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There are three families of problems that can be addressed by 

whitebox cryptography: 

1. Secure storage of cryptographic keys

2. Protection of keys while in use

3. Ensuring the integrity of cryptographic keys  

Items 1 and 2 regard sight-sensitivity at rest and in use, 

respectively; the third regards tamper resistance. Below, a 

scenario from each family of problem is expanded. Following 

this, an example system is presented that exhibits integration 

challenges for security.  A scheme based on WhiteboxCRYPTO™ 

is devised to resolve the security issues.

Executive Summary

Sight-Sensitivity at Rest: Implementing Key Management  
Functionality

System designs leveraging cryptography for Information 

Assurance (IA) purposes must specify cryptoperiods for the keys 

in use. After the expiration of the cryptoperiod, the subject key 

must be replaced/refreshed. Because the keys must change, 

they cannot be integrally incorporated into the system software/

firmware, but instead must be held as mutable data. This yields 

a problem of securing the keys as data-at-rest.

Whitebox cryptography offers a solution to the data-at-rest 

problem for cryptographic keys by representing the keys in a 

manner that cannot be interpreted without the corresponding 

whitebox algorithm instance. Thus the whitebox version of 

the key can be stored in public view without further protection 

(assuming the viewing public has no means to access the 

corresponding whitebox algorithm instance so as to perform 

reverse-engineering).

This scenario is particularly relevant when the whitebox algorithm 

is implemented within field programmable gate array (FPGA) or 

other semi-secure processing node, yet the only non-volatile 

storage resides outside the security boundary (that is, accessible 

via JTAG or insecure channels).

Sight-Sensitivity in Use: Defense against Memory Capture

Consider a scenario in which data-at-rest is secured using 

traditional cryptography. That is, assume that an application 

manually encrypts all data written to non-volatile storage. In 

order to operate, this software must keep its cryptographic keys 

resident in memory. If the system is vulnerable to some manner 

of memory-capture, then the entire encrypted content of the 

disk becomes vulnerable.

In the pay TV market, there have been numerous attacks on the 

conditional access modules (CAMs – essentially smart-cards 

with custom ASIC security modules) where clock-glitching and 

fault injection attacks have been used to trigger diagnostic/

failure-analysis modes that essentially dump the memory of 

the CAM. The well-publicized RAM remanence attacks provide 

another means of performing memory-capture, not to mention 

the recent OpenSSL “heartbleed” vulnerability which is again 

a memory-capture vulnerability. Finally, many commercial 

operating systems provide APIs for allowing one process to read 

the memory of another process (the debugger attachment API 

being only one such interface); if misused, these APIs form a 

potential attack vector for memory resident keys.

Using whitebox cryptography, it is not sufficient to capture 

the key from memory; an attacker must also capture the 

matched whitebox cipher instance.  As most operating systems 

separate code and runtime data, it is unlikely for network-based 

vulnerabilities to leak portions of system code. In any case, an 

attacker must either reverse engineer the whitebox instance to 

recover the equivalent classical key, or they must successfully 

extract the entire algorithm instance to perform a “code lifting” 

attack to recover the content of the disk.
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Defense systems typically feature multiple modes of operation – 

Operational Mode, Training Mode, Software/Firmware Upgrade 

Mode, etc. – selectable at boot time. The development below 

will build configuration management schemes to ensure that 

these three modes operate with approved software loads.

Tamper Resistance: Securing Digital Signature Authentication 
against a Tamper-Capable Adversary

Many systems support dynamic upgrades for software and 

firmware. Consider such a system that requires system patches/

system images to be digitally signed by a trusted authority. While 

the intent of such authentication is to ensure that untrusted 

software/firmware is not allowed into the system, the strength of 

the authentication is directly limited by one’s ability to ensure the 

integrity of the public credentials of the trusted authority.

For example, an attacker may generate his own key pair, 

producing a certificate from his chosen public key. If he can 

replace the trusted authority’s certificate with his own (that is, 

as an effect of tampering), then he can fool the system into 

accepting an untrusted image as follows: Since the attacker 

knows the private key for the replacement certificate, he may 

sign his own software/firmware image. When the system update 

mechanism checks the signature against the (replaced) trusted 

certificate, it will match and the system will accept the update 

as authentic.

Whitebox cryptography can mitigate this risk by representing 

the public credentials of the trusted authority in a “whitebox 

form”. Unless an attacker is in possession of the key preparation 

tools for the specific whitebox cipher instance, he will not be 

able to represent his chosen key in the form required by the  

system-update mechanism (short of completely reverse 

engineering the whitebox cipher instances).

Systems Example: Configuration Enforcement

Software/Firmware Upgrade Mode

To produce a boot time selection of mode, we presume 

ownership of the BIOS code. After the normal BIOS routine 

to bring the system up into upgrade-mode, we initialize a 

WhiteboxAES™ decrypt only instance. This AES instance will 

be used to decrypt the upgrade image, thereby providing a 

barrier to prevent unauthorized software loads. Here the utility of 

whitebox cryptography is to preserve the secrecy of the decrypt 

key given that the BIOS code remains in plaintext. Since AES 

is a symmetric cipher, anyone recovering the decrypt key can 

“forge” a system upgrade image. (Due to performance reasons, 

public-key ciphers are not used for bulk decryption. Typically a 

public-key cipher will be used to decrypt a symmetric cipher key 

for bulk decryption. Note that in such an application of public key 

over symmetric cipher, observing the symmetric key is sufficient 

to forge system images, as the symmetric key wrapped under 

the public key cipher is reused.)

To provide additional defense against reverse-engineering, the 

optional hardware ID (HWID) feature of WhiteboxAES can be 

used to tie correct decryption to the presence of a particular 

byte string in memory. The intent is that such a byte string be 

characteristic of a device or system at the unit , model , or family 

level, so as to prevent correct decryption if the code is lifted 

and hosted on different hardware; in practice a HWID can be 

any string of bytes that can be assembled at runtime. HWIDs 

are algebraically incorporated into WhiteboxAES keys, meaning 

there are no ways to bypass the HWID checks – the HWID is 

integral to the key.

If the system non-volatile memory (NVM) controller can read 

the BIOS area of memory, then the NVM controller can validate 

whether NVM writes to the system upgrade area are made by 

the authentic upgrade BIOS code using digital signatures. That 

is, a digital signature of the BIOS can be resident alongside the 

BIOS itself. The NVM controller (perhaps an FPGA) could then 

verify the digest before accepting any update block.
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Operational Mode
Our security objectives for the operational mode revolve around 

ensuring that the operational image remains intact, and that 

the operational image is one authorized for the subject unit/

model/family. For simplicity, we assume a bare-metal software 

application, directly entered from the BIOS.

The design centers around embedding another WhiteboxAES 

instance into the Operational mode portion of the BIOS. The 

portion of the BIOS that transfers control to the operational 

image is then augmented to expect a WhiteboxAES key 

prepended to the operational image. The BIOS then decrypts 

the operational image into RAM using the BIOS resident 

instance, and application specific key. If AES GCM is used, then 

a post-decryption authentication tag is produced, which stands 

as witness that the image remains unmodified.

Because the decryption instance is BIOS-resident, and distinct 

instances of WhiteboxCRYPTO are incompatible, the installed 

BIOS selects which system images may be loaded. Such can 

provide a mechanism to prevent an US only software load from 

being inadvertently loaded onto an FMS/DCS destined box.

Training Mode
Training mode mirrors operational mode, except that it is 

likely desirable to specify a distinct WhiteboxAES instance for 

controlling operational vs training mode, simply to facilitate 

different control policies between operational and training 

system images.

Additional Layers

Assume we wish to define a security-heartbeat, such that a 

reverse-engineering/tamper-vulnerable host must respond in 

a way that proves knowledge of a particular key, but does so 

without revealing the key. In this example, we assume the party 

demanding the security heartbeat is adequately secured, and 

has no knowledge of WhiteboxCRYPTO.

Once the system is up in an approved configuration, then Diffie 

Hellman, the Key Derivation Functions (KDFs), and the Dynamic 

Key Preparation features can be leveraged to establish secure 

communication channels with other parties, without revealing 

the session keys. 

Given such a channel, a security heartbeat can be established, 

as follows: The secure party encrypts a random message, and 

sends it to the insecure device. The insecure device performs 

a decrypt from classical to obfuscated of the heartbeat 

message. Next, the insecure device uses WhiteboxSHA™, 

configured in obfuscated-in/obfuscated-out mode, to digest 

the message. Finally, the insecure device performs an  

encrypt-from-obfuscated-to-classical operation to produce 

the reply. In this way, a heartbeat that depends on knowing a 

crypto key can be implemented without revealing the particular 

key. Further, the secure party can operate without knowledge of 

WhiteboxCRYPTO.

Now consider an augmentation of this approach wherein the 

read-only code segments were digested to produce a HWID 

string for the whitebox cipher. Then the heartbeat message can 

convey information about the status of the insecure device’s 

software in a manner that doesn’t depend on explicit integrity 

checks.

Summary

The preceding sections have addressed archetypal security 

issues and offered a number of design approaches based in 

whitebox cryptographic implementations.

Cryptography is not a silver bullet—but it is a critical tool in 

the system-security-engineering toolbox. This whitepaper has 

identified the three major families of design problems where 

whitebox cryptography has a clear use-case: protection of 

data at rest, protection of keys during usage, and protection 

of keys against replacement. The scenarios given are 

representative of real-world security challenges, and the  

WhiteboxCRYPTO-based solutions are feasible for 

implementation in practice.
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