Open vSwitch Documentation
Release 2.6.0

Open vSwitch Developers

January 07, 2017

Contents

1 Open vSwitch Documentation 1
1.1 How the Documentation is Organised it 1
L2 First Steps . . o o v o e e e e e e e e e e e e e e 1
1.3 DeeperDive e e e e e 1
1.4 The Open vSwitch Project 2
1.5 GettingHelp o e 2

2 Getting Started 3
2.1 WhatIs Open vSwitch? e 3

2,11 OVEIVIEW . . v v v vt e e e e e e e e e e e e e 4
2.1.2 What'shere? 4
2.2 Why Open VSWItch? e e e e e e e 5
2.2.1 Themobilityof state e e e e e 5
2.2.2 Responding to network dynamics L. oL oL 5
2.2.3 Maintenance of logicaltags 5
224 Hardware integration i i it e e e e e e e e e e 6
225 Summary e e e e e e e e e e e e e e e e e 6
2.3 Installing Open vSwitch o L e e e e 6
2.3.1 Inmstallation from Source L e 6
2.3.2 Installation from Packages 36
233 Others e e e e e e e 42

3 Tutorials 45

3.1 OpenvSwitch Advanced Features 45
3.1.1 Getting Started L e e e e e e e 45
3.1.2 UsingGDB e e e e 46
313 Motivation L e e e 47
314 Scenario L e e e e e 47
35 Setup ... e 48
3.1.6 Implementing Table 0: Admissioncontrol 48
3.1.7 TestingTable O e 49
3.1.8 Implementing Table 1: VLAN Input Processing 50
3.1.9 TestingTable I o o e e e e 50
3.1.10 Implementing Table 2: MAC+VLAN Learning for IngressPort 52
3111 Testing Table 2 o o L L e e e 53
3.1.12 Implementing Table 3: Look Up Destination Port 53
3.1.13 TestingTable 3 L e e e e e e e e e e 54
3.1.14 TImplementing Table 4: Output Processing 55

3.1.15 Testing Table 4 e 56

32 OVNBASICS . . oot e 57
32,1 Getting Started L L L e e e e e e e e e e 57

322 UsingGDB 58

323 Simple TwoPort Setup e 58

3.2.4 Two Switches, Four Ports e e 61

3.25 TWOHYPEIVISOTS . . o v v v i o e 64

3.2.6 Locally Attached Networks o . i e e e 65

3.2.7 Locally Attached Networks with VLANs, 68

328 Stateful ACLs L e e e e e e e e 69

329 Container Ports 71
3.2.10 L2Gateway Ports e e e e e e e e e e e 71

4 Open vSwitch Deep Dive 73
4.1 Design Decisions In Open vSwitch 73
4.1.1 Asynchronous MesSages v v v v v v v v e e e e e e e e e e e e e e e 73

4.1.2 OFPAT_ENQUEUE i e i e e e et e e e e e e e e e e e e s e e 74

413 OFPT_FLOW_MOD . . .t i ittt ittt e e et e e e e e e e e e e e e e e s 75

4.1.4 OpenFlow 1.4 Bundles o 78

4.1.5 OFPT_PACKET_IN o o it e e e e e e e e e e e e e e e e 79

4.1.6 VLAN Matching e e 80

4.1.7 Flow CooKies o o v i e e e e 81

4.1.8 Multiple Table Support L e e e e e 82

419 OFPTC_x Table Configuration oo i ittt et 82
4110 IPVO . . .o e 83
4.1.11 In-Band Control e e 84
4.1.12 Action Reproduction e e e e e e e e 88
4113 Su@EESLIONS .« . v v vt e 88

4.2 Open vSwitch Datapath Development Guide 88
4.2.1 Flow Key Compatibility 88

422 FlowKeyFormat 89

423 Wildcarded Flow Key Format 89

424 Unique Flow Identifiers e e e 90

4.2.5 BasicRule for Evolving Flow Keys 90

4.2.6 Handling Malformed Packets o L. 91

427 OtherRules e e 91

428 CodingRules e 91

4.3 Integration Guide for Centralized Control e 91
43.1 Open_vSwitchtable e e e e e 93

43.2 Bridgetable e 93

433 Interfacetable L. 93

434 HAfor OVN DB serversusing pacemaker, 94

4.4 Porting Open vSwitch to New Software or Hardware 95
4.4.1 Vocabulary e e 95

4.4.2 Open vSwitch Architectural Overview 95

443 Writinganetdev Provider.o oL 96

444 Porting StrateZies e e e e e e e e e e e e e e e 96

4.4.5 ofproto Providers e e e e e e e e e e 97

44.6 Writingadpif Provider e 97

447 Miscellaneous NOteS oo L 98

4.4.8 Why OVS Does Not Support Hybrid Providers 98

449 QUESHIONS . . v v v i e 99

4.5 OpenFlow Supportin Open vSwitch 99
45.1 ThePlan. o o e 99

452 OpenFlow 1.1 e e e e e e e 99

453 OpenFlow 1.2 o L e e e e e 100
454 OpenFlow 1.3 o L o e e 100
4.5.5 OpenFlow 1.4 & ONF Extensions for 1.3.X Packl 101
456 OpenFlow 1.4only e 102
4.5.7 OpenFlow 1.5 & ONF Extensions for 1.3.X Pack2 102
458 OpenFlow 1.50nly e e e e e e 103
459 General 104
45.10 Howtocontribute e 104
4.6 Bonding e 104
4.6.1 Enabling and Disabling Slaves L e 105
4.6.2 BondPacketInput e e e e 105
4.6.3 BondPacketOutput. e e e e e e 106
4.6.4 BondBalance Modes L e 106
4.7 OVSDB Replication Implementation L o 107
4.7.1 Terminology L e 107
472 Design. e e e e 108
473 Setting Up The Replication i ittt i e e e e 108
4.7.4 Replication Process L e e 108
4.7.5 Runtime Management Commands 109
4.8 TheDPDK Datapath e 109
4.8.1 DPDKvVHostUserPorts e 109
4.9 OVS-on-Hyper-V Design i i i et e e e e e e e e e e 115
49.1 BackgroundInfo 115
492 DeSIZN . . . v e e e e e e e e e e e 116
493 Kernel Module (Datapath) e 118
4.9.4 Kernel-Userspace Interface L 121
495 FlowofaPacket e 121
4.9.6 Build/Deployment e e e e e e e e e e e 121
4.9.7 References e 122
4.10 Language Bindings o L e e e e e e e e 122
4.10.1 Official Bindings e 122
4.10.2 Third-Party Bindings 122
41T TeStNZ . . v o vt o e e e e e e e e e e e e e e e e e e e 122
4.11.1 Built-inTooling o e e e e e e 122
4.11.2 Continuous Integration with Travis CI 127
4113 wsperf . . oL e e e 127
4.12 OVN Gateway High Availability Plan o o 127
4.12.1 Basic Architecture e 128
4122 L3HA .« . o e e 129
4123 L2HA . o e 133
How-to Guides 135
5.1 OpenvSwitchwith KVM o e 135
ST Setup .. oo e e e e e 135
5.1.2 BugReporting 136
52 OpenvSwitchwith SELinux e 136
52,1 LIMItations e e e e e e e e 136
522 Installation 137
523 Troubleshooting e 137
524 Contributing SELinux policy patches o oo 138
52.5 Reporting Bugs 138
5.3 OpenvSwitch with Libvirt o e e e e e e e e 138
531 LImItations e e e e e e 139

54

5.5
5.6

5.7

5.8

59

5.10

5.11

5.12

532 Setup ..o e e e e e e e e e 139

5.3.3 Troubleshooting o e e e e e e e e 139
5.34 BugReporting e e e e e e 139
Open vSwitch with SSL o . . . e 139
54.1 SSL Concepts for OpenFlow e 140
5.4.2 Establishing a Public Key Infrastructure 140
543 Configuring SSL Support e e e e e e e 143
544 Reporting Bugs e e e e 144
Using LISP tunneling o . . o e e e e e e 144
Connecting VMs Using Tunnels 0 o 145
561 Setup .. oL e 145
5.6.2 Configuration StEPS v . i e e e e e e e e e e e e e e e e 146
5.63 Testing e e e e e e e e e e e e e e 147
5.64 Troubleshooting e 147
Connecting VMs Using Tunnels (Userspace)« . oo i i it v i i e 147
571 Setup . ..o e 148
5.7.2 Configuration Steps e e e e e e e e e e e e e 148
573 Testing o e e e e e e e e e e e e e e e e e e e 150
5.7.4 Tunneling-related Commands 150
Isolating VM Traffic Using VLANS e 151
581 Setup .. oL e 152
5.8.2 Configuration Steps L. e e e e e e e e 153
583 Validation 154
Quality of Service (QoS) Rate Limiting e e 154
591 Setup . . . o e e e e 155
59.2 Configuration Steps e e 155
593 Testigo i e e e e 156
5.9.4 Troubleshooting e e e e e e e e 156
5.9.5 Additional Information o 156
How to Use the VTEP Emulator i 156
5.10.1 Requirements e e e e 156
5002 Design . . . o v vt e e e e e e 157
5103 Startup e e e e e e e e e e e e e 158
5.10.4 Simulating an NVC o L. o e e e e e e e e e 158
Monitoring VM Trafic Using sFlow 159
SALT Setup . v v o e e e e e e 160
5.11.2 Configuration Steps e 161
5.11.3 Troubleshooting e e e 162
SAL4 Credit . . . oo oo 162
Using Open vSwitch with DPDK o e 162
5.12.1 Portsand Bridges e 162
5.12.2 PMD Thread StatiStics« . o o v i e i e e e e e e e e e e e e 163
5.12.3 Port/RXQ Assigmentto PMD Threads 163
5024 QOS . . 164
5.12.5 Rate Limiting o . o i e e e e e e e e e e e e e 164
5.12.6 Flow Control 164
SA27 pdump . ..o e e e 165
5.12.8 Jumbo Frames 165
5.12.9 Rx Checksum Offload e 166
5.12.10 Port Hotplug e e e e e e e e e e 166
52,11 Vdev Support o L e e e e e e e e e e e e e 167
5.12.12 OVS with DPDK Inside VMIS o0 00 i e 167
512,13 PHY-PHY 167
5.12.14 PHY-VM-PHY (vHost Loopback) 168

5.13 Open Virtual Networking With Docker 171

SA301 Setup . . o e e e e e e e e e 171
5.13.2 The “overlay”’mode 172
5.13.3 The “underlay” mode e 174
5.14 Integration of Containers with OVN and OpenStack 175
Reference Guide 177
6.1 ManPages e e e e 177
Open vSwitch FAQ 179
7.1 Basic Configuration e e 179
7.2 Development e 182
7.3 Implementation Details L e 182
T4 General Lo e 184
7.5 Common Configuration Issues e e e e e 185
7.6 Using OpenFlow e e e e e e e 190
7.7 Quality of Service (QOS) L e e e e e e e 197
7.8 Releases o e e e 199
7.9 Terminology i e e e e e e 203
710 VLANS . . o e e e e 203
TAL VXLANS .« . e e e e 207
Open vSwitch Internals 209
8.1 Contributing to Open vSwitch e 209
8.1.1 Submitting Patches e 209
8.1.2 Open vSwitch Coding Style e 215
8.1.3 Open vSwitch Windows Datapath Coding Style 223
8.1.4 Open vSwitch Documentation Style 225
8.2 Mailing LiSts o o o e e e e e e e 230
8.2.1 OVS-ANNOUNCE v v v e ittt e e e e et e e e e e e e e e e e 230
8.2.2 0ovs-diSCUSS L. e e e 230
8.2.3 ovs-dev e e e e e 230
824 OVS-ZIt e 230
825 ovs-build ..o e 231
8.2.6 DUZS e 231
8.2.7 SECUTILY . . . v v e e e e e e e e e e e e 231
8.3 Patchwork e e e 231
83.1 pwclient L e e e 231
8.4 OpenvSwitch Release Process it e e e e e e 231
8.4.1 Release Strategy o i e e e e e e e e e 231
8.4.2 Release Numbering L e 232
8.43 Release Scheduling L e 232
844 ContaCt e e e e e e e 232
8.5 Reporting Bugsin Open vSwitch e 233
8.6 Open vSwitch’s Security Process e e e e e e 233
8.6.1 Whatisavulnerability? e e e 234
8.6.2 Stepl:Reception 234
8.6.3 Step2: ASSESSIMENT e e e e 234
8.6.4 Step3a: Document e 234
8.6.5 Step3b: FiX o L e e 236
8.6.6 Step 4: Embargoed Disclosure e e 236
8.6.7 Step5: PublicDisclosure L e 237
8.7 Expectations for Developers with Open vSwitch Repo Access 237
8. 7.1 Pre-requiSiteSo e e e e e e e 237

8. 7.2 ReVIEW . . . o o e e e e 237

8.7.3 GItconventions o vttt e e e e e e e e e e e e 238
8.8 OVS Committer Grant/Revocation Policy 238
8.8.1 Granting Commit ACCESS v vttt e e e e 238
8.8.2 Revoking Commit ACCESS v v v v v v et e e e e e e e e e 239
8.8.3 Changingthe Policy e 240
8.8.4 Nomination to Grant Commit ACCESS . . « . v v v v v v v v e e e e e e e e 241
8.8.5 Vote to Grant Commit ACCESS v v v vt i e e e e e e e e e 241
8.8.6 Vote Results for Grant of Commit ACCESS v v v v v v vt i et e 241
8.8.7 Invitation to Accepted Committer 241
8.8.8 Proposal to Remove Commit Access for Inactivity, 241
8.8.9 Notification of Commit Removal for Inactivity 242
8.8.10 Proposal to Revoke Commit Access for Detrimental Behavior 242
8.8.11 Vote to Revoke Commit Access o v v i i vttt i e e e 242
8.8.12 Vote Results for Revocation of Commit Access o v v v v v 242
8.8.13 Notification of Commit Revocation for Detrimental Behavior 243
8.9 AUthOIs e e 243
.10 CommItterS v v v it e 253

vi

CHAPTER 1

Open vSwitch Documentation

1.1

How the Documentation is Organised

The Open vSwitch documentation is organised into multiple sections:

1.2

Installation guides guide you through installing Open vSwitch (OVS) and Open Virtual Network (OVN) on a
variety of different platforms

Tutorials take you through a series of steps to configure OVS and OVN in sandboxed environments
Topic guides provide a high level overview of OVS and OVN internals and operation
How-to guides are recipes or use-cases for OVS and OVN. They are more advanced than the tutorials.

Frequently Asked Questions provide general insight into a variety of topics related to configuration and operation
of OVS and OVN.

First Steps

Getting started with Open vSwitch (OVS) or Open Virtual Network (OVN) for Open vSwitch? Start here.

1.3

Overview: What Is Open vSwitch? | Why Open vSwitch?

Install: Open vSwitch on Linux, FreeBSD and NetBSD | Open vSwitch without Kernel Support | Open vSwitch
on NetBSD | Open vSwitch on Windows | Open vSwitch on Citrix XenServer | Open vSwitch with DPDK

Tutorials: Open vSwitch Advanced Features | OVN Basics

Deeper Dive

Architecture Design Decisions In Open vSwitch | OpenFlow Support in Open vSwitch | Integration Guide for
Centralized Control | Porting Open vSwitch to New Software or Hardware

DPDK Using Open vSwitch with DPDK | DPDK vHost User Ports
Windows OV S-on-Hyper-V Design

Integrations: Language Bindings

Reference Guides: Reference Guide

Testing Testing

Open vSwitch Documentation, Release 2.6.0

» Packaging: Debian Packaging for Open vSwitch | RHEL 5.6, 6.x Packaging for Open vSwitch | Fedora, RHEL
7.x Packaging for Open vSwitch

1.4 The Open vSwitch Project

Learn more about the Open vSwitch project and about how you can contribute:

¢ Community: Open vSwitch Release Process | Authors | Mailing Lists | Patchwork | Reporting Bugs in Open
vSwitch | Open vSwitch’s Security Process

e Contributing: Submitting Patches | Open vSwitch Coding Style | Open vSwitch Windows Datapath Coding
Style

e Maintaining: Committers | Expectations for Developers with Open vSwitch Repo Access | OVS Committer
Grant/Revocation Policy

* Documentation: Open vSwitch Documentation Style | Building Open vSwitch Documentation

1.5 Getting Help

 Seeing an issue of potential bug? Report problems to bugs @openvswitch.org

* Looking for specific information? Try the genindex, modindex or the detailed table of contents.

2 Chapter 1. Open vSwitch Documentation

mailto:bugs@openvswitch.org

CHAPTER 2

Getting Started

How to get started with Open vSwitch.

2.1 What Is Open vSwitch?

e h 4 B
[1 Security: VLAN Monitoring: Netflow,
s~ isolation, traffic filtering sFlow, SPAN, RSPAN

_ y € o

f) § d | |

: ; Automated Control:
e trafﬁc que‘umg OpenFlow, OVSDB
and traffic shaping

L y 9 mgmt. protocol y

Open vSwitch Documentation, Release 2.6.0

2.1.1 Overview

Open vSwitch is a multilayer software switch licensed under the open source Apache 2 license. Our goal is to im-
plement a production quality switch platform that supports standard management interfaces and opens the forwarding
functions to programmatic extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments. In addition to exposing standard
control and visibility interfaces to the virtual networking layer, it was designed to support distribution across multiple
physical servers. Open vSwitch supports multiple Linux-based virtualization technologies including Xen/XenServer,
KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported to other environments. The current
release of Open vSwitch supports the following features:

 Standard 802.1Q VLAN model with trunk and access ports
¢ NIC bonding with or without LACP on upstream switch
* NetFlow, sFlow(R), and mirroring for increased visibility
* QoS (Quality of Service) configuration, plus policing
* Geneve, GRE, VXLAN, STT, and LISP tunneling
» 802.1ag connectivity fault management
e OpenFlow 1.0 plus numerous extensions
* Transactional configuration database with C and Python bindings
 High-performance forwarding using a Linux kernel module
The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate, at a cost in performance, entirely in userspace, without assistance from a kernel
module. This userspace implementation should be easier to port than the kernel-based switch. It is considered experi-
mental.

2.1.2 What’s here?

The main components of this distribution are:

* ovs-vswitchd, a daemon that implements the switch, along with a companion Linux kernel module for flow-
based switching.

 ovsdb-server, a lightweight database server that ovs-vswitchd queries to obtain its configuration.
* ovs-dpctl, a tool for configuring the switch kernel module.

* Scripts and specs for building RPMs for Citrix XenServer and Red Hat Enterprise Linux. The XenServer RPMs
allow Open vSwitch to be installed on a Citrix XenServer host as a drop-in replacement for its switch, with
additional functionality.

* ovs-vsctl, a utility for querying and updating the configuration of ovs-vswitchd.
* ovs-appctl, a utility that sends commands to running Open vSwitch daemons.
Open vSwitch also provides some tools:
* ovs-ofctl, a utility for querying and controlling OpenFlow switches and controllers.
* ovs-pki, a utility for creating and managing the public-key infrastructure for OpenFlow switches.

* ovs-testcontroller, a simple OpenFlow controller that may be useful for testing (though not for production).

4 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

* A patch to tcpdump that enables it to parse OpenFlow messages.

2.2 Why Open vSwitch?

Hypervisors need the ability to bridge traffic between VMs and with the outside world. On Linux-based hypervisors,
this used to mean using the built-in L2 switch (the Linux bridge), which is fast and reliable. So, it is reasonable to ask
why Open vSwitch is used.

The answer is that Open vSwitch is targeted at multi-server virtualization deployments, a landscape for which the
previous stack is not well suited. These environments are often characterized by highly dynamic end-points, the main-
tenance of logical abstractions, and (sometimes) integration with or offloading to special purpose switching hardware.

The following characteristics and design considerations help Open vSwitch cope with the above requirements.

2.2.1 The mobility of state

All network state associated with a network entity (say a virtual machine) should be easily identifiable and migratable
between different hosts. This may include traditional “soft state” (such as an entry in an L2 learning table), L3
forwarding state, policy routing state, ACLs, QoS policy, monitoring configuration (e.g. NetFlow, IPFIX, sFlow), etc.

Open vSwitch has support for both configuring and migrating both slow (configuration) and fast network state between
instances. For example, if a VM migrates between end-hosts, it is possible to not only migrate associated configuration
(SPAN rules, ACLs, QoS) but any live network state (including, for example, existing state which may be difficult to
reconstruct). Further, Open vSwitch state is typed and backed by a real data-model allowing for the development of
structured automation systems.

2.2.2 Responding to network dynamics

Virtual environments are often characterized by high-rates of change. VMs coming and going, VMs moving backwards
and forwards in time, changes to the logical network environments, and so forth.

Open vSwitch supports a number of features that allow a network control system to respond and adapt as the environ-
ment changes. This includes simple accounting and visibility support such as NetFlow, IPFIX, and sFlow. But perhaps
more useful, Open vSwitch supports a network state database (OVSDB) that supports remote triggers. Therefore, a
piece of orchestration software can “watch” various aspects of the network and respond if/when they change. This is
used heavily today, for example, to respond to and track VM migrations.

Open vSwitch also supports OpenFlow as a method of exporting remote access to control traffic. There are a number
of uses for this including global network discovery through inspection of discovery or link-state traffic (e.g. LLDP,
CDP, OSPF, etc.).

2.2.3 Maintenance of logical tags

Distributed virtual switches (such as VMware vDS and Cisco’s Nexus 1000V) often maintain logical context within
the network through appending or manipulating tags in network packets. This can be used to uniquely identify a VM
(in a manner resistant to hardware spoofing), or to hold some other context that is only relevant in the logical domain.
Much of the problem of building a distributed virtual switch is to efficiently and correctly manage these tags.

Open vSwitch includes multiple methods for specifying and maintaining tagging rules, all of which are accessible
to a remote process for orchestration. Further, in many cases these tagging rules are stored in an optimized form so
they don’t have to be coupled with a heavyweight network device. This allows, for example, thousands of tagging or
address remapping rules to be configured, changed, and migrated.

2.2. Why Open vSwitch? 5

Open vSwitch Documentation, Release 2.6.0

In a similar vein, Open vSwitch supports a GRE implementation that can handle thousands of simultaneous GRE
tunnels and supports remote configuration for tunnel creation, configuration, and tear-down. This, for example, can be
used to connect private VM networks in different data centers.

2.2.4 Hardware integration

Open vSwitch’s forwarding path (the in-kernel datapath) is designed to be amenable to “offloading” packet processing
to hardware chipsets, whether housed in a classic hardware switch chassis or in an end-host NIC. This allows for the
Open vSwitch control path to be able to both control a pure software implementation or a hardware switch.

There are many ongoing efforts to port Open vSwitch to hardware chipsets. These include multiple merchant silicon
chipsets (Broadcom and Marvell), as well as a number of vendor-specific platforms. The “Porting” section in the
documentation discusses how one would go about making such a port.

The advantage of hardware integration is not only performance within virtualized environments. If physical switches
also expose the Open vSwitch control abstractions, both bare-metal and virtualized hosting environments can be
managed using the same mechanism for automated network control.

2.2.5 Summary

In many ways, Open vSwitch targets a different point in the design space than previous hypervisor networking stacks,
focusing on the need for automated and dynamic network control in large-scale Linux-based virtualization environ-
ments.

The goal with Open vSwitch is to keep the in-kernel code as small as possible (as is necessary for performance) and
to re-use existing subsystems when applicable (for example Open vSwitch uses the existing QoS stack). As of Linux
3.3, Open vSwitch is included as a part of the kernel and packaging for the userspace utilities are available on most
popular distributions.

2.3 Installing Open vSwitch

A collection of guides detailing how to install Open vSwitch in a variety of different environments and using different
configurations.

2.3.1 Installation from Source
Open vSwitch on Linux, FreeBSD and NetBSD

This document describes how to build and install Open vSwitch on a generic Linux, FreeBSD, or NetBSD host. For
specifics around installation on a specific platform, refer to one of the other installation guides listed in Installing Open
vSwitch.

Build Requirements

To compile the userspace programs in the Open vSwitch distribution, you will need the following software:
* GNU make
* A C compiler, such as:

- GCC4.x.

6 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

— Clang. Clang 3.4 and later provide useful static semantic analysis and thread-safety checks. For Ubuntu,
there are nightly built packages available on clang’s website.

— MSVC 2013. Refer to Open vSwitch on Windows for additional Windows build instructions.

While OVS may be compatible with other compilers, optimal support for atomic operations may be missing,
making OVS very slow (see 1ib/ovs-atomic.h).

¢ libssl, from OpenSSL, is optional but recommended if you plan to connect the Open vSwitch to an OpenFlow
controller. libssl is required to establish confidentiality and authenticity in the connections from an Open vSwitch
to an OpenFlow controller. If libssl is installed, then Open vSwitch will automatically build with support for it.

e libcap-ng, written by Steve Grubb, is optional but recommended. It is required to run OVS daemons as a non-
root user with dropped root privileges. If libcap-ng is installed, then Open vSwitch will automatically build with
support for it.

* Python 2.7. You must also have the Python six library.

On Linux, you may choose to compile the kernel module that comes with the Open vSwitch distribution or to use the
kernel module built into the Linux kernel (version 3.3 or later). See the Open vSwitch FAQ question “What features
are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?” for more
information on this trade-off. You may also use the userspace-only implementation, at some cost in features and
performance. Refer to Open vSwitch without Kernel Support for details.

To compile the kernel module on Linux, you must also install the following:
* A supported Linux kernel version.

For optional support of ingress policing, you must enable kernel configuration options NET_CLS_BASIC,
NET_SCH_INGRESS, and NET_ACT_POLICE, either built-in or as modules. NET_CLS_POLICE is obsolete
and not needed.)

On kernels before 3.11, the ip_gre module, for GRE tunnels over IP (NET_IPGRE), must not be loaded or
compiled in.

To configure HTB or HFSC quality of service with Open vSwitch, you must enable the respective configuration
options.

To use Open vSwitch support for TAP devices, you must enable CONFIG_TUN.
¢ To build a kernel module, you need the same version of GCC that was used to build that kernel.

* A kernel build directory corresponding to the Linux kernel image the module is to run on. Under Debian and
Ubuntu, for example, each linux-image package containing a kernel binary has a corresponding linux-headers
package with the required build infrastructure.

If you are working from a Git tree or snapshot (instead of from a distribution tarball), or if you modify the Open
vSwitch build system or the database schema, you will also need the following software:

¢ Autoconf version 2.63 or later.
* Automake version 1.10 or later.
* libtool version 2.4 or later. (Older versions might work too.)
To run the unit tests, you also need:
e Perl. Version 5.10.1 is known to work. Earlier versions should also work.
The datapath tests for userspace and Linux datapaths also rely upon:
* pyftpdlib. Version 1.2.0 is known to work. Earlier versions should also work.
* GNU wget. Version 1.16 is known to work. Earlier versions should also work.

* netcat. Several common implementations are known to work.

2.3. Installing Open vSwitch 7

Open vSwitch Documentation, Release 2.6.0

e curl. Version 7.47.0 is known to work. Earlier versions should also work.
* tftpy. Version 0.6.2 is known to work. Earlier versions should also work.

The ovs-vswitchd.conf.db(5) manpage will include an E-R diagram, in formats other than plain text, only if you have
the following:

¢ dot from graphviz (http://www.graphviz.org/).
* Perl. Version 5.10.1 is known to work. Earlier versions should also work.
If you are going to extensively modify Open vSwitch, consider installing the following to obtain better warnings:
* “sparse” version 0.4.4 or later (https://www.kernel.org/pub/software/devel/sparse/dist/).
* GNU make.
* clang, version 3.4 or later

* flake8 along with the hacking flake8 plugin (for Python code). The automatic flake8 check that runs against
Python code has some warnings enabled that come from the “hacking” flake8 plugin. If it’s not installed, the
warnings just won’t occur until it’s run on a system with “hacking” installed.

You may find the ovs-dev script foundin utilities/ovs—dev.py useful.

Installation Requirements

The machine you build Open vSwitch on may not be the one you run it on. To simply install and run Open vSwitch
you require the following software:

* libc compatible with the libc used for build.
¢ libssl compatible with the libssl used for build, if OpenSSL was used for the build.
* On Linux, the same kernel version configured as part of the build.

* For optional support of ingress policing on Linux, the “tc” program from iproute2 (part of all major distributions
and available at https://wiki.linuxfoundation.org/networking/iproute2).

e Python 2.7. You must also have the Python six library.

On Linux you should ensure that /dev/urandom exists. To support TAP devices, you must also ensure that
/dev/net/tun exists.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If you pulled the sources directly from an Open
vSwitch Git tree or got a Git tree snapshot, then run boot.sh in the top source directory to build the “configure” script:

$./boot.sh

Configuring

Configure the package by running the configure script. You can usually invoke configure without any arguments. For
example:

$./configure

8 Chapter 2. Getting Started

http://www.graphviz.org/
https://www.kernel.org/pub/software/devel/sparse/dist/
https://wiki.linuxfoundation.org/networking/iproute2

Open vSwitch Documentation, Release 2.6.0

By default all files are installed under /usr/local. Open vSwitch also expects to find its database in
/usr/local/etc/openvswitch by default. If you want to install all files into, e.g., /usr and /var instead of
/usr/local and /usr/local/var and expect to use /etc/openvswitch as the default database directory,
add options as shown here:

$./configure —--prefix=/usr --localstatedir=/var --sysconfdir=/etc

Note: Open vSwitch installed with packages like .rpm (e.g. via yum install or rpm -ivh) and .deb (e.g. via
apt—get install or dpkg -—1i) use the above configure options.

By default, static libraries are built and linked against. If you want to use shared libraries instead:

’$./configure —--enable-shared

To use a specific C compiler for compiling Open vSwitch user programs, also specify it on the configure command
line, like so:

’$./configure CC=gcc-4.2

To use ‘clang’ compiler:

’$./configure CC=clang

To supply special flags to the C compiler, specify them as CFLAGS on the configure command line. If you want the
default CFLAGS, which include —g to build debug symbols and —02 to enable optimizations, you must include them
yourself. For example, to build with the default CFLAGS plus —mssse 3, you might run configure as follows:

’$./configure CFLAGS="-g -02 -mssse3"

For efficient hash computation special flags can be passed to leverage built-in intrinsics. For example on X86_64 with
SSEA4.2 instruction set support, CRC32 intrinsics can be used by passing -msse4 . 2:

’$./configure CFLAGS="-g -02 -mssed4.2"

If you are on a different processor and don’t know what flags to choose, it is recommended to use —-march=native
settings:

’$./configure CFLAGS="-g -02 -march=native"

With this, GCC will detect the processor and automatically set appropriate flags for it. This should not be used if you
are compiling OVS outside the target machine.

Note: CFLAGS are not applied when building the Linux kernel module. Custom CFLAGS for the kernel module are
supplied using the EXTRA_CFLAGS variable when running make. For example:

S make EXTRA_CFLAGS="-Wno-error=date-time"

To build the Linux kernel module, so that you can run the kernel-based switch, pass the location of the kernel build
directory on ——with-1inux. For example, to build for a running instance of Linux:

$./configure --with-linux=/lib/modules/$ (uname -r)/build

Note: If ——with-1inux requests building for an unsupported version of Linux, then configure will fail with
an error message. Refer to the Open vSwitch FAQ for advice in that case.

2.3. Installing Open vSwitch 9

Open vSwitch Documentation, Release 2.6.0

If you wish to build the kernel module for an architecture other than the architecture of the machine used for the build,
you may specify the kernel architecture string using the KARCH variable when invoking the configure script. For
example, to build for MIPS with Linux:

$./configure --with-linux=/path/to/linux KARCH=mips

If you plan to do much Open vSwitch development, you might want to add ——enable-Werror, which adds the
-Werror option to the compiler command line, turning warnings into errors. That makes it impossible to miss
warnings generated by the build. For example:

‘$./configure —--enable-Werror

To build with gcov code coverage support, add ——enable-coverage:

‘$./configure —--enable-coverage

The configure script accepts a number of other options and honors additional environment variables. For a full list,
invoke configure with the ——help option:

’$./configure —--help

You can also run configure from a separate build directory. This is helpful if you want to build Open vSwitch in more
than one way from a single source directory, e.g. to try out both GCC and Clang builds, or to build kernel modules for
more than one Linux version. For example:

$ mkdir _gcc && (cd _gcc && ./configure CC=gcc)
$ mkdir _clang && (cd _clang && ./configure CC=clang)

Under certains loads the ovsdb-server and other components perform better when using the jemalloc memory allocator,
instead of the glibc memory allocator. If you wish to link with jemalloc add it to LIBS:

$./configure LIBS=-ljemalloc

Building

1. Run GNU make in the build directory, e.g.:

’ $ make

or if GNU make is installed as “gmake”:

’ $ gmake

If you used a separate build directory, run make or gmake from that directory, e.g.:

$ make -C _gcc
$ make -C _clang

For improved warnings if you installed sparse (see “Prerequisites”), add C=1 to the command line.

Note: Some versions of Clang and ccache are not completely compatible. If you see unusual warnings when
you use both together, consider disabling ccache.

2. Consider running the testsuite. Refer to Testing for instructions.

3. Run make install to install the executables and manpages into the running system, by default under
/usr/local:

10 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

$ make install

5. If you built kernel modules, you may install them, e.g.:

S make modules_install

It is possible that you already had a Open vSwitch kernel module installed on your machine that came from
upstream Linux (in a different directory). To make sure that you load the Open vSwitch kernel module you built
from this repository, you should create a depmod . d file that prefers your newly installed kernel modules over
the kernel modules from upstream Linux. The following snippet of code achieves the same:

$ config_file="/etc/depmod.d/openvswitch.conf"
$ for module in datapath/linux/*.ko; do
modname="$ (basename ${module})"
echo "override ${modname%.ko} * extra" >> "S$Sconfig_file"
echo "override ${modname%.ko} * weak-updates" >> "Sconfig_file"
done
$ depmod -a

Finally, load the kernel modules that you need. e.g.:

$ /sbin/modprobe openvswitch

To verify that the modules have been loaded, run /sbin/1smod and check that openvswitch is listed:

$ /sbin/lsmod | grep openvswitch

Note: If the modprobe operation fails, look at the last few kernel log messages (e.g. with dmesg | tail).
Generally, issues like this occur when Open vSwitch is built for a kernel different from the one into which you
are trying to load it. Run modinfo on openvswitch.ko and on a module built for the running kernel, e.g.:

$ /sbin/modinfo openvswitch.ko
$ /sbin/modinfo /lib/modules/$ (uname -r)/kernel/net/bridge/bridge.ko

Compare the “vermagic” lines output by the two commands. If they differ, then Open vSwitch was built for the
wrong kernel.

If you decide to report a bug or ask a question related to module loading, include the output from the dmesg
and modinfo commands mentioned above.

Starting

Before starting ovs-vswitchd itself, you need to start its configuration database, ovsdb-server. Each machine on which
Open vSwitch is installed should run its own copy of ovsdb-server. Before ovsdb-server itself can be started, configure
a database that it can use:

$ mkdir -p /usr/local/etc/openvswitch
$ ovsdb-tool create /usr/local/etc/openvswitch/conf.db \
vswitchd/vswitch.ovsschema

Configure ovsdb-server to use database created above, to listen on a Unix domain socket, to connect to any managers
specified in the database itself, and to use the SSL configuration in the database:

$ mkdir -p /usr/local/var/run/openvswitch
$ ovsdb-server —-remote=punix:/usr/local/var/run/openvswitch/db.sock \
——-remote=db:0Open_vSwitch, Open_vSwitch,manager_options \

2.3. Installing Open vSwitch 11

Open vSwitch Documentation, Release 2.6.0

——-private-key=db:0Open_vSwitch, SSL,private_key \
——certificate=db:0Open_vSwitch,SSL,certificate \
—-bootstrap-ca-cert=db:0Open_vSwitch, SSL,ca_cert \
—-pidfile —--detach --log-file

Note: If you built Open vSwitch without SSL support, then omit ——private-key, ——certificate, and
--bootstrap-ca-cert.)

Initialize the database using ovs-vsctl. This is only necessary the first time after you create the database with ovsdb-
tool, though running it at any time is harmless:

’$ ovs-vsctl —--no-wait init ‘

Start the main Open vSwitch daemon, telling it to connect to the same Unix domain socket:

’$ ovs-vswitchd —--pidfile --detach --log-file

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features. For example, to create a bridge
named br0 and add ports eth0 and vifl.O0 toit:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO
$ ovs-vsctl add-port br0 vifl.0

Refer to ovs-vsctl(8) for more details. You may also wish to refer to Testing for information on more generic testing
of OVS.

Upgrading

When you upgrade Open vSwitch from one version to another you should also upgrade the database schema:

1. Stop the Open vSwitch daemons, e.g.:

$ kill “cd /usr/local/var/run/openvswitch && cat ovsdb-server.pid ovs-vswitchd.pid®

2. Install the new Open vSwitch release by using the same configure options as was used for installing the previous
version. If you do not use the same configure options, you can end up with two different versions of Open
vSwitch executables installed in different locations.

3. Upgrade the database, in one of the following two ways:

« If there is no important data in your database, then you may delete the database file and recreate it with
ovsdb-tool, following the instructions under “Building and Installing Open vSwitch for Linux, FreeBSD
or NetBSD”.

« If you want to preserve the contents of your database, back it up first, then use ovsdb-tool convert
to upgrade it, e.g.:

$ ovsdb-tool convert /usr/local/etc/openvswitch/conf.db \
vswitchd/vswitch.ovsschema

4. Start the Open vSwitch daemons as described under Starting above.

12 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

Hot Upgrading

Upgrading Open vSwitch from one version to the next version with minimum disruption of traffic going through the
system that is using that Open vSwitch needs some considerations:

1.

If the upgrade only involves upgrading the userspace utilities and daemons of Open vSwitch, make sure that the
new userspace version is compatible with the previously loaded kernel module.

An upgrade of userspace daemons means that they have to be restarted. Restarting the daemons means that the
OpenFlow flows in the ovs-vswitchd daemon will be lost. One way to restore the flows is to let the controller
re-populate it. Another way is to save the previous flows using a utility like ovs-ofctl and then re-add them after
the restart. Restoring the old flows is accurate only if the new Open vSwitch interfaces retain the old ‘ofport’
values.

When the new userspace daemons get restarted, they automatically flush the old flows setup in the kernel. This
can be expensive if there are hundreds of new flows that are entering the kernel but userspace daemons are busy
setting up new userspace flows from either the controller or an utility like ovs-ofctl. Open vSwitch database
provides an option to solve this problem through the other_config:flow-restore-wait column of
the Open_vSwitch table. Refer to the ovs-vswitchd.conf.db(5) manpage for details.

If the upgrade also involves upgrading the kernel module, the old kernel module needs to be unloaded and the
new kernel module should be loaded. This means that the kernel network devices belonging to Open vSwitch is
recreated and the kernel flows are lost. The downtime of the traffic can be reduced if the userspace daemons are
restarted immediately and the userspace flows are restored as soon as possible.

The ovs-ctl utility’s restart function only restarts the userspace daemons, makes sure that the ‘ofport’ val-
ues remain consistent across restarts, restores userspace flows using the ovs-ofctl utility and also uses the
other_config:flow-restore-wait column to keep the traffic downtime to the minimum. The ovs-ctl util-
ity’s force—reload-kmod function does all of the above, but also replaces the old kernel module with the new
one. Open vSwitch startup scripts for Debian, XenServer and RHEL use ovs-ctl’s functions and it is recommended
that these functions be used for other software platforms too.

Reporting Bugs

Report problems to bugs @openvswitch.org.

Open vSwitch on NetBSD

On NetBSD, you might want to install requirements from pkgsrc. In that case, you need at least the following packages.

automake
libtool-base
gmake
python27
py27-six
py27-xml

pkg_alternatives

Some components have additional requirements. Refer to Open vSwitch on Linux, FreeBSD and NetBSD for more
information.

Assuming you are running NetBSD/amd64 6.1.2, you can download and install pre-built binary packages as the fol-
lowing:

2.3. Installing Open vSwitch 13

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

$ PKG_PATH=http://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/amd64/7.0.2/A11/

$ export PKG_PATH

$ pkg_add automake libtool-base gmake python27 py27-six py27-xml \
pkg_alternatives

Note: You might get some warnings about minor version mismatch. These can be safely ignored.

NetBSD’s /usr/bin/make is not GNU make. GNU make is installed as /usr/pkg/bin/gmake by the above
mentioned gmake package.

As all executables installed with pkgsrc are placed in /usr/pkg/bin/ directory, it might be a good idea to add it to
your PATH. Or install ovs by gmake and gmake install.

Open vSwitch on NetBSD is currently “userspace switch” implementation in the sense described in Open vSwitch
without Kernel Support and Porting Open vSwitch to New Software or Hardware.

Open vSwitch on Windows

Build Requirements

Open vSwitch on Linux uses autoconf and automake for generating Makefiles. It will be useful to maintain the same
build system while compiling on Windows too. One approach is to compile Open vSwitch in a MinGW environment
that contains autoconf and automake utilities and then use Visual C++ as a compiler and linker.

The following explains the steps in some detail.
* Mingw
Install Mingw on a Windows machine by following the instructions on mingw.org.

This should install mingw at C:\Mingw and msys at C:\Mingw\msys. Add C:\MinGW\bin and
C:\Mingw\msys\1.0\bin to PATH environment variable of Windows.

You can either use the MinGW installer or the command line utility mingw—get to install both the base
packages and additional packages like automake and autoconf(version 2.68).

Also make sure that /mingw mount point exists. If its not, please add/create the following entry in
/etc/fstab:

'C:/MinGW /mingw'.

e Python

Install the latest Python 2.x from python.org and verify that its path is part of Windows’ PATH environment
variable. We require that you have Python six and pypiwin32 libraries installed. The libraries can be installed
via pip command:

$ pip install six
$ pip install pypiwin32

¢ Visual Studio

You will need at least Visual Studio 2013 (update 4) to compile userspace binaries. In addition to that, if you
want to compile the kernel module you will also need to install Windows Driver Kit (WDK) 8.1 Update.

It is important to get the Visual Studio related environment variables and to have the $PATH inside the
bash to point to the proper compiler and linker. One easy way to achieve this for VS2013 is to get into
the “VS2013 x86 Native Tools Command Prompt” (in a default installation of Visual Studio 2013 this can

14 Chapter 2. Getting Started

http://www.mingw.org/wiki/Getting_Started

Open vSwitch Documentation, Release 2.6.0

be found under the following location: C:\Program Files (x86)\Microsoft Visual Studio
12.0\Common7\Tools\Shortcuts)and through it enter into the bash shell available from msys by typing
bash —--login.

There is support for generating 64 bit binaries too. To compile under x64, open the “VS2013 x64 Native Tools
Command Prompt” (if your current running OS is 64 bit) or “VS2013 x64 Cross Tools Command Prompt” (if
your current running OS is not 64 bit) instead of opening its x86 variant. This will point the compiler and the
linker to their 64 bit equivalent.

If after the above step, a which link inside MSYS’s bash says, /bin/link.exe, rename
/bin/link.exe to something else so that the Visual studio’s linker is used. You should also see a ‘which
sort’ report /bin/sort.exe.

e pthreads-win32

For pthread support, install the library, dll and includes of pthreads-win32 project from sourceware to a directory
(e.g.: C:/pthread). You should add the pthread-win32’s dll path (e.g.: C:\pthread\d11\x86) to the
Windows’ PATH environment variable.

e OpenSSL
To get SSL support for Open vSwitch on Windows, you will need to install OpenSSL for Windows

Note down the directory where OpenSSL is installed (e.g.: C: /OpenSSL-Win32) for later use.

Note: Commands prefixed by $ must be run in the Bash shell provided by MinGW. Open vSwitch commands, such
as ovs—dpctl are shown running under the DOS shell (cmd. exe), as indicated by the > prefix, but will also run
under Bash. The remainder, prefixed by >, are PowerShell commands and must be run in PowerShell.

Install Requirements

 Share network adaptors

We require that you don’t disable the “Allow management operating system to share this network adapter”
under ‘Virtual Switch Properties’ > ‘Connection type: External network’, in the HyperV virtual network switch
configuration.

¢ Checksum Offloads

While there is some support for checksum/segmentation offloads in software, this is still a work in progress. Till
the support is complete we recommend disabling TX/RX offloads for both the VM’s as well as the HyperV.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If you pulled the sources directly from an Open
vSwitch Git tree or got a Git tree snapshot, then run boot.sh in the top source directory to build the “configure” script:

$./boot.sh

Configuring

Configure the package by running the configure script. You should provide some configure options to choose the right
compiler, linker, libraries, Open vSwitch component installation directories, etc. For example:

2.3. Installing Open vSwitch 15

ftp://sourceware.org/pub/pthreads-win32/prebuilt-dll-2-9-1-release
https://wiki.openssl.org/index.php/Binaries

Open vSwitch Documentation, Release 2.6.0

$./configure CC=./build-aux/cccl LD="$(which link)" \
LIBS="-1lws2_32 -liphlpapi -lwbemuuid -lole32 -loleaut32" \
——prefix="C:/openvswitch/usr" \
—-localstatedir="C:/openvswitch/var" \
——sysconfdir="C:/openvswitch/etc" \
——with-pthread="C:/pthread"

Note: By default, the above enables compiler optimization for fast code. For default compiler optimization, pass the
——with-debug configure option.

To configure with SSL support, add the requisite additional options:

$./configure CC=./build-aux/cccl LD=" which link " \
LIBS="-1lws2_32 -liphlpapi -lwbemuuid -lole32 -loleaut32" \
——prefix="C:/openvswitch/usr" \
—-localstatedir="C:/openvswitch/var"
——-sysconfdir="C:/openvswitch/etc" \
——with-pthread="C:/pthread" \
——enable-ssl —-with-openssl="C:/OpenSSL-Win32"

Finally, to the kernel module also:

$./configure CC=./build-aux/cccl LD="'which link " \
LIBS="-1lws2_32 -liphlpapi —-lwbemuuid -lole32 -loleaut32" \
——prefix="C:/openvswitch/usr" \
—-localstatedir="C:/openvswitch/var" \
-—-sysconfdir="C:/openvswitch/etc" \
—-—with-pthread="C:/pthread" \
——enable-ssl —--with-openssl="C:/OpenSSL-Win32" \
--with-vstudiotarget="<target type>"

Possible values for <target type> are: Debug and Release

Note: You can directly use the Visual Studio 2013 IDE to compile the kernel datapath. Open the ovsext.sln file in the
IDE and build the solution.

Refer to Open vSwitch on Linux, FreeBSD and NetBSD for information on additional configuration options.

Building

Once correctly configured, building Open vSwitch on Windows is similar to building on Linux, FreeBSD, or NetBSD.

1. Run make for the ported executables in the top source directory, e.g.:

$ make

For faster compilation, you can pass the - argument to make. For example, to run 4 jobs simultaneously, run
make —j4.

Note: MSYS 1.0.18 has a bug that causes parallel make to hang. You can overcome this by downgrading to
MSYS 1.0.17. A simple way to downgrade is to exit all MinGW sessions and then run the below command
from MSVC developers command prompt.:

16 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

> mingw-get upgrade msys-core-bin=1.0.17-1

2. To run all the unit tests in Open vSwitch, one at a time:

$ make check

To run all the unit tests in Open vSwitch, up to 8 in parallel:

$ make check TESTSUITEFLAGS="-j8"

3. To install all the compiled executables on the local machine, run:

$ make install

Note: This will install the Open vSwitch executables in C:/openvswitch. You can add
C:\openvswitch\usr\binandC:\openvswitch\usr\sbin to Windows’ PATH environment
variable for easy access.

The Kernel Module If you are building the kernel module, you will need to copy the below files to the target
Hyper-V machine.

e ./datapath-windows/x64/Win8.1Debug/package/ovsext.inf
e ./datapath-windows/x64/Win8.1Debug/package/OVSEXt.sys
* ./datapath-windows/x64/Win8.1Debug/package/ovsext.cat
e ./datapath-windows/misc/install.cmd

* ./datapath-windows/misc/uninstall.cmd

Note: The above path assumes that the kernel module has been built using Windows DDK 8.1 in Debug mode.
Change the path appropriately, if a different WDK has been used.

Nowrun . /uninstall.cmd to remove the old extension. Once complete, run . /install . cmd to insert the new
one. For this to work you will have to turn on TESTSIGNING boot option or ‘Disable Driver Signature Enforcement’
during boot. The following commands can be used:

> bcdedit /set LOADOPTIONS DISABLE_INTEGRITY_CHECKS
> bcdedit /set TESTSIGNING ON
> bcdedit /set nointegritychecks ON

Note: You may have to restart the machine for the settings to take effect.

In the Virtual Switch Manager configuration you can enable the Open vSwitch Extension on an existing switch or
create a new switch. If you are using an existing switch, make sure to enable the “Allow Management OS” option for
VXLAN to work (covered later).

The command to create a new switch named ‘OVS-Extended-Switch’ using a physical NIC named ‘Ethernet 1’ is:

PS > New-VMSwitch "OVS-Extended-Switch" —-NetAdapterName "Ethernet 1"

2.3. Installing Open vSwitch 17

Open vSwitch Documentation, Release 2.6.0

Note: You can obtain the list of physical NICs on the host using ‘Get-NetAdapter’ command.

In the properties of any switch, you should should now see “Open vSwitch Extension” under ‘Extensions’. Click the
check box to enable the extension. An alternative way to do the same is to run the following command:

PS > Enable-VMSwitchExtension "Open vSwitch Extension" OVS-Extended-Switch

Note: If you enabled the extension using the command line, a delay of a few seconds has been observed for the
change to be reflected in the Ul This is not a bug in Open vSwitch.

Starting

Important: The following steps assume that you have installed the Open vSwitch utilities in the local machine via
‘make install’.

Before starting ovs-vswitchd itself, you need to start its configuration database, ovsdb-server. Each machine on which
Open vSwitch is installed should run its own copy of ovsdb-server. Before ovsdb-server itself can be started, configure
a database that it can use:

> ovsdb-tool create C:\openvswitch\etc\openvswitch\conf.db \
C:\openvswitch\usr\share\openvswitch\vswitch.ovsschema

Configure ovsdb-server to use database created above and to listen on a Unix domain socket:

> ovsdb-server -vfile:info —-remote=punix:db.sock —--log-file \
--pidfile --detach

Note: The logfile is created at C: /openvswitch/var/log/openvswitch/

Initialize the database using ovs-vsctl. This is only necessary the first time after you create the database with ovsdb-
tool, though running it at any time is harmless:

’> ovs-vsctl —--no-wait init

Tip: If you would later like to terminate the started ovsdb-server, run:

’> ovs—appctl -t ovsdb-server exit

Start the main Open vSwitch daemon, telling it to connect to the same Unix domain socket:

‘> ovs—-vswitchd -vfile:info —--log-file —--pidfile —-detach

Tip: If you would like to terminate the started ovs-vswitchd, run:

‘> ovs—appctl exit

18 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

Note: The logfile is created at C: /openvswitch/var/log/openvswitch/

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features.

Add bridges Let’s start by creating an integration bridge, br—int and a PIF bridge, br-pif:

> ovs-vsctl add-br br-int
> ovs-vsctl add-br br-pif

Note: There’s a known bug that running the ovs-vsctl command does not terminate. This is generally solved by
having ovs-vswitchd running. If you face the issue despite that, hit Ctrl-C to terminate ovs-vsctl and check the output
to see if your command succeeded.

Validate that ports are added by dumping from both ovs-dpctl and ovs-vsctl:

> ovs—dpctl show
system@ovs—-system:
lookups: hit:0 missed:0 lost:0

flows: O
port 2: br-pif (internal) <<< internal port on 'br-pif' bridge
port 1: br-int (internal) <<< internal port on 'br-int' bridge

> ovs-vsctl show
ab6ec7b5-5bl1f-49ec-a795-79f6eb63228b
Bridge br-pif
Port br-pif
Interface br-pif
type: internal
Bridge br-int
Port br-int
Interface br-int
type: internal

Note: There’s a known bug that the ports added to OVSDB via ovs-vsctl don’t get to the kernel datapath im-
mediately, ie. they don’t show up in the output of ovs—-dpctl show even though they show up in output of
ovs-vsctl show. In order to workaround this issue, restart ovs-vswitchd. (You can terminate ovs-vswitchd by
running ovs—-appctl exit.)

Add physicals NICs (PIF) Now, let’s add the physical NIC and the internal port to br-pif. In OVS for Hyper-V,
we use the name of the adapter on top of which the Hyper-V virtual switch was created, as a special name to refer to
the physical NICs connected to the Hyper-V switch, e.g. if we created the Hyper-V virtual switch on top of the adapter
named Ethernet0, then in OVS we use that name (Ethernet0) as a special name to refer to that adapter.

Note: We assume that the OVS extension is enabled Hyper-V switch.

2.3. Installing Open vSwitch 19

Open vSwitch Documentation, Release 2.6.0

Internal ports are the virtual adapters created on the Hyper-V switch using the ovs-vsctl add-br <bridge>
command. By default they are created under the following rule “<name of bridge>" and the adapters are disabled.
One needs to enable them and set the corresponding values to it to make them IP-able.

As a whole example, if we issue the following in a powershell console:

PS > Get-NetAdapter | select Name, InterfaceDescription

Name InterfaceDescription

Ethernetl Intel (R) PRO/1000 MT Network Connection
br-pif Hyper-V Virtual Ethernet Adapter #2
EthernetO Intel (R) PRO/1000 MT Network Connection #2
br-int Hyper-V Virtual Ethernet Adapter #3

PS > Get-VMSwitch
Name SwitchType NetAdapterInterfaceDescription

external External Intel (R) PRO/1000 MT Network Connection #2

We can see that we have a switch(external) created upon adapter name ‘Ethernet0’ with the internal ports under name
‘br-pif” and ‘br-int’. Thus resulting into the following ovs-vsctl commands:

> ovs-vsctl add-port br-pif EthernetO

Dumping the ports should show the additional ports that were just added:

> ovs—dpctl show
system@ovs-system:
lookups: hit:0 missed:0 lost:0
flows: O
port 2: br-pif (internal) <<< internal port
adapter on
Hyper-V switch
port 1l: br-int (internal) <<< internal port
adapter on
Hyper-V switch
port 3: EthernetO <<< Physical NIC

> ovs-vsctl show
ab56ec7b5-5b1f-49ec-a795-79f6eb63228b
Bridge br-pif
Port br-pif
Interface br-pif
type: internal
Port "EthernetO"
Interface "EthernetO"
Bridge br-int
Port br-int
Interface br-int
type: internal

Add virtual interfaces (VIFs) Adding VIFs to openvswitch is a two step procedure. The first step is to assign a
‘OVS port name’ which is a unique name across all VIFs on this Hyper-V. The next step is to add the VIF to the ovsdb
using its ‘OVS port name’ as key.

First, assign a unique ‘OVS port name’ to the VIF. The VIF needs to have been disconnected from the Hyper-V switch
before assigning a ‘OVS port name’ to it. In the example below, we assign a ‘OVS port name’ called ovs-port-a
to a VIF on a VM VM1. By using index O for $vnic, the first VIF of the VM is being addressed. After assigning

20 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

the name ovs—-port—a, the VIF is connected back to the Hyper-V switch with name OVS—-HV-Switch, which is
assumed to be the Hyper-V switch with OVS extension enabled.:

PS > import-module .\datapath-windows\misc\OVS.psml

PS > $vnic = Get-VMNetworkAdapter <Name of the VM>

PS > Disconnect-VMNetworkAdapter -VMNetworkAdapter $vnic[O0]

PS > $vnic[0] | Set-VMNetworkAdapterOVSPort —-OVSPortName ovs-port-a
PS > Connect-VMNetworkAdapter -VMNetworkAdapter $vnic[0] \

-SwitchName OVS-Extended-Switch

Next, add the VIFs to br—int:

> ovs-vsctl add-port br-int ovs—-port-a

Dumping the ports should show the additional ports that were just added:

> ovs—dpctl show
system@ovs—-system:
lookups: hit:0 missed:0 lost:0

flows: O

port 4: ovs-port-a

port 2: br-pif (internal)
port 1l: br-int (internal
port 3: EthernetO

> ovs-vsctl show
4cd86499-74df-48bd-a64d-8d115b12a9f2
Bridge br-pif
Port "vEthernet (external)"
Interface "vEthernet (external)"
Port "EthernetO"
Interface "EthernetO"
Port br-pif
Interface br-pif
type: internal
Bridge br-int
Port br-int
Interface br-int
type: internal
Port "ovs-port-a"
Interface "ovs-port-a"

Add multiple NICs to be managed by OVS To leverage support of multiple NICs into OVS, we will be using the
MSFT cmdlets for forwarding team extension. More documentation about them can be found at technet.

For example, to set up a switch team combined from Ethernet0 2 and Ethernetl 2 named external:

PS > Get—-NetAdapter

Name InterfaceDescription

br-int Hyper-V Virtual Ethernet Adapter #3
br-pif Hyper-V Virtual Ethernet Adapter #2
Ethernet3 2 Intel (R) 82574L Gigabit Network Co...#3
Ethernet2 2 Intel (R) 82574L Gigabit Network Co...#4
Ethernetl 2 Intel (R) 82574L Gigabit Network Co...#2
Ethernet0 2 Intel (R) 82574L Gigabit Network Conn...

PS > New-NetSwitchTeam —-Name external -TeamMembers "Ethernet(0 2", "Ethernetl 2"

2.3. Installing Open vSwitch 21

https://technet.microsoft.com/en-us/library/jj553812%28v=wps.630%29.aspx

Open vSwitch Documentation, Release 2.6.0

PS > Get-NetSwitchTeam
Name : external
Members : {Ethernetl 2, Ethernet(0 2}

This will result in a new adapter bound to the host called external:

PS > Get-NetAdapter

Name InterfaceDescription

br-test Hyper-V Virtual Ethernet Adapter #4
br-pif Hyper-V Virtual Ethernet Adapter #2
external Microsoft Network Adapter Multiplexo...
Ethernet3 2 Intel (R) 82574L Gigabit Network Co...#3
Ethernet2 2 Intel (R) 82574L Gigabit Network Co...#4
Ethernetl 2 Intel (R) 82574L Gigabit Network Co...#2
Ethernet0 2 Intel (R) 82574L Gigabit Network Conn...

Next we will set up the Hyper-V VMSwitch on the new adapter external:

PS > New-VMSwitch —-Name external —-NetAdapterName external \
—-AllowManagementOS $false

Under OVS the adapters under the team external, Ethernet0 2 andEthernetl 2,can be added either under
a bond device or separately.

The following example shows how the bridges look with the NICs being separated:

> ovs-vsctl show
6cd9481b-c249-4ee3-8692-97b399dd29d8
Bridge br-test
Port br-test
Interface br-test
type: internal
Port "Ethernetl 2"
Interface "Ethernetl 2"
Bridge br-pif
Port "EthernetO 2"
Interface "Ethernet(0 2"
Port br-pif
Interface br-pif
type: internal

Add patch ports and configure VLAN tagging The Windows Open vSwitch implementation support VLAN tag-
ging in the switch. Switch VLAN tagging along with patch ports between br—int and br-pif is used to configure
VLAN tagging functionality between two VMs on different Hyper-Vs. To start, add a patch port from br—int to
br-pif:

> ovs-vsctl add-port br-int patch-to-pif
> ovs-vsctl set interface patch-to-pif type=patch \
options:peer=patch-to-int

Add a patch port from br-pif to br—int:

> ovs-vsctl add-port br-pif patch-to-int
> ovs-vsctl set interface patch-to-int type=patch \
options:peer=patch-to-pif

Re-Add the VIF ports with the VLAN tag:

22 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

> ovs-vsctl add-port br-int ovs-port-a tag=900
> ovs-vsctl add-port br-int ovs-port-b tag=900

Add tunnels The Windows Open vSwitch implementation support VXLAN and STT tunnels. To add tunnels. For
example, first add the tunnel port between 172.168.201.101 <-> 172.168.201.102:

ovs-vsctl add-port br-int tun-1

ovs—-vsctl set Interface tun-1 type=<port-type>

ovs-vsctl set Interface tun-1 options:local_ip=172.168.201.101
ovs-vsctl set Interface tun-1 options:remote_ip=172.168.201.102
ovs—-vsctl set Interface tun-1 options:in_key=flow

ovs-vsctl set Interface tun-1 options:out_key=flow

vV V.V V V V

...and the tunnel port between 172.168.201.101 <-> 172.168.201.105:

ovs-vsctl add-port br-int tun-2

ovs-vsctl set Interface tun-2 type=<port-type>

ovs-vsctl set Interface tun-2 options:local_ip=172.168.201.102
ovs-vsctl set Interface tun-2 options:remote_ip=172.168.201.105
ovs-vsctl set Interface tun-2 options:in_key=flow

ovs-vsctl set Interface tun-2 options:out_key=flow

vV V.V V V V

Where <port-type> is one of: stt or vxlan

Note: Any patch ports created between br-int and br-pif MUST be be deleted prior to adding tunnels.

Windows Services

Open vSwitch daemons come with support to run as a Windows service. The instructions here assume that you have
installed the Open vSwitch utilities and daemons viamake install.

To start, create the database:

> ovsdb-tool create C:/openvswitch/etc/openvswitch/conf.db \
"C:/openvswitch/usr/share/openvswitch/vswitch.ovsschema"

Create the ovsdb-server service and start it:

> sc create ovsdb-server \
binpath="C:/openvswitch/usr/sbin/ovsdb-server.exe \
C:/openvswitch/etc/openvswitch/conf.db \
-vfile:info --log-file --pidfile \
—--remote=punix:db.sock —--service --service-monitor"
> sc start ovsdb-server

Tip: One of the common issues with creating a Windows service is with mungled paths. You can make sure that the
correct path has been registered with the Windows services manager by running:

> sc gc ovsdb-server

Check that the service is healthy by running:

2.3. Installing Open vSwitch 23

Open vSwitch Documentation, Release 2.6.0

‘> sc query ovsdb-server

Initialize the database:

’> ovs-vsctl —--no-wait init

Create the ovs-vswitchd service and start it:

> sc create ovs-vswitchd \
binpath="C:/openvswitch/usr/sbin/ovs-vswitchd.exe \
—--pidfile -vfile:info --log-file --service —--service-monitor"
> sc start ovs-vswitchd

Check that the service is healthy by running:

> sc query ovs-vswitchd

To stop and delete the services, run:

sc stop ovs-vswitchd
sc stop ovsdb-server
sc delete ovs-vswitchd
sc delete ovsdb-server

vV V. V V

Windows CI Service

AppVeyor provides a free Windows autobuild service for opensource projects. Open vSwitch has integration with
AppVeyor for continuous build. A developer can build test his changes for Windows by logging into appveyor.com
using a github account, creating a new project by linking it to his development repository in github and triggering a
new build.

TODO

* Investigate the working of sFlow on Windows and re-enable the unit tests.
* Investigate and add the feature to provide QoS.

* Sign the driver & create an MSI for installing the different OpenvSwitch components on Windows.

Open vSwitch on Citrix XenServer
This document describes how to build and install Open vSwitch on a Citrix XenServer host. If you want to install
Open vSwitch on a generic Linux or BSD host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Open vSwitch should work with XenServer 5.6.100 and later. However, Open vSwitch requires Python 2.7 or later, so
using Open vSwitch with XenServer 6.5 or earlier requires installing Python 2.7.

Building

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree. The recommended build
environment to build RPMs for Citrix XenServer is the DDK VM available from Citrix.

1. If you are building from an Open vSwitch Git tree, then you will need to first create a distribution tarball by
running:

24 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

$./boot.sh
$./configure
$ make dist

You cannot run this in the DDK VM, because it lacks tools that are necessary to bootstrap the Open vSwitch
distribution. Instead, you must run this on a machine that has the tools listed in Installation Requirements as
prerequisites for building from a Git tree.

2. Copy the distribution tarball into /usr/src/redhat/SOURCES inside the DDK VM.

3. In the DDK VM, unpack the distribution tarball into a temporary directory and “cd” into the root of the distri-
bution tarball.

4. To build Open vSwitch userspace, run:

$ rpmbuild -bb xenserver/openvswitch-xen.spec

This produces three RPMs in /usr/src/redhat /RPMS/1386:
* openvswitch
e openvswitch-modules-xen
* openvswitch-debuginfo

The above command automatically runs the Open vSwitch unit tests. To disable the unit tests, run:

$ rpmbuild -bb —--without check xenserver/openvswitch-xen.spec

Build Parameters

openvswitch-xen. spec needs to know a number of pieces of information about the XenServer kernel. Usually,
it can figure these out for itself, but if it does not do it correctly then you can specify them yourself as parameters to
the build. Thus, the final rpmbuild step above can be elaborated as:

VERSION=<Open vSwitch version>
KERNEL_NAME=<Xen Kernel name>
KERNEL_VERSION=<Xen Kernel version>
KERNEL_FLAVOR=<Xen Kernel flavor (suffix)>
rpmbuild \

-D "openvswitch_version S$VERSION" \

-D "kernel_name SKERNEL_NAME" \

-D "kernel_version S$SKERNEL_VERSION" \

-D "kernel_flavor S$SKERNEL_FLAVOR" \

-bb xenserver/openvswitch-xen.spec

v

where:

<openvswitch version> is the version number that appears in the name of the Open vSwitch tarball, e.g.
0.90.0.

<Xen Kernel name> isthe name of the XenServer kernel package, e.g. kernel-xen or kernel -NAME-xen,
without the kernel- prefix.

<Xen Kernel version> is the output of:

$ rpm —-q —-—-queryformat "${Version}-%{Release}" <kernel-devel-package>,

eg 2.6.32.12-0.7.1.xs5.6.100.323.170596, where <kernel-devel-package> is the name
of the —~devel package corresponding to <Xen Kernel name>.

2.3. Installing Open vSwitch 25

Open vSwitch Documentation, Release 2.6.0

<Xen Kernel flavor (suffix)> iseither xen or kdump, where xen flavor is the main running kernel flavor
and the kdump flavor is the crashdump kernel flavor. Commonly, one would specify xen here.

For XenServer 6.5 or above, the kernel version naming no longer contains KERNEL_FLAVOR. In fact, only providing
the uname -r output is enough. So, the final rpmbuild step changes to:

$ KERNEL_UNAME=<'uname -r output>

$ rpmbuild \
-D "kenel_uname S$SKERNEL_UNAME" \
-bb xenserver/openvswitch-xen.spec

Installing Open vSwitch for XenServer

To install Open vSwitch on a XenServer host, or to upgrade to a newer version, copy the openvswitch and
openvswitch-modules-xen RPMs to that host with scp, then install them with rpm -U, e.g.:

$ scp openvswitch-$VERSION-1.1386.rpm \
openvswitch-modules—-xen—-$XEN_KERNEL_VERSION-$SVERSION-1.1i386.rpm \
root@<host>:

Enter <host>'s root password.

ssh root@<host>

Enter <host>'s root password again.

rpm -U openvswitch-$VERSION-1.1i386.rpm \
openvswitch-modules—-xen—-$XEN_KERNEL_VERSION-$SVERSION-1.1i386.rpm

v o 0 =

To uninstall Open vSwitch from a XenServer host, remove the packages:

$ ssh root@<host>
Enter <host>'s root password again.
$ rpm -e openvswitch openvswitch-modules-xen-$XEN_KERNEL_VERSION

After installing or uninstalling Open vSwitch, the XenServer should be rebooted as soon as possible.

Open vSwitch Boot Sequence on XenServer

When Open vSwitch is installed on XenServer, its startup script /etc/init.d/openvswitch runs early in boot.
It does roughly the following:

* Loads the OVS kernel module, openvswitch.
* Starts ovsdb-server, the OVS configuration database.

» XenServer expects there to be no bridges configured at startup, but the OVS configuration database likely still
has bridges configured from before reboot. To match XenServer expectations, the startup script deletes all
configured bridges from the database.

* Starts ovs-vswitchd, the OVS switching daemon.

At this point in the boot process, then, there are no Open vSwitch bridges, even though all of the
Open vSwitch daemons are running. Later on in boot, /etc/init.d/management-interface (part
of XenServer, not Open vSwitch) creates the bridge for the XAPI management interface by invoking
/opt/xensource/libexec/interface-reconfigure. Normally this program consults XAPI’s database
to obtain information about how to configure the bridge, but XAPI is not running yet(*) so it instead consults
/var/xapi/network.dbcache, which is a cached copy of the most recent network configuration.

(*) Even if XAPI were running, if this XenServer node is a pool slave then the query would have to consult the
master, which requires network access, which begs the question of how to configure the management inter-
face.

26 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

XAPI starts later on in the boot process. XAPI can then create other bridges on demand using
/opt/xensource/libexec/interface-reconfigure. Now that XAPI is running, that program consults
XAPI directly instead of reading the cache.

As part of its own startup, XAPI invokes the Open vSwitch XAPI plugin script
/etc/xapi.d/openvswitch-cfg-update passing the update command. The plugin script does
roughly the following:

e Calls /opt/xensource/libexec/interface-reconfigure with the rewrite command, to en-
sure that the network cache is up-to-date.

* Queries the Open vSwitch manager setting (named vswitch_controller) from the XAPI database for the
XenServer pool.

e If XAPI and OVS are configured for different managers, or if OVS is configured for a manager but XAPI is
not, runs ovs—-vsctl emer-reset to bring the Open vSwitch configuration to a known state. One effect of
emer-reset is to deconfigure any manager from the OVS database.

o If XAPI is configured for a manager, configures the OVS manager to match with ovs-vsctl
set-manager.

Notes

* The Open vSwitch boot sequence only configures an OVS configuration database manager. There is no way to
directly configure an OpenFlow controller on XenServer and, as a consequence of the step above that deletes
all of the bridges at boot time, controller configuration only persists until XenServer reboot. The configuration
database manager can, however, configure controllers for bridges. See the BUGS section of ovs-testcontroller(8)
for more information on this topic.

* The Open vSwitch startup script automatically adds a firewall rule to allow GRE traffic. This rule is needed
for the XenServer feature called “Cross-Host Internal Networks” (CHIN) that uses GRE. If a user configures
tunnels other than GRE (ex: Geneve, VXLAN, LISP), they will have to either manually add a iptables firewall
rule to allow the tunnel traffic or add it through a startup script (Please refer to the “enable-protocol” command
in the ovs-ctl(8) manpage).

Reporting Bugs

Please report problems to bugs @openvswitch.org.

Open vSwitch without Kernel Support

Open vSwitch can operate, at a cost in performance, entirely in userspace, without assistance from a kernel module.
This file explains how to install Open vSwitch in such a mode.

This version of Open vSwitch should be built manually with configure and make. Debian packaging for Open
vSwitch is also included, but it has not been recently tested, and so Debian packages are not a recommended way to
use this version of Open vSwitch.

Warning: The userspace-only mode of Open vSwitch is considered experimental. It has not been thoroughly
tested.

2.3. Installing Open vSwitch 27

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

Building and Installing

The requirements and procedure for building, installing, and configuring Open vSwitch are the same as those given in
Open vSwitch on Linux, FreeBSD and NetBSD. You may omit configuring, building, and installing the kernel module,
and the related requirements.

On Linux, the userspace switch additionally requires the kernel TUN/TAP driver to be available, either built into the
kernel or loaded as a module. If you are not sure, check for a directory named /sys/class/misc/tun. If it does
not exist, then attempt to load the module with modprobe tun.

The tun device must also exist as /dev/net/tun. If it does not exist, then create /dev/net (if necessary) with
mkdir /dev/net, then create /dev/net/tun withmknod /dev/net/tun c 10 200.

On FreeBSD and NetBSD, the userspace switch additionally requires the kernel tap(4) driver to be available, either
built into the kernel or loaded as a module.

Using the Userspace Datapath with ovs-vswitchd

To use ovs-vswitchd in userspace mode, create a bridge with datapath_type=netdev in the configuration
database. For example:

ovs-vsctl add-br br0

ovs-vsctl set bridge br0 datapath_type=netdev
ovs—-vsctl add-port br0 ethO

ovs-vsctl add-port br0 ethl

ovs—-vsctl add-port br0 eth2

v v r

ovs-vswitchd will create a TAP device as the bridge’s local interface, named the same as the bridge, as well as for each
configured internal interface.

Currently, on FreeBSD, the functionality required for in-band control support is not implemented. To avoid related
errors, you can disable the in-band support with the following command:

$ ovs-vsctl set bridge br0 other_config:disable-in-band=true

Firewall Rules

On Linux, when a physical interface is in use by the userspace datapath, packets received on the interface still also
pass into the kernel TCP/IP stack. This can cause surprising and incorrect behavior. You can use “iptables” to avoid
this behavior, by using it to drop received packets. For example, to drop packets received on ethO:

$ iptables —-A INPUT -i ethO -3j DROP
$ iptables -A FORWARD —-i eth0O -j DROP

Other Settings

On NetBSD, depending on your network topology and applications, the following configuration might help. See
sysctl(7).:

‘$ sysctl -w net.inet.ip.checkinterface=1

Reporting Bugs

Report problems to bugs @openvswitch.org.

28 Chapter 2. Getting Started

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

Open vSwitch with DPDK

This document describes how to build and install Open vSwitch using a DPDK datapath. Open vSwitch can use the
DPDK library to operate entirely in userspace.

Warning: The DPDK support of Open vSwitch is considered ‘experimental’.

Build requirements

In addition to the requirements described in Open vSwitch on Linux, FreeBSD and NetBSD, building Open vSwitch
with DPDK will require the following:

* DPDK 16.11
* A DPDK supported NIC

Only required when physical ports are in use
* A suitable kernel

On Linux Distros running kernel version >= 3.0, only IOMMU needs to enabled via the grub cmdline,
assuming you are using VFIO. For older kernels, ensure the kernel is built with UIO, HUGETLBFS,
PROC_PAGE_MONITOR, HPET, HPET_MMAP support. If these are not present, it will be necessary to up-
grade your kernel or build a custom kernel with these flags enabled.

Detailed system requirements can be found at DPDK requirements.

Installing

Install DPDK

1. Download the DPDK sources, extract the file and set DPDK_DIR:

cd /usr/src/

wget http://fast.dpdk.org/rel/dpdk-16.11.tar.xz
tar xf dpdk-16.1l.tar.xz

export DPDK_DIR=/usr/src/dpdk-16.11

cd $DPDK_DIR

v W W r n

2. (Optional) Configure DPDK as a shared library

DPDK can be built as either a static library or a shared library. By default, it is config-
ured for the former. If you wish to use the latter, set CONFIG_RTE_BUILD_SHARED_LIB=y in
SDPDK_DIR/config/common_base.

Note: Minor performance loss is expected when using OVS with a shared DPDK library compared to a static
DPDK library.

3. Configure and install DPDK
Build and install the DPDK library:

$ export DPDK_TARGET=x86_64-native-linuxapp-gcc
$ export DPDK_BUILD=$DPDK_DIR/S$DPDK_TARGET
$ make install T=$DPDK_TARGET DESTDIR=install

2.3. Installing Open vSwitch 29

http://dpdk.org/doc/nics
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
http://dpdk.org/rel

Open vSwitch Documentation, Release 2.6.0

4. (Optional) Export the DPDK shared library location
If DPDK was built as a shared library, export the path to this library for use when building OVS:

‘ $ export LD_LIBRARY_ PATH=$DPDK_DIR/x86_64-native-linuxapp-gcc/lib

Install OVS OVS can be installed using different methods. For OVS to use DPDK datapath, it has to be configured
with DPDK support (——with-dpdk).

Note: This section focuses on generic recipe that suits most cases. For distribution specific instructions, refer to one
of the more relevant guides.

1. Ensure the standard OVS requirements, described in Build Requirements, are installed
2. Bootstrap, if required, as described in Bootstrapping

3. Configure the package using the ——with-dpdk flag:

$./configure —--with-dpdk=$DPDK_BUILD

where DPDK_BUILD is the path to the built DPDK library. This can be skipped if DPDK library is installed in
its default location

Note: While ——with-dpdk is required, you can pass any other configuration option described in Configuring.

4. Build and install OVS, as described in Building

Additional information can be found in Open vSwitch on Linux, FreeBSD and NetBSD.

Setup

Setup Hugepages Allocate a number of 2M Huge pages:

* For persistent allocation of huge pages, write to hugepages.conf file in /etc/sysctl.d:

‘ $ echo 'vm.nr_hugepages=2048' > /etc/sysctl.d/hugepages.conf

* For run-time allocation of huge pages, use the sysct1 utility:

’ $ sysctl -w vm.nr_hugepages=N # where N = No. of 2M huge pages

To verify hugepage configuration:

’$ grep HugePages_ /proc/meminfo

Mount the hugepages, if not already mounted by default:

‘$ mount -t hugetlbfs none /dev/hugepages'

Setup DPDK devices using VFIO VFIO is prefered to the UIO driver when using recent versions of DPDK. VFIO
support required support from both the kernel and BIOS. For the former, kernel version > 3.6 must be used. For the

latter, you must enable VT-d in the BIOS and ensure this is configured via grub. To ensure VT-d is enabled via the
BIOS, run:

30 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

$ dmesg | grep -e DMAR -e IOMMU

If VT-d is not enabled in the BIOS, enable it now.

To ensure VT-d is enabled in the kernel, run:

$ cat /proc/cmdline | grep iommu=pt
$ cat /proc/cmdline | grep intel_iommu=on

If VT-d is not enabled in the kernel, enable it now.

Once VT-d is correctly configured, load the required modules and bind the NIC to the VFIO driver:

modprobe vfio-pci

/usr/bin/chmod a+x /dev/vfio

/usr/bin/chmod 0666 /dev/vfio/*
SDPDK_DIR/tools/dpdk—-devbind.py —--bind=vfio-pci ethl
$SDPDK_DIR/tools/dpdk-devbind.py --status

v W W

Setup OVS Open vSwitch should be started as described in Open vSwitch on Linux, FreeBSD and NetBSD with
the exception of ovs-vswitchd, which requires some special configuration to enable DPDK functionality. DPDK
configuration arguments can be passed to ovs-vswitchd via the other_config column of the Open_vSwitch
table. At a minimum, the dpdk-init option must be set to t rue. For example:

$ export DB_SOCK=/usr/local/var/run/openvswitch/db.sock
$ ovs-vsctl —--no-wait set Open_vSwitch . other_config:dpdk-init=true
$ ovs-vswitchd unix:$DB_SOCK --pidfile --detach

There are many other configuration options, the most important of which are listed below. Defaults will be provided
for all values not explicitly set.

dpdk-init Specifies whether OVS should initialize and support DPDK ports. This is a boolean, and defaults to
false.

dpdk-lcore-mask Specifies the CPU cores on which dpdk Icore threads should be spawned and expects hex string
(eg ‘0x123’).

dpdk-socket-mem Comma separated list of memory to pre-allocate from hugepages on specific sockets.
dpdk-hugepage—dir Directory where hugetlbfs is mounted
vhost-sock—dir Option to set the path to the vhost-user unix socket files.

If allocating more than one GB hugepage, you can configure the amount of memory used from any given NUMA
nodes. For example, to use 1GB from NUMA node 0, run:

$ ovs-vsctl —--no-wait set Open_vSwitch . \
other_config:dpdk-socket-mem="1024,0"

Similarly, if you wish to better scale the workloads across cores, then multiple pmd threads can be created and pinned
to CPU cores by explicity specifying pmd-cpu-mask. Cores are numbered from 0, so to spawn two pmd threads
and pin them to cores 1,2, run:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x6

Refer to ovs-vswitchd.conf.db(5) for additional information on configuration options.

Note: Changing any of these options requires restarting the ovs-vswitchd application

2.3. Installing Open vSwitch 31

Open vSwitch Documentation, Release 2.6.0

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features. Seeing as we’ve configured the
DPDK datapath, we will use DPDK-type ports. For example, to create a userspace bridge named br0 and add two
dpdk ports to it, run:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

$ ovs-vsctl add-port br0 myportnameone —-- set Interface myportnameone \
type=dpdk options:dpdk-devargs=0000:06:00.0

$ ovs-vsctl add-port br0 myportnametwo —-- set Interface myportnametwo \

type=dpdk options:dpdk-devargs=0000:06:00.1

DPDK devices will not be available for use until a valid dpdk-devargs is specified.

Refer to ovs-vsctl(8) and Using Open vSwitch with DPDK for more details.

Performance Tuning

To achieve optimal OVS performance, the system can be configured and that includes BIOS tweaks, Grub cmdline
additions, better understanding of NUMA nodes and apt selection of PCle slots for NIC placement.

Note: This section is optional. Once installed as described above, OVS with DPDK will work out of the box.

Recommended BIOS Settings
Table 2.1: Recommended BIOS Settings

Setting Value

C3 Power State Disabled

C6 Power State Disabled
MLC Streamer Enabled
MLC Spacial Prefetcher Enabled
DCU Data Prefetcher Enabled
DCA Enabled
CPU Power and Performance Performance
Memeory RAS and Performance Config -> NUMA optimized | Enabled

PCle Slot Selection The fastpath performance can be affected by factors related to the placement of the NIC, such
as channel speeds between PCle slot and CPU or the proximity of PCle slot to the CPU cores running the DPDK
application. Listed below are the steps to identify right PCle slot.

1. Retrieve host details using dmidecode. For example:

$ dmidecode -t baseboard | grep "Product Name"

2. Download the technical specification for product listed, e.g: S2600WT2

3. Check the Product Architecture Overview on the Riser slot placement, CPU sharing info and also PCle channel
speeds

For example: On S2600WT, CPU1 and CPU2 share Riser Slot 1 with Channel speed between CPU1 and Riser
Slot1 at 32GB/s, CPU2 and Riser Slotl at 16GB/s. Running DPDK app on CPU1 cores and NIC inserted in to
Riser card Slots will optimize OVS performance in this case.

4. Check the Riser Card #1 - Root Port mapping information, on the available slots and individual bus speeds. In
S2600WT slot 1, slot 2 has high bus speeds and are potential slots for NIC placement.

32 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

Advanced Hugepage Setup Allocate and mount 1 GB hugepages.

* For persistent allocation of huge pages, add the following options to the kernel bootline:

default_hugepagesz=1GB hugepagesz=1G hugepages=N ‘

For platforms supporting multiple huge page sizes, add multiple options:

default_hugepagesz=<size> hugepagesz=<size> hugepages=N

where:
N number of huge pages requested
size huge page size with an optional suffix [kKmMgG]

* For run-time allocation of huge pages:

$ echo N > /sys/devices/system/node/nodeX/hugepages/hugepages-1048576kB/nr_hugepagels

where:
N number of huge pages requested

X NUMA Node

Note: For run-time allocation of 1G huge pages, Contiguous Memory Allocator (CONFIG_CMA) has to be
supported by kernel, check your Linux distro.

Now mount the huge pages, if not already done so:

$ mount -t hugetlbfs -o pagesize=1G none /dev/hugepages

Enable HyperThreading With HyperThreading, or SMT, enabled, a physical core appears as two logical cores.
SMT can be utilized to spawn worker threads on logical cores of the same physical core there by saving additional
cores.

With DPDK, when pinning pmd threads to logical cores, care must be taken to set the correct bits of the
pmd-cpu-mask to ensure that the pmd threads are pinned to SMT siblings.

Take a sample system configuration, with 2 sockets, 2 * 10 core processors, HT enabled. This gives us a total of 40
logical cores. To identify the physical core shared by two logical cores, run:

$ cat /sys/devices/system/cpu/cpuN/topology/thread_siblings_list

where N is the logical core number.

In this example, it would show that cores 1 and 21 share the same physical core. As cores are counted from 0, the
pmd-cpu-mask can be used to enable these two pmd threads running on these two logical cores (one physical core)
is:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x200002 ‘

Isolate Cores The isolcpus option can be used to isolate cores from the Linux scheduler. The isolated cores can
then be used to dedicatedly run HPC applications or threads. This helps in better application performance due to zero
context switching and minimal cache thrashing. To run platform logic on core 0 and isolate cores between 1 and 19
from scheduler, add i solcpus=1-19 to GRUB cmdline.

2.3. Installing Open vSwitch 33

Open vSwitch Documentation, Release 2.6.0

Note: It has been verified that core isolation has minimal advantage due to mature Linux scheduler in some circum-
stances.

NUMA/Cluster-on-Die Ideally inter-NUMA datapaths should be avoided where possible as packets will go across
QPI and there may be a slight performance penalty when compared with intra NUMA datapaths. On Intel Xeon
Processor ES v3, Cluster On Die is introduced on models that have 10 cores or more. This makes it possible to
logically split a socket into two NUMA regions and again it is preferred where possible to keep critical datapaths
within the one cluster.

It is good practice to ensure that threads that are in the datapath are pinned to cores in the same
NUMA area. e.g. pmd threads and QEMU vCPUs responsible for forwarding. If DPDK is built with
CONFIG_RTE_LIBRTE_VHOST_NUMA=y, vHost User ports automatically detect the NUMA socket of the QEMU
vCPUs and will be serviced by a PMD from the same node provided a core on this node is enabled in the
pmd-cpu-mask. libnuma packages are required for this feature.

Compiler Optimizations The default compiler optimization level is —~02. Changing this to more aggressive com-
piler optimization such as ~-03 -march=nat ive with gcc (verified on 5.3.1) can produce performance gains though
not siginificant. -march=native will produce optimized code on local machine and should be used when software
compilation is done on Testbed.

Affinity For superior performance, DPDK pmd threads and Qemu vCPU threads needs to be affinitized accordingly.
e PMD thread Affinity

A poll mode driver (pmd) thread handles the I/O of all DPDK interfaces assigned to it. A pmd thread shall poll
the ports for incoming packets, switch the packets and send to tx port. pmd thread is CPU bound, and needs to
be affinitized to isolated cores for optimum performance.

By setting a bit in the mask, a pmd thread is created and pinned to the corresponding CPU core. e.g. to run a
pmd thread on core 2:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x4

Note: pmd thread on a NUMA node is only created if there is at least one DPDK interface from that NUMA
node added to OVS.

* QEMU vCPU thread Affinity

A VM performing simple packet forwarding or running complex packet pipelines has to ensure that the vCPU
threads performing the work has as much CPU occupancy as possible.

For example, on a multicore VM, multiple QEMU vCPU threads shall be spawned. When the DPDK testpmd
application that does packet forwarding is invoked, the taskset command should be used to affinitize the
vCPU threads to the dedicated isolated cores on the host system.

Multiple Poll-Mode Driver Threads With pmd multi-threading support, OVS creates one pmd thread for each
NUMA node by default. However, in cases where there are multiple ports/rxq’s producing traffic, performance can be
improved by creating multiple pmd threads running on separate cores. These pmd threads can share the workload by
each being responsible for different ports/rxq’s. Assignment of ports/rxq’s to pmd threads is done automatically.

A set bit in the mask means a pmd thread is created and pinned to the corresponding CPU core. For example, to run
pmd threads on core 1 and 2:

34 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

‘$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x6

When using dpdk and dpdkvhostuser ports in a bi-directional VM loopback as shown below, spreading the workload
over 2 or 4 pmd threads shows significant improvements as there will be more total CPU occupancy available:

|NIC port0 <-> OVS <-> VM <-> OVS <-> NIC port 1

DPDK Physical Port Rx Queues

’$ ovs-vsctl set Interface <DPDK interface> options:n_rxg=<integer>

The above command sets the number of rx queues for DPDK physical interface. The rx queues are assigned to pmd
threads on the same NUMA node in a round-robin fashion.

DPDK Physical Port Queue Sizes

$ ovs-vsctl set Interface dpdkO options:n_rxqg desc=<integer>
$ ovs-vsctl set Interface dpdk0O options:n_txg desc=<integer>

The above command sets the number of rx/tx descriptors that the NIC associated with dpdkO will be initialised with.

Different n_rxg desc and n_txqg_desc configurations yield different benefits in terms of throughput and latency
for different scenarios. Generally, smaller queue sizes can have a positive impact for latency at the expense of through-
put. The opposite is often true for larger queue sizes. Note: increasing the number of rx descriptors eg. to 4096 may
have a negative impact on performance due to the fact that non-vectorised DPDK rx functions may be used. This is
dependent on the driver in use, but is true for the commonly used i40e and ixgbe DPDK drivers.

Exact Match Cache Each pmd thread contains one Exact Match Cache (EMC). After initial flow setup in the
datapath, the EMC contains a single table and provides the lowest level (fastest) switching for DPDK ports. If there
is a miss in the EMC then the next level where switching will occur is the datapath classifier. Missing in the EMC
and looking up in the datapath classifier incurs a significant performance penalty. If lookup misses occur in the EMC
because it is too small to handle the number of flows, its size can be increased. The EMC size can be modified by
editing the define EM_FLOW_HASH_SHIFTin lib/dpif-netdev.c.

As mentioned above, an EMC is per pmd thread. An alternative way of increasing the aggregate amount of possible
flow entries in EMC and avoiding datapath classifier lookups is to have multiple pmd threads running.

Rx Mergeable Buffers Rx mergeable buffers is a virtio feature that allows chaining of multiple virtio descriptors
to handle large packet sizes. Large packets are handled by reserving and chaining multiple free descriptors together.
Mergeable buffer support is negotiated between the virtio driver and virtio device and is supported by the DPDK
vhost library. This behavior is supported and enabled by default, however in the case where the user knows that rx
mergeable buffers are not needed i.e. jumbo frames are not needed, it can be forced off by adding mrg_rxbuf=off
to the QEMU command line options. By not reserving multiple chains of descriptors it will make more individual
virtio descriptors available for rx to the guest using dpdkvhost ports and this can improve performance.

Limitations

e Currently DPDK ports does not use HW offload functionality.

» Network Interface Firmware requirements: Each release of DPDK is validated against a specific firmware ver-
sion for a supported Network Interface. New firmware versions introduce bug fixes, performance improvements
and new functionality that DPDK leverages. The validated firmware versions are available as part of the re-
lease notes for DPDK. It is recommended that users update Network Interface firmware to match what has been
validated for the DPDK release.

2.3. Installing Open vSwitch 35

Open vSwitch Documentation, Release 2.6.0

The latest list of validated firmware versions can be found in the DPDK release notes.

Reporting Bugs

Report problems to bugs @openvswitch.org.

2.3.2 Installation from Packages

Open vSwitch is packaged on a variety of distributions. The tooling required to build these packages is included in the
Open vSwitch tree. The instructions are provided below.

Debian Packaging for Open vSwitch

This document describes how to build Debian packages for Open vSwitch. To install Open vSwitch on Debian without
building Debian packages, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Note: These instructions should also work on Ubuntu and other Debian derivative distributions.

Before You Begin

Before you begin, consider whether you really need to build packages yourself. Debian “wheezy” and “sid”, as well
as recent versions of Ubuntu, contain pre-built Debian packages for Open vSwitch. It is easier to install these than to
build your own. To use packages from your distribution, skip ahead to “Installing .deb Packages”, below.

Building Open vSwitch Debian packages

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree with these instructions.
You do not need to be the superuser to build the Debian packages.

1. Install the “build-essential” and “fakeroot” packages. For example:

$ apt-get install build-essential fakeroot

2. Obtain and unpack an Open vSwitch source distribution and cd into its top level directory.

3. Install the build dependencies listed under “Build-Depends:” near the top of debian/control. You can
install these any way you like, e.g. with apt-get install.

Check your work by running dpkg-checkbuilddeps in the top level of your ovs directory. If you’'ve installed
all the dependencies properly, dpkg—checkbuilddeps will exit without printing anything. If you forgot to install
some dependencies, it will tell you which ones.

4. Build the package:

$ fakeroot debian/rules binary

This will do a serial build that runs the unit tests. This will take approximately 8 to 10 minutes. If you prefer,
you can run a faster parallel build:

$ DEB_BUILD_OPTIONS='parallel=8' fakeroot debian/rules binary

36 Chapter 2. Getting Started

http://dpdk.org/doc/guides/rel_notes/release_16_11.html
mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

If you are in a big hurry, you can even skip the unit tests:

$ DEB_BUILD_OPTIONS='parallel=8 nocheck' fakeroot debian/rules binary

Note: There are a few pitfalls in the Debian packaging building system so that, occasionally, you may find that in a
tree that you have using for a while, the build command above exits immediately without actually building anything.
To fix the problem, run:

$ fakeroot debian/rules clean

or start over from a fresh copy of the source tree.

5. The generated .deb files will be in the parent directory of the Open vSwitch source distribution.

Installing .deb Packages

These instructions apply to installing from Debian packages that you built yourself, as described in the previous
section, or from packages provided by Debian or a Debian derivative distribution such as Ubuntu. In the former case,
use a command such as dpkg -1 to install the .deb files that you build, and in the latter case use a program such as
apt—get or aptitude to download and install the provided packages.

Important: You must be superuser to install Debian packages.

1. Start by installing an Open vSwitch kernel module. See debian/openvswitch-switch.README.Debian
for the available options.

2. Install the openvswitch-switch and openvswitch-common packages. These packages include the
core userspace components of the switch.

Open vSwitch . deb packages not mentioned above are rarely useful. Refer to their individual package descriptions
to find out whether any of them are useful to you.

Reporting Bugs

Report problems to bugs @openvswitch.org.

Fedora, RHEL 7.x Packaging for Open vSwitch

This document provides instructions for building and installing Open vSwitch RPM packages on a Fedora Linux host.
Instructions for the installation of Open vSwitch on a Fedora Linux host without using RPM packages can be found in
the Open vSwitch on Linux, FreeBSD and NetBSD.

These instructions have been tested with Fedora 23, and are also applicable for RHEL 7.x and its derivatives, including
CentOS 7.x and Scientific Linux 7.x.

Build Requirements

To build packages for a Fedora Linux host, you will need the packages described in the Open vSwitch on Linux,
FreeBSD and NetBSD. Specific packages (by package name) include:

* rpm-build

2.3. Installing Open vSwitch 37

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

* autoconf automake libtool
* systemd-units openssl openssl-devel
* python python-twisted-core python-zope-interface python-six
¢ desktop-file-utils
e groff graphviz
* procps-ng
¢ checkpolicy selinux-policy-devel
And (optionally):
¢ libcap-ng libcap-ng-devel
* dpdk-devel

Bootstraping

Refer to Bootstrapping.

Configuring

Refer to Configuring.

Building

User Space RPMs To build Open vSwitch user-space RPMs, execute the following from the directory in which
Jconfigure was executed:

’$ make rpm-fedora

This will create the RPMs openvswitch, python-openvswitch, openvswitch-test, openvswitch-devel, openvswitch-
ovn-common, openvswitch-ovn-central, openvswitch-ovn-host, openvswitch-ovn-vtep, openvswitch-ovn-docker, and
openvswitch-debuginfo.

To enable DPDK support in the openvswitch package, the ——with dpdk option can be added:

‘$ make rpm-fedora RPMBUILD_OPT="--with dpdk"

The above commands automatically run the Open vSwitch unit tests, which can take several minutes. To reduce the
build time by disabling the execution of these tests, the -——without check option can be added:

‘$ make rpm-fedora RPMBUILD_OPT="--without check"

Kernel OVS Tree Datapath RPM To build the Open vSwitch kernel module for the currently running kernel ver-
sion, run:

$ make rpm-fedora-kmod

To build the Open vSwitch kernel module for another kernel version, the desired kernel version can be specified via
the kversion macro. For example:

38 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

$ make rpm-fedora-kmod \
RPMBUILD_OPT='-D "kversion 4.3.4-300.fc23.x86_64""

Installing

RPM packages can be installed by using the command rpm -1i. Package installation requires superuser privileges.

The openvswitch-kmod RPM should be installed first if the Linux OVS tree datapath module is to be used. The
openvswitch-kmod RPM should not be installed if only the in-tree Linux datapath or user-space datapath is needed.
Refer to the Open vSwitch FAQ for more information about the various Open vSwitch datapath options.

In most cases only the openvswitch RPM will need to be installed. The python-openvswitch, openvswitch-test,
openvswitch-devel, and openvswitch-debuginfo RPMs are optional unless required for a specific purpose.

The openvswitch-ovn-* packages are only needed when using OVN.

Refer to the RHEL README for additional usage and configuration information.

Reporting Bugs

Report problems to bugs @openvswitch.org.

RHEL 5.6, 6.x Packaging for Open vSwitch

This document describes how to build and install Open vSwitch on a Red Hat Enterprise Linux (RHEL) host. If you
want to install Open vSwitch on a generic Linux host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.
We have tested these instructions with RHEL 5.6 and RHEL 6.0.

For RHEL 7.x (or derivatives, such as CentOS 7.x), you should follow the instructions in the Fedora, RHEL 7.x
Packaging for Open vSwitch. The Fedora spec files are used for RHEL 7.x.

Prerequisites

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree.
The default RPM build directory, _topdir, has five directories in the top-level.

BUILD/ where the software is unpacked and built

RPMS/ where the newly created binary package files are written

SOURCES/ contains the original sources, patches, and icon files

SPECS/ contains the spec files for each package to be built

SRPMS/ where the newly created source package files are written

Before you begin, note the RPM sources directory on your version of RHEL. The command rpmbuild
——showrc will show the configuration for each of those directories. Alternatively, the command rpm --eval
"%{_topdir}’ shows the current configuration for the top level directory and the command rpm --eval
"% {_sourcedir}’ does the same for the sources directory. On RHEL 5, the default RPM _topdir is
/usr/src/redhat and the default RPM sources directory is /usr/src/redhat /SOURCES. On RHEL 6, the
default _topdir is SHOME/rpmbuild and the default RPM sources directory is SHOME / rpmbuild/SOURCES.

2.3. Installing Open vSwitch 39

https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst
mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

Build Requirements

To compile the RPMs, you will need to install the packages described in the Open vSwitch on Linux, FreeBSD and
NetBSD along with some additional packages. These can be installed with the below command:

$ yum install gcc make python-devel openssl-devel kernel-devel graphviz \
kernel-debug-devel autoconf automake rpm-build redhat-rpm-config \
libtool checkpolicy selinux-policy-devel

Bootstrapping and Configuring

If you are building from a distribution tarball, skip to Building. If not, you must be building from an Open vSwitch Git
tree. Determine what version of Autoconf is installed (e.g. run autoconf --version). Ifitis not at least version
2.63, then you must upgrade or use another machine to build the packages.

Assuming all requirements have been met, build the tarball by running:

$./boot.sh
$./configure
$ make dist

You must run this on a machine that has the tools listed in Build Requirements as prerequisites for building from a Git
tree. Afterward, proceed with the rest of the instructions using the distribution tarball.

Now you have a distribution tarball, named something like openvswitch-x.y.z.tar.gz. Copy this file into the
RPM sources directory, e.g.:

$ cp openvswitch-x.y.z.tar.gz S$SHOME/rpmbuild/SOURCES

Broken build symlink Some versions of the RHEL 6 kernel-devel package contain a broken build symlink. If
you are using such a version, you must fix the problem before continuing.

To find out whether you are affected, run:

$ cd /lib/modules/<version>
S 1ls -1 build/

where <version> is the version number of the RHEL 6 kernel.

Note: The trailing slash in the final command is important. Be sure to include it.

If the 1s command produces a directory listing, your kernel-devel package is OK. If it produces a No such file
or directory error, your kernel-devel package is buggy.

If your kernel-devel package is buggy, then you can fix it with:

$ cd /lib/modules/<version>
$ rm build
$ 1In —-s /usr/src/kernels/<target> build

where <target> is the name of an existing directory under /usr/src/kernels, whose name should be similar
to <version> but may contain some extra parts. Once you have done this, verify the fix with the same procedure
you used above to check for the problem.

40 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

Building

You should have a distribution tarball named something like openvswitch-x.y.z.tar.gz. Copy this file into the RPM
sources directory:

$ cp openvswitch-x.y.z.tar.gz S$HOME/rpmbuild/SOURCES

Make another copy of the distribution tarball in a temporary directory. Then unpack the tarball and cd into its root:

$ tar xzf openvswitch-x.y.z.tar.gz
$ cd openvswitch-x.y.z

Userspace To build Open vSwitch userspace, run:

$ rpmbuild -bb rhel/openvswitch.spec

This produces two RPMs: “openvswitch” and “openvswitch-debuginfo”.

The above command automatically runs the Open vSwitch unit tests. To disable the unit tests, run:

$ rpmbuild -bb —--without check rhel/openvswitch.spec

Note: It the build fails with configure: error: source dir
/lib/modules/2.6.32-279.e16.x86_64/build doesn’t exist or similar, then the kernel-devel
package is missing or buggy.

Kernel Module On RHEL 6, to build the Open vSwitch kernel module, copy rhel/openvswitch-kmod.files into the
RPM sources directory and run:

‘$ rpmbuild -bb rhel/openvswitch-kmod-rhelé6.spec

You might have to specify a kernel version and/or variants, e.g.:

$ rpmbuild -bb -D “kversion 2.6.32-131.6.1.e16.x86_64" -D “kflavors default debug kdump”
rhel/openvswitch-kmod-rhel6.spec

This produces an “kmod-openvswitch” RPM for each kernel variant, in this example: “kmod-openvswitch”, “kmod-
openvswitch-debug”, and “kmod-openvswitch-kdump”.

Red Hat Network Scripts Integration

A RHEL host has default firewall rules that prevent any Open vSwitch tunnel traffic from passing through. If a user
configures Open vSwitch tunnels like Geneve, GRE, VXLAN, LISP etc., they will either have to manually add iptables
firewall rules to allow the tunnel traffic or add it through a startup script Refer to the “enable-protocol” command in
the ovs-ctl(8) manpage for more information.

In addition, simple integration with Red Hat network scripts has been implemented. Refer to README.RHEL.rst in
the source tree or /usr/share/doc/openvswitch/README.RHEL .rst in the installed openvswitch package for details.

Reporting Bugs

Report problems to bugs @openvswitch.org.

2.3. Installing Open vSwitch 41

https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst
mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

2.3.3 Others

Bash command-line completion scripts

There are two completion scripts available: ovs—appctl-bashcomp.bash and
ovs—-vsctl-bashcomp.bash.

ovs-appctl-bashcomp

ovs—appctl-bashcomp.bash adds bash command-line completion support for ovs—appctl, ovs—dpctl,
ovs—ofctl and ovsdb-tool commands.

Features
* Display available completion or complete on unfinished user input (long option, subcommand, and argument).
¢ Subcommand hints

» Convert between keywords like bridge, port, interface, or dp and the available record in ovsdb.

Limitations

* Only supports a small set of important keywords (dp, datapath, bridge, switch, port, interface,
iface).

* Does not support parsing of nested options. For example:

$ ovsdb-tool create [db [schema]]

* Does not support expansion on repeated argument. For example:

$ ovs—-dpctl show [dp...]).

* Only supports matching on long options, and only in the format —-—option [arg]. Do not use
—--option=[arg].

ovs-vsctl-bashcomp

ovs-vsctl-bashcomp.bash adds Bash command-line completion support for ovs-vsctl command.

Features
* Display available completion and complete on user input for global/local options, command, and argument.
* Query database and expand keywords like table, record, column, or key, to available completions.
* Deal with argument relations like ‘one and more’, ‘zero or one’.

¢ Complete multiple ovs—vsctl commands cascaded via ——.

Limitations Completion of very long ovs—vsct1l commands can take up to several seconds.

42 Chapter 2. Getting Started

Open vSwitch Documentation, Release 2.6.0

Usage

The bashcomp scripts should be placed at /et c/bash_completion.d/ to be available for all bash sessions. Run-
ning make install will place the scripts to $ (sysconfdir) /bash_completion.d/, thus, the user should
specify ——sysconfdir=/etc at configuration. If OVS is installed from packages, the scripts will automatically be
placed inside /etc/bash_completion.d/.

If you just want to run the scripts in one bash, you can remove them from /etc/bash_completion.d/ and run
the scripts via . ovs—appctl-bashcomp.bashor. ovs-vsctl-bashcomp.bash.

Tests

Unit tests are added in tests/completion.at and integrated into autotest framework. To run the tests, just run
make check.

Open vSwitch Documentation

This document describes how to build the OVS documentation for use offline. A continuously updated, online version
can be found at docs.openvswitch.org.

Note: These instructions provide information on building the documentation locally. For information on writing
documentation, refer to Open vSwitch Documentation Style

Build Requirements

As described in the Open vSwitch Documentation Style, the Open vSwitch documentation is written in reStructured-
Text and built with Sphinx. A detailed guide on installing Sphinx in many environments is available on the Sphinx
website but, for most Linux distributions, you can install with your package manager. For example, on Debian/Ubuntu
run:

‘$ sudo apt-get install python-sphinx

Similarly, on RHEL/Fedora run:

‘$ sudo dnf install python-sphinx

A requirements.txt is also provided in the /Documentation, should you wish to install using pip:

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r Documentation/requirements.txt

Configuring

It’s wunlikely that you’ll need to customize any aspect of the configuration. However, the
Documentation/conf.py is the go-to place for all configuration. This file is well documented and fur-
ther information is available on the Sphinx website.

2.3. Installing Open vSwitch 43

http://docs.openvswitch.org
http://www.sphinx-doc.org/install.html
http://www.sphinx-doc.org/install.html
http://www.sphinx-doc.org/config.html

Open vSwitch Documentation, Release 2.6.0

Building

Once Sphinx installed, the documentation can be built using the provided Makefile targets:

S make htmldocs

Important: The htmldocs target will fail if there are any syntax errors. However, it won’t catch more succint
issues such as style or grammar issues. As a result, you should always inspect changes visually to ensure the result is
as intended.

Once built, documentation is available in the /Documentation/_build folder. Open the root index.html to
browse the documentation.

44 Chapter 2. Getting Started

CHAPTER 3

Tutorials

Getting started with Open vSwitch (OVS) and Open Virtual Network (OVN) for Open vSwitch.

3.1 Open vSwitch Advanced Features

Many tutorials cover the basics of OpenFlow. This is not such a tutorial. Rather, a knowledge of the basics of
OpenFlow is a prerequisite. If you do not already understand how an OpenFlow flow table works, please go read a
basic tutorial and then continue reading here afterward.

It is also important to understand the basics of Open vSwitch before you begin. If you have never used ovs-vsctl or
ovs-ofctl before, you should learn a little about them before proceeding.

Most of the features covered in this tutorial are Open vSwitch extensions to OpenFlow. Also, most of the features in
this tutorial are specific to the software Open vSwitch implementation. If you are using an Open vSwitch port to an
ASIC-based hardware switch, this tutorial will not help you.

This tutorial does not cover every aspect of the features that it mentions. You can find the de-
tails elsewhere in the Open vSwitch documentation, especially ovs-ofctl (8) and the comments in the
include/openflow/nicira—-ext.hand include/openvswitch/meta-flow.h header files.

3.1.1 Getting Started

This is a hands-on tutorial. To get the most out of it, you will need Open vSwitch binaries. You do not, on the
other hand, need any physical networking hardware or even supervisor privilege on your system. Instead, we will
use a script called ovs—-sandbox, which accompanies the tutorial, that constructs a software simulated network
environment based on Open vSwitch.

You can use ovs—sandbox three ways:

* If you have already installed Open vSwitch on your system, then you should be able to just run ovs-sandbox
from this directory without any options.

* If you have not installed Open vSwitch (and you do not want to install it), then you can build Open vSwitch
according to the instructions in Open vSwitch on Linux, FreeBSD and NetBSD, without installing it. Then run
./ovs-sandbox -b DIRECTORY from this directory, substituting the Open vSwitch build directory for
DIRECTORY.

* As a slight variant on the latter, you can run make sandbox from an Open vSwitch build directory.
When you run ovs-sandbox, it does the following:

1. CAUTION: Deletes any subdirectory of the current directory named “sandbox” and any files in that directory.

45

Open vSwitch Documentation, Release 2.6.0

2. Creates a new directory “sandbox” in the current directory.

3. Sets up special environment variables that ensure that Open vSwitch programs will look inside the “sandbox”
directory instead of in the Open vSwitch installation directory.

4. If you are using a built but not installed Open vSwitch, installs the Open vSwitch manpages in a subdirectory of
“sandbox” and adjusts the MANPATH environment variable to point to this directory. This means that you can
use, for example, man ovs-vsctl to see a manpage for the ovs—vsctl program that you built.

5. Creates an empty Open vSwitch configuration database under “sandbox”.
6. Starts ovsdb-server running under “sandbox”.

7. Starts ovs—vswitchd running under “sandbox”, passing special options that enable a special “dummy” mode
for testing.

8. Starts a nested interactive shell inside “sandbox”.

At this point, you can run all the usual Open vSwitch utilities from the nested shell environment. You can, for example,
use ovs-vsctl to create a bridge:

$ ovs-vsctl add-br br0

From Open vSwitch’s perspective, the bridge that you create this way is as real as any other. You can, for example,
connect it to an OpenFlow controller or use ovs—-ofctl to examine and modify it and its OpenFlow flow table. On
the other hand, the bridge is not visible to the operating system’s network stack, so 1 fconfig or ip cannot see it or
affect it, which means that utilities like ping and t cpdump will not work either. (That has its good side, too: you
can’t screw up your computer’s network stack by manipulating a sandboxed OVS.)

When you’re done using OVS from the sandbox, exit the nested shell (by entering the “exit” shell command or
pressing Control+D). This will kill the daemons that ovs-sandbox started, but it leaves the “sandbox” directory
and its contents in place.

The sandbox directory contains log files for the Open vSwitch dameons. You can examine them while you’re running
in the sandboxed environment or after you exit.

3.1.2 Using GDB

GDB support is not required to go through the tutorial. It is added in case user wants to explore the internals of OVS
programs.

GDB can already be used to debug any running process, with the usual gdb <program> <process-id> com-
mand.

ovs-sandbox also has a —g option for launching ovs-vswitchd under GDB. This option can be handy for setting
break points before ovs-vswitchd runs, or for catching early segfaults. Similarly, a —d option can be used to run
ovsdb-server under GDB. Both options can be specified at the same time.

In addition, a —e option also launches ovs-vswitchd under GDB. However, instead of displaying a gdb> prompt and
waiting for user input, ovs-vswitchd will start to execute immediately. —r option is the corresponding option for
running ovsdb-server under gdb with immediate execution.

To avoid GDB mangling with the sandbox sub shell terminal, ovs—sandbox starts a new xterm to run each GDB
session. For systems that do not support X windows, GDB support is effectively disabled.

When launching sandbox through the build tree’s make file, the —g option can be passed via the SANDBOXFLAGS
environment variable. make sandbox SANDBOXFLAGS=-g will start the sandbox with ovs-vswitchd running
under GDB in its own xterm if X is available.

46 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

3.1.3 Motivation

The goal of this tutorial is to demonstrate the power of Open vSwitch flow tables. The tutorial works through the
implementation of a MAC-learning switch with VLAN trunk and access ports. Outside of the Open vSwitch features
that we will discuss, OpenFlow provides at least two ways to implement such a switch:

1. An OpenFlow controller to implement MAC learning in a “reactive” fashion. Whenever a new MAC appears on
the switch, or a MAC moves from one switch port to another, the controller adjusts the OpenFlow flow table to
match.

2. The “normal” action. OpenFlow defines this action to submit a packet to “the traditional non-OpenFlow pipeline
of the switch”. That is, if a flow uses this action, then the packets in the flow go through the switch in the same
way that they would if OpenFlow was not configured on the switch.

Each of these approaches has unfortunate pitfalls. In the first approach, using an OpenFlow controller to implement
MAC learning, has a significant cost in terms of network bandwidth and latency. It also makes the controller more
difficult to scale to large numbers of switches, which is especially important in environments with thousands of hy-
pervisors (each of which contains a virtual OpenFlow switch). MAC learning at an OpenFlow controller also behaves
poorly if the OpenFlow controller fails, slows down, or becomes unavailable due to network problems.

The second approach, using the “normal” action, has different problems. First, little about the “normal” action is
standardized, so it behaves differently on switches from different vendors, and the available features and how those
features are configured (usually not through OpenFlow) varies widely. Second, “normal” does not work well with
other OpenFlow actions. It is “all-or-nothing”, with little potential to adjust its behavior slightly or to compose it with
other features.

3.1.4 Scenario

We will construct Open vSwitch flow tables for a VLAN-capable, MAC-learning switch that has four ports:
pl a trunk port that carries all VLANs, on OpenFlow port 1.

p2 an access port for VLAN 20, on OpenFlow port 2.

p3, p4 both access ports for VLAN 30, on OpenFlow ports 3 and 4, respectively.

Note: The ports’ names are not significant. You could call them eth1 through eth4, or any other names you like.

Note: An OpenFlow switch always has a “local” port as well. This scenario won’t use the local port.

Our switch design will consist of five main flow tables, each of which implements one stage in the switch pipeline:
Table 0 Admission control.

Table 1 VLAN input processing.

Table 2 Learn source MAC and VLAN for ingress port.

Table 3 Look up learned port for destination MAC and VLAN.

Table 4 Output processing.

The section below describes how to set up the scenario, followed by a section for each OpenFlow table.

You can cut and paste the ovs—vsctl and ovs—ofctl commands in each of the sections below into your
ovs—-sandbox shell. They are also available as shell scripts in this directory, named t-setup, t—stage0,
t-stagel, ..., t—-staged. The ovs-appctl test commands are intended for cutting and pasting and are not
supplied separately.

3.1. Open vSwitch Advanced Features 47

Open vSwitch Documentation, Release 2.6.0

3.1.5 Setup

To get started, start ovs—sandbox. Inside the interactive shell that it starts, run this command:

’$ ovs-vsctl add-br br0 -- set Bridge br0 fail-mode=secure

This command creates a new bridge “br0” and puts “br0” into so-called “fail-secure” mode. For our purpose, this just
means that the OpenFlow flow table starts out empty.

Note: If we did not do this, then the flow table would start out with a single flow that executes the “normal” action.
We could use that feature to yield a switch that behaves the same as the switch we are currently building, but with the
caveats described under “Motivation” above.)

The new bridge has only one port on it so far, the “local port” br0. We need to add p1, p2, p3, and p4. A shell for
loop is one way to do it:

for 1 in 1 2 3 4; do
ovs-vsctl add-port br0 p$i -- set Interface p$i ofport_request=$i
ovs-ofctl mod-port br0 p$i up

done

In addition to adding a port, the ovs—vsct 1 command above sets its of port_request column to ensure that port
p1l is assigned OpenFlow port 1, p2 is assigned OpenFlow port 2, and so on.

Note: We could omit setting the ofport_request and let Open vSwitch choose port numbers for us, but it’s convenient
for the purposes of this tutorial because we can talk about OpenFlow port 1 and know that it corresponds to p1.

The ovs—-ofctl command above brings up the simulated interfaces, which are down initially, using an OpenFlow
request. The effect is similar to 1fconfig up, but the sandbox’s interfaces are not visible to the operating system
and therefore i fconfig would not affect them.

‘We have not configured anything related to VLANs or MAC learning. That’s because we’re going to implement those
features in the flow table.

To see what we’ve done so far to set up the scenario, you can run a command like ovs-vsctl showorovs-ofctl
show bro0.

3.1.6 Implementing Table 0: Admission control

Table 0 is where packets enter the switch. We use this stage to discard packets that for one reason or another are
invalid. For example, packets with a multicast source address are not valid, so we can add a flow to drop them at
ingress to the switch with:

$ ovs—ofctl add-flow br0 \
"table=0, dl_src=01:00:00:00:00:00/01:00:00:00:00:00, actions=drop"

A switch should also not forward IEEE 802.1D Spanning Tree Protocol (STP) packets, so we can also add a flow to
drop those and other packets with reserved multicast protocols:

$ ovs—ofctl add-flow br0 \
"table=0, dl_dst=01:80:c2:00:00:00/ff:ff:ff:ff:ff:f0, actions=drop"

We could add flows to drop other protocols, but these demonstrate the pattern.

‘We need one more flow, with a priority lower than the default, so that flows that don’t match either of the “drop” flows
we added above go on to pipeline stage 1 in OpenFlow table 1:

48 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

$ ovs-ofctl add-flow br0 "table=0, priority=0, actions=resubmit(,1)"

Note: The “resubmit” action is an Open vSwitch extension to OpenFlow.

3.1.7 Testing Table 0

If we were using Open vSwitch to set up a physical or a virtual switch, then we would naturally test it by sending
packets through it one way or another, perhaps with common network testing tools like ping and t cpdump or more
specialized tools like Scapy. That’s difficult with our simulated switch, since it’s not visible to the operating system.

But our simulated switch has a few specialized testing tools. The most powerful of these tools is ofproto/trace.
Given a switch and the specification of a flow, ofproto/trace shows, step-by-step, how such a flow would be
treated as it goes through the switch.

Example 1

Try this command:

$ ovs—appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:05

The output should look something like this:

Flow: metadata=0,in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_dst=01:80:c2:00:
Rule: table=0 cookie=0 dl_dst=01:80:c2:00:00:00/ff:ff:ff:ff:££f:£0
OpenFlow actions=drop

Final flow: unchanged
Datapath actions: drop

The first block of lines describes an OpenFlow table lookup. The first line shows the fields used for the table lookup
(which is mostly zeros because that’s the default if we don’t specify everything). The second line gives the OpenFlow
flow that the fields matched (called a “rule” because that is the name used inside Open vSwitch for an OpenFlow flow).
In this case, we see that this packet that has a reserved multicast destination address matches the rule that drops those
packets. The third line gives the rule’s OpenFlow actions.

The second block of lines summarizes the results, which are not very interesting here.

Example 2

Try another command:

$ ovs—appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:10

The output should be:

Flow: metadata=0, in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_dst=01:80:c2:00:
Rule: table=0 cookie=0 priority=0
OpenFlow actions=resubmit (,1)

Resubmitted flow: unchanged

Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0x

Resubmitted odp: drop
No match

3.1. Open vSwitch Advanced Features 49

0:05,dl_types:

0:10,d1_types:

Open vSwitch Documentation, Release 2.6.0

Final flow: unchanged
Datapath actions: drop

This time the flow we handed to ofproto/trace doesn’t match any of our “drop” rules, so it falls through to the
low-priority “resubmit” rule, which we see in the rule and the actions selected in the first block. The “resubmit” causes
a second lookup in OpenFlow table 1, described by the additional block of indented text in the output. We haven’t yet
added any flows to OpenFlow table 1, so no flow actually matches in the second lookup. Therefore, the packet is still
actually dropped, which means that the externally observable results would be identical to our first example.

3.1.8 Implementing Table 1: VLAN Input Processing

A packet that enters table 1 has already passed basic validation in table 0. The purpose of table 1 is validate the
packet’s VLAN, based on the VLAN configuration of the switch port through which the packet entered the switch. We
will also use it to attach a VLAN header to packets that arrive on an access port, which allows later processing stages
to rely on the packet’s VLAN always being part of the VLAN header, reducing special cases.

Let’s start by adding a low-priority flow that drops all packets, before we add flows that pass through acceptable
packets. You can think of this as a “default drop” rule:

$ ovs-ofctl add-flow br0 "table=1, priority=0, actions=drop"

Our trunk port p1, on OpenFlow port 1, is an easy case. pl accepts any packet regardless of whether it has a VLAN
header or what the VLAN was, so we can add a flow that resubmits everything on input port 1 to the next table:

$ ovs—ofctl add-flow br0 \
"table=1, priority=99, in_port=1, actions=resubmit(,2)"

On the access ports, we want to accept any packet that has no VLAN header, tag it with the access port’s VLAN
number, and then pass it along to the next stage:

$ ovs-ofctl add-flows br0 - <<'EOF'

table=1, priority=99, in_port=2, vlan_tci=0, actions=mod_vlan_vid:20, resubmit (,2)
table=1, priority=99, in_port=3, vlan_tci=0, actions=mod_vlan_vid:30, resubmit (,2)
table=1, priority=99, in_port=4, vlan_tci=0, actions=mod_vlan_vid:30, resubmit (,2)
EOF

We don’t write any rules that match packets with 802.1Q that enter this stage on any of the access ports, so the “default
drop” rule we added earlier causes them to be dropped, which is ordinarily what we want for access ports.

Note: Another variation of access ports allows ingress of packets tagged with VLAN 0 (aka 802.1p priority tagged
packets). To allow such packets, replace vian_tci=0 by vlian_tci=0/0xfff above.

3.1.9 Testing Table 1

ofproto/trace allows us to test the ingress VLAN rules that we added above.

Example 1: Packet on Trunk Port

Here’s a test of a packet coming in on the trunk port:

‘$ ovs—appctl ofproto/trace br0 in_port=1,vlan_tci=5

50 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

The output shows the lookup in table O, the resubmit to table 1, and the resubmit to table 2 (which does nothing
because we haven’t put anything there yet):

Flow: metadata=0, in_port=1,vlan_tci=0x0005,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:
Rule: table=0 cookie=0 priority=0
OpenFlow actions=resubmit (,1)

Resubmitted flow: unchanged

Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 regd4=0x0 reg5=0x0 reg6=0x0 reg7=0x

Resubmitted odp: drop
Rule: table=1 cookie=0 priority=99,in_port=1
OpenFlow actions=resubmit (,2)

Resubmitted flow: unchanged

Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 regb=0x0 reg6=0x0 reg7=0x

Resubmitted odp: drop
No match

Final flow: unchanged

Datapath actions: drop

Example 2: Valid Packet on Access Port

Here’s a test of a valid packet (a packet without an 802.1Q header) coming in on access port p2:

$ ovs—appctl ofproto/trace br0 in_port=2

The output is similar to that for the previous case, except that it additionally tags the packet with p2 ‘s VLAN 20 before
it passes it along to table 2:

Flow: metadata=0, in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:
Rule: table=0 cookie=0 priority=0
OpenFlow actions=resubmit (,1)

Resubmitted flow: unchanged

Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0x

Resubmitted odp: drop
Rule: table=1 cookie=0 priority=99,in_port=2,vlan_tci=0x0000
OpenFlow actions=mod_vlan_vid:20, resubmit (,2)

Resubmitted flow: metadata=0,in_port=2,dl_vlan=20,dl_vlan_pcp=0,dl_src=00:00:00:00:00:0¢
Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0%
Resubmitted odp: drop

No match

Final flow: unchanged
Datapath actions: drop

Example 3: Invalid Packet on Access Port

This tests an invalid packet (one that includes an 802.1Q header) coming in on access port p2:

$ ovs—appctl ofproto/trace br0 in_port=2,vlan_tci=5

The output shows the packet matching the default drop rule:

3.1. Open vSwitch Advanced Features 51

0:00,dl_types:

0:00,dl_types:

,dl_dst=00:0

t0

Open vSwitch Documentation, Release 2.6.0

Flow: metadata=0, in_port=2,vlan_tci=0x0005,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:
Rule: table=0 cookie=0 priority=0
OpenFlow actions=resubmit (,1)

Resubmitted flow: unchanged

Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 regd4=0x0 reg5=0x0 reg6=0x0 reg7=0x

Resubmitted odp: drop
Rule: table=1 cookie=0 priority=0
OpenFlow actions=drop

Final flow: unchanged
Datapath actions: drop

3.1.10 Implementing Table 2: MAC+VLAN Learning for Ingress Port

This table allows the switch we’re implementing to learn that the packet’s source MAC is located on the packet’s
ingress port in the packet’s VLAN.

Note: This table is a good example why table 1 added a VLAN tag to packets that entered the switch through an access
port. We want to associate a MAC+VLAN with a port regardless of whether the VLAN in question was originally part
of the packet or whether it was an assumed VLAN associated with an access port.

It only takes a single flow to do this. The following command adds it:

$ ovs—ofctl add-flow br0 \

"table=2 actions=learn (table=10, NXM_OF_VLAN_TCI[O0..11], \
NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[], \
load:NXM_OF_IN_PORT[]->NXM_NX_REGO[0..15]), \

resubmit (,3)"

The “learn” action (an Open vSwitch extension to OpenFlow) modifies a flow table based on the content of the flow
currently being processed. Here’s how you can interpret each part of the “learn” action above:

table=10 Modify flow table 10. This will be the MAC learning table.

NXM_OF_VLAN_TCI[0..11] Make the flow that we add to flow table 10 match the same VLAN ID that the packet
we’re currently processing contains. This effectively scopes the MAC learning entry to a single VLAN, which
is the ordinary behavior for a VLAN-aware switch.

NXM_OF ETH DST[]=NXM _OF_ETH SRC[] Make the flow that we add to flow table 10 match, as Ethernet des-
tination, the Ethernet source address of the packet we’re currently processing.

load:NXM_OF_IN_PORT[]->NXM NX REGO[O0..15] Whereas the preceding parts specify fields for the new
flow to match, this specifies an action for the flow to take when it matches. The action is for the flow to load
the ingress port number of the current packet into register 0 (a special field that is an Open vSwitch extension to
OpenFlow).

Note: A real use of “learn” for MAC learning would probably involve two additional elements. First, the “learn”
action would specify a hard_timeout for the new flow, to enable a learned MAC to eventually expire if no new packets
were seen from a given source within a reasonable interval. Second, one would usually want to limit resource con-
sumption by using the Flow_Table table in the Open vSwitch configuration database to specify a maximum number of
flows in table 10.

This definitely calls for examples.

52 Chapter 3. Tutorials

0:00,dl_types:

Open vSwitch Documentation, Release 2.6.0

3.1.11 Testing Table 2

Example 1

Try the following test command:

$ ovs—appctl ofproto/trace br0 \

in_port=1,vlan_tci=20,dl_src=50:00:00:00:00:01 -generate

The output shows that “learn” was executed, but it isn’t otherwise informative, so we won’t include it here.

The ~generate keyword is new. Ordinarily, ofproto/trace has no side effects: “output” actions do not ac-
tually output packets, “learn” actions do not actually modify the flow table, and so on. With —generate, though,
ofproto/trace does execute “learn” actions. That’s important now, because we want to see the effect of the
“learn” action on table 10. You can see that by running:

‘$ ovs—ofctl dump-flows br0 table=10

which (omitting the duration and idle_age fields, which will vary based on how soon you ran this command
after the previous one, as well as some other uninteresting fields) prints something like:

NXST_FLOW reply (xid=0x4):
table=10, vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 actions=load:0x1->NXM_NX_REG

You can see that the packet coming in on VLAN 20 with source MAC 50:00:00:00:00:01 became a flow that
matches VLAN 20 (written in hexadecimal) and destination MAC 50:00:00:00:00:01. The flow loads port
number 1, the input port for the flow we tested, into register O.

Example 2

Here’s a second test command:

$ ovs—appctl ofproto/trace br0 \
in_port=2,dl_src=50:00:00:00:00:01 -generate

The flow that this command tests has the same source MAC and VLAN as example 1, although the VLAN comes from
an access port VLAN rather than an 802.1Q header. If we again dump the flows for table 10 with:

’$ ovs-ofctl dump-flows br0 table=10 ‘

then we see that the flow we saw previously has changed to indicate that the learned port is port 2, as we would expect:

NXST_FLOW reply (xid=0x4):
table=10, vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 actions=load:0x2->NXM_NX_REG(

3.1.12 Implementing Table 3: Look Up Destination Port

This table figures out what port we should send the packet to based on the destination MAC and VLAN. That is, if
we’ve learned the location of the destination (from table 2 processing some previous packet with that destination as its
source), then we want to send the packet there.

We need only one flow to do the lookup:

$ ovs—-ofctl add-flow br0 \
"table=3 priority=50 actions=resubmit (,10), resubmit (,4)"

3.1. Open vSwitch Advanced Features 53

.15]

.15]

Open vSwitch Documentation, Release 2.6.0

The flow’s first action resubmits to table 10, the table that the “learn” action modifies. As you saw previously, the
learned flows in this table write the learned port into register 0. If the destination for our packet hasn’t been learned,
then there will be no matching flow, and so the “resubmit” turns into a no-op. Because registers are initialized to 0, we
can use a register 0 value of 0 in our next pipeline stage as a signal to flood the packet.

The second action resubmits to table 4, continuing to the next pipeline stage.

We can add another flow to skip the learning table lookup for multicast and broadcast packets, since those should
always be flooded:

$ ovs—ofctl add-flow br0 \
"table=3 priority=99 dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 \
actions=resubmit (,4)"

Note: We don’t strictly need to add this flow, because multicast addresses will never show up in our learning table.
(In turn, that’s because we put a flow into table 0 to drop packets that have a multicast source address.)

3.1.13 Testing Table 3
Example

Here’s a command that should cause OVS to learn that £0:00:00:00:00:01 ison pl in VLAN 20:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=20,dl_src=£f0:00:00:00:00:01,d1_dst=90:00:00:00:00:01 \
—generate

Here’s an excerpt from the output that shows (from the “no match” looking up the resubmit to table 10) that the flow’s
destination was unknown:

Resubmitted flow: unchanged
Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0x0
Resubmitted odp: drop

Rule: table=3 cookie=0 priority=50
OpenFlow actions=resubmit (,10), resubmit (, 4)

Resubmitted flow: unchanged
Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0x0
Resubmitted odp: drop
No match

You can verify that the packet’s source was learned two ways. The most direct way is to dump the learning table with:

’$ ovs—ofctl dump-flows br0 table=10 ‘

which ought to show roughly the following, with extraneous details removed:

\ table=10, vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 actions=load:0x1->NXM_NX_REGO to ..15]

Note: If you tried the examples for the previous step, or if you did some of your own experiments, then you might
see additional flows there. These additional flows are harmless. If they bother you, then you can remove them with
ovs-ofctl del-flows br0 table=10.

The other way is to inject a packet to take advantage of the learning entry. For example, we can inject a packet on p2
whose destination is the MAC address that we just learned on p1:

54 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

$ ovs-appctl ofproto/trace br0 in_port=2,dl_src=90:00:00:00:00:01,d1_dst=f0:00:00:00:00:01 -
generate

Here’s an interesting excerpt from that command’s output. This group of lines traces the resubmit (, 10), showing
that the packet matched the learned flow for the first MAC we used, loading the OpenFlow port number for the learned
port pl into register O:

Resubmitted flow: unchanged
Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0x
Resubmitted odp: drop

Rule: table=10 cookie=0 vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01
OpenFlow actions=load:0x1->NXM NX_REGO[0..15]

If you read the commands above carefully, then you might have noticed that they simply have the Ethernet source and
destination addresses exchanged. That means that if we now rerun the first ovs—appct 1l command above, e.g.:

$ ovs-appctl ofproto/trace br0 in_port=1,dl_vlan=20,d]_src=f0:00:00:00:00:01,d1_dst=90:00:00:00:00:01
-generate

then we see in the output that the destination has now been learned:

Resubmitted flow: unchanged
Resubmitted regs: reg0=0x0 regl=0x0 reg2=0x0 reg3=0x0 reg4=0x0 reg5=0x0 reg6=0x0 reg7=0x
Resubmitted odp: drop

Rule: table=10 cookie=0 vlan_tci=0x0014/0x0fff,dl_dst=90:00:00:00:00:01
OpenFlow actions=load:0x2->NXM_NX_REGO[0..15]

3.1.14 Implementing Table 4: Output Processing

At entry to stage 4, we know that register 0 contains either the desired output port or is zero if the packet should be
flooded. We also know that the packet’s VLAN is in its 802.1Q header, even if the VLAN was implicit because the
packet came in on an access port.

The job of the final pipeline stage is to actually output packets. The job is trivial for output to our trunk port p1:

$ ovs-ofctl add-flow br0 "table=4 reg0=1 actions=1"

For output to the access ports, we just have to strip the VLAN header before outputting the packet:

$ ovs—ofctl add-flows br0 - <<'EOF'
table=4 reg0=2 actions=strip_vlan,?2
table=4 reg0=3 actions=strip_vlan,3
table=4 reg0=4 actions=strip_vlan,4
EOF

The only slightly tricky part is flooding multicast and broadcast packets and unicast packets with unlearned destina-
tions. For those, we need to make sure that we only output the packets to the ports that carry our packet’s VLAN, and
that we include the 802.1Q header in the copy output to the trunk port but not in copies output to access ports:

$ ovs-ofctl add-flows br0 - <<'EOF'

table=4 reg0=0 priority=99 dl_vlan=20 actions=1l,strip_vlan,2
table=4 reg0=0 priority=99 dl_vlan=30 actions=1,strip_vlan,3,4
table=4 reg0=0 priority=50 actions=1

EOF

Note: Our rules rely on the standard OpenFlow behavior that an output action will not forward a packet back out the
port it came in on. That is, if a packet comes in on p1, and we’ve learned that the packet’s destination MAC is also on

3.1. Open vSwitch Advanced Features 55

Open vSwitch Documentation, Release 2.6.0

pl, so that we end up with actions=1 as our actions, the switch will not forward the packet back out its input port.
The multicast/broadcast/unknown destination cases above also rely on this behavior.

3.1.15 Testing Table 4

Example 1: Broadcast, Multicast, and Unknown Destination

Try tracing a broadcast packet arriving on p1 in VLAN 30:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=30

The interesting part of the output is the final line, which shows that the switch would remove the 802.1Q header and
then output the packet to p3 and p4, which are access ports for VLAN 30:

’Datapath actions: pop_vlan, 3,4

Similarly, if we trace a broadcast packet arriving on p3:

’$ ovs—appctl ofproto/trace br0 in_port=3,dl_dst=ff:ff:ff:ff:ff:ff

then we see that it is output to p1 with an 802.1Q tag and then to p4 without one:

‘Datapath actions: push_vlan(vid=30,pcp=0),1,pop_vlan, 4

Note: Open vSwitch could simplify the datapath actions here to just 4, push_vlan (vid=30, pcp=0), 1 but it
is not smart enough to do so.

The following are also broadcasts, but the result is to drop the packets because the VLAN only belongs to the input
port:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=55

Try some other broadcast cases on your own:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=20

$ ovs—appctl ofproto/trace br0 \
in_port=2,dl_dst=ff:ff:ff:ff:ff:ff

$ ovs—appctl ofproto/trace br0 \
in_port=4,dl_dst=ff:ff:ff:ff:ff:ff

You can see the same behavior with multicast packets and with unicast packets whose destination has not been learned,
e.g.

$ ovs—appctl ofproto/trace br0 \
in_port=4,dl_dst=01:00:00:00:00:00

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=90:12:34:56:78:90,d1l_vlan=20

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=90:12:34:56:78:90,d1_vlan=30

56 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

Example 2: MAC Learning

Let’s follow the same pattern as we did for table 3. First learn a MAC on port p1 in VLAN 30:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=30,dl_src=10:00:00:00:00:01,d1_dst=20:00:00:00:00:01 \
—generate

You can see from the last line of output that the packet’s destination is unknown, so it gets flooded to both p3 and p4,
the other ports in VLAN 30:

Datapath actions: pop_vlan, 3,4

Then reverse the MACs and learn the first flow’s destination on port p4:

$ ovs—appctl ofproto/trace br0 \
in_port=4,dl_src=20:00:00:00:00:01,d1_dst=10:00:00:00:00:01 -generate

The last line of output shows that the this packet’s destination is known to be pl, as learned from our previous
command:

Datapath actions: push_vlan (vid=30,pcp=0),1

Now, if we rerun our first command:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=30,dl_src=10:00:00:00:00:01,d1_dst=20:00:00:00:00:01 \
—generate

...we can see that the result is no longer a flood but to the specified learned destination port p4:

Datapath actions: pop_vlan,4

Contact

bugs @openvswitch.org http://openvswitch.org/

3.2 OVN Basics

This tutorial is intended to give you a tour of the basic OVN features using ovs—sandbox as a simulated test
environment. It’s assumed that you have an understanding of OVS before going through this tutorial. Detail about
OVN is covered in ovn-architecture, but this tutorial lets you quickly see it in action.

3.2.1 Getting Started

For some general information about ovs—sandbox, see the “Getting Started” section of the tutorial.

ovs-sandbox does not include OVN support by default. To enable OVN, you must pass the ——ovn flag. For
example, if running it straight from the ovs git tree you would run:

$ make sandbox SANDBOXFLAGS="--ovn"

Running the sandbox with OVN enabled does the following additional steps to the environment:

1. Creates the OVN_Northbound and OVN_Southbound databases as described in ovn-nb(5) and ovn-sb(5).

3.2. OVN Basics 57

mailto:bugs@openvswitch.org
http://openvswitch.org/
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://openvswitch.org/support/dist-docs/ovn-nb.5.html
http://openvswitch.org/support/dist-docs/ovn-sb.5.html

Open vSwitch Documentation, Release 2.6.0

2. Creates a backup server for OVN_Southbond database. Sandbox launch screen provides the instructions on
accessing the backup database. However access to the backup server is not required to go through the tutorial.

3. Creates the hardware_vtep database as described in vtep(5).
4. Runs the ovn-northd(8), ovn-controller(8), and ovn-controller-vtep(8) daemons.

5. Makes OVN and VTEP utilities available for use in the environment, including vtep-ctl(8), ovn-nbctl(8), and
ovn-sbctl(8).

Note that each of these demos assumes you start with a fresh sandbox environment. Re-run ‘ovs-sandbox‘ before
starting each section.

3.2.2 Using GDB

GDB support is not required to go through the tutorial. See the “Using GDB” section of the tutorial for more info.
Additional flags exist for launching the debugger for the OVN programs:

——gdb-ovn-northd
——gdb-ovn-controller
——gdb-ovn-controller-vtep

3.2.3 Simple Two Port Setup

This first environment is the simplest OVN example. It demonstrates using OVN with a single logical switch that has
two logical ports, both residing on the same hypervisor.

Start by running the setup script for this environment:

$ ovn/envl/setup.sh

You can use the ovn—nbct1 utility to see an overview of the logical topology:

S ovn—-nbctl show
switch 78687d53-e037-4555-bcd3-f4f8eaf3f2aa (sw0)
port swO-portl
addresses: ["00:00:00:00:00:01"]
port swO-port2
addresses: ["00:00:00:00:00:02"]

The ovn-sbctl utility can be used to see into the state stored in the OVN_Southbound database. The show
command shows that there is a single chassis with two logical ports bound to it. In a more realistic multi-hypervisor
environment, this would list all hypervisors and where all logical ports are located:

$ ovn-sbctl show
Chassis "56b18105-5706-46ef-80c4-££20979ab068"
Encap geneve
ip: "127.0.0.1"
Port_Binding "swO-portl"
Port_Binding "swO-port2"

OVN creates logical flows to describe how the network should behave in logical space. Each chassis then creates Open-
Flow flows based on those logical flows that reflect its own local view of the network. The ovn-sbctl command
can show the logical flows:

$ ovn-sbctl 1flow-list
Datapath: 2503dd42-14bl-414a-abbf-33e554e09ddc Pipeline: ingress
table=0 (ls_in_port_sec_12), priority=100 , match=(eth.src[40]), action=(drop;)

58 Chapter 3. Tutorials

http://openvswitch.org/support/dist-docs/vtep.5.html
http://openvswitch.org/support/dist-docs/ovn-northd.8.html
http://openvswitch.org/support/dist-docs/ovn-controller.8.html
http://openvswitch.org/support/dist-docs/ovn-controller-vtep.8.html
http://openvswitch.org/support/dist-docs/vtep-ctl.8.html
http://openvswitch.org/support/dist-docs/ovn-nbctl.8.html
http://openvswitch.org/support/dist-docs/ovn-sbctl.8.html

Open vSwitch Documentation, Release 2.6.0

table=0 (ls_in_port_sec_12), priority=100 , match=(vlan.present), action=(drop;)

table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "swO-portl" && eth.srg == {00:00:0

table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "swO-port2" && eth.srg == {00:00:0

table=1 (ls_in_port_sec_ip), priority=0 , match=(1), action=(next;)

table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swO-portl" && eth.srg == 00:00:00

table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swO-portl" && eth.srg == 00:00:00

table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swO-port2" && eth.srg¢ == 00:00:00

table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swO-port2" && eth.srg == 00:00:00

table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "swO-portl" && (arp | nd)), actio:

table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "swO-port2" && (arp | nd)), actior

table=2 (ls_in_port_sec_nd), priority=0 , match=(1), action=(next;)

table=3 (ls_in_pre_acl), priority=0 , match=(1) action=(next;)

table=4 (ls_in_pre_1b), priority=0 , match=(l) action=(next;)

table=5 (ls_in_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)

table=5 (ls_in_pre_stateful), priority=0 , match= (1), action=(next;)

table=6 (ls_in_acl), priority=0 , match=(1), action=(next;)

table=7 (ls_in_1b), priority=0 , match=(1), action=(next;)

table=8 (ls_in_stateful), priority=100 , match=(reg0[l] == 1), action=(ct_commit; next;)

table=8 (ls_in_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_1b;)

table=8 (ls_in_stateful), priority=0 , match=(1), action=(next;)

table=9 (ls_in_arp_rsp), priority=0 , match=(1) action=(next;)

table=10(ls_in_12_1lkup), priority=100 , match:(eth mcast), action=(outport = "|MC_flood"; o

table=10(1ls_in_12_1lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:01), action=(outpo

table=10(ls_in_12_1lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:02), action=(outpo
Datapath: 2503dd42-14bl-414a-abbf-33e554e09ddc Pipeline: egress

table=0 (ls_out_pre_1lb), priority=0 , match=(1), action=(next;)

table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)

table=2 (ls_out_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)

table=2 (ls_out_pre_stateful), priority=0 , match=(1), action=(next;)

table=3 (ls_out_1b), priority=0 , match=(1), action=(next;)

table=4 (ls_out_acl), priority=0 , match=(1), action=(next;)

table=5 (ls_out_stateful), priority=100 , match=(reg0[1l] == 1), action=(ct_commit; next;)

table=5 (ls_out_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_1b;)

table=5 (ls_out_stateful), priority=0 , match=(1), action=(next;)

table=6 (ls_out_port_sec_ip), priority=0 , match=(1), action=(next;)

table=7 (ls_out_port_sec_12), priority=100 , match=(eth.mcast), action=(output;)

table=7 (ls_out_port_sec_12), priority=50 , match=(outport == "swO-portl" && eth.dgt == {00:00:(

table=7 (ls_out_port_sec_12), priority=50 , match=(outport == "swO-port2" && eth.dgt == {00:00:

Now we can start taking a closer look at how ovn—-controller has programmed the local switch. Before looking
at the flows, we can use ovs—-ofct1l to verify the OpenFlow port numbers for each of the logical ports on the switch.
The output shows that 1port 1, which corresponds with our logical port swO—port1, has an OpenFlow port number
of 1. Similarly, 1port2 has an OpenFlow port number of 2:

$ ovs—-ofctl show br-int
OFPT_FEATURES_REPLY (xid=0x2): dpid:00003elba878364d
n_tables:254, n_buffers:0
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: output enqueue set_vlan_vid set_vlan_pcp strip_vlan mod_dl_src mod_dl_dst mod_nw_src mod_nw.
1 (lportl): addr:aa:55:aa:55:00:07
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
2 (lport2): addr:aa:55:aa:55:00:08
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
LOCAL (br—int): addr:3e:1b:a8:78:36:4d

3.2. OVN Basics 59

Open vSwitch Documentation, Release 2.6.0

config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0

Finally, use ovs—ofct1 to see the OpenFlow flows for br—int. Note that some fields have been omitted for brevity:

$ ovs-ofctl -O OpenFlowl3 dump-flows br-int

OFPST_FLOW reply (OF1.3) (xid=0x2):
table=0, priority=100,in_port=1 actions=set_field:0xl->metadata,set_field:0x1l->regb,regubmit (,16)
table=0, priority=100,in_port=2 actions=set_field:0xl->metadata,set_field:0x2->regb, regubmit (,16)
table=16, priority=100,metadata=0x1l,vlan_tci=0x1000/0x1000 actions=drop
table=16, priority=100,metadata=0x1,dl_src=01:00:00:00:00:00/01:00:00:00:00:00 actionssdrop
table=16, priority=50,regb6=0x1l,metadata=0x1,dl_src=00:00:00:00:00:01 actions=resubmit (,17)
table=16, priority=50,regb6=0x2,metadata=0x1,dl_src=00:00:00:00:00:02 actions=resubmit (,17)
table=17, priority=0,metadata=0xl actions=resubmit (,18)
table=18, priority=90,icmp6, reg6=0x2,metadata=0x1l,dl_src=00:00:00:00:00:02, icmp_type=136, icmp_code=(
table=18, priority=90,icmp6, reg6=0x2,metadata=0x1,dl_src=00:00:00:00:00:02, icmp_type=136, icmp_code=(
table=18, priority=90,icmp6, regb6=0x1,metadata=0x1,dl_src=00:00:00:00:00:01, icmp_type=136, icmp_code=l
table=18, priority=90,icmp6, reg6=0xl,metadata=0x1l,dl_src=00:00:00:00:00:01, icmp_type=136, icmp_code=(
table=18, priority=90,icmp6, reg6=0x1,metadata=0x1,dl_src=00:00:00:00:00:01, icmp_type=135, icmp_code=(
table=18, priority=90,icmp6, regb6=0x1l,metadata=0x1,dl_src=00:00:00:00:00:01, icmp_type=135, icmp_code=l
table=18, priority=90,icmp6, reg6=0x2,metadata=0x1l,dl_src=00:00:00:00:00:02, icmp_type=135, icmp_code=(
table=18, priority=90,icmp6, regb6=0x2,metadata=0x1,dl_src=00:00:00:00:00:02, icmp_type=135, icmp_code=(
table=18, priority=90,arp,regb6=0xl,metadata=0x1l,dl_src=00:00:00:00:00:01,arp_sha=00:00300:00:00:01
table=18, priority=90,arp, reg6=0x2,metadata=0x1l,dl_src=00:00:00:00:00:02,arp_sha=00:00300:00:00:02 «
table=18, priority=80,icmp6, regb6=0x2,metadata=0x1, icmp_type=136, icmp_code=0 actions=drop
table=18, priority=80,icmp6, regb6=0x1l,metadata=0x1,icmp_type=136, icmp_code=0 actions=drop
table=18, priority=80,icmp6, reg6=0xl,metadata=0x1l,icmp_type=135,icmp_code=0 actions=drgop
table=18, priority=80,icmp6, reg6=0x2,metadata=0x1, icmp_type=135, icmp_code=0 actions=drop
table=18, priority=80,arp,reg6=0x2,metadata=0x1l actions=drop
table=18, priority=80,arp,reg6=0xl,metadata=0x1l actions=drop
table=18, priority=0,metadata=0x1 actions=resubmit (,19)
table=19, priority=0,metadata=0xl actions=resubmit (,20)
table=20, priority=0,metadata=0x1 actions=resubmit (,21)
table=21, priority=0,metadata=0x1 actions=resubmit (,22)
table=22, priority=0,metadata=0xl actions=resubmit (,23)
table=23, priority=0,metadata=0x1 actions=resubmit (,24)
table=24, priority=0,metadata=0x1 actions=resubmit (,25)
table=25, priority=0,metadata=0xl actions=resubmit (,26)
table=26, priority=100,metadata=0x1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 actionssset_field:0x:
table=26, priority=50,metadata=0x1,dl_dst=00:00:00:00:00:01 actions=set_field:0xl->reg7, resubmit (, 3:
table=26, priority=50,metadata=0x1,dl_dst=00:00:00:00:00:02 actions=set_field:0x2->reg], resubmit (, 3:
table=32, priority=0 actions=resubmit (,33)
table=33, priority=100,reg7=0x1,metadata=0x1 actions=resubmit (, 34)
table=33, priority=100,reg7=0xffff,metadata=0x1l actions=set_field:0x2->reg7,resubmit (,34),set_field
table=33, priority=100,reg7=0x2,metadata=0x1l actions=resubmit (,34)
table=34, priority=100,reg6=0x1l, reg7=0x1,metadata=0x1 actions=drop
table=34, priority=100,reg6=0x2,reg7=0x2,metadata=0xl actions=drop
table=34, priority=0 actions=set_field:0->reg0,set_field:0->regl,set_field:0->reg2, resubmit (,48)
table=48, priority=0,metadata=0xl actions=resubmit (,49)
table=49, priority=0,metadata=0xl actions=resubmit (,50)
table=50, priority=0,metadata=0x1 actions=resubmit (,51)
table=51, priority=0,metadata=0xl1 actions=resubmit (,52)
table=52, priority=0,metadata=0xl actions=resubmit (,53)
table=53, priority=0,metadata=0x1l actions=resubmit (,54)
table=54, priority=0,metadata=0x1 actions=resubmit (,55)
table=55, priority=100,metadata=0x1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 actionssresubmit (, 64
60 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

table=55, priority=50,reg7=0x2,metadata=0x1,dl_dst=00:00:00:00:00:02 actions=resubmit (,64)
table=55, priority=50,reg7=0x1,metadata=0x1,dl_dst=00:00:00:00:00:01 actions=resubmit (,64)
table=64, priority=100,reg7=0x1l,metadata=0x1l actions=output:1l

The ovs—appctl command can be used to generate an OpenFlow trace of how a packet would be processed in this
configuration. This first trace shows a packet from swO-port1 to swO-port2. The packet arrives from port 1 and
should be output to port 2:

‘$ ovn/envl/packetl.sh ‘

Trace a broadcast packet from swO-port 1. The packet arrives from port 1 and should be output to port 2:

’$ ovn/envl/packet2.sh ‘

You can extend this setup by adding additional ports. For example, to add a third port, run this command:

’$ ovn/envl/add-third-port.sh ‘

Now if you do another trace of a broadcast packet from swO-port1, you will see that it is output to both ports 2 and
3:

’$ ovn/envl/packet2.sh ‘

The logical port may have an unknown set of Ethernet addresses. When an OVN logical switch processes a unicast
Ethernet frame whose destination MAC address is not in any logical port’s addresses column, it delivers it to the port
(or ports) whose addresses columns include unknown:

’$ ovn/envl/add-unknown-ports.sh ‘

This trace shows a packet from swO-portl to swO-port4d, swO-port5 whose addresses columns include un-
known. You will see that it is output to both ports 4 and 5:

’$ ovn/envl/packet3.sh ‘

The logical port would restrict the host to sending packets from and receiving packets to the ethernet addresses defined
in the logical port’s port_security column. In addition to the restrictions described for Ethernet addresses above,
such an element of port_security restricts the IPv4 or IPv6 addresses from which the host may send and to which it
may receive packets to the specified addresses:

’$ ovn/envl/add-security-ip-ports.sh ‘

This trace shows a packet from swO-port6 to swO-port7:

’$ ovn/envl/packet4.sh ‘

3.2.4 Two Switches, Four Ports

This environment is an extension of the last example. The previous example showed two ports on a single logical
switch. In this environment we add a second logical switch that also has two ports. This lets you start to see how
ovn—controller creates flows for isolated networks to co-exist on the same switch:

$ ovn/env2/setup.sh

View the logical topology with ovn—nbct 1:

$ ovn-nbctl show
switch €3190dc2-89d1-44ed-9308-e7077de782b3 (swO0)
port swO-portl

3.2. OVN Basics 61

Open vSwitch Documentation, Release 2.6.0

addresses:

port swO-port2

addresses:

port swl-portl

addresses:

port swl-port2

addresses:

00:00:00:00:00:01

00:00:00:00:00:02
switch c8ed4c5f-9733-43f6-93da-795blaabacbl

00:00:00:00:00:03

00:00:00:00:00:04

(swl)

Physically, all ports reside on the same chassis:

$ ovn-sbctl show
Chassis
Encap geneve

ip:
Port_Binding
Port_Binding
Port_Binding
Port_Binding

"127.0.0.1"

"swl-port2"
"swO-port2"
"swO-portl"
"swl-portl"

"56b18105-5706-46ef-80c4-££20979ab068"

OVN creates separate logical flows for each logical switch:

S ovn-sbctl 1flow-list

Datapath: 7ee908cl-b0d3-4d03-acc9-42cd7ef7f27d Pipeline: ingress
table=0 (ls_in_port_sec_12), priority=100 , match=(eth.src[40]), action=(drop;)
table=0 (ls_in_port_sec_12), priority=100 , match=(vlan.present), action=(drop;)
table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "swl-portl" && eth.sr
table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "swl-port2" && eth.srg
table=1 (ls_in_port_sec_ip), priority=0 , match=(1), action=(next;)
table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swl-portl" && eth.sr
table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swl-portl" && eth.srg
table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swl-port2" && eth.srq
table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "swl-port2" && eth.sr
table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "swl-portl" && (arp |
table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "swl-port2" && (arp |
table=2 (ls_in_port_sec_nd), priority=0 , match=(1) action=(next;)
table=3 (ls_in_pre_acl), priority=0 , match:(l) action=(next;)
table=4 (ls_in_pre_1b), priority=0 , match=(1), action=(next;)
table=5 (ls_in_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
table=5 (ls_in_pre_stateful), priority=0 , match=(1), action=(next;)
table=6 (ls_in_acl), priority=0 , match=(1), action=(next;)
table=7 (ls_in_1lb), priority=0 , match=(1), action=(next;)
table=8 (ls_in_stateful), priority=100 , match=(reg0[1l] == 1), action=(ct_commit
table=8 (ls_in_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_1b;)
table=8 (ls_in_stateful), priority=0 , match=(1), action=(next;)
table=9 (ls_in_arp_rsp), priority=0 , match=(1), action=(next;)
table=10(1ls_in_12_1lkup), priority=100 , match=(eth.mcast), action=(outport = "|
table=10(ls_in_12_1lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:03), 4
table=10(1ls_in_12_1lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:04), 4
Datapath: 7ee908cl-b0d3-4d03-acc9-42cd7ef7f27d Pipeline: egress
table=0 (ls_out_pre_1lb), priority=0 , match=(1), action=(next;)
table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)
table=2 (ls_out_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
table=2 (ls_out_pre_stateful), priority=0 , match=(1), action=(next;)
table=3 (ls_out_1lb), priority=0 , match=(1), action=(next;)
table=4 (ls_out_acl), priority=0 , match= (1), action=(next;)
table=5 (ls_out_stateful), priority=100 , match=(reg0[l] == 1), action=(ct_commif
table=5 (ls_out_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_1b;)
table=5 (ls_out_stateful), priority=0 , match= (1), action=(next;)
62 Chapter 3. Tutorials

{00:00:0¢

{00:00:0¢

== 00:
00:
00:
00:

; hext;

; next;

00:
00:
00:
00:

00
00
00
00

actioi
actios

)

IMC_flood";
ction=
ction=

)

O1

(outpo:
(outpo:

Open vSwitch Documentation, Release 2.6.0

table=6 (ls_out_port_sec_ip
table=7 (ls_out_port_sec_12
table=7 (ls_out_port_sec_12
table=7 (ls_out_port_sec_12
Datapath: 9
table=0 (ls_in_port_sec_12
table=0 (ls_in_port_sec_12
table=0 (ls_in_port_sec_12
table=0 (ls_in_port_sec_12
table=1 (ls_in_port_sec_ip
table=2 (ls_in_port_sec_nd
table=2 (ls_in_port_sec_nd
table=2 (ls_in_port_sec_nd
table=2 (ls_in_port_sec_nd
table=2 (ls_in_port_sec_nd
table=2 (ls_in_port_sec_nd
table=2 (ls_in_port_sec_nd
table=3 (ls_in_pre_acl
table=4 (ls_in_pre_1b
table=5 (ls_in_pre_stateful
table=5 (ls_in_pre_stateful
table=6 (ls_in_acl
table=7 (ls_in_1b
table=8 (ls_in_stateful
table=8 (ls_in_stateful
table=8 (ls_in_stateful
table=9 (ls_in_arp_rsp
table=10(1ls_in_12_1lkup
table=10(1ls_in_12_1lkup
table=10(ls_in_12_1lkup
Datapath: 9
table=0 (ls_out_pre_1lb
table=1 (ls_out_pre_acl
table=2 (ls_out_pre_stateful
table=2 (ls_out_pre_stateful
table=3 (ls_out_1lb
table=4 (ls_out_acl
table=5 (ls_out_stateful
table=5 (ls_out_stateful
table=5 (ls_out_stateful
table=6 (ls_out_port_sec_ip
table=7 (ls_out_port_sec_12
table=7 (ls_out_port_sec_12
table=7 (ls_out_port_sec_12

)
)
)
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

)

)
)
)
)
)
)
)
)
)
)
)
)

14

14

’

14

’

14

4

’

14

’

’

14

’

’

14

’

’

14

’

’

14

’

’

14

’

’

14

’

’

’

’

14

’

’

14

’

’

14

’

’

14

’

priority=0
priority=100
priority=50
priority=50

eal0c8f9-4f82-4be3-ab6c7-6e6£9c2de583

priority=100
priority=100
priority=50
priority=50
priority=0
priority=90
priority=90
priority=90
priority=90
priority=80
priority=80
priority=0
priority=0
priority=0
priority=100
priority=0
priority=0
priority=0
priority=100
priority=100
priority=0
priority=0
priority=100
priority=50
priority=50

ealc8f9-4f82-4be3-abc7-6e6£9c2de583

priority=0
priority=0
priority=100
priority=0
priority=0
priority=0
priority=100
priority=100
priority=0
priority=0
priority=100
priority=50
priority=50

’

’

’

’

’

’

’

match= (1), action=(next;)
match=(eth.mcast), action=(output;)
match= (outport == "swl-portl" && eth.dg
match= (outport == "swl-port2" && eth.dg
Pipeline: ingress

match=(eth.src[40]), action=(drop;)
match=(vlan. present) action=(drop;)
match= (inport == "swO-portl" && eth.srq
match=(inport == "swO-port2" && eth.srq
match= (1), action=(next;)

match=(inport == "swO-portl" && eth.srq
match=(inport == "swO-portl" && eth.srq
match= (inport == "sw0O-port2" && eth.sr
match= (inport == "swO-port2" && eth.srq
match=(inport == "swO-portl" && (arp |
match=(inport == "swO-port2" && (arp |
match= (1), action=(next;)

match= (1) action=(next;)

match:(l) action=(next;)
match=(reg0[0] == 1), action=(ct_next;)
match= (1), action=(next;)

match= (1), action=(next;)

match= (1), action=(next;)
match=(reg0[1l] == 1), action=(ct_commit;
match=(reg0[2] == 1), action=(ct_1b;)
match= (1), action=(next;)

match= (1), action=(next;)
match=(eth.mcast), action=(outport = "|
match=(eth.dst == 00:00:00:00:00:01), 4
match=(eth.dst == 00:00:00:00:00:02), 4
Pipeline: egress

match= (1), action=(next;)

match= (1), action=(next;)
match:(regO[O] == 1), action=(ct_next;)
match= (1), ction=(next;)

match=(1), actlon=(next)

match= (1), action=(next;)
match=(reg0[1l] == 1), action=(ct_commit
match=(reg0[2] == 1), action=(ct_1b;)
match= (1), action=(next;)

match=(1) action= (next;)

matchZ(eth mcast), action=(output;)
match= (outport == "swO-portl" && eth.dg
match= (outport == "swO-port2" && eth.dg

In this setup, swO-portl and swO-port2 can send packets to each other, but not to

either of the ports on swl.

This first trace shows a packet from swO-portl to swO-port2. You should see th packet arrive on OpenFlow port

1 and output to OpenFlow port 2:

$ ovn/env2/packetl.sh

This next example shows a packet from swO-port1 with a destination MAC address of 00:00:00:00:00:03,
which is the MAC address for swl-port1. Since these ports are not on the same logical switch, the packet should

just be dropped:

3.2. OVN Basics

63

t

’

pt

nd)),
nd)),

= 00:
= 00:

{00:00:(
{00:00:(

{00:00:0¢
{00:00:0¢

00:
00:
00:00
00:00
actioa
actioa

00
00
00:
00:

next;)

|IMC_flood";
ction=
ction=

o1
(outpo:
(outpo:

next;)

{00:00:¢
{00:00:(

Open vSwitch Documentation, Release 2.6.0

‘$ ovn/env2/packet2.sh

3.2.5 Two Hypervisors

The first two examples started by showing OVN on a single hypervisor. A more realistic deployment of OVN would
span multiple hypervisors. This example creates a single logical switch with 4 logical ports. It then simulates having
two hypervisors with two of the logical ports bound to each hypervisor:

$ ovn/env3/setup.sh

You can start by viewing the logical topology with ovn—-nbct1:

$ ovn-nbctl show
switch b977dc03-79a5-41ba-9665-341a80elabfd (sw0)
port swO-portl
addresses: 00:00:00:00:00:01
port swO-port2
addresses: 00:00:00:00:00:02
port swO-portd
addresses: 00:00:00:00:00:04
port swO-port3
addresses: 00:00:00:00:00:03

Using ovn—sbct1 to view the state of the system, we can see that there are two chassis: one local that we can interact
with, and a fake remote chassis. Two logical ports are bound to each. Both chassis have an IP address of localhost, but
in a realistic deployment that would be the IP address used for tunnels to that chassis:

$ ovn-sbctl show
Chassis "56b18105-5706-46ef-80c4-££20979ab068"
Encap geneve
ip: "127.0.0.1"
Port_Binding "swO-port2"
Port_Binding "swO-portl"
Chassis fakechassis
Encap geneve
ip: "127.0.0.1"
Port_Binding "swO-portd"
Port_Binding "swO-port3"

Packets between swO-port1 and swO-port2 behave just like the previous examples. Packets to ports on a remote
chassis are the interesting part of this example. You may have noticed before that OVN'’s logical flows are broken up
into ingress and egress tables. Given a packet from swO-port1 on the local chassis to swO-port3 on the remote
chassis, the ingress pipeline is executed on the local switch. OVN then determines that it must forward the packet over
a geneve tunnel. When it arrives at the remote chassis, the egress pipeline will be executed there.

This first packet trace shows the first part of this example. It’s a packet from swO-portl to swO-port3 from the
perspective of the local chassis. swO—port1 is OpenFlow port 1. The tunnel to the fake remote chassis is OpenFlow
port 3. You should see the ingress pipeline being executed and then the packet output to port 3, the geneve tunnel:

$ ovn/env3/packetl.sh

To simulate what would happen when that packet arrives at the remote chassis we can flip this example around.
Consider a packet from swO-port3 to swO-portl. This trace shows what would happen when that packet arrives
at the local chassis. The packet arrives on OpenFlow port 3 (the tunnel). You should then see the egress pipeline get
executed and the packet output to OpenFlow port 1:

64 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

‘$ ovn/env3/packet2.sh

3.2.6 Locally Attached Networks

While OVN is generally focused on the implementation of logical networks using overlays, it’s also possible to use
OVN as a control plane to manage logically direct connectivity to networks that are locally accessible to each chassis.

This example includes two hypervisors. Both hypervisors have two ports on them. We want to use OVN to manage
the connectivity of these ports to a network attached to each hypervisor that we will call “physnet1”.

This scenario requires some additional configuration of ovn—controller. We must configure a mapping between
physnet1 and a local OVS bridge that provides connectivity to that network. We call these “bridge mappings”. For
our example, the following script creates a bridge called br—eth1 and then configures ovn—controller with a
bridge mapping from physnetl to br-ethl.

We want to create a fake second chassis and then create the topology that tells OVN we want both ports on both
hypervisors connected to physnet 1. The way this is modeled in OVN is by creating a logical switch for each port.
The logical switch has the regular VIF port and a 1ocalnet port:

$ ovn/env4d/setup.sh

At this point we should be able to see that ovn—cont roller has automatically created patch ports between br-int
and br-ethl:

$ ovs-vsctl show
c0a06d85-d70a-4el11-9518-76a92588b34e
Bridge "br-ethl"
Port "patch-provnetl-l-physnetl-to-br-int"
Interface "patch-provnetl-l-physnetl-to-br—-int"
type: patch
options: {peer="patch-br-int-to-provnetl-1l-physnetl"}
Port "br-ethl"
Interface "br-ethl"
type: internal
Port "patch-provnetl-2-physnetl-to-br-int"
Interface "patch-provnetl-2-physnetl-to-br-int"
type: patch
options: {peer="patch-br-int-to-provnetl-2-physnetl"}
Bridge br-int
fail_mode: secure
Port "ovn-fakech-0"
Interface "ovn-fakech-0"
type: geneve
options: {key=flow, remote_ip="127.0.0.1"}
Port "patch-br-int-to-provnetl-2-physnetl"
Interface "patch-br-int-to-provnetl-2-physnetl"
type: patch
options: {peer="patch-provnetl-2-physnetl-to-br-int"}
Port br-int
Interface br-int
type: internal
Port "patch-br-int-to-provnetl-l-physnetl"
Interface "patch-br-int-to-provnetl-l-physnetl"
type: patch
options: {peer="patch-provnetl-l-physnetl-to-br-int"}
Port "lport2a"
Interface "lport2"

3.2. OVN Basics 65

Open vSwitch Documentation, Release 2.6.0

Port "lportl"
Interface "lportl

The logical topology from ovn-nbct1 should look like this:

$ ovn-nbctl show
switch 9db81140-5504-4f60-be3d-2beed5b57e27 (provnetl-2)
port provnetl-2-portl
addresses: ["00:00:00:00:00:02"]
port provnetl-2-physnetl
addresses: ["unknown"]
switch cf175cb9-35c5-41cf-8bc7-2d322cdbeadl (provnetl-3)
port provnetl-3-physnetl
addresses: ["unknown"]
port provnetl-3-portl
addresses: ["00:00:00:00:00:03"]
switch b85f7af6-8055-4db2-ba93-efc7887c£38f (provnetl-1)
port provnetl-l-portl
addresses: ["00:00:00:00:00:01"]
port provnetl-l-physnetl
addresses: ["unknown"]
switch 63a5e276-8807-417d-bbec-a7e¢907e106bl (provnetl-4)
port provnetl-4-portl
addresses: ["00:00:00:00:00:04"]
port provnetl-4-physnetl
addresses: ["unknown"]

portl on each logical switch represents a regular logical port for a VIF on a hypervisor. physnet1 on each logical
switch is the special Localnet port. You can use ovn—nbct1 to see that this port has a t ype and options set:

$ ovn-nbctl lsp-get-type provnetl-1l-physnetl
localnet

$ ovn-nbctl lsp-get-options provnetl-l-physnetl
network_name=physnetl

The physical topology should reflect that there are two regular ports on each chassis:

$ ovn-sbctl show
Chassis "56b18105-5706-46ef-80c4-££20979ab068"
hostname: sandbox
Encap geneve
ip: "127.0.0.1"
Port_Binding "provnetl-l-portl"
Port_Binding "provnetl-2-portl"
Chassis fakechassis
Encap geneve
ip: "127.0.0.1"
Port_Binding "provnetl-3-portl"
Port_Binding "provnetl-4-portl"

All four of our ports should be able to communicate with each other, but they do so through physnet1. A packet
from any of these ports to any destination should be output to the OpenFlow port number that corresponds to the patch
portto br—ethl.

This example assumes following OpenFlow port number mappings:
¢ 1 =tunnel to the fake second chassis

e 2 =1lport1, which is the logical port named provnet1l-1-portl

66 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

* 3=patch-br-int-to-provnetl-l-physnetl, patch portto br-ethl
e 4 = 1port2, which is the logical port named provnetl-2-portl
* 5=patch-br-int-to-provnetl-2-physnetl, patch port to br-ethl

We get those port numbers using ovs—-ofctl:

$ ovs-ofctl show br-int
OFPT_FEATURES_REPLY (x1id=0x2): dpid:00002a84824b0d40
n_tables:254, n_buffers:0
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: output enqueue set_vlan_vid set_vlan_pcp strip_vlan mod_dl_src mod_dl_dst
1 (ovn—-fakech-0): addr:aa:55:aa:55:00:0e
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
2 (lportl): addr:aa:55:aa:55:00:0f
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
3 (patch-br-int-to): addr:7a:6f:8a:d5:69:2a
config: 0
state: 0
speed: 0 Mbps now, 0 Mbps max
4 (lport2): addr:aa:55:aa:55:00:10
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
5(patch-br-int-to): addr:4a:fd:cl:11:fc:ab
config: 0
state: 0
speed: 0 Mbps now, 0 Mbps max
LOCAL (br—int) : addr:2a:84:82:4b:0d:40
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0

This first trace shows a packet from provnetl-l-portl with a destination MAC address of
provnetl-2-portl. We expect the packets from lportl (OpenFlow port 2) to be sent out to lport2
(OpenFlow port 4). For example, the following topology illustrates how the packets travel from lportl to lport2:

"lportl’ —--> “patch-br-int-to-provnetl-l-physnetl’ (OpenFlow port 3)
-—> “br-ethl® --> "patch-br-int-to-provnetl-2-physnetl’ --> "lport2’ (OpenFlow port 4)

Similarly, We expect the packets from provnet1l-2-portl to be sent out to provnetl-1-portl. We then
expect the network to handle getting the packet to its destination. In practice, this will be optimized at br—ethl and
the packet won’t actually go out and back on the network:

$ ovn/env4/packetl.sh

This next trace shows an example of a packet being sent to a destination on another hypervisor. The source is
provnetl-1l-portl, but the destination is provnet1l-3-port1, which is on the other fake chassis. As usual,
we expect the output to be to br-ethl (patch-br-int-to-provnetl-1-physnetl, OpenFlow port 3):

$ ovn/env4/packet2.sh

This next test shows a broadcast packet. The destination should still only be OpenFlow port 3 and 4:

3.2. OVN Basics 67

Open vSwitch Documentation, Release 2.6.0

‘$ ovn/envéd/packet3.sh

Finally, this last trace shows what happens when a broadcast packet arrives from the network. In this case, it simulates
a broadcast that originated from a port on the remote fake chassis and arrived at the local chassis via br—ethl. We
should see it output to both local ports that are attached to this network (OpenFlow ports 2 and 4):

‘$ ovn/envéd/packetd.sh

3.2.7 Locally Attached Networks with VLANs

This example is an extension of the previous one. We take the same setup and add two more ports to each hypervisor.
Instead of having the new ports directly connected to physnet1 as before, we indicate that we want them on VLAN
101 of physnet1. This shows how 1ocalnet ports can be used to provide connectivity to either a flat network or
a VLAN on that network:

$ ovn/env5/setup.sh

The logical topology shown by ovn—nbct1 is similar to env4, except we now have 8 regular VIF ports connected
to physnet1 instead of 4. The additional 4 ports we have added are all on VLAN 101 of physnet 1. Note that the
localnet ports representing connectivity to VLAN 101 of physnet1 have the tag field set to 101:

$ ovn-nbctl show
switch 3e60b940-00bf-44c6-9db6-04abf28d7e5f (provnetl-1)
port provnetl-l-physnetl
addresses: ["unknown"]
port provnetl-l-portl
addresses: ["00:00:00:00:00:01"]
switch 87f6beal0-£74d-4£39-aa65-calf94670429 (provnetl-2)
port provnetl-2-portl
addresses: ["00:00:00:00:00:02"]
port provnetl-2-physnetl
addresses: ["unknown"]
switch e6c9cb69-a056-428d-aa40-e903ced4lb6dcd (provnetl-6-101)
port provnetl-6-10l-portl
addresses: ["00:00:00:00:00:06"]
port provnetl-6-physnetl1-101
parent:
tag: 101
addresses: ["unknown"]
switch 5f8f72ca-6030-4f66-baca-fe6l74eb54df (provnetl-4)
port provnetl-4-portl
addresses: ["00:00:00:00:00:04"]
port provnetl-4-physnetl
addresses: ["unknown"]
switch 15d585eb-d2cl-45ea-a9%946-b08de0eb2£f55 (provnetl-7-101)
port provnetl-7-physnetl-101
parent:
tag: 101
addresses: ["unknown"]
port provnetl-7-10l1-portl
addresses: ["00:00:00:00:00:07"]
switch 7bedaabe-1bb0-4el6-a755-alf6d8lclc2f (provnetl-5-101)
port provnetl-5-101-portl
addresses: ["00:00:00:00:00:05"]
port provnetl-5-physnetl-101
parent:
tag: 101

68 Chapter 3. Tutorials

Open vSwitch Documentation, Release 2.6.0

addresses: ["unknown"]
switch 9bbdbf0e-50£3-4286-ba5a-29bf347531bb (provnetl-8-101)
port provnetl-8-10l-portl

addresses: ["00:00:00:00:00:08"]
port provnetl-8-physnetl1-101

parent:

tag: 101

addresses: ["unknown"]
switch 70d053f7-2bca-4dff-96ae-bd728d3bald2 (provnetl-3)
port provnetl-3-physnetl

addresses: ["unknown"]
port provnetl-3-portl

addresses: ["00:00:00:00:00:03"]

The physical topology shows that we have 4 regular VIF ports on each simulated hypervisor:

$ ovn-sbctl show
Chassis fakechassis
Encap geneve
ip: "127.0.0.1"
Port_Binding "provnetl-3-portl"
Port_Binding "provnetl-8-101-portl"
Port_Binding "provnetl-7-101l-portl"
Port_Binding "provnetl-4-portl"
Chassis "56b18105-5706-46ef-80c4-££20979ab068"
hostname: sandbox
Encap geneve
ip: "127.0.0.1"
Port_Binding "provnetl-2-portl"
Port_Binding "provnetl-5-101-portl"
Port_Binding "provnetl-l-portl"
Port_Binding "provnetl-6-10l-portl"

All of the traces from the previous example, env4, should work in this environment and provide the same result. Now
we can show what happens for the ports connected to VLAN 101. This first example shows a packet originating from
provnetl-5-101-port1, which is OpenFlow port 6. We should see VLAN tag 101 pushed on the packet and
then output to OpenFlow port 7, the patch port to br—ethl (the bridge providing connectivity to physnet1), and
finally arrives on OpenFlow port 8.

$ ovn/env5/packetl.sh

If we look at a broadcast packet arriving on VLAN 101 of physnet 1, we should see it output to OpenFlow ports 6
and 8 only:

‘$ ovn/env5/packet2.sh

3.2.8 Stateful ACLs

ACLs provide a way to do distributed packet filtering for OVN networks. One example use of ACLs is that OpenStack
Neutron uses them to implement security groups. ACLs are implemented using conntrack integration with OVS.

Start with a simple logical switch with 2 logical ports:

$ ovn/env6/setup.sh

A common use case would be the following policy applied for swO-port1:

¢ Allow outbound IP traffic and associated return traffic.

3.2. OVN Basics 69

Open vSwitch Documentation, Release 2.6.0

* Allow incoming ICMP requests and associated return traffic.
* Allow incoming SSH connections and associated return traffic.
* Drop other incoming IP traffic.

The following script applies this policy to our environment:

$ ovn/env6/add-acls.sh

We can view the configured ACLs on this network using the ovn—-nbct 1l command:

$ ovn-nbctl acl-list swO

from-lport 1002 (inport == "swO-portl" && ip) allow-related
to-lport 1002 (outport == "swO-portl" && ip && icmp) allow-related
to-lport 1002 (outport == "swO-portl" && ip && tcp && tcp.dst == 22) allow-related
to-lport 1001 (outport == "swO-portl" && ip) drop

Now that we have ACLs configured, there are new entries in the logical flow table in the stages
switch_in_pre_acl, switch_in_acl, switch_out_pre_acl,and switch_out_acl.

$ ovn-sbetl 1flow-list
Let’s look more closely at switch_out_pre_acl and switch_out_acl.

In switch_out_pre_acl, we match IP traffic and put it through the connection tracker. This populates the con-
nection state fields so that we can apply policy as appropriate:

table=0 (switch_out_pre_acl), priority= 100, match=(ip), action=(ct_next;)
table=1 (switch_out_pre_acl), priority= 0, match=(1), action=(next;)

In switch_out_acl, we allow packets associated with existing connections. We drop packets that are deemed to
be invalid (such as non-SYN TCP packet not associated with an existing connection):

table=1 (switch_out_acl), priority=65535, match=(!ct.est && ct.rel && !ct.new && !ct.inv)
table=1 (switch_out_acl), priority=65535, match=(ct.est && !ct.rel && !ct.new && !ct.inv)
table=1 (switch_out_acl), priority=65535, match=(ct.inv), action=(drop;)

For new connections, we apply our configured ACL policy to decide whether to allow the connection or not. In this
case, we’ll allow ICMP or SSH. Otherwise, we’ll drop the packet:

table=1 (switch_out_acl), priority= 2002, match=(ct.new && (outport == "swO-portl" && ip
table=1 (switch_out_acl), priority= 2002, match=(ct.new && (outport == "swO-portl" && ip
table=1 (switch_out_acl), priority= 2001, match=(outport == "swO-portl" && ip), action= (g

When using ACLs, the default policy is to allow and track IP connections. Based on our above policy, IP traffic
directed at swO—-port1 will never hit this flow at priority 1:

table=1 (switch_out_acl), priority= 1, match=(ip), action=(ct_commit; next;)
table=1 (switch_out_acl), priority= 0, match=(1), action=(next;)

Note that conntrack integration is not yet supported in ovs-sandbox, so the OpenFlow flows will not represent what
you’d see in a real environment. The logical flows described above give a very good idea of what the flows look like,
though.

This blog post discusses OVN ACLs from an OpenStack perspective and also provides an example of what the resulting
OpenFlow flows look like.

70 Chapter 3. Tutorials

, action=(ne:
, action=(ne:

&& icmp)), ac
&& tcp && tcy
rop;)

https://blog.russellbryant.net/2015/10/22/openstack-security-groups-using-ovn-acls/

Open vSwitch Documentation, Release 2.6.0

3.2.9 Container Ports

OVN supports containers running directly on the hypervisors and running containers inside VMs. This example shows
how OVN supports network virtualization to containers when run inside VMs. Details about how to use docker
containers in OVS can be found in Open Virtual Networking With Docker.

To support container traffic created inside a VM and to distinguish network traffic coming from different container
vifs, for each container a logical port needs to be created with parent name set to the VM’s logical port and the tag set
to the vlan tag of the container vif.

Start with a simple logical switch with three logical ports:

‘$ ovn/env7/setup.sh

Lets create a container vif attached to the logical port swO-port1 and another container vif attached to the logical
port swO-port2:

’$ ovn/env7/add-container-ports.sh

Run the ovn—-nbct 1 command to see the logical ports:

‘$ovn—nbctl show

As you can see a logical port cswO—cport1 is created on a logical switch ‘csw0’ whose parent is swO0-port1 and
it has tag set to 42. In addition, a logical port cswO—-cport?2 is created on the logical switch csw0 whose parent is
swO-port2 and it has tag set to 43.

Bridge br-vmport1 represents the ovs bridge running inside the VM connected to the logical port swO-portl.
In this tutorial the ovs port to swO-portl is created as a patch port with its peer connected to the ovs bridge
br-vmportl. An ovs port cport1l is added to br—vmport1 which represents the container interface connected
to the ovs bridge and vlan tag set to 42. Similarly br-vmport2 represents the ovs bridge for the logical port
swO-port2 and cport?2 connected to br-vmport2 with vlan tag set to 4 3.

This first trace shows a packet from cswO-port1 with a destination mac address of cswO-port2. You can see ovs
bridge of the vim br-vmport1 tags the traffic with vlan id 42 and the traffic reaches to the br-int because of the patch
port. As you can see below ovn—controller has added a flow to strip the vlan tag and set the regb6 and metadata
appropriately:

$ ovs-ofctl -O OpenFlowl3 dump-flows br-int

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=2767.032s, table=0, n_packets=0, n_bytes=0, priority=150,in_port=3
cookie=0x0, duration=2767.002s, table=0, n_packets=0, n_bytes=0, priority=150,in_port=4
cookie=0x0, duration=2767.032s, table=0, n_packets=0, n_bytes=0, priority=100,in_port=3
cookie=0x0, duration=2767.001s, table=0, n_packets=0, n_bytes=0, priority=100,in_port=4

’$ ovn/env7/packetl.sh

The second trace shows a packet from cswO-port2 to cswO-portl:

‘$ ovn/env7/packet2.sh

You can extend this setup by adding additional container ports with two hypervisors. Refer to tutorial three above.

3.2.10 L2Gateway Ports

L2Gateway provides a way to connect logical switch ports of type 12gateway to a physical network. The difference
between 12gateway ports and 1localnet ports is that an 12gateway port is bound to a specific chassis. A single
chassis serves as the L2 gateway to the physical network and all traffic between chassis continues to go over geneve
tunnels.

3.2. OVN Basics 4

dl_vlan=42 ac¢
dl_vlan=43 ac¢
actions=set_:
actions=set_:

Open vSwitch Documentation, Release 2.6.0

Start with a simple logical switch with three logical ports:

$ ovn/env8/setup.sh

This first example shows a packet originating from 1port1, which is OpenFlow port 1. We expect all packets from
lportl to be sent out to br—ethl (patch-br-int-to-sw0-port3, OpenFlow port 3). The patch port to
br-ethl provides connectivity to the physical network.

$ ovn/env8/packetl.sh

The last trace shows what happens when a broadcast packet arrives from the network. In this case, it simulates a
broadcast that originated from a port on the physical network and arrived at the local chassis via br-ethl. We
should see it output to the local ports 1port1 and lport2:

$ ovn/env8/packet2.sh

72 Chapter 3. Tutorials

CHAPTER 4

Open vSwitch Deep Dive

How Open vSwitch is implemented and, where necessary, why it was implemented that way.

4.1 Design Decisions In Open vSwitch

This document describes design decisions that went into implementing Open vSwitch. While we believe these to be
reasonable decisions, it is impossible to predict how Open vSwitch will be used in all environments. Understanding
assumptions made by Open vSwitch is critical to a successful deployment. The end of this document contains contact
information that can be used to let us know how we can make Open vSwitch more generally useful.

4.1.1 Asynchronous Messages
Over time, Open vSwitch has added many knobs that control whether a given controller receives OpenFlow asyn-
chronous messages. This section describes how all of these features interact.

First, a service controller never receives any asynchronous messages unless it changes its miss_send_len from the
service controller default of zero in one of the following ways:

e Sending an OFPT_SET_CONF IG message with nonzero miss_send_len.

e Sending any NXT_SET_ASYNC_CONFIG message: as a side effect, this message changes the
miss_send_len to OFP_DEFAULT_MISS_SEND_LEN (128) for service controllers.

Second, OFPT_FLOW_REMOVED and NXT_FLOW_REMOVED messages are generated only if the flow that was re-
moved had the OFPFF_SEND_FLOW_REM flag set.

Third, OFPT_PACKET_IN and NXT_PACKET_IN messages are sent only to OpenFlow controller connections that
have the correct connection ID (see struct nx_controller_idand struct nx_action_controller):

* For packet-in messages generated by a NXAST_CONTROLLER action, the controller ID specified in the action.

* For other packet-in messages, controller ID zero. (This is the default ID when an OpenFlow controller does not
configure one.)

Finally, Open vSwitch consults a per-connection table indexed by the message type, reason code, and current role.
The following table shows how this table is initialized by default when an OpenFlow connection is made. An entry
labeled ye s means that the message is sent, an entry labeled ——— means that the message is suppressed.

73

Open vSwitch Documentation, Release 2.6.0

Table 4.1: OFPT_PACKET_IN/NXT_PACKET_IN

message and reason code other | slave
OFPR_NO_MATCH yes —
OFPR_ACTION yes —
OFPR_INVALID_TTL — —
OFPR_ACTION_SET (OF1.4+) | yes —
OFPR_GROUP (OF1.4+) yes —

Table 4.2: OFPT_FLOW_REMOVED /
NXT_FLOW_REMOVED
message and reason code other | slave
OFPRR_IDLE_TIMEOUT yes —
OFPRR_HARD_TIMEOUT yes —
OFPRR_DELETE yes —
OFPRR_GROUP_DELETE (OF1.44) | yes —
OFPRR_METER_DELETE (OF1.4+) | yes —
OFPRR_EVICTION (OF1.4+) yes —
Table 4.3: OFPT_PORT_STATUS
message and reason code | other | slave
OFPPR_ADD yes yes
OFPPR_DELETE yes yes
OFPPR_MODIFY yes yes
Table 4.4: OFPT_ROLE_REQUEST /
OFPT_ROLE_REPLY (OF1.4+)
message and reason code other | slave

OFPCRR_MASTER_REQUEST

OFPCRR_CONFIG

OFPCRR_EXPERIMENTER

Table 4.5: OFPT_TABLE_STATUS (OF1.4+)

message and reason code

other

slave

OFPTR_VACANCY_DOWN

OFPTR_VACANCY_UP

Table 4.6: OFPT_REQUESTFORWARD (OF1.4+)

message and reason code

other

slave

OFPREFR_GROUP_MOD

OFPRFR_METER_MOD

The NXT_SET_ASYNC_CONFIG message directly sets all of the values in this table for the current connection.
The OFPC_INVALID_TTL_TO_CONTROLLER bit in the OFPT_SET_CONFIG message controls the setting for

OFPR_INVALID_TTL for the “master” role.

4.1.2 OFPAT ENQUEUE

The OpenFlow 1.0 specification requires the output port of the OFPAT_ENQUEUE action to “refer to a valid phys-
ical port (i.e. < OFPP_MAX) or OFPP_IN_PORT”. Although OFPP_LOCAL is not less than OFPP_MAX, it is an
‘internal’ port which can have QoS applied to it in Linux. Since we allow the OFPAT_ENQUEUE to apply to ‘inter-
nal’ ports whose port numbers are less than OFPP_MAX, we interpret OFPP_LOCAL as a physical port and support

OFPAT_ENQUEUE on it as well.

74

Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

4.1.3 OFPT_FLOW_MOD

The OpenFlow specification for the behavior of OFPT_FLOW_MOD is confusing. The following tables summarize the
Open vSwitch implementation of its behavior in the following categories:

“match on priority” Whether the flow_mod acts only on flows whose priority matches that included in the
flow_mod message.

“match on out_port” Whether the f1ow_mod acts only on flows that output to the out_port included in the
flow_mod message (if out_port is not OFPP_NONE). OpenFlow 1.1 and later have a similar feature (not listed
separately here) for out_group.

“match on flow_cookie”: Whether the £1ow_mod acts only on flows whose £f1ow_cookie matches an optional
controller-specified value and mask.

“updates flow_cookie”: Whether the f1ow_mod changes the f1ow_cookie of the flow or flows that it matches
to the f1ow_cookie included in the flow_mod message.

‘“updates OFPFF__ flags”: Whether the flow_mod changes the OFPFF_SEND_FLOW_REM flag of the flow or flows
that it matches to the setting included in the flags of the flow_mod message.

“honors OFPFF_CHECK_OVERLAP”: Whether the OFPFF_CHECK_OVERLAP flag in the flow_mod is significant.

‘“updates idle_timeout” and ‘“updates hard_timeout”: Whetherthe idle_timeout and hard_timeout in
the £ low_mod, respectively, have an effect on the flow or flows matched by the £1ow_mod.

‘“updates idle timer”: Whether the £1ow_mod resets the per-flow timer that measures how long a flow has been
idle.

“updates hard timer”: Whether the £1ow_mod resets the per-flow timer that measures how long it has been since a
flow was modified.

“zeros counters”: Whether the £1ow_mod resets per-flow packet and byte counters to zero.

“may add a new flow”: Whether the £1ow_mod may add a new flow to the flow table. (Obviously this is always true
for “add” commands but in some OpenFlow versions “modify” and “modify-strict” can also add new flows.)

“sends £low_removed message”’: Whether the flow_mod generates a flow_removed message for the flow or flows
that it affects.

An entry labeled yes means that the flow mod type does have the indicated behavior, ——- means that it does not, an
empty cell means that the property is not applicable, and other values are explained below the table.

4.1. Design Decisions In Open vSwitch 75

Open vSwitch Documentation, Release 2.6.0

OpenFlow 1.0
RULE ADD MODIFY STRICT DELETE STRICT
match on | yes — yes — yes
priority
match on | — — — yes yes
out_port
match on | — — — — —
flow_cookie
match on | — — — — _
table_id
controller chooses | — — —
table_id
updates yes yes yes
flow_cookie
updates yes . .
OFPFF_SEND_FLOW_REM
honors yes . .
OFPFF_CHECK_OYVERLAP
updates yes . .
idle_timeout
updates yes . R
hard_timeout
resets idle timer yes R .
resets hard timer yes yes yes
Zeros counters yes . .
may add a new | yes yes yes
flow
sends — — — % %

flow_removed
message

where:

+ “modify” and “modify-strict” only take these actions when they create a new flow, not when they update an existing

flow.

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

OpenFlow 1.1

OpenFlow 1.1 makes these changes:

* The controller now must specify the table_id of the flow match searched and into which a flow may be

inserted. Behavior for a table_id of 255 is undefined.

* A flow_mod, except an “add”, can now match on the flow_cookie.

* When a f1ow_mod matches on the f1ow_cookie, “modify” and “modify-strict” never insert a new flow.

76

Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

RULE ADD MODIFY STRICT DELETE STRICT
match on | yes — yes — yes
priority

match on | — — — yes yes
out_port

match on | — yes yes yes yes
flow_cookie

match on | yes yes yes yes yes
table_id

controller chooses | yes yes yes

table_id

updates yes — —

flow_cookie

updates yes . R

OFPFF_SEND_FLOW_REM

honors yes . R

OFPFF_CHECK_OVERLAP

updates yes . .

idle_timeout

updates yes . .

hard_timeout

resets idle timer yes . R

resets hard timer yes yes yes

Zeros counters yes . .

may add a new | yes # #

flow

sends — — — % %

flow_removed
message

where:

+ “modify” and “modify-strict” only take these actions when they create a new flow, not when they update an existing

flow.

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

“modify” and “modify-strict” only add a new flow if the flow_mod does not match on any bits of the flow cookie

OpenFlow 1.2

OpenFlow 1.2 makes these changes:

* Only “add” commands ever add flows, “modify” and “modify-strict” never do.

* A new flag OFPFF_RESET_COUNTS now controls whether “modify” and “modify-strict” reset counters,
whereas previously they never reset counters (except when they inserted a new flow).

4.1. Design Decisions In Open vSwitch

77

Open vSwitch Documentation, Release 2.6.0

RULE ADD | MODIFY | STRICT | DELETE | STRICT
match on priority yes — yes — yes
match on out_port — — — yes yes
match on flow_cookie — yes yes yes yes
match on table_id yes yes yes yes yes
controller chooses table_id yes yes yes

updates flow_cookie yes — —

updates OFPFF_SEND_FLOW_REM | yes —_ —_
honors OFPFF_CHECK_OVERLAP yes — —

updates idle_timeout yes — —

updates hard_timeout yes — —

resets idle timer yes — —

resets hard timer yes yes yes

Zeros counters yes & &

may add a new flow yes — —

sends £1ow_removed message — — — % %

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

& “modify” and “modify-strict” reset counters if the OFPFF_RESET_COUNTS flag is specified.

OpenFlow 1.3

OpenFlow 1.3 makes these changes:

* Behavior for a table_id of 255 is now defined, for “delete” and “delete-strict” commands, as meaning to delete
from all tables. A table_id of 255 is now explicitly invalid for other commands.

e New flags OFPFF_NO_PKT_COUNTS and OFPFF_NO_BYT_COUNTS for “add” operations.

The table for 1.3 is the same as the one shown above for 1.2.

OpenFlow 1.4

OpenFlow 1.4 makes these changes:

* Adds the “importance” field to £1ow_mods, but it does not explicitly specify which kinds of £1ow_mods set
the importance. For consistency, Open vSwitch uses the same rule for importance as for idle_timeout and
hard_timeout, that is, only an “ADD” flow_mod sets the importance. (This issue has been filed with the
ONF as EXT-496.)

* Eviction Mechanism to automatically delete entries of lower importance to make space for newer entries.

4.1.4 OpenFlow 1.4 Bundles

Open vSwitch makes all flow table modifications atomically, i.e., any datapath packet only sees flow table configura-
tions either before or after any change made by any £1ow_mod. For example, if a controller removes all flows with a
single OpenFlow f1ow_mod, no packet sees an intermediate version of the OpenFlow pipeline where only some of
the flows have been deleted.

It should be noted that Open vSwitch caches datapath flows, and that the cached flows are NOT flushed immediately
when a flow table changes. Instead, the datapath flows are revalidated against the new flow table as soon as possible,
and usually within one second of the modification. This design amortizes the cost of datapath cache flushing across

78 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

multiple flow table changes, and has a significant performance effect during simultaneous heavy flow table churn and
high traffic load. This means that different cached datapath flows may have been computed based on a different flow
table configurations, but each of the datapath flows is guaranteed to have been computed over a coherent view of the
flow tables, as described above.

With OpenFlow 1.4 bundles this atomicity can be extended across an arbitrary set of £1ow_mod. Bundles are sup-
ported for £1ow_mod and port_mod messages only. For £1ow_mod, both atomic and ordered bundle flags are
trivially supported, as all bundled messages are executed in the order they were added and all flow table modifications
are now atomic to the datapath. Port mods may not appear in atomic bundles, as port status modifications are not
atomic.

To support bundles, ovs-ofctl has a ——bundle option that makes the flow mod commands (add-flow,
add-flows,mod-flows,del-flows, and replace—flows) use an OpenFlow 1.4 bundle to operate the mod-
ifications as a single atomic transaction. If any of the flow mods in a transaction fail, none of them are executed. All
flow mods in a bundle appear to datapath lookups simultaneously.

Furthermore, ovs-ofctl add—-f1low and add-flows commands now accept arbitrary flow mods as an input by allow-
ing the flow specification to start with an explicit add, modify,modify_strict,delete,ordelete_strict
keyword. A missing keyword is treated as add, so this is fully backwards compatible. With the new ——bundle
option all the flow mods are executed as a single atomic transaction using an OpenFlow 1.4 bundle. Without the
—-bundle option the flow mods are executed in order up to the first failing £1ow_mod, and in case of an error the
earlier successful £1ow_mod calls are not rolled back.

4.1.5 OFPT_PACKET_IN

The OpenFlow 1.1 specification for OFPT_PACKET_IN is confusing. The definition in OF1.1 openflow.h is[*]:

/+ Packet received on port (datapath -> controller). =*/
struct ofp_packet_in {
struct ofp_header header;

uint32_t buffer_id; /+ ID assigned by datapath. =/

uint32_t in_port; /* Port on which frame was received. x/

uint32_t in_phy_port; /* Physical Port on which frame was received. x/
uintl6é_t total_len; /+ Full length of frame. =/

uint8_t reason; /+ Reason packet i1s being sent (one of OFPR_x) =*/
uint8_t table_id; /+ ID of the table that was looked up =*/

uint8_t datal[0]; /+ Ethernet frame, halfway through 32-bit word,

so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof (struct ofp_packet_in, data) ==
sizeof (struct ofp_packet_in) - 2. */

bi

OFP_ASSERT (sizeof (struct ofp_packet_in) == 24);

The confusing part is the comment on the data [] member. This comment is a leftover from OF1.0 openflow.h,in
which the comment was correct: sizeof (struct ofp_packet_in) is 20 in OF1.0 and ffsetof (struct
ofp_packet_in, data) is 18. When OF1.1 was written, the structure members were changed but the com-
ment was carelessly not updated, and the comment became wrong: sizeof (struct ofp_packet_in) and
offsetof(struct ofp_packet_in, data) are both 24 in OF1.1.

That leaves the question of how to implement ofp_packet_in in OF1.1. The OpenFlow reference implementation
for OF1.1 does not include any padding, that is, the first byte of the encapsulated frame immediately follows the
table_id member without a gap. Open vSwitch therefore implements it the same way for compatibility.

For an earlier discussion, please see the thread archived at: https://mailman.stanford.edu/pipermail/openflow-
discuss/2011-August/002604.html

4.1. Design Decisions In Open vSwitch 79

https://mailman.stanford.edu/pipermail/openflow-discuss/2011-August/002604.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-August/002604.html

Open vSwitch Documentation, Release 2.6.0

[*] The quoted definition is directly from OF1.1. Definitions used inside OVS omit the 8-byte o fp_header mem-
bers, so the sizes in this discussion are 8 bytes larger than those declared in OVS header files.

4.1.6 VLAN Matching

The 802.1Q VLAN header causes more trouble than any other 4 bytes in networking. More specifically, three versions
of OpenFlow and Open vSwitch have among them four different ways to match the contents and presence of the

VLAN header. The following table describes how each version works.

Match | NXM OF1.0 OF1.1 OF1.2

[1] 0000/0000 | ?2222/1,22/2 | ?2222/1,22/2 | 0000/0000, ——
[2] 0000/ffff | ££££/0,2?2/? | ££££/0,22/? | 0000/ £f£f£ff, ——
[3] Ixxx/1fff | 0xxx/0,?2?/1 | 0xxx/0,??/1 | 1xxx/ffff, ——
[4] z000/£000 | ???2/1,0y/0 | £fffe/0,0y/0 | 1000/1000, 0y
[5] zxxx/ffff | 0xxx/0,0y/0 | Oxxx/0,0y/0 | 1xxx/ffff, 0y
[6] 0000/0fff | <none> <none> <none>

[7] 0000/£000 | <none> <none> <none>

[8] 0000/efff | <none> <none> <none>

[9] 1001/1001 | <none> <none> 1001/1001, ——
[10] 3000/3000 | <none> <none> <none>

[11] 1000/1000 | <none> fffe/0,?2?2/1 | 1000/1000, ——

where

Match: See the list below.

NXM: xxxx/yyyy means NXM_OF_VLAN_TCI_W with value xxxx and mask yyyy. A mask of 0000 is equiv-
alent to omitting NXM_OF_VLAN_TCTI (_W), a mask of ffff is equivalent to NXM_OF_VLAN_TCT.

OF1.0, OF1.1: wwww/x,yy/z means dl_vlan wwww, OFPFW_DL_VLAN x, dl_vlan_pcp yy, and
OFPFW_DL_VLAN_PCP z. If OFPFW_DL_VLAN or OFPFW_DL_VLAN_PCP is 1, the corresponding field
value is wildcarded, otherwise it is matched. ? means that the given bits are ignored (their conventional values
are 0000/x,00/0 in OF1.0, 0000/x%, 00/1 in OF1.1; x is never ignored). <none> means that the given
match is not supported.

OF1.2: xxxx/yyyy,zz means OXM_OF_VLAN_VID_W with value and mask yyyy, and
OXM_OF_VLAN_PCP (which is not maskable) with value zz. A mask of 0000 is equivalent to omit-
ting OXM_OF_VLAN_VID (_W), a mask of ££ff is equivalent to OXM_OF_VLAN_VID. —— means that
OXM_OF_VLAN_PCP is omitted. <none> means that the given match is not supported.

XXXX

The matches are:
[1]1: Matches any packet, that is, one without an 802.1Q header or with an 802.1Q header with any TCI value.
[2] Matches only packets without an 802.1Q header.

NXM: Any matchwithvlan_tci == Oand (vlan_tci_mask & 0x1000)
one listed in the table.

!= 0 is equivalent to the

OF1.0: The spec doesn’t define behavior if d1_vlan is set to Oxffff and OFPFW_DIL_VLAN_PCP is not
set.

OF1.1: The spec says explicitly to ignore d1_vlan_pcp whendl_vlanissetto Oxffff.

OF1.2: The spec doesn’t say what should happen if vlian_vid == 0 and (vlan_vid_mask &
0x1000) != Obutvlan_vid_mask != 0x1000, butit would be straightforward to also interpret
as [2].

[3] Matches only packets that have an 802.1Q header with VID xxx (and any PCP).

80 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

[4] Matches only packets that have an 802.1Q header with PCP y (and any VID).
NXM: zis (y << 1) | 1.
OF1.0: The spec isn’t very clear, but OVS implements it this way.

OF1.2: Presumably other masks such that (vlan_vid_mask & 0x1fff) == 0x1000 would also work,
but the spec doesn’t define their behavior.

[5]1 Matches only packets that have an 802.1Q header with VID xxx and PCP y.
NXM: zis ((y << 1) | 1).

OF1.2: Presumably other masks such that (vlan_vid_mask & O0x1fff) == Ox1fff
would also work.

[6] Matches packets with no 802.1Q header or with an 802.1Q header with a VID of 0. Only possible with NXM.
[7]1 Matches packets with no 802.1Q header or with an 802.1Q header with a PCP of 0. Only possible with NXM.

[8] Matches packets with no 802.1Q header or with an 802.1Q header with both VID and PCP of 0. Only possible
with NXM.

[9] Matches only packets that have an 802.1Q header with an odd-numbered VID (and any PCP). Only possible
with NXM and OF1.2. (This is just an example; one can match on any desired VID bit pattern.)

[10] Matches only packets that have an 802.1Q header with an odd-numbered PCP (and any VID). Only possible
with NXM. (This is just an example; one can match on any desired VID bit pattern.)

[11] Matches any packet with an 802.1Q header, regardless of VID or PCP.
Additional notes:

OF1.2: The top three bits of OXM_OF_VLAN_VID are fixed to zero, so bits 13, 14, and 15 in the masks listed in the
table may be set to arbitrary values, as long as the corresponding value bits are also zero. The suggested ££ff
mask for [2], [3], and [5] allows a shorter OXM representation (the mask is omitted) than the minimal 1fff
mask.

4.1.7 Flow Cookies

OpenFlow 1.0 and later versions have the concept of a “flow cookie”, which is a 64-bit integer value attached to each
flow. The treatment of the flow cookie has varied greatly across OpenFlow versions, however.

In OpenFlow 1.0:
e OFPFC_ADD set the cookie in the flow that it added.
e OFPFC_MODIFY and OFPFC_MODIFY_STRICT updated the cookie for the flow or flows that it modified.
* OFPST_FLOW messages included the flow cookie.
* OFPT_FLOW_REMOVED messages reported the cookie of the flow that was removed.
OpenFlow 1.1 made the following changes:

e Flow mod operations OFPFC_MODIFY, OFPFC_MODIFY_STRICT, OFPFC_DELETE, and
OFPFC_DELETE_STRICT, plus flow stats requests and aggregate stats requests, gained the ability to
match on flow cookies with an arbitrary mask.

* OFPFC_MODIFY and OFPFC_MODIFY_STRICT were changed to add a new flow, in the case of no match,
only if the flow table modification operation did not match on the cookie field. (In OpenFlow 1.0, modify
operations always added a new flow when there was no match.)

* OFPFC_MODIFY and OFPFC_MODIFY_STRICT no longer updated flow cookies.

4.1. Design Decisions In Open vSwitch 81

Open vSwitch Documentation, Release 2.6.0

OpenFlow 1.2 made the following changes:

e OFPC_MODIFY and OFPFC_MODIFY_STRICT were changed to never add a new flow, regardless of whether
the flow cookie was used for matching.

Open vSwitch support for OpenFlow 1.0 implements the OpenFlow 1.0 behavior with the following extensions:

e An NXM extension field NXM_NX_COOKIE (_W) allows the NXM versions of OFPFC_MODIFY,
OFPFC_MODIFY_STRICT, OFPFC_DELETE, and OFPFC_DELETE_STRICT flow_mod calls, plus flow
stats requests and aggregate stats requests, to match on flow cookies with arbitrary masks. This is much like the
equivalent OpenFlow 1.1 feature.

¢ Like OpenFlow 1.1, OFPC_MODIFY and OFPFC_MODIFY_STRICT add a new flow if there is no match and
the mask is zero (or not given).

e The cookie field in OFPT_FLOW_MOD and NXT_FLOW_MOD messages is used as the cookie
value for OFPFC_ADD commands, as described in OpenFlow 1.0. For OFPFC_MODIFY and
OFPFC_MODIFY_STRICT commands, the cookie field is used as a new cookie for flows that match un-
less it is UINT64_MAX, in which case the flow’s cookie is not updated.

* NXT_PACKET_IN (the Nicira extended version of OFPT_PACKET_IN) reports the cookie of the rule that
generated the packet, or all-1-bits if no rule generated the packet. (Older versions of OVS used all-0-bits instead
of all-1-bits.)

The following table shows the handling of different protocols when receiving OFPFC_MODIFY and
OFPFC_MODIFY_STRICT messages. A mask of O indicates either an explicit mask of zero or an implicit one
by not specifying the NXM_NX_COOKIE (_W) field.

OpenFlow 1.0 | no | yes (add on miss) | (add on miss)
OpenFlow 1.1 | yes | no no yes
OpenFlow 1.2 | yes | no no no
NXM yes | yes* | no yes

* Updates the flow’s cookie unless the cookie field is UINT64_MAX.

4.1.8 Multiple Table Support

OpenFlow 1.0 has only rudimentary support for multiple flow tables. Notably, OpenFlow 1.0 does not allow the
controller to specify the flow table to which a flow is to be added. Open vSwitch adds an extension for this purpose,
which is enabled on a per-OpenFlow connection basis using the NXT_FLOW_MOD_TABLE_ ID message. When the
extension is enabled, the upper 8 bits of the command member in an OFPT_FLOW_MOD or NXT_FLOW_MOD message
designates the table to which a flow is to be added.

The Open vSwitch software switch implementation offers 255 flow tables. On packet ingress, only the first flow table
(table 0) is searched, and the contents of the remaining tables are not considered in any way. Tables other than table 0
only come into play when an NXAST_RESUBMIT_TABLE action specifies another table to search.

Tables 128 and above are reserved for use by the switch itself. Controllers should use only tables O through 127.

4.1.9 oFpPTC_x* Table Configuration

This section covers the history of the OFPTC_ « table configuration bits across OpenFlow versions.
OpenFlow 1.0 flow tables had fixed configurations.

OpenFlow 1.1 enabled controllers to configure behavior upon flow table miss and added the OFPTC_MISS_* con-
stants for that purpose. OFPTC_« did not control anything else but it was nevertheless conceptualized as a set of

82 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

bit-fields instead of an enum. OF1.1 added the OFPT_TABLE_MOD message to set OFPTC_MISS_ « for a flow table
and added the config field to the OFPST_TABLE reply to report the current setting.

OpenFlow 1.2 did not change anything in this regard.

OpenFlow 1.3 switched to another means to changing flow table miss behavior and deprecated OFPTC_MISS_ x with-
out adding any more OFPTC__« constants. This meant that OFPT_TABLE_MOD now had no purpose at all, but OF1.3
kept it around “for backward compatibility with older and newer versions of the specification.” At the same time,
OF1.3 introduced a new message OFPMP_TABLE_FEATURES that included a field conf ig documented as report-
ing the OFPTC_ « values set with OFPT_TABLE_MOD; of course this served no real purpose because no OFPTC_ *
values are defined. OF1.3 did remove the OFPTC_ « field from OFPMP_ TABLE (previously named OFPST_TABLE).

OpenFlow 1.4 defined two new OFPTC_« constants, OFPTC_EVICTION and OFPTC_VACANCY_EVENTS, us-
ing bits that did not overlap with OFPTC_MISS_* even though those bits had not been defined since OF1.2.
OFPT_TABLE_MOD still controlled these settings. The field for OFPTC_ « values in OFPMP_TABLE_FEATURES
was renamed from config to capabilities and documented as reporting the flags that are supported in a
OFPT_TABLE_MOD message. The OFPMP_TABLE_DESC message newly added in OF1.4 reported the OFPTC_ %
setting.

OpenFlow 1.5 did not change anything in this regard.

Table 4.7: Revisions

Open- OFPTC_x flags TABLE_MOD | Statis- TABLE_FEATURES| TABLE_DESC
Flow tics
OF1.0 none no (*)(+) no (¥) nothing (*)(+) no (*)(+)
OF1.1/1.2 | MISS_«* yes yes nothing (+) no (+)
OF1.3 none yes (*) no (¥) config (*) no (*)(+)
OF1.4/1.5 | EVICTION/VACANCY_EVENTE yes no capabilities yes

where:

OpenFlow: The OpenFlow version(s).

OFPTC_ * flags: The OFPTC_ « flags defined in those versions.

TABLE_MOD: Whether OFPT_TABLE_MOD can modify OFPTC_ « flags.
Statistics: Whether OFPST_TABLE/OFPMP_TABLE reports the OFPTC_ « flags.

TABLE_FEATURES: What OFPMP_TABLE_FEATURES reports (if it exists): either the current configuration or the
switch’s capabilities.

TABLE_DESC: Whether OFPMP_TABLE_DESC reports the current configuration.
(*): Nothing to report/change anyway.

(+): No such message.

4.1.10 IPv6

Open vSwitch supports stateless handling of IPv6 packets. Flows can be written to support matching TCP, UDP, and
ICMPv6 headers within an IPv6 packet. Deeper matching of some Neighbor Discovery messages is also supported.

IPv6 was not designed to interact well with middle-boxes. This, combined with Open vSwitch’s stateless nature, have
affected the processing of IPv6 traffic, which is detailed below.

4.1. Design Decisions In Open vSwitch 83

Open vSwitch Documentation, Release 2.6.0

Extension Headers

The base IPv6 header is incredibly simple with the intention of only containing information relevant for routing
packets between two endpoints. IPv6 relies heavily on the use of extension headers to provide any other functionality.
Unfortunately, the extension headers were designed in such a way that it is impossible to move to the next header
(including the layer-4 payload) unless the current header is understood.

Open vSwitch will process the following extension headers and continue to the next header:
* Fragment (see the next section)
¢ AH (Authentication Header)
* Hop-by-Hop Options
* Routing
¢ Destination Options

When a header is encountered that is not in that list, it is considered “terminal”. A terminal header’s IPv6 protocol
value is stored in nw_proto for matching purposes. If a terminal header is TCP, UDP, or ICMPv6, the packet will
be further processed in an attempt to extract layer-4 information.

Fragments

IPv6 requires that every link in the internet have an MTU of 1280 octets or greater (RFC 2460). As such, a terminal
header (as described above in “Extension Headers”) in the first fragment should generally be reachable. In this case,
the terminal header’s IPv6 protocol type is stored in the nw_proto field for matching purposes. If a terminal header
cannot be found in the first fragment (one with a fragment offset of zero), the nw_proto field is set to 0. Subsequent
fragments (those with a non-zero fragment offset) have the nw_proto field set to the IPv6 protocol type for fragments
(44).

Jumbograms

An IPv6 jumbogram (RFC 2675) is a packet containing a payload longer than 65,535 octets. A jumbogram is only
relevant in subnets with a link MTU greater than 65,575 octets, and are not required to be supported on nodes that do
not connect to link with such large MTUs. Currently, Open vSwitch doesn’t process jumbograms.

4.1.11 In-Band Control

Motivation

An OpenFlow switch must establish and maintain a TCP network connection to its controller. There are two basic
ways to categorize the network that this connection traverses: either it is completely separate from the one that the
switch is otherwise controlling, or its path may overlap the network that the switch controls. We call the former case
“out-of-band control”, the latter case “in-band control”.

Out-of-band control has the following benefits:
» Simplicity: Out-of-band control slightly simplifies the switch implementation.
* Reliability: Excessive switch traffic volume cannot interfere with control traffic.
* Integrity: Machines not on the control network cannot impersonate a switch or a controller.
 Confidentiality: Machines not on the control network cannot snoop on control traffic.

In-band control, on the other hand, has the following advantages:

84 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

* No dedicated port: There is no need to dedicate a physical switch port to control, which is important on switches
that have few ports (e.g. wireless routers, low-end embedded platforms).

* No dedicated network: There is no need to build and maintain a separate control network. This is important in
many environments because it reduces proliferation of switches and wiring.

Open vSwitch supports both out-of-band and in-band control. This section describes the principles behind in-band
control. See the description of the Controller table in ovs-vswitchd.conf.db(5) to configure OVS for in-band control.

Principles

The fundamental principle of in-band control is that an OpenFlow switch must recognize and switch control traffic
without involving the OpenFlow controller. All the details of implementing in-band control are special cases of this
principle.

The rationale for this principle is simple. If the switch does not handle in-band control traffic itself, then it will be
caught in a contradiction: it must contact the controller, but it cannot, because only the controller can set up the flows
that are needed to contact the controller.

The following points describe important special cases of this principle.
* In-band control must be implemented regardless of whether the switch is connected.

It is tempting to implement the in-band control rules only when the switch is not connected to the controller,
using the reasoning that the controller should have complete control once it has established a connection with
the switch.

This does not work in practice. Consider the case where the switch is connected to the controller. Occasionally
it can happen that the controller forgets or otherwise needs to obtain the MAC address of the switch. To do so,
the controller sends a broadcast ARP request. A switch that implements the in-band control rules only when it is
disconnected will then send an OFPT_PACKET_ IN message up to the controller. The controller will be unable
to respond, because it does not know the MAC address of the switch. This is a deadlock situation that can only
be resolved by the switch noticing that its connection to the controller has hung and reconnecting.

* In-band control must override flows set up by the controller.

It is reasonable to assume that flows set up by the OpenFlow controller should take precedence over in-band
control, on the basis that the controller should be in charge of the switch.

Again, this does not work in practice. Reasonable controller implementations may set up a “last resort” fallback
rule that wildcards every field and, e.g., sends it up to the controller or discards it. If a controller does that, then
it will isolate itself from the switch.

* The switch must recognize all control traffic.

The fundamental principle of in-band control states, in part, that a switch must recognize control traffic without
involving the OpenFlow controller. More specifically, the switch must recognize all control traffic. “False
negatives”, that is, packets that constitute control traffic but that the switch does not recognize as control traffic,
lead to control traffic storms.

Consider an OpenFlow switch that only recognizes control packets sent to or from that switch. Now suppose
that two switches of this type, named A and B, are connected to ports on an Ethernet hub (not a switch) and that
an OpenFlow controller is connected to a third hub port. In this setup, control traffic sent by switch A will be
seen by switch B, which will send it to the controller as part of an OFPT_PACKET_IN message. Switch A will
then see the OFPT_PACKET_IN message’s packet, re-encapsulate it in another OFPT_PACKET _IN, and send
it to the controller. Switch B will then see that OFPT_PACKET_IN, and so on in an infinite loop.

Incidentally, the consequences of “false positives”, where packets that are not control traffic are nevertheless
recognized as control traffic, are much less severe. The controller will not be able to control their behavior, but
the network will remain in working order. False positives do constitute a security problem.

4.1. Design Decisions In Open vSwitch 85

Open vSwitch Documentation, Release 2.6.0

* The switch should use echo-requests to detect disconnection.

TCP will notice that a connection has hung, but this can take a considerable amount of time. For example, with
default settings the Linux kernel TCP implementation will retransmit for between 13 and 30 minutes, depend-
ing on the connection’s retransmission timeout, according to kernel documentation. This is far too long for a
switch to be disconnected, so an OpenFlow switch should implement its own connection timeout. OpenFlow
OFPT_ECHO_REQUEST messages are the best way to do this, since they test the OpenFlow connection itself.

Implementation

This section describes how Open vSwitch implements in-band control. Correctly implementing in-band control has
proven difficult due to its many subtleties, and has thus gone through many iterations. Please read through and
understand the reasoning behind the chosen rules before making modifications.

Open vSwitch implements in-band control as “hidden” flows, that is, flows that are not visible through OpenFlow,
and at a higher priority than wildcarded flows can be set up through OpenFlow. This is done so that the OpenFlow
controller cannot interfere with them and possibly break connectivity with its switches. It is possible to see all flows,
including in-band ones, with the ovs-appctl “bridge/dump-flows” command.

The Open vSwitch implementation of in-band control can hide traffic to arbitrary “remotes”, where each remote
is one TCP port on one IP address. Currently the remotes are automatically configured as the in-band OpenFlow
controllers plus the OVSDB managers, if any. (The latter is a requirement because OVSDB managers are responsible
for configuring OpenFlow controllers, so if the manager cannot be reached then OpenFlow cannot be reconfigured.)

The following rules (with the OFPP_NORMAL action) are set up on any bridge that has any remotes:
1. DHCP requests sent from the local port.
2. ARP replies to the local port’s MAC address.
3. ARP requests from the local port’s MAC address.

In-band also sets up the following rules for each unique next-hop MAC address for the remotes’ IPs (the “next hop” is
either the remote itself, if it is on a local subnet, or the gateway to reach the remote):

4. ARP replies to the next hop’s MAC address.
5. ARP requests from the next hop’s MAC address.
In-band also sets up the following rules for each unique remote IP address:
6. ARP replies containing the remote’s IP address as a target.
7. ARP requests containing the remote’s IP address as a source.
In-band also sets up the following rules for each unique remote (IP,port) pair:
8. TCP traffic to the remote’s IP and port.
9. TCP traffic from the remote’s IP and port.

The goal of these rules is to be as narrow as possible to allow a switch to join a network and be able to communicate
with the remotes. As mentioned earlier, these rules have higher priority than the controller’s rules, so if they are too
broad, they may prevent the controller from implementing its policy. As such, in-band actively monitors some aspects
of flow and packet processing so that the rules can be made more precise.

In-band control monitors attempts to add flows into the datapath that could interfere with its duties. The datapath only
allows exact match entries, so in-band control is able to be very precise about the flows it prevents. Flows that miss
in the datapath are sent to userspace to be processed, so preventing these flows from being cached in the “fast path”
does not affect correctness. The only type of flow that is currently prevented is one that would prevent DHCP replies
from being seen by the local port. For example, a rule that forwarded all DHCP traffic to the controller would not be
allowed, but one that forwarded to all ports (including the local port) would.

86 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

As mentioned earlier, packets that miss in the datapath are sent to the userspace for processing. The userspace has
its own flow table, the “classifier”, so in-band checks whether any special processing is needed before the classifier is
consulted. If a packet is a DHCP response to a request from the local port, the packet is forwarded to the local port,
regardless of the flow table. Note that this requires L7 processing of DHCP replies to determine whether the ‘chaddr’
field matches the MAC address of the local port.

It is interesting to note that for an L3-based in-band control mechanism, the majority of rules are devoted to ARP
traffic. At first glance, some of these rules appear redundant. However, each serves an important role. First, in order to
determine the MAC address of the remote side (controller or gateway) for other ARP rules, we must allow ARP traffic
for our local port with rules (b) and (c). If we are between a switch and its connection to the remote, we have to allow
the other switch’s ARP traffic to through. This is done with rules (d) and (e), since we do not know the addresses of
the other switches a priori, but do know the remote’s or gateway’s. Finally, if the remote is running in a local guest
VM that is not reached through the local port, the switch that is connected to the VM must allow ARP traffic based on
the remote’s IP address, since it will not know the MAC address of the local port that is sending the traffic or the MAC
address of the remote in the guest VM.

With a few notable exceptions below, in-band should work in most network setups. The following are considered
“supported” in the current implementation:

e Locally Connected. The switch and remote are on the same subnet. This uses rules (a), (b), (¢), (h), and (i).

» Reached through Gateway. The switch and remote are on different subnets and must go through a gateway. This
uses rules (a), (b), (c), (h), and (i).

¢ Between Switch and Remote. This switch is between another switch and the remote, and we want to allow the
other switch’s traffic through. This uses rules (d), (e), (h), and (i). It uses (b) and (c) indirectly in order to know
the MAC address for rules (d) and (e). Note that DHCP for the other switch will not work unless an OpenFlow
controller explicitly lets this switch pass the traffic.

* Between Switch and Gateway. This switch is between another switch and the gateway, and we want to allow
the other switch’s traffic through. This uses the same rules and logic as the “Between Switch and Remote”
configuration described earlier.

* Remote on Local VM. The remote is a guest VM on the system running in-band control. This uses rules (a),
(b), (¢), (h), and (D).

* Remote on Local VM with Different Networks. The remote is a guest VM on the system running in-band
control, but the local port is not used to connect to the remote. For example, an IP address is configured on
ethO of the switch. The remote’s VM is connected through ethl of the switch, but an IP address has not been
configured for that port on the switch. As such, the switch will use ethO to connect to the remote, and ethl’s
rules about the local port will not work. In the example, the switch attached to ethO would use rules (a), (b), (c),
(h), and (i) on eth0. The switch attached to eth1 would use rules (f), (g), (h), and (i).

The following are explicitly not supported by in-band control:

» Specify Remote by Name. Currently, the remote must be identified by IP address. A naive approach would be
to permit all DNS traffic. Unfortunately, this would prevent the controller from defining any policy over DNS.
Since switches that are located behind us need to connect to the remote, in-band cannot simply add a rule that
allows DNS traffic from the local port. The “correct” way to support this is to parse DNS requests to allow all
traffic related to a request for the remote’s name through. Due to the potential security problems and amount of
processing, we decided to hold off for the time-being.

* Differing Remotes for Switches. All switches must know the L3 addresses for all the remotes that other switches
may use, since rules need to be set up to allow traffic related to those remotes through. See rules (f), (g), (h),
and (i).

* Differing Routes for Switches. In order for the switch to allow other switches to connect to a remote through a
gateway, it allows the gateway’s traffic through with rules (d) and (e). If the routes to the remote differ for the
two switches, we will not know the MAC address of the alternate gateway.

4.1. Design Decisions In Open vSwitch 87

Open vSwitch Documentation, Release 2.6.0

4.1.12 Action Reproduction

It seems likely that many controllers, at least at startup, use the OpenFlow “flow statistics” request to obtain existing
flows, then compare the flows’ actions against the actions that they expect to find. Before version 1.8.0, Open vSwitch
always returned exact, byte-for-byte copies of the actions that had been added to the flow table. The current version
of Open vSwitch does not always do this in some exceptional cases. This section lists the exceptions that controller
authors must keep in mind if they compare actual actions against desired actions in a bytewise fashion:

* Open vSwitch zeros padding bytes in action structures, regardless of their values when the flows were added.
* Open vSwitch “normalizes” the instructions in OpenFlow 1.1 (and later) in the following way:

— OVS sorts the instructions into the following order: Apply-Actions, Clear-Actions, Write-Actions, Write-
Metadata, Goto-Table.

— OVS drops Apply-Actions instructions that have empty action lists.
— OVS drops Write-Actions instructions that have empty action sets.

Please report other discrepancies, if you notice any, so that we can fix or document them.

4.1.13 Suggestions

Suggestions to improve Open vSwitch are welcome at discuss @openvswitch.org.

4.2 Open vSwitch Datapath Development Guide

The Open vSwitch kernel module allows flexible userspace control over flow-level packet processing on selected
network devices. It can be used to implement a plain Ethernet switch, network device bonding, VLAN processing,
network access control, flow-based network control, and so on.

The kernel module implements multiple “datapaths” (analogous to bridges), each of which can have multiple “vports”
(analogous to ports within a bridge). Each datapath also has associated with it a “flow table” that userspace populates
with “flows” that map from keys based on packet headers and metadata to sets of actions. The most common action
forwards the packet to another vport; other actions are also implemented.

When a packet arrives on a vport, the kernel module processes it by extracting its flow key and looking it up in the
flow table. If there is a matching flow, it executes the associated actions. If there is no match, it queues the packet to
userspace for processing (as part of its processing, userspace will likely set up a flow to handle further packets of the
same type entirely in-kernel).

4.2.1 Flow Key Compatibility

Network protocols evolve over time. New protocols become important and existing protocols lose their prominence.
For the Open vSwitch kernel module to remain relevant, it must be possible for newer versions to parse additional
protocols as part of the flow key. It might even be desirable, someday, to drop support for parsing protocols that have
become obsolete. Therefore, the Netlink interface to Open vSwitch is designed to allow carefully written userspace
applications to work with any version of the flow key, past or future.

To support this forward and backward compatibility, whenever the kernel module passes a packet to userspace, it also
passes along the flow key that it parsed from the packet. Userspace then extracts its own notion of a flow key from the
packet and compares it against the kernel-provided version:

« If userspace’s notion of the flow key for the packet matches the kernel’s, then nothing special is necessary.

88 Chapter 4. Open vSwitch Deep Dive

mailto:discuss@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

* If the kernel’s flow key includes more fields than the userspace version of the flow key, for example if the kernel
decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then
again nothing special is necessary. Userspace can still set up a flow in the usual way, as long as it uses the
kernel-provided flow key to do it.

« If the userspace flow key includes more fields than the kernel’s, for example if userspace decoded an IPv6 header
but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up
a flow in the kernel. This case is bad for performance because every packet that the kernel considers part of the
flow must go to userspace, but the forwarding behavior is correct. (If userspace can determine that the values of
the extra fields would not affect forwarding behavior, then it could set up a flow anyway.)

How flow keys evolve over time is important to making this work, so the following sections go into detail.

4.2.2 Flow Key Format

A flow key is passed over a Netlink socket as a sequence of Netlink attributes. Some attributes represent packet
metadata, defined as any information about a packet that cannot be extracted from the packet itself, e.g. the vport on
which the packet was received. Most attributes, however, are extracted from headers within the packet, e.g. source
and destination addresses from Ethernet, IP, or TCP headers.

The <linux/openvswitch.h> header file defines the exact format of the flow key attributes. For informal ex-
planatory purposes here, we write them as comma-separated strings, with parentheses indicating arguments and nest-
ing. For example, the following could represent a flow key corresponding to a TCP packet that arrived on vport
1:

in_port(l), eth(src=e0:91:£5:21:d0:b2, dst=00:02:e3:0£:80:a4),
eth_type (0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=17, tos=0,
frag=no), tcp(src=49163, dst=80)

Often we ellipsize arguments not important to the discussion, e.g.:

’in_port(l), eth(...), eth_type(0x0800), ipv4(...), tcp(...)

4.2.3 Wildcarded Flow Key Format

A wildcarded flow is described with two sequences of Netlink attributes passed over the Netlink socket. A flow key,
exactly as described above, and an optional corresponding flow mask.

A wildcarded flow can represent a group of exact match flows. Each 1 bit in the mask specifies an exact match with
the corresponding bit in the flow key. A 0 bit specifies a don’t care bit, which will match either a 1 or 0 bit of an
incoming packet. Using a wildcarded flow can improve the flow set up rate by reducing the number of new flows that
need to be processed by the user space program.

Support for the mask Netlink attribute is optional for both the kernel and user space program. The kernel can ignore
the mask attribute, installing an exact match flow, or reduce the number of don’t care bits in the kernel to less than what
was specified by the user space program. In this case, variations in bits that the kernel does not implement will simply
result in additional flow setups. The kernel module will also work with user space programs that neither support nor
supply flow mask attributes.

Since the kernel may ignore or modify wildcard bits, it can be difficult for the userspace program to know exactly what
matches are installed. There are two possible approaches: reactively install flows as they miss the kernel flow table
(and therefore not attempt to determine wildcard changes at all) or use the kernel’s response messages to determine
the installed wildcards.

When interacting with userspace, the kernel should maintain the match portion of the key exactly as originally installed.
This will provides a handle to identify the flow for all future operations. However, when reporting the mask of an
installed flow, the mask should include any restrictions imposed by the kernel.

4.2. Open vSwitch Datapath Development Guide 89

Open vSwitch Documentation, Release 2.6.0

The behavior when using overlapping wildcarded flows is undefined. It is the responsibility of the user space program
to ensure that any incoming packet can match at most one flow, wildcarded or not. The current implementation
performs best-effort detection of overlapping wildcarded flows and may reject some but not all of them. However, this
behavior may change in future versions.

4.2.4 Unique Flow Identifiers

An alternative to using the original match portion of a key as the handle for flow identification is a unique flow
identifier, or “UFID”. UFIDs are optional for both the kernel and user space program.

User space programs that support UFID are expected to provide it during flow setup in addition to the flow, then refer
to the flow using the UFID for all future operations. The kernel is not required to index flows by the original flow key
if a UFID is specified.

4.2.5 Basic Rule for Evolving Flow Keys

Some care is needed to really maintain forward and backward compatibility for applications that follow the rules listed
under “Flow key compatibility” above.

The basic rule is obvious:

New network protocol support must only supplement existing flow key attributes. It must not change the
meaning of already defined flow key attributes.

This rule does have less-obvious consequences so it is worth working through a few examples. Suppose, for exam-
ple, that the kernel module did not already implement VLAN parsing. Instead, it just interpreted the 802.1Q TPID
(0x8100) as the Ethertype then stopped parsing the packet. The flow key for any packet with an 802.1Q header would
look essentially like this, ignoring metadata:

leth(...), eth_type (0x8100)

Naively, to add VLAN support, it makes sense to add a new “vlan” flow key attribute to contain the VLAN tag, then
continue to decode the encapsulated headers beyond the VLAN tag using the existing field definitions. With this
change, a TCP packet in VLAN 10 would have a flow key much like this:

eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...)

But this change would negatively affect a userspace application that has not been updated to understand the new “vlan”
flow key attribute. The application could, following the flow compatibility rules above, ignore the “vlan” attribute that
it does not understand and therefore assume that the flow contained IP packets. This is a bad assumption (the flow
only contains IP packets if one parses and skips over the 802.1Q header) and it could cause the application’s behavior
to change across kernel versions even though it follows the compatibility rules.

The solution is to use a set of nested attributes. This is, for example, why 802.1Q support uses nested attributes. A
TCP packet in VLAN 10 is actually expressed as:

eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap (eth_type (0x0800),
ip(proto=6, ...), tcp(...)))

Notice how the eth_type, ip, and tcp flow key attributes are nested inside the encap attribute. Thus, an appli-
cation that does not understand the v1an key will not see either of those attributes and therefore will not misinterpret
them. (Also, the outer eth_type is still 0x81 00, not changed to 0x0800)

90 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

4.2.6 Handling Malformed Packets

Don’t drop packets in the kernel for malformed protocol headers, bad checksums, etc. This would prevent userspace
from implementing a simple Ethernet switch that forwards every packet.

Instead, in such a case, include an attribute with “empty”” content. It doesn’t matter if the empty content could be valid
protocol values, as long as those values are rarely seen in practice, because userspace can always forward all packets
with those values to userspace and handle them individually.

For example, consider a packet that contains an IP header that indicates protocol 6 for TCP, but which is truncated just
after the IP header, so that the TCP header is missing. The flow key for this packet would include a tcp attribute with
all-zero src and dst, like this:

eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0)

As another example, consider a packet with an Ethernet type of 0x8100, indicating that a VLAN TCI should follow,
but which is truncated just after the Ethernet type. The flow key for this packet would include an all-zero-bits vlan and
an empty encap attribute, like this:

’eth(...), eth_type (0x8100), vlan(0), encap()

Unlike a TCP packet with source and destination ports 0, an all-zero-bits VLAN TCI is not that rare, so the CFI bit
(aka VLAN_TAG_PRESENT inside the kernel) is ordinarily set in a vlan attribute expressly to allow this situation to
be distinguished. Thus, the flow key in this second example unambiguously indicates a missing or malformed VLAN
TCIL

4.2.7 Other Rules

The other rules for flow keys are much less subtle:
* Duplicate attributes are not allowed at a given nesting level.
* Ordering of attributes is not significant.

* When the kernel sends a given flow key to userspace, it always composes it the same way. This allows userspace
to hash and compare entire flow keys that it may not be able to fully interpret.

4.2.8 Coding Rules

Implement the headers and codes for compatibility with older kernel in 1inux/compat/ directory. All public
functions should be exported using EXPORT_SYMBOL macro. Public function replacing the same-named kernel
function should be prefixed with rpl_. Otherwise, the function should be prefixed with ovs_. For special case
when it is not possible to follow this rule (e.g., the pskb_expand_head () function), the function name must
be added to linux/compat/build-aux/export—-check-whitelist, otherwise, the compilation check
check-export-symbol will fail.

4.3 Integration Guide for Centralized Control

This document describes how to integrate Open vSwitch onto a new platform to expose the state of the switch and
attached devices for centralized control. (If you are looking to port the switching components of Open vSwitch to a
new platform, refer to Porting Open vSwitch to New Software or Hardware) The focus of this guide is on hypervisors,
but many of the interfaces are useful for hardware switches, as well. The XenServer integration is the most mature
implementation, so most of the examples are drawn from it.

4.3. Integration Guide for Centralized Control 91

Open vSwitch Documentation, Release 2.6.0

The externally visible interface to this integration is platform-agnostic. We encourage anyone who integrates Open
vSwitch to use the same interface, because keeping a uniform interface means that controllers require less customiza-
tion for individual platforms (and perhaps no customization at all).

Integration centers around the Open vSwitch database and mostly involves the external_ids columns in several of
the tables. These columns are not interpreted by Open vSwitch itself. Instead, they provide information to a controller
that permits it to associate a database record with a more meaningful entity. In contrast, the ot her_config column
is used to configure behavior of the switch. The main job of the integrator, then, is to ensure that these values are
correctly populated and maintained.

An integrator sets the columns in the database by talking to the ovsdb-server daemon. A few of the
columns can be set during startup by calling the ovs-ctl tool from inside the startup scripts. The
xenserver/etc_init.d_openvswitch script provides examples of its use, and the ovs-ctl(8) manpage con-
tains complete documentation. At runtime, ovs-vsctl can be be used to set columns in the database. The script
xenserver/etc_xensource_scripts_vif contains examples of its use, and ovs-vsctl(8) manpage contains
complete documentation.

Python and C bindings to the database are provided if deeper integration with a program are needed. The
XenServer ovs-xapi-sync daemon (xenserver/usr_share_openvswitch_scripts_ovs—-xapi-sync)
provides an example of using the Python bindings. More information on the python bindings is available at
python/ovs/db/idl.py. Information on the C bindings is available at 1ib/ovsdb-idl.h.

The following diagram shows how integration scripts fit into the Open vSwitch architecture:

| Integration scripts |
| (ex: ovs—xapi-sync) |

Diagram

e +

| Controller Cluster +

B +

|
|

e +
| | |
[e o + |
| | | |
| o + o + |
| | ovsdb-server |- | ovs—-vswitchd | |
| B + o + |
| | |
| A + |
| |
| |
| A + |
| Userspace |
l--—- === |
| | Kernel |
| | |
[e +
| | OVS Kernel Module | |
[e +
Bttt Rt +

A description of the most relevant fields for integration follows. By setting these values, controllers are able to
understand the network and manage it more dynamically and precisely. For more details about the database and each
individual column, please refer to the ovs-vswitchd.conf.db(5) manpage.

92 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

4.3.1 Open_vSwitch table

The Open_vSwitch table describes the switch as a whole. The system_type and system_version columns
identify the platform to the controller. The external_ ids:system-id key uniquely identifies the physical host.
In XenServer, the system-id will likely be the same as the UUID returned by xe host-1ist. This key allows
controllers to distinguish between multiple hypervisors.

Most of this configuration can be done with the ovs-ctl command at startup. For example:

$ ovs-ctl —--system-type="XenServer" --system-version="6.0.0-50762p" \
-—-system-id="${UUID}" "${other_options}" start

Alternatively, the ovs-vsctl command may be used to set a particular value at runtime. For example:

‘$ ovs-vsctl set open_vswitch . external-ids:system-id='"${UUID}"'

The other_config:enable-statistics key may be set to true to have OVS populate the database with
statistics (e.g., number of CPUs, memory, system load) for the controller’s use.

4.3.2 Bridge table

The Bridge table describes individual bridges within an Open vSwitch instance. The external-ids:bridge-id
key uniquely identifies a particular bridge. In XenServer, this will likely be the same as the UUID returned by xe
network—-1ist for that particular bridge.

For example, to set the identifier for bridge “br0”, the following command can be used:

‘$ ovs-vsctl set Bridge br0 external-ids:bridge-id='"${UUID}"'

The MAC address of the bridge may be manually configured by setting it with the other_config:hwaddr key.
For example:

‘$ ovs-vsctl set Bridge br0 other_config:hwaddr="12:34:56:78:90:ab"

4.3.3 Interface table

The Interface table describes an interface under the control of Open vSwitch. The external_ids column contains
keys that are used to provide additional information about the interface:

attached-mac

This field contains the MAC address of the device attached to the interface. On a hypervisor, this is
the MAC address of the interface as seen inside a VM. It does not necessarily correlate to the host-
side MAC address. For example, on XenServer, the MAC address on a VIF in the hypervisor is always
FE:FF:FF:FF:FF:FF, but inside the VM a normal MAC address is seen.

iface-id

This field uniquely identifies the interface. In hypervisors, this allows the controller to follow VM network
interfaces as VMs migrate. A well-chosen identifier should also allow an administrator or a controller to
associate the interface with the corresponding object in the VM management system. For example, the
Open vSwitch integration with XenServer by default uses the XenServer assigned UUID for a VIF record
as the iface-id.

iface-status

4.3. Integration Guide for Centralized Control 93

Open vSwitch Documentation, Release 2.6.0

In a hypervisor, there are situations where there are multiple interface choices for a single virtual ethernet
interface inside a VM. Valid values are “active” and “inactive”. A complete description is available in the
ovs-vswitchd.conf.db(5) manpage.

vm-id

This field uniquely identifies the VM to which this interface belongs. A single VM may have multiple
interfaces attached to it.

As in the previous tables, the ovs-vsctl command may be used to configure the values. For example, to set the
iface-id on eth0, the following command can be used:

‘$ ovs—-vsctl set Interface eth0 external-ids:iface-id='"${UUID}"'

4.3.4 HA for OVN DB servers using pacemaker

The ovsdb servers can work in either active or backup mode. In backup mode, db server will be connected to an active
server and replicate the active servers contents. At all times, the data can be transacted only from the active server.
When the active server dies for some reason, entire OVN operations will be stalled.

Pacemaker is a cluster resource manager which can manage a defined set of resource across a set of clustered nodes.
Pacemaker manages the resource with the help of the resource agents. One among the resource agent is OCF

OCF is nothing but a shell script which accepts a set of actions and returns an appropriate status code.

With the help of the OCF resource agent ovn/utilities/ovndb-servers.ocf, one can defined a resource for the pacemaker
such that pacemaker will always maintain one running active server at any time.

After creating a pacemaker cluster, use the following commands to create one active and multiple backup servers for
OVN databases:

$ pcs resource create ovndb_servers ocf:ovn:ovndb-servers \
master_ip=x.x.xX.x \
ovn_ctl=<path of the ovn-ctl script> \
op monitor interval="10s" \
op monitor role=Master interval="15s"
$ pcs resource master ovndb_servers-master ovndb_servers \
meta notify="true"

The master_ip and ovn_ctl are the parameters that will be used by the OCF script. ovn_ctl is optional, if not given,
it assumes a default value of /usr/share/openvswitch/scripts/ovn-ctl. master_ip is the IP address on which the active
database server is expected to be listening.

Whenever the active server dies, pacemaker is responsible to promote one of the backup servers to be active. Both
ovn-controller and ovn-northd needs the ip-address at which the active server is listening. With pacemaker changing
the node at which the active server is run, it is not efficient to instruct all the ovn-controllers and the ovn-northd to
listen to the latest active server’s ip-address.

This problem can be solved by using a native ocf resource agent ocf:heartbeat :IPaddr2. The IPAddr2 re-
source agent is just a resource with an ip-address. When we colocate this resource with the active server, pacemaker
will enable the active server to be connected with a single ip-address all the time. This is the ip-address that needs to
be given as the parameter while creating the ovndb_servers resource.

Use the following command to create the IPAddr2 resource and colocate it with the active server:

$ pcs resource create VirtuallIP ocf:heartbeat:IPaddr2 ip=x.x.x.x \
op monitor interval=30s

$ pcs constraint order promote ovndb_servers-master then VirtuallIP

$ pcs constraint colocation add VirtualIP with master ovndb_servers-master \
score=INFINITY

94 Chapter 4. Open vSwitch Deep Dive

http://clusterlabs.org/pacemaker.html
http://www.linux-ha.org/wiki/OCF_Resource_Agents

Open vSwitch Documentation, Release 2.6.0

4.4 Porting Open vSwitch to New Software or Hardware

Open vSwitch (OVS) is intended to be easily ported to new software and hardware platforms. This document describes
the types of changes that are most likely to be necessary in porting OVS to Unix-like platforms. (Porting OVS to other
kinds of platforms is likely to be more difficult.)

4.4.1 Vocabulary

For historical reasons, different words are used for essentially the same concept in different areas of the Open vSwitch
source tree. Here is a concordance, indexed by the area of the source tree:

datapath/ vport -
vswitchd/ iface port
ofproto/ port bundle
ofproto/bond.c slave bond
lib/lacp.c slave lacp
lib/netdev.c netdev -
database Interface Port

4.4.2 Open vSwitch Architectural Overview

The following diagram shows the very high-level architecture of Open vSwitch from a porter’s perspective.

e +

| ovs—-vswitchd | <==>ovsdb-server
o +

| ofproto |<-=>OpenFlow controllers
+——— -t +

| netdev | | ofprotol

Fm————— + |provider|

| netdev | +-——————- +

|provider|

+——— +

Some of the components are generic. Modulo bugs or inadequacies, these components should not need to be modified
as part of a port:

ovs-vswitchd The main Open vSwitch userspace program, in vswitchd/. It reads the desired Open vSwitch configu-
ration from the ovsdb-server program over an IPC channel and passes this configuration down to the “ofproto”
library. It also passes certain status and statistical information from ofproto back into the database.

ofproto The Open vSwitch library, in ofproto/, that implements an OpenFlow switch. It talks to OpenFlow controllers
over the network and to switch hardware or software through an “ofproto provider”, explained further below.

netdev The Open vSwitch library, in lib/netdev.c, that abstracts interacting with network devices, that is, Ethernet
interfaces. The netdev library is a thin layer over “netdev provider” code, explained further below.

The other components may need attention during a port. You will almost certainly have to implement a “netdev
provider”. Depending on the type of port you are doing and the desired performance, you may also have to implement
an “ofproto provider” or a lower-level component called a “dpif” provider.

The following sections talk about these components in more detail.

4.4. Porting Open vSwitch to New Software or Hardware 95

Open vSwitch Documentation, Release 2.6.0

4.4.3 Writing a netdev Provider

A “netdev provider” implements an operating system and hardware specific interface to “network devices”, e.g. ethO
on Linux. Open vSwitch must be able to open each port on a switch as a netdev, so you will need to implement a
“netdev provider” that works with your switch hardware and software.

struct netdev_class,inlib/netdev-provider.h, defines the interfaces required to implement a netdev.
That structure contains many function pointers, each of which has a comment that is meant to describe its behavior in
detail. If the requirements are unclear, report this as a bug.

The netdev interface can be divided into a few rough categories:

* Functions required to properly implement OpenFlow features. For example, OpenFlow requires the ability to
report the Ethernet hardware address of a port. These functions must be implemented for minimally correct
operation.

* Functions required to implement optional Open vSwitch features. For example, the Open vSwitch support for
in-band control requires netdev support for inspecting the TCP/IP stack’s ARP table. These functions must be
implemented if the corresponding OVS features are to work, but may be omitted initially.

* Functions needed in some implementations but not in others. For example, most kinds of ports (see below) do
not need functionality to receive packets from a network device.

The existing netdev implementations may serve as useful examples during a port:

¢ lib/netdev-linux.c implements netdev functionality for Linux network devices, using Linux kernel calls. It may
be a good place to start for full-featured netdev implementations.

* lib/netdev-vport.c provides support for “virtual ports” implemented by the Open vSwitch datapath module for
the Linux kernel. This may serve as a model for minimal netdev implementations.

* lib/netdev-dummy.c is a fake netdev implementation useful only for testing.

4.4.4 Porting Strategies

After a netdev provider has been implemented for a system’s network devices, you may choose among three basic
porting strategies.

The lowest-effort strategy is to use the “userspace switch” implementation built into Open vSwitch. This ought to
work, without writing any more code, as long as the netdev provider that you implemented supports receiving packets.
It yields poor performance, however, because every packet passes through the ovs-vswitchd process. Refer to Open
vSwitch without Kernel Support for instructions on how to configure a userspace switch.

If the userspace switch is not the right choice for your port, then you will have to write more code. You may implement
either an “ofproto provider” or a “dpif provider”. Which you should choose depends on a few different factors:

* Only an ofproto provider can take full advantage of hardware with built-in support for wildcards (e.g. an ACL
table or a TCAM).

A dpif provider can take advantage of the Open vSwitch built-in implementations of bonding, LACP, 802.1ag,
802.1Q VLAN:Ss, and other features. An ofproto provider has to provide its own implementations, if the hardware
can support them at all.

e A dpif provider is usually easier to implement, but most appropriate for software switching. It “explodes”
wildcard rules into exact-match entries (with an optional wildcard mask). This allows fast hash lookups in
software, but makes inefficient use of TCAMs in hardware that support wildcarding.

The following sections describe how to implement each kind of port.

96 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

4.4.5 ofproto Providers

An “ofproto provider” is what ofproto uses to directly monitor and control an OpenFlow-capable switch. struct
ofproto_class,inofproto/ofproto-provider.h, defines the interfaces to implement an ofproto provider
for new hardware or software. That structure contains many function pointers, each of which has a comment that is
meant to describe its behavior in detail. If the requirements are unclear, report this as a bug.

The ofproto provider interface is preliminary. Let us know if it seems unsuitable for your purpose. We will try to
improve it.

4.4.6 Writing a dpif Provider

Open vSwitch has a built-in ofproto provider named “ofproto-dpif”, which is built on top of a library for manipulating
datapaths, called “dpif”. A “datapath” is a simple flow table, one that is only required to support exact-match flows,
that is, flows without wildcards. When a packet arrives on a network device, the datapath looks for it in this table.
If there is a match, then it performs the associated actions. If there is no match, the datapath passes the packet up to
ofproto-dpif, which maintains the full OpenFlow flow table. If the packet matches in this flow table, then ofproto-dpif
executes its actions and inserts a new entry into the dpif flow table. (Otherwise, ofproto-dpif passes the packet up to
ofproto to send the packet to the OpenFlow controller, if one is configured.)

When calculating the dpif flow, ofproto-dpif generates an exact-match flow that describes the missed packet. It makes
an effort to figure out what fields can be wildcarded based on the switch’s configuration and OpenFlow flow table. The
dpif is free to ignore the suggested wildcards and only support the exact-match entry. However, if the dpif supports
wildcarding, then it can use the masks to match multiple flows with fewer entries and potentially significantly reduce
the number of flow misses handled by ofproto-dpif.

The “dpif” library in turn delegates much of its functionality to a “dpif provider”. The following diagram shows how
dpif providers fit into the Open vSwitch architecture:

Architecure
| o +
| | ovs—-vswitchd | <==>ovsdb-server
| o +
| | ofproto |<-=>OpenFlow controllers
| fo—— - R +
| | netdev | |ofproto—| |
userspace | o + | dpif | |
\ | netdev | +-——————- + |
| |provider| | dpif | |
\ |t + |
| | | dpif | | implementation of
| | |provider| | ofproto provider
l_ I Rl I Bt o |
[I |
R et R Rl I Bt o |
\ | |datapath| |
kernel | | to———— + |
\ | \
l_ A= [+
I
physical
NIC

struct dpif_class,in lib/dpif-provider.h, defines the interfaces required to implement a dpif provider for
new hardware or software. That structure contains many function pointers, each of which has a comment that is meant

4.4. Porting Open vSwitch to New Software or Hardware 97

Open vSwitch Documentation, Release 2.6.0

to describe its behavior in detail. If the requirements are unclear, report this as a bug.
There are two existing dpif implementations that may serve as useful examples during a port:

* lib/dpif-netlink.c is a Linux-specific dpif implementation that talks to an Open vSwitch-specific kernel module
(whose sources are in the “datapath” directory). The kernel module performs all of the switching work, passing
packets that do not match any flow table entry up to userspace. This dpif implementation is essentially a wrapper
around calls into the kernel module.

* lib/dpif-netdev.c is a generic dpif implementation that performs all switching internally. This is how the Open
vSwitch userspace switch is implemented.

4.4.7 Miscellaneous Notes

Open vSwitch source code uses uint16_t,uint32_t,and uint 64_t as fixed-width types in host byte order, and
ovs_belb6, ovs_be32, and ovs_be64 as fixed-width types in network byte order. Each of the latter is equivalent
to the one of the former, but the difference in name makes the intended use obvious.

The default “fail-mode” for Open vSwitch bridges is “standalone”, meaning that, when the OpenFlow controllers can-
not be contacted, Open vSwitch acts as a regular MAC-learning switch. This works well in virtualization environments
where there is normally just one uplink (either a single physical interface or a bond). In a more general environment,
it can create loops. So, if you are porting to a general-purpose switch platform, you should consider changing the
default “fail-mode” to “secure”, which does not behave this way. See documentation for the “fail-mode” column in
the Bridge table in ovs-vswitchd.conf.db(5) for more information.

lib/entropy.c assumes that it can obtain high-quality random number seeds at startup by reading from
/dev/urandom. You will need to modify it if this is not true on your platform.

vswitchd/system-stats.c only knows how to obtain some statistics on Linux. Optionally you may implement
them for your platform as well.

4.4.8 Why OVS Does Not Support Hybrid Providers

The porting strategies section above describes the “ofproto provider” and “dpif provider” porting strategies. Only an
ofproto provider can take advantage of hardware TCAM support, and only a dpif provider can take advantage of the
OVS built-in implementations of various features. It is therefore tempting to suggest a hybrid approach that shares the
advantages of both strategies.

However, Open vSwitch does not support a hybrid approach. Doing so may be possible, with a significant amount of
extra development work, but it does not yet seem worthwhile, for the reasons explained below.

First, user surprise is likely when a switch supports a feature only with a high performance penalty. For example,
one user questioned why adding a particular OpenFlow action to a flow caused a 1,058x slowdown on a hardware
OpenFlow implementation '. The action required the flow to be implemented in software.

Given that implementing a flow in software on the slow management CPU of a hardware switch causes a major
slowdown, software-implemented flows would only make sense for very low-volume traffic. But many of the features
built into the OVS software switch implementation would need to apply to every flow to be useful. There is no value,
for example, in applying bonding or 802.1Q VLAN support only to low-volume traffic.

Besides supporting features of OpenFlow actions, a hybrid approach could also support forms of matching not sup-
ported by particular switching hardware, by sending all packets that might match a rule to software. But again this can
cause an unacceptable slowdown by forcing bulk traffic through software in the hardware switch’s slow management

I Aaron Rosen, “Modify packet fields extremely slow”, openflow-discuss mailing list, June 26, 2011, archived at

https://mailman.stanford.edu/pipermail/openflow-discuss/201 1-June/002386.html.

98 Chapter 4. Open vSwitch Deep Dive

https://mailman.stanford.edu/pipermail/openflow-discuss/2011-June/002386.html

Open vSwitch Documentation, Release 2.6.0

CPU. Consider, for example, a hardware switch that can match on the IPv6 Ethernet type but not on fields in IPv6 head-
ers. An OpenFlow table that matched on the IPv6 Ethernet type would perform well, but adding a rule that matched
only UDPv6 would force every IPv6 packet to software, slowing down not just UDPv6 but all IPv6 processing.

4.4.9 Questions

Direct porting questions to dev@openvswitch.org. We will try to use questions to improve this porting guide.

4.5 OpenFlow Support in Open vSwitch

Open vSwitch support for OpenFlow 1.1 and beyond is a work in progress. This file describes the work still to be
done.

4.5.1 The Plan

OpenFlow version support is not a build-time option. A single build of Open vSwitch must be able to handle all
supported versions of OpenFlow. Ideally, even at runtime it should be able to support all protocol versions at the same
time on different OpenFlow bridges (and perhaps even on the same bridge).

At the same time, it would be a shame to litter the core of the OVS code with lots of ugly code concerned with the
details of various OpenFlow protocol versions.

The primary approach to compatibility is to abstract most of the details of the differences from the core code, by
adding a protocol layer that translates between OF1.x and a slightly higher-level abstract representation. The core of
this approach is the many struct ofputil_* structuresin include/openvswitch/ofp-util.h.

As a consequence of this approach, OVS cannot use OpenFlow protocol definitions that closely resemble those
in the OpenFlow specification, because openflow.h in different versions of the OpenFlow specification defines
the same identifier with different values. Instead, openflow—common.h contains definitions that are common to
all the specifications and separate protocol version-specific headers contain protocol-specific definitions renamed so
as not to conflict, e.g. OFPAT10_ENQUEUE and OFPAT11_ENQUEUE for the OpenFlow 1.0 and 1.1 values for
OFPAT_ENQUEUE. Generally, in cases of conflict, the protocol layer will define a more abstract OFPUTIL_« or
struct ofputil_ *.

Here are the current approaches in a few tricky areas:
* Port numbering.

OpenFlow 1.0 has 16-bit port numbers and later OpenFlow versions have 32-bit port numbers. For now, OVS
support for later protocol versions requires all port numbers to fall into the 16-bit range, translating the reserved
OFPP_ x port numbers.

e Actions.

OpenFlow 1.0 and later versions have very different ideas of actions. OVS reconciles by translating all the
versions’ actions (and instructions) to and from a common internal representation.

4.5.2 OpenFlow 1.1

The list of remaining work items for OpenFlow 1.1 is below. It is probably incomplete.
* Match and set double-tagged VLANs (QinQ).

This requires kernel work for reasonable performance.

4.5. OpenFlow Support in Open vSwitch 99

mailto:dev@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

4.5

Ope

(optional for OF1.1+)
* VLANS tagged with 88a8 Ethertype.
This requires kernel work for reasonable performance.

(required for OF1.1+)

.3 OpenFlow 1.2

nFlow 1.2 support requires OpenFlow 1.1 as a prerequisite. All the additional work specific to Openflow 1.2 are

complete. (This is based on the change log at the end of the OF1.2 spec. I didn’t compare the specs carefully yet.)

4.5

Ope

.4 OpenFlow 1.3

nFlow 1.3 support requires OpenFlow 1.2 as a prerequisite, plus the following additional work. (This is based on

the change log at the end of the OF1.3 spec, reusing most of the section titles directly. I didn’t compare the specs

care

fully yet.)

* Add support for multipart requests.
Currently we always report OFPBRC_MULTIPART_BUFFER_OVERFLOW.
(optional for OF1.3+)

» IPv6 extension header handling support.

Fully implementing this requires kernel support. This likely will take some careful and probably time-
consuming design work. The actual coding, once that is all done, is probably 2 or 3 days work.

(optional for OF1.3+)
¢ Per-flow meters.

OpenFlow protocol support is now implemented. Support for the special OFPM_SLOWPATH and
OFPM_CONTROLLER meters is missing. Support for the software switch is under review.

(optional for OF1.3+)
* Auxiliary connections.

An implementation in generic code might be a week’s worth of work. The value of an implementation in
generic code is questionable, though, since much of the benefit of axuiliary connections is supposed to be to
take advantage of hardware support. (We could make the kernel module somehow send packets across the
auxiliary connections directly, for some kind of “hardware” support, if we judged it useful enough.)

(optional for OF1.3+)
 Provider Backbone Bridge tagging.
I don’t plan to implement this (but we’d accept an implementation).
(optional for OF1.3+)
* On-demand flow counters.
I think this might be a real optimization in some cases for the software switch.

(optional for OF1.3+)

100

Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

4.5.5 OpenFlow 1.4 & ONF Extensions for 1.3.X Pack1

The following features are both defined as a set of ONF Extensions for 1.3 and integrated in 1.4.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter mechanism with the ONF Experi-
menter ID.

When defined integrated in 1.4, the feature use the standard OpenFlow structures (for example defined in openflow-
1.4.h).

The two definitions for each feature are independent and can exist in parallel in OVS.

* Flow entry notifications
This seems to be modelled after OVS’s NXST_FLOW_MONITOR. (Simon Horman is working on this.)
(EXT-187) (optional for OF1.4+)

* Role Status
Already implemented as a 1.4 feature.
(EXT-191)
(required for OF1.4+)

* Flow entry eviction

OVS has flow eviction functionality. table_mod OFPTC_EVICTION, flow_mod ’importance’, and
table_desc ofp_table_mod_prop_eviction need to be implemented.

(EXT-192-¢)

(optional for OF1.4+)
* Vacancy events

(EXT-192-v)

(optional for OF1.4+)
* Bundle

Transactional modification. OpenFlow 1.4 requires to support £1ow_mods and port_mods in a bundle if
bundle is supported. (Not related to OVS’s ‘ofbundle’ stuff.)

Implemented as an OpenFlow 1.4 feature. Only flow_mods and port_mods are supported in a bundle. If the
bundle includes port mods, it may not specify the OFPBF_ATOMIC flag. Nevertheless, port mods and flow
mods in a bundle are always applied in order and consecutive flow mods between port mods are made available
to lookups atomically.

(EXT-230)
(optional for OF1.4+)
 Table synchronisation
Probably not so useful to the software switch.
(EXT-232)
(optional for OF1.4+)
* Group and Meter change notifications
(EXT-235)
(optional for OF1.4+)

4.5. OpenFlow Support in Open vSwitch 101

Open vSwitch Documentation, Release 2.6.0

* Bad flow entry priority error
Probably not so useful to the software switch.
(EXT-236)
(optional for OF1.4+)
 Set async config error
(EXT-237)
(optional for OF1.4+)
* PBB UCA header field
See comment on Provider Backbone Bridge in section about OpenFlow 1.3.
(EXT-256)
(optional for OF1.4+)
* Multipart timeout error
(EXT-264)
(required for OF1.4+)

4.5.6 OpenFlow 1.4 only

Those features are those only available in OpenFlow 1.4, other OpenFlow 1.4 features are listed in the previous section.
* More extensible wire protocol
Many on-wire structures got TLVs.
All required features are now supported. Remaining optional: table desc, table-status
(EXT-262)
(required for OF1.4+)
* More descriptive reasons for packet-in

Distinguish OFPR_APPLY_ACTION, OFPR_ACTION_SET, OFPR_GROUP, OFPR_PACKET_OUT.
NO_MATCH was renamed to OFPR_TABLE_MISS. (OFPR_ACTION_SET and OFPR_GROUP are now
supported)

(EXT-136)

(required for OF1.4+)
* Optical port properties

(EXT-154)

(optional for OF1.4+)

4.5.7 OpenFlow 1.5 & ONF Extensions for 1.3.X Pack2

The following features are both defined as a set of ONF Extensions for 1.3 and integrated in 1.5. Note that this list is
not definitive as those are not yet published.

102 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

When defined as an ONF Extension for 1.3, the feature is using the Experimenter mechanism with the ONF Experi-
menter ID. When defined integrated in 1.5, the feature use the standard OpenFlow structures (for example defined in
openflow-1.5.h).

The two definitions for each feature are independent and can exist in parallel in OVS.
* Time scheduled bundles
(EXT-340)
(optional for OF1.5+)

4.5.8 OpenFlow 1.5 only
Those features are those only available in OpenFlow 1.5, other OpenFlow 1.5 features are listed in the previous section.
Note that this list is not definitive as OpenFlow 1.5 is not yet published.

» Egress Tables
(EXT-306)

(optional for OF1.5+)

* Packet Type aware pipeline
Prototype for OVS was done during specification.
(EXT-112)

(optional for OF1.5+)

 Extensible Flow Entry Statistics
(EXT-334)

(required for OF1.5+)

* Flow Entry Statistics Trigger
(EXT-335)

(optional for OF1.5+)

* Controller connection status
Prototype for OVS was done during specification.
(EXT-454)

(optional for OF1.5+)

* Meter action
(EXT-379)

(required for OF1.5+ if metering is supported)

* Enable setting all pipeline fields in packet-out
Prototype for OVS was done during specification.
(EXT-427)

(required for OF1.5+)

4.5. OpenFlow Support in Open vSwitch 103

Open vSwitch Documentation, Release 2.6.0

* Port properties for pipeline fields
Prototype for OVS was done during specification.
(EXT-388)
(optional for OF1.5+)

* Port property for recirculation
Prototype for OVS was done during specification.
(EXT-399)
(optional for OF1.5+)

4.5.9 General

 ovs-ofctl(8) often lists as Nicira extensions features that later OpenFlow versions support in standard ways.

4.5.10 How to contribute
If you plan to contribute code for a feature, please let everyone know on ovs-dev before you start work. This will help
avoid duplicating work.
Consider the following:
* Testing.
Please test your code.
¢ Unit tests.
Consider writing some. The tests directory has many examples that you can use as a starting point.
* ovs-ofctl.
If you add a feature that is useful for some ovs-ofctl command then you should add support for it there.
¢ Documentation.

If you add a user-visible feature, then you should document it in the appropriate manpage and mention it in
NEWS as well.

Refer to Contributing to Open vSwitch for more information.

4.6 Bonding

Bonding allows two or more interfaces (the “slaves”) to share network traffic. From a high-level point of view, bonded
interfaces act like a single port, but they have the bandwidth of multiple network devices, e.g. two 1 GB physical
interfaces act like a single 2 GB interface. Bonds also increase robustness: the bonded port does not go down as long
as at least one of its slaves is up.

In vswitchd, a bond always has at least two slaves (and may have more). If a configuration error, etc. would cause a
bond to have only one slave, the port becomes an ordinary port, not a bonded port, and none of the special features of
bonded ports described in this section apply.

There are many forms of bonding of which ovs-vswitchd implements only a few. The most complex bond ovs-vswitchd
implements is called “source load balancing” or SLB bonding. SLB bonding divides traffic among the slaves based on

104 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

the Ethernet source address. This is useful only if the traffic over the bond has multiple Ethernet source addresses, for
example if network traffic from multiple VMs are multiplexed over the bond.

Note: Most of the ovs-vswitchd implementation is in vswitchd/bridge. c, so code references below should be
assumed to refer to that file except as otherwise specified.

4.6.1 Enabling and Disabling Slaves

When a bond is created, a slave is initially enabled or disabled based on whether carrier is detected on the NIC (see
iface_create ()). After that, a slave is disabled if its carrier goes down for a period of time longer than the down-
delay, and it is enabled if carrier comes up for longer than the updelay (see bond_link_status_update ()).
There is one exception where the updelay is skipped: if no slaves at all are currently enabled, then the first slave on
which carrier comes up is enabled immediately.

The updelay should be set to a time longer than the STP forwarding delay of the physical switch to which the bond
port is connected (if STP is enabled on that switch). Otherwise, the slave will be enabled, and load may be shifted to
it, before the physical switch starts forwarding packets on that port, which can cause some data to be “blackholed” for
a time. The exception for a single enabled slave does not cause any problem in this regard because when no slaves are
enabled all output packets are blackholed anyway.

When a slave becomes disabled, the vswitch immediately chooses a new output port for traffic that was destined for
that slave (see bond_enable_slave ()). It also sends a “gratuitous learning packet”, specifically a RARP, on the
bond port (on the newly chosen slave) for each MAC address that the vswitch has learned on a port other than the
bond (see bond_send_learning_packets ()), to teach the physical switch that the new slave should be used
in place of the one that is now disabled. (This behavior probably makes sense only for a vswitch that has only one port
(the bond) connected to a physical switch; vswitchd should probably provide a way to disable or configure it in other
scenarios.)

4.6.2 Bond Packet Input

Bonding accepts unicast packets on any bond slave. This can occasionally cause packet duplication for the first few
packets sent to a given MAC, if the physical switch attached to the bond is flooding packets to that MAC because it
has not yet learned the correct slave for that MAC.

Bonding only accepts multicast (and broadcast) packets on a single bond slave (the “active slave™) at any given time.
Multicast packets received on other slaves are dropped. Otherwise, every multicast packet would be duplicated, once
for every bond slave, because the physical switch attached to the bond will flood those packets.

Bonding also drops received packets when the vswitch has learned that the packet’s MAC is on a port other than the
bond port itself. This is because it is likely that the vswitch itself sent the packet out the bond port on a different
slave and is now receiving the packet back. This occurs when the packet is multicast or the physical switch has not
yet learned the MAC and is flooding it. However, the vswitch makes an exception to this rule for broadcast ARP
replies, which indicate that the MAC has moved to another switch, probably due to VM migration. (ARP replies are
normally unicast, so this exception does not match normal ARP replies. It will match the learning packets sent on
bond fail-over.)

The active slave 1is simply the first slave to be enabled after the bond is created (see
bond_choose_active_iface ()). If the active slave is disabled, then a new active slave is chosen among the
slaves that remain active. Currently due to the way that configuration works, this tends to be the remaining slave
whose interface name is first alphabetically, but this is by no means guaranteed.

4.6. Bonding 105

Open vSwitch Documentation, Release 2.6.0

4.6.3 Bond Packet Output

When a packet is sent out a bond port, the bond slave actually used is selected based on the packet’s source MAC
and VLAN tag (see choose_output_iface ()). In particular, the source MAC and VLAN tag are hashed into
one of 256 values, and that value is looked up in a hash table (the “bond hash”) kept in the bond_hash member of
struct port. The hash table entry identifies a bond slave. If no bond slave has yet been chosen for that hash table entry,
vswitchd chooses one arbitrarily.

Every 10 seconds, vswitchd rebalances the bond slaves (see bond_rebalance_port ()). To rebalance, vswitchd
examines the statistics for the number of bytes transmitted by each slave over approximately the past minute, with data
sent more recently weighted more heavily than data sent less recently. It considers each of the slaves in order from
most-loaded to least-loaded. If highly loaded slave H is significantly more heavily loaded than the least-loaded slave
L, and slave H carries at least two hashes, then vswitchd shifts one of H’s hashes to L. However, vswitchd will only
shift a hash from H to L if it will decrease the ratio of the load between H and L by at least 0.1.

Currently, “significantly more loaded” means that H must carry at least 1 Mbps more traffic, and that traffic must be at
least 3% greater than L’s.

4.6.4 Bond Balance Modes

Each bond balancing mode has different considerations, described below.

LACP Bonding

LACP bonding requires the remote switch to implement LACP, but it is otherwise very simple in that, after LACP
negotiation is complete, there is no need for special handling of received packets.

Several of the physical switches that support LACP block all traffic for ports that are configured to use LACP, until
LACP is negotiated with the host. When configuring a LACP bond on a OVS host (eg: XenServer), this means that
there will be an interruption of the network connectivity between the time the ports on the physical switch and the
bond on the OVS host are configured. The interruption may be relatively long, if different people are responsible for
managing the switches and the OVS host.

Such network connectivity failure can be avoided if LACP can be configured on the OVS host before configuring the
physical switch, and having the OVS host fall back to a bond mode (active-backup) till the physical switch LACP
configuration is complete. An option “lacp-fallback-ab” exists to provide such behavior on openvswitch.

Active Backup Bonding

Active Backup bonds send all traffic out one “active” slave until that slave becomes unavailable. Since they are
significantly less complicated than SLB bonds, they are preferred when LACP is not an option. Additionally, they are
the only bond mode which supports attaching each slave to a different upstream switch.

SLB Bonding

SLB bonding allows a limited form of load balancing without the remote switch’s knowledge or cooperation. The
basics of SLB are simple. SLB assigns each source MAC+VLAN pair to a link and transmits all packets from that
MAC+VLAN through that link. Learning in the remote switch causes it to send packets to that MAC+VLAN through
the same link.

SLB bonding has the following complications:

106 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

0. When the remote switch has not learned the MAC for the destination of a unicast packet and hence floods the
packet to all of the links on the SLB bond, Open vSwitch will forward duplicate packets, one per link, to each
other switch port.

Open vSwitch does not solve this problem.

1. When the remote switch receives a multicast or broadcast packet from a port not on the SLB bond, it will forward
it to all of the links in the SLB bond. This would cause packet duplication if not handled specially.

Open vSwitch avoids packet duplication by accepting multicast and broadcast packets on only the active slave,
and dropping multicast and broadcast packets on all other slaves.

2. When Open vSwitch forwards a multicast or broadcast packet to a link in the SLB bond other than the active
slave, the remote switch will forward it to all of the other links in the SLB bond, including the active slave.
Without special handling, this would mean that Open vSwitch would forward a second copy of the packet to
each switch port (other than the bond), including the port that originated the packet.

Open vSwitch deals with this case by dropping packets received on any SLB bonded link that have a source
MAC+VLAN that has been learned on any other port. (This means that SLB as implemented in Open vSwitch
relies critically on MAC learning. Notably, SLB is incompatible with the “flood_vlans” feature.)

3. Suppose that a MAC+VLAN moves to an SLB bond from another port (e.g. when a VM is migrated from this
hypervisor to a different one). Without additional special handling, Open vSwitch will not notice until the MAC
learning entry expires, up to 60 seconds later as a consequence of rule #2.

Open vSwitch avoids a 60-second delay by listening for gratuitous ARPs, which VMs commonly emit upon
migration. As an exception to rule #2, a gratuitous ARP received on an SLB bond is not dropped and updates
the MAC learning table in the usual way. (If a move does not trigger a gratuitous ARP, or if the gratuitous ARP
is lost in the network, then a 60-second delay still occurs.)

4. Suppose that a MAC+VLAN moves from an SLB bond to another port (e.g. when a VM is migrated from a
different hypervisor to this one), that the MAC+VLAN emits a gratuitous ARP, and that Open vSwitch forwards
that gratuitous ARP to a link in the SLB bond other than the active slave. The remote switch will forward the
gratuitous ARP to all of the other links in the SLB bond, including the active slave. Without additional special
handling, this would mean that Open vSwitch would learn that the MAC+VLAN was located on the SLB bond,
as a consequence of rule #3.

Open vSwitch avoids this problem by “locking” the MAC learning table entry for a MAC+VLAN from which a
gratuitous ARP was received from a non-SLB bond port. For 5 seconds, a locked MAC learning table entry will
not be updated based on a gratuitous ARP received on a SLB bond.

4.7 OVSDB Replication Implementation

Given two Open vSwitch databases with the same schema, OVSDB replication keeps these databases in the same state,
i.e. each of the databases have the same contents at any given time even if they are not running in the same host. This
document elaborates on the implementation details to provide this functionality.

4.7.1 Terminology

Source of truth database database whose content will be replicated to another database.
Active server ovsdb-server providing RPC interface to the source of truth database.

Standby server ovsdb-server providing RPC interface to the database that is not the source of truth.

4.7. OVSDB Replication Implementation 107

Open vSwitch Documentation, Release 2.6.0

4.7.2 Design

The overall design of replication consists of one ovsdb-server (active server) communicating the state of its databases
to another ovsdb-server (standby server) so that the latter keep its own databases in that same state. To achieve this,
the standby server acts as a client of the active server, in the sense that it sends a monitor request to keep up to date
with the changes in the active server databases. When a notification from the active server arrives, the standby server
executes the necessary set of operations so its databases reach the same state as the the active server databases. Below
is the design represented as a diagram.:

replication

| Active
| OVSDB-server |

Standby
| OVSDB-server |

4.7.3 Setting Up The Replication

To initiate the replication process, the standby server must be executed indicating the location of the active server via
the command line option —-sync-from=server, where server can take any form described in the ovsdb-client
manpage and it must specify an active connection type (tcp, unix, ssl). This option will cause the standby server to
attempt to send a monitor request to the active server in every main loop iteration, until the active server responds.

When sending a monitor request the standby server is doing the following:
1. Erase the content of the databases for which it is providing a RPC interface.

2. Open the jsonrpc channel to communicate with the active server.

3.

4. For each database with the same schema in both the active and standby servers: construct and send a monitor

request message specifying the tables that will be monitored (i.e all the tables on the database except the ones
blacklisted [*]).

Fetch all the databases located in the active server.

5. Set the standby database to the current state of the active database.

Once the monitor request message is sent, the standby server will continuously receive notifications of changes occur-
ring to the tables specified in the request. The process of handling this notifications is detailed in the next section.

[*] A set of tables that will be excluded from replication can be configure as a blacklist of tables via the command
line option ——sync-exclude-tables=db:table[,db:table] ..., where db corresponds to the database
where the table resides.

4.7.4 Replication Process

The replication process consists on handling the update notifications received in the standby server caused by the
monitor request that was previously sent to the active server. In every loop iteration, the standby server attempts to
receive a message from the active server which can be an error, an echo message (used to keep the connection alive) or
an update notification. In case the message is a fatal error, the standby server will disconnect from the active without
dropping the replicated data. If it is an echo message, the standby server will reply with an echo message as well. If
the message is an update notification, the following process occurs:

1. Create a new transaction.

108 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

2. Get the <table-updates> object from the params member of the notification.
3. For each <table-update> in the <table—-updates> object do:

(a) For each <row—update> in <table-update> check what kind of operation should be executed ac-
cording to the following criteria about the presence of the object members:

* If 01d member is not present, execute an insert operation using <row> from the new member.

e If 01d member is present and new member is not present, execute a delete operation using <row>
from the 01d member

¢ If both 01d and new members are present, execute an update operation using <row> from the new
member.

4. Commit the transaction.

If an error occurs during the replication process, all replication is restarted by resending a new monitor request
as described in the section “Setting up the replication”.

4.7.5 Runtime Management Commands

Runtime management commands can be sent to a running standby server via ovs-appctl in order to configure the
replication functionality. The available commands are the following.
ovsdb-server/set-remote-ovsdb-server {server} setsthe name of the active server
ovsdb-server/get—-remote—ovsdb—server gets the name of the active server

ovsdb-server/connect-remote—-ovsdb-server causes the server to attempt to send a monitor request
every main loop iteration

ovsdb-server/disconnect-remote—ovsdb-server closes the jsonrpc channel between the active server
and frees the memory used for the replication configuration.

ovsdb-server/set-sync—exclude-tables {db:table, ...} sets the tables list that will be excluded
from being replicated

ovsdb-server/get-sync—excluded—-tables gets the tables list that is currently excluded from replication

4.8 The DPDK Datapath

4.8.1 DPDK vHost User Ports

The DPDK datapath provides DPDK-backed vHost user ports as a primary way to interact with guests. For more
information on vHost User, refer to the QEMU documentation on same.

Quick Example

This example demonstrates how to add two dpdkvhostuser ports to an existing bridge called br0:

$ ovs-vsctl add-port br0 dpdkvhostuser0 \

—-— set Interface dpdkvhostuser0 type=dpdkvhostuser
$ ovs-vsctl add-port br0 dpdkvhostuserl \

—— set Interface dpdkvhostuserl type=dpdkvhostuser

4.8. The DPDK Datapath 109

http://git.qemu-project.org/?p=qemu.git;a=blob;f=docs/specs/vhost-user.txt;h=7890d7169;hb=HEAD

Open vSwitch Documentation, Release 2.6.0

vhost-user vs. vhost-user-client

Open vSwitch provides two types of vHost User ports:
¢ vhost-user (dpdkvhostuser)
¢ vhost-user-client (dpdkvhostuserclient)

vHost User uses a client-server model. The server creates/manages/destroys the vHost User sockets, and the client
connects to the server. Depending on which port type you use, dpdkvhostuser or dpdkvhostuserclient,a
different configuration of the client-server model is used.

For vhost-user ports, Open vSwitch acts as the server and QEMU the client. For vhost-user-client ports, Open vSwitch
acts as the client and QEMU the server.

vhost-user

Important: Use of vhost-user ports requires QEMU >= 2.2

To use vhost-user ports, you must first add said ports to the switch. Unlike DPDK ring ports, DPDK vhost-user ports
can have arbitrary names, except that forward and backward slashes are prohibited in the names. For vhost-user, the
port type is dpdkvhostuser:

$ ovs-vsctl add-port br0 vhost-user-1 —-- set Interface vhost-user-1 \
type=dpdkvhostuser

This action creates a socket located at /usr/local/var/run/openvswitch/vhost-user—1, which you
must provide to your VM on the QEMU command line.

Note: If you wish for the vhost-user sockets to be created in a sub-directory of
/usr/local/var/run/openvswitch, you may specify this directory in the ovsdb like so:

$ ovs-vsctl —--no-wait \
set Open_vSwitch . other_config:vhost-sock-dir=subdir"’

Once the vhost-user ports have been added to the switch, they must be added to the guest. There are two ways to do
this: using QEMU directly, or using libvirt.

Adding vhost-user ports to the guest (QEMU)

To begin, you must attach the vhost-user device sockets to the guest. To do this, you must pass the following parameters
to QEMU:

—-chardev socket, id=charl,path=/usr/local/var/run/openvswitch/vhost-user-1
-netdev type=vhost-user, id=mynetl, chardev=charl, vhostforce
—device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynetl

where vhost—-user-1 is the name of the vhost-user port added to the switch.

Repeat the above parameters for multiple devices, changing the chardev path and id as necessary. Note that a
separate and different chardev path needs to be specified for each vhost-user device. For example you have a second
vhost-user port named vhost -user-2, you append your QEMU command line with an additional set of parameters:

110 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

—-chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-user-2
-netdev type=vhost-user, id=mynet2, chardev=char2,vhostforce
—device virtio-net-pci,mac=00:00:00:00:00:02, netdev=mynet2

In addition, QEMU must allocate the VM’s memory on hugetlbfs. vhost-user ports access a virtio-net device’s virtual
rings and packet buffers mapping the VM’s physical memory on hugetlbfs. To enable vhost-user ports to map the
VM’s memory into their process address space, pass the following parameters to QEMU:

-object memory-backend-file, id=mem, size=4096M, mem-path=/dev/hugepages, share=on
—numa node, memdev=mem -mem-prealloc

Finally, you may wish to enable multiqueue support. This is optional but, should you wish to enable it, run:

—-chardev socket, id=char2,path=/usr/local/var/run/openvswitch/vhost-user-2
-netdev type=vhost-user, id=mynet2, chardev=char2, vhostforce, queues=3$q
-device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2, mg=on,vectors=5$v

where:
$q The number of queues
$v The number of vectors, which is $g * 2 + 2

The vhost-user interface will be automatically reconfigured with required number of rx and tx queues after connection
of virtio device. Manual configuration of n_rxqg is not supported because OVS will work properly only if n_rxqg
will match number of queues configured in QEMU.

A least 2 PMDs should be configured for the vswitch when using multiqueue. Using a single PMD will cause traffic
to be enqueued to the same vhost queue rather than being distributed among different vhost queues for a vhost-user
interface.

If traffic destined for a VM configured with multiqueue arrives to the vswitch via a physical DPDK port, then the
number of rxqs should also be set to at least 2 for that physical DPDK port. This is required to increase the probability
that a different PMD will handle the multiqueue transmission to the guest using a different vhost queue.

If one wishes to use multiple queues for an interface in the guest, the driver in the guest operating system must be
configured to do so. It is recommended that the number of queues configured be equal to $q.

For example, this can be done for the Linux kernel virtio-net driver with:

$ ethtool -L <DEV> combined <S$g>

where:
—-L Changes the numbers of channels of the specified network device

combined Changes the number of multi-purpose channels.

Adding vhost-user ports to the guest (libvirt)

To begin, you must change the user and group that libvirt runs under, configure access control policy and restart
libvirtd.

e In /etc/libvirt/gemu.conf add/edit the following lines:

user = "root"
group = "root"

 Disable SELinux or set to permissive mode:

4.8. The DPDK Datapath 111

Open vSwitch Documentation, Release 2.6.0

’ $ setenforce 0

* Finally, restart the libvirtd process, For example, on Fedora:

’ $ systemctl restart libvirtd.service

Once complete, instantiate the VM. A sample XML configuration file is provided at the end of this file. Save this file,
then create a VM using this file:

’$ virsh create demovm.xml

Once created, you can connect to the guest console:

’$ virsh console demovm

The demovm xml configuration is aimed at achieving out of box performance on VM. These enhancements include:
* The vcpus are pinned to the cores of the CPU socket 0 using vepupin.
* Configure NUMA cell and memory shared using memAccess='shared’.
e Disable mrg_rxbuf='off’

Refer to the libvirt documentation for more information.

vhost-user-client

Important: Use of vhost-user ports requires QEMU >= 2.7

To use vhost-user-client ports, you must first add said ports to the switch. Like DPDK vhost-user ports, DPDK
vhost-user-client ports can have mostly arbitrary. However, the name given to the port does not govern the name of
the socket device. Instead, this must be configured by the user by way of a vhost-server-path option. For
vhost-user-client, the port type is dpdkvhostuserclient:

$ VHOST_USER_SOCKET_PATH=/path/to/socket
$ ovs-vsctl add-port br0 vhost-client-1 \
—— set Interface vhost-client-1 type=dpdkvhostuserclient \
options:vhost-server-path=$VHOST_USER_SOCKET_PATH

Once the vhost-user-client ports have been added to the switch, they must be added to the guest. Like vhost-user ports,
there are two ways to do this: using QEMU directly, or using libvirt. Only the QEMU case is covered here.

Adding vhost-user-client ports to the guest (QEMU)

Attach the vhost-user device sockets to the guest. To do this, you must pass the following parameters to QEMU:

—-chardev socket, id=charl, path=$VHOST_USER_SOCKET_PATH, server
-netdev type=vhost-user, id=mynetl, chardev=charl,vhostforce
—device virtio-net-pci,mac=00:00:00:00:00:01, netdev=mynetl

where vhost-user-1 is the name of the vhost-user port added to the switch.

If the corresponding dpdkvhostuserclient port has not yet been configured in OVS with
vhost-server-path=/path/to/socket, QEMU will print a log similar to the following:

QEMU waiting for connection on: disconnected:unix:/path/to/socket, server

112 Chapter 4. Open vSwitch Deep Dive

http://libvirt.org/formatdomain.html

Open vSwitch Documentation, Release 2.6.0

QEMU will wait until the port is created sucessfully in OVS to boot the VM. One benefit of using this mode is the
ability for vHost ports to ‘reconnect’ in event of the switch crashing or being brought down. Once it is brought back
up, the vHost ports will reconnect automatically and normal service will resume.

DPDK in the Guest

The DPDK testpmd application can be run in guest VMs for high speed packet forwarding between vhostuser ports.
DPDK and testpmd application has to be compiled on the guest VM. Below are the steps for setting up the testpmd
application in the VM.

Note: Support for DPDK in the guest requires QEMU >= 2.2

To begin, instantiate a guest as described in vhost-user or vhost-user-client. Once started, connect to the VM, download
the DPDK sources to VM and build DPDK:

cd /root/dpdk/

wget http://fast.dpdk.org/rel/dpdk-16.11.tar.xz
tar xf dpdk-16.1l.tar.xz

export DPDK_DIR=/root/dpdk/dpdk-16.11

export DPDK_TARGET=x86_64-native-linuxapp-gcc
export DPDK_BUILD=$DPDK_DIR/S$DPDK_TARGET

cd $DPDK_DIR

make install T=$DPDK_TARGET DESTDIR=install

Uy Ay A

Build the test-pmd application:

cd app/test-pmd

export RTE_SDK=S$DPDK_DIR
export RTE_TARGET=S$DPDK_TARGET
make

v »r A

Setup huge pages and DPDK devices using UIO:

sysctl vm.nr_hugepages=1024

mkdir -p /dev/hugepages

mount -t hugetlbfs hugetlbfs /dev/hugepages # only if not already mounted
modprobe uio

insmod $DPDK_BUILD/kmod/igb_uio.ko

SDPDK_DIR/tools/dpdk—-devbind.py —-—-status

SDPDK_DIR/tools/dpdk-devbind.py -b igb_uio 00:03.0 00:04.0

w4 v v

Note: vhost ports pci ids can be retrieved using:

‘lspci | grep Ethernet

Finally, start the application:

[# ToDO

Sample XML

4.8. The DPDK Datapath 113

Open vSwitch Documentation, Release 2.6.0

<domain type='kvm'>
<name>demovm</name>
<uuid>4a9b3f53-fa2a-47£3-a757-dd87720d9d1d</uuid>
<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
<memoryBacking>
<hugepages>
<page size='2' unit='M' nodeset='0'/>
</hugepages>
</memoryBacking>
<vcpu placement='static'>2</vcpu>
<cputune>
<shares>4096</shares>
<vcpupin vcpu='0' cpuset='4"'/>
<vcpupin vcpu='1l' cpuset='5'/>
<emulatorpin cpuset='4,5"'/>
</cputune>
<os>
<type arch='x86_64"' machine='pc'>hvm</type>
<boot dev='hd'/>
</os>
<features>
<acpi/>
<apic/>
</feature>
<cpu mode='host-model'>
<model fallback='allow'/>
<topology sockets='2' cores='1l' threads='1l"'/>
<numa>

<cell id='0' cpus='0-1' memory='4194304"' unit='KiB' memAccess='shared'/>

</numa>
</cpu>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/bin/gemu-kvm</emulator>
<disk type='file' device='disk'>
<driver name='gemu' type='gcow2' cache='none'/>
<source file='/root/Cent0S7_x86_64.qgcow2'/>
<target dev='vda' bus='virtio'/>
</disk>
<disk type='dir' device='disk'>
<driver name='gemu' type='fat'/>
<source dir='/usr/src/dpdk-16.11"'/>
<target dev='vdb' bus='virtio'/>
<readonly/>
</disk>
<interface type='vhostuser'>
<mac address='00:00:00:00:00:01"'/>

<source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuser0' mode='cli

<model type='virtio'/>
<driver queues='2'>
<host mrg_rxbuf='off'/>
</driver>
</interface>
<interface type='vhostuser'>
<mac address='00:00:00:00:00:02"/>

114 Chapter 4. Open vSwitch Deep Dive

ent'/>

Open vSwitch Documentation, Release 2.6.0

<source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuserl' mode="'cli
<model type='virtio'/>
<driver queues='2'>
<host mrg_rxbuf='off'/>

</driver>

</interface>

<serial type='pty'>
<target port='0'/>

</serial>

<console type='pty'>
<target type='serial' port='0'/>

</console>

</devices>
</domain>

4.9 OVS-on-Hyper-V Design

This document provides details of the effort to develop Open vSwitch on Microsoft Hyper-V. This document should
give enough information to understand the overall design.

Note: The userspace portion of the OVS has been ported to Hyper-V in a separate effort, and committed to the
openvswitch repo. This document will mostly emphasize on the kernel driver, though we touch upon some of the
aspects of userspace as well.

4.9.1 Background Info

Microsoft’s hypervisor solution - Hyper-V ! implements a virtual switch that is extensible and provides opportunities
for other vendors to implement functional extensions >. The extensions need to be implemented as NDIS drivers that
bind within the extensible switch driver stack provided. The extensions can broadly provide the functionality of moni-
toring, modifying and forwarding packets to destination ports on the Hyper-V extensible switch. Correspondingly, the
extensions can be categorized into the following types and provide the functionality noted:

» Capturing extensions: monitoring packets
« Filtering extensions: monitoring, modifying packets
» Forwarding extensions: monitoring, modifying, forwarding packets

As can be expected, the kernel portion (datapath) of OVS on Hyper-V solution will be implemented as a forwarding
extension.

In Hyper-V, the virtual machine is called the Child Partition. Each VIF or physical NIC on the Hyper-V extensible
switch is attached via a port. Each port is both on the ingress path or the egress path of the switch. The ingress path
is used for packets being sent out of a port, and egress is used for packet being received on a port. By design, NDIS
provides a layered interface. In this layered interface, higher level layers call into lower level layers, in the ingress
path. In the egress path, it is the other way round. In addition, there is a object identifier (OID) interface for control
operations Eg. addition of a port. The workflow for the calls is similar in nature to the packets, where higher level
layers call into the lower level layers. A good representational diagram of this architecture is in *.

! Hyper-V Extensible Switch https:/msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch

2 Hyper-V Extensible Switch Extensions https:/msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-extensions

4 Hyper-V Extensible Switch Components https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-
components

4.9. OVS-on-Hyper-V Design 115

ent'/>

https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch
https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-extensions
https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-components
https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-components

Open vSwitch Documentation, Release 2.6.0

Windows Filtering Platform (WFP)[5]_ is a platform implemented on Hyper-V that provides APIs and services for
filtering packets. WFP has been utilized to filter on some of the packets that OVS is not equipped to handle directly.
More details in later sections.

IP Helper ° is a set of API available on Hyper-V to retrieve information related to the network configuration information
on the host machine. IP Helper has been used to retrieve some of the configuration information that OVS needs.

4.9.2 Design

Various blocks of the OVS Windows implementation

\ \
\ \
\ \
- + - + [+ +-—— + |
| (. | [| \ [
| ovs— | | OovVS— | | | Virtual | | Virtual |
| *ctl | | USERSPACE | | | Machine #1| | Machine #2 | |
| | DAEMON | I (. (.
to— B I S T + | At Fot e | A +
| dpif- | | netdev- | | |[VIF #1] |[VIF #2| | |Physical]
| netlink | | windows | | - + t———— + | | NIC |
Fomm e + o + \ [T B +
User /\ /\ \ [*#1x *#4% ||| /\
I [to———— I e [===+ |
Kernel [[\/ [| |=====/
\/ \/ t———— + t———— + *#5%
o e e e e e e + | \ | \
\ Fomm + | | \ | \
| | OVS Pseudo Device | | | \ |
\ Fomm e + | | \ | \
| | Netlink Impl. | | | \ |
/" | [T | |
| 4= + | [N | [
| | Flowtable | +-———————-——~ + | G | | G |
| +————————— + | Packet | |*#2x] R | | R |
\ Fem + | Processing | [<=> | E | I E |
\ | WEP | I [s | [s |
[| Driver | o + [s | s |
\ Fomm———— + | | \ |
\ | | \ | \
| OVS FORWARDING EXTENSION | | | | |
B it + fo———— o fo——— +
|[HYPER-V Extensible Switch «*#3]
o +

NDIS STACK

This diagram shows the various blocks involved in the OVS Windows implementation, along with some of the com-
ponents available in the NDIS stack, and also the virtual machines. The workflow of a packet being transmitted from
a VIF out and into another VIF and to a physical NIC is also shown. Later on in this section, we will discuss the flow
of a packet at a high level.

The figure gives a general idea of where the OVS userspace and the kernel components fit in, and how they interface
with each other.

6 TP Helper https://msdn.microsoft.com/windows/hardware/drivers/network/ip-helper

116 Chapter 4. Open vSwitch Deep Dive

https://msdn.microsoft.com/windows/hardware/drivers/network/ip-helper

Open vSwitch Documentation, Release 2.6.0

The kernel portion (datapath) of OVS on Hyper-V solution has be implemented as a forwarding extension roughly
implementing the following sub-modules/functionality. Details of each of these sub-components in the kernel are
contained in later sections:

¢ Interfacing with the NDIS stack
* Netlink message parser

* Netlink sockets

» Switch/Datapath management

¢ Interfacing with userspace portion of the OVS solution to implement the necessary functionality that userspace
needs

* Port management

» Flowtable/Actions/packet forwarding
¢ Tunneling

 Event notifications

The datapath for the OVS on Linux is a kernel module, and cannot be directly ported since there are significant differ-
ences in architecture even though the end functionality provided would be similar. Some examples of the differences
are:

¢ Interfacing with the NDIS stack to hook into the NDIS callbacks for functionality such as receiving and sending
packets, packet completions, OIDs used for events such as a new port appearing on the virtual switch.

* Interface between the userspace and the kernel module.
» Event notifications are significantly different.

* The communication interface between DPIF and the kernel module need not be implemented in the way OVS
on Linux does. That said, it would be advantageous to have a similar interface to the kernel module for reasons
of readability and maintainability.

¢ Any licensing issues of using Linux kernel code directly.

Due to these differences, it was a straightforward decision to develop the datapath for OVS on Hyper-V from scratch
rather than porting the one on Linux. A re-development focused on the following goals:

* Adbhere to the existing requirements of userspace portion of OVS (such as ovs-vswitchd), to minimize changes
in the userspace workflow.

« Fit well into the typical workflow of a Hyper-V extensible switch forwarding extension.

The userspace portion of the OVS solution is mostly POSIX code, and not very Linux specific. Majority of the
userspace code does not interface directly with the kernel datapath and was ported independently of the kernel datapath
effort.

As explained in the OVS porting design document ’, DPIF is the portion of userspace that interfaces with the kernel
portion of the OVS. The interface that each DPIF provider has to implement is defined in dpif-provider.h °.
Though each platform is allowed to have its own implementation of the DPIF provider, it was found, via community
feedback, that it is desired to share code whenever possible. Thus, the DPIF provider for OVS on Hyper-V shares code
with the DPIF provider on Linux. This interface is implemented in dpif-netlink.c.

We’ll elaborate more on kernel-userspace interface in a dedicated section below. Here it suffices to say that the DPIF
provider implementation for Windows is netlink-based and shares code with the Linux one.

7 How to Port Open vSwitch to New Software or Hardware Porting Open vSwitch to New Software or Hardware
3 DPIF Provider http://openvswitch.sourcearchive.com/documentation/1.1.0-1/dpif-provider_8h_source.html

4.9. OVS-on-Hyper-V Design 117

http://openvswitch.sourcearchive.com/documentation/1.1.0-1/dpif-provider_8h_source.html

Open vSwitch Documentation, Release 2.6.0

4.9.3 Kernel Module (Datapath)

Interfacing with the NDIS Stack

For each virtual switch on Hyper-V, the OVS extensible switch extension can be enabled/disabled. We support enabling
the OVS extension on only one switch. This is consistent with using a single datapath in the kernel on Linux. All the
physical adapters are connected as external adapters to the extensible switch.

When the OVS switch extension registers itself as a filter driver, it also registers callbacks for the switch/port man-
agement and datapath functions. In other words, when a switch is created on the Hyper-V root partition (host), the
extension gets an activate callback upon which it can initialize the data structures necessary for OVS to function.
Similarly, there are callbacks for when a port gets added to the Hyper-V switch, and an External Network adapter or a
VM Network adapter is connected/disconnected to the port. There are also callbacks for when a VIF (NIC of a child
partition) send out a packet, or a packet is received on an external NIC.

As shown in the figures, an extensible switch extension gets to see a packet sent by the VM (VIF) twice - once on the
ingress path and once on the egress path. Forwarding decisions are to be made on the ingress path. Correspondingly,
we will be hooking onto the following interfaces:

* Ingress send indication: intercept packets for performing flow based forwarding.This includes straight forward-
ing to output ports. Any packet modifications needed to be performed are done here either inline or by creating
a new packet. A forwarding action is performed as the flow actions dictate.

* Ingress completion indication: cleanup and free packets that we generated on the ingress send path, pass-through
for packets that we did not generate.

» Egress receive indication: pass-through.

» Egress completion indication: pass-through.

Interfacing with OVS Userspace

We have implemented a pseudo device interface for letting OVS userspace talk to the OVS kernel module. This is
equivalent to the typical character device interface on POSIX platforms where we can register custom functions for
read, write and ioctl functionality. The pseudo device supports a whole bunch of ioctls that netdev and DPIF on OVS
userspace make use of.

Netlink Message Parser

The communication between OVS userspace and OVS kernel datapath is in the form of Netlink messages '. More
details about this are provided below. In the kernel, a full fledged netlink message parser has been implemented along
the lines of the netlink message parser in OVS userspace. In fact, a lot of the code is ported code.

On the lines of struct ofpbuf in OVS userspace, a managed buffer has been implemented in the kernel datapath
to make it easier to parse and construct netlink messages.

Netlink Sockets

On Linux, OVS userspace utilizes netlink sockets to pass back and forth netlink messages. Since much of userspace
code including DPIF provider in dpif-netlink.c (formerly dpif-linux.c) has been reused, pseudo-netlink sockets have
been implemented in OVS userspace. As it is known, Windows lacks native netlink socket support, and also the socket
family is not extensible either. Hence it is not possible to provide a native implementation of netlink socket. We
emulate netlink sockets in lib/netlink-socket.c and support all of the nl_* APIs to higher levels. The implementation
opens a handle to the pseudo device for each netlink socket. Some more details on this topic are provided in the
userspace section on netlink sockets.

118 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

Typical netlink semantics of read message, write message, dump, and transaction have been implemented so that
higher level layers are not affected by the netlink implementation not being native.

Switch/Datapath Management

As explained above, we hook onto the management callback functions in the NDIS interface for when to initialize the
OVS data structures, flow tables etc. Some of this code is also driven by OVS userspace code which sends down ioctls
for operations like creating a tunnel port etc.

Port Management

As explained above, we hook onto the management callback functions in the NDIS interface to know when a port is
added/connected to the Hyper-V switch. We use these callbacks to initialize the port related data structures in OVS.
Also, some of the ports are tunnel ports that don’t exist on the Hyper-V switch and get added from OVS userspace.

In order to identify a Hyper-V port, we use the value of ‘FriendlyName’ field in each Hyper-V port. We call this the
“OVS-port-name”. The idea is that OVS userspace sets ‘OVS-port-name’ in each Hyper-V port to the same value as
the ‘name’ field of the ‘Interface’ table in OVSDB. When OVS userspace calls into the kernel datapath to add a port,
we match the name of the port with the ‘OVS-port-name’ of a Hyper-V port.

We maintain separate hash tables, and separate counters for ports that have been added from the Hyper-V switch, and
for ports that have been added from OVS userspace.

Flowtable/Actions/Packet Forwarding

The flowtable and flow actions based packet forwarding is the core of the OVS datapath functionality. For each packet
on the ingress path, we consult the flowtable and execute the corresponding actions. The actions can be limited to
simple forwarding to a particular destination port(s), or more commonly involves modifying the packet to insert a
tunnel context or a VLAN ID, and thereafter forwarding to the external port to send the packet to a destination host.

Tunneling

We make use of the Internal Port on a Hyper-V switch for implementing tunneling. The Internal Port is a virtual
adapter that is exposed on the Hyper- V host, and connected to the Hyper-V switch. Basically, it is an interface
between the host and the virtual switch. The Internal Port acts as the Tunnel end point for the host (aka VTEP), and
holds the VTEP IP address.

Tunneling ports are not actual ports on the Hyper-V switch. These are virtual ports that OVS maintains and while
executing actions, if the outport is a tunnel port, we short circuit by performing the encapsulation action based on
the tunnel context. The encapsulated packet gets forwarded to the external port, and appears to the outside world as
though it was set from the VTEP.

Similarly, when a tunneled packet enters the OVS from the external port bound to the internal port (VTEP), and if yes,
we short circuit the path, and directly forward the inner packet to the destination port (mostly a VIF, but dictated by
the flow). We leverage the Windows Filtering Platform (WFP) framework to be able to receive tunneled packets that
cannot be decapsulated by OVS right away. Currently, fragmented IP packets fall into that category, and we leverage
the code in the host IP stack to reassemble the packet, and performing decapsulation on the reassembled packet.

We’ll also be using the IP helper library to provide us IP address and other information corresponding to the Internal
port.

4.9. OVS-on-Hyper-V Design 119

Open vSwitch Documentation, Release 2.6.0

Event Notifications

The pseudo device interface described above is also used for providing event notifications back to OVS userspace. A
shared memory/overlapped IO model is used.

Userspace Components

The userspace portion of the OVS solution is mostly POSIX code, and not very Linux specific. Majority of the
userspace code does not interface directly with the kernel datapath and was ported independently of the kernel datapath
effort.

In this section, we cover the userspace components that interface with the kernel datapath.

As explained earlier, OVS on Hyper-V shares the DPIF provider implementation with Linux. The DPIF provider on
Linux uses netlink sockets and netlink messages. Netlink sockets and messages are extensively used on Linux to
exchange information between userspace and kernel. In order to satisfy these dependencies, netlink socket (pseudo
and non-native) and netlink messages are implemented on Hyper-V.

The following are the major advantages of sharing DPIF provider code:
1. Maintenance is simpler:

Any change made to the interface defined in dpif-provider.h need not be propagated to multiple implementations.
Also, developers familiar with the Linux implementation of the DPIF provider can easily ramp on the Hyper-V
implementation as well.

2. Netlink messages provides inherent advantages:

Netlink messages are known for their extensibility. Each message is versioned, so the provided data structures
offer a mechanism to perform version checking and forward/backward compatibility with the kernel module.

Netlink Sockets

As explained in other sections, an emulation of netlink sockets has been implemented in 1ib/netlink-socket.c
for Windows. The implementation creates a handle to the OVS pseudo device, and emulates netlink socket semantics
of receive message, send message, dump, and transact. Most of the n1_ « functions are supported.

The fact that the implementation is non-native manifests in various ways. One example is that PID for the netlink
socket is not automatically assigned in userspace when a handle is created to the OVS pseudo device. There’s an extra
command (defined in OvsDpInterfaceExt . h) thatis used to grab the PID generated in the kernel.

DPIF Provider

As has been mentioned in earlier sections, the netlink socket and netlink message based DPIF provider on Linux has
been ported to Windows.

Most of the code is common. Some divergence is in the code to receive packets. The Linux implementation uses
epoll() which is not natively supported on Windows.

netdev-windows

We have a Windows implementation of the interface defined in 1ib/netdev-provider.h. The implementation
provides functionality to get extended information about an interface. It is limited in functionality compared to the
Linux implementation of the netdev provider and cannot be used to add any interfaces in the kernel such as a tap in-
terface or to send/receive packets. The netdev-windows implementation uses the datapath interface extensions defined
in datapath-windows/include/OvsDpInterfaceExt.h.

120 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

Powershell Extensions to Set OvS-port—name

As explained in the section on “Port management”, each Hyper-V port has a ‘FriendlyName’ field, which we call as the
“OVS-port-name” field. We have implemented powershell command extensions to be able to set the “OVS-port-name”
of a Hyper-V port.

4.9.4 Kernel-Userspace Interface

openvswitch.h and OvsDplnterfaceExt.h

Since the DPIF provider is shared with Linux, the kernel datapath provides the same interface as the Linux datapath.
The interface is defined in datapath/linux/compat/include/linux/openvswitch.h. Derivatives of
this interface file are created during OVS userspace compilation. The derivative for the kernel datapath on Hyper-V is
provided in datapath-windows/include/OvsDpInterface.h.

That said, there are Windows specific extensions that are defined in the interface file
datapath-windows/include/OvsDpInterfaceExt.h.

4.9.5 Flow of a Packet

Figure 2 shows the numbered steps in which a packets gets sent out of a VIF and is forwarded to another VIF or a
physical NIC. As mentioned earlier, each VIF is attached to the switch via a port, and each port is both on the ingress
and egress path of the switch, and depending on whether a packet is being transmitted or received, one of the paths
gets used. In the figure, each step n is annotated as #n

The steps are as follows:
1. When a packet is sent out of a VIF or an physical NIC or an internal port, the packet is part of the ingress path.
2. The OVS kernel driver gets to intercept this packet.
(a) OVS looks up the flows in the flowtable for this packet, and executes the corresponding action.

(b) If there is not action, the packet is sent up to OVS userspace to examine the packet and figure out the
actions.

(c) Userspace executes the packet by specifying the actions, and might also insert a flow for such a packet in
the future.

(d) The destination ports are added to the packet and sent down to the Hyper- V switch.

3. The Hyper-V forwards the packet to the destination ports specified in the packet, and sends it out on the egress
path.

4. The packet gets forwarded to the destination VIF.

5. It might also get forwarded to a physical NIC as well, if the physical NIC has been added as a destination port
by OVS.

4.9.6 Build/Deployment
The userspace components added as part of OVS Windows implementation have been integrated with autoconf, and
can be built using the steps mentioned in the BUILD.Windows file. Additional targets need to be specified to make.

The OVS kernel code is part of a Visual Studio 2013 solution, and is compiled from the IDE. There are plans in the
future to move this to a compilation mode such that we can compile it without an IDE as well.

Once compiled, we have an install script that can be used to load the kernel driver.

4.9. OVS-on-Hyper-V Design 121

Open vSwitch Documentation, Release 2.6.0

4.9.7 References
4.10 Language Bindings
Bindings exist for Open vSwitch in a variety of languages.

4.10.1 Official Bindings

Python

The Python bindings are part of the Open vSwitch package. You can install the bindings using pip:

’$ pip install ovs

4.10.2 Third-Party Bindings

Lua

e LJIT20vs: LuaJIT binding for Open vSwitch

Go

* go-odp: A Go library to control the Open vSwitch in-kernel datapath

4.11 Testing

It is possible to test Open vSwitch using both tooling provided with Open vSwitch and using a variety of third party
tooling.

4.11.1 Built-in Tooling

Open vSwitch provides a number of different test suites and other tooling for validating basic functionality of OVS.
Before running any of the tests described here, you must bootstrap, configure and build Open vSwitch as described in
Open vSwitch on Linux, FreeBSD and NetBSD. You do not need to install Open vSwitch or to build or load the kernel
module to run these test suites. You do not need supervisor privilege to run these test suites.

Unit Tests

Open vSwitch includes a suite of self-tests. Before you submit patches upstream, we advise that you run the tests and
ensure that they pass. If you add new features to Open vSwitch, then adding tests for those features will ensure your
features don’t break as developers modify other areas of Open vSwitch.

To run all the unit tests in Open vSwitch, one at a time, run:

$ make check

122 Chapter 4. Open vSwitch Deep Dive

https://github.com/openvswitch/ovs/tree/master/python/ovs
https://github.com/wiladams/LJIT2ovs
https://github.com/weaveworks/go-odp

Open vSwitch Documentation, Release 2.6.0

This takes under 5 minutes on a modern desktop system.

To run all the unit tests in Open vSwitch in parallel, run:

$ make check TESTSUITEFLAGS=-7j8

You can run up to eight threads. This takes under a minute on a modern 4-core desktop system.
To see a list of all the available tests, run:
$ make check TESTSUITEFLAGS=-list

To run only a subset of tests, e.g. test 123 and tests 477 through 484, run:

’$ make check TESTSUITEFLAGS='123 477-484"

Tests do not have inter-dependencies, so you may run any subset.

To run tests matching a keyword, e.g. ovsdb, run:

’$ make check TESTSUITEFLAGS='-k ovsdb'

To see a complete list of test options, run:

‘$ make check TESTSUITEFLAGS=--help

The results of a testing run are reported in tests/testsuite. log. Report report test failures as bugs and include
the testsuite.log in your report.

Note: Sometimes a few tests may fail on some runs but not others. This is usually a bug in the testsuite, not a
bug in Open vSwitch itself. If you find that a test fails intermittently, please report it, since the developers may not
have noticed. You can make the testsuite automatically rerun tests that fail, by adding RECHECK=yes to the make
command line, e.g.:

$ make check TESTSUITEFLAGS=-j8 RECHECK=yes

Coverage

If the build was configured with ——enable-coverage and the 1cov utility is installed, you can run the testsuite
and generate a code coverage report by using the check—-1coc target:

’$ make check-lcov

All the same options are avaiable via TESTSUITEFLAGS. For example:

‘$ make check-lcov TESTSUITEFLAGS=-3j8 -k ovn

Valgrind

If you have valgrind installed, you can run the testsuite under valgrind by using the check-valgrind target:

$ make check-valgrind

When you do this, the “valgrind” results for test <N> are reported in files named
tests/testsuite.dir/<N>/valgrind. *.

All the same options are available via TESTSUITEFLAGS.

4.11. Testing 123

Open vSwitch Documentation, Release 2.6.0

Hint: You may find that the valgrind results are easier to interpret if you put —g in ~/.valgrindrc, since that
reduces the amount of output.

OFTest

OFTest is an OpenFlow protocol testing suite. Open vSwitch includes a Makefile target to run OFTest with Open
vSwitch in “dummy mode”. In this mode of testing, no packets travel across physical or virtual networks. Instead,
Unix domain sockets stand in as simulated networks. This simulation is imperfect, but it is much easier to set up, does
not require extra physical or virtual hardware, and does not require supervisor privileges.

To run OFTest with Open vSwitch, you must obtain a copy of OFTest and install its prerequisites. You need a copy of
OFTest that includes commit 406614846¢5 (make ovs-dummy platform work again). This commit was merged into
the OFTest repository on Feb 1, 2013, so any copy of OFTest more recent than that should work. Testing OVS in
dummy mode does not require root privilege, so you may ignore that requirement.

Optionally, add the top-level OFTest directory (containing the oft program) to your $SPATH. This slightly simplifies
running OFTest later.

To run OFTest in dummy mode, run the following command from your Open vSwitch build directory:

$ make check-oftest OFT=<oft-binary>

where <oft-binary> is the absolute path to the oft program in OFTest. If you added “oft” to your $PATH, you
may omit the OFT variable assignment

By default, check-oftest passes oft just enough options to enable dummy mode. You can use OF TFLAGS to
pass additional options. For example, to run just the basic.Echo test instead of all tests (the default) and enable
verbose logging, run:

’$ make check-oftest OFT=<oft-binary> OFTFLAGS='--verbose -T basic.Echo'

If you use OFTest that does not include commit 4d1f3eb2c792 (oft: change default port to 6653), merged into the
OFTest repository in October 2013, then you need to add an option to use the IETF-assigned controller port:

‘$ make check-oftest OFT=<oft-binary> OFTFLAGS='--port=6653"

Interpret OFTest results cautiously. Open vSwitch can fail a given test in OFTest for many reasons, including bugs in
Open vSwitch, bugs in OFTest, bugs in the “dummy mode” integration, and differing interpretations of the OpenFlow
standard and other standards.

Note: Open vSwitch has not been validated against OFTest. Report test failures that you believe to represent bugs in
Open vSwitch. Include the precise versions of Open vSwitch and OFTest in your bug report, plus any other information
needed to reproduce the problem.

Ryu
Ryu is an OpenFlow controller written in Python that includes an extensive OpenFlow testsuite. Open vSwitch includes
a Makefile target to run Ryu in “dummy mode”. See OFTest above for an explanation of dummy mode.

To run Ryu tests with Open vSwitch, first read and follow the instructions under Testing above. Second, obtain a copy
of Ryu, install its prerequisites, and build it. You do not need to install Ryu (some of the tests do not get installed, so
it does not help).

To run Ryu tests, run the following command from your Open vSwitch build directory:

124 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

$ make check-ryu RYUDIR=<ryu-source-dir>""

where <ryu-source-dir> is the absolute path to the root of the Ryu source distribution. The default
<ryu-source-dir>is $srcdir/../ryu where $srcdir is your Open vSwitch source directory. If this is
correct, omit RYUDIR

Note: Open vSwitch has not been validated against Ryu. Report test failures that you believe to represent bugs in
Open vSwitch. Include the precise versions of Open vSwitch and Ryu in your bug report, plus any other information
needed to reproduce the problem.

Datapath testing

Open vSwitch includes a suite of tests specifically for datapath functionality, which can be run against the userspace
or kernel datapaths. If you are developing datapath features, it is recommended that you use these tests and build upon
them to verify your implementation.

The datapath tests make some assumptions about the environment. They must be run under root privileges on a Linux
system with support for network namespaces. For ease of use, the OVS source tree includes a vagrant box to invoke
these tests. Running the tests inside Vagrant provides kernel isolation, protecting your development host from kernel
panics or configuration conflicts in the testsuite. If you wish to run the tests without using the vagrant box, there are
further instructions below.

Vagrant

Important: Requires Vagrant (version 1.7.0 or later) and a compatible hypervisor

Note: You must Bootstrap and Configure the sources before you run the steps described here.

A Vagrantfile is provided allowing to compile and provision the source tree as found locally in a virtual machine using
the following command:

$ vagrant up

This will bring up a Fedora 23 VM by default. If you wish to use a different box or a vagrant backend not supported
by the default box, the Vagrant £ile can be modified to use a different box as base.

The VM can be reprovisioned at any time:

$ vagrant provision

OVS out-of-tree compilation environment can be set up with:

$./boot.sh
$ vagrant provision —--provision-with configure_ovs,build_ovs

This will set up an out-of-tree build environment inside the VM in /root /build. The source code can be found in
/vagrant.

To recompile and reinstall OVS in the VM using RPM:

4.11. Testing 125

Open vSwitch Documentation, Release 2.6.0

$./boot.sh
$ vagrant provision —--provision-with configure_ovs, install_rpm

Two provisioners are included to run system tests with the OVS kernel module or with a userspace datapath. This tests
are different from the self-tests mentioned above. To run them:

$./boot.sh
$ vagrant provision —--provision-with \
configure_ovs, test_ovs_kmod, test_ovs_system_userspace

The results of the testsuite reside in the VM root user’s home directory:

$ vagrant ssh

$ sudo -s

$ cd /root/build

$ 1ls tests/systemx

Native

The datapath testsuite as invoked by Vagrant above may also be run manually on a Linux system with root privileges.
These tests may take several minutes to complete, and cannot be run in parallel.

Userspace datapath To invoke the datapath testsuite with the userspace datapath, run:

$ make check-system-userspace

The results of the testsuite are in tests/system-userspace-traffic.dir.

Kernel datapath Make targets are also provided for testing the Linux kernel module. Note that these tests operate
by inserting modules into the running Linux kernel, so if the tests are able to trigger a bug in the OVS kernel module
or in the upstream kernel then the kernel may panic.

To run the testsuite against the kernel module which is currently installed on your system, run:

’$ make check-kernel

To install the kernel module from the current build directory and run the testsuite against that kernel module:

‘$ make check-kmod

The results of the testsuite are in tests/system-kmod-traffic.dir.

Static Code Analysis

Static Analysis is a method of debugging Software by examining code rather than actually executing it. This can
be done through ‘scan-build’ commandline utility which internally uses clang (or) gcc to compile the code and also
invokes a static analyzer to do the code analysis. At the end of the build, the reports are aggregated in to a common
folder and can later be analyzed using ‘scan-view’.

Open vSwitch includes a Makefile target to trigger static code analysis:

$./boot.sh

$./configure CC=clang # clang

or

$./configure CC=gcc CFLAGS="-std=gnu99" # gcc
$ make clang-analyze

126 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

You should invoke scan-view to view analysis results. The last line of output from clang—analyze will list the
command (containing results directory) that you should invoke to view the results on a browser.

4.11.2 Continuous Integration with Travis CI

A .travis.yml file is provided to automatically build Open vSwitch with various build configurations and run the
testsuite using Travis CI. Builds will be performed with gcc, sparse and clang with the -Werror compiler flag included,
therefore the build will fail if a new warning has been introduced.

The CI build is triggered via git push (regardless of the specific branch) or pull request against any Open vSwitch
GitHub repository that is linked to travis-ci.

Instructions to setup travis-ci for your GitHub repository:
1. Go to https://travis-ci.org/ and sign in using your GitHub ID.
2. Go to the “Repositories” tab and enable the ovs repository. You may disable builds for pushes or pull requests.

3. In order to avoid forks sending build failures to the upstream mailing list, the notification email recipient is
encrypted. If you want to receive email notification for build failures, replace the the encrypted string:

(a) Install the travis-ci CLI (Requires ruby >=2.0): gem install travis
(b) In your Open vSwitch repository: travis encrypt mylist@mydomain.org

(c) Add/replace the notifications section in .travis.yml and fill in the secure string as returned by travis encrypt:

notifications:
email:
recipients:
- secure: ".....

Note: You may remove/omit the notifications section to fall back to default notification behaviour which
is to send an email directly to the author and committer of the failing commit. Note that the email is only
sent if the author/committer have commit rights for the particular GitHub repository.

4. Pushing a commit to the repository which breaks the build or the testsuite will now trigger a email sent to
mylist@mydomain.org

4.11.3 vsperf

The vsperf project aims to develop a vSwitch test framework that can be used to validate the suitability of different
vSwitch implementations in a telco deployment environment. More information can be found on the OPNFV wiki.

4.12 OVN Gateway High Availability Plan

OVN Gateway

4.12. OVN Gateway High Availability Plan 127

https://travis-ci.org/
mailto:mylist@mydomain.org
mailto:mylist@mydomain.org
https://wiki.opnfv.org/display/vsperf/VSperf+Home

Open vSwitch Documentation, Release 2.6.0

The OVN gateway is responsible for shuffling traffic between the tunneled overlay network (governed by ovn-northd),
and the legacy physical network. In a naive implementation, the gateway is a single x86 server, or hardware VTEP. For
most deployments, a single system has enough forwarding capacity to service the entire virtualized network, however,
it introduces a single point of failure. If this system dies, the entire OVN deployment becomes unavailable. To mitigate
this risk, an HA solution is critical — by spreading responsibility across multiple systems, no single server failure can
take down the network.

An HA solution is both critical to the manageability of the system, and extremely difficult to get right. The purpose of
this document, is to propose a plan for OVN Gateway High Availability which takes into account our past experience
building similar systems. It should be considered a fluid changing proposal, not a set-in-stone decree.

4.12.1 Basic Architecture

In an OVN deployment, the set of hypervisors and network elements operating under the guidance of ovn-northd are
in what’s called “logical space”. These servers use VXLAN, STT, or Geneve to communicate, oblivious to the details
of the underlying physical network. When these systems need to communicate with legacy networks, traffic must be
routed through a Gateway which translates from OVN controlled tunnel traffic, to raw physical network traffic.

Since the gateway is typically the only system with a connection to the physical network all traffic between logical
space and the WAN must travel through it. This makes it a critical single point of failure — if the gateway dies,
communication with the WAN ceases for all systems in logical space.

To mitigate this risk, multiple gateways should be run in a “High Availability Cluster” or “HA Cluster”. The HA cluster
will be responsible for performing the duties of a gateways, while being able to recover gracefully from individual
member failures.

OVN Gateway HA Cluster

128 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

L2 vs L3 High Availability

In order to achieve this goal, there are two broad approaches one can take. The HA cluster can appear to the network
like a giant Layer 2 Ethernet Switch, or like a giant IP Router. These approaches are called L2HA, and L3HA
respectively. L2HA allows ethernet broadcast domains to extend into logical space, a significant advantage, but this
comes at a cost. The need to avoid transient L2 loops during failover significantly complicates their design. On the
other hand, L3HA works for most use cases, is simpler, and fails more gracefully. For these reasons, it is suggested
that OVN supports an L3HA model, leaving L2HA for future work (or third party VTEP providers). Both models are
discussed further below.

4.12.2 L3HA

In this section, we’ll work through a basic simple L3HA implementation, on top of which we’ll gradually build more
sophisticated features explaining their motivations and implementations as we go.

Naive active-backup

Let’s assume that there are a collection of logical routers which a tenant has asked for, our task is to schedule these
logical routers on one of N gateways, and gracefully redistribute the routers on gateways which have failed. The
absolute simplest way to achieve this is what we’ll call “naive-active-backup”.

Naive Active Backup HA Implementation

o + o +
Leader		Backup
A BC		
ot —F————++ +—t———— +

A | |

[| |

T O B e i t———

+ + + + | ovn-northd |

Traffic +-——————-—--—- +

In a naive active-backup, one of the Gateways is chosen (arbitrarily) as a leader. All logical routers (A, B, C in the
figure), are scheduled on this leader gateway and all traffic flows through it. ovn-northd monitors this gateway via
OpenFlow echo requests (or some equivalent), and if the gateway dies, it recreates the routers on one of the backups.

This approach basically works in most cases and should likely be the starting point for OVN — it’s strictly better than
no HA solution and is a good foundation for more sophisticated solutions. That said, it’s not without it’s limitations.
Specifically, this approach doesn’t coordinate with the physical network to minimize disruption during failures, and it

4.12. OVN Gateway High Availability Plan 129

Open vSwitch Documentation, Release 2.6.0

tightly couples failover to ovn-northd (we’ll discuss why this is bad in a bit), and wastes resources by leaving backup
gateways completely unutilized.

Router Failover

When ovn-northd notices the leader has died and decides to migrate routers to a backup gateway, the physical network
has to be notified to direct traffic to the new gateway. Otherwise, traffic could be blackholed for longer than necessary
making failovers worse than they need to be.

For now, let’s assume that OVN requires all gateways to be on the same IP subnet on the physical network. If this isn’t
the case, gateways would need to participate in routing protocols to orchestrate failovers, something which is difficult
and out of scope of this document.

Since all gateways are on the same IP subnet, we simply need to worry about updating the MAC learning tables of the
Ethernet switches on that subnet. Presumably, they all have entries for each logical router pointing to the old leader. If
these entries aren’t updated, all traffic will be sent to the (now defunct) old leader, instead of the new one.

In order to mitigate this issue, it’s recommended that the new gateway sends a Reverse ARP (RARP) onto the physical
network for each logical router it now controls. A Reverse ARP is a benign protocol used by many hypervisors when
virtual machines migrate to update L2 forwarding tables. In this case, the ethernet source address of the RARP is that
of the logical router it corresponds to, and its destination is the broadcast address. This causes the RARP to travel to
every L2 switch in the broadcast domain, updating forwarding tables accordingly. This strategy is recommended in
all failover mechanisms discussed in this document — when a router newly boots on a new leader, it should RARP its
MAC address.

Controller Independent Active-backup

Controller Independent Active-Backup Implementation

o + o +
Leader		Backup
A BC		
o + e +

[

[

+ + + +

Traffic

The fundamental problem with naive active-backup, is it tightly couples the failover solution to ovn-northd. This
can significantly increase downtime in the event of a failover as the (often already busy) ovn-northd controller has to
recompute state for the new leader. Worse, if ovn-northd goes down, we can’t perform gateway failover at all. This
violates the principle that control plane outages should have no impact on dataplane functionality.

In a controller independent active-backup configuration, ovn-northd is responsible for initial configuration while the
HA cluster is responsible for monitoring the leader, and failing over to a backup if necessary. ovn-northd sets HA
policy, but doesn’t actively participate when failovers occur.

Of course, in this model, ovn-northd is not without some responsibility. Its role is to pre-plan what should happen in
the event of a failure, leaving it to the individual switches to execute this plan. It does this by assigning each gateway
a unique leadership priority. Once assigned, it communicates this priority to each node it controls. Nodes use the
leadership priority to determine which gateway in the cluster is the active leader by using a simple metric: the leader
is the gateway that is healthy, with the highest priority. If that gateway goes down, leadership falls to the next highest
priority, and conversely, if a new gateway comes up with a higher priority, it takes over leadership.

130 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

Thus, in this model, leadership of the HA cluster is determined simply by the status of its members. Therefore if
we can communicate the status of each gateway to each transport node, they can individually figure out which is the
leader, and direct traffic accordingly.

Tunnel Monitoring

Since in this model leadership is determined exclusively by the health status of member gateways, a key problem is
how do we communicate this information to the relevant transport nodes. Luckily, we can do this fairly cheaply using
tunnel monitoring protocols like BFD.

The basic idea is pretty straightforward. Each transport node maintains a tunnel to every gateway in the HA cluster (not
just the leader). These tunnels are monitored using the BFD protocol to see which are alive. Given this information,
hypervisors can trivially compute the highest priority live gateway, and thus the leader.

In practice, this leadership computation can be performed trivially using the bundle or group action. Rather than using
OpenFlow to simply output to the leader, all gateways could be listed in an active-backup bundle action ordered by
their priority. The bundle action will automatically take into account the tunnel monitoring status to output the packet
to the highest priority live gateway.

Inter-Gateway Monitoring

One somewhat subtle aspect of this model, is that failovers are not globally atomic. When a failover occurs, it will
take some time for all hypervisors to notice and adjust accordingly. Similarly, if a new high priority Gateway comes
up, it may take some time for all hypervisors to switch over to the new leader. In order to avoid confusing the physical
network, under these circumstances it’s important for the backup gateways to drop traffic they’ve received erroneously.
In order to do this, each Gateway must know whether or not it is, in fact active. This can be achieved by creating a
mesh of tunnels between gateways. Each gateway monitors the other gateways its cluster to determine which are alive,
and therefore whether or not that gateway happens to be the leader. If leading, the gateway forwards traffic normally,
otherwise it drops all traffic.

Gateway Leadership Resignation

Sometimes a gateway may be healthy, but still may not be suitable to lead the HA cluster. This could happen for
several reasons including:

* The physical network is unreachable
* BFD (or ping) has detected the next hop router is unreachable
* The Gateway recently booted and isn’t fully configured

In this case, the Gateway should resign leadership by holding its tunnels down wusing the
other_config:cpath_down flag. This indicates to participating hypervisors and Gateways that this gate-
way should be treated as if it’s down, even though its tunnels are still healthy.

Router Specific Active-Backup

Router Specific Active-Backup

4.12. OVN Gateway High Availability Plan 131

Open vSwitch Documentation, Release 2.6.0

(. [
(. I
+ o+ + o+

Traffic

Controller independent active-backup is a great advance over naive active-backup, but it still has one glaring problem
— it under-utilizes the backup gateways. In ideal scenario, all traffic would split evenly among the live set of gateways.
Getting all the way there is somewhat tricky, but as a step in the direction, one could use the “Router Specific Active-
Backup” algorithm. This algorithm looks a lot like active-backup on a per logical router basis, with one twist. It
chooses a different active Gateway for each logical router. Thus, in situations where there are several logical routers,
all with somewhat balanced load, this algorithm performs better.

Implementation of this strategy is quite straightforward if built on top of basic controller independent active-backup.
On a per logical router basis, the algorithm is the same, leadership is determined by the liveness of the gateways.
The key difference here is that the gateways must have a different leadership priority for each logical router. These
leadership priorities can be computed by ovn-northd just as they had been in the controller independent active-backup
model.

Once we have these per logical router priorities, they simply need be communicated to the members of the gateway
cluster and the hypervisors. The hypervisors in particular, need simply have an active-backup bundle action (or group
action) per logical router listing the gateways in priority order for that router, rather than having a single bundle action
shared for all the routers.

Additionally, the gateways need to be updated to take into account individual router priorities. Specifically, each
gateway should drop traffic of backup routers it’s running, and forward traffic of active gateways, instead of simply
dropping or forwarding everything. This should likely be done by having ovn-controller recompute OpenFlow for the
gateway, though other options exist.

The final complication is that ovn-northd’s logic must be updated to choose these per logical router leadership priorities
in a more sophisticated manner. It doesn’t matter much exactly what algorithm it chooses to do this, beyond that it
should provide good balancing in the common case. 1.E. each logical routers priorities should be different enough that
routers balance to different gateways even when failures occur.

Preemption

In an active-backup setup, one issue that users will run into is that of gateway leader preemption. If a new Gateway is
added to a cluster, or for some reason an existing gateway is rebooted, we could end up in a situation where the newly
activated gateway has higher priority than any other in the HA cluster. In this case, as soon as that gateway appears, it
will preempt leadership from the currently active leader causing an unnecessary failover. Since failover can be quite
expensive, this preemption may be undesirable.

The controller can optionally avoid preemption by cleverly tweaking the leadership priorities. For each router, new
gateways should be assigned priorities that put them second in line or later when they eventually come up. Furthermore,
if a gateway goes down for a significant period of time, its old leadership priorities should be revoked and new ones
should be assigned as if it’s a brand new gateway. Note that this should only happen if a gateway has been down for a
while (several minutes), otherwise a flapping gateway could have wide ranging, unpredictable, consequences.

Note that preemption avoidance should be optional depending on the deployment. One necessarily sacrifices optimal
load balancing to satisfy these requirements as new gateways will get no traffic on boot. Thus, this feature represents
a trade-off which must be made on a per installation basis.

132 Chapter 4. Open vSwitch Deep Dive

Open vSwitch Documentation, Release 2.6.0

Fully Active-Active HA

Fully Active-Active HA

+ + + +
Traffic

The final step in L3HA is to have true active-active HA. In this scenario each router has an instance on each Gateway,
and a mechanism similar to ECMP is used to distribute traffic evenly among all instances. This mechanism would
require Gateways to participate in routing protocols with the physical network to attract traffic and alert of failures. It
is out of scope of this document, but may eventually be necessary.

4.12.3 L2HA

L2HA is very difficult to get right. Unlike L3HA, where the consequences of problems are minor, in L2HA if two
gateways are both transiently active, an L2 loop triggers and a broadcast storm results. In practice to get around
this, gateways end up implementing an overly conservative “when in doubt drop all traffic” policy, or they implement
something like MLAG.

MLAG has multiple gateways work together to pretend to be a single L2 switch with a large LACP bond. In principle,
it’s the right solution to the problem as it solves the broadcast storm problem, and has been deployed successfully in
other contexts. That said, it’s difficult to get right and not recommended.

4.12. OVN Gateway High Availability Plan 133

Open vSwitch Documentation, Release 2.6.0

134 Chapter 4. Open vSwitch Deep Dive

CHAPTER 5

How-to Guides

Answers to common “How do 1?”-style questions. For more information on the topics covered herein, refer to Open
vSwitch Deep Dive.

5.1 Open vSwitch with KVM

This document describes how to use Open vSwitch with the Kernel-based Virtual Machine (KVM).

Note: This document assumes that you have Open vSwitch set up on a Linux system.

5.1.1 Setup

KVM uses tunctl to handle various bridging modes, which you can install with the Debian/Ubuntu package
uml-utilities:

$ apt—-get install uml-utilities

Next, you will need to modify or create custom versions of the gemu—ifup and gemu-ifdown scripts. In this
guide, we’ll create custom versions that make use of example Open vSwitch bridges that we’ll describe in this guide.

Create the following two files and store them in known locations. For example:

echo << EOF > /etc/ovs—-ifup
#!/bin/sh

switch='br0'

/sbin/ifconfig $1 0.0.0.0 up
ovs-vsctl add-port ${switch} $1
EOF

echo << EOF > /etc/ovs—-ifdown
#!/bin/sh

switch='br0'
/sbin/ifconfig $1 0.0.0.0 down
ovs-vsctl del-port ${switch} $1

The basic usage of Open vSwitch is described at the end of Open vSwitch on Linux, FreeBSD and NetBSD. If you
haven’t already, create a bridge named br 0 with the following command:

135

Open vSwitch Documentation, Release 2.6.0

’$ ovs-vsctl add-br br0

Then, add a port to the bridge for the NIC that you want your guests to communicate over (e.g. eth0):

’$ ovs-vsctl add-port br0 ethO

Refer to ovs-vsctl(8) for more details.

Next, we’ll start a guest that will use our ifup and ifdown scripts:

S kvm -m 512 -net nic,macaddr=00:11:22:EE:EE:EE -net \
tap, script=/etc/ovs—-ifup, downscript=/etc/ovs—-ifdown -drive \
file=/path/to/disk-image, boot=on

This will start the guest and associate a tap device with it. The ovs—1 fup script will add a port on the br0Q bridge so
that the guest will be able to communicate over that bridge.

To get some more information and for debugging you can use Open vSwitch utilities such as ovs-dpctl and ovs-ofctl,
For example:

$ ovs—-dpctl show
$ ovs—-ofctl show br0

You should see tap devices for each KVM guest added as ports to the bridge (e.g. tap0)

Refer to ovs-dpctl(8) and ovs-ofctl(8) for more details.

5.1.2 Bug Reporting

Please report problems to bugs @openvswitch.org.

5.2 Open vSwitch with SELinux

Security-Enhanced Linux (SELinux) is a Linux kernel security module that limits “the malicious things” that certain
processes, including OVS, can do to the system in case they get compromised. In our case SELinux basically serves
as the “second line of defense” that limits the things that OVS processes are allowed to do. The “first line of defense”
is proper input validation that eliminates code paths that could be used by attacker to do any sort of “escape attacks”,
such as file name escape, shell escape, command line argument escape, buffer escape. Since developers don’t always
implement proper input validation, then SELinux Access Control’s goal is to confine damage of such attacks, if they
turned out to be possible.

Besides Type Enforcement there are other SELinux features, but they are out of scope for this document.
Currently there are two SELinux policies for Open vSwitch:
* the one that ships with your Linux distribution (i.e. selinux-policy-targeted package)

* the one that ships with OVS (i.e. openvswitch-selinux-policy package)

5.2.1 Limitations

If Open vSwitch is directly started from command line, then it will run under unconfined_t SELinux domain that
basically lets daemon to do whatever it likes. This is very important for developers to understand, because they might
introduced code in OVS that invokes new system calls that SELinux policy did not anticipate. This means that their
feature may have worked out just fine for them. However, if someone else would try to run the same code when Open
vSwitch is started through systemctl, then Open vSwitch would get Permission Denied errors.

136 Chapter 5. How-to Guides

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

Currently the only distributions that enforce SELinux on OVS by default are RHEL, CentOS and Fedora. While
Ubuntu and Debian also have some SELinux support, they run Open vSwitch under the unrestricted unconfined
domain. Also, it seems that Ubuntu is leaning towards Apparmor that works slightly differently than SELinux.

SELinux and Open vSwitch are moving targets. What this means is that, if you solely rely on your Linux distribution’s
SELinux policy, then this policy might not have correctly anticipated that a newer Open vSwitch version needs extra
white list rules. However, if you solely rely on SELinux policy that ships with Open vSwitch, then Open vSwitch
developers might not have correctly anticipated the feature set that your SELinux implementation supports.

5.2.2 Installation

Refer to Fedora, RHEL 7.x Packaging for Open vSwitch for instructions on how to build all Open vSwitch rpm
packages.

Once the package is built, install it on your Linux distribution:

’$ dnf install openvswitch-selinux-policy-2.4.1-1.el7.centos.noarch.rpm

Restart Open vSwitch:

’$ systemctl restart openvswitch

5.2.3 Troubleshooting

When SELinux was implemented some of the standard system utilities acquired -z flag (e.g. ps —Z, 1s -2). For
example, to find out under which SELinux security domain process runs, use:

$ ps -AZ | grep ovs-vswitchd
system_u:system_r:openvswitch_t:s0 854 2 ovs-vswitchd

To find out the SELinux label of file or directory, use:

$ 1s -Z /etc/openvswitch/conf.db
system_u:object_r:openvswitch_rw_t:s0 /etc/openvswitch/conf.db

If, for example, SELinux policy for Open vSwitch is too strict, then you might see in Open vSwitch log files “Permis-
sion Denied” errors:

$ cat /var/log/openvswitch/ovs—-vswitchd.log

vlog|INFO|opened log file /var/log/openvswitch/ovs-vswitchd.log

ovs_numa | INFO|Discovered 2 CPU cores on NUMA node 0

ovs_numa | INFO|Discovered 1 NUMA nodes and 2 CPU cores

reconnect | INFO|unix:/var/run/openvswitch/db.sock: connecting...

reconnect | INFO|unix:/var/run/openvswitch/db.sock: connected

netlink_socket |ERR|fcntl: Permission denied

dpif_netlink|ERR|Generic Netlink family 'ovs_datapath' does not exist.
The Open vSwitch kernel module is probably not loaded.

dpif |[WARN|failed to enumerate system datapaths: Permission denied

dpif |[WARN|failed to create datapath ovs—-system: Permission denied

However, not all “Permission denied” errors are caused by SELinux. So, before blaming too strict SELinux policy,
make sure that indeed SELinux was the one that denied OVS access to certain resources, for example, run:

$ grep “openvswitch_t” /var/log/audit/audit.log | tail type=AVC msg=audit(1453235431.640:114671):
avc: denied { getopt } for pid=4583 comm="ovs-vswitchd” scon-
text=system_u:system_r:openvswitch_t:sO tcontext=system_u:system_r:openvswitch_t:sO
tclass=netlink_generic_socket permissive=0

5.2. Open vSwitch with SELinux 137

Open vSwitch Documentation, Release 2.6.0

If SELinux denied OVS access to certain resources, then make sure that you have installed our SELinux policy package
that “loosens” up distribution’s SELinux policy:

$ rpm -ga | grep openvswitch-selinux
openvswitch-selinux-policy-2.4.1-1.el7.centos.noarch

Then verify that this module was indeed loaded:

semodule -1 | grep openvswitch
openvswitch—-custom 1.0
openvswitch 1.1.1

If you still see Permission denied errors, then take a look into selinux/openvswitch. te file in the OVS source
tree and try to add white list rules. This is really simple, just run SELinux audit2allow tool:

’$ grep "openvswitch_t" /var/log/audit/audit.log | audit2allow -M ovslocal

5.2.4 Contributing SELinux policy patches

Here are few things to consider before proposing SELinux policy patches to Open vSwitch developer mailing list:

1. The SELinux policy that resides in Open vSwitch source tree amends SELinux policy that ships with your
distributions.

Implications of this are that it is assumed that the distribution’s Open vSwitch SELinux module must be already
loaded to satisfy dependencies.

2. The SELinux policy that resides in Open vSwitch source tree must work on all currently relevant Linux distri-
butions.

Implications of this are that you should use only those SELinux policy features that are supported by the lowest
SELinux version out there. Typically this means that you should test your SELinux policy changes on the oldest
RHEL or CentOS version that this OVS version supports. Refer to Fedora, RHEL 7.x Packaging for Open
vSwitch to find out this.

3. The SELinux policy is enforced only when state transition to openvswitch_t domain happens.

Implications of this are that perhaps instead of loosening SELinux policy you can do certain things at the time
rpm package is installed.

5.2.5 Reporting Bugs

Report problems to bugs @openvswitch.org.

5.3 Open vSwitch with Libvirt

This document describes how to use Open vSwitch with Libvirt 0.9.11 or later. This document assumes that you
followed Open vSwitch on Linux, FreeBSD and NetBSD or installed Open vSwitch from distribution packaging such
as a .deb or .rpm. The Open vSwitch support is included by default in Libvirt 0.9.11. Consult www.libvirt.org for
instructions on how to build the latest Libvirt, if your Linux distribution by default comes with an older Libvirt release.

138 Chapter 5. How-to Guides

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

5.3.1 Limitations

Currently there is no Open vSwitch support for networks that are managed by libvirt (e.g. NAT). As of now, only
bridged networks are supported (those where the user has to manually create the bridge).

5.3.2 Setup

First, create the Open vSwitch bridge by using the ovs-vsctl utility (this must be done with administrative privileges):

’$ ovs—-vsctl add-br ovsbr ‘

Once that is done, create a VM, if necessary, and edit its Domain XML file:

’$ virsh edit <vm> ‘

Lookup in the Domain XML file the <interface> section. There should be one such XML section for each
interface the VM has:

<interface type='network'>

<mac address='52:54:00:71:bl:b6"'/>

<source network='default'/>

<address type='pci' domain='0x0000"' bus='0x00"' slot='0x03"' function='0x0"'/>
</interface>

And change it to something like this:

<interface type='bridge'>

<mac address='52:54:00:71:bl:b6"'/>

<source bridge='ovsbr'/>

<virtualport type='openvswitch'/>

<address type='pci' domain='0x0000"' bus='0x00"' slot='0x03' function='0x0"'/>
</interface>

The interface type must be set to bridge. The <source> XML element specifies to which bridge this interface will
be attached to. The <virtualport> element indicates that the bridge in <source> element is an Open vSwitch
bridge.

Then (re)start the VM and verify if the guest’s vnet interface is attached to the ovsbr bridge:

’$ ovs—vsctl show

5.3.3 Troubleshooting

If the VM does not want to start, then try to run the libvirtd process either from the terminal, so that all errors are
printed in console, or inspect Libvirt/Open vSwitch log files for possible root cause.

5.3.4 Bug Reporting

Report problems to bugs @openvswitch.org.

5.4 Open vSwitch with SSL

If you plan to configure Open vSwitch to connect across the network to an OpenFlow controller, then we recom-
mend that you build Open vSwitch with OpenSSL. SSL support ensures integrity and confidentiality of the OpenFlow

5.4. Open vSwitch with SSL 139

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

connections, increasing network security.

This document describes how to configure an Open vSwitch to connect to an OpenFlow controller over SSL. Refer to
Open vSwitch on Linux, FreeBSD and NetBSD. for instructions on building Open vSwitch with SSL support.

Open vSwitch uses TLS version 1.0 or later (TLSv1), as specified by RFC 2246, which is very similar to SSL version
3.0. TLSv1 was released in January 1999, so all current software and hardware should implement it.

This document assumes basic familiarity with public-key cryptography and public-key infrastructure.

5.4.1 SSL Concepts for OpenFlow

This section is an introduction to the public-key infrastructure architectures that Open vSwitch supports for SSL
authentication.

To connect over SSL, every Open vSwitch must have a unique private/public key pair and a certificate that signs that
public key. Typically, the Open vSwitch generates its own public/private key pair. There are two common ways to
obtain a certificate for a switch:

* Self-signed certificates: The Open vSwitch signs its certificate with its own private key. In this case, each switch
must be individually approved by the OpenFlow controller(s), since there is no central authority.

This is the only switch PKI model currently supported by NOX (http://noxrepo.org).

» Switch certificate authority: A certificate authority (the “switch CA”) signs each Open vSwitch’s public key.
The OpenFlow controllers then check that any connecting switches’ certificates are signed by that certificate
authority.

This is the only switch PKI model supported by the simple OpenFlow controller included with Open vSwitch.

Each Open vSwitch must also have a copy of the CA certificate for the certificate authority that signs OpenFlow
controllers’ keys (the “controller CA” certificate). Typically, the same controller CA certificate is installed on all of
the switches within a given administrative unit. There are two common ways for a switch to obtain the controller CA
certificate:

* Manually copy the certificate to the switch through some secure means, e.g. using a USB flash drive, or over
the network with “scp”, or even FTP or HTTP followed by manual verification.

¢ Open vSwitch “bootstrap” mode, in which Open vSwitch accepts and saves the controller CA certificate that
it obtains from the OpenFlow controller on its first connection. Thereafter the switch will only connect to
controllers signed by the same CA certificate.

5.4.2 Establishing a Public Key Infrastructure

Open vSwitch can make use of your existing public key infrastructure. If you already have a PKI, you may skip
forward to the next section. Otherwise, if you do not have a PKI, the ovs-pki script included with Open vSwitch can
help. To create an initial PKI structure, invoke it as:

$ ovs-pki init

This will create and populate a new PKI directory. The default location for the PKI directory depends on how the
Open vSwitch tree was configured (to see the configured default, look for the ——di r option description in the output
of ovs—-pki —-help).

The pki directory contains two important subdirectories. The controllerca subdirectory contains controller CA files,
including the following:

cacert.pem Root certificate for the controller certificate authority. Each Open vSwitch must have a copy of this file to
allow it to authenticate valid controllers.

140 Chapter 5. How-to Guides

http://noxrepo.org

Open vSwitch Documentation, Release 2.6.0

private/cakey.pem Private signing key for the controller certificate authority. This file must be kept secret. There is
no need for switches or controllers to have a copy of it.

The switchca subdirectory contains switch CA files, analogous to those in the controllerca subdirectory:

cacert.pem Root certificate for the switch certificate authority. The OpenFlow controller must have this file to enable
it to authenticate valid switches.

private/cakey.pem Private signing key for the switch certificate authority. This file must be kept secret. There is no
need for switches or controllers to have a copy of it.

After you create the initial structure, you can create keys and certificates for switches and controllers with ovs-pki.
Refer to the ovs-pki(8) manage for complete details. A few examples of its use follow:

Controller Key Generation

To create a controller private key and certificate in files named ctl-privkey.pem and ctl-cert.pem, run the following on
the machine that contains the PKI structure:

$ ovs-pki reg+sign ctl controller

ctl-privkey.pem and ctl-cert.pem would need to be copied to the controller for its use at runtime. If, for testing purposes,
you were to use ovs-testcontroller, the simple OpenFlow controller included with Open vSwitch, then the —private-key
and —certificate options, respectively, would point to these files.

It is very important to make sure that no stray copies of ctl-privkey.pem are created, because they could be used to
impersonate the controller.

Switch Key Generation with Self-Signed Certificates

If you are using self-signed certificates (see “SSL Concepts for OpenFlow”), this is one way to create an acceptable
certificate for your controller to approve.

1. Run the following command on the Open vSwitch itself:

$ ovs-pki self-sign sc

Note: This command does not require a copy of any of the PKI files generated by ovs-pki init, and you
should not copy them to the switch because some of them have contents that must remain secret for security.)

The ovs—-pki self-sign command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret. There is
ordinarily no need to copy this file off the Open vSwitch.

sc-cert.pem the switch certificate, signed by the switch’s own private key. Its contents are not a secret.

2. Optionally, copy controllerca/cacert.pem from the machine that has the OpenFlow PKI structure and verify that
it is correct. (Otherwise, you will have to use CA certificate bootstrapping when you configure Open vSwitch
in the next step.)

3. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

5.4. Open vSwitch with SSL 141

Open vSwitch Documentation, Release 2.6.0

Switch Key Generation with a Switch PKI (Easy Method)

If you are using a switch PKI (see “SSL Concepts for OpenFlow”, above), this method of switch key generation is a
little easier than the alternate method described below, but it is also a little less secure because it requires copying a
sensitive private key from file from the machine hosting the PKI to the switch.

1. Run the following on the machine that contains the PKI structure:

$ ovs-pki regt+sign sc switch

This command has the following output:
sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret.
sc-cert.pem the switch certificate. Its contents are not a secret.

2. Copy sc-privkey.pem and sc-cert.pem, plus controllerca/cacert.pem, to the Open vSwitch.

3. Delete the copies of sc-privkey.pem and sc-cert.pem on the PKI machine and any other copies that may have
been made in transit. It is very important to make sure that there are no stray copies of sc-privkey.pem, because
they could be used to impersonate the switch.

Warning: Don’t delete controllerca/cacert.pem! It is not security-sensitive and you will need it to configure
additional switches.

4. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Switch Key Generation with a Switch PKI (More Secure)

If you are using a switch PKI (see “SSL Concepts for OpenFlow”, above), then, compared to the previous method, the
method described here takes a little more work, but it does not involve copying the private key from one machine to
another, so it may also be a little more secure.

1. Run the following command on the Open vSwitch itself:

$ ovs-pki reqg sc

Note: This command does not require a copy of any of the PKI files generated by “ovs-pki init”’, and you
should not copy them to the switch because some of them have contents that must remain secret for security.

The “ovs-pki req” command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret. There is
ordinarily no need to copy this file off the Open vSwitch.

sc-req.pem the switch “certificate request”’, which is essentially the switch’s public key. Its contents are not a
secret.

a fingerprint this is output on stdout.
2. Write the fingerprint down on a slip of paper and copy sc-req.pem to the machine that contains the PKI structure.

3. On the machine that contains the PKI structure, run:

$ ovs-pki sign sc switch

This command will output a fingerprint to stdout and request that you verify it. Check that it is the same as the
fingerprint that you wrote down on the slip of paper before you answer “yes”.

142 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

ovs—-pki sign creates a file named sc-cert.pem, which is the switch certificate. Its contents are not a secret.

4. Copy the generated sc-cert.pem, plus controllerca/cacert.pem from the PKI structure, to the Open vSwitch, and
verify that they were copied correctly.

You may delete sc-cert.pem from the machine that hosts the PKI structure now, although it is not important that
you do so.

Warning: Don’t delete controllerca/cacert.pem! It is not security-sensitive and you will need it to configure
additional switches.

5. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

5.4.3 Configuring SSL Support

SSL configuration requires three additional configuration files. The first two of these are unique to each Open vSwitch.
If you used the instructions above to build your PKI, then these files will be named sc-privkey.pem and sc-cert.pem,
respectively:

* A private key file, which contains the private half of an RSA or DSA key.

This file can be generated on the Open vSwitch itself, for the greatest security, or it can be generated elsewhere
and copied to the Open vSwitch.

The contents of the private key file are secret and must not be exposed.
* A certificate file, which certifies that the private key is that of a trustworthy Open vSwitch.

This file has to be generated on a machine that has the private key for the switch certification authority, which
should not be an Open vSwitch; ideally, it should be a machine that is not networked at all.

The certificate file itself is not a secret.

The third configuration file is typically the same across all the switches in a given administrative unit. If you used the
instructions above to build your PKI, then this file will be named cacert.pem:

¢ The root certificate for the controller certificate authority. The Open vSwitch verifies it that is authorized to
connect to an OpenFlow controller by verifying a signature against this CA certificate.

Once you have these files, configure ovs-vswitchd to use them using the ovs-vsctl set-ssl command,e.g.:

$ ovs-vsctl set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc—cert.pem /etc/openvswitch/cacert.pem

Substitute the correct file names, of course, if they differ from the ones used above. You should use absolute file
names (ones that begin with /), because ovs-vswitchd’s current directory is unrelated to the one from which you run
ovs-vsctl.

If you are using self-signed certificates (see “SSL Concepts for OpenFlow”) and you did not copy con-
trollerca/cacert.pem from the PKI machine to the Open vSwitch, then add the ——boot strap option, e.g.:

$ ovs-vsctl —- —--bootstrap set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc—cert.pem /etc/openvswitch/cacert.pem

After you have added all of these configuration keys, you may specify ss1: connection methods elsewhere in the
configuration database. t cp: connection methods are still allowed even after SSL has been configured, so for security
you should use only ss1: connections.

5.4. Open vSwitch with SSL 143

Open vSwitch Documentation, Release 2.6.0

5.4.4 Reporting Bugs

Report problems to bugs @openvswitch.org.

5.5 Using LISP tunneling

LISP is a layer 3 tunneling mechanism, meaning that encapsulated packets do not carry Ethernet headers, and ARP
requests shouldn’t be sent over the tunnel. Because of this, there are some additional steps required for setting up LISP
tunnels in Open vSwitch, until support for L3 tunnels will improve.

This guide assumes tunneling between two VMs connected to OVS bridges on different hypervisors reachable over
IPv4. Of course, more than one VM may be connected to any of the hypervisors, and a hypervisor may communicate
with several different hypervisors over the same lisp tunneling interface. A LISP “map-cache” can be implemented
using flows, see example at the bottom of this file.

There are several scenarios:

1. the VMs have IP addresses in the same subnet and the hypervisors are also in a single subnet (although one
different from the VM’s);

2. the VMs have IP addresses in the same subnet but the hypervisors are separated by a router;
3. the VMs are in different subnets.

In cases 1) and 3) ARP resolution can work as normal: ARP traffic is configured not to go through the LISP tunnel.
For case 1) ARP is able to reach the other VM, if both OVS instances default to MAC address learning. Case 3)
requires the hypervisor be configured as the default router for the VMs.

In case 2) the VMs expect ARP replies from each other, but this is not possible over a layer 3 tunnel. One solution
is to have static MAC address entries preconfigured on the VMs (e.g., arp —f /etc/ethers on startup on Unix
based VMs), or have the hypervisor do proxy ARP. In this scenario, the ethO interfaces need not be added to the br0
bridge in the examples below.

On the receiving side, the packet arrives without the original MAC header. The LISP tunneling code attaches a header
with harcoded source and destination MAC address 02:00:00:00:00: 00. This address has all bits set to 0, except
the locally administered bit, in order to avoid potential collisions with existing allocations. In order for packets to
reach their intended destination, the destination MAC address needs to be rewritten. This can be done using the flow
table.

See below for an example setup, and the associated flow rules to enable LISP tunneling.

Diagram
+-— +-—
[VM1 | | VM2 |
+———t +———t
| |
+-——[tap0]——+ +——[tap0]———+
I \ \ \
[lispO] OVSl [ethO]-—-——--———---———~ [eth0] OVS2 [lispO]
| \ \ \
Fm——————— + Fmm +

On each hypervisor, interfaces tap0, ethO, and lisp0O are added to a single bridge instance, and become numbered 1, 2,
and 3 respectively:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 tapO
$ ovs-vsctl add-port br0 ethO

144 Chapter 5. How-to Guides

mailto:bugs@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

$ ovs-vsctl add-port br0 lispO \
—-— set Interface lisp0O type=lisp options:remote_ip=flow options:key=flow

The last command sets up flow based tunneling on the lisp0 interface. From the LISP point of view, this is like having
the Tunnel Router map cache implemented as flow rules.

Flows on br0 should be configured as follows:

priority=3,dl_dst=02:00:00:00:00:00,action=mod_dl_dst:<VMx_MAC>,output:1l
priority=2,in_port=1,dl_type=0x0806,action=NORMAL

priority=1,in_port=1,dl_type=0x0800,vlan_tci=0,nw_src=<EID_prefix>,action=set_field:<0OV$x_IP>->tun_d:
priority=0, action=NORMAL

The third rule is like a map cache entry: the <EID_prefix> specified by the nw_src match field is mapped to the
RLOC <0vSx_IP>, which is set as the tunnel destination for this particular flow.

Optionally, if you want to use Instance ID in a flow, you can add set_tunnel : <IID> to the action list.

5.6 Connecting VMs Using Tunnels

This document describes how to use Open vSwitch to allow VMs on two different hosts to communicate over port-
based GRE tunnels.

Note: This guide covers the steps required to configure GRE tunneling. The same approach can be used for any of
the other tunneling protocols supported by Open vSwitch.

Host 1 Host 2

—

¢ " Transport 7 Management
X Network T Network
~—_ il . —_ _k___j__/

5.6.1 Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

* Transport Network

5.6. Connecting VMs Using Tunnels 145

Open vSwitch Documentation, Release 2.6.0

Ethernet network for tunnel traffic between hosts running OVS. Depending on the tunneling protocol being used
(this cookbook uses GRE), some configuration of the physical switches may be required (for example, it may
be necessary to adjust the MTU). Configuration of the physical switching hardware is outside the scope of this
cookbook entry.

¢ Management Network

Strictly speaking this network is not required, but it is a simple way to give the physical host an IP address
for remote access since an IP address cannot be assigned directly to a physical interface that is part of an OVS
bridge.

Two Physical Hosts
The environment assumes the use of two hosts, named host! and host2. Both hosts are hypervisors running Open
vSwitch. Each host has two NICs, eth0 and ethl, which are configured as follows:

* eth0 is connected to the Transport Network. eth0 has an IP address that is used to communicate with Host2 over
the Transport Network.

* ethl is connected to the Management Network. ethl has an IP address that is used to reach the physical host for
management.

Four Virtual Machines

Each host will run two virtual machines (VMs). vml and vm2 are running on hostl, while vin3 and vm4 are running
on host2.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vi£1. 0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

5.6.2 Configuration Steps

Before you begin, you’ll want to ensure that you know the IP addresses assigned to ethO on both hostl and host2, as
they will be needed during the configuration.

Perform the following configuration on hostl.

1. Create an OVS bridge:

$ ovs-vsctl add-br bro0

Note: You will not add ethO to the OVS bridge.

2. Boot vl and vm2 on hostl. If the VMs are not automatically attached to OVS, add them to the OVS bridge
you just created (the commands below assume tap0 is for vinl and tapl is for vin2):

$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 tapl

3. Add a port for the GRE tunnel:

146 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

$ ovs-vsctl add-port br0 greO \
—— set interface gre0O type=gre options:remote_ip=<IP of ethO on host2>

Create a mirrored configuration on fost2 using the same basic steps:

1. Create an OVS bridge, but do not add any physical interfaces to the bridge:

$ ovs-vsctl add-br br0

2. Launch vm3 and vm4 on host2, adding them to the OVS bridge if needed (again, tap0 is assumed to be for vin3
and tapl is assumed to be for vin4):

$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 tapl

3. Create the GRE tunnel on host2, this time using the IP address for ethO on host! when specifying the
remote_1ip option:

$ ovs-vsctl add-port br0 gre0 — set interface greQ type=gre options:remote_ip=<IP of ethO on
host1>

5.6.3 Testing
Pings between any of the VMs should work, regardless of whether the VMs are running on the same host or different
hosts.

Using ip route show (or equivalent command), the routing table of the operating system running inside the VM
should show no knowledge of the IP subnets used by the hosts, only the IP subnet(s) configured within the VM’s
operating system. To help illustrate this point, it may be preferable to use very different IP subnet assignments within
the guest VMs than what is used on the hosts.

5.6.4 Troubleshooting

If connectivity between VMs on different hosts isn’t working, check the following items:

* Make sure that hostl and host2 have full network connectivity over eth0 (the NIC attached to the Transport
Network). This may necessitate the use of additional IP routes or IP routing rules.

* Make sure that gre0 on host] points to ethO on host2, and that gre0 on host2 points to eth0 on hostl.

¢ Ensure that all the VMs are assigned IP addresses on the same subnet; there is no IP routing functionality in this
configuration.

5.7 Connecting VMs Using Tunnels (Userspace)

This document describes how to use Open vSwitch to allow VMs on two different hosts to communicate over VXLAN
tunnels. Unlike Connecting VMs Using Tunnels, this configuration works entirely in userspace.

Note: This guide covers the steps required to configure VXLAN tunneling. The same approach can be used for any
of the other tunneling protocols supported by Open vSwitch.

5.7. Connecting VMs Using Tunnels (Userspace) 147

Open vSwitch Documentation, Release 2.6.0

o +
| vmO | 192.168.1.1/24
fom +
(vm_port0)
|
|
|
R +
| br-int \ 192.168.1.2/24
o + o +
| vxlanO | | vxlanO |
fom + o +

R +

| br-phy | 172.168.1.2/24
fommmm + fommm e —— +
| dpdk0O/ethl |- | ethl |
Fom e + Fom e +
Host A with OVS. Remote host.

5.7.1 Setup

This guide assumes the environment is configured as described below.

Two Physical Hosts
The environment assumes the use of two hosts, named hostI and host2. We only detail the configuration of host/ but

a similar configuration can be used for host2. Both hosts should be configured with Open vSwitch (with or without
the DPDK datapath), QEMU/KVM and suitable VM images. Open vSwitch should be running before proceeding.

5.7.2 Configuration Steps

Perform the folowing configuration on host1:

1. Create a br—int bridge:

$ ovs-vsctl —--may-exist add-br br-int \
—-— set Bridge br-int datapath_type=netdev \
-— br-set-external-id br-int bridge-id br-int \
—-— set bridge br-int fail-mode=standalone

2. Add a port to this bridge. If using tap ports, first boot a VM and then add the port to the bridge:

$ ovs-vsctl add-port br0 tap0

If using DPDK vhost-user ports, add the port and then boot the VM accordingly, using vm_port0 as the
interface name:

$ ovs-vsctl add-port br-int vm_port0 \
—-— set Interface vm_port0 type=dpdkvhostuser

3. Configure the IP address of the VM interface in the VM itself:

148 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

$ ip addr add 192.168.1.1/24 dev ethO

4. On hostl, add a port for the VXLAN tunnel:

$ ovs-vsctl add-port br-int vxlan0O \
—-— set interface vxlanO type=vxlan options:remote_ip=172.168.1.2

Note: 172.168.1.2 is the remote tunnel end point address. On the remote host this willbe 172.168.1.1

5. Create a br—phy bridge:

$ ovs-vsctl —--may-exist add-br br-phy \
—— set Bridge br-phy datapath_type=netdev \
—-— br-set-external-id br-phy bridge-id br-phy \
—-— set bridge br-phy fail-mode=standalone \
other_config:hwaddr=<mac address of ethl interface>

Note: This additional bridge is required when running Open vSwitch in userspace rather than kernel-based
Open vSwitch. The purpose of this bridge is to allow use of the kernel network stack for routing and ARP
resolution. The datapath needs to look-up the routing table and ARP table to prepare the tunnel header and
transmit data to the output port.

Note: ethl is used rather than ethO. This is to ensure network connectivity is retained.

6. Attach eth1/dpdkO0 to the br—phy bridge.

If the physical port et h1 is operating as a kernel network interface, run:

ovs-vsctl —--timeout 10 add-port br-phy ethl
ip addr add 172.168.1.1/24 dev br-phy

ip link set br-phy up

ip addr flush dev ethl 2>/dev/null

ip link set ethl up

iptables -F

v v A Ay

If instead the interface is a DPDK interface and bound to the igb_uio or vfio driver, run:

$ ovs-vsctl —-timeout 10 add-port br-phy dpdk0 \
—-— set Interface dpdk0 type=dpdk

$ ip addr add 172.168.1.1/24 dev br-phy

ip link set br-phy up

$ iptables -F

U

The commands are different as DPDK interfaces are not managed by the kernel, thus, the port details are not
visible to any ip commands.

Important: Attempting to use the kernel network commands for a DPDK interface will result in a loss of
connectivity through ethl. Refer to Basic Configuration for more details.

Once complete, check the cached routes using ovs-appctl command:

5.7. Connecting VMs Using Tunnels (Userspace) 149

Open vSwitch Documentation, Release 2.6.0

‘$ ovs—appctl ovs/route/show

If the tunnel route is missing, adding it now:

’$ ovs—appctl ovs/route/add 172.168.1.1/24 br-ethl

Repeat these steps if necessary for host2, but using 192.168.1.1 and 172.168.1.2 for the VM and tunnel
interface IP addresses, respectively.

5.7.3 Testing

With this setup, ping to VXLAN target device (192.168.1.2) should work. Traffic will be VXLAN encapsulated
and sent over the et h1/dpdk0 interface.

5.7.4 Tunneling-related Commands

Tunnel routing table

To add route:

’$ ovs—appctl ovs/route/add <IP address>/<prefix length> <output-bridge—-name> <gw>

To see all routes configured:

‘$ ovs—appctl ovs/route/show

To delete route:

’$ ovs—appctl ovs/route/del <IP address>/<prefix length>

To look up and display the route for a destination:

’$ ovs—appctl ovs/route/lookup <IP address>

ARP

To see arp cache content:

’$ ovs—appctl tnl/arp/show

To flush arp cache:

’$ ovs—appctl tnl/arp/flush

To set a specific arp entry:

‘$ ovs—appctl tnl/arp/set <bridge> <IP address> <MAC address>

Ports

To check tunnel ports listening in ovs-vswitchd:

$ ovs—appctl tnl/ports/show

150 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

To set range for VxLan UDP source port:

’$ ovs—appctl tnl/egress_port_range <numl> <num2>

To show current range:

’$ ovs—appctl tnl/egress_port_range

Datapath

To check datapath ports:

’$ ovs—appctl dpif/show

To check datapath flows:

‘$ ovs—appctl dpif/dump-flows

5.8 Isolating VM Traffic Using VLANs

This document describes how to use Open vSwitch is to isolate VM traffic using VLANS.

5.8. Isolating VM Traffic Using VLANs 151

Open vSwitch Documentation, Release 2.6.0

Host 1 Host 2

— T e o T

7 Management

5.8.1 Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

¢ Data Network

Ethernet network for VM data traffic, which will carry VLAN-tagged traffic between VMs. Your physical
switch(es) must be capable of forwarding VLAN-tagged traffic and the physical switch ports should operate as
VLAN trunks. (Usually this is the default behavior. Configuring your physical switching hardware is beyond
the scope of this document.)

* Management Network

This network is not strictly required, but it is a simple way to give the physical host an IP address for remote
access, since an IP address cannot be assigned directly to ethO (more on that in a moment).

152 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

Two Physical Hosts
The environment assumes the use of two hosts: host! and host2. Both hosts are running Open vSwitch. Each host has
two NICs, ethO and eth1, which are configured as follows:

* ethO is connected to the Data Network. No IP address is assigned to ethO.

* ethl is connected to the Management Network (if necessary). ethl has an IP address that is used to reach the
physical host for management.

Four Virtual Machines

Each host will run two virtual machines (VMs). vmI and vm2 are running on host/, while vim3 and vm4 are running
on host2.

Each VM has a single interface that appears as a Linux device (e.g., t ap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif£1. 0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

5.8.2 Configuration Steps

Perform the following configuration on host1:

1. Create an OVS bridge:

$ ovs-vsctl add-br br0

2. Add ethO to the bridge:

$ ovs-vsctl add-port br0 eth0</code></p>

Note: By default, all OVS ports are VLAN trunks, so ethO will pass all VLANs

Note: When you add ethO to the OVS bridge, any IP addresses that might have been assigned to ethO stop
working. IP address assigned to ethO should be migrated to a different interface before adding ethO to the OVS
bridge. This is the reason for the separate management connection via ethl.

3. Add vml as an “access port” on VLAN 100. This means that traffic coming into OVS from VM1 will be
untagged and considered part of VLAN 100:

$ ovs-vsctl add-port br0 tap0 tag=100

Add VM2 on VLAN 200:

$ ovs-vsctl add-port br0 tapl tag=200

Repeat these steps on host2:
1. Setup a bridge with ethO as a VLAN trunk:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO

5.8. Isolating VM Traffic Using VLANs 153

Open vSwitch Documentation, Release 2.6.0

2. Add VM3 to VLAN 100:

$ ovs-vsctl add-port br0 tap0 tag=100

3. Add VM4 to VLAN 200:

$ ovs-vsctl add-port br0O tapl tag=200

5.8.3 Validation

Pings from vmI to vin3 should succeed, as these two VMs are on the same VLAN.
Pings from vm2 to vin4 should also succeed, since these VMs are also on the same VLAN as each other.

Pings from vmi/vm3 to vm2/vm4 should not succeed, as these VMs are on different VLANSs. If you have a router
configured to forward between the VLANS, then pings will work, but packets arriving at vin3 should have the source
MAC address of the router, not of vmi.

5.9 Quality of Service (QoS) Rate Limiting

This document explains how to use Open vSwitch to rate-limit traffic by a VM to either 1 Mbps or 10 Mbps.

Host 1

Measurement Host

154 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

5.9.1 Setup

This guide assumes the environment is configured as described below.

One Physical Network

¢ Data Network

Ethernet network for VM data traffic. This network is used to send traffic to and from an external host used
for measuring the rate at which a VM is sending. For experimentation, this physical network is optional; you
can instead connect all VMs to a bridge that is not connected to a physical interface and use a VM as the
measurement host.

There may be other networks (for example, a network for management traffic), but this guide is only concerned with
the Data Network.

Two Physical Hosts
The first host, named hostl, is a hypervisor that runs Open vSwitch and has one NIC. This single NIC, eth0, is
connected to the Data Network. Because it is participating in an OVS bridge, no IP address can be assigned on eth0.

The second host, named Measurement Host, can be any host capable of measuring throughput from a VM. For this
guide, we use netperf, a free tool for testing the rate at which one host can send to another. The Measurement Host
has only a single NIC, eth0, which is connected to the Data Network. eth0 has an IP address that can reach any VM
on hostl.

Two VMs

Both VMs (vinl and vm2) run on hostl.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif1. 0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

5.9.2 Configuration Steps

For both VMs, we modify the Interface table to configure an ingress policing rule. There are two values to set:
ingress_policing_rate the maximum rate (in Kbps) that this VM should be allowed to send

ingress_policing_burst a parameter to the policing algorithm to indicate the maximum amount of data (in
Kb) that this interface can send beyond the policing rate.

To rate limit VM1 to 1 Mbps, use these commands:

$ ovs-vsctl set interface tap0 ingress_policing_rate=1000
$ ovs-vsctl set interface tap0 ingress_policing_burst=100

Similarly, to limit vin2 to 10 Mbps, enter these commands on host!:

$ ovs-vsctl set interface tapl ingress_policing_rate=10000
$ ovs-vsctl set interface tapl ingress_policing_burst=1000

5.9. Quality of Service (QoS) Rate Limiting 155

http://www.netperf.org

Open vSwitch Documentation, Release 2.6.0

To see the current limits applied to VM1, run this command:

’$ ovs-vsctl list interface tap0

5.9.3 Testing

To test the configuration, make sure netperf is installed and running on both VMs and on the Measurement Host.
netperf consists of a client (netperf) and a server (netserver). In this example, we run net server on the
Measurement Host (installing Netperf usually starts net server as a daemon, meaning this is running by default).

For this example, we assume that the Measurement Host has an IP of 10.0.0.100 and is reachable from both VMs.

From vm1, run this command:

$ netperf -H 10.0.0.100

This will cause VM1 to send TCP traffic as quickly as it can to the Measurement Host. After 10 seconds, this will
output a series of values. We are interested in the “Throughput” value, which is measured in Mbps (1076 bits/sec).
For VM1 this value should be near 1. Running the same command on VM2 should give a result near 10.

5.9.4 Troubleshooting

Open vSwitch uses the Linux traffic-control capability for rate-limiting. If you are not seeing the configured rate-limit
have any effect, make sure that your kernel is built with “ingress qdisc” enabled, and that the user-space utilities (e.g.,
/sbin/tc) are installed.

5.9.5 Additional Information

Open vSwitch’s rate-limiting uses policing, which does not queue packets. It drops any packets beyond the specified
rate. Specifying a larger burst size lets the algorithm be more forgiving, which is important for protocols like TCP that
react severely to dropped packets. Setting a burst size of less than than the MTU (e.g., 10 kb) should be avoided.

For TCP traffic, setting a burst size to be a sizeable fraction (e.g., > 10%) of the overall policy rate helps a flow come
closer to achieving the full rate. If a burst size is set to be a large fraction of the overall rate, the client will actually
experience an average rate slightly higher than the specific policing rate.

For UDP traffic, set the burst size to be slightly greater than the MTU and make sure that your performance tool
does not send packets that are larger than your MTU (otherwise these packets will be fragmented, causing poor
performance). For example, you can force netperf to send UDP traffic as 1000 byte packets by running:

]$ netperf -H 10.0.0.100 -t UDP_STREAM -- -m 1000

5.10 How to Use the VTEP Emulator

This document explains how to use ovs-vtep, a VXLAN Tunnel Endpoint (VTEP) emulator that uses Open vSwitch
for forwarding. VTEPs are the entities that handle VXLAN frame encapsulation and decapsulation in a network.

5.10.1 Requirements

The VTEP emulator is a Python script that invokes calls to tools like vtep-ctl and ovs-vsctl. It is only useful when
Open vSwitch daemons like ovsdb-server and ovs-vswitchd are running and installed. To do this, either:

156 Chapter 5. How-to Guides

http://lartc.org/howto/lartc.qdisc.html

Open vSwitch Documentation, Release 2.6.0

* Follow the instructions in Open vSwitch on Linux, FreeBSD and NetBSD (don’t start any daemons yet).

* Follow the instructions in Debian Packaging for Open vSwitch and then install the openvswitch-vtep
package (if operating on a debian based machine). This will automatically start the daemons.

5.10.2 Design

At the end of this process, you should have the following setup:

Architecture

| |
| |
| |
| +—-————— + +-————— + |
| \ [\ |
| \ VM1 | VM2 \ |
| \ | \ |
| +-————0————+ +————0————+ |
| \ \ |
| br0 +-—————- O——————————— O———————— o——+ |
| pO pl br0 |
| |
| |
| +—-—— + +—-——— + |
et | eth0 |-—--] ethl |--+
Fo———— + F———— +
10.1.1.1 10.2.2.1
MANAGEMENT \ |
- o————+ |
|
DATA/TUNNEL |
temm e o———+

Some important points.
* We will use Open vSwitch to create our “physical” switch labeled br0

e Our “physical” switch br0 will have one internal port also named br0 and two “physical” ports, namely p0
and p1.

* The host machine may have two external interfaces. We will use et h0 for management traffic and eth1 for
tunnel traffic (One can use a single interface to achieve both). Please take note of their IP addresses in the
diagram. You do not have to use exactly the same IP addresses. Just know that the above will be used in the
steps below.

* You can optionally connect physical machines instead of virtual machines to switch br0. In that case:
— Make sure you have two extra physical interfaces in your host machine, eth2 and eth3.
— In the rest of this doc, replace pO with eth?2 and p1 with eth3.

5. In addition to implementing pO and pl as physical interfaces, you can also optionally implement them as
standalone TAP devices, or VM interfaces for simulation.

6. Creating and attaching the VMs is outside the scope of this document and is included in the diagram for reference
purposes only.

5.10. How to Use the VTEP Emulator 157

Open vSwitch Documentation, Release 2.6.0

5.10.3 Startup

These instructions describe how to run with a single ovsdb-server instance that handles both the OVS and VTEP
schema. You can skip steps 1-3 if you installed using the debian packages as mentioned in step 2 of the “Requirements”
section.

1. Create the initial OVS and VTEP schemas:

$ ovsdb-tool create /etc/openvswitch/ovs.db vswitchd/vswitch.ovsschema
$ ovsdb-tool create /etc/openvswitch/vtep.db vtep/vtep.ovsschema

2. Start ovsdb-server and have it handle both databases:

$ ovsdb-server --pidfile --detach --log-file \
—-remote punix:/var/run/openvswitch/db.sock \
——-remote=db:hardware_vtep,Global,managers \
/etc/openvswitch/ovs.db /etc/openvswitch/vtep.db

3. Start ovs-vswitchd as normal:

$ ovs-vswitchd --log-file —--detach --pidfile \
unix:/var/run/openvswitch/db.sock

4. Create a “physical” switch and its ports in OVS:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 p0
$ ovs-vsctl add-port br0 pl

5. Configure the physical switch in the VTEP database:

$ vtep-ctl add-ps brO
$ vtep-ctl set Physical_Switch br0 tunnel_ips=10.2.2.1

6. Start the VTEP emulator. If you installed the components following Open vSwitch on Linux, FreeBSD and
NetBSD, run the following from the vtep directory:

$./ovs-vtep —--log-file=/var/log/openvswitch/ovs-vtep.log \
——-pidfile=/var/run/openvswitch/ovs-vtep.pid \
——detach bro0

If the installation was done by installing the openvswitch-vtep package, you can find ovs-vtep at
/usr/share/openvswitch/scripts.

7. Configure the VTEP database’s manager to point at an NVC:

$ vtep-ctl set-manager tcp:<CONTROLLER IP>:6640

Where <CONTROLLER IP> is your controller’s IP address that is accessible via the Host Machine’s ethO
interface.

5.10.4 Simulating an NVC

A VTEP implementation expects to be driven by a Network Virtualization Controller (NVC), such as NSX. If one
does not exist, it’s possible to use vtep-ctl to simulate one:

1. Create a logical switch:

158 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

$ vtep-ctl add-1ls 1sO

2. Bind the logical switch to a port:

$ vtep-ctl bind-1ls br0 p0O 0 1s0
S vtep-ctl set Logical_Switch 1s0 tunnel_key=33

3. Direct unknown destinations out a tunnel.

For handling L2 broadcast, multicast and unknown unicast traffic, packets can be sent to all members of a logical
switch referenced by a physical switch. The “unknown-dst” address below is used to represent these packets.
There are different modes to replicate the packets. The default mode of replication is to send the traffic to a
service node, which can be a hypervisor, server or appliance, and let the service node handle replication to other
transport nodes (hypervisors or other VTEP physical switches). This mode is called service node replication.
An alternate mode of replication, called source node replication, involves the source node sending to all other
transport nodes. Hypervisors are always responsible for doing their own replication for locally attached VMs in
both modes. Service node mode is the default. Service node replication mode is considered a basic requirement
because it only requires sending the packet to a single transport node. The following configuration is for service
node replication mode as only a single transport node destination is specified for the unknown-dst address:

$ vtep-ctl add-mcast-remote 1s0 unknown-dst 10.2.2.2

4. Optionally, change the replication mode from a default of service_node to source_node, which can be
done at the logical switch level:

$ vtep-ctl set-replication-mode 1s0 source_node

5. Direct unicast destinations out a different tunnel:

$ vtep-ctl add-ucast-remote 1s0 00:11:22:33:44:55 10.2.2.3

5.11 Monitoring VM Trafic Using sFlow

This document describes how to use Open vSwitch is to monitor traffic sent between two VMs on the same host using
an sFlow collector. VLANS.

5.11. Monitoring VM Trafic Using sFlow 159

Open vSwitch Documentation, Release 2.6.0

Host 1
Monitoring Host
|
" Data) 7 Management
~ -] ~
*_ Network *__ Network f____}-"/

5.11.1 Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

¢ Data Network
Ethernet network for VM data traffic. For experimentation, this physical network is optional. You
can instead connect all VMs to a bridge that is not connected to a physical interface.

* Management Network
This network must exist, as it is used to send sFlow data from the agent to the remote collector.

Two Physical Hosts
The environment assumes the use of two hosts: host! and hostMon. host is a hypervisor that run Open vSwitch and

has two NICs:
* ethO is connected to the Data Network. No IP address can be assigned on ethO because it is part of an OVS

bridge.
* ethl is connected to the Management Network. eth1 has an IP address for management traffic, including sFlow.

160 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

hostMon can be any computer that can run the sFlow collector. For this cookbook entry, we use sFlowTrend, a free
sFlow collector that is a simple cross-platform Java download. Other sFlow collectors should work equally well.
hostMon has a single NIC, eth0, that is connected to the Management Network. ezh0 has an IP adress that can reach
ethl on hostl.

Two Virtual Machines

This guide uses two virtual machines - vm/ and vm2- running on hostI.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vi £1. 0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

5.11.2 Configuration Steps

On hostl, define the following configuration values in your shell environment:

COLLECTOR_IP=10.0.0.1
COLLECTOR_PORT=6343
AGENT_IP=ethl
HEADER_BYTES=128
SAMPLING_N=64
POLLING_SECS=10

Port 6343 (COLLECTOR_PORT) is the default port number for sFlowTrend. If you are using an sFlow collector other
than sFlowTrend, set this value to the appropriate port for your particular collector. Set your own IP address for the
collector in the place of 10.0.0.1 (COLLECTOR_IP). Setting the AGENT_TIP value to ethl indicates that the sFlow
agent should send traffic from ethl‘s IP address. The other values indicate settings regarding the frequency and type
of packet sampling that sFlow should perform.

Still on hostl, run the following command to create an sFlow configuration and attach it to bridge br0:

$ ovs-vsctl —-- —--id=Q@sflow create sflow agent=${AGENT_IP} \
target="${COLLECTOR_IP}:${COLLECTOR_PORT}" header=${HEADER_BYTES} \
sampling=${SAMPLING_N} polling=${POLLING_SECS} \
—-— set bridge br0 sflow=@sflow

Make note of the UUID that is returned by this command; this value is necessary to remove the sFlow configuration.

On hostMon, go to the sFlowTrend and click “Install” in the upper right-hand corner. If you have Java installed, this
will download and start the sFlowTrend application. Once sFlowTrend is running, the light in the lower right-hand
corner of the sFlowTrend application should blink green to indicate that the collector is receiving traffic.

The sFlow configuration is now complete, and sFlowTrend on hostMon should be receiving sFlow data from OVS on
hostl.

To configure sFlow on additional bridges, just replace br0 in the above command with a different bridge name.

To remove sFlow configuration from a bridge (in this case, br0), run this command, where “sFlow UUID” is the
UUID returned by the command used to set the sFlow configuration initially:

‘$ ovs—-vsctl remove bridge br0 sflow <sFlow UUID>

To see all current sets of sFlow configuration parameters, run:

‘$ ovs—-vsctl list sflow

5.11. Monitoring VM Trafic Using sFlow 161

http://www.inmon.com/products/sFlowTrend.php
http://www.inmon.com/products/sFlowTrend.php

Open vSwitch Documentation, Release 2.6.0

5.11.3 Troubleshooting

If sFlow data isn’t being collected and displayed by sFlowTrend, check the following items:

¢ Make sure the VMs are sending/receiving network traffic over bridge br0, preferably to multiple other hosts and
using a variety of protocols.

» To confirm that the agent is sending traffic, check that running the following command shows that the agent on
the physical server is sending traffic to the collector IP address (change the port below to match the port your
collector is using):

$ tcpdump -ni ethl udp port 6343

If no traffic is being sent, there is a problem with the configuration of OVS. If traffic is being sent but nothing is visible
in the sFlowTrend user interface, this may indicate a configuration problem with the collector.

Check to make sure the host running the collector (hostMon) does not have a firewall that would prevent UDP port
6343 from reaching the collector.

5.11.4 Credit

This document is heavily based on content from Neil McKee at InMon:
* https://mail.openvswitch.org/pipermail/ovs-dev/2010-July/165245 .html

e http://blog.sflow.com/2010/01/open-vswitch.html (note: the configuration syntax is out of date, but the high-
level descriptions are correct)

5.12 Using Open vSwitch with DPDK

This document describes how to use Open vSwitch with DPDK datapath.

Important: Using the DPDK datapath requires building OVS with DPDK support. Refer to Open vSwitch with
DPDK for more information.

5.12.1 Ports and Bridges

ovs-vsctl can be used to set up bridges and other Open vSwitch features. Bridges should be created with a
datapath_type=netdev:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

ovs-vsctl can also be used to add DPDK devices. OVS expects DPDK device names to start with dpdk and end with
a portid. ovs-vswitchd should print the number of dpdk devices found in the log file:

$ ovs-vsctl add-port br0 dpdk0 —-- set Interface dpdk0 type=dpdk
$ ovs-vsctl add-port br0 dpdkl —-- set Interface dpdkl type=dpdk

After the DPDK ports get added to switch, a polling thread continuously polls DPDK devices and consumes 100% of
the core, as can be checked from t op and ps commands:

$ top -H
$ ps —-elo pid,psr,comm | grep pmd

162 Chapter 5. How-to Guides

https://mail.openvswitch.org/pipermail/ovs-dev/2010-July/165245.html
http://blog.sflow.com/2010/01/open-vswitch.html

Open vSwitch Documentation, Release 2.6.0

Creating bonds of DPDK interfaces is slightly different to creating bonds of system interfaces. For DPDK, the interface
type must be explicitly set. For example:

$ ovs-vsctl add-bond br0 dpdkbond dpdk0 dpdkl \
—— set Interface dpdk0 type=dpdk \
—-— set Interface dpdkl type=dpdk

To stop ovs-vswitchd & delete bridge, run:

$ ovs—appctl -t ovs-vswitchd exit
$ ovs—appctl -t ovsdb-server exit
$ ovs-vsctl del-br br0

5.12.2 PMD Thread Statistics

To show current stats:

’$ ovs—appctl dpif-netdev/pmd-stats—show

To clear previous stats:

’$ ovs—appctl dpif-netdev/pmd-stats—-clear

5.12.3 Port/RXQ Assigment to PMD Threads

To show port/rxq assignment:

’$ ovs—appctl dpif-netdev/pmd-rxg-show

To change default rxq assignment to pmd threads, rxqs may be manually pinned to desired cores using:

$ ovs-vsctl set Interface <iface> \
other_config:pmd-rxg-affinity=<rxg-affinity-list>

where:
e <rxg-affinity-1list>isa CSV listof <queue-id>:<core—-1id> values

For example:

$ ovs-vsctl set interface dpdk0O options:n_rxg=4 \
other_config:pmd-rxg-affinity="0:3,1:7,3:8"

This will ensure:
* Queue #0 pinned to core 3
* Queue #1 pinned to core 7
* Queue #2 not pinned
* Queue #3 pinned to core 8

After that PMD threads on cores where RX queues was pinned will become isolated. This means that this thread
will poll only pinned RX queues.

Warning: If there are no non-isolated PMD threads, non-pinned RX queues will not be polled. Also, if
provided core_1id is not available (ex. this core_id not in pmd-cpu-mask), RX queue will not be polled by
any PMD thread.

5.12. Using Open vSwitch with DPDK 163

Open vSwitch Documentation, Release 2.6.0

5.12.4 QoS

Assuming you have a vhost-user port transmitting traffic consisting of packets of size 64 bytes, the following command
would limit the egress transmission rate of the port to ~1,000,000 packets per second:

$ ovs-vsctl set port vhost-user0O gos=@newgos —- \
—-id=@newgos create gos type=egress—-policer other-config:cir=46000000 \
other-config:cbs=2048"

To examine the QoS configuration of the port, run:

’$ ovs—appctl -t ovs-vswitchd gos/show vhost-user0

To clear the QoS configuration from the port and ovsdb, run:

’$ ovs—-vsctl destroy QoS vhost-user0 -- clear Port vhost-user0 gos

Refer to vswitch.xml for more details on egress-policer.

5.12.5 Rate Limiting

Here is an example on Ingress Policing usage. Assuming you have a vhost-user port receiving traffic consisting of
packets of size 64 bytes, the following command would limit the reception rate of the port to ~1,000,000 packets per
second:

$ ovs-vsctl set interface vhost-user0 ingress_policing_rate=368000 \
ingress_policing_burst=1000"

To examine the ingress policer configuration of the port:

‘$ ovs-vsctl list interface vhost-user0

To clear the ingress policer configuration from the port:

’$ ovs-vsctl set interface vhost-user0 ingress_policing_rate=0

Refer to vswitch.xml for more details on ingress-policer.

5.12.6 Flow Control

Flow control can be enabled only on DPDK physical ports. To enable flow control support at tx side while adding a
port, run:

$ ovs-vsctl add-port br0 dpdk0 —- \
set Interface dpdk0O type=dpdk options:tx-flow-ctrl=true

Similarly, to enable rx flow control, run:

$ ovs-vsctl add-port br0 dpdk0 —- \
set Interface dpdk0 type=dpdk options:rx-flow-ctrl=true

To enable flow control auto-negotiation, run:

$ ovs-vsctl add-port br0 dpdk0 —- \
set Interface dpdk0 type=dpdk options:flow-ctrl-autoneg=true

To turn ON the tx flow control at run time for an existing port, run:

164 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

‘$ ovs-vsctl set Interface dpdk0O options:tx—-flow-ctrl=true

The flow control parameters can be turned off by setting false to the respective parameter. To disable the flow
control at tx side, run:

’$ ovs-vsctl set Interface dpdk0O options:tx-flow-ctrl=false

5.12.7 pdump

pdump allows you to listen on DPDK ports and view the traffic that is passing on them. To use this utility, one must
have libpcap installed on the system. Furthermore, DPDK must be built with CONFIG_RTE_LIBRTE_PDUMP=y
and CONFIG_RTE_LIBRTE_PMD_PCAP=y

Warning: A performance decrease is expected when using a monitoring application like the DPDK pdump app.

To use pdump, simply launch OVS as usual, then navigate to the app /pdump directory in DPDK, make the applica-
tion and run like so:

$ sudo ./build/app/dpdk-pdump -- \
——pdump port=0, queue=0, rx—dev=/tmp/pkts.pcap \
--server-socket-path=/usr/local/var/run/openvswitch

The above command captures traffic received on queue 0 of port 0 and stores it in /tmp/pkts.pcap. Other com-
binations of port numbers, queues numbers and pcap locations are of course also available to use. For example, to
capture all packets that traverse port O in a single pcap file:

$ sudo ./build/app/dpdk-pdump -- \
——pdump 'port=0, queue=x*, rx—dev=/tmp/pkts.pcap, tx-dev=/tmp/pkts.pcap' \
—-—server—-socket-path=/usr/local/var/run/openvswitch

server-socket-path must be set to the value of ovs_rundir() which typically resolves to
/usr/local/var/run/openvswitch.

Many tools are available to view the contents of the pcap file. Once example is tcpdump. Issue the following command
to view the contents of pkts.pcap:

$ tcpdump -r pkts.pcap

More information on the pdump app and its usage can be found in the DPDK docs.

5.12.8 Jumbo Frames

By default, DPDK ports are configured with standard Ethernet MTU (1500B). To enable Jumbo Frames support for a
DPDK port, change the Interface’s mt u_request attribute to a sufficiently large value. For example, to add a DPDK
Phy port with MTU of 9000:

$ ovs-vsctl add-port br0 dpdk0 \
—-— set Interface dpdk0 type=dpdk \
—-— set Interface dpdk0 mtu_request=9000"

Similarly, to change the MTU of an existing port to 6200:

$ ovs-vsctl set Interface dpdk0 mtu_request=6200

Some additional configuration is needed to take advantage of jumbo frames with vHost ports:

5.12. Using Open vSwitch with DPDK 165

http://dpdk.org/doc/guides/tools/pdump.html

Open vSwitch Documentation, Release 2.6.0

1. mergeable buffers must be enabled for vHost ports, as demonstrated in the QEMU command line snippet below:

-netdev type=vhost-user, id=mynetl, chardev=char0,vhostforce \
—device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynetl, mrg_rxbuf=on

2. Where virtio devices are bound to the Linux kernel driver in a guest environment (i.e. interfaces are not bound to
an in-guest DPDK driver), the MTU of those logical network interfaces must also be increased to a sufficiently
large value. This avoids segmentation of Jumbo Frames received in the guest. Note that ‘MTU’ refers to the
length of the IP packet only, and not that of the entire frame.

To calculate the exact MTU of a standard IPv4 frame, subtract the L2 header and CRC lengths (i.e. 18B) from
the max supported frame size. So, to set the MTU for a 9018B Jumbo Frame:

$ ifconfig ethl mtu 9000

When Jumbo Frames are enabled, the size of a DPDK port’s mbuf segments are increased, such that a full Jumbo
Frame of a specific size may be accommodated within a single mbuf segment.

Jumbo frame support has been validated against 9728B frames, which is the largest frame size supported by Fortville
NIC using the DPDK i40e driver, but larger frames and other DPDK NIC drivers may be supported. These cases are
common for use cases involving East-West traffic only.

5.12.9 Rx Checksum Offload

By default, DPDK physical ports are enabled with Rx checksum offload. Rx checksum offload can be configured on a
DPDK physical port either when adding or at run time.

To disable Rx checksum offload when adding a DPDK port dpdkO:

$ ovs-vsctl add-port br0 dpdk0 —-- set Interface dpdk0 type=dpdk \
options:rx-checksum-offload=false

Similarly to disable the Rx checksum offloading on a existing DPDK port dpdkO:

$ ovs-vsctl set Interface dpdk0 type=dpdk options:rx—-checksum-offload=false

Rx checksum offload can offer performance improvement only for tunneling traffic in OVS-DPDK because the check-
sum validation of tunnel packets is offloaded to the NIC. Also enabling Rx checksum may slightly reduce the per-
formance of non-tunnel traffic, specifically for smaller size packet. DPDK vectorization is disabled when checksum
offloading is configured on DPDK physical ports which in turn effects the non-tunnel traffic performance. So it is
advised to turn off the Rx checksum offload for non-tunnel traffic use cases to achieve the best performance.

5.12.10 Port Hotplug

OVS supports port hotplugging, allowing the use of ports that were not bound to DPDK when vswitchd was started.
In order to attach a port, it has to be bound to DPDK using the dpdk_nic_bind.py script:

$ SDPDK_DIR/tools/dpdk_nic_bind.py —-bind=igb_uio 0000:01:00.0

Then it can be attached to OVS:

$ ovs-vsctl add-port br0 dpdkx —-- set Interface dpdkx type=dpdk \
options:dpdk-devargs=0000:01:00.0

It is also possible to detach a port from ovs, the user has to remove the port using the del-port command, then it can
be detached using:

166 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

$ ovs—appctl netdev-dpdk/detach dpdkx

This feature is not supported with VFIO and does not work with some NICs. For more information please refer to the
DPDK Port Hotplug Framework.

5.12.11 Vdev Support

DPDK provides drivers for both physical and virtual devices. Physical DPDK devices are added to OVS by specifying
a valid PCI address in ‘dpdk-devargs’. Virtual DPDK devices which do not have PCI addresses can be added using a
different format for ‘dpdk-devargs’.

3

Typically, the format expected is ‘eth_<driver_name><x>" where ‘X’ is a number between 0 and
RTE_MAX_ETHPORTS -1 (31).

For example to add a dpdk port that uses the ‘null’ DPDK PMD driver:

$ ovs-vsctl add-port br0 null0 -- set Interface null0 type=dpdk \
options:dpdk-devargs=eth_null0

Similarly, to add a dpdk port that uses the ‘af_packet” DPDK PMD driver:

$ ovs-vsctl add-port br0 myethO0 -- set Interface myethO type=dpdk \
options:dpdk-devargs=eth_af_ packet0,iface=ethO

More information on the different types of virtual DPDK PMDs can be found in the DPDK documentation.

Note: Not all DPDK virtual PMD drivers have been tested and verified to work.

5.12.12 OVS with DPDK Inside VMs

Additional configuration is required if you want to run ovs-vswitchd with DPDK backend inside a QEMU virtual
machine. ovs-vswitchd creates separate DPDK TX queues for each CPU core available. This operation fails inside
QEMU virtual machine because, by default, VirtlO NIC provided to the guest is configured to support only sin-
gle TX queue and single RX queue. To change this behavior, you need to turn on mg (multiqueue) property of all
virtio—net-pci devices emulated by QEMU and used by DPDK. You may do it manually (by changing QEMU
command line) or, if you use Libvirt, by adding the following string to <interface> sections of all network devices
used by DPDK:

<driver name='vhost' queues='N'/>

where:
N determines how many queues can be used by the guest.

This requires QEMU >=2.2.

5.12.13 PHY-PHY

Add a userspace bridge and two dpdk (PHY) ports:

Add userspace bridge
$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

Add two dpdk ports
$ ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
$ ovs-vsctl add-port br0 dpdkl —-- set Interface dpdkl type=dpdk

5.12. Using Open vSwitch with DPDK 167

http://dpdk.org/doc/guides/prog_guide/port_hotplug_framework.html#hotplug
http://dpdk.org/doc/guides/nics/overview.html

Open vSwitch Documentation, Release 2.6.0

Add test flows to forward packets betwen DPDK port 0 and port 1:

Clear current flows
$ ovs-ofctl del-flows br0

Add flows between port 1 (dpdk0) to port 2 (dpdkl)
ovs-ofctl add-flow br0 in_port=1,action=output:2
$ ovs-ofctl add-flow br0 in_port=2,action=output:1l

Ur

Transmit traffic into either port. You should see it returned via the other.

5.12.14 PHY-VM-PHY (vHost Loopback)

Add a userspace bridge, two dpdk (PHY) ports, and two dpdkvhostuser ports:

Add userspace bridge
$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

Add two dpdk ports
ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
$ ovs-vsctl add-port br0 dpdkl -- set Interface dpdkl type=dpdk

Ur

Add two dpdkvhostuser ports
$ ovs-vsctl add-port br0 dpdkvhostuser0 \

—— set Interface dpdkvhostuser(0 type=dpdkvhostuser
$ ovs-vsctl add-port br0 dpdkvhostuserl \

—-— set Interface dpdkvhostuserl type=dpdkvhostuser

Add test flows to forward packets betwen DPDK devices and VM ports:

Clear current flows
$ ovs-ofctl del-flows br0

Add flows

$ ovs-ofctl add-flow br0 in_port=1,action=output:3

$ ovs-ofctl add-flow br0 in_port=3,action=output:l

$ ovs-ofctl add-flow br0 in_port=4,action=output:2

$ ovs-ofctl add-flow br0 in_port=2,action=output:4
Dump flows

$ ovs—ofctl dump-flows br0

Create a VM using the following configuration:
configuration values comments
gemu version gemu thread affinity memory cores Qcow?2 2.2.0 core 5 4GB 2 n/a taskset 0x20 n/a n/a
image mrg_rxbuf CentOS7 off n/an/a

You can do this directly with QEMU via the gemu-system-x86_64 application:

export VM_NAME=vhost-vm

export GUEST_MEM=3072M

export QCOW2_IMAGE=/root/Cent0S7_x86_64.gcow2

export VHOST_SOCK_DIR=/usr/local/var/run/openvswitch

v A

$ taskset 0x20 gemu-system-x86_64 —-name S$VM_NAME -cpu host -enable-kvm \
-m SGUEST_MEM -drive file=$QCOW2_IMAGE --nographic -snapshot \
-numa node, memdev=mem -mem-prealloc -smp sockets=1,cores=2 \
-object memory-backend-file, id=mem, size=$GUEST_MEM, mem-path=/dev/hugepages, share=on \

168 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

-chardev socket, id=char0,path=$VHOST_SOCK_DIR/dpdkvhostuser0 \

-netdev type=vhost-user,id=mynetl, chardev=char0, vhostforce \

—-device virtio-net-pci,mac=00:00:00:00:00:01, netdev=mynetl, mrg_rxbuf=off \
-chardev socket, id=charl,path=$VHOST_SOCK_DIR/dpdkvhostuserl \

-netdev type=vhost-user,id=mynet2, chardev=charl, vhostforce \

—device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mrg_rxbuf=off

For a explanation of this command, along with alternative approaches such as booting the VM via libvirt, refer to
DPDK vHost User Ports.

Once the guest is configured and booted, configure DPDK packet forwarding within the guest. To accomplish this,
build the testpmd application as described in DPDK in the Guest. Once compiled, run the application:

$ cd $DPDK_DIR/app/test-pmd;

$./testpmd -c 0x3 -n 4 —--socket-mem 1024 -- \

——burst=64 -i --txgflags=0xf00 --disable-hw-vlan
$ set fwd mac retry

$ start

When you finish testing, bind the vNICs back to kernel:

$ S$DPDK_DIR/tools/dpdk-devbind.py --bind=virtio-pci 0000:00:03.0
$ $DPDK_DIR/tools/dpdk-devbind.py —-bind=virtio-pci 0000:00:04.0

Note: Valid PCI IDs must be passed in above example. The PCI IDs can be retrieved like so:

$ $DPDK_DIR/tools/dpdk-devbind.py —--status

More information on the dpdkvhostuser ports can be found in DPDK vHost User Ports.

PHY-VM-PHY (vHost Loopback) (Kernel Forwarding)

PHY-VM-PHY (vHost Loopback) details steps for PHY-VM-PHY loopback testcase and packet forwarding using
DPDK testpmd application in the Guest VM. For users wishing to do packet forwarding using kernel stack below,
you need to run the below commands on the guest:

route add
route add

$
$
$ systemctl
$ systemctl
$ sysctl -w
$ sysctl -w
$ sysctl -w
$ sysctl -w
$
$
$
$

ifconfig ethl 1.1.1.2/24
ifconfig eth2 1.1.2.2/24

stop firewalld.service
stop iptables.service

net.ipvé.
net.ipv4.
net.ipv4.
net.ipv4.
-net 1.1.
-net 1.1.
arp -s 1.1.2.99 DE
arp -s 1.1.1.99 DE

ip_forward=1
conf.all.rp_filter=0
conf.ethl.rp_filter=0
conf.eth2.rp_filter=0
2.0/24 eth2

1.0/24 ethl

:AD:BE:EF:CA:FE
:AD:BE:EF:CA:EE

PHY-VM-PHY (vHost Multiqueue)

vHost Multiqueue functionality can also be validated using the PHY-VM-PHY configuration. To begin, follow the
steps described in PHY-PHY to create and initialize the database, start ovs-vswitchd and add dpdk-type devices to
bridge br0. Once complete, follow the below steps:

5.12. Using Open vSwitch with DPDK

169

Open vSwitch Documentation, Release 2.6.0

1. Configure PMD and RXQs.
For example, set the number of dpdk port rx queues to at least 2 The number of rx queues at vhost-user interface
gets automatically configured after virtio device connection and doesn’t need manual configuration:
$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0xc
$ ovs-vsctl set Interface dpdk0O options:n_rxg=2
$ ovs-vsctl set Interface dpdkl options:n_rxg=2
2. Instantiate Guest VM using QEMU cmdline
We must configure with appropriate software versions to ensure this feature is supported.
Table 5.1: Recommended BIOS Settings
Setting Value
QEMU version 2.5.0
QEMU thread affinity | 2 cores (taskset 0x30)
Memory 4 GB
Cores 2
Distro Fedora 22
Multiqueue Enabled
To do this, instantiate the guest as follows:
$ export VM_NAME=vhost-vm
$ export GUEST_MEM=4096M
$ export QCOW2_IMAGE=/root/Fedoral2_x86_64.gcow2
$ export VHOST_SOCK_DIR=/usr/local/var/run/openvswitch
$ taskset 0x30 gemu-system—-x86_64 —cpu host —-smp 2,cores=2 -m 4096M \
—drive file=$QCOW2_IMAGE —--enable-kvm —-name S$VM_NAME \
-nographic -numa node,memdev=mem -mem-prealloc \
-object memory-backend-file, id=mem, size=$GUEST_MEM, mem-path=/dev/hugepages, shar
—chardev socket, id=charl, path=$VHOST_SOCK_DIR/dpdkvhostuser(0 \
-netdev type=vhost-user, id=mynetl, chardev=charl,vhostforce, queues=2 \
—device virtio-net-pci,mac=00:00:00:00:00:01, netdev=mynetl,mg=on,vectors=6 \
—chardev socket, id=char2, path=$VHOST_SOCK_DIR/dpdkvhostuserl \
-netdev type=vhost-user, id=mynet2, chardev=char2,vhostforce, queues=2 \
—device virtio-net-pci,mac=00:00:00:00:00:02, netdev=mynet2, mg=on,vectors=6
Note: Queue value above should match the queues configured in OVS, The vector value should be set to
“number of queues x 2 + 2”
3. Configure the guest interface
Assuming there are 2 interfaces in the guest named ethO, ethl check the channel configuration and set the
number of combined channels to 2 for virtio devices:
$ ethtool -1 ethO
$ ethtool -L eth0 combined 2
$ ethtool -L ethl combined 2
More information can be found in vHost walkthrough section.
4. Configure kernel packet forwarding
Configure IP and enable interfaces:
170 Chapter 5. How-to Guides

e=on \

Open vSwitch Documentation, Release 2.6.0

$ ifconfig eth0 5.5.5.1/24 up
$ ifconfig ethl 90.90.90.1/24 up

Configure IP forwarding and add route entries:

sysctl -w net.ipvé4.ip_forward=1

sysctl -w net.ipv4.conf.all.rp_filter=0
sysctl -w net.ipv4.conf.ethO.rp_filter=0
sysctl -w net.ipvé4.conf.ethl.rp_filter=0
ip route add 2.1.1.0/24 dev ethl

route add default gw 2.1.1.2 ethl

route add default gw 90.90.90.90 ethl
arp -s 90.90.90.90 DE:AD:BE:EF:CA:FE

arp -s 2.1.1.2 DE:AD:BE:EF:CA:FA

v

Check traffic on multiple queues:

$ cat /proc/interrupts | grep virtio

5.13 Open Virtual Networking With Docker

This document describes how to use Open Virtual Networking with Docker 1.9.0 or later.

Important: Requires Docker version 1.9.0 or later. Only Docker 1.9.0+ comes with support for multi-host network-
ing. Consult www.docker.com for instructions on how to install Docker.

Note: You must build and install Open vSwitch before proceeding with the below guide. Refer to Installing Open
vSwitch for more information.

5.13.1 Setup

For multi-host networking with OVN and Docker, Docker has to be started with a destributed key-value store. For
example, if you decide to use consul as your distributed key-value store and your host IP address is SHOST_IP, start
your Docker daemon with:

$ docker daemon —--cluster-store=consul://127.0.0.1:8500 \
——cluster—-advertise=SHOST_IP:0

OVN provides network virtualization to containers. OVN’s integration with Docker currently works in two modes -
the “underlay” mode or the “overlay” mode.

In the “underlay” mode, OVN requires a OpenStack setup to provide container networking. In this mode, one can
create logical networks and can have containers running inside VMs, standalone VMs (without having any containers
running inside them) and physical machines connected to the same logical network. This is a multi-tenant, multi-host
solution.

In the “overlay” mode, OVN can create a logical network amongst containers running on multiple hosts. This is
a single-tenant (extendable to multi-tenants depending on the security characteristics of the workloads), multi-host
solution. In this mode, you do not need a pre-created OpenStack setup.

For both the modes to work, a user has to install and start Open vSwitch in each VM/host that they plan to run their
containers on.

5.13. Open Virtual Networking With Docker 171

Open vSwitch Documentation, Release 2.6.0

5.13.2 The “overlay” mode

Note: OVN in “overlay” mode needs a minimum Open vSwitch version of 2.5.

1.

Start the central components.

OVN architecture has a central component which stores your networking intent in a database. On one
of your machines, with an IP Address of $SCENTRAL_IP, where you have installed and started Open
vSwitch, you will need to start some central components.

Start ovn-northd daemon. This daemon translates networking intent from Docker stored in the
OVN_Northbound database to logical flows in OVN_Southbound database. For example:

$ /usr/share/openvswitch/scripts/ovn-ctl start_northd

2. One time setup
On each host, where you plan to spawn your containers, you will need to run the below command once. You
may need to run it again if your OVS database gets cleared. It is harmless to run it again in any case:
$ ovs-vsctl set Open_vSwitch . \
external_ids:ovn-remote="tcp:S$CENTRAL_IP:6642" \
external_ids:ovn-nb="tcp:$CENTRAL_IP:6641" \
external_ids:ovn-encap-ip=$LOCAL_IP \
external_ids:ovn-encap-type="$ENCAP_TYPE"
where:
$SLOCAL_TIP is the IP address via which other hosts can reach this host. This acts as your local tunnel endpoint.
SENCAP_TYPE is the type of tunnel that you would like to use for overlay networking. The options are
geneve or stt. Your kernel must have support for your chosen SENCAP_TYPE. Both geneve and stt
are part of the Open vSwitch kernel module that is compiled from this repo. If you use the Open vSwitch
kernel module from upstream Linux, you will need a minumum kernel version of 3.18 for geneve. There
is no stt support in upstream Linux. You can verify whether you have the support in your kernel as
follows:
$ lsmod | grep SENCAP_TYPE
In addition, each Open vSwitch instance in an OVN deployment needs a unique, persistent identifier, called the
system—id. If you install OVS from distribution packaging for Open vSwitch (e.g. .deb or .rpm packages),
or if you use the ovs-ctl utility included with Open vSwitch, it automatically configures a system-id. If you start
Open vSwitch manually, you should set one up yourself. For example:
$ id_file=/etc/openvswitch/system-id.conf
$ test -e $id_file || uuidgen > $id_file
$ ovs-vsctl set Open_vSwitch . external_ids:system-id=$ (cat $id_file)
3. Start the ovn—-controller.
You need to run the below command on every boot:
$ /usr/share/openvswitch/scripts/ovn-ctl start_controller
4. Start the Open vSwitch network driver.
By default Docker uses Linux bridge for networking. But it has support for external drivers. To use Open
vSwitch instead of the Linux bridge, you will need to start the Open vSwitch driver.
172 Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

The Open vSwitch driver uses the Python’s flask module to listen to Docker’s networking api calls. So, if your
host does not have Python’s flask module, install it:

’ $ sudo pip install Flask

Start the Open vSwitch driver on every host where you plan to create your containers. Refer to the note on
SOVS_PYTHON_LIBS_PATH that is used below at the end of this document:

’ $ PYTHONPATH=$OVS_PYTHON_LIBS_PATH ovn-docker-overlay-driver --detach

Note: The $OVS_PYTHON_LIBS_PATH variable should point to the directory where Open vSwitch
Python modules are installed. If you installed Open vSwitch Python modules via the Debian package of
python-openvswitch or via pip by running pip install owvs, you do not need to specify the PATH.
If you installed it by following the instructions in Open vSwitch on Linux, FreeBSD and NetBSD, then you
should specify the PATH. In this case, the PATH depends on the options passed to . /configure. Itis usually
either /usr/share/openvswitch/pythonor /usr/local/share/openvswitch/python

Docker has inbuilt primitives that closely match OVN’s logical switches and logical port concepts. Consult Docker’s
documentation for all the possible commands. Here are some examples.

Create a logical switch

To create a logical switch with name ‘foo’, on subnet ‘192.168.1.0/24’, run:

‘$ NID="docker network create -d openvswitch --subnet=192.168.1.0/24 foo’

List all logical switches

’$ docker network 1ls

You can also look at this logical switch in OVN’s northbound database by running the following command:

]$ ovn-nbctl —-db=tcp:SCENTRAL_IP:6640 ls-list

Delete a logical switch

$ docker network rm bar

Create a logical port

Docker creates your logical port and attaches it to the logical network in a single step. For example, to attach a logical
port to network foo inside container busybox, run:

$ docker run -itd --net=foo --name=busybox busybox

List all logical ports

Docker does not currently have a CLI command to list all logical ports but you can look at them in the OVN database
by running:

5.13. Open Virtual Networking With Docker 173

Open vSwitch Documentation, Release 2.6.0

‘$ ovn-nbctl —--db=tcp:S$CENTRAL_IP:6640 lsp-list $NID

Create and attach a logical port to a running container

$ docker network create -d openvswitch —--subnet=192.168.2.0/24 bar
$ docker network connect bar busybox

Detach and delete a logical port from a running container

You can delete your logical port and detach it from a running container by running:

‘$ docker network disconnect bar busybox

5.13.3 The “underlay” mode

Note: This mode requires that you have a OpenStack setup pre-installed with OVN providing the underlay network-

ing.

1. One time setup

A OpenStack tenant creates a VM with a single network interface (or multiple) that belongs to management
logical networks. The tenant needs to fetch the port-id associated with the interface via which he plans to send
the container traffic inside the spawned VM. This can be obtained by running the below command to fetch the
‘id” associated with the VM:

’ $ nova

list

and then by running:

’ $ neutron port-list —--device_id=$id

Inside the VM, download the OpenStack RC file that contains the tenant information (henceforth referred to as
openrc.sh). Edit the file and add the previously obtained port-id information to the file by appending the
following line:

$ export OS_VIF_ID=S$port_id

After this edit, the file will look something like:

export
export
export
export
export

#!/bin/bash

OS_AUTH_URL=http://10.33.75.122:5000/v2.0
OS_TENANT_ID=fabl06b215d943c3bad519492278443d
0OS_TENANT_NAME="demo"

0S_USERNAME="demo"
OS_VIF_ID=e798c371-85f4-4£2d-ad65-d09dd1d3clc?

2. Create the Open vSwitch bridge

If your VM has one ethernet interface (e.g.: ‘eth0’), you will need to add that device as a port to an Open
vSwitch bridge ‘breth0’ and move its IP address and route related information to that bridge. (If it has multiple
network interfaces, you will need to create and attach an Open vSwitch bridge for the interface via which you
plan to send your container traffic.)

174

Chapter 5. How-to Guides

Open vSwitch Documentation, Release 2.6.0

If you use DHCP to obtain an IP address, then you should kill the DHCP client that was listening on the physical
Ethernet interface (e.g. ethQ) and start one listening on the Open vSwitch bridge (e.g. breth0).

Depending on your VM, you can make the above step persistent across reboots. For example, if your VM is
Debian/Ubuntu-based, read openvswitch-switch. README.Debian found in debian folder. If your VM is RHEL-
based, refer to RHEL 5.6, 6.x Packaging for Open vSwitch.

3. Start the Open vSwitch network driver

The Open vSwitch driver uses the Python’s flask module to listen to Docker’s networking api calls. The driver
also uses OpenStack’s python-neutronclient libraries. If your host does not have Python’s flask
module or python-neutronclient you must install them. For example:

$ pip install python-neutronclient
$ pip install Flask

Once installed, source the openrc file:

$. ./openrc.sh

Start the network driver and provide your OpenStack tenant password when prompted:

$ PYTHONPATH=$OVS_PYTHON_LIBS_PATH ovn-docker-underlay-driver \
—--bridge breth0 --detach

From here-on you can use the same Docker commands as described in docker-overlay.

Refer the the ovs-architecture man pages (man ovn-architecture) to understand OVN’s architecture in detail.

5.14 Integration of Containers with OVN and OpenStack

Isolation between containers is weaker than isolation between VMs, so some environments deploy containers for
different tenants in separate VMs as an additional security measure. This document describes creation of containers
inside VMs and how they can be made part of the logical networks securely. The created logical network can include
VMs, containers and physical machines as endpoints. To better understand the proposed integration of containers with
OVN and OpenStack, this document describes the end to end workflow with an example.

* A OpenStack tenant creates a VM (say VM-A) with a single network interface that belongs to a management
logical network. The VM is meant to host containers. OpenStack Nova chooses the hypervisor on which VM-A
is created.

¢ A Neutron port may have been created in advance and passed in to Nova with the request to create a new VM.
If not, Nova will issue a request to Neutron to create a new port. The ID of the logical port from Neutron will
also be used as the vif-id for the virtual network interface (VIF) of VM-A.

* When VM-A is created on a hypervisor, its VIF gets added to the Open vSwitch integration bridge. This creates
a row in the Interface table of the Open_vSwitch database. As explained in the integration guide, the vif-id
associated with the VM network interface gets added in the external_ids:iface—id column of the newly
created row in the Interface table.

» Since VM-A belongs to a logical network, it gets an IP address. This IP address is used to spawn containers
(either manually or through container orchestration systems) inside that VM and to monitor the health of the
created containers.

* The vif-id associated with the VM’s network interface can be obtained by making a call to Neutron using tenant
credentials.

* This flow assumes a component called a “container network plugin”. If you take Docker as an example for
containers, you could envision the plugin to be either a wrapper around Docker or a feature of Docker itself that

5.14. Integration of Containers with OVN and OpenStack 175

Open vSwitch Documentation, Release 2.6.0

understands how to perform part of this workflow to get a container connected to a logical network managed by
Neutron. The rest of the flow refers to this logical component that does not yet exist as the “container network
plugin”.

All the calls to Neutron will need tenant credentials. These calls can either be made from inside the tenant
VM as part of a container network plugin or from outside the tenant VM (if the tenant is not comfortable using
temporary Keystone tokens from inside the tenant VMs). For simplicity, this document explains the work flow
using the former method.

The container hosting VM will need Open vSwitch installed in it. The only work for Open vSwitch inside the
VM is to tag network traffic coming from containers.

When a container needs to be created inside the VM with a container network interface that is expected to be
attached to a particular logical switch, the network plugin in that VM chooses any unused VLAN (This VLAN
tag only needs to be unique inside that VM. This limits the number of container interfaces to 4096 inside a single
VM). This VLAN tag is stripped out in the hypervisor by OVN and is only useful as a context (or metadata) for
OVN.

The container network plugin then makes a call to Neutron to create a logical port. In addition to all the inputs
that a call to create a port in Neutron that are currently needed, it sends the vif-id and the VLAN tag as inputs.

Neutron in turn will verify that the vif-id belongs to the tenant in question and then uses the OVN specific plugin
to create a new row in the Logical_Switch_Port table of the OVN Northbound Database. Neutron responds back
with an IP address and MAC address for that network interface. So Neutron becomes the IPAM system and
provides unique IP and MAC addresses across VMs and containers in the same logical network.

The Neutron API call above to create a logical port for the container could add a relatively significant amount of
time to container creation. However, an optimization is possible here. Logical ports could be created in advance
and reused by the container system doing container orchestration. Additional Neutron API calls would only be
needed if the port needs to be attached to a different logical network.

When a container is eventually deleted, the network plugin in that VM may make a call to Neutron to delete
that port. Neutron in turn will delete the entry in the Logical_Switch_Port table of the OVN Northbound
Database.

As an example, consider Docker containers. Since Docker currently does not have a network plugin feature, this
example uses a hypothetical wrapper around Docker to make calls to Neutron.

* Create a Logical switch:

$ ovn-docker —--cred=cca86bdl3a564ac2a63ddfl14bf45d37f create network LS1

The above command will make a call to Neutron with the credentials to create a logical switch. The above is
optional if the logical switch has already been created from outside the VM.

List networks available to the tenant:

$ ovn-docker —--cred=cca86bdl3ab64ac2a63ddfl14bf45d37f list networks

Create a container and attach a interface to the previously created switch as a logical port:

$ ovn-docker —--cred=cca86bdl3ab64ac2a63ddfl14bf45d37f —-vif-id=$VIF_ID \
—--network=LS1 run -d —--net=none ubuntu:14.04 /bin/sh -c \
"while true; do echo hello world; sleep 1; done"

The above command will make a call to Neutron with all the inputs it currently needs to create a logical port. In
addition, it passes the $VIF_ID and a unused VLAN. Neutron will add that information in OVN and return back
a MAC address and IP address for that interface. ovn-docker will then create a veth pair, insert one end inside
the container as ‘ethO’ and the other end as a port of a local OVS bridge as an access port of the chosen VLAN.

176

Chapter 5. How-to Guides

CHAPTER 6

Reference Guide

6.1 Man Pages

ovn-architecture(7) (pdf) | (html) | (plain text)
ovn-controller(8) (pdf) | (html) | (plain text)
ovn-controller-vtep(8) (pdf) | (html) | (plain text)
ovn-ctl(8) (pdf) | (html) | (plain text)
ovn-nb(5) (pdf) | (html) | (plain text)
ovn-nbctl(8) (pdf) | (html) | (plain text)
ovn-northd(8) (pdf) | (html) | (plain text)
ovn-sb(5) (pdf) | (html) | (plain text)
ovn-sbctl(8) (pdf) | (html) | (plain text)
ovn-trace(8) (pdf) | (html) | (plain text)
ovs-appctl(8) (pdf) | (html) | (plain text)
ovs-bugtool(8) (pdf) | (html) | (plain text)
ovs-ctl(8) (pdf) | (html) | (plain text)
ovsdb-client(1) (pdf) | (html) | (plain text)
ovsdb-server(1) (pdf) | (html) | (plain text)
ovsdb-tool(1) (pdf) | (html) | (plain text)
ovs-dpctl(8) (pdf) | (html) | (plain text)
ovs-dpctl-top(8) (pdf) | (html) | (plain text)
ovs-13ping(8) (pdf) | (html) | (plain text)
ovs-ofctl(8) (pdf) | (html) | (plain text)
ovs-parse-backtrace(8) (pdf) | (html) | (plain text)
ovs-pcap(1) (pdf) | (html) | (plain text)
ovs-pki(8) (pdf) | (html) | (plain text)
ovs-tcpdump(8) (pdf) | (html) | (plain text)
ovs-tcpundump(1) (pdf) | (html) | (plain text)
ovs-test(8) (pdf) | (html) | (plain text)
ovs-testcontroller(8) (pdf) | (html) | (plain text)
ovs-vlan-bug-workaround(8) | (pdf) | (html) | (plain text)
ovs-vlan-test(8) (pdf) | (html) | (plain text)
ovs-vsctl(8) (pdf) | (html) | (plain text)
ovs-vswitchd(8) (pdf) | (html) | (plain text)
ovs-vswitchd.conf.db(5) (pdf) | (html) | (plain text)
vtep(5) (pdf) | (html) | (plain text)
vtep-ctl(8) (pdf) | (html) | (plain text)

177

http://openvswitch.org/support/dist-docs/ovn-architecture.7.pdf
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://openvswitch.org/support/dist-docs/ovn-architecture.7.txt
http://openvswitch.org/support/dist-docs/ovn-controller.8.pdf
http://openvswitch.org/support/dist-docs/ovn-controller.8.html
http://openvswitch.org/support/dist-docs/ovn-controller.8.txt
http://openvswitch.org/support/dist-docs/ovn-controller-vtep.8.pdf
http://openvswitch.org/support/dist-docs/ovn-controller-vtep.8.html
http://openvswitch.org/support/dist-docs/ovn-controller-vtep.8.txt
http://openvswitch.org/support/dist-docs/ovn-ctl.8.pdf
http://openvswitch.org/support/dist-docs/ovn-ctl.8.html
http://openvswitch.org/support/dist-docs/ovn-ctl.8.txt
http://openvswitch.org/support/dist-docs/ovn-nb.5.pdf
http://openvswitch.org/support/dist-docs/ovn-nb.5.html
http://openvswitch.org/support/dist-docs/ovn-nb.5.txt
http://openvswitch.org/support/dist-docs/ovn-nbctl.8.pdf
http://openvswitch.org/support/dist-docs/ovn-nbctl.8.html
http://openvswitch.org/support/dist-docs/ovn-nbctl.8.txt
http://openvswitch.org/support/dist-docs/ovn-northd.8.pdf
http://openvswitch.org/support/dist-docs/ovn-northd.8.html
http://openvswitch.org/support/dist-docs/ovn-northd.8.txt
http://openvswitch.org/support/dist-docs/ovn-sb.5.pdf
http://openvswitch.org/support/dist-docs/ovn-sb.5.html
http://openvswitch.org/support/dist-docs/ovn-sb.5.txt
http://openvswitch.org/support/dist-docs/ovn-sbctl.8.pdf
http://openvswitch.org/support/dist-docs/ovn-sbctl.8.html
http://openvswitch.org/support/dist-docs/ovn-sbctl.8.txt
http://openvswitch.org/support/dist-docs/ovn-trace.8.pdf
http://openvswitch.org/support/dist-docs/ovn-trace.8.html
http://openvswitch.org/support/dist-docs/ovn-trace.8.txt
http://openvswitch.org/support/dist-docs/ovs-appctl.8.pdf
http://openvswitch.org/support/dist-docs/ovs-appctl.8.html
http://openvswitch.org/support/dist-docs/ovs-appctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-bugtool.8.pdf
http://openvswitch.org/support/dist-docs/ovs-bugtool.8.html
http://openvswitch.org/support/dist-docs/ovs-bugtool.8.txt
http://openvswitch.org/support/dist-docs/ovs-ctl.8.pdf
http://openvswitch.org/support/dist-docs/ovs-ctl.8.html
http://openvswitch.org/support/dist-docs/ovs-ctl.8.txt
http://openvswitch.org/support/dist-docs/ovsdb-client.1.pdf
http://openvswitch.org/support/dist-docs/ovsdb-client.1.html
http://openvswitch.org/support/dist-docs/ovsdb-client.1.txt
http://openvswitch.org/support/dist-docs/ovsdb-server.1.pdf
http://openvswitch.org/support/dist-docs/ovsdb-server.1.html
http://openvswitch.org/support/dist-docs/ovsdb-server.1.txt
http://openvswitch.org/support/dist-docs/ovsdb-tool.1.pdf
http://openvswitch.org/support/dist-docs/ovsdb-tool.1.html
http://openvswitch.org/support/dist-docs/ovsdb-tool.1.txt
http://openvswitch.org/support/dist-docs/ovs-dpctl.8.pdf
http://openvswitch.org/support/dist-docs/ovs-dpctl.8.html
http://openvswitch.org/support/dist-docs/ovs-dpctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-dpctl-top.8.pdf
http://openvswitch.org/support/dist-docs/ovs-dpctl-top.8.html
http://openvswitch.org/support/dist-docs/ovs-dpctl-top.8.txt
http://openvswitch.org/support/dist-docs/ovs-l3ping.8.pdf
http://openvswitch.org/support/dist-docs/ovs-l3ping.8.html
http://openvswitch.org/support/dist-docs/ovs-l3ping.8.txt
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.pdf
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.html
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-parse-backtrace.8.pdf
http://openvswitch.org/support/dist-docs/ovs-parse-backtrace.8.html
http://openvswitch.org/support/dist-docs/ovs-parse-backtrace.8.txt
http://openvswitch.org/support/dist-docs/ovs-pcap.1.pdf
http://openvswitch.org/support/dist-docs/ovs-pcap.1.html
http://openvswitch.org/support/dist-docs/ovs-pcap.1.txt
http://openvswitch.org/support/dist-docs/ovs-pki.8.pdf
http://openvswitch.org/support/dist-docs/ovs-pki.8.html
http://openvswitch.org/support/dist-docs/ovs-pki.8.txt
http://openvswitch.org/support/dist-docs/ovs-tcpdump.8.pdf
http://openvswitch.org/support/dist-docs/ovs-tcpdump.8.html
http://openvswitch.org/support/dist-docs/ovs-tcpdump.8.txt
http://openvswitch.org/support/dist-docs/ovs-tcpundump.1.pdf
http://openvswitch.org/support/dist-docs/ovs-tcpundump.1.html
http://openvswitch.org/support/dist-docs/ovs-tcpundump.1.txt
http://openvswitch.org/support/dist-docs/ovs-test.8.pdf
http://openvswitch.org/support/dist-docs/ovs-test.8.html
http://openvswitch.org/support/dist-docs/ovs-test.8.txt
http://openvswitch.org/support/dist-docs/ovs-testcontroller.8.pdf
http://openvswitch.org/support/dist-docs/ovs-testcontroller.8.html
http://openvswitch.org/support/dist-docs/ovs-testcontroller.8.txt
http://openvswitch.org/support/dist-docs/ovs-vlan-bug-workaround.8.pdf
http://openvswitch.org/support/dist-docs/ovs-vlan-bug-workaround.8.html
http://openvswitch.org/support/dist-docs/ovs-vlan-bug-workaround.8.txt
http://openvswitch.org/support/dist-docs/ovs-vlan-test.8.pdf
http://openvswitch.org/support/dist-docs/ovs-vlan-test.8.html
http://openvswitch.org/support/dist-docs/ovs-vlan-test.8.txt
http://openvswitch.org/support/dist-docs/ovs-vsctl.8.pdf
http://openvswitch.org/support/dist-docs/ovs-vsctl.8.html
http://openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-vswitchd.8.pdf
http://openvswitch.org/support/dist-docs/ovs-vswitchd.8.html
http://openvswitch.org/support/dist-docs/ovs-vswitchd.8.txt
http://openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.pdf
http://openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.html
http://openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.txt
http://openvswitch.org/support/dist-docs/vtep.5.pdf
http://openvswitch.org/support/dist-docs/vtep.5.html
http://openvswitch.org/support/dist-docs/vtep.5.txt
http://openvswitch.org/support/dist-docs/vtep-ctl.8.pdf
http://openvswitch.org/support/dist-docs/vtep-ctl.8.html
http://openvswitch.org/support/dist-docs/vtep-ctl.8.html

Open vSwitch Documentation, Release 2.6.0

178 Chapter 6. Reference Guide

CHAPTER 7

Open vSwitch FAQ

7.1 Basic Configuration

Q: How do I configure a port as an access port?

A. Add tag=VLANto your ovs-vsctl add-port command. For example, the following commands
configure brO with ethQ as a trunk port (the default) and tap0 as an access port for VLAN 9:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO
$ ovs-vsctl add-port br0 tap0O tag=9

If you want to configure an already added port as an access port, use ovs—-vsctl set,e.g.:

$ ovs-vsctl set port tapO tag=9

Q: How do I configure a port as a SPAN port, that is, enable mirroring of all traffic to that port?

A. The following commands configure brO with ethO and tapO as trunk ports. All traffic coming in or
going out on ethO or tap0 is also mirrored to tapl; any traffic arriving on tap1 is dropped:

$ ovs-vsctl add-br br0

$ ovs-vsctl add-port br0 ethO

$ ovs—-vsctl add-port br0 tap0

$ ovs-vsctl add-port br0 tapl \
-— ——-1id=Q@p get port tapl \
—-— —--id=@m create mirror name=m0 select-all=true output-port=Q@p \
—-— set bridge br0 mirrors=@m

To later disable mirroring, run:

$ ovs-vsctl clear bridge br0 mirrors

Q: Does Open vSwitch support configuring a port in promiscuous mode?
A: Yes. How you configure it depends on what you mean by “promiscuous mode”:

* Conventionally, “promiscuous mode” is a feature of a network interface card. Ordinarily, a NIC
passes to the CPU only the packets actually destined to its host machine. It discards the rest to
avoid wasting memory and CPU cycles. When promiscuous mode is enabled, however, it passes
every packet to the CPU. On an old-style shared-media or hub-based network, this allows the host
to spy on all packets on the network. But in the switched networks that are almost everywhere these
days, promiscuous mode doesn’t have much effect, because few packets not destined to a host are
delivered to the host’s NIC.

179

Open vSwitch Documentation, Release 2.6.0

This form of promiscuous mode is configured in the guest OS of the VMs on your bridge, e.g. with
“ifconfig”.

* The VMware vSwitch uses a different definition of “promiscuous mode”. When you configure
promiscuous mode on a VMware VNIC, the vSwitch sends a copy of every packet received by the
vSwitch to that vNIC. That has a much bigger effect than just enabling promiscuous mode in a guest
OS. Rather than getting a few stray packets for which the switch does not yet know the correct
destination, the VNIC gets every packet. The effect is similar to replacing the vSwitch by a virtual
hub.

This “promiscuous mode” is what switches normally call “port mirroring” or “SPAN”. For infor-
mation on how to configure SPAN, see “How do I configure a port as a SPAN port, that is, enable
mirroring of all traffic to that port?”

Q: How do I configure a DPDK port as an access port?
A: Firstly, you must have a DPDK-enabled version of Open vSwitch.

If your version is DPDK-enabled it will support the other-config:dpdk-init configuration in the database
and will display lines with “EAL:...” during startup when other_config:dpdk-init is set to ‘true’.

Secondly, when adding a DPDK port, unlike a system port, the type for the interface must be specified.
For example:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 dpdk0 —-- set Interface dpdk0 type=dpdk

Finally, it is required that DPDK port names begin with dpdk.

Refer to Open vSwitch with DPDK for more information on enabling and using DPDK with Open
vSwitch.

Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable mirroring of all traffic to that VLAN?

A: The following commands configure brQ with ethO as a trunk port and tap0 as an access port for VLAN
10. All traffic coming in or going out on tap0, as well as traffic coming in or going out on ethO in VLAN
10, is also mirrored to VLAN 15 on eth0. The original tag for VLAN 10, in cases where one is present, is
dropped as part of mirroring:

ovs—-vsctl add-br br0
ovs—-vsctl add-port br0 ethO
ovs-vsctl add-port br0 tap0 tag=10
ovs-vsctl \
—— —-1d=@m create mirror name=m0 select-all=true select-vlan=10 \
output-vlan=15 \
—-— set bridge br0 mirrors=@m

v W

To later disable mirroring, run:

$ ovs-vsctl clear bridge br0 mirrors

Mirroring to a VLAN can disrupt a network that contains unmanaged switches. See ovs-
vswitchd.conf.db(5) for details. Mirroring to a GRE tunnel has fewer caveats than mirroring to a VLAN
and should generally be preferred.

Q: Can I mirror more than one input VLAN to an RSPAN VLAN?

A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor of the specified output-vlan. This
loss of information may make the mirrored traffic too hard to interpret.

To mirror multiple VLANSs, use the commands above, but specify a comma-separated list of VLANS as
the value for select-vlan. To mirror every VLAN, use the commands above, but omit select-vlan and its

180 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

value entirely.

When a packet arrives on a VLAN that is used as a mirror output VLAN, the mirror is disregarded.
Instead, in standalone mode, OVS floods the packet across all the ports for which the mirror output
VLAN is configured. (If an OpenFlow controller is in use, then it can override this behavior through the
flow table.) If OVS is used as an intermediate switch, rather than an edge switch, this ensures that the
RSPAN traffic is distributed through the network.

Mirroring to a VLAN can disrupt a network that contains unmanaged switches. See ovs-
vswitchd.conf.db(5) for details. Mirroring to a GRE tunnel has fewer caveats than mirroring to a VLAN
and should generally be preferred.

Q: How do I configure mirroring of all traffic to a GRE tunnel?

A: The following commands configure br0 with ethO and tapO as trunk ports. All traffic coming in or
going out on eth0 or tap0 is also mirrored to gre0, a GRE tunnel to the remote host 192.168.1.10; any
traffic arriving on gre0 is dropped:

ovs-vsctl add-br br0

ovs-vsctl add-port br0 ethO

ovs—-vsctl add-port br0 tap0

ovs-vsctl add-port br0 greO \
—-— set interface gre(0 type=gre options:remote_ip=192.168.1.10 \
-— —-id=@p get port grel \
—-— ——-id=@m create mirror name=m0 select-all=true output-port=Q@p \
—-— set bridge br0 mirrors=@m

v W A

To later disable mirroring and destroy the GRE tunnel:

$ ovs-vsctl clear bridge br0 mirrors
$ ovs-vsctl del-port br0 gre0

Q: Does Open vSwitch support ERSPAN?
A: No. As an alternative, Open vSwitch supports mirroring to a GRE tunnel (see above).
Q: How do I connect two bridges?

A: First, why do you want to do this? Two connected bridges are not much different from a single bridge,
so you might as well just have a single bridge with all your ports on it.

If you still want to connect two bridges, you can use a pair of patch ports. The following example creates
bridges br0 and br1, adds ethO and tapO to br0, adds tap1 to br1, and then connects brQ and brl with a pair
of patch ports.

ovs—-vsctl add-br br0
ovs—-vsctl add-port br0 ethO
ovs-vsctl add-port br0 tap0
ovs—-vsctl add-br brl
ovs—-vsctl add-port brl tapl
ovs-vsctl \
—-— add-port br0 patchO0 \
—— set interface patchO type=patch options:peer=patchl \
—-— add-port brl patchl \
—-— set interface patchl type=patch options:peer=patch0

v r v r W

Bridges connected with patch ports are much like a single bridge. For instance, if the example above also
added ethl to brl, and both ethO and ethl happened to be connected to the same next-hop switch, then
you could loop your network just as you would if you added ethO and ethl to the same bridge (see the
“Configuration Problems” section below for more information).

7.1. Basic Configuration 181

Open vSwitch Documentation, Release 2.6.0

If you are using Open vSwitch 1.9 or an earlier version, then you need to be using the kernel module
bundled with Open vSwitch rather than the one that is integrated into Linux 3.3 and later, because Open
vSwitch 1.9 and earlier versions need kernel support for patch ports. This also means that in Open vSwitch
1.9 and earlier, patch ports will not work with the userspace datapath, only with the kernel module.

Q: How do I configure a bridge without an OpenFlow local port? (Local port in the sense of OFPP_LOCAL)

A: Open vSwitch does not support such a configuration. Bridges always have their local ports.

7.2 Development

Q: How do I implement a new OpenFlow message?

A: Add your new message to enum ofpraw and enum ofptype in 1ib/ofp-msgs.h, following
the existing pattern. Then recompile and fix all of the new warnings, implementing new functionality for
the new message as needed. (If you configure with ——enable-Werror, as described in Open vSwitch
on Linux, FreeBSD and NetBSD, then it is impossible to miss any warnings.)

If you need to add an OpenFlow vendor extension message for a vendor that doesn’t yet have any extension
messages, then you will also need to edit build-aux/extract-ofp-msgs.

Q: How do I add support for a new field or header?

A: Add new members for your field to st ruct flowin 1ib/flow.h, and add new enumerations for
your new field to enum mf_field_idin lib/meta-flow.h, following the existing pattern. Also,
add support to miniflow_extract () in 1ib/flow. c for extracting your new field from a packet
into struct miniflow, and to nx_put_raw () in 1ib/nx-match. c to output your new field in OXM
matches. Then recompile and fix all of the new warnings, implementing new functionality for the new
field or header as needed. (If you configure with ——enable-Werror, as described in Open vSwitch on
Linux, FreeBSD and NetBSD, then it is impossible to miss any warnings.)

If you want kernel datapath support for your new field, you also need to modify the kernel module for the
operating systems you are interested in. This isn’t mandatory, since fields understood only by userspace
work too (with a performance penalty), so it’s reasonable to start development without it. If you implement
kernel module support for Linux, then the Linux kernel “netdev”’ mailing list is the place to submit that
support first; please read up on the Linux kernel development process separately. The Windows datapath
kernel module support, on the other hand, is maintained within the OVS tree, so patches for that can go
directly to ovs-dev.

Q: How do I add support for a new OpenFlow action?

A: Add your new action to enum ofp_raw_action_type in lib/ofp-actions.c, following
the existing pattern. Then recompile and fix all of the new warnings, implementing new functionality for
the new action as needed. (If you configure with ——enable-Werror, as described in the Open vSwitch
on Linux, FreeBSD and NetBSD, then it is impossible to miss any warnings.)

If you need to add an OpenFlow vendor extension action for a vendor that doesn’t yet have any extension
actions, then you will also need to edit build-aux/extract—-ofp-actions.

7.3 Implementation Details

Q: I hear OVS has a couple of kinds of flows. Can you tell me about them?

A: Open vSwitch uses different kinds of flows for different purposes:

182 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

* OpenFlow flows are the most important kind of flow. OpenFlow controllers use these flows to define
a switch’s policy. OpenFlow flows support wildcards, priorities, and multiple tables.

When in-band control is in use, Open vSwitch sets up a few “hidden” flows, with priority higher
than a controller or the user can configure, that are not visible via OpenFlow. (See the “Controller”
section of the FAQ for more information about hidden flows.)

e The Open vSwitch software switch implementation uses a second kind of flow internally. These
flows, called “datapath” or “kernel” flows, do not support priorities and comprise only a single
table, which makes them suitable for caching. (Like OpenFlow flows, datapath flows do support
wildcarding, in Open vSwitch 1.11 and later.) OpenFlow flows and datapath flows also support
different actions and number ports differently.

Datapath flows are an implementation detail that is subject to change in future versions of Open
vSwitch. Even with the current version of Open vSwitch, hardware switch implementations do not
necessarily use this architecture.

Users and controllers directly control only the OpenFlow flow table. Open vSwitch manages the datapath flow table

itself, so users should not normally be concerned with it.
Q: Why are there so many different ways to dump flows?

A: Open vSwitch has two kinds of flows (see the previous question), so it has commands with different
purposes for dumping each kind of flow:

e ovs-ofctl dump-flows
 dumps OpenFlow flows, excluding hidden flows. This is the
most commonly useful form of flow dump. (Unlike the other commands, this should work with any
OpenFlow switch, not just Open vSwitch.)

* ovs—appctl bridge/dump-flows
 dumps OpenFlow flows, including hidden flows.
This is occasionally useful for troubleshooting suspected issues with in-band control.

e ovs—dpctl dump-flows [dp] dumps the datapath flow table entries for a Linux kernel-based
datapath. In Open vSwitch 1.10 and later, ovs-vswitchd merges multiple switches into a single data-
path, so it will show all the flows on all your kernel-based switches. This command can occasionally
be useful for debugging.

* ovs—appctl dpif/dump-flows
, new in Open vSwitch 1.10, dumps datapath flows
for only the specified bridge, regardless of the type.

Q: How does multicast snooping works with VLANs?
A: Open vSwitch maintains snooping tables for each VLAN.

Q: Can OVS populate the kernel flow table in advance instead of in reaction to packets?
A: No. There are several reasons:

» Kernel flows are not as sophisticated as OpenFlow flows, which means that some OpenFlow policies
could require a large number of kernel flows. The “conjunctive match” feature is an extreme exam-
ple: the number of kernel flows it requires is the product of the number of flows in each dimension.

* With multiple OpenFlow flow tables and simple sets of actions, the number of kernel flows required
can be as large as the product of the number of flows in each dimension. With more sophisticated
actions, the number of kernel flows could be even larger.

* Open vSwitch is designed so that any version of OVS userspace interoperates with any version of
the OVS kernel module. This forward and backward compatibility requires that userspace observe
how the kernel module parses received packets. This is only possible in a straightforward way when
userspace adds kernel flows in reaction to received packets.

For more relevant information on the architecture of Open vSwitch, please read “The Design and Imple-
mentation of Open vSwitch”, published in USENIX NSDI 2015.

7.3. Implementation Details

183

Open vSwitch Documentation, Release 2.6.0

7.4 General

Q: What is Open vSwitch?

A: Open vSwitch is a production quality open source software switch designed to be used as a vswitch in
virtualized server environments. A vswitch forwards traffic between different VMs on the same physical
host and also forwards traffic between VMs and the physical network. Open vSwitch supports standard
management interfaces (e.g. sFlow, NetFlow, IPFIX, RSPAN, CLI), and is open to programmatic exten-
sion and control using OpenFlow and the OVSDB management protocol.

Open vSwitch as designed to be compatible with modern switching chipsets. This means that it can be
ported to existing high-fanout switches allowing the same flexible control of the physical infrastructure
as the virtual infrastructure. It also means that Open vSwitch will be able to take advantage of on-NIC
switching chipsets as their functionality matures.

Q: What virtualization platforms can use Open vSwitch?

A: Open vSwitch can currently run on any Linux-based virtualization platform (kernel 3.10 and newer),
including: KVM, VirtualBox, Xen, Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
mainline kernel. The bulk of the code is written in platform- independent C and is easily ported to other
environments. We welcome inquires about integrating Open vSwitch with other virtualization platforms.

Q: How can I try Open vSwitch?

A: The Open vSwitch source code can be built on a Linux system. You can build and experiment with
Open vSwitch on any Linux machine. Packages for various Linux distributions are available on many
platforms, including: Debian, Ubuntu, Fedora.

You may also download and run a virtualization platform that already has Open vSwitch integrated. For
example, download a recent ISO for XenServer or Xen Cloud Platform. Be aware that the version inte-
grated with a particular platform may not be the most recent Open vSwitch release.

Q: Does Open vSwitch only work on Linux?

A: No, Open vSwitch has been ported to a number of different operating systems and hardware platforms.
Most of the development work occurs on Linux, but the code should be portable to any POSIX system.
We’ve seen Open vSwitch ported to a number of different platforms, including FreeBSD, Windows, and
even non-POSIX embedded systems.

By definition, the Open vSwitch Linux kernel module only works on Linux and will provide the highest
performance. However, a userspace datapath is available that should be very portable.

Q: What’s involved with porting Open vSwitch to a new platform or switching ASIC?

A: Porting Open vSwitch to New Software or Hardware describes how one would go about porting Open
vSwitch to a new operating system or hardware platform.

Q: Why would I use Open vSwitch instead of the Linux bridge?

A: Open vSwitch is specially designed to make it easier to manage VM network configuration and mon-
itor state spread across many physical hosts in dynamic virtualized environments. Refer to Why Open
vSwitch? for a more detailed description of how Open vSwitch relates to the Linux Bridge.

Q: How is Open vSwitch related to distributed virtual switches like the VMware vNetwork distributed switch or the
Cisco Nexus 1000V?

A: Distributed vswitch applications (e.g., VMware vNetwork distributed switch, Cisco Nexus 1000V)
provide a centralized way to configure and monitor the network state of VMs that are spread across
many physical hosts. Open vSwitch is not a distributed vswitch itself, rather it runs on each physical
host and supports remote management in a way that makes it easier for developers of virtualization/cloud
management platforms to offer distributed vswitch capabilities.

184 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

To aid in distribution, Open vSwitch provides two open protocols that are specially designed for remote
management in virtualized network environments: OpenFlow, which exposes flow-based forwarding state,
and the OVSDB management protocol, which exposes switch port state. In addition to the switch imple-
mentation itself, Open vSwitch includes tools (ovs-ofctl, ovs-vsctl) that developers can script and extend
to provide distributed vswitch capabilities that are closely integrated with their virtualization management
platform.

Q: Why doesn’t Open vSwitch support distribution?

A: Open vSwitch is intended to be a useful component for building flexible network infrastructure. There
are many different approaches to distribution which balance trade-offs between simplicity, scalability,
hardware compatibility, convergence times, logical forwarding model, etc. The goal of Open vSwitch is
to be able to support all as a primitive building block rather than choose a particular point in the distributed
design space.

Q: How can I contribute to the Open vSwitch Community?

A: You can start by joining the mailing lists and helping to answer questions. You can also suggest
improvements to documentation. If you have a feature or bug you would like to work on, send a mail to
one of the mailing lists.

Q: Why can I no longer connect to my OpenFlow controller or OVSDB manager?

A: Starting in OVS 2.4, we switched the default ports to the IANA-specified port numbers for OpenFlow
(6633->6653) and OVSDB (6632->6640). We recommend using these port numbers, but if you cannot,
all the programs allow overriding the default port. See the appropriate man page.

7.5 Common Configuration Issues

Q: I created a bridge and added my Ethernet port to it, using commands like these:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO

and as soon as I ran the “add-port” command I lost all connectivity through ethO. Help!

A: A physical Ethernet device that is part of an Open vSwitch bridge should not have an IP address. If
one does, then that IP address will not be fully functional.

You can restore functionality by moving the IP address to an Open vSwitch “internal” device, such
as the network device named after the bridge itself. For example, assuming that ethQ’s IP address is
192.168.128.5, you could run the commands below to fix up the situation:

$ ifconfig ethO 0.0.0.0
$ ifconfig br0 192.168.128.5

(If your only connection to the machine running OVS is through the IP address in question, then you
would want to run all of these commands on a single command line, or put them into a script.) If there
were any additional routes assigned to ethO, then you would also want to use commands to adjust these
routes to go through brO.

If you use DHCP to obtain an IP address, then you should kill the DHCP client that was listening on the
physical Ethernet interface (e.g. ethO) and start one listening on the internal interface (e.g. br0). You
might still need to manually clear the IP address from the physical interface (e.g. with “ifconfig ethO
0.0.0.07).

There is no compelling reason why Open vSwitch must work this way. However, this is the way that the
Linux kernel bridge module has always worked, so it’s a model that those accustomed to Linux bridging

7.5. Common Configuration Issues 185

Open vSwitch Documentation, Release 2.6.0

are already used to. Also, the model that most people expect is not implementable without kernel changes
on all the versions of Linux that Open vSwitch supports.

By the way, this issue is not specific to physical Ethernet devices. It applies to all network devices except
Open vSwitch “internal” devices.

Q: I created a bridge and added a couple of Ethernet ports to it, using commands like these:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO
$ ovs-vsctl add-port br0 ethl

and now my network seems to have melted: connectivity is unreliable (even connectivity that doesn’t go through Open
vSwitch), all the LEDs on my physical switches are blinking, wireshark shows duplicated packets, and CPU usage is
very high.

A: More than likely, you’ve looped your network. Probably, ethO and ethl are connected to the same
physical Ethernet switch. This yields a scenario where OVS receives a broadcast packet on ethO and
sends it out on ethl, then the physical switch connected to ethl sends the packet back on ethO, and so on
forever. More complicated scenarios, involving a loop through multiple switches, are possible too.

The solution depends on what you are trying to do:

e If you added ethO and ethl to get higher bandwidth or higher reliability between OVS and your
physical Ethernet switch, use a bond. The following commands create brO and then add ethO and
ethl as a bond:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-bond br0 bond0 eth0 ethl

Bonds have tons of configuration options. Please read the documentation on the Port table in ovs-
vswitchd.conf.db(5) for all the details.

Configuration for DPDK-enabled interfaces is slightly less straightforward. Refer to Open vSwitch
with DPDK for more information.

» Perhaps you don’t actually need ethO and eth1 to be on the same bridge. For example, if you simply
want to be able to connect each of them to virtual machines, then you can put each of them on a
bridge of its own:

$ ovs-vsctl add-br br0 $ ovs-vsctl add-port br0 ethO
$ ovs-vsctl add-br brl $ ovs-vsctl add-port brl ethl

and then connect VMs to br0 and brl. (A potential disadvantage is that traffic cannot directly pass
between br0 and brl. Instead, it will go out ethO and come back in ethl, or vice versa.)

* If you have a redundant or complex network topology and you want to prevent loops, turn on span-
ning tree protocol (STP). The following commands create brQ, enable STP, and add ethO and ethl to
the bridge. The order is important because you don’t want have to have a loop in your network even
transiently:

ovs—-vsctl add-br br0

ovs-vsctl set bridge br0 stp_enable=true
ovs—-vsctl add-port br0 ethO

ovs-vsctl add-port br0 ethl

v »r

The Open vSwitch implementation of STP is not well tested. Report any bugs you observe, but if
you’d rather avoid acting as a beta tester then another option might be your best shot.

Q: I can’t seem to use Open vSwitch in a wireless network.

186 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

A: Wireless base stations generally only allow packets with the source MAC address of NIC that com-
pleted the initial handshake. Therefore, without MAC rewriting, only a single device can communicate
over a single wireless link.

This isn’t specific to Open vSwitch, it’s enforced by the access point, so the same problems will show up
with the Linux bridge or any other way to do bridging.

Q: I can’t seem to add my PPP interface to an Open vSwitch bridge.

A: PPP most commonly carries IP packets, but Open vSwitch works only with Ethernet frames. The
correct way to interface PPP to an Ethernet network is usually to use routing instead of switching.

Q: Is there any documentation on the database tables and fields?

A: Yes. ovs-vswitchd.conf.db(5) is a comprehensive reference.

Q: When I run ovs-dpctl I no longer see the bridges I created. Instead, I only see a datapath called “ovs-system”.

can I see datapath information about a particular bridge?

A: In version 1.9.0, OVS switched to using a single datapath that is shared by all bridges of that type. The
ovs—appctl dpif/* commands provide similar functionality that is scoped by the bridge.

Q: I created a GRE port using ovs-vsctl so why can’t I send traffic or see the port in the datapath?

A: On Linux kernels before 3.11, the OVS GRE module and Linux GRE module cannot be loaded at the
same time. It is likely that on your system the Linux GRE module is already loaded and blocking OVS
(to confirm, check dmesg for errors regarding GRE registration). To fix this, unload all GRE modules that
appear in Ismod as well as the OVS kernel module. You can then reload the OVS module following the
directions in Open vSwitch on Linux, FreeBSD and NetBSD , which will ensure that dependencies are
satisfied.

Q: Open vSwitch does not seem to obey my packet filter rules.
A: Tt depends on mechanisms and configurations you want to use.

You cannot usefully use typical packet filters, like iptables, on physical Ethernet ports that you add to
an Open vSwitch bridge. This is because Open vSwitch captures packets from the interface at a layer
lower below where typical packet-filter implementations install their hooks. (This actually applies to any
interface of type “system” that you might add to an Open vSwitch bridge.)

You can usefully use typical packet filters on Open vSwitch internal ports as they are mostly ordinary
interfaces from the point of view of packet filters.

For example, suppose you create a bridge brO and add Ethernet port ethQ to it. Then you can usefully add
iptables rules to affect the internal interface br0, but not the physical interface eth0. (br0 is also where you
would add an IP address, as discussed elsewhere in the FAQ.)

For simple filtering rules, it might be possible to achieve similar results by installing appropriate Open-
Flow flows instead. The OVS conntrack feature (see the “ct” action in ovs-ofctl(8)) can implement a
stateful firewall.

If the use of a particular packet filter setup is essential, Open vSwitch might not be the best choice for
you. On Linux, you might want to consider using the Linux Bridge. (This is the only choice if you want
to use ebtables rules.) On NetBSD, you might want to consider using the bridge(4) with BRIDGE_IPF
option.

How

Q: It seems that Open vSwitch does nothing when I removed a port and then immediately put it back. For example,

consider that pl is a port of type=internal:

$ ovs-vsctl del-port br0 pl —-— \
add-port br0 pl -- \
set interface pl type=internal

7.5. Common Configuration Issues

187

Open vSwitch Documentation, Release 2.6.0

A: It's an expected behaviour.

If del-port and add-port happen in a single OVSDB transaction as your
example, Open vSwitch always "skips" the intermediate steps. Even if they
are done in multiple transactions, it's still allowed for Open vSwitch to
skip the intermediate steps and just implement the overall effect. In both
cases, your example would be turned into a no-op.

If you want to make Open vSwitch actually destroy and then re-create the
port for some side effects like resetting kernel setting for the
corresponding interface, you need to separate operations into multiple
OVSDB transactions and ensure that at least the first one does not have
"'—-no-wait' . In the following example, the first ovs-vsctl will block
until Open vSwitch reloads the new configuration and removes the port::

$ ovs-vsctl del-port br0 pl
$ ovs-vsctl add-port br0 pl —-- \
set interface pl type=internal

Q: I want to add thousands of ports to an Open vSwitch bridge, but it takes too long (minutes or hours) to do it with
ovs-vsctl. How can I do it faster?

A: If you add them one at a time with ovs-vsctl, it can take a long time to add thousands of ports to an
Open vSwitch bridge. This is because every invocation of ovs-vsctl first reads the current configuration
from OVSDB. As the number of ports grows, this starts to take an appreciable amount of time, and when
it is repeated thousands of times the total time becomes significant.

The solution is to add the ports in one invocation of ovs-vsctl (or a small number of them). For example,
using bash:

$ ovs-vsctl add-br br0
$ cmds=; for i in {1..5000}; do cmds+=" -- add-port br0 p$i"; done
$ ovs-vsctl $Scmds

takes seconds, not minutes or hours, in the OVS sandbox environment.

Q: I created a bridge named br0. My bridge shows up in “ovs-vsctl show”, but “ovs-ofctl show br0” just prints “br0 is
not a bridge or a socket”.

A: Open vSwitch wasn’t able to create the bridge. Check the ovs-vswitchd log for details (Debian and
Red Hat packaging for Open vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log).

In general, the Open vSwitch database reflects the desired configuration state. ovs-vswitchd monitors the
database and, when it changes, reconfigures the system to reflect the new desired state. This normally
happens very quickly. Thus, a discrepancy between the database and the actual state indicates that ovs-
vswitchd could not implement the configuration, and so one should check the log to find out why. (Another
possible cause is that ovs-vswitchd is not running. This will make ovs-vsctl commands hang, if they
change the configuration, unless one specifies ——no-wait.)

Q: T have a bridge br0. I added a new port vif1.0, and it shows up in “ovs-vsctl show”, but “ovs-vsctl list port” says
that it has OpenFlow port (“ofport”) -1, and “ovs-ofctl show br0” doesn’t show vif1.0 at all.

A: Open vSwitch wasn’t able to create the port. Check the ovs-vswitchd log for details (Debian and Red
Hat packaging for Open vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log). Please see the previous
question for more information.

You may want to upgrade to Open vSwitch 2.3 (or later), in which ovs-vsctl will immediately report when
there is an issue creating a port.

Q: I created a tap device tap0, configured an IP address on it, and added it to a bridge, like this:

188 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

tunctl -t tap0

ifconfig tap0 192.168.0.123
ovs-vsctl add-br br0
ovs-vsctl add-port br0 tapO

w4

I expected that I could then use this IP address to contact other hosts on the network, but it doesn’t work. Why not?

A: The short answer is that this is a misuse of a “tap” device. Use an “internal” device implemented by
Open vSwitch, which works differently and is designed for this use. To solve this problem with an internal
device, instead run:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 int0 —-- set Interface int0 type=internal
$ ifconfig int0 192.168.0.123

Even more simply, you can take advantage of the internal port that every bridge has under the name of the
bridge:

$ ovs-vsctl add-br br0
$ ifconfig br0 192.168.0.123

In more detail, a “tap” device is an interface between the Linux (or BSD) network stack and a user program
that opens it as a socket. When the “tap” device transmits a packet, it appears in the socket opened by
the userspace program. Conversely, when the userspace program writes to the “tap” socket, the kernel
TCP/IP stack processes the packet as if it had been received by the “tap” device.

Consider the configuration above. Given this configuration, if you “ping” an IP address in the 192.168.0.x
subnet, the Linux kernel routing stack will transmit an ARP on the tap(Q device. Open vSwitch userspace
treats “tap” devices just like any other network device; that is, it doesn’t open them as “tap” sockets. That
means that the ARP packet will simply get dropped.

You might wonder why the Open vSwitch kernel module doesn’t intercept the ARP packet and bridge
it. After all, Open vSwitch intercepts packets on other devices. The answer is that Open vSwitch only
intercepts received packets, but this is a packet being transmitted. The same thing happens for all other
types of network devices, except for Open vSwitch “internal” ports. If you, for example, add a physical
Ethernet port to an OVS bridge, configure an IP address on a physical Ethernet port, and then issue a
“ping” to an address in that subnet, the same thing happens: an ARP gets transmitted on the physical
Ethernet port and Open vSwitch never sees it. (You should not do that, as documented at the beginning of
this section.)

It can make sense to add a “tap” device to an Open vSwitch bridge, if some userspace program (other than
Open vSwitch) has opened the tap socket. This is the case, for example, if the “tap” device was created
by KVM (or QEMU) to simulate a virtual NIC. In such a case, when OVS bridges a packet to the “tap”
device, the kernel forwards that packet to KVM in userspace, which passes it along to the VM, and in the
other direction, when the VM sends a packet, KVM writes it to the “tap” socket, which causes OVS to
receive it and bridge it to the other OVS ports. Please note that in such a case no IP address is configured
on the “tap” device (there is normally an IP address configured in the virtual NIC inside the VM, but this
is not visible to the host Linux kernel or to Open vSwitch).

There is one special case in which Open vSwitch does directly read and write “tap” sockets. This is an
implementation detail of the Open vSwitch userspace switch, which implements its “internal” ports as
Linux (or BSD) “tap” sockets. In such a userspace switch, OVS receives packets sent on the “tap” device
used to implement an “internal” port by reading the associated “tap” socket, and bridges them to the rest
of the switch. In the other direction, OVS transmits packets bridged to the “internal” port by writing them
to the “tap” socket, causing them to be processed by the kernel TCP/IP stack as if they had been received
on the “tap” device. Users should not need to be concerned with this implementation detail.

Open vSwitch has a network device type called “tap”. This is intended only for implementing “internal”

7.5. Common Configuration Issues

189

Open vSwitch Documentation, Release 2.6.0

ports in the OVS userspace switch and should not be used otherwise. In particular, users should not
configure KVM “tap” devices as type “tap” (use type “system”, the default, instead).

Q: I observe packet loss at the beginning of RFC2544 tests on a server running few hundred container apps bridged to
OVS with traffic generated by HW traffic generator. How can I fix this?

A: This is expected behavior on virtual switches. RFC2544 tests were designed for hardware switches,
which don’t have caches on the fastpath that need to be heated. Traffic generators in order to prime the
switch use learning phase to heat the caches before sending the actual traffic in test phase. In case of OVS
the cache is flushed quickly and to accommodate the traffic generator’s delay between learning and test
phase, the max-idle timeout settings should be changed to 50000 ms.:

$ ovs-vsctl —--no-wait set Open_vSwitch . other_config:max-idle=50000

Q: How can I configure the bridge internal interface MTU? Why does Open vSwitch keep changing internal ports
MTU?

A: By default Open vSwitch overrides the internal interfaces (e.g. br0) MTU. If you have just an internal
interface (e.g. br0) and a physical interface (e.g. ethQ), then every change in MTU to ethO will be reflected
to brO0. Any manual MTU configuration using ip or ifconfig on internal interfaces is going to be overridden
by Open vSwitch to match the current bridge minimum.

Sometimes this behavior is not desirable, for example with tunnels. The MTU of an internal interface can
be explicitly set using the following command:

$ ovs-vsctl set int br0 mtu_request=1450

After this, Open vSwitch will configure br0 MTU to 1450. Since this setting is in the database it will be
persistent (compared to what happens with ip or ifconfig).

The MTU configuration can be removed to restore the default behavior with:

$ ovs-vsctl set int br0 mtu_request=[]

The mtu_request column can be used to configure MTU even for physical interfaces (e.g. eth0).
Q: I just upgraded and I see a performance drop. Why?

A: The OVS kernel datapath may have been updated to a newer version than the OVS userspace com-
ponents. Sometimes new versions of OVS kernel module add functionality that is backwards compatible
with older userspace components but may cause a drop in performance with them. Especially, if a kernel
module from OVS 2.1 or newer is paired with OVS userspace 1.10 or older, there will be a performance
drop for TCP traffic.

Updating the OVS userspace components to the latest released version should fix the performance degra-
dation.

To get the best possible performance and functionality, it is recommended to pair the same versions of the
kernel module and OVS userspace.

7.6 Using OpenFlow

Q: What versions of OpenFlow does Open vSwitch support?

A: The following table lists the versions of OpenFlow supported by each version of Open vSwitch:

190 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

Open vSwitch | OF1.0 | OF1.1 | OF1.2 | OF1.3 | OF1.4 | OF1.5 | OF1.6
1.9 and earlier yes — — — — — _
1.10 yes —) ™) — — —
1.11 yes — (*) (*) — — —
2.0 yes) *) @) — — —
2.1 yes @))) — — —
2.2 yes @) *)) (%)) —
23 yes yes yes yes *) () —
2.4 yes yes yes yes (*) (*) —
25 yes yes yes yes *) *) *)

(*) Supported, with one or more missing features. (%) Experimental, unsafe implementation.

Open vSwitch 2.3 enables OpenFlow 1.0, 1.1, 1.2, and 1.3 by default in ovs-vswitchd. In Open vSwitch
1.10 through 2.2, OpenFlow 1.1, 1.2, and 1.3 must be enabled manually in ovs-vswitchd.

Some versions of OpenFlow are supported with missing features and therefore not enabled by default:
OpenFlow 1.4 and 1.5, in Open vSwitch 2.3 and later, as well as OpenFlow 1.6 in Open vSwitch 2.5 and
later. Also, the OpenFlow 1.6 specification is still under development and thus subject to change.

In any case, the user may override the default:

* To enable OpenFlow 1.0, 1.1, 1.2, and 1.3 on bridge br0:

$ ovs-vsctl set bridge br0 \
protocols=0OpenFlowl0,OpenFlowll, OpenFlowl2, OpenFlowl3

* To enable OpenFlow 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 on bridge br0:

$ ovs-vsctl set bridge br0 \
protocols=0OpenFlowl0,OpenFlowll,OpenFlowl2, OpenFlowl3, OpenFlowl4, OpenFlowl§

* To enable only OpenFlow 1.0 on bridge br0:

$ ovs-vsctl set bridge br0 protocols=OpenFlowl0 ‘

All current versions of ovs-ofctl enable only OpenFlow 1.0 by default. Use the -O option to enable support
for later versions of OpenFlow in ovs-ofctl. For example:

$ ovs-ofctl -O OpenFlowl3 dump-flows br0 ‘

(Open vSwitch 2.2 had an experimental implementation of OpenFlow 1.4 that could cause crashes. We
don’t recommend enabling it.)

OpenFlow Support in Open vSwitch tracks support for OpenFlow 1.1 and later features. When support
for OpenFlow 1.4 and 1.5 is solidly implemented, Open vSwitch will enable those version by default.

Q: Does Open vSwitch support MPLS?

A: Before version 1.11, Open vSwitch did not support MPLS. That is, these versions can match on MPLS
Ethernet types, but they cannot match, push, or pop MPLS labels, nor can they look past MPLS labels
into the encapsulated packet.

Open vSwitch versions 1.11, 2.0, and 2.1 have very minimal support for MPLS. With the userspace
datapath only, these versions can match, push, or pop a single MPLS label, but they still cannot look
past MPLS labels (even after popping them) into the encapsulated packet. Kernel datapath support is
unchanged from earlier versions.

Open vSwitch version 2.3 can match, push, or pop a single MPLS label and look past the MPLS label into
the encapsulated packet. Both userspace and kernel datapaths will be supported, but MPLS processing
always happens in userspace either way, so kernel datapath performance will be disappointing.

7.6. Using OpenFlow 191

Open vSwitch Documentation, Release 2.6.0

Open vSwitch version 2.4 can match, push, or pop up to 3 MPLS labels and look past the MPLS label
into the encapsulated packet. It will have kernel support for MPLS, yielding improved performance.

Q: I'm getting “error type 45250 code 0. What’s that?

A: This is a Open vSwitch extension to OpenFlow error codes. Open vSwitch uses this extension when it
must report an error to an OpenFlow controller but no standard OpenFlow error code is suitable.

Open vSwitch logs the errors that it sends to controllers, so the easiest thing to do is probably to look at
the ovs-vswitchd log to find out what the error was.

If you want to dissect the extended error message yourself, the format is documented in
include/openflow/nicira-ext.h in the Open vSwitch source distribution. The extended error codes are
documented in include/openvswitch/ofp-errors.h.

Q: Some of the traffic that I'd expect my OpenFlow controller to see doesn’t actually appear through the OpenFlow
connection, even though I know that it’s going through.

A: By default, Open vSwitch assumes that OpenFlow controllers are connected “in-band”, that is, that
the controllers are actually part of the network that is being controlled. In in-band mode, Open vSwitch
sets up special “hidden” flows to make sure that traffic can make it back and forth between OVS and the
controllers. These hidden flows are higher priority than any flows that can be set up through OpenFlow,
and they are not visible through normal OpenFlow flow table dumps.

Usually, the hidden flows are desirable and helpful, but occasionally they can cause unexpected behavior.
You can view the full OpenFlow flow table, including hidden flows, on bridge brO with the command:

$ ovs—appctl bridge/dump-flows br0

to help you debug. The hidden flows are those with priorities greater than 65535 (the maximum priority
that can be set with OpenFlow).

The Documentation/topics/design doc describes the in-band model in detail.

If your controllers are not actually in-band (e.g. they are on localhost via 127.0.0.1, or on a separate
network), then you should configure your controllers in “out-of-band” mode. If you have one controller
on bridge br(, then you can configure out-of-band mode on it with:

$ ovs-vsctl set controller br0 connection-mode=out-of-band

Q: Some of the OpenFlow flows that my controller sets up don’t seem to apply to certain traffic, especially traffic
between OVS and the controller itself.

A: See above.

Q: I configured all my controllers for out-of-band control mode but “ovs-appctl bridge/dump-flows” still shows some
hidden flows.

A: You probably have a remote manager configured (e.g. with “ovs-vsctl set-manager”). By default, Open
vSwitch assumes that managers need in-band rules set up on every bridge. You can disable these rules on
bridge br0 with:

$ ovs-vsctl set bridge br0 other-config:disable-in-band=true

This actually disables in-band control entirely for the bridge, as if all the bridge’s controllers were config-
ured for out-of-band control.

Q: My OpenFlow controller doesn’t see the VL AN that I expect.
A: See answer under “VLANSs”, above.

Q: Iran ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop butI got a funny message
like this:

192 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

ofp_util|INFO|normalization changed ofp_match, details:
ofp_util|INFO| pre: nw_dst=192.168.0.1
ofp_util | INFO|post:

and when Iran ovs—-ofctl dump-flows br0 Isaw that my nw_dst match had disappeared, so that the flow ends
up matching every packet.

A: The term “normalization” in the log message means that a flow cannot match on an L3 field without
saying what L3 protocol is in use. The “ovs-ofct]” command above didn’t specify an L3 protocol, so the
L3 field match was dropped.

In this case, the L3 protocol could be IP or ARP. A correct command for each possibility is, respectively:

$ ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop

and:

$ ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop

Similarly, a flow cannot match on an L4 field without saying what L4 protocol is in use. For example, the
flow match tp_src=1234 is, by itself, meaningless and will be ignored. Instead, to match TCP source
port 1234, write tcp, tp_src=1234, or to match UDP source port 1234, write udp, tp_src=1234.

Q: How can I figure out the OpenFlow port number for a given port?

A: The OFPT_FEATURES_REQUEST message requests an OpenFlow switch to respond with an
OFPT_FEATURES_REPLY that, among other information, includes a mapping between OpenFlow port
names and numbers. From a command prompt, ovs-ofctl show br0 makes such a request and
prints the response for switch brO.

The Interface table in the Open vSwitch database also maps OpenFlow port names to numbers. To print
the OpenFlow port number associated with interface eth0, run:

$ ovs-vsctl get Interface eth0 ofport

You can print the entire mapping with:

$ ovs-vsctl —-- —--columns=name,ofport list Interface

but the output mixes together interfaces from all bridges in the database, so it may be confusing if more
than one bridge exists.

In the Open vSwitch database, ofport value —1 means that the interface could not be created due to an
error. (The Open vSwitch log should indicate the reason.) ofport value [] (the empty set) means that the
interface hasn’t been created yet. The latter is normally an intermittent condition (unless ovs-vswitchd is
not running).

Q: I added some flows with my controller or with ovs-ofctl, but when I run “ovs-dpctl dump-flows” I don’t see them.

A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch. It won’t display the information that you
want. You want to use ovs—ofctl dump-flows instead.

Q: It looks like each of the interfaces in my bonded port shows up as an individual OpenFlow port. Is that right?

A: Yes, Open vSwitch makes individual bond interfaces visible as OpenFlow ports, rather than the bond
as a whole. The interfaces are treated together as a bond for only a few purposes:

» Sending a packet to the OFPP_NORMAL port. (When an OpenFlow controller is not configured,
this happens implicitly to every packet.)

* Mirrors configured for output to a bonded port.

7.6. Using OpenFlow 193

Open vSwitch Documentation, Release 2.6.0

It would make a lot of sense for Open vSwitch to present a bond as a single OpenFlow port. If you want
to contribute an implementation of such a feature, please bring it up on the Open vSwitch development
mailing list at dev @openvswitch.org.

Q: I have a sophisticated network setup involving Open vSwitch, VMs or multiple hosts, and other components. The
behavior isn’t what I expect. Help!

A: To debug network behavior problems, trace the path of a packet, hop-by-hop, from its origin in one
host to a remote host. If that’s correct, then trace the path of the response packet back to the origin.

The open source tool called plotnetcfg can help to understand the relationship between the network-
ing devices on a single host.

Usually a simple ICMP echo request and reply (ping) packet is good enough. Start by initiating an
ongoing ping from the origin host to a remote host. If you are tracking down a connectivity problem,
the “ping” will not display any successful output, but packets are still being sent. (In this case the packets
being sent are likely ARP rather than ICMP.)

Tools available for tracing include the following:

e tcpdump and wireshark for observing hops across network devices, such as Open vSwitch
internal devices and physical wires.

* ovs—appctl dpif/dump-flows
 in Open vSwitch 1.10 and later or ovs—dpctl
dump-flows
 in earlier versions. These tools allow one to observe the actions being taken
on packets in ongoing flows.

See ovs-vswitchd(8) for ovs—appctl dpif/dump-flows documentation, ovs-dpctl(8) for
ovs—dpctl dump-flows documentation, and “Why are there so many different ways to dump
flows?” above for some background.

* ovs—appctl ofproto/trace to observe the logic behind how ovs-vswitchd treats pack-
ets. See ovs-vswitchd(8) for documentation. You can out more details about a given flow that
ovs—-dpctl dump-flows displays, by cutting and pasting a flow from the output into an
ovs—appctl ofproto/trace command.

* SPAN, RSPAN, and ERSPAN features of physical switches, to observe what goes on at these phys-
ical hops.

Starting at the origin of a given packet, observe the packet at each hop in turn. For example, in one
plausible scenario, you might:

1. tcpdump the eth interface through which an ARP egresses a VM, from inside the VM.
2. tcpdump the vif or tap interface through which the ARP ingresses the host machine.

3. Use ovs—dpctl dump-flows to spot the ARP flow and observe the host interface through
which the ARP egresses the physical machine. You may need to use ovs—dpctl show to interpret
the port numbers. If the output seems surprising, you can use ovs—appctl ofproto/trace
to observe details of how ovs-vswitchd determined the actions in the ovs—dpctl dump-flows
output.

4. tcpdump the eth interface through which the ARP egresses the physical machine.

5. tcpdump the eth interface through which the ARP ingresses the physical machine, at the remote
host that receives the ARP.

6. Use ovs—dpctl dump-flows to spot the ARP flow on the remote host remote host that re-
ceives the ARP and observe the VM vif or tap interface to which the flow is directed. Again,
ovs—-dpctl showand ovs—appctl ofproto/trace might help.

7. tcpdump the vif or tap interface to which the ARP is directed.

194 Chapter 7. Open vSwitch FAQ

mailto:dev@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

8. tcpdump the eth interface through which the ARP ingresses a VM, from inside the VM.

It is likely that during one of these steps you will figure out the problem. If not, then follow the ARP reply
back to the origin, in reverse.

Q: How do I make a flow drop packets?

A: To drop a packet is to receive it without forwarding it. OpenFlow explicitly specifies forwarding
actions. Thus, a flow with an empty set of actions does not forward packets anywhere, causing them to be
dropped. You can specify an empty set of actions with actions= on the ovs-ofctl command line. For
example:

$ ovs-ofctl add-flow br0 priority=65535,actions=

would cause every packet entering switch br0 to be dropped.

You can write “drop” explicitly if you like. The effect is the same. Thus, the following command also
causes every packet entering switch br0O to be dropped:

$ ovs-ofctl add-flow br0 priority=65535,actions=drop

drop is not an action, either in OpenFlow or Open vSwitch. Rather, it is only a way to say that there are
no actions.

Q: I added a flow to send packets out the ingress port, like this:

’$ ovs—ofctl add-flow br0 in_port=2,actions=2

but OVS drops the packets instead.

A: Yes, OpenFlow requires a switch to ignore attempts to send a packet out its ingress port. The rationale
is that dropping these packets makes it harder to loop the network. Sometimes this behavior can even be
convenient, e.g. it is often the desired behavior in a flow that forwards a packet to several ports (“floods”
the packet).

Sometimes one really needs to send a packet out its ingress port (“hairpin”). In this case, output to
OFPP_IN_PORT, which in ovs-ofctl syntax is expressed as just in_port, e.g.:

$ ovs-ofctl add-flow br0 in_port=2,actions=in_port

This also works in some circumstances where the flow doesn’t match on the input port. For example,
if you know that your switch has five ports numbered 2 through 6, then the following will send every
received packet out every port, even its ingress port:

’ $ ovs-ofctl add-flow br0 actions=2,3,4,5,6,in_port

or, equivalently:

’ $ ovs—ofctl add-flow br0 actions=all, in_port

Sometimes, in complicated flow tables with multiple levels of resubmit actions, a flow needs to out-
put to a particular port that may or may not be the ingress port. It’s difficult to take advantage of
OFPP_IN_PORT in this situation. To help, Open vSwitch provides, as an OpenFlow extension, the
ability to modify the in_port field. Whatever value is currently in the in_port field is the port to which
outputs will be dropped, as well as the destination for OFPP_IN_PORT. This means that the following
will reliably output to port 2 or to ports 2 through 6, respectively:

$ ovs-ofctl add-flow br0 in_port=2,actions=load:0->NXM_OF_IN_PORT[], 2
$ ovs-ofctl add-flow br0 actions=load:0->NXM_OF_IN_PORTI[],2,3,4,5,6

If the input port is important, then one may save and restore it on the stack:

7.6. Using OpenFlow 195

Open vSwitch Documentation, Release 2.6.0

Q: My bridge br(has host 192.168.0.1 on port 1 and host 192.168.0.2 on port 2. I set up flows to forward only traffic

$ ovs-ofctl add-flow br0 actions=push:NXM_OF_IN_PORT][], load:0-
>NXM_OF_IN_PORT][],2,3,4,5,6,pop:NXM_OF_IN_PORTT]

destined to the other host and drop other traffic, like this:

priority=5,in_port=1,ip,nw_dst=192.168.0.2,actions=2
priority=5,in_port=2,ip,nw_dst=192.168.0.1,actions=1
priority=0, actions=drop

But it doesn’t work—I don’t get any connectivity when I do this. Why?

A: These flows drop the ARP packets that IP hosts use to establish IP connectivity over Ethernet. To solve
the problem, add flows to allow ARP to pass between the hosts:

priority=5,in_port=1,arp,actions=2
priority=5,in_port=2,arp,actions=1

This issue can manifest other ways, too. The following flows that match on Ethernet addresses instead of
IP addresses will also drop ARP packets, because ARP requests are broadcast instead of being directed to
a specific host:

priority=5,in_port=1,dl_dst=54:00:00:00:00:02,actions=2
priority=5,in_port=2,dl_dst=54:00:00:00:00:01,actions=1
priority=0, actions=drop

The solution already described above will also work in this case. It may be better to add flows to allow all
multicast and broadcast traffic:

priority=5,in_port=1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00, actions=2
priority=5,in_port=2,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00, actions=1

Q: My bridge disconnects from my controller on add-port/del-port.

A: Reconfiguring your bridge can change your bridge’s datapath-id because Open vSwitch generates
datapath-id from the MAC address of one of its ports. In that case, Open vSwitch disconnects from
controllers because there’s no graceful way to notify controllers about the change of datapath-id.

To avoid the behaviour, you can configure datapath-id manually.:

$ ovs-vsctl set bridge br0 other-config:datapath-1d=0123456789%abcdef

Q: My controller complains that OVS is not buffering packets. What’s going on?

A: “Packet buffering” is an optional OpenFlow feature, and controllers should detect how many “buffers”
an OpenFlow switch implements. It was recently noticed that OVS implementation of the buffering fea-
ture was not compliant to OpenFlow specifications. Rather than fix it and risk controller incompatibility,
the buffering feature is removed as of OVS 2.7. Controllers are already expected to work properly in
cases where the switch can not buffer packets, but sends full packets in “packet-in” messages instead,
so this change should not affect existing users. After the change OVS always sends the buffer_id as
Oxfff£E£ £ in “packet-in” messages and will send an error response if any other value of this field is
included in a “packet-out” or a “flow mod” sent by a controller.

Q: How does OVS divide flows among buckets in an OpenFlow “select” group?

A: In Open vSwitch 2.3 and earlier, Open vSwitch used the destination Ethernet address to choose a
bucket in a select group.

Open vSwitch 2.4 and later by default hashes the source and destination Ethernet address, VLAN ID,
Ethernet type, IPv4/v6 source and destination address and protocol, and for TCP and SCTP only, the
source and destination ports. The hash is “symmetric”’, meaning that exchanging source and destination
addresses does not change the bucket selection.

196

Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

Select groups in Open vSwitch 2.4 and later can be configured to use a different hash function, us-
ing a Netronome extension to the OpenFlow 1.5+ group_mod message. For more information, see
Documentation/group-selection-method-property.txt in the Open vSwitch source tree. (OpenFlow 1.5
support in Open vSwitch is still experimental.)

Q: I added a flow to accept packets on VLAN 123 and output them on VLAN 456, like so:

’$ ovs—ofctl add-flow br0 dl_vlan=123,actions=output:1l,mod_vlan_vid:456

but the packets are actually being output in VLAN 123. Why?

A: OpenFlow actions are executed in the order specified. Thus, the actions above first output the packet,
then change its VLAN. Since the output occurs before changing the VLAN, the change in VLAN will
have no visible effect.

To solve this and similar problems, order actions so that changes to headers happen before output, e.g.:

‘ $ ovs-ofctl add-flow br0 dl_vlan=123,actions=mod_vlan_vid:456,output:1

Q: The “learn” action can’t learn the action I want, can you improve it?

A: By itself, the “learn” action can only put two kinds of actions into the flows that it creates: “load” and
“output” actions. If “learn” is used in isolation, these are severe limits.

However, “learn” is not meant to be used in isolation. It is a primitive meant to be used together with other
Open vSwitch features to accomplish a task. Its existing features are enough to accomplish most tasks.

Here is an outline of a typical pipeline structure that allows for versatile behavior using “learn”:

» Flows in table A contain a “learn” action, that populates flows in table L, that use a “load” action to
populate register R with information about what was learned.

* Flows in table B contain two sequential resubmit actions: one to table L and another one to table
B+1.

* Flows in table B+1 match on register R and act differently depending on what the flows in table L
loaded into it.

This approach can be used to implement many “learn”-based features. For example:

* Resubmit to a table selected based on learned information, e.g. see:
https://mail.openvswitch.org/pipermail/ovs-discuss/2016-June/021694.html

* MAC learning in the middle of a pipeline, as described in Open vSwitch Advanced Features

* TCP state based firewalling, by learning outgoing connections based on SYN packets and matching
them up with incoming packets.

* Atleast some of the features described in T. A. Hoff, “Extending Open vSwitch to Facilitate Creation
of Stateful SDN Applications”.

Q: When using the “ct” action with FTP connections, it doesn’t seem to matter if I set the “alg=ftp” parameter in the
action. Is this required?

A: Tt is advisable to use this option. Some platforms may automatically detect and apply ALGs in the “ct”
action regardless of the parameters you provide, however this is not consistent across all implementations.
The ovs-ofctl(8) man pages contain further details in the description of the ALG parameter.

7.7 Quality of Service (QoS)

Q: Does OVS support Quality of Service (QoS)?

7.7. Quality of Service (QoS) 197

https://mail.openvswitch.org/pipermail/ovs-discuss/2016-June/021694.html
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.html

Open vSwitch Documentation, Release 2.6.0

A: Yes. For traffic that egresses from a switch, OVS supports traffic shaping; for traffic that ingresses into
a switch, OVS support policing. Policing is a simple form of quality-of-service that simply drops packets
received in excess of the configured rate. Due to its simplicity, policing is usually less accurate and less
effective than egress traffic shaping, which queues packets.

Keep in mind that ingress and egress are from the perspective of the switch. That means that egress
shaping limits the rate at which traffic is allowed to transmit from a physical interface, but not the rate at
which traffic will be received on a virtual machine’s VIF. For ingress policing, the behavior is the opposite.

Q: How do I configure egress traffic shaping?

A: Suppose that you want to set up bridge brO connected to physical Ethernet port ethO (a 1 Gbps device)
and virtual machine interfaces vif1.0 and vif2.0, and that you want to limit traffic from vif1.0 to ethO to
10 Mbps and from vif2.0 to ethO to 20 Mbps. Then, you could configure the bridge this way:

$ ovs-vsctl —-- \
add-br br0 —- \
add-port br0 eth0 —— \
add-port br0 vifl.0 —-- set interface vifl.0 ofport_request=5 —- \
add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 —— \
set port eth0 gos=@newgos —- \

—-id=@newgos create gos type=linux-htb \
other-config:max-rate=1000000000 \
queues:123=Q@viflOqueue \
queues:234=Qvif20queue —— \
——-id=@viflOqueue create queue other-config:max-rate=10000000 —- \
—-—id=@vif20queue create queue other-config:max-rate=20000000

At this point, bridge br(is configured with the ports and ethO is configured with the queues that you need
for QoS, but nothing is actually directing packets from vif1.0 or vif2.0 to the queues that we have set up
for them. That means that all of the packets to ethO are going to the “default queue”, which is not what
we want.

We use OpenFlow to direct packets from vif1.0 and vif2.0 to the queues reserved for them:

$ ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
$ ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal

Each of the above flows matches on the input port, sets up the appropriate queue (123 for vif1.0, 234 for
vif2.0), and then executes the “normal” action, which performs the same switching that Open vSwitch
would have done without any OpenFlow flows being present. (We know that vifl.0 and vif2.0 have
OpenFlow port numbers 5 and 6, respectively, because we set their ofport_request columns above. If we
had not done that, then we would have needed to find out their port numbers before setting up these flows.)

Now traffic going from vif1.0 or vif2.0 to ethO should be rate-limited.

By the way, if you delete the bridge created by the above commands, with:

$ ovs-vsctl del-br br0

then that will leave one unreferenced QoS record and two unreferenced Queue records in the Open vSwich
database. One way to clear them out, assuming you don’t have other QoS or Queue records that you want
to keep, is:

$ ovs-vsctl -- --all destroy QoS —-- —--all destroy Queue

If you do want to keep some QoS or Queue records, or the Open vSwitch you are using is older than
version 1.8 (which added the ——all option), then you will have to destroy QoS and Queue records
individually.

Q: How do I configure ingress policing?

198 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

A: A policing policy can be configured on an interface to drop packets that arrive at a higher rate than the
configured value. For example, the following commands will rate-limit traffic that vif1.0 may generate to
10Mbps:

$ ovs-vsctl set interface vif1.0 ingress_policing_rate=10000 $ ovs-vsctl set interface vif1.0
ingress_policing_burst=8000

Traffic policing can interact poorly with some network protocols and can have surprising results. The
“Ingress Policing” section of ovs-vswitchd.conf.db(5) discusses the issues in greater detail.

Q: I configured Quality of Service (QoS) in my OpenFlow network by adding records to the QoS and Queue table, but

the results aren’t what I expect.

A: Did you install OpenFlow flows that use your queues? This is the primary way to tell Open vSwitch
which queues you want to use. If you don’t do this, then the default queue will be used, which will
probably not have the effect you want.

Refer to the previous question for an example.
Q: I'd like to take advantage of some QoS feature that Open vSwitch doesn’t yet support. How do I do that?

A: Open vSwitch does not implement QoS itself. Instead, it can configure some, but not all, of the QoS
features built into the Linux kernel. If you need some QoS feature that OVS cannot configure itself, then
the first step is to figure out whether Linux QoS supports that feature. If it does, then you can submit a
patch to support Open vSwitch configuration for that feature, or you can use “tc” directly to configure
the feature in Linux. (If Linux QoS doesn’t support the feature you want, then first you have to add that
support to Linux.)

Q: I configured QoS, correctly, but my measurements show that it isn’t working as well as I expect.
A: With the Linux kernel, the Open vSwitch implementation of QoS has two aspects:

* Open vSwitch configures a subset of Linux kernel QoS features, according to what is in OVSDB. It
is possible that this code has bugs. If you believe that this is so, then you can configure the Linux
traffic control (QoS) stack directly with the “tc” program. If you get better results that way, you can
send a detailed bug report to bugs @openvswitch.org.

It is certain that Open vSwitch cannot configure every Linux kernel QoS feature. If you need some
feature that OVS cannot configure, then you can also use “tc” directly (or add that feature to OVS).

* The Open vSwitch implementation of OpenFlow allows flows to be directed to particular queues.
This is pretty simple and unlikely to have serious bugs at this point.

However, most problems with QoS on Linux are not bugs in Open vSwitch at all. They tend to be either
configuration errors (please see the earlier questions in this section) or issues with the traffic control
(QoS) stack in Linux. The Open vSwitch developers are not experts on Linux traffic control. We suggest
that, if you believe you are encountering a problem with Linux traffic control, that you consult the tc
manpages (e.g. tc(8), tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or mailing lists (e.g.
http://vger.kernel.org/vger-lists.html#netdev).

Q: Does Open vSwitch support OpenFlow meters?

A: Since version 2.0, Open vSwitch has OpenFlow protocol support for OpenFlow meters. There is no
implementation of meters in the Open vSwitch software switch (neither the kernel-based nor userspace
switches).

7.8 Releases

Q: What does it mean for an Open vSwitch release to be LTS (long-term support)?

7.8. Releases

mailto:bugs@openvswitch.org
http://lartc.org/
http://vger.kernel.org/vger-lists.html#netdev

Open vSwitch Documentation, Release 2.6.0

A: All official releases have been through a comprehensive testing process and are suitable for production
use. Planned releases occur twice a year. If a significant bug is identified in an LTS release, we will
provide an updated release that includes the fix. Releases that are not LTS may not be fixed and may just
be supplanted by the next major release. The current LTS release is 2.5.x.

For more information on the Open vSwitch release process, refer to Open vSwitch Release Process.
Q: What Linux kernel versions does each Open vSwitch release work with?

A: The following table lists the Linux kernel versions against which the given versions of the Open
vSwitch kernel module will successfully build. The Linux kernel versions are upstream kernel versions,
so Linux kernels modified from the upstream sources may not build in some cases even if they are based
on a supported version. This is most notably true of Red Hat Enterprise Linux (RHEL) kernels, which are
extensively modified from upstream.

Open vSwitch | Linux kernel
1.4.x 2.6.18t0 3.2
1.5x 2.6.18t03.2
1.6.x 2.6.18t03.2
1.7.x 2.6.18t0 3.3
1.8.x 2.6.18t0 3.4
1.9.x 2.6.18 to 3.8
1.10.x 2.6.18t0 3.8
1.11.x 2.6.18 to 3.8
2.0.x 2.6.32t03.10
2.1.x 2.6.32t0 3.11
2.3.x 2.6.32t0 3.14
2.4.x 2.6.32t04.0
2.5.x 2.6.32t04.3
2.6.x 3.10to 4.7

Open vSwitch userspace should also work with the Linux kernel module built into Linux 3.3 and later.

Open vSwitch userspace is not sensitive to the Linux kernel version. It should build against almost any
kernel, certainly against 2.6.32 and later.

Q: Are all features available with all datapaths?

A: Open vSwitch supports different datapaths on different platforms. Each datapath has a different feature
set: the following tables try to summarize the status.

Supported datapaths:

Linux upstream The datapath implemented by the kernel module shipped with Linux upstream. Since
features have been gradually introduced into the kernel, the table mentions the first Linux release
whose OVS module supports the feature.

Linux OVS tree The datapath implemented by the Linux kernel module distributed with the OVS source
tree.

Userspace Also known as DPDK, dpif-netdev or dummy datapath. It is the only datapath that works on
NetBSD, FreeBSD and Mac OSX.

Hyper-V Also known as the Windows datapath.

The following table lists the datapath supported features from an Open vSwitch user’s perspective.

200 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

Feature Linux upstream | Linux OVS tree | Userspace | Hyper-V
NAT 4.6 YES NO NO
Connection tracking 4.3 YES PARTIAL PARTIAL
Tunnel - LISP NO YES NO NO
Tunnel - STT NO YES NO YES
Tunnel - GRE 3.11 YES YES YES
Tunnel - VXLAN 3.12 YES YES YES
Tunnel - Geneve 3.18 YES YES YES
Tunnel - GRE-IPv6 NO NO YES NO
Tunnel - VXLAN-IPv6 | 4.3 YES YES NO
Tunnel - Geneve-1Pv6 4.4 YES YES NO

QoS - Policing YES YES YES NO

QoS - Shaping YES YES NO NO
sFlow YES YES YES NO
IPFIX 3.10 YES YES NO

Set action YES YES YES PARTIAL
NIC Bonding YES YES YES NO
Multiple VTEPs YES YES YES NO

Do note, however:
* Only a limited set of flow fields is modifiable via the set action by the Hyper-V datapath.

* The Hyper-V datapath only supports one physical NIC per datapath. This is why bonding is not
supported.

* The Hyper-V datapath can have at most one IP address configured as a tunnel endpoint.

The following table lists features that do not directly impact an Open vSwitch user, e.g. because their
absence can be hidden by the ofproto layer (usually this comes with a performance penalty).

Feature Linux upstream | Linux OVS tree | Userspace | Hyper-V
SCTP flows 3.12 YES YES YES
MPLS 3.19 YES YES YES
UFID 4.0 YES YES NO
Megaflows 3.12 YES YES NO
Masked set action 4.0 YES YES NO
Recirculation 3.19 YES YES YES
TCP flags matching | 3.13 YES YES NO
Validate flow actions | YES YES N/A NO
Multiple datapaths YES YES YES NO
Tunnel TSO - STT N/A YES NO YES

Q: What DPDK version does each Open vSwitch release work with?

A: The following table lists the DPDK version against which the given versions of Open vSwitch will
successfully build.

Open vSwitch | DPDK
2.2.x 1.6
2.3.x 1.6
2.4.x 2.0
2.5.x 2.2
2.6.x 16.07

Q: I get an error like this when I configure Open vSwitch:

7.8. Releases 201

Open vSwitch Documentation, Release 2.6.0

configure: error: Linux kernel in <dir> is version <x>, but
version newer than <y> is not supported (please refer to the
FAQ for advice)

What should I do?
A: You have the following options:

» Use the Linux kernel module supplied with the kernel that you are using. (See also the following
FAQ.)

« If there is a newer released version of Open vSwitch, consider building that one, because it may
support the kernel that you are building against. (To find out, consult the table in the previous FAQ.)

* The Open vSwitch “master” branch may support the kernel that you are using, so consider building
the kernel module from “master”.

All versions of Open vSwitch userspace are compatible with all versions of the Open vSwitch kernel
module, so you do not have to use the kernel module from one source along with the userspace programs
from the same source.

Q: What features are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?

A: The kernel module in upstream Linux does not include support for LISP. Work is in progress to add
support for LISP to the upstream Linux version of the Open vSwitch kernel module. For now, if you need
this feature, use the kernel module from the Open vSwitch distribution instead of the upstream Linux
kernel module.

Certain features require kernel support to function or to have reasonable performance. If the ovs-vswitchd
log file indicates that a feature is not supported, consider upgrading to a newer upstream Linux release or
using the kernel module paired with the userspace distribution.

Q: Why do tunnels not work when using a kernel module other than the one packaged with Open vSwitch?

A: Support for tunnels was added to the upstream Linux kernel module after the rest of Open vSwitch.
As a result, some kernels may contain support for Open vSwitch but not tunnels. The minimum kernel
version that supports each tunnel protocol is:

Protocol | Linux Kernel
GRE 3.11

VXLAN | 3.12

Geneve 3.18

LISP not upstream

STT not upstream

If you are using a version of the kernel that is older than the one listed above, it is still possible to use
that tunnel protocol. However, you must compile and install the kernel module included with the Open
vSwitch distribution rather than the one on your machine. If problems persist after doing this, check to
make sure that the module that is loaded is the one you expect.

Q: Why are UDP tunnel checksums not computed for VXLAN or Geneve?

A: Generating outer UDP checksums requires kernel support that was not part of the initial implementa-
tion of these protocols. If using the upstream Linux Open vSwitch module, you must use kernel 4.0 or
newer. The out-of-tree modules from Open vSwitch release 2.4 and later support UDP checksums.

Q: What features are not available when using the userspace datapath?

A: Tunnel virtual ports are not supported, as described in the previous answer. It is also not possible to
use queue-related actions. On Linux kernels before 2.6.39, maximum-sized VLAN packets may not be
transmitted.

202 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

Q: Should userspace or kernel be upgraded first to minimize downtime?

A. In general, the Open vSwitch userspace should be used with the kernel version included in the same
release or with the version from upstream Linux. However, when upgrading between two releases of
Open vSwitch it is best to migrate userspace first to reduce the possibility of incompatibilities.

Q: What happened to the bridge compatibility feature?

A: Bridge compatibility was a feature of Open vSwitch 1.9 and earlier. When it was enabled, Open
vSwitch imitated the interface of the Linux kernel “bridge” module. This allowed users to drop Open
vSwitch into environments designed to use the Linux kernel bridge module without adapting the environ-
ment to use Open vSwitch.

Open vSwitch 1.10 and later do not support bridge compatibility. The feature was dropped because version
1.10 adopted a new internal architecture that made bridge compatibility difficult to maintain. Now that
many environments use OVS directly, it would be rarely useful in any case.

To use bridge compatibility, install OVS 1.9 or earlier, including the accompanying kernel modules (both
the main and bridge compatibility modules), following the instructions that come with the release. Be
sure to start the ovs-brcompatd daemon.

7.9 Terminology

Q: I thought Open vSwitch was a virtual Ethernet switch, but the documentation keeps talking about bridges. What’s
a bridge?

A: In networking, the terms “bridge” and “switch” are synonyms. Open vSwitch implements an Ethernet
switch, which means that it is also an Ethernet bridge.

Q: What’s a VLAN?
A: See VLANS.

7.10 VLANs

Q: What’s a VLAN?

A: At the simplest level, a VLAN (short for “virtual LAN”) is a way to partition a single switch into
multiple switches. Suppose, for example, that you have two groups of machines, group A and group B.
You want the machines in group A to be able to talk to each other, and you want the machine in group
B to be able to talk to each other, but you don’t want the machines in group A to be able to talk to the
machines in group B. You can do this with two switches, by plugging the machines in group A into one
switch and the machines in group B into the other switch.

If you only have one switch, then you can use VLANs to do the same thing, by configuring the ports
for machines in group A as VLAN “access ports” for one VLAN and the ports for group B as “access
ports” for a different VLAN. The switch will only forward packets between ports that are assigned to the
same VLAN, so this effectively subdivides your single switch into two independent switches, one for each
group of machines.

So far we haven’t said anything about VLAN headers. With access ports, like we’ve described so far, no
VLAN header is present in the Ethernet frame. This means that the machines (or switches) connected to
access ports need not be aware that VLANs are involved, just like in the case where we use two different
physical switches.

Now suppose that you have a whole bunch of switches in your network, instead of just one, and that some
machines in group A are connected directly to both switches 1 and 2. To allow these machines to talk to

7.9. Terminology 203

Open vSwitch Documentation, Release 2.6.0

each other, you could add an access port for group A’s VLAN to switch 1 and another to switch 2, and then
connect an Ethernet cable between those ports. That works fine, but it doesn’t scale well as the number
of switches and the number of VLANSs increases, because you use up a lot of valuable switch ports just
connecting together your VLANS.

This is where VLAN headers come in. Instead of using one cable and two ports per VLAN to connect a
pair of switches, we configure a port on each switch as a VLAN “trunk port”. Packets sent and received
on a trunk port carry a VLAN header that says what VLAN the packet belongs to, so that only two ports
total are required to connect the switches, regardless of the number of VLANSs in use. Normally, only
switches (either physical or virtual) are connected to a trunk port, not individual hosts, because individual
hosts don’t expect to see a VLAN header in the traffic that they receive.

None of the above discussion says anything about particular VLAN numbers. This is because VLAN
numbers are completely arbitrary. One must only ensure that a given VLAN is numbered consistently
throughout a network and that different VLANSs are given different numbers. (That said, VLAN 0 is
usually synonymous with a packet that has no VLAN header, and VLAN 4095 is reserved.)

Q: VLANS don’t work.

A: Many drivers in Linux kernels before version 3.3 had VLAN-related bugs. If you are having problems
with VLANSs that you suspect to be driver related, then you have several options:

* Upgrade to Linux 3.3 or later.
* Build and install a fixed version of the particular driver that is causing trouble, if one is available.
» Use a NIC whose driver does not have VLAN problems.

» Use “VLAN splinters”, a feature in Open vSwitch 1.4 upto 2.5 that works around bugs in kernel
drivers. To enable VLAN splinters on interface eth(, use the command:

$ ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true

For VLAN splinters to be effective, Open vSwitch must know which VLANSs are in use. See the
“VLAN splinters” section in the Interface table in ovs-vswitchd.conf.db(5) for details on how Open
vSwitch infers in-use VLANS.

VLAN splinters increase memory use and reduce performance, so use them only if needed.

* Apply the “vlan workaround” patch from the XenServer kernel patch queue, build Open vSwitch
against this patched kernel, and then use ovs-vlan-bug-workaround(8) to enable the VLAN
workaround for each interface whose driver is buggy.

(This is a nontrivial exercise, so this option is included only for completeness.)

It is not always easy to tell whether a Linux kernel driver has buggy VLAN support. The ovs-vlan-test(8)
and ovs-test(8) utilities can help you test. See their manpages for details. Of the two utilities, ovs-test(8)
is newer and more thorough, but ovs-vlan-test(8) may be easier to use.

Q: VLAN:S still don’t work. I've tested the driver so I know that it’s OK.

A: Do you have VLANS enabled on the physical switch that OVS is attached to? Make sure that the port
is configured to trunk the VLAN or VLANSs that you are using with OVS.

Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch and to its destination host, but OVS seems
to drop incoming return traffic.

A: It’s possible that you have the VLAN configured on your physical switch as the “native” VLAN. In
this mode, the switch treats incoming packets either tagged with the native VLAN or untagged as part of
the native VLAN. It may also send outgoing packets in the native VLAN without a VLAN tag.

If this is the case, you have two choices:

204 Chapter 7. Open vSwitch FAQ

Open vSwitch Documentation, Release 2.6.0

» Change the physical switch port configuration to tag packets it forwards to OVS with the native
VLAN instead of forwarding them untagged.

» Change the OVS configuration for the physical port to a native VLAN mode. For example, the
following sets up a bridge with port ethO in “native-tagged” mode in VLAN 9:

$ ovs-vsctl add-br br0 $ ovs-vsctl add-port br0O eth0 tag=9
vlan_mode=native-tagged

In this situation, “native-untagged” mode will probably work equally well. Refer to the documenta-
tion for the Port table in ovs-vswitchd.conf.db(5) for more information.

Q: I added a pair of VMs on different VLAN:S, like this:

$ ovs-vsctl add-br br0

$ ovs-vsctl add-port br0 ethO

$ ovs-vsctl add-port br0 tap0 tag=9
$ ovs-vsctl add-port br0 tapl tag=10

but the VMs can’t access each other, the external network, or the Internet.

A: It is to be expected that the VMs can’t access each other. VLANS are a means to partition a network.
When you configured tapO and tapl as access ports for different VLANS, you indicated that they should
be isolated from each other.

As for the external network and the Internet, it seems likely that the machines you are trying to access are
not on VLAN 9 (or 10) and that the Internet is not available on VLAN 9 (or 10).

Q: I added a pair of VMs on the same VLAN, like this:

$ ovs-vsctl add-br br0

$ ovs-vsctl add-port br0 ethO

$ ovs-vsctl add-port br0 tap0 tag=9
$ ovs-vsctl add-port br0 tapl tag=9

The VMs can access each other, but not the external network or the Internet.

A: It seems likely that the machines you are trying to access in the external network are not on VLAN
9 and that the Internet is not available on VLAN 9. Also, ensure VLAN 9 is set up as an allowed trunk
VLAN on the upstream switch port to which ethO is connected.

Q: Can I configure an IP address on a VLAN?

A: Yes. Use an “internal port” configured as an access port. For example, the following configures IP
address 192.168.0.7 on VLAN 9. That is, OVS will forward packets from ethO to 192.168.0.7 only if
they have an 802.1Q header with VLAN 9. Conversely, traffic forwarded from 192.168.0.7 to ethO will
be tagged with an 802.1Q header with VLAN 9:

$ ovs-vsctl add-br br0

$ ovs-vsctl add-port br0 ethO

$ ovs-vsctl add-port br0 vlan9 tag=9 \
—— set interface vlan9 type=internal

$ ifconfig vlan9 192.168.0.7

See also the following question.

Q: I configured one IP address on VLAN 0 and another on VLAN 9, like this:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO
$ ifconfig br0 192.168.0.5

7.10. VLANs

205

Open vSwitch Documentation, Release 2.6.0

$ ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
$ ifconfig vlan9 192.168.0.9

but other hosts that are only on VLAN 0 can reach the IP address configured on VLAN 9. What’s going on?

A: RFC 1122 section 3.3.4.2 “Multihoming Requirements” describes two approaches to IP address han-
dling in Internet hosts:

¢ In the “Strong ES Model”, where an ES is a host (“End System”), an IP address is primarily as-
sociated with a particular interface. The host discards packets that arrive on interface A if they
are destined for an IP address that is configured on interface B. The host never sends packets from
interface A using a source address configured on interface B.

¢ In the “Weak ES Model”, an IP address is primarily associated with a host. The host accepts packets
that arrive on any interface if they are destined for any of the host’s IP addresses, even if the address
is configured on some interface other than the one on which it arrived. The host does not restrict
itself to sending packets from an IP address associated with the originating interface.

Linux uses the weak ES model. That means that when packets destined to the VLAN 9 IP address arrive
on ethO and are bridged to br0, the kernel IP stack accepts them there for the VLAN 9 IP address, even
though they were not received on vlan9, the network device for vlan9.

To simulate the strong ES model on Linux, one may add iptables rule to filter packets based on source and
destination address and adjust ARP configuration with sysctls.

BSD uses the strong ES model.
Q: My OpenFlow controller doesn’t see the VL AN that I expect.

A: The configuration for VLANSs in the Open vSwitch database (e.g. via ovs-vsctl) only affects traffic that
goes through Open vSwitch’s implementation of the OpenFlow “normal switching” action. By default,
when Open vSwitch isn’t connected to a controller and nothing has been manually configured in the flow
table, all traffic goes through the “normal switching” action. But, if you set up OpenFlow flows on your
own, through a controller or using ovs-ofctl or through other means, then you have to implement VLAN
handling yourself.

You can use “normal switching” as a component of your OpenFlow actions, e.g. by putting “normal” into
the lists of actions on ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow controller. In
situations where this is not suitable, you can implement VLAN handling yourself, e.g.:

 If a packet comes in on an access port, and the flow table needs to send it out on a trunk port, then
the flow can add the appropriate VLAN tag with the “mod_vlan_vid” action.

* If a packet comes in on a trunk port, and the flow table needs to send it out on an access port, then
the flow can strip the VLAN tag with the “strip_vlan” action.

Q: I configured ports on a bridge as access ports with different VLAN tags, like this:

ovs-vsctl add-br br0

ovs-vsctl set-controller br0 tcp:192.168.0.10:6653
ovs-vsctl add-port br0 ethO

ovs—-vsctl add-port br0 tapO tag=9

ovs-vsctl add-port br0 tapl tag=10

v »r U 0

but the VMs running behind tap0 and tap1l can still communicate, that is, they are not isolated from each other even
though they are on different VLANS.

A: Do you have a controller configured on br0O (as the commands above do)? If so, then this is a variant
on the previous question, “My OpenFlow controller doesn’t see the VLANS that I expect,” and you can
refer to the answer there for more information.

Q: How MAC learning works with VLANSs?

206 Chapter 7. Open vSwitch FAQ

https://tools.ietf.org/html/rfc1122

Open vSwitch Documentation, Release 2.6.0

A: Open vSwitch implements Independent VLAN Learning (IVL) for OFPP_NORMAL action, e.g. it
logically has separate learning tables for each VLANS.

7.11 VXLANSs

Q: What’s a VXLAN?

A: VXLAN stands for Virtual eXtensible Local Area Network, and is a means to solve the scaling chal-
lenges of VLAN networks in a multi-tenant environment. VXLAN is an overlay network which transports
an L2 network over an existing L3 network. For more information on VXLAN, please see RFC 7348.

Q: How much of the VXLAN protocol does Open vSwitch currently support?

A: Open vSwitch currently supports the framing format for packets on the wire. There is currently no
support for the multicast aspects of VXLAN. To get around the lack of multicast support, it is possible to
pre-provision MAC to IP address mappings either manually or from a controller.

Q: What destination UDP port does the VXLAN implementation in Open vSwitch use?

A: By default, Open vSwitch will use the assigned IANA port for VXLAN, which is 4789. However, it is
possible to configure the destination UDP port manually on a per-VXLAN tunnel basis. An example of
this configuration is provided below.:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 vxlanl —-- set interface vxlanl type=vxlan \
options:remote_ip=192.168.1.2 options:key=flow options:dst_port=8472

7.11. VXLANs 207

https://tools.ietf.org/html/rfc7348

Open vSwitch Documentation, Release 2.6.0

208 Chapter 7. Open vSwitch FAQ

CHAPTER 8

Open vSwitch Internals

Information for people who want to know more about the Open vSwitch project itself and how they might involved.

8.1 Contributing to Open vSwitch

The below guides provide information on contributing to Open vSwitch itself.

8.1.1 Submitting Patches
Send changes to Open vSwitch as patches to dev@openvswitch.org. One patch per email. More details are included
below.

If you are using Git, then git format-patch takes care of most of the mechanics described below for you.

Before You Start

Before you send patches at all, make sure that each patch makes sense. In particular:

¢ A given patch should not break anything, even if later patches fix the problems that it causes. The source tree
should still build and work after each patch is applied. (This enables git bisect to work best.)

* A patch should make one logical change. Don’t make multiple, logically unconnected changes to disparate
subsystems in a single patch.

* A patch that adds or removes user-visible features should also update the appropriate user documentation or
manpages. Check “Feature Deprecation Guidelines” section in this document if you intend to remove user-
visible feature.

Testing is also important:

* A patch that modifies existing code should be tested with make check before submission. Refer to the install
guide, under “Self-Tests”, for more information.

* A patch that adds or deletes files should also be tested with make distcheck before submission.

* A patch that modifies Linux kernel code should be at least build-tested on various Linux kernel versions before
submission. I suggest versions 3.10 and whatever the current latest release version is at the time.

* A patch that modifies the ofproto or vswitchd code should be tested in at least simple cases before submission.

* A patch that modifies xenserver code should be tested on XenServer before submission.

209

mailto:dev@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

If you are using GitHub, then you may utilize the travis-ci.org CI build system by linking your GitHub repository to it.
This will run some of the above tests automatically when you push changes to your repository. See the “Continuous
Integration with Travis-CI” in the install guide for details on how to set it up.

Email Subject

The subject line of your email should be in the following format:
[PATCH <n>/<m>] <area>: <summary>
Where:

[PATCH <n>/<m>]: indicates that this is the nth of a series of m patches. It helps reviewers to read patches in the
correct order. You may omit this prefix if you are sending only one patch.

<area>: indicates the area of the Open vSwitch to which the change applies (often the name of a source file or a
directory). You may omit it if the change crosses multiple distinct pieces of code.

<summary>:

briefly describes the change. Use the the imperative form, e.g. “Force SNAT for multiple gateway routers.”
or “Fix daemon exit for bad datapaths or flows.” Try to keep the summary short, about 50 characters wide.

The subject, minus the [PATCH <n>/<m>] prefix, becomes the first line of the commit’s change log message.

Description
The body of the email should start with a more thorough description of the change. This becomes the body of the
commit message, following the subject. There is no need to duplicate the summary given in the subject.

Please limit lines in the description to 75 characters in width. That allows the description to format properly even
when indented (e.g. by “git log” or in email quotations).

The description should include:
* The rationale for the change.
* Design description and rationale (but this might be better added as code comments).
* Testing that you performed (or testing that should be done but you could not for whatever reason).
* Tags (see below).
There is no need to describe what the patch actually changed, if the reader can see it for himself.

If the patch refers to a commit already in the Open vSwitch repository, please include both the commit number and
the subject of the patch, e.g. ‘commit 632d136¢ (vswitch: Remove restriction on datapath names.)’.

If you, the person sending the patch, did not write the patch yourself, then the very first line of the body should take
the form From: <author name> <author email>, followed by a blank line. This will automatically cause
the named author to be credited with authorship in the repository.

Tags

The description ends with a series of tags, written one to a line as the last paragraph of the email. Each tag indicates
some property of the patch in an easily machine-parseable manner.

Examples of common tags follow.

Signed-off-by: Author Name <author.name@email.address...>

210 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

Informally, this indicates that Author Name is the author or submitter of a patch and has the authority to
submit it under the terms of the license. The formal meaning is to agree to the Developer’s Certificate of
Origin (see below).

If the author and submitter are different, each must sign off. If the patch has more than one author, all
must sign off.

Signed-off-by: Author Name <author.name@email.address...>
Signed-off-by: Submitter Name <submitter.name@email.address...>
Co—authored-by: Author Name <author.name@email.address...>

Git can only record a single person as the author of a given patch. In the rare event that a patch has
multiple authors, one must be given the credit in Git and the others must be credited via Co-authored-by:
tags. (All co-authors must also sign off.)

Acked-by: Reviewer Name <reviewer.name@email.address...>

Reviewers will often give an Acked-by : tag to code of which they approve. It is polite for the submitter
to add the tag before posting the next version of the patch or applying the patch to the repository. Quality
reviewing is hard work, so this gives a small amount of credit to the reviewer.

Not all reviewers give Acked-by: tags when they provide positive reviews. It’s customary only to add
tags from reviewers who actually provide them explicitly.

Tested-by: Tester Name <reviewer.name@email.address...>

When someone tests a patch, it is customary to add a Tested-by: tag indicating that. It’s rare for a tester
to actually provide the tag; usually the patch submitter makes the tag himself in response to an email
indicating successful testing results.

Tested—-at: <URL>

When a test report is publicly available, this provides a way to reference it. Typical <URL>s would be
build logs from autobuilders or references to mailing list archives.

Some autobuilders only retain their logs for a limited amount of time. It is less useful to cite these because
they may be dead links for a developer reading the commit message months or years later.

Reported-by: Reporter Name <reporter.name(@email.address...>

When a patch fixes a bug reported by some person, please credit the reporter in the commit log in this
fashion. Please also add the reporter’s name and email address to the list of people who provided helpful
bug reports in the AUTHORS file at the top of the source tree.

Fairly often, the reporter of a bug also tests the fix. Occasionally one sees a combined “Reported-and-
tested-by:” tag used to indicate this. It is also acceptable, and more common, to include both tags sepa-
rately.

(If a bug report is received privately, it might not always be appropriate to publicly credit the reporter. If
in doubt, please ask the reporter.)

Requested-by: Requester Name <requester.name(@email.address...>

When a patch implements a request or a suggestion made by some person, please credit that person in the
commit log in this fashion. For a helpful suggestion, please also add the person’s name and email address
to the list of people who provided suggestions in the AUTHORS file at the top of the source tree.

(If a suggestion or a request is received privately, it might not always be appropriate to publicly give credit.
If in doubt, please ask.)

Suggested-by: Suggester Name <suggester.name@email.address...>

See Requested-by:.

8.1. Contributing to Open vSwitch 211

Open vSwitch Documentation, Release 2.6.0

CC: Person <name(@email>

This is a way to tag a patch for the attention of a person when no more specific tag is appropriate. One
use is to request a review from a particular person. It doesn’t make sense to include the same person in
CC and another tag, so e.g. if someone who is CCed later provides an Acked-by, add the Acked-by and
remove the CC at the same time.

Reported—-at: <URL>

If a patch fixes or is otherwise related to a bug reported in a public bug tracker, please include a reference
to the bug in the form of a URL to the specific bug, e.g.:

Reported-at: https://bugs.debian.org/743635

This is also an appropriate way to refer to bug report emails in public email archives, e.g.:

Reported-at: http://openvswitch.org/pipermail/dev/2014-June/040952.html

Submitted-at: <URL>

If a patch was submitted somewhere other than the Open vSwitch development mailing list, such as a
GitHub pull request, this header can be used to reference the source.

Submitted-at: https://github.com/openvswitch/ovs/pull/92

VMware-BZ: #1234567

If a patch fixes or is otherwise related to a bug reported in a private bug tracker, you may include some
tracking ID for the bug for your own reference. Please include some identifier to make the origin clear,
e.g. “VMware-BZ” refers to VMware’s internal Bugzilla instance and “ONF-JIRA” refers to the Open
Networking Foundation’s JIRA bug tracker.

ONF-JIRA: EXT-12345
See VMware-BZ:.
Bug #1234567.

These are obsolete forms of VMware-BZ: that can still be seen in old change log entries. (They are
obsolete because they do not tell the reader what bug tracker is referred to.)

Issue: 1234567
See Bug:.
Fixes: 63bc9fblc69f (“packets: Reorder CS_x flags to remove gap.”)

If you would like to record which commit introduced a bug being fixed, you may do that with a “Fixes”
header. This assists in determining which OVS releases have the bug, so the patch can be applied to all
affected versions. The easiest way to generate the header in the proper format is with this git command.
This command also CCs the author of the commit being fixed, which makes sense unless the author also
made the fix or is already named in another tag:

$ git log -1 —-pretty=format:"CC: %an <%ae>%nFixes: $h (\"%s\")" \
——abbrev=12 COMMIT_REF

Vulnerability: CVE-2016-2074

Specifies that the patch fixes or is otherwise related to a security vulnerability with the given CVE identi-
fier. Other identifiers in public vulnerability databases are also suitable.

If the vulnerability was reported publicly, then it is also appropriate to cite the URL to the report in a
Reported-at tag. Use a Reported-by tag to acknowledge the reporters.

212 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

Developer’s Certificate of Origin

To help track the author of a patch as well as the submission chain, and be clear that the developer has authority to
submit a patch for inclusion in openvswitch please sign off your work. The sign off certifies the following:

Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

See also http://developercertificate.org/.

Feature Deprecation Guidelines

Open vSwitch is intended to be user friendly. This means that under normal circumstances we don’t abruptly remove
features from OVS that some users might still be using. Otherwise, if we would, then we would possibly break our
user setup when they upgrade and would receive bug reports.

Typical process to deprecate a feature in Open vSwitch is to:

1. Mention deprecation of a feature in the NEWS file. Also, mention expected release or absolute time when this
feature would be removed from OVS altogether. Don’t use relative time (e.g. “in 6 months”) because that is not
clearly interpretable.

2. If Open vSwitch is configured to use deprecated feature it should print a warning message to the log files clearly
indicating that feature is deprecated and that use of it should be avoided.

3. If this feature is mentioned in man pages, then add “Deprecated” keyword to it.

Also, if there is alternative feature to the one that is about to be marked as deprecated, then mention it in (a), (b) and
(c) as well.

Remember to follow-up and actually remove the feature from OVS codebase once deprecation grace period has expired
and users had opportunity to use at least one OVS release that would have informed them about feature deprecation!

8.1. Contributing to Open vSwitch 213

http://developercertificate.org/

Open vSwitch Documentation, Release 2.6.0

Comments

If you want to include any comments in your email that should not be part of the commit’s change log message, put
them after the description, separated by a line that contains just ———. It may be helpful to include a diffstat here for
changes that touch multiple files.

Patch

The patch should be in the body of the email following the description, separated by a blank line.

Patches should be in diff -up format. We recommend that you use Git to produce your patches, in which case you
should use the -M —C options to git diff (or other Git tools) if your patch renames or copies files. Quilt might be
useful if you do not want to use Git.

Patches should be inline in the email message. Some email clients corrupt white space or wrap lines in patches. There
are hints on how to configure many email clients to avoid this problem on kernel.org. If you cannot convince your
email client not to mangle patches, then sending the patch as an attachment is a second choice.

Follow the style used in the code that you are modifying. Open vSwitch Coding Style file describes the coding style
used in most of Open vSwitch. Use Linux kernel coding style for Linux kernel code.

If your code is non-datapath code, you may use the utilities/checkpatch. py utility as a quick check for cer-
tain commonly occuring mistakes (improper leading/trailing whitespace, missing signoffs, some improper formatted
patch files). For linux datapath code, it is a good idea to use the linux script checkpatch.pl.

Example

From fa29%9alc2cl17682879e79a21bb0cddSbbe67fa7c0 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@nicira.com>

Date: Thu, 8 Dec 2011 13:17:24 -0800

Subject: [PATCH] datapath: Alphabetize include/net/ipv6.h compat header.

Signed-off-by: Jesse Gross <jesse@nicira.com>
datapath/linux/Modules.mk | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/datapath/linux/Modules.mk b/datapath/linux/Modules.mk

index f£dd952e..f6cb88e 100644

--— a/datapath/linux/Modules.mk

+++ b/datapath/linux/Modules.mk

@@ -56,11 +56,11 Q@ openvswitch_headers += \
linux/compat/include/net/dst.h \
linux/compat/include/net/genetlink.h \
linux/compat/include/net/ip.h \

+ linux/compat/include/net/ipv6.h \
linux/compat/include/net/net_namespace.h \
linux/compat/include/net/netlink.h \
linux/compat/include/net/protocol.h \
linux/compat/include/net/route.h \

- linux/compat/include/net/ipv6.h \
linux/compat/genetlink.inc

both_modules += brcompat

1.7.7.3

214 Chapter 8. Open vSwitch Internals

http://savannah.nongnu.org/projects/quilt
https://static.lwn.net/kerneldoc/process/email-clients.html

Open vSwitch Documentation, Release 2.6.0

8.1.2 Open vSwitch Coding Style

This file describes the coding style used in most C files in the Open vSwitch distribution. However, Linux kernel code
datapath directory follows the Linux kernel’s established coding conventions. For the Windows kernel datapath code,
use the coding style described in Open vSwitch Windows Datapath Coding Style.

The following GNU indent options approximate this style.

-npro -bad -bap -bbb -br -blf -brs -cdw -ce -fca -cli0 -npcs —-14 -179 \
-1c79 —-nbfda —nut -saf -sai -saw -sbi4 -sc -sob -st —-ncdb -pi4 -cs -bs \
-dil -1p -il0 -hnl

Basics

¢ Limit lines to 79 characters.

* Use form feeds (control+L) to divide long source files into logical pieces. A form feed should appear as the only
character on a line.

¢ Do not use tabs for indentation.

* Avoid trailing spaces on lines.

Naming

» Use names that explain the purpose of a function or object.

» Use underscores to separate words in an identifier: multi_word_name.

» Use lowercase for most names. Use uppercase for macros, macro parameters, and members of enumerations.
 Give arrays names that are plural.

* Pick a unique name prefix (ending with an underscore) for each module, and apply that prefix to all of that
module’s externally visible names. Names of macro parameters, struct and union members, and parameters in
function prototypes are not considered externally visible for this purpose.

* Do not use names that begin with _. If you need a name for “internal use only”, use ___ as a suffix instead of a
prefix.

* Avoid negative names: found is a better name than not__found.

* In names, a size is a count of bytes, a 1length is a count of characters. A buffer has size, but a string has
length. The length of a string does not include the null terminator, but the size of the buffer that contains the
string does.

Comments

Comments should be written as full sentences that start with a capital letter and end with a period. Put two spaces
between sentences.

Write block comments as shown below. You may put the /* and =/ on the same line as comment text if you prefer.

/ *
* We redirect stderr to /dev/null because we often want to remove all
* traffic control configuration on a port so its in a known state. If

* this done when there is no such configuration, tc complains, so we just
* always ignore it.

8.1. Contributing to Open vSwitch 215

Open vSwitch Documentation, Release 2.6.0

Each function and each variable declared outside a function, and each struct, union, and typedef declaration should be
preceded by a comment. See functions below for function comment guidelines.

Each struct and union member should each have an inline comment that explains its meaning. structs and unions with
many members should be additionally divided into logical groups of members by block comments, e.g.:

/+ An event that will wake the following call to poll_block(). */
struct poll_waiter {
/+ Set when the waiter is created. =*/

struct ovs_list node; /+ Element in global waiters list. =/

int £fd; /* File descriptor. =/

short int events; /+* Events to wait for (POLLIN, POLLOUT). =/
poll_fd_func xfunction; /* Callback function, if any, or null. =/
void *aux; /* Argument to callback function. =*/

struct backtrace xbacktrace; /* Event that created waiter, or null. =*/

/+ Set only when poll_block() is called. x/
struct pollfd *pollfd; /* Pointer to element of the pollfds array
(null if added from a callback). x/
bi

Use XXX or FIXME comments to mark code that needs work.
Don’t use // comments.

Don’t comment out or #if 0 out code. Just remove it. The code that was there will still be in version control history.

Functions

Put the return type, function name, and the braces that surround the function’s code on separate lines, all starting in
column 0.

Before each function definition, write a comment that describes the function’s purpose, including each parameter,
the return value, and side effects. References to argument names should be given in single-quotes, e.g. ‘arg’. The
comment should not include the function name, nor need it follow any formal structure. The comment does not need
to describe how a function does its work, unless this information is needed to use the function correctly (this is often
better done with comments inside the function).

Simple static functions do not need a comment.

Within a file, non-static functions should come first, in the order that they are declared in the header file, followed by
static functions. Static functions should be in one or more separate pages (separated by form feed characters) in logical
groups. A commonly useful way to divide groups is by “level”, with high-level functions first, followed by groups
of progressively lower-level functions. This makes it easy for the program’s reader to see the top-down structure by
reading from top to bottom.

All function declarations and definitions should include a prototype. Empty parentheses, e.g. int foo () ;, do not
include a prototype (they state that the function’s parameters are unknown); write void in parentheses instead, e.g.
int foo(void);.

Prototypes for static functions should either all go at the top of the file, separated into groups by blank lines, or they
should appear at the top of each page of functions. Don’t comment individual prototypes, but a comment on each
group of prototypes is often appropriate.

In the absence of good reasons for another order, the following parameter order is preferred. One notable exception is
that data parameters and their corresponding size parameters should be paired.

1. The primary object being manipulated, if any (equivalent to the “this” pointer in C++).

2. Input-only parameters.

216 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

3. Input/output parameters.
4. Output-only parameters.
5. Status parameter.

Example:

/* Stores the features supported by 'netdev' into each of 'xcurrent',
* 1s a bitmap of "enum ofp_port_features" bits, in host byte order.

* all of the passed-in values are set to 0. */
int
netdev_get_features (struct netdev xnetdev,
uint32_t *current, uint32_t =xadvertised,
uint32_t xsupported, uint32_t *peer)

* 'wxadvertised', 'xsupported', and 'xpeer' that are non-null. Each value

* Returns 0 if successful, otherwise a positive errno value. On failure,

Functions that destroy an instance of a dynamically-allocated type should accept and ignore a null pointer argument.
Code that calls such a function (including the C standard library function free ()) should omit a null-pointer check.

We find that this usually makes code easier to read.

Functions in . ¢ files should not normally be marked inline, because it does not usually help code generation and it
does suppress compilers warnings about unused functions. (Functions defined in .h usually should be marked inline.)

Function Prototypes

Put the return type and function name on the same line in a function prototype:

‘static const struct option_class xget_option_class (int code);

Omit parameter names from function prototypes when the names do not give useful information, e.g.:

‘int netdev_get_mtu(const struct netdev *, int =xmtup);

Statements

Indent each level of code with 4 spaces. Use BSD-style brace placement:

if (a()) |
b();
aq;
}

Put a space between if, while, for, etc. and the expressions that follow them.

Enclose single statements in braces:

if (a > b) {
return a;

} else {
return b;

8.1. Contributing to Open vSwitch

217

Open vSwitch Documentation, Release 2.6.0

Use comments and blank lines to divide long functions into logical groups of statements.
Avoid assignments inside i f and while conditions.

Do not put gratuitous parentheses around the expression in a return statement, that is, write return 0; and not
return(0) ;

Write only one statement per line.

Indent switch statements like this:

switch (conn—->state) {

case S_RECV:
error = run_connection_input (conn);
break;

case S_PROCESS:
error = 0;
break;

case S_SEND:
error = run_connection_output (conn) ;
break;

default:
OVS_NOT_REACHED () ;

switch statements with very short, uniform cases may use an abbreviated style:

switch (code) {

case 200: return "OK";

case 201: return "Created";
case 202: return "Accepted";
case 204: return "No Content";
default: return "Unknown";

}

Use for (;;) to write an infinite loop.

In an if/else construct where one branch is the “normal” or “common” case and the other branch is the “uncommon”
or “error’”’ case, put the common case after the “if”’, not the “else”. This is a form of documentation. It also places the
most important code in sequential order without forcing the reader to visually skip past less important details. (Some
compilers also assume that the “if”” branch is the more common case, so this can be a real form of optimization as
well.)

Return Values

For functions that return a success or failure indication, prefer one of the following return value conventions:
* An int where O indicates success and a positive errno value indicates a reason for failure.

¢ A bool where true indicates success and false indicates failure.

Macros

Don’t define an object-like macro if an enum can be used instead.

Don’t define a function-like macro if a “static inline” function can be used instead.

218 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

If a macro’s definition contains multiple statements, enclose them withdo { ... } while (0) to allow them
to work properly in all syntactic circumstances.

Do use macros to eliminate the need to update different parts of a single file in parallel, e.g. a list of enums and an
array that gives the name of each enum. For example:

/* Logging importance levels. x/

#define VLOG_LEVELS
VLOG_LEVEL (EMER, LOG_ALERT)
VLOG_LEVEL (ERR, LOG_ERR)
VLOG_LEVEL (WARN, LOG_WARNING)
VLOG_LEVEL (INFO, LOG_NOTICE)
VLOG_LEVEL (DBG, LOG_DEBUG)

enum vlog_level {

#define VLOG_LEVEL (NAME, SYSLOG_LEVEL) VLL_##NAME,
VLOG_LEVELS

#fundef VLOG_LEVEL
VLL_N_LEVELS

— s~

}i

/* Name for each logging level. «/

static const char *level_names[VLL_N_LEVELS] = {

#define VLOG_LEVEL (NAME, SYSLOG_LEVEL) #NAME,
VLOG_LEVELS

#undef VLOG_LEVEL

}i

Thread Safety Annotations

Use the macros in 1ib/compiler.h to annotate locking requirements. For example:

static struct ovs_mutex mutex = OVS_MUTEX_INITIALIZER;
static struct ovs_rwlock rwlock = OVS_RWLOCK_INITIALIZER;

void function_require_plain_mutex(void) OVS_REQUIRES (mutex) ;
void function_require_rwlock (void) OVS_REQ_RDLOCK (rwlock) ;

Pass lock objects, not their addresses, to the annotation macros. (Thus we have OVS_REQUIRES (mutex) above,
not OVS_REQUIRES (&mutex).)

Source Files

Each source file should state its license in a comment at the very top, followed by a comment explaining the purpose
of the code that is in that file. The comment should explain how the code in the file relates to code in other files. The
goal is to allow a programmer to quickly figure out where a given module fits into the larger system.

The first non-comment line in a .c source file should be:

#include <config.h>

#include directives should appear in the following order:
1. #include <config.h>

2. The module’s own headers, if any. Including this before any other header (besides) ensures that the module’s
header file is self-contained (see header files below).

8.1. Contributing to Open vSwitch 219

Open vSwitch Documentation, Release 2.6.0

3. Standard C library headers and other system headers, preferably in alphabetical order. (Occasionally one en-
counters a set of system headers that must be included in a particular order, in which case that order must take
precedence.)

4. Open vSwitch headers, in alphabetical order. Use " ", not <>, to specify Open vSwitch header names.
Header Files

Each header file should start with its license, as described under source files above, followed by a “header guard” to
make the header file idempotent, like so:

#ifndef NETDEV_H
#define NETDEV_H 1

#endif /* netdev.h =/

Header files should be self-contained; that is, they should #1include whatever additional headers are required, with-
out requiring the client to #include them for it.

Don’t define the members of a struct or union in a header file, unless client code is actually intended to access them
directly or if the definition is otherwise actually needed (e.g. inline functions defined in the header need them).

Similarly, don’t #include a header file just for the declaration of a struct or union tag (e.g. just for struct ;).
Just declare the tag yourself. This reduces the number of header file dependencies.

Types

Use typedefs sparingly. Code is clearer if the actual type is visible at the point of declaration. Do not, in general,
declare a typedef for a struct, union, or enum. Do not declare a typedef for a pointer type, because this can be very
confusing to the reader.

A function type is a good use for a typedef because it can clarify code. The type should be a function type, not a
pointer-to-function type. That way, the typedef name can be used to declare function prototypes. (It cannot be used
for function definitions, because that is explicitly prohibited by C89 and C99.)

You may assume that char is exactly 8 bits and that int and 1ong are at least 32 bits.

Don’t assume that 1ong is big enough to hold a pointer. If you need to cast a pointer to an integer, use intptr_t or
uintptr_t from.

Use the int_t and uint_t types from for exact-width integer types. Use the PRId, PRIu, and PRIx macros from
for formatting them with print £ () and related functions.

For compatibility with antique printf () implementations:
¢ Instead of "$zu", use "$"PRIUSIZE.
e Instead of "%td", use "$"PRIJPTR.
¢ Instead of "$ju", use "$"PRIUMAX.

Other variants exist for different radixes. For example, use "$"PRIxSIZE instead of "$zx" or "$x" instead of
"Shhx".

Also, instead of "$hhd", use "%$d". Be cautious substituting "%$u", "$x", and "%$o" for the corresponding ver-
sions with "hh": cast the argument to unsigned char if necessary, because printf ("$hhu", -1) prints 255 but
printf ("$u", -1) prints 4294967295.

220 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

Use bit-fields sparingly. Do not use bit-fields for layout of network protocol fields or in other circumstances where the
exact format is important.

Declare bit-fields to be signed or unsigned integer types or _Bool (aka bool). Do not declare bit-fields of type int:
C99 allows these to be either signed or unsigned according to the compiler’s whim. (A 1-bit bit-field of type int may
have a range of -1...0!)

Try to order structure members such that they pack well on a system with 2-byte short, 4-byte int, and 4- or 8-byte
long and pointer types. Prefer clear organization over size optimization unless you are convinced there is a size or
speed benefit.

Pointer declarators bind to the variable name, not the type name. Write int *x,not int x and definitely not int
* X,

Expressions

Put one space on each side of infix binary and ternary operators:

* /%

+ -

Avoid comma operators.

Do not put any white space around postfix, prefix, or grouping operators:

(O e
I~ 44+ —— + - % &

Exception 1: Put a space after (but not before) the “sizeof” keyword.
Exception 2: Put a space between the () used in a cast and the expression whose type is cast: (void *) 0.

Break long lines before the ternary operators ? and :, rather than after them, e.g.

return (out_port != VIGP_CONTROL_PATH
? alpheus_output_port (dp, skb, out_port)
alpheus_output_control (dp, skb, fwd_save_skb (skb),
VIGR_ACTION)) ;

Do not parenthesize the operands of && and | | unless operator precedence makes it necessary, or unless the operands
are themselves expressions that use && and | |. Thus:

if (!isdigit ((unsigned char)s[0])
|| 'isdigit ((unsigned char)s[1l])
|| !'isdigit ((unsigned char)s[2])) {

printf ("string %s does not start with 3-digit code\n", s);

but

8.1. Contributing to Open vSwitch 221

Open vSwitch Documentation, Release 2.6.0

if (rule && (!best || rule->priority > best->priority)) {
best = rule;

}

Do parenthesize a subexpression that must be split across more than one line, e.g.:

xidxp = ((l1_idx << PORT_ARRAY_L1_SHIFT)
| (12_idx << PORT_ARRAY L2 SHIFT)
| (13_idx << PORT_ARRAY L3_SHIFT));

Try to avoid casts. Don’t cast the return value of malloc().

The “sizeof” operator is unique among C operators in that it accepts two very different kinds of operands: an expression
or a type. In general, prefer to specify an expression, e.g. int »x = xmalloc(sizeof *\ x);. When the
operand of sizeof is an expression, there is no need to parenthesize that operand, and please don’t.

Use the ARRAY_SIZE macro from 1ib/util.h to calculate the number of elements in an array.

When using a relational operator like < or ==, put an expression or variable argument on the left and a constant
argument on the right, e.g. x == 0,n0t 0 == x.
Blank Lines

Put one blank line between top-level definitions of functions and global variables.

C DIALECT

Most C99 features are OK because they are widely implemented:
* Flexible array members (e.g. struct { int fool[]; }).

* static inline functions (but no other forms of inline, for which GCC and C99 have differing interpre-
tations).

* long long

* bool and <stdbool.h>, but don’t assume that bool or _Bool can only take on the values O or 1, because this
behavior can’t be simulated on C89 compilers.

Also, don’t assume that a conversion to bool or _Bool follows C99 semantics, i.e. use
(bool) (some_value != 0) rather than (bool) some_value. The latter might produce unexpected
results on non-C99 environments. For example, if bool is implemented as a typedef of char and some_value
= 0x10000000.

* Designated initializers (e.g. struct foo foo = {.a = 1}; andint a[] = {[2] = 5};).

» Mixing of declarations and code within a block. Please use this judiciously; keep declarations nicely grouped
together in the beginning of a block if possible.

» Use of declarations in iteration statements (e.g. for (int i = 0; 1 < 10; 1i++)).
e Use of a trailing comma in an enum declaration (e.g. enum { x = 1, 1};).
As a matter of style, avoid // comments.

Avoid using GCC or Clang extensions unless you also add a fallback for other compilers. You can, however,
use C99 features or GCC extensions also supported by Clang in code that compiles only on GNU/Linux (such as
lib/netdev-1linux.c), because GCC is the system compiler there.

222 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

Python

When introducing new Python code, try to follow Python’s PEP 8 style. Consider running the pep8 or £1ake8 tool
against your code to find issues.

8.1.3 Open vSwitch Windows Datapath Coding Style

The coding style guide gives the flexiblity for each platform to use its own coding style for the kernel datapath. This
file describes the specific coding style used in most of the C files in the Windows kernel datapath of the Open vSwitch
distribution.

Most of the coding conventions applicable for the Open vSwitch distribution are applicable to the Windows kernel
datapath as well. There are some exceptions and new guidlines owing to the commonly followed practices in Windows
kernel/driver code. They are noted as follows:

Basics

e Limit lines to 79 characters.

Many times, this is not possible due to long names of functions and it is fine to go beyond the characters limit.
One common example is when calling into NDIS functions.

Types

Use data types defined by Windows for most of the code. This is a common practice in Windows driver code, and it
makes integrating with the data structures and functions defined by Windows easier. Example: DWORD and BOOLEAN.

Use caution in portions of the code that interface with the OVS userspace. OVS userspace does not use Windows
specific data types, and when copying data back and forth between kernel and userspace, care should be exercised.

Naming

It is common practice to use camel casing for naming variables, functions and files in Windows. For types, especially
structures, unions and enums, using all upper case letters with words seprated by ‘_’ is common. These practices can
be used for OVS Windows datapath. However, use the following guidelines:

» Use lower case to begin the name of a variable.

3

* Do not use ‘_’ to begin the name of the variable.
macro.

_’ is to be used to begin the parameters of a pre-processor

» Use upper case to begin the name of a function, enum, file name etc.

* Static functions whose scope is limited to the file they are defined in can be prefixed with ‘_’. This is not
mandatory though.

* For types, use all upper case for all letters with words separated by ‘_’. If camel casing is preferred, use upper
case for the first letter.

* Itis a common practice to define a pointer type by prefixing the letter ‘P’ to a data type. The same practice can
be followed here as well.

For example:

8.1. Contributing to Open vSwitch 223

https://www.python.org/dev/peps/pep-0008/

Open vSwitch Documentation, Release 2.6.0

static __inline BOOLEAN
OvsDetectTunnelRxPkt (POVS_FORWARDING_CONTEXT ovsFwdCtx,
POVS_FLOW_KEY flowKey)

POVS_VPORT_ENTRY tunnelVport = NULL;

if (!flowKey->ipKey.nwFrag &&
flowKey->ipKey.nwProto == IPPROTO_UDP &&
flowKey—>ipKey.l4.tpDst == VXLAN_UDP_PORT_NBO) {
tunnelVport = OvsGetTunnelVport (OVSWIN_VPORT_TYPE_VXLAN) ;
ovsActionStats.rxVxlan++;

} else {
return FALSE;

if (tunnelVport) {
ASSERT (ovsFwdCtx—->tunnelRxNic == NULL) ;
ovsFwdCtx—>tunnelRxNic = tunnelVport;
return TRUE;

return FALSE;
}

For declaring variables of pointer type, use of the pointer data type prefixed with ‘P’ is preferred over using ‘*’. This
is not mandatory though, and is only prescribed since it is a common practice in Windows.

Example, #1 is preferred over #2 though #2 is also equally correct:
1. PNET_BUFFER_LIST curNbl;

2. NET_BUFFER_LIST xcurNbl;

Comments

Comments should be written as full sentences that start with a capital letter and end with a period. Putting two spaces
between sentances is not necessary.

// can be used for comments as long as the comment is a single line comment. For block comments, use /% */
comments

Functions

Put the return type, function name, and the braces that surround the function’s code on separate lines, all starting in
column 0.

Before each function definition, write a comment that describes the function’s purpose, including each parameter,
the return value, and side effects. References to argument names should be given in single-quotes, e.g. ‘arg’. The
comment should not include the function name, nor need it follow any formal structure. The comment does not need
to describe how a function does its work, unless this information is needed to use the function correctly (this is often
better done with comments inside the function).

Mention any side effects that the function has that are not obvious based on the name of the function or based on the
workflow it is called from.

In the interest of keeping comments describing functions similar in structure, use the following template.

224 Chapter 8. Open vSwitch Internals

Open vSwitch Documentation, Release 2.6.0

* Any description of the function, arguments, return types, assumptions and
* side effects.

Source Files

Each source file should state its license in a comment at the very top, followed by a comment explaining the purpose
of the code that is in that file. The comment should explain how the code in the file relates to code in other files. The
goal is to allow a programmer to quickly figure out where a given module fits into the larger system.

The first non-comment line in a .c source file should be:

#include <precomp.h>

#1include directives should appear in the following order:
1. #include <precomp.h>

2. The module’s own headers, if any. Including this before any other header (besides <precomp .h>) ensures
that the module’s header file is self-contained (see Header Files) below.

3. Standard C library headers and other system headers, preferably in alphabetical order. (Occasionally one en-
counters a set of system headers that must be included in a particular order, in which case that order must take
precedence.)

4. Open vSwitch headers, in alphabetical order. Use " ", not <>, to specify Open vSwitch header names.

8.1.4 Open vSwitch Documentation Style

This file describes the documentation style used in all documentation found in Open vSwitch. Documentation includes
any documents found in Documentation along with any README, MAINTAINERS, or generally rst suffixed
documents found in the project tree.

reStructuredText vs. Sphinx

reStructuredText (reST) is the syntax, while Sphinx is a documentation generator. Sphinx introduces a number of
extensions to reST, like the : ref: role, which can and should be used in documentation, but these will not work
correctly on GitHub. As such, these extensions should not be used in any documentation in the root level, such as the
README.

reST Conventions

Basics

Many of the basic documentation guidelines match those of the Open vSwitch Coding Style.
¢ Use reStructuredText (reST) for all documentation.

Sphinx extensions can be used, but only for documentation in the Documentation folder.

8.1. Contributing to Open vSwitch 225

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/

Open vSwitch Documentation, Release 2.6.0

e Limit lines at 79 characters.

Note: An exception to this rule is text within code-block elements that cannot be wrapped and links within
references.

» Use spaces for indenation.
* Match indentation levels.

A change in indentation level usually signifies a change in content nesting, by either closing the existing level
or introducing a new level.

* Avoid trailing spaces on lines.
¢ Include a license (see this file) in all docs.

¢ Most importantly, always build and display documentation before submitting changes! Docs aren’t unit testable,
so visible inspection is necessary.

File Names

 Use hyphens as space delimiters. For example: my-readme—document . rst

¢ Use lowercase filenames.

Note: An exception to this rule is any documents found in the root-level of the project.

Titles

* Use the following headers levels.

======= Heading 0 (reserved for the title in a document)
fffffff Heading 1
~~~~~~~ Heading 2
+++++++ Heading 3
rrrrrrr Heading 4

Note: Avoid using lower heading levels by rewriting and reorganizing the information.

¢ Under- and overlines should be of the same length as that of the heading text.

e Use “title case” for headers.

Code
e Use ::, the code role or the code-block:: <syntax> role to prefix code. The code-block::
<syntax> format is preferred as this provides syntax highlighting for non-Python languages, such as Bash or
PowerShell.

226 Chapter 8. Open vSwitch Internals



Open vSwitch Documentation, Release 2.6.0

¢ Prefix commands with S.

* Where possible, include fully-working snippets of code. If there pre-requisites, explain what they are and how
to achieve them.

Admonitions

» Use admonitions to call attention to important information.:

note::

This is a sample callout for some useful tip or trick.

Example admonitions include: warning, important, note, tip or seealso.

 Use notes sparingly. Avoid having more than one per subsection.

Tables

 Use either graphic tables, list tables or CSV tables.

Graphic tables

table:: OVS-Linux kernel compatibility

Open vSwitch Linux kernel

2.6.18 to 3.2
2.6.18 to 3.2
2.6.18 to 3.2

[
RGNS
XX X

table:: OVS-Linux kernel compatibility

Fmm Fmm +
| Open vSwitch | Linux kernel |
f=== + ===4
| 1.4.x | 2.6.18 to 3.2 |
o o +
| 1.5.x | 2.6.18 to 3.2 |
Fmm Fmm +
| 1.6.x | 2.6.18 to 3.2 |
o o +

Note: The tablerole-.. table:: <name> -can be safely omitted.

List tables

list-table:: OVS-Linux kernel compatibility
:widths: 10 15
theader-rows: 1

* — Open vSwitch
- Linux kernel

8.1. Contributing to Open vSwitch 227




Open vSwitch Documentation, Release 2.6.0

.18 to 3.2

.18 to 3.2

|
N RPN P DN
o Oy O U1 O W

.18 to 3.2

CSYV tables

csv-table:: OVS-Linux kernel compatibility
:header: Open vSwitch, Linux kernel
:widths: 10 15

1.4.x, 2.6.18 to 3.2
1.5.x, 2.6.18 to 3.2
1.6.x, 2.6.18 to 3.2

Cross-referencing

¢ To link to an external file or document, include as a link.:

Here's a "link <http://openvswitch.org>" to the Open vSwitch website.

Here's a “link _ in reference style.

_link: http://openvswitch.org

¢ You can also use citations.:

Refer to the Open vSwitch documentation [1]_

References

[1]: http://openvswitch.org

¢ To cross-reference another doc, use the doc role.:

Here is a link to the :doc:  /README.rst®

Note: This is a Sphinx extension. Do not use this in any top-level documents.

* To cross-reference an arbitrary location in a doc, use the ref role.:

_sample—-crossref

Hello, world.

Another Title

Here is a cross-reference to :ref: sample-crossref .

228 Chapter 8. Open vSwitch Internals




Open vSwitch Documentation, Release 2.6.0

Note: This is a Sphinx extension. Do not use this in any top-level documents.

Figures and Other Media

* All images should be in PNG format and compressed where possible. For PNG files, use OptiPNG and Ad-

vanceCOMP’s advpng:

$ optipng -07 -zml-9 -i0 -strip all <path_to_png>

$ advpng -z4 <path_to_png>

e Any ASCII text “images” should be included in code-blocks to preserve formatting

¢ Include other reStructuredText verbatim in a current document

Comments

e Comments are indicated by means of the . . marker.:

. TODO (stephenfin) This section needs some work. This TODO will not
appear in the final generated document, however.

Writing Style

Follow these guidelines to ensure readability and consistency of the Open vSwitch documentation. These guidelines

are based on the IBM Style Guide.
* Use standard US English

Use a spelling and grammar checking tool as necessary.

» Expand initialisms and acronyms on first usage.

Commonly used terms like CPU or RAM are allowed.

Do not use Do use
OVS is a virtual switch. OVS has... | Open vSwitch (OVS) is a virtual switch. OVS has...
The VTEP emulator is... The Virtual Tunnel Endpoint (VTEP) emulator is...

¢ Write in the active voice

The subject should do the verb’s action,

rather than be acted upon.

Do not use Do use

A bridge is created by you | Create a bridge

* Write in the present tense

Do not use

Do use

Once the bridge is created, you can create a port | Once the bridge is created, create a port

* Write in second person

Do not use Do use

To create a bridge, the user runs: | To create a bridge, run:

» Keep sentences short and consise

8.1. Contributing to Open vSwitch

229



http://www.redbooks.ibm.com/Redbooks.nsf/ibmpressisbn/9780132101301?Open

Open vSwitch Documentation, Release 2.6.0

* Eliminate needless politeness

Avoid “please” and “thank you”

Helpful Tools

There are a number of tools, online and offline, which can be used to preview documents are you edit them:
* rst.ninjs.org
An online rST editor/previewer
* ReText
A simple but powerful editor for Markdown and reStructuredText. ReText is written in Python.
* restview

A viewer for ReStructuredText documents that renders them on the fly.

Useful Links

¢ Quick reStructuredText

* Sphinx Documentation

8.2 Mailing Lists

Important: Report security issues only to security @openvswitch.org. For more information, refer to our security
policies.

8.2.1 ovs-announce

The ovs-announce mailing list is used to announce new versions of Open vSwitch and is extremely low-volume.
(subscribe) (archives)

8.2.2 ovs-discuss

The ovs-discuss mailing list is used to discuss plans and design decisions for Open vSwitch. It is also an appropriate
place for user questions. (subscribe) (archives)

8.2.3 ovs-dev

The ovs-dev mailing list is used to discuss development and review code before being committed. (subscribe)
(archives)

8.2.4 ovs-git

The ovs-git mailing list hooks into Open vSwitch’s version control system to receive commits. (subscribe) (archives)

230 Chapter 8. Open vSwitch Internals


http://rst.ninjs.org/
https://github.com/retext-project/retext
https://mg.pov.lt/restview/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx.readthedocs.io/en/latest/rest.html
mailto:security@openvswitch.org
https://mail.openvswitch.org/mailman/listinfo/ovs-announce/
https://mail.openvswitch.org/pipermail/ovs-announce/
https://mail.openvswitch.org/mailman/listinfo/ovs-discuss/
https://mail.openvswitch.org/pipermail/ovs-discuss/
https://mail.openvswitch.org/mailman/listinfo/ovs-dev/
https://mail.openvswitch.org/pipermail/ovs-dev/
https://mail.openvswitch.org/mailman/listinfo/ovs-git/
https://mail.openvswitch.org/pipermail/ovs-git/

Open vSwitch Documentation, Release 2.6.0

8.2.5 ovs-build

The ovs-build mailing list hooks into Open vSwitch’s continuous integration system to receive build reports. (sub-
scribe) (archives)

8.2.6 bugs

The bugs mailing list is an alias for the discuss mailing list.

8.2.7 security

The security mailing list is for submitting security vulnerabilities to the security team.

8.3 Patchwork

Open vSwitch uses Patchwork to track the status of patches sent to the ovs-dev mailing list. The Open vSwitch
Patchwork instance can be found on ozlabs.org. The pwclientrc file, required for pwclient, can be found on the
project page

Patchwork provides a number of useful features for developers working on Open vSwitch:
» Tracking the lifecycle of patches (accepted, rejected, under-review, ...)
* Assigning reviewers (delegates) to patches
* Downloading/applying patches via the web UI or the XML-RPC API (see pwclient)

* A usable Ul for viewing patch discussions

8.3.1 pwclient

The pwclient tool provides an way to download and apply patches, change the state of patches in Patchwork, and more.
You can download pwclient from here. Once downloaded, run:

$ pwclient help

to get more information about the functionality pwclient provides.

8.4 Open vSwitch Release Process

This document describes the process ordinarily used for Open vSwitch development and release. Exceptions are
sometimes necessary, so all of the statements here should be taken as subject to change through rough consensus of
Open vSwitch contributors, obtained through public discussion on, e.g., ovs-dev or the #openvswitch IRC channel.

8.4.1 Release Strategy

Open vSwitch feature development takes place on the “master” branch. Ordinarily, new features are rebased against
master and applied directly. For features that take significant development, sometimes it is more appropriate to merge
a separate branch into master; please discuss this on ovs-dev in advance.

8.3. Patchwork 231


https://mail.openvswitch.org/mailman/listinfo/ovs-build/
https://mail.openvswitch.org/mailman/listinfo/ovs-build/
https://mail.openvswitch.org/pipermail/ovs-build/
https://github.com/getpatchwork/patchwork
https://patchwork.ozlabs.org/project/openvswitch/list/
https://patchwork.ozlabs.org/project/openvswitch/
https://patchwork.ozlabs.org/pwclient/

Open vSwitch Documentation, Release 2.6.0

Periodically, the OVS developers fork a branch from master to become an official release. These release branches
are named for expected release number, e.g. “branch-2.3” for the branch that will yield Open vSwitch 2.3.x. Release
branches should receive only bug fixes, not new features. Bug fixes applied to release branches should be backports
of corresponding bug fixes to the master branch, except for bugs present only on release branches (which are rare in
practice).

Sometimes there can be exceptions to the rule that a release branch receives only bug fixes. In particular, after a
release branch is created, but before the first actual release from that branch, it can be appropriate to add features. Like
bug fixes, new features on release branches should be backports of the corresponding commits on the master branch.
Features to be added to release branches should be limited in scope and risk and discussed on ovs-dev before creating
the branch.

After a period of testing and stabilization, and rough consensus obtained from contributors that the release is ready, the
developers release the .0 release on its branch, e.g. 2.3.0 for branch-2.3. To make the actual release, a developer pushes
a signed tag named, e.g. v2.3.0, to the Open vSwitch repository, makes a release tarball available on openvswitch.org,
and posts a release announcement to ovs-announce.

As a number of bug fixes accumulate, or after important bugs or vulnerabilities are fixed, the OVS developers may
make additional releases from a branch: 2.3.1, 2.3.2, and so on. The process is the same for these additional release as
for a .0 release.

At most two release branches are formally maintained at any given time: the latest release and the latest release
designed as LTS. An LTS release is one that the OVS project has designated as being maintained for a longer period
of time. Currently, an LTS release is maintained until the next LTS is chosen. There is not currently a strict guideline
on how often a new LTS release is chosen, but so far it has been about every 2 years. That could change based on
the current state of OVS development. For example, we do not want to designate a new release as LTS that includes
disruptive internal changes, as that may make it harder to support for a longer period of time. Discussion about
choosing the next LTS release occurs on the OVS development mailing list.

8.4.2 Release Numbering

The version number on master should normally end in .90. This indicates that the Open vSwitch version is “almost”
the next version to branch.

Forking master into branch-x.y requires two commits to master. The first is titled “Prepare for x.y.0” and increments
the version number to x.y. This is the initial commit on branch-x.y. The second is titled “Prepare for post-x.y.0
(x.y.90)” and increments the version number to x.y.90.

The version number on a release branch is x.y.z, where z is initially 0. Making a release requires two commits. The
first is titled Set release dates for x.y.z. and updates NEWS and debian/changelog to specify the release date of the
new release. This commit is the one made into a tarball and tagged. The second is titled Prepare for x.y.(z+1). and
increments the version number and adds a blank item to NEWS with an unspecified date.

8.4.3 Release Scheduling

Open vSwitch makes releases at the following six-month cadence, which of course is subject to change.

Time (months) | Approximate Dates | Event

T Mar 1, Sep 1 Release cycle for version x.y begins
T+4 Jul 1, Jan 1 branch-x.y forks from master
T+5.5 Aug 15, Feb 15 branch-x.y released as version x.y.0

8.4.4 Contact

Use dev@openvswitch.org to discuss the Open vSwitch development and release process.

232 Chapter 8. Open vSwitch Internals


mailto:dev@openvswitch.org

Open vSwitch Documentation, Release 2.6.0

8.5 Reporting Bugs in Open vSwitch

We are eager to hear from users about problems that they have encountered with Open vSwitch. This file documents
how best to report bugs so as to ensure that they can be fixed as quickly as possible.

Please report bugs by sending email to bugs @openvswitch.org.

For reporting security vulnerabilities, please read Open vSwitch’s Security Process.

The most important parts of your bug report are the following:
¢ What you did that make the problem appear.
* What you expected to happen.
* What actually happened.

Please also include the following information:
* The Open vSwitch version number (as output by ovs-vswitchd —--version).
e The Git commit number (as output by git rev-parse HEAD), if you built from a Git snapshot.
* Any local patches or changes you have applied (if any).

The following are also handy sometimes:

* The kernel version on which Open vSwitch is running (from /proc/version) and the distribution and ver-
sion number of your OS (e.g. “Centos 5.0”).

* The contents of the vswitchd configuration database (usually /etc/openvswitch/conf.db).
* The output of ovs—dpctl show.

* If you have Open vSwitch configured to connect to an OpenFlow controller, the output of ovs—-ofctl show
<bridge> for each <bridge> configured in the vswitchd configuration database.

* A fix or workaround, if you have one.

* Any other information that you think might be relevant.

Important: bugs@openvswitch.org is a public mailing list, to which anyone can subscribe, so do not include confi-
dential information in your bug report.

8.6 Open vSwitch’s Security Process

This is a proposed security vulnerability reporting and handling process for Open vSwitch. It is based on the Open-
Stack vulnerability management process described at https://wiki.openstack.org/wiki/Vulnerability_Management.

The OVS security team coordinates vulnerability management using the ovs-security mailing list. Membership in the
security team and subscription to its mailing list consists of a small number of trustworthy people, as determined by
rough consensus of the Open vSwitch committers on the ovs-committers mailing list. The Open vSwitch security team
should include Open vSwitch committers, to ensure prompt and accurate vulnerability assessments and patch review.

We encourage everyone involved in the security process to GPG-sign their emails. We additionally encourage GPG-
encrypting one-on-one conversations as part of the security process.

8.5. Reporting Bugs in Open vSwitch 233


mailto:bugs@openvswitch.org
mailto:bugs@openvswitch.org
https://wiki.openstack.org/wiki/Vulnerability_Management

Open vSwitch Documentation, Release 2.6.0

8.6.1 What is a vulnerability?

All vulnerabilities are bugs, but not every bug is a vulnerability. Vulnerabilities compromise one or more of:
 Confidentiality (personal or corporate confidential data).
* Integrity (trustworthiness and correctness).
* Availability (uptime and service).
Here are some examples of vulnerabilities to which one would expect to apply this process:
* A crafted packet that causes a kernel or userspace crash (Availability).
* A flow translation bug that misforwards traffic in a way likely to hop over security boundaries (Integrity).
* An OpenFlow protocol bug that allows a controller to read arbitrary files from the file system (Confidentiality).
* Misuse of the OpenSSL library that allows bypassing certificate checks (Integrity).

* A bug (memory corruption, overflow, ...) that allows one to modify the behaviour of OVS through external
configuration interfaces such as OVSDB (Integrity).

* Privileged information is exposed to unprivileged users (Confidentiality).

If in doubt, please do use the vulnerability management process. At worst, the response will be to report the bug
through the usual channels.

8.6.2 Step 1: Reception

To report an Open vSwitch vulnerability, send an email to the ovs-security mailing list (see contact at the end of this
document). A security team member should reply to the reporter acknowledging that the report has been received.
Consider reporting the information mentioned in Reporting Bugs in Open vSwitch, where relevant.

Reporters may ask for a GPG key while initiating contact with the security team to deliver more sensitive reports.

The Linux kernel has its own vulnerability management process. Handling of vulnerabilities that affect both the Open
vSwitch tree and the upstream Linux kernel should be reported through both processes. Send your report as a single
email to both the kernel and OVS security teams to allow those teams to most easily coordinate among themselves.

8.6.3 Step 2: Assessment

The security team should discuss the vulnerability. The reporter should be included in the discussion (via “CC”) to an
appropriate degree.

The assessment should determine which Open vSwitch versions are affected (e.g. every version, only the latest release,
only unreleased versions), the privilege required to take advantage of the vulnerability (e.g. any network user, any local
L2 network user, any local system user, connected OpenFlow controllers), the severity of the vulnerability, and how
the vulnerability may be mitigated (e.g. by disabling a feature).

The treatment of the vulnerability could end here if the team determines that it is not a realistic vulnerability.

8.6.4 Step 3a: Document

The security team develops a security advisory document. The security team may, at its discretion, include the reporter
(via “CC”) in developing the security advisory document, but in any case should accept feedback from the reporter
before finalizing the document. When the document is final, the security team should obtain a CVE for the vulnerability
from a CNA (https://cve.mitre.org/cve/cna.html).

234 Chapter 8. Open vSwitch Internals


https://static.lwn.net/kerneldoc/admin-guide/security-bugs.html
https://cve.mitre.org/cve/cna.html

Open vSwitch Documentation, Release 2.6.0

The document credits the reporter and describes the vulnerability, including all of the relevant information from the
assessment in step 2. Suitable sections for the document include:

« Title: The CVE identifier, a short description of the
vulnerability. The title should mention Open vSwitch.

In email, the title becomes the subject. Pre-release advisories
are often passed around in encrypted email, which have plaintext
subjects, so the title should not be too specific.

* Description: A few paragraphs describing the general
characteristics of the wvulnerability, including the versions of
Open vSwitch that are vulnerable, the kind of attack that
exposes the vulnerability, and potential consequences of the
attack.

The description should re-state the CVE identifier, in case the
subject is lost when an advisory is sent over email.

* Mitigation: How an Open vSwitch administrator can minimize the
potential for exploitation of the vulnerability, before applying
a fix. 1If no mitigation is possible or recommended, explain
why, to reduce the chance that at-risk users believe they are
not at risk.

* Fix: Describe how to fix the vulnerability, perhaps in terms of
applying a source patch. The patch or patches themselves, if
included in the email, should be at the very end of the advisory
to reduce the risk that a reader would stop reading at this
point.

* Recommendation: A concise description of the security team's
recommendation to users.

* Acknowledgments: Thank the reporters.

* Vulnerability Check: A step-by-step procedure by which a user
can determine whether an installed copy of Open vSwitch is
vulnerable.

The procedure should clearly describe how to interpret the
results, including expected results in vulnerable and
not-vulnerable cases. 