

Unsupervised Learning of Word Semantic Embedding using
the Deep Structured Semantic Model

Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng

Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

{xinson,xiaohe,jfgao,deng}@microsoft.com

Technical Report

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Abstract

Deep neural network (DNN) based natural language processing models rely on a word
embedding matrix to transform raw words into vectors. Recently, a deep structured semantic
model (DSSM) has been proposed to project raw text to a continuously-valued vector for
Web Search. In this technical report, we propose learning word embedding using DSSM. We
show that the DSSM trained on large body of text can produce meaningful word embedding
vectors as demonstrated on semantic word clustering and semantic word analogy tasks.

1 Introduction
Deep neural network (DNN) based semantic models such as semantic hashing (SH) have
been proposed for information retrieval [2][3]. For example, Salakhutdinov and Hinton
extended the semantic modeling using deep auto-encoders [2][3]. They demonstrated that the
hierarchical semantic structure embedded in the query and the document can be extracted via deep
learning. Superior performance to the conventional method of Latent Semantic Analysis (LSA)
was demonstrated in [2][3]. In semantic hashing and other Deep neural network (DNN) based
natural language processing models, usually the first layer of the network serves the purpose
of converting the word into a low-dimension vector representation, as known as word
embedding, which is either learned separately on large body of raw text, or learned jointly
with other parameters of the network [1][2][3]. For example, a feedforward neural network
was used to jointly learn the word embedding and a statistical language model
[14][15][16][17]; recurrent neural language models was also proposed to handle arbitrary
long contexts and more complex patterns [18]; Mnih and Kavukcuoglu [13] proposed a
feedforward neural network to maximize the similarity between the embedding vector s of the
word and of the context. Recently, a Deep Structured Semantic Models (DSSM) for Web search
was proposed in [6], which is reported to outperform significantly semantic hashing and other
conventional semantic models.

In this study, extending from the research discussed above, we developed a Deep Structured

Semantic Model (DSSM) to learn word embedding. We show that the DSSM trained on large

body of text can produce meaningful word embedding vectors as demonstrated on semantic word

clustering and semantic word analogy tasks.

2 Deep Structured Semantic Model

2.1 The Overall Architecture of the Deep Structured Semantic Model

Figure 1: The illustration of the overall structure of the DSSM.

The overall architecture of the proposed deep structured semantic model (DSSM) is shown in

Figure 1. DSSM was originally proposed with Web search as the example task that predicts

relevant documents for a given query. We use Web search to introduce DSSM in this section and

discuss how to apply DSSM to learn word embeddings in later sections.

The high-dimensional input to the DNN is a term vector, e.g., raw counts of terms in a query or

a document without normalization (a.k.a. bag-of-words), and the output of the DNN is a concept

vector in a low-dimensional semantic feature space. Given this DNN, queries and documents can

be mapped to their corresponding semantic concept vectors. Then, another layer on top of the

outputs of DNNs is applied, where at each node is the cosine similarity score between the concept

vectors of the query and each of the documents, respectively. Then a softmax smoothing is applied

to convert the cosine similarity scores into conditional likelihood.

Let’s denote by as the input term vector, as the output vector, , as the

intermediate hidden layers, as the i-th weight matrix, and as the -th bias term, we have

 ()

 ()

(1)

where we use the as the activation function at the output layer and the hidden layers

 :

 ()

 (2)

The semantic relevance score between a query and a document is then measured as:

 () ()

 (3)

where and are the concept vectors of the query and the document, respectively. In Web

search, given the query, the documents are sorted by their semantic relevance scores.

500k

 30k

300

300

128

500k

 30k

300

300

128

500k

 30k

300

300

128

500k

 30k

300

300

128

…

𝑃(𝐷 |𝑄) 𝑃(𝐷 |𝑄) 𝑃(𝐷𝑛|𝑄)

DNN

Cosine

similarity

(Word hashing)

Softmax

𝑅(𝑄 𝐷) 𝑅(𝑄 𝐷𝑛) 𝑅(𝑄 𝐷)

Conventionally, the size of the term vector, which can be viewed as the raw bag-of-words

features in IR, is equal to that of the vocabulary that is used for indexing the Web document

collection. The vocabulary size is usually very large in real-world Web search tasks. Therefore,

when using term vector as the input, the size of the input layer of the neural network would be

unmanageable for inference and model training. To address this problem, we have developed two

methods of “word hashing” for the first layer of the DNN, as indicated in the lower portion of

Figure 1. This layer consists of only linear hidden units in which the weight matrix of a very large

size is not learned. In the following section, we will describe the word hashing method in detail.

2.2 Word Hashing

The two word hashing methods described here aim to reduce the dimensionality of the

bag-of-words term vectors without requiring learning. The first method is based on the

well-known random projection. The second is based on letter-n-grams, and has an additional

advantage of making the generalization ability from the training set to the test set better. That is,

the unseen words in the test set are likely to have their letter-n-gram presentations present in the

training set.

2.2.1 Random Projection based Word Hashing

The method of sparse random projection [8] is originally proposed to perform dimensionality

reduction. We apply it to word hashing.

The sparse random projection technique projects each high-dimensional input vector (e.g.,

500k) into a low-dimensional space (a few thousands) using a sparse matrix whose entries are

sampled i.i.d. from a distribution over {0, 1, -1}. Entries of 1 and -1 are with an equal probability,

and ()

√
, where is the original input dimension.

Since the projection matrix is sampled without training, the computational cost is negligible for

even very large vocabularies. However, this method cannot deal with the mapping of those terms

that are unseen in the training set.

2.2.2 Letter-n-gram based Word Hashing

A word hashing method is also developed in this work based on the letter-n-gram count

distribution for our task. Given a word (e.g. good), we first add word starting and ending marks to

the word (e.g. #good#). Then, we break the word into letter-n-grams (e.g. letter trigrams: #go, goo,

ood, od#). Finally, the word is represented using a vector of letter-n-grams.

One problem of this method is collision, i.e., two different words could have the same

letter-n-gram vector representation. Table 1 shows some statistics of word hashing on two

vocabularies. Compared with the original size of the one-hot vector, word hashing allows us to

represent a query or a document using a vector with much lower dimensionality. Take the

40K-word vocabulary as an example. Each word can be represented by a 10,306-dimentional

vector using letter trigrams, giving a four-fold dimensionality reduction with few collisions. The

reduction of dimensionality is even more significant when the technique is applied to a larger

vocabulary. As shown in Table 2, each word in the 500K-word vocabulary can be represented by a

30,621 dimensional vector using letter trigrams, a reduction of 16-fold in dimensionality with a

negligible collision rate of 0.0044% (22/500,000).

While the number of English words can be unlimited, the number of letter-n-grams in English

(or other similar languages) is often limited. Moreover, word hashing is able to map the

morphological variations of the same word to the points that are close to each other in the

 Letter-Bigram Letter-Trigram

Word SizeSize Token Size Collision Token Size Collision

40k 1107 18 10306 2

500k 1607 1192 30621 22

Table 1: Word hashing token size and collision numbers as a function of the

vocabulary size and the type of letter bigrams and trigrams.

letter-n-gram space. More importantly, while a word unseen in the training set always cause

difficulties in word-based representations, it is not the case where the letter-n-gram based

representation is used. The only risk is the minor representation collision as quantified in Table 2.

Thus, letter-n-gram based word hashing is robust to the out-of-vocabulary problem, allowing us to

scale up the DNN solution to the Web search tasks where extremely large vocabularies are

desirable. We will demonstrate the benefit of the technique empirically in Section 4.

The letter-n-gram based word hashing method uses a fixed (i.e., non-adaptive) linear

transformation matrix, through which a term vector in the input layer is projected to a

letter-n-gram vector in the next layer higher up, as shown in Figure 1. Since the letter-n-gram

vector is of a much lower dimensionality, DNN learning can be carried out effectively.

2.3 Learning

The clickthrough logs consist of a list of queries and their clicked documents. We assume that a

query is relevant to the documents that are clicked on for that query. Therefore, the DSN can be

effectively learned by maximizing the conditional likelihood of the clicked documents given the

queries.

First, as illustrated in Figure 1, we compute the probability of a document given a query from

the semantic relevance score between them through a softmax function

 (|)
 (())

∑ (())

 (4)

where is a smoothing factor in the softmax function, which is set empirically on a held-out data

set in our experiment. denotes the set of candidate documents to be ranked. Ideally, should

contain all possible documents. In practice, for each (query, clicked-document) pair, denoted by

() where is a query and is the clicked document, we approximate D by including

 and four randomly selected unclicked documents, denote by
 .

In training, the model parameters are estimated to maximize the likelihood of the clicked

documents given the queries across the training set. Equivalently, we need to minimize the

following loss function

 () ∏ (|)

()

 (5)

where denotes the parameter set of the neural networks .

Since () is differentiable w.r.t. to . The model is trained readily using gradient-based

numerical optimization algorithms. The update rule is

 ()

|

 (6)

where is the learning rate at the iteration, and are the models at the and

the () iteration, respectively.

2.4 Learning word embedding using DSSM

In [6], DSSM is learned on the clickthrough data. In this study, we train the DSSM on a big body

of text. In order to train the DSSM, we first need to form the pairs. In this study, for

each word in the train data, we take its neighboring words in sentences as the Q, and the word

itself as the D
+
. E.g., for the t-th word in a sentence, we form a training pair as:

Then we can train the DSSM as described in the previous sections.

Comparing with related work, as discussed before, most previous work learns word embedding

jointly with a language model, where the latter determines the loss function and thus is the

optimization goal [14][15][16][17]. As a result, the optimization process is indirect with respect

to the embedding layer. In contrast, DSSM produces the embedding vectors in the output layers

and uses the cosine similarity between embedding vectors to construct the loss function.

Therefore, it direct optimizes on the embedding learning layer. We found in a preliminary study

that the DSSM approach is much easier to derive meaningful word embeding than Collobert and

Weston [15]. Mnih and Kavukcuoglu [13] resembles our work in the aspect that it also

optimizes the similarity between the embedding vectors of a word and its context. But their

work represents the context embedding vector as a linear combination of the context word

embedding vectors. In contrast, DSSM is a more general framework to project two sides of

words into the same semantic space with deep structured neural network and optimize the

similarity between vectors in that semantic space.

3 EXPERIMENTS

3.1 Implementation Details

We used the May 2013 dump of English Wikipedia as the dataset. We preprocessed Wikipedia by

removing the formatting tags, mapping all words to lowercase, and breaking into sentences by a

basic tokenizer. The most frequent 30,000 words consisting of only alphabet letters were taken as

the vocabulary. (We decided not to include digits or punctuations in the vocabulary.) For every

occurrence of a target inside-vocabulary word in every sentence in the dataset, we took an

11-word window from the sentence with the target word in the middle. We filtered out 11-word

windows that contain more than one words outside the vocabulary; a special word “RARE” was

used to replace those out-of-vocabulary words. Special words “PADDING” are added in the

beginning and in the end of each sentence to form the 11-word windows when the target word is

near the beginning or the end of the sentence. Finally we took 10 million such 11-word windows

as the training dataset. The middle word will be D
+
, and the remaining 10 context words will be Q,

as discussed in the previous sections. For each pair of , we selected 100 randomly

words as
 .

Regarding the neural network structure, the query side (for the context words) consists of the

word hashing layer, the non-linear hidden layer, and the output embedding layer; the document

side (for the target word) consists of the word hashing layer and the output embedding layer. The

word hashing layer has been discussed in Section 2.2. The hidden layer on the query side consists

of 300 nodes, and the hidden layer is not used for the document side. The dimensionality of the

learned word embedding is set to be 50, so both the output embedding layers consist of 50 nodes.

Mini-batch based stochastic gradient descent is used in the training stage, and each mini-batch

consists of 1024 training samples. Training is conducted on a single Tesla K20 GPU. Each epoch

takes roughly 210 seconds to run, and the total training time is about 2.4 hours (for 40 epochs).

3.2 Experimental Results

Firstly, we verify the quality of word embedding learning by visualization. The learned

50-dimensional embedding vectors are projected into 2-dimensional vectors using t-SNE [11] and

plotted in Figure 1. It is well shown that words are clustered into multiple groups based on the

synaptic and semantic meaning. Figure 1 illustrated three sample groups as being months,

countries, and the US states. There also naturally exist clusters of verbs, adjectives, adverbs, and

so on.

Figure 1 Plotting top 3,000 words in 2-D graph

Furthermore, we investigate the neighbor words for a few given words, in terms of cosine

similarity of their embedding vectors. The result is shown in Table 1. We can see that semantically

similar words have larger values of cosine similarity.
Table 1 Top three neighbor words (with cosine similarity) with respect to a few words

Word Top 3 neighbor words

king earl (0.77) pope (0.77) lord (0.74)

women person (0.79) girl (0.77) man (0.76)

france spain (0.94) italy (0.93) belguim (0.88)

rome constantinople (0.81) paris (0.79) moscow (0.77)

winter summer (0.83) autumn (0.79) spring (0.74)

rain rainfall (0.76) storm (0.73) wet (0.72)

car truck (0.8) driver (0.73) motorcycle (0.72)

Lastly, we show that the learned word embedding vectors can be used to answer semantic

analogy questions as in [12]. The analogy questions are of form “ is to is as is to ?”. As

discussed in [12], we first normalize all embedding vectors to unit norm. Then we take the

embedding vectors , , , and compute . We find the word whose

embedding vector is closest to according to cosine similarity:

|| || || ||

Following Mnih and Kavukcuoglu [14], the word or are excluded from searching
Table 2 shows top three results for a few analogy questions with cosine similarity (between a

candidate embedding vector and the target vector). We can see that the word embedding

vectors indeed capture the semantic relationship between a pair of words by vector offsets. For

example, the best result for the question “italy – rome = france – ?” is “paris”, while neither

“france” nor “rome” has “paris” as the closet word (Table 1). Take another example, the closest

word for “winter” is “summer” (Table 1); when subtracted an offset (“summer – rain”), the closest

word becomes “snow”. Therefore, the learned embedding vectors capture the semantic

relationship between words to some extent by vector offsets.

Table 2 Top three results for semantic analogy questions (with cosine similarity)

Word Top 3 results

man – woman = king – ? mary (0.70) prince (0.70) queen (0.68)

italy – rome = france – ? paris (0.78) constantiople (0.74) egypt (0.73)

summer – rain = winter – ? snow (0.79) rainfall (0.73) wet (0.71)

man – eye = car – ? motor (0.64) overhead (0.58) brake (0.58)

read – book = listen – ? sequel (0.65) tale (0.63) song (0.60)

4 Conclusions

In this technical report, we proposed learning word embedding using DSSM. We show that
the DSSM trained on large body of text can produce meaningful word embedding vectors as
demonstrated on semantic word clustering and semantic word analogy tasks.

References

[1] Bengio, Y., 2009. “Learning deep architectures for AI,” Foundumental Trends

Machine Learning, vol. 2, no. 1, pp. 1–127.

[2] Salakhutdinov R., and Hinton, G., 2007 “Semantic hashing,” in Proc. SIGIR

Workshop Information Retrieval and Applications of Graphical Models.

[3] Hinton, G., and Salakhutdinov, R., 2010. “Discovering Binary Codes for Documents

by Learning Deep Generative Models,” in Topics in Cognitive Science, pp 1-18.

[4] Gao, J., Toutanova, K., Yih., W-T. 2011. Clickthrough-based latent semantic models

for web search. In SIGIR, pp. 675-684.

[5] Yih, W., Toutanova, K., Platt, J., and Meek, C. 2011. Learning discriminative

projections for text similarity measures. In CoNLL.

[6] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T., and Harshman, R. 1990.

Indexing by latent semantic analysis. Journal of the American Society for Information

Science, 41(6): 391-407

[7] Dumais, S. T., Letsche, T. A., Littman, M. L., and Landauer, T. K. 1997. Automatic

cross-linguistic information retrieval using latent semantic indexing. In AAAI -97 Spring

Symposium Series: Cross-Language Text and Speech Retrieval.

[8] Li, P., Hastie, T., and Church, K.. 2006. "Very sparse random projections," in Proc.

SIGKDD.

[9] Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods for retrieving highly

relevant documents. In SIGIR, pp. 41-48.

[10] Huang, P., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. 2013. Learning deep

structured semantic models for web search using clickthrough data. In CIKM

[11] Maaten, L.J.P. van der and Hinton, G.E. 2008. Visualizing high-dimensional data

using t-SNE. In Journal of Machine Learning Research 9(Nov):2579-2605

[12] Mikolov, T., Yih, W.-T. and Zweig, G. 2013. Linguistic regularities in continuous

space word representations. In Proc. NAACL-HT.

[13] Mnih, A. and Kavukcuoglu, K. 2013. Learning word embeddings efficiently with

noise-contrastive estimation. In NIPS.

[14] Bengio, Y., Ducharme, R. and Vincent, P. 2003. A neural probabilistic language

model. In Journal of Machine Learning Researc, 3:1137-1155.

[15] Collobert, R. and Weston, J. 2008. A unified architecture for natural language

processing: deep neural networks with multitask learning. In ICML.

[16] Huang, E., Socher, R., Manning, C. D. and Ng, A. Y. 2012. Improving word

representations via global context and multiple word prototypes. In ACL.

[17] Mikolov, T., Chen, K., Corrado, G. and Dean, J. 2013. Efficient estimation of word

representations in vector space. In ICLR.

[18] Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. and Khudanpur, S. 2010.

Recurrent neural network based language model. In Interspeech.

