
Engineer-to-Engineer Note EE-267 
 

a 
 

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors
 

 

Implementing In-Place FFTs on SISD and SIMD SHARC® Processors 
Contributed by Kunal Singh Rev 1 – March 29, 2005 

 

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property 
of their respective holders.  Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however 
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes. 
 

Introduction 
ADSP-21065L and ADSP-21161 processors 
belong to the SHARC® family of processors. 
The ADSP-21065L is based on a SISD 
architecture, and the ADSP-21161 is based on a 
SIMD architecture. This application note 
discusses the implementation of in-place FFTs 
and provides ASM code examples for the SISD 
and SIMD SHARC processors. 

 An "in-place" FFT is an FFT that is calculated 
entirely inside its original sample memory. In 
other words, calculating an "in-place" FFT 
requires no additional buffer memory (as do 
some FFTs). An in-place FFT computation may 
be used when a system is constrained by 
memory. 

DIT vs. DIF FFT Routines 
An FFT decomposed using DFTs of even and 
odd points is called a decimation-in-time (DIT) 
FFT. It can also be decomposed using a first-
half/second-half approach, which is called a 
decimation-in-frequency (DIF) FFT. 

The DIF FFT algorithm operates on the in-place 
data (all data points are arranged sequentially in 
the memory buffer), and the results of the FFT 
computations are stored in a scrambled fashion 
(the results are stored in the same buffer, but 
with bit-reversed addresses) and must be un-
scrambled. 

The given example code uses a radix-2 DIF FFT 
algorithm for FFT computations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sequential Input Data vs. Scrambled 
Results 

Figure 1 shows the arrangement of the results in 
the memory buffer after the DIF FFT 
computation is performed on the sequential data. 
The results are bit-reversed. 

Since much literature about implementation of 
radix-2 FFT computation is available, this 
application note does not discuss the details of 
FFT algorithm and its implementation. This 
document discusses three different approaches 

D0 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

D10 

D11 

D12 

D0 

D8 

D4 

D12 

D2 

D10 

D6 

D14 

D1 

D9 

D5 

D13 

D3 

 

DIF 

In-
place  

Radix-2 

FFT

Sequential Input Data Scrambled Results



  a 

 

Implementing In-Place FFTs on SISD and SIMD SHARC® Processors (EE-267) Page 2 of 4 

that can be used to unscramble the data points 
while implementing the in-place FFTs.  

DIF FFT Computation 
Consider a 16-point FFT. Figure 1 shows how 
the input data points and the results are stored in 
memory for a DIF FFT computation. For an in-
place FFT computation, the results would be 
stored in the same memory buffer in which the 
input operands are available. No extra memory is 
utilized as a temporary storage buffer for the FFT 
computation. 

Unscrambling the Results 
As shown in Figure 1, the computation results of 
the DIF FFT computations would be in 
scrambled fashion and must be unscrambled. 
Different unscrambling schemes may be adopted 
providing a trade-off between MIPS and memory 
usage. Three approaches are described next. 

Approach 1 

As seen from shown in Figure 1, while 
unscrambling the results, you must interchange 
the position of results in the memory buffer. For 
example, the location of the result D8 would be 
interchanged with the result D1. While 
unscrambling the data points, you must ensure 
that each data point is traversed only once 
(traversing it twice would nullify any change). A 
simple approach is to traverse the memory buffer 
sequentially. The index of data point would be 
bit-reversed and compared with the actual value 
of the index. If the bit-reversed value is greater 
than the actual value of the index, the data points 
(the data pointed by actual index and the data 
pointed by the bit-reversed value of the index) 
would be interchanged. This approach does not 
require additional memory space, but it would 
consume a significant number of MIPS and may 
not be a suitable (practical) implementation (due 
to the very high MIPS consumption). 

Approach 2 

As is evident from the discussion in Approach 1, 
decision-making logic (to decide whether the 
data at a particular index has to be unscrambled) 
consumes lots of MIPS. An alternative approach 
is to pre-compute the logic and store it in the 
form of a decision table. Thus, a particular entry 
in the decision table could suggest whether the 
result data point at a particular location in the 
memory buffer must be unscrambled. This 
approach would consume some more memory (to 
store the decision table), but the MIPS required 
for decision logic would be saved. The only 
MIPS overhead would be for accessing a 
particular word in the decision table, testing a bit 
field from this word, and then performing a data 
unscramble operation (which involves address 
bit-reversal).  

 
M          

E               Approach 3 

M                                

O 

R 

Y 

 

U                Approach 2 

S    

A    

G 

E                                     Approach 1 

    

 
                   COMPUTATION CYCLES 

Figure 2. Comparison of Unscrambling Approaches 

Approach 3 

Another approach for unscrambling the data to is 
to store the unscrambling addresses in a look-up 
table. These addresses can be directly read from 
the look-up table, and data unscrambling from 
these addresses can be performed. This approach 
would further optimize the MIPS; however, it 



  a 

 

Implementing In-Place FFTs on SISD and SIMD SHARC® Processors (EE-267) Page 3 of 4 

would consume more memory (the look-up table 
would be much larger than the decision table). 

Since the SHARC processor architecture 
supports two parallel data fetch operations, using 
two look-up tables (one for the actual address 
and the second for the bit-reversed address) can 
further optimize MIPS usage. 

The example code attached to this application 
note uses Approach 3 for data unscrambling. A 
further modification was to store the differences 
between the consecutive addresses (offset of the 
two addresses) in the look-up table, rather than 
storing the addresses. Thus, there is no 
dependency on the actual physical addresses 
where data is stored in the memory. 

Conclusions  

Figure 2 compares the three approaches in terms 
of MIPS and memory usage. As is evident from 
the figure, Approach 3 results in optimum MIPS. 
However, the memory overheads (to store the 
look-up tables) are comparatively higher in this 
case. 

Table 1 depicts the MIPS count (for FFT 
calculation and unscrambling) and memory 
overheads for an N-point FFT on SISD and 
SIMD SHARC processors.  

 

(ADSP-21161) (ADSP-21065L) 
Sr. No. N (FFT points) 

Cycles Memory (Bytes) 
For look up tables Cycles Memory (Bytes) 

For look up tables 

1. 64 1156 112 1438 112 
2. 128 2158 224 2816 224 
3. 256 4316 489 5873 480 
4. 512 8770 960 12386 960 
5. 1024 18288 1984 26563 1984 
6. 2048 38158 3968 56772 3968 
7. 4096 80188 8064 NA NA 

Table 1. Performance Analysis of Attached Code on SISD and SIMD SHARC Processors 

 

 



  a 

 

Implementing In-Place FFTs on SISD and SIMD SHARC® Processors (EE-267) Page 4 of 4 

 

Appendix 
The attached ZIP file contains the following code: 

1. In-place radix-2 DIF FFT on an ADSP-21161 in assembly language 

2. In-place radix-2 DIF FFT on an ADSP-21065L in assembly language 

3. Twiddle factor generation 

4. Look-up table generation (to be used to unscramble the data) 

5. Test data generation (to be used to test the code in items 1 and 2) 

 

References 
[1] ADSP-21161 SHARC DSP Hardware Reference. Third Edition, May 2002. Analog Devices, Inc. 

[2] ADSP-2065L SHARC DSP User's Manual. September 01, 1998. Analog Devices, Inc. 

[3] Digital Signal Processing. Third Edition, 2003. John G. Proakis and Dimitris G. Manolakis 

 

Document History  

Revision Description 

Rev 1 – March 29, 2005  
by Kunal Singh 

Initial Release  

 


	Introduction
	DIT vs. DIF FFT Routines
	DIF FFT Computation
	Unscrambling the Results
	Approach 1
	Approach 2
	Approach 3

	Conclusions
	Appendix
	References
	Document History

