Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: occd@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

PACKAGE INSERT

Kit Product Number: 1021720000

48 Tests

Store at 2-8°C.

Progenika Biopharma, S.A. Parque Tecnológico de Bizkaia Ibaizabal bidea, Edificio 504 48160 Derio - Bizkaia - SPAIN

GRIFOLS

DCOREXT

CONTENTS

1.	GENERAL INFORMATION	3
	1.1. GENERAL DESCRIPTION1.2. INTENDED USE	
	1.3. PRINCIPLES OF THE TEST	
2.	REQUIRED COMPONENTS, MATERIALS AND EQUIPMENT	7
	2.1. KIT COMPONENTS	
	2.2. EQUIPMENT REQUIRED2.3. MATERIALS REQUIRED BUT NOT PROVIDED	
3.	WARNINGS AND CAUTIONS	
4.	STORAGE AND STABILITY	
5.	PROCEDURE	. 10
	5.1. WORKFLOW	. 10
	5.2. SPECIMEN COLLECTION AND PREPARATION	. 10
	5.3. DNA AMPLIFICATION	
	5.4. HYBRIDIZATION5.5. LABELING	
	5.6. DATA ACQUISITION AND ANALYSIS	
6.	TROUBLESHOOTING	
7.	ANALYTICAL DATA	. 19
7.1.	LIMIT OF DETECTION	. 19
7.2.	PERFORMANCE CHARACTERISTICS	. 19
7.3.	PRECISION	. 30
7.4.	ANALYTICAL SPECIFICITY: INTERFERING SUBSTANCES	. 31
8.	ASSAY LIMITATIONS	. 32
10.	REFERENCES	. 33
14.	TRADEMARKS	. 34
15.	MANUFACTURER WARRANTIES AND LIMITATION OF LIABILITY	. 34
16.	SYMBOLS USED IN PACKAGING	. 35
17.	CUSTOMER AND TECHNICAL SERVICES	. 35
18.	ANNEX I. ASSAY GUIDELINES	. 36

1. GENERAL INFORMATION

1.1. GENERAL DESCRIPTION

The ID CORE XT test uses Polymerase Chain Reaction (PCR) amplification to obtain large amounts of the target sequence encoding Human Erythrocyte Antigens (HEAs). The ID CORE XT test relies on allele-specific probes attached to color-coded microspheres, which hybridize specifically to the labeled PCR products. A subsequent fluorescent labeling step allows detection and quantification of the hybridization signal. ID CORE XT generates a simultaneous multiplex reaction in a single well, avoiding the need to run separate methods in parallel. The software outcome is a polymorphism genotype, a predicted allele genotype and a predicted phenotype, bypassing any subjective interpretation of the results.

1.2. INTENDED USE

ID CORE XT[™] (Reagents and Analysis Software) is a qualitative, polymerase chain reaction (PCR) and hybridization-based genotyping test for the simultaneous identification of multiple alleles encoding human erythrocyte antigens (HEAs) in genomic DNA extracted from whole blood specimens collected in EDTA.

This test can be used to genotype the polymorphisms and predict the allele genotypes and antigen phenotypes of the blood group systems listed in Table 1, as an alternative to serology.

Blood Group System	Polymorphism	Allele	Antigen (ISBT)
Rh	<i>RHCE</i> :c.122A>G <i>RHCE</i> :c.307T>C <i>RHCE</i> :c.335+3039ins109 <i>RHCE</i> :c.676G>C <i>RHCE</i> :c.712A>G <i>RHCE</i> :c.733C>G <i>RHCE</i> :c.1006G>T <i>RHD-CE-D</i> hybrid	RHCE*ce RHCE*cE RHCE*Ce RHCE*CE RHCE*CeCW RHCE*ceCW RHCE*ceCW RHCE*ce[712G] RHCE*ce[733G] RHCE*ce[733G] RHCE*Ce[712G,733G] RHCE*Ce[712G,733G] RHCE*ce[733G,1006T] RHCE*ce[733G,1006T] RHCE*ceFV RHCE*CeFV RHCE*CFN RHCE*CFM RHCE-D[5, 7]-CE	C (RH2) E (RH3) c (RH4) e (RH5) CW (RH8) V (RH10) hrS (RH19) VS (RH20) hrB (RH31)
Kell	<i>KEL</i> :c.578T>C <i>KEL</i> :c.841T>C <i>KEL</i> :c.1790C>T	KEL*K_KPB_JSB KEL*k_KPB_JSB KEL*k_KPA_JSB KEL*k_KPB_JSA	K (KEL1) k (KEL2) Kpa (KEL3) Kpb (KEL4) Jsa (KEL6) Jsb (KEL7)
Kidd	SLC14A1:c.342-1G>A SLC14A1:c.838G>A SLC14A1:c.871T>C	JK*A JK*B JK*B_null(IVS5-1a) JK*A_null(IVS5-1a) JK*B_null(871C)	Jka (JK1) Jkb (JK2)

Table 1. List of the polymorphisms, alleles and antigens interrogated by ID CORE XT.

Blood Group System	Polymorphism	Allele	Antigen (ISBT)
Duffy	FY:c.1-67T>C FY:c.125G>A FY:c.265C>T	FY*A FY*B FY*A_GATA FY*B_GATA FY*A[265T] FY*B[265T]_FY*X	Fya (FY1) Fyb (FY2)
MNS		GYPA*M GYPA*N GYPB*S GYPB*S_null(230T) GYPB*S_null(IVS5+5t) GYP*[140A] GYPB*deletion	M (MNS1) N (MNS2) S (MNS3) s (MNS4) U (MNS5) Mia (MNS7)
Diego	DI:c.2561T>C	DI*A DI*B	Dia (DI1) Dib (DI2)
Dombrock		DO*A DO*B DO*B_HY DO*A_JO	Doa (DO1) Dob (DO2) Hy (DO4) Joa (DO5)
Colton	CO:c.134C>T	CO*A CO*B	Coa (CO1) Cob (CO2)
Cartwright	YT:c.1057C>A	YT*A YT*B	Yta (YT1) Ytb (YT2)
Lutheran	LU:c.230A>G	LU*A LU*B	Lua (LU1) Lub (LU2)

1.3. PRINCIPLES OF THE TEST

ID CORE XT utilizes Luminex xMAP technology. Genomic DNA extracted from human EDTA anticoagulated whole blood is amplified and biotinylated by multiplex PCR. PCR products are denatured and hybridized to oligonucleotide probes coupled to color-coded beads. Hybridized DNA is labeled with a fluorescent conjugate and the resulting signal is detected with a Luminex 200 system. Raw data are processed with the ID CORE XT ANALYSIS SOFTWARE to obtain polymorphism genotypes, predicted allele genotypes and predicted phenotypes for each blood group and HEA interrogated by the test (see Table 1).

The ID CORE XT ANALYSIS SOFTWARE algorithm converts the polymorphism genotypes into predicted allele genotypes and predicted phenotypes for each blood group and antigen, respectively, based on the literature. In addition, ID CORE XT results include explanatory notes for some results outputs, for instance calling attention to the fact that, although unlikely, another allele genotype may be present (with potential implications in the corresponding phenotype), or expression of an antigen is altered (weak, partial or variable), also based on current literature. For more information see ID CORE XT ANALYSIS SOFTWARE User Manual.

DCOREXT

Blood Group System	Internal Code	ID CORE XT polymorphism	ISBT allele name or/and Reference #	ID CORE XT allele	ISBT phenotype	ID CORE XT antigen (ISBT)
			RHCE*02.08.01	RHCE*CeCW	RH:8	CW (RH8)
	PS87	RHCE:c.122A>G	Ref.1	RHCE*ceCW	N.A.	CW (RH8)
			Ref.2	RHCE*CECW	N.A.	CW (RH8), hrS(RH19), hrB (RH31)
	PS88	RHCE:c.307T>C	RHCE*01	RHCE*ce	RH:4	c (RH4)
	1 300		RHCE*03	RHCE*cE	111.4	
	PS89	RHCE:c.335+3039ins109	RHCE*02	RHCE*Ce	RH:2	C (RH2)
	1 000	11102.0.000 00000000000	RHCE*04	RHCE*CE	101.2	
			RHCE*01	RHCE*ce	RH:5	e (RH5)
	PS91	RHCE:c.676G>C	RHCE*02	RHCE*Ce	141.5	e (1113)
	1 0 9 1	NINOL. 0. 01005 0	RHCE*03	RHCE*cE	RH:3	E (RH3), hrS (RH19),
			RHCE*04	RHCE*CE	111.3	hrB (RH31)
			RHCE*01.04	RHCE*ceAR	RH:10, RH:-19	V (RH10), hrS (RH19)
			RHCE*01.05/08/09	RHCE*ce[712G]	RH:-19	hrS (RH19)
Rh			RHCE*02.02	RHCE*CeFV	N.A.	N.A.
	PS92		RHCE*03.03	RHCE*cEFM	N.A.	hrS (RH19), hrB (RH31)
	PS93	RHCE:c.712A>G RHCE:c.733C>G RHCE:c.1006G>T	RHCE*01.20.01/02	RHCE*ce[733G]	RH:10, RH:20, RH:-31	V (RH10), VS (RH20), hrB (RH31)
	PS182	RHD-CE-D hybrid	RHCE*01.20.03/05	RHCE*ce[733G,1006T]	RH:20, RH:-31	VS (RH20), hrB (RH31)
	PS193		RHCE*02.04/Ref.3	RHCE*Ce[712G,733G]	N.A.	N.A.
			Ref.4	RHCE*cE[712G,733G]	N.A.	hrS (RH19), hrB (RH31)
			Ref.5	RHCE*Ce[733G]	N.A.	V (RH10),
			RHCE*01.20.03	RHD*r's- RHCE*ce[733G,1006T]	RH:20, RH:-31	VS (RH20), hrB (RH31)
	PS91 PS92 PS93 PS182	RHCE:c.676G>C RHCE:c.712A>G RHCE:c.733C>G RHCE:c.1006G>T	Ref.6	RHCE-D[5, 7]-CE	N.A.	C (RH2), E (RH 3), c (RH4), e (RH5), CW (RH8), V (RH10), hrS (RH19), VS (RH20), hrB (RH31)
	DS06	KEL:c.578T>C	KEL*01.01	KEL*K_KPB_JSB	KEL:1	K (KEL1)
	PS96	NEL.0.370120	KEL*02	KEL*k_KPB_JSB	KEL:2	k (KEL2)
Kell	PS97	KEL:c.841T>C	KEL*02.03	KEL*k_KPA_JSB	KEL:3, KEL:-4	Kpa (KEL3), Kpb (KEL4)
	PS100	KEL:c.1790C>T	KEL*02.06	KEL*k_KPB_JSA	KEL:6, KEL:-7	Jsa (KEL6), Jsb (KEL7)

Table 2. Description of the polymorphisms, alleles and antigens tested by ID CORE XT.

Blood Group System	Internal Code	ID CORE XT polymorphism	ISBT allele name or Reference #	ID CORE XT allele	ISBT phenotype	ID CORE XT antigen (ISBT)
	PS101		JK*02N.01	JK*B_null(IVS5-1a)	JK:-3	Jkb (JK2)
		SLC14A1:c.342-1G>A	JK*01N.06	JK*A_null(IVS5-1a)	JK:-3	Jka (JK1)
Kidd	50.100		JK*01	JK*A	JK:01	Jka (JK1)
	PS102	SLC14A1:c.838G>A	JK*02	JK*B	JK:02	Jkb (JK2)
	PS103	SLC14A1:c.871T>C	JK*02N.06	JK*B_null(871C)	JK:-3	Jkb (JK2)
			FY*01N.01	FY*A_GATA	Fy(a-b-)	Fya (FY1)
	PS104	FY:c.1-67T>C	FY*02N.01	FY*B_GATA	Fy(a-b-)	Fyb (FY2)
			FY*01	FY*A	FY:1	Fya (FY1)
Duffy	PS105	FY:c.125G>A	FY*02	FY*B	FY:2	Fyb (FY2)
	50.100		FY*01W	FY*A[265T]	Fya+w	Fya (FY1)
	PS106	FY:c.265C>T	FY*02W	FY*B[265T]_FY*X	Fyx	Fyb (FY2)
			GYPA*01	GYPA*M	MNS:1	M (MNS1)
	PS108	GYPA:c.[59C>T]	GYPA*02	GYPA*N	MNS:2	N (MNS2)
			GYPB*03	GYPB*S	MNS :3	S (MNS3)
	PS109	GYPB:c.143T>C	GYPB*04	GYPB*s	MNS :4	s (MNS4)
MNS	PS110	GYPB:c.230C>T	GYPB*03N.01	GYPB*S_null(230T)	MNS:-3; MNS:5W	S (MNS3), U (MNS5)
	PS112	GYPB:c.270+5G>T	GYPB*03N.03	GYPB*S_null(IVS5+5t)	MNS:-3; MNS:5W	S (MNS3), U (MNS5)
	PS113	GYP. Hybrid	GYP.501/ GYPA*09	GYP*[140A]	MNS:7	Mia (MNS7)
	PS109 PS110 PS112	GYPB:c.143T>C GYPB:c.230C>T GYPB:c.270+5G>T	GYPB*01N	GYPB*deletion	MNS:-3,-4,- 5	S (MNS3), s (MNS4), U (MNS5), Mia (MNS7)
Diego	PS114	<i>DI:c.</i> 2561T>C	DI*01	DI*A	DI:1	Dia (DI1)
Diego	F3114	01.0.2301120	DI*02	DI*B	DI:2	Dib (DI2)
	PS115	DO:c.793A>G	DO*01	DO*A	DO:1	Doa (DO1)
Dombrock	F3113	00.0.7354-0	DO*02	DO*B	DO:2	Dob (DO2)
DOMDTOCK	PS133	DO:c.323G>T	DO*0204	DO*B_HY	DO:-4	Hy (DO4)
	PS134	DO:c.350C>T	DO*0105	DO*A_JO	DO:-5	Joa (DO5)
Colton	PS116	CO:c.134C>T	CO*01.01	CO*A	CO:1	Coa (CO1)
Colton	F3110	00.0.104021	CO*02	CO*B	CO:2	Cob (CO2)
Corturisht	DS106	YT:c.1057C>A	YT*01	YT*A	YT:1	Yta (YT1)
Cartwright	PS136	11.0.1057C-A	YT*02	YT*B	YT:2	Ytb (YT2)
	D0 10		LU*01	LU*A	LU:1	Lua (LU1)
Lutheran	PS48	<i>LU:</i> c.230A>G	LU*02	LU*B	LU:2	Lub (LU2)

Notes: When Ref. # is indicated, see the section "References" (these allele names are not described in the ISBT database (Ref. 17).

N.A.: ISBT phenotypes and/or ID CORE XT antigens (V, VS, hrB, and/or hrS) are not described.

2. REQUIRED COMPONENTS, MATERIALS AND EQUIPMENT

ID CORE XT (1021720000)	Component	Part Number	Number of Tests	Area	Storage
	ID CORE XT PCR Master Mix	1020320100	48 tests	Pre-PCR	2-8°C
ID CORE XT Reagents	ID CORE XT Beads Master Mix	1020320200	48 tests	Post-PCR	2-8°C
(1020320000)	SAPE	0000021600	48 tests	Post-PCR	2-8°C
	SAPE Dilution Buffer	0000021700	48 tests	Post-PCR	2-8°C
	ID CORE XT ANALYSIS SOFTWARE	1021700300	Not applicable	Not applicable	Not applicable
ID CORE XT Software	ID CORE XT Package Insert	1021700401	Not applicable	Not applicable	Not applicable
(1021700000)	ID CORE XT ANALYSIS SOFTWARE User Manual	1021700501	Not applicable	Not applicable	Not applicable
	ID CORE XT Luminex template	1020300600	Not applicable	Not applicable	Not applicable

2.1. KIT COMPONENTS

Note: Refer to the expiration date printed on the reagent label, and do not use the kit or any kit components past the indicated expiration date.

2.2. EQUIPMENT REQUIRED

Pre PCR Area		
Product Description	Manufacturer	
Adjustable pipettes (2 μI to 1,000 μI). Pipette accuracy and precision should comply with ISO 8655 Pipette Standards	None specified	
Multichannel pipettes (5 μ l to 20 μ l). Pipette accuracy and precision should comply with ISO 8655 Pipette Standards	None specified	
Non-refrigerated micro centrifuge	None specified	
Dry heat block or water bath (might be required for genomic DNA extraction)	None specified	
Vortex mixer	None specified	
Spectrophotometer	None specified	

Post PCR Area			
Product Description	Manufacturer		
Adjustable pipettes (2 μl to 1,000 μl). Pipette accuracy and precision should comply with ISO 8655 Pipette Standards	None specified		
Multichannel pipettes (4 μl to 80 $\mu l).$ Pipette accuracy and precision should comply with ISO 8655 Pipette Standards	None specified		
Vortex mixer	None specified		
Non-refrigerated plate centrifuge	None specified		
Non-refrigerated micro centrifuge	None specified		
Veriti Dx 96-Well Thermal Cycler (4452300)	Thermo Fisher Scientific		
Compact flow analyzer: Luminex 200	Luminex		
Flow analyzer software: Luminex xPONENT (3.1)	Luminex		

2.3. MATERIALS REQUIRED BUT NOT PROVIDED

Pre PCR Area		
Product Description	Manufacturer	
QIAamp DSP DNA Blood Mini Kit (61104)	QIAGEN	
QIAsymphony DSP DNA Mini Kit (937236)	QIAGEN	
ID CORE CONTROL (1301790001): ID CORE CONTROL 1 and ID CORE CONTROL 2	Progenika Biopharma	
HotStarTaq DNA Polymerase, QIAGEN (700410)	QIAGEN	
Nuclease-free 1.5 ml tubes	None specified	
96-well reaction plates. For example: MicroAmp Optical 96 well reaction plates. Thermo Fisher Scientific (N8010560)	None specified	
Adhesive film. For example: MicroAmp Clear Adhesive film. Thermo Fisher Scientific (4306311)	None specified	
Disposable aerosol filter pipette tips	None specified	
Nuclease free molecular-grade water	None specified	
Multichannel pipette reagent reservoir	None specified	

Post PCR Area		
Product Description	Manufacturer	
Compression pads. For example: MicroAmp Optical compression pad. Life Technologies (4312639)	None specified	
Multiplate Low-Profile 96-Well Unskirted PCR Plates (Bio-Rad MLL-9601), low profile 96-well polypropylene clear	Bio-Rad	
Microseal "A" Film (MSA-5001)	Bio-Rad	
Nuclease-free 1.5 ml tubes	None specified	
Multichannel pipette reagent reservoir	None specified	
Disposable aerosol filter pipette tips	None specified	
15 ml tubes	None specified	
xMAP Sheath Fluid (40-5000)	Luminex	
Luminex Calibrators and Controls (LX200-CAL-K25 and LX200-CON-K25)	Luminex	

3. WARNINGS AND CAUTIONS

- Only personnel qualified as proficient in the use of ID CORE XT assay should perform this procedure.
- The procedure should be performed as described this package insert using the required reagents and the corresponding volumes detailed. Any deviation from the outlined protocols and/or reagents may result in assay failure, and/or cause erroneous results. Accurate pipetting of samples and reagents is required for accurate results. Viscous liquids should be pipetted slowly and gently.
- Perform equipment maintenance following the manufacturer's recommendations.
- Samples should be treated as potentially infectious. Universal precautions should be observed at all times.
- It is strongly recommended to have two separate work areas: pre-PCR and post- PCR. The workflow must be unidirectional, starting in the pre-PCR area and moving toward the post-PCR area. Equipment and reagents must be exclusive to each area and interchanging them should not be permitted.
- Use of nuclease-free filter pipette tips is recommended to avoid nuclease contamination of reagents and samples in pre-PCR and post-PCR areas.
- Use a refrigerator capable of maintaining a temperature of 2-8°C to store the kit reagents.
- Use a defrost-free freezer capable of maintaining a temperature of -15°C to -25°C or colder to store the DNA samples, Hot Star Taq DNA polymerase and/or the PCR products.
- Ensure HotStarTaq DNA Polymerase part-number is the one required.

- Do not mix or interchange kit components from different kit lots. Do not use the kit or any kit components past the indicated expiration date.
- Keep CDs when out of their cases away from dust, water and direct sunlight, and avoid scratching CDs.
- Discard reagents that have been in use for longer than 6 months.
- Ensure that the Veriti Dx Thermal Cycler has been preprogrammed with ID XT PCR amplification and ID XT HYB hybridization programs (see sections 5.3 and 5.4 for more details). If this was not the case, contact Grifols Technical Service.
- Ensure the PCR plate/hybridization plate/labeling plate is sealed tightly and placed with the PCR compression pads on the thermal cycler block. Safety Data Sheets (SDS) are available from Grifols Technical Service upon request. Following the OSHA Hazard Communication Standard (29 CFR 1910.1200), the Regulation (EC) No 1272/2008 [CLP/GHS], and HPR SOR/2015-
 - 17, the ID CORE XT Beads Master Mix is classified as follows:

Pictogram		
Signal word	Danger	
Hazard statements		

Hazard statements			
H300	Acute toxicity (oral)	cat. 2. Fatal if swallowed.	
H311	Acute toxicity (derma	al) cat. 3. Toxic in contact with skin.	
H315	Skin irritation cat. 2.	Causes skin irritation.	
H319	Serious eye dama	ge/eye irritation Causes serious eye irritation.	
	cat. 2.		
H335	Specific target orga		
	exposure cat. 3. F	Respiratory tract	
	irritation.		
H370	Specific target organ		
	exposure cat. 1. (0	Central Nervous	
	System, oral).		
H411	Hazardous to	the aquatic Toxic to aquatic life with long lasting effects.	
	environment- chronic	c hazard cat. 2.	
Precaution	nary statements		
P260		Do not breathe vapors.	
P270		Do not eat, drink or smoke when using this product.	
P271		Use only outdoors or in a well-ventilated area.	
P273		Avoid release to the environment.	
P280		Wear protective gloves/ protective clothing/ eye protection/	
		face protection.	
P301+P31	0+P330	IF SWALLOWED: Rinse mouth and immediately call a	
		POISON CENTER or doctor/ physician.	
P302+P31	3+P332+P352	IF ON SKIN: Wash with plenty of soap and water. If skin	
		irritation persists: Get medical advice/ attention.	
P304+P31	2+P340	IF INHALED: Remove victim to fresh air and keep at rest in a	
		position comfortable for breathing. Call a POISON CENTER	
		or doctor/ physician if you feel unwell.	
P305+P31	3+P337+P338+P351	IF IN EYES: Rinse cautiously with water for several minutes.	
		Remove contact lenses, if present and easy to do. Continue	
Daca		rinsing. If eye irritation occurs: Get medical advice/ attention.	
P362		Take off contaminated clothing and wash before reuse.	
P391		Collect spillage.	
P403+P40	10+1233	Store locked up in a well-ventilated place. Keep container	
P501		tightly closed. Dispose of contents/containers in accordance with	
1001			
		local/regional/national/international regulations.	

4. STORAGE AND STABILITY

- Store all ID CORE XT reagents at 2-8°C.
- Refer to the expiration date printed on the reagent label.

5. PROCEDURE

5.1. WORKFLOW

The ID CORE XT protocol consists of 4 steps:

Each batch of samples per reagent lot must be tested with one replicate of each of the two positive control samples included in the ID CORE CONTROL kit (ID CORE CONTROL 1 and ID CORE CONTROL 2), as well as with one replicate of the Negative Control (nuclease-free molecular-grade water) placed at the end of the batch. To avoid incompatibility issues with the ID CORE XT ANALYSIS SOFTWARE, these controls must be exactly named as follows: ID CORE CONTROL 1, ID CORE CONTROL 2, Negative Control.

5.2. SPECIMEN COLLECTION, PREPARATION AND STORAGE

The assay is for use with human genomic DNA extracted from whole blood collected with EDTA as the anticoagulant and stored at 2-8°C.

Genomic DNA extraction should be carried out in the pre-PCR area. Store genomic DNA samples at -15 to -25°C or below.

Use of QIAamp DSP DNA Blood Mini Kit or QIAsymphony DSP DNA Mini Kit, a DNA purity range (A260/A280) of 1.65 to 2.00, and a dilution to 20 ng/µl is recommended for optimal performance. Use of alternative procedures requires validation by the customer.

5.3. DNA AMPLIFICATION

- Ensure that the thermal cycler is powered on and the user has logged in.
- Work in the pre-PCR area.
- Use aerosol filter nuclease free pipette tips. Use a new tip for each DNA sample.
- It is not necessary to set up the PCR reaction on ice.
- Unless otherwise stated, "vortex" in this document refers to a process of vortexing the tube at maximum speed for 3-5 seconds while "spin down" refers to a process of centrifuging the tube at a minimum speed of 400g for 3-5 seconds.
- 1. Bring the DNA samples and ID CORE CONTROL 1 and ID CORE CONTROL 2 samples to room temperature.

Note: A printed plate map with the position of all samples and controls in the run is recommended to ensure that the correct samples are dispensed in the appropriate wells.

- Remove the HotStarTaq DNA polymerase from the freezer and the ID CORE XT PCR Master Mix from the 2°C to 8°C storage immediately before use.
- 3. Vortex and spin down both the HotStarTaq DNA polymerase and the ID CORE XT PCR Master Mix before use.
- Calculate the required volumes of HotStarTaq DNA polymerase and ID CORE XT PCR Master Mix needed to prepare the ID CORE XT PCR reaction mix following the table below (all volumes in µI).

Number of Samples	1	8	16	24	32	40	48
ID CORE XT PCR Master Mix	22.5	180	360	540	720	900	1080
HotStarTaq DNA Polymerase (5 U/µl)	0.5	4	8	12	16	20	24

Note: The stated volumes already include an excess to account for potential volume lost during pipetting.

- 5. Prepare the ID CORE XT PCR reaction mix in a nuclease free 1.5 ml tube.
- 6. Return the HotStarTaq DNA polymerase to the freezer and the ID CORE XT PCR Master Mix to 2-8°C storage immediately after use.
- 7. Vortex and spin down the ID CORE XT PCR reaction mix.

Note: Once the ID CORE XT PCR reaction mix is prepared, the PCR program should start in \leq 60 minutes.

- 8. Immediately dispense 20 µl per sample into the wells of a 96-well PCR plate.
- 9. Vortex and spin down the DNA samples and the ID CORE CONTROL 1 and the ID CORE CONTROL 2 samples.
- Add 5 µl of sample DNA, ID CORE CONTROL 1, ID CORE CONTROL 2, and Negative Control to the corresponding wells. Mix gently by pipetting up and down three times.
- 11. Seal the plate with an adhesive film.

• Work in the post-PCR area

- 12. Spin down the PCR plate to collect the liquid at the bottom of the wells.
- 13. Verify that all the wells are properly sealed. Place the plate and the PCR compression pad on the thermal cycler block.
- 14. Close the thermal cycler lid and choose the pre-programmed ID XT PCR amplification program. Verify the pre-set temperature and the program settings before starting (details are listed in the table below).
- 15. Start the thermal cycler program.
- 16. Once the amplification step is finished, verify that ID XT PCR amplification program settings run without errors and save the Veriti Run Report.

	Temperature	Time	Cvcles		
Polvmerase Activation	95°C	15:00	1		
Denaturation	95°C	00:30	40		
Annealina	60°C	00:30	(ramp rate		
Extension	72°C	01:20	at 70%)		
Final Extension	72°C	07:00	1		
Hold	4°C	8	1		
Amolification reaction volume: 25 ul					

Note: After PCR, amplification products can be kept at 2-8°C or at -15°C to -25°C until the hybridization step.

5.4. HYBRIDIZATION

- Work in the post-PCR area.
- Ensure that the thermal cycler is powered on and the user has logged in.
- PCR products must be labeled immediately after hybridization. The process cannot be stopped after the hybridization step.
- Use a new aerosol filter nuclease free pipette tip for each sample.
- Unless otherwise stated, "vortex" in this document refers to a process of vortexing the tube at maximum speed for 3-5 seconds while "spin down" refers to a process of centrifuging the tube or plate at a minimum speed of 400g for 3-5 seconds.
- 1. Prior to the Hybridization reaction, turn on the Luminex 200 system and initialize the instrument.

Note: Refer to the Luminex User's Manual (xPONENT 3.1 Software User Manual) for instrument preparation and operation, including daily startup and calibration.

- 2. Set the Luminex 200 XYP instrument heater temperature at 52°C and verify that the heater block is on the plate holder.
- 3. Remove the ID CORE XT Beads Master Mix from the 2-8°C storage immediately before use.
- 4. Spin down the PCR plate to collect the amplification product at the bottom of the wells.
- 5. Vortex the ID CORE XT Beads Master Mix for 10-15 seconds.

Note: Since the beads settle with time, the hybridization program should start in \leq 30 minutes. Do not centrifuge the plate once the ID CORE XT Beads Master Mix has been dispensed to avoid bead sedimentation.

6. Dispense 46 µl of the ID CORE XT Beads Master Mix into each well of the hybridization plate (Bio-Rad). Avoid bubble formation during dispensing.

Note: This is a critical processing step. Dispensation of half the recommended volume or less of BMM (<24 μ l) could lead to incorrect genotypes.

Note: PCR products are a source of contamination and must remain in the post-PCR area.

Note: If the pre-programmed ID XT PCR amplification installed in the thermal cycler doesn't match the program details listed in the table above, contact Grifols Technical Service.

- 7. Add 4 µl of PCR product into each well of the hybridization plate.
- 8. Mix gently by pipetting up and down three times. Avoid bubble formation during dispensing and pipetting.
- 9. Seal the plate with the Bio-Rad sealing film.
- 10. Verify that all the wells are properly sealed.
- 11. Place the plate and two compression pads on the thermal cycler block.
- 12. Close the thermal cycler lid and choose the pre-programmed ID XT HYB hybridization program. Verify the pre-set temperature of the lid and the program settings before starting (details are listed in the table below).
- 13. Start the thermal cycler program.

	Temperature	Time (min:sec)
Denaturation	95°C	02:00
Hybridization	52°C	30:00
Hold	52°C	∞

Note: If the pre-programmed ID XT HYB hybridization program installed in the thermal cycler doesn't match the program details listed in the table above, contact Grifols Technical Service.

- 14. Return the ID CORE XT Beads Master Mix to the 2-8°C storage.
- During the hybridization step, prepare the labeling mix (see steps 1 to 6 of Section 5.5 LABELING) and create a new batch in the Luminex software (see steps 1 to 4 of Section 5.6 DATA ACQUISITION AND ANALYSIS).

5.5. LABELING

- Work in the post-PCR area.
- Labeled PCR products must be analyzed immediately after labeling. The process cannot be stopped after the labeling step.
- Use aerosol filter nuclease free pipette tips. Use a new tip for each sample.
- Unless otherwise stated, "vortex" in this document refers to a process of vortexing the tube at maximum speed for 3-5 seconds while "spin down" refers to a process of centrifuging the tube at a minimum speed of 400g for 3-5 seconds.
- 1. Remove the SAPE and the SAPE dilution buffer from the 2-8°C storage immediately before use.
- 2. Vortex the SAPE and the SAPE dilution buffer and spin down the SAPE.
- 3. Calculate the required volumes of SAPE and SAPE dilution buffer needed to prepare the labeling mix following the table below (all volumes in µI).

Number of Samples	1	8	16	24	32	40	48
SAPE	4	32	64	96	128	160	192
SAPE Dilution Buffer	87	696	1392	2088	2784	3480	4176

Note: The stated volumes already include an excess to account for potential volume lost during pipetting.

4. Prepare the labeling mix in a 1.5 ml or a 15 ml tube.

Note: Use the labeling mix in \leq 35 minutes.

- 5. Return the SAPE and the SAPE dilution buffer to the 2-8°C storage immediately after use.
- 6. Vortex the labeling mix. Keep it protected from light and at room temperature. After 30 minutes of hybridization (see Section 5.4 HYBRIDIZATION), at the 52°C hold step, open the thermal cycler lid and carefully remove the compression pads and the sealing film, keeping the plate on the thermal cycler.
- 7. Dispense 80 µl of the labeling mix into each well of the hybridization plate and mix gently by pipetting up and down once.

Note: The labeling mix should be dispensed to all samples in \leq 5 minutes.

- 8. Seal the plate with a new Bio-Rad sealing film and place two compression pads on the plate. Close the thermal cycler lid and incubate the plate for 10 minutes at the 52°C hold step.
- 9. After the labeling step, open the thermal cycler lid and remove the compression pads and the plate carefully from the thermal cycler.
- 10. Place the plate immediately on the Luminex, remove the sealing film and click "Run" to analyze the samples.

Note: The elapsed time between removing the plate from the thermal cycler and placing it on the Luminex should not exceed 10 min.

 Once the hybridization and labeling steps are finished, verify that the ID XT HYB hybridization program settings run without errors and save the Veriti DX Run Report.

5.6. DATA ACQUISITION AND ANALYSIS

- Refer to the Luminex User's Manual (Luminex 200 User Manual and xPONENT 3.1. Software User Manual) for instrument preparation and operation, including probe adjustment, startup, calibration, verification, maintenance and shutdown procedures.
- Verify that the Luminex software data export configuration ("CSV Options" tab) is set at "By Analyte Name", and that the boxes "Automatically export results CSV file when batch is complete". "Use US regionalization format only", "Include Advanced Statistics" and "Automatically convert the raw run files to CSV format for each well in the batch" is selected.
- Ensure the Luminex laser is warmed up, the plate heater block is placed in the XYP plate holder and the XYP temperature is 52°C.

Data Acquisition

1. Select "Create a New Batch from an existing Protocol" in the batches tab and select the corresponding Luminex Template.

- 2. Enter a unique batch name. The name cannot contain characters other than letters (A-Z, a-z); numbers (0-9); hyphens (-), underscores (_) or spaces.
- 3. Create a batch by following the instructions that appear on the screen. A different batch is needed with each lot of reagents used. Therefore, if more than one lot of reagents are used in the same run, the Multibatch option will have to be selected and accordingly, multiple batches created. (For further instructions on creating batches and multibatches, refer to the *xPONENT 3.1 Software User Manual*).
- 4. Select the corresponding positions in the Plate Layout and assign the samples as U ("Unknown").

Enter the appropriate sample IDs carefully. It can be imported from a txt file by clicking "Import List".

Note: To avoid incompatibility issues with the ID CORE XT ANALYSIS SOFTWARE, controls must be exactly named as follows: ID CORE CONTROL 1, ID CORE CONTROL 2 and Negative Control.

- 5. Click the "Eject" icon to eject the plate holder. Place the hybridization plate in the Luminex 200 XYP instrument heater block present on the plate holder and remove the sealing film.
- 6. Click the "Retract" icon. The samples are now ready to be analyzed.
- 7. Start the analysis process by clicking the "Run Batch" icon.
- 8. After the batch is complete, the data are exported as a Comma Separated Values (csv) file. This file is saved in a folder with the batch name entered previously in step 2.
- The system can be shut down and turned off according to the Luminex User's Manual at this point if it is not going to be used for the remainder of the day.

Data Analysis

Data Analysis is performed via the ID CORE XT ANALYSIS SOFTWARE. For more information on the data analysis procedure, refer to the ID CORE XT ANALYSIS SOFTWARE User Manual

For a run batch to be valid, the Negative Control and the positive controls (ID CORE CONTROL 1 and ID CORE CONTROL 2) within the batch run must be valid.

The invalid runs do not report polymorphism genotype, predicted allele genotype and predicted phenotype results for the samples included in that run. See troubleshooting section for more information.

The following table describes the valid and invalid results for the different types of samples analyzed.

Type of Sample	Expected Results
Negative Control	 O: VALID RUN. Negative Control average signal and individual amplicon signal are below the thresholds for the assay. No genomic DNA (gDNA) or amplicon contamination has been detected. Sample processing has been successful. X: INVALID RUN. The average signal cannot be estimated due to low bead count; or the average signal for the Negative Control is above the threshold for the assay; and/or one or more amplicon signals are above the threshold. Sample processing is not reliable. No results will be provided for any of the samples analyzed. The entire batch must be retested.
Positive Controls	 VALID RUN. All ID CORE CONTROL 1 and ID CORE CONTROL 2 polymorphism genotype results are valid and in agreement with the expected pattern predefined in the ID CORE XT ANALYSIS SOFTWARE. Sample processing has been successful. X: INVALID RUN. One or more of the polymorphism genotype results in ID CORE CONTROL 1 and/or ID CORE CONTROL 2 do not correspond with the expected pattern predefined in the ID CORE XT ANALYSIS SOFTWARE (low bead count, low average signal, low signal, indeterminate genotype or incorrect genotype). Sample processing is not reliable. No results will be provided for any of the samples analyzed. The entire batch must be retested.
DNA Sample	 • VALID ANALYSIS. Polymorphism genotype, predicted allele genotype and predicted phenotype calls are displayed for all blood groups or no more than one blood group shows unknown as a result. Sample processing has been successful. • X: INVALID TEST. The sample is low average signal; either one or more of the polymorphism genotype results in the sample are low bead count, low signal or indeterminate genotype; or two or more blood groups are showing unknown as a result. No results will be provided for the sample analyzed. The sample must be retested.

The polymorphism genotype results follow the rules detailed in the following table (see Table 1 for more information):

General polymorphism genotype rules	Example
Polymorphism description (ISBT Gene Name)	<i>LU</i> :c.230A>G
The Rh and GYP rearrangements detected by ID CORE XT are described as "hybrid" genes	GYP. Hybrid
Homozygous for allele 1	AA
Heterozygous for allele 1 and 2	AG
Homozygous for allele 2	GG
Absent allele in an allele specific polymorphism	Absent
Present allele in an allele specific polymorphism (although homozygous or heterozygous status cannot be distinguished, the prediction of the allele genotype and the phenotype is not affected)	Present

Note: For the specific allele polymorphism RHCE:c.307T>C the results are reported as T or C instead of absent or present. Although heterozygous CT and homozygous CC results cannot be distinguished, both genotypes predict the same c+ phenotype. The description of the predicted allele genotype results follows the rules detailed in the table below (see Table 1 for more information):

General predicted allele genotype rules	Example
Allele name description from the polymorphisms tested by ID CORE XT	KEL*K_KPB_JSB
Genotypes are written in italic	GYPA*M
Intronic sequences are indicated by "IVS_±_" and the polymorphism change in lower case	JK*B_null(IVS5-1a)
Alleles with a consensus name	RHCE*ceAR
Homozygous is represented by one allele	DO*A
Homozygous or hemizygous is not indicated	RHCE*ce
Heterozygous indicated by "," between each allele ^{\$}	RHCE*ce, RHCE*Ce
Multiple changes in polymorphisms tested by ID CORE XT and without a consensus name are separated by "," and in brackets	RHCE*ce[712G, 733G]
Unknown	Highly unlikely prediction. The predicted allele genotype has not been described for the corresponding blood group.

\$ The orientation (cis or trans) of the polymorphisms detected in heterozygosity cannot be determined by ID CORE XT. The most frequent predicted allele genotypes and phenotypes are reported; the alternative predicted allele genotype and/or phenotype are described in the corresponding "Note".

The following table summarizes the possible predicted phenotype results:

Predicted phenotype result	Meaning
+	Normal antigen expression
0	Undetectable antigen expression
Unknown	Highly unlikely prediction. The predicted phenotype has not been described for the corresponding antigen

In addition, ID CORE XT results include explanatory notes for some results outputs (see ID CORE XT ANALYSIS SOFTWARE User Manual for more information):

- The notes associated with the predicted allele genotype results describe the less frequent predicted allele genotype and potential implications in the corresponding phenotypes.
- The notes associated with the predicted phenotype results describe weak, partial or variable expression of the antigen.

6. TROUBLESHOOTING

Issue	Message	Cause	Solution
	Negative Control fails because average signal and/or amplicon signals are above the threshold	gDNA and/or amplicon contamination occurred	Retest the entire batch, ensuring that a new vial of nuclease-free molecular-grade water, aerosol- barrier tips, and a new tip for each sample is being used.
	Negative Control/ ID CORE CONTROL 1 and/or 2 fail because low bead count	The bead count of one or more polymorphisms is below the established threshold	Confirm the use of the provided Luminex template. Verify that Luminex probe is properly aligned. Confirm Luminex maintenance, calibration and verification following Luminex instructions. Retest the entire batch ensuring that all the processing steps described in the Package Insert are being followed.
Invalid Run	ID CORE CONTROL 1 and/or 2 fail because low average signal or low signal in one or more polymorphisms	The average signal or the signal of one or more particular polymorphisms is below the established threshold	
	ID CORE CONTROL 1 and/or 2 fail because indeterminate genotype	The genotype call for one or more polymorphisms cannot be determined because the discrimination value is outside the established limits	Retest the entire batch ensuring that all the processing steps described in the Package Insert
	ID CORE CONTROL 1 and/or 2 fail because incorrect genotype	One or more polymorphism genotype results in ID CORE CONTROL 1 and/or ID CORE CONTROL 2 do not correspond with the expected pattern predefined in the ID CORE XT ANALYSIS SOFTWARE	are being followed.
	A sample fails because low bead count	The bead count of one or more polymorphisms is below the established threshold	
	A sample fails because low average signal or low signal in one or more polymorphisms	The average signal or the signal of one or more particular polymorphisms is below the established threshold	Retest the affected sample ensuring that all the processing
Invalid Test	A sample fails because indeterminate genotype	The genotype call for one or more polymorphisms cannot be determined because the discrimination value is outside the established limits	steps described in the Package Insert are being followed.
	A sample fails because more two or more blood groups show unknown as a result	The allele genotype and phenotype cannot be predicted in two or more blood groups	
Unknown	Unknown	The allele genotype and phenotype cannot be predicted in one blood group	Another molecular method should be used to confirm the allele genotype and the phenotype should be predicted based on serology.

In invalid cases, if the issue persists, please contact Grifols Technical Service.

7. ANALYTICAL DATA

7.1. LIMIT OF DETECTION

The DNA concentration input range at which 100% of samples replicates resulted in correct polymorphism genotype and predicted phenotype results was determined by testing 20 replicates of serial DNA dilutions of ten representative DNA samples, which cover all genotypes with frequencies higher than 1% interrogated by ID CORE XT, using two reagent lots. The lowest and highest DNA concentrations providing 100% correct ID CORE XT results were determined to be 10 and 200 ng/µl, respectively.

7.2. PERFORMANCE CHARACTERISTICS

A. Accuracy study

An accuracy study was carried out to demonstrate the performance of ID CORE XT test to determine the polymorphism genotypes and predict the allele genotypes tested, as compared to Bi-Directional-Sequencing (BDS) and to predict the phenotypes tested, as compared to FDA licensed serology, when available, or BDS. The antigens characterized with licensed serology were: C (RH2), E (RH3), c (RH4), e (RH5), K (KEL1), k (KEL2), Jka (JK1), Jkb (JK2), Fya (FY1), Fyb (FY2), M (MNS1), N (MNS2), S (MNS3), and s (MNS4). The predicted phenotypes of the rest of the antigens interrogated by ID CORE XT were characterized with BDS: CW (RH8), V (RH10), hrS (RH19), VS (RH20), hrB (RH31), Kpa (KEL3), Kpb (KEL4), Jsa (KEL6), Jsb (KEL7), U (MNS5), Mia (MNS7), Dia (D11), Dib (D12), Doa (DO1), Dob (DO2), Hy (DO4), Joa (DO5), Coa (CO1), Cob (CO2), Yta (YT1), Ytb (YT2), Lua (LU1), and Lub (LU2).

The accuracy was determined using 1676 well characterized samples. The DNA samples were in a concentration range from 11.6 ng/ μ L to 244.2 ng/ μ L and a purity range (A260/A280) from 1.26 to 2.38.

The concordance % and one-sided 95% CI were calculated for polymorphism genotypes; predicted alleles and predicted phenotypes interrogated by ID CORE XT (see Tables 3, 4 and 5).

Table 3. Initial accuracy results (before discrepancy resolution) for the polymorphisms tested by ID CORE XT in comparison to BDS.

Blood Group System	Polymorphism	Polymorphism Genotype	Number of Samples	Concordance %	95% CI
		AA	1143	100%	[0.997, 1.000]
	RHCE:c.122A>G	AG	28	100%	[0.899, 1.000]
		GG	1	100%	[0.050, 1.000]
	RHCE:c.307T>C	С	852	100%	[0.996, 1.000]
	RHCL.0.307120	Т	317	99.68%	[0.985, 1.000]
	RHCE:c.335+3039ins	Absent	551	100%	[0.995, 1.000]
Rh		Present	618	99.84%	[0.992, 1.000]
KII		676 [†]	7	100%	[0.652, 1.000]
	RHCE:c.676G>C	CC	112	100%	[0.974, 1.000]
	RACE.C.070G2C	GC	364	100%	[0.992, 1.000]
		GG	686	100%	[0.996, 1.000]
		712 [†]	7	100%	[0.652, 1.000]
	RHCE:c.712A>G	712AA	1149	100%	[0.997, 1.000]
		712AG	13	100%	[0.794, 1.000]

Blood		Delanaamakiana	Number	0	
Group System	Polymorphism	Polymorphism Genotype	of Samples	Concordance %	95% CI
		712GG	6	100%	[0.607, 1.000]
		733 [†]	7	100%	[0.652, 1.000]
		733CC	1004	100%	[0.997, 1.000]
	RHCE:c.733C>G	733CG	305	99.67% <mark>*</mark>	[0.985, 1.000]
		733GG	55	100%	[0.947, 1.000]
		1006 [†]	7	100%	[0.652, 1.000]
		1006GG	1151	100%	[0.997, 1.000]
	RHCE:c.1006G>T	1006GT	14	100%	[0.807, 1.000]
		1006TT	6	100%	[0.607, 1.000]
		Absent	1160	100%	[0.997, 1.000]
	RHD-CE-D hybrid	Present	9	88.89%**	[0.571, 1.000]
		CC	998	100%	[0.997, 1.000]
	KEL:c.578T>C	TC	98	100%	[0.970, 1.000]
		TT	69	100%	[0.958, 1.000]
		CC	1142	100%	[0.997, 1.000]
Kell	KEL:c.841T>C	TC	20	100%	[0.861, 1.000]
		TT	3	100%	[0.368, 1.000]
		CC	23	100%	[0.878, 1.000]
	KEL:c.1790C>T	CT	63	100%	[0.954, 1.000]
		TT	1079	100%	[0.997, 1.000]
		GG	1161	100%	[0.997, 1.000]
	<i>SLC14A1</i> :c.342- 1G>A	GA	5	100%	[0.549, 1.000]
	10.77	AA	4	100%	[0.473, 1.000]
		AA	316	100%	[0.991, 1.000]
Kidd	SLC14A1:c.838G>A	GA	472	100%	[0.994, 1.000]
		GG	375	100%	[0.992, 1.000]
		TT	1161	100%	[0.997, 1.000]
	SLC14A1:c.871T>C	TC	3	100%	[0.368, 1.000]
		CC	3	100%	[0.368, 1.000]
		CC	253	100%	[0.988, 1.000]
	FY:c.1-67T>C	TC	307	99.35% <mark>**</mark>	[0.980, 1.000]
		TT	717	100%	[0.996, 1.000]
		AA	560	100%	[0.995, 1.000]
Duffy	FY:c.125G>A	GA	430	99.53% <mark>**</mark>	[0.985, 1.000]
		GG	303	100%	[0.990, 1.000]
		CC CT	1138	100%	[0.997, 1.000]
	FY:c.265C>T	CT	22	100%	[0.873, 1.000]
		TT	3	100%	[0.368, 1.000]
	CVDA:0 150C>T1		367	100%	[0.992, 1.000]
	GYPA:c.[59C>T]	CT TT	460 332	100%	[0.994, 1.000]
		143 [†]	332 12	100%	[0.991, 1.000]
		CC	599	100%	[0.779, 1.000]
	GYPB:c.143T>C	TC	405	100%	[0.995, 1.000]
		TT	143	100% 100%	[0.993, 1.000]
MNS		230 [†]	143	100%	[0.379, 1.000]
		CC	1140	100%	[0.997, 1.000]
	GYPB:c.230C>T	CT	12	100%	[0.779, 1.000]
		TT	5	100%	[0.549, 1.000]
		270+5 [†]	12	100%	[0.779, 1.000]
		GG	1109	100%	[0.997, 1.000]
	GYPB:c.270+5G>T	GT	26	100%	[0.891, 1.000]
Î.	1	TT	12	100%	[0.779, 1.000]

Blood Group System	Polymorphism	Polymorphism Genotype	Number of Samples	Concordance %	95% CI
	GYP. Hybrid	Absent	1149	99.74% <mark>**</mark>	[0.993, 1.000]
	GTF. Hyblid	Present	10	100%	[0.741, 1.000]
		CC	1153	100%	[0.997, 1.000]
Diego	DI:c.2561T>C	TC	17	100%	[0.838, 1.000]
		TT	8	100%	[0.688, 1.000]
		AA	307	100%	[0.990, 1.000]
	DO:c.793A>G	AG	403	100%	[0.993, 1.000]
		GG	449	100%	[0.993, 1.000]
		GG	1103	100%	[0.997, 1.000]
Dombrock	DO:c.323G>T	GT	43	100%	[0.933, 1.000]
		TT	13	100%	[0.794, 1.000]
		CC	1100	100%	[0.997, 1.000]
	DO:c.350C>T	СТ	57	100%	[0.949, 1.000]
		TT	2	100%	[0.224, 1.000]
		CC	1082	100%	[0.997, 1.000]
Colton	CO:c.134C>T	CT	66	100%	[0.956, 1.000]
		TT	11	100%	[0.762, 1.000]
		AA	18	100%	[0.847, 1.000]
Cartwright	YT:c.1057C>A	CA	50	100%	[0.942, 1.000]
		CC	1091	100%	[0.997, 1.000]
		AA	4	100%	[0.473, 1.000]
Lutheran	LU:c.230A>G	GA	55	100%	[0.947, 1.000]
		GG	1100	99.91%	[0.996, 1.000]

These polymorphism calls correspond to the absence of the *RH*CE or *GYPB* genes. *These polymorphism genotypes provided 100% concordance with ID CORE XT after one sample exclusion (see Section C). **These polymorphism genotypes provided 100% concordance with ID CORE XT after discrepancy resolution (see Section C).

Table 4. Initia	accuracy	results	(before	discrepancy	resolution)	for	the	predicted
alleles tested b	y ID CORE	XT in co	mparisc	on to BDS.				

Blood Group System	Predicted Allele	Number of samples	Concordance %	95% CI
	RHCE*ce	482	99.79%	[0.990, 1.000]
	RHCE*Ce	598	99.67%	[0.990, 1.000]
	RHCE*cE	458	100%	[0.993, 1.000]
	RHCE*CE	29	100%	[0.902, 1.000]
	RHCE*CeCW	26	100%	[0.891, 1.000]
	RHCE*ceCW	0	N/A	N/A
	RHCE*CECW	0	N/A	N/A
	RHCE*ceAR	7	100%	[0.652, 1.000]
	RHCE*ce[712G]	5	100%	[0.549, 1.000]
Rh	RHCE*ce[733G]	146	100%	[0.980, 1.000]
	RHCE*ce[733G,1006T]	3	100%	[0.368, 1.000]
	RHCE*CeFV	0	N/A	N/A
	RHCE*Ce[712G,733G]	0	N/A	N/A
	RHCE*cEFM	0	N/A	N/A
	RHCE*cE[712G,733G]	1	100%	[0.050, 1.000]
	RHCE-D[5, 7]-CE	7	100%	[0.652, 1.000]
	RHD*r's-RHCE*ce[733G,1006T]	8	100%	[0.688, 1.000]
	Unknown	<mark>2</mark>	<mark>50%*</mark>	[0.025, 1.000]
	RHCE*Ce[733G]	0	N/A	N/A

Group System Predicted Allele off Somples Otherwise 95% Cl Kell KEL*K_KPB_JSB 167 100% [0.982, 1.000] Kell KEL*K_KPB_JSB 1067 100% [0.982, 1.000] KEL*K_KPB_JSB 23 100% [0.986, 1.000] KEL*K_KPB_JSA 86 100% [0.996, 1.000] JK*B 785 100% [0.996, 1.000] JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*B_null(VS5-1a) 0 N/A N/A FY*B 646 99.54%* [0.988, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_GATA 442 99.32%* [0.986, 1.000] FY*A_GATA 1 0% N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] FY*A_GATA 1 0% [0.996, 1.000] [0.996, 1.000] GYPA*M 827 100% [0.994, 1.000] [0.996, 1.000] GYPB*S_null(IVS5+5t)	Blood		Number	Concordance	
System Statisfies Kell KEL*K_KPB_JSB 167 100% [0.982, 1.00] Kell KEL*K_KPB_JSB 1067 100% [0.997, 1.00] KEL*K_KPB_JSA 86 100% [0.982, 1.00] KEL*K_KPB_JSA 86 100% [0.996, 1.00] JK*B 785 100% [0.996, 1.00] JK*B_null(VS5-1a) 2 100% [0.224, 1.00] JK*A_null(VS5-1a) 0 N/A N/A JK*A_null(VS5-1a) 0 N/A N/A JK*B_null(VS5-1a) 0 N/A N/A FY*B_GATA 598 99.83%* [0.992, 1.00] FY*B_GATA 442 99.32%* [0.983, 1.00] FY*B_GATA 1 0% [0.050, 1.00] FY*B_GATA 442 99.32%* [0.996, 1.00] FY*A_(265T] 0 N/A N/A MNS(SMN) GYPA*M 827 100% [0.996, 1.00] GYPB's 512 99.80%* [0.994, 1.00]	Group	Predicted Allele			95% CI
Kell KEL*K_KPB_JSB 1067 100% [0.997, 1.000] KEL*K_KPA_JSB 23 100% [0.878, 1.000] KEL*K_KPB_JSA 86 100% [0.996, 1.000] JK*A 847 100% [0.996, 1.000] JK*B_null(VS5-1a) 2 100% [0.224, 1.000] JK*B_null(VS5-1a) 2 100% [0.224, 1.000] JK*A_null(VS5-1a) 0 N/A N/A JK*B_null(VS5-1a) 0 N/A N/A FY*A 598 99.83%* [0.992, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_CATA 442 99.32%* [0.983, 1.000] FY*B_CATA 442 99.32%* [0.986, 1.000] FY*B_CATA 442 99.32%* [0.986, 1.000] FY*B_CATA 442 99.32%* [0.986, 1.000] FY*B_CATA 1 0% [0.050, 1.000] GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% <td>System</td> <td>KEI *K KPB ISB</td> <td></td> <td></td> <td>[0 082 1 000]</td>	System	KEI *K KPB ISB			[0 082 1 000]
Kell KEL*k_KPA_JSB 23 100% [0.878, 1.000] KEL*k_KPB_JSA 86 100% [0.966, 1.000] JK*A 847 100% [0.996, 1.000] JK*B 785 100% [0.996, 1.000] JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*B_null(IVS5-1a) 0 N/A N/A JK*A_null(IVS5-1a) 0 N/A N/A JK*A_null(IVS5-1a) 0 N/A N/A JK*A_null(IVS5-1a) 0 N/A N/A FY*B_GATA 598 99.83%* [0.992, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*A_GATA 1 0% N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.994, 1.000] GYPA*N 792 100% [0.994, 1.000] GYPB*S_null(230T) 7 100% [0.987, 1.000]<			-		
KEL*k_KPB_JSA 86 100% [0.966, 1.000] JK*A 847 100% [0.996, 1.000] JK*B 785 100% [0.996, 1.000] JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*B_null(IVS5-1a) 0 N/A N/A FY*A_null(IVS5-1a) 0 N/A N/A FY*B 646 99.54%* [0.983, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_2657]_FY*X 21 100% [0.667, 1.000] FY*A_GATA 1 0% [0.050, 1.000] FY*A_Z6577 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] GYPB*3 GYPB*S_null(2307) 7 100% [0.652, 1.000] GYPB*5_null(VS5+5t) 38 97.37%* [0.887, 1.000] GYPB*5_null(VS5+5t) 38 97.37%* <	Kell				
JK*A 847 100% [0.996, 1.000] JK*B 785 100% [0.996, 1.000] JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*A_null(IVS5-1a) 0 N/A N/A FY*A 598 99.83%* [0.992, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_GATA 1 0% [0.050, 1.000] FY*A_GATA 1 0% [0.050, 1.000] FY*A_GATA 1 0% [0.996, 1.000] GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.994, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] GYPB*S_null(IVS5+5t) 38 97.37%* [0.881, 1.000] GYPB*S_null(IVS5+5t) 38 97.37%* [0.881, 1.000] GYPB*deletion 12 100% [0.					
JK*B 785 100% [0.996, 1.000] JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*B_null(871C) 2 100% [0.224, 1.000] JK*B_null(R71C) 2 100% [0.224, 1.000] JK*A_null(IVS5-1a) 0 N/A N/A FY*A 598 99.83%* [0.992, 1.000] FY*B_GATA 442 99.32%* [0.883, 1.000] FY*B_[265T], FY*X 21 100% [0.867, 1.000] FY*B[265T], FY*X 21 100% [0.996, 1.000] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*N 792 100% [0.996, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] GYPB*, 1.000] GYPB*S 1004 99.80%* [0.994, 1.000] GYPB*, 1.000] GYPA*,					
Kidd JK*B_null(IVS5-1a) 2 100% [0.224, 1.000] JK*B_null(871C) 2 100% [0.224, 1.000] JK*A_null(IVS5-1a) 0 N/A N/A FY*A 598 99.83%* [0.992, 1.000] FY*B 646 99.54%* [0.988, 1.000] FY*B_GATA 442 99.32%* [0.988, 1.000] FY*B[265T]_FY*X 21 100% [0.867, 1.000] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.996, 1.000] [0.996, 1.000] GYPB*S_null(230T) 7 100% [0.996, 1.000] [0.977, 1.000] GYPB*S_null(VS5+5t) 38 97.37%* [0.881, 1.000] [0.779, 1.000]			-		
JK*B_null(871C) 2 100% [0.224, 1.000] JK*A_null(IVS5-1a) 0 N/A N/A FY*A 598 99.83%* [0.992, 1.000] FY*B 646 99.54%* [0.988, 1.000] FY*B_GATA 442 99.32%* [0.988, 1.000] FY*B[265T]_FY*X 21 100% [0.867, 1.000] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.996, 1.000] Gype, 1.000] GYPA*N 792 100% [0.996, 1.000] Gype, 1.000] GYPA*N 792 100% [0.996, 1.000] Gype, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] Gype, 1.000]	Kidd				
JK*A_null(IVS5-1a) 0 N/A N/A JK*A_null(IVS5-1a) 0 N/A N/A FY*A 598 99.83%* [0.992, 1.000] FY*B 646 99.54%* [0.988, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B_C65T]_FY*X 21 100% [0.667, 1.000] FY*A_GATA 1 0% [0.050, 1.000] FY*A_C65T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.994, 1.000] [0.994, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] [GYP8*S_null(2307) 7 100% [0.971, 1.000] GYPB*S_null(IVS5+5t) 38 97.37%* [0.881, 1.000] [GYP8*L00]	Ridd				
FY'A 598 99.83%* [0.992, 1.000] FY'B 646 99.54%* [0.988, 1.000] FY'B_GATA 442 99.32%* [0.983, 1.000] FY'B_GATA 442 99.32%* [0.983, 1.000] FY'B_265T]_FY'X 21 100% [0.867, 1.000] FY'A_GATA 1 0% [0.050, 1.000] FY'A[265T] 0 N/A N/A MNS(MN) GYPA'M 827 100% [0.996, 1.000] GYPA'N 792 100% [0.991, 1.000] [0.994, 1.000] GYPB'S 512 99.80%* [0.994, 1.000] [GYPB'S_null(230T) 7 100% [0.652, 1.000] GYPB'S_null(230T) 7 100% [0.652, 1.000] [GYPB'S_null(IVS5+5t) 38 97.37%* [0.881, 1.000] GYP'I (40A] 10 100% [0.779, 1.000] [D.779, 1.000] [D.996, 1.000] <		,			
FY*B 646 99.54%* [0.988, 1.000] FY*B_GATA 442 99.32%* [0.983, 1.000] FY*B[265T]_FY*X 21 100% [0.867, 1.000] FY*A_GATA 1 0% [0.050, 1.000] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.994, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] GYPB*S_null(2307) 7 100% [0.652, 1.000] GYPB*S_null(VS5+5t) 38 97.37%* [0.881, 1.000] GYPB*S_null(VS5+5t) 38 97.37%* [0.887, 1.000] GYPB*deletion 12 100% [0.997, 1.000] GYP*[140A] 10 100% [0.997, 1.000] Di*B 1170 100% [0.996, 1.000] D0*A 688 100% [0.997, 1.000] D0*B 825 100% [0.996, 1.000] D0*B_HY 566 100%		- ,	-		
FY*B_GATA 442 99.32%* [0.983, 1.00] FY*B[265T]_FY*X 21 100% [0.867, 1.00] FY*A_GATA 1 0% [0.050, 1.00] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.00] GYPA*N 792 100% [0.994, 1.00] GYPB*S 512 99.80%* [0.994, 1.00] GYPB*S_null(2307) 7 100% [0.552, 1.00] GYPB*S_null(VS5+5t) 38 97.37%* [0.887, 1.00] GYP*I*deletion 12 100% [0.996, 1.00] GYP*S_null(IVS5+5t) 38 97.37%* [0.881, 1.00] GYP*f140A] 10 100% [0.741, 1.00] Di*B 1170 100% [0.997, 1.00] D0*A 688 100% [0.996, 1.00] D0*B 825 100% [0.996, 1.00] D0*B 825 100% [0.996, 1.00] D0*B 825 100% [0.996, 1.00					-
Dutty FY*B[265T]_FY*X 21 100% [0.867, 1.000] FY*A_GATA 1 0% [0.050, 1.000] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.996, 1.000] GYPA*N 792 100% [0.996, 1.000] GYPB*S 512 99.80%* [0.991, 1.000] GYPB*S_null(230T) 7 100% [0.652, 1.000] GYPB*S_null(230T) 7 100% [0.779, 1.000] GYPB*S_null(VS5+5t) 38 97.37%* [0.881, 1.000] GYPB*deletion 12 100% [0.779, 1.000] GYP*[140A] 10 100% [0.997, 1.000] Di*B 1170 100% [0.997, 1.000] D0*A 688 100% [0.996, 1.000] D0*A_JO 59 100% [0.997, 1.000] D0*A_JO 59 100% [0.997, 1.000] Co*B 77 100% </td <td></td> <td></td> <td></td> <td></td> <td></td>					
FY*A_GATA 1 0% [0.050, 1.000] FY*A[265T] 0 N/A N/A MNS(MN) GYPA*M 827 100% [0.996, 1.000] GYPA*N 792 100% [0.996, 1.000] GYPB*S 512 99.80%* [0.994, 1.000] GYPB*S 1004 99.80%* [0.994, 1.000] GYPB*S_null(230T) 7 100% [0.652, 1.000] GYPB*S_null(230T) 7 100% [0.779, 1.000] GYPB*S_null(VS5+5t) 38 97.37%* [0.881, 1.000] GYPB*deletion 12 100% [0.779, 1.000] GYPB*deletion 12 100% [0.997, 1.000] GYP*[140A] 10 100% [0.997, 1.000] Di*B 1170 100% [0.996, 1.000] D0*A 688 100% [0.996, 1.000] D0*B_HY 56 100% [0.948, 1.000] D0*A_JO 59 100% [0.997, 1.000] Co*B 77 100% [0.99	Duffy				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
MNS(MN) GYPA*M 827 100% [0.996, 1.000] GyPa*N 792 100% [0.996, 1.000] GyPa*N GyPa*N 512 99.80%* [0.991, 1.000] GyPa*S 512 99.80%* [0.994, 1.000] GyPa*S 1004 99.80%* [0.994, 1.000] GyPa*S 1004 99.80%* [0.994, 1.000] GyPa*S 100% [0.779, 1.000] GyPa*S 100% [0.779, 1.000] GyPa*S 100% [0.779, 1.000] Info 100% [0.779, 1.000] Info 100% [0.779, 1.000] Info I			0	N/A	
MNS(MN) GYPA*N 792 100% [0.996, 1.000] G.996, 1.000] G.998, 1.000] G.994, 1.000] G.974, 1.000] G.974, 1.000] G.974, 1.000] G.974, 1.000] G.997, 1.000] G.996, 1.000] D.0*A G.88 100% [0.996, 1.000] D.0*A G.98 825 100% [0.996, 1.000] D.0*A_////////////////////////////////////			827	100%	[0.996, 1.000]
GYPB*s 1004 99.80%* [0.994, 1.000] GYPB*S_null(2307) 7 100% [0.652, 1.000] GYPB*S_null(VS5+5t) 38 97.37%* [0.881, 1.000] GYPB*deletion 12 100% [0.779, 1.000] GYP*[140A] 10 100% [0.741, 1.000] Diego Di*A 25 100% [0.996, 1.000] Di*B 1170 100% [0.996, 1.000] Do*A 688 100% [0.996, 1.000] DO*B 825 100% [0.996, 1.000] DO*A_JO 59 100% [0.997, 1.000] Colton Co*A 1148 100% [0.997, 1.000] Co*B 77 100% [0.997, 1.000] [0.950, 1.000] Co*B 77 100% [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000]	MNS(MN)	GYPA*N	792	100%	-
MNS(Ss) GYPB*S_null(2307) 7 100% [0.652, 1.000] [0.652, 1.000] [0.652, 1.000] [0.652, 1.000] [0.652, 1.000] [0.881, 1.000] [0.779, 1.000] [0.779, 1.000] [0.779, 1.000] [0.779, 1.000] [0.779, 1.000] [0.779, 1.000] [0.779, 1.000] [0.741, 1.000] [0.741, 1.000] [0.741, 1.000] [0.741, 1.000] [0.741, 1.000] [0.771, 1.000] [0.977, 1.000] [0.997, 1.000] [0.997, 1.000] [0.997, 1.000] [0.996, 1.000] [0		GYPB*S	512	99.80%*	
MNS(Ss) GYPB*S_null(IVS5+5t) 38 97.37%* [0.881, 1.000] G.881, 1.000] G.881, 1.000] G.881, 1.000] G.779, 1.000] G.771, 1.000] G.771, 1.000] G.771, 1.000] G.771, 1.000] G.771, 1.000] G.771, 1.000] G.996, 1.000] D.74A 6688 100% [0.996, 1.000] D.976, 1.000] G.976, 1.000] D.976, 1.000] G.976, 1.000] G.977, 1.000] G.975, 1.000] G.950, 1.000] G.950, 1.000] <td></td> <td>GYPB*s</td> <td>1004</td> <td>99.80%*</td> <td>[0.994, 1.000]</td>		GYPB*s	1004	99.80%*	[0.994, 1.000]
GYPB*S_null(IVS5+5t) 38 97.37%* [0.881, 1.000] GYPB*deletion 12 100% [0.779, 1.000] GYP*[140A] 10 100% [0.771, 1.000] Diego DI*A 25 100% [0.887, 1.000] Di*B 1170 100% [0.997, 1.000] Do*A 688 100% [0.996, 1.000] DO*B 825 100% [0.996, 1.000] DO*B_HY 56 100% [0.948, 1.000] DO*A_JO 59 100% [0.997, 1.000] Colton CO*A 1148 100% [0.997, 1.000] Cots T77 100% [0.997, 1.000] Cots T77 100% [0.997, 1.000] Co*B 777 100% [0.997, 1.000] YT*A 1141 100% [0.997, 1.000] YT*B 68 100% [0.957, 1.000]		GYPB*S_null(230T)	7	100%	[0.652, 1.000]
$\begin{tabular}{ c c c c c c c } \hline \hline & $	WINS(SS)	GYPB*S_null(IVS5+5t)	38	97.37%*	[0.881, 1.000]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		GYPB*deletion	12	100%	[0.779, 1.000]
Diego I <td></td> <td>GYP*[140A]</td> <td>10</td> <td>100%</td> <td>[0.741, 1.000]</td>		GYP*[140A]	10	100%	[0.741, 1.000]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Diogo	DI*A	25	100%	[0.887, 1.000]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Diego	DI*B	1170	100%	[0.997, 1.000]
Dombrock DO*B_HY 56 100% [0.948, 1.000] DO*A_JO 59 100% [0.950, 1.000] Colton CO*A 1148 100% [0.997, 1.000] Colton CO*B 77 100% [0.997, 1.000] YT*A 1141 100% [0.997, 1.000] YT*B 68 100% [0.957, 1.000] LU*A 59 100% [0.950, 1.000]		DO*A	688	100%	[0.996, 1.000]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dombrock	DO*B	825	100%	[0.996, 1.000]
Colton CO*A 1148 100% [0.997, 1.000] CO*B 77 100% [0.997, 1.000] YT*A 1141 100% [0.997, 1.000] YT*B 68 100% [0.957, 1.000] LU*A 59 100% [0.950, 1.000]	DOMDTOCK	DO*B_HY	56	100%	[0.948, 1.000]
Colton CO*B 77 100% [0.962, 1.000] Cartwright YT*A 1141 100% [0.997, 1.000] YT*B 68 100% [0.957, 1.000] LU*A 59 100% [0.950, 1.000]		DO*A_JO	59	100%	[0.950, 1.000]
Corks 77 100% [0.962, 1.000] Cartwright YT*A 1141 100% [0.997, 1.000] YT*B 68 100% [0.957, 1.000] LU*A 59 100% [0.950, 1.000]	Colton	CO*A	1148	100%	[0.997, 1.000]
Cartwright YT*B 68 100% [0.957, 1.000] Lutheran LU*A 59 100% [0.950, 1.000]	Solion	CO*B	77	100%	[0.962, 1.000]
Y1*B 68 100% [0.957, 1.000] LU*A 59 100% [0.950, 1.000]	Cartwright	YT*A	1141	100%	[0.997, 1.000]
Lutheran	Sartwright	YT*B	68	100%	[0.957, 1.000]
LU*B 1155 99.91% [0.996, 1.000]	Lutheran	LU*A	59		[0.950, 1.000]
	Lutheran	LU*B	1155	99.91%	[0.996, 1.000]

*These alleles provided 100% concordance after discrepancy resolution (see Section C).

Table 5. Initial accuracy results (before discrepancy resolution) for the predicted phenotypes and each of the antigens tested by ID CORE XT in comparison to the Reference Methods: Bi-Directional-Sequencing (BDS) or FDA licensed serology (SER).

Blood Group System	Antigen	Predicted Phenotype	Number of Sample	NPA/PPA [§]	95% CI	Reference Method
	C (RH2)	Negative	516	100.00%	[0.994, 1.000]	SER
		Positive	548	99.82%	[0.991, 1.000]	JER
		Negative	603	99.83%	[0.992, 1.000]	SER
	E (RH3)	Positive	468	99.79% <mark>*</mark>	[0.990, 1.000]	SER
Dh		Negative	266	99.25%	[0.977, 1.000]	SER
Rh	c (RH4)	Positive	772	100.00%	[0.996, 1.000]	SER
		Negative	108	100.00%	[0.973, 1.000]	SER
	e (RH5)	Positive	911	100.00%	[0.997, 1.000]	SER
		Negative	1141	100%	[0.997, 1.000]	DDC
	CW (RH8)	Positive	26	100%	[0.891, 1.000]	BDS

Blood Group System	Antigen	Predicted Phenotype	Number of Sample	NPA/PPA [®]	95% CI	Reference Method
		Unknown	<mark>2</mark>	N/A	[0.025, 1.000]	
		Negative	1017	100%	[0.997, 1.000]	
	V (RH10)	Positive	149	100%	[0.980, 1.000]	BDS
		Unknown	<mark>3</mark>	N/A	[0.135, 1.000]	
		Negative	121	100%	[0.976, 1.000]	
	hrS (RH19)	Positive	1046	100%	[0.997, 1.000]	BDS
		Unknown	<mark>2</mark>	N/A	[0.025, 1.000]	
		Negative	1012	100%	[0.997, 1.000]	
	VS (RH20)	Positive	154	100%	[0.981, 1.000]	BDS
		Unknown	<mark>3</mark>	N/A	[0.135, 1.000]	
		Negative	202	100%	[0.985, 1.000]	
	hrB (RH31)	Positive	965	100%	[0.997, 1.000]	BDS
		Unknown	2	N/A	[0.025, 1.000]	
		Negative	935	100.00%	[0.997, 1.000]	
	K (KEL1)	Positive	118	100.00%	[0.975, 1.000]	SER
		Negative	68	100.00%	[0.957, 1.000]	
	k (KEL2)	Positive	120	100.00%	[0.975, 1.000]	SER
		Negative	1142	100%	[0.997, 1.000]	h
	Kpa (KEL3)	Positive	23	100%	[0.878, 1.000]	BDS
Kell		Negative	3	100%	[0.368, 1.000]	
	Kpb (KEL4)	Positive	1162	100%	[0.997, 1.000]	BDS
		Negative	1079	100%	[0.997, 1.000]	
	Jsa (KEL6)	Positive	86	100%	[0.966, 1.000]	BDS
		Negative	23	100%	[0.878, 1.000]	
	Jsb (KEL7)	-		100%		BDS
		Positive	1142 273		[0.997, 1.000]	
	Jka (JK1)	Negative	709	100.00%	[0.989, 1.000]	SER
Kidd	. ,	Positive	339	100.00%	[0.996, 1.000]	
	Jkb (JK2)	Negative		99.71%	[0.986, 1.000]	SER
		Positive	657	99.85% <mark>*</mark>	[0.993, 1.000]	
	Fya (FY1)	Negative	499	100.00%	[0.994, 1.000]	SER
Duffy		Positive	489	100.00%	[0.994, 1.000]	
	Fyb (FY2)	Negative	465	100.00%	[0.994, 1.000]	SER
		Positive	509	100.00%	[0.994, 1.000]	
	M (MNS1)	Negative	279	100.00%	[0.989, 1.000]	SER
		Positive	699	99.86% <mark>*</mark>	[0.993, 1.000]	
	N (MNS2)	Negative	86	100.00%	[0.966, 1.000]	SER
		Positive	187	100.00%	[0.984, 1.000]	0ER
	S (MNS3)	Negative	559	100.00%	[0.995, 1.000]	SER
MNS	0 (111100)	Positive	433	100.00%	[0.993, 1.000]	OEIX
WING	s (MNS4)	Negative	143	99.30%	[0.967, 1.000]	SER
	3 (111104)	Positive	827	99.88%	[0.994, 1.000]	OEIX
	U (MNS5)	Negative	12	100%	[0.779, 1.000]	BDS
	0 (1011433)	Positive	1147	100%	[0.997, 1.000]	603
		Negative	1149	99.74% <mark>**</mark>	[0.993, 1.000]	BDC
	Mia (MNS7)	Positive	10	100%	[0.741, 1.000]	BDS
		Negative	1153	100%	[0.997, 1.000]	000
	Dia (DI1)	Positive	25	100%	[0.887, 1.000]	BDS
Diego		Negative	8	100%	[0.688, 1.000]	DDO
	Dib (DI2)	Positive	1170	100%	[0.997, 1.000]	BDS
		Negative	449	100%	[0.993, 1.000]	
	Doa (DO1)	Positive	710	100%	[0.996, 1.000]	BDS
		Negative	307	100%	[0.990, 1.000]	
Dombrock	Dob (DO2)	Positive	852	100%	[0.996, 1.000]	BDS
		Negative	13	100%	[0.794, 1.000]	l
	Hy (DO4)	Positive	1146	100%	[0.997, 1.000]	BDS

Blood Group System	Antigen	Predicted Phenotype	Number of Sample	NPA/PPA ^s	95% CI	Reference Method
	Joa (DO5)	Negative	16	100%	[0.829, 1.000]	BDS
	JUA (DUS)	Positive	1143	100%	[0.997, 1.000]	603
	Coa (CO1)	Negative	11	100%	[0.762, 1.000]	BDS
Colton		Positive	1148	100%	[0.997, 1.000]	600
Conton	Cob (CO2)	Negative	1082	100%	[0.997, 1.000]	BDS
		Positive	77	100%	[0.962, 1.000]	603
	Yta (YT1)	Negative	18	100%	[0.847, 1.000]	BDS
Contuniatet	rta (TTT)	Positive	1141	100%	[0.997, 1.000]	603
Cartwright	Ytb (YT2)	Negative	1091	100%	[0.997, 1.000]	BDS
	ftD(f12)	Positive	68	100%	[0.957, 1.000]	603
	Lua (LU1)	Negative	1100	99.91%	[0.996, 1.000]	BDS
Luth cucu		Positive	59	100%	[0.950, 1.000]	603
Lutheran	Lub (LU2)	Negative	4	100%	[0.473, 1.000]	BDS
		Positive	1155	100%	[0.997, 1.000]	202

[§]NPA/PPA are equivalent to Specificity/Sensitivity for BDS reference method.

*These antigens provided 100% concordance with ID CORE XT after one sample exclusion (see Section C).

**These antigens provided 100% concordance with ID CORE XT after discrepancy resolution (see Section C).

B. Clinical study: Method comparison study with a Comparable FDA approved product (genotyping kit predicating blood group antigen phenotypes), IVD licensed Serology and Bi-Directional-Sequencing.

A clinical method comparison study was carried out to validate the intended use of ID CORE XT testing genomic DNA extracted from whole blood samples collected in EDTA from 1026 blood donors in three reference blood centers in the United States and in 100 retrospective patients. The DNAs (with concentrations from 16.8 ng/µL to 191.2 ng/µL and purity (A260/A280) from 1.07 to 3.81 were processed with ID CORE XT, a Comparable FDA approved product (genotyping kit predicating blood group antigen phenotypes), and BDS. The antigens tested by a Comparable FDA approved product (genotyping kit predicating blood group antigen phenotypes) were compared to ID CORE XT predicted phenotypes, with the exception of Jkb (JK2) and Lub (LU2) antigens, which were compared to FDA-licensed serology tests (CE-mark serology test for Lub in patient samples). The antigens not tested by the Comparable FDA approved product (genotyping kit predicating blood group antigen phenotypes) and with no FDA-licensed serology available (i.e. CW (RH8), hrS (RH19), hrB (RH31), Mia (MNS7), Yta (YT1) and Ytb (YT2)) were compared to BDS results. All polymorphisms and predicted alleles interrogated by ID CORE XT were compared to BDS.

The valid run and valid test rates obtained in the study for ID CORE XT before repetition were 97.14% and 100%, respectively. After repetition, all ID CORE XT runs were valid and used in the study.

The concordance % and one-sided 95% CI were calculated for polymorphism genotypes, predicted alleles and predicted phenotypes interrogated by ID CORE XT (see Tables 6, 7 and 8).

Table 6. Initial results(before discrepancy resolution) for the polymorphisms tested byID CORE XT in comparison to BDS.

Blood Group System	Polymorphism	Polymorphism Genotype	Number of Samples	Concordance %	95% CI
Rh	RHCE:c.122A>G	AA	1103	99.91% <mark>*</mark>	[0.996, 1.000]
КП	RHUE.U. 122A-G	AG	23	100%	[0.878, 1.000]

DCOREXT

Blood Group System	Polymorphism	Polymorphism Genotype	Number of Samples	Concordance %	95% CI
		С	854	99.77% <mark>**</mark>	[0.993, 1.000]
	RHCE:c.307T>C	Т	272	100%	[0.989, 1.000]
		Absent	501	100%	[0.994, 1.000]
	RHCE:c.335+3039ins109	Present	625	100%	[0.995, 1.000]
		CC	26	100%	[0.891, 1.000]
	RHCE:c.676G>C	GC	192	100%	[0.985, 1.000]
		GG	908	99.89% <mark>**</mark>	[0.995, 1.000]
		AA	1125	100%	[0.997, 1.000]
	RHCE:c.712A>G	AG	1	100%	[0.050, 1.000]
		CC	1099	100%	[0.997, 1.000]
	RHCE:c.733C>G	CG	23	100%	[0.878, 1.000]
		GG	4	100%	[0.473, 1.000]
		GG	1121	100%	[0.997, 1.000]
	RHCE:c.1006G>T	GT	5	100%	[0.549, 1.000]
		Absent	1122	100%	[0.997, 1.000]
	RHD-CE-D hybrid	Present	4	100%	[0.473, 1.000]
		CC	1045	99.90%**	[0.995, 1.000]
	KEL:c.578T>C	TC	81	98.77%**	[0.943, 0.999]
		CC	1109	100%	[0.997, 1.000]
Kell	<i>KEL</i> :c.841T>C	TC	17	100%	[0.838, 1.000]
		CT	17	100%	[0.838, 1.000]
	KEL:c.1790C>T	TT	1109	100%	[0.997, 1.000]
	SLC14A1:c.342-1G>A	GG	1126	100%	
	SLC14A1.0.342-10-A				[0.997, 1.000]
	01.01.11.1.2.00002.1	AA	281	100%	[0.989, 1.000]
Kidd	SLC14A1:c.838G>A	GA	543	100%	[0.994, 1.000]
		GG	302	100%	[0.990, 1.000]
	SLC14A1:c.871T>C	TT	1126	100%	[0.997, 1.000]
		CC	40	100%	[0.928, 1.000]
	FY:c.1-67T>C	TC	32	93.75% <mark>**</mark>	[0.816, 0.989]
		TT	1054	100%	[0.997, 1.000]
		AA	430	100%	[0.993, 1.000]
Duffy	FY:c.125G>A	GA	510	99.8% <mark>*</mark>	[0.991, 1.000]
		GG	186	100%	[0.984, 1.000]
		CC	1093	100%	[0.997, 1.000]
	FY:c.265C>T	СТ	32	100%	[0.911, 1.000]
		TT	1	100%	[0.050, 1.000]
		CC	356	100%	[0.992, 1.000]
	GYPA:c.[59C>T]	СТ	566	99.65 <mark>*</mark>	[0.989, 0.999]
		TT	204	100%	[0.985, 1.000]
		CC	525	100%	[0.994, 1.000]
	GYPB:c.143T>C	TC	484	100%	[0.994, 1.000]
MNS		TT	117	100%	[0.975, 1.000]
	GYPB:c.230C>T	CC	1126	100%	[0.997, 1.000]
	GYPB:c.270+5G>T	GG	1124	100%	[0.997, 1.000]
	011 0.0.210+3021	GT	2	100%	[0.224, 1.000]
	CVP Hybrid	Absent	1125	100%	[0.997, 1.000]
	GYP. Hybrid	Present	1	100%	[0.050, 1.000]
		CC	1123	100%	[0.997, 1.000]
Diego	DI:c.2561T>C	TC	2	100%	[0.224, 1.000]
		TT	1	100%	[0.050, 1.000]
		AA	187	100%	[0.984, 1.000]
	DO:c.793A>G	AG	499	100%	[0.994, 1.000]
Dombrock				100%	[0.993, 1.000]
Dombrock		GG	440	10070	10.335, 1.0001
Dombrock	DO:c.323G>T	GG	1118	100%	[0.997, 1.000]

Blood Group System	Polymorphism	Polymorphism Genotype	Number of Samples	Concordance %	95% CI
		TT	1	100%	[0.050, 1.000]
	DO:c.350C>T	CC	1119	100%	[0.997, 1.000]
	DO.C.300-21	СТ	7	100%	[0.652, 1.000]
		CC	1042	100%	[0.997, 1.000]
Colton	CO:c.134C>T	СТ	82	100%	[0.964, 1.000]
		TT	2	100%	[0.224, 1.000]
		AA	2	100%	[0.224, 1.000]
Cartwright	YT:c.1057C>A	CA	100	100%	[0.970, 1.000]
		CC	1024	99.9% <mark>*</mark>	[0.995, 1.000]
		AA	2	100%	[0.224, 1.000]
Lutheran	<i>LU</i> :c.230A>G	GA	71	98.59% <mark>*</mark>	[0.935, 0.999]
		GG	1053	100%	[0.997, 1.000]

*These polymorphism genotypes provided 100% concordance with ID CORE XT after one sample exclusion (see Section C).

**These polymorphism genotypes provided 100% concordance with ID CORE XT after discrepancy resolution (see Section C).

Table 7. Initial results(before discrepancy resolution) for the alleles tested by ID COREXT in comparison to BDS.

Blood		Number	Concordance	
Group	Predicted Allele	of .	%	95% CI
System	DUOEt.	samples		[0,000, 4,000]
	RHCE*ce	722	99.58% <mark>*</mark>	[0.989, 1.000]
	RHCE*Ce	618	99.35% <mark>**</mark>	[0.985, 1.000]
	RHCE*cE	217	100%	[0.986, 1.000]
	RHCE*CE	1	100%	[0.050, 1.000]
Rh	RHCE*CeCW	23	100%	[0.878, 1.000]
	RHCE*ceAR	1	100%	[0.050, 1.000]
	RHCE*ce[733G]	21	100%	[0.867, 1.000]
	RHCE*ce[733G,1006T]	1	100%	[0.050, 1.000]
	RHD*r's-RHCE*ce[733G,1006T]	4	100%	[0.473, 1.000]
	RHCE*Ce[733G]	1	100%	[0.050, 1.000]
	KEL*K_KPB_JSB	81	98.77% <mark>*</mark>	[0.943, 1.000]
	KEL*k_KPB_JSB	1125	99.82% <mark>*</mark>	[0.994, 1.000]
Kell	KEL*k_KPA_JSB	17	100%	[0.838, 1.000]
	KEL*k_KPB_JSA	17	100%	[0.838, 1.000]
	JK*A	845	100%	[0.996, 1.000]
Kidd	JK*B	824	100%	[0.996, 1.000]
	FY*A	696	99.86% <mark>***</mark>	[0.993, 1.000]
	FY*B	874	99.66% <mark>**</mark>	[0.991, 1.000]
Duffy	FY*B_GATA	72	97.22% <mark>*</mark>	[0.915, 1.000]
	FY*B[265T]_FY*X	33	100%	[0.913, 1.000]
	GYPA*M	922	99.78%	[0.993, 1.000]
MNS (MN)	GYPA*N	770	99.74%	[0.992, 1.000]
	GYPB*S	599	100%	[0.995, 1.000]
	GYPB*s	1009	100%	[0.997, 1.000]
MNS (Ss)	GYPB*S_null(IVS5+5t)	2	100%	[0.224, 1.000]
	GYP*[140A]	1	100%	[0.050, 1.000]
Diana	DI*A	3	100%	[0.368, 1.000]
Diego	DI*B	1125	100%	[0.997, 1.000]
	DO*A	680	100%	[0.996, 1.000]
Daushus d	DO*B	936	100%	[0.997, 1.000]
Dombrock	DO*B_HY	8	100%	[0.688, 1.000]
	 DO*A_JO	7	100%	[0.652, 1.000]
Colton	CO*A	1124	100%	[0.997, 1.000]

Blood Group System	Predicted Allele	Number of samples	Concordance %	95% CI
	CO*B	84	100%	[0.965, 1.000]
Cartwright	YT*A	1124	99.91% <mark>***</mark>	[0.996, 1.000]
Cartwright	YT*B	102	100%	[0.971, 1.000]
Lutheran	LU*A	73	98.63% <mark>***</mark>	[0.937, 1.000]
Lutherall	LU*B	1124	99.91% <mark>***</mark>	[0.996, 1.000]

*These alleles provided 100% concordance with ID CORE XT after discrepancy resolution (see Section C). **These alleles provided 100% concordance with ID CORE XT after discrepancy resolution and one sample exclusion (see Section C).

***These alleles provided 100% concordance with ID CORE XT after one sample exclusion (see Section C).

Table 8. Initial results (before discrepancy resolution) for the predicted phenotypes and each of the antigens tested by ID CORE XT in comparison to the Reference Methods: a Comparable FDA approved product (genotyping kit predicating blood group antigen phenotypes) (Comparable product), Bi-Directional-Sequencing (BDS) or IVD licensed serology (SER).

Blood Group System	Antigen	Predicted Phenotype	Number of Sample	NPA/PPA [§]	95% CI	Reference Method	
	C (RH2)	Negative Positive	496 629	100% 99.84% <mark>*</mark>	[0.994, 1.000]	Comparable product	
	E (RH3)	Negative	906	100%	[0.997, 1.000]	Comparable product	
	c (RH4)	Positive Negative	219 274	100% 100%	[0.986, 1.000] [0.989, 1.000]	Comparable product	
		Positive Negative	851 26	100% 100%	[0.996, 1.000]		
	e (RH5)	Positive	1099	100%	[0.997, 1.000]	Comparable product	
	CW (RH8)	Negative Positive	1103 23	99.91% <mark>*</mark> 100%	[0.996, 1.000] [0.878, 1.000]	BDS	
Rh		Possible Variant [†]	1	N/A	[0.050, 1.000]	-	
	V (RH10)	Negative Positive	1103 21	100% 100%	[0.997, 1.000]	Comparable product	
	hrS (RH19)	Negative	26	100%	[0.891, 1.000]	BDS	
	VS (RH20)	Positive Possible Variant [†]	1100 1	100% N/A	[0.997, 1.000]		
		Negative	1099	100%	[0.997, 1.000]	Comparable product	
	hrB (RH31)	Positive Negative	25 33	96% <mark>*</mark> 100%	[0.824, 1.000] [0.913, 1.000]	BDS	
		Positive Negative	1093 1044	100% 100%	[0.997, 1.000]		
	K (KEL1)	Positive	81	100%	[0.964, 1.000]	Comparable product	
	k (KEL2) Kpa (KEL3)	Positive Negative	1125 1108	100% 100%	[0.997, 1.000] [0.997, 1.000]	Comparable product	
Kell	Kpb (KEL4)	Positive Positive	17 1125	100% 100%	[0.838, 1.000]	Comparable product	
	Jsa (KEL6)	Negative	1108	100%	[0.997, 1.000]	Comparable product	
	Jsb (KEL7)	Positive Positive	17 1125	100% 100%	[0.838, 1.000]	Comparable product	
	Jka (JK1)	Negative Positive	281 844	100% 100%	[0.989, 1.000] [0.996, 1.000]	Comparable product	
Kidd	Jkb (JK2)	Negative	301	100%	[0.990, 1.000]	SER	
Duffu		Positive Negative	825 430	99.88% <mark>**</mark> 100%	[0.994, 1.000] [0.993, 1.000]		
Duffy	Fya (FY1)	Positive	695	100%	[0.996, 1.000]	Comparable product	

Blood Group System	Antigen	Predicted Phenotype	Number of Sample	NPA/PPA [§]	95% CI	Reference Method
	Fyb (FY2)	Negative Positive	237 888	100% 100%	[0.987, 1.000]	Comparable product
		Negative	204	100%	[0.985, 1.000]	
	M (MNS1)	Positive	921	99.89%	[0.995, 1.000]	Comparable product
		Negative	356	100%	[0.992, 1.000]	
	N (MNS2)	Positive	769	100%	[0.996, 1.000]	Comparable product
		Negative	526	100%	[0.994, 1.000]	
MNS	S (MNS3)	Positive	599	100%	[0.995, 1.000]	Comparable product
		Negative	117	100%	[0.975, 1.000]	-
	s (MNS4)	Positive	1008	100%	[0.997, 1.000]	Comparable product
	U (MNS5)	Positive	1125	100%	[0.997, 1.000]	Comparable product
		Negative	1125	100%	[0.997, 1.000]	
	Mia (MNS7)	Positive	1	100%	[0.050, 1.000]	BDS
		Negative	1122	100%	[0.997, 1.000]	0
D:	Dia (DI1)	Positive	3	100%	[0.368, 1.000]	Comparable product
Diego	Dib (DI2)	Negative	1	100%	[0.050, 1.000]	O and a makely and durat
		Positive	1124	100%	[0.997, 1.000]	Comparable product
	Doa (DO1)	Negative	439	100%	[0.993, 1.000]	Comparable product
		Positive	686	100%	[0.996, 1.000]	Comparable product
	Dob (DO2)	Negative	187	100%	[0.984, 1.000]	Comparable product
Dombrock		Positive	938	100%	[0.997, 1.000]	Comparable product
DOMDIOCK	Hy (DO4)	Negative	1	100%	[0.050, 1.000]	Comparable product
	пу (DO4)	Positive	1124	100%	[0.997, 1.000]	Comparable product
	Joa (DO5)	Negative	1	100%	[0.050, 1.000]	Comparable product
		Positive	1124	100%	[0.997, 1.000]	Comparable product
	Coa (CO1)	Negative	2	100%	[0.224, 1.000]	Comparable product
Colton	500 (601)	Positive	1123	100%	[0.997, 1.000]	e sinparasie product
Conton	Cob (CO2)	Negative	1041	100%	[0.997, 1.000]	Comparable product
	000 (002)	Positive	84	100%	[0.965, 1.000]	
	Yta (YT1)	Negative	2	100%	[0.224, 1.000]	BDS
Cartwright		Positive	1124	100%	[0.997, 1.000]	
Sint	Ytb (YT2)	Negative	1024	99.90% <mark>*</mark>	[0.995, 1.000]	BDS
	10 (112)	Positive	102	100%	[0.971, 1.000]	
	Lua (LU1)	Negative	1053	100%	[0.997, 1.000]	Comparable product
Lutheran		Positive	72	100%	[0.959, 1.000]	
	Lub (LU2)	Negative	3	66.67% <mark>*</mark>	[0.135, 1.000]	SER
		Positive	1123	100%	[0.997, 1.000]	OLIX

§ NPA/PPA are equivalent to Specificity/Sensitivity for BDS reference method.
† Possible variant", the reference result, for V and VS antigens in one sample were positive and unknown by ID CORE XT respectively.

*These antigens provided 100% concordance after discrepancy resolution (see Section C). ** These antigens provided 100% concordance after one sample exclusion (see Section C).

NOTE: One sample was excluded from the comparison with the "Comparable product" due to an invalid result provided by this reference method ("No Typing Determined") caused by the presence of the variant RHCE:c.941T>C.

C. Discrepancy resolution and sample exclusion

- Accuracy study:

A total of seventeen (17) samples provided initial discrepant results. Two (2) of them were excluded from the final analysis and the other fifteen samples (15) were resolved in favour or against ID CORE XT. See the table below.

Blood Group System	Number of samples	Reference method	Discrepant Polymorphism*	Discrepant Antigen	ID CORE XT resolution	Rationale for the discrepancy
Rh	<mark>1</mark>	BDS	RHD-CE-D hybrid	N/A	In favour	Presence of variant RHD-CE*IVS3+3046A>C
Rh	1	BDS	RHCE:c.733C>G	N/A	Excluded	"Invalid test" result due to presence of variant KEL:c.846G>C
Duffy	<mark>2</mark>	BDS	FY:c.1-67T>C	<mark>N/A</mark>	In favour	BDS sample mix-up
Duffy	<mark>2</mark>	BDS	FY:c.125G>A	<mark>N/A</mark>	<mark>In favour</mark>	BDS sample mix-up
MNS	<mark>3</mark>	BDS	GYP. Hybrid	Mia (MNS7)	In favour	Presence of variant GYPA:c.140C>A
Lutheran	<mark>1</mark>	BDS	<u>LU:c.230A>G</u>	Lua (LU1)	Against	ID CORE XT failure
Rh	1	BDS & Serology	RHCE:c.335+3039ins109	<mark>C (RH2)</mark>	Against	Presence of variant RHCE:c.335+3136A>G
Rh	<mark>1</mark>	BDS & Serology	RHCE:c.307T>C	<mark>c (RH4)</mark>	Against	Presence of variant RHCE:c.203G>A
Rh	1	Serology	N/A	<mark>E (RH3)</mark> c (RH4)	Against	Presence of variant RHCE:c.221G>A
Kidd	1	Serology	N/A	Jkb (JK2)	Against	Presence of variant SLC14A1:c.191G>A
MNS	<mark>1</mark>	Serology	N/A	<mark>s (MNS4)</mark>	Against	Presence of variant GYPB:c.137-43delAT
MNS	1	Serology	N/A	<mark>s (MNS4)</mark>	Against	Presence of variant GYPB:c.271- 3delCAGGCAinsAAGCC
Rh Kidd MNS	1	Serology	N/A	E (RH3) Jkb (JK2) M (MNS1)	Excluded	Serology data was not confirmed in the donation

*Discrepant polymorphisms also provided discrepant predicted allele genotypes in comparison with BDS.

N/A. Not applicable

All discrepancies resolved against ID CORE XT in this study and the "Invalid test" result excluded from the analysis are described in Section 8 as "Assay Limitations" (Limitations 5, 9.1, 9.2, 9.3, 10.1, 10.2 and 10.3), with the exception of LU:c.230A>G related discrepancy (failure error).

- Clinical study:

A total of fourteen (14) samples provided initial discrepant results. Two (2) of them were excluded from the final analysis and the other twelve samples (12) were resolved in favour or against ID CORE XT. See the table below.

Blood Group System	Number of samples	Reference method	Discrepant polymorphism*	Discrepant antigen	ID CORE XT resolution	Rationale for Discrepancy
Rh	<mark>1</mark>	BDS	RHCE:c.307T>C	N/A	In favour	BDS sample mix-up
Rh	1	BDS	RHCE:c.676G>C	N/A	In favour	Presence of variant RHCE: c.801+219G>T
Rh	<mark>1</mark>	BDS	RHCE:c.307T>C	<mark>N/A</mark>	In favour	BDS sample mix-up

Blood Group System	Number of samples	Reference method	Discrepant polymorphism*	Discrepant antigen	ID CORE XT resolution	Rationale for Discrepancy
Kell	<mark>2</mark>	BDS	KEL:c.578T>C	<mark>N/A</mark>	In favour	BDS sample mix-up
Duffy	<mark>1</mark>	BDS	<mark>FY:c.1-67T>C</mark>	<mark>N/A</mark>	<mark>In favour</mark>	BDS sample contamination
Duffy			FY:c.1-67T>C	<mark>N/A</mark>	In favour	
MNS	<mark>1</mark>	BDS	GYPA:c.[59C>T]	N/A	In favour	BDS sample contamination
Rh			RHCE:c.122A>G	CW (RH8)		
Duffy			FY:c.125G>A	<mark>N/A</mark>		
MNS	<mark>1</mark>	BDS	GYPA:c.[59C>T]	<mark>N/A</mark>	Excluded	DNA sample mix-up
Cartwright			YT:c.1057C>A	Ytb (YT2)		
Lutheran			<u>LU:c.230A>G</u>	<mark>N/A</mark>		
MNS	<mark>1</mark>	BDS & Comparable product	GYPA:c.[59C>T]	M (MNS1)	Against	Presence of variant GYPA:c.38- 66A>G
Rh	<mark>1</mark>	Comparable product	N/A	<mark>V (RH10)</mark>	<mark>In favour</mark>	Presence of RHCE*Ce[733G] allele
Rh	<mark>1</mark>	Comparable product	N/A	<mark>C (RH2)</mark>	In favour	Presence of RHD*DIIIa allele
Rh	1	Comparable product	N/A	VS (RH20)	<mark>In favour</mark>	Presence of RHCE*ceAR allele
Kidd	1	<mark>SER</mark>	N/A	<mark>Jkb (JK2)</mark>	Excluded	Deviation in serological procedure
Lutheran	1	SER	N/A	Lub (LU2)	In favour	Presence of variant LU:c.1615A>G

*Discrepant polymorphisms also provided discrepant predicted allele genotypes in comparison with BDS.

N/A. Not applicable

After discrepancy resolution ID CORE XT provided correct results for all the samples included in the study except for one sample (see Limitation 9.4 in Section 8 "Assay Limitation").

D. Predicted alleles not tested in the performance studies (accuracy and clinical studies):

The following eight very rare alleles interrogated by ID CORE XT have not been represented by any sample in any of the performance studies carried out to validate ID CORE XT (see tables 4 and 7 above): $RHCE^*ceCW$ (Ref.1), $RHCE^*CECW$ (Ref.2), $RHCE^*CeFV$ (Ref.10), $RHCE^*Ce[712G,733G]$ (Ref.3), $RHCE^*cEFM$ (Ref.11), $JK^*A_null(IVS5-1a)$ (Ref.12), FY^*A_GATA (Ref.13) and $FY^*A[265T]$ (Ref.14). However, based on (i) the information published in different bibliographic resources (Ref.1, 2, 3, 10, 11, 12, 13, 15, 16, 17 and 18) and (ii) the specific primers and probes design, those alleles can be correctly predicted by ID CORE XT.

In addition, the prediction of three of these alleles (*RHCE*CeFV*, *RHCE*Ce[712G,733G]* and *RHCE*cEFM*) by ID CORE XT are not based on all the associated polymorphisms described in the literature. The abovementioned bibliographic resources support the prediction of these alleles (see Table 2).

7.3. PRECISION

The precision is a measure of either the degree of repeatability and reproducibility of the analytical method under normal operating conditions.

The precision of the ID CORE XT assay was evaluated using a panel of ten representative DNA samples which cover all possible polymorphism genotypes with

frequencies higher than 1% interrogated by ID CORE XT.

A. Intermediate precision

The ID CORE XT assay demonstrates acceptable intermediate precision across operators (2), instruments (2), reagent lots (3), non-consecutive day/runs (6), and DNA concentrations (10, 20 and 200 ng/ μ l). The study results showed 100% of correct calls for polymorphism genotypes, predicted allele genotypes, and predicted phenotypes in all samples and replicates for each operator, instrument, day/run, reagent lot, and DNA concentration.

B. Reproducibility

The study showed that the ID CORE XT assay demonstrates acceptable reproducibility across external sites (3), operators (2 per site), and days (6 non-consecutive runs per operator and site). The valid run and valid test rates obtained before repetition were 97.22% and 100%, respectively. After repetition, the total ID CORE XT runs were valid and used in the study, which showed 100% of correct calls for polymorphism genotypes, predicted allele genotypes and predicted phenotypes in all samples and replicates for each site/instrument, operator and day/run.

Therefore, it can be concluded that the ID CORE XT test is highly reproducible.

7.4. ANALYTICAL SPECIFICITY: INTERFERING SUBSTANCES

The performance of ID CORE XT assay was not affected by any of the tested endogenous substances, exogenous substances and microorganisms.

A. Endogenous and exogenous substances

The impact of potential interfering substances present in specimens was assessed by analyzing three random EDTA anticoagulated whole blood samples. The endogenous interfering substances tested were intended to reproduce the states of hemolysis, icterus and lipemia in native blood specimens (>500 mg/dL of hemoglobin, >20 mg/dL of bilirubin and >3000 mg/dL of triglyceride-rich lipoprotein, respectively). The effect of total protein (>12 g/dL with >6 g/dL of albumin) was also evaluated.

As exogenous substances, and based on the intended use population of ID CORE XT, an antibiotic, a pain killer, anti-inflammatory drugs, blood thinners, a cholesterol lowering drug and an allergy medicine were also tested: ampicillin (152 μ mol/L), acetaminophen (1324 μ mol/L), ibuprofen (2425 μ mol/L), aspirin (3.62 mmol/L), warfarin (32.5 μ mol/L), heparin (3000 U/L), atorvastatin (600 μ g/L) and diphenhydramine (19.6 μ mol/L). Additionally, the potential co-extraction of ethanol (5%) and RNA (25% of the total nucleic acid concentration) were also evaluated as potential DNA sample contaminants.

The percent of correct calls was 100% for both polymorphism genotypes and predicted phenotypes across all samples, conditions and replicates.

B. Microorganisms

The ID CORE XT kit reagents were inoculated with 10³-10⁴ CFU/mI (CFU: Colony Forming Units) of the following bioburden strains to simulate microbial contamination: *Candida albicans, Aspergillus brasiliensis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus.* The percent of correct calls was 100% for both, polymorphism genotypes and predicted phenotypes, across all samples, conditions and replicates.

8. ASSAY LIMITATIONS

- 1. The predicted allele genotypes and phenotypes generated by the ID CORE XT test are inferred only from certain polymorphisms and certain alleles published in the scientific literature (see Table 1 in Principles of the Test).
- 2. The orientation (cis or trans) of the polymorphism detected as heterozygous cannot be determined by the assay. The most frequent predicted allele genotype and phenotype in the general population are reported and the alternative predicted allele genotype/s and/or phenotype/s are described in the corresponding Note. For the rare alleles without published frequency data, the predicted heterozygous genotype results reported by ID CORE XT are based on the frequency of the other allele in the general population, although the less likely genotype reported in the Note is also possible, e.g. "*RHCE*Ce, RHCE*CEFM* (24)". Note: (24) Also possible, although less likely: *RHCE*cE, RHCE*CEFV* or *RHCE*CE, RHCE*cE[712G]*. Possible phenotype: C+weak, e+weak or C+weak, e+weak and hrS-.
- 3. ID CORE XT assay cannot distinguish between the hemizygous and homozygous state for each of the alleles tested. In these cases, the reported genotype consists of a single allele.
- 4. The predicted allele genotype and phenotype with polymorphism combinations not described in the literature are reported by the ID CORE XT ANALYSIS SOFTWARE as "Unknown" results (see Troubleshooting Section).
- For the specific allele polymorphism RHCE:c.307T>C detection, the genetic design is based on the described allele haplotype RHCE: (c.201A>G; c.203A>G; c.307C>T) associated with the expression of C antigen (Ref.7). Any variant of this haplotype, different than the one described, could provide an incorrect c.307C>T polymorphism genotype result.
- 6. The polymorphism interrogated by ID CORE XT to predict the Mia (MNS7) antigen, *GYPc.140A*, is shared by alleles *GYP.Mur*, *GYP.Hut* and *GYP.Bun* (Refs.15, 16, 17). The assay does not discriminate among them.
- 7. The phenotypes for the Rh antigens V (RH10), hrS (RH19), VS (RH20) and/or hrB (RH31) encoded by the alleles RHCE*Ce[712G,733G], RHCE*cE[712G,733G], RHCE*CeFV, RHCE*cEFM and RHCE*Ce[733G] interrogated by ID CORE XT that have not been reported in the literature are reported by the ID CORE XT ANALYSIS SOFTWARE as "Unknown" results.
- 8. Most of the Rh null phenotypes are generated by RHCE hybrids with RHD gene and related to the absence of expression of the RhCE antigens (Ref.6). The ID CORE XT test detects these RHCE hybrids as "RHCE-D[5, 7]-CE" allele genotype using the absence of signal from exons 5 and 7 of the RHCE gene. The prediction of absence of expression of the Rh antigens should always be confirmed by serology test, as it is described in the corresponding "Note".
- 9. False negative or invalid results may be generated by ID CORE XT due to rare mutations at primer or probe binding sites ("drop-out" artifacts). In such rare cases, this may lead to erroneous genotype and phenotype calls. The following are false negatives or invalid results incurred by ID CORE XT:
 - 9.1. Variant *RHCE*:c.335+3136a>g in intron 2 of the *RHCE**C allele affects to the detection of polymorphism *RHCE*:c.335+3039ins109, leading to a false negative prediction of the C (RH2) antigen.
 - 9.2. Variant GYPB:c.137-43delAT in intron 3 of the GYPB*s allele affects to the detection of the GYPB:c.143T>C polymorphism leading to a false negative prediction of the s (MNS4) antigen.
 - 9.3. Variant *KEL*:c.846G>C in exon 8 of the *KEL*k_KPB_JSB* allele is described as rs8175993 and a global minor allele frequency (MAF) of 0.01 (Ref.18). This variant affects to the detection of the polymorphism KEL:c.841T>C which may lead to a false negative prediction of the Kpb (KEL4) antigen.
 - 9.4. Variant GYPA:c.38-66a>g in intron 2 of the GYPA*M allele is described as rs535847209 and a global minor allele frequency (MAF) of 0.0002 (Ref.18). This variant affects to the detection of GYPA:c.[59C>T] polymorphism leading to a false negative prediction of the M (MNS1) antigen.
- 10. False positive results may be generated by ID CORE XT due to null alleles not

detected in the gene tested or variants in other regulatory genes, or post transcriptional events, or epigenetic events not tested by the assay. In these cases, the predicted phenotype may differ from the phenotype detected by serology. The following are false positives incurred by ID CORE XT:

- 10.1.Variant *RHCE*:c.221G>A in exon 2 of the *RHCE*cE221A* allele, is associated with the absence of expression of the E (Rh3) and c (RH4) antigens (Ref.8).
- 10.2.Variant SLC14A1:c.191G>A in exon 4 of the JK*B_null(191A) allele is described as rs114362217 and a global minor allele frequency (MAF) of 0.0004 (Ref.18). This variant was described in African Americans with a rare occurrence and associated with the absence of expression of the Jkb (JK2) antigen (Ref.9).
- 10.3. Splicing site variant GYPB:c.271-3delCAGGCAinsAAGCC in intron 5 of the unreported rare allele GYPB*s_(IVS5-3delCAGGCAinsAAGCC) is associated with the absence of expression of the s (MNS4) antigen.
- 11. The ID CORE XT ANALYSIS SOFTWARE allows the association of only one ID CORE XT reagent lot, one ID CORE CONTROL lot, and one enzyme lot per Luminex run (one association of reagent lots and enzyme lot per .csv file generated by the Luminex). If two or more ID CORE XT reagent lots, ID CORE CONTROL lots, or enzyme lots are associated with a group of samples, each lot needs to be run independently including the Positive and Negative Controls.
- 12. Each batch of samples per reagent lot must be tested with one replicate of the two positive control samples included in ID CORE CONTROL (ID CORE CONTROL 1 and ID CORE CONTROL 2) and one replicate of the Negative Control (nuclease-free molecular-grade water) at the end of the batch. Each batch of samples cannot be tested with more than one replicate of any ID CORE CONTROL (ID CORE CONTROL 1 and ID CORE CONTROL 2).

10. REFERENCES

- 1. Mouro et al. Molecular Basis of the RhCW(RH8) and RhCX(Rh9) Blood Group Specificities. Blood, 1995; 86(3):1196-1201.
- Doscher A. et al. RHCE alleles detected after weak and/or discrepant results in automated Rh blood grouping of blood donors in Northern Germany. Transfusion, 2009; 49:1803-1811.
- Doescher A. et al. Three new polymorphisms in patients with serologic suspect of weakened expression of RHC-antigen. Vox Sanguinis, 2005; 89 (Suppl.1):159. P-306.
- 4. Ochoa et al. Association of altered E RHCE*cE(697G,712G,733G,744C) with altered D RHD*46C. Vox Sanguinis, 2012; 103 (Suppl.1):480.
- 5. Goldman et al. Identification of six new RHCE variant alleles in individuals of diverse racial origin. Transfusion, 2016; 56; 244-248.
- Cherif-Zahar B et al. Lack of RHCE-encoded proteins in the D—phenotype may result from homologous recombination between the two RH genes. Blood, 1996; 88:1515-1520.
- 7. Mouro et al. Molecular genetic basis of human Rhesus blood group system. Nature Genetics, 1993; Sep; 5(1):62-5.
- 8. Ochoa-Garay et al. New RHCE variant alleles encoding D-- phenotype. Transfusion, 2013; 53; 3018-3023.
- 9. Billingsley KL et al. A novel JK null allele associated with typing discrepancies among African Americans. Immunohematology, volume 29, Number 4, 2013, Page 145.
- 10. Burgert P. et al. RhCE protein variants in Southwestern Germany detected by serologic routine testing. Transfusion, 2009; 49 (1793-1802).
- 11. Noizat-Pirenne et al. Heterogeneity of blood group RhE variants revealed by serological analysis and molecular alteration of the RHCE gene and transcript". British Journal of Haematology, 1998, 103:429-436.
- 12. Ekman et al. Screening of six racial groups for the intron 5 G→A 3' splice acceptor mutation responsible for the Polynesian Kidd (a–b–) phenotype: the null

mutation is not always associated with the JKB allele. TRANSFUSION Volume 40, July 2000.

- Zimmerman et al. Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea. PNAS November 23, 1999, vol. 96, nº. 24: 13973– 13977.
- 14. Lopez GH et al. A novel FY*A allele with the 265T and 298A SNPs formerly associated exclusively with the FY*B allele and weak Fyb antigen expression: implication for genotyping interpretative algorithms. Vox Sanguinis (2014)
- 15. Daniels G. Human Blood Groups, 3rd edition. Wiley-Blackwell.
- 16. Reid M. et al. The blood Group Antigen Facts Book, 3rd edition. Academic Press.
- 17. Red Blood Cells Blood Group Genes Databases:
 - ISBT database: http://www.isbtweb.org/working-parties/red-cellimmunogenetics-and-blood-group-terminology
 - http://www.erythrogene.com/. Möller, M., Jöud, M., Storry, J. R., & Olsson, M. L. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Advances, 2016;1(3):240-249.
 - > RHCE New York Blood Center database: http://nybloodcenter.org/rhce/
- 18. Allele frequency reported in NCBI 1000 Genomes Browser: https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/

19. TRADEMARKS

The following product names and any registered and unregistered trademarks mentioned in this document are used for identification purposes only and remain the exclusive property of their respective owners.

ID CORE XT, ID CORE XT ANALYSIS SOFTWARE	Progenika Biopharma S.A.
Microseal, Multiplate	Bio-Rad Inc.
MicroAmp, Veriti	Applera HS Corporation
HotStarTaq DNA Polymerase, QIAamp, QIAsymphony	QIAGEN
Luminex 200, xPONENT, xMAP	Luminex Corporation

20. MANUFACTURER WARRANTIES AND LIMITATION OF LIABILITY

Please review the following terms of use carefully. By using the product, the user accepts and agrees with the terms and conditions described in this document. Those terms constitute a legally valid and binding contract between the user and Progenika Biopharma S.A.

This package insert contains important information about the use of the product. Read and follow all instructions in this package insert.

Progenika Biopharma S.A. warrants to and only to the user that, until its expiration date, the product is free from defects in materials and workmanship and conforms to the applicable specifications. Progenika Biopharma S.A. shall not be liable if the user fails to store the product according to the specifications.

Progenika Biopharma S.A. cannot assure the accuracy of the results if the user does not follow the procedures described herein.

To the extent permitted by law, no warranties or conditions including implied or statutory warranties or conditions relating in any way to the products other than those expressly contained in this document shall apply.

The user is hereby informed that additional license(s) from third party(ies) may be required for the client to use the product. Progenika Biopharma S.A. will provide more



detail upon request. Only the rights and licenses, if any, granted pursuant to the express terms of this document shall be of any legal force or effect. No license or other rights shall be deemed to have been granted to the user other than as expressly provided for in this document.

Except as expressly provided herein, Progenika Biopharma S.A. makes no warranties or conditions (expressed, implied, statutory, or otherwise) with respect to the subject matter thereof and Progenika Biopharma S.A. shall specifically disclaim any and all implied warranties or conditions of merchantability and fitness for a particular purpose, or of non-infringement of any patent, copyright, or other rights.

To the extent permitted by applicable legal requirements, Progenika Biopharma S.A.'s liability, whether arising under contract, tort (including negligence), statutory duty, or otherwise, for any loss or damage shall be limited to recovery of direct damages not exceeding the price paid for the product. Progenika Biopharma S.A. shall in no event be liable for any indirect, economic, incidental, special, or consequential loss including, without limitation, loss of profits or use or goodwill or anticipated savings or revenue or contracts, whether or not Progenika Biopharma S.A. has been advised of the possibility of such loss.

21. SYMBOLS USED IN PACKAGING

22. CUSTOMER AND TECHNICAL SERVICES

Contact Grifols Customer Service to order additional reagents. Contact Grifols Technical Service for comments or questions on ID CORE XT procedures, equipment, reagents, or data analysis.

Grifols Customer Service:

Telephone: (888) 244-7667 Or: (510) 923-5100 E-mail: DxSCMCustomer.Service@grifols.com

Grifols Technical Service:

Telephone: (800) 452-6877 E-mail: service.americas@grifols.com

23. ANNEX I. ASSAY GUIDELINES

The complete Package Insert needs to be read before proceeding with sample analyses.

A. PRE-PCR AREA

DNA AMPLIFICATION

1. Bring the DNA samples and ID CORE CONTROL 1 and ID CORE CONTROL 2 to room temperature.

Note: A printed plate map with the position of all samples and controls in the run is recomme nded to ensure that the correct samples are dispensed in the appropriate wells.

- 2. Remove the **HotStarTaq DNA polymerase** from the freezer and the **ID CORE XT PCR Master Mix** from the 2°C to 8°C storage immediately before use.
- 3. Vortex and spin down both reagents.
- 4. Prepare the ID CORE XT PCR reaction mix following the table below (all volumes in µl).

Number of Samples	1	8	16	24	32	40	48
ID CORE XT PCR Master Mix	22.5	180	360	540	720	900	1080
HotStarTaq DNA Polymerase (5 U/μl)	0.5	4	8	12	16	20	24

- 5. Store reagents immediately after use.
- Vortex and spin down the ID CORE XT PCR reaction mix.
 Note: Once the ID CORE XT PCR reaction mix is prepared, the PCR program should start in ≤ 60 minutes.
- 7. Immediately dispense **20 µI** per sample into the wells of a 96-well PCR plate.
- 8. Vortex and spin down the DNA samples and ID CORE CONTROL 1 and the ID CORE CONTROL 2 samples.
- Add 5 µL of sample DNA, ID CORE CONTROL 1, ID CORE CONTROL 2, and Negative Control to the corresponding wells. Mix gently by pipetting up and down three times.
- 10. Seal the plate with adhesive film and follow the guidelines from the Post-PCR Area DNA AMPLIFICATION section.

B. POST-PCR AREA

- 1. Spin down the PCR plate.
- 2. Place the plate and the PCR compression pad on the thermal cycler block.
- 3. Close the thermal cycler lid, verify and start the **ID XT PCR** amplification program.
- 4. Once the amplification step is finished, verify and save the Veriti Run Report.

HYBRIDIZATION

Note: Refer to the Luminex User's Manual (xPONENT 3.1 Software User Manual) for instrument preparation and operation, including daily startup and calibration.

- 5. Prior to the Hybridization reaction, turn on the Luminex 200 system
- 6. Set the Luminex 200 XYP heater temperature at **52°C** and verify that the heater block is on the plate holder.
- 7. Remove the ID CORE XT Beads Master Mix from the 2°C to 8°C storage immediately before use.
- 8. Spin down the PCR plate.
- 9. Vortex the ID CORE XT Beads Master Mix for **10-15** seconds.

Note: Since the beads settle with time, the hybridization program should start in \leq 30 minutes. Do not centrifuge the plate once the ID CORE XT Beads Master Mix has been dispensed to avoid bead sedimentation.

10. Dispense 46 µl of the ID CORE XT Beads Master Mix into each well of the Bio-Rad hybridization plate.

Note: This is a critical processing step. Dispensation of half the recommended volume or less of BMM (< 24 μ l) could lead to incorrect genotypes.

- 11. Add **4 μl** of each PCR product into each well of the hybridization plate. Mix gently by pipetting up and down 3 times.
- 12. Seal the plate with the Bio-Rad sealing film.
- 13. Place the plate and two compression pads on the thermal cycler block.
- 14. Close the thermal cycler lid, verify and start the **ID XT HYB** hybridization program.
- 15. Return the ID CORE XT Beads Master Mix to the 2°C to 8°C storage.
- 16. During the hybridization step prepare the **labeling mix** and **Create a New Batch** in the Luminex software.

LABELING

- 17. Remove the **SAPE** and **SAPE Dilution Buffer** from the 2°C to 8°C storage immediately before use.
- 18. Vortex the SAPE and SAPE Dilution Buffer and spin down the SAPE.
- 19. Prepare the labeling mix following the table below (all volumes in μ I). Use the labeling mix in \leq 35 minutes.

Number of Samples	1	8	16	24	32	40	48
SAPE	4	32	64	96	128	160	192
SAPE Dilution Buffer	87	696	1392	2088	2784	3480	4176

- 20. Return the SAPE and SAPE dilution buffer to the 2°C to 8°C storage immediately after use.
- 21. Vortex the labeling mix. Keep it protected from light and at room temperature.
- 22. After 30 minutes of hybridization, at the 52°C hold step, open the thermal cycler lid and carefully remove the compression pads and the sealing film, keeping the plate on the thermal cycler.
- 23. Dispense 80 µl of the labeling mix into each well of the hybridization plate and mix gently by pipetting up and down once. Note: The labeling mix should be dispensed to all samples in ≤5 minutes.
- 24. Seal the plate with a Bio-Rad sealing film and place two compression pads or one compression mat on the plate. Close the thermal cycler lid and incubate the plate for 10 minutes at the 52°C hold step.
- 25. After the hybridization and labeling steps, open the thermal cycler lid and remove the compression pads and the plate carefully from the thermal cycler. Verify and save the Veriti DX Run Report.
- 26. Place the plate on the Luminex, remove the sealing film and click Run to analyze the samples.

Note: The time between removing the labelled plate from the thermal Cycler and placing it on Luminex should not exceed 10 min.