
Application Scenarios for WhiteboxCRYPTO

1

There are three families of problems that can be addressed by

whitebox cryptography:

1. Secure storage of cryptographic keys

2. Protection of keys while in use

3. Ensuring the integrity of cryptographic keys

Items 1 and 2 regard sight-sensitivity at rest and in use,

respectively; the third regards tamper resistance. Below, a

scenario from each family of problem is expanded. Following

this, an example system is presented that exhibits integration

challenges for security. A scheme based on WhiteboxCRYPTO™

is devised to resolve the security issues.

Executive Summary

Sight-Sensitivity at Rest: Implementing Key Management
Functionality

System designs leveraging cryptography for Information

Assurance (IA) purposes must specify cryptoperiods for the keys

in use. After the expiration of the cryptoperiod, the subject key

must be replaced/refreshed. Because the keys must change,

they cannot be integrally incorporated into the system software/

firmware, but instead must be held as mutable data. This yields

a problem of securing the keys as data-at-rest.

Whitebox cryptography offers a solution to the data-at-rest

problem for cryptographic keys by representing the keys in a

manner that cannot be interpreted without the corresponding

whitebox algorithm instance. Thus the whitebox version of

the key can be stored in public view without further protection

(assuming the viewing public has no means to access the

corresponding whitebox algorithm instance so as to perform

reverse-engineering).

This scenario is particularly relevant when the whitebox algorithm

is implemented within field programmable gate array (FPGA) or

other semi-secure processing node, yet the only non-volatile

storage resides outside the security boundary (that is, accessible

via JTAG or insecure channels).

Sight-Sensitivity in Use: Defense against Memory Capture

Consider a scenario in which data-at-rest is secured using

traditional cryptography. That is, assume that an application

manually encrypts all data written to non-volatile storage. In

order to operate, this software must keep its cryptographic keys

resident in memory. If the system is vulnerable to some manner

of memory-capture, then the entire encrypted content of the

disk becomes vulnerable.

In the pay TV market, there have been numerous attacks on the

conditional access modules (CAMs – essentially smart-cards

with custom ASIC security modules) where clock-glitching and

fault injection attacks have been used to trigger diagnostic/

failure-analysis modes that essentially dump the memory of

the CAM. The well-publicized RAM remanence attacks provide

another means of performing memory-capture, not to mention

the recent OpenSSL “heartbleed” vulnerability which is again

a memory-capture vulnerability. Finally, many commercial

operating systems provide APIs for allowing one process to read

the memory of another process (the debugger attachment API

being only one such interface); if misused, these APIs form a

potential attack vector for memory resident keys.

Using whitebox cryptography, it is not sufficient to capture

the key from memory; an attacker must also capture the

matched whitebox cipher instance. As most operating systems

separate code and runtime data, it is unlikely for network-based

vulnerabilities to leak portions of system code. In any case, an

attacker must either reverse engineer the whitebox instance to

recover the equivalent classical key, or they must successfully

extract the entire algorithm instance to perform a “code lifting”

attack to recover the content of the disk.

Application Scenarios for WhiteboxCRYPTO

2

Defense systems typically feature multiple modes of operation –

Operational Mode, Training Mode, Software/Firmware Upgrade

Mode, etc. – selectable at boot time. The development below

will build configuration management schemes to ensure that

these three modes operate with approved software loads.

Tamper Resistance: Securing Digital Signature Authentication
against a Tamper-Capable Adversary

Many systems support dynamic upgrades for software and

firmware. Consider such a system that requires system patches/

system images to be digitally signed by a trusted authority. While

the intent of such authentication is to ensure that untrusted

software/firmware is not allowed into the system, the strength of

the authentication is directly limited by one’s ability to ensure the

integrity of the public credentials of the trusted authority.

For example, an attacker may generate his own key pair,

producing a certificate from his chosen public key. If he can

replace the trusted authority’s certificate with his own (that is,

as an effect of tampering), then he can fool the system into

accepting an untrusted image as follows: Since the attacker

knows the private key for the replacement certificate, he may

sign his own software/firmware image. When the system update

mechanism checks the signature against the (replaced) trusted

certificate, it will match and the system will accept the update

as authentic.

Whitebox cryptography can mitigate this risk by representing

the public credentials of the trusted authority in a “whitebox

form”. Unless an attacker is in possession of the key preparation

tools for the specific whitebox cipher instance, he will not be

able to represent his chosen key in the form required by the

system-update mechanism (short of completely reverse

engineering the whitebox cipher instances).

Systems Example: Configuration Enforcement

Software/Firmware Upgrade Mode

To produce a boot time selection of mode, we presume

ownership of the BIOS code. After the normal BIOS routine

to bring the system up into upgrade-mode, we initialize a

WhiteboxAES™ decrypt only instance. This AES instance will

be used to decrypt the upgrade image, thereby providing a

barrier to prevent unauthorized software loads. Here the utility of

whitebox cryptography is to preserve the secrecy of the decrypt

key given that the BIOS code remains in plaintext. Since AES

is a symmetric cipher, anyone recovering the decrypt key can

“forge” a system upgrade image. (Due to performance reasons,

public-key ciphers are not used for bulk decryption. Typically a

public-key cipher will be used to decrypt a symmetric cipher key

for bulk decryption. Note that in such an application of public key

over symmetric cipher, observing the symmetric key is sufficient

to forge system images, as the symmetric key wrapped under

the public key cipher is reused.)

To provide additional defense against reverse-engineering, the

optional hardware ID (HWID) feature of WhiteboxAES can be

used to tie correct decryption to the presence of a particular

byte string in memory. The intent is that such a byte string be

characteristic of a device or system at the unit , model , or family

level, so as to prevent correct decryption if the code is lifted

and hosted on different hardware; in practice a HWID can be

any string of bytes that can be assembled at runtime. HWIDs

are algebraically incorporated into WhiteboxAES keys, meaning

there are no ways to bypass the HWID checks – the HWID is

integral to the key.

If the system non-volatile memory (NVM) controller can read

the BIOS area of memory, then the NVM controller can validate

whether NVM writes to the system upgrade area are made by

the authentic upgrade BIOS code using digital signatures. That

is, a digital signature of the BIOS can be resident alongside the

BIOS itself. The NVM controller (perhaps an FPGA) could then

verify the digest before accepting any update block.

Application Scenarios for WhiteboxCRYPTO

3

Operational Mode
Our security objectives for the operational mode revolve around

ensuring that the operational image remains intact, and that

the operational image is one authorized for the subject unit/

model/family. For simplicity, we assume a bare-metal software

application, directly entered from the BIOS.

The design centers around embedding another WhiteboxAES

instance into the Operational mode portion of the BIOS. The

portion of the BIOS that transfers control to the operational

image is then augmented to expect a WhiteboxAES key

prepended to the operational image. The BIOS then decrypts

the operational image into RAM using the BIOS resident

instance, and application specific key. If AES GCM is used, then

a post-decryption authentication tag is produced, which stands

as witness that the image remains unmodified.

Because the decryption instance is BIOS-resident, and distinct

instances of WhiteboxCRYPTO are incompatible, the installed

BIOS selects which system images may be loaded. Such can

provide a mechanism to prevent an US only software load from

being inadvertently loaded onto an FMS/DCS destined box.

Training Mode
Training mode mirrors operational mode, except that it is

likely desirable to specify a distinct WhiteboxAES instance for

controlling operational vs training mode, simply to facilitate

different control policies between operational and training

system images.

Additional Layers

Assume we wish to define a security-heartbeat, such that a

reverse-engineering/tamper-vulnerable host must respond in

a way that proves knowledge of a particular key, but does so

without revealing the key. In this example, we assume the party

demanding the security heartbeat is adequately secured, and

has no knowledge of WhiteboxCRYPTO.

Once the system is up in an approved configuration, then Diffie

Hellman, the Key Derivation Functions (KDFs), and the Dynamic

Key Preparation features can be leveraged to establish secure

communication channels with other parties, without revealing

the session keys.

Given such a channel, a security heartbeat can be established,

as follows: The secure party encrypts a random message, and

sends it to the insecure device. The insecure device performs

a decrypt from classical to obfuscated of the heartbeat

message. Next, the insecure device uses WhiteboxSHA™,

configured in obfuscated-in/obfuscated-out mode, to digest

the message. Finally, the insecure device performs an

encrypt-from-obfuscated-to-classical operation to produce

the reply. In this way, a heartbeat that depends on knowing a

crypto key can be implemented without revealing the particular

key. Further, the secure party can operate without knowledge of

WhiteboxCRYPTO.

Now consider an augmentation of this approach wherein the

read-only code segments were digested to produce a HWID

string for the whitebox cipher. Then the heartbeat message can

convey information about the status of the insecure device’s

software in a manner that doesn’t depend on explicit integrity

checks.

Summary

The preceding sections have addressed archetypal security

issues and offered a number of design approaches based in

whitebox cryptographic implementations.

Cryptography is not a silver bullet—but it is a critical tool in

the system-security-engineering toolbox. This whitepaper has

identified the three major families of design problems where

whitebox cryptography has a clear use-case: protection of

data at rest, protection of keys during usage, and protection

of keys against replacement. The scenarios given are

representative of real-world security challenges, and the

WhiteboxCRYPTO-based solutions are feasible for

implementation in practice.

©2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trade-
marks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications,
defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solu-
tions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; security technologies and scal-
able anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services.
Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability
whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction
with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products,
alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

WHITEBOXCRYPTO_SCENARIOS-Rev2/09022015

