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Abstract 

Deep neural network (DNN) based natural language processing models rely on a word 
embedding matrix to transform raw words into vectors. Recently, a deep structured semantic 
model (DSSM) has been proposed to project raw text to a continuously-valued vector for 
Web Search. In this technical report, we propose learning word embedding using DSSM. We 
show that the DSSM trained on large body of text can produce meaningful word embedding 
vectors as demonstrated on semantic word clustering and semantic word analogy tasks.  

 

  

1 Introduction  
Deep neural network (DNN) based semantic models such as semantic hashing (SH) have 
been proposed for information retrieval [2][3]. For example, Salakhutdinov and Hinton 
extended the semantic modeling using deep auto-encoders [2][3]. They demonstrated that the 
hierarchical semantic structure embedded in the query and the document can be extracted via deep 
learning. Superior performance to the conventional method of Latent Semantic Analysis (LSA) 
was demonstrated in [2][3]. In semantic hashing and other Deep neural network (DNN) based 
natural language processing models, usually the first layer of the network serves the purpose 
of converting the word into a low-dimension vector representation, as known as word 
embedding, which is either learned separately on large body of raw text, or learned jointly 
with other parameters of the network [1][2][3]. For example, a feedforward neural network 
was used to jointly learn the word embedding and a statistical language model 
[14][15][16][17]; recurrent neural language models was also proposed to handle arbitrary 
long contexts and more complex patterns [18]; Mnih and Kavukcuoglu [13] proposed a 
feedforward neural network to maximize the similarity between the embedding vector s of the 
word and of the context. Recently, a Deep Structured Semantic Models (DSSM) for Web search 
was proposed in [6], which is reported to outperform significantly semantic hashing and other 
conventional semantic models.   

In this study, extending from the research discussed above, we developed a Deep Structured 

Semantic Model (DSSM) to learn word embedding. We show that the DSSM trained on large 

body of text can produce meaningful word embedding vectors as demonstrated on semantic word 

clustering and semantic word analogy tasks. 

  



 

2  Deep Structured Semantic Model  

2.1 The Overall Architecture of the Deep Structured Semantic Model 

 

 

 

 

 

 

 

 
         

 

 

Figure 1: The illustration of the overall structure of the DSSM. 

 

The overall architecture of the proposed deep structured semantic model (DSSM) is shown in 

Figure 1. DSSM was originally proposed with Web search as the example task that predicts 

relevant documents for a given query. We use Web search to introduce DSSM in this section and 

discuss how to apply DSSM to learn word embeddings in later sections.  

The high-dimensional input to the DNN is a term vector, e.g., raw counts of terms in a query or 

a document without normalization (a.k.a. bag-of-words), and the output of the DNN is a concept 

vector in a low-dimensional semantic feature space. Given this DNN, queries and documents can 

be mapped to their corresponding semantic concept vectors. Then, another layer on top of the 

outputs of DNNs is applied, where at each node is the cosine similarity score between the concept 

vectors of the query and each of the documents, respectively. Then a softmax smoothing is applied 

to convert the cosine similarity scores into conditional likelihood.  

Let’s denote by   as the input term vector,   as the output vector,             , as the 

intermediate hidden layers,    as the i-th weight matrix, and    as the  -th bias term, we have 
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where we use the      as the activation function at the output layer and the hidden layers 
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The semantic relevance score between a query   and a document   is then measured as: 
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where    and    are the concept vectors of the query and the document, respectively. In Web 

search, given the query, the documents are sorted by their semantic relevance scores.  
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Conventionally, the size of the term vector, which can be viewed as the raw bag-of-words 

features in IR, is equal to that of the vocabulary that is used for indexing the Web document 

collection. The vocabulary size is usually very large in real-world Web search tasks. Therefore, 

when using term vector as the input, the size of the input layer of the neural network would be 

unmanageable for inference and model training. To address this problem, we have developed two 

methods of “word hashing” for the first layer of the DNN, as indicated in the lower portion of 

Figure 1. This layer consists of only linear hidden units in which the weight matrix of a very large 

size is not learned. In the following section, we will describe the word hashing method in detail. 

2.2 Word Hashing  

The two word hashing methods described here aim to reduce the dimensionality of the 

bag-of-words term vectors without requiring learning. The first method is based on the 

well-known random projection. The second is based on letter-n-grams, and has an additional 

advantage of making the generalization ability from the training set to the test set better. That is, 

the unseen words in the test set are likely to have their letter-n-gram presentations present in the 

training set. 

2.2.1 Random Projection based Word Hashing 

The method of sparse random projection [8] is originally proposed to perform dimensionality 

reduction. We apply it to word hashing.  

The sparse random projection technique projects each high-dimensional input vector (e.g., 

500k) into a low-dimensional space (a few thousands) using a sparse matrix   whose entries are 

sampled i.i.d. from a distribution over {0, 1, -1}. Entries of 1 and -1 are with an equal probability, 

and  (     )    
 

√ 
, where   is the original input dimension.  

Since the projection matrix is sampled without training, the computational cost is negligible for 

even very large vocabularies. However, this method cannot deal with the mapping of those terms 

that are unseen in the training set. 

2.2.2 Letter-n-gram based Word Hashing 

A word hashing method is also developed in this work based on the letter-n-gram count 

distribution for our task. Given a word (e.g. good), we first add word starting and ending marks to 

the word (e.g. #good#). Then, we break the word into letter-n-grams (e.g. letter trigrams: #go, goo, 

ood, od#). Finally, the word is represented using a vector of letter-n-grams.  

One problem of this method is collision, i.e., two different words could have the same 

letter-n-gram vector representation. Table 1 shows some statistics of word hashing on two 

vocabularies. Compared with the original size of the one-hot vector, word hashing allows us to 

represent a query or a document using a vector with much lower dimensionality. Take the 

40K-word vocabulary as an example. Each word can be represented by a 10,306-dimentional 

vector using letter trigrams, giving a four-fold dimensionality reduction with few collisions. The 

reduction of dimensionality is even more significant when the technique is applied to a larger 

vocabulary. As shown in Table 2, each word in the 500K-word vocabulary can be represented by a 

30,621 dimensional vector using letter trigrams, a reduction of 16-fold in dimensionality with a 

negligible collision rate of 0.0044% (22/500,000).  

 

 

 

 

 

 

 

While the number of English words can be unlimited, the number of letter-n-grams in English 

(or other similar languages) is often limited. Moreover, word hashing is able to map the 

morphological variations of the same word to the points that are close to each other in the 

 Letter-Bigram Letter-Trigram 

Word SizeSize  Token Size Collision Token Size Collision 

40k  1107 18 10306 2 

500k 1607 1192 30621 22 

Table 1: Word hashing token size and collision numbers as a function of the 

vocabulary size and the type of letter bigrams and trigrams. 



letter-n-gram space. More importantly, while a word unseen in the training set always cause 

difficulties in word-based representations, it is not the case where the letter-n-gram based 

representation is used. The only risk is the minor representation collision as quantified in Table 2. 

Thus, letter-n-gram based word hashing is robust to the out-of-vocabulary problem, allowing us to 

scale up the DNN solution to the Web search tasks where extremely large vocabularies are 

desirable. We will demonstrate the benefit of the technique empirically in Section 4.  

The letter-n-gram based word hashing method uses a fixed (i.e., non-adaptive) linear 

transformation matrix, through which a term vector in the input layer is projected to a 

letter-n-gram vector in the next layer higher up, as shown in Figure 1. Since the letter-n-gram 

vector is of a much lower dimensionality, DNN learning can be carried out effectively.  

2.3 Learning 

The clickthrough logs consist of a list of queries and their clicked documents. We assume that a 

query is relevant to the documents that are clicked on for that query. Therefore, the DSN can be 

effectively learned by maximizing the conditional likelihood of the clicked documents given the 

queries.   

First, as illustrated in Figure 1, we compute the probability of a document given a query from 

the semantic relevance score between them through a softmax function  
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where   is a smoothing factor in the softmax function, which is set empirically on a held-out data 

set in our experiment.   denotes the set of candidate documents to be ranked. Ideally,   should 

contain all possible documents. In practice, for each (query, clicked-document) pair, denoted by 

(    ) where   is a query and    is the clicked document, we approximate D by including 

   and four randomly selected unclicked documents, denote by    
          . 

In training, the model parameters are estimated to maximize the likelihood of the clicked 

documents given the queries across the training set. Equivalently, we need to minimize the 

following loss function  

 ( )      ∏  (  | )

(    )

 (5) 

where   denotes the parameter set of the neural networks        .  

Since  ( ) is differentiable w.r.t. to  . The model is trained readily using gradient-based 

numerical optimization algorithms. The update rule is 
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where    is the learning rate at the     iteration,    and      are the models at the     and 

the (   )   iteration, respectively. 

 

 

2.4 Learning word embedding using DSSM  

In [6], DSSM is learned on the clickthrough data. In this study, we train the DSSM on a big body 

of text. In order to train the DSSM, we first need to form the        pairs. In this study, for 

each word in the train data, we take its neighboring words in sentences as the Q, and the word 

itself as the D
+
. E.g., for the t-th word in a sentence, we form a training        pair as: 

                       

      
 

Then we can train the DSSM as described in the previous sections.  



Comparing with related work, as discussed before, most previous work learns word embedding 

jointly with a language model, where the latter determines the loss function and thus is the 

optimization goal [14][15][16][17]. As a result, the optimization process is indirect with respect 

to the embedding layer. In contrast, DSSM produces the embedding vectors in the output layers 

and uses the cosine similarity between embedding vectors to construct the loss function. 

Therefore, it direct optimizes on the embedding learning layer. We found in a preliminary study 

that the DSSM approach is much easier to derive meaningful word embeding than Collobert and 

Weston [15]. Mnih and Kavukcuoglu [13] resembles our work in the aspect that it also 

optimizes the similarity between the embedding vectors of a word and its context. But their 

work represents the context embedding vector as a linear combination of the context word 

embedding vectors. In contrast, DSSM is a more general framework to project two sides of 

words into the same semantic space with deep structured neural network and optimize the 

similarity between vectors in that semantic space.  
 

 

3 EXPERIMENTS 

3.1 Implementation Details  

We used the May 2013 dump of English Wikipedia as the dataset. We preprocessed Wikipedia by 

removing the formatting tags, mapping all words to lowercase, and breaking into sentences by a 

basic tokenizer. The most frequent 30,000 words consisting of only alphabet letters were taken as 

the vocabulary. (We decided not to include digits or punctuations in the vocabulary.) For every 

occurrence of a target inside-vocabulary word in every sentence in the dataset, we took an 

11-word window from the sentence with the target word in the middle. We filtered out 11-word 

windows that contain more than one words outside the vocabulary; a special word “RARE” was 

used to replace those out-of-vocabulary words. Special words “PADDING” are added in the 

beginning and in the end of each sentence to form the 11-word windows when the target word is 

near the beginning or the end of the sentence. Finally we took 10 million such 11-word windows 

as the training dataset. The middle word will be D
+
, and the remaining 10 context words will be Q, 

as discussed in the previous sections. For each pair of       , we selected 100 randomly 

words as    
            . 

Regarding the neural network structure, the query side (for the context words) consists of the 

word hashing layer, the non-linear hidden layer, and the output embedding layer; the document 

side (for the target word) consists of the word hashing layer and the output embedding layer. The 

word hashing layer has been discussed in Section 2.2. The hidden layer on the query side consists 

of 300 nodes, and the hidden layer is not used for the document side. The dimensionality of the 

learned word embedding is set to be 50, so both the output embedding layers consist of 50 nodes.  

Mini-batch based stochastic gradient descent is used in the training stage, and each mini-batch 

consists of 1024 training samples. Training is conducted on a single Tesla K20 GPU. Each epoch 

takes roughly 210 seconds to run, and the total training time is about 2.4 hours (for 40 epochs).  

 

3.2 Experimental Results  

Firstly, we verify the quality of word embedding learning by visualization. The learned 

50-dimensional embedding vectors are projected into 2-dimensional vectors using t-SNE [11] and 

plotted in Figure 1. It is well shown that words are clustered into multiple groups based on the 

synaptic and semantic meaning. Figure 1 illustrated three sample groups as being months, 

countries, and the US states. There also naturally exist clusters of verbs, adjectives, adverbs, and 

so on.  



 
Figure 1 Plotting top 3,000 words in 2-D graph 

 

Furthermore, we investigate the neighbor words for a few given words, in terms of cosine 

similarity of their embedding vectors. The result is shown in Table 1. We can see that semantically 

similar words have larger values of cosine similarity.  
Table 1 Top three neighbor words (with cosine similarity) with respect to a few words 

Word Top 3 neighbor words 

king earl (0.77) pope (0.77) lord (0.74) 

women person (0.79) girl (0.77) man (0.76) 

france spain (0.94) italy (0.93) belguim (0.88) 

rome constantinople (0.81) paris (0.79) moscow (0.77) 

winter summer (0.83) autumn (0.79) spring (0.74) 

rain rainfall (0.76) storm (0.73) wet (0.72) 

car truck (0.8) driver (0.73) motorcycle (0.72) 

 

Lastly, we show that the learned word embedding vectors can be used to answer semantic 

analogy questions as in [12]. The analogy questions are of form “  is to   is as   is to ?”. As 

discussed in [12], we first normalize all embedding vectors to unit norm. Then we take the 

embedding vectors   ,   ,   , and compute            . We find the word    whose 

embedding vector is closest to   according to cosine similarity: 

         
 

  
  

||  || || ||
 

Following Mnih and Kavukcuoglu [14], the word   or   are excluded from searching     
Table 2 shows top three results for a few analogy questions with cosine similarity (between a 

candidate embedding vector    and the target vector  ). We can see that the word embedding 

vectors indeed capture the semantic relationship between a pair of words by vector offsets. For 

example, the best result for the question “italy – rome = france – ?” is “paris”, while neither 

“france” nor “rome” has “paris” as the closet word (Table 1). Take another example, the closest 

word for “winter” is “summer” (Table 1); when subtracted an offset (“summer – rain”), the closest 

word becomes “snow”. Therefore, the learned embedding vectors capture the semantic 

relationship between words to some extent by vector offsets. 

 

 

 



Table 2 Top three results for semantic analogy questions (with cosine similarity) 

Word Top 3 results 

man – woman = king – ? mary (0.70) prince (0.70) queen (0.68) 

italy – rome = france – ? paris (0.78) constantiople (0.74) egypt (0.73) 

summer – rain = winter – ? snow (0.79) rainfall (0.73) wet (0.71) 

man – eye = car – ? motor (0.64) overhead (0.58) brake (0.58) 

read – book = listen – ? sequel (0.65) tale (0.63) song (0.60) 

 

4 Conclusions  

In this technical report, we proposed learning word embedding using DSSM. We show that 
the DSSM trained on large body of text can produce meaningful word embedding vectors as 
demonstrated on semantic word clustering and semantic word analogy tasks.  
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