Control Damper Selection Guide for Air Handlers

AIR

Section 1 Drawing Directory by Damper

Section 1: Drawings

Drawing Directory by Damper	<u>3-4</u>
Frame Types	
Blade Types	<u>8</u>
Blade Action & Blade Seals	9
Cutaway View by Damper	
Jackshaft Height	
Non-jackshaft vs Jackshafted	
Mounting Holes	
Section Sizing by Model	
Drive Arrangements	
Mounting Options	
Face & Bypass	

Section 2: Application

Free Area	<u>21</u>
Pressure Drop	
Leakage	
Frame Types	
Blade Types	

Section 3: Options and Accessories

Seals	30
Sleeve	
Extension Pins	30
Stainless Steel	30
Open Closed Indicators	30
Paint Finishes	30
Jackshafting Kits	21-33
	00

Section 4: Actuators

Selecting an Actuator	<u>34-37</u>
Space Envelopes	<u>38</u>

Section 5: Model Selection

Model Selection Tables	<u></u>
Face & Bypass Dampers	
Severe Environment Dampers	
Insulated Control Dampers	
Air Measuring Products	<u></u>
Backdraft Dampers	
Section 6: Codes	
California Title 24	<u>47-52</u>
ASHRAE Standard 90.1	<u>47-52</u>
Section 7: Competitor Cross Reference	<u>53-54</u>

Damper	D-20	20V	0-23	-23V	H-23	V-23	CD-23	0-33	-33V	1-33	/ -33
Models	C	VCE	C	VCE	B	B	SEV	C	VCD	EBI	Ĥ
Plada Drofila											
				Eiguro 14							
Airfoil Blade				<u>rigure 14</u>	ŀ				Figur	· · 12	
Airfoil-Insulated				-					rigui	<u>e 13</u>	
Insulated & Thermally Broken						_					
Vertical Blade											
Thrust Washers	-	Figure 24	-	Figure 24		•			Figure 24		-
Blade Action											
Opposed/Parallel						Figure 17					
Blade Seal											
TPE/Silicone	- Figure 18										
Frame Types											
Channel	Figure 1										
Single Flange		Figure 2 - Figure 2 -					-				
Reverse Flange		Figure 3 - Figure 3				-					
Double Flange		<u>Fig</u>	<u>ire 4</u>			-		Figure 4			-
Quick-Connect						-					
Flange - Mounting Hole Pattern		<u>Figu</u>	<u>re 30</u>			-		Figure 30	<u>)</u>		-
Insulated & Thermally Broken						-					
Face & Bypass			-		Figure <u>49</u>	Figure 50		-		Figure <u>49</u>	Figure 50
Jackshaft											
Height/Space Envelope						Figure 25				1	
Internal/External					<u>Fi</u>	gures 26-2	<u>29</u>				
Section Sizing											
Section Size/Qty						Figure 31					
Drive Arrangements											
Internal	Figures 32-36										
External	Figures 37-41										
Accessories											
Sleeves		<u>Figu</u>	<u>re 42</u>		· ·	-		Figure 42	2		-
Mounting Options											
Insert Mount						Figure 48					
Flange Mount		Figures	44 & 46			-	Fig	ures 44 8	<u>46</u>		-
Flange Insert Mount		Figures	<u>43 & 45</u>		· ·	-	<u>Fig</u>	ures 43 8	<u>45</u>		-
Double Flange Mount		Figu	<u>re 47</u>		- <u>F</u>			Figure 47	-		-

Section 1 Drawing Directory by Damper

Damper Models	SEVCD-33	VCD-34	VCD-40	VCD-42	VCD-42V	VCD-43	VCD-43V	FBH-43	FBV-43	ICD-44	ICD-45
Blade Profile											
3V Blade						-					
Airfoil Blade	<u>Figure</u> <u>13</u>										
Airfoil-Insulated	-	Not Shown					-				
Aluminum Airfoil	-	-				Figure 15					
Insulated & Thermally Broken					-					<u>Figur</u>	<u>re 16</u>
Vertical Blade											
Thrust Washers			-		<u>Figure</u> <u>24</u>	-	Figure 24		-		
Blade Action											
Opposed/Parallel						Figure 17					
Blade Seal											
TPE/Silicone						Figure 18					
Frame Types											
Channel			Figure 1				<u>Figu</u>	<u>re 5</u>		Figu	<u>re 9</u>
Single Flange	Figure 2 Figure 6 -					Figur	<u>'e 10</u>				
Reverse Flange	F igure		Figure 3	F ierry		Figu	<u>re 7</u>	-	-	Figur	<u>'e 11</u>
Double Flange	Figu	<u>Ire 4</u>	-	Figu	<u>Ire 4</u>	Figu	ro 9	-		Figur	ro 12
Flange - Mounting			-			<u>rıyu</u>		-		<u>rıyu</u>	
Hole Pattern	Figu	<u>re 30</u>					-				
Broken					-	•					<u>Figure</u> <u>23</u>
Face & Bypass				•				Figure 49	Figure 50		
Jackshaft											
Height/Space Envelope						Figure 25					
Internal/External					Fi	<u>gures 26-2</u>	9				
Section Sizing											
Section Size/Qty						Figure 31					
Drive Arrangements	S										
Internal	Figures 32-36										
External					<u>Fi</u>	gures 37-4	<u>.1</u>				
Accessories		40				10					
Sieeves	Figu	<u>re 42</u>	-		Figur	<u>e 42</u>			-		
wounting Options						Figure 40					
IIISERL WOUNT					46	rigure 48				Figures	11 9 40
			<u></u>	JUIES 44 &	40					Figures	<u>+++ & +0</u>
Double Flance Mount	Figur	re 47	<u>-</u>	<u>jui το 43 α</u>	Figure	°e 47					<u>+3 & 43</u>
Hole Pattern Hole Pattern Hole Pattern Insulated & Thermally Broken Face & Bypass Jackshaft Height/Space Envelope Internal/External Section Size/Qty Drive Arrangements Section Size/Qty Drive Arrangements Internal External Accessories Sleeves Bounting Options Insert Mount Flange Mount Flange Insert Mount Double Flange Mount	Figure 30 Figure 3 V Figure 49 Figure 49 Image: Second stress					Figures	Figure 23				

GREENHECK Building Value in Air.

Section 1 Frame Type - Fabricated Steel

Channel

Reverse Flange

Note: Jackshaft shown for reference only.

Section 1 Frame Type - Extruded Aluminum

Section 1 Frame Type - Thermally Broken/Insulated

Channel

Single Flange

Channel

Reverse Flange

Quick Connect

Note: Jackshaft shown for reference only. Quick connect frame is actual inside dimensions.

Note: Jackshaft shown for reference only. Quick connect frame is actual inside dimensions.

Section 1 Blade Types

GREENHECK Building Value in Air.

Section 1 Blade Action & Blade Seals

Blade and Sweep Seal Detail

Figure 18

9

Section 1 Cutaway View

Section 1: Jackshaft Height Based on Section Height

	Nominal Actual Section Sectior Height Height		All VCD Models except VCD-40	VCD-40	All ICD Models	
				Dim A		
	6	5.75	2.88	2.88	-	
	7	6.75	3.38	3.38	3.88	
	8	7.75	3.88	3.88	4.88	
	9	8.75	4.38	3.03	5.38	
	10	9.75	2.88	3.00	3.88	
	11	10.75	3.38	3.50	4.88	
	12	11.75	3.38	4.00	4.88	
	13	12.75	3.88	10.66	5.38	
	14	13.75	3.88	10.63	5.38	
	15	14.75	4.38	11.13	11.88	
	16	15.75	4.38	11.63	12.88	
	17	16.75	4.88	10.78	13.88	
	18	17.75	13.88	10.75	14.88	
	19	18.75	14.38	11.25	15.38	
	20	19.75	15.88	11.75	12.88	
	21	20.75	16.38	10.91	13.88	
	22	21.75	16.88	10.88	14.88	
	23	22.75	18.38	11.38	15.38	
	24	23.75	18.88	10.53	15.38	
	25	24.75	15.88	11.03	13.88	
	26	25.75	16.38	11.00	14.88	
	27	26.75	16.38	11.50	15.38	
	28	27.75	17.38	18.16	15.38	
	29	28.75	18.38	18.13	15.38	
	30	29.75	18.88	18.63	14.88	
	31	30.75	18.88	19.13	15.38	
	32	31.75	16.38	18.28	15.38	
	33	32.75	16.38	18.25	15.38	
	34	33.75	16.38	18.75	15.38	
	35	34.75	18.38	19.25	15.38	
	36	35.75	16.88	18.41	15.38	
	3/	36.75	18.88	18.38	15.38	
	38	37.75	18.88	18.88	15.38	
	39	38.75	16.38	18.03	15.38	
	40	39.75	17.38	18.53	15.38	
	41	40.75	18.38	18.5	15.38	
	42	41.75	18.88	19.00	15.38	
	43	42.75	10.00	10.10	15.38	
	44	43.75	10.00	10.00	15.38	
	40	44./0	10.00	10.03	10.30	
	40	40.70	10.30	19.13	15.30	
	4/	40.73	10.30	10.20	1000	
	48	41./5	10.30	10.20	10.30	
	49 50	40.75	10.00	10.70	10.30	
	50	49.70	10.00	19.20	10.301	

Figure 25

Note:

When the nominal section height is fractional, add 1/2 of the fraction amount ot "Dim A".

The nominal section height shown in table applies to the width on VCD-xxV models.

Example: A VCD-40 with nominal section height of 16.375. 0.188 + 11.63 = 11.818

Nominal Section Height	Actual Section Height	All VCD Models except VCd-40	VCD-40	All ICD Models
			Dim A	
51	50.75	18.88	18.41	15.38
52	51.75	18.88	18.38	15.38
53	52.75	16.38	18.88	15.38
54	53.75	16.38	18.53	15.38
56	55.75	16.38	18.50	15.38
57	56.75	18.88	19.00	15.38
58	57.75	18.88	18.16	15.38
59	58.75	18.88	18.88 18.13	
60	59.75	16.38	16.38 18.63	
61	60.75	18.88 19.13		15.38
62	61.75	16.38 18.28		15.38
63	62.75	18.88 18.25		15.38
64	63.75	16.88	16.88 18.75	
65	64.75	18.88	19.25	15.38
66	65.75	18.88	18.41	15.38
67	66.75	18.88	18.38	15.38
68	67.75	18.88	18.88	15.38
69	68.75	18.88	18.03	15.38
70	69.75	18.88	18.00	15.38
71	70.75	18.88	18.50	15.38
72	71.75	18.88	19.00	15.38
73	72.75	18.88	18.16	15.38
74	73.75	16.38	18.13	15.38

Section 1 Non-Jackshafted vs Jackshafted

Section 1 Mounting Holes

The same formula/locations are used in the horizontal & vertical directions				
Actual Section Dimension	Flange Hole Quantity			
<7.75	1			
>= 7.75 & < 24.75	2			
>= 24.75 & < 40.75	3			
>= 40.75 & < 56.75	4			
>=56.75	5			
Actual Section Dimension	First Hole from Edge of Flange			
< 7.75	(Actual Section Dimension/2) + 1.5			
>=7.75	3.563			
Actual Section Dimension	Hole Spacing			
<7.75	N/A			
>=7.75	Holes evenly spaced across section			

SINGLE SECTION WIDE NON-JACKSHAFTED W/ EXTERNAL ACTUATOR

Figure 26

one section wide or dampers with customer supplied actuators are built with 1 in. jackshaft.

SINGLE SECTION WIDE NON-JACKSHAFTED W/ INTERNAL MOUNT (NO ACTUATOR PROVIDED)

Note: A damper with an internal mount without a jackshaft would just have a blade lever provided.

Figure 30

Section 1 Section Sizing by Model

Maximum Nominal Damper

5 X

5 X 3

GREENHECK

Building Value in Air.

Figure 31

VCD-33V & VCD-42V					
Maximum Nominal Damper Width (in.)					
		74	120		
Maximum Nominal Damper	60	1 x 1	2 x 1		
Height (in.)	72	1 x 2	2 x 2		

	Width (in.)					
		74	120			
Maximum Nominal Damper Height (in.)	48	1 x 1	2 x 1			
	72	1 x 2	2 x 2			

VCD-20V & VCD-23V

V	CD-43	3V		
		Maximum Nomi Width (nal Damper in.)	
		74	120	
Maximum Nominal Damper Height (in.)	60	1 x 1	2 x 1	N

ICE)-44 & IC	D-45		
		Maximur	n Nomina Width (in.	l Damper)
		48	96	144
Maximum Nominal Damper	74	1 x 1	2 x 1	3 x 1
Height (in.)	148	1 x 2	2 x 2	3 x 2

		VCI	D-20 & VCD-23	3			
			Maximu	ım Nominal Da	amper Width ((in.)	
		48	96	144	192	240	288
	74	1 x 1	2 x 1	3 x 1	4 x 1	5 x 1	6 x 1
Maximum Nominal Damper Height (in)	148	1 x 2	2 x 2	3 x 2	4 x 2	5 x 2	6 x 2
	222	1 x 3	2 x 3	3 x 3	4 x 3	5 x 3	6 x 3

		VCD-33,	34, 40, 42 & V	/CD-43			
			Maximu	um Nominal D	amper Width	(in.)	
		60	96	144	192	240	288
	74	1 x 1	2 x 1	3 x 1	4 x 1	5 x 1	6 x 1
Maximum Nominal Damper Height (in)	148	1 x 2	2 x 2	3 x 2	4 x 2	5 x 2	6 x 2
	222	1 x 3	2 x 3	3 x 3	4 x 3	5 x 3	6 x 3

Section 1 Drive Arrangement Definition

On multi-blade dampers (except vertical blade and Face & Bypass), they are given a drive arrangement code that helps describe the construction of the damper. The following breaks down what each number and letter represents.

1 Number of sections wide

- (2) Number of sections high
- (3) Number of actuators or manual quadrants
- ④ Who supplies the actuators or manual quadrants F - Factory
 - C Customer Supplied (field mounted)
- 5 Actuator or manual quadrant mounting
 - E External
 - I Internal
 - B Both internal and external
- (6) Actuator or manual quadrant location
 - L Left hand drive
 - R Right hand drive
 - B Both right and left
- (7) Number of jackshafts

On vertical blade and face & bypass dampers, they are given a configuration ID number that helps describe the construction of the damper.

Drive Arrangements - Internal Mount Actuators

Section 1: Drive Arrangements Internal Mount Actuators

Sections Wide x Sections High

Section 1: Drive Arrangements External Mount Actuators

Sections Wide x Sections High

63-9CII -9

63-18CIL-18

42-8CBB-8

52-10CIL-10

53-9CIL-9

53-15CIL-15

Figure 39

41-4CBB-4

32-6CBB-0

Figure 38

4 X 3

5 X 1 51-2CEB-2 51-3CBB-0 51-5CBB-0 51-3CBB-3

51-5CBB-5

5 X 2

5 X 3

- + + + + + 53-15CBB-15

Figure 40

Section 1: Mounting Options Based on Frame Type

Sleeved Damper

<u>REVERSED FLANGE – INSERT MOUNT</u> INTERNAL MOUNTED ACTUATOR REQUIRED FOR INSTALLATION

SINGLE FLANGE - FLANGE MOUNT External Jackshafted Will Not WORK WITH THIS INSTALLATION.

REVERSED FLANGE - FLANGE MOUNT ANY JACKSHAFT AND ACTUATOR POSITION WILL WORK FOR THIS INSTALLATION.

<u>SINGLE FLANGE – INSERT MOUNT</u> JACKSHAFTING AND/OR INTERNAL MOUNTED ACTUATOR REQUIRED FOR INSTALLATION.

DOUBLE FLANGE – FLANGE MOUNT INTERNAL MOUNTED ACTUATOR IS NOT REQUIRED FOR THIS INSTALLATION.

Figure 48

<u>CHANNEL FRAME – INSERT MOUNT</u> SHOWN AS EXTERNAL NON-JACKSHAFT. JACKSHAFTING AND INTERNAL MOUNTED ACTUATOR IS OPTIONAL.

Section 1 Face & Bypass

Horizontal

DRAWING SHOWN WITH BYPASS DAMPER RIGHT OF FACE DAMPER BYPASS DAMPER LEFT OF FACE DAMPER IS OPTIONAL. FACE & BYPASS HEIGHT AND WIDTH DIMENSIONS ARE ACTUAL. (FABRICATED AIRFOIL BLADE) AND FBV-43 (ALUMINUM AIRFOIL BLADE) ALSO AVAILABLE

Vertical

Figure 50

DRAWING SHOWN WITH BYPASS DAMPER ABOVE FACE DAMPER. BYPASS DAMPER BELOW FACE DAMPER IS OPTIONAL. FACE & BYPASS HEIGHT AND WIDTH DIMENSIONS ARE ACTUAL. FBV-33 (FABRICATED AIRFOIL BLADE) AND FBV-43 (ALUMINUM AIRFOIL BLADE) ALSO AVAILABLE. NOTE

Section 2 Free Area & Pressure Drop

Free Area

Greenheck employs a unique approach to damper manufacturing resulting in the most free area and as a result, the best cataloged and third party certified pressure drop in the industry, providing the customer the best performing dampers available.

Greenheck manufactures dampers with a variable blade spacing utilizing 4 blade widths, (4", 5", 6", and 7") to either eliminate closure strips or minimize the closure strip height and therefore; maintaining maximum free area.

Greenheck also utilizes "low profile" frames when the damper height is <= 17" which provides a .335" test configurations because entrance and exit losses offset at the top and bottom of the damper frame vs. are minimized by straight duct runs upstream and the typical 1" that most competitors use providing downstream of the damper. another full 1" of free area in the damper opening when the blades are full open. (See diagram below)

Free area varies based on the size of the damper with the smallest damper sizes having a slightly smaller percentage of free area than larger sizes.

Select the model of damper you would like and if your damper size is in between what is published here, interpolate between sizes to approximate your free area percentage.

		Free Area	Percentag	e	
		Damp	er Model		
Size W x H (inches)	VCD-20	VCD-23	VCD-33	VCD-42 & VCD-43	ICD-44 ICD-4
12 x 12	67%	64%	67%	63%	73%
24 x 24	75%	73%	75%	74%	73%
36 x 36	78%	77%	79%	79%	74%
48 x 48	79%	78%	82%	81%	74%
48 x 74	80%	79%	82%	82%	75%
60 x 74	NA	NA	83%	83%	NA

Building Value in Air

Pressure Drop

Pressure drop testing was conducted in accordance with AMCA Standard 500-D using the three configurations shown. All data has been corrected to represent standard air at a density of 075 lb/ft³ (1.2 kg/m³).

Actual pressure drop found in an HVAC system is a combination of many factors. This pressure drop information, along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in an HVAC system.

Figure 5.3 Illustrates a fully ducted damper. This configuration has the lowest pressure drop of the three

Figure 5.2 Illustrates a ducted damper exhausting air into an open area. This configuration has a lower pressure drop than Figure 5.5 because entrance losses are minimized by a straight duct run upstream of the damper.

Figure 5.5 Illustrates a plenum mounted damper. This configuration has the highest pressure drop because of high entrance and exit losses due to the sudden changes of area in the system.

Section 2 Pressure Drop Data

GREENHECK Building Value in Air.

Section 2 Pressure Drop Data

VCD-20 & 23 • Galvanized 3V blade · Blade and jamb seals

- VCD-23 SEVCD-23
- 316 stainless steel 3V blade
- 316 stainless steel construction
- Blade and jamb seals

VCD-20V & 23V Vertical 3V blade • Blade and jamb seals VCD-23V

Dimension inches		12x12			24x24			36x36			12x48			48x12	
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.01	.01	.03	.01	.01	.03	.01	.01	.02	.01	.01	.03	.01	.01	.03
1000	.05	.03	.13	.03	.02	.12	.02	.02	.10	.04	.03	.12	.03	.03	.12
1500	.11	.08	.30	.06	.04	.26	.05	.03	.22	.08	.07	.27	.07	.06	.28
2000	.19	.13	.53	.10	.07	.47	.09	.06	.40	.15	.12	.47	.12	.10	.49
2500	.29	.20	.82	.16	.11	.75	.14	.09	.62	.22	.18	.75	.18	.16	.77
3000	.41	.29	1.19	.23	.16	1.04	.19	.13	.90	.32	.26	1.07	.26	.22	1.12
3500	.55	.40	1.62	.30	.21	1.41	.27	.19	1.23	.43	.36	1.45	.36	.30	1.53
4000	.72	.51	2.10	.40	.28	1.90	.35	.25	1.62	.56	.46	1.91	.47	.39	2.01

Models VCD-20, 23 & SEVCD-23

Models VCD-20V, 23V

Dimension inches		12x12			24x24			36x36			12x48			48x12	
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/ min)						F	Pressu	re Drop	o in. wę	3					
500	.01	.01	.03	.01	.01	.03	.01	.01	.02	.01	.01	.03	.01	.01	.03
1000	.05	.03	.13	.03	.02	.12	.02	.02	.10	.03	.03	.12	.04	.03	.12
1500	.11	.08	.30	.06	.04	.26	.05	.03	.22	.07	.06	.28	.08	.07	.27
2000	.19	.13	.53	.10	.07	.47	.09	.06	.40	.12	.10	.49	.15	.12	.47
2500	.29	.20	.82	.16	.11	.75	.14	.09	.62	.18	.16	.77	.22	.18	.75
3000	.41	.29	1.19	.23	.16	1.04	.19	.13	.90	.26	.22	1.12	.32	.26	1.07
3500	.55	.40	1.62	.30	.21	1.41	.27	.19	1.23	.36	.30	1.53	.43	.36	1.45
4000	.72	.51	2.10	.40	.28	1.90	.35	.25	1.62	.47	.39	2.01	.56	.46	1.91

VCD-33 & 34 · Galvanized airfoil

- blade • Insulated airfoil VCD-34
- Blade and jamb seals
 - SEVCD-33
- 316 stainless steel airfoil blade • 316 stainless steel
- construction
- Blade and jamb seals

Models VCD-33, 34, & SEVCD-33

Dimension inches		12x12			24x24			36x36			12x48			48x12	
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	.5.2	5.3	5.5
Velocity (ft/min)						I	Pressur	e Drop	in. wg						
500	.01	.01	.03	.01	.01	.03	.01	.01	.02	.01	.01	.03	.01	.01	.03
1000	.03	.02	.12	.03	.01	.11	.02	.01	.09	.03	.02	.11	.02	.02	.11
1500	.07	.05	.27	.06	.03	.26	.04	.02	.21	.07	.04	.24	.04	.04	.24
2000	.13	.08	.48	.10	.05	.45	.07	.04	.38	.11	.08	.43	.08	.07	.44
2500	.19	.12	.74	.15	.09	.71	.11	.06	.58	.17	.12	.67	.12	.11	.68
3000	.26	.17	1.07	.21	.13	1.02	.15	.08	.85	.23	.17	.96	.16	.15	.97
3500	.35	.23	1.46	.28	.17	1.40	.20	.12	1.15	.31	.22	1.31	.21	.20	1.32
4000	.45	.30	1.91	.36	.22	1.89	.26	.15	1.52	.39	.29	1.71	.27	.25	1.73

Model VCD-33V

Dimension inches		12x12			24x24			36x36			12x48			48x12	
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)						F	Pressur	e Drop	in. wg	I					
500	.01	.01	.03	.01	.01	.03	.01	.01	.02	.01	.01	.03	.01	.01	.03
1000	.03	.02	.12	.03	.01	.11	.02	.01	.09	.02	.02	.11	.03	.02	.11
1500	.07	.05	.27	.06	.03	.26	.04	.02	.21	.04	.04	.24	.07	.04	.24
2000	.13	.08	.48	.10	.05	.45	.07	.04	.38	.08	.07	.44	.11	.08	.43
2500	.19	.12	.74	.15	.09	.71	.11	.06	.58	.12	.11	.68	.17	.12	.67
3000	.26	.17	1.07	.21	.13	1.02	.15	.08	.85	.16	.15	.97	.23	.17	.96
3500	.35	.23	1.46	.28	.17	1.40	.20	.12	1.15	.21	.20	1.32	.31	.22	1.31
4000	.45	.30	1.91	.36	.22	1.89	.26	.15	1.52	.27	.25	1.73	.39	.29	1.71

Model VCD-40

Dimension inches		12x12			24x24			36x36			12x48			48x12	
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)						F	Pressu	re Drop	o in. wg)					
500	.08	.05	.10	.01	.01	.03	.01	.01	.03	.01	.01	.03	.06	.03	.08
1000	.31	.20	.40	.05	.02	.12	.04	.02	.11	.05	.03	.12	.23	.13	.29
1500	.69	.45	.88	.11	.05	.29	.09	.04	.26	.11	.07	.27	.52	.29	.63
2000	1.19	.76	1.54	.19	.10	.52	.16	.07	.46	.20	.12	.49	.91	.51	1.12
2500	1.84	1.19	2.41	.30	.15	.80	.24	.10	.72	.30	.19	.76	1.43	.81	1.76
3000	2.67	1.7	3.45	.43	.22	1.14	.35	.15	1.04	.43	.26	1.11	2.05	1.16	2.52
3500	3.59	2.29	4.75	.58	.3	1.6	.48	.20	1.43	.59	.36	1.53	2.82	1.59	3.40
4000	4.64	2.97	6.09	.76	.40	2.14	.62	.27	1.87	.77	.46	2.00	3.69	2.09	4.52

Model VCD-42

Dimension inchesIII																
AMCA figure 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3 5.5 5.2 $5.$	Dimension inches		12x12			24x24			36x36			12x48			48x12	
Velocity (frmin)	AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
500.05.03.07.01.01.04.01.01.02.01.01.03.03.02.051000.18.12.28.05.03.17.04.02.12.01.01.04.18.11.06.191500.43.28.62.12.06.37.09.05.28.14.09.40.25.14.442000.76.491.11.22.11.66.17.08.50.25.16.72.44.25.7825001.19.771.73.34.171.04.26.13.78.39.251.12.69.391.2130001.711.112.50.49.241.50.38.191.13.57.361.621.0.571.7535002.331.513.41.66.332.04.511.261.53.77.492.211.36.772.3840003.041.984.45.87.432.66.67.342.011.01.642.881.781.013.11	Velocity (ft/min)						F	Pressu	re Drop	o in. wo)					
1000 .18 .12 .28 .05 .03 .17 .04 .02 .12 .01 .04 .18 .11 .06 .19 1500 .43 .28 .62 .12 .06 .37 .09 .05 .28 .14 .09 .40 .25 .14 .44 2000 .76 .49 1.11 .22 .11 .66 .17 .08 .50 .25 .16 .72 .44 .25 .78 2500 1.19 .77 1.73 .34 .17 1.04 .26 .13 .78 .39 .25 1.12 .69 .39 .21 3000 1.71 1.11 2.50 .49 .24 1.50 .38 .19 1.13 .57 .36 1.62 1.0 .57 .125 .16 .57 .175 3000 1.71 1.11 2.50 .49 2.44 .51 .26	500	.05	.03	.07	.01	.01	.04	.01	.01	.02	.01	.01	.03	.03	.02	.05
1500 .43 .28 .62 .12 .06 .37 .09 .05 .28 .14 .09 .40 .25 .14 .44 2000 .76 .49 1.11 .22 .11 .66 .17 .08 .50 .25 .16 .72 .44 .25 .78 2500 1.19 .77 1.73 .34 .17 1.04 .26 .13 .78 .39 .25 1.12 .69 .39 .121 3000 1.71 1.11 2.50 .49 .24 1.50 .38 .19 1.13 .57 .36 1.62 1.0 .57 .36 1.62 1.0 .57 .36 1.62 1.0 .57 .36 1.62 1.0 .57 .51 .57 .51 .57 .51 .	1000	.18	.12	.28	.05	.03	.17	.04	.02	.12	.01	.04	.18	.11	.06	.19
2000 .76 .49 1.11 .22 .11 .66 .17 .08 .50 .25 .16 .72 .44 .25 .78 2500 1.19 .77 1.73 .34 .17 1.04 .26 .13 .78 .39 .25 1.12 .69 .39 1.21 3000 1.71 1.11 2.50 .49 .24 1.50 .38 .19 1.13 .57 .36 1.62 1.0 .57 1.75 3000 1.71 1.11 2.50 .49 .24 1.50 .38 .19 1.13 .57 .36 1.62 1.0 .57 1.75 3500 2.33 1.51 3.41 .66 .33 2.04 .51 2.26 1.53 .77 .49 2.21 1.36 .77 2.38 4000 3.04 1.98 4.45 .87 .43 2.66 .67 .34 2.01 <t< th=""><td>1500</td><td>.43</td><td>.28</td><td>.62</td><td>.12</td><td>.06</td><td>.37</td><td>.09</td><td>.05</td><td>.28</td><td>.14</td><td>.09</td><td>.40</td><td>.25</td><td>.14</td><td>.44</td></t<>	1500	.43	.28	.62	.12	.06	.37	.09	.05	.28	.14	.09	.40	.25	.14	.44
2500 1.19 77 1.73 34 17 1.04 26 13 39 25 1.12 69 39 1.21 3000 1.71 1.11 2.50 49 24 1.50 38 19 1.13 57 60 1.02 1.07 1.75 3500 2.33 1.51 3.41 66 33 2.04 51 26 1.53 77 49 2.21 1.36 77 2.38 4000 3.04 1.98 4.45 87 43 2.66 67 49 2.01 1.01 49 28 171 238	2000	.76	.49	1.11	.22	.11	.66	.17	.08	.50	.25	.16	.72	.44	.25	.78
3000 1.71 1.11 2.50 .49 1.50 .38 .19 1.13 .57 .36 1.62 1.0 .57 1.75 3500 2.33 1.51 3.41 .66 .33 2.04 .51 2.66 1.53 .77 4.49 2.21 1.36 7.77 2.33 4000 3.04 1.98 4.45 .87 .43 2.66 .67 .34 2.01 1.01 .64 2.88 1.78 1.01 3.11	2500	1.19	.77	1.73	.34	.17	1.04	.26	.13	.78	.39	.25	1.12	.69	.39	1.21
3500 2.33 1.51 3.41 .66 .33 2.04 .51 .26 1.53 .77 .49 2.21 1.36 .77 2.38 4000 3.04 1.98 4.45 .87 .43 2.66 .67 .34 2.01 1.01 .64 2.88 1.78 1.01 3.11	3000	1.71	1.11	2.50	.49	.24	1.50	.38	.19	1.13	.57	.36	1.62	1.0	.57	1.75
4000 3.04 1.98 4.45 .87 .43 2.66 .67 .34 2.01 1.01 .64 2.88 1.78 1.01 3.11	3500	2.33	1.51	3.41	.66	.33	2.04	.51	.26	1.53	.77	.49	2.21	1.36	.77	2.38
	4000	3.04	1.98	4.45	.87	.43	2.66	.67	.34	2.01	1.01	.64	2.88	1.78	1.01	3.11

VCD-33V

- Vertical galvanized airfoil blade
- · Blade and jamb seals

VCD-40

- Extruded aluminum airfoil blade
- · Blades contained within the frame
- Blade and jamb seals

VCD-42

- Extruded aluminum airfoil blade
- · Galvanized frame
- Blade and jamb seals

GREENHECK Building Value in Air.

Section 2 Pressure Drop Data

Dimension

inches AMCA

figure Velocity

(ft/min)

500

1000

1500

2000

2500

3000

3500

4000

VCD-42V Vertical extruded aluminum airfoil blade · Galvanized frame

· Blade and jamb seals

VCD-43

· Extruded aluminum airfoil blade

• Aluminum frame

Blade and jamb seals

Dimension inches		12x12			24x24			36x36			12x48			48x12	
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.05	.03	.07	.01	.01	.04	.01	.01	.02	.03	.02	.05	.01	.01	.03
1000	.18	.12	.28	.05	.03	.17	.04	.02	.12	.11	.06	.19	.01	.04	.18
1500	.43	.28	.62	.12	.06	.37	.09	.05	.28	.25	.14	.44	.14	.09	.40
2000	.76	.49	1.11	.22	.11	.66	.17	.08	.50	.44	.25	.78	.25	.16	.72
2500	1.19	.77	1.73	.34	.17	1.04	.26	.13	.78	.69	.39	1.21	.39	.25	1.12
3000	1.71	1.11	2.50	.49	.24	1.50	.38	.19	1.13	1.0	.57	1.75	.57	.36	1.62
3500	2.33	1.51	3.41	.66	.33	2.04	.51	.26	1.53	1.36	.77	2.38	.77	.49	2.21
4000	3.04	1.98	4.45	.87	.43	2.66	.67	.34	2.01	1.78	1.01	3.11	1.04	.64	2.88

Model VCD-43

Dimension inches		12x12 24					36x36			12x48			48x12		
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.01	.01	.04	.01	.01	.03	.01	.01	.03	.01	.01	.03	.01	.01	.03
1000	.06	.03	.14	.04	.02	.12	.03	.01	.10	.04	.03	.11	.03	.02	.11
1500	.13	.07	.31	.10	.04	.27	.06	.02	.22	.10	.06	.25	.06	.04	.26
2000	.23	.14	.55	.18	.08	.48	.12	.04	.39	.17	.11	.46	.10	.08	.46
2500	.35	.21	.86	.28	.13	.75	.18	.06	.61	.26	.17	.72	.16	.12	.72
3000	.50	.29	1.23	.40	.19	1.07	.26	.09	.87	.38	.25	1.05	.23	.18	1.02
3500	.68	.39	1.67	.54	.26	1.47	.35	.13	1.19	.52	.34	1.43	.30	.24	1.40
4000	.88	.51	2.19	.70	.34	1.91	.46	.17	1.56	.68	.45	1.87	.39	.31	1.83

· Vertical extruded aluminum airfoil blade Aluminum frame · Blade and jamb seals

Model VCD-43V

Dimension		12x12			24224			26226			10-10			10-10	
inches		12812			24824			30730			12,40		TOATE		
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.01	.01	.04	.01	.01	.03	.01	.01	.03	.01	.01	.03	.01	.01	.03
1000	.06	.03	.14	.04	.02	.12	.03	.01	.10	.03	.02	.11	.04	.03	.11
1500	.13	.07	.31	.10	.04	.27	.06	.02	.22	.06	.04	.26	.10	.06	.25
2000	.23	.14	.55	.18	.08	.48	.12	.04	.39	.10	.08	.46	.17	.11	.46
2500	.35	.21	.86	.28	.13	.75	.18	.06	.61	.16	.12	.72	.26	.17	.72
3000	.50	.29	1.23	.40	.19	1.07	.26	.09	.87	.23	.18	1.02	.38	.25	1.05
3500	.68	.39	1.67	.54	.26	1.47	.35	.13	1.19	.30	.24	1.40	.52	.34	1.43
4000	.88	.51	2.19	.70	.34	1.91	.46	.17	1.56	.39	.31	1.83	.68	.45	1.87

Model VCD-42V

.45 .17 .93 .34 .84 .14 .71 .22 1.32 .26 1.44 .53 1.03 .38 2.08 .77 .32 1.90 1.40 .52 2.83 1.05 .43 2.59 1.83 .67 3.70 1.37 .57 3.39 .84 .32

Models AMD-23/AMD-23-TD

Dimension inches		12 x 12			24 x 24		;	36 x 36	i		12 x 48	;		48 x 12	!
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.05	.04	.07	.03	.03	.05	.03	.03	.05	.04	.03	.06	.03	.03	.05
1000	.15	.12	.25	.10	.09	.20	.09	.07	.17	.11	.10	.20	.11	.09	.20
1500	.31	.24	.54	.21	.17	.41	.18	.14	.36	.23	.20	.43	.22	.19	.42
2000	.52	.40	.92	.36	.28	.71	.31	.23	.62	.39	.34	.74	.38	.33	.72
2500	.80	.60	1.41	.54	.43	1.10	.46	.35	.96	.58	.51	1.13	.57	.50	1.11
3000	1.12	.84	2.02	.76	.60	1.54	.64	.48	1.36	.81	.72	1.59	.79	.71	1.56
3500	1.51	1.12	2.73	1.01	.80	2.09	.86	.64	1.84	1.10	.97	2.14	1.06	.96	2.12
4000	1.92	1.44	3.53	1.32	1.03	2.76	1.12	.82	2.40	1.43	1.26	2.78	1.38	1.24	2.77

Models AMD-33/AMD-33-TD

Dimension inches		12 x 12	2	:	24 x 24	Ļ	;	36 x 36	5		12 x 48		48 x 12		2
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.04	.04	.07	.03	.03	.05	.03	.03	.05	.03	.03	.06	.04	.03	.05
1000	.13	.12	.24	.09	.09	.19	.08	.07	.16	.10	.10	.19	.10	.09	.19
1500	.27	.24	.50	.19	.17	.38	.16	.14	.34	.21	.20	.41	.21	.19	.41
2000	.44	.40	.86	.31	.28	.65	.26	.23	.57	.36	.34	.71	.36	.33	.71
2500	.66	.60	1.33	.47	.43	1.00	.39	.35	.88	.54	.51	1.09	.55	.50	1.10
3000	.93	.84	1.89	.65	.60	1.43	.53	.48	1.24	.76	.72	1.54	.77	.71	1.55
3500	1.25	1.12	2.57	.88	.80	1.9	.71	.64	1.67	1.02	.97	2.08	1.03	.96	2.10
4000	1.59	1.44	3.30	1.14	1.03	2.52	.91	.82	2.19	1.33	1.26	2.70	1.34	1.24	2.75

Models ICD-44 & ICD-45

	12x12			24x24		36x36		12x48			48x12			
5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
					F	Pressu	re Drop	o in. wę	3					
.03	.01	.05	.02	.01	.05	.01	.01	.03	.01	.01	.04	.03	.01	.05
.11	.04	.23	.08	.03	.21	.05	.02	.14	.06	.02	.18	.14	.06	.22
.25	.09	.52	.19	.08	.47	.11	.04	.33	.14	.06	.42	.32	.14	.51
.45	.17	.93	.34	.14	.84	.21	.08	.58	.25	.10	.74	.57	.25	.90
.71	.26	1.44	.53	.22	1.32	.33	.12	.91	.40	.17	1.16	.89	.40	1.41
1.03	.38	2.08	.77	.32	1.90	.47	.18	1.31	.57	.24	1.68	1.29	.58	2.04
1.40	.52	2.83	1.05	.43	2.59	.64	.24	1.79	.78	.33	2.28	1.76	.79	2.78
1.83	.67	3.70	1.37	.57	3.39	.84	.32	2.34	1.02	.43	2.98	2.30	1.03	3.70

ICD-44/45 Thermally broken

- extruded aluminum airfoil blade
- Thermally broken aluminum frame -ICD-45
- Blade and jamb seals

AMD-23/AMD-23-TD

- Air measuring station with a 3V blade control damper - AMD-23
- Thermal dispersion air measuring station with a 3V blade control damper - AMD-23-TD

AMD-33/AMD-33-TD

- Air measuring station with a airfoil blade control damper -AMD-33
- Thermal dispersion air measuring station with a airfoil blade control damper - AMD-33-TD

Section 2 Pressure Drop Data

- AMD-42/AMD-42-TD Air measuring station with a airfoil blade control damper -AMD-42
- Thermal dispersion air measuring station with a airfoil blade control damper - AMD-42-TD

AMD-42V/AMD-42V-TD

- Air measuring station with a airfoil vertical blade control damper -AMD-42V
- Thermal dispersion air measuring station with a airfoil vertical blade control damper AMD-42V-TD

AMD-42/AMD-42-TD

Dimension inches		12 x 12	2	:	24 x 24	ļ	;	36 x 36	5	-	12 x 48	5		48 x 12	2
AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
Velocity (ft/min)		Pressure Drop in. wg													
500	.05	.03	.07	.01	.01	.04	.01	.01	.02	.01	.01	.03	.03	.02	.05
1000	.18	.12	.28	.05	.03	.17	.04	.02	.12	.01	.04	.18	.11	.06	.19
1500	.43	.28	.62	.12	.06	.37	.09	.05	.28	.14	.09	.40	.25	.14	.44
2000	.76	.49	1.11	.22	.11	.66	.17	.08	.50	.25	.16	.72	.44	.25	.78
2500	1.19	.77	1.73	.34	.17	1.04	.26	.13	.78	.39	.25	1.12	.69	.39	1.21
3000	1.71	1.11	2.50	.49	.24	1.50	.38	.19	1.13	.57	.36	1.62	1.00	.57	1.75
3500	2.33	1.51	3.41	.66	.33	2.04	.51	.26	1.53	.77	.49	2.21	1.36	.77	2.38
4000	3.04	1.98	4.45	.87	.43	2.66	.67	.34	2.01	1.01	.64	2.88	1.78	1.01	3.11
									L						

AMD-42V/AMD-42V-TD

	Dimension inches		12 x 12	2	2	24 x 24	Ļ	;	36 x 36	6		12 x 48	3		48 x 12	2
	AMCA figure	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5	5.2	5.3	5.5
1	Velocity (ft/min)						F	Pressu	re Drop	o in. w)					
	500	.05	.03	.07	.01	.01	.04	.01	.01	.02	.03	.02	.05	.01	.01	.03
	1000	.18	.12	.28	.05	.03	.17	.04	.02	.12	.11	.06	.19	.01	.04	.18
	1500	.43	.28	.62	.12	.06	.37	.09	.05	.28	.25	.14	.44	.14	.09	.40
	2000	.76	.49	1.11	.22	.11	.66	.17	.08	.50	.44	.25	.78	.25	.16	.72
	2500	1.19	.77	1.73	.34	.17	1.04	.26	.13	.78	.69	.39	1.21	.39	.25	1.12
	3000	1.71	1.11	2.5	.49	.24	1.5	.38	.19	1.13	1.00	.57	1.75	.57	.36	1.62
	3500	2.33	1.51	3.41	.66	.33	2.04	.51	.26	1.53	1.36	.77	2.38	.77	.49	2.21
	4000	3.04	1.98	4.45	.87	.43	2.66	.67	.34	2.01	1.78	1.01	3.11	1.04	.64	2.88

Leakage

Most models of dampers have blade seals which seal with blade to blade contact as well as "sweep" blade to top (head) and blade to bottom (sill) of the damper. Most Greenheck damper models also have jamb seals which seal the end of the blade to the inside frame (jamb) of the damper. (See damper cutaway drawing, figures 19-24). The combination of blade seals, sweep seals, and jamb seals give applicable Greenheck damper models the Class 1A and Class 1 leakage rating on dampers built to the maximum section width.

Maximum Leakage cfm/sq. ft. (cmh/sq.m)										
	Pres	sure								
Model	@ 1 in. wg (.25 kPa)	@ 4 in. wg (1 kPa)								
VCD-23V, 43V	Class 1A	Class 1								
VCD-40	Class 1A	Class 1								
VCD-33, 42, 42V	Class 1A	Class 1								
VCDR-53	Class 1	Class 1								
VCDRM-53	Class 1	Class 1								

Max cfm/	imum Leakage sq. ft. (cmh/sq.m)	
	Pre	ssure
Model	@ 1 in. wg (.25 kPa)	@ 4 in.wg (1 kPa)
AMD-42, AMD-42V, AMD-23-TD, AMD-33- TD, AMD-42-TD, AMD- 42V-TD	Class 1A	Class 1

Section2 Leakage

Air leakage is based on operation between 32° and 120°F (0 and 49°C). Tested for leakage in accordance with ANSI/AMCA Standard 500-D, Figure 5.5. Tested for air performance in accordance with ANSI/AMCA Standard 500-D, Figures 5.2, 5.3 and 5.5.

Torque

$ \begin{array}{c c c c c c c } \hline AMD-23 & \hline Leakage Class* & \hline \\ Maximum \\ Damper Width & 1 in. wg & 4 in. wg \\ 0.25 kPa) & (1 kPa) & \hline \\ \hline & 1A & 1 & \hline \\ \hline$									_	
$\begin{tabular}{ c c c c c c c } \hline Maximum & 1 & in. wg & 4 & in. wg & 0.25 & kPa) & (1 & kPa) & & & & & & & & & & & & & & & & & & &$		A	AMD-23			Leakag	e Class*			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N Dar	/laximum mper Wid	lth	1 in (0.25	i. wg 5 kPa)	4 in (1 l	. wg ‹Pa)		
VCD-23, SEVCD-23 Leakage Class* Maximum Damper Width 1 in. wg (0.25 kPa) 4 in. wg (1 kPa) 5 in. wg (1.2 kPa) 48 in. (1219mm) 1A 1 1 VCD-43 Leakage Class* Leakage Class* 1 Maximum bamper Width 1 in. wg (0.25 kPa) 4 in. wg (1 kPa) 8 in. wg (2 kPa) 10 in (2 kPa)		48 ir	1. (1219n	nm)	1	A		1		
Maximum Damper Width 1 in. wg (0.25 kPa) 4 in. wg (1 kPa) 5 in. wg (1.2 kPa) 48 in. (1219mm) 1A 1 1 VCD-43 Eakage Class* 1 in. wg (0.25 kPa) 4 in. wg (1 kPa) 8 in. wg (2 kPa) 10 in (2 kPa) Maximum amper Width 1 in. wg (0.25 kPa) 4 in. wg (1 kPa) 8 in. wg (2 kPa) 10 in (2 kPa)	VCD-	23, SEVCI	D-23			Leakage	e Class*			
48 in. (1219mm) 1A 1 1 VCD-43 Leakage Class* Maximum bamper Width 1 in. wg (0.25 kPa) 4 in. wg (1 kPa) 8 in. wg (2 kPa) 10 in (2 kPa)	Da	Maximum amper Widt	h	1 in. (0.25	wg kPa)	4 in. (1 k	. wg :Pa)	5 in. (1.2	. wg kPa)	
VCD-43Leakage Class*Maximum Damper Width1 in. wg (0.25 kPa)4 in. wg (1 kPa)8 in. wg (2 kPa)10 in (2 kPa)	48	in. (1219mı	1219mm)		A	1		1	1	
VCD-43Leakage Class*Maximum1 in. wg4 in. wg8 in. wg10 inDamper Width(0.25 kPa)(1 kPa)(2 kPa)(2.5						. .				
Maximum1 in. wg4 in. wg8 in. wg10 i.Damper Width(0.25 kPa)(1 kPa)(2 kPa)(2.5	VCD-43	/CD-43				Leakage	e Class*			
	Maximum Damper Wie	Maximum 1 in. amper Width (0.25		. Wg kPa)	4 in	. Wg (Pa)	8 in (2 k	wg (Pa)	10 in (2 5	I. W kPa
() in (15)/(mm) 1/ 1	0 in (1524r	mm)	1	Λ.	(ir -	1	(2 1	1 U)	(2.5	1

VCD-43		Leakage	e Class*	
Maximum Damper Width	1 in. wg (0.25 kPa)	4 in. wg (1 kPa)	8 in. wg (2 kPa)	10 in. wg (2.5 kPa)
60 in. (1524mm)	1A	1	1	1

Data is based on a torque of 7.0 in-lb/ft² (0.79 N·m) applied to close and seat the damper during the test.

VCD-33, 34 SEVCD-33		Leakag	e Class*	
Maximum Damper Width	1 in. wg (0.25 kPa)	4 in. wg (1 kPa)	8 in. wg (2 kPa)	10 in. wg (2.5 kPa)
60 in. (1524mm)	1A	1	1	1

AMD-33	Leakage Class*							
Maximum Damper Width	1 in. wg (0.25 kPa)	4 in. wg (1 kPa)	8 in. wg (2 kPa)					
60 in. (1524mm)	1A	1	1					

ICD-44, 45	Leakage Class*								
Maximum Damper	1 in. wg	4 in. wg	8 in. wg	10 in. wg					
Width	(0.25 kPa)	(1 kPa)	(2 kPa)	(2.5 kPa)					
48 in. (1219mm)	1A	1	1	1					

*Leakage Class Definitions

The maximum allowable leakage is defined by AMCA as the following: • Leakage Class 1A - 3 cfm/ft² @ 1 in. wg (Class 1A is only defined at 1 in. wg).

- Leakage Class 1 4 cfm/ft² @ 1 in. wg - 8 cfm/ft²@ 4 in. wg

 - 11 cfm/ft² @ 8 in. wg -12.6 cfm/ft² @ 10 in. wg

Data is based on a torque of 5.0 in-lb/ft² (0.56 N·m) applied to close and seat the damper during the test.

Data is based on a torque of 9.0 in-lb/ft² (0. N·m) applied to close and seat the damper during the test.

When sizing the damper, with the exception of the "Quick Connect" frame style and damper flanges, the frame of the damper will be included in the selected dimensions. Quick connect frame uses inside dimension. (See Frame Design Drawing figures 1-12).

Frame Types

Greenheck has several damper frame types available to provide the user the ultimate in mounting flexibility and labor savings during installation. Select from one of the following frame types that best fits your needs (see figures 1-12) for available frame types and mounting styles.

- A. Channel Frame Designed to be insert mounted inside of a duct. (required when sleeve option is chosen)
- B. Single Flange Frame Either insert mounted for a clean framed look as well as space savings, or flange mounted against the wall when jackshaft orientation is not a concern, speed of mounting and exposed linkage is desired.
- C. Reverse Flange Frame Either insert mounted for a clean framed look (internal actuator mount) as well as space savings, or flange mounted against the wall when available space is not a concern, speed of mounting and exposed linkage is desired.
- D. Double Flange Frame Can be selected when flange mounting is required and the user is uncertain of the jackshaft (if required) orientation and left or right hand mount is required. The most forgiving flange frame type when a flange is required, but the user may not necessarily know the actuator location required.
- E. Quick Connect Frame Used when it is desired to flange mount a frame against a surface and connect a piece of ductwork utilizing TDC/TDF/ Ductmate or Dyn-o-mate) on the mating end of the ductwork. The frame is the mirror image of these duct connections and allows the damper frame to be "cleated" into place. This frame also provides maximum free area (best pressure drop) as the frame is designed to be completely out of the airstream.

Blade Types

Depending on the airflow velocity and static pressure of the application, Greenheck has numerous damper blade types available to meet the system requirements. Greenheck utilizes a new and unique approach to building a damper with a blade seal on the top blade that sweeps the top of the damper frame and the bottom of the damper frame on the bottom blade. This unique approach allows Greenheck VCD dampers to obtain third party certified ratings for each leakage class at full rated pressures on maximum section widths without shortening blade lengths like other manufacturers do. Greenheck will supply a better performing damper at a competitive price because the damper can be supplied in larger section sizes even at higher pressures. (See products selection chart figures 13-18).

- A. 3V Blade They are used when the airstream velocities up to 3,000 fpm and 5 in. wg static pressure, but still allows a Class 1A and Class 1 leakage rating to be attained on the damper assembly for the VCD-23 model. Other 3V blade models are available without third party leakage and pressure drop certification. (See Blade Type drawing figure 14).
- B Fabricated Airfoil Blade This blade type is utilized when the mid-range performance requirement of airstream velocities up to 4,000 fpm and 10 in. wg pressure capabilities are necessary to meet system design criteria. This blade type has the best pressure drop performance and a Class 1A and Class 1 third party certified leakage rating. (See Blade Type drawing figure 13).
- C. Extruded Aluminum Airfoil Blade This blade type is utilized when high performance requirements of airstream velocities up to 6,000 fpm and 10 in. wg pressure capabilities are necessary to meet system design criteria. This blade type has excellent pressure drop performance, the highest velocity and pressure rating available as well as the Class 1A and Class 1 leakage rating up to the maximum single section size. This premium damper blade is utilized in the Greenheck VCD-42, and 43 models (See Blade Type drawing figure 15).
- Insulated and thermally broken extruded aluminum blade - This blade type is utilized in the Greenheck ICD-44 and 45 models. This blade type has excellent pressure drop performance, class 1A and Class 1 leakage ratings. The ICD-44 and 45 models have the highest Thermal Energy Efficiency Ratings in the industry. (See the damper submittal at www. greenheck.com) (See Blade Type drawing figure 16).

Greenheck damper blades are always symmetrical about the blade axle pivot points, so the dampers

have an equal airflow to torque ratio regardless of airflow direction, and no specified top, bottom, front or back. Because of those attributes Greenheck dampers provide the ultimate in mounting flexibility. The

only exception to the rule, is that of a "Vertical" blade model and is the only type of damper that allows the damper to be mounted so the blades run vertically when the damper is mounted in or against a wall. (See Vertical Blade Model Construction Drawing figure 24).

Section 2 Blade Types

Parallel Versus Opposed Blade Operation

Greenheck control dampers are offered with either parallel or opposed blades. Each style has distinguishing characteristics in regard to the type of operation required.

- *Parallel blade operation* This configuration requires the damper blades to rotate in the same direction, parallel to one another. Parallel blade orientation is typically used when the damper is utilized with the blades in either the full open or full close.
- Opposed blade operation -Adjacent damper blades rotate opposite one another under opposed blade configuration. Opposed blade configuration is

typically used on dampers that modulate airflow.

No Top or Bottom

Greenheck's standard control dampers are designed for installation in any position with the blades horizontal. The damper can be turned over so the actuator is on the left or right side. Optional vertical blade models can be turned with the actuator at the top or bottom.

Standard

Vertical Blade

-

Seals

Greenheck dampers models with seals allow the user the option to select "Silicone" blade and sweep seals for applications where the damper will be exposed to temperatures between 200-250°F, or there is a desire to attach the seal to the blade with the pressure sensitive adhesive, both of which are attributes of the silicone seal option.

Factory Sleeve/Flange Option

Greenheck control dampers are available with factory sleeves installed in lengths up to 48 in. (1219 mm). Sleeves are constructed out of a material thickness selection of 20, 16, 14, & 10 gage. (.091 thru 3.25 mm) galvanized or stainless steel to match the selected damper frame and blade material. When dampers are installed in factory supplied sleeves, the "damper location" specifies the location of the damper from the end of the sleeve to the closest edge of the damper frame.

The factory supplied sleeves can also be selected with factory mounted flanges added to one or both ends of the sleeve. The optional flanges can be selected in dimensions of .75", 1", 1.5", and 2" and will be attached flush to the end(s) of the sleeve as selected.

Extension pins & Standoff Brackets

Extension pins and standoff brackets are utilized to drive a single section damper where a jackshaft is not necessary and cost prohibitive. Standoff brackets can be utilized to both ensure that the extension pin remains in place, as well as provide a surface to mount the actuator brackets for ease of actuator or manual hand quadrant installation.

304 or 316 Stainless Steel

Greenheck has stainless steel dampers available in both 304 and 316 stainless alloys depending on what level of corrosion resistance your application requires.

The 304 stainless steel material can be selected as an option to a standard commercial damper model where higher levels of corrosion resistance than can be obtained by using galvanized steel is required, but less than severe environments that require the use of 316 stainless steel.

The 316 stainless steel dampers are available to be utilized in "Severe Environment" applications where higher levels of corrosion resistance than can be obtained with either galvanized or 304 stainless steel, are required. Building specifications will normally tell you if this level of corrosion protection is required.

Open Close Indicator - OCI

The OCI contains two single pole, single throw switches used to indicate damper blade position.

The switches provide positive open and closed signals when used in conjunction with remote indicator lights. Switches are physically linked to a damper blade and therefore give a true representation of the damper's position.

Paint Finishes

A wide variety of paint finishes are available including:

- Anodize
- Industrial Epoxy
- Baked Enamel
- Kynar[®]/Hylar[®]
- Epoxy
- Hi-Pro Polyester

See color charts on www.greenheck.com for standard color offering.

Section 3 **Jackshafting Kits**

1/2 in. Jackshafting Kits for Dampers - 36 in. long

1/2 in. Jackshafting Kits for Dampers - 48 in. long

	COMPLETE PARTS LIST							
ITEM	DESCRIPTION	PART NO.	DWG NO.	QTY				
1	.50 DIA. JACKSHAFT 36" LONG 734097 322145							
	BELOW PARTS ARE INCLUDED IN HARDWARE KIT PN.860057 DWG. 322146							
2	1/2" DIA. JACKSHAFT BRACKET ASSY	814968	D1140	2				
3	THREAD STUD,1/4-20X1/2	415609		4				
4	1/4-20 SPNLK NUT	415455		4				
5	BLADE BRACKET	653629	D0276	1				
6	MS 1/4- 20 x1/2" (HWH) TCS ZP	415264	-	2				
7	.50 DIA HOSE CLAMPS	451786		2				
8	.50 DIA CRANKARM ASSEMBLY	812097	D0721	1				
9	5/16" DIA LINK ROD 18" LONG	656472	D0722	1				
10	BALL SWIVEL	451554	-	2				
11	SHIPPING BOX	445039		1				

	COMPLETE PARTS LIST										
ITEM	DESCRIPTION	PART NO.	DWG NO.	QTY							
1	.50 DIA. JACKSHAFT 48" LONG	734096	322144	1							
	BELOW PARTS ARE INCLUDED IN HARDWARE KIT PN.860057 DWG. 322146										
2	1/2" DIA. JACKSHAFT BRACKET ASSY	814968	D1140	2							
3	THREAD STUD,1/4-20X1/2	415609		4							
4	1/4-20 SPNLK NUT	415455		4							
5	BLADE BRACKET	653629	D0276	1							
6	MS 1/4- 20 x1/2" (HWH) TCS ZP	415264	-	2							
7	.50 DIA HOSE CLAMPS	451786		2							
8	.50 DIA CRANKARM ASSEMBLY	812097	D0721	1							
9	5/16" DIA LINK ROD 18" LONG	656472	D0722	1							
10	BALL SWIVEL	451554	-	2							
11	SHIPPING BOX	445039		1							

Jackshafting Kits

1 in. Jackshafting Kits for Dampers - 72 in. long

1 in. Jackshafting Kits for Dampers - 60 in. long

5/16" DIA LINK ROD 18" LONG

BALL SWIVE

PING BO

656472

451554 445039 D0722

1 in. Jackshafting Kits for Dampers - 108 in. long

	COMPLETE PARTS LIST										
ITEM	DESCRIPTION	PART NO.	DWG NO.	QTY							
1	1" DIA. JACKSHAFT 72" LONG	733766	322088	1							
	BELOW PARTS ARE INCLUDED IN HARDWARE KIT	PN.850057	DWG. 32209	5							
2	1" DIA. JACKSHAFT BRACKET ASSY W NYLINER	834292	D142927	2							
3	THREAD STUD,1/4-20X1/2	415609		4							
4	1/4-20 SPNLK NUT	415455		8							
5	BLADE BRACKET	653629	D0276	2							
6	MS 1/4- 20 x1/2" (HWH) TCS ZP	415264	-	4							
7	1" DIA HOSE CLAMPS	451809		2							
8	1" CRANKARM ASSEMBLY	816252	D0721	2							
9	5/16" DIA LINK ROD 18" LONG	656472	D0722	2							
10	BALL SWIVEL	451554	-	4							
11	SHIPPING BOX	445039		1							

COMPLETE PARTS LIST										
ITEM	DESCRIPTION	PART NO.	DWG NO.	QTY						
1	1" DIA. JACKSHAFT 108" LONG	733767	322090	1						
	BELOW PARTS ARE INCLUDED IN HARDWARE KIT PN.860062 DWG. 322095									
2	1" DIA. JACKSHAFT BRACKET ASSY W NYLINER	834292	D142927	3						
3	THREAD STUD,1/4-20X1/2	415609		6						
4	1/4-20 SPNLK NUT	415455		12						
5	BLADE BRACKET	653629	D0276	3						
6	MS 1/4- 20 x1/2" (HWH) TCS ZP	415264	-	6						
7	1" DIA HOSE CLAMPS	451809		2						
8	1" CRANKARM ASSEMBLY	816252	D0721	3						
9	5/16" DIA LINK ROD 18" LONG	656472	D0722	3						
10	BALL SWIVEL	451554	-	6						

Section 4 Actuator Selection

Step 1

Determine if the actuators need to be electric, pneumatic, or manual.

<u>Step 2</u>

If the actuators are to be electric, determine what voltage (120 Vac, 24 Vac, etc.) and what Hertz (50 or 60 cycles/sec.) are required . If the voltage requirement is not the same as the actuator, (i.e. the motor is 120 Vac and the requirement is 460 Vac) a transformer is needed. Pneumatic actuators require 20 psi supply.

Step 3

If the actuator is manual, then refer to the 'Manual Hand Quadrant' section.

Step 4

If the actuator is either electric or pneumatic, then the operation type must be determined:

- 1) Two position spring return See tables on following pages
- 2) Two position (power open power closed) See tables on following pages
- 3) Floating (power open power closed) See tables on following pages
- 4) Modulating spring return See tables on following pages
- 5) Modulating (power open power closed) See tables on following pages
- Two position spring return: This type of actuator will power to either the open or the closed position. When the power supply is removed (or turned off), the actuator will fail to the initial position by means of a spring.
- 2) **Two position (power open power closed):** This type of actuator will power in either direction. When the power supply is removed (or turned off), the actuator will fail in place.
- 3) **Floating (power open power closed):** This type of actuator is powered in both directions and will stop in any position. No spring is used.
- 4) Modulating spring return: This type of actuator will power in either direction and will spring return upon power loss much like the two position actuators. The difference is that a control signal (4-20 mAdc, 0-10 Vdc, etc.) is used. The control signal acts much like a valve; as the signal is increased or decreased, the actuator will open or close or vice versa.
- 5) **Modulating (power open power closed):** This type of actuator is the same as #3, except for its response to a control signal input (4-20 mAdc, 0-10 Vdc, etc.).

Step 5

If the actuator is pneumatic and needs to be modulating, a pilot positioner is required. A pilot positioner uses the control signal (usually 3-15 psi) to vary the amount of supply pressure entering the actuator. Please note that the use of a pilot positioner will decrease the square foot rating of the actuator by 20%. Consult factory.

Step 6

Once the actuator operation is determined, then the fail position must be known. There are two options:

1) Power open – fail close

2) Power close - fail open

* If a non-spring return actuator is required, then the fail positions above would become "fail in place."

Step 7

Auxiliary Switch – Separate switch in the actuator which can be wired to either make a circuit (Normally Open) or break a circuit (Normally Closed) when actuated.

Step 8

Determine if the actuator is to be:

1) Internally mounted: The actuator is mounted in the airstream.

- 2) Externally mounted: The actuator is mounted out of the airstream at factory in a sleeve or external sideplate
- 3) External kit: The actuator is installed out of the airstream in the field.

Step 9

At this point there may be more than one actuator from which to choose. So the final step is to determine which actuator will best operate the damper sizes needed. An actuator selection table is found on the following pages. If you need assistance, contact your local representative or Greenheck.

Actuator Selection for Control Dampers										
						Electric				
				VCD Ac	ctuator Lim	itations*				
		Frequency	Torquo	Maximun Sq	n Damper /Ft	VCDR		Actuator	External Mount	
Model	Voltage	(Hz)	(in. lbs.)	With Seals	Without Seals	Maximum Diameter (inches)	Description	Part #	Actuator Kit # (includes actuator)	
					Two-ne	sition Spr	ing Beturn*		actuatory	
				•		Relimo				
			180	35	50	24		384376	863856	
AFRUP-S	24 - 240	50/60	180	35	50	24	includes auxiliary SPDT end switches	384377	863857	
TFB24 (TEB24-3)	24	50/60	22	4.5	6	24		384237	848933	
TFB24-S (TFB24-3-S)	24	50/60	22	4.5	6	24	includes auxiliary SPDT end switches	384238	848934	
FSLF24	24	50/60	30	7	12	24		383241	832778	
FSLF24-S	24	50/60	30	7	12	24	includes auxiliary SPDT end switches	383394	832779	
FSNF24	24	50/60	70	12	20	24		382889	834449	
FSNF24-S	24	50/60	70	12	20	24	includes auxiliary SPDT end switches	382966	863862	
LF24	24	50/60	35	7	12	24		381724	871844	
LF24-S	24	50/60	35	7	12	24	includes auxiliary SPDT end switches	381725	871845	
EFB24	24	50/60	270	35	50	24		475462	913978	
EFB24-S	24	50/60	270	35	50	24	includes auxiliary SPDT end switches	475463	913980	
EFB24-S N4	24	50/60	270	35	50	24	includes auxiliary SPDT end switches	475469	913981	
TFB120	100 - 240	50/60	22	4.5	6	24		384241	848931	
TFB120-S	100 - 240	50/60	22	4.5	6	24	includes auxiliary SPDT end switches	384236	848932	
EFB120	100 - 240	50/60	270	35	50	24		475466	913975	
EFB120-S	100 - 240	50/60	270	35	50	24	includes auxiliary SPDT end switches	475467	913976	
EFB120-S N4	100 - 240	50/60	270	35	50	24	includes auxiliary SPDT end switches	475472	913977	
EFCX120-S N4	100 - 240	50/60	270	35	50	24	includes auxiliary SPDT end switches	386345	913986	
FSLF120	120	50/60	30	7	12	24		383242	832776	
FSLF120-S	120	50/60	30	7	12	24	includes auxiliary SPDT end switches	383392	832777	
FSNF120	120	50/60	70	12	20	24		382888	834450	
FSNF120-S	120	50/60	70	12	20	24	includes auxiliary SPDT end switches	382965	834453	
LF120	120	50/60	35	7	12	24		381722	876283	
LF120-S	120	50/60	35	7	12	24	includes auxiliary SPDT end switches	381723	876284	
FSLF230	230	50/60	30	7	12	24		383399	833249	
FSLF230-S	230	50/60	30	7	12	24	includes auxiliary SPDT end switches	383400	833250	
FSNF230	230	50/60	70	12	20	24		382963	834451	
FSNF230-S	230	50/60	70	12	20	24	includes auxiliary SPDT end switches	382964	834454	
	1		r	Schne	ider Elect	ric (formerl	y Invensys & TAC)		r	
MA6-318-500	24	60	60	25	50		Explosion proof enclosure with end switch	381661	868982	
MA6-418-500	120	60	60	25	50		Explosion proof enclosure with end switch	380806	868983	
MA6-419-500	240	60	60	25	50		Explosion proof enclosure with end switch	381595	868984	
Consult factory	for actuator a	applications o	n UL rated f	ire and smo	oke dampe	rs.			·	
1 Unless other	vise snecifie	d spring retu	n actuators	will he link	ed "nower	onen - fail c	osed" which is also called "normally closed"	or "NC" If	"nower closed - fail	

1 Unless otherwise specified, spring return actuators will be linked "power open - fail closed", which is also called "normally closed" or "NC". If "power closed - fail open" operation is desired, be sure to indicate this requirement. "Power closed - fail open" is also referred to as "normally open" or "NO".

Section 4 Actuator Selection

878329

878330

385338

385709

Section 4 Actuator Selection

				Ac	tuator S	election for Contr	ol Dampers		
						Electric			
				VC	D Actuato	· Limitations*			
		Frequency	Torque	Maximun Sq	n Damper /Ft	VCDR		Actuator	External Mount
Model	Voltage	(Hz)	(in. lbs.)	With Seals	Without Seals	Maximum Diameter (inches)	Description	Part #	Actuator Kit # (includes actuator)
					Two	-position Spring	Return*		
						Honeywell			
MS8104F1010/B	24	50/60	20	7	12	24		385162	870666
MS8104F1210/B	24	50/60	20	7	12	24	includes auxiliary SPDT end switches	385163	870667
MS8105A1130	24	50/60	44	9	12	24	includes auxiliary SPDT end switches	384189	849409
MS8109F1010/B	24	60	88	10	20	24		385168	870672
MS8109F1210/B	24	60	88	10	20	24	includes auxiliary SPDT end switches	385169	870673
MS8110A1206	24	50/60	88	17.5	20	24	includes auxiliary SPDT end switches	383818	849415
MS8120F1002	24	50/60	175	31	50	24		382824	880349
MS8120F1200	24	50/60	175	31	50	24	includes auxiliary SPDT end switches	383255	831682
MS4104F1010/B	120	60	20	7	12	24		385158	870662
MS4104F1210/B	120	60	20	7	12	24	includes auxiliary SPDT end switches	385159	870663
MS4109F1010/B	120	60	88	10	20	24		385164	870668
MS4109F1210/B	120	60	88	10	20	24	includes auxiliary SPDT end switches	385165	870669
MS4120F1006	120	60	175	31	50	24		382823	880347
MS4120F1204	120	60	175	31	50	24	includes auxiliary SPDT end switches	383024	831681
MS4604F1010/B	230	50/60	20	7	12	24		385160	870664
MS4604F1210/B	230	50/60	20	7	12	24	includes auxiliary SPDT end switches	385161	870665
MS4609F1010/B	230	60	88	10	20	24		385166	870670
MS4609F1210/B	230	60	88	10	20	24	includes auxiliary SPDT end switches	385167	870671
MS4620F1005	230	50/60	175	31	50	24		382825	880348
MS4620F1203	230	50/60	175	31	50	24	includes auxiliary SPDT end switches	383254	831683
						Pneumatic	- -		
					Two	o-position Spring Ret	urn ¹		
331-4551		-	10	10	20	24		454130	868974
331-2976		-	30	25	50	24		454129	914987
331-2856		-	50	35	60	24		451919	914989
					Мо	odulating Spring Retu	rn ¹		
332-4551		-	10	8	20	24		457043	868975
332-2976		-	30	20	50	24		457384	914988
332-2856		-	50	35	60	24		457407	914990
Consult factory for	r actuator	applications of	on UL rated	l fire and s	noke dam	pers.			
1 Unless otherwis open" operation is	e specifie desired, l	d, spring retu be sure to ind	rn actuato icate this r	rs will be li equiremen	nked "pov t. "Power	ver open - fail closed closed - fail open" is	", which is also called "normally closed" a also referred to as "normally open" or "	or "NC". If NO".	"power closed - fail
		Model					Description		Part #
						NEMA Housinas			
Greenheck NEMA	4X housing	g kit (w/ɑalv.	mountina	component	s) Used	on most brands of di	irect mount actuators		878264
Greenheck NEMA	4X housing	g kit (w/SS m	ounting co	mponents)	Used	on most brands of di	irect mount actuators		878265

Used on most brands of direct mount actuators

Used on most brands of direct mount actuators

Primary 120 VAC, secondary 24 VAC, Compatible on any 24 VAC actuator

Primary 480/277/240/208, secondary 120 VAC, Compatible on any 120 VAC actuator

Transformers

Actuator Selection for Control Dampers										
						Electric				
				VCI	O Actuator	Limitations				
		_	T	Maximun Sq	n Damper /Ft	VCDR		A	External Mount	
Model	Voltage	(Hz)	iorque (in. lbs.)	With Seals	Without Seals	Maximum Diameter (inches)	Description	Part #	Actuator Kit # (includes actuator)	
			o.		Modu	lating Spring Retu	irn ¹			
						Belimo				
AFB24-MFT	24	50/60	180	35	50	24		384374	863855	
AFB24-MFT-S	24	50/60	180	35	50	24	includes auxiliary SPDT end switches	384375	863859	
AFB24-SR	24	50/60	180	35	50	24		385250	872685	
AFB24-SR-S	24	50/60	180	35	50	24	includes auxiliary SPDT end switches	385251	872686	
LF24-SR	24	50/60	35	7	12	24		381737	833252	
LF24-SR-S	24	50/60	35	7	12	24	includes auxiliary SPDT end switches	383011	833253	
NFB24-SR	24	50/60	90	17.5	20	24		384372	863860	
NFB24-SR-S	24	50/60	90	17.5	20	24	includes auxiliary SPDT end switches	384373	849251	
TFB24-MFT	24	50/60	22	4.5	6	24		385997	878054	
TFB24-MFT-S	24	50/60	22	4.5	6	24	includes auxiliary SPDT end switches	385998	878055	
TFB24-SR	24	50/60	22	4.5	6	24		384239	848935	
TFB24-SR-S	24	50/60	22	4.5	6	24	includes auxiliary SPDT end switches	384240	848936	
EFB24-SR	24	50/60	270	35	50	24		475464	913982	
EFB24-SR-S	24	50/60	270	35	50	24	includes auxiliary SPDT end switches	475465	913984	
EFB24-SR-S N4	24	50/60	270	35	50	24	includes auxiliary SPDT end switches	475471	913985	
						Honeywell				
MS7505A2030	24	50/60	44	9	12	24		384187	849411	
MS7505A2130	24	50/60	44	9	12	24	includes auxiliary SPDT end switches	384133	849410	
MS7510A2008	24	50/60	88	17.5	20	24		383739	849413	
MS7510A2206	24	50/60	88	17.5	20	24	includes auxiliary SPDT end switches	383213	849414	
MS7520A2015 (/B)	24	50/60	175	31	50	24		383785	849417	
MS7520A2213 (/B)	24	50/60	175	31	50	24	includes auxiliary SPDT end switches	383784	849416	
	•	-			Modulat	ing NON Spring R	eturn		•	
LMB24-SR	24	50/60	45	7	12	24		381728	833286	
NMB24-SR	24	50/60	90	12	20	24		381138	833288	
AMB24-SR	24	50/60	180	35	50	24		382131	833290	
	1		1	r	1	Floating PO/PC	1	1	r	
LMB24	24	50/60	45	7	12	24		381726	833284	
LMB24-S	24	50/60	45	7	12	24	includes auxiliary SPDT end switches	381727	833285	
AMB24-3	24	50/60	180	35	50	24		382132	833289	
NMB24-3	24	50/60	90	12	20	24		381601	833287	
					Man	ual Hand Quadra	nt		r	
			1/2 in. dia	meter shaf	t - For use	on all VCD's		811518	815607	
			1 in. dian	neter shaft	- For use o	on all VCD's		842633	813938	
1 Unless otherwise s open" operation is de	specified, s sired, be s	spring return sure to indica	actuators v te this requ	vill be link iirement.	ed "power "Power clo	open - fail closed sed - fail open" is	", which is also called "normally closed" s also referred to as "normally open" or "	or "NC". If ' NO".	'power closed - fail	

Greenheck NEMA 7 housing kit (for 1/2" jackshaft)

120V to 24V Transformer

Multi-Voltage Transformer

Greenheck NEMA 7 housing kit (for 1" jackshaft)

Section 4 Space Envelopes

GREENHECK Building Value in Air.

Space Envelopes

On dampers less than 18 in. (457mm) high, actuators may also require clearances above and/or below the damper frame. "B" and "T" *dimensions are worst case clearance requirements for some dampers less than 18 in.* (457mm) *high*. All damper sizes under 18 in. (457mm) high do not require these worst case clearances. If space availability above or below the damper is limited, each damper size should be individually evaluated.

Actuator Type/Model	Height	Т	В	D			
	Inches (mm)	Inches (mm)					
AFBUP (-S) and	<u>≥</u> 6 to <10	0	12.75	6			
FSNF Series, Belimo	≥10 to <18	0	2	6			
MSXX20 Series, Honeywell; 33x-2976 Series, Siemens	<u>≥</u> 18	0	0	6			
FSLF, LF and TFB Series,	≥6 to <10	0	3.5	6			
Belimo	<u>≥</u> 10	0	0	6			
MSxx04 & MSxx09 Series,	<u>≥</u> 6 to <9	0	4.75	6			
Honeywell	<u>≥</u> 9	0	0	6			
	<u>≥</u> 6 to <10	0	12.75	6			
MS75xx Series, Honeywell	≥10 to <18	0	7	6			
	<u>≥</u> 18	0	0	6			
	<u>≥</u> 6 to <10	0	7.5	6			
33x-4551 Series, Siemens	≥10 to <17	0	1.5	6			
	<u>≥</u> 17	0	0	6			
001 0050	≤12	N/A	N/A	N/A			
331-2850, Siemens	>12 to <18	0	2.5	9			
Cicilions	>18	0	0	9			

Section 5 – Damper Model Selection.

The following charts are designed to aid you the user in determining which model of Greenheck damper is required based on the blade and frame style, blade and frame material type and thickness, the required bearings, linkage, and seals, the maximum sizes, and most importantly the maximum pressure and velocity ratings.

Once the desired damper model is selected, than the specific frame type and accessories can be chosen to ensure the damper will be able to be mounted into your opening as required.

Section 5 Model Selection

	X = Standard 0 = Optional	VCD-20	VCD-20V	VCD-23	VCD-23V	VCD-33	VCD-33V	VCD-34	VCD-40
	Single Blade								
	3V	X		X					
de	3V-Vertical Blade		Х		Х				
Bla	Airfoil					X			X
	Airfoil-Vertical Blade						X		
	Airfoil-Insulated							X	
	Galvanized	X	X	X	X	X	X	X	
ne rial	304 Stainless Steel	0	0	0	0	0	0	0	
Frar Mate	316 Stainless Steel								
	Aluminum								X
	Galvanized	X	X	Х	X	X	X	X	
le rial	304 Stainless Steel	0	0	0	0	0	0	0	
Blac	316 Stainless Steel								
-	Aluminum								X
	20								
<u>e e</u>	16	x	x	x	x	x	x	x	
Fram Gaug	12	0	0	0	0	0	0	0	
	Aluminum								125 (3.2)
6 0	TPE			¥	Y	Y	¥	Y	.120 (0.2) X
Blad	Silicone			0	0	0	0	0	0
	Staiplage Steel			v	v	v	v	v	v
Jamt	216 Stainless Steel			^	^	^	^	^	^
	STO Stallless Steel								
rings	Synthetic	X	X	X	X	X	X	X	X
Bea	316 Stainless Steel	0	0	0	0	0	0	0	0
es	Steel	Х	X	Х	X	X	Х	X	Х
AxI	316 Stainless Steel	0	0	0	0	0	0	0	0
ge ial	Steel	x	x	х	x	x	x	x	x
Linka Matei	316 Stainless Steel	0	0	0	0	0	0	0	0
	Sleeves	0	0	0	0	0	0	0	
	Transitions	0	0	0	0	0	0	0	
orie	Actuators*	0	0	0	0	0	0	0	0
seos	Flanges**	0	0	0	0	0	0	0	0
Ac	Retaining Angles	0	0	0	0	0	0	0	0
	Security Bars	0	0	0	0	0		0	
~	Minimum Size	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)
Sizing hes (mn	Maximum Single Section Size	48x74 (1219x1880)	74x48 (1880x1219)	48x74 (1219x1880)	74x48 (1880x1219)	60x74 (1524x1880)	74x60 (1880x1524)	60x74 (1524x1880)	60x74 (1524x1880)
incl	Maximum Multi- Section Size	Unlimited	148x96 (3759x2438)	Unlimited	148x96 (3759x2438)	Unlimited	148x96 (3759x2438)	Unlimited	Unlimited
sbu	Max. Velocity ft/min. (m/s)	3000 (15.2)	3000 (15.2)	3000 (15.2)	3000 (15.2)	4000 (20.3)	4000 (20.3)	4000 (20.3)	6000 (30.5)
Rati	Max. Pressure in. wg (kPa)	5 (1.2)	5 (1.2)	5 (1.2)	5 (1.2)	10 (2.5)	10 (2.5)	10 (2.5)	6 (1.5)

*Actuators include manual, 24V, 120V, 240V, and pneumatic.

** Flanges include single, single reverse, and double flange.

*** The inside of the blade is not painted on airfoil blade dampers.

Section 5 Model Selection

Section 5 Face & Bypass Dampers

Face & Bypass Dampers

The face and bypass dampers are used in applications where two dampers are connected together allowing one damper to open while the other damper closes. The FBH series is horizontal style (side-by-side). The FBV series is vertical style (stacked).

	X = Standard 0 = Optional		FBV-23	FBH-33	FBV-33	FBH-43	FBV-43
/le	Horizontal	X		X		X	
St	Vertical		X		X		Х
de file	3V	X	X				
Pro	Airfoil			x	Х	x	x
me erial	Galvanized	x	x	x	x		
Fra Mat	Aluminum					x	х
ade erial	Galvanized	x	x	x	x		
Mat	Aluminum					x	x
<u>e e</u>	16	X	X	X	X		
Fram Gaug	12	0	0	0	0		
	Aluminum					.125 (3.2)	.125 (3.2)
lade eals	TPE	X	X	X	X	X	X
Ξv	Silicone	0	0	0	0	0	0
Jamb Seals	Stainless Steel	x	x	X	x	X	x
ings	Synthetic	X	X	X	X	X	X
Bear	316 Stainless Steel	0	0	0	0	0	0
es	Steel	X	X	X	X	X	X
Ax	316 Stainless Steel	0	0	0	0	0	0
age erial	Steel	x	х	x	х	х	х
Linko Mate	316 Stainless Steel	0	0	0	0	0	0
Accessories	Actuators	0	0	0	0	0	0
se	Minimum Size	8x6 (203x152)	8x6 (203x152)	8x6 (203x152)	8x6 (203x152)	8x6 (203x152)	8x6 (203x152)
ing inc l (mm)	Maximum Single Section Size	48x74 (1219x1880)	48x74 (1219x1880)	60x74 (1524x1880)	60x74 (1524x1880)	60x74 (1524x1880))	60x74 (1524x1880)
Siz	Maximum Multi- Section Size	96x74 (2438X1880)	96x74 (2438X1880)	96x74 (2438X1880)	96x74 (2438x1880)	96x74 (2438x1880)	96x74 (2438x1880)
sbu	Max. Velocity ft/min. (m/s)	3000 (15.2)	3000 (15.2)	4000 (20.3)	4000 (20.3)	6000 (30.5)	6000 (30.5)
Rati	Max. Pressure in. wg (kPa)	5 (1.2)	5 (1.2)	10 (2.5)	10 (2.5)	6 (1.5)	6 (1.5)

	X = Standard 0 = Optional	VCD-42	VCD-42V	VCD-43	VCD-43V	SEVCD-23	SEVCD-33	VCDR-50	VCDR-53	VCDRM-50	VCDRM-53
	Single Blade							Х	Х		
	3V					X				X	Х
de File	3V-Vertical Blade										
Pro Pro	Airfoil	Х		Х			Х				
	Airfoil-Vertical Blade		X		Х						
	Airfoil-Insulated										
	Galvanized	Х	X					Х	X	X	X
me erial	304 Stainless Steel							0	0	0	0
Fra Mat	316 Stainless Steel					X	Х				
	Aluminum			X	Х						
	Galvanized							Х	Х	X	Х
ade erial	304 Stainless Steel							0	0	0	0
Mat	316 Stainless Steel					X	X				
	Aluminum	X	X	X	Х						
	20							Х	X		
	16	X	X			X	X	0	0		
ame uge	14							0	0	X	X
r B	12	0	0								
	10									0	0
	Aluminum			.125 (3.2)	.125 (3.2)						
<u>e</u> s	EPDM								X		Vinyl
Blad Seal:	TPE	X	X	X	X	X	X				
	Silicone	0	0	0	0	0	0		0		
amb eals	Stainless Steel	X	X	X	X						X
-" v	316 Stainless Steel					X	X				
sôu	Synthetic	X	X	X	X						
eari	Bronze							X	X		
•	316 Stainless Steel	0	0	0	0	X	X	0	0	X	X
xles	Steel	X	X	X	X			X	X	X	X
A	316 Stainless Steel	0	0	0	0	X	X	0	0	0	0
ıkage iterial	Steel	X	X	X	X					X	X
Ma	316 Stainless Steel	0	0	0	0	х	X			0	0
	Sleeves	0	0	0	0	0	0				
8	Transitions	0	0			0	0				
ssori	Actuators*	0	0	0	0	0	0	0	0	0	0
CCC	Flanges**	0	0	0	0	0	0				
4	Retaining Angles	0	0			0	0				
	Security Bars	0									
hes	Minimum Size	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	6x6 (152x152)	4 (102)	4 (102)	10 (254)	10 (254)
ing inc (mm)	Maximum Single Section Size	60x74 (1524x1880)	74x60 (1880x1524)	60x74 (1524x1880)	74x60 (1880x1524)	48x74 (1219x1880)	60x74 (1524x1880)	24 (610)	24 (610)	36 (914)	36 (914)
Siz	Maximum Multi- Section Size	Unlimited	148x96 (3759x2438)	288 x 222 (7315 x 5639)	148x96 (3759x2438)	Unlimited	Unlimited	NA	NA	NA	NA
sõu	Max. Velocity ft/min. (m/s)	6000 (30.5)	6000 (30.5)	6000 (30.5)	6000 (30.5)	3000 (15.2)	4000 (20.3)	3000 (15.2)	3000 (15.2)	2500 (12.7)	2500 (12.7)
Ratiı	Max. Pressure	6 (1.5)	6 (1.5)	10	6 (1.5)	5	10	4	4	5	5
	in: wy (r.º.d)	(1.5)	(1.5)	(2.3)	(1.5)	(1.2)	(2.3)	(1)	(1)	(1.2)	(1.2)

* Actuators include manual, 24V, 120V, 240V, and pneumatic.

 $\ensuremath{^{\star\star}}$ Flanges include single, single reverse, and double flange.

 *** The inside of the blade is not painted on airfoil blade dampers.

FBH

Section 5 Severe Environment Dampers

Features:

- 316 stainless steel construction is standard
- Blade styles

- 3V (SEVCD-23). The 3V blades are fabricated from a single thickness of 316 stainless steel incorporating three lengthwise structural V grooves running the length of the blade.

- Airfoil (SEVCD-33). The airfoil blades are constructed of double skin 316 stainless steel. This blade design presents a lower resistance to airflow.
- SEVCD-23
- Minimum size: 6 x 6 in. (152 x 152 mm)
- Maximum multi-section size: Unlimited
- AMCA licensed to bear the AMCA Air Performance seal
- Pressure up to 5 in. wg (1.2 kPa)
- Velocity up to 3000 fpm (1.52 m/s)
- SEVCD-33
- Minimum size: 6 x 6 in. (152 x 152 mm)
- Maximum multi-section size: Unlimited
- Pressure rating up to 10 in. wg (2 kPa)
- Velocity up to 4000 fpm (20.3 m/s)

Available upon request:

- NEMA 4X housing for actuators
- Watertight, corrosion-resistant, and dust tight indoor or outdoor enclosure
- Plastic housing
- NEMA 7 housing for actuators
- Explosion-proof enclosure
- Cast aluminum housing

SEVCD-23

NEMA 7

Velocity

NEMA 4X

GREENHECK

Section 5 **Insulated Control Dampers - ICD**

Greenheck's ICD dampers were developed for applications where it is necessary to minimize the thermal transfer and reduce condensation. ICD series dampers meet Class 1A leakage of less than 3 cfm/sq. ft. @ 1 in. wg (55 cmh/m² @ .25 kPa). ICD series dampers can be used in applications down to -70°F (-56°C) and up to 200°F (93°C) for:

- Cold food storage warehouses
- Buildings/warehouse
- · Rooftop intake or exhaust

		ICD-44	ICD-45	
Maximum Velocity - ft/min. (m/s)		4000 (20.3)	4000 (20.3)	
Maximum Press	ure - in. wg (kPa)	8 (2)	8 (2)	
Thermal Efficien	cy Ratio (E)	593%	941%	
Temperature Range - °F (C°)		-70 to 200 (-56 to 93)	-70 to 200 (-56 to 93)	
Frama	Insulated Thermally Broken Aluminum	-	Х	
FIGILIE	Aluminum	X	-	
	Channel	X	0	
Frame Type	Quick Connect	0	Х	
	Reverse Flange	0	0	
	Single Flange	0	0	
Diada Action	Parallel	0	0	
Diaue Action	Opposed	X	Х	
Blade Type	Insulated Thermally Broken	X	Х	
Blade Material	Extruded Aluminum Airfoil	X	Х	
Blade Seal	Silicone	X	Х	
Jomb Sool	Stainless Steel	X	-	
Jamp Sear	Silicone	0	Х	
X = Standard	0 = Options			

Energy Efficiency Performance

Greenheck Model ICD-44 has a Thermal Efficiency Ratio of 593%.

A damper's Thermal Efficiency Ratio (E) is a comparison of the thermal performance of the tested damper with that of a standard reference damper, which is a 3V blade damper with blade and jamb seals. A damper with the same thermal efficiency as the reference damper would have an E of 0%. A damper that is twice as efficient as the reference damper would have an E of 100%.

Test Information

Testing was conducted on a 36 in. x 36 in. (914mm x 914mm) sample in AMCA 500-D figure 5.10 per AMCA standard 500-D's Thermal Efficiency test.

Torque

Data are based on a torque of 9.0 in.lb./ft² (0.56 N·m) applied to close and seat the damper during the test.

Greenheck Model ICD-45 has a Thermal Efficiency Ratio of 941%. **Test Information**

Testing was conducted on a 36"x36" sample in AMCA 500-D figure 5.10 per AMCA standard 500-D's Thermal Efficiency test.

Torque

Data are based on a torque of 9.0 in.lb./ft² (0.56 N·m) applied to close and seat the damper during the test.

Section 5 Air Measuring Products

AMS Series

The AMS is an accurate airflow measuring station furnished with a properly sized pressure transducer that outputs a 0-10 VDC signal proportional to airflow. A field supplied controller can use the transducer's voltage signal along with the flow formula (provided) to control a modulating actuator to a target set point.

The AMS is available with a factory supplied controller that accepts a target flow set point (either analog or digital). 0-10 VDC outputs are available for actual airflow reading and modulation of an external airflow control device (such as a damper or VFD).

AMD Series

The AMD series combines the functionality of an accurate airflow measuring station and a low leakage control damper into one compact assembly that both measures and controls airflow volume to a target set-point. These models come standard with a modulating actuator and a properly sized pressure transducer that outputs a signal proportional to airflow. A field supplied controller can use the transducer's voltage signal along with the flow formula (provided) to regulate a modulating actuator to the target set point.

The AMD series is available with a factory supplied controller that accepts an analog input that is proportional to a target flow set point. The controller outputs a 0-10 VDC which is signal proportional to the airflow volume.

AMD-TD Series

The AMD-TD series combines the functionality of a highly accurate thermal dispersion airflow station and a low leakage control damper to control airflow volumes to a target set-point. These models come standard with Vari-Green thermal dispersion probes factory installed in the damper sleeve, a modulating actuator and a Vari-Green airflow measurement transmitter that outputs a signal proportional to the airflow going through the unit. The transmitter and actuator are factory wired to a terminal block for easy single-point wiring.

Factory supplied controllers configured for analog operation accept a 0-10 VDC setpoint signal proportional to the airflow going through the unit. The controllers can be configured with BACnet MS/ TP communication capabilities. This option makes the AMD-TD series a turn-key solution for the measurement and control of airflow.

AMS

AMD-23

GREENHECK

AMD-42V-TD

Section 5 Air Measuring Products

Blade Styles

3V blades are fabricated from a single thickness of galvanized steel incorporating three longitudinal V-type grooves running the full length of the blade to increase strength.

Airfoil blades are constructed of double-skin galvanized steel or extruded aluminum. This blade design results in lower resistance to airflow and increased strength for use in pressure systems.

Blade Operation

Damper blades operate parallel to one another for precise airflow volume control.

No Field Calibration

Greenheck's AMD and AMD-TD series do not require field calibration. A label is provided on the AMD series that gives the formula to convert pressure to a flow value that you can program into your controller. The AMD-TD series has a transmitter that give the flow value.

		AMS	AMD-23 AMD-33	AMD-42	AMD-42V	AMD-23-TD AMD-33-TD	AMD-42-TD	AMD-42V- TD		
Velocity range	Minimum	300 (1.5)	300 (1.5)	300 (1.5)	300 (1.5)	0	0	0		
ft/min (m/s)	Maximum	2000 (10.2)	2000 (10.2)	3000 (10.2)	2000 (10.2)	2000 (10.2)	3000 (10.2)	3000 (10.2)		
Accuracy		5%	5%	5%	5%	2-3%	2-3%	2-3%		
	Minimum	-20°	-20°	-20°	-20°	-20°	-20°	-20°		
Temperature	Minimum	(-29°)	(-29°)	(-29°)	(-29°)	(-29°)	(-29°)	(-29°)		
range °F (°C)		180°	180°	180°	180°	140°	140°	140°		
	Maximum	(82°)	(82°)	(82°)	(82°)	(60°)	(60°)	(60°)		
Ambient temperature readout						~	✓	√		
Factory supplied transducer		✓	✓	✓	✓					
Factory supplied transmitter						~	~	~		
Factory supplie	d controller	0	0	0	0	0	0	0		
Airflow straight	ener	✓	✓	✓	✓	0	0	0		
Minimum Unit depth inches (mm)		8 (203)	12 (305)	12 (305)	12 (305)	16 (406)	16 (406)	16 (406)		
Minimum Size		6 x 8	6 x 6							
inches (mm)		(152 x 203)			(152	2 x 152)				
Maximum size		60 x 48	144 x 148	144 x 148	74 x 48	120 x 120	120 x 120	74 x 60		
inches (mm)		(1524 x 1219)	(3658 x 3759)	(3658 x 3759)	(1880 x 1219)	(3048 x 3048)	(3048 x 3048)	(1880 x 1524)		
Quick Build pro available	gram	✓	~	✓	~					

Fabricated Airfoil AMD-33 AMD-33-TD

> Extruded Airfoil AMD-42 AMD-42V AMD-42-TD AMD-42V-TD

Sales Order : 7 Prod. Greler : 5 Wath: 34.00 in Q = Ar

3V Blade

AMD-23

AMD-23-TD

Line : 20
AMD-42
Height: 34.00 in

Q = Area * K *

Less - 4.00 M

imax: 1,000 fpm

AMD Label

K-2018

Section 5 Backdraft Dampers EM, ES, & GM Series

EM and ES series are extruded aluminum backdraft dampers that open by air pressure differential and close by gravity.

ES Series

ES dampers are an extruded standard series damper rated for velocities up to 2000 ft/min. (10.2 m/s) and pressure up to 2.5 in. wg (0.6 kPa).

Options available are:

- Flanges 11/2 in. (38mm)
- Birdscreen or Insect screen

EM Series

EM dampers are an extruded medium series damper rated for velocities of 2500 to 3500 ft/min. (12.7 to 17.8 m/s) and pressure of 4 to 10 in. wg (1 kPa to 2.5 kPa).

Options available are:

- Flanges 11/2 in. (38mm)
- Adjustable pressure controller (APC) used for field-setting of relief pressure
- Paint finishes

GM Series

GM dampers have a galvanized steel frame with extruded aluminum blades.

Commercial Backdraft (EM, ES, and GM Series) Quick Selection Guide

	Material						Maximum	Maximum		
Model	Frame	Blade	Counter- balance Weights	Mounting Position	Airflow Direction	Flange	Velocity ft/min. (m/s)	Back Pressure in. wg (kPa)	Start-Open Pressure* in. wg (kPa)	
EM-10			Std	Н	Vertical Up	No	3500 (17.8)	10 (2.5)	0.05 (0.01)	
EM-11			Std	Н	Vertical Up	Discharge	3500 (17.8)	10 (2.5)	0.05 (0.01)	
EM-12			Std	Н	Vertical Up	Intake	3500 (17.8)	10 (2.5)	0.05 (0.01)	
EM-30			Opt	V	Н	No	3500 (17.8)	10 (2.5)	0.03 (0.01) ¹ 0.01 (0.002) ²	
EM-31			Opt	V	Н	Discharge	3500 (17.8)	10 (2.5)	0.03 (0.01) ¹ 0.01 (0.002) ²	
EM-32			Opt	V	Н	Intake	3500 (17.8)	10 (2.5)	0.03 (0.01) ¹ 0.01 (0.002) ²	
EM-40			Std	Н	Vertical Down	No	3500 (17.8)	10 (2.5)	0.07 (0.017)	
EM-41			Std	Н	Vertical Down	Discharge	3500 (17.8)	10 (2.5)	0.07 (0.017)	
EM-42	Aluminum	Aluminum	Std	Н	Vertical Down	Intake	3500 (17.8)	10 (2.5)	0.07 (0.017)	
ES-10		Alumnum	Std	Н	Vertical Up	No	2000 (10.2)	2.5 (0.6)	0.035 (0.008)	
ES-11			Std	Н	Vertical Up	Discharge	2000 (10.2)	2.5 (0.6)	0.035 (0.008)	
ES-12			Std	Н	Vertical Up	Intake	2000 (10.2)	2.5 (0.6)	0.035 (0.008)	
ES-30			Opt	V	Н	No	2000 (10.2)	2.5 (0.6)	$0.05 (0.012)^1 \ 0.015 (0.004)^2$	
ES-31			Opt	V	Н	Discharge	2000 (10.2)	2.5 (0.6)	$0.05 (0.012)^1 0.015 (0.004)^2$	
ES-32				Opt	V	Н	Intake	2000 (10.2)	2.5 (0.6)	$0.05 (0.012)^1 0.015 (0.004)^2$
ES-40			Std	Н	Vertical Down	No	2000 (10.2)	2.5 (0.6)	0.075 (0.019)	
ES-41			Std	Н	Vertical Down	Discharge	2000 (10.2)	2.5 (0.6)	0.075 (0.019)	
ES-42			Std	Н	Vertical Down	Intake	2000 (10.2)	2.5 (0.6)	0.075 (0.019)	
GM-30			Std	V	Н	No	2500 (13)	4 (1)	0.03 (0.01) ¹ 0.01 (0.002) ²	
GM-31	Galvanized Steel	Aluminum	Std	V	Н	Discharge	2500 (13)	4 (1)	0.03 (0.01) ¹ 0.01 (0.002) ²	
GM-32	31661		Std	V	Н	Intake	2500 (13)	4 (1)	0.03 (0.01) ¹ 0.01 (0.002) ²	

H = Horizontal; V = Vertical; N/A = Not Available; Opt = Optional; Std = Standard; 1 = w/o weights; 2 = w/ weights * Note that start-open is the pressure at which damper blades just begin to rotate, blades are not fully open at this point.

Damper size and bearing selection may cause start-open pressure to vary from this value.

Flanged EM Series with APC (Adjustable Pressure Controller)

Section 6 Codes

The purpose of this document is to inform air handler manufacturers and contractors how utilizing Greenheck dampers will help meet the requirements of California Title 24, and ASHRAE 90.1 as they pertain to economizers and dampers used in the air handlers. ASHRAE 90.1 is a standard of which the International Energy Conservation Code (IECC) required in most States, references for certain requirements, and California Title 24 is the energy code that the State of California utilizes and is also being actively reviewed for adoption by other Sates. The specific sections of the Code and Standard that apply are listed below along with which Greenheck damper products meet the specific requirements.

California Title 24 December 201

Section 120.1(f).2&3

Design and Control Requirements for Quantitie of Outdoor Air

This section requires that the outdoor airflow if measured, be maintained within 10 percent of required outdoor air rate. The Greenheck AMD, & AMD-TD, models meet the requirements and come as a packag unit that has been tested on our AMCA accredited chamber and verified to maintain accuracies within +/-5%. You do not need to source a damper and flow pickup stations from separate manufacturers, figure of how to install them and then hope the system is accur to meet requirements, Greenheck has an accurate turn key assembly available for you to utilize.

If airflow is controlled but not measured, the Greenhed VCD damper models VCD-23, 33, 42, and 43, meet the requirements and can be ordered in a configuration to make mounting the damper quick and easy.

Section 120.2(f)

Dampers for Air Supply and Exhaust Equipment

This section requires the fans to have Volume Control Dampers (VCD) which close automatically upon fan shutdown. The same as above applies for this requirement where the Greenheck VCD and AMD mod of dampers can be utilized for these applications.

Section 140.4(e) Economizers.

- 1A. This section requires that the outside air damper for any system with a total design cooling capacity ov 54,000 BTU/hr be large enough to allow the entire amount of air to pass through the outside air damp when the damper is in the full open position. The historically typical configuration utilizing the airflow through two smaller dampers for return air and outside air added together to reach the design air quantity is not allowed.
- 2D(ii). This section indicates that the damper must pas 60,000 cycle test and still work as intended.
- 2D(iii). This section requires that dampers be certified and have a maximum leakage rate of 10 cfm/ft² 1 inch of water gauge when tested in accordance with AMCA 500D. The code makes no mention of specific requirements for credentials of the person or organization certifying the leakage of the dampers.

Greenheck VCD-23, 33, 42, and 43, ICD-44, and 45, AM and AMD-TD models meet the requirements of A, B, a C in this section. By selecting the appropriate model, Greenheck dampers are AMCA certified Class 1A and

8	Class 1 leakage rated. Greenheck dampers have been tested to 100,000 cycles and easily pass the 60,000 cycle test requirement.
es	Greenheck also has the capability of making the entire economizer to your specification, which could be fastened into your air handler as a complete assembly.
d	Greenheck can also provide a 5 year warranty option to meet the economizer warranty requirement.
jed	Section 150.0.(m)
	Air-Distribution and Ventilation System Ducts,
	Plenums, and Fans.
ut	7. Backdraft Dampers
rate	This section requires that a backdraft or automated
n-	volume control damper is required to isolate outside air from the remainder of the system and prevent unintended
ck Ə	air leakage when the system is not in use. Greenheck has dampers that meet and exceed the requirements.
)	8. Gravity Ventilation Dampers
t	This section requires all gravity ventilating systems serving conditioned spaces include either automatic dampers or accessible manual dampers to isolate the system from the outside air unless serving a combustion inlet, outlet, or elevator shaft vent.
	ASHRAE Standard 90.1 – 2016
ieis	Energy Standards for Buildings with the Exception of Low-Rise Residential
	6.4.3.3.4 Zone Isolation
ver	This section requires that control dampers with the capability to close automatically be used to isolate each area that supplies conditioned air, outdoor air, and
per	exhaust air. The Greenheck VCD-23, 33, 42, and 43, damper models will meet this requirement.
vv	6.4.3.4.1 Stair and Shaft Vents
ss a	This section requires that stairwell and shaft vents be equipped with motorized dampers that are capable of being open/closed automatically. Greenheck VCD-23, 33, 42, and 43 damper models would meet this requirement. In the event that a Smoke damper is specified Greenheck
² at	Smoke dampers also meet these requirements.
ce	6.4.3.4.2 Shutoff Damper Controls
	This section requires that motorized dampers be installed
f	in all outdoor air intake and exhaust systems on buildings 3 stories and taller unless located in climate zones 0, 1, 2 or 3, where backdraft dampers are then acceptable. Greenbeck VCD-23, 33, 42, and 43 damper models
ind	would meet this requirement for automatic shutoff, or Greenheck EM models meet the backdraft damper requirements.

Section 6 Codes

6.4.3.4.3 Damper Leakage

This section requires that dampers have a maximum leakage rate as indicated in table 6.4.3.4.3 that is dependent on several factors which include specific climate zones, whether a damper is motorized or nonmotorized (Backdraft) and whether the building is 3 stories or taller. Greenheck VCD-23, 33, 42, and 43 dampers which carry Class 1A and Class 1 leakage ratings meet the motorized damper requirements and Greenheck Backdraft dampers that are smaller than 24" square also meet this requirement for Non-motorized dampers.

6.5.1.1.1 Design Capacity

This section requires that the outside air damper be large enough to allow the entire amount of air that the system is designed for, to pass through when the damper is in the full open position. The historically typical configuration that utilizes two smaller dampers for return air and outside air added together is not allowed to reach the design air quantity. This is so that when cooling is required, 100% of the air can be cooled free. Greenheck VCD-23, 33, 42, and 43 damper models meet this requirement.

6.5.1.1.4 Dampers

This section requires that return, exhaust/relief, and outdoor air dampers shall meet the requirements of Section 6.4.3.4.3 Ventilation System Controls. Greenheck VCD-23, 33, 42, and 43 damper models meet this requirement.

6.5.3.1.1 Fan System Power and Efficiency

This section applies to the amount of power that a fan uses and where credits are given for return and/or exhaust airflow control devices ie. Directly measuring airflow, and although a smaller impact the pressure loss of a damper which negatively affects the brake horsepower of a fan system. The result of a damper with lower pressure drop being an advantage for the design professional to utilize equipment that uses less power. Utilization of Greenheck AMD, and AMD-TD air measuring damper models would eliminate overtempering air.

6.5.6.1 Exhaust Air Energy Recovery

This section requires that air be allowed to either bypass the energy recovery system or that it be capable of being turned off to permit the economizer to function properly as required by section 6.5.1.1. Air handlers will need low pressure drop options for the air to bypass an energy wheel for example. Greenheck VCD-23, 33, 42, and 43 model dampers would be the best option to meet this requirement providing the low pressure drop option and positive shutoff with low leakage when in the closed position.

IECC - 2015

C403.2.4.3 Shutoff dampers.

This section states that gravity (non-motorized) dampers shall have an air leakage rating not greater than 20 cfm/ ft² where not less than 24 inches in either dimension and 40 cfm/ft² where less than 24 inches in either direction. The rate of air leakage shall be determined at 1 inch water gauge when tested in accordance with AMCA 500D for such purpose. The dampers shall be labeled by an approved agency. Greenheck BD, EM-30, ES-10, and ES-30 series backdraft dampers meet these requirements.

Additional Information For California Title 24 December 2018

Section 120.1(f)

Design and Control Requirements for Quantities of Outdoor Air.

- 1. All mechanical ventilation and space-conditioning systems shall be designed with and have installed ductwork, dampers, and controls to allow outside air rates to be operated at the larger of (1) the minimum levels specified in Section 120.1(c)3 or (2) the rate required for make-up of exhaust systems that are required for an exempt or covered process, for control of odors, or for the removal of contaminants within the space.
- 2. All variable air volume mechanical ventilation and space-conditioning systems shall include dynamic controls that maintain measured outside air ventilation rates within 10 percent of the required outside air ventilation rate at both full and reduced supply airflow conditions. Fixed minimum damper position is not considered to be dynamic and is not an allowed control strategy.
- 3. Measured outdoor air rates of constant volume mechanical ventilation and space-conditioning systems shall be within 10 percent of the required outside air rate.

Section 120.2 (f)

Dampers for Air Supply and Exhaust Equipment.

Outdoor air supply and exhaust equipment shall be installed with dampers that automatically close upon fan shutdown.

- EXCEPTION 1 to Section 120.2(f): Where it can be demonstrated to the satisfaction of the enforcing agency that the equipment serves an area that must operate continuously.
- EXCEPTION 2 to Section 120.2(f): Gravity and other nonelectrical equipment that has readily accessible manual damper controls.

EXCEPTION 3 to Section 120.2(f): At combustion air intakes and shaft vents.

EXCEPTION 4 to Section 120.2(f): Where prohibited other provisions of law.

Section 140.4(e)

(e) Economizers.

1. Each cooling fan system that has a design total mechanical cooling capacity over 54,000 Btu/hr sha include either:

- A. An air economizer capable of modulating outside-air and return-air dampers to suppl 100 percent of the design supply air quanti as outside-air: or
- B. A water economizer capable of providing 1 percent of the expected system cooling loa as calculated in accordance with a method approved by the Commission, at outside ai temperatures of 50°F dry-bulb and 45°F we bulb and below.

EXCEPTION 1 to Section 140.4(e)1: Where special

Table 140.4-D E	conomizer Trade-Off Ta	able For Cooling Systems
Climate Zone	Efficiency Improvement ^a	
1	70%	
2	65%	
3	65%	
4	65%	alf a unit is rated with an IDLV IEEP or
5	70%	SEER, then to eliminate the required
6	30%	air or water economizer, the applicable
7	30%	minimum cooling efficiency of the
8	30%	HVAC unit must be increased by the
9	30%	only rated with a full load metric, such
10	30%	as EER or COP cooling, then that metric
11	30%	must be increased by the percentage
12	30%	snown.
13	30%	
14	30%	
15	30%	
16	70%	

- 2. If an economizer is required by Section 140.4(e)1, and an air economizer is used to meet the requirement, then it shall be:
 - A. Designed and equipped with controls so that economizer operation does not increase the building heating energy use during normal operation: and

EXCEPTION to Section 140.4(e)2A: Systems that provide 75 percent of the annual energy used for mechanical heating from site-recovered energy or a site-solar energy source.

by	outside air filtration and treatment, for the reduction and treatment of unusual outdoor contaminants, makes compliance infeasible.
	EXCEPTION 2 to Section 140.4(e)1: Where the use of outdoor air for cooling will affect other systems, such as humidification, dehumidification, or supermarket refrigeration systems, so as to increase overall building TDV energy use.
	EXCEPTION 3 to Section 140.4(e)1: Systems serving high-rise residential living quarters and hotel/motel quest rooms.
ity 00	EXCEPTION 4 to Section 140.4(e)1: Where cooling systems have the cooling efficiency that meets or exceeds the cooling efficiency improvement requirements in TABLE 140.4-D.
ad I ir ət-	EXCEPTION 5 to Section 140.4(e)1: Fan systems primarily serving computer room(s). See Section 140.9(a) for computer room economizer requirements.
	EXCEPTION 6 to section 140.4(e)1: Systems design to operate at 100 percent outside air at all times.

- B. Capable of providing partial cooling even when additional mechanical cooling is required to meet the remainder of the cooling load.
- C. Designed and equipped with a device type and high limit shut off complying with TABLE 140.4-E.

Section 6 Codes

Additional Information For ASHRAE Standard 90.1 - 2016

Table 140.4-E Air Economizer High Limit Shut Off Control Requirements					
	Olimete Zeneo	Required High Limit (Economizer Off When):			
Device Type"	Gimate Zones	Equation ^b	Description		
	1,3,5,11-16	Т _{од} > 75°F	Outdoor air temperature exceeds 75°F		
Fixed Dry Bulb	2,4,10	Т _{од} > 73°F	Outdoor air temperature exceeds 73°F		
FIXEU DI Y DUID	6,8,9	Τ _{0Α} > 71°F	Outdoor air temperature exceeds 71°F		
	7	Т _{од} > 69°F	Outdoor air temperature exceeds 69°F		
	1,3,5,11-16	T _{OA} >T _{RA} °F	Outdoor air temperature exceeds return air temperature		
Differential Dry Dulh	2,4,10	T _{0A} >T _{RA} -2°F	Outdoor air temperature exceeds return air temperature minus 2°F		
Differential Dry Bulb	6,8,9	T _{0A} >T _{RA} -4°F	Outdoor air temperature exceeds return air temperature minus 4°F		
	7	T _{0A} >T _{RA} -6°F	Outdoor air temperature exceeds return air temperature minus 6°F		
Fixed Enthalpy ^c + Fixed Drybulb	All	h _{0A} >28 Btu/lb° or T _{0A} >75°F	Outdoor air enthalpy exceeds 28 Btu/lb of dry air ^c or Outdoor air temperature exceeds 75°F		

- D. The air economizer and all air dampers shall have the following features:
 - i. Warranty. 5-year Manufacturer warranty of economizer assembly.
 - ii. Damper reliability testing. Suppliers of economizers shall certify that the economizer assembly, including but not limited to outdoor air damper. return air damper, drive linkage, and actuator, have been tested and are able to open and close against the rated airflow and pressure of the system after 60,000 damper opening and closing cycles.
 - iii. Damper leakage. Economizer and return dampers shall be certified in accordance with AMCA Standard 500-D to have a maximum leakage rate of 10 cfm/sf at 1.0 in. w.g.

Section 150.0.(m).7 Air-Distribution and Ventilation System Ducts, Plenums. and Fans.

- 7. Backdraft Dampers. All fan systems, regardless of volumetric capacity, that exchange air between the building conditioned space and the outside of the building shall be provided with backdraft or automatic dampers to prevent unintended air leakage through the fan system when the fan system is not operating.
- 8. Gravity Ventilation Dampers. All gravity ventilating systems that serve conditioned space shall be provided with either automatic or readily accessible, manually operated dampers in all openings to the outside except combustion inlet and outlet air openings and elevator shaft vents.

6.4.3.3.4 Zone Isolation

• ".....Each isolation area shall be equipped with isolation devices capable of and configured to automatically shut off the supply of conditioned air and outdoor air to and exhaust air from the area......"

6.4.3.4.1 Stair and Shaft Vents

• ".....vents shall be equipped with motorized dampers that are capable of and configured to automatically close....."

6.4.3.4.2 Shutoff Damper Controls

- "All outdoor air intake and exhaust systems shall be equipped with motorized dampers......"
- Exceptions
 - "1. Backdraft gravity dampers are

Table 6.4	Table 6.4.3.4.3 Maximum Damper Leakage, CFM Per FT ² at 1.0 in. of water				
Climata Zana	Ventilation	Air Intake	Exhaust/Relief		
Giinale Zone	Non-motorized ¹	Motorized	Non-motorized ¹	Motorized	
1,2 any height	20	4	20	4	
3 any height	20	10	20	10	
4,5b,5c					
less than 3 stories	not allowed	10	20	10	
3 or more stories	not allowed	10	not allowed	10	
5a, 6, 7, 8					
less than 3 stories	not allowed	4	20	4	
3 or more stories	not allowed	4	not allowed	4	
Dampers smaller than 24 in. in either dimension may have leakage of 40 cfm/ft ^{2.}					

6.4.4.2.1 Duct Sealing

sensitive tape shall not be used as the primary sealant......"

6.5.1.1.1 Design Capacity

provide up to 100% of the design supply air quantity as outdoor air for cooling"

	stories in height and fo
	and exhaust and relief
	any height located in a
	3. Backdraft dampers
	must be protected from
-	"2. – Backdraft gravity 300 cfm or le
-	"3. – Dampers are not

acceptable.....in buildings less than three or ventilation air intakes dampers in buildings of climate zones 0, 1, 2, and for ventilation air intakes m direct exposure to wind"

- dampers are acceptable ess'
- required in ventilation or exhaust systems serving unconditioned spaces"
- "4. Dampers are not required in exhaust systems serving Type 1 kitchen exhaust hoods

6.4.3.4.3 Damper leakage

• "..... as indicated in Table 6.4.3.4.3......"

• ".....Openings for rotating shafts shall be sealed with bushings or other devices that seal off air leakage. Pressure

• "Air economizer systems shall be capable of and configured to modulate outdoor air and return air dampers to

6.5.1.1.4 Dampers

• "Return, exhaust/relief, and outdoor air dampers shall meet the requirements of Section 6.4.3.4.3"

6.5.3.1.1 Fan System Power and Efficiency

Table 6.5.3.1.1A Fan Power Limitation ^a					
	Limit	Constant Volume	Variable Volume		
Option 1: Fan System Motor Nameplate hp	Allowable Nameplate Motor hp	$hp \leq CFM_s x 0.0011$	$hp \le CFM_s x 0.0015$		
Option 2: Fan System bhp	Allowable Fan System bhp	$bhp \le CFM_s \times 0.0094 + A$	$bhp \le CFM_s \times 0.0013 + A$		

^a where

CFM_e = maximum design supply airflow rate to conditioned spaces served by the system in cubic feet per minute

= maximum combined motor nameplate horsepower hp

bhp = maximum combined fan brake horsepower

A = sum of (PD x CFM_/4131)

where

PD = each applicable pressure drop adjustment from Table 6.5.3.1-2 in in. of water

L/S = the design airflow through each applicable device from Table 6.5.3.1-2 in cubic feet per minute

Table 6.5.3.1-2 Fan Power Limitation Pressure Drop Adjustment				
Device	Adjustment			
Credits				
Return or exhaust systems required by code or accreditation standards to be fully ducted, or systems required to maintain air pressure differentials between adjacent rooms.	0.5 in. of water (2.15 in. of water for laboratory and vivarium systems)			
Return and/or exhaust airflow control devices	0.5 in. of water			
Exhaust filters, scrubbers, or other exhaust treatment	The pressure drop of device calculated at fan system design condition			
Particulate Filtration Credit: MERV 9 through 12	0.5 in. of water			
Particulate Filtration Credit: MERV 13 through 15	0.9 in. of water			
Particulate Filtration Credit: MERV 16 and greater and electronically enhanced filters	Pressure drop calculated at 2x clean filter pressure drop at fan system design condition			
Carbon and other gas-phase air cleaners	Clean filter pressure drop at fan system design condition			
Biosafety cabinet	Pressure drop of device at fan system design condition			
Energy recovery device, other than coil runaround loop	For each airstream [(2.2 x Enthalpy Recovery Ratio) - 0.5] in. of water			
Coil runaround loop	0.6 in. of water for each airstream			
Evaporative humidifier/cooler in series with another cooling coil	Pressure drop of device at fan system design condition			
Sound attenuation section (fans serving spaces with design background noise goals below NC35)	0.15 in. of water			
Exhaust system serving fume hoods	0.35 in. of water			
Laboratory and vivarium exhaust systems in high-rise buildings	0.25 in. of water/100 ft of vertical duct exceeding 75 ft			

6.5.6.1 Exhaust Air Energy Recovery

".....Provision shall be made to bypass or control the energy recovery system to permit air economizer ٠ operation as required by 6.5.1.1"

SUMMARY

The specific section requirements of ASHRAE standard 90.1 2016, and California Title 24 2108 code requirements listed in this document that pertain to the application of dampers in and around air handlers and economizers can be met by utilizing Greenheck dampers and air measuring products with better pressure drop performance and leakage ratings than can be realized using other manufacturers products for similar applications

Section 7 Competitor Cross Reference

Greenheck	Ruskin	Tamco	United Enertech		
	Bac	kdraft			
EM-10	BD6; CBD4	7000CW	CB-601		
EM-11	BD6; CBD4	7000CW	CB-601		
EM-12	BD6; CBD4	7000CW	CB-601		
EM-30	CBD4	7000CW	CB-601		
EM-31	CBD4	7000CW	CB-601		
EM-32	CBD4	7000CW	CB-601		
EM-40	CBD4	7000CW	CB-601		
EM-41	CBD4	7000CW	CB-601		
EM-42	CBD4	7000CW	CB-601		
ES-10	BD2/A2; CBD2	7000	CB-600		
ES-11	BD2/A2; CBD2	7000	CB-600		
ES-12	BD2/A2; CBD2	7000	CB-600		
ES-30	BD2/A2; CBD2	7000	CB-600		
ES-31	BD2/A2; CBD2	7000	CB-600		
ES-32	BD2/A2; CBD2	7000	CB-600		
ES-40	CBD2	7000	CB-600		
ES-41	CBD2	7000	CB-600		
ES-42	CBD2	7000	CB-600		
GM-30	-	-	-		
GM-31	-	-	-		
GM-32	-	-	-		
Commercial Control					
VCD-20	CD35; CD355	-	CD-110; CD-111		
VCD-20V	-	-	-		
VCD-23	CD36; CD356	-	CD-110; CD-111		
VCD-23V	-	-	-		
SEVCD-23	-	-	-		
VCD-33	CD60	-	CD-160; CD-161; CD-170; CD-171		
VCD-33V	CD60V	-	-		
SEVCD-33	-	-	-		
VCD-34	IL35; TED40	-	-		
VCD-40	CD40; CD403	-	CD-145; CD-146		
VCD-42	-	-	-		
VCD-42V	-	-	-		
VCD-43	CD50; CD504; CD50L	1000; 1500	CD-150; CD-151		
VCD-43V	CD50V	-	-		
VCDR-50	CDR25	-	RI		
VCDR-53	CDR25; CDRS15; CDRS25	-	RI		
VCDRM-50	-	-	R-PB/OB		
VCDRM-53	_	-	R-PB/OB		

Building Value in Air.

P.O. Box 410 • Schofield, WI 54476-0410 • Phone (715) 359-6171 • greenheck.com

Section 7 **Competitor Cross Reference**

Greenheck	Ruskin	Tamco	United Enertech		
Face & Bypass					
FBH-23	CD36		CD-110; CD-111		
FBV-23	CD36		CD-110; CD-111		
FBH-33	CD60		CD-170; CD-171		
FBV-33	CD60		CD-170; CD-171		
FBH-43	CD40; CD50; CD50L; CD504	1000; 1500	CD-150; CD-151		
FBV-43	CD40; CD50; CD50L; CD504		CD-150; CD-151		
Air Measuring					
AMS	AMS		X-10		
AMD-23					
AMD-33					
AMD-42	AMS050		X-11; X-12		
AMD-42V		Start Entrance			
AMD-23-TD					
AMD-33-TD					
AMD-42-TD	AIRFLOW-IQ	AIR-IQ			
AMD-42V-TD	The state of the state of the state		A Part - Property		
Thermally Broken, Insulated					
ICD-45	TED50; TED50XT	9000BF	TB-155; TB156		
ICD-44	TED50	9000			

Enjoy Greenheck's extraordinary service, before, during and after the sale.

QUICK

GREEN

Greenheck offers added value to our wide selection of top performing, energy-efficient products by providing several unique Greenheck service programs.

- Our Quick Delivery Program ensures shipment of our in-stock products within 24 hours of placing your order. Our Quick Build made-to-order products can be produced in 1-3-5-10-15 or 25-day production cycles, depending upon their complexity.
- Greenheck's free Computer Aided Product Selection program (CAPS), rated by many as the best in the industry, helps you conveniently and efficiently select the right products for the challenge at hand.
- Greenheck has been Green for a long time! Our energy-saving products and ongoing corporate commitment to sustainability can help you gualify for LEED credits.
- Our 3D service allows you to download at no charge lightweight, easy-to-use AutoDesk[™] Revit[™] 3D drawings for many of our ventilation products.

Find out more about these special Greenheck services at greenheck.com

Our Commitment

As a result of our commitment to continuous improvement, Greenheck reserves the right to change specifications without notice.

Specific Greenheck product warranties are located on greenheck.com within the product area tabs and in the Library under Warranties.

