcorder Component
App Inventor has a Camcorder component in the Media Palette that will allow you
to invoke the device’s camcorder through your application. This component works
much like the Camera component. The component starts the device’s camcorder and
then transfers control back to your app and raises the AfterRecording event han-
dler once recording stops.

The Camcorder component is nonvisible and has one method and one event.

The single method of the Camcorder component is Camcorder.RecordVideo and is
used to invoke the device’s camcorder.

 13.4 Using the ImagePicker Component 593

The single event handler is Camcorder.AfterRecording. This event handler allows
developers to program actions that execute after the video is taken. It has a single
a rgument named clip. The clip is the video that was taken, and you can use it in the
AfterRecording event handler to store and display the video.

 13.4 Using the ImagePicker Component
The ImagePicker component in App Inventor is in the Media Palette and acts like
a special Button in your application. When clicked, the ImagePicker accesses your
device’s photo gallery and allows you to select a picture and then use it in your app.

The properties of the ImagePicker are similar to the Button component properties,
with exception of the Selection property. The Selection property holds the name and
path of the selected image, and will allow you to use the selected image in your app.

You can open the picker by clicking an ImagePicker on a user interface or by calling
the ImagePicker.Open method programmatically in the Blocks Editor. The Open
method is the only method of the ImagePicker component.

The ImagePicker has the BeforePicking and AfterPicking event handlers that
can be used to perform actions before and after the process. Often developers will
use the AfterPicking event handler to handle processing of the selected image.

Tutorial 13-2:
Using the ImagePicker

This tutorial will display how to use the ImagePicker to select a photo from a
device and then use it in an application. We will write an app that will allow the
user to choose a background for a Canvas component. Figure 13-8 shows the
user interface for this app in the Viewer.

Step 1: Start a new App Inventor project and add an ImagePicker and a Canvas
to the screen. Set the Width property of the ImagePicker to Fill parent
and the Text property to Choose Canvas Background.

Step 2: Set the Canvas component’s Width property to Fill parent and the
Height property to 300 pixels. Refer to Figure 13-17.

Step 3: Figure 13-18 shows the complete blocks for this application. Pretty
simple!

Go to the ImagePicker drawer and find the ImagePicker1.
AfterPicking event handler. Place it in the Blocks Editor.

Step 4: In the Canvas1 drawer, find the set Canvas1.BackgroundImage to
block and place it inside the AfterPicking event handler.

VideoNote
Using the
ImagePicker

594 Chapter 13 Other App Inventor Capabilities

Figure 13-17 Image Picker User Interface (Source: MIT App Inventor 2)

Figure 13-18 Image Picker Blocks Editor (Source: MIT App Inventor 2)

Step 5: In the ImagePicker1 drawer, find the property that holds the name and
path of the selected image, ImagePicker1.Selection. Plug it into the
BackgroundImage block. See Figure 13-18.

Step 6: You can test this application on your device or the emulator. See
Figures 13-19 through 13-21 for a demonstration using the emulator.

 13.4 Using the ImagePicker Component 595

Figure 13-19 Application Before Picker is Invoked (Source: MIT App Inventor 2)

Figure 13-20 Application During Image Selection (Source: MIT App Inventor 2)

Figure 13-20 shows the picker accessing the gallery.

Figure 13-21 shows the selected image as the canvas background.

596 Chapter 13 Other App Inventor Capabilities

Figure 13-21 Canvas After Picking (Source: MIT App Inventor 2)

 13.5 Playing Video
App Inventor has a VideoPlayer component in the Media Palette that will allow an
application to play video. You can upload your video into App Inventor the same way
you upload images and sound files. App Inventor supports Windows Media Video
(.wmv), 3GPP (.3gp), and MPEG-4 (.mp4) file formats for videos. Videos should be
1 MB or smaller in size, as App Inventor only allots a certain amount of space for
media files per application. If your video is larger, you may encounter errors. Also,
this component works best running on an actual device.

The VideoPlayer properties are Source, Visible, Height, Width, Volume, and FullScreen.
The Source is the name of the video file that is uploaded into your project. The Visible
property will tell your application to show video if set to true and hide it if it is set to
false. The Height and Width properties control the size of the player on the Screen. The
Volume property allows control of the video’s volume. The FullScreen property will take
over the entire screen of the application when set to true.

There are a few methods of the VideoPlayer that allow you to control the video, in-
cluding Start, Pause, and SeekTo. The Start method will play the video, Pause
will pause it, and the SeekTo method allows you to skip to a certain point in the video
based on milliseconds. There is also a GetDuration method that will return the dura-
tion of the video in milliseconds.

There is one event handler in this component, named Completed. The Completed
event handler can be used to perform any actions needed after the video has stopped.
For example, if you want to be sure the video exits out of full screen mode after the
video is done, you can set the FullScreen property to false in this event handler.

 13.5 Playing Video 597

Tutorial 13-3:
Playing Video

This tutorial will demonstrate playing video in an App Inventor application. It
will demonstrate playing, pausing, skipping to a certain point, and playing the
video in full screen. You will need to download the video SanFranStreetCar.
wmv from the book’s companion website, or you can use your own. Just be sure
the video is not larger than 1 MB.

Step 1: Start a new project named MyVideo. Reference Figure 13-22 to design
the user interface. Find the VideoPlayer in the Media Palette and place
it on the Screen. Set the Width to Fill Parent and leave the Height set
to Automatic.

Step 2: From the Layout Palette, add a HorizontalArrangement and place four
Button objects inside. Rename them ButtonPlay, ButtonPause,
ButtonMiddle, and ButtonFullScreen. Change the Text properties
to Play, Pause, Go to middle, and Full Screen, respectively.

Figure 13-22 Playing Video User Interface (Source: MIT App Inventor 2)

Step 3: Add another HorizontalArrangement and place two Labels inside of
it. Rename the first to LabelDurationPrompt and change the Text
property to Duration:. Rename the second to LabelDuration and set
its Text property to 0 (zero).

Step 4: Now you will program the ButtonPlay.Click event handler. Open
the Blocks Editor and go to the ButtonPlay drawer. Select the Click
event handler to place it in the Blocks Editor. Go to the VideoPlayer1
drawer and select the VideoPlayer1.Start method block. Place it in
the ButtonPlay.Click event handler. At this point, the event handler
should look like Figure 13-23.

VideoNote
Playing Video

598 Chapter 13 Other App Inventor Capabilities

Figure 13-23 Play Video (Source: MIT App Inventor 2)

Step 5: In the same event handler, ButtonPlay.Click, you need to popu-
late the LabelDuration.Text property with the duration of the video.
Find the set LabelDuration.Text to block in the LabelDuration
drawer. Place it inside the ButtonPlay.Click event handler, beneath
the existing blocks.

Step 6: The duration is in milliseconds, so to display it in a way that we can
understand better, let’s divide it by 1000. Go to VideoPlayer1 and find
the VideoPlayer1.GetDuration method block. Plug that into the left
side of a Math division block. Plug in a number 1000 block in the
right side of the division operator. Plug this set of blocks into the set
LabelDuration.Text to block as shown in Figure 13-24.

Figure 13-24 Display Duration (Source: MIT App Inventor 2)

Step 7: Now you will program the ButtonPause.Click event handler. Go
to ButtonPause and select the ButtonPause.Click event handler
to place it in the Blocks Editor. Go to VideoPlayer1 and select the
VideoPlayer1.Pause method block. Place it in the ButtonPause.
Click event handler, as shown in Figure 13-25.

Figure 13-25 Play and Pause Events (Source: MIT App Inventor 2)

 13.5 Playing Video 599

Figure 13-26 Video Seek to Method (Source: MIT App Inventor 2)

Step 8: Now you will program the ButtonMiddle.Click event handler to
Seek to the middle of the video. We can do this by dividing the dura-
tion by two to reach the midpoint, and using the calculation as the ms
argument of the SeekTo method.

Go to VideoPlayer1, find the VideoPlayer1.SeekTo method block
and the VideoPlayer1.GetDuration method block. Use a Math divi-
sion block to divide the duration in half and plug the calculation into
the VideoPlayer1.SeekTo method block. See Figure 13-26.

Figure 13-27 Video Full Screen Event (Source: MIT App Inventor 2)

Step 9: Now let’s program the Full Screen Button to set the FullScreen
property to true. Go to ButtonFullScreen and select the ButtonFull
Screen.Click event handler to place it in the Blocks Editor.

Step 10: Go to VideoPlayer1 and find the set VideoPlayer1.FullScreen
to block. Use a Logic true block for the argument. Place it in the
ButtonFullScreen.Click event handler as shown in Figure 13-27.

Figure 13-28 Video Completed Event (Source: MIT App Inventor 2)

Step 11: Let’s program the application to set the FullScreen property to false
once the video has completed playing. Go to the VideoPlayer1 drawer
and select the VideoPlayer1.Completed event handler to place it in
the Blocks Editor.

Step 12: Go to VideoPlayer1, find the set VideoPlayer1.FullScreen to
block, and use a Logic false block for the argument. Place it in the
VideoPlayer1.Completed event handler, as shown in Figure 13-28.

600 Chapter 13 Other App Inventor Capabilities

Step 13: Compare your blocks to Figure 13-29 and test your application.

Checkpoint

 13.4 When using the Camcorder component to take a video, at what point is
control passed back to your application?

 13.5 What kind of video file formats can you use in an App Inventor application?
How large can your files be?

 13.6 What does the VideoPlayer.SeekTo method do? How could you use this
method to go back to the beginning of a video?

 13.6 Selecting Contacts from the Contact List
and Placing Phone Calls
App Inventor provides three components that can be used to access the contact
list on an Android device. They are the ContactPicker, the EmailPicker, and the
PhoneNumberPicker. There is also a PhoneCall component that is often paired with
these pickers. These components are found in the Social Palette.

The ContactPicker and PhoneNumberPicker
Components
The ContactPicker and PhoneNumberPicker allow a user to select a contact and
then use information about that contact in an app. They both appear as Buttons on
the screen.

Figure 13-29 Play Video Full Blocks Editor (Source: MIT App Inventor 2)

 13.6 Selecting Contacts from the Contact List and Placing Phone Calls 601

The PhoneNumberPicker will show a list of the phone numbers in the contacts list,
and allow the user to select a phone number. The ContactPicker will show a list of
contact names from which the user can select.

Once a contact is selected with the PhoneNumberPicker, the name, email address, phone
number, and image are available to use in the app. If the ContactPicker is used, only the
name, email address, and image are available. The phone number will not be.

Many of the properties of the ContactPicker and PhoneNumberPicker are similar
to the Button component properties, especially those that affect how the Buttons
look. However, these components have some additional properties to hold contact
information such as the ContactName, EmailAddress, and Picture properties. The
PhoneNumberPicker also has the PhoneNumber property. These properties’ values
are populated with the chosen contact’s information from the device.

You can open these pickers by clicking the ContactPicker or PhoneNumberPicker
Button placed on the user interface. They can also be opened by calling their Open method
programmatically in the Blocks Editor. Similar to the ImagePicker, the Open method is
the only method of the ContactPicker and the PhoneNumberPicker components.

These pickers both have BeforePicking and AfterPicking event handlers that can be
used to perform actions before and after the picking process. The AfterPicking event
handler can be used to handle processing of the selected contact. For example, assume
your app creates a list of friends on your holiday shopping list. In the AfterPicking event
handler, you can program the steps to store the selected contacts in a List or TinyDB.

Tutorial 13-4:
Using the Contact and Phone Number Pickers

This tutorial will show how to use the ContactPicker and PhoneNumberPicker
components to load a contact into an application. This application will not work
with the emulator and needs to be run on an Android device.

Refer to Figure 13-30 to design the user interface for this application.

Figure 13-30 Contact Picker User Interface (Source: MIT App Inventor 2)

VideoNote
Using the Contact
and Phone
Number Pickers

602 Chapter 13 Other App Inventor Capabilities

Step 1: Start a new App Inventor project named ContactAndPhoneNumber
and add a HorizontalArrangement to the screen.

Step 2: Go to the Social Palette and drag a ContactPicker into the
HorizontalArrangement. Change the Text property to Pick by Name.

Step 3: Go to the Social Palette and drag a PhoneNumberPicker into the
HorizontalArrangement. Change the Text property to Pick by Phone.

Step 4: Add three Labels to the Screen. Rename them LabelName, LabelEmail,
and LabelPhone. Change their Text properties to Name:, Email:, and
Phone: respectively.

Step 5: Add an Image component beneath the labels. Rename it ImagePicture.
Compare your design to Figure 13-30.

Step 6: Refer to Figure 13-31 as you program the AfterPicking event handler
of the PhoneNumberPicker. Go to the PhoneNumberPicker1 drawer and
select the AfterPicking event handler to place it in the Blocks Editor.

Figure 13-31 After Picking Phone Number (Source: MIT App Inventor 2)

Step 7: In the LabelName drawer, find the set LabelName.Text to block and
place it in the PhoneNumberPicker1.AfterPicking event handler.

Step 8: In the PhoneNumberPicker1 drawer, find the PhoneNumberPicker1.
ContactName block and plug it into the set LabelName.Text to block.

Step 9: In the LabelEmail drawer, find the set LabelEmail.Text to block
and place it in the PhoneNumberPicker1.AfterPicking event handler.

Step 10: In the PhoneNumberPicker1 drawer, find the PhoneNumberPicker1.
EmailAddress and plug it into the set LabelEmail.Text to block.

Step 11: In the LabelPhone drawer, find the set LabelPhone.Text to block
and place it in the PhoneNumberPicker1.AfterPicking event handler.

Step 12: In the PhoneNumberPicker1 drawer, find the PhoneNumberPicker1.
PhoneNumber block and plug it into the set LabelPhone.Text to block.

Step 13: In the ImagePicture drawer, find the set ImagePicture.Picture to
block and place it in the PhoneNumberPicker1.AfterPicking event
handler.

Step 14: In the PhoneNumberPicker1 drawer, find the PhoneNumberPicker1.
Picture block and plug it into the set ImagePicture.Picture to block.

 13.6 Selecting Contacts from the Contact List and Placing Phone Calls 603

Note that Steps 15-13 are similar to steps 6-12.

Figure 13-33 An Example by Contact (Source: MIT App Inventor 2)

Step 15: Refer to Figure 13-32 as you program the AfterPicking event handler
of the ContactPicker1. Go to the ContactPicker1 drawer and select
the ContactPicker1.AfterPicking event handler to place it in the
Blocks Editor.

Step 16: In the LabelName drawer, find the set LabelName.Text to block
and place it in the ContactPicker1.AfterPicking event handler.

Step 17: In the ContactPicker1 drawer, find the ContactPicker1.ContactName
block and plug it into the set LabelName.Text to block.

Step 18: In the LabelEmail drawer, find the set LabelEmail.Text to block
and place it in the ContactPicker1.AfterPicking event handler.

Step 19: In the ContactPicker1 drawer, find the ContactPicker1.EmailAddress
and plug it into the set LabelEmail.Text to block.

Step 20: In the ImagePicture drawer, find the set ImagePicture.Picture to
block and place it in the ContactPicker1.AfterPicking event handler.

Step 21: In the ContactPicker1 drawer, find the ContactPicker1.Picture
block and plug it into the set ImagePicture.Picture to block.

Step 22: Connect the application to your device and test both pickers.

Figure 13-33 shows an example of searching with the ContactPicker
(Pick by Name), and Figure 13-34 shows an example of the results.
Notice that in Figure 13-34, the phone number is not available because
we used the ContactPicker.

Figure 13-32 After Picking Contact (Source: MIT App Inventor 2)

604 Chapter 13 Other App Inventor Capabilities

PhoneCall Component
The PhoneCall component is often used in conjunction with the ContactPicker or
PhoneNumberPicker. It is a component that will initiate a phone call to the specified
number.

The PhoneCall component has one property, PhoneNumber, and one method,
MakePhoneCall.

Figure 13-34 Contact Chosen by Contact Picker (Source: MIT App Inventor 2)

Figure 13-35 Contact Chosen by Phone Picker (Source: MIT App Inventor 2)

Figure 13-35 shows an example of a contact picked by phone number. Notice that
the phone number is available because we picked using the PhoneNumberPicker.

Tutorial 13-5:
Using the PhoneCall Component

This tutorial will expand on Tutorial 13-4. We will add the PhoneCall compo-
nent to call the selected contact.

Refer to Figure 13-36 to design the user interface for this application.
VideoNote
Using the
PhoneCall
Component

 13.6 Selecting Contacts from the Contact List and Placing Phone Calls 605

Figure 13-36 PhoneCall Component (Source: MIT App Inventor 2)

Set the button’s
visible property to
“hidden”.

Add the nonvisible
PhoneCall component.

Step 1: Add a Button to the screen, rename it ButtonCall. Set the Text prop-
erty to Call and set the Visible property to hidden.

Step 2: From the Social Palette, add the nonvisible PhoneCall component.

When the user uses the PhoneNumberPicker to select a contact, we
want to make the Call button visible. In the next steps, you will add
the blocks shown in Figure 13-37 to the PhoneNumberPicker1.
AfterPicking event handler. This will make the call Button visible
to the user if there is a phone number available to call.

Figure 13-37 Check If Phone Number was Retrieved (Source: MIT App Inventor 2)

Step 3: Go to the Control drawer and select an if then block.

Step 4: Go to the Logic drawer and select a not block. Plug it in as shown in
Figure 13-37. We are going to check that the phone number is not empty.

Step 5: Go to the Text drawer and select an is empty block. Plug it in as
shown in Figure 13-37.

Step 6: Go to the PhoneNumberPicker1 drawer and find the Phone
NumberPicker1.PhoneNumber block. Plug it into the is empty block
as shown in Figure 13-37.

606 Chapter 13 Other App Inventor Capabilities

Step 7: Go to the ButtonCall drawer and select the set ButtonCall.Visible
to block. Place it in the if then block.

Step 8: Go to the Logic drawer and select a true block. Configure and com-
pare your blocks to Figure 13-37.

Step 9: Place the set of blocks in Figure 13-37 into the PhoneNumber
Picker1.AfterPicking event, as shown in Figure 13-38.

Figure 13-38 The PhoneNumberPicker1.AfterPicking Event Handler
(Source: MIT App Inventor 2)

Step 10: Now we are going to program the PhoneCall component to place the
call if the user clicks the ButtonCall Button. Examine Figure 13-39.

Figure 13-39 ButtonCall.Click Event (Source: MIT App Inventor 2)

Step 11: Go to the ButtonCall drawer and select the ButtonCall.Click event
handler. Place it in the editor.

Step 12: Set the value of the PhoneNumber property. Go to the PhoneCall1
drawer and select the set PhoneCall1.PhoneNumber to block. Place it
in the ButtonCall.Click event.

Step 13: Go to the PhoneNumberPicker1 drawer and select the Phone
NumberPicker1.PhoneNumber block. Plug it into the set Phone
Call1.PhoneNumber to block from Step 12.

Step 14: Go to the PhoneCall1 drawer and select the call Phone
Call1.MakePhoneCall block. Place it in the ButtonCall.Click event
as shown in Figure 13-39.

Step 15: Connect and test your app!

 13.6 Selecting Contacts from the Contact List and Placing Phone Calls 607

EmailPicker Component
The EmailPicker is somewhat like a TextBox in that you type into it and it has a
Hint property to prompt users. As you type an email address into the EmailPicker,
the email addresses in the contact list are searched and filtered, and auto-complete is
used. The EmailPicker Text property contains the chosen email address. Often, the
EmailPicker is used in conjunction with a Button. Once the email address is popu-
lated into the picker, the Click event handler of the accompanied Button is used to
process the email address. The only data from the device’s contact list that is loaded
into the App Inventor application is the email address.

Figure 13-40 Example Email Picker User Interface (Source: MIT App Inventor 2)

Figure 13-40 shows an example design using the EmailPicker component. Notice that
a Button is used in conjunction with this picker. The Labels beneath the Button are
there to show the resulting “picked” email.

Figure 13-41 shows how you might use a Button Click event handler to process the
chosen email address.

Figure 13-41 Example Email Picker Blocks (Source: MIT App Inventor 2)

Checkpoint

 13.7 What is the difference between a PhoneNumberPicker’s Image property and a
PhoneNumberPicker’s Picture property?

 13.8 What are the differences between the PhoneNumberPicker and the
ContactPicker components?

 13.9 What information does the EmailPicker provide about a contact?

608 Chapter 13 Other App Inventor Capabilities

Figure 13-42 Example BarcodeScanner User Interface (Source: MIT App Inventor 2)

Figure 13-43 Example BarcodeScanner Blocks (Source: MIT App Inventor 2)

 13.7 Scanning a Barcode
App Inventor has a BarcodeScanner component in the Sensors Palette that will allow
an application to scan a barcode and retrieve information based on the code.

This component uses the device’s camera to scan the barcode, and in order to work,
the device will need a barcode scanner program installed, such as the Barcode scanner
application ZXing, which is free on the Android Market.

The BarcodeScanner is a nonvisible component. It will read both one-dimensional
barcodes and QR codes. The only property the BarcodeScanner has is the Result
property. It is in text format and holds results from the last successful scan.

An application invokes the BarcodeScanner by the DoScan method block. This is the
only method of the component.

The BarcodeScanner has an AfterScan event handler that will allow an application
to retrieve and process the result of a scan.

Figure 13-42 shows an example user interface which uses a BarcodeScanner. There is
a Button that will be used to invoke the scanner. There are Labels to show the results,
and then there is a nonvisible BarcodeScanner component.

Figure 13-43 shows how you can use a Button Click event handler to invoke the
BarcodeScanner by calling the DoScan method and then process any results in the
AfterScan event handler.

 13.8 Using Voice Recognition 609

 13.8 Using Voice Recognition
App Inventor’s SpeechRecognizer component converts speech to text using the speech
recognition feature of the Android operating system. Simply add this nonvisible com-
ponent found in the Media Palette to your application, and you will have the capabil-
ity to speak into your phone and watch it convert your message to text.

The SpeechRecognizer has one property, the Result. This property holds the text ver-
sion of the last message that was recorded. To invoke the SpeechRecognizer, applica-
tions can call the GetText method.

After the recording stops, the AfterGettingText event handler is triggered. Its event
handler has one parameter, result. This event handler is where processing on the
resulting text is handled. There is also a BeforeGettingText event handler in which
developers can perform any needed activities before the recording starts.

Tutorial 13-6:
Speak a Text Message

We are going to create an application that will use the PhoneNumberPicker to
choose a phone number to send a text message to. Instead of typing the message,
we are going to allow the user to speak it into the phone and display the result
of the speech recognition. If the user decides the message is correct, he or she can
then press an Accept and Send Button to send the spoken text message.

Figure 13-44 shows the completed user interface.

Step 1: Start a new App Inventor project named SpeakATextMessage and
place a Label on the Screen. Rename it LabelTitle, align it centered,
and change the Text property to Speak a Text Message. Set the Width
property to Fill parent and set the font size to 20 pixels, bold.

Step 2: Add a HorizontalArrangement to the Screen. Place a
PhoneNumberPicker and two Labels inside. Change the Text prop-
erty of the PhoneNumberPicker to Pick Number. Rename the first
Label to LabelPromptNumber and change the Text property to
Selected Number:. Rename the second Label LabelPhoneNumber
and empty its Text property.

Step 3: Add a Button under the HorizontalArrangement. Rename it
ButtonRecord. Set the Width to Fill Parent and the Text to Record
Text Message.

Step 4: Add a Label to display the recorded message as text. Rename
it LabelMessage. Set the Width to Fill Parent and Height to 150 pix-
els. Change the Text property to Message. At this point, the app’s
screen should look like Figure 13-46.

Step 5: Add a Button under the LabelMessage component and rename it
ButtonSendText. This Button will be pressed by the user when they are
sure they want to send it. Change the Text property to Accept and Send.

VideoNote
Speak a Text
Message

610 Chapter 13 Other App Inventor Capabilities

Figure 13-45 The Design for Steps 1 and 2 (Source: MIT App Inventor 2)

Figure 13-44 Speech Recognition Example, User Interface
(Source: MIT App Inventor 2)

 13.8 Using Voice Recognition 611

Figure 13-46 The Design for Steps 3 and 4 (Source: MIT App Inventor 2)

Figure 13-47 Speak a Text Message Blocks (Source: MIT App Inventor 2)

Step 6: Add the SpeechRecognizer component from the Media Palette.

Step 7: Add the Texting component from the Social Palette. Compare your
design to Figure 13-44.

Refer to Figure 13-47 as you program the blocks for this tutorial.

Step 8: We need to create a variable to hold the text message after it is recorded.
Go to the Variables drawer and choose the initialize global name
to block. Place it in the editor and rename it message. Plug an empty
text block into its socket.

Step 9: Now you will program the PhoneNumberPicker1.AfterPicking
event handler to show the user the number that was picked. Go to the
PhoneNumberPicker1 drawer and select the PhoneNumberPicker1.
AfterPicking event handler to place it in the editor. In the same drawer,

612 Chapter 13 Other App Inventor Capabilities

select the PhoneNumberPicker.PhoneNumber property value and place
it in the editor.

Step 10: Find the set LabelPhoneNumber.Text to block in the LabelPhone
Number drawer. Place it in the PhoneNumberPicker1.AfterPicking
event handler and plug the PhoneNumberPicker1.PhoneNumber prop-
erty into it. The event handler should appear as shown in Figure 13-48.

Step 11: Now you will create the blocks to invoke the SpeechRecognizer1 com-
ponent by calling its GetText method in the ButtonRecord.Click event
handler. Go to the ButtonRecord drawer and select the ButtonRecord.
Click event handler to place it in the editor. Go to the SpeechRecogizer1
drawer and select the GetText method block. Place it inside the
ButtonRecord.Click event handler, as shown in Figure 13-49

Step 12: Open the SpeechRecognizer1 drawer and select the AfterGettingText
event handler block. As shown in Figure 13-50, create a set global
message to block. Plug the block into the SpeechRecognizer1.
AfterGettingText event handler. Then, hover over the result param-
eter of the event handler and select the get result block. Plug it in as the
argument to the message variable.

Figure 13-50 message Variable Initialization (Source: MIT App Inventor 2)

Figure 13-48 The PhoneNumberPicker1.AfterPicking Event Handler
(Source: MIT App Inventor 2)

Figure 13-49 The ButtonRecord.Click Event Handler (Source: MIT App Inventor 2)

Step 13: Go to the LabelMessage drawer and find the set LabelMessage.Text
to block and place it in the SpeechRecognizer1.AfterGettingText
event handler. Hover the mouse cursor over the result parameter of
the event handler and select the get result block. Plug it into the set
LabelMessage.Text to block, as shown in Figure 13-51.

Step 14: Now we want to send the message. Go to the ButtonSend drawer and find
the ButtonSend.Click event handler and place it in the Blocks Editor.

 13.9 Connecting to a Twitter Account 613

Figure 13-51 The SpeechRecognizer1.AfterGettingText Event Handler
(Source: MIT App Inventor 2)

Step 15: Recall that to send a text message, we first need to set up the phone
number and the message using the Texting component’s PhoneNumber
and Message properties. Go to the Texting1 drawer and find both
properties’ “set” blocks. Place them in the ButtonSend.Click event
handler. Set the PhoneNumber property to the PhonePicker1.
PhoneNumber value and the Message property to the get global
message block. See Figure 13-52.

Figure 13-52 Sending the Message (Source: MIT App Inventor 2)

Step 16: Finally, find the Texting1.SendMessage method, in the Texting1
drawer, and place it in the ButtonSendText.Click event handler, at
the bottom.

Step 17: Compare your blocks to Figure 13-47 and connect your application to
your device. Select a phone number from your contacts, record your
text message, and then send it on!

 13.9 Connecting to a Twitter Account
App Inventor provides a Twitter component in the Social Palette that will allow you
to connect an application to a Twitter account. Through this component, you can
search for tweets and tags, tweet messages, send direct messages to a specific user,
display recent messages, follow people, and more.

In order to use this component, you will need to visit the following site to register
your app:

http://twitter.com/oauth_clients/new

Once registered, you will receive a consumer key and consumer secret that you will need
to use in your application. Tutorial 13-7 will show more about registering your appli-
cation.These values will populate the ConsumerKey property and the ConsumerSecret
property. These two properties need to be set before connecting to Twitter.

http://twitter.com/oauth_clients/new

614 Chapter 13 Other App Inventor Capabilities

Once the key and secret are set, calling the Twitter component’s Authorize method
will transfer control to Twitter and ask the user to login. Once the user is logged in,
control is transferred back to the App Inventor application, and then it can interact
with Twitter. If the application needs to log a user out of Twitter, the Twitter compo-
nent’s DeAuthorize method is called.

We will look at the Twitter component’s IsAuthorized event handler, which is
triggered after a user logs in. Tutorial 13-7 will demonstrate how to register an
a pplication to obtain the key and secret and how to log into and out of Twitter
within an App Inventor application.

Tutorial 13-7:
Building a Twitter Application

In this tutorial we will have two Buttons: one to log into Twitter, and one to log
out. We will also have a Label that will display whether we are logged in or not.
In addition to registering the application with Twitter, this tutorial will dem-
onstrate logging into Twitter, which requires three steps: setting the Consumer
key, setting the Consumer secret, and calling the Authorize method. It will also
demonstrate how to log out of Twitter using the DeAuthorize method.

Step 1: Login to Twitter. Go to: http://twitter.com

Step 2: Register a new application. Go to:

http://twitter.com/oauth_clients/new and click the “Create
New” button.

Step 3: You will now be on the Create an application page of the Twitter
w ebsite. Enter the name of your application in the Name field. This
name will be used as the source of a Tweet generated by the app. It
should be no longer than 32 characters.

Step 4: Enter a description of your app in the Description field. This descrip-
tion should be 10 to 200 characters.

Step 5: Fill a URL for the website and Callback URL fields. For testing pur-
poses, any valid URL will work, and you can use the same valid URL
in both fields.

Step 6: Read and Accept the Developer Rules of the Road.

Step 7: Once all fields are populated on the Create an application page, click the
Create your Twitter application Button at the bottom of the screen.

Step 8: Once your application is registered in Twitter, you will be forwarded
to a screen with tabs at the top for Details, Settings, API Keys, and
Permissions. Click on the Details tab at the top of the page and review
your application details.

Step 9: Click on the Settings tab at the top of the page and review the
a pplication’s settings. Click the Allow this application to be used to

http://twitter.com
http://twitter.com/oauth_clients/new

 13.9 Connecting to a Twitter Account 615

Sign in with Twitter checkbox. Click Update Settings at the bottom of
the page.

Step 10: Click on the API Keys tab at the top of the page. Copy and paste both
the API key and the API secret to a safe place on your computer. You
will need to know which is which and where they are, because they will
be entered into your App Inventor project.

Step 11: Click on the Permissions tab at the top of the page. For our purposes,
leave the permissions set to Read only.

Step 12: Now it’s time to create your App Inventor project. Review Figure 13-53.

Figure 13-53 Twitter Application User Interface (Source: MIT App Inventor 2)

Step 13: Start a new App Inventor application and place two Buttons and a
Label on the Screen. Rename the first Button ButtonLogin and change
the Text property to Login to Twitter. Rename the second Button
ButtonLogOut and change the Text property to Log out of Twitter.
Change the Name of the Label to LabelStatus and change the Text
property to You are not logged in.

Step 14: Go to the Social Palette and find the Twitter component to add to your
project. Remember, this is a nonvisible component.

Refer to Figure 13-54 as you program the blocks.

Figure 13-54 Twitter Application Blocks Editor (Source: MIT App Inventor 2)

616 Chapter 13 Other App Inventor Capabilities

Step 15: Now you will program the ButtonLogin.Click event handler. Go to
ButtonLogin, find the Click event handler, and place it in the Blocks
Editor.

Step 16: Go to the Twitter1 drawer and select the set ConsumerKey to block
and the set Twitter1.ConsumerSecret to block. Place them in the
ButtonLogin.Click event handler.

Step 17: Create two text blocks. Paste the saved API key into one and the API
secret into the other. Plug them into the appropriate property.

Step 18: Go to the Twitter1 drawer, and select the Twitter1.Autorize method
block. Place it in the ButtonLogin.Click event handler, as shown in
Figure 13-54. That’s all you need to log in!

Step 19: Now you will program the IsAuthorized event handler to show
that the user is logged in. Go to the Twitter1 drawer, and select the
IsAuthorized event handler to place it into the Blocks Editor.

Step 20: Create the necessary blocks to set the LabelStatus.Text property to
You are logged in! Place these blocks in the IsAuthorized event handler.

Step 21: Now you will program the ButtonLogout.Click event handler. Go to
the ButtonLogout drawer, and find the Click event handler to place
it in the editor. Go to the Twitter1 drawer and find the DeAuthorize
method block. Place it in the ButtonLogout.Click event handler.
Create the blocks necessary to set the LabelStatus.Text property
to You are not logged in. Plug these blocks into the ButtonLogout.
Click event handler, as shown in Figure 13-54.

Step 22: That’s it! Compare all of your blocks to Figure 13-54 and test your ap-
plication on your device or emulator.

NOTE: The TinyWebDB component requires that you set up a custom Web
service to host the database. At the time of this writing, the online App Inventor
documentation includes instructions for setting up such a service at the follow-
ing location:

http://appinventor.mit.edu/explore/content/custom-tinywebdb-
service.html

 13.10 TinyWebDB
The TinyWebDB component in App Inventor allows applications to share data stored
on the Web. It works much like the TinyDB in that it stores data in tag-value pairs.
The difference is that the database is on the Web, and therefore multiple applications
can access it.

http://appinventor.mit.edu/explore/content/custom-tinywebdb-service.html
http://appinventor.mit.edu/explore/content/custom-tinywebdb-service.html
http://appinventor.mit.edu/explore/content/custom-tinywebdb-service.html

 Review Questions 617

Review Questions

Multiple Choice

 1. What method of the SoundRecorder component is used to start a recording?

a. Record
b. Go
c. Start
d. None of the above

 2. We use the ________ event handler to perform certain actions after SoundRecorder
completes a recording.

a. AfterSoundRecorded
b. StoppedRecording
c. AfterStoppedRecording
d. AfterRecordedSound

 3. Which component allows you to take photos with the phone’s camera?

a. PictureTaker
b. Camera
c. ImagePicker
d. ImageTaker

 4. We use the __________ to process images after taking a picture.

a. AfterPicture event handler
b. ClickPicture event handler
c. AfterPicture function that returns an image
d. TakePicture event handler

The TinyWebDB component has one property, the ServiceURL which is the URL of
the Web server and path of the database.

Similar to TinyDB, there is a GetValue method that requires you to give it a
tag. Based on the tag supplied to it, the method will search the TinyWebDB
for the a ssociated value. There is also a StoreValue method that will store a
t ag-value pair.

There are three event handlers: GotValue, ValueStored, and WebServiceError.
The GotValue event handler is triggered if the GetValue is successful and will
provide the tag and value for use in the event handler. The ValueStored event
handler is t riggered when a successful store has been processed. If there is a com-
munication error with the Web service that communicates with the database, the
WebServiceError event handler is triggered and includes the error message.

618 Chapter 13 Other App Inventor Capabilities

 5. What file formats does App Inventor accept for Video?

a. .wmv
b. .3gp
c. .mp4
d. All of the above

 6. Which method do we use to get the size of a video in the VideoPlayer component?

a. GetDuration
b. GetTime
c. GetVideoTime
d. GetLength

 7. Which common piece of information do the PhoneNumberPicker and
ContactPicker provide when a contact is selected?

a. Phone number
b. Email address
c. Address
d. All of the above

 8. What property is not available for a contact when chosen with the ContactPicker?

a. Email address
b. Picture
c. Phone number
d. Name

 9. What properties are available for a contact when chosen with the EmailPicker?

a. Email address
b. Picture
c. Phone number
d. Name

 10. What two properties must be set in an App Inventor application before attempt-
ing to connect to a Twitter account?

a. Consumer key, Consumer secret
b. User ID, Password
c. Twitter Account, Twitter Password
d. None of the above

Short Answer

 1. List some common applications that use the device’s camera to take pictures.
What kinds of applications can you think of that might use the device’s
 camera?

 2. Why might we need to manipulate the duration of a video before displaying it to
the user?

 Programming Projects 619

 3. What are the steps to pick a contact’s phone number by speaking a name into the
app and then making a call to that contact? What components would you use to
make this voice-recognized call app?

 4. What are the steps needed to log in to a Twitter account via an App Inventor
 application? What component(s) are needed?

 5. What is the advantage of a TinyWebDB over a TinyDB?

Exercises
 1. Save Recordings

Write an application that allows the user to record audio and, if they accept the
recording, store it to a list.

 2. Save Pictures

Write an application that allows a user to take pictures with the phone and, if
they accept the photo (in App Inventor), save it to a list.

 3. Contacts Shortcuts

Write an application that displays pictures of contacts in the contact list, and lets
the user pick up a contact and make a call to the picked contact.

 4. Show Spoken Message

Write an application that allows the user to speak into the phone. Once speaking
is over, show the message on the Screen in text.

 5. Read Barcode

Write an application that speaks out the results of the Barcode scanner.

Programming Projects
 1. Speaking Sprites

Write an application that:
a. Includes three ImageSprites.
b. Allows the user to use the ImagePicker to set the Image property for each sprite.
c. Allows the user to record three audio clips for each sprite (and save them).
d. Plays back a Sprite’s recorded sound when it is touched.

Use the ImagePicker and SoundRecoder components.

 2. Trip Events Handler

Sometimes it is useful to take pictures and add captions to create long-lasting
memories. Create an application that allows the user to take photos and add
details corresponding to the image. The photo should be taken using the Camera
component and subsequently stored to a variable. The user can then speak into
the app a caption associated with the image.

Once the user confirms the message recorded and the photo, store them in a
TinyDB as a tag-value pair.

VideoNote
The Show Spoken
Message App

620 Chapter 13 Other App Inventor Capabilities

 3. Gift Shopping List - Modification

Modify the “Gift Shopping List” to show a list of the stored names and photos
based on a Button click.

 4. Scan Barcode

Consider that the names of students are concealed in barcodes on their exam
booklets. Write an app that scans a barcode and takes the corresponding score
into a TextBox. The app should then use the result of the scanner as a tag and its
score as the value, and store the name and score as a tag-value pair in a TinyDB.

Setting Up App Inventor

Create a Google Account
To use App Inventor, you must have a Google account. (If you have a Gmail account, then
you already have a Google account, so you can skip this step.) To set up a Google account,
go to www.google.com/accounts/newaccount. Figure A-1 shows how the screen appeared
at the time this book was written. Simply enter the requested information, then scroll to
the bottom of the screen and click Next step. Your Google account is now set up. Remem-
ber the username that you entered. You will need it when you log into App Inventor.

621

A
p

p
en

d
Ix

A

Figure A-1 The Create a New Google Account Screen (Source: Google and the Google logo are

registered trademarks of Google Inc., used with permission.)

Set up App Inventor
Once you have your Google account, you can set up App Inventor. Go to the App
Inventor 2 home page: http://appinventor.mit.edu/explore/. See Figure A-2.

http://www.google.com/accounts/newaccount
http://appinventor.mit.edu/explore

622 Appendix A Setting Up App Inventor

Figure A-2 App Inventor 2 Home page (Source: MIT App Inventor 2)

Figure A-3 Setup Instructions (Source: MIT App Inventor 2)

The screen appears in Figure A-2. Click Get Started and you will see a page similar to
the one shown in Figure A-3. On that page, click the Setup Instructions link shown
in the figure.

Appendix A Setting Up App Inventor 623

Notice in Figure A-4 that you have three options available: Connect via Wi-Fi and
AI Companion (recommended), Connecting to the Emulator (if you do not have a
device), and Connecting via USB (you have a device, but not Wi-Fi).

Figure A-4 Setting Up App Inventor 2 (Source: MIT App Inventor 2)

NOTE: See Appendix B for the Wi-Fi/AI Companion instructions.

624 Appendix A Setting Up App Inventor

Figure A-5 Installing the AI Starter for the emulator (Source: MIT App Inventor 2)

Choose the appropriate operating system to
install the AI Starter onto your computer. The
AI Starter is needed for both the emulator
and the USB connection options.

Setting up the Emulator
Click on Option Two (instructions link) shown in Figure A-4. You will come to the
instructions page shown in Figure A-5.

Appendix A Setting Up App Inventor 625

Setting up the USB
Step 1: Click on Option Three (instructions link) shown in Figure A-4. You will

come to the instructions page shown in Figure A-6. Choose the appro-
priate operating system link and install the AI Starter by following the
instructions.

Figure A-6 (Source: MIT App Inventor 2)

NOTE: See Appendix B for USB connection via the AI Companion instructions.

This page intentionally left blank.

Connecting an Android
Device to App Inventor

You can run your App Inventor applications on your device while you are developing in
App Inventor. To do this your device must be connected to App Inventor. Your device
can connect to App Inventor two different ways: via Wi-Fi connection (AI Companion)
or a USB cable.

To use Wi-Fi and the AI Companion, you need both your computer and mobile device
to be connected to the same Wi-Fi network. You also need to be sure the AI Starter is up
and running on your computer. See Appendix A: Setting Up App Inventor.

If you have a Wi-Fi connection available, it is generally advised to use this method. If
you are working with several developers or more, such as in a lab environment, you may
need to use USB cables if problems occur with the wireless connections.

Connecting via Wi-Fi and the AI2 Companion App

Download and install the MIT AI Companion App
Before you can connect via Wi-Fi, you must download MIT’s App Inventor Companion
App found on the Google Play Store.

627

A
p

p
en

D
Ix

B

628 Appendix B Connecting an Android Device to App Inventor

Step 2: Tap the Install Button to install the application. See Figure B-2.

Figure B-1 Search Google play (Source: Google and the Google logo are registered trademarks of

Google Inc., used with permission.)

Step 1: Go to the Play Store on your device and search for “MIT AI2 Companion”.
Once the application is in the returned list, tap it to select. See Figure B-1.

Appendix B Connecting an Android Device to App Inventor 629

Figure B-2 Install the MIT AI2 Companion App (Source: Google and the Google logo are

registered trademarks of Google Inc., used with permission.)

630 Appendix B Connecting an Android Device to App Inventor

Step 3: Accept the Apps permission requirements. App Inventor needs these
 permissions on your device to perform various app capabilities.

Figure B-3 Accept permissions (Source: Google and the Google logo are registered trademarks of

Google Inc., used with permission.)

Step 4: Once you accept the permissions, the installation will begin, as shown in
Figure B-4. Be sure to enable automatic updating of the app. Once it is fin-
ished, tap the OPEN button, as shown in Figure B-5. The app will open on
your device, as shown in Figure B-6 .

Appendix B Connecting an Android Device to App Inventor 631

Figure B-4 Installing (Source: Google and the Google logo are registered trademarks of Google Inc.,

used with permission.)

632 Appendix B Connecting an Android Device to App Inventor

Figure B-5 Open Button (Source: Google and the Google logo are registered trademarks of Google Inc.,

used with permission.)

Appendix B Connecting an Android Device to App Inventor 633

Figure B-6 AI2 Companion App Opened (Source: MIT App Inventor 2)

Step 5: Now that the application is successfully installed and open on your device,
let’s connect it to App Inventor. Open App Inventor 2 on your computer and
choose Connect, and then choose AI Companion, as shown in Figure B-7.

Figure B-7 Connect to AI Companion (Source: MIT App Inventor 2)

634 Appendix B Connecting an Android Device to App Inventor

Step 7: Choose either Scan the QR code from the AI Companion App on your
device, or type in the code (the example code shown in Figure B-8 would
be yfcbaq). The screen on your device should look like Figure B-9.
 Scanning the QR code will simply populate the code in the TextBox for
you and will automatically load your app after the scan. You may find
this approach easier. If you want to type in the code, type it in the Six
Digit Code box and click connect with code to load your app.

Step 6: At this point, App Inventor will generate a QR code and a text code as
shown in Figure B-8.

Figure B-8 App Inventor Code (Source: MIT App Inventor 2)

Appendix B Connecting an Android Device to App Inventor 635

Figure B-9 Companion App Connection (Source: MIT App Inventor 2)

Step 8: Your application should now show up on your phone. If it does not, be sure
that you have the latest version of the MIT AI2 Companion App and that
your phone and computer are connected to Wi-Fi. You can confirm this by
noticing the IP Address at the bottom of the AI2 Companion App Screen.
See Figure B-9.

NOTE: If you have trouble with the Wi-Fi connection instructions, there may be
a problem with your device’s connection. You can read about connection issues at
the following location on the App Inventor site:

http://appinventor.mit.edu/explore/support/explain-wifi-connection.html

http://appinventor.mit.edu/explore/support/explain-wifi-connection.html

636 Appendix B Connecting an Android Device to App Inventor

Figure B-10 Connect via USB (Source: MIT App Inventor 2)

NOTE: If you have trouble with the USB connection instructions, there may be
a problem with your device’s connection or the settings on your device. You can
read about connection issues at the following location on the App Inventor site:

http://appinventor.mit.edu/explore/ai2/setup-device-usb.html#step2

Connecting via USB
To connect via USB, you have your device connected to your computer via USB cable.
You also need to be sure the AI Starter is up and running on your computer. See
Appendix A: Setting Up App Inventor.

Next, it’s as simple as choosing Connect and then USB in App Inventor. See Figure B-10.

http://appinventor.mit.edu/explore/ai2/setup-device-usb.html#step2

Uploading your application
to app Inventor Gallery and
Google Play Store

Uploading your App to the App Inventor Gallery
The App Inventor Gallery is available at gallery.appinventor.mit.edu. The Gallery is a place
where you can go to view and download other App Inventor applications, upload your
own to share, learn, and collaborate with other App Inventor developers. The Gallery is an
open-source environment, so you can see others’ code and they can see yours. This environ-
ment fosters learning because developers can learn from each other and share their ideas.

Joining the App Inventor Gallery
Before you can upload your apps to the Gallery, you will need to join it and submit a
request form. To join, use your Google account to log in at gallery.appinventor.mit.
edu. At first, you won’t be able to see or upload apps. You will have to request to be
accepted. There is a button on the home page that will bring you to the request form to
fill out. Full access should be granted within a day or two.

Once you have full access to the site, you can upload and search for applications.

Finding Apps
To find apps in the Gallery, go to the Find Apps menu link and notice the Search Screen.
Search using keywords that relate to what you want to see. See Figure C-1.

Uploading Apps
Before you upload your application, you will need to have two files ready: the source
code (.aia file) of your application and an image that will be displayed on your app’s
page when your application shows up on the Search Screen.

To download your source file from App Inventor, go to My Projects and select the
project that you want to download. Then, choose Export selected project (.aia) to my
computer. See Figure C-2.

637

a
P

P
en

d
Ix

C

638 appendix C Uploading your application to app Inventor Gallery and Google Play Store

Figure C-1 Find apps in the Gallery (Source: MIT app Inventor 2)

Your source will be saved to your computer as an .aia file. For example, the project
shown selected in Figure C-2 would be saved as SpeakAMessage.aia. Remember
where this file is saved; you will need it when you upload your app to the Gallery.

You will also need an image that represents your application. The Gallery will scale
your image to a 180 by 230 pixel image. The image file size is 350 KB. Remember
where this image is saved, you will need this also when you upload your app.

With your source file and image ready, go to the My Apps menu link in the Gallery to
upload your app. You will see the Add New Application button as shown in Figure C-3.

Figure C-2 download Source from app Inventor (Source: MIT app Inventor 2)

appendix C Uploading your application to app Inventor Gallery and Google Play Store 639

Figure C-3 add application (Source: MIT app Inventor 2)

Next, you will see the screen shown in Figure C-4, which gives you the opportunity to
fill in information about your application.

Figure C-4 Information about your app (Source: MIT app Inventor 2)

Fill in the information required and any tags you’d like to associate with your appli-
cation. Required information is noted with a red asterisk. The source file will be your
downloaded App Inventor .aia file. When you are done, click the Save Application
button, and that’s it! Your app will be in the Gallery to share with others.

640 appendix C Uploading your application to app Inventor Gallery and Google Play Store

The properties for the application version will then show at the bottom right in the
Properties Panel. There are two properties: VersionCode and VersionName. Both of
these properties will need to be changed with each new upload of the application to
the Google Play Store. See Figure C-5.

The VersionCode defaults to 1. This number needs to be increased by one each time
you make a change and want to re-upload it to the Play Store, whether it is a small
or large change.

The VersionName property is a string. It can hold any string value, but it defaults
to 1.0. A developer can increase the number by .1 for a minor change and by 1 for
a major change. For example, a small change might increase the VersionName from
1.2 to 1.3. If there is then a major change, the VersionName will be 2.0.

Download the .apk
Once your application is complete, tested, and versioned, you can download the .apk
file, which will be uploaded to the Google Play Store. To download the .apk, you
need to need to build the application and download it to your computer. Open the
application that you want to download, at the top of the screen choose Build, then
App (save .apk to my computer). See Figure C-6.

Uploading your App to the Google Play Store
Your App Inventor apps can be uploaded for distribution on the Google Play Store.
There are just a few steps to complete on your app before you are ready.

App Version
You must give your application a VersionCode number before packaging it for use on
a device and uploading it to Google Play. To do this, go to the Designer and choose
the Screen1 Component in the Components column. See Figure C-5.

Figure C-5 Version (Source: MIT app Inventor 2)

Figure C-6 Package for Phone (Source: MIT app Inventor 2)

Application Backup
It is a good idea to keep safe backups of any application that is published. App Inven-
tor projects can be backed up very easily. You simply go to My Projects and select the
project to download by the CheckBox and then choose Export selected project (.aia) to
my computer. See Figure C-7.

Figure C-7 Backup Source Code (Source: MIT app Inventor 2)

The action in Figure C-7 will create an .aia file of the source that can be saved on your
computer. Keep your .aia files in a safe place. It is advisable to backup each version
of your code in case you need to use a prior version. Backups are important because
there is no guarantee they will always be available on the server and customers may
rely on you to fix and enhance your application over time.

Application Icon
You will need an icon for your app that meets the Android icon guidelines. You
can read about the guidelines here: http://developer.android.com/design/style/
i conography.html.

appendix C Uploading your application to app Inventor Gallery and Google Play Store 641

http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html

642 appendix C Uploading your application to app Inventor Gallery and Google Play Store

Application Key Stores
When you build your project’s .apk file, App Inventor creates a private digital key file
called a keystore, which is associated with the application and your account. This key
will stay the same with each new version of your application. You will need this key
to upload your application to the Google Play Store.

When your application is installed on an Android device, the keystore is remembered
by the device. If a user installs a new version of the application, the new version must
be signed with the same keystore as the original version. It is important that you do
not lose the keystore.

You should download the keystore file and save it somewhere safe that you can
remember. If the file is lost, there is no way to recover it. There is no guarantee that
your keystore will always be on the App Inventor servers, so be sure to save this file
for any application that you publish to the Google Play Store.

To download the keystore, go to My Projects and select the project by the CheckBox
and then choose Export keystore. See Figure C-8.

Figure C-8 (Source: MIT app Inventor 2)

Publish your App
You are now ready to publish your app!

To get started, you may want to read the publishing overview page at: http://developer.
android.com/tools/publishing/publishing_overview.html

Another good resource for information is the launch checklist at: http://developer.
android.com/distribute/googleplay/publish/preparing.html

When you are ready to publish, visit the publishing page and follow the steps at: http://
developer.android.com/distribute/googleplay/publish/index.html.

http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/distribute/googleplay/publish/preparing.html
http://developer.android.com/distribute/googleplay/publish/index.html
http://developer.android.com/distribute/googleplay/publish/index.html
http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/distribute/googleplay/publish/preparing.html

Component Reference

This appendix provides a quick reference for the App Inventor components that are
covered in this book. For each component, we give a brief description of properties,
events, and methods.

This book covers many, but not all, of the App Inventor components. For a complete
reference covering all of the components, see the following site:

http://appinventor.mit.edu/explore/content/reference-documentation.html

AccelerometerSensor
Properties

Available: true if the Android device has an accelerometer available, false if it
does not.

Enabled: If set to true, the Accelerometer component is enabled for use.
XAccel: X-dimension acceleration
YAccel: Y-dimension acceleration
ZAccel: Z-dimension acceleration
MinimumInterval: Property to set the minimum time between shakes in milliseconds.

If you’ve programmed an action based on a phone shake, but you don’t want to
perform that action more than once per second, you would set the MinimumInter-
val to 1000 milliseconds, or one second. If someone is shaking the phone very fast,
your action won’t happen more than you want it to.

Events
AccelerationChanged (number xAccel, number yAccel, number zAccel):

This event is triggered whenever there is a change in the device’s acceleration.
Shaking(): Triggered repeatedly when there is a quick shake of the device.

Methods
None

643

A
p

p
en

d
ix

D

http://appinventor.mit.edu/explore/content/reference-documentation.html

644 Appendix d Component Reference

ActivityStarter
Properties

Action: The activity action. For example, android.intent.action.WEB_SEARCH,
android.intent.action.View or android.intent.action.MAIN

ActivityClass: The activity’s class name.
ActivityPackage: The activity’s package name.
DataType: Data type of file associated with the activity.
DataUri: URI passed to activity, if the activity needs it.
ExtraKey: Key passed to activity, if the activity needs it.
ExtraValue: Additional value passed to activity, if the activity needs it.
Result: Returned result of the activity.
ResultName: The name used to access the returned result of the activity.
ResultType: The type of data returned from the activity.
ResultUri: URI information of data returned from the activity.

Events
ActivityError(text message): Raised when error occurred using the Activit-

yStarter.
AfterActivity(text result): Raised when the activity is complete or ended.

Methods
text ResolveActivity(): This method will return, as text, the name of the

activity for the ActivityStarter. Often used to determine if the activity is avail-
able on a device as it will return an empty string if not.

StartActivity(): Invokes the activity associated with the ActivityStarter.

Ball
Properties

Enabled: If true, the Sprite will move when its speed is non-zero. If false, the
Sprite will not move.

Heading: The Heading property will set the direction of the Sprite in degrees. So,
90 (degrees) will set the direction of the Sprite to straight up, 180 will set the
direction to left, 270 is down and 0 is right. For example, if you want the Sprite
to move from the bottom left corner to the top right corner in a straight line of
a 200 by 200 pixel Canvas, you will set the heading to 45.

Interval: The Interval sets how often the Sprite will move in milliseconds. For
example, 1,000 milliseconds equal one second, so the larger you set this prop-
erty, the slower your Sprite will move.

PaintColor: Color of the Ball Sprite.
Radius: Radius of the Ball Sprite.
Speed: The Speed property is the number of pixels to move each interval. So, if you

have your Speed set to 10, and the Interval set at 1,000 milliseconds, your Sprite
will move 10 pixels every second (in the direction set by the Heading).

Visible: true if the Sprite is visible, false if hidden.
X: The Sprite’s left edge’s horizontal position, relative to the left edge of the Canvas.
Y: The Sprite’s top edge’s vertical position, relative to the left edge of the Canvas.
Z: How the sprite should be layered relative to other sprites, with higher-n umbered

layers in front of lower-numbered layers.

 Appendix d Component Reference 645

Events
CollidedWith(component other):
Raised when two Sprites collide. The collision is detected by the Sprites un-rotated

position, meaning tall narrow or short wide Sprite collisions will be inaccurate.
Dragged(number startX, number startY, number prevX, number prevY, num-

ber currentX, number currentY): Raised when a Sprite is dragged by a user.
The start (x,y) coordinates represent where the user first touched the Can-
vas. The prev (x, y) coordinates represent where the drag began. The current
(x,y) coordinates indicate the current position of the Sprite. Used in conjunction
with the MoveTo method to make the Sprite move.

EdgeReached(number edge): Triggered when a Sprite reaches the edge of
a C anvas. If this event calls Bounce with that edge, the Sprite will appear to
bounce off of the edge it reached.

 The edge argument tells which edge (or corner) was reached. The edge values
are as follows:
● north 5 1
● northeast 5 2
● east 5 3
● southeast 5 4
● south 5 21
● southwest 5 22
● west 5 23
● northwest 5 24

Flung(number x, number y, number speed, number heading, number xvel,
number yvel):
A fling is a quick swipe of the Canvas and will invoke this event. The event
records the X,Y coordinates of where the fling started and also provides the X
and Y velocities of the fling (xvel and yvel). The Speed and Heading values of
the flung Ball are also available.

NoLongerCollidingWith(component other):
Triggered when two collided Sprites are no longer colliding.

TouchDown(number x, number y):
Triggered when the user touches the Sprite, by placing a finger down and hold-
ing it there. x and y are the Canvas coordinates of the touch.

TouchUp(number x, number y):
Triggered when the user stops touching the Sprite, by lifting their finger from a
touch. x and y are the Canvas coordinates of the touch.

Touched(number x, number y, Boolean touchedSprite):
Triggered when the user touches the Sprite, by touching and then immediately
lifting their finger. x and y are the Canvas coordinates of the touch. touched-
Sprite is true if a Sprite is being dragged, false if not.

Methods
Bounce(number edge): Simulates the Sprite bouncing off an edge or corner. Gen-

erally, the edge argument is the one returned by EdgeReached.
Boolean CollidingWith(component other): Returns true if the calling Sprite

is colliding with the other Sprite. Otherwise, returns false.
MoveIntoBounds(): If part of the Sprite moves outside of the Canvas bounds,

this method is used to place the entire Sprite back on the Canvas. If the Sprite is

646 Appendix d Component Reference

too wide for the Canvas, it will align the Sprite on the left edge. If it is too tall, it
will align the top of the Sprite along the top edge of the Canvas.

MoveTo(number x, number y): Moves the Sprite’s left top corner to the passed
(x,y) coordinates.

PointInDirection(number x, number y): Points the Sprite towards the point
with passed (x,y) coordinates.

PointTowards(component sprite): Points the Sprite towards point towards a
specific Sprite, specified by the sprite argument. The new Heading will be par-
allel to the line joining the center points of the two Sprites.

BarcodeScanner
Properties

Result: The result after a barcode or QR is read.

Events
AfterScan(text result): Raised after a successful scan.

Methods
DoScan(): Starts the scanner.

Button
Properties

BackgroundColor: Color of the Button background.
Enabled: If true, the Button is usable.
FontBold: Sets Button’s text to bold.
FontItalic: Sets Button’s text to display in italics.
FontSize: Sets Button’s text point size.
FontTypeface: Sets Button’s text font family.
Height: Button’s height
Image: Path of the image to display as the Button’s background.
Shape (designer only): Sets Button’s shape. Values are: default, rounded, rectangu-

lar, oval. Does not apply if Image is being displayed.
ShowFeedback: Determines if a visual feedback is shown for a Button that has an

Image as background.
Text: Sets the text that displays on the Button.
TextAlignment: Sets Button’s text alignment. Values are left, centered, or right.
TextColor: Sets Button’s text color.
Visible: Determines if Button is visible. If true, Button shows. If false, Button

is hidden.
Width: Button’s width

Events
Click(): Called when a user clicks the Button.
GotFocus(): Called when the user hovers over the Button and can then click it.
LongClick(): Called when a user long clicks the Button.
LostFocus(): Called when a user hovers off a Button and it is no longer clickable.
TouchDown(): Triggered when a Button is first touched.
TouchUp(): Triggered when a Button’s touch ends.

 Appendix d Component Reference 647

Methods
None

Camcorder

Properties
None

Events
AfterRecording(text clip): Triggered after a video was recorded and provides

the path of the video in the clip argument.

Methods
RecordVideo(): Records the video, and once the video is complete, this method

will raise the AfterRecording event.

Camera

Properties
UseFront: Indicates if the front-facing camera should be used: true if yes, false if

no. If there is no front-facing camera available, this property is ignored and the
camera loads normally.

Events
AfterPicture(Text image): Triggered after a picture was taken and provides

the path of the picture in the image argument.

Methods
TakePicture(): Invokes the device’s camera and takes a picture and then will

raise the AfterRecording event.

Canvas

Properties
BackgroundColor: The background color of the Canvas.
BackgroundImage: The file name of the Image that fills the background of the Canvas.
FontSize: The font size in pixels of text that is written on the Canvas.
Height: The height of the Canvas. This can be in pixels, set to fill the parent com-

ponent or to “Automatic” which is chosen by the system.
LineWidth: The width of a line drawn on the Canvas.
PaintColor: The color of lines or circles drawn on the Canvas.
TextAlignment: Sets the alignment of text written to the Canvas to left, center, or

right, set at design time only.
Visible: Determines if the Canvas is visible on the screen. This property is set to

true if visible, false if hidden.
Width: The width of the Canvas. This can be in pixels, set to fill the parent compo-

nent or to “Automatic”, which is chosen by the system.

648 Appendix d Component Reference

Events
Dragged(number startX, number startY, number prevX, number prevY, num-

ber currentX, number currentY, Boolean draggedSprite):
Triggered when a user drags accross a Canvas. As a user drags across a Canvas:
● startX and startY are the Canvas coordinates where the user first touched

the screen.
● prevX and prevY are the Canvas coordinates at the starting point of the drag.
● currentX and currentY are the Canvas coordinates at the current position

of the drag.
● draggedSprite is true if a Sprite is being dragged, false if not.

Flung(number x, number y, number speed, number heading, number xvel,
number yvel, Boolean flungSprite):
Triggered when a user performs a fling gesture on the Canvas. A fling is a quick-

swipe on the device. When there is a fling on a Canvas:
● X and y are the Canvas coordinates at the starting point of the fling.
● The speed is the pixels per millisecond of the fling.
● The heading is the direction in degrees of the fling (0–360).
● xVel and yVel indicate the velocity of the fling’s vector.
● flungSprite is true if a Sprite is being flung, meaning there was a Sprite

near the starting point of the fling, false if not.
TouchDown(number x, number y)
Triggered when the user touches the Canvas, by placing a finger down and holding

it there. x and y are the Canvas coordinates of the touch.
TouchUp(number x, number y)
Triggered when the user stops touching the Canvas, by lifting their finger from a

touch. x and y are the Canvas coordinates of the touch.
Touched(number x, number y, Boolean touchedSprite)
Triggered when the user touches the Canvas, by touching and then immediately

lifting their finger. x and y are the Canvas coordinates of the touch.
touchedSprite is true if a Sprite is being dragged, false if not.

Methods
Clear(): Clears the Canvas except for the background color or image.
DrawCircle(number x, number y, number r): Draws a filled in circle on the

Canvas with a radius r and the center at the coordinates (x, y).
DrawLine(number x1, number y1, number x2, number y2): Draws a line

between the coordinates (x1, y1) and (x2, y2).
DrawPoint(number x, number y): Draws a point at the (x, y) coordinates on the

Canvas.
DrawText(text text, number x, number y): Draws the text relative to the (x,

y) coordinates using the FontSize and TextAlignment properties.
DrawTextAtAngle(text text, number x, number y, number angle): Draws

the text at the angle specified by angle, starting at the (x, y) coordinates
using the FontSize and TextAlignment properties.

number GetBackgroundPixelColor(number x, number y): Returns, as a number,
the color at the (x,y) coordinates. It gets the color of a background, line, circle
and drawn point at these coordinates but does not include Sprite colors.

number GetPixelColor(number x, number y): Returns, as a number, the color
the (x,y) point.

 Appendix d Component Reference 649

Save(): Will save a picture of the Canvas to the device. The ErrorOccured event
of the Screen component will be called if the save fails.

text SaveAs(text fileName): Will save a picture of the Canvas to the device. The
fileName must be provided and must have one of the following extensions: “.jpg”,
“.jpeg”, “.png”. The extension will determine the file type of JPEG or PNG.

SetBackgroundPixelColor(number x, number y, number color): Sets the
color at the (x,y) coordinates to the value of color argument.

CheckBox
Properties

BackgroundColor: Color of the CheckBox’s background.
Checked: If the CheckBox is checked, this property is true. It is false if it is not

checked.
Enabled: If true, the CheckBox is usable and can be checked.
FontBold: Sets CheckBox’s text to bold.
FontItalic: Sets CheckBox’s text to display in italics.
FontSize: Sets CheckBox’s text point size.
FontTypeface: Sets CheckBox’s text font family.
Height: CheckBox’s height.
Text: Sets the text that displays on the CheckBox.
TextColor: Sets CheckBox’s text color.
Visible: Determines if CheckBox is visible. If true, CheckBox shows. If false,

CheckBox is hidden.
Width: CheckBox’s width.

Events
Changed(): User tapped and released check box.
GotFocus(): Called when the CheckBox becomes the focused component.
LostFocus(): Called when the CheckBox is not the focused component anymore.

Methods
None

Clock
Properties

TimerAlwaysFires: If this property is set to true, the timer will fire even if the
application is not active on the screen.

TimerEnabled: If this property is set to true, the timer will fire.
TimerInterval: The timer’s interval in milliseconds.

Events
Timer(): Triggered when the timer is fired.

Methods
InstantInTime AddDays(InstantInTime instant, number days): An instant in

time which is the number of days, number argument, after the instant argument.
InstantInTime AddHours(InstantInTime instant, number hours): An instant

in time which is the number of hours, hours argument, after the instant argument.

650 Appendix d Component Reference

InstantInTime AddMinutes(InstantInTime instant, number minutes): An
instant in time which is the number of minutes, minutes argument, after the
instant argument.

InstantInTime AddMonths(InstantInTime instant, number months): An
instant in time which is the number of months, months argument, after the
instant argument.

InstantInTime AddSeconds(InstantInTime instant, number seconds): An
instant in time which is the number of seconds, seconds argument, after the
instant argument.

InstantInTime AddWeeks(InstantInTime instant, number weeks): An
instant in time which is the number of weeks, weeks argument, after the
instant argument.

InstantInTime AddYears(InstantInTime instant, number years): An
instant in time which is the number of years, Years argument, after the instant
argument.

number DayOfMonth(InstantInTime instant): A number representing the day
of the month of the instant in time in the instant argument.

number Duration(InstantInTime start, InstantInTime end): The millisec-
onds between instants start and end.

text FormatDate(InstantInTime instant): A text representation of an instant
which includes day, month, and year.

text FormatDateTime(InstantInTime instant): A text representation of an
instant which includes day, month, year, and time.

text FormatTime(InstantInTime instant): A text representation of an instant
which shows the time.

number GetMillis(InstantInTime instant): Milliseconds since 1970 of the
instant.

number Hour(InstantInTime instant): Instant’s hour of the day.
InstantInTime MakeInstant(text from): Returns an instant derived from the

from argument in the form MM/DD/YYYY hh:mm:ss or MM/DD/YYYY or
hh:mm.

InstantInTime MakeInstantFromMillis(number millis): An instant derived
from a number of milliseconds from 1970.

number Minute(InstantInTime instant): A number representing the minute of
the hour.

number Month(InstantInTime instant): A number (1–12) representing the
month of the year.

text MonthName(InstantInTime instant): Text name of the month.
InstantInTime Now(): The current instant from the device’s time.
number Second(InstantInTime instant): A number representing the second of

the minute.
number SystemTime(): The device’s time in milliseconds.
number Weekday(InstantInTime instant): A number (1–7) representing the

day of the week, 1 being Sunday, 2 Monday, and so on.
text WeekdayName(InstantInTime instant): Text name of the day of the

week.
number Year(InstantInTime instant): Number representing the year of an

instant.

 Appendix d Component Reference 651

ContactPicker
Properties

Enabled: If true, the ContactPicker is usable.
BackgroundColor: Color of the ContactPicker background.
ContactName: Selected contact’s name.
EmailAddress: Selected contact’s primary email address.
Picture: Selected contact’s picture.
FontBold: Sets ContactPicker’s text to bold.
FontItalic: Sets ContactPicker’s text to display in italics.
FontSize: Sets ContactPicker’s text point size.
FontTypeface: Sets ContactPicker’s text font family.
Image: Path of the image to display as the ContactPicker background.
Shape (designer only): Sets ContactPicker’s shape. Values are: default, rounded,

rectangular, and oval. Does not apply if Image is being displayed.
ShowFeedback: Determines if a visual feedback is shown for a Button that as an

Image as background.
Text: Sets ContactPicker’s text that displays on the Button.
TextAlignment: Sets ContactPicker’s text alignment. Values are: left, centered, right.
TextColor: Sets ContactPicker’s text color.
Visible: Determines if ContactPicker is visible. If true, ContactPicker shows. If

false, ContactPicker is hidden.
Width: ContactPicker’s width
Height: ContactPicker height

Events
AfterPicking(): This event is triggered once the user has picked a contact.
BeforePicking(): This event is triggered once the user has tapped the Contact-

Picker but before they have picked a contact.
GotFocus(): Called when ContactPicker becomes the focused component.
LostFocus(): Called when ContactPicker loses the focus.

Methods
Open(): Opens the ContactPicker programmatically as though it were tapped by

a user.

DatePicker
Properties

BackgroundColor: The button’s background color.
Day: The Day of the month that was last picked using the DatePicker.
Enabled: If true, the DatePicker is usable.
FontBold: Sets DatePicker font to bold.
FontItalic: Sets DatePicker font to italic.
FontSize: Sets DatePicker font’s pixel size.
FontTypeface: Sets DatePicker font typeface (designer only).
Height: Sets DatePicker’s height.
Image: Specifies the path of the button’s image.

652 Appendix d Component Reference

Month: the number of the Month that was last picked using the DatePicker.
 January = 1, December = 12.

MonthInText: Returns the name of the Month that was last picked using the
DatePicker.

Shape: Specifies the button’s shape (default, rounded, rectangular, oval). Only in
the designer and only if an image is not specified.

ShowFeedback: Indicates if feedback is needed for a DatePicker with a back-
ground image.

Text: Sets the text that displays on the DatePicker.
TextAlignment: Aligns the text left, center, right. Only in designer.
TextColor: Color of Datepicker text.
Visible: Indicates if Datepicker is visible or hidden.
Width: Width of the Datepicker
Year: The Year that was last picked using the Datepicker.

Events
AfterDateSet(): Triggered after the user chooses a date.
GotFocus(): When Datepicker becomes the focused component.
LostFocus(): When Datepicker loses focus.
TouchDown(): Triggered when a button is first touched.
TouchUp(): Triggered when a button touch ends.

Methods
None

EmailPicker
Properties

Enabled: If true, the EmailPicker is usable.
BackgroundColor: Color of the EmailPicker’s background.
FontBold: Sets EmailPicker’s text to bold.
FontItalic: Sets EmailPicker’s text to diplay in italics.
FontSize: Sets EmailPicker’s text point size.
FontTypeface: Sets EmailPicker’s text font family.
Text: Sets EmailPicker’s text that displays on the Button.
TextAlignment: Sets EmailPicker’s text alignment. Values are: left, centered, right.
TextColor: Sets EmailPicker’s text color.
Hint: Shown in gray if Text property is empty.
Visible: Determines if EmailPicker’s is visible. If true, EmailPicker’s shows. If false,

EmailPicker’s is hidden.
Width: EmailPicker’s width
Height: EmailPicker’s height

Events
GotFocus(): Called when EmailPicker becomes the focused component.
LostFocus(): Called when EmailPicker loses the focus.

Methods
None

 Appendix d Component Reference 653

File

Properties
None

Events
GotText(text text): Raised when the contents from a file have been read.

Methods
AppendToFile(text text, text fileName): Will append the value passed in

the text argument to the end of the file specified in the fileName argument.
If the file does not exist, it will be created and then the text appended. Files that
start with a “/” will be appended and/or created in the sdcard folder. Files with-
out a “/” will be created/appended in the application folder.

Delete(text fileName): Will delete the file specified in the fileName argument.
Files that start with a “/” will be deleted from the sdcard folder. Files without a
“/” will be deleted from the application folder.

ReadFrom(text fileName): Reads text from the file specified in the fileName
argument. Files that start with a “/” will be read from the sdcard folder. Files
without a “/” will be read from the application folder.

SaveFile(text text, text fileName): Creates and saves a file with the file
name specified in the fileName argument. If a file already exists with the same
name, the file will be overwritten. Files that start with a “/” will be saved in
the sdcard folder. Files without a “/” will be saved in the application folder.

HorizontalArrangement

Properties
AlignHorizontal: A numeric value that indicates how the contents of the arrange-

ment are horizontally aligned:
● 1 for left aligned
● 2 for centered
● 3 for right aligned

AlignVertical: A numeric value that indicates how the contents of the arrangement
are vertically aligned:
● 1 for top aligned
● 2 for centered
● 3 for bottom aligned

Height: Height of the HorizontalArrangement in pixels.
Visible: Indicates by true of false if the HorizontalArrangement component is

visible on the Screen.
Width: Width of the HorizontalArrangement in pixels.

Events
None

Methods
None

654 Appendix d Component Reference

Image

Properties
Animation: To animate an image, values: ScrollRightSlow, ScrollRight, Scroll-

RightFast, ScrollLeftSlow, ScrollLeft, and ScrollLeftFast.
Height: Height of the Image.
Picture: File name of the picture shown by the Image component.
Visible: Determines if Image is visible. If true, Image shows. If false, Image is hidden.
Width: Width of the Image.

Events
None

Methods
None

ImagePicker
Properties

BackgroundColor: The background color of the ImagePicker.
Enabled: If true or set, the ImagePicker is usable.
FontBold: If set, the text on the ImagePicker bolded.
FontItalic: If set, the text on the ImagePicker is italicized.
FontSize: The point size of the text on the ImagePicker.
FontTypeface: The font family of the text on the ImagePicker.
Height: ImagePicker height in pixels.
Width: ImagePicker width in pixels.
Image: Image to display as the ImagePicker button.
Selection: File path to the image that was selected.
Text: The text on the ImagePicker button.
TextAlignment: Left, center, or right.
TextColor: The color of the text on the ImagePicker.
Visible: Indicates whether the component is visible. true if the component is show-

ing and false if hidden.

Events
AfterPicking(): Triggered after a user picks an item with the ImagePicker.
BeforePicking(): Triggered after a user taps ImagePicker, but before an item is

picked.
GotFocus(): Triggered when the ImagePicker gets the focus.
LostFocus(): Triggered when the ImagePicker loses the focus.

Methods
Open(): Programmatically opens the picker.

ImageSprite
Properties

Enabled: If true, the Sprite will move when its speed is non-zero. If false, the
Sprite will not move.

 Appendix d Component Reference 655

Heading: The Heading property will set the direction of the Sprite in degrees. So,
90 (degrees) will set the direction of the Sprite to straight up, 180 will set the
direction to left, 270 is down, and 0 is right. For example, if you want the Sprite
to move from the bottom left corner to the top right corner in a straight line of
a 200 by 200 pixel Canvas, you will set the heading to 45.

Interval: The Interval sets how often the Sprite will move and is in milliseconds.
For example, 1,000 milliseconds equal one second, so the larger you set this
property, the slower your Sprite will move.

Picture: The file name of the image associated with the Sprite, which determines
the appearance of the Sprite.

Rotates: If the value is set to true, the ImageSprite will rotate in the direction of
the Heading property. If it is false, it will not rotate.

Speed: The Speed property is the number of pixels to move each interval. So, if you
have your Speed set to 10, and the Interval set at 1,000 milliseconds, your Sprite
will move 10 pixels every second (in the direction set by the Heading).

Visible: true if the Sprite is visible, false if hidden.
X: The Sprite’s left edge’s horizontal position, relative to the left edge of the Canvas.
Y: The Sprite’s top edge’s vertical position, relative to the left edge of the Canvas.
Z: How the sprite should be layered relative to other sprites, with higher- numbered

layers in front of lower-numbered layers.

Events
CollidedWith(component other):
Raised when two Sprites collide. The collision is detected by the Sprites un-rotated

position, meaning tall narrow or short wide Sprite collisions will be inaccurate.
Dragged(number startX, number startY, number prevX, number prevY, num-

ber currentX, number currentY): Raised when a Sprite is dragged by a user.
The start (x,y) coordinates represent where the user first touched the Can-
vas. The prev (x, y) coordinates represent where the drag began. The current
(x,y) coordinates indicate the current position of the Sprite. Used in conjunction
with the MoveTo method to make the Sprite move.

EdgeReached(number edge): Triggered when a Sprite reaches the edge of a Can-
vas. If this event calls Bounce with that edge, the Sprite will appear to bounce
off of the edge it reached.

 The edge argument tells which edge (or corner) was reached. The edge values
are as follows:
● north 5 1
● northeast 5 2
● east 5 3
● southeast 5 4
● south 5 21
● southwest 5 22
● west 5 23
● northwest 5 24

Flung(number x, number y, number speed, number heading, number xvel,
number yvel):
A fling is a quick swipe of the Canvas and will invoke this event. The event

records the X,Y coordinates of where the fling started and also provides the X
and Y velocities of the fling (xvel and yvel). The speed and heading values
of the flung Ball are also available.

656 Appendix d Component Reference

NoLongerCollidingWith(component other):
Triggered when two collided Sprites are no longer colliding.

TouchDown(number x, number y):
Triggered when the user touches the Sprite, by placing a finger down and hold-

ing it there. x and y are the Canvas coordinates of the touch.
TouchUp(number x, number y):

Triggered when the user stops touching the Sprite, by lifting their finger from a
touch. x and y are the Canvas coordinates of the touch.

Touched(number x, number y, Boolean touchedSprite)
Triggered when the user touches the Sprite, by touching and then immediately

lifting their finger. x and y are the Canvas coordinates of the touch. touched-
Sprite is true if a Sprite is being dragged, false if not.

Methods
Bounce(number edge): Simulates the Sprite bouncing off an edge or corner. Gen-

erally, the edge argument is the one returned by EdgeReached.
Boolean CollidingWith(component other): Indicates whether there is a colli-

sion between the current and the passed other Sprite, true or false value.
MoveIntoBounds(): If part of the Sprite moves outside of the Canvas bounds,

this method is used to place the entire Sprite back on the Canvas. If the
Sprite is too wide for the Canvas, it will align the Sprite on the left edge. If it
is too tall, it will align the top of the Sprite along the top edge of the Canvas.

MoveTo(number x, number y): Moves the Sprite’s left top corner to the passed
(x,y) coordinates.

PointInDirection(number x, number y): Points the Sprite towards the point
with passed (x,y) coordinates.

PointTowards(component sprite): Points the Sprite towards point towards a
specific Sprite, specified by the sprite argument. The new Heading will be par-
allel to the line joining the center points of the two Sprites.

Label
Properties

BackgroundColor: Color of the Label’s background.
FontBold: Sets Label’s text to bold.
FontItalic: Sets Label’s text to display in italics.
FontSize: Sets Label’s text point size.
FontTypeface: Sets Label’s text font family.
Height: Label’s height
Text: Sets the text that displays on the Label.
TextAlignment: Sets Label’s text alignment. Values are left, centered, or right.
TextColor: Sets Label’s text color.
Visible: Determines if the Label is visible. If true, the Label shows. If false, the

Label is hidden.
Width: Label’s width

Events
None

Methods
None

 Appendix d Component Reference 657

ListPicker
Properties

BackgroundColor: Color of the ListPicker’s background.
ElementsFromString: A comma delimited string that determines the list.
FontBold: Sets ListPicker’s text to bold.
FontItalic: Sets ListPicker’s text to display in italics.
FontSize: Sets ListPicker’s text point size.
FontTypeface: Sets ListPicker’s text font family.
Height: ListPicker’s height
Items: List of items, separated by commas, to display in the ListPicker.
Selection: The List element that is selected.
Text: Sets the text that displays on the ListPicker.
TextColor: Sets ListPicker’s text color.
Visible: Determines if ListPicker is visible. If true, ListPicker shows. If false,

ListPicker is hidden.
Width: The ListPicker’s width.

Events
AfterPicking(): This is called after a user has selected an item from the List-

Picker.
BeforePicking(): This is called after the user has tapped the ListPicker, but

before an item is selected.
GotFocus(): Called when the ListPicker becomes the focused component.
LostFocus(): Called when the ListPicker is not the focused component anymore.

Methods
Open(): Invokes the ListPicker programmatically as if the user tapped it.

ListView
Properties

Elements: Text elements that determine your list.
ElementsFromString: A comma-delimited string that determines the list.
Height: The height of the list
Selection: Select text item of the ListView.
SelectionIndex: The selected index of the item selected from the ListView, start-

ing at 1 for the first item.
ShowFilterBar: Indicates whether or not to show the filter bar. true will show the

bar, false will hide it.
Visible: Determines if ListView is visible. If true, ListView shows. If false,

ListView is hidden.
Width: The width of the list.

Events
AfterPicking(): Raised after a selection is made.

Methods
None

658 Appendix d Component Reference

LocationSensor
Properties

Accuracy: Android device’s accuracy level, in meters.
Altitude: If available, the Android device’s altitude.
AvailableProviders: Hold the list of available service providers, for example: GPS

or Network.
CurrentAddress: Android’s current physical street address.
DistanceInterval:

You can set the Location Sensor to update location information after the device
has moved a certain distance by setting the DistanceInterval property. The
interval is in meters, and if it were set to 10, the location information would
be updated when the device moves at least ten meters from the location of the
previous update. While this property can be useful, keep in mind that it does
not update at every ten-meter move exactly. It only indicates that it will not
update before a ten-meter change.

Enabled: If true, location information of the device is available to the application.
HasAccuracy: If true, the accuracy of the Android device can be determined.
HasAltitude: If true, the altitude of the Android device can be determined.
HasLongitudeLatitude: If true, the longitude and latitude of the Android device

can be determined.
Latitude: The latitude of the Android device.
Longitude: The longitude of the Android device.
ProviderLocked: If true, the device will not change service providers.
ProviderName: The name of the current service provider.
TimeInterval:

The TimeInterval property sets the minimum time interval between updates. If you
set this property to 600,000 it will wait ten minutes before another update. Note
that this does not mean the update will occur every ten minutes exactly, only
that it won’t happen before ten minutes have passed since the p revious update.

Events
LocationChanged(number latitude, number longitude, number altitude):

Raised when the Android device reports a new location.
StatusChanged(text provider, text status): If status of the service provider

changes, this event will be raised.

Methods
number LatitudeFromAddress(text locationName): Returns the latitude of

the address passed to locationName.
number LongitudeFromAddress(text locationName): Returns the longitude of

the address passed to locationName.

OrientationSensor
Properties

Available: true if Android device has an orientation sensor available, false if
it does not.

Enabled: If set to true, the OrientationSensor component is enabled for use.
Azimuth: The Android device’s azimuth angle.

 Appendix d Component Reference 659

Pitch: The Android device’s pitch angle.
Roll: The Android device’s roll angle.
Magnitude

The Magnitude is used to determine how steep the phone is being tilted in any
direction. As the degrees of the Roll and Pitch move away from zero degrees
toward 90 or −90, the Magnitude increases. The Magnitude will have a value
between 0 and 1, with zero being no tilt and 1 being completely vertical.

Angle
Returns the angle that determines what direction the device is being tilted and

returns a number that we can use to move objects in the titled direction.

Events
OrientationChanged(number azimuth, number pitch, number roll): The

Orientation Sensor’s OrientationChanged Event is called each time the
device’s orientation changes.

Methods
None

Notifier
Properties

None

Events
AfterChoosing(Text choice): Called after the user has clicked a button in a

choose dialog box. The choice parameter will hold the text that is displayed on
the button that the user clicked.

AfterTextInput(Text response): Called after the user has closed a text dia-
log box. The response parameter will hold the text that was entered as
input into the dialog box.

Methods
ShowMessageDialog(Text message, Text title, Text buttonText): Displays

a message dialog box displaying the message and title passed as arguments.
The dialog box will also have a button displaying the given button text. The
button will dismiss the dialog when clicked.

ShowChooseDialog(Text message, Text title, Text button1Text, Text
button2Text, Boolean cancelable): Displays a choose dialog box display-
ing the message, title and button texts passed as arguments. If the cancelable
parameter is true, the dialog box will also have a Cancel button. The After-
Choosing event occurs after the user clicks one of the buttons.

ShowTextDialog(Text message, Text title, Boolean cancelable)
Displays a text dialog box displaying the message and title passed as arguments,

and an OK button. If the cancelable parameter is true, the dialog box will
also have a Cancel button. The AfterTextInput event occurs after the user
clicks dismisses the dialog.

ShowAlert(Text message): Temporarily displays a message specified by the mes-
sage parameter, which vanishes after a few seconds.

660 Appendix d Component Reference

LogError(Text message)
LogInfo(Text message)
LogWarning(Text message)

These methods, intended for debugging purposes, write messages to the log
files on the Android device. You use Android debugging tools, such as the
Android Debug Bridge (ADB), to read these log files.

PasswordTextBox
Properties

BackgroundColor: Color of the PasswordTextBox background.
Enabled: If true, the PasswordTextBox is usable.
FontBold: Sets PasswordTextBox’s text to bold.
FontItalic: Sets PasswordTextBox’s text to diplay in italics.
FontSize: Sets PasswordTextBox’s text point size.
FontTypeface: Sets PasswordTextBox’s text font family.
Height: PasswordTextBox’s height.
Hint: Hint for the password.
Text: Sets the text that displays on the PasswordTextBox.
TextAlignment: Sets PasswordTextBox’s text alignment. Values are: left, centered, right.
TextColor: Sets PasswordTextBox’s text color.
Visible: Determines if PasswordTextBox is visible. If true, PasswordTextBox

shows. If false, PasswordTextBox is hidden.
Width: PasswordTextBox’s width.

Events
GotFocus(): Called when the PasswordTextBox becomes the focused component.
LostFocus(): Called when the PasswordTextBox is not the focused compo-

nent anymore.

Methods
None

PhoneCall
Properties

PhoneNumber: Phone number to call

Events
None

Methods
MakePhoneCall(): Calls the number stored in the component’s PhoneNumber

property.

PhoneNumberPicker
Properties

Enabled: If true, the PhoneNumberPicker is usable.
BackgroundColor: Color of the PhoneNumberPicker background.

 Appendix d Component Reference 661

ContactName: Selected contact’s name.
EmailAddress: Selected contact’s primary email address.
PhoneNumber: Selected contact’s phone number.
Picture: Selected contact’s picture.
FontBold: Sets PhoneNumberPicker’s text to bold.
FontItalic: Sets PhoneNumberPicker’s text to display in italics.
FontSize: Sets PhoneNumberPicker’s text point size.
FontTypeface: Sets PhoneNumberPicker’s text font family.
Image: Path of the image to display as the PhoneNumberPicker background.
Shape (designer only): Sets PhoneNumberPicker’s shape. Values are: default,

rounded, rectangular, and oval. Does not apply if an image is being displayed.
ShowFeedback: Determines if a visual feedback is shown for a Button that as an

Image as background.
Text: Sets PhoneNumberPicker’s text that displays on the Button.
TextAlignment: Sets PhoneNumberPicker’s text alignment. Values are: left,

centered, right.
TextColor: Sets PhoneNumberPicker’s text color.
Visible: Determines if PhoneNumberPicker is visible. If true, PhoneNumberPicker

shows. If false, PhoneNumberPicker is hidden.
Width: PhoneNumberPicker’s width.
Height: PhoneNumberPicker’s height.

Events
AfterPicking(): This event is triggered once the user has picked a contact.
BeforePicking(): This event is triggered once the user has tapped the Phone-

NumberPicker, but before they have picked a contact.
GotFocus(): Called when PhoneNumberPicker becomes the focused component.
LostFocus(): Called when PhoneNumberPicker loses the focus.

Methods
Open(): Opens the PhoneNumberPicker programmatically as though it were

tapped by a user.

Player
Properties

IsLooping: Indicates if media is looping or not.
IsPlaying: Indicates if media is playing or not.
Source: The file name of the audio or video file of the Player component.
Volume: Volume of the Player, a number between 0 and 100.

Events
Completed(): Indicates that the media is finished playing.

Methods
Pause(): Pauses the media file playing.
Start(): Starts playing the media file.
Stop(): Stops playing the media file.
Vibrate(number milliseconds): Makes the phone vibrate (with the device’s

vibration motor) for the given number of milliseconds.

662 Appendix d Component Reference

Screen
Properties

AlignHorizontal: Indicates how to align items horizontally on the Screen, 1 for left
aligned, 2 for centered, 3 for right aligned.

AlignVertical: Indicates how to align items vertically on the Screen, 1 for top
aligned, 2 for centered, 3 for bottom aligned.

BackgroundColor: The background color of the screen.
BackgroundImage: If set, the image that makes up the background of the Screen.
Height: Height of the Screen, in pixels.
Icon: This is the launch icon that shows on a phone that has installed the applica-

tion. It should be around 48X48 in size and should be PNG or JPG; other for-
mats may prevent App Inventor from packaging the application.

ScreenOrientation: The Screen orientation value requested, landscape, portrait,
sensor, user, and unspecified are the common values.

Scrollable: In the Designer, a developer can check this property to indicate that the
Screen is scrollable. If it is checked, a vertical scrollbar will be available for the
user and the Screen height can surpass that of the device. If it is not checked, the
Screen is limited to the device’s screen height.

VersionCode (designer only: main screen only): The VersionCode defaults to 1.
This number needs to be increased by one each time you make a change and
want to re-upload it to the Play Store, whether it is a small or large change.

VersionName (designer only: main screen only): The VersionName property is a
string. It can hold any string value, but it defaults to 1.0. Oftentimes a devel-
oper will increase the number by .1 for a minor change and by 1 for a major
change. For example, a small change might increase the VersionName from
1.2 to 1.3. If there is then a major change, the VersionName will be 2.0.

Title: The title that will show on the upper left of the device screen when the appli-
cation is running. This is usually the name of the app, but can be anything and
modifiable programmatically as the app runs.

Width: Width of the Screen, in pixels.

Events
BackPressed(): Triggered when the device’s Back button is pressed.
Initialize(): Triggered when the application begins, it’s a good place to initial-

ize values and other set up tasks.
ErrorOccurred(component component, text functionName, number error-

Number, text message): Triggered when an error occurs, and is currently used
for errors in the following:
● LEGO MINDSTORMS Nxt* components
● Bluetooth components
● Twitter component
● SoundRecorder component
● ActivityStarter: the StartActivity is called, but no activity that corresponds to

the properties
● LocationSensor: when LatitudeFromAddress or LongitudeFromAddress fails.
● Player: When setting the Source property fails.
● Sound: When setting the Source property fails or when the Play function fails.
● VideoPlayer: When setting the Source property fails.

 Appendix d Component Reference 663

A default notification is show by the system with a message and an error number.
This event can be used to change the default message of the error using the
errorNumber to determine which error has occurred.

OtherScreenClosed(text otherScreenName, any result): Triggered when
control is passed back to this Screen because another has closed.

ScreenOrientationChanged(): Screen orientation changed

Methods
CloseScreenAnimation(text animType): Animation used when closing the

Screen. Options are default, fade, zoom, slidehorizontal, slidever-
tical, and none.

OpenScreenAnimation(text animType): Animation used when opening the
Screen. Options are default, fade, zoom, slidehorizontal, slidever-
tical, and none.

Slider
Properties

ColorLeft: The color that is left of the thumb on the Slider.
ColorRight: The color that is right of the thumb on the Slider.
The Slider component has a MinValue property and a MaxValue property that

must be set to numeric values. By default, the MinValue property is set to 10.0,
and the MaxValue property is set to 30.0. The MinValue property is the S lider’s
minimum value and the MaxValue property is the Slider’s maximum value.
When the thumb slider is all the way to the left, its position is the same as
M inValue. As you drag the thumb slider to the right, its position increases.
When the thumb slider is all the way to the right, its position is the same as
MaxValue.

MaxValue: Must be set to a numeric value. By default, the MaxValue prop-
erty is set to 30.0, which is the Slider’s maximum value and the value when
the thumb slider is all the way to the right. Resetting this value will change
the Thumbposition to half way between the new MaxValue and the MinValue
property.

MinValue: Must be set to a numeric value. By default, the MinValue property is
set to 10.0, which is the Slider’s minimum value and the value when the thumb
slider is all the way to the left. Resetting this value will change the Thumbposi-
tion to half way between the new MinValue and the MaxValue property.

ThumbPosition: A numeric value that is the position for the Slider’s thumb. Can
have values between and including the MinValue and MaxValue.

Visible: Indicates whether the Slider is visible on the Screen or not.
Width: Width of the Slider, in pixels.

Events
PositionChanged(number thumbPosition): Triggered when the ThumbPosi-

tion property has changed.

Methods
None

664 Appendix d Component Reference

Sound
Properties

Source: The file name of the audio file of the Sound component.
MinimumInterval: Minimum time interval before the sound is repeated.

Events
None

Methods
Pause(): Pauses the audio file.
Play(): Starts playing the audio file.
Resume(): Resumes a paused audio file.
Stop(): Stops the audio file.
Vibrate(number millisecs): Makes the phone vibrate (with the device’s vibra-

tion motor) for the given number of milliseconds.

SpeechRecognizer
Properties

Result: Stores the text of the latest recording.

Events
AfterGettingText(text result): Raised after a recording has completed and

the text is produced, the text produced is stored in result.
BeforeGettingText(): Raised immediately before the SpeechRecognizer is

invoked or started.

Methods
GetText(): Records users speech and converts the speech to text, then raises the

AfterGettingText when action is complete.

Spinner
Properties

Elements: The text elements to choose from.
ElementsFromString: Allows the elements to be determined from a comma-

delimited string.
Height: Height of the Spinner
Prompt: The current title for the Spinner.
Selection: The current selected item in the Spinner, in text format.
SelectionIndex: The index of the selected item, starting at 1. Zero if no selection.
Visible: Determines if Spinner is visible. If true, Spinner shows. If false, Spinner

is hidden.
Width: Width of the Spinner

Events
AfterSelecting(text selection): Triggered after the user selects an item from

the Spinner’s dropdown list.

Methods
DisplayDropdown(): Displays the dropdown list so that a selection can be made.

 Appendix d Component Reference 665

TableArrangement
Properties

Columns (number-of-columns): The number of columns in the TableArrangement.
Height: Height of the TableArrangement, in pixels.
Rows (number-of-rows): The number of rows in the TableArrangement.
Visible: Indicates whether or not the TableArrangement component is visible on

the Screen.
Width: Width of the TableArrangement, in pixels.

Events
None

Methods
None

TextBox
Properties

Enabled: If true, the TextBox is usable.
BackgroundColor: Color of the TextBox background.
FontBold: Sets TextBox’s text to bold.
FontItalic: Sets TextBox’s text to display in italics.
FontSize: Sets TextBox’s text point size.
FontTypeface: Sets TextBox’s text font family.
Height: TextBox’s height
Hint: Hint for the password.
Text: Sets the text that displays on the TextBox.
TextAlignment: Sets TextBox’s text alignment. Values are: left, centered, right.
TextColor: Sets TextBox’s text color.
Visible: Determines if TextBox is visible. If true, TextBox shows. If false,

TextBox is hidden.
Width: TextBox’s width
MultiLine: Indicates by true or false whether the TextBox accepts multiple

input lines. Because there is no Done key on the keyboard of a MultiLine Text-
box, the application should use the HideKeyboard method to hide the keyboard
using this type of TextBox.

NumbersOnly: Indicates by true or false whether this TextBox accepts only
numeric values, applies to keyboard entry only.

Events
GotFocus(): Called when the TextBox becomes the focused component.
LostFocus(): Called when the TextBox is not the focused component anymore.

Methods
HideKeyboard(): Used with a MultiLine TextBox component to hide the

k eyboard.

666 Appendix d Component Reference

Texting
Properties

GoogleVoiceEnabled: Determines if the component will be able to be used with
Google Voice compatibility.

PhoneNumber: The phone number the text message will be sent to.
Message: Holds the text of the message.
ReceivingEnabled:

This property takes the numeric values 1, 2, and 3, which are defined as follows:
1-Off, 2-Foreground, and 3-Always. If this property is set to 1, the applica-
tion will ignore all messages. If set to 2, messages will be received when the
application is running, but not when the application is inactive. If set to 3,
the application will receive the messages while running and queue the mes-
sages if it is not running or inactive. If the messages are queued, action in the
MessagedRecieved event will happen when the application becomes active.
This may result in several messages being processed at once.

Events
MessageReceived(text number, text messageText)

The ReceiveMessage event is triggered by a text message coming into your
device. Based on the ReceivingEnabled property value (see property descrip-
tion above), this event will listen for text messages when the application is
active or dormant.

Methods
SendMessage(): Sends the text stored in the Message property to the number

stored in the PhoneNumber property.

TextToSpeech
Properties

Country: The three-character country code used for speech.
Language: The three-character language code used for speech.
Result: Path to the speech that is was generated.
Pitch: Sets the Pitch to a value between 0 and 2 where lower values lower the tone

of the voice and greater values increase it.
SpeechRate: Sets the SpeechRate to a value between 0 and 2 where lower values

slow down the pitch and greater values speed it up.

Events
AfterSpeaking(Text result): Raised once the speech of the text is spoken, has

access to the speech in the result argument.
BeforeSpeaking(): Raised immediately before the speech of the text is spoken.

Methods
Speak(Text message): Speaks the text passed in the message argument.

 Appendix d Component Reference 667

Language and Country Codes
Language codes are shown in lowercase and country codes for each language are
shown in uppercase.

ces (Czech)
CZE

spa (Spanish)
ESP
USA

deu (German)
AUT
BEL
CHE
DEU
LIE
LUX

fra (French)
BEL
CAN
CHE
FRA
LUX

nld (Dutch)
BEL
NLD

ita (Italian)
CHE
ITA

pol (Polish)
POL

eng (English)
AUS
BEL
BWA
BLZ
CAN
GBR
HKG
IRL
IND
JAM
MHL
MLT
NAM
NZL
PHL
PAK
SGP
TTO
USA
VIR
ZAF
ZWE

668 Appendix d Component Reference

TimePicker
A button that, when clicked, launches a pop-up dialog to allow the user to select
a time.

Properties
Enabled: If true, the TimePicker is usable.
BackgroundColor: Color of the TimePicker background.
FontBold: Sets TimePicker text to bold.
FontItalic: Sets TimePicker text to diplay in italics.
FontSize: Sets TimePicker text point size.
FontTypeface: Sets the TimePicker’s text font family.
Height: TimePicker height
Hour: The hour which was last picked, in 24-hour clock. 8:00 pm. will return 20.
Image: TimePicker background image.
Minute: The minute which was last picked.
Shape: Indicates the button’s shape (default, rounded, rectangular, oval). Does not

apply if an image is set.
ShowFeedback: Indicates if feedback should show for a TimePicker that has a

background image.
Text: The Text property of the TimePicker.
TextAlignment: Sets TimePicker text alignment. Values are: left, centered, right.
TextColor: Sets TimePicker text color.
Visible: Indicates whether or not (true or false) the TimePicker is visible on the Screen.
Width: Width of the TimePicker in pixels.

Events
AfterTimeSet(): Raised when time is set.
GotFocus(): Called when the TimePicker becomes the focused component.
LostFocus(): Called when the TimePicker loses focus.

Methods
None

TinyDB
Properties

None

Events
None

Methods
StoreValue(text tag, valueToStore): Tag-value pair, the value of valueTo-

Store is stored under the value of the tag argument.
GetValue(text tag): Searches the TinyDB for the tag argument and returns the

associated value. If the tag was not found, an empty string is returned.

 Appendix d Component Reference 669

TinyWebDB
Properties

ServiceURL: the URL of the Web server and path of the database.

Events
GotValue(text tagFromWebDB, any valueFromWebDB): Raised when the value

of a tag is retrieved successfully from the server.
ValueStored(): Raised when a value is successfully stored to the TinyWebDB

on the server.
WebServiceError(text message): Raised when there is a communication error

when communicating with the Web service.

Methods
GetValue(text tag): Calls the Web service and request the value of the tag

passed into the method and accepts whatever the Web service returns. The serv-
ice should turn the value of tag or some other indication if the value is not found.

StoreValue(text tag, any valueToStore): Calls the Web service and requests
that it store the valueToStore under the tag in the TinyWebDB.

Twitter
Properties

ConsumerKey: Consumer Key generated by Twitter
ConsumerSecret: Consumer Secret generated by Twitter
DirectMessages:
The list of the most recent messages that tag the user, starting with an empty list.

To populate the property with the list the program must:
 1. Call the Authorize method.
 2. Wait for the IsAuthorized event.
 3. Call the RequestDirectMessages method.
 4. Wait for the DirectMessagesReceived event.

Then the property will be populated with the direct messages retrieved and hold
that list of messages until RequestDirectMessages is called again.

Followers:
The list of the followers of the user, starting with an empty list. To populate the

property with the list the program must:
 1. Call the Authorize method.
 2. Wait for the IsAuthorized event.
 3. Call the RequestFollowers method.
 4. Wait for the FollowersReceived event.

Then the property will be populated with the list of followers retrieved and hold
that list of messages until RequestFollowers is called again.

FriendTimeline:
The list of the twenty most recent messages of followed users, starting with an

empty list. To populate the property with the list, the program must:
 1. Call the Authorize method.
 2. Wait for the IsAuthorized event.

670 Appendix d Component Reference

 3. Specify users to follow with one or more calls to the Follow method.
 4. Call the RequestFriendTimeline method.
 5. Wait for the FriendTimelineReceived event.

Then the property will be populated with the list of messages retrieved and hold
that list of messages until RequestFriendTimeline is called again.

Mentions:
This property contains a list of mentions of the logged-in user. Initially, the list is

empty. To set it, the program must:
The list mentions of the user, starting with an empty list. To populate the property

with the list the program must:
 1. Call the Authorize method.
 2. Wait for the IsAuthorized event.
 3. Call the RequestMentions method.
 4. Wait for the MentionsReceived event.

Then the property will be populated with the list of mentions retrieved and hold
that list of messages until RequestMentions is called again.

SearchResults:
The list of search results after the program.

 1. Calls the SearchTwitter method.
 2. Waits for the SearchSuccessful event.

SearchResults will then be equal to the parameter to SearchSuccessful.
Username:

If the user is authorized, this is the value of the logged in user’s username.

Events
DirectMessagesReceived(list messages)

Triggered when messages are retrieved from the RequestDirectMessages
method call. The list of the messages is then stored in the messages param-
eter or the Messages property.

FollowersReceived(list followers)
Triggered when all followers are retrieved from the RequestFollowers method

call. The list of the followers is then stored in the followers parameter or
the Followers property.

FriendTimelineReceived(list timeline)
Triggered when messages are retrieved from the RequestFriendTimeline

method call. The list of the messages are then stored in the timeline param-
eter or the Timeline property as Lists. The Lists will each contain a status
update (username message).

IsAuthorized():

Raised after the Authorize or the toCheckAuthorized method is called and
an authorization is successful. Once this event is raised, all other methods in
the component can be used.

MentionsReceived(list mentions):
Triggered when mentions are retrieved from the RequestMentions method

call. The list of mentions is then stored in the mentions parameter or the
Mentions property.

SearchSuccessful(list searchResults):
Triggered when search results are retrieved from the SearchSuccessful method

call. The results are then stored in the results parameter or the Results property.

 Appendix d Component Reference 671

Methods
Authorize(): Redirects and request that user login to Twitter using the Web

browser and OAutho protocol, assuming the user is not already authorized.
CheckAuthorized(): Checks if user is already authorized, and if so, causes IsAu-

thorized event handler to be called.
DeAuthorize(): Cancels the Twitter authorization from the application instance.
DirectMessage(text user, text message):

Assuming authorization has passed, this method will send a direct and private
message to the user specified in the user argument. The method trims the
message down to 160 characters.

Follow(text user): Starts following a user.
RequestDirectMessages():

Assuming authorization has passed, this method requests the twenty most
recent direct messages sent to the user. This method raises the Direct
MessagesReceived event and populates the DirectMessages property to the
list of messages.

RequestFollowers(): Retrieves the list of followers of the user.
RequestFriendTimeline(): Retrieves the list of the twenty most recent messages

of people the user follows.
RequestMentions():

Assuming authorization has passed, this method requests the twenty most recent
mentions of the user. This method raises the MentionsReceived event and
populates the Mentions property to the list of mentions.

SearchTwitter(text query):
Searches Twitter for the text stored in query.

SetStatus(text status):
Assuming authorization has passed, this method will set the user’s status to the

text stored in status. This method will trim the status to 160 characters.
StopFollowing(text user): Quits following the username stored in the user

argument.

VerticalArrangement
Properties

Visible:
If true, component and its contents are visible.

Height:
Vertical arrangement height (y-size).

Width:
Vertical arrangement width (x-size).

AlignHorizontal: A numeric value that indicates how the contents of the arrange-
ment are horizontally aligned:
● 1 for left aligned
● 2 for centered
● 3 for right aligned

AlignVertical: A numeric value that indicates how the contents of the arrangement
are vertically aligned:
● 1 for top aligned
● 2 for centered
● 3 for bottom aligned

672 Appendix d Component Reference

Events
None

Methods
None

VideoPlayer
Properties

Source: The file name of the video file of the VideoPlayer component.
Visible: Indicates whether the component is visible. true if the component is show-

ing and false if hidden.
FullScreen: Indicates whether the video is playing in full-screen mode. true if the

component is in full screen and false if not.
Height: VideoPlayer height in pixels.
Width: VideoPlayer width in pixels.
Volume: A number between 0 and 100 for volume. Zero is no volume and 100 for

loudest. Any number less than zero will be treated as zero. Any number greater
than 100 is treated as the number 100.

Events
Completed(): Indicates that the video is finished playing.

Methods
Pause(): Pauses the video file.
Start(): Starts the video file.
SeekTo(number millisecs): Goes to the specified milliseconds in the video file

(from the beginning).
number GetDuration(): Returns the milliseconds of the duration of the video.

Answers to Checkpoints

Chapter 1
 1.1 A computer is a device that follows instructions for manipulating and storing

information.

 1.2 A computer program is a set of instructions that the computer follows to
 perform a task.

 1.3 An algorithm is a set of well-defined logical steps that must be taken in order
to perform a task.

 1.4 Machine language is the only language that computers understand.

 1.5 Because computers only understand machine language (which consists of
binary numbers), programming languages were invented to make programming
easier. Programming languages consist of words, which are easier for people to
 understand.

 1.6 False

 1.7 The Designer

 1.8 The part of the app that the user sees, and interacts with.

 1.9 No, it does not.

 1.10 The Palette provides a list of components that you can use to build your app.

 1.11 The Viewer column shows a rectangular area that represents the app’s screen.
You design an app’s user interface by dragging components from the Palette
and dropping them onto the simulated screen in the Viewer.

 1.12 The Components column shows a hierarchical tree listing all of the
 components that you have placed in your app. Each time you drag a
 component from the Palette and drop it onto the Viewer, an entry representing

673

A
p

p
en

d
ix

E

674 Appendix e Answers to Checkpoints

that component appears in the Component column. You can use the
 Component column to select any component in your app.

 1.13 The Media column allows you to manage the media files (images, videos,
and audio files) that you want to use in your app. Because App Inventor
stores your apps in the cloud, you have to upload any media files that you
want to use in an app. The Media column allows you to upload such files to
the App Inventor server, download them from the server to your computer,
and delete them from the server when they are no longer needed.

 1.14 The Properties column lets you examine and change a component’s properties.

 1.15 The Blocks Editor is where you assemble code blocks that perform actions.

 1.16 A code block is a shape that looks something like a puzzle piece. App
 Inventor provides numerous blocks that represent actions and data. You
assemble code blocks in the Blocks Editor to create an app’s code.

 1.17 To create a new emulator, click Connect at the top of the screen, and then
click Emulator on the menu that appears. It might take several minutes for
the emulator to be created in the computer’s memory. Once the emulator
has been created and initialized, it will appear on the screen.

 1.18 The My Projects screen

 1.19 Screen1

 1.20 Title

 1.21 It displays text on the app’s screen.

 1.22 Text

 1.23 Automatic, Fill parent, A Specified Number of Pixels

 1.24 Click the Rename button at the bottom of the Components column, and
then type the new name into the Rename Component dialog box. Default
names are not very descriptive, so you should always change a component’s
name to something that is more meaningful. A component’s name should
reflect the purpose of the component.

 1.25 ● Component names can contain only letters, numbers, and underscores (_).
● The first character of a component name must be a letter.
● Component names cannot contain spaces.

 1.26 Text

 1.27 ● Left – Components are aligned along the left edge of the screen
● Center – Components are aligned in the center of the screen
● Right – Components are aligned along the right edge of the screen

 1.28 ● Top – Components are aligned along the top of the screen
● Center – Components are aligned in the center of the screen
● Bottom – Components are aligned along the bottom of the screen

 1.29 A program that waits for specific events to happen, and then it responds to
those events. An event is an action that takes place, such as the user clicking a
button, or sliding his or her finger across the device’s screen. An incoming text
message is also an event, as well as when the user tilts or shakes the phone.

 Appendix e Answers to Checkpoints 675

 1.30 They will be listed under Screen1, or the name of the Screen component
that they belong to.

 1.31 In the Blocks Palette, a drawer holds a collection of blocks.

 1.32 BackgroundColor

 1.33 FontSize

 1.34 FontBold

Chapter 2
 2.1 BackgroundImage

 2.2 In the Media column

 2.3 Use the set Screen1.BackgroundImage to block.

 2.4 Picture

 2.5 The text is displayed on top of the image.

 2.6 Both are found in the Media section of the palette.

 2.7 Source

 2.8 With its Play block.

 2.9 Pause

 2.10 1000

 2.11 The Sound component is recommended for short audio files. If you want to
play a long audio file, such as an entire song, it is recommended that you
use the more efficient Player component instead.

 2.12 Go to the Built-In section of the Blocks column, and click Colors.

 2.13 13 blocks

 2.14 When you need to create code that changes the value of a color property
while the app is running.

 2.15 Components that are placed inside a HorizontalArrangement are arranged
horizontally, across the screen.

 2.16 Components that are placed inside a VerticalArrangement are arranged vertically.

 2.17 Components that are placed inside a TableArrangement are arranged in a
table, with rows and columns.

 2.18 VerticalArrangement

 2.19 They help someone who is reading the program’s code to understand the
instructions.

 2.20 No

 2.21 In the Blocks Editor, you can add a comment to any block by right- clicking the
block, and then selecting Add Comment from the menu that pops up. This
causes a small question mark to appear on the block. Click the question mark to
open a note editor. You can type any information you wish into the note editor.

676 Appendix e Answers to Checkpoints

Chapter 3
 3.1 TextBox

 3.2 From its Text property

 3.3 The user cannot enter input into it.

 3.4 Check the NumbersOnly property.

 3.5 A clump of code that gives you a value.

 3.6 Operands are the values that the operator works with. The math operator
blocks require two operands.

 3.7 It returns a number rounded to a specified number of decimal places.

 3.8 A function is a method that performs an operation, and then gives you a value.

 3.9 Calling a function means to execute it.

 3.10 A piece of data that is passed to a function or method.

 3.11 A variable is a name that represents a value that is stored in the computer’s
memory.

 3.12 Go to the Built-In section and click Variables.

 3.13 Just click the name that appears on the block and type the new name.

 3.14 Plug a block, such as a number block or a text string block, into the variable
initialization’s to socket.

 3.15 The get block allows you to get a variable’s value, and the set block allows
you to set a variable’s value (assign a value to it).

 3.16 The part of a program in which a variable may be accessed.

 3.17 The scope of a local variable is the variable’s initialization block. The scope
of a global variable is the entire workspace, so it is accessible to all of the
code in the workspace.

 3.18 With the Slider’s MinValue and MaxValue properties

 3.19 A PositionChanged event occurs

 3.20 The thumbPosition block is a special type of variable known as a
 parameter variable. The purpose of a parameter variable is to hold a piece
of data that is passed to the event handler. When the PositionChanged
event handler executes, the thumbPosition parameter variable will hold the
current position of the thumb slider.

Chapter 4
 4.1 Boolean

 4.2 An expression that gives either true or false as its value.

 4.3 if then, if then else, and if then else if

 4.4 Go to the Built-In section and open the Control drawer.

 Appendix e Answers to Checkpoints 677

 4.5 A Boolean expression.

 4.6 Greater than, greater than or equal to, less than, less than or equal to, equal
to, not equal to.

 4.7 Go to the Built-in section and open the Math drawer.

 4.8 If the Boolean expression is true, the instructions that appear in the then
socket will be executed. If the Boolean expression is false, nothing happens
(the instructions that appear in the then socket will be skipped).

 4.9 If the Boolean expression is true, the instructions that appear in the then
socket will be executed.

 4.10 If the Boolean expression is false, the instructions that appear in the else
socket will be executed.

 4.11 If all of its connected expressions are true.

 4.12 If any of its connected expressions are true.

 4.13 It reverses the truth of the expression that is plugged into it. If it is applied
to an expression that is true, the operator returns false. If it is applied to
an expression that is false, the operator returns true.

 4.14 Go to the Built-in section and open the Math drawer.

 4.15 A random fractional number between 0 and 1.

 4.16 The two arguments are from and to. The function returns a random integer
between the two arguments (inclusively).

 4.17 You type the items that you wish to appear in the component’s list,
 separated by commas, into the ElementsFromString property.

 4.18 You get the value of the Selection property.

 4.19 Text

 4.20 When a CheckBox component is checked, its Checked property is set to
true. When a CheckBox component is unchecked, its Checked property is
set to false. In the Blocks Editor, you can use a decision block such as if
then or if then else to test a CheckBox component’s Checked prop-
erty, and determine whether it is checked or unchecked.

 4.21 The Changed event.

Chapter 5
 5.1 ● Message dialog – A window that displays a title and a message, and waits for

the user to click a button. Use the ShowMessageDialog method to display it.
● Text dialog – A window that displays a title and a message, allows the user

to enter some text as input, and then click an OK button, and optionally a
Cancel button. Use the ShowTextDialog method to display it.

● Choose dialog – A window that displays a title and a message, and lets
the user click one of two buttons, and optionally a Cancel button. Use
the ShowChooseDialog method to display it.

678 Appendix e Answers to Checkpoints

 5.2 When a text dialog closes.

 5.3 When a choose dialog closes.

 5.4 The AfterTextInput event handler has a parameter named response that
holds the input that the user typed into the text dialog.

 5.5 The AfterChoosing event handler has a parameter named choice that
holds the text of the button that the user clicked.

 5.6 An execution of the blocks that appear in the loop.

 5.7 A variable that is regularly incremented in each loop iteration. In essence, it
keeps count of the number of iterations the loop has performed.

 5.8 A loop that tests its Boolean expression before performing an iteration.

 5.9 Before

 5.10 A loop that never stops.

 5.11 ● number variable – This is the counter variable. When you create a for
each loop, a variable named number is automatically created, and
plugged into this socket.

● from – This is the counter variable’s starting value. When the loop begins
executing, the counter variable will be set to this value.

● to – This is the counter variable’s ending value. When the counter vari-
able reaches this value, the loop ends.

● by – This is the amount added to the counter variable at the end of each
iteration. The default value is 1.

 5.12 ● A loop that reads each number in the series.
● A variable that accumulates the total of the numbers as they are read.

 5.13 A variable that is used to accumulate a total.

 5.14 It is very important that an accumulator variable be initialized with the
value 0. If the accumulator starts with any value other than 0, it will not
contain the correct total when the loop finishes.

 5.15 A number that represents an instant in time. It contains both a date and a time.

 5.16 You call the Clock component’s Now function.

 5.17 ● Use FormatDate to format an instant as a date
● Use FormatTime to format an instant as a time
● Use FormatDateTime to format an instant as a date and time

 5.18 With the TimerInterval property.

 5.19 AddDays

 5.20 AfterDateSet

 5.21 Month

 5.22 MonthInText

 5.23 Day

 5.24 Year

 Appendix e Answers to Checkpoints 679

Chapter 6
 6.1 When you call a procedure, it simply executes the blocks it contains and then

terminates. When you call a procedure with result, it executes the blocks that
it contains, and then it returns a value back to the block that called it.

 6.2 It is an example of a procedure with result.

 6.3 Go to the Built-in section of the Blocks column and open the Pro-
cedures drawer.

 6.4 It causes a procedure to execute.

 6.5 Go to the Built-in section of the Blocks column and open the
Procedures drawer.

 6.6 The program jumps back to the part of the program that called the proce-
dure and resumes execution from that point.

 6.7 ● The overall task that the program is to perform is broken down into a
series of subtasks.

● Each of the subtasks is examined to determine whether it can be further
broken down into more subtasks. This step is repeated until no more
subtasks can be identified.

● Once all of the subtasks have been identified, they are written in code.

 6.8 A piece of data that is passed into a procedure when the procedure is called.

 6.9 A special variable that receives an argument when a procedure is called.

 6.10 Click the blue mutator box that appears on the procedure block, and drag
an input block from the left side of the mutator bubble to the right side.

 6.11 A get block. You will find the get block in the Built-in section of the
Blocks column, in the Variables drawer.

 6.12 The call block for the procedure will have a socket with the same name as the
parameter. When you call the procedure, you must plug a block into the socket.

 6.13 When you call a regular procedure, it simply executes the blocks it contains,
and then terminates. When you call a function, it executes the blocks that it
contains and then it returns a value back to the block that called it.

 6.14 The to procedure result block, which is found in the Procedures drawer
of the Built-In section of the Blocks column.

 6.15 result

Chapter 7
 7.1 The List needs to be stored in a variable so that it can be accessed elsewhere

in the program.

 7.2 You can use number, text, Boolean, and variable data.

 7.3 Yes.

 7.4 You use the for each loop to iterate through the items of the list and popu-
late labels on the screen with the times in the list.

680 Appendix e Answers to Checkpoints

 7.5 It represents a List item. The List item that the loop is currently on, or
p rocessing.

 7.6 We can show each item individually. Without it we can only show the entire list.

 7.7 The math calculation would not work.

 7.8 The \n sequence is used as the return character. You use a text block to
hold it.

 7.9 There will be an error.

 7.10 The position in the list of an item. The index is always a number; something
other than a number will produce an error.

 7.11 If we know the length of a List, we can be sure to avoid accessing an item
that is out of range.

 7.12 Adding an item means adding it to the end of the list. Inserting an item into
a list means to place an item in a specific position in the list.

 7.13 It will be moved to position 11.

 7.14 ListA will remain unchanged. ListB will contain the elements of both
ListA and ListB.

 7.15 add items to list

 7.16 Inserting an item into a List means to place an item in a specific position in
the list. Replacing an item means to change the value of an item. The
indexes of items in a list do not change when an item is replaced.

 7.17 When an item is removed, the indexes are re-calculated starting from
 position one, and each item in the list after the deleted item will have a new
index based on the new position.

 7.18 The remove list item block requires the List, and the index of the item to
be removed. The replace list item block requires the List, the index of
the item to be removed, and the replacement value for the item.

 7.19 Because it is important to consider checking first to see if the item is in the
list before asking for the position. By ensuring that the item is in the List, we
avoid unwanted results and/or processing if there is no position for the
index in list block to return.

 7.20 If the item is not found in the List, we have wasted processing time by looking
for it. When the item is not found, the position in list function returns 0.

Chapter 8
 8.1 Persisting data means to save it so that it can be accessed later. It is

 important because most applications that we use require persisted data.

 8.2 Facebook, Twitter, Instagram, Vine, Online Banking, to name a few.

 8.3 The contents of the TextBoxFileContents component’s Text property is
saved to a file on the device. The name of the file is specified by the
 TextBoxSaveFileName component’s Text property. If the user specified a

 Appendix e Answers to Checkpoints 681

name without a preceding forward slash (/) the file will be saved in the
application sandbox. If the file name begins with a forward slash, it will be
saved to the device’s SD card.

 8.4 You can only have one. If you have more, they use the same data store space
anyway and act as a single TinyDB. You may overwrite something you do
not want to if you use them the wrong way.

 8.5 No. A TinyDB can only be accessed by one application.

 8.6 This slot provides a default value if the tag happens to not be in the TinyDB.

 8.7 The element’s tag

 8.8 A List will allow you to store multiple items of information for one tag.
For example, for a contact you can store the email, picture, and phone
 number into a List and use that for the value of one person (tag).

 8.9 A List variable.

 8.10 You will need to iterate through the List using a for each loop.

 8.11 If you are going to use a List as a value, you must know what you are
extracting when you iterate through the List. Consistency is important.

Chapter 9
 9.1 The top right is 299,0 and the bottom left is 0,299.

 9.2 The midpoint is approximately at 80,80.

 9.3 Hover the mouse cursor over prevX and prevY parameters on the Dragged
event handler block and select the get block from the resulting popup.
Once you see the get block for the parameter, click it to place it in the
e ditor and plug it into the correct slot of the DrawLine method.

 9.4 40,20 and 40,40

 9.5 To set the direction, in degrees, of a moving Sprite. Any number between
180 and 270, not including 180 or 270.

 9.6 Because the color is set by the image associated with the ImageSprite.

 9.7 Decrease

 9.8 23

 9.9 MoveIntoBounds

 9.10 To make the Sprite looks like it is moving forward, its top will rotate in the
direction of the Heading.

 9.11 You can decrease the Interval property of the Clock and make the eggs
move faster. You can have a global variable to hold the score and increment
it when an egg it cracked. Yes, and Yes you can.

 9.12 Set TimerEnabled property to false in the Clock Component.

 9.13 If you go higher than 280, the Sprite will be off of the Canvas.

682 Appendix e Answers to Checkpoints

Chapter 10
 10.1 Text

 10.2 100200

 10.3 It concatenates their values as Text.

 10.4 truetruetruetrue

 10.5 Each character that you can type on a keyboard has a numerical representa-
tion in the ASCII Table. When we compare strings, we can use the ASCII
number to compare them as we would numbers.

 10.6 They are identical, with the same characters, in the same case, in the same order.

 10.7 The lowercase one because lowercase letters come later than the uppercase
letters in the ASCII table.

 10.8 Boolean

 10.9 Often we will trim strings that come from user or file input, in case there are
extra spaces that we do not want. These spaces can affect string compari-
sons, possibly making two strings not equal, when in reality they should be.
Generally, passwords should not be trimmed.

 10.10 No, the order does not matter. The upcase block will change the entire
string to uppercase and the trim will take of leading and trailing spaces.
Because they do not affect each other, the order does not matter.

 10.11 The characters that are not alphabetic letters will not be changed. Uppercase
letters are changed to lowercase and the already lowercase letters are
unchanged.

 10.12 The numbers stay the same, the result is text.

 10.13 Evaluate the following function calls:
a) 1
b) 0
c) 0
d) 16
e) 7

 10.14 The starts at will return a number expressing where the string begins, the
contains returns a Boolean. They are similar because both blocks will indi-
cate whether the substring is in the string.

 10.15 piece is the string to search for and text is the string to search.

 10.16 Because these blocks are case-sensitive, the piece will not be found in the
text if it is not in the same case exactly.

 10.17 The replace all block.

 10.18 The entire original string, the segment that you want to replace and the
replacement string that you want to insert.

 10.19 The entire original string, the starting point of the extraction and the length
of the string you want to extract.

 Appendix e Answers to Checkpoints 683

 10.20 It will start at the position in the string matching the start argument value,
and it will stop when it reaches the number of characters of the length
argument value.

 10.21 It remains the same.

 10.22 a) AE, I OU.XYZ (two elements)
b) AE, I, OU, XYZ (four elelments)
c) AE I OU.XYZ (one element, there is no comma in the Vowels variable)
d) AE I OU, XYZ (two elements)

 10.23 The division-point is the character at which the split occurs, for example a
comma. The division-points are discarded after the split.

 10.24 The split at first and split at first of any blocks only split one
time. The split and split at any will split the strings as many times as
there are division-point characters in the string.

 10.25 Because it assumes a space division-point.

 10.26 20

Chapter 11
 11.1 “Two hundred forty-six.”

 11.2 Country codes are in uppercase, language codes are in lowercase.

 11.3 In the BeforeSpeaking event handler.

 11.4 Because App Inventor does not translate text.

 11.5 The Social Palette.

 11.6 No, if the ReceivingEnabled is set to 2 and Yes if it is set to 3.

 11.7 The PhoneNumber and Message properties.

 11.8 Nothing, it is fine to have a phone number without dashes and parenthesis.

 11.9 The get message block, found by hovering the mouse cursor over the
 message parameter of the MessageReceived event handler.

 11.10 The get number block, found by hovering the mouse cursor over the
n umber parameter of the MessageReceived event handler.

Chapter 12
 12.1 Set the DistanceInterval to 1610 and the TimeInterval to 3600000.

 12.2 It is important to consider the device’s accuracy level in your application
because you may not want your app to be too sensitive or insensitive
 compared to the capability of the device. If your application is more
 sensitive than your device, you will have to adhere to the device’s accuracy
level and your application should handle differences gracefully.

 12.3 The LocationSensor will not provide location information if its Enabled
property is set to false.

684 Appendix e Answers to Checkpoints

 12.4 You can use the LatitudeFromAddress and LongitudeFromAddress
methods of the LocationSensor.

 12.5 When you lift the top edge of the phone and stand it up on the bottom edge,
the value of Pitch is −90. If you continue to tip the phone so that it lies flat,
front-side down the value of the Pitch increases from −90 to zero.

 12.6 135

 12.7 You can use the Magnitude to set the Speed and the Angle to set the Head-
ing of a Sprite.

 12.8 The Magnitude is a value between 0 and 1. In order to make this a value
that can be used as the Speed property of a Sprite (which is in milliseconds)
we need to multiply it by 100.

 12.9 Add the Accelerometer component to the project, then use the
 Accelerometer.Shaking event to clear the Canvas rather than using
the Button.

 12.10 There will be an echo effect; the clip will start playing again before the first
one ends. You will have two audio clips playing at once.

Chapter 13
 13.1 You need a SoundRecorder component to record. If you want to playback

the audio, you will need a Player component. You can play audio files,
store them to a list or TinyDB for use later.

 13.2 We store the sound to a global variable so that we can use it outside of
the AfterSoundRecorded event. The sound is only available in the
AfterSoundRecorded event so to use it elsewhere we need to store it
to a variable.

 13.3 Once a user has confirmed the photo.

 13.4 Once a user has completed a video recording and has confirmed the video.

 13.5 App Inventor supports Windows Media Video (.wmv), 3GPP (.3gp) and
MPEG-4 (.mp4) file formats for videos. Videos should be 1 MB or smaller in size

 13.6 SeekTo will take you to a place in the video which is the given milliseconds,
ms argument, past the start of the video. You can give it a number one for
the ms argument to go back to the beginning.

 13.7 The PhoneNumberPicker’s Image property is the image that makes up the
background of the picker’s button. The PhoneNumberPicker’s Picture prop-
erty is the contact’s picture from the Contact list on the device.

 13.8 The ContactPicker component has properties for the contact’s picture, name
and email whereas the PhoneNumberPicker has properties for the contact’s
phone number in addition to the picture, name and email.

 13.9 The EmailPicker provides just the contact’s email address.

685

Index

A
AccelerometerSensor component, 574–578, 643

Available property, 574
Changed event, 575
Enabled property, 574
reference for, 643
ShakeToClear app, 576–578
Shaking event, 575–576
XAccel property, 574–575
YAccel property, 574–575
ZAccel property, 574–575

Accumulator (running total) calculation, 290–294
Accuracy property, 557
Action property, 579
ActivityClass property, 579
ActivityStarter component, 578–581, 643

Action property, 579
ActivityClass property, 579
DataUri property, 579
Open Google Maps app, 580–581
reference for, 643

add functions, 300–301
AfterChoosing event, 276–279
AfterDateSet event, 304–305
AfterPicking event, 255–256
AfterSpeaking events, 535
AfterTextInput event, 275–276
Algorithms, 29–30
Altitude property, 556–557
Android

App Inventor connection to, 627–636
application icon, 641
connection via USB, 636
connection via Wifi, 627–635
emulator, 27

Angle property, 568
Animation, 458–484

graphics and, 458–484
Bouncing Ball app, 452–455
Clock component for, 458–462
CollidedWith event, 469–471

Crack the Egg app, 458–462
creation of, 458–463
detecting collisions, 469–479
Drag the Ball apps, 463–468
dragging sprites, 463–468
Fishbowl app, 447–457
MoveTo method, 450–451, 463
Popping Balloons app, 471–479
sprite components, 448–457, 463–479

Any component blocks, 43
.apk download, 640–641
App Inventor, 25–96

Android connection to, 627–636
Android emulator, 27
Blocks Editor, 25–26, 42–45
cloud for, 27–28
computer programs and, 28–31
creating new projects with, 34–46
deleting components, 56
Designer, 25–26, 39–42
emulator for, 48–50, 624
Gallery, 637–639
Google account for, 621
Google Play uploading, 640–642
hands-on applications, 46–88
introduction to, 32–46
managing projects, 46–47
naming components, 55–56
programming with, 31, 69–87
Properties column, 48–50
renaming components, 54–55
sandbox (isolation) application, 396
screen alignment, 58–61
set up, 621–623
starting, 32–38
USB set up, 625
Web browser compatibility, 32

Appending, 370–372
files, 404–406
inserting compared to, 370
lists, 370–372

686 Index

AppendToFile method, 398
AreaCircle app, 327–330
Arguments, 172, 322–330

AreaCircle app. 327–330
ArgumentDemo app, 324–326
parameter variables for, 322–324
passing to functions, 172
passing to procedures, 322–330

Audio recording, 585–591
AfterSoundRecorded event, 585–587
Record and Playback Audio

app, 587–591
SoundRecorder component, 585–587
Start and Stop methods, 585–586
StartedRecording event, 585–586
StoppedRecording event, 585–587

Available property, 566, 574
Azimuth property, 567

B
Ball component, 448–455, 644–646

App Inventor use of, 448–449
Bounce method, 449–450
Bouncing Ball app, 452–455
edge parameter, 450
events, 451
properties, 449
reference for, 644–646

BarcodeScanner component, 608, 646
BeforeSpeaking events, 535
Binary numbers, 30
Blocks, 69–87. See also Decision blocks;

Repetition blocks
calculations using, 159–172
commenting, 143–144
connecting, 72–73
copy and paste for re-use of, 363
dropdown, 120–123
duplicating, 120–123
event handler, 70–71
inserting, 71
local variables working with,

179–182
math operator, 159–161, 167
media use of, 102–108, 120–123,

133–135, 140–144
mutator, 165–166, 346
programming with, 69–87
socket, 73
typeblocking, 198–200
types of, 70

Blocks Editor, 25–26, 42–45
Any component blocks, 43
Built-in blocks, 43–45
code blocks in, 25–26, 42–43
deleting blocks, 45

error and warning settings, 121–123
procedures created using, 312–321
Screen1 component blocks, 43–44

Boolean expressions, 211–270
compare texts block to compare

strings, 236–237
decision blocks and, 211–270
decision making using, 211
if then block, 212–213, 216–226
if then else block, 213–214, 226–235
if then else if block, 214–215, 245–247
infinite loops, 287
logical operator blocks for, 237–242
nested decision blocks using, 242–245
programming with, 211
relational operator blocks for, 216–235
while loop, 279–282

Boolean values, 211
Bounce method, 449–450
Bouncing Ball app, 452–455
Built-in Blocks, 43–45
Button components, 56–57, 646–647

App inventor use of, 56–57
clickable images using, 112–119
references for, 646–647

ButtonCompare app, 494–498

C
Calculations, 159–172

arguments, 172
calling functions, 172
combining operator blocks, 167
fuel economy, 162–165
functions, 172
math operator blocks for, 159–161
mutator blocks for, 165–166
number formatting, 167–168
restaurant tip, 168–172
running total, 290–294

call block, 313–314
Camcorder component, 592–593, 647
Camera component, 591–592, 647
Canvas component, 439–448, 647–649

coordinate system, 439–440
Dragged event, 441–442
drawing methods, 441
drawing on the canvas, 442–447
graphics creation using, 439–448
ImageSprite component and, 439
properties, 440
references for, 647–649
specific values for drawing, 447
Touched event, 441
variable data for drawing, 448

Case conversion, text strings, 500–501
Cat and Mouse app, 569–573

 Index 687

Changed event, 262–264
AccelerometerSensor component, 575
CheckBox component, 262–264
decision blocks, 262–264
LocationSensor component, 559
OrientationSensor component, 568

CheckBox component, 259–264, 649
Changed event, 162–264
Checked property, 259
Click event handler, 260–261
Pizza toppings app, 259–264
references for, 649

Choose dialog box, 276–279
AfterChoosing event handler, 276–279
button clicks for decisions, 276–279
Cancel button for, 278
display of, 271–272
Notifier component for, 271–272

Click event handler
Button components, 273–279
CheckBox component, 260–261
typeblocking, 198
procedures using, 314–316

Clickable images, 112–119
Clock component, 294–302, 649–650
add functions, 300–301
animation created with, 458–462
clock app, 297–299
ClockTimer event, 458
Crack the Egg app, 458–462
instant (in time), 295
properties, 458
references for, 649–650
Timer events, 295–297
Update button, 301–302

ClockTimer event, 458
Cloud, 27–28
Code blocks, 25–26, 31. See also Blocks

App Inventor use of, 25–26, 31
Code reuse, 312
Coin toss simulation app, 250–252
CollidedWith event, 469–471
CollidingWith method, 451
Color blocks, 133–135

layout components combined with, 140–142
media applications, 133–135

Comma-seperated value (CSV) blocks, 390
Commenting blocks, 143–144
compare texts block

ButtonCompare app, 494–498
decision block string comparison, 236–237
equal string determination, 236–237,

492–493
greater than or less than string determination,

236, 493–494
text string comparison, 491–498

Compilers (interpreters), 30
Components column, 42
Components, 39–40, 643–672

Ball, 448–455
BarcodeScanner, 608
Button, 56–57
Camcorder, 592–593
Camera, 591–592
Canvas, 439–448
CheckBox, 259–264
Clock, 294–302, 458–462
ContactPicker, 600–604
DatePicker, 302–305
defined, 39
deleting, 56
Designer Palette column

list of, 39–40
EmailPicker, 607
graphics and animation using, 439–484
ImagePicker, 593–596
ImageSprite, 439, 448–451, 455–457
Label, 50–54
layout, 136–143
ListPicker, 254–258, 421, 423–425
naming, 55–56
non-visible, 123–124
Notifier, 271–279
PhoneCall, 604–606
PhoneNumberPicker, 600–604
references for, 643–672
renaming, 54–55
Screen1, 47–48
Slider, 200–203
Sound, 123–128
SpeechRecognizer, 609–613
sprite, 448–457, 463–479
TextBox, 153–159
Texting, 540–543
TextToSpeech, 533–540
TinyDB, 407–433
TinyWebDB, 616–617
Twitter, 613–616
User Interface, 39
VideoPlayer, 596–600

Computer programs, 28–31
algorithms, 29–30
binary numbers for, 30
compilers (interpreters), 30
defined, 28–29
executable, 31
keywords, 30
machine language, 30
operators, 31
programming languages, 30
statements (code), 31
syntax, 31

688 Index

Concatenating strings, 485
Boolean values, 490
join block, 485–486
lists, 354
literal, 487–488
number, 489–490
text, 485–490
variable, 488–489

Connectivity components, 40
ContactList app

add items, 367–370
creation of, 345–349
iteration of with for each loops, 352–355
length of list function, 360–365
selecting items, 356–360
storage of values as Tag-Value pairs, 413–420

ContactPicker component, 600–604, 650–651
contains block, 505–506
Converting case of text strings, 500–501
Coordinate system for Canvas component,

439–440
Counter variables, 282–294

ending balance app, 282–286
for each loops using, 287–294
sum of numbers app, 291–294
while loops using, 282–286

Crack the Egg app, 458–462
Cups to Ounces app, 334–337

D
Data storage

App Inventor components, 40, 395–396
File component, 396–406
list values, 413–420
multiple screen applications, 421–433
retrieving values, 410–413
sandbox (isolation) application, 396
storing Tag-Value pairs, 409–410
Tag-Value pairs, 408–420
TinyDB component, 407–433
TinyWebDB component, 616–617
variables for, 173–197

Database, see TinyDB component
DataUri property, 579
DatePicker component, 303–305, 651–652
AfterDateSet event, 304–305
Day property, 304
dialog box, 303–305
Month property, 304
MonthInText property, 304
references for, 651–652
Year property, 304

Decision blocks, 211–270
Boolean logic and, 211–270
Changed event, 262–264
CheckBox component, 259–264

coin toss simulation app, 250–252
compare texts block to compare

strings, 236–237
grader app, 243–245
if then, 212–213, 216–226
if then else, 213–214, 226–235
if then else if, 214–215, 245–247
Initialize event, 253–254
ListPicker component, 254–259
logical operators, 237–242
nested, 242–245
pizza toppings app, 259–264
programming with Boolean values, 211
random numbers, 248–252
range checker app, 240–242
relational operators, 216–235
test average app, 218–225, 227–228
time zone app, 256–258
wage calculation app, 232–235

Delete method, 398
Designer, 25–26, 39–42

Components column, 42
components, 39–40
Media column, 42
Palette column, 39–40
Properties column, 42
screen for, 25–26, 39
Viewer column, 40–41

Dialog boxes, 271–279
Cancel button for, 271–272
choose, 276–279
defined, 271
message, 272–273
Notifier component for display

of, 271–279
OK button for, 271–272
text, 274–276

Display location app, 559–565
Divide and conquer approach, 311
Division-point parameter, 515–516
Drag the Ball apps, 463–468
Dragged event, 441–442

animation using, 463–468
Canvas component drawing with, 441–442
MoveTo method used with, 463
sprite component use of, 451, 463

Drawing and Animation components, 40
Drawing, see Canvas component
DrawLine method, 447
Dropdown blocks, 120–123

E
Edge parameter, 450
EdgeReached event, 451
ElementsFromString property, 255
EmailPicker component, 607, 652–653

 Index 689

Emulator, 27
App Inventor set up, 624
App Inventor use of for Android, 27
Title property display in, 48–50

Enabled property, 556, 566, 574
EndingBalance app, 282–286
Equal string determination, 236–237, 492–493
Errors and warnings

Block editor settings for, 122–123
duplicate event handlers, 121
length of list test condition, 364
list error messages, 363–365
Not a Number, 360
syntax errors, 31

Event-driven programs, 69
Event handler, 70–71

duplicate block error, 121
procedure use of, 314–316
programming use of, 70–71
typeblocking for, 198

Events, 69
AfterChoosing, 276–279
AfterDateSet, 304–305
AfterPicking, 255–256
AfterSpeaking, 535
AfterTextInput, 275–276
BeforeSpeaking, 535
Canvas component, 441–442
Changed, 262–264, 559, 568, 575
Click, 198, 260–261, 273–279, 314–316
ClockTimer, 458
CollidedWith, 469–471
decision blocks, 253–254, 262–264
dialog boxes, 273–279, 295–297, 304–305
Dragged, 441–442, 451
EdgeReached, 451
Flung, 451
Initialize, 253–254, 344–345
list population, 344–345
MessageRecieved, 543–544
programming app actions using, 69
RecieveMessage, 542–543
Sensor component, 559, 568, 575
Shaking, 575–576
sprite component, 451, 469–471
Texting component, 542–544
TextToSpeech component, 536
Timer, 295–297
Touched, 441

Executable programs, 31
Extracting substrings, 513–514

F
File component, 396–406

appending a file, 404–406
AppendToFile method, 398

creating a file, 399–401
Delete method, 398
forward slash (/) use, 397–398
GotText method, 396, 398
methods, 396–398
non-visibility of, 396
ReadFrom method, 398
retrieving a file, 402–404
SaveFile method, 397

Find Apps Gallery menu link, 637
Fishbowl app, 447–457
Flags app, creation of, 114–119
Flung event, 451
for each loop, 287–294

counter variables in, 287–294
iteration of, 287–294, 350–355
lists using, 350–355
running total (accumulator) calculation, 290–294
SumOfNumbers app, 391–294

Fuel economy calculation app, 162–165
FunctionDemo app, 333–334
Functions, 172
add, 300–301
calling, 172
Cups to Ounces app, 334–337
FunctionDemo app, 333–334
length of list, 360–365
math, 204–205
passing arguments to, 172
procedures and, 311–312, 331–337
procedures with results, 312
random integer, 331
returning values from procedures, 331–337
split, 516–517
splitting text substrings, 515–528
to procedure result block, 331–332

G
Gallery, uploading apps to, 637–639
Global variables, 173, 190–197

caution and restriction for use of, 197
change counter app, 193–197
initializing, 190–192
naming, 191–192

Good Morning Translator app, 79–87
Google account for App Inventor, 621
Google Play
.apk download, 640–641
app version, 640
application backup, 641
application icon, 641
keystore file, 642
publishing apps, 642
uploading apps to, 640–642

GotText method, 396, 398
Grader app, 243–245

690 Index

Graphics, 439–484
animation and, 458–484
Ball component, 448–455
Canvas component, 439–448
Clock component, 458–462
coordinate system, 439–440
detecting collisions, 469–479
drawing methods, 441–448
Dragged event, 441–442, 463–468
ImageSprite component, 439, 448–451, 455–457
sprite components, 448–457, 463–479

Greater than or less than string determination, 236,
493–494

Grocery list app, 365–383
add items to a list app, 367–370
appending to, 370–372
inserting items, 365–370
removing items from, 372–374
replacing items, 374–383
searching for items, 384–385

Guitar app, 126–128

H
Hello World app, 61–68, 75–79
HorizontalArrangement component, 136–137,

653–654

I
if then block, 212–213, 216–226
if then else block, 213–214, 226–235
if then else if block, 214–215, 226–235
Image component, 108–112
ImagePicker component, 593–596, 654
Images, 97–119

Button component, 112–119
Camera component, 591–592
clickable images, 112–119
code blocks used for, 102–108
displaying as screen background, 97–99
Image component, 108–112
ImagePicker component, 593–596
media column for, 99–102
switching background images, 102–108
uploading files, 99–102

ImageSprite component
App Inventor use of, 448–449
Bounce method, 449–450
Canvas component used with, 439
edge parameter, 450
events, 451
Fishbowl app, 447–457
properties, 449, 455–456
references for, 654–656

Infinite loops, 287
Initialize event, 253–254, 344–345
Initializing variables, 173–174, 190–192

Input, 153–210
block creation, 198–200
data storage, 173–197
math calculations, 159–172
math functions, 204–205
Slider component, 200–203
TextBox component, 153–159
typeblocking, 198–200
variables, 173–197

Instant (in time), 295
Instrument interface app, 423–433
Interpreters (compilers), 30
Interval properties, 295–296, 557
Isolation (sandbox) application, 396
Iteration, 279, 350

ContactList app, 352–355
counter variables and, 282
EndingBalance app, 282–286
for each loops, 287–294, 350–355
lists, 350–355
pretest loop for, 281–282
repetition blocks, 279–294
running total (accumulator)

calculation, 290–294
SumOfNumbers app, 391–294
Test Scores app, 350–352
while loops, 279–286

J
join block, 485–486

K
keystore file, 642
Keywords, 30
Kilometer converter app, 182–185

L
Label components, 50–54, 656
Language and country codes, 533–535, 666–667
Language property, 533–534
Layout components, 40, 136–143

App Inventor use of, 40
Color blocks combined with, 140–142
HorizontalArrangement, 136–137
multiple (nested) components on same screen, 139
TableArrangement, 137–138
VerticalArrangement, 138

LEGO MINDSTORM components, 40
length of list function, 360–365
length text block, 518
Lights app, 316–321
ListPicker component
AfterPicking event, 255–256
decision blocks using, 254–258
ElementsFromString property, 255
multiple screen storage with, 421, 423–425

 Index 691

references for, 656–657
Selection property, 255
time zone app, 256–258
TinyDB component using, 421, 423–425

Lists, 343–394
add items to a list app, 367–370
appending to, 370–372
comma-seperated value (CSV) blocks, 390
ContactList app, 345–349, 352–355, 356–360,

414–420
creating, 343–349
data storage of, 413–420
error messages, 363–365
events for population of, 344–345
for each loop used for, 350–355
Grocery list app, 365–385
inserting items, 365–370
iteration of, 350–355
length of list function, 360–365
length of list test condition, 364
ListView component, 657
mutator tool for items, 346
number guessing game app, 385–389
pick random item block, 390
removing items from, 372–374
replacing items, 374–383
return character (\n) for, 352–353
searching for items, 384–390
select list item block, 356
selecting an item, 356–360
string concatenation for, 354
Tag-Value pairs for, 413–420
Test Scores app, 350–352
types of items and data in, 343–344
variables for, 343–344

ListView component, 657
Literal string, 487–488
Local variables, 173–190

assigning value, 175–176
blocks working with, 179–182
changing the name, 174–175
holding a number, 176–177
holding text, 177–179
initializing, 173–174
kilometer converter app, 182–185
multiple, 186–190
naming, 173–175
parameter, 186
scope, 186

LocationSensor component, 555–565, 657–658
Display location app, 559–565
Accuracy property, 557
Altitude property, 557
Changed event, 559
DistanceInterval property, 557
Enabled property, 556

Longitude and Latitude properties, 556–559
methods, 558–559
references for, 657–658
TimeInterval property, 557

Logical operators, 237–242
blocks, 237–238
numeric ranges checked with, 239
range checker app, 240–242

Longitude and Latitude properties, 556–559
LocationSensor component use of, 556–559
methods, 558–559
properties, 556–557

Loops, 279–294
Boolean expressions and, 279–282, 287
counter variables, 282–294
for each, 287–294, 350–355
infinite, 287
iteration, 279–294, 350–355
lists using, 350–355
pretest, 281–282
while, 279–287

M
Machine language, 30
Magnitude property, 568
Math calculations, see Calculations
Math functions, 204–205
Media, 97–152

App Inventor component, 40
Color blocks, 133–135
commenting blocks, 143–144
displaying images, 97–119
Dropdown blocks, 120–123
duplicating blocks, 120–123
errors and warnings, 121–123
layout components, 136–143
sounds, 123–133
uploading files, 99–102, 123–125

Media column, 42, 99–102, 123–125
App Inventor use of, 42
images from, 99–102
sound from, 123–124
uploading files using, 99–102, 123–125

Message dialog box, 271–273
Click event, 272–273
Notifier component for, 271–273
ShowMessageDialog method, 272

Message property, 541
MessageRecieved event, 543–544
Messaging, 540–550

EmailPicker component, 607
receiving text messages, 543–547
Reply to Family app, 548–550
sending text messages, 547–550
SpeakMessagesFromFamily app, 544–546
SpeechRecognizer component, 609–613

692 Index

Messaging (Continued)
Texting component, 540–544
voice recognition, 609–613

Modularized program, 312
MoveTo method, 450–451, 463
Multiple (nested) components on same screen, 139
Multiple screen storage, 421–433

adding a second screen, 422
Instrument interface app, 423–433
ListPicker component for, 421, 423–425
switching between screens, 422–423
TinyDB component across, 421–433

Mutator blocks, 165–166, 346

N
Name and phone number storage app, 409–410
Naming components, 55–56
Naming variables, 173–175, 191–192
Nesting elements

decision blocks, 242–245
multiple components on same screen, 139

Non-visible components, 123–124, 396
Notifier component, 271–279, 659–660

Cancel button, 271–272, 278
choose dialogue box, 271–272, 276–279
Click events, 273–279
dialog box display using, 271–272
message dialog box, 271–273
OK button, 271–272
references for, 659–660
text dialog box, 271–272, 274–277

Number guessing game app, 385–389
Number Out of Range error message, 364
Numbers

binary, 30
concatenating, 489–490
counter variables, 282–294
decision blocks for, 216–235, 239–242, 248–252
formatting using blocks, 167–168
instant, 295
local variables holding, 176–177
random number blocks, 248–252
ranges checked with logical operators, 239–242
relational operator blocks, 216–235
running total, 290–294
strings with, 489–490
typeblocking for block creation, 199

O
OK button, 271–272
Open Google Maps app, 580–581
Operators, 31

App Inventor using, 31
Boolean values and, 216–226, 237–242
calculations using, 159–161, 167

combining blocks, 167
decision block using, 216–226, 237–242
logical, 237–242
math blocks, 159–161
relational, 216–226

OrientationSensor component, 566–573, 658–659
Angle property, 568
Available property, 566
Azimuth property, 567
Cat and Mouse app, 569–573
Changed event, 568
Enabled property, 566
Magnitude property, 568
Pitch property, 567–568
references for, 658–659
Roll property, 567–568

P
Palette column in Designer, 39–40
Parameters

arguments and, 322–324
division-point, 515–516
edge, 450
local variables, 186
splitting substrings, 515–516
sprite components, 450
variables, 186, 322–324

PasswordTextBox component, 660
Pause method, 128–129
Phone calls

ContactPicker component, 600–604
Load a contact app, 601–604
Name and phone number storage app, 409–410
Phone vibration app, 130–132
PhoneCall component, 604–606
PhoneNumber property, 541
PhoneNumberPicker component, 600–604
Select and Call a contact app, 604–606

Phone vibration app, 130–132
PhoneCall component, 604–606, 660
PhoneNumber property, 541
PhoneNumberPicker component, 600–604, 660–661
Photos taken with Camera component, 591–592
pick random item block, 390
Pitch property (speech), 535
Pitch property (sensors), 567–568
Pixel specification, 64
Pizza toppings app, 259–264
Play method, 128–129
Player component, 132–133, 661
Popping Balloons app, 471–479
Pretest loops, 281–282
procedure block, 312–313
Procedures, 311–394

AreaCircle app, 327–330
Blocks editor creation of, 312–321

 Index 693

call block, 313–314
Click event handler, 314–316
code reuse, 312
Cups to Ounces app, 334–337
divide and conquer approach, 311
functions and, 311–312, 331–337
Lights app, 316–321
modularized program, 312
parameter variables, 322–323
passing arguments to, 322–330
procedure block, 312–313
programming use of, 311–312
returning values from, 331–337
top-down design, 321
with results (functions), 312

Product and price storage and retrieval app, 411–413
Program, defined, 29
Programming, 31, 69–87

code blocks for, 31, 69–87
connecting blocks, 72–73
divide and conquer approach, 311
event-driven, 69
event handler, 70–71
inserting blocks, 71
modularized, 311–312
procedures used for, 311–312, 321
syntax error and, 31
text string block, 73–74
top-down design, 321
types of blocks, 70

Programming languages, 30
Projects with App Inventor, 32–47

starting, 32–38
creating, 34–46
managing, 46–47

Properties column, 42, 48–50

R
random integer function, 331
Random number blocks, 248–252
Range checker app, 240–242
ReadFrom method, 398
RecieveEnabled property, 541–542
RecieveMessage event, 542–543
Record and Playback Audio app, 587–591
Relational operators, 216–235

blocks, 216–217
decision blocks using, 216–235
defined, 216
if blocks used with, 216–226
if then else block used with, 226–235
test average app, 218–225, 227–228
wage calculation app, 232–235

Repetition blocks, 271–310. See also Loops
Clock component, 294–302
DatePicker component, 302–305

dialog boxes, 271–279
for each loop, 287–294
iteration of, 279–274
Notifier component, 271–279
while loop, 279–287

replace all block, 513
Reply to Family app, 548–550
Restaurant tip calculation app, 168–172
Resume method, 128–129
Return character (\n), 352–353
Roll property, 567–568
Running total (accumulator) calculation, 290–294

S
Sandbox (isolation) application, 396
SaveFile method, 397
Scope of a variable, 186
Screen alignment, 58–61
Screen background, 97–108

changing images, 100–108
code blocks used to switch images, 102–108
displaying image as, 97–99
uploading files, 99–102

Screen1 component, 47–48, 662–663
App Inventor use of, 47–48
Blocks editor functions, 43–44
Initialize event, 253–254
references for, 662–663

segment block, 514
select list item block, 356
Selection property, 255, 593
SendMessage method, 542, 547–548
Sensors, 555–584

AccelerometerSensor component, 574–578
ActivityStarter component, 578–581
App Inventor components, 40
Cat and Mouse app, 569–573
Display location app, 559–565
LocationSensor component, 555–565
Open Google Maps app, 580–581
OrientationSensor component, 566–573
ShakeToClear app, 576–578

Set button, 303–304
ShakeToClear app, 576–578
Shaking event, 575–576
Slider component, 200–203, 663
Social components, 40
Socket, 73
Sound component, 123–128, 663–664
SoundRecorder component, 585–587
Sounds, 123–133

audio recording, 585–591
media applications, 123–133
Pause method, 128–129
Play method, 128–129
Player component, 132–133

694 Index

Sounds (Continued)
Resume method, 128–129
Sound component, 123–128
Speak method, 535–536
TextToSpeech component, 533–540
uploading files for, 123–125
Vibrate method, 129–130

Speak method, 535–536
SpeakMessagesFromFamily app, 544–546
SpeechRate property, 535
SpeechRecognizer component, 609–613, 664
Spinner component, 664
split at first function, 516
split at spaces function, 517
split function, 517
Splitting substrings, 515–528

division-point parameter, 515–516
length of a string, 518
split at first function, 516
split at spaces function, 517
split function, 517
Validate Email Address app, 522–528

Sprite components, 448–457, 463–479
Ball, 448–455
CollidedWith event, 469–471
CollidingWith method, 451
defined, 448
detecting collisions, 469–479
dragging, 463–468
edge parameter, 450
events, 451
graphics and animation using, 439, 448–457,

463–479
ImageSprite, 439, 448–451, 455–457
MoveTo method, 450–451, 463
properties, 449, 455–450

starts at block, 505–506
Statements (code), 31
Stepwise refinement, 321
Storage, see Data Storage
String concatenation, see Concatenating strings
Strings, see Text strings
Substrings, 505
contains block, 505–506
division-point parameter, 515–516
extracting, 513–514
finding, 505–512
length of a string, 518
replace all block, 513
segment block, 514
split at first function, 516
split at spaces function, 517
split function, 517
splitting, 515–528
starts at block, 505–506
Validate Email Address app, 507–512, 522–528

SumOfNumbers app, 391–294
Switching between screens, 422–423
Syntax, 31

T
TableArrangement component, 137–138,

664–665
Tag-Value pairs, 408–420

list values as, 413–420
retrieving values, 410–413
storing, 409–410
tag use, 408
TinyDB component applications, 408
value use, 407

Test Average app, 218–225, 227–228
Test Scores app, 350–352
Text Dialog, 274–276
AfterTextInput event, 275–276
Notifier component for, 274–276

text string block, 73–74
Text strings, 236–237, 485–527

ButtonCompare app, 494–498
compare texts block, 236–237, 491–498
concatenating, 485–490
converting case, 500–501
decision blocks for comparison of, 236–237
equal, 492–493
literal, 487–488
number, 489–500
substrings, 505–528
Trim and Convert to Format Tags app, 501–504
trimming, 499–497
typeblocking for block creation, 199
upcase/downcase block, 500–501
variable, 488–489

TextBox component, 153–159, 665
data input using, 153–157
displaying text using, 157–159
properties, 154, 157
references for, 665

Texting, see Messaging
Texting component, 540–544, 665–666

Message property, 541
MessageRecieved event, 543–544
PhoneNumber property, 541
properties, 541–542
RecieveEnabled property, 541–542
RecieveMessage event, 542–543
references for, 665–666
SendMessage method, 542
smartphone communication with, 540–541

TextToSpeech component, 533–540, 666–667
events, 536
language and country codes, 533–535, 666–667
Language property, 533–534
Pitch property, 535

 Index 695

properties, 533–535
references for, 666–667
Speak method, 535–536
SpeechRate property, 535
Text to Speech app, 536–540

Time zone app, 256–258
TimePicker component, 667–668
Timer events, 295–297
TimerInterval property, 295–296
TinyDB component, 407–433, 668

App inventor use, 407
list values as Tag-Value pairs, 413–420
multiple screen applications, 421–433
references for, 668
retrieving Tag-Value pairs, 410–413
storing Tag-Value pairs, 409–410
tag use, 408
Tag-Value pair applications, 408
text string trimming and conversion using, 501–504
Trim and Convert to Format Tags app, 501–504
value use, 407

TinyWebDB component, 616–617, 668–669
Title property display, 48–50
to procedure result block, 331–332
Top-down design, 321
Touched event, 441
Trim and Convert to Format

Tags app, 501–504
Trimming text strings, 499–497
true and false statements, see Boolean expressions
Try Again label, 385–386, 389
Twitter component, 613–616, 669–671
Typeblocking, 198–200

U
upcase/downcase block, 500–501
Update button, 301–302
Uploading files, 99–102, 123–125
USB

Android connection via, 636
App Inventor set up, 625

User Interface components, 39–40

V
Validate Email Address app, 507–512, 522–530
Variables, 173

concatenation of, 488–489
counter, 282–294
data storage with, 173–197
drawing with, 448
global, 173, 190–197
initializing, 173–174, 190–192
list creation using, 343–344
local, 173–190
naming, 173–175, 191–192
parameter, 186, 322–324
passing arguments to procedures

using, 322–324
strings, 488–489

VerticalArrangement component, 138, 671–672
Vibrate method, 129–130
VideoPlayer component, 596–600, 672
Viewer column in Designer, 40–41
Voice recognition, 609–613

W
Wage calculation app, 232–235
Web browser compatibility, 32
while loop, 279–287

Boolean expressions and, 279–282, 287
counter variables in, 282–286
EndingBalance app, 282–286
infinite loops, 287
iteration of, 279–286
pretest loop, 281–282

Wifi, Android connection via, 627–635

X
XAccel property, 574–575

Y
YAccel property, 574–575

Z
ZAccel property, 574–575

	Cover
	Title Page
	Copyright Page
	Brief Contents
	Contents
	Preface��������������
	Acknowledgements
	About the Authors
	Video Notes
	Chapter 1 Introduction to Programming and App Inventor���
	1.1 Introduction�����������������������
	1.2 What Is a Computer Program?��������������������������������������
	1.3 Introducing App Inventor�����������������������������������
	Tutorial 1-1: Starting App Inventor and Creating a New Project���
	1.4 Getting Hands-On with App Inventor���
	Tutorial 1-2: Creating the Screen for the Hello World App��
	Tutorial 1-3: Completing the Hello World App���
	Tutorial 1-4: Creating the Good Morning Translator App���
	Review Questions�����������������������

	Chapter 2 Working with Media�����������������������������������
	2.1 Displaying Images����������������������������
	Tutorial 2-1: Changing the Screen’s Background Image���
	Tutorial 2-2: Switching the Screen’s Background Image in Code��
	Tutorial 2-3: Using the Image Component��
	Tutorial 2-4: Creating the Flags App���
	2.2 Duplicating Blocks and Using Dropdowns���
	2.3 Sounds�����������������
	Tutorial 2-5: Creating the Guitar App��
	Tutorial 2-6: Making the Phone Vibrate���
	2.4 Color Blocks�����������������������
	2.5 Layout Components����������������������������
	Tutorial 2-7: Using Layout Components and Color Blocks���
	2.6 Commenting Blocks����������������������������
	Tutorial 2-8: Adding Comments������������������������������������
	Review Questions�����������������������

	Chapter 3 Input, Variables, and Calculations���
	3.1 The TextBox Component��������������������������������
	3.2 Performing Calculations����������������������������������
	Tutorial 3-1: Calculating Fuel Economy���
	Tutorial 3-2: Creating the Restaurant Tip Calculator App���
	3.3 Storing Data with Variables��������������������������������������
	Tutorial 3-3: Creating the Kilometer Converter App���
	Tutorial 3-4: Creating the Change Counter App��
	3.4 Creating Blocks with Typeblocking��
	3.5 The Slider Component�������������������������������
	3.6 Math Functions�������������������������
	Review Questions�����������������������

	Chapter 4 Decision Blocks and Boolean Logic��
	4.1 Introduction to Decision Blocks��
	4.2 Relational Operators and the if Block��
	Tutorial 4-1: The Test Average App���
	4.3 The if then else Block���������������������������������
	Tutorial 4-2: Modifying the Test Average App���
	Tutorial 4-3: Creating the Wages App���
	4.4 A First Look At Comparing Strings��
	4.5 Logical Operators����������������������������
	Tutorial 4-4: Creating the Range Checker App���
	4.6 Nested Decision Blocks���������������������������������
	Tutorial 4-5: Creating the Grader App��
	4.7 The if then else if Block������������������������������������
	4.8 Working with Random Numbers��������������������������������������
	Tutorial 4-6: Simulating Coin Tosses���
	4.9 The Screen’s Initialize Event��
	4.10 The ListPicker Component������������������������������������
	Tutorial 4-7: Creating the Time Zone App���
	4.11 The CheckBox Component����������������������������������
	Review Questions�����������������������

	Chapter 5 Repetition Blocks, Times, and Dates��
	5.1 The Notifier Component���������������������������������
	5.2 The while Loop�������������������������
	Tutorial 5-1: The Ending Balance App���
	5.3 The for each Loop����������������������������
	Tutorial 5-2: Calculating a Sum of Consecutive Numbers���
	5.4 The Clock Component������������������������������
	Tutorial 5-3: Creating a Clock App���
	5.5 The DatePicker Component�����������������������������������
	Review Questions�����������������������

	Chapter 6 Procedures and Functions���
	6.1 Modularizing Your Code With Procedures���
	6.2 Procedures���������������������
	Tutorial 6-1: Creating the Lights App��
	6.3 Passing Arguments to Procedures��
	Tutorial 6-2: Creating the AreaCircle App��
	6.4 Returning Values From Procedures���
	Tutorial 6-3: The Cups To Ounces App���
	Review Questions�����������������������

	Chapter 7 Lists����������������������
	7.1 Creating a List��������������������������
	Tutorial 7-1: Creating a List������������������������������������
	7.2 Iterating Over a List with the for each Loop���
	Tutorial 7-2: Iterating Over a List with the for each Loop���
	7.3 Selecting an Item����������������������������
	Tutorial 7-3: Selecting an Item in a List��
	Tutorial 7-4: Using the length of list Function��
	7.4 Inserting and Appending Items��
	Tutorial 7-5: Add Items to a List��
	7.5 Removing Items�������������������������
	7.6 Replacing Items��������������������������
	Tutorial 7-6: Replacing and Removing List Items��
	7.7 Searching for an Item��������������������������������
	Tutorial 7-7: Creating a Number-Guessing Game��
	7.8 Other List Functions�������������������������������
	Review Questions�����������������������

	Chapter 8 Storing Data on the Device���
	8.1 App Inventor Storage Components
	8.2 The Application Sandbox����������������������������������
	8.3 File Component�������������������������
	Tutorial 8-1: Creating a File������������������������������������
	8.4 Retrieving a File����������������������������
	Tutorial 8-2: Retrieving a File��������������������������������������
	Tutorial 8-3: Appending a File�������������������������������������
	8.5 TinyDB�����������������
	8.6 Tag-Value Pairs��������������������������
	8.7 Storing a Tag-Value Pair�����������������������������������
	Tutorial 8-4: Storing Names and Phone Numbers��
	8.8 Retrieving a Value�����������������������������
	Tutorial 8-5: Storing and Retrieving Values��
	8.9 Tag-Value Pairs when the Value is a List���
	Tutorial 8-6: Storing a List as a Value in a Tag-Value Pair��
	8.10 TinyDB Across Multiple Screens��
	Tutorial 8-7: TinyDB across Multiple Screens���
	Review Questions�����������������������

	Chapter 9 Graphics and Animation���������������������������������������
	9.1 The Canvas Component�������������������������������
	Tutorial 9-1: Drawing on the Canvas��
	9.2 The Ball and ImageSprite Component���
	Tutorial 9-2: Bouncing Ball����������������������������������
	Tutorial 9-3: Fishbowl - Using the ImageSprite Component���
	9.3 Using the Clock Component to Create Animations���
	Tutorial 9-4: Crack the Egg����������������������������������
	9.4 Dragging Sprites���������������������������
	Tutorial 9-5: Drag Ball sprite Example���
	Tutorial 9-6: Drag the Ball into the Box���
	9.5 Detecting Collisions�������������������������������
	Tutorial 9-7: Popping Balloons�������������������������������������
	Review Questions�����������������������

	Chapter 10 Working with Text�����������������������������������
	10.1 Concatenating Strings���������������������������������
	10.2 Comparing Strings�����������������������������
	Tutorial 10-1: Comparing Strings���������������������������������������
	10.3 T rimming a String������������������������������
	10.4 Converting Case���������������������������
	Tutorial 10-2: Trim and Convert to Format Tags���
	10.5 Finding a Substring�������������������������������
	Tutorial 10-3: Validate an Email Address���
	10.6 Replacing a Substring���������������������������������
	10.7 Extracting a Substring����������������������������������
	10.8 Splitting a Substring���������������������������������
	Tutorial 10-4: Validating Email – Valid Name and Top-Level Domain��
	Review Questions�����������������������

	Chapter 11 Text to Speech and Text Messaging���
	11.1 The TextToSpeech Component��������������������������������������
	Tutorial 11-1: Text to Speech������������������������������������
	11.2 The Texting Component���������������������������������
	11.3 Receiving Text Messages�����������������������������������
	Tutorial 11-2: Creating the Speak Messages from Family App���
	11.4 Sending Text Messages���������������������������������
	Tutorial 11-3: Reply to Family�������������������������������������
	Review Questions�����������������������

	Chapter 12 Sensors�������������������������
	12.1 The LocationSensor������������������������������
	Tutorial 12-1: Display Location��������������������������������������
	12.2 The OrientationSensor���������������������������������
	Tutorial 12-2: Cat and Mouse�����������������������������������
	12.3 The Accelerometer�����������������������������
	Tutorial 12-3: Shake to Clear Canvas���
	12.4 Using the ActivityStarter Component to launch Google Maps���
	Tutorial 12-4: Open Google Maps��������������������������������������
	Review Questions�����������������������

	Chapter 13 Other App Inventor Capabilities���
	13.1 Recording Audio���������������������������
	Tutorial 13-1: Record and PlayBack Audio���
	13.2 Taking a Photo with the Phone’s Camera��
	13.3 The Camcorder Component�����������������������������������
	13.4 Using the ImagePicker Component���
	Tutorial 13-2: Using the ImagePicker���
	13.5 Playing Video�������������������������
	Tutorial 13-3: Playing Video�����������������������������������
	13.6 Selecting Contacts from the Contact List and Placing Phone Calls
	Tutorial 13-4: Using the Contact and Phone Number Pickers��
	Tutorial 13-5: Using the PhoneCall component���
	13.7 Scanning a Barcode������������������������������
	13.8 Using Voice Recognition�����������������������������������
	Tutorial 13-6: Speak a Text Message��
	13.9 Connecting to a Twitter Account���
	Tutorial 13-7: Building a Twitter Application��
	13.10 TinyWebDB����������������������
	Review Questions�����������������������

	Appendix A Setting Up App Inventor���
	Appendix B Connecting an Android Device to App Inventor��
	Appendix C Uploading Your Application to App Inventor Gallery and Google Play Store��
	Appendix D Component Reference�������������������������������������
	Appendix E Answers to Checkpoints��
	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

		2015-09-15T16:16:43+0000
	Preflight Ticket Signature

