

INSTALLATION MANUAL FOR LG AIR HANDLER UNIT (AHU) COMMUNICATIONS KIT

AHU Model Number: PAHCMS000

PROPRIETARY DATA NOTICE

This document, as well as all reports, illustrations, data, information, and other materials are the property of LG Electronics U.S.A., Inc., and are disclosed by LG Electronics U.S.A., Inc. only in confidence.

Do not throw away, destroy, or lose this manual. Please read carefully and store in a safe place for future reference. Content familiarity required for proper installation.

The instructions included in this manual must be followed to prevent product malfunction, property damage, injury, or death to the user or other people. Incorrect operation due to ignoring any instructions will cause harm or damage. The level of seriousness is classified by the symbols described by the summary list of safety precautions on page 3.

For more materials such as submittals, catalogs, engineering, installation, owner's, and service manuals, visit www.lghvac.com.

TABLE OF CONTENTS

Safety Precautions	4
AHU Kit Introduction	7
Specifications, Components List	8
AHU Communications Kit Installation	9
Selecting the Best Location	9
DIP Switch Settings	
AHU Communications Kit Parts	13
AHU Communications Kit Mounting	14
Power Wiring	18
Communications Wiring	19
Controller Settings	20
Solutions Overview	24
Main Module Settings	
Communication Module	
Defrost Setting	
External Connection Diagrams	
Discharge Air Temperature Controller	37
EEV Kit Installation	45
Introduction, Specifications, and Design Parameters	45
EEV Kit Parts	46
Mounting the EEV Kit	48
Preparing the Pipes	49
Brazing and Insulating the Piping	
PRLK048A0 and PRLK096A0 Wiring	51
PRLK396A0 Wiring	52
Control Functions	53
Testing	57
Troubleshooting	58

SAFETY PRECAUTIONS

The instructions below must be followed to prevent product malfunction, property damage, injury or death to the user or other people. Incorrect operation due to ignoring any instructions will cause harm or damage. The level of seriousness is classified by the symbols described below.

TABLE OF SYMBOLS

▲ DANGER	This symbol indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
▲ WARNING	This symbol indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
▲ CAUTION	This symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.
Note	This symbol indicates situations that may result in equipment or property damage accidents only.
\bigcirc	This symbol indicates an action should not be completed.

Installation

AWARNING

All electrical work must be performed by a licensed electrician and conform to local building codes or, in the absence of local codes, with the National Electrical Code, and the instructions given in this manual.

If the power source capacity is inadequate or the electric work is not performed properly, it may result in fire, electric shock, physical injury or death.

○ Do not touch the communications and EEV kits' wiring, terminals, or other electrical components with tools or exposed skin when the power is connected. Only qualified technicians should install, remove, or re-install the kits. Improper installation or use may result in fire, electric shock, physical injury or death.

○ Do not install, remove, or re-install the communications and EEV kits by yourself (end user). Ask the dealer or a qualified technician familiar with safety procedures and equipped with the proper tools and test instruments to install the kits. Improper installation by the user may result in fire, electric shock, physical injury or death.

For replacement of an installed communications and EEV kits, always contact a qualified LG service provider familiar with safety procedures and equipped with the proper tools and test instruments.

There is risk of fire, electric shock, and physical injury or death.

On not install the communications and EEV kits in a location where the kits can be exposed to rain, snow, etc.

There is risk of physical injury or death due to electric shock.

Safely dispose of the packing materials.

Tear apart and throw away plastic packaging bags so that children may not play with them and risk suffocation and death.

Wear protective gloves when unpacking, installing, and handling the kits. Sharp edges may cause personal injury.

 \bigcirc Do not install the communications and EEV kits in locations where either kit could fall down.

There is risk of physical injury.

Use the appropriate parts and connectors.

There is risk of physical injury or death due to fire and / or electric shock.

Replace all control box and panel covers on the communications and EEV kits.

If cover panels are not installed securely, dust, water, and animals may enter the kits, causing fire, electric shock, and physical injury or death.

Failure to carefully read and follow all instructions in this manual can result in physical injury or death.

Note

Only qualified technicians familiar with safety procedures and equipped with the proper tools and test instruments should install, remove, or re-install the communications and EEV kits.

Improper installation or use may result in product malfunction.

O Do not install the communications and EEV kits in a location where the kits can be exposed to rain, snow, etc. There is risk of product malfunction.

On not drop the communications and EEV kits. It may damage the products.

Failure to carefully read and follow all instructions in this manual can result in property damage and equipment malfunction.

SAFETY PRECAUTIONS

WIRING

A DANGER

High voltage electricity is required to operate the communications and EEV kits. Adhere to the NEC code and these instructions when wiring.

Improper connections and inadequate grounding can cause accidental injury or death.

Always ground the communications and EEV kits following local, state, and NEC codes.

There is risk of fire, electric shock, and physical injury or death.

Turn the power off at the nearest disconnect before servicing the equipment.

Electrical shock can cause physical injury or death.

Properly size all circuit breakers or fuses.

There is risk of fire, electric shock, explosion, physical injury or death.

Communication kit requires its own power source (EEV kit is powered off of Communication kit). \bigcirc Do not share the power source with other equipment.

There is risk of heat generation which may cause fire, electric shock, explosion, physical injury or death.

WARNING

The information contained in this manual is intended for use by an industry-qualified, experienced, certified electrician familiar with the U.S. National Electric Code (NEC) who is equipped with the proper tools and test instruments.

Failure to carefully read and follow all instructions in this manual can result in personal injury or death.

All electric work must be performed by a licensed electrician and conform to local building codes or, in the absence of local codes, with the National Electrical Code, and the instructions given in this manual.

If the power source capacity is inadequate or the electric work is not performed properly, it may result in fire, electric shock, physical injury or death.

Refer to local, state, and federal codes, and use power wires of sufficient current capacity and rating.

Wires that are too small may generate heat and cause a fire and physical injury or death.

Secure all field wiring connections with appropriate wire strain relief.

Improperly securing wires will create undue stress on equipment power lugs. Inadequate connections may generate heat, cause a fire and physical injury or death.

Verify that all power wiring, plugs, and sockets are not loose or damaged.

Loose wiring may overheat at connection points, causing a fire, electrical shock, physical injury or death.

Note

On not supply power to the communication and EEV kits until all electrical wiring, controls wiring, piping, installation, and refrigerant evacuation are completed for the whole air conditioning system.

The information contained in this manual is intended for use by an industry-qualified, experienced, certified electrician familiar with the U.S. National Electric Code (NEC) who is equipped with the proper tools and test instruments.

Failure to carefully read and follow all instructions in this manual can result in equipment malfunction or property damage.

SAFETY PRECAUTIONS

OPERATION

ADANGER

Do not provide power to or operate communication and EEV kits if the kits are flooded or submerged. Always have the dealer or an authorized technician to service the kits. There is risk of fire, electric shock, physical injury or death.

O Do not store or use flammable gas or combustibles near the communications and EEV kits.

There is risk of fire, explosion, and physical injury or death.

Unplug the communication and EEV kits if either kit emits strange sounds, smells, or smoke.

There is risk of fire, electric shock, physical injury or death.

WARNING

O Do not install the communications and EEV kits in locations exposed to open flame or extreme heat. Do not touch the kits with wet hands.

There is risk of fire, electric shock, physical injury or death.

O Do not modify or extend the power supply cords. There is risk of fire, electric shock, physical injury or death.

On on the communications and EEV kits.

If the product falls, there is risk of physical injury.

O Do not place heavy objects on the communications and EEV kits' power cables.

There is risk of fire, electric shock, physical injury or death.

ACAUTION

Only authorized persons should operate the communications and EEV kits.

If the kits are not operated properly, there is a risk of physical injury.

Note

On not let the communication and EEV kits get wet. There is risk of product failure or malfunction.

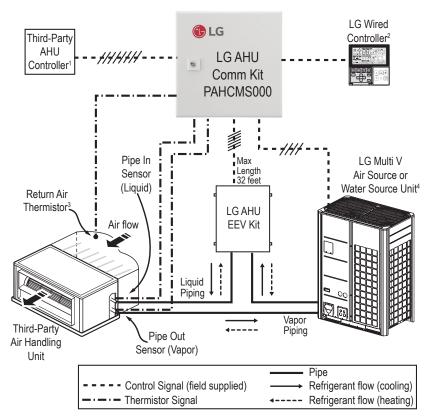
Only authorized persons should operate the communication and EEV kits.

There is risk of product failure or malfunction.

On not drop the communications and EEV kits. There is risk of product failure or malfunction.

On on the communications and EEV kits.

If the product falls, there is risk of product damage.


AHU KIT INTRODUCTION

Introduction

The PAHCMS000 AHU Communications Kit bridges LG's air conditioning outdoor unit to a third party Air Handling Unit (AHU). Its function is based on discharge or supply air temperature control. In installations where the AHU is designed with Direct Expansion (DX) Coil, the PAHCMS000 will control the supply air temperature by measuring the inlet and outlet temperatures of the DX coil and changd the operation of the outdoor unit and the expansion unit. PAHCMS000 AHU Communications Kit features are:

- It can be used with LG Multi V air or water source outdoor units and LG Single Zone outdoor units.
- It supports AHU coil capacities from 12 594 kBtu/h.
- It controls the Electronic Expansion Valve (EEV, required, sold separately)
- It measures the supply air temperature through the enclosed temperature sensor and controls the outdoor unit to secure the demanded supply air temperature.
- It can be directly connected to direct digital control (DDC) without a separate control module, so DDC can receive product control and status information through Modbus communication.
- The PAHCMS000 AHU Communications Kit consists of a chassis, communication module, pipe-in thermistor, pipe-out thermistor, and return air thermistor.
- Supply air temperature control is possible without DDC.
- It increases heating comfort by applying sequential defrost logic and simultaneous defrosting prevention logic of the outdoor unit.

Figure 2: AHU Communications Kit System Schematic.

¹Third-party AHU controller is recommended.

Figure 1: PAHCMS000 AHU Communications Kit.

²LG wired controller (required accessory) functions as error code display only. No system control available.

³Return air temperature thermistor can be replaced with fixed resistor when AHU controller is using third-party temperature sensors.

⁴Compatible units are Multi V and Single Zone.

AHU COMMUNICATIONS KIT SPECIFICATIONS, COMPONENTS LIST

Specifications

Table 1: PAHCMS000 AHU Communications Kit Specifications Table.

Kit Model Number	PAHCMS000		
For Use With	Multi V and Single Zone		
Power Supply Requirements	208-230VAC, 60Hz, 1Ph		
Rated Current	0.1A		
Ambient Operating Temperature Range	-4 to +149°F		
Ambient Operating Humidity Range	0 to 98% (Non-condensing)		
Dimensions (in., W x H x D)	14-31/32" W x 6-3/32" H x 11-13/16" D		
Net Weight (lbs.)	16.5		
Shipping Weight (lbs.)	19.4		
Communications	RS-485 (4 wires required: 2 connect to IDU A/B terminals and 2 connect to UI4/G terminals on ODU)		
Communications Cable	AWG 18 x 4 Stranded, Shielded Copper Cable		

AHU Communications Kit Components

Table 2: PAHCMS000 AHU Communications Kit Components Table (factory supplied).

Part	Quantity	Image
AHU Communications Kit	One (1)	€ LG
Return Air (Room) Thermistor	One (1)	
Pipe Thermistor	Two (2) (One [1] Pipe In, One [1] Pipe Out)	

Selecting the Best Location

AHU Communications Kit Design Parameters

- Minimum coil entering air temperature is 41°F when system is operating in heating mode.
- · AHU coil sizing parameters:
 - Suction (evaporating) temperature for coil sizing is 41°F, Condensing (liquid) temperature for coil sizing is 110°F.
 - Recommended coil tube sizes: 3/8 or 1/2 inches.
 - Coil volume is needed to calculate additional refrigerant charge amount.
 - Coils larger than 16 tons should be divided into multiple circuits to allow EEV Kit connection kit (EEV Kit sold separately).
- Pipe sizing rules are same rules as the connected air-source or water-source heat pump (see respective Engineering and Installation Manuals for more information).
- · Maximum recommended combination ratio is 100%.
- AHU Communications Kits and EEV Kits (sold separately) are not weatherproof and must be protected from rain, snow, etc.

Selecting the Best Location

Do

- Install the AHU Communications and EEV Kits with the access panels facing outward.
- Install in a location that can support the weight of the kits.
- Install the EEV kit on the AHU as close as possible to the heat exchanger.

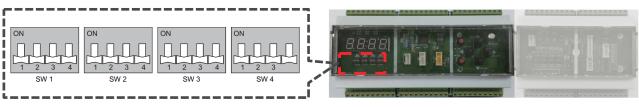
- · Don't install or operate the unit in an area where mineral oils, sulphuric gases, acidic or alkaline vapors or spray are present.
- Don't install in an area where the air contains high levels of salt (oceanside locations).
- Don't install in vehicles or vessels.
- Don't install in an area where voltage fluctuates significantly (factories), or near machines that generate electromagnetic waves.

AHU Operation Range

Range of the heat exchanger inlet air temperature is 64.4 to 104°F for cooling, and 41 to 86°F for heating. If the temperature is <64.4°F for cooling and >86°F for heating, the system might cycle on and off because of the system's protection logic.

Note

To measure room temperature accurately, install the room thermistor in the heat exchanger inlet. If the room thermistor is not installed properly, the AHU may not operate properly. Room thermistor can be replaced with fixed resistor when using a third-party AHU controller.


Table 3: AHU Application and Condition.

Application	Condition
100% outside air intake: The AHU(s) is (are) the only indoor unit(s)	The total capacity of 100% outside air intake AHU(s) should be
connected to the air-source / water-source heat pump unit(s).	50~100% of the air-source / water-source heat pump.

DIP Switch Settings

Figure 3: Main Module DIP Switches.

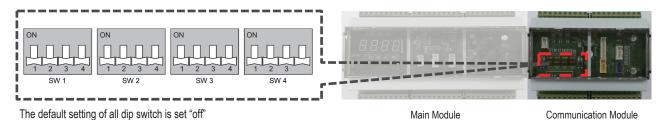
The default setting of all DIP switches is "off"

Main Module

Communication Module

Table 4: Main Module DIP Switch Settings

S/W name	No	Item		Setting	Note
			On	Communication	Controlled by DDC through Modbus or LG centralized controller
1 Control Type		Off	Contact signal	Controlled by DDC through Contact signal AI and DI LG Centralized controller can only monitor status	
	Discharge Temp.	On	Stand alone	Discharge temp. control by LG controller using own discharge temp. sensor	
	2	Control Type	Off	Manual by DDC	Discharge temp. control by DDC using filed supplied discharge temp. sensor
SW1	3	Defrost Operation	On	Normal	In case of multiple outdoor units, Defrost operation can be operated simultaneously
	J	Type ¹	Off	Sequential Start up	In case of multiple outdoor units, the outdoor unit is sequentially started at intervals of 10 minutes
	Central	Central Communication	On	LG Central Comm	Modbus Communication
4 Communication Type		Off	-	Not Used	
4 ODU Capacity		On	ODU Capacity Setting #2	ODU capacity control #2	
1 Control	Control	Off	ODU Capacity Setting #1	ODU capacity control #1	
	2	Reserved	-	-	-
	3	Reserved	-	-	-
	4	Reserved	-	-	-
	1	Reserved	-	-	-
SW3	2	Reserved	-	-	-
3413	3	Reserved	-	-	-
	4	Reserved	-	-	-
	1	Reserved	-	-	-
SW4	2	Reserved	-	-	-
0114	3	Reserved	-	-	-
	4	Reserved	-	-	-


Note:

1. Function of defrost operation type can be applied only to Multi V outdoor units (after MULTI V 5 model).

DIP Switch Settings

Figure 4: Communications Module DIP Switches.

Table 5: Communications Module DIP Switch Settings				
	Table E.	Communications	Madula DID	Curitab Cattinga
	Table 5	Communications	IVIOQUIE L'IP	Swiich Sellings

S/W name	No	Item	Setting		Note	
	1 ODU Type		On	Single Comm	Using Single Split outdoor unit	
			Off	MULTI V Comm	Using MULTI V outdoor unit	
	2 Control Time		On	Communication	Controlled by Modbus between modules	
2 Control Type		Off	Contact signal	Not used		
SVVI	SW1 3 DO Type		On	Fan Speed	Not used	
	J	DO Type	Off	Status	Not used	
	4	Fan Speed	On	Fixed	Not used	
	7	(TH. On/Off)	Off	Change	Not used	
	1	Reserved	-	-	-	
	2	Reserved	-	-		
SW2	CMO		Off/Off	UI Setting #1	Not used	
3/4	UI Setting	Off/On	UI Setting #2	Not used		
		On/Off	-	-		
		On/On	-	-		
	1	Master/Slave	On	Slave mode	Not used	
	'	iviastei/Siave	Off	Master mode	Master is default	
			Off/Off	Heat Pump	Cooling or Heating operation mode is available	
SW3 2/3	2/3 Operation mode setting	Off/On	Heating Only	Operation mode is Heating only (Heating / Ventilation)		
		On/Off	Cooling Only	Operation mode is Cooling only (Cooling / Ventilation)		
		On/On	Reserved	-		
	4	Reserved	-	-	-	
SW4	1~4	Capacity Index Setting	-	-	According to ODU Type, you can setup the capacity index of MULTI V or Single Split	

Note:

1. Do not change the settings of reserved switches. Changing these settings can result in equipment malfunction.

DIP Switch Settings

Table 6: SW4 DIP Switch Settings for AHU Capacity

Switch	F DIT OWIGH Settings for A	Capacity	(kBTU/h)
Number	SW4 DIP switches	MULTI V	Single Zone
1	ON 1 2 3 4	12	5
2	ON 1 2 3 4	15	7
3	ON	18	9
4	ON 1 2 3 4	24	12
5		28	15
6		36	18
7	ON	42	24
8	ON 1 2 3 4	48	30
9	ON 1 2 3 4	54	36
10	ON 1 2 3 4	76	42
11		96	48
12	ON 1 2 3 4	115	60
13	ON 1 2 3 4	134	70
14	ON 1 2 3 4	153	85
15	ON 1 2 3 4	172	Reserved
16	ON 1 2 3 4	192	Reserved

Notes

^{1.} PAHCMS000 AHU can be connected to the PRLK048A0, PRLK096A0, or PRLK396A0 EEV kits only.

^{2.} If connecting the PRLK396A0 EEV kit to a Multi V outdoor unit, set DIP switches 1, 2, 3, and 4 to ON to set capacity to 192 kBtu/h.

AHU Communications Kit Parts

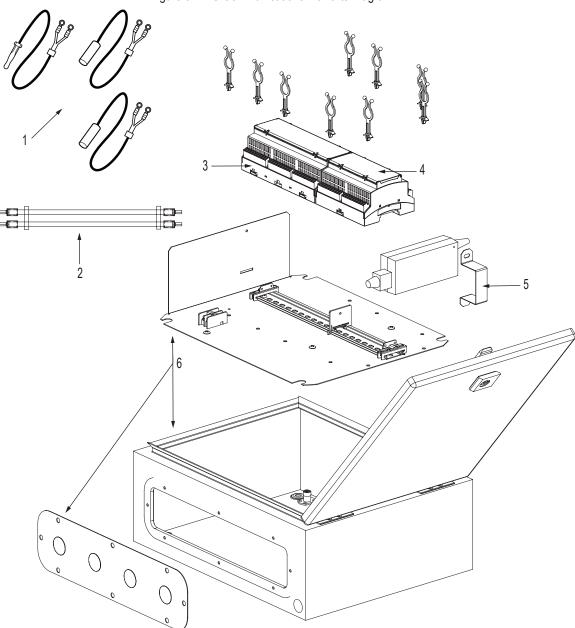
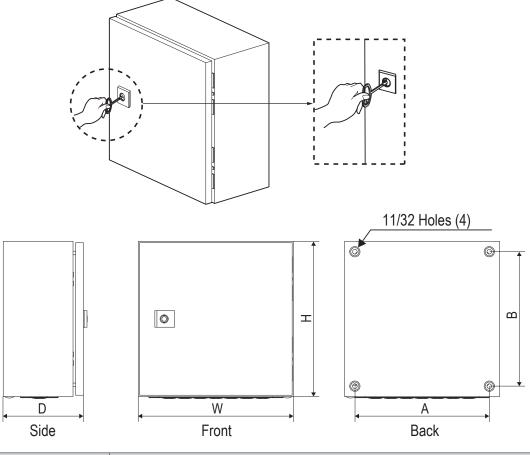


Figure 5: AHU Communications Kit Parts Diagram.

Table 7: AHU Communications Kit Parts Table.

Diagram Label	Part Name	Quantity
1	Thermistor Assembly, NTC	Three (3)
2	Harness, Multi	One (1)
3	Main Module	One (1)
4	Communications Module	One (1)
5	Bracket	One (1)
6	Panel Assembly, Control	Three (3)

AHU Communications Kit Mounting


- 1. Use the key to open the AHU Communication Kit door.
- 2. Remove the four nuts from the four captive bolts at the corners of the control panel assembly.
- 3. Carefully remove the control panel assembly from the AHU Communication Kit.
- 4. Use the AHU Communication Kit as a template and mark the locations of the screw holes on the mounting surface.

NOTE: Do not drill holes without removing the control panel assembly.

Metal shavings can collect on the control panel assembly and damage the equipment when power is applied.

- 5. Drill the four holes for the field-supplied screws. Ensure the drill bit does not damage any equipment or components.
- 6. Carefully replace the control panel assembly and secure with the four nuts on the four captive bolts.
- 7. Position the AHU Communications Kit at the mounting location and secure with four field-supplied screws. Ensure the screws do not damage any equipment or components.

Figure 6: AHU Communications Kit Installation

	Size (inch)				
Model	W	D	Н	A	В
PAHCMS000	14 31/32	6-3/32	11-13/16	13-2/5	10-1/4

Wiring Diagram

Figure 7: AHU Communications Kit Wiring Diagram еир REMO BR! RD! BL!OR! YL|WH $\mathsf{L}_{\mathsf{REMO}}$ RD YL BK 0 ele↔ ε Discharge Thermistor **+**15∧ **→** 7 EEV BIS G 0 NTC. 0 Э Thermistor Thermistor Return Pipe out 0 16 000 비님 NTC → PIU → PIU ⊕ - UNIVERSAL INPUT Thermistor Pipe in] _{B|3} Э EOa [' ⇒ siu — DIGITAL OUTPUT Multi V IDU DOS 000 Comm. - RS485 -CHS DO1 BL:BLUE OR:ORANGE BR:BROWN RD:RED WH:WHITE BK:BLACK YL: YELLOW Single IDU Comm. CHJ SINGLE 0 +∀ PSIC 0 1SVDC, 0 N **←** 00 → SIQ 900 [DIGITAL INTPUT FACTORY WIRING Emer.Stop DIS ← FIELD WIRING → Na Cool/Heat DO2 еир On/Off Comp. Status DCOM DIGITAL OUTPUT ₽O0 0 **+**15∧ → Defrost 00 PIN B 0 DO3 control 0~10V Capacity On/Off 0 Ja ∠IN NOTE DOS 0 UNIVERSAL INPUT MODI **→**alu ຄ Alarm (c) L DO1 Э 0 0 Э ıe 0 90A ⊅I∩ * Refer to label quality for applicable spec. 0 SIU 9 0 3OA e → riu Siu B 0 ANALOG OUTPUT Э **DDC** Central ⊅O∀ Comm. Э **-**8 CH¢ -G Central εOA Comm. 0 СНЗ SOA ODU Comm. -8 CHS ΙΟΑ B– CH1 +A _ ۸9+ 🖰 Э POWER SUPPLY 220-240 V~ 50/60 Hz 208/230 V~ 60 Hz 1SVDC 412V ADAPTOR GN/YL (AC/DC) |L1(L)|L2(N)| СИD BF DC 15A ВВ

Wiring Diagram

Table 8: RS485 Communication Port

Name	Port	Item	Electrical Spec.	Function
ODU Comm.	RS485 CH2	ODU Comm. (CEN A/B or INT A/B)	Max 3280 ft, 2C x 18~16 AWG (shield wire)	Communication with MULTI V/Single split ODU for ODU Capacity control
LG Central Comm.	RS485 CH3	LG Central Comm.	Max 1640 ft, 2C x 18~16 AWG (shield wire)	Communication with LG centralized controller through LGAP Protocol
DDC Central Comm.	RS485 CH4	DDC(Modbus) Central Comm.	Max 1640 ft, 2C x 18~16 AWG (shield wire)	Communication with DDC central- ized controller through Modbus pro- tocol

Table 9: Digital Input

Name Port		Value	9	Electrical Spec	Function	
IName	Name Port		Open	Electrical Spec	Function	
On/Off	DI1	On	Off	Non voltage	Operation On/Off	
Cool/Heat	DI2	Heating	Cooling	Non voltage	Operation Mode	
Emer. Stop	DI3	Emergency Stop	Normal	Non voltage	Emergency Stop Input (Priority operation)	

^{*}DI is available when Dip SW1-1 is Off

Table 10: Digital Output - Relay C Contact

Name	Port	Value	Electrical Spec.	Function
Alarm	DO1	-Normal Status A B COM -Error Status A B COM	30 VDC / 5 A 250 VAC / 5 A	Output normal or error status (Relay C Contact) - A Contact Normal status : open Error status : short - B Contact Normal status : short Error status : open

Wiring Diagram

Table 11: Digital Output

Name	Port	Value		Electrical Spec.	Function	
Ivallie	Foit	Short	Open	Electrical Spec.	Fullction	
On/Off	DO2	On	Off		Operation On/Off status	
Defrost	DO3	Defrost	Normal	40.7/20.74.4	ODU Defrost status	
Comp. Status	DO4	On	Off	12 VDC / 1 A, 250 VAC / 3 A	Compressor operation On/Off status	
Reserved	DO5	-	-	250 VAC / 3 A	-	
Reserved	DO6	-	-		-	

Table 12: Universal Input

Name	Port	Value	Electrical Spec.	Function
Reserved	UI1	-	-	-
Reserved	UI2	-	-	-
Reserved	UI3	-	-	-
Reserved	UI4	-	-	-
Reserved	UI5	-	-	-
Reserved	UI6	-	-	-
Capacity Control¹ 0~10V	UI7 (AI)	0~10 V Input	DC 0~10 V, 20 mA	ODU Capacity control input(0~10 V) *When Temp. Control Type is 'Manual by DDC'(SW 1-2 : Off), refer to UI7 Analog Input
Reserved	UI8	-	-	-

Refer to the Capacity Control (UI7) combination ratio table.
 UI is available when Dip SW1-1 is Off

Power Wiring

General Power Wiring Guidelines

WARNING

All electrical work must be performed by a licensed electrician and conform to local building codes or, in the absence of local codes, with the National Electrical Code, and the instructions in this manual.

Inadequate power source capacity or improper electric work may result in fire, electric shock, physical injury or death.

All field-supplied parts, materials, and electric work must be conform to local codes.

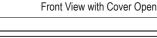
Improper components and installation may result in fire, electric shock, physical injury or death.

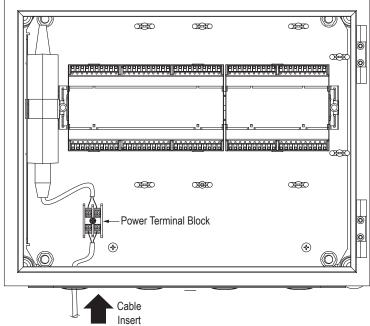
A main switch or disconnect, in accordance with relevant local and national codes, and having a contact separation in all poles, must be incorporated in the wiring.

Improper installation by the user may result in fire, electric shock, physical injury or death.

Refer to the air-source / water-source heat pump unit installation manual for power wiring sizes, circuit breaker and switch capacities, and wiring instructions.

If the power source capacity for the air-source unit / water-source unit is inadequate or the electric work is not performed properly, it may result in fire, electric shock, physical injury or death.


Use copper wire only and connect wires tightly to the terminals. Install wiring so that other equipment is not obstructed. Improper or incomplete connections could result in overheating, fire, electric shock, physical injury or death.


Ensure the power source is disconnected before performing this procedure.

If the power source is connected during this procedure, it could result in electric shock, physical injury, or death.

- 1. Carefully pull the power cable through the cable nut and grommet.
- 2. Connect the power cable to the power terminal block.
- 3. Pull enough cable through the nut and grommet to allow enough slack for strain relief.
- 4. Tighten the cable nut.

Figure 8: Power Wiring Connection.

Communications Wiring

AWARNING

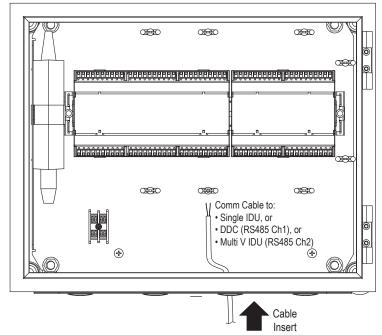
All electrical work must be performed by a licensed electrician and conform to local building codes or, in the absence of local codes, with the National Electrical Code, and the instructions in this manual.

If the electrical work is not performed properly, it may result in fire, electric shock, physical injury or death.

All field-supplied parts, materials, and electric work must be conform to local codes.

Improper components and installation may result in fire, electric shock, physical injury or death.

Ensure the power source is disconnected before performing this procedure.


If the power source is connected during this procedure, it could result in electric shock, physical injury, or death.

Note

- Communications wiring must be 18 gauge, shielded, and stranded.
- The thermistor cable, remote controller wires, and communications wires should be positioned at least two (2) inches away from power supply wires. If these wires are installed too closed together, it may result in product malfunction due to electrical interference.
- 1. Carefully pull the communications cable through the cable nut and grommet.
- Refer to the wiring diagram in Figure 6 and connect the communications cable to the power terminal block.
- 3. Pull enough cable through the nut and grommet to allow enough slack for strain relief.
- 4. Tighten the cable nut.

Figure 9: Communications Wiring Connection

Front View with Cover Open

Controller Settings

Universal Input - UI Setting #1

UI setting #1 is available when DIP switches SW1-2, SW2-3, and SW2-4 are Off.

Note: Dip SW 1-2 is for contact signal control

Name	Port		Value Short Open		Electrical		Function	n
					Spec.			
On / Off	UI1 (DI)	On		Off	Non voltage	Operation On/Of	f Control	
Cool / Heat	UI2 (DI)	Heatin	ng C	ooling	Non voltage	if operation mode "Short" status wil	l work as fan mode.	set to cooling only mode, UI2 set to heating only mode, UI2
						When UI4(Targe temp. is fixed like	e below table	.5 V, Target temp. and Room
Forced		Therm	al T	hermal		UI3 status	Cooling Mode (°F	Heating Mode (°F)
Thermo On / Off	UI3 (DI)	On			Non voltage	Thermal On	Target temp. = 60 Room temp. = 80	Target temp. = 80 Room temp. = 60
						Thermal Off	Target temp. = 80 Room temp. = 60	Target temp. = 60 Room temp. = 80
		,	Voltage		Electrical			
		V	Min.	Max	Spec.	Cooling	y Mode (°F)	Heating Mode (°F)
		-			орос.	UI3 s	hort : 60	UI3 short : 80
		< 1.5	0	1.6		UI3 open : 80		UI3 open : 60
		2.0	1.9	2.1			60	60
		2.5	2.4	2.6		62		62
		3.0	2.9	3.1			64	64
		3.5	3.4	3.6			66	66
T		4.0	3.9	4.1			68	68
Target Temp.	UI4 (AI)	4.5	4.4	4.6	DO 0 40 V		69	69
remp.		5.0	4.9	5.1	DC 0~10 V, 20 mA		71	71
		5.5	5.4	5.6	ZU IIIA		73	73
		6.0	5.9	6.1	1		75	75
		6.5	6.4	6.6			77	77
		7.0	6.9	7.1	1		78	78
		7.5	7.4	7.6	1		80	80
		8.0	7.9	8.1	1		82	82
		8.5	8.4	8.6]		84	84
		9.0 ≤	8.7	10.0		86		86

Note: Maintain previous value when getting intermediate value to UI4

Controller Settings

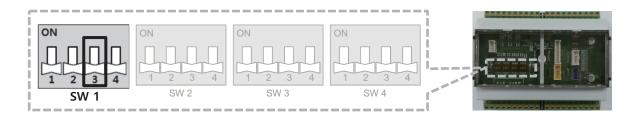
Universal Input – UI Setting #2

UI setting #1 is available when DIP switches SW1-2 and SW2-3 are Off and SW2-4 is On.

Note: Dip SW 1-2 is for contact signal control

Name	Port	Val	ue	Electrical	Function				
Ivaille	FUIT	Short	Open	Spec.	Spec. Function				
On / Off	UI1 (DI)	On	Off	Non voltage		On/Off operation con	trol		
				Non voltage					
					Mode	Cooling Mode (°F)	Heating Mode (°F)		
Forced Th. On / Off	UI4 (DI)	Thermal On	Thermal Off		Thermal On	Target temp. = 60 Room temp. = 80	Target temp. = 80 Room temp. = 60		
0 , 0					Thermal Off	Target temp. = 80 Room temp. = 60	Target temp. = 60 Room temp. = 80		

Operation Mode Setting


Mode	Stat	us	Electrical Spec.	Function	
Wode	UI2	UI3	Liectrical Spec.	Pulletion	
Cooling	Short	Open	Non voltage	Cooling mode operation control	
Heating	Open	Short	Non voltage	Heating mode operation control	
Fan	Open	Open	Non voltage	Ean mode eneration control	
гап	Short	Short	Non voltage	Fan mode operation control	

Controller Settings

Digital Output - Status

Status Output is available when DIP switch SW1-3 is Off.

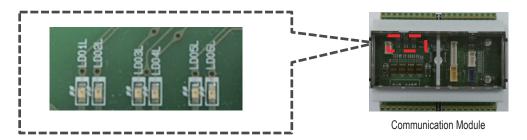
Name Port		Value		Floatrical Spac	Function
Name	FUIL	Short	Open	Electrical Spec.	runction
On / Off	DO1	On	Off		Operation On/Off Status
Defrost	DO2	Defrost	Normal	12 VDC / 1A, 250VAC / 3A	ODU Defrost Status(Only total defrost mode)
Alarm	DO3	Error	Normal		Error output status

Digital Output - Fan Speed

Fan Speed Output is available when DIP switch SW1-3 is On.

Name	Dort	Value		Electrical Spec.	Function
Name	Port	Short	Open	Liectifical Spec.	FullCtion
Fan_High	DO1	High	-		Fan High
Fan_Mid	DO2	Mid	-		Fan_Mid
Fan_Low	DO3	Low	-	12 VDC / 1A, 250VAC / 3A	Fan_Low
Fan_Stop	DO1 DO2 DO3	-	Stop	ZOUVAC/JA	Fan_Stop (When all DO are 'Open' Status)

Controller Settings

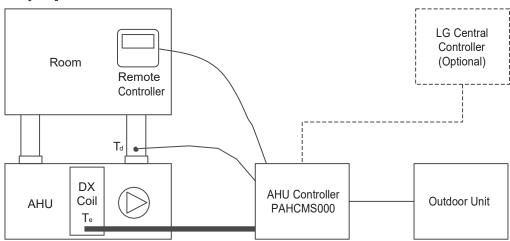

Remote Controller

Name	Port	Item	Electrical Spec.	Function
REMO	+12V/SIG/GND	Wire Remote Controller	Max 164 ft	Communication with Wired Remote Controller

Electronic Expansion Valve

Name	Port	Item	Electrical Spec.	Function
EEV	12 VDC/1/2/3/4	EEV Control	Max 32.8 ft	EEV Control

LED Display


Name	Port	Function
LD01L	LED1	Modbus Comm. Tx
LD02L	LED2	Modbus Comm. Rx
LD03L	LED3	Inner Comm. Tx
LD04L	LED4	Inner Comm. Rx
LD05L	LED5	ODU Comm. (Repeat On/Off when communicating with ODU)
LD06L	LED6	Error Status (Repeat On/Off when error occurs)

Solutions Overview

Discharge Air Temperature Control

LG Control: Variable T_e + T_d

The Communication Kit for Discharge Air Temperature Control is single-handed able to cover this function. The Communication Kit adjusts the evaporating or condensing temperature (T_e) by monitoring the supplied air temperature (T_e) to meet the required set target (T_e).

Required item

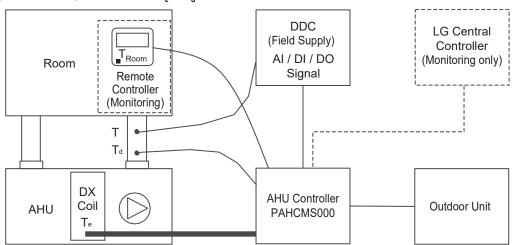
	Expansion Valve	Wired Remote Controller	Central Controller
MULTI V	EEV	0	Optional
Single Split	Not Required	0	Optional

Function List

	Function List	LG Remote Controller	LG Central Controller 1)
	Operating On/Off	0	0
	Operation Mode	0	0
	Return Air Temperature	X	X
Control	Discharge Air Temperature	0	0
	Forced Thermal On/Off	X	X
	Capacity Control	X	Х
	Emergency Stop	X	0
	Operating On/Off	0	0
	Operation Mode	0	0
	Return Air Temperature	X	X
Monitor	Discharge Air Temperature	X	0
	Defrost status	0	Х
	Error Alarm	0	0
	Compressor On/Off	0	X

Note:

O: Applied, X: Not applied


1. LG Central controller is based on AC Smart IV and ACP IV

Solutions Overview

Discharge Air Temperature Control

DDC Control by Contact Signal: Variable T_a + T_d (0 - 10V)

The DDC controls discharge air temperature by sending an analog input (0 to 10V) to the AHU Communications Kit. The AHU Communications Kit adjusts the outdoor unit target temperatures (T_e), increasing or decreasing the discharge air temperatures.

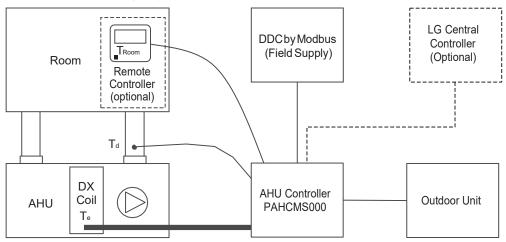
Required Items


	Expansion Valve		Central Controller
MULTI V	EEV	Optional (Monitoring only)	Optional (Monitoring only)
Single Split	Not Required	Optional (Monitoring only)	Optional (Monitoring only)

Function List

	Function List	Contact Signal type (DDC)	LG Remote Controller	LGCentralController1
	Operating On/Off	0	Х	Х
	Operation Mode	0	Х	Х
	Return Air Temperature	X	X	Х
Control	Discharge Air Temperature	X	X	Х
	Forced Thermal On/Off	X	Х	Х
	Capacity Control	0	X	Х
	Emergency Stop	0	X	Х
	Operating On/Off	0	0	0
	Operation Mode	X	0	0
	Return Air Temperature	X	Х	0
Monitor	Discharge Air Temperature	Х	Х	0
	Defrost status	0	0	Х
	Error Alarm	0	0	0
	Compressor On/Off	0	0	Х

Note:


O: Applied, X: Not applied

Solutions Overview

Discharge Air Temperature Control

DDC Control by Modbus: Variable T_e + T_d

The DDC controls discharge air temperature (T_d) by sending modbus signals to the AHU Communications Kit. The AHU Communications Kit adjusts the outdoor unit target temperatures (T_e), increasing or decreasing the discharge air temperatures.

Required Items

	Expansion Valve	Wired Remote Controller	Central Controller
MULTI V	EEV	Optional	Optional
Single Split	Not Required	Optional	Optional

Function List

	Function List	Modbus Comm. type (DDC)	LG Remote Controller	LGCentralController ¹
	Operating On/Off	0	0	0
	Operation Mode	0	0	0
	Return Air Temperature	Х	Х	Х
Control	Discharge Air Temperature	0	0	0
	Forced Thermal On/Off	Х	Х	Х
	Capacity Control	0	Х	Х
	Emergency Stop	Х	Х	0
	Operating On/Off	0	0	0
	Operation Mode	0	0	0
	Return Air Temperature	0	Х	0
Monitor	Discharge Air Temperature	0	Х	0
	Defrost status	0	0	Х
	Error Alarm	0	0	0
	Compressor On/Off	0	0	Х

Note:

O: Applied, X: Not applied

1. LG Central controller is based on AC Smart IV and ACP IV

Main Module Settings

UI7 (Analog Input) - ODU Capacity Control #1

ODU capacity control #1 is available when DIP SW2-1 is Off. Each Master ODU has a different operating ratio as shown in the table below.

Mail Module

1 System

Vo	ltage	[V]	ODU	Evapor	Evaporator (Te)		enser (Tc)
V	Min.	Max.	Capacity ratio [%]	Temperature °F	Low pressure psi	Temperature °F	High pressure psi
<4.0	-	3.7	Operation Off	-	-	-	-
4.0	3.8	4.2	40	59.0	168.2	86.0	261.1
4.5	4.3	4.7	40	59.0	168.2	86.0	261.1
5.0	4.8	5.2	50	55.4	155.2	96.8	301.7
5.5	5.3	5.7	50	55.4	155.2	96.8	301.7
6.0	5.8	6.2	60	50.0	143.6	104.0	339.4
6.5	6.3	6.7	60	50.0	143.6	104.0	339.4
7.0	6.8	6.2	70	46.4	134.9	111.2	371.3
7.5	7.3	7.7	70	46.4	134.9	111.2	371.3
8.0	7.8	8.2	80	43.7	126.2	116.6	396.0
8.5	8.3	8.7	80	43.7	126.2	116.6	396.0
9.0	8.8	9.2	90	41.0	120.4	120.2	433.7
9.5	9.3	9.7	90	41.0	120.4	120.2	433.7
10.0	9.8	10.0	100	39.2	116	122.0	435.1

2 System

Voltage [V]	Total Capacity	Each ODU's capacity ratio [%]	
[4]	ratio [%]	ODU Master#1	ODU Master#2
<2.0	0	Opera	tion Off
2.0	20.0	40	0
2.5	25.0	50	0
3.0	30.0	60	0
3.5	35.0	70	0
4.0	40.0	40	40
4.5	45.0	40	50
5.0	50.0	50	50
5.5	55.0	50	60
6.0	60.0	60	60
6.5	65.0	60	70
7.0	70.0	70	70
7.5	75.0	70	80
8.0	80.0	80	80
8.5	85.0	80	90
9.0	90.0	90	90
9.5	95.0	90	100
10.0	100.0	100	100

Note

- 1. ODU Capacity ratios mentioned in the table above are not exact.
- 2. Evaporative temperature / Condenser temperature may vary depending on system operating frequency, pressure option setting and piping installation conditions.
- 3. The evaporator temperature is based on target low pressure of compressor. The actual temperature at the evaporator may vary by pressure drop. Please contact your LG representative to design an AHU heat exchanger.

Main Module Settings

UI7 (Analog Input) - ODU Capacity Control #1 - continued

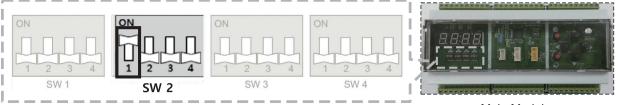
3 System

4 System

	Total	Each OD	U's capaci	tyratio[%]
Voltage [V]	Capacity ratio [%]	ODU Master#1	ODU Master#2	ODU Master#3
<2.0	0.0		Operation C	Off
2.0	26.7	40	0	40
2.5	30.0	50	0	40
3.0	33.3	60	0	40
3.5	36.7	70	0	40
4.0	40.0	40	40	40
4.5	46.7	40	50	50
5.0	50.0	50	50	50
5.5	56.7	50	60	60
6.0	60.0	60	60	60
6.5	66.7	60	70	70
7.0	70.0	70	70	70
7.5	76.7	70	80	80
8.0	80.0	80	80	80
8.5	86.7	80	90	90
9.0	90.0	90	90	90
9.5	96.7	90	100	100
10.0	100.0	100	100	100

		Eac	h ODU's o	apacity ra	tio [%]
Voltage [V]	Total Capacity ratio [%]	ODU Master#1	ODU Master#2	ODU Master#3	ODU Master#4
<2.0	0.0		Operat	tion Off	
2.0	20.0	40	0	40	0
2.5	22.5	50	0	40	0
3.0	25.0	60	0	40	0
3.5	27.5	70	0	40	0
4.0	40.0	40	40	40	40
4.5	47.5	40	50	50	50
5.0	50.0	50	50	50	50
5.5	57.5	50	60	60	60
6.0	60.0	60	60	60	60
6.5	67.5	60	70	70	70
7.0	70.0	70	70	70	70
7.5	77.5	70	80	80	80
8.0	80.0	80	80	80	80
8.5	87.5	80	90	90	90
9.0	90.0	90	90	90	90
9.5	97.5	90	100	100	100
10.0	100.0	100	100	100	100

Note:


- 1. ODU Capacity ratios in the table above are not exact.
- 2. Evaporative temperature / Condenser temperature may vary depending on system operating frequency, pressure option setting, and piping installation conditions.
- 3. Evaporator temperature is based on target low pressure of compressor. Actual temperature at evaporator may varies by pressure drop. Please contact local sale person to design AHU heat exchanger.

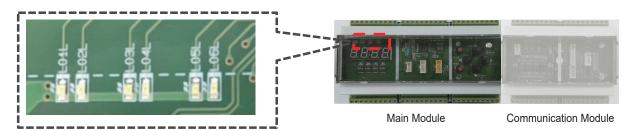
Main Module Settings

UI7 (Analog Input) - ODU Capacity Control #2

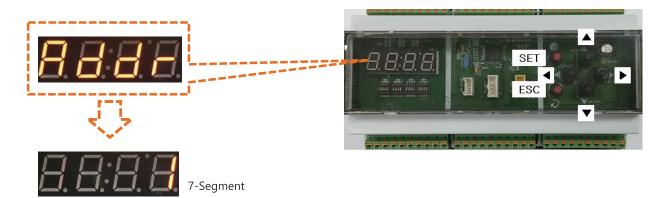
ODU Capacity Control #2 is available when DIP SW2-1 is On. Each Master ODU has the same operating ratio as shown in the table below.

Main Module

	Voltage (V)		ODU Capacity	Eva. Temp. (Te)	Cond. Temp. (Tc)
V	Min.	Max.	ratio (%)	°F	°F
<1.0	-	0.7	Operation Off	-	-
1.0	0.8	1.2	100	39.2	122.0
2.0	1.8	2.2	90	41.0	120.2
3.0	2.8	3.2	80	43.7	116.6
4.0	3.8	4.2	70	46.4	111.2
5.0	4.8	5.2	60	50.0	104.0
6.0	5.8	6.2	50	55.4	96.8
7.0	6.8	7.2	45	57.2	91.4
8.0	7.8	8.2	40	59.0	86.0
9.0>	8.8		Comp Off		-


Note:

- 1. ODU Capacity ratios mentioned in the table above are not exact.
- 2. Evaporative temperature / Condenser temperature' may vary depending on system operating frequency, pressure option setting and piping installation conditions.
- The evaporator temperature is based on target low pressure of compressor. The actual temperature at the evaporator may vary by pressure drop. Please contact your LG representative to design an AHU heat exchanger.


Main Module Settings

LED Display

Name	Port	Function
L01L	LED1	Module Comm. Tx
L02L	LED2	Module Comm. Rx
L03L	LED3	ODU Comm. Tx
L04L	LED4	ODU Comm. Rx
L05L	LED5	Modbus Comm. Tx
L06L	LED6	Modbus Comm. Rx

Main Module Address Setting

An address for the main module is needed when PAHCMS000 is connected to an LG central controller

The address of main module can be set within '1~247'. In this case, the address of the main module should be the same as the address in LG central controller.

Setting Method

- Press 'Set' button (red)
- Select 'Addr' in 7- Segment using ▲ ▼ buttons and then press the 'Set' button
- Press 'ESC' button to exit

Communication Module

RS485 Communication Port

Name	Port	Item	Electrical Spec.	Function
MULTI V IDU Comm.	RS485 CH2	MULTI V Comm. (IDU A/B)	Max 3280 ft, 2C x 18~16 AWG (shield wire)	Communication with MULTI V Outdoor unit
Single IDU Comm.	SINGLE N/SIG	Single split Comm. (IDU A/B)	Max 246 ft, 2C x 18~16 AWG (shield wire)	Communication with Single Split Outdoor unit

NTC Thermistor

Name	Port	Item	Electrical Spec.	Function
Thermistor Discharge	NTC RI2/G	Discharge air Thermistor	NTC 10 kΩ, 16.4 ft	Discharge Air temperature sensor
Thermistor Pipe in	NTC RI3/G	Pipe in (Liquid) Thermistor	NTC 5 kΩ, 16.4 ft	Inlet pipe (Liquid) Temp. sensor
Thermistor Pipe out	NTC RI4/G	Pipe out(Gas)Thermistor	NTC 5 kΩ, 16.4 ft	Outlet pipe (Gas) Temp. sensor

Remote Controller

Name	Port	Item	Electrical Spec.	Function
REMO	+12V/SIG/GND	Wire Remote Controller	Max 164 ft	Communication with Wired Remote Controller

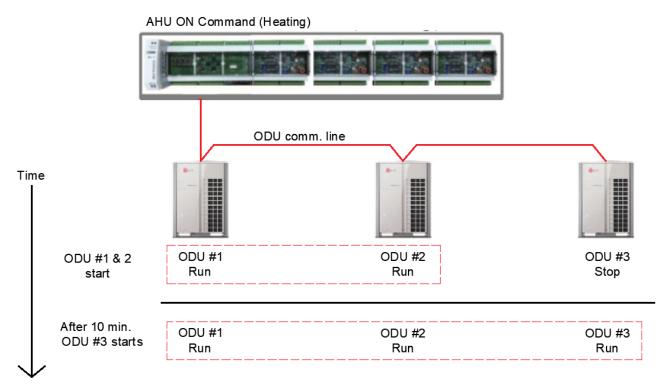
Electronic Expansion Valve

Name	Port	Item	Electrical Spec.	Function
EEV	12 VDC/1/2/3/4	EEV Control	Max 32.8 ft	EEV Control

Note:

 $When a communication \, module \, (or \, PAHCMR000) is \, connected \, to \, the \, main \, module \, of \, PAHCMS000, \, DO \, and \, UI \, in \, communication \, module \, are \, not \, used.$

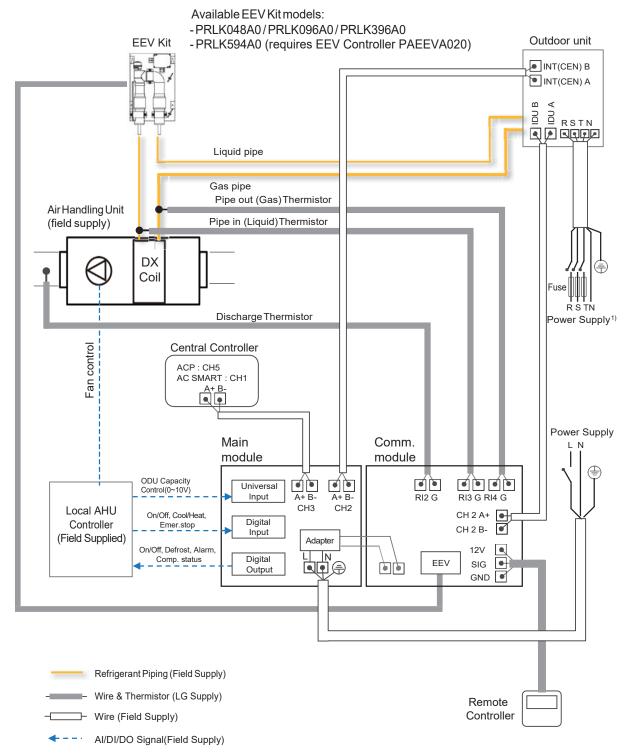
Defrost Setting


Defrost Operation

It is a function to prevent outdoor units from simultaneously entering defrost when two or more outdoor units are linked. The defrost operation function is only applied to the MULTI V outdoor unit (after MULTI V 5).

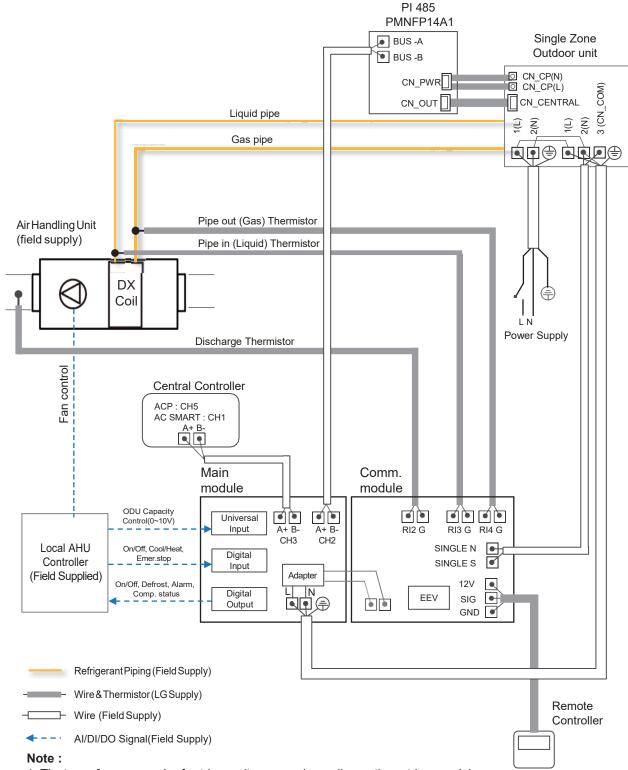
Sequential Startup Control of Outdoor Unit

- Operating condition : Power on \rightarrow Heating operation command
- Stop condition : Power off or stop command
- Function operation
 - 1. This function is available when DIP switch is set to the Sequential Start Up.
- 2. In order to prevent the outdoor unit from entering the defrosting at the same time of heating operation, only half of the outdoor unit is in operation and the remaining outdoor units are operated after 10 minutes when the operation command is received. (Sequential Start up is not operated in case of cooling operation)


Example ODU Startup Control

External Connection Diagrams

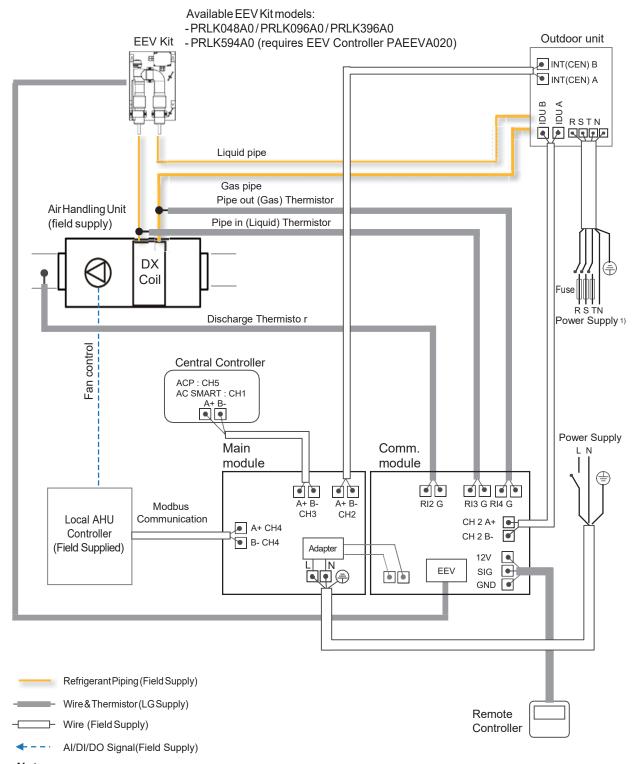
Multi V + EEV + DDC (Contact Signal)


Note:

- 1. The type of power supply of outdoor unit can vary depending on the outdoor model.
- $2. \ Please \, make \, wiring \, between \, LG \, controller \, and \, outdoor \, unit \, with \, the \, same \, polarity.$
- 3. LG controller can be optionally applied with DDC.

External Connection Diagrams

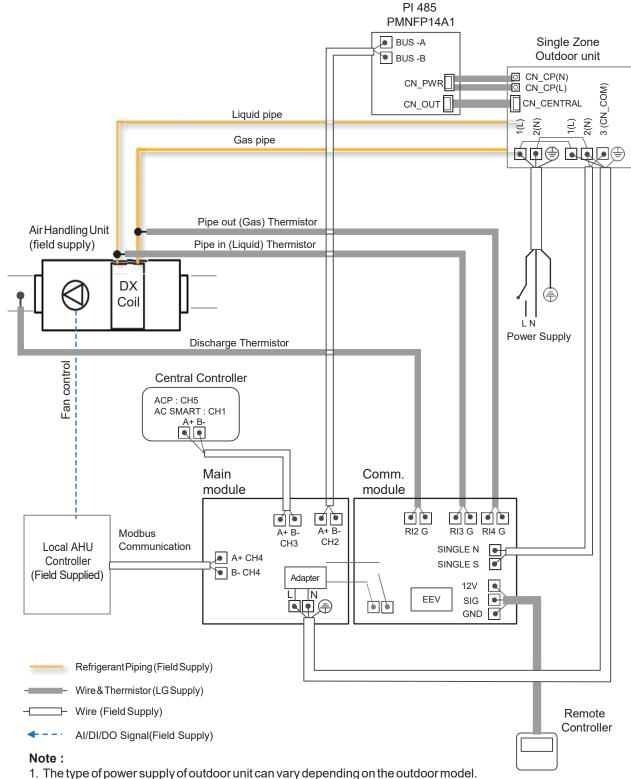
Single Zone + DDC (Contact Signal)



- 1. The type of power supply of outdoor unit can vary depending on the outdoor model.
- 2. Please make wiring between LG controller and outdoor unit with the same polarity.
- 3. LG controller can be optionally applied with DDC.

External Connection Diagrams

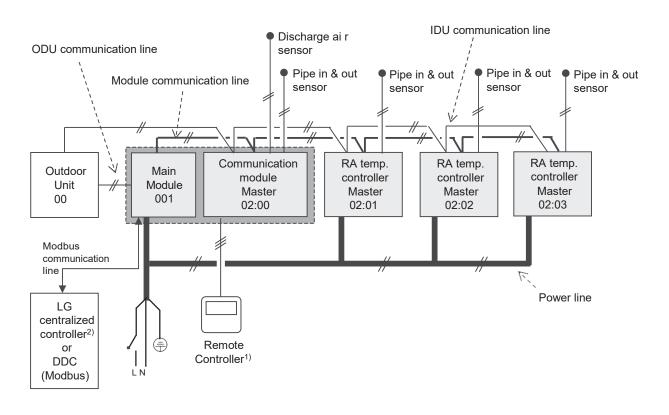
Multi V + EEV + LG Control / DDC (Contact Signal)


Note:

- 1. The type of power supply of outdoor unit can vary depending on the outdoor model.
- $2. \ Please \ make \ wiring \ between \ LG \ controller \ and \ outdoor \ unit \ with \ the \ same \ polarity.$
- 3. LG controller can be optionally applied with DDC.

External Connection Diagrams

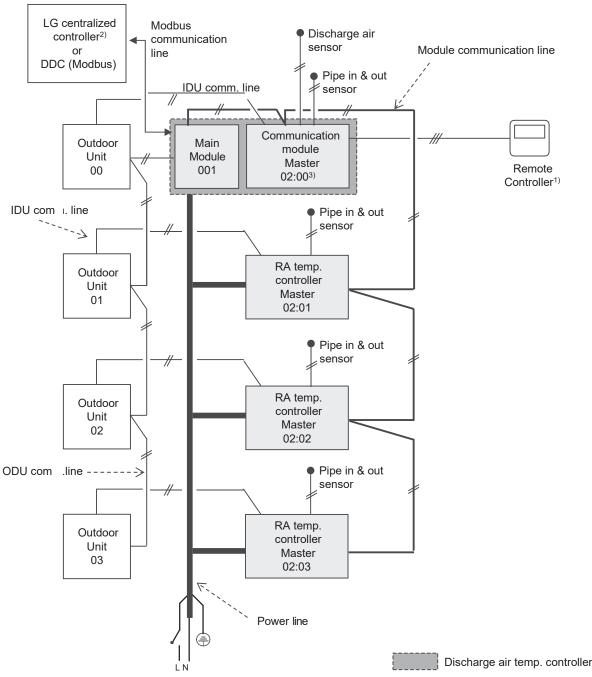
Single Zone + LG Control / DDC (Contact Signal)



3. LG controller can be optionally applied with DDC.

Discharge Air Temperature Controller

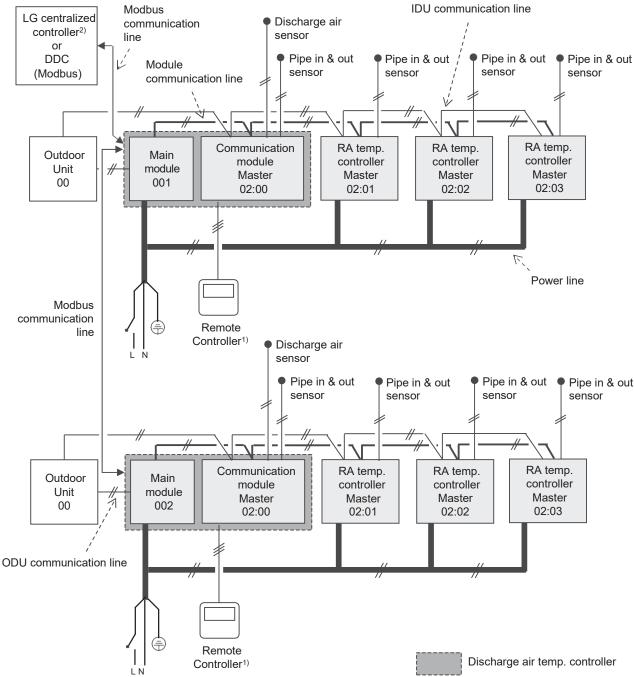
Case 1: One AHU with One ODU / Standalone or DDC by Modbus


Discharge air temp. controller

- 1. Remote controller should be connected to PAHCMS000. Remote controller connected to PAHCMR000 can only monitor status.
- 2. LG Central controller addressing for discharge air temp. controller should be set to the same address as the main module's address.
- 3. Address of Comm. module of PAHCMS000 (Central control address) must be set to '00'. The address for additional PAHCMR000 must be set with an order increasing by 1. Also ODU address must be the same as the paired AHU controller.
- 4. All PAHCMR000 units need to be set as Master mode.

Discharge Air Temperature Controller

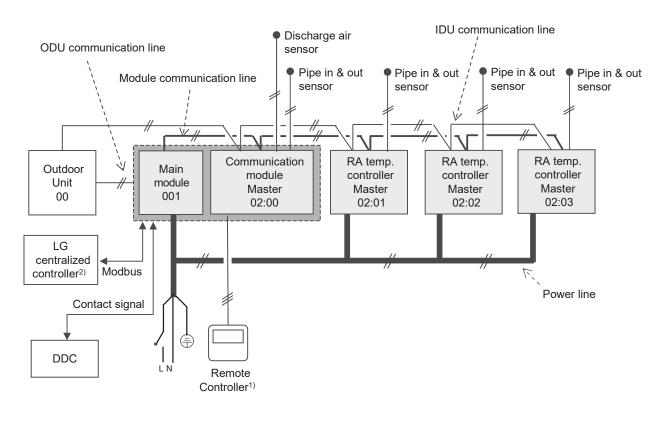
Case 2: One AHU with Multiple ODUs / Standalone or DDC by Modbus



- 1. Remote controller should be connected to PAHCMS000. Remote controller connected to PAHCMR000 can only monitor status.
- 2. LG Central controller addressing for discharge air temp. controller should be set to the same address as the main module's address.
- 3. Address of Comm. module of PAHCMS000 (Central control address) must be set to '00'. The address for additional PAHCMR000 must be set with an order increasing by 1. Also ODU address must be the same as the paired AHU controller.
- 4. All PAHCMR000 units need to be set as Master mode.

Discharge Air Temperature Controller

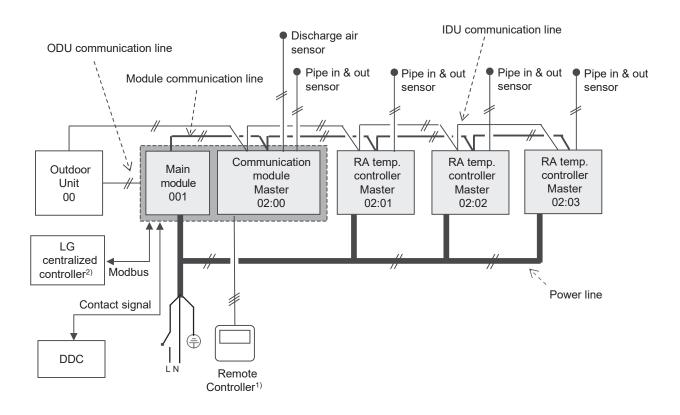
Case 3: Multiple AHUs / Standalone or DDC by Modbus



- 1. Remote controller should be connected to PAHCMS000. Remote controller connected to PAHCMR000 can only monitor status.
- 2. LG Central controller addressing for discharge air temp. controller should be set to the same address as the main module's address.
- 3. Address of Comm. module of PAHCMS000 (Central control address) must be set to '00'. The address for additional PAHCMR000 must be set with an order increasing by 1. Also ODU address must be the same as the paired AHU controller.
- 4. All PAHCMR000 units need to be set as Master mode.

Discharge Air Temperature Controller

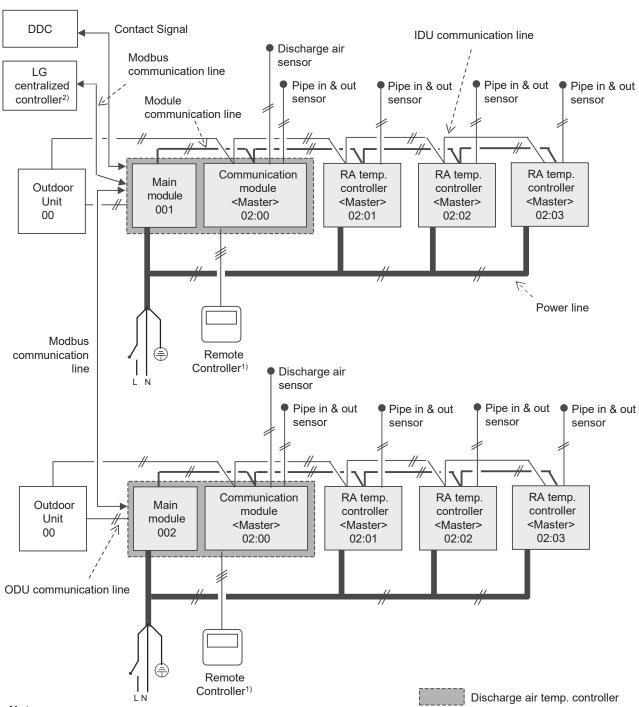
Case 4: One AHU / DDC by Contact Signal


Discharge air temp. controller

- 1. Remote controller should be connected to PAHCMS000. Remote controller connected to PAHCMR000 can only monitor status.
- 2. LG Central controller addressing for discharge air temp. controller should be set to the same address as the main module's address.
- 3. Address of Comm. module of PAHCMS000 (Central control address) must be set to '00'. The address for additional PAHCMR000 must be set with an order increasing by 1. Also ODU address must be the same as the paired AHU controller.
- 4. All PAHCMR000 units need to be set as Master mode.

Discharge Air Temperature Controller

Case 5: One AHU with Multiple ODUs / DDC by Contact Signal


Discharge air temp. controller

- 1. Remote controller should be connected to PAHCMS000. Remote controller connected to PAHCMR000 can only monitor status.
- 2. LG Central controller addressing for discharge air temp. controller should be set to the same address as the main module's address.
- 3. Address of Comm. module of PAHCMS000 (Central control address) must be set to '00'. The address for additional PAHCMR000 must be set with an order increasing by 1. Also ODU address must be the same as the paired AHU controller.
- 4. All PAHCMR000 units need to be set as Master mode.

Discharge Air Temperature Controller

Case 1: Multiple AHUs / DDC by Contact Signal

- 1. Remote controller should be connected to PAHCMS000. Remote controller connected to PAHCMR000 can only monitor status.
- 2. LG Central controller addressing for discharge air temp. controller should be set to the same address as the main module's address.
- 3. Address of Comm. module of PAHCMS000 (Central control address) must be set to '00'. The address for additional PAHCMR000 must be set with an order increasing by 1. Also ODU address must be the same as the paired AHU controller.
- 4. All PAHCMR000 units need to be set as Master mode.

Thermistor Installation

Thermistor Locations

All thermistors (one [1] return air [room] thermistor and two [2] pipe thermistor) must be correctly installed to ensure proper AHU Communications Kit operation.

- Return Air (Room) Thermistor: Install it at the AHU heat exchanger inlet in the return air stream.
- 2. Pipe In Thermistor: Install it behind the distributor on the coldest area in the heat exchanger (contact the heat exchanger manufacturer for the precise location).
- 3. Pipe Out Thermistor: Install it at the outlet of the heat exchanger as close as possible to the heat exchanger.

Note

System operation must be evaluated to determine if the AHU evaporator is protected against freezing up. Run a system test, and see if the AHU evaporator is freezing up.

Figure 10: Location of the Return Air (Room) Thermistor (AHU Product Appearance May Vary).

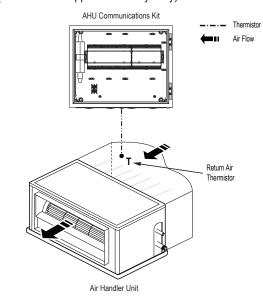
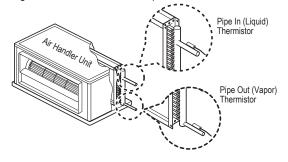
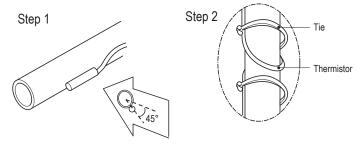



Figure 11: Locations of the Pipe Thermistors.


Thermistor Cable Installation

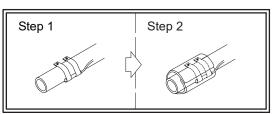
- Place the thermistor cables in a separate protective tube.
- Always add a pull-relief to the thermistor cable to avoid strain on the thermistor cable and loosening of the thermistor.

Note

Strain on the thermistor cable or loosening of the thermistor may result in a bad contact and incorrect temperature measurements. Thermistors must be securely attached for proper operation.

Figure 12: Securing the Thermistor Cable.

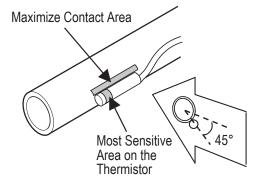
Thermistor Installation


Attaching the Pipe Thermistors

Note:

Thermistors must be securely attached with a pipe strap. The equipment will not operate properly if thermistors are not making good physical contact in the appropriate installation location.

- Securely attach the thermistor to the pipe with a field-supplied pipe strap.
- Insulate the thermistor with a field-supplied insulation sheet that is >5t.


Figure 13: Steps to Attaching the Pipe Thermistors.

Tips for Attaching the Pipe In / Pipe Out Thermistors

- · Put the thermistor cable in a separate protective tube.
- Always add a pull-relief to the thermistor cable to avoid strain on the thermistor cable and loosening of the thermistor. Strain on the thermistor cable or loosening of the thermistor can result in bad contact with the pipe and incorrect temperature measurement.

Figure 14: Thermistor Tip Contact Area.

• To avoid water accumulating on the thermistor tip, position the thermistor cable slightly below the thermistor tip, or install the thermistor tip parallel with the cable.

O Do not include a 90° angle or a kink in the thermistor cable, nor install the thermistor tip upside down.

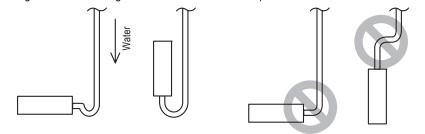


Figure 15: Positioning the Thermistor Cable and Tip.

Introduction, Specifications, and Design Parameters

Introduction

When used with the LG AHU Communications Kit (sold separately), the LG EEV Kit controls refrigerant flow between LG Multi V air-source or water-source units and a third-party air handler unit (AHU).

The EEV Kits for PAHCMS000 are offered in four sizes:

- PRLK048A0 supports 12 through 96 MBH (8 tons maximum)
- PRLK096A0 supports 96.1 through 192 MBH (16 tons maximum)
- PRLK396A0 supports 192.1 MBH through 396 MBH (32 ton maximum)
- PRLK594A0 supports 396.1 MBH through 594 MBH coils (48 ton maximum, requires EEV Controller Module PAEEVA020).

Specifications

Table 13: EEV Kit Specifications Table.

Model Number	PRLK048A0	PRLK096A0	PRLK396A0	PRLK594A0			
	PAHCMS000 v EEV Controller						
For Use With	PAHCMR000 and PAHCMS000 Module						
				PAEEVA020			
Power Supply Requirements	Power	ed by Air Handler U	Init Communication	s Kit (12 VDC)			
Ambient Operating		,	l to 149F				
Temperature Range		-2	10 1497				
Ambient Operating		0+0.000/ /	Non condensing)				
Humidity Range		0 10 98% (Non-condensing)				
Dimensions (in My Hy D)	0 E /0 v 1 E	-15/16 x 3-5/16	13-25/32 x 7-	16-1/8 x 7-3/32 x			
Dimensions (in., W x H x D)	8-5/8 X 15	-15/10 X 3-5/10	3/32 x 13-39/64	13-39/64			
Net Weight (lbs.)		11.0	15.4				
Shipping Weight (lbs.)		16.5					
Maximum Air Handler Unit	06.000	102.000	206.000	E04.000			
Capacity (Btu/h)	96,000	192,000	396,000	594,000			
Communications Cable	AWG 18 x 6 Stranded, Shielded Copper Wire						
Refrigerant Type	R410A						

Table 14: EEV Kit Compatibility Table.

EEV Kit	AHU Communication Kit					
EEV KIL	PAHCMR000	PAHCMS000				
PRLK048A0 (8 tons max)	HP/HR	HP				
PRLK096A0 (16 tons max)	HP	HP				
PRLK396A0 (32 tons max)	HP	HP				
PRLK594A0 (48 tons max)	NA	HP (requires EEV module)				

HP = Heat Pump; HR = Heat Recovery

EEV Kit Design Parameters

- Maximum of one (1) EEV Kit can be connected to one (1) AHU Communications Kit.
- Minimum coil entering air temperature for heating mode is 41°F.
- Requires field-supplied six-conductor communication cable to connect to AHU Communications Kit.
- Maximum distance between EEV Kit and AHU Communications Kit is thirty-two (32) feet.
- Designed for indoor installations (field-supplied waterproof enclosure must be used when installing outdoors).

EEV Kit Parts

Figure 17: PRLK048A0 and PRLK096A0 EEV Parts.

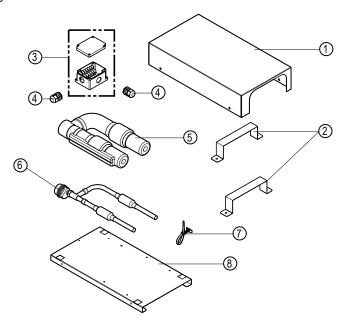


Table 15: PRLK048A0 and PRLK096A0 EEV Parts Table.

Diagram Label	Part Name	Quantity
1	Top Panel	One (1)
2	Bracket	Two (2)
3	Terminal Box	One (1)
4	Cable Connectors	Two (2)
5	Pipe Insulation	One (1)
6	Electronic Expansion Valve Assembly (EEV, Strainer, Tube)	One (1)
7	Support Tie	One (1)
8	Bottom Panel	One (1)

Figure 18: PRLK396A0 EEV Parts.

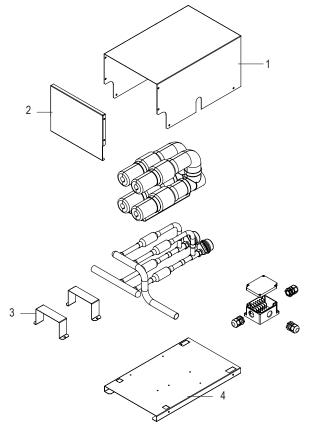


Table 16: PRLK396A0 EEV Parts Table.

Diagram Label	Part Name	Quantity
1	Panel A, Upper	One (1)
2	Panel B, Upper	One (1)
3	Bracket	Two (2)
4	Panel, Base	One (1)

EEV Kit Parts

Figure 19: PRLK594A0 EEV Parts.

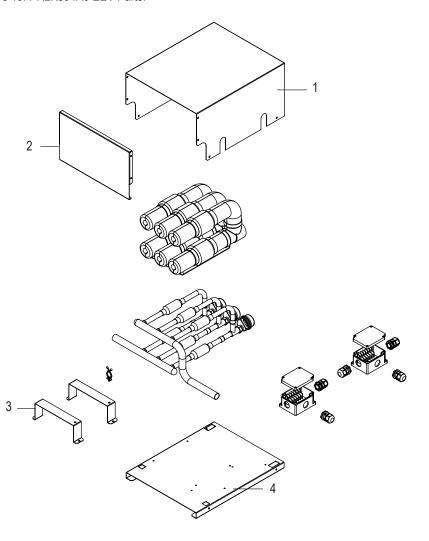
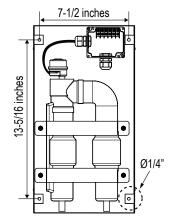


Table 17: PRLK594A0 EEV Parts Table.

Diagram Label	Part Name	Quantity
1	Panel A, Upper	One (1)
2	Panel B, Upper	One (1)
3	Bracket	Two (2)
4	Panel, Base	One (1)


Mounting the EEV Kit

Mounting the PRLK048A0/ PRLK096A0 EEV Kit

- 1. Remove the Top Panel by unscrewing the screws at the four (4) corners.
- 2. Using the Bottom Panel as a template, mark the location on the wall or ceiling where the holes for the screws should be placed. Drill the four (4) holes.
- 3. Attach the EEV Bottom Panel securely using four (4) field-supplied 1/4 inch long screws.

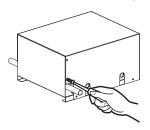
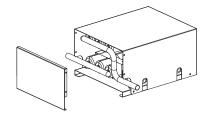
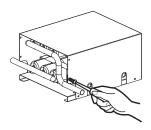
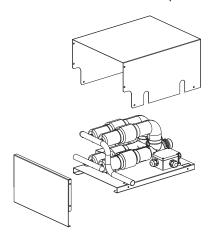

Figure 20: Removing the Screws.

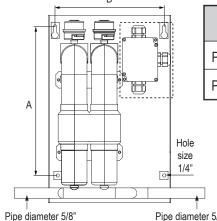
Figure 21: EEV Bottom Panel Hole Dimensions.



Mounting the PRLK396A0 / PRLK594A0 EEV Kit


1. Remove the two screws from the EEV kit base plate


2. Remove the base plate.


3. Remove the four screws from the cover plate

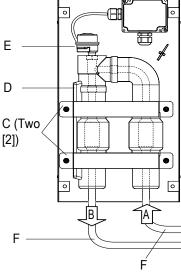
4. Remove the cover plate

5. Drill holes in the correct locations and use 4 field-provided screws to secure the EEV kit.

Pipe diameter 5/8"

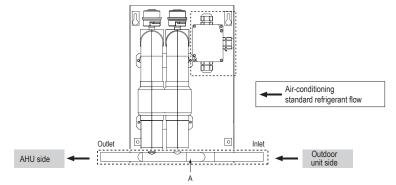
length (inch) Model Α В 10-3/4 7-1/2 PRLK396A0 7-1/2 10-3/4 PRLK594A0

Preparing the Pipes

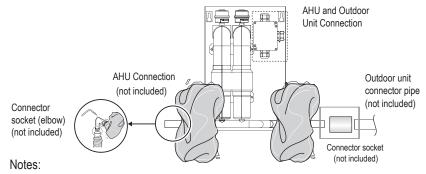

Figure 22: PRLK048A0 and PRLK096A0 EEV Kits.

Preparing the Pipes

PRLK048A0 and PRLK096A0


- 1. Unscrew the four (4) M4 screws and detach the two (2) EEV Assembly pipe support brackets.
- 2. Remove the EEV Assembly; remove the pipe insulation from the EEV Assembly.
- 3. If cutting pipe, refer to the cutting instructions on the next page.
- Braze the field-supplied inlet / outlet piping to the EEV Assembly. See next page for brazing instructions.

- A. Inlet Pipes from the Air Source / Water-Source Unit.
- B. Outlet pipes to AHU Evaporator Coil.
- C. Pipe Support Bracket.
- D. Pipe Insulation.
- E. EEV Assembly.
- F. 1/2 Inch O.D. Field Piping (Inlet / Outlet).



PRLK396A0 / PRLK594A0

1 Check the inlet/outlet pipe before brazing the EEV KIT.

- 2 If cutting pipe, refer to the cutting instructions on the next page.
- 3 Braze the connector pipe (not provided) at the outdoor unit.
- 4 When connecting the outdoor unit's connector pipe and the EEV KIT pipe, be sure to use a socket (not provided) that meets the necessary specifications.
- 5 As the size of the EEV KIT pipe and the outdoor unit's connector pipe could vary, check the sizes beforehand and use a socket that meets the necessary specifications.
- 6 When brazing, make sure to follow safety precautions at all times.
- 7 Be sure to insulate pipe A after welding with insulation (15T or more).

Be sure to pass nitrogen through when brazing. Failure to do so could cause the compressor to not function properly or become damaged.

It is essential that the pipe is wrapped with a wet towel before and after brazing. Failure to do so could result in equipment damage.

Use a protective panel or be especially cautious not to let welding sparks come in contact with the AHU panel.

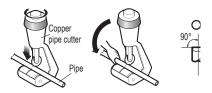
After brazing, be sure to test for leakage.

Failure to properly insulate the pipe after welding may result in leakage.

Brazing and Insulating the Piping

Cutting Pipe

Notes:

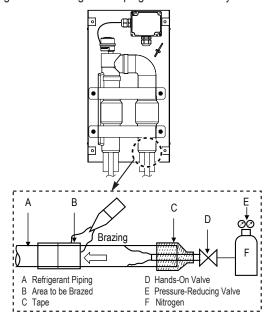

The presence of burrs can result in refrigerant leakage. Remove any burrs with a reamer.

Cutting dust could lead to malfunctioning if it gets inside the pipe.

1 Use a copper pipe cutter to cut the pipe in a straight line.

2 When cutting, tilt the pipe end downward to prevent burrs from getting inside the pipe. After cutting, use a reamer to remove any burrs from inside the pipe.

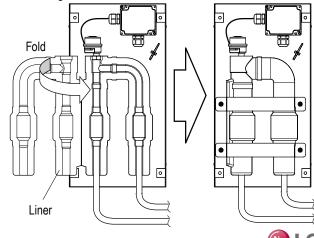
Brazing


Use a nitrogen purge set to 0.02 MPa while brazing.

Note

Brazing without a nitrogen purge will create a large amount of oxidization on the inside of the pipes, adversely affecting valves and compressors in the refrigerating system and preventing normal system operation.

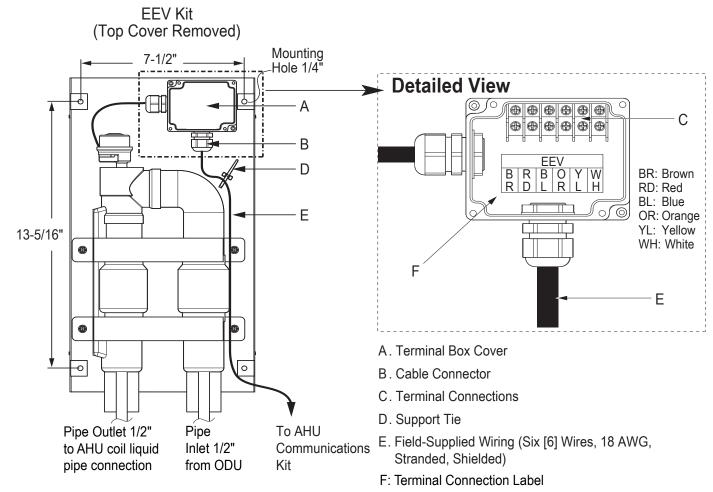
- When brazing the field piping to the EEV Kit Assembly, use a wet cloth to protect and ensure that the main EEV body temperature does not exceed 248°F.
- Make sure that the other parts such as electrical box, support ties, and wiring are also protected from direct flames during brazing.
- After brazing is complete, use medical grade dry nitrogen and pressure
 test the refrigerant piping system to a minimum of 550 psi for a period of 24
 hours. Pressurize the liquid, low pressure vapor, and high pressure vapor
 pipes (heat recovery systems only) of the air-source / water-source units
 concurrently. The test must be done with the air-source / water-source unit
 service valves closed. (For more details, refer to the manual of the respective
 air-source / water-source installation manuals.)


Figure 23: Brazing Field Piping to EEV Assembly.

Insulating the Piping

- After brazing is complete, place the Pipe Insulation back on the EEV Assembly. Peel off the liner, fold the insulation as shown in the figure at right, and press down to seal.
- Fully insulate the field piping up to the EEV Assembly. To avoid condensation, make sure there are no gaps between the field piping insulation and the EEV Assembly insulation. Finish the connection with tape.
- To secure the EEV Assembly, re-install the two (2) pipe support brackets using the four (4) M4 screws.

Figure 24: Installing the Insulation.



PRLK048A0 and PRLK096A0 Wiring

Wiring Installation

- 1. Open the terminal box cover (A) by unscrewing the four (4) M4 screws.
- 2. Run field-supplied wiring (six [6] wired, 18AWG, stranded, shielded copper) to / from the AHU Communications Kit through the cable connector on the EEV Kit.
- 3. Connect wiring to the terminal connections as shown (C), following the label and color codes pasted onto the bottom of the terminal box and listed on the AHU Communications Kit PCB diagram. Securely tighten all connections.
- Route the wiring through and out the EEV Kit as shown, and secure with the support tie (D).
- 5. Re-install the terminal box cover (A) and secure with the four (4) M4 screws.
- 6. Taking care not to damage the field-supplied wiring or insulation, reattach EEV Kit top panel by securing with screws at four (4) corners.

Figure 25: PRLK048A0 and PRLK096A0 EEV Kit Wiring.

Note

Before connecting the field-supplied wiring, compare with the connection labels between EEV Kit and AHU Communications Kit. Connect the wiring according to the PCB diagram for the AHU Communications Kit. If the wiring is incorrect, the products will malfunction.

PRLK396A0 Wiring

Wiring Installation

- 1. Open the terminal box cover.
- 2. For PRLK396A0 / PRLK594A0, run the field-supplied wiring (six [6] wired, 18AWG, stranded, shielded copper) to / from the AHU Communications Kit through the cable connector on the EEV Kit.
- 3. Connect wiring to the terminal connections following the label and color codes pasted onto the bottom of the terminal box and shown below. Securely tighten all connections.
- 4. Route the wiring through and out the EEV Kit as shown, and secure with the support tie (D).
- 5. Re-install the terminal box cover and secure the cover with the four (4) screws.
- 6. Taking care not to damage the field-supplied wiring or insulation, reattach the EEV Kit Top Panel by securing it with the screws at the four (4) corners.

Figure 26: PRLK396A0 EEV Kit Wiring.

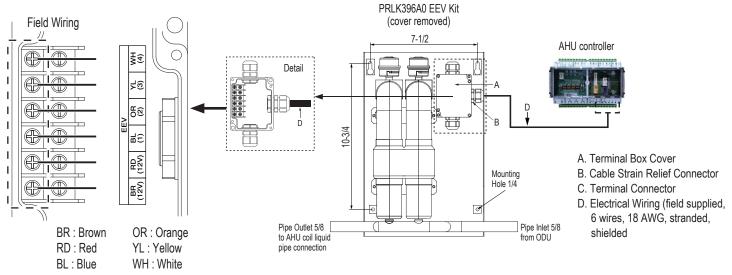
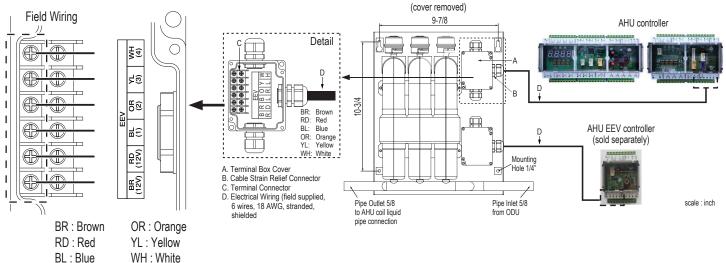



Figure 27: PRLK594A0 EEV Kit Wiring.

PRLK594A0 EEV Kit

Control Functions

Individual Controller

	Function List	PAHCMS000
	Operating On / Off	0
	Operation Mode Control	Cooling / Heating only
	Desired Return Air Temperature Setting	Х
	Return Air Temperature Display	Х
Basic Function	Desired Discharge Air Temperature Setting	60 ~ 80 °F
Dasic Function	Discharge Air Temperature Display	51.8 ~ 103.1 °F
	Fan Speed Control	Х
	Auto Swing	-
	Vane Control (Louver Angle)	-
	Child Lock / All button Lock	Χ
	Schedule	0
	Partial Lock	Х
	Dual Set point	Х
	Pipe Temperature display	O 1
Advanced Function	Error Code Display	0
ranotion	Defrost Status	Defrost / Normal
	Compressor Status	On / Off
	Filter Sign	-
	Error History	Χ
FTC	Unit of Temperature control	1.0 °F
EIC	Electric Failure compensation	0

- 1. Pipe temperature display is unavailable on the Simple remote controller.
- 2. Control function is unavailable when Contact Signal control is used (DIP SW1-1 is Off).
- 3. A wired remote controller is also required if using a wireless remote controller.
- 4. Partial lock is available only with Premium remote controller.
- 5. Refer to the product manual of the remote controller.

Control Functions

LG Central Controller

	Function L	ist	PAHCMS000
	Operating On/Off		0
	Operating Mode Co	ontrol	Cooling / Heating only
	Desired Return Air	Temperature Setting	Χ
	Return Air Tempera	ature Display	Χ
Basic Function	Desired Discharge	Air Temperature Setting	60 ~ 80 °F
	Discharge Air Tem	perature Display	-58.0~212.0 °F
	Fan Speed Control		Χ
	Auto Swing		-
	All Lock		X
	Schedule		0
	Partial Lock		Χ
	Auto Change Over		Χ
	Set Back		Χ
	2 Set Auto Mode		Χ
Additionalfunction	Pipe Temperature		Χ
Additional function	Error Code Display	,	0
	Defrost Status		Χ
	Outdoor unit Cycle	Monitoring	X
	Filter Sign		-
	Emergency Stop		0
	Energy Navigation		Χ
	Peak Control	Priority control	X
Auto Control	reak Control	ODU capacity control	X
Auto Control	Time limit control		X
	Device Interlocking		X
	Power Consumption	n	X
Energy Report	Run time	X	
	Sending Email / Sa	ive to PC or USB	X
History	Report		Error / Control
i iistoi y	Sending Email / Sa	ive to PC or USB	0
ETC	Unit of Temperatur	e control	1.0 °F
LIC	Remote Access		0

- 1. Control function is unavailable when Contact Signal control is used (DIP SW1-1 is Off).
- 2. PI485GW is required for Single Zone application.

Control Functions

Memory Map

Function Code

Code	Description	Register
0x01	Read Coils	00001~00008
0x02	Read Discrete inputs	10001~10030
0x03	Read Holding Registers	40001~40010
0x04	Read Input Registers	30001~30016
0x05	Write Single Coil	00001~00008
0x06	Write Single Holding Register	40001~40010

Memory Map

Dawiatan	Description		Function Code				Value avalenation	
Register	Description	1	2	3	4	5	6	Value explanation
00001	Operating On / Off	•	-	-	-	•	-	0: Off / 1: On
00002	Reserved	-	-	-	-	-	-	-
00003	Reserved	-	-	-	-	-	-	-
00004	Reserved	-	-	-	-	-	-	-
00005	Reserved	-	-	-	-	-	-	-
00006	Reserved	-	-	-	-	-	-	-
00007	Reserved	-	-	-	-	-	-	-
80000	Reserved	-	-	-	-	-	-	-
10001	Error Status	-	•	-	-	-	-	0: Normal / 1: Error
10002	Operation Status	-	•	-	-	-	-	0: Off / 1: On
10003	Defrost Status	-	•	-	-	-	-	0: Normal / 1: Defrost
10004	Reserved	-	-	-	-	-	-	-
10005	Reserved	-	-	-	-	-	-	-
10006	Reserved	-	-	-	-	-	-	-
10007	Reserved	-	-	-	-	-	-	-
10008	Reserved	-	-	-	-	-	-	-
10009	Reserved	-	-	-	-	-	-	-
10010	Reserved	-	-	-	-	-	-	-
10011	ODU#1 Operation Status	-	•	-	-	-	-	0: Off / 1: On
10012	ODU#1 Comp. Status	-	•	-	-	-	-	0: Off / 1: On
10013	ODU#1 Defrost Status	-	•	-	-	-	-	0: Normal / 1: Defrost
10014	ODU#1 Error Status	-	•	-	-	-	-	0: Normal / 1: Error
10015	ODU#2 Operation Status	-	•	-	-	-	-	0: Off / 1: On
10016	ODU#2 Comp. Status	-	•	-	-	-	-	0: Off / 1: On
10017	ODU#2 Defrost Status	-	•	-	-	-	-	0: Normal / 1: Defrost
10018	ODU#2 Error Status	-	•	-	-	-	-	0: Normal / 1: Error
10019	ODU#3 Operation Status	-	•	-	-	-	-	0: Off / 1: On
10020	ODU#3 Comp. Status	-	•	-	-	-	-	0: Off / 1: On
10021	ODU#3 Defrost Status	-	•	-	-	-	-	0: Normal / 1: Defrost
10022	ODU#3 Error Status	-	•	-	-	-	-	0: Normal / 1: Error
10023	ODU#4 Operation Status	-	•	-	-	-	-	0: Off / 1: On
10024	ODU#4 Comp. Status	-	•	-	-	-	-	0: Off / 1: On
10025	ODU#4 Defrost Status	-	•	-	-	-	-	0: Normal / 1: Defrost
10026	ODU#4 Error Status	-	•	-	-	-	-	0: Normal / 1: Error

Control Functions

Memory Map - continued

Register	Description	Function Code						Value explanation
Register	Description	1	2	3	4	5	6	value explanation
10027	Reserved	-	-	-	-	-	-	-
10028	Reserved	-	-	-	-	-	-	-
10029	Reserved	-	-	-	-	-	-	-
10030	Reserved	-	-	-	-	-	-	-
30001	Error Code	-	-	-	•	-	-	1xxxx 2)
30002	Reserved	-	-	-	-	-	-	-
30003	Reserved	-	-	-	-	-	-	-
30004	Reserved	-	-	-	-	-	-	-
30005	Reserved	-	-	-	-	-	-	-
30006	Reserved	-	-	-	-	-	-	-
30007	Reserved	-	-	-	-	-	-	-
30008	Reserved	-	-	-	-	-	-	-
30009	Reserved	-	-	-	-	-	-	-
30010	Reserved	-	-	-	-	-	-	-
30011	RA Temp.	-	-	-	•	-	-	-50 ~ 100°C (x10)
30012	Reserved	-	-	-	-	-	-	-
30013	SA Temp.	-	-	-	•	-	-	-50 ~ 100°C (x10)
30014	Reserved	-	-	-	-	-	-	-
30015	Reserved	-	-	-	-	-	-	-
30016	Reserved	-	-	-	-	-	-	-
40001	Operation Mode	-	-	•	-	-	•	0: Cooling/2: Fan/4: Heating
40002	Capacity 1)	-	-	•	-	-	•	0, 2.0V~10V (x10, 0.5V)
40003	Cooling Target Temp.	-	-	•	-	-	•	15.6 ~ 30°C (x10, 1.0°C)
40004	Heating Target Temp.	-	-	•	-	-	•	15.6 ~ 30°C (x10, 1.0°C)
40005	Reserved	-	-	-	-	-	-	-
40006	Reserved	-	-	-	-	-	-	-
40007	Reserved	-	-	-	-	-	-	-
40008	Reserved	-	-	-	-	-	-	-
40009	Reserved	-	-	-	-	-	-	-
40010	Reserved	-	-	-	-	-	-	-

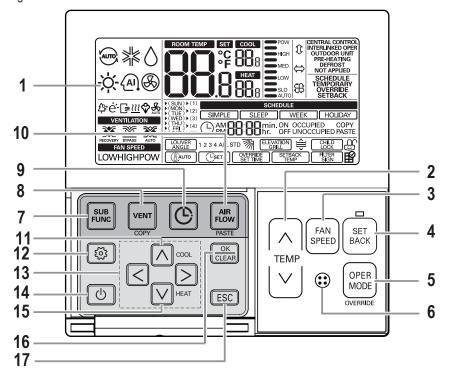
Note

1. For capacity ratio, refer to the capacity setting table of UI7 (0 - 10V).

2. Error Code: 1 x xxx

Error Code

Module Number



Testing

Before testing, make sure all information is understood completely, and follow the guidelines listed in this manual.

- Check the air-source / water-source unit refrigerant piping, additional refrigerant charge, maximum allowable piping length, and opening the shut-off valve. (For more detailed information, see the respective air-source / water-source unit installation manual).
- · Operate the testing procedure.
- 1. Connect the power, and turn the system on.
- 2. Check remote controller for error codes.

Figure 28: Wired Remote Controller Buttons.

- 1. Operation indication screen
- 2. Set temperature button
- 3. Fan Speed button
- 4. Set back button
- 5. Operation mode selection button
- 6. Wireless receiver some equipment are not equipped to receive the wireless signals
- 7. Sub-function button
- 8. Ventilation button
- 9. Reservation button
- 10. Air flow button
- 11. Cooling desired temperature
- 12. Function setting button
- 13. Up, Down, Left, Right button
- 14. On/Off button
- 15. Heating desired temperature
- 16. Setting/Cancel button
- 17. Exit button

Note

- For more detailed function of the wired remote controller, refer to its Owner's / Installation Manual.
- Buttons 3, 4, 11, 12 on the wired remote controller do not operate.

TROUBLESHOOTING

Troubleshooting

Table 18: Troubleshooting.

Problem	Cause	Solution
	No Power	Check the power supply electrical connections and voltage.
AHU Communications	Wiring is Incorrect	Check the AHU Communications Kit electrical connections (see wiring diagram).
Kit Does Not Work	AHU Communications Kit is Damaged	Check AHU Communications Kit electrical and mechanical components.
EEV Kit Does Not	Wiring is Incorrect	Check the EEV Kit electrical connections.
Work	Piping is Incorrect	Check the piping connections between the EEV Kit and the outdoor unit.

Error Codes

- The error code function indicates when an operation failure occurs in the system, and provides self-diagnosis about the type of error.
- The error code is displayed on the wired remote controller and the control board LED on the air-source heat pump unit.
- If two or more two errors occur simultaneously, the smallest of the error code numbers is displayed first.
- · When the problem causing the error code to appear is fixed, then the error code will immediately stop displaying on the LED.

Table 19: Error Code Table.

Error Code	Description	Details	
CH01	Return Air (Room) Thermistor Error	Return air (room) thermistor has disconnected from AHU, or has short circuited.	
CH02	Pipe In Thermistor Error	Pipe in thermistor has disconnected from AHU, or has short circuited.	
CH03	Communication Error Between Wired Remote Controller and AHU Communications Kit	No communication signal for more than three (3) minutes from the controller to the AHU Communications Kit.	
CH05	Communication Error Between AHU Communications Kit and Air-Source / Water-Source Unit	No communication signal for more than five (5) consecutive minutes from AHU Communications Kit to the Air-Source Heat Pump Unit.	
CH06	Pipe Out Thermistor Error	Pipe out thermistor has disconnected from AHU, or has short circuited.	

Cor questions al	ntact your LG r bout the AHU (epresentative Communicatio	if you have any ns Kit or its ins	tallation.

LG Electronics, U.S.A., Inc. Commercial Air Conditioning Division 4300 North Point Parkway Alpharetta, Georgia 30022 www.lg-vrf.com LG Customer Information Center, Commercial Products
1-888-865-3026 USA
Follow the prompts for commercial A/C products.