
~ TEXAS
INSTRUMENTS

TSP50C4X Fatnily
Speech Synthesizers

1990 Linear Products

Linear Products Data Book Guide

Data Book

• Linear Circuits Vol 1
Amplifiers, Comparators,
and Special Functions

• Linear Circuits Vol 2
Data Acquisition
and Conversion

• Linear Circuits Vol 3
Voltage Regulators and

. Supervisors

• Telecommunications
Circuits

• Optoelectronics and
Image Sensors

• Interface Circuits

• Speech System Manuals

Contents

Operational Amplifiers
Voltage Comparators
Video Amplifiers
Hall-Effect Devices
Timers and Current Mirrors
Magnetic-Memory Interface
Frequency-to-Voltage Converters
Sonar Ranging Circuits/Modules
Sound Generators

A/D and D/A Converters
DSP Analog Interface
Analog Switches and Multiplexers
Switched-Capacitor Filters

Supervisor Functions
Series-Pass Voltage Regulators
Shunt Regulators
Voltage References
DC-to-DC Converters
PWM Controllers

Equipment Line Interfaces
Subscriber Line Interfaces
Modems and Receivers/Transmitters
Ringers, Detectors, Tone Encoders
PCM Interface
Transient Suppressors

Optocouplers
CCD Image Sensors and Support
Phototransistors
IR-Emitting Diodes
Hybrid Displays

High-Voltage (Display) Drivers
High-Power (Peripheral/Motor) Drivers
Line Drivers, Receivers, Transceivers
EIA RS-232, RS-422, RS-423, RS-485
IBM 360/370, IEEE 802.3, CCITT
Military Memory Interface

TSP50C4X Family

Document No.

SLYD003
1989

SLYD004
1989

SLYD005
1989

SCTD001A
1988/89

SOYD002A
1990

SLYD002
1987

SPSS010
1990

November 1989

TSP50C4X Family
Speech Synthesizers

Design Manual

...,
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify, before placing orders,
that the information being relied upon is current.

TI warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.

TI assumes no liability for TI applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or
relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1984, 1990 by Texas Instruments Incorporated

Revised 1990

Section

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.7.1
1.7.2
1.7.3

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

Contents

Title

Introduction
Applications
Description ..
Features :
Device Comparison
Masked Options
Pin Assignment and Description
Introduction to LPC

The Vocal Tract
The LPC Model
LPC Data Compression

TSP50C4X Architecture
ROM .. .
Program Counter
Program Counter Stack
RAM .. .
ALU .. .
A Register
X Register
8 Register
Status Flag
Timer Register
Timer Prescale Register
Pitch Register
Speech Address Register .
Parallel-to-Serial Register
Interface Logic
Port A (Master Option)
Port A (Slave Option)
Port B
Port C
Port D
IRT Pin

Page

1-1
1-1
1-2
1-3
1-3
1-3
1-5
1-11
1-11
1-11
1-12

2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-9

iii

I
i

Section

2.22
2.22.1
2.22.2
2.22.3
2.22.4
2.22.5
2.22.6
2.22.7

3
3.1

3.2
3.3
3.4
3.5
3.6

4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.5
4.5.1
4.5.2

iv

Contents (Continued)

Title

Speech Synthesizer .
Use of RAM by the Synthesizer
Context Switch
Interpolation
Timing Requirements
Voicing Control
Frame Length Control
Digital-to-Analog Converter and Output Buffer

Electrical Specifications ..
Absolute Maximum Ratings Over Free-Air
Temperature Range
Recommended Operating Characteristics-DC
Recommended Operating Characteristics-AC
Electrical Characteristics
Oscillator
Direct Speaker Driver

TSP50C4X Assembler
Source Statement Format

Label Field .
Command Field
Operand Field
Comment Field

Constants
Decimal Integer Constants
Binary Integer Constants
Hexadecimal Integer Constants
Character Constants
Assembly-Time Constants

Symbols
Predefined Symbol" $"
Character String

Expressions
Arithmetic Operators in Expressions
Parentheses in Expressions

Invoking the Assembler
Assembler Inp~t and Output Files
Assembly Source File

Page

2-9
2-10
2-12
2-12
2-12
2-15
2-15
2-15

3-1

3-1
3-1
3-1
3-2
3-2
3-3

4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-6

Contents (Continued)

Section Title

Assembly Binary Object File
Assembly Tagged Object File
Assembly Listing File

Options and Switches

4.5.3
4.5.4
4.5.5
4.6
4.6.1
4.6.1.1
4.6.1.2
4.6.1.3
4.6.1.4
4.6.1.5
4.6.1.6
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9
4.7.10
4.7.11
4.7.12
4.7.12.1
4.7.12.2
4.7.12.3
4.7.12.4
4.7.12.5
4.7.12.6
4.7.12.7
4.7.12.8

Command Line Options
BYTE Unlist Option
DATA Unlist Option
XREF Unlist Option
TEXT Unlist Option
WARNING Unlist Option
8K Assembly Mode Option

Complete XREF Switch
Object Module Switch
Listing File Switch
Page Eject Disable Switch
Error to Screen Switch
Binary Code File Disable Switch

Assembler Directives
AORG Directive
BYTE Directive
BES Directive
BSS Directive
COPY Directive
DATA Directive
EQU Directive
EVEN Directive
END Directive
lOT Directive
LIST Directive
OPTION Directive

BUNLST
DUNLST
FUNLST
LSTUNL
OBJUNL
PAGEOF
RXREF
SCRNOF

Page

4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-9
4-9
4-10
4-11
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-17
4-17
4-17

v

Contents (Continued)

Section

4.7.12.9
4.7.12.10
4.7.12.11
4.7.12.12
4.7.12.13
4.7.13
4.7.14
4.7.15
4.7.16
4.7.17
4.7.18
4.7.19

Title

TUNLST
WAANOF
XAEF
8KASM
990

PAGE Directive
ABYTE Directive
ADA T A Directive .
ATEXT Directive
TEXT Directive
TITL Directive ..
UNL Directive

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

vi

Instruction Set
,Instruction Format
ACAA
AMAAC
ANEC
BA
CALL
CLA .. .
CLB .. .
CLX .. .
DECMC
EXTAM
EXTSG
GET .. .
IBC
INCMC
INTO .. .
INTE .. .
INTGA ' ..
INTAM
IXC
LUAA
LUSPS
POP:

Page

4-17
4-17
4-18
4-18
4-18
4-18
4-18
4-19
4-19
4-20
4-20
4-21

5-1
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-17
5-18
5-19
5-20
5-21 '
5-22
5-23
5-24
5-25
5-26

Section

5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62

Contents (Continued)

Title

RBITM
RETI .. .
RETN
RSECT
RSRDY
SALA
SARA
SBITM
SBA. .. .
SETOF
SMAAN
START
STOP
TAPA
TAPB
TAPD
TAM .. .
TAPRF
TAPSC
TASH
TASL
TAV .. .
TAX .. .
TBA .. .
TBITA
TBITM
TCX .. .
TMA .. .
TMAIX
TMEDA
TPAA
TPAM
TPCA
TTMA
TXA .. .
TXPA
TXTM
XBX .. .
XGEC

Page

5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-61
5-62
5-63
5-64
5-65

vii

!

Section

6
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.6
6.7
6.8

Contents (Concluded)

Title

Applications
Synthesizer Control

Speech Coding and Decoding
RAM Usage
ROM Usage
Program Overview
Calling the Synthesis Program
Synthesis Program Walkthrough

Arithmetic Modes
Standby Mode
Slave Option
TSP60CXX Interface

Initialization
Using Internal and External Data Alternately
TSP60CXX Power Down

Use of the TMEDA Instruction
Use of Timer, Prescaler, Interrupt and IRT Pin
Use of the Stack

Page

6-1
6-1
6-1
6-4
6-6
6-7
6-8
6-11
6-18
6-19
6-20
6-22
6-23
6-25
6-26
6-26
6-27
6-28

7 Customer Information .. 7-1
7.1 Production Flow 7-1
7.2 Summary of Speech Development/Production Sequence. .. 7-2
7.3 Mechanical Data , 7-3
7.4 IC Sockets 7-6
7.5 Ordering Information 7-7
7.6 New Product Release Forms 7-8

A Script Preparation and Speech Development Tools A-1
B TSP50C4X Synthesis Program. .. 8-1
C Program to Initialize the TSP60C20 Speech ROM. C-1

viii

List of Illustrations

Figure Title Page

1-1 TSP50C4X Applications 1-1
1-2 Block Diagram. .. 1-2
1-3 Pin Assignments .. 1-5
1-4 LPC-10 Vocal Tract Model. .. 1-12
2-1 System Block Diagram. .. 2-1
2-2 ROM Map , .. 2-2
2-3 I/O Data Bus (PAO-PA 7) 2-9
2-4 RAM Map During Speech Generation 2-11
2-5 Initialization Timing .. 2-12
2-6 Write Timing Diagram .. 2-13
2-7 Read Timing Diagram 2-14
3-1 Typical Phase Shift Oscillator Connections. 3-2
3-2 Typical Direct Speaker Drive Connection 3-3
6-1 TSP5220 Frame Decoding. .. 6-2
6-2 Speech Parameter Unpacking and Decoding. 6-3
6-3 ALU Modes. .. 6-19
6-4 Read Operation .. 6-21
6-5 Write Operation. .. 6-22
6-6 TSP50C4X/TSP60C19 Interface 6-23
6-7 TSP50C4X/TSP60C20 Interface 6-24
7-1 Speech Development Cycle " 7-1
7-2 28-Pin N2 Plastic Package. .. 7-3
7-3 40-Pin N2 Plastic Package. .. 7-4
7-4 28-Pin FN PLCC 7-5
7-5 Shrink Package. .. 7-6

ix

x

List of Tables

Table Title Page

1-1 TSP50C4X Device Comparison 1-3
1-2 Pin Function Description of Port A for

Three Mask Options 1-6
1-3 Pin Function Description of Port B for External or

Internal ROM Modes .. 1-7
1-4 Pin Function Description of Port C for

Two Mask Options 1-8
1-5 Pin Function Description of Port D 1-9
1-6 Pin Function Description of IRT (Several Options),

OSC and DA .. 1-10
2-1 Initialization Timing .. 2-12
2-2 Timing Requirements. .. 2-12
2-3 Write Timing Requirements .. 2-13
2-4 Read Timing Requirements 2-14
4-1 Switches and Options .. 4-1 0
4-2 Summary of Assembler Directives 4-11
5-1 TSP50C4X Instruction Set. .. 5-1
6-1 Synthesizer RAM Addresses 6-5
6-2 Buffer and Control RAM Usage 6-6
6-3 ROM Usage ,. 6-7

xi

xii

1 Introduction
The TSP50C4X family of speech synthesizers consists of the following four
devices: TSP50C41, TSP50C42, TSP50C43, and TSP50C44. In each of
these, an a-bit microprocessor, a programmable speech synthesizer, and ROM
are combined to provide a one-chip solution for many applications. The devices
use Linear Predictive Coding (LPC) to generate speech at a low data rate. Mask
options are also available to provide design flexibility.

This section consists of a brief overview of the TSP50C4X family. It begins
with a summary of applications, key features, and a comparison of the devices,
followed by a discussion on mask options and pin descriptions. Also included
is an introduction to Linear Predictive Coding.

1.1 Applications

As illustrated in Figure 1-1 , the TSP50C4X devices are versatile and can be
used in many applications.

MICROPROCESSOR
SWITCHES

ANIMATION,
ETC.

1/0
TSP50C41
TSP50C42
TSP50C43
TSP50C44

Figure 1-1. TSP50C4X Applications

S
P
E
A
K
E
R

1-1

Typical applications include:

Telecom
PABX
Telephone Management

Security
Home Monitors
Navigation Aids

Computer
Analyzers.
Office Computers
Personal Computers

Industrial
Inspection Controls
Inventory Controls
Machine Controls
Warehouse Systems

Automotive
Clock Systems
Warning Systems

Consumer
Appliances
Mailboxes
Toys

Medical
Equipment for
the Handicapped

Educational
Learning Aids
Computer Aided
Instructions

1.2 Description

T POR
A
B
C
D

-

1-2

The TSP50C4X device can be divided into several functional blocks
(Figure 1-21. The two main blocks are the microcomputer and the speech
synthesizer, which share RAM and timing circuits.

MICROCOMPUTER

.. 1/0

MICRO-
PROCESSOR

G

I RAM I
I I ...

.. I TIMING I ..
I I

Figure 1-2. Block DIagram

SPEECH
SYNTHESIZER

ANALOG
OUTPUT

DA1

DA2

1.3

These devices implement an LPC-10 speech synthesis algorithm using a
10-pole lattice filter. The internal microprocessor accesses speech data from
the internal or external ROM (TSP60CXX), decodes the speech data and sends
the decoded data to the synthesizer. The output of the synthesizer can be
used to drive a small speaker directly or, with an external filter and amplifier,
to drive a large speaker.

Features

• Programmable LPC-10 Speech Synthesizer
• 8-Bit Microprocessor with 61 Instructions
• 1 28 Bytes plus 16 Nibbles of RAM
• 4-V to 6-V CMOS Technology for Low Power Dissipation
• High-Efficiency Push-Pull Pulse-Width-Modulated Digital-to-Analog Output

that' can Drive a Speaker Directly
• 10-kHz or 8-kHz Speech Sample Rate
• 8K Byte or 16K Byte ROM, 21- or 33-pin I/O
• Mask Options
• External Event Counter/Internal Timer

1.4 Device Comparison

Table 1-1. TSP50C4X Device Comparison

TSP50C41 TSP50C42 TSP50C43 TSP50C44
ROM (Bytes) 8K 8K 16K 16K

1/0 pins* 21 33 21 33
8-bit ports 2 1/2 4 2 1/2 4
No. of pins 28 ·40 28 40

*1/0 pins include the IRT pin.

1.5 Mask Options

The designer may choose from five basic mask options depending on the
application. For instance, the master option is designed for single-chip
applications in which the host is the internal microprocessor. The slave option
is intended for use in multichip systems in which the host microprocessor
is external as shown in Section 7. The mask options are as follows:

1. MASTER or SLAVE option
a. MASTER option

Port A (PA 1-PA8) is a general purpose input/output port.
b . SLAVE option

Port A can be controlled by an external processor.
Port C (PCO-PC3) pins are programmed to be interface control pins
ROY, ENA 1, ENA2 and R/W.

1-3

i
I'
I

1-4

2. IRT INPUT or OUTPUT option
a. IRT INPUT option

IRT is an input that can be software selected by a TTMA command
to be a clock signal for the timer prescale register. The IRT pin is
unused if the internal clock is selected by a RSECT software
command.

b . IRT OUTPUT option
IRT is an output that indicates that the data output on port A is
stable.

3. KEYBOARD or NORMAL option
a. KEYBOARD option

Port A is split so that PAO-PA3 will be output pins and PA4-PA7 will
be input pins. PCO is not used and PC1-PC3 are tied low. This is
referred to as the keyboard scan option since it is optimally configured
for scanning a 4 x 4 keyboard.

b. NORMAL option
Port A is configured as an 8-bit I/O port.

4. ROM 8K or ROM 4K option
a . ROM 8K option

Allows the microprocessor software program to use 8K bytes of
internal ROM for program instructions. Remaining ROM is available
for other uses. Branches and calls must have even destination
addresses (LSB = 0).

b . ROM 4K option
Limits the microprocessor program to the first 4K bytes of internal
ROM for program instructions. Remaining ROM is available.

5. SETOFF DISABLED or ENABLED option
a . SETOFF DISABLED

Disables the software "Setoff" command and causes it to act as
a "NOP".

b . SETOFF ENABLED
Enables the "Setoff" command. The microprocessor puts the
TSP50C4X device in the low-power standby by executing the
"Setoff" command. The external circuitry takes the chip out of the
standby option by driving the INIT pin to a low state and then back
to a high state.

When the master option is selected, the NORMAL and IRT input options are
pre-selected. When the slave option is selected, all of the remaining options
are available.

The TSP50C4X devices have additional I/O mask options to minimize the
system parts count. Each pin on Ports A and C can be individually programmed
to have a pull-up resistor. Ports Band D can be programmed in blocks of 4
to have open-drain outputs, that is, the pull-up device can be disabled. The
blocks are BO-3, B4-7, DO-3, and D4-7.

1.6 Pin Assignment and Description
Figure 1-3 shows the pin assignments for the TSP50C41/43 and the
TSP50C42/44. Tables 1-1 and 1-2 provide pin function descriptions.

TSP50C41/43
(TOP VIEW)

VOO OA2
OSC1 OA1
OSC2 PA7

INIT PA6
PBO PA5
PB1 PA4
PB2 PA3
PB3 PA2
PB4 PA1
PB5 PAO
PB6 PC2
PB7 PC1
IRT PCO

VSS __ .J--' PC3

(a)

TSP50C42/44
(TOP VIEW)

VOO OA2
OSC1 OA1
OSC2 PC7

IN IT PA7
PBO PC6
PB1 PA6
PB2 PA5
PB3 PA4
PB4 PC5
PB5 PA3
PB6 PA2
PB7 PC4
POO PA1
P01 PAO
P02 PC3
P03 PC2
P04 PC1
P05 PCO
IRT P07

VSS P06
--...._---li

(b)

Figure 1-3. Pin Assignments

1-5

Table 1-2. Pin Function Description of Port A for Three Mask Options

PIN NO.

PIN NAME '50C41 '50C42 I/O DESCRIPTION
'50C43 '50C44

[MASTER option] Port A is a general purpose bi-
PAO (LSB) 19 27 I/O directional port that is controlled by
PAl 20 28 I/O the internal microprocessor.
PA2 21 30 I/O
PA3 22 31 I/O
PA4 23 33 I/O
PA5 24 34 I/O
PA6 25 35 I/O
PA7 (MSB) 26 37 I/O

[SLAVE/NORMAL option] Port A is an interface between the
PAO (LSB) 19 27 I/O internal and external microprocessor.
PAl 20 28 I/O PCO-PC3 are configured as Ready.
PA2 21 30 I/O Enable and ReadIWrite control pins for
PA3 22 31 I/O interface.
PA4 23 33 I/O
PA5 24 34 I/O
PA6 25 35 I/O
PA7 (MSB) 26 37 I/O

[SLAVE/KEYBOARD opt] Port A is configured so that PAO-PA3
PAO (LSB) 19 27 0 are outputs and pins PA4-PA 7 are
PAl 20 28 0 inputs. This configuration is optimal
PA2 21 30 0 for scanning a 4x4 keyboard. The
PA3 22 31 0 ROY signal is not used. The ENA 1,
PA4 23 33 I ENA2 and RIW should be tied low.
PA5 24 34 I
PA6 25 35 I
PA7 (MSB) 26 37 I

1-6

Table 1-3. Pin Function Description of Port B for External and Internal ROM Modes

PIN NO.

PIN NAME 'SOC41 'SOC42 1/0 DESCRIPTION
'SOC43 'SOC44

[INTERNAL ROM mode) The INTERNAL ROM mode is
PBO (LSB) 5 5 0 initiated by the INTRM software
PB1 6 6 0 command. Port B is an output port
PB2 7 7 0 controlled by the internal micro-
PB3 8 8 0 processor. This port is put into the
PB4 9 9 0 INTERNAL ROM mode on power-up
PB5 10 10 0 and when the INIT pin is low.
PB6 11 11 0 These two events also cause the
PB7 (MSB) 12 12 0 port's outputs to latch low.

[EXTERNAL ROM mode) The EXTERNAL ROM mode is initiated
by a EXTRM software command.
Port B is configured as an interface to
a TSP60CXX vocabulary ROM.

MO 5 5 0 Vocabulary ROM mode control

M1 6 6 0 Vocabulary ROM mode control

ADD1 7 7 0 Vocabulary ROM address weight 1

ADD2 8 8 0 Vocabulary ROM address weight 2

ADD4 9 9 0 Vocabulary ROM address weight 4

ADD8 10 10 0 Vocabulary ROM address weight 8

ROMCLK 11 11 0 Clock output to the vocabulary ROM.
Oscillator divided by 16.

RDIN 12 12 I Vocabulary ROM data input

1-7

Table 1-4. Pin Function Description of Port C for Two Mask Options

PIN NO.

PIN NAME '50C41 '50C42 I/O DESCRIPTION
'50C43 '50C44

[SLAVE option] When active (low), Port A is ready to receive
RDY 15 23 0 data fran an external microprocessor. 'Ri5V is

set high when the ENA2 pin is pulled low. If
the external processor is not holding mA2 low,
then an RSRDY software command will reset
RDY low. Status of the pin can be evaluated
by the TPCA * instruction.

ENA1 16 24 I Enables the reading or writing of Port A data
PAO-PA7

ENA2 17 25 I Read mode (RfiR high)
ENA1: Most significant nibble of Port A latch

is put on the bus PA4-PA7 while
mA1 is low. When 'ENA1 goes low,
IRT goes high.

ENA2: Least significant nibble of Port A latch
is put on the bus PAO-PA3 while
'E"NA2 is low.

Write mode (R/W low)
ENA1: Most significant nibble on the data

bus PA4-PA7 is strobed in the Port A
latch when Ef\JA1 goes from low to
high.

ENA2: Least significant nibble on the data
bus PAO-PA3 is strobed in the Port A
latch when Ef\JA2 goes from low to
high.

R/W 18 26 I Determines the direction of the Port A data bus:
R/W = high; data in the Port A latch is

available to the external bus.
R/W = low; data on the external bus is

written into the Port A latch.

[MASTER option] General-purpose input
PCO (LSB) 16 23 I
PC1 17 24 I
PC2 18 25 I
PC3 15 26 I

[MASTER or SLAVE] General-purpose input
PC4 29 I
PC5 32 I
PC6 36 I
PC7 (MSB) 38 I

Note: If an external driving circuit is used, it should not be allowed to go into high impedance.
"Refer to Table 5-' for more information.

1-8

Table 1-5. Pin Function Description for Port D

PIN NO.

PIN NAME '50C41 '50C42 I/O DESCRIPTION
'50C43 '50C44

POO (LSB) 13 0 General-purpose output port
P01 14 0
P02 15 0
P03 16 0
P04 17 0
P05 18 0
P06 21 0
P07 (MSB) 22 0

1-9

Table 1-6. Pin Function Description of IRT (several options), INIT, OSC, and DA

PIN NO.

PIN NAME '50C41 '50C42 I/O DESCRIPTION
'50C43 '50C44

[MASTER/IRT IN OPTION] 13 19 I Interrupt input when programmed by
IRT a TTMA software command to be an

input to the timer prescale register.

[SLAVE/iRi IN OPTION] 13 19 I Interrupt input when programmed by
IRT a TTMA software command to be an

input to the timer prescale register.

[SLAVE/IRT OUT OPTION] 13 19 0 Ready for data output. IRT goes high
IRT when ENA 1 is pulled low by external

processor while pin R/iN is high. IRT
goes low when data are put into
Port A with the TAPA * instruction.
Software command TPCA can be
used to read the data on the iRi pin.

DAl 27 39 0 Positive digital-to-analog converter
output (PWM)

DA2 28 40 0 Negative digital-to-analog converter
output (PWM)

INIT 4 4 I Initialize input; when low, device is
initialized and goes into the low-power
mode, Port B and Port D outputs are
latched low. Port A is put into input
mode. When INIT goes from low to
high, the program counter is loaded
with zeroes.

OSCl 2 2 I Clock input. Crystal or ceramic
resonator between OSCl and OSC2:
3.07-MHz crystal/ceramic resonator

for 8-kHz sampling rate
3.84-MHz crystal/ceramic resonator

for 10-kHz sampling rate

OSC2 3 3 0 Clock return

VDD 1 1 I 5-V nominal supply voltage

VSS 14 20 I Ground

'Refer to Table 5-1 for more information.

1-10

1.7 Introduction to LPC

The LPC-1 0 system uses a mathematical model of the human vocal tract to
enable efficient digital storage and the recreation of realistic speech. To
understand LPC (Linear Predictive Coding), it is essential to understand how
the vocal tract works . This introduction, therefore, begins with a short
description of the vocal tract. The LPC model and data compression techniques
are then addressed. A short discussion of the techniques and pitfalls of
collecting, analyzing, and editing speech for LPC synthesis is included in
Appendix A. For more information, contact your TI field sales representative
or regional technology center.

1.7.1 The Vocal Tract

Speech is the result of the interaction between three elements in the vocal
tract: air from the lungs, a restriction which converts the air flow to sound,
and the vocal cavities that are positioned to resonate properly.

The air from the lungs is expelled through the vocal tract when the muscles
of the chest and diaphragm are compressed. Pressure is used as a volume
control, higher pressure for louder speech.

As air flows through the vocal tract, it makes very little sound if there is no
restriction. The vocal cords are one type of restriction. They can be tightened
across the vocal tract to stop the flow of air. Pressure builds up behind them
and forces them open. This happens over and over, generating a series of
pulses. The tension on the vocal cords can be varied to change the frequency
of the pulses. Many speech sounds are produced by this type of restriction,
for example, the" A" sound. This is called "voiced" speech.

A different type of restriction takes place in the mouth and causes a hissing
sound called white noise. The "S" sound is a good example. This occurs when
the tongue and some part of the mouth are in close contact or when the lips
are pursed. This restriction causes high flow velocities which cause turbulence
that produces white noise. This is called "unvoiced" speech.

The pulses from the vocal cords and the noise from the turbulence have fairly
broad, flat spectral characteristics. In other words, they are really noise, not
speech. The shape of the oral cavity changes noise into recognizable speech.
The position of the tongue, the lips and the jaws change the resonance of
the vocal tract, shaping the raw noise of restricted air flow into understandable
sounds.

1.7.2 The LPC Model

The LPC model incorporates elements analogous to each of the elements of
the vocal tract described above. It has an excitation function generator ,that
models both types of restriction, a gain multiplication stage to model the
possible levels of pressure from the lungs, and a digital filter to model the
resonance in the oral and nasal cavities.

1-11

I,

Figure 1-4 shows the LPC model in schematic form. The excitation function
generator accepts coded pitch information as an input and can generate a
series of pulses similar to vocal cord pulses. It can also generate white noise.
The waveform is then multiplied by an energy factor that corresponds to the
pressure from the lungs. Finally, the signal is passed through a digital filter
that models the shape of the oral cavity. In the TSP50C4X family, this filter
has ten poles, so the synthesis is referred to as LPC-10.

PITCH

PERIODIC

LPC-10
DIGITAL D/A
FILTER

WHITE NOISE

1 ~ ENERGY K1-K10
FILTER

COEFFICIENTS

Figure 1-4. LPC-10 Vocal Tract Model

1.7.3 LPC Data Compression

1-12

The data compression for LPC-1 0 takes advantage of other characteristics
of speech. Speech changes fairly slowly, and the oral and nasal cavities tend
to fall into certain areas of resonance more than others. The speech is analyzed
in frames that are generally from 10 to 25 ms long. The inputs to the model
are calculated as an average for the entire frame. The synthesizer smooths
or interpolates the data during the frame, so there isn't an abrupt transition
at the end of each frame. Often speech changes even more slowly than the
frame. Tl's LPC model allows for a repeat frame, where the only values
changed are the pitch and the energy. The filter coefficients are kept constant
from the previous frame. To take advantage of the recurrent nature of
resonance in the oral cavity, all the coefficients are encoded, with anywhere
from seven to three bits for each coefficient. The coding table is designed
so that more coverage is given to the coefficient values that occur frequently.

2 TSP50C4X Family Architecture
The major components of the TSP50C4X devices are a speech synthesizer,
an 8-bit microprocessor, an internal 8K-byte (TSP50C41/42) or 16K-byte
(TSP50C43/44) ROM and interface logic (1/0) as shown in Figure 2-1.
Instructions are fetched by the microprocessor from the ROM approximately
every 9 p's (oscillator frequency divided by 32) and are used to control the
algorithm sequences. To generate speech, the processor accesses speech
data from either the internal 8K-byte ROM or an external speech ROM. Once
the data has been read, the processor must unpack and decode the individual
speech parameters and store the results in a dedicated section of the RAM.

The 1/0 consists of one 8-bit bidirectional port (Port A), two 8-bit output ports
(Port B and Port D), one 8-bit input port (Port C) and an IRT pin. These ports
are under the control of the microprocessor and are configured by mask
options.

The synthesizer shares access to the RAM and addresses the individual
parameter locations as needed when generating speech. The speech
synthesizer performs parameter smoothing and pitch period control as well
as lattice filter computations.

INTERFACE LOGIC DATA
BUS

PAO-PA3 4}

PA4-PA7 -+~4-,.<t PORT A

B
PAO-PA7 -_~ PORT B

PCO-PC3 --1---41
PORT C

PC4-PC7 ---1~-f1'-TSP50C42i44
I ONLY

PDO-PD7 ~ PORT D

I I L ___ -'

IRT ------------1

OSC1~ OSCILLATOR
OSC2

'-------'
VDDl + 5 Vl ----+

VBB1GNDl ----+

INIT -+-----1
SYS RESETI

POWER DOWN
CIRCUIT

SPEECH PROCESSOR
AND

INTERNAL MEMORY

B-BIT
ADDRESS

BUS

D
E
C
o
D
E
R

Figure 2-1. System Block Diagram

SPEECH SYNTHESIZER

E.K ... Kl0 8

ANALOG
OUTPUT

DAl DA2

2-1

2.1 ROM

The ROM holds the control program, the speech data, and any other data
required by the application. Certain locations in the ROM are reserved for
specific purposes (Figure 2-2).

ADDRESS

0000

0001

0002

0003

0004

0005

0006

0007

7 6 5 4 3 2 1 0

SBR04
~r-r-+-+-+-+-+-~

SBR04
~r-r-+-+-+-+-+-~

SBR06
r-+-~~-r-+~~~

SBR06

Branch to initialization routine
~r-r-+-+-+-+-+-~

Branch to interrupt routine
~r-r-+-+-+-+-+-~

, , ,

3CO-3FFI 1 1 1 1 1 1 Reserved for TI code

18K Version) 1FFD-1FFFI-I-'-I-'-1 -'--'-1-'-1 -'-1 -'-1-IDeVice code
, , ,

(16K Version) 3FFD_3FFFI-I-r-rI-rI-rI-r1 -r1-rI-lDeVice code

NOTE: All addresses in this manual are in hexadecimal unless otherwise noted. All other numbers
are in decimal unless otherwise noted.

Figure 2-2. ROM Map

The ROM may be accessed in three ways:

1) The program counter is used to address processor instructions.

2) 'The GET* instruction can be used to transfer 1 to a-bits from
anywhere in ROM to the A register. The GET counter is initialized
by the LUSPS instruction. The SAR (Speech Address Register) points
to the ROM location to be used.

3) The LUAA * instruction can be used to transfer a byte from ROM
locations 0-3FF into the A (egister.

* Refer to Table 5-1 for more information.

2-2

2.2 Program Counter

The TSP50C4X devices are available with a 13-bit (TSP50C41/42) or 14-bit
(TSP50C43/44) program counter. The program counter points to the next
instruction to be executed. After the instruction is executed, it is normally
incremented to point to the next instruction. Several instructions are used
to change the value of the program counter. These are:

BR - branch
SBR - short branch
CALL - call subroutine
RETN - return from subroutine
RETI - return from interrupts

2.3 Program Counter Stack

The program counter stack has five levels. When a subroutine is called or
an interrupt occurs, the contents of the program counter are pushed onto
the stack. When a RETN (return from subroutine) or an RETI (return from
interrupt) is executed, the contents of the top stack location are popped into
the program counter. Certain instructions (LUSPS, GET, LUAA) push the
contents of the program counter onto the stack and then pop it back during
their execution. The POP* instruction may be used to pop the top stack
location.

2.4 Random Access Memory (RAM)
The RAM has 128 bytes plus 16 nibbles. Addresses 0 to 7F refer to bytes,
and addresses 80 to 8F refer to nibbles. RAM locations 0 to 18 and 80 to
8F are used for communication with the synthesizer when speech is being
generated. When not executing speech, the entire memory may be used for
algorithm data storage.

*Refer to Table 5-1 for more information.

RAM
7 654 3 2 1 0 321 0

~~II I I I I I I I Sop=r=I1
7F I I I I I I I I SF I I I I I

2-3

2.5 Arithmetic Logic Unit (ALU)

The ALU performs simple arithmetic, comparison, and logical functions for
the central processor. The ALU is 10 bits in length and provides extra range
for generating table look-up addresses. When transferring a-bit data to the
ALU, data is right justified. The input to the upper two bits may be either
o (integer mode) or equal to the MSB of the a-bit data (extended sign mode)
depending on the set or reset condition of the mode latch (EXTSG and INTGRI.
All bit and c:omparison operations are performed on the lower a bits.

2.6 A Register

The A register or accumulator is the primary 10-bit register. Its contents can
be transferred to or from ROM, RAM, and most of the other registers. It is
used for arithmetic and logical operations. The contents are saved, in a
dedicated storage register, during interrupts and restored by the RETI*
instruction.

A Register

9 8 7 6 543 2 1 0

1 1 1 1 1 1 1 1 1'1 1
2.7 X Register

The X register is an a-bit register used as a RAM index register. All RAM access
instructions use the X register to point to a specific RAM location. The
X register can also be used as a general purpose counter. The contents of
the X register are saved during interrupts.

X Register
7 6 543 2 1 0

1 1 1 1 1 1 1 1 1

*Refer to Table 5-1 for more detail.

2-4

2.8 B Register
The 8-bit B register is used for temporary storage. It is especially helpful for
storing a RAM address, since it can be exchanged with the X register using
the XBX* instruction. The contents of the B register are not saved during
interrupts.

B Register
7 6 543 2 1 0

I I I I I I I I I
2.9 Status Flag

The status flag is set or cleared by various instructions, depending on the
result of the instruction. The BR, SBR, and CALL instructions are conditional.
These instructions are executed only when the status flag is set. Refer to
the individual descriptions of these instructions in Section 3 to find the status
flag value.

2.10 Timer Register

Status Flag
o

D

The 8-bit timer register is used for generating interrupts and for counting
events. It decrements once each time the timer prescale register goes from
00 to # FF. It can be loaded using the TXTM instruction and examined with
the TTMA * instruction. When it decrements from # 00 to # FF an interrupt
request will be generated. If interrupts are enabled, an immediate interrupt
will occur; if not, the interrupt request will remain pending until. interrupts
are enabled. The timer will not start counting down again until it is reloaded
by the TXTM instruction.

The timer register must be loaded with a fixed # 1 F (hex) during synthesis.
It is used to generate interrupts for the synthesis software and as a time value
for parameter interpolation.

Timer Register
.7 6 543 2 1 0

I I I II I I I I

*Refer to Table 5-' for more detail.

2-5

2.11 Timer Prescale Register

The 8-bit timer prescale register is used as a divider of the input to the timer
register. When it decrements from # 00 to # FF, the timer register is also
decremented. The timer prescale register is then reloaded with the value in
the preset latch, and the counting starts again.

The timer prescale register clock comes from an internal clock or from an.
external source on the IRT pin. The internal clock runs at 1/48 the clock.
frequency of the chip. The TTMA * instruction makes the clock source
external, and the RSECT selects the internal clock.

Timer Prescale Register
7 6 543 2 1 0

I I I I I I I I I
2.12 Pitch Register

The 8-bit pitch register is really a synthesizer register, but it is mentioned here
because it is the only one loaded explicitly by the processor. When the START
instruction is executed, the pitch register is loaded with the current value in
the accumulator. After that, the pitch register is loaded from a RAMJocation.
See Section 6 for a detailed explanation.

2. 13 Speech Address Register

Speech Address Register
13121110 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I
The speech address register is a 13-(TSP50C41/42) or 14-(TSP50C43/44)
bit register that is used to point to data in the internal ROM. It is loaded with
the TASH (Transfer Accumulator to Speech register High) and TASL (L is for
Low) instructions. When a LUSPS or GET instruction is executed, the ROM
value pointed to by the speech address register will be loaded into the parallel­
to-serial register and the speech address register is incremented.

*Refer to Table 5-1 for more information.

2-6

2.14 Parallel-to-Serial Register

Parallel-to-Serial Register
7 6 543 2 1 0

I I I
The 8-bit parallel-to-serial register is used to unpack speech. It can be loaded
with eight bits of data from an external TSP60CXX speech ROM or from the
internal ROM pointed to by the speech address register. The LUSPS instruction
is used to initialize the parallel-to-serial register and zero its bit counter. GET
instructions can then be used to transfer one to eight bits from the parallel­
to-serial register to the accumulator. When the parallel-to-serial register is
empty, it will automatically be reloaded. The INTRM instruction selects the
internal ROM as the source for the parallel-to-serial register, while EXTRM
selects external ROM.

2.15 Interface Logic

The TSP50C4X interface consists of four 8-bit ports. Port A (PA) is a
bidirectional port, Ports Band D (PB and PD) are output ports. Port B can also
be used as an interface to an external TSP60CXX serial ROM. Port C (PC)
is either a general 8-bit input port (master option) or is split into a 4-bit input
port and a 4-bit control port for Port A (slave option). In addition, an interrupt
(lRT) pin and a hardware reset (lNIT) pin are provided. The remaining six pins
are used for power supply, oscillator, and analog outputs. The choice of master
or slave operation for Port A is a mask-generation option that depends on
the type of product to which the device will be applied. The master option
is designed for single-chip applications or for applications in which the host
is the internal microprocessor. The slave option is intended for use in multichip
systems in which the host microprocessor is external.

2.16 Port A (MASTER Option)

Port A is a bidirectional port. The direction (input or output) of the port is
determined by software control. If a TAPA * instruction is executed, the
contents of the lower eight bits of the accumulator are transfered to Port A,
and it is used as an output port. If a TPAA * instruction is executed, Port A
is used as an input port and its contents are transferred to the A register.
The TPAM* instruction transfers the Port A values to the current RAM
location.

If the port is switched from output to input mode with the TPAA or TPAM
instructions, the data from the first transfer will be invalid. The instruction
should be executed twice.

*Refer to Table 5-1 for more information.
2-7

2.17 Port A (SLAVE Option)

In the slave option, the transfer of data to and from the a-bit Port A is
controlled by an external host through four pins of Port C. In the slave mode,
pins PC3-PCO have the function of read/write control, high nibble strobe, low
nibble strobe, and ready flag for handshake interfacing. The high and low nibble
strobe arrangement permits simple interfacing to 4-bit as well as a-bit
microprocessors. The ready pin is set to a not ready by a low nibble write
and reset by the RSRDY instruction to acknowledge that the data written to
Port A has been read by the internal microprocessor.

2.18 Port B

Port B can be either a general a-bit output port or a specialized external speech
ROM port. The configuration of this port is controlled by the EXTRM and
INTRM instructions. If the microprocessor executes the EXTRM command,
then the port is configured as a ROM port and the data source for GET
instructions will be Port B. If the microprocessor executes the INTRM
instruction, then Port B will be configured as a general a-bit output port and
all speech data will source from the internal ROM memory.

If the TSP60CXX external ROM is enabled and the INTRM instruction is
executed, there will be a bus conflict. To avoid this, access a nonexistent
TSP60CXX device before going to the INTRM mode. This will turn off the
TSP60CXX so that it will not conflict when Port B becomes all outputs.

At power-up, Port B is low.

2.19 Port C

Port C has two possible configurations. If the master option is selected, Port C
is a general input port. The data on the eight pins are transferred on command
TPCA to the A Register.

In the slave option, the port is configured so that PC3-PCO are used to control
Port A through the functions ENA 1, ENA2, R/W, and RDY. (See Applications,
Section 6 for more details.)

2.20 Port 0

2-8

Port D is a general output port. Data is transferred to this port from the internal
microprocessor by executing the command TAPD. This is available only on
the TSP50C42 and TSP50C44 devices.

At power-up, Port D is low.

PORTA
REGISTER

PA4-PA7 4
MOST

SIGNIFICAN~
NIBBLE

PAO-PA3 4 LEAST
SIGNIFICANT

~ NIBBLE

!I!
S III

;:)

t R III

.e
l-.e
Ce z
II:
W
l-
i:

S

t R

t Processor Controlled Functions

Figure 2-3. 1/0 Data Bus (PAO-PA7)

2.21 IRT Pin

The interrupt pin is hardware configurable by mask option to be an event­
counter input pin (lRT = input) or an interrupt output (slave option,
IRT = output) . When selected as an event-counter input pin, a signal is used
as the timer prescale register increment clock. The internal 80-kHz timing clock
can be selected by executing RSECT. The external clock on the interrupt pin
is selected by executing the command TTMA.

2.22 Speech Synthesizer

The task of generating synthetic speech is divided between the programmable
microprocessor and the dedicated speech synthesizer.

The microprocessor controls speech synthesis by unpacking and decoding
parameters as well as setting the update interval (frame rate). These aspects
of speech tend to vary from application to application and are well suited to
the microprocessor. The speech synthesizer, on the other hand, performs all
of the synthetic speech functions that require intensive computations but do
not change from application to application. These functions include the
implementation of a 1 a-pole digital lattice filter, a pitch-controlled excitation
generator, a parameter interpolator, and a digital-to-analog converter. Speech

2-9

parameter input is received from dedicated space in the microprocessor RAM,
and speech samples are generated at S kHz or 10kHz. Communication
between the microprocessor and the speech synthesizer take place via a
shared memory space in the microprocessor RAM. (Refer to the Applications
section for more information.)

2.22.1 Use of RAM by the Synthesizer

2-10

The RAM consists of 10SS bits that are arranged as 12S S-bit words from
address 00 to 7F and 16 4-bit words from SO-SF. The microprocessor can
read or write to any word in the RAM. The synthesizer can only read from
locations 00 to 17 and SO to SF, where the microprocessor stores the
PRESENT and the NEW values for the frame parameters.

After the timer register generates an interrupt, the synthesizer will read only
the PRESENT or both the PRESENT and NEW frame parameters. If interpolation
is required, the INTE instruction is invoked for the current frame and the
synthesizer uses both frame parameters. Otherwise, only the PRESENT
parameter is used.

When interrupt occurs (see subsection 2.22.2), the context switch changes
addresses for the PRESENT and NEW values. This is done so that the
parameters put into NEW value RAM locations by the microprocessor become
the PRESENT values for the current speech frame. This is a hardware function
and it is transparent to the microprocessor.

If the INTE instruction is not invoked for the current frame, then interpolation
will not be performed. The synthesizer will read the frame parameters for the
PRESENT frame and put them into the LPC filter.

If the INTE instruction is invoked for the current frame, then the synthesizer
will perform interpolation and the following sequence of events applies:

1. The interrupt will cause a context switch.
2. The microprocessor loads the next frame of data into the NEW value

RAM location. The data for the current frame can be found in the
PRESENT value RAM location.

3. The microprocessor invokes the INTE instruction, which will put the
synthesizer into the interpolation mode.

4. Every pitch period the synthesizer will:
a. Read the PRESENT and NEW value parameters.
b. Read the timer register. This data defines the elapsed time from

the start of the current frame (PRESENT data values) to the start
of the next frame (NEW data values).

c. The synthesizer uses the data from (a) and (b) to perform a straight
line interpolation of the parameters for the current and next frame
parameters.

d. The computed parameters are put into the LPC filter.

1

I

ADDRESS COMMENTS I
I

00 NEW PITCH (11-4)

01 OLD PITCH (11-4)

02 NEW ENERGY 111-4)
03 OLD ENERGY (11-41
04 NEW K1 (11-4)

05 OLD K1 (11-4)

06 NEW K2 (11-4) 8 MSBs (11-4) of both

07 OLD K2 (11-4) "new" and "old"

08 NEW K3 (11-4) speech parameters.

09 OLD K3 (11-4) This area is reserved
OA NEW K4 (11-4) only during speech

generation. Context
address switch is
operative only for

14 NEW K9 (11-4) speech.
15 OLD K9 (11-4)

~ 16 NEW K10 (11-4)
17 OLD K10 (11-4)
18

General memory. No

7F T~I".~~
80 NEW PITCH (3-0)

81 OLD PITCH (3-0)

82 NEW ENERGY (3-0)

83 OLD ENERGY (3-0)

84 NEW K1 (3-0) 4 LSBs of speech
85 OLD K1 (3-0) parameters. K7-K10
86 NEW K2 (3-0) do not have memory

87 OLD K2 (3-0) assigned since 8 bit

88 NEW K3 (3-0) values are sufficient.
89 OLD K3 (3-0) When not generating
8A NEW K4 (3-0) speech the memory is

8B OLD K4 (3-0) available. Context
8C NEW K5 (3-0) addressing mode enabled
80 OLD K5 (3-0) during speech.

8E NEW K6 (3-0)

*
8F OLD K6 (3-0)

90 NOT AVAILABLE Not available

FF

Figure 2-4. RAM Map During Speech Generation

2-11

2.22.2 Context Switch

The Context Switch is used to point to the parameter set just loaded as the
NEW value and the previous set as the PRESENT value. Interpolation is then
enabled between the two sets of parameter values. The INTE (Enable Timer
Interrupt) instruction is used to control interpolation.

There are instances when interpolation should be disabled. The most common
example is for voicing transitions or when going from zero to a nonzero value
of energy. If no INTE instruction is executed, the Context Switch will change
and interpolation will be disabled.

The context addressing mode is enabled for the dedicated speech data address
space in RAM (addresses 00-17, SO-SF).

2.22.3 Interpolation

Interpolation takes place from the present values to the new values during
the frame. If interpolation is not enabled, the present values are used for the
entire frame. The programming task is made easier by the availability of the
Context Switch.

2.22.4 Timing Requirements

Table 2-1. Initialization Timing

CONDITION MIN MAX UNIT

TSP50C4X in the standby mode due to a
10

tw setoff command ns

INIT pulsed low while the TSP50C4X is active *
*One oscillator clock period.

INIT ----------__.

I.-tw---.!

Figure 2-5. Initialization Timing

Table 2-2. Timing Requirements

SAMPLE RATE

10 kHz 8 kHz UNIT

NOM NOM

Sample period 100 125 /LS

ROM clock rate 240 192 kHz

ROM clock period 4.17 5.20 /Ls

Oscillator rate 3.84 3.07 MHz

Oscillator period 260 3.25 ns

2-12

R/W~ 1111 :;f--~~\\~
I I I I

ENA1.

I+-tsu1~ J4--*-th1 I I
I .. L. ______ tW2 ___ I_-..~

X i-----fJj l~
tf -..I I+- -.t J+--tr : I
~tw1~ I I
I _t 2 _I ~th2 I
I 1- SU ---... I I

PA -----.... : ---c(DATA VALID)~----,"",lIfo---""i - -
I I L I ..
I4-td1~ M ... t-------tcJ2-----.. .,

{J-----.o\1 I

RDy ______ -J! ~~I--+I_
~I

Figure 2-6. Write Timing Diagram

Table 2-3. Write Timing Requirements (see Figure 2-61

PARAMETER MIN MAX UNIT

tsu1 Setup time, R/W before ENA 1l or ENA2l 80 ns

tsu2 Setup time, data valid before ENA 1 i or ENA2i 100 ns

th1 Hold time, R/W after ENA 1l or ENA2l 40 ns

th2 Hold time, data valid after ENA 1 t or ENA2i 40 ns

tw1 Pulse duration, ENA 1 or ENA2 low 200 ns

tdc Cycle delay time 32
CLK

cycles

tr Rise time, ENA 1 or ENA2 50 ns

tf Fall time, ENA 1 or ENA2 50 ns

td1
Delay time from ENA 1 low or ENA2 low to

250
ROY high

ns

td2
Delay time from ENA 1 high or ENA2 high to

Program Dependent
ROY low

NOTE: ENA 1 applies to PA4 through PA 7, and ENA2 applies to PAO through PA3.

2-13

R~D ~
I4-tsu1~ i4- th1-.t ~: ... ---

I M tw2----~_1
"1"--tW1--~~ .it-' --------f/ r--{

Nil-I -----"1: '-
tf.....t 14- --.t j4-tr

j.-tcl1-.j I.-'h2-.j

PA ------: --('(DATAY~D)~--------fl f-I-----
I.-tcl2~ I

I 14 td3------.!_1

I I~:I
mT ______________ J)f 7 ~

Figure 2-7. Read Timing Diagram

Table 2-4. Read Timing Requirements (see Figure 2-71

PARAMETER MIN MAX UNIT

tsu1 Setup time, Rm before mA1.J. or ENA2.J. 80 ns

th1 Hold time, R/W after mA1 t or mA2t 40 ns

th2 Hold time, data valid after mA1t or ENA2t 100 ns

tw1 Pulse duration, mA1 or mA2 low 200 ns

tw2 Pulse duration, ElilA1 or ENA2 high 2 I's

tr Rise time, ENA 1 or ElilA2 50 ns

tf Fall time, ENA 1 or ElilA2 50 ns

td1
Delay time from 'Ef\JA1 low or ElilA2 low

250 ns
to data valid

td2
Delay time from ENA 1 low or ENA2 low to

1R'f high
250 ns

td3
Delay time from ENA 1 high or ENA2 high to

Program Dependent
1R'f low

NOTE: mA1 applies to PA4 through PA7, and ENA2 applies to PAO through PA3.

2-14

2.22.5 Voicing Control

Voicing transitions refer to the change in the excitation source from voiced
to unvoiced or from unvoiced to voiced. (See section 1.7.1 for a definition
of voiced speech). The voicing status of a frame is encoded into the speech
data and must be decoded by the unpacking algorithm. The voicing status
is conveyed to the synthesizer by executing the T A V instruction (Transfer
A Register to Voicing Register). A "1" on the LSB ofthe A Register will cause
voiced excitation to be used while a "0" will indicate unvoiced excitation.
A change in value of the voicing register will take effect on the next frame
boundary. The actual voicing change in the synthesizer is synchronized by
both timer overflow (next frame boundary) and parameter interpolation. This
synchronization is hardware-controlled and is transparent to software control.

2.22.6 Frame Length Control

All speech control algorithms must include some type of frame-length control.
In order to obtain the proper frame length and also to insure proper operation
of the parameter interpolation, the timer preset value is fixed to be 1 F, and
the prescale register preset value is variable and determines the actual frame
length. The frame length in seconds is calculated by:

1536 (N + 1)
TFL = OSCILLATOR RATE

where N is the decimal value of the prescale preset value. The frame length
in terms of speech samples is

TFL = 4 * (N+1).

It is important that one of the first statements of the speech interrupt routine
is the timer register preset statement. For fixed-frame-Iength applications,
the prescale register must be set only once at the beginning of speech. For
variable-frame-Iength applications, the timer prescale register needs to be
updated each frame as soon after the timer interrupt as possible.

2.22.7 Digital to Analog Converter and Output Buffer

The TSP50C4X devices contain an internal digital-to-analog converter (DAC)
connected to the output of the synthesizer. The DAC has a pulse-width­
modulated, push-pull output that drives the output buffers DA 1 and DA2,
which are capable of driving a low-power speaker directly (see Section 3).

2-15

2-16

3. Electrical Specifications
3.1 Absolute Maximum Ratings Over Operating Free-Air

Temperature Range

Supply voltage, Voo, "",.",."""""".,. - 0,3 V to 7 V
Input voltage, VI .. - 0.3 V to Voo + 0.3 V
Output voltage, Vo -0.3 V to VOO + 0.3 V
Operating free-air temperature range. O°C to 70°C
Storage temperature range. - 30°C to 125°C
All voltages are with respect to vss.

3.2 Recommended Operating Conditions - DC

PARAMETER CONDITIONS MIN Typt MAX UNIT

Voo* 4 5 6 V

TA Operating free-air temperature 0 70 °C
VOO = 4 V 3 4

VIH VOO = 5 V 3.8 5 V

VOO = 6 V 4.5 6

VOO = 4 V 1

VIL VOO = 5 V 1.2 V

VOO = 6 V 1.5

VOO = 5 V, RL = 50 [2 1.9 2.8

VOO = 5 V, RL = 100 [2 2.9 3.6
VL V

VOO = 4 V, RL = 50 [2 1.3 2

VOO = 4 V, RL = 100 [2 2 2.7

VOO = 5 V, RL = 50 [2 72 157

Output power VOO = 5 V, RL = 100 [2 84 130
mW

O/A VOO = 4 V, RL = 50 [2 34 80

VOO = 4 V, RL = 100 [2 40 73

Pullup Resistance VOO = 5 (when programmed) 25 50 100 k[2

'Unless otherwise noted, all voltages are with respect to VSS'

3.3 Recommended Operating Conditions - AC

PARAMETER CONDITIONS MIN Typt MAX UNIT

tr
VOO = 5 V, PA,B,O into 100 pF

150 ns
10% to 90%

tf
VOO = 5 V, PA,B,O into 100 pF

10% to 90%
100 ns

Speech Sample Rate = 10kHz 3.84
fosc MHz

Speech Sample Rate = 8 kHz 3.07

t All typical values are at VDD = 5 V and T A = 25°C.

3-1

3.4 Electrical Characteristics Over Recommended Operating Free­
Air Temperature Range

PARAMETER CONDITIONS MIN TVPt MAX UNIT

Voo = 5 V
Standby mode = SETOFF executed or

10
INIT high, no pullup resistor on INIT, all

50 p.A

ICC
port pins are open.

VOO = 5 V
Operating mode = INIT high and

1.5
SETOFF not executed, OA pins are

3 mA

open.

VOO = 5 V, IOH = 0.3 mA 4.7 4.85
VOH V

IOH = 1.2 mA 4 4.5

VOL VOO = 5 V, IOL = 1.7 mA 0~3 0.4 V

II Input current 5.0 p.A

VOO = 4 V, VOH = 3.5 V 0.3 0.8

IOH VOO = 5 V, VOH = 4.5 V 0.6 1.2 mA

VOO = 6 V, VOH = 5.5 V 0.8 1.5

VOO = 4 V, VOL = 0.4 V 1.2 1.8

IOL VOO = 5 V, VOL = 0.4 V 1.7 2.4 mA

VOO = 6 V, VOL =.0.4 V 2 2.8

ro VOO = 5 V, OA 1 and OA2 pins 50 n
tAli typical values are at TA = 25°C.

For details on Timing, see Section 2.

3.5 Oscillator

The oscillator pins OSC 1 and OSC2 are provided for either a crystal or ceramic
resonator connection in the typical phase-shift oscillator connection. The
recommended value for circuit components C1 and C2 are shown.

3-2

TSP50C4X
OSC1 OSC2

(2) (3)

e-----1J 0 Lt----e
I I

C1 --
30 pF d;

-'- C2
d; 30 pF

Figure 3-1. Typical Phase-Shift Oscillator Connection

3.6 Direct Speaker Driver

The analog buffers at DA 1 and DA2 are designed to directly drive a 50- to
100-0 speaker with approximately 120 to 150 mW of peak power. Average
power is considerably below this figure. The reduction in power is caused
by the nature of speech. The effective analog output impedance at 5 V is
typically 50 0 for output currents less than 60 mAo For output currents more
than 60 mA, the DAC buffers act as current sources. The outputs can also
be used to drive transistors or operational amplifiers.

TSP50C4X

DA1 DA2

Rapk - 50·1000

Figure 3-2. Typical Direct Speaker Drive Connection

3-3

3-4

4. TSP50C4X Assembler
TSP50C4X Assembly Language instructions are mnemonics that correspond
directly to binary machine instruction codes. An assembly language program
(source program) must be converted to a machine language program (object
program) by a process called assembling before a computer can execute it.
Assembling converts the mnemonics to binary values and associates those
values with binary addresses, creating machine language instructions.
Assembler directives control this process, place data in the object program,
and assign values to the symbols used in the object program.

TSP50C4X directives are of four kinds:
Directives that affect the location counters
Directives that affect assembler output
Directives that initialize constants
Directives that copy source files and end programs.

The notation used in this document is as follows:
An optional field is indicated by brackets, for example [LABEL].
User supplied contents are indicated by braces; for example
(num).
A reserved keyword is given in capital letters.
A required blank is indicated by a caret (II).

EXAMPLE

[(name)] II SBR II (number) [(comment)]

4. 1 Source Statement Format
An assembly language source program consists of statements contained in
the assembly source file(s) that may contain assembler directives, machine
instructions, or comments. Source statements may have four ordered fields
separated by one or more blanks. These fields (label, command, operand, and
comment) are discussed in the following paragraphs.

The source statement may be as long as 80 characters, but the assembler
will truncate the source line at 60 characters without warning. The user should
ensure that nothing other than comments extend past column 60.

Any source line starting with an asterisk in the first character position is treated
as a comment. It is printed in the assembly listing but has no other effect
on the assembly process.

The syntax of the source statements is:

[(label)] II COMMAND II (operand) II [(comment)]

4-1

A source statement may have an optional label that is defined by the user.
One or more blanks separate the label from the COMMAND mnemonic. One
or more blanks separate the mnemonic from the operand (if required by the
command). One or more blanks separate the operand from the comment field.

. 4.1.1 Label Field

The label field begins in character position 1 of the source line. If position
1 is a character other than a blank or an asterisk, the assembler assumes that
the symbol is a label. If a label is omitted, then the first character position
must be a blank. The label may contain up to six alphabetic (a .. z,A .. Z), numeric
(0 .. 9) and special (@,$,_) characters. The first character should be alphabetic.
The remaining five characters may be any of the others mentioned above.

4.1.2 Command Field

The command field begins after the blank that terminates the label field, or
the first nonblank character after the first position (which is blank when the
label is omitted). The command field is terminated by one or more blanks and
may not extend past the character position 60. The command field may
contain either an assembler mnemonic (e.g., TAX) or an assembler directive
(e.g., OPTION). The assembler does not distinguish between capital and small
letters in the command name; for example, TAX, Tax, and tAX are identical
to the assembler.

4.1.3 Operand Field

The operand field begins following the blank that terminates the command
field and may not extend past character position 60. The operand may contain
one or more of the constants or expressions described below. Terms in the
operand field are separated by commas. The operand field is terminated by
the first blank encountered.

4.1.4 Comment Field

The comment field begins after the blank that terminates the operand field
or the blank that terminates the command field if no operand is required. The
comment field may extend to the end of the source record and may contain
any ASCII characters including blanks.

4.2 Constants

4-2

The assembler recognizes the following five types of constants:

Decimal integer
Binary integer
Hexadecimal integer
Character
Assembly-time

4.2.1 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. The range
of values of decimal integers is - 32,768 to + 65,535. Negative numbers
are given their two's complement representation.

The following are valid decimal constants:

1000 Constant equal to 1000 or # 03E8
- 32768 Constant equal to - 32768 or # 8000
25 Constant equal to 25 or #0019

4.2.2 Binary Integer Constants

A binary integer constant is written as a string of up to sixteen binary digits
preceded by a question mark ("7"). If less than sixteen digits are specified,
the assembler will right justify the given bits in the resulting constant.

The following are valid binary constants:

70000000000010011 Constant equal to 19 or #0013
70111111111111111 Constant equal to 32767 or # 7FFF
711110 Constant equal to 30 or # 001 E

4.2.3 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal
digits preceded by a pound sign' #' or a greater than sign' >'. If less than
four hexadecimal digits are specified, the assembler will right justify the bits
that are specified in the resulting' constant. Hexadecimal digits include the
decimal values '0' through '9' and the letters 'a' (or 'A') through 'f' (or 'F).

The following are valid hexadecimal constants:

7F Constant equal to 127 (or # 007F)
> 7f Constant equal to 127 (or # 007F)
307a Constant equal to 12410 (or # 307 A)

4.2.4 Character Constants

A character constant is written as a string of one or two characters enclosed
in single quotes. A single quote can be represented within the character
constant by two successive quotes. If less than two characters are specified,
the assembler will right justify the given bits in the resulting constant. The
characters are represented internally as 8-bit ASCII characters. A character
constant consisting of only two single quotes (no character) is valid and is
assigned the value 0000 (Hex).

4-3

The following are valid character constants:
, AB' Constant equal to # 4142
'C' Constant equal to #0043
'0' Constant equal to # 2744

4.2.5 Assembly-Time Constants

An assembly-time constant is a symbol given a value that appears in the label
field of a statement. The value of the symbol is determined at assembly time
and may be assigned by expressions using any of the above constant types.

4.3 Symbols

Symbols are used in the label and the operand fields. A symbol is a string
of alphanumeric characters: 'a' through 'z', 'A' through 'Z', '0' through '9',
and special characters '@', '_', and '$'. Upper-case and lower-case
characters are not distinguished from one another. The first character in a
symbol must not be a number or a '$'. No character may be blank. When
more than six characters are used in a symbol, the assembler prints all the
characters but issues a warning message that the symbol has been truncated
and uses only the first six characters for processing.

Symbols used in the label field become symbolic addresses. They are
associated with locations in the program and must not be used in the label
field of other statements. Mnemonic operation codes and assembler directives
may also be used as valid user-defined symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly source
by appearing in the label field of a statement.

The following are examples of valid symbols:

START
Start
strt-1

4.3.1 Predefined Symbol '$'

4-4

The doUar sign '$' is a predefined symbol given the value of the current location
within the program. This can be used in the operand field to indicate relative
program offsets. For example:

BR $+6

would result in a branch to six locations beyond the current location.

4.3.2 Character String

Several assembler directives require character strings in the operand field.
A character string is written as a string of characters enclosed in single quotes.
A quote may be represented in the string by two successive quotes. The
maximum length of the string is defined for each directive that requires a
character string. The characters are represented internally as 8-bit ASCII.

The following are valid character strings:

'SAMPLE PROGRAM'
'Plan "C'"

4.4 Expressions

Expressions are used in the operand field of assembler instructions and
directives. An expression is a constant or symbol, a series of constants or
symbols, or a series of constants and symbols separated by arithmetic
operators. Each constant or symbol may be preceded by a minus sign (unary
minus) or a plus sign (unary plus). Unary minus is the same as taking the two's
complement of the value. An expression may not contain embedded blanks.
The valid range of values in an expression is - 32.768 to + 65,535. The value
of all terms of an expression must be known at assembly time.

4.4.1 Arithmetic Operators in Expressions

The arithmetic operators that can be used in an expression are as follows:

+

*
I
&

++
&&

for addition
for subtraction
for multiplication
for division
for bitwise AND
for bitwise OR
for bitwise EXCLUSIVE OR

In evaluating an expression, the assembler first negates any constant or
symbol preceded by a unary minus and then performs the arithmetic operations
from left to right. The assembler does not assign arithmetic operation
precedence to any other than unary plus or unary minus (so that the expression
4 + 5 * 2 would be evaluated as 18, not 14).

4.4.2 Parentheses in Expressions

The assembler supports the use of parentheses in expressions to alter the
order of evaluation of the expression. Nesting of pairs of parentheses within
expressions is also supported. When parentheses are used, first the expression
in the innermost pair is processed, then the expression within the next inner

4-5

pair is evaluated, and so on. After the evaluation of the expressions within
all the parentheses is finished, the rest is completed from left to right.
Evaluation of the expressions within parentheses at the same nesting level
is simultaneous. Parenthetical expressions may not be nested more than eight
deep.

4.5 Invoking the Assembler
The assembler is invoked by typing:

ASM5C A [- (options)l A (source[.extl)

where:

'Options' represents a list of assembler options (see Section 4.6). 'Source'
stands for the name of the source file with the optional extension. If the
extension is not given, then the default extension of '.ASM' is assumed.

For example:

ASM5C -I PROGRAM

The assembler uses the source file PROGRAM.ASM and generates the output
object file PROGRAM.MPO; No list file is generated.

4.5.1 Assembler Input and Output Files

The assembler takes as input a file containing the assembly source and
produces as output a listing file and an object file in either binary format or
tagged object format.

4.5.2 Assembly Source File

The assembly source file is specified in the command line. If no extension
is given, then' .ASM' is assumed.

For example:

ASM5C PROGRAM.SRC

Uses the file PROGRAM.SRC as the Assembly source file.

ASM5C PROGRAM

Uses the file PROGRAM.ASM as the Assembly source file.

4;5.3 Assembly Binary Object File

4-6

The assembly process produces an object file in binary format by default. The
object output is placed in a file with the same file name as the assembly source
except that the extension will be .BIN . If the binary file is not desired, it can
be disabled either as a commend line option or with an Option statement.

For example:

ASM5C PROGRAM.SRC

Uses file PROGRAM.SRC as the Assembly source file and the file
PROGRAM.BIN as the binary object output file.

ASM5C - 0 PROGRAM.SRC

Uses the file PROGRAM.SRC as the Assembly source file and produces no
object output.

4.5.4 Assembly Tagged Object File

If needed, the assembler can substitute an object file in 990 tagged object
format for the binary format file. If produced, the object output is placed in
a file with the same file name as the assembly source except that the extension
will be '.MPO'.

For example:

ASM5C -9 PROGRAM.SRC

Uses the file PROGRAM.SRC as the assembly source file and uses the file
PR()GRAM.MPO as the tagged object output file. No binary formatted object
file is produced.

4.5.5 Assembly Listing File

The assembly process produces a listing file which contains the source
instructions, the assembled code, and a cross-reference table (optional). The
listing file will be placed in a file with the same file name as the assembly
source except that the extension will be .LST.

For example:

ASM5C PROGRAM.SRC

Uses the file PROGRAM.SRC as the assembly source file and the file
PROGRAM.LST as the assembly listing file.

4.6 Options and Switches

4.6.1 Command Line Options

Several options can be invoked from the command line. This is done by listing
the option abbreviation prefixed by a minus sign.

For example:

ASM5C -10 PROGRAM.ASM

4-7

Assembles the program in file PROGRAM.ASM without generating either a
listing file or an object file. Errors are written to the console. The following
command line options are available (see Table 4-1).

4.6.1.1 BYTE Unlist Option

Placing a "b" or "B" in the command field causes the assembler to list only
the first data byte in a BYTE or RBYTE statement. If a BYTE or RBYTE
statement has n arguments, then n lines are used to list the resulting data
in the object column. If the BYTE unlist switch is set, then only the first line
(which also contains the source line listing) is written to the listing file.

4.6.1.2 DATA Unlist Option

Placing a "d" or "D" in the command field causes the assembler to list only
the first data byte in a DATA or RDA T A statement. If a DATA or RDAT A
statement has n arguments, then n lines are used to list the resulting bytes
in the object column. If the DATA unlist switch is set, then only the first line
(which also contains the source line listing) will be written to the listing file.

4.6.1.3 XREF Unlist Option

Placing an "x" or "X" in the command field causes the assembler to add
a cross-reference list at the end of the listing file.

4.6.1.4 TEXT Unlist Option

Placing a "t" or "T" in the command field causes the assembler to list only
the first opcode in a TEXT or RTEXTstatement in the listing file. If a TEXT
or RTEXT statement has as an argument a string containing n characters,
then the ASCII representations of these n characters are written in the opcode
column of the listing. If the TEXT unlist switch is set, then only the first line
(which also contains the source line listing) is written to the list file.

4.6.1.5 WARNING Unlist Option

Placing a "w" or "W" in the command field causes the assembler to suppress
WARNING messages. However, warnings are counted and error messages
are generated.

4.6.1.6 8K Assembly Mode Option

4-8

Placing an "8" in the command field puts the assembler in 8K mode. This
has the effect of dividing the address generated by any branch by two and
performing a check that any label addressed by a branch is on an even address.

4.6.2 Complete XREF Switch

Placing an "r" or "R" in the option field causes the assembler to create a
reduced XREF listing if one is produced. All symbols (whether used or not)
are listed. The 'r'option causes the assembler to omit from the XREF listing
all symbols in the copy files that were never used.

4.6.3 Object Module Switch

Placing an "0" or "0" in the option field causes the assembler not to generate
any object output modules.

4.6.4 Listing File Switch

Placing an "I" or "L" in the option field causes the assembler not to generate
the listing file but to display error messages on the screen.

4.6.5 Page Eject Disable Switch

Placing a "p" or "P" in the option field causes the assembler to print the
listing in a continual manner without division into separate pages. A form feed
can be forced where desired using the PAGE command.

4.6.6 Error to Screen Switch

Placing an "s" or "S" in the option field causes the assembler not to write
errors to the screen unless no listing file is being generated.

4.6.7 Binary Code File Disable Switch

Placing a "9" in the option field causes the assembler to generate the object
module in tagged object format in a file with a .MPO extension instead of
the normal binary object module in a file with a .BIN extension.

4-9

CHARACTER

OR

NUMBER

B or b

o or d

L or I

o or 0

P or p

R or r

S or s

Tor t

Worw

X or x
8

Table 4-1. Switches and Options

OPTION DESCRIPTION

Lists only the first data byte in BYTE or RBYTE

Lists only the first data byte in DATA or RDAT A

Displays error messages without generating a listing

Generates object output module disable

Prints listing without page breaks

Produces a reduced XREF list

Writes no errors on screen unless no listing file is generated

Lists only the first data byte in a TEXT or RTEXT

Suppresses the warning message

Adds a cross-reference list at the end

Checks if any label addressed by a branch is on even

boundary. Adjusts branch addresses for the 8K mask option.

9 Generates object module in tagged object format

4.7 Assembler Directives

4-10

Assembler directives are instructions that modify the assembler operation.
They are invoked by placing the directive mnemonic in the command field
and any changing operands in the operand field. The valid directives are
described in the following paragraphs and are summarized in Table 4-2.

Table 4-2. Summary of Assembler Directives

DIRECTIVES THAT AFFECT THE LOCATION COUNTER

MNEMONIC DIRECTIVE SYNTAX

AORG Absolute origin [(label)l /\ AORG /\ (expression) /\ [(comment)l

BES Block ending with [(label») /\ BES /\ (expression) /\ [(comment)l

symbol

BSS Block starting with [(label») /\ BSS /\ (expression) /\ [(comment)l

symbol

EVEN Even boundary [(label)1/\ EVEN /\ [(comment)l

DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

MNEMONIC DIRECTIVE SYNTAX

IDT Program identifier [(label)1/\ IDTR /\ (string) /\ [(comment)l

LIST Restart source listing [(label)1/\ LIST /\ (expression) /\ [(comment»)

OPTION Output options [(label)l /\ OPTION /\ (option list) /\ [(comment)l

PAGE Page eject [(label)l /\ PAGE /\ [(comment)l

TITL Page title [(label)1/\ TITL /\ (string) /\ [(comment)l

UNL Stop source listing [(label)l/\ UNL /\ [(comment)l

DIRECTIVES THAT INITIALIZE CONSTANTS

MNEMONIC DIRECTIVE SYNTAX

BYTE Initialize byte [(label)1/\ BYTE /\ (expr-1) /\ I. (expr-2,), , "

(expr-n)l/\ [(comment»)

RBYTE Reverse bit initialization [(label)l /\ BYTE /\ (expr-1) /\ [, (expr-2,), , "

of byte (expr-n)l/\ [(comment)l

DATA Initialize word [(label)l/\ DATA /\ (expr-1)/\ [,(expr-2,), , "

(expr-n)l/\ [(comment)l

RDATA Reverse bit initialization [(label)1/\ RDAT A /\ (expr-1) /\ [, (expr-2,), , "

of word (expr-n)l/\ [(comment»)

EaU Define assembly-time [(label») /\ EaU /\ [(comment)l

TEXT Initialize text [(label)l /\ TEXT /\ [-)' (string)' /\ [(comment)l

RTEXT Reverse bit initialization [(label)l/\ RTEXT /\ [-]'(string)' /\ [(comment)l

of text

MISCELLANEOUS DIRECTIVES

MNEMONIC DIRECTIVE SYNTAX
COpy Copy source file [(label») /\ COpy /\ (filename) /\ [(comment»)

END Program end [(label») /\ END /\ (symbol) /\ [(comment»)

4.7.1 AORG Directive

The AORG directive places the value in the operand field into the location
counter, Subsequent instructions will have addresses starting at this value,
The use of the label field is optional, but when a label is used, it is assigned
the value found in the operand field.

4-11

I ~

The syntax of the AORG directive is as follows:

[(Jabel)] A AORG A (expression) A [(comment)]

EXAMPLE

AORG # 1000 + OFSET

The symbol 'OFSET' must be predefined. If OFSET has a value of 8. the
location counter is set to # 1008 by this directive. Had a label been included.
the label would have been assigned the value of # 1008.

4.7.2 BYTE Directive

The BYTE directive places the value of one or more expressions into successive
bytes of program memory. The range of each term is 0 to 255. The command
field contains BYTE. The operand field contains a series of terms separated
by commas and terminated by blanks that represent the values to be placed
in the successive bytes of program memory.

The syntax of the BYTE directive is as follows:

[(Jabel)] A BYTE A (expr_1) [.(expr_2 •...• (expr_n)] A [(comment)]

EXAMpLE

BYTE # EO.5.data + 5

The value of the symbol "data" must be defined in the assembly process.
The example places the numbers 224. 5. and the result of the arithmetic
operation data + 5 in the next three bytes of program memory.

4.7.3 BES Directive

4-12

The BES directive is used to reserve a block of memory. It advances the
location counter by the value in the expression field. The label field may be
used to assign the value of the memory location following the reserved block.
The command field contains BES. The operand field contains a well-defined
expression that represents a positive integer that gives the number of words
to be added to the location counter. A well-defined expression is one that
includes no symbols that are defined later in the source program.

The syntax of the BES directive is as follows:

[(Jabel)] A BES A (expression) A [(comment)]

EXAMPLE

BES #20

The example increments the location counter by 32.

4.7.4 BSS Directive

The BSS directive is used to reserve a block of memory. It advances the
location counter by the value in the expression field. The use of the label field
is optional. When used, a label is assigned the value of the location of the
first word in the block. The command field contains BSS. The operand field
contains a well-defined expression that represents a positive integer that gives
the number of words to be added to the location counter.

The syntax of the BSS directive is as follows:

[(Iabel)l/\ BSS /\ (expression) /\ [(comment)l

EXAMPLE

BSS 20

The example increments the location counter by 20.

4.7.5 COPY Directive

The COPY directive causes the assembler to read source statements from
a different file. The assembler will get subsequent statements from the copy
file until either the end of file marker or an END directive is found in the copy
file. A copy file cannot contain another COPY directive. The command field
contains COPY. The operand field contains the name of the file from which
the source files are read.

The syntax of the COPY directive is as follows:

[(label)l /\ COpy /\ (filename) /\ [(comment)l

EXAMPLE

COPY COPY.FIL

The directive in the example causes the assembler to take its source
statements from a file called COPY.FIL. Until the end of file marker or an END
directive is reached in COPY.FIL, the assembler continues processing source
statements from the original source file.

4.7.6 DATA Directive

The DATA directive places the value of one or more expressions into
successive words of program memory. The range of each term is 0 to 65535.
The command field contains DATA. The operand field contains a series of
one or more expressions separated by commas and terminated by a blank
that represents the values to be placed in the successive bytes of program
memory.

4-13

The syntax of the DATA directive is as follows:

[(Jabel)] 1\ DATA 1\ (expr_1),(expr_2,) ... ,(expr_n)] 1\ [(comment)]

EXAMPLE

DATA HEOOO,'AB'

The example places the following bytes into successive locations in program
memory: HEO,HOO,H41,H42

4.7.7 EaU Directive

The EQU directive assigns a value to a symbol. The label field contains the
name of the symbol to which a value will be assigned. The command field
contains EQU. The operand field will contain the value to be assigned to the
symbol.

The syntax of the EQU directive is as follows:

[(Jabel)] 1\ EQU 1\ (expression) 1\ [(comment)]

EXAMPLE

OFSET EQU H 100

The example assigns the numeric value of 256 (100 Hex) to the symbol
OFSET.

4.7.8 EVEN Directive

4-14

The EVl:N directive forces the following instruction to start at an even address.
The directive tests whether the following instruction is even. If it is at an even
address, then nothing is done; otherwise, a short branch to the next location
is inserted in the code.

The syntax of the EVEN directive is as follows:

[(Jabel)] 1\ EVEN 1\ [(comment)]

EXAMPLE

EVEN
BR 1 CLA

The example forces the CLA instruction to an even address. In the process,
the value of the label is made even. The EVEN directive should be used with
the 8K mask option to ensure that all long branch destinations fall on even
addresses.

NOTE: Since the EVEN directive produces an even alignment by using a short branch,
the status flag is affected. No command that depends on the condition of the status
flag for its function should immediately follow an EVEN directive.

4.7.9 END Directive

The END directive signals the end of the source or copy file. It is treated by
the program as an end-of-file marker. If it is found in a copy file, the copy
file is closed and subsequent statements are taken from the source file. If
it is found in the source file, the assembly process terminates at that point
in the file.

The syntax of the END directive is as follows:

[(Jabel)l " END" [(comment)l

EXAMPLE

ACAA 1
END
CLA

In the example, the ACAA 1 instruction is assembled, but the CLA and any
subsequent instructions are ignored. The END directive is not required, the
end of the file serves the same purpose.

4.7.10 lOT Directive

The lOT directive assigns a name to the object module produced. If a label
is used, it assumes the current value of the location counter. The command
field contains lOT. The operand field contains the module name, which is a
character string of up to eight characters within single quotes. When a
character string of more than eight characters is entered, the assembler prints
a truncation warning message and retains the first eight characters as the
program name.

The syntax of the lOT directive is as follows:

[(label)] " lOT" '(string)' " [(comment)]

EXAMPLE

AORG 20
L 1 lOT 'Example'

The example assigns the value of 20 to the symbol L 1 and assigns the name
Example to the module being assembled. The module name is then printed
in the source listing as the operand of the lOT directive and appears in the
page heading of the source listing. The module name is also placed in the
object code (if the tagged object format code is being produced).

4-15

4.7.11 LIST Directive

The LIST directive restores printing of the source listing. This directive is
required only when a no source listing (UNL) directive is in effect. This directive
is not printed in the source listing, but the line counter is increased.

The syntax of the LIST directive is as follows:

[~abel)]/\ LlST/\ [(comment)]

EXAMPLE

AORG 10
T 1 LIST Turn on source listing

In the example, the label T1 is assigned the value 10, and listing is resumed.
The line is not printed out, so that although the label T1 is entered into the
symbol table and appears in the cross-reference listing, the line in which it
is assigned a value does not appear in the listing file.

4.7.12 OPTION Directive

The OPTION directive selects several options that affect the assembler
operation. The (option-list) operand is a list of keywords, separated by
commas. Each keyword selects an assembly feature. Only the first character
of the keyword is significant. Use of the label field is optional. When used,
the label assumes the current value of the location counter.

The syntax of the OPTION directive is as follows:

[~abel)]/\ OPTION /\ (option-list) /\ [(comment)]

EXAMPLE

OPTION 990,XREF,SCREEN
OPTION 9,X,S

The two examples above have an identical effect. The binary object file is
replaced by one in tagged object format. The cross-reference list is produced,
and the error messages are not sent to the screen (unless no source listing
file is being produced). The options that are available are listed in the
paragraphs below.

4.7.12.1 BUNLST - Byte Unlist Option

4-16

This option limits the listing of BYTE or RBYTE directives to one line. If a BYTE
or RBYTE directive has more than one operand, the resulting object code is
listed in a column in the object column of the source listing. If the directive
has ten operands, then ten lines are required in the source listing. BUNLST
is used to avoid this.

4.7.12.2 DUNLST - Data Unlist Option

This option limits the listing of DATA or RDAT A directives to one line. If a
DATA or RDATA directive has more than one operand, the resulting object
code is listed in the object column of the source listing. If the directive has
ten operands, then ten lines are required in the source listing to list it. DUNLST
is used to avoid this.

4.7.12.3 FUNLST - Byte, Data, and Text Unlist Option

This option limits the listing of BYTE, RBYTE, DATA, RDAT A, TEXT, or RTEXT
directives to one line. In effect, it is like calling the DUNLST, BUNLST, and
the TUNLST directives at the same time.

4.7.12.4 LSTUNL - Listing Unlist Option

This option inhibits the listing file from being produced. It takes precedence
over the LIST directive.

4.7.12.5 OBJUNL - Object File Unlist Option

This option inhibits either of the object output files from being produced.

4.7.12.6 PAGEOF - Page Break Inhibit Option

This option causes the listing file to be printed in a continous stream without
page breaks.

4.7.12.7 RXREF - Reduced XREF Option

This option causes symbols that were found in copy files but never used to
be omitted from the cross-reference list (if produced).

4.7.12.8 SCRNOF - Screen Error Message Unlist Option

This option causes the error messages not to be listed to the screen unless
the listing file is not being produced.

4.7.12.9 TUNLST - Text Unlist Option

This option limits the listing of TEXT or RTEXT directives to one line. A TEXT
or RTEXT directive takes as many lines to list as there are characters in the
operand. TUNLST causes only the first line of the directive listing to be
produced.

4.7.12.10 WARNOF - Warning Message Unlist Option

This option inhibits the listing of warning diagnostics. However, warnings are
counted and the total is printed out at the end of the source listing.

4-17

4.7.12.11 XREF - Cross-Reference Listing Enable

This option causes a cross-reference list to be produced at the end of the
source listing.

4.7.12.12 8KASM - 8K Assembler Mode Switch

This option causes the assembler to operate in 8K mode. This has the effect
of dividing long branch destination values ilnd checking if the long branch
is to an even address. If a long branch is to an odd address, an error message
is produced.

4.7.12.13 990 - Tagged Object Output Switch

This option causes the assembler to omit the binary coded object module
(normally produced in a.bin file) and to produce instead a tagged object module
in a.MPO file.

4.7.13 PAGE Directive

The PAGE directive forces the assembler to continue the source program listing
on a new page. The PAGE directive is not printed in the source listing, but
the line counter is increased. Use of the label field is optional. When used,
a label assumes the current value of the location counter. The command field
contains PAGE. The operand field is not used.

The syntax of the PAGE directive is as follows:

[(label») 1\ PAGE 1\ [(comment»)

EXAMPLE

AORG 10
T 1 PAGE Force Page Eject

In the example, the label T1 is assigned the value 10, and listing is resumed.
The line is not printed out, although the label T1 is entered into the symbol
table and appears in the cross-reference list. The line in which it is assigned
a value does not appear in the listing file.

4.7.14 RBYTE Directive

4-18

The RBYTE directive places the value of one or more expressions into
successive bytes of program memory in a bit-reversed form. The range of
each term is 0 to 255. The command field contains RBYTE. The operand field
contains a series of one or more terms separated by commas and terminated
by a blank that represents the values to be placed in the successive bytes
of program memory.

The syntax of the BYTE directive is as follows:

[(Jabel)] 1\ RBYTE 1\ (expr _1) L (expr _2), ... , (expr _n)] 1\

[(comment)]

EXAMPLE

RBYTE # EO,5,data + 5

The value of the symbol "data" must be defined in the assembly process.
The example places the numbers 7 (07 Hex), 160 (AO Hex) and the bit
reversed result of the arithmetic operation (data + 5) in successive bytes of
program memory. The value of "data" must be known to the assembler.

4.7.1 5 RDA T A Directive

The RDA T A directive places the value of one or more expressions into
successive words of program memory in a bit-reversed form. The range of
each term is 0 to 65535. The command field contains RDATA. The operand
field contains a series of one or more terms separated by commas and
terminated by a blank that represents the values to be placed in the successive
words of program memory.

The syntax of the BYTE directive is as follows:

[(Jabel)] 1\ RDA T A (expr -1) [, (expr _2), ... , (expr _n)] 1\

[(comment)]

EXAMPLE

DATA #EOOO:AB'

The example places the following bytes into successive locations in program
memory: #00,#07,#82,#24

4.7.16 RTEXT Directive

The RTEXT directive writes an ASCII string to the object file in reverse order.
If the string is preceded by a minus sign, the last character of the string to
be written (which is the first character of the string as given) is done with
its most significant bit set high. When used, the label assumes the current
value of the location counter. The command field contains TITL. The operand
field contains a character string of up to 52 characters enclosed in single
quotes (optionally preceded by a minus sign).

4-19

The syntax of the RTEXT directive is as follows:

[(Jabel)l 1\ RTEXT 1\ [-]' (string)' 1\ [(comment)l

EXAMPLE

RTEXT - 'This is a test'
RTEXT - 'This is a test'

Both examples write the string 'tset a si sihT' to the output file. The first
example will write the first 'T' in the word This [which is the last character
to Qe written with its most significant bit set high (that is, as a #D4 instead
of a # 54)].

4.7.17 TEXT Directive

The TEXT directive writes an ASCII string to the object file. If the string is
preceded by a minus sign, then the last character in the string is written with
its most significant bit set high. When used, the label assumes the current
value of the location counter. The command field contains TITL. The operand
field contains a character string of up to 52 characters enclosed in single
quotes (optionally preceded by a minus sign).

The syntax of the TEXT directive is as follows:

[(Iabel)l 1\ TEXT 1\ [-1' (string)' 1\ [(comment)l

EXAMPLE

TEXT - 'This is a test'
TEXT - 'This is a test'

Both examples write the string 'This is a test' to the output file. The first
example will write the final 't' in the word test with its most significant bit
set high (that is, asa # F4 instead of a # 74).

4.7.18 TITL Directive

4-20

The TITL directive supplies a title to be printed in the heading of each page
of the source listing. If a title is desired, a TITL directive must be the first
source statement submitted to the assembler. Unlike the IDT directive, the
TITL directive is not printed in the source listing. The assembler does not print
the comment because the TITL directive is not printed, but the line counter
will increment. When used, a label field assumes the current value of the
location counter. The command field contains TITL. The operand field contains
the title, a character string of up to 50 characters enclosed in single quotes.
When more than 50 characters are entered, the assembler retains the first
50 characters as the title and prints a syntax error message. The comment
field is optional.

The syntax of the TITL directive is as follows:

[(Iabel)l /I TITL '(string)' /I [(comment)l

EXAMPLE

TITL 'Sample Program' - This is a sample line

The example causes the title 'Sample Program' to be printed as the page
heading of the source listing. When a TITL directive is the first source
statement in a program, the title is printed on all pages until another TITL
directive is processed. This line is not printed to the listing file.

4.7.19 UNL Directive

The UNL directive inhibits the printing of the source listing output until the
occurrence of a LIST directive. It is not printed in the source listing, but the
source line counter is incremented. When used, the label assumes the value
of the location counter. The command field contains the symbol UNl. The
operand field is not used.

The syntax of the UNL directive is as follows:

[(Iabel)l/\ UNL /I [(comment)l

EXAMPLE

AORG 10
T 1 UNL Turn off source listing

In this example, the label T1 is assigned the value 10, and listing is inhibited.

4-21

4-22

5 Instruction Set
There are 61 different TSP50C4X instructions. Most of them require only one
instruction cycle to execute. although a few require two or three. Instruction
cycles require 32 clock cycles each. For example. if the clock speed is
3.84 MHz .• that translates to 120.000 instruction cycles per second.

TABLE 5-1. TSP50C4X Instruction Set

Mnemonic

I
Operand size Ibits)

1
Instruction cycles required

1
Status 11 always set. C conditional) 1 Number of bytes required

! Description

ACAA 10 2 1 2 Add constant to A

AMAAC 1 C 1 Add memory to A

ANEC 8 2 C 2 A not equal to constant

BR 12 2 1 2 Branch if status is set

CALL 12 2 1 2 Call if status is set

CLA 1 1 1 Clear A

CLB 1 1 1 Clear B

CLX 1 1 1 Clear X

DECMC 1 C 1 Decrement memory

EXTRM 1 1 1 External data ROM mode

EXTSG 1 1 1 Extended sign mode

GET 3 * 1 1 Get bits from data

IBC 1 C 1 Increment B

INCMC 1 C 1 Increment memory

INTO 1 1 1 Interrupt disable

INTE 1 1 1 Interrupt enable

INTGR 1 1 1 Integer mode

INTRM 1 1 1 Internal data ROM mode

IXC 1 C 1 Increment X

LUAA 2 1 1 Lookup accumulator

LUSPS 2 1 1 Lookup PS register

POP 1 1 1 Pop stack

RBITM 3 1 1 1 Reset bit in memory

RETI 1 C 1 Return from interrupt

RETN 1 1 1 Return from subroutine

RSECT 1 1 1 Reset timer source

*The GET instruction requires three instruction cycles to execute if the parallel-to-serial register
must be reloaded during the instruction. Otherwise it takes only two.

5-1

TABLE 5-1. TSP50C4X Instruction Set (Continued)

Mnemonic

I
Operand size (bits) 1 In,""ctlon cyd .. ""I, .. 1 'to,", (1 ~W'Y' ,e,. C ,ond;don~1 1 Number of bytes required

~ Description

RSROY 1 1 1 Reset ROY latch

SALA 1 1 1 Shift A left

SARA 1 1 1 Shift A right

SBITM 1 1 1 Set bit in RAM

SBR 7 1 1 1 Short branch

SETOFF 1 1 1 Turn processor off

SMAAN 1 C 1 Subtract memory from A

START 1 1 1 Start synthesis

STOP 1 1 1 Stop synthesis

TAPA 1 1 1 Transfer A to PA

TAPB 1 1 1 Transfer A to PB

TAPO 1 1 1 Transfer A to PO

TAM 1 1 1 Transfer A to memory

TAPRF 1 1 1 Transfer A to PF

TAPSC 1 1 1 Transfer A to Prescale

TASH 1 1 1 Transfer A to SA high

TASL 1 1 1 Transfer A to SA low

TAV 1 1 1 Transfer A to V latch

TAX 1 1 1 Transfer A to X

TBA 1 1 1 Transfer B to A

TBITA 3 1 C 1 Test bit in A

TBITM 3 1 C 1 Test bit in memory

TCX 8 2 1 2 Transfer constant to X

TMA 1 1 1 Transfer memory to A

TMAIX 1 1 1 Transfer memory to A, IXC

TMEDA 1 1 1 Transfer memory to OAC

TPAA 1 1 1 Transfer PA to A

TPAM 1 1 1 Transfer PA to memory

TPCA 1 1 1 Transfer PC to A

TTMA 1 1 1 Transfer Timer to A

TXA 1 1 1 Transfer X to A

TXPA 1 1 1 Transfer X to PA

TXTM 1 1 1 Transfer X to Timer

XBX 1 1 1 Exchange B and X

XGEC 8 2 C 2 X greater than or equal to constant

5-2

5.1 Instruction Format
The source code instruction format or syntax can be generally described as
follows:

[(LABEL)] A (opcode mnemonic) A [(operand)] A ••• [(COMMENT)]

The fields are:

a 6-character optional label field,
a 6-character opcode field,
an opcode dependent operand field,
and a comment field.

Each of the fields is separated by one or more tabs or spaces.

5-3

5.2 ACAA - Add Constant to A

ACTION: Adds a 1 O-bit specified constant in the operand field to the contents
of the A register and stores the result back in the A .register.

OPCODE: 50 - 53

SOURCE CODE: [(LABEL)] A ACAA A (CONST10) 1\ ••• [(COMMENT)]

OBJECT CODE:

INSTRUCTION

CONSTANT

7 6 543 2 1 0

1 0 11 1 0 11 1 0 1 0 1 1 1- 2 most significant bits of + constant
. CONST1 0 . - 8 least significant bits of + constant

EXECUTION RESULTS: (AI + CONST1 0 -+ (AI

STATUS FLAG: Always set to 1 after execution.

NOTE: The addition is performed independent of the arithmetic mode (EXTSG/INTGRI
as an unsigned addition of all 10 bits of the constant and the A register. See
subsection 6.2 for further information on arithmetic instructions.

TABLE

5-4

This instruction is useful when a table index has been placed in the A register.
The base address of the table can be added to the index with this address
and a lookup can be completed to fetch the desired table element.

TPAA
ACAA
LUAA

Bring phrase number in from Port A
TABLE Add start of phrase pointer table

Bring pointer value into A

5.3 AMAAC - Add Memory to A

ACTION: Adds the contents of RAM addressed by the X register to the lower
eight bits of the A register and stores the result back in the A register.

OPCODE: 16

SOURCE CODE: [(LABEL)]" AMAAC " ... [(COMMENT)]

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101011101111101
EXECUTION RESULTS: (AI + (* Xl (AI

STATUS FLAG: Conditionally set to 1 if, as a result of the arithmetic operations, there
is a carry into bit eight of the ALU. Else set to O.

NOTE: The results of the addition are dependent on the arithmetic mode
(EXTSG/lNTGRI when the most significant bit of the memory being used is
set. A carry into bit eight sets the status flag in all cases. See subsection 6.2
for further information on arithmetic instructions.

This instruction should be used when the sum of two variables is desired.
It always adds the contents of the memory indexed by the X register to the
A register.

TCX VALU1
TMA
TCX VALU2
AMAAC
TCX VALU3
TAM

Point at V ALU 1 in RAM
Load V ALU 1 into A
Point at VALU2 in RAM
Add VALU2 to VALU1
Point at VALU3 in RAM
Store result of addition in V ALU3

5-5 I,

I:
i ,

5.4 ANEC - A Not Equal to Constant

ACTION: Compares the lower eight bits of the A register to the constant specified
and sets the status flag if they are not equal.

OPCODE: 54

SOURCE CODE: l(LABEL»)/\ ANEC 1\1\ (CONST8)/\ ... [(COMMENT»)

OBJECT CODE:

INSTRUCTION

CONSTANT

7 6 543 2 1 0

1°111011101110101
. CONSTB .

EXECUTION RESULTS: if (A) <> CONST8 then 1 -+ SF
if (A) = CONST8 then 0 -+ SF

STATUS FLAG: Set to 1 if the lower eight bits of the A register are not equal to the
8-bit constant. Set to 0 if the two 8-bit values are equal.

NOTE: Only the lower eight bits of the A register are compared to the 8-bit constant
value. The upper two bits of the A register are not considered, and as a result,
the operation is independent of the arithmetic mode INTGR or EXTSG.

EQUAL
NOTEG

5-6

ANEC
SBR

TESTY
NOTEG

Is A equal to TESTY
Branch if not

5.5 BR - Branch

ACTION:

OPCODE:

If the status flag is set to 1, the program counter is loaded with the
address specified and execution proceeds from that address. If the 8K
mask option is selected, the address will be loaded into bits one to twelve
of the program counter and bit zero will be a O. In the 4K mode, bits
zero to eleven will be loaded. Otherwise, the instruction following the
BR instruction executes.

60 - 6F

SOURCE CODE: [(LABEL)] A BR AAAA (ADDR12) ... [(COMMENT)]

OBJECT CODE:

INSTRUCTION

ADDRESS

7 6 543 2 1 0

EXECUTION RESULTS: if SF 1 then ADDR12 -. Program Counter
if SF = 0 then Program Counter -+ Program Counter

STATUS FLAG: Alvyays set to 1 after execution.

NOTE: The branch instruction is a conditional instruction. When a branch is used
following an instruction, which always leaves the status flag set high, the
branch can be viewed as unconditional. See the Applications section for further
information on branching/programming flow modification.

5-7

5.6 CALL - Call Subroutine

ACTION:

OPCODE:

If the status flag is set to 1, the contents of the program counter are
pushed onto the stack and the program counter loaded with the address
specified. Execution proceeds from that address. If the 8K mask option
is selected, the address will be loaded into bits one to twelve of the
program counter and bit zero will be a O. In the 4K mode, bits zero to
eleven will be loaded. Otherwise, the instruction following the CALL
instruction executes.

70 - 7F

SOURCE CODE: [(LABEL)]/\ CALL 1\1\ (ADDR12) ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION

ADDRESS
1011 11 11 1 1 1 1 I
. ADDR12 .

EXECUTION RESULTS: if SF 1 then Program Counter -+ STACK and
ADDR 12 -+ Program Counter

STATUS FLAG: Always set to 1 after execution.

NOTE: The program counter stack is capable of storing addresses up to five levels
deep. An address is pushed onto the STACK whenever a timer interrupt occurs
or when the CALL, GET, LUAA, or LUSPS instructions are executed. For GET,
LUAA, and LUSPS, the address is popped from the stack before the instruction
is complete.

5-8

The call instruction is a conditional instruction. When a c~II is used following
an instruction, which always leaves STATUS high, it can be viewed as
unconditional. See the Applications section for further information on
branching/programming flow modification.

5.7 CLA - Clear A Register

ACTION: Sets the contents of the A register to O.

OPCODE: 00

SOURCE CODE: [(LABEL)l /\ CLA 1\1\/\ ••• [(COMMENT)l

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010101010101
EXECUTION RESULTS: 0 -+ (A)

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction is used to initialize the A register prior to loading it with a
constant, using ACAA or shifting some number of bits from the parallel-to­
serial register into the A register.

CLA
ACAA CONST Add constant to A register

CLA
GET 3 Get bits from data ROM

5-9

5.8 CLB - Clear B Register

ACTION: Sets the contents of the B register to O.

OPCODE: 12

SOURCE CODE: [(LABEL)l A CLB AM ••• [(COMMENT)l

OBJECT CODE:
7 6 543 2 1 0

10101011101011101
EXECUTION RESULTS: 0'" (B)

STATUS FLAG: Always set to 1 after execution.

5-10

5.9 CLX - Clear X Register

ACTION: The contents of the X register are set to O.

OPCODE: 11

SOURCE CODE: [(LABEL)] A CLX AM ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION

EXECUTION RESULTS: 0 (X)

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction is used to initialize the X register.

5-11

5.10 DECMC - Decrement Memory

ACTION:

OPCODE:

Decrements the contents of the RAM location pointed to by the X
register. If the memory location contains 00, it is set to FF and the status
flag is set. Otherwise, the memory is decremented and the status flag
is cleared.

5F

SOURCE CODE: [(LABEL») 1\ DECMC 1\ , .. [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2

INSTRUCTION

EXECUTION RESULTS: (* Xl - 1 -+ (* Xl

STATUS FLAG: Set if memory went from 0 to FF during instruction; otherwise
cleared.

5-12

5.11 EXTRM - External ROM Mode

ACTION: Changes the path to the parallel-to-serial register from the internal ROM
to the external ROM input data buffer.

OPCODE: 2B

SOURCE CODE: [(LABEL)I" EXTRM" ... [(COMMENT)1

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101110111011111
EXECUTION RESULTS:

1 . Access path for data into the parallel-to-serial register changed from
internal ROM to the external ROM input data buffer.

2. Output a (OSC/16. 50% duty cycle) clock to the PB6 pin.
3. Change PB7 output to RDIN input from the external ROM to the internal

ROM buffer.
4. If a 0 is written to Port B. then the output clock is generated for the

TSP60CXX by the GET instruction.

STATUS FLAG: Always set to 1 after execution.

NOTE: This mode is used to enable the interface to an external TSP60CXX.

This instruction changes the source for ROM data acquisition but does not
initialize either the internal registers or the external ROM. Refer to Section 6
for more information on TSP60CXX interface.

5-13

I

I

5.12 EXTSG - Sign Mode

ACTION: Changes ALU to extended sign mode.

OPCODE: 29

SOURCE CODE: [(LABEL)] A EXTSG A ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101110111010111
EXECUTION RESULTS: The upper two bits of the ALU are filled with the value from

bit seven for future arithmetic operations and data transfers
to the A register.

STATUS FLAG: Always set to 1 after execution;

NOTE: This instruction affects all data from RAM, ports, B register, X register, or
timer register that is being transferred to the A register or being added to or
subtracted from the current A register value. See Section 6 for more
information.

5-14

5.13 GET - Get Data from ROM

ACTION: Transfers N bits of data from ROM to the A register via the parallel-to­
serial register.

OPCODE: 20 - 27

SOURCE CODE: [(LABEL)]" GET""" (N)" ... [(COMMENT)]

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION AND 1 0 1 0 11 1 0 1 0 1 N - 1
NUMBER OF BITS

EXECUTION RESULTS: N bits of data are transferred from the LSB of the parallel-to­
serial register to the LSB of the A register. This reverses the
order of the bits in the A register from the order in the parallel­
to-serial register. If more bits are required than are in the
parallel-to-serial register, an additional byte is fetched from
the ROM.

STATUS FLAG: Always set to 1 after execution.

NOTE: The data is shifted out of the LSB of the parallel-to-serial register and into
the LSB of the A register resulting in a bit reversal of any single byte of data
transferred into the A register from the order stored in the ROM.

5-15

GET5

Parallel-to-Serial Register
7 6 543 2 1 0

1 1 1 1 1 1 1 1 1
9 8 7 6 543 2 1 0

1 1 1 1 1 1 1 1 1 1
A Register

Parallel-to-Serial Register A register

101010101010101010101

AFTER 1-1-1-1-1-1110111

5-16

If more bits are requested than are immediately available in the parallel-to­
serial register, a third instruction cycle is used to load the parallel-to-serial
register with the next ROM data byte and transfer the remaining bits to the
A register to satisfy the request.

Prior to the first use of the GET instruction, the GET counter and the
parallel-to-serial register must be initialized. This initialization is accomplished
by the LUSPS instruction, independent of the ROM source mode.

The EXTRM instruction causes the GET instruction to fetch data from an
external ROM. The INTRM instruction causes GET to work with the internal
TSP50C4X ROM.

During execution, the GET instruction pushes the program counter onto the
stack and then pops it again. This uses up one stack level that cannot be used
for other purposes. If there are five values on the stack and a GET instruction
is executed, the bottom value will be lost.

5.14 IBC - Increment B Register

ACTION: Increments the contents of the B register by 1.

OPCODE: 13

SOURCE CODE: [(LABEL)] 1\ IBC I\I\I\ ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011101011111
EXECUTION RESULTS: (BI + 1 (BI

STATUS FLAG: Conditionally set to 1 when B goes from FF to 0 as a result of the
arithmetic operation; otherwise set to O.

NOTE: The status flag will only be set when the B register contains the value FF prior
to the execution of the IBC instruction. In this case, the status flag will be
set and the B register value will be O. See subsection 6.2 for further
information on arithmetic instructions.

LOOP
IBC
SBR LOOP

Increment loop counter
Branch if no loop counter overflow

5-17

5.15 INCMC - Increment Memory

ACTION:

OPCODE:

Increments the contents of the RAM location pointed to by the X
register. If the memory location contains FF, sets it to 00 . Also sets
the status flag. Otherwise, increments the memory and clears the status
flag.

5E

SOURCE CODE: [(LABEL)l" INCMC " ... [(COMMENT)l

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10111011111111101
EXECUTION RESULTS: (* Xl + 1 -+ (* Xl

STATUS FLAG: Set if memory went from FF to 0 during instruction; otherwise
cleared.

5-18

5.16 INTO - Interrupt Disable

ACTION: Disables the timer from interrupting the present process flow.

OPCODE: 1D

SOURCE CODE: [(LABEL») 1\ INTD I\I\ ... [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1010101,1,1,101,1
EXECUTION RESULTS: The timer interrupt is disabled.

STATUS FLAG: Always set to 1 after execution.

NOTE: Only the timer interrupt is disabled. The timer register continues to decrement
until an interrupt state is reached. When the interrupt state is reached, the
timer interrupt is set and the timer register value is left at the FF value. If the
interrupt is disabled as a result of this instruction, it becomes a pending
interrupt until the processor reset or until the INTE instruction is executed.

5-19

5.17 INTE - Interrupt Enable

ACTION: Permits timer interrupts to occur and enables interpolation for one frame.

OPCODE: 1E

SOURCE CODE: [(LABEL») A INTE AA ... [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101011111111101
EXECUTION RESULTS: Enable the timer to interrupt the present process flow when

the timer register decrements past zero.

STATUS FLAG: Always set to 1 after execution.

NOTE: If the timer register has been reset, it will be decremented until an interrupt
state is reached. When the interrupt state is reached, the timer register value
is left at the FF value. If the interrupt is disabled as a result of the INTO
instruction, it becomes a pending interrupt until it is reset or until this
instruction is executed.

5-20

5.18 INTGR - Integer Mode

ACTION: Changes the state of the ALU to integer mode.

OPCODE: 2A

SOURCE CODE: [(LABEL)] A INTGR A ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101110111011101
EXECUTION RESULTS: The upper two bits of the ALU are filled with zeros for future

arithmetic operations.

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction affects all data from RAM, ports, B register, X register, or
timer register that is being transferred to the A register or being added to or
subtracted from the current A register value.

5-21

5.19 INTRM - Internal ROM Mode

ACTION: Makes the internal ROM the source for GET instruction data transfers.

OPCODE: 2C

SOURCE CODE: [(LABEL)]/\ INTRM /\ ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101110111110101
EXECUTION RESULTS:

1 . Access path for data into the parallel-to-serial register changed to internal
ROM from the external ROM input data buffer.

2. Change PB6 to a data output pin.
3. Change PB7 to an output pin.
4. Change PBa to output only from Port B. .

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction changes the source for ROM data acquisition but does not
initialize any internal registers. Port B becomes an a-bit output port as a result
of this instruction.

WARNINGl This instruction makes the PB7 pin an output. If the system uses a
TSP60CXX for external memory, its output must be disabled before the
INTRM instruction is executed. Otherwise, bus contention and high power
consumption may occur.

5-22

5.20 IXC - Increment X Register

ACTION: Increments the contents of the X register by 1.

OPCODE: OF

SOURCE CODE: [(LABEL») A IXC A ••• [(COMMENT»)

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010111111111
EXECUTION RESULTS: (X) + 1 -+ (X)

STATUS FLAG: Set to 1 if X increments from FF to 0, otherwise set to O.

NOTE: The status flag will only be set when the X register contains the value # FF
prior to the execution of the IXC instruction. In this case, the status flag will
be set and the X register value will be O.

LOOP
IXC
SBR LOOP

Increment loop counter
Branch if no counter overflow

5-23

5.21 LUAA - Lookup with A Register

ACTION: Replaces the contents of the A register by the contents of the ROM
addressed by the A register.

OPCODE: 58

SOURCE CODE: [(LABEL)]" LUAA "" ... [(COMMENT)]

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10111011111010101
EXECUTION RESULTS: (* A) -+ (A)

STATUS FLAG: Always set to 1 after execution.

NOTE: The program counter stack is capable of storing addresses up to five levels
deep. An address is pushed onto the stack whenever a timer interrupt occurs
or when the CALL, GET, LUAA, or LUSPS instructions are execut~d. For GET,
LUAA, and LUSPS, the address is popped from the stack before the instruction

TABLE

5-24

is complete. .

Since the A register is a 1 O-bit register, this instruction allows lookup access
to the first 1 K bytes of ROM.

TpAA
ACAA
LUAA

Bring phrase number in from Port A
TABLE Add start of phase pointer table

Bring pointer value into A

5.22 LUSPS - Lookup with Speech Address Register

ACTION: Replaces the contents of the parallel-to-serial register with the contents
of the internal ROM addressed by the speech address register,
increments the speech address register, sets the parallel-to-serial register
counter to eight bits to indicate that the parallel-to-serial register is full.

OPCODE: 59

SOURCE CODE: [(LABEL)] A LUSPS A [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10111011111010111
EXECUTION RESULTS: (*SA) -+ (PS)

(SA) + 1 -+ (SA)

STATUS FLAG: Always set to 1 after execution.

NOTE: The program counter stack is capable of storing addresses up to five levels
deep. An address is pushed onto the STACK whenever a timer interrupt occurs
or when the CALL, GET, LUAA, or LUSPS instructions are executed. For GET,
LUAA, and LUSPS, the address is popped from the stack before the instruction
is complete.

Since the speech address register is a 14-bit register, this instruction allows
lookup into any of the 16K bytes of internal ROM on the TSP50C43 and
TSP50C44. On the TSP50C41 and TSP50C42, there are 8K bytes available.

TCX ADDR

TMAIX
TASH
TMA
TASL
LUSPS

Point to RAM location with the high five bits of the
speech counter
Speech pointer to A, point at low byte in RAM
Speech pointer to SAR
Low byte of speech pointer into A
Low byte of speech pointer into SAR
Initialize parallel-to-serial register.

5-25

5.23 POP - Pop Top Stack Location

ACTION:

OPCODE:

Pops and discards the top location on the stack. Moves all other stack
values up by one.

57

SOURCE CODE: [(LABEL)1 /\ POP /\ (N)/\ ... [(COMMENT)1

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1 0 11 1 0 11 1 0 (1 11 11 1

EXECUTION RESULTS: Top of stack popped and discarded

STATUS FLAG: Always set to 1 after execution.

5-26

5.24 RBITM - Reset Bit in Memory

ACTION: Addresses Bit N of the RAM with the X register and resets it to O. Where
N = 1 through 8.

OPCODE: 48 - 4F

SOURCE CODE: [(LABEL)l II RBITM II (N) 1I ... [(COMMENT)l

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION
AND BIT NUMBER 1 0 11 10 10 11 1 N - 1 1

EXECUTION RESULTS: 0"" (RAM(*X register,*N-1))

STATUS FLAG: Always set to 1 after execution.

NOTE: Any bit in the internal RAM can be reset as a result of this instruction.

5-27

5.25 RETI - Return from Timer Interrupt

ACTION: Retrieves the old contents of the A register, status flag, and X register
from the interrupt storage locations. Pops the top value from the stack
to the program counter and resumes execution from the new address
in the program counter.

OPCODE: 2F

SOURCE CODE: [(LABEL)] A RETI M ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101110111111111
EXECUTION RESULTS: (A') - (A)

(X')-(X)
(SF') - (SF)
(top of Program Counter Stack) - (Program Counter)

STATUS FLAG: Restored to value before interrupt

NOTE: The contents of the B register are not saved during interrupt.

5-28

5.26 RETN - Return from Subroutine

ACTION: Pops the top value from the stack and resumes execution from the new
address.

OPCODE: 1F

SOURCE CODE: [(LABEL>] A RETINAA ... [(COMMENT>]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011111111111
EXECUTION RESULTS: top of stack -+(Program Counter)

STATUS FLAG: Always set to 1 after execution.

5-29

5.27 RSECT - Reset Prescale Clock Source to Internal Mode

ACTION: Resets prescale clock source as the internal clock.

OPCODE: 2E

SOURCE CODE: [(LABEL») 1\ RSECT 1\ ... [(COMMENT»

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1 0 1 0 11 1 0 11 11 11 1 0 I
EXECUTION RESULTS: Internal clock gated to decrement the timer prescale register.

STATUS FLAG: Always set to 1 after execution.

5-30

5.28 RSROY - Reset ROY Pin

ACTION: Resets the RDY pin to a low logic level.

OPCODE: 1C

SOURCE CODE: [(LABEL)] II RSRDY II ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011111110101
EXECUTION RESULTS: 0 -+ RDY

STATUS FLAG: Always set to 1 after execution.

NOTE: The RDY pin is set high when the ENA2 pin is pulled low by the external
system. The RDY pin will go low only if the external system is not actively
holding the ENA2 pin low. This instruction is used if the TSP50C4X is masked
for the slave option.

5-31

5.29 SALA - Shift A Register Left Arithmetic

ACTION:

OPCODE:

Shifts the contents of the A register to the left towards MSB by one
bit and fills the LSB with a O.

19

SOURCE CODE: [(LABEL)] A SALA M ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011111010111
EXECUTION RESULTS: (Ali (Ali + 1

0 (A11

STATUS FLAG: Always set to 1 after execution.

NOTE: Only data shifted out of bit 9 of the A register is lost. The results do not depend
on the arithmetic mode (EXTSG/INTGRI.

5-32

5.30 SARA - Shift A Register Right Arithmetic

ACTION: Shifts the contents of the A register to the right toward LSB by one
bit and fills the MSB with its old value.

OPCODE: 18

SOURCE CODE: [(LABEL») A SARA AA ... [(COMMENT)]

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101011111010101
EXECUTION RESULTS: (Ali -+ (A)i-1

(A)9 -+ (A)9

STATUS FLAG: Always set to 1 after execution.

NOTE: The execution of this instruction is independent of the arithmetic mode
(EXTSG/INTGR).

5-33

5.31 SBITM - Set Bit in Memory

ACTION:

OPCODE:

Bit N of the RAM memory addressed by the X register is set to 1 . Where
N = 1 through 8

38 - 3F

SOURCE CODE: [(LABEL»)" SBITM" (N)" ... [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION
AND BIT NUMBER 1 0 1 0 11 11 11 1 N - 1 1

EXECUTION RESULTS: 1 -+(RAM(*X,*N -1))

STATUS FLAG: Always set to 1 after execution.

NOTE: Any bit in the internal RAM can be set as a result of this instruction.

5-34

5.32 SBR - Short Branch

ACTION: When the status flag is set to 1, the lower seven bits of the program
counter are replaced by the value specified and execution proceeds from
that address. Otherwise, the instruction following the SBR instruction
is executed.

OPCODE: 80

SOURCE CODE: [(LABEL)1 1\ SBR 1\ (ADDR7) 1\ •• [(COMMENT)1

OBJECT CODE:
7 6 543 2 0

INSTRUCTION

AND ADDRESS

EXECUTION RESULTS:

ADDR7

if SF 1 then ADDR7 + Program Counter PAGE Program Counter
if SF = a then Program Counter Program Counter

STATUS FLAG: Always set to 1 after execution.

NOTE: The short branch instruction is a conditional instruction. When a short branch
is used following an instruction that always leaves the status flag high, the
short branch can be viewed as unconditional. See the Applications section
for further information on branching/programming flow modification.

The program counter is incremented when the instruction is fetched. Placing
a SBR at address 07F relative to the current page will result in a branch to
the next page. This occurs because the program counter value will be 000
relative to the following page at the time of execution.

5-35

5.33 SETOFF - Set Processor to Off Mode

ACTION:

OPCODE:

The processor is placed in a low-power mode. The clock is stopped.
Bidirectional ports are made inputs and all outputs are cleared. RAM
memory is retained.

SA

SOURCE CODE: [(LABEL)] A SETOFF A ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10111011111011101
EXECUTION RESULTS: Processor powered down

STATUS FLAG: State at power up not guaranteed.

5-36

5.34 SMAAN - Subtract Memory from A Register

ACTION: The contents of the RAM memory addressed by the X register are
subtracted from the lower eight bits of the A register and the result is
stored back in the A register.

OPCODE: 17

SOURCE CODE: [(LABEL)] A SMAAN A ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011101111111
EXECUTION RESULTS: (A) - (* X) -+ (A)

STATUS FLAG: Conditionally set to 1 when the memory is equal to or less than the
A register; otherwise set to O.

NOTE: The subtraction results are dependent on the arithmetic mode (EXTSG/INTGR)
when the most significant bit of the memory being used is set. A carry into
bit 8 sets the status flag in all cases. See subsection 6.2 for further information
on arithmetic instructions.

This instruction should be used when the difference of two variables is desired.
It subtracts the contents of the memory indexed by the X register from the
A register.

TCX VALU1
TMA
TCX VALU2
SMAAN
TCX VALU3
TAM

Point at VALU 1 in RAM
Load V ALU 1 into A register
Point at V ALU2 in RAM
Subtract VALU2 from VALU1
Point at V ALU3 in RAM
Store result of subtraction in VALU3

5-37

5.35 START - Start Synthesizer

ACTION:

OPCODE:

Starts the filter clock, enables the LPC-10 lattice filter, and loads the
pitch register from the A register.

1A

SOURCE CODE: [(LABEL)]/\ START /\ ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011111011101
EXECUTION RESULTS: Enable the lattice filter to output speech using the parameters

stored in RAM.

(A) -+ (pitch)

STATUS FLAG: Always set to 1 after execution.

NOTE: Since the START instruction loads the pitch register in addition to starting
the filter clock. make sure that the correct value is in the A register when
it is executed. After the START. the filter will get pitch information from the
specified RAM location.

5-38

5.36 STOP - Stop Synthesizer

ACTION: Stops the filter clock, disables the LPC-1 0 lattice filter.

OPCODE: 1B

SOURCE CODE: [(LABEL)lll STOP 1111 ... [(COMMENT)l

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 1010101, I, 101, I, I
EXECUTION RESULTS: Disable the lattice filter and stop speech output.

STATUS FLAG: Always set to 1 after execution.

NOTE: The STOP instruction resets the filter data acquisition mode from the direct
digital-to-analog mode established by the TMEDA instruction. It also disables
the context switch and sets it to its default condition.

5-39

5.37 TAPA - Transfer A to Port A

ACTION: Transfers the contents of the lower eight bits of the A register to the
Port A latch. If the TSP50C4X is masked for the master option, Port A
becomes an output port. If the TSP50C4X is masked for the slave option
and the IRT pin is masked as an output, the IRT pin is driven low.

OPCODE: 08

SOURCE CODE: [(LABEL)J 1\ TAPAI\I\I\ ... [(COMMENT)J

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010111010101
EXECUTION RESULTS: (A) -+ (PA)

if processor masked for slave option and IRT output 0 IRT
if processor masked for master option, Port A becomes an output port.

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction is used to send commands or status to the external system.

5-40

When the TSP50C4X device is masked for the slave option, IRT going low
indicates to the host that new data are available. Port A will remain in a high­
impedance state until the external system activates it by pulling one or both
enable lines active low. This will cause IRT to go to a 1. See subsection 6.3
for a complete discussion of slave option.

In the master option, Port A becomes an output port and the data appear on
the pins immediately.

5.38 TAPB - Transfer A Register to Port B

ACTION: Transfers the contents of the lower eight bits of the A register to Port B.

OPCODE: 15

SOURCE CODE: [(LABEL)] I\. TAPB l1.li. ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101011101110111
EXECUTION RESULTS: (A) -+ (PB)

STATUS FLAG: Always set to 1 after execution.

NOTE: Port B is configured as an 8-bit output port for the internal ROM mode (see
INTRM instruction). For the external ROM mode (see EXTRM) only the lower
six bits of the A register are transferred to Port B (a clock is presented on
bit 6 and bit 7 becomes an input).

MSB 9 S 7 6 5 4 3 2 1 0 LSB

A Register I I I I I I I I I I I

Hllllll
PortB I I I I I I I I I

RDIN ADDS ADD2 M1

RCLK ADD4 ADD1 MO

5-41

5.39 TAPD - Transfer A Register to Port D

ACTION: Transfers the contents of the lower eight bits of the A register to Port o.

OPCODE: 5C

SOURCE CODE: [(LABEL») A TAPO AA ... [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1 0 11 1 0 11 11 11 1 0 1 0 1

EXECUTION RESULTS: (A) -- (PO)

STATUS FLAG: Always set to 1 after execution.

5-42

5.40 TAM - Transfer A Register to Memory

ACTION:

OPCODE:

Transfers the contents of the lower eight bits of the A register to the
RAM addressed by the X register.

09

SOURCE CODE: (LABEL»)/\ TAM 1\1\/\ ... (COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1 0 1 0 1 0 1 0 11 1 0 1 0 11 1

EXECUTION RESULTS: (A) -+ (* X)

STATUS FLAG: Always set to 1 after execution.

5.41 TAPRF - Transfer A Register to Pitch Fractional Register

ACTION:

OPCODE:

Transfers bits 4-7 of the A register to the fractional part of the pitch
register.

OC

SOURCE CODE: [(LABEL») A TAPRF A ... [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101010111110101
EXECUTION RESULTS: (A)7-4 -+ (PF)

STATUS FLAG: Always set to 1 after execution.

NOTE: The T APRF instruction is included mainly for compatibility with the TSP50C4X
devices. It is only useful on the first frame of synthesis because the synthesizer
gets its fractional pitch from a RAM location after that.

5-44

5.42 TAPSC - Transfer A Register to Prescale Register

ACTION: Transfers the lower eight bits of the A register to the prescale register.

OPCODE: 50

SOURCE CODE: [(LABEL)] II. TAPSCII. ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10111011111110111
EXECUTION RESULTS: (A)7-0 -+ (prescale register)

STATUS FLAG: Always set to 1 after execution.

NOTE: The prescale circuit divides the timer clock by the value set by this instruction
plus 1. The output of the prescale circuit is used as a clock for the timer
register.

5-45

5.43 TASH - Transfer A Register to Speech Address Register High

ACTION:

OPCODE:

Transfers the lower six bits of the A register to the upper six bits of
the speech address register.

OB

SOURCE CODE: [(LABEL)I/\ TASH 1\I\ ••• [(COMMENT)1

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 1 0 1 0 1 0 1 0 11 1 0 11 11 1

EXECUTION RESULTS: (A)5-0 -. (SA) 13-8

STATUS FLAG: Always set to 1 after execution.

NOTE:
MSB 9 8 7 6 5 4 3 2 1 0 LSB

A Register 1 1 1 1 1 1 1 1 1 1 1

Speech Address Register

1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

MSB 13121110 9 8 7 6 5 4 3 2 1 0 LSB

5-46

5.44 TASL - Transfer A Register to Speech Address Register Low

ACTION: Transfers the lower eight bits of the A register to the lower eight bits
of the speech address register.

OPCODE: OA

SOURCE CODE: [(LABEL)l/\ TASL 1\1\ ... [(COMMENT)]

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1 0 1 0 1 0 1 0 11 1 0 11 1 0 1

EXECUTION RESULTS: (A)7-0 -+ (SA)7-0

STATUS FLAG: Always set to 1 after execution.

NOTE:
MSB 9 8 7 6 5 4 3 2 1 0 LSB

A Register 1 1 1 1 1 1 1 1 1 1

'hA •• ~_11111111
1 1 1 1 1 1 1 1 1 1 1 1 1 1

MSB 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSB

5-47

!

5.45 TAV - Transfer A Register to Voicing Latch

ACTION: Transfers bit 0 of the A register to the voicing latch.

OPCODE: 5B

SOURCE CODE: [(LABEL») I\. TAV I\. ••• [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10111011111011111
EXECUTION RESULTS: (A)O - (voicing latch)

STATUS FLAG: Always set to 1 after execution.

NOTE: The voicing latch selects either pitch excitation (1) or unvoiced white noise
excitation (0).

5-48

5.46 TAX - Transfer A Register to X Register

ACTION: Transfers the lower eight bits of the A register to the X register.

OPCODE: 07

SOURCE CODE: [(LABEL)] 1\ TAX I\ ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 1 0 1 0 1 0 1 0 1 0 11 11 11 1

EXECUTION RESULTS: (A)'" (X)

STATUS FLAG: Always set to 1 after execution.

5-49

5.47 TB.A - Transfer B Register to A Register

ACTION:

OPCODE:

Transfers the contents of the B register to the lower eight bits of the
A register.

02

SOURCE CODE: [(LABEL)]" TBA """ ... [(COMMENT)]

OBJECT CODE:
7 6 5 4 3 2 1 O·

INSTRUCTION 10101010101011101
EXECUTION RESULTS:

sign extended mode IB) -+ IA)7-0
IB)7 -+ IA)9-8

integer mode IB) -+ IA)7-0
o -+ IA)9-8

STATUS FLAG: Always set to 1 after execution.

5-50

5.48 TBITA - Test Bit in A Register

ACTION: Tests bit N of the A register and sets the status flag accordingly. Where
N = 1 through 8.

OPCODE: 30-37

SOURCE CODE: [(LABEL)J" TBITA" (N)" ... [(COMMENT)J

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101111101 N-1 1
EXECUTION RESULTS: lAIN - 1 -+ STATUS FLAG

STATUS FLAG: Set according to tested bit.

NOTE: This instruction is used to test a bit in the A register. The two upper bits of
the A register cannot be tested directly by this instruction. To test the two
upper bits, a shift must first be executed to shift bits 9 and 8 into bits 7 and 6.

5-51

5.49 TBITM - Test Bit in Memory

ACTION:

OPCODE:

Tests bit N of the RAM addressed by the X register and sets the status
flag accordingly. Where N = 1 through 8.

40-47

SOURCE CODE: [(LABEL)I/\ TBIT /\ (N)/\ ... [(COMMENT)1

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 1 0 11 1 0 1 0 1 0 1 N - 1 1

EXECUTION RESULTS: (*X)N-1 STATUS FLAG

STATUS FLAG: Set according to tested bit.

NOTE: Any bit of the internal RAM can be tested with this instruction.

5-52

5.50 TCX - Transfer Constant to X Register

ACTION: Loads the X register with the S-bit constant specified in the operand
field.

OPCODE: 56

SOURCE CODE: [(LABEL») 1\ TCX 1\1\1\ (CONSTS)I\ ... [(COMMENT»)

OBJECT CODE:

INSTRUCTION

CONSTANT

7 6 5 4 3 2 1 0

1°1110111011111°1
. CONST8 .

EXECUTION RESULTS: CONSTS -+ (X)

STATUS FLAG: Always set to 1 after execution.

5-53

5.51 TMA - Transfer Memory to A Register

ACTION: Transfers the contents of the RAM addressed by the X register to the
lower eight bits of the A register.

OPC::ODE: 04

SOURCE CODE: [(LABEL)] 1\ TMA I\I\I\ ••• [(COMMENT)]

OBJECT CODE:
7 6 6 4 3 2 1 0

INSTRUCTION 1 0 1 0 1 0 1 0 1 0 11 1 0 1 0 1

EXECUTION RESULTS:
sign extended mode (*X) -+ (A)7-0

(*X)7-+ (A)9-8
integer mode (*X) -+ (A)7-0

0-+ (A)9-8

STATUS FLAG: Always set to 1 after execution.

5-54

5.52 TMAIX - Transfer Memory to A Register and Increment X
Register

ACTION: Transfers the contents of the RAM memory addressed by the X register
to the lower eight bits of the A register and increments the X register.

OPCODE: 05

SOURCE CODE: [(LABEL)] A TMAIX A ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010101110111
EXECUTION RESULTS: (*X) -+ (A)7-0

sign extended mode (*X)7-+ (A)9-8

integer mode
(*X) -+ (A)7-0

0-+ (A)9-8

(X) + 1-+ (X)

STATUS FLAG: Always set to 1 after execution.

5-55

5.53 TMEDA - Transfer Memory to DAC

ACTION:

OPCODE:

Clears all feedback data calculated in the filter so that data is transferred
directly to the DAC from RAM location 00.

28

SOURCE CODE: [(LABEL») A TMEDA A ... [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101110111010101
EXECUTION RESULTS: Set filter control to clear filter feedback data and load DAC

directly with data stored at RAM address > 00.

STATUS FLAG: Always set to 1 after execution.

NOTE: The data is taken from RAM in two's complement format. It is taken every
12 instruction cycles whether it is changed or not. It is necessary to execute
the START instruction also to enable the data path to the DAC. Executing
the STOP instruction turns the DAC off and disables the TMEDA function.
Refer subsection 6.6 for more detail.

5-56

5.54 TPAA - Transfer Port A to A Register

ACTION: Transfers the contents of Port A to the lower eight bits of the A register.
Makes Port A an input port if masked in the master option.

OPCODE: 03

SOURCE CODE: I (LABEL)1II TPAA 1III ... I(COMMENT)1

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010101011111
EXECUTION RESULTS:

sign extended mode (PA) - (A)7-0
(PA)7- (A)9-8

integer mode (PA) - (A)7-0
0- (A)9-8

STATUS FLAG: Always set to 1 after execution.

NOTE: If switching Port A from output mode to input mode with this instruction,
disregard the data brought in by the first instruction. Execute it once to make
it an input port and then execute a second TPAA to bring in valid data.

5-57

5.55 TPAM - Transfer Port A to Memory

ACTION:

OPCODE:

Transfers the contents of Port A to RAM addressed by the X register.
Makes Port A an input port if the TSP50C4X devices are masked for
the master option.

14

SOURCE CODE: [(LABEL)] A TPAM A ••• [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 1010101110111010 I
EXECUTION RESULTS: (PAl -+ (*XI

STATUS FLAG: Always set to 1 after execution.

NOTE: If switching Port A from output mode to input mode with this instruction,
disregard the data brought in by the first instruction. Execute it once to make
it an input port and then execute a second TPAM to bring in valid data.

5-58

5.56 TPCA - Transfer Port C to A Register

ACTION: Master Option: Transfers the data on Port C to the lower eight bits of
the A register.

Slave Option: Transfers the RDY and IRT status flags to bit 0 and bit 1 of the register
and bits 4 to 7 of Port C to bits 4 to 7 of the A register.

OPCODE: 06

SOURCE CODE: [(LABEL)11l TPCA 1III ... [(COMMENT)1

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101010101111101
EXECUTION RESULTS:

Master option:
sign extended mode (PC) (A)7-0

(PC)7 (A)9-8

integer mode (PC) (A)7-0
0 (A)9-8

Slave option:
(RDY) (A)O
(IRT) (A)1
(PC)4 (A)4
(PC)5 (A)5)
(PC)6 (A)6
(PC)7 (A)7

STATUS FLAG: Always set to 1 after execution.

NOTE: For the TSP50C41 and TSP50C43, bits 4-7 will always be high.

5-59

5.57 TTMA - Transfer Timer to A Register

ACTION: Transfers the contents of the timer register to the lower eight bits of
the A register and makes the IRT pin an input to the prescale clock.

OPCODE: 20

SOURCE CODE: [(LABEL)ll\ TTMA 1\I\ ... [(COMMENT)l

OBJECT CODE:
7 654 3 2 1 0

INSTRUCTION 10101110111110111
EXECUTION RESULTS:

sign extended mode (timer) (A)7-0
(timer)7 (A)9-8

integer mode (timer) (A)7-0
0 (A)9-8

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction is the only way to make the IRT pin the prescale clock source.

5-60

5.58 TXA - Transfer X Register to A Register

ACTION: Transfers the contents of the X register to the lower eight bits of the
A register.

OPCODE: 01

SOURCE CODE: [(LABEL») A TXA A ••• [(COMMENT»)

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 1 0 1 0 1 0 1 0 1 0 1 0 1 0 11 1

EXECUTION RESULTS: (X) - (A)7-0
sign extended mode (X)7- (A)9-8

(X) - (A)7-0
integer mode 0- (A)9-8

STATUS FLAG: Always set to 1 after execution.

5-61

5.59 TXPA - Transfer X Register to Port A

ACTION: Transfers the contents of the X register to Port A. Makes Port A an
output port if masked for master option.

OPCODE: 00

SOURCE CODE: [(LABEL)] A TXDA ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010111110111
EXECUTION RESULTS: (X) -+ (PA)

if processor masked for slave mode and IRT output 0 -+ IRT
if processor masked for master mode, PA becomes an output port.

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction is used to send commands or status to the external system.

5-62

When the TSP50C4X devices are masked for the slave option, IRT going low
indicates to the host that new data are available. Port A will remain in a high
impedance state until the external system activates it by pulling one or both
enable lines active low. This will cause IRT to go to a 1. SE!e subsection 6.3
for a complete discussion of the slave option.

In the master option, Port A is an output port and the data appear on the pins
immediately.

5.60 TXTM - Transfer X Register to Timer

ACTION: Transfers the contents of the X register to the timer register.

OPCODE: 10

SOURCE CODE: [<l.,ABEL)l" TXTM " ... [<COMMENT)l

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION 10101011101010101
EXECUTION RESULTS: (X) (timer)

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction is used to load the timer register with an initial value. Since
the timer interrupt occurs when the timer decrements from 0, the value loaded
into the timer register should be 1 less than the number of timer cycles desired.

5-63

5.61 XBX - Exchange B Register with X Register

ACTION:

OPCODE:

Exchanges the contents of the B register with the contents of the X
register.

OE

SOURCE CODE: [(LABEL)] A XBX A ... [(COMMENT)]

OBJECT CODE:
7 6 543 2 1 0

INSTRUCTION 10101010111111101
EXECUTION RESULTS: (B) +-+ (X)

STATUS FLAG: Always set to 1 after execution.

NOTE: This instruction can be used to keep and exchange two index pointers, swap
a loop value and index pointer for testing, or load a constant value into the
B register.

5-64

5.62 XGEC - X Register Greater Than or Equal to Constant

ACTION: Compares the contents of the X register and the constant specified and
sets the status flag accordingly.

OPCODE: 55

SOURCE CODE: [(LABEL)l A XGEC A (CONST8)A ... [(COMMENT)1

OBJECT CODE:

INSTRUCTION

CONSTANT

7 6 543 2 1 0

1°111011101110111
. CONST8 .

EXECUTION RESULTS: SF = (X) : CONST8

STATUS FLAG: Set to 1 if the value of the X register is greater than or equal to the
8-bit constant. Set to 0 if the value of the X register is lower than
the 8-bit constant.

NOTE:

LESS

GTE

XGEC TESTV Is X > = TESTV
SBR GTE Branch if so

5-65

5-66

6 Applications
This section presents programming techniques for specific parts of a
TSP50C4X device:

6.1 - Synthesizer Control
6.2 - Arithmetic Modes
6.3 - Standby Mode
6.4 - Slave Option
6.5 - TSP60CXX Interface
6.6 - Use of the TMEDA Instruction
6.7 - Use of Timer, Prescaler, Interrupts and IRT Pin
6.8 - Use of the Stack

6.1 Synthesizer Control

In this section, a sample program demonstrates how to control the synthesizer
in the TSP50C4X devices. This program causes the devices to synthesize
speech from data stored in the TSP5220 format. It is described here in several
steps:

6.1 .1 - Speech Coding and Decoding
6.1.2 - RAM Usage
6.1.3 - ROM Usage
6.1.4 - Program Overview
6.1.5 - Calling the Synthesis Program
6.1.6 - Synthesis Program Walkthrough

6.1.1 Speech Coding and Decoding

The TSP50C4X devices support linear predictive coding with ten K parameters
For more information see, "Introduction to LPC", subsection 1.7.
The LPC model requires three types of information:

1. Pitch
2. Energy
3. 10K parameters

Pitch parameters control the input into the LPC system by providing one of
two excitation signals. If the pitch code is nonzero, a periodic pulse similar
to that produced by human vocal cords is created. A good example of the
periodic sound is the" A" vowel sound. If the pitch code is 0, a white noise
source similar to the turbulence generated by constricted airflow in the mouth
is used. An example of this is the "F" sound. The LPC-10 model is entirely
digital; thus the excitation function is a series of digital data samples.

The excitation function specified by the pitch code is then multiplied by the
"energy" parameter. The output of the multiplication is put into a filter whose
resonance is determined by ten K parameters. To model the resonance of the

6-1

vocal tract, the output of the LPC-10 model is a series of digital samples,
typically at an 8- or 10-kHz rate, that are then put into the DAC.

The sample program decodes the parameters and puts them into the right
RAM locations at the proper time. It also starts, stops, and controls the
synthesizer.

The parameters are stored in a coded form. Each parameter is given a specific
number of bits. In the TSP5220 format, the parameters are calculated and
coded every 200 samples. For a 1 O-kHz sampling rate, this corresponds to
20 milliseconds per frame. Different' frame types are used for different
circumstances. The TSP5220 decoding scheme is shown in Figure 6.2.

Energy Repeat Pitch K1 K2 K3 K4 K5 K6 K7 K8 Kg K10

Voiced Frame I I

I I I

I I I I I I I I

II I I I I I I I I I 50 bits 0

Unvoiced Frame..--_-,-_--,-___ -.--.-_-.-_.----.

31 bits IL---L.-0~I 0_00_00--10 1----1.--1 --1...-1 ~--'
Repeat Frame

11 bits

Silent Frame

4 bits 10000 I
Stop Frame

4 bits El

6-2

Figure 6-1. TSP5220 Frame Decoding

The longest frame type is the voiced frame. This provides all LPC-10
parameters. For unvoiced frames, which are indicated by a pitch of 0, only
the pitch, energy, and first four K parameters are provided. The repeat frame
is indicated by a repeat bit value of 1 and provides only pitch and energy.
It is used in situations in which the vocal tract resonance is changing very
slowly and pitch and energy are varying. Long vowels are a good example
of this.

The silent frame is indicated by an energy value of 0 and is used for the parts
of speech that are silent.

A stop frame, indicated by an energy value of 1111 (binary), tells the
processor that a particular word or phrase has ended and that control must
be returned to the phrase selection program.

All of the frames are arranged as serial bit streams. This means that a frame
can start at any bit position within a given byte of memory. The GET instruction
is used to get bits from memory in a serial fashion, freeing the programmer
from bit manipulation tasks. Once the bits for a particular parameter are
extracted from the bit stream, they must be decoded before use in the
synthesizer. The K 10 unpacking and decoding process is shown in Figure 6-2.

Coded Speech
(Binary)

K5

Current Frame I Next Frame
I

K10 I E R Pitch

\ \
\ \

\ 100 \ Unpacked K10 (Binary) --------------;-

K10 Coding Table

Coded Value (Binary) --I 000 001 010

Decoded Value (Hex) --I CD DF F1

Synthesizer RAM

(1 byte per value) K5 K6 K7

\ \
\ \

\
\ \

011 I 100
1

101 110

I I

04 I 16
1

28 I 3B
-... --... -- -I 16-1

K8 Kg K10

Figure 6-2. Speech Parameter Unpacking and Decoding

111

4D

To decode speech, the processor must do the following three things:

1. Determine the frame type.
2. Unpack each parameter.
3. Decode each parameter using that parameter's coding table.

The specific details of these operations are given in subsection 6.1.4
Program Overview. The processor is also required to decide if each frame
should be interpolated. Interpolation is used to smooth out the transitions
between frames. Most of the time, speech changes smoothly. If 20-ms frames
are used without interpolation, changes occur abruptly and the speech sounds
rough. The TSP50C4X devices provide automatic interpolation of parameters.

6-3

This means that the energy, pitch, and ten K parameters will change several
times during the frame so that there is a smooth transition from the previous
frame to the current one. Refer to subsection 2.22.3 for more information
on this process.

Sometimes, speech changes quickly. For instance, in the case of voicing
transitions, speech changes rapidly from voiced to unvoiced or vice versa.
The sample program disables interpolation at voicing transitions.

6.1.2 RAM Usage

6-4

The sample program uses 8-bit-wide RAM locations 0 to 28 (hex), as well
as 4-bit-wide locations from 80 to 87 (hex).

Some RAM locations used in the program are fixed by the architecture of the
TSP50C4X, such as present and new values of energy, pitch, and K
parameters. The most significant eight bits of the various parameters are put
in value locations. In addition, there are fractional value locations that will
take four bits more for energy, pitch, and K1 through K6. This permits these
parameters to be entered with more precision if desired. Table 6-1 lists the
names and addresses for the synthesizer RAM locations. All addresses are
in hexadecimal, and the names in parentheses are the labels used in the sample
program.

Table 6-1. Synthesizer RAM Addresses

00 Pitch new value (PNV) 01 Pitch present value (PPV)
02 Energy new value (ENV) 03 Energy present value (EPV)
04 K 1 new value (K 1 NV) 05 K 1 present value (K 1 PV)
06 K2 new value (K2NV) 07 K2 present value (K2PV)
08 K3 new value (K3NV) 09 K3 present value (K3PV)
OA K4 new value (K4NV) 08 K4 present value (K4PV)
OC K5 new value (K5NV) 00 K5 present value (K5PV)
OE K6 new value (K6NV) OF K6 present value (K6PV)
10 K7 new value (K7NV) 11 K7 present value (K7PV)
12 K8 new value (K8NV) 13 K8 present value (K8PV)
14 K9 new value (K9NV) 15 K9 present value (K9PV)
16 K 1 0 new value (K 1 ONV) 17 K 10 present value (K 1 OPV)

Fractional values (lower four bits of the RAM location only)

80 Pitch new fraction (FPNV) 81 Pitch present fraction (FPPV)
82 Energy new fraction (FENV) 83 Energy present fraction (FEPV)

84 K 1 new fraction (FK 1 NV) 85 K 1 present fraction (FK 1 PV)

86 K2 new fraction (FK2NV) 87 K2 present fraction (FK2PV)

88 K3 new fraction (FK3NV) 89 K3 present fraction (FK3PV)
8A K4 new fraction (FK4NV) 88 K4 present fraction (FK4PV)

8C K5 new fraction (FK5NV) 80 K5 present fraction (FK5PV)
8E K6 new fraction (FK6NV) 8F K6 present fraction (FK6PV)
Note: This sample program does not use fractions for pitch and K3 to K6.

If interpolation is enabled, the TSP50C4X devices interpolate from the present
values to the new values during the frame. If interpolation is not enabled,
the present values are used for the entire frame. When the synthesizer is
active, each interrupt causes an automatic context switch. The present values
and the new values exchange positions with each interrupt. As will be seen
in subsection 6.1.4, this eases the programming task considerably. The new
values automatically become the present values. This way, each frame can
be put into the new values location as it comes up.

The synthesis program also requires RAM for buffering and control flags. These
can be stored anywhere in RAM other than the locations mentioned above.
In the sample program given here, all the parameters for a single frame are
buffered in RAM, along with fractional data for energy, K 1, and K2. In addition,
one byte of control and status flags and one temporary storage 'location are
used. Table 6-2 shows the addresses and describes the flags.

6-5

Table 6-2. Buffer and Control RAM Usage

18 Pitch Buffer (PBF) 19 Energy Buffer (EBF)
1A K 1 Buffer (K 1 BF) 1B K2 Buffer (K2BF)

1C K3 Buffer (K3BF) 1D K4 Buffer (K4BF)

1E K5 Buffer (K5BF) 1F K6 Buffer (K6BF)
20 K7 Buffer (K7BF) 21 K8 Buffer (K8BF)
22 K9 Buffer (K9BF) 23 K 10 Buffer (K 1 OBF)

24 Fractional Energy Buffer (FEBF) 25 Fractional K1 Buffer (FK1 BF)
26 Fractional K2 Buffer (FK2BF)

27 Temporary Storage (TEMP)

28 Status and Control Flags (FLAGS)

Flag Descriptions

Bit Description

o Stop frame detected (STP)
Interrupt - set by interrupt routine, cleared by decoding routine (INT)

2 No Interpolation - set if interpolation is not desired for frame (NINTP)
3 Unvoiced - set if frame is unvoiced (UNVO)
4 Start -- set while program is decoding the first two frames (STRT)
5 Start 1 - set while the second frame is being decoded (STRT1)
6 Repeat - set if current frame is a repeat frame (RPT)
7 Stop 1 - set for second frame of stop sequence (STP1)

The uses of the buffer and flags will be described in detail in subsection 6.1.4.
Note that locations 29 to 7F (hex) are available for user programs while the
TSP50C4X devices are synthesizing speech. This is a total of 87 (decimal)
bytes for user programming. When the TSP50C4X devices are not
synthesizing speech, all 128 bytes, plus the 16 nibbles from 80 to 8F, are
available for user programming.

6.1.3 ROM Usage

6-6

The sample program uses ROM locations 0 to 344 (hex), leaving the space
from 345 to 1 FFF or 3FFF (hex) available for user programs, speech, and data.
Table 6-3 gives a breakdown of the ROM usage.

0000-0001
0002-0003
0004-0005
0006-0007

0008-014E

014F-0158

0159-0161

0162-0172

0173-02CB

02CC-0344

Table 6-3. ROM Usage
Power-up short branches
Interrupt short branches
Power-up branch
Interrupt branch

Speech decoding tables

Processor initialization subroutine (lNIT)

RAM clear subroutine (RAMO)

Initialization of processor. speech address register and
para"el-to-serial register

Speech synthesis subroutine

Speech synthesis interrupt routine

Programs can be moved anywhere in program memory. but the speech
decoding tables must remain below address 400 (hex) so that they can be
addressed by the ten bits of the A register using the LUAA instruction.

6.1.4 Program Overview

The sample synthesis program is reproduced in its entirety in Appendix B.
Parts of it are used in this section for explanatory purposes. An outline of
the program flow follows:

Initialize processor
Initialize speech address register and parallel-to-serial register
Decode first frame of speech
Place first frame in present value RAM locations
Decode second frame of speech
Place second frame in new value RAM locations
Start synthesizer
Until stop frame reached.
Decode each frame
When interrupt occurs. copy frame to new value RAM locations
Clear all new value locations. except pitch
Wait two frames. then stop synthesizer
Return to calling routine.

6-7

6.1.5 Calling the Synthesis Program

6-8

The following sample program can be used to invoke the synthesis program.
The program starts at ROM location 0 on power-up.

0220 *---
0221 * BEGINNING OF PROGRAM
0222 *---
0223 0000 AORG #0000
0224 0000 84 SBR GOGO ;POWER UP VECTOR
0225 0001 84 SBR GOGO
0226 0002 86 SBR INTO :INTERRUPT VECTOR
0227 0003 86 SBR INTO
0228 0004 61 GOGO BR GO :BRANCH TO SPEECH ROUTINE

0005 5F
0229 0006 62 INTO BR INTl :BRANCH TO INTERUPT ROUTINE

0007 C3

There are two short branches at the beginning because the condition of the
status bit is unknown. Two branches ensure that at least one will be taken.
Both branches go to label GOGO, which has a branch to the start of the actual
program. The other brahches in this code fragment are for the interrupt routine.

Next, the program goes to the initialization section:

0417 * START OF SYNTHESIS PROGRAM
0418 *---
0419 015F 71 GO CALL INIT :INITIALIZE PROCESSOR

0160 4F
0420 0161 71 CALL RAMO :CLEAR INTERNAL RAM

0162 56
0421 0163 2E RSECT :MAKE TIMER INPUT INTERNAL

First the INIT routine is called:

0390 * INIT: INITIALIZE PROCESSOR
0391 * + --- +
0392 014F 10 INIT INTO ;OISABLE INTERRUPTS
0393 0150 IB STOP :STOP SYNTHESIZER
0394 0151 00 CLA
0395 0152 50 ACAA 49 :200 SAMPLES/FR (200/4) - 1

0153 31
0396 0154 50 TAPSC ;INTO PRESCALE REGISTER
0397 0155 IF RETN
INIT disables interrupts, stops the synthesizer and sets the frame rate. It is
important to disable interrupts because the initialization code is not designed

to be interrupted. The STOP instruction is not used to stop the synthesizer.
It is used to initialize the context switching bit. For more information, see
subsection 6-7. The prescale register determines the length of the speech
frame, which is 200 samples in this case. The formula for the prescale register
value is (samples per frame/41 -1.

The speech synthesis routine then calls the RAMO subroutine.

0400 * RAM CLEAR
0401 *
0402 * SUBROUTINE NAME : RAMO
0403 * USES : A REGISTER, X REGISTER, ALL OF RAM
0404 * DESCRIPTION : FILLS RAM WITH ZEROES
0405 *
0406 *---
0407 0156 00 RAMO CLA ;CLEAR ACCUMULATOR
0408 0157 11 CLX ;POINT TO FIRST RAM LOCATION
0409 0158 09 RC1 TAM ;CLEAR RAM LOCATION
0410 0159 OF IXC ;POINT TO NEXT RAM LOCATION
0411 015A 55 XGEC #90 ;AT END OF RAM?

015B 90
0412 015C DE SBR RC2 ;BRANCH IF SO
0413 0150 08 SBR RC1
0414 015E 1F RC2 RETN

RAMO clears all memory locations. It should not be utilized in speech synthesis
routine because it will clear any nonspeech data also. It should be used at
power-up for initialization, since the RAM in the TSP50C4X devices powers
up in a random state. For this synthesis program to function properly, the
following locations need to be cleared; FPNV, FPPV, FK3NV, FK3PV, FK4NV,
FK4PV, FK5NV, FK5PV, FK6NV, FK6PV.

6-9

6-10

Next, the program initializes the speech data paths and pointers:

0421 0163 2E RSECT ;MAKE TIMER INPUT INTERNAL
0422 *
0423 0164 00 CLA
0424 0165 50 ACAA #08 ;HIGH 5 BITS OF SPEECH ADDRESS

0166 08
0425 0167 OB TASH ;INTO HIGH BITS OF SAR
0426 0168 00 CLA ; LOW BYTE OF ADDRESS = 0
0427 0169 OA TASL ;INTO LOW BYTE OF SAR
0428 *
0429 016A 2C INTRM ;USE INTERNAL ROM
0430 016B 59 LUSPS ;INITIALIZE PARALLEL TO SERIAL

;REG
0431 016C 71 CALL SPSTR ;SPEAK

0160 70
0432 *
0433 016E 61 LOOP BR LOOP ; LOOP FOREVER

016F 6E
The RSECT instruction tells the processor that the timer clock will be taken
from the internal ROM. The CLA, ACAA 8, and TASH instructions initialize
the high bits of the speech address register to 8. The CLA and TASL
instructions put a 0 in the low byte of the speech address register. This
prepares the program to start accessing speech from internal ROM at location
0800 (hex). INTRM instruction sets the data path to internal ROM rather than
TSP60CXX external ROM interface and LUSPS initializes the parallel-to-serial
register.

Finally, the speech subroutine SPSTR is called. Generally, user programs have
a more complicated method of looking up speech start addresses. Often, there
are three levels of pointers:

1. Sentence pointers that point to the start addresses.
2. Lists of word numbers that make up a sentence. The word numbers

are the pointers.
3. Start addresses of speech data for each word.

Sometimes there are several sentences randomly selected for a given situation.
This can lead to a fourth level of pointers that point to sentence groups. All
of these levels of pointers are easily accessed using either the GET or LUAA
instructions. The structure is dependent on the specific application.

6.1.6 Synthesis Program Walkthrough

There is a short initialization section at the beginning of SPSTR:

0434 *
0435 *---
0436 * SPEECH
0437 *
0438 * SUBROUTINE NAME : SPSTR
0439 * USES : A REGISTER, X REGISTER,

* B REGISTER, RAM FROM 0 TO #29
0440 * RAM FROM #80 TO #8F
0441 * 2 STACK LEVELS
0442 * DESCRIPTION : SYNTHESIZES SPEECH
0443 *
0444 *---
0445 0170 56 SPSTR TCX PBF

0171 18
0446 0172 00 CLA
0447 0173 50 ACAA #OC

0174 OC

0448 0175 09 TAM ;SOME PITCH TO START OUT
;WITH, IN CASE WE

0449 * ;GET A SILENT FRAME
0450 0176 56 TCX FLAGS

0177 28
0451 0178 00 CLA ;CLEAR FLAGS
0452 0179 09 TAM
0453 017A 3C SBITM STRT ;FLAG START OF SPEECH
0454 017B 61 BR SPDE2 ;BRANCH AROUND INTERRUPT

017C 8B ;CHECK

Lines 0445 to 0455 put a default value in the pitch buffer and set the flags
to indicate that the first frame is being processed. The pitch buffer must be
loaded with a default value because values from 0 to B will cause the
synthesizer to lock up and not speak. Usually, the pitch is loaded from the
first frame, but if the first frame is silent, there is no pitch value to load. The
last instruction in this section is a branch around the section of code that waits
for an interrupt to occur. Interrupts are not enabled yet. The code now enters
the speech decoding section. The same decoding section is used for all frames,
for initialization and for continuous speaking.

6-11

0473 018B 00 SPOE2 CLA :CLEAR A
0474 018C 23 GET NRGNB :GET ENERGY
0475 0180 54 ANEC ESTOP :IS tT THE STOP CODE?

018E OF
0476 018F 61 BR NOSTP ;BRANCH IF NOT

0190 99
0477 0191 56 TCX FLAGS

0192 28
0478 *
0479 0193 3F SBITM STP1 ;FLAG STOP1
0480 *
0481 0194 62 BR CLRPR ;GO CLEAR PARAMETERS

0195 5A

Lines 0473 to 0482 get the coded energy (GET NRGNB) and check for a stop
frame (ANEC ESTOP). If it is a stop frame, a flag is set to branch to clear
all parameters except pitch. If it isn't a stop frame, branch is to NOSTP:

0486 0199 54 NOSTP ANEC ESILE IS IT A SILENT FRAME?
019A 00

0487 019B 61 BR NOSIL :BRANCH IF NOT
019C 9F

0488 0190 62 BR CLRPR ;IF SO, GO CLEAR PARAMETERS
019E 5A

6-12

At NOSTP the code checks for a silent frame and branches either to NOSIL
to process a nonsilent frame, or to CLRPR to clear the parameters for a silent
frame. At NOSIL the energy is decoded:

0489 019F 56 NOSIL TCX TEMP
OIAO 27

0490 OlAl 09 TAM ;SAVE ENERGY CODE
0491 01A2 50 ACAA TABEN ;START OF ENERGY TABLE

01A3 08
0492 01A4 58 LUAA ;DECODE ENERGY
0493 01A5 56 TCX EBF

01A6 19
0494 0lA7 09 TAM ;PUT IT AWAY
0495 01A8 56 TCX TEMP

01A9 27
0496 OlAA 04 TMA ;GET ENERGY CODE BACK
0497 OIAB 50 ACAA TABEF ;START OF FRACTIONAL ENERGY

;TABLE
OIAC FF

0498 OIAD 58 LUAA ;DECODE ENERGY
0499 OIAE 56 TCX FEBF

OlAF 24
0500 OIBO 09 TAM ; PUT IT AWAY

This code fragment illustrates the decoding process for all the parameters.
The coded value is saved in temporary storage and retained in the accumulator.
The start of the energy decoding table is then added to the coded value,
yielding a pointer to the location of the decoded value. The LUAA instruction
is then used to transfer the decoded value to the A register and the value
is placed in the energy buffer. Then the process is repeated with the fractional
decoding table and buffer. If fractional pitch or additional fractional K
parameters are desired, the same process is used.

The repeat bit follows the energy parameter:

0502 * REPEAT
0503 *
0504 OlBl 00 CLA ;CLEAR A
0505 01B2 20 GET RPTNB ;GET REPEAT BIT
0506 01B3 56 TCX FLAGS

01B4 28
0507 01B5 4E RBITM RPT ;SET BIT REPEAT
0508 01B6 54 ANEC REPT ; IS IT REPEAT?

01B7 01
0509 01B8 BA SBR LABPI ;GO TO PITCH
0510 01B9 3E SBITM RPT ;IF NOT RESET BIT REPEAT

6-13

6-14

This section gets the repeat bit and sets a repeat (RPT) flag. The program
has three more decision points for decoding.

First, it gets the pitch and decodes it and sets a flag to indicate whether pitch
is voiced or unvoiced. It also checks the voicing for the previous frame and
sets a bit disabling interpolation if the voicing has changed.

Next, it checks the RPT bit set earlier to see if this is a repeat frame. If it is,
it branches around the K parameter decoding section. If it is not a repeat frame,
it decodes the first of the four K parameters.

Finally, if the frame is unvoiced, it branches to a routine that clears the last
six K parameters. If the frame is voiced, it decodes and stores the last six
K parameters.

Then there are some decision points that affect initialization:

0671 0286 56 SPCEX TCX FLAGS
0287 28

0672 0288 44 TBITM STRT ;FIRST TWO FRAMES?
0673 0289 8C SBR SPCE1 ;BRANCH IF SO
0674 028A 61 BR SPDEC ;GO DO IT ALL OVER AGAIN

028B 70
0675 028C 45 SPCE1 TBITM STRTl ;SECOND FRAME?
0676 028D 62 BR SPCE2

028E B3
0677 028F 3D SBITM STRTl :NEXT ONE IS SECOND FRAME

This section of code checks the start flags and goes to SPDEC if the
initialization was already done, to SPCE2 if the second frame is done, or falls
through if the first frame has just been decoded and buffered.

If the first frame is waiting in the buffer, it is put into the RAM location of
the present value. This is the only frame put in these locations. The TSP50C4X
devices usually interpolate from the present values to the new values for each
frame. On startup, the synthesizer will interpolate from the first frame to the
second frame. Then the second frame will be automatically switched to the
present value locations and the program will put the third frame into the new
values location and so on.

After the first frame is copied into the present values location, the program
branches back to the start and the second frame is decoded. The code section
above is re-entered and the program goes to SPCE2. From there, the program

enters the interrupt routine at a second entry point and leaves it at a special
exit point. Even though this is not good structured programming, it is done
to save ROM and stack space. The interrupt routine body does what needs
to be done; it copies the buffer to the new values.

After the second frame has been copied to the new values, interrupts are
started:

0716 *
0717 *NOW START IT UP
0718 *
0719 02B5 56 SPCE3 TCX FLAGS :BACK HERE FROM MOVE

02B6 28
0720 02B7 4C RBITM STRT :CLEAR STARTUP FLAGS
0721 02B8 40 RBITM STRTl
0722 02B9 56 TCX PBF :GET PITCH

02BA 18
0723 02BB 04 TMA :INTO A REGISTER
0724 02BC 56 TCX TMVAL ;TIME INTO X REGISTER

02BO 1F
0725 02BE 1A START
0726 02BF 10 TXTM ;START THINGS GOING
0727 02CO 1E INTE ;ENABLE THOSE INTERRUPTS
0728 02C1 61 BR SPOE2 ;GO FILL BUFFER AGAIN

02C2 8B

Lines 0716 to 0729 clear the startup flags, load the pitch into the A register,
and start the synthesizer. The timer register is then loaded and interrupts
enabled. A 1 F must always be loaded into the timer register for speech
interrupts. It is hard-wired into the synthesizer logic that will be used by this
value.

After this, the program branches to SPDE2, which will decode the third frame
and then go back to the beginning to wait for indications that an interrupt
has occured. Then it will buffer up another frame and another, and another,
and so on, until a stop frame is encountered. Before looking at stop frame
handling, it is important to examine the interrupt routine in more detail.

6-15

6-16

0744 02C3 56 INTl TCX FLAGS
02C4 28

0745 02C5 39 SBITM INT ;SET INTERRUPT FLAG
0746 02C6 40 TBITM STP ; LAST FRAME?
0747 02C7 63 BR NOINT ;BRANCH IF SO.

02C8 37
0748 02C9 56 TCX TMVAL ;LOAD TIMER INTERRUPT VALUE

02CA IF
0749 02CB 10 TXTM
0750 02CC 56 TCX FLAGS

The first section of the interrupt program tests the STP flag to see if this is
the last frame of synthesis. If it is, the timer register is not reloaded. This
way, there will be no interrupt pending when the speech synthesis program
is restarted for the next speech. If speech is ongoing, the timer register is
reloaded to start timing for the next interrupt. The INT flag is set to indicate
that the interrupt has occured.

Then voicing is handled:

0750 02CC 56 TCX FLAGS
02CO 28

0751 *
0752 *MOVE NEW VALUES INTO PRESENT VALUES
0753 *
0754 *VOICING
0755 *
0756 02CE 00 T$IRI CLA
0757 02CF 43 TBITM UNVO ;CHECK VOICING
0758 0200 62 BR SSSSS ;BRANCH IF NOT VOICED

0201 04
0759 02D2 50 ACAA ;SET VOICING BIT

0203 01
0760 0204 5B SSSSS TAV ;PUT IT AWAY

This section tests the voicing bit and does a T AV instruction with the least
significant bit of the A Register set or reset accordingly. Next, all the
parameters are copied from the buffer to the new values. The code for pitch
is sufficient to illustrate this:

0764 0205 56 TCX PBF ;GET PITCH BUFFER
0206 18

0765 0207 04 TMA
0766 0208 56 TCX PNV ;TELL CHIP ABOUT IT

0209 00
0767 *
0768 020A 09 TAM

The code to copy parameters from buffer to new value is in a straight line,
while the code used for initialization to code buffers to present values is in
a loop. This is because the priorities are different. The initialization is done
before speech starts; thus ROM space is the overriding criterion. The interrupt
routine occurs during speech synthesis; therefore, time is the most important
factor.

During synthesis, the synthesizer interpolates from the present values to the
new values. When interrupt occurs, interpolation to the new values has already
taken place. The context switch toggles and the new values and present values
change positions. The synthesizer stops interpolating and uses the parameters
that are now in the present value location (the old new values). The speech
parameters stay constant until the program loads the values for the next frame
into the new values locations and tells the synthesizer to start interpolation
again. For this reason, it is important to load the new values as fast as possible.
Any slowdown would have an adverse effect on the quality of speech.

Interpolation is enabled by the INTE instruction. The program uses the NINTP
flag to decide whether interpolation is required or not. The program fragment
is shown below:

0833 *INTERPOLATION
0834 *
0835 032F 56 TCX FLAGS

0330 28
0836 0331 44 TBITM STRT ;START?
0837 0332 62 BR SPCE3 ;BRANCH IF SO

0333 B5
0838 0334 42 TBITM NINTP ; INTERPOLATE?
0839 0335 B7 SBR NOINT ;BRANCH IF NOT
0840 0336 IE INTE
0841 0337 2F NOINT RETI

The first test above is for the STRT flag. This provides for the nonstructured
exit from the interrupt routine for initialization.

6-17

The only section requiring more explanation is the stop code handling. When
the stop code is detected, all the parameters in the buffer are cleared except
for the pitch, which is left the same. The STP1 flag is also set. On the next
interrupt, the program will put zeroes into the new values locations. The
synthesizer will then interpolate down to all zero values for the next frame.
The STP flag will be set so that the final interrupt will not reload the interrupt
timer causing interrupts to cease. The synthesis program will go to its exit
point:

0843 *HERE FOR A STOP CODE
0844 *
0845 0338 10 STPIT INTO
0846 0339 18 STOP
0847 033A IF RETN

It will disable interrupts, stop the synthesizer, and return control to the calling
routine.

6.2 Arithmetic Modes

6-18

The instructions transferring data to A register, AMAAC and SMAAN, are
the only instructions affected by the ALU mode. The ALU mode can be set
using the INTGR and EXTSG instructions.

Instructions transferring data to the A register clear bits eight and nine of the
A register in the INTGR mode. In the EXTSG mode, bits eight and nine are
set to the value of bit seven.

AMAAC and SMAAN set the Status Flag to the value of the carry from bit 7
of the ALU. The ALU accepts two 1 a-bit input values and returns a 1 a-bit
output value. One 1 a-bit value comes from the A register, and the low eight
bits of the other value come from the RAM location pointed to by the X
register. The ALU mode affects what goes into the two high bits of that value.
If the INTGR instruction has been executed last, the two bits are always filled
by zeroes. The EXTSG instruction causes the high bit from the RAM to be
put into the two high bits. This means that the only difference between the
two modes occurs when the RAM most significant bit is a 1.

The INTGR mode is intended to be used for unsigned numbers, while the
EXTSG mode allows two's complement numbers to be used. The example
in Figure 6-5 illustrates the difference. Note that in integer mode, the FF (hex)
acts as a positive number and FF is added to the value in the A register. In

extended sign mode, the FF is treated as a two's complement number, giving
it an effective value of - 1. The example is for the AMAAC instruction, but
the same rules hold true for SMAAN.

CARRY

A-reg 202

*X-reg FF

RESULT 301

CARRY

A-reg 202

*X-reg FF

RESULT 201

6.3 Standby Mode

1 1111 11

1000000010

001111 1111

11 00000001

11 1111 11

1000000010

11 1111 1111

1000000001

INTEGER MODE

1 - SF

EXTENDED SIGN

MODE

1 - SF

Figure 6-3. ALU Modes

Several design details must be taken care of to achieve minimum power
consumption in the standby mode, whether it is reached with the SETOFF
instruction or by pulling the INIT line low.

1. Any of the pull-up resistors, internal or external, will continue to draw
power when the TSP50C4X devices are in standby mode. The design
must make sure that there is no path to ground when the chips are
powered down.

2. Port C should be tied to either a low or a high level. If its inputs go
to an intermediate state, internal gates could be energized, causing
additional power consumption.

3. Attention must be paid to the levels to which signals go when the
TSP50C4X devices are in the standby mode.

Port A - high impedance
Port B - output mode, low-level
Port C - high impedance
Port D - outputs, all low-level
IRT - When masked as output - low, otherwise high-

impedance.

6-19

6.4 Slave Option

6-20

The slave option is a specialized mask-selectable mode of the TSP50C4X
devices that is used for applications in which the TSP50C4X devices need
to be controlled by a master microprocessor. Port A changes to a latched port
that can be used as an I/O or memory address by the master processor. Several
lines from Port C become control and handshake lines for this port. The slave
option is designed for use with 4- and 8-bit data widths.

The lines involved in the slave option are:
PAO to PA 7 - I/O port
ENA 1 - chip enable input for reading and writing to the high four bits

of PA
ENA2 - chip enable input for reading and writing to the low four bits

of PA
R/W - input that controls direction of data flow for PA
RDY - output that indicates whether PA is ready to be written to.
IRT - output that indicates that there is data on PA to be read.

Here is a typical sequence for an 8-bit read operation (see Figure 6-4):

At the beginning of the operation, the master is holding ENA 1 and ENA2 high,
which causes Port A to remain in a high-impedance state. The TSP50C4X
device is holding IRT high. The other lines do not matter yet.

1. The TSP50C4X device puts data in the Port A latch with a TAPA
instruction. This automatically causes the IRT line to go low.

2. The master either polls or is interrupted by the IRT line.

3. The master raises the R/W line.

4. The master lowers ENA 1 and ENA2. This causes step 5 to occur.

5. The contents of the Port A latch appear on the outputs of the port
and are read in by the master. The IRT line goes high.

6. The master raises ENA 1 and ENA2. This causes Port A to return
to a high-impedance state. To ensure that IRT will stay high, this
event must occur at least 20 clock cycles after the falling edge of
IRT.

7. The TSP50C4X device polls the status of IRT with the TPCA
instruction. When IRT goes high, it gets another byte of data and
puts it into the Port A latch, starting the cycle over again.

Note that IRT goes high after the falling edge of ENA 1. This means that if
the TSP50C4X device polls IRT while the master is still reading, it will see

a high and may overwrite the Port A latch, which could lose the existing data.
If this is a possiblity, ensure that there is enough delay between polling IRT
and writing to the latch to prevent this from occurring.

For a 4-bit master, follow the same sequence, reading the low nibble first,
followed by the high nibble. ENA2, which controls the low nibble, has no effect
on IRT, so it will not be set until the high nibble is read with ENA2.

DATA
VALID

PA ____________ ~X~ ____ x==

ENA1 and 2 \ / \...-. __ --J

R/W ~

Figure 6-4. Read Operation

A write operation is similar except that RDY is used and R/W is in the opposite
state. Here is the sequence for a write (see Figure 6-5):

At the beginning of the operation, the master holds ENA 1 and ENA2 high,
which causes Port A to remain in a high-impedance state. The TSP50C4X
device holds RDY high. The other lines do not matter yet.

1. The TSP50C4X device completes processing any previous data it
has and then executes a RSRDY instruction, which causes the RDY
line to go low.

2. The master either polls or is interrupted by the RDY line.

3. The master lowers the R/W line.

4. The master lowers ENA 1 and ENA2. This causes step 5 to occur.

5. The data on the inputs of Port A are placed into the Port A latch.
The RDY line goes high.

6-21

6. The master raises ENA 1 and ENA2. This causes the data on Port
A to be latched into the Port A latch. To ensure that ROY will stay
high, this event must occur at least 20 clock cyCles after the falling
edge of ROY.

7. The TSP50C4X device polls the status of ROY with the TPCA
instruction. When ROY goes high, it gets the byte of data from the
Port A latch and then issues an RSROY instruction, starting the
cycle over again.

Note that ROY goes high after the falling edge of ENA2. This means that if
the TSP50C4X device polls ROY while the master is still writing, it will see
a high and may read from the Port A latch. This could lead to false data. If
this is a possibilty, ensure that there is enough delay between polling ROY
and reading from the latch to prevent this from occuring.

For a 4-bit master, follow the same sequence, writing the high nibble first,
followed by the low nibble. ENA 1, which controls the high nibble, has no effect
on ROY, so it will not be set until the low nibble is read with ENA2.

DATA
VALID

Port A X >C

ENA 1 and ENA2 \ /

R/W ~ .-
ROY \ I

Figure 6-S. Write Operation

6.5 TSP60CXX Interface

6-22

If additional space for speech or other data is desired, the TSP50C4X can
easily be interfaced to the TSP60C19, the TSP60C20, and the TSP60C80.
Port B has a special mode activated by the EXTRM instruction that enables
the GET instruction to be used with external memory just as it is with internal
data. However, the initialization is completely different, and that is what is

covered in this section. There are special precautions that must be taken when
using internal (TSP50C4X) data after using the external (TSP60CXX) data.
It is also possible to put the TSP60CXX devices into a low-power mode from
the TSP50C4X devices.

The TSP60CXX devices supports an eight-line interface. There are two mode
pins, MO and M 1. The data address is entered 4 bits at a time on pins ADD 1,
ADD2, ADD4, and ADD8. The data emerge serially on SRDTD (SeRial DaTa
Delayed), which should be connected to the RDIN pin of the TSP50C4X
devices, clocked by ROMCLK. See below.

6.5.1 Initialization

The TSP50C4X to TSP60CXX interface program needs to initialize the
interface sections of both devices and to load the proper address into the
TSP60CXX address register. After that, the actual data transfer is completely

TSP50C4X RIC PUC TSP60C19
CIRCUIT

VDD

VSS HCLB HCLB

RDIN SRDTD

OSC1 MO MO

M1 M1
XTAL CJ

ROMCLK SRCK

OSC2 VSS CEB

ADDS C(3) VDD VDD
E P7-4 VSS VSS X
T ADD4 C(2)
E P3-0
R
N ADD2 C(1)
A
L ADD1 CIO)

S
y

SPK1
S EXT
T R/W
E

AMP
SPK2 M

Figure 6-6. TSPOC4X and TSP60C19 Interface

6-23

6-24

TSP50C4X

5 19 ..
~ OSC1 MO

6 17J1>.
OSC2 M1

20 r 11
ROMCLK

10 25
ADD8

TSP60C20

BUSYOUT

BUSYWIRE
MO SRDT

M1

SRCK VDD
C7 STR

~ 13
22

r

5
~ 23

12

NC

NC

NC

V

L. ~ T 1., C3 7
(PORT A A2

26 r

" 7 9
A1 """-

6
C6 ADD4 ... 2 5
C2 AO / PORT C r

8 27 .. C5 MPMODE
18

ADD2
L 3 10

...
...

PORT 0 C1 CE
7 28

R/W
11

ADD1 C4
4

CO D/A1 BUSY IN ~
9

D/A2 RDIN
12 21 SRDTD TEST ~ 24

IRT
4 16

HCL VSS l..
15

IN IT I""
l.. 8

VSS
VDD VSS

I I SYSTEM 0
RESET

5 V 0 V

Figure 6-7. TSP50C4X/TSP60C20 Interface with TSP50C4X
in the External ROM Mode

V

automatic and the standard speech synthesis routine can be used. The only
restriction that applies is that each GET instruction must be at least eight
instruction cycles after the previous GET because of the speed of the interface.

The address counter on the TSP60CXX devices has 1 6 bits and addresses
the data on 16-bit boundaries. Therefore, it can address 65536 16-bit words.
Each TSP60C19 or TSP60C20 contains only 16384 words, which can be
addressed with 14 bits. The highest two bits are mask programmable as chip
select bits so that up to four TSP60C19s or TSP60C20s can be used on the
same eight-line interface. The TSP60C80 has four times as much data as the
other TSP60CXX chips, so only one can be used with eight lines. For more
information, see the TSP60CXX Data Manual.

Even though the TSP60CXX devices address data on 16-bit boundaries,
speech data is customarily packed on 8-bit boundaries in order to get more
data compression. To access data starting in the middle of the 16-bit
TSP60CXX word, simply address the word and then do a GET 8 to get to
the second byte. This approach is used in the program shown here.

The software accepts a 16-bit address of data divided up into 8-bit bytes.
The high 1 5 bits of the address are used to address the TSP60CXX device,
while the least significant bit is used to determine the need for a GET 8 as
described above. Since only 15 bits are used for TSP60CXX address, the
program as it is written can only be used to access two TSP60C19s. It can,
however, be easily modified to incorporate the additional bit needed to access
all four TSP60C19s or an entire TSP60C80.

The initialization sequence is as follows:

1. Pulse M1 high.
2. Pulse MO high - this sequence resets the TSP60CXX.
3. Load the address.
4. Delay 16 instruction cycles so the TSP60CXX can fetch the data.
5. Read 16 bits from the TSP60Cxx to bring the new data to the output.
6. Read an additional eight bits if necessary.

The program to accomplish this is Appendix C.

6.5.2 Using Internal and External Data Alternately

Port B can be used in the TSP60CXX mode (EXTRM) or in the internal data
mode (lNTRM). In the TSP60CXX mode, PB7 becomes an input and the
TSP60CXX device is activated to transmit data to it. When internal speech
is needed, the INTRM instruction must be executed to direct the GET
instruction to fetch data from internal ROM. This instruction also makes Port
B into standard output port, making PB7 an output. If the TSP60CXX device
is not deselected before the INTRM instruction is executed, there will be a
possible conflict on PB7 that could damage either device and that will cause
a large rise in power consumption.

To prevent this, deselect the TSP60CXX before using internal data. There
are two ways to do this. There are several pins on the TSP60CXX that can
be used to deselect the device or to put it into a low-power mode. Refer to
the TSP60CXX data manual for more information. The other option involves
using fewer than four TSP60C 19s. If this is done, simply put out the address
of the TSP60C19 that is missing. This will cause the other TSP60C19s to
make their output pins high-impedance. If a TSP60C80 is being used, it will
be necessary to use its chip select line to disable it before executing the INTRM
instruction.

6-25

6.5.3 TSP60CXX Power Down

A simple sequence can also be used to put the TSP60C19 into a guaranteed
low-power state. It is used when powering off the TSP50C4X devices with
the SETOFF instruction to ensure that the TSP60C19 will not consume power.
Method one involves simply keeping the TSP50C4X device running for 32
instruction cycles after the last GET instruction. Pulsing M 1 high and then
low will also put the TSP60C19 into a guaranteed power-down state.

6.6 Use of the TMEDA Instruction

6-26

The TMEDA instruction permits direct access to the TSP50C4X DAC. The
synthesizer must be started in the usual way with the START instruction
following the TMEDA instruction. The first value that is put out 11 cycles
after the START instruction is executed is always O. After that, RAM location
o is put out on the DAC every 12 instruction cycles. For best results, the
program that uses TMEDA should put out a value at 12 instruction cycle
intervals. The STOP, INTE, and START instructions need to be executed to
get the synthesizer into the proper configuration for the TMEDA to work. The
program below will generate a 500-Hz sine wave if the clock frequency of
the TSP50C4X device is 3.84 MHz.

*
*19 STEP SINE WAVE (ONE STEP HANDLED BY ROUTINE)
*(This section must go in the lower 1K of ROM)
*
SINE BYTE 39

BYTE 75
BYTE 103
BYTE 122
BYTE 127
BYTE 122
BYTE 103
BYTE 75
BYTE 39
BYTE 0
BYTE #D9
BYTE #B5
BYTE #99
BYTE #86
BYTE #81
BYTE #86
BYTE #99
BYTE #B5

SIEND BYTE #D9
*
*Start of program

*This section can go anywhere in the program portion of
*the ROM
*
BEGIN STOP

INTE INITIALIZE SYNTHESIZER
TMEDA
START START SYNTHESIZER IN TMEDA MODE
SBR TONEl

*
TONE TBA TRANSFER TABLE POINTER TO A

ANEC SIEND+l AT END OF TABLE?
SBR TONE2 BRANCH IF NOT

*
TONEl TCX SINE BACK TO START OF TABLE

XBX . POINTER IN B
CLX point at energy location
CLX DELAY
CLA AT END, PUT 0 OUT
TAM
SBR TONE GO DO IT AGAIN

*
TONE2 LUAA GET TABLE VALUE INTO A

TAM AND INTO MEMORY
TAM DELAY
IBC INCREMENT TABLE POINTER
LUAA DELAY
SBR TONE

6.7 Use of the Timer, Prescaler, Interrupt, and IRT Pin

The timer, prescaler, interrupt, and IRT pin all work together. The only interrupt
in the TSP50C4X device is caused by timer underflow. The timer is
decremented when the prescaler underflows, and the prescaler is decremented
either by an internal clock equal to 1/48 the clock frequency or by an external
clock on the IRT pin. The IRT pin can also be used as an output (see
subsection 6.3, slave option).

The clock source is selected by the TTMA and RSECT instructions. TTMA
selects the IRT pin as the clock source, while RSECT selects the internal
source.

The prescale value is set by the T APSC instruction. The prescale register is
decremented once for each clock cycle and then automatically reloaded on
an underflow with the value from the last T APSC. When the prescale register
underflows, the timer register is decremented. Since the prescale register is

6-27

reloaded on underflow, a 0 value in the prescale requires one clock input for
each clock output, a one requires two clocks and so on, up to hex FF, which
requires 256 clocks.

The timer register is loaded with the TXTM instruction and must be reloaded
with TXTM each time a countdown is desired. The timer is decremented by
the clock from the prescale register until it underflows, and then it stops and
sets an interrupt bit. If interrupts are enabled, the TSP50C4X device
immediately vectors to the interrupt routine, starting at ROM address 6. If
interrupts are not currently enabled, the bit will remain set until interrupts
are enabled or until the TSP50C4X device is reinitialized with the INIT pin.

Interrupt routines should be written with the TXTM very close to the start
of the routine to preserve time-keeping accuracy. If the interrupt routine is
to be stopped, ensure that the last interrupt executed does not reload the
timer with a TXTM; otherwise, there will be an interrupt pending when
interrupts are re-enabled. This is especially important during speech synthesis.

When the interrupt occurs, the A register, the X register, and the status flag
are all saved in special interrupt storage areas. The B register is not saved.
The contents of the program counter is pushed onto the stack in the.same
manner as a subroutine call. Interrupts are disabled while the interrupt routine
is running. When the RETI instruction is executed, the registers and status
flags are restored to the values they had before the interrupt and the old
program address is popped from the stack. Interrupts are re-enabled.

Warning: The RAM context switch is not enabled when the synthesizer is
not on. However, the context bit still toggles every time an interrupt occurs.
A stop instruction must be executed to put the context bit in the proper state
before starting synthesis.

6.8 Use of the Stack

6-28

The TSP50C4X devices have a five-level push-down stack. The parallel-to­
serial register is pushed on the sta(;k by the CALL instruction and by an
interrupt. The program counter can be loaded from the top of the stack by
the RETI and RETN instructions. The POP instruction can be used to discard
the value on the top of the stack. The GET, LUSPS, and LUAA instructions
use one level of stack in their execution but push the value back when they
are done.

Values can be pushed indefinitely onto the stack. If more than five values
are pushed, the oldest value is lost. No more than five values can be popped
from the stack. If an attempt is made to return from more than five levels
down, the RETN instruction will not pop a value from the stack and program
execution will continue at the next instruction. If this occurs during debugging,
it is a useful indication that stack overflow has occurred.

7 Customer Information

7.1 Production Flow

The TSP50C4X devices are programmable and have five basic mask options.
The semicustom nature of these devices requires a standard defined interface
between the customer and Texas Instruments Incorporated. Figure 7-1 shows
the standard prototype/production flow for customer TSP50C4X programs
initiated through the TI Regional Technology Center (RTC). A list of RTCs is
given on the back page.

I SPEECH SPECIFICATION I
I

I I
SPEAKER RECORDING SCRIPT SOFTWARE HARDWARE

SELECTION PREPARATION DESIGN DESIGN

I I
I SPEECH RECORDING J SOFTWARE PROTOTYPE

WRITING CONSTRUCTION

I SPEECH ANALYSIS I

I SPEECH EDITING I I SOFTWARE DEBUGGING J

I SPEECH EVALUATION I

I SYSTEM EVALUATION J
Figure 7-1. Speech Development Cycle

7-1

7.2 Summary of Speech Development/Production Sequence

7-2

The following is a summary of the speech development/production sequence:

1. For TI to accept a custom device program, the customer must
submit a New Product Release Form (NRPF) to TI. This form
describes the custom features of the device (e.g., customer
information, prototype and production qualities, symbolization,
etc.). The NPRF will be completed by Product Engineering and
Product Marketing personnel within TI. A copy of the NPRF* can
be found on pages 7-8 thru 7-11.

2. TI generates the prototype photomask, processes, manufactures,
and tests 50 prototype devices for shipment to the customer.
Limited quantities in addition to the 50 prototypes may be
purchased for use in customer evaluation. All prototype devices
are shipped against the following disclaimer: "It is understood that,
for expediency purposes, the initital 50 prototype devices (and any
additional prototype devices purchased) were assembled on a
prototype (i.e., non-production qualified) manufacturing line whose
reliability has not been characterized. Therefore, the anticipated
inherent reliability of these devices cannot be expressly defined."

3 The customer verifies the operation and quality of these prototypes
and responds with either written customer prototype approval or
disapproval. .

4. A nonrecurring mask charge that includes the 50 prototype devices
is incurred by the customer

5. A minimum purchase might be required during the first year of
production.

NOTE: Texas Instruments recommends that prototype devices not be used in
production systems since their expected end-use failure rate is undefined but
is predicted to be greater than standard qualified production.

*New Product Release Form.

7.3 Mechanical Data

This dual-in-line package consists of a circuit mounted on a 28-pin lead frame
and encapsulated within a plastic compound. The compound will withstand
soldering temperature with no deformation, and circuit performance
characteristics will remain stable when operated in high-humidity conditions.
The package is intended for insertion in mounting-hole rows on 10,16 (0.400)
centers. Pin spacing within the rows is 1,78 (0.070). Once the leads are
compressed and inserted, sufficient tension is provided to secure the package
in the board during soldering. Solder-plated leads require no addtional cleaning
or processing when used in soldered assembly.

I" 25.15 10.9901 MAX 'I
@@@@@@@@@)@)@@@@,

~ ~ 000000000@@@@@

0.51 10.0201
t 1~::~ :g:~~g:j ,

t , MIN.----~-_~--r L 5.08 10.2001 MAX

~ol -S;~;~~G ------,- J l E' '"~. ~.
0.3710.01451 .ll 0.5310.0211 II U j 1.7810.0701
0.17 10.00651 II ~jo- 078100301

28 PLACES 0.38 {0.o151 PIN SPACING 1.7810.0701 T.P. 4 PLACES
ISee Note. 8 and CI ISee Note. 8 and CI ISee Note AI 1.02 (0.0401

0.66 (0.025)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the

lead tip to at least 0,51 (0.020) above seating plane.

Figure 7-2. TSP50C41 and TSP50C43 28-Pin NFt Plastic Package
0.070" Pin Center Spacing. 0.400" Pin Row Spacing

tThe NF package has also been designated N2.

7-3

~------38.811.4401 MAX--------.t0l
----------------------@

13:87 t.5501

~~~~~~~ 
CD--------~-----------------+ 

Ii. 15.24:t 0.25 Ii. 

~IO'800 :t 0.0101 

0.51 10.0201 

MIN h=;;::;;::;;:;;:;;~=;;::;=;::;::;;::::;:;:;;::;;::;;:;;:;;~;::;:J-. 
1050 -SEATING PLANE-=!:- J ~ r5•

08 
10.2001 MAX 

T 2.54 10.1001 MIN 

0.28 :t 0.08 O\\"- 0.457 :t 0.078 ~ ~ I I J 
10,:C:'...!~:3 II 10.:!8~gE':'31 io-4- PIN SPACING 1.7810.0701 T.P. 

es.. Not •• B end C) ISee Note. B and CI (s. Note AI 

1.0210.0401 NOM 1.2710.0501 MAX 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. 

7-4 

B. This dimension does not apply for solder-dipped -leads. 
C. When solder-dipped leads are specified. dipped area of the lead extends from the 

lead tip to at least 0,51 (0.020) above seating plane. 

Figure 7-3. TSP50C42 and TSP50C44 4O-Pin NJ Plastic Package 
0.070" Pin Center Spacing. 0.600" Pin Row Spacing 



7.3.1 TSP50C43 FN plastic chip carrier package 

A B 

Each of these chip carrier packages consists of a circuit mounted on a lead 
frame and encapsulated within an electrically nonconductive plastic 
compound. The compound withstands soldering temperatures with no 
deformation. and circuit performance characteristics remain stable when the 
devices are operated in high-humidity conditions. The packages are intended 
for surface mounting on solder lands on 1.27 (0.050) centers. Leads require 
no additional cleaning or processing when used in soldered assembly. 

122 (00481 Ii 1:07 (0:0421 X45· 

V 0 
• , 2 1 • 2. 27 26 

25 

• 2. 

7 2J 

• 22 

I 

w:: 
21 

20 

1. 

12 1J 1. " 1. 17 1. I 
Ir (S •• :01. AI .f"'-I' 0,25 (0.0101 R MAX 
I+.~-----A------Of;' 3 PLACES 

A B 

MIN MAX MIN MAX MIN 

12,32 12,57 11,43 11,58 10.41 
10.485) (0.495) (0.450) (0.456) (0.410) 

C 

MAX 

10.92 

(0.430) 

SEATING PLANE 
(s •• Nol. CI 

0,81 (0.0321 ~ 

0,66 (0.0261 ~T 
1,52 (0.0601 MIN 

Ii 
I ~ (0.0251 MIN 

--.i. 
0,51 (0.0201-<1 I to--
0,36 (0.0141 

LEAD DETAIL 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. Centerline of center lead on each side is within 0,10 (0.04) of package centerline as determined 
by dimension B, 

B, Location of each lead within 0,127 (0,005) of true position with respect to center lead on each 
side. 

C. The lead contact points are planar within 0,10 (0,004). 

Figure 7 -4. FN Plastic Chip Carrier 

7-5 



7.4 Ie Sockets 

7-6 

Texas Instruments lines of off-the-shelf interconnection products are designed 
specifically to meet the performance needs of volume commercial applications. 
They provide both the economy of a standard product line and performance 
features developed after many yearS I!xperiElnce with custom designs. 

c 

A 

JI:dr-m~ b-__ ~~ __ -0'25""""d~I:::!=.1-L5 ~ 
. 0.70 Max. ~~ 

A B C 
POSITIONS MAX ±.OO5 MAX PART NUMBER 

LENGTH ROW TO ROW WIDTH 

28 
.985 .400 .512 

C4S28-02 
(25,02) (1Q,16) (13,00) 

40 
1.405 .600 :708 

(35,69) (115,24) (17,98) 
C4S40-02 

Dimensions in parentheses are metric. 

Figure 7-5. Shrin!c Package C4S Series 28 and 40 Positions 

Additional information including pricing and delivery quotations may be 
obtained from your nearest TI Distributor, TI ~f3presentative, or: 

Texas Instruments Incorporated 
Connector Systems Department 
MS 14~3 
Attleboro, Massachusetts 02703 
Telephone: (617) 6$9-3800 
TELEX:ABORA927708 



7.5 Ordering Information 
Since the TSP50C4X are custom devices, they receive a distinct identification 
as follows: 

CSM or CSS 

Gate Code 
(CS Custom 
Synthesizer 
with Memory. 
M ... Master Option 
S ... Slave Option) 

4XXXX 

ROM Code 

N2 
FN 

Package 
N2 Plastic DIP 

FN Plastic Chip Carrier 

7-7 



7.6 New Product Release Form (TSP50C41) 
This document describes completely the functional details of the TSP50C41 
device number CSM41 XXX being released to prototype tooling. The EPROM 
returned is programmed from the data stored at TI for making ,prototypes. 
Please review both and contact TI immediately if there are any questions. 
Sign and return one copy of this document when approved. 

Return to: Texas Instruments Incorporated 
P.O. Box 655303 MS B211 
Dallas, TX 75265 

Company: 

Division: 

Address: 

------------------
------------------
------------------

Telephone No. : 

Options 

Master [ I 

Master Option Requirements 

Normal [XI 

IRT in [XI 

4K Program Space [ 

Setoff enabled [ I 

Pull-Up Resistors 

or 

or 

or 

------------------
Approved By: ------------------

Title: ------------------
Date: ------------------

Slave [ 

Slave Option Selections Only 

Normal [ ] or Keyscan i I 

IRT in [ I or IRT out [ I 

BK Program Space [ 

Setoff disabled ( I 

PAO[ ] PA 1 [ I PA2[ I PA3[ . I PA4[ I PA5[ I PA6[ I PA 7! I 

PCO! I PC1[ I PC2[ I PC3[ I 

IRT! I INIT[ I 

Note: IRT olit option requires IRT pull-up resistor. 

Open-Drain Outputs: PBO thru PB3[ I PB4[ I thru PB7[ 

Package Type: N2[ I 

Leads on 0.070" Centers, 0.400" wide 

7-8 



7.7 New Product Release Form (TSP50C42) 
This document describes completely the functional details of the TSP50C42 
device number CSM42XXX being released to prototype tooling. The EPROM 
returned is programmed from the data stored at TI for making prototypes. 
Please review both and contact TI immediately if there are any questions. 
Sign and return one copy of this document when approved. 

Company: Return to: Texas Instruments Incorporated 
P.O. Box 655303 MS 8211 
Dallas, TX 75265 

------------------
Division: ------------------
Address: ------------------

Telephone No. : ------------------
Approved By : ------------------

Title: ------------------
Date: ------------------

Options 

Master [ I 

Master Option Requirements 

Normal [XI 

IRT in [XI 

4K Program Space [ 

Setoff enabled [ I 

Pull-Up Resistors 

or 

or 

or 

Slave [ 

Slave Option Selections Only 

Normal [ I or Keyscan [ 

IRT in [ I or IRT out [ I 

8K Program Space [ 

Setoff disabled [ I 

PAO[ I PA 1 [ I PA2[ I PA3[ I PA4[ I PA5[ I PA6[ I PA7[ 

PCO[ I PCl [ I PC2[ I PC3[ I PC4[ I PC5[ I PC6[ I PC7[ 

IRT[ IINIT[ I 

Note: IRT out option requires IRT pull-up resistor. 

Open-Drain Outputs: PBO thru PB3[ I PB4[ I thru PB7[ 

PDO thru PD3[ I PD3[ I thru PD7[ 

Package Type: N2[ I 

Leads on 0.070" Centers, 0.600" wide 

7-9 



7.8 New Product Release Form (TSP50C43) 
This document describes completely the functional details of the TSP50C43 
device number CSM43XXX being released to prototype tooling. The EPROM 
returned is programmed from the data stored at TI for making prototypes. 
Please review both and contact TI immediately if there are any questions. 
Sign and return one copy of this document when approved. 

Return to: Texas Instruments Incorporated 
P.O. Box 655303 MS 8211 
Dallas, TX 75265 

Company: 

Division: 

Address: 

------------------
------------------

------------------
Telephone No. : 

Options 

Master [ ] 

Master Option Requirements 

Normal [X] 

IRT in [X] 

4K Program Space [ 

Setoff enabled [ ] 

Pull-Up Resistors 

or 

or 

or 

------------------
Approved By : 

------------------
Title: 

Date: ------------------

Slave [ ] 

Slave Option Selections Only 

Normal [ ] or Keyscan [ 

IRT in [ ] or IRT out [ ] 

8K Program Space [ 

Setoff disabled [ ] 

PAO[ ] PA1[ ]PA2[ ] PA3[ ] PA4[ ] PA5[ ] PA6[ ] PA7[ ] 

PCO[ ] PC1[ ] PC2[ ] PC3[ ] 

IRT[ ]INIT[ ] 

Note: IRT out option requires IRT pull-up resistor. 

Open-Drain Outputs: PBO thru PB3[ ] PB4[ ] thru PB7[ 

Package Type: FN[ ] 

Leads on 0.050" Centers, 0.450" wide 
PLCC 

7-10 

or N2[ 

Leads on 0.070" Centers, 0.400"wide 
DIP 



7.9 New Product Release Form (TSP50C44) 
This document describes completely the functional details of the TSP50C44 
device number CSM44XXX being released to prototype tooling. The EPROM 
returned is programmed from the data stored at TI for making prototypes. 
Please review both and contact TI immediately if there are any questions. 
Sign and return one copy of this document when approved. 

Company: Return to: Texas Instruments Incorporated 
P.O. Box 655303 MS 8211 
Dallas, TX 75265 

------------------
Division: ------------------
Address: ------------------

Telephone No. : ------------------
Approved By: ------------------

Title: ------------------
Date: ------------------

Options 

Master [ ] 

Master Option Requirements 

Normal [X) 

IRT in [X] 

4K Program Space [ 

Setoff enabled [ ] 

Pull-Up Resistors 

or 

or 

or 

Slave [ ] 

Slave Option Selections Only 

Normal [ 1 or Keyscan [ ) 

IRT in [ 1 or IRT out [ ) 

8K Program Space [ 

Setoff disabled [ ) 

PAO[ 1 PA1[ lPA2[ ) PA3[ ) PA4[ )PA5[ ) PA6[ ] PA7[ 

PCO[ 1 PCl[ 1 PC2[ ) PC3[ ] PC4[ ] PC5! ) PC6! 1 PC7! 

IRT[ ) INIT[ 1 

Note: IRT out option requires IRT pull-up resistor. 

Open-Drain Outputs: PBO thru PB3! 1 PB4! 1 thru PB7[ 

PDO thru PD3! 1 PD4 thru PD7! 1 

Package Type: N2[ 1 

Leads on 0.070" Centers, 0.600" wide 

7-11 



7-12 



A Script Preparation and Speech Development Tools 
Script preparation and speech development can be done either by the customer 
or TI. The following are major considerations during the process. 

A.1 Recording Script Generation 

The first step in designing a system using LPC is the generation of a system 
specification, including a script. A coding table needs to be selected that yields 
the best data rate for the voice selected at the level of quality required. The 
voice that is selected needs to be tested to verify that it synthesizes well. 
TI can recommend voices or new voices can be auditioned. Each coding table 
and voice have their characteristic data rate. This can be used with a word 
count to determine the amount of memory required to store the speech for 
the system. Data rates for the TSP50C4X range from 1000 to 3000 bits per 
second and words average 0.6 second each. These are very rough rules of 
thumb and each application is different. 

There are three approaches to word use in a speech script; maximal reuse, 
partial concatenation, and no concatenation. The original synthetic products 
tended to use maximal reuse because memory was expensive and quality 
expectations were low. In maximal reuse systems, only one sample of each 
word is used regardless of the context in which the word occurs. The speech 
sounds robotic. It is flat, with no inflection, and there are delays between 
the words. This yields good intelligibility at low data rates, but it does not 
provide a natural quality. Natural speech has different inflections depending 
on the position of the word in a sentence and on whether the sentence is 
a question, a statement, or an order. In addition, all the words are run together 
with each word changed by the last sound of the word before it and the first 
sound of the word after it. 

Recording and synthesizing each phrase separately is the easiest way to get 
natural speech, but often memory constraints force compromises. An expert 
speech editor can look at a script that lists each word in each context where 
it occurs and determine what contexts are similar enough to permit reuse. 

Once the application is designed and the coding table selected, a recording 
script must be generated. For systems with partial reuse, this script must 
include a recording of each word in all necessary contexts. The other two 
approaches are much more straightforward, with a word list or a phrase list 
being all that is required. 

A.1.2 Speech Collection 

Collecting speech for any medium, be it LPC or digital tape, requires significant 
effort. For high-quality speech, a recording studio and a professional speaker 
are required. It is possible to achieve acceptable quality with a professional 

A-1 



speaker and a quiet room. Nonprofessional speakers have trouble maintaining 
uniform levels, speaking properly, and providing the expression and inflection 
required. In addition, the strain of speaking for long periods of time in a 
controlled manner is considerable. Nonprofessional speakers are best used 
only for prototyping. 

During the session, it may be necessary to experiment with inflection and 
expression to find the best approach. Ideally, the person making the final 
decision on product content and aesthetics should be atthe recording session. 
Leaving this task to others leads to repeat visits to the studio. 

There are various techniques that can be used to ensure that the speech will 
analyze and synthesize properly. Certain consonants need to be emphasized 
more and spoken more clearly than they are in normal speech. The TI SDS5000 
development tool provides immediate feedback of synthetic speech making 
the collecting process much easier for inexperienced users. 

The actual collection process is fairly simple. The speech is converted into 
a digital form and then analyzed with a very computation intensive algorithim. 
The SDS5000 uses a TMS32020 digital signal processing chip to permit very 
rapid analysis. It consists of two boards designed to fit into an IBM-PC, 
software, and a documentation package. One of the boards contains the 
TMS32020 and related circuitry and the other contains an analog-to-digital 
converter, a digital-to-analog converter, digital filters, amplifiers and speech 
synthesizers to record and play digitized and synthetic speech. The software 
supports speech collection, analysis, and editing with extensive use of menus, 
windows, and other user-friendly interfaces. 

TI uses an algorithim that provides very high quality but requires low levels 
of phase distortion. For this reason, audio tape should not be used to 
collect speech. However, digital audio tape can be used. 

A.1 .3 LPC Editing 

A-2 

The speech often needs to be edited, both to define the boundaries of the 
words and to mask imperfections in the model, the analysis and the speaker. 
Limited changes can be made to change inflection and emphasis, but the best 
quality is achieved by having the desired sound and inflection well-recorded. 
Skillful editors can also reduce data rates significantly from those of analyzed 
speech. Good editing is a difficult skill to learn, requiring a good ear, linguistic 
knowledge, and a familiarity with computers. 

TI offers the SDS5000 Speech Development System, which eases many of 
these tasks by analyzing the speech immediately to provide quick feedback 
and to permit re-recording if the synthetic speech does not offer the desired 



quality. The TSP50C4X devices offer a variety of coding tables, permitting 
the use of higher data rates to achieve high quality with less editing, along 
with the flexibility of lower data rates when memory cost constraints outweigh 
the costs of editing. 

A.1 .4 Pitfalls 

All speech interfaces, LPC or not, are human interfaces, so they are hard to 
design. Building a prototype system is often useful. The SOS5000 supports 
quick prototyping. 

LPC provides very low data rate speech by virtue of its close modeling of the 
human vocal tract. Other sounds mayor may not be modeled accurately by 
the model. The best way to find out is to try recording and analyzing the sound 
on the SOS5000. Applications assistance is available from TI for commonly 
used sounds such as musical tones and chimes. In addition, we have 
experience with a wide variety of other sounds. On the TSP50C4X devices, 
it is also possible to get direct access to the O-to-A output, so all sounds can 
be modeled, although at a considerable penalty in data rate. 

A.2 Speech Development Tools 

wi' LJ ,il?i, 
~SDS5000 I I 

IBM PC/XT 

• HIGH-SPEED SPEECH ANALYSIS (2X REAL TIME) 

• GRAPHICAL AND NUMERICAL SPEECH EDITING 

• MICROPHONE AND LINE LEVEL INPUTS 

• HEADPHONE OUTPUTS 

• SUPPORTS TSP5220, TSP50C4X 

• REQUIRES IBM PC/XT, AT, OR COMPATIBLE WITH CGA CARD 

• HARD DISK AND TAPE BACKUP STRONGLY SUGGESTED 

• USES TMS32020 DIGITAL SIGNAL PROCESSOR 

Figure A-1. SOS5000 

A-3 



L-.-----..IP 
EVM50C4X 

• IN CIRCUIT EMULATION 

• HARDWARE BREAKPOINTS 

• SINGLE STEP 

• EXAMINE/MODIFY REGISTERS/MEMORY 

• INCLUDES ASSEMBLER 

• WORKS WITH IBM PC. PC/XT. PC/AT. AND COMPATIBLES 

• REQUIRES EXTERNAL 5-. 12-. -12-VOLT POWER SUPPLY 

Figure A-2. EVM50C4X 

SEB50C4X 

• IN CIRCUIT EMULATION 

• SMALL SIZE. LOW POWER CONSUMPTION 

• IDEAL FOR DEMONSTRATION AND FIELD TEST 

• REQUIRES INDUSTRY STANDARD EPROM (TMS27C128) 

Figure A-3. SEB50C4X 

SEB60C20 

• IN CIRCUIT EMULATION OF UP TO FOUR TSP60C20S 

• SMALL SIZE. LOW POWER CONSUMPTION 

• IDEAL FOR DEBUGGING. DEMONSTRATION. AND FIELD TEST 

• REQUIRES INDUSTRY STANDARD EPROMS (TMS27C256) 

Figure A-4. SEB60C20 

A-4 

IBM PC/XT 

CQ) 
EPROM 

PROGRAMMER 

CQ) 
EPROM 

PROGRAMMER 



B TSP50C4X Synthesis Program 
This program speaks a single phrase that is stored in the internal ROM, starting 
at address # 0800. 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 

*+---------------------------------------------+ 
* TSP50C4X SYNTHESIS PROGRAM 
* + --------------------------------------------- + 
* COPYRIGHT 1987 TI - SPEECH PRODUCTS 
* + -----~---------------------------------------+ 
* RAM MAP 
*+-------------~-------------------------------+ 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

00 

PITCH 
NV 

08 

K3 
NV 

10 

K7 
NV 

18 

PBF 

20 

K7BF 

28 

FLA-
GS 

30 

01 02 

ENERGY 
PV NV 

09 OA 

K4 
PV NV 

11 12 

K8 
PV NV 

19 1A 

EBF K1BF 

21 22 

K8BF K9BF 

29 2A 

31 32 

03 04 05 06 

K1 K2 
PV NV PV NV 

DB OC OD OE 

K5 K6 
PV NV PV NV 

13 14 15 16 

K9 K10 
PV NV PV NV 

1B 1C 1D IE 

K2BF K3BF K4BF K5BF 

23 24 25 26 

K10- FEBF FK1- FK2-
BF BF BF 

2B 2C 2D 2E 

33 34 35 36 

07 

PV 

OF 

PV 

17 

PV 

IF 

K6BF 

27 

TEMP 

2F 

37 

8-1 



0040 * 
0041 * 
0042 * 
0043 * 
0044 * 38 39 3A 3B 3C 30 3E 3F 
0045 * 
0046 * 
0047 * 
0048 * 
0049 * 40 41 42 43 44 45 46 47 
0050 * 
0051 * 
0052 * 
0053 * 
0054 * 48 49 4A 4B 4C 40 4E 4F 
0055 * 
0056 * 
0057 * 
0058 * 
0059 * 50 51 52 53 54 55 56 57 
0060 * 
0061 * 
0062 * 
0063 * 
0064 * 58 59 5A 5B 5C 50 5E SF 
0065 * 
0066 * 
0067 * 
0068 * 
0069 * 60 61 62 63 64 65 66 67 
0070 * 
0071 * 
0072 * 
0073 * 
0074 * 68 69 6A 6B 6C 60 6E 6F 
0075 * 
0076 * 
0077 * 
0078 * 
0079 * 70 71 72 73 74 75 76 77 
0080 * 
0081 * 
0082 * 
0083 * 
0084 * 78 79 7A 7B 7C 70 7E 7F 
0085 * 

B-2 



0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 

0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
0000 
OOOE 
OOOF 
0010 
0011 
0012 
0013 
0014 

* 
* 
* 
* 4 BITS WIDE BELOW (FRACTIONAL VALUES) 
* 
* 
* 

80 I 81 82 1 83 84 I 85 86 I 87 

* FPITCH FENERGY FK1 FK2 
* NV PV NV PV NV PV NV PV 
* 

88 I 89 8A I 8B 8C I 80 8E I 8F * 
* 
* FK3 FK4 FK5 FK6 
* NV PV NV PV NV PV NV PV 

* + --------------------------------------------- + 
* ADDRESS LABELS FOR SYNTHESIS ROUTINE 
* + --------------------------------------------- + 
* 
*+---------------------------------------------+ 
* SYNTHESIZER RAM LOCATIONS 
*+---------------------------------------------+ 
PNV EQU #00 ;PITCH NEW VALUE 
PPV EQU #01 ;PITCH PRESENT VALUE 
ENV EQU #02 ;ENERGY NEW VALUE ADDR 
EPV EQU #03 ;ENERGY PRESENT VALUE 
K1NV EQU #04 ;K1 NEW VALUE 
K1PV EQU #05 ;K1 PRESENT VALUE 
K2NV EQU #06 ;K2 NEW VALUE 
K2PV EQU #07 ;K2 PRESENT VALUE 
K3NV EQU #08 : K3 NEW VALUE 
K3PV EQU #09 :K3 PRESENT VALUE 
K4NV EQU #OA ; K4 NEW VALUE 
K4PV EQU #OB :K4 PRESENT VALUE 
K5NV EQU #OC :K5 NEW VALUE 
K5PV EQU #00 :K5 PRESENT VALUE 
K6NV EQU #OE :K6 NEW VALUE 
K6PV EQU #OF :K6 PRESENT VALUE 
K7NV EQU #10 ;K7 NEW VALUE 
K7PV EQU #11 :K7 PRESENT VALUE 
K8NV EQU #12 :K8 NEW VALUE 
K8PV EQU #13 ;K8 PRESENT VALUE 
K9NV EQU #14 :K9 NEW VALUE 

B-3 



0129 0015 K9PV EQU #15 :K9 PRESENT VALUE 
0130 0016 K10NV EQU #16 : K10 NEW VALUE 
0131 0017 K10PV EQU #17 :K10 PRESENT VALUE 
0132 *---------------------------------------------
0133 * FRACTIONAL VALUES 
0134 *---------------------------------------------
0135 0080 FPNV EQU #80 :PITCH NEW VALUE 
0136 0081 FPPV EQU #81 :PITCH PRESENT VALUE 
0137 0082 FENV EQU #82 :ENERGY PRESENT VALUE AOOR 
0138 0083 FEPV EQU #83 :ENERGY NEW VALUE 
0139 0084 FK1NV EQU #84 : K1 NEW VALUE 
0140 0085 FK1PV EQU #85 :K1 PRESENT VALUE 
0141 0086 FK2NV EQU #86 :K2 NEW VALUE 
0142 0087 FK2PV EQU #87 :K2 PRESENT VALUE 
0143 0088 FK3NV EQU #88 :K3 NEW VALUE 
0144 0089 FK3PV EQU #89 :K3 PRESENT VALUE 
0145 008A FK4NV EQU #8A ; K4 NEW VALUE 
0146 008B FK4PV EQU #8B :K4 PRESENT VALUE 
0147 008C FK5NV EQU #8C :K5 NEW VALUE 
0148 0080 FK5PV EQU #80 ;K5 PRESENT VALUE 
0149 008E FK6NV EQU #8E :K6 NEW VALUE 
0150 008F FK6PV EQU #8F ;K6 PRESENT VALUE 
0151 *+-------------------------------------------+ 
0152 * BUFFER RAM LOCATIONS 
0153 *+-------------------------------------------+ 
0154 0018 PBF EQU #18 : PITCH BUFFER 
0155 0019 EBF EQU #19 :ENERGY BUFFER 
0156 001A K1BF EQU #lA :K1 BUFFER 
0157 001B K2BF EQU #lB ;K2 BUFFER 
0158 001C K3BF EQU #lC :K3 BUFFER 
0159 0010 K4BF EQU #10 :K4 BUFFER 
0160 001E K5BF EQU #lE :K5 BUFFER 
0161 001F K6BF EQU #IF ;K6 BUFFER 
0162 0020 K7BF EQU #20 :K7 BUFFER 
0163 0021 K8BF EQU #21 :K8 BUFFER 
0164 0022 K9BF EQU #22 :K9 BUFFER 
0165 0023 K10BF EQU #23 ;K10 BUFFER 
0166 *---------------------------------------------
0167 * FRACTIONAL BUFFER RAM LOCATIONS 
0168 *---------------------------------------------
0169 0024 FEBF EQU #24 :FRACTIONAL ENERGY BUFFER 
0170 0025 FK1BF EQU #25 ;FRACTIONAL K1 BUFFER 
0171 0026 FK2BF EQU #26 :FRACTIONAL K2 BUFFER 

8-4 



0172 * + ----- --- ------ -- --- --- -- -- -- ----- --- ------ -+ 
0173 * CONTROL RAM LOCATIONS 
0174 * + ------------------------------------------- + 
0175 0027 TEMP EQU #27 ;TEMPORARY STORAGE 
0176 0028 FLAGS EQU #28 ;FLAGS FOR SPEECH 
0177 * 
0178 *---------------------------------------------
0179 * BIT DEFINITIONS IN RAM LOCATION FLAGS 
0180 *---------------------------------------------
0181 * 
0182 0001 STP EQU 1 ;STOP DETECTED 
0183 0002 INT EQU 2 ; INTERUPT FLAG 
0184 * ;SET BY INTERRUPT ROUTINE, 
0185 * ;CLEARED BY CONVERSION ROUTINE. 
0186 0003 NINTP EQU 3 ;SET FOR NO INTERPOLATION 
0187 0004 UNVO EQU 4 ;SET FOR TARGET FRAME UNVOICED 
0188 0005 STRT EQU 5 ;SET FOR FIRST TWO FRAMES 

0189 0006 STRTl EQU 6 ;SET WHILE SECOND FRAME IS COMING 
IN 

0190 0007 RPT EQU 7 ;SET IF REPEAT DETECTED 
0191 0008 STP1 EQU 8 ;SECOND STOP FRAME 
0192 *---------------------------------------------
0193 * SPEECH DECODING CONSTANTS 
0194 *---------------------------------------------
0195 OOOF ESTOP EQU #OF ;ENERGY STOP CODE 
0196 0000 ESILE EQU #00 ;SILENT CODE 
0197 * 
0198 0001 REPT EQU #01 ;REPEAT CODE 
0199 * 
0200 0000 PUNVO EQU #00 ;PITCH UNVOICED CODE 
0201 * 
0202 001F TMVAL EQU #IF ;VALUE FOR TIMER REGISTER 
0203 *---------------------------------------------
0204 * NUMBER OF BITS FOR TSP5220 CODING TABLE 
0205 *---------------------------------------------
0206 * 
0207 0004 NRGNB EQU 4 ;ENERGY 
0208 0006 PITNB EQU 6 ;PITCH 
0209 0001 RPTNB EQU 1 ;REPEAT 
0210 0005 K1NB EQU 5 ; K1 
0211 0005 K2NB EQU 5 ;K2 
0212 0004 K3NB EQU 4 ;K3 
0213 0004 K4NB EQU 4 ;K4 
0214 0004 K5NB EQU 4 ;K5 
0215 0004 K6NB EQU 4 ;K6 

8-5 



0216 0004 K7NB EQU 4 ;K7 
0217 0003 K8NB EQU 3 ;K8 
0218 0003 K9NB EQU 3 ;K9 
0219 0003 K10NB EQU 3 ;K10 
0220 *---------------------------------------------
0221 * BEGINNING OF PROGRAM 
0222 *---------------------------------------------
0223 0000 AORG #0000 
0224 0000 84 SBR GOGO ;POWER UP VECTOR 
0225 0001 84 SBR GOGO 
0226 0002 86 SBR INTO ;INTERRUPT VECTOR 
0227 0003 86 SBR INTO 
0228 0004 61 GOGO BR GO ;BRANCH TO SPEECH ROUTINE 

0005 5F 
0229 0006 62 INTO BR INTl ;BRANCH TO INTERUPT ROUTINE 

0007 C3 
0230 *---------------------------------------------
0231 * 5220 SPEECH DECODING TABLES. 
0232 * ---------------------------------------------
0233 * 
0234 *+-------------------------------------------+ 
0235 * ENERGY DECODING TABLE 
0236 * + -------------------------------------------+ 
0237 0008 00 TABEN BYTE #00 ;CODED AS 0 
0238 0009 00 BYTE #00 ;ENERGY CODE 1 
0239 OOOA 01 BYTE #01 ;ENERGY CODE 2 
0240 OOOB 01 BYTE #01 ;ENERGY CODE 3 
0241 OOOC 02 BYTE #02 ;ENERGY CODE 4 
0242 OOOD 03 BYTE #03 ; 5 
0243 OOOE 05 BYTE #05 ; 6 
0244 OOOF 07 BYTE #07 ; 7 
0245 0010 OA BYTE #OA ; 8 
0246 0011 OE BYTE #OE ; 9 
0247 0012 14 BYTE #14 10 
0248 0013 1C BYTE #lC 11 
0249 0014 28 BYTE #28 12 
0250 0015 38 BYTE #38 13 
0251 0016 50 BYTE #50 14 
0252 * + -------- ------------------------------ -----+ 
0253 * PITCH DECODING TABLE 
0254 * + ------------------------------------------- + 
0255 0017 OC TABPI BYTE #OC UNVOICED 
0256 0018 10 BYTE #10 625 HZ 
0257 0019 11 BYTE #11 588 
0258 001A 12 BYTE #12 555 

8-6 



0259 001B 13 BYTE #13 526 
0260 001C 14 BYTE #14 500 
0261 0010 15 BYTE #15 476 
0262 001E 16 BYTE #16 454 
0263 001F 17 BYTE #17 435 
0264 0020 18 BYTE #18 416 
0265 0021 19 BYTE #19 400 
0266 0022 1A BYTE #lA 384 
0267 0023 1B BYTE #lB 370 
0268 0024 1C BYTE #lC 357 
0269 0025 10 BYTE #10 344 
0270 0026 IE BYTE #lE 333 
0271 0027 IF BYTE #IF 322 
0272 0028 20 BYTE #20 312 
0273 0029 21 BYTE #21 303 
0274 002A 22 BYTE #22 294 
0275 002B 23 BYTE #23 286 
0276 002C 24 BYTE #24 278 
0277 0020 25 BYTE #25 270 
0278 002E 26 BYTE #26 263 
0279 002F 27 BYTE #27 256 
0280 0030 28 BYTE #28 250 
0281 0031 29 BYTE #29 244 
0282 0032 2A BYTE #2A 238 
0283 0033 2B BYTE #2B 232 
0284 0034 20 BYTE #20 222 
0285 0035 2F BYTE #2F 212 
0286 0036 31 BYTE #31 204 
0287 0037 33 BYTE #33 196 
0288 0038 35 BYTE #35 189 
0289 0039 36 BYTE #36 185 
0290 003A 39 BYTE #39 175 
0291 003B 3B BYTE #3B 169 
0292 003C 30 BYTE #30 163 
0293 0030 3F BYTE #3F 158 
0294 003E 42 BYTE #42 151 
0295 003F 45 BYTE #45 145 
0296 0040 47 BYTE #47 141 
0297 0041 49 BYTE #49 137 
0298 0042 40 BYTE #40 130 
0299 0043 4F BYTE #4F 126 
0300 0044 51 BYTE #51 123 
0301 0045 55 BYTE #55 118 
0302 0046 57 BYTE #57 115 
0303 0047 5C BYTE #5C 109 

B-7 



0304 0048 5F BYTE #5F 105 
0305 0049 63 BYTE #63 101 
0306 004A 66 BYTE #66 98 
0307 004B 6A BYTE #6A 94 
0308 004C 6E BYTE #6E 91 
0309 004D 73 BYTE #73 87 
0310 004E 77 BYTE #77 84 
0311 004F 7B BYTE #7B 81 
0312 0050 80 BYTE #80 78 
0313 0051 85 BYTE #85 75 
0314 0052 8A BYTE #8A 72 
0315 0053 8F BYTE #8F 70 
0316 0054 95 BYTE #95 67 
0317 0055 9A BYTE #9A 65 
0318 0056 AO BYTE #AO 62 
0319 *+-------------------------------------------+ 
0320 * K1 DECODING TABLE 
0321 *+-------------------------------------------+ 
0322 0057 82 TABK1 BYTE #~.#~.#~.#M.#M.#~.#M,#~.#M. 

#89 
0058 83 
0059 83 
005A 84 
005B 84 
005C 85 
005D 86 
005E 87 
005F 88 
0060 ,89 

0323 0061 8A BYTE #8A.#8C.#8D.#8F .#90.#92. #99 .#A1.#AB. 
#B8 

0062 8C 
0063 8D 
0064 8F 
0065 90 
0066 92 
0067 99 
0068 A1 
0069 AB 
006A B8 

0324 006B C7 BYTE #C7 .#D8.#EB.#00.#14.#27 .#38.#47 .#54. 
#5E 

006C D8 
006D EB 
006E 00 

8-8 



006F 14 
0070 27 
0071 38 
0072 47 
0073 54 
0074 5E 

0325 0075 67 BYTE #67.#6D 
0076 6D 

0326 * + ------------ -------------------------------+ 
0327 * K2 DECODING TABLE 
0328 * + -- --- ----- ----------- ----------------- -- --- + 
0329 0077 AE TABK2 BYTE #AE. #B4. #BB. #C3. #CB. #D4. #DD. #[7 

0078 B4 
0079 BB 
007A C3 
007B CB 
007C D4 
007D DD 
007E E7 

0330 007F F1 BYTE #Fl.#FB .#06 .#10.#IA.#24 .#2D. #36 
0080 FB 
0081 06 
0082 10 
0083 lA 
0084 24 
0085 2D 
0086 36 

0331 0087 3E BYTE #3E.#45 .#4C. #53 .#58.#5D. #62 .#66 
0088 45 
0089 4C 
008A 53 
008B 58 
008C 5D 
008D 62 
008E 66 

0332 008F 69 BYTE #69.#6C .#6F .#71.#73.#75.#77 .#7E 
0090 6C 
0091 6F 
0092 71 
0093 73 
0094 75 
0095 77 
0096 7E 

B-9 



0333 * + -------------------------------------------+ 
0334 * K3 DECODING TABLE 
0335 * + -------------------------------------------+ 
0336 0097 92 TABK3 BYTE #92,#9F ,#AD,#BA,#C8,#D5,#E3,#FO 

0098 9F 
0099 AD 
009A BA 
009B C8 
009C 05 
0090 E3 
009E FO 

0337 009F FE BYTE #FE,#OB,#19,#26 ,#34,#41 ,#4F ,#5C 
OOAO OB 
00A1 19 
00A2 26 
00A3 34 
00A4 41 
00A5 4F 
00A6 5C 

0338 *+-------------------------------------------+ 
0339 * K4 DECODING TABLE 
0340 *+-------------------------------------------+ 
0341 00A7 AE TABK4 BYTE #AE ,#BC ,#CA,#D8,#E6, #F4, #01, #OF 

00A8 BC 
00A9 CA 
OOAA 08 
OOAB E6 
OOAC F4 
OOAD 01 
OOAE OF 

0342 OOAF 10 BYTE #lD,#2B,#39,#47 ,#55,#63,#71 ,#7E 
OOBO 2B 
00B1 39 
00B2 47 
00B3 55 
00B4 63 
00B5 71 
00B6 7E 

0343 * + ------------------------------------- --,- ---+ 
0344 * K5 DECODING TABLE 
0345 * + -------------------------------------------+ 
0346 00B7 AE TABK5 BYTE #AE,#BA,#C5 ,#01,#00, #E8,#F4, #FF 

00B8 BA 
00B9 C5 
OOBA 01 

8-10 



OOBB DO 
OOBC E8 
OOBO F4 
OOBE FF 

0347 OOBF OB BYTE #OB,#17 ,#22 ,#2E,#39,#45,#51,#5C 
OOCO 17 
00C1 22 
00C2 2E 
00C3 39 
00C4 45 
00C5 51 
00C6 5C 

0348 * + ----------- --------------------------- ----- + 
0349 * K6 DECODING TABLE 
0350 * + ----------- ----------------- ------------- ---+ 
0351 00C7 CO TABK6 BYTE #CO,#CB,#06,#E1,#EC,#F7,#03,#OE 

00C8 CB 
00C9 06 
OOCA E1 
OOCB EC 
OOCC F7 
OOCO 03 
OOCE OE 

0352 OOCF 19 BYTE #19,#24, #2F, #3A, #45 ,#50 ,#5B, #66 
0000 24 
0001 2F 
0002 3A 
0003 45 
0004 50 
0005 5B 
0006 66 

0353 * + ---- ------------- -------------------- ------ + 
0354 * K7 OECODING TABLE 
0355 * + ----------- ------- ----- ------------------ --+ 
0356 0007 B3 TABK7 BYTE #B3,#BF ,#CB,#D7 ,#E3,#EF ,#FB,#07 

0008 BF 
0009 CB 
OOOA 07 
OOOB E3 
OOOC EF 
0000 FB 
OOOE 07 

0357 OOOF 13 BYTE #13,#lF ,#2B,#37 ,#43,#4F ,#5A,#66 
OOEO IF 
OOEl 2B 

8-11 



00E2 37 
00E3 43 
00E4 4F 
00E5 5A 
00E6 66 

035B * + ---- ----- --- ---- -- ----- --- ---------- ---- --- + 
0359 * KB DECODING TABLE 
0360 * + ---- --- --- --- -- ---------- -- ------------ -- -- + 
0361 00E7 CO TABK8 BYTE #CO.#DB.#FO.#07 .#IF .#37 .#4F .#66 

00E8 DB 
00E9 FO 
OOEA 07 
OOEB 1F 
OOEC 37 
OOED 4F 
OOEE 66 

0362 * + -- ---- ---- --- -- ---- ------ --- ---- ---- --- --- - + 
0363 * K9 DECODING TABLE 
0364 * + ---- ---- ----- --- -- ----- --- --- ----- -- ---- ---+ 
0365 OOEF CO TABK9 BYTE #CO .#04. #EB. #FC .#10 .#25. #39. #40 

OOFO 04 
00F1 E8 
00F2 FC 
00F3 10 
00F4 25 
00F5 39 
00F6 40 

0366 * + ---- ------ --- -- ------ ------- ---- --- --- --- -- + 
0367 * K10 DECODING TABLE 
036B * + -- --- ----- --- --- -- ---- -.---- ----- --- --- --- - + 
0369 00F7 CD TAK10 BYTE #CD.#DF .#F1.#04.#16.#2B. #3B.#4D 

OOFB OF 
00F9 F1 
OOFA 04 
OOFB 16 
OOFC 28 
OOFD 3B 
OOFE 40 

0370 * + --- --- ------------------------------------- + 
0371 * FRACTIONAL ENERGY DECODING TABLE 
0372 *+-------------------------------------------+ 
0373 OOFF 00 TABEF BYTE #00. #OC • #04. #OC • #08. #OB. #00 • #04 

0100 OC 
0101 04 
0102 OC 

8-12 



0103 08 
0104 08 
0105 00 
0106 04 

0374 0107 00 
0108 04 
0109 04 
010A 08 
010B 04 
010C OC 
0100 04 
010E 04 

BYTE #00, #04, #04, #08, #04, #OC, #04, #04 

0375 *+-------------------------------------------+ 
0376 * FRACTIONAL K1 DECODING TABLE 

0377 *+-------------------------------------------+ 
0378 010F OC TAK1F BYTE #OC,#08,#OC,#04,#OC,#04,#00,#08 

0110 08 
0111 OC 
0112 04 
0113 OC 
0114 04 
0115 00 
0116 08 

0379 0117 08 BYTE #08,#08,#OC,#00,#04,#OO,#OC,#OC 
0118 08 
0119 OC 
OllA 00 
OllB 04 
OllC 00 
0110 OC 
OllE OC 

0380 011F 00 BYTE #00,#04,#08,#04,#04,#OC,#OC,#OO 
0120 04 
0121 08 
0122 04 
0123 04 
0124 OC 
0125 OC 
0126 00 

0381 0127 04 BYTE #04,#04,#OC,#OC,#08,#OC,#00,#04 
0128 04 
0129 OC 
012A OC 
012B 08 
012C OC 

8-13 

[, 
II 



8-14 

0120 00 
012E 04 

0382 * + -,- --- ----- ------- ----------- --- --- ------- --+ 
0383 * FRACTIONAL K2 DECODING TABLE 

0384 *+-------------------------~-----------------+ 
0385 012F 00 TAK2F BYTE #00,#08,#08,#04,#08,#04,#OC,#08 

0130 08 
0131 08 
0132 04 
0133 08 
0134 04 
0135 OC 
0136 08 

0386 0137 08 BYTE #08,#OC,#00,#04,#04,#00,#04,#00 
0138 OC 
0139 00 
013A 04 
013B 04 
013C 00 
0130 04 
013E 00 

0387 013F 04 BYTE #04,#OC,#OC,#00,#08,#OC,#04,#04 
0140 OC 
0141 OC 
0142 00 
0143 08 
0144 OC 
0145 04 
0146 04 

0388 0147 OC 
0148 OC 
0149 08 

0389 
0390 
0391 

014A OC 
014B OC 
014C.08 
0140 00 
014E 08 

0392 014F 10 
0393 0150 1B 
0394 0151 00 
0395 0152 50 

0153 31 

BYTE #OC, #OC, #08, #OC, #OC, #08, #00, #08 

* + ------ -- ---- ---- --- ------ -- ---- --- -- ------ -+ 
* INIT: INITIALIZE PROCESSOR 

*+-------------------------------------------+ 
INIT INTO ; DISABLE INTERRUPTS 

STOP ; STOP SYNTHESIZER 
CLA 
ACAA 49 ; 200 SAMPLES/FR (200/4) - 1 



0396 0154 5D TAPSC INTO PRESCALE REGISTER 
0397 0155 IF RETN 
0398 * 
0399 *---------------------------------------------
0400 * RAM CLEAR 
0401 * 
0402 * SUBROUTINE NAME : RAMO ! 

0403 * USES : A, X, ALL OF RAM ~ 
0404 * DESCRIPTION : FILLS RAM WITH ZEROES 
0405 * 
0406 *----------------------------------------------
0407 0156 00 RAMO CLA iCLEAR ACCUMULATOR 
0408 0157 11 CLX :POINT TO FIRST RAM LOCATION 
0409 0158 09 RC1 TAM :CLEAR RAM LOCATION 
0410 0159 OF IXC :POINT TO NEXT RAM LOCATION 
0411 015A 55 XGEC #90 iAT END OF RAM? 

015B 90 
0412 015C DE SBR RC2 :BRANCH IF SO 
0413 015D D8 SBR RC1 
0414 015E IF RC2 RETN 
0415 * 
0416 *--------------------------------------------
0417 * START OF SYNTHESIS PROGRAM 
0418 *---------------------------------------------
0419 015F 71 GO CALL INIT :INITIALIZE PROCESSOR 

0160 4F 
0420 0161 71 CALL RAMO :CLEAR INTERNAL RAM 

0162 56 
0421 0163 2E RSECT :MAKE TIMER INPUT INTERNAL 
0422 * 
0423 0164 00 CLA 
0424 0165 50 ACAA #08 :HIGH 5 BITS OF SPEECH ADDRESS 

0166 08 
0425 0167 OB TASH :INTO HIGH BITS OF SAR 
0426 0168 00 CLA : LOW BYTE OF ADDRESS = 0 
0427 0169 OA TASL :INTO LOW BYTE OF SAR 
0428 * 
0429 016A 59 LUSPS :INITIALIZE PARALLEL TO SERIAL REG 
0430 016B 2C INTRM ;USE INTERNAL ROM 
0431 016C 71 CALL SPSTR :SPEAK 

016D 70 
0432 * 
0433 016E 61 LOOP BR LOOP : LOOP FOREVER 

016F 6E 

8-15 



0434 * 
0435 ********************************************* 
0436 * SPEECH 
0437 * 
0438 * SUBROUTINE NAME : SPSTR 
0439 * USES : A X, B, RAM FROM 0 TO #29 
0440 * RAM FROM #80 TO #8F 
0441 * 2 STACK LEVELS 
0442 * DESCRIPTION : SYNTHESIZES SPEECH 
0443 * 
0444 ********************************************* 
0445 0170 56 SPSTR TCX PBF 

0171 18 
0446 0172 00 CLA 
0447 0173 50 ACAA #OC 

0174 OC 

0448 0175 09 TAM ;SOME PITCH TO START OUT WITH, IN 
CASE WE 

0449 * FRAME 
0450 0176 56 TCX FLAGS 

0177 28 
0451 0178 00 CLA ;CLEAR FLAGS 
0452 0179 09 TAM 
0453 017A 3C SBITM STRT ;FLAG START OF SPEECH 
0454 017B 61 BR SPDE2 ;BRANCH AROUND INTERRUPT CHECK 

017C 8B 
0455 * 
0456 ********************************************* 

0457 * SPEECH DECODING PROGRAM DECODED VALUE IN BUFFER 
0458 ********************************************* 
0459 017D 56 SPDEC TCX FLAGS 

017E 28 
0460 017F 41 TBITM INT ;HAS INTERRUPT OCURRED? 
0461 0180 83 SBR SPDE1 ;IF SO, GO FOR IT 
0462 0181 61 BR SPDEC ;ELSE WAIT 

0182 70 
0463 * 
0464 0183 49 SPDEl RBITM INT ;RESET INTERRUPT FLAG 
0465 0184 4A RBITM NINTP ;RESET INTERPOLATION INHIBIT 
0466 * 
0467 0185 40 TBITM STP ; CHECK STOP FLAG· 
0468 0186 63 BR STPIT ;BRANCH IF STOP IS APPROPRIATE 

0187 38 
0469 * 
0470 0188 47 TBITM STP1 ;CHECK STOP1 FLAG 

8-16 



0471 0189 61 BR STPIl ;BRANCH IF STOP IS APPROPRI.\TE 
018A 96 

0472 * 
0473 018B 00 SPDE2 CLA ;CLEAR A 
0474 018C 23 GET NRGNB ;GET ENERGY 
0475 018D 54 ANEC ESTOP ;IS IT THE STOP CODE? 

018E OF 
0476 018F 61 BR NOSTP ; BRANCH I F NOT ~ 

0190 99 
0477 0191 56 TCX FLAGS 

0192 28 
0478 * 
0479 0193 3F SBITM STPI ;FLAG STOPI 
0480 * 
0481 0194 62 BR CLRPR ;GO CLEAR PARAMETERS 

0195 5A 
0482 * 
0483 0196 38 STPIl SBITM STP 
0484 0197 61 BR SPDEC 

0198 7D 
0485 * 
0486 0199 54 NOSTP ANEC ESILE ;IS IT A SILENT FRAME? 

019A 00 
0487 019B 61 BR NOSIL ;BRANCH IF NOT 

019C 9F 
0488 019D 62 BR CLRPR :IF SO, GO CLEAR PARAMETERS 

019E 5A 
0489 019F 56 NOSIL TCX TEMP 

OIAO 27 
0490 OlAl 09 TAM :SAVE ENERGY CODE 
0491 01A2 50 ACAA TABEN ;START OF ENERGY TABLE 

01A3 08 
0492 OIM 58 LUAA ;DECODE ENERGY 
0493 01A5 56 TCX EBF 

01A6 19 
0494 01A7 09 TAM ; PUT IT AWAY 
0495 01A8 56 TCX TEMP 

01A9 27 
0496 OlAA 04 TMA ;GET ENERGY CODE BACK 
0497 OlAB 50 ACAA TABEF ;START OF FRACTIONAL ENERGY TABLE 

OIAC FF 
0498 OIAD 58 LUAA ;DECODE ENERGY 
0499 OIAE 56 TCX FEBF 

OlAF 24 
0500 OIBO 09 TAM ; PUT IT AWAY 

8-17 



0501 * 
0502 * REPEAT 
0503 * 
0504 01B1 00 CLA iCLEAR A 
0505 01B2 20 GET RPTNB iGET REPEAT BIT 
0506 01B3 56 TCX FLAGS 

01B4 28 
0507 01B5 4E RBITM RPT iSET BIT REPEAT 
0508 01B6 54 ANEC REPT i IS IT REPEAT? 

01B7 01 
0509 01B8 BA SBR LABPI i GO TO PITCH 
0510 01B9 3E SBITM RPT iIF NOT RESET BIT REPEAT 
0511 * 
0512 * PITCH 
0513 * 
0514 01BA 00 LABPI CLA iCLEAR A 
0515 01BB 25 GET PITNB iGET PITCH 
0516 01BC 54 ANEC PUNVO iIS IT UNVOICED? 

01BD 00 
0517 01BE 61 BR VOICE iBRANCH IF NOT 

01BF 06 
0518 01CO 56 TCX FLAGS iLOOK AT FLAGS 

01C1 28 
0519 01C2 43 TBITM UNVO iWAS IT UNVOICED BEFORE? 
0520 01C3 C5 SBR UNV1 iBRANCH IF SO 
0521 01C4 3A SBITM NINTP iDISABLE INTERPOLATION IF NOT 
0522 01C5 3B UNVI SBITM UNVO iSET PITCH UNVOICED 
0523 * 
0524 01C6 56 TCX PBF 

01C7 18 
0525 01C8 00 CLA 
0526 01C9 50 ACAA #OC 

OICA OC 
0527 01CB 09 TAM 
0528 * 
0529 01CC 56 TCX ENV iLOOK AT ENERGY OF PREVIOUS FRAME 

01CD 02 
0530 01CE 04 TMA 
0531 OlCF 54 ANEC 0 iWAS IT 0 (SILENT FRAME) 

0100 00 
0532 0101 E6 SBR KPARM iBRANCH IF NOT 
0533 0102 56 TCX FLAGS 

0103 28 
0534 0104 3A SBITM NINTP 
0535 0105 E6 SBR KPARM iBRANCH IF NOT 

8-18 



0536 0106 56 VOICE TCX TEMP 
0107 27 

0537 0108 09 TAM :SAVE PITCH CODE 
0538 0109 50 ACAA TABPI :START OF PITCH TABLE 

01DA 17 
0539 01DB 58 LUAA :DECODE PITCH 
0540 01DC 56 TCX PBF 

01DD 18 
0541 OlOE 09 TAM :PUT IT IN PITCH BUFFER 
0542 01DF 56 TCX FLAGS :TEST FLAG 

OlEO 28 
0543 01E1 43 TBITM UNVO :WAS IT UNVOICED BEFORE? 
0544 01E2 E4 SBR VOIC1 :BRANCH IF NOT 
0545 01E3 E5 SBR VOIC2 ;BRANCH IF SO 
0546 01E4 3A VOIC1 SBITM NINTP ;DISABLE INTERPOLATION 
0547 01E5 4B VOIC2 RBITM UNVO ;WE WANT VOICING HERE 
0548 * 
0549 * K PARAMETERS DECODING 
0550 * 
0551 01E6 56 KPARM TCX FLAGS 

01E7 28 
0552 01E8 46 TBITM RPT ;IF BIT REPEAT 
0553 01E9 62 BR SPCEX : EXIT SPEECH 

OlEA 86 
0554 01EB 00 CLA ;CLEAR A 
0555 01EC 24 GET K1NB ;GET Kl 
0556 OIED 56 TCX TEMP 

OlEE 27 
0557 OIEF 09 TAM ;SAVE Kl CODE 
0558 OIFO 50 ACAA TABK1 ;POINT AT K1 TABLE 

01F1 57 
0559 01F2 58 LUAA ;DECODE IT 
0560 01F3 56 TCX K1BF 

01F4 lA 
0561 01F5 09 TAM ; PUT IT AWAY 
0562 01F6 56 TCX TEMP 

01F7 27 
0564 01F9 51 ACAA TAK1F ;POINT AT K1 FRACTION TABLE 

OIFA OF 
0565 OlFB 58 LUAA ;DECODE IT 
0566 01FC 56 TCX FKlBF 

01FD 25 
0567 01FE 09 TAM ; PUT IT AWAY 
0568 01FF 00 CLA ;CLEAR A 
0569 0200 24 GET K2NB ;GET K2 

8-19 



0570 0201 56 TCX TEMP 
0202 27 

0571 0203 09 TAM ;SAVE K2 CODE 
0572 0204 50 ACAA TABK2 ;POINT AT K2 TABLE 

0205 77 
0573 0206 58 LUAA ;DECOOE IT 
0574 0207 56 TCX K2BF 

0208 IB 
0575 0209 09 TAM ;PUT IT AWAY 
0576 020A 56 TCX TEMP 

020B 27 
0577 020C 04 TMA ;GET K2 CODE 
0578 020D 51 ACAA TAK2F ;POINT AT K2 TABLE 

020E 2F 
0579 020F 58 LUAA ;OECODE IT 
0580 0210 56 TCX FK2BF 

0211 26 
0581 0212 09 TAM ;PUT IT AWAY 
0582 0213 00 CLA ;CLEAR A 
0583 0214 23 GET K3NB ;GET K3 
0584 0215 50 ACAA TABK3 ;POINT AT K3 TABLE 

0216 97 
0585 0217 58 LUAA ;DECODE IT 
0586 0218 56 TCX K3BF 

0219 lC 
0587 021A 09 TAM ; PUT IT AWAY 
0588 021B 00 CLA ;CLEAR A 
0589 021C 23 GET K4NB ;GET K4 
0590 0210 50 ACAA TABK4 ;POINT AT K4 TABLE 

021E A7 
0591 021F 58 LUAA ;DECODE IT 
0592 0220 56 TCX K4BF 

0221 10 
0593 0222 09 TAM ;PUT IT AWAY 
0594 0223 56 TCX FLAGS 

0224 28 
0595 0225 43 TBITM UNVO ;IF UNVOICED GO CLEAR THE REST 
0596 0226 62 BR CLRPI ;GO K5 K6 K7 K8 K9 KI0 

0227 73 
0597 * 
0598 * K5 K6 K7 K8 K9 KI0 
0599 * 
0600 0228 00 CLA ;CLEAR A 
0601 0229 23 GET K5NB ;GET K5 
0602 022A 50 ACAA TABKS ;POINT AT KS TABLE 

8-20 



022B B7 
0603 022C 58 LUAA ;DECODE IT 
0604 0220 56 TCX K5BF 

022E IE 
0605 022F 09 TAM ;PUT IT AWAY 
0606 0230 00 CLA ;CLEAR A 
0607 0231 23 GET K6NB ;GET K6 
0608 0232 50 ACAA TABK6 ;POINT AT K6 TABLE ~ 

0233 C7 
0609 0234 58 LUAA ;DECODE IT 
0610 0235 56 TCX K6BF 

0236 IF 
0611 0237 09 TAM ;PUT IT AWAY 
0612 0238 00 CLA ;CLEAR A 
0613 0239 23 GET K7NB ;GET K7 
0614 023A 50 ACAA TABK7 ;POINT AT K7 TABLE 

023B 07 
0615 023C 58 LUAA ;DECODE IT 
0616 0230 56 TCX K7BF 

023E 20 
0617 023F 09 TAM ;PUT IT AWAY 
0618 0240 00 CLA ;CLEAR A 
0619 0241 22 GET K8NB ;GET K8 
0620 0242 50 ACAA TABK8 ;POINT AT K8 TABLE 

0243 E7 
0621 0244 58 LUAA ;DECODE IT 
0622 0245 56 TCX K8BF 

0246 21 
0623 0247 09 TAM ;PUT IT AWAY 
0624 0248 00 CLA ;CLEAR A 
0625 0249 22 GET K9NB ;GET K9 
0626 024A 50 ACAA TABK9 ;POINT AT Kg TABLE 

024B EF 
0627 024C 58 LUAA ;DECODE IT 
0628 0240 56 TCX K9BF 

024E 22 
0629 024F 09 TAM ; PUT IT AWAY 
0630 0250 00 CLA ;CLEAR A 
0631 0251 22 GET KI0NB ;GET KI0 
0632 0252 50 ACAA TAKI0 ;POINT AT KI0 TABLE 

0253 F7 
0633 0254 58 LUAA ;DECODE IT 
0634 0255 56 TCX KI0BF 

0256 23 
0635 0257 09 TAM ;PUT IT AWAY 

B-21 



0636 0258 62 BR SPCEX 
0259 86 

0637 * 
0638 * CLEAR ALL PARAMETERS 
0639 * 
0640 025A 00 CLRPR CLA ;GET REAOY TO CLEAR NEW PARAMETERS 
0641 025B 56 TCX EBF ;ENERGY NEW VALUE 

025C 19 
0642 0250 09 TAM· ;CLEARED 
0643 025E 56 TCX FEBF 

025F 24 
0644 0260 09 TAM 
0645 0261 56 TCX FKIBF 

0262 25 
0646 0263 09 TAM 
0647 0264 56 TCX FK2BF 

0265 26 
0648 0266 09 TAM 
0649 0267 56 TCX KIBF 

0268 lA 
0650 0269 09 TAM 
0651 026A 56 TCX K2BF 

026B IB 
0652 026C 09 TAM 
0653 0260 56 TCX K3BF 

026E lC 
0654 026F 09 TAM 
0655 0270 56 TCX K4BF 

0271 10 
0656 0272 09 TAM 
0657 0273 00 CLRPI CLA 
0658 0274 56 TCX K5BF 

0275 IE 
0659 0276 09 TAM 
0660 0277 56 TCX K6BF 

0278 IF 
0661 0279 09 TAM 
0662 027A 56 TCX K7BF 

027B 20 
0663 027C 09 TAM 
0664 0270 56 TCX K8BF 

027E 21 
0665 027F 09 TAM 
0666 0280 56 TCX K9BF 

0281 22 

8-22 



0667 0282 09 TAM 
0668 0283 56 TCX KIOBF 

0284 23 
0669 0285 09 TAM 
0670 * 
0671 0286 56 SPCEX TCX FLAGS 

0287 28 
0672 0288 44 TBITM STRT ;FIRST TWO FRAMES? III 

0673 0289 8C SBR SPCEl ;BRANCH IF SO 
0674 028A 61 BR SPDEC :GO DO IT ALL OVER AGAIN 

028B 70 
0675 028C 45 SPCEl TBITM STRTl ;SECOND FRAME? 
0676 0280 62 BR SPCE2 

028E B3 
0677 028F 30 SBITM STRTl ;NEXT ONE IS SECOND FRAME 
0678 * 
0679 * THIS SECTION COPIES THE BUFFER INTO PRESENT VALUES 
0680 
0681 * PITCH 
0682 * 
0683 0290 56 TCX PPV ;PITCH PRESENT VALUE 

0291 01 
0684 0292 OE XBX ;POINTER IN B 
0685 0293 56 TCX PBF ;POINT AT PITCH BUFFER 

0294 18 
0686 * 
0687 0295 05 PCOPY TMAIX ;GET VALUE, POINT AT NEXT BUFFER 
0688 0296 OE XBX ;POINT AT PRESENT VALUE 
0689 0297 09 TAM ;STORE AS PRESENT VALUE 
0690 0298 OF IXC :POINT AT NEXT PRESENT VALUE LOCATION 
0691 0299 OF IXC 
0692 029A OE XBX BACK TO BUFFER POINTER 
0693 029B 55 XGEC KIOBF 1 DONE? 

029C 24 
0694 0290 9F SBR FCOPY BRANCH IF SO 
0695 029E 95 SBR PCOPY 
0696 * 
0697 029F 56 FCOPY TCX FEBF ;POINT AT ENERGY FRACTIONAL BUFFER 

02AO 24 
0698 02A1 04 TMA ;GET VALUE 
0699 02A2 56 TCX FEPV ; ENERGY FRACTIONAL PRESENT 'JALUE 

02A3 83 
0700 02A4 09 TAM 
0701 * 
0702 * K PARAMETERS 

8-23 



0703 * 
0704 02A5 56 TCX FKIBF ;POINT AT Kl FRACTIONAL BUFFER 

02A6 25 
0705 02A7 04 TMA ;GET VALUE 
0706 02A8 56 TCX FKIPV ;Kl FRACTIONAL PRESENT VALUE 

02A9 85 
0707 02AA 09 TAM 
0708 02AB 56 TCX FK2BF ;POINT AT K2 FRACTIONAL BUFFER 

02AC 26 
0709 02AD 04 TMA ;GET VALUE 
0710 02AE 56 TCX FK2PV ;K2 FRACTIONAL PRESENT VALUE 

02AF 87 
0711 02BO 09 TAM 
0712 02Bl 61 BR SPDE2 ;GO FILL BUFFER AGAIN 

02B2 8B 
0713 * 
0714 * HERE FOR SECOND FRAME 
0715 02B3 62 SPCE2 BR T$IRI ;GO MOVE BUFFER INTO NEW VALUES 

02B4 CE 
0716 * 
0717 * NOW START IT UP 
0718 * 
0719 02B5 56 SPCE3 TCX FLAGS ;BACK HERE FROM MOVE 

02B6 28 
0720 02B7 4C RBITM STRT ;CLEAR STARTUP FLAGS 
0721 02B8 4D RBITM STRTl 
0722 02B9 56 TCX PBF ;GET PITCH 

02BA 18 
0723 02BB 04 TMA ;INTO A 
0724 02BC 56 TCX TMVAL ;TIME INTO X 

02BD IF 
0725 02BE lA START 
0726 02BF 10 TXTM ;START THINGS GOING 
0727 02CO IE INTE ;ENABLE THOSE INTERRUPTS 
0728 02Cl 61 BR SPDE2 ;GO FILL BUFFER AGAIN 

02C2 8B 

8-24 



0729 * 
0730 * 
0731 ********************************************* 

0732 * TIMER INTERRUPT ROUTINE 
0733 * INTERRUPT OCCURS ONCE EACH FRAME 
0734 * 
0735 * TRANSFERS NEW PITCH, ENERGY, ANO K VALUES TO 
0736 * PROPER LOCATIONS FROM RAM, READS NEW VALUES IN • 
0737 * TO RAM. 
0738 * 
0739 * BLASTS: PTR, B, 
0740 * ALL PRESENT VALUES, 
0741 * ALL NEW VALUES 
0742 * 
0743 ********************************************* 

0744 02C3 56 INTl TCX FLAGS 
02C4 28 

0745 02C5 39 SBITM INT ;SET INTERRUPT FLAG 
0746 02C6 40 TBITM STP ;LAST FRAME? 
0747 02C7 63 BR NOINT ;BRANCH IF SO. 

02C8 37 
0748 02C9 56 TCX TMVAL ;LOAD TIMER INTERRUPT VALUE 

02CA 1F 
0749 02CB 10 TXTM 
0750 02CC 56 TCX FLAGS 

02CD 28 
0751 * 
0752 * MOVE NEW VALUES INTO PRESENT VALUES 
0753 * 
0754 * VOICING 
0755 * 
0756 02CE 00 T$IR1 CLA 
0757 02CF 43 TBITM UNVO ;CHECK VOICING 
0758 02DO 62 BR SSSSS ;BRANCH IF NOT VOICED 

02D1 D4 
0759 02D2 50 ACAA 1 ;SET VOICING BIT 

02D3 01 
0760 02D4 5B SSSSS TAV ; PUT IT AWAY 
0761 * 
0762 * PITCH 
0763 * 
0764 02D5 56 TCX PBF ;GET PITCH BUFFER 

02D6 18 
0765 02D7 04 TMA 
0766 02D8 56 TCX PNV ;TELL CHIP ABOUT IT 

6-25 



02D9 00 
0767 * 
0768 02DA 09 TAM :ZERO FOR ... 
0769 * 
0770 * ENERGY 
0771 * 
0772 02DB 56 TCX EBF :POINT AT ENERGY BUFFER 

02DC 19 
0773 02DD 04 TMA :GET ENERGY NEW VALUE 
0774 02DE 56 TCX ENV 

02DF 02 
0775 02EO 09 TAM ;EBF # ENV 
0776 * 
0777 02E1 56 TCX FEBF ;POINT AT FRACTIONAL ENERGY BUFFER 

02E2 24 
0778 02E3 04 TMA ;GET FRACTINAL ENERGY NEW VALUE 
0779 02E4 56 TCX FENV 

02E5 82 
0780 02E6 09 TAM ;FEBF # FENV 
0781 * 
0782 * K PARAMETERS 
0783 * 
0784 02E7 56 TCX KIBF ;POINT AT Kl BUFFER 

02E8 lA 
0785 02E9 04 TMA ;GET Kl NEW VALUE 
0786 02EA 56 TCX KINV 

02EB 04 
0787 02EC 09 TAM ;KIBF # KINV 
0788 02ED 56 TCX FKIBF ;POINT AT Kl FRACTIONAL BUFFER 

02EE 25 
0789 02EF 04 TMA ;GET Kl FRACTIONAL NEW VALUE 
0790 02FO 56 TCX FKINV 

02F1 84 
0791 02F2 09 TAM ; FKIBF # FKINV 
0792 02F3 56 TCX K2BF ;POINT AT K2 BUFFER 

02F4 IB 
0793 02F5 04 TMA ;GET K2 NEW VALUE 
0794 02F6 56 TCX K2NV 

02F7 06 
0795 02F8 09 TAM ;K2BF # K2NV 
0796 02F9 56 TCX FK2BF ;POINT AT K2 FRACTIONAL BUFFER 

02FA 26 
0797 02FB 04 TMA ;GET K2 FRACTIONAL NEW VALUE 
0798 02FC 56 TCX FK2NV 

02FD 86 

8-26 



0799 02FE 09 TAM ; FK2BF # FK2NV 
0800 02FF 56 Tex K3BF ;POINT AT K3 BUFFER 

0300 Ie 
0801 0301 04 TMA ;GET K3 NEW VALUE 
0802 0302 56 Tex K3NV 

0303 08 
0803 0304 09 TAM ;K3BF # K3NV 
0804 0305 56 Tex K4BF ;POINT AT K4 BUFFER 

0306 10 
0805 0307 04 TMA ;GET K4 NEW VALUE 
0806 0308 56 Tex K4NV 

0309 OA 
0807 030A 09 TAM ;K4BF # K4NV 
0808 030B 56 Tex K5BF ;POINT AT K5 BUFFER 

030e IE 
0809 030D 04 TMA ;GET K5 NEW VALUE 
0810 030E 56 Tex K5NV 

030F oe 
0811 0310 09 TAM ;K5BF # K5NV 
0812 0311 56 Tex K6BF ;POINT AT K6 BUFFER 

0312 IF 
0813 0313 04 TMA ;GET K6 NEW VALUE 
0814 0314 56 Tex K6NV 

0315 OE 
0815 0316 09 TAM ;K6BF # K6NV 
0816 0317 56 Tex K7BF ;POINT AT K7 BUFFER 

0318 20 
0817 0319 04 TMA ;GET K7 NEW VALUE 
0818 031A 56 Tex K7NV 

031B 10 
0819 031e 09 TAM ; K7BF # K7NV 
0820 031D 56 Tex K8BF ;POINT AT K8 BUFFER 

031E 21 
0821 031F 04 TMA ;GET K8 NEW VALUE 
0822 0320 56 Tex K8NV 

0321 12 
0823 0322 09 TAM ;K8BF # K8NV 
0824 0323 56 Tex K9BF ;POINT AT K9 BUFFER 

0324 22 
0825 0325 04 TMA ;GET K9 NEW VALUE 
0826 0326 56 Tex K9NV 

0327 14 
0827 0328 09 TAM ;K9BF # K9NV 
0828 0329 56 Tex KI0BF ;POINT AT KID BUFFER 

032A 23 

8-27 



0829 032B 04 TMA ;GET KI0 NEW VALUE 
0830 032C 56 TCX KI0NV 

0320 16 
0831 032E 09 TAM ;KI0BF # KI0NV 
0832 * 
0833 * INTERPOLATION 
0834 * 
0835 032F 56 TCX FLAGS 

0330 28 
0836 0331 44 TBHM STRT ; START? 
0837 0332 62 BR SPCE3 ;BRANCH IF SO 

0333 B5 
0838 0334 42 TBITM NINTP ; INTERPOLATE? 
0839 0335 B7 SBR NOINT ;BRANCH IF NOT 
0840 0336 IE INTE 
0841 0337 2F NOINT RETI 
0842 * 
0843 * HERE FOR A STOP CODE 
0844 * 
0845 0338 10 STPIT INTO 
0846 0339 IB STOP 
0847 033A IF RETN 

B-28 



C Program to Initialize the TSP60C20 Speech ROM 

0001 *********************************************************** 

0002 * This is the Assembler Source for the * 
0003 * initialization routine for the * 
0004 * TSP60C20 speech ROM. It assumes that * 
0005 * the desired starting byte address is * 
0006 * located in an arbitrary point in * 
0007 * RAM. For the purposes of checkout * 
0008 * it is assumed to be at ~10-~11 with * 
0009 * the most significant byte of the * 
0010 * address at ~10 and the least * 
0011 * significant byte of the address in * 
0012 * ~11. * 
0013 * * 
0014 * In actual use, the values given * 
0015 * for HADDR and LADDR in the Equate * 
0016 * block should be replaced so as to * 
0017 * pOint to the actual location in RAM * 
0018 * used in the program. * 
0019 * * 
0020 * After calling this program, you * 
0021 * can use the standard synthesis * 
0022 * routine. Just make sure that there * 
0023 * is at least a 9 instruction cycle * 
0024 * gap between each GET instruction * 
0025 * * 
0026 * If you need to use internal speech * 
0027 * afterwards. you need to do an * 
0028 * INTRM (internal ROM) instruction * 
0029 * first. * 
0030 * * 
0031 * The strategy is as follows: * 
0032 * Pulse M1 High * 
0033 * Pulse MO High * 
0034 * Load the 16-bit starting ROM * 
0035 * address; four bits at a time. * 
0036 * Pulsing M1 high for each * 
0037 * nibble. The address in * 
0038 * RAM is right shifted one * 
0039 * bit so as to make the address * 
0040 * reflect word instead of byte * 
0041 * boundaries. * 
0042 * Burn 16 instruction cycles * 
0043 * for ROM access cycle. * 

C-1 



0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 

C-2 

* Get 8 bits 
* Burn 9 instruction Cycles· 
* If the address in RAM was odd, 
* Get 8 bits to move to 
* correct byte Boundary. 
* Get 8 bits 
* 
* Although the TSP60C20 is addressed on 
* word (16-bit) boundaries; the 
* address that this subroutine uses 
* is expressed in byte (8-bit) 
* boundaries. The address located at 
* HADDR and LADDR is therefore 
* shifted right one bit before being 
* loaded into the TSP60C20. If the 
* original address located contains a 
* one in the least significant bit 
* position then a GET8 instruction is 
* executed at the end to move one byte 
* further (halfway between word 
* boundaries) in memory. 
* 
* The address of the starting byte 
* of ROM is placed in RAM with the 
* most significant byte at HADDR and 
* the least significant byte at 
* LADDR. 
* 
* This routine will be reached by a 
* 
* CALL INIT 
* 
* instruction. 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********************************************************** 

* 
* 
*********************************************************** 

* 
* Equate Block 
* 

* 
* 
* 

**************************************************~******** 

0010 HADDR EQU 
0011 LADDR EQU 

* 

#10 
#11 

-Most Significant RAM Address Byte 
-Least Significant RAM Address Byte 



0089 
0090 
0091 
0092 
0093 
0094 0000 2B 
0095 
0096 
0097 
0098 0001 00 
0099 0002 50 

0003 02 
0100 0004 15 
0101 0005 00 
0102 0006 15 
0103 
0104 
0105 
0106 0007 50 

0008 01 
0107 0009 15 
0108 OOOA 00 
0109 OOOB 15 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 OOOC 56 

0000 11 
0127 OOOE 04 

*********************************************************** 
* 
* Start Routine 
* 

* 
* 
* 

*********************************************************** 
INIT EXTRM -Set to External ROM Mode 
* 
* Pulse M1 High 
* 

CLA -Clear A Register 
ACAA 2 -Set A = 2 

TAPB -Xfer A to PB 
CLA -Clear A 
TAPB -Xfer A to PB 

* 
* Pulse MO High 
* 

ACAA 1 -Set A = 1 

TAPS -Xfer A to PB 
CLA -Clear A Register 
TAPB -Xfer A to PB 

*********************************************************** 
* * 
* Load the least significant byte * 
* of the ROM starting address to * 
* the A register; then Right shift * 
* it once to convert it to a word * 
* address; then left shift it to * 
* position the least significant * 
* nibble correctly in the register * 
* with the two least significant * 
* bits of the register set to O. * 
* Then add 2 to A register to set * 
* M1 high and transfer the result * 
* to the PB. * 
* * 
*********************************************************** 

TCX LAOOR -Poi nt to LSB of Address 

TMA -Xfer 8 bit Address 

C-3 



0128 OOOF 18 SARA -Shift A register Right 
0129 0010 19 SALA -Shift A register Left 
0130 0011 19 SALA -Shift A register Left 
0131 0012 50 ACAA 2 -Set Ml High 

0013 02 
0132 0014 15 TAPB -Xfer A to PB 
0133 *********************************************************** 
0134 * * 
0135 * Add hex > OFE to A regi ster to set Ml * 
0136 * to 0 then transfer the result to * 
0137 * PB. * 
0138 * * 
0139 ********************************************************* * 
0140 0015 50 ACAA #OFE -Set M1 Low 

0016 FE 
0141 0017 15 TAPB -Xfer A to PB 
0142 * 
0143 *********************************************************** 
0144 * * 
0145 * Load the least significant byte * 
0146 * of the ROM starting address to * 
0147 * the A register; then right shift * 
0148 * it five times and then left shift * 
0149 * it twice to position the upper * 
0150 * three bits of the address byte * 
0151 * correctly in the A register. * 
0152 * Then add 2 to A register to set * 
0153 * M1 high. * 
0154 * * 
0155 * The least significant bit of the * 
0156 * other byte of the address word * 
0157 * will still need to be transferred * 
0158 * to the most significant bit of this * 
0159 * word before it can be transferred * 
0160 * to the PB. * 
0161 * * 
0162 *********************************************************** 
0163 0018 04 TMA -Xfer 8 bit Address to A Register 
0164 0019 18 SARA -Shift A register right 
0165 001A 18 SARA -Shift A register right 
0166 001B 18 SARA -Shift A register right 
0167 001C 18 SARA -Shift A register right 
0168 0010 18 SARA -Shift A register right 
0169 001E 19 SALA -Shift A register Left 
0170 001F 19 SALA -Shift A register Left 

C-4 



0171 0020 56 TCX HAOOR -Point to MSB of Address 
0021 10 

0172 ************************************************~,.********* 

0173 * * 
0174 * This block of code is used to move * 
0175 * last bit of the least significant * 
0176 * byte of the ROM address to the * I 

0177 * to the most significant bit of the * II 

0178 * least significant byte of the ROM * 
0179 * address. This is necessary as we * 
0180 * right shift the two bytes across * 
0181 * byte boundaries. * 
0182 * * 
0183 *********************************************************** 
0184 0022 40 TBITM 1 -Is LSB of Byte=l? 
0185 0023 60 BR ONE -If Yes, Set Bit 

0024 27 
0186 0025 60 BR ZERO -If No, No action 

0026 29 
0187 0027 50 ONE ACAA 32 -Set Bit if necesary 

0028 20 
0188 0029 50 ZERO ACAA 2 -Set M1 High 

002A 02 
0189 002B 15 TAPB -Xfer A to PB 
0190 *************************************************,:********* 

0191 * * 
0192 * Add hex > OFE to A regi ster to set M1 * 
0193 * to 0 then transfer the result to * 
0194 * PB. * 
0195 * * 
0196 **************************************************~,,******* 

0197 002C 50 ACAA #OFE -Set M1 Low 
0020 FE 

0198 002E 15 TAPB -Xfer A to PB 
0199 * 
0200 *********************************************************** 
0201 * * 
0202 * Load the most significant byte * 
0203 * of the ROM starting address to * 
0204 * the A register: then right shift * 
0205 * it once to convert it to a word * 
0206 * address; then left shift it to * 
0207 * position the least significant * 
0208 * nibble correctly in the register * 
0209 * with the two least significant * 

C-5 



0210 
0211 
0212 
0213 
0214 
0215 
0216 002F 04 
0217 0030 18 
0218 0031 19 
0219 0032 19 
0220 0033 50 

0034 02 
0221 0035 15 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 0036 50 

0037 FE 
0231 0038 15 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 0039 04 
0247 003A 18 
0248 003B 18 
0249 003C 18 
0250 0030 18 
0251 003E 18 

C-6 

* bits of the register set to O. 
* Then add 2 to A register to set 
* Ml high and transfer the result 
* to the PB. * 
* 

* 
* 
* 

* 
*********************************************************** 

-Xfer 8 bit Address to A Register TMA 
SARA 
SALA 
SALA 
ACAA 

-Truncate Last Bit (Already Loaded) 
-Shift A register Left 
-Shift A register Left 

2 -Set Ml High 

TAPB -Xfer A to PB 
*********************************************************** 
* 
* Add hex OFE to A register to set Ml 
* to 0 then transfer the result to 
* PB. 
* 

* 
* 
* 
* 
* 

*********************************************************** 
* 

ACAA #OFE -Set 1-11 Low 

TAPB -Xfer A to PB 
*********************************************************** 
* * 
* Load the most significant byte * 
* of the ROM starting address to * 
* the A register; then right shift * 
* it five times and then left shift * 
* it twice to position the upper * 
* three bits of the address byte * 
* correctly in the A register. * 
* Then add 2 to A register to set * 
* Ml high and transfer the result * 
* to the PB. * 
* * 
*********************************************************** 

TMA 
SARA 
SARA 
SARA 
SARA 
SARA 

-Xfer 8 bit Address to A Register 
-Shift A register right 
-Shift A register right 
-Shift A register right 
-Shift A register right 
-Shift A register right 



0252 003F 19 SALA -Shift A register Left i 

0253 0040 19 SALA -Shift A register Left I' 

0254 0041 50 ACAA 2 -Set M1 High 
0042 02 

0255 0043 15 TAPB -Xfer A to PB 
0256 * 
0257 *************************************************,:********* 

0258 * * .. 
0259 * Add hex >OFE to A register to set M1 * 
0260 * to 0 then transfer the result to * 
0261 * PB. * 
0262 * * 
0263 **************************************************ka******* 
0264 * 
0265 0044 50 ACAA #OFE -Set Ml Low 

0045 FE 
0266 0046 15 TAPB -Xfer A to PB 
0267 * 
0268 *********************************************************** 
0269 * * 
0270 * Burn 16 Instruction cycles for the * 
0271 * TSP60C20 internal access cycle. * 
0272 * * 
0273 *********************************************************** 
0274 0047 00 CLA -Clear A register 
0275 0048 50 BRN16 ACAA 1 -Increment A register 

0049 01 
0276 004A 54 ANEC 5 -Has Loop timed out? 

004B 05 
0277 004C 60 BR BRN16 -If not timed out, repeat 

004D 48 
0278 * 
0279 *********************************************************** 
0280 * * 
0281 * Load 8 Bits * 
0282 * * 
0283 *********************************************************** 
0284 004E 27 GET 8 
0285 * 
0286 *********************************************************** 
0287 * * 
0288 * Burn 9 Instruction cycles * 
0289 * (Actually burns 10 cycles) * 
0290 * * 
0291 *********************************************************** 

C-7 



0292 
0293 
0294 

0295 

0296 

0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 
0305 
0306 
0307 

004F 00 
0050 50 
0051 01 
0052 54 
0053 03 
0054 60 
0055 50 

0308 0056 56 
0057 11 

0309 0058 40 
0310 0059 60 

005A 50 
0311 005B 60 

005C 65 
0312 0050 27 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 

0322 

0323 

005E 00 
005F 50 
0060 01 
0061 54 
0062 03 
0063 60 
0064 SF 

* 
CLA -Clear A register 

LOOP ACAA 1 -Increment A register 

ANEC 3 -Has Loop timed out? 

BR LOOP -If no, repeat 

* 
*********************************************************** 
* 
* 
* This Block of code inserts an 
* extra Get8 instruction if the 
* Address in ROM is odd so as 
* to shift the data to the Byte 
* Boundary. 
* 

* 
* 
* 
* 
* 

* 
* 

********************************************************* * 
TCX LADDR -Point to LSB of Address 

TBITM 1 - I s LSB of Byte = 11 
BR ODD -If Yes, ODD 

BR LEGAL -El se LEGAL 

ODD GET 8 -Move to Odd Boundary 
*********************************************************** 
* 
* Burn 9 Instruction cycles 
* (Actually burns 10 cycles) 
* 

* 
* 
* 
* 

********************************************************* * 
* 

CLA -Clear A register 
BRN09 ACAA 1 -Increment A register 

ANEC 3 -Has Loop timed out? 

BR BRN09 -If no, repeat 

0324 * 
0325 * Load 8 Bi ts 
0326 * 
0327 0065 27 LEGAL GET 8 -Next GET8 will give Legal Data 

c-s 



0328 
0329 
0330 
0331 
0332 
0333 
0334 
0335 0066 00 
0336 0067 50 

0068 01 
0337 0069 54 

006A 03 
0338 006B 60 

006C 67 
0339 
0340 
0341 
0342 0060 IF 

'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'**'*'*'*'* 

'* 

'* Burn 9 Instruction cycles 
'* (Actually burns 10 cycles) 
'* 

'* 

'* 

'* 

'* 

'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*********** 

* 

CLA -Clear A register 
BRNI0 ACAA 1 -Increment A register 

ANEC 3 -Has Loop timed out? 

BR BRNIO -If no, repeat 

'* 

'* 

'* 

RETN -Exit Subroutine 

C-9 



C-10 



TI North 
American Sales 
Offices 
ALABAMA: Huntsville: (205) 837-7530 
ARIZONA: Phoenix: (602) 995-1007 
CALIFORNIA: Irvine: (714) 660-1200 
Roseville: (916) 786-9208 

~~t~i~a~~: (~~g~n~£~&\o 
Woodland Hills: (81B) 704-8100 
COLORADO: Aurora: (303) 366-8000 
CONNECTICUT: Wallingford: (203) 269-0074 
FLORIDA: Altamonte Springs: (407) 260-2116 
Fort Lauderdale: (305) 973-8502 
Tampa: (813) 882-0017 
GEOAGIA: Norcross: (404) 662-7900 
ILLINOIS: Arlington Heights: (708) 640-3000 
INDIANA: Carmel: (317) 573-6400 
Fort Wayne: (219) 482-3311 
IOWA: Cedar Rapids: (319) 395-9551 
KANSAS: Overland Park: (913) 451-4511 
MARYLAND: Columbia: (301) 964-2003 
MASSACHUSETTS: WaHham: (617) 895-9100 
MICHIGAN: Farmington Hills: (313) 553-1500 
Grand Rapids: (616) 957-4202 
MINNESOTA: Eden Prairie: (612) 828-9300 
MISSOURI: SI. Louis: (314) 821-8400 
NEW JERSEY: Iselin: (201) 750-1050 
NEW MEXICO: Albuquerque: (505) 291-0495 
NEW YORK: East Syracuse: (315) 463--9291 
Fishkill: (914) 897-2900 
Melville: (516) 454-6600 
Pittsford: (716) 385-6770 
NORTH CAROLINA: Charlone: (704) 527-0930 
Raleigh: (919) 876-2725 
OHIO: Beachwood: (216) 464-6100 
Beavercreek: (513) 427-6200 
OREGON: Beaverton: (503) 643-6758 
PENNSYLVANIA: Blue Bell: (215) 825-9500 
PUERTO RICO: Hato Rey: (809) 753-8700 
TEXAS: Austin: (512) 250-7655 
Dallas: (214) 917-1264 
Houston: (713) 776-6592 
UTAH: Salt Lake City: (801) 466-8973 
WASHINGTON: Redmond: (206) 881-3080 
WISCONSIN: Waukesha: (414) 798-1001 
CANADA: Nepean: (613) 726-1970 
Richmond Hili: (416) 884-9181 
SI. Laurent: (514) 335-8392 

TI Regional 
Technology 
Centers 
CALIFORNIA: Irvine: (714) 660-8140 
Santa Clara: (408) 748-2220 
GEORGIA: Norcross: (404) 662-7950 
ILLINOIS: Arlington Heights: (708) 640-2909 
INDIANA: Indianapolis: (317) 573-6400 
MASSACHUSETTS: WaHham: (617) 895-9196 
MEXICO: Mexico City: 491-70834 
MINNESOTA: Minneapolis: (612) 828-9300 
TEXAS: Dallas: (214) 917-3881 
CANADA: Nepean: (613)726-1970 

Customer 
Response Center 
TOLL FREE: (800) 336-5236 
OUTSIDE USA: (214) 995-6611 

(8:00 a.m. - 5:00 p.m. CST) 

© 1991 Texas Instruments io(,:orpoTated 

TI Authorized 
North American 
Distributors 
Alliance Electronics, Inc. (military product only) 
Almac Electronics 
ArrowlKierulff Electronics Group 
Arrow (Canada) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Halt*Mark Electronics 
Lex Electronics 
Marshatllndustries 
Newark Electronics 
Wyle Laboratories 
Zeus Components 
Rochester Electronics, Inc. (obsolete product 
only (508) 462-9332) 

TI Distributors 
ALABAMA: Arrow/Kierulff (205) 837-6955; 
Hall-Mark (205) 837-8700; Marshall (205) 
881-9235; Lex (205) 895-0480. 
ARIZONA: ArrowlKierulff (602) 437-0750; 
Hall-Mark (602) 437-1200; Marshall (602) 
496-0290; Lex (602) 431-0030; Wyle (602) 
437-2088. 
CALIFORNIA: Los Angeles/Orange County: 
ArrowlKierulff (818) 701-7500, (714) 838-5422; 
Hall-Mark (818) 773-4500, (714) 727-6000; 
Marshall (818) 407-4100, (714) 458-5301; Lex 
(818) 880-9686, (714) 883-0200; Wyle (818) 
880-9000, (714) 863-9953; Zeus (714) 921-9000 
(818) 889-3838; 
Sacramento: Hall-Mark (916) 624-9781; 
Marshall (916) 635-9700; Lex (016) 364-0230; 
Wyle (916) 638-5282; 
San Diego: Am 'I//Kierulff (619) 565-4800; 
Hall-Mark (619) 'f3-1201; Marshall (61 r>: 
578-9600; Ley (f') 495-0015; Wyle (619) 
565-9171;b' s 9)277-9681; 
San Franci!!- Jaf Area: Arrow/Kierulff (408) 
441-9700; h Mark (408) 432-4000; Marshall 
(408) 942-4' J; Lex (408) 432-7171; Wyle (408) 
727-2500;; , (408) 629-4789. 
COLORADl .. Arrow/Kierulff (303) 373·5616; 
Hall-Mark (303) 790-1662; Marshall (303) 
451·8383; Lex (303) 799-0258; Wyle (303) 
457-9953. 
CONNECTICUT: ArrowlKierulff (203) 265-7741; 
Hall-Mark (203) 271-2844; Marshall (203) 
265-3822; Lex (203) 264-4700. 
FLORIDA: Fort Lauderdale: Arrow/Kierulff 
(305) 429-8200; Hall-Mark (305) 971-9280; 
Marshall (305) 977-4880; Lex (305) 977-7511; 
Orlando: Arrow/Kierutff (407) 333-9300; 
Hall-Mark (407) 830-5855; Marshall (407) 
767-8585; Lex (407) 331-7555; Zeus (407) 
365-3000; 
Tampa: Hall-Mark (813) 541-7440; Marshall 
(813) 573-1399; Lex (813) 541-5100. 
GEORGIA: Arrow/Kierulff (404) 497-1300; 
Hall-Mark (404) 623-4400; Marshall (404) 
923-5750; Lex (404) 449-9170. 
ILLINOIS: Arrow/Kierulff (708) 250-0500; 
Hall-Mark (708) 860-3800; Marshall (708) 
490-0155; Newark (312)784-5100; Lex (708) 
330-2888. 
INDIANA: Arrow/Kierulff (317) 299-2071; 
Hall-Mark (317) 872-8875; Marshall (317) 
297-0483; Lex (317) 843-1050. 

TEXAS 
INSTRUMENTS 

Primed in the U.S.A. 

IOWA: Arrow/Kierulff (319) 395-7230; Lex (319) 
373-1417. 
KANSAS: Arrow/Kierulff (913) 541-9542; 
Hall-Mark (913) 888-4747; Marshall (913) 
492-3121; Lex (913) 492-2922. 
MARYLAND: Arrow/Kierulff (301) 995-6002; 
Hall-Mark (30l) 988-9800; Marshall (301) 
622-1118; Lex (301) 596-7800; Zeus (301) 
997-1118. 
MASSACHUSETTS: Arrow/Kierulff (50s) 
658-0900; Hall-Mark (508) 667-0902; Marshall 
(508) 658-0810; Lex (508) 694-9100; Wyle (617) 
272-7300; Zeus (617) 863-8800. 
MICHIGAN: Detroit: Arrow/Kierulff (313) 
462-2290; Hall-Mark (313) 462-1205; Marshall 
(313) 525-5850; Newark (313) 967-0600; Lex 
(313) 525-8100; 
Grand Rapids: ArrowlKierulff (616) 243-0912. 
MINNESOTA: Arrow/Kierulff (612) 830-1800; 
Hall-Mark (612) 941-2600; Marshall (612) 
559-2211; Lex (612) 941-5280. 
MISSOURI: Arrow/Kieru!ff (314) 567-6888; 
Hall-Mark (314) 291-5350; Marshall (3l4) 
291-4650; Lex (314) 739-0526. 
NEW HAMPSHIRE: Lex (800) 833-3557. 
NEW JERSEY: Arrow/Kierulff (201) 538-0900, 
(609) 596-8000; GRS (609) 964-8560; Hall-Mark 
(201) 515-3000, (609) 235-1900; Marshall (201) 
882-0320, (609) 234-9100; Lex (201) 227-7880, 
(609) 273-7900. 
NEW MEXICO: Alliance (505) 292-3360. 
NEW YORK: Long Island: Arrow/Kierulff (516) 
231-1000; Hall-Mark (516) 737-0600; Marshall 
(516) 273-2424; Lex (516) 231-2500; Zeus (914) 
937-7400; 
Rochester: Arrow/Kierulff (716) 427-0300; 
Hall-Mark (716) 425-3300; Marshall (716) 
235-7620; Lex (716) 383-8020; 
Syracuse: Marshall (607) 798-1611. 
NORTH CAROLINA: Arrow/Kierulff (919) 
876-3132; (919) 725-8711; Hall-Mark (919) 
872-0712; Marshall (919) 878-9882; Lex (919) 
876-0000. 
OHIO: Cleveland: Arrow/Kierulff (216) 
248-3990; Hall-Mark (216) 349-4632; Marshall 
(216) 248-1788; Lex (216) 464-2970; 
Columbus: Hall-Mark (614) 888-3313; 
Dayton: Arrow/Kierulff (513) 435-5563; Marshall 
(513) 898-4480; Lex (513) 439-1800; Zeus (513) 
293-6162. 
OKLAHOMA: ArrowlKierulff (918) 252-7537; 
Hall-Mark (918) 254-6110; Lex (918) 622-8000. 
OREGON: Almac (503) 629-8090; ArrowlKierulff 
(503) 627-7667; Marshall (503) 644-5050; Wyle 
(503) 643-7900. 
PENNSYLVANIA: ArrowlKierulff (215) 928-1800; 
GRS (215) 922-7037; Marshall (412) 788-0441; 
Lex (412) 963-6604. 
TEXAS: Austin: Arrow/Kierulff (512) 835-4180; 
Hall-Mark (512) 258-8848; Lex (512) 339-0088; 
Wyle (512) 345-8853; 
Dallas: Arrow/Kierulff (214) 380-6464; Hall-Mark 
(214) 553-4300; Marshall (214) 233-5200; Lex 
(214) 247-6300; Wyle (214) 235-9953; Zeus 
(214) 783-7010; 
Houston: Arrow/Kierulff (713) 5304700; 
Hall-Mark (713) 781-6100; Marshall (713) 
895-9200; Lex (713) 784-3600; Wyle (713) 
879-9953. 
UTAH: Arrow/Kierulff (801) 973-6913; Marshall 
(801) 485-1551; Wyle (801) 974-9953. 
WASHINGTON: Almac (206) 643-9992, (509) 
924-9500; ArrowlKierulff (206) 643-4800; 
Marshall (206) 486-5747; Wyle (206) 881-1150. 
WISCONSIN: Arrow/Kierulff (414) 792-0150; 
Hall-Mark (414) 797-7844; Marshall (414) 
797-8400; Lex (414) 784-9451. 
CANADA: Calgary: Future (403) 235-5325; 
Edmonton: Future (403) 438*2858; 
Montreal: Arrow Canada (514) 735-5511; Future 
(514) 694-7710; Marshall (514) 694-8142; 
Ottawa: Arrow Canada (613) 226-6903; Future 
(613) 820-8313; Quebec City: Arrow Canada 
(418) 871-7500; 
Toronto: Arrow Canada (416) 670-7769; Future 
(416) 612-9200; Marshall (416)458-8046; 
Vancouver: Arrow Canada (604) 421-2333; 
Future (604) 294-1166. 

00291 



TI Worldwide 
Sales Offices 
ALABAMA: Huntsville: 4960 Corporate Drive, 
Suite N-l50, Huntsville, AL35805-6202, (205) 
837-7530. 
ARIZONA: Phoenix: 8825 N. 23rd Avenue, 
Suite 100, Phoenix, AZ 85021, (602) 995-1007. 
CALIFORNIA: Irvine: 1920 Main Street, Suite 
900, Irvine, CA92714, (714) 660-1200; 
Roseville: 1 Sierra Gate Plaza, Suite 2558, 
Roseville, CA 95678, (916) 786-9208; San 
Diego: 5625 Ruffin Road, Suite 100, San Diego, 
CA 92123, (619) 278-9601; Santa Clara: 5353 
Betsy Ross Drive, Santa Clara, CA 95054, (408) 
980..9000; Woodland Hills: 21550 Oxnard 
Street, Suite 700, Woodland Hills, CA 91367, 
(818) 704-8100. 
COLORADO: Aurora: 1400 S. Potomac Street, 
Suite 101, Aurora, CO 80012, (303) 368-8000. 
CONNECTICUT: Wallingford: 9 Barnes 
Industrial Park So., Wallingford, CT 06492, (203) 
269-0074. 
FLORIDA: Altamonte Springs: 370 S. North 
Lake Boulevard, Suite 1008, Altamonte Springs, 
FL 32701 , (407) 260-2116, Fort Lauderdale: 
2950 N.W. 62nd Street, Suite 100, Fort 
Lauderdale, FL 33309, (305) 973-8502; Tampa: 
4803 George Road, Suite 390, Tampa, FL 
33634-6234, (813) 882-0017. 
GEORGIA: Norcross: 5515 Spalding Drive, 
Norcross, GA 30092, (404) 662-7900. 
ILLINOIS: Arlington Heights: 515 W. 
Algonquin, Arlington Heights, IL 60005, (708) 
640-3000. 
INDIANA: Carmel: 550 Congressional Drive, 
SUite 100, Carmel, IN 46032, (317) 573-6400; 
Fort Wayne: 118 E. Ludwig Road, Suite 102, 
Fort Wayne, IN 46825, (219) 482-3311-
IOWA: Cedar Rapids: 373 Collins Road N.E., 
Suite 201, Cedar Rapids, IA 52402, (319) 
395-9551. 
KANSAS: Overland Park: 7300 College 
Boulevard, lighton Plaza, Suite 150, Overland 
Park, KS 66210, (913) 451-4511-
MARYLAND: Columbia: 8815 Centre Park 
Drive, Suite 100, Columbia, MD 21045, (301) 
964-2003. 
MASSACHUSETTS: Waltham: 950 Winter 
Street, Suite 2800, Waltham, MA 02154, (617) 
895-9100. 
MICHIGAN: Farmington Hills: 33737 W. 12 
Mile Road, Farmington Hills, MI 48331, (313) 
553-1500; Grand Rapids: 3075 Orchard Vista 
Drive S.E., Grand Rapids, MI 49506, (616) 
957-4202. 
MINNESOTA: Eden Prairie: 11000 W. 78th 
Street, Suite 100, Eden Prairie, MN 55344, (612) 
828-9300. 
MISSOURI: St, Louis: 12412 Powerscourt 
Drive, Suite 125, Sf. Louis, M063131, (314) 
821-8400. 

~~:e J1E~~u~~: l~s::~~~a~~~~,~~fr~5~~g50. 
NEW MEXICO: Albuquerque: 1224 Parsons 
Court, N.E., Albuquerque, NM 87112, (505) 
291-0495. 
NEW YORK: East Syracuse: 6365 Collamer 
Drive, East Syracuse, NY 13057, (315) 
463-9291; Fishkill: 300 Westage Business 
Center, Suite 140, Fishkill, NY 12524, (914) 
897-2900; Melville: 1895 Walt Whitman Road, 
P.O. Box 2936, Melville, NY 11747, (516) 
454-6600; Pittsford: 2851 Clover Street, 
Pittsford, NY 14534, (716) 385-6770. 
NORTH CAROLINA: Chariotte: 8 Woodlawn 
Green, Suite 100, Charlotte, NC 28217, (704) 
527-0930; Raleigh: 2809 Highwoods Boulevard, 
Suite 100, Raleigh, NC 27625, (919) 876-2725. 
OHIO: Beachwood: 23775 Commerce Park 
Road, Beachwood, OH 44122, (216) 464-6100; 
Beavercreek: 4200 Colonel Glenn Highway, 
Suite 600, Beavercreek, OH 45431, (513) 
427-6200. 
OREGON: Beaverton: 6700 S. W. 1 05th Street, 
SUite 110, Beaverton, OR 97005, (503) 643-6758. 
PENNSYLVANIA: Blue Bell: 670 Sentry 
Parkway, Blue Bell, PA 19422, (215) 825-9500. 
PUERTO RICO: Hato Rey: 615 Merchantile 
Plaza Building, Suite 505, Hato Rey, PR 00918, 
(809) 753-8700. 

© 1991 Texas Instruments Incorporated 

TEXAS: Austin: 12501 Research Boulevard, 
Austin, TX 78759, (512) 250-7655; Oallas: 7839 
Churchill Way, Dallas, TX 75251, (214) 
917-1264; Houston: 9301 Southwest Freeway, 
Suite 360, Houston, TX 77074, (713) 778-6592. 
UTAH: Salt Lake City: 1800 S. West Temple 
Street, Suite 201, Salt Lake City, UT 84115, 
(801) 466-8973. 
WASHINGTON: Redmond: 5010 148th Avenue 
N.E., Building B, Suite 107, Redmond, WA 
98052, (206) 881-3080. 
WJSCONSIN: Waukesha: 20825 Swenson 
Drive, Suite 900, Waukesha WI 53186, (414) 
798-1001. 
CANADA: Nepea": 301 Moodie Drive, Mallom 
Center, Suite 102, Nepean, Ontario, Canada 
K2H 9C4, (613) 726-1970; Richmond Hili: 280 
Centre Street East, Richmond Hill, Ontario, 
Canada L4C 181, (416) 884-9181; St. Laurent: 
9460 Trans Canada Highway, St. Laurent, 
Ouebec, Canada H4S 1R7, (514) 335-8392. 

ARGENTINA: Texas Instruments Argentina 
Viamonte 1119, 1053 Capital Federal, Buenos 
Aires, Argentina, 11748-3699. 
AUSTRALIA (& NEW ZEALAND): Texas 
Instruments Australia Ltd., 6-10 Talavera Road, 
North Ryde (Sydney), New South Wales, 
Australia 2113, 2-878-9000; 5th Floor, 418 
Street, Kilda Road, Melbourne, Victoria, Australia 
3004,3267-46n; 171 Philip Highway, Elizabeth, 
South Australia 5112, 8 255-2066. 
AUSTRIA: Texas Instruments GmbH., Hietzinger 
Kai 10H05, A-113O Wien, (0222) 9100-0. 
BELGIUM: SA Texas Instruments Belgium 
N.V., 11, Avenue Jules Bordetlaan 11, 1140 
Brussels, Belgium, (02) 242 30 80. 
BRAZIL: Texas Instruments Electronicos do 
Brasil Ltda., Rua Paes Leme, 524-7 Andar , 
Pinheiros, 05424 Sao Paulo, Brazit, 0815-6166. 
DENMARK: Texas Instruments NS, Borupvang 
2D, DK-2750 Batterup, (44) 68 7400. 
FINLAND: Texas Instrur:nents OY, P.O. Box 86, 
02321 Espoo, Finland, (0) 802 6517. 
FRANCE: Texas Instruments France, 8-10 
Avenue Morane Saulnier-B.P. 67, 78141 Vetizy 
ViUacoublay cedex, France, (1) 30701003. 
GERMANY: Texas Instruments Deutschland 
GmbH., Haggertystrasse 1, 8050 Freising, 
(08161) 80-0 od. Nbst; Kurfurstendamm 
195-196, 1000 Berlin 15, (030) 8 82 73 65; 
DOsseldorter Strasse 40, 6236 Eschbom 1, 
(06196) 80 70; Kirchhorster Strasse 2, 3000 
Hannover 51, (0511) 64 68-0; Maybachstrasse II, 
7302 Ostlildern 2 (Nettingen), (0711) 34 03-0; 
Gildehofcenter, Hollestrasse 3, 4300 Essen 1, 
(0201) 2425-0. 
HOLLAND: Texas Instruments Hofland B.V., 
Hogehilweg 19, Postbus 12995, 1100AZ 
Amsterdam-Zuidoost, Holland, (020) 5602911. 
HONG KONG: Texas Instruments Hong Kong 
Ltd., 8th Floor, Wond Shipping Center, 7 Canton 
Road, Kowloon, Hong Kong, 7351223. 
HUNGARY: Texas Instruments International, 
Budaorsi u.42, H-1112 Budapest, Hungary, (1) 1 
66 6617. 
IRELAND: Texas Instruments Ireland Ltd., 7/8 
Harcourt Street, Dublin 2, Ireland, (01) 755233. 
ITALY: Texas Instruments Italia S.pA, Centro 
Direzionale Colleoni, Palazzo Perseo-Via 
Paracelso, 12,20041, Agrate Brianza (Mi), (039) 
63221; Via Castello della Magliana, 38, 00148 
Roma, (06) 5222651; Via Amendola, 17, 40100 
Bologna, (051) 554004. 
JAPAN: Texas Instruments Japan Ltd., Aoyama 
Fuji Building 3·6-12 Kita-aoyama Minato-ku, 
Tokyo, Japan 107,03-3498-2111; MS Shibaura 
Buitding 9F, 4-13-23 Shibaura, Minato-ku, Tokyo, 
Japan 108, 03-3769-8700; Nissho-iwai Building 
5F, 2-5-8 Imabashi, Chuou-ku, Osaka, Japan 
541 , 06-204-1881 ; Dai-ni Toyota Building 
Nishi-kan 7F, 4-10-27 Meieki, Nakamura-ku, 
Nagoya, Japan 450, 052-583-8691; Kanazawa 
Oyama-cho Daiich; Selme; Building 6F, 3-10 

TEXAS 
INSTRUMENTS 

Printed in the U.S.A 

Oyama-cho, Kanazawa, Ishikawa, Japan 920, 
0762-23-5471.; Matsumoto Showa Building 6F, 

62~~~~~~i'o~~~~Yo~~p7ca¥:~~k~~aan 390, 
Building 6F, 1-25-12, Akebono-cho, Tachikawa, 
Tokyo, Japan 190, 0425-27-6760; Yokohama 
Nishiguchi KN Building 6F, 2-8-4 Kita-Saiwai, 
Nishi-Ku, Yokohama, Kanagawa, Japan 220, 
045-322-6741; Nihon Seimei Kyoto Yasaka 
Building SF, 843-2, Higashi Shiokohjicho, 
HiQashi-iru, Nishinotoh-in, Shiokohji-dori, 
Shlmogyo-ku, Kyoto, Japan 600, 075-341-7713; 
Sumitomo Seimei Kumagaya Building SF, 2-44 
Yayoi, Kumagaya, Saltama, Japan ~O, 
0485-22-2440; 2597-1, Aza Harudal, Oaza 
Yasaka, Kitsuki, Olta, Japan 873, 09786-3-3211. 
KOREA: Texas Instruments Korea Ltd., 28th 
Floor, Trade Tower, 159-1, Samsung-Dong, 
Kangnam-ku Seoul, Korea, 2 5512800. 
MEXICO: Texas Instruments de Mexico SA, 
Alfonso Reyes 115, Col. Hipodromo Condesa, 
Mexico, D.F., Mexico 06120, 5/525-3860. 
MIDDLE EAST: Texas Instruments, No. 13, 1st 
Floor Mannai Building, DiplomatiC Area, P.O. Box 
26335, Manama Bahrain, Arabian Gulf, 973 
274881. 
NORWAY: Texas Instruments Norge AlS, PB 
106, Refstad (Sinsenveien 53), 0513 Oslo 5, 
Norway, (02) 155090. 
PEOPLE'S REPUBLIC OF CHINA: Texas 
Instruments China Inc., Beijing Representative 
Office, 7-05 CITIC Building, 19 Jianguomenwai 
Dajie, Beijing, China, 500-2255, Ext. 3750. 
PHILIPPINES: Texas Instruments Asia Ltd., 
Philippines Branch, 14th Floor, Ba-Lepanto 
BUilding, Paseo de Roxas, Makati, Metro Manita, 
Philippines, 2 817 6031. 
PORTUGAL: Texas Instruments Equipamento 
Etectronico (Portugal) LOA., 2650 Moreira Da 
Maia, 4470 Maia, Portugal (2) 948 1003. 
SINGAPORE (& INDlA,INDONESIA, 
MALAYSIA, THAILAND): Texas Instruments 
Singapore (PTE) Ltd., Asia Pacific DiviSion, 101 
Thomson Road, #23-01, United Square, 
Singapore 1130,3508100. 
SPAIN: Texas Instruments Espana SA, 
C/Gobelas 43, Ctra de La Coruna km. 14, La 
Florida, 28023 Madrid, Spain, (1) 372 8051; 
clDiputacion, 279-3-5, 08007 Barcelona, Spain, 
(3) 317 91 80. 
SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialen), Box 30, 8-164 93 
Kista, Sweden, (08) 752 58 00. 
SWITZERLAND: Texas Instruments Switzerland 
AG, Riedstrafse 6, CH-8953 Dietikon, 
Switzerland, (01) 74 42 811. 
TAIWAN: Texas Instruments Supply Company, 
Taiwan Branch, Room 903, 9th Floor, Bank 
Tower, 205 Tung Hua N. Road, Taipei, Taiwan, 
Republic of China, 27139311. 
UNITED KINGDOM: Texas Instruments Ltd., 
Manton Lane, Bedford, England, MK41 7PA, 
(0234) 270 111. 

TI Authorized 
North American 
Distributors 
Alliance Electronics, Inc. (mititary product only) 
Alr'nac Electronics 
Arrow/Kierulff Electronics Group 
Arrow (Canada) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Hall-Mark ElectroniCS 
Lex Electronics 
Marshall Industries 
Newark Electronics 
Wyle Labora~ories 
Zeus Components 
Rochester Electronics, Inc, (obsolete product 
only) 

B0291 



Printed in U.S.A. 
0990-2-EP 

~ 
TEXAS 

INSTRUMENTS 

SPSS010 


