: (
,©
NAKE-D MENE Dlvnsxon
18651 Von Karman, Irvine, California 92713 |
1) Telephone: (714) 833-8830 TWX: 910-595-1767
1)
- REAL-TIME EXECUTIVE (RTX)
; USER’S MANUAL
: 90-94500-00F2 ‘ j Ap}il 1977
e
1 | ¢ 1977 COMPUTER AUTOMATION. INC PRINTEDIN THEUS A,

()

~

REVISION HISTORY

Revision ‘ Issue Date
AO

Al to E6
FO November 13976
F2 April 1977

Comments
Original issue.
Misc. RTX/10X updates.

Adds Magnetic Tape Intelligent
Cable, Storage Module Disk, and
IEEE Intelligent Cable IOX
Handlers. Adds block diagrams
for IOB, UAT, DIB and CIB.

Adds IOX Handler 1listing.

Adds File Manager to IOX,
and overall documentation
cleanup. '

-

o

Section

TABLE OF CONTENTS
PART I. REAL-TIME EXECUTIVE (RTX)

INTRODUCTION TO RTX
1.1 WHAT IS RTX? & &+ o « o o o o o o o o o u o o o=
1.2 WHEN SHOULD RTX BE USED? « « « « o « « « = « « -

1.3 WHAT DOES AN APPLICATION PROGRAM LOOK LIKE? . .

1.4 DEFINITIONS . ¢ ¢ o ¢ o o o o o o o o o o o o =«

RTX ORGANIZATION v ,
2.1 WORK AREA (USER BLOCKS) + v o o &« & o « =« « «

FUNCTIONS . & 2o &« o o o o o o s o o o o o =
1 Initialize Work ARrea (RTX:) . . ¢ « o « =
2 1Initiate New Task (BEGIN:) . o o - « = .
3 Terminate Current Task (END:)
.4 Suspend Current Task (PAUSE:)
5 Coordinate Numbers . . « « « « o « « =« &
6 Inter Task Coordination (PUT:/GET:) . . .
7 Delay Current Task (DELAY:) . . v o« « o« &

NNNDMNMNNON
.

- INTERRUPT PROCESSING

3.1 SAVE ENVIRONMENT (INTSV:) - o o o « o o o « o -
3.2 RESTORE ENVIRONMENT (INTRS:) . « o « o « - - - .
3.3 INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE
3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)
3.5 COMMON SUBROUTINES (REENTRANCE) . . = « « « « .«
3.6 WRITING COMMON SUBROUTINES
3.7 CALL A COMMON SUBROUTINE (SUBR:) . « « +« o « « .
3.8 EXIT FROM COMMON SUBROUTINE (SUBX:) . . - . - .
3.9 PROTECT A FACILITY (PROT:) « & v o o + o o - .
3.10 RELEASE A PROTECTED FACILITY (UNPR:) . . - . . .
3.11 LOCK OUT A PACIL;TY (LOCK:) + o « « o .

3.12 UNLOCK A LOCKED FACILITY (UNLK:)

iii

"

1/1-1
1/1-2

1/1-3

I/lj3

1/2-2

1/2-2
1/2-2
1/2-3
1/2-6
1/2-6"
1/2-7
1/2-7
1/2-8

I/3-2

I/3-2

1/3-2

I/3f3_~
I/3~-4
I/3-5

1/3-6"

1/3-6

1/3-7
1/3-8
I/3-10

1/3-11

i

ComptrterAutomation @% —

/
TABLE OF CONTENTS (Cont'd)
_Si don v - Page
: 3.13 RBORT A TASK(ABORT:) . . . « & &« & & & o 0 v v v 0 o o o = = . I/3-11
} 3.14 OBTAIN CURRENT PRIORITY (GETPR:) . « v v v v ¢ v o o o o o o = I/3-11
. 3.15 SET TASK PRIORITY (SETPR:) + ¢ & - @ % v v o o o o o « o « o = I/3-12

3.16 INCREMENT TASK PRIORITY (INCPR:z) . ¢ . < = o« o ¢ o o s « « = - 1/3-12
3.17 DECREMENT TASK PRIORITY (DECPR:) + « « « & =« = « o o o o <.+ = I/3-12
ADDITIONAL RTX REATURES

4.1 RTX DEBUG REATURE (ZBG) « o o o o o o o o o o o o oo e v o o 1/84-1

0_.

1 4.2 PROGRAM LOAIDNG WITH ZBG « « + = = o v v o o o e eee e o v o 1/4-a

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:) . . . « « o o « o o o = « . 1/4-4

4.4 TELETYPE INPUT/OUTPUT . +¢ &« & o o o = o « o o« o o o o o o o I/4-4

o 4.5 LSI-3/05 SOFTWARE CONSOLE ROUTINE (CNSOL3) + « v o v v o« - o« . 1/4-4
5 RTX OPERATING PROCEDURES
(
6 A SAMPLE RTX PROGRAM - RTX DEMO
6.1 PROGRAM DESCRIPTION T 1/6-1
6.2 PROGRAM MODULE FUNCTIONS . « & o « + & & & o o & = ¢ o o « o . 1/6-2
_:> 6.2.1 BEGIN . . v v o ¢ 4 o o o o 2 o o o o o o o o o o« o o o o @ 1/6-3
. 6.2.2 TASKL & ¢ v 4 o o o o o o o o o o o e e e e e e e e e e e 1/6-3
6.2.3 TASK2 - i 4 4 e e e et e e e e e e e e e e ae . I/6-4
©-2.4 TBASK3 . © 4 4t v 4 o v e e e e e e e e e e e e e e e e e 1/6-4
g 6.2.5 TOTASK 4 v 4 v v v v o o o o o o o o o o o o o o e wuaT. 1/6-4
6.2.6 BDDL . . ¢ ¢ 4t ¢ ot e e e e e e e e e e e e e e e e e e 1/6-4

iv

———

ComputerAutomsaton (EZ;Q&
Y . } TABLE OF CONTENTS

PART II. INPUT/OUTPUT EXECUTIVE (RTX)

Section Page

1 I0X GENERAL DESCRIPTION

1.1 GENERAL DESCRIPTION . ¢ & & 4 v o & o o o = o o o o o o o « « « II/1-2

1.2 CALLING SEQUENCES . . . ¢ ¢ v o o7t v ¢ ¢ o o o o o o o o o oo TT/1-3

1.3 DEVICE DEDICATION & ¢ ¢ v & o o o o o o = « « = « . [IL/1-5

1.4 LOADING « + v v o v v o o o o o o o 4 o o o o o v o o ere o o I1/1=5
1.5 RESTARTABILITY . « « & & ¢ & o o o o o o o o o o o o o o o o . II/1-7

& 2 ~ IOB AND UAT ORGANIZATION : .
: 2.1 INPUT/OUTPUT BLOCK (IOB) - 10 Words . « - « = - « o « « o o . . 1II/2-1

2.2 UNIT ASSIGNMENT TABLE (UAT) . « « « v 4 = v = = = = = « « o . . 1I/2-6
2.3 STANDARD DIB NAMES . . . & & & & v v o « & o o o o o o o o - . II/2-7
2.4 SAMPLE UAT . . « « « « « = & o o o o o o = o + o o« o o o« o . . 1I/2-8

) 3 I/0 HANDLER ORGANIZATION - & v o v o o o o o o o o o o o o o o o o . II/3-1

3.1 THE STANDARD HANDLERS . 4 v « « ¢ « o o« o s o o o o o o o « « o« II/3-1
3.1.1 Character-Oriented Device Handler (Non-Fortran) 1I1/3-1
3.1.2 Fortran List Device Handler ¢ ¢ + ¢« « « <« « . . II/3-1
3.1.3 Card Reader Handler & ¢ + o« o o o« o « o o « II/3-1
3.1.4 Magnetic Tape Handler ¢« « « « ¢ ¢ o « o « o« o 1I/3-2
3.1.5 Disk and Storage Module Disk Handler (Non-Fortran). . . 3II/3-2
3.1.6 Floppy Disk Handler (Non-Fortran) . . « « =« o« o« « « . . I1/3-3
3.1.7 Disk, Storage Module Disk, and Floppy Disk Handler '

g : (Fortran) . .« ¢ v« ¢« 4 o o o« o o « o o o o o o o = o « « 1II/3-3
' . 3.1.8 Magnetic Tape Intelligent Cable (MTIC) Handler 1II/3-4

3.2 I/O HANDLER REQUIREMENTS . & o ¢« o & « o o o o « o = o« « o « . I1/3-4"
3.2.1 SINT: (Set up an instruction at the Word Interrupt
Location) . ¢ o« & & ¢ s e 4 o + o o o o. 6o o » o o « o - II/3-5.
SIO: (Start I/0 and Watchdog Timer) . .« v« o &+ o o « « . II/3=-5"
INTP: (End of Block Interrupt Returm Point) II/3-7
WAIT: (End of Record Delay Routine) II/3-9
"EQOFQ: (End of File Check Routine) II/3-9.
EOF: (End of FileRoutine ¢ . « 1II/3-10
EQR: (End of Record Routine) ¢« . + - . . « . II/3-10
« EORST: (Alternate Entry Point to ECR:) II/3-10
FETCH: (Input one character from an I/O device) 1II/3-11
0 BUFFQ: (Store input character into buffer) II/3-12
1 UNRES: (Unresponsive Device Routine) -II/3-12
2 IORTN: (Return to I/O Scheduler) II/3-13

WWWwwwwwwwww
.

NRNMOMNNNMNNDMNNN
L]

= O 0NN A WN

. (3 . .
.

v—) 3.3 CHARACTER-ORIENTED DEVICE HANDLER LISTING . . -« « . . - II/3-13

.V

Ckxnpuhu%hﬂcrnaﬁoﬁ (EZ&QS —

-

TABLE OF CONTENTS (Cont'd)

- 3ection ' Page
+ DIB AND CIB DESCRIPTIONS
4.1 DEVICE INFORMATION BLOCK (DIB) - 11 to 18 words 1II/4-1

4.2 REGULAR DIB CONFIGURATION (ALL HANDLERS) - WORDS O TO 10 . . . 1II/4-3

4.3 ADDITIONAL DIB CONFIGURATIONS - UP TO 18 WORDS - . . . 1I11/4-6
4.3.1 Distributed I/ODIB . . « v « v v v v v 4 ee o o o« « . II/4-6
4.3.2 Magnetic Tape Intelligent Cable DIB-. 1I/4-7
4.3.3 Disk DIB 4 4 4 4 4 4 e e e e e e e e e e e . . I1/4-9
4.3.4 Fortran Disk DIB . . . ¢ &4 4« 4 o o o o o o o o = « o« « IX/4-11
4.3.5 Storage Module Disk DIB (Fortran and MNon-Fortran) . . . 1II/4-12

4

SAMPLE DISK DIB & 4 4 v ¢ o v o« o o o o o o o =«

Vil

g
[
»
o

- - . 1I1/4-14

o 4.5 CONTROLLER INFORMATION BLOCK (CIB) - 38 WORDS (47 WORDS FOR
STORAGE MODULE DISK) e e e e e e e e e e e e e e e e e . .. IT/4-14

4.6 STANDARD CIB NAMES & ¢ ¢ 4 ¢ v ¢ o o o o o o o « o « o 1IXI/4-17
5 FILE MANAGER

‘> 5.1 FILE ORGAENIZATION . .+ & ¢ 4 4 o o o o o = o o o « o« o« o o o o @ I1/5-1

. 5.1.1 Sequential File ACCESS . « « « « ¢ 2 o« o « « « « « . . II/5-5
5.1.2 File Opening and Closing . . « « « ¢ <« v v« v v « . . . II/5-5

(5.1.3 ~ File Positioning+ . v« IL/56
5.1.4 File Functions ¢« ¢ ¢« ¢ ¢ ¢ &+ ¢ ¢ ¢ v o o =« « o 1I/5-7

5.2 TABLE ORGANIZATION . . . ¢ « & o o o o o o o o o o« o o« « o« « « II/5-9

5.2.1 File Device Information Block (DIB) II/5-9
) 5.2.2 Controller Information Block (CIB) I1/5-15
‘3> 5.3 RTX FILE LABEL UTILITY e o s o o o o 8 o o e o o o o e o e o 11/5-18
(5.3.1 Environment ¢ ¢ ¢ ¢ 4 ¢ ¢ e o o e« o « « . . II/5-18
/

5.3.2 Program Operation ¢ ¢« ¢ . . ¢ ¢« « . . II/5-18

6 DEVICE DEPENDENT CONSIDERATIONS . . ¢ o ¢ ¢ ¢ o & « = o « « = « « o II/6-1

e e o o o« o II/6-1
6.1.1 Line Printer. . . . ¢ & ¢ ¢ ¢ 4 4t 4 ¢ ¢ v ¢ ¢ v o o « . II/6-1
6.1.2 Teletype Keyboard (TK) « . . ¢ ¢ ¢ ¢ v © o« « . II/6-1
6.1.3 Teletype Console (TY) (implies tape reader or keyboard

for input, whichever is ready) « .« II/6-2
6.1.4 Teletype Reader (TR) . v ¢ &+ v ¢ ¢ o o o o o o o o« o . II/6-2
6.1.5 Teletype Punch (TP) II/6-2
6.1.6 Card Reader (CR) & & « ¢ ¢ ¢ ¢ v o o o o« . . II/6-3
6.1.7
6.1.8

6.1 STANDARD CHARACTER DEVICE HANDLERS

High Speed Reader (PR) « « II/6-3
High Speed Punch (PP) , II/6-3

vi

\.

N
I

111
NN

|
D WSO WN

2
4
4
5
5
5
5~
5
5
5
7
7
7
7

LIST OF ILLUSTRATIONS (PART 1)

Typical Example of RTX +« . .+ + « o o« «
RTX Software Configuration - . .
RTX Demo Program - Flow Diagram (Sheet 1) - - .

LIST OF ILLUSTRATIONS (PART 1I)

IOB Configuration
UAT Configuration ¢« « « « .« &

DIB Configuration . . « . . « ¢ . ¢« ¢ + ¢ o . .o

CIB Configuration ¢ & ¢ « & o « « o &+ =
Disk Directory Structure,.
Disk Description Table (DDT) in Volumn Table of
Disk File Linkage ¢ ¢ o « o o o « « + =
Sequential File Positioning Examples
Table Organization . . « « « « o « o « « o« « =
DIB Definition When used With the File Manager

-CIB Definition When Used With the File Manager

IEC IOB Configquration -- 9 to 12 woxrds
IEC Status Byte Configuration
IEC Set Mode Command Word Format
IEC CIB Configuration ¢« « ¢« « « . .

LIST OF TABLES

User Blocks for RTX Functions . . . « . « « .+ .

viii

Computersutomation (R ——

Page

1/1-4
1/1-5
1/6-5

11/2-2
11/2-6"
11/4-2
11/4-15
11/5-2

.I11/5-3

I11/5-4
II1/5-8
11/5-10
I1/5-11
11/5-16
I1/7-2
11/7-6
11/7-7
11/7-9

Page

1/2-4

o

=\

PART I

REAL-TIME EXECUTIVE (RTX)

Lompuisrinomsoon (L/\y —]

SECTION 1

() INTRODUCTION TO RTX

This section presents an overview of Computer Automation's Real Time-FExecutive (RTX)
program which operates on all ALPHA-16 and LSI- processors. The following discussion
is concerned with three basic questions:

1. What is RTX?

2. when should RTX be used?
3. What does an application program look like?

v

S.l WHAT IS RTX?

R e : .
‘ X is a modular package of service routines that handles both the overhead functions
("and the scheduling services associated with a real-time environment. Modular con-
struction allows you to select only the portions of RTX required for your application.
Real~time environment means that if your application requires that certain tasks be
performed at selected intervals or in response to an external signal or event, then
RTX will manage the orderly interruption and resumption of your program. RTX does
all the overhead functions to maintain and direct the execution of your application
ifring both normal and real-time processing.
RTX is also a powerful multi-task executive that controls all tasks of the overall
\pplication. These tasks include priority scheduling, response and assignment,
interrupt servicing, and communication among RTX tasks and user-developed handlers.
"Overall task control:

1. Allows the application program to be designed as a number of either inter-related
or subordinate tasks. The nature of the application determines the task relation-
ships. RTX will completely handle the switching from task to task as required.

b? Allows the application program to dynamically define (and redefine) the priority
(level of the various tasks in the application using RTX service routines. This

is a software priority which is then used by the RTX scheduler function to direct
the sequence of task execution.

3. Allows RTX priority scheduling, response and assignment to share the computer
among tasks with equal priority. When all tasks of the highest priority are -
temporarily waiting for some event to occur, the next highest priority level is
scheduled in the same manner. ' ’ ’)

4. Allows response to interrupts, as generated, because the user provides the
interrupt instructions which transfer control to an interrupt service routine.
This interrupt service routine will save status (using an RTX function), perform
the necessary instructions to assure no data loss, and then restore status (using
an RTX function). This routine can also cause a lower priority routine to be

I/1-1

Computechutomaion (G} ——

(”cheduled if additional processing of the interrupt data is required; the lower
prriority routine can be temporarily deferred until any higher priority tasks have
had- their turn at executing.

. Allows the various tasks in the application to communicate between themselves (or
with RTX) through RTX communication routines. These routines allow a task to

(uniquely identify the communication request and then post it. Posting consists
of presenting information to, or requesting information from, another task. This
facility may be used to operate simply as a signaling device, or it may be as
complex as both a signaling and parametric (pointer-passing) function. -

11 of these RTX features combine to produce a multi-tasking, real-time scheduling
xecutive that is, despite its small size, the most powerful and easy to use system
f its kind on the market. Flgure 1-1 illustrates a typical example of RTX.

.2 WHEN SHOULD RTX BE USED?

he most significant reason for using RTX is that your application program requires a
ea ime environment. Real-time environments are found in many circumstances,
ar®QPg from high speed data acquisition to occasional sampling of an electro-

w(.nical device such as a relay. The basic criterion is that a need exists for the
ppiication to communicate with some external device or event in a time-dependent
anner. If this criterion is met, then RTX is a suitable vehicle for defining the
‘elationship between the external device or event and the application programming
.asks which control and service that device or event. Some of the more obvious
pplications are:

(»ommunications
Message Switching
- Store-and-Forward
(Networks
Reservation Systems

Je Process Control
Plant Operations
; Flow Monitoring
Equipment Direction
é*; X-Y Positioning
(, Petro-chemical Applications
3. bata Acquisition
Test cells, such as automotive or airframe/aircraft
Traffic Control
Instrumentation Control
Source Data Entry
Oil Field Data Monitoring

1. Medical Data Processing
EKG/EEG Analysis
Patient Monitoring
Cardiac Monitoring
Patient Billing

I/1-2

|

5. Security Systems

Plant/Facility Security
X-Ray Security Systems
Video Transmission Systems

6. Financial Transactions
Point—-of-Sale
Automatic Banking
Inventory Control

1.3 - WHAT DOES AN APPLICATION PROGRAM LOOK LIKE?

RTX allows the user to construct his application in modules. These modules are then
combined with RTX during the loading process to produce the final application program.
The user may choose any arrangement of his program into modules .that suit his needs.
Figure 1-1 shows a general diagram of this type of arrangement. This modularity
ﬁmfoncept applies not only to the user's application, but also to RTX itself. The RTX

poackage is simply a library of separate subroutines which may be referenced by the
user's modules; certain of the RTX subroutines in turn reference others, and the
linking of all required modules (performed by the LAMBDA loader or by the OS:LNK
program) results in a configuration consisting of only those modules needed for the
application. Figure 1-2 shows how the modules and user programs are loaded into
memory and the size of the individual RTX modules. Keep in mind that the only RTX
modules actually loaded for a given program will be the ones regquired by the
particular program.

1.4 DEFINITIONS

1. Activity: A task which has been initialized (via BEGIN: for example) and is
receiving support from RTX.

2. Common Subroutines: Subroutines which may be used by two or more different
activities concurrently. These require special coding to provide reentrant
’ capability.

*:33. Coordination Number: A decimal integer used to identify a task to RTX. It is

analagous to a telephone number in that it is used to "connect™ a task to another
task or to the DELAY: process.

4. Interrupt Data Processing: That portion of code that processes the data obtained
by an Interrupt Service routine.

5. - Interrupt Service: That portion of code that must be executed imﬁediately after -
the interrupt occurs (so as not to lose data). It should be limited to only that
code which is necessary to assure no data loss.

6. Inter-Task Coordination: A method for tasks to communicate and pass parameters
using two 16-bit computer words. These words may contain any information, such
as a table address,‘a pointer to a list of values, or a value itself. ’

v

I/1-3

ComputerAutomation szﬁis —_—

’ Communications Task
R
T | "Peripheral Device Task 4] (2) CAI-Supplied Tasks
X : } . (10X)
Additional Communication AND :
| Peripheral Device Tasks as |
6 needed -
{ File Manager
N) T J
U
C
L
E
(’ 8}
) S Task 1
Task 2 (3) User-written Application
) Tasks (as many as
Task n » needed)

(1) RTX Nucleus provides control, scheduling, priority handling.

(2) CAI-supplied tasks provide handlers for I/0 (such as printers, tapes,
etc.,), for communications (such as BISYNC, ASYNC, etc.), and cthers.

(3) The user need only supply tasks which perform his application’'s work,

- while utilizing the CAI-supplied software for support. *

Figure 1-1. Typical Example of RTX

ol
! 1/1-4 Revised 1/77

e

—

" ADDRESS

Scratch Pad = :100

User Programs

KTX/IOX Library
Segment 1

MEMORY MODULE SIZE
: 0000
Literals and Interrupts .
1
:00FF 1
User - Mainline (i.e., RTX
Initialization), Tasks,
Data/Work Areas and
Interrupt Service Routines
Y
A
I0X - TTY, Line Printer, .
CRT and Paper Tape :200+
Tables and'Drivers 1
I0OX - Card Reader and)
Mag Tape :180+ .
Tables and Drive;s ‘. l
IOX - Disk T
Tables and Drivers :i§0+
I0X Scheduler :ﬁ?
RTX Nucleus. : T
RTX:, BEGIN:, END:, . . ., :CO
List Pinters and
Scheduler
Debug (ZBG) :2D4
IOX Controls T
IONIT:, EOR:, EOF:, : 290
s10:, . . ., SINT:, IO:
and EOFCK:
RTX Services T
DECPR:, DELAY:, GET:, PUT:, :130
- - ey SUBR:, SUBX:, INTG:
and RTOSZ:
File Manager 1600
:nFFF i

RTX/IJX Library
Segrent 2

Figure 1-2. RTX Software Configuration

1/1-5

ComputerAutomation <§;ZR5} ——————-’?

Kf' Main Line: A short initializing sequence which resets all task table pointers,

and then begins one or more tasks. (Tasks may also be begun by other tasks, or
ypon an interrupt from an external device.)

8. Priority: A software defined method for assigning (and re-—assigning) the rela-
(tive importance of a task to RTX.

9. Re-entrant Programs: A program specifically written such that it may be directly
entered by more than one program, concurrently. Under. RTX, this is necessary
only if two or more Interrupt Service routines require immediate use of the same
program. For example, Interrupt Service A calls routine C.

Interrupt Service B becomes active and also calls routine C.
entrant,

While C is executing,

If C were not re-
this second call to C would replace the return address at C's entry

point, causing the return address for routine A to be lost.

10. Task: A program or set of programs which operate to perform a specific function
within the real-time application.

11 Work Area: An area of storage dedicated to’table space for RTX. This table
£J>contains all the necessary information for RTX to perform its functions. Its

usage is dynamic and is dependent upon the maximum concurrent usage of RTX
{ functions.

[« »

I/1-6

{ The scheduler maintains a "Ready" list of each task in order of priority. The highest

SECTION 2

RTX ORGANIZATION

RTX is basically a collection of functions (subroutines) and a user-supplied work
area, which are linked to the user's Mainline sequence and tasks prior to execution.
Each RTX function may be called as a subroutine by the user as it is needed, to
perform a specific job. (See below for descriptions and calling sequences of these
functions.) RTX also includes a task scheduler (SCHED:) which is used to execute the
task of highest priority. The priority of a task is defined when the task is begun,
and may be changed by the task, using the SETPR:, INCPR:, and DECPR: functions.
ﬁt;riorities may range from 1 to 8191, with larger numbers representing the higher

/riority- ! o ’

priority task is executed until it suspends itself by calling any of the following
RTX functions:
DELAY: (unless altering or cancelling a previous delay)
‘(; GET: (if no corresponding PUT: yet, and not a cancel cali)
! SUBR: (if the comﬁon subroutine is busy)
(‘ PAUSE: (essentially reschedules the pausing task at the same priority)
I0: (BEGINs, at I/0 completion time, the normal or abnormal return at the

same priority)

SETPR: ~ (if the new priority is lower than that of another task)

DECPR: (if the new priority is lower than that of another task)

(Once the task has been suspended, RTX executes the new highest priority task. The
rule for determining the highest of equal priority tasks is, "first in - first out”.
Thus, if a task suspends itself, it thereby becomes "last in"™ within its priority.

| In addition to the user-invoked suspends listed above, occurrence of an ihterrupt :
will cause a task to be suspended, if the new priority is higher than that of the

current task. An interrupt is defined to be:
1. A haranre (gxternal) interrupt, with INTQ: ér INTAC: attached, or
2. A software (internal) interrupt:

a DELAY: expiring

a PUT: which satisfies an outstanding GET:
a SUBX, UNLK:, or UNPR:, with a higher priority task waiting

1/2-1

ComputsrAutomation (g;Z?QS —

Ig’addition, an Input Output Executive package (IOX) is available, which may be
linked to run in conjunction with RTX. Its function is to perform 1/0 operations to
the standard CAI 1/0 devices (teletype, high speed paper tape reader and punch, card
reader, magnetic tape units, and disk) and resolve confilicts of concurrent 1/0
('Tlization.

A File Manager operates in conjunction with IOX. It enables the user to communicate
with data files by name, independent of the physical medium storing the filec.
Requests for access are made through IOX using Logical Units (LUNs).

2.1 WORK AREA (USER BLOCKS)

The user must supply a contiguous work area for RTX to build its tables. The address

and length of this work area is specified in the call to the RTX: function. It is

grouped by RTX into blocks of five words each, and there must be at least two of

these blocks (10 words) reserved; otherwise an error return will be made from the
tialization routine. Table 2-1 gives a list of the RTX functions which allocate

aEE}de-allocate this area. The left hand column’ denotes the number of blocks allo-

c d (+) or de-allocated (-) by the function in the right-hand column. The user

I st supply sufficient work area for the maximum number of five-word blocks which
may be allocated at any one time.

2.2 RTX FUNCTIONS:
2.2.1 1Initialize Work Area (RTX:)

Calling Sequence:

N , EQU ' (NUMBER OF TASK BLOCKS)
WKAREA RES N+N+N+N+N, 0 AREA FOR BLOCKS
JsT RTX:
DATA N # OF CONCURRENT ACTIVITIES
’ DATA WKAREA
&: 'ERROR ‘ RETURN WORK AREA EXCEEDED
) NORMAL RETURN

()

Returns With:

INTERRUPTS ENABLED
OVERFLOW RESET
WORD MODE

A REGISTER --- CURRENT RTX REVISION NUMBER IN ASCII
X REGISTER --— CURRENT RTX REVISION NUMBER IN ASCIIX

This subroutine is called in the user's Mainline sequence to initialize the working
area of RTX. The work area is broken into N blocks of five words each, which are
then used by the remainder of RTX during system operation. The number N must be
large enough to allow for all concurrent activities. Work area overflow will cause a

jump to the RTX: routine's error return at any subsequent time during the running of
the program, not just during the call to RTX:.

C !

1/2-2 Revised 1/77

T TP B SR SRS T

bty iraaionictis

w

 Computerautomation () ——

. PHOTE

* A call to this subroutine causes activation of the RTX Scheduler.
Upon return, the calling program (normally the user's Mainline
sequence) is thenceforth considered a task with a priority of 8172.

In addition to initializing the work area, the RTX: subroutine can also reset all I/0O
tables, if desired; this feature will insure restartability of a user's program. The
feature may be referenced in the user program, if restart capability is required;
otherwise it may be omitted, thereby shortening the overall length of the program.
(Upon initial loading, I/O reset is not required before execution.)

To include this feature in the RTX: subroutine, simply reference the module “IONIT-"
in the Mainline sequence. elther of the following directives:

IONIT: REF

d e . ‘ »
‘:ﬁ' or v 4
(LOAD IONIT: . , 7

will serve this purpose.

2.2.2 Initiate New Task (BEGIN:) .

Calling Sequence:

JST BEGIN: -
(DATA (*) START ADDRESS OF NEW TASK

N ' DATA PRIORITY OF NEW TASK

Returns With:

INTERRUPTS —--- ENABLED
OV —-—- UNCHANGED
&}' A REGISTER --- UNCHANGED

X REGISTER --- UNCHANGED

NOTE

When the new task starts executing, the A and X registers will
contain the values at the time of the JST to.BEGIN:, OV will be
reset, and the computer will be in word mode.

This subroutine is called to initiate a new task. The task is scheduled and BEGIN:
then exits to the task Scheduler. This means that the calling program will not
receive control back immediately if the new ("begun") activity is of higher prlority,
or if another task of higher priority is ready to begin execution.

1/2-3

CompiiterAutomation (g;Z?QS ——

; (f . Table 2-1. Uscr Blocks for RTX Functions
ﬂ No. of
" Blocks Function
+1 RTX:
| +1 BEGIN:
|
il .
-1 END:
0 ' PAUSE:
+1 PUT: (If a new,'unique PUT: and no corresponding GET: is waiting
for it) ,
.0 PUT: (If a new unique PUT: and the corresponding GET: is already
6 ‘waiting for it) o
4 0 PUT: (To change the information in a previous PUT:)
-1 PUT: (To cancel an outstanding PUT:)
0 GET: (If a new, unique GET: and no corresponding PUT: is waiting
for it)
(;:1 GET: (If a new, unique GET:; and the corresponding PUT: is already

waiting for it)

(, -1 GET: (To replace a previous task currently waiting for a PUT:
with the current task; the new GET: must be called with the
same coordination number as the task to be replaced)

-1 GET: (To cancel an outstanding GET:)
(ﬂ] DELAY: (To initiate a new delay)
,‘3>0 DELAY: (To change the length of an outstanding delay) :
(\ -1 DELAY: (To caﬁcel an outstanding delay)
- . 0 " INTSV:
) INTRS:
+1 INTAC:
+1 INTQ:
| +1 SUBﬁ: (If the common subroutine is not already in use)
é 4] SUBR: (If the common'subroutine is already in use)

1/2-4

K
#

Bl

Table 2-1. User Blocks For RTX Functions (Continued)

ComputerAutomation (g;?ﬁis —

("\

No. of
Blocks Function

-1 SUBX:.(If no other tasks are waiting to use the common sub- .

routine) :
0 SUBX: (If one or more tasks are waiting to use the common sub-
routine) .
+1 PROT: (If the facility is not already protected)
(o} PROT: (If the facility is already protected)

-1 UNPR: (If no other tasks are waiting to protect the facility)

0 UNPR: '(If one. or more tasks are waiting to protect the facility)
+1 LOCK: (If the facility is not already locked)
0 LOCK: (If the facility is already locked)

-1 UNLK: (If no other tasks are waiting to LOCK: the facility)

-1 ABORT: (In addition, -1 for each resultant SUBX: call where no
other tasks are waiting to use the common subroutine, and -1 for
each resultant UNPR: and UNLK: call where no other tasks are
waiting to PROT: or LOCK: the facility)

0 GETPR:
0 SETPR:
0 INCPR:
0 DECPR: i
(0] IOREL:
0 IOWAT:
3 or 4 IO: (as follows:)

+1 For the immediate return +1 For setting a watchdog .timex |
+1 For scheduling ' +1 If I/O completes before i

{

scheduling completes

1/2-5 ;

i <>on6puﬁoniu¢ornaﬁku1 (E;ZGQB —

NOTE

CoN Priorities are integers from O (lowest) to 8191 (highest). Users
should limit priority to less than 7000 because certain RTX functions
use those of 7000 and higher.

.2.3 Terminate Current Task (END:)

Calling Segquence:
JST END:

he current task may terminate itself with a call to END:. No arguments are required
nd‘ajntrol will not return. ' '

4

(B - HOTE

The Mainline sequence (as a result of the JST to RTX:) has a priority
of 8172. This sequence should begin other necessary tasks and then
terminate itself by a call to END:. If it does not terminate, no
tasks of a lower priority can execute.

3:.2.4 Suspend Current Task (PAUSE:)
(Calling Sequence:

JST PAUSE:

Returns With:

INTERRUPTS --- ENABLED

STATUS --- UNCHANGED '
p A REGISTER —--~ UNCHANGED
RS X REGISTER --- UNCHANGED

 this subroutine is called by a program which desires to allow other tasks at the same
" Sriority level to get service. This is useful if a program is unusually long or is a

:losed loop. PAUSE: is essentially similar to a BEGIN:, END: ‘pair, but is less de-
' aanding on work area space in RTX.

NOTE

Programs which loop indefinitely are perxrmissible, but should be used
carefully since they will block execution of all activities of a
lower priority. Tasks should begin in response to a stimulus,
generate the appropriate reaction, and end.

(S

¢l ' 1/2-6

ComputerAutomation @ S

il .
?i g 2.2.5 Coordination Numbers

4 Before discussing GET:, PUT., and DELAY: the concept of coordination number must be

| understood. A coordination number is a 16-bit value which is supplied ‘as an argument
-! to GET:, PUT:, DELAY:, PROT:, UNPR:, LOCK:, UNLK:, IO: and IOREL:. This number

(. serves to identify the activity so that it may be referenced by a later call.

For GET:, PUT: AND DELAY:, the same coordination number used in the same type of call
supersedes the previous call. The negative (2's complement) of a coordination

number cancels the previous call. FORTRAN uses the following coordination numbers,
and the designer should avoid their re-use:

F:RBPG address (for LOCK:)
:FFDC (for LOCK:)

In addition, all DELAYs performed in I0X and COMX use memory addresses as coordination
numbers. These memory addresses fall within the IOX or COMX boundaries, or their
iE@assoclated tables (CIB's). Thus, it is strongly suggested that the system designer

follow this practice, and use as coordination numbers, only memory addresses of
locations within his program. Basically, it is the system designer's responsibility
to allocate coordination numbers ‘so that no conflicts arise. . §

I HOTE
Zero has no separate identifiable two's complement, and therefore a
coordination number of zero should not be used. »
|

2 2.6 Inter Task Coordination (PUT:/GET:)
(These two facilities are generally used together as a pair. In general, PUT: passes
32 bits (the A and X registers) to a GET:. Coordination numbers are used to insure
* proper reference. There are no timing restrictions on associated PUT:/GET: pairs.
(If a task calls GET: before another task has made the corresponding PUT: call, the
GETting task will suspend until the PUT: is made.)

PUT:
(' Calling Sequence:
JST PUT:
DATA COORDINATION NUMBER

Returns With:

INTERRUPTS —-- ENABLED
STATUS --- UNCHANGED

A REGISTER --- UNCHANGED
X REGISTER --- UNCHANGED

This subroutine is called to do one of three things:

‘| 1. Pass 32 bits to another task; call PUT: with the same (positive) coordination
,1 number which will be used in the call to GET;

S

1/2-7

I, . .
- nis subroutine is called for one of three reasons:

Computsehutomation (), ———

the information in a previous PUT:; call PUT: with the same coordination
number used previously.

Delete an outstanding PUT:; call PUT: with the 2's complement of the coordination
(' number of the PUT: to be deleted. ’

ROTE

If a PUT: is issued before the associated GET: is called, one block
is used from the work area in RTX. If the GET: is called first no
additional demands are made on the work area.

3T:
Calling Sequence:.
- JST GET: ,
& DATA COORDINATION NUMBER :
Returns With:
INTERRUPTS --- ENABLED
STATUS --- UNCHANGED
A REGISTER --- FROM ASSOCIATED PUT
(\ X REGISTER --- FROM ASSOCIATED PUT

. (T'o obtain 32 bits (A and X registers) from another task: call GET: with the
positive coordination number to be used with PUT:.

. To delete a task currently in a GET: waiting for the associated PUT:; call GET:
with the 2's complement of the coordination number.

. » replace a task currently waiting for a PUT: with the current task; call GET:
rith the same coordination number as the task to be replaced.

fét GET: is called, control will not be returned until the associated PUT: is
ssued.

.2.7 Delay Current Task (DELAY:) (Requires Real-Time Clock Option)

Ca.ling Sequence:

JST DELAY:

DATA _ # OF TICKS ON THE CLOCK FOR DELAY
DATA COORDINATION NUMBER

" Returns with:

A INTERRUPTS --- ENABLED
(Q STATUS --- UNCHANGED

1/2-8

I1f deleting or changing an outstanding delay:

A REG1STER --— UNCHANGED
X REG1STER -—- UNCHANGED

If actually executing a delay:

A REGISTER —-- CCORDINATION NUMBER
X REGISTER —--- UNDEFINED

subroutine is called for one of three reasons:

To delay the current task for a specified period of time. (The number of ticks
referred to above is the number of time interrupts from the Real-Time Clock.
These interrupts normally occur every 10 msec but may be changed by a Jjumper
wire. (See the appropriate ALPHA-16 or ALPHA LSI Computer Reference Manual).
For this call, supply a currently unused positive coordination number.

To delete an outstanding delay. A call'to DELAY: with the 2's complement of the
coordination number of any current delay will delete the delay request (and the’
task that called it). This is useful for deleting a watchdog routine.

To change an outstanding délay. A call to DELAY: with the coordination number of
a currently active delay will change the outstanding delay. This is equivalent

to deleting a task in a delay and immediately starting the same task with a new
delay.

1/2-9

Computsrautomation (A

SECTION 3

INTERRUPT PROCESSING

Most interrupt service routines can be divided into two sections. First, the recog-

.| nition that the requesting device usually has an immediate need which will result in

data being lost if it is not met. Second, a subsequent need to perform some pro-
cessing upon that data. 1In the case of output, the device may not continue to operate
" at full speed if its request is not answered within a certain interval. After meeting
this very high-speed requirement, the need for continued rapid servicing diminishes
considerably, until the next request is made. -

' TX provides two alternative methods for interrupt servicé. One is the INTQ: service,
yhich combines the functions of saving status, queueing or scheduling of support
tasks, and then dismissing the interrupt since it has been honored. The second is to
use the INTSV;, INTAC:, and INTRS: services to provide each of those three functions
separately. Use of these three functions is described below.

Upon receiving control after an interrupt, the interrupt handler should immediately
call INTSV:, to preserve the register status. When control returns, the handler may
utilize the registers as required. Processing, at this point, should be restricted

(\) the very high speed "lost data" requirements. The handler may then schedule other
activities, by calling INTAC:, with the start address and priority as arguments.

; Processing is ended for this phase, by issuing a call to INTRS:, which resunes pro-
:essing. Normally, the newly scheduled activity will have a high priority. Note,
however, that the programmer may assign this priority, as distinct from those systems

..where the hardware has the device priorities wired in. When the scheduled processing
activity receives control, it will be considered a normal activity, and may make use
of all RTX functions. Interrupts will be enabled, so that other devices which require
service may receive control during their "lost data® intervals, after which the

(7stem Scheduler will return control to the highest priority processing program.

‘m%e A and X register are passed between the scheduling and the scheduled routines, so
‘hat word or byte transfer devices can pass the data itself to the processing pro-

'grams. After the processing program has finished its task, it may terminate, or it
may schedule other responding tasks.

By using INTSV- and INTRS: to save and restore status, the user is relieved of one of
the most important and error-prone types of coding. With INTAC:, he can schedule

routines which are normal, interruptable programs, and which can utilize all of RTX's
capabilities. _ -

Note that the INTSV:, INTRS:, INTAC:, and INTQ: routines are necessary only for the
user who is using RTX in conjunction with his own special (non-standard) device and
has written his own interrupt handler for it. The RIX I/O Executive (IOX), discussed
in Chapter 2 of this manual, contains the necessary /0O handler routines for the
standard CAI-supplied I/C devices {card reader, teletype, high speed paper tape punch .
and reader, magnetic tape, disk and floppy disk). These standard handlers within IOX
g:?ke use of the INTQ: routine internallv. / ’

’ .

\

1/3-1

g o

ComputsrAutomation Qizgws —

-

8 3.xf_SAVE ENVIRONMENT (INTSV:)

Cailing Sequence:

JST INTSV: INTERRUPTS MUST BE DISABLED
DATA *PLOC LOCATION OF ENTRY POINT TO INTERRUPT ROUTINE

~~,

Returns With:

INTERRUPTS---STILL DISABLED
STATUS---OV_ RESET, WORD MODE

- A REGISTER---SAVED P REGISTER
X REGISTER---UNCHANGED

Ahis_subroutine must be called by an interrupt subroutine to save the current
nvironment. :

J!E*ESTORE ENVIRONMENT (INTRS:)

{

4alling Sequence:
{ A

JST INTRS:
——- DOES NOT RETURN

his subroutine is called by an interrupt subroutine to exit. If RI'X was interrupted,
ontrol is returned to RTX. Otherwise, task control is moved to the block at the top
£ t(; scheduler ready chain and the system Scheduler is entered.

.(INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE (INTAC:)
*+ Calling Sequence:

JST © INTAC: (MUST BE IN WORD MODE)
DATA (*) START ADDRESS

DATA PRIORITY
&“;
turns With:

(.

INTERRUPTS-~--UNCHANGED
OV---INDETERMINATE

A REGISTER---DESTROYED
X REGISTER---DESTROYED

C

I/3-2

cm-

—

3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)

This service may be used in place of the INTSV:, INTRS:, INTAC:, sequence. It is
functionally identical to the combination of those three services-when they are used

as follows:

SUBENT

ENT
JsT INTSV: SAVE ENVIRONMENT

DATA *PLOC -

JST INTAC: QUEUE "TASKC" AT "PRIOR"

DATA TASKC, PRIOR

JsT INTRS: : DISMISS INTERRUPT AND GO TO RTX

SCHEDULER i

The advantage to using INTQ: is that it is faster; i.e., it shortens the period of

- b Calling Seqﬁence:

Returns With:

ample Usage

EOBENT

“ime during which.interrupts are disabled.

rd

JST * INTQ: : :
DATA $,0,0,0 CALLING LOCATION, 3 TEMPS REQUIRED
DATA TASK-ADDRESS FOR TASK WHICH IS QUEUED

DATA PRIORITY FOR QUEUED TASK

DATA A-REGISTER VALUE PASSED TO QUEUED TASK IN A
DATA X~REGISTER VALUE PASSED TO QUEUED TASK IN X
DATA P-LOC » LOCATION OF SAVED P-REGISTER AT

TIME OF INTERRUPT

DOES NOT RETURN. QUEUES TASK FOR SCHEDULER AND DISMISSES
INTERRUPT. ‘

1. Interrupt for End-of-Block

ENT ‘ VECTORED INTERRUPT

JST INTQ: ' : S .
DATA $,0,0,0 ‘

DATA TASKB,PRIORB, 0, 0, EOBENT

1/3-3 Revised 11/76

¢

2. Interrupt for Data (Input) Ready
DATENT ENT : : VECTORED INTERRUPT
‘ - SIN 3 BLOCK BYTE MODE
; STA AREG SAVE A-REG
! INA ADDR,FCN INPUT THE DATA VALUE
EMA AREG * RESTORE PROPER A-REG AND PASS INPUT
1 VALUE TO QUEUED TASK
JST - INTQ:
DATA - $,0,0,0 .
S DATA TASKA, PRIORA
‘* BREG DATA 0 . A-REG VALUE FOR TASK
: XREG DATA 0 -7 X-REG VALUE FOR TASK

DATA - - DATENT " RETURN POINTER FROM INTERRUPT

3.5 COMMON SUBROUTINES (REENTRANCE)

Nob,slly, different activities are independent of’each other. However, it is not
un®bhal to have two unrelated programs use the same utility subroutines, therefore
de ning a "common" subroutine. -One example would be mathematical functions library
routines. Rather than duplicating ccpies in each using program, a single copy is

loaded, and entered with subroutine calls (JST instructions). If control is within

the common subroutine when an interrupt occurs, and another program gains control and
re-calls the subroutine, the second call will destroy the return location of the
first. When control finally returns to the middle of the interrupted subroutine
(ckiaring the interrupt), it will complete its execution, and again return to the
se¢. .d caller. The original caller never sees control come back. The later caller
gets two returns from one call. This dilemma is referred to as the common subroutine
prr° lem, and it occurs in any system which allows interrupt processing. It is solved
in' _ifferent ways. Most simply, common subroutines can be forbidden. Alternatively,
push-down stacks are utilized, scratch storage is forbidden, (except in the stack),
and. the programming task is made significantly more imposing.

RTX has implemented an alternative solution to this problem, that of a “shared"

facility. 1In our context a shared facility is a body of code which may be called
cok_ arently from more than one task. In this sense, a shared facility is then
cofn to several tasks.

-

Th(implementation consists of two services which are contained in RTX. These are:

SUBR: To initiate the execution of a shared facility
SUBX: To return from a shared facility

To illustrate usage of these services,’consider the following example. If the
subroutine CUP is a common subroutine to two tasks (named COFFEE and TEA), then it is

- possible that an interrupt could occur which causes task COFFEE to execute before

task TEA Finished. This means that subroutine CUP could be entered from COFFEE

| before it completed the processing due to its prior entry from TEA. In this case,
; subroutine CUP is in common usage. It is designated as a shared facility and must be

1/3-4

| ComputerAutomation (g;??Qs

-

4 (fesigned to accomodate that condition. The method here is to use the following
: sequence of code in both COFFEE and TEA whenever it is desired to call subrout ine
CUP:

JST SUBR: ACTUALLY CALL SUBR: SERVICE
. DATA Cup NAME OF COMMON SUBROUTTNE
{

instead of the usual method

JST cup

NOTE

NEVﬁR éall a common subroutine directly; that is, with a JST name.
ALWAYS call a common subroutine using

Jgsr - SUBR: = CALL THE SUBR: SERVICE

DATA NAME NAME OF COMMON SUBROUTINE
&w) (oi using the LOCK: or PROT: routines described below).

3.6 WRITING COMMON SUBROUTINES

The rules for writing a common subroutine are very simple. They apply to the sub-
routine exit instruction. There are two rules:

(‘. Instead of the traditional RTN instruction, use a JMP to the location directly
before the subroutine entry point.

2. In the location directly before the subroutine entry point, place a JST SUBX:.

" Use of these two rules will allow an orderly exit from the common subroutine. In our

previous example, subroutine CUP looks like this:
) NAM cup
&E EXTR SUBX:
» JST SUBX: _
cup ENT ENTRY TO COMMON ROUTINE CUP -
(JMP CuP-1 o EXIT COMMON ROUTINE

When SUBR: and SUBX: are used, all subsequent calls to the common subroutine are
"locked out” until the current call to the subroutine has completed and the jump to

SUBX: has been made. Then, each subsequent call (made while the common subroutine was
busy) is completed in priority order. '

If this procedure is not followed, the system behavior. will appear to be very erratic.
Although the system will probably correct itself, when the doubly-returned task
finally terminates, one activity has been lost, and one has been duplicated, probably
incorrectly. If the user understands this section thoroughly, he can have the con-
venience of library subroutines, without the difficulty of accidental re-entry.

ﬁ 1/3-5

i sl

3.(F CALL A COMMON SUBROUTINE (SUBR:)

This subroutine is called by a user task to schedule a subroutine which may

be used by more than one task.

.

. Calling Seguence:
JST SUBR: .
DATA (*) ADDRESS OF COMMON SUBROUTINE

(

3.8. EXIT FROM COMMON SUBROUTINE (SUBX:)

rhis subroutine is called from within a common subroutine to return to the calling

: (”’-",
C
(

This subroutine does not return directly to the calliny program. Tt
exits through the Scheduler (SCHED:).

Enters Subroutine With:

INTERRUPTS---ENABLED
STATUS--—-UNCHANGED

A REGISTER---UNCHANGED
X REGISTER---UNCHANGED

The return address put in the entry point of the common subroutine is
the location following the data in the above call. That is, it
appears to the subroutine as if it were called from the location of
its address (Not the location of the "JST SUBR:").

This subroutine does not return directly to the calling program. It
exits through the Scheduler (SCHED:).

Calling Sequenée

SUB

JST
ENT

JMP

ComprrterAutomaton cgj&QS —

NOTE

HOTE

MOTE

SUBX:

where: SUB is the entry point of the common
subroutine. This call must immediately
precede the entry so that RTX can keep
its chains straight.

SUB-1 RETURN

1/3-6

LR

N
v
N

_routine itself.

Returns to calling task with:

INTERRUPTS--ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER--=-UNCHANGED

MOTE

Each SUBR: call made must have a corresponding call made to SUBX: once
the routine has completed. If a call to END: (to terminate the calling
task) is made from within a subroutine called by SUBR:, all other tasks
will be permanently denied the user of that routine. To terminate a task
from within a SUBR'd subroutine, the ABORT: routine should be used.

3.9 PROTECT A FACILITY (PROT:)

. s -
PROT: is called by a user's subroutine to protect itself from usage by other tasks.
It is in a way similar to SUBR: in that reentrance to a common subroutine is prevented
during its usage; however, in SUBR:, the determination to protect the subroutine is
made by the calling program, while in PROT:, the determination is made by the sub-

Calling sequence:

DATA 0
SUB ENT
- JsT PROT:
DATA $-3

The call to PROT: must be the first instruction following the entry point. The temp
cell SUB-1 is used by PROT: to store the contents of SUB (the return address from the

caller). Note that exiting from the routine SUB must be done via the return address
in SuUB-1, not the address in SUB.

Returns with: .
INTERRUPTS-~-ENABLED
STATUS---UNCHANGED
A-REGISTER---UNCHANGED
X-REGISTER-—-UNCHANGED

PROT: may be called more than once using the same coordination number by the same

task. However, a different task is effectively locked out of the subroutlne untll it
is released by executlng a call to UNPR:.

1/3-7

NOTE

{ The INTRS: and INTQ: subroutines contain logic to preclude task-
switching caused by an interrupt occuring immediately before a JST
LOCK: ox JST PROT: instruction. This involves checking the inter-
rupted instruction to see if it is a JST LOCK: or JST PROT:. This
check is effective only if the instruction is a JST indirect through
a base page pointer to LOCK: or PROT:; that is, an :F9xx instruction.
To insure this protection feature, reference LOCK: or PROT: by means
of an EXTR dlrectlve, rather than a REF directive. This also implies
that if EXTR directives are used in conjunction with the LPOOL
directive, then an EXTR LOCK: or EXTR PROT: must be accompanied by a

SPAD LOCK: or SPAD PROT: directive to insure that the pointer remains
in the base page.

Sty RELEASE A PROTECTED FACILITY (UNPR)’

/

UL‘A. is called by a common subroutlne to delete its protected condition caused by a
previous call to PROT:

Calling Sequence:

S JST UNPR:
(DATA Coordination Number

Returns with: -

INTERRUPTS~-~ENABLED
STATUS--~-UNCHANGED

' A-REGISTER---UNCHANGED
X-REGISTER-~~UNCHANGED

In
as

EFfect, RTX treats the address of a common subroutine (as used in SUBR: and SUBX:)
' coordination number. These are shared with the coordination numbers used by

PT : and UNPR:. That is, the list in which the common subroutine addresses are
saved for SUBR: is the same list that saves the coordination numbers for PROT: and
LOCK:. Results will be unpredictable (and probably disastrous) if the coordination

number used by PROT:, UNPR:, LOCK: or UNLK: is also the address of a common subroutine
(called by SUBR:).

Because RTX maintains a single list for PROT: and LOCK: coordination numbers and
SUBR: common subroutine addresses, an alternative method for writing common sub-
routines exists. The rules for this type of common subroutine are:

1. Instead of the standard "RTN SUB" instruction, use a “JMP SUB-2".
2. In the 2 locations directly before the subroutine entry point, place:
JsT SUBX:

gf RES 1

I/3-8

w

s 3.
AN
(4.

| ComputecAutomation (g:??QS

In the two locations immediately following the subroutine entrv point, place:

JST
DATA

PROT:
SUB-1

Because PROT: moves the return address from SUB to SUB-1, references to parameters

must be made through SUB-1, rather than SUB.

For example, a typical routine,

that adds the arguments presented to it and returns the sum in the A register,

would normally be coded as follows:

Calling Sequence:

JST ADDM
DATA - 3
DATA .4
ADDM - ENT
' LDA *ADDM
IMS - ADDM *
ADD *ADDM
IMS . ADDM
RTN ADDM
BOTE

This may not be used as a common subroutine because it has no

protection from re-entrance.

Calling Sequence:

JST SUBR:
DATA ADDM
DATA 3
DATA 4
JST SUBX:
ADDM ENT
LDA *ADDM
IMS ADDM
ADD *ADDM
IMs ADDM
JMP ADDM-1
<

1/3-9

s+ Using the SUBR: common subroutine feature, the routine would appear as follows:

S A el K S S R R e

B eions

(hon%putefhxnninath1 (gzzak —

*

?pe alternative method, using the PROT: common subroutine féaturu, is as follows:
N
Calling Sequence:

JST " ADDM

(' DATA 3
DATA 4
JsT ‘SUBX:
‘ RES 1 '
ADDM ENT _
. JST : PROT: :
DATA : ADDM-1
LDA “*ADDM-1
IMS ADDM-1
- . : ADD * ADDM~1
. _ . . IMS ' ADDM-1
' - JMp " ADDM-2

‘ . 4
T“jcﬁdvantages of the last example, using the PROT:/SUBX: sequence, are:

1! The calling sequence is shorter than that calling SUBR: (the standard JST SUB is
used) . : :

2. The burden for insuring that the subroutine is common (re-entrance protected)
‘ lies solely with the subroutine writer, not the subroutine caller.

2. If the subroutine is capable of stacking multiple return addresses (not shown in
(; this example), the subroutine is then recursive, and may call itself. (Note that
if recursive, SUBX: should only be called on the last return (use RTN SUB-1 for
{ all returns but the last)).

3.11 LOCK OUT A FACILITY (LOCK:)

LOCK: was designed for use by Real Time FORTRAN, and is similar to PROT:. The only
difference between them is that the return address from the subroutine is stored in
thg ‘ocation following the coordination number, instead of the location in front of
th¥entry point, e.g.: - A

(

Calling Sequence:

SUB , ENT
JST . LOCK:
DATA Coordination Numbex :
. DATA 0 » : (Return address stored here)

Returns With:

INTERRUPTS---ENABLED
STATUS-~--UNCHANGED
A-REGISTER---UNCHANGED
X-REGISTER---UNCHANGED

The JST to LOCK: does not need to be placed immediately following the subroutine entry
p¢ , t, although JST to PROT: does.

1/3-10

e

i 2

R Eo-ariiasiai st

w!

'&mmMthmw&m @ZQ}~—-

Thé user should reference the LOCK: or PROT: subroutine with an EXTR directive,
rather than a REF directive. See the note in the PROT: description regardinq this.

Note that the PROT: /SUBX example shown above does not apply to LOCK:.

3.12 UNLOCK A LOCKED FACILITY (UNLK:)
UNLK: is similar to UNPR:. However, UNLK: permits the common subroutine to complete

processing, then returns control to the calling task, while UNPR: returns through the
Scheduler to the Ready list for the next task on the list. s

3.13 ABORT A TASK (ABORT:)

" ABORT: is called from within a common subroutine to terminate the task which called
the subroutine. :

In addition to performing the END: function, ABORT: also deletes any PROT:, LOCK: or
-SUBR: conditions previously set by the aborted task.

t Calling Sequenée:

JST) ABORT:

ABORT: exits to the scheduler (SCHED:) .

ROTE

(The duration of an ABORT: call is significantly longer than an END:

call, and therefore it should be called only if in a common subroutlne,
or 1n a PROTected or LOCKed condition.

3.14 OBTAIN CURRENT PRIORITY (GETPR:)

Calling Sequence:

JsT GETPR:
Returns With:

INTERRUPTS---ENABLED
STATUS---UNCHANGED

A REGISTER -CONTAINS TASK PRIORITY
X REGISTER---UNCHANGED

The subroutine is called to get the current priority of a task. It is usually
called sa that a task's priority may be restored after it is temporarily altered.

I/3-11

¢ N ‘ o

spascisyie

1.C

3.16

/
i

(,

SET TASK PRIORITY (SETPR:)

Cailing Sequence:

LDA DESIRED PRIORITY

JST SETPR:
Returns With:

INTERRUPTS---ENABLED

STATUS---0OV RESET, WORD MODE

A REGISTER---UNCHANGED
X REGISTER-—--UNCHANGED

INCREMENT TASK PRIORITY (iNCPRﬁ)
Calling Sequenéé:
JST " INCPR:
Returns With:
INTERRUPTS~--ENABLED
STATUS—---UNCHANGED

A REGISTER-—-UNCHANGED
X REGISTER-——-UNCHANGED

This subroutine is called whenever a task desires to alter its priority.

{' s subroutine will increment the priority of the calling task by 1. ‘No range
checklng is performed.

3.17 DECREMENT TASK PRIORITY (DECPR:)

c

(

Calling Sequence:
JST DECPR:
Returns With:
INTERRUPTS~--ENABLED
STATUS---UNCHANGED

A REGISTER--~UNCHANGED'
X REGISTER—~*UNCHANGED

This subroutine will decrement the calllng task's priority by 1. No range checking i
is performed.

1/3-12

f

£

4l

i

SECTION 4

ADDITIONAL RTX FEATURES

4.1 RTX DEBUG FEATURE (ZBG)

The standard CAI DEBUG program is included in the RTX library tape (Segment 1) under
the name ZBG. (Detailed descriptions of DEBUG are included in LSI-2 AutoMagic, CA
document 96045-00, or LSI-3/05 AutoMagic, CA document 93001-00). When this module is
linked, Relocation Register RF points to the RTX Linked list pointers for use with 2
function; the corresponding length required by the Z function is set to five words,
"“hich is the length of each block used in the RTX Linked lists. When displaying a

articular list with the 2 function, the first printed line is not an entry in the
list, but simply the pointer to the top of the list, followed by the next four higher
words in memory; this first line may therefore be ignored.

There are eight lists maintained by RTX, and the pointers to the top of each of these
lists reside within the RTX nucleus in eight consecutive memory locations, in the
following order:

k; ORF Pointer to the list of tasks awaiting execution (READY)
! 1RF Pointer to the list of INTQ: and INTAC: tasks awaiting execution (FIFO)
' 2RF Pointer to the list of tasks currently awaiting completion of a DELAY
((DLYCH)
- 3RF Pointer to the list of common subroutines currently requested (COMN)
4R¥ - Pointer to the list of tasks currently awaiting I/0 execution ({IOCH)
& 5RF Pointer to the list of tasks awaiting a PUT: response to a requested
i GET: (GETCH) ' '
: 6RF Pointer to the list of PUT: reguests awaiting a GET: response (PUTCH)
7RF Pointer to the list of currently unused blocks (FREE) '

The following is a description of the contents and manipulation of a user block i
yithin each of the lists: '

1. READY List (RF) Ready to Run (used by BEGIN:)

RTX maintains a list of all tasks which are ready to execute in the READY list.
This list is sorted into priority order, so that RTX simply executes .the task
at the top of the list. The format for a READY block is as follows:

- Word Contents"
0 Word address pointer to next block entry in the list. (The last °
element in the list contains a zero). .
1 Bits 15-3. Task priority number.

Bits 2-0. (LSI-2 only)
Bit 2. EIN indicator, for reference only. (RTX always

.((b(allows interrupts.)

Bit 1. BYTE mode indicator upon next resumption of task. -
Bit 0. Overflow indicator upon next resumption of task.

I/4-1 Revised 11/76

ke

Word Contents

Bits 2-0. (LSI-3/05 only)
. Bit 2. BYTE mode indicator upon next resumption of task.

‘ (' Bit 1. OVerflow indicator ‘upon next resumption of task.
o Bit 0. Unused
f 2 P register contents upon next resumption of task.
3 3 A register contents upon next resumption of task.
ﬂ 4 X register contents upon next resumption of task.

2. FIFO list (1RF) Ready to Run (used by INTAC: and INTQ:)

In order to avoid the problems of interrupting a linked list processor, INTQ;
and INTAC: put the entries for their tasks in the FIFO list. (BEGIN: operates
directly on the READY list). The RTX scheduler (which is never run as an
interrupt routine) empties the FIFO list into the READY list and sorts the

READY list. The format of a FIFO block is the same as a READY block.
3.8 DLYCH List (2RF) Delay (used by DELAY:) »
(A call to DELAY: (with a unique positive coordination number) causes the block
for the currently executing task to be deleted from the READY list and put on top
~of the DLYCH list. The format of a DLYCH block is as follows:

Word Contents

werd address pointer to next block in the list.

Status & Priority. Same as READY list entry.

The P register. Points to address of return from DELAY:
The coordination number.

Working number of ticks left in Delay.

¢

RWESE ™

Upon return, the A register will contain the coordination number. The X register
will contain the number of Real Time Clock "ticks" remaining (normally zero).

48 COMN List (3RF) Common Subroutine (used by SUBR:, SUBX:, LOCK:, UNLK:, PROT:,
UNPR:))

(‘ A call to SUBK:, LOCK: or PROT: zauses the COMN list to be searched for a block
for the common subroutine. If none is found, a block is deleted from the FREE
list and put on top of the COMN list. The format for a COMN block is as follows:

Word - Contents
o Pointer to the next block in the 1list
1 Busy flag (zero = not busy)
2 Pointer to the block of the highest priority task waiting to use

the common subroutine (0 = no task waiting)
Rddress of the common subtoutine {or coordination number)
Unused

oW

If SUBR: is called and a block for the common subroutine is found with the Busy
flag set, the block for the currently executing task is deleted from the READY
- 1list, and inserted into a secondary list pointed to by Word 2 above. At the same
é;, time, the P register is set so that the task will again call SUBR: when RTX next
executes the task. '

1/4-2 Revised 11/76

5. IOCH List (4RF) I/O Suspend (used by IOX:, Fortran Interface)

A call to IO: or IOWAT: when the busy flag is set in the IOB, or a Fortran call’
| for I/0 when no parameter block is currently available, will cause the task block
' to be deleted from the READY list and put on the top of the IOCH list. The P
register is set so the task will repeat the call when RTX next executes the task.
The format of an IOCH block is the same as for a READY block. The IOCH list is
emptied into the READY list each time any I/0 completes.

-

6. GETCH List (S5RF) Get (used by GET:)

. A call to GET: with a unique positive coordination number (and no matching PUT:
yet) causes the block for the currently executing task to be deleted from the
READY list and put on top of the GETCH list.

Word ~ Contents

Pointer to next block in the list
Status & Priority (same as Ready)

P register. Points to return from GET:
Coordination No.

Unused

_ 'gi
[
D W N O

When the associated PUT: is done, the block is deleted from the GETCH list, the
A and X register contents are stored into words 3 and 4, and the block is inserted
l‘ into the READY list in priority order.

7. PUTCH List (6RF) Put (used by PUT:)

A call to PUT with a uniqﬁe positive coordination number (and no waiting GET:)
(causes a block to be deleted from the FREE list (see below) and added to the top
| of the PUTCH list. The format for a PUTCH block is as follows:

- !
l Woxrd Contents ’ t

Pointer to next block in the list
Unused

A register contents to be passed
Coordination No.

X register contents to be passed

W N O

When the associated GET is processed, the block is deleted from the PUTCH llSt
and put on top of the FREE list.

8. FREE List (7RF) Available Storage

This list is initialized to contain the entire work space during a call to RTX:.
'~ As blocks are required, they are taken from the top of the FREE list. As blocks
are no longer required, they are deleted from the appropriate list and put onto
the tail of the FREE list. A FREE block has no specific format. Tt will simply
contain data frpm the function which last used the block. :

I1/4-3

smd v

gt

2

T R S

- CompirterAutomation (giZ?QS —
4.(# PROGKAM LOADING WITH ZBG

ZBG resides in the RTX library; to make use of ZBG, it is necessary to include a

, ZBG . REF

(4

instruction within the user's program. Thus ZBG is entered immediately upon execu-
tion, and may then be used to breakpoint through the mainline sequence and any parti-
cular task.

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:)

If the computer being used has the Power Fail option, the user may utilize the RTX
program module which provides service for that device. The loader will cause the
routine to be loaded if the user has a REF to PWRFL:. He must, however, not actually
call that program at execution time. Instead, if a power failure begins, the inter-
rupt hardware will force control into that routine, saving the computer's register
s, and halt, to prevent loss of information *from core storage. When the power
rstored, the program will schedule a user-supplied routine, which must be named
P~ 'JP:, and must occur in a NAM directive. Re-initiation of the activity which was
i1, process (at the time of the power failure) will also be scheduled and control

will be passed to the system Scheduler.

RTX will schedule PWRUP: as a task at priority 8184 with the contents of the A
register nonzero if the power failure was detected. TIf power failure was not detected
(e.g., the computer was halted), RTX will transfer c(on*rol to PWRUP: with the

co(;;nts of the A register equal to zero. Note that PTX cannot resume the activity

in progress at the time of the power failure if the powe)r failure was not detected.

4 TELETYPE 1NIUT/OUTFPUT

RT¥ provides decimal, octal, and hexadecimal I1/0 on the standard Teletype, by using a
software interface to CAI's Teletype Utility Package (TUP). Thc :alls and usage are
identical to the standard version.

TUY ~lso provides the copability to read and print strings of text, (for headings,

1 is, etc.), and this capal:ility is retained in the RTX version.

R(¥ to the standard TUP documentation .{#96014) for a complete description of each
routine. Additionally, a specific limitation exists with respect to TUP usage through
RTX:. TUP must not be called concurrently by more than one task, because TUP itself

calls subroutines within it with JST instructions, and these subroutines are not
protected from re-entrance.

TUP re: 1des on the RTX Segment 2 library tape, and its routines should be referenced
with tl:e REF or EXTR directive.

4.5 LSI-3/05 SOFTWARE CONSOLT ROUTIFl*® (CNSOL3)
The LSI-3/05 version of RTX includes CNSOL3, the Sofiware Console Routine, which may

be linked by a reference to CNSOL3 in the user program module. Usage of the Software
Console Routine is described in the pSI—3/05 Software Manual (90-20010-00).

@«

1/4-4 Revised 11/76

Som RN

e R

6.

Compu‘terAutomaﬁonm————‘

SECTION 5

RTX OPERATING PROCEDURES

Assemble each of your application program modules. Be sure to reference each RTX
function that a module uses in either an EXTR or a REF directive.

when you have a useful object tape for each of your modules, you are ready to
create the executable application program. This requires that you first load
LAMBDA, the relocating, linking loader.

Using LAMBDA, force load the initializer task module of your application.

Then using LBMBDA, load the remainder of your group of application program
modules. You can use the Selective Load feature of LAMBDA to include only the
modules your program actually requires.

Still using LAMBDA, selectively load the RTX Library object modules from the two
RTX Library Tapes (70-93300-01 and 70-93300-02).

MOTE

If the user program does not reference PROT: and LOCK:, LAMBDA and
0S:LNK will declare these subroutines as undefined. This declaration
can be ignored since INTRS: and INTQ: (loaded after PROT: and LOCK:)
check to see if a call to either subroutine is the next instruction
after an interrupt is serviced.

PIOTE

When operating under the IOX File Manager, disk devices must be
labeled prior to their use. Labeling is done with the stand-
alone program, RTX File Label Utility (tape Nos. 70-93324-40Aal
and -41Al1). ‘Subsection II/5.3 gives a complete description of
this utility. . ’

Start execution of your program so that the initializer module (Mainline Sequence)
or ZBG, if used, is executed first. ’

T /e ’ Revised 3/77

oS £

C

Section 6

A SAMPLE RTX PROGRAM - RTX DEMO

6.1 PROGRAM DESCRIPTION

The RTX Demo Program (00-93300-13) demonstrates the basic functions of RTX in a
simple, straightforward manner. It consists of three main tasks (TASK1l, TASK2,
TASK3). The function of each of these tasks is to delay a specific amount of time,
and then call a routine to output a message to the teletype. The message consists of
the task name followed by the elapsed time in seconds since the start of the program.

'gxternal device to initiate a task. This example simulates the effect of three such
) . . ’ . .

devices which interrupt every 5, 7, and 11 seconds, respectively; that is, the delays
themselves simulate external devices. :

asén actual user's application of RTX might very well use the interrupt from some

Each task delays a different amount of time than the other tasks, before printing.

TASK1 delay: 5 seconds
TASK2 delay: 7 seconds
TASK3 delay: 11 seconds

"Thus TASKL will output

“"TASK1 0005"
"TASK1 0010"
YTASK1 0015"
etc.

. TASK2 will output

q:‘ “TASK2 0007"
"TASK2 0014"

L

q;

“TASK2 0021"
etc.

And TASK3 will output
- "TASK3 0011"
"TASK3 0022"

."TASK3 0033"
etc.

Because of teletype timing, each message takes moxe than one second to complete.
Thus the three tasks will contend with each other for the use of the teletype.

1/6-1

e ——————

R it

—_—

i e Lot

T

I(T,ddition; a fourth task called "IOTASK" outputs the actual teletype messaqges. This
task is bequn by each of the three main tasks whenever their delays expire, at the

following various priorities:

TASK1 begins TIOTASK at priority 5
(TASK2 begins IOTASK at priority 7
’ TASK3 begins IOTASK at priority 11

This means that if TASKl and TASK3 both begin IOTASK at the same time (which they
will, at 55 seconds), TASK3's message will be output first, since its priority to

begin IOTASK is higher than TASKl's.

To be more specific, and to demonstrate the priority sequence more fully, the actual

teletype output after 55 seconds appears as:

TASK3 0055, TASK2 0056, TASK1 OOSS,..‘because each message takes slightly more than
one second to print, thus causing the following sequence:

6. TIME
55 seconds after start

(

.56 seconds after start

(-

(57+ seconds after

After 80 seconds, the

TASK1
TASK2
TASK1

) TASK2

- TASK1
(TASK?2

TASK2
TASK2

0005,
0014,
0025,
0035,
0045,
0056,
0070,
0077,

TASK2
TASK1
TASK2
TASK1
TASK2
TASK1
TASK1

TASK1

message.

ACTION

TASK1 and TASK3 both begin IOTASK with a "55 seconds"
Since TASK3 has the higher priority, its
message is printed first.

TASK2 begins IOTASK with a "56 seconds” message.
TASK3's "55 seconds" message is still printing, and
TASK1's "55 seconds message"” is queued up. Since
TASK2 has a higher priority than TASX1l, the TASK2 "56
seconds" message gets output when TASK3's message

completes.

start TASK1's "55 seconds" message is output after TASK2's
"56 seconds" message is completed.

0007, TASK1
0015, TASK1
0028, TASK1
0035, TASK1
0049, TASK1
0055, TASK1
0070, - TASK1
0080,

0010,
0020,
0030,
0040,
0050,
0060,
0075,

teletype listing should

TASK3
TASK2
TASK3
TASK2
TASK3
TASK2
TASK3

(TASK3's message contains carriage return and

Let us now examine the RTX functions used in this program (refer to the flowchart in
figure 6~1 and the program listing at the end of this section).

" 6.2 PROGRAM MODULE FUNCTIONS

modules comprising the program:

BEGIN
TASK1

(g; TASK2

TASK3

IOTASK

ADD1

1/6-2

ComputerAutomation (O ———~

s

appear as:

0011

0021, TASK3 0022

0033 '

0042, TASK3 0044

0055 T
0063, TASK1, 0065, TASK3 0066
0077

line feed control characters).

There are six basic

6.2.1 BEGIN {Initialize and Begin Task:s)

The program start occurs at the BEGIN section of the flowchart. The first step is to
initialize RTX. This is performed using the RTX: function to define the maximum
number of RTX tasks which may be in concurrent operation and the requirced table space
for RTX management of those tasks. IJf insufficient table space is found or other
peculiarities occur during initialization, the error return is taken. In our example,
we halt the computer to remedy the problem. Using the BEGIN: function of KI'X defines
the task name (TASK1l, TASK2 and TASK3 in our example) and its software priority

number (100 for each in our example).

No other tasks have begun their activity at this point. This is because the first
task following the RTX: call (the initialization sequence itself) is automatically
scheduled at the highest software priority. wWhen the END: function is called, this
task is deleted and the Scheduler can then schedule the other tasks in relation to
their priority. :

Since the three tasks all have priority 100 and priority 100 is the highest active
priority value, the Scheduler will arrange each task in sequence according to the

= order in which it was initiated by the BEGIN: call, and will then start execution of

the first task in that sequence. The sequence is determined by a first-in, first-out
rule. Therefore, TASKl executes until it requests an RTX service which causes it to
be suspended.

When the task is re-scheduled (on completion of one of the above function calls), it
is put back in sequence at the end of all other equal priority tasks.

This type of organization allows for true priority scheduling within an application,
while also allowing the tasks themselves to be executed, interrupted, and resumed in
an orderly fashion.

, .

6.2.2 TASKl (Delay 5 seconds, Then Output Name and Elapsed Time)

When TASK1l is begun, it first performs a five second delay. This is done by a call
to DELAY: with parameters of 500 (number of ;N millisecond real time clock "ticks" to
delay) and 1 (a specific coordination number for this particular task's delay calls).
The coordination number is necessary mainly for identifying a delay to be changed or
deleted; however, it is also required when beginning a new delay, as in this example.
When the delay is completed, control is returned to TASK1l, which then calls the
subroutine ADD1l, which increments the elapsed time in the TASK]l message by five
seconds. Note that ADDl1 is called via SUBR:, because it is a common subroutine used
by all three tasks, and is not re-entrant; thus SUBR: prevents another task from
entering ADDl until this call is completed.

Upon return from ADDl, the mess.ns< is ready for output to the teletype. This is done
by a call to BEGIN: to initiatize the common task called "IOTASK," which in turn
makes the actual call to the I/O executive (I0X) to perform the output. Note that
"JOTASK" is a task, not a subroutine; this means that TASKl may now continue with its
next 5-second delay while the I/0 is in progress rather than upon its completion,
which would invalidate the elapsed time count. Also, the initiation of the common .
task is made with a priority of 5. IOTASK is also initiated by TASK2 and TASK3, with
priorities of 7 and 11 respectively, so that a predictable ordering of outputs is ’
achieved when two or three tasks are vying for the teletvpe at the same time.

1/6-3

RS o Ceie ot Su s SR

~

6‘;;3 TASK2 (Delay 7 Seconds, Then Output Name and Elapsed Time)

TASK2 is identical to TASKl in its logical functioning. The only difference between
them is in the parameters passed in their calls to DELAY:, ADD1l, and IOTASK. TASK2
ca’ DELAY: with a 7 second count and a coordination number of 2 (to differentiate
it ¢rom TASKl's delay call). The common subroutine ADDl is called to increment the

elapsed time by seven instead of five, and the common task IOTASK is begun at a
higher priority (7).

6.2.4 - TASK3 (Delay 11 Seconds, Then Output Name and Elapsed Time)

TASK3 is similar to TASK1 and TASK2. TASK3 calls DELAY: with an 11 second count and.

a coordination number of 3. It calls ADDl to increment the count by eleven, and
begins IOTASK at priority 11.

G;E S IOTASK (Call IOX To Output A Message On The Teletype)

IOWISK is a common task begun as a task by BEGIN: calls in TASK1l, TASK2 and TASK3.
Up.)entry, the X register contains an address pointer to the I/0 Information Block
(I0B) of the calling task. A call is then made to the IOX package (at its entry
point named I0:) passing the IOB address as a parameter. BAn error status from the

I/0 operation will cause the computer to halt. Otherwise, the task terminates itself
with a call to END:.

6.£l, ADDl (Common Subroutine To Increment The Elapsed Time for Printing)

ADD }s a common subroutine called by TASK1, TASK2 and TASK3 prior to printing their
messages. Upon entry, the A register contains the amount by which to increment the
elapsed time tally, which is pointed to by an address in the X register. The routine
performs the addition, and then returns to the calling task through SUBX:. This is

. because the subroutine was called via SUBR: to avoid re-entrance.

I/6-4

C

) - : ‘ Y -
: : ' / ~ RTX: \\
, | \Initialize /

&

) ‘ BEGIN ,

HALT FOR

CORRECTIVE
ACTION

BEGIN:

Start
TASK1

BEGIN:
Start
TASK2

BEGIN:
Start
TASK3

\

END: v
Terminate
nitialization

1/6-5

(.,; Figure 6-1. RTX Demo Program - Flow Diagram {Sheet 1) -

c

Sta.rt '
IOTASK at
priority 5

/
\

Y
, Increment
5 time
(’ count -
| y
Return
1 ((;' Figure 6-1.

IOTASK at
priority 7

| &

‘ IOTASK ’
A4

10:

I/6-6

Perform
1/0

11
seconds

T\

Add 11 to
time
count

Y
BEGIN:

Start
IOTASK -at
riority 11

Halt
for

corrective
action

RTX Demo Pfogrém - Flow Diagram {Cont‘'g)

PAGE
MACKII?

0vo02
n004Y
0008
VIR
0010
0011
0012,
0013
0014
0015
0016
0017
0018
0v19

0020

voet
noee
0023
0024
0025
VP
noe7
0024
0029

0030

0031
0035
U036
0037
0038
0039
0040
0ot
doude
0043

| 0o4dd

D001

000D

00FS

0000
00¢1
l)OU?

ugns

TRVRTR!]
V00S
noues

037307717
(A2) Si=

ou(p

000y

oty
Lo0O
T00N0
BUOO
9A89

DARY
QAAD
VALY
GAnY)
SAdL

DM

80B0O
R X1 5]
NDAC
Huayl
[TELEY¢)
wocCy
oucd

» % % W X A& N ¥ W ¥ ¥ X X X *» ¥

11225227

K=

AD

NOACTS
BEGIN

SINCE

IFF
E~vLC

THEN

A CUMMON
St CuNUuS Jis
TASK (IulasSK) TS
APPROPRIATE MESSAGLE,
AT . THREE (3) DIFFEKENI

32 TASK3=11) SO THAT, FOR

f+E MESSAGES SHOUULD APPEAR IN THE

TASK3, 1ASKZ, 1a5k1,

‘TASKZ=T,
OxDERS

NAH

EXTR
EXTR
EXTR
1FF

EXTR
EmDU

EQU -

REL
EGU
LDA
STA
STA
STA
STA
STA

"STA

LYPE OUT

; 7 g;f\

RIX DEMU PNOLRAS Y58060/01=13F1

LSI305

Trnld PRUGKAM CONCURKENILY EXECUTES
TASKS (TASKY, TASKZ2, & TASK3) wHICH DELAY ,
Tl MSELLVES FUK S5, 7, % 11 SECUNDS RESPECTIVELY
THEIR IDECTI1FTICATIUON FULLOWED
BY THE NUMIER OF SECUNUS 1HAT HaVE ELAPSED

1tit. PRUGRAM wWAS STARTED,
AxE ALL RUNNING AT Trt SAME PHIURITY AND CALL
SubruuT et 10 UPBATE Tt
THEIW JUTPUL MFSSALES.
THEN wut b JO. OUTPUT THE
THIS TASK 15 WUEURD
FrRIOKRITIES

PWRUP:

1:UAT

RTX:,BEGIN:,END:
SUBR:,SUBX:,DELAY:, To:
PAUSE:

L5T%505

D:TYOO

20
0

3

='00' RESET
T(L]
T4 +1 . ALL
T2 .
T2+1 .
T3 . L]
T3+1 .

ELAPSED
TIMES

=

ITHKEE (3) -

IHE THREE TASKS.

MUMEER UF
A UMM

(1ASKL=S, ,
eQuaL TIMES,
FQLanlwu

[

/'\ ’

Y&Qi» UORAUCUTLIRACUCY

PAuc

MACHuU? (A2)

00us
Voues
oou?
004R
0049
00%0
0051
0082
0053

Hone

unny?
o088

. 0009

N0NA
ooon
ooC

Quon
00Ut

YNNI

Sl=

FQoo
004
000E
usoo
F2obe

F900
IRVAVAY)

l)t MUS

JO00

wire

ufoQ

——

1125
Bo=

PHRFL:
*

PRRUP:
WRARE A

1

JsT
DATA
DATA
HLT
JMP
REF

JST
RES

™

e X by MY ULR e Y3850 /0] =

LSI=0 wlx 1E™0) unu-essnueJSLll

ka: START RTX
NOACTS NUMBER OF ACTIVKHES
WRAREA RTX BUFFER AREA .

START GO START INITIALIZE ROOTINE
FORCE LOAD THE POKER FAIL
ROUTINE
END ¢ |6NORE POWER UP RESTART TASk

 NOACTSHNOACTS+NOACTS+NOACTS+NOACTS, 0

gy ———

(%’ : 1;!“\ : 7S) ”g,f\,AA_ A | — -

PaLE aalCh us/an/Tt lieni2l ~1 X DEMO PryLRres Yasto/Ul=] 50T - ' -
SALKUY (A) Hlz ok=us nhz : LSL=/ =»Tx 1t) i ued$shu=19t] ' '
055 *) -
00586 * INLTIALIZE TASksS ' ' A i
0087 C ok :
0058 w0l¢ F90u 0oy START JIST BEGIN: g
OubY. c073 Ou?c DATA TASK1 START TASK 4 o
0060 H0TH Yubd " DATA 100 PRIORITAET VON TASK A
N062 A % x X & & A Rk Kk kA K F X KX A X X Xk X K R X & K X X « & % & % x %
0063 ' * . ' ‘
nued 0045 FUou DO JS1 stGINe
BO65 V076 OUYA DATA TASK? STanxl 1aSx 2
Q066 U0O/T Cubd DATA 100
S N067 ’ * ‘ : .
VU68 L2 A RLE A & R K A % X %A K Kk F R %k k Kk 2 Kk & A F % & % « % 2 % K %
0069 . * A
0070 ODT7B-FYOU 00uD -JdsT "HEGIN:
0071 - VOT9 OOHKY DATA TASKS
0072 007A 00b4 ' -DATA 160 - ~
0073 , * ’ St
0074 I X % X Kk Kk % Kk kA £ A * & & x % %X 2 A 2 %X X %X %X R F *x & £ - r X & kX 2 % X
0075 * ' ’

0076 V07t F90UL LOOUL JsT END: HALT INITIALIZE ROUTINE

“ 7awnut

0T-9/1

1ACRu2 (A2)

no76
.0o79
0URO

008t
nose
0083
008y
auess
JOBG6
0087
UOBH
R L
J0Y9Q
1091l
0092
w0y}

- 0094
00YS
0uYo

0097

i 009K

0v9y9

01v0

0101

0102

010%
0104

D108
, 0106

ugud

nor/C
XN AR)
uwurt

NQOTF

nQRY
004x1
6on?

UOR3
d0KI
vusY
UV0H6

0067

0088
VOs9
00HBA
HUoHH
no~C
HEVE-YD]

NO8E
008F
vogo

WS/ 832 (0

Nl=

FYOQ
0ifFy
anony

C7un
EQLD
900

6UDA.

Euw0o
FY00
VOCF

00605

FooB

vuHH
paCl
D3CH
H1AQO
HOHO
Bune
ACAYD
UUBE
0000

w0 ‘

000u

B RN IO

[VESRYAY]

wo8B
nypon

ONKE

(VALRVAVIR

VoL

ll‘”nggp\

[N R -4

*

TASK1

T1

1oB1

JS8T

DATA

TEXT

TEXT
Equ
DATA

Lacen RN LM ws_s‘-(”\ef‘ﬁt1
LOJme g2 ppet; !‘:H()“f‘S”\""lSET

DELAY: WAIT FOR
S500,1 5 SECONDS

S S TIMES TRROUGH ADD
=T1 POLINTER TO NUMBER
SUBR: CALL COMMON SUBROUTINE
ADDA1 TG ADD N BCD

***k**k**!kg*ii@\i*tﬁ*i*ifi*tt

=10B1 ADDRESS OF JQB1
BEGIN: START COMMON TASK .
10TASK,S5 T0 DO]/0 (PRIORITY 1S S)

* ok kA & F k Kk A KX . R R # £ Kk X R A £ £ KX 2 % F & & K K * x

TASKA KEEP GOING

Ak A &k X & ok 4 & 2 Kk K& A Kk Rk R 2 K R & K Kk kX £ # X %k Xk %

3 10B BLOCK
0,0,0:0

~ o o =B oy
PALE WO0S ud/szsu/s 11352527/ rbx bt PRULebal 9480070 =1 421
MACRIy (aef) Si= iz Loleys wilx vhwg guuedsdygu=14t]
0091 0uLo
0107 Lu92 C3CF DATA 'CO! LUN
0108 00935 0U05 DATA S FUNC CODE (UNFORMATTED WRT)
0109 0094 000C DATA 12 MESSAGE BYTE LENGTH
0110 0095 NDORY DATA - BOFF1 MS6G BOFFER - '
0111 v0Y6 LuLL DATA - 040 E
6097 vouu

T1-9/1

zZ1-9/1

e

PAGE

0118
0114
0ils

U116

0117

0118
011y
0120
01t
0122
0123
0124
0125
0126
0127
0128

0129 .

0130
0131

0132

0133
0134
0135
0130
0137

0138
0139

D140
0141

0o

QOQH
yowy
REVED)

V09
nu9l
N9y
vOvE

JUYF

_u0av

VOAL
00A2

D0AS

nvaud
NOAS
oAb
VOA7T
DJAR
BOAY

OUAhA
JUAD
JOAC

03/sw/17
MACRU?Z (AZ2) o= hEx0d

FQOOQ
0enC
0002

Cro7
FOQOn

FYou

nohaA

FOOO
F900
00CF
0007

Foe0s3

DUAU
puCl
D3CH
B2A0
Bubuy
HOBU
ACAY

(aAA

ouuy
(VEIEARY)
VIVRVRY)

000

g0AT
V090

00AA
0u0o0

VUIR

11:¢5
hus=

Te

Qun?

(= gl

ot

Js T
DATA

Lam
LiX
J61
DATA

LuX
JS&T
DATA

£y

Trxl

TEXT

Teal
Rl
DATA

SN

\

X RN W

1.91=¢

vel AYS
100,22

R T I

7

=T/
SURK ¢
AVU L

—

/\LHur Yisuyus R BET

wl¥ bwU ugU=933uu=15¢]

wAIT Fuw
7 St COUNDS

TS SN S N T Ik JEE URE N RN

{ Tiets TEROUGH ALU

PUT Tex Tu NUMBEK

CALL LUMMUN SULKOU!D INE

T AL IM BCD

x k kR k¥ R R X * * Rk Xk 2 x * Xk k X %

=]he
tEGINS
LOTASK, 7

TASK?

* * * [3
V1ASK2

Yoono!

' 1]
4

b

. UpUp()rU.

ALDESS U Tus KLUCK

START Cumm{ltv TASK

Tveowir 170 (PRIOWITY 1S 7) .

A % *x k& Kk % Kk X

Kkhbky GUING

£ 2 *X Kk X K& k%

Tun ULk

*

.

X

*x & %X 32 %

k. %X %k K %

€1-5/1%

PALE

MACRL? (A2)

nid2
0143
viud
0145

-01db

0007

U0AD
VOAE
00LF
GOKO
wubl

Vos2

00n3

W3Zsu2Tl 11ested

51=

00v
C3CF
vwooh
LRTEVI
DOAC
[JVEVRY)

ovou

S Yun nijs

DAT A

DATA

vafla
Dafa
DATA

R1x ulmu FhULNeM 93300/701=1 58]

LS1=2 14 .Eou #0U=9930u=15¢]

‘cu’
5 .
1<
HUFF¢
Uet)

LUN - _
Fust CODE C(HNFORMATTELD wil)
MES-AGE BYTE LEGIN

A%, BUrkec®

CpT-9/1

RAGE

014y
vi4a9
0189

nisi
0192
ulns
0154
Uins
T n1%06
0157
016K
015y
Ule0
0161
0162
0163

0164
1165
0166
D167
168
U169y
0170
0171
0172

01734

01/4
0175

doun -
ALCRU? (A7)

[VAVIR R
nNEsS
uLs6

a7
TETRLES
VRN)
SUBA

OMN
oul
HRVE-TV]
0uisk

AV 4

00co
hoCl
0ocCe
00C?3%
0G4

doLy
00Cs
waC /7
vuL s

O3/ <a/ il
OE Al

sl=

FQOu
vg4g¢

0005

Cl/uop
E00
Y
QODA

tuiv
F90v
00CF

0os

F6iy

uuco
naci
N3icH

REYX'S

gogo
BubBu
0aCS
U in
DuGo
Guul
Quiju

doan

1003
unno

UOCH
a0

9044

11
M -
+
TALNK S
&
2 £ &
&
*
X x *
+
<
£ £ %
x
*
* A *
&
wlixF s
1s
T4

LAM
LuoX
Jal
VAT A

tiwy
TEXT
TEX1

tuuy
wAala

UELAYS T AALL kUK
1t1uu, s

11 StCuUNus -

‘E’P\ w1 APl PwNNAR Y5300

Lidl=e wo 4 . thU nou-?éaun-lstli

*ti*kn)i*l!k*ﬁ-**k*.*
11 11 115y T=wtir AN

=73 Pl TE i nwULBER

SUtswe LaLl CuemMiN SUBKUUT INFK

ADU] T and In nCDO

A & & x* 4 x & Kk %k %k A& & X A kX Xk 2 R %

=IuHs . ADUWESS UF- 1us

REGINS

START CUOMMON TASK

[OTASK,11 TO DU 170 (PRIURITY 1> 11)

i*k.t*ii**t
1A5h5 REEP GuInGA
*# & kX A k& x 4 A X &
b

'TASKS !

Yuhou!

b Lt ol ueR

”l”f‘)r'l

*

A

k & A X % 2 %

~

-

IR R B SNSRI

A

. g&zz» CKEﬁUKQNQQQﬂduRK)

\
J
|
:
i

— . — . RN » “ oo) - . . X
-g;”\ . N 1ér? :)

VAGE WU09 u3/30//7 1125l <1x DEMO PRPUGRAS Y36GU/01=13F1

I.‘

ST-9;

MALKNZ (A2) Sl= VE~NUS BU= LS]=e wIX wutmi BRUO=Y55NG=14E]

0176 90CY C3CF DATA ‘'Cu’ LUN L

0177 00CA Q006 - UATA & ' FunC CULDE (A3CII welITR)

0178 00CHB 000A DATA 1v MESSAGE HYTe LE~GIH

vi79 00CC 00CO DaTs BUFF3 MESSAGE BUFFE= ALRESS -

0180 00l Q00U DATA Ve) P
ODOLE V000 »

91-9/1

‘e

PAGF

MACRUZ (a2)

(IR ETd
J1483
01»4
ul1ss
01K6
BRIV
IR E.T.
V149
0190
0\191
0192
0193
01494
019S
UlYo

votoe

00CF

VOLU
0001
w2
gunl
oy
DOUS

wl/zansly

31z e Mus

uHle

6303
taot
FI00
000v
FY00
00uo
L TU

yue
Jou

Yudu

DU

| 0TASK Eau 3

~

itelhie! w2 NP AN PRULREN 9550”/(’1'13t]
e Lol=¢ rlx BFmy #00U=93300-13K]

x
X IHLS IS 14n CUMMUN TASK “[0TASK" QUEUED

* BY TASk1, TASk2 AND TA$k3 So THAT THEY WILL

* NOT BE DELAYED WAITING FOR THE COMPLETION

* OF THE /0. NOTE THAT THE 10X PACKAGE (10:) .
*]S WSEOD. ' S :

X

]

" .COMNO. TASK ENTRY POINT
SIN 2 AVOID INTERRUPTS HERE

STX o8 STORE. 108 ADDRESS INTO CALL
JST 10: CALL lox _

foB DATA 3-8 10B ADDRESS STORED HERE
JST END: IMMEDIATE RETURN
NOP T LGNORE ERROR RETURN
JST END:

TERHINATE THE COMMAON TASK

o C’r\ . ‘,r\' (\ ' . ,ﬂ €,\ wf. E,

QMZ:» ;;“Kﬁuoo

LT-9/1

I AGE

MACLRUZ (A2)

0194
C019w
02040
0201
020e
0203
U’y
0205
0206
0eul
n2os
0PUY
0210
0211

uele

U2y
0214
021S
vetle
0217
0218
0219
0220

neet

0222
0,2y
v2ou
022y
Neele
vert
0ees
0°P9
07230
ne3l
(1232
uras

o1l

ARTER K.Y
ity
B DI
0voL9

VODA
uyon
gonc
UL

VOVE
DUDE

T00r

noel
yore
HUE3
(Ot d
uiEs
Vlch
QUET
VOER
DAV
J0r 4
OurF
oy C
uad)
N0

vuek

Fely

URY RNV
ol=s v,
OF 00
DALH Uk b
FP200 Ut
FY00 ¢Uuo
0800
9Atl Y UOFD
1326
Ceud
EALZ vkl
CTos
A1l vur?
E20F nurl
AV
3400 nuohd
FOuy wuo
()5S0 .
YLoo ooy
COHA
Fetl Gl A
Fols vano
Ceyrnd
glun Gnul
GOANR
0AQY ary
FoOon uvar s
TRV ER 1 »

fwésﬂ\ - — = | Es&\:f

11720 “tA DEMY P ULRAN u5>nn/v1?1&]

i1z A LSI=2 WX LEMU RUO=94300=1 4]
* .
T[S S Inb COMMUN SUBRULUTINE CALLEY BY TASKi,
x TASRKZ, ANu TASKS 10 UPuATE THE "NUMBER (F
€ BELAVSED SeLudauS I ITHF ARPRUPRTIATE Ot IPUT
* CudhALt, ALL TASKS CALLING THIS SUBROUTINE
t KRAVE THE SAME PRIORITY, SO THE CALL TO PAUSE:
* WILL CAUSE SOME ATTEMPTS AT RE-ENTRY.
&
NEXT ShM
[45 COUNT DONE 2
JMP Lx NO, CONTINUE LOQOP . :
JsT SUBRX: YES, RETURN FRON can«o~
2 SUBROUTINE
ADD1 ENT ENTRY poinT
STA COUNT
LLx 1 BYTE ADDRESS OF NUMBER
AXl 3 ADDRESS OF LEAST :
% . SIGNLFICANT DLGIT
STX SAVEX SAVE IT .
Lx LAM 4 PO ONLY. & DIGITS , ,

STA FOOR
LDOX =~ SAVEX GET ADORESS OF LSD

‘ SBM _
ADD2 LOAR @0 GET DIGIT
JST PAUSE: ALLOW RE=-ENTRY ATTEMPT
1AR . ADD ONE (1)
STAB Q0 PUOT T BACK
CAl '9'+1 WAS (T '9'2
JHP 3+2 YES:, GOTTA DO NEXT DIGIT
. JHP . NEXT NO, CHECKk FOR DONE
LAP 'o! CHAMGE TO ZERD ('0')
STAB Qo PUT IN DIGILT ‘
bXR POINT TO PREYIOUS DIGIT
LMS. FOUR .~ BUMP FOUR DIGIT COUNT
- JuP ADD2 ‘DO NEXT DIGLT
JHP NEXT CONTINpE

S Qgij) UORERUICHRERGNCLI0D)

G

ng¢*|;LMﬁ:|::: Va §10 X =[G

13¢1

“1N/00So A wyP v 4 W X |

e -

N/

~

Q
Q
o

s

VAR X(] ynQ
YIVQ X3AVS
ViYQ 1n00D

lisAt

1/6-18

A00n Za0n 9§eo
noaa 1400 Qe
DA 04006 /KE20

Sur 4o {6 (gv) dUN)YW
JH/ns /s 2106 39Vd (&

L
i

0000

AARNING

~ (7 ~ o
PALE 0013 08/s0/11 V1 ANseT ~LE DR PrGoreM 94300/ 01 =131
MACKIE (AP) SI= s LSI=¢ ~lx Ukird #L0=968u0-12E]
PR Y] x
' Ve 39 ¢ THIS 1S THE UNIT ASS16NMENT TABLE REQUIRED
0240 + BY [0Xx, THERE 1s ONLY ONE ENTRY, SINCE ONLY
yenl * ONE 1/0 DEVICE (TTY) 15 USED IN THE
neu,/ + PROGRAM,
LK) . '
0244 DUk% UATTOP EQU K¢ TOP OF UAT
D245 OOF3 C3CF DATA co! LUN
0246 Vu0o 1FF LS13¢s
0247 GOF4 Q009 DATA D:TYao DIB ADDRESS FOR STD TTY
o248 ENDC } Co
02572 UOFS FrFL L:UAT DATA UATTOP-5-2 LENSTH OF UAT
02%3% : % e
0254 CLuuan EAD BE&IN
ST 0000 rRRUFS
N
L
[Ve}

PART II

THE INPUT/OUTPUT EXECUTIVE (IOX)

N

SECTION 1

I0X GENERAL DESCR1PTION

IOX is a subsystem of RTX which operates under RTX control, and provides the user with
a complete, modular method of input/output device management and support. Appllcation
programming is faster since time-consuming input/output programming for standard
peripherals and communications devices need no longer be done by the user. Since IOX
. is open-ended, the user can ‘add capability for virtually any kind of device unique. to
his application ‘and program it under IOX control. All I/O performed by IOX is
interrupt—driven and allows other tasks in the system to execute even though 1/0 is in

progress.

) . . V) B
’ bWOrking in conjunction with IOX is the File Manager that enables the user to communi-
cate with data files by name, independent of the physical medium storing the file.
Requests for file access are made through IOX using Logical Units (LUNs). '

10X can perform one operation at a time for each peripheral device. Operations
‘requiring the use of the same device are done in I/O task priority order (i;e., the
highest priority request is honored whenever the device is available to be used).
Operations performed on different devices are done concurrently. All calls to 10X
_ specify a Logical Unit (LUN) on which to perform the I/O rather than physical units.

This feature allows a program to be debugged using one set of I/O a551gnments and
executed u51ng another. :

I0X satisfies the following I/0 requireménts of the system:
1. Selects the proper commands for communicating with external devices.

2. Processes device interrupts in the following manner:

b a. Saves the status of the currently executing task.

’ (‘ b. Determines the task priority of the interrupt. (Must it be serviced immedi-
ately or can it wait for the completion of a higher priority task and if S0,
is the higher priority task ready for execution?) K

c. Determines whether the task processing the interrupt is a re-entrant task, or
that the interrupt may .ot be serv1ced until each prior 1nterrupt has been ‘
fully processed.

d. Determines which of the I/0 tasks awaiting egecution has the highest

| ' priority, then restores the CPU status to the environment of that highest
priority and gives control to that task.

e. Ensuxes that no task may access a device while it is controlled (dedicated).r
by another task. : . S

((; f. Ensures that the interrupt system is not disabled for a period of time whlch
- would prevent a high speed device from performing I/O successfully.

I1/1-1 Revised 1/77 3

g e el -y SRR Y

- {*~cluding identical units) in a real time environment, IOX has been designed to make

‘may create a DIB and CIB (and a handler) for a non-standard device.

EE R T L D I

':f s _‘? j.“£. ‘. _ | .Q ‘ fC?;npuhuiuﬂonum&xz Gij?%& — ~

1.1 GENERAL DESCRIPTION

Because of the likelihood of having several similar devices attached to the computer

i casy to support several similar devices (differing only by device address) using
"shareable” code. 10X requires some space for flags, device addresses, etc. Since
the types of flags depend on the device, as well as the interface to which the device
is connected (there may be more than one device per controller), IOX maintains flags
"in two separate locations depending on whether the information is unique to the

device or to the controller. In order to utilize the minimum space in memory for
‘these flags and temporary cells, and to facilitate the allocation of these cells, IOX .
does most of .its interfacing by means of tables which define the type of device and
interface to wh1ch it is connected.

;Ox is primarily concerpgd with fqur,tables{

:lIOB " Input Outpuf'Bloék_ . -) R : I L

S LUAT . Unit Assignment Table L e ' L ST .
.. DIB Device Information Block - - A
.(CIB Controller Informatlon Block

%

(These tables are more fully described in section 2 (IOB and UAT) and section 4 (DIB
and CIB). The IOB is created by the user (task) and resides within the calling task.
It contains the Loglcal Unit Name or Number (LUN) as well as specifications for the
1/0 operation to be performed.

T(: UAT is also created by the user. It is a series of two-word entries, each of
which e equates the LUN (specified in the IOB) to a specific device.

{., DIB and CIB are tables which are used in communication between IOX and a parti-
cular handler. IOX contains within it DIB's and CIB's for each standard device.

Additionally, the user may create his own tables if he desires; for example, he may
reéscrve an extent on a disk by specifying its boundaries in his own disk DIB, or he

Jeneral, the usage of these tables by IOX is as follows: The user constructs the

» within his program and calls I0X, giving as the sole argument the address of this
I8, IOX must then transfer control to the handler associated with this request. To

so, it first obtains the logical unit number (LUN) from within the IOB, and com- -
pares it to each entry in the UAT until a match is found. The UAT is simply a list
of each possible Logical Unit Name/Number (LUN), associated with the address of the
DIB which defines the device assigned to that LUN. Thus for each LUN the UAT contains
a pointer to the appropriate DIB. In turn, each DIB contains a pointer to the CIB
which defines the interface to which the device is connected. Finally, the CIB
contains a jump table which pointé to the particular handlers (procedures) for pro-
cessing the specific request. Therefore, given an IOB and a UAT, IOX can find the
procedure to handle the request made in the IOB. '

The following steps are performed during a normal call ‘from the user to IOX:
1. The user calls IOX carrying the word address (may be indirect) of his IOB.
2. IOX examines the status within the IOB. If the IOB is busy (from a previous call’

(.. to I0X), the calling task is suscended and control is passed to the RTX task
scheduler. . .

rvr /1.9

-

—

Bt b e

T L o

>
ﬁnn [N VO I P

-3
.

’made to the caller after. setting the Invalid -LUN" “status- bit In'Lue“lUU.

. . | e s s .,M...,..*._‘.
b a -
N R 1Y uuxﬁhag(‘nﬁwb m« e \ian um.. second (o cornplete.,

T

' . ‘ B L ot e RS SIS A ST s ol 7 7ot & B3 SRS Gh0¢ T) LYW IR § C?\)A t,EYE
““If the IOB is not busy, it 15 than flagged as busy, and the UAT is searched to

G
e
T

find a LUN which matches the LUN in. tbq_lpB. If not found, an abnormal return is‘dﬁi

-

=

L3 ‘ .
If a matching UAT entry is found, the COrrect DIB is located (the DIB is refer-
enced WLthln the UAT entry) and the requested function code is compared to the-
permlssxble function code(s) within thq.D;B. If the requested function code is’

LI SO

found to be illegal, an abnormal-returnmls,made-to the-caller-after-setting the
"Error“ status b1t .in the IOB,_ Lt e

. - ’
:i""*'&";l iy e
v

g "./‘ ?i':"\;li“ . s ("'.9 l I“*"v .

10X next queues the I/o request with any previously pendlng I/0 requests for the)

requested device according to the priority of the calling task and passes control
to its internal I/O scheduling routine.

The scheduling routine then_monltors the request queue in each DIB; whenever it
becomes physically possible to begin an I/O request (the I/O device is available
and no higher priority request is pending), the scheduler calls the appropriate
I/0 handler routine (driver) according to the handler entry address within the

~CIB.

S 5

In general, the I/O handler rout;ne will set up the requlred interrupt locations,
select the device, and inltlate a watchdog tlmer, and then return control to the

- I/0 scheduler.

10.

1.2

The

The I/0 scheduler continues monitoring the I/O regquest queues and calling the
applicable I/0O handler routine(s) until each DIB has been examined gnce. Then
the 1/0 scheduler terminates with a call to END:.

when an end-of-block I/0O interrupt occurs, it causes a return to the I/0 handler
which initiated the I/0 operation. The handler will normally at this time, call
an end-of-block routine within IOX, which stores the I/O status and record count
into the IOB, releases the device from dedication (if desired), returns to the

calling task through either the normal or the abnormal return location, depending
on the status, and begins the I/0 scheduler. :

If an I/0 error should cause the watchdog timer to expire prior to I/0 completion,
it causes a return to the applicable handler, which will then normally execute an
initialize function to the device, store an "Unresponsive Device® status into the
IOB and return to the caller's abnormal return location.

CALLING SEQUENCES

threé entry points to I0OX are:
I0: To perform an I/O operation or special function

IOREL: To release a dedicated device
IOWAT: To wait for completion of an I/0 operation

11/1-3

i Leronl to conplete. -

o
'
e d

25}

a2l

. } (honﬁpu&on&utuwwﬂku1 (g;Z;QS B

‘acy~~»f these entries requires a parameter list (IOB). IOB format is described in

-1 in section 2. The IOB specifies the type and mode of operation, data area,
ata length, and the Logical Unit Name/Number. It also provides room for status
nformation to be returned to the calling task. All calls to IOX return with the
egisters as follows:

A Register Undefined

X Register Pointing to the IOB
OV Register Undefined
Word Mode '

LSI Console Data Register Unchanged

he format of a call to IOX to perform an I/O operation is:

© JsT . I0: ' '~ Call the I0X perform I/O routine

DATA ' (*)I0B Address of the Input/Output Block o
G .- Immediate Return .

-——— - o Operation complete———abnormal return '

- B _ - Operation complete—~—gormal return

ot&hat there are three exits from IO: -- two are always taken. As soon as the :

e st is propessed,.IOX BEGIN:'s a new task whose starting address is the immediate

eturn location. When the I/0 operation is completed, IOX returns to either the
bnormal or normal return depending on the success of the operation. Having an
mmediate exit as well as a complete exit from IOX provides the user with the option
f concurrently executing his program while the I/0 is in progress. If he does not
ish to continue execution until the I/O has completed, he simply codes:

(;,T END:

n e location of the Immediate Return.
lternatively, if a certain amount of concurrent processing can take place during the
/O operation, the immediate return location should contain a jump to the processing
outine. When the intermediate processing has finished, and it is neces-ary to await
/0 completion before contlnulng, a call to the IOWAT: routine is made, as in the
ollowing example:

JST I0: Initiate the I/0 operation
DATA . (*)I0B ~ IOB address

. JMP TAG Immediate return - continue processing
JST END: Ignore complete return

" e

JST END Ignore complete return
TAG EQU $: ' '
. : Concurrent processing
. _ during I/0°
JsT TOWAT: Wait until I/O completion -
DATA (*)10B: IOB address
- Operation complete - abnormal return
- Operation complete — normal return b

‘ote that a call to END: must be made at the "complete" returns from the call toc I0:,
. n order to terminate the I/O task. One of these two returns will be made if I/0

%'(;ftes before the call to IOWAT: is executed.

ple 11/1-4

e,

B

B b i i sl

(' : : MOTE

‘ A call to IO: is.equivalent to a call to BEGIN: (see chapter 1,
RTX Functions) with a starting address of the immediate return and

- a priority of the task which calls 10: except that the new task is
(queued before all tasks of equal priority.

An abnormal return may result due to the foliowing:

LUN not in UAT
Illegal Operation Request : . , o . ;
pevice Error : o : L

File Mark Input
End-of-Device

P

" A normal exit will result frqﬁ all otherxr conditions. | - f'{i' - .

aﬁ DEVICE DEDICATION o ' Co,) o -

W s gesired, the user may dedicate a device to specific IO: calls only. Word 3 of the
iOB provides the capability of establishing a specific (non-zero) coordination number
for an I/O call. Once such a call has established the dedication of a device, all
future I/O requests for that device will be held off (queued) until the device is
released, unless they contain the established coordination number. «

A device is released from dedication by a call to the IOREL: subroutine, as follows: =

(.’. _ JST - IOREL:
DATA (*)I0B
/ — _3eturn.

On return the A register will be zero if the device was released; otherwise, one or
more of the following A register bits will be set: o :

x.

Bit O set: the LUN entry in the IOB could not be found in the UAT.

"Bit 1 set: the IOB contains a coordination number of zero. e
Bit 2 set: ‘the coordination number in the DIB does not match the coordination
number in the IOB and no queued IOB has a matching coordination ‘-

nunmber. o

1.4 LOADING

The user is supplied with two .standard relocatable object segments, each residing'cﬁ":
two separate paper tapes: : ; v S ’ o -

Segment 1 (paper tape 70-93300/1-01):

This segmgnt contains the following'progrém modules, in the ordex shown: '

1. Character ‘'I/0 Drivers

2. Card Reader Drivers

3. Magnetic Tape Drivers

4. Disk Drivers - ‘ - ' .

- I1/1-5

i _ ‘ | ComputerAutomation @Z%>”—*T.

5. 1/0 Scheduler
6. RTX Nucleus
' 7. ZBG
8. CNSOL3 (if LSI-3 version)

Segment 2 (paper tape 70-93300/1-02):
This segment contains, in the following order:

1. JOX Control
2. RTX Services

-
[N

/

" In addition:to these two modules, the user wiil require:

Le An RTX Mainline sequence, which makes a call to RTX: to initialize the RTX envi-
ronment, and to BEGIN: for each task he wishes to initiate immediately.

RTX Description) . ,

P2, ‘E’One or more "task" programs to be run 51multaneously under RTX (See chapter 1,

3! Special device handler program(s) and the associated DIB and CIB tables, for use
in communicating with any device(s) for which a standard handler does not cur-
rently exist in IOX (see section 3, I/O Handler Organization below). These
handler programs are not necessary if using only the standard devices (teletype,
CRT, high speed paper tape reader and punch, line printer, card reader, magnetic
tape, disk, floppy disk).

C BOTE

(The user's special DIB's will each contain a CHAN directive to permit
‘ chaining to the other DIB's referenced during linking. The user
who does not have an OS system will need version DO or higher of
“. the OMEGA assembler in order to correctly assemble the DIB tables,
because lower versions do not recognize the CHAN directive.
4. A Unit Assignment Table module (UAT) contalnlng entries for each I/0 unit to be
& accessed (see sectlon 2, UAT Descrlptlon).

Tﬁ user may either load each module using LAMBDA, or produce a binary tape via the OS
Link Editor. The order of input of the object modules is as follows:

1. User's main line sequence.

2. User's various tasks.

3. Unit Assignment Table (UAT).

4. Special user-coded DIBs and CIBs, if any.
5. User-coded I/0 handlers, if any.

6. R1'X/IOX tape, Segment 1.

7. RTX/IOX tape, Segment 2.

The RTX/IOX tapes, Segments 1 and 2, are organized in library format. FEach routine on
these tapes is loaded conditionally until the last module of the tape is read. The
routines are organized so that only one pass through the loader is necessary. -

C

II/1-6

ey~

(a

HOTR

Fortran tasks to be run under RTX control require additional library
modules to be linked. Refer to the Fortran Operations Manual for a
complete description.

1.5 RESTARTABILITY

In general, if some I/0 error occurs during execution for which the operator wishes to
abort the program, it may not be restartable if the abort condition (e.g., the operator
halts the processor through the console) occurs during the period of any I/O request
(either pending or being serviced). This is because various "busy" flags within the
I/0 tables must be reset upon restarting the program. To insure resetting of these
flags, reference the "IONIT:" module from the Mainline sequence (see chapter 1,
section 2: description of the RTX: initialization routine).

’

11/1-7

SECTION 2

IOB AND UAT ORGANIZATION

The IOB (Input/Output Block) is created by the user and resides within the calling

task. It contains the Logical Unit Name or Number (LUN) as well as specifications for

the I/O operation to be performed

The UAT is also created by the user. It is a series of two-word entries, each of
whlch equate the LUN (spe01f1ed in the IOB) to a specific device.

he following IOB descrlptlon applies to all standard IOX handlers. The description
s annotated to include File Manager functions. IOB organization for non-standard
handlers (for example, the IEEE Intelligent Cable Handler) is described in Section 7.

2.1 INPUT/OUTPUT BLOCK (IOB) - 10 WORDS

The IOB must be set up by the user within his own program. Word 0 is temporary
storage and will be destroyed by IOX each time IO: is called. Words 1 and 2 are set
~*0 the device name by IO:. Words 3-7 are parameters passed by the user on calls to
&,O:. Words 5 (bits 8-15) and 8 contain information returned to the user from IOX.
Word 9 is used only on devices which support direct access 1/0 (i.e., disk, floppy
disk). (Note that IOB tables are not required for Fortran tasks. Refer to the
Fortran Operations Manual). Figure 2-1 illustrates the IOB configuration.

t'Sample IOB's ere included in TASKl, TASK2, and TASK3 of the RTX Demo Program. Refer
to Chapter 1, Section 6.

&er (0] Temporary Storage for Use by IOX. This word is used by IOX as a

pointer to queue requests for each device. It must NOT be altered by
the user. :

Word 1 Device Type (Two ASCII Characters). This word is set by I0:. It
contains the two character mnemonic for the device type.'

Word 2 Device Number. This word is set by IO:. By convention it contains two

ASCII digits (0-9) and is used to dlstlngulsh between multiple devices
of the same type.

CAUTION

Words 1 and 2 are used for temporary storage during calls to IO: and
are only valid after one of the complete exits has been taken. These
locations must not be changed when the busy bit in word 5 is set.

II/-Z-l Rewvicad 1/77

| . INPUT/OUTPUT BLOCK
. standard ‘ _ o
Name* 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 o word
| A CHAIN POINTER (RESERVED FOR USE BY IOX) ' 0
IDT ' o DEVICE TYPE 4 1
JCUN or : R R . ‘ |
ITCB. : L DEVICE NUMBER :© ‘ 2
6 ' .‘ . COORDINATION NUMBER | S 3
ILUN - LOGICAL UNIT NAME/NUMBER ' - 4
B |E F : :
ISTA,IOP u |R N0 |BAD | G |DEV.| DEVICE|INT.| RES.| S | OP op
s |olr/oluon | R [N | pos. |use O | cope MOD . 5
(Y | r M |RESP
IRCNT : REQUESTED COUNT _ 6
(.
_IBUFF : BUFFER ADDRESS ' - 7
F v . , , .
IACNT L ACTUAL COUNT/PROMPT CHARACTERS - | 8
G . '
éAA , - DIRECT ACCESS ADDRESS - _ ' N
, .
L
Figure 2-1. IOB €onfiguration
* refer to the I/0 Handler listing at the end of Section 3.
|
!
|
C
11/2-2

[-®

Word 4

I8 4 13 12

I/0 Coordination Number. This word is supplied by the user to
coordinate his I/O requests. If this word is non-zero, the device on
which the call is being made will be dedicated to the coordination
number supplied. When a device is dedicated to a specific coordination
number, only those requests with matching numbers will be honored. Aall

" others will be queued until the device is released. If device dedl~

catlon is not required, this word should be set to zZero.

Logical Unit Name/Number (LUN). This word is supplied by the user and
it describes the Logical Unit on which the I/0O should take place.
Although the LUN may be any 16-bit value, by convention all negative
numbers are considered to be ASCII character pairs (e.g., SI, ILO). All
positive numbers are con51dered to be FORTRAN unit numbers (e.g.,

5,6, 10)

Status, Function Code. This yprd uses the following format:

L ' 1 L)

Operation code
Special operatlon
Reserved

Internal use only
Device position
Device unresponsive
Bottom of form
Invalid LUN

. e S — Nt —— ' . . .
A) - I 4 .—I:::____OPeratlon modifier

No I1I/0 performed
Error :

Bits 15-8

Bit 15

Bit 14

Bit 13

Bit 12

Busy

Status returned to the user by IOX. The breakdown of bits is as
fcllows:

Busy (the operation has not been éompleted)

Error (an unrecoverable error has occurred); or bit 11 or 12 is
set for the File Manager. C

No I/0 performed (e.g., LUN is assigned to dummy device, device
cannot perform the requested operation, LUN not in assigmment
table, Read or Write wlth zero (0) count).

Invalid LUN (LUN cannot be found in Unit A551gnment Table); or
File Manager access mode error.

11/2-3 Revised 1/77

g — _ ‘ | chnmunnnauaumunkxa QEEGQS —_—

Q Bit 11 ‘ Bottom of form (listing device only); or File Manager end of

. medium, directory full, directory error, device not labeled or
i A partition busy.

Bit 10 Device unresponsive (the device has not responded to the request
’ in a reasonable length of time); not used by the File Manager.

Bits 9 Position of device:
and 8 00 ' Indeterminate - T
01 Beginning of device
.10 File mark found
11 End of device (disk and Magnetlc tape only) - For tape, the
~ EOT reflective marker was encountered. For disk, the last
sector in the extent was accessed. This status does not
necessarily mean that no data was transferred.

LU

Bit 7 This blt 1s for INTERNAL use only., Initialize to zero and
{ : do not ALTER.

Bits 6 Reserved for future expansion
.and 5 ;
Bits 4-0 Requested Function Code. This is supplied by the user and defines
the operation to be performed on the device. The breakdown of
(;i bits is as follows:
<~ Bit 4 Special Operation - If this bit is set, bits 3-0 are ignored.

This is to allow users to supply drivers for devices which perform
special functions.

Bits 3 ’ - Operation Code

and 2 ' - 00 Read
. 01 Write
10 ~ Position
& 11 Function
(‘ ‘Bits 1 Operation Modifier -~ These bits define the specific type of
and 0O operation to be performed. Their meaning depends on the operation

code. {Some operation modifiers vary for certain Handlers. These
differences are noted accordingly.)

For read: ' ' File Manager
00 Direct Access (MTIC only, Read Reverse) Random Access
01 Unformatted, Sequential Sequential
10 Formatted ASCIY, Sequential Sequential
11 Formatted Binary, Sequential Sequential
j For write: o , File Manager
} 00 Direct Access ' Random Access
ﬁ 01 Unformatted, Sequential . Sequential
4 10 Formatted ASCII, Sequential Sequential
H \((;. 11 Formatted Binary, Sequential Sequential

4 | _ 11/2-4 Revised 1/77

g B e 2 T P e BRI

S o b o

Word 6

Word 7

¥ Worxrd 8

00 Write File Mark

"calling the handler. This is done with an intermediate counter. IOB

_(for absolute position), or the actual record length in bytes (for read

'&mmMN&@mw&% @Z&;———~

For position: File Manager
00 Absolute, Records
01 Absolute, Files

10 Relative, Records

11 Relative, Files

No change
No change
No change
No change
For function: File Manager

No change
Reserved

Set file deleted
bit in DIB
Update directory
(New files only)

01 Punch leader

10 MTIC only, Control Edit; Line
Printer only, Eject to Top-of-Form

11 MTIC only, Control Erase "

Requested Count. This word is supplied by the user to specify the I/O
length, which is defined as follows:

For read or write functions, this word is the number of bytes to be
transmitted (1 to 65,535). (If the operation is Write Formatted ASCII,
I0X will alter the requested count to remove trailing blanks before

Word G,is.not altered.)

For relative record or relative file positioning, this word is the
number of records or files to skip. (A positive count means skip
forward, a negative count means skip backward).

For absolute record or absolute file positioning, this word is the
actual récord or file number to skip to. (For MTIC Handlers, the unit
is rewound and placed offline if this word is equal to minus one.)
NOTE: Positioning a file to absolute -1 (file marks or records) is a
close file operation for the File Manager (refer to Section 5.1.3).

Buffer Address. This word is supplied by the user to specify the start
address of the I/0 buffer. Note that this address is always a word
address and that indirect addressing is not allowed.

Actual Count/Prompt Characters. This word is returned to the user by
the File Manager. It contains the number of records or files actually
skipped (for relative position), the actual record or file skipped to

or write). The File Manager will NOT read more bytes into the user's
buffer than requested, but will continue to count characters to estab- .
lish the physical _.ecord length.

On devices which are capable of prompting, this word is used to.hold up
to two prompt characters.

NOTE

Word 8 contents will be assumed to be prompt characters if
negative (bit 15 set). Bits 7-0 not equal to zero indicate
two prompt characters; bits 7-0 equal to zero indicate only
one prompt character {in bits 15-8}.

I1/2-5

WO(T 9 " Direct Access Address. This word is the direct access data address
within the device (current record number), for devices. capable of
supporting direct access. For sequential access, this word will be
incremented to the current logical record number after each access.
For random access, the user stores the logical record number here.

’

2.2 UNIT ASSIGNMENT TABLE (UAT)
The Unit Assignment Table is not part of the standard IOX library; it must be "tailor-

made" by the user for the particular configuration of devices he requires. Figure
2-2 illustrates the UAT configuration.

UNIT ASSIGNMENT TABLE

15 ' o : o - "0 word
' & ‘ LOGICAL UNIT NAME/ANUMBER 0
. DIB ADDRESS ' 1
'LOGICKL UNIT NAME/NUMBER 2
DIB ADDRESS : 3
¢ r
(- . LOGICAL UNIT NAME/NUMBER N-2
DIB ADDRESS N-1
TABLE LENGTH = - (N + 2) N
S},v _ ‘ Figure 2-2. UAT Configurétion -)

s

{
The UAT is a table of two-word entries for each logical unit which can be referenced
in calls to IOX, plus a terminating word containing the UAT word length. The first
word of the entry is the Logical Unit Name/Number (LUN) which is referenced in the
user's IOB. It may be any value from O to 65535.

The secénd word of the entry is the address of the corresponding DIB table.

The last word in the table is.the count word. It is a negative quantity representing.
the number of words in the table, plus one; that is, two words for each entry, plus
the count word itself, plus one. Thus, if there exist four two-word entries, the
contents of the count would be minus 10, or -(4 x 2 + 1 + 1). The count word must be
the last word in the table, and must be labeled I:UAT, because this is the name used
by IOX when referencing the UAT. (Refer to the sample UAT at the end of this section).

€«

11/2-6 Revised 1/77

e

¢ .
: }(2.3 STANDARD DIB NAMES
I - The following table shows the DIB names for all devices for which standard and non-
i standard handlers exist within IOX. The label is to be used as the second word of the
b / UAT entry for each device the user wishes to include. '
Fortran V Fortran
Non-DIO Non-DIO DIO DIO
Teletype Console D:TY00 D:TYFO D:TYOD D:TYFD
" Teletype Keyboard ' - _ D:TKOO D:TKFO D:TKOD D:TKFD
.| Teletype Tape Reader _ D:TROO D :TROO D:TROD D:TROD
Teletype Punch . D:TPOO D:TPOO D:TPOD D:TPOD
CRT Console . D:TYOO D:TYFO D:TVOD - ’
CRT Keyboard ‘ D :TK0Q D:TKFO D:TVOD —
High Speed Paper Tape Reader ' : D:PROO D:PROO D:PROD D:PROD
High Speed Paper Tape Punch , D:PPOO D:PPO0 - - D:PPOD D:PPOD
Centronics Line Printer : o D:LPOO D:LPFO D:LPOD D:LPFD
~Tally Line Printer p D:LP10 D:LPF1 - -
WData Products Line Printer . D:LP20 - D:LPF2 - -
; Card Reader . ~ D:CROO D:CROO D:CROD D:CROD
Disk (43 series, fixed platter), unit O D:DKO0O D :DKFO -— —
Disk (43 series, fixed platter), unit 1 D:DKO02 D:DKF2 - -
Disk (43 series, fixed platter), unit 2 _ D:DK04 D:DKF4 - -
Disk (43 series, fixed platter), unit 3 D:DKO06 D:DKF6 - -
Disk (43 series, removable platter), unit 0 D:DKO1 D:DKF1 - -
Disk (43 series, removable platter), unit 1 D:DKO03 D:DKF 3 - -
Jisk (43 series, removable platter), unit 2 D:DKO5S D:DXF5 - -

l “Disk (43 series, removable platter), unit 3 D :DKO7 D:DKF7 -— —_—
Storage Module Disk, unit O (cylinders 0-201) D:SM00 D:SMFO - -
Storage Module Disk, unit O (cylinders 202-403) D:SMO1 D:SMF1 - -
Floppy Disk, unit 0 ' D:FDOO ‘D:FDFO — _—
Floppy Disk, unit 1 D:FDO1 D:FDF1 - -
Floppy Disk, unit 2 D:FDO02 D:FDF2 - -
Floppy Disk, unit 3 D:FDO3 D:FDF3 - -
Magnetic Tape, unit O D:MTO00 D:MT00 D:MCOO -

y* Magnetic Tape, unit 1 D:MTO1 D:MTO1 D:MCO1 -
Magnetic Tape, unit 2 oo D:MT02 D:MTO02 D :MCO2 -

) Magnetic Tape, unit 3 D:MTO03 D:MTO03 D:MCO3 = ==

(IEEE Intelligent Cable - -- ° D:IEOD -

I1/2-7

i

~ UATTOP’

2.4 SAMPLE UAT

(

.

C

C

- NAM

LXTR
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

DATA
DATA
DATA
DATA
DATA

4 St=>ndard DIB names in an EXTR directive, e.g.:

T:UAT

" When creating the UAT, the user must declare I: UAT in a NAM directive, and any of the

D:CROO, D:LP00, D:TKOO, D:LPFO

UCR'
D:CROO
ILPI
D:LPOO
ICII
D:TKOO

’ 'co’

D:TKOO
5 .
D:CROO
6

. D:LPFO

UATTOP I UAT-Z

I1/2-8

Card Reader Entry
Centronics Line Printer Entry
Command Input Entry

Command Output Entry

FORTRAN Unit 5
, FORTRAN Unit 6

‘Table Length

4
#
¥

|

SECTION 3

I/0 HANDLER ORGANIZATION

The purpose of an I/O handler routine is to set up and execute the actual I/O instruc- -
tions (normally interrupt-driven Auto-I/0O instructions) necessary to perform an input’
or output operation to a specified device. The I/O operation and the Logical Unit .
Name/Number are specified in the user's IOB, and the I/O must be performed within the

constraints of the device as specified in the CIB and DIB. (These tables are des-

cribed fully in section 4.) A listing of the Character-oriented I/O handler is
included at the end of this sectipn. ‘) : :

b'l THE STANDARD HANDLERS

Each standard IOX handler is described below. Refer to Section 7 for descriptions of
non-standard handlers and to PubXication No. 93325-00 for the A/D, D/A Handler.

3.1.1 Character—oriéhted Device Handler (non-Fortran)

This handler performs I/0, according to specifications within the applicable CIB,
(; for the teletype, high speed reader and punch, and line printer. (A complete
listing of this handler is found at the end of this section.)

3.1.2 Fortran List Device Handler

This handler exists for I/0O to the teletype console, teletype keyboard and line
printer when used as a list output device under Fortran. It differs from the
previously described handler in that it recognizes and processes Fortran carriage
control characters; i.e., a "1" character as the first print character signifies

function to the teletype consists of six consecutive line feeds).

éﬁ\ top-of-form, and a '0' signifies double spacing before printing. (A top-of-form

Note that the Fortran task does not use an IOB, but rather Fortran I/O state-
ments; these are passed through the Fortran/RTX I/0 Interface routine which sets
up an internal I0B for the user, according to the DIB's he has included in his
Unit Assignment Table. The Fortran I/0 handler is entered because the third
character of the device name in DIB Words 5 and 6 is an “F"; thus "“LPFO" will be

processed by the Fortran handler, and "LPOO" will be processed by the standard
character handler. ' o o

3.1.3 cCard Reader Handler

The card reader handler is similar to the standard character handler except'that'
input characters are converted to ASCII before returning.

C

11/3-1 Revised 11/76 -

Conuxﬁgfﬁuhxnﬁﬁon (gzzak'-———-——

3.1.4 Maynctic Tape Handler

Thé Magnetic tape handler processcs 1/0 for magnetic tape devices, and will
/ perform read, write, write end-of-file and reposition functions.
{

3.1.5 Disk and_Storage Module Disk Handler (Non-Fortran)

The IOX disk handler allows the RTX user to communicate with the disk. The
communication takes place through IOX and the standard calling sequence is used.

The user calls the IOX disk handler by making a standard call to IOX with an IOB
which contains a LUN assigned to a disk DIB. The op-code must be either read-
direct access or write-direct access.

Data Formats ‘ ' S .

reads (or writes) the number of bytes reques;ed by the user. The length of each
) "yecord" is unknown (supplied by calling program) and therefore the disk handler
is unable to read variable length records without some form of external format-

ting routines. .

itx'l‘he I0X disk handlerxr sﬁpplies no formatting information of its own. It just

The IOX disk handler can support multiple "extents" on each disk and can allow
access to them as if each were a separate disk unit. Extents are simply regions
on the disk which may be defined by the user to be handled separately. Without
. any outside action by the user, IOX will process contiguous records throughout
(;-the extent. Each record contains the number of bytes requested in the I/O call,
and each record starts at the beginning of a sector. Therefore, for fixed length
records, each extent may be considered as a sequential file.

N

In oxder to allow "direct access", each sector has a "relative sector number".
The usexr may direct the IOX disk handler to process a particular record by ini-
tializing IOB Word 9 (IOB Direct Access Address) in the IOB used for the I/0
call. At the completion of each request, this address is appropriately incre-
~ mented by the IOX disk handler so that the next request will process the next
record. If the record contains 1-512 bytes, the address will be incremented by
: " one; 513-1024 bytes, the address will be incremented by two; etc. Note that the
relative sector number and relative record number may not agree (in fact they
W\ will not agree if the records are larger than 512 bytes).

Extents are defined in the disk DIB's. The standard Disk DIB's (DKOO and DKO1l)
define an extent as an entire platter (200 cylinders, 2 heads). The user who
wishes to utilize several extents on a single platter may do so by creating his

own disk DIB's, using the following variables within each DIB to deflne the
parameters of the desired extent:

a. The number of sectors per track (may be less than the physical number).

b. ' The starting sector number (when added to the number of sectors per track
must be less than or equal to the physical number per track).

ﬁ Cc. The number of heads per cylinder (may be less than the physical number).
?
\

{(;;d. The starting head number (when added to the number of heads per cyllnder must
.. be less than or equal to the physxcal)

S, Bt A YYITTA

Y Spefriesee

il

(T e. The number of cylinders the extent occupies.

£. The starting cylinder (when added to the number of cylinders must be equal to
or less than the physical).

g. The drive number.

"The IOX disk handler does not check for validity of the resulting sector, head,

and cylinder numbers. It assumes that the dimensions and offsets supplied in the

DIB are valid. This allows the user to take advantage of the "flag" bits des-

cribed in the Disk Interface Manual.

Contiguous sectors occur in the following sequence:

a. Consecutive sectors on a single track (up to the number of sectors per track).

b. The same sectors on the next head (up to the number of heads per cylinder);
o c. The same sectors and heads on the next cylinder (up to the number of cylin-l

6 ders). .
The disk handler requires four additional words (five if under Fortran) in the DIB
which are not required for the other handlers. These are DIB words 11-14, (11-15

if under Fortran) and are described in section 4.

3.1.6 Floppy Disk Handler (Non-Fortran)

(An "extent” on a floppy disk is constructed as described for the disk handler,
- taking into account the size limitations in the number of cylinders, heads, and
sectors: : ’

Cylinders per Floppy Disk platter = 77 (00-76)
Heads per platter = 1 (single surface)

Sectors per track = 26 (00-25)

Words per sector = 64

defined as an entire platter. The user may define his own DIB's as described in -

451 There exists within RTX a standard Floppy Disk DIB (D:FDOO) whose extent is
| the disk handler description.

3.1.7 Disk, Storage Module Disk, and Floppy Disk Handler (Fortran)

Fortran tasks require a certain minimum amount of file management to be performed -

by the disk handler. The Fortran disk handler differs from the standard disk
handler as follows: ' ’

a. The random access address within the IOB is maintained by the Fortran aisk

‘handler itself, rather than the user, since the Fortran task does not create
its own IOB.

b. The Fortran disk handler can write and recognize an end-of-file mark. This
is a 2-character ASCII record comprised of "/*" characters. : .

I1/3-3 ‘ Revised 11/76

SRR ot Ml

o s e

s

c |

The determination as to whether a Fortran or a non-Fortran disk handler is to be
used is made on the basis of the device name in Words 5 and 6 in the DIB. If the
third character is an "F", it signifies Fortran, and the Fortran disk handler is
used.

In addition, a sixteenth word (Word 15) is required in a Fortran DIB. This word
is used for storage of the current relative record number, which would normally be
maintained in IOB Word 9. Since the Fortran user does not have access to the IOB,
the Fortran/RTX I/O Interface routine keeps this information in the DIB.

.1.8 Magnetic Tape Inteiligent Cable (MTIC) Héngler

_The MTIC handler controls data transfers between Pertec or Pertec-compatible
formattexrs and tape transports and the central processor. The handler performs
read, write, write filemark, rewind and offline, control edit, control erase, and
reposition functions. : :

s.l?bl/o HANDLER REQUIREMENTS

hé user may write his own handler routine for any type of I/O device he wishes. The
equirements for any I/0 handler to be run under control of IOX are as follows:

. Since all I/0 under RTX must be done under interrupts, the word and block inter-
rupt locations must be set up prior to I/O.

. (“, time-out sequence must be included to avoid the possibility of the device
"hanging-up" indefinitely without completing its operations. The real time

,(zlock, via the RTX DELAY: call is normally used for this purpose.

MOYTE

The user must not attempt to manipulate the real time clock by
any means other than through the DELAY: call, as this will
adversely affect the operation of RTX.

i éﬂbnce I/0 is initiated, the handler should pass control back to the I0X scheduler.
(' This permits other I/O operations to be executed simultaneously if requested.

. The I/0 handler should resume control upon either an end-of-block interrupt or
upon watchdog time-—-out, to check the status and return to the caller at either the
noxrmal or the abnormal return location.

. 5everal IOX- internal subroutines (described below) currently exist to aid the standard

1andlers in accomplishing the above requirements. The user-written handler may use any

' >f these routines he wishes. The names of any of these routines must be declared in

IXTR or REF directives within the user's handler.

Ravyicoad 1Y/74

ot AR

R R

el

Ve

c,

ere :XXXX represents a constant which is added to CIB Word 1 to form an interrupt

|

3.2.1

calling sequence:

EXTR SINT:
LDX CIB Address
JST SINT:
DATA : XXXX

Returns with:
INTERRUPTS---UNCHANGED
STATUS---UNCHANGED
A-REGISTER---UNDEFINED
X-REGISTER~-—--UNCHANGED

instruction:

SINT: does the following:

reside in CIB Word 21.

SINT: (Set ﬁp an Instruction at the Word

s

1. It determines the word interrupt location of the device.

C.

It calculates and stores an instruction into the word interrupt location.
actual instruction stored is the arithmetic sum of (contents of CIB Word 1) +
(:XXXX), where :XXXX may be any positive or negative value.

CompuiterAutomssdion m S

Interrupt Location)

This address must

The

NOTE

The standard CIB's contain a "SEL DA,7" instruction in word 1.

(the handler need not call SIO:, however).

ferring the contents of DIB Word 8 into CIB Word 12.

(In the standard DIB's Word 8 will contain various function codes which are required
for SELECT instructions in order to initiate an Auto I/O sequence during the SIO:
If the specific handler does not call SIO0:, DIB Word 8 need not be preset.)

routine.

3.2.2 SIO: (Start I/0 and Watchdog Timer)

Calling sequence:

EXTR SIO:
LDA DPTR
LDX CIB address
JsT SI0:

éé;. Preparation is then made for a subsequent call by the handler to the SIO: routine

I1/3-5

This preparation consists of trans-

N

I e

Ck;mwxﬂwwﬁuﬂmxnuﬁkum (gzzah —

¢

Returns with:

Does not return directly; if the INTP: subroutine is used, a return will ulti-
mately be made in the following state:

INTERRUPTS—---ENABLED
STATUS---WORD MODE OV RESET
A-PEGISTER-——UNDEFINED '
X-REGISTER---CIB Address

DPTR is an address pointer to a two-word information block:
Word l: Positive number of bytes to be transferred.
Wword 2: Word address of I/O buffer.

(Note that the standard handlers‘use CIB Words 26 and 27 for this information).

2

Tif;SIQ: routine does the following: -

] Negates the byte count pointed to by the A register, and stores it into the Word
! interrupt location plus one.
.2. Shifts the Buffer address pointed to by the A register to the left by one bit:

(converts to a byte address), then decrements the byte address and stores it into
the word interrupt location plus two.

(' NOTE

(Steps 1 and 2 above.complete the three-word Auto I/0 sequence.
‘The AIN/AOT instruction itself may be generated by a call to SINT:)

N

3. Calculates the delay count required for the watchdog timer, as follows (assume a
“~ ten millisecond Real Time Clock rate):

a. The negative byte count created in step 1 is loaded into the A register.
7 b. The contents of CIB Word 20 are .stored in-line and executed as an instruction.

c. The contents of the A register are then negated (converted to positive) and
incremented hy 1000.

=~
/ '

Steps a, b and c above compute the number of RTC "ticks" (normally 10 milliseconds
each) to delay during the I/0 operation. Since the number is constructed begin-
ning with the byte count (step a) and incremented by 1000 (step c¢) the minimum
delay possible is ten seconds, plus ten milliseconds for each data byte to be
transferred. The purpose of step b is to permit a larger delay, if necessary.
For example, CIB Word 20 can be set up by the user, when constructing.the CIB
pr.- r to execution, to be a shift instruction (e.g., "LLA 1") which would double
the value in the A register, and thus cause a twenty millisecond delay for each
data byte(plus the ten second constant). Note that the instruction in CIB Word 20
is executed before the byte count in the A register has been converted from
negative to positive, and before the cohstant 1000 is added. If the minimum delay
(ten seconds, plus 10 milliseconds for each byte to be transferred) is adequate,
then the instruction in CIB Word 20 should be zero (a no-op instruction). It is
the responsibility of the user when creating the CIB table for his handler to

((; determine how large a delay is required to permit completion of an I/0 operation,

and thus what instruction (normally LLA K, where K must be determined) is to be
stored into CIB Word 20.

TT/3-6

C

4.

ame

3.2.3 INTP: (End of Block Interrupt Return Point)

Sets up and executes the following X/0 instructions:

SEL DA,X Handler-determined function
SEL, DA,5 Set word transfer mask
SEL DA,6 Set block transfer mask
SEL DA,Y Handler-determined function

X and Y represent the function codes in bits 15 through 13 and 12 through 10,
respectively, of CIB Word 12. (These function codes were originally copied from
DIB Word 8 in a prior call to SINT:.) Note that if Select instructions of func-
tion X and/or Y are not required by the device, they can be organized in the DIB
so that X=5 and Y=6, so that each is executed twice, or they can be set to a
function code which has no meaning to the device, if such a code exists.

HOYE

- If these function codes are all zero, it indicates an operation .
under Distributed I/0. ’
. V4
If the device uses function codes 5 and 6 for other purposes than
to set the transfer masks, the user may wish to perform the Select
functions within the handler itself, rather than calling SIO:.

Once the Select instructions have been executed, a call to RTX DELAY: is made,
carrying the calculated delay time described in step 3 above.

If the Watchdog Timer expires before an end-of-block interrupt occurs, the in-
struction in CIB Word 1 (normally "SEL DA 7") is executed to disable interrupts
for the device, and the "Error" and "Device Unresponsive"” status bits are set in
the DIB, and control is then passed to the EOR: routine at EORST:.

NOTE

SY0: does not set up the end-of-block interrupt location. This
must be done in the handler.

The INTP: routine cancels the watchdog timer upon end-of-block interrupt, and passes
Control to the return address of SIO:. Thus INTP: is an extension of SIO:,
intended to be used only in conjunction with SIO:.

and is

II1/3-7

- where TAG is a short calling sequence to the RTX INTQ: subroutine,‘which points to

The above description is the method used by the standard I/O handlers for end-of-block

. CompuisrAutomeaidon QEZ;QS —

-

To(:all INTP: at end-of-block, the handler should, prior to calling SIO:, set up the
following sequence at the end-of-block interrupt location: :

JST *S+1
, DATA TAG
{
xample:
EXTR INTQ:, INTP:
"TAG ENT
JsT INTQ:
: DATA $,0,0,0
DATA INTP:,8180,0
DATA CIB Address
DATA TAG

INTP: as the task to be queued.

,

(T) user should first familiarize himself with the RTX INTQ: description in chapter 1
R(Functions). :

interrupts. For this purpose, the first 12 words of the applicable CIB may be used to
contain the calling sequence to INTQ:.

For example, the following is a representation of the first twelve locations within the
cI1{ ‘or the line printer:

(

C:LP@g-——-LINE PRINTER

LOC INST ADDR LABEL MNEM OPERAND COMMENT
ope9 ' NAM C:LP@ :
: ‘ EXTR INTQ:, INTP:, I :READ,I:RITE, 1:FUN

EE I A I I T S I - - N S

(*
*

w ol Ju 0 DA EQU 4
, goh2 INTAD EQU :42
(' *7’:3‘:;‘::‘::&***7‘:*:&***:\’:’:**;‘:***
%
2909 . REL 8@
[of o] C:LPg EQU 3§
pppg P8Y ciB ENT _ .
g8 Lp27 SEL- DA,7 SELECT --- FC = 7
pog2 Fapp JST INTQ: :
8993 PO83 DATA $,0,8,8, INTP:,8188,8,CIB,CIB
gooh o309 o
pEP5 £P0P
fop6 go99
pop7
P008 1FF4
2299 PogY
POPA PPPD

— $p0B 0000
' I11/3-8

N

SR s o s

Note that the end-of-block interrupt location contains a JST into the CIB itself; Word
1 of the CIB is the SEL DA,7 instruction used by the SIO: routine. It is also executed
at end of block, thus serving as a convenient method to turn off the interrupt masks
following an I/0 operation.

Following this instruction is a JST to INTQ: followed by the required parameters, of
which INTP: is the task to be executed. Note also that this sequence will automati-
cally cause the X register to be loaded with the CIB address upon entry to INTP:.

3.2.4 WAIT: (End of Record Delay Routine)
Cailing sequence:

LDX CIB Address
JST WAIT:

- ' .
‘eturns with:

(/ INTERRUPTS---ENABLED
STATUS—~--UNCHANGED
A-REGISTER~—-UNDEFINED
N X~-REGISTER---CIB Address
The WAIT: routine utilizes the delay length specified in DIB Word 7 to delay a suffi-
cient length of time at end-of-record to ensure that the device is physically ready to

(; erform the next I/O request. (Generally, one character time is sufficient for this
delay.)

(The routine loads the delay count from DIB Word 7 depending on the I/0 instruction at
the Word interrupt location; i.e., if bit 13 of the I/0 instruction is on, it is as-
sumed to be an output instruction, and bits 0-7 of DIB Word 7 are used as the delay

-count. If bit 13 of the I/O instruction is off, it is assumed to be an input instruc-
tion, and bits 8-=15 of DIB Word 7 are used as .the delay count. Once the delay count is
established, a call to RTX DELAY: is made; upon return from the delay, the routine

8zxits to the caller.

(3.2.5 EOFQ: (End of File Check Routine)

Once an end-of-block interrupt has occurred, EOFQ: may be called as follows:

LDX : CIB Address . . . ')
JMP EOFQ:

This routine does the following:

R Examines the first two input .characters in the buffer to determine whether they
are '/*!

2. I1f so, control is passed to the EOF: routine.

3. If not, control is passed to the EOR: routine.

C

L EE T e

C

7.2.6 EOF: (End of File Routine)
(r ing sequence:

LDX CIB Address
JMP EOF:

‘he EOF: routine is entered when it has been determined that an end-of-file has been

" 'ncountered (the routine EOFQ: may be used to determine this).

 he routine stores a zero value into CIB Word 28, loads the A register with an end-of-

‘ile status, and transfers control to the EOR: routine at EORST:.

.2.7 EOR: (End of Record Routine)

iealopg sequence:
(LDX ' CIB Address
JMP EOR:

his routine is entered when the handler has completed the requested I/O operation and
'ishes to return to the calling task.

‘he, ~outine loads the A register with the current status from CIB Word 32, and con-
ink. s at EORST:.

(,

:;.2.8 EORST: (Alternate Entry Point to LOR:)

EORST: and EOR: are alternate entxy points to the same end-of-record routine. The

ifference between the two is that EOR: loads the I/0 status word intoc the A register

‘rom the CIB. EORST: assumes that the status is already in the A register.

Talg 1y seequence:

l

(1.>X CIB Address
- LDA I/0 status (from handler)
JMP ‘EORS’I':

'he routine does the following:

. It cories the actual transfer count of the 1/0 operatlon from the CIB into word 8

“of ta:2 IO0B.

. It stores the status of the I/0 operation (1n the A register upon entry) into
bits 15-8 of ICB Word 5.

1. It performs an RTX BEGIN: call, passing as a parameter the normal or abnoxrmal

return address of the caller, depending on the status. The abnormal return
address is taken if any of bits 9, 10, 11, or 14 are set in word 5 of the I0B.

It calls WAIT: to perform an end-of-record deiay.

TY/3I-10) Reviced V1Y /4

&

——

1.

N
-
-

(

It loads CIB Word 1 (assumed to be "SEL DA,7), masks off the low order two bits
(to make it a SEL DA,4 or initialize instruction) and executes it in-line.

It empties the IOCH (I/O suspend) list into the READY 1list.

It then transfers to the IOX request scheduler routine to check to see if another
request is pending for any device on the controller just used.

3.2.9 FETCH: (Input one character from an I/O device)

Calling sequence:

EXTR FETCH:
LDA . CIB Address
JSsT . FETCH: . o ’

Returns with:

INTERRUPTS---ENABLED
STATUS—--UNCHANGED
A-REGISTER---CONTAINS INPUT BYTE
X-REGISTER-~-~UNCHANGED

he FETCH: routine calls WAIT: to wait one character time, then calls SIO: to perform
a one-character I/0.operation. Upon input of the character, it is checksummed, and
the subroutlne exits back to the caller.

The following assumptions are made by FETCH&.

The handler has previously zeroed out the checksum word (CIB Word 13) at the

start of the record.

There exists in CIB words 34 through 37 the following sequence:

DATA $+1 . Pointer to byte count
DATA 1 - Byte count (1 character)
DATA $+1 ' Buffer address

DATA 0 One-character input buffer

which are required for FETCH:'s call to SIO:. -)

Upon return from FETCH:, the input character is in CIB word 37 as well as in the
A register, and the cumunlative checksum is in5CIB§word 13.

I1/3-11 Revised 11/76

‘
)

g 1

C

3.

Ca

i

Re

T
is
i.
2.

3.

.

5.'..

6.

;3.

Ca

(

e

Computerautomation @

2.10 BUFFQ: (Store input character into buffer)
1ling sequence:

EXTR BUFFQ:

LDX CIB Address

JST BUFFQ:

turns with:

INTERRUPTS-~-ENABLED

WORD MODE

OVERFLOW---RESET (unless buffer filled)
A-REGISTER---CONTAINS INPUT BYTE

- X-REGISTER---UNCHANGED

’

BUFFQ: routine is.designed to be used following a call to FETCH:, in that it moves
CiB word 37 (stored into by FETCH:) into the user's buffer. The step-by-step procedure

The overflow register is reset.

The actual transfer
The actual transfer

If the actual count
buffer address (CIB

If the actual count
to by CIB Word 27.

If the actual count
» buf fer to be full),
& puffer

exits.

count (CIB Word 28) is incremented.
count is compared to the requested count (CIB word 26).

is greater (indicating that the buffer is already full), the
Word 27) is incremented and the subroutine exits.

is less, CIB Word 37 is copied into the user's buffer pointed
Then Word 27 is incremented and the subroutine exits.

is equal (indicating that this character will cause the
overflow is set and CIB<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>