Exakat Documentation
Release 1

Damien Seguy

Jun 24, 2021

Contents

10

11

12

13

14

15

16

17

18

19

20

Introduction

Release Note

with a Bare metal installation
with a Docker installation
Overview

PHP Version

Library & Framework Support
Configuration

Scoping analysis

Rule

Report

Cobbler

Rules

Rulesets

Reports

Cobblers

Real Code Cases

Training Database
Installation

Upgrading

123

127

131

139

141

151

161

207

209

211

215

1371

1429

1481

1485

1647

1649

1657

21 Configuration 1659

22 Commands 1663
23 Frequently Asked Questions 1675
24 Glossary 1681

25 Annex 1683

Exakat Documentation, Release 1

Contents:

Contents 1

Exakat Documentation, Release 1

2 Contents

CHAPTER 1

Introduction

This is the documentation of the Exakat engine, version 2.2.2 (Build 1238), on Thu, 17 Jun 2021 15:56:34 +0000.

1.1 What is Exakat ?

Exakat is a tool for analyzing, reporting and assessing PHP code source efficiently and systematically. Exakat pro-
cesses PHP 5.2 to 7.4 and 8.0 code, as well as reporting on security, performance, code quality, migration.

Exakat reads the code, builds an AST and several dependency graphs, then indexes all of it in a graph database. From
there, exakat runs analysis, collecting potential errors and descriptive information about the code. Finally, exakat
produces reports, both for humans and machines.

1.2 Use Cases

1.2.1 Code quality

Exakat detects hundreds of issues in PHP code : dead code, incompatible calls, undefined calls, illogical expressions,
etc. Exakat is built for PHP, and cover common mistakes.

1.2.2 PHP version migration

Every PHP middle version is a migration by itself : based on the manual and common practices, exakat find both
backward incompatibilities, that prevent migration, and new features, that makes code modern.

Exakat review code for minor version, and spot bug fixes that may impact the code.

Exakat Documentation, Release 1

1.2.3 Framework code quality

Common best practices and recommendations for specific plat-forms like Wordpress, CakePHP or Zend Framework
are covered.

1.2.4 PHP configurations

Exakat detects several specialized analyzes, for Web security : making the code more secure online; PHP performances
: allowing faster execution.

1.2.5 Security, performances, testability

Exakat has several specialized analyzes, for Web security : making the code more secure online; PHP performances :
allowing faster execution; Testability : targeting the common pitfalls that makes code less testable.

1.2.6 Feature inventories

When auditing code, it is important to have a global view. Exakat collects all PHP features (magic functions, any
operator, special functions or patterns) and represents them in one report, giving auditors a full view.

Exakat inventories all literals for later review, helping with the magic number syndrome and any data refactoring.

1.3 Exakat compared to others

1.3.1 Code sniffer

Automated coding standard violation detection for PHP review the code for syntax layout. Exakat is not a coding
standard detection tool, as it focuses on bug finding, rather than coding layout.

While checking for coding standard, some bugs may be detected, and when checking for bugs, some coding standards
may be found too.

Using AST, dependency graphs and knowledge databases, Exakat reviews the code, checks its potential usage and
mis-usage. Exakat doesn’t take any presentation nor comments into accounts : only functions, variables and their
effects.

1.3.2 Phan, PHPstan, PHP

PHP code quality checks, based on type compatibility, and structure definitions. Exakat shares AST style analysis but
it goes a bit further by including common mistakes and actual PHP features detections.

1.3.3 PHP7mar, PHP7cc

Code review for PHP 5 to migrate to PHP 7. Exakat covers every middle version from PHP 5.3 to PHP 7.3.

4 Chapter 1. Introduction

Exakat Documentation, Release 1

1.3.4 PHP-ci, Jenkins, Grumphp
Continuous integration and code quality management check the code by running code quality tools and collecting all
the reported informations. Exakat is a good companion for those tools.

Exakat provides machine readable format reports, such as json, xml, text that may be consumed by CI. Exakat provides
also human readable format, such as HTML, for interactive review of the reports, and a longer usage life span.

1.4 Platforms

Exakat is an Open Source tool. The code is available on Github.com/exakat/exakat, as Docker image and Vagrant file.
It is also available as a phar download.

Exakat cloud is a SaaS platform, offering exakat audits on code, anytime, at reduced cost.

Exakat SAS is a Service company, providing consulting and training services around automated analysis and code
quality for PHP.

1.5 Architecture

Exakat relies on PHP to lint and tokenize the target code; a graph database to process the AST and the tokens; a
SQLITE 3 database to store the results and produce the various reports.

Exakat itself runs on PHP 7.2, with a short selection of extensions. It is tested with PHP 7.0 and 7.3.

FHF 7.8 +

Exakat.phar

PHP-sr¢
FHF 7.
PHFP
PHP
FHF
PHFP
PHP
FHF

Sglite Reports

Gremlin 3

Meod) 2.3

(S (o) [y [[l Bt
Prod et | oo O | S | =

Source code is imported into exakat using VCS client, like git, SVN, mercurial, tar, zip, bz2 or even symlink. Only
reading access is actually required : the code is never modified in any way.

At least one version of PHP have to be used, and it may be the same running Exakat. Only one version is used for
analysis and it may be different from the running PHP version. For example, exakat may run with PHP 7.2 but audit
code with PHP 5.6. Extra versions of PHP are used to provide compilations reports. PHP middle versions may be
configured separately. Minor versions are not important, except for edge cases.

The gremlin server is used to query the source code. Once analyzes are all finished, the results are dumped into a
SQLITE database and the graph may be removed. Reports are build from the SQLITE database.

1.4. Platforms 5

http://www.exakat.io/
https://github.com/exakat/exakat
https://hub.docker.com/r/exakat/exakat/
https://github.com/exakat/exakat-vagrant
https://www.exakat.io/download-exakat/
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/get-php-expertise/

Exakat Documentation, Release 1

6 Chapter 1. Introduction

CHAPTER 2

Release Note

Here is the release note of exakat.
Version 2.2.2 (Si, coming up)
¢ Architecture

* Report

e Analysis

* Tokenizer

Version 2.2.1 (Chen, 2020-11-20)

* Architecture
— Export : WIP of exporting PHP code from graph
— New directives : rules_version_max, rules_version_min, ignore_rules and ignore_namespace

* Report
— Sarif : Fixed line number that may be null or less
— Ambassador : Fixed visibility report

¢ Analysis

— New analysis : check for match as a keyword

New analysis : replace static variable by static properties

New analysis : warn about usage of get_object_vars()

New analysis : report global and static variables that are declared multiple times

Exakat Documentation, Release 1

Updated analysis : extended Used Classes to abstract classes

Updated analysis : wrong number of argument now supports $this()

Updated analysis : parse_str last argument doesn’t apply anymore in PHP 8

Updated analysis : useless argument now omits parameter with default value

Checked unit tests : 3797 / 3800 test pass (99% pass)

¢ Tokenizer

— Fixed race condition with phpdocs

Refactored static and global variables definitions (avoid double definitions)

Fixed detection of [] inside a list()

Fixed detection of alternative syntax for switch

Added use property to usenamespace too (for grouping)
Version 2.2.0 (Mao, 2020-10-15)
* Architecture

— Extended Export command to produce PHP scripts from the graph database

Added more typehints

Added new command ‘onefile’

Sped up database restart with id reset

Updated list of functions for several extensions. Started adding methods, class constants..

* Report

Ambassador : updated popularities

Ambassador : added missing PHP 8.0 ruleset

¢ Analysis

New analysis : report arguments and properties whose name clashes with the typehint

New analysis : report long preparation before throw command

New analysis : missing __isset() method

New analysis : suggest array_keys() for array_search in loops

New analysis : array_map() complains with values by reference

New analysis : report final private properties

New analysis : report misnamed constant/variable

New analysis : check for attribute configuration (PHP 8.0)

New analysis : suggest dropping variable in catch clause

New analysis : report resources that should not be tested with is_resource (PHP 8.0)

New analysis : check for named arguments and variadic

Updated analysis : wrong number of argument now supports $this()

Updated analysis : redefined private property uses OVERWRITE

Updated analysis : refactored UndefinedFunctions for speed

8 Chapter 2. Release Note

Exakat Documentation, Release 1

Updated analysis : array_map() complains with values by reference

Updated analysis : removed false positives on properties in strings

Updated analysis : unsupported types with operators skips cast values

Updated analysis : cancelled parameters are also for array_map/array_walk

Updated analysis : variable variable skips variables inside strings

Updated analysis : removed functions are not reported when in if/then with function_exists()

Updated analysis : wrong optional parameter fixed false positive with . ..

Updated analysis : extended list of removed directives, functions and constants

Removed analysis : RealVariables

Checked unit tests : 3761 / 3772 test pass (99% pass)

¢ Tokenizer

Added Void to empty default/case

Bitoperation added to isRead

Fixed list[] in a Foreach

Fixed token T_OPEN_DOLLAR_CURLY_BRACKET
Version 2.1.9 (Yin, 2020-10-01)

¢ Architecture
— Removed old and unused commands
— Modernized usage of docker as phpexec

— New directive php_extensions to managed list of ext

* Report
— Ambassador : removed 3 gremlins from typehint stats, added scalar types
— New Migration80 report, dedicated to PHP 8.0 migrations
— New Stubs.ini report, dedicated to exakat extensions production

¢ Analysis

New analysis : report arguments which are not nullable because of constants.

New analysis : could use stringable interface

New analysis : suggest explode()’s third argument when applicable

New analysis : suggest PHP 8.0 promoted properties

New analysis : report arrays with negative index, and auto-indexing

New analysis : report unsupported types with operators

New analysis : report usage of track_errors directive (PHP 8.0)

New analysis : report useless types on __get/__set

New analysis : count the number of use expressions in a file

New analysis : Avoid modifying typed arguments

New analysis : Report Assumptions in the code

Exakat Documentation, Release 1

New analysis : array_fill() usage with objects

New analysis : mismatch between parameter name and type

Updated analysis : magic methods definitions also find usage for __invoke()

Updated analysis : noscream operator usage may have exceptions

Updated analysis : identical methods and identical closures

Updated data : list of exceptions and their emitters

¢ Tokenizer

— Upgraded detection of extensions’ structures, beyond functions

Version 2.1.8 (Chou, 2020-09-18)

¢ Architecture

* Report

(3]

added ‘- options, and kept the ‘-’ options, for migration purposes. (—format and -format are both

available)

Added support for PHP 8 attributes in dump.sqlite

Added ‘precision’ to rule docs.

Moved all but one data collection from Dump -collect to Dump/ analysis.

New report : SARIF

Typehint suggestion report : Tick classes when they are fully covered

Weekly report : fix donuts display.

Stubsjson : Added support for PHP attributes

Stubs : Added support for PHP attributes

New ruleset : CI-Checks

New analysis : ‘Multiple declare(strict_types = 1)’

New analysis : ‘No more (unset) in PHP 8§’

New analysis : Cancel methods in parent : when methods should not have been abstracted in parent

class.

New analysis : ‘$php_errormsg is removed in PHP 8’

New analysis : ‘Mismatch Parameter Name’ checks parameter names between inherited methods for

consistency

Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :

‘Useless Arguments’ is accelerated

‘Don’t use Void” weeded out false positives

‘Wrong type for native calls’ weeded out false positives

‘Non static methods called statically’ was refactored for PHP 8.0 support
‘PHP Keywords’ includes ‘match’

‘Useless instruction’ reports ‘$a ?? null’ as useless.

‘Uncaught exceptions’ is extended to local variables

10

Chapter 2. Release Note

Exakat Documentation, Release 1

Upgraded analysis : ‘Foreach favorites’ also covers the keys

Upgraded analysis : ‘Should Preprocess’ skips expressions with constants

Upgraded analysis : ‘Compare Hashes’ has more functions covered
— Removed analysis : ‘Normal Properties’ : no need anymore.
* Tokenizer
— Moved isPhp attribute to Task/Load plugin
— Created isExt attribute to Task/Load plugin
Version 2.1.7 (zi, 2020-09-07)

¢ Architecture

Refactored loading class, to keep query load at optimal size for Gremlin

GC during load to free memory

More typehints

Move several collections to Dump/ ruleset

* Report
— Upgraded Typesuggestion report with report on closures and arrow functions
— Added Arrowfunctions in inventories
— Added collection of arguments and details for closures and arrowfunctions

¢ Analysis

New analysis : Could Be In Parent : suggest methods that should be defined in a parent

New analysis : Don’t pollute namespace

New analysis : report insufficient return typehints

Upgraded analysis : ‘Method signature must be compatible’ now PHP 8.0 compatible

Upgraded analysis : “Wrong type with native function’ fixes false positives

Upgraded analysis : ‘Same condition” added coverage for Il conditions

Upgraded analysis : ‘Missing returntype’ extended to class typehints

Upgraded analysis : ‘Should Use This’ also covers special functions like get_class_called()

Upgraded analysis : ‘No concat in loop’ skips nested loops

Upgraded analysis : ‘Always false’ covers typehint usage

Upgraded analysis : ‘NoChoice’ doesn’t report large expressions

Upgraded analysis : ‘Dont mix PlusPlus’ skip () and =

Upgraded analysis : ‘Fallthrough’ don’t report final cases without break
Checked unit tests : 3663 / 3630 test pass (99% pass)

» Tokenizer
— Removed ‘root’ property
— Upgraded to new Attributes #[] in detection and normalisation

— Fixed constant detection within instanceof

11

Exakat Documentation, Release 1

— Created RETURN and RETURNED for Arrowfunctions (there is no return otherwise)

— Parent method also calls children methods when those are not defined there
— Support for multiple attributes in one syntax
Version 2.1.6 (Night Patrol Deity, 2020-08-28)
* Architecture
— More typehints coverage
— Various speed-up
— Lighter logging with gremlin
— Fixed installation path
* Report
— Upgraded Typesuggestion report
— Upgraded Stubs and Stubsjson
¢ Analysis

— New analysis : report PHP 8.0 unknown parameters

New analysis : overwritten methods with different argument counts

New analysis : Warn of iconv and TRANSLIT for portability

New analysis : Warn of glob and {} for portability

Upgraded analysis : ‘Useless check’ covers new situations.

Upgraded analysis : ‘Abstract away’ now covers new calls.

Upgraded analysis : ‘Must return Typehint’ skips Void.

Upgraded analysis : ‘Missing new’ with less false positives

Checked unit tests : 3559 / 3630 test pass (98% pass)

¢ Tokenizer

Support for Virtualmethod and imports from traits

Refactored Usenamespace atom

Fixed calculations of fullnspath for static::class

Fixed detection of null/true/false in new()
Added support for T_BAD_CHARACTER
Version 2.1.5 (Day Patrol Deity, 2020-08-04)

* Architecture
— Fixed comment size estimation by 1 for T_COMMENT
— Added more typehints to code
* Report
— Typehint suggestions : added ticks to fully typed methods
— Emissary : Extract more information from dump.sqlite, instead of datastore.sqlite

— Ambassador : Added a list of parameters, defined in the application

12 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Ambassador : Added a list of fossilised methods
— Stubs : Added check around PHP native functions and CIT
— StubsJson : Added property for PHP native structures
¢ Analysis
— New analysis : Report insufficient initialisation for array_merge() collector variable
— New analysis : Report useless triple equals
— New analysis : Don’t compare typed boolean return values
— New analysis : Report wrong type used with PHP functions
— New analysis : Suggest abstracting away some PHP native functions
— New analysis : Report try block that are too large
— New analysis : Report variables potentially undefined in catch clause
— New analysis : Report swapped arguments in methods overwriting
— Upgraded analysis : InvalidPackFormat speed up

— Upgraded analysis : Added parameter to Security/ShouldUsePreparedStatement to choose the prepar-
ing method

— Upgraded analysis : Added parameter to Security/HardcodedPasswords to choose the name of prop-
erties/index

— Upgraded analysis : PHP 8.0 new scalar typehint, stringable interface

¢ Tokenizer

Added support for named parameters (PHP 8.0)

Trimmed some properties from atoms
Removed non-existent atom mentions

Added support for Attributes (WIP)

Added support for ?->
Added support for new T_*_NAME tokens
Version 2.1.4 (Marshal of Heavenly Blessing, 2020-07-23)

¢ Architecture

— Added time of last commit in audit results

— Added more typehints

— Upgraded PHP native method description with typehints (WIP)
* Report

— Typehint suggestion report

— New toplogies : call order,

— Ambassador : new statistics for typehint usage
¢ Analysis

— New analysis : Report double assignation of objects

— New analysis : Typehints/CouldBe*, which makes suggestions for typehints

13

Exakat Documentation, Release 1

New analysis : Checks for argument type when typehint is present in custom methods

Upgraded analysis : Too Many Finds may be configured for threshold and prefix/suffix

Upgraded analysis : Typehints stats were extended to properties and multiple typehints

Upgraded analysis : Global outside Loop is extended to static variable too

Upgraded analysis : ErrorMessages also detect local variable contents

Upgraded analysis : Speed up for NullBoolean, Interfaces IsNotImplemented, InvalidPackFormat,
arrayIndex, noWeakCrypto

Checked unit tests : 3532 / 3496 test pass (99% pass)

¢ Tokenizer

Removed ‘aliased’ property in atoms

Fixed spotting of PHP native constants, when in Define() structure

Fixed loading of false values

Added support for the trailing comma in closure’s use expression

more handling of phpdocs

Null is now reused when it is a default value, as a typehint.

Logical was split in two : Logical and Bitoperation

Added support for match() {} expression

Fixed boolean calculations during Load

Removed auto-referencing in DEFAULT calculations
Version 2.1.3 (Marshal of the Heavenly Canopy, 2020-07-02)

¢ Architecture

Removed all usage of datastore in Reports, and only rely on dump.

ignore_rules is now case insensitive

Moved some of the loading to a separate gremlin call to reduce the size of node load.

Fixed the branch option with Git calls.

Storing trait’s use expresion’s options.

* Report

Ambassador ; New inventory : PHP protocol used (php, phar, glob://...)

Stubs and StubsJson, have been tested extensively

¢ Analysis

New analysis : report double assignations of the same object ($a = $b = new C)

New analysis : report cyclic references

Upgraded analysis : Used Constants edge situations

Upgraded analysis : No real comparison : extended analysis to constants

Upgraded analysis : extended detection of dynamic method calls to call_user_func*

Upgraded analysis : paths are detected with new functions

14 Chapter 2. Release Note

Exakat Documentation, Release 1

— Checked unit tests : 3490 / 3520 test pass (99% pass)

¢ Tokenizer

— More phpdoc support (from code to report)
— Added isPHP to absolute FQN notations
Version 2.1.2 (Mountain Deity, 2020-06-25)

¢ Architecture

* Report

Removed files task from initproject.

Added ignore_rule directive, to ignore specific rules while running a specific report

More documentation (in particular, modifications section)

Exakat avoids to return twice the same results (file and line)

Sped up some analysis, and added a time limit per analysis

Removed double linking for static variables

New reports ; Stubs and StubsJson, which produce the stubs of the audited code (PHP and JSON

format) (WIP)

New report ; Typehint suggestion (WIP)

Ambassador ; offers the configuration for all the rules that spotted issues in the current audit, for reuse

in other codes

Collect the number of property per class

New analysis :
New analysis :
New analysis :
New analysis :

New analysis :

Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
: 3480/ 3510 test pass (99% pass)

Checked unit tests

Report methods that are too much indented on average
Report possible confusion between a class and an alias
Report variables that are static and global at the same time
Report statement with long blocks

Report phpdoc’s deprecated methods and function calls

Dereferencing levels now include () and =

Unused Methods now skips classes that calls themselves dynamically
No Need Get_class() was refactored

Avoid Optional Properties was refactored

Variable inconsistent Usage was extended with more reach

Indirect Injections was upgraded with better reach with variables
Direct Injections was upgraded with include

PHP 8.0 new scalar typehint, stringable interface

Mismatch Type and default now avoids undefined constants

Wrong Optional Parameter is upgraded for PHP 8.0

Indentation level was refactored

15

Exakat Documentation, Release 1

¢ Tokenizer

Upgraded detection of PHP native constants, when they are in absolute notation

Dump task stores use expressions’ options, plus minor fixes

Added support for Attributes (PHP 8.0)

Added support for Union types (PHP 8.0)

Atomls step (WITH_VARIABLE) was extended with local variables

DEFAULT doesn’t point anymore on auto-updated values

Extended support for phpdoc in the code

Added support for promoted properties (PHP 8.0)
Version 2.1.1 (Earth Deity, 2020-06-01)

¢ Architecture

* Report

¢ Analysis

Using timeLimit() to prevent Gremlin from running too deep in the rabbit hole

Added Neo4j Graphson V3 Graph driver

Moved ‘Dump’ rules to a specific Ruleset for easier administration

Propagated the upgrade to PHP 8.0 union types to three more rules

Fixed access to the list of ignored files

Added support for explicit stub files

Fixed multiple calls to Dump (better reentrant)

New report : Meters, which holds measures for the audited code.

Ambassador : inventory of OpenSSL ciphers

New analysis :
New analysis :
New analysis :
New analysis :
New analysis :
New analysis :

New analysis :

Report unused traits

Report chmod 777 system calls

Check for keylength when generated by PHP

Report methods with prefix/suffix and expected typehint
Mark classes when they call dynamically their own methods
Check for constants hidden in variable names ${X} != $X;

Throw will be an expression in PHP 8.0

Upgraded analysis : Dangling operator now checks for loops too

Upgraded analysis : ‘Variables used once’ now skips variable definitions

Upgraded analysis : ‘Access Private’ takes into account dynamic classes

Upgraded analysis : ‘Could Centralize’ now uses a custom threshold. Default is 8 usage of an expres-
sion to centralize.

Upgraded analysis : ‘Return true/false’ checks that they are alone in the blocks

Upgraded analysis : ‘Unreachable code’ checks on constants values before reporting the next expres-

sion

16

Chapter 2. Release Note

Exakat Documentation, Release 1

Upgraded analysis :
Upgraded analysis :
Upgraded analysis :

methods

Upgraded analysis :
Upgraded analysis :

Checked unit tests :

¢ Tokenizer

‘Magic methods’ are case insensitive
‘No Hardcoded passwords’ has new functions that require a password

‘Unused methods’ are omitted for dynamically called methods and overwritten

Insufficient Property Typehint also works for untyped properties
PHP 8.0 new scalar typehint, stringable interface
3383 / 3444 test pass (98% pass)

Arguments with null as default values, automatically are nullable

Intval is also an integer for logical operations

Default Values now omits recursives assignations

Fixed fullnspath for PHP short tags

Added link between new command and constructor of anonymous classes.

Version 2.1.0 (City God, 2020-05-13)

¢ Architecture

— results stored in HashResults are now testable

— Moved all query methods to Query/DSL namespace, from Analyzer class

* Report

— New report : ClassReview, with focus on classes structures

¢ Analysis

New report : Typechecks, with focus on type hint usage

Ambassador : Added typehint stats section

Ambassador : fixed display of classes name in classes tree

Ambassador : some missing sections have been rehabilitated

New analysis : Trailing comma in signature (PHP 8.0)

New analysis : Hidden nullable types

New analysis : Not implemented abstract methods

New analysis : Report confusion between variables and arguments with arrow functions

Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :
Upgraded analysis :

No literal for reference was extended

Add zero is extended to constants

This is for classes is now valid with arrow functions
Useless arguments takes also into account constants
Wrong Type With Call supports variadic arguments
Extension constants now support fully qualified names
Bad Typehint relay is compatible with union types

Multiple Identical Cases now handles constants too

17

Exakat Documentation, Release 1

— Checked unit tests : 3437 / 3477 test pass (99% pass)
* Tokenizer

— Restored ‘List’ atom

Interface methods are now ‘abstract’ by default

Added ‘array’ typehint for variadic arguments

Distinguish between argument and local variable in fn functions

Removed nullable property

propagate calls now propagates closures and arrow functions

Added support for union types (PHP 8.0)

Check all error messages from php, not just the first ones
Version 2.0.9 (Jialan, 2020-04-30)
* Architecture
— Added option in TU for analysis that won’t fill the result table.
— Reduced the number of duplicate links in the graph
— Upgraded tokens for PHP 8.0.

e Analysis

New analysis : Don’t collect void

New analysis : Wrongly inited properties

New analysis : Not inited properties

Upgraded analysis : PHP 8.0 removed functions

Upgraded analysis : Useless instructions also include global/static variables

Upgraded analysis : Bad Relay Function now works with return types and property types

Upgraded analysis : ‘Scalar or object properties’ are upgraded with static calls

Removed analysis : Classes and Arrays IsRead and IsModified. Use properties now.

Checked unit tests : 3347 / 3420 test pass (97% pass)

¢ Tokenizer

Fixed edge case for xor, with intval

Refactored multiple calculation for cast values

Added support for links between constants and use expressions

Linked classes with calls, when using use expression
Version 2.0.8 (Ao Run, 2020-04-20)
* Architecture
— Added new information in dump.sqlite, to make report autonomous
* Analysis
— Upgraded analysis : Paths are also recognized with constants, and more functions

— Upgraded analysis : Should Use single Quotes

18 Chapter 2. Release Note

Exakat Documentation, Release 1

— Checked unit tests : 3328 / 3398 test pass (97% pass)
* Tokenizer
— Fixed detection of PHP constants
Version 2.0.7 (Ao Shun, 2020-04-14)
* Architecture
— Adopted strict_types

— Removed ctypel attribute

Moved linting into separate processes

Refactored analysis to export to dump via SQL

Added ‘None’ ruleset to Dump task

* Report

Ambassador : Added Constant’s order report

None : Added support for No report

¢ Analysis

Upgraded analysis : Undefined class constants

Upgraded analysis : Undefined global constants

Upgraded analysis : Undefined property
Checked unit tests : 3347 / 3420 test pass (97% pass)

* Tokenizer
— Support PHP 8.0’s tokens
— Added support for multiple typehint in the engine
— Fixed edge case for boolean type casting
Version 2.0.6 (Ao Qin, 2020-03-04)
* Architecture
— Refactored analysis types for first UT
— Moving to PHP 7.4 by default
* Report
— Rector : added more coverage
— All : better display of typed properties

e Analysis

New analysis : Semantic names of arguments

New analysis : !$a == $b

New prototype : possibles interfaces

Upgraded analysis : Overwritten literals now skips .=

Upgraded analysis : Scalar or object handles return type
Checked unit tests : 3322 / 3420 test pass (97% pass)

19

Exakat Documentation, Release 1

Version 2.0.5 (Ao Guang, 2019-11-25)
* Architecture
— Fixed access to severity and timetofix from compiled extension
* Report
— Ambassador : Fixed links to documentation
¢ Analysis
— Upgraded analysis : Mismatched Type and Default now omit undefined constants
— Checked unit tests : 3366 / 3402 test pass (99% pass)
Version 2.0.4 (Army Defeating Star of Heaven’s Gate, 2019-11-18)
* Architecture
— Reducing Analyzer’s class method count

— Moving more collections to Dump/ and Complete/

* Report
— Rector : added more coverage
— Ambassador : Skiped analysis are now reported, not with -1
— Ambassador : Foreach favorites’s graph is displayed
— Ambassador : Visibility suggestion has full method names
¢ Analysis

— Upgraded analysis : Don’t Mix ++ now skips $a[$b++]
— Upgraded analysis : Type hint stats skips some return values
— Checked unit tests : 3365 / 3401 test pass (99% pass)
Version 2.0.3 (Military Star of the North Pole, 2019-11-11)
* Architecture
— Added check on xdebug presence (nesting limit)
— Moving more collections to Dump/

¢ Analysis

New analysis : Nullable typehint requires a test on NULL

New analysis : Typehint that requires too much

Upgraded analysis : Printf check on arguments works with .

Upgraded analysis : No magic for arrays skips __get()

Upgraded analysis : Const recommended, but not when methods are used

Upgraded analysis : Written only variables handles compact()

Upgraded analysis : Callbacks need returns, but not for spl_autoload_register()

Upgraded analysis : Extended analysis to Concatenation an Heredoc for Email

Upgraded analysis : Disconnected classes handles case sensitivity

Checked unit tests : 3371 /3397 test pass (99% pass)

20 Chapter 2.

Release Note

Exakat Documentation, Release 1

Version 2.0.2 (Danyuan Star of Honesty and Chasity, 2019-11-04)
¢ Architecture
— Adding more typehint

Created new class to build Dot files

Cleaned double examples

Dump handles multiple definitions for constants, class, trait, functions.

* Report

— Added new Topology report

— Added new Type hint topology sort

— Stubs : added class constant visibility
¢ Analysis

New analysis : Report argument whose name clashes with typehint

New analysis : Report properties that are insufficiently typed

— Moved ‘Inclusions’ to Dump/

Added steps to find original and relayed arguments
* Tokenizer
— Fixed paralellisation bug in Load
Version 2.0.1 (Military Star of the North Pole, 2019-10-28)
* Architecture
— Added more return type

— Centralized reading for ini or json

* Report
— Ambassador: fixed Foreach favorites
— Ambassador: added sort to number of parameter list
— Checked unit tests : 3345 / 3377 test pass (99% pass)
¢ Analysis

— Upgraded xmlwriter to json
Version 2.0.0 (Civil Star of Mystery and Darkness, 2019-10-21)
* Architecture
— Manual file/line fixes
— More simplifcations in load step

* Report

Ambassador : fixed performance display

Ambassador : report list of shell commands

Typehint4all : first report

Perfile : fixed sorting

21

Exakat Documentation, Release 1

¢ Analysis

New analysis : Report possible typehint for bool, int, string, array. WIP

Upgraded analysis : common alternatives are extended to switch and elsif

Upgraded analysis : xmlreader description includes class constants, properties and methods.

Upgraded analysis : callback needs return, is extended to php native functions
Checked unit tests : 3345 / 3377 test pass (99% pass)
Version 1.9.9 (Lasting Prosperity Star of True Man, 2019-10-14)

¢ Architecture

— Documentation review

* Report
— New reports : Stubs, Rector
— Typehint stats
— Stubs takes into account use expression
— Added Concrete5 and Typo3 as vendors
¢ Analysis

New analysis : checks on is_a third argument

New analysis : Invalid mbstring encodings

New analysis : Weird Index in arrays

New analysis : Avoid FILTER_SANITIZE_MAGIC_QUOTES

New analysis : Don’t forget third argument

New analysis : Hard to update methods

New analysis : Merge two ifthen into one

New analysis : Report wrong type with calls

New analysis : Check case for namespaces

Updated analysis : Undefined interfaces now includes interfaces extensions

Updated analysis : Report more wrong types with return type

Updated analysis : Register globals also applied to class

Updated analysis : Could Use Try covers more new, functions and static calls

Updated analysis : Useless Cast also reports (string) array (always Array)
Checked unit tests : 3343 / 3366 test pass (99% pass)

¢ Tokenizer
— Create default values for foreach
— Load captures empty files, and omit them
— Create default values also handles ?7=
Version 1.9.8 (Giant Gate Star of Dark Essence, 2019-10-07)

¢ Architecture

22 Chapter 2. Release Note

Exakat Documentation, Release 1

* Report

* Analysis

Upgraded dump command to handle multiple -P

.yaml configuration handles multiple reports

Started journey to strict_types

Code cleaning

Ambassador : Fixed report of Flexible Docs

Ambassador : trimmed delimiters in inventories

Inventory : Foreach, with key values

New analysis : Wrong case for functions

New analysis : Parameter Hiding

New analysis : Report usage of Traversable

Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :

Checked unit tests

¢ Tokenizer

Undeclared properties skips undefined properties

Useless Interface, modernized query

String Holding Variables now skips default, const, sprintf
Binaries are not confused with hex

Extended ‘Insufficient typehint’ to abstract classes

1 3324 / 3343 test pass (99% pass)

— Fixed handling of large powers

— Added more escaping when storing to SQLITE
Version 1.9.7 (Greedy Wolf Star of Sunlight, 2019-09-30)

¢ Architecture

— Added support for analysis reporting missing values in a reference list

— Fixe batch dumping of results

* Report

— Ambassador : new inventory : dereferencing levels

¢ Analysis

New analysis : Use PHP Native URL parsing functions

New analysis : Maximum dereferencing level

New analysis : Use case value in a switch : it was already tested

Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :

No class as typehint accepts abstract classes

Create Magic Property reachs out to traits

Security also reports usage of unserialize()
Mistmatched default argument also covers methods

Never used parameter also covers methods

23

Exakat Documentation, Release 1

— Updated analysis : Unused global also cover static variables
— Updated analysis : Duplicate strings threshold is not 15, not 5.
— Checked unit tests : 3289 / 3319 test pass (99% pass)

* Tokenizer
— RETURNTYPE, TYPEHINT, and DEFAUT are not always on, with Void atom, or better.
— DEFAULT value targets end-values, skips ??, ?:, () and =.
— Exceptions now reports errors in the Query, not where it is thrown

Version 1.9.6 (Star of Birth, 2019-09-23)

* Architecture

— Moved new elements to Complete/

— Moved new elements to Dump/

Initial configuration of project now includes analysis parameters with default

Added descriptions to Rulesets

— New command Config : displays current configuration for reuse and editing

Upgraded Doctor : support for docker-php, in-code
* Report
— Ambassador : removed {} on magic property inventory
— Ambassador : new inventory of network protocols used (udp://, ssh2://...)

¢ Analysis

New analysis : avoid mb_string inside loops

New analysis : avoid SSLvx and TLSv1.0

New analysis : report duplicate literal in the code, with parameter

New analysis : warn about null property

New coverage : calls to __call and __callStatic

Updated coverage : expressions with parenthesis

Updated coverage : default values are now targeting the final value in multiple assignations.

Updated analysis : Strange Variable name skips Staticdefinition and its default value

Updated analysis : Useless instructions are upgrade with pure functions

Updated analysis : Extended Closure2string with Arrowfunctions

Updated analysis : Extended ‘Could be local variable’ to traits

Updated analysis : Unused Global also covers static variables

Checked unit tests : 3279 / 3304 test pass (99% pass)

* Tokenizer
— Updated tokens for PHP 7.4
Version 1.9.5 (Star of Adversity, 2019-09-16)

¢ Architecture

24 Chapter 2. Release Note

Exakat Documentation, Release 1

* Report

e Analysis

Added count property to Analysis node, stepstone for Diff analysis
Added support for ‘optional’ step

Added support for ‘interfaces’ as typehint for remote definitions
Removed more true/false values

Fixed strtolower with mb_strtolower in Dump

Added several PHP error messages

Ambassador : added inventory of magic properties
Ambassador : added inventory of typehints for methods (WIP)
Added support for function/closure/argument arguments

Added support for function/closure/argument arguments

New analysis : No literal value as referenced argument

New analysis : use array_slice or array_splice

New analysis : Useless typechecks with Typehint

New analysis : Report non-implemented interfaces

New analysis : Incompatible Signatures with Self (PHP 7.4+)

New analysis : Report wrong expectations from interfaces

Upgraded analysis : Excluded __construct and __destruct from Magic Methods
Upgraded analysis : Concat and Addition : Now also for bitshift

Upgraded analysis : Incompatible Signatures with Self (PHP 7.3)

Upgraded analysis : Elseif and Sequences are omitted in Level analysis

¢ Tokenizer

Upgraded support for magic properties

Version 1.9.4 (Star of Benefit, 2019-09-09)

¢ Architecture

* Report

Dump avoid storing multiple definition for the same class
Added more native return definitions

Adding UT for Complete/

Dump inventories are being moved to analysis class

Moving more Themes => rulesets

Ambassador : Fixed several internal links
Ambassador : Displays the levels of nesting in the code
Ambassador : Upgraded compatibility report with PHP 7.4

New report : Stubs

25

Exakat Documentation, Release 1

¢ Analysis

New analysis :
New analysis :
New analysis :
New analysis :
New analysis :
New analysis :
New analysis :
New analysis :

New analysis :

PHP 7.4 New Directives

Too many dimensions with array
Check concat and coalesce precedence
Adopt explode() third argument
Ternary and useless assignation
Nested ternary without parenthesis
Spread operator with arrays

Max level of indentation

Use Arrowfunctions

Upgraded analysis : Clone with non object handles containers

Upgraded analysis : Calling non-static methods statically

Upgraded analysis : Unresolved Instanceof

Upgraded analysis : Array_merge and variadic, extended to isset

Checked unit tests : 3234 / 3259 test pass (99% pass)

¢ Tokenizer

— Last element of list() is not omitted anymore

Version 1.9.3 (Star of Longevity, 2019-09-02)

¢ Architecture

* Report

e Analysis

Created new Complete category, with data complement for analysis

Refactored constant propagation

Made code compatible with PHP 7.4

Rename project_themas to project_rulesets

Added support of -p with .exakat.yaml

Ambassador : reworked presentation for visibility suggestions

New analysis :
New analysis :
New analysis :
New analysis :
New analysis :
New analysis :

New analysis :

report covariance and contravariance for compatibility

no spread operator for hash values

self-closing tags are omitted by strip_tags

report Openssl_random_pseudo_byte second argument usage
CURLPIPE_HTTPI is obsolete

removed PHP 7.4 directives

do not use ... with array_merge without checks

Updated analysis : added crc32c as hash algorithm

Removed analysis : Removed Curly Arrays (double take)

26

Chapter 2.

Release Note

Exakat Documentation, Release 1

— Checked unit tests : 3219 / 3240 test pass (99% pass)
* Tokenizer
— Extended OVERWRITE to Interfaces
— Extended support for class_alias()
Version 1.9.2 (Star of Prosperity, 2019-08-26)

¢ Architecture

Introduced a new set of analysis : Complete

Cleaned code for PHP 7.4 usage

Refactored Query to skip impossible Gremlin calls

Now using Project for project names

* Report
— New report : classes dependencies (HTML version)
— New report : files dependencies (HTML and DOT version)
— Ambassador : datas -> data

¢ Analysis

New analysis : {} are deprecated in PHP 7.4
New analysis : Don’t use ENT_IGNORE

New analysis : fn is a PHP 7.4 keyword

Updated analysis : Functions/UseConstantAsArguments covers also password_hash()

Updated analysis : printf arguments now handles positional formatters

Checked unit tests : 3172 /3199 test pass (99% pass)

* Tokenizer
— Fixed precedence for left associativity
Version 1.9.1 (Star of Life, 2019-08-19)
* Architecture
— Fixed zip as code source
* Report
— Ambassador : Fixed issues list for Favorites
— Owasp : switched dashboards
e Analysis
— Updated analysis : Loop Calling got one extra check
— Checked unit tests : 3148 / 3187 test pass (99% pass)
Version 1.9.0 (Ming Wenzhang of Jiayin, 2019-07-29)
* Architecture
— Added missing configuration file for tinkergraph 3.4
— Upgraded support for running exakat with PHP 7.4

27

Exakat Documentation, Release 1

¢ Analysis

New analysis : array_key_exists() now report object usage

New analysis : report mb_strrpos 4th argument

New analysis : Reflection export are deprecated

New analysis : Report classes without parents but with ‘parent’

New analysis : Don’t use scalar as arrays

New analysis : Report use of PHP 7.4 serialize method

Updated analysis : Multiple Identical Keys checks for undefined keys first

Updated analysis : Dont be too manual : extended to catch clauses

Updated analysis : setcookie detection anchors the keyword at the beginning of the string

Updated analysis : Failed Substr comparison now works with constants

Updated analysis : Added support for continue 2 and 3
Checked unit tests : 3147 / 3186 test pass (99% pass)

* Tokenizer
— Added support for __serialize and __unserialize
— Added support for numeric literal separator
— Skip entirely unparsable files
Version 1.8.9 (Meng Feiqing of Jiachen, 2019-07-22)

¢ Architecture

Check on graphdb configuration : default to nogremlin

Added support for baseline for project and report

Moved more doc to ruleset

Check on .git folder for update

— Added -version option for upgrade command

Doctor honors .exakat.yml file

¢ Analysis

New analysis : Report useless type of checks

New analysis : Disconnected classes

New analysis : Avoid using mb_detect_encoding()

New analysis : Check that source and blind variables are different in foreach

New analysis : ~ or ! favorite

Updated analysis : Is Zero omits multiplications

Updated analysis : Used Private Property is upgraded

Updated analysis : Multiple Identical Keys : refactored

Updated analysis : Undefined variables now skips extract, include, eval

Checked unit tests : 3147 / 3166 test pass (99% pass)

28 Chapter 2. Release Note

Exakat Documentation, Release 1

¢ Tokenizer

Refactored support for Foreach : each blind variable is in VALUE

Upgraded precedence for ! (not)

Propagate constants with assignations

Fixed link to $this inside heredoc and co

Fixed an edgecase where Static method call was confused with Newcall
Version 1.8.8 (Wei Yuqing of Jiawu, 2019-07-15)

¢ Architecture

Modernized tinkergraph support

When pentl is available, stubs are produced in a child process

Removed duplicated methods

Exported sequences to helpers

More UT libraries are supported

Federated BUSYTIMEOUT in constant

* Report

Ambassador and all dependend reports were refactored : menu is configurable with Yaml

Emissary is the upcoming configurable report.

¢ Analysis

New step : Load data from code

New analysis : Variables used for setting aside value temporarily

New analysis : Use PHP array_* functions, instead of loops

Updated analysis : Unused methods now skips methods from PHP native interfaces (Arrayaccess)

Updated analysis : No class for typehint is now omitting PHP and extensions classes

Updated analysis : Switch to Switch applies to comparisons now

Updated analysis : Close namingg was sped up significantly

Updated analysis : array_column() suggestion was refined

Updated analysis : Htmlentities parameters also support some parenthesis usage

Updated analysis : Constant Scalar Expression only target specified expressions

Updated analysis : Static Properties skip Virtual properties
Checked unit tests : 3131/ 3155 test pass (99% pass)

 Tokenizer
— Refactored support for Exit and Die
— Added raw support for phpdoc
Version 1.8.7 (Hu Wenchang of Jiashen, 2019-07-08)
 Architecture

— Added bugs fixes up to 7.3.7

29

Exakat Documentation, Release 1

— New factory method for the graph
* Analysis

— New analysis : Backward compatible check on generators (can’t return)

New analysis : Report wrong return typehint

New analysis : Use DateTimeImmutable

New concept : Methods that throw errors

Updated analysis : Recursive functions disambiguate methods

Updated analysis : Refactored property/variable confusion

Updated analysis : Could typehint checks on type validations

Updated analysis : Variable used once check for abstract methods

Updated analysis : Array_merge in loops omits file_put_contents()

Updated analysis : Simple Regex covers all special sequences, and unicode sequences

Checked unit tests : 3131/ 3142 test pass (99% pass)

* Tokenizer
— Differentiated support for self and static in calls
— Moved Symfony support to its extension
— Reworked loading to make it parallels.
Version 1.8.6 (Wei Yuqing of Jiawu, 2019-07-01)

¢ Architecture

Added support for Tinkegraph 3.4

Extended support for Dev
Renamed Themes to Ruleset (WIP)

Split several long running queries into smaller chunks

Cached files to memory, write them once only

Optimized sides queries : omitting them when possible

Added count of issues in Analyse node

Optimized loading by grouping by inV
— More coverage for Arrowfunction

* Report

Dump : collect PHP cyclomatic complexity

¢ Analysis

New analysis : Dependant abstract classes

New analysis : Don’t use Null or Boolean as an array

New analysis : Infinite recursion

Updated analysis : Raised levels

Updated analysis : Method signature must be compatible

30 Chapter 2. Release Note

Exakat Documentation, Release 1

— Updated analysis : Access Private in Trait is OK
— Updated analysis : Recursive function
— Checked unit tests : 3099 / 3105 test pass (99% pass)
* Tokenizer
— Upgraded support for ‘Modules’
Version 1.8.5 (Zhan Zijiang of Jiaxu, 2019-06-24)
* Architecture
— Fixed several bugs in the online documentation
— Started removing analysis, replacing with analysis
— Fixed path in docker PHP usage.
* Report
— Ambassador : Export full INI and YAML config to replicate audit
¢ Analysis

— New analysis : Unused class constants

New analysis : Could Use available Trait

New analysis : literal that Could Be Constant

Updated analysis : Access Private in Trait is OK

Updated analysis : multiple identical argument is extended to closures, methods

Updated analysis : ext/rdkafka

Updated analysis : No Hardcoded Hash is accelerated

Updated analysis : Extended printf() check to constants

Updated analysis : Optimized ‘redefined method’

Updated analysis : Memoize Magic Call

Updated analysis : set_locale requires constants

Checked unit tests : 3099 / 3105 test pass (99% pass)

¢ Tokenizer

— Added missing isModified to Foreach keys

Class Method Definition handles old style constructor

strict_types don’t yield a block

Added typed values for magic constants

Refactored new -> constructor link for Self, Static, parent
— Added missing arguments count to Newcall
Version 1.8.4 (Wang Wenqing of Jiazi, 2019-06-17)
* Architecture
— Added support for PHP in docker images for compilation tests

— First prototype for Gremlin in a specific docker image

31

Exakat Documentation, Release 1

* Report
— Ambassador : restored original URL
— Replaced ‘Complexity’ => “Time To Fix’
— Replaced ‘Receipt’ => Ruleset

* Analysis

New analysis : regex with arrays

New analysis : Complex property names

New analysis : array_key_exists speed up

New analysis : curl_version forbidden argument

New analysis : PHP 7.4 new functions, classes and constants

Fixed analysis : Long Variable

Updated analysis : printf() format check extended to constants

Updated analysis : Written only variables is extended to static and global

Updated analysis : refactored ‘Make default’

Updated analysis : “Wrong number of arguments’ is extended to methods

Updated analysis : ‘Use coalesce’ checks for

Updated analysis : Refactored ‘Nested ifthen’ to have a parameter

Updated analysis : Extended ‘Class Usage’ to return typehint

Updated analysis : Sped up ‘Used Classes’
Checked unit tests : 2993 / 3071 test pass (97% pass)

¢ Tokenizer

Upgraded handling of declare with strict_types

Support for magic properties across classes and traits

Added support for parent with properties

Properties are handled with static and normal at the same time

Fixed virtualproperties with static keyword (self and parent are ok)

Added argument count for ‘new A’, without parenthesis
Restored old break behavior for PHP 5 and older.
Version 1.8.3 (Jade Man of Yang, 2019-06-10)

* Architecture
— Extension docs show version numbers
— Manual uses internal links
* Report
— New report : SARB
— Updated report : Ambassador list number of arguments in natural order

¢ Analysis

32 Chapter 2. Release Note

Exakat Documentation, Release 1

New analysis : from substr() to trim()

New analysis : suggest making magic property a concrete one (2 ways)

New analysis : no array auto-append

Updated analysis : ‘Scalar or object property’ refactored

Updated analysis : ‘Multiple identical keys’ get a new check on intval, broadened to constants

Updated analysis : ‘Indirect injection’ accelerated

Updated analysis : ‘Could be class constant’ accelerated

Updated analysis : ‘Never used property’ refactored

Updated analysis : ‘Modern empty’ modernized and broadened

Updated analysis : ‘Useless check’ skips isset/empty as they may be useful

Updated analysis : ‘Identical methoods’ skips abstract methods

Updated analysis : ‘No Count Zero’ also uses sizeof(), skips switch()

Checked unit tests : 2993 / 3071 test pass (97% pass)

¢ Tokenizer

Upgraded local definitions for properties to Load phase

Handle static keyword in closures

Moved ‘Real’ to ‘Float’

Created ‘Scalartypehint’ atom

Fixed intval, boolval for true and false
Version 1.8.2 (Zhao Ziyu of Dingchou, 2019-06-03)
* Architecture
— Refactored ‘Update’ command, to VCS
— Collect missing definitions counts
— Report handles a list of analysis names

¢ Analysis

New analysis : No Need To Get_Class

New analysis : Report identical inherited methods

New analysis : Function returning -1 in case of error

Updated analysis : TypeHint must be returned, doesn’t apply to abstract methods or interface methods

Updated analysis : ‘Could Use Interface’ also checks for static and visibility

Updated analysis : ‘Concat empty’ skips variables
Checked unit tests : 3024 / 3048 test pass (99% pass)

¢ Tokenizer
— Created ‘virtual’ properties, for limiting children agglomerations
— Fixed normalized code for use traits

— Added DEFAULT to all variable definitions

33

Exakat Documentation, Release 1

— Connect strings to class definitions
— Handle variable in ‘compact’, when they are static
Version 1.8.1 (Zhang Wentong of Dinghai, 2019-05-27)

¢ Architecture

Fixed Symlink destination

Added collecting classes children, traits and interfaces counts

Added support for constants and functions in modules

Added missing functions in data

* Report
— New report : exakatYaml, which help configuring exakat
— New report : Yaml
— New report : Top10
— Updated report : Json, text and xml get ‘fullcode’
¢ Analysis

— Updated analysis : Should use self is extended to parent classes
— Updated analysis : Should use prepared statement now skips some SQL queries
— Checked unit tests : 3024 / 3048 test pass (99% pass)
Version 1.8.0 (Zang Wengong of Dingyou, 2019-05-20)

* Architecture
— Added missing native PHP functions
— Restored anchor for ignore_dirs[] configuration
— Removed more MAX_LOOPING usage

* Report
— Ambassador : removed { & @ } artefacts from globals

¢ Analysis

New analysis : Function returning -1 in case of error

New analysis : Report PHP 7.4 unpacking inside array

New analysis : Report PHP 7.4 new functions and fn

New analysis : Useless arguments

New analysis : Addition and concatenation precedence for PHP 7.4

New analysis : report concatenation of empty strings

New analysis : casting has precedence over ternary

New analysis : report already used traits

New analysis : report missing traits in use expression

Updated analysis : isset on whole arrays : extended analysis to Phpvariables

Updated analysis : SQLITE3 requires single quotes

34 Chapter 2.

Release Note

Exakat Documentation, Release 1

Updated analysis : Dir then slash : extended to constants
Updated analysis : Variable Strange Name extended to strange types
Updated analysis : Possible interface’s analysis is sped up

Checked unit tests : 3021 / 3045 test pass (99% pass)

¢ Tokenizer

Fixed fullcode of Usetrait

Extended method definitions to traits
Extended fluent interface detection to parents
Fixed dump for visibility change

Handle method aliases in use expression (as)

Better noDelimiter for double quotes strings

Version 1.7.9 (Shi Shutong of Dingwei, 2019-05-13)

¢ Architecture

* Report

¢ Analysis

Upgraded list of functions by extension : openssl, math, hrtime
Added global atom to track all globals

Rewrote several Dump queries with DSL

Added support for Notice in Phpexec

Added support for .exakat.ini and .exakat.yaml

Added support for arrow functions : fn =>

Added support for spread operator in arrays [...[1,2,3]]

Inventories : added ‘inclusions’ and ‘global variables’

Ambassador : added global variables

New analysis : support for ext/ffi, uuid

Updated analysis : Nested Ternary handles parenthesis

Updated analysis : Static loops is extended to references and arrays

Updated analysis : Recursive function is extended to Magic methods and Closures

Checked unit tests : 3014 /3019 test pass (99% pass)

¢ Tokenizer

Moved ‘is_in_ignored_dir’ to a property

Cleaned getFullnspath() call in Load

Fixed latent bug on Function fullnspath

Heredoc and Nowdoc are reported as constant if needed
Isset() is not read

Ignore PHP notices when linting

35

Exakat Documentation, Release 1

— Globals are now centralised across a repository
— Extended definitions for Virtualproperties
— Removed double DEFINITION link with new
Version 1.7.8 (Cui Juqing of Dingyi, 2019-05-06)
* Architecture
— renamed test.php to ut.php in tests
— reorganized destinations folders
— organized exakat for ‘inside code’ audit

* Analysis

New analysis : support for libsvm

Updated analysis : Multiple unset() handles unset() at the beginning of the scope

Updated analysis : undefined static class now accounts for PHP and module classes

Checked unit tests : 2961 / 2995 test pass (99% pass)

* Tokenizer
— Extended class usage to static::class.
— refactored 2 analysis for speed : double instruction and double assignations
— fixed recent bug where Project token is twice.
Version 1.7.7 (Sima Qing of Dingmao, 2019-04-29)

¢ Architecture

Upgraded to gremlin-php 3.1.1

Moved autoload into its own namespace

Started extending themes to modules

Skip external libraries when unit testing

Dump got one more query moved to DSL

Fixed build for overwritten methods, extended to magic methods

Load tokens by batch (5000+ tokens), not by file.

e Analysis

— New analysis : Security : integer conversion

New analysis : implode() with one argument

Updated analysis : Invalid Regex handles \ more precisely

Updated analysis : delimiter detection was checked for all of them

Checked unit tests : 2947 / 2983 test pass (99% pass)

» Tokenizer
— Upgraded Fallback detection for functions
Version 1.7.6 (Jade Maiden of Yin, 2019-04-22)

¢ Architecture

36 Chapter 2. Release Note

Exakat Documentation, Release 1

— Refactored Class definition with return typehint
— Added configuration for including development extensions.

— Extended LoadFinal typehint hunting

* Report

— Phpcsfixer : new report

— Ambassador : report usage of overridden PHP functions

— Ambassador : new favorite : variable name in catch clause
¢ Analysis

New analysis : array_merge and ellipsis should use coalesce

New analysis : Report overridden PHP native functions

New analysis : Merge all unset() into one

Updated analysis : Added missing constant for curl, pgsql, openssl

Updated analysis : Variadic are not variable arguments

Updated analysis : Useless Reference argument extended to foreach()

Updated analysis : Use Constant also covers pi()

Updated analysis : Inclusion Wrong Case handles dirname with 2nd argument

Updated analysis : Useless Argument : handles some edge cases with arrays

Checked unit tests : 2947 / 2975 test pass (99% pass)

* Tokenizer
— Upgraded handling of isRead and isModified attributes
— Changed variadic argument counts in method declarations
— Fixed original value in ‘Sign’

Version 1.7.5 (Xue King Zhuanlun, 2019-04-15)

* Architecture
— Cleaned unused variables

* Report
— Ambassador : bugfixes report version 7.3, dropped 5.6 and 5.5

¢ Analysis

Updated analysis : Already interface : extended to interface parents

Updated analysis : Else if to elseif : extended to one-liners

Updated analysis : No reference for ternary was extended

Updated analysis : Implements is for interface

Updated analysis : Refactored Is a Magic Property

Updated analysis : Refactored Conditional structures for constants
— Checked unit tests : 2926 / 2950 test pass (99% pass)

¢ Tokenizer

37

Exakat Documentation, Release 1

— Link properties to magicmethod
— Deduplicated virtual properties
— Added isRead and IsModified properties. Omitting the corresponding analysis.
Version 1.7.4 (Lu King Pingdeng, 2019-04-08)
* Architecture
— reports, themes may be specified multiple times

— ‘project’ command also work on themes and report from command line

Added htmlpurifier in auto-ignored libraries

Counting definitions, omitting Virtualproperties

Automatically detect identical files

* Report

Inventories are grouped by values, sorted by count

¢ Analysis

Updated analysis : This is for class : extended analysis to self and parent

Updated analysis : Undefined Classes

Updated analysis : Refactored Defined Parent MP

Updated analysis : Redefined PHP function is restricted to global scope

Updated analysis : Could Use Alias also covers functions, constants.

Updated analysis : Refined SQL detection

Fixed step : goToALIParentsTrait missed some of the parent

Checked unit tests : 2916 /2944 test pass (99% pass)

¢ Tokenizer

Removed impossible implementations of traits

Fixed functioncalls’ ‘absolute’ property

Refined parent’s definitions

Trait also sports virtualproperties

Virtualproperties now respect visibilities

Distinguish Variables from Staticpropertynames
— Added missing DEFINITION for Use (namespaces)
Version 1.7.3 (Huang, King Dushi, 2019-04-01)
* Architecture
— New command ‘show’ that display project creation command
— Refactored UT detection mechanism
* Report
— Ambassador : report identical files in the code

— Ambassador : global variable inventory is now grouped by name

38 Chapter 2.

Release Note

Exakat Documentation, Release 1

¢ Analysis

Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :

Checked unit tests

¢ Tokenizer

PPPDeclaration style : handles Virtualproperties
Closure2string : extended analysis

Non-Ascii variable skips { }, & and @

Could Be Static exclude abstract methods
MismatchedTypehint : handles methodcalls and class hierarchy
Could Use Try : refined analysis to avoid literals

Hidden use, handles Virtualproperty

Classes, wrong case, handles FQN

1 2846 /2926 test pass (97% pass)

Moved creation of Virtualproperty early, to catch more situations

Virtualproperty mimic Propertydefinition

Added extra check when roaming the classes tree

Handles Sign constant values correctly

Version 1.7.2 (Dong King Taishan, 2019-03-25)

¢ Architecture

— Restored the external library checker

— Added support for extension’s CIT (Symfony, Drupal)

* Report

— Ambassador : added Suggestions theme to docs.

— Perfile : New report, text, per file

e Analysis

New analysis : Report potential ‘unsupported operand type’

New analysis : Check for existence with __call() and __callstatic

Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :
Updated analysis :

Checked unit tests

¢ Tokenizer

Wrong number of arguments (methods) upgraded

Could Be Static ignores empty methods, constants methods
Added Variable to possibly useless expression

Constant names are detected based on available noDelimiter

Abstract classes may have no abstract methods

: 2889 /2912 test pass (99% pass)

— Added link between ___clone and clone

— Now handling functions and constants when ignored

— Fixed dynamic constants in collector

Version 1.7.1 (Bi King Biancheng, 2019-03-18)

39

Exakat Documentation, Release 1

* Report
— Ambassador : report lines that concentrate lots of issues

¢ Analysis

Extended GoToAlllmplements to extended interfaces

Updated analysis : NoScream usage, with authorized functioncall list like fopen

Updated analysis : HiddenUse with support for virtual properties
Checked unit tests : 2867 / 2900 test pass (99% pass)

* Tokenizer
— Added support for ‘Virtualproperties’
— Harmonized file escaping feature
Version 1.7.0 (Bao King Yama, 2019-03-11)
* Architecture
— Added auto-documenting ‘ignored’ cit to weed out obvious false positive
* Report
— Made Diplomat the default report
— Added History report : it stores metrics from audit to audit
¢ Analysis

— New analysis : Identify self transforming variables ($x = foo($x))

New analysis : Report unclonable variables

Updated analysis : Undefined Classes, Interfaces and Trait now omit ‘ignored’ cit from folders

Updated analysis : Inconsistent usage is refactored for properties

Updated analysis : Useless expression, with clone new x

Updated analysis : Only Variable For Reference accepts $this, $_GET

Updated analysis : Lost References was modernized

Checked unit tests : 2854 / 2884 test pass (99% pass)

* Tokenizer
— Refactored support for Staticmethod (in a trait’s use)
— Added definitions for trait’s use
Version 1.6.9 (Lu King Wuguan, 2019-03-04)

¢ Architecture

Optimized Dump when navigating the links to the File Atom

Refactored LoadFinal into separate classes

Upgraded to Tinkergraph 3.3.5

Added options to cleandb to stop and start gremlin from exakat

Skip the task if no analysis has to run

¢ Analysis

40 Chapter 2. Release Note

Exakat Documentation, Release 1

New analysis : Report inconsistent usage of properties or variables

New analysis : Typehinted return must return

Updated analysis : Variables used once handles closure (use) correctly

Updated analysis : Is Zero was refactored partially (WIP)

Updated analysis : Bad Typehint relay got a fix

Updated analysis : Function Subscripting is only suggested for one usage

Updated analysis : Lost References was modernized

Checked unit tests : 2854 /2881 test pass (99% pass)

¢ Tokenizer

Added definition for injected properties

Fixed sack() for subqueries

$this is not a classic variable

Removed double DEFINITION links

Fixed edge case with define() at the end of a script
Version 1.6.8 (Yu King Songdi, 2019-02-25)
* Architecture
— Added support for PHP 8.0
— Fixed Constant FNP
— Advance progressbar when ignoring files
* Report
— Ambassador : report usage of factories
— Collect stats about Foreach usage

e Analysis

New analysis : Report violation of law of Demeter

New analysis : Report removed constants and functions in PHP 8.0

Updated analysis : Refactored Nullable Typehint
Checked unit tests : 2851 / 2872 test pass (99% pass)

* Tokenizer
— Fixed edge case for Logical with strings
— Reduced max level of looping in GoToAllParents
— Distinguish $$ and ${$

Version 1.6.7 (Li King Chujiang, 2019-02-18)

* Architecture
— Documentation covers more PHP functions
— Added some missing PHP functions

— Fixed destination folder for extensions

41

Exakat Documentation, Release 1

* Report
— Ambassador : limited size of default values in visibility report.
— Ambassador : reporting class depth
— Ambassador : reporting dynamically created constants
— Diplomat : leanner, meaner version of Ambassador
— New category : Top 10 classic mistakes
¢ Analysis

New analysis : Report when relayed typehint are not the sames

Updated analysis : Regex now handles local variables and constants

Updated analysis : Variables Used Once now covers closures and use

Checked unit tests : 2846 / 2867 test pass (99% pass)

* Tokenizer
— Defineconstant may be constant
— Fixed handling of Nullable for typehint
— Started preparing for Gremlin 3.4.0 : WIP

Version 1.6.6 (Jiang King Qinguang , 2019-02-11)

* Architecture
— Removed FetchContext() from DSL
— Added options to follow constants from atomls.

* Report
— Now dumps magic methods

¢ Analysis
— New analysis : Report insufficient interfaces in typehint
— Updated analysis : Class constant now ignore empty classes
— Checked unit tests : 2837 / 2858 test pass (99% pass)

¢ Tokenizer

Moved ‘Define’ to its own atom

Upgraded Logical to hanlde Strings as PHP
Fixed T_POWER =>T_POW

Refactored calculation for globalpath

Fixed edgecase with endswitch;
Version 1.6.5 (Mahagate, 2019-02-04)
* Architecture
— Added CVS as an external service
— Graph GSNeo4;j export variable for shell access. putenv is not sufficient

— Dump : report class name, not its code

42 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Extended listAllThemes to extensions

— Fixed bug in extension loader with phar

* Report
— Ambassador : restored file dependencies tree
— Ambassador : fixed altered directive filename
— Ambassador : added direct link to docs

¢ Analysis

New analysis : arrays that are initialized with strings

New analysis : Avoid Lone variables as conditions

New analysis : Added support for weakref and pcov

Updated analysis : extended regex to arrays in preg_* calls

Updated analysis : Implicit globals now also marks the variable in global space

Updated analysis : Add Zero, Multiply by One also cover 2 * $x = 1;

Updated analysis : Could Use Interface now takes into account PHP interfaces, and classes first level.

Updated analysis : Relay Functions now omits calls to parent’s __construct and __destruct
Checked unit tests : 2830 / 2852 test pass (99% pass)
Version 1.6.4 (Parasamgate, 2019-01-28)

¢ Architecture

Added support for CVS as a VCS

Upgraded support for tar as a VCS

Added support modification counts by files

Added first tracking for closures

Upgraded Tinkergraph driver
* Report

Added Atoms in the documentations

Extra protection for Class Changes

e Analysis

Updated analysis : Use-arguments are now counted as arguments

Updated analysis : Max Argument check was refactored

Updated analysis : IsModified now takes into account extensions

Updated analysis : Should Use This now exclude empty methods

Updated analysis : undefined classes now support PHP 7.4 typed properties

Updated analysis : added missing scalar PHP types

Updated analysis : uncaught exceptions now cover parents

Updated analysis : refactored incompatibility checks for methods

Checked unit tests : 2824 / 2841 test pass (99% pass)

43

Exakat Documentation, Release 1

¢ Tokenizer

Refactored alternative ending, removed extra VOID

Upgraded contexts and their nesting
Added extra checks on variables names
Added support for ??= (PHP 7.4)
Version 1.6.3 (Paragate, 2019-01-21)

* Architecture

— Better presentation for exakat extensions

— Added build.xml for Jenkins

— Fixed copyright years
* Report

— Ambassador : fixed class name for Phpcompilation
¢ Analysis

— New analysis : assign and compare at the same time

Updated analysis : uncaught exceptions now cover parents

Updated analysis : strpos too much is extended to strrpos and strripos

Updated analysis : Refactored Indirect injections for more refined reports

Updated analysis : Empty Block doesn’t omit Ifthen anymore

Updated analysis : Implemented methods are public mistook interface methods

Updated analysis : Object Reference omits arguments that are wholly assigned

Checked unit tests : 2808 / 2826 test pass (99% pass)

» Tokenizer
— Added support for PHP 7.4 typed properties (needs PHP 7.4-dev)
Version 1.6.2 (Silver Headed Gate, 2019-01-14)
* Architecture
— Fixed infinite loop when an option missed a value
— Produce phpversion in config.ini, but leave it commented
* Report
— Ambassador : colored syntax for visibility report
— Ambassador : inventory reports now display number of usages

¢ Analysis

Updated analysis : Added support for PHP 7.2.14

Updated analysis : Avoid Using Class handles

Updated analysis : Unused Functions works with multiple identical functions
— Checked unit tests : 2795 / 2817 test pass (99% pass)

¢ Tokenizer

44 Chapter 2.

Release Note

Exakat Documentation, Release 1

Fixed bug that mixed T_OR and T_XOR
Fixed bug that missed intval for Power
Handles multiple definitions of functions

Removed one Void too many with closing tag

Version 1.6.1 (Golden Light Gate, 2019-01-07)

¢ Architecture

* Report

Upgraded documentation for Extensions
Upgraded processing of files, specially with special chars
Project stops when no token are found

Storing hash for each files. RFU.

Ambassador : added support for class constant’s changes
Ambassador : added classSize report
Ambassador : ‘New issues’ now takes line difference into account

Themes are better dumped

New analysis : array_key_exists() is faster in PHP 7.4

New analysis : partial report from preg_match()

Updated analysis : Avoid Using Class handles

Updated analysis : Class Usage uses class_alias()

Updated analysis : Empty traits

Updated analysis : Unused arguments now skips __set()
Updated analysis : Path strings

Updated analysis : Missing include handles more concatenations

Checked unit tests : 2792 / 2812 test pass (99% pass)

¢ Tokenizer

Fixed precedence for identical operators

Fixed bug with 7> inside switch

Version 1.6.0 (VirupakSa, 2018-12-31)

¢ Architecture

¢ Analysis

VCS are not tested when they are not used

Updated analysis : Php Reserved names ignores variable variables
Updated analysis : Array not using a constant, with Heredoc
Updated analysis : Long arguments

Updated analysis : Empty With Expression ignores simple assignations

45

Exakat Documentation, Release 1

— Refactored analysis : Callback needs returns
— Refactored analysis : No Return used
— Checked unit tests : 2780 / 2805 test pass (99% pass)
* Tokenizer
— Fixed regression with Yield and =>
— Fixed edge case “$a[-0x00]”
Version 1.5.9 (Dhrtarastra, 2018-12-24)

¢ Architecture

Use PHP in project config for default PHP version

cleandb uses -p

Moved projects/.exakat to projects/<-p>/.exakat folders

Using $config and not more hardcoded tinkergraph

Extra check on doctor
* Report
— Ambassador : extra check for ‘previous’ report
e Analysis
— Upgraded analysis : Empty With Expression skip a few false positive
— Checked unit tests : 2770/ 2795 test pass (99% pass)
* Tokenizer
— Fixed edgecase for methods named ‘class’
— Fixed class name in Project
Version 1.5.8 (Virudhaka, 2018-12-17)
* Architecture

— Handles themas provided by extensions

Added busyTimeout for dump.sqlite

Reduced size of thema tables

Docs handle parameter dynamically

Added ‘update’ for extensions

* Report

Ambassador : added a ‘Path’ inventory, with file paths

¢ Analysis

New analysis : Closures that are identical

Upgraded analysis : Url and SQL detection, case sensitivity

Upgraded analysis : Could Use array_fill_keys

Upgraded analysis : Empty Functions better handles return;

Upgraded analysis : Undefined functions doesn’t miss functions inside classes, handles interfaces

46

Chapter 2. Release Note

Exakat Documentation, Release 1

— Upgraded analysis : Long Argument may be configured
— Upgraded analysis : Fixed bug with empty include path
— Checked unit tests : 2770 / 2795 test pass (99% pass)

¢ Tokenizer

Added FNP to strings

First link between method and definition with typehint

Support for class_alias

Fixed edge case with use 7>

Fixed variable in string behavior for $this and $php variables
Version 1.5.7 (Vaisravana, 2018-12-10)

¢ Architecture

Extended Dump to support aliased methods

Support for SQLITE in extensions

Moved each framework to extensions

Added Laravel extension

* Documentation
— First version for the Extension chapter

— Fixed mysterious ‘ in the docs

* Report
— Ambassador : added a ‘New issues’ section, with new analysis
— Ambassador : added trait matrix
— Ambassador : fixed an infinite loop when trait include themselves in cycles
— Added more message count to several reports
¢ Analysis

New analysis : method could be static

New analysis : multiple inclusion of traits

New analysis : avoid self using traits

New analysis : ext/wasm and ext/async

Upgraded analysis : No Hardcoded Hash, skip hexadecimal numbers

Upgraded analysis : Defined properties extends to traits

Upgraded analysis : PSS outside a class, when PSS are in strings

Upgraded analysis : Access private works with methods (not just static)

Checked unit tests : 2772 / 2785 test pass (99% pass)

* Tokenizer
— Fixed bug in Dump, when nothing to clean

— Fixed edge bug on Callable detection

47

Exakat Documentation, Release 1

Extended support for self, static and parent, in typehint and new

Fixed precedence of yield and yield from

Fixed handling of throw at the end of a script
— Added support to solve conflict on traits
Version 1.5.6 (Jingang, 2018-12-03)
* Architecture

Moved all framework to extensions. WIP.

Code cleaning

Refactored the analysis dependency sorting

Now display progress bar for files

Fixed configuration for directories and files

* Report

Fixed FileDependecy and DependencyWheel, to actually count messages

¢ Analysis

Added a lot more new method descriptions for PHP native classes

New analysis : suggestion simplification for !isset($a) Il lisset($a[1])

New analysis : Useless Trait alias

New analysis : report usage of ext/sdl

Upgraded analysis : Refactored IsZero, to handle assignations and parenthesis

Upgraded analysis : pack format is better checked
Checked unit tests : 2759 / 2771 test pass (99% pass)

¢ Tokenizer

Fixed a missing fullnspath for origin in Use for Traits

Handles simple aliases for traits methods

Fixed mishandling of variables inside strings

Fixed support of negative numbers inside strings

Fixed bug with yield inside an array

Fixed strange case with define and integers as constant names
Version 1.5.5 (Ratnadhvaja, 2018-11-25)
* Architecture

Initial version of Exakat extensions

Moved processing of 2-tokens files to Load

Speed up CSV creations

Upgrades are read from https, no http

Moved loading’s sqlite to memory for speed gain

Doctor now auto-create test folder

48 Chapter 2. Release Note

Exakat Documentation, Release 1

* Report
— New report : Php city. See your PHP code as a city
— Ambassador : Appinfo() now reports keywords used as method or property
— Fixed reported names of properties

* Analysis

New analysis : checks some HTTP headers for security

New analysis : Use _file() functions, not file_get_contents()

New analysis : Optimize looks for fgetcsv()

Upgraded analysis : Several refactored analysis

Checked unit tests : 3083 / 3096 test pass (99% pass)

* Tokenizer
— Fixed encoding error in loading, for clone types.
Version 1.5.4 (Mahakasyapa, 2018-11-19)

¢ Architecture

Added error message for memory limit

Added GC to Project action

Migrated Melis to extension

Dumping data is now done en masse

Analysers now handle side-queries

Clear message in case of memory limit

Doctor doesn’t stop at missing helpers

VCS leak less errors

Added support for 7z

Extended validation for themas

Restored Tinkergraph driver

Upgrade logs with extra reports
e Analysis
— New analysis : Report problems with class constant visibilities
— New analysis : Avoid self, parent and static in interfaces
— Upgraded analysis : Variable reuse now skips empty arrays
— Checked unit tests : 3077 / 3090 test pass (99% pass)
* Tokenizer
— Fixed bug where variable was mistaken for a string inside strings
Version 1.5.3 (Ananda, 2018-11-12)
 Architecture

— Extended results to methods, traits

49

Exakat Documentation, Release 1

Added support for PHP 7.2.12

‘master’ is not used anymore as default branch

— Fixed creation of initial config/exakat.ini

Fixed handling badly written exakat.ini or PHP binary paths
* Report

Ambassador : report classes that could be final or abstract

¢ Analysis

New analysis : Property Used Once : now includes redefined functions

New analysis : iterator_to_array() should use yield with keys or array_merge()

New analysis : Don’t loop on yield : use yield from

Upgraded analysis : Dependant trait now include parent-traits

Checked unit tests : 3080 / 3093 test pass (99% pass)

* Tokenizer
— Changed handling of variable that are both global AND local
— Disambiguated variables and properties
— Extended OVERWRITE to constants and methods

Version 1.5.2 (Master Puti, 2018-11-05)

* Report
— Fixed storage of themes in dump.sqlite
— Ambassador : report nothing when there are no trait, interface or class in the tree.

¢ Analysis

New analysis : idn_to_ascii() will get new default

New analysis : support for decimal extension

New analysis : support for psr extension

Upgraded analysis : Extended support to PHP native exceptions

Upgraded analysis : Could use typecast now handles intval() second param

Upgraded analysis : Variable strange names avoids properties

Checked unit tests : 3058 / 3085 test pass (99% pass)

* Tokenizer
— Upgraded support for arrays inside strings (string/constant distinction)
— Added DEFINITION for constant() and defined()
— Fixed value of line for some placeholder definition
Version 1.5.1 (Eighteen Arhats, 2018-10-29)
* Analysis
— New analysis : could use basename() second args

— Upgraded analysis : Variables strange names do not report .. .

50 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Checked unit tests : 3061 / 3079 test pass (99% pass)
* Tokenizer

— Moved TRAILING as a property
Moved NULLABLE as a property
Sync ALIAS with AS

Fixed link between Use expression when using an alias
Version 1.5.0 (Pilanpo Bodhisattva, 2018-10-22)
* Architecture
— Fixed ” in the examples of the manual

— Upgraded stability with new history testing

* Report
— Ambassador : now report interface and trait hierarchy
— Ambassador : new format inventory for pack and printf
— Dump : Fixed list of traits

¢ Analysis

New analysis : Could Use Try, for native calls that may produce an exception

New analysis : idn_to_ascii() will get new default

Upgraded analysis : Undefined variables exclude $this

Upgraded analysis : Variables used once avoid properties

Upgraded analysis : ext/json : JsonException

Upgraded analysis : added new PHP 7.3 constants (curl, pgsql, mbstring, standard)

Upgraded analysis : scalar or object property now ignore NULL as default

Refactored analysis : UsedProtectedMethod
Checked unit tests : 3059 / 3071 test pass (99% pass)

* Tokenizer
— Handles NaN and INF when the literals reach them
— Static constant may be variable if object is variable
— Removed superfluous linking for static calls.
Version 1.4.9 (Lingji Bodhisattva, 2018-10-15)

¢ Architecture

Extended documentation with phpVersion, time to fix and severity

Upgraded bufixes to PHP 7.2.11

Added more tests on arguments in the DSL

Removed double definitions for class constants

Initial support for extension folder

* Report

51

Exakat Documentation, Release 1

— Collect the number of local variables, per method
* Analysis

— New analysis : report accessing properties the wrong way

New analysis : suggest named patterns

New analysis : check Pack() arguments

New analysis : Return in generators, for PHP 7.0 +

New analysis : Repeated interfaces

New analysis : Static properties shouldn’t use references until PHP 7.3

New analysis : Don’t read and write in the same expression

Upgraded analysis : is interface methods, extended to magic methods

Upgraded analysis : empty regex

Upgraded analysis : never used properties

Upgraded analysis : logical operators in letters

Upgraded analysis : could use interface, extended with PHP native interfaces

Upgraded analysis : Is Zero, better handling of mixed expressions

Refactored analysis : Empty functions

Refactored analysis : Used Private Methods
Checked unit tests : 3036 / 3055 test pass (99% pass)

¢ Tokenizer

Added DEFINITION between new and __construct

Added support for className::class()

Added better support for dynamic method calls

Added better support for dynamic property calls

Removed some usage of Tokenls
Version 1.4.8 (Ksitigarbha, 2018-10-08)

¢ Architecture

Adding more validation at DSL step level : stricter check on args, speed gain

Cleaning more analysis from MAX_LOOPING variable

Better protection for file names

Removed static properties from DSL

¢ Analysis

New analysis : Don’t use __clone before PHP 7.0

New analysis : Watch out for filter_input as a data source

Upgraded analysis : Method Used Below refactored for speed

Upgraded analysis : Undefined class constants now takes into account interfaces

Removed anaysis : Relaxed Heredoc was double with Flexible Heredoc

52 Chapter 2. Release Note

Exakat Documentation, Release 1

— Checked unit tests : 3016 / 3033 test pass (99% pass)
* Tokenizer

Build links between methodcall and method in a class

Added links between method and its overwritten version in child

Fixed fallback for functions

Fixed linked between traits and their definition

Removed variable definition for Parametername

Simplified double usage between return and pushExpression()
Version 1.4.7 (Maitreya, 2018-10-01)

¢ Architecture

Added ‘Suggestions’ section to documentation, for many rules

— WIP : removing usage of MAX_LOOPING in analysis

Added a lot of new external services
— Added documentation for creating a new analysis

¢ Analysis

Upgraded analysis : No interface was dropped in PHP 7.2

Upgraded analysis : IsAMagicProperty extended to parents

Removed anaysis : Relaxed Heredoc was double with Flexible Heredoc

Checked unit tests : 3017 / 3029 test pass (99% pass)

* Tokenizer
— Linking variable in closure’s use to its local variable
— Removed some unused atoms from GraphElements
Version 1.4.6 (Dipankara, 2018-09-24)
* Architecture

Various code refactorisations

Migration to PHPUnit 7.3.5

Fixed filenames case

— Better handling of VCS

— More validations for project names

— More docs
* Report

— Ambassador/Weekly : fixed in analyser titles
* Analysis

— Upgraded analysis : Fopen mode accepts ‘r+b’
— Upgraded analysis : Unused Traits
— Upgraded analysis : Undefined Variables

53

Exakat Documentation, Release 1

Checked unit tests : 3020 / 3033 test pass (99% pass)

¢ Tokenizer

New analysis : report literal used with reference
Added support for boolval to Keyvalue

Fixed support for boolval to Arraylist

Added DEFINITION to static methods

Added Variabledefinition for local variables

Fixed bug in Not

Version 1.4.5 (Guanyin Bodhisattva, 2018-09-17)

¢ Architecture

* Report

¢ Analysis

Removed times() for until() in Dumps

Manual : added folders tree

New analysis : Add Default To Parameter

Upgraded analysis : Avoid reporting PHP function as classes

Upgraded analysis : More empty Functions than just foo() {}

Upgraded analysis : Wrong Number of argument now takes into account variadic

Upgraded analysis : Should Use Constant now encompasses () and ?: structures

Upgraded analysis : This Is Not An Array now takes ArrayObject/SimpleXmlElement into account
Checked unit tests : 3009 / 3020 test pass (99% pass)

¢ Tokenizer

Fixed ‘constant’ status with Arrayliteral

Fixed bug where strings are build close to the end of the script

Version 1.4.4 (White Dragon Horse, 2018-09-10)

¢ Architecture

* Report

¢ Analysis

Doctor reports the set of tokens used

Lots of docs checks

Ambassador / Phpconfiguration : report disable_functions and disable_classes

Finished Weekly report

New analysis : report ext/seaslog

Upgraded analysis : Incompatible signatures

Fixed DSL : analysisls

Checked unit tests : 3000 / 3010 test pass (99% pass)

54

Chapter 2. Release Note

Exakat Documentation, Release 1

* Tokenizer

— Closure are now processed with runplugin

— Removed depencencies to usedClasses

— Fixed detections of Closure at the end of a script

Version 1.4.3 (Sha Wujing, 2018-09-03)

* Architecture

— No error if missing svn

— Extended ‘First’ thema

— Now reporting PHP native CIT, constants and functions
* Report

— Ambassador : php.ini suggestions includes disable_functions

e Analysis

New analysis : report typecasting for json_decode

New analysis : report classes that could be final

New analysis : simplify closure into callback

New analysis : report inconsistent elseif conditions

Upgraded analysis : Reduced false positive on Type/Default mismatch

Upgraded analysis : Drop Else After Return uses elsif

Upgraded analysis : Unused Private Property (rare)
Checked unit tests : 2990 / 3004 test pass (99% pass)

* Tokenizer
— Removed extra Void after function definitions
— Fixed fullnspath with define()

Version 1.4.2 (Zhu Bajie, 2018-08-27)

* Architecture
— Fixed leftover bugs in the new DSL language
— Adopter Query in LoadFinal (first test)
— Extended support for clone type 1

* Report
— New Report : Weekly report

¢ Analysis

New analysis : report forgotten conflict in traits

New analysis : undefined insteadof

New analysis : undefined variable

New analysis : report classes that must call parent::__construct

Upgraded analysis : Inexistant Compact variable

55

Exakat Documentation, Release 1

— Upgraded analysis : Test class was refactored
— Checked unit tests : 2975 /2989 test pass (99% pass)
* Tokenizer
— New atom : Staticmethod, for Insteadof (replacing ‘Staticconstant’)
— Added DEFINITION link for array(‘class’, ‘method’) structure
Version 1.4.1 (Tang Sanzang, 2018-08-20)
* Architecture
— Spined off Query for Gremlin, with Exakat DSL.
— Centralized ‘methods’ property in Analysis class
— Extended MAX_LOOPING usage
¢ Analysis

— Added new thema : Class Review

Upgraded analysis : Defined Parent MP (less queries)

Upgraded analysis : Less false positives
Added support for PHP 7.2.9
Checked unit tests : 2965 / 2980 test pass (99% pass).

¢ Tokenizer

Fixed Edge case with Ternary and Boolean

Added Staticpropertyname to distinguish from variables

Added support for remote definitions to methods
Removed global path for CIT (no fallback)
Version 1.4.0 (Sun Wu Kong, 2018-08-13)

* Architecture

— Chunked result inserts for Dump

— More support for PHP 7.4
* Report

— Ambassador : added new Appinfo for relaxed Heredoc, trailing comma. ..
¢ Analysis

— New analysis : class can be abstract

New analysis : trailing comma

New analysis : relaxed heredoc

New analysis : removed functions in PHP 7.3

New analysis : continue versus break

Upgraded analysis : Hardcoded passwords is extended to objects
— Checked unit tests : 2964 / 2979 test pass (99% pass).

¢ Tokenizer

56 Chapter 2.

Release Note

Exakat Documentation, Release 1

Measure definitions stats for classes.

Added support for relaxed heredoc

Added support for closure as a return value

Refactored support for Ternary and Labels
Version 1.3.9 (Du Ruhui, 2018-08-06)
* Architecture
— Added support for PHP 7.4
— ‘Copy’ won’t update anymore
* Report
— Ambassador : fixed repeated ‘compatibility’ menu entry

¢ Analysis

New analysis : avoid __CLASS__ and get_called_class().

New analysis : prepare for (real) deprecation

New analysis : const / define preference

New analysis : define case sensitivity preference

New analysis : avoid defining assert() in namespaces

Removed analysis : Variables/Arguments

Checked unit tests : 2957 / 2971 test pass (99% pass).

¢ Tokenizer

Removed Noscream - AT atom

Added definition for class constants

Fixed bug : can’t apply ~ to false

Extended DEFINITION support to closure’s use and references
Version 1.3.8 (Fang Xuanling, 2018-07-30)
* Architecture
— ‘Copy’ won’t update code anymore.
e Analysis
— Upgraded analysis : ‘should use operator’ only applies to constant chr() call
— Upgraded analysis : Useless Instructions is faster
— Checked unit tests : 2948 / 2962 test pass (99% pass).
 Tokenizer
— Added support for variable definitions in methods
Version 1.3.7 (unnamed demon, 2018-07-16)
* Architecture
— Fixed handling of multiple updates

* Report

57

Exakat Documentation, Release 1

— More documentations
* Analysis

— New analysis : report usage of callback to process array

New analysis : report usage of case insensitive constants

Upgraded analysis : Hardcoded passwords is extended to objects

Upgraded analysis : Go To Key Directly handles comparisons
Added support for PHP 7.0.20

Checked unit tests : 2948 /2962 test pass (99% pass).
Version 1.3.6 (Zhang Gongjin, 2018-07-16)

 Architecture
— Added support for Rar archives
— Removed call to gremlin server at ‘status’ time
¢ Analysis
— New analysis : support for msgpack extension
— New analysis : support for 1zf extension
— Upgraded analysis : added missing function names in several extensions
— Checked unit tests : 2941 /2955 test pass (99% pass).
Version 1.3.5 (Gao Shilian, 2018-07-09)
* Architecture
— Removed 4 unused exceptions

— Extracted Query from Analysis

* Report
— Reports : centralized all doc reading
— Reports : doc reading now parses sections (avoid overlap)
— Ambassador : Added exakat version and build to dashboard.
— Ambassador : Added Class Tree (All class hierarchies)
e Analysis

Fixed bug with ‘last’ and “2last’

New analysis : Report undefined::class

New analysis : Report returned assignations as useless

New analysis : Split scalar typehint by versions

Upgraded analysis : Extended Reuse Variable to instantiations

Upgraded analysis : Masking parenthesis are only for referenced arguments

Upgraded analysis : Wrong case doesn’t apply to parent/static/self

Upgraded analysis : Locally Unused Properties are extended to traits

Upgraded analysis : Should Preprocess is extended to concatenations

58 Chapter 2.

Release Note

Exakat Documentation, Release 1

Upgraded analysis : Array_key_fill exclude variables by default
Upgraded analysis : Ambiguous static reports the whole property definition

Checked unit tests : 2919 /2944 test pass (99% pass).

¢ Tokenizer

Added missing constants
Fixed support for goto true;
Fixed edge case for nested ternaries and boolean

Moved Goto and Label to Name Atom

Version 1.3.4 (Cheng Yaojin, 2018-07-02)

¢ Architecture

¢ Analysis

Added check when unarchiving tar.gz and tar.bz
Added check for neo4j installation, (error grabing)

Moved Upgrade to tmp folder

Parameters are actually defined in the class

New analysis : ambiguous visibilities of properties

New analysis : report usage of PHP 7.1+ hash algorithm
New analysis : csprng (random_bytes and random_int)
New analysis : ext/libeio

New analysis : report incompatible signatures for methods
Upgraded analysis : Unused Private Methods handles fluent interfaces
Upgraded analysis : Defined Parent keyword

Upgraded analysis : Recursion

Refactored codels/codelsNot

Checked unit tests : 2908 / 2923 test pass (99% pass).

¢ Tokenizer

Added support for ‘parent’ definitions
Fixed element counts in concatenation
Fixed operator priority in Strval

Upgraded handling of undefined constants to string

Version 1.3.3 (Ma Sanbao, 2018-06-25)

¢ Architecture

* Report

Better handling of fallback to global for functions
Weekly code clean

Refactored several analysis for speed

59

Exakat Documentation, Release 1

— Ambassador : fixed regression in the dashboard
— Fixed edge case with properties

¢ Analysis

New analysis : closure that can be static

Upgraded analysis : empty function doesn’t count static or global

Upgraded analysis : reported globals include $§GLOBALS also
Checked unit tests : 2881 /2911 test pass (98% pass).

¢ Tokenizer

Moved collection of functioncall to LoadFinal

Added collection of interfaces and newcall

Moved Declare to its own token

Moved Property definitions to its own token
Version 1.3.2 (Duan Zhixian, coming up)
* Architecture
— Reading stats from store, not graph.
— Git now fails silently if login is requested at clone / pull

* Report

New analysis : == or === favorites

New analysis : > or < favorites

Upgraded analysis : written only variables is now faster

Upgraded analysis : PHP reserved words has now 2 parameters

Removed analysis : Type/Integer, Real, Closures.

Checked unit tests : 2901 / 2914 test pass (99% pass).

¢ Tokenizer
— Static, PPP, Final and Abstract are now properties
— Fixed regex in several rules
— Added support for code clone detection (WIP)
Version 1.3.1 (Liu Hongji, 2018-06-03)
* Architecture
— Cleaned code of unused classes and ;
— Fixed connexion script to the database
— Fixed check of php.log folder
* Report
— Ambassador : display correct compilation state
¢ Analysis

— Upgraded analysis : used constant is also applied to defined()

60 Chapter 2.

Release Note

Exakat Documentation, Release 1

Upgraded analysis : used protected methods is case insensitive

Upgraded analysis : Empty class omits extended classes

Upgraded analysis : More sequences to SimplePreg

Upgraded analysis : Throwable is not ‘unthrown’ anymore

Removed analysis : Static CPM
Checked unit tests : 2901 / 2914 test pass (99% pass).

* Tokenizer

— Upgraded support for ::class
Version 1.3.0 (Xue Rengui, 2018-06-03)

 Architecture
— Added support for Tinkergraph 3.3.3
— Handles situations where exakat has no database
— Check for PHP version at bootstrap

* Report
— Ambassador : Updated PHP recommendation report with PHP 7.3
— All : Variables don’t sport ... nor & anymore

¢ Analysis

— New analysis : Single Use Variable

New analysis : Should Use Operator

New analysis : Check JSON production

New analysis : Report visibility usage with constants

Upgraded analysis : used constant is also applied to defined()

Upgraded analysis : used protected methods is case insensitive

Upgraded analysis : used directives handle function version

Upgraded analysis : added lcg_value for better rand

Upgraded analysis : Use Nullable extended to methods, closures.

Upgraded analysis : Fixed support for ‘_’ native function
Checked unit tests : 2895 /2907 test pass (99% pass).
Version 1.2.9 (Wang Gui, 2018-05-28)

* Architecture
— Removed query cache from gremlin
— Added pre-query check to prevent queries that have no chance of result
* Report
— Ambassador : first 50% of documentation fix : double quotes are not well displayed
— Ambassador : Results are ordered by files, then by lines

¢ Analysis

61

Exakat Documentation, Release 1

New analysis : Flexible Heredoc syntax

New analysis : Non-compatible methods

New analysis : Use the Blind Var

New analysis : Inexistant Compact

New analysis : Typehint / default value mismatch
Upgraded analysis : strict_types are not recognized as undefined constant
Upgraded analysis : More new methods for PHP 7.3
Upgraded analysis : Dependant traits

Upgraded analysis : Strpos comparison

Upgraded analysis : Method Must Return

Checked unit tests : 2885 / 2889 test pass (99% pass).

¢ Tokenizer

Interface may have const, not traits (Loading)

Added support for static call to methods

Version 1.2.8 (Xu Jingzong, 2018-05-21)

¢ Architecture

* Report

Implemented a cache for speed boost.
Refactored files finding method
Git VCS always submit a user when cloning (using exakat by default)

Moved custom themes from themas.ini to themes.ini

Ambassador : fixed naming the audit
Ambassador : added ‘Dead code’ section

Doctor : split themes display (default/customs)

New analysis : Report what should be done in SQL

New analysis : Typehinted reference

New analysis : Strpos doing too much work

New analysis : Can’t instantiate class

Upgraded analysis : Don’t echo error

Upgraded analysis : PPP Declaration style

Upgraded analysis : Useless abstract class

Upgraded analysis : Buried assignation doesn’t report declare anymore
Upgraded analysis : Abstract methods are not reported as unused
Upgraded analysis : relaxed version constraint for all Extensions/*

Checked unit tests : 2852 / 2856 test pass (99% pass).

62

Chapter 2.

Release Note

Exakat Documentation, Release 1

» Tokenizer
— Fixed handling of short_open_tags
— Fixed edge case with %
Version 1.2.7 (Li Yuanji, 2018-05-14)
* Architecture

— Extended status command to all VCS

Added support for customized themes

Added Upgrading section, List of parametrized analysis, revamped summary

Simplified handling of commandline options

Removed usage of JSON for ‘doctor’

* Report
— A lot more documentation, examples, links.
— Optimized type downloader
— Added report themes pre-requisites

¢ Analysis

New analysis : ext/cmark

Upgraded analysis : too many children is configurable

Upgraded analysis : error_reporting O and -1 are not reported as issues.

Checked unit tests : 2835 /2839 test pass (99% pass).

* Tokenizer
— Fixed bug where constant self referenced.
— Moved Identifiers to Names
— Added first definitions for members.
Version 1.2.6 (Li Jiancheng, 2018-05-07)
* Architecture
— Moved more classes to helpers
— Removed constants for Tokens
— Upgraded to Robo 1.2.3
* Report
— Added support for custom themas for reports.

¢ Analysis

New analysis : zookeeper

New analysis : Report missing parenthesis

New analysis : Report invalid interval checks

New analysis : Suggest array_unique when possible

New analysis : Report when callback needs a return

63

Exakat Documentation, Release 1

New analysis : Reduce the number of if

Updated Exception list, up to PHP 7.3

Upgraded analysis : Printf Arguments

Upgraded analysis : Count On Null

Upgraded analysis : Regex on Collector

Upgraded analysis : File Inclusion wrong case handles parenthesis

Upgraded analysis : Make globals a property

Upgraded analysis : Invalid regex
Checked unit tests : 2814 / 2818 test pass (99% pass).

¢ Tokenizer

Added definition links for staticmethodcalls.

Added boolean and int values to _ DIR__ and co.

Removed several static properties

Fixed precedence of instanceof

Added support for Null val
Version 1.2.5 (Li Yuan, 2018-04-30)
* Architecture
— Added command ‘config’ to configure project from commandline

Made Exakat reentrant

Moved Configuration creation to external file

Upgraded status when audit isn’t run yet

¢ Analysis

New analysis : Regex on Collector

Upgraded analysis : Only Variable with reference argument

Upgraded analysis : File Inclusion Wrong Case

Upgraded analysis : Invalid Regex
Added support for PHP 7.2.5,7.1.17 and 7.0.30
Checked unit tests : 2802 /2809 test pass (99% pass).

* Tokenizer
— Fixed various bugs with constant scalar expression
Version 1.2.4 (Li Chunfeng, 2018-04-23)
* Architecture
— Now fail with explicit message for memory running out
* Report
— Ambassador : Updated ‘confusing variables’ report

¢ Analysis

64 Chapter 2. Release Note

Exakat Documentation, Release 1

Upgraded analysis : Could be short assignment

Upgraded analysis : Could be static

Upgraded analysis : Fail Substr Comparison (handles constants)

Checked unit tests : 2796 / 2801 test pass (99% pass).
* Tokenizer
— Added propagation of constants when value can be processed
— Introduced ‘Parameter’ token, to differentiate with Variable
— Fixed syntax highlighting
— Fixed a bug with negative bitshift
Version 1.2.3 (Yuan Tiangang, 2018-04-16)

¢ Architecture

— New append for logs
* Report

— New report : Manual.

— Ambassador : Rewrote the export of ‘confusing variables’
e Analysis

New analysis : report strtr bad usage

New analysis : don’t unset properties

Upgraded analysis : Invalid Regex

Upgraded analysis : Property Could Be Local

Upgraded analysis : No Hardcoded path

Upgraded analysis : echo/print preferences also report printf

Removed analysis : Close Naming (now done at Report level)

Checked unit tests : 2770 / 2786 test pass (99% pass).

* Tokenizer
— Removed double definition for functioncalls
Version 1.2.2 (Yin Kaishan, 2018-04-09)
 Architecture
— Cleaned doctor so it works even without requirements

— Fixed special chars with git URL

* Report
— Ambassador : new inventory with classes changes in heritage
— Ambassador : new inventory of large expressions
— Upgraded report : Defined Exceptions are cleaned of doubles
¢ Analysis

— New analysis : report Redefined Private Properties

65

Exakat Documentation, Release 1

New analysis : report substr() usage with strlen

Upgraded analysis for Inclusion Wrong Case filenames

Upgraded analysis : Cast To Boolean is extended to True/False

Upgraded analysis : Omit negative lengths

Upgraded analysis : interface search also include parameter counts

Upgraded analysis : Failed Substr Comparison handles special chars

Upgraded analysis : Identical consecutive omits arrays
Checked unit tests : 2757 / 2775 test pass (99% pass).
Version 1.2.1 (Fu Yi, 2018-04-02)

 Architecture

— Fixed generation of analysis logs

— Fixed doctor, which wouldn’t diagnostic the absence of needed extensions
* Report

— More real-life examples in docs
¢ Analysis

— New favorites : property declaration unique or multiples ?

New analysis : $a = +$b;

New analysis for Melis : Regex check and Route constraints

Upgraded analysis : Constant used below

Checked unit tests : 2760 / 2766 test pass (99% pass).

¢ Tokenizer
— Fixed counts in property declarations
— Fixed final new lines in heredoc/nowdoc
Version 1.2.0 (Xiao Yu, 2018-03-26)

¢ Architecture

Upgraded concurrency with analysis

Replaced $_SERVER[‘_’] by PHP_BINARY

Removed old code (> 1.0.0)

Adopted ‘stable’ version for progressbar

Fixed loading with Bazaar

Added support for Parametrized analysis

Better initial configuration with doctor

* Report

Ambassador : upgraded analysis settings table
¢ Analysis

— New analysis : Report Private functions for Wordpress

66 Chapter 2. Release Note

Exakat Documentation, Release 1

New analysis : Suggest simplifying chr(123);

New analysis : Too many native calls

Updated analysis : fallthrough are not reported with die

— New Theme : Random

Collecting more stats for classes.

Checked unit tests : 2758 / 2741 test pass (99% pass).

* Tokenizer
— Upgraded support for Heredoc
Version 1.1.9 (Qin Qiong, 2018-03-19)

¢ Architecture

Better documentation for reports

Adding Real Code examples to documentation

Refactored Config reading

— Moved more VCS information to its own class

* Report

— Upgraded report : Ambassador reports the number of parameters in methods

— New report : favorites (spin-off from Ambassador)

— Upgraded report : Inventories also covers Dateformat, Regex, Sql, Url, Email, Unicode Blocks.
¢ Analysis

— New analysis : too many parameters
— New analysis : report mass creation of arrays
— Checked unit tests : 2755 / 2738 test pass (99% pass).
Version 1.1.8 (Yuchi Gong, 2018-03-12)
* Architecture
— Reduced cache when running analysis
— Fixed order of analysis
* Report
— Ambassador : fixed faceted search problems
— Codacy : added codacy-style report

e Analysis

New analysis : support for IBM db2, leveldb

New analysis : should use count’s second argument

Upgraded analysis : Randomly sorted arrays
Checked unit tests : 2749 / 2731 test pass (99% pass).

¢ Tokenizer

— Fixed edge case where die is an argument

67

Exakat Documentation, Release 1

— Fixed edge case where Yield returns a array
Version 1.1.7 (Xu Maogong, 2018-03-05)
 Architecture

— Removed most static in Analysis

* Report
— New format : All, that produces all reports
— Ambassador : new report estimates fitting PHP version
— Ambassador : report enable_dl in configuration

* Analysis

New analysis : report dynamic library loading

New analysis : suggest array_fill_keys()

New analysis : PHP 7.3 optional last argument

New analysis : added support for xxtea, opencensus, varnish, uopz

Upgraded BugFixes report to PHP 7.2.3

Updated analysis : ext/cairo has new functions

Updated analysis : PHP 7.3 new functions

Removed analysis : NullCoalesce (double)

Checked unit tests : 2743 / 2731 test pass (99% pass).

* Tokenizer
— Moved ‘constant’ to plugins
— Fixed bug when updating with HG
Version 1.1.6 (Wei Zheng, 2018-02-26)
* Architecture
— Created ‘First’, a recipe of initial analysis

— Prepared installation for compose

* Report

— Restored ‘INLINE’ results

— New reports : Stats

— Collect PHP native function cool
e Analysis

New analysis : report suggest compact instead of array

New analysis : list with references (PHP 7.3+)

New analysis : report situation where check is done on non-cast value

New analysis : foreach($array as $o -> $v) as error prone

Handle cases where PHP regex are not compilable anyway

Checked unit tests : 2732 / 2722 test pass (99% pass).

68 Chapter 2.

Release Note

Exakat Documentation, Release 1

¢ Tokenizer

Propagate constant concatenation values.

Fixed calculation of intval

Refactored Configuration readers
Fixed bug when calculating _ METHOD__
Version 1.1.5 (Li Shimin, 2018-02-19)

* Architecture
— Refactored all reports

— Removed outdated Devoops report

* Report
— Upgraded BugFixes report to PHP 7.2.2
— Ambassador : generates a list of confusing variables
— New report : OWASP

¢ Analysis

New analysis : Use Math

New analysis : Extensions ext/hrtime

New analysis : Possible Infinite Loops

Upgraded analysis : addZero, Multiply by one supports new situations

Upgraded analysis : added microtime, uniqid .. to better rand.

Checked unit tests : 2719 / 2724 test pass (99% pass).

¢ Tokenizer

Fixed check on script compilation that was too strict.

Fixed internal assert()

Exported VCS to separate classes

Refactored load with 3 separate plugins : intval, noDelimiter, booval
Version 1.1.4 (The Great White Turle, 2018-02-12)
* Architecture
— Build concatenation values in scalar constante expression.
— Upgraded export of file dependencies values
* Report
— Ambassador : fixed duration of audit.
— Composer : provides a full list of depend extensions
* Analysis
— New analysis : Report useless catch
— New analysis : suggest using array_search / array_keys instead of foreach

— New analysis : double array_{lip is slow

69

Exakat Documentation, Release 1

New analysis : Suggest using cached values

New analysis : Functions that fallback to global namespace

Upgraded analysis : Encoded letters supports leading O in unicode codepoint

Upgraded analysis : Variable strange names now report 3 identical consecutive letters

Upgraded analysis : Upgraded support to __dir__
Checked unit tests : 2716 / 2711 test pass (99% pass).

* Tokenizer
— Fixed definitions link for functions
Version 1.1.3 (The fairy Su’e, 2018-02-05)
* Report
— Fixed Ambassador : the favorites weren’t displayed.

e Analysis

New analysis : Report useless references

New analysis : Melis configuration : Undefined configuration array

New analysis : Melis configuration : make string.

Upgraded analysis : Parent first
Checked unit tests : 2700 / 2695 test pass (99% pass).

* Tokenizer
— Better handling of Labels.
— Fixed edge case where class and constants where mistaken one for the other
Version 1.1.2 (Jade Rabbit Spirit, 2018-01-29)
* Architecture
— Upgraded docs to tinkergraph 3.2.7

¢ Analysis

New analysis : Report missing included files

New analysis : ZF3 : No Echo Outside a View.

New analysis : Local Global variable : report variable that looks global but are not

Upgraded analysis : Directive names are check with case sensitive analysis

Checked unit tests : 2687 / 2693 test pass (99% pass).

¢ Tokenizer

Magic Constant hold their actual value

Fixed Fullnspath for constants (case sensitive)

Fixed edge case with exit and die

Fixed edge case with exit and die and -1
Version 1.1.1 (Wood Xie of Dipper, 2018-01-22)

¢ Architecture

70 Chapter 2. Release Note

Exakat Documentation, Release 1

— Fixed path when calling exakat from outside its install folder
— First analysis for Melis Framework
— Optimized dictionary collection
* Report
— Ambassador : upgraded graph for class sizes
¢ Analysis

— New analysis : report case problems with includes

New analysis : Melis framework

New analysis : inventory of view properties for Zend Framework

New analysis : report view files for Zend Framework

Upgraded analysis : + is accepted as regex delimiter

Upgraded analysis : same condition searches inside blocks

Checked unit tests : 2665 / 2671 test pass (99% pass).

¢ Tokenizer
— Magic constants __DIR__ and __FILE__ get their actual value in noDelimiter

Created Eval atom

Removed ‘Name’ token for echo, print, die, exit.

Upgraded handling of constant names inside strings

Removed a bug when storing dictionary.
Version 1.1.0 (Wood Dragon of Horn, 2018-01-15)
* Architecture
— Replaced ‘code’ property with a dictionary
* Tokenizer
— Introduced ‘Magicmethod’ for Magic methods in class
— Fixed a bug when ° is in file path
— Fixed a bug when several raw HTML are in a PHP script.
Version 1.0.11 (Wood Dragon of Well, 2018-01-08)
* Architecture
— Added assertion for property name.
* Report
— Ambassador : Added report of classes’s size.
— Fixed missing audit end’s time.
* Analysis
— New analysis : Sqlite3 doesn’t escape “
— Upgraded analysis : Strange names also report qqqq sequences in variable names

— Checked unit tests : 2617 / 2657 test pass (99% pass).

71

Exakat Documentation, Release 1

» Tokenizer
— Fixed fullnspath handling for constants (case insensitive for the constant name)
Version 1.0.10 (Wood Wolf of Legs, 2018-01-01)
* Architecture
— Fixed Sqlite3 escaping error : use ‘, not “
* Report
¢ Analysis
— Upgraded analysis : ? is possible as delimiter
— Analysis works better with nested structures

— Checked unit tests : 2601 / 2649 test pass (99% pass).

¢ Tokenizer

First plugin for Load Task.

Upgraded support for define-d constant.

Introduced Phpvariable

Fixed scoping with array index.

Version 1.0.9 (King of Dust Protection, 2017-12-25)

* Report

— Ambassador : list complex expressions.

— Dump : added function inventory

— Dump : added begin and end line for structures.
¢ Analysis

— New analysis : report reference error with Ternary operator
— New analysis : report Undefined classes in Wordpress.
— Upgraded analysis : preg option E, tighter regex.

* Tokenizer
— Better handling of long path name. TBC.
— Introduced Parent, Static, Self, Exit, Echo, Print.

Version 1.0.8 (King of Heat Protection, 2017-12-18)

* Architecture
— Doctor reports memory_limit and JAVA_OPTIONS/JAVA_HOME
— Made database restart more portable
— Added spell checking on docs

* Report
— Ambassador : Regex inventory added

— Ambassador : Largest expressions reported

72 Chapter 2.

Release Note

Exakat Documentation, Release 1

¢ Analysis

New analysis : report identical operands on both sides of operator

New analysis : report potentially mistaken concatenation in array

New analysis : report mistaken scalar typehint

New analysis : report undefined classes by symfony version

New analysis : report undefined classes by wordpress version

Upgraded analysis : Interfaces are also reported from return typehint

Upgraded analysis : Mistaken concatenation got rid of various false-positives

Checked unit tests : 2601 / 2633 test pass (99% pass).

¢ Tokenizer

Isset, Empty, Phpvariables now have their own atom.

Fixed edge case with $ token

Fixed Constant fqn building
— UTF-8 protection for propertyname
Version 1.0.7 (King of Heat Protection, 2017-12-11)
* Architecture
— Added /var to default omitted folders
¢ Analysis
— New analysis : should use array_filter.
— New analysis : ext/igbinary
— Checked unit tests : 2533 / 2599 test pass (97% pass).
» Tokenizer
— Fixed
Version 1.0.6 (Fuli, 2017-12-04)
* Architecture
— Refactored description
— Moved PHPsyntax to a function
¢ Analysis
— New analysis : Never used parameter.
— New analysis : always use named boolean parameters
— Upgraded analysis : unused arguments
— Checked unit tests : 2573 / 2585 test pass (99% pass).
» Tokenizer
— Added new token : This for $this
— Updated loader to handle PHP 7.3 functioncall syntax (final ,)

— Turned Markcallable into an independant analysis

73

Exakat Documentation, Release 1

Version 1.0.5 (King of Cold Protection, 2017-11-27)
* Architecture
— Configured Exakat for Tinkergraph 3.3. Still unfinished.
— Documentation now has an external link to extensions.
* Report
— Ambassador : added more inventories : URL SQL, email, GET index, MD5, Mime

¢ Analysis

New analysis : parent first

New analysis : Report uncommon Environment Vars

New analysis : Report invalid Regex

New analysis : Report contatenation in Zend DB

Fixed analysis : Deprecated Functions

Fixed analysis : Unknown PCRE2 option

Upgraded analysis : hardcoded password

Upgraded analysis : array_merge in loops

Upgraded analysis : substr() first. Handle following expressions

Refactored analysis : Used Functions

Refactored analysis : Add Zero
Checked unit tests : 2573 /2585 test pass (99% pass).

* Tokenizer
— Fixed a bug that linked functions and definitions
Version 1.0.4 (Boxiang Demon, 2017-11-20)
* Architecture
— PhpExec, get only path to binary.
— Cleaned docs of double links

— Cleaned code

* Report
— Added libsodium, Argon2 to Crypto; DL() usage to PHP.
— Compatibility report only focuses on backward incompatibilities.
— New recipes will cover ‘suggestions for better code’. Coming up.
¢ Analysis

New analysis : ” string is better than ‘ (sorry...)

New analysis : PHP 7.3’s PCRE 2

New analysis : report missing ‘new’ in front of class name.

New analysis : use is_object instead of is_resource for ext/hash

New analysis : report non-countable calls

74 Chapter 2.

Release Note

Exakat Documentation, Release 1

New analysis : report DL usage in Appinfo

New analysis : slice first, then map arrays.

New analysis : Avoid 5th argument in PHP 7.2 for set_error_handler

New analysis : avoid null with get_class()

New analysis : suggest using list() with foreach instead of arrays

New analysis : avoid using $this as argument in constructor

New analysis : Report usage of ext/vips

New inventory : GPC variables

Updated analysis : Use Class Operator doesn’t report methods names anymore

Updated analysis : Long argument size is raised to 60 chars

Updated analysis : ignore when missing break is in last case

Updated analysis : Use This ignores ‘self’.

Updated analysis : Randomly sorted Arrays ignores arrays of 3 or less.

Updated analysis : ext/mcrypt gets its constants

Updated analysis : more strange names being used in code

Updated analysis : more PHP 7.2 removed functions

Checked unit tests : 2563 /2572 test pass (99% pass).

* Tokenizer
— Reduced duplicated that may lead to loading error.
Version 1.0.3 (Baize Demon, 2017-11-13)

¢ Architecture

Fixed driver Tinkergraph, which was not setting the right ids.

Doctor now reports $JAVA_OPTIONS, in case one need to allocate more memory

Doctor now reports token limit

Moved config.ini creation to first phase of init.

Fixed collect of error when init with git.

Upgraded driver gremlin-php to 3.0.2

* Report
— Ambassador : Now reports the namespaces as a tree.
— New analysis : report members that are static and not.
— Updated analyzis : normal method called statically.

¢ Analysis

— Added support for Drupal, FuelPHP and Phalcon.
Version 1.0.2 (Suanni Demon, 2017-11-06)
 Architecture

— Better report of error messages from VCS.

75

Exakat Documentation, Release 1

— Updated support for Vagrant
* Report
— Ambassador : Fixed display for ‘Callback’

¢ Analysis

New analysis : substr() first, then replace.

New analysis : report double prepare (WP).

New analysis : avoir the +1 month trap

New analysis : check for printf() options

New analysis : check for placeholder in prepare (WP)

New analysis : avoid direct injection into prepare (WP)

New analysis : performance recommendation for switch.

New analysis : merge if/if into if/then/else
Checked unit tests : 2500 / 2536 test pass (99% pass).
Version 1.0.1 (Xueshi Demon, 2017-10-30)

¢ Architecture

Created Result class for Graphdb results

Docker image is updated with version 1.0.1

Vagrant files are updated with version 1.0.1

Preparing support for Gremlin 3.3.0

* Report

Added support for PHP 7.1.11 and 7.0.25
¢ Analysis
— New analysis : could be else (for consecutive opposite if/then)
— Checked unit tests : 2517 /2527 test pass (99% pass).
Version 1.0.0 (Roushi Demon, 2017-10-23)
* Architecture
— Tested on Gremlin 3.2.6. Checked Gremlin 3.3.0, but it needs more work.
— Upgraded doctor for installation and report.

— Upgraded docs to set gremlin-server as default install.

* Report

— Added support for Clang-style report.

— Ambassador : fixed link to exception Tree.

— Inventories : Date format,

— Audit names are reported in every Ambassador-style report.
¢ Analysis

— Upgraded PHP directive list.

76 Chapter 2.

Release Note

Exakat Documentation, Release 1

Functions In For loop : prevent issue if the function uses a loop variable.

Useless instruction : do not report return $i++ if $i is reference

Useless instruction : Avoir reporting properties when they are magic

New analysis : mark properties to be magic.

Upgraded list of PHP logins, to report hard coded passwords.

Upgraded close naming : variables that differ with 1 chars are reported.

Added assert(false. . .) to list of branching syntax.
Checked unit tests : 2515 /2525 test pass (99% pass).
Version 0.12.16 (Tawny Lion Demon, 2017-10-16)

* Report

— Beta version for Drill Instructor

— Upgraded Inventories report with Sessions, Cookies, Incoming variables
¢ Analysis

— New analysis : Expression too complex.

New analysis : Session Handler must implements SessionUpdateTimestampHandlerInterface

New analysis : is Zero : additions that negate some terms

New analysis : unconditional loops

Upgraded Zend Framework review with latest versions (feed, http, eventmanager. . .)

Upgraded ‘Strange names’ with new typos

Upgraded ‘Logical to in_array’ to handle separated comparisons

Checked unit tests : 2505 /2515 test pass (99% pass).

» Tokenizer

— Fixed bug with Sign in Additions.
Version 0.12.15 (Nine Headed Lion, 2017-10-09)

* Architecture
— Server : now supports stop, start and restart.
— Every audit gets a random name, for easy differentiation
— Added support for PHP 7.3

* Report
— Ambassador : list of analysis that report nothing : Good job!
— Slim report : fixed build

¢ Analysis

New analysis : file upload names vulnerability check

New analysis : variable that may hold different types of date

New analysis : always anchor regex

Checked unit tests : 2475 / 2480 test pass (99% pass).

77

Exakat Documentation, Release 1

Version 0.12.14 (Grand Saint of Nine Spirits, 2017-10-02)
* Architecture
— Support UTF-8 on Gremlin Server (other encoding are not)
— Better display of vcs updates
* Report
— Ambassador : added Security and Performances
— Ambassador : Upgraded exception presentation
¢ Analysis
— New analysis : report fallthrough in switch
— New analysis : inventory regex
— Added support for PHP 7.1.10 and 7.0.24
Version 0.12.13 (King of the Southern Hill, 2017-09-25)
* Architecture
— Code cleaning
* Report
— Ambassador : changed display of the audit
¢ Analysis
— Refactored several analysis
Version 0.12.12 (Ruler of the Kingdom of Miefa, 2017-09-18)
* Report
— Ambassador : fixed collect of interfaces and trait names

¢ Analysis

New analysis : ext/Parle

New analysis : help optimize pathinfo() usage

New analysis : catch array_values() usage with list and pathinfo()

Updated analysis : Don’t show error messages with catch->getMessage();

Updated analysis : No concat in loop handles $x = $c . $x;

Checked unit tests : 2456 /2461 test pass (99% pass).

* Tokenizer
— Added support for ‘, ” and > in file names. Still missing support for
— Restaured fallback to global constants.
— Fixed special case : <?php ++$x 7>
Version 0.12.11 (Half-Guanyin, 2017-09-11)
* Architecture
— Added support options for branches and tags

— Added support for config in server mode

78 Chapter 2.

Release Note

Exakat Documentation, Release 1

* Report
— Fixed methods dump for interfaces.
¢ Analysis
— Added all analysis to report could be private/protected for
* Tokenizer
— Fixed handling of ‘<’ char in paths
Version 0.12.10 (Golden Nosed Albino Rat Spirit, 2017-09-04)
* Architecture
— Upgraded server version with config alteration features.
— New generated config-cache
* Report
— Fixed property names in Visibility report
¢ Analysis
— Arrays/IsModified : arrays are not modified unless in a (unset)
* Tokenizer

— Fixed ‘constant’ for functioncalls

Introduced ‘Name’ for Identifier without a fullnspath

Added support for branches and tags in init

Fixed edge case with $0->$$b
Version 0.12.9 (Lady Earth Flow, 2017-08-28)
* Architecture
— Creates config.cache, with cached calculated configs. Remove to update.
* Report
— GraphQL : Upgraded GraphQL report, with relationships.
¢ Analysis
— New analysis : suggest moving for() to foreach()
— New analysis : shell_exec/exec/backtick favorite
— Update analysis : Abstract Static is for PHP 7.0-
* Tokenizer
— Removed Arguments and ARGUMENTS.
— Finished ‘factory’ from Config.
— Better handling of long path names.
Version 0.12.8 (ruler of the Kingdom of Biqiu, 2017-08-21)
* Analysis
— New analysis : use foreach, not for()

— New analysis : ext/fam, ext/rdkatka

79

Exakat Documentation, Release 1

» Tokenizer
— Fixed edge case where pathnames are too long on OSX.
Version 0.12.7 (Old Man of the South Pole, 2017-08-14)
* Architecture
— Fixed project_vcs when none is used.
¢ Analysis
— Better documentation for in_array replacements and array_unique()
— Added support for PHP 7.1.8 and 7.0.22
Version 0.12.6 (White Faced Vixen Spirit, 2017-08-07)
¢ Analysis
— New analysis : no negative for strings before 7.1
— New analysis : use in_array instead of Il
— Updated analysis : preg_quote has no delimiter
* Tokenizer
— Fixed bug in handling real value for negative numbers
Version 0.12.5 (White Deer Spirit, 2017-07-31)
* Architecture
— Removed config singleton
* Report
— New report : simpletables (HTML)
¢ Analysis
— New analysis : report optional parameters
— New analysis : report concat inside a loop
— Updated analysis : Could Be Class Constant, when no visibility is provided.
Version 0.12.4 (peacock Mahamayuri, 2017-07-24)
* Architecture
— Optimized performances for large projects (over 2M tokens)
— Support Neo4j as a driver for Tinkgerpop
* Report
— Now covering all PHP 7.2 features

¢ Analysis

New analysis : Extension xattr

New analysis : report ‘object’ as a class name

New analysis : No Array for magic property

New analysis : suggest reducing code for isset

New favorite : and / &&

80 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Updated analysis : fetch correct delimiter, even if escaped.
— Extended coverage for several analysis
— Removed several nested-subqueries (bad for performances)
» Tokenizer
— Tinkergraph/Neo4j : reworked loading data from disk.
— Added protection for $ in filename
Version 0.12.3 (Golden Winged Great Peng, 2017-07-17)
* Architecture
— Prepared options for several back servers : Tinkergraph, Gremlin-Server/Neo4j, Janusgraph
* Report
— New report : Marmelab (GraphQL server)

e Analysis

New analysis : Report when a property is used as object or scalar

New analysis : Mismatched Typehint

New analysis : Mismatched Default values

Upgraded analysis :

Fixed a gremlin bug in noAtomInside
* Tokenizer
— Added support for trailing comma in group use (PHP 7.2)
— Fixed building of constants’ values
Version 0.12.2 (Samantabhadra, 2017-07-10)
* Architecture

— Added support for Tinkergraph as graph backend

* Report
— Ambassador : reports callback/closures, all 3 declares (ticks, encoding, strict_types)
— Ambassador : reports strict_types as favorite
— PlantUML : upgraded report

¢ Analysis

— New analysis : Mismatched ternary branches

New analysis : mkdir, by default, uses 777.

New analysis : ext/lapack

Upgraded analysis : option E for preg_match, refined results
Checked unit tests : 2337 / 2366 test pass (99% pass).

* Tokenizer
— Added support for Instanceof and GROUPUSE with Nsname
Version 0.12.1 (Yellow Toothed Elephant, 2017-07-03)

81

Exakat Documentation, Release 1

* Architecture
— Refactored structures extractions in dump
* Report
— New report : PlantUML
— Ambassador : Appinfo now reports how popular is a feature
¢ Analysis
— New analysis : Const / Define() favorite for constants
— New analysis : do not return in finally
— Upgraded analysis : Add Zero was refactored
* Tokenizer
— Prepared list of tokens and relations
Version 0.12.0 (Manjusri, 2017-06-26)
* Architecture
— Added support for Janusgraph (Gremlin 3)
— Refactored dump’s data collection for speed.bb
* Report
— Added support for Wordpress and Joomla as Frameworks

¢ Analysis

New analysis : Avoid Optional properties

New analysis : Multiple declarations of functions

New analysis : Non breakable spaces in names

New analysis : Favorite Heredoc delimiter

New analysis : ext/swoole
* Tokenizer
— Modified several nodes/links names, for compatibility purposes
Version 0.11.8 (Xiaozuanfeng, 2017-06-19)
* Architecture

— Starte working on JanusGraph to add to Neo4j/Gremlin3

* Report

— Ambassador : reports Strings encoding and Unicode-block (when available)

— Ambassador : reports framework founds (first 6, more as we go).

— Ambassador : reports how frequently an analysis yield results to compare with current situation
* Analysis

— New analysis : Classes where declaration order differs from : use, const, properties and methods.
— New analysis : Could use interface (but implements is missing)

— New analysis : Cant Inherit Abstract Method (PHP 7.2 upgrade)

82 Chapter 2. Release Note

Exakat Documentation, Release 1

— New analysis : use session_start() options
— Updated analysis : Dynamica method calls cover {} too
— Checked unit tests : 2305 / 2305 test pass (100% pass).
» Tokenizer
— Checked code on early PHP 7.2 version
Version 0.11.7 (Long Armed Ape Monkey, 2017-06-12)
* Report
— Ambassador : report detected patterns (2 firsts)
— None report : for when dump is sufficient

¢ Analysis

New analysis : could factor functioncalls

New analysis : PSR-* usage

New analysis : support for Judy and Gender extensions

Added thema for Compatibility PHP 7.3

Added thema for Dependency Injection
* Tokenizer
— Fixed edge case where classes starting with ‘namespace’ where mistakenly processed
— Removed Block from CIT
Version 0.11.6 (Red Bottomed Horse Monkey, 2017-06-05)
* Architecture
— Removed singleton to Config. WIP
* Report
— Ambassador : reports usage of PSR 3,6,7,11,13,16.
— UML : report now protects file names

¢ Analysis

New analysis : Ext stats

New analysis : report mixed concatenation / interpolation strings

Updated analysis : htmlentities actually uses combinaison, not alternatives,
Updated analysis : Close Tag consistency ignores __ HALT_COMPILER files
Version 0.11.5 (Intelligent Stone Monkey, 2017-05-30)

* Report
— Ambassador : fixed visibility suggestion
— New report : Dependency wheel
* Analysis
— New analysis : avoid typehinting with classes

— New analysis : implemented methods must be public

83

Exakat Documentation, Release 1

New analysis : no reference on left of assignement

New analysis : Could typehint with instanceof

Updated analysis : Useless parenthesis cover clone, yield, yield from.

Updated analysis : Make One Call also reports nested calls
* Tokenizer
— Split functions and closures,
— Split classes and anonymous classes
— Split variable with definitions (Property, Static and Global)
— File count is always reported (even 0)
Version 0.11.4 (Six Eared Macaque, 2017-05-22)
* Architecture

— Results : returns now multiple results at once

* Report
— New report : codeflower
— Ambassador : report usage of Debug functions, browscap
— Ambassador : omits 0 in donuts
— Ambassador : faceted search for compatiblity
¢ Analysis

New analysis : report functions whose return is not used

New analysis : only variable can be passed by reference

Added limits to all in-depth searches
Checked unit tests : 2216 /2216 test pass (100% pass).

* Tokenizer
— Fixed edge case, where return is finished by a close tag
— Split Variables into Variables, Objects and Arrays.

Version 0.11.3 (Sun Deity of Mao, 2017-05-15)

* Architecture
— Speed up batch processing for lists of analysis
— Split data collection from the initial dump.

* Report
— Ambassador : Upgraded presentation of issues, and internals links.

¢ Analysis

New analysis : Sphinx extension

New analysis : GRPC extension

New analysis : reports arrays that are randomly sorted.

New analysis : report multiple catch clauses

84 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Updated analysis : direct injections include all SERVER_* values
— Upgrade for PHP 7.1.15 and 7.0.19
* Tokenizer
— Split Functioncall into Functioncall, MethocallCall and Newcall.
— Added support for ‘namespace’ in any full name.
Version 0.11.2 (Scorpion Demon, 2017-05-08)
* Architecture
— Code cleaning, and more stability
* Analysis
— New analysis : Report preference between != and <>
— New analysis : report empty regex and wrong delimiters
— Added protection for $ in RegexDelimiters
Version 0.11.1 (Ruler of Women’s Country, 2017-05-01)
* Architecture
— Fixed handling for large list of data in gremlin queries
— Handles static in anonymous classes correctly
* Report
— Reports handle traits like class.
¢ Analysis
— New analysis : ends arrays with , or not (favorite)
— New analysis : suspicious comparison
— New analysis : strange spaces in strings
* Tokenizer
— Arrays are now Arrayliteral, split from Functioncall
Version 0.11.0 (Immortal Ruyi, 2017-04-24)
* Architecture
— Removed prepared statements from loops in dump
— made Gremlin cache compatible with 32bits platforms
* Report
— Ambassador : first work on upgrading visibilities for properties.

¢ Analysis

New analysis : could use str_repeat()

New analysis : Crc32() Might Be Negative

Update analysis : type mismatch for indices works on constants too.

Update analysis : Loop calling covers less ground

Update analysis : Queries in loop reports cubrid and sqlsrv, prepared statements.

85

Exakat Documentation, Release 1

* Tokenizer
— Split function and method entities for differentiated processing
Version 0.10.9 (Single Horned Rhinoceros King, 2017-04-17)

¢ Architecture

File extensions are processed before include/ignore dirs.

Reduced number of DEFINITION links, leading to less processing.

Added several assertion() in the code

Added assertions report in doctor (better leave them out with phar)

* Report
— Added support for PHP 7.0.18 and 7.1.4
— Ambassador : better layout for favorites
— Zend Framework : 8 new components supported
— Zend Framework : now supports zendframework/zendframework too
— Zend Framework : report unused components
¢ Analysis

New analysis : report nested Use expressions

New analysis : report repeated regex (to be federated)

New analysis : report code that output directly to std

Updated analysis : Should use this now omits overwritten methods

New analysis : report overwritten methods
Upgraded analysis : 2123 /2123 test pass (100% pass)
Version 0.10.8 (King of Spiritual Touch, 2017-04-10)

* Report
— Slim report : list of routes used.

¢ Analysis

New analysis : report Group Use Declaration (PHP 7.0+)

Zend Framework : 30 components are now covered.
— Slim : No echo in route callable and Inventory of routes.

PHP : list of new PHP 7.2 functions.

* Tokenizer
— Sped up loading time by 10%.
— Added support for PHP6 binary string : $a =u’b’;
Version 0.10.7 (Immortal of Antelope Power, 2017-04-03)
* Report
— Ambassador : fixed composer report.

— Added report for Composer (beta phase)

86 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Added report for Slim framework.

* Analysis
— Added support for Slim versions.
— Added 10 new components for Zend Framework 3

* Tokenizer
— Fixed support for $ in file names.

Version 0.10.6 (Immortal of Elk Power, 2017-03-27)

* Architecture
— Major speed up of loading and analysis
— Fixed themes configuration.

* Report
— Ambassador : report cookies usage, infinite and NAN usage
— Zend Framework : Report incompatibilites component/version for ZF3

¢ Analysis

Upgraded analysis : 1941 / 1941 test pass (100.00% pass)

New analysis : Zend Framework 3 Deprecated

New analysis : Zend cache, view, db.

New analysis : Report missing type tests.

New analysis : suggest setcookie() with safe arguments

New analysis : Do not cast to Int

New analysis : CakePHP classes compatibilities from 2.5 to 3.3

Upgraded analysis : instanceof doesn’t report traits anymore

Upgraded analysis : mb_ereg has options in the 4th arguments

Upgraded analysis : more strange names
* Tokenizer
— Reviewed most of the load processing.
— Reduced the number of ‘fullnspath’ properties.
Version 0.10.5 (Immortal of Tiger Power, 2017-03-13)

¢ Architecture

Collect graph size in dump.sqlite

Collect memory usage in dump.sqlite

Now uses the calling PHP version to run all parts of exakat (no config)

Doctor report the ran gremlin version.
* Report
— Ported the Zend Framework report to ambassador

— Added regex delimiter in favorites.

87

Exakat Documentation, Release 1

— Ambassador : syntax coloring
* Analysis

— New analysis : could be typehinted ‘callable’

New analysis : encoded letters in strings for security

New analysis : report arguments that may be callable

New analysis : report strangely named variables

New analysis : report strangely named constants

New analysis : too many FindsBy*() methods

Updated analysis : Useless Instructions doesn’t report array_merge(_recursive) with one argument

Updated analysis : array_replace handles ...

Updated analysis : 7.2 deprecation with assert()

Generalized usage of commons for CIT

Added first 4 set of analysis for Zend Framework 3
— Added support for dynamic new $ali];

e Tokenizer

Fixed fullnspath with new on functioncall

Reduced the number of fullnspath loaded

Added support for ‘s’() as functioncall
Fixed case where file names has ‘ “ in it

Version 0.10.4 (Dragon King of the West Sea, 2017-03-06)

* Architecture

— Ignore some classic files by default (README, LICENSE...)
* Report

— Ambassador : protection of HTML values

— PHPcompilation : fixed export to stdout

¢ Analysis

New analysis : report useless else branches

New analysis : should regenerate session Id, for PHP and Zend Framework

Added support for Extension Data structures (ext/ds)

Upgraded analysis : Hardcoded Hash

Speed up analysis for extensions
* Tokenizer
— Fixed edge case where a constant was used inside a ternary operator
— Fixed processing of labels
Version 0.10.3 (Dragon King of the Jing River, 2017-02-27)

¢ Architecture

88 Chapter 2. Release Note

Exakat Documentation, Release 1

Added URL glossary to Manual.
Extended CS ruleset

Use exakat/exakat as user/login for git.

New helper to rename analysis

Project command now accept -P/-T to run one analysis/Thema directly
* Report
— New report style : Codesniffer

¢ Analysis

New analysis : suggest usage for array_column()

New analysis : _ DIR__ must be concatenated with a string starting with */’

New analysis : report usage of parent, self and static outside a class/trait

New analysis : report properties used only in one method

New analysis : report properties used only once at all

New analysis : multiple aliases per class

Updated analysis : Fopen() mode support ‘e’ option (7.1.2 +)

Updated analysis : Make One Call covers str_replace, substr_replace, preg_replace*

Updated analysis : Unused arguments : now ignores arguments from interface or parent
* Tokenizer

Removed double DEFINITION link. Faster loading, less processing.

Fixed an edge case when function name is boolean or null.

Cleaned atom and tokens names

Fixed edge case when object is instantiated in a ternary
Version 0.10.2 (Water Lizard Dragon, 2017-02-20)
* Architecture
* Report
— Text format now understand -T, -P to extract only some of the results.
— Fixed dump of extends.

¢ Analysis

Added support for PHP 7.1.2 and PHP 7.0.16

New analysis : report forgotten ‘throw’ keyword.

New analysis : report class / function confusing name

Added support for libsodium

Upgraded PHP Relaxed Keyword : Ignore properties.
Upgraded analysis : 1824 / 1826 test pass (99.9% pass)

¢ Tokenizer

89

Exakat Documentation, Release 1

— Fixed a bug that mistakes native PHP classes for functions
— Fixed rare situation with grouped const/function.
Version 0.10.1 (King of Wuji Kingdom, 2017-02-13)

¢ Architecture

Report SVN revision when updating or not.

Default reports are in config.

Configure now supports include_dirs, to include files.

Project name is now noted in datastore.

Inventories is a default themas; PHP Compatibility < 5.6 are not default anymore.
* Documentation

— Fixed outgoing links

— Better coverage of PHP functions
* Report

— Added ‘Inventories’ report : reports all names and literals

— Ambassador : Added list of included files, Yield From and classes stats

e Analysis

New Analysis : Strange Names For Methods (Classes/StrangeName)

New Analysis : SQL queries (Type/Sql)
New Analysis : Avoid Non Wordpress Globals (Wordpress/AvoidOtherGlobals)

Upgraded analysis : Should be single quote, escape sequences refined.

Upgraded analysis : Should Preprocess now support determinist PHP functions

Upgraded analysis : 1817 / 1824 test pass (99.6% pass)

* Tokenizer
— Fixed LOC counting.
— Fixed edge case when closure is directly use as argument
— Fixed double inventories for Use’s Definitions
Version 0.10.0 (Azure Lion, 2017-02-06)
 Architecture

— Replacement of booleans with constants (WIP)

Removed PHPIloc (merged features into load)

Added coding standard for Code Sniffer (ruleset.xml)

PHP version used default to running script version

Now reading Token Constants from the binaries

Doctor reports project configuration if -p is used
* Report

90 Chapter 2.

Release Note

Exakat Documentation, Release 1

¢ Analysis

New Analysis : No Boolean As Default

New Analysis : Raised Access Level

New Analysis : Recommend Wpdb->prepare when variables are in query

Directive suggestion now include error_log

Upgraded analysis : UselessParenthesis also checks Typehint
Upgraded analysis : 1804 / 1811 test pass (99.6% pass)

¢ Tokenizer

Reinforced detection of parsable PHP script

Fixed Files command : it now cleans data before running

Removed warning about memory
— Index creation made lighter
Version 0.9.9 (Pilanpo Bodhisattva, 2017/01/30)
* Architecture
— Moving true/false to constants
* Report
— Ambassador : Added ‘Compilation’ and Version compatibility reports.
— Prepared collection of dependencies in dump
¢ Analysis

— New Thema : Compatibility PHP 7.2

New analysis : Deprecated Features of PHP 7.2

New analysis : Removed Function for PHP 7.2

New preference : New Line Style

Upgraded analysis : 1781 / 1802 test pass (98.9% pass)
Version 0.9.8 (Multiple Eyed Creature, 2017-01-23)
* Architecture
— Moved ‘Truthy/Falsy’ as ‘boolean’ characteristics
— Updated Gremlin3 interface to handle Groovy maps
— Added default name when creating project
* Report
— Added checks on merged table at Dump stage
— Added support for PHP 7.1.1 and 7.0.15
* Analysis
— New analysis : variables assigned twice or more
— New preference : new x() / new x;

— Upgraded analysis : 1785/ 1794 test pass (99.5% pass)

91

Exakat Documentation, Release 1

— Fixed Interface usage : missing interfaces extends interfaces
— Added extra check for Functioncalls
* Tokenizer
— Added support for instanceof + several names
Version 0.9.7 (Hundred Eyed Demon Lord, 2017-01-16)
* Architecture

— Fixed constant names for tokens in Load

Changed duplication check to dedup(). Cleaned analysis for duplicates.

Speed but for large projects. Work in Progress.

Reduced usage of static properties

Better detection of PHP scripts during project

* Report

Fixed generation of inventories when no target is provided

¢ Analysis

New analysis : Could Be Protected Property (not a public)

New analysis : avoid large literal arrays in local variables.

New analysis : report long arguments.
— Removed analysis : Structures/EchoArguments (double with Echo With Concat)
* Tokenizer
— Fixed list of constants for PHP 7.1
Version 0.9.6 (Spider Demons, 2017-01-09)

¢ Architecture

Added support for report/analysis theme list in config (exakat and project)

Better cleaning of projects

Doctor : Initialisation with themes/reports; Reports executable being used.

Added a log for gremlin Queries

Rebuild the server command

Added ‘catalog’ command

* Report

Split Phpconfiguration into eponymous and Phpcompilation

¢ Analysis

New analysis : avoid Glob, use scandir without sorting.

New analysis : always configure ext/sqlite3 FetchRow()

New analysis : no string with append

— Removed analysis : Structures/ForeachSourcesNotVariable

Upgraded Analysis ‘Should Import Functions’

92 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Upgraded analysis : 1764 / 1773 test pass (99.5% pass).
* Tokenizer

— Added ‘aliased’ property to nodes.

Version 0.9.5 (Immortal Ziyang, 2017-01-04)

¢ Architecture

— Better check of PHP version

* Report
— Ambassador : report analysis settings
— PHP Compilations : supports all extensions
— New report : Inventories

¢ Analysis

New analysis : Don’t Use Fallback to Global space

New analysis : MongoDB (ext/mongo version 3)

New analysis : zbarcode

Bug : Fixed intval for octals in Arrays/MultipleldenticalKeys

Removed analysis : Php/InconsistantClosingTag (double)
¢ Tokenizer

— Ranking arguments, not functioncall

Version 0.9.4 (Lady of Jinsheng Palace, 2016-12-19)

¢ Architecture

— Rewrote the concurrence check (removed needs for ext/sem)

Results are never double anymore

Upgraded gremlin calls, to handle n

Dump cleans the previous values before dumping

Excluded namespaces classes when searching for external libraries

* Report

— Covers more compilation directives (Not finished)

¢ Analysis

New analysis : Final by Ocramius

Upgraded : Comparison with == : added curl_exec

Upgraded : isset with constant (mistake on properties as arrays)

Upgraded : Avoid using now uses full NS path

Upgraded : Useless instructions handles for() correctly

Upgraded : Recursive, IsGenerator and Loop Calling includes yield from

Upgraded analysis : 1741/ 1750 test pass (99.5% pass).

Ambassador : extension usage, inventories, global lists, stats, PHP Compilation directives

93

Exakat Documentation, Release 1

Version 0.9.3 (Purple-Gold Bells, 2016-12-12)
¢ Architecture
— Lots of cleaned code

Harmonized data for extensions

Stop ‘project’ if no code is available

Now using stub in phar.

* Report

Added directives, bugfixes, external services and

Added support for PHP 7.0.14 and 5.6.29

¢ Analysis

New analysis : Wordpress, recommend prepare()

More favorite reports : final ?> and unset()/(unset)

Reduced number of double reports for many analysis

Update : Fixed analysis with $THIS

Upgrade : report useless casting of comparisons

Update : Should use this takes into account parent
Version 0.9.2 (Golden Haired Hou, 2016-12-05)
* Architecture
— First version of Exakat for docker (beta)
— Added a waiting loop in cleandb

— Docs include a list of new analysis per version

* Report
— Added 2 first inventories, Appinfo() in Ambassador
— Favorites now reports global/§GLOBALS
— Restore composer.lock report
— Upgraded uselessReturn for the final return.
e Analysis

— New analysis for Newt, Nsapi,

New analysis : __ in methods names

New analysis : Too many local variables

New analysis : Avoid array_push()

Upgraded ext/apache coverage
Version 0.9.1 (Sai Tai Sui, 2016-11-28)
* Architecture
— Docker supported in exakat/config.ini for PHP binaries.

— Added exakatSince in analysis documentation

94 Chapter 2.

Release Note

Exakat Documentation, Release 1

* Report

¢ Analysis

Added some missing tokens in anonymize command

Added several new analysis for PHP 7.1

new analysis : find methods that could return Void

new analysis : find malformed octal sequence in strings

new analysis : spot rethrown exception

new analysis : reach the last element

new analysis : find undefined Zend Framework classes (2.0 to 3.0)

Upgraded analysis : 1706 / 1714 test pass (99.5% pass).

¢ Tokenizer

Fixed handling references (some were missing)

Fixed handling of ellipsis (some were missing)

Version 0.9.0 (Python Demon, 2016-11-21)

¢ Architecture

* Report

¢ Analysis

Project now include ‘Preference’ analysis

Dump is now incremental (-u option), and doesn’t need to be run in paralell
Added new hashAnalysis table, to handle generic results from analysis.
Added project name in the graph.

New command ‘status’ to report the current status of exakat

Ambassador includes ‘Preferences’ section and new menu system

Upgraded progressbar to display project processing

New analysis : Early Bail Out (with if/then)

New analysis : PHP 7.1 backward incompatibilities with microseconds
New analysis : Wordpress : recommend using WP api, not PHP.
Upgraded ‘Constant condition’ to include do..while()

Upgraded ‘Useless Abstract’ to include methodless classes

Upgraded analysis : 1687 / 1697 test pass (99% pass).

¢ Tokenizer

Added ‘Array’ to list of determinist functions (more constants are spotted)
Fixed ‘Name’ for Array Short Syntax.

Fixed variadic support

Version 0.8.9 (Yellow Brows Great King, 2016-11-14)

¢ Architecture

95

Exakat Documentation, Release 1

Fixed and document -tgz and -zip option of init

Removed progress folder

Made MagicNumber a parallel task in Project.

Turned some die into assertion()

.phar doesn’t report any PHP errors.

Checked compilation with PHP 5.3->7.2

* Report
— Removed Faceted report
— Added Bugfixes for PHP 7.0.13, 5.6.28 and PHP 7.2
— Added ‘One variable string’ to Radwell report

¢ Analysis

New analysis : Object Calisthenics #1, #4

New analysis : check that properties are all set at constructor time.

New analysis : spot useless checks

Updated UndefinedParentMP to take PHP ext classes into account

Upgraded ‘array_merge in loops’ with file_put_contents

Upgraded ‘useless parenthesis’ with math operations

Upgraded analysis : 1666 / 1682 test pass (99% pass).

Added debug Query method to analysis
¢ Tokenizer
— Fixed Files to compile first, then count tokens

Find Ext Lib handle UT classes better

Added limit to ‘code’ before loading into database. There is a 2M limit.

Fixed edge case with nested foreach()

Fixed segmentation fault when getting tokens from a script with wrong encoding
Version 0.8.8 (Apricot Immortal, 2016-11-07)
* Architecture
— Added concurency test to avoid running several instance at the same time
— Report error when it happens with git clone

Added UT classes to external libraries

Dump is now hidden until finished.

Better detection of java and composer (Thanks Julien)
* Report
— New report : Radwell
— New report : PhpConfiguration helping with configure and php.ini

— Ambassador : Fixed dashboard values

96 Chapter 2. Release Note

Exakat Documentation, Release 1

¢ Analysis

New analysis : time() vs strtotime(‘now’)

New analysis : useless casting

New analysis : No Isset() with Empty()

New analysis : don’t echo errors

New analysis : ext/rar

New analysis : use Class::class when possible

Added array_key_exists() to slow functions list.

Upgraded UpperCaseKeywords to handle partial uppercase
Added reported directives for ext/filter

Upgraded ‘Variables used once’ to exclude $this and arguments
Upgraded Unreachable Code with break/continue;
Multiple Identical Keys now handles null, boolean, real.

Upgraded analysis : 1652 / 1668 test pass (99% pass).

e Tokenizer

Now spots true, false, null as Boolean and Null

Removed ‘xargs too many arguments’ error on Linux

Version 0.8.7 (Naked Demon, 2016-10-31)

¢ Architecture

¢ Analysis

Upgraded Boolean and Integer to report results without storing them in graph

New analysis : modernizable empty() calls

New analysis : recommend Positive conditions

New analysis : drop else after return

Upgraded analysis : unreacheable code handles if/then with returns.
Added tests for Boolean and Null

More not Hashes dict.

Upgraded analysis : 1637 / 1650 test pass (99% pass).

¢ Tokenizer

Fixed line number of <?=

Fixed token on arguments

Version 0.8.6 (Fuyun Sou, 2016-10-24)

¢ Architecture

* Report

New command to ping a queue

More documentation

97

Exakat Documentation, Release 1

— Ambassador report sped up multiple times
— Text, Json and XML all report only analysis (not the dependencies)

¢ Analysis

New analysis : suggest ternary instead of Ifthen

New analysis : check for returned value usage

Added support for PHP 7.0.12 and 5.6.27

Added more bugs fixing from extensions

Fixed analysis for Zend Framework 1

Ignore $this in variable used once

Fixed report with unlimited arguments functions

Overwritten literals : Ignore assignations in for()
Upgraded old PHP 5.* analysis to Gremlin 3
Upgraded analysis : 1639 / 1645 test pass (99% pass).

* Tokenizer
— Fixed precedence between require and .
— Better fullcode for <?=
Version 0.8.5 (Naked Demon, 2016-10-17)
* Architecture
— Moved all classes under Exakat folder for clean hierarchy
* Report
— Ambassador : restored line number in display

¢ Analysis

New analysis, check for substr() comparisons with literals

New analysis, suggest boolean cast, instead of Ternary.

New analysis, spot 3 levels of if/then

Upgraded ‘hardcoded password’, for kadm5 and hash_* functions

Upgraded ‘external libs’, with Zend Framework
Upgraded analysis : 1625 / 1638 test pass (99% pass).
Version 0.8.4 (Lingkongzi, 2016-10-10)

¢ Architecture

— Moved Tasks into ExkatTasks

— Fixed findExternalLibs

* Report
— Ambassador report got good annex, fixed settings and faceted search
— Omit clearPHP if not present in docs

¢ Analysis

98 Chapter 2.

Release Note

Exakat Documentation, Release 1

New analysis : detect multiple identical traits/interface in CIT

New analysis : suggest creating aliases to reduce code

New analysis : spot aliases that may be reused again

New analysis : hidden use, that are not at the beginning of the code

Upgraded analysis : 1607 / 1618 test pass (99% pass).

More documentations to many analysis

HasMagicProperty report all magic methods

Upgraded ‘Useless Parenthesis’ with more situations

Upgraded ‘Unchecked resources’ with 2 more situations

Fixed several analysis when using Boolean and Null as a class

Fixed analysisIsNot with arrays

Removed include-like from undefined functions

Arrays/AmbiguousKeys : Extended to arrays calls
* Tokenizer
— Fixed edge case with return 7>
— Fixed path for reporting
Version 0.8.3 (Guzhi Gong, 2016-10-03)

¢ Architecture

Created temp folder .exakat in projects_dir

Removed mentions of float, only using Real

Moved Config to ExakatConfig

More examples in docs

* Report

Added settings and files to Ambassador

¢ Analysis

New analysis for dependant Traits

Added new Theme ‘Cakephp’ with 6 analysis for migration

New values for Not-a-hash

Unresolved Catch now takes Throwable into account

* Tokenizer
— Fixed edge case where return is used inside if/then without {} nor value.
— Fixed ‘code’ and ‘token’ for ?: and ()
Version 0.8.2 (Jinjie Shiba Gong, 2016-09-26)
* Architecture
— More examples in docs

— Fixed ‘file’ in results

99

Exakat Documentation, Release 1

* Report
— Added more media for Ambassador

¢ Analysis

New analysis for count/strlen compared to O

Upgraded analysis : 1563 / 1579 test pass (99% pass).

Backported all 4 Wordpress analysis (wpdb, nonce usage)
— Added new Wordpress analysis : variable escaping in templates
* Tokenizer
— Fixed <?=so it is handled like echo
Version 0.8.1 (Babo’erben, 2016-09-19)
* Architecture
— Added main Try/Catch
* Report
— Added ‘Ambassador’ report.

¢ Analysis

Upgraded analysis : 1540/ 1561 test pass (99% pass).

More documentation (examples, glossary)

Added a list of stopwords for No Hardcoded Hash

Upgraded analysis ‘No Hardcoded Path’ with protocols and glob with wildcards

Upgraded analysis ‘No Hardcoded Hash’ with stopwords

Added new Analysis for portability : spot common Linux files

Added new Analysis : use system temp dir, not hardcoded one

New analysis that spot unused protected methods

Added Time-to-fix and severity to all analysis
* Tokenizer
— Fixed edge case with if/then and try/catch
— Synchronized constants in Tokens/Consts*.php
— Added support for PHP 7.2
Version 0.8.0 (Benbo’erba, 2016-09-12)
* Architecture
— More examples in the docs
— Better find root in export
* Report
— Prepared code for new report style
¢ Analysis

— New analysis : no throw in __destruct

100 Chapter 2.

Release Note

Exakat Documentation, Release 1

— New analysis : spot empty blocks in control structures

— Update : Check parse_str and mb_parse_str()

— Upgraded analysis : 1524 / 1540 test pass (99% pass).
» Tokenizer

— Fixed representation of [] and [index] with static properties

Version 0.7.10 (Nine Headed Bug, 2016-09-05)

* Architecture

— Added optional dependency to mbstring in Doctor
¢ Analysis

— Added analysis for PHP 7.1 features

— Upgraded analysis : 1377 / 1510 test pass (91% pass).
* Tokenizer

— Removed parasit ‘void’ added in sequences.

Raised export max depth to 15.

Fixed FQN for new without parenthesis

Fixed support for PHP 5.5/5.6.

Added support for iterable

Checked support for extensions and ignore dirs
Version 0.7.9 (Wansheng Princess, 2016-08-29)
* Architecture

— Added several features at Loading time : mark global variables in $GLOBALS, fallback FQN in
functions, link constant to definitions.

¢ Analysis
— Added analysis for impossible comparisons (count($a) < or >= 0)
— Added analysis for PHP 7.1 : removed directives, added functions
— Upgraded analysis : 1485 / 1522 test pass (97.5% pass).

* Tokenizer
— Fixed edge case with <?= $v;
— Fixed priorities between include and .
— Better support of trait in classes

Version 0.7.8 (Wansheng Dragon King, 2016-08-22)

* Architecture
— Prepared databases for PHP 7.2

¢ Analysis

— Reports that preg_match results are not checked

101

Exakat Documentation, Release 1

— Report List short syntax usage.
— Upgraded analysis : 1224 / 1493 test pass.
* Tokenizer
Version 0.7.7 (Water Repelling Golden Crystal Beast, 2016-08-17)
¢ Analysis
— Upgraded Bug database to handle PHP 7.0.10, 5.6.24 and 5.5.38
Version 0.7.5 (Jade Faced Princess, 2016-07-19)
* Architecture
— Added ‘anonymize’ command, that anonymize files and projects

¢ Analysis

— new analysis : recommend preg_replace_callback_array() when there are several call to

preg_replace_callback_array()
— Upgraded analysis : 1103 / 1464 test pass.
* Tokenizer
— Lots of fixes for stability : tested on 28M tokens
Version 0.7.4 (Great Sage Who Pacifies Heaven, 2016-07-12)
* Architecture
— Entirely rewrote the “Tokenizer’ part
— Upgraded database schema
¢ Analysis
— Upgraded analysis : 1027 / 1461 test pass.
* Tokenizer
— Entirely rewrote the “Tokenizer’ part
— 1851 UT pass correctly (extra 51)
Version 0.6.7 (Red boy, 2016-05-30)

* Report
— Added List With Keys in Appinfo()
— Added by-reference functions mention
— Now reporting good visibility/static for __callstatic
— Added bug info for PHP 7.0.7, 5.5.36, 5.6.21
¢ Analysis

— New : recommend instanceof over is_object()
— Fixed several ignored limitations, due to case : $phpversion
¢ Tokenizer

— Fixed ‘originclass’ in namespaced use

102 Chapter 2.

Release Note

Exakat Documentation, Release 1

Version 0.6.6 (Princess Iron Fan, 2016-05-23)
* Report
— New report, suggest disable_functions directive value.
— Added support for memcached directives

* Analysis

New analysis : spot throw without new

New analysis : suggest adding 2nd parameter to unserialize in PHP 7.0+

New analysis : spot successive if/then with the same condition

Added support for zendoptimizer and suhosin extensions

PHP7 indirect expression : added support for {} in properties
* Tokenizer
— Raised cycle count, to speed up building AST for large projects
Version 0.6.5 (Great Sage Who Pacifies Heaven, 2016-05-16)

¢ Analysis

New analysis : spot globals that may be turned into property

New analysis : check that ZF1 classes are well located

Upgraded ‘dangling foreach reference’ to support key=>value

Better support for PHP 7 indirect expression

More directives for xdebug

Eval Without Try is PHP 7 only

— No Choice analysis is now case insensitive

¢ Tokenizer

Added support for keys in list() (PHP 7.1)

Added support for constant visibility (PHP 7.2)
Added support for Multi catch : catch(AIB $e) (PHP 7.1)

Fixed bug with + and instanceof

Fixed precedence between :: and ??
Version 0.6.4 (Bull Demon King, 2016-05-09)
* Architecture
— Externalized the list of recognized libraries to Json
— Added ‘Wordpress’ and ‘Coding convention’ as Recipes
* Report
— Initial report for Zend Framework. Still prototyping.
* Analysis
— Accelerated analysis for Implicit GLobals variables

— New analyze : Indirect Injections (Security)

103

Exakat Documentation, Release 1

New analyze : Should Use Coalesce (code upgrade)

New analyze : Suggest dirname(__FILE__)=>_ DIR__

Added ‘str_rot13’ as unsafe ‘crypto’

Properties without default can’t be redefined

Added Yield and Yield From as structures without parenthesis needs

Double Assignation, unless 2nd call is a functioncall (less false positives)

Version 0.6.3 (Jade Faced Princess, 2016-05-02)

¢ Architecture

* Report

¢ Analysis

Removed several useless pieces of code (self analysis)
Added documentation for Wordpress Recipes

Lengthened Cycle for tokenizer

Added bugfixes for PHP 7.0.6, 5.6.21, 5.5.35.

Now reporting token counts per files

New analysis : Spot variable that holds $_GET, $_POST, $_REQUEST or $_COOKIE values (inter-
nal)

New analysis : Report variables that are overwritten by themselves

New analysis : Report useless switch (empty, 1 case only)

Upgraded NoChoice to handle larger sequences

Upgraded Useless Global to handle global $x / $GLOBALS][‘x’] situations
New analysis : Wordpress Recipe : Unverified Nonce, Best Usage for $wpdb
New analysis : Void for PHP 7.1

* Tokenizer

Fixed but with Typehint

Added phppowerpoint class in external libraries

Version 0.6.2 (Long Armed Ape Monkey, 2016-04-25)

¢ Architecture

Fixed phar detection (based on ext/phar)

Cleaned code with myself

* Report
— New report format : clustergrammer
¢ Analysis
— New analysis : same conditions in If / Then
— New analysis : spot dead code in catch expressions
— Static loops now exclude methods usage
104 Chapter 2. Release Note

Exakat Documentation, Release 1

Indirect variable expression are stricter

preg_* Option e has better support for delimiters

Upgraded Direct Injection in case of concatenation

Detect Ellipsis when counting arguments
— Could use short assignation : avoid $a += $a + 3;
* Tokenizer
— Sped up Typehint detection
— No indexing for T_STRING in properties
— Reduced errors from token_get_all()
Version 0.6.1 (Red Bottomed Horse Monkey, 2016-04-18)
* Architecture
— Prepared to support PHP 7.1
— Fixed bug in user / passwords when initing the project
— Better support for ::class when searching for libraries

¢ Analysis

UselessParenthesis : spot nested parenthesis

Spot exceptions that are thrown but uncaught by the current code

Support for ext/lua,

New : Check catch order in try/catch

Better identification of Composer classes, based on composer.json

Now spot interfaces in use declarations (less undefined interfaces)

¢ Tokenizer

Added support for PHP 7.1

— key => value in list() calls

visibility for constants in Classes and Interfaces

Accelerated up Typehint support
Version 0.6.0 (Intelligent Stone Monkey, 2016-04-11)
 Architecture
— Fixed a bug in Find external libraries
— Applied fixed based on new analysis audit
— Fixed a bug that prevented results to be prepared for report (Thanks Philippe G.)
* Report
— Now reports reason for excluding a file from analysis
* Analysis
— New analysis : Logical Mistake (first version),

— New analysis : Iffectations (code restoration)

105

Exakat Documentation, Release 1

New analysis : Common alternatives

New analysis : No Choice (No alternatives)

New analysis : Random_* Without Try (security risk)

New analysis : Unknown PCRE options

New analysis : Identical conditions

New analysis : Hardcoded hashes

Upgrade List with appends with variable name

Upgrade /e option detection

Fixed detection of unused use, with long namespaces.

Added finfo to ext/finfo

Finds exceptions that are reserved for later throwing

Exclude anonymous classes from Already Defined Interface
* Tokenizer
— Extended cycle number to speed up tokenizer.
— Better escaping of file names
Version 0.5.9 (Six Eared Macaque, 2016-04-04)
* Architecture

— One progressbar per Recipe during project analysis

report’s documentation

Upgraded ‘External Lib’ to ignore Composer folders.

Fixed a bug about interpreting tokens

Dump collects classes, interfaces, traits definitions

Now storing project name in database for future use

Removed PHP configuration modifications (error_reporting, display_errors)

* Report

— Added ‘Uml’ report : hierarchy report

— Now reports Pear Usage

— Upgraded Bugfix database for 7.0.5, 5.6.20 and 5.5.34

— Report Yield (from) usage

— New external configuration files : bazar, github, docker, openshift
¢ Analysis

Added detection for undefined classes in ZF (1.8 to 1.12)

New : report undefined Traits

Added support for parent/grandparent when checking argument numbers
— Added support for V8js

¢ Tokenizer

106 Chapter 2. Release Note

Exakat Documentation, Release 1

Fixed bug in fullnspath for use within trait or class

It is possible to reach a property on an array append

Fixed AST between PHP 5 and 7 for globals

Simplified ++ analysis
Version 0.5.8 (Sun Deity of Mao, 2016-03-28)
* Architecture

Moved to self::, instead of static::.

First UT for command line

Sped up phploc. Prepare code for finite states, in Tasks.

Prepare for Gremlin3 (moved gremlin calls to class)

Reduced shell_exec usage

* Report

— Fixed display bugs in Devoops report

— Removed double analysis

— ‘Wrong number of arguments’ now supports constructors
e Analysis

Upgraded ‘No Hardcoded IP’ to handle constants, spot domains

Added support for TokyoTyrant

New analysis : spot simple regex, and suggest strpos

Excluded “$a[b]” from undefined constants

¢ Tokenizer

Fixed bug with nested call to echo.

Fixed bug where concatenation ends on a ‘AS’ keyword

Added support of Constants in Foreach

Fixed multiple bugs in Grouped Use

Support for function as ‘class’ in static calls

Comparison accepts powers

Added support for empty array short syntax in sequence

Support constant with visibility

Parenthesis may be the base for Arrays
Version 0.5.7 (Scorpion Demon, 2016-03-21)

¢ Architecture

Added support for folders in UT, for tests that requires several files

Improved compatibility with PHPunit

Moving gremlin_query() to Gremlin2 class

Doctor also reports for phar

107

Exakat Documentation, Release 1

Improved adaptation to PHP and Exakt in server mode

Autoload shouldn’t die

— Fixed case when calling Phpexec

Upgraded status presentation in server mode

* Report

More details for Global Variable list

¢ Analysis

Now spotting class when it is inside a string

Check for $this outside a trait/class

Check for ternary/concatenation precedence

Spot classes that attempt to extend final

Spot set_exception_handler() that may need rework

Refined array_merge analysis, in case of nested loops
* Tokenizer
— Yield [from] may be inside an array
— Refactored for/foreach tokens
— Added support for a ‘Project’ node
Version 0.5.6 (Ruler of Women’s Country, 2016-03-14)

¢ Architecture

Fixed some backward compatibility with PHP 5.4

Started revamping ‘Status’ command

Centralized all tokenizations to PhpExec class

Removed usage of __DIR__and __FILE__

¢ Analysis

Spot usage of empty() that can’t work on PHP 5.4

Suggest using random_int instead of rand

Upgraded ‘No Array_merge in loops’ with array_merge_recursive

Added support for scalar type hint in Undefined Classes
— New analysis : Better rand()
* Tokenizer
— Instanceof has lower precedence than comparison
Version 0.5.5 (Immortal Ruyi, 2016-03-07)
* Architecture
— Added default values for all neo4j_* configs
* Report
— Added support for bugfixes in 7.0.4, 5.6.19 and 5.5.33

108 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Added support for bugfixes in 7.1.0-dev
* Analysis

— Added support for Typehint in Undeclared Classes

Extended ‘Multiple Classes in One File’ to interfaces and traits

Added analysis for truthy and falsy

Spot interfaces implemented by parents (Thanks PHP Inspect)
— Report usage for unsafe Curl options
* Tokenizer
— Fixed emptyString inside a Heredoc
— Fixed bug where Sign has lower priority than Power
Version 0.5.4 (Nezha, 2016-02-29)

¢ Architecture

Removed some shell_exec() to help with portability

Clean command now rebuilds an empty datastore

Check the availability of php binaries before using

Produce report in a hidden folder, then push it

* Report

Report the list of bug fixes that apply to code
¢ Analysis
— Help using preg_match_all options
* Tokenizer
— Fixed a bug with reference and instanceof
Version 0.5.3 (Li Jing, 2016-02-22)
* Architecture

More UT

Supports symlinks for neo4;j’s folder

Supports symlinks for ‘code’ folder in projects

Added upgrade command to check for exakat’s available versions and upgrade

¢ Analysis

Spot CLI scripts

Undefined Interfaces avoids self, parent, static

Fixed bug in spotting undefined Interface

Variable Used Once in a method are not arguments

Added support for all structures in Double Assignation
Version 0.5.2 (Single Horned Rhinoceros King, 2016-02-15)

¢ Analysis

109

Exakat Documentation, Release 1

Fixed functioncall detection with ‘empty’
Refined ‘Buried assignation’ analysis
Fixed a bug when using definitions (class, trait, interface, functions. ..)

Better support for case-insensitive constants

¢ Tokenizer

Fixed bug in use statement

Now spots PHP code in files without extension
Upgraded support for grouped Use statement
namespace may be a valid nsname part

Fixed bracket reports in do. . . while

Version 0.5.1 (King of Spiritual Touch, 2016-02-08)

¢ Architecture

* Report

Added test in UT to skip incompilable sources

Stabilized tokenizer’s UT (partial)

HTML protection in Devoops format
No display of negative stats
Added support for directives : wincache, xcache, apc, opcache

Added support for eaccelerator and openssl

New analysis : Spot unknown PHP directive names
Fixed Constants/MultipleDefinedConstants

Better detection of functioncalls (with List)

Better spotting of ini_set arguments

Unreachable code now finds die and exit
ObjectReference won'’t report references on scalar types
Revamped ‘pregOptionE’ analysis

Cleaned code with too many arguments

Removed useless print

Better report of eval() usage

Revamped ‘Dynamic code’ report

Fixed bug in Case/Default that are empty

Avoided sequences of sequences in Case/Default

Fixed Detection of classes’ usage with extension

¢ Tokenizer

110

Chapter 2.

Release Note

Exakat Documentation, Release 1

Fixed bracket detection on While and DoWhile

Detect void in DoWhile

— Removed useless T _DIE token

Fixed fullcode processing for anonymous classes
Version 0.5.0 (Immortal of Antelope Power, 2016-02-01)
* Architecture
— Added support for HTTP API, through ‘server’ command.
¢ Analysis
— Fopen modes checked
— Redefined default, in class’s properties

¢ Tokenizer

Fixed situation where echo and print used parenthesis (they don’t)

Fixed rare but with instanceof and concatenation

Fixed support of integers in Gremlin

Fixed bug in addslashes and and $ protection order

Made Assignations more robust (no un-processed tokens)

Reduced the number of shell_exec usage => speed up

Finished support for relaxed keyword support in classes (PHP 7)
Version 0.4.6 (Immortal of Elk Power, 2016-01-25)
* Architecture
— New installation script with Vagrant and Ansible (Thanks Alexis!)
— Updated documentation
— Added a command to remove a project
* Report
— Devoops reports has case-insensitive menu sort

¢ Analysis

Spot redefined properties, classes and methods.

Spot properties that may be turned private

Fixed special case in Wrong Number Of Arguments

Fixed ‘OnePage’ analysis

¢ Tokenizer

Finished support for relaxed keywords in classes

Sped up tokenizer by keeping counts of tokens in datastore

Fixed detection of CakePHP

Fixed special case with Labels

Fixed rare case with die() within ternary operator

111

Exakat Documentation, Release 1

Version 0.4.5 (Immortal of Tiger Power, 2016-01-18)
* Architecture
— Upgraded documentation
— Default command is ‘help’
* Report
— Better version for FacetedJson report

¢ Analysis

New analysis that spots wrong type of argument in PHP internal functions

Fixed Isset With Constant for PHP 7

Fixed a bug that limited query size during analysis (good for bigger projects)

Include variadic (...) to Variable Argument Number
* Tokenizer
— Fixed a bug that blocked tokenizer when a analyzed script generated parse errors.
— Added support for bazar, svn.
— Fixed a bug in Nsnames at Loading time.
Version 0.4.4 (Crown Prince Mo’ang, 2016-01-11)

¢ Architecture

Reviewed OnePage analysis

Dump as now an option to select Recipes

Dump forces line to be integer

Added a task to update a project’s code (git only ATM)

* Report
— Better check when opening database for report (more to come)
— FacetedJson (and Json) report ignore non-unicode lines
— Added ‘search’ box to facetedJson

¢ Analysis

— Switch To Switch suggestions
— Unused arguments patch for arguments used in methods
— Unused properties doesn’t mistake function static variable

¢ Tokenizer

All Nsnames are now build at Loading time

Constants may be calld ‘const’

More relaxed syntax for methods (exit, include, eval...)

Foreach may use coalesce
— Fixed an edge case with Closures in functioncall

Version 0.4.3 (Tuolong, 2015-01-04)

112 Chapter 2.

Release Note

Exakat Documentation, Release 1

* Architecture
— Copyright year bump
— Doctor reports memory_limit and php version consistency
— Switched to rmDirRecursive
* Report
— Removed old style reporting system

¢ Analysis

Fixed fileupload and filesystem directives reports

Added report of Environment variable usage

Added iconv_set_encoding to the list of directive usage

Extension analyzes now takes into account namespaces and traits

Analysiss all have severity and time to fix
* Tokenizer
Version 0.4.2 (Red Boy, 2015-12-22)
* Architecture
— Published documentation on http://exakat.readthedocs.org
— First version of the faceted report (-format Faceted)
* Report
— First version of the faceted report (-format Faceted)
— Fixed Dump that actually finishes after some time
¢ Analysis
— Spot unused arguments
— Fixed notInlnterface() filter
— Upgraded HtmlEntitiesCall
Version 0.4.1 (Azure Lion, 2015-12-14)
* Architecture
— Rebuild the report system, for speed and versatility.
* Report
— Available format : JSON, Sqlite, XML, Text and HTML (Devoops).
— Rules are now part of the documentation.

¢ Analysis

Upgraded ‘Buried assignations’

Locally Unused also spots properties without visibility (but with definition)

Could be class constant, if the property is used at least once

Better detection of files that are Definitions only (fix at Namespace calls)

113

http://exakat.readthedocs.org

Exakat Documentation, Release 1

— ++ is now correctly reported as isRead and isWritten in Arguments
— Closure’s use($x) are now reported in both context (calling and called)
— Removed usage of ‘back’ method, that is blocking at high token counts

¢ Tokenizer

Fixed support for {} and {$ } inside strings

Fixed bug with Typehint, that prevented compilation

Fixed several (rare) edge cases with Sign and Staticproperties.

Fixed detection of closing tags
Version 0.4.0 (Lion Lynx Demon, 2015-12-07)
 Architecture
— Made PHP 7.0 the default (moved to 0.4.0)
— Ran unit tests on PHPunit 5.1
— Added a background tasks to build report. Will allow for progressive report.
* Report
— Rewrote the report from scratch. Should be finished next iteration.
— New report is working for XML and Text report.

¢ Analysis

Added support for ext/pecl_http

Added several classic folders as ignored by default (change this in config.ini)

Create a check for functioncall (and not methods)

Spots join(*’, file())

Safely ignoring some dynamic calls in undefined functions (Thanks Marc Delisle)

Removed ArrayAppend from double assignation
* Tokenizer
— Fixed a bug when class was auto-referenced.
— Fixed detecting Static properties when they are also arrays.
— Fixed fatal errors for mal-formed octals
Version 0.3.12 (Nine Tailed Vixen, 2015-11-30)
* Architecture
— ProgressBar is now displayed during Analyze phase.
* Report
— Report list of error messages used in the library
* Analysis
— Omit eval with hardcoded strings
— Exclude some index from _SERVER from the report (they are safe)
— Exclude php://* files as hard coded path

114 Chapter 2.

Release Note

Exakat Documentation, Release 1

— Report usage of timestamp to calculate duration
— Spots unused traits
— Fixed support for big integers

¢ Tokenizer

Checked UT on PHP 7 (Soon to become default version)

Fixed version detection in Tokenizer

Fixed fullnspath in Use expression;
Version 0.3.11 (Hu A’qi, 2015-11-16)
* Architecture
— Report external services files that may be in the repository
* Report
— Report nested dirname calls (may be changed in PHP 7)
¢ Analysis
— Better spotting of static loops
— Don’t confuse $globals and SGLOBALS
* Tokenizer
— Rewrote support for As in classes.
— Fixed arguments that were indexed as Void
— Trimmed code
Version 0.3.10 (Silver Horned King, 2015-11-09)
* Architecture
— Centralized call to cypher.
* Report
— Sped up several analyzes

¢ Analysis

Fixed naming bug with reflexion

Support class name in arrays, short syntax

Report Relay Functions

More PHP 7 incompatibilities reports

¢ Tokenizer

Support for 7.1 compilation (dev only)

Added cakephp to external libraries

Fixed parsing bug with static (as property definition)

— Fixed ‘count’ in sequences from Function

Rewrote Argument detection (when there is no parenthesis)

First support for relaxed keywords in classes. More to come.

115

Exakat Documentation, Release 1

Version 0.3.9 (Golden Horned King, 2015-11-02 up)
¢ Architecture
— Cleaned code with Exakat

¢ Analysis

Refined report about double assignation

Fixed argument counting in Function Definition

Better support of array in Locally Used Properties

Updated Composer database
* Tokenizer
— Fixed a bug that ignored Blocks
— Fixed a rare bug with echo and the following arguments
Version 0.3.8 (Baihuaxiu, 2015-10-26)
* Architecture
— Cleaned too many display (they go to log now), leaving commandline empty (or -v)
— A lot more PHP 7 incompatibilities spotted
* Report
— Added the list of global variables in the projects (if any)
— Fixed reports for PHP 5.2 (they were ignored)

¢ Analysis

Better handling of composer in unresolved classes

Spot setlocale with string (PHP 7)

Spot string unpacking (PHP 7)

Upgraded static method call, to avoid classes of the same family

Report eval without try/catch

Report preg_replace with /e

Fixed report for empty list()

Spot hexadecimal in strings

Report usort (and co) as incompatibilities between PHP 7 and 5

¢ Tokenizer

Fixed edge case with Sign and namespaced function

Added xajax, adodb and gacl as common library

Fixed arguments in short array syntax

Fixed case where [3] was spotted inside a string
Version 0.3.7 (Yellow Robe Demon, 2015-10-19)
 Architecture

— Added and reviewed many UT. More stability.

116 Chapter 2. Release Note

Exakat Documentation, Release 1

* Report
— Fixed the report of the actual version of PHP being used.
— Non-run analysis are not marked with a stethoscope
— Report now report closures and not the containing method
— Removed some dashboard that would generate empty links
¢ Analysis

— Better spot of blocks inside Alternative syntax
— Speed up method spotting
— Fixed properties which were mistaken with deep definitions
* Tokenizer
— Fixed fullcode for Typehint
— Removed Ppp and moved it to Visibility
Version 0.3.6 (White Bone Demon, 2015-10-12)
* Architecture
— Large speed up at Parsing stage, for large projects
— Added git informations in Doctor

¢ Tokenizer

Changed processing for Arguments.

Support for more PHP 7 features, including Use Grouping,

Fixed support for ~

Simplified ::class handling
Version 0.3.5 (Mingyue, 2015-10-06)
* Architecture

— Reported usage of array constants, improving backward compatibility

— Checked running on PHP 7
* Report
— Added Definition annex
— Fixed ‘version incompatible’ report that was mistaken with ‘no result’
— List all directives being modified in the code
— List more directives that should be set for production.
¢ Analysis

Reworked the Themes about compatibility.

Added many tests for PHP 7.0 compatibility

Sped up UsedMethod analysis

Added support for PHP 7 feature : Unicode Escape Sequences, New functions/classes/interfaces,
Removed Functions,

117

Exakat Documentation, Release 1

¢ Tokenizer

Changed processing for Empty PHP code

Support Variable Indirection for both PHP 5 and 7 (depends on exec version)
Avoid ignoring all code when finding External Libraries

Fixed edge cases with declare() when it is conditional.

Support for PHP 7°s f)()()

Version 0.3.4 (Qingfeng, 2015-09-28 up)

¢ Architecture

* Report
¢ Analysis

Added token_limit configuration to avoid running too large project (default is 1 000 000)

Several new tools for internal consistency check.

Removed support for neo-contrib’s gremlin plugin

Report libraries that were found and ignored

Sped up queries that required previous analysis or multiples atoms
Spot global keywords inside loops (perf)
Better spotting of Composer classes

Report double assignations

¢ Tokenizer

Added support for Anonymous classes (PHP 7)

Fixed namespace manipulations (They weren’t lower case)
Mark constants as fail back globals or local to the namespace
Support Null Coalesce operator (PHP 7)

Fixed rare case for empty strings and noDelimiter

Version 0.3.3 (Immortal Zhenyuan, 2015-09-21)

¢ Architecture

* Report
* Analysis

Removed some shell stderr that leaked to the main script

Added the list of used analysis
favicon is now used in the report (Devoops)
Fixed count report for Else

Fixed directive reports for trader, bcmath and ldap.

Rebuild the composer database
Fixed htmlentities analyze

Spot usage of ‘substr($s, $p, +/- 1)’ and recommend ‘$s[$p]’

118

Chapter 2.

Release Note

Exakat Documentation, Release 1

» Tokenizer
— Fixed Multiplication with instantiation
Version 0.3.2 (Tiger Vanguard, 2015-09-14)
* Report
— Added link back from analysis to its themes.

¢ Analysis

Useless Returns are now Trait compatible

Optimized Composer validation

Removed IsKnownVendor analyze (replaced by Composer)

Spot inconsistent concatenations (“$a b”.$c)

¢ Tokenizer

Fixed situation where forgotten white spaces didn’t have a file

Removed DELETE and S_STRING index

Fixed compatibility with Debian (shell commands)

Added UT for and / && precedence versus =

Fixed identification of empty instructions (Functions / Closure have different behaviors)
Version 0.3.1 (Yellow Wind Demon, 2015-09-03)

¢ Architecture

Removed usage of Everyman dependencies

Added support for Neo4j Authentication
Added a JobQueue

Cleaned code with exakat itself

* Report
— Added Dump to SQLITE format for custom manipulations of the results
— Added new collection of rules for Calesthenics (dev)
— Updated composer database
— Now reporting found Composer.
¢ Analysis

— Fixed Compilation spotting
* Tokenizer

— Fixed an edge case with Sign, when used in a concatenation

Version 0.3.0 (Lingxuzi, 2015-Aug-25)

* Architecture

— Moved to Thinkaurelius’s gremlin plug-in, Neo4j 2.2.4 and Java 8.
* Report

— Added a view by File

119

Exakat Documentation, Release 1

— Added sorting for results (by file and by analyze)
* Analysis
— Spot functions whose results should be checked before they are used
— Spot breaks/continue out of a loop
— Exports all the results in a dump.sqlite file
* Tokenizer
— Fixed a minor bug with ::class (messed up the {} counts)
— removed dependency to Everyman’s Neo4j classes.
— Added a step that removes big and identifiable libraries in PHP (such as tcpdf, jpgraph, etc..)
Version 0.2.5 (Scholar in a White Robe, 2015-Aug-17)
* Report
— List the files that are ignored in the annex
¢ Analysis
— Updated Knowledge Database for memcache, aliases, zlib, standard
— Added more directives to Review
— Added support for xhprof

¢ Tokenizer

Fixed bug with Else (Not-alternative)

Fixed Sequence creation with If-Then

Yield may be assigned

Removed one Tokenizer’s operation (filterOut2)

Fixed priorities with Concatenation, Multiplication, Additions

Process Echo and Print separately
— Automatically removes common bundled libraries to reduce app size
Version 0.2.4 (Black Wind Demon, 2015-06-22)

¢ Analysis

Rebuild the composer database

Lots of new extensions supported : ev, libevent, event, php-ast, wikidiff2, proctitle, inotify, ibase,
amqp, geoip, output buffering,

Report errors when non-variables are returned by reference

Marked more analyzes for PHP 7

Fixed Unpreprocess structures with split

Upgraded spotting for useless parenthesis
Added a check ++%i vs $i++;

Exclude abstract methods from Variables Used Once

Added new directives

120 Chapter 2. Release Note

Exakat Documentation, Release 1

— Also check for ASP Tags
* Tokenizer

— Fixed the fullpath for functions when they are not defined in the code

Upgraded support for Return Type (PHP 7.0+)

error_reporting with -1 is OK

Fixed a precedence problem with & and &&

Refactored Ifthen token to support return type

Added a kill command when cleaning Database
Version 0.2.3 (Techu Shi, 2015-06-22)
¢ Analysis
— Report usage of Return Typehint, and Scalar Typehint
— Report usage of classes that used to return null on new
— Report useless abstract classes
* Tokenizer
— Upgraded ‘init’ command, to handle various VCS
— Added support for Return Typehint
Version 0.2.2 (Xiong Shangjun, 2015-06-16)
¢ Analysis
— Now spots short assignations
— More UselessInstructions spotted
— Ignore Unset as modified values in loops
* Tokenizer

Added support for PHP7 new tokens (T_SPACESHIP, T_COALESCE, T_YIELD_FROM)

Split loading into more .csv files for lighter and more robust queries

Better support for arrays [1,2,3] as functioncall (just like array())

Process tokens by batches of 800

Clean vertex at each queries, not Sequence
Version 0.2.1 (General Yin, 2015-06-02)
¢ Analysis
— sizeOf may have 2 arguments
— 2 clearPHP link added in documentation
* Tokenizer

Fixed bug with Bitshift and Addition

Fixed bug with Sequence when merging sequences

Fixed bug with String and Addition

Fixed Visibility in Use instruction

121

Exakat Documentation, Release 1

— Foreach accepts Constants as Source
— Fixed special case for nested IfThen
Version 0.2.0 (Demon of Confusion, 2015-05-15)

 First version

122 Chapter 2. Release Note

CHAPTER 3

with a Bare metal installation

Here are 2 tutorials to run Exakat on your code. You may install exakat with the projects folder, and centralize multiple
audits in one place, or run exakat in-code, right from the source code. You may also run exakat on a host machine
(aka, bare-metal), or as a docker container.

* Bare metal install
* with projects folder
* within the code
All tutorials follow the same steps :
* Project initialisation
e Audit run

* Reports access

3.1 Bare metal install, with projects folder

3.1.1 Installation

Refer to the Installation section in the ADMINISTRATOR GUIDE to install Exakat.

3.1.2 Initialization

First, fetch the code to be audited. This has to be done once. Later, the code may be updated.

php exakat.phar init -p sculpin -R https://github.com/sculpin/sculpin

This command inits the project in the ‘projects’ folder, with the name ‘sculpin’, then clone the code with the provided
repository. By default, the cloning is done by git.

123

Exakat Documentation, Release 1

Exakat requires a copy of the code to run an audit. When accessing via VCS, such as git, mercurial, svn, etc., read-only
access is sufficient and recommended. Exakat doesn’t write anything in the code, nor stage, commit or push.

More information on options in the _Commands.

3.1.3 Execution

After initialization, you may run an audit :

php exakat.phar project -p sculpin

This command runs the whole auditing cycle : code loading, code audits and report building. It is ready to work with
the initial configuration. The configuration may be adapted later.

Once the run is finished, the reports are place in the folder projects/sculpin/. For example, a HTML version is available
in projects/sculpin/report/index.html. Simply open the ‘projects/sculpin/report/index.html’ file in a browser.

3.1.4 More reports

Once the ‘project’ command has been fully run, you may run the ‘report’ command to create different reports. Usually,
‘Diplomat’ has the most complete report, and other focused reports are available.

It is possible to create the remaining reports, once an audit has been finished. Here is an example of a Uml report.

php exakat.phar report -p sculpin -format Uml -file uml

This export the current project in UML format. The file is called ‘uml.dot’ : dot is added by exakat, as the report has
to be opened by graphviz compatible software.

The full list of available reports are in the Reports section.
Once it is finished, the reports are in the folder projects/sculpin/ under different names.

3.1.5 New run

After adding some modifications in the code, commit them in the repository. Then, run :

php exakat.phar update -p sculpin
php exakat.phar project -p sculpin

This command updates the repository to the last modification, then runs the whole audit again. If the code is not using
a VCS repository, then the update command has no effect on the code. You should update the code manually, by
replacing it with a newer version.

Once the audit is finished, the reports are in the same folders as previously : projects/sculpin/report (HTML version).

The reports replace any previous report. To keep a report of a previous version, move it away from the current location,
or give it another name.

3.2 Bare metal install, within the code

This tutorial runs exakat from the source code repository.

124 Chapter 3. with a Bare metal installation

http://www.graphviz.org/

Exakat Documentation, Release 1

3.2.1 Installation

Refer to the Installation section in the ADMINISTRATOR GUIDE to install Exakat.

3.2.2 Initialization

Go to the directory that contains the source code.

Create a configuration file called .exakat.yml, with the following content :

project: "name"

This is the minimum configuration for that file. It is sufficient for this tutorial, and we will produce more reports later.
You will read more about _Configuration in the dedicated section.

3.2.3 Execution

After creating the configuration file above, an audit may be run :

exakat project

This command runs the whole cycle : code loading, code audits and report building. It works without initial configu-
ration.

Once it is finished, the reports are in the current folder. Simply open the ‘report/index.html’ file in a browser.

3.2.4 More reports

When running exakat inside code, audits must be configured before the run of the audit.

Edit the .exakat.yml file, and update the file with the following lines :

project: "name"
project_reports:
- Uml
— Plantuml
— Ambassador

Then, run the audit as explained in the previous section.

This configuration produces 3 reports : “Ambassador”, which is the default report, “Uml”, available in the ‘uml.dot’
file, and “Plantuml”, that may be opened with plantuml.

The full list of available reports are in the ‘Command’ section.

3.2.5 New run

After some modifications in the code, run again exakat with the same command than the first time. Since the audit is
run within the code source, no update operation is needed.

Check the config.ini file before running the audit, to check if all the reports you want are configured.

exakat project

3.2. Bare metal install, within the code 125

http://plantuml.com/

Exakat Documentation, Release 1

126 Chapter 3. with a Bare metal installation

CHAPTER 4

with a Docker installation

Here are 2 tutorials to run Exakat on your code. You may install exakat with the projects folder, and centralize your
audits in one place, or run exakat in-code, right from the source code. You may also run exakat with a bare-metal
installation, or as a docker container.

¢ Docker container
 with projects folder
¢ within the code

All four tutorials offer the same steps : + Project initialisation + Audit run + Reports access

4.1 Docker container, with projects folder

This tutorial runs exakat audits, when source code are organized in the projects folder. Any folder will do, since exakat
is now hosted in the docker image.

4.1.1 Initialization

Go to the directory that contains the ‘projects’ folder.

Init the project with the following command :

docker run —-it —--rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
—projects exakat/exakat:latest exakat init -p sculpin -R https://github.com/sculpin/
—sculpin —git

This will create a ‘projects/sculpin’ folder, with various documents and folder. The most important folder being ‘code’,
where the code of the project is fetched, an cached. See _Commands for more details about the init command.

127

Exakat Documentation, Release 1

4.1.2 Execution

After creating the project, an audit may be run from the same directory:

docker run —-it —--rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
—projects exakat/exakat:dev exakat project -p sculpin

This command runs the whole cycle : code loading, code audits and report building.

Once it 1is finished, the report is available in the projects/sculpin/report/ folder. Open
projects/sculpin/report/index.htmll with a browser.

4.1.3 More reports

When running exakat with the projects folder, reports may be configured before the run of the audit, in the config.ini
file, or in command line, or extracted after the run.

After a first audit, use the report command. Here is an example with the Uml report.

docker run —-it —--rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
—projects exakat/exakat:dev exakat report -p sculpin —-format Uml

Reports may only be build if the analysis they depend on, were already processed.

In command line, use the -format option, multiple times if necessary.

docker run —-it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
—projects exakat/exakat:dev exakat project -p sculpin —-format Uml

In config.ini, edit the projects/sculpin/report/config.ini file, and add the following lines :

project_reports[] = 'Uml';
project_reports[] = 'Plantuml';
project_reports[] = 'Ambassador';

Then, run the audit as explained in the previous section.
The full list of available reports are in the _Reports section.

4.1.4 New run

After adding some modifications to the code and committing them, you need to update the code before running it again
: otherwise, it will run on the previous version of the code.

docker run —-it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
—projects exakat/exakat:dev exakat update -p sculpin
docker run —-it —--rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/

—projects exakat/exakat:dev exakat project -p sculpin

4.2 Docker container, within the code folder

This tutorial runs exakat audits from the source code repository, with a docker container.

128 Chapter 4. with a Docker installation

Exakat Documentation, Release 1

4.2.1 Installation

Refer to the _Installation section to install Exakat on docker.

4.2.2 Initialization

Go to the directory that contains the source code.

Create a configuration file called .exakat.yml, with the following content :

project: "name"

This is the minimum configuration for that file. You may read more about _Configuration in the dedicated section.

4.2.3 Execution

After creating the configuration file, an audit may be run from the same directory:

docker run —-it --rm -v $(pwd’) :/src exakat/exakat:latest exakat project

This command runs the whole cycle : code loading, code audits and report building. It works without initial configu-
ration.

Once it is finished, the report is displayed on the standard output (aka, the screen).

4.2.4 More reports

When running exakat inside code, reports must be configured before the run of the audit : they will be build immedi-
ately.

Edit the .exakat.yml file, and add the following lines :

project: "name"
project_reports:
- Uml
— Plantuml
— Ambassador

Then, run the audit as explained in the previous section.

This configuration produces 3 reports : “Ambassador”, which is the default report, “Uml”, available in the ‘uml.dot’
file, and “Plantuml”, that may be opened with plantuml.

The full list of available reports are in the _Reports section.

4.2.5 New run

After adding some modifications to the code, run again exakat with the same command than the first time. Since the
audit is run within the code source, no explicit update operation is needed.

Check the .exakat.yml file before running the audit, to check if all the reports you want are configured.

docker run —-it —--rm -w /src -v $(pwd):/src ——entrypoint "/usr/src/exakat/exakat.phar"
—exakat/exakat:latest project

4.2. Docker container, within the code folder 129

http://plantuml.com/

Exakat Documentation, Release 1

130 Chapter 4. with a Docker installation

CHAPTER B

Overview

5.1 Summary

e 1371 analyzers

» Compatible with PHP 5.2 to 8.0

e Migration guide from 5.2 to 8.0

* Modernize your code

* Detect code smells or bugs that impact the code
* appinfo(): the list of PHP features

* List of significant PHP directives

* Framework and application support

* Hierarchy Diagrams

e Code visualizations

5.2 1371 analyzers

There are currently 1371 different analyzers that check the PHP code to report code smells. Analyzers are inspired by
PHP manual, migration documents, community good practices, computer science or simple logic.

Some of them track rare occurrences, and some are frequent. Some track careless mistakes and some are highly
complex situations. In any case, exakat has your back, and will warn you.

131

Exakat Documentation, Release 1

Audit date : 28-01-2018 01:26:03 - "Small Kore"

Project Overview

of PHP

e 139 bt 7.1

Total

e 10000

Files free of issues (%) Analyzers free of issues (%)

{ 142 2% N 20 73%

Filename Overview

M critical Major Minor None
200

100

50

O P & _
o O L S A & el
&F a8 Cz‘_? & ‘(\QSQ Q‘?‘ oF & & PO\? _‘,\& 6\156\\(\ &5

I g G- P S LR S S

Issues Breakdown

Category Issues

Code Smells 3832

Dead Code 258
Performances 14
Security 7

Analyzers Overview

M cCritical

400

200

5.3 Compatible with PHP 5.2 to 8.0

Severity Breakd:

©

Category Is
Minor 2
Major 1
None
Critical

Major Minor

The Exakat engine audits code with PHP versions that range from PHP 5.2 to PHP 8.0-dev.

The Exakat engine itself runs on PHP 7.x+ and is regularly checked on those versions. It is possible to run Exakat on

7.2 and audit a code with PHP 5.6.

5.4 Migration guide from 5.2 to 8.0

Every middle version of PHP comes with its migration guide from the manual, and from community’s feedback.
Incompatibilities are included as analyzers in Exakat, and report everything they can find that may prevent you from

moving to the newer version.

Although they won’t catch it all, they do reduce the amount of unexpected surprises by a lot.

132

Chapter 5. Overview

Exakat Documentation, Release 1

Version Name 7.3 7.2 7.1 7.0 5.6 5.5 5.4 !

Compilation

®
€ B
« B
®
o]

- & Methodcall On New ® & i
- & Cant Use Return Value In Write Context & 4 4 C4 [C4 €4 A i
- & ::class & 4 4 & & 4 A .
- & Empty With Expression & & 4 4 4 ® A .
- & Constant Scalar Expressions ~ &~ & & 4 A A i
- & Abstract Static Methods A A A A = 4 4 4
- & Null On New A A A A ¥ & = I
- & extfapc A A A A & 4 ™~ 1
- & ext/mysql A A A A & [4 f
- & Reserved Keywords In PHP T A A A A ¥ ¥ & I
- & Parenthesis As Parameter ¥y ¥ ¥ & A A A .
- & New Functions In PHP 7.1 A A A ¥ B & & I

T2 & PHP 7.2 Deprecations A A & ¥ ¥ & & I

7.2- & New Functions In PHP 7.2 A A 4 4 [C4 4 T4 [

7.2- & PHP 7.2 Removed Functions A A ¥ ¥ ¥ & = I

& Binary Glossary
& Const With Array

& Use password_hash()

(3]

.5 Modernize your code

Migrations are too often considered over when incompatibilities are removed. In fact, the best is still to come : using
the new features. Or, using the new features from previous versions, that were forgotten. Exakat dedicates a whole
category of suggestions to modern PHP features that should be used now.

5.5. Modernize your code 133

Exakat Documentation, Release 1

Visibility recommendations

Name Value None Public Protected Private Constal
(public)

class AuthUser
STATUS_DEL -1
STATUS_NORMAL 1
IS_SUPER_NO 0
IS_SUPER_YES 1
public static function tableName() { /**/}
public function rules() { /**/}
public function attributeLabels() { /**/}
public static function findByUsername($username) { /**/ }
public function validatePassword($password) { /**/}
public function setPassword($password) { /**/ }
public static function findidentity(Sid) {/**/}

public static function findldentityByAccessToken(Stoken) { /**/}

* % % % % * * % * % * ¥ *»

public function getld() {/**/}

5.6 Detect code smells or bugs that impact the code

Every minor version of PHP comes with bug fixes and modifications at the function level. Some special situations are
better handled, and that may have impact in your code. Every modified function, class, trait or interface that is also
found in your code is reported here, giving a good overview of the impact of every minor version.

Safe bet : keep up to date!

134 Chapter 5. Overview

Exakat Documentation, Release 1

PHP Minor versions impact report

This is the list of bugfixes, found in minor versions of PHP that may impact your code.

Title 7.2 7.1 T.0 5.6 5.5 4

fread not free unused buffer 721 T.113 - - - -

putenv does not work properly if parameter contains non-ASCIl unicode character 7.2.1 T7.1.13 - - - -

Invalid opcode 138/1/1 721 - - - - -
debug info of Closures of internal functions contain garbage argument names - 7111 7.025 - - -
applied upstream patch for CVE-2016-1283 - 7.1.11 T7.025% - - -
SplDoublylinkedList::setiteratorMode masks intern flags - 7111 7.025 - - -
incorrect behavior of Appenditerator::append in foreach loop - 7.1.10 7.024 - - -
Appenditerator:append() is broken when appending another Appendlterator - T.L10 - - - -
null pointer dereference in _function_string - 719 7.023 -

Unserialize Arraylterator broken - 719 T.023 - - -
Crash in recursive iterator destructors - 719 7.023 -

Main CWD initialized with wrong codepage - 719 - - - -
Appending Appenditerator leads to segfault - 719 - -

References to deleted XPath query results - 7.7 T7.021 - - -
Segfault when cast Reflection object to string with undefined constant T.L.7T T7.021

null coalescing operator failing with SplFixedArray - 7.7 7.021 - - -

5.7 appinfo(): the list of PHP features

Do you know the PHP features that your application rely upon ? Recursivité, reflexion, backticks or anonymous
classes ? Exakat collect all those features, and sum them up in one nice table, so you know all of it.

5.7. appinfo(): the list of PHP features 135

Exakat Documentation, Release 1

Directive list

This is an overview of the recommended directives for your application. The most important directives have been collected here, for a quick review. The-
manual, when applicable. When an extension is missing from the list below, either it as no specific configuration directive, or it is not used by the current

Directive Suggestion Description

date.timezone Europe/Amsterdam It is not safe to rely on the system's timezone settings. Make sure the directive date.time

default_charset UTF-8 This directive handle encoding for input, internal and output. default_charset
mbstring.internal_encoding Do notrely on it This directive is deprecated or removed since PHP 5.6. It is recommended to use the "de
Extra configurations mbstring runtime configuration

Extra configurations PCRE runtime configuration

memory_limit 120 This sets the maximum amount of memory in bytes that a script is allowed to allocate. 1
eating up all available memory on a server. It is recommended to set this as low as possi

max_execution_time 90 This sets the maximum amount of time, in seconds, that a script is allowed to run. The ks
also, the better has the script to be written. Avoid really large values that are only useful

expose_php Off Exposes to the world that PHP is installed on the server. For security reasons, it is better
display_errors Off This determines whether errors should be printed to the screen as part of the output or

error_reporting E_ALL Set the error reporting level. Always set this high, so as to have the errors reported, and

log_errors. on Always log errors for future use

error_log Mame of a writable file, Name of the file where script errors should be logged.

suitable for logging.

Extra configurations Standard runtime configuration

5.8 List of significant PHP directives

Exakat recommends which PHP directives to check while preparing your code for production. If ‘memory_limit’ is
an ever green, may be ‘post_max_size’ (linked to file_upload), or assertions shouldn’t be forgotten. Based on feature
and extension usage, it also list the most important directives, and leads you to the full manual list, in case you want
to fine tune it to the max. Use it as a reminder.

136 Chapter 5. Overview

Exakat Documentation, Release 1

5.9 Framework and application support

Exakat provides support for framework and application specific rules. Supported frameworks includes Cakephp,
Codeigniter, Drupal, Laravel, Melis, Slim, Symfony, Wordpress and Zend Framework

5.10 Hierarchy Diagrams

Exakat documents the code automatically with several diagrams, such as : * UML class diagramm, based on inheri-
tance (classes), usage (traits) and implementations (interfaces), grouped by namespaces. * The Exceptions tree * The
traits tree and the trait matrix

Exceptions inventory

® Throwable
o Error
= ParseError
= TypeError
= ArgumentCountError
m ArithmeticError
w DivisionByZeroError
u AssertionError
© Exception
w class AuthenticationException extends \Exception { /**/}
= class EntityNotFoundException extends \Exception{/**/}
m class MotAllowedException extends \Exception { /**/}
w class MotAuthenticatedException extends \Exception { /**/}
= class MotAuthorizedException extends \Exception{/*"/}
m class ValidationException extends \Exception { /**/}
= ErrorException
m ClosedGeneratorException
m DOMException
® LogicException
= BadFunctionCallException
m BadMethodCallException
®» DomainException
= |InvalidArgumentException
m LengthException
® QutOfRangeException
= RuntimeException
n class TalkRatingException extends \RuntimeException { /**/}
®» OutOfBoundsException
= OverflowException

m RangeException

5.11 Code visualizations

Exakat documents the code automatically with several diagrams, such as : a full UML class diagramm, based on
inheritance (classes), usage (traits) and implementations (interfaces), grouped by namespaces.

5.9. Framework and application support 137

Exakat Documentation, Release 1

138 Chapter 5. Overview

CHAPTER O

PHP Version

6.1 Compatible with PHP 5.2 to 8.0-dev

The Exakat engine audits code with PHP versions that range from PHP 5.2 to PHP 8.0-dev.

The Exakat engine itself runs on PHP 7.x+ and is regularly checked on those versions. It is possible to run Exakat on
7.2 and audit a code with PHP 5.6.

139

Exakat Documentation, Release 1

140 Chapter 6. PHP Version

CHAPTER /

Library & Framework Support

7.1 Summary

 Supported Rulesets
 Supported Reports

* Supported PHP Extensions
* Applications

* Recognized Libraries

* New analyzers

» External services

e PHP Error messages

» Exakat Changelog

7.2 External Library Support

Libraries that are popular, large and often included in repositories are identified early in the analysis process, and
ignored. This prevents Exakat to analysis some code foreign to the current repository : it prevents false positives from
this code, and make the analysis much lighter. The whole process is entirely automatic.

Those libraries, or even some of the, may be included again in the analysis by commenting the ignored_dir[] line, in
the projects/<project>/config.ini file.

¢ ADOdb
e atoum

« BBQ

e CakePHP

141

https://adodb.org/dokuwiki/doku.php/
http://atoum.org/
https://github.com/eventio/bbq
https://cakephp.org/

Exakat Documentation, Release 1

CI xmIRPC
CPDF
Codeception
DomPDF
FPDF
phpGACL
gettext Reader
jpGraph
HTML2PDF
HTML Purifier
http_class
IDNA convert
lessc
magpieRSS
MarkDown Parser
Markdown
mpdf
oauthToken
passwordHash
pChart

pclZip

Propel
phpExecl
phpMailer
PHPSpec
PHPUnit
qrCode
Services JSON
sfYaml
SimplePie
SimpleTest
swift

Smarty
Symfony Unit Test
tepdf

text_diff

142

Chapter 7. Library & Framework Support

http://apigen.juzna.cz/doc/ci-bonfire/Bonfire/class-CI_Xmlrpc.html
https://pear.php.net/reference/PhpDocumentor-latest/li_Cpdf.html
https://codeception.com/
https://github.com/dompdf/dompdf
http://www.fpdf.org/
http://phpgacl.sourceforge.net/
http://pivotx.net/dev/docs/trunk/External/PHP-gettext/gettext_reader.html
http://jpgraph.net/
http://sourceforge.net/projects/phphtml2pdf/
http://htmlpurifier.org/
https://github.com/phpWhois/idna-convert
http://leafo.net/lessphp/
http://magpierss.sourceforge.net/
http://processwire.com/apigen/class-Markdown_Parser.html
https://github.com/michelf/php-markdown
http://www.mpdf1.com/mpdf/index.php
http://www.pchart.net/
http://www.phpconcept.net/pclzip/
http://propelorm.org/
https://phpexcel.codeplex.com/
https://github.com/PHPMailer/PHPMailer
http://www.phpspec.net/en/latest/
https://www.phpunit.de/
http://phpqrcode.sourceforge.net/
https://pear.php.net/package/Services_JSON
https://github.com/fabpot-graveyard/yaml/blob/master/lib/sfYaml.php
http://simplepie.org/
https://github.com/simpletest/simpletest
http://swiftmailer.org/
http://www.smarty.net/
https://symfony.com/doc/current/testing.html
http://www.tcpdf.org/
https://pear.php.net/package/Text_Diff

Exakat Documentation, Release 1

text highlighter

tfpdf
Typo3TestingFramework
UTF8

Xajax

Yii

Zend Framework

7.3 External Services Support

List of external services whose configuration files has been commited in the code.

Apache - .htaccess, htaccess.txt

Apple - .DS_Store

appveyor - appveyor.yml, .appveyor.yml

ant - build.xml

apigen - apigen.yml, apigen.neon

arcunit - .arcunit

artisan - artisan

atoum - .bootstrap.atoum.php, .atoum.php, .atoum.bootstrap.php
arcanist - .arclint, .arcconfig

bazaar - .bzr

babeljs - .babel.rc, .babel.js, .babelrc

behat - behat.yml.dist, behat.yml

box2 - box.json, box.json.dist

bower - bower.json, .bowerrc

circleCI - circle.yml, .circleci

codacy - .codacy.json

codeception - codeception.yml, codeception.dist.yml
codecov - .codecov.yml, codecov.yml

codeclimate - .codeclimate.yml

composer - composer.json, composer.lock, vendor
couscous - couscous.yml

Code Sniffer - .php_cs, .php_cs.dist, .phpcs.xml, php_cs.dist, phpcs.xml, phpes.xml.dist
coveralls - .coveralls.yml

crowdin - crowdin.yml

cvs - CVS

7.3.

External Services Support

143

https://pear.php.net/package/Text_Highlighter/
http://www.fpdf.org/en/script/script92.php
https://github.com/TYPO3/testing-framework
https://github.com/Xajax/Xajax
http://www.yiiframework.com/
http://framework.zend.com/
http://www.apache.org/
http://www.apple.com/
http://www.appveyor.com/
https://ant.apache.org/
http://apigen.github.io/ApiGen/
https://www.archunit.org/
http://laravel.com/docs/5.1/artisan
http://atoum.org/
https://secure.phabricator.com/book/phabricator/article/arcanist_lint/
https://bazaar.canonical.com/en/
https://babeljs.io/
http://docs.behat.org/en/v2.5/
https://github.com/box-project/box2
http://bower.io/
https://circleci.com/
http://www.codacy.com/
https://codeception.com/
https://codecov.io/
http://www.codeclimate.com/
https://getcomposer.org/
http://couscous.io/
https://github.com/squizlabs/PHP_CodeSniffer
https://coveralls.zendesk.com/
https://crowdin.com/
https://www.nongnu.org/cvs/

Exakat Documentation, Release 1

docker - .dockerignore, .docker, docker-compose.yml, Dockerfile
dotenv - .env.dist, .env, .env.example

drone - .dockerignore, .docker

drupalci - drupalci.yml

drush - drush.services.yml

editorconfig - .editorconfig

eslint - .eslintrc, .eslintignore, eslintrc.js, .eslintrc.js, .eslintrc.json
Exakat - .exakat.yaml, .exakat.yml, .exakat.ini

flintci - .flintci.yml

git - .git, .gitignore, .gitattributes, .gitmodules, .mailmap, .githooks
github - .github

gitlab - .gitlab-ci.yml

gulpfile - gulpfile.js

grumphp - grumphp.yml.dist, grumphp.yml

gush - .gush.yml

gruntjs - Gruntfile.js

humbug - humbug.json.dist, humbug.json

infection - infection.yml, .infection.yml, infection.json.dist
insight - .sensiolabs.yml

jetbrains - .idea

jshint - jshintre, .jshintignore

mercurial - .hg, .hgtags, .hgignore, .hgeol

mkdocs - mkdocs.yml

npm - package.json, .npmignore, .npmrc, package-lock.json
openshift - .openshift

phan - .phan

pharcc - .pharcc.yml

phalcon - .phalcon

phpbench - phpbench.json

phpci - phpci.yml

Phpdocumentor - .phpdoc.xml, phpdoc.dist.xml

phpdox - phpdox.xml.dist, phpdox.xml

phinx - phinx.yml

phpformatter - .formatter.yml

phpmetrics - .phpmetrics.yml.dist

phpsa - .phpsa.yml

144

Chapter 7.

Library & Framework Support

http://www.docker.com/
https://symfony.com/doc/current/components/dotenv.htmls
http://docs.drone.io/
https://www.drupal.org/project/drupalci
https://www.drupal.org/project/drupalci
https://editorconfig.org/
http://eslint.org/
https://www.exakat.io/
https://flintci.io/
https://git-scm.com/
https://www.github.com/
https://www.gitlab.com/
http://gulpjs.com/
https://github.com/phpro/grumphp
https://github.com/gushphp/gush
https://gruntjs.com/
https://github.com/humbug/box.git
https://infection.github.io/
https://insight.sensiolabs.com/
https://www.jetbrains.com/phpstorm/
http://jshint.com/
https://www.mercurial-scm.org/
http://www.mkdocs.org
https://www.npmjs.com/
https://www.openshift.com/
https://github.com/etsy/phan
https://github.com/cbednarski/pharcc
https://phalconphp.com/
https://github.com/phpbench/phpbench
https://www.phptesting.org/
https://www.phpdoc.org/
https://github.com/theseer/phpdox
https://phinx.org/
https://github.com/mmoreram/php-formatter
http://www.phpmetrics.org/
https://github.com/ovr/phpsa

Exakat Documentation, Release 1

* phpspec - phpspec.yml, .phpspec, phpspec.yml.dist
* phpstan - phpstan.neon, .phpstan.neon, phpstan.neon.dist
* phpswitch - .phpswitch.yml

e PHPUnit - phpunit.xml.dist, phpunit.xml

e prettier - .prettierrc, .prettierignore

* psalm - psalm.xml

* puppet - .puppet

e rmt - .rmt.yml

* robo - RoboFile.php

e scrutinizer - .scrutinizer.yml

e semantic versioning - .semver

* SPIP - paquet.xml

* stickler - .stickler.yml

* storyplayer - storyplayer.json.dist

e styleci - .styleci.yml

e stylelint - .stylelintrc

* sublimelinter - .csslintrc

* svn - svn.revision, .svn, .svnignore

e transifex - .tx

* Robots.txt - robots.txt

e travis - .travis.yml, .env.travis, .travis, .travis.php.ini, .travis.coverage.sh, .travis.ini
* varci - .varci, .varci.yml

* Vagrant - Vagrantfile

* visualstudio - .vscode

* webpack - webpack.mix.js, webpack.config.js

e yarn - yarn.lock

» Zend_Tool - zfproject.xml

7.4 Supported PHP Extensions

PHP extensions are used to check for structures usage (classes, interfaces, etc.), to identify dependencies and directives.

PHP extensions are described with the list of structures they define : functions, classes, constants, traits, variables,
interfaces, namespaces, and directives.

e ext/amqgp
* ext/apache
* ext/apc

* ext/apcu

7.4. Supported PHP Extensions 145

http://www.phpspec.net/en/latest/
https://github.com/phpstan
https://github.com/jubianchi/phpswitch
https://www.phpunit.de/
https://prettier.io/
https://getpsalm.org/
https://puppet.com/
https://github.com/liip/RMT
https://robo.li/
https://scrutinizer-ci.com/
http://semver.org/
https://www.spip.net/
https://stickler-ci.com/docs
https://datasift.github.io/storyplayer/
https://styleci.io/
https://stylelint.io/
http://www.sublimelinter.com/en/latest/
https://subversion.apache.org/
https://www.transifex.com/
http://www.robotstxt.org/
https://travis-ci.org/
https://var.ci/
https://www.vagrantup.com/
https://code.visualstudio.com/
https://webpack.js.org/
https://yarnpkg.com/lang/en/
https://framework.zend.com/
https://github.com/alanxz/rabbitmq-c
https://www.php.net/manual/en/book.apache.php
https://www.php.net/apc
http://www.php.net/manual/en/book.apcu.php

Exakat Documentation, Release 1

ext/array
ext/php-ast
ext/async
ext/bcmath
ext/bzip2
ext/cairo
ext/calendar
ext/cmark
ext/com
ext/crypto
ext/csprng
ext/ctype
ext/curl
ext/cyrus
ext/date
ext/db2
ext/dba
ext/decimal
ext/dio
ext/dom
ext/ds
ext/eaccelerator
ext/eio
ext/enchant
ext/ereg
ext/ev
ext/event
ext/exif
ext/expect
ext/fam
ext/fann
ext/fdf
ext/ffi
ext/ffmpeg
ext/file

ext/fileinfo

146

Chapter 7. Library & Framework Support

https://www.php.net/manual/en/book.array.php
https://pecl.php.net/package/ast
https://github.com/concurrent-php/ext-async
http://www.php.net/bcmath
https://www.php.net/bzip2
https://cairographics.org/
http://www.php.net/manual/en/ref.calendar.php
https://github.com/commonmark/cmark
https://www.php.net/manual/en/book.com.php
https://pecl.php.net/package/crypto
https://www.php.net/manual/en/book.csprng.php
https://www.php.net/manual/en/ref.ctype.php
https://www.php.net/manual/en/book.curl.php
https://www.php.net/manual/en/book.cyrus.php
https://www.php.net/manual/en/book.datetime.php
https://www.php.net/manual/en/book.ibm-db2.php
https://www.php.net/manual/en/book.dba.php
http://php-decimal.io
https://www.php.net/manual/en/refs.fileprocess.file.php
https://www.php.net/manual/en/book.dom.php
http://docs.php.net/manual/en/book.ds.php
http://eaccelerator.net/
http://software.schmorp.de/pkg/libeio.html
https://www.php.net/manual/en/book.enchant.php
https://www.php.net/manual/en/function.ereg.php
https://www.php.net/manual/en/book.ev.php
https://www.php.net/event
https://www.php.net/manual/en/book.exif.php
https://www.php.net/manual/en/book.expect.php
http://oss.sgi.com/projects/fam/
https://www.php.net/manual/en/book.fann.php
http://www.adobe.com/devnet/acrobat/fdftoolkit.html
https://www.php.net/manual/en/book.ffi.php
http://ffmpeg-php.sourceforge.net/
http://www.php.net/manual/en/book.filesystem.php
https://www.php.net/manual/en/book.fileinfo.php

Exakat Documentation, Release 1

ext/filter
ext/fpm
ext/ftp
ext/gd
ext/gearman
ext/gender
ext/geoip
ext/gettext
ext/gmagick
ext/gmp
ext/gnupgp
ext/grpc
ext/hash
ext/hrtime
ext/pecl_http
ext/ibase
ext/iconv
ext/igbinary
ext/iis
ext/imagick
ext/imap
ext/info
ext/inotify
ext/intl
ext/json
ext/judy
ext/kdmS5
ext/lapack
ext/ldap
ext/leveldb
ext/libevent
ext/libsodium
ext/libxml
ext/lua
ext/lzf

ext/mail

7.4.

Supported PHP Extensions

147

https://www.php.net/manual/en/book.filter.php
https://www.php.net/fpm
http://www.faqs.org/rfcs/rfc959
https://www.php.net/manual/en/book.image.php
https://www.php.net/manual/en/book.gearman.php
https://www.php.net/manual/en/book.gender.php
https://www.php.net/manual/en/book.geoip.php
https://www.gnu.org/software/gettext/manual/gettext.html
http://www.php.net/manual/en/book.gmagick.php
https://www.php.net/manual/en/book.gmp.php
http://www.php.net/manual/en/book.gnupg.php
http://www.grpc.io/
http://www.php.net/manual/en/book.hash.php
https://www.php.net/manual/en/intro.hrtime.php
https://github.com/m6w6/ext-http
https://www.php.net/manual/en/book.ibase.php
https://www.php.net/iconv
https://github.com/igbinary/igbinary/
http://www.php.net/manual/en/book.iisfunc.php
https://www.php.net/manual/en/book.imagick.php
http://www.php.net/imap
https://www.php.net/manual/en/book.info.php
https://www.php.net/manual/en/book.inotify.php
http://site.icu-project.org/
http://www.faqs.org/rfcs/rfc7159
http://judy.sourceforge.net/
https://www.php.net/manual/en/book.kadm5.php
https://www.php.net/manual/en/book.lapack.php
https://www.php.net/manual/en/book.ldap.php
https://github.com/reeze/php-leveldb
http://libevent.org/
https://github.com/jedisct1/libsodium-php
http://www.php.net/manual/en/book.libxml.php
https://www.php.net/manual/en/book.lua.php
https://www.php.net/lzf
http://www.php.net/manual/en/book.mail.php

Exakat Documentation, Release 1

ext/mailparse
ext/math
ext/mbstring
ext/merypt
ext/memcache
ext/memcached
ext/mhash
ext/ming
ext/mongo
ext/mongodb
ext/msgpack
ext/mssql
ext/mysql
ext/mysqli
ext/ncurses
ext/newt
ext/nsapi
ext/ob
ext/oci8
ext/odbc
ext/opcache
ext/opencensus
ext/openssl
ext/parle
ext/parsekit
ext/password
ext/pentl
ext/pcov
ext/pcre
ext/pdo
ext/pgsql
ext/phalcon
ext/phar
ext/posix
ext/proctitle

ext/pspell

148

Chapter 7. Library & Framework Support

http://www.faqs.org/rfcs/rfc822.html
https://www.php.net/manual/en/book.math.php
http://www.php.net/manual/en/book.mbstring.php
http://www.php.net/manual/en/book.mcrypt.php
http://www.php.net/manual/en/book.memcache.php
https://www.php.net/manual/en/book.memcached.php
http://mhash.sourceforge.net/
http://www.libming.org/
https://www.php.net/mongo
https://github.com/mongodb/mongo-c-driver
https://github.com/msgpack/msgpack-php
http://www.php.net/manual/en/book.mssql.php
http://www.php.net/manual/en/book.mysql.php
https://www.php.net/manual/en/book.mysqli.php
https://www.php.net/manual/en/book.ncurses.php
http://people.redhat.com/rjones/ocaml-newt/html/Newt.html
https://www.php.net/manual/en/install.unix.sun.php
https://www.php.net/manual/en/book.outcontrol.php
https://www.php.net/manual/en/book.oci8.php
http://www.php.net/manual/en/book.uodbc.php
http://www.php.net/manual/en/book.opcache.php
https://github.com/census-instrumentation/opencensus-php
https://www.php.net/manual/en/book.openssl.php
https://www.php.net/manual/en/book.parle.php
http://www.php.net/manual/en/book.parsekit.php
https://www.php.net/manual/en/book.password.php
https://www.php.net/manual/en/book.pcntl.php
https://github.com/krakjoe/pcov
https://www.php.net/manual/en/book.pcre.php
https://www.php.net/manual/en/book.pdo.php
https://www.php.net/manual/en/book.pgsql.php
https://docs.phalconphp.com/en/latest/reference/tutorial.html
http://www.php.net/manual/en/book.phar.php
https://standards.ieee.org/findstds/standard/1003.1-2008.html
https://www.php.net/manual/en/book.proctitle.php
https://www.php.net/manual/en/book.pspell.php

Exakat Documentation, Release 1

ext/psr
ext/rar
ext/rdkafka
ext/readline
ext/recode
ext/redis
ext/reflection
ext/runkit
ext/sdl
ext/seaslog
ext/sem
ext/session
ext/shmop
ext/simplexml
ext/snmp
ext/soap
ext/sockets
ext/sphinx
ext/spl
ext/sqlite
ext/sqlite3
ext/sqlsrv
ext/ssh2
ext/standard
ext/stats
String
ext/suhosin
ext/svm
ext/swoole
ext/tidy
ext/tokenizer
ext/tokyotyrant
ext/trader
ext/uopz
ext/uuid

ext/v8js

7.4.

Supported PHP Extensions

149

https://www.php-fig.org/psr/psr-3
https://www.php.net/manual/en/book.rar.php
https://github.com/arnaud-lb/php-rdkafka
https://www.php.net/manual/en/book.readline.php
http://www.php.net/manual/en/book.recode.php
https://github.com/phpredis/phpredis/
https://www.php.net/manual/en/book.reflection.php
https://www.php.net/manual/en/book.runkit.php
https://github.com/Ponup/phpsdl
https://github.com/SeasX/SeasLog
https://www.php.net/manual/en/book.sem.php
https://www.php.net/manual/en/book.session.php
https://www.php.net/manual/en/book.sem.php
https://www.php.net/manual/en/book.simplexml.php
http://www.net-snmp.org/
https://www.php.net/manual/en/book.soap.php
https://www.php.net/manual/en/book.sockets.php
https://www.php.net/manual/en/book.sphinx.php
http://www.php.net/manual/en/book.spl.php
https://www.php.net/manual/en/book.sqlite.php
https://www.php.net/manual/en/book.sqlite3.php
https://www.php.net/sqlsrv
https://www.php.net/manual/en/book.ssh2.php
https://www.php.net/manual/en/ref.info.php
https://people.sc.fsu.edu/~jburkardt/c_src/cdflib/cdflib.html
https://www.php.net/manual/en/ref.strings.php
https://suhosin.org/
http://www.php.net/svm
https://www.swoole.com/
https://www.php.net/manual/en/book.tidy.php
http://www.php.net/tokenizer
https://www.php.net/manual/en/book.tokyo-tyrant.php
https://pecl.php.net/package/trader
https://pecl.php.net/package/uopz
https://linux.die.net/man/3/libuuid
https://bugs.chromium.org/p/v8/issues/list

Exakat Documentation, Release 1

ext/varnish
ext/vips
ext/wasm
ext/wddx
ext/weakref
ext/wikidiff2
ext/wincache
ext/xattr
ext/xcache
ext/xdebug
ext/xdiff
ext/xhprof
ext/xml
ext/xmlreader
ext/xmlrpc
ext/xmlwriter
ext/xsl
ext/xxtea
ext/yaml
ext/yis
ext/zbarcode
ext/zend_monitor
ext/zip
ext/zlib
ext/Omq

ext/zookeeper

150

Chapter 7. Library & Framework Support

https://www.php.net/manual/en/book.varnish.php
https://github.com/jcupitt/php-vips-ext
https://github.com/Hywan/php-ext-wasm
https://www.php.net/manual/en/intro.wddx.php
https://www.php.net/manual/en/book.weakref.php
https://www.mediawiki.org/wiki/Extension:Wikidiff2
http://www.php.net/wincache
https://www.php.net/manual/en/book.xattr.php
https://xcache.lighttpd.net/
https://xdebug.org/
https://www.php.net/manual/en/book.xdiff.php
http://web.archive.org/web/20110514095512/http://mirror.facebook.net/facebook/xhprof/doc.html
http://www.php.net/manual/en/book.xml.php
http://www.php.net/manual/en/book.xmlreader.php
http://www.php.net/manual/en/book.xmlrpc.php
https://www.php.net/manual/en/book.xmlwriter.php
https://www.php.net/manual/en/intro.xsl.php
https://pecl.php.net/package/xxtea
http://www.yaml.org/
http://www.tldp.org/HOWTO/NIS-HOWTO/index.html
https://github.com/mkoppanen/php-zbarcode
http://files.zend.com/help/Zend-Server/content/zendserverapi/zend_monitor-php_api.htm
https://www.php.net/manual/en/book.zip.php
https://www.php.net/manual/en/book.zlib.php
http://zeromq.org/
https://www.php.net/zookeeper

CHAPTER 8

Configuration

8.1 Summary

* Common Behavior

* Project Configuration

¢ In-code Configuration

* Commandline Configuration

* Specific analysis configurations

8.2 Common Behavior

8.2.1 General Philosophy

Exakat tries to avoid configuration as much as possible, so as to focus on working out of the box, rather than spend
time on pre-requisite.

As such, it probably does more work, but that may be dismissed later, at reading time.

More configuration options appear with the evolution of the engine.

8.2.2 Precedence

The exakat engine read directives from three places :
1. The command line options
2. The .exakat.ini file at the root of the code

3. The config.ini file in the project directory

151

Exakat Documentation, Release 1

4. The exakat.ini file in the config directory
5. The default values in the code

The precedence of the directives is the same as the list above : command line options always have highest priority,
config.ini files are in second, when command line are not available, and finally, the default values are read in the code.

Some of the directives are only available in the config.ini files.

8.2.3 Common Options

All options are the same, whatever the command provided to exakat. -f always means files, and -q always means
quick.

Any option that a command doesn’t understand is ignored.

Any option that is not recognized is ignored and reported (with visibility).

8.3 Project Configuration

Project configuration are were the project specific configuration are stored. For example, the project name, the ignored
directories or its external libraries are kept. Configurations only affect one project and not the others.

Project configuration file are called ‘config.ini’. They are located, one per project, in the ‘projects/<project
name>/config.ini’ file.

8.3.1 Available Options

Here are the currently available options in Exakat’s project configuration file : projects/<project name>/config.ini

152 Chapter 8. Configuration

Exakat Documentation, Release 1

Op- Description
tion
ph- Version with which to run the analyze. It may be one of : 7.3, 7.2, 7.1, 7.0, 5.6, 5.5, 5.4, 5.3, 5.2. Default
pver- | is 7.2 or the CLI version used to init the project. 5.* versions are available, but are less tested. 7.3 is
sion actually the current dev version.

in- This is the list of files and dir to include in the project’s directory. It is chrooted in the project’s folder.
clude_dirVpllues provided with a starting / are used as a path prefix. Values without / are used as a substring,
anywhere in the path. include_dirs are added AFTER ignore_dirs, so as to partially ignore a folder, such
as the vendor folder from composer.

ig- This is the list of files and dir to ignore in the project’s directory. It is chrooted in the project’s folder.
nore_dirsVhlues provided with a starting / are used as a path prefix. Values without / are used as a substring,
anywhere in the path.

ig- This is the list of files and dir to ignore in the project’s directory. It is chrooted in the project’s folder.
nore_dirsVhlues provided with a starting / are used as a path prefix. Values without / are used as a substring,
anywhere in the path.

file_exterEhomss the list of file extensions that is considered as PHP scripts. All others are ignored. All files bearing
those extensions are subject to check, though they are scanned first for PHP tags before being analyzed.
The extensions are comma separated, without dot. The default are : php, php3, inc, tpl, phtml, tmpl, phps,
ctp

project rifihie is the project name, as it appears at the top left in the Ambassador report.

project| ufhis is the repository URL for the project. It is used to get the source for the project.

project| vEhis is the VCS used to fetch the project source.

project| dEkdsiptithie description of the project.

project| phbkagishe packagist name for the code, when the code is fetched with composer.

8.4 In-code Configuration

In-code configuration is a configuration file that sits at the root of the code. When exakat finds it, it uses it for in-code
auditing.

The file is .exakat.yaml, and is a valid YAML file. .exakat.yml is also valid, but not recommended.
In case the file is found but not valid, Exakat reverts to default values.

Unrecognized values are ignored.

8.4.1 Exakat in-code example

project: exakat
project_name: exakat
project_rulesets:
- my_ruleset
- Security
project_report:
— Ambassador
file_extensions: php,php3, phtml
include_dirs:

-/
ignore_dirs:

- /tests

- /vendor

- /docs

(continues on next page)

8.4. In-code Configuration 153

Exakat Documentation, Release 1

(continued from previous page)

- /media
ignore_rules:
- Structures/AddZero
rulesets:
my_ruleset:
- Structures/AddZero
— Structures/MultiplyByOne

8.4.2 Exakat in-code skeleton

Copy-paste this YAML code into a file called .exakat.yaml, located at the root of your repository.

file_extensions: php,php3,phtml
project: <project short name>
project_name: <project name, as displayed in reports>
project_rulesets:
— <list of rulesets to apply>
— Analysis
file_extensions: php,php3,phtml
project_report:
- <list of reports to build>
— Ambassador
include_dirs:

-/
ignore_rules:
ignore_dirs:

- /tests

- /vendor

- /docs

- /media

8.4.3 Available Options

Here are the currently available options in Exakat’s project configuration file

: projects/<project name>/config.ini

154

Chapter 8. Configuration

Exakat Documentation, Release 1

Op- Description
tion
in- This is the list of files and dir to include in the project’s directory. It is chrooted in the project’s folder.
clude_dirVpllues provided with a starting / are used as a path prefix. Values without / are used as a substring,
anywhere in the path. include_dirs are added AFTER ignore_dirs, so as to partially ignore a folder, such
as the vendor folder from composer.

ig- This is the list of files and dir to ignore in the project’s directory. It is chrooted in the project’s folder.
nore_dirsVhlues provided with a starting / are used as a path prefix. Values without / are used as a substring,
anywhere in the path.

ig- The rules mentioned in this list are ignored when running the audit. Rules are ignored after loading the
nore_rylag{lesets configuration : as such, it is possible to ignore rules inside a ruleset, without ignoring the whole
ruleset. The rules in this list are Exakat’s short name : ignore_rules[] = “Structures/AddZero”
file_exterEhomss the list of file extensions that is considered as PHP scripts. All others are ignored. All files bearing
those extensions are subject to check, though they are scanned first for PHP tags before being analyzed.
The extensions are comma separated, without dot. The default are : php, php3, inc, tpl, phtml, tmpl, phps,
ctp

project rihihie is the project name, as it appears at the top left in the Ambassador report.

project| ufhis is the repository URL for the project. It is used to get the source for the project.

project | vEhis is the VCS used to fetch the project source.

project| dEkdsiptithie description of the project.

project | phbkagishe packagist name for the code, when the code is fetched with composer.

8.5 Commandline Configuration

Commandline configurations are detailled with each command, in the _Commands section.

8.6 Specific analysis configurations

Some analyzer may be configured individually. Those parameters are then specific to one analyzer, and it only affects
their behavior.

Analyzers may be configured in the project/*/config.ini; they may also be configured globally in the config/exakat.ini
file.

Array() /[] Consistence
e array_ratio : 10
— Percentage of arrays in one of the syntaxes, to trigger the other syntax as a violation.
Too Many Array Dimensions
* maxDimensions : 3
— Number of valid dimensions in an array.
Custom Class Usage
* forbiddenClasses :
— List of classes to be avoided
Cancel Common Method
* cancelThreshold : 75

8.5. Commandline Configuration 155

Exakat Documentation, Release 1

— Minimal number of cancelled methods to suggest the cancellation of the parent.
Could Be Parent Method
* minChildren : 4
— Minimal number of children using this method.
Fossilized Method
* fossilizationThreshold : 6
— Minimal number of overwriting methods to consider a method difficult to update.
Immutable Signature
* maxOverwrite : 8

— Minimal number of method overwrite to consider that any refactor on the method signature is now
hard.

Make Magic Concrete
* magicMemberUsage : 1
— Minimal number of magic member usage across the code, to trigger a concrete property.
Too Many Children
e childrenClassCount : 15
— Threshold for too many children classes for one class.
Too Many Dereferencing
* tooManyDereferencing : 7
— Maximum number of dereferencing.
Too Many Finds
e minimumFinds : 5
— Minimal number of prefixed methods to report.
e findPrefix : find
— list of prefix to use when detecting the ‘find’. Comma-separated list, case insensitive.
e findSuffix :
— list of fix to use when detecting the ‘find’. Comma-separated list, case insensitive.
Too Many Injections
* injectionsCount : 5
— Threshold for too many injected parameters for one class.
Large Try Block
* tryBlockMaxSize : 5
— Maximal number of expressions in the try block.
Long Preparation For Throw
* preparationLineCount : 8

— Minimal number of lines before the throw.

156 Chapter 8. Configuration

Exakat Documentation, Release 1

Missing Include
e constant_or_variable_name : 100

— Literal value to be wused when including files. For example, by configuring
‘Files_MissingInclude[“HOME_DIR”] = “/tmp/myDir/’;’, then ‘includle HOME_DIR
“my_class.php”; will be actually be used as ‘/tmp/myDir/my_class.php’. Constants must be
configured with their correct case. Variable must be configured with their initial ‘$’. Configure any
number of variable and constant names.

Could Make A Function
* centralizeThreshold : 8
— Minimal number of calls of the function with one common argument.
Hardcoded Passwords
» passwordsKeys : password_keys.json
— List of array index and property names that shall be checked for potential secret key storages.
Prefix And Suffixes With Typehint
* prefixedType : prefixedType[‘is’] = ‘bool’;
prefixedType[‘has’] = ‘bool’; prefixedType[‘set’] = ‘void’; prefixedType[‘list’] = ‘array’;
e List of prefixes and their expected returntype
* suffixedType : prefixedType[‘list’] = ‘bool’;
prefixedType[‘int’] = ‘int’; prefixedType[‘string’] = ‘string’; prefixedType[‘name’] = ‘string’; prefixed-
Typel ‘description’] = ‘string’; prefixedType[‘id’] = ‘int’; prefixedType[‘vuid’] = ‘Uuid’;
* List of suffixes and their expected returntype
Too Many Local Variables
* tooManyLocal VariableThreshold : 15
— Minimal number of variables in one function or method to report.
Too Many Parameters
e parametersCount : 8
— Minimal number of parameters to report.
Too Much Indented
* indentationAverage : 1

— Minimal average of indentation in a method to report. Default is 1.0, which means that the method is
on average at one level of indentation or more.

e minimumSize : 3
— Minimal number of expressions in a method to apply this analysis.
Useless Argument
* maxUsageCount : 30
— Maximum count of function usage. Use this to limit the amount of processed arguments.
Abstract Away

¢ abstractableCalls :

8.6. Specific analysis configurations 157

Exakat Documentation, Release 1

— Functions that shouldn’t be called directly, unless in a method.
* abstractableClasses :
— Classes that shouldn’t be instantiated directly, unless in a method.
Memoize MagicCall
* minMagicCallsToGet : 2
— Minimal number of calls of a magic property to make it worth locally caching.
PHP Keywords As Names
¢ reservedNames :
— Other reserved names : all in a string, comma separated.
* allowedNames :
— PHP reserved names that can be used in the code. All in a string, comma separated.
Too Many Native Calls
* nativeCallCounts : 3
— Number of native calls found inside another call.
Keep Files Access Restricted
e filePrivileges : 0777
— List of forbidden file modes (comma separated).
Should Use Prepared Statement
* queryMethod : query_methods.json
— Methods that call a query.
Too Complex Expression
» complexExpressionThreshold : 30
— Minimal number of operators in one expression to report.
Long Arguments
* codeTooLong : 100
— Minimum size of a functioncall or a methodcall to be considered too long.
Too Long A Block
* longBlock : 200

— Size of a block for it to be too long. A block is commanded by a for, foreach, while, do. .. while,
if/then else structure.

Max Level Of Nesting
* maxLevel : 4
— Maximum level of nesting for control flow structures in one scope.
Nested Ifthen
* nestedIfthen : 3

— Maximal number of acceptable nesting of if-then structures

158 Chapter 8. Configuration

Exakat Documentation, Release 1

@ Operator
* authorizedFunctions : noscream_functions.json
— Functions that are authorized to sports a @.
Duplicate Literal
* minDuplicate : 15
— Minimal number of duplication before the literal is reported.
Selector
* selector :
— A selector expression to identify atoms in the code.
Variables With Long Names
e variableLength : 20

— Minimum size of a long variable name, including the initial $.

8.7 Check Install

Once the prerequisite are installed, it is advised to run to check if all is found :

php exakat.phar doctor

After this run, you may edit ‘config/config.ini’ to change some of the default values. Most of the time, the default

values will be OK for a quick start.

8.7. Check Install

159

Exakat Documentation, Release 1

160 Chapter 8. Configuration

CHAPTER 9

Scoping analysis

9.1

9.2

Summary

scoping files
scoping rules

scoping reports

Scoping files

ignore_dirs and include_dirs are the option used to select files within a folder. Here are some tips to choose

From the full list of files, ignore_dirs[] is applied, then include_dirs is applied. The remaining list is processed.
ignore one file : ignore_dirs[] = “/path/to/file.php”

ignore one dir : ignore_dirs[] = “/path/to/dir/”

ignore siblings but include one dir : ignore_dirs[] = “/path/to/parent/”; include_dirs[] = “/path/to/parent/dir/”
ignore every name containing ‘test’ : ignore_dirs[] = “test”;

only include one dir (and exclude the rest): include_dirs[] = “/path/to/dir/”;

“r»

omitting include_dirs defaults to “include_dirs[] =

omitting ignore_dirs defaults to “ignore_dirs[] =

including or ignoring files multiple times only has effect once

include_dirs has priority over the config.cache configuration file. If a folder has been marked for exclusion in the
config.cache file, it may be forced to be included by configuring its value with include_dirs in the config.ini file.

161

Exakat Documentation, Release 1

9.3 Scoping rules

to be completed

9.4 Scoping reports

Exakat builds a list of analysis to run, based on two directives : project_reports and projects_themes. Both are list of
rulesets. Unknown rulesets are omitted.

project_reports makes sure you can extract those reports, while projects_themes allow you to build reports a la carte
later, and avoid running the whole audit again.

9.4.1 Required rulesets
First, analysis are very numerous, and it is very tedious to sort them by hand. Exakat only handles ‘themes’ which are
groups of analysis. There are several list of rulesets available by default, and it is possible to customize those lists.

When using the projects_themes directive, you can configure which rulesets must be processed by exakat, each time a
‘project’ command is run. Those rulesets are always run.

9.4.2 Report-needed rulesets
Reports are build based on results found during the auditing phase. Some reports, like ‘Ambassador’ or ‘Drillinstruc-
tor’ needs the results of specific rulesets. Others, like “Text’ or ‘Json’ build reports at the last moment.

As such, exakat uses the project_reports directive to collect the list of necessary rulesets, and add them to the
projects_themes results.

9.4.3 Late reports

It is possible de extract a report, even if the configuration has not been explicitly set for it.

For example, it is possible to build the Owasp report after telling exakat to build a ‘Ambassador’ report, as Ambassador
includes all the analysis needed for Owasp. On the other hand, the contrary is not true : one can’t get the Ambassador
report after running exakat for the Owasp report, as Owasp only covers the security rulesets, and Ambassador requires
other rulesets.

9.4.4 Recommendations

* The ‘Ambassador’ report has all the classic rulesets, it’s the most comprehensive choice.
¢ To collect everything possible, use the ruleset ‘All’. It’s also the longest-running ruleset of all.
* To get one report, simply configure project_report with that report.

* You may configure several rulesets, like ‘Security’, ‘Suggestions’, ‘CompatibilityPHP73’, and later extract
independant results with the ‘“Text’ or ‘Json’ format.

* If you just want one compulsory report and two optional reports (total of three), simply configure all of them with
project_report. It’s better to produce extra reports, than run again a whole audit to collect missing informations.

* It is possible to configure customized rulesets, and use them in project_rulesets

162 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

* Excluding one analyzer is not supported. Use custom rulesets to build a new one instead.

9.4.5 Example

project_reports[] = 'Drillinstructor';
project_reports[] = 'Owasp';
project_themes[] = 'Security';
project_themes[] = 'Suggestions';

With that configuration, the Drillinstructor and the Owasp report are created automatically when running ‘project’.
Use the following command to get the specific rulesets ;

’php exakat .phar report -p <project> -format Text -T Security -v

9.5 Predefined config files

INI configuration for built-in rulesets. Copy them in config/themes.ini, and make your owns.

27 rulesets detailled here :

9.5.1 Analyze

[Analyze]
analyzer[] = “Arrays/AmbiguousKeys”;
analyzer[] = “Arrays/MultipleldenticalKeys”;
analyzer[] = “Arrays/NoSpreadForHash”;
analyzer[] = “Arrays/NonConstantArray”;

analyzer[] = “Arrays/NullBoolean”;
analyzer[] = “Arrays/RandomlySortedLiterals”;
analyzer[] = “Arrays/TooManyDimensions”;

analyzer[] = “Attributes/Modifylmmutable”;

]

]

]

]

]

]

]

1=
analyzer[] = “Classes/AbstractOrImplements”;
analyzer[] = “Classes/AbstractStatic”;
analyzer[] = “Classes/AccessPrivate”;
analyzer[] = “Classes/AccessProtected”;
analyzer[] = “Classes/AmbiguousStatic”;
analyzer[] = “Classes/ AmbiguousVisibilities”;
analyzer[] = “Classes/AvoidOptionArrays”;
analyzer[] = “Classes/AvoidOptionalProperties”;
analyzer[] = “Classes/CantExtendFinal”’;
analyzer[] = “Classes/CantInstantiateClass”;
analyzer[] = “Classes/CheckOnCallUsage”;
analyzer[] = “Classes/CitSameName”’;
analyzer[] = “Classes/CloneWithNonObject”;
analyzer[] = “Classes/CouldBeAbstractClass”;
analyzer[] = “Classes/CouldBeFinal”;

9.5. Predefined config files 163

Exakat Documentation, Release 1

analyzer[] = “Classes/CouldBeStatic”;
analyzer[] = “Classes/CouldBeStringable”;
analyzer[] = “Classes/CyclicReferences”;

analyzer[] = “Classes/DependantAbstractClass”;

analyzer[] = “Classes/DifferentArgumentCounts”;
analyzer[] = “Classes/DirectCallToMagicMethod™;
analyzer[] = “Classes/DontSendThisInConstructor”;
analyzer[] = “Classes/DontUnsetProperties”;

analyzer[] = “Classes/EmptyClass”;

analyzer[] = “Classes/FinalByOcramius”;

analyzer[] = “Classes/HiddenNullable”;

analyzer[] = “Classes/ImplementIsForInterface”;
analyzer[] = “Classes/ImplementedMethodsArePublic”;
analyzer[] = “Classes/IncompatibleSignature”;

analyzer[] = “Classes/IncompatibleSignature74”;

analyzer[] = “Classes/Instantiating AbstractClass”;

analyzer[] = “Classes/MakeDefault”;

analyzer[] = “Classes/MakeGlobal AProperty”’;

analyzer[] = “Classes/MethodSignatureMustBeCompatible™;
analyzer[] = “Classes/MismatchProperties”;

analyzer[] = “Classes/MissingAbstractMethod”;

analyzer[] = “Classes/MultipleDeclarations”;

analyzer[] = “Classes/MultipleTraitOrInterface”;

analyzer[] = “Classes/NoPSSOutsideClass”;

analyzer[] = “Classes/NoParent™;

analyzer[] = “Classes/NoPublicAccess”;

analyzer[] = “Classes/NoSelfReferencingConstant”;
analyzer[] = “Classes/NonNullableSetters”;

analyzer[] = “Classes/NonPpp”’;

analyzer[] = “Classes/NonStaticMethodsCalledStatic™;
analyzer[] = “Classes/OldStyleConstructor”;
analyzer[] = “Classes/OldStyleVar”;

analyzer[] = “Classes/ParentFirst”;

analyzer[] = “Classes/PropertyCouldBeLocal”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Classes/NoMagicWithArray”;
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Classes/PropertyNeverUsed”;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Classes/PropertyUsedInOneMethodOnly”;
analyzer[] = “Classes/PssWithoutClass”;

analyzer[] = “Classes/RedefinedConstants”;

analyzer[] = “Classes/RedefinedDefault”;

analyzer[] = “Classes/RedefinedPrivateProperty”;
analyzer[] = “Classes/ScalarOrObjectProperty”;
analyzer[] = “Classes/ShouldUseSelf”;

analyzer[] = “Classes/ShouldUseThis”;

analyzer[] = “Classes/StaticContainsThis”;

analyzer[] = “Classes/StaticMethodsCalledFromObject”;
analyzer[] = “Classes/SwappedArguments”;

164 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Classes/ThisIsForClasses”;
analyzer[] = “Classes/ThisIsNotAnArray”;
analyzer[] = “Classes/ThisIsNotForStatic”;
analyzer[] = “Classes/ThrowInDestruct”;

analyzer[] = “Classes/TooManyDereferencing”;

analyzer[] = “Classes/TooManyFinds”;

analyzer[] = “Classes/TooManylInjections”;
analyzer[] = “Classes/UndeclaredStaticProperty”;
analyzer[] = “Classes/UndefinedClasses”;
analyzer[] = “Classes/UndefinedConstants”;
analyzer[] = “Classes/UndefinedParentMP”’;
analyzer[] = “Classes/UndefinedProperty”;
analyzer[] = “Classes/UndefinedStaticMP”’;
analyzer[] = “Classes/UndefinedStaticclass”;

analyzer[] = “Classes/UnresolvedClasses”;

]

]

]

]

]

]

]

]

]

]

]

]

]

]

1=
analyzer[] = “Classes/UnresolvedInstanceof™;
analyzer[] = “Classes/UnusedClass”;
analyzer[] = “Classes/UnusedConstant”;
analyzer[] = “Classes/UseClassOperator”;
analyzer[] = “Classes/Uselnstanceof”;
analyzer[] = “Classes/UsedOnceProperty”;
analyzer[] = “Classes/UselessAbstract”;
analyzer[] = “Classes/UselessConstructor’;
analyzer[] = “Classes/UselessFinal”’;
analyzer[] = “Classes/UsingThisOutside AClass”;
analyzer[] = “Classes/WeakType”;
analyzer[] = “Classes/WrongName”;
analyzer[] = “Classes/WrongTypedPropertyInit”;
analyzer[] = “Constants/BadConstantnames’;
analyzer[] = “Constants/ConstRecommended”;
analyzer[] = “Constants/ConstantStrangeNames”;
analyzer[] = “Constants/CreatedOutsideltsNamespace”;
analyzer[] = “Constants/InvalidName”;
analyzer[] = “Constants/MultipleConstantDefinition”;
analyzer[] = “Constants/StrangeName”;
analyzer[] = “Constants/UndefinedConstants”;
analyzer[] = “Exceptions/CantThrow”;
analyzer[] = “Exceptions/CatchUndefined Variable”;
analyzer[] = “Exceptions/ForgottenThrown”;
analyzer[] = “Exceptions/OverwriteException”;
analyzer[] = “Exceptions/ThrowFunctioncall”’;
analyzer[] = “Exceptions/UncaughtExceptions”;
analyzer[] = “Exceptions/Unthrown”;
analyzer[] = “Exceptions/UselessCatch”;
analyzer[] = “Files/InclusionWrongCase”;
analyzer[] = “Files/MissingInclude”;
analyzer[] = “Functions/AliasesUsage”;

9.5.

Predefined config files

165

Exakat Documentation, Release 1

analyzer[] = “Functions/AvoidBooleanArgument”;
analyzer[] = “Functions/CallbackNeedsReturn”;

analyzer[] = “Functions/CancelledParameter”;
analyzer[] = “Functions/CannotUseStaticForClosure”;

analyzer[] = “Functions/CouldCentralize”;

analyzer[] = “Functions/DeepDefinitions”;

analyzer[] = “Functions/DontUseVoid”;

analyzer[] = “Functions/EmptyFunction”;

analyzer[] = “Functions/FnArgumentVariableConfusion™;
analyzer[] = “Functions/HardcodedPasswords”;
analyzer[] = “Functions/InsufficientTypehint™;

analyzer[] = “Functions/MismatchParameterAndType”;

analyzer[] = “Functions/MismatchParameterName”;

analyzer[] = “Functions/MismatchTypeAndDefault”;
analyzer[] = “Functions/MismatchedDefaultArguments”;
analyzer[] = “Functions/MismatchedTypehint”;
analyzer[] = “Functions/Modify TypedParameter”;
analyzer[] = “Functions/MustReturn”;

analyzer[] = “Functions/NeverUsedParameter”;
analyzer[] = “Functions/NoBooleanAsDefault”;
analyzer[] = “Functions/NoLiteralForReference”;

analyzer[] = “Functions/NoReturnUsed”;

analyzer[] = “Functions/Only VariableForReference”;
analyzer[] = “Functions/RedeclaredPhpFunction”;

analyzer[] = “Functions/RelayFunction”;

analyzer[] = “Functions/ShouldUseConstants”;
analyzer[] = “Functions/ShouldYieldWithKey”;
analyzer[] = “Functions/TooManyLocal Variables™;
analyzer[] = “Functions/TypehintMustBeReturned”;
analyzer[] = “Functions/TypehintedReferences”;
analyzer[] = “Functions/UndefinedFunctions”;
analyzer[] = “Functions/UnknownParameterName”;
analyzer[] = “Functions/Unused Arguments”;

analyzer[] = “Functions/UnusedInherited Variable”;

analyzer[] = “Functions/UnusedReturned Value”;

analyzer[] = “Functions/UseConstantAsArguments”;
analyzer[] = “Functions/UselessReference Argument”;
analyzer[] = “Functions/UselessReturn”;

analyzer[] = “Functions/UsesDefaultArguments”;
analyzer[] = “Functions/UsingDeprecated”;

analyzer[] = “Functions/WithoutReturn”;

analyzer[] = “Functions/WrongArgumentType”;
analyzer[] = “Functions/WrongNumberOf Arguments”;
analyzer[] = “Functions/WrongOptionalParameter”;
analyzer[] = “Functions/WrongReturnedType”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Functions/Only VariablePassedByReference”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Functions/WrongTypeWithCall”;

166 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Functions/funcGetArgModified”;

analyzer[] = “Interfaces/AlreadyParentsInterface”;
analyzer[] = “Interfaces/CantImplementTraversable”;
analyzer[] = “Interfaces/ConcreteVisibility”;

analyzer[] = “Interfaces/CouldUselnterface”;

analyzer[] = “Interfaces/EmptyInterface”;

analyzer[] = “Interfaces/IsNotImplemented”;

analyzer[] = “Interfaces/NoGaranteeForPropertyConstant”;
analyzer[] = “Interfaces/RepeatedInterface”;

analyzer[] = “Interfaces/UndefinedInterfaces”;

analyzer[] = “Interfaces/UselessInterfaces”;

analyzer[] = “Namespaces/ConstantFullyQualified”;
analyzer[] = “Namespaces/EmptyNamespace”;

analyzer[] = “Namespaces/HiddenUse”;

analyzer[] = “Namespaces/MultipleAliasDefinitionPerFile”;

analyzer[] = “Namespaces/MultipleAliasDefinitions”;
analyzer[] = “Namespaces/ShouldMakeAlias™;
analyzer[] = “Namespaces/UnresolvedUse”;

analyzer[] = “Namespaces/UseWithFullyQualifiedNS”’;
analyzer[] = “Performances/ArrayMergeInLoops”;
analyzer[] = “Performances/LogicalTolnArray’;
analyzer[] = “Performances/MemoizeMagicCall”;
analyzer[] = “Performances/PrePostIncrement”;
analyzer[] = “Performances/UseArraySlice”;

analyzer[] = “Php/ArrayKeyExistsWithObjects”;

analyzer|[

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

analyzer[] = “Performances/StrposTooMuch”;

]

]

] = “Php/AssertFunctionlsReserved”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/AssignAnd”;

analyzer[] = “Php/Assumptions”;

analyzer[] = “Php/AvoidMbDectectEncoding”;
analyzer[] = “Php/BetterRand”;

analyzer[] = “Php/ConcatAndAddition”;
analyzer[] = “Php/Crc32MightBeNegative”;
analyzer[] = “Php/Deprecated”;

analyzer[] = “Php/DontPolluteGlobalSpace”;
analyzer[] = “Php/EmptyList”;

analyzer[] = “Php/FopenMode”;

analyzer[] = “Php/ForeachObject”;
analyzer[] = “Php/HashAlgos”;

analyzer[] = “Php/Incompilable”;

analyzer[] = “Php/InternalParameterType”;
analyzer[] = “Php/IsAWithString”;

analyzer[] = “Php/IsnullVsEqualNull”’;
analyzer[] = “Php/LogicallnLetters”;
analyzer[] = “Php/MissingMagiclsset”;
analyzer[] = “Php/MissingSubpattern”;
analyzer[] = “Php/MultipleDeclareStrict”;

9.5.

Predefined config files

167

Exakat Documentation, Release 1

analyzer[] = “Php/MustCallParentConstructor”;
analyzer[] = “Php/NoClassInGlobal”;

analyzer[] = “Php/NoReferenceForTernary”;
analyzer[] = “Php/Only VariableForReference”;
analyzer[] = “Php/PathinfoReturns”;

analyzer[] = “Php/ReservedNames”;

analyzer[] = “Php/ScalarAreNotArrays”;
analyzer[] = “Php/ShortOpenTagRequired”;
analyzer[] = “Php/ShouldUseCoalesce”;

analyzer[] = “Php/StrtrArguments”;

analyzer[] = “Php/TooManyNativeCalls”;
analyzer[] = “Php/UnknownPcre2Option”;
analyzer[] = “Php/UseObjectApi”;

analyzer[] = “Php/UsePathinfo”;

analyzer[] = “Php/UseSetCookie”;

analyzer[] = “Php/UseStdclass”;

analyzer[] = “Php/WrongAttributeConfiguration”;
analyzer[] = “Php/WrongTypeForNativeFunction™;
analyzer[] = “Php/oldAutoloadUsage”;

analyzer[] = “Security/DontEchoError”;

analyzer[] = “Security/ShouldUsePreparedStatement”;
analyzer[] = “Structures/AddZero”;

analyzer[] = “Structures/AlteringForeachWithoutReference”;

analyzer[] = “Structures/AlwaysFalse”;

analyzer[] = “Structures/ArrayFillWithObjects”;
analyzer[] = “Structures/ArrayMapPassesByValue”;
analyzer[] = “Structures/ArrayMerge And Variadic™;
analyzer[] = “Structures/ArrayMergeArrayArray”;
analyzer[] = “Structures/AssigneAndCompare”;
analyzer[] = “Structures/AutoUnsetForeach”;
analyzer[] = “Structures/BailOutEarly”;

analyzer[] = “Structures/BooleanStrictComparison”;
analyzer[] = “Structures/BreakOutsideL.oop™;

analyzer[] = “Structures/Buried Assignation”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Structures/AlternativeConsistenceByFile”;
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Structures/CastToBoolean”;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Structures/CastingTernary”;
analyzer[] = “Structures/CatchShadowsVariable”;
analyzer[] = “Structures/Check AllTypes”;
analyzer[] = “Structures/CheckJson”;

analyzer[] = “Structures/CoalesceAndConcat”;
analyzer[] = “Structures/CommonAlternatives”;
analyzer[] = “Structures/ComparedComparison”;
analyzer[] = “Structures/ConcatEmpty”;
analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/CouldBeElse”;
analyzer[] = “Structures/CouldBeStatic”;

168 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/CouldUseDir”;
analyzer[] = “Structures/CouldUseShortAssignation”;
analyzer[] = “Structures/CouldUseStrrepeat”;

analyzer[] = “Structures/DanglingArrayReferences’;

analyzer[] = “Structures/DirThenSlash”;

analyzer[] = “Structures/DontChangeBlindKey”;

analyzer[] = “Structures/DontMixPlusPlus”;

analyzer[] = “Structures/DontRead AndWriteInOneExpression”;
analyzer[] = “Structures/DoubleAssignation”;

analyzer[] = “Structures/Doublelnstruction”;

analyzer[] = “Structures/DoubleObjectAssignation”;
analyzer[] = “Structures/DropElseAfterReturn”;

analyzer[] = “Structures/EchoWithConcat”;

analyzer[] = “Structures/ElselfElseif’;

analyzer[] = “Structures/EmptyBlocks”;

analyzer[] = “Structures/EmptyLines”;

analyzer[] = “Structures/EmptyTryCatch”;

analyzer[] = “Structures/ErrorReportingWithInteger”;
analyzer[] = “Structures/EvalUsage”;

analyzer[] = “Structures/EvalWithoutTry”;

analyzer[] = “Structures/ExitUsage”;

analyzer[] = “Structures/FailingSubstrComparison”;
analyzer[] = “Structures/ForeachReferencelsNotModified”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Structures/ForeachSource Value™;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Structures/ForgottenWhiteSpace”;
analyzer[] = “Structures/GlobalUsage”;
analyzer[] = “Structures/Htmlentitiescall”’;
analyzer[] = “Structures/IdenticalConditions”;
analyzer[] = “Structures/IdenticalConsecutive”;
analyzer[] = “Structures/IdenticalOnBothSides”;
analyzer[] = “Structures/IfWithSameConditions”;
analyzer[] = “Structures/Iffectation”;

analyzer[] = “Structures/ImpliedIf”;

analyzer[] = “Structures/Implode ArgsOrder”;
analyzer[] = “Structures/InconsistentElseif”;
analyzer[] = “Structures/IndicesAreIntOrString”;
analyzer[] = “Structures/InfiniteRecursion”;
analyzer[] = “Structures/InvalidPackFormat”;
analyzer[] = “Structures/InvalidRegex”;
analyzer[] = “Structures/IsZero”;

analyzer[] = “Structures/ListOmissions”;
analyzer[] = “Structures/LogicalMistakes”;
analyzer[] = “Structures/LoneBlock™;

analyzer[] = “Structures/LongArguments”;
analyzer[] = “Structures/MaxLevelOfIdentation”;
analyzer[] = “Structures/MbstringThirdArg”;
analyzer[] = “Structures/MbstringUnknownEncoding”;

9.5.

Predefined config files 169

Exakat Documentation, Release 1

analyzer[] = “Structures/MergelfThen”;
analyzer[] = “Structures/MismatchedTernary”;
analyzer[] = “Structures/MissingCases”;
analyzer[] = “Structures/MissingNew””;
analyzer[] = “Structures/MissingParenthesis”;
analyzer[] = “Structures/MixedConcatInterpolation”;
analyzer[] = “Structures/ModernEmpty”’;
analyzer[] = “Structures/MultipleDefinedCase”;
analyzer[] = “Structures/MultipleType Variable”;
analyzer[] = “Structures/MultiplyByOne”;
analyzer[] = “Structures/NegativePow”’;
analyzer[] = “Structures/NestedIfthen”;

analyzer[] = “Structures/NestedTernary”’;

]

]

]

]

]

]

]

]

]

]

]

]

]
analyzer[] = “Structures/NeverNegative”;
analyzer[] = “Structures/NextMonthTrap”;
analyzer[] = “Structures/NoAppendOnSource”;
analyzer[] = “Structures/NoChangeIncomingVariables™;
analyzer[] = “Structures/NoChoice”;
analyzer[] = “Structures/NoDirectUsage”;
analyzer[] = “Structures/NoEmptyRegex”;
analyzer[] = “Structures/NoGetClassNull”;
analyzer[] = “Structures/NoHardcodedHash”;
analyzer[] = “Structures/NoHardcodedIp”;
analyzer[] = “Structures/NoHardcodedPath”;
analyzer[] = “Structures/NoHardcodedPort”;
analyzer[] = “Structures/NolssetWithEmpty”’;
analyzer[] = “Structures/NoNeedForElse”;
analyzer[] = “Structures/NoNeedForTriple”;
analyzer[] = “Structures/NoParenthesisForLanguageConstruct”;
analyzer[] = “Structures/NoReferenceOnLeft”;
analyzer[] = “Structures/NoSubstrOne”;
analyzer[] = “Structures/NoVariableIsACondition”;
analyzer[] = “Structures/Noscream”;
analyzer[] = “Structures/NotEqual”’;
analyzer[] = “Structures/NotNot™;
analyzer[] = “Structures/ObjectReferences”;
analyzer[] = “Structures/OnceUsage”;
analyzer[] = “Structures/OneLineTwolnstructions’;
analyzer[] = “Structures/Only VariableReturnedByReference”;
analyzer[] = “Structures/OrDie”;
analyzer[] = “Structures/PossibleInfiniteLoop™;
analyzer[] = “Structures/PrintAndDie”;
analyzer[] = “Structures/PrintWithoutParenthesis”;
analyzer[] = “Structures/PrintfArguments”;
analyzer[] = “Structures/QueriesInLoop”;
analyzer[] = “Structures/RepeatedPrint”;

]

analyzer[] = “Structures/RepeatedRegex”;

170 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/ResultMayBeMissing”;
analyzer[] = “Structures/ReturnTrueFalse”;
analyzer[] = “Structures/SameConditions”;
analyzer[] = “Structures/ShouldChainException”;

analyzer[] = “Structures/ShouldMakeTernary”;

analyzer[] = “Structures/ShouldPreprocess”;
analyzer[] = “Structures/ShouldUseExplodeArgs”;
analyzer[] = “Structures/StaticL.oop”;

analyzer[] = “Structures/StripTagsSkipsClosedTag”;
analyzer[] = “Structures/StrposCompare”;
analyzer[] = “Structures/SuspiciousComparison”;
analyzer[] = “Structures/SwitchToSwitch”;
analyzer[] = “Structures/SwitchWithoutDefault”;
analyzer[] = “Structures/TernaryInConcat”;

analyzer[] = “Structures/TestThenCast”;

analyzer[] = “Structures/ThrowsAndAssign”;

analyzer[] = “Structures/TimestampDifference”;

analyzer[] = “Structures/UncheckedResources”;

analyzer[] = “Structures/UnconditionLoopBreak”;
analyzer[] = “Structures/UnknownPregOption”;

analyzer[] = “Structures/Unpreprocessed”;

analyzer[] = “Structures/UnsetInForeach”;

analyzer[] = “Structures/Unsupported TypesWithOperators™;
analyzer[] = “Structures/UseConstant”;

analyzer[] = “Structures/Uselnstanceof™;

analyzer[] = “Structures/UsePositiveCondition”;
analyzer[] = “Structures/UseSystemTmp”’;
analyzer[] = “Structures/UselessBrackets”;
analyzer[] = “Structures/UselessCasting”;
analyzer[] = “Structures/UselessCheck’;
analyzer[] = “Structures/UselessGlobal”;
analyzer[] = “Structures/UselessInstruction”;
analyzer[] = “Structures/UselessParenthesis”;
analyzer[] = “Structures/UselessSwitch”;

analyzer[] = “Structures/UselessUnset”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Structures/UnusedGlobal”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Structures/VardumpUsage”;
analyzer[] = “Structures/WhileListEach”;
analyzer[] = “Structures/WrongRange”;
analyzer[] = “Structures/pregOptionE”;
analyzer[] = “Structures/toStringThrowsException”;
analyzer[] = “Traits/AlreadyParentsTrait”;
analyzer[] = “Traits/DependantTrait”;
analyzer[] = “Traits/EmptyTrait”;

analyzer[] = “Traits/MethodCollisionTraits”;
analyzer[] = “Traits/TraitNotFound”;
analyzer[] = “Traits/UndefinedInsteadof™;

. Predefined config files 171

Exakat Documentation, Release 1

analyzer[] = “Traits/UndefinedTrait”;
analyzer[] = “Traits/UselessAlias”;
analyzer[] = “Type/NoRealComparison”;
analyzer[] = “Type/OneVariableStrings”;

analyzer[] = “Type/ShouldTypecast”;

analyzer[] = “Type/SilentlyCastInteger”;
analyzer[] = “Type/StringHold AVariable”;
analyzer[] = “Type/StringWithStrangeSpace”;
analyzer[] = “Typehints/MissingReturntype”;
analyzer[] = “Variables/AssignedTwiceOrMore”;
analyzer[] = “Variables/ConstantTypo”;
analyzer[] = “Variables/LostReferences”;
analyzer[] = “Variables/OverwrittenLiterals”;
analyzer[] = “Variables/StrangeName”’;

analyzer[] = “Variables/UndefinedConstantName”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Variables/Undefined Variable”;

analyzer[] = “Variables/VariableNonascii”;

analyzer[] = “Variables/VariableUsedOnce”;

analyzer[] = “Variables/VariableUsedOnceByContext™;
analyzer[] = “Variables/WrittenOnly Variable”;

9.5.2 Attributes

[Attributes]

analyzer[] = “Attributes/Modifylmmutable”;
analyzer[] = “Functions/KillsApp”;
analyzer[] = “Functions/UsingDeprecated”;

analyzer[] = “Classes/DynamicClass”;

9.5.3 CE
[CE]
analyzer[] = “Arrays/ArrayNSUsage”;
analyzer[] = “Arrays/Arrayindex”;
analyzer[] = “Arrays/Multidimensional”’;
analyzer[] = “Arrays/NegativeStart”;
analyzer[] = “Arrays/Phparrayindex”;
analyzer[] = “Arrays/WithCallback™;
analyzer[] = “Classes/Abstractclass’;
analyzer[] = “Classes/Abstractmethods”;
analyzer[] = “Classes/Anonymous’;
analyzer[] = “Classes/ClassAliasUsage”’;
analyzer[] = “Classes/Classnames”;
analyzer[] = “Classes/CloningUsage”;
analyzer[] = “Classes/ConstantDefinition”;
]
]

analyzer[] = “Classes/DynamicConstantCall”;

172

Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Classes/DynamicMethodCall”;
analyzer[] = “Classes/DynamicNew”;

analyzer[] = “Classes/DynamicPropertyCall”;
analyzer[] = “Classes/FinalPrivate”;

analyzer[] = “Classes/ImmutableSignature”;

analyzer[] = “Classes/MagicMethod”;

analyzer[] = “Classes/MultipleClassesInFile”;
analyzer[] = “Classes/NonPpp”;

analyzer[] = “Classes/OldStyleConstructor”;
analyzer[] = “Classes/OverwrittenConst”;
analyzer[] = “Classes/RedefinedMethods”;
analyzer[] = “Classes/StaticMethods”;

analyzer[] = “Classes/StaticMethodsCalledFromObject”;
analyzer[] = “Classes/StaticProperties”;

analyzer[] = “Classes/TestClass”;

analyzer[] = “Classes/VariableClasses”;

analyzer[] = “Complete/OverwrittenProperties™;
analyzer[] = “Complete/SetParentDefinition”;
analyzer[] = “Composer/Autoload”;

analyzer[] = “Composer/IsComposerNsname”;
analyzer[] = “Composer/UseComposer’’;

analyzer[] = “Composer/UseComposerLock™;
analyzer[] = “Constants/CaselnsensitiveConstants”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Constants/ConditionedConstants”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Constants/ConstantUsage”;
analyzer[] = “Constants/Constantnames”;
analyzer[] = “Constants/DynamicCreation”;
analyzer[] = “Constants/IsExtConstant”;

analyzer[] = “Constants/MagicConstantUsage”’;
analyzer[] = “Constants/PhpConstantUsage”;
analyzer[] = “Constants/VariableConstant™;
analyzer[] = “Dump/CallOrder”;

analyzer[] = “Dump/CollectAtomCounts”;
analyzer[] = “Dump/CollectClassChanges”;
analyzer[] = “Dump/CollectClassChildren”;
analyzer[] = “Dump/CollectClassConstantCounts”;
analyzer[] = “Dump/CollectClassDepth”;
analyzer[] = “Dump/CollectClassInterfaceCounts”;
analyzer[] = “Dump/CollectClassTraitsCounts™;
analyzer[] = “Dump/CollectClassesDependencies’;
analyzer[] = “Dump/CollectDefinitionsStats”;
analyzer[] = “Dump/CollectFilesDependencies”;
analyzer[] = “Dump/CollectForeachFavorite”;
analyzer[] = “Dump/CollectGlobal Variables™;
analyzer[] = “Dump/CollectLiterals”;

analyzer[] = “Dump/CollectLocal VariableCounts”;
analyzer[] = “Dump/CollectMbstringEncodings”;

9.5.

Predefined config files

173

Exakat Documentation, Release 1

analyzer[] = “Dump/CollectMethodCounts”;

analyzer[] = “Dump/CollectNativeCallsPerExpressions”;

analyzer[] = “Dump/CollectParameterCounts”;

analyzer[] = “Dump/CollectParameterNames”;

analyzer[] = “Dump/CollectPhpStructures”;

analyzer[] = “Dump/CollectPropertyCounts’;
analyzer[] = “Dump/CollectReadability”;
analyzer[] = “Dump/CollectUseCounts”;
analyzer[] = “Dump/CollectVariables™;
analyzer[] = “Dump/ConstantOrder”;
analyzer[] = “Dump/CyclomaticComplexity”;
analyzer[] = “Dump/DereferencingLevels”;
analyzer[] = “Dump/EnvironnementVariables”;
analyzer[] = “Dump/FossilizedMethods”;

analyzer[] = “Dump/Inclusions”;

]

]

]

]

]

]

]

]

]

]

]

]

]

]

1=
analyzer[] = “Dump/IndentationLevels”;
analyzer[] = “Dump/NewOrder”;
analyzer[] = “Dump/Parameter ArgumentsLinks”’;
analyzer[] = “Dump/TypehintingStats™;
analyzer[] = “Dump/Typehintorder”;
analyzer[] = “Exceptions/DefinedExceptions”;
analyzer[] = “Exceptions/MultipleCatch”;
analyzer[] = “Exceptions/ThrownExceptions™;
analyzer[] = “Extensions/Extamqp”;
analyzer[] = “Extensions/Extapache”;
analyzer[] = “Extensions/Extapc”;
analyzer[] = “Extensions/Extapcu”;
analyzer[] = “Extensions/Extarray”’;
analyzer[] = “Extensions/Extast”;
analyzer[] = “Extensions/Extasync”;
analyzer[] = “Extensions/Extbcmath”;
analyzer[] = “Extensions/Extbzip2”;
analyzer[] = “Extensions/Extcairo”;
analyzer[] = “Extensions/Extcalendar”;
analyzer[] = “Extensions/Extcmark”;
analyzer[] = “Extensions/Extcom”;
analyzer[] = “Extensions/Extcrypto”;
analyzer[] = “Extensions/Extcsprng”;
analyzer[] = “Extensions/Extctype”;
analyzer[] = “Extensions/Extcurl”;
analyzer[] = “Extensions/Extcyrus”;
analyzer[] = “Extensions/Extdate”;
analyzer[] = “Extensions/Extdb2”;
analyzer[] = “Extensions/Extdba”;
analyzer[] = “Extensions/Extdecimal’;
analyzer[] = “Extensions/Extdio”;
analyzer[] = “Extensions/Extdom”;

174

Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Extensions/Extds”;

]
analyzer(]
analyzer[] = “Extensions/Exteio”;
analyzer[] = “Extensions/Extenchant”;
analyzer[] = “Extensions/Extereg”;
analyzer[] = “Extensions/Extev’’;
analyzer[] = “Extensions/Extevent”;
analyzer[] = “Extensions/Extexif”;
analyzer[] = “Extensions/Extexpect”;
analyzer[] = “Extensions/Extfam”;
analyzer[] = “Extensions/Extfann”;
analyzer[] = “Extensions/Extfdf”;
analyzer[] = “Extensions/Extffi”;
analyzer[] = “Extensions/Extffmpeg”;
analyzer[] = “Extensions/Extfile”;
analyzer[] = “Extensions/Extfileinfo”;
analyzer[] = “Extensions/Extfilter”;
analyzer[] = “Extensions/Extfpm”;
analyzer[] = “Extensions/Extftp”;
analyzer[] = “Extensions/Extgd”;
analyzer[] = “Extensions/Extgearman’;
analyzer[] = “Extensions/Extgender”;
analyzer[] = “Extensions/Extgeoip”;
analyzer[] = “Extensions/Extgettext”;
analyzer[] = “Extensions/Extgmagick”;
analyzer[] = “Extensions/Extgmp”;
analyzer[] = “Extensions/Extgnupg”;
analyzer[] = “Extensions/Extgrpc”;
analyzer[] = “Extensions/Exthash”;
analyzer[] = “Extensions/Exthrtime”;
analyzer[] = “Extensions/Exthttp”;
analyzer[] = “Extensions/Extibase”;
analyzer[] = “Extensions/Exticonv’’;
analyzer[] = “Extensions/Extigbinary”;
analyzer[] = “Extensions/Extiis”;
analyzer[] = “Extensions/Extimagick”;
analyzer[] = “Extensions/Extimap”;
analyzer[] = “Extensions/Extinfo”;
analyzer[] = “Extensions/Extinotify”;
analyzer[] = “Extensions/Extintl”;
analyzer[] = “Extensions/Extjson”;
analyzer[] = “Extensions/Extjudy”;
analyzer[] = “Extensions/Extkdm5”’;
analyzer[] = “Extensions/Extlapack’;
analyzer[] = “Extensions/Extldap”;
analyzer[] = “Extensions/Extleveldb”;
analyzer[] = “Extensions/Extlibevent”;

= “Extensions/Exteaccelerator’”;

9.5.

Predefined config files

175

Exakat Documentation, Release 1

analyzer[] = “Extensions/Extlibsodium”;

= “Extensions/Extlibxml”;

analyzer|[
analyzer[] = “Extensions/Extlua”;
analyzer[] = “Extensions/Extlzf”;

analyzer[] = “Extensions/Extmail”’;

analyzer[] = “Extensions/Extmailparse”;
analyzer[] = “Extensions/Extmath’;
analyzer[] = “Extensions/Extmbstring”;
analyzer[] = “Extensions/Extmcrypt”;
analyzer[] = “Extensions/Extmemcache”;
analyzer[] = “Extensions/Extmemcached”;
analyzer[] = “Extensions/Extmhash”;
analyzer[] = “Extensions/Extming”;
analyzer[] = “Extensions/Extmongo”;
analyzer[] = “Extensions/Extmongodb”;
analyzer[] = “Extensions/Extmsgpack™;
analyzer[] = “Extensions/Extmssql”;
analyzer[] = “Extensions/Extmysql”;
analyzer[] = “Extensions/Extmysqli”’;
analyzer[] = “Extensions/Extncurses”;
analyzer[] = “Extensions/Extnewt”;
analyzer[] = “Extensions/Extnsapi”;
analyzer[] = “Extensions/Extob”;
analyzer[] = “Extensions/Extodbc”;

analyzer[] = “Extensions/Extopcache”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Extensions/Extoci8”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Extensions/Extopencensus’;
analyzer[] = “Extensions/Extopenssl”;
analyzer[] = “Extensions/Extparle”;
analyzer[] = “Extensions/Extparsekit”;
analyzer[] = “Extensions/Extpassword”;
analyzer[] = “Extensions/Extpentl”;
analyzer[] = “Extensions/Extpcov’;
analyzer[] = “Extensions/Extpcre”;
analyzer[] = “Extensions/Extpdo”;
analyzer[] = “Extensions/Extpgsql”;
analyzer[] = “Extensions/Extphalcon”;
analyzer[] = “Extensions/Extphar”;
analyzer[] = “Extensions/Extposix”;
analyzer[] = “Extensions/Extproctitle”;
analyzer[] = “Extensions/Extpspell”;
analyzer[] = “Extensions/Extpsr”;
analyzer[] = “Extensions/Extrar”;
analyzer[] = “Extensions/Extrdkafka”;
analyzer[] = “Extensions/Extreadline”;
analyzer[] = “Extensions/Extrecode”;
analyzer[] = “Extensions/Extredis”;

176

Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Extensions/Extreflection”;
= “Extensions/Extrunkit”;

analyzer[] = “Extensions/Extwikidiff2”;

]
analyzer(]
analyzer[] = “Extensions/Extsdl”;
analyzer[] = “Extensions/Extseaslog”;
analyzer[] = “Extensions/Extsem”;
analyzer[] = “Extensions/Extsession”;
analyzer[] = “Extensions/Extshmop”;
analyzer[] = “Extensions/Extsimplexml”;
analyzer[] = “Extensions/Extsnmp”;
analyzer[] = “Extensions/Extsoap’;
analyzer[] = “Extensions/Extsockets”;
analyzer[] = “Extensions/Extsphinx”;
analyzer[] = “Extensions/Extspl”;
analyzer[] = “Extensions/Extsqlite”;
analyzer[] = “Extensions/Extsqlite3”;
analyzer[] = “Extensions/Extsqlsrv”;
analyzer[] = “Extensions/Extssh2”;
analyzer[] = “Extensions/Extstandard”;
analyzer[] = “Extensions/Extstats”;
analyzer[] = “Extensions/Extstring”;
analyzer[] = “Extensions/Extsuhosin”;
analyzer[] = “Extensions/Extsvm”;
analyzer[] = “Extensions/Extswoole”;
analyzer[] = “Extensions/Exttidy”;
analyzer[] = “Extensions/Exttokenizer’;
analyzer[] = “Extensions/Exttokyotyrant™;
analyzer[] = “Extensions/Exttrader”;
analyzer[] = “Extensions/Extuopz”;
analyzer[] = “Extensions/Extuuid”;
analyzer[] = “Extensions/Extv8js”;
analyzer[] = “Extensions/Extvarnish’;
analyzer[] = “Extensions/Extvips”;
analyzer[] = “Extensions/Extwasm”;
analyzer[] = “Extensions/Extwddx”;
analyzer[] = “Extensions/Extweakref”;
1=
analyzer[] = “Extensions/Extwincache”;
analyzer[] = “Extensions/Extxattr’’;
analyzer[] = “Extensions/Extxcache”;
analyzer[] = “Extensions/Extxdebug”;
analyzer[] = “Extensions/Extxdiff”;
analyzer[] = “Extensions/Extxhprof”;
analyzer[] = “Extensions/Extxml”;
analyzer[] = “Extensions/Extxmlreader”;
analyzer[] = “Extensions/Extxmlrpc”;
analyzer[] = “Extensions/Extxmlwriter”;
analyzer[] = “Extensions/Extxsl”;

9.5.

Predefined config files

177

Exakat Documentation, Release 1

analyzer[] = “Extensions/Extxxtea”;
analyzer[] = “Extensions/Extyaml”;

analyzer[] = “Extensions/Extyis”;

analyzer[] = “Extensions/Extzbarcode”;
analyzer[] = “Extensions/Extzendmonitor”;
analyzer[] = “Extensions/Extzip”;
analyzer[] = “Extensions/Extzlib”;
analyzer[] = “Extensions/Extzmq”;
analyzer[] = “Extensions/Extzookeeper”;
analyzer[] = “Files/IsCliScript”;

analyzer[] = “Files/NotDefinitionsOnly”’;
analyzer[] = “Functions/Closures”;

analyzer[] = “Functions/ConditionedFunctions”;

analyzer[] = “Functions/DeepDefinitions”;
analyzer[] = “Functions/Dynamiccall”’;

analyzer[] = “Functions/FallbackFunction”;
analyzer[] = “Functions/Functionnames”;

analyzer[] = “Functions/FunctionsUsingReference”;
analyzer[] = “Functions/IsExtFunction”;

analyzer[] = “Functions/IsGenerator”;

analyzer[] = “Functions/MarkCallable”;

analyzer[] = “Functions/MismatchParameterName”;
analyzer[] = “Functions/MultipleDeclarations”;
analyzer[] = “Functions/Recursive”;

analyzer[] = “Functions/RedeclaredPhpFunction”;
analyzer[] = “Functions/Typehints”;

analyzer[] = “Functions/UnbindingClosures”;
analyzer[] = “Functions/UseArrowFunctions™;
analyzer[] = “Functions/VariableArguments”;
analyzer[] = “Functions/WrongOptionalParameter”;
analyzer[] = “Interfaces/Interfacenames’;

analyzer[] = “Interfaces/IsExtInterface”;

analyzer[] = “Namespaces/Alias”;

analyzer[] = “Namespaces/NamespaceUsage”;

analyzer[] = “Namespaces/Namespacesnames”;

analyzer[] = “Patterns/CourrierAntiPattern”;
analyzer[] = “Patterns/DependencylInjection”;
analyzer[] = “Patterns/Factory’;

analyzer[] = “Php/AlternativeSyntax”;
analyzer[] = “Php/Argon2Usage”;

analyzer[] = “Php/ArrayKeyExistsWithObjects”;
analyzer[] = “Php/AssertionUsage”;

analyzer[] = “Php/AutoloadUsage”;

analyzer[] = “Php/CastUnsetUsage”;

analyzer[] = “Php/CastingUsage”’;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Functions/NullableWithConstant”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/Coalesce”;

178 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Php/ConcatAndAddition™;
analyzer[] = “Php/CryptoUsage”;
analyzer[] = “Php/DeclareEncoding”;
analyzer[] = “Php/DeclareStrict”;
analyzer[] = “Php/DeclareStrictType”;
analyzer[] = “Php/DeclareTicks”;
analyzer[] = “Php/DetectCurrentClass”;
analyzer[] = “Php/DirectivesUsage”’;
analyzer[] = “Php/DIlUsage”;

analyzer[] = “Php/EchoTagUsage”;
analyzer[] = “Php/EllipsisUsage”;
analyzer[] = “Php/ErrorLogUsage”;
analyzer[] = “Php/FilterToAddSlashes”;
analyzer[] = “Php/Gotonames”;
analyzer[] = “Php/GroupUseDeclaration”;
analyzer[] = “Php/Haltcompiler”;
analyzer[] = “Php/HashAlgos74”;
analyzer[] = “Php/IdnUts46”;

analyzer[] = “Php/Incompilable”;
analyzer[] = “Php/IntegerSeparatorUsage”;
analyzer[] = “Php/IsSINF”;

analyzer[] = “Php/IsSNAN™;

analyzer[] = “Php/Labelnames”;
analyzer[] = “Php/ListWithKeys”;

analyzer[] = “Php/MiddleVersion™;

analyzer[] = “Php/NestedTernary WithoutParenthesis™;
analyzer[] = “Php/NoMoreCurlyArrays”;

analyzer[] = “Php/OveriddenFunction”;

analyzer[] = “Php/PearUsage”;

analyzer[] = “Php/Php74Deprecation”;

analyzer[] = “Php/Php74NewClasses”;

analyzer[] = “Php/Php74NewConstants”;

analyzer[] = “Php/Php74NewFunctions”;

analyzer[] = “Php/Php74RemovedDirective”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/ListShortSyntax”;
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/Php74RemovedFunctions”;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/Php74ReservedKeyword”;
analyzer[] = “Php/Php74mbstrrpos3rdArg”;
analyzer[] = “Php/Php7RelaxedKeyword”;
analyzer[] = “Php/Php80NamedParameterVariadic”;
analyzer[] = “Php/Php80NewFunctions”;
analyzer[] = “Php/Php800nlyTypeHints”;
analyzer[] = “Php/Php80RemovedConstant™;
analyzer[] = “Php/Php80RemovedDirective”;
analyzer[] = “Php/Php80RemovedFunctions”;
analyzer[] = “Php/Php80RemovesResources”;
analyzer[] = “Php/Php80UnionTypehint”;

9.5.

Predefined config files

179

Exakat Documentation, Release 1

analyzer[] = “Php/Php80VariableSyntax”;
analyzer[] = “Php/PhpErrorMsgUsage’;
analyzer[] = “Php/RawPostDataUsage”;

analyzer[] = “Php/ReflectionExportIsDeprecated”;

analyzer[] = “Php/ReturnTypehintUsage”;

analyzer[] = “Php/ScalarAreNotArrays”;
analyzer[] = “Php/ScalarTypehintUsage”;
analyzer[] = “Php/SignatureTrailingComma”;
analyzer[] = “Php/SpreadOperatorForArray’;
analyzer[] = “Php/SuperGlobalUsage”;
analyzer[] = “Php/ThrowUsage”’;

analyzer[] = “Php/ThrowWasAnExpression”;
analyzer[] = “Php/TrailingComma”;
analyzer[] = “Php/TriggerErrorUsage”;
analyzer[] = “Php/TryCatchUsage”;
analyzer[] = “Php/TryMultipleCatch”;
analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UseAttributes”;

analyzer[] = “Php/UseBrowscap”;

analyzer[] = “Php/UseCli”;

analyzer[] = “Php/UseContravariance”;
analyzer[] = “Php/UseCookies”;

analyzer[] = “Php/UseCovariance”;
analyzer[] = “Php/UseNullSafeOperator”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/UseMatch”;
]

analyzer[] = “Php/UseNullableType”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/UseTrailingUseComma”;
analyzer[] = “Php/UseWeb”;

analyzer[] = “Php/UsesEnv”;

analyzer[] = “Php/YieldFromUsage”;

analyzer[] = “Php/YieldUsage”;

analyzer[] = “Psr/Psr11Usage”;

analyzer[] = “Psr/Psr13Usage”;

analyzer[] = “Psr/Psr16Usage”;

analyzer[] = “Psr/Psr3Usage”;

analyzer[] = “Psr/Psr6Usage”’;

analyzer[] = “Psr/Psr7Usage”;

analyzer[] = “Security/CantDisableClass”;
analyzer[] = “Security/CantDisableFunction”;
analyzer[] = “Structures/AddZero”;

analyzer[] = “Structures/ArrayMapPassesByValue”;
analyzer[] = “Structures/ComplexExpression”;
analyzer[] = “Structures/ConstDefineFavorite”;
analyzer[] = “Structures/ConstantScalarExpression”;
analyzer[] = “Structures/Curl VersionNow”’;
analyzer[] = “Structures/DereferencingAS”;
analyzer[] = “Structures/DontRead AndWriteInOneExpression™;

180

Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/DynamicCalls”;
analyzer[] = “Structures/DynamicCode”;
analyzer[] = “Structures/ElseUsage”;

analyzer[] = “Structures/ErrorMessages”;
analyzer[] = “Structures/ErrorReportingWithInteger”;
analyzer[] = “Structures/EvalUsage”;

analyzer[] = “Structures/ExitUsage”;

analyzer[] = “Structures/FileUploadUsage”;
analyzer[] = “Structures/FileUsage”;

analyzer[] = “Structures/ForgottenWhiteSpace”;
analyzer[] = “Structures/FunctionSubscripting”;
analyzer[] = “Structures/GloballnGlobal’;
analyzer[] = “Structures/GlobalUsage”;
analyzer[] = “Structures/IncludeUsage”;

analyzer[] = “Structures/MailUsage”;

]

]

]

]

]

]

]

]

]

]

]

]

]

]

1=
analyzer[] = “Structures/MultipleCatch”;
analyzer[] = “Structures/NestedLoops™;
analyzer[] = “Structures/NoDirectAccess”;
analyzer[] = “Structures/NonBreakableSpaceInNames”;
analyzer[] = “Structures/Noscream”;
analyzer[] = “Structures/NotNot”;
analyzer[] = “Structures/OnceUsage”;
analyzer[] = “Structures/OpensslRandomPseudoByteSecondArg”;
analyzer[] = “Structures/ResourcesUsage”;
analyzer[] = “Structures/ShellUsage”;
analyzer[] = “Structures/ShortTags”;
analyzer[] = “Structures/TryFinally”;
analyzer[] = “Structures/UnsupportedTypes WithOperators”;
analyzer[] = “Structures/UseDebug”;
analyzer[] = “Traits/IsExtTrait”;
analyzer[] = “Traits/Php”;
analyzer[] = “Traits/TraitUsage”;
analyzer[] = “Traits/Traitnames”;
analyzer[] = “Type/ArrayIndex”;
analyzer[] = “Type/Binary”;
analyzer[] = “Type/Email”;
analyzer[] = “Type/GPCIndex”;
analyzer[] = “Type/Heredoc”;
analyzer[] = “Type/Hexadecimal’’;
analyzer[] = “Type/Md5String”;
analyzer[] = “Type/Nowdoc”;
analyzer[] = “Type/Octal”;
analyzer[] = “Type/Pack”;
analyzer[] = “Type/Path”;
analyzer[] = “Type/Printf”;
analyzer[] = “Type/Protocols”;
analyzer[] = “Type/Regex”;

. Predefined config files 181

Exakat Documentation, Release 1

analyzer[] = “Type/Shellcommands”;
analyzer[] = “Type/Sql”;

analyzer[] = “Type/Url”;

analyzer[] = “Variables/References”;
analyzer[] = “Variables/Static Variables™;
analyzer[] = “Variables/UncommonEnv Var’;
analyzer[] = “Variables/VariableLong”;
analyzer[] = “Variables/Variable Variables™;
analyzer[] = “Vendors/Codeigniter”;
analyzer[] = “Vendors/Concrete5”;
analyzer[] = “Vendors/Drupal”;

analyzer[] = “Vendors/Ez”;

analyzer[] = “Vendors/Fuel”;

analyzer[] = “Vendors/Joomla”;

analyzer[] = “Vendors/Laravel”;

analyzer[] = “Vendors/Phalcon”;
analyzer[] = “Vendors/Symfony”;
analyzer[] = “Vendors/Typo3”;

analyzer[] = “Vendors/Wordpress”;
analyzer[] = “Vendors/Yii”;

9.5.4 Cl-checks

[CI-checks]
analyzer[] = “Arrays/MultipleldenticalKeys”;

analyzer[] = “Classes/CheckOnCallUsage”;
analyzer[] = “Classes/DirectCallToMagicMethod”;
analyzer[] = “Classes/DontUnsetProperties”;
analyzer[] = “Classes/MultipleDeclarations”;
analyzer[] = “Classes/MultipleTraitOrInterface”;
analyzer[] = “Classes/NoMagicWithArray”;
analyzer[] = “Classes/NoParent”;

analyzer[] = “Classes/NonPpp”;

= “Classes/NonStaticMethodsCalledStatic”;

]
]
]
]
]
]
]
]
]
analyzer(]
analyzer[] = “Classes/RedefinedConstants”;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Classes/RedefinedDefault”;

analyzer[] = “Classes/StaticContainsThis”;

analyzer[] = “Classes/StaticMethodsCalledFromObject”;
analyzer[] = “Classes/ThrowInDestruct”;

analyzer[] = “Classes/UndeclaredStaticProperty”;
analyzer[] = “Classes/UndefinedConstants”;

analyzer[] = “Classes/UndefinedProperty”;

analyzer[] = “Classes/UndefinedStaticclass”;

analyzer[] = “Classes/UseClassOperator”;

analyzer[] = “Classes/Uselnstanceof”;

analyzer[] = “Classes/UselessFinal’;

182 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Classes/WrongTypedPropertylnit™;
analyzer[] = “Constants/ConstRecommended”;

analyzer[] = “Constants/ConstantStrangeNames”;
analyzer[] = “Constants/MultipleConstantDefinition”;

analyzer[] = “Constants/UndefinedConstants”;

analyzer[] = “Performances/PrePostIncrement”;

analyzer[] = “Performances/StrposTooMuch”;

]

]

]

]

1=

analyzer[] = “Exceptions/OverwriteException”;
analyzer[] = “Exceptions/ThrowFunctioncall”’;
analyzer[] = “Exceptions/UselessCatch”;

analyzer[] = “Functions/AliasesUsage”;

analyzer[] = “Functions/CallbackNeedsReturn”;
analyzer[] = “Functions/MustReturn”;

analyzer[] = “Functions/NoLiteralForReference”;
analyzer[] = “Functions/RedeclaredPhpFunction”;
analyzer[] = “Functions/ShouldYieldWithKey”’;
analyzer[] = “Functions/TypehintMustBeReturned”;
analyzer[] = “Functions/TypehintedReferences”;
analyzer[] = “Functions/UndefinedFunctions”;
analyzer[] = “Functions/UnknownParameterName”;
analyzer[] = “Functions/UnusedInherited Variable”;
analyzer[] = “Functions/UseConstantAsArguments”;
analyzer[] = “Functions/UsesDefaultArguments”;
analyzer[] = “Functions/WrongNumberOf Arguments”;
analyzer[] = “Functions/WrongOptionalParameter”;
analyzer[] = “Functions/WrongReturnedType”;
analyzer[] = “Functions/WrongTypeWithCall”;
analyzer[] = “Interfaces/CantImplementTraversable”;
analyzer[] = “Interfaces/IsNotImplemented”;
analyzer[] = “Interfaces/UndefinedInterfaces”;
analyzer[] = “Namespaces/EmptyNamespace”;
analyzer[] = “Namespaces/HiddenUse”;

analyzer[] = “Namespaces/MultipleAliasDefinitionPerFile”;
analyzer[] = “Namespaces/Multiple AliasDefinitions”;
analyzer[] = “Namespaces/ShouldMakeAlias™;
analyzer[] = “Performances/ArrayMergeInLoops”;

]

1=

analyzer[] = “Performances/UseArraySlice”;
analyzer[] = “Php/AssignAnd”;

analyzer[] = “Php/BetterRand”;

analyzer[] = “Php/ConcatAndAddition™;

analyzer[] = “Php/Deprecated”;

analyzer[] = “Php/FopenMode”;

analyzer[] = “Php/InternalParameterType”;
analyzer[] = “Php/IsAWithString”;

analyzer[] = “Php/IsnullVsEqualNull”’;

analyzer[] = “Php/LogicallnLetters”;

analyzer[] = “Php/MissingSubpattern”;

9.5.

Predefined config files

183

Exakat Documentation, Release 1

analyzer[] = “Php/NoClassInGlobal”’;

analyzer[] = “Php/NoReferenceForTernary”;

]

]
analyzer[] = “Php/ScalarAreNotArrays”;
analyzer[] = “Php/ShouldUseCoalesce”;
analyzer[] = “Php/StrtrArguments”;
analyzer[] = “Php/UseObjectApi”;
analyzer[] = “Php/UsePathinfo”;
analyzer[] = “Php/WrongTypeForNativeFunction™;
analyzer[] = “Security/DontEchoError”;
analyzer[] = “Security/ShouldUsePreparedStatement”;
analyzer[] = “Structures/AddZero”;
analyzer[] = “Structures/AlteringForeachWithoutReference”;
analyzer[] = “Structures/AssigneAndCompare”;
analyzer[] = “Structures/AutoUnsetForeach”;
analyzer[] = “Structures/BooleanStrictComparison”;
analyzer[] = “Structures/CastingTernary”;
analyzer[] = “Structures/CheckJson”;
analyzer[] = “Structures/CoalesceAndConcat;
analyzer[] = “Structures/CouldUseDir”;
analyzer[] = “Structures/CouldUseShortAssignation”;
analyzer[] = “Structures/CouldUseStrrepeat’;
analyzer[] = “Structures/DanglingArrayReferences”;
analyzer[] = “Structures/DirThenSlash”;
analyzer[] = “Structures/DropElseAfterReturn”;
analyzer[] = “Structures/ElselfElseif;
analyzer[] = “Structures/EmptyBlocks”;
analyzer[] = “Structures/ErrorReportingWithInteger”;
analyzer[] = “Structures/EvalWithoutTry”;
analyzer[] = “Structures/ExitUsage”;
analyzer[] = “Structures/FailingSubstrComparison”;
analyzer[] = “Structures/ForeachReferencelsNotModified”;
analyzer[] = “Structures/ForgottenWhiteSpace”;
analyzer[] = “Structures/Htmlentitiescall”;
analyzer[] = “Structures/Identical Conditions”;
analyzer[] = “Structures/IdenticalOnBothSides”;
analyzer[] = “Structures/IfWithSameConditions™;
analyzer[] = “Structures/ImpliedIf”;
analyzer[] = “Structures/Implode ArgsOrder”;
analyzer[] = “Structures/IndicesAreIntOrString”;
analyzer[] = “Structures/InvalidPackFormat™;
analyzer[] = “Structures/InvalidRegex”;
analyzer[] = “Structures/IsZero”;
analyzer[] = “Structures/ListOmissions”;
analyzer[] = “Structures/LogicalMistakes”;
analyzer[] = “Structures/LoneBlock”;
analyzer[] = “Structures/MbstringThirdArg”;
analyzer[] = “Structures/MbstringUnknownEncoding”;

184 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/MergelfThen”;
analyzer[] = “Structures/MissingParenthesis”;
analyzer[] = “Structures/MultipleDefinedCase”;
analyzer[] = “Structures/MultiplyByOne”’;

analyzer[] = “Structures/NegativePow”;

analyzer[] = “Structures/NestedTernary”;
analyzer[] = “Structures/NeverNegative”;
analyzer[] = “Structures/NextMonthTrap”;
analyzer[] = “Structures/NoChoice”;

analyzer[] = “Structures/NoEmptyRegex”’;
analyzer[] = “Structures/NolssetWithEmpty”’;
analyzer[] = “Structures/NoParenthesisForLanguageConstruct”;
analyzer[] = “Structures/NoReferenceOnLeft”;
analyzer[] = “Structures/NoSubstrOne”;

analyzer[] = “Structures/Noscream”;

analyzer[] = “Structures/NotEqual”’;

analyzer[] = “Structures/NotNot;

analyzer[] = “Structures/ObjectReferences”;
analyzer[] = “Structures/OrDie”;

analyzer[] = “Structures/PrintAndDie”;

analyzer[] = “Structures/PrintWithoutParenthesis”;
analyzer[] = “Structures/PrintfArguments”;
analyzer[] = “Structures/RepeatedPrint”;
analyzer[] = “Structures/ResultMayBeMissing”;

analyzer[] = “Structures/ReturnTrueFalse”;

analyzer[] = “Structures/SameConditions”;
analyzer[] = “Structures/ShouldChainException”;
analyzer[] = “Structures/ShouldMakeTernary”;
analyzer[] = “Structures/ShouldUseExplodeArgs”;
analyzer[] = “Structures/StripTagsSkipsClosedTag”;
analyzer[] = “Structures/StrposCompare”;
analyzer[] = “Structures/SwitchWithoutDefault”;
analyzer[] = “Structures/TernaryInConcat”;
analyzer[] = “Structures/ThrowsAndAssign’;

analyzer[] = “Structures/TimestampDifference”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Structures/RepeatedRegex”;
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Structures/UncheckedResources™;
analyzer[] = “Structures/UnconditionLoopBreak”;
analyzer[] = “Structures/UseConstant”;
analyzer[] = “Structures/Uselnstanceof™;
analyzer[] = “Structures/UseSystemTmp”’;
analyzer[] = “Structures/UselessBrackets”;
analyzer[] = “Structures/UselessCasting”;
analyzer[] = “Structures/UselessCheck”;
analyzer[] = “Structures/UselessInstruction”;
analyzer[] = “Structures/UselessParenthesis”;
analyzer[] = “Structures/UselessUnset”;

. Predefined config files 185

Exakat Documentation, Release 1

analyzer[] = “Structures/VardumpUsage”;

analyzer[] = “Structures/WhileListEach”;

]

]
analyzer[] = “Structures/pregOptionE”;
analyzer[] = “Traits/UndefinedInsteadof™;
analyzer[] = “Traits/UndefinedTrait”;
analyzer[] = “Traits/UselessAlias”;
analyzer[] = “Type/NoRealComparison”;
analyzer[] = “Type/One VariableStrings”;
analyzer[] = “Type/ShouldTypecast”;
analyzer[] = “Type/SilentlyCastInteger”;
analyzer[] = “Type/StringWithStrangeSpace”;
analyzer[] = “Typehints/MissingReturntype”;
analyzer[] = “Variables/Undefined Variable™;

9.5.5 ClassReview

[ClassReview]
analyzer[] = “Classes/AvoidOptionArrays”;
analyzer[] = “Classes/Cancel CommonMethod”;
analyzer[] = “Classes/ConstantClass”;
analyzer[] = “Classes/CouldBeAbstractClass”;

analyzer[] = “Classes/CouldBeClassConstant™;
= “Classes/CouldBeFinal”’;
= “Classes/CouldBeParentMethod”;

analyzer|[
analyzer|[
analyzer[] = “Classes/CouldBePrivate”;

]

]

]

]

]

]

]

1=
analyzer[] = “Classes/CouldBePrivateConstante”;
analyzer[] = “Classes/CouldBePrivateMethod”;
analyzer[] = “Classes/CouldBeProtectedConstant”;
analyzer[] = “Classes/CouldBeProtectedMethod”;
analyzer[] = “Classes/CouldBeProtectedProperty”;
analyzer[] = “Classes/CouldBeStatic”;
analyzer[] = “Classes/CyclicReferences”;
analyzer[] = “Classes/DependantAbstractClass”;
analyzer[] = “Classes/DifferentArgumentCounts’;
analyzer[] = “Classes/DisconnectedClasses”;
analyzer[] = “Classes/FinalPrivate”;
analyzer[] = “Classes/Finalclass”;
analyzer[] = “Classes/Finalmethod”;
analyzer[] = “Classes/FossilizedMethod”;
analyzer[] = “Classes/HiddenNullable”;
analyzer[] = “Classes/InsufficientProperty Typehint™;
analyzer[] = “Classes/MismatchProperties”;
analyzer[] = “Classes/MissingAbstractMethod”;
analyzer[] = “Classes/MutualExtension”;
analyzer[] = “Classes/NoParent”;
analyzer[] = “Classes/NoSelfReferencingConstant”;

186 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer([
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer([
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer|[
analyzer([

= “Classes/NonNullableSetters”;

= “Classes/PropertyCouldBeLocal’;

= “Classes/RaisedAccessLevel”;

= “Classes/RedefinedProperty”;

= “Classes/ShouldUseSelf”;
“Classes/UndeclaredStaticProperty”;
“Classes/UninitedProperty”;

= “Classes/UnreachableConstant”;

= “Classes/UnusedConstant’’;

= “Classes/UselessTypehint™;

= “Classes/WrongTypedPropertyInit”;

= “Functions/Exceeding Typehint”;

= “Functions/ModifyTypedParameter”;

= “Functions/NullableWithoutCheck’’;

= “Functions/WrongReturnedType”’;
“Interfaces/AvoidSelfInInterface”;

“Interfaces/IsNotImplemented”;

= “Interfaces/NoGaranteeForPropertyConstant™;
= “Interfaces/UselessInterfaces™;

= “Performances/MemoizeMagicCall”;

= “Php/MissingMagiclsset”;

= “Structures/CouldBeStatic”;

= “Structures/DoubleObjectAssignation”;

= “Traits/SelfUsingTrait”;

= “Traits/UnusedClassTrait”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
] = “Variables/NoStaticVarInMethod”;

9.5.6 Coding conventions

[Coding conventions]

analyzer|[

] o,

- ’

9.5.7 CompatibilityPHP53

[CompatibilityPHP53]
analyzer[] = “Arrays/ArrayNSUsage”;
analyzer[] = “Arrays/MixedKeys”;
analyzer[] = “Classes/Anonymous’;
analyzer[] = “Classes/CantInheritAbstractMethod”;
analyzer[] = “Classes/ChildRemoveTypehint”;
analyzer[] = “Classes/ConstVisibilityUsage”;
analyzer[] = “Classes/Integer AsProperty”’;
analyzer[] = “Classes/NonStaticMethodsCalledStatic”;
analyzer[] = “Classes/NullOnNew”’;
analyzer[] = “Exceptions/MultipleCatch”;
analyzer[] = “Extensions/Extdba”;

9.5.

Predefined config files

187

Exakat Documentation, Release 1

analyzer[] = “Extensions/Extfdf”;
= “Extensions/Extming”;

analyzer|[
analyzer[] = “Functions/GeneratorCannotReturn”;
analyzer[] = “Functions/MultipleSameArguments”;

analyzer[] = “Namespaces/UseFunctionsConstants”;

]

]

]

]

1=
analyzer[] = “Php/CantUseReturnValueInWriteContext;
analyzer[] = “Php/CaseForPSS”;
analyzer[] = “Php/ClassConstWithArray”;
analyzer[] = “Php/ClosureThisSupport™;
analyzer[] = “Php/CoalesceEqual”;
analyzer[] = “Php/ConcatAndAddition”;
analyzer[] = “Php/ConstWithArray”;
analyzer[] = “Php/DefineWithArray”;
analyzer[] = “Php/DirectCallToClone”;
analyzer[] = “Php/EllipsisUsage”;
analyzer[] = “Php/ExponentUsage”;
analyzer[] = “Php/FlexibleHeredoc”;
analyzer[] = “Php/GroupUseDeclaration”;
analyzer[] = “Php/GroupUseTrailingComma”;
analyzer[] = “Php/HashAlgos53”;
analyzer[] = “Php/HashAlgos71”;
analyzer[] = “Php/ListShortSyntax”;
analyzer[] = “Php/ListWithKeys”;
analyzer[] = “Php/ListWithReference”;
analyzer[] = “Php/MethodCallOnNew”’;
analyzer[] = “Php/NoListWithString”;
analyzer[] = “Php/NoReferenceForStaticProperty”;
analyzer[] = “Php/NoReturnForGenerator’;
analyzer[] = “Php/NoStringWithAppend”;
analyzer[] = “Php/NoSubstrMinusOne”;
analyzer[] = “Php/PHP70scalartypehints”;
analyzer[] = “Php/PHP71scalartypehints”;
analyzer[] = “Php/PHP72scalartypehints”;
analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/ParenthesisAsParameter”;
analyzer[] = “Php/Php54NewFunctions”;
analyzer[] = “Php/PhpS5NewFunctions”;
analyzer[] = “Php/PhpS6NewFunctions”;
analyzer[] = “Php/Php70NewClasses”;
analyzer[] = “Php/Php70NewFunctions”;
analyzer[] = “Php/Php70NewInterfaces”;
analyzer[] = “Php/Php71NewClasses”;
analyzer[] = “Php/Php72NewClasses”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php7RelaxedKeyword”;
analyzer[] = “Php/StaticclassUsage”;
analyzer[] = “Php/TrailingComma”;

188

Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/PHP7Dirname”;

analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnicodeEscapePartial”’;
analyzer[] = “Php/UnicodeEscapeSyntax”;
analyzer[] = “Php/UnpackinglInsideArrays”;
analyzer[] = “Php/UseNullableType”;
analyzer[] = “Php/debugInfoUsage”;
analyzer[] = “Structures/Break(”;
analyzer[] = “Structures/ConstantScalarExpression”;
analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/DereferencingAS”;
analyzer[] = “Structures/ForeachWithList”;
analyzer[] = “Structures/FunctionSubscripting”;
analyzer[] = “Structures/IssetWithConstant;
analyzer[] = “Structures/NoGetClassNull”;

1=
analyzer[] = “Structures/SwitchWithMultipleDefault™;
analyzer[] = “Structures/VariableGlobal”;
analyzer[] = “Type/Binary”;
analyzer[] = “Type/MalformedQOctal”;
analyzer[] = “Variables/Php5IndirectExpression”;
analyzer[] = “Variables/Php7IndirectExpression”;

9.5.8 CompatibilityPHP54

[CompatibilityPHP54]
analyzer[] = “Arrays/MixedKeys”;
analyzer[] = “Classes/Anonymous’;
analyzer[] = “Classes/CantInheritAbstractMethod”;
analyzer[] = “Classes/ChildRemoveTypehint”;
analyzer[] = “Classes/ConstVisibilityUsage”;
analyzer[] = “Classes/Integer AsProperty”;

analyzer[] = “Classes/NonStaticMethodsCalledStatic™;

]

]

]

]

]

]
analyzer[] = “Classes/NullOnNew’;
analyzer[] = “Exceptions/MultipleCatch”;
analyzer[] = “Extensions/Extmhash”;
analyzer[] = “Functions/GeneratorCannotReturn”;
analyzer[] = “Functions/MultipleSame Arguments”;
analyzer[] = “Namespaces/UseFunctionsConstants”;
analyzer[] = “Php/CantUseReturnValueInWriteContext™;
analyzer[] = “Php/CaseForPSS”;
analyzer[] = “Php/ClassConstWithArray”;
analyzer[] = “Php/CoalesceEqual”;
analyzer[] = “Php/ConcatAndAddition™;
analyzer[] = “Php/ConstWithArray”;
analyzer[] = “Php/DefineWithArray”;
analyzer[] = “Php/DirectCallToClone”;

9.5.

Predefined config files

189

Exakat Documentation, Release 1

analyzer[] = “Php/EllipsisUsage”;

analyzer[] = “Php/ExponentUsage”;
analyzer[] = “Php/FlexibleHeredoc”;
analyzer[] = “Php/GroupUseDeclaration”;
analyzer[] = “Php/GroupUseTrailingComma”;
analyzer[] = “Php/HashAlgos53”;

analyzer[] = “Php/HashAlgos54”;

analyzer[] = “Php/HashAlgos71”;

analyzer[] = “Php/ListShortSyntax”;
analyzer[] = “Php/ListWithKeys”;

analyzer[] = “Php/ListWithReference”;
analyzer[] = “Php/NoListWithString”;
analyzer[] = “Php/NoReferenceForStaticProperty”;
analyzer[] = “Php/NoReturnForGenerator’;

analyzer[] = “Php/NoStringWithAppend”;

analyzer[] = “Php/NoSubstrMinusOne”;
analyzer[] = “Php/PHP70scalartypehints”;
analyzer[] = “Php/PHP71scalartypehints”;
analyzer[] = “Php/PHP72scalartypehints”;
analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/ParenthesisAsParameter”;
analyzer[] = “Php/Php54RemovedFunctions”;
analyzer[] = “Php/PhpS5NewFunctions”;
analyzer[] = “Php/Php70NewClasses”;

analyzer[] = “Php/Php70NewFunctions”;

analyzer[] = “Php/Php70NewInterfaces”;
analyzer[] = “Php/Php71NewClasses”;
analyzer[] = “Php/Php72NewClasses”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php7RelaxedKeyword”;
analyzer[] = “Php/StaticclassUsage”;
analyzer[] = “Php/TrailingComma”;
analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnicodeEscapePartial”’;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/PhpS6NewFunctions”;
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/UnicodeEscapeSyntax’;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/UnpackinglnsideArrays”;
analyzer[] = “Php/UseNullableType”;

analyzer[] = “Php/debugInfoUsage”;

analyzer[] = “Structures/BreakNonInteger”;
analyzer[] = “Structures/CalltimePassByReference”;
analyzer[] = “Structures/ConstantScalarExpression’;
analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/CryptWithoutSalt”;
analyzer[] = “Structures/DereferencingAS”;
analyzer[] = “Structures/ForeachWithList”;
analyzer[] = “Structures/IssetWithConstant”;

190 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/NoGetClassNull”;

analyzer[] = “Structures/PHP7Dirname”;

analyzer[] = “Structures/SwitchWithMultipleDefault”;

analyzer[] = “Structures/VariableGlobal”;

analyzer[] = “Type/MalformedOctal”;

analyzer[] = “Variables/Php5IndirectExpression”;
1=

analyzer[] = “Variables/Php7IndirectExpression”;

9.5.9 CompatibilityPHP55

[CompatibilityPHP55]

analyzer[] = “Classes/Anonymous’’;
= “Classes/CantInheritAbstractMethod”;
analyzer[] = “Classes/ChildRemoveTypehint”;

analyzer|[

analyzer[] = “Classes/ConstVisibilityUsage”;

]

]

1=
analyzer[] = “Classes/IntegerAsProperty”’;
analyzer[] = “Classes/NonStaticMethodsCalledStatic”;
analyzer[] = “Classes/NullOnNew’;
analyzer[] = “Exceptions/MultipleCatch”;
analyzer[] = “Extensions/Extapc”;
analyzer[] = “Extensions/Extmysql”;
analyzer[] = “Functions/GeneratorCannotReturn”;
analyzer[] = “Functions/MultipleSameArguments”;
analyzer[] = “Namespaces/UseFunctionsConstants”;
analyzer[] = “Php/ClassConstWithArray”;
analyzer[] = “Php/CoalesceEqual”;
analyzer[] = “Php/ConcatAndAddition”;
analyzer[] = “Php/ConstWithArray”;
analyzer[] = “Php/DefineWithArray”;
analyzer[] = “Php/DirectCallToClone”;
analyzer[] = “Php/EllipsisUsage”;
analyzer[] = “Php/ExponentUsage”;
analyzer[] = “Php/FlexibleHeredoc™;
analyzer[] = “Php/GroupUseDeclaration”;
analyzer[] = “Php/GroupUseTrailingComma”;
analyzer[] = “Php/HashAlgos53”;
analyzer[] = “Php/HashAlgos54”;
analyzer[] = “Php/HashAlgos71”;
analyzer[] = “Php/ListShortSyntax”;
analyzer[] = “Php/ListWithKeys”;
analyzer[] = “Php/ListWithReference”;
analyzer[] = “Php/NoListWithString”;
analyzer[] = “Php/NoReferenceForStaticProperty”;
analyzer[] = “Php/NoReturnForGenerator’;
analyzer[] = “Php/NoStringWithAppend”;
analyzer[] = “Php/NoSubstrMinusOne”;

9.5.

Predefined config files

191

Exakat Documentation, Release 1

analyzer[] = “Structures/NoGetClassNull”;

analyzer[] = “Php/PHP70scalartypehints™;
analyzer[] = “Php/PHP71scalartypehints”;
analyzer[] = “Php/PHP72scalartypehints”;
analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/ParenthesisAsParameter”;
analyzer[] = “Php/Password55”;
analyzer[] = “Php/PhpS5RemovedFunctions”;
analyzer[] = “Php/PhpS6NewFunctions”;
analyzer[] = “Php/Php70NewClasses”;
analyzer[] = “Php/Php70NewFunctions”;
analyzer[] = “Php/Php70NewInterfaces”;
analyzer[] = “Php/Php71NewClasses”;
analyzer[] = “Php/Php72NewClasses”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php7RelaxedKeyword”;
analyzer[] = “Php/TrailingComma”;
analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnicodeEscapePartial”;
analyzer[] = “Php/UnicodeEscapeSyntax’;
analyzer[] = “Php/UnpackinglInsideArrays”;
analyzer[] = “Php/UseNullableType”;
analyzer[] = “Php/debugInfoUsage”;
analyzer[] = “Structures/ConstantScalarExpression”;
analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/IssetWithConstant;

1=
analyzer[] = “Structures/PHP7Dirname”;
analyzer[] = “Structures/SwitchWithMultipleDefault”;
analyzer[] = “Structures/VariableGlobal”;
analyzer[] = “Type/MalformedOctal”;
analyzer[] = “Variables/Php5IndirectExpression”;
analyzer[] = “Variables/Php7IndirectExpression”;

9.5.10 CompatibilityPHP56

[CompatibilityPHP56]
analyzer[] = “Classes/Anonymous’;

“Classes/NonStaticMethodsCalledStatic™;
analyzer[] = “Classes/NullOnNew’;

analyzer[] = “Classes/CantInheritAbstractMethod”;
analyzer[] = “Classes/ChildRemoveTypehint”;
analyzer[] = “Classes/ConstVisibilityUsage”;
analyzer[] = “Classes/Integer AsProperty”’;

]
]
]
]
analyzer(]
]
]
]
]

analyzer[] = “Exceptions/MultipleCatch”;
analyzer[] = “Functions/GeneratorCannotReturn”;
analyzer[] = “Functions/MultipleSameArguments”;

192 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Php/CoalesceEqual”;
analyzer[] = “Php/ConcatAndAddition™;
analyzer[] = “Php/DefineWithArray”;
analyzer[] = “Php/DirectCallToClone”;

analyzer[] = “Php/FlexibleHeredoc™;

analyzer[] = “Php/GroupUseDeclaration”;
analyzer[] = “Php/GroupUseTrailingComma”;
analyzer[] = “Php/HashAlgos53”;

analyzer[] = “Php/HashAlgos54”;

analyzer[] = “Php/HashAlgos71”;

analyzer[] = “Php/ListShortSyntax™;
analyzer[] = “Php/ListWithKeys”;

analyzer[] = “Php/ListWithReference”;
analyzer[] = “Php/NoListWithString”;

analyzer[] = “Php/NoReferenceForStaticProperty”;

analyzer[] = “Php/NoReturnForGenerator’;
analyzer[] = “Php/NoStringWithAppend”;
analyzer[] = “Php/NoSubstrMinusOne”;
analyzer[] = “Php/PHP70scalartypehints”;
analyzer[] = “Php/PHP71scalartypehints”;
analyzer[] = “Php/PHP72scalartypehints”;
analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/ParenthesisAsParameter”;
analyzer[] = “Php/Php70NewFunctions”;
analyzer[] = “Php/Php70NewInterfaces”;
analyzer[] = “Php/Php71NewClasses”;
analyzer[] = “Php/Php72NewClasses”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php7RelaxedKeyword”;
analyzer[] = “Php/Php800nlyTypeHints”;
analyzer[] = “Php/RawPostDataUsage”;
analyzer[] = “Php/TrailingComma”;
analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnicodeEscapePartial”’;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/Php70NewClasses”;
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/UnicodeEscapeSyntax’;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/UnpackinglnsideArrays”;
analyzer[] = “Php/UseNullableType”;

analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/IssetWithConstant”;
analyzer[] = “Structures/NoGetClassNull”;
analyzer[] = “Structures/PHP7Dirname”;
analyzer[] = “Structures/SwitchWithMultipleDefault™;
analyzer[] = “Structures/VariableGlobal”;
analyzer[] = “Type/MalformedOctal”;

analyzer[] = “Variables/Php5IndirectExpression”;
analyzer[] = “Variables/Php7IndirectExpression”;

9.5.

Predefined config files

193

Exakat Documentation, Release 1

9.5.11 CompatibilityPHP70

[CompatibilityPHP70]

analyzer[] = “Classes/CantInheritAbstractMethod”;

analyzer[] = “Classes/ChildRemoveTypehint”;
analyzer[] = “Classes/ConstVisibilityUsage”;
analyzer[] = “Classes/Integer AsProperty”;
analyzer[] = “Classes/toStringPss”;

analyzer[] = “Exceptions/MultipleCatch”;
analyzer[] = “Extensions/Extereg”;

analyzer[] = “Functions/funcGetArgModified”;
analyzer[] = “Php/CoalesceEqual”;

analyzer[] = “Php/ConcatAndAddition”;
analyzer[] = “Php/EmptyList”;

analyzer[] = “Php/FlexibleHeredoc™;

analyzer[] = “Php/ForeachDontChangePointer”;
analyzer[] = “Php/GlobalWithoutSimpleVariable”;
analyzer[] = “Php/GroupUseTrailingComma”;
analyzer[] = “Php/HashAlgos53”;

analyzer[] = “Php/HashAlgos54”;

analyzer[] = “Php/HashAlgos71”;

analyzer[] = “Php/ListShortSyntax”;

analyzer[] = “Php/ListWithAppends”;
analyzer[] = “Php/ListWithKeys”;

analyzer[] = “Php/ListWithReference”;
analyzer[] = “Php/NoReferenceForStaticProperty”;
analyzer[] = “Php/NoSubstrMinusOne”;
analyzer[] = “Php/PHP71scalartypehints”;
analyzer[] = “Php/PHP72scalartypehints™;
analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/Php70RemovedDirective”;
analyzer[] = “Php/Php70RemovedFunctions”;
analyzer[] = “Php/Php71NewClasses”;
analyzer[] = “Php/Php72NewClasses”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php800OnlyTypeHints”;
analyzer[] = “Php/Php80UnionTypehint”;
analyzer[] = “Php/ReservedKeywords7”;
analyzer[] = “Php/SetExceptionHandlerPHP7”;
analyzer[] = “Php/TrailingComma”;

analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnpackinglInsideArrays”;
analyzer[] = “Php/UseNullableType”;
analyzer[] = “Php/UsortSorting”;

analyzer[] = “Structures/BreakOutsideL.oop”;
analyzer[] = “Structures/ContinuelsForLoop™;
analyzer[] = “Structures/McryptcreateivWithoutOption™;

194

Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/NoGetClassNull”;

analyzer[] = “Structures/SetlocaleNeedsConstants”;

analyzer|[

]
]

analyzer[] = “Structures/pregOptionE”;
] = “Type/HexadecimalString”;
]

analyzer[] = “Variables/Php7IndirectExpression”;

9.5.12 CompatibilityPHP71

[CompatibilityPHP71]

analyzer[] = “Arrays/Stringlnitialization”;

= “Classes/CantInheritAbstractMethod”;
= “Classes/ChildRemoveTypehint”;
analyzer[] = “Classes/Integer AsProperty”’;

analyzer|[
analyzer|[

analyzer[] = “Classes/UsingThisOutside AClass”;
analyzer[] = “Extensions/Extmcrypt”;

analyzer[] = “Php/BetterRand”;

analyzer[] = “Php/CoalesceEqual”;

analyzer[] = “Php/ConcatAndAddition™;
analyzer[] = “Php/FlexibleHeredoc™;

analyzer[] = “Php/GroupUseTrailingComma”;
analyzer[] = “Php/HashAlgos53”;

analyzer[] = “Php/HashAlgos54”;

analyzer[] = “Php/ListWithReference”;
analyzer[] = “Php/NoReferenceForStaticProperty”;

analyzer[] = “Php/PHP72scalartypehints”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer(]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/Php70RemovedDirective”;

= “Php/Php70RemovedFunctions”;
analyzer[] = “Php/Php71NewFunctions”;
analyzer[] = “Php/Php71RemovedDirective”;
analyzer[] = “Php/Php71microseconds”;
analyzer[] = “Php/Php72NewClasses”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php800nlyTypeHints”;
analyzer[] = “Php/Php80UnionTypehint”;
analyzer[] = “Php/SignatureTrailingComma”;
analyzer[] = “Php/TrailingComma”;
analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnpackinglInsideArrays”;
analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/NoGetClassNull”;
analyzer[] = “Structures/NoSubstrOne”;
analyzer[] = “Structures/pregOptionE”;
analyzer[] = “Type/HexadecimalString”;
analyzer[] = “Type/OctallnString”;

9.5.

Predefined config files

195

Exakat Documentation, Release 1

9.5.13 CompatibilityPHP72

[CompatibilityPHP72]
analyzer[] = “Constants/UndefinedConstants”;

analyzer[] = “Php/AvoidSetErrorHandlerContextArg”;
analyzer[] = “Php/CoalesceEqual”;

analyzer[] = “Php/ConcatAndAddition”;
analyzer[] = “Php/FlexibleHeredoc”;

analyzer[] = “Php/HashAlgos53”;

analyzer[] = “Php/HashAlgos54”;

analyzer[] = “Php/HashUsesObjects”;

analyzer[] = “Php/ListWithReference”;

analyzer[] = “Php/NoReferenceForStaticProperty”;
analyzer[] = “Php/PHP73LastEmpty Argument”;
analyzer[] = “Php/Php72Deprecation”;

analyzer[] = “Php/Php72NewClasses”;

analyzer[] = “Php/Php72NewConstants”;
analyzer[] = “Php/Php72NewFunctions”;
analyzer[] = “Php/Php720bjectKeyword”;
analyzer[] = “Php/Php72RemovedFunctions”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php800nlyTypeHints”;
analyzer[] = “Php/Php80UnionTypehint”;
analyzer[] = “Php/SignatureTrailingComma;
analyzer[] = “Php/ThrowWasAnExpression”;
analyzer[] = “Php/TrailingComma”;

analyzer[] = “Php/TypedPropertyUsage”;
analyzer[] = “Php/UnpackinglInsideArrays”;
analyzer[] = “Structures/CanCountNonCountable”;
analyzer[] = “Structures/ContinuelsForLoop”;
analyzer[] = “Structures/NoGetClassNull”;
analyzer[] = “Structures/pregOptionE”;

9.5.14 CompatibilityPHP73

[CompatibilityPHP73]
analyzer[] = “Constants/CaselnsensitiveConstants”;
analyzer[] = “Php/AssertFunctionIsReserved”;
analyzer[] = “Php/CoalesceEqual”;

analyzer[] = “Php/Compactlnexistant”;

]

]

1=
analyzer[] = “Php/ConcatAndAddition”;
analyzer[] = “Php/IntegerSeparatorUsage”;
analyzer[] = “Php/Php73NewFunctions”;
analyzer[] = “Php/Php73RemovedFunctions”;
analyzer[] = “Php/Php74NewDirective”;
analyzer[] = “Php/Php800nlyTypeHints”;
analyzer[] = “Php/Php80UnionTypehint”;

196 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Php/SignatureTrailingComma”;
analyzer[] = “Php/ThrowWasAnExpression”;
analyzer[] = “Php/TypedPropertyUsage”;

analyzer[] = “Php/UnpackinglnsideArrays”;

]
]
]
analyzer[] = “Php/UnknownPcre2Option”;
]
analyzer([]
]

= “Structures/ContinuelsForLoop”;

analyzer[] = “Structures/DontRead AndWriteInOneExpression™;

9.5.15 CompatibilityPHP74

[CompatibilityPHP74]

analyzer[] = “Functions/UnbindingClosures”;
“Php/ArrayKeyExistsWithObjects”;
“Php/AvoidGetobjectVars”;

analyzer|[
analyzer|[
analyzer[] = “Php/ConcatAndAddition™;

analyzer[] = “Php/DetectCurrentClass”;

analyzer[] = “Php/FilterToAddSlashes”;

analyzer[] = “Php/HashAlgos74”;

analyzer[] = “Php/IdnUts46”;

analyzer[] = “Php/NestedTernary WithoutParenthesis”;
analyzer[] = “Php/NoMoreCurlyArrays”;

analyzer[] = “Php/Php74Deprecation”;

analyzer[] = “Php/Php74NewClasses”;

analyzer[] = “Php/Php74NewConstants”;

analyzer[] = “Php/Php74NewFunctions”;

analyzer[] = “Php/Php74RemovedDirective”;

= “Php/Php74RemovedFunctions”;
analyzer[] = “Php/Php74ReservedKeyword”;
analyzer[] = “Php/Php74mbstrrpos3rdArg”;
analyzer[] = “Php/Php80NewFunctions”;
analyzer[] = “Php/Php800nlyTypeHints”;
analyzer[] = “Php/Php80UnionTypehint”;
analyzer[] = “Php/Php80VariableSyntax”;
analyzer[] = “Php/ReflectionExportlsDeprecated”;
analyzer[] = “Php/ScalarAreNotArrays”;

analyzer[] = “Php/SignatureTrailingComma;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer(]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Php/ThrowWasAnExpression”;

analyzer[] = “Php/UseMatch”;

analyzer[] = “Structures/Curl VersionNow”’;

analyzer[] = “Structures/DontRead AndWriteInOneExpression”;
analyzer[] = “Structures/OpensslRandomPseudoByteSecondArg”;

9.5.16 CompatibilityPHP80

[CompatibilityPHP80]
analyzer[] = “Arrays/NegativeStart”;

9.5. Predefined config files 197

Exakat Documentation, Release 1

analyzer[] = “Classes/FinalPrivate”;

analyzer[] = “Classes/OldStyleConstructor”;
analyzer[] = “Functions/MismatchParameterName”;
analyzer[] = “Functions/NullableWithConstant”;

analyzer[] = “Functions/WrongOptionalParameter”;

analyzer[] = “Php/AvoidGetobjectVars™;

analyzer[] = “Php/CastUnsetUsage”;

analyzer[] = “Php/ConcatAndAddition™;

= “Php/Php80NamedParameterVariadic”;

analyzer[] = “Php/Php80RemovedConstant™;
analyzer[] = “Php/Php80RemovedDirective”;
analyzer[] = “Php/Php80RemovedFunctions”;
analyzer[] = “Php/Php80RemovesResources”;
analyzer[] = “Php/PhpErrorMsgUsage’;

]
]
]
]
]
]
]
]

analyzer([]
]
]
]
]
]

analyzer[] = “Php/ReservedMatchKeyword”;

analyzer[] = “Structures/ArrayMapPassesByValue”;
1=

analyzer[] = “Structures/UnsupportedTypes WithOperators”;

9.5.17 CompatibilityPHP81

[CompatibilityPHP81]

@,

analyzer[] = *;

9.5.18 Dead code

[Dead code]
analyzer[] = “Classes/CantExtendFinal”’;
analyzer[] = “Classes/LocallyUnusedProperty”’;
analyzer[] = “Classes/UnresolvedCatch”;
analyzer[] = “Classes/UnresolvedInstanceof™;
analyzer[] = “Classes/UnusedClass”;

analyzer[] = “Classes/UnusedMethods”;
= “Classes/UnusedPrivateMethod”;
= “Classes/UnusedPrivateProperty’;

analyzer|[
analyzer|[
analyzer[] = “Classes/UnusedProtectedMethods”;

]
]
]
]
]
]
]
]
]
]
analyzer(]
]
]
]
]
]
]
]
]
]

analyzer[] = “Constants/UnusedConstants”;

= “Exceptions/AlreadyCaught”;
analyzer[] = “Exceptions/CaughtButNotThrown”;
analyzer[] = “Exceptions/Rethrown”;
analyzer[] = “Exceptions/Unthrown”;
analyzer[] = “Functions/UnusedFunctions”;
analyzer[] = “Functions/UnusedInherited Variable”;
analyzer[] = “Functions/UnusedReturned Value”;
analyzer[] = “Functions/UselessTypeCheck”;
analyzer[] = “Interfaces/UnusedInterfaces”;
analyzer[] = “Namespaces/EmptyNamespace”;

198 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Structures/UnusedLabel”;
= “Traits/SelfUsingTrait”;

analyzer[] = “Namespaces/UnusedUse”;
analyzer[] = “Structures/EmptyLines”;
analyzer[] = “Structures/UnreachableCode”;
analyzer[] = “Structures/UnsetInForeach”;

]

]

analyzer|[

9.5.19 LintButWontExec

[LintButWontExec]
analyzer[] = “Classes/AbstractOrImplements”;

analyzer[] = “Classes/CloneWithNonObject™;
analyzer[] = “Classes/CouldBeStringable”;
analyzer[] = “Classes/Finalclass”;

analyzer[] = “Classes/Finalmethod”;

]

]

]

]
analyzer[] = “Classes/IncompatibleSignature”;
analyzer(]
analyzer[] = “Classes/MismatchProperties”;
analyzer[] = “Classes/MutualExtension”;
analyzer[] = “Classes/NoMagicWithArray”;
analyzer[] = “Classes/NoPSSOutsideClass”;
analyzer[] = “Classes/NoSelfReferencingConstant”;
analyzer[] = “Classes/RaisedAccessLevel”;
analyzer[] = “Classes/UsingThisOutside AClass”;
analyzer[] = “Classes/WrongTypedPropertylnit™;
analyzer[] = “Exceptions/CantThrow”;
analyzer[] = “Functions/MismatchTypeAndDefault”;
analyzer[] = “Functions/MustReturn”;
analyzer[] = “Functions/Only VariableForReference”;
analyzer[] = “Functions/TypehintMustBeReturned”;
analyzer[] = “Interfaces/CantImplementTraversable”;
analyzer[] = “Interfaces/ConcreteVisibility”;
analyzer[] = “Interfaces/IsNotImplemented”;
analyzer[] = “Interfaces/RepeatedInterface”;
analyzer[] = “Php/Only VariableForReference”;
analyzer[] = “Traits/MethodCollisionTraits”;
analyzer[] = “Traits/TraitNotFound”;
analyzer[] = “Traits/UndefinedInsteadof™;
analyzer[] = “Traits/UndefinedTrait”;
analyzer[] = “Traits/UselessAlias™;

9.5.20 Performances

[Performances]
analyzer[] = “Arrays/GettingLastElement”;
analyzer[] = “Arrays/SliceFirst”;

= “Classes/MethodSignatureMustBeCompatible™;

9.5. Predefined config files

199

Exakat Documentation, Release 1

analyzer[] = “Classes/MakeMagicConcrete”;
analyzer[] = “Classes/UseClassOperator”;

analyzer[] = “Functions/Closure2String”;

analyzer[] = “Performances/ArrayKeyExistsSpeedup”;

analyzer[] = “Performances/ArrayMergeInLoops”;

analyzer[] = “Performances/Autoappend”;

analyzer[] = “Performances/Avoid ArrayPush”;

analyzer[] = “Performances/CacheVariableOutsideLoop”;
analyzer[] = “Performances/CsvInLoops™;

analyzer[] = “Performances/DolnBase”;

analyzer[] = “Performances/DoubleArrayFlip”;
analyzer[] = “Performances/FetchOneRowFormat™;
analyzer[] = “Performances/IssetWholeArray”;

analyzer[] = “Performances/JoinFile”;

analyzer[] = “Performances/MakeOneCall”;

analyzer[] = “Performances/MbStringInLoop”;
analyzer[] = “Performances/NoConcatInLoop”;
analyzer[] = “Performances/NoGlob”;

analyzer[] = “Performances/NotCountNull”;
analyzer[] = “Performances/OptimizeExplode”;
analyzer[] = “Performances/PHP7EncapsedStrings”;
analyzer[] = “Performances/Php74 ArrayKeyExists”;
analyzer[] = “Performances/PrePostIncrement”;
analyzer[] = “Performances/RegexOnArrays”;
analyzer[] = “Performances/RegexOnCollector”;

analyzer[] = “Performances/SimpleSwitch”;

analyzer[] = “Performances/SlowFunctions”;
analyzer[] = “Performances/SubstrFirst”;

analyzer[] = “Performances/UseBlind Var”;

analyzer[] = “Performances/timeVsstrtotime”;
analyzer[] = “Php/ShouldUseArrayColumn”;
analyzer[] = “Php/ShouldUseFunction”;

analyzer[] = “Php/UsePathinfoArgs”;

analyzer[] = “Structures/CouldUseShortAssignation”;
analyzer[] = “Structures/EchoWithConcat”;

analyzer[] = “Structures/EvalUsage”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Structures/ForWithFunctioncall”;
analyzer[] = “Structures/GlobalOutsideLoop”;
analyzer[] = “Structures/NoArrayUnique”;
analyzer[] = “Structures/NoAssignationInFunction”;
analyzer[] = “Structures/NoSubstrOne”;

analyzer[] = “Structures/Noscream”;

analyzer[] = “Structures/SimplePreg”;

analyzer[] = “Structures/WhileListEach”;

200 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

9.5.21 Rector

[Rector]
analyzer[] = “Php/IsAWithString”;
analyzer[] = “Structures/ElselfElseif”;
analyzer[] = “Structures/ShouldPreprocess”;

9.5.22 Security

[Security]
analyzer[] = “Functions/HardcodedPasswords”;
analyzer[] = “Php/BetterRand”;
analyzer[] = “Security/AnchorRegex”;
analyzer[] = “Security/AvoidThoseCrypto”;

analyzer[] = “Security/CompareHash”;

analyzer[] = “Security/ConfigureExtract”;
analyzer[] = “Security/CryptoKeyLength”;
analyzer[] = “Security/CurlOptions”;

analyzer[] = “Security/DirectInjection”;

analyzer[] = “Security/DontEchoError”;
analyzer[] = “Security/DynamicDI”;
analyzer[] = “Security/EncodedLetters”;
analyzer[] = “Security/FilterInputSource”;
analyzer[] = “Security/IndirectInjection”;
analyzer[] = “Security/IntegerConversion”;
analyzer[] = “Security/KeepFilesRestricted”;
analyzer[] = “Security/MinusOneOnError”;
analyzer[] = “Security/MkdirDefault”;
= “Security/MoveUploadedFile”;
analyzer[] = “Security/NoEntIgnore”;
analyzer[] = “Security/NoNetForXmlLoad”;
analyzer[] = “Security/NoSleep”;
analyzer[] = “Security/NoWeakSSLCrypto”;
analyzer[] = “Security/RegisterGlobals”;
analyzer[] = “Security/SafeHttpHeaders”;
analyzer[] = “Security/SessionLazyWrite”;
analyzer[] = “Security/SetCookieArgs”;
analyzer[] = “Security/ShouldUsePreparedStatement”;
analyzer[] = “Security/ShouldUseSessionRegenerateld”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer([]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Security/Sqlite3RequiresSingleQuotes™;
]
]
]
]
]
]
]

analyzer[] = “Security/UnserializeSecondArg”;
analyzer[] = “Security/UploadFilenamelnjection”;
analyzer[] = “Security/parseUrlWithoutParameters”;
analyzer[] = “Structures/EvalUsage”;

analyzer[] = “Structures/EvalWithoutTry”;
analyzer[] = “Structures/Fallthrough”;

analyzer[] = “Structures/NoHardcodedHash”;

9.5. Predefined config files

201

Exakat Documentation, Release 1

analyzer[] = “Structures/NoHardcodedIp”;
analyzer[] = “Structures/NoHardcodedPort”;
analyzer[] = “Structures/NoReturnInFinally™;

analyzer[] = “Structures/RandomWithoutTry”’;

]
]
]
analyzer[] = “Structures/PhpinfoUsage”;
]
analyzer(]
]

= “Structures/VardumpUsage”;

analyzer[] = “Structures/pregOptionE”;

9.5.23 Semantics

[Semantics]
analyzer[] = “Arrays/WeirdIndex”;

analyzer[] = “Functions/FnArgumentVariableConfusion™;

analyzer[] = “Functions/MismatchParameterAndType”;

analyzer[] = “Functions/OneLetterFunctions”;

analyzer[] = “Functions/ParameterHiding”;

analyzer[] = “Functions/PrefixToType”;

analyzer[] = “Functions/WrongTypehintedName”;
analyzer[] = “Php/ClassFunctionConfusion”;
analyzer[] = “Structures/Property VariableConfusion”;
analyzer[] = “Type/DuplicateLiteral”;

analyzer[] = “Type/SimilarIntegers”;

]
]
]
1=
1=
1=
analyzer[] = “Functions/SemanticTyping”;
1=
1=
1=
]
]
] = “Variables/VariableOneLetter”;

analyzer|[

9.5.24 Suggestions

[Suggestions]
analyzer[] = “Arrays/RandomlySortedLiterals”;
analyzer[] = “Arrays/ShouldPreprocess”;
analyzer[] = “Arrays/SliceFirst”;
analyzer[] = “Classes/CancelCommonMethod”;
analyzer[] = “Classes/ParentFirst”;
analyzer[] = “Classes/ShouldDeepClone”;

analyzer[] = “Classes/ShouldHaveDestructor”;

]

]

]

]

]

]

1=
analyzer[] = “Classes/ShouldUseSelf”;
analyzer[] = “Classes/TooManyChildren”;
analyzer[] = “Classes/UnitializedProperties”;
analyzer[] = “Classes/UselessTypehint”;
analyzer[] = “Constants/CouldBeConstant”;
analyzer[] = “Exceptions/CouldUseTry”’;
analyzer[] = “Exceptions/LargeTryBlock™;
analyzer[] = “Exceptions/LongPreparation”;
analyzer[] = “Exceptions/OverwriteException”;
analyzer[] = “Exceptions/UnusedExceptionVariable”;
analyzer[] = “Functions/AddDefaultValue”;

202 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer[] = “Functions/Closure2String”;
analyzer[] = “Functions/CouldBeStaticClosure”;
analyzer[] = “Functions/CouldCentralize”;
analyzer[] = “Functions/NeverUsedParameter”;

analyzer[] = “Functions/NoReturnUsed”;

analyzer[] = “Functions/TooManyParameters”;
analyzer[] = “Functions/TooMuchIndented”;
analyzer[] = “Functions/UselessDefault”;

analyzer[] = “Interfaces/AlreadyParentsInterface”;
analyzer[] = “Interfaces/UnusedInterfaces”;

analyzer[] = “Namespaces/AliasConfusion”;
analyzer[] = “Namespaces/CouldUseAlias”;

analyzer[] = “Patterns/AbstractAway”’;

analyzer[] = “Performances/ArrayKeyExistsSpeedup”;

analyzer[] = “Performances/IssetWholeArray”;

analyzer[] = “Performances/SubstrFirst”;
analyzer[] = “Php/AvoidReal”;

analyzer[] = “Php/CompactInexistant”;

analyzer[] = “Php/CouldUselsCountable’;
analyzer[] = “Php/CouldUsePromotedProperties™;
analyzer[] = “Php/DetectCurrentClass”;
analyzer[] = “Php/ImplodeOneArg”;

analyzer[] = “Php/IssetMultiple Args”;

analyzer[] = “Php/NewExponent”;

analyzer[] = “Php/PregMatchAllFlag”;

analyzer[] = “Php/ReturnWithParenthesis”;
analyzer[] = “Php/ShouldPreprocess”;
analyzer[] = “Php/ShouldUseArrayColumn”;
analyzer[] = “Php/ShouldUseArrayFilter”;
analyzer[] = “Php/ShouldUseCoalesce”;
analyzer[] = “Php/UseDateTimeIlmmutable”;
analyzer[] = “Php/UseGetDebugType”;
analyzer[] = “Php/UseSessionStartOptions”;
analyzer[] = “Php/UseStrContains”;

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Php/LogicalInLetters”;
]
]
]
]
]
]
]
]
]
]
]
analyzer[] = “Structures/ArraySearchMultipleKeys”;
]
]
]
]
]
]
]
]
]
]
]

analyzer[] = “Structures/BasenameSuffix”;
analyzer[] = “Structures/BooleanStrictComparison”;
analyzer[] = “Structures/CouldUseArrayFillKeys”;
analyzer[] = “Structures/CouldUseArrayUnique”;
analyzer[] = “Structures/CouldUseCompact”;
analyzer[] = “Structures/CouldUseDir”;

analyzer[] = “Structures/CouldUseMatch”;
analyzer[] = “Structures/DeclareStaticOnce”;
analyzer[] = “Structures/DirectlyUseFile”;
analyzer[] = “Structures/DontCompareTypedBoolean”;
analyzer[] = “Structures/DontLoopOnYield”;

9.5.

Predefined config files 203

Exakat Documentation, Release 1

analyzer[] = “Structures/DropElseAfterReturn”;
analyzer[] = “Structures/EchoWithConcat”;
analyzer[] = “Structures/Empty WithExpression”;
analyzer[] = “Structures/FunctionPreSubscripting”;
analyzer[] = “Structures/JsonWithOption™;
analyzer[] = “Structures/ListOmissions”;
analyzer[] = “Structures/LongBlock”;
analyzer[] = “Structures/MismatchedTernary”;
analyzer[] = “Structures/MultipleUnset”;
analyzer[] = “Structures/NamedRegex”’;
analyzer[] = “Structures/NoNeedGetClass”;
analyzer[] = “Structures/NoParenthesisForLanguageConstruct”;
analyzer[] = “Structures/NoSubstrOne”;
analyzer[] = “Structures/OnelfIsSufficient”;
analyzer[] = “Structures/PHP7Dirname”;
analyzer[] = “Structures/PossibleIncrement”;
analyzer[] = “Structures/RepeatedPrint”;
analyzer[] = “Structures/Reuse Variable”;
analyzer[] = “Structures/SGVariablesConfusion™;
analyzer[] = “Structures/SetAside”;
analyzer[] = “Structures/ShouldUseForeach”;
analyzer[] = “Structures/ShouldUseMath”;
analyzer[] = “Structures/ShouldUseOperator”;
analyzer[] = “Structures/SubstrLastArg”;
analyzer[] = “Structures/SubstrToTrim”;
analyzer[] = “Structures/UnreachableCode”;
analyzer[] = “Structures/UseArrayFunctions”;
analyzer[] = “Structures/UseCaseValue”;
analyzer[] = “Structures/UseCountRecursive”;
analyzer[] = “Structures/UseListWithForeach”;
analyzer[] = “Structures/UseUrlQueryFunctions”;
analyzer[] = “Structures/WhileListEach”;
analyzer[] = “Traits/MultipleUsage”;
analyzer[] = “Variables/ComplexDynamicNames”;
]

analyzer[] = “Variables/NoStaticVarInMethod”;

9.5.25 Top10

[Top10]
analyzer[] = “Classes/DontUnsetProperties”;
analyzer[] = “Classes/UnitializedProperties”;
analyzer[] = “Classes/UnresolvedInstanceof™;
analyzer[] = “Constants/ConstRecommended”;
analyzer[] = “Functions/ShouldYieldWithKey”;
analyzer[] = “Performances/ArrayMergelnLoops’;
analyzer[] = “Performances/CsvInLoops™;

204 Chapter 9. Scoping analysis

Exakat Documentation, Release 1

analyzer([

analyzer|[

analyzer|[

analyzer[] =
analyzer[] =
analyzer|[
analyzer|[
analyzer|[
analyzer([
analyzer|[

analyzer|[

analyzer|[

analyzer|[
analyzer[] =
analyzer[
analyzer|[
analyzer|[
analyzer|[

analyzer|[

]
]
]
]
]
]
]
]
]
]
analyzer(]
]
]
]
]
]
]
]
]
]
]

analyzer|[

“Performances/NoConcatInLoop”;
“Performances/SubstrFirst”;
“Php/AvoidReal”;
“Php/ConcatAndAddition”;
“Php/LetterCharsLogicalFavorite”;
“Php/LogicallnLetters”;
“Php/MissingSubpattern”;
“Structures/CouldUseStrrepeat”;
“Structures/Dangling ArrayReferences”;
“Structures/FailingSubstrComparison”;
“Structures/ForWithFunctioncall”;
“Structures/NextMonthTrap”;
“Structures/NoChoice™;
“Structures/NoSubstrOne”’;
“Structures/ObjectReferences”;
“Structures/QueriesInLoop”;
“Structures/RepeatedPrint”;
“Structures/StrposCompare”;
“Structures/UseListWithForeach”;
“Type/NoRealComparison”;
“Variables/VariableUsedOnce”;

9.5.26 Typechecks

[Typechecks]
analyzer[] = “Classes/ChildRemoveTypehint”;
analyzer[] = “Classes/FossilizedMethod”;
analyzer[] = “Functions/BadTypehintRelay”;
analyzer[] = “Functions/InsufficientTypehint™;
analyzer[] = “Functions/MismatchTypeAndDefault”;
analyzer[] = “Functions/MismatchedDefaultArguments”;
analyzer[] = “Functions/MismatchedTypehint”;
analyzer[] = “Functions/Missing Typehint”;
analyzer[] = “Functions/NoClassAsTypehint”;
analyzer[] = “Functions/ShouldBeTypehinted”;
analyzer[] = “Functions/WrongArgumentType”;
analyzer[] = “Functions/WrongTypeWithCall”;
analyzer[] = “Interfaces/UselessInterfaces”;
analyzer[] = “Php/NotScalarType”;
analyzer[] = “Typehints/CouldBeCallable”;
analyzer[] = “Typehints/CouldBeFloat™;
analyzer[] = “Typehints/CouldBelnt”;
analyzer[] = “Typehints/CouldBelterable”;
analyzer[] = “Typehints/CouldBeNull”;
analyzer[] = “Typehints/CouldBeParent”;
analyzer[] = “Typehints/CouldBeSelf”;

9.5. Predefined config files 205

Exakat Documentation, Release 1

analyzer([]
analyzer(]

“Typehints/CouldBeString”;
“Typehints/CouldBeVoid™;

9.5.27 php-cs-fixable

[php-cs-fixable]

analyzer|[
analyzer|[
analyzer|[
analyzer|[

“Classes/DontUnsetProperties”;
“Php/ImplodeOneArg”;
“Php/IsnullVsEqualNull”;
“Php/IssetMultipleArgs”;

analyzer[] = “Php/LogicallnLetters”;

analyzer|[
analyzer|[

“Php/NewExponent”;
“Structures/CouldUseDir”;
“Structures/ElselfElseif”;

analyzer[] = “Structures/MultipleUnset”;

analyzer|[

]
]
]
]
]
analyzer(]
]
]
]
]
]

analyzer|[

“Structures/PHP7Dirname”;
“Structures/UseConstant™;

206

Chapter 9. Scoping analysis

cHAaPTER 10

Rule

10.1 Rules

Exakat provides unique 1371 rules to detect BUGS, CODE SMELLS, SECURITY OR QUALITY ISSUES in your
PHP code.

Each rule is documented with : * a PHP version : The version of PHP to wich the rule apply * Short Name or
Identifier : The Id of the rule necessary in all configuration files * Code example : The illustrative way to explain the
issue detected by the rule and the targeted example of the remediated code * Time to Fix : a estimated duration to
remediate the code * Severity : the impact level of the issue generated by the rule * Exakat Since : The version of
Exakat Engine after which the rule is applicable

Note: The detail of Rules is available in our REFERENCE GUIDE.

10.2 Rulesets

A Ruleset is configurable with the -T option, when running exakat in command line. For example :

’php exakat .phar analyze -p <project> -T <Security>

Note: The detail of Rulesets is available in our REFERENCE GUIDE.

207

Exakat Documentation, Release 1

208 Chapter 10. Rule

cHAPTER 11

Report

11.1 Configuring a report before the audit

By default, Exakat builds the ‘Ambassador’ report for any project. If you want another report, or want to ignore the
build of Ambassador, configure it before running the audit.

To do so, open the projects/<project>/config.ini file, and mention the list of report like that :

project_reports[] = 'Owasp';
project_reports[] = 'Weekly';

By configuring the reports before the audit, Exakat processes only the needed analysis, and produces all the reports
for each audit.

11.2 Generating a report after the audit

If you have run an audit, but wants to extract another report for a piece of code, you can use the following command :
php exakat.phar report -p <project> -format <format> -file <filename>
Where <format> is one of the format listed in the following section, and <filename> is the target file.

Note that some format requires some specific audits to be run : they will fail if those results are not available. Then,
run the audit again, and mention the desired audit in the configuration.

11.3 Common behavior

Default format is Text. Each report has a default filename, that may be configured with the -file option. Each report
adds a file extension to the provided filename.

A special value for -file is ‘stdout’. Some formats may be output to stdout, such as Text or Json. Not all format are
accepting that value : some format, like Ambassador or Sqlite, may only be written to directories.

209

Exakat Documentation, Release 1

Each report is stored in its <project> folder, under the requested name.

Reports may be generated at any time, during execution of the analysis (partial results) or later, even if another audit
is running.

210 Chapter 11. Report

cHAPTER 12

Cobbler

12.1 What are cobblers

Cobblers mend PHP code. They apply a transformation to it.

Cobblers are a complement to code analysis : the analysis spot code to be fixed, the cobbler mends the code. Later,
the analysis doesn’t find those issues anymore.

12.2 Cobbler command

To run a cobbler, use the cobble command.

’php exakat cobble -p <project> <write-options> -P <Cobbler/Name>

The <project> parameter is the project on which the cobbler is run. It must have been init-ed with Exakat.

<Cobbler/Name> is the name of the cobbler to run. The list of available cobblers are in the documentation.

<write-options> configure the destination of the updated code. The available options are :

—branch <branch> : the modified code is written in a new branch, called <branch>. The branch may be config-
ured for each cobbler.

—inplace : the analyzed code is replaced by the modified code. This cannot be reverted
-f <filename> : the modified code is written in the <filename> file. Only one file is written.

-d <dirname> : the modified codes are written in the <directory> folder. Files are written with the original name
and path from the root of the repository.

default behavior : —branch Exakat/Cobbler/Name.

211

Exakat Documentation, Release 1

12.3 Analysis and Cobblers

The analysis come first, and then the cobbler. The analysis reads the code, assess the situation and report patterns in
the code that should be fixed. Then, the results from the analysis are given to the Cobbler, as a starting point. The
cobbler applies various modifications in the code, and then, produce a new code. That code is now free of issues that
the analysis found.

12.4 One analysis, one cobbler

For example, Performances/PrePostIncrement is the analysis that reports post-increment that should be converted into
pre-increments. This is the base analysis for the Structure/PostToPre cobbler. This cobbler updates the code and turns
$a++ into ++$a, and $b-- into ——$b. The resulting code is then stored into a new VCS branch, so that it may be
reviewed before PR.

Cobblers are often created to apply one of the possible fixes related to one analysis. For example, Perfor-
mances/PrePostIncrement might be fixed by turning the Post increment into a pre-increment, but it may also be
replaced by a constant, instead of a literal.

<?php
Sa++;

// Speed up the code with pre-increment
// ++$a;

// Make the ++ operation configurable
// const C = 1;
// $a = $a + C;

?>

It is not possible to apply the two cobblers at the same time, since they do not pursue the same goals. One is a
performance improvement, the other one make the code configurable.

12.5 One analysis, multiple cobblers

When one analysis produces results that may be fixed with multiple cobbler, apply the following strategy : + Run
the different cobblers, and write the results in different branches + Do a PR with each branch, and cherry pick the
transformations

12.6 Multiple analysis, one cobbler

It is possible to apply the same cobbler to the results of multiple analysis : for example, the Structures/RemoveCode
may be applied simultaneously to the analysis Structures/UselessExpressions and Classes/UnusedClasses. Both anal-
ysis spot unused code, that may well be removed.

12.7 Cobbler configuration

Cobblers take the following configuration directives :

212 Chapter 12. Cobbler

Exakat Documentation, Release 1

* Source analysis : the analysis which should be resolved by the cobbler. One or more analysis may be provided.
Default values are provided, and available in the documentation.

¢ Branch name : the branch used in the current VCS, to store the mended code.

 Specific configuration : some cobblers accept customs configuration. They are detailled in the documentation
of the cobbler.

12.8 INI configuration example:
12.9 Cobbler tutorial

12.10 Pre-requisite

We assume that Exakat has been install-ed, and that an exakat project is already inited.

The way to run a cobbler is to call the cobble command. In this example, exakat removes the noscream @ operator,
based on the Structures/NoScream analysis, and store the results in the target-branch for the project name.

> php exakat init -p phulp -R <URL> -git
> php exakat cobble -p <project name> -b <target_branch> -P Structures/RemoveNoScream

12.8. INI configuration example: 213

Exakat Documentation, Release 1

214 Chapter 12. Cobbler

cHAPTER 13

Rules

13.1 Introduction

Exakat provides unique 1371 rules to detect BUGS, CODE SMELLS, SECURITY OR QUALITY ISSUES in your
PHP code.

Each rule is documented with code example to allow you to remediate your code. If you want to automate remediation,
ours cobblers can are there to fix the issues in your code for your.

13.2 List of Rules

13.2.1 Ambiguous Array Index

Indexes should not be defined with different types than int or string.

Array indices only accept integers and strings, so any other type of literal is reported. In fact, null is turned into an
empty string, booleans are turned into an integer, and real numbers are truncated (not rounded).

<?php

Sx = [1 =>1,
1Y => 2,
1.0 => 3,
true => 4];
// S$x only contains one element : 1 => 4

// Still wrong, immediate typecast to 1

Sx[1.0] = 5;
Sx[true] = 6;
2>

215

Exakat Documentation, Release 1

They are indeed distinct, but may lead to confusion.

See also array.

Suggestions

* Only use string or integer as key for an array.

» Use transtyping operator (string) and (int) to make sure of the type

Specs

Short name | Arrays/AmbiguousKeys
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

Examples PrestaShop, Mautic

13.2.2 Array() / [] Consistence

array() or [] is the favorite.
array() and [] have the same functional use.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all
the same.

It happens that array() or [] are used depending on coding style and files. One file may be consistently using array(),
while the others are all using [].

<?php

= array(l, 2);
S array (array (3, 4), array(5, 6));
$c = array (array (array(7, 8), array(9, 10)), array(ll, 12), array (13, 14)));

// be consistent
sd = [1, 31;
2>

The only drawback to use [] over array() is backward incompatibility.

Suggestions

» Use one syntax consistently.

Name De- Type Description

fault
ar- 10 inte- Percentage of arrays in one of the syntaxes, to trigger the other syntax as a viola-
ray_ratio ger tion.

216 Chapter 13. Rules

https://www.php.net/manual/en/language.types.array.php
https://www.php.net/array
https://www.php.net/array
https://www.php.net/array
https://www.php.net/array
https://www.php.net/array

Exakat Documentation, Release 1

Specs

Short name | Arrays/ArrayBracketConsistence
Rulesets none

Exakt since | 0.8.9

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.3 Array Index

List of all indexes used in arrays.

<?php

// Index
Sx['index'] = 1;

// in array creation
$a = array('index2' => 1);
2 = ['"index3' => 21];

2>

Specs

Short name | Arrays/Arrayindex
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)
Precision Very high

13.2.4 Short Syntax For Arrays

Arrays written with the new short syntax.

PHP 5.4 introduced the new short syntax, with square brackets. The previous syntax, based on the array() keyword is
still available.

<?php

// All PHP versions array
Sa = array(l, 2, 3);

// PHP 5.4+ arrays
s$a = [1, 2, 3];

13.2. List of Rules 217

https://www.php.net/array

Exakat Documentation, Release 1

See also Array.

Specs

Short name | Arrays/ArrayNSUsage
Rulesets CE, CompatibilityPHP53
Exakt since | 0.8.4

Php Version | All

Severity Critical

Time To Fix | Quick (30 mins)
Precision High

13.2.5 Empty Final Element

The array() construct allows for the empty last element.

By putting an element on each line, and adding the final comma, it is possible to reduce the size of the diff when
comparing code with the previous version.

<?php

// Array definition with final empty element

’

’

Sarray = [1,
27
3,
1i

// This array definition has only one line of diff with the previous array : the line

—with '4,'

$array = [1,
2
3’
4
]

// This array definition is totally different from the first array :
Sarray = [1, 2, 3, 4]1;

?>

See also Array, Zend Framework Coding Standard and How clean is your code? How clean are your diffs?.

Specs

Short name | Arrays/EmptyFinal
Rulesets none

Exakt since | 0.11.0

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

218 Chapter 13. Rules

https://www.php.net/manual/en/language.types.array.php
https://www.php.net/array
https://www.php.net/manual/en/language.types.array.php
https://framework.zend.com/manual/2.4/en/ref/coding.standard.html#arrays
https://blog.madewithlove.be/post/code-style-options-for-cleaner-diffs/

Exakat Documentation, Release 1

13.2.6 Empty Slots In Arrays

PHP tolerates the last element of an array to be empty.

<?php
Sa = array(1, 2, 3,);
Sb = [4, 5, 1;

2>

Specs

Short name | Arrays/EmptySlots
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Instant (5 mins)
Precision High

13.2.7 Getting Last Element

Getting the last element of an array relies on array_key_last().

array_key_last() was added in PHP 7.3. Before that,

<?php
Sarray = ['a' => 1, 'b' => 2, 'c' => 3];

// Best solutions, by far
Slast = Sarray[array_key_last (Sarray)];

// Best solutions, just as fast as each other
Slast = Sarray[count ($Sarray) - 1];

Slast = end(Sarray);

// Bad solutions

// popping, but restoring the value.

$last = array_pop(Sarray);

Sarray[] = S$last;

// array_unshift would be even worse

// reversing array
Slast = array_reverse (Sarray) [0];

// slicing the array

Slast = array_slice($Sarray, 71)[0]5,
Slast = current (array_slice (Sarray, —-1));
)

?>

13.2. List of Rules 219

Exakat Documentation, Release 1

Suggestions

* Use PHP native function : array_key_last(), when using PHP 7.4 and later

» Use PHP native function : array_pop()

* Organise the code to put the last element in the first position (array_unshift() instead of append operator [])

Specs

Short name | Arrays/GettingLastElement
Rulesets Performances

Exakt since | 0.9.0

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

Examples Thelia

13.2.8 Mass Creation Of Arrays

Literal creation of an array, by assigning a lot of index.

<?php

ow['name'] = S$name;

i['last'] = Slast
/['address'] = S$Saddress;

?>

’

Specs

Short name | Arrays/MassCreation

Rulesets

none

Exakt since 1.1.8

Php Version | All

Severity

Minor

Time To Fix | Slow (1 hour)

Precision

High

13.2.9 Mistaken Concatenation

A unexpected structure is built for initialization. It may be a typo that creates an unwanted expression.

<?php

// This 'cd' is unexpected.

Sarray = array('a',

'b',

'c'.

Isn't it
dant);

'C', rdr 2

(continues on next page)

220

Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

Sarray = array('a', 'b', 'c', 'd');
// This 4.5 1is unexpected. Isn't it 4, 5 ?
Sarray = array(l, 2, 3, 4.5);
Sarray = array(l, 2, 3, 4, 5);
?>
Specs
Short name | Arrays/MistakenConcatenation
Rulesets none
Exakt since 1.0.8
Php Version | All
Severity Major
Time To Fix | Instant (5 mins)
Precision High

13.2.10 Mixed Keys Arrays

Avoid mixing constants and literals in array keys.

When defining default values in arrays, it is recommended to avoid mixing constants and literals, as PHP may mistake

them and overwrite the previous with the latter.

Either switch to a newer version of PHP (5.5 or newer), or make sure the resulting array hold the expected data. If not,

reorder the definitions.

<?php

const = 1;

Sa = [1 = 2,
ONE => 37];

2>

Suggestions

¢ Use only literals or constants when building the array

13.2. List of Rules

221

Exakat Documentation, Release 1

Specs

Short name | Arrays/MixedKeys

Rulesets CompatibilityPHP53, CompatibilityPHP54

Exakt since | 0.8.4

Php Version | 5.6+

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.11 Multidimensional Arrays

Simply, arrays of arrays.

<?php
Sx[1112] = $x[21[311[41;

7>

See also Type array and Using Multidimensional Arrays in PHP.

Specs

Short name | Arrays/Multidimensional

Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.12 Multiple Index Definition

Indexes that are defined multiple times in the same array.

<?php
// Multiple identical keys
Sx = array(l => 2,
2 => 3,
1 => 3);

// Multiple identical keys (sneaky version)
$x = array(l => 2,

1.1 => 3,

true => 4);

// Multiple identical keys (automated version)
$Sx = array(l => 2,
3, // This will be index 2
2 =>4); // this index is overwritten
72>

222

Chapter 13. Rules

https://www.php.net/manual/en/language.types.array.php
https://www.elated.com/articles/php-multidimensional-arrays/

Exakat Documentation, Release 1

They are indeed overwriting each other. This is most probably a typo.

Suggestions

* Review your code and check that arrays only have keys defined once.

* Review carefully your code and check indirect values, like constants, static constants.

Specs

Short name | Arrays/MultipleldenticalKeys
Rulesets Analyze, CI-checks

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

Examples Magento, MediaWiki

13.2.13 Negative Start Index In Array

Negative starting index in arrays changed in PHP 8.0. Until then, they were ignored, and automatic index
started always at 0. Since PHP 8.0, the next index is calculated.

The behavior will break code that relies on automatic index in arrays, when a negative index is used for a starter.

<?php

print_r($x);

/%
PHP 7.4 and older
Array
(
[-5] => 2
[0] => 3
)
*/
/ *
PHP 8.0 and more recent
Array
(
[-5] => 2
[-4] => 3
)
*/
2>

See also PHP RFC: Arrays starting with a negative index.

13.2. List of Rules 223

https://www.php.net/manual/en/control-structures.break.php
https://wiki.php.net/rfc/negative_array_index

Exakat Documentation, Release 1

Suggestions

» Explicitely create the index, instead of using the automatic indexing
¢ Add an explicit index of 0 in the initial array, to set the automatic process in the right track

* Avoid using specified index in array, conjointly with automatic indexing.

Specs

Short name | Arrays/NegativeStart
Rulesets CE, CompatibilityPHPS0
Exakt since | 2.1.9

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.14 Non-constant Index In Array

Undefined constants revert as strings in Arrays. They are also called barewords.
In $array[index], PHP cannot find index as a constant, but, as a default behavior, turns it into the string index.

This default behavior raise concerns when a corresponding constant is defined, either using define() or the const
keyword (outside a class). The definition of the index constant will modify the behavior of the index, as it will now
use the constant definition, and not the ‘index’ string.

<?php

// assign 1 to the element index in $array
// index will fallback to string

Sarray[index] = 1;

//PHP Notice: Use of undefined constant index — assumed 'index'
echo Sarray[index]; // display 1 and the above error

echo " "; // display 1

echo " ", // Syntax error

define ('index', 2);

// now 1 to the element 2 in Sarray
Sarray[index] = 1;

?>

It is recommended to make index a real string (with ‘ or *), or to define the corresponding constant to avoid any future
surprise.

Note that PHP 7.2 removes the support for this feature.

See also PHP RFC: Deprecate and Remove Bareword (Unquoted) Strings and Syntax.

224 Chapter 13. Rules

https://www.php.net/define
https://wiki.php.net/rfc/deprecate-bareword-strings
https://www.php.net/manual/en/language.constants.syntax.php

Exakat Documentation, Release 1

Suggestions

* Declare the constant to give it an actual value

 Turn the constant name into a string

Specs

Short name | Arrays/NonConstantArray
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

Examples Dolibarr, Zencart

13.2.15 No Spread For Hash

The spread operator . . . only works on integer-indexed arrays.
<?php
// This is valid, as "~ '-33"" 1is cast to integer by PHP automagically
var_dump(...[1,-33 => 2, 31);

// This 1is not valid
var_dump(...[1,C => 2, 31);

?>

See also Variable-length argument lists.

Suggestions

* Add a call to array_values() instead of the hash

Specs

Short name | Arrays/NoSpreadForHash
Rulesets Analyze

Exakt since | 1.9.3

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2. List of Rules 225

https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list

Exakat Documentation, Release 1

13.2.16 Null Or Boolean Arrays

Null and booleans are valid PHP array base. Yet, they only produces null values. They also did not

emits any warning until PHP 7.4.

This analysis has been upgraded to cover int and float types too.

<?php

// outputs NULL
var_dump (null[0]);

const = true;
// outputs NULL
var_dump (MY_CONSTANT[107);

2>

See also Null and True.

Suggestions

* Avoid using the array syntax on null and boolean

* Avoid using null and boolean on constant that are expecting arrays

Specs

Short name | Arrays/NullBoolean
Rulesets Analyze

Exakt since | 1.8.6

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.17 PHP Arrays Index

List of indexes used when manipulating PHP arrays in the code.

<?php

// HTTP_HOST is a PHP array index.
$ip = 'http'.$_SERVER['HTTP_HOST'].'/'.Srow['path'];

//'path' is not a PHP index

2>

226

Chapter 13

. Rules

https://twitter.com/Chemaclass/status/1144588647464951808

Exakat Documentation, Release 1

Specs

Short name | Arrays/Phparrayindex
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.18 Randomly Sorted Arrays

Those literal arrays are written in several places, but their items are in various orders.

This may reduce the reading and proofing of the arrays, and induce confusion. The random order may also be a residue
of development : both arrays started with different values, but they grew overtime to handle the same items. The way
they were written lead to the current order.

Unless order is important, it is recommended to always use the same order when defining literal arrays. This makes it
easier to match different part of the code by recognizing one of its literal.

<?php

// an array
$set = [1,3,5,9,10];

function foo () {
// an array, with the same values but different order, in a different context
$list = [1,3,5,10,9,1;

}

// an array, with the same order than the initial one
Sinits = [1,3,5,9,10];

2>

Suggestions

* Match the sorting order of the arrays. Choose any of them.
» Configure a constant and use it as a replacement for those arrays.
* Leave the arrays intact : the order may be important.

* For hash arrays, consider turning the array in a class.

13.2. List of Rules 227

Exakat Documentation, Release 1

Specs

Short name | Arrays/RandomlySortedLiterals
Rulesets Analyze, Suggestions

Exakt since | 0.11.2

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples Contao, Vanilla

13.2.19 Preprocess Arrays

Using long list of assignations for initializing arrays is significantly slower than the declaring them as an
array.

<?php

// Slow way
[1; // also with Sa = array();

salll = 2;
salz] = 3;
Sa[3] = 5;
sald] = 7;
sa[5] = 11;

// Faster way
Sa = [1 => 2,

2 => 3,
3 => 5,
4 => 7,
5 => 117];

// Even faster way 1if indexing is implicit
Sa = [2, 3, 5, 7, 111;

2>

If the array has to be completed rather than created, it is also faster to use += when there are more than ten elements
to add.

<?php

// Slow way

Sa = []; // also with Sa = array/();

salll = 25

saflz2] = 35

$5a[3] = 5;

// some expressions to get Sseven and Seleven
$a[4] = S$seven;

Sa[5] = Seleven;

// Faster way
sa = [1 => 2,

(continues on next page)

228 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

2 => 3,
3 => 5];
// some expressions to get Sseven and Seleven

Sa += [4 =>
5 =>

// Even faster way 1f indexing is implicit
:‘:"l = [21 3/ 51;
// some expressions to get Sseven and Seleven

Sa += [S$seven, Seleven];

2>

Suggestions

* Preprocess the code so PHP doesn’t do it. Keep the detailed version into comments.

Specs

Short name | Arrays/ShouldPreprocess
Rulesets Suggestions

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.20 Slice Arrays First

Always start by reducing an array before applying some transformation on it. The shorter array will be
processed faster.

<?php

// fast version
Sa = array_map('foo', array_slice(Sarray, 2, 5));

// slower version
Sa = array_slice(array_map('foo', Sarray), 2, 5);
2>

The gain produced here is greater with longer arrays, or greater reductions. They may also be used in loops. This is a
micro-optimisation when used on short arrays.

Suggestions

* Use the array transforming function on the result of the array shortening function.

13.2. List of Rules 229

Exakat Documentation, Release 1

Specs
Short name | Arrays/SliceFirst
Rulesets Performances, Suggestions
Exakt since | 1.0.4
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High
Examples WordPress

13.2.21 String Initialization

It used to be possible to initialize a variable with an string, and use it as an array. It is not the case anymore

in PHP 7.1.

<?php

// Initialize arrays with array()
Sa = array();
Sal3] = 4;

// Don't start with a string
Sa = '"';

$al3l = 4;

print S$Sa;

// Don't start with a string
if (is_numeric(Sa)) {
Sall = Sa;

}

?>

See also PHP 7.1 no longer converts string to arrays the first time a value is assigned with square bracket notation.

Suggestions

e Always initialize arrays with an empty array(), not a string.

Specs
Short name | Arrays/Stringlnitialization
Rulesets CompatibilityPHP71
Exakt since | 1.6.5
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High
230 Chapter 13. Rules

https://www.drupal.org/project/adaptivetheme/issues/2832900

Exakat Documentation, Release 1

13.2.22 Too Many Array Dimensions

When arrays a getting to many nesting.

<?php

Sa = array(); // level 1;

Salll = array(); // level 2

Sall]l[2] = array(); // level 3 : still valid by default
$al[l][2]1[3] = array(); // level 4

2>

PHP has no limit, and accepts any number of nesting levels. Yet, this is usually very memory hungry.

Suggestions

Name Default | Type Description
maxDimensions | 3 integer | Number of valid dimensions in an array.

Specs

Short name | Arrays/TooManyDimensions
Rulesets Analyze

Exakt since | 1.9.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.23 Weird Array Index

Array index that looks weird. Arrays index may be string or integer, but some strings looks weird.

In particular, strings that include terminal white spaces, often leads to missed values.

<?php

// Later 1in the code

//Notice: Undefined index: a in /Users/famille/Desktop/analyzeG3/test.php on line 8
echo Sarray(['a'l;

//Notice: Undefined index: b in /Users/famille/Desktop/analyzeG3/test.php on line 10
// Note that the space is visible, but easy to miss

echo Sarray['b '];

// all fine here

(continues on next page)

13.2. List of Rules 231

Exakat Documentation, Release 1

(continued from previous page)

Although this is rare error, and often easy to spot, it is also very hard to find when it strikes.

Suggestions

* Remove white spaces when using strings as array index.

Specs
Short name | Arrays/WeirdIndex
Rulesets Semantics
Exakt since | 1.9.9
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High
13.2.24 Handle Arrays With Callback
Use functions like array_map().
<?php
// Handles arrays with callback
Suppercase = array_map ('strtoupper', S$source);
// Handles arrays with foreach
foreach (Ssource as &$s) {
Ss = uppercase($s);
}
7>
See also array_map.
Specs
Short name | Arrays/WithCallback
Rulesets CE
Exakt since | 1.3.7
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High
232

Chapter 13. Rules

https://www.php.net/array_map
https://www.php.net/array_map

Exakat Documentation, Release 1

13.2.25 Modify Immutable

A class, marked as immutable, is being modified.

This attribute is supported as a PHPdoc comment, ‘@immutable, and as a PHP 8.0 attribute.

<?php

/*+ @Immutable x/
#[Immutable]
class x {

public $x = 1, Sy, $z;
}
Sx = new X;
// $x->x 1s modified, while it should not
Sx—=>x = 2 + $x->z;

// S$x->z 1is read only, as expected

7>

See also phpstorm-stubs/meta/attributes/Immutable.php and PhpStorm 2020.3 EAP #4: Custom PHP 8 Attributes.

Suggestions

¢ Removed the modification

* Clone the immutable object

Specs

Short name | Attributes/Modifylmmutable
Rulesets Analyze, Attributes

Exakt since | 2.2.0

Php Version | All

Severity Minor
Time To Fix | Quick (30 mins)
Precision Medium

13.2.26 Abstract Class Usage

List of all abstract classes being used.

<?php

abstract class foo {
function foobar();

}

class bar extends foo {
// extended method
function foobar () {

(continues on next page)

13.2. List of Rules 233

https://github.com/JetBrains/phpstorm-stubs/blob/master/meta/attributes/Immutable.php
https://blog.jetbrains.com/phpstorm/2020/10/phpstorm-2020-3-eap-4/

Exakat Documentation, Release 1

(continued from previous page)

// doSomething ()
}

// extra method
function barbar () {
// doSomething ()
}
}

?>

See also Classes abstraction.

Specs

Short name | Classes/Abstractclass
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.27 Abstract Methods Usage

List of all abstract methods being used.

<?php

// abstract class

abstract class foo {
// abstract method
function foobar();

}

class bar extends foo {
// extended abstract method
function foobar() {
// doSomething ()
}

// extra method
function barbar () {
// doSomething ()
}
}

?>

See also Classes abstraction.

234 Chapter 13. Rules

https://www.php.net/abstract
https://www.php.net/abstract

Exakat Documentation, Release 1

Specs

Short name Classes/Abstractmethods
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.28 Abstract Or Implements

A class must implements all abstract methods of it parent, or be abstract too.

While PHP lints this code, it won’t execute it and stop with a Fatal Error : Class BA contains 1 abstract
method and must therefore be declared abstract or implement the remaining
methods (A\:\:aFoo0).

<?php

abstract class Foo {
abstract function FooBar();

}
// This is in another file : php -1 would detect it right away
class FooFoo extends Foo {

// The method is not defined.

// The class must be abstract, just like Foo
}

7>

See also Class Abstraction.

Suggestions

* Implements all the abstract methods of the class

¢ Make the class abstract

Specs

Short name | Classes/AbstractOrImplements
Rulesets Analyze, LintButWontExec
Exakt since | 1.3.3

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)

Precision High

Examples Zurmo

13.2. List of Rules 235

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/abstract

Exakat Documentation, Release 1

13.2.29 Abstract Static Methods

Methods cannot be both abstract and static. Static methods belong to a class, and will not be overridden
by the child class. For normal methods, PHP will start at the object level, then go up the hierarchy to find
the method. With static, it is necessary to mention the name, or use Late Static Binding, with self or static.
Hence, it is useless to have an abstract static method : it should be a static method.

A child class is able to declare a method with the same name than a static method in the parent, but those two methods
will stay independent.

This is not the case anymore in PHP 7.0+.

<?php

abstract class foo {
// This is not possible
static abstract function bar () ;

}

2>

See also Why does PHP 5.2+ disallow abstract ‘static class methods? <https://stackoverflow.com/questions/999066/
why-does-php-5-2-disallow-abstract-static-class-methods>*_.

Suggestions

* Remove abstract keyword from the method
* Remove static keyword from the method

¢ Remove the method

Specs

Short name | Classes/AbstractStatic
Rulesets Analyze

Exakt since | 0.8.4

Php Version | 7.0-

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.30 Accessing Private

List of calls to private properties/methods that will compile but yield some fatal error upon execution.

<?php
class a {
private $a;

}

class b extends a {

(continues on next page)

236 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://stackoverflow.com/questions/999066/why-does-php-5-2-disallow-abstract
https://stackoverflow.com/questions/999066/why-does-php-5-2-disallow-abstract
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

function c () {
Sthis->a;

}

2>

Specs

Short name Classes/AccessPrivate
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)
Precision High

13.2.31 Access Protected Structures

It is not allowed to access protected properties or methods from outside the class or its relatives.

<?php

class foo {
protected Shar = 1;
}

S = new Foo();
Sfoo->bar = 2;

2>

See also Visibility and Understanding The Concept Of Visibility In Object Oriented PHP.

Suggestions

* Change ‘protected’ to ‘public’ to relax the constraint
* Add a getter method to reach the target value

* Remove the access to the protected value and find it another way

13.2. List of Rules 237

https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/

Exakat Documentation, Release 1

Specs
Short name Classes/AccessProtected
Rulesets Analyze
Exakt since | 0.8.4
Php Version | All
Severity Major
Time To Fix | Quick (30 mins)
Precision High

13.2.32 Ambiguous Static

Methods or properties with the same name, are defined static in one class, and not static in another. This

is error prone, as it requires a good knowledge of the code to make it static or not.

Try to keep the methods simple and unique. Consider renaming the methods and properties to distinguish them easily.
A method and a static method have probably different responsibilities.

<?php

class a {
function mixedStaticMethod () {}
}

class b {

static function mixedStaticMethod ()

}
/... a lot more code later .../
Sc—>mixedStaticMethod () ;

// or
Sc::mixedStaticMethod () ;

{}

7>
Specs
Short name | Classes/AmbiguousStatic
Rulesets Analyze
Exakt since | 1.0.3
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.33 Ambiguous Visibilities

The properties have the same name, but have different visibilities, across different classes.

238

Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

While it is legit to have a property with the same name in different classes, it may easily lead to confusion. As soon as
the context is need to understand if the property is accessible or not, the readability suffers.

It is recommended to handle the same properties in the same way across classes, even when the classes are not related.

<?php

class person {
public Sname;
private S

class gangster {
private S$name;
public Snickn
private Saddr

Ssomeone = Human::load(123);
echo 'Hello, '.S$someone->name;

?>

Suggestions

» Sync visibilities for both properties, in the different classes

 Use different names for properties with different usages

Specs

Short name | Classes/AmbiguousVisibilities
Rulesets Analyze

Exakt since | 1.3.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples Typo3

13.2.34 Anonymous Classes

Anonymous classes.

<?php

// Anonymous class, available since PHP 7.0
Sobject = new class nlfunction __construct () { echo HE

7>

13.2. List of Rules 239

Exakat Documentation, Release 1

Specs

Short name | Classes/Anonymous

Rulesets CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakt since | 0.8.4

Php Version | 7.0+

Severity Major

Time To Fix | Slow (1 hour)

Precision High

13.2.35 Avoid Optional Properties

Avoid optional properties, to prevent littering the code with existence checks.

When a property has to be checked once for existence, it is safer to check it each time. This leads to a decrease in
readability and a lot of checks added to the code.

Either make sure the property is set with an actual object rather than with null, or use a null object. A null object offers
the same interface than the expected object, but does nothing. It allows calling its methods, without running into a
Fatal error, nor testing it.

<?php

// Example is courtesy 'The Coding Machine' : it has been adapted from its original,,
—form. See link below.

class MyMailer {
private S$logger;

public function __ construct (LoggerInterface S$logger = null) {
Sthis->logger = $logger;

}

private function sendMail (Mail Smail) {
// Since Sthis->logger may be null, it must be tested anytime it is used.
if (Sthis->logger) {
$this->logger—->info('Mail successfully sent.');

}

?>

See also Avoid optional services as much as possible, The Null Object Pattern — Polymorphism in Domain Models,
and Practical PHP Refactoring: Introduce Null Object.

Suggestions

» Use a null object to fill any missing value

* Make sure the property is set at constructor time

240 Chapter 13. Rules

http://bestpractices.thecodingmachine.com/php/design_beautiful_classes_and_methods.html#avoid-optional-services-as-much-as-possible
https://www.sitepoint.com/the-null-object-pattern-polymorphism-in-domain-models/
https://dzone.com/articles/practical-php-refactoring-26

Exakat Documentation, Release 1

Specs

Short name | Classes/AvoidOptionalProperties
Rulesets Analyze

Exakt since | 0.12.0

Php Version | All

Severity Major

Time To Fix | Slow (1 hour)

Precision High

Examples ChurchCRM, Dolibarr

13.2.36 Avoid option arrays in constructors

Avoid option arrays in constructors. Use one parameter per injected element.

<?php

class Foo {
// Distinct arguments, all typehinted if possible
function _ constructor (A $a, B S$b, C $c, D $d) {
Sthis->a = $Sa;
Sthis->b = $b;

Sthis->c
Sthis->d

class Bar {
// One argument, spread over several properties

function __ constructor (array Soptions) {
Sthis->a = Soptions['a'l;
Sthis->b = Soptions['b'];
Sthis->c = S$options['c'];
Sthis->d = S$options['d'];

’

7>

See also Avoid option arrays in constructors and PHP RFC: Named Arguments (Type-safe and documented options).

Suggestions

» Spread the options in the argument list, one argument each
» Use a configuration class, that hold all the elements with clear names, instead of an array

» Use named parameters to pass and document the arguments

13.2. List of Rules 241

http://bestpractices.thecodingmachine.com/php/design_beautiful_classes_and_methods.html#avoid-option-arrays-in-constructors
https://wiki.php.net/rfc/named_params#type-safe_and_documented_options

Exakat Documentation, Release 1

Specs

Short name | Classes/AvoidOptionArrays
Rulesets Analyze, ClassReview
Exakt since | 1.7.9

Php Version | All

Severity Minor
Time To Fix | Quick (30 mins)
Precision Medium

13.2.37 Custom Class Usage

List of usage of custom classes throughout the code.

Name Default | Type Description
forbiddenClasses ini_hash | List of classes to be avoided

Specs

Short name | Classes/AvoidUsing
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Major
Time To Fix | Slow (1 hour)
Precision High

13.2.38 Cancel Common Method

A parent method’s is too little used in children.

The parent class has a method, which is customised in children classes, though most of the time, those are empty :
hence, cancelled.

<?php

class x {
abstract function foo();
abstract function bar();
}

class yl extends x {
function foo () { doSomething(); }
function bar () { doSomething(); };
}

class y2 extends x {

// foo 1s cancelled : it must be written, but has no use.
function foo () { }

function bar () { doSomething(); };

(continues on next page)

242 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

}

2>

A threshold of cancelThreshold % of the children methods have to be cancelled to report the parent class. By
default, it is 75 (or 3 out of 4).

Suggestions

* Drop the common method, and the cancelled methods in the children

¢ Fill the children’s methods with actual code

Name De- Type Description
fault
cancelThresh- 75 inte- Minimal number of cancelled methods to suggest the cancellation of the
old ger parent.
Specs

Short name | Classes/CancelCommonMethod
Rulesets ClassReview, Suggestions
Exakt since | 2.1.8

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.39 Can’t Extend Final

It is not possible to extend final classes.

Since PHP fails with a fatal error, this means that the extending class is probably not used in the rest of the code.
Check for dead code.

<?php
// File Foo
final class foo {
public final function bar () {
// doSomething

}

7>

In a separate file :

<?php
// File Bar
class bar extends foo {

(continues on next page)

13.2. List of Rules 243

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

?>

See also Final Keyword.

Suggestions

* Remove the final keyword

¢ Remove the extending class

Specs

Short name Classes/CantExtendFinal
Rulesets Analyze, Dead code
Exakt since | 0.8.4

Php Version | All

Severity Critical
Time To Fix | Instant (5 mins)
Precision Medium

13.2.40 Cant Inherit Abstract Method

Inheriting abstract methods was made available in PHP 7.2. In previous versions, it emitted a fatal error.

<?php

abstract class A { abstract function bar (stdClass $x); }
abstract class B extends A { abstract function bar ($x): stdClass; }

// Fatal error: Can't inherit abstract function A::bar()
2>

See also PHP RFC: Allow abstract function override.

Suggestions

* Avoid inheriting abstract methods for compatibility beyond 7.2 (and older)

244 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.final.php
https://wiki.php.net/rfc/allow-abstract-function-override

Exakat Documentation, Release 1

Specs
Short Classes/CantlnheritAbstractMethod
name
Rulesets | CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71
Exakt 0.11.8
since
Php Ver- | 7.2+
sion
Severity Critical
Time To | Quick (30 mins)
Fix
Precision | High

13.2.41 Cant Instantiate Class

When constructor is not public, it is not possible to instantiate such a class. Either this is a conception
choice, or there are factories to handle that. Either way, it is not possible to call new on such class.

PHP reports an error similar to this one : ‘Call to private Y::__construct() from invalid context’.

<?php

//This 1is the way to go
Sx = X::factory();
//This 1s not possible
Sx = new X();
class X {
//This is also the case with proctected
private function __ construct () {}

static public function factory() {

return new X ();

}

?>

construct

See also In a PHPS class, when does a private constructor get called?, Named Constructors in PHP and PHP Construc-

tor Best Practices And The Prototype Pattern.

13.2. List of Rules

245

https://www.php.net/manual/en/language.oop5.decon.php
https://stackoverflow.com/questions/26079/in-a-php5-class-when-does-a-private-constructor-get-called
http://verraes.net/2014/06/named-constructors-in-php/
http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern
http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern

Exakat Documentation, Release 1

Specs

Short name Classes/CantInstantiateClass
Rulesets Analyze

Exakt since | 1.2.8

Php Version | All

Severity Critical

Time To Fix | Quick (30 mins)

Precision High

Examples WordPress

13.2.42 Check On __Call Usage

When using the magic methods __call() and __staticcall(), make sure the method exists before calling it.

If the method doesn’t exists, then the same method will be called again, leading to the same failure. Finally, it will
crash PHP.

<?php

class safeCall {
function __ _class($name, Sargs) {

// unsafe call, no checks
if (method_exists (Sthis
Sthis—>S%Sname(...$

Sname)) {

s);

}
}
class unsafeCall {
function ___class($name, Sargs) {
// unsafe call, no checks
Sthis->$name (...Sargs);

}

7>

See also Method overloading and ¢‘Magical PHP: _ call <https://www.garfieldtech.com/index.php/blog/
magical-php-call>‘_.

Suggestions

* Add a call to method_exists() before using any method name

* Relay the call to another object that doesn’t handle __call() or __callStatic()

246 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.overloading.php#object.call
https://www.php.net/manual/en/language.oop5.magic.php
https://www.garfieldtech.com/index.php/blog/magical-php-call
https://www.garfieldtech.com/index.php/blog/magical-php-call

Exakat Documentation, Release 1

Specs

Short name | Classes/CheckOnCallUsage
Rulesets Analyze, CI-checks

Exakt since | 1.7.2

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.43 Child Class Removes Typehint

PHP 7.2 introduced the ability to remove a typehint when overloading a method. This is not valid code
for older versions.

<?php

class foo {
function foobar (foo Sa) {}

}

class bar extends foo {
function foobar ($Sa) {}

}

2>

Specs

Short Classes/ChildRemoveTypehint
name
Rulesets | CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibili-
tyPHP70, CompatibilityPHP71, Typechecks

Exakt 0.12.4

since
Php Ver- | 7.2+
sion
Severity | Major

Time To | Quick (30 mins)
Fix
Preci- High
sion

13.2.44 Class, Interface Or Trait With Identical Names

The following names are used at the same time for classes, interfaces or traits. For example,

<?php
class a { /* some definitions =/ }

(continues on next page)

13.2. List of Rules 247

Exakat Documentation, Release 1

(continued from previous page)

interface a { /* some definitions =*/ }
trait a { /# some definitions =/ }
2>

Even if they are in different namespaces, identical names makes classes easy to confuse. This is often solved by using
alias at import time : this leads to more confusion, as a class suddenly changes its name.

Internally, PHP use the same list for all classes, interfaces and traits. As such, it is not allowed to have both a trait and
a class with the same name.

In PHP 4, and PHP 5 before namespaces, it was not possible to have classes with the same name. They were simply
included after a check.

Suggestions

* Use distinct names for every class, trait and interface.

» Keep eponymous classes, traits and interfaces in distinct files, for definition but also for usage. When this
happens, rename one of them.

Specs

Short name | Classes/CitSameName
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

Examples shopware, NextCloud

13.2.45 Usage Of class_alias()

class_alias creates dynamically an alias for classes.

<?php

class foo { }

class_alias('foo', 'bar');

Sa = new foo;
) = new bar;

// the objects are the same
var_dump (Sa == $b, $a === $b);
var_dump (Sa instanceof S$b);

// the classes are the same
var_dump (Sa instanceof foo);
var_dump (Sa instanceof bar);

(continues on next page)

248 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

var_dump (Sb instanceof foo);
var_dump (Sb instanceof bar);

?>

See also class_alias.

Specs

Short name | Classes/ClassAliasUsage
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.46 Classes Names

List of all classes, as defined in the application.

<?php

// foo is 1in the 1list
class foo {}

// Anonymous classes are not in the list
So = class function foo () {} }

?>

Specs

Short name Classes/Classnames
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.47 Class Usage

List of classes being used.

<?php

(continues on next page)

13.2. List of Rules 249

https://www.php.net/class_alias

Exakat Documentation, Release 1

(continued from previous page)

// Class may be used in a use expression
use MyClass as MyAliasedClass;

// class may be aliased with class_alias
class_alias ('MyOtherAliasedClass', 'MyClass');

// Class may be instanciated
So = new MyClass();

// Class may be used with instanceof
var_dump (S50 instanceof \MyClass);

// Class may be used in static calls
MyClass::aConstant;

echo MyClass::SaProperty;

echo MyClass::aMethod(So);

// Class may be extended
class MyOtherClass ({

class MyClass extends MyOtherClass {
const = 1;

public static $aProperty = 2;
// also used as a typehint

public static function aMethod(MyClass S$Sobject)
return ;

7>

{

Specs

Short name | Classes/ClassUsage

Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.48 Clone With Non-Object

The clone keyword must be used on variables, properties or results from a function or method call.

clone cannot be used with constants or literals.

250

Chapter 13. Rules

Exakat Documentation, Release 1

<?php

class x { }
Sx = new x();

// Valid clone
Sy = clone $x;

// Invalid clone
Sy = clone x;

2>

Cloning a non-object lint but won’t execute.

See also Object cloning.

Suggestions

* Only clone containers (like variables, properties. . .)

* Add typehint to injected properties, so they are checked as objects.

Specs

Short name | Classes/CloneWithNonObject
Rulesets Analyze, LintButWontExec
Exakt since | 1.7.0

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.49 Clone Usage

List of all clone situations.

<?php

SdateTime = new DateTime () ;

echo (clone SdateTime)->format ('Y');
2>

See also Object cloning.

13.2. List of Rules 251

https://www.php.net/manual/en/language.oop5.cloning.php
https://www.php.net/manual/en/language.oop5.cloning.php

Exakat Documentation, Release 1

Specs

Short name | Classes/CloningUsage
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.50 Constant Class

A class or an interface only made up of constants. Constants usually have to be used in conjunction of

some behavior (methods, class...) and never alone.

<?php

class ConstantClass {

const

const

const

const
}

?>

= 1000;

self::KBIT * 1000;
self::MBIT = 1000;

= self::GBIT = 1000;

As such, they should be PHP constants (build with define or const), or included in a class with other methods and

properties.

See also PHP Classes containing only constants.

Suggestions

¢ Make the class an interface

¢ Make the class an abstract class, to avoid its instantiation

Specs

Short name | Classes/ConstantClass
Rulesets ClassReview

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.51 Constant Definition

List of class constants being defined.

252

Chapter 13. Rules

https://stackoverflow.com/questions/16838266/php-classes-containing-only-constants

Exakat Documentation, Release 1

<?php

// traditional way of making constants
define('aConstant', 1);

// modern way of making constants
const anotherConstant = 2;

class foo {

// Not a constant, a class constant.
const aClassConstant = 3;

7>

See also PHP Constants.

Specs

Short name | Classes/ConstantDefinition
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.52 Constant Used Below

Mark class constants that are used in children classes.

<?php

class foo {
// This constant is used in children
protected PROTECTEDPROPERTY = 1;

// This constant 1s not used in children
protected LOCALPROTECTEDPROPERTY = 1;

private function foobar () {
// PROTECTEDPROPERTY is used here, but defined in parent
echo self::LOCALPROTECTEDPROPERTY;

class foofoo extends foo {
private function bar () {
// protectedProperty is used here, but defined in parent
print self::PROTECTEDPROPERTY;

(continues on next page)

13.2. List of Rules 253

https://www.php.net/manual/en/language.constants.php

Exakat Documentation, Release 1

(continued from previous page)

?>

This analysis marks constants at their definition, not the current class, nor the (grand-)‘parent <https://www.php.net/
manual/en/language.oopS.paamayim-nekudotayim.php>‘_.

Specs

Short name | Classes/ConstantUsedBelow
Rulesets none

Exakt since | 0.12.10

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.53 Constructors

Mark methods as constructors.

<?php

class x {
// Normal constructor
function _ construct () {}

}

class y {
// 01d style constructor, obsolete since PHP 7.1
function y () {}

}

class z {
// Normal constructor
function _ construct () {}

// 01d style constructor, but with lower priority
function z () {}

}

7>

See also Constructors and Destructors.

254 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

Specs

Short name Classes/Constructor
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.54 Const Visibility Usage

Visibility for class constant controls the accessibility to class constant.

A public constant may be used anywhere in the code; a protected constant usage is restricted to the class and its
relatives; a private constant is restricted to itself.

This feature was introduced in PHP 7.1. It is recommended to use explicit visibility, and, whenever possible, make the
visibility private.

<?php

class x {
public const = 1;
protected const =
private const = 3;
const = 4;

2;

}

interface i {
public const = 1;
const = 4;

}

2>

See also Class Constants and PHP RFC: Support Class Constant Visibility.

Suggestions

* Add constant visibility, at least ‘public’.

13.2. List of Rules 255

https://www.php.net/manual/en/language.oop5.constants.php
https://wiki.php.net/rfc/class_const_visibility

Exakat Documentation, Release 1

Specs
Short Classes/ConstVisibilityUsage
name
Rulesets CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compati-
bilityPHP70
Exakt 1.3.0
since
Php Ver- | 7.1+
sion
Severity Minor
Time To | Slow (1 hour)
Fix
Precision High

13.2.55 Could Be Abstract Class

An abstract class is never instantiated, and has children class that are. As such, a ‘parent’ class that is
never instantiated by itself, but has its own children instantiated could be marked as abstract.

That will prevent new code to try to instantiate it.

<?php

// Example code would actually be split over multiple files.
// That class could be abstract

class motherClass {}

// Those classes shouldn't be abstract
class firstChildren extends motherClass {}
class secondChildren extends motherClass {}
class thirdChildren extends motherClass {}
new firstChildren();

new secondChildren () ;

new thirdChildren();

//Not a single : new motherClass ()

?>

See also Class Abstraction Abstract classes and methods.

Suggestions

¢ Make this class an abstract class

256 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/abstract
https://phpenthusiast.com/object-oriented-php-tutorials/abstract-classes-and-methods

Exakat Documentation, Release 1

Specs

Short name Classes/CouldBeAbstractClass
Rulesets Analyze, ClassReview

Exakt since 1.3.9

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

Examples Edusoho, shopware

13.2.56 Could Be Class Constant

When a property is defined and read, but never modified, it may be a constant.

<?php
class foo {
// Sthis—->bar 1is never modified.

private Sbar = 1;

// Sthis—->foofoo 1is modified, at least once

private $foofoo = 2;

function method(Sa) {
Sthis—->foofoo = S$this->bar + $a + S$this->foofoo;
return Sthis->foofoo;

}

?>

Starting with PHP 5.6, even array() may be defined as constants.

Specs

Short name Classes/CouldBeClassConstant
Rulesets ClassReview

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.57 Class Could Be Final

Any class that has no extension should be £inal by default.

13.2. List of Rules 257

https://www.php.net/array

Exakat Documentation, Release 1

As stated by Matthias Noback : If a class is not marked final,

subclass.

it has at least one

Prevent your classes from being subclassed by making them final. Sometimes, classes are not meant or thought to

be derivable.

<?php

class x {} // This class 1s extended
class y extends x {} // This class is extended
class z extends v {} // This class is not extended

final class z2 extends y {} // This class 1is not extended

?>

See also Negative architecture, and assumptions about code.

Suggestions

¢ Make the class final

¢ Extends the class

Specs
Short name | Classes/CouldBeFinal
Rulesets Analyze, ClassReview
Exakt since | 1.4.3
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.58 Could Be Parent Method

A method is defined in several children, but not in a the parent class. It may be worth checking if this
method doesn’t belong the parent class, as an abstraction.

<?php

// The parent class
class x { }

// The children class
class yl extends x {

// foo is common to yl and y2, so it shall be also a method in x

function foo () {}
// fooYl is specific to yl
function fooY1l () {}

class y2 extends x {

(continues on next page)

258

Chapter 13. Rules

https://matthiasnoback.nl/2018/08/negative-architecture-and-assumptions-about-code/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

function foo () {}
// fooY2 is specific to yl
function fooY2 () {}

}

2>

Only the name of the method is used is for gathering purposes. If the code has grown organically, the signature (default
values, typehint, argument names) may have followed different path, and will require a refactorisation.

Suggestions

* Create an abstract method in the parent

 Create an concrete method in the parent, and move default behavior there by removing it in children classes

Name Default | Type Description
minChildren | 4 integer | Minimal number of children using this method.

Specs

Short name | Classes/CouldBeParentMethod
Rulesets ClassReview

Exakt since | 2.1.7

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.59 Property Could Be Private Property

The following properties are never used outside their class of definition Given the analyzed code, they
could be set as private.

<?php

class foo {
public ScouldBePrivate = 1;
public ScantdBePrivate = 1

function bar () {
// couldBePrivate is used internally.
$this—->couldBePrivate = 3;

}

class foo2 extends foo {

function bar2 () {
// cantdBePrivate 1is used in a child class.
Sthis->cantdBePrivate = 3;

(continues on next page)

13.2. List of Rules 259

Exakat Documentation, Release 1

(continued from previous page)

}

//ScouldBePrivate 1is not used outside
Sfoo = new fool();

//ScantdBePrivate is used outside the class
$foo->cantdBePrivate = 2;

?>

Note that dynamic properties (such as $x->$y) are not taken into account.

Suggestions

* Remove the unused property
 Use the private property

» Change the visibility to allow access the property from other part of the code

Specs

Short name Classes/CouldBePrivate
Rulesets ClassReview

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.60 Could Be Private Class Constant

Class constant may use private visibility.

Since PHP 7.1, constants may also have a public/protected/private visibility. This restrict their usage to anywhere,

class and children or class.

As a general rule, it is recommended to make constant private by default, and to relax this restriction as needed.

PHP makes them public by default.

<?php

class foo {
// pre-7.1 style
const = 1;

// post-7.1 style
private const

public const = 3;

function bar () {

(continues on next page)

260

Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

// PRIVATE CONSTANT may only be used in its class
echo self::PRIVATE_CONSTANT;

// Other constants may be used anywhere
function x($Sa = foo::PUBLIC_CONSTANT) {
echo $a.' '.foo:PRE_71_CONSTANT;

?>

Constant shall stay public when the code has to be compatible with PHP 7.0 and older.

They also have to be public in the case of component : some of those constants have to be used by external actors, in
order to configure the component.

See also Class Constants.

Specs

Short name | Classes/CouldBePrivateConstante
Rulesets ClassReview

Exakt since | 0.12.10

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

Examples Phinx

13.2.61 Method Could Be Private Method

The following methods are never used outside their class of definition. Given the analyzed code, they
could be set as private.

<?php

class foo {

public function couldBePrivate() {}
public function cantdBePrivate() {}
function bar () {

// couldBePrivate is used internally.
Sthis—->couldBePrivate () ;

class foo2 extends foo {
function bar2 () {
// cantdBePrivate is used in a child class.
Sthis—->cantdBePrivate () ;

(continues on next page)

13.2. List of Rules 261

https://www.php.net/manual/en/language.oop5.constants.php

Exakat Documentation, Release 1

(continued from previous page)

//couldBePrivate () 1s not used outside
Sfoo = new fool();

//cantdBePrivate is used outside the class
$foo->cantdBePrivate () ;

?>

Note that dynamic properties (such as $x->$y) are not taken into account.

Specs

Short name | Classes/CouldBePrivateMethod
Rulesets ClassReview

Exakt since | 0.12.11

Php Version | All

Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.62 Could Be Protected Class Constant

Class constant may use ‘protected’ visibility.

Since PHP 7.1, constants may also have a public/protected/private visibility. This restrict their usage to anywhere,
class and children or class.

As a general rule, it is recommended to make constant ‘private’ by default, and to relax this restriction as needed. PHP
makes them public by default.

<?php

class foo {
// pre-7.1 style
const = 1;

// post-7.1 style
protected const = 2;
public const = 3;

class foo2 extends foo {
function bar () {
// PROTECTED_CONSTANT may only be used in its class or its children
echo self::PROTECTED_CONSTANT;

class foo3 extends foo {
function bar () {
// PROTECTED_CONSTANT may only be used in its class or any of its children
echo self::PROTECTED_CONSTANT;

(continues on next page)

262 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

}

// Other constants may be used anywhere
function x($a = foo::PUBLIC_CONSTANT) {

echo Sa.' '".foo:PRE_71_CONSTANT;

}

?>

Specs
Short name Classes/CouldBeProtectedConstant
Rulesets ClassReview
Exakt since | 0.12.11
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.63 Could Be Protected Method

Those methods are declared public, but are never used publicly. They may be made protected.

<?php

class foo {
// Public, and used publicly
public publicMethod() {}

// Public, but never used outside the class or its children

public protectedMethod() {}

private function bar () {
Sthis->protectedMethod () ;

$foo = new Fool();
$foo->publicMethod () ;

?>

These properties may even be made private.

13.2. List of Rules

263

Exakat Documentation, Release 1

Specs

Short name Classes/CouldBeProtectedMethod
Rulesets ClassReview

Exakt since | 0.12.11

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.64 Could Be Protected Property

Those properties are declared public, but are never used publicly. They may be made protected.

<?php

class foo {
// Public, and used publicly
public SpublicProperty;
// Public, but never used outside the class or its children
public S$protectedProperty;

function bar () {
Sthis->protectedProperty = 1;
}

& e

Sfoo = new Fool();
Sfoo->publicProperty = 3;

2>

This property may even be made private.

Specs

Short name | Classes/CouldBeProtectedProperty
Rulesets ClassReview

Exakt since | 0.9.7

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.65 Method Could Be Static

A method that doesn’t make any usage of $this could be turned into a static method.

While static methods are usually harder to handle, recognizing the static status is a first step before turning the method
into a standalone function.

264 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

<?php

class foo {
static Sproperty = 1;

// legit static method
static function staticMethod () {
return self::Sproperty;

}

// This 1is not using Sthis, and could be static
function nonStaticMethod () {
return self::Sproperty;

}

// This 1is not using Sthis nor self, could be a standalone function
function nonStaticMethod () {
return self::Sproperty;

?>

Suggestions

¢ Make the method static
¢ Make the method a standalone function

* Make use of $this in the method : may be it was forgotten.

Specs

Short name | Classes/CouldBeStatic
Rulesets Analyze, ClassReview

Exakt since | 1.5.7

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

Examples FuelCMS, ExpressionEngine

13.2.66 Could Be Stringable

Stringable is an interface that mark classes as string-castable. It is introduced in PHP 8.0.

Classes that defined a __toString() magic method may be turned into a string when the typehint, argument, return
or property, requires it. This is not the case when strict_types is activated. Yet, until PHP 8.0, there was nothing to
identify a class as such.

<?php

(continues on next page)

13.2. List of Rules 265

https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

// This class may implement Stringable
class x {
function __tostring() {
return 'asd';

}

echo (new x);

?>

See also PHP RFC: Add Stringable interface.

Suggestions

Specs

Short name | Classes/CouldBeStringable
Rulesets Analyze, LintButWontExec
Exakt since | 2.1.9

Php Version | 8.0+

Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.67 Cyclic References

Avoid cyclic references.

Cyclic references happen when an object points to another object, which reciprocate. This is particularly possible with
classes, when the child class has to keep a reference to the parent class.

<?php

class a {
private Sp = null;

function foo () {
Sthis->p = new b ();
// the current class is stored in the child class
Sthis->p->m($this);

class b {
private Spb = null;

function n(5a) {
// the current class keeps a link to its parent

(continues on next page)

266 Chapter 13. Rules

https://wiki.php.net/rfc/stringable
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

Cyclic references, or circular references, are memory intensive : only the garbage collector can understand when
they may be flushed from memory, which is a costly operation. On the other hand, in an acyclic reference code, the
reference counter will know immediately know that an object is free or not.

See also About circular references in PHP and A Journey to find a memory leak.

Suggestions

 Use a different object when calling the child objects.

 Refactor your code to avoid the cyclic reference.

Specs

Short name | Classes/CyclicReferences
Rulesets Analyze, ClassReview
Exakt since | 2.1.3

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.68 Defined Class Constants

Connect class constants with their definition when it can find it. This includes class constants, one level
of parent (extended) or interfaces (implemented).

<?php

class X {
const = 2;

function foo () {
// This 1is defined on the line above

echo self::Y;

// This 1s not defined in the current code
echo X::X;

?>

13.2. List of Rules 267

https://johann.pardanaud.com/blog/about-circular-references-in-php
https://jolicode.com/blog/a-journey-to-find-a-memory-leak/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

Short name Classes/DefinedConstants
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High
13.2.69 Defined Parent MP
Check static calls with ‘parent’.
<?php
class foo {
protected function parentDefined() {}
protected function unusedParentMethod() {}

// visibility is checked too

protected function unusuableParentMethod() {}

class bar extends foo {

private function someMethod () {
// reported
parent: :parentDefined();

// not
parent:

reported,

// not reported,
parent: :parentUndefined();

protected function parentDefined2 ()

as method is unreachable in parent
:unusuableParentMethod () ;

as method is undefined in parent

{}

?>
Specs

Short name | Classes/DefinedParentMP

Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High
268 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

13.2.70 Defined Properties

List of properties that are explicitly defined in the class, its parents or traits.

<?php

class foo {
// property definition
private bar = 2;

}

?>

See also Properties.

Specs

Short name | Classes/DefinedProperty
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.71 Defined static:: Or self::

List of all defined static and self properties and methods.

<?php

class x {
static public function definedStatic() {}
private definedStatic = 1;

public function method () {
self::definedStatic();
self::undefinedStatic();

static::definedStatic;
static::undefinedStatic;

?>

13.2. List of Rules 269

https://www.php.net/manual/en/language.oop5.properties.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

13.2.72 Law of Demeter

Short name Classes/DefinedStaticMP
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

The law of Demeter specifies a number of constraints to apply to methodcalls from within an method, so
as to keep dependencies to a minimum.

<?php

class x {

function foo (Sarg)

Sy
St

Sthis->x—>bar () 2

5:7'(,11~(j7>bar2 ()I
local = new y();
2 = Sy->bar3();

&

his->foo () ;

Sz->bard ();

?>

{

/7
//
/7

//

calling oneself is OK
calling one's property is OK
calling arg's methods is OK

// calling a local variable is OK

calling a method on a previous result 1is wrong

See also Do your objects talk to strangers? and Law of Demeter.

Suggestions

Specs
Short name | Classes/DemeterLaw
Rulesets none
Exakt since | 1.6.7
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High
270 Chapter 13. Rules

https://www.brandonsavage.net/do-your-objects-talk-to-strangers/
https://en.wikipedia.org/wiki/Law_of_Demeter

Exakat Documentation, Release 1

13.2.73 Dependant Abstract Classes

Abstract classes should be autonomous. It is recommended to avoid depending on methods, constant or
properties that should be made available in inheriting classes, without explicitly abstracting them.

The following abstract classes make usage of constant, methods and properties, static or not, that are not defined in
the class. This means the inheriting classes must provide those constants, methods and properties, but there is no way
to enforce this.

This may also lead to dead code : when the abstract class is removed, the host class have unused properties and
methods.

<?php
// autonomous abstract class : all it needs is within the class
abstract class c {

private Sp = 0;

function foo () {

return ++Sthis->p;

}
}
// dependant abstract class : the inheriting classes needs to provide some properties,,

—or methods
abstract class c2 {
function foo () {
// $p must be provided by the extending class
return ++Sthis->p;

class c3 extends c2 {
private $p = 0;
}

?>

See also Traits/DependantTrait.

Suggestions

* Make the class only use its own resources
* Split the class in autonomous classes

* Add local property definitions to make the class independent

Specs

Short name | Classes/DependantAbstractClass
Rulesets Analyze, ClassReview

Exakt since | 1.8.6

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2. List of Rules 271

https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

13.2.74 Different Argument Counts

Two methods with the same name shall have the same number of compulsory argument. PHP accepts
different number of arguments between two methods, if the extra arguments have default values. Basically,
they shall be called interchangeably with the same number of arguments.

The number of compulsory arguments is often mistaken for the same number of arguments. When this is the case, it
leads to confusion between the two signatures. It will also create more difficulties when refactoring the signature.

While this code is legit, it is recommended to check if the two signatures could be synchronized, and reduce future
surprises.

<?php

class x {
function foo(Sa) {}

}

class y extends x {
// This method is compatible with the above, its signature is different
function foo(Sa, Sb = 1) {}

7>

Suggestions

* Extract the extra arguments into other methods
* Remove the extra arguments

* Add the extra arguments to all the signatures

Specs

Short name | Classes/DifferentArgumentCounts
Rulesets Analyze, ClassReview

Exakt since | 2.1.6

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.75 No Direct Call To Magic Method

PHP features magic methods, which are methods related to operators.

Magic methods, such as __get(), related to =, or __clone(), related to clone, are supposed to be used in an object
environment, and not with direct call.

It is recommended to use the magic method with its intended usage, and not to call it directly. For example, typecast
to string instead of calling the __toString() method.

272 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

<?php
// Write
print Sx->a;
// instead of
print $x->_ get('a');

class Foo {
private Sb = secret;

public function __ toString() {
return strtoupper (Sthis—>b);
}
}

Sbar = new Foo();
echo (string) S$bar;

2>

Accessing those methods in a static way is also discouraged.

See also Magic Methods and Magical PHP: ‘__call <https://www.garfieldtech.com/blog/magical-php-call>‘_.

Specs

Short name | Classes/DirectCallToMagicMethod
Rulesets Analyze, CI-checks

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)

Precision High

13.2.76 Disconnected Classes
One class is extending the other, but they do not use any features from one another. Basically, those two
classes are using extends, but they are completely independent and may be separated.

When using the ‘extends’ keyword, the newly created classes are now acting together and making one. This should be
visible in calls from one class to the other, or simply by property usage : they can’t live without each other.

On the other hand, two completely independent classes that are merged, although they should be kept separated.

<?php

class A {
private S$Spa = 1;

function fooA () {
Sthis->pa = 2;
}
}

// class B and Class A are totally independent

(continues on next page)

13.2. List of Rules 273

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.garfieldtech.com/blog/magical-php-call

Exakat Documentation, Release 1

(continued from previous page)

class B extends A {
private $Spb = 1;

function fooB () {
Sthis->pb = 2;

// class C makes use of class A : it 1s dependent on the parent class
class C extends A {
private S$Spc = 1;

function fooB() {
Sthis->pc = 2 + $this->fooA();

Suggestions

¢ Remove the extension

* Make actual usage of the classes, at least from one of them

Specs

Short name Classes/DisconnectedClasses
Rulesets ClassReview

Exakt since 1.8.9

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples WordPress

13.2.77 Don’t Send $this In Constructor

Don’t use $this as an argument while in the __construct(). Until the constructor is finished, the object
is not finished, and may be in an unstable state. Providing it to another code may lead to error.

This is true when the receiving structure puts the incoming object immediately to work, and don’t store it for later use.

<?php

// Sthis is only provided when Foo 1is constructed
class Foo {

static public function build(Sdata) {

(continues on next page)

274 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

(continued from previous page)

Sfoo = new Foo (Sdata);
// Can't build in one call. Must make it separate.
Sfoo->finalize () ;

private function __ construct (Sdata) {
// Sthis is provided too early
Sthis->data = S$data;

function finalize () {
Sthis—->bar = new Bar ($Sthis);

// Sthis is provided too early, leading to error in Bar
class Foo2 extends Foo {

private Sbar = null;

private Sdata = array();

function __ construct ($Sdata) {
// Sthis is provided too early
Sthis->bar = new Bar (Sthis);
Sthis—->data = S$data;

class Bar {
function _ construct (Foo $foo) {
// the cache is now initialized with a wrong
Sthis->cache = $foo->getIt();

2>

See also Don’t pass this out of a constructor.

Suggestions

* Finish the constructor first, then call an external object.

* Sending $this should be made accessible in a separate method, so external objects may call it.

* Sending the current may be the responsibility of the method creating the object.

13.2. List of Rules

275

http://www.javapractices.com/topic/TopicAction.do?Id=252

Exakat Documentation, Release 1

Specs

Short name | Classes/DontSendThisInConstructor
Rulesets Analyze

Exakt since | 1.0.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples Woocommerce, Contao

13.2.78 Don’t Unset Properties

Avoid unsetting properties. They would go undefined, and raise more warnings.

When getting rid of a property, assign it to null. This keeps the property in the object, yet allows existence check
without errors.

<?php

class Foo {

public Sa = 1;
}
Sa = new Foo();
var_dump ((array) S$a) ;

// la propriété est reportée, et null
// ['a' => null]

unset (Sa->a) ;

var_dump ((array) S$a) ;
//Empty []

// Check 1if a property exists
var_dump (Sa->b === null);

// Same result as above, but with a warning
var_dump (Sa->c === null);

2>

This analysis works on properties and static properties. It also reports magic properties being unset.
Thanks for Benoit Burnichon for the original idea.
Suggestions

» Never unset properties : set it to null or its default value instead

* Make the property an array, and set/unset its index

276 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://twitter.com/BenoitBurnichon

Exakat Documentation, Release 1

Specs

Short name | Classes/DontUnsetProperties

Rulesets Analyze, CI-checks, Top 10, php-cs-fixable
Exakt since | 1.2.3

Php Version | All

Severity Major

Time To Fix | Slow (1 hour)

Precision High

Examples Vanilla, Typo3

13.2.79 Dynamic Classes

Dynamic calls of classes.

<?php

class x {
static function staticMethod () {}

“ o — LI
ss = 'x';

s::staticMethod () ;

Specs

Short name | Classes/DynamicClass
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.80 Dynamic Class Constant

Dynamic calls to class constants.

Constant may be dynamically called with the constant() function.

<?php
// Dynamic access to 'E_ALL'
echo constant ('E_ALL'");

interface i {
const = 1;

}

(continues on next page)

13.2. List of Rules 277

https://www.php.net/constant

Exakat Documentation, Release 1

(continued from previous page)

// Dynamic access to 'E_ALL'
echo constant ('i::MY_CONSTANT'");

?>

Specs

Short name | Classes/DynamicConstantCall
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.81 Dynamic Methodcall

Dynamic calls to class methods.

<?php

class x {
static public function foo() {}
public function bar() {}

}

Sstaticmethod = 'foo';

// dynamic static method call to x::foo()
x::$staticmethod() ;

$method = 'bar';

// dynamic method call to bar()

Sobject = new x();
Sobject->$method () ;

7>
Specs
Short name | Classes/DynamicMethodCall
Rulesets CE
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High
278 Chapter 13. Rules

Exakat Documentation, Release 1

13.2.82 Dynamic New

Dynamic instantiation of classes.

<?php
Sobject = new Sc
?>

lassname ()

Specs

Short name | Classes/DynamicNew
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.83 Dynamic Property

Dynamic access to class property.

<?php

class x {
static public S$foo = 1;
public Sbar = 2;

}

Sstaticproperty = 'foo';

// dynamic static property call to x::5foo
echo x::S5{Sstaticproperty};

Sproperty = 'bar';

// dynamic property call to bar()

Sobject = new x();

$ c erty = 4;

2>

Specs

Short name | Classes/DynamicPropertyCall
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2. List of Rules 279

Exakat Documentation, Release 1

13.2.84 Dynamic Self Calls

A class that calls itself dynamically. This may be property or methods.

Calling itself dynamically happens when a class is configured to call various properties (container) or methods.

<?php

class x {
function foo () {
$f = 'goo';
return Sthis->Sf();

}

function goo () {
return rand (1, 10);
}
}

?>

This rule is mostly useful internally, to side some special situations.

Specs

Short name | Classes/DynamicSelfCalls
Rulesets none

Exakt since | 2.1.1

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.85 Empty Classes

Classes that do no define anything at all. This is probably dead code.

Classes that are directly derived from an exception are omitted.

<?php

//Empty class
class foo extends bar {}

//Not an empty class
class foo2 extends bar {
const = 2;

}

//Not an empty class, as derived from Exception
class barException extends \Exception {}

2>

280 Chapter 13. Rules

Exakat Documentation, Release 1

Suggestions

* Remove an empty class :it is probably dead code.

¢ Add some code to the class to make it concrete.

Specs

Short name | Classes/EmptyClass
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

Examples WordPress

13.2.86 Class Should Be Final By Ocramius

‘Make your classes always final, if they implement an interface, and no other public methods are defined’.

When a class should be final, as explained by Ocramius (Marco Pivetta).

<?php

interface il {
function i1 () ;

}

// Class should final, as its public methods are in an interface
class finalClass implements il {

// public interface

function i1 () {}

// private method
private function al () {}

}

?>

See also When to declare classes final.

Specs

Short name | Classes/FinalByOcramius
Rulesets Analyze

Exakt since | 0.9.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2. List of Rules 281

http://ocramius.github.io/blog/when-to-declare-classes-final/

Exakat Documentation, Release 1

13.2.87 Final Class Usage

List of all final classes being used.

final may be applied to classes and methods.

<?php
class BaseClass {
public function test () {
echo 'BaseClass::test () called'.PHP_EOL;

final public function moreTesting () {
echo 'BaseClass::moreTesting() called'.PHP_EOL;

class ChildClass extends BaseClass {
public function moreTesting() {
echo 'ChildClass::moreTesting() called'.PHP_EOL;

}
// Results 1in Fatal error: Cannot override final method BaseClass
2>

::moreTesting ()

See also Final Keyword.

Specs

Short name | Classes/Finalclass

Rulesets ClassReview, LintButWontExec
Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.88 Final Methods Usage

List of all final methods being used.

final may be applied to classes and methods.

<?php
class BaseClass {
public function test () {
echo 'BaseClass::test () called'.PHP_EOL;

final public function moreTesting () {
echo 'BaseClass::moreTesting() called'.PHP_EOL;

(continues on next page)

282

Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.final.php

Exakat Documentation, Release 1

(continued from previous page)

class ChildClass extends BaseClass {
public function moreTesting() {
echo 'ChildClass::moreTesting() called'.PHP_EOL;

}

// Results in Fatal error: Cannot override final method BaseClass::moreTesting/()

?>

See also Final Keyword.

Specs

Short name | Classes/Finalmethod

Rulesets ClassReview, LintButWontExec
Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.89 Final Private Methods

PHP’s private methods cannot be overwritten, as they are dedicated to the current class. That way, the
final keyword is useless.

PHP 8.0 warns when it finds such a method.

<?php

class foo {
// Final and private both prevent child classes to overwrite the method

final private function bar() {}
// Final and protected (or public) keep this method available, but not_

—overwritable
final protected function bar() {}

?>

See also Final Keyword.

Suggestions

* Remove the final keyword

* Relax visibility

13.2. List of Rules 283

https://www.php.net/manual/en/language.oop5.final.php
https://www.php.net/manual/en/language.oop5.final.php

Exakat Documentation, Release 1

Specs

Short name Classes/FinalPrivate

Rulesets CE, ClassReview, CompatibilityPHPS80
Exakt since | 2.2.0

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision Very high

13.2.90 Fossilized Method

A method is fossilized when it is overwritten so often that changing a default value, a return type or an
argument type is getting difficult.

This happens when a class is extended. When a method is overwritten once, it may be easy to update the signature in
two places. The more methods are overwriting a parent method, the more difficult it is to update it.

This analysis counts the number of times a method is overwritten, and report any method that is ovrewritten more than
6 times. This threshold may be configured.

<?php

class x1 {
// fool () 1is never overwritten. It is easy to update.
function fool () {}

// foo7() 1is overwritten seven times. It is hard to update.
function foo7() {}

}

// classes x2 to x7, all overwrite foo7();
// Only x2 is presente here.
class x2 extends x1 {

function foo7() {}
}
2>
Name De- Type | Description
fault
fossilization- 6 inte- Minimal number of overwriting methods to consider a method difficult
Threshold ger to update.

284 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

Short name | Classes/FossilizedMethod
Rulesets ClassReview, Typechecks
Exakt since | 2.0.6

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.91 Class Has Fluent Interface

Mark a class as such when it contains at least one fluent method. A fluent method is a method that returns
$this, for chaining.

<?php

class foo {

private Scount = 0;
function a () {
++Sthis—->count;
return Sthis;
}
function b () {
Sthis->count += 2;
return S$Sthis;
}
function c () {
return Sthis->count;
}
}
Shbar = new foo();
print Sbar->a()
—>b ()
—>c();

// display 3 (1 + 2).

?>

See also The basics of Fluent interfaces in PHP and Fluent interface are evil

13.2. List of Rules 285

https://www.php.net/manual/en/language.oop5.basic.php
https://tournasdimitrios1.wordpress.com/2011/04/11/the-basics-of-fluent-interfaces-in-php/
https://ocramius.github.io/blog/fluent-interfaces-are-evil/

Exakat Documentation, Release 1

Specs

Short name Classes/HasFluentInterface
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.92 Has Magic Property

The class has defined one of the magic methods.

The magic methods are :

__call(), __callStatic(), __get(), __set(), __isset(), __unset(), __sleep(), __wakeup(),

__toString(), __invoke(), __set_state(), __clone() and __debugInfo().

__construct() and __destruct() are omitted here.

<?php

class WithMagic {
// some more methods,

public function ___get ()

// doSomething () ;
}

?>

{

const or properties

See also Property overloading.

Specs
Short name | Classes/HasMagicProperty
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.93 Hidden Nullable

Argument with default value of null are nullable. Even when the null typehint (PHP 8.0), or the ?
operator are not used, setting the default value to null is allowed, and makes the argument nullable.

This doesn’t happen with properties : they must be defined with the nullable type to accept a “‘null‘‘value as default
value.

This doesn’t happen with constant, which can’t be typehinted.

286 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/manual/en/language.oop5.overloading.php#language.oop5.overloading.members

Exakat Documentation, Release 1

<?php

// explicit nullable parameter S$s
function bar (?string $s = null) {

// implicit nullable parameter S$s
function foo(string $s = null) {
echo $s ?? 'NULL-value';

}
// both display NULL-value
foo();

foo (null);

2>

See also Nullable types and Type declaration.

Suggestions

* Change the default value to a compatible literal : for example, string $s = "
* Add the explicit ? nullable operator, or ‘‘null*‘with PHP 8.0

¢ Remove the default value

Specs

Short name | Classes/HiddenNullable
Rulesets Analyze, ClassReview
Exakt since | 2.1.0

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

13.2.94 Identical Methods
When the parent class and the child class have the same method, the child might drop it. This reduces
code duplication.

Duplicate code in methods is often the results of code evolution, where a method was copied with the hierarchy, but
the original wasn’t removed.

This doesn’t apply to private methods, which are reserved for one class.

<?php

class a {
public function foo() {
return rand (0, 100);

}

(continues on next page)

13.2. List of Rules 287

https://wiki.php.net/rfc/nullable_types
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

class b extends a {
public function foo() {
return rand (0, 100);

}

?>

Suggestions

* Drop the method from the parent class, in particular if only one child uses the method.
* Drop the method from the child class, in particular if there are several children class
 Use an abstract method, and make sure every child has its own implementation

* Modify one of the methods so they are different

Specs

Short name | Classes/IdenticalMethods
Rulesets none

Exakt since 1.8.2

Php Version | All

Severity Minor
Time To Fix | Quick (30 mins)
Precision Medium

13.2.95 Immutable Signature
Overwrites makes refactoring a method signature difficult. PHP enforces compatible signature, by check-
ing if arguments have the same type, reference and default values.

In PHP 7.3, typehint had to be the same, or dropped. In PHP 7.4, typehint may be contravariant (arguments), or
covariant (returntype).

This analysis may be configured with maxOverwrite. By default, a minimum of 8 overwritten methods is consid-
ered difficult to update.

<?php

// Changing any of the four foo() method signature will trigger a PHP warning
class a {
function foo ($Sa) {}

}

class abl extends a {
// four foo() methods have to be refactored at the same time!
function foo ($Sabl) {}

(continues on next page)

288 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

class ab2 extends a {
function foo($ab2) {}

}
class ab3 extends abl {
function foo (Sabcl) {1}

}

?>

When refactoring a method, all the related methodcall may have to be updated too. Adding a type, a default value, or
a new argument with default value won’t affect the calls, but only the definitions. Otherwise, calls will also have to be
updated.

IDE may help with signature refactoring, such as Refactoring code.

See also Covariance and contravariance (computer science), extends.

Name De- Type | Description
fault
maxOver- 8 inte- | Minimal number of method overwrite to consider that any refactor on the method
write ger signature is now hard.
Specs

Short name | Classes/ImmutableSignature
Rulesets CE

Exakt since | 1.9.9

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.96 Implemented Methods Are Public

Class methods that are defined in an interface must be public. They cannot be either private, nor protected.

This error is not reported by lint, but is reported at execution time.

<?php

interface i {
function foo();

}

class X {
// This method is defined in the interface : it must be public
protected function foo () {}

// other methods may be private
private function bar () {}

(continues on next page)

13.2. List of Rules 289

https://www.jetbrains.com/help/phpstorm/refactoring-source-code.html
https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.extends

Exakat Documentation, Release 1

(continued from previous page)

?>

See also Interfaces and Interfaces - the next level of abstraction.

Suggestions

* Make the implemented method public

Specs

Short name | Classes/ImplementedMethodsArePublic
Rulesets Analyze

Exakt since | 0.11.5

Php Version | All

Severity Major
Time To Fix | Instant (5 mins)
Precision High

13.2.97 Implement Is For Interface

With class heritage, implements should be used for interfaces, and extends with classes.

PHP defers the implements check until execution : the code in example does lint, but won,t run.

<?php

class x {
function foo () {}

}

interface y {
function foo();

}

// Use implements with an interface
class z implements y {}

// Implements is for an interface, not a class
class z implements x {}

?>

Suggestions

 Create an interface from the class, and use it with the implements keyword

290 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.interfaces.php
https://phpenthusiast.com/object-oriented-php-tutorials/interfaces

Exakat Documentation, Release 1

Specs
Short name | Classes/ImplementIsForInterface
Rulesets Analyze
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.98 Incompatible Signature Methods

Methods should have the same signature when being overwritten.

The same signatures means the children class must have : + the same name + the same visibility or less restrictive +
the same typehint or removed + the same default value or removed + a reference like its parent

This problem emits a fatal error, for abstract methods, or a warning error, for normal methods. Yet, it is difficult to lint,
because classes are often stored in different files. As such, PHP do lint each file independently, as unknown parent
classes are not checked if not present. Yet, when executing the code, PHP lint the actual code and may encounter a
fatal error.

<?php

class a {
public function foo($a = 1) {}
}

class ab extends a {
// foo 1s overloaded and now includes a default value for Sa
public function foo($a) {}

}

7>

See also Object Inheritance.

Suggestions

* Make signatures compatible again

Specs

Short name | Classes/IncompatibleSignature
Rulesets Analyze, LintButWontExec
Exakt since | 1.3.3

Php Version | 7.4-

Severity Critical

Time To Fix | Quick (30 mins)
Precision High

Examples SuiteCrm

13.2. List of Rules 291

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.inheritance.php

Exakat Documentation, Release 1

13.2.99 Incompatible Signature Methods With Covariance

Methods should have the compatible signature when being overwritten.

The same signatures means the children class must have : + the same name + the same visibility or less restrictive +
the same contravariant typehint or removed + the same covariant return typehint or removed + the same default value
or removed + a reference like its parent

This problem emits a fatal error, for abstract methods, or a warning error, for normal methods. Yet, it is difficult to lint,
because classes are often stored in different files. As such, PHP do lint each file independently, as unknown parent
classes are not checked if not present. Yet, when executing the code, PHP lint the actual code and may encounter a
fatal error.

<?php

class a {
public function foo($Sa = 1) {}

}

class ab extends a {
// foo 1is overloaded and now includes a default value for Sa
public function foo ($a) {}

}

?>

See also Object Inheritance, PHP RFC: Covariant Returns and Contravariant Parameters and /ncompatible Signa-
ture Methods.

Suggestions

* Make signatures compatible again

Specs

Short name | Classes/IncompatibleSignature74
Rulesets Analyze

Exakt since | 1.3.3

Php Version | 7.4+

Severity Critical

Time To Fix | Quick (30 mins)
Precision High

Examples SuiteCrm

13.2.100 Instantiating Abstract Class

PHP cannot instantiate an abstract class.

The classes are actually abstract classes, and should be derived into a concrete class to be instantiated.

<?php

abstract class Foo {

(continues on next page)

292 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.inheritance.php
https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters

Exakat Documentation, Release 1

(continued from previous page)

protected S$a;

class Bar extends Foo {
protected Sb;

// instantiating a concrete class.
new Bar();

// instantiating an abstract class.

// In real life, this 1is not possible also because the definition and the,
—instantiation are in the same file

new Foo();

7>

See also Class Abstraction.

Specs

Short name | Classes/InstantiatingAbstractClass
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Major
Time To Fix | Quick (30 mins)
Precision High

13.2.101 Insufficient Property Typehint

The typehint used for a class property doesn’t cover all it usage.

The typehint is insufficient when a undefined method is called, or if members are access while the typehint is an
interface.

<?php

class A {
function al() {}

// PHP 7.4 and more recent
class B {
private A $Sa = null;

function b2 () {
// this method is available in A
Sthis->a->al();
// this method is NOT available in A
Sthis->a->a2();

(continues on next page)

13.2. List of Rules 293

https://www.php.net/abstract

Exakat Documentation, Release 1

(continued from previous page)

// Supported by all PHP versions
class C {
private Sa = null;

function __ construct (A Sa) {
Sthis->a = $Sa;

}

function b2 () {

// this method is available in A
Sthis->a->al();

// this method is NOT available in A
Sthis->a->a2();

2>

This analysis relies on typehinted properties, as introduced in PHP 7.4. It also relies on typehinted assignations at
construct time : the typehint of the assigned argument will be used as the property typehint. Getters and setters are not
considered here.

Suggestions

» Change the typehint to match the actual usage of the object in the class.

Specs

Short name | Classes/InsufficientProperty Typehint
Rulesets ClassReview

Exakt since | 2.0.2

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.102 Integer As Property

It is backward incompatible to use integers are property names. This feature was introduced in PHP 7.2.

If the code must be compatible with previous versions, avoid casting arrays to object.

<?php

// array to object
Sarr = [0 => 1];

Sobj = (object) Sarr;
var_dump (
C>7j’

j->{'0'}, // PHP 7.2+ accessible

(continues on next page)

294 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

Sobj->{0} // PHP 7.2+ accessible

$obj->{'b'}, // always been accessible
)i

?>

See also PHP RFC: Convert numeric keys in object/array casts.

Specs

Short Classes/Integer AsProperty
name
Rulesets | CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHPS5, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71

Exakt 1.04
since

Php Ver- | 7.2+
sion

Severity | Major

Time To | Slow (1 hour)
Fix
Precision | High

13.2.103 Is A PHP Magic Property

Mark properties usage when they are actually a magic call.

<?php

class magicProperty {
public s$b;

function __get (Sname) {
// do something with the value

}
function foo () {
Sthis->a;
Sthis->b;
}

7>

See also Magic Methods.

13.2. List of Rules 295

https://wiki.php.net/rfc/convert_numeric_keys_in_object_array_casts
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

Specs
Short name | Classes/IsaMagicProperty
Rulesets none
Exakt since | 0.12.17
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High
13.2.104 Is An Extension Class
Those classes belongs to a PHP Extensions.
<?php
// This 1is a native PHP class
$o = new Stdclass();
// This 1s not a native PHP class
So = new Elephpant();
2>
Specs
Short name Classes/IsExtClass
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.105 Is Interface Method

Mark a method as part of an interface that the current class implements.

<?php

interface i {
function i20();
}

class x implements i {
// This 1s an interface method
function 120 () {}

// This 1s not an interface method
function x20() {}

(continues on next page)

296

Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

2>
Specs
Short name Classes/IsInterfaceMethod
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.106 Is Not Class Family

Mark a static method call as inside the family of classes. Children are not considered here.

<?php

class a {
function familyMethod () {}

}

classs b {
function foo() {
self::familyMethod () ;
b::notAFamilyMethod() ;
—family

}

// This is a call to a family method
// This 1is a call to a method of a class outside the_

2>
Specs
Short name | Classes/IsNotFamily
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.107 Is Upper Family

Does the static call is made within the current hierarchy of class, or, is it made in the class, in the children

or outside.

13.2. List of Rules

297

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

This applies to static methodcalls, property accesses and class constants.

<?php

class AAA { function inAAA() {} } // upper family : grand-parent
class AA extends AAA { function inAA() {} } // upper family : parent

class A extends AA { function inA() {r 1} // current family

class B extends A { function inB () {} } // lower family

class C { function inC() {} } // outside family

>

Specs

Short name | Classes/IsUpperFamily
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.108 Locally Unused Property

Those properties are defined in a class, and this class doesn’t have any method that makes use of them.

While this is syntactically correct, it is unusual that defined resources are used in a child class. It may be worth moving
the definition to another class, or to move accessing methods to the class.

<?php

class foo {
public Sunused, S$Sused;// property Sunused is never used in this class

function bar () {
Sthis->used++; // property Sused is used in this method

class foofoo extends foo {
function bar () {
Sthis->unused++; // property $unused is used in this method, but defined in_
—the parent class

}

?>

Suggestions

* Move the property definition to the child classes

* Move some of the child method, using the property, to the parent class

298 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name | Classes/LocallyUnusedProperty
Rulesets Dead code

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.109 Locally Used Property

Properties that are used in the class where they are defined.

<?php

class foo {

public Sunused, Sused;// property Sunused is never used in this class

function bar () {
Sthis->used++; // property Sused is used in this method

}

Sfoo = new Foo();

Sfoo->unused = 'here'; // property Sunused is used outside the class definition
?>

Specs

Short name | Classes/LocallyUsedProperty
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.110 Magic Methods

List of PHP magic methods being used. The magic methods are

_ call(), __callStatic(), __ get(), __set(), _ isset(), _ unset(), _ sleep(), _ wakeup(), _ toString(), __invoke(),
__set_state(), __clone() and __debuglnfo().

__construct and __destruct are omitted here, as they are routinely used to create and destroy objects.

<?php

class foo{

(continues on next page)

13.2. List of Rules 299

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

// PHP Magic method, called when cloning an object.

function _ clone () {}

}

?>

See also Magic Method.

Specs

Short name | Classes/MagicMethod
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.111 Magic Properties

List of magic properties used in the code

Suggestions

Specs
Short name | Classes/MagicProperties
Rulesets none
Exakt since | 1.9.5
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.112 Assign Default To Properties

Properties may be assigned default values at declaration time. Such values may be later modified, if

needed.

<?php

class foo {

private Spropert = 1;
private SpropertyWithoutDefault;
private S$propertyThatCantHaveDefault

’

(continues on next page)

300

Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

public function __construct () {
// Skip this extra line, and give the default value above
Sthis->propertyWithoutDefault = 1;

// Static expressions are available to set up simple computation at_
—definition time.
Sthis—->propertyWithoutDefault = OtherClass::CONSTANT + 1;

// Arrays, just like scalars, may be set at definition time
Sthis->propertyWithoutDefault = [1,2,3];

// Objects or resources can't be made default. That is OK.

Sthis->propertyThatCantHaveDefault = fopen('/path/to/file.txt'");
Sthis->propertyThatCantHaveDefault = new Fileinfo();

2>

Default values will save some instructions in the constructor, and makes the value obvious in the code.

Suggestions

* Add a default value whenever possible. This is easy for scalars, and array()

Specs

Short name | Classes/MakeDefault
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

ClearPHP use-properties-default-values
Examples LiveZilla, phpMyAdmin

13.2.113 Make Global A Property

Calling global (or $§GLOBALS) in methods is slower and less testable than setting the global to a property,
and using this property.

Using properties is slightly faster than calling global or SGLOBALS, though the gain is not important.

Setting the property in the constructor (or in a factory), makes the class easier to test, as there is now a single point of
configuration.

<?php

// Wrong way
class fooBad ({

(continues on next page)

13.2. List of Rules 301

https://github.com/dseguy/clearPHP/tree/master/rules/use-properties-default-values.md

Exakat Documentation, Release 1

(continued from previous page)

function x () {
global sa;
Sa->do () ;

// Or SGLOBALS['a']->do();

}

class fooGood ({

private S$bar = null;

function __ _construct () {
global Sbar;
Sthis->bar = Sbar;

// Even better, do this via arguments

}

function x () {
Sthis—>a->do () ;

}

7>

Suggestions

* Avoid using global variables, and use properties instead

* Remove the usage of these global variables

Specs

Short name | Classes/MakeGlobalAProperty
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.114 Make Magic Concrete

Speed up execution by replacing magic calls by concrete properties.

Magic properties are managed dynamically, with __get” “and " __set. They replace property access by a
methodcall, and they are much slower than the first.

When a property name is getting used more often, it is worth creating a concrete property, and skip the method call.
The threshold for ‘magicMemberUsage’ is 1, by default.

<?php

class x {

(continues on next page)

302 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

private Svalues = array('a' => 1,
'b'o=>2);

function get (Sname) {
return Sthis->values[$Sname] 2?2 '';

Sx = new x();

// Access to 'a' is repeated in the code, at least 'magicMemberUsage' time (cf_,
—configuration below)

echo $x—>a;

?>

See also Performances/MemoizeMagicCall.

Suggestions

* Make frequently used properties concrete; keep the highly dynamic as magic

Name De- Type | Description
fault
magicMem- 1 inte- | Minimal number of magic member usage across the code, to trigger a con-
berUsage ger crete property.
Specs

Short name | Classes/MakeMagicConcrete
Rulesets Performances

Exakt since | 1.8.3

Php Version | All

Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.115 Method Is Overwritten

This marks an method that is overwritten in a child class.

<?php

class A {
function intactMethodA () {} // Not overwritten in any children
function overwrittenMethodInAA() {} // overwritten in AA

class AA extends A {
function intactMethodAA () {} // Not overwritten, because no extends
function overwrittenMethodInAA() {} // Not overwritten, because no extends

(continues on next page)

13.2. List of Rules 303

Exakat Documentation, Release 1

(continued from previous page)

2>
Specs
Short name Classes/MethodIsOverwritten
Rulesets none
Exakt since 0.10.9
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.116 Method Signature Must Be Compatible

Make sure methods signature are compatible.

PHP generates the infamous Fatal error at execution : Declaration of FooParent\:\:Bar () must be
compatible with FooChildren\:\:Bar ()

<?php

class x {
function xa () {}

}

class xxx extends xx {
function xa(Sa) {}

}

?>

Suggestions

* Fix the child class method() signature.

* Fix the parent class method() signature, after checking that it won’t affect the other children.

Specs

Short name | Classes/MethodSignatureMustBeCompatible
Rulesets Analyze, LintButWontExec

Exakt since | 1.2.9

Php Version | All

Severity Critical
Time To Fix | Quick (30 mins)
Precision High

304 Chapter 13. Rules

Exakat Documentation, Release 1

13.2.117 Method Used Below

Mark methods that are used in children classes.

<?php

class foo {
// This method is used in children
protected function protectedMethod() {}

// This method is not used in children
protected function localProtectedMethod() {}

private function foobar () {
// protectedMethod is used here, but defined in parent
Sthis—->localProtectedMethod() ;

}
class foofoo extends foo {
private function bar () {

// protectedMethod is used here, but defined in parent
Sthis->protectedMethod() ;

}

?>

This doesn’t mark the current class, nor the (grand-)‘parent <https://www.php.net/manual/en/language.oop5.
paamayim-nekudotayim.php>‘_ ones.

Specs

Short name | Classes/MethodUsedBelow
Rulesets none

Exakt since | 0.12.11

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.118 Mismatch Properties Typehints

Properties must match within the same family.

When a property is declared both in a parent class, and a child class, they must have the same type. The same type
includes a possible null value.

This doesn’t apply to private properties, which are only visible locally.

<?php

// property Sp is declared as an object of type a
class x {

(continues on next page)

13.2. List of Rules 305

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

protected A Sp;

// property Sp is declared again, this time without a type
class a extends x {

protected Sp;
}

?>

This code will lint, but not execute.

Suggestions

* Remove some of the property declarations, and only keep it in the highest ranking parent
* Match the typehints of the property declarations
* Make the properties private

* Remove the child class (or the parent class)

Specs

Short name | Classes/MismatchProperties

Rulesets Analyze, ClassReview, LintButWontExec
Exakt since | 2.1.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.119 Missing Abstract Method

Abstract methods must have a non-abstract version for the class to be complete. A class that is missing
one abstract definition cannot be instantiated.

<?php

// This 1s a valid definition
class b extends a {
function foo () {}
function bar () {}

// This compiles, but will emit a fatal error if instantiated
class c extends a {
function bar () {}

// This illustration lint but doesn't run.
// moving this class at the beginning of the code will make lint fail
abstract class a {

(continues on next page)

306 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

abstract function foo() ;

}

?>

See also Classes Abstraction.

Suggestions

* Implement the missing methods
* Remove the partially implemented class

e Mark the partially implemented class abstract

Specs

Short name | Classes/MissingAbstractMethod
Rulesets Analyze, ClassReview

Exakt since | 2.1.0

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.120 Multiple Classes In One File

It is regarded as a bad practice to store several classes in the same file. This is usually done to make life
of __autoload() easier.

It is often unexpected to find class foo in the bar . php file. This is also the case for interfaces and traits.

<?php

// three classes in the same file
class foo {}

class bar {}

class foobar({}

2>

One good reason to have multiple classes in one file is to reduce include time by providing everything into one nice
include.

See also Is it a bad practice to have multiple classes in the same file?.

Suggestions

* Split the file into smaller files, one for each class

13.2. List of Rules 307

https://www.php.net/abstract
https://stackoverflow.com/questions/360643/is-it-a-bad-practice-to-have-multiple-classes-in-the-same-file

Exakat Documentation, Release 1

Specs
Short name | Classes/MultipleClassesInFile
Rulesets CE
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.121 Multiple Class Declarations

It is possible to declare several times the same class in the code. PHP will not mention it until execution

time, since declarations may be conditional.

<?php
Sa = 1;

// Conditional declaration
if (Sa ==) |
class foo {
function method ()
}
} else {
class foo {
function method () { echo
}
}

(new foo())->method();
2>

{ echo 'class 1';}

'class 2';}

It is recommended to avoid declaring several times the same class in the code. The best practice is to separate them
with namespaces, they are for here for that purpose. In case those two classes are to be used interchangeably, the best

is to use an abstract class or an interface.

Suggestions

* Store classes with different names in different namespaces

» Change the name of the classes and give them a common interface to allow from common behavior

Specs
Short name | Classes/MultipleDeclarations
Rulesets Analyze, Cl-checks
Exakt since | 0.8.4
Php Version | All
Severity Major
Time To Fix | Quick (30 mins)
Precision High
308 Chapter 13. Rules

Exakat Documentation, Release 1

13.2.122 Multiple Property Declaration On One Line

Multiple properties are defined on the same line. They could be defined independantly, on separate ex-
pressions.

Keeping properties separate helps documenting and refactoring them independantly.

<?php
// multiple definition on one expression
class point {

private $x, Sy, $z;

// more code

}
// one line, one definition
class point2 {

private S$x;

private Sy;

private S$z;

// more code

?>

Suggestions

* Split the definitions to one by line

Specs

Short name | Classes/MultiplePropertyDeclarationOnOneLine
Rulesets none

Exakt since | 2.2.2

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision Very high

13.2.123 Multiple Identical Trait Or Interface

There is no need to use the same trait, or implements the same interface more than once.

Up to PHP 7.1 (at least), this doesn’t raise any warning. Traits are only imported once, and interfaces may be imple-
mented as many times as wanted.

<?php

(continues on next page)

13.2. List of Rules 309

Exakat Documentation, Release 1

(continued from previous page)

class foo {
use t3,t3,t3;
}

class bar implements i,i,1i {

}

?>

Suggestions

* Remove the duplicate trait or interfaces

Specs

Short name | Classes/MultipleTraitOrInterface
Rulesets Analyze, Cl-checks

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

13.2.124 Classes Mutually Extending Each Other

Those classes are extending each other, creating an extension loop. PHP will yield a fatal error at running
time, even if it is compiling the code.

<?php

// This code is lintable but won't run
class Foo extends Bar { }
class Bar extends Foo { }

// The loop may be quite large
class Foo extends Bar { }
class Bar extends Bar2 { }
class Bar2 extends Foo { }

2>

310 Chapter 13. Rules

Exakat Documentation, Release 1

Specs

Short name Classes/MutualExtension
Rulesets ClassReview, LintButWontExec
Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)

Precision High

13.2.125 New On Functioncall Or Identifier

Object instantiation with new works with or without arguments. Both are valid in PHP.

The analyzed code has less than 10% of one of the two forms : for consistency reasons, it is recommended to make
them all the same.

<?php
Sa = new stdClass();

// Parenthesis are used when arguments are compulsory
smysgl = new MySQLI ($host, Suser, Spass);

// Parenthesis are omitted when no arguments are available
// That also makes the instantiation look different

Sb = new stdClass;

?>

Specs

Short name | Classes/NewOnFunctioncallOrldentifier
Rulesets none

Exakt since | 0.9.8

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.126 No Magic Method With Array

Magic method __set () doesn’t work for array syntax.

When overloading properties, they can only be used for scalar values, excluding arrays. Under the hood, PHP uses
__get () toreach for the name of the property, and doesn’t recognize the following index as an array. It yields an
error : Indirect modification of overloaded property.

<?php

(continues on next page)

13.2. List of Rules 311

Exakat Documentation, Release 1

(continued from previous page)

class c {
private Sa;
private $o = array();

function ___get ($Sname) {
return Sthis->o[Sname];
}
function foo () {
// property b doesn't exists

Sthis->b['a']l] = 3;

print_r(Sthis);

}
// This method has no impact on the issue
function _ set ($Sname, Svalue) {
this->o[$name] = S$value;
}
}
= new c();

It is possible to use the array syntax with a magic property : by making the __get returns an array, the syntax will

actually extract the expected item in the array.

This is not reported by linting.

In this analysis, only properties that are found to be magic are reported. For example, using the b property outside the

class scope is not reported, as it would yield too many false-positives.
See also Overload.
Suggestions

» Use a distinct method to append a new value to that property

* Assign the whole array, and not just one of its elements

Specs
Short name | Classes/NoMagicWithArray
Rulesets Analyze, CI-checks, LintButWontExec
Exakt since | 0.12.4
Php Version | All
Severity Major
Time To Fix | Slow (1 hour)
Precision Medium
312 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.overloading.php#object.get

Exakat Documentation, Release 1

13.2.127 Non Nullable Getters

A getter needs to be nullable when a property is injected.

In particular, if the injection happens with a separate method, there is a time where the object is not consistent, and the
property holds a default non-object value.

<?php

class Consistent {
private $db = null;

function _ construct (Db $db) {
Sthis—->db = $db;
// Object is immediately consistent

// Db might be null
function getDb () {
return Sthis->db;

class Inconsistent {
private $db = null;

function _ construct () {
// No initialisation

// This might be called on time, or not
// This typehint cannot be nullable, nor use null as default
function setDb (DB S$db) {

return Sthis->db;

// Db might be null
function getDb () {
return Sthis->db;

Suggestions

* Remove the nullable option and the tests on null.

13.2. List of Rules 313

Exakat Documentation, Release 1

Specs

Short name Classes/NonNullableSetters
Rulesets Analyze, ClassReview
Exakt since | 1.9.6

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.128 Forgotten Visibility

Some classes elements (property, method, constant) are missing their explicit visibility.
By default, it is public. It should at least be mentioned as public, or may be reviewed as protected or private.
Class constants support also visibility since PHP 7.1.

final, static and abstract are not counted as visibility. Only public, private and protected. The PHP 4 var keyword is
counted as undefined.

Traits, classes and interfaces are checked.

<?php

// Explicit visibility
class X {
protected sconst NO_VISIBILITY_CONST = 1; // For PHP 7.2 and later

private SnoVisibilityProperty = 2;
public function Method () {}
}

// Missing visibility
class X {
const

1; // For PHP 7.2 and later
var SnoVisibilityProperty = 2; // Only with var

function NoVisibilityForMethod() {}
}

7>

See also Visibility and Understanding The Concept Of Visibility In Object Oriented PHP.

Suggestions

* Always add explicit visibility to methods and constants in a class

» Always add explicit visibility to properties in a class, after PHP 7.4

314 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/

Exakat Documentation, Release 1

Specs

Short name | Classes/NonPpp
Rulesets Analyze, CE, CI-checks
Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)
Precision High

ClearPHP always-have-visibility
Examples FuelCMS, LiveZilla

13.2.129 Non Static Methods Called In A Static

Static methods have to be declared as such (using the static keyword). Then, one may call them without
instantiating the object.

PHP 7.0, and more recent versions, yield a deprecated error : Non-"static <https://www.php.net/
manual/en/language.oop5.static.php>'_ method A\:\:B() should not be called
statically.

PHP 5 and older doesn’t check that a method is static or not : at any point, the code may call one method statically.

<?php
class x {
static public function sm() { echo A\n; }
public public sm() { echo A\n; }
}
x::sm(); // echo x::sm

// Dynamic call
["x", 'sm"]();
[\x::class, 'sm'l();

?>

It is a bad idea to call non-static method statically. Such method may make use of special variable $this, which will be
undefined. PHP will not check those calls at compile time, nor at running time.

It is recommended to update this situation : make the method actually static, or use it only in object context.

Note that this analysis reports all static method call made on a non-static method, even within the same class or class
hierarchy. PHP silently accepts static call to any in-family method.

<?php
class x {
public function foo() { self::bar() }
public function bar() { echo A\n; }
}
?>

See also Static Keyword <https://www.php.net/manual/en/language.oop5. ‘static.php>°_.

13.2. List of Rules 315

https://github.com/dseguy/clearPHP/tree/master/rules/always-have-visibility.md
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

* Call the method the correct way

¢ Define the method as static

Specs
Short name | Classes/NonStaticMethodsCalledStatic
Rulesets Analyze, CI-checks, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibil-
ityPHP56
Exakt 0.8.4
since
Php Ver- | All
sion
Severity Minor
Time To | Quick (30 mins)
Fix
Precision Medium
Examples Dolphin, Magento

13.2.130 Class Without Parent

Classes should not refer to parent when it is not extending another class.

In PHP 7.4, it is a Deprecated warning. In PHP 7.3, it was a Fatal error, when the code was finally executed.

<?php

class x {
function foo () {
parent::foo();

}

Suggestions

» Update the class and make it extends another class
* Change the parent mention with a fully qualified name

* Remove the call to the parent altogether

316 Chapter 13. Rules

Exakat Documentation, Release 1

Specs

Short name Classes/NoParent

Rulesets Analyze, CI-checks, ClassReview
Exakt since 1.9.0

Php Version | 7.4-

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.131 self, parent, static Outside Class

self, parent and static should be called inside a class or trait. PHP lint won’t report those situations.

self, parent and static may be used in a trait : their actual value will be only known at execution time, when the trait is
used.

<?php
// In the examples, self, parent and static may be used interchangeably

// This raises a Fatal error
//Fatal error: Uncaught Error: Cannot access static:: when no class scope 1s active
new static();

// static calls

echo self::CONSTANTE;
echo self::Sproperty;
echo self::method();

// as a type hint
function foo(static $x) {
doSomething () ;

// as a instanceof
if (Sx instanceof static) {
doSomething () ;

?>

Such syntax problem is only revealed at execution time : PHP raises a Fatal error.
The origin of the problem is usually a method that was moved outside a class, at least temporarily.

See also Scope Resolution Operator (::).

13.2. List of Rules 317

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

Short name Classes/NoPSSOutsideClass
Rulesets Analyze, LintButWontExec
Exakt since | 0.10.3

Php Version | All

Severity Major

Time To Fix | Slow (1 hour)

Precision High

13.2.132 No Public Access

The properties below are declared with public access, but are never used publicly. They can be made
protected or private.

<?php

class foo {
public Sbar =

function bar ()

}

Sx = new foo();
Sx—->bar = 3;

Sx—>bar () ;

?>

1;

public SneverInPublic =

{

SneverInPublic++;

// Public,
3; // Public,

and used in public space

but never used in outside the class

Specs

13.2.133 Normal Methods

Spot normal Methods.

Short name Classes/NoPublicAccess
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

<?php

class foo{

// Normal method

(continues on next page)

318

Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

private function bar() {}

// Static method
private static function barbar () {}

?>

Specs

Short name | Classes/NormalMethods
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.134 No Self Referencing Constant

It is not possible to use a constant to define itself in a class. It yields a fatal error at runtime.

The PHP error reads : Cannot declare “self <https://www.php.net/manual/en/language.
oop5.paamayim-nekudotayim.php>"_-referencing constant '“self <https://www.php.

net/manual/en/language.oop5.paamayim—nekudotayim.php>"_\:\:C2"'. Unlike PHP which is
self-referencing, self referencing variables can’t have a value : just don’t use that.

<?php
class a {
const = 1; // fully defined constant
const = self::C2; // self referencing constant
const = a::C3 + 2; // self referencing constant
}
?>

The code may access an already declared constant with self or with its class name.

<?php
class a {
const = 1;
const = a::Cl;
}
7>

This error is not detected by linting. It is only detected at instantiation time : if the class is not used, it won’t appear.

Suggestions

¢ Give a literal value to this constant

¢ Give a constant value to this constant : other class constants or constant are allowed here.

13.2. List of Rules 319

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs
Short name | Classes/NoSelfReferencingConstant
Rulesets Analyze, ClassReview, LintButWontExec
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.135 Null On New

Until PHP 7, some classes instantiation could yield null, instead of throwing an exception.

After issuing a ‘new’ with those classes, it was important to check if the returned object were null or not. No exception

were thrown.

<?php

// Example extracted from the wiki below

Smf = new MessageFormatter ('en_ US'
if (Smf === null) {
echo 'Surprise!';

}

?>

’

'{this was made intentionally incorrect}');

This inconsistency has been cleaned in PHP 7

: see See Internal Constructor Behavior

See also PHP RFC: Constructor behaviour of internal classes.

Suggestions

¢ Remove the check on null after a new instantiation

Specs
Short name | Classes/NullOnNew
Rulesets CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56

Exakt since 0.8.4

Php Version | 7.0-

Severity Major
Time To Fix | Instant (5 mins)
Precision High

13.2.136 Old Style Constructor

PHP classes used to have the method bearing the same name as the class acts as the constructor. That was

PHP 4, and early PHP 5.

320

Chapter 13. Rules

https://wiki.php.net/rfc/internal_constructor_behaviour
https://wiki.php.net/rfc/internal_constructor_behaviour

Exakat Documentation, Release 1

The manual issues a warning about this syntax : Old style constructors are DEPRECATED
in PHP 7.0, and will be removed in a future version. You should always use
'__construct () <https://www.php.net/manual/en/language.oop5.decon.php>"_ in
new code.

<?php

namespace {
// Global namespace 1s Important
class foo {
function foo () {
// This acts as the old-style constructor, and is reported by PHP

class bar {

function _ construct () { }
function bar () {
// This doesn't act as constructor, as bar has a __construct () method

namespace Foo\Bar{
class foo {
function foo () {
// This doesn't act as constructor, as bar is not in the global namespace

?>

This is no more the case in PHP 5, which relies on __construct () to do so. Having this old style constructor may
bring in confusion, unless you are also supporting old time PHP 4.

Note that classes with methods bearing the class name, but inside a namespace are not following this convention, as
this is not breaking backward compatibility. Those are excluded from the analyze.

See also Constructors and Destructors.

Suggestions

* Remove old style constructor and make it __construct ()

* Remove old libraries and use a modern component

13.2. List of Rules 321

https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

Specs

Short name | Classes/OldStyleConstructor
Rulesets Analyze, CE, CompatibilityPHPS80
Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

ClearPHP no-php4-class-syntax

13.2.137 Var Keyword

Var was used in PHP 4 to mark properties as public. Nowadays, new keywords are available : public,
protected, private. Var is equivalent to public.

It is recommended to avoid using var, and explicitly use the new keywords.

<?php

class foo {
public Sbar = 1;
// Avoid var
//var Shbar = 1;
}

2>

See also Visibility.

Suggestions

* It is recommended to avoid using var, and explicitly use the new keywords : private, protected, public

Specs

Short name | Classes/OldStyleVar
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)
Precision High

ClearPHP no-php4-class-syntax
Examples xataface

13.2.138 One Object Operator Per Line

Avoid using more than one operator -> per line, to prevent information overload.

322 Chapter 13. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-php4-class-syntax.md
https://www.php.net/manual/en/language.oop5.visibility.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-php4-class-syntax.md

Exakat Documentation, Release 1

<?php

// Spread operators on multiple lines

Sobject->firstMethodCall ()
—>property
—->secondMethodCall () ;

// This 1is not readable

Sobject->firstMethodCall () ->property->secondMethodCall () ;

// This is OK,

as objects are different.

$a2->b2 ($c2->d2, $e2->f2);
7>
Specs
Short name | Classes/OneObjectOperatorPerLine
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.139 Only Static Methods

Marks a class that has only static methods.

Specs

Short name | Classes/OnlyStaticMethods
Rulesets none
Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.140 Order Of Declaration

The order used to declare members and methods has a great impact on readability and maintenance.
However, practices varies greatly. As usual, being consistent is the most important and useful.

The suggested order is the following : traits, constants, properties, methods. Optional characteristics, like final,
static... are not specified. Special methods names are not specified.

13.2. List of Rules 323

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

<?php

class x {
use traits;

const = 1;
const = 1;
const =1

private Spro
private S
private Sproper

public function foo() {}

public function foo2() {}
public function foo3() {}
public function food () {}

?>

Suggestions

* Always declare class elements (traits, constants, properties, methods) in the same order.

Specs

Short name | Classes/OrderOfDeclaration
Rulesets none

Exakt since | 0.11.7

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision Medium

13.2.141 Overwritten Class Const

Those class constants are overwritten in a parent class. This may lead to confusion, as the value of the
constant may change depending on the way it is called.

<?php
class foo {
const = 1;
class bar extends foo {

const = 2;

function x () {
// depending on the access to C, value is different.

(continues on next page)

324 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

print self::C.' '.static::C.' '.parent::C;

?>

Specs

Short name | Classes/OverwrittenConst
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Slow (1 hour)

Precision High

13.2.142 Parent First

When calling parent constructor, always put it first in the ___construct method. It ensures the parent
is correctly build before the child start using values.

<?php

class father {
protected Sname = null;

function _ construct () {
Sthis—->name = init();

class goodSon {
function _ construct () {
// parent is build immediately,
parent::__ construct();
echo my name is.S$this->name;

class badSon {
function _ construct () {
// This will fail.
echo my name is.S$this->name;

// parent is build later,
parent::__construct();

?>

This analysis doesn’t apply to Exceptions.

13.2. List of Rules 325

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

e Use parent\:\:___construct as the first call in the constructor.
Specs

Short name | Classes/ParentFirst
Rulesets Analyze, Suggestions
Exakt since | 1.0.5
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High
Examples shopware, PrestaShop

13.2.143 Properties Declaration Consistence

Properties may be declared all at once, or one by one.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all

the same.

It happens that choosing unique declarations or multiple depends on coding style and files.

<?php

class x {

// Some declarations are made by batch

private S$al = 1,
Saz2 = 2;
public $c = 1, Sc2 = 2, Sc4 = 3;

// Most declarations are made one by one

protected $b = 1
protected Sbl
protected $b2 =
protected Sb3 =
protected Sh4 =
protected Sbhb5 =
protected S$bo =
protected Sb7 =
protected $h8 =
protected $b9 =
protected $bl0 =
protected $bll =
protected S$bl2 =
protected $bl3 =
protected $bl4d =
protected S$bl5 =
protected Sbl6 =
protected $bl7 =
protected $bl8 =
protected Sbl19 =

[R R R T e
~

e e e e
~

~.

~e N N

o o~

~e N

~

Ne NN

oo~

Ne Ne N

~

(continues on next page)

326

Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

See also Properties.

Specs
Short name | Classes/PPPDeclarationStyle
Rulesets none
Exakt since | 1.2.1
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.144 Property Could Be Local

A property only used in one method may be turned into a local variable.

Public an protected properties are omitted here : they may be modified somewhere else, in the code. This analysis
may be upgraded to support those properties, when tracking of such properties becomes available.

Classes where only one non-magic method is available are omitted.

Traits with private properties are processed the same way.

<?php

class x {

private Sfoo = 1;

// Magic method, and constructor in particular, are omitted.

function _ construct ($Sfoo) {
Sthis->foo = $foo;

}

function bar() {

Sthis—->foo++;

return Sthis->foo;

}

function barbar () {}

2>

Suggestions

* Remove the property and make it an argument in the method

» Use that property elsewhere

13.2. List of Rules

327

https://www.php.net/manual/en/language.oop5.properties.php

Exakat Documentation, Release 1

Specs

Short name | Classes/PropertyCouldBeLocal
Rulesets Analyze, ClassReview

Exakt since | 1.1.7

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples Mautic, Typo3

13.2.145 Property Names

Variables are used in property definitions, when they are located in a class.

<?php
static $x; // not a property, a static variable

class foo {
static $x; // now, this is a static property
public Sy, $z = 1; // normal properties

public function bar () {
static $x; // again, a static variable
}
}

?>

See also Properties.

Specs

Short name | Classes/PropertyDefinition
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.146 Never Used Properties

Properties that are never used. They are defined in a class or a trait, but they never actually used.

Properties are considered used when they are used locally, in the same class as their definition, or in a parent class : a
parent class is always included with the current class.

On the other hand, properties which are defined in a class, but only used in children classes is considered unused, since
children may also avoid using it.

328 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.properties.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

<?php

class foo {
public SusedProperty = 1;

// Never used anywhere
public $SunusedProperty = 2;

function bar () {

// Used internally
++Sthis->usedProperty;

}
class foo2 extends foo {
function bar2 () {

// Used in child class
++Sthis->usedProperty;

}

// Used externally
++$this->usedProperty;

?>

Suggestions

* Drop unused properties
* Change the name of the unused properties
* Move the properties to children classes

* Find usage for unused properties

Specs

Short name | Classes/PropertyNeverUsed
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples WordPress

13.2.147 Property Used Above

Property used in the parent classes. If the definition of the property is in the child class, then the parent
should not know about it and make usage of it.

It may also be used in the current class, or its children, though this is not reported by this analyzer.

13.2. List of Rules 329

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

<?php

class A {
public function foo () {
Sthis->pb++;

class B extends A {
protected S$Spb = 0

; // property used above
protected Spb2 = 0O;

// property NOT used above

?>

See also ‘Classes/PropertyUsedBelow*_.

Suggestions

* Move the definition of the property to the upper class

* Move the usage of the property to the lower class

Specs
Short name | Classes/PropertyUsedAbove
Rulesets none
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision Medium

13.2.148 Property Used Below

Mark properties that are used in children classes.

<?php

class foo {

// This property is used in children
protected protectedProperty = 1;

// This property 1is not used in children
protected localProtectedProperty = 1;

private function foobar () {
// protectedProperty is used here, but defined in parent
S$this->localProtectedProperty = 3;

(continues on next page)

330 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

class foofoo extends foo {
private function bar() {
// protectedProperty is used here, but defined in parent
Sthis->protectedProperty = 3;

?>

This doesn’t mark the current class, nor the (grand-)‘parent <https://www.php.net/manual/en/language.oop5.
paamayim-nekudotayim.php>‘_ ones.

Specs

Short name | Classes/PropertyUsedBelow
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision Medium

13.2.149 Property Used In One Method Only

Properties should be used in several methods. When a property is used in only one method, this should
have be of another shape.

Properties used in one method only may be used several times, and read only. This may be a class constant. Such
properties are meant to be overwritten by an extending class, and that’s possible with class constants.

Properties that read and written may be converted into a variable, static to the method. This way, they are kept close
to the method, and do not pollute the object’s properties.

<?php

class foo {
private Sonce = 1;
const = 1;
private Scounter = 0;

function bar () {
// Sthis—->once is never used anywhere else.
someFunction (Sthis->once);
someFunction (self::0NCE) ; // Make clear that it 1is a

function bar2 () {
static SlocalCounter = 0;
Sthis—->counter++;

// Sthis->once is only used here, for distinguising calls to someFunction2
if ($this->counter > 10) { // Sthis->counter is used only in bar2, but it may,,
—be used several times

(continues on next page)

13.2. List of Rules 331

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

return false;

}

someFunction2 (Sthis—->counter);

// SlocalCounter keeps track for all the calls

if (SlocalCounter > 10) {
return false;

}

someFunction2 ($localCounter);

?>

Note : properties used only once are not returned by this analysis. They are omitted, and are available in the analysis

Used Once Property.

Suggestions

* Drop the property, and inline the value

* Drop the property, and make the property a local variable

 Use the property in another method

Specs
Short name | Classes/PropertyUsedInOneMethodOnly
Rulesets Analyze
Exakt since | 0.10.3
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High
Examples Contao

13.2.150 Internally Used Properties

Properties that are used internally.

<?php

class x {

public $internallyUsedProperty

public SexternallyUsedPr

function foo () {

public SalsoExternallyUsedProperty = 1;

Sthis->internallyUsedProperty = 2;

(continues on next page)

332

Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

class y extends x {
function bar () {

¢

Sthis—->externallyUsedProperty = 3;

$X->alsoExternallyUsedProperty = 3;

?>

Specs

Short name | Classes/PropertyUsedInternally
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

13.2.151 Parent, Static Or Self Outside Class

Parent, static and self keywords must be used within a class or a trait. They make no sens outside a class
or trait scope, as self and static refers to the current class and parent refers to one of parent above.

PHP 7.0 and later detect their usage at compile time, and emits a fatal error.

<?php

class x {
const = 1;

function foo() {
// self is \x
echo self::Y;

const = 1;
// This 1lint but won't anymore
echo self::7;

7>

Static may be used in a function or a closure, but not globally.

13.2. List of Rules 333

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/PssWithoutClass
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)
Precision High

13.2.152 Raised Access Level

A property’s visibility may be lowered, but not raised.

This error may be detected when the classes are all in the same file : then, PHP reports the problem. However, when
the classes are separated in different files, as it is customary, PHP won’t check this at linting time, yielding a fatal error
at execution time.

First file.

<?php

class Foo {
public SpublicProperty;
protected SprotectedProperty;
private SprivateProperty;

}

?>

Second file.

<?php

class Bar extends Foo {

private SpublicProperty;

private

private S // This one is OK
}
2>

See also Visibility and Understanding the concept of visibility in object oriented php.

Suggestions

» Lower the visibility in the child class

 Raise the visibility in the parent class

334 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/

Exakat Documentation, Release 1

Specs

Short name Classes/RaisedAccessLevel
Rulesets ClassReview, LintButWontExec
Exakt since | 0.10.0

Php Version | All

Severity Critical

Time To Fix | Quick (30 mins)

Precision High

13.2.153 Redefined Class Constants

Redefined class constants.

Class constants may be redefined, though it is prone to errors when using them, as it is now crucial to use the right
class name to access the right value.

<?php

class a {
const = 1;

}

class b extends a {
const = 2;

}

class c extends c { }

echo a::A, ' ', b::A, " ', c::A;
// 1 2 2

2>

It is recommended to use distinct names.

Specs

Short name | Classes/RedefinedConstants
Rulesets Analyze, CI-checks

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.154 Redefined Default

Classes allows properties to be set with a default value. When those properties get, unconditionally,
another value at constructor time, then one of the default value are useless. One of those definition should
go : it is better to define properties outside the constructor.

13.2. List of Rules 335

Exakat Documentation, Release 1

<?php

class foo {

public S$redefined = 1;
public function __ _construct() {
Sthis->redefined = 2;

}

2>

Suggestions

* Move the default assignation to the property definition

* Drop the reassignation in the constructor

Specs

Short name | Classes/RedefinedDefault
Rulesets Analyze, CI-checks

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Slow (1 hour)
Precision High
Examples Piwigo

13.2.155 Redefined Methods

Redefined methods are overwritten methods. Those methods are defined in different classes that are part
of the same classes hierarchy.

Protected and public redefined methods replace each other. Private methods are kept separated, and depends on the
caller to be distinguished.

<?php

class foo {
function method() {
return 1;
}
}

class bar extends foo {
function method () {
return 2;

}

See also Object Inheritance.

336 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.inheritance.php

Exakat Documentation, Release 1

Specs
Short name Classes/RedefinedMethods
Rulesets CE
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.156 Redefined Private Property

Private properties are local to their defined class. PHP doesn’t forbid the re-declaration of a private

property in a child class.

However, having two or more properties with the same name, in the class hierarchy tends to be error prone.

<?php

class A {

private S$isReady = true;
}
class B {
private S$isReady = false;
}
2>
Specs
Short name | Classes/RedefinedPrivateProperty
Rulesets Analyze
Exakt since | 1.2.3
Php Version | All
Severity Major
Time To Fix | Slow (1 hour)
Precision High
Examples Zurmo

13.2.157 Redefined Property

Property redefined in a parent class.

Using heritage, it is possible to define several times the same property, at different levels of the hierarchy.

<?php

class foo {
protected S

rty =

aPrope =1;

(continues on next page)

13.2. List of Rules

337

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

}

class bar extends foo {
// This property is redefined in the parent class, leading to potential confusion
protected S$aProperty = 1;

}

?>

When this is the case, it is difficult to understand which class will actually handle the property.

In the case of a private property, the different instances will stay distinct. In the case of protected or public properties,
they will all share the same value.

It is recommended to avoid redefining the same property in a hierarchy.

Specs

Short name | Classes/RedefinedProperty
Rulesets ClassReview

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.158 Not Same Name As File

The class, interface or trait in this file as a different name, case included, than the file name.
In the following example, the file name is Foo . php. .. code-block:: php
<?php
// normal host of this file class Foo {
/l some code
}
/I case-typo this file class foo {
/l some code
}
/1 strangely stored class class foo {
/I some code
}
// This is valid name, but there is also a Foo class, and other classe in this file. interface Foo {}

>

338 Chapter 13. Rules

Exakat Documentation, Release 1

Specs

Short name Classes/SameNameAsFile
Rulesets none

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

13.2.159 Scalar Or Object Property

Property shouldn’t use both object and scalar syntaxes. When a property may be an object, it is recom-
mended to implement the Null Object pattern : instead of checking if the property is scalar, make it always
object.

<?php

class x {
public $display = 'echo';

function foo($string) {
if (is_string(Sthis->display)) {
echo $this->string;

} elseif (Sthis->display instanceof myDisplayInterface) {
Sdisplay->display () ;
} else {

print Error when displaying\n;

interface myDisplayInterface {
public function display($string); // does the display in its own way

class nullDisplay implements myDisplayInterface {
// implements myDisplayInterface but does nothing
public function display($string) {}

class x2 {
public Sdisplay = null;

public function __construct () {
Sthis->display = new nullDisplay();

function foo ($string) {
// Keep the check, as Sdisplay is public, and may get wrong values
if (Sthis->display instanceof myDisplayInterface) {
Sdisplay->display();
} else {
print Error when displaying\n;

(continues on next page)

13.2. List of Rules 339

Exakat Documentation, Release 1

(continued from previous page)

}

// Simple class for echo
class echoDisplay implements myDisplayInterface {
// implements myDisplayInterface but does nothing
public function display ($string) {
echo S$string;
}
}

?>

See also Null Object Pattern. and The Null Object Pattern.

Suggestions

* Only use one type of syntax with your properties.

Specs

Short name | Classes/ScalarOrObjectProperty
Rulesets Analyze

Exakt since | 0.12.3

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

Examples SugarCrm

13.2.160 Should Deep Clone

By default, PHP makes a shallow clone. It only clone the scalars, and keep the reference to any object
already referenced. This means that the cloned object and its original share any object they hold as

property.

This is where the magic method __clone() comes into play. It is called, when defined, at clone time, so that the cloned
object may clone all the needed sub-objects.

It is recommended to use the __clone() method whenever the objects hold objects.

<?php

class a {
public $b = null;

function __ construct () {
Sthis->b = new Stdclass();
Sthis->b->c = 1;

(continues on next page)

340 Chapter 13. Rules

https://en.wikipedia.org/wiki/Null_Object_pattern#PHP
https://www.sitepoint.com/the-null-object-pattern-polymorphism-in-domain-models/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

}

class ab extends a {
function _ clone () {
Sthis->b = clone S$this->b;
}
}

// class A is shallow clone, so Sa->b 1is not cloned

Sa = new a();
Sb = clone S$a;
Sa->b->c = 3;

echo $b->b->c;
// displays 3

// class Ab is deep clone, so $a->b is cloned
Sa = new ab();

Sb = clone $a;

Sa->b->c = 3;

echo S$bh->b->c;

// displays 1

?>

See also PHP Clone and Shallow vs Deep Copying and Cloning objects.

Suggestions

Specs

Short name | Classes/ShouldDeepClone
Rulesets Suggestions

Exakt since | 1.7.0

Php Version | All

Severity Minor

Time To Fix | Quick (30 mins)

Precision High

13.2.161 Should Have Destructor

PHP destructors are called when the object has to be destroyed. By default, PHP calls recursively the
destructor on internal objects, until everything is unset.

Unsetting objects and resources explicitly in the destructor is a good practice to reduce the amount of memory in use.
It helps PHP resource counter to keep the numbers low, and easier to clean. This is a major advantage for long running
scripts.

<?php

(continues on next page)

13.2. List of Rules 341

http://jacob-walker.com/blog/php-clone-and-shallow-vs-deep-copying.html
https://www.php.net/manual/en/language.oop5.cloning.php

Exakat Documentation, Release 1

(continued from previous page)

class x {
function ___construct () {
Sthis—>p = new y();

function ___destruct () {
print .PHP_EOL;
unset (Sthis->p);

class y {
function _ construct () {
print .PHP_EOL;
Sthis->p = new y();

function ___destruct () {
print .PHP_EOL;
unset ($this->p);

Sa = (new X);
sleep(1l);

// This increment the resource counter by one for the property.
Sp = Sa—>p;

unset ($a) ;

sleep(3);

print 'end'.PHP_EOL;
// Y destructor is only called here, as the object still exists in Sp.

?>

See also Destructor, and Php Destructors.

Suggestions

* Add a destruct method to the class to help clean at destruction time.

Specs

Short name | Classes/ShouldHaveDestructor
Rulesets Suggestions

Exakt since | 1.5.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)

Precision High

342 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.decon.php#language.oop5.decon.destructor
https://stackoverflow.com/questions/3566155/php-destructors

Exakat Documentation, Release 1

13.2.162 Could Use self

self keyword refers to the current class, or any of its parents. Using it is just as fast as the full class
name, it is as readable and it is will not be changed upon class or namespace change.

It is also routinely used in traits : there, self represents the class in which the trait is used, or the trait itself.

<?php

class x {
const = 1;

public function bar () {
return self::F0O;
// same as return x::FO00;
}
}

?>

See also Scope Resolution Operator (::).

Suggestions

* replace the explicit name with self

Specs

Short name | Classes/ShouldUseSelf

Rulesets Analyze, ClassReview, Suggestions
Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Instant (5 mins)

Precision High

Examples WordPress, LiveZilla

13.2.163 Should Use Local Class

Methods should use the defining class, or be functions.

Methods should use $this with another method or a property, or call parent\:\:. Static methods should call
another static method, or a static property. Methods which are overwritten by a child class are omitted : the parent
class act as a default value for the children class, and this is correct.

<?php

class foo {
public function __construct () {
// This method should do something locally, or be removed.
}

(continues on next page)

13.2. List of Rules 343

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

class bar extends foo {
private Sa = 1;

public function __ construct () {
// Calling parent:: 1is sufficient
parent::__construct();

}

public function barbar () {

// This is acting on the local object
Sthis—->a++;

public function barfoo ($b) {
// This has no action on the local object. It could be a function or a_,

—~closure where needed
return 3 + Sb;

2>

Note that a method using a class constant is not considered as using the local class, for this analyzer.

Suggestions

¢ Make this method a function

 Actually use $this, or any related attributes of the class

Specs

Short name | Classes/ShouldUseThis
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Minor
Time To Fix | Slow (1 hour)
Precision High

ClearPHP not-a-method

13.2.164 Static Methods Can’t Contain $this

Static methods are also called class methods : they may be called even if the class has no instantiated
object. Thus, the local variable $this won’t exist, PHP will set it to NULL as usual.

<?php

class foo {
// Static method may access other static methods, or property, or none.
static function staticBar () {

(continues on next page)

344 Chapter 13. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/not-a-method.md
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.types.null.php

Exakat Documentation, Release 1

(continued from previous page)

// This is not possible in a static method
return self::otherStaticBar() . static::SstaticProperty;

static function bar () {
// This is not possible in a static method
return Sthis->property;

?>

Either this is not a static method, which is fixed by removing the static keyword, or replace all $this mention by
static properties Class\:\ : Sproperty.

See also Static Keyword <https://www.php.net/manual/en/language.oop5. ‘static.php>‘_

Suggestions

* Remove any $this usage

 Turn any $this usage into a static call : $this->foo() => self::foo()

Specs

Short name | Classes/StaticContainsThis
Rulesets Analyze, CI-checks

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)
Precision High

ClearPHP no-static-this
Examples xataface, SugarCrm

13.2.165 Static Methods

List of all static methods.

<?php

class foo {
static public function staticMethod () {

}
public function notStaticMethod () {

}

private function method() {

(continues on next page)

13.2. List of Rules 345

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-static-this.md
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

// This 1s not a property
new static();

2>

Specs

Short name Classes/StaticMethods
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.166 Static Methods Called From Object

Static methods may be called without instantiating an object. As such, they never interact with the special
variable ‘$this’, as they do not depend on object existence.

Besides this, static methods are normal methods that may be called directly from object context, to perform some
utility task.

To maintain code readability, it is recommended to call static method in a static way, rather than within object context.

<?php
class x {
static function y() {}
}
7z = new X();
Sz=>y(); // Readability : no one knows it is a static call
x::y(); // Readability : here we know
2>

Suggestions

 Switch to static method syntax

* Remove the static option from the method

346 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs
Short name | Classes/StaticMethodsCalledFromObject
Rulesets Analyze, CE, CI-checks
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Quick (30 mins)
Precision High

13.2.167 Static Properties

List of all static properties.
<?php
class foo {
static public SstaticPropert

public SnotStaticProper

private function method() {
// This is not a property
new static();

}

function bar () {
// This is not a static property
static S$staticVari

able;
S/

}

7>

Specs
Short name | Classes/StaticProperties
Rulesets CE
Exakt since | 0.8.4
Php Version | All
Severity Minor
Time To Fix | Slow (1 hour)
Precision High

13.2.168 Strange Names For Methods

Those methods should have another name.

Ever wondered why the ___constructor is never called? Or the __consturct ?

13.2. List of Rules 347

https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Those errors most often originate from typos, or quick fixes that where not fully tested. Other times, they were badly
chosen, or ran into PHP’s own reserved keywords.

<?php
class foo {
// The real constructor

function _ construct () {}

// The fake constructor
function _ constructor () {}

// The 'typo'ed' constructor
function _ consturct () {}

// This doesn't clone
function clone() {}

?>

Suggestions

* Use the proper name

* Remove the method, when it is not used and tests still pass.

Specs

Short name | Classes/StrangeName
Rulesets none

Exakt since | 0.10.1

Php Version | All

Severity Major

Time To Fix | Slow (1 hour)
Precision High

13.2.169 Swapped Arguments

Overwritten methods must be compatible, but argument names is not part of that compatibility.

Methods with the same name, in two classes of the same hierarchy, must be compatible for typehint, default value,
reference. The name of the argument is not taken into account when checking such compatibility, at least until PHP
7.4.

<?php

class x {
function foo(Sa, Sb) {}

function bar ($a, Sb) {}

(continues on next page)

348 Chapter 13. Rules

Exakat Documentation, Release 1

(continued from previous page)

class y extends x {
// foo is compatible (identical) with the above class
function foo(Sa, Sb) {}

// bar is compatible with the above class, yet, the argument might not receive_,
—what they expect.
function bar (Sb, Sa) {}

}

?>

This analysis reports argument lists that differs in ordering. This analysis doesn’t report argument lists that also differs
in argument names.

Suggestions

* Make sure the names of the argument are in the same order in all classes and interfaces

Specs

Short name | Classes/SwappedArguments
Rulesets Analyze

Exakt since | 2.1.5

Php Version | All

Severity Critical
Time To Fix | Quick (30 mins)
Precision High

13.2.170 Test Class

Those are test classes, based on popular UT frameworks.

Specs

Short name | Classes/TestClass
Rulesets CE

Exakt since | 0.8.4

Php Version | All

Severity Minor

Time To Fix | Slow (1 hour)
Precision High

13.2.171 $this Belongs To Classes Or Traits

$this variable represents the current object, inside a class or trait scope.

13.2. List of Rules 349

https://www.php.net/manual/en/language.oop5.basic.php

Exakat Documentation, Release 1

It is a pseudo-variable, and should be used within class’s or trait’s methods and not outside. It should also not be used
in static methods.

PHP 7.1 is stricter and check for $this at several situations. Some are found by static analysis, some are dynamic
analysis.

<?php

// as an argument
function foo($this) {
// Using global
global Sthis;
// Using static (not a property)
static Sthis;

// Can't unset it
unset ($this);

try {
// inside a foreach
foreach ($5a as S$this) { }
foreach ($Sa as S$Sthis => S$b) { 1}
foreach(5a as Sb => Sthi

} catch (Exception Sthis) {
// inside a catch

// with Variable Variable
Sa = this;
S$Sa = 42;

class foo {
function bar () {
// Using references
Sa =& Sthis;
Sa = 42;
// Using extract (), parse_str() or similar functions
extract ([this => 42]); // throw new Error (Cannot re—-assign Sthis)
var_dump (Sthis);

static function _ call ($name, Sargs) |
// Using call
var_dump ($Sthis); // prints object (C)#1 (0) {}, php-7.0 printed NULL
Sthis—>test (); // prints ops

7>

Suggestions

* Do not use $zhis as a variable name, except for the current object, in a class, trait or closure.

350 Chapter 13. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name | Classes/ThisIsForClasses
Rulesets Analyze

Exakt since | 0.8.4

Php Version | All

Severity Major

Time To Fix | Quick (30 mins)
Precision High

Examples OpenEMR

13.2.172 $this Is Not An Array

$this variable represents the current object and it is not an array.

This is unless the class (or its parents) has the ArrayAccess interface, or extends ArrayObject or
SimpleXMLElement.

<?php

// Sthis 1is an array
class Foo extends ArrayAccess {
function bar () {
++Sthis[3];
}
}

// S$this is not an array
class Foo2 {
function bar () {
++Sthis[3]1;
}
}

2>

See also ArrayAccess, ArrayObject and The Basics.

Suggestions

* Extends ArrayObject, or a class that extends it, to use $this as an array too.
e Implements ArrayAccess touse $this as an array too.

 Use a property in the current class to store the data, instead of $this directly.

13.2. List of Rules 351

https://www.php.net/manual/en/class.arrayaccess.php
https://www.php.net/manual/en/class.arrayobject.php
https://www.php.net/manual/e