

Smarter. Greener. Together.

Industrial Automation Headquarters

Delta Electronics, Inc.

Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Delta Electronics (Jiangsu) Ltd.

Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, People's Republic of China (Post code: 215200) TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.

238 Min-Xia Road, Pudong District, ShangHai, P.R.C. Post code : 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc.

Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan

TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd

4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL: 91-124-4874900 / FAX: 91-124-4874945

Americas

Delta Products Corporation (USA)

Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A

Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: +55 11 3568-3855 / FAX: +55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V.

Eindhoven Öffice

De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

AH-0109420-01 *We reserve the right to change the information in this catalogue without prior notice.

5 T (1) 01 0 9

2013-03-28

AH500 Operation Manual

Chapter 1 Introduction

Ta	hl	e	of	Co	nt	ents
···u	\sim	_	\mathbf{v}	$\mathbf{\mathcal{U}}$		CIICO

1.1	Introduction	1-2
1.	1.1 Related Manuals	1-2
1.	1.2 Model Description	1-2
	Overview	
1.3	Characteristics	1-8
1.4	Checking the Serial Number and the Function	1-16

1.1 Introduction

This manual introduces functions of CPUs, devices, module tables, troubleshooting, and etc.

1.1.1 Related Manuals

The related manuals of the AH500 series programmable logic controllers are composed of the following

- AH500 Quick Start
 - It guides users to use the system before they read the related manuals.
- AH500 Programming Manual
 - It introduces the programming of the AH500 series programmable logic controllers, the basic instructions, and the applied instructions.
- ISPSoft User Manual
 - It introduces the use of ISPSoft, the programming language (Ladder, IL, SFC, FBD, and ST), the concept of POUs, and the concept of tasks.
- AH500 Hardware Manual
 - It introduces electrical specifications, appearances, dimensions, and etc.
- AH500 Operation Manual
 - It introduces functions of CPUs, devices, module tables, troubleshooting, and etc.
- AH500 Module Manual
 - It introduces the use of special I/O modules. For example, network modules, analog I/O modules, temperature measurement modules, motion control modules, and etc.
- AH500 Motion Control Module Manual
 - It introduces the specifications for the motion control modules, the wiring, the instructions, and the functions.
- PMSoft User Manual
 - It introduces the use of PMSoft, including the editing mode, the connection, and the password setting.

1.1.2 Model Description

Classification	Model Name	Description
Power supply module	AHPS05-5A	100~240 V AC 50/60 Hz
CPU module	AHCPU500-RS2	It is a basic CPU module with two built-in RS-485 ports, one built-in USB port, and one built-in SD interface. It supports 768 inputs/outputs. The program capacity is 16 ksteps.
	AHCPU500-EN	It is a basic CPU module with one built-in Ethernet port, one built-in RS-485 port, one built-in USB port, and one built-in SD interface. It supports 768 inputs/outputs. The program capacity is 16 ksteps.
	AHCPU510-RS2	It is a basic CPU module with two built-in RS-485 ports, one built-in USB port, and one built-in SD interface. It supports 1280 inputs/outputs. The program capacity is 64 ksteps.
	AHCPU510-EN	It is a basic CPU module with one built-in Ethernet port, one built-in RS-485 port, one built-in USB port, and one built-in SD interface. It supports 1280 inputs/outputs. The program capacity is 64 ksteps.
	AHCPU520-RS2	It is a basic CPU module with two built-in RS-485 ports, one built-in USB port, and one built-in SD interface. It supports 2304 inputs/outputs. The program capacity is 128 ksteps.

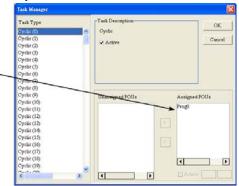
41

Classification	Model Name	Description
CPU module	AHCPU520-EN	It is a basic CPU module with one built-in Ethernet port, one built-in RS-485 port, one built-in USB port, and one built-in SD interface. It supports 2304 inputs/outputs. The program capacity is 128 ksteps.
	AHCPU530-RS2	It is a basic CPU module with two built-in RS-485 ports, one built-in USB port, and one built-in SD interface. It supports 4352 inputs/outputs. The program capacity is 256 ksteps.
	AHCPU530-EN	It is a basic CPU module with one built-in Ethernet port, one built-in RS-485 port, one built-in USB port, and one built-in SD interface. It supports 4352 inputs/outputs. The program capacity is 256 ksteps.
	AHBP04M1-5A	Four-slot main backplane for a CPU /RTU rack
Main	AHBP06M1-5A	Six-slot main backplane for a CPU/RTU rack
backplane	AHBP08M1-5A	Eight-slot main backplane for a CPU/RTU rack
	AHBP12M1-5A	Twelve-slot main backplane for a CPU/RTU rack
Extension	AHBP06E1-5A	Six-slot extension backplane for a CPU/RTU extension rack
backplane	AHBP08E1-5A	Eight-slot extension backplane for a CPU/RTU extension rack
	AH16AM10N-5A	24 V DC 5 mA 16 inputs Terminal block
	AH32AM10N-5B	24 V DC 5 mA 32 inputs DB37 connector
	AH64AM10N-5C	24 V DC 3.2 mA 64 inputs Latch connector
Digital input/output	AH16AM30N-5A	100~240 V AC 4.5 mA/9 mA (100 V and 50 Hz) 16 inputs Terminal block
module	AH16AN01R-5A	240 V AC/24 V DC 2 A 16 outputs Relay Terminal block
	AH16AN01T-5A	12~24 V DC 0.5 A 16 outputs Sinking output Terminal block
	AH16AN01P-5A	12~24 V DC 0.5 A 16 outputs Sourcing output Terminal block

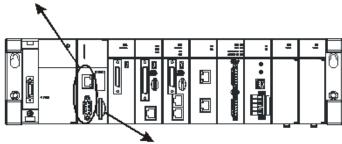
Classification	Model Name	Description
		12~24 V DC
		0.1 A
	AH32AN02T-5B	32 outputs
		Sinking output
		DB37 connector
		12~24 V DC
		0.1 A
	AH32AN02P-5B	32 outputs
		Sourcing output
		DB37 connector
		12~24 V DC
	ALICAANIOOT CO	0.1 A
	AH64AN02T-5C	64 outputs
		Sinking output Latch connector
		12~24 V DC
		0.1 A
	AH64AN02P-5C	
	ANO4ANUZP-3C	64 outputs Sourcing output
		Latch connector
		110/220 V AC
		0.5 A
	AH16AN01S-5A	16 outputs
Digital	,	TRIAC
input/output		Terminal block
module		24 V DC
		5 mA
		8 inputs
	ALIACA D44D 5A	240 V AC/24 V DC
	AH16AP11R-5A	2 A
		8 outputs
		Relay
		Terminal block
		24 V DC
		5 mA
		8 inputs
	AH16AP11T-5A	12~24 V DC
		0.5 A
		8 outputs
		Sinking output
		Terminal block
		24 V DC
	AH16AP11TP-5A	5 mA
		8 inputs
		12~24 V DC 0.5 A
		8 outputs
		Sourcing output
		Terminal block
		reminal block

4	

Classification	Model Name	Description
		Four-channel analog input module
	AH04AD-5A	16-bit resolution
		0~10 V, 0/1~5 V, -5~+5 V, -10~+10 V, 0/4~20 mA, and -20~+20 mA
		Conversion time: 150 us/channel
		Eight-channel analog input module
	AH08AD-5B	16-bit resolution
		0~10 V, 0/1~5 V, -5~+5 V, and -10~+10 V
_		Conversion time: 150 us/channel
		Four-channel analog output module
	ALIO 4D A 5 A	16-bit resolution
	AH04DA-5A	0/1V~5V , -5V~5V , 0V~10V , -10V~10V
Analog		0/4mA~20mA Conversion time: 150 us/channel
input/output		Eight-channel analog output module
module		16-bit resolution
	AH08DA-5B	-10~+10V, 0~10V, -5~+5V, and 0/1~5V
		Conversion time: 150 us/channel
		Four-channel analog input module
		16-bit resolution
		0~10 V, 0/1~5 V, -5~+5 V, -10~+10 V, 0/4~20 mA, and -20~+20 mA
	AH06XA-5A	Conversion time: 150 us/channel
		Two-channel analog output module
		16-bit resolution
		0/1 V~5 V, -5 V~5 V, 0 V~10 V, -10 V~10 V, and 0/4 mA~20 mA
		Conversion time: 150 us/channel
		Four-channel four-wire/three-wire RTD temperature sensor
	AH04PT-5A	Sensor type: Pt100/Pt1000/Ni100/Ni1000 sensor, and 0~300 Ω input impedance
		16-bit resolution: 0.1 °C/0.1 °F
		Four-wire conversion time: 150 ms/channel
Temperature		Three-wire conversion time: 300 ms/channel Four-channel thermocouple temperature sensor
measurement		Sensor type: J, K, R, S, T, E, N, and -150~+150 mV
module	AH04TC-5A	24-bit resolution: 0.1 °C/0.1 °F
		Conversion time: 200 ms/channel
-		Eight-channel thermocouple temperature sensor
		Sensor type: J, K, R, S, T, E, N, and -150~+150 mV
	AH08TC-5A	24-bit resolution: 0.1 °C/0.1 °F
		Conversion time: 200 ms/channel
	ALIONIO 5 A	Two-channel high-speed counter module
	AH02HC-5A	200 kHz
Motion control	Λ Ι Ο Λ Ι	Four-channel high-speed counter module
module	AH04HC-5A	200 kHz
	AH05PM-5A	Two-axis pulse train motion control module (1 MHz)
	AH10PM-5A	Six-axis pulse train motion control module
		(Four axes: 1 MHz; Two axes: 200 kHz)

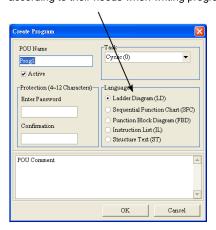


Classification	Model Name	Description
Motion control module	AH20MC-5A	Twelve-axis DMCNET (Delta Motion Control Network) motion control module (10 Mbps)
	AH10EN-5A	It is an Ethernet master module with two built-in Ethernet ports, and supports a Modbus TCP master.
Network module	AH10SCM-5A	It is a serial communication module with two RS-485/RS-422 ports, and supports Modbus and the UD link protocol. There is isolation between two parts of communication, and there is isolation between two parts of power.
	AH10DNET-5A	It is a DeviceNet network module. It can function as a master or a slave. The maximum communication speed is 1 Mbps.
RTU module	AHRTU-DNET-5A	RTU module for DeviceNet
	AHACAB06-5A	0.6 meter extension cable for connecting an extension backplane
Extension	AHACAB10-5A	1.0 meter extension cable for connecting an extension backplane
cable	AHACAB15-5A	1.5 meter extension cable for connecting an extension backplane
	AHACAB30-5A	3.0 meter extension cable for connecting an extension backplane
	DVPACAB7A10	1.0 meter I/O extension cable (latch connector) for AH64AM10N-5C
1/0	DVPACAB7B10	1.0 meter I/O extension cable (latch connector) for AH64AN02T-5C and AH64AN02P-5C
I/O extension cable	DVPACAB7C10	1.0 meter I/O extension cable (DB37)
00.010	DVPACAB7D10	1.0 meter I/O extension cable for AH04HC-5A and AH20MC-5A
	DVPACAB7E10	1.0 meter I/O extension cable (latch connector) for AH10PM-5A
	DVPAETB-ID32A	I/O external terminal module for AH64AM10N-5C 32 inputs
	DVPAETB-OR16A	I/O external terminal module for AH64AN02T-5C 16 relay outputs
	DVPAETB-OR16B	I/O external terminal module for AH64AN02P-5C 16 relay outputs
Futarial	DVPAETB-ID32B	I/O external terminal module for AH32AM10N-5B 32 inputs
External terminal module	DVPAETB-OR32A	I/O external terminal module for AH32AN02T-5B 32 relay outputs
module	DVPAETB-OR32B	I/O external terminal module for AH32AN02P-5B 32 relay outputs
	DVPAETB-OT32B	I/O external terminal module for AH32AN02T-5B and AH32AN02P-5B
		32 relay outputs
	DVPAETB-IO16C	I/O external terminal module for AH04HC-5A and AH20MC-5A
	DVPAETB-IO24C	I/O external terminal module for AH10PM-5A
Space module	AHASP01-5A	Space module used for an empty I/O slot

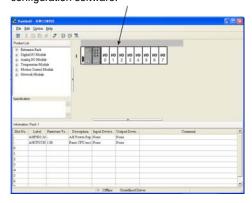

1.2 Overview

An AH500 series CPU module is a medium type of advanced controller with built-in communication ports. It provides a strong network function for users, and users can create connection among devices on the network through software. An AH500 series CPU module also provides structured programming. Users can assign programs to different tasks, and write a program which is frequently executed in a function block. Besides, users can choose different programming languages (instruction lists (IL), structured texts (ST), ladder diagrams (LD), sequential function charts (SFC), and function block diagrams (FBD)) dealt with by IEC 61131-3 according to their needs when writing programs. They can create the AH500 hardware configuration by means of hardware configuration software. They can also restore or back up a system rapidly through the built-in SD interface in an AH500 series CPU module. This manual introduces the basic operation of an AH500 system, and help users familiarize themselves with the AH500 system.

An AH500 series CPU module also provides structured programming. Users can assign programs to different tasks, and write a program which is frequently executed in a function block.



An AH500 series CPU module is a medium type of advanced controller with built-in communication ports. It provides a strong network function for users, and users can create connection among devices in the network through software.

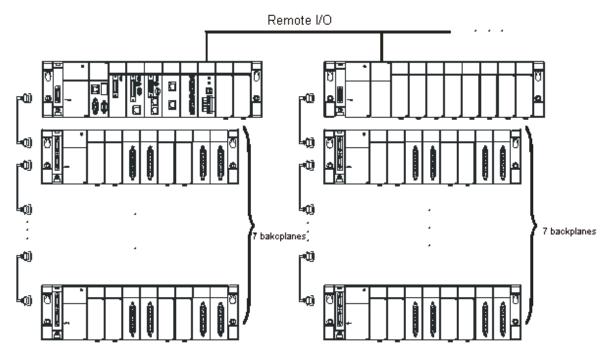


Users can restore or back up a system rapidly through the built-in SD interface in an AH500 series CPU module.

With ISPSoft, users can choose different programming languages (instruction lists (IL), structured texts (ST), ladder diagrams (LD), sequential function charts (SFC), and function block diagrams (FBD) dealt with by IEC 61131-3 according to their needs when writing program.

Users can create an AH500 hardware configuration by means of the hardware configuration software.

9


1.3 Characteristics

1. High efficiency

A 32-bit high-speed processor is used. The instructions are executed at a speed of 0.3
milliseconds per 1 ksteps. (Fifty percent of the instructions are basic instructions, and fifty
percent of the instructions are applied instructions.)

2. Supporting more inputs and outputs

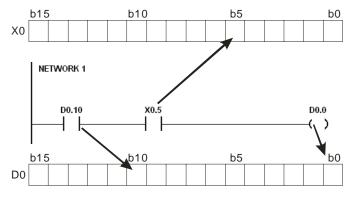
- The AH500 series CPU module supports up to 4,352 local digital I/O or 512 analog I/O.
- A complete AH500 system consists of eight backplanes at most, including a main backplane.
 Twelve I/O modules at most can be installed on a main backplane, and eight I/O modules at most can be installed on an extension backplane. Therefore, for the AH500 series CPU, sixty-eight digital input/output modules at most or sixty-eight analog input/output modules at most can be installed.
- Eight RTU modules at most can be installed on the main backplane. 128,000 remote digital I/O, or 4,000 remote analog I/O at most are supported.

3. Multiple I/O modules

 The I/O modules supported by the AH500 series CPU module are digital input/output modules, analog input/output modules, temperature measurement modules, network modules, motion control modules, and RTU modules.

Module	Description
Digital input/output module	Digital input/output AH16AM10N-5A, AH32AM10N-5B, AH64AM10N-5C, AH16AM30N-5A, AH16AN01R-5A, AH16AN01T-5A, AH16AN01P-5A, AH32AN02T-5B, AH32AN02P-5B, AH64AN02T-5C, AH64AN02P-5C, AH16AN01S-5A, AH16AP11R-5A, AH16AP11T-5A, and AH16AP11P-5A
Analog input/output module	Analog input/output AH04AD-5A, AH08AD-5B, AH04DA-5A, AH08DA-5B, and AH06XA-5A
Temperature measurement module	Measuring the temperature AH04PT-5A, AH04TC-5A, and AH08TC-5A

	7
7	
	J

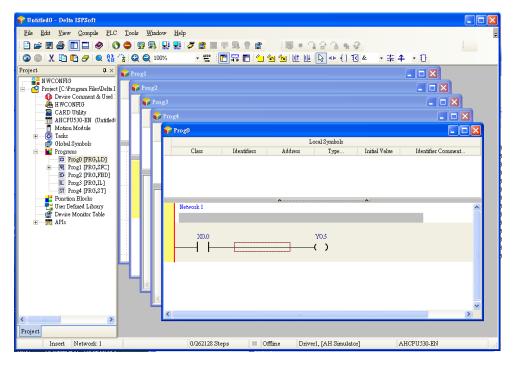

Module	Description
Motion control module	Controlling the motion AH02HC-5A, AH04HC-5A, AH05PM-5A, AH10PM-5A, and AH20MC-5A
Network module	Extending the communication interface (*There are multiple interfaces. All network modules can be installed on the main backplane except AH10SCM-5A.) AH10EN-5A, AH10SCM-5A, and AH10DNET-5A
RTU module	It is installed on the main backplane as a remote terminal unit. (*It supports multiple communication interfaces.) AHRTU-DNET-5A

4. Larger program capacity and memory

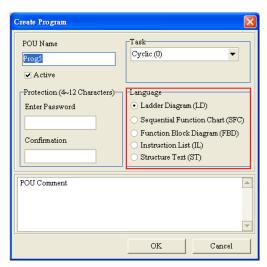
- The program capacity of the AH500 series CPU modules can be up to 256 ksteps. Users do not need to use a more advanced CPU if the program capacity becomes large.
- The AH500 series CPU module has 64 kwords of memory. Besides, users can declare up to 1024 function blocks.

5. Devices which can be used conveniently in a program

 An AH500 series CPU module is equipped with devices which can be used conveniently in a program. Users can flexibly specify a bit in a word device, e.g. D0.0, X0.0, and Y0.0. Owing to that bits in a word device can be specified, these bits can function as contacts and coils.

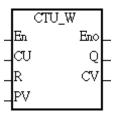


• Users can access the state of DX0.0 and that of DY0.0 in a program. The state of DX0.0 and that of DY0.0 are not limited by scan time. They are refreshed immediately in a program.


```
D0.10 DX0.5 DY0.0
```

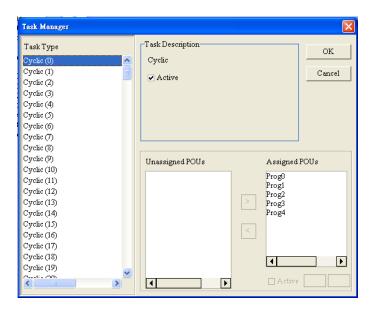
6. Supporting IEC 61131-3

- The AH500 series CPU module supports IEC 61131-3.
- The programming languages which are supported are instruction lists (IL), structured texts (ST), ladder diagrams (LD), sequential function charts (SFC), and function block diagrams (FBD).

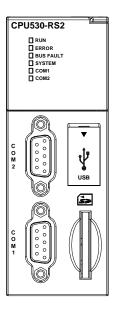

 Users can select a programming language according to their preference and the convenience. The programming languages support one another so that the programs written by different users are related.

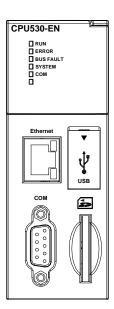
7. Strong function block

- Not only the standard IEC61131-3 function blocks are supported, but also the convenient function blocks provided by Delta Electronics, Inc. are supported. Users can write the program frequently executed in a function block so that the program becomes more structured and can be executed more conveniently.
- The symbol for a function block in a ladder diagram is like an Integrated circuit (IC) in a circuit


diagram. Owing to the fact that the ladder diagram is based on the traditional circuit diagram, the operation of a function block is quite similar to the function of an integrated circuit. Users only need to send the signal to the corresponding input of the function block, and they can receive the signal or state which is required. During the whole process, users do not need to consider the processing procedure inside the function block.

- A function block is a program element equipped with the operation function. It is similar to a
 subroutine, and is a type of POU (Program Organization Unit). It can not operate by itself,
 and has to be called through the program POU. After the related parameters are transmitted,
 the function defined by a function block is executed. Besides, the final operation result can be
 sent to the device or variable used in the superior POU after the execution of the function
 block is complete.
- The password setting function supported by ISPSoft provides the secrecy of function blocks for special businesses. The program inside a function block can not be learned, and the patent of a business will not be infringed.


8. Task



- The programs can be assigned to 283 tasks at most. Among the 288 tasks, 32 tasks are cyclic tasks, 32 tasks are I/O interrupts, 4 tasks are timer interrupts, 2 tasks are communication interrupts, 1 task is an external 24 V low-voltage interrupt, and 212 tasks are user-defined tasks.
- Users can enable and disable a task during the execution of a program by means of TKON and TKOFF.
- 9. Increasing the efficiency of configuring the hardware through an USB cable and ISPSoft
 - The AH500 series CPU module provides a standard USB 2.0 interface. USB 2.0 increases
 the data transfer rate, and decreases the time it takes to download the program, monitor the
 program and configure the hardware. Besides, users do not need to buy a communication
 cable for the CPU module. They can use a general USB cable to connect to the AH500 series
 CPU module.

10. Serial control interface with multiple functions

- AHCPU500/510/520/530-RS2 provides two DB9 serial control interfaces, i.e. COM1 and COM2
- AHCPU500/510/520/530-EN provides one DB9 serial control interface, i.e. COM.
- Users can set the DB9 serial control interface to RS232, RS485, or RS422 according to the application environment. The data transfer rate can be increased from 9600 bps to 1 Mbps.
- After users set the PLC Link in NWCONIFG in ISPSoft, they can exchange the data with a
 device on the RS-485 network through the RS-485 serial control interface, and do not need to
 write any program.

11. High-speed Ethernet communication interface

- AHCPU500/510/520/530-EN is equipped with a 10/100 M Ethernet communication interface, and supports emails, webs, and socket services.
- After users set the Ether Link in ISPSoft, they can exchange the data with a device in the Ethernet network through the Ethernet communication interface, and do not need to write any program.
- The status or the error message related to the system is sent to users' email boxes immediately. Users do not need to be on the spot to understand the problem.

12. Memory card

The memory card has the following functions.

System backup: The user program, the CPU parameters, the module table, the setting value in the device

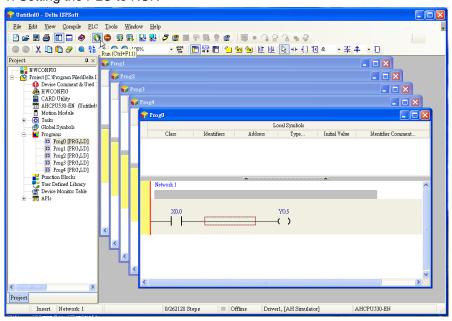
System recovery: The user program, the CPU parameters, the module table, and the setting value in the device

Parameter storage: The value in the device

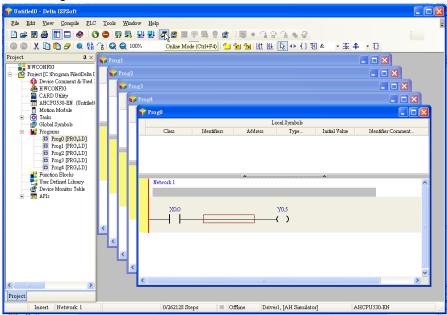
Log storage: The system error log and the system status log

13. Hot swap

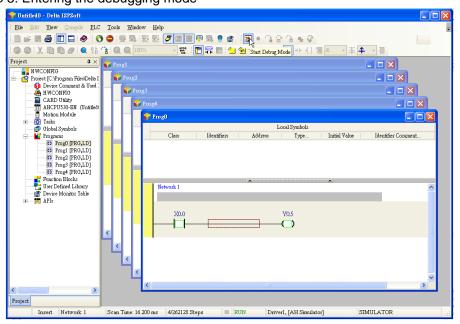
• The AH500 series I/O modules support the on-line uninterruptible hot swap. When the system runs, users can replace the module which breaks down without disconnecting the module. After the module is replaced, the new module runs normally. Users do not need to set the module manually or switch the state.



14. Supporting the on-line debugging mode

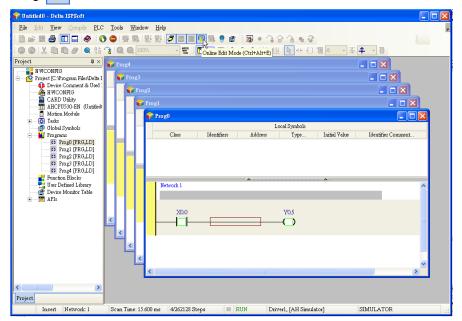

- After a single instruction step has been complete, or after a breakpoint is specified, users can
 easily find the bug in the program by means of the on-line debugging mode supported by the
 AH500 series CPU module.
- If users want to enter the debugging mode, the CPU module must run. After users enable the on-line monitoring function, they have to click . The debugging screen varies from programming language to programming language, but the same operation applies to these programming languages. For the AH500 series PLC, structured texts do not support the debugging mode, and sequential function charts support the debugging mode during the action and the transition.

Step 1: Setting the PLC to RUN

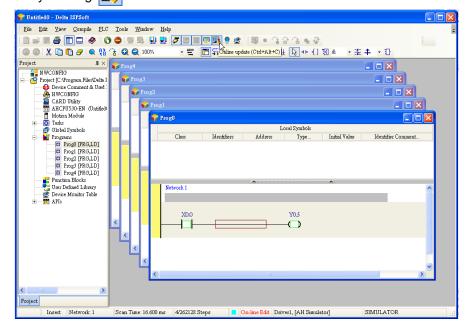


9

Step 2: Entering the on-line mode



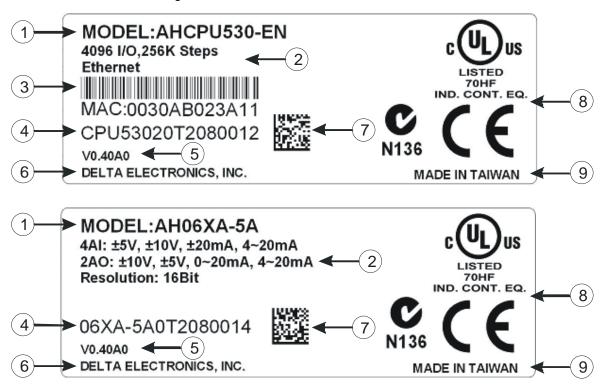
Step 3: Entering the debugging mode



15. Supporting the on-line editing mode

- When the system runs, users can make use of the on-line editing mode to update the program without affecting the operation of the system.
- When the system is in the on-line monitoring mode, users can enter the on-line editing mode by clicking

 After the program is modified and compiled, users can update the program in the CPU module by clicking



9

1.4 Checking the Serial Number and the Function

1. Users can learn the serial number of an AH500 series module, and check whether the function meets the needs through the label on side of the module.

Number	Description
1	Model name
2	Simple specifications
3	Barcode
4	Model number
5	Version
6	Incorporation
7	QR code
8	Safety standards certification
9	Place of production

2. Model number

- - A. Model name
 - B. Class code (0~9, and A~Z)
 - C. Factory of production: "T"-Taoyuan; "S"-Shanghai; "W"-Wujiang
 - D. Production year: "2"-2012
 - E. Production week: "01"~"52"
 - F. Production number: "0001"~"9999"
- Example: "CPU5302" "0" "T" "2" "10" "0001"
 - A. Model name: AHCPU530-EN
 - B. Class code: 0

C. Factory of production: "T"-Taoyuan

D. Production year: "2"-2012.

E. Production week: 10

F. Production number: 0001

MEMO

Chapter 2 Specifications and System Configuration

Table	of Contents	
2.1 G	eneral Specifications	2-3
2.2 S	pecifications for CPU Modules	2-3
2.2.1	•	
2.2.2		
2.3 B	asic System Configuration	2-7
2.3.1	Introduction	
2.3.2	Configuring a Main Backplane	
2.3.3	Configuring an Extension Backplane	
2.3.4	Maximum Extension	
2.4 S	pecifications for Digital Input/Output Modules	
2.4.1	General Specifications	
2.4.2	Profiles	
2.4.3	Dimensions	
2.4.4	Arrangement of Input/Output Terminals	
	pecifications for Analog Input/Output Modules	
2.5.1	General Specifications	
2.5.2	Profiles	
2.5.3	Dimensions	
2.5.4	Arrangement of Input/Output Terminals	
2.5.5	Setting Parameters	
	pecifications for Temperature Measurement Modules	
2.6.1	General Specifications	
2.6.2	Profiles	
2.6.3	Dimensions	
2.6.4	Arrangement of Input/Output Terminals	
2.6.5	Setting Parameters	
	pecifications for Network Modules	
2.7.1	General Specifications	
2.7.2	Profiles	
2.7.3	Dimensions	
2.7.4	Arrangement of Input/Output Terminals	
2.7.5	Setting Parameters	
	pecifications for Motion Control Modules	
2.8.1	General Specifications	
2.8.2	Profiles	
2.8.3	Dimensions	
2.8.4	Arrangement of Input/Output Terminals	
2.8.5	Setting Parameters	
	pecifications for the RTU module	2-75
2.9.1	General Specifications	
2.9.2	Profiles	
2.9.3	Dimensions	
	Specifications for the Power Supply Module	

2.10.1	General Specifications	2-78
2.10.2	Profile	2-78
2.10.3	Dimensions	2-79
2.10.4	Arrangement of Terminals	2-79
	Space Module, Backplanes, and Extension Cables	
	Profiles	
2.11.2	Dimensions	2-83

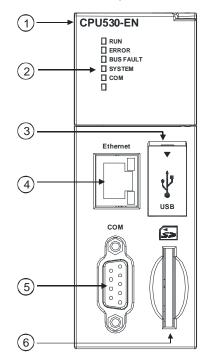
2.1 General Specifications

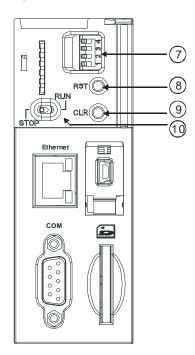
Item	Specifications
Operating temperature	-20~60°C
Storage temperature	-40~70°C
Operating humidity	5~95%
Operating numbers	No condensation
Storage humidity	5~95%
Storage humidity	No condensation
Vibration/Shock	International standards IEC 61131-2, IEC 68-2-6 (TEST Fc)/
resistance	IEC 61131-2 & IEC 68-2-27 (TEST Ea)
Work environment	No corrosive gas exists.
Installation location	In a control box
Pollution degree	2

2.2 Specifications for CPU Modules

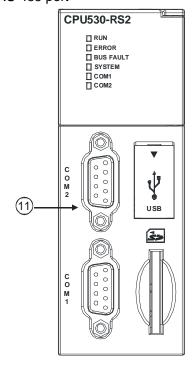
2.2.1 Performance Specifications

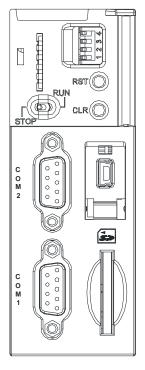
Item	AHCPU500/510/ 520/530-RS2	Remark
Execution	The program is executed cyclically.	
Input/Output control	Regenerated inputs/outputs Direct inputs/outputs	The inputs and outputs can be controlled through the direct inputs and direct outputs.
	IEC 61131-3	
programming language	Ladder diagrams, function block diagrams, instruction lists, structured texts, and sequential function charts	
Instruction execution speed	0.3 ms/ksteps	
Number of instructions	Approximately 666 instructions	
Constant scan cycle (ms)	1~32000 (The scan cycle can be increased by one millisecond.)	Setting the parameter
Program capacity (step)	16 ksteps (AHCPU500) 64 ksteps (AHCPU510) 128 ksteps (AHCPU520) 256 ksteps (AHCPU530)	
Installation	DIN rails or screws	
Installation of a module	A module is installed directly on a backplane.	
Connection between two backplanes	An extension cable connects two backplanes.	
Maximum number of modules	Twelve input/output modules at most can be installed on a main backplane. Eight input/output modules at most can be installed on an extension backplane. Seven extension backplanes at most can be connected. Sixty-eight input/output modules at most can be installed.	




Item	AHCPU500/510/ 520/530-RS2	AHCPU500/510/ 520/530-EN	Remark
Maximum number of backplanes	1: One main backplane (AHCPU500) 2: One main backplane+One extension backplane (AHCPU510) 4: One main backplane+Three extension backplanes (AHCPU520) 8: One main backplane+Seven extension backplanes (AHCPU530)		
Number of tasks	interrupt: 32; Tim Communication i External 24 V lov 1; External interr	nterrupt: 2; v-voltage interrupt: upt: 212)	
Number of input/output	8192 input/outpu		Number of devices which can be
devices	(X0.0~X511.15/Y	, ,	used in a program
Number of inputs/outputs	2304 inputs/outp 4352 inputs/outp	uts (AHCPU510) uts (AHCPU520) uts (AHCPU530)	Number of inputs/outputs accessible to an actual input/output module
Input relay [X]	8192 (X0.0~X51	,	
Output relay [Y]	8192 (Y0.0~Y51	,	
Internal relay [M]	8192 (M0~M819	,	
Link register [L]	AHCPU500: 16384 (L0~D16383) AHCPU510: 32768 (L0~D32767) AHCPU520: 65536 (L0~D65535) AHCPU 530: 65536 (L0~D65535)		
Timer [T]	2048 (T0~T2047)		
Counter [C]	2048 (C0~C2047	7)	
32-bit counter [HC]	64 (HC0~HC63)		
Data register [D]	AHCPU500:16384 (D0~D16383) AHCPU510: 32768 (D0~D32767) AHCPU520: 65536 (D0~D65535) AHCPU530: 65536 (D0~D65535)		
Stepping relay [S]	2048 (S0~S2047)		
Index register [E]	32 (E0~E31)		
Special auxiliary relay [SM]	2048 (SM0~SM2	2047)	
Special data register [SR]	2048 (SR0~SR2047)		
Serial communication port	Two RS-232/RS-485/ RS-422 communication ports	One RS-232/RS-485/ RS-422 communication port	
Ethernet port	-	10/100M	
USB port	Mini USB	-	
Storage interface	•		
Remote RUN/STOP	The setting range X0.0~X511.15.		
Real-time clock	Years, months, days, hours, minutes, seconds, and weeks		

2.2.2 Profiles


An AH500 system can be configured by setting the following communication ports.


Three built-in communication ports in AHCPU500-EN/AHCPU510-EN/AHCPU520-EN/AHCPU530-EN: An USB port, an RS-232C/RS-422A/RS-485 port, and an Ethernet port

■ Two built-in communication ports in AHCPU500-RS2/AHCPU510-RS2/AHCPU520-RS2/AHCPU530-RS2: An RS-232C port and an RS-422A/RS-485 port

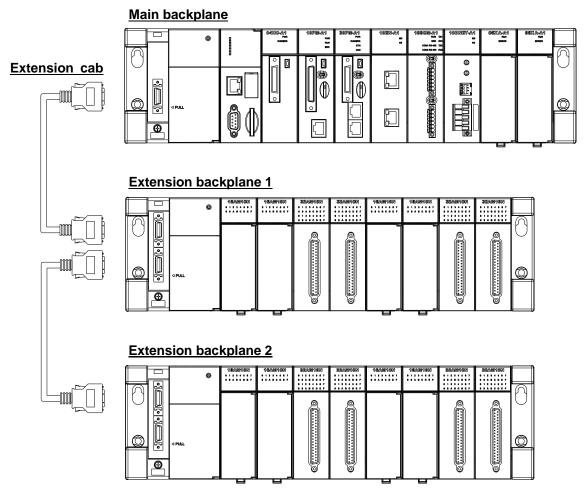
1. Model name 2. LED indicator 3. USB port

4. Ethernet port (for AHCPU530-EN)	5. COM	6. SD slot
7. DIP switch	8. RST button	9. CLR button
10. RUN/STOP switch	11. COM2 (for AHCPU530-RS2)	

(1)	

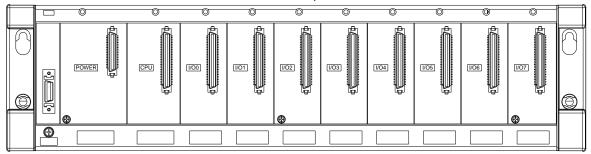
Number	Name	Description			
1	Model name	Model name of the CPU module			
	RUN LED indicator	Operating status of the CPU module ON: The user program is being executed. OFF: The execution of the user program stops. Blink: The user program is in a debugging mode.			
	ERROR LED indicator	Error status of the CPU module ON: A serious error occurs in the system. OFF: The system is normal. Blink: A slight error occurs in the system. Error status of the I/O bus			
2	BUS FAULT LED indicator	ON: A serious error occurs in the I/O bus. OFF: The I/O bus is normal. Blink: A slight error occurs in the I/O bus.			
	SYSTEM LED indicator	System status of the CPU module ON: The external input/output is forced ON/OFF. OFF: The system is in a default status. Blink: The CPU module is being reset./The value in the device is being cleared.			
	COM LED indicator COM1 LED indicator COM2 LED indicator	Communication status of the communication port OFF: There is no communication through the communication port. Blink: There is communication through the communication port.			
3	USB port	Providing the mini USB communication interface			
4	Ethernet port	Providing the Ethernet communication interface			
5	COM	Providing the RS-232/RS-485/RS-422 communication interface			
6	SD slot	Providing the SD interface			
		Function which the system executes			
		SW1 OFF: No action (default) ON: Write protection			
	DIP switch	SW2 OFF: No action (default) ON: The system is copied when the CPU module is supplied with powered. (The user program, the CPU paramter, the module table, and the setting values in the devices are copied from the memory card to the CPU module.) The procedure of restoring the system can not be executed.			
7		OFF: No action (default) ON: It is used with the CLR button to backup the system. (The user program, the CPU paramter, the module table, and the setting values in the devices are backupped from the memory card to the CPU module.)			
		It is used with SW3. OFF: When the system is backed up, the values in the devices are backed up. ON: When the system is backed up, the values in the devices are not backed up.			

Number	Name	Description
8	RST button	Resetting the CPU module, and restoring it to the default factory value P.S. After the CPU module is reset, the ERROR LED indicator is ON, and the error code 16#1402 is shown. To make the PLC operate normally, users need to execute ISPSOFT.exe to set the module table in HWCONFIG.
9	CLR button	Clearing the value in the latched device
10	RUN/STOP switch	RUN: The user program is executed. STOP: The execution of the user program stops.
11	COM1/COM2	Providing the RS-232/RS-485/RS-422 communication interface (for AHCPU530-RS2)

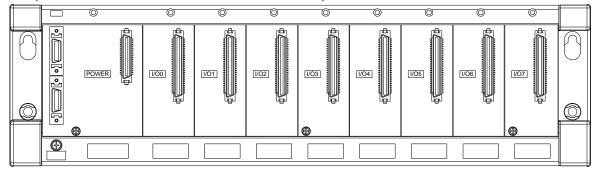

2.3 Basic System Configuration

2.3.1 Introduction

The AH500 system configuration is composed of a CPU module, power supply modules, digital input/output modules, analog input/output modules, temperature measurement modules, network modules, motion control modules, a main backplane, extension cables, and extension backplanes. Besides, an SD card is optionally used.


A main backplane can be connected to an extension backplane through the interface on the left side of the main backplane, the interface on the left side of the extension backplane, and a Delta extension cable. For a CPU module or a RTU, a main backplane can be connected to seven extension backplanes at most through the interfaces on the backplanes. Therefore, if there is a CPU module and there are several RTUs, not only the CPU module can be connected to seven extension backplanes, but also every RTU can connect to seven extension backplanes.

There are two ports on an extension backplane. The upper port is used to connect to a superior backplane, and the lower port is used to connect to an inferior backplane.


2.3.2 Configuring a Main Backplane

A CPU module, a power supply module, and I/O modules are installed on a main backplane. Twelve I/O modules at most can be installed on a main backplane.

2.3.3 Configuring an Extension Backplane

An extension backplane can be connected to a main backplane to increase the number of I/O modules. Eight I/O modules at most can be installed on an extension cable, and seven extension backplanes at most can be connected to a main backplane.

2.3.4 Maximum Extension

Twelve I/O modules at most can be installed on a main backplane. (There are four types of main backplanes. These four types are four-slot main backplanes, six-slot main backplanes, eight-slot main backplanes, and twelve-slot main backplanes.) Eight I/O modules at most can be installed on an extension backplane, and seven extension backplanes at most can be connected to a main backplane. (There are two types of extension backplanes. These two types are six-slot extension backplanes, and eight-slot extension backplanes.) Sixty-eight I/O modules at most can be installed on backplanes. Eight AH10EN-5A modules at most can be installed on a main backplane, and eight AH10DNET-5A modules at most can be installed on a main backplane. The other I/O modules can be installed on a main backplane unlimitedly. Besides, digital input/output modules, analog input/output modules, temperature measurement modules, and AH10SCM-5A modules can be installed on an extension backplane. The other I/O modules can not be installed on an extension backplane.

Extension	Maximum Extension	Description
A main backplane is connected to extension backplanes	One main backplane and seven extension backplanes (There are four types of main backplanes. These four types are four-slot main backplanes, six-slot main backplanes, eight-slot main backplanes, and twelve-slot main backplanes. There are two types of extension backplanes. These two types are six-slot extension backplanes, and eight-slot extension backplanes.)	Sixty-eight I/O modules at most can be installed on backplanes.

AH500 system configuration

Configuration	Description	
	There is one main backplane in an AH500 system.	
	Four-slot main backplane: AHBP04M1-5A	
Main backplane	Six-slot main backplane: AHBP06M1-5A	
	Eight-slot main backplane: AHBP08M1-5A	
	Twelve-slot main backplane: AHBP12M1-5A	
	There are seven extension backplanes at most in an AH500 system.	
Extension backplane	Six-slot extension backplanes: AHBP06E1-5A	
	Eight-slot extension backplanes: AHBP08E1-5A	

Configuration	Description
Extension cable	There are four types of lengths. AHACAB06-5: 60 cm AHACAB10-5A: 1 m AHACAB15-5A: 1.5 m
Power supply module	AHACAB30-5A: 3 m Every backplane needs a power supply module. (The voltages of the direct currents which can flow into AHPS05-5A range from 85 V to 264 V, and the direct currents which can flow from AHPS05-5A are 5 A. AHPS05-5A is used with a backplane.)
CPU module	There is one CPU module in an AH500 system. AHCPU530-RS2 and AHCPU530-EN CPU modules.
Digital I/O module	21.11.10
Analog I/O module	Digital I/O modules, analog I/O modules, and temperature measurement modules can be installed in an AH500 system
Temperature measurement module	unlimitedly.
Motion control module	Motion control modules can only be installed on a main backplane.
Network module	Network modules can only be installed on a main backplanes. Eight AH10EN-5A modules at most can be installed on a main backplane, and eight AH10DNET-5A modules at most can be installed on a main backplane. However, AHSCM-5A modules can be installed on a main backplane unlimitedly.

2.4 Specifications for Digital Input/Output Modules

2.4.1 General Specifications

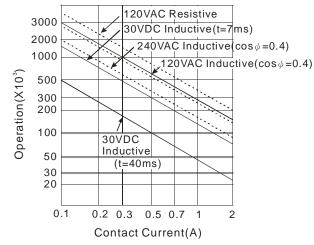
• Electrical specifications for the inputs through which 24 V DC signals pass

	Model	ΔΗ16ΔΜ10Ν	- ΔH32ΔM10N	AH64AM10N	ΔΗ16ΔΡ11R	ΔΗ16ΔΡ11Τ	ΔΗ16ΔΡ11Ρ	
Item			AIIOZAMITON	AIIOTAMITON	AIIIOAI III	AIIIOAI III	AIIIOAI III	
Number of	inputs	16	32	64	8	8	8	
Connector type		Removable terminal block	DB37 connector	Latch connector	Removable terminal block		al block	
Input type		Digital inpu	ıt					
Input form		Direct curre	ent (sinking o	or sourcing)				
Input curre	nt	24 V DC		24 V DC	24 V DC			
input curre	511L	5 mA		3.2 mA	5 mA			
Action	OFF→ON	>15 V DC						
level	ON→OFF	<5 V DC						
Response	OFF→ON	10 ms±10%						
time	ON→OFF	15 ms±10%	15 ms±10%					
Maximum i frequency	input	50 Hz						
Input impe	dance	4.7	kΩ	7.5 kΩ		4.7 kΩ		
		Voltage input						
Input signal		Sinking: The inputs are NPN transistors whose collectors are open						
		collectors.						
		Sourcing: The inputs are PNP transistors whose collectors are open collectors.				e open		
Electrical i	solation	Optocouple	er					
Input displ	ay	When the	optocoupler i	s driven, the	input LED in	dicator is Of	٧.	

 Electrical specifications for the inputs through which the alternating-current signals ranging in voltage from 120 V to 240 V pass

	7 HOIII 120 V to 240 V pass			
	Model	16AM30N		
Item		TOAIVISUIN		
Number of	inputs	16		
Connector	type	Removable terminal block		
Input type		Digital input		
Input form		Alternating current		
Input current		120 V AC and 4.5 mA; 240 V AC and 9 mA		
Action	OFF→ON	>79 V AC		
level	ON→OFF	<40 V AC		
Response	OFF→ON	15 ms		
time	ON→OFF	30 ms		
Electrical isolation Optocoupler		Optocoupler		
Input displ	ay	When the optocoupler is driven, the input LED indicator is ON.		

Electrical specifications for digital outputs

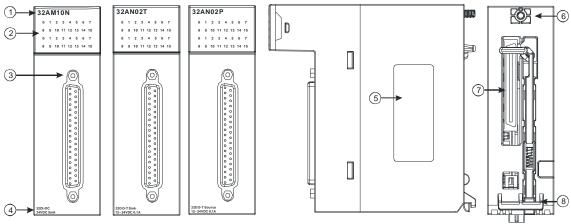

Item	Model	AH16AN01R	AH16AP11R	AH16AN01T	AH16AP11T	AH16AN01P	AH16AP11P	AH16AN01S
Number of	outputs	16	8	16	8	16	8	16
Connector	type			Remo	vable term	ninal block		
Output typ	Output type Relay-R			istor-T king)		stor-P cing)	TRIAC-S	
Voltage specificati	ons	250 V A below 3		12~30	V DC ^{*2}	12~30	V DC ^{*2}	120/240 V AC
N4	Resistance		utput COM)		0.5 A/output		0.5 A/output (2 A/COM)	
Maximum load	Inductance	Life cycle	e curve ^{*3}	12 W (2	4 V DC)	12 W (2	4 V DC)	Not applicable
	Bulb	20W (24 V DC) 100W (230 V AC)		2 W (24	1 V DC)	2 W (24	4 V DC)	60 W AC
Maximum	Resistance	1 1	Hz	100	Hz	100) Hz	10 Hz
output frequency*1	Inductance	0.5	0.5 Hz		Hz	0.5	Hz	-
nequency	Bulb	1 1	Hz	10	Hz	10	Hz	10 Hz
Hardware response	OFF→ON	Approxin	nately 10	50	μs	50	μs	1 ms+0.5 AC
time	ON→OFF	m	IS	200) µs	200) µs	cycles

Item	Model	AH32AN02T	AH32AN02P	AH64AN02T	AH64AN02P	
Number of	f outputs	32	32	64	64	
Connecto	r type	DB37 connector Latch co			onnector	
Output typ	oe .	Transistor–T (sinking)	Transistor-P (sourcing)	Transistor-T (sinking)	Transistor-P (sourcing)	
Voltage specificati	ions	12~30 V DC ^{*2}				
	Resistance	0.1 A/output (1 A/COM)				
Maximum load	Inductance	Not applicable				
1000	Bulb	Not applicable				
Maximum	Resistance	100 Hz	100 Hz	100 Hz	100 Hz	

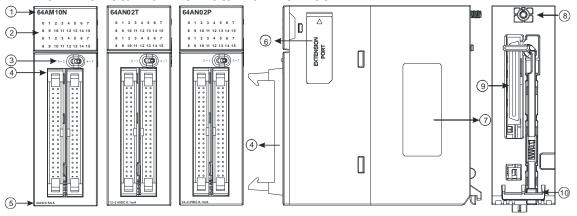
Item	Model	AH32AN02T	AH32AN02P	AH64AN02T	AH64AN02P	
	Inductance	-	-	-	-	
frequency*1	Bulb	-	-	-	-	
Maximum	OFF→ON	0.5 ms	0.5 ms	0.5 ms	0.5 ms	
response time	ON→OFF	0.5 1115	0.5 1115	0.5 1113	0.5 1115	

- *1: The scan cycle affects the frequency.
- *2: The terminals UP and ZP needs to be connected to the 24 V DC auxiliary power supply (-15%~+20%), and the rated current consumption is 1 mA/output.
- *3: The life cycle curve is as follows.

2


2.4.2 Profiles

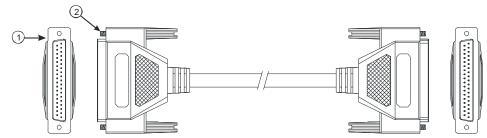
16AM10N-5A/16AM30N-5A/16AN01S-5A/16AN01R-5A/16AN01T-5A/16AN01P-5A/ 16AP11R-5A/16AP11T-5A/16AP11P-5A


Number	Name	Description
1	Model name	Model name of the module
2	Input/Output LED indicator	If there is an input signal, the input LED indicator is ON. If there is an output signal, the output LED indicator is ON.
3	Removable terminal block	The inputs are connected to a switch or a sensor. The outputs are connected to a load which will be driven, e.g. a contact, or a solenoid valve.
4	Arrangement of the input/output terminals	Arrangement of the terminals
5	Description of the inputs/outputs	Number of inputs/outputs and specifications
6	Label	Nameplate
7	Clip	Fixing the removable terminal block
8	Set screw	Fixing the module
9	Connector	Connecting the module and a backplane
10	Projection	Fixing the module

AH32AM10N-5B/AH32AN02T-5B/AH32AN02P-5B

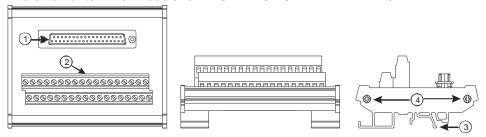
Number	Name	Description
1	Model name	Model name of the module
2	Input/Output LED indicator	If there is an input signal, the input LED indicator is ON. If there is an output signal, the output LED indicator is ON.
3	DB37 connector	It is connected to the I/O extension cable DVPACAB7C10.
4	Description of the inputs/outputs	Number of inputs/outputs and specifications
5	Label	Nameplate
6	Set screw	Fixing the module
7	Connector	Connecting the module and a backplane
8	Projection	Fixing the module

AH64AM10N-5C/AH64AN02T-5C/AH64AN02P-5C

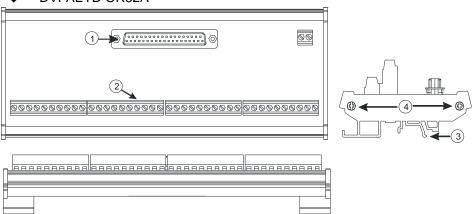


Number	Name	Description
1	Model name	Model name of the module
2	Input/Output LED indicator	If there is an input signal, the input LED indicator is ON. If there is an output signal, the output LED indicator is ON.
3	LED indicator switch	Left: High 32 bits Right: Low 32 bits
4	Latch connector	It is connected to the I/O extension cable DVPACAB7A10/DVPACAB7B10.
5	Description of the inputs/outputs	Number of inputs/outputs and specifications
6	Extension port	Updating the firmware

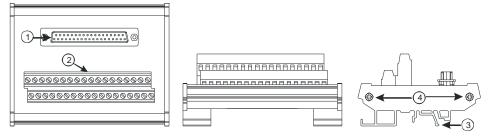
Number	Name	Description
7	Label	Nameplate
8	Set screw	Fixing the module
9	Connector	It connects the module and a backplane.
10	Projection	Fixing the module


• The DB37 connector, the I/O extension cable, and the external terminal module

1. The I/O extension cable DVPACAB7C10

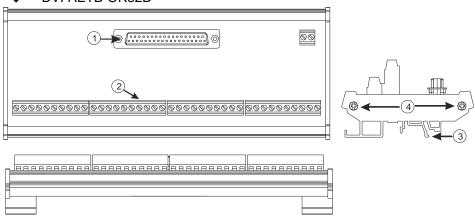

Number	Name	Description
1	DB37 connector	Connecting a digital input/output module and an external terminal module.
2	Set screw	Fixing the connector

2. The external terminal module for AH32AM10N-5B: DVPAETB-ID32B

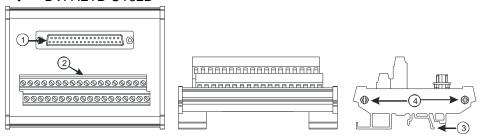


3. The external terminal modules for AH32AN02T-5B

◆ DVPAETB-OR32A

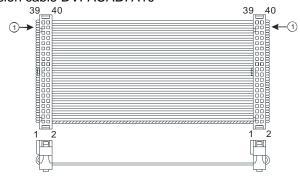


◆ DVPAETB-OT32B

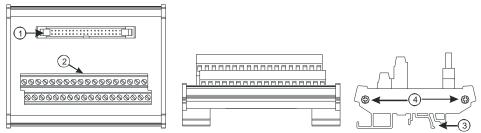


4. The external terminal modules for AH32AN02P-5B

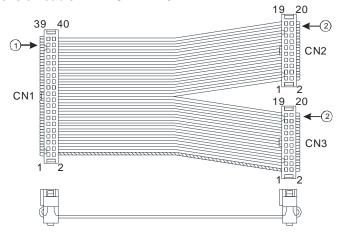
◆ DVPAETB-OR32B


♦ DVPAETB-OT32B

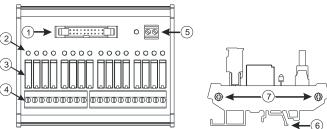
Number	Name	Description
1	DB37 connector	Connecting the external terminal module and a digital input/output module
2	Terminals	Input/Output terminals for wiring
3	Clip	Hanging the external terminal module on a DIN rail
4	Set screw	Fixing the base


The latch connector, the I/O extension cable, and the external terminal module

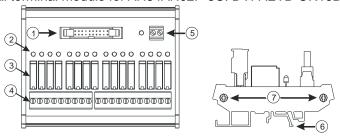
1. The I/O extension cable DVPACAB7A10


Number	Name	Description
1	40-pin IDC connector	Connecting a digital input/output module and an external terminal module.

2. The external terminal module for AH64AM10N-5C: DVPAETB-ID32A


Number	Name	Description
1	40-pin latch connector	Connecting the external terminal module and a digital input/output module
2	Terminals	Input/Output terminals for wiring
3	Clip	Hanging the external terminal module on a DIN rail
4	Set screw	Fixing the base

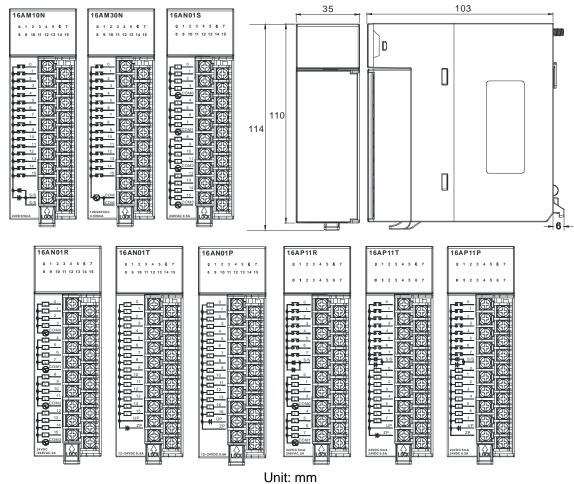
3. The I/O extension cable DVPACAB7B10



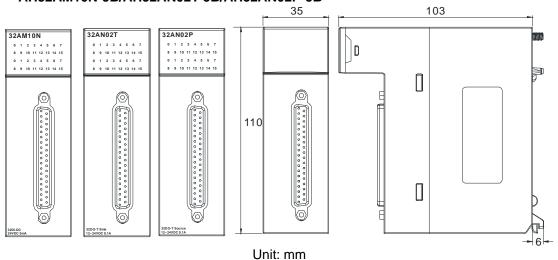
Number	Name	Description
1	40-pin IDC connector	Connecting a digital input/output module and an external terminal module.

4. The external terminal module for AH64AN02T-5C: DVPAETB-OR16A

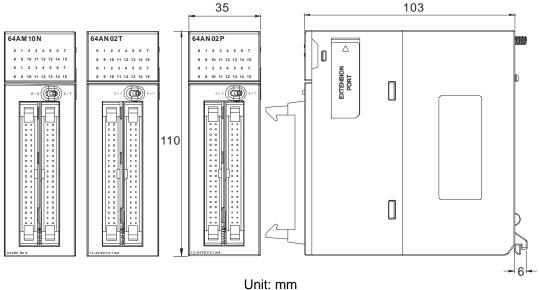
5. The external terminal module for AH64AN02P-5C: DVPAETB-OR16B



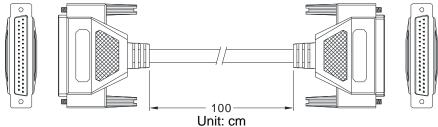
Number	Name	Description
1	20-pin latch	Connecting the external terminal module and a digital
'	connector	input/output module
2	Output LED indicator	If there is an output signal, the output LED indicator is ON.
3	Output relay	Output relay
4	Output terminal	Output terminal for wiring
5	Power input terminal	Power input terminal for wiring
6	Clip	Hanging the external terminal module on a DIN rail
7	Set screw	Fixing the base



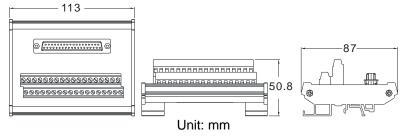
2.4.3 Dimensions


AH16AM10N-5A/AH16AM30N-5A/AH16AN01S-5A/AH16AN01R-5A/AH16AN01T-5A/AH16AN01P-5A/AH16AP11R-5A/AH16AP11T-5A/AH16AP11P-5A

AH32AM10N-5B/AH32AN02T-5B/AH32AN02P-5B

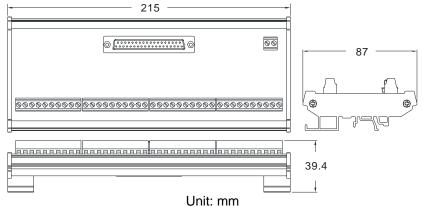


AH64AM10N-5B/AH64AN02T-5C/AH64AN02P-5C

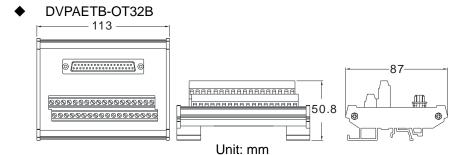


The DB37 connector, the I/O extension cable, and the external terminal module

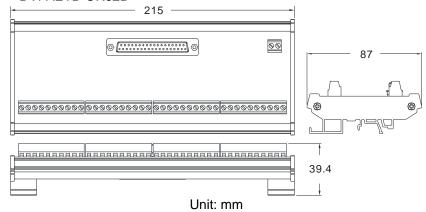
1. The I/O extension cable DVPACAB7C10

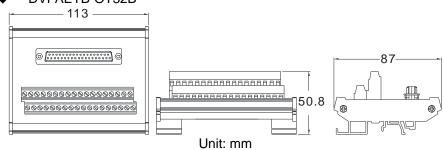


2. The external terminal module for AH32AM10N-5B: DVPAETB-ID32B

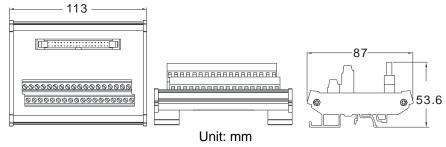


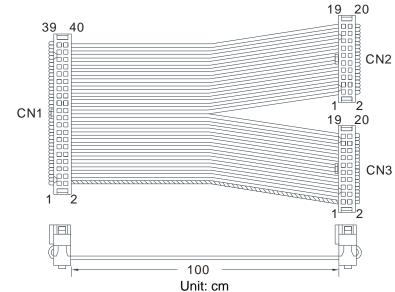
3. The external terminal modules for AH32AN02T-5B

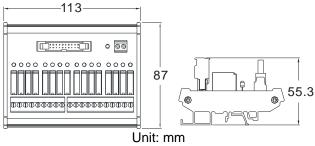

◆ DVPAETB-OR32A

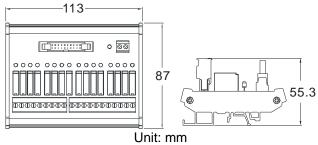


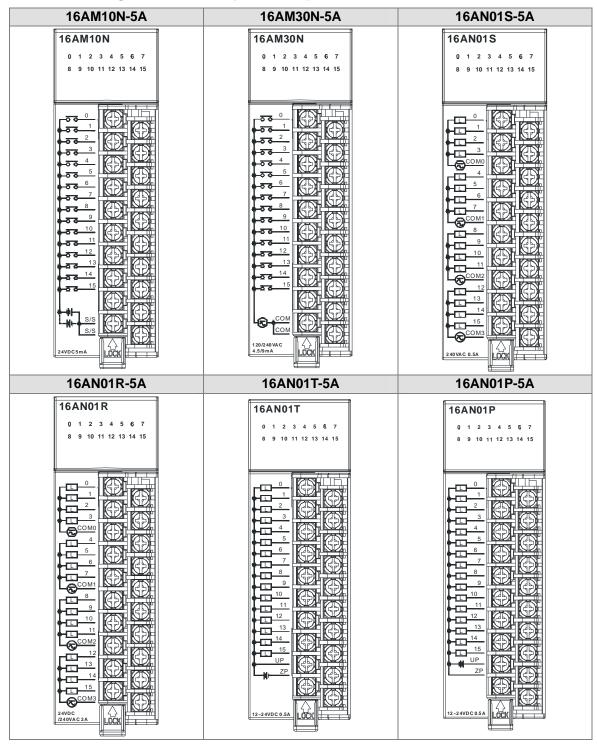
- 4. The external terminal modules for AH32AN02P-5B
 - ◆ DVPAETB-OR32B

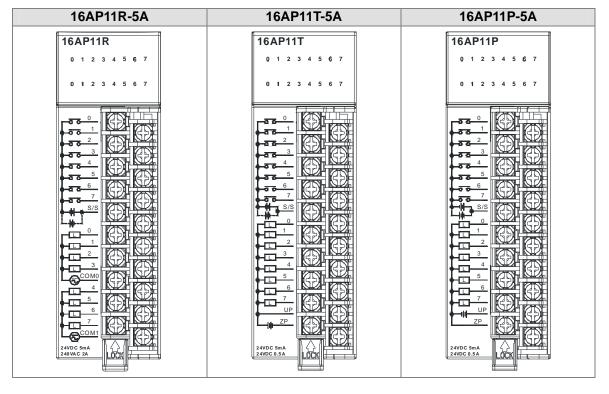

◆ DVPAETB-OT32B

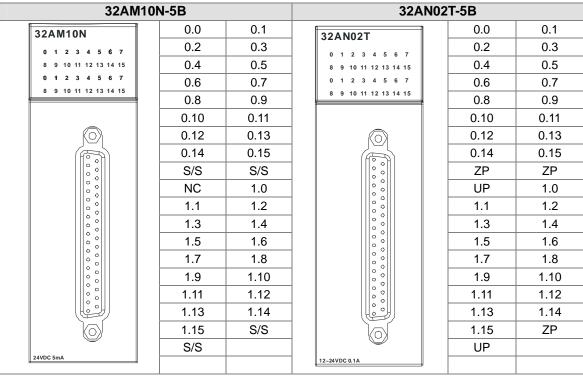

- The latch connector, the I/O extension cable, and the external terminal module
 - ◆ The I/O extension cable DVPACAB7A10

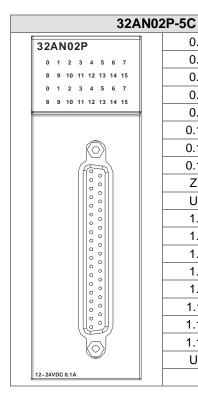

The external terminal module for AH64AM10N-5C: DVPAETB-ID32A


◆ The I/O extension cable DVPACAB7B10

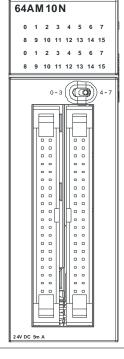

◆ The external terminal module for AH64AN02T-5C: DVPAETB-OR16A

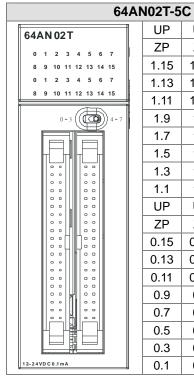


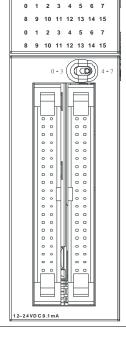

◆ The external terminal module for AH64AN02P-5C: DVPAETB-OR16B



2.4.4 Arrangement of Input/Output Terminals

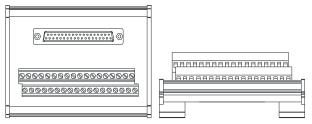





2P-5C	
0.0	0.1
0.2	0.3
0.4	0.5
0.6	0.7
0.8	0.9
0.10	0.11
0.12	0.13
0.14	0.15
ZP	ZP
UP	1.0
1.1	1.2
1.3	1.4
1.5	1.6
1.7	1.8
1.9	1.10
1.11	1.12
1.13	1.14
1.15	ZP
UP	

64	A۱	/110N-5	SC		
	Ì	NC	NC	NC	NC
7		S/S	S/S	2.0	2.1
15		1.15	1.14	2.2	2.3
7		1.13	1.12	2.4	2.5
15		1.11	1.10	2.6	2.7
4 - 7		1.9	1.8	2.8	2.9
		1.7	1.6	2.10	2.11
		1.5	1.4	2.12	2.13
		1.3	1.2	2.14	2.15
		1.1	1.0	S/S	S/S
		NC	NC	NC	NC
		S/S	S/S	3.0	3.1
		0.15	0.14	3.2	3.3
		0.13	0.12	3.4	3.5
		0.11	0.10	3.6	3.7
		0.9	0.8	3.8	3.9
		0.7	0.6	3.10	3.11
		0.5	0.4	3.12	3.13
		0.3	0.2	3.14	3.15
	,	0.1	0.0	S/S	S/S

NUZ 1-5	C		
UP	UP	2.0	2.1
ZP	ZP	2.2	2.3
1.15	1.14	2.4	2.5
1.13	1.12	2.6	2.7
1.11	1.10	2.8	2.9
1.9	1.8	2.10	2.11
1.7	1.6	2.12	2.13
1.5	1.4	2.14	2.15
1.3	1.2	ZP	ZP
1.1	1.0	UP	UP
UP	UP	3.0	3.1
ZP	ZP	3.2	3.3
0.15	0.14	3.4	3.5
0.13	0.12	3.6	3.7
0.11	0.10	3.8	3.9
0.9	0.8	3.10	3.11
0.7	0.6	3.12	3.13
0.5	0.4	3.14	3.15
0.3	0.2	ZP	ZP
0.1	0.0	UP	UP

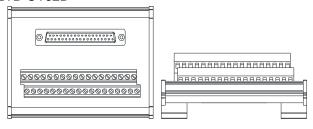


64AN02P

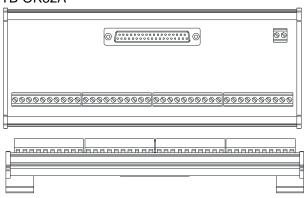
64	A۱	102P-5	C		
T		UP	UP	2.0	2.1
,		ΖP	ZP	2.2	2.3
15		1.15	1.14	2.4	2.5
7		1.13	1.12	2.6	2.7
15		1.11	1.10	2.8	2.9
4 - 7		1.9	1.8	2.10	2.11
ľ		1.7	1.6	2.12	2.13
		1.5	1.4	2.14	2.15
		1.3	1.2	ZP	ZP
		1.1	1.0	UP	UP
		UP	UP	3.0	3.1
		ΖP	ZP	3.2	3.3
		0.15	0.14	3.4	3.5
		0.13	0.12	3.6	3.7
		0.11	0.10	3.8	3.9
		0.9	0.8	3.10	3.11
		0.7	0.6	3.12	3.13
		0.5	0.4	3.14	3.15
		0.3	0.2	ZP	ZP
		0.1	0.0	UP	UP

• The DB37 connector and the external terminal module

1. The external terminal module for AH32AM10N-5B: DVPAETB-ID32B

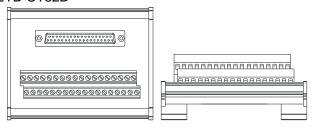


Upper row	X0	X2	X4	X6	X10	X12	X14	X16	X20	X22	X24	X26	X30	X32	X34	X36	S/S	S/S
Lower row	X1	Х3	X5	X7	X11	X13	X15	X17	X21	X23	X25	X27	X31	X33	X35	X37	S/S	S/S

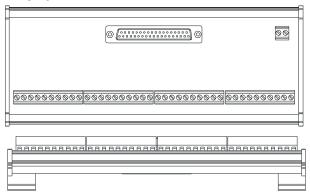

2. The external terminal modules for AH32AN02T-5B

DVPAETB-OT32B

Upper row	Y0	Y2	Y4	Y6	Y10	Y12	Y14	Y16	Y20	Y22	Y24	Y26	Y30	Y32	Y34	Y36	UP	UP
Lower row	Y1	Y3	Y5	Y7	Y11	Y13	Y15	Y17	Y21	Y23	Y25	Y27	Y31	Y33	Y35	Y37	ZP	ZP

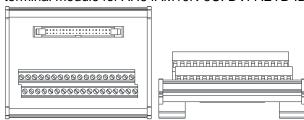

◆ DVPAETB-OR32A

																			GND	+24V
1 st from the left	C0	Y0	Y1	Y2	Y3	C1	Y4	Y5	Y6	Y7	C2	Y10	Y11	Y12	Y13	С3	Y14	Y15	Y16	Y17
21 st from the left	C4	Y20	Y21	Y22	Y23	C5	Y24	Y25	Y26	Y27	C6	Y30	Y31	Y32	Y33	C7	Y34	Y35	Y36	Y37

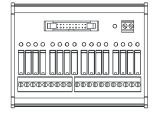

3. The external terminal modules for AH32AN02P-5B

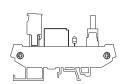
◆ DVPAETB-OT32B

Upper row	Y0	Y2	Y4	Y6	Y10	Y12	Y14	Y16	Y20	Y22	Y24	Y26	Y30	Y32	Y34	Y36	UP	UP
Lower row	Y1	Y3	Y5	Y7	Y11	Y13	Y15	Y17	Y21	Y23	Y25	Y27	Y31	Y33	Y35	Y37	ZP	ZP

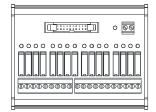

◆ DVPAETB-OR32B

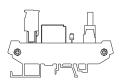
																			GND	+24V
1 st from the left	CO	Y0	Y1	Y2	Y3	C1	Y4	Y5	Y6	Y7	C2	Y10	Y11	Y12	Y13	C3	Y14	Y15	Y16	Y17
21 st from the left	C4	Y20	Y21	Y22	Y23	C5	Y24	Y25	Y26	Y27	C6	Y30	Y31	Y32	Y33	C7	Y34	Y35	Y36	Y37


• The latch connector and the external terminal module


1. The external terminal module for AH64AM10N-5C: DVPAETB-ID32A

Upper row	S/S	S/S	X0	X2	X4	X6	X10	X12	X14	X16	X20	X22	X24	X26	X30	X32	X34	X36
Lower row	S/S	S/S	X1	Х3	X5	X7	X11	X13	X15	X17	X21	X23	X25	X27	X31	X33	X35	X37


2. The external terminal module for AH64AN02T-5C: DVPAETB-OR16A



																		GND	+24V
C0	Y0	Y1	Y2	Y3	C1	Y4	Y5	Y6	Y7	C2	Y10	Y11	Y12	Y13	C3	Y14	Y15	Y16	Y17

3. The external terminal module for AH64AN02P-5C: DVPAETB-OR16B

																		GND	+24V
C0	Y0	Y1	Y2	Y3	C1	Y4	Y5	Y6	Y7	C2	Y10	Y11	Y12	Y13	C3	Y14	Y15	Y16	Y17

2.5 Specifications for Analog Input/Output Modules

2.5.1 General Specifications

AH04AD-5A/AH08AD-5B/AH08AD-5C

Module name	AH04AD-5A	AH08AD-5B	AH08AD-5C			
Number of inputs	4	8	8			
Analog-to-digital conversion	Voltage input/Current input	Voltage input	Current input			
Supply voltage	24 V DC (20.4 V DC~28.8 \	/ DC) (-15%~+20%)				
Connector type	Removable terminal block	Removable terminal block				
Overall accuracy	input current. -20~60°C (-4~140°F): The 6	25°C (77°F): The error is ±0.02% of an input voltage, and ±0.05% of an input current. -20~60°C (-4~140°F): The error is ±0.15% of an input voltage, and ±0.8% of an input current.				
Conversion time	150 µs/channel					
Isolation	There is isolation between a there is no isolation betwee Isolation between a digital of Isolation between an analog Isolation between an analog Isolation between the 24 V	n analog channels. ircuit and a ground: 50 g circuit and a ground: g circuit and a digital ci	00 V DC 500 V DC rcuit: 500 V DC			

Functional specifications

Functional specifications							
Analog-to-digital conversion	Voltage input						
Rated input range	-10 V~10 V	0 V~10	V	±5 V	0 V~5 V	1 V~5 V	
Hardware input range	-10.1 V~10.1 V	-0.1 V~10	.1 V	-5.05 V~5.05 V	-0.05 V~5.05 V	0.95 V~5.05 V	
Fiducial error (25°C)	±0.02%	±0.01%		±0.02%	±0.02%	±0.02%	
Linearity error	±0.02%	±0.03%		±0.01%	±0.01%	±0.02%	
Hardware resolution	16 bits						
Input impedance	>200 kΩ						
Absolute input range	±15 V						
Analog-to-digital conversion		Current input					
Rated input range	±20 m	A		0m A~20 mA 4 r		A~20 mA	
Hardware input range	-20.2 mA~2	0.2 mA	-	-0.2 mA~20.2 mA 3.8 n		nA~20.2 mA	
Fiducial error (25°C)	±0.04	%		±0.05% ±		±0.02%	
Linearity error	±0.01% ±0.01% ±0.02%						
Hardware resolution	16 bits						
Input impedance	250 Ω						
Absolute input range	±32 mA						

AH04DA-5A/AH08DA-5B/AH08DA-5C

Electrical specification							
Module name	AH04DA-5A	AH08DA-5B	AH08DA-5C				
Number of outputs	4	8	8				
Analog-to-digital conversion	Voltage output/Current output	Voltage output	Current output				
Supply voltage	24 V DC (20.4 V DC~28.8 V D	OC) (-15%~+20%)					
Connector type	Removable terminal block						
Overall accuracy	25°C (77°F): The error is ±0.05% of an output voltage, and ±0.1% of an output current. -20~60°C (-4~140°F): The error is ±0.1% of an output voltage, and ±0.15% of an output current.						
Conversion time	150 µs/channel						
Isolation	There is isolation between a d there is no isolation between a lisolation between a digital circle lisolation between an analog c lisolation between an analog c lisolation between the 24 V DC	analog channels. uit and a ground: 50 ircuit and a ground: ircuit and a digital ci	0 V DC 500 V DC rcuit: 500 V DC				

Functional specifications

i uncuonai spec	inoations						
Analog-to-digital conversion		Voltage output					
Rated output range	±10 V	0 V~10 V	±5 V	0 V~5 V	1 V~5 V		
Hardware output range	-10.1 V~10.1 V	-0.1 V~10.1 V	-5.05 V~5.05 V	-0.05 V~5.05 V	0.95 V~5.05 V		
Fiducial error (25°C)	±0.01%	±0.02%	±0.01%	±0.01%	±0.01%		
Linearity error	±0.006%	±0.01%	±0.01%	±0.02%	±0.02%		
Hardware resolution	16 bits						
Permissible	1 kΩ~2 MΩ: ±10 V and 0 V~10 V						
load impedance	≧500 Ω: 1 V~5 V						
Analog-to-digital conversion	Current output						
Rated output range	0 r	mA~20 mA		4 mA~20 r	mA		
Hardware output range	-0.2	mA~20.2 mA		3.8 mA~20.2 mA			
Fiducial error (25°C)	±0.01% ±0.01%						
Linearity error	±0.01% ±0.01%						
Hardware resolution	16 bits						
Permissible load impedance	≦550 Ω						

AH06XA-5A

Module name	AH06XA-5A
Number of analog	4 inputs
inputs/outputs	2 outputs
Analog-to-digital conversion	Voltage input/Current input/Voltage output/Current output
Supply voltage	24 V DC (20.4 V DC~28.8 V DC) (-15%~+20%)
Connector type	Removable terminal block
Conversion time	150 us/channel
	There is isolation between a digital circuit and an analog circuit, but there is no isolation between analog channels.
laalation	Isolation between a digital circuit and a ground: 500 V DC
Isolation	Isolation between an analog circuit and a ground: 500 V DC
	Isolation between an analog circuit and a digital circuit: 500 V DC
	Isolation between the 24 V DC and a ground: 500 V DC

Functional specifications for the analog-to-digital conversion

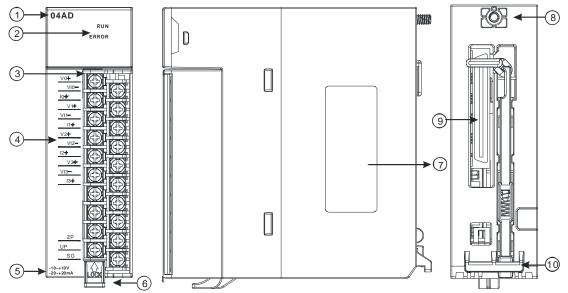
Overall accuracy

25°C (77°F): The error is ±0.02% of an input voltage, and ±0.05% of an input current.

-20~60°C (-4~140°F): The error is ±0.15% of an input voltage, and ±0.8% of an input current.

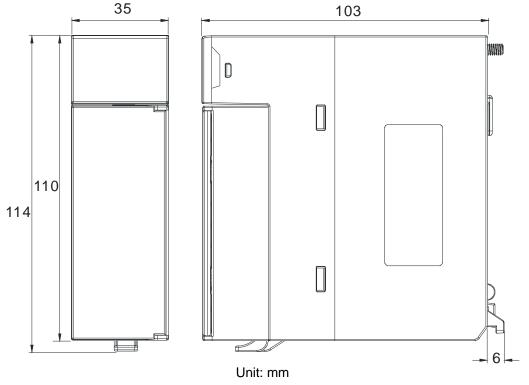
Analog-to-digita I conversion				Voltage input			
Rated input range	-10 V~10 V	0 V~10	V	±5 V	0 V~5 V	1 V~5 V	
Hardware input range	-10.1 V~10.1 V	-0.1 V~10	.1 V	-5.05 V~5.05 V	-0.05 V~5.05 V	0.95 V~5.05 V	
Fiducial error (25°C)	ial error		, 0	±0.02%	±0.02%	±0.02%	
Linearity error	±0.02%	±0.03%	ó	±0.01%	±0.01%	±0.02%	
Hardware resolution	16 bits	16 bits					
Input impedance	>200 kΩ						
Absolute input range	±15 V						
Analog-to-digita I conversion	Current input						
Rated input range	±20 m.	A		0 mA~20 mA	4 m	A~20 mA	
Hardware input range	-20.2 mA~2	0.2 mA	-	0.2 mA~20.2 m/	A~20.2 mA		
Fiducial error (25°C)	±0.049	%		±0.05%	=	±0.02%	
Linearity error	±0.01% ±0.01% ±0.02%					-0.02%	
Hardware resolution	16 bits						
Input impedance	250 Ω						
Absolute input range	±32 mA						

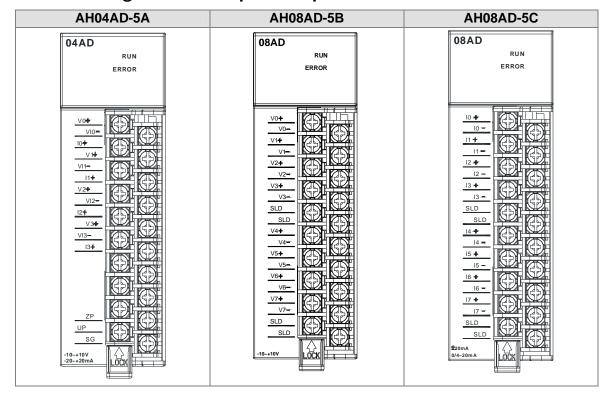
Functional specifications for the digital-to-analog conversion


	25°C (77°F): The error is ±0.05% of an output voltage, and ±0.1% of
Overall accuracy	an output current.
Overall accuracy	-20~60°C (-4~140°F): The error is ±0.1% of an output voltage, and
	±0.15% of an output current.

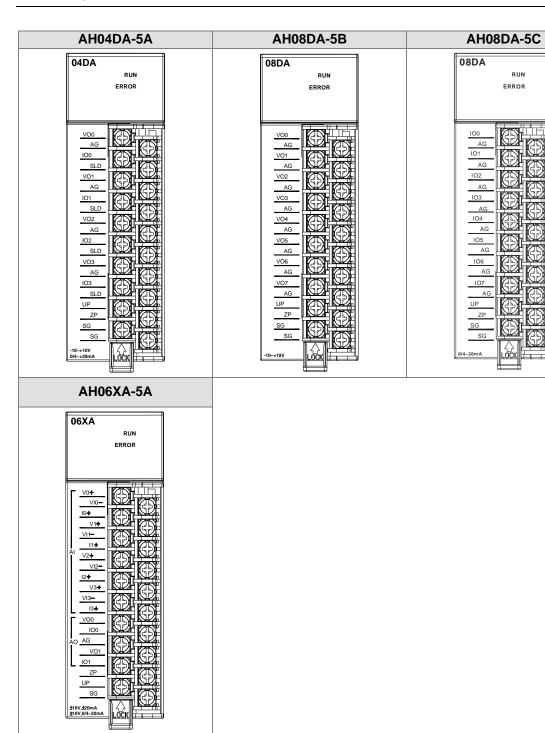
Digital-to-analog conversion	Voltage output					
Rated output range	±10 V	0V~10 V	±5 V	0 V~5 V	1 V~5 V	
Hardware output range	-10.1 V~10.1 V	-0.1 V~10.1 V	-5.05 V~5.05 V	-0.05 V~5.05 V	0.95 V~5.05 V	
Fiducial error (25°C)	±0.01%	±0.02%	±0.01%	±0.01%	±0.01%	
Linearity error	±0.006%	±0.01%	±0.01%	±0.02%	±0.02%	
Hardware resolution	16 bits					
Permissible	1 kΩ~2 MΩ: ±10 V and 0 V~10 V					
load impedance	≧500Ω: 1 V~5 V					
Digital-to-analog conversion	Current output					
Rated output range	0 r	nA~20 mA		4 mA~20 r	mA	
Hardware output range	-0.2	mA~20.2 mA		3.8 mA~20.2 mA		
Fiducial error (25°C)	±0.01% ±0.01%					
Linearity error	±0.01% ±0.01%					
Hardware resolution	16 bits	16 bits				
Permissible load impedance	≦550 Ω					

2.5.2 Profiles

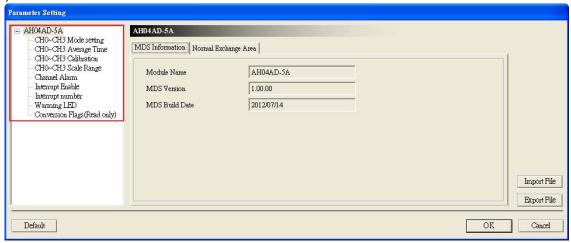

AH04AD-5A/AH08AD-5B/AH08AD-5C/AH04DA-5A/AH08DA-5B/AH08DA-5C/AH06XA-5A

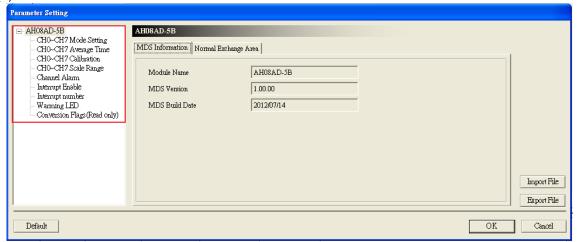

Number	Name	Description
1	Model name	Model name of the module
	RUN LED indicator	Operating status of the module ON: The module is running. OFF: The module stops running.
2	ERROR LED indicator	Error status of the module ON: A serious error occurs in the module. OFF: The module is normal. Blink: A slight error occurs in the module.
3	Removable terminal block	The inputs are connected to a sensor. The outputs are connected to a load which will be driven.
4	Arrangement of the input/output terminals	Arrangement of the terminals
5	Description of the inputs/outputs	Simple specifications for the module
6	Clip	Removing the terminal block
7	Label	Nameplate
8	Set screw	Fixing the module
9	Connector	Connecting the module and a backplane
10	Projection	Fixing the module

2.5.3 Dimensions

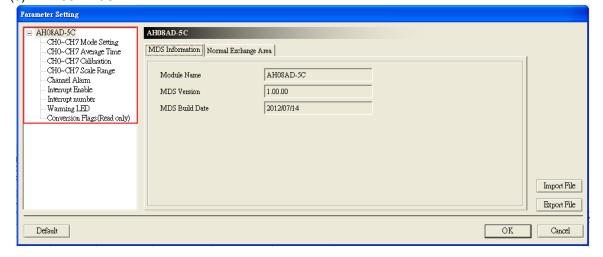

AH04AD-5A/AH08AD-5B/AH08AD-5C/AH04DA-5A/AH08DA-5B/AH08DA-5C/AH06XA-5A

2.5.4 Arrangement of Input/Output Terminals

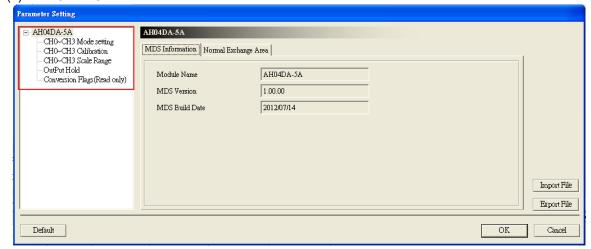




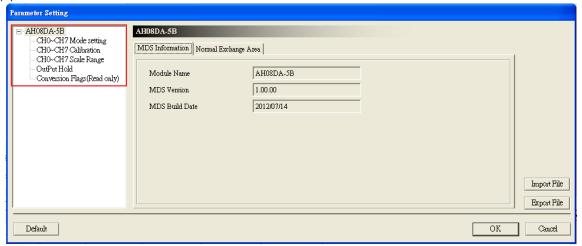
2.5.5 Setting Parameters


(1) AH04AD-5A

(2) AH08AD-5B

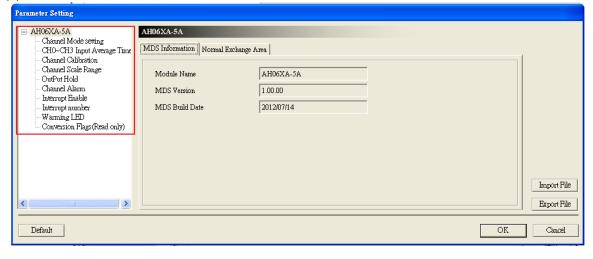


(3) AH08AD-5C




(4) AH04DA-5A

(5) AH08DA-5B



(6) AH08DA-5C

(7) AH06XA-5A

Please refer to AH500 Module Manual for more information about setting parameters.

2.6 Specifications for Temperature Measurement Modules

2.6.1 General Specifications

AH04PT-5A

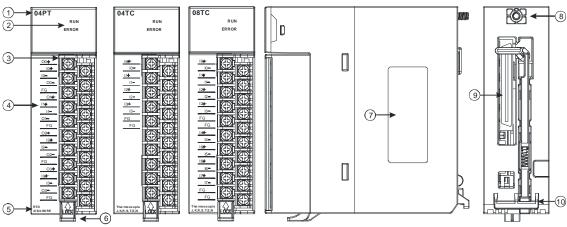
Number of analog inputs	4
	Three-wire configuration: Pt100/Ni100/Pt1000/Ni1000 sensor, and 0~300 Ω input impedance
Applicable sensor	Two-wire/Four-wire configuration: Pt100/Ni100/Pt1000/Ni1000 sensor, and 0~300 Ω input impedance
	Pt100: DIN 43760-1980 JIS C1604-1989; 100 Ω 3850 PPM/°C
	Pt1000: DIN EN60751; 1 kΩ 3850 PPM/°C
	Ni100/Ni1000: DIN 43760
Supply voltage	24 V DC (20.4 V DC~28.8 V DC) (-15%~+20%)
Connector type	Removable terminal block
Overall accuracy	25°C/77°F: The error is ±0.5% of the input within the range.
Overall accuracy	-20~60°C/-4~140°F: The error is ±1% of the input within the range.
Conversion time	Two-wire/Four-wire Four-wire configuration: 150 ms/channel
Conversion time	Three-wire configuration: 300 ms/channel
	There is isolation between a digital circuit and an analog circuit, and
	there is isolation between analog channels.
laalatian	Isolation between a digital circuit and a ground: 500 V DC
Isolation	Isolation between an analog circuit and a ground: 500 V DC
	Isolation between an analog circuit and a digital circuit: 500 V DC
	Isolation between the 24 V DC and a ground: 500 V DC

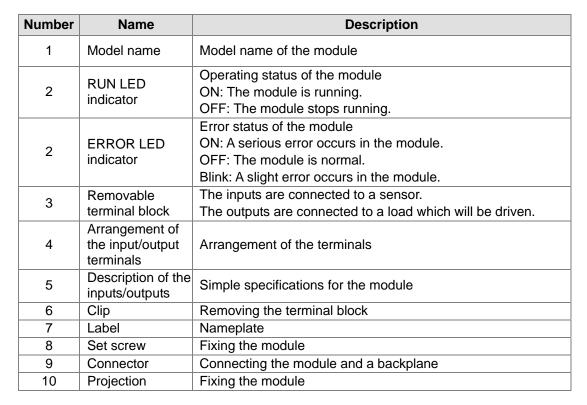
Functional specifications

Analog-to-digital conversion	Centigrade (°C)	Fahrenheit (°F)	Input impedance
Rated input range	Pt100: -180°C~800°C Ni100: -80°C~170°C Pt1000: -180°C~800°C Ni1000: -80°C~170°C	Pt100: -292°F~1,472°F Ni100: -112°F~338°F Pt1000: -292°F~1,472°F Ni1000: -112°F~338°F	0~300 Ω
Average function	Range: 1~100		
Self-diagnosis	Disconnection detection		

● AH04TC-5A/AH08TC-5A

Electrical specifications

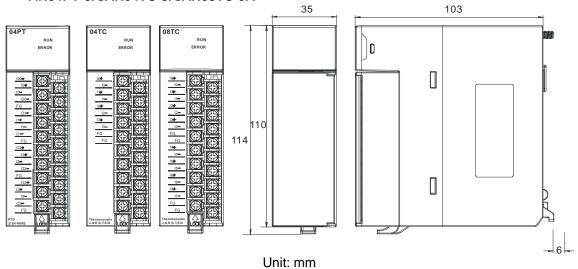

Module name	AH04TC-5A	AH08TC-5A	
Number of analog inputs	4	8	
Applicable sensor	Type J, type K, type S, type T, type E, and type N thermocouples ±150 mV voltage inputs		
Supply voltage	24 V DC (20.4 V DC~28.8 V DC) (-15%~+20%)		
Connector type	Removable terminal block		
Overall accuracy	25°C/77°F: The error is ±0.5% of the input within the range20~60°C/-4~140°F: The error is ±1% of the input within the range.		
Conversion time	200 ms/channel		
Isolation	There is isolation between a digital circuit and an analog circuit, and there is isolation between analog channels. Isolation between a digital circuit and a ground: 500 V DC Isolation between an analog circuit and a ground: 500 V DC Isolation between an analog circuit and a digital circuit: 500 V DC Isolation between the 24 V DC and a ground: 500 V DC Isolation between analog channels: 120 V AC		


Functional specifications

runctional specifications			
Analog-to-digital conversion	TO THE CONTINUE OF THE PROPERTY OF THE PROPERT		Voltage input
	Type J: -100°C~1,150°C	Type J: -148°F~2,102°F	
	Type K: -100°C~1,350°C	Type K: -148°F~2,462°F	
	Type R: 0°C~1,750°C	Type R: 32°F~3,182°F	
Rated input range	Type S: 0°C~1,750°C	Type S: 32°F~3,182°F	±150 mV
	Type T: -150°C~390°C	Type T: -238°F~734°F	
	Type E: -150°C~980°C	Type E: -238°F~1,796°F	
	Type N: -150°C~1,280°C	Type N: -238°F~2,336°F	
Average function	Range: 1~100		
Self-diagnosis	Disconnection detection		

2.6.2 Profiles

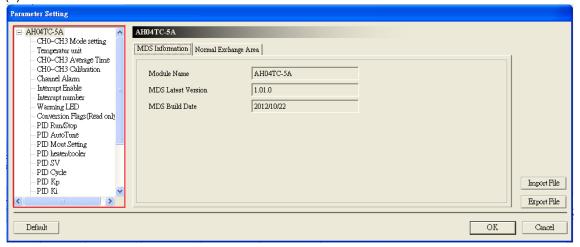
AH04PT-5A/AH04TC-5A/AH08TC-5A



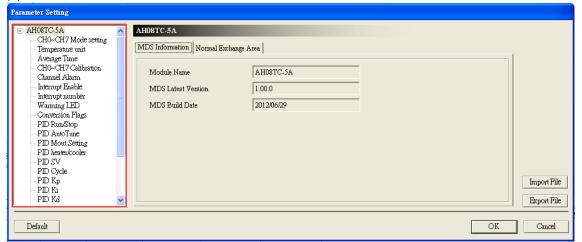
2.6.3 Dimensions

AH04PT-5A/AH04TC-5A/AH08TC-5A

2.6.4 Arrangement of Input/Output Terminals


AH04PT-5A	AH04TC-5A	AH08TC-5A
04PT RUN ERROR	04TC RUN ERROR	08TC RUN ERROR
00+ 10+ 10- 00- 00- FG 01+ 11+ 11- 11- 12- 12- 12- 12- 12- 13- 13+ 13- 03- FG RTD 27/4-WIRE	10+	10- 11- 12- 12- 13- 13- 13- 15- 16- 16- 17- 17- 17- 17- 17- 17- 17- 17- 18- 18- 18- 18- 18- 18- 18- 18- 18- 18

2.6.5 Setting Parameters


(1) AH04PT-5A

(2) AH04TC-5A

(3) AH08TC-5A

Please refer to AH500 Module Manual for more information about setting parameters.

2.7 Specifications for Network Modules

2.7.1 General Specifications

• AH10SCM-5A

Functional specifications

■ RS-485/RS-422 communication interface

Item	Specifications	
Connector type	European-style terminal block	
Transmission speed	1,200, 2,400, 4,800, 9,600, 19,200, 38,400, 57,600, 76,800, 115,200, 230,400, and 460,800 bps	
Communication format	Stop bit: 1 bit and 2 bits Parity bit: none, an odd parity bit, and an even parity bit Data bit: 7 bits and 8 bits	
Communication protocol Modbus ASCII/RTU UD Link BACnet MS/TP slave stations		

■ Electrical specifications

Item	Specifications
Supply voltage	5 V DC
Electric energy consumption	1.5 W
Insulation voltage	2,500 V DC
Weight	Approximately 131 g

AH10EN-5A

■ Network interface

NOTIFICITION THEORIES		
Item	Specifications	
Connector type	RJ-45 with auto-MDI/MDIX	
Transmission interface	802.3 and 802.3u	
Transmission	Category 5e cable	
cable	The maximum length is 100 meters.	
Transmission speed	10/100 Mbps auto-detection	
Communication protocol	ICMP, IP, TCP, UDP, DHCP, NTP, Modbus TCP, HTTP, SNMP, and SMTP	

■ Electrical specifications

Item	Specifications
Supply voltage	5 V DC
Electric energy consumption	1.5 W
Insulation voltage	2,500 V DC
Weight	Approximately 139 g

● AH10DNET-5A

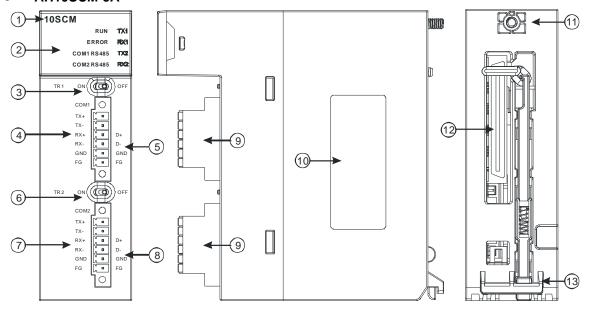
■ AH500 series CPU modules which are supported

Item	Specifications	
Model name	AH500 series PLCs	

■ DeviceNet interface

Item	Specifications	
Transmission method	CAN	
Electrical isolation	500 V DC	
Connector	Removable connector (5.08 mm)	
Communication	Recommend to use Delta standard cable; TAP-CB01 and TAP-CB02.	
cable	The communication cable should be away from the power cable and the shielded cable should be connected to the ground.	
Voltage	DeviceNet network provides 11~25 V direct current. e.g. 28 mA (Typical value), 125 mA impulse current (24 V DC).	

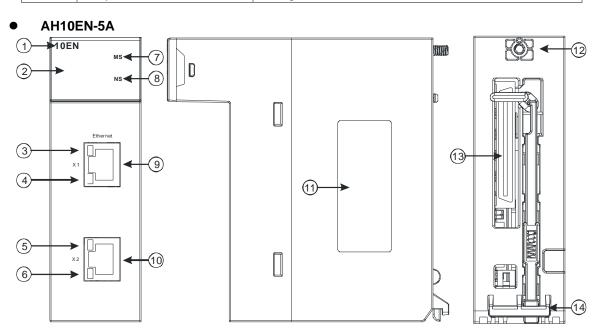
■ DeviceNet Communication

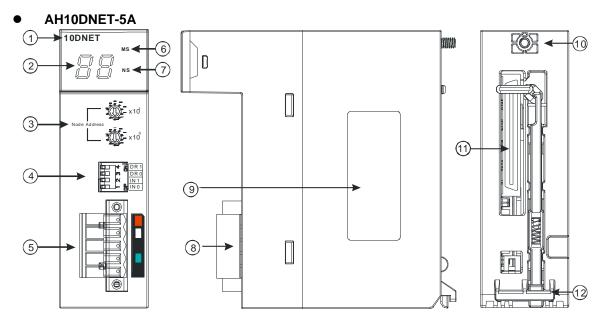

Item	Specifications		
Master mode: Support explicit message, all kinds of I/ connection with the slave such as I/O p bit-strobe, state changing, cyclic			
Slave mode: Support explicit message and Group 2 only set Transmission speed Standard: 125 kbps, 250 kbps and 500 kbps Extension: 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps, kbps, 800kbps and 1M bps			

■ Environment

Livitotiment		
Item	Specifications	
	ESD (IEC 61131-2, IEC 61000-4-2): 8 KV Air Discharge	
	EFT (IEC 61131-2, IEC 61000-4-4): Power Line:2KV, Digital I/O: 1 KV	
Noise immunity	Analog & Communication I/O: 1 KV	
	Damped-Oscillatory Wave: Power Line:1 KV, Digital I/O: 1 KV	
	RS (IEC 61131-2, IEC 61000-4-3): 26 MHz~1 GHz, 10 V/m	
Operation	0°C~55°C (Temperature), 50~95% (Humidity), pollution level 2	
temperature	0°C~55°C (Temperature), 50~95 % (Humlarty), pollution level 2	
Storage	-25°C~70°C (Temperature), 5~95% (Humidity)	
temperature		
Vibration/Shock	International standard IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC	
resistance	61131-2 & IEC 68-2-27 (TEST Ea)	
Certifications	IEC 61131-2, UL508	

2.7.2 Profiles


● AH10SCM-5A


Number	Name	Description
1	Model name	Model name of the module
	RUN LED indicator (green)	Operating status of the module ON: The module is running. OFF: The module stops running.
	ERROR LED indicator (red)	Error status of the module ON: There is a hardware error. OFF: The module is normal. Blink: 1. The setting of the module is incorrect, or there is a communication error. 2. Restoring the module to the default factory value
2	COM1 (RS-485) LED indicator (green)	ON: RS-485 mode OFF: RS-422 mode
	COM2 (RS-485) LED indicator (green)	ON: RS-485 mode OFF: RS-422 mode
	TX1/TX2 LED indicator (orange)	Blink: The data is being transmitted through the RS-485/RS422 port. OFF: The data is not being transmitted through the RS-485/RS422 port.
	RX1/RX2 LED indicator (orange)	Blink: The data is being reveived through the RS-485/RS422 port. OFF: The data is not being reveived through the
		RS-485/RS422 port.
3	Switch of terminal resistor 1	Switching terminal resistor 1 ON/OFF
4	Terminals	Terminals for COM1 (RS-422)
5	Terminals Switch of terminal resistor 2	Terminals for COM1 (RS-485) Switching terminal resistor 2 ON/OFF
7	Terminals	Terminals for COM2 (RS-422)
8	Terminals	Terminals for COM2 (RS-485)
9	European-style terminal block	Terminals for wiring

Number	Name	Description
10	Label	Nameplate
11	Set screw	Fixing the module
12	Connector	Connecting the module and a backplane
13	Projection	Fixing the module

Number	Name	Description
1	Model name	Model name of the module
2	Seven-segment display	Display
3	LINK LED indicator	LINK LED indicator for RJ45 port 1
4	ACK LED indicator	ACK LED indicator for RJ45 port 1
5	LINK LED indicator	LINK LED indicator for RJ45 port 2
6	ACK LED indicator	ACK LED indicator for RJ45 port 2
7	NS LED indicator	LED indicator
8	MS LED indicator	LED indicator
9	RJ45 port 1	RJ45 port 1
10	RJ45 port 2	RJ45 port 2
11	Label	Nameplate
12	Set screw	Fixing the module
13	Connector	Connecting the module and a backplane
14	Projection	Fixing the module

Number	Name	Description
1	Model name	Model name of the module
2	Seven-segment display	Display
3	Address knob	Setting the address
4	Function switch	Setting the functions
5	DeviceNet	DeviceNet is used to interconnect control devices for data
	connector	exchange.
6	MS LED indicator	Indicating the status of the module
7	NS LED indicator	Indicating the status of the network
8	Removable terminal block	Terminals for wiring
9	Label	Nameplate
10	Set screw	Fixing the module
11	Connector	Connecting the module and a backplane.
12	Projection	Fixing the module

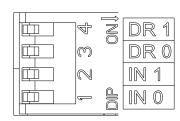
The address knobs

It is used to set the node address of AH10DNET-5A on a DeviceNet network. (Node addresses range from 0 to 63.)

Setting	Description	
063	Available nodes on a DeviceNet network	Node Address
6499	Unavailable nodes on a DeviceNet network	X100

Example: If users want to set the communication address of AH10DNET-5A to 26, they can turn the knob corresponding to x10¹ to 2, and turn the knob corresponding to x10⁰ to 6.

Note:

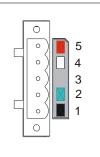

- 1. When the power supply is cut off, the node address is set. After the setting of the node address is complete, AH10DNET-5A can be supplied with power.
- 2. If AH10DNET-5A is running, changing the node address is unavailable.
- 3. Please use a slotted screwdriver to turn the knobs with care, and do not scrape them.

• The function switch

The function switch provides the following functions:

- 1. Setting the working mode (IN 0)
- 2. Setting the transmission speed of a DeviceNet network (DR 0~DR 1)

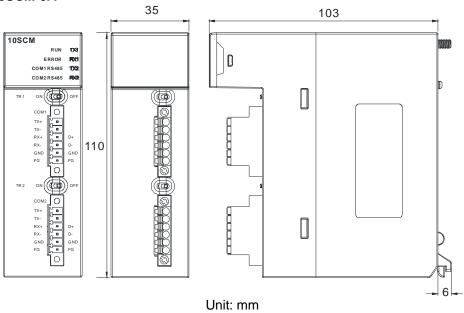
DR 1	DR 0	Transmission speed
OFF	OFF	125 kbps
OFF	ON	250 kbps
ON	OFF	500 kbps
ON	ON	Entering the extendable serial transmission speed mode
IN 1	Reserved	
IN 0	ON	If the slave is disconnected, the previous I/O data is retained.
	OFF	If the slave is disconnected, the previous I/O data is cleared.

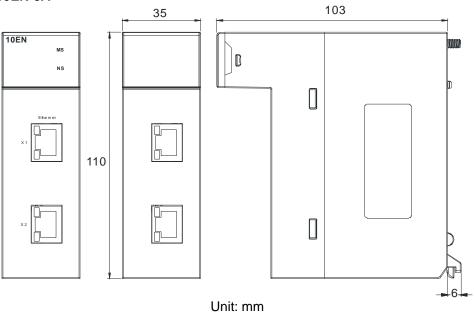


Note:

- 1. When the power supply is cut off, the functions are set. After the setting of the functions is complete, AH10DNET-5A can be supplied with power.
- 2. If AH10DNET-5A is running, changing the functions is unavailable.
- 3. Please use a slotted screwdriver to adjust the DIP switch with care, and do not scrape them.

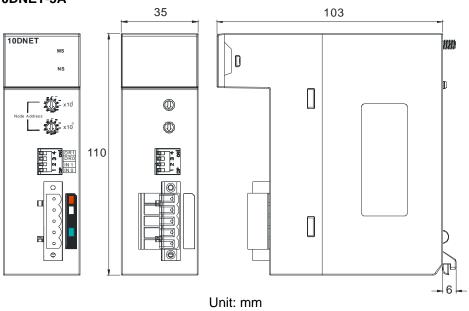
• The DeviceNet connector

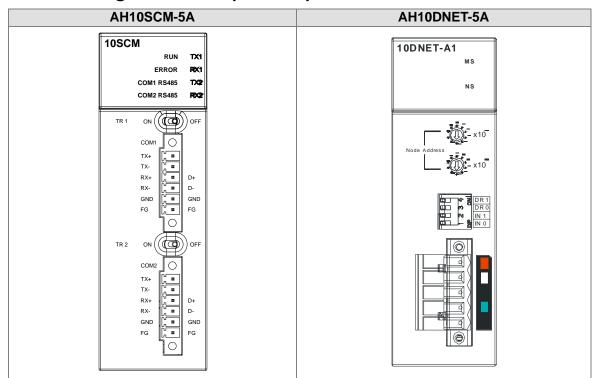

Pin	Signal	Color	Description
5	V+	Red	24 V DC
4	CAN_H	White	Signal +
3	Ground	-	It is connected to a shielded cable.
2	CAN_L	Blue	Signal -
1	V-	Black	0 V DC



2.7.3 Dimensions

• AH10SCM-5A

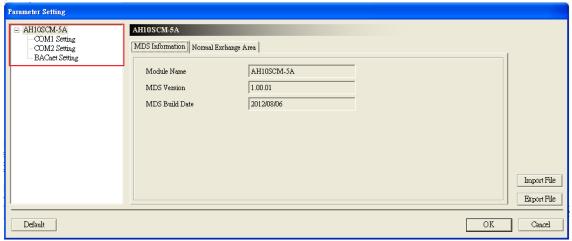

• AH10EN-5A


2-49

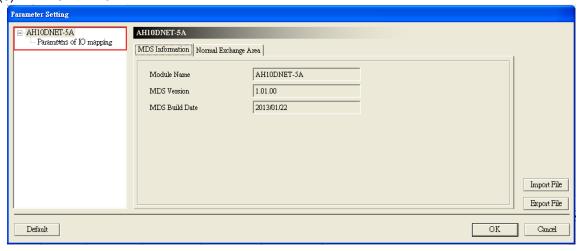
● AH10DNET-5A



2.7.4 Arrangement of Input/Output Terminals

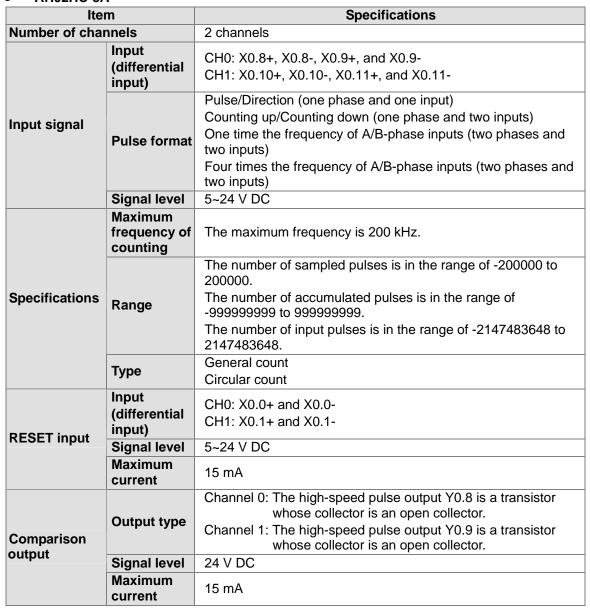


2.7.5 Setting Parameters


(1) AH10EN-5A

(2) AH10SCM-5A

(3) AH10DNET-5A



Please refer to AH500 Module Manual for more information about setting parameters.

2.8 Specifications for Motion Control Modules

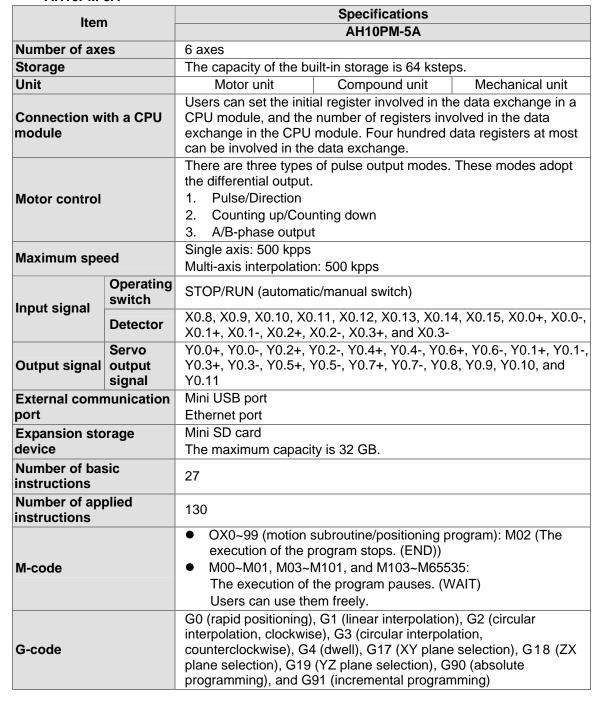
2.8.1 General Specifications

AH02HC-5A

• AH04HC-5A

Item		Specifications	
Connector		A connector made with great precision is used. It has to be connected to an external terminal module.	
Number of channels		4 channels	
	Input (differential signal)	Channel 0: X0.8+, X0.8-, X0.9+, and X0.9- Channel 1: X0.10+, X0.10-, X0.11+, and X0.11- Channel 2: X0.12+, X0.12-, X0.13+, and X0.13- Channel 3: X0.14+, X0.14-, X0.15+, and X0.15-	
Input signal	Pulse format	Pulse/Direction (one phase and one input) Counting up/Counting up (one phase and two inputs) One time the frequency of A/B-phase inputs (two phases and two inputs) Four times the frequency of A/B-phase inputs (two phases and two inputs)	
	Signal level	5~24 V DC	
	Maximum frequency of counting	The maximum frequency is 200 kHz.	
Specifications	Range	The number of sampled pulses is in the range of -200000 to 200000. The number of accumulated pulses is in the range of -99999999 to 999999999. The number of input pulses is in the range of -2147483648 to 2147483648.	
	Туре	Linear count Circular count	
RESET input	Input (differential signal)	Channel 0: X0.0+ and X0.0- Channel 1: X0.1+ and X0.1- Channel 2: X0.2+ and X0.2- Channel 3: X0.3+ and X0.3-	
	Signal level	5~24 V DC	
	Maximum current	15 mA	
Comparison output	Output type	Channel 0: The high-speed pulse output Y0.8 is a transistor whose collector is an open collector. Channel 1: The high-speed pulse output Y0.9 is a transistor whose collector is an open collector. Channel 2: The high-speed pulse output Y0.10 is a transistor whose collector is an open collector. Channel 3: The high-speed pulse output Y0.11 is a transistor whose collector is an open collector.	
	Signal level	24 V DC	
	Maximum current	15 mA	

• AH05PM-5A


Item		Specifications		
	item	AH05PM-5A		
Number of axes		2 axes		
Storage		The capacity of the built-in storage is 64 ksteps.		
Unit		Motor unit Compound unit Mechanical unit		
Connection module	on with a CPU	Users can set the initial register involved in the data exchange in a CPU module, and the number of registers involved in the data exchange in the CPU module. Four hundred data registers at most can be involved in the data exchange.		
Motor con	itrol	There are three types of pulse output modes. These modes adopt the differential output. 1. Pulse/Direction 2. Counting up/Counting down 3. A/B-phase output		
Maximum	speed	Single axis: 500 kpps Multi-axis interpolation: 500 kpps		
Input signal	Detector	X0.0, X0.1, X0.8, X0.9, X0.12, and X0.13		
Output signal	Servo output signal	Y0.0+, Y0.0-, Y0.2+, Y0.2-, Y0.1+, Y0.1-, Y0.3+, Y0.3-, Y0.8, and Y0.9		
External c	ommunication	Mini USB port		
Number o		27		
Number o	• •	130		
M-code		 OX0~99 (motion subroutine/positioning program): M02 (The execution of the program stops. (END)) M00~M01, M03~M101, and M103~M65535: The execution of the program pauses. (WAIT) Users can use them freely. 		
G-code		G0 (rapid positioning), G1 (linear interpolation), G2 (circular interpolation, clockwise), G3 (circular interpolation, counterclockwise), G4 (dwell), G17 (XY plane selection), G90 (absolute programming), and G91 (incremental programming)		

The description of the terminals

Terminal	Description	Response	Maximum input	
	-	characteristic	Current	Voltage
X0.0, X0.1, X0.8, X0.9, X0.12, and X0.13	 They are single/A/B-phase inputs. The functions of the terminals: Motion control: X0.0 is the PG input for axis 1, and X0.1 is the PG input for axis 2. X0.12 is the DOG input for axis 1, and X0.13 is the DOG input for axis 2. X0.8 and X0.9 are for a manual pulse generator. High-speed count: X0.0 is the RESET input for counter 0. X0.8 is an A-phase input for counter 0, and X0.9 is a B-phase input for counter 0. High-speed comparison and catch: The terminals can function as trigger signals for a high-speed catch. Interrupt inputs 	200 kHz	15 mA	24 V
Y0.8 and Y0.9	 The high-speed pulse outputs are transistors whose collectors are open collector. The functions of the terminals: Motion control: Y0.8 is the CLEAR output for axis 1, and Y0.9 is the CLEAR output for axis 2. High-speed comparison and catch: They provide high-speed comparison outputs 	200 kHz	15 mA	24 V
Y0.0+, Y0.0-, Y0.1+, Y0.1-, Y0.2+, Y0.2-, Y0.3+, and Y0.3-	 They are differential outputs. The function of the terminals: Motion control: Y0.0+ and Y0.0- are A-phase outputs for axis 1. Y0.2+ and Y0.2- are A-phase outputs for axis 2. Y0.1+ and Y0.1- are B-phase outputs for axis 1. Y0.3+ and Y0.3- are B-phase outputs for axis 2. 	1 MHz	5 mA	5 V

AH10PM-5A

The description of the terminals

Terminal	Description	Response	Maximum input	
Terminai	Description	characteristic	Current	Voltage
X0.0+, X0.0-, X0.1+, X0.1-, X0.2+, X0.2-, X0.3+, and X0.3-	 They are differential inputs. The functions of the terminals: Motion control: They are the PG inputs for axis 1~axis 4. High-speed count: X0.0+ and X0.0- are the RESET inputs for counter 0. X0.1+ and X0.1- are the RESET inputs for counter 1. X0.2+ and X0.2- are the RESET inputs for counter 2 and counter 4. X0.3+ and X0.3- are the RESET inputs for counter 3 and counter 5. High-speed comparison and catch: The terminals can function as trigger signals for a high-speed catch. Interrupt inputs 	200 kHz	15 mA	5~24 V
X0.8 and X0.9	 They are single/A/B-phase inputs. The functions of the terminals: Motion control: The terminals are for a manual pulse generator. High-speed count: The terminals are for counter 0. X0.8 is an A-phase input for counter 0, and X0.9 is a B-phase input for counter 0. High-speed comparison and catch: The terminals can function as trigger signals for a high-speed catch.	200 kHz	15 mA	24 V

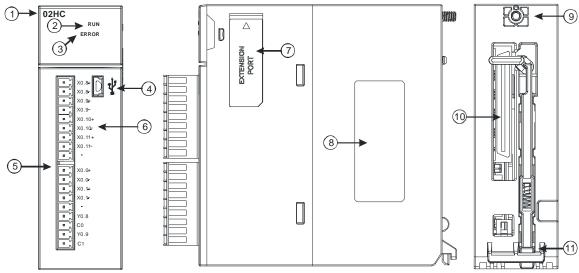
Terminal	Description	Response		um input	
Torrinia	·	characteristic	Current	Voltage	
X0.10, X0.11, X0.12, X0.13, X0.14, and X0.15	 They are single/A/B-phase inputs. The functions of the terminals: Motion control: They are the DOG inputs for axis 1~axis 6. High-speed counter: The terminals are for counter 1~counter 5. X0.10 is an A-phase input for counter 1, X0.12 is an A-phase input for counter 2 and counter 4, and X0.14 is an A-phase input for counter 3 and counter 5. X0.11 is a B-phase input for counter 1, X0.13 is a B-phase input for counter 2 and counter 4, and X0.15 is a B-phase input for counter 3 and counter 5. High-speed comparison and catch: The terminals can function as trigger signals for a high-speed catch.	200 kHz	15 mA	24 V	
Y0.8, Y0.9, Y0.10, and Y0.11	 The high-speed pulse outputs are transistors whose collectors are open collector. The functions of the terminals: Motion control: The terminals are the CLEAR outputs for axis 1~axis 4. Y0.8 and Y0.9 are for axis 5. Y0.10 and Y0.11 are for axis 6. Y0.8 is an A-phase output for axis 5, and Y0.10 is an A-phase output for axis 6. Y0.9 is a B-phase output for axis 5, and Y0.11 is a B-phase output for axis 6. High-speed comparison and catch: They provide high-speed comparison outputs. 	200 kHz	15 mA	24 V	

Terminal	Description	Response	Maximum input	
Terminai	Description	characteristic	Current	Voltage
Y0.0+, Y0.0-, Y0.1+, Y0.1-, Y0.2+, Y0.2-, Y0.3+, Y0.3-, Y0.4+, Y0.4-, Y0.5+, Y0.5-, Y0.6+, Y0.6-, Y0.7+, and Y0.7-	 They are differential outputs. The function of the terminals: Motion control: The terminals are for axis 1~axis 4. Y0.0+ and Y0.0- are A-phase outputs for axis 1. Y0.2+ and Y0.2- are A-phase outputs for axis 2. Y0.4+ and Y0.4- are A-phase outputs for axis 3. Y0.6+ and Y0.6- are A-phase outputs for axis 4. Y0.1+ and Y0.1- are B-phase outputs for axis 1. Y0.3+ and Y0.3- are B-phase outputs for axis 2. Y0.5+ and Y0.5- are B-phase outputs for axis 3. Y0.7+ and Y0.7- are B-phase outputs for axis 4. Y0.0+ and Y0.0- are the CLEAR outputs for axis 5. Y0.1+ and Y0.1- are the CLEAR outputs for axis 6. 	1 MHz	5 mA	5 V

AH20MC-5A

AHZUNIC-SA					
Iten		Specifications			
item		AH20MC-5A			
Number of axe	es	12 axes			
Storage		The capacity of the bu	ilt-in storage is 64 kstep	OS.	
Unit		Motor unit	Compound unit	Mechanical unit	
Connection with a CPU module		Users can set the initial register involved in the data exchange in a CPU module, and the number of registers involved in the data exchange in the CPU module. Four hundred data registers at most can be involved in the data exchange.			
Motor control		Delta high-speed motion control system DMCNET (Delta Motion Control Network) The response time is one millisecond.			
Maximum spe	ed	Single axis: 500 kpps Two-axis interpolation: 500 kpps			
	Operating switch	STOP/RUN (automatic/manual switch)			
Input signal	Detector		+, X0.11-, X0.12+, X0.1 +, X0.15-, X0.0+, X0.0- 3-		
Output signal Servo output signal		Y0.8+, Y0.8-, Y0.9+, Y	'0.9-, Y0.10+, Y0.10-, Y	0.11+ and Y0.11-	
External communication port		Mini USB port Ethernet port DMCNET port			
Expansion storage device		Mini SD card The maximum capacit	y is 32 GB.		

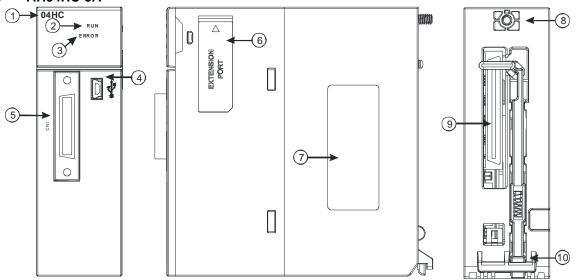
ltem	Specifications
Item	AH20MC-5A
Number of basic instructions	27
Number of applied instructions	130
M-code	 OX0~99 (motion subroutine/positioning program): M02 (The execution of the program stops. (END)) M00~M01, M03~M101, and M103~M65535: The execution of the program pauses. (WAIT) Users can use them freely.
G-code	G0 (rapid positioning), G1 (linear interpolation), G2 (circular interpolation, clockwise), G3 (circular interpolation, counterclockwise), G4 (dwell), G17 (XY plane selection), G18 (ZX plane selection), G19 (YZ plane selection), G90 (absolute programming), and G91 (incremental programming)

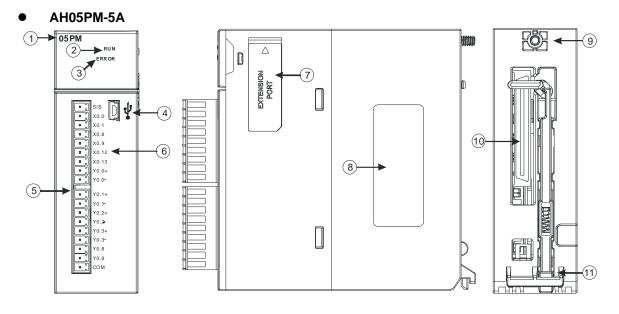

The description of the terminals

Terminal	Description	Response	Maximum input	
ierminai	Description	characteristic	Current	Voltage
X0.0+, X0.0-, X0.1+, X0.1-, X0.2+, X0.2-, X0.3+, and X0.3-	 They are differential inputs. The functions of the terminals: High-speed count: The terminals are the RESET inputs for counter 0~counter 5. X0.0+ and X0.0- are the RESET inputs for counter 0. X0.1+ and X0.1- are for counter 1. X0.2+ and X0.2- are the RESET inputs for counter 2 and counter 4. X0.3+ and X0.3- are the RESET inputs for counter 3 and counter 5. High-speed comparison and catch: The terminals can function as trigger signals for a high-speed catch. Interrupt inputs 	200 kHz	15 mA	5~24 V
X0.8+, X0.8-, X0.9+, and X0.9-	 They are differential inputs. The functions of the terminals: Motion control: The terminals are for a manual pulse generator. High-speed count: 	200 kHz	15 mA	5~24 V

Terminal	Description	Response	Maximum input	
rerminai	Description	characteristic	Current	Voltage
X0.10+, X0.10-, X0.11+, X0.11-, X0.12+, X0.12-, X0.13+, X0.13-, X0.14+, X0.14-, X0.15+, and X0.15-	 They are differential inputs. The functions of the terminals: High-speed count: The terminals are for counter 1~counter 5. X0.10+ an X0.10- are A-phase inputs for counter 1. X0.12+ and X0.12- are A-phase inputs for counter 2 and counter 4. X0.14+ and X0.14- are A-phase inputs for counter 3 and counter 5. X0.11+ and X0.11- are B-phase inputs for counter 1. X0.13+ and X0.13- are B-phase inputs for counter 2 and counter 4. X0.15+ and X0.15- are B-phase inputs for counter 3 and counter 5. High-speed comparison and catch: The terminals can function as trigger signals for a high-speed catch. Interrupt inputs 	200 kHz	15 mA	5~24 V
Y0.8, Y0.9, Y0.10, and	The high-speed pulse outputs are transistors whose collectors are open collector. The function of the terminals:	200 kHz	15 mA	24 V
Y0.11	High-speed comparison and catch: They provide high-speed comparison outputs.	200 NI IZ	IJIIIA	Z4 V

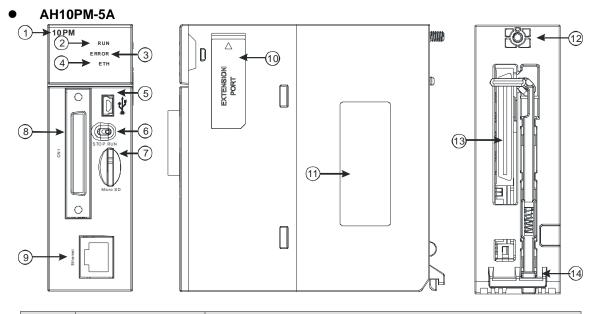
2.8.2 Profiles


AH02HC-5A

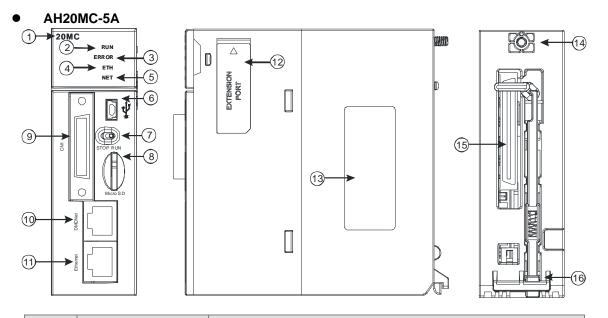

Number	Name	Description
1	Model name	Model name of the module

Number	Name	Description
	RUN LED indicator	Operating status of the module
2	(green)	ON: The module is running.
	(9.00)	OFF: The module stops running.
3	ERROR LED	Error status of the module
	indicator (red)	Blink: The module is abnormal.
4	USB port	Providing the mini USB communication interface
5	Terminals	Input/Output terminals
6	Arrangement of the input/output terminals	Arrangement of the terminals
7	Extension port	Updating the firmware
8	Label	Nameplate
9	Set screw	Fixing the module
10	Connector	Connecting the module and a backplane
11	Projection	Fixing the module

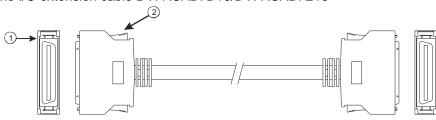
● AH04HC-5A



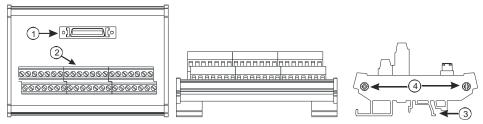
Number	Name	Description
1	Model name	Model name of the module
2	RUN LED indicator (green)	Operating status of the module ON: The module is running. OFF: The module stops running.
3	ERROR LED indicator (red)	Error status of the module Blink: The module is abnormal.
4	USB port	Providing the mini USB communication interface
5	Connector	Connecting the module and an I/O extension cable
6	Extension port	Updating the firmware
7	Label	Nameplate
8	Set screw	Fixing the module
9	Connector	Connecting the module and a backplane
10	Projection	Fixing the module



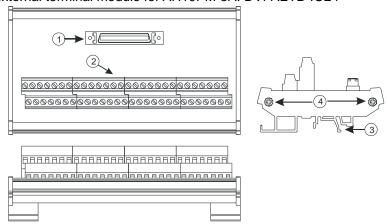
Number	Name	Description								
1	Model name	Model name of the module								
2	RUN LED indicator (green)	Operating status of the module ON: The module is running. OFF: The module stops running.								
3	ERROR LED indicator (red)	Error status of the module Blink: The module is abnormal.								
4	USB port	Providing the mini USB communication interface								
5	Terminals	Input/Output terminals								
6	Arrangement of the input/output terminals	Arrangement of the terminals								
7	Extension port	Updating the firmware								
8	Label	Nameplate								
9	Set screw	Fixing the module								
10	Connector	Connecting the module and a backplane								
11	Projection	Fixing the module								


Number	Name	Description							
1	Model name	Model name of the module							
	RUN LED indicator	Operating status of the module							
2	(green)	ON: The module is running.							
	,	OFF: The module stops running.							
3	ERROR LED	Error status of the module							
	indicator (red)	Blink: The module is abnormal.							
	Ethernet connection	Status of the Ethernet connection							
4	LED indicator	ON: The Ethernet connection is being connected.							
	(green)	OFF: The Ethernet connection is disconnected.							
5	USB port	Providing the mini USB communication interface							
6	RUN/STOP switch	RUN: The user program is executed.							
	NON/STOP SWITCH	STOP: The execution of the user program stops.							
7	SD slot	Providing the SD interface							
8	Connector	Connecting the module and an I/O extension cable							
9	Ethernet port	Providing the Ethernet communication interface							
10	Extension port	Updating the firmware							
11	Label	Nameplate							
12	Set screw	Fixing the module							
13	Connector	Connecting the module and a backplane							
14	Projection	Fixing the module							

Number	Name	Description								
1	Model name	Model name of the module								
2	RUN LED indicator (green)	Operating status of the module ON: The module is running. OFF: The module stops running.								
3	ERROR LED indicator (red)	Error status of the module Blink: The module is abnormal.								
4	Ethernet connection LED indicator (green)	Status of the Ethernet connection ON: The Ethernet connection is being connected. OFF: The Ethernet connection is disconnected.								
5	DMCNET connection LED indicator (green)	Status of the DMCNET connection ON: The DMCNET connection is being connected. OFF: The DMCNET connection is disconnected.								
6	USB port	Providing the mini USB communication interface								
7	RUN/STOP switch	RUN: The user program is executed. STOP: The execution of the user program stops.								
8	SD slot	Providing the SD interface								
9	Connector	Connecting the module and an I/O extension cable.								
10	DMCNET port	Providing the DMCNET communication interface								
11	Ethernet port	Providing the Ethernet communication interface								
12	Extension port	For updating the firmware								
13	Label	Nameplate								
14	Set screw	Fixing the module								
15	Connector	Connecting the module and a backplane								
16	Projection	Fixing the module								


The I/O extension cable, and the external terminal module

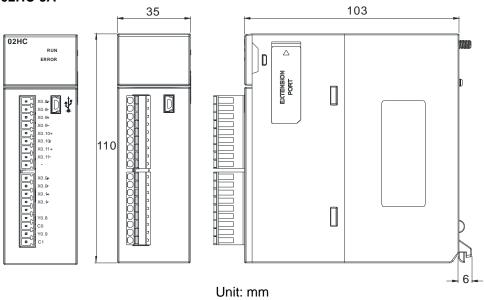
1. The I/O extension cable DVPACAB7D10/DVPACAB7E10

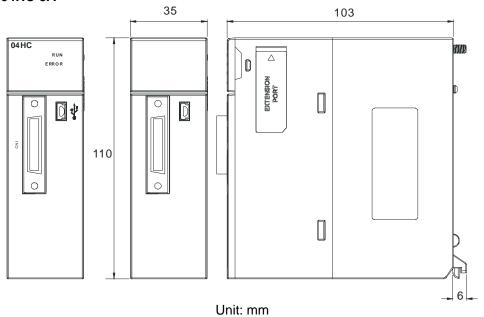


Number	Name	Description
		Connecting a motion control module and an external terminal module
1	Connector	DVPACAB7D10 is a 36-pin I/O extension cable for AH04HC-5A and AH20MC-5A.
		DVPACAB7E10 is a 50-pin I/O extension cable for AH10PM-5A.
2	Clip	Fixing the connector

2. The external terminal module for AH04HC-5A and AH20MC-5A: DVPAETB-IO16C

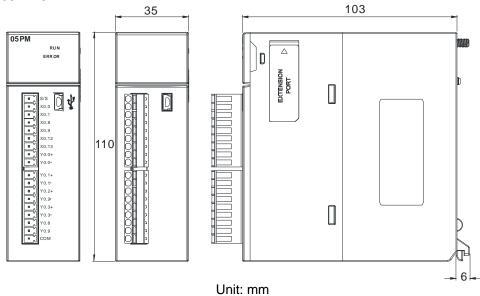
3. The external terminal module for AH10PM-5A: DVPAETB-IO24

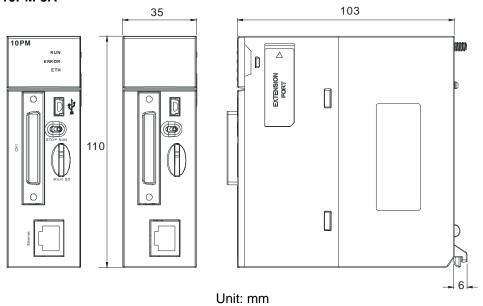

Number	Name	Description
1	Connector	Connecting the external terminal module and a motion control module
2	Terminals	Input/Output terminals for wiring
3	Clip	Hanging the external terminal module on a DIN rail
4	Set screw	Fixing the base


2

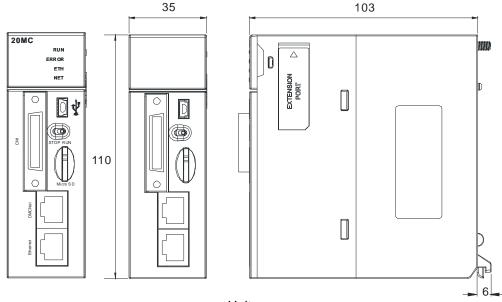
2.8.3 Dimensions

AH02HC-5A

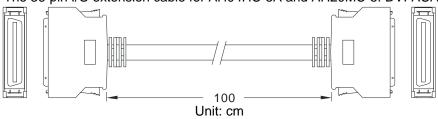

• AH04HC-5A

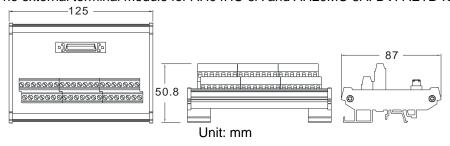

2-67

● AH05PM-5A

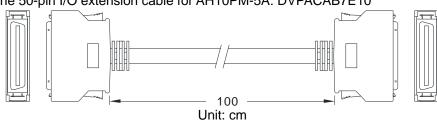


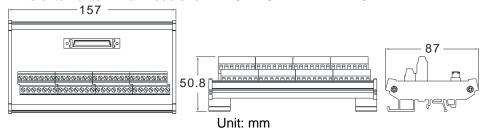
● AH10PM-5A

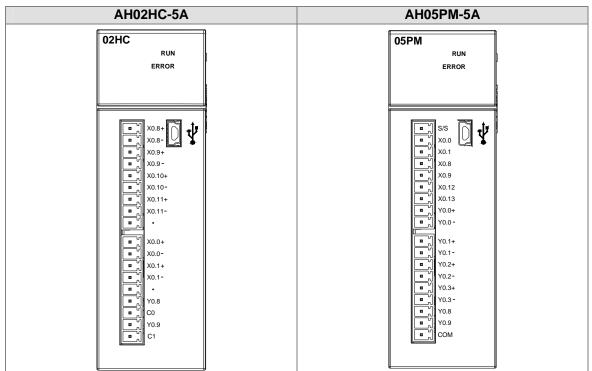

AH20MC-5A


Unit: mm

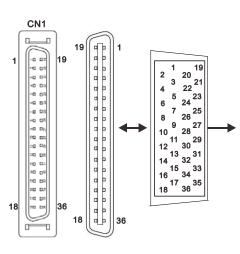
• The I/O extension cable, and the external terminal module


1. The 36-pin I/O extension cable for AH04HC-5A and AH20MC-5: DVPACAB7D10


2. The external terminal module for AH04HC-5A and AH20MC-5A: DVPAETB-IO16C


3. The 50-pin I/O extension cable for AH10PM-5A: DVPACAB7E10

4. The external terminal module for AH10PM-5A: DVPAETB-IO24



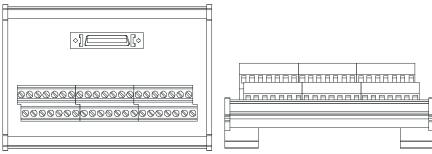
2.8.4 Arrangement of Input/Output Terminals

AH04HC-5A

Pin	Terminal	Function	Pin	Terminal	Function
FIII	Terminal	Count	FIII	Terminai	Count
1	C3	COM3	19	Y0.11	Out3
2	C2	COM2	20	Y0.10	Out2
3	C1	COM1	21	Y0.9	Out1
4	C0	COM0	22	Y0.8	Out0
5			23		
6			24		
7	X0.3-	Rst3-	25	X0.3+	Rst3+
8	X0.15-	CntB3-	26	X0.15+	CntB3+
9	X0.14-	CntA3-	27	X0.14+	CntA3+
10	X0.2-	Rst2-	28	X0.2+	Rst2+
11	X0.13-	CntB2-	29	X0.13+	CntB2+
12	X0.12-	CntA2-	30	X0.12+	CntA2+
13	X0.1-	Rst1-	31	X0.1+	Rst1+
14	X0.11-	CntB1-	32	X0.11+	CntB1+
15	X0.10-	CntA1-	33	X0.10+	CntA1+
16	X0.0-	Rst0-	34	X0.0+	Rst0+
17	X0.9-	CntB0-	35	X0.9+	CntB0+
18	X0.8-	CntA0-	36	X0.8+	CntA0+

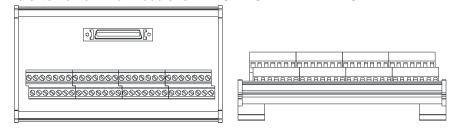
● AH10PM-5A

	Pin	Terminal	Fun	ection	Pin	Terminal	Fun	ction
	FIII	Terminai	Pulse	Count	FIII	Terminai	Pulse	Count
	1	C3	COM3		26	Y0.11	CLR3/B5	
	2	C2	COM2		27	Y0.10	CLR2/A5	
	3	C1	COM1		28	Y0.9	CLR1/B4	
CN1	4	C0	COM0		29	Y0.8	CLR0/A4	
	5	NC			30	NC		
1 26	6	Y0.7-	B3-		31	Y0.7+	B3+	
-d Da	7	Y0.6-	A3-		32	Y0.6+	A3+	
*G DR	8	Y0.5-	B2-		33	Y0.5+	B2+	
*G DR	9	Y0.4-	A2-		34	Y0.4+	A2+	
*G DR	10	Y0.3-	B1-		35	Y0.3+	B1+	
50 DH	11	Y0.2-	A1-		36	Y0.2+	A1+	
50 DS	12	Y0.1-	B0-/CLR5-		37	Y0.1+	B0+/CLR5+	
70 DR	13	Y0.0-	A0-/CLR4-		38	Y0.0+	A0+/CLR4+	
ad De	14	NC			39	NC		
90 D9	15	NC			40	S/S	S/S	S/S
150 DB	16	X0.15	DOG3	CntB3/CntB5	41	X0.14	DOG2	CntB3/CntA5
80 DE	17	X0.13	DOG1	CntB2/CntB4	42	X0.12	DOG0	CntA2/CntA4
25 NO OR 50	18	X0.11	DOG5	CntB1	43	X0.10	DOG4	CntA1
	19	X0.9	MPGB	CntB0	44	X0.8	MPGA	CntA0
	20	NC			45	NC		
	21	NC			46	NC		
	22	X0.3-	Pg3-	Rst3-/Rst2+	47	X0.3+	Pg3+	Rst3+/Rst2+
	23	X0.2-	Pg2-	Rst2-/ Rst2+	48	X0.2+	Pg2+	Rst2+/Rst2+
	24	X0.1-	Pg1-	Rst1-	49	X0.1+	Pg1+	Rst1+
	25	X0.0-	Pg0-	Rst0-	50	X0.0+	Pg0+	Rst0+

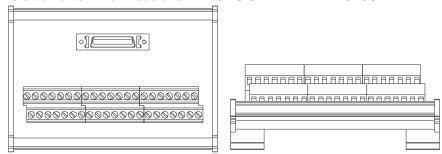

AH20MC-5A

9
4

	Pin	Terminal	F	unction	Pin	Terminal	F	unction
	FIII	Terrinia	Pulse	Count	FIII	Terminai	Pulse	Count
	1	C3		СОМЗ	19	Y0.11		Out3
	2	C2		COM2	20	Y0.10		Out2
CN1	3	C1		COM1	21	Y0.9		Out1
	4	C0		COM0	22	Y0.8		Out0
1 19	5				23			
*0 0% *0 0% *0 0%	6				24			
-0 DX	7	X0.3-		Rst3-/ Rst5-	25	X0.3+		Rst3+/ Rst5+
+G D(;	8	X0.15-	DOG3-	CntB3-/ CntB5+	26	X0.15+	DOG3+	CntB3+/CntB5+
ING DA	9	X0.14-	DOG2-	CntA3-/ CntA5+	27	X0.14+	DOG2+	CntA3+/CntA5+
20 D2 20 D2	10	X0.2-		Rst2-/ Rst4-	28	X0.2+	•	Rst2+/ Rst4+
80 D2	11	X0.13-	DOG1-	CntB2-/ CntB4-	29	X0.13+	DOG1+	CntB2+/CntB4+
18 20 00 36	12	X0.12-	DOG0-	CntA2-/ CntA4-	30	X0.12+	DOG0+	CntA2+/CntA4+
	13	X0.1-		Rst1-	31	X0.1+		Rst1+
	14	X0.11-	DOG5-	CntB1-	32	X0.11+	DOG5+	CntB1+
	15	X0.10-	DOG4-	CntA1-	33	X0.10+	DOG4+	CntA1+
	16	X0.0-		Rst0-	34	X0.0+		Rst0+
	17	X0.9-	MPGB+	CntB0-	35	X0.8+	MPGA+	CntA0+
	18	X0.8-	MPGA-	CntA0-	36	X0.9+	MPGB+	CntB0+


• The external terminal module

1. The external terminal module for AH04HC-5A: DVPAETB-IO16C


C3	C2	C1	CO	N/C	N/C	X0.3-	X0.15-	X0.14-	X0.2-	X0.13-	X0.12-	X0.1-	X0.11-	X0.10-	X0.0-	X0.9-	X0.8-	24G	24G	FE
Y0.11	Y0.10	Y0.9	8.0Y	N/C	N/C	X0.3+	X0.15+	X0.14+	X0.2+	X0.13+	X0.12+	X0.1+	X0.11+	X0.10+	X0.0+	X0.9+	X0.8+	N/C	24V	24V

2. The external terminal module for AH10PM-5A: DVPAETB-IO24

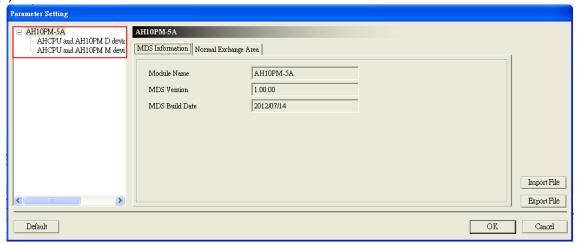
1 st from the upper left	С3	C2	C1	CO	N/C	Y0.7-	Y0.6-	Y0.5-	Y0.4-	Y0.3-	Y0.2-	Y0.1-	Y0.0-	N/C
15 th from the upper left	N/C	X0.15	X0.13	X0.11	X0.9	N/C	N/C	X0.3-	X0.2-	X0.1-	X0.0-	24G	24G	FE
1 st from the lower left		Y0.10	Y0.9	Y0.8	N/C	Y0.7+	Y0.6+	Y0.5+	Y0.4+	Y0.3+	Y0.2+	Y0.1+	Y0.0+	N/C
15 th from the lower left	S/S	X0.14	X0.12	X0.10	X0.8	N/C	N/C	X0.3+	X0.2+	X0.1+	X0.0+	N/C	24V	24V


3. The external terminal module for AH20MC-5A: DVPAETB-IO16C

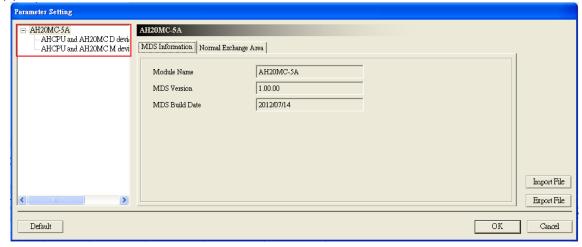

	C3	C2	C1	CO	N/C	N/C	X0.3-	X0.15-	X0.14-	X0.2-	X0.13-	X0.12-	X0.1-	X0.11-	X0.10-	X0.0-	X0.9-	X0.8-	24G	24G	FE
I	Y0.11	Y0.10	Y0.9	8.0Y	N/C	N/C	X0.3+	X0.15+	X0.14+	X0.2+	X0.13+	X0.12+	X0.1+	X0.11+	X0.10+	X0.0+	X0.9+	X0.8+	N/C	24V	24V

2.8.5 Setting Parameters

(1) AH02HC-5A


(2) AH04HC-5A

(3) AH05PM-5A

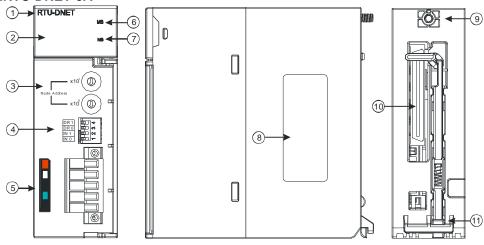


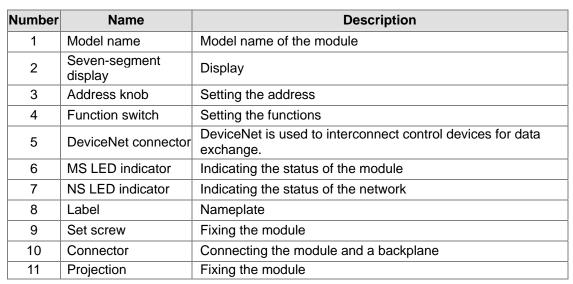
(4) AH10PM-5A

(5) AH20MC-5A

Please refer to AH500 Module Manual for more information about setting parameters.

2.9 Specifications for the RTU module


2.9.1 General Specifications


● AHRTU-DNET-5A

Item	Specifications	
Communication type	CAN	
Electrical isolation	500 V DC	
Connector type	Removable connector (5.08 mm)	
Data type	I/O polled, and explicit	
Communication	Standard mode: 125 kbps, 250 kbps, and 500 kbps	
speed	Extended mode: 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps, and 1 Mbps	
Communication Delta shielded twisted pair		
cable	(Two communication cables, two power cables, and one shielded cable)	

2.9.2 Profiles

● AHRTU-DNET-5A

The address knobs

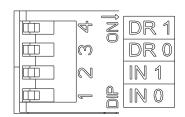
It is used to set the node address of AHRTU-DNET-5A on a DeviceNet network. (Node addresses range from 0 to 63.)

Setting	Description	· 5 0 X10 ¹
063	Available nodes on a DeviceNet network	Node Address
6499	Unavailable nodes on a DeviceNet network	X10 ⁰

Example: If users want to set the communication address of AHRTU-DNET-5A to 26, they can turn the knob corresponding to x10¹ to 2, and turn the knob corresponding to x10⁰ to 6.

Note:

- 1. When the power supply is cut off, the node address is set. After the setting of the node address is complete, AHRTU-DNET-5A can be supplied with power.
- 2. If AHRTU-DNET-5A is running, changing the node address is unavailable.
- 3. Please use a slotted screwdriver to turn the knobs with care, and do not scrape them.

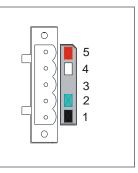


The function switch

The function switch provides the following functions:

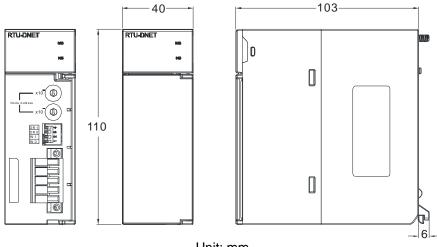
- Setting the working mode (IN 0)
- 2. Setting the transmission speed of a DeviceNet network (DR 0~DR 1)

DR1	DR0	Transmission speed
OFF	OFF	125 kbps
OFF	ON	250 kbps
ON	OFF	500 kbps
ON	ON	Entering the extendable serial transmission speed mode


IN1	Reserved		
INO	ON	If the slave is disconnected, the previous I/O data is retained.	
1140	OFF	If the slave is disconnected, the previous I/O data is cleared.	

Note:

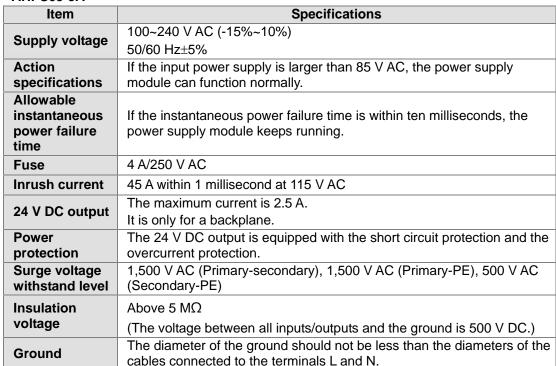
- When the power supply is cut off, the functions are set. After the setting of the functions is 1. complete, AHRTU-DNET-5A can be supplied with power.
- 2. If AHRTU-DNET-5A is running, changing the functions is unavailable.
- Please use a slotted screwdriver to adjust the DIP switch with care, and do not scrape 3. them.


The DeviceNet connector

Pin	Signal	Color	Description
5	V+	Red	24 V DC
4	CAN_H	White	Signal +
3	Ground	-	It is connected to a shielded cable.
2	CAN_L	Blue	Signal -
1	V-	Black	0 V DC

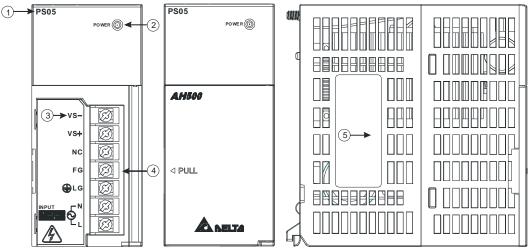
2.9.3 Dimensions

AHRTU-DNET-5A



Unit: mm

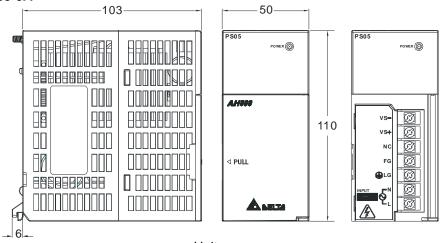
2.10 Specifications for the Power Supply Module


2.10.1 General Specifications

AHPS05-5A

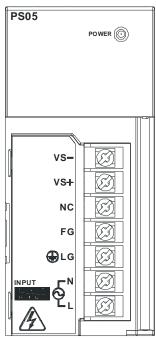
2.10.2 Profile

AHPS05-5A


Number	Name	Description
1	Model name	Model name of the power supply module
2	POWER LED indicator (green)	Indicating the status of the power supply

Number	Name	Description
3	Arrangement of the terminals	VS-: It is connected to the negative 24 V DC power supply. VS+: It is connected to the positive 24 V DC power supply. NC: No connection FG: Functional ground LG: Line ground L/N: AC power input
4	Terminal	Terminal for wiring
5	Label	Nameplate

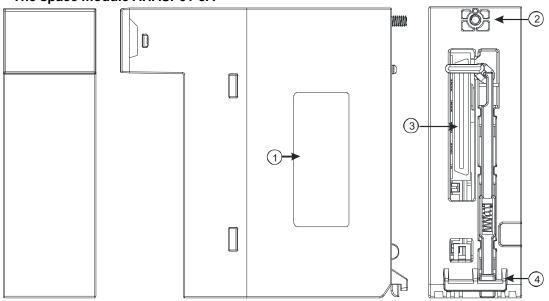
2.10.3 Dimensions


AHPS05-5A

Unit: mm

2.10.4 Arrangement of Terminals

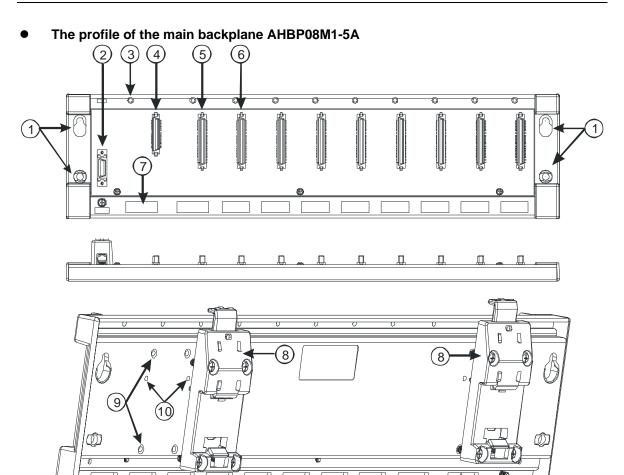
• AHPS05-5A


- VS-: It is connected to the negative 24 V DC power supply, and used to detect the external power supply.
- VS+: It is connected to the positive 24 V DC power supply, and used to detect the external power supply.
- NC: No connection
- FG: Functional ground
- LG: Line ground
- L/N: AC power input

2.11 Space Module, Backplanes, and Extension Cables

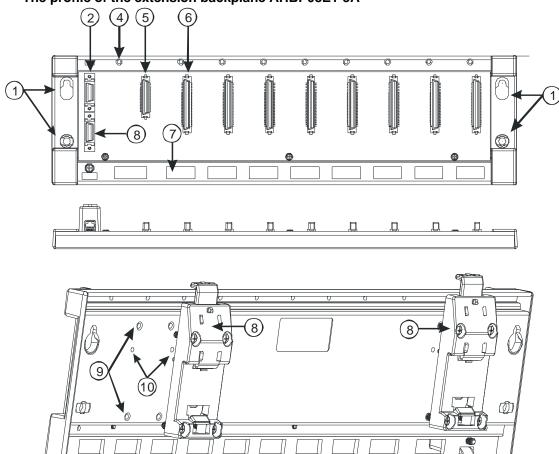
2.11.1 Profiles

• The space module AHASP01-5A


Number	Name	Description
1	Label	Nameplate
2	Set screw	Fixing the module
3	Connector	Connecting the module and a backplane
4	Projection	Fixing the module

• The specifications for main backplanes

Model Item	AHBP04M1-5A	AHBP06M1-5A	AHBP08M1-5A	AHBP12M1-5A
Number of slots	4 6 8 12			
Applicable power supply module	AHPS05-5A			
Applicable input/output module	The AH500 series input/output modules can be installed.			

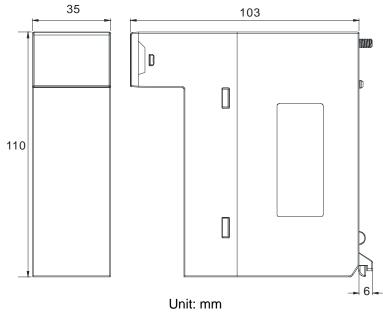

• The specifications for extension backplanes

Model Item	AHBP06E1-5A	AHBP08E1-5A	
Number of slots	6 8		
Applicable power supply module AHPS05-5A			
Applicable input/output module	Digital input/output modules, analog input/output modules, temperature measurement module, and AH10SCM-5A		

Number	Name	Description
1	Mounting hole	Fixing the backplane
2	Extension port	It is connected to an inferior backplane.
3	Mounting hole	After a module is installed, it is fixed by a screw.
4	Connector	Connecting the backplane and a power supply module
5	Connector	Connecting the backplane and a CPU module
6	Connector	Connecting the backplane and an input/output module
7	Hole	The projection under a module is inserted into this hole.
8	Mounting clip	Hanging a backplane on a DIN rail
9	Mounting hole	After a mounting clip is installed, it is fixed by screws.
10	Locating hole	A mounting clip is pressed into these locating holes.

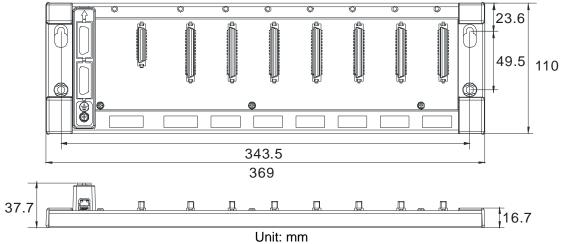
● The profile of the extension backplane AHBP08E1-5A

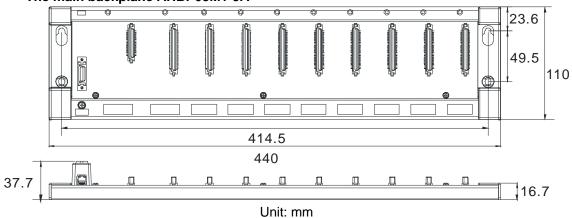
Number	Name	Description
1	Mounting hole	Fixing the backplane
2	Extension port 1	It is connected to a superior backplane.
3	Extension port 2	It is connected to an inferior backplane.
4	Connector	Connecting the backplane and a power supply module
5	Connector	Connecting the backplane and an input/output module
6	Mounting hole	After a module is installed, it is fixed by a screw.
7	Hole	The projection under a module is inserted into this hole.
8	Mounting clip	Hanging a backplane on a DIN rail
9	Mounting hole	After a mounting clip is installed, it is fixed by screws.
10	Locating hole	A mounting clip is pressed into these locating holes.

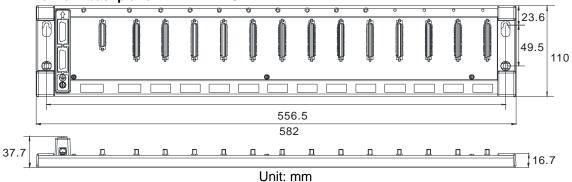

• The extension cable

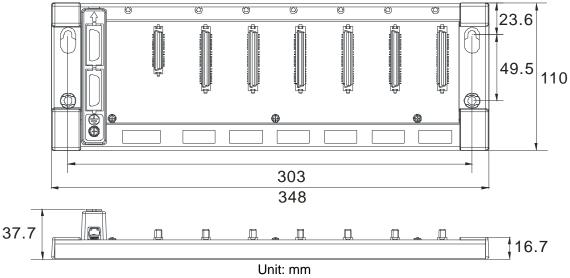
Number	Name	Description
1	Connector	Connecting backplanes
		1. AHACAB06-5A
		2. AHACAB10-5A
		3. AHACAB15-5A
		4. AHACAB30-5A
2	Clip	Fixing the connector

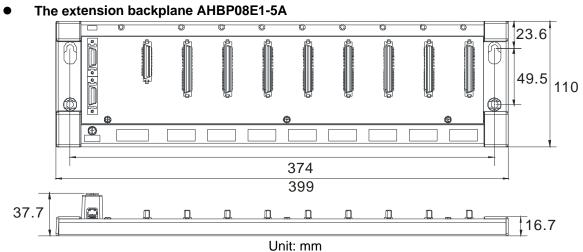
2.11.2 Dimensions


• The space module AHASP01-5A


The main backplane AHBP04M1-5A


• The main backplane AHBP06M1-5A


The main backplane AHBP08M1-5A


The main backplane AHBP12M1-5A

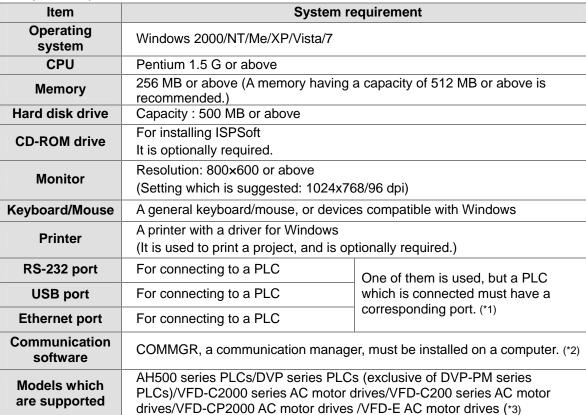
• The extension backplane AHBP06E1-5A

Offic. Hill

• The extension cable

Extension cable	Length
AHACAB06-5A	0.6 m
AHACAB10-5A	1.0 m
AHACAB15-5A	1.5 m
AHACAB30-5A	3.0 m

MEMO


Chapter 3 Installing Software

	of Contents	
3.1 Ir	nstalling and Uninstalling ISPSoft	3-2
3.1.1	Installing ISPSoft	3-2
3.1.2	Uninstall ISPSoft	3-6
3.2 Ir	nstalling and Uninstalling COMMGR	3-7
3.2.1	Installing COMMGR	3-7
	Uninstalling COMMGR	

Before developing an AH500 system, users need to install ISPSoft and COMMGR, which are basic software. ISPSoft is a platform for integrating the program development of a whole system, hardware configuration, and network configuration. COMMGR functions as middleware between a computer and devices. For example, it functions as a communication management interface between ISPSoft and AH500 series hardware.

3.1 Installing and Uninstalling ISPSoft

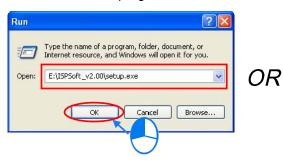
System requirements

^{*1.} ISPSoft supports several ways in which a computer is connected to a PLC. Users have to make sure of the port and the mode supported by a PLC before a computer is connected to the PLC.

3.1.1 Installing ISPSoft

If an older version of ISPSoft has been installed on a computer, users have to uninstall it before install ISPSoft. Pleases refer to section 3.1.2 for more information about uninstalling ISPSoft. The following are the steps of installing ISPSoft.

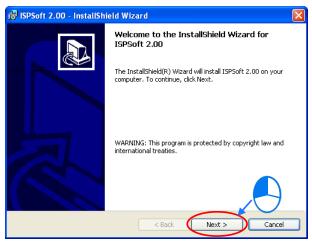
- (1) Start the Windows 2000/NT/Me/XP/Vista/7 operating system.
- (2) Put the ISPSoft CD in the CD-ROM drive, or download the installation program from http://www.delta.com.tw/ch/index.asp. (Before the installation program downloaded from the website is installed, it has to be decompressed.)

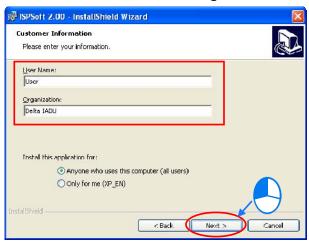


^{*2.} Please refer to section 1.2 for more information about COMMGR.

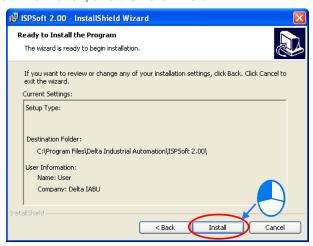
^{*3.} In addition to ISPSoft, users must use PMSoft version 2.05 or above to develop AH10PM-5A and AH20MC-5A.

^{*4.} The functions and specifications mentioned above are only applicable to ISPSoft version 2.00 or above. The older versions are not equipped with the complete functions.

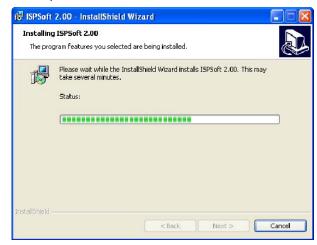

(3) Click **Start**, and then click **Run**... to open the **Run** window. Specify a path which denotes a file called setup.exe in the **Open** box, and then click **OK**. Users can also double-click the **setup** icon to execute the installation program.

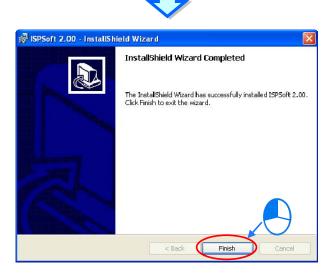


(4) After the ISPSoft x.xx - InstallShield Wizard window appears, click Next.

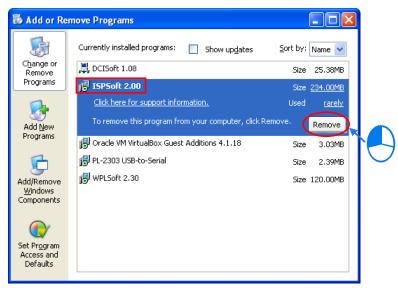

(5) Type related information in the User Name box and Organization box, and then click Next.

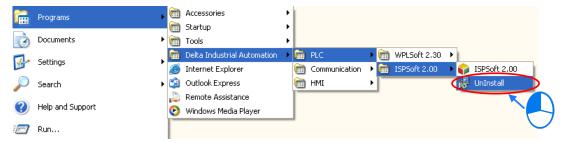
(6) Leave the default path unchanged, or click Change... to change the path. Click Next to proceed to the next step.


(7) Check the installation information, and then click Install.

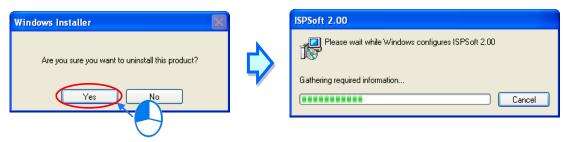


3


(8) After ISPSoft is installed, shortcuts to the program are created on the desktop and the **Start** menu. Click **Finish** to complete the installation.



3.1.2 Uninstall ISPSoft


- (1) There are two methods of uninstalling ISPSoft.
 - Method 1: Open the Control Panel window, and click Add or Remove Programs. In the Currently installed programs box, click ISPSoft x.xx, and then click Remove.

• Method 2: Start>Programs>Delta Industrial Automation>PLC>ISPSoft x.xx>Uninstall

(2) After users click Yes, ISPSoft will be removed.

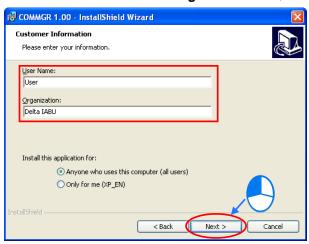
3.2 Installing and Uninstalling COMMGR

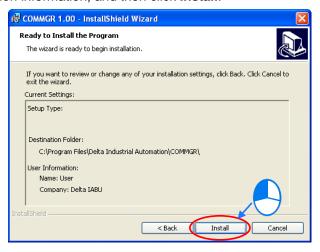
3.2.1 Installing COMMGR

If an older version of COMMGR has been installed on a computer, users have to uninstall it before install COMMGR. Pleases refer to section 3.2.2 for more information about uninstalling COMMGR. The following are the steps of installing COMMGR.

- (1) Start the Windows 2000/NT/Me/XP/Vista/7 operating system.
- (2) Put a COMMGR CD in the CD-ROM drive, or download the installation program from http://www.delta.com.tw/ch/index.asp. (Before the installation program downloaded from the website is installed, it has to be decompressed.)
- (3) Click **Start**, and then click **Run**... to open the **Run** window. Specify a path which denotes a file called setupComm.exe in the **Open** box, and then click **OK**. Users can also double-click the **setupComm** icon to execute the installation program.

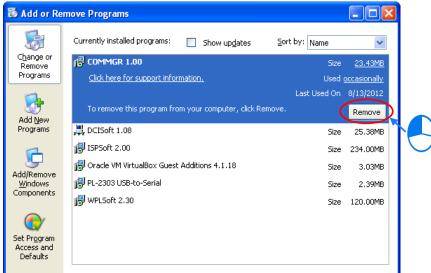
(4) After the **COMMGR x.xx – InstallShield Wizard** window appears, click **Next**.

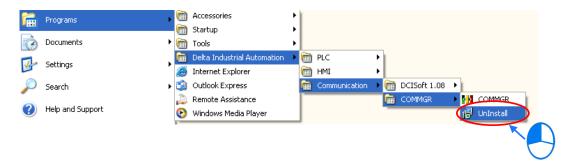




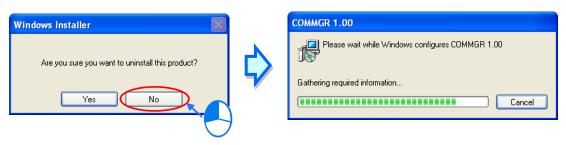

(5) Type information in the User Name box and the Organization box, and then click Next.

(6) Check the installation information, and then click Install.


(7) After COMMGR is installed, a shortcut to the program is created on the **Start** menu. Click **Finish** to complete the installation.



3.2.2 Uninstalling COMMGR


- (1) There are two methods of uninstalling COMMGR.
 - Method 1: Open the Control Panel window, and click Add or Remove Programs. In the Currently installed programs box, click COMMGR x.xx, and then click Remove.

Method 2: Start>Programs>Delta Industrial
 Automation>Communication>COMMGR>Uninstall

2) After users click Yes, COMMGR will be removed.

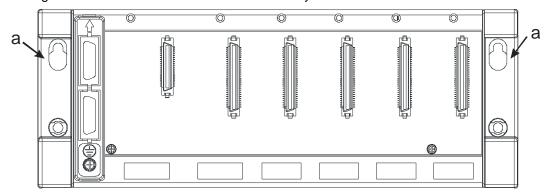
95

MEMO

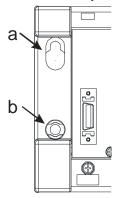
Chapter 4 Installing Hardware

_				\sim		
ıα	ы	le	OT	CO	nte	nts

4.1 Ins	stallation	4-2
4.1.1	Mounting a Backplane	4-2
	Installing a Module	
	ring	
	Wiring the Power Supply Module	
	Wiring I/O Modules	

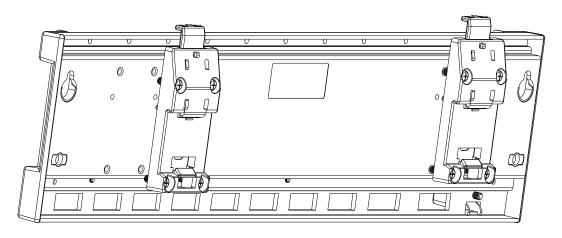

4.1 Installation

4.1.1 Mounting a Backplane

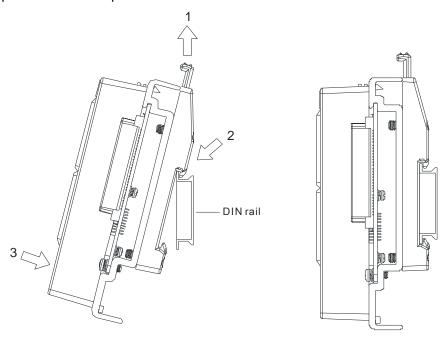

• Fixing a backplane by screws

Please mount a backplane on a plane by means of M5 screws, as illustrated below. To fix the backplane, users need to judge the length of a screw, the size of a thread, and whether to use a nut according to the actual condition of the plane unless there are specific specifications for a screw which are indicated in the pictures below.

1. Tighten the M5 screws in the holes indicated by a.

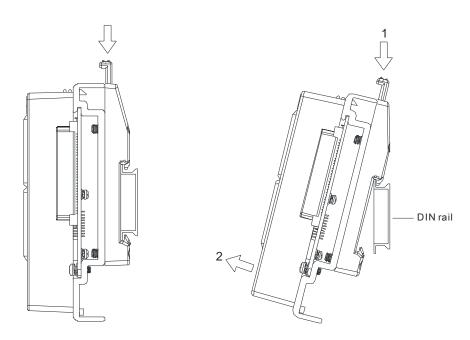


2. Tighten the two screws in the holes indicated by **b**.


• Installing a DIN Rail

- 1. The installation is applicable to a 35 millimeter DIN rail.
- 2. Install the mounting clips on a backplane.

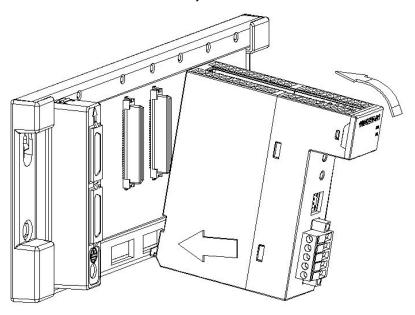
- 3. Install the backplane on a DIN rail.
 - Step 1: Pull the clasp in the direction indicated by the arrow.
 - Step 2: Hang the backplane on a DIN rail.
 - Step 3: Press the clasp.



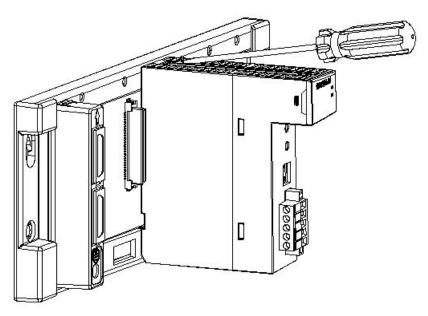
• Removing a DIN rail

Step 1: Press the clasp in the direction indicated by the arrow.

Step 2: Remove the backplane.

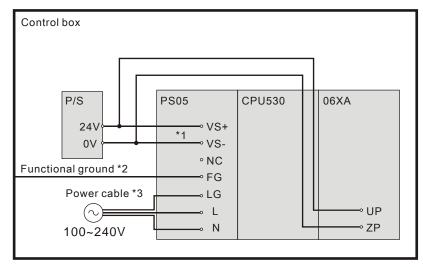

4.1.2 Installing a Module

Prepare modules which will be used, e.g. a power supply module, a CPU module, and digital I/O


modules, and etc. Please follow the steps of installing a module illustrated in chapter 2 in AH500 Hardware Manual.

Insert a module into a slot, make sure that the module is installed on the backplane properly, and tighen the the screw, as illustrated below.

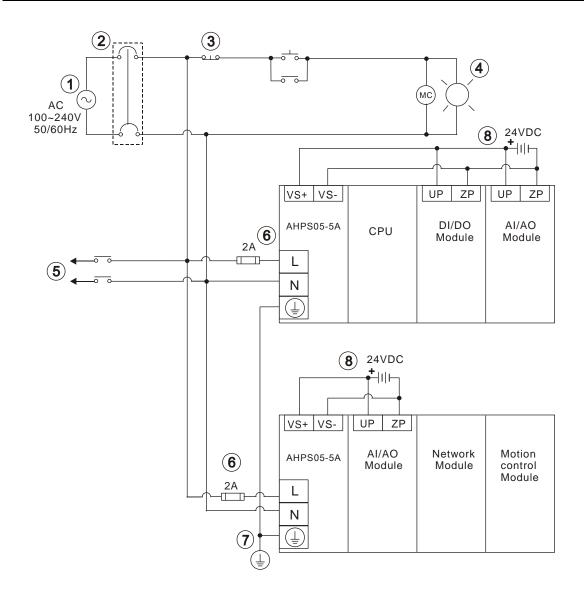
- 1. Insert the projection under the module into the hole in the backplane.
- 2. Push the module in the direction indicated by the arrow until it clicks.



4.2 Wiring

4.2.1 Wiring the Power Supply Module

There is one power supply module installed on every backplane. A power supply module supplies direct current to a CPU module and I/O modules. Please follow the directions for the wiring of a power supply module in chapter 5 in AH500 Hardware Manual.



- *1. The 24 V power supply is connected to VS+ and VS- on the power supply module. VS+ and VS- can be used to detect whether the voltage of the external power supply is stable.
- *2. FG on the power supply module is connected to the control box as the functional ground.
- *3. The live cable and the neutral cable are connected to L and N on the power supply module respectively. To prevent the system from becoming abnormal, the ground has to be connected to LG on the power supply module.

The power input of AHPS05-5A is the AC input. Users have to pay attention to the following points when they use AHPS05-5A.

- The alternating-current input voltage is in the range of 100 V AC to 240 V AC. Please connect the power supply to the terminals L and N. If the 110 V AC or the 220 V AC power supply is connected to the input terminals VS+ and VS-, the PLC will be damaged.
- In order to ensure that the 24 V DC external power supply is provided stably, it can be connected to VS+ and VS-. If the PLC detects that the voltage of the external power supply is lower than the working voltage, users can write a protective program.
- The length of the cable connecting with the ground is 1.6 millimeters.
- If the power cut lasts for less than 10 milliseconds, the PLC keeps running without being
 affected. If the power cut lasts for long, or if the voltage of the power supply decreases, the
 PLC stops running, and there is no output. When the power supply returns to normal, the PLC
 resumes. (Users have to notice that there are latched auxiliary relays and registers in the PLC
 when they write the program.)
- Please use single-core cables or multicore cables. The diameters of the cables used should be in the range of 12 AWG to 22 AWG. The torque applied to the terminal screws should be 9.50 kg-cm (8.25 lb-in). Please use copper conducting wires. The temperature of the copper conducting wires should be 60/75°C.
- Safety wiring: The PLC controls many devices, and the activity of any device affects the
 activity of other devices. If any device breaks down, the whole automatic control system goes
 out of control, and the danger occurs. The protection circuit is as follows.

1	Alternating-current power supply: 100~240 V AC, and 50/60 Hz
2	Circuit breaker
3	Emergency stop: The emergency stop button can be used to cut off the power when an emergency occurs.
4	Power indicator
(5)	Load through which the alternating current passes
6	2 A fuse
7	The ground impedance is less than 100 Ω .
8	Direct-current power supply: 24 V DC

4.2.2 Wiring I/O Modules

The I/O modules include digital input/output modules, analog input/output modules, and network module. Please follow the directions for the wiring of I/O modules in chapter 5 in AH500 Hardware Manual.

5

Chapter 5 Devices

Table of	of Contents	
5.1 The	Introduction of Devices	5-2
5.1.1	The Devise List	5-2
5.1.2	The Basic Structure of I/O Storages	5-2
5.1.3	The Relation between the PLC Action and the Device Type	5-3
5.1.4	The Latched Areas in the Device Range	5-3
5.2 The	Functions of Devices	5-4
5.2.1	Values and Constants	5-4
5.2.2	Floating-point Numbers	5-5
5.2.3	Strings	5-5
5.2.4	Input Relays	5-5
5.2.5	Output Relays	5-6
5.2.6	Auxiliary Relays	5-6
5.2.7	Special Auxiliary Relays	
5.2.8	Stepping Relays	5-6
5.2.9	Timers	5-7
5.2.10	Counters	5-7
5.2.11	32-bit Counters	5-8
5.2.12	Data Registers	
5.2.13	Special Data Registers	5-9
5.2.14	Link Registers	
5.2.15	Index Registers	5-9

5.1 Introduction of Devices

This section gives an account of values/strings processed by the PLC. It also describes the functions of devices which include input/output/auxiliary relays, timers, counters, and data registers.

5.1.1 Devise List

Туре	Device name		Number of devices	Range	
	Input relay	Χ	8192	X0.0~X511.15	
	Output relay	Υ	8192	Y0.0~Y511.15	
	Data register		16384 (AHCPU500)	D0.0~D16383.15	
		D	32768 (AHCPU510)	D0.0~D32767.15	
			65536 (AHCPU520/530)	D0.0~D65535.15	
			16384 (AHCPU500)	L0.0~D16383.15	
Bit	Link register	L	32768 (AHCPU510)	L0.0~D32767.15	
device			65536 (AHCPU520/530)	L0.0~D65535.15	
	Auxiliary relay	М	8192	M0~M8191	
	Special auxiliary relay	SM	2048	SM0~SM2047	
	Stepping relay	S	2048	S0~S2047	
	Timer	Т	2048	T0~T2047	
	Counter	С	2048	C0~C2047	
	32-bit counter	HC	64	HC0~HC63	
	Input relay	Χ	512	X0~X511	
	Output relay		512	Y0~Y511	
		D	16384 (AHCPU500)	D0~D16383	
			32768 (AHCPU510)	D0~D32767	
			65536 (AHCPU520/530)	D0~D65535	
Word		SR	2048	SR0~SR2047	
device			16384 (AHCPU500)	L0~D16383	
401100	Link register	L	32768 (AHCPU510)	L0~D32767	
			65536 (AHCPU520/530)	L0~D65535	
	Timer	Т	2048	T0~T2047	
	Counter	С	2048	C0~C2047	
	32-bit counter	HC	64 (128 words)	HC0~HC63	
	Index register	E	32	E0~E31	
	Decimal system	К	16 bits: -32768~32767		
	Decimal system	N	32 bits: -2147483648~2147483647		
	Hexadecimal system	16#	16 bits: 16#0~16#FFFF		
Constant*	_	10#	32 bits: 16#0~16#FFFFFFF		
Constant	Single-precision floating-point number	F	32 bits: ±1.17549435 ⁻³⁸ ~±3.40282347 ⁺³⁸		
	Double-precision	DF	64 bits: ±2.2250738585072014 ⁻³⁰⁸ ~		
tioating-point number ±1.7976931348623157					
String*	String	"\$"	1~31 characters		

^{*1:} The decimal forms are notated by K in the device lists in chapter 5 and chapter 6 in AH500 Programming Manual, whereas they are entered directly in ISPSoft.

^{*2:} The floating-point numbers are notated by F/DF in the device lists in chapter 5 and chapter 6 in AH500 Programming Manual, whereas they are represented by decimal points in ISPSoft.

^{*3:} The strings are notated by "\$" in chapter 5 and chapter 6 in AH500 Programming Manual, whereas they are represented by " " in ISPSoft.

5.1.2 Basic Structure of I/O Storages

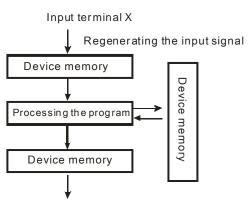
Device	Function	Access of bits	Access of words	Modification by ISPSoft	Forcing the bit ON/OFF
X	Input relay	OK	OK	OK	OK
Υ	Output relay	OK	OK	OK	OK
M	Auxiliary relay	OK	-	OK	NO
SM	Special auxiliary relay	ок	-	ОК	NO
S	stepping relay	OK	-	OK	NO
Т	Timer	OK	OK	OK	NO
С	Counter	OK	OK	OK	NO
НС	32-bit counter	OK	OK	OK	NO
D	Data register	OK	OK	OK	NO
SR	Special data register	-	ОК	ОК	NO
L	Link register	OK	OK	OK	NO
E	Index register	-	OK	OK	NO

5.1.3 Relation between the PLC Action and the Device Type

PLC act	Device type ion	Non-latched area	Latched area	Output relay
	Power: OFF→ON	Cleared	Retained	Cleared
	The output relay is cleared.	Retained	Retained	Cleared
	The state of the output relay is retained.	Retained	Retained	Retained
STOP ↓ RUN	The state of the output relay returns to that before the PLC's stopping.	Retained	Retained	The state of the output relay returns to that before the PLC's stopping.
KON	The non-latched area is cleared.	Cleared	Retained	Cleared
	The state of the latched area is retained.	Retained	Retained	Retained
	RUN→STOP	Retained	Retained	Retained
(All nor	SM204 is ON. n-latched areas are cleared.)	Cleared	Retained	Cleared
SM205 is ON. (All latched areas are cleared.)		Retained	Cleared	Retained
Default value		0	0	0

5.1.4 Latched Areas in the Device Range

Device	Function	Device range	Latched area
X	Input relay	X0~X511	All devices are non-latched.
Υ	Output relay	Y0~Y511	All devices are non-latched.
M*	Auxiliary relay	M0~M8191	The default range is M0~M8191.
SM	Special auxiliary	SM0~SM2047	Some devices are latched, and can not be changed.
	relay		Please refer to the list of special auxiliary relays for more information.
S	Stepping relay	S0~S1023	All devices are non-latched.



Device	Function	Device range	Latched area
T*	Timer	T0~T2047	The default range is T0~T2047.
C*	Counter	C0~C2047	The default range is C0~C2047.
HC*	32-bit counter	HC0~HC63	The default range is HC0~HC63.
		D0~D16383 (AHCPU500)	The default range is D0~D16383.
D*	Data register	D0~D32767 (AHCPU510)	The default range is D0~D32767. At most 32768 devices can be latched
		D0~D65535 (AHCPU520/530)	areas.
SR	Special data register	SR0~SR2047	Some are latched, and can not be changed. Please refer to the list of special data registers for more information.
		L0~D16383 (AHCPU500)	
L	Link register	L0~D32767 (AHCPU510)	All devices are non-latched.
		L0~D65535 (AHCPU520/530)	
E	Index register	E0~E31	All devices are non-latched.

^{*: *} indicates that users can set the range of latched areas, and that the device can be set to Non-latched Area. The range of latched areas can not exceed the device range. Above all, only 32768 data registers at most can be non-latched areas. For example, users can set D50~D32817 or D32768~D65535 to Latched Areas although the default range of latched areas is D0~D32767.

5.2 Functions of Devices

The procedure for processing the program in the PLC:

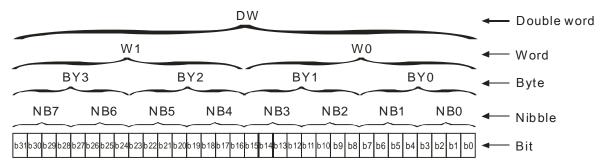
Regenerating the output signal and sending it to the output terminal

- Regenerating the input signal
 - Before the program is executed, the state of the external input signal is read into the memory of the input signal.
 - When program is executed, the state in the memory of the input signal does not change even if the input signal changes from ON to OFF or from OFF to ON. Not until the next scan begins will the input signal be refreshed.
- Processing the program

After the input signal is refreshed, the instructions in the program are executed in order from the start address of the program, and the results are stored in the device memories.

Regenerating the state of the output
 After the instruction END is executed, the state in
 the device memory is sent to the specified output
 terminal.

5.2.1 Values and Constants


Name	Description
Bit	A bit is the basic unit in the binary system. Its state is either 1 or 0.
Nibble	A nibble is composed of four consecutive bits (e.g. b3~b0). Nibbles can be used to represent 0~9 in the decimal system, or 0~F in the hexadecimal system.

5
W

Name	Description
Byte	A byte is composed of two consecutive nibbles (i.e. 8 bits, b7~b0). Bytes can be used to represent 00~FF in the hexadecimal system.
Word	A word is composed of two consecutive bytes (i.e. 16 bits, b15~b0). Words can be used to represent 0000~FFFF in the hexadecimal system.
Double word	A double word is composed of two consecutive words (i.e. 32 bits, b31~b0). Double words can be used to represent 00000000~FFFFFFF in the hexadecimal system.
Quadruple word	A quadruple word is composed of four consecutive words (i.e. 64 bits, b63~b0). Quadruple words can be used to represent 000000000000000 – FFFFFFFFFFFFFFFFFFFF

The relation among bits, nibbles, bytes, words, and double words in the binary system is as follows.

5.2.2 Floating-point Numbers

The floating-point numbers are represented by decimal points in ISPSoft. For example, the floating-point number of 500 is 500.0. Please refer to section 2.2.2 in AH500 Programming Manual for more information.

5.2.3 Strings

What strings can process are ASCII codes. A complete string begins with a start character, and ends with an ending character (NULL code). If what users enter is a string, they can enter 31 characters at most, and the ending character 16#00 will be added automatically in ISPSoft. Please refer to section 2.2.3 in AH500 Programming Manual for more information.

5.2.4 Input Relays

- The function of the input
 - The input is connected to the input device (e.g. external devices such as button switches, rotary switches, number switches, and etc.), and the input signal is read into the PLC. Besides, contact A or contact B of the input can be used several times in the program, and the ON/OFF state of the input varies with the ON/OFF state of the input device.
- The input number (the decimal number):
 - For the PLC, the input numbers start from X0.0. The number of inputs varies with the number of inputs on the digital input/output modules, and the inputs are numbered according to the order in which the digital input/output modules are connected to the CPU module. The maximum number of inputs on the PLC can reach up to 8192, and the range is between X0.0 and X511.15.
- The input type
 - The inputs are classified into two types.
 - 1. Regenerated input: Before the program is executed, the data is fed into the PLC according to the states of the inputs which are regenerated. For

example, LD X0.0.

2. Direct input: During the execution of the instructions, the data is fed into the PLC according to the states of the inputs. For example, LD DX0.0.

5.2.5 Output Relays

The function of the output

The task of the output is sending the ON/OFF signal to drive the load connected to the output. The load can be an external signal lamp, a digital display, or an electromagnetic valve. There are three types of outputs. They are relays, transistors, and TRIACs (AC thyristors). Contact A or contact B of the output can be used several times in the program, but the output should be used only once in the program. Otherwise, according the program-scanning principle of the PLC, the state of the output depends on the circuit connected to the last output in the program.

• The output number (the decimal number)

For the PLC, the input numbers start from X0.0. The number of outputs varies with the number of outputs on the digital input/output modules, and the outputs are numbered according to the order in which the digital input/output modules are connected to the PLC. The maximum number of outputs on the PLC can reach up to 8192, and the range is between Y0.0 and Y511.15.

The output which is not practically put to use can be used as a general device.

The output type

The outputs are classified into two types.

- Regenerated output: Not until the program executes the instruction END is the information fed out according to the states of the outputs. For example, OUT Y0.0.
- 2. Direct output: When the instructions are executed, the information is fed out according to the states of the outputs. For example, OUT DY0.0.

5.2.6 Auxiliary Relays

The auxiliary relay has contact A and contact B. It can be used several times in the program. Users can combine the control loops by means of the auxiliary relay, but can not drive the external load by means of the auxiliary relay. The auxiliary relays can be divided into two types according to their attributes.

1. For general use: If an electric power cut occurs when the PLC is running, the auxiliary relay

for general use will be reset to OFF. When the power supply is restored, the

auxiliary relay for general use is still OFF.

2. For latched use: If an electric power cut occurs when the PLC is running, the state of the

auxiliary relay for latched use will be retained. When the power supply is restored, the state remains the same as that before the power electric cut.

5.2.7 Special Auxiliary Relays

Every special auxiliary relay has its specific function. Please refer to section 2.2.7 in AH500 Programming Manual for more information.

5.2.8 Stepping Relays

The function of the stepping relay:

The stepping relay can be easily used in the industrial automation to set the procedure. It is the most basic device in the sequential function chart (SFC). Please refer to ISPSoft User Manual for more information related to sequential function charts.

There are 2048 stepping relays, i.e. S0~S2047. Every stepping relay is like an output relay in that it has an output coil, contact A, and contact B. It can be used several times in the program, but it can not directly drive the external load. Besides, the stepping relay can be used as a general auxiliary relay when it is not used in the sequential function chart.

5.2.9 Timers

- 1. 100 millisecond timer: The timer specified by the instruction TMR takes 100 milliseconds as the timing unit.
- 2. 1 millisecond timer: The timer specified by the instruction TMRH takes 1 millisecond as the timing unit.
- 3. The timers for the subroutine's exclusive use are T1920~T2047.
- 4. The accumulative timers are ST0~ST2047. If users want to use the device-monitoring function, they can monitor T0~T2047.
- 5. If the same timer is used repeatedly in the program, including in different instructions TMR and TMRH, the setting value is the one that the value of the timer matches first.
- If the same timer is used repeatedly in the program, it is OFF when one of the conditional contacts is OFF.
- 7. If the same timer is used repeatedly in the program as the timer for the subroutine's exclusive use and the accumulative timer in the program, it is OFF when one of the conditional contacts is OFF.
- 8. When the timer is switched from ON to OFF and the conditional contact is ON, the timer is reset and counts again.
- 9. When the instruction TMR is executed, the specified timer coil is ON and the timer begins to count. As the value of the timer matches the setting value, the state of the contact is as follows.

Normally open (NO) contact	ON
Normally closed (NC) contact	OFF

• The general-purpose timer

When the instruction TMR is executed, the general-purpose timer begins to count. As the value of the timer matches the setting value, the output coil is ON.

• The accumulative timer

When the instruction TMR is executed, the accumulative timer begins to count. As the value of the timer matches the setting value, the output coil is ON. As long as users add the letter S in front of the letter T, the timer becomes the accumulative timer. When the conditional contact is OFF, the value of the accumulative timer is not reset. When the conditional contact is ON, the timer counts from the current value.

The timer used in the function block

T1920~T2047 are the timers which users can use in the functional block or the interrupt. When the instruction TMR or END is executed, the timer used in the functional block begins to count. As the value of the timer matches the setting value, the output coil is ON. If the general-purpose timer is used in the functional block or the interrupt, and the functional is not executed, the timer can not count correctly.

5.2.10 Counters

The characteristics of the 16-bit counter

Item	16-bit counter
Туре	General type
Number	C0~C2047
Direction	Counting up
Setting value	0~32,767
Specification of the setting value	The setting value can be either the constant or the value in the data register.
Change of the current value	The counter stops counting when the value of the counter matches the setting value.
Output contact	The contact is ON when the value of the counter matches the setting value.

Item	16-bit counter
Reset	When the instruction RST is executed, the current value is cleared to zero, and the contact is reset of OFF.
Action of the contact	After the scan is complete, the contact acts.

The function of the counter

Each time the input switches from OFF to ON, the value of the counter increases by one increment. When the value of the counter matches the setting value, the output coil is ON. Users can use either the decimal constant or the value in the data register as the setting value.

The 16-bit counter:

- 1. Setting range: 0~32,767 (The setting values 0 and 1 mean the same thing in that the output contact is ON when the counter counts for the first time.)
- 2. For the general-purpose counter, the current value of the counter is cleared when there is a power cut. If the counter is the latched one, the current value of the counter and the state of the contact before the power cut will be retained. The latched counter counts from the current value when the power supply is restored.
- 3. If users use the instruction MOV or ISPSoft to transmit a value bigger than the setting value to the current value register C0, the contact of the counter C0 will be ON and the current value will become the same as the setting value next time X0.1 is switched from OFF to ON.
- 4. Users can use either the constant or the value in the register as the setting value of the counter.
- 5. The setting value of the counter can be a positive or a negative. If the counter counts up from 32,767, the next current value becomes -32,768.

5.2.11 32-bit Counters

The characteristics of the 32-bit counter.

Item	32-bit counter
Туре	General type
Number	HC0~HC63
Direction	Counting up/down
setting value	-2,147,483,648~+2,147,483,647
Specification of the setting value	The setting value can be either the constant or the value occupying two data registers.
Change of the current value	The counter keeps counting after the value of the counter matches the setting value.
Output contact	The contact is ON when the value of the addition counter matches the setting value.
	The contact is reset to OFF when the value of the subtraction counter matches the setting value.
Reset	When the instruction RST is executed, the current value is cleared to zero, and the contact is reset of OFF.
Action of the contact	After the scan is complete, the contact acts.

- The 32-bit general-purpose addition/subtraction counter
 - 1. Setting range: -2,147,483,648~2,147,483,647
 - 2. The switch between the 32-bit general-purpose addition counters and the 32-bit general-purpose subtraction counters depends on the states of the special auxiliary relays SM621~SM684. For example, the counter HC0 is the addition counter when SM621 is OFF, whereas HC0 is the subtraction counter when SM621 is ON.
 - Users can use either the constant or the value in the data registers as the setting value of
 the counter, and the setting value can be a positive or a negative. If users use the value in
 the data registers as the setting value of the counter, the setting value occupies two
 consecutive registers.

- 4. For the general-purpose counter, the current value of the counter is cleared when there is a power cut. If the counter is the latched one, the current value of the counter and the state of the contact before the power cut will be retained. The latched counter counts from the current value when the power supply is restored.
- 5. If the counter counts up from 2,147,483,647, the next current value becomes -2,147,483,648. If the counter counts down from -2,147,483,648, the next current value becomes 2,147,483,647.

5.2.12 Data Registers

The data register stores the 16-bit data. The highest bit represents either a positive sign or a negative sign, and the values which can be stored in the data registers range from -32,768 to +32,767. Two 16-bit registers can be combined into a 32-bit register, i.e. (D+1, D) in which the register whose number is smaller represents the low 16 bits. The highest bit represents either a positive sign or a negative sign, and the values which can be stored in the data registers range from -2,147,483,648 to +2,147,483,647. Besides, four 16-bit registers can be combined into a 64-bit register, i.e. (D+3, D+2, D+1, D) in which the register whose number is smaller represents the lower 16 bits. The highest bit represents either a positive sign or a negative sign, and the values which can be stored in the data registers range from -9,223,372,036,854,776 to +9,223,372,036,854,775,807. The data registers can also be used to refresh the values in the control registers in the modules other than digital I/O modules. Please refer to ISPSoft User Manual for more information regarding refreshing the values in the control registers.

The registers can be classified into two types according to their properties:

- General-purpose register: When the PLC begins to run, or is disconnected, the value in the
 register will be cleared to zero. If users want to retain the data when the PLC begins to RUN,
 they can refer to ISPSoft User Manual for more information. Please notice that the value will still
 be cleared to zero when the PLC is disconnected.
- 2. Latched register: If the PLC is disconnected, the data in the latched register will not be cleared. In other words, the value before the disconnection is still retained. If users want to clear the data in the latched area, they can use RST or ZRST.

5.2.13 Special Data Registers

Every special data register has its definition and specific function. Please refer to section 2.2.14 in AH500 Programming Manual for more information.

5.2.14 Link Registers

The link register is mainly used in the PLC Link or the Ether Link. When the data exchange occurs between the AH500 series programmable logic controllers, the link register can be used as the buffer. Please refer to chapter 11 for more information.

The link registers L0~L65535 add up to 65536 words. (The device range varies with the model selected.) Besides, the link register can be used as the general auxiliary register.

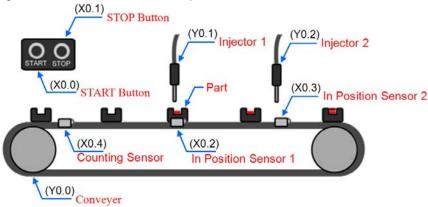
5.2.15 Index Registers

The index register is the 16-bit data register. It is like the general register in that the data can be read from it and written into it. However, it is mainly used as the index register. The range of index registers is E0~E13. Please refer to section 4.2 in AH500 Programming Manual for more information about the usage of index registers.

MEMO

Chapter 6 Writing a Program

Table	of Contents	
6.1 Q	uick Start	6-2
6.1.1	Example	6-2
6.1.2	Hardware	6-2
6.1.3	Program	
6.2 P	rocedure for Creating a Project in ISPSoft	6-3
	reating a Project	
6.4 H	ardware Configuration	6-4
6.4.1	Configuring a Module	6-5
6.4.2	Setting the Parameters in a CPU Module and a Module	6-7
6.5 C	reating a Program	
6.5.1	Adding a Ladder Diagram	6-9
6.5.2	Basic Editing—Creating a Contact and a Coil	6-10
6.5.3	Basic Editing—Inserting a Network and Typing an Instruction	6-14
6.5.4	Basic Editing—Selection of a Network and Operation	6-16
6.5.5	Basic Editing—Connecting a Contact in Parallel	6-18
6.5.6	Basic Editing—Editing a Comment	6-18
6.5.7	Basic Editing—Inserting an Applied Instruction	6-20
6.5.8	Basic Editing—Creating a Comparison Contact and Typing a	Constant
		6-22
6.5.9	Writing a Program	
6.5.10	Checking and Compiling a Program	6-24
6.6 Te	esting and Debugging a Program	6-25
6.6.1	Creating a Connection	6-25
6.6.2	Downloading a Program and Parameters	
6.6.3	Connection Test	6-30
6.7 S	etting a Real-time clock	6-36


6.1 Quick Start

The chapter provides a simple example, and leads users to create a traditional ladder diagram in ISPSoft in a short time. However, in order to help users who are not familiar with IEC 61131-3 understand the functions provided by ISPSoft, and create a traditional ladder diagram, programming concepts related to IEC 61131-3 are not introduced in this chapter. For example, POUs, function blocks, variables, and etc. are not introduced.

6.1.1 Example

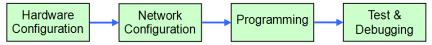
When the equipment operates, the parts on the conveyer are conveyed from left to right. If a sensor senses that a part is under an injector, the PLC will send a trigger signal to the injector, and the injector will injects the glue. How long the part will be injected is set externally, and is not controlled by the program in the PLC. However, the program in the PLC must be able to turn the trigger signal OFF so that the trigger signal can be sent next time. There are two injectors above the conveyer, and the two injectors inject glue in the same way.

Besides, there is a sensor at the left side of the conveyer. When a part passes the sensor, the sensor value increases by one increment. If the sensor value is 100, the internal completion flag will be set to ON. The state of the flag can be used by other procedures later. However, the use of the state of the flag is not introduced in this example.

6.1.2 Hardware

In this example, the AH500 series CPU module used is **AHCPU530-EN**, the digital I/O module used is **AH16AP11R-5A**, and the main backplane used is **AHBP04M1-5A**. The table below is an I/O allocation table.

Туре	ID	Description	
Digital input	X0.0	START button	
Digital input	X0.1	STOP button	
Digital input	X0.2	In position sensor 1	
Digital input	X0.3	In position sensor 2	
Digital input	X0.4	Counting sensor	
Digital output	Y0.0	Conveyer	
Digital output	Y0.1	Trigger signal for injector 1	
Digital output	Y0.2	Trigger signal for injector 2	


6.1.3 Program

- (1) When the START button (X0.0) is turned from OFF to ON, the internal operation flag is set to ON, and the conveyer (Y0.0) starts to run. When the STOP button (X0.1) is turned from OFF to ON, an error occurs (the error flag is ON), the operation flag is reset to OFF, and the conveyer stops running.
- (2) When in position sensor 1 (X0.2) is ON, the trigger signal for injector 1 (Y0.1) is set to ON.

- When in position sensor 1 is OFF, the trigger signal for injector 1 is reset to OFF.
- (3) When in position sensor 2 (X0.3) is ON, the trigger signal for injector 2 (Y0.2) is set to ON. When in position sensor 2 is OFF, the trigger signal for injector 2 is reset to OFF.
- (4) When the counting sensor (X0.4) is turned from OFF to ON, the sensor value increases by one increment. If the sensor value is larger than or equal to 100, the internal completion flag will be set to ON.

6.2 Procedure for Creating a Project in ISPSoft

The procedure for creating a project in ISPSoft is as follow. Users can adjust the procedure according to the practical application and their habits.

Hardware configuration

Users can set the parameters such as a range of latched devices and a port number in a PLC. Besides, the users have to configure modules used with an AH500 series CPU module, and set the parameters in these modules.

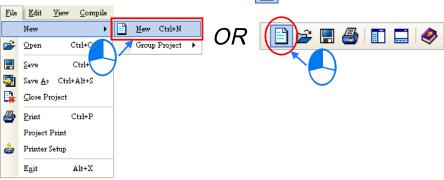
Network configuration

If a system used adopts network architecture, or devices need to exchange data, users can configure a network, a PLC Link, or an Ether Link easily through the network configuration tool **NWCONFIG** in ISPSoft.

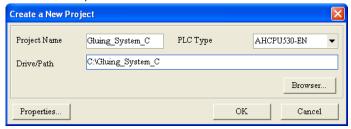
Programming

After users write a program in ISPSoft, they can compile the program. If the compiling of a program is unsuccessful, the messages in the **Compile Message** page can lead users to the places where errors occur to check the program code.

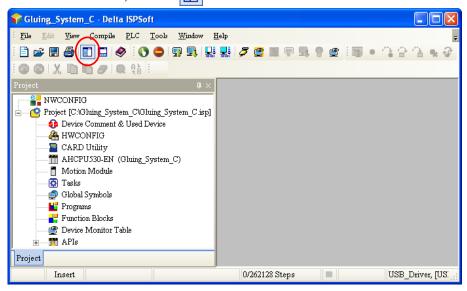
Test and debugging


Users can download a program which is compiled, a hardware configuration, and a network configuration to a PLC. Besides, the users can test and debug the program online by means of the functions provided by ISPSoft.

Owing to the fact that the example introduced in this chapter does not discuss a network configuration, only the following procedure is carried out. The procedure will be introduced in the following section.

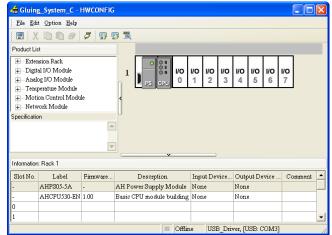

6.3 Creating a Project

After ISPSoft is started, users can click the **File** menu, point to **New**, and click **New** to create a new project. They can also create a new project by clicking on the toolbar after ISPSoft is started.



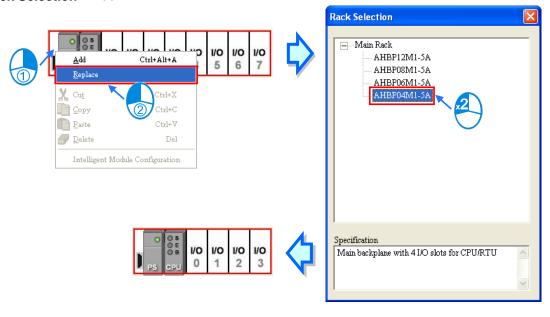
In the **Create a New Project** window, type a project name in the **Project Name** box and a path in the **Drive/Path** box, select a PLC in the **PLC Type** drop-down list box, and click **OK**. (The PLC used in this example is AHCPU530-EN.)

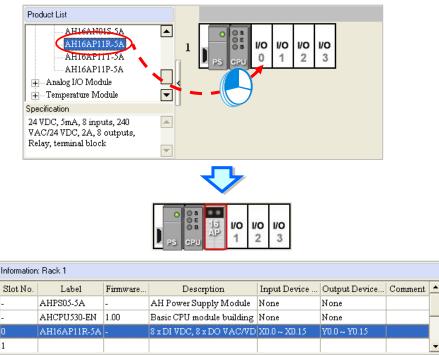
After the project is created successfully, a project management area will appear at the left side of the main screen. The relation between the items listed in the project management area is represented by a hierarchical tree structure. If the project management area does not appear, the users can click **Workspace** on the **View** menu, or click on the toolbar.



6.4 Hardware Configuration

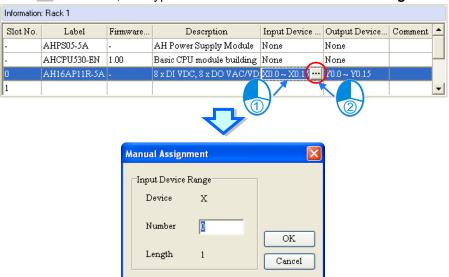
After users double-click **HWCONFIG** in the project management area, the **HWCONFIG** window will appear.




6.4.1 Configuring a Module

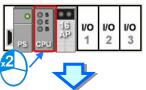
In the **HWCONFIG** window, there is an eight-slot backplane on which a CPU module and a power supply module are installed. However, the backplane used in this example is the four-slot backplane **AHBP04M1-5A** on which the digital I/O module **AH16AP11R-5A** is installed.

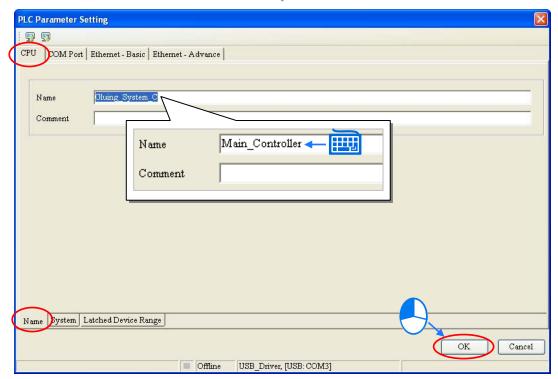
If users want to replace the backplane, they can right-click the left side of the rack in the system configuration area, click **Replace** on the context menu, and double-click **AHBP04M1-5A** in the **Rack Selection** window.


Unfold the **Digital I/O Module** section on the product list, find **AH16AP11R-5A**, and drag the module to a vacant slot on the backplane in the system configuration area. After the module is added successfully, the related information and the devices assigned to the module will be listed in the table at the bottom of the window.

The system automatically assigns devices to a module which is added. If the devices assigned to a module do no conform to what is expected, users can click the **Input/Output Device Range** cell for

the module, click in the cell, and type a device address in the Manual Assignment window.

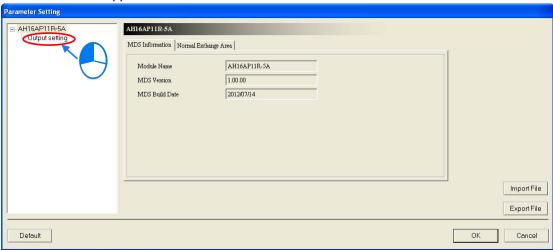


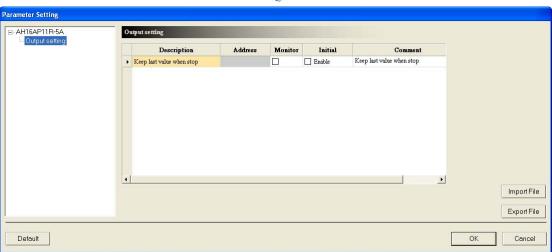

6.4.2 Setting the Parameters in a CPU Module and a Module

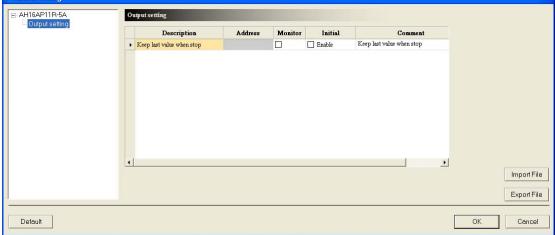
After **AH16AP11R-5A** is configured, users can set the parameters in the CPU module and the parameters in the extension module. After the users double-click the CPU module or the extension module, a corresponding window will appear.

After the CPU module is double-clicked, the **PLC Parameter Setting** window will appear. The users can click the primary tabs at the top of the window, and the secondary tables at the bottom of the window to set the parameters. In this example, the users only need to define the name of the CPU module.

After the users click the **CPU** tab at the top of the window, and the **Name** tab at the bottom of the window, they can type a name in the **Name** box. The users will find the default name in the **Name** box is the same as the project name. Delete the default name, type "Main_Controller" in the **Name** box, and click **OK**.


After the users double-click AH16AP11R-5A, the Parameter Setting window will appear.





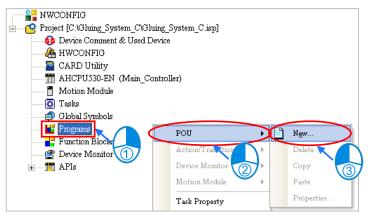
After the Parameter Setting window is opened, the users can view the information related to the module. The users can select the parameter type at the left side of the window, and then set the parameter in the table at the right side of the window.

In this example, the default values are retained. Therefore, the step of setting the parameter in AH16AP11R-5A is skipped.

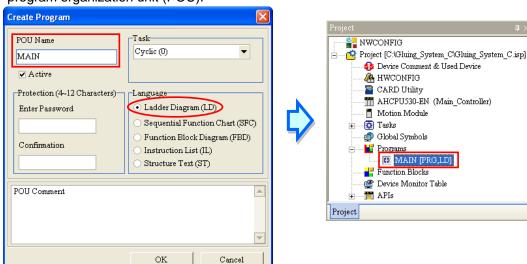
The hardware configuration is not complete until the parameters in the CPU module and AH16AP11R-5A are set. However, the configuration and the setting must be downloaded to the CPU module so that they can take effect. The configuration and the setting are saved here, and will be downloaded with the program in the project later.

If the users want to save the configuration and the setting, they can click Save on the File menu, or on the toolbar. After the configuration and the setting are saved, the users can close the

*. Please refer to chapter 8 for more information about HWCONFIG.

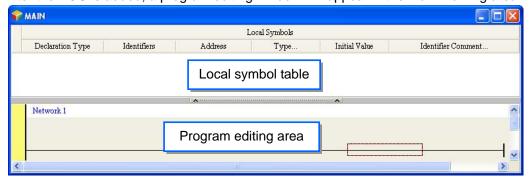


6.5 Creating a Program

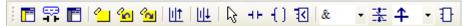

The following sections will lead users to create a traditional ladder diagram in ISPSoft. The contents of the following sections include creating a POU, editing a traditional diagram, and compiling a program. The users are expected to equip themselves with the basic abilities to create a traditional ladder diagram in a short time.

6.5.1 Adding a Ladder Diagram

(1) Right-click **Programs** in the project management area, point to **POU** on the context menu, and click **New...**.



(2) Type a program name in the POU Name box, select the Ladder Diagram (LD) option button in the Language section, and retain the other default values. Click OK after the setting is complete. An item will be under Programs in the project management area. The item is a program organization unit (POU).



(3) After the POU is added, a program editing window will appear in the main working area.

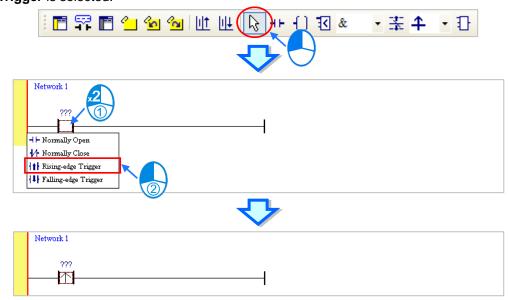
After the program editing window is opened, the corresponding toolbar will appear in the window. The functions are described below.

Icon	Keyboard shortcut	Function
	Shift+Ctrl+C	Displaying/Hiding the comments on the networks
P	None	Displaying/Hiding the commands on the devices
	Shift+Ctrl+A	Activating/Inactivating the network selected
<u></u>	Shift+Ctrl+B	Adding a bookmark to the network selected or deleting a bookmark from the network selected
<u></u>	Shift+Ctrl+P	Going to the previous bookmarked position
<u>~</u>	Shift+Ctrl+N	Going to the next bookmarked position
	Ctrl+I	Putting a network above the network selected
	Shift+Ctrl+I	Putting a network under the network selected
13	ESC	Selection
\dashv \vdash	Typing an instruction	Inserting a contact
()	Typing an instruction	Inserting a coil
1	Typing an instruction	Inserting a comparison contact
& -	Typing an instruction	Selecting a type of comparison contact
苯	Typing an instruction	Inserting a block logic instruction (NP/PN/INV/FB_NP/FB_PN)
↑ -	Typing an instruction	Selecting a type of block logic instruction (NP/PN/INV/FB_NP/FB_PN)
1	Shift+Ctrl+U	Inserting an instruction or a function block

^{*.} Please refer to section 6.5.3 for more information about typing an instruction.

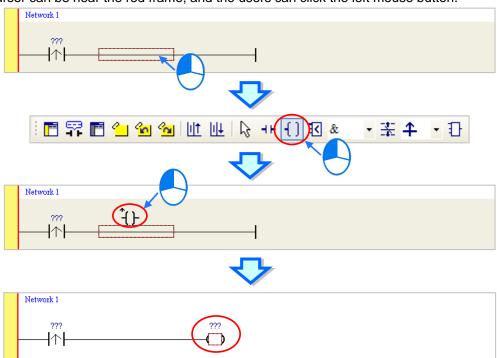
6.5.2 Basic Editing—Creating a Contact and a Coil

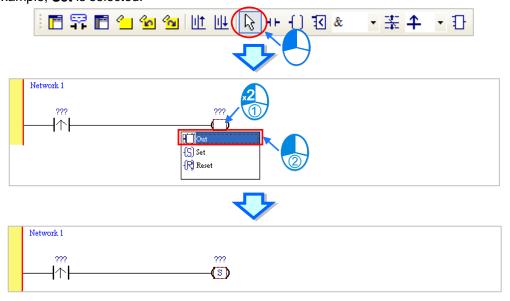
(1) Click I on the toolbar, and then move the mouse cursor to the red frame in network 1. The mouse cursor appears as a contact when the mouse cursor is moved to the left side of the red frame, the right side of the red frame, or the bottom of the red frame. Users can decide where



to insert a contact. If a ladder diagram is edited, the mouse cursor must be near a position which is edited. Besides, an object inserted is arranged by the system automatically. Users can not move the object at will.

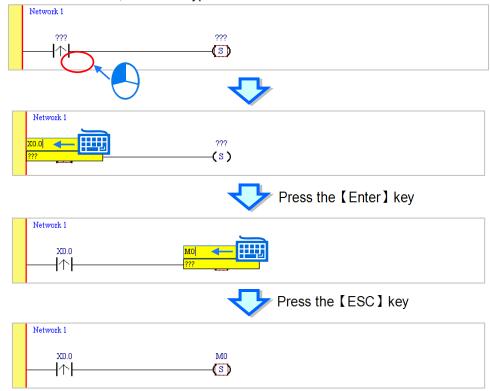
In this example, users do not need to decide where to insert the contact. Therefore, the mouse cursor can be near the red frame, and the users can click the left mouse button.


(2) Click on the toolbar, or press Esc on the keyboard. After the contact is double-clicked, a drop-down list will appear. The items on the drop-down list are **Normally Open**, **Normally Close**, **Rising-edge Trigger**, and **Falling-edge Trigger**. In this example, **Rising-edge Trigger** is selected.



(3) Click the line at the right side of the contact, click [-[]] on the toolbar, and move the mouse cursor to the red frame. Likewise, the mouse cursor appears as a coil when the mouse cursor is above or under the red frame. Users can decide where to insert the coil.

In this example, the users do not need to decide where to insert the coil. Therefore, the mouse cursor can be near the red frame, and the users can click the left mouse button.

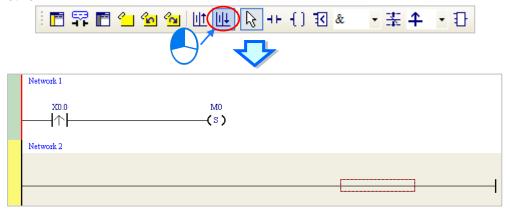


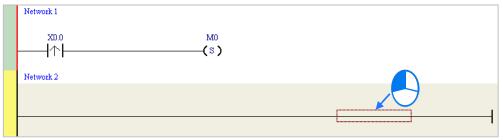
(4) Click on the toolbar, or press Esc on the keyboard. After the coil is double-clicked, a drop-down list will appear. The items on the drop-down list are **Out**, **Set**, and **Reset**. In this example, **Set** is selected.

(5) Click ??? above the contact, type a device address in the box, and press Enter on the keyboard to jump to the next box in the network. After a device address is typed in the box, the users can press Esc on the keyboard to complete the editing. In this example, X0.0 is typed in the box for the contact, and M0 is typed in the box for the coil.

Additional remark

After users click a network and press Enter on the keyboard, they can edit a box. The users can edit the next box in the network after they press Enter on the keyboard. Besides, the next network is selected after the users press Tab on the keyboard. The users can edit a box with the keyboard. After the editing is complete, the users can press Enter on the keyboard to jump to the next box. If the users want to end the editing, they can press Esc on the keyboard.




6.5.3 Basic Editing—Inserting a Network and Typing an Instruction

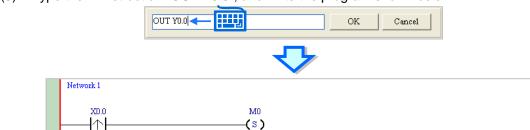
After on the toolbar is clicked, a network will be under the network selected. After on the toolbar is clicked, a network will be put above the network selected. In this example, a network is under network 1.

A contact and a coil can be created not only by clicking | I and | I on the toolbar, but also by typing instructions.

(1) Click the line in network 2.

(2) Type the IL instruction "LD M0". (The instruction is case-insensitive.) As soon as the IL instruction is typed, a box which can be edited appears. After the typing of the IL instruction is complete, users can press Enter on the keyboard or click **OK** at the right side of the box.

```
Network 1


X0.0

M0

(s)

Network 2
```


Y0.0

(3) Type the IL instruction "OUT Y0.0", and write the program shown below.

Additional remark

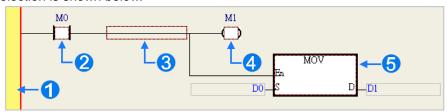
Network 2

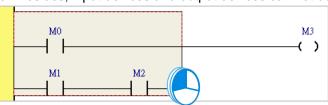
M0

A contact and a coil can be created by typing simple instructions. Please refer to the description below. (The instructions typed are case-insensitive.)

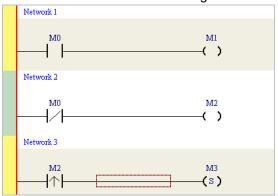
• Inserting a normally-open contact (contact A): "A Device address"

• Inserting a normally-closed contact (contact B): "B Device address"


• Inserting an output coil (OUT): "O Device address"


6.5.4 Basic Editing—Selection of a Network and Operation

Before an object in a network is selected, users have to press Esc on the keyboard, or click the toolbar. After the cursor appears as a small arrow, the users can click the object in the network. The basic selection is shown below.



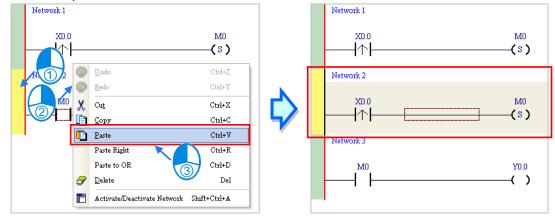
- Selecting the network
- Selecting the input contact
- Selecting the network
- 4 Selecting the output coil
- 5 Selecting the block

If users want to select a group of devices, they can click a device, and drag it to draw a frame round the group of devices. The users can also select the group of devices by clicking the first device, pressing Ctrl+B on the keyboard, clicking the last device, and pressing Ctrl+B on the keyboard. Users must draw a frame round devices which are in the same network, and the devices must be adjacent to one another. Besides, input devices and output devices can not be in the same frame.

If users want to select several networks, they can press Ctrl on the keyboard, and click the networks. The users can also select a range of networks by pressing Shift on the keyboard, clicking the first network within the range, and the last network within the range.

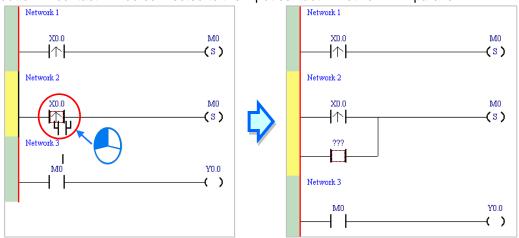
If users right-click an object after the object is clicked, they can click an item on the context menu.

Item	Function	
Undo	Undoing the last action	
Ondo	(The number of previous actions that can be undone is 20.)	
Redo	Redoing an action which has been undone	
Cut	Cut Cutting a device, a block, or a network	
Сору	Copying a device, a block, or a network	

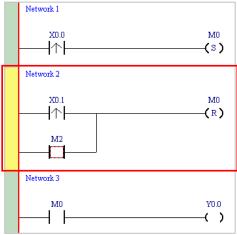

Item	Function	
Paste	Paste an object which has been copied or cut on the present position	
Paste right	Pasting an object at the right side of the position selected	
	(The object will be connected to the position selected in series.)	
Paste under	Pasting an object under the position selected	
Paste under	(The object will be connected to the position selected in parallel.)	
Delete	Deleting a device, a block, or a network	
Activate/Inactivate Network	Activating or Inactivating the network selected	
	(The network which is inactivated is ignored when the program is compiled.)	

Users can proceed with the operation in the example.

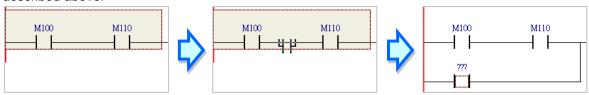
(1) Select network 1, right-click network 1, and click **Copy** on the context menu.



(2) Select network 2, right-click network 2, and click **Paste** on the context menu. A copy of network 1 will be put above network 2, and network 2 will become network 3.

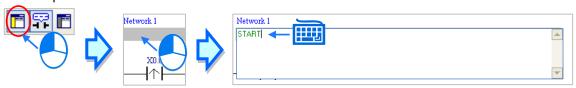


6.5.5 Basic Editing—Connecting a Contact in Parallel

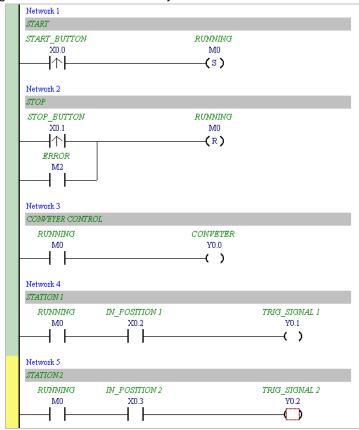

(2) Write the program in network 2 shown below in the way described above.

Additional remark

After users select a group of contacts, they can connect a contact to the group of contacts in the way described above.

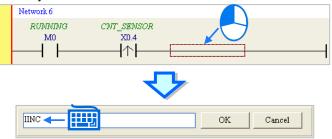

6.5.6 Basic Editing—Editing a Comment

(1) Make sure that on the toolbar is pressed. Click the position above a device name, type a comment in the box, and press Enter on the keyboard.



(2) Make sure that on the toolbar is pressed. Click the position under a network number, and then type a comment in the box. If users want to start a new line of text at a specific point, they can press Shift+Enter on the keyboard. Press Enter on the keyboard after the editing is complete.

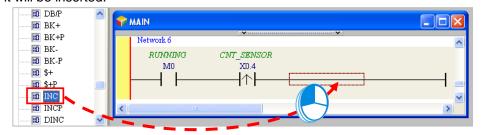
(3) Write the program shown below in the way described above.


6.5.7 Basic Editing—Inserting an Applied Instruction

Put network 6 under network 5, and then write the program shown below. Users can insert an applied instruction in one of the three ways described below.

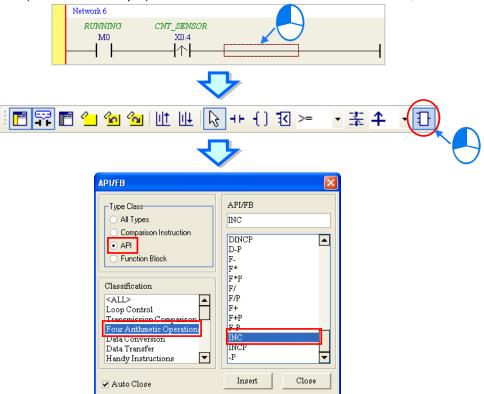
Method 1

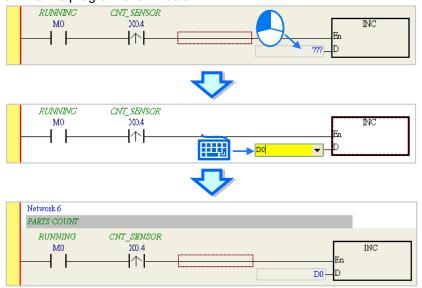
Click the position where an instruction will be inserted, type the instruction (INC in this example), and press Enter on the keyboard.



Method 2

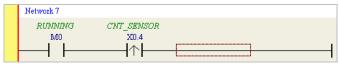
Unfold the **APIs** section in the project management area, find the instruction type, and unfold the instruction type section.


Select the instruction (INC in this example) which will be inserted, and then drag it to the position where it will be inserted.

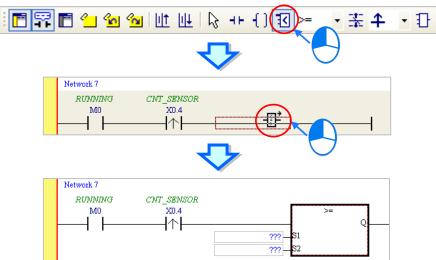


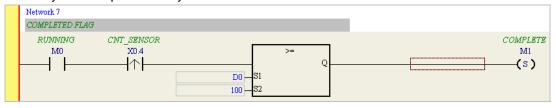
Method 3

Click the position where an instruction will be inserted, click on the toolbar, select the instruction (INC in this example) which will be inserted in the **API/FB** window, and click **Insert**.

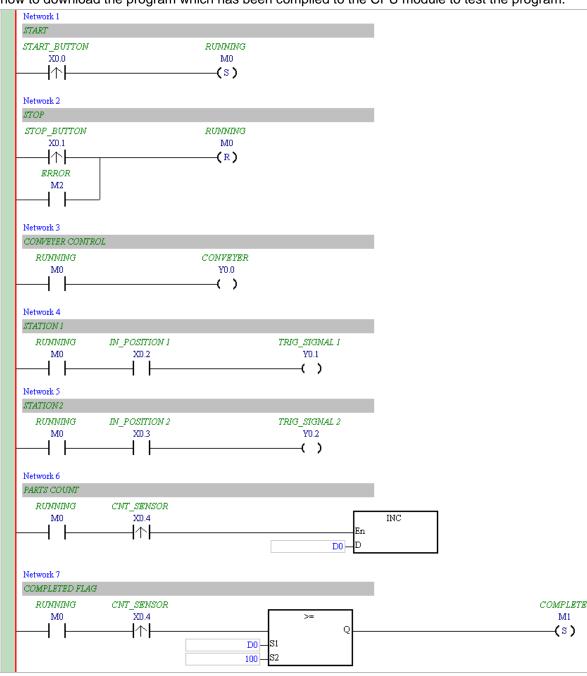

After the instruction is inserted successfully, the users can assign a device address to the operand, and write the program shown below.

6.5.8 Basic Editing—Creating a Comparison Contact and Typing a Constant


A comparison contact can be inserted not only in one of the three ways described in section 6.5.7, but also by means of the following steps. Users need to put network 7 under network 6, and write the program shown below.


(1) Click & • on the toolbar, and then select a type (>= in this example).

(2) Click on the toolbar, and then move the mouse cursor to the position where the comparison contact will be inserted. The mouse cursor appears as a comparison contact when the mosue is moved to the left side of the red frame, the right side of the red frame, or the bottom of the red frame. The users can decide where to insert the comparison contact. After the users decided on a position, they can click the left mouse button to insert the comparison contact.


Write the program shown below in the way described above. In WPLSoft, a decimal value is preceded by K, and a hexadecimal value is preceded by H. If users want to type a decimal value in ISPSoft, they can type it directly. If users wan to type a hexadecimal value in ISPSoft, they have to type "16#" and the hexadecimal value, e.g. 16#7FFF. In ISPSoft, an octal value is preceded by 8#, and a binary value is preceded by 2#.

6.5.9 Writing a Program

The creation of a traditional ladder diagram in ISPSoft has been introduced. Users can write the program shown below in the way described in the previous sections. Owning to the fact that the program has not been compiled, the mother line at the left side of the ladder diagram is red during the writing of the program. The following sections will introduce how to compile the program, and how to download the program which has been compiled to the CPU module to test the program.

- *1. The program above is saved in the folder denoted by ...\ISPSoft x.xx\Project\Example\Gluing_System_C.
- *2. Please refer to chapter 8 in ISPSoft User Manual for more information about creating a ladder diagram.

6.5.10 Checking and Compiling a Program

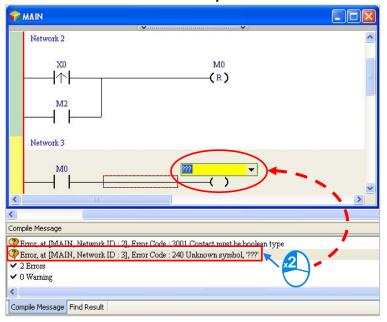
After users write a program, they can check the syntax of the programming language or compile the program. The syntax and the structure in the present window will be checked after the **Check** function is enabled. The whole project will be checked after the **Compile** function is enabled. If there is no error in the project, an execution code will be generated automatically. After the program is compiled successfully, the mother line at the left side of the ladder diagram will become black.

Check

Click Check on the Compile menu, or on the toolbar.

Compile PLC Tools W
Check Alt+F7

Compile Ctrl+F7


Compile Ctrl+F7

Compile

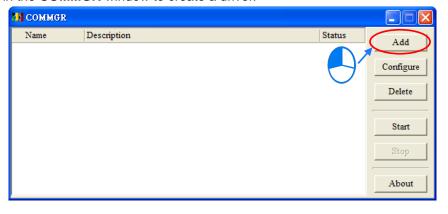
Click **Compile** on the **Compile** menu, or **!** on the toolbar.

After the check is complete, the **Compile Message** page shows the result related to the check. If there is any error in the project, the **Compile Message** page will show the related message. After the message is clicked, the system will automatically lead users to the place where the error occurs. The users can enable the **Check** function or the **Compile** function after the error is eliminated.

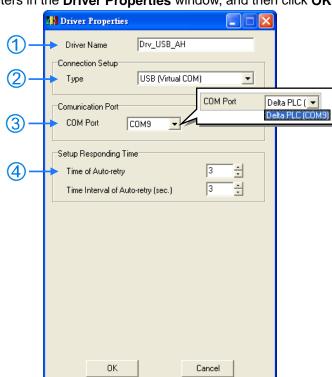
6.6 Testing and Debugging a Program

6.6.1 Creating a Connection

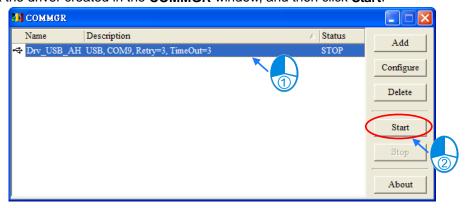
Before a program and parameters are downloaded to a PLC or monitored online, ISPSoft must be connected to the PLC. In this example, ISPSoft is connected to the CPU module AHCPU530-EN through a USB cable. Please refer to section 2.4 in ISPSoft User Manual for more information about connecting ISPSoft to a PLC in other ways. Please refer to operation manuals for more information about wiring.


Those who have connected ISPSoft to a PLC successfully in accordance with the contents of section 2.4 in ISPSoft User Manual can skip this section.

- (1) Install the modules on the main backplane in accordance with the hardware configuration in HWCONFIG. Make sure that the wiring is correct, and then power the CPU module.
- (2) Connect the CPU module to the computer through a USB cable. If the USB driver for the AH500 series CPU module has been installed on the computer, **Delta PLC** will appear in the **Device Manager** Window, and a port number will be assigned to **Delta PLC**. Please refer to appendix A for more information about installing a USB driver.
- (3) Make sure that COMMGR is started, and the icon representing COMMGR is displayed on the system tray. If the icon representing COMMGR is not displayed on the system tray, users can start COMMGR by clicking the shortcut on the **Start** menu (**Start>Programs>Delta Industrial Automation>Communication>COMMGR**).

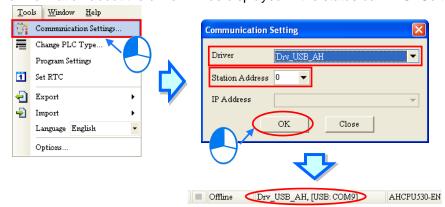


(4) Double-click the icon representing COMMGR on the system tray to open the **COMMGR** window. Click **Add** in the **COMMGR** window to create a driver.

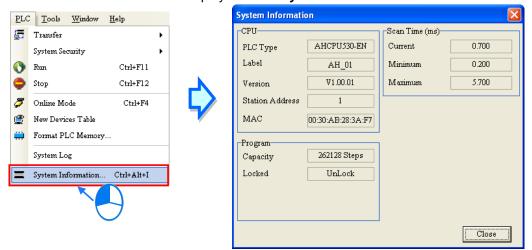


(5) Set the parameters in the **Driver Properties** window, and then click **OK**.

- Type a driver name in the Driver Name box.
- ② Select USB (Virtual COM) in the Type drop-down list box in the Connection Setup section.
- Select a communication port in the COM Port drop-down list box. If the first two steps are complete, the PLC which is connected and its communication port will be displayed in the COM Port drop-down list box.
- Users can select the number of times the sending of a command is retried if a connection error occurs in the Time of Auto-retry box, and select an interval of retrying the sending of a command in the Time Interval of Auto-retry box.
- (6) Click the driver created in the COMMGR window, and then click Start.

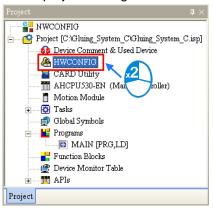


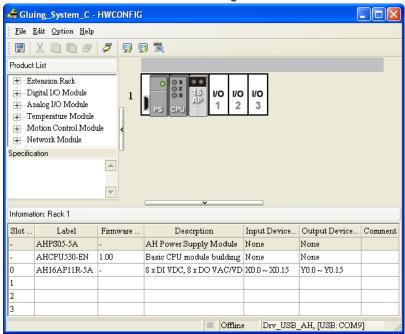
(7) After the status of the driver displayed in the window becomes **START**, the window can be closed. The icon representing COMMGR will still be displayed on the system tray.



(8) Start ISPSoft, and then click **Communication Settings...** on the **Tools** menu. In the **Communication Setting** window, select the driver which has been created in the **Driver** drop-down list box, appear, and select 0 in the **Station Address** drop-down list box, and click **OK**. The information about the driver will be displayed in the status bar in ISPSoft.

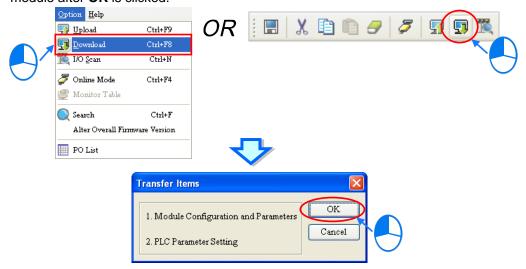
(9) Click **System Information** on the **PLC** menu. ISPSoft will retrieve related information from the PLC. If the computer communicates with the CPU module normally, the related information retrieved from the PLC will be displayed in the **System Information** window.



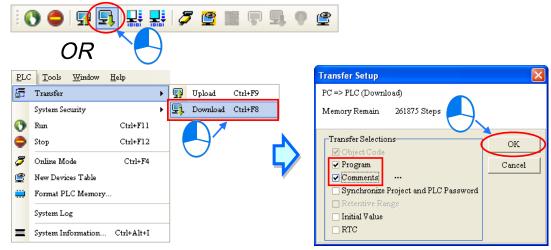

6.6.2 Downloading a Program and Parameters

If ISPSoft is connected to a PLC normally, the parameters and the program in the project can be downloaded to the PLC. First, start ISPSoft and open the project created in the previous sections. In this example, two types of parameters are downloaded to the CPU module. They are the hardware configuration and the program.

- Downloading the hardware configuration
 - (1) Double-click **HWCONFIG** in the project management area to open the **HWCONFIG** window.



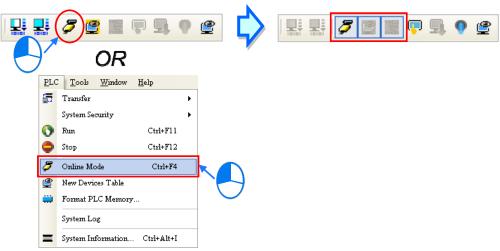
(2) The hardware configuration is displayed in the window. Before the hardware configuration is downloaded to the CPU module, users have to make sure that the actual hardware configuration is the same as the hardware configuration in the window.


(3) After the users click **Download** on the **Option** menu, or leaves on the toolbar, the **Transfer** leaves window will appear. The hardware configuration will be downloaded to the CPU module after **OK** is clicked.

(4) After the hardware configuration is downloaded to the CPU module successfully, the BUS FAULT LED indicator on the CPU module will be OFF. The users can close the HWCONFIG window. If the BUS FAULT LED indicator on the CPU module is still ON or blinking, the CPU module is in an abnormal state. Please make sure that the actual hardware configuration is the same as the hardware configuration in the HWCONFIG window again, or refer to the operation manual for more information about eliminating the error. Please refer to chapter 8 for more information about HWCONFIG.

Downloading the program

After the program is compiled successfully, the users can click the **PLC** menu, point to **Transfer**, and click **Download**. The users can also click on the toolbar after the program is compiled successfully. Select the **Program** checkbox and the **Comments** checkbox in the **Transfer Setup** window so that the program in the CPU module can be uploaded later, and then click **OK**.

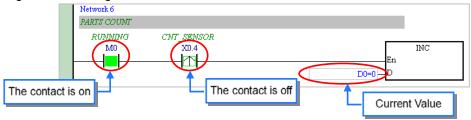

6.6.3 Connection Test

After a program is downloaded to a PLC, users can monitor the execution status of the PLC through ISPSoft. There are two monitoring modes that ISPSoft provide. One is the device monitoring mode, and the other is the program monitoring mode.

Monitoring mode	Description	
Device monitoring mode	Users can monitor the statuses of the devices in the PLC through the monitoring table. In this mode, ISPSoft only needs to update the statuses of the devices. The present program in ISPSoft does not need to be the same as the program in the PLC.	
Program monitoring mode	In this mode, the operating status of the program is displayed in the program editing window. As a result, the present program in ISPSoft must be the same as the program in the PLC.	

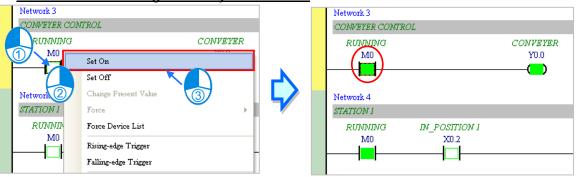
^{*.} The device monitoring function can be enabled independently. However, if the program monitoring function is enabled, the device monitoring function is also enabled.

After users click **Online Mode** on the **PLC** menu, or on the toolbar, the online monitoring function will be enabled. The system will also enable the device monitoring mode and the program monitoring mode.



In the online monitoring mode, users can view the present scan time, the communication status, and the status of the PLC in the status bar in ISPSoft.

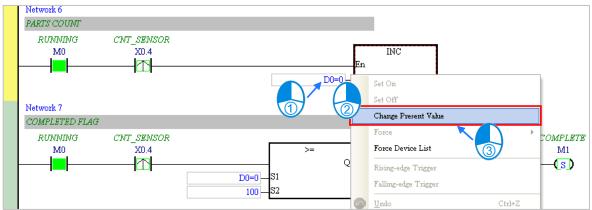
Besides, the present statuses of the devices will be displayed in the original program editing window after the program monitoring function is enabled.



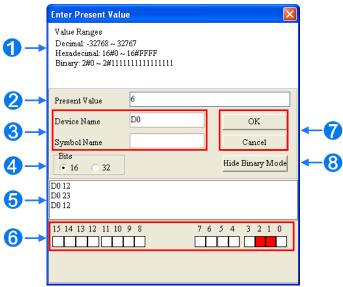
Users can change the operating status of a PLC by the RUN/STOP switch on the PLC. They can also change the operating status of the PLC through the functions provided by ISPSoft. After users click **Run** on the **PLC** menu or on the toolbar, the PLC will begin to run. The PLC will stop running after **Stop** on the **PLC** menu or on the toolbar is clicked.

In the online monitoring mode, users can select a device, right-click the device, and click an item on the context menu. During a test, users can change the status of a device or the value in a device by clicking an item on the context menu.

Before the status of a device is changed, users have to make sure that the operation does not cause damage to the system or staff.

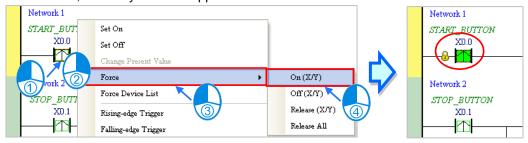


The items on the context menu are described below. **Force** on the context menu only applies to input contacts and output contacts.


Item	Item Description	
Set On	Setting the contact selected to ON	
Set Off	Setting the contact selected to OFF	
Rising-edge Trigger	No matter what the state of the contact selected is, the system set the contact to OFF, and then set it to ON.	
Falling-edge Trigger	No matter what the state of the contact selected is, the system set the contact to ON, and then set it to OFF.	
Force	Forcing an input contact or output contact ON or OFF	
Force Device List Forcing several input contacts or output contacts in the tables ON or OFF		

If users want to change the value in a device, they can click the device, right-click the device, click **Change Present Value** on the context menu, and set a present value in the **Enter Present Value** window.

The Enter Present Value window is described below.



- Message
- 2 Users can type a value in the **Present Value** box.
- 3 Name of a device or a symbol whose present value will be changed
- 4 Users can type a 16-bit value or a 32-bit value.
- 5 Value change history (Format: Device name Value)
- 6 In the binary mode, users can set the states of the bits through the mouse.
- 7 The setting values will be applied after **OK** is clicked. The window will be closed after **Cancel** is clicked.
- 8 Users can display or hide the binary mode.

In this example, X0.0~X0.15 and Y0.0~Y0.15 are input devices and output devices assigned to the digital I/O module AH16AP11R-5A. After the parameters in the hardware are downloaded to the CPU module, the states of X0.0~X0.15 will be the same as the states of the inputs on the actual module. Even if users set X0.0~X0.15 to ON or OFF in the program editing window, the states of X0.0~X0.15 will be updated by the actual input signals.

However, an input contact can be forced ON or OFF during a test. Users can click an input contact or output contact which will be set, right-click the contact, point to **Force** on the context menu, and select **On (X/Y)**, **Off (X/Y)**, **Release (X/Y)**, or **Release All**. If an input contact or output contact is forced ON or OFF, a lock symbol will appear at the left side of the contact.

Force	Description	
On (X/Y)	Forcing the input contact or output contact selected ON	
Off (X/Y)	Forcing the input contact or output contact selected OFF	
Release (X/Y)	Release (X/Y) Releasing the contact from the locked state	
Release All Releasing all the contacts from the locked states		

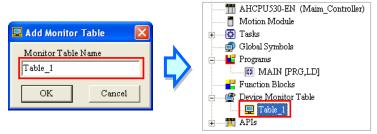
If an output contact in the program is forced ON or OFF, the output state of this contact will not be affected by the program execution result.

^{*.} If the online monitoring function is disabled, the contacts will not be automatically released from the locked states. As a result, users have to check whether the contacts need to be released from the locked states after the test is complete.

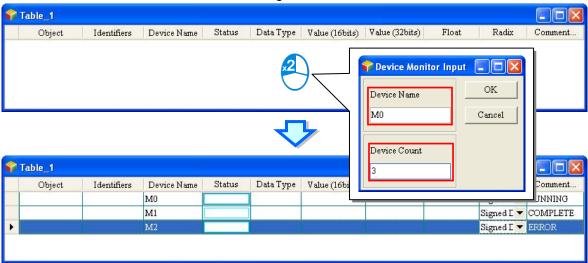
There are two ways to create a monitoring table. Users can create a monitoring table online or offline.

Method 1

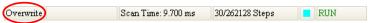
Click **New Devices Table** on the **PLC** menu, or on the toolbar.


Method 2

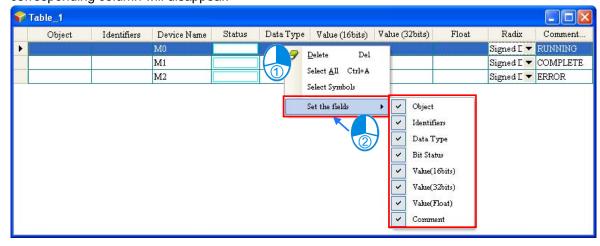
Right-click **Device Monitoring Table** in the project management area, point to **Device Monitor** on the context menu, and click **Add**.



Type a table name in the **Add Monitor Table** window, and then click **OK**. An item will be under **Device Monitor Table** in the project management area. If users want to open the monitoring table, they can double-click the item. Besides, the users can create several monitoring tables in the project, and the monitoring tables created will be saved with the project.



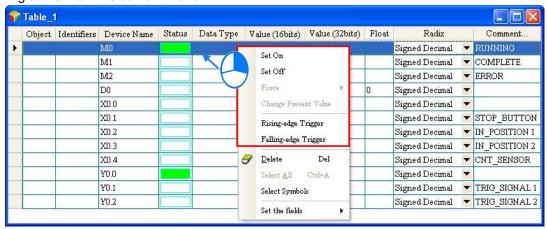
After the item is double-clicked, a window will appear. The users can add items which will be monitored to the window. If the users want to add an item to the window, they have to double-click the blank in the monitoring table, or type a device name directly, and type a start address and the number of devices which will be monitored in the **Device Monitor Input** window. Please notice that 100 items at most can be added to a monitoring table.



The users can press Insert on the keyboard to switch between inserting an item in the monitoring table and replacing an item in the monitoring table. The mode which is selected is displayed in the status bar in ISPSoft.

If the insertion mode is selected, the item added will be above the item selected in the monitoring table. If the replacement mode is selected, the item added will overwrite the item selected in the monitoring table.

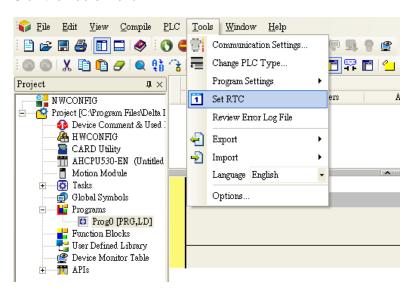
If the users want to hide certain columns in the monitoring table, they can right-click the monitoring table, point to **Set the Fields**, and unselect certain items. After an item is unselected, the corresponding column will disappear.


The description of the columns in the monitoring table is as follows.

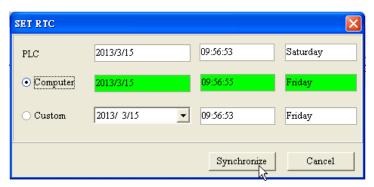
Column	Description	
Source	The source of a symbol	
Identifier	The identifier of a symbol	
Device name	The name of a device monitored	
Status	If a bit device or a contact is monitored, the state will be ON or OFF.	

Column	Description	
Data type	If a symbol is monitored, the data type of the symbol will be displayed.	
Value (16 bits)	Value (16 bits) In the online mode, a 16-bit value is displayed.	
Value (32 bits)	32 bits) In the online mode, a 32-bit value is displayed.	
Float	In the online mode, a 32-bit floating-point number is displayed.	
Radix	Radix Users can select a format in which a value is represented.	
Comment The comments on a device or the comment on a symbol is displayed.		

After the monitoring table is created, the users can monitor the items in the monitoring table in the online mode. Besides, after the users right-click an item in the monitoring table in the online mode, a context menu which is the same as the context menu which will after a device in the program editing window is clicked will appear. The users can change the state of the item or the value in the item by clicking an item on this context menu.



The program created in this chapter can be tested and debugged through the monitoring table created in this section. Please refer to chapter 14 in ISPSoft User Manual for more information about testing and debugging a program.


6.7 Setting a Real-time clock

After an AH500 series CPU module is connected to a computer, users can set the real-time clock in the CPU module through ISPSoft.

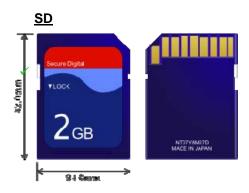
(1) Click Set RTC on the Tools menu.

(2) Select **Computer**, and then click **Synchronize**.

(3) The setting of the real-time clock is complete.

MEMO

Chapter 7 Memory Card


i abie	of Contents	
7.1 Ov	verview of Memory Cards	7-2
7.1.1	Appearances of Memory Cards	7-2
7.1.2	The Specifications for SD Cards	7-2
7.2 Us	sing a Memory Card	7-2
7.2.1	Formatting a Memory Card	7-2
7.2.2	Write Protect Function of a Memory Card	7-4
7.3 Ins	stalling and Removing a Memory Card	7-5
7.3.1	SD Slot in a CPU Module	7-5
7.3.2	Installing a Memory Card	7-5
7.3.3	Removing a Memory Card	7-5
7.4 Cc	ontents of a Memory Card	
7.4.1	Initializing a Memory Card	7-6
7.4.2	Folder Structure in a Memory Card	7-6
7.5 Re	eading/Writing a Memory Card	7-7
7.5.1	Backing up the System	7-7
7.5.2	Restoring the System	7-7
7.6 Int	roduction of CARD Utility	7-8
7.7 Ba	nckup	7-10
7.8 Re	estoration	7-13

7.1 Overview of Memory Cards

The AH500 series CPU modules support standard SD cards. Users can purchase products which meet specifications. The specifications for the SD cards supported by the AH500 series CPU modules, and the usage of the SD cards are described in this chapter.

7.1.1 Appearances of Memory Cards

SD cards are classified into three types according to size. They are SD cards, miniSD cards, and microSD cards. The AH500 series CPU modules support standard-sized SD cards.

7.1.2 Specifications for SD Cards

There are several specifications for SD cards on the market. SD cards not only can be classified according to size, but also can be classified into three types according to capacity. These types are SD cards, SDHC cards, and SDXC cards. The AH500 series CPU modules presently only support basic SD specifications. The following is the table of SD card families. The SD column indicates the specifications supported by the AH500 series CPU modules. Be sure to purchase products which meet the specifications.

The SD card families

The 3D card families				
Туре	SD	SDHC	SDXC	
Capacity	2GB Max.	4GB ~ 32GB	32GB ~ 2TB	
File system	FAT/FAT32	FAT32	exFAT	
Size	SD	SDHC MiniSDHC MicroSDHC	SDXC MicroSDXC	
Speed class rating	N/A	Class 2 (Min. 2 MB/sec.) Class 4 (Min. 4 MB/sec.) Class 6 (Min. 6 MB/sec.) Class 10 (Min. 10 MB/sec.)	Class 2 (Min. 2 MB/sec.) Class 4 (Min. 4 MB/sec.) Class 6 (Min. 6 MB/sec.) Class 10 (Min. 10 MB/sec.)	

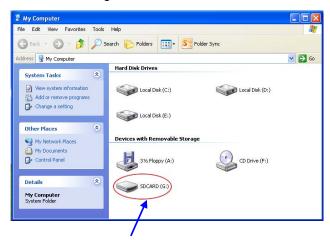
^{*} MMC cards are similar to SD cards in appearance. Users have to make sure that they purchase products which meet the specifications.

7.2 Using a Memory Card

7.2.1 Formatting a Memory Card

A memory card that users use for the first time may not be formatted. A memory card which is not formatted can not be used in an AH500 series CPU module. Therefore, users need to format the memory card. The file system with which the memory card is formatted is FAT.

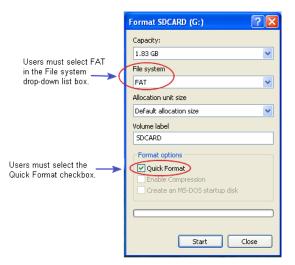
The following example introduces the most common way to format an SD card, that is, formatting an



SD card through a card reader. However, users still need to read the documents provided by the SD card manufacturer carefully.

/ If a memory card is formatted, all the data in the memory card will be deleted. Users have to check whether the data in a memory card needs to be backed up before they format the memory card.

(1) Slide the write protect tab on the left side of the memory card upward, and then insert it into a card reader. The operating system detects a new storage device.


New storage device

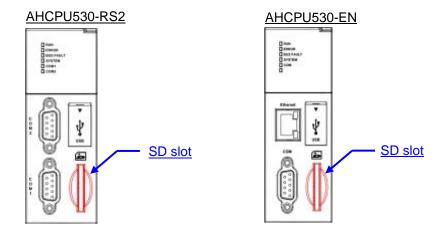
(2) Right-click the new storage device, and then click Format.

(3) The file system with which the memory card is formatted must be FAT. The other default setting is retained. Click **Quick Format**, and then click **Start**.

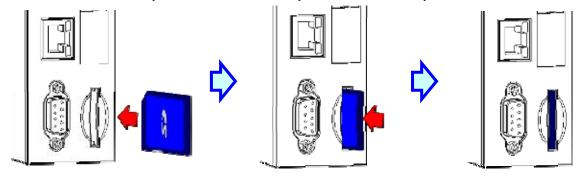
(4) After **OK** in the warning window is clicked, the SD card is formatted.

7.2.2 Write Protect Function of a Memory Card

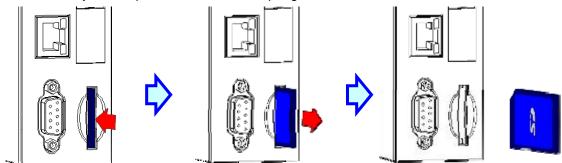
There is usually a write protect tab on the left side of a memory card. If the tab is slid downward, data can not be written into the memory card. As a result, users have to make sure that the tab is slid upward before they use the memory card.



7.3 Installing and Removing a Memory Card


7.3.1 SD Slot in a CPU Module

As shown below, the SD slot is in the lower right corner of the front of a CPU module.


7.3.2 Installing a Memory Card

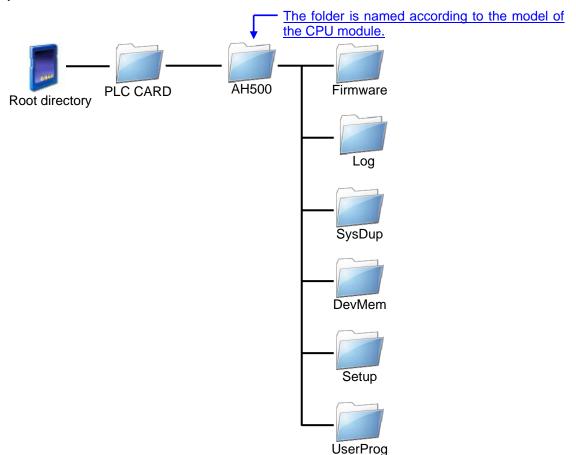
Insert a memory card into the SD slot in a CPU module, and push it downward until it clicks. After the memory card is installed, it is fixed firmly in the slot. If the memory card is loose, it is not installed correctly. Besides, the memory card has anti-misinsertion design. If it is inserted in the wrong direction, it can not be pushed downward. To prevent the CPU module from being damaged, users can not force the memory card in. The correct way to insert the memory card is shown below.

7.3.3 Removing a Memory Card

After a memory card is pushed downward, it springs from the slot, and users can take it out.

7.4 Contents of a Memory Card

7.4.1 Initializing a Memory Card


Whenever an SD card is inserted into a CPU module which is supplied with power, or power is supplied to a CPU module into which an SD card has been inserted, the system initializes the SD card, and a default folder created in the SD card is named according to the model of the CPU module.

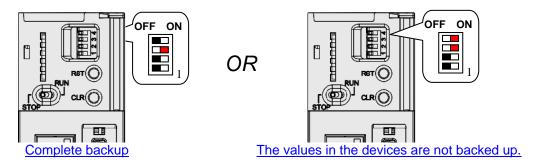
During the initialization of a SD card, if a folder is missing from the default folder group, the system automatically adds the lost folder. However, if the initialization of a SD card fails, the SD card can not be initialized again until it is formatted again.

When a memory card is initialized, the SYSTEM LED indicator blinks.

7.4.2 Folder Structure in a Memory Card

The default folder group created by an AH system is shown below. The folder name is AH500. Several subfolders are contained inside the AH500 folder. Related files created by users and the AH system are stored in the subfolders.

7.5 Reading/Writing a Memory Card


Users can read/write data into/from a memory card to back up and update a system by means of the DIP switch on a CPU module.

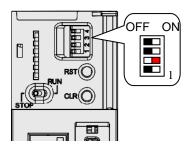
7.5.1 Backing up the System

When a system backup is executed, the user program, the parameter setting, the hardware configuration, the network configuration, and the values on the device memories in a CPU module are backed up and saved as a file called AUTOEXEC.dup, which is stored in a folder named SysDup in a memory card. If a default path denotes an existing backup file, the previous data in the old backup file is overwritten when a system is backed up.

A system backup can be executed, whether a CPU module runs or stops. However, users have to make sure that the write protect tab on the left side of a SD card is slid upward before a system backup is executed. The system backup procedure is as follows.

(1) Turn DIP switch 3 ON, and turn the other switches OFF. If users do not want to back up the values on the device memories, they need to turn DIP switch 4 ON.

(2) Press the CLR button on the CPU module for five seconds. When the system backup is executed, the SYSTEM LED indicator blinks. After the system backup is complete, the SYSTEM LED indicator is OFF.

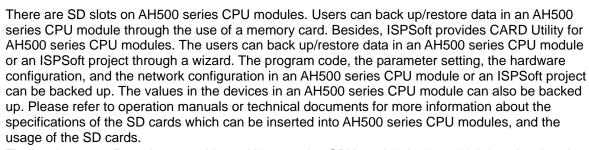


7.5.2 Restoring the System

Before a system restoration is executed, users have to make sure that the backup file AUTOEXEC.dup is stored in a folder named SysDup in a memory card. After the system restoration is executed, the user program, the parameter setting, the hardware configuration, and the network configuration in the memory card are restored to a CPU module. In addition, if the data in the backup file includes the values on the device memories, the data restored to the CPU module will include the values on the device memories.

Before a system restoration is executed, users have to disconnect a CPU module. The system backup procedure is as follows.

(1) Make sure that the CPU module is disconnected, turn DIP switch 2 ON, and turn the other switches OFF.

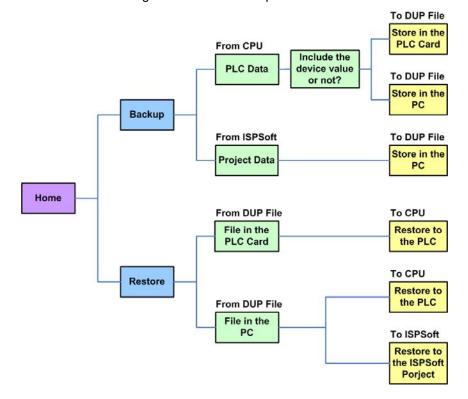


(2) Restore the power supply. After the system detects that DIP switch 2 is ON, the system restoration is executed. When the system restoration is executed, the SYSTEM LED indicator blinks. After the system restoration is complete, the SYSTEM LED indicator is OFF.

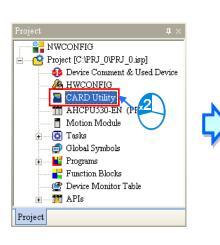
* Whenever power is supplied to a CPU module, the system checks the state of DIP switch 2. If DIP switch 2 is turned ON, a system restoration is executed automatically. As a result, users must turn DIP switch 2 OFF after a system restoration is complete. In addition, the hardware configuration and the backplanes which are involved in a system restoration must be the same as those previously involved in the system backup in order to prevent an error from occurring.

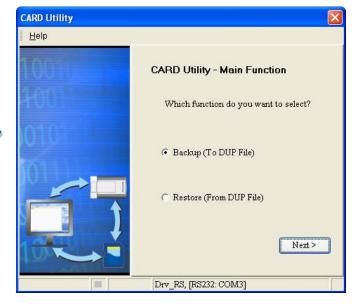
7.6 Introduction of CARD Utility

The hardware configuration stored in an AH500 series CPU module is data which is only related to the AH500 series CPU module itself. If users want to back up a hardware configuration, only the part of the network configuration which is related to the AH500 series CPU module selected will be backed up. The part of the network configuration backed up consists of a routing table and an Ether Link. Likewise, if the users want to restore data backed up to an ISPSoft project, there will be no network configuration in the ISPSoft project. Please refer to chapter 9 for more information about a network configuration.


The functions supported by CARD Utility are described below. The diagram below is a flowchart.

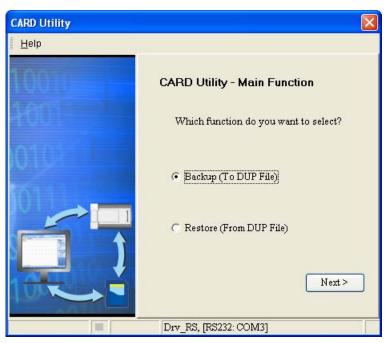
• If users export data in an AH500 series CPU module as a backup file (*.dup), the data exported can be saved in the memory card inserted in the AH500 series CPU module, or a folder in the computer. The users can decide whether to back up the values in the devices in the AH500 series



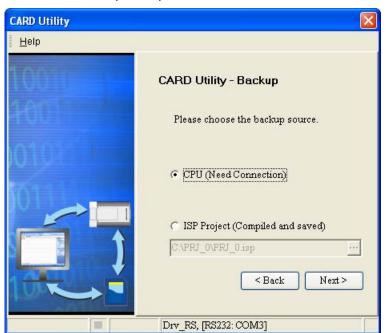

CPU module.

- If users export an ISPSoft project for an AH500 series CPU module as a backup file (*.dup), the ISPSoft project exported can only be saved in a folder in the computer, and the values in the devices in the AH500 series CPU module are not backed up.
- Users can put the backup file saved in the memory card inserted in an AH500 series CPU module into the AH500 series CPU module.
- Users can put a backup file (*.dup) saved in a computer into the AH500 series CPU module connected to the computer, or restore the backup file to an ISPSoft project. If the users choose to restore the backup file to an ISPSoft project, the system will automatically skip the values in the devices and the hardware configuration in the backup file.

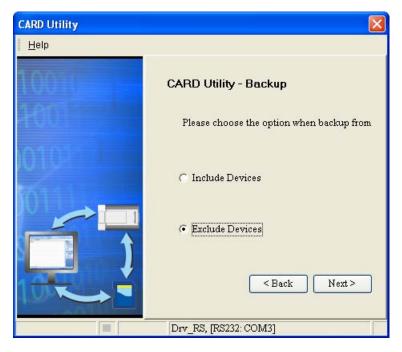
After users double-click **CARD Utility** in the project management area, the system will open the **CARD Utility** window.



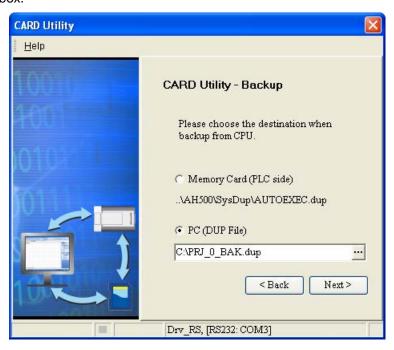
7.7 Backup


If the backup source/backup destination is an AH500 series CPU module or the memory card inserted in an AH500 series CPU module, users have to make sure that ISPSoft is connected to the AH500 series CPU module normally. Please refer to section 2.4 in ISPSoft User Manual for more information.

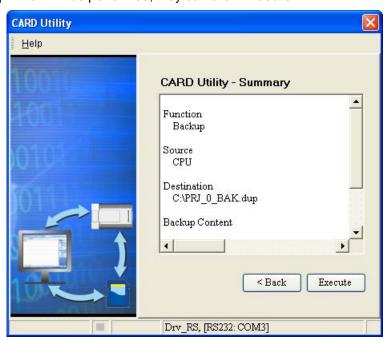
 Select the Backup (To DUP File) option button in the CARD Utility window, and then click Next.


(2) Select a backup source, and then click **Next**.

After the users select the **ISP Project (Compiled and saved)** option button, they have to click ..., and select an isp file in the **Open** window. If the program in the isp file selected is not compiled, a message appears when the isp file is backed up. Open the isp file with ISPSoft, compile the program in the isp file, and save the isp file. After the program in the isp file is compiled, the users can back up the isp file.



(3) After the users select the **CPU (Need Connection)** option button, they have to decide whether to back up the values in the devices in the AH500 series CPU module which is connected to ISPSoft.



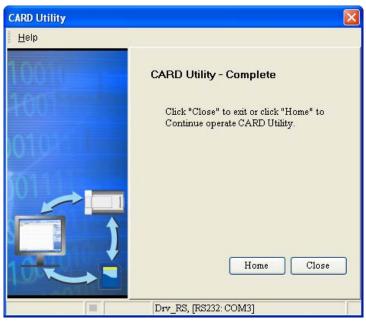
- (4) Select a backup destination. If the backup source is an ISPSoft project, the backup destination must be a computer.
 - a. If the **Memory Card (PLC Side)** option button is selected, the filename of the backup file which will be produced will be **AUTOEXEC.dup**, and the path which points to the backup file will be **Root directory of the memory card\AH500\SysDup\AUTOEXEC.dup**.
 - b. If the **PC (DUP File)** option button is selected, the users have to click ..., select a folder in the **Save in** drop-down list box in the **Save As** window, and type a filename in the **File** name box.



(5) After the users make sure that the summary in the **CARD Utility** window is consistent with the data backup which will be performed, they can click **Execute**.

Even if the users click **Cancel** to stop ISPSoft from performing the data backup in the process of backing up data in the AH500 series CPU module onto the memory card inserted in the AH500 series CPU module, the AH500 series CPU module will still performs the data backup. The users can turn off the AH500 series CPU module to stop the data backup from being performed. However, the backup file produced is not a complete backup file. As a result, the users have to delete the backup file from the memory card.

If the **Memory Card (PLC Side)** option button is selected, the filename of the backup file which will be produced will be **AUTOEXEC.dup**, and the path which points to the backup file will be **Root directory of the memory card\AH500\SysDup\AUTOEXEC.dup**. If there is an old backup file in the memory card inserted in the AH500 series CPU module which is connected to ISPSoft, the **Warning** window will appear. The users have to click **Replace**, Archive, or **Cancel** in the Warning window according to the message in the window.

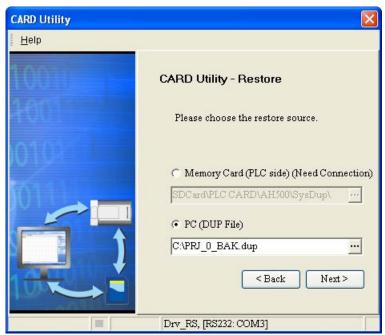

If the data backed up is protected by passwords, these passwords will also be backed up.

Data backup	Description	
CPU module→Memory card	The data backed up includes the PLC ID and the PLC password set in the CPU module.	
CPU module→Computer	The system asks users to type a PLC ID and a PLC password. If the PLC ID and the PLC password typed are correct, the data backup will be performed. The data backed up includes the PLC ID and the PLC password.	

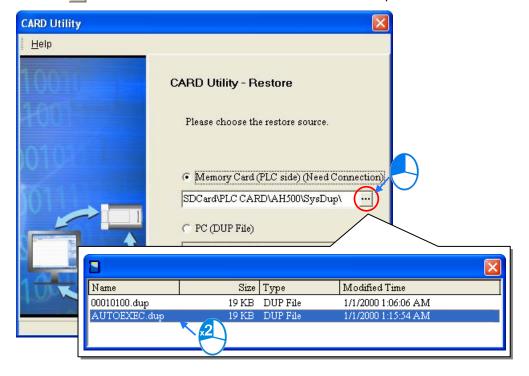
Data backup	Description	
ISPSoft project→Computer	The data backed up includes the program ID and the project password set in the ISPSoft project.	

(6) After the data backup is performed, the users can click Home or Close in the CARD Utility window.

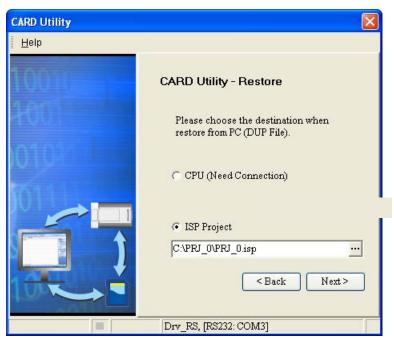
7.8 Restoration

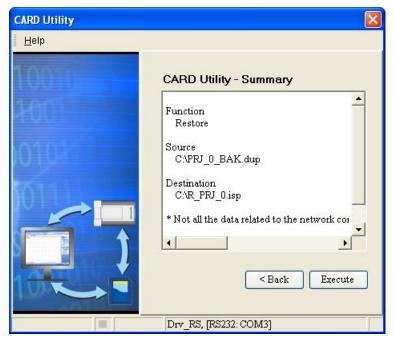

If the restoration source/restoration destination is an AH500 series CPU module or the memory card inserted in an AH500 series CPU module, users have to make sure that ISPSoft is connected to the AH500 series CPU module normally. Please refer to section 2.4 in ISPSoft User Manual for more information.

(1) Select the Restore (From DUP File) option button in the CARD Utility window, and then click Next.



(2) Select a restoration source, click ..., and select a backup file.


If the **Memory Card (PLC side) (Need Connection)** option button is selected, the backup files in the memory card inserted in the AH500 series connected to ISPSoft will be displayed in a window after is clicked. The users have to double-click a backup file in the window.


- (3) Select a restoration destination, and then click Next.
 - a. If the users want to put the backup file selected into the AH500 series CPU module which is connected to ISPSoft, they have to select the CPU (Need Connection) option button. If the restoration source is the memory card inserted in the AH500 series CPU module

- connected to ISPSoft, the restoration destination must be the AH500 series CPU module.

(4) After the users make sure that the summary in the **CARD Utility** window is consistent with the data restoration which will be performed, they can click **Execute**.

If the users click **Cancel** in the process of restoring data to the AH500 series CPU module, the data will not be completely restored. To prevent the AH500 series CPU module from operating incorrectly, the users have to restore the AH500 series CPU module to the factory setting if they do not perform the data restoration again. Besides, the AH500 series CPU module will still performs the data restoration even if the users click **Cancel** in the process of restoring a

backup file in the memory card inserted in the AH500 series CPU module. The users can turn off the AH500 series CPU module to stop the data restoration from being performed.

If restoration source/restoration destination contains a password and an ID, the password and the ID will be processed.

Data restoration	Description		
	 a. The ID in the backup file must be the same as the ID in the CPU module, otherwise the data restoration will not be performed. 		
Memory card→CPU module	b. If there is a PLC password in the CPU module, the password in the backup file must be the same as the PLC password in the CPU module. Otherwise the data restoration will not be performed.		
	c. If there is no PLC password in the CPU module, and there is a password in the backup file, the system will perform the data restoration, and the password in the backup file will become the PLC password in the CPU.		
	 a. The ID in the backup file must be the same as the ID in the CPU module, otherwise the data restoration will not be performed. 		
Computer→CPU module	b. If there is a PLC password in the CPU module, the password in the backup file must be the same as the PLC password in the CPU module. Otherwise the data restoration will not be performed, and a message will appear.		
	c. If there is no PLC password in the CPU module, and there is a password in the backup file, the system will perform the data restoration, and the password in the backup file will become the PLC password in the CPU.		
Computer→ ISPSoft project	The ID and the password in the backup file will become the program ID and the project password in an ISPSoft project.		

(5) After the data restoration is performed, the users can click **Home** or **Close** in the **CARD Utility** window.

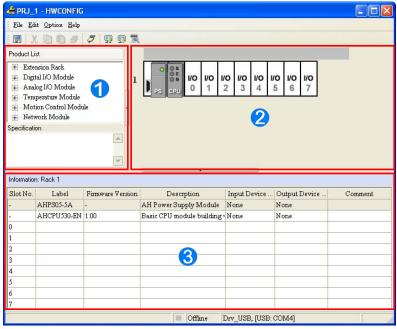
Chapter 8 Hardware Configuration

Table of	f Contents	
8.1 Hard	lware Configuration Tool for AH500 Series Modules—HWCONFIG.	8-3
8.1.1	Introduction of the Environment of HWCONFIG	8-3
8.1.2	Configuring a Module	
8.1.2.1	3 - 3	
8.1.2.2	5 5	
8.1.2.3	Editing a Comment	8-11
8.1.2.4		
8.1.2.5	1 3	
8.1.2.6	3 1 3	
8.1.2.7	17 5 5	
8.1.2.8		
8.1.2.9	- 99 9	
8.1.2.1	3	
8.1.2.1	3 - 3	
8.1.2.1	1 3	
8.1.2.1	3 - 1 7 3 - 1 7	
8.1.2.1		
8.1.2.1		
	ng the Parameters in an AH500 Series CPU Module	
	Opening the PLC Parameter Setting Window	
	Setting the Basic CPU Parameters	
8.2.2.1		
8.2.2.2	, - · · ·	
8.2.2.3		
	COM Port	
	Ethernet–Basic	
	Ethernet-Advance	
8.2.5.1		
8.2.5.2		
8.2.5.3		
8.2.5.4	39	
8.2.5.5		
8.2.5.6		
8.2.5.7		
	Saving and Downloading/Uploading the PLC Parameters	
	ng the Parameters in an AH500 Series Module	
	Managing the Version of a Module	
	Setting the Parameters in a Module	
	Exporting and Importing the Parameters in a Module	
	Setting the Parameters in an Intelligent Module	
	agement of the Parameters in AH500 Series Hardware and Online	
	NOSIS	
	Saving and Printing a Hardware Configuration Purchase Order	
	Purchase Order	

8.4.	.4 [Downloading/Uploading the System Parameters	8-60
8.4.		/O Scan	
8.4.	.6 (Online Diagnosis	8-63
8	.4.6.1	Online Mode	8-63
8	.4.6.2	Module Information and Diagnosis	8-64
8	.4.6.3	Changing the Status of a Module Online	8-65
8	.4.6.4	Monitoring Table	8-67
8.5	Settir	ng Interrupts	8-68
8.5.	.1 F	Program Architectures	8-68
8.5.	.2	Tasks Supported by AH500 Series CPU Modules	8-69
8.5.	.3 I	/O Interrupts	8-70
8.5.	.4 l	_ow Voltage Detection Interrupt	8-71
8.5.	.5 (Communication Interrupts	8-71
8.5.	.6 E	External Interrupts	8-71
8.5.	.7 -	Fimer Interrupts	8-72

8.1 Hardware Configuration Tool for AH500 Series Modules—HWCONFIG

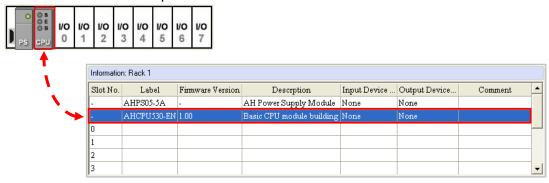
HWCONFIG is a built-in hardware configuration tool in ISPSoft. Users can configure racks, set CPU parameters, set module parameters, download/upload parameters, detect a hardware configuration online, and make a diagnosis through HWCONFIG.


All parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.4.4 for more information.)

8.1.1 Introduction of the Environment of HWCONFIG

After users double-click **HWCONFIG** in the project management area, the **HWCONFIG** window will appear.

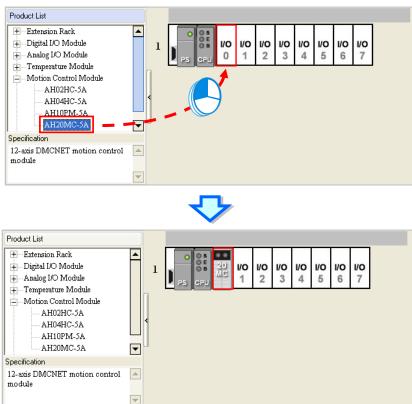
- 1 Product list: Hardware available is listed in the catalogue.
- 2 System configuration area: It is the main working area. Users can configure and set a whole system in this area.
- 3 Information list: The information about the present system configuration is listed in the list.


The present system configuration is displayed in the system configuration area. The number at the left side of a rack is a rack number, and the number on a slot is a slot number. Users can select a module by clicking the module.

If users want to select a rack, they can move a mouse cursor to the extension port on the rack, and click the extension port.

When a rack is selected, the information about the present configuration for the rack is listed in the information list. If a module is selected, the information about the module on the list will be selected. If the information about a module is selected, the module in the system configuration area will be selected. Besides, if the configuration in the system configuration area is modified, the information on the information list will be updated.

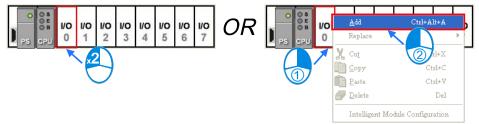
All hardware available is listed in the product list. After a section is unfolded, all devices belongs to the section are listed under the section. If users click a device, the specifications for the device will be under the product list.



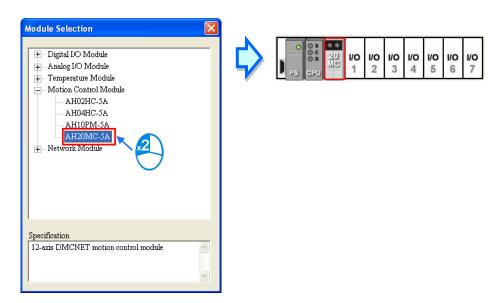
8.1.2 Configuring a Module

8.1.2.1 Adding a Module

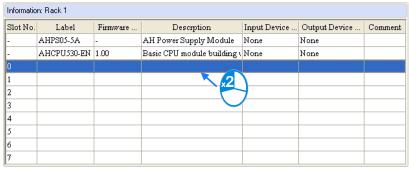
Method 1

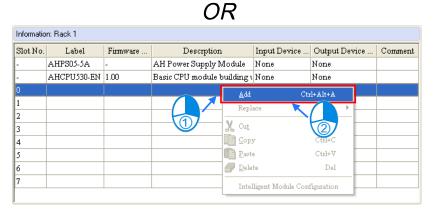

After users select a module which will be added to the product list, they can drag it to a vacant slot.

*. If users want to drag a module on the product list to the system configuration area, the module can only be put on a vacant slot. If the module is dragged to an occupied slot, the system will prohibit this operation.

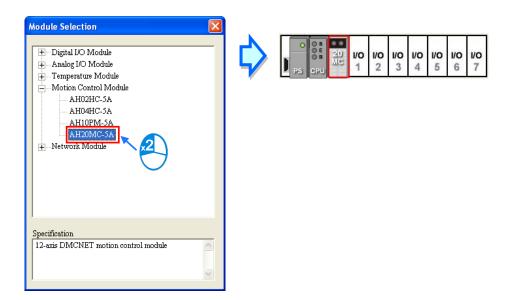

Method 2

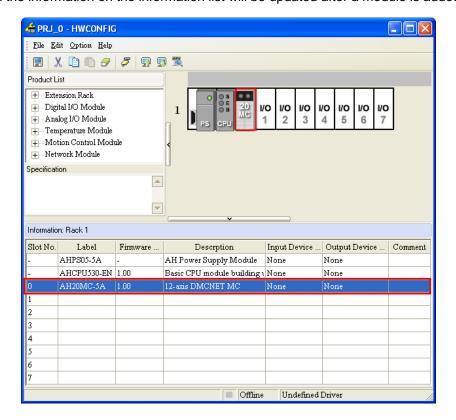
(1) After users click a vacant slot, the Module Selection window will appear. The users can also right-click a vacant slot, and click Add on the context menu to open the Module Selection window.



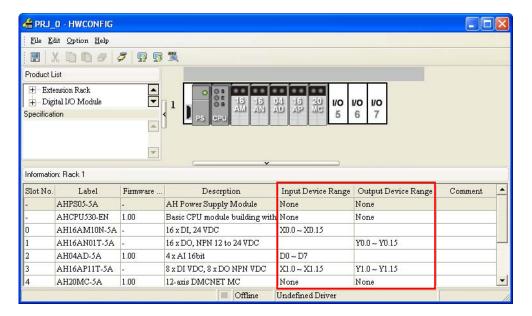

(2) If the users click a module in the **Module Selection** window, the specifications for the module will appear in the **Specification** box. After the users double-click a module in the **Module Selection** window, the module will be added.

Method 3


(1) After users click a blank on the information list, the **Module Selection** window will appear. The users can also double-click a blank on the information list, and click **Add** on the context menu to open the **Module Selection** window.



(2) If the users click a module in the **Module Selection** window, the specifications for the module will appear in the **Specification** box. After the users double-click a module in the **Module Selection** window, the module will be added.


No matter which method is used to add a module, the configuration in the system configuration area and the information on the information list will be updated after a module is added.

8.1.2.2 Assigning Devices to a Module

The data in a module needs to be updated constantly. For example, analog signals received by an analog input module are updated constantly, and converted to data which can be processed by a CPU module. As a result, the system automatically assigns devices to a module so that the data in the module can be stored. The devices assigned to a module are displayed in the **Input Device Range** cell and the **Output Device Range** cell on the information list. Please refer to the following example.

● AH16AM10N-5A (slot 0)

AH16AM10N-5A is a digital input module which has 16 inputs. The system assigns X0.0~X0.15 to AH16AM10N-5A so that data received by AH16AM10N-5A can be stored.

AH16AN01T-5A (slot 1)

AH16AN01T-5A is a digital output module which has 16 outputs. The system assigns Y0.0~Y0.15 to AH16AN01T-5A so that data sent by AH16AM10N-5A can be stored.

AH04AD-5A (slot 2)

AH04AD-5A is an analog input module which has four channels. The system assigns D0~D7 to AH04AD-5A. After analog signals received by AH04AD-5A are converted into digital data, the digital data will be stored in D0~D7.

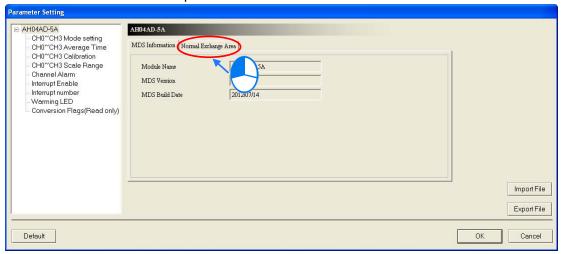
AH16AP11T-5A (slot 3)

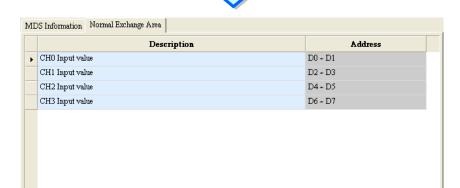
AH16AP11T-5A is a digital input/output module which has 8 inputs and 8 outputs. The system assign X1.0~X1.15 to AH16AP11T-5A so that data received by AH16AP11T-5A can be stored. (X1.0~X1.7 are actually used.) The system also assigns Y1.0~Y1.15 to AH16AP11T-5A so that data sent by AH16AP11T-5A can be stored. (Y1.0~Y1.7 are actually used.)

AH20MC-5A (slot 4)

AH20MC-5A is a motion control module. Owing to the fact that the data in AH20MC-5A does not need to be updated constantly, the system does not assign any device to AH20MC-5A.

If users want to know functions to which devices assigned correspond, they can double-click the module or the information about the module on the information list to open the **Parameter Setting** window.



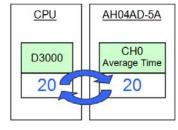


Information: Rack 1						
Slot No.	Label	Firmware	Descrption	Input Device Range	Output Device Range	Comment
-	AHPS05-5A	-	AH Power Supply Module	None	None	
-	AHCPU530-EN	1.00	Basic CPU module building with:	None	None	
0	AH16AM10N-5A	-	16 x DI, 24 VDC	X0.0 ~ X0.15		
1	AH16AN01T-5A	-	16 x DO, NPN 12 to 24 VDC		Y0.0 ~ Y0.15	
2	AH04AD-5A	1.00	4 x AI 16bit	D0 ~ D7		
3	AH16AP11T-54		8 x DI VDC, 8 x DO NPN VDC	X1.0 ~ X1.15	Y1.0 ~ Y1.15	
4	AH20MC-5A	4	12-axis DMCNET MC	None	None	
5						
6						
7						

*. To avoid the cells which can be edited, if users want to double-click the information about a module on the information list, they can double-click Slot No. cell, the Label cell, or the Description cell.

After users click the **Normal Exchange Area** tab in the **Parameter Setting** window, they can see functions to which devices correspond.

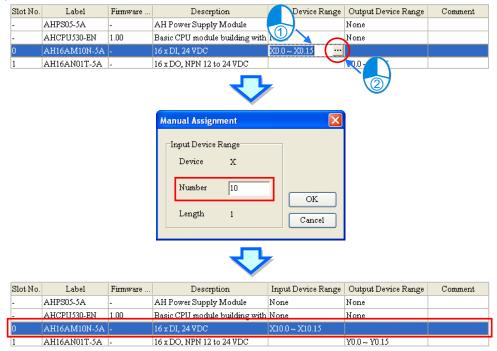


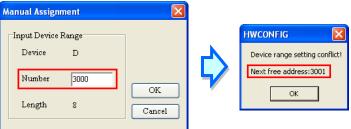


The system automatically assigns devices to a module so that the data in the module which needs to be updated constantly can be stored. The parameters in a module do not need to be updated constantly. Users assign data registers to a module so that the parameters in the module can be stored. When the system operates, the data registers in a CPU module are synchronized to the parameters in the module. As a result, the users can access the module through the data registers. Accessing a module through the data registers is more efficient than accessing the module through the instruction FROM/TO.

As the example below shows, D3000 corresponds to the parameter **CH0 Average Time** in the **Parameter Setting** window for AH04AD-5A. After the parameters in HWCONFIG are downloaded to the CPU module, users can change the value of the parameter **CH0 Average Time** by changing the value in D3000 in the CPU module.

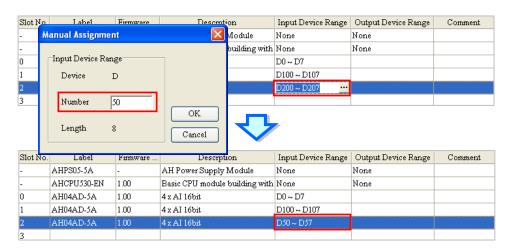
Besides, if users write a value which is not allowed by a parameter into a data register during the operation of the system, the system will restore the value in the data register and the value of the parameter to the original values.





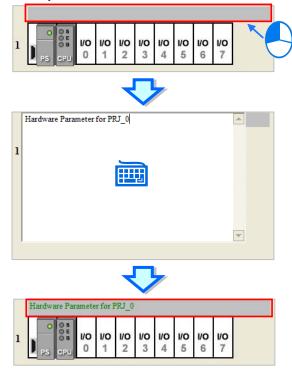
*. Please refer to section 8.3 for more information about the setting of parameters in a module. Please refer to programming manuals for more information about the instruction FROM/TO.

The **Input/Output Device Range** column on the information list can be defined not only by the system, but also by users. Users can click a cell on the information list, and then click ..., or type a start address directly. After the **Manual Assignment** window appears, the users can type a start address, and click **OK**.


Devices that users assign to a module so that the data in the module can be stored can not overlap data registers that the users assign to a module so that the parameters in the module can be stored. If a device address typed conflicts with another device address, the system will modify the device address which is typed, and provide a device address which can be used. For example, if users want to assign D3000 which has been assigned to a module to another module, the system will provide a device address which can be used.

After the input/output device addresses assigned to a module are changed, the input/output device addresses assigned to a module added will follow the new input/output device addresses assigned to the preceding module, and the input/output device addresses which have been assigned will be skipped. Even if the new input/output device addresses assigned to the preceding module are not the largest addresses, the input/output device addresses assigned to the module added will follow the new input/output devices addresses.

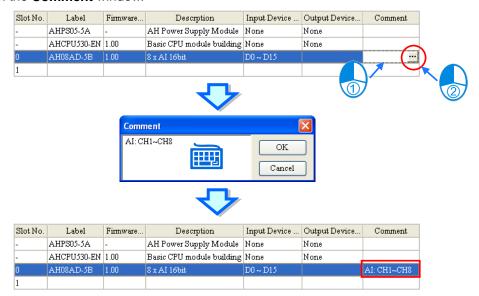
Please refer to the following example. The input device addresses assigned to AH04AD-5A installed in slot 2 is changed to D50~D57.



The input device addresses assigned to a module added follow D50~D57 rather than D100~D107. As a result, D58~D65 are assigned to AH04AD-5A which is installed in slot 3.

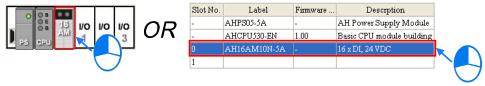
Slot No.	Label	Firmware	Descrption	Input Device Range	Output Device Range	Comment
-	AHPS05-5A	-	AH Power Supply Module	None	None	
-	AHCPU530-EN	1.00	Basic CPU module building with	None	None	
0	AH04AD-5A	1.00	4 x AI 16bit	D0 ~ D7		
1	AH04AD-5A	1.00	4 x AI 16bit	D100 ~ D107		
2	AH04AD-5A	1.00	4 x AI 16bit	D50 ~ D57		
3	AH04AD-5A	1.00	4 x AI 16bit	D58 ~ D65		
4						

8.1.2.3 Editing a Comment

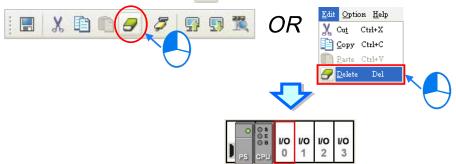

After users click the gray area at the top of the system configuration area, they can type a comment about the hardware configuration in the drop-down box that appears. If users want to start a new line of text at a specific point, they can press Shift+Enter on the keyboard. After the comment is typed, users can press Enter on the keyboard.

After users click the **Comment** cell for a module on the information list, they can press a key on the keyboard, or click it to open the **Comment** window. The users can type a comment about the

module in the Comment window.

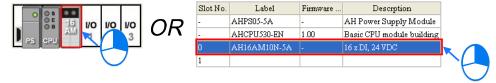


8.1.2.4 Deleting a Module


There are two ways to delete a module which has been configured. (The CPU module and the power supply module can not be deleted.)

Method 1

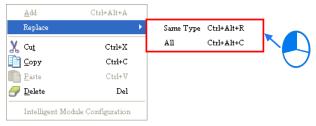
(1) Select a module which will be deleted from the system configuration area or information list.


(2) Click **Delete** on the **Edit** menu, click on the toolbar, or press Delete on the keyboard.

Method 2

(1) Right-click a module which will be deleted from the system configuration area or information list.

(2) Click **Delete** on the context menu.

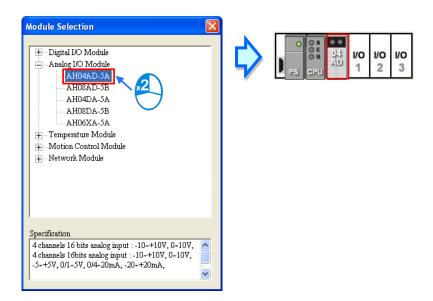


8.1.2.5 Replacing a Module

(1) Right-click a module which will be replaced in the system configuration area or on the information list. (The CPU module and the power supply module can not be replaced.)

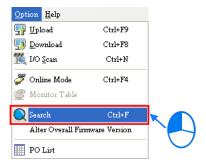
(2) Point to Replace on the context menu, and then click Sam Type or All.

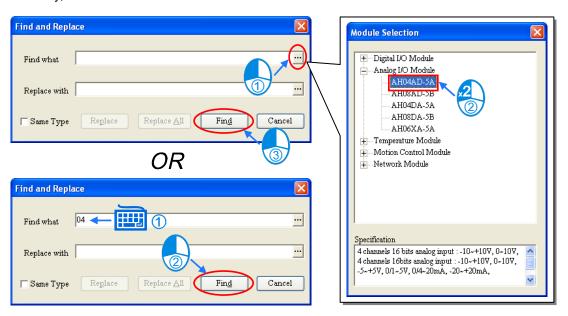
> Same Type


A module selected is replaced by a same type of module. After the module is replaced, the input/output devices assigned to the new module are the same as the input/output devices assigned to the module replaced. Besides, if the parameters in the new module are not the same as the parameters in the module replaced, the setting of the parameters in the new module will be restored to the default values.

> AII

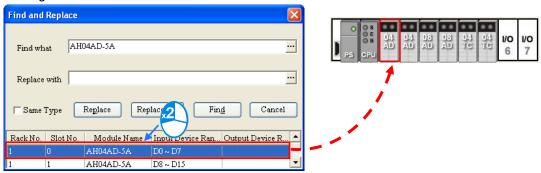
A module selected can be replaced by any type of module. After the module is replaced, the different input/output devices will be assigned to the new module, and the setting of the parameters in the new module will be restored to the default values.


(3) After users click **Same Type** or **All**, the **Module Selection** window will appear. Items which can be selected will be displayed in the window. After the users decide on a module, they can double-click the module in the window.



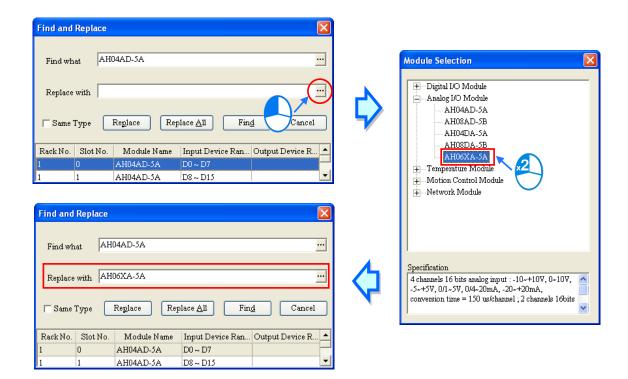
8.1.2.6 Searching for/Replacing a Module

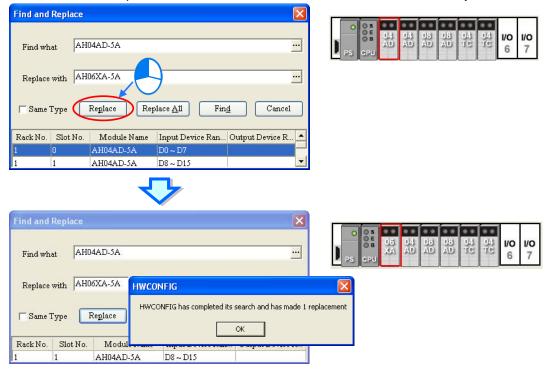
(1) After users click **Search** on the **Option** menu, the **Find and Replace** window will appear.



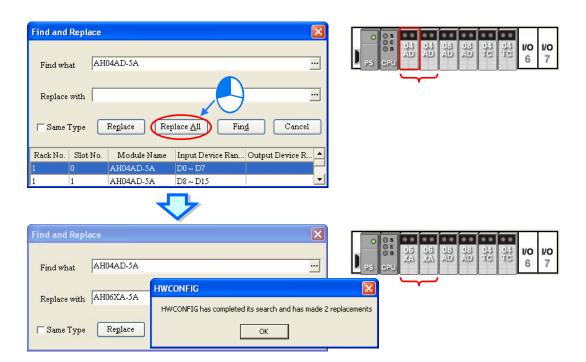
(2) Click in the **Find what** box, select a module in the **Module Selection** window, and double-click the module. The users can also type part of a module model in the **Find what** box. Finally, click **Find**.

(3) After the search is complete, modules meet the search condition will be listed in the list. After the users double-click an item on the list, the module corresponding to the item in the system configuration area will be selected.


(4) If the users want to replace a module, they can click a module which will be replaced on the search list. If the users want to replace the module with a same type of module, they can select the **Same Type** checkbox.


- > The **Same Type** checkbox is selected.
 - A module selected is replaced by a same type of module. After the module is replaced, the input/output devices assigned to the new module are the same as the input/output devices assigned to the module replaced. Besides, if the parameters in the new module are not the same as the parameters in the module replaced, the setting of the parameters in the new module will be restored to the default values.
- ➤ The **Same Type** checkbox is not selected.

 A module selected can be replaced by any type of module. After the module is replaced, the different input/output devices will be assigned to the new module, and the setting of the parameters in the new module will be restored to the default values.
- (5) Click in the **Replace with** box, select a module in the **Module Selection** window, and double-click the module. Owning to the fact that a module must be replaced by a specific module, typing a module model or part of a module model in the **Replace with** box is not allowed.

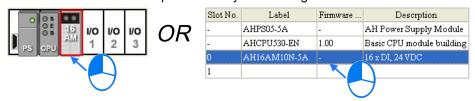


- *. If the Replace with box is blank, a module selected will be deleted after Replace is clicked.
- (6) After the setting of the replacement condition is complete, the users can click **Replace** to replace the module selected with the new module. After the replacement is complete, the search list will be updated, and the next module will be selected automatically.

(7) If the users want to replace all the modules on the list, they can click **Replace All** after the setting of the replacement condition is complete. All the modules on the list will be replaced by the new module.

8.1.2.7 Copying/Pasting a Module

There are two ways to copy a module. (The CPU module and the power supply module can not be copied/pasted.)

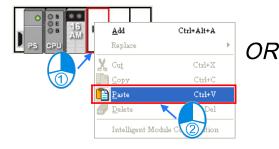

Method 1

Right-click a module which will be copied in the system configuration area or on the information list, and then click **Copy** on the context menu.

Method 2

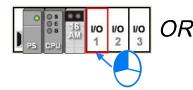
(1) Click a module which will be copied in the system configuration area or on the information list.

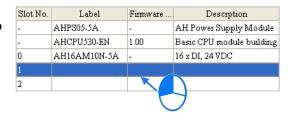
(2) Click **Copy** on the **Edit** menu, or on the toolbar.



There are two ways to paste a module.

Method 1

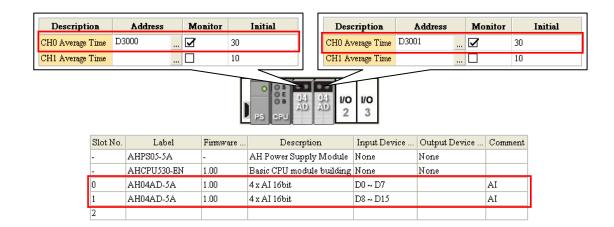

Right-click a slot on which a module will be pasted in the system configuration area or on the information list, and then click **Paste** on the context menu.



Method 2

(1) Click a slot on which a module will be pasted in the system configuration area or on the information list.

(2) Click Paste on the Edit menu, or 📋 on the toolbar.


Additional remark

When a module is copied/pasted, the parameters in the module are processed as follows.

- Input/Output device range: The input/output devices assigned to the module cut are automatically assigned to the module pasted.
- Comment about the module: The comment about the module copied is copied into the module pasted.
- Parameters in the module: The parameters in the module cut are copied into the module pasted.
- **Data registers**: The data registers assigned to the module copied are automatically assigned to the module pasted.
- Parameters in the intelligent module: The setting of the parameters in the intelligent module is not copied, and is restored to the default values. The users have to set the parameters again.

As the example below illustrates, the module on slot 0 is the module which is copied, and the module on slot 1 is the module which is pasted.

*. Some intelligent modules can be set by means of exclusive configuration tools. Please refer to section 8.3.4 for more information.

8.1.2.8 Cutting/Pasting a Module

There are two ways to cut a module. (The CPU module and the power supply module can not be cut/pasted.)

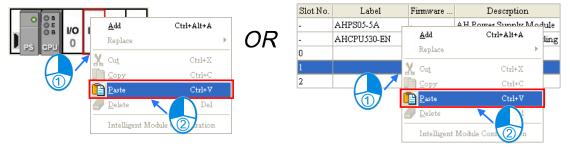

Method 1

Right-click a module which will be cut in the system configuration area or on the information list, and then click **Cut** on the context menu.

Method 2

(1) Click a module which will be cut in the system configuration area or on the information list.

(2) Click **Cut** on the **Edit** menu, or **X** on the toolbar.


There are two ways to paste a module.

Method 1

Right-click a slot on which a module will be pasted in the system configuration area or on the

information list, and then click Paste on the context menu.

Method 2

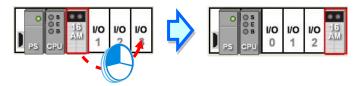
 Click a slot on which a module will be pasted in the system configuration area or on the information list.

(2) Click **Paste** on the **Edit** menu, or on the toolbar.

Additional remark

A module which is cut can only be pasted once. When a module is cut/pasted, the parameters in the module are processed as follows.

- Input/Output device range: The input/output devices assigned to the module cut are automatically assigned to the module pasted.
- Comment about the module: The comment about the module cut is copied into the module pasted.
- Parameters in the module: The parameters in the module cut are copied into the module pasted.
- Data registers: The data registers assigned to the module cut are automatically assigned to the module pasted.
- Parameters in the intelligent module: The setting of the parameters in the intelligent module is copied.
- *. Some intelligent modules can be set by means of exclusive configuration tools. Please refer to section 8.3.4 for more information.



8.1.2.9 Dragging a Module

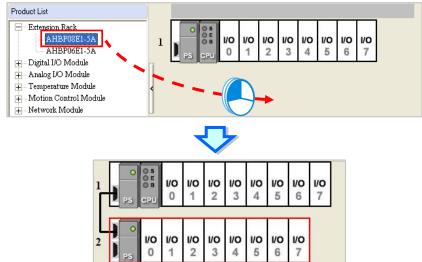
All modules in the system configuration area can be dragged by the mouse except the CPU module and the power supply module.

Condition 1

Drag a module to a vacant slot when the left mouse button is held. The module will be moved to a new position.

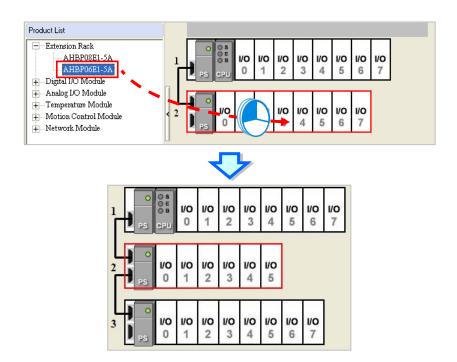
Condition 2

Drag a module to an occupied slot when the left mouse button is held. The two modules will be interchanged.


^{*} When a module is dragged, the input/output devices assigned to the module, the comment about the module, the parameters in the module, the data registers assigned to the module, and the parameters in the intelligent module are also dragged.

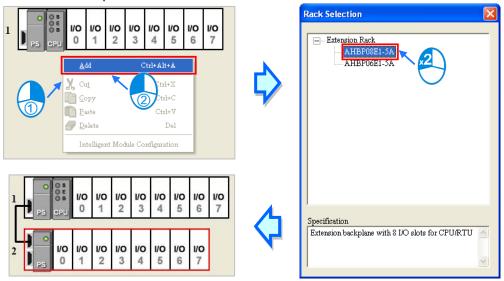
8.1.2.10 Adding an Extension Rack

There are two ways to add an extension module.

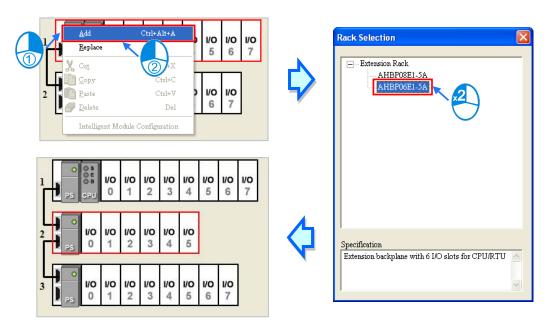

Method 1

Drag an extension rack which will be added to the product list to the system configuration area. After the extension rack is dragged to the blank in the system configuration area, it will be under the present rack.

If an extension rack is dragged to a present rack, it will be put above the present rack.

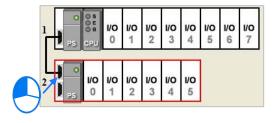


*. An extension rack can not be put above the main rack.

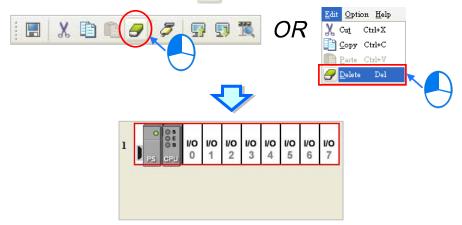

Method 2

Right-click the blank in the system configuration area, click **Add** on the context menu, and double-click an extension rack which will be added in the **Rack Selection** window. The extension rack will be under the present rack.

Right-click the left side of a rack, click **Add** on the context menu, and double-click an extension rack which will be added in the **Rack Selection** window. The extension rack will be under the rack.

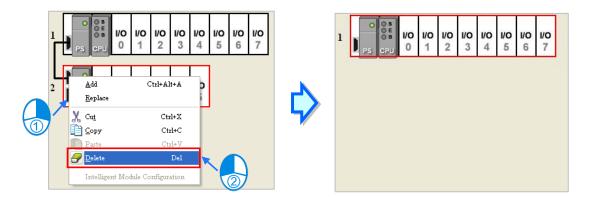


8.1.2.11 Deleting a Rack


There are two ways to delete a rack. (The main extension rack can not be deleted.)

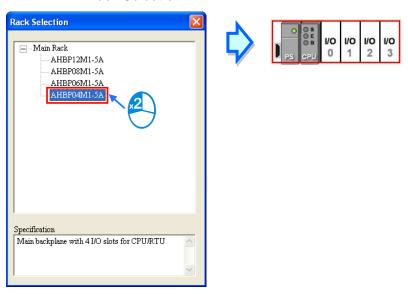
Method 1

(1) Click the left side of a rack which will be deleted.


(2) Click **Delete** on the **Edit** menu, click on the toolbar, or press Delete on the keyboard.

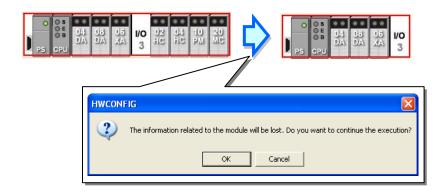
Method 2

Right-click the left side of a rack which will be deleted, and then click **Delete** on the context menu.



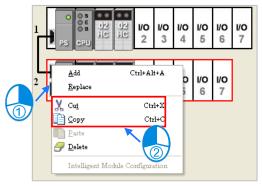
8.1.2.12 Replacing a Rack

(1) Right-click the left side of a rack which will be replaced, and then click **Replace** on the context menu.


(2) Double-click a rack in the Rack Selection window.

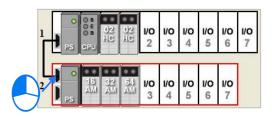
Additional remark

If the number of slots on the new rack is less than the number of slots on the original rack, the modules on the original rack which can not be installed on the new rack will be deleted automatically. As a result, users have to make sure of the number of slots on the new rack before they replace a rack.



8.1.2.13 Cutting/Copying/Pasting an Extension Rack

There are two ways to copy or cut an extension rack. (The main rack can not be copied/cut/pasted.)


Method 1

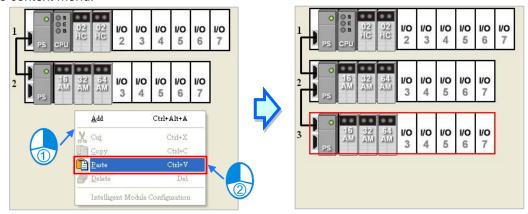
Right-click the left side of a rack which will be copied or cut, and then click **Copy** or **Cut** on the context menu.

Method 2

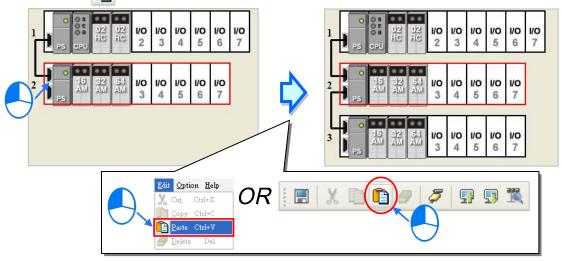
Click the left side of a rack which will be copied or cut.

If users want to copy the rack, they can click **Copy** on the **Edit** menu, or click on the toolbar.

If users want to cut the rack, they can click **Cut** on the **Edit** menu, or click **\text{1}** on the toolbar.



There are two ways to paste an extension rack. If an extension rack is pasted on the blank in the system configuration area, it will be under the present racks. If an extension rack is pasted on a present extension rack, it will be put above the present extension rack.


Method 1

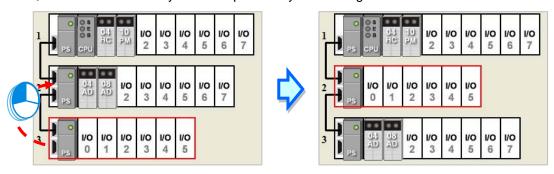
Right-click the blank or a present rack in the system configuration area, and then click **Paste** on the context menu.

Method 2

Click the blank or a present rack in the system configuration area, and then click **Paste** on the **Edit** menu, or on the toolbar.

Additional remark

When an extension rack is cut/pasted, the parameters in the modules on the extension rack are processed as follows.

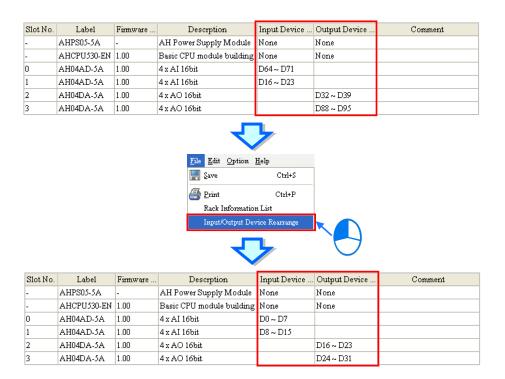

- Input/Output device range: The input/output devices assigned to the modules on the extension rack cut are automatically assigned to the modules on the extension rack pasted.
- Comments about the modules: The comments about the modules on the extension rack cut are copied into the modules on the extension rack pasted.
- Parameters in the modules: The parameters in the modules on the extension rack cut are copied into the modules on the extension rack pasted.
- **Data registers**: The data registers assigned to the modules on the extension rack cut are automatically assigned to the modules on the extension rack pasted.
- Parameters in the intelligent modules: The setting of the parameters in the intelligent modules is copied.

When an extension rack is copied/pasted, the parameters in the modules on the extension rack are processed as follows.

- Input/Output device range: The input/output device addresses assigned to the modules on the extension rack pasted follow the input/output device addresses assigned to the modules on the extension rack copied.
- **Comments about the modules**: The comments about the modules on the extension rack copied are copied into the modules on the extension rack pasted.
- Parameters in the modules: The parameters in the modules on the extension rack cut are copied into the modules on the extension rack pasted.
- Data registers: The data register addresses assigned to the modules on the extension rack pasted follows the data registers addresses assigned to the modules on the extension rack copied.
- Parameters in the intelligent modules: The setting of the parameters in the intelligent modules is not copied, and is restored to the default values.
- *. Some intelligent modules can be set by means of exclusive configuration tools. Please refer to section 8.3.4 for more information.

8.1.2.14 Dragging an Extension Rack

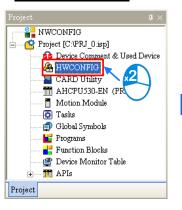
Drag an extension rack to another extension rack when the left mouse button is held. The two extension racks will be interchanged. When the extension rack is dragged, the input/output devices assigned to the modules on the extension rack, the comments about the modules on the extension rack, the parameters in the modules on the extension rack, the data registers assigned to the modules on the extension rack, and the parameters in the intelligent modules are also dragged. However, the main rack is always at the top of the system configuration area.

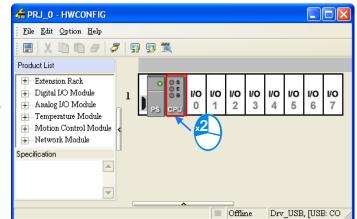


8.1.2.15 Rearranging the Input/Output Devices

During a module configuration, modules may be dragged or copied/cut/pasted several times. The input/output devices may be automatically assigned to the modules by the system, and may not be arranged in order. After users click **Input/Output Device Rearrange** on the **File** menu, the input/output devices assigned to all modules will be rearranged according to the slot numbers and the rack numbers.

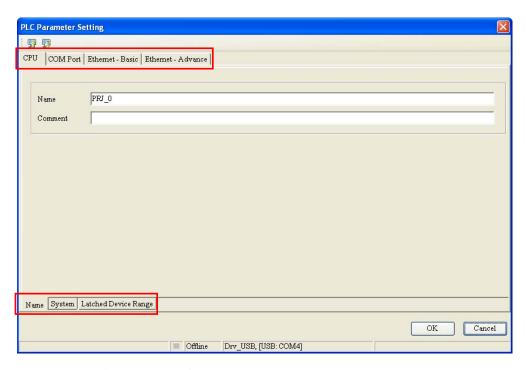
The rearrangement of the input/output devices does not change the data registers assigned to the modules. During the rearrangement, if the input/output devices assigned to the modules conflicts with the data registers assigned to the modules, the system will skip the data registers assigned to the module, and provide the devices which can be used.




8.2 Setting the Parameters in an AH500 Series CPU Module

8.2.1 Opening the PLC Parameter Setting Window

After users double-click the CPU module in the system configuration area, the PLC Parameter Setting window will appear. The parameters which can be set vary with the models of the CPU modules.


⚠ Before the parameters in a CPU module are set, users have to refer to the operation manual for the CPU module. To prevent damage to the system or staff, the users have to make sure of the effect that the parameters which are set have on the CPU module and the whole system.

The parameters are classified into several types. The users can click the primary tabs at the top of the window, and the secondary tables at the bottom of the window to set the parameters.

8.2.2 Setting the Basic CPU Parameters

8.2.2.1 CPU: Name

After users click the **CPU** tab at the top of the window, and the **Name** tab at the bottom of the window, they can type 32 characters at most in the **Name** box, and 60 characters at most in the **Comment** box. There is no restriction on characters which can be typed in the boxes. Characters typed in the boxes can include special marks and spaces. However, the users have to notice that a Chinese character occupies two characters.

After an ISPSoft project is created, the project name will be taken as the default name of the CPU module, and the default name of the CPU module will be attached to the model in the project management area. Users can change the default name of the CPU module in the **Name** box later.



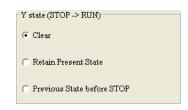
Users can identify a device by means of the name of the device. When several devices are connected on a network, users can check whether a device connected to the computer is the device they expect by means of the name of the device. To prevent unexpected effect on other CPU modules, if users want to download/upload the program, but the name of the CPU module is different from the name attached to the model in the project management area, the system will remind the users to check the name of the CPU module and the name attached to the model in the project management area.

*. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

8.2.2.2 CPU: System

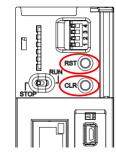
After users click the **CPU** tab at the top of the window, and the **System** tab at the bottom of the window, they can set the parameters in the CPU module.

Clear Non-latched Device (STOP→RUN)


If the **Enable** checkbox is selected, the states of the non-latched devices, and the values in the non-latched devices are cleared when the CPU module begins to run.

■ Y state (STOP→RUN)

When the CPU module begins to run, the states of the Y devices are OFF, retained, or restored to the states before the CPU module's stopping running.

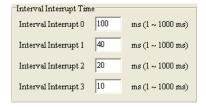

- > Clear: All Y devices are set to OFF.
- > Retain Present State: The states of the Y devices are retained.
- Previous State before STOP: The states of the Y devices are restored to the states before the CPU module's stopping running.

• Reset Button & Clear Button

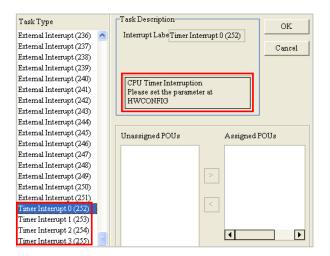
Whether the RST button and CLR button on the CPU module is enabled or disabled depends on the setting of these parameters. Please refer to an operation manual for more information about the functions of the buttons.

Watchdog Timeout

Users can set a timeout during which the program is scanned. Generally speaking, the watchdog timeout is reset whenever the scan of the program is complete. If the scan procedure can not be completed within the time set for some reason, the watchdog timeout occurs, and the CPU module will be in an erroneous condition. Please refer to operation manuals for more information about troubleshooting.


Enable Constant Scan

Users can select the **Enable Constant Scan** checkbox, and set a scan time. If the actual scan time is less than setting value, the CPU module will not carry out the next scan until the setting value is reached. If the actual scan time is larger than the setting value, the CPU module will ignore the setting value, and operate according to the actual scan time. Besides, if the scan time set is larger than the watchdog timeout set, a watchdog timeout occurs when the CPU module operates.



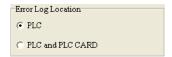
Interval Interrupt Time

An AH500 series CPU module provides four interrupts. Users can set intervals of triggering the interrupts. In ISPSoft, a timed interrupt is created through a task and a POU. Please refer to chapter 5 in ISPSoft User Manual for more information.


Enable Remote Run

If the **Enable Remote Run** checkbox is selected, users can specify an X device which controls the status of the CPU module. For example, the CPU module runs when the state of X0.0 is ON, and the CPU module stops running when X0.0 is OFF.

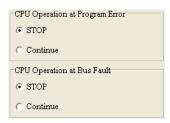
Constant Communication Response


If the **Enable** checkbox is not selected, commands received through the communication ports will not be processed until the scan cycle is complete. If the **Enable** checkbox is selected, commands received through the communication ports will be processed every specific period of time. However, the scan procedure is interrupted when the system processes commands received through the communication ports. As a result, the scan time will be prolonged if the **Enable** checkbox is not selected. Please make sure that the operation of the system is not affected when the function is used.

Error Log Location

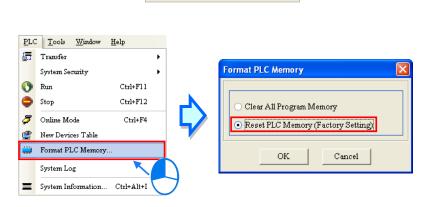
If the **PLC** option button is selected, error logs will be stored in the special data registers in the CPU modules. If the **PLC and PLC CARD** option button is selected, error logs will be stored not only in the CPU module, but also in the memory card.

Twenty error logs at most can be stored in an AH500 series CPU module. If there are more than twenty error logs, the oldest error log will be overwritten by the latest error log. However, if the **PLC and PLC CARD** option button is selected, and there are more than twenty error logs, the oldest error log will be backed up in the memory card before the oldest error log is overwritten.



CPU Operation at Program Error & CPU Operation at Bus Fault

If an error occurs, the status of the CPU may change. The status of the CPU depends on an error code generated. Users can define the status of the CPU module for some errors. They can select the **Stop** option button or the **Continue** option button in the **CPU Operation at Program Error** section, select the **Stop** option button or the **Continue** option button in the **CPU Operation at Bus Fault** section, and download the parameters to the CPU module. Please refer to operation

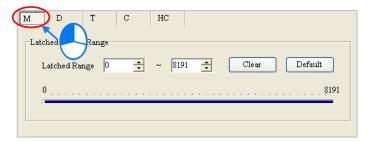

manuals or related technical documents for more information.

Remote Reset

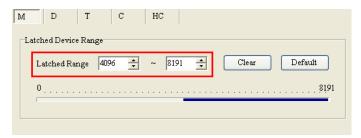
If the **Enable** checkbox is selected, the CPU module can be reset through a remote system. After users select the **Enable** checkbox, and download the parameter to the CPU module, they can click **Format PLC Memory...** on the **PLC** menu, and select the **Reset PLC Memory (Factory Setting)** option button in the **Format PLC Memory** window.

Remote Reset

*. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

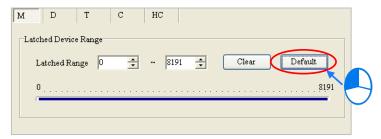

8.2.2.3 CPU: Latched Device Range

After users click the **CPU** tab at the top of the window, and the **Latched Device Range** tab at the bottom of the window, they can set a range of latched devices.



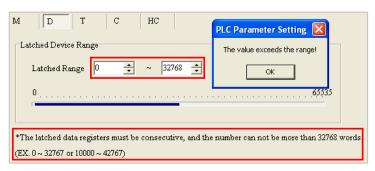
(1) After users click a device type, they can be set a range of latched devices. There is a rectangular bar in the setting area. The values at the two ends of the bar represent a maximal value and a minimal value. The blue part represents a range of latched devices.

(2) Please select values in the boxes. The value in the left box is a start address, and the value in the right box is an end address. The value in the left box must be less than the value in the right box. Besides, the value in the left box can not be less than the minimal value at the left end of the rectangular bar, and the value in the right box can not be larger than the maximal value at the right end of the rectangular bar.



(3) If all the devices in the block are not latched devices, the users can click **Clear**. After the users click **Clear**, the boxes become gray, and the range of latched devices will be -1~-1.

(4) If the users want to restore the setting to the default values, they can click **Default**. After the users click **Default**, the setting will be restored to the default values.

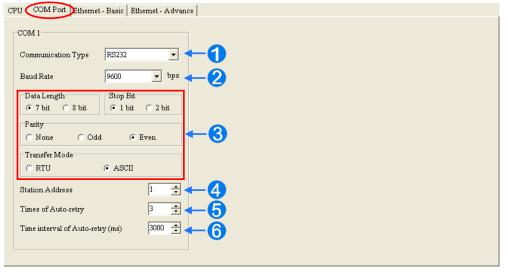


Additional remark

A range of latched devices of a certain type may not include all the devices of that type. If there is restriction on the maximum number of latched devices of a certain type, a related hint will be under

the setting area. In the setting page for the data registers in AHCPU530-EN, the hint indicates that the maximum number of latched data registers is 32768. In other words, in the range of 0 to 65535, the number of latched data registers should be less than or equal to 32768, e.g. 0~32767 or 10000~42767.

In the setting page below, the range of latched data registers is D0~D32768. The number of latched data registers is 32769. When users leave this page, the **PLC Parameter Setting** dialog box appears.

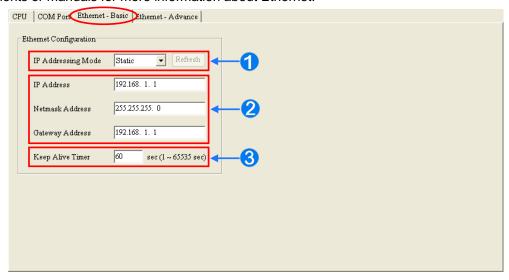


*. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

8.2.3 COM Port

After users click the **COM Port** tab at the top of the window, they can set the communication ports in the CPU module. If the CPU module is equipped with two communication ports, there are two setting areas for the two communication ports, and the two communication ports are set individually. (AHCPU5xx-RS2 is equipped with two communication ports.)

Please refer to section 2.4.7 in ISPSoft User Manual for more information about connecting to a CPU module through a communication port.


- 1 Users can select RS232, RS485, or RS422 in the Communication Type drop-down list box.
- Users can select a communication speed in the **Baud Rate** drop-down list box. If a RS-232 cable is used, the communication speed can be 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps. If a RS-485 cable or a RS-422 cable is used, the communication speed can be 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, or 921600 bps.
- 3 Users can set the communication protocol parameters. If the RTU option button is selected in the Transfer Mode section, the 8 bit option button in the Data Length section is automatically selected.

- 4 Users can set a station address. A device on a network can be identified by means of the station address of the device. The station address of a device on a network can not be the same as the station address of another device on the same network. The station address of a device must be in the range of 0 to 247.
 - If the communication port functions as a slave, and there are other slaves, the station address of the communication port can not be 0. Station address 0 has the meaning of broadcasting to all slaves in a communication protocol. If a master specifies in a data packet that data must be sent to station address 0, the data will be sent to all slaves. No matter what station address of these slaves are, these slaves will receive the data packet.
- 5 If the sending of a command fails, the CPU module will retry the sending of the command. Users can set the number of times the sending of a command is retired in this box. The number of times the sending of a command is retired must be in the range of 0 to 20.
- 6 Users can set an interval of retrying the sending of a command. If the sending of a command fails, the CPU module will retry the sending of the command every specific period of time. The interval of retrying the sending of a command must be in the range of 100 milliseconds to 65535 milliseconds.
- *. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

8.2.4 Ethernet—Basic

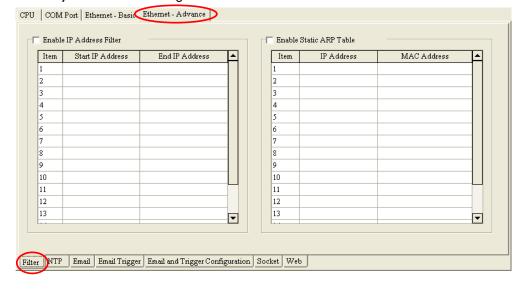
If a CPU module is equipped with an Ethernet port, users can enter this page. For example, AHCPU5xx-EN is equipped with an Ethernet port. After users click the **Ethernet—Basic** tab at the top of the window, they can set the Ethernet port in the CPU module.

The users can set the communication parameters for the Ethernet port in the CPU module in this page. They can refer to section 2.4.7 in ISPSoft User Manual for more information about connecting to a CPU module through the Ethernet port on the CPU module, and refer to other related documents or manuals for more information about Ethernet.

- 1 If users select **Static** in the **IP Addressing** Mode drop-down list box, they can specify an IP address. If **Dynamic** is selected in the **IP Addressing Mode** drop-down list box, an IP address is assigned by a DHCP server.
- 2 If **Static** is selected in the **IP Addressing Mode** drop-down list box, users can assign an IP address, a subnet mask, and a gateway address.
- 3 If no data is transmitted from the CPU module on a network, and the keepalive period has elapsed, the CPU module will be disconnected from the network automatically.

If **Dynamic** is selected in the **IP Addressing Mode** drop-down list box, the IP address, the subnet mask, and the gateway can be read from the CPU module by means of the following steps.

- (1) Connect the CPU module to Ethernet, and make sure that the network and the CPU module operate normally.
- (2) Select **Dynamic** in the **IP Addressing Mode** drop-down list box, and download the parameter to the CPU module.
- (3) After **Refresh** is clicked, the system will read the IP address, the subnet mask, and the gateway from the CPU module. The IP address, the subnet mask, and the gateway will be displayed in the boxes.


*. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

8.2.5 Ethernet-Advance

If a CPU module is equipped with an Ethernet port, users can enter this page. For example, AHCPU5xx-EN is equipped with an Ethernet port. After users click the **Ethernet—Advance** tab at the top of the window, they can set devices on a network.

8.2.5.1 Ethernet—Advance: Filter

After users click the **Ethernet—Advance** tab at the top of the window, and the **Filter** tab at the bottom of the window, they can set a filter. Devices on a network are filtered. The setting here ensures that objects communicating with the CPU module are devices which are allowed.

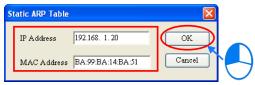
0

Enable IP Address Filter

If the **Enable IP Address Filter** checkbox is selected, devices whose IP addresses are listed in the table will be allowed to communicate with the CPU module, and the CPU module will discard data packets sent from devices whose IP addresses are not listed in the table. The steps of setting the function are as follows. Sixteen groups of IP address at most can be listed in the table.

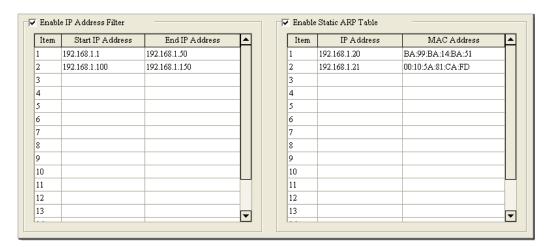
(1) Select the **Enable IP Address Filter** checkbox, and then double-click an item which will be modified or added in the table.

(2) Type a start IP address and an end address in the **IP address Filter** window. The start IP address must be less than the end IP address. Finally, click **OK**.


Enable Static ARP Table

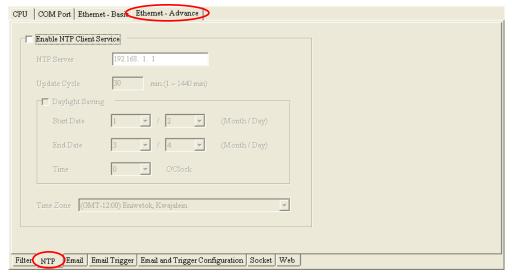
Users can use this function to set MAC addresses and corresponding IP addresses. The MAC address of every device is unique. If the MAC address of device A is known, the MAC address can be bound to the IP address assigned to device A. The CPU module will regard the IP address as the exclusive address of device A. Even if device B is assigned the same IP address, the CPU module does not respond to device B. The steps of setting the function are as follows. Sixteen groups of addresses at most can be listed in the table.

(1) Select the **Enable Static ARP Table** checkbox, and then double-click an item which will be modified or added in the table.

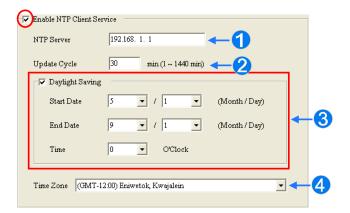


(2) Type an IP address and a MAC address in the Static ARP Table window. Finally, click OK.

Take the tables below for example. After the setting in the tables is downloaded to the CPU module, devices whose IP addresses are in the range of 192.168.1.1 to 192.168.1.50, and devices whose IP addresses are in the range of 192.168.1.100 to 192.168.1.150 are allowed to communicate with the CPU module if the CPU module operates. Besides, if the CPU module communicates with a device whose IP address of 192.168.1.20, the MAC address of the device must be BA:99:BA:14:BA:51. Likewise, if the CPU module communicates with a device whose IP address is 192.168.1.21, the MAC address of the device must be 00:10:5A:81:CA:FD.

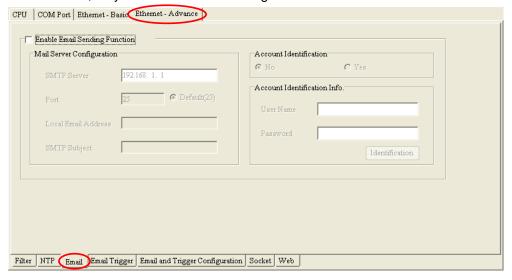


- *1. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)
- *2. If users want to know the MAC address of a CPU module, they can click Online Mode in HWCONFIG to view the information about the CPU module (section 8.4.6), or click System Information in ISPSoft to get the information about the CPU module connected and the status of the CPU module (section 14.5.1 in ISPSoft User Manual).

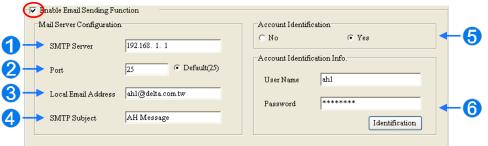

8.2.5.2 Ethernet—Advance: NTP

After users click the **Ethernet—Advance** tab at the top of the window, and the **NTP** tab at the bottom of the window, they can enable the function of synchronizing the real-time clock in the CPU module to an NTP server, and carry out the related setting. NTP will not be introduced here. Please refer to related documents or manuals for more information about NTP.

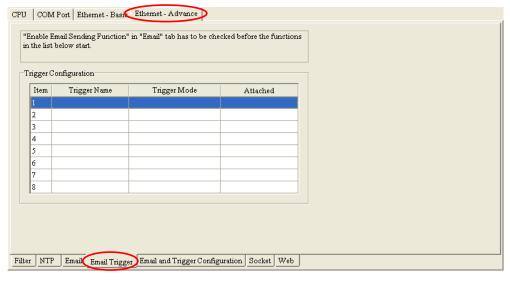
Select the **Enable NTP Client Service** checkbox, and then set the related parameters.



- 1 Users can set the IP address of an NTP server. The CPU module corrects the time inside itself by connecting to the server periodically.
- 2 Users can set an interval of correcting the time in the CPU module. If the interval is thirty minutes, the CPU module will connect to the NTP server every thirty minutes.
- 3 After users select the **Daylight Saving** checkbox, they can select a start date and an end data.
- 4 Users can select a time zone in the **Time Zone** drop-down list box.
- *. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)


8.2.5.3 Ethernet—Advance: Email

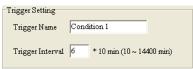
After users click the **Ethernet—Advance** tab at the top of the window, and the **Email** tab at the bottom of the window, they can set the mail sending function.


After users select the **Enable Email Sending Function** checkbox, they can set the related parameters.

- 1 SMTP Server: Users can set the IP address of an SMTP server.
- Port: Users can set a port for an SMTP server, or select the Default (25) option button.
- 3 Local Email Address: Users can set the address of an actual sender. A local email address is composed of 64 characters at most.
- 4 SMTP Subject: Data typed in the SMTP Subject box will be put at the front part of the subject of every email. Only English letters, numerical digits, and special marks can be typed in the box. The subject of an email is composed of 16 characters at most.
- **S** Account Identification: If users want to authenticate themselves with a user name and a password before logging in to an SMTP server, they can select the **Yes** option button.
- 6 Account Identification Info.: Users can type a user name and a password which are used for authentication. A user name is composed of 16 characters at most, and a password is also composed of 16 characters at most. If the parameters above are set correctly, and the computer can connect to an SMTP server normally, users can click Identification to test whether the user name and the password are correct.
- *. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

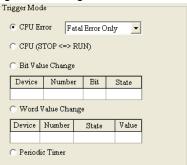

8.2.5.4 Ethernet—Advance: Email Trigger

After users click the **Ethernet—Advance** tab at the top of the window, and the **Email Trigger** tab at the bottom of the window, they can set triggers for the sending of emails. Before setting triggers, users have to click the **Email** tab, and select the **Enable Email Sending Function** checkbox. Please refer to section 8.2.5.3 for more information.



Triggers are listed in the **Trigger Configuration** table. Users can set eight triggers at most. If users want to set or view a trigger, they can double-click the trigger in the table. The **Trigger Configuration** window will appear.

Type a trigger name and an interval of triggering the sending of an email in the Trigger Setting section.


Trigger Name

Users can type a trigger name in the **Trigger Name** box. Only English letters, numerical digits, or special marks can be typed in the box. A trigger name is composed of 16 characters at most. If the sending of an email is due to this trigger, the trigger name will be put in the subject of this email.

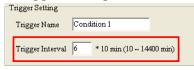
Trigger Interval

Users can set an interval of triggering the sending an email. Ten minutes are taken as a unit. If the condition of triggering the sending of an email is met, the system will send the email every specific period of time, and the email will not sent within the intervals.

(2) Select a condition of triggering the sending of an email in the **Trigger Mode** section.

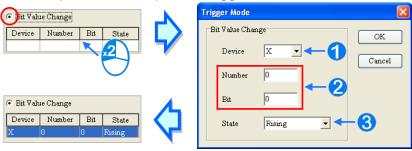
CPU Error

If an error occurs in the CPU module, the condition of triggering the sending of an email is met. Please refer to operation manuals for more information about errors occurring in CPU modules. After users select the **CPU Error** option button, they have to select **Fatal Error Only** or **All Errors** in the drop-down list box at the right side of the option button.


- (a) **Fatal Error Only**: If a fatal error occurs in the CPU module, the condition of triggering the sending of an email is met.
- (b) All Errors: If an error occurs, the condition of triggering the sending of an email is met.

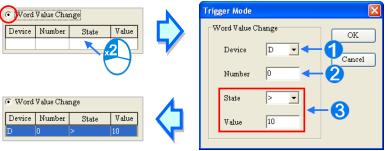
CPU (STOP<=>RUN)

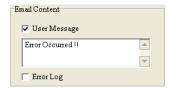
When the CPU module begins to run, or when the CPU module stops running, the condition of triggering the sending of an email is met.


Periodic Timer

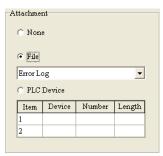
An email is sent periodically. How often an email is sent depends on the interval typed in the **Trigger Interval** box in the **Trigger Setting** section.

Bit Value Change


If the state of a bit device specified meets a condition set, the sending of an email will be triggered. For example, if X0.0 is turned from OFF to ON, the condition of triggering the sending of an email will be met. If users want to set a condition, they can double-click the table under the option button to open the **Trigger Mode** window.


- **1 Device**: Users can select a device type in the **Device** drop-down list box.
- 2 Number & Bit: Users can type a device address in the Number box. If the device type selected is X/Y/D/L, the users have to specify a bit number.
- 3 State: Users can select Rising or Falling in the State drop-down list box.

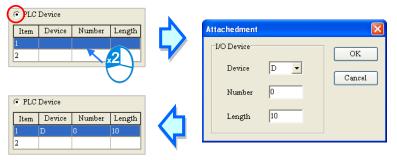
Word Value Change


If the value in a device specified meets a condition set, the sending of an email will be triggered. For example, if the value in D0 is larger than 10, the condition of triggering the sending of an email will be met. If users want to set a condition, they can double-click the table under the option button to open the **Trigger Mode** window.

- **Device**: Users can select a device type in the **Device** drop-down list box.
- 2 Number: Users can type a device address in the Number box.
- **State & Value**: Users can set s condition of triggering the sending of an email here.
- (3) Select the **User Message** box or the **Error Log** box in the **Email Content** section. If a user-define message is the text of an email, the **User Message** box is selected. If an error log in the CPU module is the text of an email, the **Error Log** box is selected. Only English letters, numerical digits, and special marks can be typed in the box under the **User Message** box.

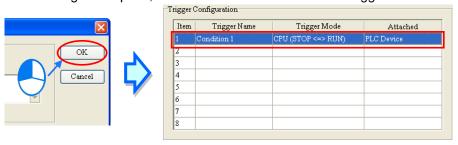
(4) Select the **None** option button, the **File** option button, or the **PLC Device** option button in the **Attachment** section. If users want to set an attachment, they have to make sure of the maximum size of an email which the CPU module allows. Please refer to operation manuals for more information.

None

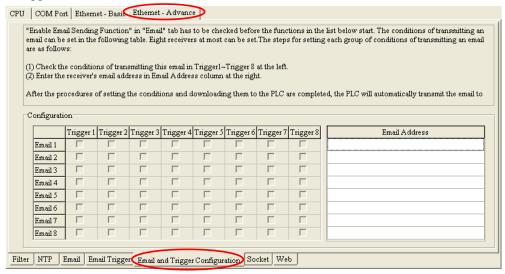

If this option button is selected, no attachment will be inserted.

File

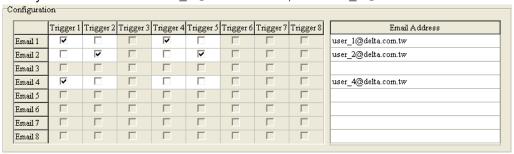
Users can select an error log in the memory card, or the system backup file in the memory card as the attachment of the email.

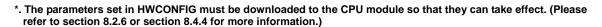

PLC Device

If this option button is selected, the system automatically retrieves the states of the devices, or the values in the devices listed in the table as the attachment when the email is sent. After this option button is selected, users can double-click the table to open the **Attachment** window. Two groups of devices at most can be set. For example, if the condition is met, the values in D0~D9 will be sent as an attachment.


(5) After all the setting is complete, users can click **OK** to create the trigger.

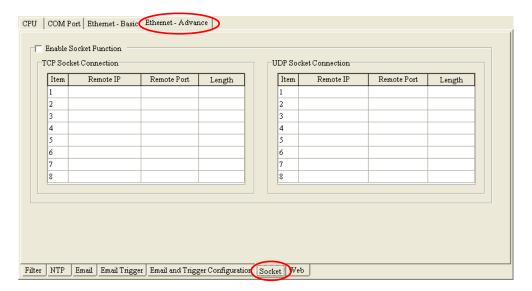
*. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)


8.2.5.5 Ethernet—Advance: Email and Trigger Configuration

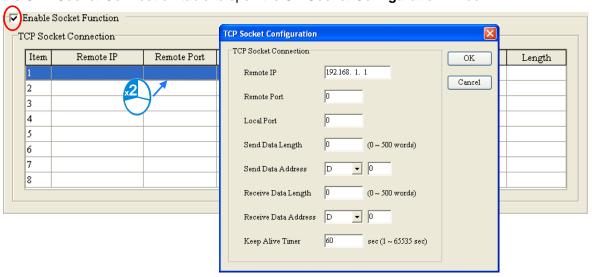

After users click the **Ethernet—Advance** tab at the top of the window, and the **Email and Trigger Configuration** tab at the bottom of the window, they can set the relation between triggers for the sending of emails and receivers. Before setting the function here, the users have to click the **Email** tab, select the **Enable Email Sending Function** checkbox, click the **Email Trigger** tab, and set at least one trigger. Please refer to section 8.2.5.3 and section 8.2.5.4 for more information.

First, type the email addresses of receivers in the **Email Address** column. Eight email addresses at most can be set for the CPU module, and every email address is composed of sixty-four characters at most. Then, select triggers corresponding to receivers. If email addresses or triggers are not set, the corresponding selection positions are gray.

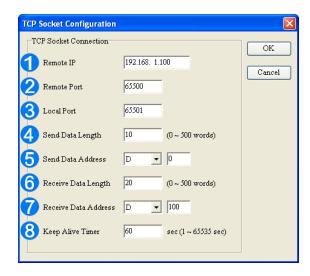
For example, if the condition represented by trigger 1 or the condition represented by trigger 4 is met, the system will automatically send the emails to **user_1@delta.com.tw**. If the condition represented by trigger 2 or the condition represented by trigger 5 is met, the system will automatically send the email to **user_2@delta.com.tw**. If the condition represented by trigger 1 is met, the system will automatically send the email to **user_1@delta.com.tw**, and **user_4@delta.com.tw**.



8.2.5.6 Ethernet—Advance: Socket


After users click the **Ethernet—Advance** tab at the top of the window, and the **Socket** tab at the bottom of the window, they can set the parameters for sockets through which data is transmitted. This function has to be used with specific applied instructions. Please refer to AH500 Programming Manual for more information.

Sockets will not be introduced here. Please refer to related documents or manuals for more information about sockets.



An AH500 system supports the transmission of data between the CPU module and other CPU modules or devices by means of the creation of sockets, and supports TCP and UDP. Users can set eight TCP connections and eight UDP connections. If users want to set a TCP connection, they have to select the **Enable Socket Function** checkbox, and double-click an item in the **TCP Socket Connection** table to open the **TCP Socket Function** window. If the users want to set a UDP connection, they have to select the **Enable Socket Function** checkbox, and double-click an item in the **UDP Socket Connection** table to open the **UD Socket Configuration** window.

The parameters in the **TCP Socket Configuration** window are the same as the parameters in the **UDP Socket Configuration** window except that there is no **Keep Alive Timer** parameter in the UDP Socket Configuration window. The parameters in the **TCP Socket Configuration** window are described below.

- Users can set a remote IP address.
- 2 Users can set a communication port used by the remote device for this TCP connection. The port number must be in the range of 0 to 65535.
- 3 Users can set a communication port used by the local CPU module for this connection. The port number must be in the range of 0 to 65535.
- 4 Users can set the length of data which will be sent by the local CPU module. The length must be in the range of 0 words to 500 words.
- 5 Uses can set an initial device in the CPU module where data which will be sent is stored.
- 6 Users can set the length of data which will be received by the local CPU module. The length must be in the range of 0 words to 500 words.
- Uses can set an initial device in the CPU module where data which will be received is stored.
- 8 Users can set a maximum keepalive time for the connection. If no data is transmitted, and the keepalive period has elapsed, the CPU module will terminate the connection automatically.

The port number used by the local CPU module and the port number used by the remote device can not be the same, and the devices where data which will be sent is stored can not overlap the devices where data which will be received is stored. If the IP address of the remote device is 192.168.1.100, the port number used by the remote device is 65500, and the port number used by the local CPU module is 65501, the remote device and the local CPU module can transmit data through this TCP connection.

If the local CPU module wants to send 10-word data to the remote device, the data will be stored in D0~D9 before the data is sent. If the local CPU module receives 20-word data from the remote device, the data will be stored in D100~D119.

If the length of data received is larger than the length set, the first 20-word data will be stored in D100~D119, and the data after the first 20-word data will be discarded. Likewise, if the length of data received is less than the length set, the data will be stored in the devices starting from D100, and the values in devices where no new data is stored will be retained.

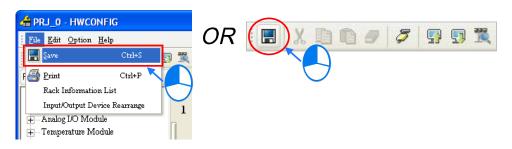
If no data is transmitted, and 60 seconds have elapsed, the CPU module will close the socket, and terminate the connection.

*. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)

8.2.5.7 Ethernet—Advance: Web

After users click the **Ethernet—Advance** tab at the top of the window, and the **Web** tab at the bottom of the window, they can enable the built-in web monitoring function of the CPU module.

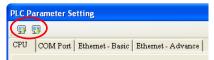
Select the **Enable Web Function** checkbox, and the select a language which will be adopted in the drop-down list box. After the parameter is downloaded to the CPU module correctly, users can view the built-in web pages in the CPU module by means of a web browser.



- *1. The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. (Please refer to section 8.2.6 or section 8.4.4 for more information.)
- *2. Please refer to operation manuals for more information about the web monitoring function.

8.2.6 Saving and Downloading/Uploading the PLC Parameters

After the setting of the PLC parameters is complete, users can click **OK** to apply the parameters. However, the parameters are still not saved as a file. If users want to save the parameters, they have to click **Save** on the **File** menu or on the toolbar after the parameters are applied. After the saving of the parameters is complete, the parameters will be saved as a para file whose primary filename is the project name in the folder in which the project (*.isp) is saved.



There are two ways to download or upload the PLC parameters. Users can download/upload the PLC parameters through the functions on the main screen of HWCONFIG. The hardware configuration and the parameters in the modules will also be downloaded/uploaded. Users can also download/upload the PLC parameters through the functions in the **PLC Parameter Setting** window. Only the PLC parameters will downloaded/uploaded.

The downloading/uploading of the PLC parameters through the functions on the main screen of HWCONFIG will be introduced in section 8.4.4. The downloading/uploading of the PLC parameters through the functions in the **PLC Parameter Setting** window is introduced here.

The PLC parameters will be downloaded after In the upper left corner of the PLC Parameter

Setting window is clicked, and the PLC parameters will be uploaded after **P** is clicked.

After sis clicked, all the PLC parameters will be uploaded. After sis clicked, the **Transfer Setup** window will appear. Users can select parameter types which will be downloaded in the window. Not all parameter types need to be downloaded to the CPU module.

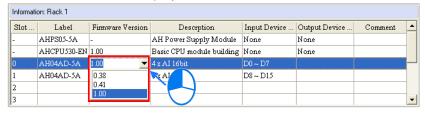
The **Transfer Setup** window is shown below. If the **CPU** checkbox or the **Ethernet—Advance** are selected, the CPU module must stop running during the downloading of the parameters. As a result, if the CPU module does not stop running, a dialog box will appear before the parameters are downloaded.

- *1. If the name of the CPU module is different from the name attached to the model in the project management area, a dialog box will appear before the parameters are downloaded or uploaded. Please refer to section 8.2.2.1 for more information.
- *2. HWCONFIG adopts the communication setting in ISPSoft. Please make sure that ISPSoft is connected to the CPU module normally before the parameters are downloaded/uploaded. Please refer to section 2.4 in ISPSoft User Manual for more information.

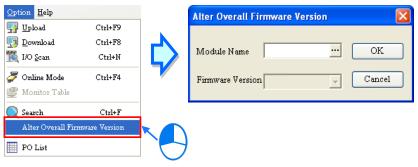
8.3 Setting the Parameters in an AH500 Series Module

8.3.1 Managing the Version of a Module

The functions of a module or the parameters in the module vary with the versions of the module. In HWCONFIG, the functions of the modules and the parameters in the modules are defined in a document called **MDS**. When ISPSOft is installed, the latest MDS document is also installed. If a new version of the MDS document is released, users can download it or get the related file from an agent.

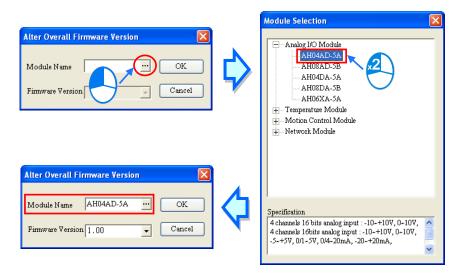


An MDS document provides the information about the firmware versions of the modules. If users want to configure modules in HWCONFIG, they can select a suitable configuration according to the firmware versions of the actual modules. Besides, the parameters which can be set in the modules vary with the firmware versions of the modules which are set. If the firmware version of a module set in HWCONFIG is older than the firmware version of the actual module, the module will operate normally after the parameters are downloaded. If the firmware version of a module set in HWCONFIG is newer than the firmware version of the actual module, the module will not operate normally after the parameters are downloaded. Please refer to the descriptions in the table below for more information.

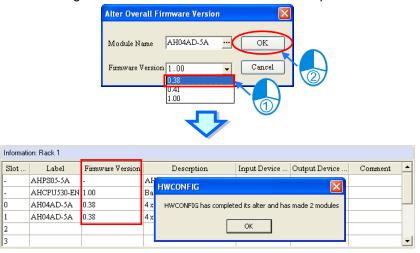

Difference	Compatibility		
The firmware version set is older than the actual firmware version.	The module operates normally. Functions or parameters not defined in HWCONFIG are assigned the default values.		
The firmware version set is newer than the actual firmware version.	The module can not operate, and is in an erroneous condition. Users have to select a firmware version which is the same as the firmware version of the actual module in HWCONFIG, check the parameters, and download the parameters again.		

^{*.} The compatibility mechanism described above only applies to modules whose firmware version is 1.0 or above. A firmware version below 1.0 is not compatible with firmware version 1.0 or above.

If users want to set the firmware version of a module, they can select a version number in the **Firmware Version** drop-down list cell on the information list. If the firmware version of a module is unknown, no version number will be displayed.

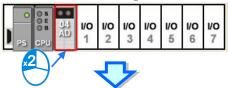


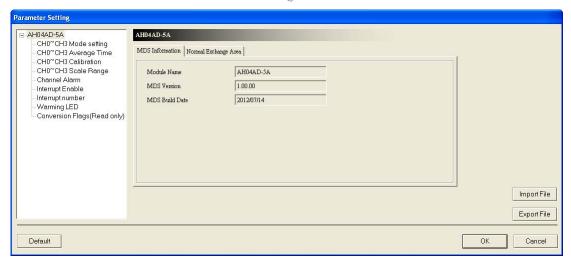
If users want to change the firmware versions of the modules of a certain model, they can click **Alter Overall Firmware Version** on the **Option** menu. The **Alter Overall Firmware Version** window will appear.



Click in the **Module Name** box, select a module model in the **Module Selection** window, and double-click the module model.

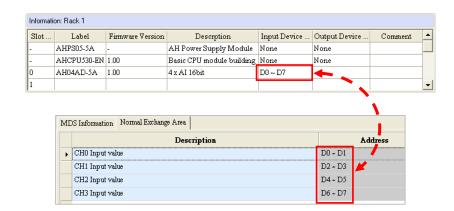
Select a version number in the **Firmware Version** drop-down list cell. After the setting is complete, users can click **OK** to change the firmware versions of the modules specified.


Additional remark


Users can know the firmware version of an actual module by clicking **I/O** Scan on the Option menu. If ISPSfot is connected to the CPU module, users can get the information about the firmware version of an actual module in the **Module Information** window. If users want to know the firmware version of an actual module by click **I/O** Scan on the Option menu, or view the information about the firmware version of an actual module in the **Module Information** window, ISPSoft must be connected to the CPU module normally, and the installation of modules must be completed. Please refer to section 8.4.5 and section 8.4.6 for more information.

8.3.2 Setting the Parameters in a Module

Users can set the parameters in every module configured in HWCONFIG. The functions and characters of every module depend on the setting of the parameters. If users want to set the parameters in a module, they can double-click the module in the system configuration area. The system will automatically open the Parameter Setting window.


The parameters are set according to the functions supported by the module. Before users set the parameters, they have to refer to AH500 Module Manual for more information. To prevent damage to the system or staff, the users have to make sure of the effect that the parameters which are set have on the module and the whole system.

There are two tabs in the window. They are the MDS Information tab and the Normal Exchange Area tab. If users click the MDS Information tab, the version of the MDS document will be displayed. The number of parameters which can be set in the module and the range of setting values depend on the version of the MDS document. Besides, if the parameters in HWCONFIG in a project are created by a newer MDS document, the system asks users to update the MDS document when the users open the HWCONFIG window in the project.

If users click the Normal Exchange Area tab, the functions to which the input/output devices assigned to the module correspond will be displayed.

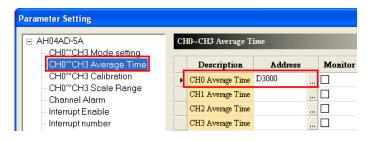
Users can select a parameter type at the left side of the window, and then set the parameters in the table at the right side of the window. The formats of the tables for the parameter types are the same, but the contents of the tables are different. Besides, the number of parameters which can be set and the range of setting values depend on the firmware version of the module which is set.

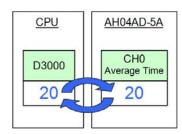
The description of the columns in a table is as follows. If the color of a table cell is gray, the cell can not be edited.

Description

The parameter names or descriptions are shown in this column.

	Description	Address	Monitor	Initial	Comment
Þ	CH0 Average Time			10	CH0 Average Time
	CH1 Average Time			10	CH1 Average Time
	CH2 Average Time			10	CH2 Average Time
	CH3 Average Time			10	CH3 Average Time


Address


Users can set data registers in this column. The parameters in the module which do not need to be updated constantly are stored in the data registers. If users specify data registers for the parameters in the module, and the parameters in HWCONFIG are downloaded to the CPU module correctly, the data registers in the CPU module are synchronized to the parameters in the module when the system operates. As a result, the users can access the module through the data registers. Accessing a module through the data registers is more efficient than accessing the module through the instruction FROM/TO. Besides, the number of data registers that a module has is limited. When users set data registers, they have to refer to the instructions for the module.

As the example below shows, D3000 corresponds to the parameter **CH0 Average Time** in the **Parameter Setting** window for AH04AD-5A. After the parameters in HWCONFIG are downloaded to the CPU module, users can change the value of the parameter **CH0 Average Time** by changing the value in D3000 in the CPU module.

Besides, if users write a value which is not allowed by a parameter into a data register during the operation of the system, the system will restore the value in the data register and the value of the parameter to the original values.

*. Please refer to programming manuals for more information about the instruction FROM/TO.

If users want to set a data register, they can click in the **Address** cell for a parameter, and type a data register address which will be used in the **Address** window. Please notice that a data register address which has been assigned to the module can not be used. If users want to delete the data register address in the **Address** cell for a parameter, they can open the **Address** window in the same way, and delete the data register address in the window.

If the color of the **Address** cell for a parameter is gray, users can not set a data register for the parameter. In the example below, the values of these parameters are binary values. The states of certain bits in the data register set in the **Address** cell for the first parameter correspond to these parameters. Please refer to the documents for the modules for more information about the relation between parameters and the states of the bits in data registers.

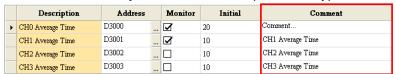
	Description	Address	Monitor	Initial	Com
۲	Warn of CH0 Input value Out of Physical Range			flashing flashing	Warn of CHO Input v
	Warn of CH1 Input value Out of Physical Range			flashing	Warn of CH1 Input va
	Warn of CH2 Input value Out of Physical Range			flashing	Warn of CH2 Input va
	Warn of CH3 Input value Out of Physical Range			flashing	Warn of CH3 Input v

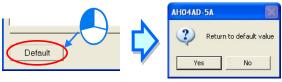
Monitor

After users click **Monitor Table** on the **Option** menu in HWCONFIG, they can access a module through the data registers in the **Monitor Table** window. As a result, if a data register is set for a parameter in a module, and the checkbox in the **Monitor** cell for the parameter is selected, the data register specified will be displayed in the **Monitor Table** window after the **Monitor Table** window is opened. The checkbox in the **Monitor** cell for a parameter to which no data register is assigned can not be selected.

In the example below, D3000~D3003 are assigned to the parameters, but only D3000 and D3001 are monitored. As a result, only D3000 and D3001 will be displayed in the **Monitor Table** window after the **Monitor Table** window is opened. Please refer to section 8.4.6 for more information about **Monitor Table** in HWCONFIG.

	Description	Address	Monitor	Initial	Comment
	CH0 Average Time	D3000	☑	20	CH0 Average Time
٠	CH1 Average Time	D3001	☑	10	CH1 Average Time
	CH2 Average Time	D3002		10	CH2 Average Time
	CH3 Average Time	D3003		10	CH3 Average Time

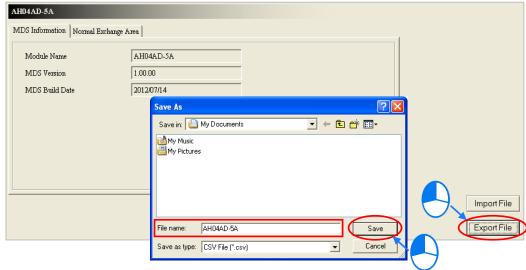

• Initial Users can set initial values in this column. When the parameters in HWCONFIG are downloaded, the initial values set are written into the module. Users may need to type initial values in the Initial columns for some of the parameter types, and select initial values in the Initial columns for the other parameter types. Please refer to the instructions for a module for more information about the range of values which can be set, and the processing mechanism after the downloading of the initial values.



Comment

After users click the **Comment** cell for a parameter, they can type a comment on the parameter. A comment is composed of 32 characters at most, and a Chinese character occupies two characters. The default contents of the **Comment** column for a parameter type are usually the same as the contents of the **Description** column for the parameter type.

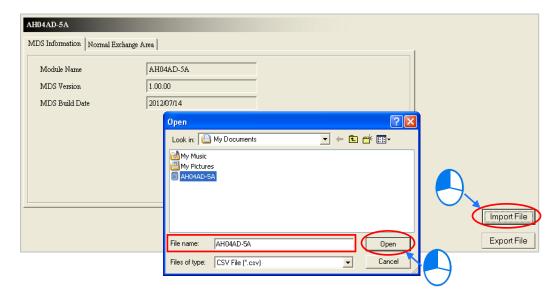
After **Default** in the lower left corner of the **Parameter Setting** window is clicked, the values of the parameters in the module will be restored to the default values.



8.3.3 Exporting and Importing the Parameters in a Module

After **Export File** in the **Parameter Setting** window is clicked, the parameters in the module will be saved as a CSV file. A file which was exported previously can also be imported.

Exporting the parameters in a module


Click **Export File** in the **Parameter Setting** window, select a folder in the **Save in** drop-down list box in the **Save As** window, type a filename in the **File name** box, and click **Save**.

• Importing the parameters in a module

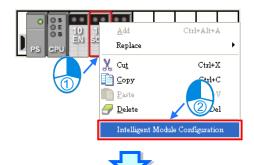
Click **Import File** in the **Parameter Setting** window, select a file which will be imported in the **Save As** window, and click **Open**.

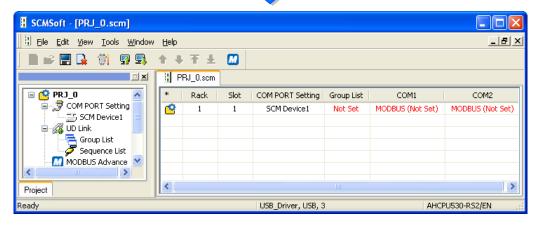
Before the parameters are imported, the system will check the file format and the module model. If the file format or the module model is not correct, the system will forbid the import of the parameters. If the data registers specified in the original file exported have been used in the present configuration, different data registers will be specified in the file after the file is imported.

8.3.4 Setting the Parameters in an Intelligent Module

Delta Electronics, Inc. provides the exclusive configuration tools for some modules. Through the software, the modules can be configured further, and the parameters in the modules can be set further. Some of the configuration tools can be opened through HWCONFIG. The configuration tools supported by HWCONFIG are listed in the table below. The table suggests that the configuration tools for modules which are not listed in the table can not be opened through HWCONFIG. It does not suggest that there are no configuration tools for modules which are not listed in the table.

Module type	Module model	Software supported and its version
Network	AH10EN-5A	The configuration tool is in HWCONFIG, and does not need to be installed.
module	AH10SCM-5A	DCISoft version 1.08 or above needs to be installed.


^{*1.} DCISoft version 1.08 or above can be opened through HWCONFIG. Users can select a version of DCISoft according to the specifications for AH10SCM-5A and their requirements.


^{*2.} The configuration tool for AH10SCM-5A is SCMSoft. After DCISoft version 1.08 or above is installed, SCMSoft can be used.

If users want to set the parameters in an intelligent module, they can right-click the module in the system configuration area, and click **Intelligent Module Configuration** on the context menu. If the configuration and the setting of the parameters in HWCONFIG have not been saved, the system will ask the users to save the configuration and the setting before the corresponding software is started. If the corresponding software is started, the users can not perform any editing tasks in HWCONFIG before the software is closed.

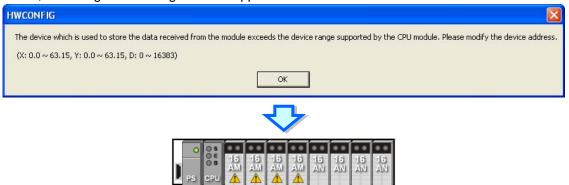
Please refer to instructions for software and modules for more information about the usage of the software.

8.4 Management of the Parameters in AH500 Series Hardware and Online Diagnosis

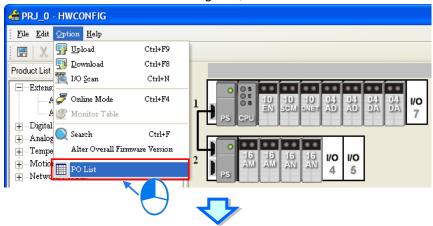
8.4.1 Saving and Printing a Hardware Configuration

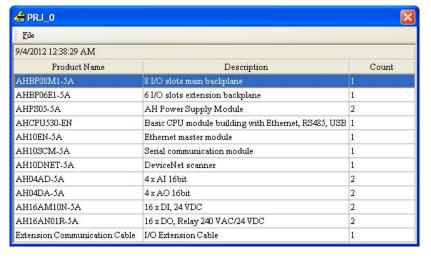
After a hardware configuration is complete, the setting in HWCONFIG can be saved with the whole project. The contents which are saved include the hardware configuration, the parameters in the modules, and the parameters in the CPU module, but do not include the parameters in the intelligent modules. The parameters in the CPU module are saved as a para file whose primary filename is the project name. The hardware configuration and the parameters in the modules are saved as an hw file whose primary filename is the project name. The files are saved in a folder in which the project (*.isp) is saved.

If users want to save the setting in HWCONFIG, they can click **Save** on the **File** menu, or the toolbar.

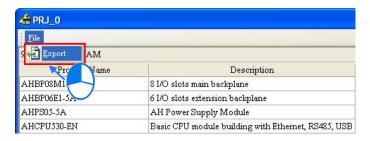

If users want to perform a printing task, they click **Print** on the **File** menu to open the **Print Preview** window. The contents which are printed only include the configuration in the configuration area. Please refer to appendix C for more information about the **Print Preview** window.

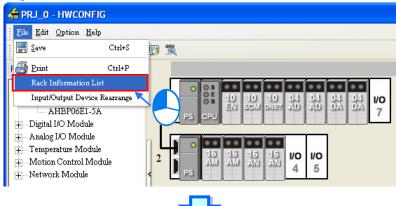
Additional remark


If the CPU module is changed in ISPSoft after the setting of the parameters in the hardware is


complete, and the new CPU module can not completely support the range of devices set for the original hardware, a warning message appears when the **HWCONFIG** window is opened again. The problematic modules are marked with triangular error signs in HWCONFIG. These modules are in an abnormal condition. The **Download** function and the **Online Mode** function can not be enabled. After the incorrect device addresses are modified, users can proceed with the operation. Besides, the triangular error signs will disappear after the incorrect devices addresses are modified.

8.4.2 Purchase Order


After a hardware configuration is complete, users can click **PO List** on the **Option** menu. The system will collect the hardware which are configured, and list it in a list.

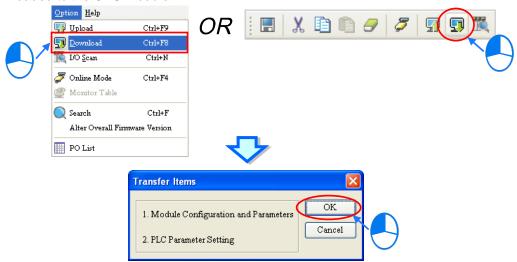


After **Export** on the **File** menu in the upper left corner of the window is clicked, the list will be saved as a CSV file. The data which is exported can be edited or managed through Microsoft Excel.

8.4.3 Rack Information List

After a hardware configuration is complete, users can click **Rack Information List** on the **File** menu. The users can view the configuration in the **Rack Information List** window. The modules in the window are sorted according to the backplanes on which they are installed, and arranged in a hierarchical tree structure. The users can fold or unfold a rack section to increase the convenience of viewing the configuration

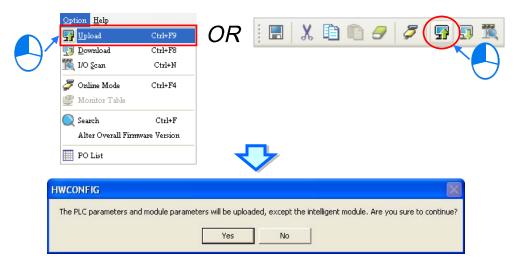
After **Export** on the **File** menu in the upper left corner of the window is clicked, the list will be saved as a CSV file. The data which is exported can be edited or managed through Microsoft Excel.



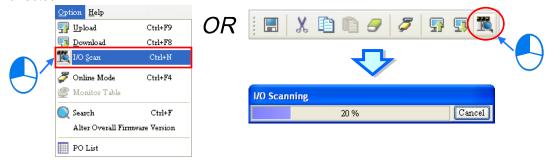
8.4.4 Downloading/Uploading the System Parameters

The parameters set in HWCONFIG must be downloaded to the CPU module so that they can take effect. Owing to the fact that HWCONFIG adopts the communication setting in ISPSoft, users have to make sure that ISPSoft is connected to the CPU module normally before the parameters are downloaded/uploaded. Please refer to section 2.4 in ISPSoft User Manual for more information about communication setting. If users want to download/upload the program, but the name of the CPU module is different from the name attached to the model in the project management area, the system will remind the users to check the name of the CPU module and the name attached to the model in the project management area. Please refer to section 8.2.2.1 for more information.

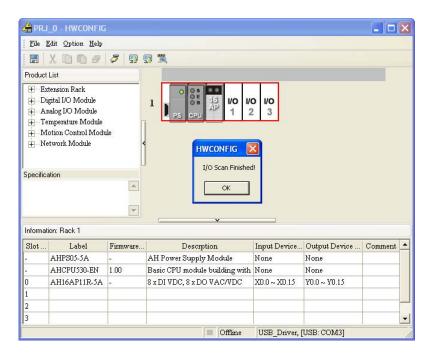
Downloading the system parameters


After users click **Download** on the **Option** menu, or window will appear. The items which will be downloaded include the hardware configuration, the parameters in the modules, and the parameters in the CPU module, but do not include the parameters in the intelligent modules. After the users click **OK**, the parameters will be downloaded to the CPU module.

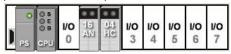
Uploading the system parameters


After users click **Upload** on the **Option** menu, or on the toolbar, the system parameters in the CPU module will be uploaded to HWCONFIG. The items which will be uploaded include the hardware configuration, the parameters in the modules, and the parameters in the CPU module, but do not include the parameters in the intelligent modules.

8.4.5 I/O Scan


Users can configure modules in the way mentioned above. If users have gotten related hardware, they can install the hardware, click **I/O Scan** in HWCONFIG, and scan the actual hardware configuration through communication. The time of configuring the modules will be saved. Users have to make sure that ISPSoft has connected to the CPU module normally before they carry out the operation. Please refer to section 2.4 in ISPSoft User Manual for more information about communication setting.

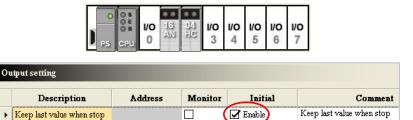
Users can click **I/O Scan** on the **Option** menu, or on the toolbar to carry out the operation. The contents which will be scanned include the module models, the hardware configuration, and the firmware versions of the modules, but do not include the parameters in the modules and the parameters in the CPU module. After **I/O Scan** is clicked, the original hardware configuration and the parameter setting will be cleared. However, the parameters in the CPU module will not be affected.


After the scan is complete, the actual hardware configuration will be displayed in the system configuration area, the system will assign input/output devices to the modules, the parameters in the modules are assigned the default values, and the firmware versions set in HWCONFIG will be the actual firmware versions of the modules. If the firmware version of a module which is scanned is higher than the firmware version of the module in the MDS document, the highest version which can be selected will be displayed in the **Firmware Version** drop-down list cell for the module, and the actual firmware version of the module will be displayed in the **Comment** cell for the module.

*. Please refer to section 8.3.1 for more information about MDS documents and firmware versions of modules. The difference between I/O Scan and Upload can be illustrated with the following example. If I/O Scan is clicked, the hardware configuration will be scanned, and the parameters in the modules will not be scanned. If Upload is clicked, the hardware configuration in the CPU module will be read. The hardware configuration uploaded to HWCONFIG may be different from the actual hardware configuration.

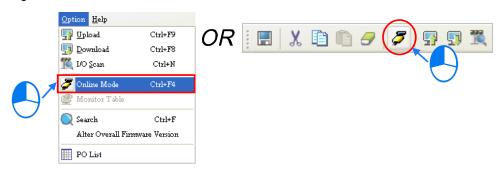
The parameters in the hardware shown below are downloaded to the CPU module first. The parameter in AH16AN01R-5A (installed in slot 1) is as follows.

Then, AH04HC-5A installed in slot 2 is removed from the actual backplane. The BUS FAULT LED indicator on the CPU module will be ON, that is to say, the hardware configuration in the CPU is different from the actual hardware configuration.

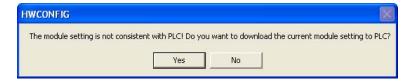

Next, **I/O Scan** is clicked. The scan result will be the same as the actual hardware configuration. After AH16AN01R-5A (installed in slot 1) is double-clicked to open the **Parameter Setting** window, users will find that the parameter in the module is assigned the default value. The value of the parameter is different from the value of the parameter previously downloaded to the CPU module, that is to say, only the hardware configuration will be scanned after **I/O Scan** is clicked.

Then, **Upload** is clicked. After the uploading is complete, users will find that the hardware configuration and the parameters in the modules which are uploaded are the same as the hardware configuration and the parameters in the modules which were previously downloaded to the CPU

module. In other words, after **Upload** is clicked, the system parameters in the CPU module will read, and the actual hardware configuration will not be uploaded.

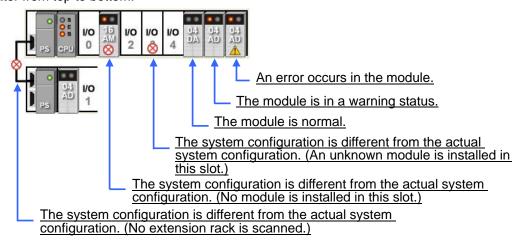

Next, **I/O Scan** is clicked, and the scan result is downloaded to the CPU module. The BUS FAULT LED indicator on the CPU module will be OFF, that is to say, the hardware configuration in the CPU module is the same as the actual hardware configuration.

8.4.6 Online Diagnosis

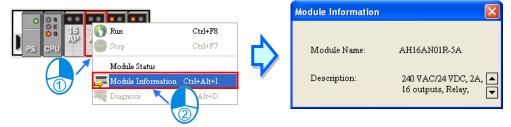

Users not only can configure modules in HWCONFIG offline, but also can operate and inspect the system through the **Online Mode** function if ISPSoft is connected to the CPU module. Owing to the fact that HWCONFIG adopts the communication setting in ISPSoft, users have to make sure that ISPSoft is connected to the CPU module normally before the **Online Mode** function is enabled. Please refer to section 2.4 in ISPSoft User Manual for more information about communication setting. If users want to enable the **Online Mode** function, but the name of the CPU module is different from the name attached to the model in the project management area, the system will remind the users to check the name of the CPU module and the name attached to the model in the project management area. Please refer to section 8.2.2.1 for more information.

8.4.6.1 Online Mode

(1) After users click **Online Mode** on the **Option** menu, or on the toolbar, the hardware configuration will be in the online mode. If the users click again, the hardware configuration will not be in the online mode.

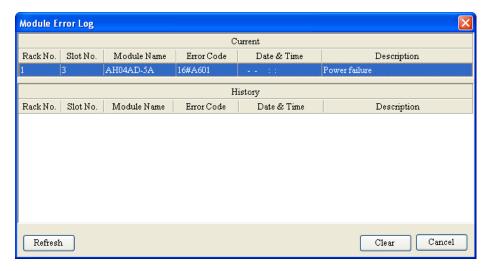


(2) Before the hardware configuration enters the online mode, the system checks whether the hardware configuration stored in the CPU module is the same as the hardware configuration in the system configuration area. If the hardware configuration stored in the CPU module is different from the hardware configuration in the system configuration area, the system will ask users to download the hardware configuration again.



(3) After the hardware configuration enters the online mode, the statuses of the modules displayed in the system configuration area will vary with the actual statuses of the modules. The statuses of the LED indicators on the CPU module displayed in the system configuration area are the same as the actual statuses of the LED indicators on the CPU module. The LED indicators are the RUN LED indicator, the ERROR LED indicator, and the BUS FAULT LED indicator from top to bottom.

8.4.6.2 Module Information and Diagnosis

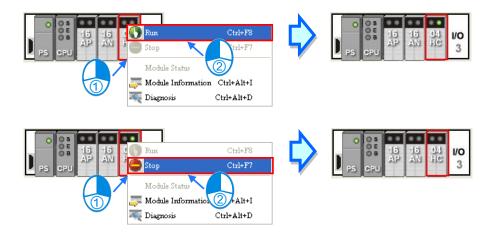

If the hardware configuration is in the online mode, users can right-click the CPU module or a module, and click **Module Information** on the context menu. The users can get the information related to the CPU module or the module through the connection, and the information is displayed in the **Module Information** window.

If users right-click a module, and click **Diagnosis** on the context menu, the **Module Error Log** window will appear.

In the **Module Error Log** window, the current error is displayed in the **Current** column, and the errors which occurred before are displayed in the **History** column. The numbers of error logs which are stored in the modules are different. If the errors which occurred in a module before are not stored in the module, the **History** column will be blank. Besides, owing to the fact that the digital I/O modules do not generate any error code, users can not use the **Diagnosis** function.

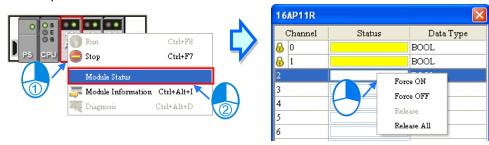
After the errors occurring in a module are eliminated, users can click **Clear** to clear the errors in the window, and the error stored in the module. The module will not be in the erroneous condition. After users click **Refresh**, the system will retrieve the data in the module again. The data will be displayed in the window.

8.4.6.3 Changing the Status of a Module Online


If the hardware configuration is in the online mode, users can change the status of a module, carry out a simple test.

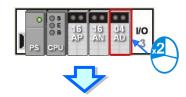
<u>Mefore the status of a module is changed, users have to make sure that the operation does not cause damage to the system or staff.</u>

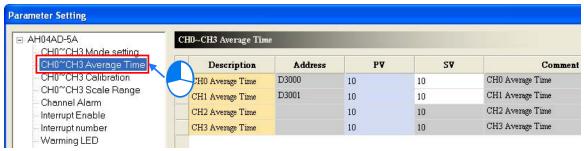
• Changing the operating state of a module


If the hardware configuration is in the online mode, users can right-click a module, and click **Run** on the context menu. The module will begin to run. When the module runs, the green light on the module is ON. If the users click **Stop** on the context menu, the module will stop running. Besides, if the operating state of the CPU module is changed, the operating states of all the modules are also changed.

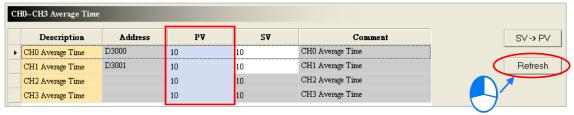
Changing the input/output state of a module

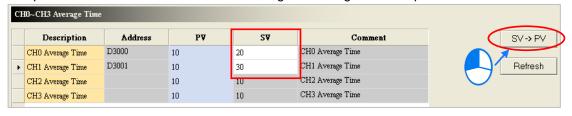
If the modules which are configured include a digital I/O module, an analog I/O module, or a temperature measurement module, users can right-click the module, and click **Module Status** on the context menu. The users can monitor the input/output state of the module in the window which appears. In the window for a digital I/O module, users can right-click an input/output channel, and click **Force ON** or **Force OFF** on the context menu. Before **Force ON** or **Force OFF** on the context menus is clicked, the CPU module and the digital I/O module must run to produce the actual outputs.




- > Force ON: The channel selected is forced ON.
- > Force OFF: The channel selected is forced OFF.
- > Release: The channel selected is not forced ON/OFF.
- > Release all: All the channels are not forced ON/OFF.
- Changing the values of the parameters in a module

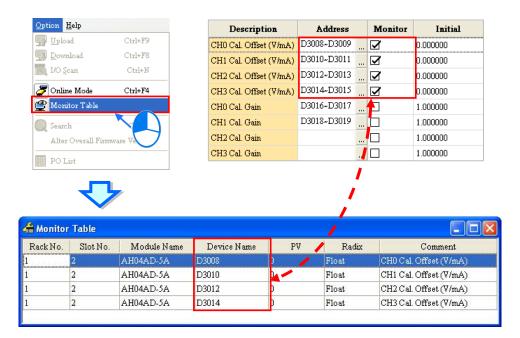
If a module is assigned data registers, users can change the values in the data registers after the hardware configuration enters the online mode. However, on account of the design of the module, the CPU module and the module may need to run to produce the values of the parameters before the values in the data registers are changed.


(1) If the hardware configuration is in the online mode, users can double-click a module to open the **Parameter Setting** window, and click a parameter type which will be set at the left side of the window. The users will find that the appearance of the table in the window is quite different from the appearance of the table in the offline mode.



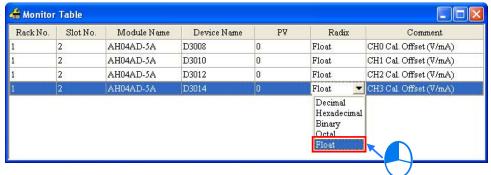
(2) The present values of the parameters are displayed in the **PV** column, but they are not updated timely. After users click in the window, the system will retrieve the present values again, and the values retrieved will be displayed in the **PV** column.

(3) If users want to change the values in the data registers assigned to the parameters, they can type the setting values in the **SV** column. Users can only type the setting values in the **SV** cells for the parameters to which the data registers are assigned. If users want to change the values of parameters, they can type the setting values in the **SV** cells for the parameters, and click SV-PV after the typing of the setting values is complete. The values of the parameters will be written into the data registers assigned to the parameters.



^{*.} Before the value of a parameter is changed, users have to refer to the instructions for the module to make sure of the range of values which are allowed.

8.4.6.4 Monitoring Table

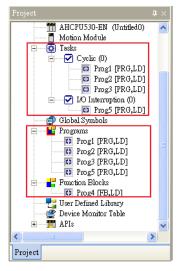

If the hardware configuration is in the online mode, users can view the values in the data registers in the **Monitor Table** window after they click **Monitor Table** on the **Option** menu. Users can not add any item to the **Monitor Table** window. After users select the checkboxes in the **Monitor** cells for parameters, the data registers assigned to the parameters will be listed in the **Monitor Table** window. Please refer to section 8.3.2 for more information.

*. If the setting in the Monitor column in the Parameter Setting window is changed, the setting can take effect without having to be downloaded to the CPU module.

Users can view the values in the data registers in the **Monitor Table** window, but they can not change the values. If users want to change the values in the data registers in the **Monitor Table** window, they can follow the instructions in section 8.4.6.3. Besides, after users click the **Radix** cell for a data register, they can select a method of representing the value in the data register on the drop-down list.

8.5 Setting Interrupts

8.5.1 Program Architectures

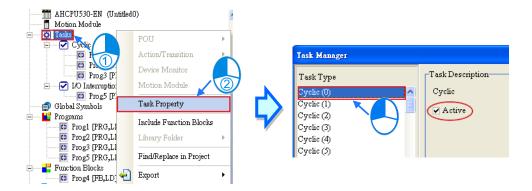

0

AH500 series PLCs uses IEC 61131-3. In the IEC 61131-3 architecture, a program is divided into several program organization units (POUs). Every program organization unit can be developed independently, and can be assigned a task.

The Classic architecture and the IEC 61131-3 architecture are shown below.

The IEC61131-3 architecture The classic architecture Main Program Interrupting Task Cyclic Task Procedure 1 Prog POU Procedure 2 Call Procedure 1 Procedure 5 Procedure 3 Prog POU Subroutine B POU Call Procedure 4 <---Procedure 2 Procedure 4 Interrupting Subroutine Prog POU Procedure 5 Procedure 3

The figure below is a project created in ISPSoft. Program 4 is a POU of the function block type. The cyclic programs and the interrupt program are POUs of the program type.

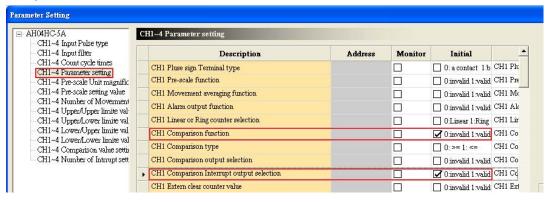

The interrupts supported by AH500 series CPU modules will be introduced in the following sections. Please refer to ISPSoft User Manual for more information about creating interrupts, and writing programs.

8.5.2 Tasks Supported by AH500 Series CPU Modules

The number of interrupts supported by an AH500 series CPU module is 288. There are mainly two types of tasks.

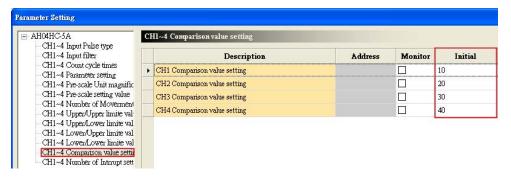
• Cyclic task 0~cyclic task 31 (32 cyclic tasks)
Cyclic tasks are executed in every scan cycle. A cyclic task can be activated/inactivated by means of the instruction TKON/TKOFF. Users can set the initial state of a cyclic state.
Please refer to the figure below. After users click a cyclic task in the **Task Manager** window, they can set the initial state of the cyclic task in the **Task Description** section. If the **Active** checkbox is unselected, the cyclic task will not be executed until it is activated by the instruction TKON in the POU assigned to another cyclic task. Please refer to AH500 Programming Manual for more information about the instructions TKON and TKOFF.

 Interrupt task 0~interrupt task 255 (256 interrupt tasks)
 AH500 series CPU modules provide various kinds of interrupts. The interrupts provided by AH500 series CPU modules will be introduced in the following sections.

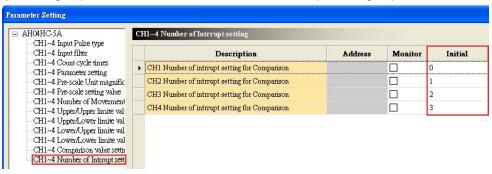

8.5.3 I/O Interrupts

There are 32 I/O interrupts (I0~I31).

I/O interrupts are used by special high-speed modules. Users can set interrupt conditions and interrupt numbers for a special high-speed module by means of HWCONFIG, and download the program created in ISPSoft to the special high-speed module. If an interrupt condition is met when the high-speed module runs, the corresponding interrupt will be executed.

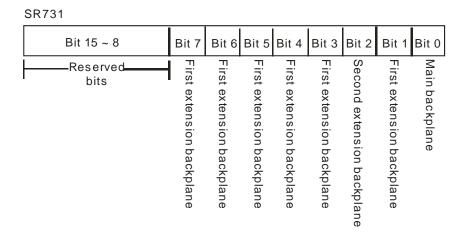

Take AH04HC-5A for instance. The steps of setting AH04HC-5A are as follows.

(1) After users click CH1~4 parameter setting in the Parameter Setting window, they can set CH1/CH2/CH3/CH4 compariosn function, and CH1/CH2/CH3/CH4 comparison interrupt output selection.



(2) After the users click CH1~4 comparison value setting, they can type comparison values in the Initial cells.

(3) After the users click CH1~4 number of interrupt setting, they can type interrupt numbers in


the **Initial** cells. If the number of pulses received by a channel is the same as the comparison value set for the channel, the corresponding I/O interrupt will be executed. However, if no POU is assigned to the I/O interrupt, or the POU assigned to the I/O interrupt is not downloaded to the special high-speed module, an error will occur in the special high-speed module.

8.5.4 Low Voltage Detection Interrupt

The terminals VS+ and VS- on AHPS05-5A can check whether the external voltage is 24 volts. If the external voltage is abnormal, the interrupt subroutine I34 will be executed.

Note: If the voltage supplied to a backplane is abnormal, the corresponding bit in SR731 will be set to ON. After the external voltage supplied to the backplane returns to normal, the bit will be set to OFF. Bit 0~bit 7 in SR731 are for backplanes. The remaining bits in SR731 are reserved bits.

8.5.5 Communication Interrupts

A communication interrupt can be used as the instruction RS, that is, the reception of a specific character triggers a communication interrupt. A communication interrupt can also be used as a general interrupt. Please refer to AH500 Programming Manual for more information about the instruction RS.

COM1: I32 COM2: I33

8.5.6 External Interrupts


There are 212 external interrupts (I40~I251). If a peripheral device sends an interrupt request, the corresponding interrupt task will be executed. Take AH06XA-5A for instance. The steps of setting AH06XA-5A are as follows.

(1) After users click **Channel mode setting** in the **Parameter Setting** window, they can set **CH0/CH1/CH2/CH3 input mode setting**.



(2) After the users click Interrupt enable, they can set CH0/CH1/CH2/CH3 interrupt of over physics Range.

(3) After the users click **Interrupt number**, they can type interrupt numbers in the **Initial** cells.

If an input signal received by input channel 0 exceeds the range, the external interrupt I40 will be triggered. However, if no POU is assigned to the external interrupt I40, or the POU assigned to the external interrupt I40 is not downloaded to the special high-speed module, an error will occur in AH06XA-5A.

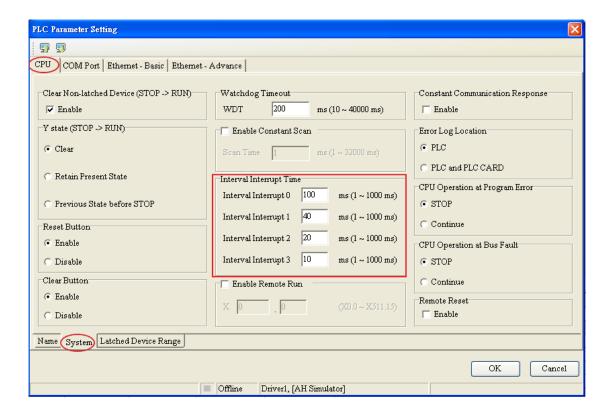
- Interrupts can not be executed simultaneously. If other interrupts are triggered when one
 interrupt is executed, the interrupts triggered will be recorded. After the execution of the
 interrupt is finished, the interrupt which has priority over the other interrupts will be executed
 next.
- If an interrupt is triggered repeatedly when it is executed, only one interrupt will be recorded, and the other interrupts will be ignored.

Users can not set two different interrupt conditions for one interrupt number. For example, if I220 is used by a network module, it can not be used by an analog input/output module.

8.5.7 Timer Interrupts

There are four timer interrupts (1252~1255).

Timer interrupt 0 (I252): The default value is 100 milliseconds (1~1000 milliseconds).


Timer interrupt 1 (I253): The default value is 40 milliseconds (1~1000 milliseconds).

Timer interrupt 2 (I254): The default value is 20 milliseconds (1~1000 milliseconds).

Timer interrupt 3 (I255): The default value is 10 milliseconds (1~1000 milliseconds).

A timer interrupt is executed every specific period of time. For example, the timed interrupt task is executed every 10 milliseconds. Users can set the timer interrupts in the **PLC Parameter Setting** window.

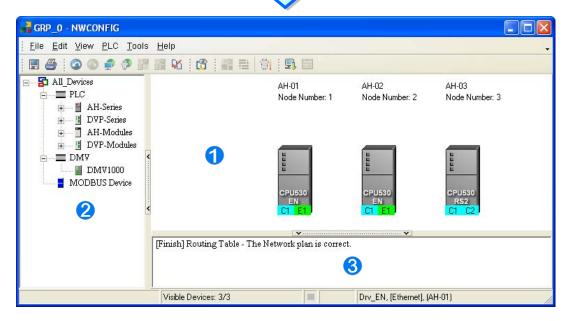
MEMO

Chapter 9 Network Configuration

Table of Contents

9.1	Net	work Configuration Tool—NWCONFIG	9-2
9.	1.1	Introduction of NWCONFIG	9-2
9.	1.2	Basic Knowledge	9-3
9.	1.3	Communication Setting in NWCONFIG	
	9.1.3.	1 Connection Mechanism in NWCONFIG	9-5
	9.1.3.	2 Setting Communication Parameters	9-6
9.	1.4	Workflow	9-7
9.2	Cre	ating a Network Architecture	9-11
9.	2.1	Deploying Nodes	
9.	2.2	Connecting to a Network	
9.	2.3	Adjusting or Deleting Devices or Networks	9-19
9.	2.4	Setting the Attributes of a Node/Network	9-22
9.	2.5	Hiding/Displaying Devices or Networks	9-26
9.	2.6	Correct Network Architecture	9-29
9.	2.7	Downloading Routing Tables	9-32
9.	2.8	Testing Routing	9-34
9.3	Mar	naging and Applying NWCONFIG	9-36
9.	3.1	Saving Parameters and Printing a Network Framework	9-36
9.	3.2	Downloading Parameters	9-37
	9.3.2.	1 Introduction of Parameters	9-37
	9.3.2.	2 Description of Downloading Parameters	9-38
9.	3.3	Using Routing in ISPSoft	9-39

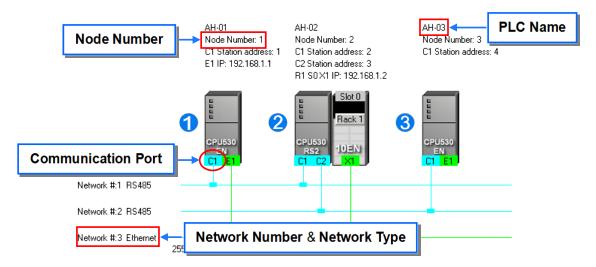
9.1 Network Configuration Tool-NWCONFIG


9.1.1 Introduction of NWCONFIG

NWCONFIG is the network configuration tool provided by ISPSoft. Users can configure the network in a project and set up a mechanism for data exchange through NWCONGIF. The functions of NWCONFIG are listed below. They will be described in the following sections.

- (a) Creating networks in a project, and selecting paths along which data is sent
- (b) Performing data exchange through an RS-485 cable-PLC Link
- (c) Performing data exchange through Ethernet-Ether Link

NWCONFIG is used to create a network framework for projects, and therefore it is at the top of the project management area. If users want to start NWCONGIF, they can double-click **NWCONFIG** in the project management area.



- Device list: All the devices which can be used are listed in a catalog.
- **3 Message display area**: The messages related to operation are displayed in this area.

9.1.2 Basic Knowledge

Before creating networks, users need to have some basic knowledge. The basic knowledge is introduced in this section.

Device and network

A device is the most basic element in a network. It is a PLC, a module, or equipment defined by users. A network is a collection of devices which are interconnected. Every network is assigned a network number. There are RS-485 networks and Ethernet networks. Besides, a physical interface that a device uses to connect to a network is a port of the device. If there are more than two ports on a device, the device can connect to networks which are assigned different network numbers. Please refer to section 9.2.2 for more information about the marking of a port in NWCONFIG.

PLC name

"AH-01", "AH-02", and "AH-03" in the figure above are PLC names. The PLC name of an AH500 series CPU module depends on the setting in HWCONFIG. Users can identify a device in a network by means of the PLC name of the device. Please refer to section 8.2.2.1 for more information. However, the PLC name of a device which is not an AH500 series CPU module is like a comment on the device. It has little significance.

Node and node number

A node is a basic unit which can operate independently in a network. 1 ~ 3 in the figure above are nodes. 2 consists of a CPU module and a network module. The network module can not operate by itself, and therefore the CPU module and the network module are regarded as one node.

Besides, AH500 series CPU modules can forward packets and perform routing. For example, in the figure above can be monitored through 1. Before routing is performed, users have to create paths along which data is sent, and assign node numbers to the nodes which forward the data along the paths. Only AH500 series CPU modules can be assigned node numbers, and the node number of a node in a network can not be the same as the node number of another node in the network. After the paths created are downloaded to the PLCs which forward the data along the paths, every PLC has its own routing table. The forwarding of the data is directed on the basis of the routing tables produced.

Station address

Users can identify a port in an RS-485 network by means of the station address of the port. The station address of a port in a network can not be the same as the station address of another port in the network. Besides, a port is assigned a station address. A port basically represents a station. If a node has several ports, the ports connected to networks must be assigned station addresses.

IP address and DHCP mode

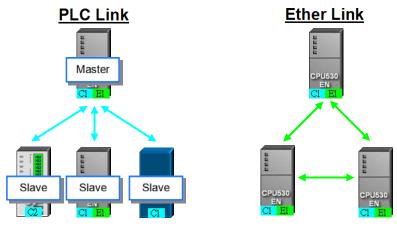
A port in an Ethernet network is assigned an IP address. The IP address of a port in a network can not be the same as the IP address of another port in the network, and an IP address can not end with 0 or 255. If a node has several Ethernet ports, the Ethernet ports connected to an Ethernet network must be assigned IP addresses.

DHCP is a protocol for assigning dynamic IP addresses to ports in a network. If a server using DHCP assigns an IP address to a port, it assigns a dynamic IP address to the port. In NWCONFIG, the ports which are assigned dynamic IP addresses can not connect to any network.

Subnet mask

A subnet mask is a mask used to determine what subnet an IP address belongs to. The ports in a network are assigned the same subnet mask. Besides, if the devices in a network want to perform data exchange, they must be in the same domain.

PLC Link


A PLC Link is a network mechanism for data exchange performed through an RS-485 cable. If there are several nodes in an RS-485 network, users can create a mechanism for data exchange in the network. If the parameters which are set are downloaded to the PLC which functions as a master station, the system of the PLC will perform data exchange through special relays and special registers when the PLC runs.

A PLC Link is a master/slave model. There is only one master station in an RS-485 network, and the other stations which are slave stations passively receive reading/writing commands from the master station. The slave stations can not exchange data. They have to exchange data through the master station.

Ether Link

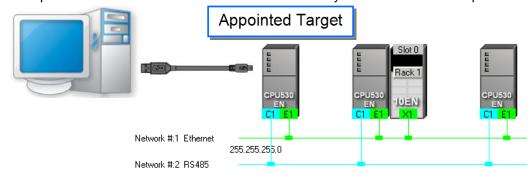
An Ether Link is a network mechanism for data exchange performed through an Ethernet connection. If there are several nodes in an Ethernet network, users can create a mechanism for data exchange in the network, and select a start mode. If the parameters which are set are downloaded to the PLCs in the network, the systems of the PLCs perform data exchange according to the start mode selected when the PLCs run. Besides, only AH500 series CPU modules support Ether Links.

An Ether Link is not a master/slave model. It allows a node to send reading commands which ask for data to other nodes. The nodes will send the data to the node after they receive the reading commands. Owing to the fact that a node can not send writing commands to other nodes, the use of an Ether Link is safer than the use of a PLC Link. Besides, the system automatically manages the transmission of packets through TCP/IP. Compared with a PLC Link, an Ether Link is more efficient.

*. Please refer to related books or technical documents for more information about RS-485 and Ethernet.

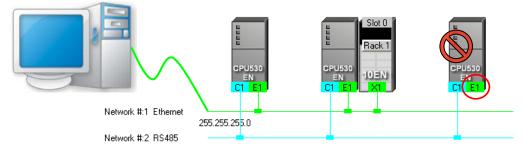
9.1.3 Communication Setting in NWCONFIG

NWCONFIG is used to configure a network. When users configure a network, they have to download parameters to the nodes in the network, upload parameters from the nodes in the network, or monitor nodes in the network. The nodes in the networks created in NWCONFIG may include a

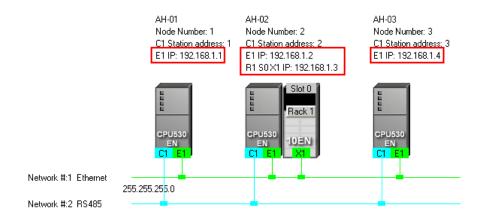

device which is not the device for which the ISPSoft project is created, and therefore users have to set the communication parameters in the device. In order to help people select appropriate parameters, the communication mechanism in NWCONFIG is introduced before communication setting is described.

9.1.3.1 Connection Mechanism in NWCONFIG

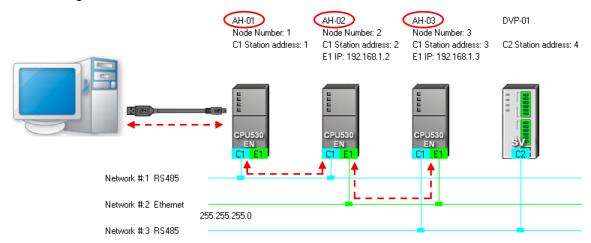
In the networks created in NWCONFIG, users can download parameters to a single node or multiple nodes, upload parameters from a single node or multiple nodes, and monitor a single node or multiple nodes. Before users download parameters to a single node or multiple nodes, upload parameters from a single node or multiple nodes, or monitor a single node or multiple nodes, they have to select appropriate parameters.


Single node

Users can download parameters to a single device, upload parameters from a single device, and monitor a single device. Before users download parameters to a single device, upload parameters from a single device, or monitor a single device, they have to make sure that the device specified is the same as the device which is actually connected to the computer.


Multiple nodes

In a network, users can download parameters to multiple devices, upload parameters from multiple devices, and monitor multiple devices. Before users download parameters to multiple devices, upload parameters from multiple devices, or monitor multiple devices, they have to make sure that the devices are connected to an Ethernet network, the devices are assigned IP addresses, and the connection type that the driver uses is Ethernet.


If the connection type that the driver selected uses is Ethernet, the system will carry out communication according to the IP addresses assigned to the devices in NWCONFIG. Before the communication is carried out, users have to make sure that the IP addresses actually assigned to the devices are the same as the IP addresses set in NWCONFIG, and the networks actually created are the same as the networks created in NWCONFIG. Otherwise, an error will occur if the communication is carried out.

NWCONFIG can also carries out communication through routing.

Routing is a function provided by AH500 series CPU modules. It directs packet forwarding. Packet forwarding is the relaying of packets from their source toward their destination through intermediate nodes. In the figure below, the device which actually connects to the computer is AH-01. If the computer wants to connect to AH-03, it can communicate with it through routing, and designates AH-01 as the first station. After the computer sends a command, the command is transmitted to AH-03 through AH-01 and AH-02.

The important points about routing are listed below.

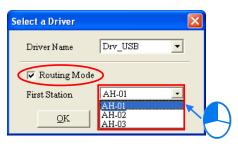
- (a) Users have to create networks in NWCONFIG, and download the routing tables produced to nodes in the networks. Please refer to section 9.2 for more information.
- (b) AH500 series CPU modules support routing whereas DVP series PLCs and other devices do not support routing. Although DVP series PLCs and other devices can not function as intermediate nodes through which packets pass, they can function as destinations to which packets are transmitted.

9.1.3.2 Setting Communication Parameters

The steps of setting the communication parameters in NWCONFIG are as follows. Some prerequisites have to be considered. Please refer to section 2.4 in ISPSoft User Manual for more information

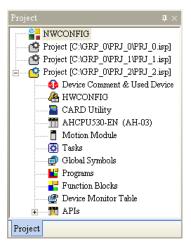
- (1) Start the communication manager COMMGR, and then create a driver in COMMGR.
- (2) If users want to download parameters to a single device, upload parameters from a single device, or monitor a single device, they have to make sure that the device specified is the same as the device which is actually connected to the computer. If the users want to download parameters to multiple devices, upload parameters from multiple devices, or monitor multiple devices, they have to make sure that the devices are connected to an Ethernet network, the

devices are assigned IP addresses, the IP addresses actually assigned to the devices are the same as the IP addresses set in NWCONFIG, and the networks actually created are the same as the networks created in NWCONFIG.

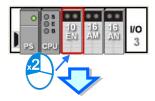

(3) Click **Communication Setting** on the **Tools** menu or in the toolbar in the NWCONFIG window. After the users complete the setting described below, they can click **OK** in the **Select a Driver** window.

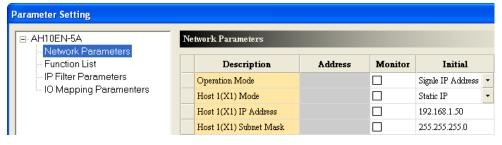
(4) Select a driver in the **Driver Name** drop-down list box. If the users want to download parameters to a single device, upload parameters from a single device, or monitor a single device, they have to select a driver which can connect to the device specified. If the users want to download parameters to multiple devices, upload parameters from multiple devices, or monitor multiple devices, the connection type that the driver selected uses must be Ethernet. The users have to make sure that the driver selected is started.

(5) The users have to make sure that the routing tables produced are downloaded to nodes in the networks before they use routing. If the users want to use routing, they have to select the Routing Mode checkbox, and select a device in the First Station drop-down list box. Generally speaking, the device which actually connects to the computer is the first station. If the computer connects to several devices, or connect to devices through Ethernet, the users have to designate a device as the first station according to the network framework created in NWCONFIG. Besides, if the Routing Mode checkbox is selected, the driver selected in the Driver Name drop-down list box must be a driver which can connect to the first station.


9.1.4 Workflow

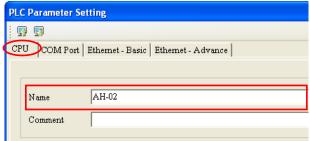
The creation of networks involves the operation of a system, and therefore the workflow needed must consist of a sequence of connected steps. The workflow needed to create networks is introduced briefly in this section, and will be described in length in the following sections. The workflow introduced in this section is a method which can be used to efficiently complete work in a general condition. It is not necessarily applicable to all conditions. Users can adjust the workflow according to the actual situations or their habits.

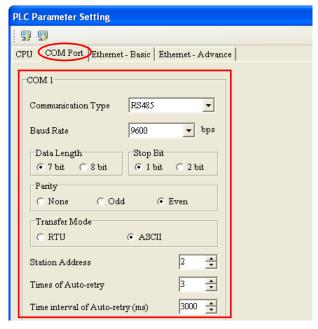

(1) Before users create a system by means of ISPSoft, they have to design networks. The users have to decide what PLCs or devices are used in the networks, whether a PLC needs to be

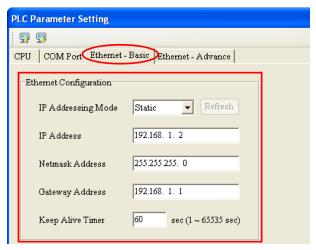


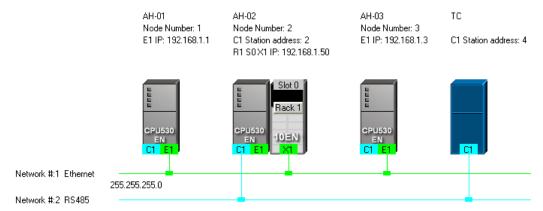
- connected to a network module, how the nodes in the networks are connected, what IP address or RS-485 station address are assigned to the ports connected, and what the values of RS-485 communication parameters are. Besides, the users have to decide what devices perform data exchange. The data exchange is related to the programs in the PLCs used in the networks. After the users design networks, they can create the networks in ISPSoft.
- (2) Create a project in ISPSoft. If there are more than two Delta PLCs in a system, it is recommended that the users should create a group of projects in ISPSoft. Please refer to section 2.2 in ISPSoft User Manual for more information.

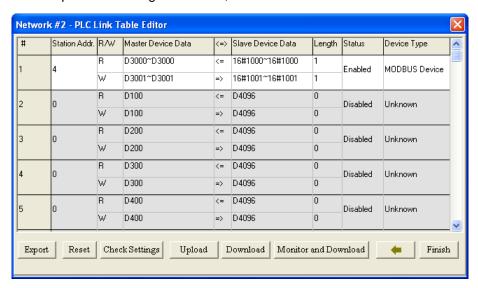


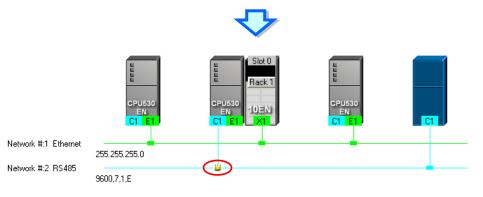

(3) If there are projects for AH500 series CPU modules, the users have to open the HWCONFIG windows in the projects, and complete hardware configurations. The users have to configure modules, set the parameters in network modules, gives names to the CPU modules, set ports, and set Ethernet ports. Please refer to chapter 8 for more information.

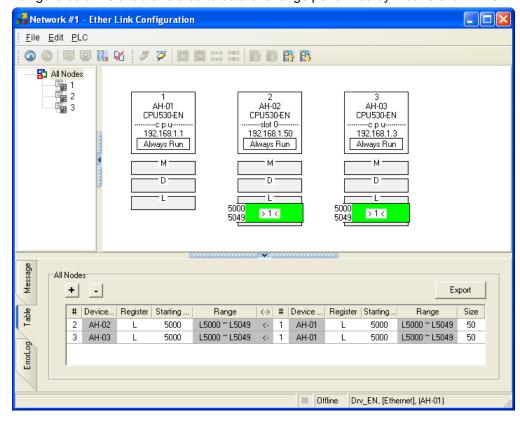









(4) Complete a network configuration in NWCONFIG.


(5) Create a mechanism for data exchange performed by means of a PLC Link or an Ether Link. A PLC Link and an Ether Link operate independently. The users can create them in any order. The addresses involved in data exchange can not overlap, otherwise an error will occur after the data exchange is performed. It is recommended that the users should set addresses which are involved in data exchange according to the programs in the projects created.

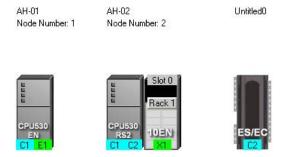
The figure below is a table related to data exchange performed by means of a PLC Link. After the users complete the setting in the table, the master station in NWCONFIG will be marked.

The figure below is a table related to data exchange performed by means of an Ether Link.

(6) Download the programs in the projects, the parameters set in HWCONIFG, and the parameters set in NWCONFIG to the PLCs. If the devices in the networks designed include DVP series PLCs or devices which are not AH500 series CPU modules, the users have to set the communication parameters in these DVP series PLCs or devices which are not AH500 series CPU modules.

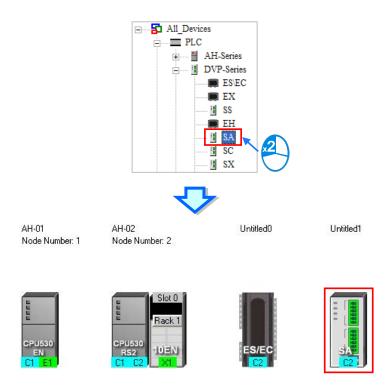
The Optional Download window in NWCONFIG is shown below. The items which can be downloaded vary with the node selected.

(7) Before the users start the system, they have to create actual networks according to the networks created in NWCONFIG.


9.2 Creating a Network Architecture

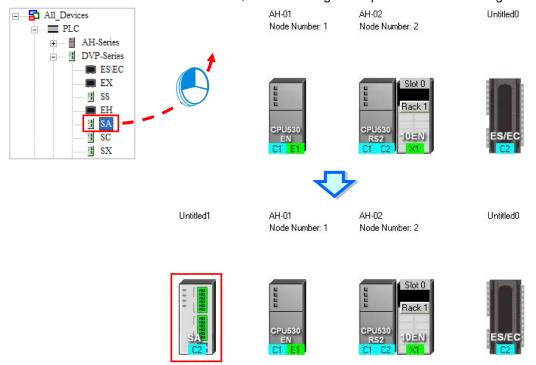
9.2.1 Deploying Nodes

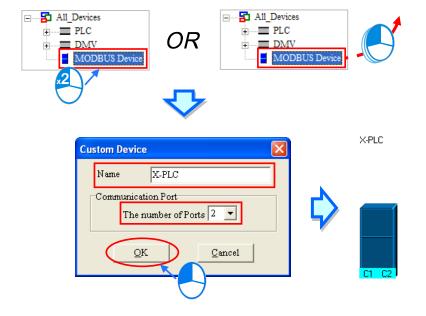
After users open the NWCONFIG window for projects for the first time, the devices for which the projects are created will be deployed in the working area in the NWCONFIG window. If the devices deployed in the working area include AH500 series CPU modules, the modules connected to the CPU modules, the parameters in the CPU modules, and the parameters in the modules connected


to the CPU modules will be displayed according to the setting in HWCONFIG. The devices deployed in the working area can not be changed or deleted.

The users can add other PLCs or devices to the working area. There are two ways to add a new device to the working area.

Method 1


Select a PLC or a device on the device list. After the users double-click the PLC or the device, the PLC or the device will be put at the right side of the rightmost device in the working area.

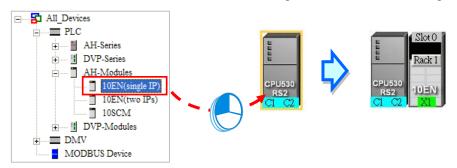


Method 2

Select a PLC or a device on the device list, and then drag it to a position in the working area.

The users can add a user-defined Modbus device to the working area. After the users select **MODBUS Device** on the device list, and add it to the working area in one of the two ways described above, the **Custom Device** window will appear. The users have to type a name in the **Name** box, select a number in the **The number of ports** drop-down list box, and click **OK**. (A user-defined Modbus device can have three ports at most.)

The users can add network modules to the working area. However, if the devices deployed in the working area include AH500 series CPU modules for which projects are created, the users can not connect network modules to the CPU modules. If the users want to connect network modules to the CPU modules, they have to close the NWCONFIG window, configure the network modules in HWCONFIG, and save the setting in HWCONFIG. After the users open the NWCONFIG window

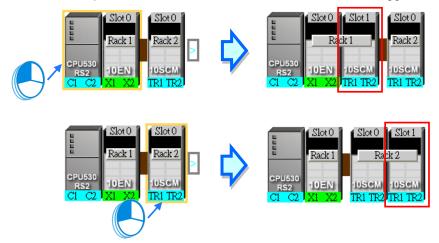


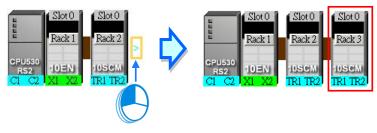
again, the system will update the network configuration in NWCONFIG. Besides, the users can directly connect network modules to the DVP series PLCs in the NWCONFIG window.

There are two ways to add a network module to the working area.

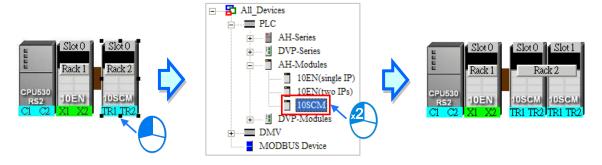
Method 1

Select a network module on the device list, and then drag it to a PLC in the working area.

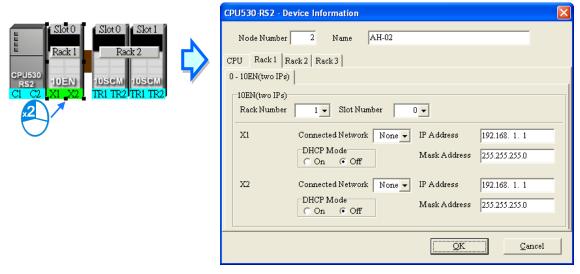

If the PLC does not support the network module selected, the mouse cursor becomes .


An AH10EN series module can only be put on a main backplane. Eight AH10EN series modules at most can be put on a main backplane. An AH10SCM series module can be put on an extension backplane. The number of AH10SCM series modules which can be put on a backplane depends on the number of slots on the backplane.

Users can choose a backplane to which an AH10SCM series module is dragged.



After the users drag an AH10SCM series module to at the right side of a node, an extension rack will be added to the node.



Method 2

Select a PLC or a rack in the working area, and then double-click a network module on the device list.

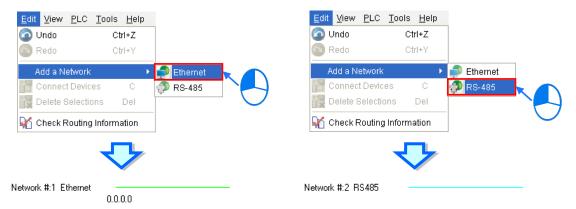
After the users add a network module to a node, the slot in which the network module is installed, and the backplane on which the network module is installed may be different from the actual slot in which the network module is installed, and the actual backplane on which the network module is installed. The users have to adjust the properties of the node. Please refer to section 9.2.4 for more information about setting properties of a node, and section 9.2.2 for more information about the marking of a port in NWCONFIG.

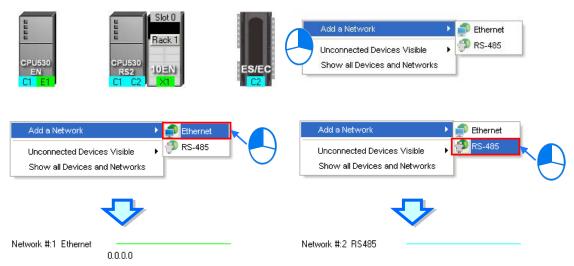
9.2.2 Connecting to a Network

After users deploy the nodes in the NWCONFIG window, they can connect the nodes to the networks designed.

There are three ways to add a network to the working area. There are Ethernet networks and RS-485 networks.

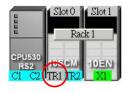
Method 1


After users click on the toolbar, an Ethernet network is added. After the users click the toolbar, an RS-485 network is added.

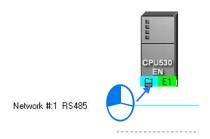

Method 2

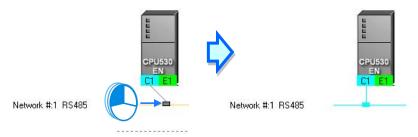
Click the Edit menu, point to Add a Network, and click Ethernet or RS-485.

Method 3

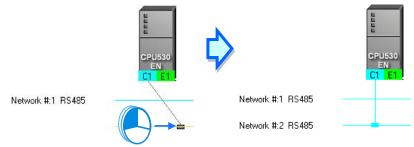

Right-click the blank in the working area, point to **Add a Network** on the context menu, and click **Ethernet** or **RS-485**.

The ports of a device are displayed at the bottom of the device. If a port is blue, it is an RS-485 port. If a port is green, it is an Ethernet port. The port number assigned to a port of a device is consistent with the definition of the port. For example, E1 represents the first Ethernet port, C1 represents COM1, and C2 represents COM2. The ports of an AH10SCM series module are marked with TR1 and TR2, and the ports of an AH10EN series module are marked with X1 and X2. Besides, if the IP address assigned to an Ethernet port is a dynamic IP address, or a port of an AH10SCM series module is not a Modbus port, the Ethernet port or the port of the AH10SCN series module will be gray, and can not connect to any network.

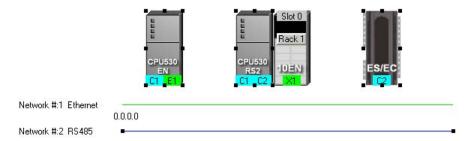



There are several ways to connect the nodes in the working area to networks.

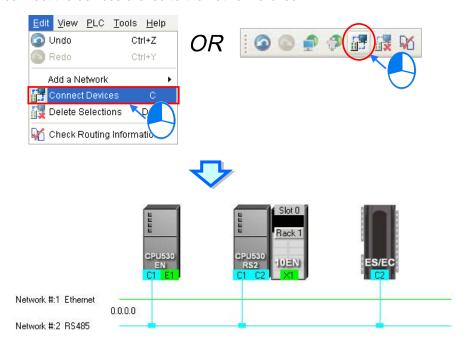
Connecting a port to a network by means of dragging the port


The users press the left mouse button while the mouse cursor hovers over a port. A dotted line is under the existing network.

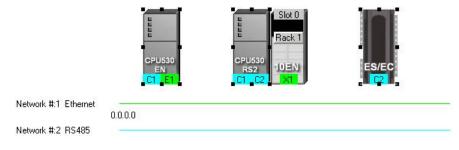
The users move the mouse cursor to the existing network while holding the left mouse button down. If the network matches the port, the port will connect to the network after the users release the left mouse button.



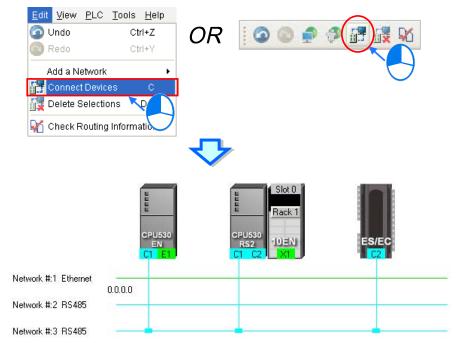
If the users move the mouse cursor to the dotted line while holding the left mouse button down, the port will connect to a network which matches the port.


Connecting a single device or several devices to an existing network

- (1) The users hold down Shift on the keyboard while they click devices and a network. They have to conform to the two principles below.
 - (a) PLCs and modules are independent devices. A device that the users click must have at least one port which is not connected to any network, and matches the network clicked.
 - (b) The users can click several devices, but they can only click one network.

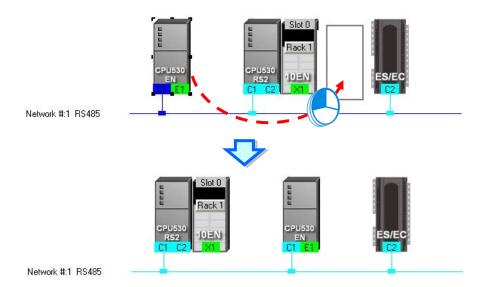


(2) After the users click **Connect Devices** on the **Edit** menu, or if on the toolbar, the system will connect the devices clicked to the network clicked.


Additional remark

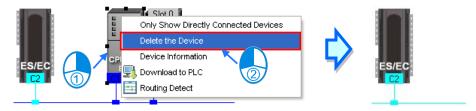
- (a) If the objects selected do not conform to the two principles listed above, the system will not connect the devices selected to the network selected, and a warning message will appear.
- (b) If a device selected has more than one port which is not connected to any network and matches the network selected, the system will connect the port whose port number is smaller to the network selected.
- (c) Users can select multiple devices by dragging a selection net around them. If the users press Ctrl+A on the keyboard, all the devices and networks in the working area are selected.
- (d) If users select a node which consists of a PLC and a module, and the PLC and the module conform to the principles listed above, the system will connect a port of the PLC and a port of the module to the network selected.
- Automatically connecting a single device or several devices to a new network
 - (1) The users hold down Shift on the keyboard while they click devices. PLCs and modules are independent devices. A device that the users click must have at least one port which is not connected to any network, and matches the new network added.

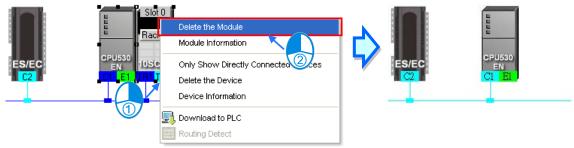
(2) After the users click **Connect Devices** on the **Edit** menu, or in the toolbar, the system will connect the devices clicked to the new network added.


Additional remark

- (a) If the devices selected do not conform to the principle described in (1), the system will not connect the devices selected to a new network, and a warning message will appear.
- (b) If a device selected has more than one port which is not connected to any network and matches the new network added, the system will connect the port whose port number is smaller to the new network added.
- (c) Users can select multiple devices by dragging a selection net around them. If the users press Ctrl+A on the keyboard, all the devices and networks in the working area are selected.
- (d) If users select a node which consists of a PLC and a module, and the PLC and the module conform to the principle described in (1), the system will connect a port of the PLC and a port of the module to a new network added.
- (e) If the devices that users select have ports which are not connected to any networks, and can be connected to an RS-485 network or an Ethernet network, the system will connect the ports to an Ethernet network.

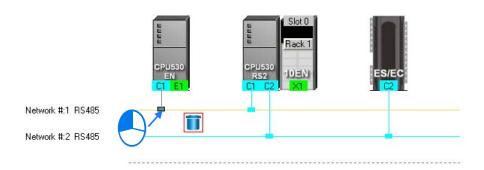
9.2.3 Adjusting or Deleting Devices or Networks

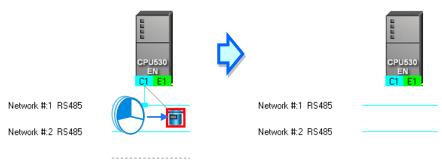

Adjusting the order in which the nodes in the working area are arranged
 Users can change the order in which the nodes in the working area are arranged by dragging a node to a different position. The nodes in the working area can only be at the same level, and increase rightwards. The users can not drag a node to a position above or under another node.



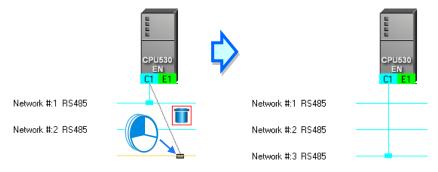
Deleting a single device by means of a context menu

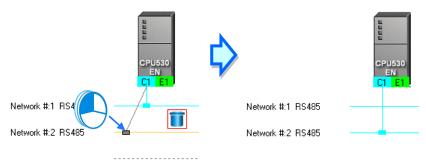
After users right-click a PLC, and click **Delete the Device** on the context menu, the PLC and the modules connected to the PLC will be deleted. However, the PLC for which a project is created and the modules connected to the PLC can not be deleted.


After the users right-click a module, and click **Delete the Module** on the context menu, the module will be deleted.

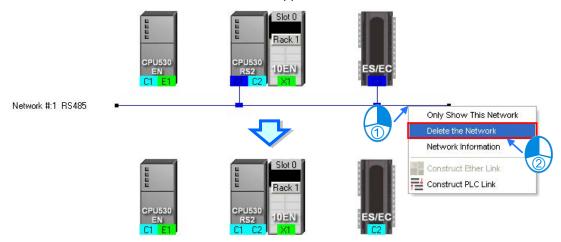

Adjusting a connection

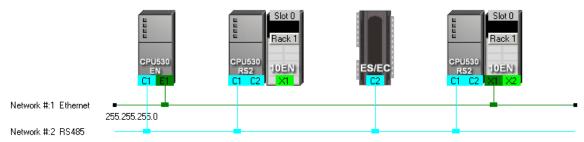
If users press the left mouse button while the mouse cursor hovers over a connection point which connects a network and a port, a small picture representing a trash can and a dotted line will appear.



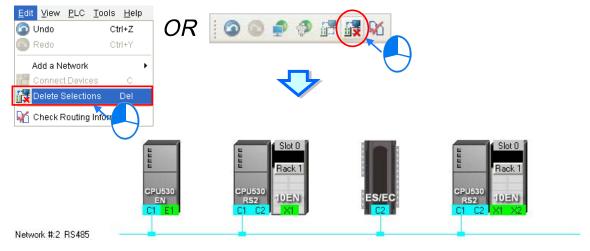

If the users release the left mouse button after they drag the connection point to the small picture representing a trash, the connection between the network and the port will be canceled.

If the users drag the connection point to the dotted line, the system will connect the port to the new network added.


If the users release the left mouse button after they drag the connection point to another network which matches the port, the port will be connected to the network.


Deleting a single network by means of a context menu
 After users right-click a network, and click Delete the Network on the context menu, the network

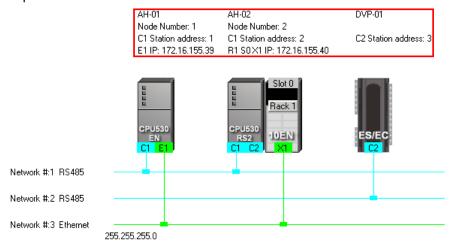
and the lines connected to the network will disappear.

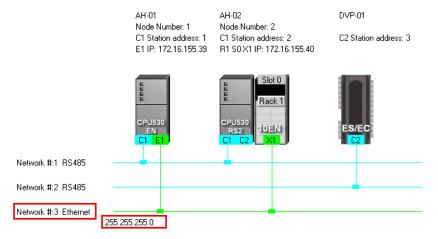


Deleting several devices or several networks

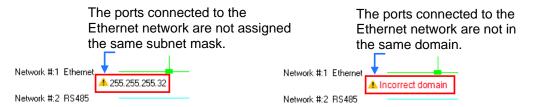
Users can select several objects by holding down Shift on the keyboard. Besides, the users can select multiple devices by dragging a selection net around them, or selecting all the objects in the working area by pressing Ctrl+A on the keyboard.

After the users click **Delete Selections** on the **Edit** menu, click on the toolbar, or press Delete on the keyboard, the objects selected will be deleted. However, the PLC for which a project is created and the modules connected to the PLC can not be deleted. Besides, if a PLC is deleted, the modules connected to the PLC will also be deleted.




9.2.4 Setting the Attributes of a Node/Network

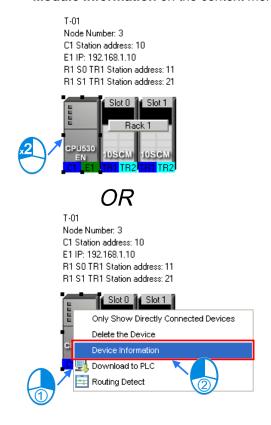
After users deploy the nodes in the NWCONFIG window, the information about the nodes will put above the nodes. The information includes PLC names and node numbers. The attributes of the

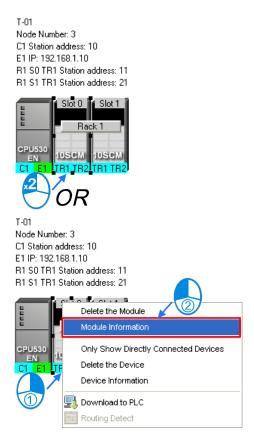

ports connected to networks are also displayed. If a port is an RS-485 port, a station address will be displayed. If a port is an Ethernet port, an IP address will be displayed. The information about a port will be shown if the port is connected to a network. If a port is not connected to any network, no information about the port will be shown. Besides, if a port of a network module is connected to a network, the information about the slot in which the network module is installed, and the information about the backplane on which the network module is installed will be shown.

In addition to the information about the nodes, the network numbers assigned to the networks and the network types of the networks are shown. If a network is an Ethernet network, the subnet mask assigned to the ports connected to the network will be shown.

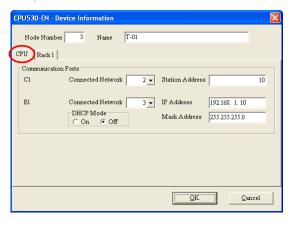
If the ports connected to an Ethernet network are not in the same domain, or are not assigned the same subnet mask, a warning sign will appear. If the ports connected to an Ethernet network are not assigned the same subnet mask, the strictest subnet mask will be shown.

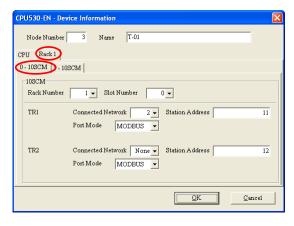
9


Setting the attributes of a node

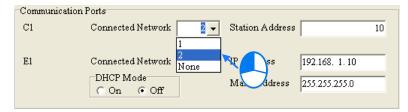

There are two ways to open the **Device Information** window.

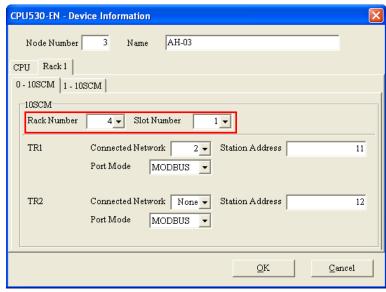
(a) After users double-click a PLC, the Device Information window will appear. The users can


also open the **Device Information** window by right-clicking the PLC, and clicking **Device Information** on the context menu.

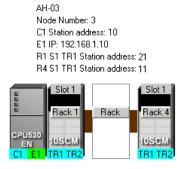

(b) After users double click a module, the **Device Information** window will appear. The users can also open the **Device Information** window by right-clicking the module, and clicking **Module Information** on the context menu.

In the **Device Information** window, there are two tabs. The page displayed in the window depends on the device selected.

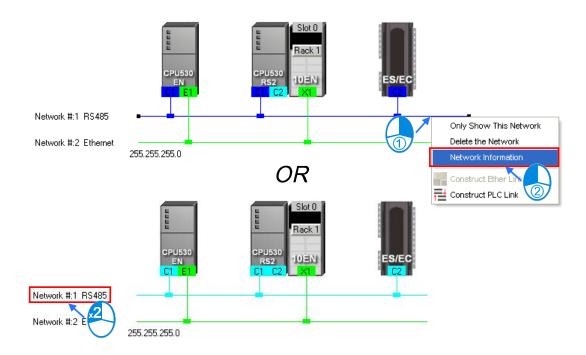


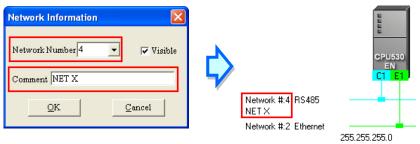


If the device selected is the AH500 series CPU module for which a project is created, or a module connected to the AH500 series CPU module for which a project is created, most boxes in the **Device Information** window are gray. The attributes of the device can only be modified by means of HWCONFIG. If the device selected is a DVP series PLC, a device which is added to the working area, the users can set the attributes of the device. Please refer to section 9.1.2 for more information about the meaning of attributes.

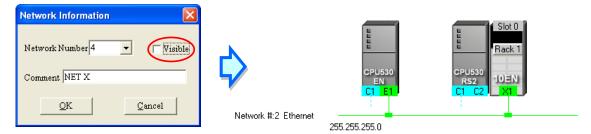

In the **Device Information** window, a port is related to a **Connected Network** drop-down list box. If a port can be connected to several networks, the network numbers assigned to these networks will be on the drop-down list which appears after the users click in the **Connected Network** drop-down list box related to the port. The users can select a network number on the drop-down list. If **None** is selected, the port will not connect to any network. This function is similar to the adjustment of a connection described in section 9.2.3.

In the page for a module, the users can select a rack number in the **Rack Number** drop-down list box, and a slot number in the **Slot Number** drop-down list box.

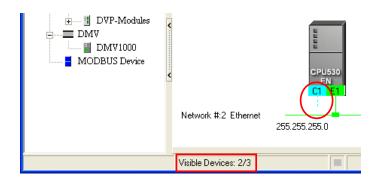

After the users complete the setting of the attributes of a node, and click **OK** in the **Device Information** window, the attributes of the node will be updated immediately.

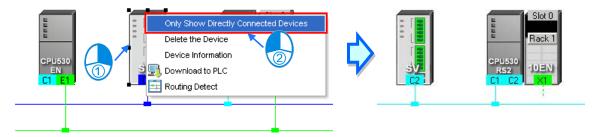


After users double-click a network, the **Network Information** window will appear. The users can also open the **Network Information** window by right-clicking the network, and clicking **Network Information** on the context menu.

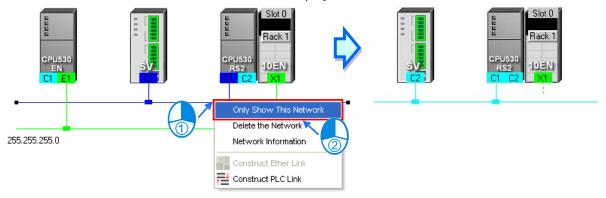


In the **Network Information** window, the users can select a network number which is not assigned to any network in the **Network Number** drop-down list box. Besides, the users can type a comment in the **Comment** box. After the users complete the setting of the attributes of the network, and click **OK** in the **Network Information** window, the attributes of the network will be updated immediately.


If the users unselect the **Visible** checkbox in the **Network Information** box, the network and the devices connected to the network will become invisible, the other devices connected to the other networks will still be displayed, and the lines connected to the network will become dotted lines. Please refer to section 9.2.5 for more information about hiding/displaying devices or networks.

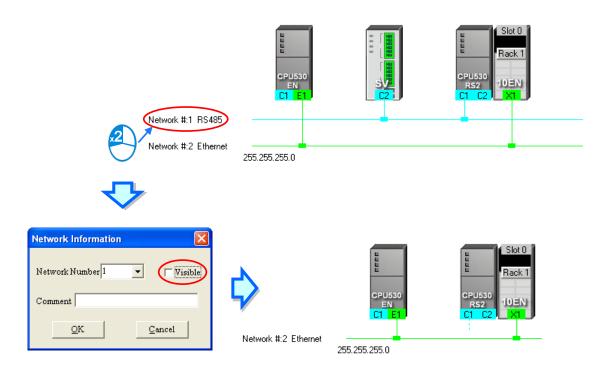

9.2.5 Hiding/Displaying Devices or Networks

Users can hide/display devices or networks in the working area. The number of devices visible and the total number of devices are displayed in the status bar. Besides, if a dotted line is connected to a port of a device, the port is connected to an invisible network.

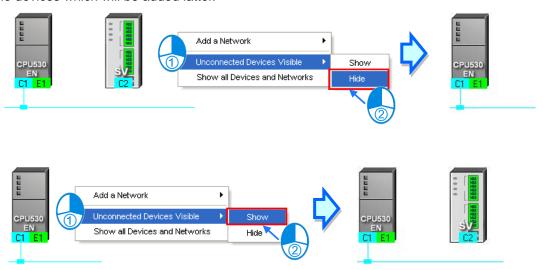

Only displaying the objects connected to a device

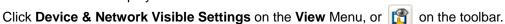
After users right-click a node, and click **Only Show Directly Connected Devices** on the context menu, only the network and the devices which are connected to the node will be displayed.

Only displaying the devices connected to a network


After users right-click a network, and click **Only Show This Network** on the context menu, only the devices connected to the network will be displayed.

Hiding a network and the devices connected to the network

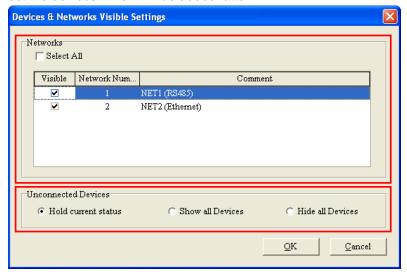

After users unselect the **Visible** checkbox in the **Network Information** box, the network and the devices connected to the network will become invisible, but the other devices connected to the other networks will still be displayed,



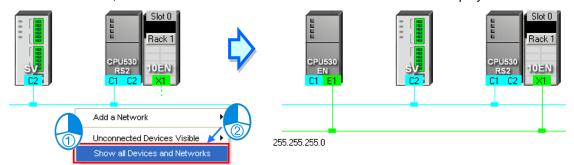
Hiding/Displaying the devices which are not connected to any networks

If users want to hide/display the devices which are not connected to any networks, they can right-click the working area, point to **Unconnected Devices Visible** on the context menu, and click **Hide/Show**. This operation affects the devices in the present working area. It does not affect the devices which will be added latter.

Setting the display states of all the objects at the same time
 Users can set the display states of all the devices at the same time.



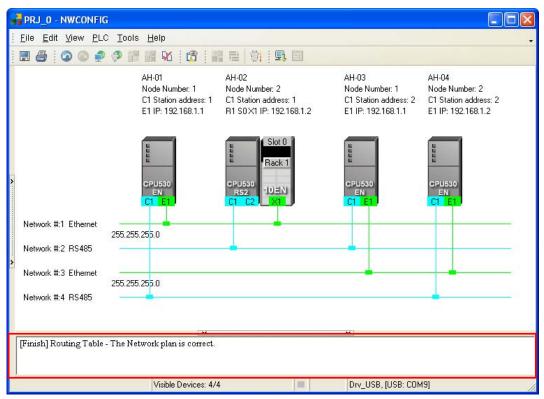
Select networks which will be displayed in the **Networks** section in the **Devices & Networks Visible Settings** window. The networks which are not selected will not be displayed in the


working area. If the users select the **Select All** checkbox, all the networks in the **Networks** section will be selected. If the users unselect the **Select All** checkbox, all the networks in the **Networks** section will be unselected.

In the **Unconnected Devices** section, the users can set the display states of the devices which are not connected to any networks. This operation affects the devices in the present working area. It does not affect the devices which will be added latter.

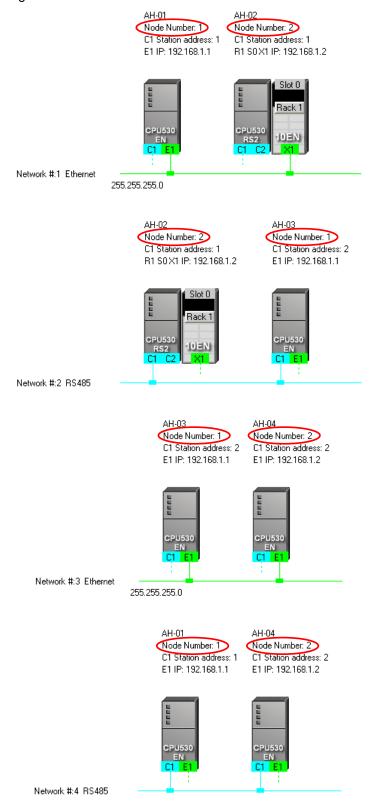
Displaying all the objects

After users right-click the blank in the working area, click **Show All Devices and Networks** on the context menu, the devices and the networks which are hidden will be displayed.



9.2.6 Correct Network Architecture

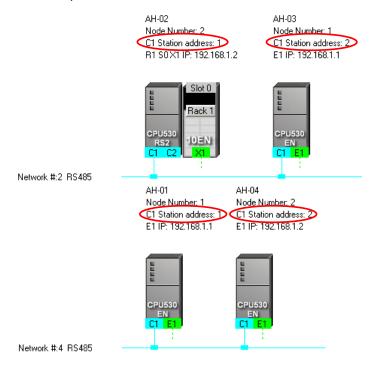
After users click **Check Routing Information** on the **Edit** menu, or on the toolbar, the system will check whether the network architecture the users create is correct, and the check result will be displayed in the message display area.


The system checks the ports which are connected to networks. It checks whether the information about the nodes and the information about the networks are correct. Specifically, it checks the node numbers, the RS-485 station addresses, and the IP addresses in the working area. At first glance, the network architecture in the figure above seems to be incorrect in that the node number assigned to AH-01 is the same as the node number assigned to AH-03, the node number assigned to AH-02 is the same as the RS-485 station address assigned to AH-04, the RS-485 station address assigned to AH-03 is the same as the RS-485 station address assigned to AH-04, the IP address assigned to AH-01 is the same as the IP address assigned to AH-03, and the IP address assigned to AH-02 is the same as the IP address assigned to AH-04. The users can view a network at a time by means of a skill introduced in section 9.2.5. The users have to make sure that the node number, the RS-485 station address, and the IP address which are assigned to a node are not the same as the node number, the RS-485 station address, and the IP address which are assigned to another node. The message in the message display area in the figure above indicates that the network architecture in the working area is correct.

Node number

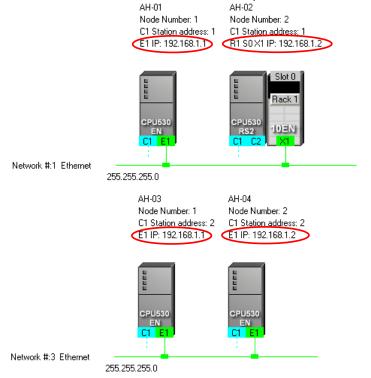
In principle, the node number assigned to a node in a network can not be the same as the node number assigned to another node in the network. If users view a network at a time, they can

check whether the node number assigned to a node connected to a network is the same as the node number assigned to another node connected to the network.



RS-485 station address

In principle, the RS-485 station address of a port in a network can not be the same as the RS-485 station address of another port in the network. If users view an RS-485 network at a time, they can check whether the RS-485 station address of a port in a network is the same as the RS-485

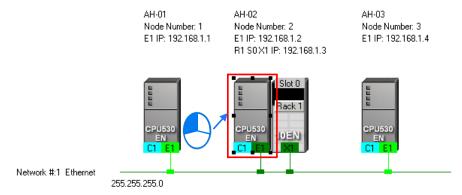


station address of another port in the network.

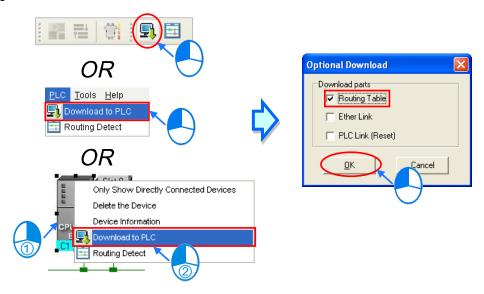
IP address

The IP address of a port in a network can not be the same as the IP address of another port in the network. If users view an Ethernet network at a time, they can check whether the IP address of a port in a network is the same as the IP address of another port in the network.

9.2.7 Downloading Routing Tables

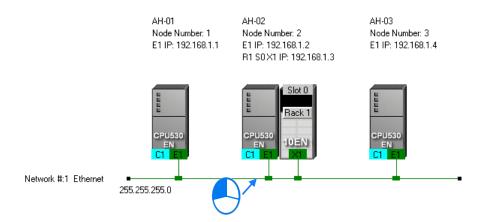

After users make sure that the network architecture they create is correct, they can download the routing tables produced to PLCs. The routing data stored in a PLC is data related to the PLC itself,

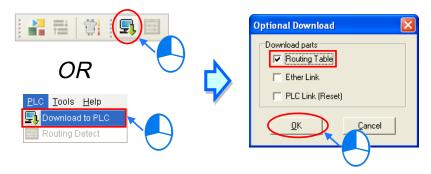
and therefore the routing tables downloaded to nodes are different. The users have to download the routing tables produced to nodes in the working area.


The users can download the routing tables produced to nodes one by one, or download the routing tables produced to nodes at the same time. If the users want to download the routing tables produced to nodes, the **Routing Mode** checkbox in the **Select a Driver** window must be unselected. Please refer to section 9.1.3 for more information.

Single node

The users have to select a node in the working area. Only AH500 series CPU modules support routing. If the users select a device which is not an AH500 series CPU module, a routing table can not be downloaded to the device.


After the users click **Download to PLC** on the **PLC** menu, or on the toolbar, the **Optional Download** window will appear. The users can also open the **Optional Download** window by right-clicking the device they select, and clicking **Download to PLC** on the context menu. After the users select the **Routing Table** checkbox in the **Optional Download** window, and click **OK**, a routing table will be downloaded to the device.


Multiple nodes

The users have to select an Ethernet network in the working area. If the actual connection is consistent with the setting in NWCONFIG, parameters can be downloaded to the nodes connected to the Ethernet network. If the users want to download the routing tables produced to multiple devices connected to the Ethernet network, the connection type that the driver selected in the **Driver Name** drop-down list box in the **Select a Driver** window uses must be Ethernet. Please refer to section 9.1.3 for more information.

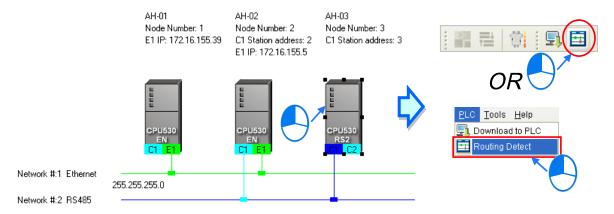
After the users click **Download to PLC** on the **PLC** menu, or **Download** window will appear. After the users select the **Routing Table** checkbox in the **Optional Download** window, and click **OK**, the routing tables produced will be downloaded to the nodes connected to the Ethernet network.

Additional remark

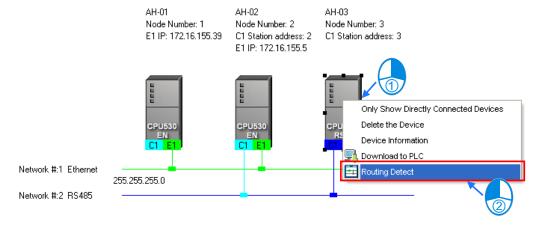
If the parameters related to an Ether Link or a PLC Link can be downloaded to the object selected, users can select the **Ether Link** checkbox or the **PLC Link (Reset)** checkbox in the **Optional Download** window. If a checkbox in the **Optional Download** window is gray, the checkbox can not be selected. Please refer to the following sections for more information about Ether Links and PLC Links

Besides, the routing data stored in a PLC is data related to the PLC itself. The users can not upload the routing data stored in a PLC. The system does not provide the function of uploading routing data.

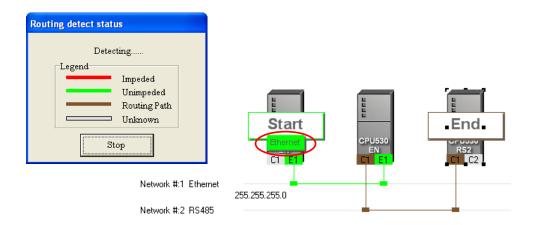
9.2.8 Testing Routing


After the routing tables produced are downloaded, users can test routing by means of a function provided by NWCONFIG. The steps of testing routing are as follows.

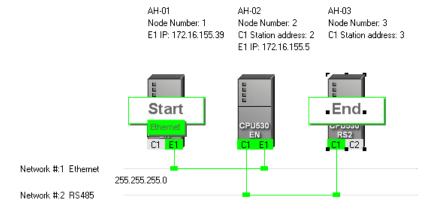
(1) The users have to make sure that all the nodes are wired according to the configuration in NWCONFIG, and operate normally. The setting of the devices has to be consistent with the setting in NWOCNIFG. In the **Select a Driver** window, the users have to select the **Routing Mode** checkbox, and select a device in the **First Station** drop-down list box. Please refer to section 9.1.3 for more information about setting communication.



(2) After the users select the destination device toward which packets are relayed, they have to click on the toolbar, or **Routing Detect** on the **PLC** menu.



The users can also right-click the destination device, and then click **Routing Detect** on the context menu.



(3) After **Routing Detect** is clicked, the display of the network architecture in the working area will change, and the **Routing detect status** window will appear. The way in which the node which is designated as the first station is connected to the computer is also shown in the working area. Please see the red circle in the figure below.

(4) After the detection is complete, the detection result will be shown in the working area.

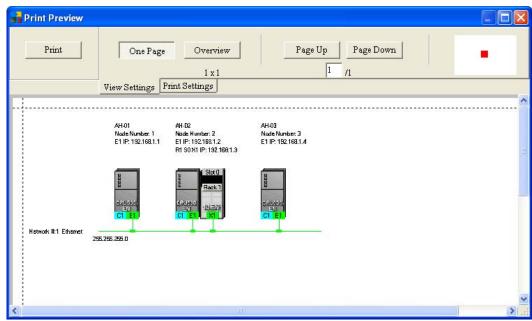
Additional remark

If the detection fails, the users have to make sure of the following points.

- (a) The users have to make sure that the IP addresses and the station addresses which are assigned to the devices and the communication setting in the devices are consistent with the setting in NWCONFIG. If AH500 series CPU modules or AH500 series modules are used, the users have to make sure that the parameters in the AH500 series CPU modules in HWCONFIG or the parameters in the AH500 series modules in HWCONFIG are set correctly, and downloaded to the AH500 series CPU modules or the AH500 series modules successfully. If DVP series PLCs or DVP series modules are used, the users have to make sure that the communication parameters in the related registers are correct. If other devices are used, the users have to refer to manuals for the usage of these devices, and make sure that the communication parameters in these devices are correct.
- (b) The users have to make sure that all the network connection is consistent with the setting in NWCONFIG. They also have to make sure that every node is connected to a network correctly, and operates normally.
- (c) Please refer to section 9.1.3, and make sure that the communication setting is correct.

9.3 Managing and Applying NWCONFIG

9.3.1 Saving Parameters and Printing a Network Framework


If users want to save the parameters set in NWCONFIG, they can click **Save** on the **File** menu, or on the toolbar. The parameters which can be saved are the network framework created in NWCONFIG, the parameters related to the PLC Links constructed, and the parameters related to the Ether Links constructed. After the saving of the parameters set in NWCONFIG is complete, an

nw file whose primary filename is the project name/group name, and an nwsd file whose primary filename is the project name/group name will appear in the folder in which the project/group of projects is/are saved.

After the users click **Print Preview** on the **File** menu, or on the toolbar, the system will automatically open the **Print Preview** window, and the network framework that the users create in NWCONFIG will be displayed in the **Print Preview** window. Please refer to appendix C for more information.

Before the users print the data related to a PLC Link or an Ether Link, they have to export the data as a CSV file. After the CSV file is opened in Microsoft Excel, they can print the data in the CSV file.

9.3.2 Downloading Parameters

In the working area in NWCONFIG, users can download the routing tables produced to PLCs, the parameters related to the PLC Links constructed, the parameters related to the Ether Links constructed to the nodes.

9.3.2.1 Introduction of Parameters

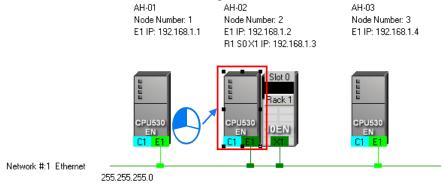
Routing table

The routing data stored in a PLC is data related to the PLC itself, and therefore the routing tables downloaded to nodes are different. Users have to download the routing tables produced to nodes in the working area.

Parameters related to a PLC Link

The parameters related to a PLC Link can only be downloaded to the PLC designated as a master station. If the parameters related to a PLC Link are downloaded to a slave station, the related special relays and the related special registers in the slave station will be restored to the default setting. There is only one master station in a network. If users are not sure whether a device was designated as a master station, and whether the parameters related to a PLC Link was downloaded to the device, they have to download the parameters related to a PLC Link to the device.

Parameters related to an Ether Link

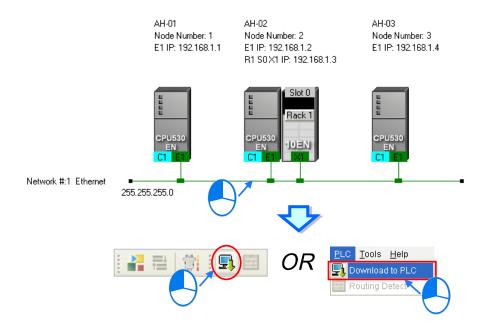

The parameters related to an Ether Link must be downloaded to the data demanding nodes. However, the data exchange table stored in a PLC is a table related to the PLC itself. Besides, if the parameters set include a node which does not demand any data, the data in the node will be cleared after the parameter are downloaded to the node, and the start mode of the node will depend on the parameters after the parameters are downloaded to the node.

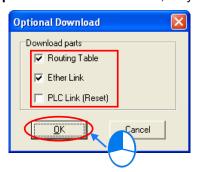
9.3.2.2 Description of Downloading Parameters

If the users want to download parameters, the **Routing Mode** checkbox in the **Select a Driver** window must be unselected. Please refer to section 9.1.3 for more information.

Single node

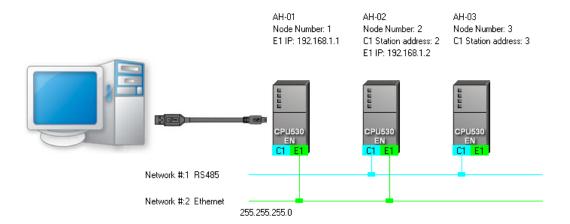
The users have to select a node in the working area.


After the users click **Download to PLC** on the **PLC** menu, or on the toolbar, the **Optional Download** window will appear. The users can also open the **Optional Download** window by right-clicking the device they select, and clicking **Download to PLC** on the context menu.

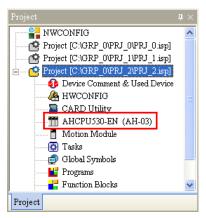

Multiple nodes

The users have to select an Ethernet network in the working area. After the users click **Download** to **PLC** on the **PLC** menu, or on the toolbar, the **Optional Download** window will appear. If the actual connection is consistent with the setting in NWCONFIG, parameters can be downloaded to the nodes connected to the Ethernet network.

After the users follow the steps described above, the **Optional Download** window will appear. If a checkbox in the **Optional Download** window is gray, the checkbox can not be selected. After the users select checkboxes in the **Optional Download** window, they can click **OK**.



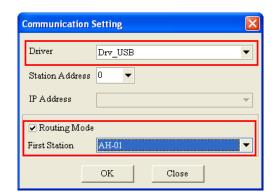
9.3.3 Using Routing in ISPSoft


After users create a network architecture in NWCONFIG, and download the routing tables produced to PLCs, they can download data to a device which is not directly connected to ISPSoft through routing, upload data from a device which is not directly connected to ISPSoft through routing, or monitor data in a device which is not directly connected to ISPSoft through routing. If the users want to use routing in ISPSoft, the devices used must be AH500 series CPU modules.

In the figure below, the PLC which actually connects to the computer is AH-01. AH-03 can be monitored through routing.

Users have to activate the project for AH-03.

(2) Click the **Tools** menu, and then click **Communication Settings....**



(3) In the **Communication Setting** window, the users have to select the **Routing Mode** checkbox, and select a device in the **First Station** drop-down list box.

Generally speaking, the device which actually connects to the computer is the first station. If the computer connects to several devices, or connect to devices through Ethernet, the users have to designate a device as the first station according to the network framework created in NWCONFIG. Besides, if the **Routing Mode** checkbox is selected, the driver selected in the **Driver** drop-down list box must be a driver which can connect to the first station.

After the users click **OK** in the **Communication Setting** window, AH-03 can be monitored through AH-01.

Additional remark

Before users use routing, they have to create projects, configure hardware, and configure a network. Please refer to section 9.1.4 for more information. The users can also refer to section 9.1.3 for more information about the communication setting in NWCONFIG.

MEMO

Table of Contents

10.1	Operation of the CPU Module	10-2
	Procedure	
10.1.2	I/O Refreshing and Communication Service	10-3
	Operating Modes of the CPU Module	
10.2.1	Operating Modes	10-3
	Statuses and Operation under Different Operating Modes	

10.1 Operation of the CPU Module

10.1.1 Procedure

The operation of the CPU module is described below.

The CPU module is supplied with power.

The system enables the initialization.

- · The non-latched memory is initialized.
- · The user program is checked.
- The parameters in the CPU module are checked.
- The parameters in the module table are checked.
- The module table in the CPU module is compared with the actual I/O configuration.
- The I/O setting is downloaded to the I/O module.
- If the memory card is installed, whether to execute the system copy procedure or not is checked.

Diagnosis processing:

- The memory card and other setting are checked.
- · The I/O bus is checked.
- · The system parameter is checked.

The data sent to the I/O module is refreshed.

- The data sent to the digital I/O module is refreshed.
- The data sent to the analog I/O module is refreshed.
- The data sent to other modules are refreshed.

Program execution:

- The user program is executed.
- The interrupt subroutine is executed.

The data sent from the I/O module is refreshed.

- The data sent from the digital I/O module is refreshed.
- The data sent from the analog I/O module is refreshed.
- The data sent from other modules are refreshed.

Communication service:

- The communication through the CPU module
- The communication through other I/O modules
- The internal communication between the CPU module and the I/O module

10.1.2 I/O Refreshing and Communication Service

I/O refreshing

A CPU module reads external I/O data periodically or output data to external I/O. I/O refreshing includes the following.

- Refreshing data in a digital I/O module
- Refreshing data in an analog I/O module
- · Refreshing data in a network module
- Refreshing data in a motion control module

All I/O refreshing is executed in the same loop. The data in an input device is refreshed before a program is executed, and the data in an output device is refreshed after the program is executed.

Unit	Maximum data exchange	Data exchange area
Digital I/O module	It depends on the number of input/output channels in the unit.	Input relay/Output relay
Analog I/O module	It depends on the number of input/output channels in the unit.	Data register
Network module	It depends on the unit.	Data register
Motion control module	It depends on the unit.	Data register

• Communication service

Communication service is nonscheduled communication service of a network module. It includes the communication request sent from external equipment to a CPU module, and the communication request sent from the CPU module to the external equipment.

10.2 Operating Modes of the CPU Module

10.2.1 Operating Modes

There are two operating modes. They can be used to control a user program and all tasks.

STOP mode: A program is not executed under this mode. Users can download a module table, initialize CPU configuration and other setting, download a program, check a program, and force a bit ON/OFF.

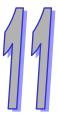
RUN mode: A program is executed under this mode. Users can not download a module table, and initialize CPU configuration and other setting.

10.2.2 Statuses and Operation under Different Operating Modes

The STOP mode and the RUN mode are modes for a CPU module. The statuses and operation under these modes are listed below.

• The basic operation

CPU		I/O		Program m	nemory
mode	Program	refreshing	External output	Non-latched	Latched
				area	area
STOP	The execution of the program stops.	The I/O refreshing is executed.	OFF (If users set the I/O module so that the final state of the external output on the I/O module is retained, the final state of the external output on the I/O module will be retained.)	The data in the memories are	
RUN	The program is executed.	The I/O refreshing is executed.	The external output is controlled by the program.	The program nare controlled program.	


• The relation between the operating modes and the tasks

The relation between the operating mease and the tacks		
Mode	Loop task	Interrupt task
STOP	The execution of the loop task stops.	The execution of the interrupt task stops.
	The tasks which have not been executed are in the halt state.	
RUN	If a task is active, or the instruction TKON is executed, the task is executed.	If the condition of the interrupt is met, the task is executed.
	If a task is not active, or the instruction TKOFF is executed, the task is not executed.	is met, me task is executed.

• The relation between the change of the modes and the program memory

Change of the mode	Non-latched area	Latched area
STOP→RUN	Whether the data is cleared or retained depends on user's setting.	The data is retained.
RUN→STOP	The data is retained.	The data is retained.

Chapter 11 Convenient Functions

Table of C	ontents	
	Link	
	ntroudction of a PLC Link	
11.1.2	Constructing a PLC Link in NWCONFIG in ISPSoft	11-2
11.1.2.1	Opening the PLC Link Table Editor Window	11-3
11.1.2.2	Designating a Port as a Master Station (Step 1)	11-4
11.1.2.3	Setting Communication Parameters (Step 2)	11-5
11.1.2.4	Creating a Data Exchange Table (Step 3)	11-7
11.1.2.5	Monitoring a PLC Link	11-14
11.1.2.6	Importing Points About Constructing a PLC Link	11-17
11.1.3 E	Executing a PLC Link through the Program in ISPSoft	11-20
11.1.3.1	Parameters Related to a PLC Link	11-20
11.1.3.2	Setting a PLC Link	
11.1.4 F	Related Special Auxiliary Relays and Special Data Registers .	11-32
11.2 Ether	Link	11-35
	ntroduction of Ether Link	
11.2.1.1	General Specifications and Functions	
11.2.1.2	Steps of Constructing an Ether Link	
	Constrcuting an Ether Link in NWCONFIG in ISPSoft	
11.2.2.1	Constructing an Ether Link	
11.2.2.2	Opening the Ether Link Configuration Window	
11.2.2.3	Creating and Managing a Data Exchange Table	
11.2.2.4	Node List and Display Area	
11.2.2.5	Start Mode of an Ether Link	
11.2.2.6	Downloading the Parameters Related to an Ether Link	
11.2.2.7	Uploading the Parameters Related to an Ether Link	
11.2.2.8	Deleting Asynchronous Device	
11.2.2.9	Enabling/Disabling the Online Monitoring Function	
11.2.2.10	0 11 0	
11.2.2.11	Monitoring Table and Error Log	
	Related Special Auxiliary Relays and Special Data Registers .	
	ntrodction	
	Jsage	
11.3.3	Frobleshooting	11-66

11.1 PLC Link

11.1.1 Introduction of a PLC Link

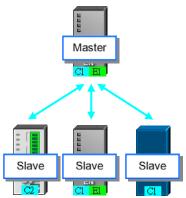
special data registers when the PLC runs.

A PLC Link is a network mechanism for data exchange performed through an RS-485 cable. If there are several nodes in an RS-485 network, users can create a mechanism for data exchange in the network. If the parameters which are set are downloaded to the PLC which functions as a master station, the system of the PLC will perform data exchange through special auxiliary relays and

Master station Slave station 1 slave station 2 Node Number: 1 Node Number: 2 C1 Station Addr.: 1 C1 Station Addr.: 3 C2 Station Addr.: 2

CPU530 CPU530 RS2 C1 C2

Network #:1 RS485

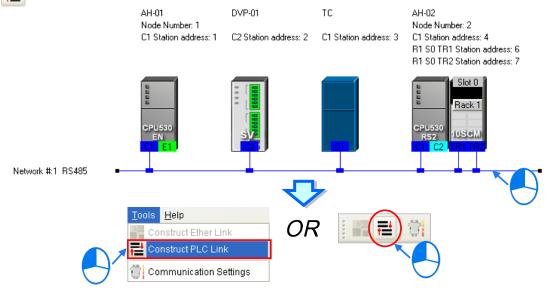

9600,7,1,E

11.1.2 Constructing a PLC Link in NWCONFIG in ISPSoft

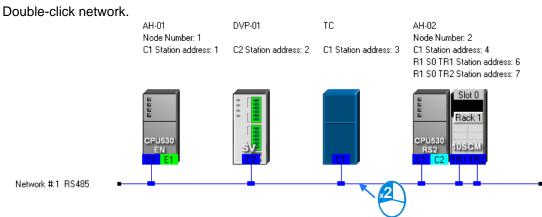
Constructing a PLC Link

A PLC Link is a network mechanism for data exchange performed through an RS-485 cable. If there are several nodes in an RS-485 network, users can create a mechanism for data exchange in the network. If the parameters which are set are downloaded to the PLC which functions as a master station, the system of the PLC will perform data exchange through special auxiliary relays and special data registers when the PLC runs.

A PLC Link is a master/slave model. There is only one master station in an RS-485 network, and the other stations which are slave stations passively receive reading/writing commands from the master station. The slave stations can not exchange data. They have to exchange data through the master station.

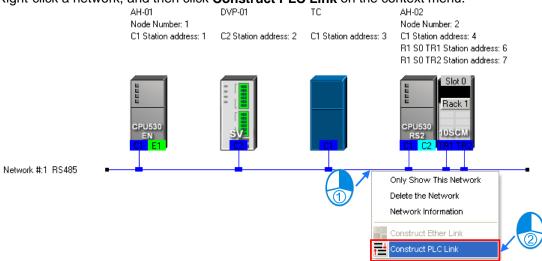


11.1.2.1 Opening the PLC Link Table Editor Window


Before creating a PLC Link, users have to make sure that all the network setting is correct. Please use one of the methods described below.

Method 1

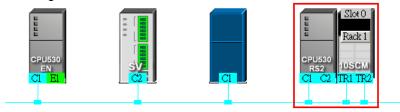
After the users select a network, they have to click **Construct PLC Link** on the **Tools** menu, or on the toolbar.


Method 2

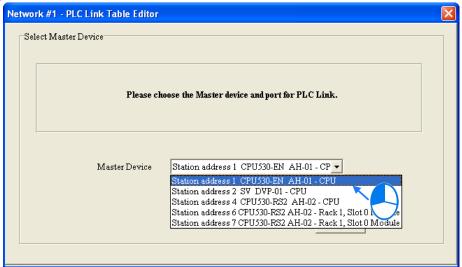
99

Method 3

Right-click a network, and then click Construct PLC Link on the context menu.



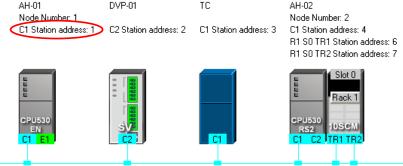
After the users use one of the methods described above, the **PLC Link Table Editor** window will be opened. The **PLC Link Table Editor** window leads the users to construct a PLC Link step by step. The steps of constructing a PLC Link are designating a port as a master station, setting communication parameters, and creating a data exchange table. The system leads the users to the operation screen displayed last time as soon as the **PLC Link Table Editor** window is opened. As a result, if the users construct a PLC Link for the first time, the screen displayed will lead the users to accomplish the first step.


Besides, a PLC Link is executed through special auxiliary relays and special data registers. The construction tool introduced here is just a friendly user interface which helps users download the parameters related to a PLC Link to the related special auxiliary relays and the related special data registers. The exact execution of a PLC Link depends on the special auxiliary relays and the special data registers in a PLC. To ensure that the PLC Link constructed can operate normally, users have to make sure of the functions of the PLCs and the limitations of the PLCs with regard to the PLC Link.

11.1.2.2 Designating a Port as a Master Station (Step 1)

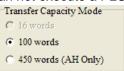
Only an AH500 series CPU module, an AH500 series module, a DVP series PLC, or a DVP series module can be designated as the master station. Not all ports of a PLC or a module can be designated as the master station, and therefore users have to read the usage of the PLC or the module before they designate a port as the master station. Besides, if some of the ports of a node can be designated as masters, the PLC which is a part of the node will execute the PLC Link no matter what port is designated as a master station.

(1) Select a port of a node in the Master Device drop-down list box. Only the ports which can be designated as master stations are listed.


- (2) After users click , the system will ask the users whether they want to upload the setting related to a PLC Link through the master station. If the users click **No**, they will be led to the second step. If the users click **Yes**, the setting related to a PLC Link in the PLC which is a part of the node will be uploaded through the master station, and the data uploaded will be displayed on the screen after the users are led to the third step. Before the users upload the data, they have to make sure of the following points.
 - (a) The users have to make sure that the computer and the port designated as a master station are connected by means of a communication cable.
 - (b) The users have to make sure that a driver has been created correctly, and the driver is started.
 - (c) The users have to make sure that they have completed the communication setting in NWCONFIG.

11.1.2.3 Setting Communication Parameters (Step 2)

After the system leads users to the second step, the users have to set the communication parameters in the **PLC Link Table Editor** window. The parameters uploaded through the master station are displayed at the left part of the window. The setting of the communication parameters of all the slave stations in the same network must be the same as the setting of the communication parameters of the master station. If no parameters are uploaded, "Unknown" will be shown in the boxes at the left part of the window. If the station address uploaded is different form the station address assigned to the master station, the **Station Address** box will become red.



Network #:1 RS485

Transfer Capacity Mode

The users can set 16 data exchange groups or 32 data exchange groups, depending on the model selected. The users can select a maximum data length in the **Transfer Capacity Mode** section. Besides, the maximum data length which can be set varies with the PLC which is designated as a master station. Please refer to manuals for more information.

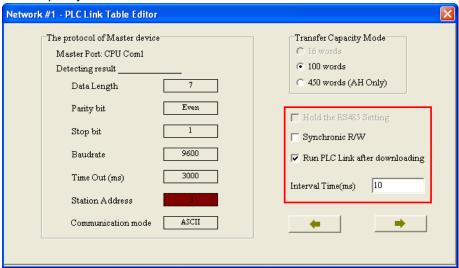
If an AH500 series CPU module or an AH500 series module is designated as a master station, the **450 words (AH Only)** option button in the **Transfer Capacity Mode** section can be selected. Only AH500 series CPU modules allow 450-word data to be exchanged. As a result, if the **450 words (AH Only)** option button in the **Transfer Capacity Mode** section is selected, the DVP series PLCs and the other devices can not execute a PLC Link.

Hold the RS485 Setting

Generally speaking, the communication parameters in a DVP series PLC will be restored to the default values if the DVP series PLC is turned on after a power failure. However, if the **Hold the RS485 Setting** checkbox is selected, the communication parameters stored will be loaded again if a DVP series PLC runs after it is stopped. Please refer to manuals for more information about the communication parameters in DVP series PLCs.

Synchronic R/W

Generally speaking, a master station sends a writing command and a reading command to a slave station separately. If the **Synchronic R/W** checkbox is selected, the master station can complete reading and writing simultaneously by means of a specific Modbus function code (the hexadecimal code 17), and the efficiency of data exchange is increased. However, the users have to make sure that the devices involved in data exchange support the Modbus function code


before they select the **Synchronic R/W** checkbox. If the devices do not support the Modbus function code, the Modbus code can not be identified, and the reading/writing of data will fail after they receive the commands from the master station.

Run PLC Link after downloading

If the **Run PLC Link after downloading** checkbox is selected, the PLC Link constructed will be enabled after the PLC Link constructed is downloaded to the PLC connected to the computer.

Interval Time (ms)

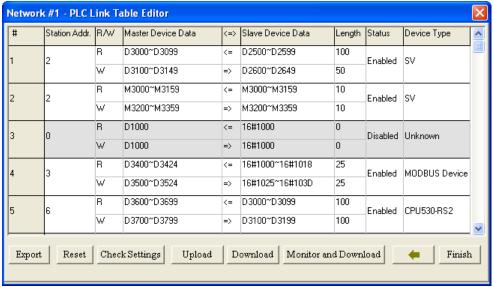
The users can specify how often the master station sends a command.



After the users click , the system will lead the users to the next step. If the users click , the system will lead the users to the previous step.

11.1.2.4 Creating a Data Exchange Table (Step 3)

A. Introduction of a Data Exchange Table


The table below is a data exchange table. When a PLC Link is executed, the master station sends reading/writing commands to the slave stations according to the data exchange table created.

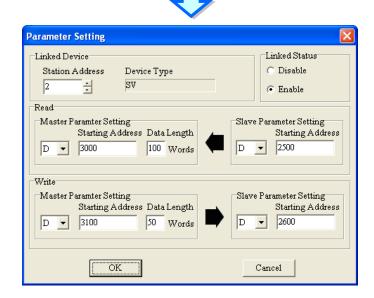
Column	Description	
Serial Number (#)	The data exchange groups in the data exchange table in the PLC Link Table Editor window are numbered. Users can set 16 data exchange groups or 32 data exchange groups, depending on the model selected.	

Column	Description
Station Addr.	The slave station address which belongs to a data exchange group is indicated. A station address can belong to several data exchange group. Besides, the station address 0 represents an undefined slave station, and is not a broadcast station address.
R/W	R: The master station reads the data in devices in a slave station. W: The master station writes data into devices in a slave station.
Master Device Data	The range of devices which are used in the master station is indicated.
<=>	<=: The master station reads the data in devices in a slave station. =>: The master station writes data into devices in a slave station.
Slave Device Data	The devices which are used in a slave station are indicated. If a slave station is a user-defined Modbus device, the devices used will be represented by hexadecimal addresses.
Length	A data length is indicated. A length indicates the number of devices used.
Status	Users can decide whether to involve a data exchange group in data exchange. If a data exchange group is set incorrectly, the data exchange group will not be involved in data exchange. If a data exchange group is not involved in data exchange, the related data will be on a gray ground.
Device Type	The device types shown are consistent with the device names shown in the working area in NWCONFIG. If a slave station address is assigned to a network module, the name of the PLC to which the network module is connected will be shown. Besides, if a slave station is undefined, it is unknown.

The figure below is an example of a data exchange table. Group #1, group #2, group #4, and group #5 are involved in data exchange. Please refer to the table below for more information.

Serial number	Description
#1	The master station reads the data in D2500~D2599 in the slave station whose station number is 2, and stores the data in D3000~D3099 in itself. Meanwhile, the data in D3100~D3149 in the master station is written into D2600~D2649 in the slave station.
#2	The master station reads the data in M3000~M3159 in the slave station whose station number is 2, and stores the data in M3000~M3159 in itself. Meanwhile, the data in M3200~M3359 in the master station is written into M3200~M3359 in the slave station.

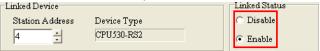
Serial number	Description
#4	The master station reads the data in 16#1000~16#1018 in the slave station whose station number is 3, and stores the data in D3400~D3424 in itself. Meanwhile, the data in D3500~D3524 in the master station is written into 16#1025~16#103D in the slave station.
#5	The master station reads the data in D3000~D3099 in the slave station whose station number is 6, and stores the data in D3600~D3699 in itself. Meanwhile, the data in D3700~D37999 in the master station is written into D3100~D3199 in the slave station.


Additional remark

If "Disabled" appears in the **Status** cell for a data exchange group, the data exchange group will not be involved in data exchange, and the system will ignore the setting in other cells for the data exchange group. Besides, if the setting of a data exchange group becomes incorrect after a modification, "Disabled" will appear in the **Status** cell for the data exchange group.

B. Setting a Data Exchange Group

If users want to set the parameters for a data exchange group, they can double-click the data exchange group in the data exchange table in the **PLC Link Table Editor** window.


Linked Device

The users can select a slave station address which belongs to this data exchange group. The device type displayed in the **Device Type** box is a model name displayed in the working area in NWCONFIG. If the slave station address selected is assigned to a port of a network module, the name of the PLC to which the network module is connected will be shown in the **Device Type** box. If the slave station address selected is undefined, or is not involved in the PLC Link constructed, "Unknown" will be displayed in the **Device Type** box. Besides, the station address assigned to the master station can not be selected, and a slave station address can belong to several data exchange groups.

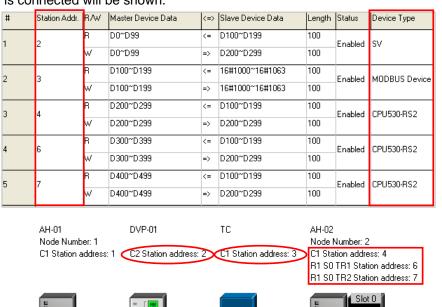
Linked Status

After the users select a slave station address which can be used, they can select the **Disable** option button, or the **Enable** option button in the **Linked Status** section.

Read

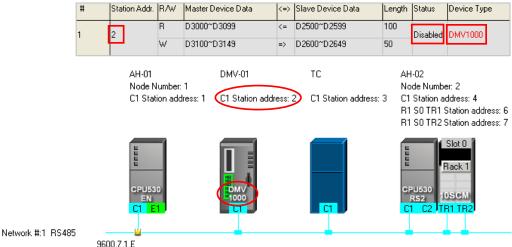
The users can select a device type, type a starting address, and type a data length in the **Master Parameter Setting** section. They can select a device type, and type a stating address in the **Slave Parameter Setting** section. Generally speaking, the device types selected in the **Read** section must be the same, and do not have to be the same as the device types selected in the **Write** section.

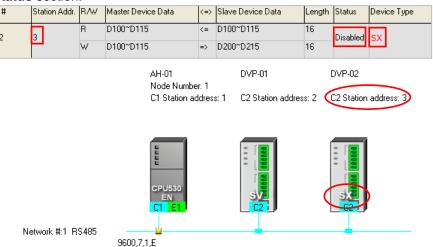
Write


The users can select a device type, type a starting address, and type a data length in the **Master Parameter Setting** section. They can select a device type, and type a stating address in the **Slave Parameter Setting** section. Generally speaking, the device types selected in the **Write** section must be the same, and do not have to be the same as the device types selected in the **Read** section.

The data in a group of devices can be written into several different groups of devices, but the data in different groups of devices are not allowed to be stored in the same group of device. Take the figure above for example. The data in D3100~D3149 in the master station can be written into different slave stations, but D3000~D3099 in the master station can not receive the data in devices other than D2500~D2599 in the slave station whose station address is 2. Besides, the device types selected in the **Read/Write** section must be the same. However, the limitation on the setting of a data exchange group varies with the master station/slave station selected or the communication parameters selected.

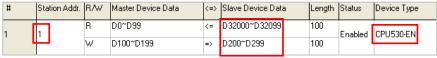
Related setting	Description
The 450 words (AH Only) option button in the Transfer Capacity Mode section is selected.	Only AH500 series CPU modules allow 450-word data to be exchanged. As a result, if the 450 words (AH Only) option button in the Transfer Capacity Mode section is selected, the DVP series PLCs and the other devices can not execute a PLC Link. The users can only select M devices, D devices, or L devices in the Read/Write section. The device types selected in the Read/Write section do not have to be the same.
The 16 words option button in the Transfer Capacity Mode section is selected.	If the master station selected is a DVP series PLC, the 16 words option button in the Transfer Capacity Mode section can be selected. If the 16 words option button in the Transfer Capacity Mode section is selected, the starting device address in the Read/Write section will be a certain special data register, and the users can only specify a data length.
The slave station selected is a user-define device.	If the slave station selected is a Modbus device, the devices used will be represented by hexadecimal addresses, and the users can select word devices or bit devices.
The Synchronic R/W checkbox is selected.	If the 450 words (AH Only) option button is not selected, the users can only select D devices in the Read/Write section after the Synchronic R/W checkbox is selected.


C. Consistency Between a Data Exchange Table and the Network Created in NWCONFIG
The device types shown in the data exchange table in the PLC Link Table Editor window are
consistent with the device names shown in the working area in NWCONFIG. Besides, if a slave
station address is assigned to a port of a network module, the name of the PLC to which the
network module is connected will be shown.

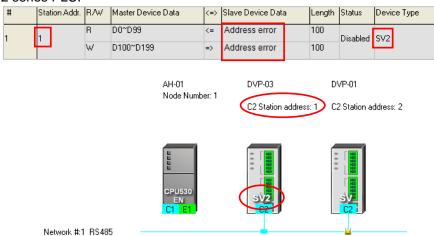

Network #:1 RS485

If users change the model to which a station address is assigned in NWCONFIG after a PLC Link is constructed, the new model name appearing in the **Device Type** cell for the station address will be in red, and "Disabled" will appear in the **Status** cell for the station address. The users have to check whether the setting is correct. If the setting is incorrect, the users have to modify the incorrect parts. After the users modify the incorrect parts, they can select the **Enable**

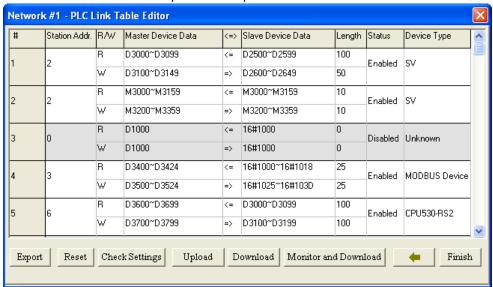
option button in the **Linked Status** section.



If the data uploaded from the master station which is an AH500 series CPU module is not consistent with the network created in NWCONFIG, the device types shown in the data exchange table in the **PLC Link Table Editor** window will still be consistent with the device names shown in the working area in NWCONFIG, the incorrect device types will be in red, and "Disabled" will appear in the **Status** cell for the incorrect device types. The users have to check whether the setting is correct. If the setting is incorrect, the users have to modify the incorrect parts. After the users modify the incorrect parts, they can select the **Enable** option button in the **Linked Status** section.


The device types in the data exchange table in the **PLC Link Table Editor** window can not be stored in a DVP series PLC, and therefore the users do not know whether the data uploaded from the DVP series PLC is consistent with the network created in NWCONIFG. The device types shown in the data exchange table in the **PLC Link Table Editor** window is consistent with the device names shown in the working area in NWCONFIG. If the device ranges set for a model is incorrect, "Disabled" will appear in the **Status** cell for the model. The users have to modify the incorrect parts. After the users modify the incorrect parts, they can select the **Enable** option button in the **Linked Status** section.

The figure below is a data exchange table which is downloaded to a DVP-SV series PLC. The slave station to which the station address 1 is assigned is AHCPU530-EN.

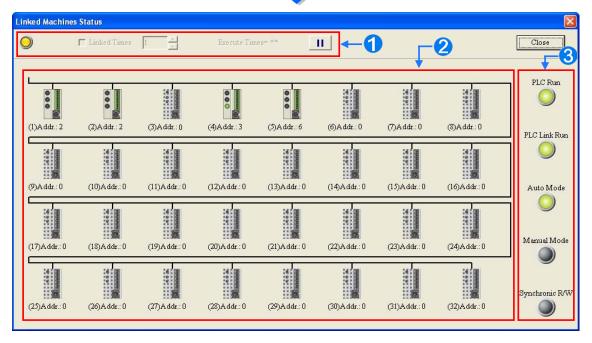

The present network created in NWCONFIG is shown below. The slave station to which the

station address 1 is assigned is a DVP-SV2 series PLC. After the data exchange table in the DVP-SV series PLC is uploaded, the device types shown in the data exchange table in the **PLC Link Table Editor** window will be consistent with the device names shown in the working area in NWCONFIG. The device ranges set for the DVP-SV2 series PLC is not within the device range for DVP-SV2 series PLC, and therefore "Disabled" appears in the **Status** cell for the DVP-SV2 series PLC.

D. Managing a Data Exchange Table

There are buttons under the data exchange table in the **PLC Link Table Editor** window. Please refer to the table below for more information about the buttons. If users click _____, the system will lead the users to the previous step.

Item	Description
Export	The data in the data exchange table can be exported as a CSV file. The users can edit the CSV file through Microsoft Excel. The CSV file can also be used as reference material for another development work.
Reset	After the users click the button, the setting in the data exchange table will be restored to the initial setting.
Check Settings	After the users click the button, the data exchange table will be checked.
Upload	After the users click the button, the parameters related to a PLC Link in the master station will be uploaded.
Download	After the users make sure that the setting of a PLC Link is correct, they can download the setting to the master station by clicking the button.


Item	Description			
Monitor and Download	After the users make sure that the setting of a PLC Link is correct, they can download the setting to the master station. After the setting is downloaded to the master station, the Linked Machines Status window will be opened automatically.			
Finish	After the users click this button, the PLC Link Table Editor window will be closed. Before the PLC Link Table Editor window is closed, the system will ask the users whether they want to save the modifications they make.			

During the execution of a PLC Link, the slave stations passively receive reading/writing commands from the master station. As a result, the parameters set in the data exchange table in the PLC Link Table Editor window are for the master station. If the users click Upload, the parameters related to a PLC Link in the master station will be uploaded. If the users click Download, the setting in the data exchange table in the PLC Link Table Editor window will be downloaded to the master station. Likewise, the master station will be monitored if the users click Monitor and Download. Before the users click Upload, Download, or Monitor and Download, they have to make sure that the device which is connected to the computer is the PLC which is designated as a master station, and the computer can communicate with the PLC normally. Please refer to section 16.1.3 for more information.

11.1.2.5 Monitoring a PLC Link

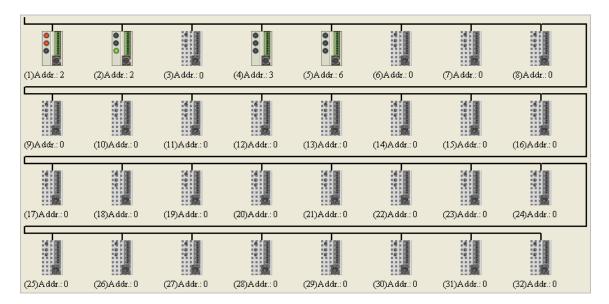
Before users monitor the PLC Link constructed, they have to make sure that the system is connect to the PLC which is designated as a master station normally. Please refer to section 16.1.3 for more information. After the users make sure that the PLC Link constructed is correct, they can click **Monitor and Download** under the data exchange table in the **PLC Link Table Editor** window to open the **Linked Machines Status** window. Besides, a PLC link can be executed normally only if the master station runs. As a result, the users have to make sure that the PLC which is designated as a master station runs before they monitor the PLC Link constructed.

- 1 Setting area: The users can set the PLC Link constructed.
- 2 Monitoring area: The status of the data exchange between the master station and the slave stations is displayed in this area. The users can also edit registers online in this area.
- 3 Indicators: The LED indicators indicate the status of the PLC Link constructed. Please refer to the table below for more information.

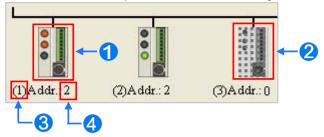
Indicator	Description			
PLC Run	When the PLC which is designated as a master station runs, the indicator is ON.			
PLC Link Run	When the master station executes the PLC Link constructed, the indicator is ON.			
Auto Mode	When the PLC Link constructed is executed automatically, the indicator is ON.			
Manual mode	When the PLC Link constructed is executed manually, the indicator is ON. After the master station polls the slave stations a certain number of times, the indicator will be OFF.			
Synchronic R/W	onic R/W When the synchronic reading/writing function is enabled, the indicator is ON.			

Setting area

The users can set the PLC Link constructed. If the users set the PLC Link constructed, the values in the related special data registers in the master station and the states of the related special auxiliary relays in the master station will be changed. After the users click **Close**, the status of the PLC Link will remain unchanged. As a result, the users have to make sure that the status of the PLC Link constructed is correct before they click **Close**.



- When the computer is connected to the PLC which is designated as a master station, the indicator blinks.
- 2 If the Linked Times checkbox is selected, the PLC Link constructed will be executed manually. If the Linked Times checkbox is unselected, the PLC Link constructed will be executed automatically.
- 3 If the PLC Link constructed is executed manually, the users can set the number of times the master station polls the slave stations. The master station can poll the slave stations 65535 times at most. After the master station polls the slave stations a certain number of times, the PLC Link constructed will not be executed.
- 4 If the PLC Link constructed is executed manually, the number of times the PLC Link is executed will be displayed. If the master station exchanges data with all the slave stations once, the number of times the PLC Links constructed is executed will be one.
- **5** The users can start or stop the execution of the PLC Link constructed by clicking the button. If the system is disconnect from the PLC which is designated as a master station while the PLC Link constructed is monitored, the **Continue to Monitor** button will appear in the upper right corner of the **Linked Machines Status** window. After the users eliminate the problem which results in the disconnection, they can click the **Continue to Monitor** button.



Monitoring area

When the PLC Link constructed is executed, the master station exchanges data with the slave stations. The status of the data exchange between the master station and the slave stations are displayed in this area.

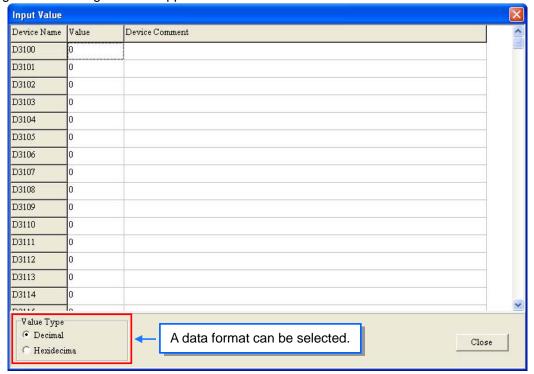
The small pictures in the monitoring area indicate the status of the main station rather than the statuses of the slave stations. The small pictures in the monitoring area are described below.


- 1 The indicators on the small picture indicate the status of the data exchange group represented by the small picture.
- 2 The data exchange group represented by the small picture is not involved in data exchange.
- 3 The number corresponds to a serial number in the data exchange table. It represents the serial number of the data exchange group represented by the small picture.
- 4 The number corresponds to a slave station address in the data exchange table. It represents the slave station address which belongs to the data exchange group represented by the small picture.

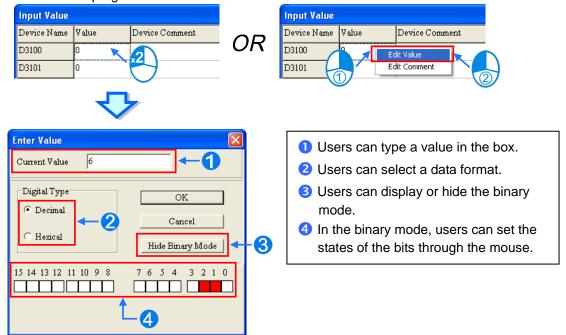
Besides, the PLC Link error flags in an AH500 series CPU module are slightly different from the PLC Link error flags in a DVP series PLC, and therefore the small picture representing an AH500 series CPU module is different from the small picture representing a DVP series PLC. Please refer to the following table for more information.

Master station	Small picture	Description
AH500 series CPU module	0 2 3	 If an error occurs when data in a slave station is read, the indicator will be ON. If an error occurs when data is written into a slave station, the indicator will be ON. When data exchange is performed, the indicator will be ON.

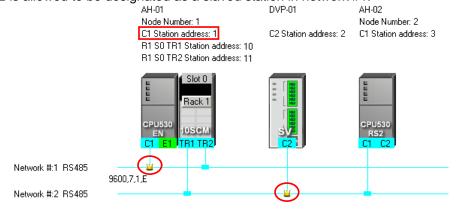
Master station	Small picture	Description		
DVP series PLC	2 -0	 If an error occurs when data in a slave station is read, or an error occurs when data is written into a slave station, the indicator will be ON. When data exchange is performed, the indicator will be ON. 		


After the users select a small picture, and right-click the small picture, they can click **Write Register** or **Read Register** on the context menu.

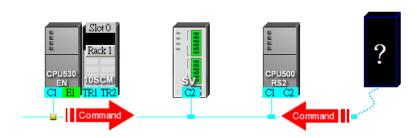
- ➤ Write Register: The data written into the slave station specified is stored in registers in the master station. For example, D3100~D3149 in the figure below are write registers.
- ➤ **Read Register**: The data **read** from the slave station specified is stored in registers in the master station. For example, D3000~D3099 in the figure below are read registers.


	#	Station Addr.	R/W	Master Device Data	<=>	Slave Device Data	Length	Status	Device Type
	1 2	2	R	D3000~D3099	<=	D2500~D2599	100	Enabled	sv
			W	D3100~D3149	=>	D2600~D2649	50		

After the users click **Write Register** or **Read Register** on the context menu, a correponding register monitoring table will appear.


If the users double-click the **Value** cell for a device, or click **Edit Value** on the context menu after they right-click the **Value** cell, they can type a value in the **Enter Value** window. If the users double-click the **Device Comment** cell for a device, or click **Edit Comment** on the context menu

after they right-click the **Device Comment** cell, they can make a comment on the device. The comments made are for the PLC Link constructed. They are not related to the comments on the devices in the program created in ISPSoft.



11.1.2.6 Importing Points About Constructing a PLC Link

There is only one master station in an RS-485 network. If the node designated as a master station has several serial ports, the node can not be designated as a master station in another RS-485 network, but can be designated as a slave station in another RS-485 network. In the figure below, C1 on the node AH-01 is designated as a master station in network #1, and TR1 on the node AH-01 is designated as a slave station in network #2. Besides, C1 on AH-01 and TR2 on AH-01 are connected to network #1. The station addresses assigned to these two ports are different. As a result, TR2 is allowed to be designated as a slaved station in network #1.

When a PLC Link is executed, the master station sends reading/writing commands to the slave stations according to the data exchange table created. Another master station which can send commands is not allowed to exist. If there is an unknown device which does not appear in NWCONFIG and which can send commands in an RS-485 network, or there is a device which is designated as a slave station and which can send reading/writing commands in an RS-485 network, an error occurs when more than one device sends commands. As a result, after users create a network in NWCONIFG, they have to make sure that the actual connection is consistent with the network created in NWCONFIG.

Besides, if the users do not set the parameters related to a PLC Link in the original master station again before they designate another device as a master station, an error occurs when more than one device sends reading/writing commands. As a result, if the users want to designate another device as a master station, they have to make sure that the original master station does not execute the original PLC Link.

^{*} In addition to the conditions mentioned above, users have to prevent two devices or more than two devices from sending reading/writing commands simultaneously in any conditions.

11.1.3 Executing a PLC Link through the Program in ISPSoft

Users can execute a PLC Link through the program in ISPSoft. The setting of the parameters related to a PLC Links is described in this section. Users can execute a PLC Link efficiently.

11.1.3.1 Parameters Related to a PLC Link

1. The special data registers and the special auxiliary relays for slave 1~slave 32 are described below.

	Master station							
	Slave s	tation 1	Slave s	tation 2		Slave st	ation 32	
	Read	Write	Read	Write		Read	Write	
Latched area	Address in the master: The device address into which the data is read (SR1404 and SR1405)	Address in the master: The device address from which the data is written (SR1468 and SR1469)	Address in the master: The device address into which the data is read (SR1406 and SR1407)	Address in the master: The device address from which the data is written (SR1470 and SR1471)		Address in the master: The device address into which the data is read (SR1466 and SR1467)	Address in the master: The device address from which the data is written (SR1530 and SR1531)	
	Address in the slave: The device address from which the data is read (SR1532 and SR1533)	Address in the slave: The device address into which the data is written (SR1596 and SR1597)	Address in the slave: The device address from which the data is read (SR1534 and SR1535)	Address in the slave: The device address into which the data is written (SR1598 and SR1599)		Address in the slave: The device address from which the data is read (SR1594 and SR1595)	Address in the slave: The device address into which the data is written (SR1658 and SR1659)	
3a	Number of data which is read from the slave (SR1660)	Number of data which is written into the slave (SR1692)	Number of data which is read from the slave (SR1661)	Number of data which is written into the slave (SR1693)		Number of data which is read from the slave (SR1691)	Number of data which is written into the slave (SR1723)	
	Device type (SR1340)	Device type (SR1372)	Device type (SR1341)	Device type (SR1373)		Device type (SR1371)	Device type (SR1403)	
	Type of slave 1 (SR1724)		Type of slave 2 (SR1725)			Type of slave 32 (SR1755)		
	Address of slave 1 (SR1756)		Address of slave 2 (SR1757)			Address of slave 32 (SR1787		
	PLC Link flag (SM1392)	PLC Link flag (SM1393)			PLC Link flag (SM1423)		
z	Data exchange	flag (SM1424)	Data exchange flag (SM1425)			Data exchange	flag (SM1455)	
Non-latched area	Read error flag (SM1456)	Write error flag (SM1488)	Read error Write error flag flag (SM1457) (SM1489)			Read error flag (SM1487)	Write error flag (SM1519)	
hed a	The data reading is complete. (ON->OFF) (SM1520)		The data reading is complete. (ON->OFF) (SM1521)			The data reading (ON->OFF) (SN	M1551)	
area	The data writing in the PLC Link is complete. (ON->OFF) (SM1522)		The data writing in the PLC Link is complete. (ON->OFF) (SM1553)			The data writing Link is complet (SM1583)	9	

^{*.} SM1424~SM1583 are read-only devices.

Start address in the master station: The start address in the master station is a device address. The default start address in the master station is D0. If the AH500 Modbus communication protocol is used, the start address in the master station is an AH500 Modbus device address. If the standard Modbus communication protocol is used, the start address in the master station is a Modbus device address. The data in the device addresses in the master station starting from the start address in the master station is sent to a slave, and the data sent by a slave station is stored in the devices in the master station starting from the start address in the master station. If the communication protocol used is the standard Modbus communication protocol, only M0~M8191 and D0~D32767 can be used. If the communication protocol used is the AH500 Modbus communication protocol, only M0~M8191, D0~D65535, and L0~L65535 can be used.

- Start address in a slave station: The start address in a slave station is a device address. The default start address in a slave station is 0. The data in the device addresses in a slave station starting from the start address in the slave station is read, and the data sent by the master station is stored in the device addresses in a slave station starting from the start address in the slave station. If the communication protocol used is the standard Modbus communication protocol, only M0~M8191 and D0~D32767 can be used. If the communication protocol used is the AH500 communication protocol, only M0~M8191, D0~D65535, and L0~L65535 can be used. If a slave station is not an AH500 CPU module, the start address in the slave station must be an absolute address, e.g. 16#1000.
- Number of data read from a slave station: The default value is 0. If the devices used are
 registers, the unit of data length is a word. If the devices used are contacts, the unit of data
 length is a bit.
- Number of data written into a slave station: The default value is 0. If the devices used are
 registers, the unit of data length is a word. If the devices used are contacts, the unit of data
 length is a bit.
- An AH500 series CPU module can modify the data length automatically. If data length is larger than 450/100 (the AH500 communication protocol/the standard Modbus protocol) words, it will be modified automatically and become 450/100 words. If data length is larger than 7200/1600 (the AH500 communication protocol/the standard Modbus protocol) bits, it will be modified automatically and become 7200/1600 bits.
- A DVP series PLC can modify the data length automatically. If data length is larger than 100 words, it will be modified automatically and become 100 words. If data length is larger than 1600 bits, it will be modified automatically and become 1600 bits.
- Slave station type: The models which can be connected to the master station can be AH500 series CPU modules, DVP series PLCs, and other models. (The default value is 0.)
- After a CPU module is restored to the factory setting, the slave station address will become the default value. (The address of the 1st slave station will be 1, the address of the 2nd slave station will be 2, and the address of the 32th slave station will be 32.) If a PLC Link is executed, and SM1595 is ON, the slave station addresses in SR1756~SR1787 will be read. If a PLC Link is executed, and SM1595 is OFF, the slave station address in SR1756 will be read. A slave station address must be in the range of 1 to 216. If a slave station address is not in the range, it will become 1.
- Device type: The device type used by a slave station must be the same as the device type used by the master station. For example, if a slave station uses contact devices, the master station must use contact devices. The legal setting values are 0 (registers) and 1 (contacts). Other values are illegal values. If the value set is illegal, the slave station will not be involved in a data exchanged. The device type used for reading in a slave station can be set by means of SR1340, and the device type used for writing in a slave station can be set by by means of SR1372. (The default values in SR1340 and SR1372 are 0. (If the reading of data and the writing of data are synchronous, the device type used for reading must be the same as the device type used for writing.))

Additional remark:

A PLC Link can be executed only if the AH500 series CPU modules runs. If the number of data read from a slave station and the number of data written into a slave station are 0, no data exchange is performed. If a PLC Link is executed, the parameters related to the PLC link can not be modified. That is, a slave station can not be deleted or added if a PLC Link is executed. Only serial ports can be used as communication interfaces for data exchange performed by means of a PLC Link. (If an AH500 series CPU module used is AHCPU530-RS2, COM1 must be used for data exchange.)

2. Descriptions of flags:

- PLC Link flag: The state of a PLC Link flag indicates whether the corresponding slave station is connected to the master station. If SM1585 is ON, users can decide whether to connect a slave station to the master station.
- Data exchange flag: The state of a data exchange flag indicates whether the corresponding slave station and the master station exchange data with each other.
- Read error flag: If an error occurs when the master station reads data from a slave station, the corresponding read error flag will be ON. For example, if the command sent form a slave station is incorrect, or the checksum in the command sent form a slave station is

incorrect, the corresponding read error flag will be ON.

- Write error flag: If an error occurs when the master station writes data into a slave station, the corresponding write error flag will be ON. For example, if the number of data written into a slave station is incorrect (is not in a device range), the write error flag will be ON.
- Completion of reading: The master station finishes reading data form a slave station
- Completion of writing: The master station finishes writing data into a slave station.

Additional remark:

If the reading of data and the writing of data are synchronous, the related flags will be controlled in the ways described below.

	Read error	Write error	Completion of reading	Completion of writing
The master station stops reading data and writing data simultaneously, or the master station is reading data and writing data simultaneously.	OFF	OFF	OFF	OFF
The master station finishes reading data and writing data simultaneously.	OFF	OFF	ON	ON
Timeout	ON	ON	OFF	OFF
The master station can not produce a packet which will be sent.	ON	ON	OFF	OFF
The data sent by a slave station can not be stored in the master station.	ON	OFF	OFF	ON

3. Description of the setting of the parameters related to a PLC Link:

The setting of the parameters related to a PLC Link is described below. (Suppose the master station and slave station 1 are AHCPU530-EN.) The data in the device addresses starting from D100 in slave station 1 is read into the device address starting from D9 in the master station. The number of data read from slave station 1 is 10. The data in the device addresses starting from Y0.0 in the master station is written into the device addresses starting from Y2.0 in slave station 1. The number of written into slave station 1 is 5. The slave station type is AHCPU530-EN (16#E001). The slave station address is 16#0001.

Item	Reading/Writing	Device code	Value	
	Reading	SR1404	16#0000	
Start address in the	Reading	SR1405	16#0009	
master station	Writing	SR1468	16#0000	
	vviillig	SR1469	16#A000	
	Pooding	SR1532	16#0000	
Start address in	Reading	SR1533	16#0064	
slave station 1	Writing	SR1596	16#0000	
	Writing	SR1597	16#A020	
Number of data read from slave station 1		SR1660	16#000A	
Number of data written into slave station 1	Writing	SR1692	16#0005	
Slave station type	Reading	SR1724	16#E001	
Slave Station type	Writing	SK1724	10#EUU1	
Slave station	Reading	SR1756	16#0001	
address	Writing	3K1730	10#0001	
Device type	Reading	SR1340	16#0000	
Device type	Writing	SR1372	16#0001	

Additional remark:

There are a variety of Delta PLCs. Users can construct a PLC Link by connecting AH500 series CPU modules to DVP series PLCs, and other models. Consequently, there are limitations on the devices which can be used, the data exchange which can be performed, and the number of data which can be exchanged.

The limitation on data exchange performed by an AH500 series CPU module is described below.

Device	Device range	Maximum length of data which can be read/written
Relays	M0~M8191	450 /400 *
Data register	D0~D65535	450 registers/100 registers 7200 contacts/1600 contacts
Link register	L0~L65535	

^{*.} Maximum length of data which can be read/written (Reading data and writing data synchronously)=Maximum length of data which can be read/written (Reading data and writing data asynchronously). A PLC which is not an AH500 series CPU module can read/write the data in 100 registers at most, and the data in 1600 contacts at most.

If an AH500 series CPU module is a master station, DVP series PLCs can function as slave stations. DVP series PLCs can read data and write data simultaneously.

	data		Maximum relay	Communication	Maximum length of data which can be read/written (word)*		
Model	Device code	register address which can be used	address which can be used	port which supports RS-485	Reading and writing data synchronously	Reading and writing data asynchronously	
ES	0x0000	D599	M999	COM2	100	100	
EX	0x0001	D599	M999	COM2	100	100	
SS	0x0002	D599	M999	COM2	100	100	
EC	0x0003	D599	M999	COM2	100	100	
EH	0x0004	D9999	M4095	COM2	100	100	
SA	0x0006	D4999	M4095	COM2	100	100	
SC	0x0007	D4999	M4095	COM2	100	100	
SX	0x0008	D4999	M4095	COM2	100	100	
SV	0x0009	D9999	M4095	COM2	100	100	
EH2-L	0x000A	D9999	M4095	COM2	100	100	
EH2	0x000B	D9999	M4095	COM2	100	100	
ES2	0x000C	D9999	M4095	COM2 and COM3	50	100	
EX2	0x000D	D9999	M4095	COM2 and COM3	50	100	
SS2	0x000E	D4999	M4095	COM2	50	100	
SX2	0x000F	D9999	M4095	COM2	50	100	
SV2	0x0010	D11999	M4095	COM2	100	100	
EH3-L	0x0011	D11999	M4095	COM2 and COM3	100	100	
EH3	0x0012	D11999	M4095	COM2 and COM3	100	100	
SA2	0x0013	D9999	M4095	COM2 and COM3	50	100	
MC	0x0014	D9999	M4095	COM2	50	100	
SE	0x0015	D11999	M4095	COM2 and COM3	50	100	

^{*.} DVP series PLCs can modify the data length automatically.

The rules of data exchange are described below.

Master	Slave station	Communication	Data ex	Data exchange		
station	Slave Station	Communication	Master station <=> Slave station			
	AH500 series	AH500 Modbus communication protocol	M, D, and L ^{*1}	M, D, and L ^{*1}		
	CPU module	Standard Modbus communication	M*2	M ^{*2}		
		protocol	D	D		
AH500 series CPU	DVP series	Standard Modbus communication	M ^{*2}	M ^{*2}		
module	PLC	protocol	D	D		
	Device which is neither an		M ^{*2}	H (contact)*2		
	AH500 series Standard Mod	Standard Modbus communication protocol	D	H (register)		
	AH500 series CPU module	Standard Modbus communication protocol	D	D		
DVP series	DVP series PLC	Standard Modbus communication protocol	D	D		
PLC	Device which is neither an AH500 series CPU module nor a DVP series PLC	Standard Modbus communication protocol	D	H (register)		

^{*1.} If the AH500 Modbus communication protocol is used, users can use relays, data registers, and link registers.

11.1.3.2 Setting a PLC Link

1. The process of setting a PLC Link is described below.

Step 1: Setting the parameters related to a PLC Link

Set the special data registers and the special auxiliary relays which are described in section 11.1.3.1.

Step 2: Assigning slave station addresses manually/automatically

If SM1595 is ON, users can assign station addresses to all the slave stations.

If SM1595 is OFF, users can assign a station address to slave station 1 (SR1756), and the system can assign the station addresses starting from the station address that users assign to slave station 1 to the other slave stations.

Step 3: Connecting to the slave stations manually/automatically

If SM1585 is ON, users can decide whether to connect a slave station to the master station by setting the PLC Link flag corresponding to the slave station. SM1392~SM1423 are PLC Link flags.

If SM1585 is OFF, the master station will connect to the slave stations to which station addresses are assigned.

Step 4: Reading data and writing data synchronously/Reading data and writing data asynchronously

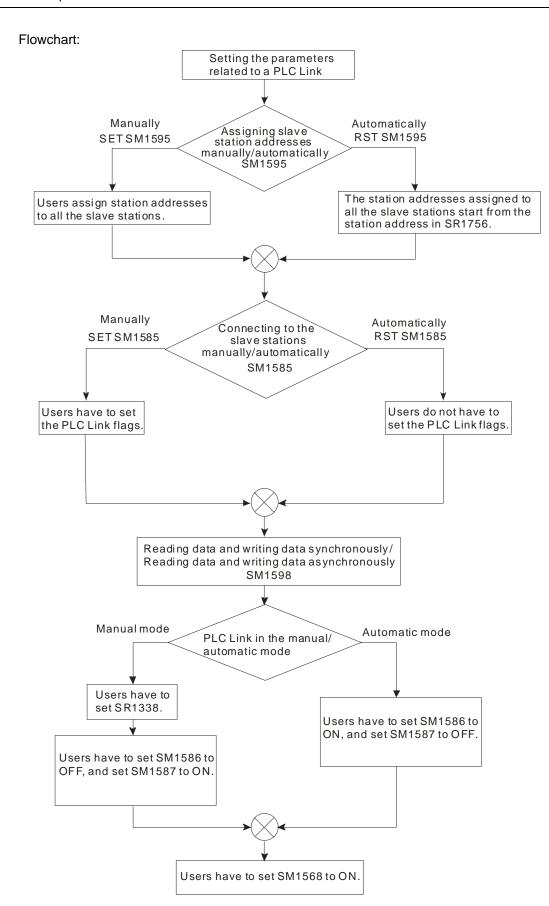
Reading data and writing data synchronously: If SM1598 is ON, the master station will read data

^{*2.} If the standard Modbus communication protocol is used, devices which are not data registers can not be involved in synchronous data exchange.

from a slave station, and write data into the slave station simultaneously. Reading data and writing data asynchronously: If SM1598 is OFF, the master station will not read data from a slave station, and write data into the slave station simultaneously.

Step 5: PLC Link in the manual/automatic mode

PLC Link in the manual mode: Before users set SM1587 to ON, they have to set the number of times the master station exchanges data with all the slave stations (SR1338). The number of times the master station exchanges data with all the slave stations is displayed in SR1337. If the value in SR1338 is 0, SM1592 will be ON. The value in SR1338 can not be 0.

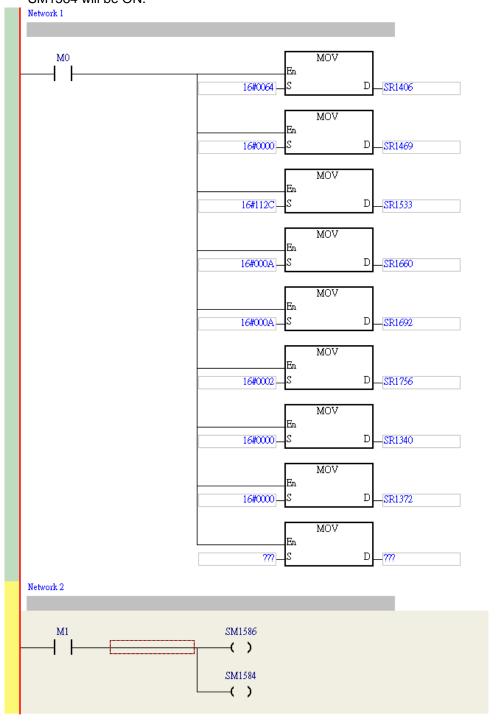

Users have to set SM1587 and SM1584 to ON first. If the value in SR1337 becomes the same as the value in SR1338, the execution of the PLC Link will stop, and SM1584 will become OFF. If the users want to execute the PLC Link in the manual mode again, they have to set SM1587 and SM1584 to ON again.

PLC Link in the automatic mode: After users set SM1586 and SM1584 to ON, the master station will exchange data with all the slave stations. The PLC Link will be executed until MS1584 or SM1586 becomes OFF.

Step 6: Enabling the function of executing a PLC Link

After the setting of all the parameters is complete, users can set SM1584 to ON.

2. Example:

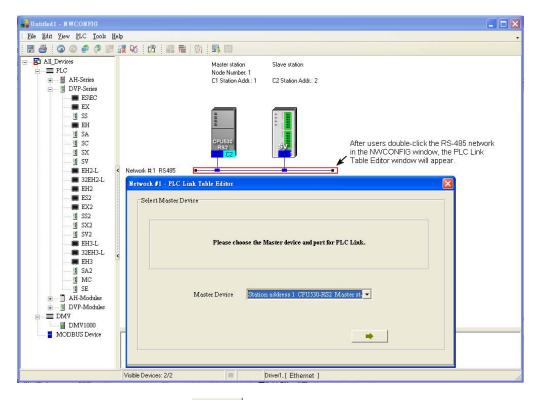

The master station AHCPU530-RS2 is connected to slave station 1 DVP28SV11T. The data in

99

the device addresses starting from D300 in slave station 1 is read into the device address starting from D100 in the master station. The number of data read from slave station 1 is 10. The data in the device addresses starting from D0 in the master station is written into the device addresses starting from D300 in slave station 1. The number of written into slave station 1 is 10. SM1598 is set to OFF, SM1595 is set to OFF, and SM1586 is set to ON. Users can check whether data exchange is preformed correctly by comparing the data in D0~D9 with the data in D100~D109 in the master station.

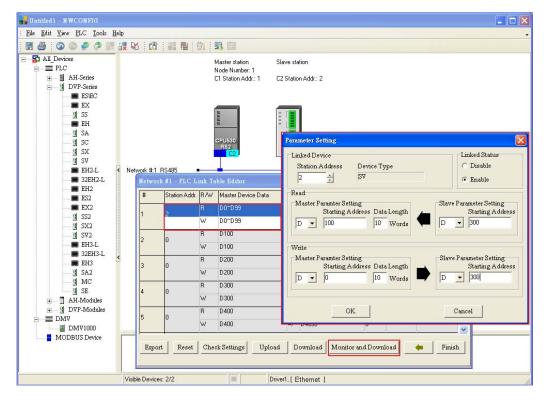
Method 1:

Users can set the parameters related to a PLC Link according to the process described above. **Step 1:** Start ISPSoft, and write the program shown below. If M1 is turned ON, SM1586 and SM1584 will be ON.

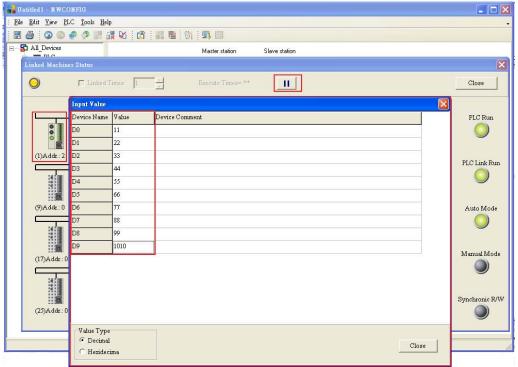

Step 2: Open the **Monitor Table** window in ISPSoft. Add M1, D0~D9, and D100~D109 to the window. Set M1 to ON, and then set values for D0~D9. Users can check whether data exchange is preformed correctly by comparing the data in D0~D9 with the data in D100~D109.

Device Name	Status	Data Type	Value (16 bits)
M1			
D0			11
D1			22
D2			33
D3			44
D4			55
D5			66
D6			77
D7			88
D8			99
D9			1010
D100			11
D101			22
D102			33
D103			44
D104			55
D105			66
D106			77
D107			88
D108			99
D109			1010

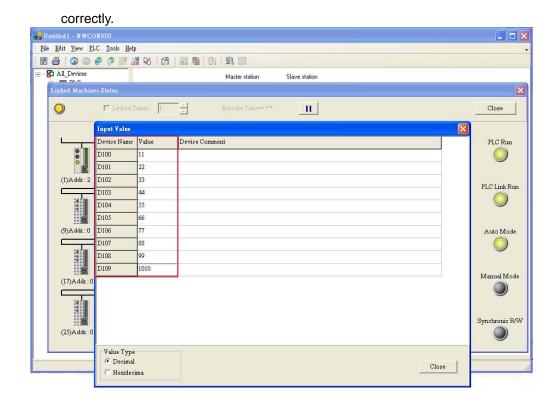
Method 2:


If users write a program, they will spend much time setting special data registers and special auxiliary relays. It is more convenient for users to construct a PLC Link by means of NWCONFIG in ISPSoft. (Please refer to section 11.1.2 for more information about NWCONFIG in ISPSoft.)

Step 1: After users double-click the RS-485 network in the NWCONFIG window, the PLC Link Table Editor window will appear. The users have to select Station address 1 CPU530-RS2 in the Master Device drop-down list box.


Step 2: The users have to click _____ until the system lead them to the third step.

- A. After the users double-click 2 in the **Station Addr.** cell, the **Parameter Setting** window will appear.
- B. In the Master Parameter Setting section in the Read section, the users have to select D in the drop-down list box, type 100 in the Starting Address box, and type 10 in the Data Length box. In the Slave Parameter Setting section in the Read section, the users have to select D in the drop-down list box, and type 300 in the Starting Address box. In the Master Parameter Setting section in the Write section, the users have to select D in the drop-down list box, type 0 in the Starting Address box, and type 10 in the Data Length box. In the Slave Parameter Setting section in the Write section, the users have to select D in the drop-down list box, and type 300 in the Starting Address box.
- C. After the parameters in the **Parameter Setting** window are set, the users can click **OK** in the **Parameter Setting** window, and click **Monitor and Download** in the **PLC Link Table Editor** window.


Step 3:

- A. After the users click ▶ in the **Linked Machines Status** window, ▶ will become Ⅱ.
- B. After the users right-click (1) Addr,: 2, they have to click Write Register on the context menu.
- C. The users have to type the values shown in the figure below in the **Input Value** window.

Step 4: The users have to right-click **(1) Addr,: 2**, and click **Read Register** on the context menu. The values in the **Input Value** window indicate that the data exchange is preformed

999

11.1.4 Related Special Auxiliary Relays and Special Data Registers

1. Descriptions of the related special auxiliary relays:

Device	Name	R/W	Description
SM1584	Enabling the function of executing a PLC Link	R/W	Executing a PLC Link OFF: The function of executing a PLC Link is disabled. (Default) ON: The function of executing a PLC Link is enabled.
SM1585	Connecting to the slave stations automatically/manually	R/W	Using user-defined PLC Link flags OFF: The user-defined PLC Link flags are not used. ON: The user-define PLC Link flags are used.
SM1586	Executing a PLC Link in the automatic mode	R/W	PLC Link in the automatic OFF: Not executing a PLC Link in the automatic mode (Default) ON: Executing a PLC Link in the automatic mode
SM1587	Executing a PLC Link in the manual mode	R/W	PLC Link in the manual mode OFF: Not executing a PLC Link in the manual mode (Default) ON: Executing a PLC Link in the manual mode
SM1588	Enabling the function of detecting the slave stations automatically	R	OFF: The master does not detect the slaves. ON: The master station detects the slave stations.
SM1589	Mode error	R	If SM1586 and SM1587 are ON, SM1589 will be ON. OFF: No mode error occurs. ON: A mode error occurs.
SM1590	A device address is incorrect.	R	If a device address is incorrect, SM1590 will be ON. OFF: A device address is incorrect. ON: No device address is incorrect.
SM1591	Timeout	R	If there is a communication timeout, SM1591 will be ON. OFF: There is no communication timeout. ON: There is a communication timeout.
SM1592	The number of times the master station polls the slave stations is incorrect.	R	If the value in SR1338 is 0, SM1592 will be ON. OFF: The number of times the master station polls the slave station is correct. ON: The number of times the master station polls the slave stations is incorrect.

Device	Name	R/W	Description
SM1593	Standard Modbus communication protocol/AH500 Modbus communication protocol	R/W	Selecting a communication protocol OFF: Standard Modbus communication protocol (Default) ON: AH500 Modbus communication protocol
SM1594	Detecting the slave stations automatically	R/W	The master station will detect the slave stations automatically only if the execution of the PLC Link stops. OFF: The master station finishes detecting the slave stations, or waits to detect the slave stations. (Default) ON: The master station is detecting the slave stations.
SM1595	Assigning slave station addresses automatically/manually	R/W	OFF: The station addresses assigned to all the slave stations start from the station address in SR1756. (Default) ON: Users assign station addresses to all the slave stations.
SM1596	PLC Link error	R	If an error occurs when a PLC Link is executed, SM1596 will be ON. If no error occurs when a PLC Link is executed, SM1596 will be OFF. OFF: No error occurs. (Default) ON: An error occurs.
SM1597	Using an extension communication port	R/W	If SM1597 is ON, an extension communication port will be used to send a command. If SM1597 is OFF, a communication port on the master station is used to send a command. OFF: No extension communication port is used. (Default) ON: An extension communication port is used.
SM1598	Enabling the function of reading data and writing data synchronously	R/W	If SM1598 is ON, t If SM1598 is OFF, t OFF: The function of reading data and writing data synchronously is disabled. ON: The function of reading data and writing data synchronously is enabled.*2 •

^{*1.} If the master station automatically detects that the station address of a slave station is the same as its station address, it will not connect to the slave station.

2. Descriptions of the read-only devices SM1588~SM1592:

Device	Description
SM1588	When the master station detects the slave stations automatically, SM1588 is ON. When the master station finishes detecting the slave stations, SM1588 is OFF.

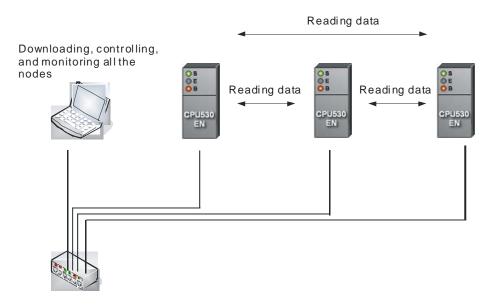
^{*2.} If the reading of data and the writing of data are synchronous, the device type used for reading must be the same as the device type used for writing. Otherwise an error will occur.

Device	Description
SM1589	If SM1586 and SM1587 are ON, SM1589 will be ON, and SM1584 will be OFF. If no error occurs when the PLC Link is executed again, SM1589 will
	become OFF automatically.
SM1590	If communication address error occurs when data exchange is performed, SM1590 will be ON. If no communication address error occurs when data exchange is performed, SM1590 will be OFF.
SM1591	If a timeout occurs when data exchange is performed, SM1591 will be ON. If no timeout occurs when data exchange is performed, SM1591 will be OFF.
SM1592	If the value in SR1338 is 0, SM1592 will be ON, and SM1587 will be OFF. If the value in SR1338 is a legal value when SM1587 is ON, or if the value in SR1338 is a legal value when SM1584 is ON, SM1592 will be OFF.

3. Descriptions of the special data registers SR1329~SR1338:

Device	Name	R/W	Description
SR1329	Backplane ID	R/W	The value in SR1329 indicates the backplane on which the network module used is installed. (If the network module used is installed on a remote backplane, the value in SR1329 indicates the backplane on which the RTU module which functions as a master station is installed.) The value in SR1329 must be in the range of 1 to 8.
SR1330	Slot ID	R/W	The value in SR1330 indicates the slot in which the network module used is installed. (If the network module used is installed on a remote backplane, the value in SR1330 indicates the slot in which the RTU module which functions as a master station is installed.) If the value in SR1329 is 1, the value in SR1330 must be in the range of 0 to 11. If the value in SR1330 must be in the range of 2 to 8, the value in SR1330 must be in the range of 0 to 7.
SR1331	RTU module number	R/W	RTU module number The value in SR1331 must be in the range of 0 to 63.
SR1332	Remote backplane ID	R/W	The value in SR1332 indicates the remote backplane on which the RTU module used is installed. The value in SR1332 must be in the range of 1 to 8.
SR1333	Remote slot ID	R/W	The value in SR1333 indicates the remote slot in which the RTU module used is installed. The value in SR1333 must be in the range of 0 to 7.
SR1334	Extension communication port number	R/W	The value in SR1334 indicates the communication port used. The value in SR1334 must be 1 or 2.

Device	Name	R/W	Description
SR1335	Cycle of a PLC Link	R	The value in SR1335 indicates the time it takes for the master station to detect all the slave stations. (Time unit: 1 millisecond) The value in SR1335 will be 0 if one of the following conditions occurs. 1. The master station is turned from OFF to ON. 2. The master station begins to runs, or stops running. 3. The master station finishes detecting all the slave stations for the first time. The value in SR1335 will remain unchanged if the function of enabling a PLC Link is disabled.
SR1336	Number of slave stations connected	R	Users can not set SR1336. The can only view the value in SR1336. Whenever a PLC Link is executed, the slave stations connected to the master station are count.
SR1337	Displaying the number of times the master station polls the slave stations	R	The value in SR1337 indicates the number of times the master station exchanges data with all the slave stations. SR1337 can be used only if SM1587 is ON. If the execution of a PLC link stops, the value in SR1337 will not disappear. If the execution of a PLC link in the manual mode stops, the value in SR1337 will not disappear. If the value in SR1337 becomes the same as the value in SR1338, the execution of the PLC link in the manual mode will stop.
SR1338	Setting the number of times the master station polls the slave stations	R/W	Users can set the number of times the master station exchange data with all the slave stations. The value in SR1338 must be in the range of 1 to 65535. If the value in SR1338 is not in the range, it will not be changed automatically.

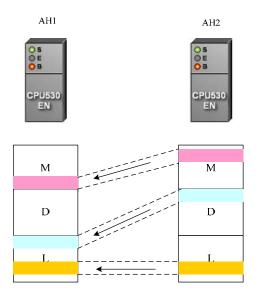

11.2 Ether Link

11.2.1 Introduction of Ether Link

An Ether Link is a network mechanism for data exchange performed through an Ethernet connection. If there are several nodes in an Ethernet network, users can create a mechanism for data exchange in the network, and select a start mode. If the parameters which are set are downloaded to the PLCs in the network, the systems of the PLCs perform data exchange according to the start mode selected when the PLCs run. The users do not have to write a redundant program. Besides, only AH500 series CPU modules support Ether Links.

A PLC Link is a master/slave model. There is only one master station in an RS-485 network, and the other stations which are slave stations passively receive reading/writing commands from the master station. Compared with a PLC Link, an Ether Link adopts a safer data request mechanism. It is the data demanding nodes in an Ethernet network that execute an Ether Link.

An Ether Link is not a master/slave model. It allows a node to send reading commands which ask for data to other nodes. The nodes will send the data to the node after they receive the reading commands. Owing to the fact that a node can not send writing commands to other nodes, the use of an Ether Link is safer than the use of a PLC Link. Besides, all the nodes in an Ethernet network can send reading commands through TCP/IP, and the system automatically manages the transmission of packets through TCP/IP. Compared with a PLC Link, an Ether Link is more efficient.


11.2.1.1 General Specifications and Functions

1. General specifications:

Item	Specifications
	•
Communication type	Distribution
Data transfer rate	100 Mbps
Communication medium	Category 5 shielded cable
Maximum transfer distance	100 meters
Data storage	Relays (A word is taken as a unit.), data registers, and link registers
Number of storage blocks	Maximum of 128 blocks
Size of a storage block	Maximum of 1900 words
Modules supported	AHCPU530-EN, AH10EN-5A

2. Functions:

An Ether Link is a network mechanism through which PLCs can exchange data. If the PLCs in a network want to perform data exchange, they must be in the same domain. A PLC can read the data in relays, data registers, and link registers in another PLC, and store the data in relays, data registers, and link registers in itself. In the figure below, AH1 reads the data in three storage blocks in AH2. The maximum size of a storage block is 1900 words. (The maximum size of a storage block can not exceed the device range.) The number of storage blocks which are read in a PLC plus the number of storage blocks that the PLC reads is no more than 128.

Flexible control

There are three start modes.

- (1) Always Run: When the PLC runs, data exchange is performed.
- (2) Always Stop: During the operation of the PLC, no data exchange is performed.
- (3) **SM Flag**: The performance of data exchange depends on a special auxiliary relay in the PLC.

Users can set the start mode of an Ethernet port. They can operate an Ethernet port flexibly.

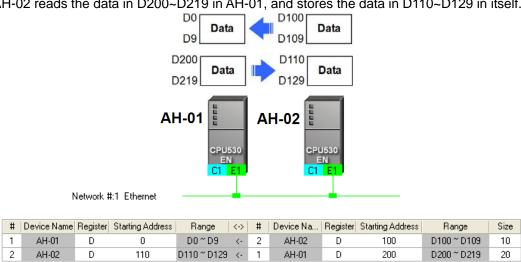
Simple setting

Users can construct an Ether Link and a PLC Link by means of NWCONFIG in ISPSoft. After users create a network framework in NWCONFIG, they can create a data exchange table. Users can add devices and storage blocks which are involved in data exchange according to the actual framework. The setting can be downloaded to a PLC by the software. Users do not have to memorize registers.

Elimination of errors

The execution of an Ether Link can be monitored by ISPSoft. Users can know the operating status of a PLC. The ports on a PLC and the storage blocks involved in data exchange are displayed. Besides, the error log displayed helps users eliminate errors.

11.2.1.2 Steps of Constructing an Ether Link

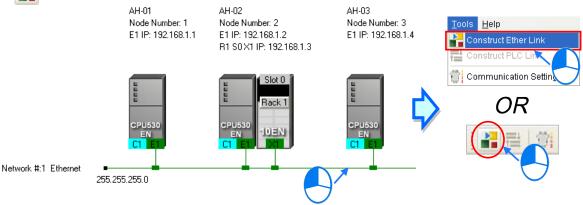

- 1. Plan a network architecture.
- Connect PLCs to network cables according to the network architecture planned, and power the PLCs up.
- 3. Assign IP addresses and subnet masks to the Ethernet ports on the PLCs which will be involved in data exchange by means of HWCONFIG in ISPSoft. (The PLCs which will be involved in data exchange must be in the same domain.)
- 4. Create the network architecture planned in NWCONFIG in ISPSoft. Assign IP addresses and subnet masks to the machines which will be involved in data exchange. (Note: The IP addresses/subnet masks assigned in HWCONFIG and the IP addresses/subnet masks assigned in NWCONFIG must be the same. Otherwise an error will occur if the Ether Link constructed in NWCONFIG is executed.)
- 5. Create a data exchange table. (Please refer to section 11.2.2 for more information.)
- 6. Download the data exchange table, and monitor the execution of the Ether Link constructed in NWCONFIG.
- 7. The construction of an Ether Link is finished.

11.2.2 Constructing an Ether Link in NWCONFIG in ISPSoft

11.2.2.1 Constructing an Ether Link

Please refer to the example below for more information. If users want to create an Ether Link shown below, they have to create a data exchange table for the two data request nodes AH-01 and AH-02.

- (a) AH-01 reads the data in D100~D109 in AH-02, and stores the data in D0~D9 in itself.
- (b) AH-02 reads the data in D200~D219 in AH-01, and stores the data in D110~D129 in itself.

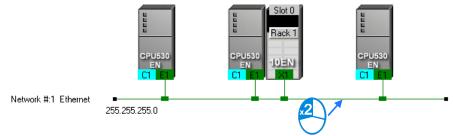

An Ether Link is based on a network. If a node is connected to several networks, users can set several groups of parameters related to Ether Links for the networks. As a result, there may be several groups of parameters related to Ether Links in a PLC. Owing to the fact that an Ether Link is not a master/slave model, each node in a network can be a data demanding node and a data supply node at the same time. In the first piece of data in the table above, AH-01 is a data requiring node, and AH-02 is a data providing node. In the second piece of data in the table above, AH-01 is a data providing node, and AH-02 is a data requiring node.

11.2.2.2 Opening the Ether Link Configuration Window

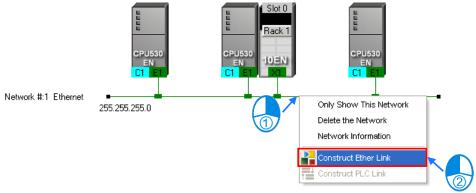
Before users construct an Ether Link, they have to make sure that a network is set correctly. There are three ways to open the **Ether Link Configuration** window.

Method 1

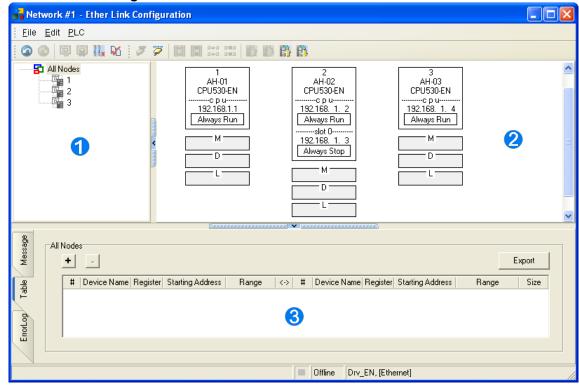
After the users select a network, they have to click Construct Ether Link on the Tools menu, or on the toolbar.



99

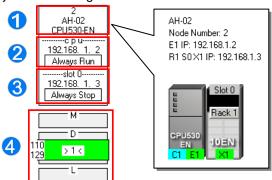

Method 2

Double-click a network.



Method 3

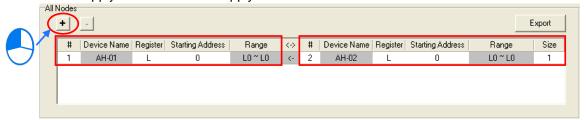
Right-click a network, and then click **Construct Ether Link** on the context menu.



The Ether Link Configuration window is shown below.

- 1 Node list: After the users click a node, the node and the nodes of which the node demands data will be shown in the display area.
- 2 **Display area**: The information about a node and the nodes of which the node demands data is displayed in this area.

3 Information area: The users can click the **Message** tab, the **Table** tab, or the **Error Log** tab. A node shown in the display area in the figure above is described below.

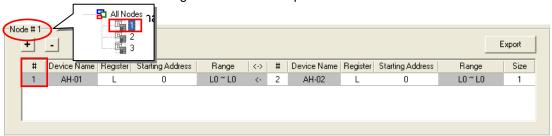

- 1 The information is composed of a node number, a PLC name, and a model name.
- 2 The IP address assigned to AH500 series CPU module is 192.168.1.2. The start mode of the Ether Link constructed is **Always Run**.
- 3 The IP address assigned to the module installed in slot 0 is 192.168.1.3. The start mode of the Ether Link constructed is **Always Stop**.
- 4 >1< in the D block indicates that the D block demands data of node 1. The numbers at the left side of the D block indicate that the data demanded of node 1 will be stored in D110~D119 in node 2. The color assigned to the D block depends on the node number in the D block. Owing to the fact that there is not any information in the M block and the L block, the M block and the L block does not demand any data of other devices.</p>

11.2.2.3 Creating and Managing a Data Exchange Table

If users want to create a data exchange table, they have to click the **Table** tab in the information area. The node which is selected on the node list is shown in the upper left corner of the information area. The data in the table is related to the node selected.

If the users click +, a new piece of data will be added to the table. A piece of data is composed of two parts. The left part of the data in the figure below indicates that the data demanding node AH-01 will store the data demanded in L0 in itself, and the right part of the data in the figure below indicates that the data supply node AH-02 will supply the data in L0 in itself.

The steps of setting a data exchange group are as follows.

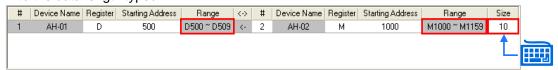

(1) Select a node number in the # cell for the data demanding node. After the users select a node

99

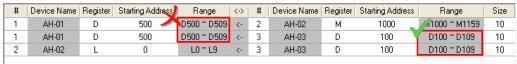
number, the PLC name corresponds to the node number will be appear in the **Device Name** cell for the node number.

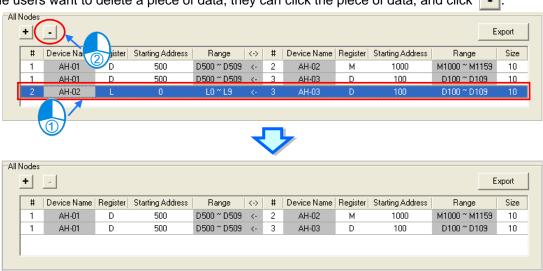
If the users select a specific node number rather than **All Nodes** on the node list, the data in the table will be related to the specific node number selected, and the fixed node number in the # cell for the data demanding node will be the specific node number selected on the node list.

(2) Select a device type in the **Register** cell for the data demanding node, and type an address in the **Starting Address** cell for the data demanding node.

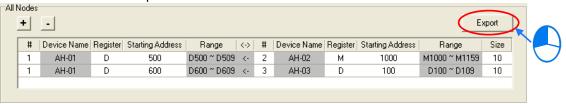

(3) Select a node number in the # cell for the data supply node. The node number in the # cell for the data demanding node can not be the same as the node number in the # cell for the data supply node. After the users select a node number, the PLC name corresponds to the node number will be appear in the **Device Name** cell for the node number.

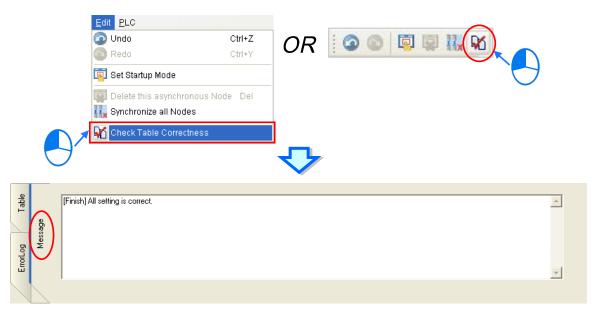
(4) Select a device type in the Register cell for the data supply node, and type an address in the Starting Address cell for the data supply node. The device type selected in the Register cell for the data supply node does not have to be the same as the device type selected in the Register cell for the data demanding node.


(5) Type a data length in the **Size** cell. A word is a unit. The maximum data length is 1900 words. After the users type a data length, the device ranges in the **Range** cells will change according to the data length typed.

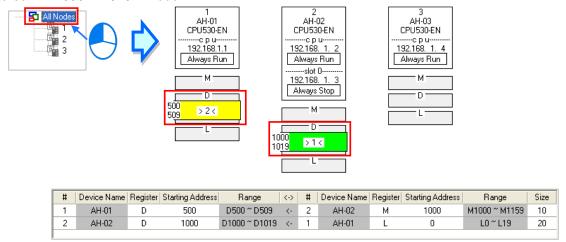

The users can create data exchange groups by following the steps described above. The device range in the **Range** cell for a data demanding node can not overlap the device range in the **Range**

cell for another data demanding node whereas the device range in the **Range** cell for a data supply node can overlap the device range in the **Range** cell for another data supply node. In other words, different demanders can ask for the same data, but different data can not be store in the same block.



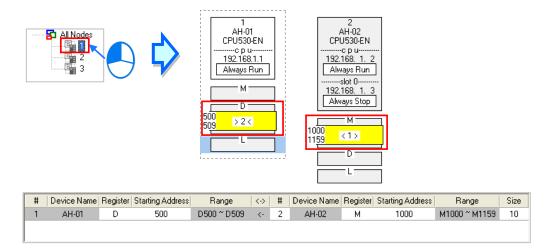

If the users want to delete a piece of data, they can click the piece of data, and click

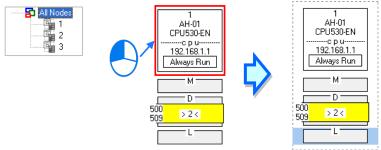
After the users click **Export**, the data in the data exchange table can be exported as a CSV file. The users can edit the CSV file through Microsoft Excel. The CSV file can also be used as reference material for another development work.


After the users create a data exchange table, they can click **Check Table Correctness** on the **Edit** menu or on the toolbar if they wan to check the data set in the table. The check result will be displayed in the **Message** page.

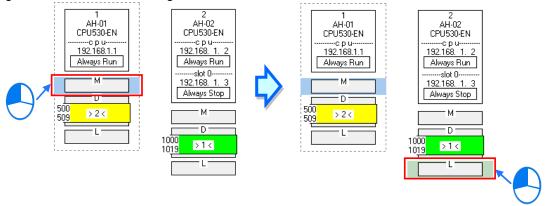
11.2.2.4 Node List and Display Area

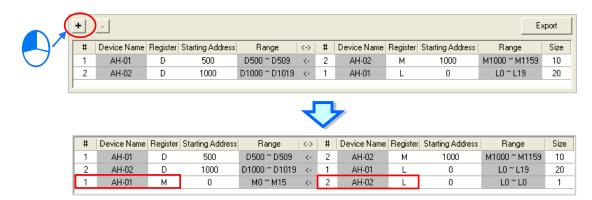
If users click **All Node**s on the node list, all the nodes will be displayed in the display area, and all the data exchange groups set will be in the data exchange table under the display area. Besides, the devices in which the data demanded will be stored, and the data supply nodes are indicated in device blocks of the nodes in the display area.


>2< in the D block in node 1 indicates that the D block demands data of node 2, and the numbers at the left side of the D block indicate that the data demanded of node 2 will be stored in D500~D509 in node 1. Likewise, >1< in the D block in node 2 indicates that the D block demands data of node 1, and the numbers at the left side of the D block indicate that the data demanded of node 1 will be stored in D1000~D1019 in node 1.


If the users click a specific node on the node list, the node and the nodes of which the node demands data will be shown in the display area, and the data in the data exchange table under the display will be related to the specific node selected.

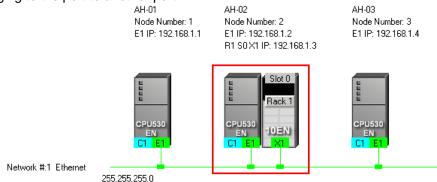
In the figure below, the dotted frame indicates that node 1 on the node list is selected, and the gray ground indicates that node 2 is a data supply node. Node 2 can not be selected, and the information in the M block in node 2 indicates the data which will be supplied to node 1. Owing to the fact that node 3 does not supply any data to node 1, node 3 is not displayed in the display area.


The numbers at the left side of the D block in node 1 indicates that the data demanded of node 2 will be stored in D500~D509 in node 1. <1> in the M block in node 2 indicates that the data in M1000~M1129 in node 2 will be supplied to 1.


If a specific node on the node list is selected, the node in the display area will be selected. After the users select **All Nodes** on the node list, they can click the information about a node in the display area if they want to select the node. If the users click a device block in a node, the node will not be selected. After a node is selected, a dotted frame will appear.

Once a node is selected, the node will be designated as a data demanding node. After the users click a device block in the node selected, a blue cursor will appear. After the users click a device block in another node (a data supply node), a green cursor will appear. The users can only click a device block in a data supply node. They can not select the node, otherwise the node will be designated as a data demanding node.

The users can click to add a new piece of data to the data exchange table. The data includes the data demanding node, the node number assigned to the data demanding node, the data supply node, the node number assigned to the data supply node, and the device types selected. The users can refer to section 16.4.3, and set the other cells.


11.2.2.5 Start Mode of an Ether Link

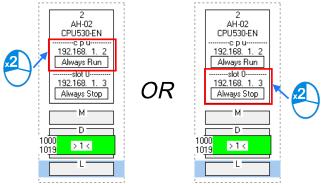
There are three start modes. Please refer to the table below for more information.

Start mode	Description
Always Stop	During the operation of the PLC, no data exchange is performed.
Always Run	When the PLC runs, data exchange is performed.
SM Flag	The performance of data exchange depends on a special auxiliary relay in the PLC. After users select SM Flag , they can set the initial state of the related special auxiliary relay.

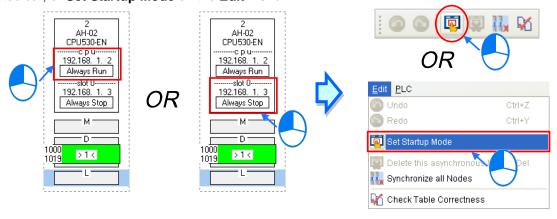
^{*.} Please refer to manuals or technical documents for more information about special auxiliary relays related to Ether Links.

The execution of an Ether Link is based on the nodes in a network. If some of the ports that a node has are connected to a network, users can set the start modes of the ports separately. When the Ether Link constructed is executed, the system automatically distributes reading/writing work to the ports according to the start modes of the ports. If a port is disconnected, the system will pass the work belonging to the port to another port.

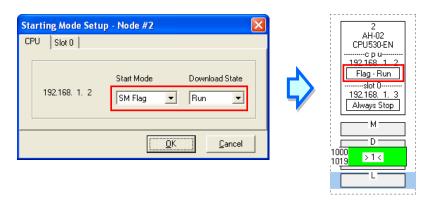
There are three ways to set the start mode of a node.


Method 1

Right-click CPU information or module information, and then click **Set Startup Mode** on the context menu.


Method 2

Double-click CPU information or module information.

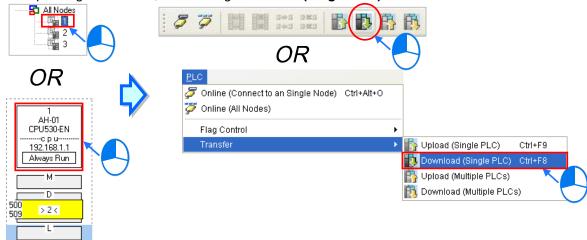

Method 3

After the users click CPU information or module information, they have to click on the toolbar, or **Set Startup Mode** on the **Edit** menu.

After the users use one of the methods described above, the Starting Mode Setup window will appear. The page displayed in the window varies with the information selected. The users can click the tabs in the window.

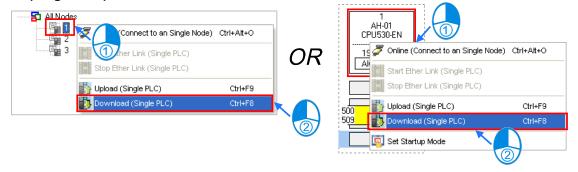
Select a mode in the **Start Mode** drop-down list box. If **SM Flag** is selected, the users can select an initial state in the **Download State** drop-down list box. After an initial state is selected, the users can click **OK**.

11.2.2.6 Downloading the Parameters Related to an Ether Link


After the parameters related to an Ether Link are set, users have to download the parameters to PLCs. The PLCs can perform data exchange after the parameters are downloaded.

Single node

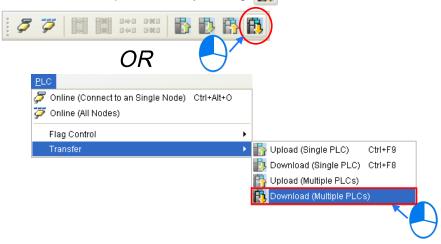
Only the data demanding setting related to the PLC selected, the start mode of the PLC selected, and the start modes of the modules connected to the PLC are downloaded. Before the users download the related parameters, they have to make sure that the system connects to the PLC normally, and they have completed the communication setting in NWCONFIG. Please refer to section 16.1.3 for more information.


Method 1

Select a data demanding node, and then click on the toolbar. The users can also download the related parameters by selecting a data demanding node, clicking the **PLC** menu, pointing to **Transfer**, and clicking **Download (Single PLC)**.

> Method 2

Select a data demanding node, right-click the data demanding node, and click **Download** (Single PLC) on the context menu.

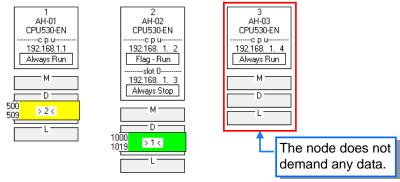


Multiple nodes

The data demanding setting related to all the nodes, and the start modes of all the nodes are downloaded. Before the users download the related parameters, they have to make sure that all the PLCs and all the modules are connected to an Ethernet network, and can connect to NWCONFIG through Ethernet. The connection type that the driver selected in the **Driver Name** drop-down list box in the **Select a Driver** window uses must be Ethernet, otherwise the related parameters can not be downloaded. Please refer to section 16.1.3 for more information.

Method 1

Click the **PLC** menu, point to **Transfer**, and click **Download (Multiple PLCs)**. The users can also download the related parameters by clicking on the toolbar.

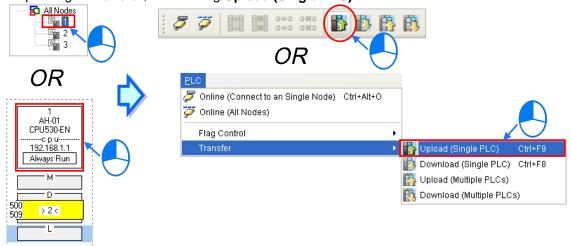

➤ Method 2

Select All Nodes on the node list, right-click All Nodes, and click Download (Multiple PLCs) on the context menu.

Additional remark

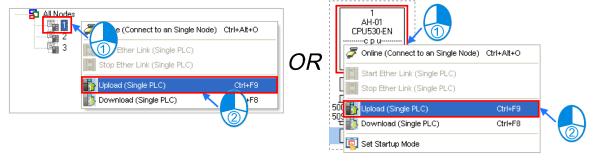
If the parameters set include a node which does not demand any data, the node will not demand any data through the network specified after the parameters are downloaded to multiple nodes.

11.2.2.7 Uploading the Parameters Related to an Ether Link


Users can upload the parameters related to an Ether Link in a PLC.

Single node

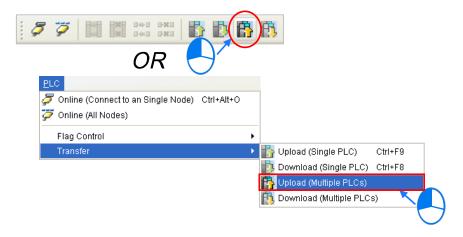
Only the parameters related to an Ether Link in the node selected are uploaded. Before the users upload the related parameters in a PLC, they have to make sure that the system connects to the PLC normally, and they have completed the communication setting in NWCONFIG. Please refer to section 16.1.3 for more information.


Method 1

Select a data demanding node, and then click on the toolbar. The users can also download the related parameters by selecting a data demanding node, clicking the PLC menu, pointing to Transfer, and clicking Upload (Single PLC).

> Method 2

Select a data demanding node, right-click the data demanding node, and click **Upload (Single PLC)** on the context menu.

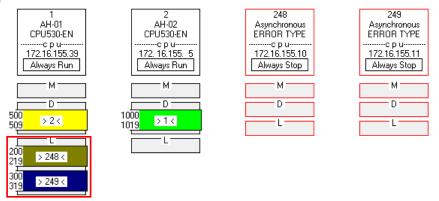

Multiple nodes

The parameters related to an Ether Link in all the nodes are uploaded. Before the users upload the related parameters, they have to make sure that all the PLCs and all the modules are connected to an Ethernet network, and can connect to NWCONFIG through Ethernet. The connection type that the driver selected in the **Driver Name** drop-down list box in the **Select a Driver** window uses must be Ethernet, otherwise the related parameters can not be uploaded. Please refer to section 16.1.3 for more information.

Method 1

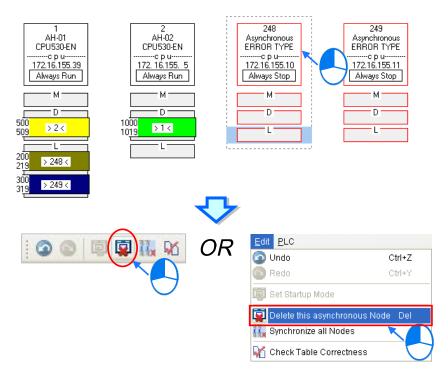
Click the **PLC** menu, point to **Transfer**, and click **Upload (Multiple PLCs)**. The users can also download the related parameters by clicking on the toolbar.

99


Method 2

Select All Nodes on the node list, right-click All Nodes, and click Upload (Multiple PLCs) on the context menu.

Additional remark


After the parameters which include a node not configured in NWCONFIG are uploaded, the node which is not configured in NWCONFIG will be called an asynchronous device, and will be in red. If the setting of an Ether Link includes an asynchronous device, the system does not allow the Ether Link to be monitored, and it does not allow the parameters related to the Ether Link to be downloaded.

11.2.2.8 Deleting Asynchronous Device

If the setting of an Ether Link includes asynchronous devices, the system does not allow the Ether Link to be monitored, and it does not allow the parameters related to the Ether Link to be downloaded. Users have to find out the reason for the existence of the asynchronous devices. If the network configuration in NWCONFIG is incorrect, the users have to modify the network configuration, and upload the parameters related to the Ether Link again. If the parameters uploaded are not applicable to the current network configuration, the users can delete the asynchronous devices.

Select an asynchronous device which will be deleted, and then click **Delete This Asynchronous**Node on the Edit menu, or on the toolbar.

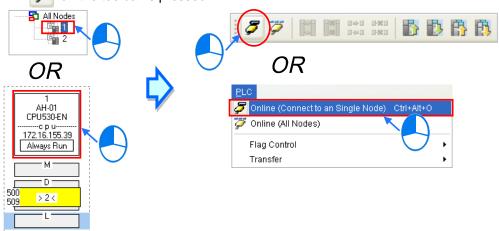
If the users want to delete all the asynchronous devices at the same time, they can click **Synchronize All Nodes** on the **Edit** menu, or **The Interview** on the toolbar.

11.2.2.9 Enabling/Disabling the Online Monitoring Function

In the **Ether Link Configuration** window, users can execute or test the Ether Link constructed by means of the online monitoring functions provided by NWCONFIG. The users can enable/disable the function of monitoring a single node/multiple nodes online.

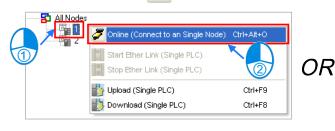
Enabling/Disabling		Description		
	Function	Enabling or disabling the function of monitoring the node selected online		
Single node	Condition	The users have to make sure that ISPSoft can connect to the PLC selected normally, and they have completed the communication setting in NWCONFIG.		
	Function	Enabling or disabling the function of monitoring all the nodes online		
Multiple nodes	Condition	The users have to make sure that all the nodes are connected to a network, and can connect to ISPSoft through Ethernet. The connection type that the driver selected in the Driver Name drop-down list box in the Select a Driver window uses must be Ethernet.		

^{*.} Please refer to section 16.1.3 for more information about the communication setting in NWCONFIG.


Before the users enable the online monitoring function, they have to make sure that all the nodes are connected according to the network framework created in NWCONFIG, and can operate normally.

- 99
- (a) Every node has been connected to a network according to the network framework created in NWCONIFG.
- (b) The users have set the parameters for Ethernet ports of the nodes by means of HWCOFNIG, and the parameters have been downloaded to the PLCs and the modules. The setting of the parameters must be consistent with the setting in NWCONFIG.
- (c) The parameters related to an Ether Link have been downloaded to the PLC selected.
- (d) Every node is powered up, and can operate normally.

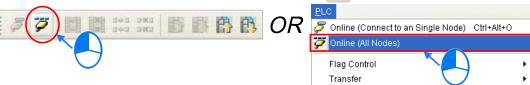
A. Enabling a Monitoring Function


- Enabling the function of monitoring a single node
 - Method 1

Select a data demanding node, and then click on the toolbar, or Online (Connect to a Single node) on the PLC menu. When the data demanding node is monitored, on the toolbar is pressed.

Method 2

Select a data demanding node, right-click the data demanding node, and click **Online** (**Connect to a Single Node**) on the context menu. When the data demanding node is monitored, on the toolbar is pressed.



• Enabling the function of monitoring multiple nodes

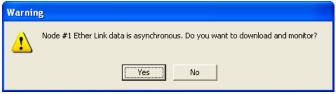
> Method 1

Click Online (All Nodes) on the PLC menu, or 💆 on the toolbar.



Method 2

Select All Nodes on the node list, right-click All Nodes, and click Online (All Nodes)


99

on the context menu.

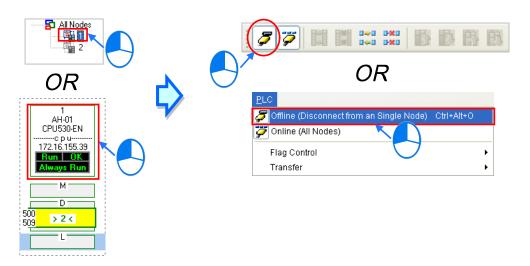
Additional remark

Before the system enters a monitoring mode, it checks whether the Ether Link constructed in the **Ether Link Configuration** window is consistent with the setting in the PLCs. If the Ether Link constructed in the **Ether Link Configuration** window is not consistent with the setting in the PLCs, the system will ask the users to download the related parameters again.

B. Monitoring Statuses

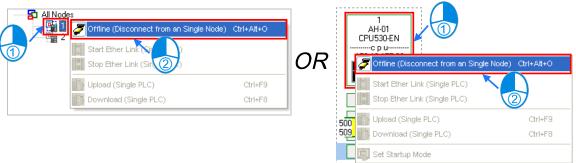
After the system enters a monitoring mode, the node which is monitored will be colored on the node list.

Besides, the words and the pictures in the display area will indicate the execution status of the current Ether Link after the system enters a monitoring mode.



C. Disabling a Monitoring Function

Disabling the function of monitoring a single node


Method 1

Select a data demanding node, and then click on the toolbar, or **Offline** (Disconnect from a Single node) on the PLC menu.

Method 2

Select a data demanding node, right-click the data demanding node, and click **Offline** (**Disconnect from a Single Node**) on the context menu.

When the data demanding node selected is not monitored, on the toolbar is not pressed. If another node is monitored, will be pressed.

- Disabling the function of monitoring multiple nodes
 - Method 1

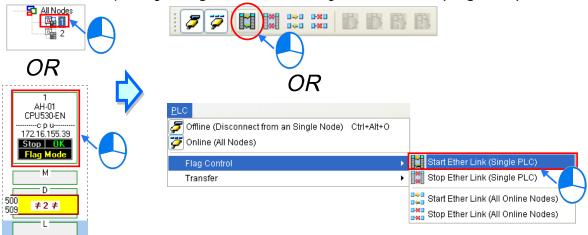
Click **Online (All Nodes)** on the **PLC** menu, or $\overline{\mbox{\em 7}}$ on the toolbar.

Method 2

Select **All Nodes** on the node list, right-click **All Nodes**, and click **Online (All Nodes)** on the context menu.

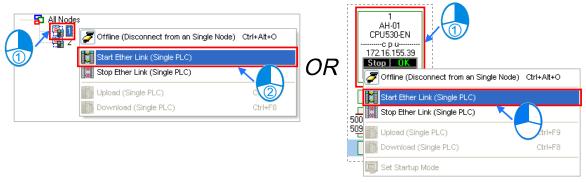
99

11.2.2.10 Starting/Stopping the Execution of an Ether Link Online


If the start mode of a node is **SM Flag**, users can make the node start or stop the execution of the Ether Link constructed by means of controlling the state of the related flag when the node is monitored online. If the node is not monitored online, the users can not make the node start or stop the execution of the Ether Link constructed by means of controlling the state of the related flag. Users can make a single node/multiple nodes start or stop the execution of the Ether Link constructed. The conditions for making a single node/multiple nodes start or stop the execution of the Ether Link constructed are the same as the conditions for enabling/disabling the function of monitoring a single node/multiple nodes online. Please refer to section 11.2.2.11 for more information.

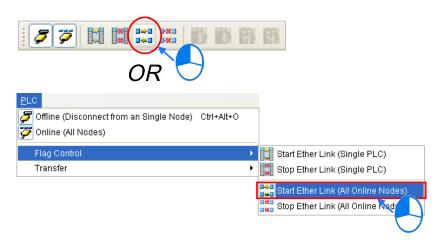
A. Starting the Execution of an Ether Link

Making a single node start the execution of an Ether Link


Method 1

If users want to make a node start the execution of the Ether Link constructed, they have to select the node, and click on the toolbar. They can also make the node start the execution of the Ether Link constructed by selecting the node, clicking the PLC menu, pointing to Flag Control, and clicking Start Ether Link (Single PLC).

Method 2

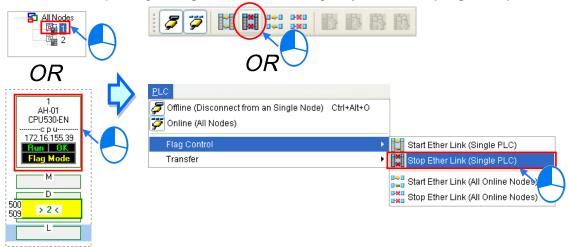

Select a node, right-click the node, and click **Start Ether Link (Single PLC)** on the context menu.

Making multiple nodes start the execution of an Ether Link

Method 1

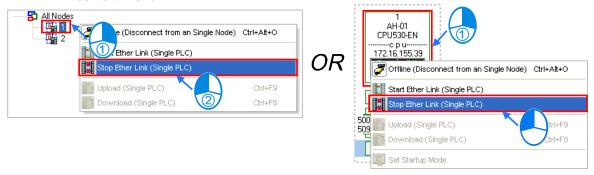
If users want to make all the nodes start the execution of the Ether Link constructed, they have to click the **PLC** menu, point to **Flag Control**, and click **Start Ether Link (All Online Nodes)**. The users can also make all the nodes start the execution of the Ether Link constructed by clicking on the toolbar.

Method 2


Select All Nodes on the node list, right-click All Nodes, and click Start Ether Link (All Online Nodes) on the context menu.

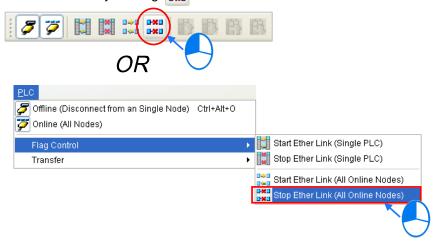
B. Stopping the Execution of an Ether Link

- Making a single node stop the execution of an Ether Link
 - Method 1


If users want to make a node stop the execution of the Ether Link constructed, they have to select the node, and click on the toolbar. They can also make the node stop the execution of the Ether Link constructed by selecting the node, clicking the PLC menu, pointing to Flag Control, and clicking Stop Ether Link (Single PLC).

99

➤ Method 2


Select a node, right-click the node, and click **Stop Ether Link (Single PLC)** on the context menu.

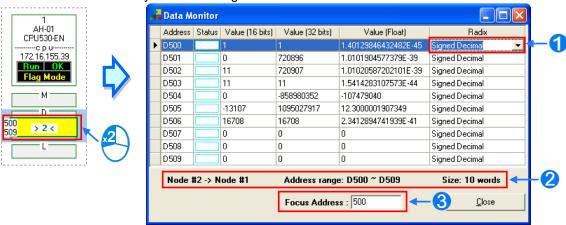
Making multiple nodes stop the execution of an Ether Link

Method 1

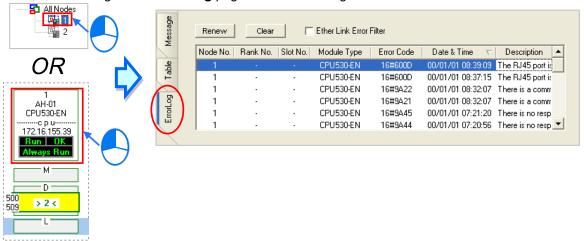
If users want to make all the nodes stop the execution of the Ether Link constructed, they have to click the **PLC** menu, point to **Flag Control**, and click **Stop Ether Link (All Online Nodes)**. The users can also make all the nodes stop the execution of the Ether Link constructed by clicking on the toolbar.

➤ Method 2

Select All Nodes on the node list, right-click All Nodes, and click Stop Ether Link (All Online Nodes) on the context menu.


Additional remark

If a node in the display area has several Ethernet ports, users can make a port start/stop the execution of the Ether Link constructed by means of clicking an item on the context menu which appears after they right-click the node. The execution of an Ether Link is based on the nodes in a network. If users make a port that a node has stop the execution of the Ether Link constructed, another node that the node has can still execute the Ether Link constructed.


11.2.2.11 Monitoring Table and Error Log

After users double-click a data block, the **Data Monitor** window will appear. The users can view the values in the window. They can not change the values in the window.

- 1 After users click the **Radix** cell for a device, they can select a method of representing the value in the device on the drop-down list.
- 2 The information about the data block which is monitored is displayed.
- 3 Users can type a device address in this box. After the users press **Enter** on the keyboard, they can easily view the device address in the window.

After a node is selected, the error log in the node will be displayed in the **Error Log** page. If the users select the **Ether Link Error Filter** checkbox, only the error log related to the Ether Link constructed will be listed. Besides, after the users click **Renew**, the error log in the node will be retrieved, and the error log retrieved will be displayed in the **Error Log** page. After the users click **Clear**, the error log in the **Error Log** page and the error log in the node will be cleared.

If the node selected consists of a CPU module and a module, the error log in the Error Log page will

99

be composed of the errors occurring in the CPU module and the errors occurring in the module. If an error code in the **Error Log** page corresponds to an error occurring in the module, the model name of the module will be displayed in the **Module Type** cell for the error code, the rack on which the module is installed will be indicated by the number in the **Rack No.** cell for the error code, and the slot in which the module is installed will be indicated by the number in the **Slot No.** cell for the error code. If an error code in the **Error Log** page corresponds to an error occurring in the CPU module, there will be no numbers in the **Rack No.** cell for the error code and the **Slot No.** cell for the error code.

11.2.3 Related Special Auxiliary Relays and Special Data Registers

1. Descriptions of the related special auxiliary relays:

Device	Name	R/W	Description
SM1770	Executing an Ether Link (CPU)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1772	Executing an Ether Link (Port 0)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1773	Executing an Ether Link (Port 1)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1774	Executing an Ether Link (Port 2)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1775	Executing an Ether Link (Port 3)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1776	Executing an Ether Link (Port 4)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1777	Executing an Ether Link (Port 5)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1778	Executing an Ether Link (Port 6)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1779	Executing an Ether Link (Port 7)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1780	Executing an Ether Link (Port 8)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.

Device	Name	R/W	Description
SM1781	Executing an Ether Link (Port 9)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1782	Executing an Ether Link (Port 10)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1783	Executing an Ether Link (Port 11)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1784	Executing an Ether Link (Port 12)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1785	Executing an Ether Link (Port 13)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1786	Executing an Ether Link (Port 14)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1787	Executing an Ether Link (Port 15)	R/W	The start mode selected is SM Flag . OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1788	Ether Link error (CPU)	R	If an error occurs when an Ether Link is executed, SM1788 will be OFF. If no error occurs when a PLC Link is executed, SM1788 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1790	Ether Link error (Port 0)	R	If an error occurs when an Ether Link is executed, SM1790 will be OFF. If no error occurs when a PLC Link is executed, SM1790 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.

Device	Name	R/W	Description
SM1791	Ether Link error (Port 1)	R	If an error occurs when an Ether Link is executed, SM1791 will be OFF. If no error occurs when a PLC Link is executed, SM1791 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1792	Ether Link error (Port 2)	R	If an error occurs when an Ether Link is executed, SM1792 will be OFF. If no error occurs when a PLC Link is executed, SM1792 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1793	Ether Link error (Port 3)	R	If an error occurs when an Ether Link is executed, SM1793 will be OFF. If no error occurs when a PLC Link is executed, SM1793 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1794	Ether Link error (Port 4)	R	If an error occurs when an Ether Link is executed, SM1794 will be OFF. If no error occurs when a PLC Link is executed, SM1794 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1795	Ether Link error (Port 5)	R	If an error occurs when an Ether Link is executed, SM1795 will be OFF. If no error occurs when a PLC Link is executed, SM1795 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1796	Ether Link error (Port 6)	R	If an error occurs when an Ether Link is executed, SM1796 will be OFF. If no error occurs when a PLC Link is executed, SM1796 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.

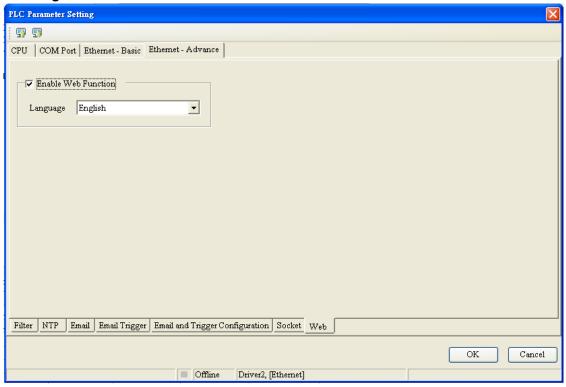
Device	Name	R/W	Description
SM1797	Ether Link error (Port 7)	R	If an error occurs when an Ether Link is executed, SM1797 will be OFF. If no error occurs when a PLC Link is executed, SM1797 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1798	Ether Link error (Port 8)	R	If an error occurs when an Ether Link is executed, SM1798 will be OFF. If no error occurs when a PLC Link is executed, SM1798 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1799	Ether Link error (Port 9)	R	If an error occurs when an Ether Link is executed, SM1799 will be OFF. If no error occurs when a PLC Link is executed, SM1799 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1800	Ether Link error (Port 10)	R	If an error occurs when an Ether Link is executed, SM1800 will be OFF. If no error occurs when a PLC Link is executed, SM1800 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1801	Ether Link error (Port 11)	R	If an error occurs when an Ether Link is executed, SM1801 will be OFF. If no error occurs when a PLC Link is executed, SM1801 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1802	Ether Link error (Port 12)	R	If an error occurs when an Ether Link is executed, SM1802 will be OFF. If no error occurs when a PLC Link is executed, SM1802 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.

Device	Name	R/W	Description
SM1803	Ether Link error (Port 13)	R	If an error occurs when an Ether Link is executed, SM1803 will be OFF. If no error occurs when a PLC Link is executed, SM1803 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1804	Ether Link error (Port 14)	R	If an error occurs when an Ether Link is executed, SM1804 will be OFF. If no error occurs when a PLC Link is executed, SM1804 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1805	Ether Link error (Port 15)	R	If an error occurs when an Ether Link is executed, SM1805 will be OFF. If no error occurs when a PLC Link is executed, SM1805 will be ON. OFF: An Ether Link is executed incorrectly. ON: An Ether Link is executed correctly.
SM1806	Status of an Ether Link (CPU)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1808	Status of an Ether Link (Port 0)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1809	Status of an Ether Link (Port 1)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1810	Status of an Ether Link (Port 2)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1811	Status of an Ether Link (Port 3)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1812	Status of an Ether Link (Port 4)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1813	Status of an Ether Link (Port 5)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1814	Status of an Ether Link (Port 6)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.
SM1815	Status of an Ether Link (Port 7)	R	OFF: The execution of an Ether Link stops. ON: An Ether Link is executed.

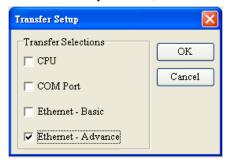
Device	Name	R/W	Description
			OFF: The execution of an Ether Link
SM1816	Status of an Ether Link (Port 8)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1817	Status of an Ether Link (Port 9)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1818	Status of an Ether Link (Port 10)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1819	Status of an Ether Link (Port 11)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1820	Status of an Ether Link (Port 12)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1821	Status of an Ether Link (Port 13)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1822	Status of an Ether Link (Port 14)	R	stops.
			ON: An Ether Link is executed.
			OFF: The execution of an Ether Link
SM1823	Status of an Ether Link (Port 15)	R	stops.
	, ,		ON: An Ether Link is executed.
	SM1824~ Status of storage block 1~Status of storage block 128		OFF: A storage block is inactive in
SM1824~		R	performing data exchange.
SM1951			ON: A storage block is active in
			performing data exchange.

2. Descriptions of the related special data registers:

Device	Name	R/W	Description
SR1792	High word of the IP address to which storage block 1 is connected	R	High word of the IP address to which storage block 1 is connected Example: If the remote IP address is 192.168.1.100, the value in SR1792 will be 0xC0A8.
SR1793	Low word of the IP address to which storage block 1 is connected	R	Low word of the IP address to which storage block 1 is connected Example: If the remote IP address is 192.168.1.100, the value in SR1793 is 0x0164.
SR2046	High word of the IP address to which storage block 128 is connected	R	High word of the IP address to which storage block 128 is connected Example: If the remote IP address is 192.168.1.100, the value in SR2046 will be 0xC0A8.
SR2047	Low word of the IP address to which storage block 128 is connected	R	Low word of the IP address to which storage block 128 is connected Example: If the remote IP address is 192.168.1.100, the value in SR2047 will be 0x0164.

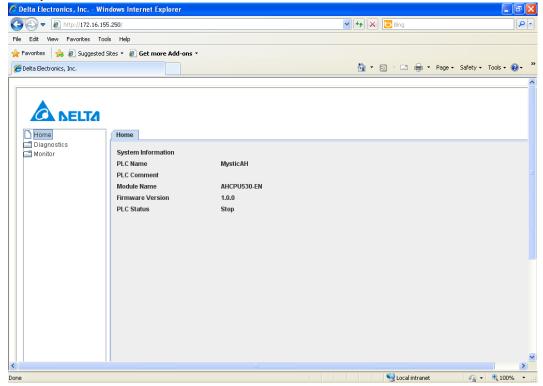

11.3 Web

11.3.1 Introduction


AHCPU5XX-EN is equipped with a web monitoring function. Users can view information (such as the I/O table, devices, system logs, setting values) in AHCPU5XX-EN by means of a web browser, e.g. Internet Explorer.

11.3.2 Usage

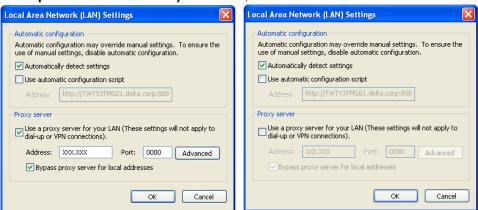
- Start ISPSoft, and then double-click HWCONFIG in the project management area. Double-click
 the CPU module in the system configuration area. Click the Ethernet—Advance tab at the top
 of the PLC Parameter Setting window, and the Web tab at the bottom of the PLC Parameter
 Setting window. Select the Enable Web Function checkbox.
- 2. Select a language which will be adopted in the drop-down list box in the **PLC Parameter Setting** window.


3. Click in the upper left corner of the PLC Parameter Setting window. Select the Ethernet —Advance checkbox in the Transfer Setup window, and then click OK.

4. After the parameters are downloaded, the web monitoring function can be used.

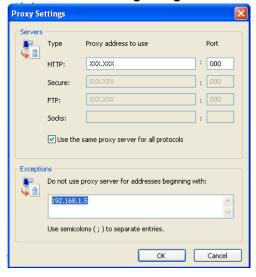


5. Open Internet Explorer, type the IP address which is set in the address bar, and press Enter on the keyboard.

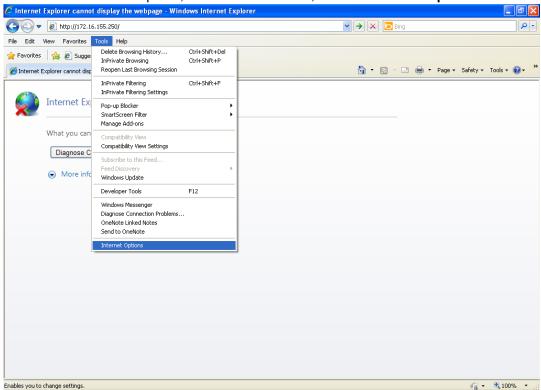

11.3.3 Troubleshooting

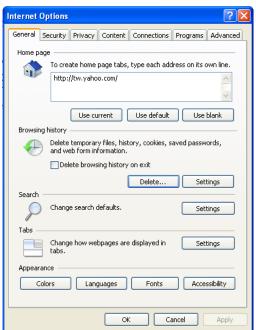
- Unable to connect to a CPU module
 - 1. Please make sure that Java has been installed correctly. Users can check whether Java has been installed correctly by visiting the Java webpage.
 - 2. Please check the setting related to a proxy server. If there is setting related to a proxy server, users have to disable the proxy server, or make an exception.
- Disabling a proxy server
 - 1. Launch Internet Explorer, click the **Tools** menu, and click **Internet Options**.
 - 2. Click the Connections tab, and click LAN settings.




3. Unselect the Use a proxy server for your LAN (These settings will not apply to dial-up or VPN connections). checkbox, and click OK.

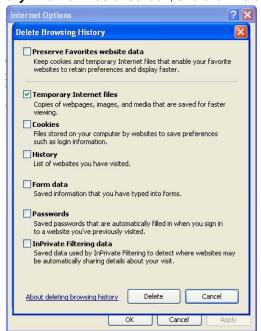
- Making an exception
 - 1. Click Advanced in the Local Area Network (LAN) Settings window.


2. Type the IP address assigned to the AH500 series CPU module which is used in the **Do not use proxy server for addresses beginning with:** box.

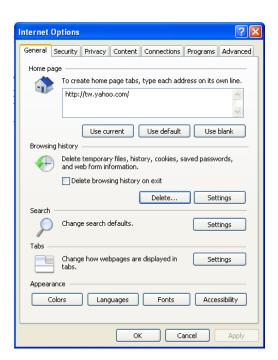

3. Click OK.

If webpages can not be displayed normally, users have to delete temporary Internet files.

1. Launch Internet Explorer, click the Tools menu, and click Internet Options.



2. Click the General tab, and click Delete....



99

3. Select the **Temporary Internet files** checkbox, and click **Delete**.

4. Click OK.

MEMO

Chapter 12 Troubleshooting

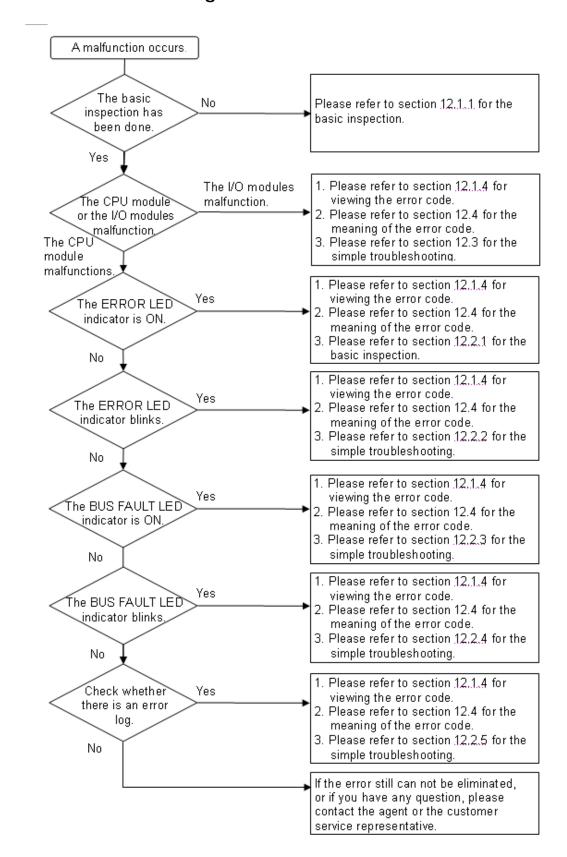
Table	of Contents	
12.1	Troubleshooting	12-2
12.1.1	Basic Inspection	12-2
12.1.2	Eliminating Errors	12-2
12.1.3	Troubleshooting Procedure	12-3
12.1.4	Viewing Error Logs	
12.2	Troubleshooting for CPU Modules	
12.2.1	ERROR LED Indicator's being ON	12-5
12.2.2	ERROR LED Indicator's Blinking	12-6
12.2.3	BUS FAULT LED Indicator's being ON	12-13
12.2.4	BUS FAULT LED Indicator's blinking	12-14
12.2.5	Others	
12.3	Troubleshooting for I/O Modules	12-26
12.3.1	Troubleshooting for Analog I/O Modules and Temperature	
	Measurement Modules	12-26
12.3.2	Troubleshooting for AH02HC-5A/AH04HC-5A	
12.3.3	Troubleshooting for AH10PM-5A	
12.3.4	Troubleshooting for AH20MC-5A	
12.3.5	Troubleshooting for AH10EN-5A	
12.3.6	Troubleshooting for AH10SCM-5A	
12.3.7		
	Error Codes and LED Indicators	
12.4.1	CPU Modules	
12.4.2	Analog I/O Modules and Temperature Measurement Modules .	
12.4.3	AH02HC-5A/AH04HC-5A	12-51
12.4.4	AH10PM-5A	
12.4.5	AH20MC-5A	
12.4.6	AH10EN-5A	_
12.4.7	AH10SCM-5A	
12.4.8	AH10DNET-5A	12-55

12.1 Troubleshooting

12.1.1 Basic Inspection

This chapter describes errors which occur when a system operates, reasons for these errors, and remedies. Before eliminating an error, users have to determine the reason for the error. Before determining the reason, the users have to check the following.

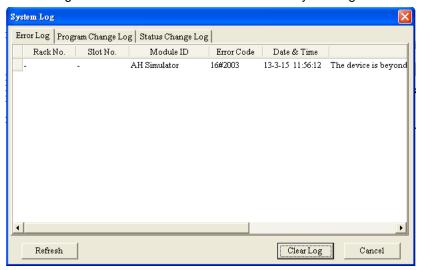
- (1) The following items have to be checked.
 - The PLC system must operate under the conditions which are regulated, e.g. the environment, the electrical condition, the mechanical vibration, and etc.
 - The power is supplied to the power supply module properly, and the power supplied to the PLC system is normal.
 - The backplanes, modules, terminals, and cables are installed properly.
 - Every LED indicator is in a normal state.
 - The setting of the switches is correct.
- (2) Follow the instructions below, and check the operating state of the AH500 system.
 - Turn the RUN/STOP switch.
 - Check the condition for the running/stopping of the CPU module.
 - Check and eliminate the influences that the external devices may cause.
 - Monitor the operating state of the system and the error logs by means of ISPSoft.
- (3) Determine the reason for the error according to (1) and (2) above.
 - The AH500 system or the external devices
 - The CPU module or the extension modules
 - The parameters or the control programs


12.1.2 Eliminating Errors

If an error occurs in a system, users can try to eliminate the error in the following ways. If the reason for the error still exists after the error is eliminate, the error will occur in the system again.

- (1) Stop the CPU module, and then run it.
- (2) Disconnect the CPU module, and then connect it.
- (3) Clear the error log by means of ISPSoft.
- (4) After the CPU module is rest, or restored to the factory setting, download the program again, and execute the program.

12.1.3 Troubleshooting Procedure



When an error occurs, a corresponding error code generated by a system is recorded in a CPU module. Twenty error logs at most can be stored in the CPU module. If there are more than twenty error logs generated, the oldest error log will be overwritten by the latest error log. However, if a memory card is installed in the CPU module, the twenty error logs are automatically backed up in the memory card before the oldest error log is overwritten. One thousand error logs at most can be stored in the memory card. If there are more than 1000 error logs which will be stored in the memory card, the twenty oldest error logs will be overwritten by the twenty latest error logs.

(1) After ISPSoft is started, click **System Log** on the **PLC** menu.

(2) The **System Log** window is as follows. Users can refresh the error logs by clicking **Refresh**, and clear the error logs in the window and the CPU module by clicking **Clear**.

- Rack number & Slot number: If errors are generated by extension modules, the racks and the slots on which the extension modules are installed are recorded in these columns. If no rack number and no slot number are recorded, it means that an error occurs in a CPU module.
- Module ID: The IDs of CPU modules, or those of extension modules
- Error Code: The error codes for error logs
- Date & Time: The time when errors occur

The newer error log is exhibited in the upper row.

12.2 Troubleshooting for CPU Modules

Users can get the remedies from the tables below according to the statuses of the LED indicators and the error codes.

12.2.1 ERROR LED Indicator's being ON

Error code	Description	Remedy
16#000B	The program in the PLC is damaged.	Download the program again.
16#000D	The CPU parameters are damaged.	Reset the CPU parameter, and download it.
16#0010	The access to the memory in the CPU is denied.	Download the program or parameters again. If the problem still occurs, please contact the factory.
16#0011	The PLC ID is incorrect. (SM9)	Please check the PLC ID.
16#0012	The PLC password is incorrect. (SM9)	Please check the PLC password.
16#0014	The procedure of restoring the system can not be executed. (SM9)	The contents of the system backup file are incorrect, or the file does not exist in the path specified. If the file exists and the procedure of restoring the system can not be executed, please backing up the system again. If the error still occurs, please contact the factory. (Please refer to section 7.5 in AH500 Operation Manual, and section 18.2 in ISPSoft User Manual for more information about the memory card.)
16#0015	The module table is incorrect. (SM10)	The module table stored in the CPU module is incorrect. Compare the module table in HWCONFIG with the actual module configuration, and download the module table again.
16#0016	The module setting is incorrect. (SM10)	The module setting stored in the CPU module is incorrect. Check whether the version of the module inserted in the slot is the same as the version of the module in HWCONFIG. After the version of the module is updated, users can download the module setting again.
16#0017	The data register exceeds the device range. (SM10)	The data register stored in the CPU module exceeds the device range. Check whether the module parameter in HWCONFIG is correct, and download the module parameter again.
16#001B	Timed interrupt 0 is set incorrectly.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.
16#001C	Timed interrupt 1 is set incorrectly.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.
16#001D	Timed interrupt 2 is set incorrectly.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.
16#001E	Timed interrupt 3 is set incorrectly.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.
16#001F	The watchdog timer is set incorrectly.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.
16#0020	The setting of the fixed scan time is incorrect.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.

12

Error code	Description	Remedy
16#0021	The setting of the fixed scan time is incorrect.	Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.
16#0022	The CPU parameter downloaded to the PLC is incorrect.	Download the CPU parameter again.
16#0050	The memories in the latched special auxiliary relays are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0051	The latched special data registers are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0052	The memories in the latched auxiliary relays are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0053	The latched timers are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0054	The latched counters are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0055	The latched 32-bit counters are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0056	The memories in the latched timers are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0057	The memories in the latched counters are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0058	The memories in the latched 32-bit counters are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#0059	The latched data registers are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.
16#005A	The latched working registers are abnormal.	After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again.

12.2.2 ERROR LED Indicator's Blinking

Error code	Description	Remedy
16#000A	Scan timeout (SM8: The watchdog timer	Check the setting of the watchdog timer in HWCONFIG.
error)	` \	Check whether the program causes the long scan time
16#000C	The program downloaded to the PLC is incorrect.	After users compile the program again, they can download the program again.
16#000E	The program or the parameter is being downloaded, and therefore the PLC can not run.	After the program or the parameter is downloaded to the PLC, users can try to run the PLC.

Error code	Description	Remedy
16#0018	The serial port is abnormal. (SM9)	Retry the connection. If the error still occurs, please contact the factory.
16#0019	The USB is abnormal. (SM9)	Retry the connection. If the error still occurs, please contact the factory.
16#0033	The communication setting of COM1 is incorrect. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#0034	The setting of the station address of COM1 is incorrect. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#0035	The setting of the communication type of COM1 is incorrect. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#0036	The interval of retrying the sending of the command through COM1 is set incorrectly.(SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#0037	The number of times the sending of the command through COM1 is retried is set incorrectly. (SM9)	Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#0038	The communication setting of COM2 is incorrect. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#0039	The setting of the station address of COM2 is incorrect. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#003A	The setting of the communication type of COM2 is incorrect. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#003B	The interval of retrying the sending of the command through COM2 is set incorrectly.(SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#003C	The number of times the sending of the command through COM2 is retried is set incorrectly. (SM9)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#005E	The memory card is initialized incorrectly. (SM453)	Check whether the memory card breaks down.
16#005F	The data is read from the inexistent file in the memory card, or the data is written into the inexistent file in the memory card. (SM453)	Check whether the file path is correct.

Error code	Description	Remedy
16#0060	The default folder can not be created in the CPU module. (SM453)	Check whether the capacity of the memory card is large enough, or whether the memory card breaks down.
16#0061	The capacity of the memory card is not large enough. (SM453)	Check whether the capacity of the memory card is large enough.
16#0062	The memory card is write protected. (SM453)	Check whether the memory card is write protected.
16#0063	An error occurs when the data is written into the memory card. (SM453)	Check whether the file path is correct, or whether the memory card breaks down.
16#0064	The file in the memory card can not be read. (SM453)	Check whether the file path is correct, or whether the file is damaged.
16#0065	The file in the memory card is a read-only file. (SM453)	Users need to set the file so that the file is not a read-only file.
16#0066	An error occurs when the system is backed up.	 Check whether the memory card is normal, and whether the capacity of the memory card is large enough. Retry the backup procedure. If the error still occurs, please contact the factory.
16#2000	There is no END in the program in the PLC. (SM5)	 Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.
16#2002	GOEND is used incorrectly. (SM5)	Check the program, compile the program again, and download the program again.
16#2003	The devices used in the program exceed the range. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#2004	The part of the program specified by the label used in CJ/JMP is incorrect, or the label is used repeatedly. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#2005	The N value used in MC is not the same as the corresponding N value used in MCR, or the number of N values used in MC is not the same as the number of N values used in MCR. (SM5)	Check the program, compile the program again, and download the program again.
16#2006	The N values used in MC do not start from 0, or the N values used in MC are not continuous. (SM5)	Check the program, compile the program again, and download the program again.
16#2007	The operands used in ZRST are not used properly. (SM5)	Check the program, compile the program again, and download the program again.
16#200A	Invalid instruction (SM5)	Check the program, compile the program again, and download the program again.
16#200B	The operand n or the other constant operands exceed the range. (SM0/SM5)	Check the program, compile the program again, and download the program again.

Error code	Description	Remedy
16#200C	The operands overlap. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#200D	An error occurs when the binary number is converted into the binary-coded decimal number. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#200E	The string does not end with 0x00. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#200F	The instruction does not support the modification by an index register. (SM5)	Check the program, compile the program again, and download the program again.
16#2010	 The instruction does not support the device. Encoding error The instruction is a 16-bit instruction, but the constant operand is a 32-bit code. (SM5) 	Check the program, compile the program again, and download the program again.
16#2011	The number of operands is incorrect. (SM5)	Check the program, compile the program again, and download the program again.
16#2012	Incorrect division operation (SM0/SM5).	Check the program, compile the program again, and download the program again.
16#2013	The value exceeds the range of values which can be represented by the floating-point numbers. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#2014	The task designated by TKON/TKOFF is incorrect, or exceeds the range. (SM5)	Check the program, compile the program again, and download the program again.
16#2015	There are more than 32 levels of nested program structures supported by CALL. (SM0)	Check the program, compile the program again, and download the program again.
16#2016	There are more than 32 levels of nested program structures supported by FOR/NEXT. (SM0/SM5)	Check the program, compile the program again, and download the program again.
16#2017	The number of times FOR is used is different from the number of times NEXT is used. (SM5)	Check the program, compile the program again, and download the program again.
16#2018	There is a label after FEND, but there is no SRET. There is SRET, but there is no label. (SM5)	 Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.
16#2019	The interrupt task is not after FEND. (SM5)	 Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.
16#201A	IRET/SRET is not after FEND. (SM5)	 Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.

Error code	Description	Remedy
16#201B	There is an interrupt task, but there is no IRET. There is IRET, but there is not interrupt task. (SM5)	Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.
16#201C	End is not at the end of the program. (SM5)	 Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.
16#201D	There is CALL, but there is no MAR. (SM5)	 Compile the program again, and download the program again. Reinstall ISPSoft, compile the program again, and download the program again.
16#201E	The function code used in MODRW is incorrect. (SM102/SM103)	Check the usage of the instruction and the setting of the operands. Please refer to the explanation of the instruction MODRW in AH500 Programming Manual for more information.
16#201F	The length of the data set in MODRW is incorrect. (SM102/SM103)	Check the usage of the instruction and the setting of the operands. Please refer to the explanation of the instruction MODRW in AH500 Programming Manual for more information.
16#2020	The communication command received by using MODRW is incorrect. (SM102/SM103)	Check whether the slave supports the function code and the specified operation.
16#2021	The checksum of the command received is incorrect. (SM102/SM103)	 Check whether there is noise, and retry the sending of the command. Check whether the slave operates normally.
16#2022	The format of the command used in MODRW does not conform to the ASCII format. (SM102/SM103)	Make sure that the format of the command conforms to the ASCII format.
16#2023	There is a communication timeout when MODRW is executed. (SM120/SM103)	Check whether the slave operates normally, and whether the connection is normal.
16#2024	The setting value of the communication timeout is invalid. (SM120/SM103)	 Check the program and the related special data registers. Set the communication port parameter for the CPU module in HWCONFIG again.
16#2025	There is a communication timeout when RS is executed. (SM120/SM103)	Check whether the slave operates normally, and whether the connection is normal.
16#6000	Ethernet connection error (SM1106)	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6001	Illegal IP address (SM1107)	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6002	Illegal netmask address (SM1107)	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.

Error code	Description	Remedy
16#6003	Illegal gateway mask (SM1107)	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6004	The IP address filter is set incorrectly. (SM1108)	Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6006	The static ARP table is set incorrectly. (SM1108)	Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6008	Illegal network number (SM1107)	Check the network configuration in NWCONFIG, and download it again.
16#6009	Illegal node number (SM1107)	Check the network configuration in NWCONFIG, and download it again.
16#6101	The trigger in the email is set incorrectly. (SM1112)	Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6102	The interval of sending the email is set incorrectly. (SM1112)	Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6103	The device containing the data specified as the attachment exceeds the device range. (SM1112)	Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6106	The SMTP server address is incorrect. (SM1112)	Make sure that the address is correct, and set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6108	SMTP authentication error (SM1112)	Check the user name, and the password. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6110	The SMTP server needs to be authenticated. (SM1112)	Check the user name, and the password. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6111	The specified email address does not exist. (SM1112)	 Check whether the email address is correct. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6200	The remote IP address set in the TCP socket function is illegal. (SM1196)	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6209	The remote IP address set in the UDP socket function is illegal. (SM1196)	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6300	Only auxiliary relays, data registers, and link registers can be used in the Ether Link.	Check the setting of the Ether Link in NWCONFIG, and download it again.
16#6301	The device used in the Ether Link exceeds the device range.	Check whether the device used in the Ether Link is within the device range supported by the CPU module.
16#6302	The length of the data exchanged in the Ether Link exceeds the limit.	Check whether the length of the data exchanged in the Ether Link is within the range supported by the CPU module.
16#6305	The node used in the communication command is different from the local node.	Check the setting of the Ether Link in NWCONFIG, and download it again.

Error code	Description	Remedy
16#630A	The module ID or the setting of the module is different from the setting in the Ether Link.	Check the setting of the parameter in HWCONFIG. Check the setting of the Ether Link in NWCONFIG.
16#630B	The setting of the netmask address for the CPU or the module is different from the setting in the Ether Link.	Check the setting of the parameter in HWCONFIG. Check the setting of the Ether Link in NWCONFIG.
16#6602	The node number exceeds the limit. (SM1598)	Check the network configuration in NWCONFIG, and download it again.
16#6603	The device is undefined. (SM1599)	Check the network configuration in NWCONFIG, and download it again.
16#8230	The CPU parameter downloaded is incorrect. The IP address is illegal.	 Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8231	The CPU parameter downloaded is incorrect. The netmask address is illegal.	Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8232	The CPU parameter downloaded is incorrect. The gateway address is illegal.	Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8233	The CPU parameter downloaded is incorrect. The IP address filter is set incorrectly.	Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8235	The CPU parameter downloaded is incorrect. The static ARP table is set incorrectly.	Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8237	The CPU parameter downloaded is incorrect. The network number is illegal.	 Check the network configuration in NWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8238	The CPU parameter downloaded is incorrect. The node number is illegal.	 Check the network configuration in NWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8239	The CPU parameter downloaded is incorrect. The email is set incorrectly.	 Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#823A	The CPU parameter downloaded is incorrect. The trigger in the email is set incorrectly.	Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#823B	The CPU parameter downloaded is incorrect. The TCP socket is set incorrectly.	Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.

Error code	Description	Remedy
16#823C	The CPU parameter downloaded is incorrect. The UDP socket is set incorrectly.	 Check the Ethernet parameter in the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.

12.2.3 BUS FAULT LED Indicator's being ON

When a CPU module detects an error, the BUS FAULT LED indicator on the CPU module is ON. The BUS FAULT LED indicator on the CPU module corresponds to the ERROR LED indicator on an I/O module. If an error occurs in an I/O module, the status of the BUS FAULT LED indicator on the CPU module is the same as that of the ERROR LED indicator on the I/O module. If there are errors occurring in the I/O modules, the BUS FAULT LED indicator on the CPU module will be ON. For example, the BUS FAULT LED indicator on the CPU module will be ON if the ERROR LED indicator on I/O module A is ON and the ERROR LED indicator on I/O module B blinks. If the ERROR LED indicator on I/O module B still blinks after the error occurring in I/O module A is eliminated, the BUS FAULT LED indicator on the CPU module will blink. Please refer to sections 12.4.2~12.4.8 in this manual for more information about the LED indicators.

Users can get the remedies for the errors detected by a CPU module from the table below. If the error code which users get is not listed in the table below, users need to check whether the I/O module operates normally. Please refer to section 12.3 in this manual for more information about the troubleshooting for I/O modules.

Error code	Description	Remedy
16#0013	The I/O module can not run/stop. (SM10)	Check whether the setting of the parameter for the module is correct. If the setting is correct, please check whether the module breaks down. If the error still occurs, please contact the factory.
16#0014	The procedure of restoring the system can not be executed. (SM9)	The contents of the system backup file are incorrect, or the file does not exist in the path specified. If the file exists and the procedure of restoring the system can not be executed, please backing up the system again. If the error still occurs, please contact the factory. (Please refer to section 7.5 in AH500 Operation Manual, and section 18.2 in ISPSoft User Manual for more information about the memory card.)
16#1400	An error occurs when the data is accessed through the auxiliary processor. (SM9)	Please contact the factory.
16#1401	An error occurs when the data in the I/O module is accessed. (SM9)	Please contact the factory.
16#1402	The actual arrangement of the I/O modules is not consistent with the module table. (SM9)	Check whether the module table in HWCONFIG is consistent with the actual arrangement of the I/O modules.
16#1403	An error occurs when the data is read from the module. (SM9)	Check whether the module operates normally. If the error still occurs, please contact the factory.
16#1404	A watchdog timer error occurs in the module. (SM9)	Check whether the module breaks down. If the module breaks down, please replace it and contact the factory.
16#1405	The setting parameter of the module is not found. (SM9)	Set the parameter in HWCONFIG again, and download it.

Error code	Description	Remedy
16#1406	A communication error occurs when the data is accessed through the main processor. (SM9)	Check whether there is noise, and eliminate the noise. If the error still occurs, please contact the factory.
16#1407	A communication error occurs when the data is accessed through the auxiliary processor. (SM9)	Check whether there is noise, and eliminate the noise. If the error still occurs, please contact the factory.
16#1408	The communication with the module is incorrect. (SM9)	Check whether there is noise, and eliminate the noise. If the error still occurs, please contact the factory.
16#1409	The extension backplane is disconnected. (SM9)	 Check whether the extension backplane is connected properly. Check whether the extension backplane operates normally, and make sure that the extension backplane is not affected by noise.
16#140A	The communication with the extension backplane is incorrect. (SM9)	Check whether the extension backplane is connected properly. Check whether the extension backplane operates normally, and make sure that the extension backplane is not affected by noise.
16#140B	The number of network modules exceeds the limit. (SM9)	Please decrease the number of network modules to the number supported by the system.

12.2.4 BUS FAULT LED Indicator's blinking

If the BUS FAULT LED blinks, please check the operating state of the module. Please refer to sections 12.4.2~12.4.8 in this manual for more information about the LED indicators, and section 12.3 in this manual for more information about the troubleshooting for I/O modules.

12.2.5 Others

Error code	Description	Remedy
16#000F	The original program in the PLC is damaged.	After users compile the program again, they can download the program again.
16#2026	The interrupt number used in RS is incorrect.	Compile the program again, and download the program again. If the error still occurs, please contact the factory.
16#600A	TCP connection failure (SM1090)	 Check the actual network configuration, and check whether the number of TCP connections exceeds the upper limit supported by the CPU module. Retry the TCP connection later. (This error does not cause the PLC to stop running. Users can perform the corresponding remedy by means of the related flag in the program.)

Error code	Description	Remedy
16#600B	UDP connection failure (SM1091)	 Check the actual network configuration, and check whether the number of UDP connections exceeds the upper limit supported by the CPU module. Retry the TCP connection later. (This error does not cause the PLC to stop running. Users can perform the corresponding remedy by means of the related flag in the program.)
16#600C	The TCP socket has been used. (SM1109)	1. Check whether the actual data access results in the use of the same socket. 2. Change the socket number, or retry the socket later. (This error does not cause the PLC to stop running. Users can perform the corresponding remedy by means of the related flag in the program.)
16#600D	The RJ45 port is not connected.	Check the communication cable.
16#6100	The email connection is busy. (SM1113)	Retry the email connection later. (This error does not cause the PLC to stop running. Users can perform the corresponding remedy by means of the related flag in the program.)
16#6104	The attachment in the email does not exist. (SM1113)	Check whether the attachment exists in the memory card.
16#6105	The attachment in the email is oversized. (SM1113)	Check the size of the file which is specified as the attachment. If the size is over 2 MB, the file can not be specified as the attachment.
16#6107	There is an SMTP server response timeout. (SM1113)	 Check whether the status of the SMTP server is normal. Retry the sending of the email later. (This error does not cause the PLC to stop running. Users can perform the corresponding remedy by means of the related flag in the program.)
16#6201	The local communication port set in the TCP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6202	The remote communication port set in the TCP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6203	The device from which the data is sent in the TCP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6204	The transmitted data length set in the TCP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6205	The data which is sent through the TCP socket exceeds the device range.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.

Error code	Description	Remedy
16#6206	The device which receives the data in the TCP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6207	The received data length set in the TCP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6208	The data which is received through the TCP socket exceeds the device range.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#620A	The local communication port set in the UDP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#620B	The remote communication port set in the UDP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#620C	The device from which the data is sent in the UDP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#620D	The transmitted data length set in the UDP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#620E	The data which is sent through the UDP socket exceeds the device range.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#620F	The device which receives the data in the UDP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6210	The received data length set in the UDP socket function is illegal.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6211	The data which is received through the UDP socket exceeds the device range.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.
16#6212	There is no response from the remote device after the timeout period.	Make sure that the remote device is connected.
16#6213	The data received exceeds the limit.	 Check the program and the related special data registers. Set the Ethernet parameter for the CPU module in HWCONFIG again.

Error code	Description	Remedy
16#6214	The remote device refuses the connection.	Make sure that the remote device operates normally.
16#6215	The socket is not opened.	Check whether operational sequence in the program is correct.
16#6217	The socket is opened.	Check whether operational sequence in the program is correct.
16#6218	The data has been sent through the socket.	Check whether operational sequence in the program is correct.
16#6219	The data has been received through the socket.	Check whether operational sequence in the program is correct.
16#621A	The socket is closed.	Check whether operational sequence in the program is correct.
16#6303	The remote device in the Ether Link aborts the connection.	 Check the connection and the status of the remote device. Check whether the remote device supports the Ether Link.
16#6304	The connection in the Ether Link is busy.	 Check whether the number of connections in the Ether Link exceeds the system load. Retry the connection in the Ether Link later.
16#6309	The remote device in the Ether Link does not respond after the timeout period.	 Check whether the CPU modules in the Ether Link operate normally. Check whether the CPU modules are connected normally.
16#6400	The number of TCP connections reaches the upper limit, or the flag which is related to the sending of the data is not set to ON.	 Check whether the flag which is related to the sending of the data in the program is modified. Retry the setting of the flag and the sending of the packet.
16#6401	The remote device aborts the connection.	Check whether the remote device support the Modbus port (502).
16#6402	There is no response from the remote device after the timeout period.	Check whether the remote device operate normally.
16#6403	The remote IP address used in the applied instruction is illegal.	Check whether the program is correct.
16#6404	The Modbus function code not supported is received.	Check the command transmitted from the remote device.
16#6405	The number of data which will be received is not consistent with the actual length of the data.	Check the command transmitted from the remote device.
16#6600	The network number which receives the command exceeds the range.	Check the command transmitted from the remote device.
16#6601	The network is undefined in the network configuration parameter.	Check the network configuration in NWCONFIG, and download it again.
16#6604	The number of routing connections reaches the upper limit.	Resend the packet later. ((This error does not cause the PLC to stop running. Users can perform the corresponding remedy by means of the related flag in the program.)
16#6605	The unexpected packet is received.	Check the command transmitted from the remote device.

Error code	Description	Remedy
16#6606	There is a routing response timeout.	Check the network configuration in NWCONFIG Check whether the setting of the communication timeout conform to the practical application.
16#8105	The contents of the program downloaded are incorrect. The program syntax is incorrect.	 Check whether the program syntax which is not supported by the CPU module is used, and check whether the version of the firmware has its special limitation. Check whether the version of ISPSoft used to create the program is the same as the version of ISPSoft used now.
16#8106	The contents of the program downloaded are incorrect. The length of the execution code exceeds the limit.	 Shorten the length of the program, and download the program again. Check whether the version of ISPSoft used to create the program is the same as the version of ISPSoft used now.
16#8107	The contents of the program downloaded are incorrect. The length of the source code exceeds the limit.	 Shorten the length of the program, and download the program again. Check whether the version of ISPSoft used to create the program is the same as the version of ISPSoft used now.
16#820E	The communication port parameter downloaded is incorrect. The communication protocol is incorrect.	 Check the setting of the communication port parameter for the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#820F	The communication port parameter downloaded is incorrect. The setting of the station address is incorrect.	 Check the setting of the communication port parameter for the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8210	The communication port parameter downloaded is incorrect. The choice among RS-232, RS-485, and SR-422 is incorrect.	Check the setting of the communication port parameter for the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8211	The communication port parameter downloaded is incorrect. The interval of retrying the sending of the command is set incorrectly.	Check the setting of the communication port parameter for the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8212	The communication port parameter downloaded is incorrect. The number of times the sending of the command is retried is set incorrectly.	Check the setting of the communication port parameter for the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8215	The CPU parameter downloaded is incorrect. The interval of executing interrupt 0 is set incorrectly.	 Check the setting of the basic parameter for the CPU module in HWCONFIG. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.

Error code	Description	Remedy
16#8216	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
	The interval of executing interrupt 1 is set incorrectly.	2. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8217	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
	The interval of executing interrupt 2 is set incorrectly.	2. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8218	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
	The interval of executing interrupt 3 is set incorrectly.	2. Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#8219	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
10110213	The watchdog timer is set incorrectly.	Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#821A	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
	The setting of the scan time is incorrect.	Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#821B	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
10110213	The setting of the remote execution function is incorrect.	Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#821D	The CPU parameter downloaded is incorrect.	Check the setting of the basic parameter for the CPU module in HWCONFIG.
	An error occurs in the latched area.	Check whether the version of HWCONFIG used now is compatible with the version of the CPU.
16#9A01	The setting of the data exchange for slave 1 in the	Check the program and the related special data registers.
10/10/101	PLC Link is incorrect. (SM1590)	Set the PLC Link parameter in HWCONFIG again.
16#9A02	The setting of the data exchange for slave 2 in the	Check the program and the related special data registers.
10/10/102	PLC Link is incorrect. (SM1590)	Set the PLC Link parameter in HWCONFIG again.
16#9A03	The setting of the data exchange for slave 3 in the	Check the program and the related special data registers.
10/10/100	PLC Link is incorrect. (SM1590)	Set the PLC Link parameter in HWCONFIG again.
16#9A04	The setting of the data exchange for slave 4 in the	Check the program and the related special data registers.
10#3/104	PLC Link is incorrect. (SM1590)	Set the PLC Link parameter in HWCONFIG again.
16#9A05	The setting of the data exchange for slave 5 in the	Check the program and the related special data registers.
10π3/103	PLC Link is incorrect. (SM1590)	Set the PLC Link parameter in HWCONFIG again.
16#9A06	The setting of the data exchange for slave 6 in the	Check the program and the related special data registers.
10#3A00	PLC Link is incorrect. (SM1590)	Set the PLC Link parameter in HWCONFIG again.

Error code	Description	Remedy
16#9A07	The setting of the data exchange for slave 7 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A08	The setting of the data exchange for slave 8 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A09	The setting of the data exchange for slave 9 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A0A	The setting of the data exchange for slave 10 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A0B	The setting of the data exchange for slave 11 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A0C	The setting of the data exchange for slave 12 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A0D	The setting of the data exchange for slave 13 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A0E	The setting of the data exchange for slave 14 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A0F	The setting of the data exchange for slave 15 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A10	The setting of the data exchange for slave 16 in the PLC Link is incorrect. (SM1590)	Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A11	The setting of the data exchange for slave 17 in the PLC Link is incorrect. (SM1590)	Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A12	The setting of the data exchange for slave 18 in the PLC Link is incorrect. (SM1590)	Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A13	The setting of the data exchange for slave 19 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.

Error code	Description	Remedy
16#9A14	The setting of the data exchange for slave 20 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A15	The setting of the data exchange for slave 21 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A16	The setting of the data exchange for slave 22 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A17	The setting of the data exchange for slave 23 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A18	The setting of the data exchange for slave 24 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A19	The setting of the data exchange for slave 25 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A1A	The setting of the data exchange for slave 26 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A1B	The setting of the data exchange for slave 27 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A1C	The setting of the data exchange for slave 28 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A1D	The setting of the data exchange for slave 29 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A1E	The setting of the data exchange for slave 30 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A1F	The setting of the data exchange for slave 31 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.
16#9A20	The setting of the data exchange for slave 32 in the PLC Link is incorrect. (SM1590)	 Check the program and the related special data registers. Set the PLC Link parameter in HWCONFIG again.

Error code	Description	Remedy
16#9A21	An error occurs when the master communicates with slave 1 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 1. Check the communication cable.
16#9A22	An error occurs when the master communicates with slave 2 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 2. Check the communication cable.
16#9A23	An error occurs when the master communicates with slave 3 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 3. Check the communication cable.
16#9A24	An error occurs when the master communicates with slave 4 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 4. Check the communication cable.
16#9A25	An error occurs when the master communicates with slave 5 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 5. Check the communication cable.
16#9A26	An error occurs when the master communicates with slave 6 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 6. Check the communication cable.
16#9A27	An error occurs when the master communicates with slave 7 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 7. Check the communication cable.
16#9A28	An error occurs when the master communicates with slave 8 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 8. Check the communication cable.
16#9A29	An error occurs when the master communicates with slave 9 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 9. Check the communication cable.
16#9A2A	An error occurs when the master communicates with slave 10 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 10. Check the communication cable.
16#9A2B	An error occurs when the master communicates with slave 11 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 11. Check the communication cable.
16#9A2C	An error occurs when the master communicates with slave 12 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 12. Check the communication cable.
16#9A2D	An error occurs when the master communicates with slave 13 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 13. Check the communication cable.

Error code	Description	Remedy
16#9A2E	An error occurs when the master communicates with slave 14 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 14. Check the communication cable.
16#9A2F	An error occurs when the master communicates with slave 15 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 15. Check the communication cable.
16#9A30	An error occurs when the master communicates with slave 16 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 16. Check the communication cable.
16#9A31	An error occurs when the master communicates with slave 17 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 17. Check the communication cable.
16#9A32	An error occurs when the master communicates with slave 18 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 18. Check the communication cable.
16#9A33	An error occurs when the master communicates with slave 19 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 19. Check the communication cable.
16#9A34	An error occurs when the master communicates with slave 20 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 20. Check the communication cable.
16#9A35	An error occurs when the master communicates with slave 21 in the PLC Link. (SM1591)	 Check the communication setting in the master, and the communication setting in slave 21. Check the communication cable.
16#9A36	An error occurs when the master communicates with slave 22 in the PLC Link. (SM1591)	 Check the communication setting in the master, and the communication setting in slave 22. Check the communication cable.
16#9A37	An error occurs when the master communicates with slave 23 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 23. Check the communication cable.
16#9A38	An error occurs when the master communicates with slave 24 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 24. Check the communication cable.
16#9A39	An error occurs when the master communicates with slave 25 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 25. Check the communication cable.
16#9A3A	An error occurs when the master communicates with slave 26 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 26. Check the communication cable.

Error code	Description	Remedy
16#9A3B	An error occurs when the master communicates with slave 27 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 27. Check the communication cable.
16#9A3C	An error occurs when the master communicates with slave 28 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 28. Check the communication cable.
16#9A3D	An error occurs when the master communicates with slave 29 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 29. Check the communication cable.
16#9A3E	An error occurs when the master communicates with slave 30 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 30. Check the communication cable.
16#9A3F	An error occurs when the master communicates with slave 31 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 31. Check the communication cable.
16#9A40	An error occurs when the master communicates with slave 32 in the PLC Link. (SM1591)	Check the communication setting in the master, and the communication setting in slave 32. Check the communication cable.
16#9A41	There is no response from slave 1 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 1. Check the communication cable.
16#9A42	There is no response from slave 2 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 2. Check the communication cable.
16#9A43	There is no response from slave 3 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 3. Check the communication cable.
16#9A44	There is no response from slave 4 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 4. Check the communication cable.
16#9A45	There is no response from slave 5 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 5. Check the communication cable.
16#9A46	There is no response from slave 6 in the PLC Link. (SM1592)	Check the communication setting in the master, and the communication setting in slave 6. Check the communication cable.
16#9A47	There is no response from slave 7 in the PLC Link. (SM1592)	Check the communication setting in the master, and the communication setting in slave 7. Check the communication cable.
16#9A48	There is no response from slave 8 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 8. Check the communication cable.
16#9A49	There is no response from slave 9 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 9. Check the communication cable.

Error code	Description	Remedy
16#9A4A	There is no response from slave 10 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 10. Check the communication cable.
16#9A4B	There is no response from slave 11 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 11. Check the communication cable.
16#9A4C	There is no response from slave 12 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 12. Check the communication cable.
16#9A4D	There is no response from slave 13 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 13. Check the communication cable.
16#9A4E	There is no response from slave 14 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 14. Check the communication cable.
16#9A4F	There is no response from slave 15 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 15. Check the communication cable.
16#9A50	There is no response from slave 16 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 16. Check the communication cable.
16#9A51	There is no response from slave 17 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 17. Check the communication cable.
16#9A52	There is no response from slave 18 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 18. Check the communication cable.
16#9A53	There is no response from slave 19 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 19. Check the communication cable.
16#9A54	There is no response from slave 20 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 20. Check the communication cable.
16#9A55	There is no response from slave 21 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 21. Check the communication cable.
16#9A56	There is no response from slave 22 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 22. Check the communication cable.
16#9A57	There is no response from slave 23 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 23. Check the communication cable.
16#9A58	There is no response from slave 24 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 24. Check the communication cable.
16#9A59	There is no response from slave 25 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 25. Check the communication cable.
16#9A5A	There is no response from slave 26 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 26. Check the communication cable.

Error code	Description	Remedy
16#9A5B	There is no response from slave 27 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 27. Check the communication cable.
16#9A5C	There is no response from slave 28 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 28. Check the communication cable.
16#9A5D	There is no response from slave 29 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 29. Check the communication cable.
16#9A5E	There is no response from slave 30 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 30. Check the communication cable.
16#9A5F	There is no response from slave 31 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 31. Check the communication cable.
16#9A60	There is no response from slave 32 in the PLC Link. (SM1592)	 Check the communication setting in the master, and the communication setting in slave 32. Check the communication cable.
16#9A61	The setting of the PLC Link mode is incorrect. (SM1589)	Make sure that SM1586 and SM1587 are not both ON.
16#9A62	The number of polling cycles in the PLC Link is incorrect. (SM1592)	If the PLC Link is in the manual mode, please make sure that the number of polling cycles is in the range of 1 to 65535.
16#9A63	There is a handshaking timeout when the CPU module establishes a connection with the network module. (SM1596)	Check whether the network module operates normally.
16#9A64	There is no network module parameter in the CPU module. (SM1596)	Download the parameter in HWCONFIG again.

12.3 Troubleshooting for I/O Modules

• The introduction of modules

Digital I/O modules, analog I/O modules, network modules, temperature measurement modules, and motion control modules can be installed in an AH500 system. Please refer to AH500 Module Manual for more information about the specifications for I/O modules. The error codes and the remedies for the errors are listed below.

12.3.1 Troubleshooting for Analog I/O Modules and Temperature Measurement Modules

Error code	Description	Remedy
16#A000	The signal received by channel 0 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 0 exceeds the range of inputs which can be received by the hardware.

Error code	Description	Remedy
16#A001	The signal received by channel 1 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 1 exceeds the range of inputs which can be received by the hardware.
16#A002	The signal received by channel 2 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 2 exceeds the range of inputs which can be received by the hardware.
16#A003	The signal received by channel 3 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 3 exceeds the range of inputs which can be received by the hardware.
16#A004	The signal received by channel 4 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 4 exceeds the range of inputs which can be received by the hardware.
16#A005	The signal received by channel 5 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 5 exceeds the range of inputs which can be received by the hardware.
16#A006	The signal received by channel 6 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 6 exceeds the range of inputs which can be received by the hardware.
16#A007	The signal received by channel 7 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator blinks.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 7 exceeds the range of inputs which can be received by the hardware.
16#A400	The signal received by channel 0 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 0 exceeds the range of inputs which can be received by the hardware.
16#A401	The signal received by channel 1 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 1 exceeds the range of inputs which can be received by the hardware.

Error code	Description	Remedy
16#A402	The signal received by channel 2 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 2 exceeds the range of inputs which can be received by the hardware.
16#A403	The signal received by channel 3 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 3 exceeds the range of inputs which can be received by the hardware.
16#A404	The signal received by channel 4 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 4 exceeds the range of inputs which can be received by the hardware.
16#A405	The signal received by channel 5 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 5 exceeds the range of inputs which can be received by the hardware.
16#A406	The signal received by channel 6 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 6 exceeds the range of inputs which can be received by the hardware.
16#A407	The signal received by channel 7 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is ON.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 7 exceeds the range of inputs which can be received by the hardware.
16#A600	Hardware failure	 Check whether the backplane is normal. Check whether the module operate normally.
16#A601	The external voltage is abnormal.	Check whether the external 24 V power supply to the module is normal.
16#A602	Internal error The CJC is abnormal.	Please contact the factory.
16#A603	Internal error The factory correction is abnormal.	Please contact the factory.
16#A800	The signal received by channel 0 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 0 exceeds the range of inputs which can be received by the hardware.

Error code	Description	Remedy
16#A801	The signal received by channel 1 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 1 exceeds the range of inputs which can be received by the hardware.
16#A802	The signal received by channel 2 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 2 exceeds the range of inputs which can be received by the hardware.
16#A803	The signal received by channel 3 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 3 exceeds the range of inputs which can be received by the hardware.
16#A804	The signal received by channel 4 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 4 exceeds the range of inputs which can be received by the hardware.
16#A805	The signal received by channel 5 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether The signal received by channel 5 exceeds the range of inputs which can be received by the hardware.
16#A806	The signal received by channel 6 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 6 exceeds the range of inputs which can be received by the hardware.
16#A807	The signal received by channel 7 exceeds the range of inputs which can be received by the hardware. (The ERROR LED indicator is OFF.)	Check the module parameter in HWCONFIG. Check whether the signal received by channel 7 exceeds the range of inputs which can be received by the hardware.

12.3.2 Troubleshooting for AH02HC-5A/AH04HC-5A

Error code	Description	Remedy
16#A001	The linear accumulation in channel 1 exceeds the range.	To clear the linear accumulation, users need to set bit 1 in CR0 to ON by means of FROM/TO.
16#A002	The scale set for channel 1 exceeds the range.	Check the module parameter in HWCONFIG. The scale set for channel 1 should be in the range of 0 to 32767.
16#A003	The number of cycles set for channel 1exceeds the range.	Check the module parameter in HWCONFIG. The number of cycles set for channel 1 should be in the range of 2 to 60.

Error code	Description	Remedy
16#A004	The comparison value set for channel 1 exceeds the range.	Check the module parameter in HWCONFIG. The comparison value set for channel 1 should be in the range of -999999999 to 999999999.
16#A005	A limit value set for channel 1 is incorrect.	Check the module parameter in HWCONFIG. A limit value of set for channel 1 should be in the range of -200000 to 200000.
16#A006	The interrupt number set for channel 1 exceeds the range.	Check the module parameter in HWCONFIG. The interrupt number set for channel 1 should be in the range of 0 to 31.
16#A011	The linear accumulation in channel 1 exceeds the range.	To clear the linear accumulation, users need to set bit 1 in CR28 to ON by means of FROM/TO.
16#A012	The scale set for channel 2 exceeds the range.	Check the module parameter in HWCONFIG. The scale set for channel 2 should be in the range of 0 to 32767.
16#A013	The number of cycles set for channel 2 exceeds the range.	Check the module parameter in HWCONFIG. The number of cycles set for channel 2 should be in the range of 2 to 60.
16#A014	The comparison value set for channel 2 exceeds the range.	Check the module parameter in HWCONFIG. The comparison value set for channel 2 should be in the range of -999999999 to 999999999.
16#A015	A limit value set for channel 2 is incorrect.	Check the module parameter in HWCONFIG. A limit value of set for channel 2 should be in the range of -200000 to 200000.
16#A016	The interrupt number set for channel 2 exceeds the range.	Check the module parameter in HWCONFIG. The interrupt number set for channel 2 should be in the range of 0 to 31.
16#A021	The linear accumulation in channel 3 exceeds the range.	To clear the linear accumulation, users need to set bit 1 in CR56 to ON by means of FROM/TO.
16#A022	The scale set for channel 3 exceeds the range.	Check the module parameter in HWCONFIG. The scale set for channel 3 should be in the range of 0 to 32767.
16#A023	The number of cycles set for channel 3 exceeds the range.	Check the module parameter in HWCONFIG. The number of cycles set for channel 3 should be in the range of 2 to 60.
16#A024	The comparison value set for channel 3 exceeds the range.	Check the module parameter in HWCONFIG. The comparison value set for channel 3 should be in the range of -999999999 to 999999999.
16#A025	A limit value set for channel 3 is incorrect.	Check the module parameter in HWCONFIG. A limit value of set for channel 3 should be in the range of -200000 to 200000.
16#A026	The interrupt number set for channel 3 exceeds the range.	Check the module parameter in HWCONFIG. The interrupt number set for channel 3 should be in the range of 0 to 31.
16#A031	The linear accumulation in channel 4 exceeds the range.	To clear the linear accumulation, users need to set bit 1 in CR84 to ON by means of FROM/TO.
16#A032	The scale set for channel 4 exceeds the range.	Check the module parameter in HWCONFIG. The scale set for channel 4 should be in the range of 0 to 32767.
16#A033	The number of cycles set for channel 4 exceeds the range.	Check the module parameter in HWCONFIG. The number of cycles set for channel 4 should be in the range of 2 to 60.

Error code	Description	Remedy
	The comparison value set for	Check the module parameter in HWCONFIG.
16#A034	The comparison value set for channel 4 exceeds the range.	The comparison value set for channel 4 should be in the range of -999999999 to 999999999.
	A limit value set for channel 4 is incorrect.	Check the module parameter in HWCONFIG.
16#A035		A limit value of set for channel 4 should be in the range of -200000 to 200000.
16#A036	The interrupt number set for channel 4 exceeds the range.	Check the module parameter in HWCONFIG.
		The interrupt number set for channel 4 should be in the range of 0 to 31.

12.3.3 Troubleshooting for AH10PM-5A

The programs and the setting which are mentioned in the table below are edited in PMSoft version 2.02 or above.

Error code	Description	Remedy		
16#A002	The subroutine has no data.	A program should be written in the subroutine.		
16#A003	CJ, CJN, and JMP have no matching pointers.	Write the pointers which match CJ, CJN, and JMP respectively.		
16#A004	There is a subroutine pointer in the main program.	The subroutine pointer can not be in the main program.		
16#A005	Lack of the subroutine	The nonexistent subroutine can not be called.		
16#A006	The pointer is used repeatedly in the same program.	The pointer can not be used repeatedly in the same program.		
16#A007	The subroutine pointer is used repeatedly.	The subroutine pointer can not be used repeatedly.		
16#A008	The pointer used in JMP is used repeatedly in different subroutines.	The pointer used in JMP can not be used repeatedly in different subroutines.		
16#A009	The pointer used in JMP is the same as the pointer used in CALL.	The pointer used in JMP can not be the same the pointer used in CALL.		
16#A00B	Target position (I) of the single speed is incorrect.	The target position (I) of the single speed should be set correctly.		
16#A00C	Target position (II) of the single-axis motion is incorrect.	Check whether target position (II) of the single-axis motion and target position (I) of the single-axis motion are in opposite directions.		
16#A00D	The setting of speed (I) of the single-axis motion is incorrect.	Set the speed of the single-axis motion.		
16#A00E	The setting of speed (II) of the single-axis motion is incorrect.	The setting value can not be zero.		
16#A00F	The setting of the speed (V _{RT}) of returning to zero is incorrect.	Set the speed of returning to zero properly. (The setting value can not be zero.)		
16#A010	The setting of the deceleration (V_{CR}) of returning to zero is incorrect.	Set the speed of returning to zero. The deceleration should be less than the speed of returning to zero. (The setting value can not be zero.)		
16#A011	The setting of the JOG speed is incorrect.	The setting value can not be zero.		
16#A012	The positive pulses generated by the single-axis clockwise motion are inhibited.	The error occurs because the limit sensor is triggered. Check the status of the limit sensor, and check whether the motor operates normally.		

Error code	Description	Remedy	
16#A013	The negative pulses generated by the single-axis counterclockwise motion are inhibited.	The error occurs because the limit sensor is triggered. Check the status of the limit sensor, and check whether the motor operates normally.	
16#A014	The limit switch is reached.	The error occurs because the limit sensor is triggered. Check the status of the limit sensor, and check whether the motor operates normally.	
16#A015	The device which is used exceeds the device range.	Use the device which does not exceed the device range.	
16#A017	An error occurs when the device is modified by a 16-bit index register/32-bit index register.	Use the16-bit index register/32-bit index register which does not exceed the device range.	
16#A018	The conversion into the floating-point number is incorrect.	Modify the operation to prevent the abnormal number from occurring.	
16#A019	The conversion into the binary-coded decimal number is incorrect.	Modify the operation to prevent the abnormal number from occurring.	
16#A01A	Incorrect division operation (The divisor is 0.)	Modify the operation to prevent the divisor from being zero.	
16#A01B	General program error	Modify the program to make the syntax correct.	
16#A01C	LD/LDI has been used more than nine times.	Modify the program to prevent LD/LDI from being used more than nine times.	
16#A01D	There is more than one level of nested program structure supported by RPT/RPE.	Modify the program to prevent more than one level of nested program structure supported by RPT/RPE from being used.	
16#A01E	SRET is used between RPT and RPE.	Modify the program to prevent SRET from being used between RPT and RPE.	
16#A01F	There is no M102 in the main program, or there is no M2 in the motion program.	Modify the program so that there is M102 in the main program, or modify the program so that there is M2 in the motion program.	
16#A020	The wrong instruction is used, or the device used exceeds the range.	Check and modify the program to prevent the wrong instruction from being used, or check whether the device used exceeds the device range.	

12.3.4 Troubleshooting for AH20MC-5A

The programs and the setting which are mentioned in the table below are edited in PMSoft version 2.02 or above.

Error code	Description	Remedy		
16#A002	The subroutine has no data.	A program should be written in the subroutine.		
16#A003	CJ, CJN, and JMP have no matching pointers.	Write the pointers which match CJ, CJN, and JMP respectively.		
16#A004	There is a subroutine pointer in the main program.	The subroutine pointer can not be in the main program.		
16#A005	Lack of the subroutine	The nonexistent subroutine can not be called.		
16#A006	The pointer is used repeatedly in the same program.	The pointer can not be used repeatedly in the same program.		
16#A007	The subroutine pointer is used repeatedly.	The subroutine pointer can not be used repeatedly.		

Error code	Description	Remedy	
16#A008	The pointer used in JMP is used repeatedly in different subroutines.	The pointer used in JMP can not be used repeatedly in different subroutines.	
16#A009	The pointer used in JMP is the same as the pointer used in CALL.	The pointer used in JMP can not be the same as the pointer used in CALL.	
16#A00B	Target position (I) of the single speed is incorrect.	The target position (I) of the single speed should be set correctly.	
16#A00C	Target position (II) of the single-axis motion is incorrect.	Check whether target position (II) of the single-axis motion and target position (I) of the single-axis motion are in opposite directions.	
16#A00D	The setting of speed (I) of the single-axis motion is incorrect.	Set the speed of the single-axis motion.	
16#A00E	The setting of speed (II) of the single-axis motion is incorrect.	The setting value can not be zero.	
16#A00F	The setting of the speed (V _{RT}) of returning to zero is incorrect.	Set the speed of returning to zero properly. (The setting value can not be zero.)	
16#A010	The setting of the deceleration (V_{CR}) of returning to zero is incorrect.	Set the speed of returning to zero. The deceleration should be less than the speed of returning to zero. (The setting value can not be zero.)	
16#A011	The setting of the JOG speed is incorrect.	The setting value can not be zero.	
16#A012	The positive pulses generated by the single-axis clockwise motion are inhibited.	The error occurs because the limit sensor is triggered. Check the status of the limit sensor, and check whether the motor operates normally.	
16#A013	The negative pulses generated by the single-axis counterclockwise motion are inhibited.	The error occurs because the limit sensor is triggered. Check the status of the limit sensor, and check whether the motor operates normally.	
16#A014	The limit switch is reached.	The error occurs because the limit sensor is triggered. Check the status of the limit sensor, and check whether the motor operates normally.	
16#A015	The device which is used exceeds the device range.	Use the device which does not exceed the device range.	
16#A017	An error occurs when the device is modified by a 16-bit index register/32-bit index register.	Use the 16-bit index register/32-bit index register which does not exceed the device range.	
16#A018	The conversion into the floating-point number is incorrect.	Modify the operation to prevent the abnormal number from occurring.	
16#A019	The conversion into the binary-coded decimal number is incorrect.	Modify the operation to prevent the abnormal number from occurring.	
16#A01A	Incorrect division operation (The divisor is 0.)	Modify the operation to prevent the divisor from being zero.	
16#A01B	General program error	Modify the program to make the syntax correct.	
16#A01C	LD/LDI has been used more than nine times.	Modify the program to prevent LD/LDI from being used more than nine times.	
16#A01D	There is more than one level of nested program structure supported by RPT/RPE.	Modify the program to prevent more than one level of nested program structure supported by RPT/RPE from being used.	

Error code	Description	Remedy			
16#A01E	SRET is used between RPT and RPE.	Modify the program to prevent SRET from being used between RPT and RPE.			
16#A01F	There is no M102 in the main program, or there is no M2 in the motion program.	Modify the program so that there is M102 in the main program, or modify the program so that there is M2 in the motion program.			
16#A020	The wrong instruction is used, or the device used exceeds the range.	Check and modify the program to prevent the wrong instruction from being used, or check whether the device used exceeds the device range.			

12.3.5 Troubleshooting for AH10EN-5A

Error code	Description Remedy			
16#A001	The IP address of host 1 conflicts with another system	Contact the network administrator, and check whether the IP address is correct.		
	on the network.	2. Check the module parameter in HWCONFIG.		
16#A002	The IP address of host 2 conflicts with another system	Contact the network administrator, and check whether the IP address is correct.		
	on the network.	2. Check the module parameter in HWCONFIG.		
16#A003	DHCP for host 1 fails.	Please contact the network administrator		
16#A004	DHCP for host 2 fails.	Please contact the network administrator		
16#A401	Hardware error	Please restore the hardware to the factory setting. If the error still occurs, please contact the factory.		
16#A402	The initialization of the system fails.	Please restore the system to the factory setting. If the error still occurs, please contact the factory.		

12.3.6 Troubleshooting for AH10SCM-5A

Error code	Description	Remedy	
16#A002	The setting of the UD Link is incorrect, or the communication fails.	Check the setting in SCMSoft, and download the setting again.	
16#A401	Hardware error	Please contact the factory.	
16#A804	The communication through the communication port is incorrect.	Check whether the communication cable is connected well. Check the parameter in HWCONFIG, and the parameter. Download the parameter again.	
16#A808	Modbus communication error	 Check whether the communication cable is connected well. Check the parameter in HWCONFIG, and the parameter. Download the parameter again. 	

12.3.7 Troubleshooting for AH10DNET-5A

The parameters which are mentioned in the table below are set in DeviceNet Builder version 1.07 or above.

Error code	Description	Remedy
16#A080	AH10DNET-5A stops running.	Switch the operating status of the CPU module to the running status.

Error code	Description	Remedy
16#A0F1	No slave is put in the scan list of AH10DNET-5A.	Put slaves in the scan list, and then download the scan list to AH10DNET-5A.
16#A0E2	AH10DNET-5A functions as a master. The slave in the scan list is disconnected or does not exist.	 Check whether the node ID of the slave changes. Check whether the communication cable is disconnected or loose. Check whether the length of the cable is larger than the maximum transmission distance. If the length of the cable is larger than the maximum transmission distance, the stability of the system can not be ensured.
16#AUE2	AH10DNET-5A as a slave does not connect to the I/O module as a master.	 Check whether the node ID of the slave changes. Check whether the communication cable is disconnected or loose. Check whether the length of the cable is larger than the maximum transmission distance. If the length of the cable is larger than the maximum transmission distance, the stability of the system can not be ensured.
16#A0E7	AH10DNET-5A is checking whether its node ID is the same as the node ID of other device on the network.	 If the error has occurred for a long time, please eliminate the error in the following way. Make sure that there are at least two nodes working normally on the network. Check whether the both ends of the cable are connected to 121 Ω terminal resistors. Check whether the serial transmission speeds of other devices on the network are the same. Check whether the communication cable is disconnected or loose. Check whether the length of the communication cable is larger than the maximum transmission distance. If the length of the communication cable is larger than the maximum transmission distance, the stability of the system can not be ensured. Check whether the shielded cable is grounded. Supply power to AH10DNET-5A again.
16#A0E8	AH10DNET-5A is being initialized.	If the error has occurred for a long time, please supply power to the module again.
16#A0F0	The node ID of AH10DNET-5A is the same as other node ID on the network, or exceeds the range.	Make sure that the node ID of AH10DNET-5A is the only one on the network. If the node ID of AH10DNET-5A is not the only one on the network, please change the node ID, and supply power to AH10DNET-5 again.
16#A0F2	The working voltage of AH10DNET-5A is low.	Check whether the working voltage of AH10DNET-5A and that of an AH500 series CPU module are normal.
16#A0F3	AH10DNET-5A enters the test mode.	Switch IN 1 on the module OFF, and supply power to AH10DNET-5A again.

Error code	Description	Remedy		
16#A0F4	The bus of AH10DNET-5A becomes OFF.	 Check whether the communication cable is normal, and whether the shielded cable is grounded. Check whether the serial transmission speeds of other devices on the network are the same. Check whether the both ends of the cable are connected to 121 Ω terminal resistors. Supply power to AH10DNET-5A again. 		
16#A0F5	AH10DNET-5A detects that there is no network power supply to the DeviceNet.	Check whether the communication cable is normal, and whether the network power supply is normal.		
16#A0F6	Something is wrong with the internal memory of AH10DNET-5A.	Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.		
16#A0F7	Something is wrong with the data exchange unit of AH10DNET-5A.	Supply power to AH10DNET-5A again. If the error st occurs, please contact the factory.		
16#A0F8	The product ID of AH10DNET-5A is incorrect.	Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.		
16#A0F9	An error occurs when the data is read from AH10DNET-5A, or when the data is written into AH10DNET-5A.	Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.		
16#A0FA	The node ID of AH10DNET-5A is the same as that of the slave set in the scan list.	 Set the node ID of AH10DNET-5A again. The n node ID can not be the same as the node ID of slave set in the scan list. Supply power to AH10DNET-5A again. Put no slave in the scan list, and download the blank scan list to AH10DNET-5A through the simulated online mode in the software. Supply power to AH10DNET-5A again. 		

12.4 Error Codes and LED Indicators

A. Columns

- **a.** Error code: If the error occurs in the system, the error code is generated.
- **b.** Description: The description of the error
- **c.** CPU status: If the error occurs, the CPU stops running, keeps running, or in the status defined by users.
 - > Stop: The CPU stops running when the error occurs.
 - ➤ Hold: The CPU keeps running when the error occurs.
 - ➤ Self-defined: The status of the CPU can be defined by users. Please refer to section 8.2.1 in this manual for more information.
- **d.** LED indicator status: If the error occurs, the LED indicator is ON, OFF, or blinks.
 - > ERROR: The system error
 - ➤ BUS FAULT: The I/O bus error
 - ➤ Module ERROR: The module error

LED indicators

	LED indicator	Description
		The status of the CPU
	ERROR	ON: A serious error occurs in the system.
	LIXIXOIX	OFF: The system is normal.
CPU		Blink: A slight error occurs in the system.
CFU	BUS FAULT	The status of the I/O bus
		ON: A serious error occurs in the I/O bus.
		OFF: The I/O bus is normal.
		Blink: A slight error occurs in the I/O bus.
	ERROR	The status of the module
Module		ON: A serious error occurs in the module.
wodule		OFF: The module is normal.
		Blink: A slight error occurs in the module.

12.4.1 CPU Modules

Error code	Description	CPU		LED indicator status	
Lifoi code	Description	Status	ERROR	BUS FAULT	
16#000A	Scan timeout (SM8: The watchdog timer error)	Stop	Blink	OFF	
16#000B	The program in the PLC is damaged.	Stop	ON	OFF	
16#000C	The program downloaded to the PLC is incorrect.	Stop	Blink	OFF	
16#000D	The CPU parameter is damaged.	Stop	ON	OFF	
16#000E	The program or the parameter is being downloaded, and therefore the PLC can not run.	Stop	Blink	OFF	
16#000F	The original program in the PLC is damaged.	Hold	OFF	OFF	
16#0010	The access to the memory in the CPU is denied.	Stop	ON	OFF	
16#0011	The PLC ID is incorrect. (SM9)	Hold	ON	OFF	
16#0012	The PLC password is incorrect.	Hold	ON	OFF	
16#0013	The I/O module can not run/stop. (SM10)	Stop	OFF	ON	
16#0014	The procedure of restoring the system can not be executed. (SM9)	Stop	ON	ON	
16#0015	The module table is incorrect. (SM10)	Stop	ON	OFF	
16#0016	The module setting is incorrect. (SM10)	Stop	ON	OFF	
16#0017	The device which is associated with the data register is incorrect. (SM10)	Stop	ON	OFF	
16#0018	The serial port is abnormal. (SM9)	Hold	Blink	OFF	
16#0019	The USB is abnormal. (SM9)	Hold	Blink	OFF	
16#001B	Timed interrupt 0 is set incorrectly.	Stop	ON	OFF	
16#001C	Timed interrupt 1 is set incorrectly.	Stop	ON	OFF	
16#001D	Timed interrupt 2 is set incorrectly.	Stop	ON	OFF	
16#001E	Timed interrupt 3 is set incorrectly.	Stop	ON	OFF	
16#001F	The watchdog timer is set incorrectly.	Stop	ON	OFF	
16#0020	The setting of the fixed scan time is incorrect.	Stop	ON	OFF	
16#0021	The setting of the fixed scan time is incorrect.	Stop	ON	OFF	

Error code	Description	CPU		LED indicator status	
21101 0000	Boomphion	Status	ERROR	BUS FAULT	
16#0022	The CPU parameter downloaded to the PLC is incorrect.	Stop	ON	OFF	
16#0033	The communication setting of COM1 is incorrect. (SM9)	Hold	Blink	OFF	
16#0034	The setting of the station address of COM1 is incorrect. (SM9)	Hold	Blink	OFF	
16#0035	The setting of the communication type of COM1 is incorrect. (SM9)	Hold	Blink	OFF	
16#0036	The interval of retrying the sending of the command through COM1 is set incorrectly.(SM9)	Hold	Blink	OFF	
16#0037	The number of times the sending of the command through COM1 is retried is set incorrectly. (SM9)	Hold	Blink	OFF	
16#0038	The communication setting of COM2 is incorrect. (SM9)	Hold	Blink	OFF	
16#0039	The setting of the station address of COM2 is incorrect. (SM9)	Hold	Blink	OFF	
16#003A	The setting of the communication type of COM2 is incorrect. (SM9)	Hold	Blink	OFF	
16#003B	The interval of retrying the sending of the command through COM2 is set incorrectly.(SM9)	Hold	Blink	OFF	
16#003C	The number of times the sending of the command through COM2 is retried is set incorrectly. (SM9)	Hold	Blink	OFF	
16#0050	The memories in the latched special auxiliary relays are abnormal.	Stop	ON	OFF	
16#0051	The latched special data registers are abnormal.	Stop	ON	OFF	
16#0052	The memories in the latched auxiliary relays are abnormal.	Stop	ON	OFF	
16#0053	The latched timers are abnormal.	Stop	ON	OFF	
16#0054	The latched counters are abnormal.	Stop	ON	OFF	
16#0055	The latched 32-bit counters are abnormal.	Stop	ON	OFF	
16#0056	The memories in the latched timers are abnormal.	Stop	ON	OFF	
16#0057	The memories in the latched counters are abnormal.	Stop	ON	OFF	
16#0058	The memories in the latched 32-bit counters are abnormal.	Stop	ON	OFF	
16#0059	The latched data registers are abnormal.	Stop	ON	OFF	
16#005A	The latched working registers are abnormal.	Stop	ON	OFF	
16#005E	The memory card is initialized incorrectly. (SM453)	Hold	Blink	OFF	
16#005F	The data is read from the inexistent file in the memory card, or the data is written into the inexistent file in the memory card. (SM453)	Hold	Blink	OFF	
16#0060	The default folder can not be created in the CPU module. (SM453)	Hold	Blink	OFF	

Error code	Description	CPU	LED indicator status	
Life code	Description	Status	ERROR	BUS FAULT
16#0061	The capacity of the memory card is not large enough. (SM453)	Hold	Blink	OFF
16#0062	The memory card is write protected. (SM453)	Hold	Blink	OFF
16#0063	An error occurs when the data is written into the memory card. (SM453)	Hold	Blink	OFF
16#0064	The file in the memory card can not be read. (SM453)	Hold	Blink	OFF
16#0065	The file in the memory card is a read-only file. (SM453)	Hold	Blink	OFF
16#0066	An error occurs when the system is backed up.	Hold	Blink	OFF
16#1400	An error occurs when the data is accessed through the auxiliary processor. (SM9)	Stop	OFF	ON
16#1401	An error occurs when the data in the I/O module is accessed. (SM9)	Stop	OFF	ON
16#1402	The actual arrangement of the I/O modules is not consistent with the module table. (SM9)	Stop	OFF	ON
16#1403	An error occurs when the data is read from the module. (SM9)	Stop	OFF	ON
16#1404	A watchdog timer error occurs in the module. (SM9)	Stop	OFF	ON
16#1405	The setting parameter of the module is not found. (SM9)	Stop	OFF	ON
16#1406	A communication error occurs when the data is accessed through the main processor. (SM9)	Stop	OFF	ON
16#1407	A communication error occurs when the data is accessed through the auxiliary processor. (SM9)	Stop	OFF	ON
16#1408	The communication with the module is incorrect. (SM9)	Stop	OFF	ON
16#1409	The extension backplane is disconnected. (SM9)	Stop	OFF	ON
16#140A	The communication with the extension backplane is incorrect. (SM9)	Stop	OFF	ON
16#140B	The number of network modules exceeds the limit. (SM9)	Stop	OFF	ON
16#2000	There is no END in the program in the PLC. (SM5)	Stop	Blink	OFF
16#2002	GOEND is used incorrectly. (SM5)	Stop	Blink	OFF
16#2003	The devices used in the program exceed the range. (SM0/SM5)	Self-defined	Blink	OFF
16#2004	The part of the program specified by the label used in CJ/JMP is incorrect, or the label is used repeatedly. (SM0/SM5)	Stop	Blink	OFF
16#2005	The N value used in MC is not the same as the corresponding N value used in MCR, or the number of N values used in MC is not the same as the number of N values used in MCR. (SM5)	Stop	Blink	OFF
16#2006	The N values used in MC do not start from 0, or the N values used in MC are not continuous. (SM5)	Stop	Blink	OFF

Error code	Description	CPU	LED indicator status	
Lifoi code	Description	Status	ERROR	BUS FAULT
16#2007	The operands used in ZRST are not used properly. (SM5)	Stop	Blink	OFF
16#200A	Invalid instruction (SM5)	Stop	Blink	OFF
16#200B	The operand n or the other constant operands exceed the range. (SM0/SM5)	Self-defined	Blink	OFF
16#200C	The operands overlap. (SM0/SM5)	Self-defined	Blink	OFF
16#200D	An error occurs when the binary number is converted into the binary-coded decimal number. (SM0/SM5)	Self-defined	Blink	OFF
16#200E	The string does not end with 0x00. (SM0/SM5)	Self-defined	Blink	OFF
16#200F	The instruction does not support the modification by an index register. (SM5)	Stop	Blink	OFF
16#2010	 The instruction does not support the device. Encoding error The instruction is a 16-bit instruction, but the constant operand is a 32-bit code. (SM5) 	Stop	Blink	OFF
16#2011	The number of operands is incorrect. (SM5)	Stop	Blink	OFF
16#2012	Incorrect division operation (SM0/SM5).	Self-defined	Blink	OFF
16#2013	The value exceeds the range of values which can be represented by the floating-point numbers. (SM0/SM5)	Self-defined	Blink	OFF
16#2014	The task designated by TKON/YKOFF is incorrect, or exceeds the range. (SM5)	Stop	Blink	OFF
16#2015	There are more than 32 levels of nested program structures supported by CALL. (SM0)	Self-defined	Blink	OFF
16#2016	There are more than 32 levels of nested program structures supported by FOR/NEXT. (SM0/SM5)	Self-defined	Blink	OFF
16#2017	The number of times FOR is used is different from the number of times NEXT is used. (SM5)	Stop	Blink	OFF
16#2018	There is a label after FEND, but there is no SRET. There is SRET, but there is no label. (SM5)	Stop	Blink	OFF
16#2019	The interrupt task is not after FEND. (SM5)	Stop	Blink	OFF
16#201A	IRET/SRET is not after FEND. (SM5)	Stop	Blink	OFF
16#201B	There is an interrupt task, but there is no IRET. There is IRET, but there is not interrupt task. (SM5)	Stop	Blink	OFF
16#201C	End is not at the end of the program. (SM5)	Stop	Blink	OFF
16#201D	There is CALL, but there is no MAR. (SM5)	Stop	Blink	OFF
16#201E	The function code used in MODRW is incorrect. (SM102/SM103)	Self-defined	Blink	OFF
16#201F	The length of the data set in MODRW is incorrect. (SM102/SM103)	Self-defined	Blink	OFF
16#2020	The communication command received by using MODRW is incorrect. (SM102/SM103)	Self-defined	Blink	OFF
16#2021	The checksum of the command received is incorrect. (SM102/SM103)	Self-defined	Blink	OFF

Error code	Description	CPU	LED indicator status	
Lifor code	Description	Status	ERROR	BUS FAULT
16#2022	The format of the command used in MODRW does not conform to the ASCII format. (SM102/SM103)	Self-defined	Blink	OFF
16#2023	There is a communication timeout when MODRW is executed. (SM120/SM103)	Self-defined	Blink	OFF
16#2024	The setting value of the communication timeout is invalid. (SM120/SM103)	Self-defined	Blink	OFF
16#2025	There is a communication timeout when RS is executed. (SM120/SM103)	Self-defined	Blink	OFF
16#2026	The interrupt number used in RS is incorrect.	Self-defined	OFF	OFF
16#6000	Ethernet connection error (SM1106)	Hold	Blink	OFF
16#6001	Illegal IP address (SM1107)	Hold	Blink	OFF
16#6002	Illegal netmask address (SM1107)	Hold	Blink	OFF
16#6003	Illegal gateway mask (SM1107)	Hold	Blink	OFF
16#6004	The IP address filter is set incorrectly. (SM1108)	Hold	Blink	OFF
16#6006	The static ARP table is set incorrectly. (SM1108)	Hold	Blink	OFF
16#6008	Illegal network number (SM1107)	Hold	Blink	OFF
16#6009	Illegal node number (SM1107)	Hold	Blink	OFF
16#600A	TCP connection failure (SM1090)	Hold	OFF	OFF
16#600B	UDP connection failure (SM1091)	Hold	OFF	OFF
16#600C	The TCP socket has been used. (SM1109)	Hold	OFF	OFF
16#600D	The RJ45 port is not connected.	Hold	OFF	OFF
16#6100	The email connection is busy. (SM1113)	Hold	OFF	OFF
16#6101	The trigger in the email is set incorrectly. (SM1112)	Hold	Blink	OFF
16#6102	The interval of sending the email is set incorrectly. (SM1112)	Hold	Blink	OFF
16#6103	The device containing the data specified as the attachment exceeds the device range. (SM1112)	Hold	Blink	OFF
16#6104	The attachment in the email does not exist. (SM1113)	Hold	OFF	OFF
16#6105	The attachment in the email is oversized. (SM1113)	Hold	OFF	OFF
16#6106	The SMTP server address is incorrect. (SM1112)	Hold	Blink	OFF
16#6107	There is an SMTP server response timeout. (SM1113)	Hold	OFF	OFF
16#6108	SMTP authentication error (SM1112)	Hold	Blink	OFF
16#6110	The SMTP server needs to be authenticated. (SM1112)	Hold	Blink	OFF
16#6111	The specified email address does not exist. (SM1112)	Hold	Blink	OFF
16#6200	The remote IP address set in the TCP socket function is illegal. (SM1196)	Hold	Blink	OFF
16#6201	The local communication port set in the TCP socket function is illegal.	Hold	OFF	OFF
16#6202	The remote communication port set in the TCP socket function is illegal.	Hold	OFF	OFF

Error code	Description	CPU		LED indicator status	
Life odd	Description	Status	ERROR	BUS FAULT	
16#6203	The device from which the data is sent in the TCP socket function is illegal.	Hold	OFF	OFF	
16#6204	The transmitted data length set in the TCP socket function is illegal.	Hold	OFF	OFF	
16#6205	The data which is sent through the TCP socket exceeds the device range.	Hold	OFF	OFF	
16#6206	The device which receives the data in the TCP socket function is illegal.	Hold	OFF	OFF	
16#6207	The received data length set in the TCP socket function is illegal.	Hold	OFF	OFF	
16#6208	The data which is received through the TCP socket exceeds the device range.	Hold	OFF	OFF	
16#6209	The remote IP address set in the UDP socket function is illegal. (SM1196)	Hold	Blink	OFF	
16#620A	The local communication port set in the UDP socket function is illegal.	Hold	OFF	OFF	
16#620B	The remote communication port set in the UDP socket function is illegal.	Hold	OFF	OFF	
16#620C	The device from which the data is sent in the UDP socket function is illegal.	Hold	OFF	OFF	
16#620D	The transmitted data length set in the UDP socket function is illegal.	Hold	OFF	OFF	
16#620E	The data which is sent through the UDP socket exceeds the device range.	Hold	OFF	OFF	
16#620F	The device which receives the data in the UDP socket function is illegal.	Hold	OFF	OFF	
16#6210	The received data length set in the UDP socket function is illegal.	Hold	OFF	OFF	
16#6211	The data which is received through the UDP socket exceeds the device range.	Hold	OFF	OFF	
16#6212	There is no response from the remote device after the timeout period.	Hold	OFF	OFF	
16#6213	The data received exceeds the limit.	Hold	OFF	OFF	
16#6214	The remote device refuses the connection.	Hold	OFF	OFF	
16#6215	The socket is not opened.	Hold	OFF	OFF	
16#6217	The socket is opened.	Hold	OFF	OFF	
16#6218	The data has been sent through the socket.	Hold	OFF	OFF	
16#6219	The data has been received through the socket.	Hold	OFF	OFF	
16#621A	The socket is closed.	Hold	OFF	OFF	
16#6300	Only auxiliary relays, data registers, and link registers can be used in the Ether Link.	Hold	Blink	OFF	
16#6301	The device used in the Ether Link exceeds the device range.	Hold	Blink	OFF	
16#6302	The length of the data exchanged in the Ether Link exceeds the limit.	Hold	Blink	OFF	
16#6303	The remote device in the Ether Link aborts the connection.	Hold	OFF	OFF	
16#6304	The connection in the Ether Link is busy.	Hold	OFF	OFF	

Error code	Description	CPU	LED indicator status	
Life odd	Description	Status	ERROR	BUS FAULT
16#6305	The node used in the communication command is different from the local node.	Hold	Blink	OFF
16#6309	The remote device in the Ether Link does not respond after the timeout period.	Hold	OFF	OFF
16#630A	The module ID or the setting of the module is different from the setting in the Ether Link.	Hold	Blink	OFF
16#630B	The setting of the netmask address for the CPU or the module is different from the setting in the Ether Link.	Hold	Blink	OFF
16#6400	The number of TCP connections reaches the upper limit, or the flag which is related to the sending of the data is not set to ON.	Hold	OFF	OFF
16#6401	The remote device aborts the connection.	Hold	OFF	OFF
16#6402	There is no response from the remote device after the timeout period.	Hold	OFF	OFF
16#6403	The remote IP address used in the applied instruction is illegal.	Hold	OFF	OFF
16#6404	The Modbus function code not supported is received.	Hold	OFF	OFF
16#6405	The number of data which will be received is not consistent with the actual length of the data.	Hold	OFF	OFF
16#6600	The network number which receives the command exceeds the range.	Hold	OFF	OFF
16#6601	The network is undefined in the network configuration parameter.	Hold	OFF	OFF
16#6602	The node number exceeds the limit. (SM1598)	Hold	Blink	OFF
16#6603	The device is undefined. (SM1599)	Hold	Blink	OFF
16#6604	The number of routing connections reaches the upper limit.	Hold	OFF	OFF
16#6605	The unexpected packet is received.	Hold	OFF	OFF
16#6606	There is a routing response timeout.	Hold	OFF	OFF
16#8F0A	Routing instruction error: The length of the packet exceeds the range	Hold	OFF	OFF
16#8F0B	Routing instruction error: The sending of the packet fails.	Hold	OFF	OFF
16#8F02	Routing instruction error: The network number is undefined.	Hold	OFF	OFF
16#8F03	Routing instruction error: The node number is undefined.	Hold	OFF	OFF
16#8F04	Routing instruction error: The IP address of the node is illegal or undefined.	Hold	OFF	OFF
16#8F06	Routing instruction error: The remote device address is incorrect.	Hold	OFF	OFF
16#8F07	Routing instruction error: The number of devices exceeds the range.	Hold	OFF	OFF
16#8F08	Routing instruction error: There is a response timeout.	Hold	OFF	OFF
16#8F09	Routing instruction error: The number of routing connections reaches the upper limit.	Hold	OFF	OFF

Error code	Description	CPU		LED indicator status	
Life code	Description	Status	ERROR	BUS FAULT	
16#8105	The contents of the program downloaded are incorrect. The program syntax is incorrect.	Hold	OFF	OFF	
16#8106	The contents of the program downloaded are incorrect. The length of the execution code exceeds the limit.	Hold	OFF	OFF	
16#8107	The contents of the program downloaded are incorrect. The length of the source code exceeds the limit.	Hold	OFF	OFF	
16#820E	The communication port parameter downloaded is incorrect. The communication protocol is incorrect.	Hold	OFF	OFF	
16#820F	The communication port parameter downloaded is incorrect. The setting of the station address is incorrect.	Hold	OFF	OFF	
16#8210	The communication port parameter downloaded is incorrect. The choice among RS-232, RS-485, and SR-422 is incorrect.	Hold	OFF	OFF	
16#8211	The communication port parameter downloaded is incorrect. The interval of retrying the sending of the command is set incorrectly.	Hold	OFF	OFF	
16#8212	The communication port parameter downloaded is incorrect. The number of times the sending of the command is retried is set incorrectly.	Hold	OFF	OFF	
16#8215	The CPU parameter downloaded is incorrect. The interval of executing interrupt 0 is set incorrectly.	Hold	OFF	OFF	
16#8216	The CPU parameter downloaded is incorrect. The interval of executing interrupt 1 is set incorrectly.	Hold	OFF	OFF	
16#8217	The CPU parameter downloaded is incorrect. The interval of executing interrupt 2 is set incorrectly.	Hold	OFF	OFF	
16#8218	The CPU parameter downloaded is incorrect. The interval of executing interrupt 3 is set incorrectly.	Hold	OFF	OFF	
16#8219	The CPU parameter downloaded is incorrect. The watchdog timer is set incorrectly.	Hold	OFF	OFF	
16#821A	The CPU parameter downloaded is incorrect. The setting of the scan time is incorrect.	Hold	OFF	OFF	
16#821B	The CPU parameter downloaded is incorrect. The setting of the remote execution function is incorrect.	Hold	OFF	OFF	
16#821D	The CPU parameter downloaded is incorrect. An error occurs in the latched area.	Hold	OFF	OFF	

Error code	Dosgription	CPU		dicator itus
Error code	Description	Status	ERROR	BUS FAULT
16#8230	The CPU parameter downloaded is incorrect. The IP address is illegal.	Hold	Blink	OFF
16#8231	The CPU parameter downloaded is incorrect. The netmask address is illegal.	Hold	Blink	OFF
16#8232	The CPU parameter downloaded is incorrect. The gateway address is illegal.	Hold	Blink	OFF
16#8233	The CPU parameter downloaded is incorrect. The IP address filter is set incorrectly.	Hold	Blink	OFF
16#8235	The CPU parameter downloaded is incorrect. The static ARP table is set incorrectly.	Hold	Blink	OFF
16#8237	The CPU parameter downloaded is incorrect. The network number is illegal.	Hold	Blink	OFF
16#8238	The CPU parameter downloaded is incorrect. The node number is illegal.	Hold	Blink	OFF
16#8239	The CPU parameter downloaded is incorrect. The email is set incorrectly.	Hold	Blink	OFF
16#823A	The CPU parameter downloaded is incorrect. The trigger in the email is set incorrectly.	Hold	Blink	OFF
16#823B	The CPU parameter downloaded is incorrect. The TCP socket is set incorrectly.	Hold	Blink	OFF
16#823C	The CPU parameter downloaded is incorrect. The UDP socket is set incorrectly.	Hold	Blink	OFF
16#823E	The CPU parameter downloaded is incorrect. The web is set incorrectly.	Hold	OFF	OFF
16#9A01	The setting of the data exchange for slave 1 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A02	The setting of the data exchange for slave 2 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A03	The setting of the data exchange for slave 3 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A04	The setting of the data exchange for slave 4 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A05	The setting of the data exchange for slave 5 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A06	The setting of the data exchange for slave 6 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A07	The setting of the data exchange for slave 7 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A08	The setting of the data exchange for slave 8 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF
16#9A09	The setting of the data exchange for slave 9 in the PLC Link is incorrect. (SM1590) The setting of the data exchange for slave 10 in	Hold	OFF	OFF
16#9A0A	the PLC Link is incorrect. (SM1590) The setting of the data exchange for slave 11 in	Hold	OFF	OFF
16#9A0B	the PLC Link is incorrect. (SM1590) The setting of the data exchange for slave 12 in	Hold	OFF	OFF
16#9A0C	the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF

Error code	Description	CPU		LED indicator status	
Life ode	Description	Status	ERROR	BUS FAULT	
16#9A0D	The setting of the data exchange for slave 13 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A0E	The setting of the data exchange for slave 14 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A0F	The setting of the data exchange for slave 15 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A10	The setting of the data exchange for slave 16 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A11	The setting of the data exchange for slave 17 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A12	The setting of the data exchange for slave 18 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A13	The setting of the data exchange for slave 19 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A14	The setting of the data exchange for slave 20 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A15	The setting of the data exchange for slave 21 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A16	The setting of the data exchange for slave 22 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A17	The setting of the data exchange for slave 23 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A18	The setting of the data exchange for slave 24 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A19	The setting of the data exchange for slave 25 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A1A	The setting of the data exchange for slave 26 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A1B	The setting of the data exchange for slave 27 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A1C	The setting of the data exchange for slave 28 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A1D	The setting of the data exchange for slave 29 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A1E	The setting of the data exchange for slave 30 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A1F	The setting of the data exchange for slave 31 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A20	The setting of the data exchange for slave 32 in the PLC Link is incorrect. (SM1590)	Hold	OFF	OFF	
16#9A21	An error occurs when the master communicates with slave 1 in the PLC Link. (SM SM1591)	Hold	OFF	OFF	
16#9A22	An error occurs when the master communicates with slave 2 in the PLC Link. (SM SM1591)	Hold	OFF	OFF	
16#9A23	An error occurs when the master communicates with slave 3 in the PLC Link. (SM SM1591)	Hold	OFF	OFF	
16#9A24	An error occurs when the master communicates with slave 4 in the PLC Link. (SM SM1591)	Hold	OFF	OFF	
16#9A25	An error occurs when the master communicates with slave 5 in the PLC Link. (SM1591)	Hold	OFF	OFF	

Error code	Description	CPU		dicator
Lifoi code	Description	Status	ERROR	BUS FAULT
16#9A26	An error occurs when the master communicates with slave 6 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A27	An error occurs when the master communicates with slave 7 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A28	An error occurs when the master communicates with slave 8 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A29	An error occurs when the master communicates with slave 9 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A2A	An error occurs when the master communicates with slave 10 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A2B	An error occurs when the master communicates with slave 11 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A2C	An error occurs when the master communicates with slave 12 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A2D	An error occurs when the master communicates with slave 13 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A2E	An error occurs when the master communicates with slave 14 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A2F	An error occurs when the master communicates with slave 15 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A30	An error occurs when the master communicates with slave 16 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A31	An error occurs when the master communicates with slave 17 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A32	An error occurs when the master communicates with slave 18 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A33	An error occurs when the master communicates with slave 19 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A34	An error occurs when the master communicates with slave 20 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A35	An error occurs when the master communicates with slave 21 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A36	An error occurs when the master communicates with slave 22 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A37	An error occurs when the master communicates with slave 23 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A38	An error occurs when the master communicates with slave 24 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A39	An error occurs when the master communicates with slave 25 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A3A	An error occurs when the master communicates with slave 26 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A3B	An error occurs when the master communicates with slave 27 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A3C	An error occurs when the master communicates with slave 28 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A3D	An error occurs when the master communicates with slave 29 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A3E	An error occurs when the master communicates with slave 30 in the PLC Link. (SM1591)	Hold	OFF	OFF

Error code	Description	CPU	LED indicator status	
Life code	Description	Status	ERROR	BUS FAULT
16#9A3F	An error occurs when the master communicates with slave 31 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A40	An error occurs when the master communicates with slave 32 in the PLC Link. (SM1591)	Hold	OFF	OFF
16#9A41	There is no response from slave 1 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A42	There is no response from slave 2 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A43	There is no response from slave 3 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A44	There is no response from slave 4 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A45	There is no response from slave 5 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A46	There is no response from slave 6 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A47	There is no response from slave 7 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A48	There is no response from slave 8 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A49	There is no response from slave 9 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A4A	There is no response from slave 10 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A4B	There is no response from slave 11 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A4C	There is no response from slave 12 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A4D	There is no response from slave 13 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A4E	There is no response from slave 14 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A4F	There is no response from slave 15 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A50	There is no response from slave 16 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A51	There is no response from slave 17 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A52	There is no response from slave 18 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A53	There is no response from slave 19 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A54	There is no response from slave 20 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A55	There is no response from slave 21 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A56	There is no response from slave 22 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A57	There is no response from slave 23 in the PLC Link. (SM1592)	Hold	OFF	OFF

Error code	Description	CPU	LED indicator	
Lifer code	Description	Status	ERROR	BUS FAULT
16#9A58	There is no response from slave 24 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A59	There is no response from slave 25 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A5A	There is no response from slave 26 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A5B	There is no response from slave 27 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A5C	There is no response from slave 28 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A5D	There is no response from slave 29 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A5E	There is no response from slave 30 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A5F	There is no response from slave 31 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A60	There is no response from slave 32 in the PLC Link. (SM1592)	Hold	OFF	OFF
16#9A61	The setting of the PLC Link mode is incorrect. (SM1589)	Hold	OFF	OFF
16#9A62	The number of polling cycles in the PLC Link is incorrect. (SM1592)	Hold	OFF	OFF
16#9A63	There is a handshaking timeout when the CPU module establishes a connection with the network module. (SM1596)	Hold	OFF	OFF
16#9A64	There is no network module parameter in the CPU module. (SM1596)	Hold	OFF	OFF

12.4.2 Analog I/O Modules and Temperature Measurement Modules

		LED indica	ator status	
Error code	Description	CPU	Module	
Life odde	Description	BUS FAULT	ERROR	
16#A000	The signal received by channel 0 exceeds the range of inputs which can be received by the hardware.	Blink		
16#A001	The signal received by channel 1 exceeds the range of inputs which can be received by the hardware.	Blink		
16#A002	The signal received by channel 2 exceeds the range of inputs which can be received by the hardware.	Bli	nk	
16#A003	The signal received by channel 3 exceeds the range of inputs which can be received by the hardware.	Bli	nk	
16#A004	The signal received by channel 4 exceeds the range of inputs which can be received by the hardware.	Bli	nk	
16#A005	The signal received by channel 5 exceeds the range of inputs which can be received by the hardware.	Bli	nk	
16#A006	The signal received by channel 6 exceeds the range of inputs which can be received by the hardware.	Bli	nk	
16#A007	The signal received by channel 7 exceeds the range of inputs which can be received by the hardware.	Bli	nk	
16#A400	The signal received by channel 0 exceeds the range of inputs which can be received by the hardware.	0	N	
16#A401	The signal received by channel 1 exceeds the range of inputs which can be received by the hardware.	ON		
16#A402	The signal received by channel 2 exceeds the range of inputs which can be received by the hardware.	ON		
16#A403	The signal received by channel 3 exceeds the range of inputs which can be received by the hardware.	ON		
16#A404	The signal received by channel 4 exceeds the range of inputs which can be received by the hardware.	ON		
16#A405	The signal received by channel 5 exceeds the range of inputs which can be received by the hardware.	0	N	
16#A406	The signal received by channel 6 exceeds the range of inputs which can be received by the hardware.	0	N	
16#A407	The signal received by channel 7 exceeds the range of inputs which can be received by the hardware.	0	N	
16#A600	Hardware failure	0	N	
16#A601	The external voltage is abnormal.	0	N	
16#A602	Internal error The CJC is abnormal.	0	N	
16#A603	Internal error The factory correction is abnormal.	ON		
16#A800	The signal received by channel 0 exceeds the range of inputs which can be received by the hardware.	OI	OFF	
16#A801	The signal received by channel 1 exceeds the range of inputs which can be received by the hardware.	OFF		
16#A802	The signal received by channel 2 exceeds the range of inputs which can be received by the hardware.	OFF		
16#A803	The signal received by channel 3 exceeds the range of inputs which can be received by the hardware.	OFF		

		LED indicator status	
Error code	Description	CPU	Module
Life code	Description	BUS FAULT	ERROR
16#A804	The signal received by channel 4 exceeds the range of inputs which can be received by the hardware.	OFF	
16#A805	The signal received by channel 5 exceeds the range of inputs which can be received by the hardware.	OFF	
16#A806	The signal received by channel 6 exceeds the range of inputs which can be received by the hardware.	OFF	
16#A807	The signal received by channel 7 exceeds the range of inputs which can be received by the hardware.	OFF	

^{*}With regard to the errors related to the input signals' exceeding the range of inputs which can be received by the hardware and the conversion values' exceeding the limits, whether the error code generated is in the range of 16#A000 to 16#A00F, in the range of 16#A400 to 16#A40F, or in the range of 16#A800 to 16#A80F depends on the LED indicator status defined by users.

12.4.3 AH02HC-5A/AH04HC-5A

		LED indicator status	
Error code	Description	CPU	Module
		BUS FAULT	ERROR
16#A001	The linear accumulation in channel 1 exceeds the range.	ВІ	nk
16#A002	The scale set for channel 1 exceeds the range.	BI	nk
16#A003	The number of cycles set for channel 1exceeds the range.	ВІ	nk
16#A004	The comparison value set for channel 1 exceeds the range.	ВІ	nk
16#A005	A limit value set for channel 1 is incorrect.	Bli	nk
16#A006	The interrupt number set for channel 1 exceeds the range.	Blink	
16#A011	The linear accumulation in channel 2 exceeds the range.	Blink	
16#A012	The scale set for channel 2 exceeds the range.	Blink	
16#A013	The number of cycles set for channel 2 exceeds the range.	Blink	
16#A014	The comparison value set for channel 2 exceeds the range.	Blink	
16#A015	A limit value set for channel 2 is incorrect.	Bli	nk
16#A016	The interrupt number set for channel 2 exceeds the range.	ВІ	nk
16#A021	The linear accumulation in channel 3 exceeds the range.	Blink	
16#A022	The scale set for channel 3 exceeds the range.	Blink	
16#A023	The number of cycles set for channel 3 exceeds the range.	Blink	
16#A024	The comparison value set for channel 3 exceeds the range.	Blink	
16#A025	A limit value set for channel 3 is incorrect.	Blink	
16#A026	The interrupt number set for channel 3 exceeds the range.	Blink	

		LED indicator status	
Error code	Description	CPU	Module
Lifoi code		BUS FAULT	ERROR
16#A031	The linear accumulation in channel 4 exceeds the range.	Blink	
16#A032	The scale set for channel 4 exceeds the range.	Blink	
16#A033	The number of cycles set for channel 4 exceeds the range.	Blink	
16#A034	The comparison value set for channel 4 exceeds the range.	Blink	
16#A035	A limit value set for channel 4 is incorrect.	Blink	
16#A036	The interrupt number set for channel 4 exceeds the range.	Blink	

12.4.4 AH10PM-5A

		LED indic	ator status
Error code	Description	CPU	Module
Life code	Description	BUS FAULT	ERROR
16#A002	The subroutine has no data.	Blink	
16#A003	CJ, CJN, and JMP have no matching pointers.	Blink	
16#A004	There is a subroutine pointer in the main program.	Bl	ink
16#A005	Lack of the subroutine	В	ink
16#A006	The pointer is used repeatedly in the same program.	Bl	ink
16#A007	The subroutine pointer is used repeatedly.	В	ink
16#A008	The pointer used in JMP is used repeatedly in different subroutines.	В	ink
16#A009	The pointer used in JMP is the same as the pointer used in CALL.	В	ink
16#A00B	Target position (I) of the single speed is incorrect.	В	ink
16#A00C	Target position (II) of the single-axis motion is incorrect.	Blink	
16#A00D	The setting of speed (I) of the single-axis motion is incorrect.	Blink	
16#A00E	The setting of speed (II) of the single-axis motion is incorrect.	Blink	
16#A00F	The setting of the speed (V _{RT}) of returning to zero is incorrect.	В	ink
16#A010	The setting of the deceleration (V_{CR}) of returning to zero is incorrect.	В	ink
16#A011	The setting of the JOG speed is incorrect.	Bl	ink
16#A012	The positive pulses generated by the single-axis clockwise motion are inhibited.	Blink	
16#A013	The negative pulses generated by the single-axis counterclockwise motion are inhibited.	Blink	
16#A014	The limit switch is reached.	В	ink
16#A015	The device which is used exceeds the device range.	Blink	
16#A017	An error occurs when the device is modified by a 16-bit index register/32-bit index register.	Blink	
16#A018	The conversion into the floating-point number is incorrect.	Blink	

		LED indicator status	
Error code	Description	CPU	Module
Lifoi code	Description	BUS FAULT	ERROR
16#A019	The conversion into the binary-coded decimal number is incorrect.	Blink	
16#A01A	Incorrect division operation (The divisor is 0.)	Blink	
16#A01B	General program error	Blink	
16#A01C	LD/LDI has been used more than nine times.	Blink	
16#A01D	There is more than one level of nested program structure supported by RPT/RPE.	Blink	
16#A01E	SRET is used between RPT and RPE.	Blink	
16#A01F	There is no M102 in the main program, or there is no M2 in the motion program.	Blink	
16#A020	The wrong instruction is used, or the device used exceeds the range.	Blink	

12.4.5 AH20MC-5A

		LED indic	ator status
Error code	Description	CPU	Module
Life code	Description	BUS FAULT	ERROR
16#A002	The subroutine has no data.	В	ink
16#A003	CJ, CJN, and JMP have no matching pointers.	Blink	
16#A004	There is a subroutine pointer in the main program.	В	ink
16#A005	Lack of the subroutine	В	ink
16#A006	The pointer is used repeatedly in the same program.	В	ink
16#A007	The subroutine pointer is used repeatedly.	В	ink
16#A008	The pointer used in JMP is used repeatedly in different subroutines.	В	ink
16#A009	The pointer used in JMP is the same as the pointer used in CALL.	Blink	
16#A00B	Target position (I) of the single speed is incorrect.	Blink	
16#A00C	Target position (II) of the single-axis motion is incorrect.	Blink	
16#A00D	The setting of speed (I) of the single-axis motion is incorrect.	Blink	
16#A00E	The setting of speed (II) of the single-axis motion is incorrect.	Blink	
16#A00F	The setting of the speed (V _{RT}) of returning to zero is incorrect.	В	ink
16#A010	The setting of the deceleration (V _{CR}) of returning to zero is incorrect.	Blink	
16#A011	The setting of the JOG speed is incorrect.	Blink	
16#A012	The positive pulses generated by the single-axis clockwise motion are inhibited.	Blink	
16#A013	The negative pulses generated by the single-axis counterclockwise motion are inhibited.	Blink	
16#A014	The limit switch is reached.	Blink	
16#A015	The device which is used exceeds the device range.	Blink	

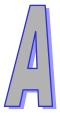
		LED indicator status	
Error code	Description	CPU	Module
	Description	BUS FAULT	ERROR
16#A017	An error occurs when the device is modified by a 16-bit index register/32-bit index register.	Blink	
16#A018	The conversion into the floating-point number is incorrect.	Blink	
16#A019	The conversion into the binary-coded decimal number is incorrect.	Blink	
16#A01A	Incorrect division operation (The divisor is 0.)	Blink	
16#A01B	General program error	Blink	
16#A01C	LD/LDI has been used more than nine times.	Blink	
16#A01D	There is more than one level of nested program structure supported by RPT/RPE.	Blink	
16#A01E	SRET is used between RPT and RPE.	Blink	
16#A01F	Incorrect division operation (The divisor is 0.)	Blink	
16#A020	The wrong instruction is used, or the device used exceeds the range.	Blink	

12.4.6 AH10EN-5A

		LED indicator status	
Error code	Description	CPU	Module
Lifer code	2000 i piloti	BUS FAULT	ERROR
16#A001	The IP address of host 1 conflicts with another system on the network.	Blink	
16#A002	The IP address of host 2 conflicts with another system on the network.	Blink	
16#A003	DHCP for host 1 fails.	Blink	
16#A004	DHCP for host 2 fails.	Blink	
16#A401	Hardware error	ON	
16#A402	The initialization of the system fails.	ON	

12.4.7 AH10SCM-5A

	Description	LED indicator status	
Error code		CPU	Module
		BUS FAULT	ERROR
16#A002	The setting of the UD Link is incorrect, or the communication fails.	Blink	
16#A401	Hardware error	ON	
16#A804	The communication through the communication port is incorrect.	OFF	
16#A808	Modbus communication error	OFF	


12

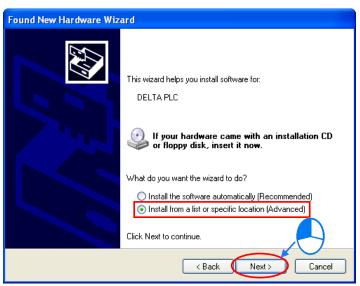
12.4.8 AH10DNET-5A

		LED indicator status		
Error code	Description	CPU	Module	
		BUS FAULT	MS	NS
16#A080	AH10DNET-5A stops running.	The red light blinks.	The green light is ON.	The green light is ON.
16#A0F1	No slave is put in the scan list of AH10DNET-5A.	The red light blinks.	The green light blinks.	The green light is ON.
16#A0E2	AH10DNET-5A functions as a master. The slave in the scan list is disconnected or does not exist.	The red light blinks.	The red light blinks.	The green light is ON.
TONTAGEZ	AH10DNET-5A as a slave does not connect to the I/O module as a master.	The red light blinks.	The green light blinks.	The red light blinks.
16#A0E7	AH10DNET-5A is checking whether its node ID is the same as the node ID of other device on the network.	The red light blinks.	The green light blinks.	OFF
16#A0E8	AH10DNET-5A is being initialized.	The red light blinks.	The green light blinks.	The green light blinks.
16#A0F0	The node ID of AH10DNET-5A is the same as other node ID on the network, or exceeds the range.	The red light blinks.	The green light blinks.	The red light is ON.
16#A0F2	The working voltage of AH10DNET-5A is low.	The red light blinks.	The red light blinks.	The red light blinks.
16#A0F3	AH10DNET-5A enters the test mode.	The red light blinks.	The orange light is ON.	The orange light is ON.
16#A0F4	The bus of AH10DNET-5A is switched OFF.	The red light blinks.	The green light is ON.	The red light is ON.
16#A0F5	AH10DNET-5A detects that there is no network power supply to the DeviceNet.	The red light blinks.	The red light blinks.	The red light is ON.
16#A0F6	Something is wrong with the internal memory of AH10DNET-5A.	The red light blinks.	The red light is ON.	The green light blinks.
16#A0F7	Something is wrong with the data exchange unit of AH10DNET-5A.	The red light blinks.	The red light is ON.	The green light blinks.
16#A0F8	The product ID of AH10DNET-5A is incorrect.	The red light blinks.	The red light is ON.	The green light blinks.
16#A0F9	An error occurs when the data is read from AH10DNET-5A, or when the data is written into AH10DNET-5A.	The red light blinks.	The red light is ON.	The red light is ON.
16#A0FA	The node ID of AH10DNET-5A is the same as that of the slave set in the scan list.	The red light blinks.	The green light is ON.	The red light is ON.

MEMO

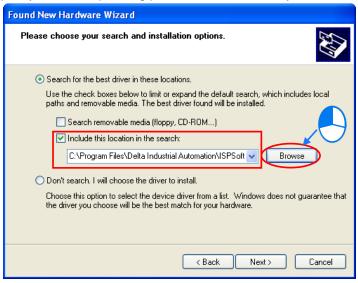
Appendix A Installing a USB Driver

Tab	ole of Contents	
A.1	Installing the USB Driver for an AH500 Series CPU module in Win	dows XP
	with SP3	A-2

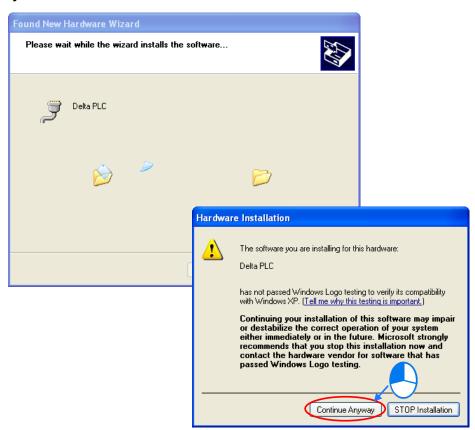

A.1 Installing the USB Driver for an AH500 Series CPU module in Windows XP with SP3

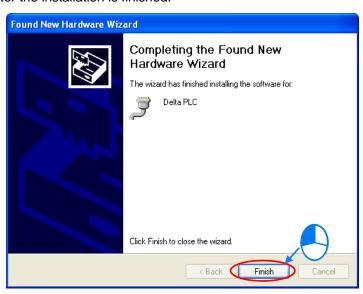
The installation of the USB driver for an AH500 series CPU module on Windows XP is introduced below. If users want to install the USB driver for an AH500 series CPU module on another operating system, they have to refer to the instructions in the operating system for more information about the installation of new hardware.

(1) Make sure that the AH500 series CPU module is supplied with power normally. Connect the AH500 series CPU module to a USB port on the computer with a USB cable. Select the **No**, **not this time** option button in the **Found New Hardware Wizard** window, and then click **Next**.

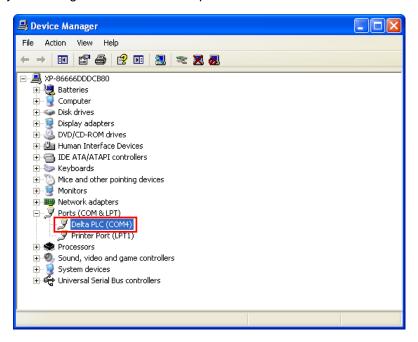

(2) The name of the USB device detected is displayed in the window. Please select the **Install from** a lost or specific location (Advanced) option button.

(3) After ISPSoft version 2.00 or above is installed, the driver for the AH500 series CPU module will be in the folder denoted by the path **Installation path of ISPSoft** \drivers\Delta_PLC_USB_Driver\.


Specify the correct path. If the driver for the AH500 series CPU module is gotten in another way, users have to specify the corresponding path. Click **Next** to carry on the installation.



(4) After the correct driver is found in the folder denoted by the path, the system will install the driver. If the **Hardware Installation** window appears during the installation, please click **Continue Anyway**.



(5) Click Finish after the installation is finished.

(6) Open the **Device Manager** window after the installation is finished. If the name of the USB device connected is under **Ports (COM&LPT)**, the installation of the driver is successful. The operating system assigns a communication port number to the USB device.

Additional remark

- If the PLC is connected to another USB port on the computer, the system may ask users to install the driver again. The users can follow the steps above, and install the driver again. After the driver is installed, the communication port number that the operating system assigns to the USB device may be different.
- If Windows XP SP3 has not been installed on the computer, an error message will appear during the installation. Users can deal with the problem in either way below.
 - (a) Cancel the installation, install Windows XP SP3, and reinstall the driver according to the steps above.
 - (b) Get the file needed, and specify the path pointing to the file in the Files Needed window.

MEMO

Appendix B Device Addresses

Tabl	e of Contents	
B.1	Device Addresses	B-2

B.1 Device Addresses

Standard Modbus addresses of devices:

Device	ce Type Format De		Device range	Modbus address (Decimal number)	AH Address (Hexadecimal number)
X	Bit	DDD.D	X0.0~X511.15	124577~132768	6000~7FFF
^	Word	DDD	X0~X511	332769~333280	8000~81FF
Υ	Bit	DDD.D	Y0.0~Y511.15	040961~049152	A000~BFFF
T T	Word	DDD	Y0~Y511	440961~441472	A000~A1FF
М	M Bit DDDD M0~		M0~M8191	000001~008192	0000~1FFF
SM	Bit	DDDD	SM0~SM2047	016385~018432	4000~47FF
SR Word [DDDD	SR0~SR2047	449153~451200	C000~C7FF
D	D Word DDDDD D0~D32767		400001~432768	0000~7FFF	
S	Bit	DDDD	S0~S2047	020481~022528	5000~57FF
Т	Bit DDDD		T0~T2047	057345~059392	E000~E1FF
ľ	Word	DDDD	T0~T2047	457345~459392	E000~E1FF
С	Bit	DDDD	C0~C2047	061441~063488	F000~F1FF
	Word	DDDD	C0~C2047	461441~463488	F000~F1FF
НС	Bit	DD	HC0~HC63	064513~064576	FC00~FC3F
110	DWord	DD	HC0~HC63	464513~464576	FC00~FC3F
E	Word	DD	E0~E31	465025~465056	FE00~FE1F

AH500 Modbus addresses of devices:

Device	Туре	Format	Device range	AH address (Hexadecimal number)		
X	Bit	DDD.D	X0.0~X511.15	00006000~00007FFF		
^	Word	DDD	X0~X511	00008000~000081FF		
Υ	Bit	DDD.D	Y0.0~Y511.15	0000A000~0000BFFF		
ı	Word DDD Y	Y0~Y511	0000A000~0000A1FF			
М	Bit	DDDD	M0~M8191	00000000~00001FFF		
SM Bit		DDDD	SM0~SM2047	00004000~000047FF		
SR	Word	DDDD	SR0~SR2047	0000C000~0000C7FF		
	Bit	DDDDD.D	D0.0~D65535.15	10000000~100FFFF		
D	Word DDDDD	Mord	Mord	DDDDD	D0~D32767	00000000~00007FFF
		D32768~D65535	20008000~2000FFFF			
S	Bit	DDDD	S0~S2047	00005000~000057FF		
Т	Bit	DDD	T0~T2047	0000E000~0000E1FF		
1	Word	DDD	T0~T2047	0000E000~0000E1FF		
С	Bit	DDD	C0~C2047	0000F000~0000F1FF		
	Word	DDD	C0~C2047	0000F000~0000F1FF		
НС	Bit	DD	HC0~HC63	0000FC00~0000FC3F		
ПС	DWord	DD	HC0~HC63	0000FC00~0000FC3F		
E	Word	DD	E0~E31	0000FE00~0000FE1F		
	Bit	DDDDD.D	L0.0~L65535.15	52000000~520FFFF		
L	Word	DDDDD	L0~L65535	62000000~6200FFFF		

MEMO

