
AA-KY66C-TE

VAXRdb/VMS
Introduction and Master Index

December 1990

This manual provides an overview of VAX RdbNMS, a general description of the VAX
RdbNMS documentation set, a glossary of VAX RdbNMS terms, and a master index to
the VAX RdbNMS manuals.

Revision/Update Information: This manual is a revision and supersedes previous
versions.

Operating System:

Software Version:

digital equipment corporation
maynard, massachusetts

VMS

VAX RdbNMS Version 4.0

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license. No responsibility
is assumed for the use or reliability of software or equipment that is not supplied by
Digital Equipment Co1·poration or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

©Digital Equipment Corporation 1988, 1989, 1990.

All rights rese1'Ved.
P1inted in U.S.A.

The Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ALL-IN-1, CDD/Plus,
DEC, DEC/CMS, DECdecision, DECdtm, DECforms, DECintact, DEC/MMS, DECnet,
DECtp, DECtrace, DECwindows, Micro VAX, ULTRIX, UNIBUS, VAX, VAX ACMS, VAX
Ada, VAX BASIC, VAX C, VAX CDD, VAXcluster, VAX COBOL, VAX DATATRIEVE,
VAX DBMS, VAXELN, VAX FMS, VAX FORTRAN, VAX Pascal, VAX RALLY, VAX
Rdb/ELN, VAX RdbNMS, VAX RMS, VAX SPM, VAXstation, VAX TEAMDATA, VIDA,
VMS, VT, and the DIGITAL Logo.

The following are third-party trademarks:

DB2 and IBM are registered trademarks of International Business Machines.
MS-DOS is a registered trademark of Microsoft Corporation.
Macintosh is a trademark of Apple Computer, Inc.

This document is available in printed and online versions.

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface... v

1 Rdb/VMS Overview
1.1
l. l. l

1.1.2
1.1.3
1.2
1.3
1.4
1.4. l
1.4. l. l
1.4. l.2
1.4.l .3
1.4. l.4
l.4.1.5
1.4.2
1.4.2. l
1.4.2.2
1.4.2.3
1.4.2.4
1.4.3

1.5
1.5. l
1.5.2

Understanding Rdb/VMS Concepts, Features, and Terminology
Understanding Relational Concepts as Implemented in
Rdb/VMS .. .
Understanding Rdb/VMS Features
Understanding Differences in Relational Terminology

Accessing Online Help for Rdb/VMS
Setting Up the Sample Database
Accessing Rdb/VMS Using SQL

Using Interactive SQL
Accessing Interactive SQL
Retrieving Data Using SQL SELECT Statements
Using Indexes for Retrieving Data
Joining Data from Multiple Tables
Isolating Unique Data Values

Using SQL Statements in Programs
Using SQL Module Language
Using Precompiled SQL
Using Dynamic SQL
Using the SQL Online Program Examples

Accessing Rdb/VMS from Systems Other Than VMS Using
SQUServices

Accessing Rdb/VMS Using RDO, RDML, and RDBPRE
Introducing RDO, RDML, RDBPRE, and Other Interfaces .. .
Using the Online Program Examples for RDO, RDML, and
RDBPRE .. .

1-2

1-2
1-6

1-11
1-15
1-15
1-20
1-20
1-21
1-21
1-22
1-23
1-24
1-24
1-25
1-25
1-26
1-26

1-28
1-29
1-29

1-30

Ill

1.6
1.7
1.8

Maintaining and Tuning RdbNMS Databases with RMU
RdbNMS Product Kits
Using RdbNMS with Other Digital Products

1-31
1-33
1-34

2 Rdb/VMS Documentation Directory

Glossary

A Rdb/VMS Master Index

Tables

1-l Sample COLLEGES Table . 1-3
1-2 CURRENT_SALARY View . 1-3
1-3 Differences in Relational Terminology . 1-11
1-4 Syntax Differences Between SQL and RDO.................. 1-12
1-5 SQL Files to Create Sample Databases . 1-19
1-6 Program File Types . 1-28
1-7 OJ!line Program Exam pl es for RDBPRE and RDML 1-31
A-1 Abbreviations for the Manuals Included in the Master Index A-1

Iv

Preface

The VAX RdbNMS software, often referred to as RdbNMS in this manual, is
a general purpose database management system based on the relational data
model.

Purpose of This Manual
This manual serves four functions. It provides:

1 An overview of Rdb/VMS terms, concepts, and components

2 A brief summary of the purpose and contents of the manuals in the
RdbNMS documentation set

3 A glossary of RdbNMS terms

4 A master index for the RdbNMS manuals

Intended Audience
This book is intended for the data processing professional who wants to become
acquainted with the components of VAX RdbNMS, the relational database
system from Digital for VMS systems. You do not need to be an expert with
relational databases before reading this book. However, you should be familiar
with the VMS operating system and VAX RMS, a record management service,
before reading this manual. If you are not familiar with the VMS operating
system, refer to the VMS documentation set for more information.

v

Operating System Information
Information about the versions of the operating system and· related software
that are compatible with this version of RdbNMS is included in the RdbNMS
media kit and the VAX Rdb/VMS Installation Guide.

For information on the compatibility of other software products with this
version of RdbNMS, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to
verify which versions of your operating system are compatible with this version
ofRdb/VMS.

Structure
This manual consists of two chapters, a glossary, and a master index.

Chapter 1

Chapter 2

Glossary

Appendix A

Introduces RdbNMS terms, concepts, and components.

Summarizes the purpose and contents of each RdbNMS
manual.

Defines terms used with Rdb/VMS.

Contains a master index for the RdbNMS
documentation set.

Conventions

vi

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the RETURN key at the end of a line of
input.

This section explains the conventions used in this manual:

e, f, t

Color

$

A vertical ellipsis in an example means that information not directly
related to the example has been omitted.

A horizontal ellipSis in statements or commands means that parts of
the statement or command not directly related to the example have
been omitted.

Index entries in the printed manual may have a lowercase e, f,
or t following the page number; the e, f, or t is a reference to the
example, figure, or table, respectively, on that page.

In printed manuals, color in examples shows user input.

The dollar sign represents the DIGITAL Command Language
prompt; This symbol indicates that the DCL interpreter is ready
for input.

References to Products
The RdbNMS documentation to which this document belongs often refers to
products by their abbreviated names:

• DEC RdbExpert software is referred to as RdbExpert.

• DECdecision software is referred to as DECdecision.

• DECtrace software for VMS is referred to as DECtrace.

• The SQL interface to VAX RdbNMS is referred to as SQL. The SQL
interface is Digital Equipment Corporation's implementation of the SQL
standard ANSI X3.135-1989, ISO 9075:1989, commonly referred to as
ANSI/ISO.

• VAXACMS software is referred to as ACMS.

• VAX BASIC software is referred to as BASIC.

• VAX C software is referred to as C.

• VAX CDD/Plus software is referred to as CDD/Plus, the data dictionary,
and the dictionary.

• VAX COBOL software is referred to as COBOL.

• VAX Data Distributor software is referred to as Data Distributor.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX FORTRAN software is referred to as FORTRAN.

• VAX Pascal software is referred to as Pascal.

• VAX PL/I software is referred to as PL/I.

• VAX RALLY software is referred to as RALLY.

• VAX Rdb/ELN software is referred to as Rdb/ELN.

• VAX RdbNMS software is referred to as RdbNMS. Version 4.0 of VAX
RdbNMS software is often referred to as V4.0.

• VAX TDMS software is referred to as TDMS.

• VAX TEAMDATA software is referred to as TEAMDATA.

vii

1
RdbNMS Overview

RdbNMS is the Digital relational database management product that supports
a full set of utilities and data definition and manipulation languages that let
you create, query, and maintain your RdbNMS databases.

You can use RdbNMS for interactive queries or from within application
programs. One advantage of a relational database is the ease with which
you can retrieve precisely the information you want, even if you must gather
the information from data stored in different places. You can access an
RdbNMS database using any of the interfaces provided in your RdbNMS kits.
Additionally, there are a number of other Digital products (discussed later in
this chapter) through which you can access an RdbNMS database.

One of the interfaces supplied with your RdbNMS kit is SQL (structured
query language), an industry-standard data definition and data manipulation
language for relational databases. The SQL interface is Digital Equipment
Corporation's implementation of the SQL standard ANSI X3.135-1989,
ISO 9075:1989, commonly referred to as ANSI/ISO. Digital recommends that
you use SQL to access your RdbNMS database.

Using SQL, you can design and create an RdbNMS database, load it with
data, and read and update both data and data definitions. You can use SQL
interactively or in application programs. SQL provides both a module language
processor that lets you use SQL with any language that supports the VAX
Procedure Calling Standard, whether or not there is a precompiler for that
language, and a precompiler that supports VAX Ada, VAX C, VAX COBOL,
VAX FORTRAN, VAX Pascal, and VAX PL/I.

When using SQL module language, you put SQL statements in a separate
module language file which is called by your application program. SQL and
the other Rdb/VMS interfaces are discussed in Section 1.4 and Section 1.5.

RdbNMS Overview 1-1

For additional introductory information, you can run an online demonstration
procedure that introduces RdbNMS and shows how to create, use, and
maintain a simple database. Run the online demonstration by entering:

$ @RDM$DEMO:DEMO

This chapter discusses the following topics:

• Relational concepts, RdbNMS features, and terminology

• Accessing online help

• Setting up the sample databases

• Accessing Rdb/VMS using SQL

• Accessing Rdb/VMS using other interfaces

• The online program examples for SQL and other interfaces

• Maintaining and tuning RdbNMS databases with the Rdb/VMS
Management Utility (RMU)

• RdbNMS product kits

• Using RdbNMS with other Digital products

1. 1 Understanding Rdb/VMS Concepts, Features, and
Terminology

Before you create an Rdb/VMS database, you need to understand the relational
model of database management systems, the RdbNMS features available to
help you create, access, and maintain your database, and the differences in
terminology among the different interfaces. This section discusses these topics.

1. 1. 1 Understanding Relational Concepts as Implemented in
Rdb/VMS

In a relational database, data is organized in tables (or relations). Each
table is made up of columns and rows. The columns are· equivalent
to data elements, or fields. The rows are equivalent to records; they
indicate occurrences of column values in the table. If you are familiar with
manipulating data in separate data files, you may think of tables as being
roughly equivalent to data files. Columns and rows in a table are analogous to
fields and records in a data file.

For example, Table 1-1 shows the five columns of the COLLEGES table of the
RdbNMS sample personnel database, along with the first four rows (record
occurrences). AU begins the American University row; BATE begins the Bates
College row, and so forth.

1-2 RdbNMS Overview

Table 1-1 Sample COLLEGES Table

COLLEGE_ CODE COLLEGE_NAME CITY STATE POSTAL_ CODE

AU American Washington DC 20016
University

BATE Bates College Lewiston ME 04240

BOWD Bowdoin College Brunswick ME 04011

CALT Cal. Institute of Pasadena CA 91125
Tech.

Not all tables contain data that is physically stored in the database. A view is
a logical table whose data is not physically stored in the database. You would
access a view just as you would access a table whose data is physically stored.
Views provide a way to define database access to fit the needs and access rights
of particular users. You can include in your view definition any combination of
columns and rows from other tables to tailor the database to suit your needs.

Table 1-2 presents the CURRENT_SALARY view from the sample personnel
database. Columns from different tables comprise the columns of the
CURRENT_SALARY view. For example, the columns LAST_NAME, FIRST_
NAME, and EMPLOYEE_ID are from the EMPLOYEES table; and the
SALARY_START and SALARY_AMOUNT columns are from the SALARY_
HISTORY table.

Table 1..;.2 CURRENT_SALARY View

SALARY_
LAST_NAME FIRST_NAME EMPLOYEE_ID SALARY _START AMOUNT

Toliver Alvin 00164 14-JAN-1983 $51,712.00

Smith Terry 00165 1-JUL-1982 $11,676.00

Tables and views are defined in the schema for the database. A schema
contains the data definitions for a database. The data definitions include
the tables, views, constraints, indexes, domains, triggers, and, for multifile
databases, storage areas and (optionally) storage maps. (In a single-file
database, the data definitions and the actual data are in the same file.) The
SQL CREATE SCHEMA statement actually creates the database that is based
on the specified schema definitions. You can easily modify schema definitions
in Rdb/VMS as required by your application needs.

Rdb/VMS Overview 1-3

Constraints are conditions that restrict what values can be stored in a
table. When you insert and update columns, the constraint checks the values
you attempt to insert against the conditions specified by the constraint. For
example, a constraint could ensure that the value entered for the SEX column
would be either Mor F. If a value violates the conditions set by the constraint,
SQL generates an error message. You specify constraints in SQL CREATE
TABLE and SQL ALTER TABLE statements.

Table-specific constraints are a type of constraint that prevent changes from
being made that would violate the referential integrity of the database. For
instance, a table-specific constraint could prevent the deletion of a row from
the EMPLOYEES table if rows still exist in the JOB_HISTORY table for that
employee.

Triggers are used to ensure that if you make a change to a table, appropriate
changes will be made in other tables throughout the database. For example,
you can define a trigger to specify that before a row is deleted from the
EMPLOYEES table, all records for that employee would be deleted from other
tables as appropriate. (You could store employee information about to be
deleted in an archival database before the triggered action takes place.)

A domain can be thought of as a template for one or more table column
definitions. The SQL CREATE DOMAIN statement associates a data type,
and optionally other characteristics, with a domain name. Subsequent SQL
CREATE TABLE statements use the domain definitions in their column
definitions. User-defined domains let you standardize information with
common characteristics so that the same elements are not defined differently
in different tables.

For example, the domain ID_DOM is used for the EMPLOYEE_ID column in
several tables and for the SUPERVISOR_ID column in the JOB_HISTORY
table; the domain LAST_NAME_DOM is used for the LAST_NAME column in
the EMPLOYEES and CANDIDATES tables, and the DATE_DOM domain is
used for date columns in the EMPLOYEES and JOB_HISTORY tables. The
following example shows some domain definitions and indicates which table
uses those domains:

SQL> CREATE DOMAIN ID_DOM CHAR(S);
SQL> !
SQL> CREATE DOMAIN LAST_NAME_DOM CHAR(14);
SQL> !
SQL> CREATE DOMAIN FIRST_NAME_DOM CHAR(lO);
SQL> !
SQL> CREATE DOMAIN DATE_DOM DATE;
SQL> !
SQL> SHOW TABLE EMPLOYEES;

1-4 RdbNMS Overview

Column Name

EMPLOYEE ID
LAST NAME
FIRST NAME

BIRTHDAY

SQL> SHOW TABLE JOB_HISTORY;

Column Name

EMPLOYEE ID

JOB START
JOB END

SUPERVISOR ID

SQL> SHOW TABLE CANO ID ATES;

Column Name

LAST NAME
FIRST NAME

Data Type

CHAR(S)
CHAR(l4)
CHAR(lO)

DATE

Data Type

CHAR (5)

DATE
DATE

CHAR(S)

Data Type

CHAR(l4)
CHAR(lO)

Domain

ID DOM
LAST NAME DOM - -
FIRST NAME DOM

DATE DOM

Domain

ID DOM

DATE DOM
DATE DOM

ID DOM

Domain

LAST NAME DOM - -FIRST NAME DOM - -

Lists (SQL) or segmented strings (RDO) are special data types for the
storage and retrieval of unstructured data. Examples of unstructured data
include the following formats:

• Large amounts of text

• Long strings of binary input from a data collecting device

• Graphics data

In Rdb/VMS, this data is stored in unstructured bytes and divided into
segments no larger than 64K bytes. Except for the length of these segments,
Rdb/VMS does not know anything about the type of data contained in these
data segments.

Rdb/VMS Overview 1-5

A transaction is a set of operations on a database that must complete
as a unit or not complete at all. A transaction lets you defer the action of
making permanent (committing) database changes until you are sure that
all statements in a unit have executed successfully and have done what you
expected them to do. Because a transaction groups SQL statements into a unit,
you can apply (commit) or undo (roll back) the changes made by the statements
within the transaction. For example, you can defer committing the changes
(making the changes permanent) until you are sure that all update operations
have been made correctly.

A distributed transaction groups more than one database or more than one
database attachment into one transaction, even if the databases are located
on different nodes. You apply changes to more than one database within one
transaction; RdbNMS ensures that transactions involving changes to multiple
databases are handled as a unit by using a two-phase commit protocol.

1.1.2 Understanding Rdb/VMS Features
Once you understand the basic structure of an RdbNMS database, you need
to be aware of the varied features that let you create, use, and maintain the
database. Rdb/VMS is a full-feature relational database system that offers:

• Data independence and consistency

You can remove data definitions from application programs and store
them in the database with the data. Because Rdb/VMS reduces the
storing of redundant data, it helps ensure that updates do not result in
inconsistent data. RdbNMS also lets you centralize the management
of data definitions, both within the database file and within the data
dictionary (VAX CDD/Plus). You can use views to manage data stored in
separate tables in the database. Table-specific constraints and triggers can
be used to ensure that changed data remains consistent throughout the
database.

• Data integrity

RdbNMS maintains the integrity of the database in the event of user
errors, hardware or software failures, and concurrent use of the database.
A before-image journal (also called recovery-unit journal (RUJ)) contains
copies of records before they were updated. RdbNMS uses the before-image
journal to automatically undo updates to a database when a rollback or
system failure occurs. An after-image journal (AIJ) contains copies of
rows after they have been updated. You can use the after-image journal to
reconstruct a backup database to include the last successfully completed
transaction. Integrity constraints ensure that data remains correct even
when users try to modify it incorrectly.

1-6 RdbNMS Overview

• Interactive, multiuser environment

You can have access to the data at the same time as other users, yet each
user can work from a customized view that may include only a subset
of the entire database. RdbNMS also ensures that your operations
on the database do not lead to inaccurate results for other users.
Locking mechanisms ensure the maintenance of your data's integrity
and consistency. Rdb/VMS uses snapshot files to ensure that you read
a consistent view of the data even while other users are updating the
database.

• Data security

RdbNMS complies with the C2 class security requirements specified by the
National Computer Security Center (NCSC) in the Department of Defense
(DoD) Trusted Computer System Evaluation Criteria, (the Orange Book).
C2 class security requirements include:

Discretionary protection ("need-to-know protection")

The creator of a database object can control the protection on that
object.

User identification and authentication

Rdb/VMS allows use of the database by authenticated VMS users.

Resource isolation

This feature protects database objects from interference by non­
database processes.

Accountability

Rdb/VMS audits user actions that affect the security of the database.

RdbNMS implements C2 class security through a number of database
security mechanisms:

Access privilege sets

You can use an access privilege set to limit database object access to
particular users and to specify a list of privileges for those users.

Role-oriented privileges

You can designate users with role-oriented privileges to perform
necessary tasks such as a backup operation without compromising the
security of the data.

Security audit logging

You can audit events that affect the security of the database, and
review the audit records generated by those events, by using facilities
provided by RMU.

RdbNMS overview 1-7

• Optimized data access

RdbNMS includes a query optimizer that automatically analyzes each
query to determine the most efficient method of access to the data. Because
of the query optimizer, you do not have to be overly concerned with how
you construct your queries.

• Ability to create multifile databases

You can define multiple files for one database, and you can distribute
the individual files across many disks on your VAX system or VAXcluster
configuration. You can create either a single-file or multifile RdbNMS
database. In a single-file database, all user-stored data and internal
RdbNMS data resides in a single database root file with the default file
type RDB. A single-file database also includes a snapshot file, which
provides temporary storage for read-only data retrieval and has a default
file type SNP. By default, both files are located on the same device and in
the same directory. However, these locations can be changed.

A multifile database includes one or more user-defined storage-area files
in which user-stored data from one or more tables or indexes will reside.
A multifile database consists of a database root file (file type RDB), one or
more storage area files (file type RDA), and one or more snapshot files (file
type SNP). One snapshot file is created for each storage area file. These
files can be placed on different devices or in different directories.

• Choice of interfaces to the database

You can access an RdbNMS database through various supplied interfaces.
These interfaces include:

SQL (structured query language)

SQL module language

SQL precompiler

RDO (Relational Database Operator)

RDML (Relational Data Manipulation Language)

RDBPRE preprocessor

SQL is used in most examples in the Rdb/VMS documentation set.
However, the RdbNMS documentation set includes reference manuals for
RDO and RDML, as well as a guide to using RDO, RDML, and RDBPRE.

1-8 RdbNMS Overview

Note You can use either the SQL or the RDO interface to work with your
databases, regardless of which interface was used to create them.

• Access from systems other than VMS

You can access an RdbNMS database from various platforms, such as
VMS, MS-DOS, and ULTRIX, with SQL/Services, a client/server component
of RdbNMS that provides a callable routine interface similar to dynamic
SQL. (Dynamic SQL is a set of SQL statements and data structures
that allows programs to formulate and execute SQL statements at run
time.) Application programs call routines in the SQUServices Application
Programming Interface (API) library. The API library communicates
through DECnet with a server process on the VMS system on which the
RdbNMS database resides.

• Operations involving multiple databases

You can start a distributed transaction that combines data from more than
one database in a single query or update operation. These databases need
not be on the same node. Your application can attach to more than one
database using authorization identifiers to uniquely identify each database.

If the distributed transaction makes changes to more than one database,
RdbNMS uses a two-phase commit protocol to ensure that all changes are
either committed or rolled back.

• Ability to use read-only storage areas on a compact disk

You can store an RdbNMS read-only storage area on a compact disk.
Compact disk read-only memory (CDROM) software can be used to permit
fast and efficient online access to the data. Use of a compact disk enhances
online retrieval and conserves storage space.

• Use of indexes for quick data retrieval

You can locate particular records based on key column values by using an
index. Sorted and hashed indexes both allow for quick and efficient data
retrieval based on index keys. Sorted indexes can be used to retrieve a
range of values for a column; hashed indexes are best used to retrieve only
a specific value. Hashed indexes can be used only with multifile databases.
Sorted indexes can be used with single-file and multifi.le databases.

• Language-Sensitive Editor (LSE) templates for SQL statements

You can use the VAX Language-Sensitive Editor (LSE) templates to code
SQL modules for incorporation in application programs. LSE expands the
SQL statements to provide syntax for you, letting you simply fill in the
blanks in the supplied language template. Templates are not available for
RDO, RDBPRE, or RDML.

Rdb/VMS Overview 1-9

• Distributed databases

You can access an Rdb/VMS database on a remote node by supplying the
node name with the file specification for the database. You can also use
VAX Data Distributor to make complete or partial copies of your Rdb/VMS
databases on remote nodes. A replication database would be periodically
updated, an extraction database would not.

• Centralized database management

A single user can handle the responsibility of administering the database.
This centralization of database administration tasks helps ensure the
consistency of the database. A set of simple RMU commands and SQL or
RDO statements make database maintenance and control easy.

• Control over disk space management

You can place the database root file, data files, snapshot files, journal files,
and backup files on different disks to ensure both the availability of space
and the preservation of the database in the event of a disk failure.

• Maintenance and performance tools

RdbNMS supplies a variety of maintenance and performance tools for you
to use. The RdbNMS Management Utility (RMU) lets you perform the
following functions:

Back up and restore the database either on a database-wide level or
by area

Open and close the database

Unload specific tables and views into files

Reload data from these files or from record management services (RMS)
files into a specific table

Recover the database from the after-image journal file

Analyze the efficiency of retrieval through indexes

Display database statistics

Verify the integrity of the database

• VAXcluster support, including full journaling and recovery

RdbNMS is fully operational in a VAXcluster environment.

• Full online help facilities

Online help is available through the DIGITAL Command Language (DCL)
level as well as through the interactive RdbNMS utilities. See Section 1.2
for more information about accessing online help for Rdb/VMS.

1-10 RdbNMS OveNlew

1. 1.3 Understanding Differences in Relational Terminology
As Section 1.1.2 presents, there are several interfaces to choose from when
using Rdb/VMS. In general, terminology for relational database systems varies
from system to system and from interface to interface. Thus, the RdbNMS
interfaces use different terms to mean the same thing. For instance, some
terms used by SQL differ from terms used by other interfaces, such as RDO
orRDML.

Table 1-3 shows some of the terms used to describe basic relational database
concepts. For example, when you use documentation pertaining to SQL, you
will encounter the terms table, column, and row. However, when you use
documentation pertaining to RDO or RDML, you will encounter the terms
relation, field, and record. This manual primarily uses SQL terminology.

Table 1-3 Differences in Relational Terminology

SQL

Alias

Authorization identifier

Cartesian product

Column

Column select
expression

Consistency level 2

Consistency level 3

Context files

Domain

List

Parameter

Predicate

READ ONLY

READ WRITE

Result table

Row

RDO, RDML

Context variable

Database handle

Cross product

Field

Record selection
expression

Concurrency

Consistency

N/A2

Global field

Segmented String

Host language variable

Conditional expression

READ_ONLY

READ_ WRITE

Record stream

Record

1 SQL2 is the industry standard currently being developed.

ANSI/ISO SQL STANDARD

Alias

Cartesian product

Column

Column select expression

Consistency level 2 (SQL2)1

Consistency level 3 (SQL2)1

N/A2

Domain (SQL2)1

Parameter

Predicate

READ ONLY

READ WRITE

Result table

Row

2N/A means that the term is not applicable or not used with.the listed product, standard, or
system.

(continued on next page)

Rdb/VMS Overview 1-11

Table 1-3 (Cont.) Differences in Relational Terminology

SQL

Storage area

Storage map

Table

RDO, RDML

Storage area

Storage map

Relation

ANSI/ISO SQL STANDARD

N/A2

N/A2

Table

2N/A means that the term is not applicable or not used with the listed product, standard, or
system.

Just as different terms mean the same thing between RDO and SQL, different
statements do the same thing. Table 1-4 presents the SQL data definition and
manipulation statements and supplies the RDO equivalents.

Table 1-4 Syntax Differences Between SQL and RDO

SQL Statement RDO Statement

ALTER DOMAIN

ALTER INDEX

ALTER SCHEMA

ALTER STORAGE MAP

ALTERTABLE

BEGIN DECLARE

CLOSE

CLOSE LIST CURSOR

COMMENT ON

COMMIT

CREATE CO~LATING SEQUENCE

CREATE DOMAIN

CREATE INDEX

CREATE SCHEMA

CREATE STORAGE AREA clause

CREATE STORAGE MAP

CREATE TABLE

CREATE TRIGGER

1-12 Rdb/VMS Overview

CHANGE FIELD

CHANGE INDEX

CHANGE DATABASE

CHANGE STORAGE MAP

CHANGE RELATION

No equivalent

END_STREAM

END_SEGMENTED_STRING

DESCRIPTION IS

COMMIT

DEFINE COLLATING_SEQUENCE

DEFINE FIELD

DEFINE INDEX

DEFINE DATABASE

DEFINE STORAGE_AREA clause

DEFINE STORAGE MAP

DEFINE RELATION

DEFINE TRIGGER

(continued on next page)

Table 1-4 (Cont.) Syntax Differences Between SQL and RDO

SQL Statement

CREATE VIEW

DCL Invoke ($)

DECLARE CURSOR

DECLARE SCHEMA

DECLARE STATEMENT

DECLARE TABLE

DECLARE TRANSACTION

DELETE

DESCRIBE

DROP COLLATING SEQUENCE

DROP CONSTRAINT

DROP DOMAIN

DROP INDEX

DROP PATHNAME

DROP SCHEMA

DROP STORAGE MAP

DROP TABLE

DROP TRIGGER

DROP VIEW

EDIT

END DECLARE

Execute@

EXECUTE

EXECUTE IMMEDIATE

EXIT

EXPORT

FETCH

FINISH

GRANT

GRANT ANSI style

RDO Statement

DEFINE VIEW

DCL Invoke ($)

START_STREAM and DECLARE_
STREAM

INVOKE DATABASE

No equivalent

No equivalent

START_TRANSACTION

ERASE

No equivalent

DELETE COLLATING_SEQUENCE

DELETE CONSTRAINT

DELETE FIELD

DELETE INDEX

DELETE PATHNAME

DELETE DATABASE

DELETE STORAGE MAP

DELETE RELATION

DELETE TRIGGER

DELETE VIEW

EDIT

No equivalent

Execute@

No equivalent

No equivalent

EXIT

EXPORT

FETCH

FINISH

DEFINE PROTECTION

No equivalent

(continued on next page)

Rdb/VMS Overview 1-13

Table 1-4 (Cont.) Syntax Differences Between SQL and RDO

SQL Statement

HELP

IMPORT

INCLUDE

INSERT

INTEGRATE

OPEN CURSOR

OPEN INSERT ONLY LIST CURSOR

OPEN READ ONLY LIST CURSOR

PREPARE

PRINT

QUIT

RELEASE

REVOKE

REVOKE ANSI style

ROLLBACK

SELECT

SET

SET ALL CONSTRAINTS

SET TRANSACTION

SHOW

UPDATE

WHENEVER

No equivalent

No equivalent

No equivalent

No equivalent

Use CREATE TABLE

1-14 Rdb/VMS Overview

RDO Statement

HELP

IMPORT

No equivalent

STORE

INTEGRATE DATABASE

START_STREAM

CREATE_SEGMENTED_STRING

START_SEGMENTED_STRING

No equivalent

PRINT

EXIT

No equivalent

DELETE PROTECTION

No equivalent

ROLLBACK

FOR-GET-END_FOR or FOR-PRINT­
END_FOR

SET

No equivalent

START_TRANSACTION

SHOW

MODIFY

ON ERROR

ANALYZE

CLOSE

OPEN

PLACE

DEFINE CONSTRAINT

1.2 Accessing Online Help for Rdb/VMS
Complete online help is available for Rdb/VMS. From the DCL level, you can
access help for Rdb/VMS, SQL, RDO, RDML, and RMU. For example, to access
a general help screen for Rdb/VMS, enter the following command at the DCL
prompt:

$ HELP RDBVMS

(Note the absence of the slash between Rdb and VMS.)

Entering a question mark at the topic prompt will cause DCL to display a list
of all topics included under RDBVMS help.

Additionally, more detailed help is available from within the interactive
interfaces, SQL and RDO. To access this help, enter the interactive interface of
your choice, and then enter help:

$ SQL
SQL> HELP

Each primary HELP command displays a list of topics on which information
is available. At the topic prompt, enter one of the listed subjects to display
information, and, in some cases, a list of subtopics.

You may prefer to access a specific topic or subtopic with one simple HELP
command. For example, to access the syntax diagram for the SQL CREATE
SCHEMA statement, you can enter:

SQL> HELP CREATE SCHEMA

You can exit help by either pressing the RETURN key until you reach the
prompt from which you first entered the HELP command, or by pressing
CTRUZ at any point.

1.3 Setting Up the Sample Database
To help you learn and test Rdb/VMS features, Rdb/VMS provides files to
create the various forms of the sample personnel database: PERSONNEL, a
single-file database, and MF _PERSONNEL, a multifile database. These forms
can be built using either SQL or RDO data definitions. Additionally, you can
choose whether or not to store data definitions in the data dictionary.

This section guides you through the process of creating your own copy of the
sample Rdb/VMS databases. Many examples in the documentation are based
on the sample personnel database. You create copies of the personnel database

RdbNMS Overview 1-15

by executing the DCL command procedure PERSONNEL.COM located in the
directory RDM$DEMO. By default, this command procedure builds the single­
file PERSONNEL database using SQL data definitions. A prompt appears
regarding use of the data dictionary:

$ @RDM$DEMO:PERSONNEL

This command file builds the VAX Rdb/VMS sample database, PERSONNEL.
It requires approximately 2900 blocks of disk space.

You may enter the name of a VMS directory in which to create the database
or use your current default directory. You can also have the database
definitions placed in the common data dictionary if VAX COD/Plus is
installed on your system. In this case you must specify a VAX COD/Plus
directory in which to create the definitions.

NOTE: If a copy of PERSONNEL already exists in the location you
specify, this command procedure will stop.

Do you wish to use COD/Plus? (Yes or No or Exit) NO

Enter VMS directory specification for the database files

Directory; default is DISKl: [JONES.TEMP]:

>> Creating database in specified directory

Creating domains for the sample database

Creating tables for the sample database

Creating views for the sample database

Adding comments for domain and table definitions

Storing sample data in several tables. (Other tables to
be loaded later by separate programs.)

1 row inserted
1 row inserted
1 row inserted
1 row inserted
1 row inserted
1 row inserted

>> Loading PERSONNEL database from data files

Program: Loading EMPLOYEES
Program: EMPLOYEES Loaded. Normal End-of-Job
Program: Loading JOBS
Program: JOBS Loaded. Normal End-of-Job
Program: Loading DEPARTMENTS
Program: DEPARTMENTS Loaded. Normal End-of-Job
Program: Loading JOB HISTORY
Program: JOB HISTORY-Loaded. Normal End-of-Job
Program: Loading SALARY_HISTORY
Program: SALARY HISTORY Loaded. Normal End-of-Job
Program: Loading COLLEGES
Program: COLLEGES Loaded. Normal End-of-Job
Program: Loading DEGREES
Program: DEGREES Loaded. Normal End-of-Job

1-16 RdbNMS Overview

Loading RESUMES table
1 row inserted
1 row inserted
1 row inserted

Creating remaining sorted indexes for MF PERSONNEL

Creating triggers for the sample database

>> End of command procedure.

>> Examine the log file DISKl: [JONES.TEMP)PERSONNEL.LOG for the
>> database definitions and possible errors which occurred during the
>> database creation.
>>
>> The RDM$DEMO directory contains all the files used in building this
>> sample database.

If the command procedure executes successfully, you will find the following files
in the directory you specified:

• PERSONNEL.ROB

This is the file where data and data definitions (metadata) are stored.
Metadata is data that is used to describe other data. Data definitions are
sometimes referred to as metadata.

• PERSONNEL.SNP
This is the snapshot file that provides read-only access to the database. A
snapshot file exists to improve database performance when there are many
concurrent database users.

You can create alternative versions of the sample personnel database by using
the three available parameters on the PERSONNEL command line. These
parameters specify the following choices:

Use of either SQL or RDO as the data definition language. (Enter SQL
or RDO.)

2 Creation of either a single-file or multifile personnel database.
(Enter Sor M.)

3 Whether or not to store data definitions in the data dictionary. (Enter CDD
or NOCDD.)

To specify the second or third parameters, you must include any previous
parameters.

The multifile version of the personnel database is MF _PERSONNEL. To build
the MF _PERSONNEL database using SQL data definitions, enter the following
command:

$ @RDM$DEMO:PERSONNEL SQL M NOCDD

This example will create the MF _PERSONNEL database using SQL. Data
definitions will not be stor,ed in the data dictionary.

Rdb/VMS Overview 1-17

The MF _PERSONNEL database consists of the following files:

• MF _PERSONNEL.RDB

This is the database root file where data definitions (metadata) are stored.

• Several storage area files (file type RDA)

Storage area files are where data is stored in a multi:file database.

• Several snapshot files (file type SNP); one for each storage area file

RdbNMS uses snapshot files during read-only transactions to ensure
each transaction a consistent view of the database, and to improve overall
performance when there are many concurrent users of the database.

If you encountered an error while running the command procedure, check
the file PERSONNEL.LOG. You may have entered a dictionary or VMS
directory specification incorrectly. In this case, you may have produced an
incomplete version of the PERSONNEL or MF _PERSONNEL database. To
remedy the situation, delete any data dictionary node or database files the
command procedure has created. (The command procedure first creates the
data dictionary node, then creates the database files, and :finally stores data in
the database. Unless an error, such as a system failure, occurs when data is
being stored, you will have to delete either a dictionary node or database files,
but not both.)

You can delete a database by invoking interactive SQL and entering a DROP
SCHEMA FILENAME statement that includes a file specification. If you
need to delete the database files and a dictionary node, use the PATHNAME
clause of the DROP SCHEMA statement. For the VMS file specification
and dictionary path name specified in the following examples, you would
substitute the VMS file specification and dictionary path name that identify
your incomplete copy of the PERSONNEL database:

SQL> DROP SCHEMA PATHNAME SYS$COMMON: [CDDPLUS]D32T.FIELDMAN.PERSONNEL;

SQL> DROP SCHEMA FILENAME DISK02: [FIELDMAN] PERSONNEL;

You can then run the PERSONNEL. COM command procedure again with a
corrected path name or directory specification.

The PERSONNEL.COM command procedure consists of several smaller
command files. These command files are located in the directory RDM$DEMO.
You might want to use these files as models in creating your databases.
Table 1-5 lists the command files used to create the sample databases with
the SQL interface. For information on the command files used with the RDO
interface, see the VAX Rdb /VMS Guide to Using RDO, RDBPRE, and RDML.

1-18 RdbNMS overview

Table 1-5 SQL Files to Create Sample Databases

File Name

PERSONNEL.COM

BUILDPERS.SQL

SQL_CREATE_STORAGE.SQL

MF _BUILDPERS.SQL

INDEXES.SQL

MF _INDEXES.SQL

TRIGGERS.SQL

LIST.SQL

Explanation

Builds a single-file or multifile version of the sample
personnel database; you can use SQL or RDO
definitions and you can define the database by file
name or data dictionary path name.

For the SQL single-file version, the procedure invokes
SQL command files to create domains, tables, views,
constraints, indexes, and triggers. In addition, it
invokes programs to store most of the data.

For the SQL multi.file version, the procedure invokes
SQL command files to create domains, tables, views,
constraints, indexes (both sorted and hashed), and
to spread tables and indexes across multiple files.
In addition, it invokes programs to store most of the
data.

Creates domains, tables, views, and constraints, and
stores data.

Creates storage areas for the multifile database.

Creates domains, tables, views, constraints, hashed
indexes, storage maps, and one sorted index, and
stores data.

Creates the indexes (sorted) for the single-file
database.

Creates the remaining sorted indexes for the multi.file
database.

Creates triggers.

Loads rows of the RESUMES table.

The definitions of domains, tables, views, constraints, and triggers are the
same for the single-file and multifile versions of the sample database. The
definitions for the multifile database also include hashed indexes, storage area
files, and other structures associated with the multifile implementation.

Note You can use either the SQL or the RDO interface to work with the resulting
databases, regardless of whether the SQL or RDO command files were used to
create them.

RdbNMS Overview 1-19

There are, however, some differences between the databases of the same name
depending on whether you used the SQL-based procedure or the RDO-based
procedure to create the database. The significant differences are as follows:

• The SQL-based procedures define default values for certain domains,
whereas the RDO procedures define missing values for the corresponding
global fields. The VAX Rdb I VMS Guide to Database Design and Definition
discusses the distinction between a default value and a missing value.

• The SQL-based procedures define constraints to enforce the referential
integrity of the database as part of the CREATE TABLE statements. In the
RDO-based procedures, such constraints are defined in separate DEFINE
CONSTRAINT statements.

1.4 Accessing Rdb/VMS Using SQL
Once you have created the PERSONNEL or MF _PERSONNEL databases, you
can practice accessing them using SQL, the primary interface to RdbNMS.
Digital recommends use of SQL instead of the proprietary RDO, RDML, or
RDBPRE interfaces. Using SQL, you can access RdbNMS databases in several
ways:

• Interactively

• Through programs

SQL module language

Precompiled SQL

Dynamic SQL

• From systems other than VMS (using SQL/Services)

This section presents the various SQL interfaces and discusses the various
sample online programs available with RdbNMS.

1.4. 1 Using Interactive SQL
This section introduces interactive SQL and demonstrates some simple
retrieval statements you can use. As you develop application programs, you
can invoke interactive SQL to learn the SQL language and to test statements
that you plan to include in a program. For database administration, you may
prefer the convenience of interactive SQL for creating or changing database
definitions and protection. You can also use interactive SQL for queries against
the database. While using interactive SQL, you can access online help at any
time for information about SQL syntax. See Section 1.2 for more information
about accessing online help.

For more detailed information on interactive SQL, see the VAX Rdb /VMS
Guide to Using SQL.

1-20 RdbNMS Overview

Note Interactive SQL can be used by people who are not data processing
professionals. However, you might prefer to prepare applications at your
site that are specially tailored to meet user needs. Generally, products such
as DECdecision, TEAMDATA, or applications developed using RALLY or
traditional programming languages, are the recommended relational database
interfaces for most end users.

1.4.1.1 Accessing Interactive SQL To use interactive SQL, you must run
the SQL executable image. Define a symbol at the DCL level and include
the symbol in your LOGIN. COM file. Define the symbol SQL as a foreign
command. This command lets you execute an image by entering only the
symbol name. (The command is foreign because it is unknown to DCL.) In the
following example, the symbol SQL is defined to execute the image SQL$:

$ SQL :== SQL

After you enter the symbol SQL, the SQL prompt (SQL>) indicates that you
are at the SQL interface command level and can interactively enter SQL
statements.

$ SQL
SQL>

To exit interactive SQL, press CTRL/Z or type EXIT.

1.4. 1.2 Retrieving Data Using SQL SELECT Statements Before you can access
the database, you must establish a connection by attaching to it. Enter the
following statement to attach to the sample PERSONNEL database (without
using data dictionary definitions):

SQL> DECLARE SCHEMA FILENAME PERSONNEL;

If you are using the multifile MF _PERSONNEL database, specify MF_
PERSONNEL rather than PERSONNEL on the command line.

To retrieve data from the database, you can use various combinations of SQL
SELECT statements. (The SELECT statement that you use in programs varies
slightly from the interactive SELECT statement. See the VAX Rdb /VMS
Guide to Using SQL for details.) These SELECT statements create result

RdbNMS Overview 1-21

tables. A result table is the set of columns and rows that fits the criteria
for a specific retrieval statement. For example, the following is a result table
produced by a simple SELECT expression that retrieves employee identification

1

(ID) numbers and last names from the EMPLOYEES table:

SQL> SELECT EMPLOYEE ID, LAST NAME FROM EMPLOYEES;
EMPLOYEE ID LAST NAME -
00164 - Toli;er
00165 Smith
00166 Dietrich
00167 Kilpatrick

1.4.1.3 Using Indexes for Retrieving Data A particularly efficient way to
retrieve data is through the use of an index. A search for data based upon
an indexed value is fast and efficient. For example, in the EMPLOYEES
table the index is sorted by the EMPLOYEE_ID column. Therefore, use of
an EMPLOYEE_ID column value will speed the retrieval of data from the
EMPLOYEES table because the query optimizer will choose to use the index
to locate the data. The following example demonstrates an SQL SELECT
statement that retrieves employee records using the EMPLOYEE_ID column
value 00164:

SQL> SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, ADDRESS_DATA_l,
cont> CITY, STATE, POSTAL_CODE
cont> FROM EMPLOYEES
cont> WHERE (EMPLOYEE ID= "00164");

EMPLOYEE ID LAST NAME FIRST NAME ADDRESS DATA 1
CITY - - STATE POSTAL CODE

00164 Toliver Alvin 146 Parnell Place
Chocorua NH 03817

1 row selected

If necessary, you can also perform a search on a non-indexed record. Suppose
you have an employee's last name, but not his or her employee ID number. You
could perform the following search:

SQL> SELECT EMPLOYEE ID, LAST NAME
cont> FROM EMPLOYEES - -
cont> WHERE (LAST NAME= "Toliver");

EMPLOYEE ID LAST NAME
00164 - Toli;er

1 row selected

Rdb/VMS finds the information, but does not perform the search as efficiently
as when an index has been defined on the column being searched.

1-22 Rdb/VMS Overview

1.4.1.4 Joining Data from Multiple Tables You can combine data from two
or more different tables using retrieval statements. Such operations are called
joins. Joins differ from views in that they operate only for a· specific retrieval
statement, as opposed to existing as a permanent logical table. The following
SQL statement asks for the names and current departments of all employees,
and illustrates the use of a join:

SQL> SELECT LAST_NAME,
cont> FIRST_NAME,
cont> DEPARTMENT NAME
cont> FROM EMPLOYEES, DEPARTMENTS, JOB HISTORY
cont> WHERE ((JOB_ HISTORY .EMPLOYEE_ID ;;; EMPLOYEES .EMPLOYEE_ID)
cont> AND
cont> (DEPARTMENTS.DEPARTMENT CODE = JOB HISTORY.DEPARTMENT CODE)
cont> AND (JOB END IS NULL))- - -
cont> ORDER BY LAST_NAME, FIRST_NAME, DEPARTMENT_NAME;

EMPLOYEES.LAST_NAME EMPLOYEES.FIRST_NAME DEPARTMENTS.DEPARTMENT_NAME
Ames
Andriola
Babbin
Bartlett
Bartlett

Louie
Leslie
Joseph
Dean
Wes

Northeastern US Sales
Telecommunications Industries
European Sales
Southern o.s. Sales
Corporate Sales

In the preceding statement, the columns LAST_NAME, FIRST_NAME,
and DEPARTMENT_NAME are retrieved from the EMPLOYEES and
DEPARTMENTS tables, respectively. The EMPLOYEES and DEPARTMENTS
tables do not share a column. Therefore, the join includes the JOB_HISTORY
table to determine the correct department name for each employee. As the
SELECT statement indicates, the employee identification number in the
JOB_HISTORY table must equal the employee identification number in the
EMPLOYEES table, and the DEPARTMENT_CODE column value in the
DEPARTMENTS table must equal the DEPARTMENT_CODE column value in
the JOB_IDSTORY table.

Note that the preceding example qualified table names when the same column
was used from more than one table. In SQL, qualifying or identifying the table
is necessary only when using multiple tables. To save typing, you can define

RdbNMS overview 1-23

an alias to qualify the table from which a particular column is selected.
(An alias is a qualifier for column names that is used in place of the table
name in an SQL SELECT statement.) In the following example, the E after
EMPLOYEES, the D after DEPARTMENTS, and the JH after JOB_HISTORY
are all aliases:

SQL> SELECT LAST_NAME,
cont> FIRST_NAME,
cont> DEPARTMENT NAME
cont> FROM EMPLOYEES E, DEPARTMENTS D, JOB_HISTORY JH
cont> WHERE ((JH.EMPLOYEE_ID = E.EMPLOYEE_ID)
cont> AND
cont> (D.DEPARTMENT_CODE = JH.DEPARTMENT_CODE)
cont> AND (JOB_END IS NULL))
cont> ORDER BY LAST_NAME, FIRST_NAME, DEPARTMENT....;.NAME;

E.LAST NAME E.FIRST NAME D.DEPARTMENT NAME
Ames - Louie Northeastern-US Sales
Andriola Leslie Teleconununications Industries
Babbin Joseph European Sales
Bartlett Dean Southern U.S. Sales
Bartlett Wes Corporate Sales

1.4.1.5 Isolating Unique Data Values It is also possible to isolate unique
values for a particular column. You can create a result table that consists
of just one row for any given value of a single column (that is, additional
rows with the same column value are not returned to you). For example, the
EMPLOYEES table contains the column STATE. Suppose you want to list all
the states in which employees live, listing each state only once regardless of
the number of employees living there. To do so, you would use the DISTINCT
clause with the SELECT statement:

SQL> SELECT DISTINCT STATE
cont> FROM EMPLOYEES;

STATE
CT
MA
NH

3 rows selected

1.4.2 Using SQL Statements in Programs
Executing SQL statements in programs, rather than from interactive SQL,
should be the primary use of SQL for database access at your site. Program
access provides a number of advantages, including processing speed. This
section describes the ways in which you can use SQL in programs, and
outlines the online sample programs available with Rdb/VMS. You can find
more detailed information on using SQL statements in programs in the
VAX Rdb /VMS Guide to Using SQL.

1-24 Rdb/VMS Overview

1.4.2.1 Using SQL Module Language You can use the SQL module language
from any host language that supports the VMS Procedure Calling Standard.
The SQL module language allows host language programs to execute SQL
statements contained in an SQL module file. The module file includes one
or more procedures, each of which contains parameter (variable) declarations
and at least one SQL statement. The SQL module procedures can be called
from any host language program, including those not supported by the SQL
precompiler. A call to a procedure in an SQL module causes the SQL statement
in the procedure to be executed.

The SQL module language offers these advantages to precompiled SQL:

• Languages not supported by the SQL precompiler can be used with the
SQL module language instead.

• Isolation of all SQL statements in SQL modules improves modularity and
avoids the use of two languages in the same source file.

• Programs can work around restrictions of the SQL precompiler by calling
SQL modules.

• Programs written in languages for which there is an ANSI/ISO standard
can avoid embedding nonconforming code by isolating SQL statements in
SQL modules.

For any host language, you can use SQL module language to create a module
of SQL procedures. In your host language· source file you can then specify calls
to these SQL procedures. Process your program by running:

1 The SQL module processor to create an SQL object file

2 The host language compiler to create a host language object file

3 The VMS Linker to create an executable image from the preceding object
files

4 The image created by the linker

1.4.2.2 Using Precompiled SQL SQL statements can be embedded directly
in certain host language source files. These source files can then be processed
by the SQL precompiler. The precompiler converts embedded SQL statements
to a form understandable by the host language compiler. The precompiler also
invokes the host language compiler and creates an intermediate object file
ready for linking.

Rdb/VMS Overview 1-25

If your host language is VAX Ada, VAX C, VAX COBOL, VAX FORTRAN,
VAX Pascal, or VAX PL/I, you can embed SQL statements directly in a host
language source file and process your program by running:

The SQL precompiler (which indirectly uses your host language compiler)
to create an object module

2 The VMS Linker to create an executable image

3 The executable image created by the linker

1.4.2.3 Using Dynamic SQL Dynamic SQL is a set of SQL statements
and data structures that allows programs to formulate and process SQL
statements at run time. Supported by both the SQL module processor and the
SQL precompiler; dynamic SQL offers programs some advantages normally
available only in an interactive environment; For example, applications that
use dynamic SQL can:

• Enter SQL statements from a terminal

• Accept SQL statements from a front-end program

• Translate statements in another language into SQL

• Act as a generic RdbNMS server for applications running on remote
systems other than VMS systems

1.4.2.4 Using the SQL Online Program Examples Online SQL source
program examples are available for your use in the directory defined by the
logical SQL$SAMPLE. These program examples define and query the sample
personnel database. You can create an executable form (image) of any source
program example for which your system has language support and then run
the image to see how the program works. You can also create hardcopy listings
of program sources and use them as references when you create your own
applications.

The online program examples are presented in several languages and include:

• SQL$ALL_DATATYPES

Illustrates INSERT and UPDATE statements, variations in techniques of
handling null values, and the correspondence between SQL host language
data types and their conversions.

• SQL$DIST_TRANS

Illustrates how to use distributed transactions. This program updates two
Rdb/VMS databases, which contain information about the employees in
a company's two divisions, and one VAX DBMS database, which contains
central information about all employees in the company.

1-26 Rdb/VMS Overview

• SQL$DYNAMIC

Illustrates dynamic SQL. This program consists of two files, SQL$DYNAMIC
and SQL$DYNAMIC_DRIVER. The Ada module language version of this
program provides a comprehensive example of a general dynamic SQL
application. The PL/I version provides a more limited example.

• SQL$INSERT_DEGREES

Illustrates SQL module language. This program adds information to the
database about an employee's college degrees.

• SQL$LOAD _(table-name)

Loads indicated table from a data file. Specific tables are used to
illustrate various techniques. For instance, loading the EMPLOYEES
table illustrates how to set a CHAR column to null, based on a column
value in the data file; and loading the JOB_HISTORY table illustrates how
to set a DATE column to null, based on a column value in the data file.

• SQL$MULTI_STMT_DYN

Illustrates how to use extended dynamic cursors to process any number of
dynamic SQL statements.

• SQL$REPORT

Writes a salary report with control breaks on the department code and
job code columns to print the average salary per job and total salary per
department, and writes the grand total of department salary totals.

• SQL$RESUMES

Illustrates how to insert segmented strings (lists) into the personnel
database.

• SQL$TERMINATE

Illustrates how to update the personnel database when an employee is
terminated.

To find out what is available for precompiled SQL programs in a specific
language, enter the DIRECTORY command at the DCL prompt as follows.
Specify the asterisk wildcard character (*) for the file name and the

Rdb/VMS Overview 1-27

appropriate language-related file type. These file types are summarized in
Table 1~. For example, to display the programs written in COBOL, enter:

$ DIR SQL$SAMPLE:*.SCO

Table 1-6 Program File Types

Language Fiie Type

Ada SQLADA
c SC
COBOL sco
FORTRAN SFO
Pascal SPA
PUI SPL

To locate SQL module language programs, enter the following DCL
DIRECTORY command:

$ DIR SQL$SAMPLE:*.SQLMOD

1.4.3 Accessing RdbNMS from Systems Other Than VMS Using
SQL/Services

Application programs on various types of systems other than the VMS system
can access an RdbNMS database through SQL/Services, a client/server system
that consists of:

• An Application Programming Interface (API) library of callable routines
that provides functions similar to the dynamic SQL statements. The
data structures and SQL statement syntax accepted by SQL/Services
are identical to that accepted by dynamic SQL. In addition, the API
library provides routines to establish server connections and to define
postprocessing of result tables.

• A server process that is present on all systems running Rdb/VMS
Version 3.1 or higher. The server accesses Rdb/VMS databases through
dynamic SQL.

The SQL/Services API library communicates with the server process in
a manner that is virtually transparent to the application. To do that,
SQL/Services uses the same kind of structure as SQL: the SQL Descriptor Area
(SQLDA) and the SQL Communications Area (SQLCA). Other than ensuring
that DECnet is installed on the client and server systems, no knowledge of
networking is required to develop SQL/Services applications.

1-28 RdbNMS Overview

1.5 Accessing Rdb/VMS Using RDO, RDML, and RDBPRE
RdbNMS supplies several other interfaces in addition to SQL. This section
discusses the other RdbNMS interfaces supplied with your kit and outlines the
online program examples located in the RDM$DEMO directory that use those
interfaces.

1.5.1 Introducing RDO, RDML, RDBPRE, and Other Interfaces
Other interfaces to Rdb/VMS include:

• RDO/Callable RDO

The Relational Database Operator (RDO) interface consists of data
definition and manipulation statements that you can use either
interactively or in application programs. The Callable RDO interface
lets you access an RdbNMS database from a program written in any host
language supported by the VAX Procedure Calling Standard.

Note Callable RDO uses more resources than either RD BP RE or RDML. If you
prefer not to use SQL, and you are programming in BASIC, C, COBOL,
FORTRAN, or Pascal, you should use the RDBPRE or RDML interfaces
rather than Callable RDO. However, you will have to use Callable RDO to
perform certain data definition tasks.

• RDML
The Relational Data Manipulation Language (RDML) consists of data
manipulation statements that you can embed in C and Pascal application
programs. These programs are processed by the RDML preprocessor.
After preprocessing, you can submit the resulting source code to the host
language compiler.

• RDBPRE

The RDBPRE preprocessor lets you access an RdbNMS database from
BASIC, COBOL, or FORTRAN programs. You can embed· statements
directly in your host language program.

In addition, DATATRIEVE, RALLY, DECdecision, TEAMDATA, and VIDA are
products that can be used to access Rdb/VMS databases.

Rdb/VMS Overview 1-29

1.5.2 Using the Online Program Examples for RDO, RDML, and
RDBPRE

Online sample programs are available for use with the RDBPRE and RDML
preprocessors and with Callable RDO. These programs are in the directory
specified by the logical name RDM$DEMO, and they are referred to extensively
in the language-specific chapters of the VAX Rdb /VMS Guide to Using RDO,
RDBPRE, and RDML. You can create an executable form (image) of any source
program example for which your system has language support and then run
the image to see how the program works. You can also create hardcopy listings
of program sources and use them as references when you create your own
applications.

The. exact file names for the programs vary depending on the source language
and the interface being used. File names. containing the following strings are
available:

• SAMPLE

A program that performs numerous data manipulation operations on the
sample PERSONNEL database ·

• CALL_OTHER

A module called from the SAMPLE program that passes that program
information for preprocessing and returns control to the SAMPLE program

• ERROR

A module that handles run-time errors for the SAMPLE program

• DEPTFOR.FOR

A program that performs several data manipulation operations on the
PERSONNEL database

• F _DDL_STMNT.FOR

A program that demonstrates how to perform data definition tasks from an
RDBPRE FORTRAN program using Callable RDO

Table 1-7 lists the available programs with their supported languages, and
indicates the applicable interface.

1-30 Rdb/VMS OveNlew

Table 1-7 Online Program Examples for RDBPRE and RDML

Language

BASIC

COBOL

FORTRAN

c

Pascal

PUI

Program

B_SAMPLE.RBA

B_CALL_OTHER.RBA

B_CALLABLE_ERROR_HANDLER.BAS

B_ERROR_HANDLER.BAS

COB_SAMPLE.RCO

COB_CALL_OTHER.RCO

COB_CALLABLE_ERROR_HANDLER.RCO

F _SAMPLE.RF01

F _CALLABLE.FOR

F _ CALLABLE_ERROR_HANDLER.FOR

DEPTFOR.FOR

F _DDL_STMNT.FOR

C_SAMPLE.RC

C_CALL_OTHER.RC

C_ERROR.RC

P _SAMPLE.RPA

P _CALL_ OTHER.RPA

P _ERROR.RPA

PLI_SAMPLE.PLI

PLI_CALL_OTHER.PLI

1Calls many other programs

Interface

RDBPRE

RDBPRE

Callable RDO

RDBPRE

RDBPRE

RDBPRE

Callable RDO

RDBPRE

Callable RDO

Callable RDO

Callable RDO

RDBPRE/Callable
RDO

RDML

RDML

RDML

RDML

RDML

RDML

Callable RDO

Callable RDO

1.6 Maintaining and Tuning RdbNMS Databases with RMU
Rdb/VMS provides the RdbNMS Management Utility (RMU) to aid in the
administration and maintenance of the database. This utility provides tools to
perform the following functions:

• Analyze data storage patterns

The RMU/ANALYZE command collects and displays information on how
data is being stored in the database within both storage areas and logical
areas, and describes in detail the index structure or structures for the
database.

Rdb/VMS OVervlew 1-31

• Back up and restore the database

The RMU/BACKUP command creates a full or partial (incremental)
backup file of the database or the after-image journal file. The backup
operation can be performed on line or off line. The RMU/BACK.UP utility is
multithreaded (that is, multiple tape devices can be used simultaneously)
to allow quick and efficient performance. The RMU/RESTORE command
restores the database to the condition it was in at the time of the last
full or incremental backup operation performed with the RMU/BACKUP
command. You can specify a new after-image journal file for the database
while restoring it. You can use the RMUNERIFY command before backing
up your database to ensure that the database is not corrupt.

• Open and close the database

The RMU/OPEN command manually opens the database. The
RMU/CLOSE command manually closes the database, letting you perform
specific maintenance activities.

• Display the internal contents of various database files

The RMU/DUMP command displays the contents of the database root
file, storage area files, journal files, snapshot files, the backup file, and
information about the current users of the database, including all users in
a VAXcluster environment.

• Monitor the database

The RMU/MONITOR command starts or stops the Rdb/VMS database
monitor process on your system. You can create a new version of the
monitor log file for the database monitor running on your node. An
Rdb/VMS monitor process must be running on each node on which you
use Rdb/VMS.

• Load and unload tables and views from the database

The RMU/LOAD command loads specific tables of an Rdb/VMS database
from specially structured files or from sequential record management
services (VAX RMS) files. The RMU/UNLOAD command extracts the data
from tables or views within an Rdb/VMS database into either sequential
RMS files or specially structured files. These commands are useful to
perform an initial load operation, to restructure specific tables, to create
archival databases, or to access data from applications using RMS files.

• Display information about your Rdb/VMS database

The RMU/SHOW command displays information about the Rdb/VMS
system on the node from which you issue the RMU/SHOW command. You
can display information about database statistics, database users, the
database system being used, and the version of Rdb/VMS running on your
system.

1-32 RdbNMS Overview

• Recover the database

The RMU/RECOVER command recovers the database from a restored
version. This command uses the after-image journal file to roll forward the
database to its current state.

• Verify the integrity of the database

The RMUNERIFY command checks and verifies the internal integrity of
data structures. It can also verify logical areas and indexes. It does not
check for invalid data. Use this command before backing up your database.

1.7 RdbNMS Product Kits
Different sites require different capabilities from an Rdb/VMS database. For
your convenience, RdbNMS provides the following three kits:

• Rdb/VMS Full Development Kit

The Rdb/VMS full development kit lets you create and modify databases,
create programs that use databases, and run programs that use databases.
It lets you access RdbNMS databases through SQL/Services client
applications. The full development kit is necessary if you will be accessing
RdbNMS using programs written in standard programming languages
(3GLs, that is, third-generation languages).

• Rdb/VMS Interactive Kit

The RdbNMS interactive kit lets you use existing RdbNMS databases
and build new RdbNMS databases using the same full-function SQL and
RDO interactive interfaces that are supplied with the full development kit.
It contains the SQL/Services server component. However, it does not let
you preprocess data manipulation language (DML) programs; it does not
include any precompilers, so you cannot develop programs.

• Rdb/VMS Run-Time Kit

The RdbNMS run-time kit lets you use the RdbNMS database built with
the full development kit or interactive kit. It contains the SQUServices
server component. However, it does not let you create new databases,
modify data definitions of existing databases, or preprocess DML programs.
The run-time kit is useful if you use prepared application solutions based
on Rdb/VMS, or if you access RdbNMS databases from DECdecision,
TEAMDATA, DATATRIEVE, or RALLY applications.

Rdb/VMS Overview 1-33

1.8 Using RdbNMS with Other Digital Products
You can use RdbNMS with other Digital products, including the following:

• ACMS
An application development system that implements and manages
transaction processing applications. Use ACMS when you must manage
large transaction processing applications whose data is stored in an
RdbNMS database.

• CDD/Plus

A central storage facility for data definitions. Use CDD/Plus to centrally
store the data definitions your· application programs will be using.

• Data Distributor

A product that gives a database administrator control of the process of
distributing database access across remote nodes in a network. Use Data
Distributor when your RdbNMS database must be distributed across
remote nodes.

• DATATRIEVE

An interactive query language that includes the capability to generate
reports and graphics. Use DATATRIEVE as an interlace to your RdbNMS
database. DATATRIEVE is also useful for generating attractive reports
based on data in your Rdl>NMS database. You can use DATATRIEVE to
get data in a single query from RdbNMS, VAX DBMS, and RMS files.

• DECdecision and TEAMDATA

An information management and decision support system that you
can use as an interface to your RdbNMS database. Use DECdecision in
DECwindows environments, or TEAMDATA in character-cell environments.

• DECtrace

A product that collects and reports data and performance information from
databases on an event basis (as opposed to products that collect on a timer
basis). You can have DECtrace collect application workload information,
and then have RdbEx.pert import that information.

• RALLY
A fourth-generation language (4GL) environment that constructs complete
applications quickly. Use RALLY applications as end-user interlaces to
your RdbNMS database.

1-34 RdbNMS Overview

• RdbExpert

A product that you can use to can optimize the physical design of your
RdbNMS database. Using RdbExpert, you specify information about
the application workload, data volume, and system environment of the
database. RdbExpert applies its design rules to the schema and to the
information you have supplied. It generates several design reports, as well
as a command procedure that (with minimal edits) you can run to create a
new database with an optimal physical design. This procedure also unloads
any existing data and reloads it in the new database.

• TDMS

A forms package that manages the display of forms and the movement
of data to and from the terminal screen. Use TDMS to generate the
forms your application programs will use to permit users to enter data
interactively.

• VAXDBMS

The Digital CODASYL-compliant database. VAX DBMS is intended for
large, highly complex applications.

• VIDA
A data access. software product. A VIDA database contains data that
resides on an IBM system. You can use SQL to retrieve data through VIDA
but not to define or update a VIDA database.

RdbNMS Overview 1-35

2
Rdb/VMS Documentation Directory

This chapter briefly describes the manuals in the Rdb/VMS full development
license documentation set. The introductory manual is listed first, followed by
more advanced user guides and reference manuals, and finally by the release
notes and installation guide.

All manuals other than the VAX Rdb/VMS SQL Quick Reference Guide are
available on CDROM.

Titles dealing specifically with the RDO or RDML interfaces retain terminology
associated with the Digital proprietary RDO interface (for example:
relation, record, field). All other titles use terminology associated with the
industry-standard SQL interface (for example: table, row, column).

VAX Rdb/VMS Introduction and Master Index (this manual)

Audience: All users

Content: Introduces VAX Rdb/VMS, the Digital relational database
management system for VMS software environments. Explains major
terms and concepts. Includes a glossary, a directory of Rdb/VMS
documentation, and a master index that combines entries from all the
Rdb/VMS manuals.

VAX Rdb !VMS Guide to Using SQL

Audience: All users

Content: Describes and illustrates the use of RdbNMS features with
the SQL industry-standard interface. Shows how to retrieve, modify,
and delete data stored in a database. Explains how to use transactions,
select expressions, joins, and views. Also explains how to use SQL within
programs. You can use this guide as a tutorial for learning the major
features of SQL.

Rdb/VMS Documentation Directory 2-1

VAX Rdb/VMS Guide to Using SQL/Services

Audience: Application programmers

Content~ Describes how to develop application programs that use
SQL/Services, a client/server software component of Rdb/VMS that
allows programs, from various remote computers running the Macintosh,
MS-DOS, OS/2, ULTRIX, ULTRIX for RISC, or VMS operating systems to
access RdbNMS or VIDA databases on a VMS server system.

VAX Rdb I VMS Guide to Distributed 'lransactions

Audience: Programmers

Content: Describes the two-phase commit protocol and distributed
transactions, explains how to start and complete distributed transactions
using SQL, RDBPRE, and RDML, and how to recover from unresolved
transactions using RMU commands.

VAX Rdb I VMS Guide to Database Design and Definition

Audience: Database designers and administrators

Content: Explains how to design a database and how to set up
definitions of database entities. Also guides you from the analysis of your
organization's information needs, through logical and physical database
design processes, and through the actual creation of the database.
Discusses database security and use of the VAX CDD/Plus data dictionary.

VAX Rdb I VMS Guide to Database Maintenance and Performance

Audience: Database administrators and operators

Content: Shows how to use the RdbNMS database maintenance utilities
to keep the database running and to keep its data consistent. Explains
how to perform backup and restore operations, how to handle database
journaling, how to evaluate and improve your database performance, and
how to optimize the way in which your database uses system resources.

VAX Rdb I VMS Guide to Database Tuning

Audience: Database administrators

Content: Introduces the concept of tuning, and explores how tuning
the system, the database, and the application can affect database
performance. Outlines a series of steps to follow in identifying, analyzing,
isolating, and solving a performance problem, and in monitoring the
resulting solution. Includes a set of decision trees that provide an
organized approach to solving some common database tuning problems.

2-2 RdbNMS Documentation Directory

VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML

Audience: All users

Content: Describes and illustrates the use of RdbNMS features with the
Relational Database Operator (RDO) Digital-proprietary interface. Shows
how to retrieve, modify, and delete data stored in a database. Explains
how to use transactions, record selection expressions, relational joins, and
views. Also explains how to use RDO, RDML, and Callable RDO within
programs. You can use this guide as a tutorial for learning the major
features of the RDO interactive utility.

VAX Rdb/VMS SQL Reference Manual

Audience: All users

Content: Contains complete reference information on features of
RdbNMS that you can specify using the industry-standard SQL
interface. Gives syntax and usage for all data definition statements,
data manipulation statements, database maintenance utility statements,
statements for setting up the interactive environment, and VAX Data
Distributor statements.

VAX Rdb /VMS SQL Quick Reference Guide

Audience: All users

Content: Summarizes the information in the VAX Rdb /VMS SQL
Reference Manual.

VAX Rdb /VMS RDO and RMU Reference Manual

Audience: All users

Content: Contains complete reference information on features of
RdbNMS that you can specify using the Relational Database Operator
(RDO) utility. Describes major RdbNMS terms and concepts. Gives
syntax and usage for all data definition statements, data manipulation
statements, database maintenance utility statements, VAX Data
Distributor statements, and statements for setting up the interactive
environment. Also includes a chapter on the Rdb/VMS Management
Utility (RMU) for administrative and maintenance tasks.

RDML Reference Manual

Audience: Programmers

Content: . Describes the syntax and usage of the Relational Data
Manipulation Language (RDML), which can be embedded in VAX C or
VAX Pascal programs to access RdbNMS or Rdb/ELN databases.

Rdb/VMS Documentation Directory 2-3

VAX Rdb /VMS Release Notes

Audience: All users

Content: Includes inform.ation about new features, problems,
restrictions, and sometimes other important information about the
current RdbNMS release. Sometimes contains material that became
available too late for inclusion in the other Rdb/VMS manuals.

VAX Rdb/VMS Installation Guide

Audience: System managers

Content: Explains how to install RdbNMS and run the Installation
Verification Procedure (IVP).

2-4 RdbNMS Documentation Directory

Glossary

This glossary defines terms used in the documentation for VAX RdbNMS and
related products.

access control entry (ACE)

ACL-style protection. An individual entry on an access control list.

See also access control list (ACL) and ACL-style protection.

access control list (ACL)

ACL-style protection. A list that defines which users can access a schema, table,
or view and what operations they can perform. The SQL statements GRANT and
REVOKE create, modify, and delete entries in an ACL. Position of an entry on an
access control list can affect the privileges allowed.

See also access control entry (ACE), ACL-style protection, and privilege.

access mode

Another term for access mode is lock type.

See lock type and reserving option.

access privilege set (APS)

The generic term used to refer to either ACL-style or ANSI-style protection schemes.

See also ACL-style protection and ANSI-style protection.

access rights

Other terms for access rights are rights or privileges.

Glossary-1

ACE

See access control entry (ACE).

ACL

See access control list (ACL).

ACL-style protection

A protection scheme that involves access control lists in which the position of an
access control entry is critical.

See also access control entry, access control list, access privilege set, and ANSI-style
protection.

ACMS

The VAX ACMS, an application control and management system, is a transaction
processing monitor that is layered on VMS and is used to define, run, and
control transaction processing applications. You can use ACMS to control
existing applications and applications developed with ACMS. It provides a task
implementation method that uses high-level definitions to replace complex
application code. These definitions reduce the programming time and maintenance
costs of traditional application programs that do comparable work. ACMS supports
offloaded terminal processing, which allows the execution of ACMS tasks on remote
nodes.

See also distributed transaction processing, online transaction processing, and
transaction processing.

actual parameter

A parameter declaration in a host language program used in a call statement tO a
procedure in an SQL module file. Another term for call parameter.

after-image journal (AIJ)

A file that contains copies of records after they have been updated. You can use the
after-image journal to reconstruct a saved backup file of a database up to the last
successfully completed transaction.

See also before-image journal.

aggregate expression

Another term for function.

Glossary-2

AIJ

See after-image journal (AIJ).

alarm

See security alarm.

alias

A qualifier for column names that is used in place of a full table or view name in
an SQL SELECT statement. Users can qualify a colwnn name with its table or
view name, or with an arbitrary alias they specify in the FROM clause of an SQL
statement. SQL requires aliases as qualifiers instead of table or view names
in statements that join a table with itself. Another term for alias is context variable.

allocation

The nwnber of pages allotted to each storage area or snapshot file of the database
in the SQL CREATE SCHEMA statement.

See also extent, multifile database (MFDB), and storage area.

allow mode

Another term for allow mode is share mode. See reserving option.

anchor

A VMS directory that contains all the files that describe a CDO dictionary and
directory system.

See also CDD/Plus and Common Dictionary Operator (CDO) utility.

ANSI

American National Standards Institute, the organization that approved a standard,
ANSI X3.135-1989, for SQL database languages. That standard specifies the syntax
and semantics of interfaces to define and query databases using SQL. ANSI is also
developing an extended SQL standard, SQL2, in conjunction with the International
Standards Organization (ISO).

See also ISO.

Glossary-3

ANSI-style protection

API

A protection scheme that involves a set of privileges defined at both the system level
and the individual level. In contrast to ACL-styfo protection, the position of the user
within the access privilege set does not affect the privileges granted to that user.

See also access privilege set (APS) and ACL-style protection.

See Application Programming Interlace (API).

Application Control and Management System (ACMS)

See ACMS.

application program

A sequence of instructions and routines, not part of the basic operating system,
designed to serve the specific needs of a user. An application program can use a
database system, a fourth-generation language like DATATRIEVE, or RMS to
access data.

See also run unit.

Application Programming Interface (API)

In SQL/Services, a library of callable routines that are linked into the client
executable image.

See also client, server, and SQUServices.

APS

See access privilege set (APS).

area

See storage area.

area bit map (ABM)

A database page found in storage areas with uniform page format in both single-file
and multifile databases. The first page of a logical area is an area bit map. The
area bit map can be used to speed up sequential scans of table rows.

See also area inventory page (AIP) and uniform page format.

Glossary-4

area inventory page (AIP)

A database page that maintains a queue of database area pointers to logical area
bit maps. The area inventory page points to the area bit map for each table.

arithmetic expression

A value expression formed by combining one or more numeric value expressions
with arithmetic operators.

array

A data structure that consists of more than one data item, in which all data items
have the same data types and are referred to by the same variable name.

ascending order

A sorting order that starts with the lowest value of a sort key and proceeds to the
highest value, in accordance with the rules for comparing data items.

See also descending order and sort key.

ASCII

A computer character set and collating sequence. The acronym stands for American
Standard Code for Information Interchange. The ASCII character set occupies the
first 128 positions of the DEC Multinational Character Set (MCS) that is integral to
VAX systems.

ASSOCIATE_STR

A data structure passed to the SQUServices API routine that allows an application
to modify association characteristics.

See also Application Programming Interface (API), association, and SQL/Services.

association

A communications link and related context between the SQUServices client and
database server processes. In this case, the context refers to the data structures
that the software creates and uses (on both ends of the link) to keep track of what
is happening.

See also client, server, and SQUServices.

Glossary-5

attach (to a database)

The operation by Rdb/VMS that establishes a connection between your program
or interactive session and a database. This connection is identified by a database
handle that Rdb/VMS assigns as part of establishing the connection. The DECLARE
SCHEMA statement in SQL and the INVOKE DATABASE statement in RDO
attach to the specified database(s). The term attachment is sometimes used instead
of the term attach.

See also database handle, and detach.

attachment

A connection between a host program or interactive utility and the database it will
access. The term attach is sometimes used instead of the term attachment.

attribute

See field attribute.

audit

See security audit.

audit event

See security event.

audit trail

The list of audit activities (security events) that Rdb/VMS writes to a database
security audit journal when the audit feature is enabled for the database by the
RMU/SET AUDIT command.

See also security audit, security event and security audit journal.

authorization identifier

In SQL, a name specified in a DECLARE SCHEMA or CREATE SCHEMA
statement that identifies the schema in subsequent SQL statements.

See also database handle.

Glossary-6

backup operation

An operation that creates a backup copy of the database. A backup database is used
to restore the database after a hardware or software failure.

There are two types of backup operations:

• RMU/BACKUP

Use the RMU/BACKUP command from the DCL level to create a database
backup file (default file type RBF) that can be restored using the
RMU/RESTORE command.

• EXPORT

Use the EXPORT statement to migrate a database from one database
management system to another, or to restructure a database.

Migration changes include taking an existing RdbNMS database, backing it
up with an EXPORT statement, and then using the IMPORT statement to
convert the internal data structures so that they are compatible with a newly
installed version of Rdb/VMS. Restructuring changes include taking a single-file
database, backing it up using the EXPORT statement, and then using the
IMPORT statement to define one or more storage areas in a new multifile
database.

See also export operation, import operation, and restore operation.

base table

A table that is physically stored in the database.

See also view.

batch processing (Rdb/VMS)

A mode of computer operation in which the SQL or RDO statements and the data
that control the actions of the computer are entered by a programmed script rather
than by a person at a terminal.

See also interactive processing (Rdb/VMS).

batch-update transaction

A transaction mode that executes without the overhead, or security, of a recovery­
unit journal. The batch-update transaction is intended for initial loads of databases.
Should any error occur during the batch-update transaction, the entire database is
permanently corrupted.

See also lock type, reserving option, share mode, and transaction.

Glossary-7

before-image journal

A file that contains copies of records before they have been updated. Rdb/VMS uses
before-image journaling to automatically remove updates to a database when a
transaction is rolled back. Another term for before-image journal is recovery-unit
journal (RUJ).

See also after-image journal (AIJ) and idempotent.

before-image journaling

In Rdb/VMS databases, the method of keeping track of changes you make to the
database in the before-image journal file. It is this journaling that lets you issue a
ROLLBACK statement to remove changes you made to the database.

binary language representation (BLR)

The binary language representation of requests to the database. In other words, the
binary form of data manipulation language. A request in this context is a sequence
of instructions given to the database system by a host program for compilation and
possible execution.

See also data manipulation language (DML), metadata binary language
representation (MBLR), and request.

bind

Another term for attach.

bitvector

A structure that is part of the area bit map (ABM) page that contains set bits that
indicate the corresponding space area management pages that have entries for a
logical area.

block structure

BLR

A programming construct that defines the lexical scope of program variables.
For example, C is a block structured language where a left brace ({) denotes the
beginning of a block and a right brace (}) denotes the end. Blocks are often nested.

See binary language representation (BLR).

Glossary-8

Boolean expression

Another term for predicate or conditional expression.

See also Boolean operator, conditional operator, and predicate.

Boolean operator

A keyword that lets you join two or more predicates to form a complex predicate.
Boolean operators negate a predicate (NOT), specify a combination of predicates
(AND), or specify a list of alternative predicates (OR). Another term for Boolean
operator is logical operator.

broadcast message

A text line that lets you know of a system event, such as a system shutdown or the
receipt of mail.

B-tree

A sorted index structure for a specified table (system or user). Specified by using
the TYPE IS SORTED clause in the DEFINE INDEX statement.

See also hashed index, index, and sorted index.

built-in function

Another term for function.

cache

The process of storing blocks in memory for future use; used to minimize physical
transfer of data between mass storage devices and memory.

Callable RDO

An interpretive call interface that consists of a single external routine that accepts
an RdbNMS data manipulation language (DML) or data definition language (DDL)
statement as a parameter. You can call this routine from any language that adheres
to the VAX Procedure Calling Standard. Callable RDO lets a program use RdbNMS
even if no preprocessor exists for the language.

Callable RDO supports embedded DML statements in VAX BASIC, VAX C, VAX
COBOL, VAX FORTRAN, and VAX Pascal source programs. To embed DDL
statements or to use dynamic strings in RdbNMS DML statements, you must use
Callable RDO.

See also Relational Database Operator (RDO).

Glossary-9

call interface

A mechanism by which a program accesses a software product.

call parameter

Another term for actual parameter.

candidate key

Any column or set of columns that uniquely identifies the individual rows of a table.
Candidate key is similar to a primary key. For example, in a table ofemployee
information, the employee identification number is a candidate key. When more
than one primary key exists, the alternatives are called candidate keys. Of the
two or more candidate keys, a primary key is selected, with the remaining keys
becoming secondary keys.

See also foreign key, primary key, and secondary key.

cardinality

The number of rows in a table or the number of indexed entries in a defined index.

See also index, row, and table.

Cartesian product

For multiple tables that are joined by a select expression in SQL, the Cartesian
product is a result table that consists of every possible combination of all· the rows
and columns of each table. SQL forms the Cartesian product when it evaluates a
FROM clause that names more than one table. Another term for Cartesian product
is cross product.

See also join.

cascading delete

See cascading update.

cascading update

An update operation performed by a trigger definition that will update appropriate
rows from any necessary table. For example, in the sample personnel database,
you could have a cascading update specify that whenever an employee leaves ·the
company, the row for that employee.will be deleted not only from the EMPLOYEES
table, but from the JOB_HISTORY, SALARY_HISTORY, and DEGREES tables as
well. Such an operation would be called a cascading delete operation.

See also table-specific constraint and trigger.

Glossary-1 O

COD/Plus

An abbreviated name of VAX COD/Plus, a VMS software component through which
users can define, organize, and control access to the data and forms definitions
required by applications. Users can access an RdbNMS database through a
database definition they store in CDD/Plus. RdbNMS documentation sometimes
refers to CDD/Plus simply as the data dictionary.

The data dictionary lets you ensure the integrity of the shared metadata and
provides procedures you need to analyze, maintain, manage, and design your
business' database; it provides a useful centralized repositoiy for information
management.

CDD/Plus supports metadata created in an appropriate format for both
the Dictionary Management Utility (DMU) and the Common Dictionary
Operator (CDO).

Support for CDD/Plus by RdbNMS enables you to:

• Define global column and row definitions in a shareable dictionary

• Directly copy the column or row definition(s) or both from the dictionary to an
Rdb/VMS database when you define new RdbNMS columns or tables in SQL
orRDO

• Receive informational messages about the CDD/Plus column and row definitions
that are used by other RdbNMS databases

• Integrate shareable dictionary definitions into an RdbNMS database (the
INTEGRATE SCHEMA FILENAME statement) or integrate database
definitions to a CDD/Plus dictionary directory (the INTEGRATE SCHEMA
PATHNAME statement)

Rdb/VMS does not require CDD/Plus.

CDO

See Common Dictionary Operator (CDO) utility.

CD ROM

Compact disk read-only memory. New type of disk that is used as a distribution
medium for software and documentation.

character string

A string of characters (bytes) that is identified by an address and a length.

Glossary-11

checksum

A sum of digits or bits used to verify that a number or an operation is valid. For a
database page, the sum of all bits on the page.

client

A service requester. In SQL/Services, an application program that uses the
Application Programming Interface to request services from the SQUServices
server.

See also Application Programming Interface (API), SQL/Services, and server.

clump

A set of adjacent pages within a storage area when uniform page format is specified.
These pages are devoted to specific logical areas which either store rows from a
specific table or nodes from one or more sorted indexes on that table by the area's
logical ID.

clumplet

A portion of the RDBVMS$TRIGGER_ACTIONS segmented string field that
contains a trigger action for a specified trigger. The RDBVMS$TRIGGER_ACTIONS
field is part of the RDBVMS$TRIGGERS system relation.

See also trigger.

cluster

See VAXcluster.

clustered index

Hashed indexes whose hash buckets reside on the same page of a storage area
file as their associated table rows. Clustering hash buckets with rows may make
it possible for one input/output operation to load the hash bucket and rows into
memory.

See also hash bucket and hashed index.

CODASYL

An acronym for the Conference on Data Systems Languages, the committee that
designed the COBOL language and provided the guidelines used in the development
of VAX DBMS, the Digital network database.

Glossary-12

CODASYL-compliant

Any database system that conforms to the guidelines set by the Conference on Data
Systems Languages. VAX DBMS is CODASYL-compliant.

collating sequence

The sequence in which characters are ordered for sorting, merging, and comparing.

See also National Character Set (NCS) utility.

column

The vertical dimension of a table. A column has a name and a data type, and all
values in a column have that same data type. Another terms for column is field.

See also data item and domain.

column select expression

A select expression that specifies a one-column result table.

SQL accepts column select expressions as arguments to IN and quantified
predicates, and more generally as value expressions:

• As arguments to IN and quantified predicates, column select expressions specify
a collection of values to which SQL compares a value expression. Thus, column
select expressions used as arguments to those predicates can return one or more
values.

• As a type of value expression, column select expressions specify a single value.
Thus, a column select expression used as a value expression should not return
more than one value. If it does, SQL evaluates the value expression based on
the first value returned by the column select expression. For the same reason, a
column select expression used as a value expression cannot include GROUP BY
or HAVING clauses.

Other terms for column select expression are record selection expression (RSE) and
subquery.

See also record stream and select expression.

comment character

A character that begins a line of descriptive text in a program or procedure; it does
not affect program or procedure execution. Comment lines begin with a comment
character reserved by the language you are using. Some typical comment characters
are the exclamation point (!), the asterisk (*), and the letter C. The exclamation
point is the comment character used by SQL and the RDO utility. You can also use

Glossary-13

a double hyphen (--) in interactive SQL and SQL module language. Commentlines
end with a carriage return.

commit

To make permanent any changes to the database made during the current
transaction. Use the COMMIT statement to commit changes.

See also roll back and transaction.

commit phase

The second phase of the two-phase commit protocol. During the commit phase, the
coordinator of the distributed transaction instructs each resource manager to make
permanent all changes to the database, that is, to commit the changes. The resource
managers commit the changes and the distributed transaction is completed.

See also coordinator, distributed transaction, prepare phase, resource manager, and
two-phase commit protocol.

common data dictionary

See CDD/Plus.

Common Dictionary Operator (CDO) utility

The user interface to CDD/Plus. With CDO, you can access any CDO or DMU
dictionary to which you have privileges, create or delete field and record definitions,
and run all CDO commands.

See also Dictionary Management Utility (DMU).

communication server

In SQL/Services, \'a multithreaded process on a VMS server system that accepts
Application Programming Interface (API) requests, assigns them to execution server
processes, and asynchronously returns execution results to client applications.
The communication server sets up the process pool during the initializing phase
at system startup time, in preparation for handling requests during the working
phase.

See also Application Programming Interface (API), client, execution server,
initializing phase, process pooling, server, and working phase.

complex predicate

A predicate that combines any number of predicates using the Boolean operators
AND, OR, or NOT.

Glossary-14

compress
To reduce in size. When data is compressed, free space is eliminated as much as
possible.

compressed index
An index in which information in the index node is compressed so that data takes
up less space.

See also compress, index.

COMPUTED BY columns
Virtual columns that appear in a table or view definition, but not in the physical
row. Because the value of a COMPUTED BY column is computed as part of a
statement, it occupies no space in the row.

concurrency
The simultaneous use of a database by more than one user.

See also consistency.

conditional expression
Another term for predicate or Boolean expression.

See also conditional operator and predicate.

conditional operator
A keyword that specifies how you want to compare value expressions in a predicate.
SQL uses these conditional operators:

=
<>

<

<=

>

>=
BETWEEN

CONTAINING

EXISTS

IN

(equal to)

(not equal to)

(less than)

(less than or equal to)

(greater than)

(greater than or equal to)

Glossary-15

IS

LIKE

STARTING
WITH

UNIQUE

Another term for conditional operator is relational operator.

configuration file

In SQL/Services, a file that the communication server reads at system startup time
to set up the process pool. The SQLSRV$CONFIG.DAT file in the SYS$STARTUP
system directory contains one or more definitions, each consisting of a set of
parameters. Each definition describes the characteristic of a subpool within
the process pool. An initial version of the file is stored on the system during
installation. The system manager can modify the file at any time to better suit
application requirements.

See also communication server, process pooling, and subpool.

consistency

The level to which a database system guarantees that records being read by a user
cannot be changed simultaneously by other users.

See also concurrency.

constant

Another term for literal.

constraint

A condition that restricts the values that can be stored in a table. When you insert
and update column values, the constraint checks the values against the conditions
specified by the constraint. If a value violates the constraint, an error message is
generated and the insert or update statement fails. You specify constraints in SQL
CREATE and ALTER TABLE statements. Optionally, you supply a name for the
constraints following the SQL DIAGNOSTIC keyword.

context file

A special SQL command procedure that contains SQL-specific declarations such as
DECLARE SCHEMA and DECLARE TRANSACTION statements. SQL applies the
declarations in a context file to the precompilation and execution of a host language
program.

Glossary-16

A context file is a way to manage schema and transaction contexts for the program
without coding these declarations in source code. Context files help limit SQL
statements in programs to generic SQL syntax. They let the program be more
easily transported for use with a variety of database products. The SQL precompiler
accepts a context file specification as an optional argument when it processes a host
language module.

context structure

A data structure in SQL that contains a distributed transaction identifier (TID).

See also distributed transaction identifier (TID).

context variable

Another term for alias.

control break

Partitions between groups of rows with the same value in an intermediate result
table. Specify control breaks with the GROUP BY clause.

See also intermediate result table.

coordinator

A component of a distributed transaction. The coordinator is the transaction
manager on the node where the application started a distributed transaction. The
coordinator orchestrates the distributed transaction.

See also DECdtm services, distributed transaction, resource manager, transaction
manager, and two-phase commit protocol.

correlated reference

Another term for outer reference.

correlated subquery

A subquery (or column select expression) that contains an outer reference.

co"elation name

Another term for alias.

cross operation

Another term for join.

Glossary-17

cross product

Another term for Cartesian product.

cursor

A result table defined by the select expression in an SQL DECLARE CURSOR
statement. Unlike other result tables, a cursor can exist throughout execution
of more than one statement. Host language programs require cursors because
programs must perform operations one row at a time and therefore may execute
statements more than once to process an entire result table.

See also list cursor, result table, and table cursor.

database

A collection of interrelated data on one or more mass storage devices. The collection
is organized to facilitate efficient and accurate inquiry and update. In a database,
more than one user can access the data at the same time. Data integrity and
security are provided by the database. Specifically, database refers to the data
definitions, user data, and the database system files associated with a schema.

See also CODASYL, hierarchical database, network database, relational database,
and schema.

Database Control System (DBCS)

The component that, together with the VMS operating system, provides run-time
control of database processing.

database execution server

In SQL/Services, one of two types of execution servers (database and generic
execution servers) that execute Application Programming Interface (API) requests
for the communication server. Database servers are already attached to an
Rdb/VMS database at system startup time and provide access to Rdb/VMS
databases in a specific user environment. Having servers already attached to a
database eliminates the need for each API request to make a separate database
attach.

See also Application Programming Interface (API), communication server, execution
server, generic execution server, and server.

database handle

Another term for authorization identifier. RDO and RDML use database handle
instead of the term authorization identifier.

See also attach and detach.

Glossary-18

database key

See dbkey.

database management system (DBMS)

A system for creating, maintaining, and accessing a collection of interrelated data
records that can be processed by one or more applications without regard to physical
storage. Data is described independently of application programs, providing ease in
application development, data security, and data visibility.

Note that the abbreviation "DBMS" is often used in general technical literature
and in the trade press to mean "database management system." Do not confuse
this generic use of the term DBMS with references to the specific Digital software
product VAX DBMS, a CODASYL-compliant database management system.

See also CODASYL, database, hierarchical database, network database, and
relational database.

database name

A name that a person, program, or product must supply to identify and access a
database.

database page

The structure used to store and locate data in an Rdb/VMS database. Rdb/VMS
database pages consist of 1 or more disk blocks of 512 bytes each. The default size
of a database page is 2 blocks, or 1024 bytes.

database root file

In a single-file database, the database root file contains data, metadata, and system
information. In a multifile database, this file contains only system information.
The metadata is stored in the RDB$SYSTEM storage area. Data is stored in the
RDB$SYSTEM or other storage area files. The database root file has the file
type RDB.

See also storage area.

database tuning

The process of adjusting system or database parameters to attain optimum resource
use for database applications without using unnecessary or excess central processing
unit, memory, or input/output capacity.

See also process pooling, query optimizer, SPAM page, and threshold.

Glossary-19

data compression

A technique that reduces data to its smallest possible size to optimize data
storage. Enabled by default, data compression can be disabled by specifying the
CREATE STORAGE MAP ... DISABLE COMPRESSION statement or the ALTER
STORAGE MAP ... DISABLE COMPRESSION statement for a given table.

data definition language (DDL)

A set of statements that lets you define the structure and characteristics of stored
data. You use data definition language to describe databases characteristics, storage
area files, columns, tables, views, indexes, and constraints. Both the SQL and RDO
interactive interfaces include Rdb/VMS data definition language.

See also CDD/Plus and metadata binary language representation (MBLR).

Data Distributor

A Digital product that lets you make complete or partial copies of databases.
These database copies can be made available to users on the source node or on
remote nodes. Data Distributor can copy the databases of three relational database
systems: Rdb/ELN, Rdb/VMS, and VIDA. Database copies are in RdbNMS format.

See also extraction, Rdb/ELN, RdbNMS, replication, source database, source node,
target database, and target node.

data element

Another term for data item.

data item

The smallest unit of data that you can retrieve from a row. A data item occupies a
single column in a row. Another term for data item is data element.

See also column and domain.

data manipulation language (DML)

A set of statements that lets you store, retrieve, modify, and erase data from a
database. There are several methods of manipulating data using SQL:

• Use a high-level language program to execute the SQL statements in an SQL
module file.

• Embed the data manipulation statements in a high-level language, such as Ada,
BASIC, C, COBOL, FORTRAN, Pascal, or PL/I. SQL has a precompiler for
Ada, C, COBOL, FORTRAN, Pascal, and PL/I.

Glossary-20

• Issue the data manipulation statements interactively.

The RdbNMS data manipulation languages (RDO, SQL) can be used to access a
VIDA database as well as an RdbNMS database.

See also binary language representation (BLR).

data table

See table.

DATATRIEVE

A VAX query language and data management tool for manipulating, storing, and
modifying records from RMS data files, VAX DBMS, RdbNMS, and Rdb/ELN
databases. DATATRIEVE also generates reports and graphs from data stored in
RMS files and VAX DBMS, RdbNMS, VIDA, and Rdb/ELN databases. SQL provides
DATATRIEVE support clauses in the CREATE DOMAIN, CREATE TABLE, and
CREATE VIEW statements, and in the ALTER DOMAIN and ALTER TABLE
statements.

DATATRIEVE is callable from a variety of high-level languages.

data type

The characteristic of columns and host language variables that controls how
RdbNMS interprets and stores values.

DBCS
See Database Control System (DBCS).

dbkey

A unique value that points to specific table rows in a database, identifying the
address of the table row. The Database Control System (DBCS) assigns the value
when a record is stored in the database. Application programs can use the DBKEY
keyword in SQL statements to refer to the database key for a table row. SQL
statements that retrieve rows by specifying their dbkeys offer faster access and
reduced locking over indexed or sequential searches. Another term for dbkey is
database key.

See also scope.

DBMS

See database management system.

DECLIT AA VAX KY66C

VAX Rdb/VMS introduction
and master index

Glossary-21

DBR

The name of the process that performs database recovery. It is created by the
Rdb/VMS monitor in case of:

DCL

• A (hard) executable image termination, where the usual exit mode is bypassed;
this can occur when the user terminates an executable image by entering
CTRL/Y and then invokes the DCL command STOP or any other command that
calls a new image.

• A VMS system failure

• A VAX node exit in a VAXcluster environment

DIGITAL Command Language. A set of commands that provides an operating
system interface for users. When users log in to a VMS system, they typically enter
the DCL environment. In this environment, they can create files and directories
and use a variety of programs and utilities to get their work done.

Interactive SQL and RDO let users issue DCL commands with the DCL Invoke ($)
statement.

DCL command procedure

A sequence of DIGITAL Command Language (DCL) commands stored in a file;
sometimes referred to as a DCL procedure.

See also RDO command procedure and SQL command procedure.

DDL

See data definition language (DDL).

deadlock

A situation in which two or more processes request the same set of resources and
there is no method for resolving the conflict other than to reject all but one of the
processes. For example, if process A has row 1 locked and requests row 2 while
process B has row 2 locked and is requesting row 1, a deadlock occurs between the
two processes.

DECdtm services

The VMS utility that coordinates distributed transactions by providing the
underlying operating system support for distributed transactions. DECdtm services

Glossary-22

supports the two-phase commit protocol, and guarantees consistent execution of the
distributed processing of applications on the VMS operating system.

See also coordinator, distributed transaction, resource manager, transaction
manager, and two-phase commit protocol.

DECnet

The Digital software facility that implements the DIGITAL Network Architecture
(DNA) to let a user access information on a remote computer through
telecommunications lines. A DECnet-VAX network enables a VMS system to
function as a network node and, for instance, allows programs running on one node
to remotely access an RdbNMS database on another node in the same DECnet-VAX
network.

DECtrace

A product that collects and reports data and performance information from
databases on an event basis (as opposed to products that collect on a timer basis).
You can have DECtrace collect application workload information, and then have
RdbExpert import that information.

See also event and RdbExpert.

default

A value that is assumed unless or until you specifically indicate another value.

default dictionary directory

The CDD/Plus directory assigned to you when you invoke an image that uses the
CDD/Plus dictionary. This directory becomes the first directory listed within path
names. You can define a directory as the default by assigning a path name to the
logical name CDD$DEFAULT. If you do not, the default directory is the equivalent
of the CDD$COMPATIBILITY logical name. By default, CDD$COMPATIBILITY is
defined as SYS$COMMON:[CDDPLUS].

See also anchor, dictionary directory, and path name.

default directory

The directory from which the VMS system reads and to which it writes all files that
you create unless you explicitly name a directory.

See also directory.

Glossary-23

default schema

The database declared without an explicit authorization identifier in the DECLARE
SCHEMA statement. Table and view names in SQL statements that refer to the
default schema do not have to be qualified by an authorization identifier.

In SQL module language, the authorization identifier specified in the module header
is the one that designates the default schema. In precompiled SQL programs and in
interactive SQL, the special authorization identifier RDB$DBHANDLE designates
the default schema. In all environments, omitting an explicit authorization
identifier is the same as specifying the authorization identifier that designates the
default schema.

If a user or program does not issue an explicit DECLARE SCHEMA statement, SQL
attempts to declare a default database using the file specification assigned to the
logical name SQL$DATABASE.

See also authorization identifier and schema.

default value

The data value that is stored in the database if an insert or update operation on a
row specifies no data value for that column. In SQL, you can define a default value
for a domain or for a column. A default value using the SQL interface is not the
same as the missing value that you can define using the RDO interface.

See also missing value.

deferred snapshots

A process by which update transactions write to the snapshot files only when a
read-only transaction is in progress. Deferred snapshots eliminate the unnecessary
writing of updated records to the snapshot file.

See also snapshot.

degree (of a table)

The number of columns in a table definition.

descending order

A sorting order that starts with the highest value of a key and proceeds to the
lowest value, in accordance with the rules for comparing data items.

See also ascending order and sort key.

Glossary-24

descriptor

A data structure used for passing argument types, addresses, and other information
between SQL and host language programs. SQL module procedures can specify
that parameters be passed by descriptor. Also, SQL uses a descriptor called the
SQL Descriptor Area (SQLDA) to communicate with programs about dynamically
executed SQL statements (however, note that the SQLDA is not a standard VMS
descriptor).

See also SQLDA.

detach (from a database)

The operation by RdbNMS that closes the database stream to a database and
releases resources associated with the terminated connection. The FINISH
statement in both SQL and RDO detaches from the database (in addition to
perlorming other operations).

See also attach.

dictionary

In the most general sense: an overall hierarchical storage facility that includes
dictionary directories, subdictionaries, and objects. Dictionary facilities are also
called repositories. In the RdbNMS documentation, dictionary refers to the
CDD/Plus dictionary product.

As a keyword used with the SET and SHOW statements, DICTIONARY has the
more limited meaning of the current location within the CDD/Plus dictionary used
by the invoked database.

See also CDD/Plus.

dictionary directory

The structure for organizing data descriptions stored in the CDD/Plus dictionary.
Dictionary directories are similar in function to VMS directories. They "own"
other dictionary directories or dictionary objects.

See also default dictionary directory.

Dictionary Management Utility (DMU)

The utility used with VAX CDD (prior to CDD/Plus) to create and maintain the
dictionary directory hierarchy and its associated access control and history lists.
DMU is still available with CDD/Plus, but only to work with dictionary definitions

Glossary-25

that existed before CDD/Plus was installed on your system. To share definitions
among more than one RdbNMS database, the metadata must reside in the
CDO-format dictionary.

See also Common Dictionary Operator (CDO) utility.

dictionary object

A data definition stored in the CDD/Plus dictionary. Examples of objects include:

• ACMS definitions

• CDD/Plus record definitions

• DATATRIEVE domains, records, procedures, plots, and tables

• VAX DBMS schemas, areas, sets, and records

• RdbNMS database entry

• TDMS forms, requests, and request library definitions

Data Distributor does not store any definitions for a target database in a
CDD/Pl us dictionary; however, you can use the INTEGRATE statement to copy
the database definitions of extractions and replications to a CDD/Plus dictionary
yourself.

See also CDD/Plus, extraction, replication, and target database.

DIGITAL Command Language (DCL)

See DCL.

directory

A file that catalogs a set of files stored on disk or tape. The directory includes the
name, type, and version number of each file in the set.

See also default directory and dictionary directory.

DISTINCT clause

Used in a select expression to find unique values for a column and to eliminate
repeating records.

Glossary-26

distributed transaction

A transaction that groups more than one database or more than one database
attachment together into one transaction even if the databases are located on
different nodes. RdbNMS uses the two-phase commit protocol of DECdtm services
to guarantee that if one operation in a transaction cannot be completed, none of the
operations is completed.

See also coordinator, DECdtm services, resource manager, transaction manager, and
two-phase commit protocol.

distributed transaction identifier (TID)

An identifier generated by DECdtm services to keep track of a distributed
transaction and of the resource managers and transaction managers that are
involved in a particular distributed transaction.

See also coordinator, distributed transaction, resource manager, and transaction
manager.

distributed transaction processing

The processing of ACMS tasks on two separate nodes, a front end for forms
processing and a back end for processing against the database. An ACMS user or
task submitter logged in to an ACMS system on one node can select tasks in an
application on an ACMS system on another node. ACMS uses the DECnet network
to communicate transparently between nodes without rewriting applications or
tasks, and can distribute processing between nodes in a VAXcluster, a local area
network, a wide area network, or any combination of the three.

See also ACMS and transaction processing.

DML
See data manipulation language (DML).

DMU
See Dictionary Management Utility (DMU). See also Common Dictionary Operator
(CDO) utility.

domain

The set of values that a table column can have. The CREATE DOMAIN statement
specifies the set of values by associating a data type with a domain name. CREATE
TABLE statements can use the domain in column definitions.

See also column and data item.

Glossary-27

dynamic cursor

A cursor used in dynamic SQL programs. You explicitly specify the cursor name
at compile time; however, you do not explicitly specify the SELECT statement.
Instead, you specify the name of a prepared statement. In other words, the cursor
name is known at compile time, but the SELECT statement is not known until
run time.

See also cursor, dynamic SQL, and extended dynamic cursor.

dynamic interface

Another term for dynamic SQL.

dynamicSQL

A set of special SQL statements (PREPARE, DESCRIBE, EXECUTE, EXECUTE
IMMEDIATE, and RELEASE) and data structures (SQLCA and SQLDA) that let
programs accept or generate SQL statements for which no executable form e:Xists
until the program runs. Unlike statements embedded in programs or contained in
SQL module files, such dynamically executed SQL statements are not part of any
source code but are created while the program runs. Dynamic SQL is useful when
programs cannot predict before they execute the type of SQL statement they will
need to process.

To dynamically execute statements, programs either embed the special dynamic
SQL statements in host language source files for precompilation or call SQL module
files that contain procedures with the special statements.

See also client, dynamically executable statement, executable statement,
nonexecutable statement, server, and SQL/Services.

dynamically executable statement

An SQL statement that can be formulated and executed at run time.

See also dynamic SQL, executable statement, and non executable statement.

edit string

A character or group of characters that controls how DATATRIEVE displays data in
a column or domain.

embedded DML

DML statements that are embedded directly in a host language program.

Glossary-28

embedded RDO

RDO statements that are embedded directly in a host language program rather than
being issued in the interactive RDO utility. Programs that contain embedded RDO
must be processed by the preprocessor to convert the embedded RDO statements to
a form that is understandable by the host language compiler.

embedded select

Another term for singleton select.

embedded SQL

SQL statements that are embedded in a host language program rather than in
an SQL module language procedure or issued in the interactive SQL utility.
Programs that contain embedded SQL statements must be processed by the
SQL precompiler before compilation and execution to convert the embedded SQL
statements to a form that is understandable by the host language compiler.

equijoin

A join operation that matches values in a column from one table with those in a
corresponding column in another table.

event

An occurrence of some activity within a facility. DECtrace tracks two types of
events: duration and point. Duration events have logical beginning and ending
points. Point events occur instantaneously. DECtrace allows you to collect and
report on data based on a set of predefined RdbNMS events.

See also DECtrace and security event.

executable image

An image that can be run in a process. When run, an executable image is read from
a file for execution in a process.

executable statement

In host language programs, SQL statements that undergo processing during
precompilation or module compilation, but do not actually execute until the program
runs. In interactive SQL, statements whose operation is processed immediately
by SQL.

See also dynamic SQL, dynamically executable statement, and nonexecutable
statement.

Glossary-29

execution server

A process that executes Application Programming Interface (API) requests
for the communication server. There are two classes of execution servers that
the communication server can create: generic or database. By default, the
communication server uses generic execution servers when a request does not
explicitly name a database execution server.

See also communication server, database execution server, generic execution server,
and server.

export operation

Makes a copy of a database in an intermediate form. Use an import operation
to rebuild an RdbNMS database from the intermediate (RBR) file created by the
export operation.

See also backup operation, import operation, and restore operation.

expression

Another term for value expression.

extended dynamic cursor

A cursor used in dynamic SQL programs. You supply parameters for the cursor
name and the SELECT statement. In other words, the cursor name and select
statement are not known until run time. Extended dynamic cursors let you use one
set of cursor-related statements to process any number of dynamically generated
statements.

See also cursor, dynamic cursor, and dynamic SQL.

extent

The number of pages by which a storage area file or a snapshot file is extended
each time its space limit has been reached. The SQL CREATE SCHEMA statement
specifies the initial number of pages for each storage area.

See also multifile database (MFDB), snapshot, and storage area.

extraction

In Data Distributor, the process by 'which complete or partial copies of a source
database are transferred to a directory. Data Distributor can transfer a database to
a directory on the same node as the source database or to directories on remote

Glossary-30

nodes. The source database for a Data Distributor extraction can be any of these
database systems: RdbNMS, Rdb/ELN, and VIDA. Database copies are in Rdb/VMS
form.at. The target database for an extraction process is not periodically updated

See also Data Distributor, replication, source database, and source node.

field

Another term. for col wnn or domain.

See also data item.

field attribute

In RDO, a condition or characteristic of a field in a record.

file

A collection of related records treated as a writ; often referred to by a logical name.

file name

The name you choose to identify a file. The file name can have from 1 to 39
characters selected from the letters A through Z, the nwnbers 0 through 9, and the
underscore (_) or the dollar sign ($). When you name files, you can use any names
that are meaningful to you.

file specification

A name that uniquely identifies a file. A full file specification identifies the node,
device, directory name, file name, file type, and version number under which a file
is stored.

file type

The part of a file specification that describes the nature or class of file. The file type
follows a period after the file name and consists of 1 to 39 characters. The VMS
operating system and VAX software products recognize many default file types used
for special purposes.

In an Rdb/VMS database, the possible default file types are as follows:

• RDB
The database root file, where information about the characteristics and physical
structure of the entire database is maintained. There is one database root file
per Rdb/VMS database. In a single-file database, the database root file also
contains all the user's data.

Glossary-31

• RDA

One or more storage area files, where the user's data is located in a multifile
database. System relations are stored in the default storage area. The RDA file
type applies only to multifile databases.

• SNP
One snapshot (SNP) file for each storage area (RDA) file in a multifile database
when snapshots are enabled for the database. In a single-file database, there is
a single snapshot file.

• RUJ

One recovery-unit journal file created for each user who starts a read/write
transaction. The recovery-unit journal file resides, by default, in the user's
SYS$LOGIN directory. The RUJ file is deleted after the user detaches from the
database.

• AIJ
One after-image journal file per database if after-image journaling is enabled.

• RBF

A backup file of the database created by the RMU/BACKUP command.

• RBR

A backup file of the database created by the RDO EXPORT statement.

• RRD

A file containing data definitions for a table or view created by the
RMU/UNLOAD command.

• UNL
A file containing data created by the RMU/UNLOAD command.

See also multifile database (MFDB).

foreign key

A column in a table that does not uniquely identify rows in that table, but is used
as a link to matching columns in other tables.

See also candidate key, primary key, and secondary key.

Glossary-32

formal parameter

A parameter declaration in an SQL module procedure that corresponds to an actual
parameter in a calling program. The SQL statement in the module procedure uses
the formal parameter name to refer indirectly to the actual parameter named in the
host language call to the module procedure.

See also actual parameter.

free space

The portion of a database page that is not filled with data.

See also database page.

full path name

A name that uniquely identifies a dictionary directory, subdictionary, or object in
the CDD/Plus hierarchy. The full path name is a concatenation of the given names
of directories and objects, beginning with the anchor name, ending with the given
name of the object or directory you want to specify, and including the given names
of the intermediate subdictionaries and directories. The names of the directories
and objects are separated by periods.

SYS$COMMON:[CDDPLUSJCORP.ACCOUNTING.PERSONNEL is a full path
name that uniquely identifies the object PERSONNEL, an entry for an RdbNMS
database definition.

See also logical path name and relative path name.

function

A keyword that calculates a single value based on all the values in a column of a
result table or group. SQL uses these functions:

COUNT

SUM
AVG

MAX

MIN

Number of rows in a result table

Sum of the values in a column

Average of the values in a column

Largest value in a column

Smallest value in a column

Other terms for function are aggregate expression, built-in function, and statistical
expression.

Glossary-33

generic execution server

In SQL/Services, one of two types of execution servers (database and generic
servers) that exeucte Application Programming Interface (API) requests for the
communication server. Generic execution servers are assigned by default to
execute API requests. U n1ike database execution servers, generic servers are not
pre-attached to an Rdb/VMS or VIDA database at system startup time. Generic
servers, however, require no application or server system modification, as database
execution servers require.

See also Application Programming Interface (API), communication server, execution
server, database execution server, and server.

global aggregate

An expression that uses field values from one relation to group records from
another. A function is then used to calculate a value for the group. For example,
you can group salary records in a SALARY_HISTORY relation according to the
DEPARTMENT_CODE field in the DEPARTMENT relation. Then you can use the
AVERAGE function to find the average salary for each department.

global transaction

See distributed transaction.

handle

See database handle.

hash bucket

A data structure that maintains information about an index key, and a list of
internal pointers (or dbkeys) to the page and row that contain the value of the
index key.

Another term for hash bucket is hashed index node.

hashed index

In a hashed index, the index key value is converted mathematically to a relative
page number in the storage area of a particular table. On that page is a hash
bucket or hashed index node that contains pointers (or dbkeys) that point to where
the row is actually stored. To find a row using the hashed index, the database
system searches the hash bucket, finds the appropriate dbkey, and fetches the table
row. Hashed indexes are more effective for random, direct access when the query
supplies the entire index key. Hashed index structures are created when a row is
stored and a hashed index has been defined for that table.

Glossary-34

A hashed index is defined in Rdb/VMS by specifying the TYPE IS HASHED clause
within the CREATE INDEX statement. Hashed indexes are available only in a
multifile database.

See also hashing, hash bucket, index, multifile database (MFDB), multisegmented
index, and sorted index.

hashed index node

Another term for hash bucket.

hashing

The conversion of a column's primary key value (for example, an EMPLOYEE_ID of
00167) into a database page number on which the row will be stored; subsequent
retrieval operations that specify the key column value use the same hashing
algorithm and can locate the row directly. Hashing provides fast retrieval for data
that contains a unique key value.

See also hashed index.

hierarchical database

A type of database that organizes the relationships between record types as a tree
structure (usually depicted "upside-down," with branches growing downward and
out). A hierarchical database stores related records on the same branch of the tree
to make data retrieval efficient.

See also database, network database, relational database, and schema.

host language program

All the host language source files that go together to make up an entire program.

host language source file

A file containing host language source code. Such files can use SQL statements in
one of the following ways:

• By using host language calls to procedures contained in an SQL module file
compiled by the SQL module processor, independently of the host language
source file.

• By embedding SQL statements directly in the file. The statements are flagged
by special delimiters. Such host language source files must be processed by the
SQL precompiler before the host language statements in them are compiled.

Glossary-35

host language variable

A variable declared in a program that the program can refer to in an embedded
SQL ·statement.

See also parameter.

host structure

A host language variable that corresponds to a group construct of several host
language variables. Once a program declares a host structure, it can refer to
the host structure in some SQL statements instead of listing the host language
variables that comprise it.

host variable

See host language variable.

idempotent

A state of being in which database recovery using before-image journal (RUJ) files
should succeed following one or more system failures as if the recovery were done
completely and successfully the first time.

See also before-image journal and recovery.

import operation

Creates an RdbNMS database from an intermediate RBR file. You use the import
operation with an export operation to make changes to RdbNMS databases that
cannot be made any other way.

See also backup operation, export operation, and restore operation.

index

A structure within a file or database that lets you quickly locate particular records
based on key column values.

In Rdb/VMS, you can use any column or combination of columns from a row as an
index key. You can also define more than one index for a given table. Rdb/VMS has
two types of indexes, sorted and hashed. Hashed indexes are available only in a
multifile database.

See also cardinality, hashed index, multisegmented index, and sorted index.

Glossary-36

index fill factor

A parameter that controls the initial fullness percentage of each index node.
Generally, the performance of query-intensive applications benefit from index
structures with large, full nodes, while the performance of update-intensive
applications can benefit from index structures with small, partially filled nodes.

See also index, index node, and sorted index.

index key

A column of a row in an indexed file or database that determines the order of search
and retrieval. You can use any column or combination of columns from a row as an
index key. You can also define more than one index for a given table.

See also hashed index, index, and sorted index.

index node

A sorted index data structure that contains key values and pointers (dbkeys) to rows
in the database, as well as to other nodes and rows in this sorted index structure.
You can control the size of a node in a sorted index by using the NODE SIZE
IS clause within the SQL ALTER INDEX, SQL CREATE INDEX, and IMPORT
statements.

See also hashed index, index, and sorted index.

indicator array

Another term for indicator structure.

indicator parameter

A parameter whose value indicates whether its associated main parameter has been
assigned a null value, or whether or not the text string passed from a database has
been truncated.

See also main parameter.

indicator structure

A one-dimensional array of host language variables declared with the signed word
data type that programs use as indicator variables for host structures. Indicator
structures are the only way to specify indicator parameters for host structures.

indicator vector

Another term for indicator structure.

Glossary-37

initializing phase

The period beginning at SQL/Services startup time in which the communication
server reads the configuration file and creates the process pool of execution server ~
processes. The initializating phase ends when the communication server receives its
first message request from a client application at the outset of the working phase.

See also communication server, configuration file, execution server, process pooling,
SQUServices, and working phase.

input parameter

Another term for parameter marker.

Installation Verification Procedure (IVP)

A test procedure that determines whether or not a software product has been
installed correctly.

integrity

The correctness of information in an RdbNMS database. There are three general
types of integrity control:

• Integrity constraints make sure that database information remains correct when
users try to modify it incorrectly.

• Concurrency control lets only one user at a time update a file while allowing
many users simultaneous access to the database.

• Recovery restores a database to the state it was in before a system failure.

interactive processing (Rdb/VMS)

A mode of computer operation in which the SQL or RDO statements and the data
that control the actions of the computer are entered by a person at a terminal.

See also batch processing (Rdb/VMS).

interactive SELECT

Another term for the SELECT statement.

intermediate result table

A temporary result table created by SQL as it evaluates the clauses of a select
expression. After each clause, SQL logically produces an intermediate result table
that is used to evaluate the next clause.

Glossary-38

Interpretive call interface

See Callable RDO.

interval

ISO

IVP

The number of data pages between space area management (SPAM) pages.

See also SPAM page and threshold.

International Standards Organization. ISO maintains an SQL standard,
ISO 9075:1989, and is developing an extended SQL standard, SQL2, in conjunction
with ANSI.

See Installation Verification Procedure (IVP).

join

An operation in which RdbNMS retrieves data from more than one table based
on matching column values. To process a join operation, Rdb/VMS first forms the
Cartesian product of the tables.

See also Cartesian product, equijoin, and reflexive join.

joumal file

A file that contains all records modified by a run unit or transaction. The journal
file allows reconstruction of the database in the event of coITuption due to system or
program failures.

See also after-image journal (AIJ), before-image journal, and before-image
journaling.

joumaling

The process of recording, on a recoverable resource, information about operations on
a database. The type of information recorded depends on the type of journal being
created.

See also after-image journal (AIJ), before-image journal, and before-image
journaling.

Glossary-39

key

A column in a row that you use to locate one or more specific rows. Using keys,
RdbNMS can locate rows in the table directly, without searching sequentially.
Identifying keys increases the speed of some database operations.

See also candidate key, foreign key, hashed index, index key, key value, primary key,
and sorted index.

key value

The values supplied in a data manipulation language operation to identify a specific
row for access.

keyword

A word reserved for use in certain specified syntax formats, usually in a command
or a statement. In RdbNMS syntax diagrams, keywords are shown in capital letters
and are underlined.

License Management Facility (LMF)

A software facility that automatically checks for licenses prior to installation of
Digital software.

See also Product Authorization Key (PAK) and Service Update PAK (SUP).

line index

A dynamic section of a database page that acts as a directory to data on the page by
indexing page offsets of individual data segments.

See also database page.

linker

list

A program that creates an executable program, called an image, from one or more
object modules produced by a language compiler or assembler. Programs must be
linked before they can be executed.

A large data object with a segmented internal structure, used for storage and
retrieval of unstructured data such as graphics data, large amounts of text, or long
strings of binary data. The entire list appears as the value of a column. A list has

Glossary-40

the LIST OF BYTE VARYING or LIST OF VARBYTE data type. In RDO, a list is
called a segmented string and has the SEGMENTED STRING data type.

See also list cursor, LIST OF BYTE VARYING data type, RDB$LENGTH, and
RDB$VALUE.

list cursor

A result table defined by the SELECT expression in an SQL DECLARE LIST
CURSOR statement in order to scan the individual elements of an SQL list. A list
cursor enables programs to perform operations on each element of a list. Each
element of a list is stored as the value of an SQL column. In order to reference
elements within a row, a list cursor must reference a table cursor because the table
cursor provides the row context. A list cursor is used to find the value or length of
the segments of unstructured data, such as graphics data, large amounts of text,
or long strings of binary data in the LIST OF BYTE VARYING data type. There
are two types of list cursors: read-only and insert-only. See the sample program
SQL$RESUMES for more information on how to request segment length in SQL
programs.

In RDO and RDML, segmented strings are retrieved by creating a record stream
that finds the contents of the value expressions RDB$LENGTH and RDB$VALUE.

See also list, LIST OF BYTE VARYING data type, positioned insert, RDB$LENGTH,
RDB$VALUE, record stream, result table, and table cursor.

LIST OF BYTE VARYING data type

A special data type for the storage and retrieval of unstructured data, such as
graphics data, large amounts of text, or long strings of binary data~ List data type
is the SQL term; the comparable RDO term is segmented string data type.

See also list cursor, RDB$LENGTH, and RDB$VALUE.

literal

A value expression that directly specifies a value. Literals can be numeric, character
string, or date.

Another term for literal is constant.

LMF

See License Management Facility (LMF).

Glossary-41

locking

A mechanism for protecting transactions from interference by other concurrently
executing transactions. The mechanism that controls the allocation and deallocation
of a resource, such as a record or a process. Rdb/VMS allows locks on individual
rows and on all tables in one or multiple storage area files. The RESERVING clause
of the SET TRANSACTION or DECLARE TRANSACTION statements can limit the
extent of the locking to specific portions of the database.

See also lock type, reserving option, and share mode.

lock type

Part of the reserving option in a SET TRANSACTION, DECLARE TRANSACTION,
or START_TRANSACTION statement. The reserving option, if specified, consists of
a share mode and a lock type.

The possible share modes are exclusive, protected, and shared. The possible lock
types are read and write. For example, a SET_TRANSACTION statement might
reserve a table, specifying a reserving option of PROTECTED WRITE. Another term
for lock type is access mode.

See also locking, reserving option, and share mode.

logical area

An internal partitioning of a storage area with uniform page format. Logical areas
are used for the storage of tables and indexes. You can think of a logical area as
a set of pages with common characteristics. There will be different logical areas
within each storage area. Also, if a table is partitioned over multiple storage areas,
it will have one logical area per physical storage area. This is most noticeable with
the dbkey, which uses the logical area portion to denote which partition contains the
record.

logical name

A user-specified name for any portion or all of a file specification. Logical name
assignments are maintained in logical name tables for each process, each group, and
the system.

See also the RDM$... and RDMS$... entries for descriptions of some logical
names used by Rdb/VMS.

logical operator

Another term for Boolean operator.

Glossary-42

logical path name

A logical name that uniquely identifies a dictionary directory, subdictionary, or
object in the COD/Plus dictionary. The logical path name is a name you define for a
full or relative path name.

macro

In certain programming languages, such as C, a command, series of commands, or
text string that is assigned to a key or word, similar to a DCL logical name.

main parameter

A parameter that contains the value to be used in an SQL statement.

See also indicator parameter.

map

See storage map.

MBLR

See metadata binary language representation (MBLR).

message file

A file that contains a table of message symbols and their associated text.

message protocol

The internal message-packet protocol used in SQL/Services client/server network
communications.

metadata

Data that is used to describe other data. Data definitions are sometimes referred to
as metadata. Examples of metadata include schema, table, and column definitions.

See also data definition language (DDL).

metadata binary language representation (MBLR)

The binary language representation of metadata manipulation. MBLR specifies the
actions that the database must perform to change the metadata. In other words,
the binary form of data definition language.

See also binary language representation (BLR), data definition language (DDL), and
metadata.

Glossary-43

MFDB

See multifile database (MFDB).

missing value

In RDO syntax, a special value retrieved when a column of a row in a table is null.
Missing values signify in displays and to programs that there is no value stored.

SQL does not use missing values. However, you can specify default values. If
you do not specify a default value, NULL is displayed in interactive SQL when it
encounters null values. In programs, SQL requires the use of indicator parameters
to handle the possibility of null values. Default values in SQL are not the same as
missing values in RDO.

See also default value and null value.

mixed page format

A storage area format that allows rows from more than one table to reside on or
near a particular page of the storage area file.

See also interval, SPAM page, threshold, and uniform page format.

module file

Another term for SQL module file.

module language

Another term for SQL module language.

module procedure

Another term for an SQL module procedure.

module processor

Another term for SQL module processor.

multifile database (MFDB)

A database in which the database root file (default file type RDB) contains only
metadata and system information; all data is stored in one or more storage area
files. The files in a multifile database can be on the same disk or on multiple
disks. (Careful placement of files on different disk drives can reduce input/output
contention and substantially improve application performance.)

See also allocation, extent, file type, hashed index, storage area, and storage map.

Glossary-44

multisegmented index

An index with a key comprised of more than one column.

See also hashed index, index, and sorted index.

multithreaded

In SQL/Services, a characteristic of a server process that enables it to handle
multiple Application Programming Interface (API) requests simultaneously. The
communication server can process multiple API requests simultaneously because
incoming requests can be processed before the execution of previous requests is
complete.

National Character Set (NCS) utility

A utility that provides a way to define collating sequences, register them
as definition modules in an NCS library, and make them locally accessible
to programmers. NCS collating sequences are selective subsets of the DEC
Multinational Character Set, and are frequently used in international applications.
For example, a Spanish collating sequence would resolve sorting characters you
might encounter when processing strings from the Spanish language.

The SQL and RDO interfaces to RdbNMS use the NCS collating sequences to
specify collating sequences and languages.

See also collating sequence.

NCS

See National Character Set (NCS) utility.

network database

A database model that establishes relationships between records using sets. A
single record can participate in any number of sets, so you can relate it to any other
record in the database, not just those above and below it in a hierarchy.

Network databases are also called CODASYL databases. VAX DBMS is a network
database.

See also CODASYL, database, hierarchical database, relational database, and
schema.

Glossary-45

nonexecutable statement

In host language programs, statements that SQL processes completely when it
precompiles a program (DECLARE statements, INCLUDE and WHENEVER)
or compiles an SQL module (DECLARE statements only). In interactive SQL,
statements for which the operation controlled by the statement does not occur
until SQL encounters an executable statement (DECLARE TRANSACTION and
DECLARE CURSOR).

See also executable statement.

normalization

The process that reduces a database structure to its simplest form and eliminates
data redundancy. Normalization physically separates related concepts in th~
database into separate tables or rows. A data item is stored only once and requires
only one update operation to change it.

null value

The absence of a value. If a particular column of a row in a table is null, that means
there is no value stored. In RDO syntax, a null value is called a missing value.

numeric data type

A characteristic assigned to a colwnn that indicates colwnn values are to be
considered nwnbers rather than text.

object

A passive repository of information to be protected. In RdbNMS, an object is a
database or schema, table, view, or colwnn.

See also dictionary object and security.

OLTP

See online transaction processing (OLTP).

online transaction processing (OLTP)

A technique for organizing multiuser, high-volwne, online applications that provides
control over user access and updates of data.

See also ACMS and transaction processing.

optimizer

See query optimizer.

Glossary-46

outer query

The top-level select expression.

See also column select expression.

outer reference

A reference in a subquery to a table specified in an outer query that contains the
column select expression (or subquery).

output parameter

In dynamic SQL, another term for a select list item.

See also select list.

page header

A fixed-length section at the beginning of the database page that contains page and
storage area information.

See also database page.

PAK

See Product Authorization Key (PAK) and Service Update PAK (SUP).

parameter

A variable declared in a host language program that is associated with an SQL
statement. The meaning of parameter encompasses host language variables named
directly in embedded SQL statements, actual and formal parameters in programs
that use SQL module language, and parameter markers in the statement string of a
PREPARE statement.

See also actual parameter, formal parameter, host language variable, indicator
parameter, main parameter, and parameter marker.

parameter marker

A question mark (?) in the statement string of a PREPARE statement. In dynamic
SQL, the question marks in the statement string of a PREPARE statement serve
the same purpose as host language variables in an SQL statement embedded in
a program (or as formal parameters in a SQL statement that is part of an SQL
module procedure). SQL writes information about the number and data types of any

Glossary-47

parameter markers to the SQLDA when it executes a DESCRIBE ... MARKERS
statement. The program uses the information to declare host language variables
corresponding to the markers and puts values in the variables that SQL uses when
it dynamically executes the prepared statement.

parameter specification

Another term for parameter.

partial path name

See relative path name.

path name

In the data dictionary, a name that begins with the user's CDD/Plus anchor and
ends with the given name of a dictionary directory or object. The path name
includes names of intervening dictionary directories, for example:

SYS$COMMON:[CDDPLUS]PERSONNEL.DEPARTMENTS

You can have full, logical, and relative path names.

See also full path name, logical path name, and relative path name.

placeholder

Used in VAX Language-Sensitive Editor (LSE) templates, placeholders represent
the SQL syntax you need to define SQL elements and data dictionary objects, and
to use SQL. When you expand a placeholder, LSE provides the required syntax or
indicates optional elements. You can expand a placeholder into:

• The required SQL syntax elements that are appropriate for that context

• Optional elements

• Tokens that represent appropriate keywords or information to be supplied

• Other placeholders

PLACEMENT VIA index option

A row placement option in which RdbNMS uses the index value in determining
the database page on which to store rows. The PLACEMENT VIA index option is
declared in the storage map definition.

See also hashed index, sorted index, and storage map.

Glossary-48

plan file

Another term for context file.

platform

The combination of computer hardware and operating system software.

See also server.

pointer

A place marker that identifies a row's address in a storage area.

See also dbkey.

pointer variable

A variable that provides indirect access to storage by storing the address of data
instead of directly storing data in the variable. To take full advantage of dynamic
SQL, host languages must support pointer variables.

positioned insert

A special form of the SQL INSERT statement used for putting a row into a table
cursor. You must use a positioned insert to prepare for storing data values in a list.
When you store the row data, the positioned insert places the cursor on the table
row where the list is stored, so that you can use subsequent INSERT statements to
insert data into the individual list elements.

See also list cursor.

precompiled SQL

Another term for embedded SQL.

precompiler

Another term for SQL precompiler.

predicate

A condition that SQL evaluates as either true, false, or unknown. Predicates
compare value expressions or result tables with different conditional operators. In
SQL statements, predicates follow the WHERE or HAVING keywords. In RDO, a
predicate is called a conditional expression. Other terms for predicate are Boolean
expression, conditional expression, and search condition.

See also conditional operator.

Glossary-49

prepare phase

The first phase of the two-phase commit protocol. During the prepare phase, the
coordinator of the distributed transaction asks each resource manager involved in ~
the distributed transaction whether or not it is prepared to commit the changes
to the databases. If the coordinator receives yes responses from all the resource
managers, the coordinator instructs the participants in the distributed transaction
to enter the commit phase.

See also commit phase, coordinator, distributed transaction, resource manager, and
two-phase commit protocol.

prepared statement

An SQL statement that has been processed with the PREPARE statement and that
can be dynamically executed.

preprocesser

Another term for precompiler.

primary key

A column in a table whose value uniquely identifies its row in the table. It cannot
be a null value.

See also candidate key, foreign key, and secondary key.

print list

One or more value expressions (including the names of elementary and group fields)
whose values you want Rdb/VMS to display.

privilege

The ability to access a file or other resource for a certain purpose.

See also access privilege set (APS), ACL-style protection, and ANSI-style protection.

procedure

A general-purpose routine, entered by means of a call instruction, that uses an
argument list passed by a calling program and only local variables for data storage.
A procedure is entered from and returns control to the calling program. An example
of a procedure is an SQL module procedure.

An SQL module procedure contains a series of SQL statements. These statements
can be executed with the execute (@) command.

See also SQL module procedure.

Glossary-50

procedure parameter

Another term for formal parameter.

process

An environment from which a VMS user can issue commands. These commands can
be issued either in interactive or noninteractive mode. A user automatically creates
an interactive process when he or she logs in to a VMS system. The user can then
create subordinate processes, such as batch jobs, that execute independently of the
interactive process. A user authorization file (UAF), usually maintained by a system
manager, specifies characteristics that are associated with any process created by
that user. Among those characteristics are device and VMS directory defaults, and
a set of privileges and resource quotas that define what the process can use on the
system.

process pooling

In SQL/Services, the feature that allows Application Programming Interface (API)
requests on the client system to be executed on the server system by the execution
server processes that comprise the process pool. The communication server starts
a predefined set of execution server processes during the initializing phase at
SQL/Services system startup time. The number of execution server processes
created for the process pool depends on the number of definitions specified in the
configuration file. Process pooling decreases API request response time and reduces
overall system resource utilization.

See also Application Programming Interface (API), communication server,
configuration file, and execution server.

Product Authorization Key (PAK)

A unique paper key provided to customers with the necessary information needed
to register and use a layered product. RdbNMS requires a key for successful
installation and use.

See also License Management Facility (LMF) and Service Update PAK (SUP).

project operation

See reduction operation.

Glossary-51

qualifier

A portion of a command string that modifies a command verb or command
parameter. A qualifier follows the command verb or parameter to which it applies
and has the following format:

/qualifier[=option]

query header

A substitute column header that you define to replace the field name when
DATATRIEVE displays values from a field. For example, you might want to define
the query header "Status" to appear at the top of the column of values from the field
EMPLOYEE_STATUS. You can specify a query header with the RDO CHANGE
FIELD or DEFINE FIELD statement.

query name

A synonym you give to a DATATRIEVE field name in order to make input easier
to type and remember. For example, to make it easier to write DATATRIEVE
statements about the field SECTION_NUMBER, you can define the query name
NUM and substitute it for the full field name. You can specify a query name with
the RDO CHANGE FIELD or DEFINE FIELD statement.

query optimizer

The software component of RdbNMS that evaluates each query and determines the
most efficient means of accessing the data requested.

query specification

Another term for select expression.

quiet point

A time when a run unit is not accessing any database areas. Quiet points occur
between transactions.

See also run unit and transaction.

RdbExpert

A product you can use to can optimize the physical design of your RdbNMS
database. Using RdbExpert, you specify information about the application workload,
data volume, and system environment of the database. RdbExpert applies its design
rules to the schema and to the information you have supplied. It generates several
design reports, as well as a command procedure that (with minimal edits) you can

Glossary-52

run to create a new database with an optimal physical design. This procedure also
unloads any existing data and reloads it in the new database.

Rdb/ELN

A Digital relational database management product designed for real-time
applications on systems running in the VAXELN run-time application environment.
Rdb/ELN uses the relational model of database organization.

Rdb/VMS

A relational database management system. The SQL interface is a component
of Rdb/VMS that allows users to define and query an RdbNMS database using
standard SQL syntax.

See also SQL.

Rdb/VMS Management Utility (RMU)

A DCL-level Rdb/VMS utility that allows database administrators to:

• Analyze how disk space is being used by the database

• Convert a previous version of the database to the current version's format

• Display the contents of RdbNMS database files

• Control the Rdb/VMS monitor process

• Display information about current Rdb/VMS database users and database
activity statistics

• Back up and restore RdbNMS databases

• Truncate the after-image journal (AIJ) file and create a secondary, backup copy
of the AIJ

• Load and unload database files

• Verify the integrity of Rdb/VMS databases

• Open and close an Rdb/VMS database

RDB$LENGTH

A special RdbNMS value expression for the length in bytes of a segment of an RDO
segmented string. RDB$LENGTH can be referenced as LENGTH in the RDML
precompiler.

See also list, list cursor, LIST OF BYTE VARYING data type, and RDB$VALUE.

Glossary-53

RDB$VALUE

A special Rdb/VMS value expression for the value stored in a segment of an
RDO segmented string. RDB$VALUE can be referenced as VALUE in the RDML
precompiler.

See also list, list cursor, LIST OF BYTE VARYING data type, and RDB$LENGTH.

RDM$BIND_BUFFERS

A logical name RdbNMS recognizes that lets you specify a NUMBER OF BUFFERS
to be used at run time that is different from the defined default. This can be a very
powerful tool for tuning specific applications. For example:

$ DEFINE RDM$BIND_BUFFERS 100

RDM$BUGCHECK_DIR

A logical name RdbNMS recognizes that lets you redirect the location of bugcheck
files from the SYS$LOGIN directory to another location. This can be useful when
SYS$LOGIN does not have enough space for bugcheck files. For example:

$DEFINE/SYSTEM/EXEC RDM$BUGCHECK_DIR DISK12:[BUGCHECK_DIR]

RDML

See Relational Data Manipulation Language (RDML).

RDMS$BIND_SEGMENTED_STRING_BUFFER

A logical name RdbNMS recognizes that may let you increase the efficiency of
applications that manipulate segmented strings by increasing the buffer space for
segmented strings. The default value is 10,000 bytes. For example:

$ DEFINE RDMS$BIND_SEGMENTED_STRING_BUFFER 20000

An adequate buffer size is needed to store large segmented strings (using segmented
string storage maps) in storage areas other than the default RDB$SYSTEM storage
area.

See also list.

RDMS$BIND_SORT_ WORKFILES

A logical name that specifies how many work files the VMS Sort utility (SORT)
is to use if work files are required. The default is 2 (the SORT default) and the
maximum is 10.

The work files can be individually controlled by the SORTWORKn logical names
(where n is from 0 to 9).

Glossary-54

RDMS$BIND_ WORK_FILE

A logical name Rdb/VMS recognizes that lets you redirect the location of the
temporary tables that Rdb/VMS sometimes creates for use in matching operations
to a disk structure other than SYS$LOGIN (the default). For example:

$! Assign the work area to another disk with read/write access:
$DEFINE RDMS$BIND WORK FILE WORK$DISK:[RDB.WORK]
$ DIRECTORY/PROTECTION RDMS$BIND_WORK_FILE

Directory WORK$DISK:[RDB.WORK]

LATENT.FIL;l

Total of l file.

RDMS$BIND_ WORK_ VM

(RWED,RWED,RWED,RWED)

A logical name Rdb/VMS recognizes that may let you reduce the overhead of disk
input/output on matching operations when temporary tables are used to perform
this operation. By redefining this logical, you can specify the amount of virtual
memory (VM) that will be allocated to your process for use in matching operations.
Once the allocation is exhausted, additional data values will be written to a
temporary file on disk (SYS$LOGIN, if RDMS$BIND_ WORK_FILE is undefined).
The default VM is 10,000 bytes. For example:

$ DEFINE RDMS$BIND_WORK_VM 20000

RDMS$KEEP _PREP _FILES

A logical name Rdb/VMS recognizes that lets you prevent the RDBPRE preprocessor
from deleting the intermediate (file type MAR) and language files. This can be
helpful when you are trying to debug an RDBPRE program and need to see the
language files to do so. For example:

$ DEFINE RDMS$KEEP_PREP_FILES YES

RDMS$RUJ

A logical name Rdb/VMS recognizes that lets you locate the recovery-unit journal
(RUJ) file on a different disk and directory from the default (SYS$LOGIN). This can
be helpful in reducing contention in that directory. For example:

$DEFINE RDMS$RUJ USERSl:[CLIENTS.JOURNAL]

RDO

See Relational Database Operator (RDO).

Glossary-55

RDO command procedure

A sequence of Rdb/VMS statements stored in a text file; sometimes referred to as an
RDO procedure.

See also DCL command procedure and SQL command procedure.

record

Another term for row.

record locking

See row locking.

Record Management Services (RMS)

A set of VMS operating system procedures that programs can call to process
files and records within files. RMS lets programs issue GET and PUT requests
at the record level (record input/output) as well as read and write blocks (block
input/output). RMS is an integral part of the VMS system software and is used by
high-level languages, such as VAX COBOL and VAX BASIC, to implement their
input and output statements.

record selection expression (RSE)

In RDO and RDML, a set of conditions that individual records (rows) of a relation
(table) must meet before being included in a record stream (result table).

See also column select expression, record stream, result table, select expression, and
select operation.

record stream

In RDO and RDML, a temporary group of related records (rows), formed by a
record selection expression (RSE), from a relation (table). Streams are used in an
application program or with RDO to retrieve one record at a time for manipulation.
In SQL terminology, streams correspond to result tables that consist of entire rows
from their source tables. Another term for record stream is stream.

See also record selection expression (RSE).

recovery

The process of restoring a database to a known condition after a system or program
failure.

See also after-image journal (AIJ), before-image journal, idempotent, journal file,
journaling, and transaction.

Glossary-56

recovery-unit journal (RUJ)

See before-image journal.

reduction operation

In RDO, an operation that finds the unique values for a field or group of fields and
eliminates repeated records. You use the REDUCED TO clause to perform the
operation. The REDUCED TO clause is the RDO equivalent to the SQL DISTINCT
clause. Another term for reduction operation is project operation.

referential integrity

A database state where every foreign key value matches some value for its
associated primary key.

See also table-specific constraint and trigger.

reflexive join

An operation that joins a relation to itself.

See also Cartesian product.

relation

Another term for table. The term relation is used in RDO and RDML
documentation.

relation-specific constraint

See table-specific constraint.

relational database

A database model that represents data as a set of independent tables. Within a
table, data is organized in columns and rows, with no more than one data item
occupying each intersection. Relationships between tables depend on values within
the tables. In RDO and RDML documentation, tables are called relations, columns
are called fields, and rows are called records.

See also database, hierarchical database, network database, and schema.

Glossary-57

Relational Database Operator (RDO)

An interactive utility for maintaining RdbNMS databases, creating and modifying
definitions of database elements, and storing and manipulating data. The RDO
utility can also be used to access a VIDA database and to perform Data Distributor
operations. The SQL interface to RdbNMS provides largely parallel features
to RDO.

See also Callable RDO.

Relational Data Manipulation Language (RDML)

A data manipulation language for VAX C and VAX Pascal programs that access
RdbNMS and Rdb/ELN databases. Programs written in RDML are processed by the
RDML prep_rocessor, which converts the RDML statements into a series of calls to
the database. Following successful preprocessing, the programmer can submit the
resulting source code to the host language compiler. The SQL interface to RdbNMS
provides largely parallel features to RDML.

relational join operation

See join.

relational operator

Another term for conditional operator.

relative path name

The shortened form of a dictionary path name. It includes only the parts of the
path name that follow the default CDD/Plus directory name. You can use either the
full path name or the relative path name to refer to directories, subdictionaries, and
objects in a CDD/Plus dictionary.

remote server

The part of RdbNMS that lets you access data on other computers on your DECnet
network. If, for example, you are using the computer VACKSl and you type
DECLARE SCHEMA FILENAME ''TRIXIE::DISKl:[TOP] PERSONNEL", Rdb/VMS
instructs the remote server to log in to an account on TRIXIE, which then processes
your statements.

Glossary-58

replication

In Data Distributor, the process by which a copy of a complete or partial database
is first transferred from a source database on the source node to a target database
either on the source node or on a remote node. Then, the database in the target
directory is periodically updated when any changes are made to that portion
of the source database that was originally copied to the target database. The
source replications database must be an RdbNMS database. Note that the target
databases for replications are periodically updated, while those for extractions
are not.

See also Data Distributor, extraction, source database, source node, target database,
and target node.

request

An optional clause of certain data manipulation language (DML) statements. The
request clause lets you specify the transaction or request to be affected by the DML
statement. A request can include a transaction handle, a request handle, or both.

See also data manipulation language (DML), request handle, and transaction
handle.

request handle

A variable that uniquely identifies a request.

reserving option

The sharing and locking characteristics that RdbNMS applies to row access
operations during a transaction. The reserving option consists of a share mode
(exclusive, protected, or shared) and a lock type (read or write). The reserving
option is specified or defaulted when the transaction is started. Another term for
share mode is allow mode. Another term for lock type is access mode.

See also lock type and share mode.

resource manager

A component of a distributed transaction. The resource manager is a database
management system, such as RdbNMS. The resource manager is responsible
for maintaining and recovering its own resources. From the perspective of the
application, the resource manager is a single attachment to an RdbNMS database.
In addition, other database products that support the two-phase commit protocol
can be resource managers.

See also coordinator, DECdtm services, distributed transaction, transaction
manager, and two-phase commit protocol.

Glossary-59

restore operation

An operation that rebuilds a database from a saved backup file or copy. Usually, you ~
restore a saved backup file or copy after a hardware or software failure. ,

There are two types of restore operations in RdbNMS:

• RMU/RESTORE

Use the RMU/RESTORE command from DCL level to restore a database backup
file (default file type RBF) created by the RMU/BACKUP command.

• IMPORT

Use the IMPORT statement in SQL to migrate a database from one database
management system to another, or .to restructure a database.

Migration changes include taking an existing Rdb/VMS database, backing it up,
and then using the IMPORT statement to convert the internal data structures
so that they are compatible with a newly installed version of RdbNMS.
Restructuring changes include taking a single-file database, backing it up using
the EXPORT statement, and then using the IMPORT statement to define one or
more storage areas in a new multifile database.

See also backup operation, export operation, and import operation.

restrict

See select operation.

result table

A temporary table of values derived from columns and rows of one or more tables
that meet conditions specified by a select expression.

RMS
See Record Management Services (RMS).

RMU
See Rdb/VMS Management Utility (RMU).

roll back

To cancel any changes to the database made during the current transaction. Use
the ROLLBACK statement to roll back changes.

See also commit and transaction.

Glossary-60

rollforward

The process of using an after-image journal to restore a database to a known state.
This process replaces updates to the database that were lost because a system,
program, or disk failure required the installation of backup media.

See also recovery.

root file

See database root file.

row

The horizontal dimension of a table composed of a set of columns that contain one
data item each.

row locking

RSE

RUJ

A process by which a database management system reserves a row or set of rows
for use by one user. This process can limit or prevent access to those rows by other
users. Row locking helps guarantee the consistency of data.

See record selection expression (RSE).

Recovery-unit journal.

See before-image journal.

run unit

An execution of a single program that accesses a database.

See also quiet point and transaction.

scalar expression
Another term for value expression.

scale factor

The power of 10 to multiply by when storing a value with a fixed number of decimal
places in an exact numeric data type. For example, the scale factor for a dollar
amount such as $999 .99 is two.

Glossary-61

schedule definition

In Data Distributor, a definition that specifies when a particular transfer definition
is executed by the transfer monitor. You can also define the frequency of transfer
if you need to transfer records or updates to existing records on, for example, a
daily or weekly basis. You create schedule definitions using either the CREATE
SCHEDULE statement of interactive SQL or the DEFINE SCHEDULE statement
of interactive RDO.

See also Data Distributor, Relational Database Operator (RDO), transfer database,
transfer definition, and transfer monitor.

schema

The data definitions that comprise a database created with SQL data definition
statements. The SQL CREATE SCHEMA statement lets you specify in a single
SQL statement all data and privilege definitions for a new schema (you can also add
definitions to the schema later).

See also database, hierarchical database, network database, and relational database.

schema element

Any CREATE statement or a GRANT statement embedded within a CREATE
SCHEMA statement.

schema name

A name that users or programs supply to identify a schema and the database
system files associated with it.

The schema name is a VMS file specification or a data dictionary path name.

scientific notation

A way of ex.pressing a very large or very small number as a constant multiplied by
the appropriate power of 10. For example:

.000000009

9000000.

scope

.9E-8 (9 times 10 to the power of -8)

.9E 7 (9 times 10 to the power of 7)

The scope of a transaction refers to the statements beginning with the executable
statement that starts the transaction and ending with the COMMIT or ROLLBACK
statement that completes the transaction.

Glossary-62

The scope of a dbkey refers to how long the database system guarantees that a
particular row's dbkey will point to that row only and not be reused even if the row
is. deleted. Scope is also used as a standard term from programming languages that
refers to the part of a program where particular declarations can be seen.

See also dbkey and transaction.

search condition

Another term for predicate.

secondary key

Any key other than the primary key.

See also candidate key, foreign key, and primary key.

security

The protection of the information stored in a database against unauthorized
reading, writing, or deleting_.

See also access privilege set (APS), access control list (ACL), ACL-style protection,
ANSI-style protection, object, privilege, and subject.

security alarm

One-time notifications of RdbNMS security events that are sent to all terminals
enabled as security operators. Security alarms are triggered by the occurrence
of an event previously designated as worthy of the alarm because of its security
implications.

See also security audit, security event, and security operator terminal.

security audit

In RdbNMS, the record or recorded history of RdbNMS security events that
are written to the security audit journal file. The writing of security audits are
triggered by the occurrence of an event previously designated as worthy of the audit
because of its security implications. Security audit is also referred to as audit trail.

See also security event and security audit journal.

Glossary-63

security audit joumal

The record of audit activities (security events) that is created by RdbNMS when the
audit feature is enabled for the database by the RMU/SET AUDIT command. The
security audit journal is sometimes referred to as the audit journal, audit trail,
or security journal.

See also security alarm, security audit, and security event.

security event

Some operation (in SQL, RDO, or RMU) that affects the security of the objects in
the database. A security event is sometimes referred to as an event or as an audit
event.

See also security audit and security audit journal.

security manager

The person or persons responsible for protecting the security of the database. This
role is sometimes performed by the same person who functions as the database
administrator. It requires the same skills as the DBA, but includes additional
privilege (the SECURITY privilege) as well as knowledge of the security features
provided with an RdbNMS database.

See also privilege and security.

security operator terminal

A class of terminal that has been enabled to receive security alarms. Normally, such
a terminal is a hardcopy terminal in a protected room. The output provides a log of
security-related events and details that identify the source of the event.

See also security alarm and security event.

segmented string

The RDO term for a list.

See also list, RDB$LENGTH, and RDB$VALUE.

segmented string data type

A special RDO data type designed to handle large pieces of unstructured data,
such as graphics data, large amounts of text, or long strings of binary data, with a
segmented internal structure. The maximum size of a string segment is 64K bytes.

See also list, RDB$LENGTH, and RDB$VALUE.

Glossary-64

segmented string identifier

A nwnber that points to the location of the segmented string or list. This number,
rather than the contents of the list, is stored in the table column when you create
a table that contains a list. In SQL, you must use cursors to retrieve or store the
contents of a list. In RDO and RDML, you must use a FOR loop to retrieve or store
the values for RDB$LENGTH and RDB$VALUE.

See also list.

select expression

The fundamental element in SQL syntax that is the basis of the SELECT,
DECLARE CURSOR, CREATE VIEW, and INSERT statements. Select expressions
specify a result table derived from some combination of the tables or views identified
in the FROM clause of the expression.

select list

A list of column names and value expressions in a select expression. The select list
specifies the columns in the result table for the select expression.

select operation

An operation that chooses from tables those rows that satisfy a conditional
expression. For example, if you want to display employee names with salaries
greater than $20,000, a selection operation eliminates employee rows with salaries
less than or equal to $20,000 from the output.

See also record selection expression (RSE).

SELECT statement

A select expression with an optional ORDER BY clause.

sequential file

An RMS file whose records appear in the order in which they were originally
written. A sequential file does not have an index.

server

A service provider. In SQUServices, the server is a process present on all VMS
systems running RdbNMS V3.1 (or higher) that provides access to databases with
application programs running on various platforms.

See also Application Programming Interface (API), client, dynamic SQL, platform,
and SQL/Services.

Glossary-65

Service Update PAK (SUP)

A PAK for customers who already have service contracts with Digital.

See also License Management Facility (LMF) and Product Authorization Key (PAK).

shadowing

For table rows, a storage strategy to optimize input/output operations that is
used when a parent table has a much smaller cardinality than the related child
table. This storage strategy uses a hashed index placement index to place parent
rows with its hash buckets in one storage area along with the hash buckets of the
second table. When the rows of the child table are placed in the second storage
area, they are clustered (shadowed) in the vicinity of where the hash buckets in
the first storage area are located. When sufficient space is allocated for storing the
child rows and the child rows are stored in a uniform storage area, then free space
will be available to maintain the clustering effect of the child rows and result in a
minimum of two input/output operations to retrieve a child row. Shadowing serves
to physically group rows together to minimize input/output operations and optimize
query strategies.

See also hash bucket.

share mode

The degree of sharing that Rdb/VMS will permit when another user attempts to
access a table that you have reserved for a transaction. The share mode is part of
the reserving option, which is specified or defaulted for each table at the start of
the transaction. The possible share modes are exclusive, protected, and shared.
Another term for share mode is allow mode.

See also lock type and reserving option.

single-file database

Databases that have a combined root and storage area file. By default, a CREATE
SCHEMA statement creates a single-file database. The absence of a CREATE
STORAGE AREA clause in a CREATE SCHEMA statement is what makes the
created database single file.

singleton select

A SELECT statement that must specify a result table no larger than one row. A
singleton select includes an additional clause, INTO, to assign the values in the row
to host language variables in a program. SQL allows singleton select statements
only within a host language program. Another term for singleton select is embedded
select.

Glossary-66

snapshot

A consistent view of the data within the database at a selected time. Initiated in an
Rdb/VMS database when a user starts a read-only transaction.

See also deferred snapshots.

sort key

The columns or value expressions in an ORDER BY clause according to which SQL
sorts an intermediate result table. The first column or value expression in the
ORDER BY clause is the major sort key. Subsequent columns or value expressions
are minor sort keys. SQL groups all rows with the same value for a sort key
together.

See also ascending order and descending order.

sorted index

A tree structure (B-tree) of nodes that the database system navigates by reading
nodes on progressively lower-level branches of the tree until it finds the record that
contains the location (or dbkey) of a particular row.

See also B-tree, dbkey, hashed index, index, key, key value, and multisegmented
index.

SORTWORKn (where n = 0 to 9)

Logical names VMS recognizes that let you increase the efficiency of Rdb/VMS sort
operations, which use the VMS Sort utility (SORT), by assigning the location of the
temporary sort work files to different disks. These assignments are made by using
the logical names SORTWORKO, SORTWORKl, and so forth. Normally, SORT
places work files in the user's SYS$SCRATCH directory. By default, SYS$SCRATCH
is the same device and directory as the SYS$LOGIN location.

Example:

$ DEFINE SORTWORKO 222DOA10: [SORT.TEMP]
$ DEFINE SORTWORKl 222DOA11: [SORT.TEMP]

source database

In Data Distributor, a single, centralized database that is intended to support the
information requirements of users throughout a network.

See also Data Distributor, extraction, replication, source node, target database, and
target node.

Glossary-67

source node

In Data Distributor and RdbNMS, the node in a network on which the source
database resides.

See also Data Distributor, extraction, replication, source database, and target node.

space area management page

See SPAM page.

SPAM page

A special database page (common to both uniform page format and mixed page
format storage areas) that stores the fullness thresholds of each data page in the
storage area, for a specified interval of pages. The space area management (SPAM)
page and also contains a list of clumps and the logical areas to which the clumps
belong.

See also clump, interval, mixed page format, threshold, and uniform page format.

spooling

The way in which output to slow devices is placed into queues on faster devices to
wait for transmission to the slower devices.

SQL$DATABASE

The logical name SQL uses to declare the default schema. If a user or program does
not issue an explicit DECLARE SCHEMA statement, SQL attempts to declare a
default schema using the file specification assigned to SQL$DATABASE.

SQL

Structured query language. A data definition and data manipulation language
for relational databases. Variations of SQL are offered by most major vendors
for their relational database products. The SQL interface to RdbNMS provides a
user interface to other database products. ANSI Standard X3.135-1989 specifies
the syntax and semantics approved for SQL by the American National Standards
Institute.

SQL2

An extension to the SQL standard under development by the American National
Standards Institute and the International Standards Organization.

Glossary-68

SQLCA

SQL Communications Area. A host structure SQL uses to provide information
about the execution of SQL statements to application programs. The SQLCA shows
whether or not a statement was successful, and for some errors, the particular error
when a statement is not successful.

SQLCODE

An integer parameter whose value indicates the error status returned by the most
recently executed SQL statement. A positive value indicates a warning, a negative
value an error, and zero indicates successful execution. The SQLCA contains an
SQLCODE field.

SQLDA

SQL Descriptor Area. A collection of host language variables used only in dynamic
SQL programs. The SQLDA provides information about dynamic SQL statements
(the number and data type of a prepared statement's parameter markers and select
list items) to the program, and information about memory allocated by the program
(the addresses of host language variables that correspond to parameter markers and
select list items) to SQL.

See also descriptor.

SQL command procedure

A sequence of SQL statements stored in a text file; sometimes referred to as an SQL
procedure.

See also DCL command procedure and RDO command procedure.

SQL module file

The file containing SQL module language elements to be compiled by the SQL
module processor. An SQL module file includes one or more procedures that contain
an SQL statement. The procedure can be called from a host language program.

SQL module language

Special keywords and syntax that allow procedures that contain SQL statements to
be called from host languages that are not supported by the SQL precompiler.

SQL module procedure

A construct within an SQL module file named in host language calls to the module.
SQL module procedures contain formal parameter declarations and an SQL
statement that executes when the procedure is called by a host language program.

Glossary-69

SQL module processor

The component of SQL that compiles SQL module files. The SQL module processor
produces object (OBJ) files that can be linked with object files produced by host
language compilers.

SQL precompiler

The SQL utility that converts embedded SQL statements in host language programs
to a form understandable by the host language compiler. The precompiler also
invokes the host language compiler and creates an intermediate object file ready for
linking.

SQL/Services

A client/server component of Rdb/VMS that allows application programs running on
various types of computers to access databases that use the dynamic interface
to SQL.

See also client, dynamic SQL, server, and SQL.

static SQL

Precompiled SQL statements that do not use dynamic SQL.

statistical expression

Another term for function.

storage area

A subdivision of the database, named in the CREATE STORAGE AREA clause
within a CREATE SCHEMA statement. This clause also determines the physical
characteristics of the storage area or areas. Subsequent CREATE STORAGE MAP
statements associate the storage area with particular tables in the schema. Only
multifile Rdb/VMS databases contain storage areas as physical VMS files separate
from the database root file (default file type RDB). Each storage area has a default
file type of RDA, and each storage area has a corresponding snapshot file with a
default file type of SNP.

See also allocation, extent, multifile database (MFDB), and storage map.

storage map

A definition that associates a table with one or more storage areas in a multifile
database. The CREATE STORAGE MAP statement specifies a storage map that
controls which rows of a table are stored in which storage areas.

Glossary-70

When you create a storage map, you specify the table name and the storage area or
areas in which rows from the table are to be stored; you can also specify whether or
not an index will be used to choose the location for storing the row and whether
or not data compression will be enabled when rows are stored in the table.

See also multifile database (MFDB) and storage area.

stream

Another term for record stream.

structure

In the VAX Rdb /VMS Guide to Using SQL and VAX Rdb /VMS SQL Reference
Manual, refers to a parameter that contains other fields. (Unlike the case of
repeating items that make up one dimension in an array, the basic elements in a
structure do not need to be identically defined.) In some host languages, the term
record and the term structure refer to the same declaration. In other languages,
such as FORTRAN, you declare structures and records separately. If the language
you are using declares records separately from structures, you specify record names
in precompiled SQL statements. In this case, the fields listed or implied by the
record declaration constitute the structure to SQL.

subdirectory

A list of files that is grouped one or more levels below the top-level or main VMS
directory.

subject

An active entity that gains access to information on behalf of people. In RdbNMS,
a subject is an attachment to the database. An attachment can be either an
interactive user or an application program.

See also object and security.

subpool

In SQUServices, a set of either generic or database execution server processes.
Multiple subpools comprise the process pool. Definitions in the configuration file
specify the characteristics of a subpool. The communication server creates one
subpool for every definition in the configuration file.

See also communication server, configuration file, database execution server,
execution server, and generic execution server.

Glossary-71

subquery

Another term for column select expression.

subs elect

Another term for select expression.

substring

A value expression made up of a character string that has a specified start position
and an optionally specified length. The characters in the substring are numbered
beginning with the number 1.

See also value expression.

system manager

A VMS user responsible for the overall operation of an ACMS or VMS system.
Duties of the system manager include authorizing all users of the system, setting
access requirements for all system resources, and running all procedures necessary
to ensure the correct and timely operation of the system.

system relation

A relation (table) that holds information (such as table or column names) needed for
the operation of a database management system.

Systems Network Architecture (SNA)

A description of network structure, configuration and operation control, and
protocols (rules) developed by IBM.

table

A set of data elements that has a horizontal dimension (row) and a vertical
dimension (column) in a relational database system. A table has a specified
number of columns but can have any number of rows. Rows stored in a table are
structurally equivalent to records from sequential files in that they must not contain
repeating columns. Another term for table is relation.

See also cardinality.

Glossary-72

table cursor

A result table defined by the SELECT expression in an SQL DECLARE CURSOR
statement in order to scan the individual rows of a table. A table cursor enables
programs to perform operations on each row of a table. It can also be positioned on
a row that contains a list, so that a list cursor can access the individual elements of
that list. There are three types of table cursors: read-only, insert-only, and update.

See also cursor, list cursor, and result table.

table-specific constraint

A constraint that indicates that if a certain update action is taken on one table,
appropriate update actions will be taken on other specified tables as well. Another
term for table-specific constraint is relation-specific constraint.

See also cascading update, referential integrity, and trigger.

target database

In Data Distributor, a database into which Data Distributor copies data. A target
database can be created by an extraction or replication. You can create a target
database on the same node as the source database or on a node at a remote site.
The target database is referred to as either an extraction database or replication
database, depending on the process that created it.

See also Data Distributor, extraction, replication, source database, source node, and
target node.

target node

In Data Distributor, the receiving node for data transferred from the source
database on the source node. A copy of a database can be transferred to a directory
on the source node or to a directory on a remote node.

See also Data Distributor, extraction, replication, source database, source node, and
target database.

TDMS

A Digital product that uses forms to collect and display information on the terminal.
TDMS stands for Terminal Data Management System. TDMS provides data
independence by allowing data used in an application to be separated from the
application program. ACMS multiple-step tasks use TDMS services to manage
terminal input and output.

Terminal Data Management System (TOMS)

See TDMS.

Glossary-73

threshold

YID

TP

A value that indicates the fullness of a data page. RdbNMS checks the space area
management (SPAM) pages to determine the fullness thresholds of data pages.

See also interval and SPAM page.

See distributed transaction identifier (TID).

See transaction processing.

transaction

A group of statements whose changes can be made permanent or undone only as a
unit. A transaction ends with a COMMIT or ROLLBACK statement. Ifit ends with
a COMMIT statement, all the changes made to the database by the statements are
made permanent. If the transaction ends with ROLLBACK, none of the statements
takes effect.

See also commit, quiet point, recovery, and roll back.

transaction handle

A host language variable that specifies the name of a transaction so that it can be
uniquely identified.

transaction manager

A component of a distributed transaction. The transaction manager coordinates
the actions of the resource managers that are located on the same node as the
transaction manager. DECdtm services is a transaction manager.

See also coordinator, DECdtm services, distributed transaction, resource manager,
and two-phase commit protocol.

transaction processing

An environment that addresses large, corporate-level applications that support
many users for critical business functions. In an OLTP application, there are
usually many users simultaneously performing predefined (query and update)
functions to a collection of shared data, generally a database. Results are usually
expected immediately (real time). In contrast to standard transaction processing,

Glossary-7 4

when an OLTP transaction is completed, all data is fully updated during the
request and output stages. OLTP applications can be used for tasks such as order
processing, banking, accounting, or inventory control.

See also ACMS and online transaction processing (OLTP).

transfer database

In Data Distributor, the storage location of all transfer definitions, schedule
definitions, and record selection criteria. The transfer database is created by the
transfer monitor.

See also Data Distributor, schedule definition, transfer definition, and transfer
monitor.

transfer definition

In Data Distributor, a definition that uses record selection expressions to identify
subsets of the source database that the transfer monitor can copy to one or more
target databases. You create transfer definitions with SQL or RDO.

See also Data Distributor, record selection expression (RSE), source database, target
database, and transfer monitor.

transfer monitor

The program that oversees all of the functions provided by Data Distributor. In
general, the transfer monitor regulates the execution of data transfers from all
source databases to target databases (directories) that are located either on the
same node as the source database or on remote nodes.

See also Data Distributor, extraction, replication, and transfer definition.

trigger

A statement that causes certain updating actions to be performed before or after an
update of a table in order to maintain the referential integrity of the database. For
example, a trigger would specify that when an employee's record is deleted from the
EMPLOYEES table, that same employee's record will be automatically deleted from
other specified tables within the database.

See also cascading update, table-specific constraint, and referential integrity.

truth table

A method of showing how predicates combined with the Boolean operators AND,
OR, and NOT, are evaluated.

Glossary-75

tuple

Relational database terminology for a record or row. In SQL, the term row is used.
In RDO and RDML, the term record is used.

two-phase commit protocol

UIC

A protocol provided by DECdtm services and the VMS utility. The two-phase
commit protocol coordinates the activity of components of a distributed transaction
to ensure that every required operation is completed before the distributed
transaction is made permanent.

See also commit phase, coordinator, DECdtm services, distributed transaction,
prepare phase, resource manager, and transaction manager.

See user identification code (UIC).

uniform page format

The default storage area page format. A format that consists of groups of n pages,
called clumps, where n equals the buffer size divided by the page size. A set of
clumps forms a logical area.

See also clump, logical area, and mixed page format.

UNION operation

The merger of the values of columns in one table with the values of columns in
other tables.

unit of recovery

Another term for transaction.

usage mode

See reserving option.

user identification code (UIC)

A code that uniquely identifies a VMS user by a group number or name and a
member number or name. The UIC is enclosed in brackets ([]). A UIC can be in
numeric or alphanumeric format.

Glossary-76

user name

A designation assigned to a VMS user to identify that user. Also, the name a
terminal user types to log in to VMS and ACMS, or for VIDA, to log in to an IBM
system.

validation

The process of checking data on entry to ensure that it meets previously established
requirements.

value expression

A symbol or string of symbols used to calculate a value. If you use a value
expression in a statement, SQL or RDO calculates the value associated with
the expression and uses that value when executing the statement. Types of value
expressions include literals, arithmetic expressions, functions, and column
select expressions.

variable

A symbol declared in a program that stands for a memory storage location. A
variable has a name and a data type.

VAX cluster

A highly integrated organization of VMS systems that communicate over a
high-speed communications path. VAXcluster systems have all the functions of
single-node VMS systems, plus the ability to share CPU resources, queues, and
disk storage. Like a single-node system, the VAXcluster organization provides a
single security and management environment. Member nodes can share the same
operating environment or serve specialized needs.

vector

A one-dimensional array in a host language program. SQL can refer to vectors only
as indicator structures.

VIDA

A database and internetworking facility that gives VMS users read-only access to
data managed by an IBM database system.

Glossary-77

view

A logical table whose data is not physically stored. Views refer to rows stored in
other tables. You define a view to:

• Access a subset of the columns stored in a row

• Access a set of columns stored in different rows

• Avoid creating a redundant copy of data that is already stored

VMS

Virtual Memory System. The major operating system for Digital VAX processors.

VMS user

A person or account authorized by a VMS system manager to access a VMS system.
The user is assigned a user name, a password, a user identification code (UIC), a
default VMS directory, a default command language, quotas, limits, and privileges.

wildcard character

A symbol, such as the asterisk (*) or percent sign (%), that you use in place of all
or part of a file specification.

working phase·

The period beginning when the communication server receives its first message
request from the client system and ending when the SQL/Services system fails or is
manually shut down. During the working phase, the communication server accepts
incoming client message requests, dispatches them to execution server processes
for processing, receives in return execution results, and sends results back to the
waiting client application.

See also client, communication server, execution server, initializing phase, and
SQL/Services.

Glossary-78

A
RdbNMS Master Index

The Rdb/VMS master index uses the abbreviations in Table A-1 for the
manuals in the RdbNMS documentation set.

Table A-1

Abbreviation

INTRO

GUSQL

DESIGN

:MAINT

GURRR

SQ LS RV

DIST_TRANS

TUNING

SQLRM

RDORM

RDMLRM

Abbreviations for the Manuals Included in the Master Index

Manual Title

VAX Rdb/VMS Introduction and Master Index

VAX Rdb/VMS Guide to Using SQL

VAX Rdb/VMS Guide to Database Design and Definition

VAX Rdb/VMS Guide to Database Maintenance and Performance

VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML

VAX Rdb/VMS Guide to Using SQUServices

VAX Rdb/VMS Guide to Distributed Transactions

VAX Rdb/VMS Guide to Database Tuning

VAX Rdb/VMS SQL Reference Manual

VAX Rdb/VMS RDO and RMU Reference Manual

RDML Reference Manual

Rdb/VMS Master Index A-1

A
Abort

network link

Access

sqlsrv_abort routine, SQLSRV,
9--6

costs, MAINT, 17-51
displaying with RDMS$DEBUG_

FLAGS, MAINT, 17-20
improving

further normalization, MAINT,
16-77

saving output with RDMS$DEBUG_
FLAGS_OUTPUT, MAINT,
17-20

strategies, MAINT, 17-51
to table rows

using the query optimizer,
MAINT, 17-2

using the optimizer, MAINT, 16--4 7
Access conflicts, GURRR, 2-17t
Access control entry (ACE), DESIGN,

6-2, 6-3; RDORM, 9-47, 9-141
Access control list (ACL), RDORM,

9-43, 9-132; SQLRM, 6-359, 6--455
creating, DESIGN, 6-8, 6-11
deleting entries, DESIGN, 6-11
modifying, DESIGN, 6-11
organizing, DESIGN, 6-17

Index

Access control list (ACL) (Cont.)
See also Privilege; Protection,

DESIGN, 6-1
Accessing a database

user identification code (UIC),
RDORM, 9-44

Accessing DCL
DCL invoke statement ($), RDORM,

9--81
Access privilege set, DESIGN, 6-2;

SQLRM, 6-359, 6-379
See also Privilege; Protection
creating, DESIGN, 6-11

Access rights
See also Privilege; Protection
CHANGE PROTECTION statement,

RDORM, 9-45
displaying, RDORM, 9-392
displaying all ACL entries

SHOW PROTECTION statement,
RDORM, 9-395

for distributed transaction, DIST_
TRANS, 3--6

ACL
See Access control list

ACL-style privilege, DESIGN, 6-2;
SQLRM, 6-359, 6--455

Ada
See also Embedded SQL; Program

lndex-1

Ada (Cont.)
calling procedure in SQL module,

GUSQL, 7-11
declaring parameter in, GUSQL,

10-26
precompiled program, GUSQL, 8-4
·supported variable declarations in

precompiled SQL, SQLRM, 5-11
using parameter in, GUSQL, 10-26

ADD CONSTRAINT clause, DESIGN,
5-7

Adjusting storage and memory use
parameters, DESIGN, 5-27t

After-image journal (AIJ) file
backing up, MAINT, 9-12; RDORM,

6-37
from a batch job, MAINT, 9-12

contents, MAINT, 9-14
displaying output, RDORM, 6-59
displaying unresolved transactions,

RDORM, 6-60
After-image journaling, MAINT, 9-3,

16-79
AIJ file lost due to disk problem,

MAINT, 9-17
displaying output, RDORM, 6-59
for database recovery, RDORM, 6-91
modifying during restore, MAINT,

8-54
RDO CHANGE DATABASE

statement, MAINT, 9--4
recovery, MAINT, 9-18
re-creating lost AIJ file, MAINT,

9-17
SQL ALTER SCHEMA statement,

MAINT, 9--4
statistics, MAINT, 15-25
transaction sequence number,

MAINT, 9-16
AIJ file

See After-image journal (AIJ) file;
After-image journaling

lndex-2

Alarms
interpreting AUDIT type, MAINT,

4-22
interpreting DACCESS type,

MAINT,4-22
interpreting PROTECTION type,

MAINT,4-24
interpreting RMU type, MAINT,

4-24
security, MAINT, 4-3, 4-20;

RDORM, 6-127
Alias, GUSQL, 3-10; SQLRM, 3-15

naming, SQLRM, 3-15
outer references, SQLRM, 3-17

ALL keyword, GUSQL, 3-54
ALLOCATION clause

importance for hashed index,
DESIGN, 4-12

ALTER DOMAIN statement, DESIGN,
5-6; SQLRM, 6-2

ALTER INDEX statement, MAINT,
16-50; SQLRM, 6-11

Altering
database corruption, MAINT, 7-1
See also Changing; Modifying,

DESIGN, 5-20
triggers, DESIGN, 5-20

ALTER SCHEMA statement, MAINT,
10-7; SQLRM, 6-15

journaling, MAINT, 9--4, 10-18
ALTER STORAGE MAP statement,

SQLRM, 6-29
ALTER TABLE statement, DESIGN,

5-7; SQLRM, 6-35
ANALYZE statement

See also RMU/ANALYZE command
gathering statistics, RDORM, 9-2

Analyzing databases, RDORM, 6-5
Anchor

of data dictionary, DESIGN, 7-2
AND expression, RDMLRM, 3-3
AND operator, GUSQL, 3-28, 3--4 7

ANSI/ISO standard
flagging extension, GUSQL, 7-27,

8-12
format with COBOL program,

GUSQL, 8-5
ANSI/ISO-style privilege, DESIGN,

6-3; SQLRM, 6-379, 6-465
ANY expression, RDMLRM, 3-9
ANY operator, GUSQL, 3-34; GURRR,

3-14
API (Application Programming

Interface), SQLSRV, 1-2
Macintosh, SQLSRV, 1-4
:MS-DOS, SQLSRV, 1-4
OS/2, SQLSRV, 1-4
ULTRIX, SQLSRV, 1-4
ULTRIX for RISC, SQLSRV, 1-4
VMS, SQLSRV, 1-4

API routines, SQLSRV, 9-1, 9-6 to
9-75

association, SQLSRV, 2-8 to 2-9
based on SQL statements, SQLSRV,

2-9 to 2-10
C format, SQLSRV, 9-3
data structures used, SQLSRV, 2-12

to 2-13
documentation format, SQLSRV, 9-1
embedding in C programs, SQLSRV,

1-7
functional interface, SQLSRV, 2-11

to 2-12
naming, SQLSRV, 9-2
overview, SQLSRV, 2-8 to 2-12
result table, SQLSRV, 2-10
return values, SQLSRV, 9-2t
utility, SQLSRV, 2-10 to 2-11
VAX format, SQLSRV, 9-3

Application
running as detached process,

GURRR, 9-2
Archiving information, DESIGN, 2-13
Area

See Storage area

Area bit map
uniform page format, MAINT, ll-63e

Area inventory page
uniform page format, MAINT, ll-64e

AREA ... PAGE command
(RdbALTER), RDORM, 7-3

Area qualifiers
See Parameter qualifiers

Arithmetic expression, RDMLRM, 2-4;
RDORM, 3-21

Arithmetic operator, GUSQL, 3-5;
SQLRM, 3-75

Ascending index, RDORM, 9-122
Ascending value

ordering row in, GUSQL, 3-19
ASC keyword

in ORDER BY clause, GUSQL, 3-19
ASSOCIATE_STR data structure,

SQLSRV, 2-12, 10-3
Association

creating and releasing in
SQL/Services, SQLSRV, 4-6

Asterisk (*)
wildcard character, GURRR, 3-7

ASTLM parameter
values, MAINT, 16-140

AT END clause
error handling, RDORM, 9-276

At sign (@) command
See Execute statement(@)

ATTACH command (RdbALTER),
MAINT, 7-3; RDORM, 7-5

Attaching to a database, MAINT, 5-5;
GUSQL, 2-3; SQLRM, 6-255

failure, GUSQL, 11-38
in RdbALTER, MAINT, 7-3
INVOKE DATABASE statement,

RDORM, 9-329
Attribute

global, RDORM, 5-1
local, RDORM, 5-2

Audit event
See also Security; Security auditing

lndex-3

Audit event (Cont.)
AUDIT event type

enabling or disabling, MAINT,
4-4

default security auditing, MAINT,
4-2

disabling DACCESS, MAINT, 4-5,
4-13; RDORM, 6-128

disabling event information, MAINT,
4-16

enabling DACCESS, MAINT, 4-5,
4-13; RDORM, 6-128

enabling event information, MAINT,
4-16

Auditing
See also Security; Security auditing
audit event information

enabling or disabling, MAINT,
4-16

DACCESS level security auditing,
MAINT, 4-11, 4-13

disabling, RDORM, 6-128
displaying characteristics, RDORM,

6-143
enabling, RDORM, 6-127, 6-128
event level security auditing,

MAINT, 4-11, 4-16
four levels of security auditing,

MAINT, 4-11
monitoring resources, MAINT, 4-3
specific objects, MAINT, 4-13;

RDORM, 6-130
specific object types, MAINT, 4-13;

RDORM, 6-129
starting, MAINT, 4-16; RDORM,

6-133
stopping, MAINT, 4-11, 4-16;

RDORM, 6-133
top level security auditing, MAINT,

4-11,4-16
use of RMU commands, MAINT,

4-10; RDORM, 6-132
user level security auditing, MAINT,

4-11,4-12

lndex-4

Audit journal, MAINT, 4-3, 4-25;
RDORM, 6-127

reviewing, MAINT, 4-28
Audit journal records

defining database table for storing,
MAINT, 4-25; RDORM, 6-71

defining relation for storing, MAINT,
4-25; RDORM, 6-71

Audit trail
in RdbALTER, MAINT, 7-24

Authorization identifier, DESIGN,
3-12; GUSQL, 2-9; SQLRM, 3-10

in SQL module, GUSQL, 9-4
AUTHORIZATION keyword

in SQL module, GUSQL, 7-12
AUTOGEN parameters, MAINT,

16-132
Auto-locking, GURRR, 2-13
AVERAGE function, RDMLRM, 5-4;

RDORM, 3-3, 3-11
AVERAGE statistical expression,

RDORM, 3-14
AVG function, GUSQL, 3-54; SQLRM,

3-70

B
Backing up a database, MAINT, 8-1,

8-23e, 9-35e
EXPORT statement, RDORM, 9-271;

SQLRM, 6-349
full, MAINT, 8-13
incremental, MAINT, 8-18
online, MAINT, 8-10
options, MAINT, 8-22
proper timing for changing AIJ file,

MAINT, 9-20
read-only storage areas, MAINT,

8-25e
RMU/BACKUP command, RDORM,

6-20
specifying by area incremental

backup, MAINT, 8-32

Backing up a database (Cont.)
specifying complete incremental

backup, MAINT, 8-32
specifying file protection, MAINT,

8-9
tradeoffs

incremental backup versus
multiple AIJ files, MAINT,
9-8

Backup file
displaying output, RDORM, 6-62

BACKUP statement
See EXPORT statement
obsolete, RDORM) F-1

BASED ON clause, RDMLRM, 6-4
BASIC

data type equivalents, GURRR, 8-7t
declaring host language variables,

GURRR, 9-2
designing program in RDO, GURRR,

7-3
developing an -RdbNMS program in,

GURRR, 13-1 to 13-56
INCLUDE directive, GURRR, 12-7

Basic predicate, SQLRM, 3-81
Batch-update transaction, GUSQL,

2-24, 2-28; GURRR, 2-7, 2-9;
DIST_TRANS, 2-1, 4-3

Before-image journal
See Recovery-unit journal

BEGIN DECLARE statement, SQLRM,
6-52

BETWEEN expression, RDMLRM,
3-13

BETWEEN operator, GUSQL, 3-35;
SQLRM, 3-81

Binary data
and C, GUSQL, 7-24, 8-4, 10-33

BIOLM parameter
values, MAINT, 16-140

Blocked database, DIST_TRANS, 6-4
Boolean operator, GUSQL, 3-28, 3-45;

SQLRM, 3-82

B-tree
See Sorted index

Buffers
flushing, MAINT, 16-92

Bugcheck dump
causes, MAINT, 12-6, 12-8
contents of, MAINT, 12-9
database recovery (DBR), MAINT,

12-3
(DBR) RDMDBRBUG.DMP file,

MAINT, 12-2
error message meaning, MAINT,

12-4
examining, MAINT, 12-9
example error messages, MAINT,

12-5
exception

disk quota exceeded, MAINT,
12-6

insufficient page file quota
(PGFLQUOTA), MAINT,
12-7

insufficient virtual memory
(VIRTUALPAGECNT),
MAINT, 12-7

invalid dbkey, MAINT, 12-8
lock queue limit (ENQLM) too

low, MAINT, 12-7
exception code, MAINT, 12-9
locations, MAINT, 12-3
(monitor)

SYS$SYSTEM:RDMBUGCHK
.DMP file, MAINT, 12-2

Rdb/VMS Management Utility (RMU),
MAINT, 12-3

Rdb/VMS run-time services, MAINT,
12-3

(RMU) RMUBUGCK.DMP file,
MAINT, 12-2

(Run-time services) RDSBUGCK.DMP
file, MAINT, 12-2

types of, MAINT, 12-2
typical message, MAINT, 12-3
when to report, MAINT, 12-8

lndex-5

By area restore
purpose of, RDORM, 6--110

BY DESCRIPTOR clause
of SQL module language, GUSQL,

7-22
BYTE VARYING data type, SQLRM,

3-37
BYTLlM parameter

c
c

values, MAINT, 16--139

See also Embedded SQL; Program
and binary data, GUSQL, 7-24, 8-4,

10-33
data types, GURRR, 8-Bt, 8-9t
data types generated by RDML,

RDMLRM,A-1
declaring

host language variables, GURRR,
9-2

parameter in, GUSQL, 10-33
typedef, RDMLRM, 6-4

designing program in RDO, GURRR,
7-3

functions for I/O operations,
RDMLRM,B-1

null-terminated string, GUSQL,
7-24,8-4, 10-33

placement in program using
DATABASE statement,
RDMLRM, 6--16

precompiled program, GUSQL, 8-4
programming for SQL/Services,

SQLSRV, 1-7
supported variable declarations in

precompiled SQL, SQLRM, 5-18
using RDML statements in, GURRR,

17-1 to 17-53
Callable RDO, GURRR, 7-1, 19-2

data definition statements, GURRR,
19-29

lndex-6

Callable RDO (Cont.)
data manipulation statements,

GURRR, 19-6
designing program in, GURRR, 7-3
error handling, GURRR, 19-34
linking programs, GURRR, 11-12
processing programs, GURRR, 11-12
using with distributed transaction,

DIST_TRANS, 5-1
Callable RDO statement

in BASIC programs, GURRR, 13-37
in COBOL programs, GURRR, 14-38
in C programs, GURRR, 17-36
in FORTRAN programs, GURRR,

15-40
in Pascal programs, GURRR, 18-35

Cascading delete, DESIGN, 3-38
Case sensitivity

and conditional operator, GUSQL,
3-23

CDD
See Data dictionary

CDD$COMPATIBILITY logical name,
DESIGN, 7-6, 7-7; MAINT, 18-19

CDD/Plus
See Data dictionary

CDO (Common Dictionary Operator),
DESIGN, 7-2

CHANGE DATABASE statement
after-image journaling process,

RDORM, 9-16
database shutdown process, RDORM,

9-23
examples, RDORM, 9-23
journaling, MAINT, 9-4
modifying database parameters,

RDORM, 9-9
CHANGE FIELD statement

changing :field definitions, RDORM,
9-27

CHANGE INDEX statement
changing index definitions, RDORM,

9-36

CHANGE PROTECTION statement
modifying access rights, RDORM,

9-45
CHANGE RELATION statement

modifying fields, RDORM, 9-48
CHANGE STORAGE MAP statement

changing storage map definitions,
RDORM, 9-61

Changing
See also Modifying
access control list, DESIGN, 6-11
column definitions, DESIGN, 5-7
columns, SQLRM, 6-35
constraints, DESIGN, 5-17;

RDORM, 9-48; SQLRM, 6-35
data, RDORM, 9-338; GURRR, 6-4
database characteristics MAINT

' ' 10-6 to 10-28
database definitions.

with INTEGRATE statement,
DESIGN, 7-15

database files, DESIGN, 5-25
database page contents, MAINT,

7-13
databases, DESIGN, 5-27t;

RDORM, 9-9; SQLRM, 6-15
dictionary definitions

by replacing definitions,
DESIGN, 7-14

domains, DESIGN, 5-6; SQLRM,
6-2

fields, RDORM, 9-27, 9-48
indexes, RDORM, 9-36; SQLRM,

6-11
lists, GUSQL, 5-12
memory usage for data access,

DESIGN, 5-25
metadata, DESIGN, 7-13
radix in RdbALTER, MAINT, 7-13,

7-23
RDO parameters

SET statement, RDORM, 9-362
referential integrity, DESIGN, 5-20
relations, RDORM, 9-48

Changing (Cont.)
schemas, SQLRM, 6-15 to 6-28
segmented strings, GURRR, 9-28
SQL parameters, SQLRM, 6-482
storage area and schema

characteristics by restoring,
DESIGN, 5-26

storage area characteristics with
RMU/COPY_DATABASE or
RMU/MOVE_AREA, DESIGN,
5-26

storage map definitions, RDORM,
9-61
CHANGE STORAGE MAP

statement, RDORM, 9-61
storage maps, RDORM, 9-61;

SQLRM, 6-29 to 6-34
storage parameters, DESIGN, 5-25
tables, DESIGN, 5-7; SQLRM, 6-35

to 6-51
triggers, DESIGN, 5-20

CHANNELCNT parameter
values, MAINT, 16-133

Character data type, SQLRM, 3-34
Characteristics

security auditing, RDORM, 6-143
Character string literal, SQLRM, 3-43
CHAR data type, DESIGN, 3-18;

SQLRM, 3-34
Checking

tape labels
with RMU, RDORM, 6-34, 6-66,

6-120
CHECK option

for procedure parameter, GUSQL,
7-23

Client/server model
SQUServices, SQLSRV, 1-lf

CLISYMTBL parameter
values, MAINT, 16-133

CLOSE statement, GUSQL, 4-2;
SQLRM, 6-55

See RMU/CLOSE command
obsolete, RDORM, F-3

lndex-7

CLOSE statement (Cont.)
using parameter, GUSQL, 12-46

Closing a database, MAINT, 5-14;
RDORM, 6-42

Closing cursors, SQLRM, 6-55
in distributed transaction, DIST_

TRANS, 4-9
Clustering rows

by index values
to improve joins, DESIGN, 4-16

Clustering strategies for data
using hashed indexes, MAINT, 2-15

COBOL
See also Embedded SQL; Program
COPY FROM DICTIONARY

statement, GURRR, 12-8
declaring host language variables,

GURRR, 9-2
declaring parameter in, GUSQL,

10-43
designing program in RDO, GURRR,

7-3
developing an RdbNMS program in,

GURRR, 14-1 to 14-56
precompiled program, GUSQL, 8--5
supported variable declarations in

precompiled SQL, SQLRM, 5-24
using parameter in, GUSQL, 10-43

Collating sequence, GURRR, 1-14, 3-9
clause, RDORM, 5-19
creating, SQLRM, 6-64 to 6--67
defining

DEFINE COLLATING_
SEQUENCE statement,
RDORM, 9-85

deleting, RDORM, 9-225; SQLRM,
6-295

modifying, RDORM, 9-31; SQLRM,
6-5

specifying, DESIGN, 3-21; GUSQL,
1-28

using to sort rows, DESIGN, 3-21

lndex-8

Column
changing, SQLRM, 6-35
changing COMPUTED BY clause,

DESIGN, 5-12
changing definition of, DESIGN, 5-7
constraint, DESIGN, 3-31

creating, DESIGN, 5-7
creating, SQLRM, 6-138
default values, DESIGN, 3-30
defining protection for, DESIGN,

6-24
definition of, INTRO, 1-2
deleting, DESIGN, 5-7; SQLRM,

6-316
ensuring unique values in, DESIGN,

3-42
modifying, SQLRM, 6-35
naming, SQLRM, 3-13
using the COMPUTED BY clause,

DESIGN, 3-29
Column constraint

See Constraint
Column select expression, GUSQL, 3-4;

SQLRM, 3-98, 3-106
as value expression, GUSQL, 3--67
performance compared to join,

GUSQL, 3~62
Combining

queries, GUSQL, 3-59
tables, GUSQL, 3-59

Command line qualifier
for SQL module processor, GUSQL,

7-26
for SQL precompiler, GUSQL, 8--12

Command procedure, GUSQL, 1-21
SQL, GUSQL, 6--6

executing, GUSQL, 1-21
using to define protection, DESIGN,

6-19
Comment

including in
SQL command procedure,

GUSQL, 1-21
SQL module, GUSQL, 7-8

COMMENT ON statement, SQLRM,
6-57

COMMIT
in RdbALTER, MAINT, 7-25

COMMIT command (RdbALTER),
MAINT, 7-16; RDORM, 7-7

Commit phase
of distributed transaction, DIST_

TRANS, 1-6, 2-12
COMMIT statement, GUSQL, 2--46;

RDMLRM, 6-7; GURRR, 6-1;
SQLRM, 6-60

writing changes to a database,
RDORM, 9-69

Committing
changes

in RdbALTER, MAINT, 7-16
transactions

in RdbALTER, MAINT, 7-25
Committing transactions, SQLRM,

6-60
distributed, DIST _TRANS, 2-6

Common Dictionary Operator (CDO)
See CDO

Compatibility
See Locking

Compiling
host language

input file, GUSQL, 8--llt
output file, GUSQL, 8--llt

invoking the SQL module processor,
GUSQL, 7-30

SQL module language source file,
GUSQL, 7-25

Completing transactions
in RdbALTER, MAINT, 7-24

Complex predicate, SQLRM, 3-82
Compressed index, DESIGN, 3-46;

SQLRM, 6-79
COMPUTED BY clause, DESIGN, 3-29
Concatenated expressions, RDORM,

3-25; SQLRM, 3-74
Concatenate operator (I) (RDO),

GURRR, 3-7

Concatenate operator (I I) (SQL),
SQLRM, 3-74

Concatenation operator, GUSQL, 3-5,
3-7

Concealed logical name, DESIGN, 3-10
Concurrent transactions

lock conflicts, MAINT, 16-27
Conditional expression, RDORM, 3-36;

GURRR, 3-7, 3-8
See also Predicate
compound, GURRR, 3-10
defining, RDORM, 3-1

Conditional operator, GUSQL, 3-23,
3-28

See also Conditional expression;
Predicate; and Relational operator

range retrieval, GUSQL, 3-35
Condition handler, GURRR, 10-1
Consistency

locking, MAINT, 16-17
Constant

See Literal
Constraint, GURRR, 2-19; SQLRM,

3-30
ADD CONSTRAINT clause,

DESIGN, 5-7
and referential integrity, DESIGN,

3-37; GURRR, 6-16
changing, DESIGN, 5-17; RDORM,

9-48; SQLRM, 6-35
column constraint, SQLRM, 6-142
creating, DESIGN, 3-31; SQLRM,

6-138
default mode, SQLRM, 6-485
DEFINE CONSTRAINT statement,

RDORM, 9-88
defining, RDORM, 9-88
definition of, INTRO, 1-4
DELETE CONSTRAINT statement,

RDORM, 9-228
deleting, DESIGN, 5-7, 5-17;

RDORM, 9-228; SQLRM, 6-298
displaying information about,

GUSQL, 1-9; RDORM, 9-377

lndex-9

Constraint (Cont.)
evaluating, MAINT, 16-81; GUSQL,

5-1, 11-28, 11-29, 11-30
modifying, DESIGN, 5-17; RDORM,

9-48; SQLRM, 6-35
naming, SQLRM, 3-30
UNIQUE, DESIGN, 3-42
using, GURRR, 6-16
validation

error, GUSQL, 11-28
violation, DESIGN, 5-19; GUSQL,

11-28
violation of, GURRR, 10-12

CONTAINING expression, RDMLRM,
3-16

with multinational characters,
RDMLRM, 3-17

CONTAINING operator, GUSQL, 3-24;
SQLRM, 3-84

Contents of
after-image journal file, MAINT,

9-14
area bit map, MAINT, 11--63
area inventory page, MAINT, 11--64
data page with hashed index,

MAINT, 11-42e
display and interpret

file contents, MAINT, 11-1
hashed index node record, MAINT,

11-44
index node record, MAINT, 11-39
line index, MAINT, 11-30
locked and unlocked free space,

MAINT, 11-31
page header, MAINT, 11-29
page tail

mixed storage area, MAINT,
11-50

uniform storage area, MAINT,
11-51

recovery-unit journal file, MAINT,
9-32

segmented string, MAINT, 11-36
snapshot file, MAINT, 11-22

lndex-10

Contents of (Cont.)
space area management page,

MAINT, 11--61, 11--66
storage segment, MAINT, 11-34
transaction sequence number,

MAINT, 11-31
user-stored records, MAINT, 11-35

Context file, GUSQL, 8-10
Context structure

and module language, DIST_TRANS,
4-2,4-10

and precompiled SQL, DIST_TRANS,
4-3,4-16

format of, DIST_TRANS, 4-10
using with distributed transaction,

DIST_TRANS, 4-8
Context variable, RDMLRM, 4-8;

RDORM, 4--6; GURRR, 3-2
Conversion of data types, SQLRM, 3-39

by RMU/LOAD operations, RDORM,
6-72

in precompiled programs, SQLRM,
5-10

Converting databases, RDORM, 6-46
RMU/RESTORE command, RDORM,

6-107
CONVERT statement

See also RMU/CONVERT command
obsolete, RDORM, F-5

Coordinator
in distributed transaction, DIST_

TRANS, 1-4, 2-3
Copying

databases, RDORM, 6-50
dictionary definitions

with INTEGRATE DATABASE,
RDORM, 9-325

Copying database, DESIGN, 5-26
Copying declaration

See also FROM dictionary clause
Corruption, MAINT, 6-26e

See also Database corruption
causes of database corruption,

MAINT, 6-3

Corruption (Cont.)
checking for database corruption,

MAINT, 6-3
clearing a corruption flag, MAINT,

7-3
clearing an inconsistent flag, MAINT,

7-22
data integrity, MAINT, 6-36e
in a batch-update transaction,

MAINT, 6-3
page header, MAINT, 6-27e
patching the database, MAINT, 7-1
sorted index, MAINT, 6-32e

Costs
RDMS$DEBUG_FLAGS, MAINT,

17-51
COUNT function, GUSQL, 3-54;

RDMLRM, 5-8; RDORM, 3-3;
SQLRM, 3-<i9

COUNT statistical expression, RDORM,
3-14

CPU resource problems, TUNING, 2-48
CREATE COLLATING SEQUENCE

statement, SQLRM, 6-<>4
CREATE DOMAIN statement, SQLRM,

6-<>8
CREATE INDEX statement, DESIGN,

3--40; SQLRM, 6-76
CREATE SCHEDULE statement,

SQLRM, 6-88
CREATE SCHEMA statement,

DESIGN, 1-<i, 3--4; SQLRM, 6-97
CREATE STORAGE AREA clause,

DESIGN, 3-7, 4-3; SQLRM, 6-121
CREATE STORAGE MAP statement,

DESIGN, 3-10; SQLRM, 6-130
INTERVAL clause, DESIGN, 4-19
partitioning table across storage

areas, DESIGN, 4-9
THRESHOLD clause, DESIGN, 4-19

CREATE TABLE statement, DESIGN,
3-24, 3-26; SQLRM, 6-138

using data dictionary, DESIGN, 3-24

CREATE TRANSFER statement,
SQLRM, 6-168

CREATE TRIGGER statement,
SQLRM, 6-202

CREATE VIEW statement, DESIGN,
3--46; SQLRM, 6-219

CREATE_SEGMENTED_STRING
statement, RDORM, 9-74

Creating
See also Defining
access control lists, DESIGN, 6-11
access privilege sets, DESIGN, 6-2,

6-11
collating sequence, SQLRM, 6-<>4 to

6-<>7
column constraint, DESIGN, 5-7
columns, SQLRM, 6-35, 6-138
constraints, DESIGN, 3-31, 5-7;

SQLRM, 6-138
databases, DESIGN, 3-1; MAINT,

11-<i5; SQLRM, 6-97
using space management,

MAINT, 11-65
using SQL, DESIGN, 3-3

dictionary definitions, DESIGN, 7-15
using SQL, DESIGN, 7-20

domains, DESIGN, 3-14; SQLRM,
6-<>8 to 6-75

indexes, DESIGN, 3--40; SQLRM,
6-76 to 6-87

new storage area, MAINT, 10-28
schemas, DESIGN, 1-<i, 3--4;

SQLRM, 6-97 to 6-120
using CDO definitions, DESIGN,

7-11
snapshot storage areas, DESIGN,

3-54
storage areas, DESIGN, 3-7;

SQLRM, 6-121 to 6-129
storage maps, SQLRM, 6-130 to

6-137
tables, DESIGN, 3-23; SQLRM,

6-138 to 6-167

lndex-11

Creating
tables (Cont.)

with data dictionary, DESIGN,
3-23, 3-24

without data dictionary,
DESIGN, 3-26

triggers, DESIGN, 3-39; SQLRM,
6-202 to 6-218

views, DESIGN, 3-46; SQLRM,
6-219 to 6-230

CROSS clause, RDMLRM, 4-13;
GURRR, 4-1, 4-2

of record selection expression,
RDORM,4-12

Crossing relations, GURRR, 4-2
CURRENT_TIMESTAMP keyword,

SQLRM, 3-47
Cursor, GUSQL, 4-1 to 4-21;

SQLRM, 6-233 to 6-244
categories of, GUSQL, 4-4
closing, GUSQL, 4-2; SQLSRV,

9-13; SQLRM, ~55
in distributed transaction,

DIST_TRANS, 4-9
declaring, GUSQL, 4-1; SQLRM,

6-233
declaring dynamic, SQLSRV, 9-15
dynamic, GUSQL, 4-5, 4-18, 12-19
extended dynamic, GUSQL, 4-5,

4-19, 12-47
insert-only, SQLRM, 6-234
list, GUSQL, 4-5, 4-11, 5-11;

SQLRM, 6-234
naming, SQLRM, 3-29
opening, GUSQL, 4-1; SQLSRV,

9-34; SQLRM, 6-435
read-only, SQLRM, 6-234
retrieving, GUSQL, 4-1; SQLRM,

6-352
scope and extent, SQLRM, 6-233
table, GUSQL, 4-5; SQLRM, 6-234
update, SQLRM, 6-234
updating row, GUSQL, 5-13

lndex-12

D
DACCESS audit events

See also Security; Security auditing
column privileges audited, MAINT,

4-9
database privileges audited, MAINT,

4-5
enabling or disabling, MAINT, 4-5,

4-13; RDORM, 6-128
table privileges audited, MAINT, 4-7

Data
accessing, GURRR, 2-3
archiving, DESIGN, 2-13
binary

storing in database, SQLRM,
3-37

changing, RDORM, 9-338; GURRR,
6-4

clustering strategies
using hashed indexes, MAINT,

2-15
database pages

header, MAINT, 11-28
definition statements, RDORM, 2-2;

SQLRM, 2-2
deleting, GURRR, 6-7; SQLRM,

6-283
estimating size of data row, MAINT,

16-64
loading operations

changing database definitions,
MAINT, 2-45

troubleshooting, MAINT, 2-19
with RMU/LOAD command,

MAINT, 2-37
loading strategies, MAINT, 2-2
manipulation statements, RDORM,

2-5; SQLRM, 2-5
modifying, RDORM, 9-338;

GURRR, 6-4
moving, MAINT, 7-19

Data (Cont.)
placement strategies

using hashed indexes, MAINT,
2-15

redundant, MAINT, 16-16
retrieval methods, DESIGN, 1-10
retrieving, SQLRM, 6-474
storage

multifile, MAINT, ll-2t
multifile and single-file, MAINT,

11-2
single-file, MAINT, 11-2t

storage area
types of pages, MAINT, 11-10

storing, GURRR, 6-1; SQLRM,
6-414, 6-560

types, RDORM, 5-5; SQLSRV, 11-1;
SQLRM, 3-32
conversion of by RMU/LOAD

operations, RDORM, 6-72
unloading

record definition format, MAINT,
2-39

with RMU/UNLOAD command,
MAINT, 2-37

Data access methods, DESIGN, 1-10
Data and indicator variables

freeing, SQLSRV, 9-30
Database

See also Schema
active records, MAINT, 16-78
adding new storage areas, MAINT,

10-28
adding records

STORE statement, RDORM,
9-457

adjusting parameters, MAINT, 16-86
adjusting storage area parameters,

MAINT, 16-106, 16-107t
AIJ file lost, MAINT, 9-17
ALLOCATION parameter, MAINT,

16-110
analyzing, RDORM, 6-5

Database (Cont.)
analyzing performance, MAINT,

14-1
and schema context, GUSQL, 2-1
attaching to, MAINT, 5-5; GUSQL,

2-3
INVOKE DATABASE statement,

RDORM, 9-329
more than one, GUSQL, 2-9
with DECLARE SCHEMA

statement, SQLRM, 6-255
backing up, MAINT, 8-8, 8-23e;

RDORM, 6-20
using multiple tape drives,

MAINT, 8-37
using single tape drive, MAINT,

8-35
backing up after-image journals,

RDORM, 6-37
backup options, MAINT, 8-22
BUFFER SIZE parameter, MAINT,

16-89
causes of corruption, MAINT, 6-3
changing, DESIGN, 5-25

See also Database, characteristics,
changing

characteristics, DESIGN, 5-27t;
MAINT, 10-6 to 10-28

hashed indexes, MAINT, 10-41
indexes, MAINT, 10-38
sorted indexes, MAINT, 10-39
storage areas, MAINT, 10-31
storage maps, MAINT, 10-45

changing page contents, MAINT,
7-13

characteristics, MAINT, 3-13
changing, MAINT, 10-6 to

10-28
AIJ allocation size, MAINT,

10-24
EXTENT IS extent-pages

PAGES, MAINT, 10-11
lock characteristics, MAINT,

10-15

lndex-13

Database
characteristics

changing (Cont.)
maximum number of users,

MAINT, 10-13
maximum number of

VAX.cluster nodes,
MAINT, 10-14

number of database buffers,
MAINT, 10-16

number of recovery buffers,
MAINT, 10-17

OPEN IS option, MAINT,
10-10

requirement for a dictionary,
MAINT, 10-26

snapshot allocation size,
MAINT, 10-25

controlling
after-image journaling,

MAINT, 10-18
snapshot allocation size,

MAINT, 10-22
snapshots, MAINT, 10-18

making snapshots deferred,
MAINT, 10-23

making snapshots immediate,
MAINT, 10-24

checking for corruption, MAINT, 6-3
choosing between single-file and

multifile, DESIGN, 3-8, 3-9t
closing, MAINT, 5-7; RDORM, 6-42

for maintenance operations,
MAINT, 5-9

using qualifiers, MAINT, 5-14
converting, MAINT, 9-22; RDORM,

6-46
from V2.3 to V3.0 or V3.1 to V4.0,

MAINT, 9-24
from V2.3 to V4.0, MAINT, 9-22
from V3.0 or V3.1 to V4.0,

MAINT, 9-26
to VAX.clusters, MAINT, 18-26

copying, MAINT, 10-73

lndex-14

Database
copying (Cont.)

using RMU/COPY_DATABASE,
DESIGN, 5-26

corruption, MAINT, 6-26e
data integrity, MAINT, 6-36e
page header, MAINT, 6-27e
sorted index, MAINT, 6-32e

creating, DESIGN, 3-4; MAINT,
11-65; SQLRM, 6-97
in VAX.clusters, MAINT, 18-19

creating a duplicate of, DESIGN,
5-23; RDORM, 6-50

creating index, DESIGN, 3-40
creating table, DESIGN, 3-23, 3-26
creating view, DESIGN, 3-46
database recovery (DBR) process,

MAINT, 9-2
data clustering strategies

using hashed indexes, MAINT,
2-15

data loading operations
troubleshooting, MAINT, 2-19

data loading strategies, MAINT, 2-2
data placement strategies

using hashed indexes, MAINT,
2-15

declaring, GURRR, 9-3
defining, RDORM, 9-93
defining protection for, DESIGN, 6-1
definitions

ALTER SCHEMA statement,
SQLRM, 6-15

CHANGE DATABASE statement,
RDORM, 9-9

CREATE SCHEMA statement,
SQLRM, 6-97

DEFINE DATABASE statement,
RDORM, 9-93

DELETE DATABASE statement,
RDORM, 9-232

DROP SCHEMA statement,
SQLRM, 6-311

Database (Cont.)
deleting

indexes, MAINT, 10-38, 10-44
storage areas, MAINT, 10-31
storage maps, MAINT, 10-45,

10-51
design concept, DESIGN, 3-1

See also Database design
creation parameters, MAINT,

11-65
logical, DESIGN, 1-4, 2-1
snapshot storage area, DESIGN,

3-54
detaching from, GUSQL, 2-16;

GURRR, 9-4
FINISH statement, RDORM,

9-280; SQLRM, 6-357
displaying and interpreting

file contents, MAINT, 11-1
displaying information about,

GUSQL, 1-5, 1-13; RDORM,
6-54,6-142, 9-372, 9-379;
SQLRM, 6-521

displaying pages, MAINT, 7-11
displaying security auditing

characteristics, MAINT 4-2· ' ,
RDORM, 6-143

displaying user information, MAINT
3-10 '

duplicating metadata, DESIGN, 5-23
duplicating without data, SQLRM,

6-350
examples of running verify operations,

MAINT, 6-14
exporting, DESIGN, 5-26; RDORM,

9-271; SQLRM, 6-349
exporting and archiving, MAINT,

10-69
exporting and containing no data,

MAINT, 10-66
exporting in VAXcluster environment

MAINT, 18-31
failure to attach to, GUSQL, 11-38

'

Database (Cont.) (Cont.)
field value expression, RDMLRM,

2-9
handle, RDORM, 3-4, 9-99
handling bugcheck dumps, MAINT

12-2 '
importing, RDORM, 9-299; SQLRM

6-391 '
importing and changing device

specifications, MAINT, 10-68
importing and containing no data,

MAINT, 10-66
importing and using TRACE,

MAINT, 10-66
importing from Rdb/ELN databases,

MAINT, 2-54
importing in VAXcluster environment

MAINT, 18-31 '
improving performance, TUNING,

2-3
by normalizing, MAINT, 16-11

improving verify performance,
MAINT, 6-13

inactive records, MAINT, 16-78
information

SHOW ALL statement, RDORM,
9-375

SHOW COLLATING_SEQUENCE
statement, RDORM, 9-376

SHOW CONSTRAINT statement '
RDORM, 9-377

SHOW DATABASES statement,
RDORM, 9-379

SHOW DICTIONARY statement
RDORM, 9-383

SHOW FIELDS statement,
RDORM, 9-384

SHOW INDEXES statement
RDORM, 9-387 '

SHOW PRIVILEGES statement,
RDORM, 9-392

'

SHOW PROTECTION statement
RDORM, 9-395 '

lndex-15

Database (Cont.)
information (Cont.)

SHOW RELATIONS statement,
RDORM, 9-398

SHOW statements, RDORM,
9-372

SHOW STORAGE AREAS
statement, RDORM, 9-400

SHOW STORAGE MAPS
statement, RDORM, 9-404

SHOW STREAMS statement,
RDORM, 9-406

SHOW TRANSACTION
statement, RDORM, 9-407

SHOW TRANSFER statement,
RDORM, 9-409

SHOW USERS statement,
RDORM, F-17

SHOW VERSIONS statement,
RDORM, 9-416

SQL SHOW statement, SQLRM,
6-521

inserting row in, GUSQL, 5-3;
SQLRM, 6-414

integrity, MAINT, 6-4, 16-80
integrity error, GUSQL, 11-27
internal page structures, MAINT,

11-27
interpreting statistics, MAINT,

15-10
interrelated database performance

parameters, MAINT, 16-9t
investigating structure of, GUSQL,

6-2
invoking, GURRR, 2-1
journaling, MAINT, 9-1
key

See Database key
listing AIJ file, RDORM, 6-59
listing backup file, RDORM, 6-62
listing RUJ file, RDORM, 6-68
loading data, MAINT, 16-129;

GUSQL, 5-1; RDORM, 6-70

lndex-16

Database (Cont.)
loading data (Cont.)

changing database definitions,
MAINT, 2-45

defining hashed indexes before,
DESIGN, 4-13

from RMS files, MAINT, 2-21
using DATATRIEVE, MAINT,

2-46
with RMU/LOAD command,

MAINT, 2-37
logical design, DESIGN, 2-1 to 2-15
maintenance statements summary,

RDORM,2-7
metadata updates, DESIGN, 5-3;

MAINT, 10-2
migration, MAINT, 10-70
modifying data, RDORM, 9-338;

GURRR, 6-4; SQLRM, 6-560
modifying database definitions,

RDORM, 9-9; SQLRM, 6-15
modifying dictionary definitions,

DESIGN, 7-13
modifying using EXPORT and

IMPORT statements, MAINT,
10-52

monitoring, MAINT, 18-32
in VAXcluster, MAINT, 18-30
process, MAINT, 3-2
starting, RDORM, 6-80
stopping, RDORM, 6-79, 6-82
using, MAINT, 3-1

moving
dictionary information, MAINT,

8-58
files, MAINT, 8-57
root file, RDORM, 6-85
storage areas, MAINT, 10-31,

10-35; RDORM, 6-85
using EXPORT/IMPORT

statements, DESIGN, 3-11
using RMU, DESIGN, 3-10

moving files, MAINT, 7-16
multifile, DESIGN, 3-8

Database (Cont.)
multifile (Cont.)

as opposed to single-file,
DESIGN, 3-8; TUNING, 2-3

normalizing
to improve performance, MAINT,

16-11
NUMBER OF BUFFERS parameter,

MAINT, 16-91
opening, MAINT, 5-2; RDORM,

6-89
OPEN IS option, MAINT, 10-10
PAGE SIZE parameter, MAINT,

16-109
parameters, MAINT, 16-86

See also Parameter
default values, RDORM, D-1
maximum values, RDORM, D-1
minimum values, RDORM, D-1

performance
understanding your data,

MAINT, 16-4
understand youring data,

MAINT, 16-5t
performance evaluation, MAINT,

13-1
database statistics, MAINT, 13-6
hardware· resources, MAINT,

13-5
locking, MAINT, 13-6
operating system resources,

MAINT, 13-5
operating system utilities,

MAINT, 13-7
sample procedure, MAINT, 13-11
space usage, MAINT, 13-5
VAX.cluster environment,

MAINT, 13-9
VAX Performance Advisor (VPA),

MAINT, 13-7
performance issues, MAINT, 16-1
performance-related changes,

MAINT, 13-11

Database (Cont.)
physical design

changes, MAINT, 10-1
default values

database-wide, MAINT,
16-2t; RDORM, D-lt

storage area parameter,
MAINT, 16-3t; RDORM,
E-lt

storage map parameter,
MAINT, 16-4t

implementing with minimal effort,
MAINT, 16-2t

problems with redundancy, MAINT,
16-16

protection, SQLRM, 6-359
CHANGE PROTECTION

statement, RDORM, 9-43
DEFINE PROTECTION

statement, RDORM, 9-132
DELETE PROTECTION

statement, RDORM, 9-241
query optimizer, MAINT, 17-1;

GURRR, 2-28
Rdb/ELN

converting to RdbNMS database,
MAINT, 2-54

read-only storage areas
backup, MAINT, 8-25e
considerations; MAINT, 8-25
restore, MAINT, 8-45e

reconstructing, RDORM, 6-91
record fragmentation, MAINT, 16-93
records

adding
STORE statement, RDORM,

9-457
deleting

ERA.SE statement, RDORM,
9-263

storage structures, MAINT,
11-27

recovering, RDORM, 6-91
recovery, MAINT, 9-1, 9-18, 12-2

lndex-17

Database (Cont.)
recovery (Cont.)

in VAXclusters, MAINT, 18-29
re-creating lost AIJ file, MAINT,

9-17
redundant data, MAINT, 16-16
remote access, GURRR, 2-3
reorganizing, MAINT, 10-53

single to mul tifile, MAINT, 8-59
reporting bugcheck dumps, MAINT,

12-8
resolving an unresolved transaction,

RDORM, 6-103
resolving distributed transaction,

DIST_TRANS, 1-7, 2-17, 6-1 to
6-7

resource locking, MAINT, 16-17
restoring, MAINT, 8-38, 8-44e;

RDORM, 6-107; DIST_TRANS,
~
by area, RDORM, 6-112
incremental, MAINT, 8-42
modifying after-image journaling,

MAINT, 8-54
modifying database

characteristics, MAINT, 8-52
modifying page size, MAINT,

8-56
modifying thresholds, MAINT,

8-56
using multiple tape drives,

MAINT, 8-50
using single tape drive, MAINT,

8-49
restructuring, DESIGN, 5-1 to 5-36
root file (ROB), DESIGN, 4-2
single-file, DESIGN, 3-8

as opposed to multifile, DESIGN,
3-8

snapshot (SNP) file, DESIGN, 3-11,
4-2

snapshot pages, MAINT, 11-27
snapshot storage area, DESIGN,

3-54

lndex-18

Database (Cont.) (Cont.)
space area management (SPAM)

pages, MAINT, 11-55
space usage, MAINT, 14-1
statistics

ANALYZE statement, RDORM,
9-2

display, RDORM, 6-148
interpreting, MAINT, 15-10
RMU/ANALYZE command,

RDORM, 6-5
RMU/SHOW STATISTICS

command, RDORM, 6-148
storage area (RDA) file, DESIGN,

4-2
types of pages, MAINT, 11-10

storage area structures, MAINT,
11-27

storage map parameters, MAINT,
16-116

strategy to detect problems, MAINT,
6-7

system relations, RDORM, 8-1
tuning

defined, TUNING, 1-1
methodology, TUNING, 1-5
transaction type, MAINT, 16-92
what to tune, TUNING, 1-10
when to tune, TUNING, 1-1

types of data storage, MAINT, 11-2
types of statistics, MAINT, 15-10
unloading, DESIGN, 5-26; RDORM,

6-158
record definition format, MAINT,

2-39
with RMU/UNLOAD command,

MAINT, 2-37
updating, SQLRM, 6-414
using space management, MAINT,

11-65
using VAX.cluster nodes, MAINT,

18-2, 18-19
verification

troubleshooting, MAINT, 6-18

Database (Cont.)
verification

troubleshooting (Cont.)
checksum check, MAINT,

6-19
data integrity, MAINT, 6-21
summary, MAINT, 6-25

verifying, MAINT, 6-1
integrity, RDORM, 6-161
problems checked by verify,

MAINT, 6-4
process of, MAINT, 6-4
protection for, DESIGN, 6-34
reasons for, MAINT, 6-2
what verify detects, MAINT, 6-6

what to do if AIJ file is inaccessible,
MAINT, 9-17

what verify checks, MAINT, 6-9
Database administrator (DBA)

See Maintenance
Database conversion

from V2.3 to V3.0 or V3.1 to V4.0,
MAINT, 9-24

from V2.3 to V4.0, MAINT, 9-22
from V3.0 or V3.1 to V4.0, MAINT,

9-26
strategy and procedure, MAINT,

9-22
Database corruption, MAINT, 6-26e

causes, MAINT, 6-3
clearing a corruption flag, MAINT,

7-3
clearing an inconsistent flag, MAINT,

7-22
data integrity, MAINT, 6-36e
page header, MAINT, 6-27e
patching, MAINT, 7-1
sorted index, MAINT, 6-32e

Database design
See also Logical design; Physical

design
and concealed logical names,

DESIGN, 3-10

Database design (Cont.)
choosing between single-file and

multifile, DESIGN, 3-8
CREATE STORAGE MAP statement,

DESIGN, 3-10
defining protection, DESIGN, 3-8,

6-1
entity-relationship map, DESIGN,

2-3
for distributed transaction, DIST_

TRANS, 3-1 to 3-9
logical, DESIGN, 1-4
methods of, DESIGN, 1-3
normalization, DESIGN, 2-8
physical, DESIGN, 1-4, 1-6
prototype, DESIGN, 4-1
prototype transactions, DESIGN,

2-12
requirements analysis, DESIGN, 2-1
storage, DESIGN, 4-1
transaction analysis, DESIGN, 2-9
using interactive SQL, DESIGN, 3-3
using primary and foreign keys,

DESIGN, 2-3
using RdbExpert, DESIGN, 1-6
using the data dictionary, DESIGN,

3--4, 7-1 to 7-28
volume tables, DESIGN, 2-14

Data base file
updating

using dictionary definitions,
DESIGN, 7-22

Database files
moving, MAINT, 7-16

Database handle, RDORM, 9-74, 9-99
scope of, RDORM, 9-329
using to distinguish between

databases, GURRR, 9-38
Database handle clause, RDMLRM,

6-20
Database key, DESIGN, 3-13;

RDMLRM, 2-26; SQLRM, 3-71
compressed dbkey, MAINT, 11-40
controlling scope of, GURRR, 9-32

lndex-19

Database key (Cont.)
hashed index, MAINT, 11-41, 14-39,

14-60, 16-35, 16-73
overflow, MAINT, 11-49
PLACE statement, MAINT,

16-129
indexes, MAINT, 11-49, 14-1, 16-34,

16-40, 17-5
index node segments, MAINT, 11-38
scope, DESIGN, 3-13

' segmented string, MAINT, 11-37
sorted indexes, MAINT, 16-34

duplicate index node, MAINT,
11-41

sorted index node links, MAINT,
16-40

specifying as value expression,
GUSQL, 3-5

uncompressed dbkey, MAINT, 11-41,
16-51

using to retrieve records, GURRR,
9-33

Database keys (dbkeys), RDORM, 3-32
Database maintenance

overview, MAINT, 1-9
Database metadata

duplicating, DESIGN, 5-23
Database names

CDD/Plus restrictions, RDORM,
9-97

Database OPEN IS option
changing, MAINT, 10-10

Database page, MAINT, 11-27e
area bit maps, MAINT, 11-62

uniform page format, MAINT,
ll-63e

area inventory pages
uniform page format, MAINT,

ll-64e
checksum, MAINT, 11-29
common format used, MAINT,

11-lle
displaying contents, MAINT, 7-11

lndex-20

Database page (Cont.)
fragmented record, MAINT, 11-51,

11-52e
free space, MAINT, 11-29, 11-31
fullness threshold, MAINT, 11-55
hashed index, MAINT, 11-42e

structure with page pointer,
MAINT, 11-49f

header, MAINT, 11-28, 11-29e
index node record, MAINT, 11-38,

11-39e
line index, MAINT, 11-30, 11-30e
locked and unlocked free space,

MAINT, 11-29, 11-32e, 11-33f
mixed page format

SPAM intervals, MAINT, 11-68f
SPAM page, MAINT, 11-65e

number, MAINT, 11-29
page tail

mixed storage area, MAINT,
11-50e

uniform storage area, MAINT,
11-51e

segmented string record, MAINT,
11-36e

snapshots, MAINT, 11-27
space area management (SPAM)

pages, MAINT, 11-57e
SPAM entry information, MAINT,

11-73t
SPAM interval formula, MAINT,

11-69
storage area number, MAINT, 11-29
storage segment structure, MAINT,

11-33
structure with system record,

MAINT, 11-48f
time and date stamp, MAINT, 11-29
transaction sequence number index,

MAINT, 11-31e
user-stored record, MAINT, 11-34e

Database parameters
default values, RDORM, D-1
maximum values, RDORM, D-1

Database parameters (Cont.)
minimum values, RDORM, D-1

Database recovery (DBR), MAINT, 9-2
bugcheck, MAINT, 12-2

Database recovery (DBR) process
in distributed transaction, DIST_

TRANS,2-9,2-15
DATABASE statement, RDMLRM, 6-11
Database statistics, MAINT, 15-1,

15-10
RMU/ANALYZE command, RDORM,

6-5
Database storage area, DESIGN, 4-2

See also Storage area
adjusting parameters, MAINT,

16-106, 16-107
parameters, MAINT, 16-106

Database storage map
adjusting parameters for performance,

MAINT, 16-116
Database table

definition for storing security audit
journal records, MAINT, 4-25

for storing security audit journal
records, MAINT, 4-25; RDORM,
6-71

Database verification, MAINT, 6-4
after changes in RdbALTER, MAINT,

7-23
after using RdbALTER, MAINT,

7-16
devising a strategy, MAINT, 6-7
examples of running verify operations,

MAINT, 6-14
improving verify performance,

MAINT, 6-13
problems checked by verify, MAINT,

6-4
process of, MAINT, 6-4
reasons to perform, MAINT, 6-2
troubleshooting, MAINT, 6-1:8

checksum check, MAINT, 6-19
data integrity, MAINT, 6-21
summary, MAINT, 6--25

Database verification (Cont.)
what verify checks, MAINT, 6--9
what verify detects, MAINT, 6--6

Data compression
considerations, MAINT, 16-128
disabling, MAINT, 16-118
enabling, MAJNT, 16-118, 16-121e

Data definition
performing in RDML program,

RDMLRM, 1-3
statements

Callable RDO, GURRR, 19-29
summary, RDORM, 2-2;

SQLRM, 2-2
Data dictionary

allowing access to database, GUSQL,
1-22

anchor, DESIGN, 7-2
copying definitions

using FROM clause, GUSQL,
10-10

using INCL UDE statement,
GUSQL, 10-8

using SQL module language,
SQLRM, 4-10

creating data definitions with,
DESIGN, 7-6e

creating shareable definitions,
DESIGN, 7-6

criteria for using, DESIGN, 7-4
defined, DESIGN, 7-1
defining protection for shareable

RdbNMS definitions, DESIGN,
6-37

definitions
deleting, DESIGN, 7-26;

SQLRM, 6-308
field, DESIGN, 7-1
including in RDBPRE programs,

GURRR, 12-4
including in RDML programs,

GURRR, 16-3
including in SQL module language

programs, SQLRM, 4-10

lndex-21

Data dictionary
definitions (Cont.)

modifying, DESIGN, 7-13
updating, SQLRM, 6-424

ENTER command, DESIGN, 7-17e
integrating with database, DESIGN,

7-15
naming conventions of, DESIGN, 7-2
path, DESIGN, 7-2
path names, SQLRM, 3-9
specifying access for database

attachment, GUSQL, 2-6
specifying in database definition,

DESIGN, 3-4
tracking entities, DESIGN, 7-1
tradeoffs of using, DESIGN, 3-4,

7-27
using to create domains, DESIGN,

3-14
using to create tables, DESIGN,

3-23, 3-24
using VAXcluster nodes, MAINT,

18-18
using with RdbNMS, DESIGN, 7-1

to 7-28
Data Distributor

See also VAX Data Distributor
Data Distributor statements (SQL)

CREATE SCHEDULE, SQLRM,
6-88

CREATE TRANSFER, SQLRM,
6-168

DROP SCHEDULE, SQLRM, 6-309
DROP TRANSFER, SQLRM, 6-320
REINITIALIZE TRANSFER,

SQLRM, 6-450
SHOW TRANSFER, SQLRM, 6-549
START TRANSFER, SQLRM, 6-554
STOP TRANSFER, SQLRM, 6-558

Data manipulation statements
Callable RDO programs, GURRR,

19-6
summary, RDORM, 2-5; SQLRM,

2-5

lndex-22

Data page
contents of, MAINT, 11-27e

Data retrieval methods, DESIGN, 1-10
Data selection

See Retrieving data; SELECT
statement

Data storage, MAINT, 11-2
Data structure, SQLSRV, 10-1

ASSOCIATE_STR, SQLSRV, 2-12,
10-3

documentation format, SQLSRV,
10-1

SQLCA, SQLSRV, 2-12, 10-6
SQLDA, SQLSRV, 2-12, 10-11
SQLSRV _ENV _STR, SQLSRV, 2-13,

10-16
SQLVAR, SQLSRV, 10-13
summary of, SQLSRV, 2-12 to 2-13
used in SQL/Services, SQLSRV, 2-12

to 2-13
DATATRIEVE

formatting clauses, DESIGN, 3-22;
SQLRM, 3-49

loading RdbNMS databases, MAINT,
2-46

support clause, DESIGN, 3-16, 3-22;
RDORM, 5-16
DEFAULT_ VALUE clause,

RDORM, 5-17
EDIT_STRING clause, RDORM,

5-17
QUERY_HEADER clause,

RDORM, 5-17
QUERY_NAME clause, RDORM,

5-17
Data type, RDORM, 5-5; GURRR,

A-1; SQLSRV, 11-1; SQLRM,
3-32

BASIC equivalents, GURRR, 8-7t
BYTE VARYING, SQLRM, 3-37
C equivalents, GURRR, 8-8, 8-9
CHAR, DESIGN, 3-18; SQLRM,

3-34
character, SQLRM, 3-34

Data type (Cont.)
conversion, GURRR, 8--4; SQLRM,

3-39
DATE, DESIGN, 3-18; RDORM,

5-6; SQLRM, 3-36
DECIMAL, SQLRM, 3-35
DOUBLE PRECISION, SQLRM,

3-36
fixed-point numeric, SQLRM, 3-35
FLOAT, SQLRM, 3-36
floating-point numeric, SQLRM, 3-36
FORTRAN equivalents, GURRR,

8-lOt
generated by RDML, RDMLRM, A-1

for VAX C, RDMLRM, A-1
for VAXELN Pascal, RDMLRM,

A-3
for VAX Pascal, RDMLRM, A-2

host language equivalent, GURRR,
8-7

INTEGER, DESIGN, 3-19; SQLRM,
3-35

list, INTRO, 1-5
LIST OF BYTE VARYING, DESIGN,

3-19; SQLRM, 3-37
LIST OF VARBYTE

See LIST OF BYTE VARYING
LONG VARCHAR, SQLRM, 3-34
NUMERIC, SQLRM, 3-35
Pascal equivalents, GURRR, 8-llt
QUADWORD, SQLRM, 3-35
RdbNMS compared to VMS,

GURRR, 8-2t
REAL, RDORM, 5-6; SQLRM, 3-36
segmented string, GURRR, 8-3
SEGMENTED STRING, RDORM,

5-8
SMALLINT, DESIGN, 3-19;

SQLRM, 3-35
specifying, DESIGN, 3-18, 3-27
$SQL_ VARCHAR, GUSQL, 8--4,

10-33
summary for RdbNMS, RDORM, 5-7

Data type (Cont.)
supported by RdbNMS, GURRR, 8-1

to 8-13
TINYINT, SQLRM, 3-35
used in SQL module language,

SQLRM, 4--22
VARBYTE, SQLRM, 3-37
VARCHAR, DESIGN, 3-19;

SQLRM, 3-34
Data validation, MAINT, 16-80;

RDORM, 5-11
DATE data type, DESIGN, 3-18;

RDORM, 5-6; SQLRM, 3-36
converting in programs, SQLRM,

3-40
format of, RDORM, 3-10

Date format, GUSQL, 3-24
displaying language for, RDORM,

9-391
SET DATE_FORMAT statement,

RDORM, 9-363
SHOW DATE_FORMAT statement,

RDORM, 9-381
Date literal

conversion to international format,
RDMLRM, 1-5

DATE literal, SQLRM, 3-46
DBA

See Maintenance
Db key

See Data base key
DCL

accessing, SQLRM, 6-231
SHOW AUDIT/JOURNAL command,

MAINT, 4--27
DCL invoke statement, SQLRM, 6-231

accessing DCL, RDORM, 9-81
Deadlock

avoiding, SQLRM, 6-507
Deadlock error, GUSQL, 2-32, 11-25

avoiding with distributed transaction,
DIST_TRANS, 4-4

DEADLOCK.WAIT parameter
values, MAINT, 16-138

lndex-23

Debugger
See VMS Debugger

Debugging program, GUSQL, 9-6;
GURRR, 11-24

using interactive SQL, GUSQL, 6-5
DECdtm services, DIST_TRANS, 1-4

coordinating distributed transaction
with, DIST_TRANS, 1-4, 2-2

DECIMAL data type, SQLRM, 3-35
DECLARE CURSOR statement

' GUSQL, 4-1; SQLRM, 6-233
in dynamic SQL

See also Dynamic DECLARE
CURSOR statement

See also Extended Dynamic
DECLARE CURSOR
statement

in SQL module, GUSQL, 7-17;
SQLRM, 4-18, 4-20

DECLARE SCHEMA statement '
GUSQL, 2-5; SQLRM, 6-255

in SQL module, GUSQL, 7-15
DECLARE statement

in SQL module, GUSQL, 7-12
DECLARE STATEMENT statement

SQLRM, 6-266 '
DECLARE TABLE statement, SQLRM

6-268 '
DECLARE TRANSACTION statement,

GUSQL, 1-22, 2-18, 2-21, 2-22e,
2-43; SQLRM, 6-273

WAIT clause, GUSQL, 2-30;
DIST_TRANS, 4-4

DECLARE_STREAM statement,
RDMLRM, 6-26; GURRR, 6-8

record stream, RDORM, 9-82
DECLARE_ VARIABLE clause,

RDMLRM, 6-32
DECLARE_ VARIABLE clause (RDML),

GURRR, 17-7, 18-6
Declaring

cursors, GUSQL, 4-1; SQLRM,
6-233

lndex-2A

Declaring (Cont.)
databases, GURRR, 9-3
function and type, RDMLRM, 6-4
host language parameter, GUSQL,

10-2
multiple databases, GURRR, 9-4
schemas, DESIGN, 6-7; GUSQL,

2-3; SQLRM, 6-255
statements, SQLRM, 6-266
tables, SQLRM, 6-268
transactions, SQLRM, 6-273

DEC Multinational Character Set (MCS)
See Multinational Character Set

(MCS)
DECnet software

allowing client/server communication
' SQLSRV, 1-4

use with SQUServices, SQLSRV, 1-2
DEC trace

collecting event data on RdbNMS
applications, MAINT, 15-50

collecting workload information for
RdbExpert, MAINT, 15-60

collection class defined, MAINT,
15-50

creating a customized report,
MAINT, 15-72

creating a facility selection, MAINT,
15-57

creating a report
formatting and merging data files,

MAINT, 15-61
creating a report from collected data

' MAINT, 15-61
creating a summary report

specifying the statistics, MAINT,
15-71

events defined, MAINT, 15-49
facility defined, MAINT, 15-57
gathering statistics on RdbNMS

applications, MAINT, 15-49
generating a report, MAINT, 15-62
items defined, MAINT, 15-50

DECtrace (Cont.)
RdbNMS ALL collection class of

events and items, MAINT,
15-55t

RdbNMS database relations
in ALL collection classes,

MAINT, 15-78
in WORKLOAD collection classes,

MAINT, 15-88
RdbNMS data items, MAINT,

15-52t
RdbNMS events, MAINT, 15-51t
RdbNMS PERFORMANCE collection

class of events and items,
MAINT, 15-56t

RdbNMS resource utilization items,
MAINT, 15-51t

RdbNMS WORKLOAD collection
class of events and items,
MAINT, 15-56t

scheduling data collection, MAINT,
15-58

specifying the processes to collect
data, MAINT, 15-59

using registration IDs, MAINT,
15-59

Default protection, DESIGN, 6-3
Default value, GUSQL, 5-5

See also Missing value; Null
for column, DESIGN, 3-30
for domain, DESIGN, 3-20

DEFAULT_ VALUE FOR DTR clause,
RDORM, 5-17

DEFINE COLLATING_SEQUENCE
statement, RDORM, 9-85

DEFINE CONSTRAINT statement
restricting values, RDORM, 9-88

DEFINE DATABASE statement
creating a database,· RDORM, 9-93

DEFINE FIELD statement
creating field definitions, RDORM,

9-112

DEFINE INDEX statement
creating index definitions, RDORM,

9-119
DEFINE PROTECTION statement

accessing the database, RDORM,
9-132

DEFINE RELATION statement
creating relation definitions,

RDORM, 9-149
DEFINE SCHEDULE statement

defining schedules, RDORM, 9-164
DEFINE STORAGE MAP statement

defining storage maps, RDORM,
9-171

DEFINE TRANSFER statement,
RDORM, 9-180

DEFINE TRIGGER statement
creating trigger definitions, RDORM,

9-204
DEFINE VIEW statement, GURRR,

5-2
creating view definitions, RDORM,

9-219
DEFINE_TYPE clause, RDMLRM,

6--35
Defining

data definition statements, RDORM,
2-2; SQLRM, 2-2

dynamic SQL statements, SQLRM,
2-9

indexes, RDORM, 9-119
privileges, SQLRM, 6-359, 6-379
protection, RDORM, 9-132

for shareable Rdb/VMS definitions
in CDD/Plus, DESIGN, 6-37

through a command procedure,
DESIGN, 6-19

protection for views, DESIGN, 6-22
storage maps

DEFINE STORAGE MAP
statement, RDORM, 9-171

for tables in multifile databases,
DESIGN,4-4

user privileges, RDORM, 9-136

lndex-25

Defining (Cont.)
views, GURRR, 5-2, 5-4

DELETE COLLATING_SEQUENCE
statement

deleting collating sequences,
RDORM, 9-225

DELETE CONSTRAINT statement
deleting constraints, RDORM, 9-228

DELETE DATABASE statement
deleting database definitions,

RDORM, 9-232
DELETE FIELD statement

deleting field definitions, RDORM,
9-234

DELETE INDEX statement
deleting indexes, RDORM, 9-237

DELETE PATHNAME statement
deleting dictionary definitions,

RDORM, 9-240
DELETE PROTECTION statement

deleting protection, RDORM, 9-241
DELETE RELATION statement

deleting relations, RDORM, 9-244
DELETE SCHEDULE statement

deleting schedules, RDORM, 9-24 7
DELETE statement, GUSQL, 5-18;

SQLRM, 6--283
in SQL module, GUSQL, 7-19

DELETE STORAGE MAP statement
deleting storage maps, RDORM,

9-249
DELETE TRANSFER statement

deleting transfers, RDORM, 9-251
DELETE TRIGGER statement

deleting triggers, RDORM, 9-253
DELETE VIEW statement

deleting views, RDORM, 9-255
Deleting

cascading, DESIGN, 3-38
collating sequence, SQLRM, 6--295
collating sequences, RDORM, 9-225
columns, DESIGN, 5-7; SQLRM,

6--316

lndex-26

Deleting (Cont.)
constraints, DESIGN, 5-7, 5-17;

RDORM, 9-228; SQLRM, 6-298
data, GURRR, 6--7; SQLRM, 6-283
database definitions, l;lDORM, 9-232
database files, DESIGN, 5-23
data using triggers, GURRR, 6-8
dictionary definitions, DESIGN,

7-27; RDORM, 9-240; SQLRM,
6-308
using SQL and CDO, DESIGN,

7-26
domains, DESIGN, 5-6; SQLRM,

6-301
field definitions, RDORM, 9-234
indexes, DESIGN, 5-22; RDORM,

9-237; SQLRM, 6--305
protection, RDORM, 9-241
relations, RDORM, 9-244
rows, GUSQL, 5-18; SQLRM, 6-283
schedules, RDORM, 9-24 7
schema definitions, SQLRM, 6-311
schemas, DESIGN, 3-8, 5-23
storage areas, DESIGN, 3-7
storage map definitions, · SQLRM,

6-313
storage maps, RDORM, 9-249
tables, DESIGN, 5-7; SQLRM,

6-316
transfers, RDORM, 9-251
triggers, DESIGN, 5-20; RDORM,

9-253; SQLRM, 6-322
views, DESIGN, 5-21; RDORM,

9-255; SQLRM, 6-325
Demonstration

running online, INTRO, 1-2
DEPOSIT (RdbALTER)

moving database files, MAINT, 7-17
to move database files, MAINT, 7-17

DEPOSIT command (RdbALTER),
MAINT, 7-13; RDORM, 7-8

restrictions, MAINT, 7-13
DEPOSIT FILE command (RdbALTER),

RDORM, 7~14

DEPOSIT ROOT command
(RdbALTER), RDORM, 7-16

Descending index, RDORM, 9-123
Descending value

ordering row in, GUSQL, 3-19
DESC keyword

in ORDER BY clause, GUSQL, 3-19
DESCRIBE statement, GUSQL, 12-5;

SQLRM, 6-287
Design concepts

creation parameters, MAINT, 11-65
Designing

databases
creation parameters, MAINT,

11-65
for distributed transaction,

DIST_TRANS, 3-1 to 3-9
snapshot storage areas, DESIGN,

3-54
Design model, DESIGN, 1-3
DETACH

in RdbALTER, MAINT, 7-25
DETACH command (RdbALTER),

MAINT, 7-3; RDORM, 7-17
Detached process, GURRR, 9-2
Detaching

from a database, GUSQL, 2-16;
GURRR, 9-4
in RdbALTER, MAINT, 7-3

from declared schemas, SQLRM,
6-357

Developing an RdbNMS program
BASIC, GURRR, 7-3
C, GURRR, 7-3
Callable RDO, GURRR, 7-3
COBOL, GURRR, 7-3
FORTRAN, GURRR, 7-3
Pascal, GURRR, 7-3

Developing SQL program
guidelines, GUSQL, 6-2

Dictionary definition
copying with INTEGRATE

DATABASE, RDORM, 9-325
creating, DESIGN, 7-15, 7-20

Dictionary definition (Cont.)
creating for schema, DESIGN, 7-11
deleting, DESIGN, 7-26, 7-27;

RDORM, 9-240
integrating with database, DESIGN,

7-15
re-creating with INTEGRATE

DATABASE, RDORM, 9-325
Dictionary Management Utility (DMU)

SeeDMU
DICTIONARY OPERATOR

DCL command, DESIGN, 7-2
Dictionary path names

displaying
SHOW DICTIONARY statement,

RDORM, 9-383
Differing terminology, INTRO, 1-llt
DIOLM parameter

values, MAINT, 16-140
DIRECTORY command

in CDO, DESIGN, 7-20e
Disabling audit event information,

MAINT, 4-16
Disabling DACCESS audit events,

MAINT, 4-5, 4-13; RDORM, 6-128
Disabling security alarms, RDORM,

6-128
Disabling two-phase commit protocol,

DIST_TRANS, 4-3
Disk

dual-ported MSCP-served, MAINT,
18-7

Disk drives
assigning snapshot and data storage

areas to different, DESIGN, 4-3
table distribution among, DESIGN,

4-8
using more than one for a table,

DESIGN, 4-9
Disk files

reducing disk 1/0 contention,
MAINT, 16-114

sharing in VAXclusters, MAINT,
18-6

lndex-27

Disk space
specifying default allocation for,

DESIGN, 3-12
Display

interactive, GUSQL, 1-14
DISPLAY command (RdbALTER),

MAINT, 7-11; RDORM, 7-18
DISPLAY FILE command (RdbALTER),

RDORM, 7-25
Displaying

access rights, RDORM, 9-392
all database information, RDORM,

9-375
collating sequence, RDORM, 9-376
constraints, RDORM, 9-377
current dictionary default directory,

RDORM, 9-383
database information, RDORM,

6-54,6-142,9-379
using RMU, RDORM, 6-1

database page contents, MAINT,
7-11

date format, RDORM, 9-381
field names, RDORM, 9-384
index names, RDORM, 9-387
information interactively, GUSQL,

1-5
language for date format, RDORM,

9-391
names of streams, RDORM, 9-406
privileges, RDORM, 9-392, 9-395
radix point character, RDORM,

9-397
relation definitions, RDORM, 9-398
schema and database information,

SQLRM, 6-521 to 6-54 7
storage area names, RDORM, 9-400
storage map names, RDORM, 9-404
time format, RDORM, 9-381
transaction information, RDORM,

9-407
transfer information, RDORM, 9-409
triggers, RDORM, 9-413
version number, RDORM, 9-416

lndex-28

DISPLAY ROOT command (RdbALTER),
RDORM, 7-27

DISTINCT keyword, GUSQL, 3-13,
3-54

DISTRIBTRAN privilege, DIST_
TRANS, 3-6

Distributed lock manager, MAINT,
18-9

Distributed transaction, RDMLRM,
6-130; DIST_TRANS, 1-2

completed unresolved transaction in
corrupt database, DIST_TRANS,
6-5

completing, DIST_TRANS, 1-7,
2-17, 6-1 to 6-7

defined, DIST_TRANS, 1-1
designing database for, DIST_

TRANS, 3-1 to 3-9
error handling, DIST_TRANS, 4-7,

5-12
privilege needed, DIST_TRANS, 3-6
starting, DIST_TRANS, 2-2

in VAX.cluster, DIST _TRANS,
3-6

START...:..TRANSACTION statement,
RDORM, 9-431

unexpected termination, DIST_
TRANS, 2-15

using embedded SQL statements,
SQLRM, 5-2

using module language procedures,
SQLRM, 4-39

using with Callable RDO, DIST_
TRANS, 5-1

using with precompiled SQL,
DIST_TRANS, 4-3

using with RDBPRE, DIST_TRANS,
5-1 to 5-18
existing application, DIST_

TRANS, 5-4
new application, DIST_TRANS,

5-7 to 5-18
using with RDML, DIST_TRANS,

5-2

Distributed transaction (Cont.)
using with SQL, DIST_TRANS, 4-1

to 4-24
using with SQL module language,

DIST_TRANS, 4-2, 4-9 to 4-15
using with SQL precompiler,

DIST_TRANS, 4-15 to 4-22
using with VAX DBMS, DIST_

TRANS, 4-2
Distributed transaction identifier (TID),

RDMLRM, 6--131; DIST_TRANS,
2-3

passing to participants, DIST_
TRANS, 2-4

DISTRIBUTED_TRANSACTION clause
of START_TRANSACTION statement,

DIST_TRANS,5-8,5-14
DISTRIBUTED_TRANSACTION

keyword
of START_TRANSACTION statement,

DIST_TRANS, 5-8
/DISTRIBUTED_TRANSACTION

qualifier to RDBPRE command line,
DIST_TRANS, 5-4

Distributing databases
DEFINE SCHEDULE statement,

RDORM, 9-164
DEFINE TRANSFER statement,

RDORM, 9-180
DELETE SCHEDULE statement,

RDORM, 9-247
DELETE TRANSFER statement,

RDORM, 9-251
REINITIALIZE TRANSFER

statement, RDORM, 9-357
SHOW TRANSFER statement,

RDORM, 9-409
START TRANSFER statement,

RDORM, 9-453
STOP TRANSFER statement,

RDORM, 9-456
using RDO statements, RDORM, 2-9

DMU, DESIGN, 7-6

Documentation format
for SQL/Services data structures,

SQLSRV, 10-1
Dollar sign command ($)

invoking DCL, RDORM, 9-81
Domain, SQLRM, 3-18

based on data dictionary, DESIGN,
3-14

changing, DESIGN, 5-6; SQLRM,
6-2 to 6--10

creating, DESIGN, 3-14; SQLRM,
6-68 to 6--75

default value, DESIGN, 3-20
definition of, INTRO, 1-4
deleting, DESIGN, 5-6; SQLRM,

6--301
modifying, DESIGN, 5-6; SQLRM,

6-2 to 6--10
naming, DESIGN, 3-18; SQLRM,

3-18
user-defined

displaying, GUSQL, 1-9
DOUBLE PRECISION data type,

SQLRM, 3-36
DROP CONSTRAINT statement,

SQLRM, 6-298
DROP DOMAIN statement, DESIGN,

5-6; SQLRM, 6--301
DROP INDEX statement, SQLRM,

6--305
DROP PATHNAME statement,

DESIGN, 7-27e; SQLRM, 6--308
Dropping

See also Deleting
columns, DESIGN, 5-7
tables, DESIGN, 5-7
triggers, DESIGN, 5-20

DROP SCHEDULE statement,
SQLRM, 6--309

DROP SCHEMA statement, SQLRM,
6--311

DROP STORAGE AREA clause,
DESIGN, 3-7

lndex-29

DROP STORAGE MAP statement,
SQLRM, 6--313

DROP TABLE statement, DESIGN,
5-7; SQLRM, 6-316

DROP TRANSFER statement, SQLRM,
6--320

DROP TRIGGER statement, SQLRM,
6--322

DROP VIEW statement, SQLRM,
6--325

Duplicate node record
hashed index structure, MAINT,

11-44
Duplicate row

eliminating, GUSQL, 3-16
Duplicate value, DESIGN, 3-42

error, GUSQL, 11-28
Dynamically executed SQL statement,

GUSQL, 12-2
Dynamic cursor, GUSQL, 4-5, 4-18,

12-5, 12-16, 12-19
Dynamic DECLARE CURSOR

statement, GUSQL, 4-5, 4-18,
12-5, 12-15, 12-16, 12-19;
SQLRM, 6--245

See also DECLARE CURSOR
statement

Dynamic SQL, GUSQL, 12-1 to 12-50;
SQLSRV, 2-1 to 2-8; SQLRM,
3-29, D-1

advantages, INTRO, 1-26
DECLARE STATEMENT, SQLRM,

6--266
DESCRIBE statement, SQLRM,

6--287
EXECUTE IMMEDIATE statement,

SQLRM, 6--343
EXECUTE statement, SQLRM,

6--338
INCLUDE statement, SQLRM,

6--407
parameter markers, SQLSRV, 2-6
PREPARE statement, SQLRM,

6--439

lndex-30

Dynamic SQL (Cont.)

E

purpose of SQLCA, SQLSRV, 2-8
See also SQLCA

purpose of SQLDA, SQLSRV, 2-7
See also SQLDA

RELEASE statement, SQLRM,
6-452

statement name, GUSQL, 12-5
statements, SQLSRV, 2-2
statement summary, SQLRM, 2-9
summary, INTRO, 1-26
supplying parameter at run time,

GUSQL, 12-42
unknown statements, SQLSRV, 2-7
use in SQL/Services, SQLSRV, 1-2
using, SQLSRV, 2-3 to 2-8
using parameter, GUSQL, 12-42,

12-46
using SELECT statements, SQLSRV,

2-6
with distributed transaction,

DIST_TRANS, 4-3

Editor
defining for EDIT statement,

GUSQL, 1-24
EDIT statement, GUSQL, 1-16;

SQLRM, 6-328
editing command lines, RDORM,

9-257
EDIT STRING clause, SQLRM, 3-52
EDIT_STRING FOR DTR clause,

RDORM, 5-17
EDT editor

using with EDIT statement, GUSQL,
1-24

Embedded SQL
Ada-specific requirement, GUSQL,

8-4
and distributed transaction,

DIST_TRANS, 4-15 to 4-22

Embedded SQL (Cont.)
COBOL-specific requirement,

GUSQL, 8-5
C-specific requirement, GUSQL, 8-4
distributed transactions, SQLRM,

5-2
FORTRAN-specific requirement,

GUSQL, 8--6
Pascal-specific requirement, GUSQL,

8-8
PL/I-specific requirement, GUSQL,

8-9
testing statement interactively,

GUSQL, 6-5
Embedding DML statements, GURRR,

9-2
Embedding SQL statements in

programs, SQLRM, 5--2
Enabling audit event information,

MAINT, 4-16
Enabling DACCESS audit events,

MAINT, 4-5, 4-13; RDORM, 6-128
Enabling security alarms, RDORM,

6-128
Enabling security auditing, RDORM,

6-127, 6-128
END DECLARE statement, SQLRM,

6-332
Ending SQL statement

in Ada program, GUSQL, 8--4
in COBOL program, GUSQL, 8-5
in C program, GUSQL, 8-4
in FORTRAN program, GUSQL, 8--6
in interactive SQL, GUSQL, 1-13
in Pascal program, GUSQL, 8-8
in PL/I program, GUSQL, 8-9

Ending transactions
COMMIT statement, GUSQL, 2-46;

RDORM, 9-69; SQLRM, 6-60
distributed, DIST _TRANS, 2-6, 4-10
ROLLBACK statement, GUSQL,

2-46; RDORM, 9-359; SQLRM,
6-472

END_SEGMENTED_STRING statement
closing a segmented string, RDORM,

9-260
END_STREAM statement

closing an open stream, RDORM,
9-261

declared, RDMLRM, 6-36
undeclared, RDMLRM, 6-40

ENQLM parameter
values, MAINT, 16-138

ENTER command
in CDO, DESIGN, 7-17e

Entering data, GURRR, 6-1
Entering RdbALTER, MAINT, 7-3
Entity-relationship map, DESIGN, 2-3
Environment variable

in SQL/Services, SQLSRV, B-1
ERASE statement, RDMLRM, 6-42;

GURRR, 6-7
deleting records from a database,

RDORM, 9-263
Erasing data, GURRR, 6-7, 9-29
Error

database attachment, GUSQL, 11-38
database integrity, GUSQL, 11-27
deadlock, GUSQL, 11-25
debugging program, GUSQL, 9-6
in module processing, GUSQL, 7-12
logging, GUSQL, 7-27

SQL module processor error,
GUSQL, 7-27

SQL precompiler error, GUSQL,
8-17

message display, GUSQL, 11-19
Error code

RDB$LU_STATUS, GUSQL, 11-28
SQLCODE, GUSQL, 11-28

Error handling, GUSQL, 11-1 to
11--41; GURRR, 10-1 to 10-14

AT END clause, RDORM, 9-276
in BASIC programs, GURRR, 13--44
in COBOL programs, GURRR, 14-44
in FORTRAN programs, GURRR,

15--47

lndex-31

Error handling (Cont.)
in SQL, SQLRM, A-1, C-1
ON ERROR clause, RDMLRM, 6-90;

RDORM, 9-343; GURRR, 10-4
RdbNMS, RDORM, B-1
run-time, GURRR, 10-1

Error messages
in RdbNMS

explanation files, RDORM, B-1
Errors

returning, SQLSRV, 9-50
returning text of, SQLSRV, 9-52

Evaluating databases
performance, MAINT, 13-1

EVE editor
editing in interactive SQL, SQLRM,

6-328
Event tracking

using DECtrace, MAINT, 15-50
Exact match retrieval performance

hashed indexes, DESIGN, 4-11
optimizing, DESIGN, 4-11

Exception
See Bugcheck dwnp

Exception condition, GUSQL, 11-6
handling, GURRR, 10-12
handling fatal errors, GURRR, 10-13

EXEC SQL flag, GUSQL, 8-2;
SQLRM, 5-2

Executable image
creating, GUSQL, 9-1

Executable SQL statement
in SQL module procedure, GUSQL,

7-23
EXECUTE (@) statement, GUSQL,

1-22
Execute (@) statement

running RDO command files,
RDORM, 9-267

EXECUTE (@) statement, SQLRM,
6-335

running command files, SQLRM,
6-335

lndex-32

EXECUTE DYNAMIC statement,
SQLRM, 6-338

EXECUTE IMMEDIATE statement,
GUSQL, 12-5; SQLRM, 6-343

EXECUTE statement, GUSQL, 12-5
in dynamic SQL

using parameter, GUSQL, 12-42,
12-44

Execution server process
selecting class of, SQLSRV, 9-48

EXISTS operator, GUSQL, 3-37, 3-42;
SQLRM, 3-85

EXIT command
in RdbALTER, MAINT, 7-25

EXIT command (RdbALTER), RDORM,
7-28

Exiting
from RDO, RDORM, 9-270
interactive SQL, SQLRM, 6-348

EXIT statement, SQLRM, 6-348
exiting from RDO, RDORM, 9-270
in interactive SQL, GUSQL, 1-20

Exporting databases, DESIGN, 5-26;
SQLRM, 6-349

alternatives to, DESIGN, 5-26
archiving, MAINT, 10-69
containing no data, MAINT, 10-66
migration, MAINT, 10-70

EXPORT statement, DESIGN, 5-25;
MAINT, 8-59; SQLRM, 6-349

backing up a database, RDORM,
9-271

duplicating database metadata,
DESIGN, 5-23

NO DATA option, DESIGN, 5-23
using, DESIGN, 5-36e

Expression
arithmetic, RDORM, 3-21; SQLR.M,

3-75
colwnn select, GUSQL, 3-4
concatenated, RDORM, 3-25
conditional, RDMLRM, 3-1 to 3-42;

RDORM, 3-36
See Predicate

Expression (Cont.)
filter, SQLSRV, A-1
segmented string, RDORM, 3-34
select, GUSQL, 3-4; SQLRM, 3-98
statistical, RDORM, 3-11; SQLRM,

3-68
value, GUSQL, 3-5; RDORM, 3-2

comparing, GUSQL, 3-22
Extended dynamic cursor, GUSQL, 4-5,

4-19, 12-5, 12-16, 12-19
Extended Dynamic DECLARE CURSOR

statement, GUSQL, 4-5, 12-5,
12-16, 12-19, 12-20; SQLRM,
6-249 \

F

See also DECLARE CURSOR
statement

using parameter, GUSQL, 12-42,
12-47

Features of Rdb/VMS
overview, INTRO, 1-6 to 1-10

Fetching
a page in RdbALTER, MAINT, 7-5
a storage area in RdbALTER,

MAINT, 7--4
FETCH statement, GUSQL, 4-1, 4-6;

RDMLRM, 6--49; GURRR, 6-8;
SQLRM, 6-352

advancing in a stream, RDORM,
9-276

in dynamic SQL, GUSQL, 12-6
in SQL module, GUSQL, 7-18
using parameter, GUSQL, 12-46

Field
extracting data type and size,

RDMLRM, 6--4
Field attribute, RDORM, 5-1

global, RDORM, 5-1
local, RDORM, 5-2

Field definition
CHANGE FIELD statement,

RDORM, 9-27
CHANGE RELATION statement,

RDORM, 9-48
DEFINE FIELD statement, RDORM,

9-112
DELETE FIELD statement,

RDORM, 9-234
displaying, RDORM, 9-384

Field name
displaying, RDORM, 9-384

File activity statistics, MAINT, 15-27,
15-29

File 1/0 statistics
by file, MAINT, 15-36

File name
truncation of during RMU/BACKUP

command, RDORM, 6-33
File qualifiers

See Parameter qualifiers
Files

naming, SQLRM, 3-7
naming conventions in VAXcluster

configurations, MAINT, 18-8
reducing disk 1/0 contention,

MAINT, 16-114
specifications, SQLRM, 3-7

FILLM parameter
values, MAINT, 16-139

Filter expression functions
in SQUServices, SQLSRV, A-1

Filtering
of result tables in SQL/Services,

SQLSRV, 5-2
FINISH statement, RDMLRM, 6-54;

SQLRM, 6-357
closing a database, RDORM, 9-280
detaching from database, GUSQL,

2-16
FIRST clause, RDMLRM, 4-23

of record selection expression,
RDORM, 4-3

lndex-33

FIRST FROM expression, RDMLRM,
2-13; RDORM, 3-31

FIRST n clause, GURRR, 3-7
Fixed-point numeric data type,

SQLRM, 3-35
Flagging extension, GUSQL, 7-27, 8-12
Flags

the 0 flag, MAINT, 17-39
the R flag, MAINT, 17-51
the SE flags, MAINT, 17-27
the S flag, MAINT, 17-22
the S\ flags, MAINT, 17-38
using to examine access strategies,

MAINT, 17-20
FLOAT data type, SQLRM, 3-36
Floating-point numeric data type,

SQLRM, 3-36
Foreign key, MAINT, 16-16

and referential integrity, DESIGN,
3-38

Formatted binary file
statistics, MAINT, 15-45

Forming record streams, GURRR, 3-1
FOR statement, RDMLRM, 6-58

loops, RDORM, 9-282
nested, GURRR, 4-9
segmented strings, RDMLRM, 6-66;

RDORM, 9-287
transaction handle restriction,

RDORM, 9-283
FORTRAN

See also Embedded SQL; Program
data types, GURRR, 8-lOt
declaring host language variables,

GURRR, 9-2
declaring parameter in, GUSQL,

10-52
designing program in RDO, GURRR,

7-3
developing an RdbNMS program

using, GURRR, 15-1 to 15-58
DICTIONARY statement, GURRR,

12-10
precompiled program, GUSQL, 8-6

lndex-34

FORTRAN (Cont.)
supported variable declarations,

SQLRM, 5-27
using parameter in, GUSQL, 10-52

Fragmentation
erasing, MAINT, 16-94
modifying, MAINT, 16-94
record, MAINT, 16-110
storage records, MAINT, 11-51
storing, M1UNT, 16-93

Freeing data and indicator variables
sqlsrv _free_sqlda_data routine,

SQLSRV, 9-30
Free space, MAINT, "11-29

database page, MAINT, 11-55
locked, MAINT, 11-29, 11-31,

11-32e, 11-33f
SPAM pages, MAINT, 11-65
unlocked, MAINT, 11-29, 11-31,

11-32e, 11-33f
FROM clause, GUSQL, 3-4, 3-9
FROM dictionary clause

of SQL module language, GUSQL,
10-3, 10-10

Function, GUSQL, 3-53; SQLRM,
3-68

AVERAGE, RDMLRM, 5--4;
RDORM, 3-3, 3-11

AVG, GUSQL, 3-54; SQLRM, 3-70
COUNT, GUSQL, 3-54; RDMLRM,

5-8; RDORM, 3-3, 3-11;
SQLRM, 3-69

global aggregate, RDORM, 3-16
MAX, GUSQL, 3-54; RDMLRM,

5-12; RDORM, 3-3, 3-11;
SQLRM, 3-70

MIN, GUSQL, 3-54; RDMLRM,
5-17; RDORM, 3-3, 3-11;
SQLRM, 3-70

SUM, GUSQL, 3-54; SQLRM, 3-69
TOTAL, RDMLRM, 5-23; RDORM,

3-3, 3-11

G
GBLPAGES parameter

values, MAINT, 16-136
GBL program section attribute,

GUSQL, 9-3
GBLSECTIONS parameter

values, MAINT, 16-137
GENERAL language identifier

in SQL module, GUSQL, 7-11
Generating sample databases,

DESIGN, 1-10
GET statement, RDMLRM, 6-71

retrieving records from a stream,
RDORM, 9-291

Global aggregate function, RDORM,
3-16

Global attributes, RDORM, 5-1
GRANT statement, DESIGN, 6-11

ACL style, SQLRM, 6-359
ANSI/ISO style, SQLRM, 6-379

GROUP BY clause, GUSQL, 3-21, 3-55

H
Handle

database, RDORM, 3-4, 9-74, 9-99
scope of, RDORM, 9-329

request, RDORM, 3-5, 9-82, 9-282,
9-425, 9-458
setting scope, RDORM, 9-332

segmented string, RDORM, 9-74
transaction, RDORM, 3-5, 9-83,

9-283,9-426,9-458
using in structured programs,

GURRR, 9-37
Handling an error

ON ERROR, RDMLRM, 6-90
Rdb/VMS, RDORM, B-1

Hash bucket record
hashed index structure, MAINT,

11-44
Hashed index, DESIGN, 3-41;

RDORM, 9-122, 9-127; SQLRM,
6-82

Hashed index (Cont.)
See also Index; Sorted index
ALLOCATION clause, DESIGN,

4-12
and PAGE SIZE clause, DESIGN,

4-12
calculating size

potential problems, MAINT,
16-73

changing, MAINT, 10-41
data clustering strategies, MAINT,

2-15
data placement strategies, MAINT,

2-15
define before loading table, DESIGN,

4-13
defining and using

important parameters, MAINT,
16-56

designing, DESIGN, 4-11
duplicate node record, MAINT, 11-44
estimating

fixed and variable page overhead,
MAINT, 16-59

number of SPAM pages, MAINT,
16-70e

page size, MAINT, 16-58, 16-67e
data rows, MAINT, 16-64
hashed index structures,

MAINT, 16-60
size of duplicate node record,

MAINT, 16-60
size of hash bucket, MAINT,

16-60
size of system record, MAINT,

16-60
storage area allocation, MAINT,

16-57
storage area size, MAINT,

16-68e
estimating size of hashed index

structures, MAINT, 16-62e
hash bucket record, MAINT, 11-44
node records, MAINT, 11-41

lndex-35

Hashed index
node records (Cont.)

contents of, MAINT, 11-44
page format required for storing,

DESIGN, 4-7
shadow pages, MAINT, 16-74
statistics, MAINT, 15-20
storing, DESIGN, 4-14
structure, MAINT, 16-54, 16-55f
SYSTEM record, MAINT, 11-44
tuning considerations, MAINT,

16-56
HAVING clause, GUSQL, 3-55
Help command (RdbALTER), MAINT,

7-25
HELP command (RdbALTER), RDORM,

7-29
HELP statement, SQLRM, 6-389

assistance on RDO topics, RDORM,
9-297

Hexadecimal character string literal,
SQLRM, 3--45

High-level language
See Language

Host language program
developing, GUSQL, 6-1 to 6-9

from interactive statement
' GUSQL, 6-7

Host language variable, RDMLRM,
2-20; GURRR, 9-2

See also Parameter
compared with parameter marker,

GUSQL, 12-3, 12-11
declaring in RDML, GURRR, 16-2

Host parameter
See Parameter

Host structure
See Parameter

Host variable, RDORM, 3--4

lndex-36

1/0 operations
RDMS$DEBUG_FLAGS, MAINT,

17-51
1/0 resource problems

improving performance, TUNING,
2-14

resolving, TUNING, 2-2
1/0 statistics, MAINT, 15-13, 15-32
Ikey

high, MAINT, 17-51
indexes, MAINT, 17-51
low, MAINT, 17-51

Importing databases, SQLRM, 6-391
See also Restoring
changing device specifications,

MAINT, 10-68
containing no data, MAINT, 10-66
from Rdb/ELN databases, MAINT,

2-54
using TRACE, MAINT, 10-66

IMPORT statement, DESIGN, 5-25;
MAINT, 8-59; SQLRM, 6-391

duplicating database metadata,
DESIGN, 5-23

NO DATA option, DESIGN, 5-23
restoring a database, RDORM, 9-299
using, DESIGN, 5-36e

INCLUDE SQLCA statement, GUSQL,
11-7

See also SQLCA
INCLUDE statement, GUSQL, 10-8;

SQLRM, 6--407
Including data dictionary definitions

in RDBPRE programs, GURRR, 12--4
in RDML programs, GURRR, 16-3

Incomplete distributed transaction
' DIST_TRANS, 1-7, 2-17, 6-1 to

6-7
in corrupt database

resolving, DIST_TRANS, 6-5
resolving, DIST _TRANS, 6--4

Index, GUR.RR, 2-23
See also Hashed index; Sorted index
and performance, DESIGN, 3-43
ascending, RDORM, 9-122
B-tree, DESIGN, 3-40
changes affect storage maps, MAINT,

10-43
changing, MAINT, 10-38; RDORM,

9-36; SQLRM, 6-11 to 6-14
changing hashed, MAINT, 10-41
changing sorted, MAINT, 10-39
chronological key, MAINT, 16-42
compressing, SQLRM, 6-76
compression, DESIGN, 3-46;

MAINT, 16-35; RDORM, 9-119
creating, DESIGN, 3-40; SQLRM,

6-76 to 6-87
database keys, MAINT, 16-40
defining, RDORM, 9-119
deleting, DESIGN, 5-22; MAINT,

10-38, 10-44; RDORM, 9-237;
SQLRM, 6-305

descending, RDORM, 9-123
displaying, GUSQL, 1-9; RDORM,

9-387
distribution among storage areas,

DESIGN, 4-8
duplicate nodes, MAINT, 11-41,

16-38
ensuring unique values in, DESIGN,

3-42
for validation, MAINT, 16-84
hashed, DESIGN, 3-41; MAINT,

16-54; RDORM, 9-122, 9-127;
SQLRM, 6-82
ALLOCATION clause, DESIGN,

4-12
and page size, DESIGN, 4-12
designing, DESIGN, 4-11
page format required for storage,

DESIGN, 4-7
retrieval for exact matches,

DESIGN, 1-10
high Ikey, MAINT, 17-51

Index (Cont.)
loading the database, MAINT,

16-129
locking, MAINT, 16-38; GUSQL,

2-39
low Ikey, MAINT, 17-51
modifying, RDORM, 9-36; SQLRM,

6-11 to 6-14
multisegmented, MAINT, 16-54
multi-user access, MAINT, 16-49
naming, SQLRM, 3-29
node record, MAINT, 11-38

See also Index node record
partitioned, SQLRM, 6-83
reorganizing databases

definition sequence, MAINT,
10-58

retrieval, MAJNT, 16-34
setting structural characteristics,

MAINT, 16-50
sorted, DESIGN, 3-40; RDORM,

9-122; SQLRM, 6-79
order, MAINT, 17-47
retrieval with data values,

DESIGN, 1-10
retrieval with dbkey, DESIGN,

1-10
specifying storage area for, DESIGN,

4-3
statistics

insertion, MAINT, 15-17
removal, MAINT, 15-19
retrieval, MAINT, 15-15

storing hashed, DESIGN, 4-14
tradeoffs of using, DESIGN, 3-43
updating, MAINT, 16-40

Index node record, MAINT, 11-38,
11-39e

data region length, MAINT, 11-40
fragmentation, MAINT, 11-38
level type, MAINT, 11-40
storage record type ID, MAINT,

11-39

lndex-37

Index node record (Cont.)
uncompressed owner dbkey, MAINT,

11-40
Indicator array, SQLRM, 3-25

specifying in SQL module parameter
declarations, SQLRM, 4-10

Indicator parameter, GUSQL, 10-16 to
10-23; SQLRM, 3-21

IN operator, GUSQL, 3-31; SQLRM,
3-86

INSERT statement, GUSQL, 5-1 to
5-21; SQLRM, 6-414

in SQL module, GUSQL, 7-19
INTEGER data type, DESIGN, 3-19;

SQLRM, 3-35
INTEGRATE DATABASE statement

re-creating dictionary definitions,
RDORM, 9-325

INTEGRATE statement, DESIGN,
7-15, 7-20, 7-22; SQLRM, 6-424

Integrating dictionary and database
definitions, DESIGN, 7-15

Integrity
database, MAINT, 6-4, 16-80

Interactive control statements
summary, RDORM, 2-8

Interactive SQL
command procedure, GUSQL, 1-21
ending statement, GUSQL, 1-13
exiting, GUSQL, 1-4, 1-20
invoking with DCL symbol, GUSQL,

1-4
setting up environment, GUSQL,

1-22
starting transaction, GUSQL, 1-20
statements

continuing, GUSQL, 1-15
ending, GUSQL, 1-15

summary, INTRO, 1-20
summary of control statements,

SQLRM, 2-8
use in database design, DESIGN,

3-3
Interfaces to RdbNMS, INTRO, 1-1

lndex-38

Interfaces to Rdb/VMS (Cont.)
summary, INTRO, 1-20 to 1-30

Internal database structures, MAINT,
11-27

Internationalization, RDMLRM, 1-5,
1-6, 3-17, 3-23, 3-34

Rdb/VMS support for, GUSQL, 1-27;
GURRR, 1-14

relational operators, GURRR, 3-9
Interpreting database statistics,

MAINT, 15-10
INVOKE DATABASE statement,

GURRR, 2-1
connecting to a database, RDORM,

9-329
remote access, GURRR, 2-3
transaction handle restriction,

RDORM, 9-332, 9-333
Invoking

databases, GURRR, 2-1
RdbALTER utility, RDORM, 6-4
remote databases, GURRR, 2-3

IRPCOUNT parameter
values, MAINT, 16-134

IRPCOUNTV parameter
values, MAINT, 16-134

IS NULL operator, GUSQL, 3-40

J

Joining relations, GUSQL, 3-61;
GURRR, 4-1 to 4-11

See also Relational join
clustering rows by index values,

DESIGN, 4-16
improving performance with index,

DESIGN, 3-44
Journal

reviewing security audit records,
MAINT,4-28

security audit, MAINT, 4-3, 4-25;
RDORM, 6-127

Journaling, MAINT, 9-1, 9-35e, 16-79

Journaling (Cont.)

K

See also After-image journal (AIJ);
Recovery-unit journal

after-image journals, MAINT, 9-3,
16-79

ALTER SCHEMA statement
' MAINT, 9--4

backing up after-images to tape,
MAINT, 9-8

CHANGE DATABASE statement,
MAINT, 9--4

enabling, MAINT, 9-3
file placement, MAINT, 9-3, 9-6
file size, MAINT, 9--40
information not written to AIJ file

MAINT, 9--4
information written to AIJ file,

MAINT, 9--4
performance, MAINT, 9--4, 9-30
recovery-unit journals

displaying, RDORM, 6-68

'

RUJ file placement, MAINT, 9-30
setting allocation size, MAINT, 9-5
setting extent size, MAINT, 9-5
steps to creating, MAINT, 9--4
tradeoffs

multiple AIJ files versus
incremental backup, MAINT
9-8 '

truncating AIJ files, MAINT, 9--40

Key
foreign, MAINT, 16-16
primary, MAINT, 16-16
using, DESIGN, 2-3

Keywords
for RdbNMS statements, RDORM,

A-1
required, SQLRM, 3-2

L
Labels

checking on tapes, RDORM, 6-34,
6-66,6-120

Language
and syntax elements, SQLRM, 3-1

to 3-109
for date format

SHOW LANGUAGE statement
' RDORM, 9-391

identifier in SQL module processing,
GUSQL, 7-11

supported by RDBPRE, GURRR, 7-1
supported by RDML preprocessor,

GURRR, 7-1
supported by SQL precompiler,

INTRO, 1-25
LANGUAGE keyword

in SQL module, GUSQL, 7-9
Language-Sensitive Editor (LSE)

See LSE
LCL program section attribute

' GUSQL, 9-3
LIB$CONVERT_DATE_STRING,

RDMLRM, 1-5
LIB$DT_FORMAT, RDMLRM, 1-6
LIKE operator, GUSQL, 3-23, 3-29;

SQLRM, 3-89
LIMIT TO clause, GUSQL, 3-15, 4-10
Line index, MAINT, 11-30
Line terminators, SQLRM, 3-2
LINK command (DCL)

to create
executable image, GUSQL, 9-2e
shareable image, GUSQL, 9--4e

Linking
programs, GURRR, 11-12

RDML, GURRR, 11-12
RDML, RDBPRE, and SQL modules,

GURRR, 11-13
SQL programs, GUSQL, 9-1 to 9-6

lndex-39

List, DESIGN, 3-19; GUSQL, 4-5;
SQLRM, 3-37

accessing with cursor, SQLRM,
6-234

changing, GUSQL, 5-12
data type, INTRO, 1-5
inserting, GUSQL, 5-11
performance issues, DESIGN, 4-19
placing in own area, DESIGN, 4-8
segment length, SQLRM, 3-37
storage area, SQLRM, 6-134
storing, DESIGN, 4-19

List cursor, GUSQL, 4-5, 4-11, 5-11
See also Cursor
declaring, SQLSRV, 9-16

LIST OF BYTE VARYING data type,
SQLRM, 3-37

LIST OF VARBYTE data type
See LIST OF BYTE VARYING data

type
Literal, GUSQL, 3-23; RDORM, 3-6;

SQLRM, 3--42
character string, SQLRM, 3--43

compile-time translation of. '
RDORM,3-8; SQLRM,3-44

DATE literal, SQLRM, 3-46
hexadecimal character string,

SQLRM, 3-45
in SQL module, GUSQL, 7-24
keywords, SQLRM, 3-47
numeric, SQLRM, 3--42
quoted character string, SQLRM,

3-44
string

TODAY, RDORM, 3-8
TOMORROW, RDORM, 3-8
YESTERDAY, RDORM, 3-8

Loading
data, MAINT, 2--1

changing database definitions
MAINT, 2-45 '

troubleshooting, MAINT, 2-19
using DATATRIEVE, MAINT,

2-46

lndex-40

Loading
data (Cont.)

using RMU/LOAD command
MAINT, 2--37

databases, MAINT, 16-129;
GUSQL, 5-1

'

record order, MAINT, 16-129
to improve performance, MAINT,

16-129
troubleshooting, MAINT, 2--19
using exclusive write, MAINT,

16-130
using the PLACE statement,

MAINT, 16-130
from RMS files, MAINT, 2--21
relations, RDORM, 6-70

from security audit journal,
MAINT, 4-25; RDORM, 6-70

tables, RDORM, 6-70
define hashed index first,

DESIGN, 4-13
from security audit journal,

MAINT, 4-2, 4-25; RDORM,
6-70

Local attributes, RDORM, 5-2
Lock

See Locking
Lock conflict

error, GUSQL, 11-25
LOCKIDTBL parameter

values, MAINT, 16-135
LOCKIDTBL_MAX parameter

values, MAINT, 16-135
Locking, MAINT, 16-17 to 16-29·

GUSQL, 2--29 '
adjustable lock, MAINT, 16-35
adjustable lock granularity, MAINT

16-29 '
adjustable lock levels, MAINT,

16-29f
auto-locking, GURRR, 2-13
compatibility, MAINT, 16-24, 16-25t

Locking (Cont.)
conflict

concurrent transactions, MAINT,
16-27

error
with read-only transaction

mode, GUSQL, 2--31
conflict resolution, GURRR, 2-17
consistency, MAINT, 16-17
conversion

with SNAPSHOT file disabled,
MAINT, 16-99

database areas, MAINT, 16-17
definition of, GUSQL, 2--18
demotion, MAINT, 16-29
duplicate nodes, MAINT, 11--41,

16-38
handling conflicts in preprocessed

programs, GURRR, 10-11
indexes, MAINT, 16-38; GUSQL,

2--39
information, MAINT, 13-6
levels, MAINT, 16-25
lock types, GURRR, 2--12
multi-user access, MAINT, 16-25
promotion, MAINT, 16-29, 16--47
records, GURRR, 2--5, 6--4
resources, MAINT, 16--4 7
rows, GUSQL, 2--33
sequential retrieval, MAINT, 16-47
statistics

one lock type, MAINT, 15-39
one statistics field, MAINT,

15--44
summary, MAINT, 15-23

tables, GUSQL, 2-33
with distributed transaction,

DIST_TRANS, 4--4
LOG command (RdbALTER), MAINT,

7-24; RDORM, 7-30
Log file, GUSQL, 1-22

for compile-time error, GUSQL, 7-27
for precompiler error, GUSQL, 8-17

Logging
association, SQLSRV, 6-2
message protocol, SQLSRV, 6-4
program execution, SQLSRV, 6-1
routine, SQLSRV, 6-2

Logical database design, DESIGN, 1--4
requirements, DESIGN, 1--4
techniques, DESIGN, 2--1

Logical name, SQLRM, G-1
CDD$COMPATIBILITY, MAINT,

18-19
defining, MAINT, 8-3
defining RDM$BUGCHECK_DIR,

MAINT, 12-3
defining RDMS$BIND_SORT_

WORKFILES, MAINT, 12--7
defining systemwide concealed,

MAINT, 10-69
RDM$BIND_BUFFERS, MAINT,

16-145
RDM$BIND_LOCK_TIMEOUT_

INTERVAL, GUSQL, 2--30;
DIST_TRANS, 4--4

RDM$BIND_RUJ_EXTEND_
BLKCNT, MAJNT, 16-146

RDM$BUGCHECK_DIR, MAINT,
16-146

RDMS$BIND_LOCK_TIMEOUT_
INTERVAL, MAINT, 16-149

RDMS$BIND_SEGMENTED_
STRING_BUFFER, MAINT,
16-148

RDMS$BIND_SORT_ WORKFILES,
MAINT, 16-149

RDMS$BIND_ WORK_FILE, MAINT,
16-76, 16-147

RDMS$BIND_ WORK_ VM, MAINT,
16-76, 16-147

RDMS$DEBUG_FLAGS, MAINT,
16-145

RDMS$DEBUG_FLAGS_OUTPUT,
MAINT, 16-145

RDMS$DIAG_FLAGS, MAINT,
16-143

lndex-41

Logical name (Cont.)
RDMS$KEEP _PREP _FILES,

MAJNT, 16-144
RDMS$RUJ, MAINT, 16-144
recovery-unit journal, MAINT, 9-30
SQL$DATABASE, GUSQL, 1-4
SQL$DISABLE_CONTEXT,

DIST_TRANS, 4-3
SQL$KEEP _PREP _FILES, MAINT,

16-144
SQLINI, GUSQL, 1-22
SYS$COMMON, MAINT, 18-19
using concealed, MAINT, 16-115

Logical names (RdbNMS), MAINT,
16-141, 16-141t

Logical operators, RDORM, 3-4 7
LONG VAR.CHAR data type, SQLRM,

3-34
Loops

FOR statement, RDORM, 9-282
LRPCOUNT parameter

values, MAINT, 16-134
LRPCOUNTV parameter

values, MAINT, 16-134
LSE, GUSQL, 1-25

editing in interactive SQL, SQLRM,
6-328

using templates, GUSQL, 1-25

M
Main parameter, SQLRM, 3-21
Maintenance

activities requiring reload, MAINT,
1-8

automatic housekeeping activities,
MAINT, 1-6

offline DBA activities, MAINT, 1-7
online DBA activities, MAINT, 1-6

MAKE_CONSISTENT command
(RdbALTER), MAINT, 7-22;
RDORM, 7-31

Mapping relationships, DESIGN, 2-3
MATCHING expression, RDMLRM,

3-21

lndex-42

MATCHING expression (Cont.)
with multinational characters,

RDMLRM, 3-23
MAXBUF parameter

values, MAINT, 16-137
MAX function, GUSQL, 3-54;

RDMLRM, 5-12; RDORM, 3-3;
SQLRM, 3-70

MAX statistical function, RDORM,
3-15

Memory
specifying default allocation for,

DESIGN, 3-12
Memory resource problems

resolving, TUNING, 2-46
Message file

user-defined, GUSQL, 11-25
Message vector, GURRR, 10-5

in SQLCA, SQLRM, C-1
Metadata, RDORM, 8-1

creating using SQL, DESIGN, 7-20
defined, DESIGN, 7-1
deleting, DESIGN, 7-26
duplicating, DESIGN, 5-23
integrating with database, DESIGN,

7-15
modifying, DESIGN, 7-13
modifying using CDO, DESIGN,

7-14
modifying using SQL, DESIGN, 7-17

MF _PERSONNEL sample database,
DESIGN, 1-10

creating, INTRO, 1-17
definitions for, DESIGN, A-14
physical and logical structure,

MAINT, 14-3f
using VAXcluster nodes, MAINT,

18-20
Migration

to multifile database, MAINT, 8-59
MIN function, GUSQL, 3-54;

RDMLRM, 5-17; RDORM, 3-3;
SQLRM, 3-70

Missing value, DESIGN, 3-20;
RDMLRM, 2-29; RDORM, 3-26,
5-13; GURRR, 6-12

See also Null; Default value
MISSING value, RDMLRM, 3-27
MISSING_VALUE clause, RDORM,

5-13
Mixed page form.at, DESIGN, 4-5, 4-6
Model of design method, DESIGN, 1-3
Modifying

access control list, DESIGN, 6-11
column definitions, DESIGN, 5-7
columns, SQLRM, 6-35
constraints, DESIGN, 5-:-17;

RDORM, 9-48; SQLRM, 6-35
data, RDORM, 9-338; GURRR, 6-4;

SQLRM, 6-560
database characteristics, MAINT,

10-6 to 10-28
database files, DESIGN, 5-25
databases, DESIGN, 5-27t;

RDORM, 9-9; SQLRM, 6-15
using EXPORT and IMPORT

statements, MAINT, 10-52
definitions, RDORM, 9-9

with data dictionary, DESIGN,
7-13

dictionary definitions using CDO,
DESIGN, 7-14

domains, DESIGN, 5-6; SQLRM,
6-2 to 6-10

fields, RDORM, 9-27, 9-48
indexes, RDORM, 9-36; SQLRM,

6-11 to 6-14
lists, GUSQL, 5-12
memory usage for data access,

DESIGN, 5-25
relations, RDORM, 9-48
schemas, SQLRM, 6-15 to 6-28
segmented strings, GURRR, 9-28
SQL parameters, SQLRM, 6-482
storage maps, RDORM, 9-61;

SQLRM, 6-29 to 6-34
storage parameters, DESIGN, 5-25

Modifying (Cont.)
tables, DESIGN, 5-7; SQLRM, 6-35

to 6-51
triggers, DESIGN, 5-20

MODIFY statement, RDMLRM, 6-77;
GURRR,6-4

changing record values, RDORM,
9-338

MODULE keyword
in SQL module, GUSQL, 7-9

Module language, SQLRM, 2-11, 4-1
to 4-41

See also SQL module language
naming modules, SQLRM, 3-30
parameter names, SQLRM, 3-30
procedure names, SQLRM, 3-30
processor command line, SQLRM,

4-35
summary, INTRO, 1-25

Module processor
See SQL module processor

Monitor
See also Monitor process
closing log file, RDORM, 6-79
multiple processes

in VAXcluster, MAINT, 18-15
process

VAX.clusters, MAINT, 18-9
starting, RDORM, 6-80
stopping, RDORM, 6-82

Monitor bugs
monitor log file, MAINT, 12-3

Monitor log
SYS$SYSTEM:RDMMON.LOG file,

MAINT, 12-2
Monitor log file

RDMS_MONITOR process
information, MAINT, 12-3

reopening, MAINT, 3-6
Monitor process, MAINT, 3-2

changing base priority, MAINT, 3-4
changing priority, MAINT, 3-5
changing the log file, MAINT, 3-4
in VAXclusters, MAINT, 18-9

lndex-43

Monitor process (Cont.)
log file

creating new version, MAINT,
3-4

multiple processes in VAXclusters,
MAINT, 18-15

reading monitor log file, MAINT, 3-7
starting, MAINT, 3-3
stopping, MAINT, 3-3
stopping with active users, MAINT,

3-4
Monitor utility

MONITOR LOCK, MAINT, 16-135
MOVE command (RdbALTER), MAINT,

7-19; RDORM, 7-33
to move database files, MAINT, 7-19

Moving databases, MAINT, 7-16
using EXPORT and IMPORT

statements, DESIGN, 3-11
using RMU, DESIGN, 3-10

Moving storage areas, RDORM, 6-85
using RMU/MOVE_AREA, DESIGN,

5-26
Moving the root file, RDORM, 6-85
Multifile database, GURRR, 1-3

as opposed to single-file, DESIGN,
3-8

file types, DESIGN, 4-2
root file, DESIGN, 4-2
sample, DESIGN, A-14
specifying storage areas for,

DESIGN, 3-10
storage areas, DESIGN, 4-8
storage design, DESIGN, 4-1

Multifile databases
as opposed to single-file, TUNING,

2-3
Multifile sample database

definitions for, DESIGN, A-14
Multiline literal

in program, GUSQL, 8-2
in SQL module, GUSQL, 7-24

lndex-44

Multiline statement
in precompiled program, GUSQL,

8-2
Multinational characters

and the CONTAINING expression,
RDMLRM, 3-17

and the MATCHING expression,
RDMLRM, 3-23

and the STARTING WITH expression,
RDMLRM, 3-34

Multinational Character Set (MCS)
in database object names, RDMLRM,

1-5
Multiple databases

using, GURRR, 9--4
Multiple storage areas

for segmented strings, RDORM,
9-173

Multi-user access
locking, MAINT, 16-17

Multi-user conflict, GUSQL, 11-25

N

Naming
aliases, SQLRM, 3-15
authorization identifiers, SQLRM,

3-10
changing table names, DESIGN,

5-14; SQLRM, 3-12
columns, SQLRM, 3-13
constraints, SQLRM, 3-30
cursors, SQLRM, 3-29
data dictionary path names, SQLRM,

3-9
domains, DESIGN, 3-18; SQLRM,

3-18
files, SQLRM, 3-7
indexes, SQLRM, 3-29
modules in SQL, SQLRM, 3-30
schemas, SQLRM, 3-7
storage areas, SQLRM, 3-31
storage maps, SQLRM, 3-31
tables, SQLRM, 3-12

Naming (Cont.)
triggers, SQLRM, 3-19
views, SQLRM, 3-12

Nested FOR statement, GURRR, 4-9
Networks

accessing remote Rdb/VMS database
MAINT, 16-131 '

NOLOG command (RdbALTER),
MAINT, 7-24; RDORM, 7-35

Non-supported statements
See Obsolete statements

Normalization, DESIGN, 2-8;
GURRR, 1-4, 4-1

effects on performance, MAINT,
16-11

NOSHR program section attribute
GUSQL, 9-3 '

NOT BETWEEN operator, GUSQL
3-41 '

NOT CONTAINING operator, GUSQ'L
3-24 '

NOT EQUAL operator, GUSQL, 3-30
Not found condition

detecting, GUSQL, 11-16
NOT IN operator, GUSQL, 3-34
NOT LIKE operator, GUSQL, 3-23,

3-30, 3-41
NOT operator, GUSQL, 3-28, 3-45
NPAGEDYN parameter

values, MAINT, 16-135
NPAGEVIR parameter

values, MAINT, 16-136
Null, GUSQL, 3-40
NULL keyword, SQLRM, 3-47
NULL operator, SQLRM, 3-88
NUMERIC data type, SQLRM, 3-35

fixed-point, SQLRM, 3-35
floating-point, SQLRM, 3-36

Numeric literal, SQLRM, 3-42

0
Objects

auditing, MAINT, 4-13; RDORM,
6-129, 6-130

auditing for specific privileges,
MAINT, 4-13; RDORM 6-130

Object types '
auditing, MAINT, 4-13
auditing for specific privileges,

MAINT, 4-13
Obsolete SQL syntax, SQLRM H-1

diagnostic messages, SQLRM, 5-8
Obsolete statements, RDORM, F-1

BACKUP statement, RDORM, F-1
CLOSE statement, RDORM, F-3
CONVERT statement, RDORM, F-5
OPEN statement, RDORM, F-6
RECOVER statement, RDORM, F-7
REFRESH MONITOR LOG

statement, RDORM, F-9
RESTORE statement, RDORM, F-10
SHOW MONITOR statement,

RDORM, F-16
SHOW USERS statement, RDORM,

F-17
SPOOL statement, RDORM, F-18
STOP MONITOR statement

' RDORM, F-20
On-disk structure, DESIGN, 1-7
ON ERROR clause, RDMLRM, 6-90;

GURRR, 10-4
handling an error, RDORM 9-343

Online demonstration, INTRO 1-2
Online help, SQLRM, 6-389 '

accessing, INTRO, 1-15
Online program examples for RDBPRE,

RDML, and RDO, INTRO 1-30
Online program examples for SQL,

INTRO, 1-26
Opening a database, MAINT, 5-2;

RDORM,6-89; GURRR,2-1
READY statement, RDORM, 9-353

lndex-45

Opening cursors, GUSQL, 4-1;
SQLRM, 6-435

OPEN statement, GUSQL, 4-1;
SQLRM, 6-435

See also RMU/OPEN command
in dynamic SQL, GUSQL, 12-6
in SQL module, GUSQL, 7-18
obsolete, RDORM, F-6
using parameter, GUSQL, 12-46

Operating system parameters, MAINT,
13-10

Operator
logical, GURRR, 3-10

Optimization access strategy with
\debug

determining, MAINT, 17-38
Optimization access strategy with E

debug
determining, MAINT, 17-27

Optimizer
See Query optimizer

Optional keywords, SQLRM, 3-2
ORDER BY clause, GUSQL, 3-19
Ordering row, GUSQL, 3-55
OR operator, GUSQL, 3-28, 3-49
Outer references, SQLRM, 3-17

p

PAGE command (RdbALTER), RDORM,
7-36

Page format
mixed, DESIGN, 4-5; MAINT,

16-111
options, DESIGN, 4-5
uniform, DESIGN, 4-5; MAINT,

16-111
Page header, MAINT, 11-28
Page size

estimating, MAINT, 16-67 e
considerations, MAINT, 16-58

PAGE SIZE clause
importance for hashed index,

DESIGN, 4-12

lndex-46

Page tail, MAINT, 11-50
Parameter, SQLRM, 3-20

See also Variable
ALLOCATION, MAINT, 16-110
ASTLM, MAINT, 16-140
AUTOGEN, MAINT, 16-132
BIOLM, MAINT, 16-140
BUFFER SIZE, MAINT, 16-89
BYTLM, MAINT, 16-139
CHANNELCNT, MAINT, 16-133
CLISYMTBL, MAINT, 16-133
database, MAINT, 16-86
database storage area, MAINT,

16-106
database storage map, MAINT,

16-116
DEADLOCKWAIT, MAINT, 16-138
declaring

using FROM clause, GUSQL,
10-10

declaring in host language, GUSQL,
10-2

default values
for database, RDORM, D-lt
for storage areas, RDORM, E-lt

DIOLM, MAINT, 16-140
ENQLM, MAINT, 16-138
FILLM, MAINT, 16-139
for RMU commands, RDORM, 6-2
GBLPAGES, MAINT, 16-136
GBLSECTIONS, MAINT, 16-137
host structure, SQLRM, 3-25
in call to procedure in SQL module,

GUSQL, 7-12
indicator, SQLRM, 3-21
in dynamic SQL, GUSQL, 12-42,

12-46
in module procedure, SQLRM, 4-18,

4-20
in precompiled program, GUSQL,

10-11
in SQL module procedure, GUSQL,

7-14, 7-15
IRPCOUNT, MAINT, 16-134

Parameter (Cont.)
IRPCOUNTV, MAINT, 16-134
LOCKIDTBL, MAINT, 16-135
LOCKIDTBL_MAX, MAINT, 16-135
LRPCOUNT, MAINT, 16-134
LRPCOUNTV, MAINT, 16-134
main, GUSQL, 10-11; SQLRM,

3-21
declaring, GUSQL, 10-12
using, GUSQL, 10-13

marker, GUSQL, 12-3
in dynamic SQL, SQLSRV, 2-6

MAXBUF, MAINT, 16-137
maximum values

for database, RDORM, D-lt
for storage areas, RDORM, E-lt

minimum values
for database, RDORM, D-lt
for storage areas, RDORM, E-lt

naming, SQLRM, 3-30
NPAGEDYN, MAINT, 16-135
NPAGEVIR, MAINT, 16-136
NUMBER OF BUFFERS, MAINT,

16-91
PAGE SIZE, MAINT, 16-109
passing mechanism for, GUSQL,

7-12
PGFLQUOTA, MAINT, 16-77,

16-141
PRCLM, MAINT, 16-141
PROCSECTCNT, MAINT, 16-137
qualifiers

defined, RDORM, 6-3
global use of, RDORM, 6-3
local use of, RDORM, 6-3
positional semantics of, RDORM,

6-3
retrieving rows, GUSQL, 10-11
SQL precompiler treatment of,

GUSQL, 8-3
SRPCOUNT, MAINT, 16-134
SRPCOUNTV, MAINT, 16-134
SYSMWCNT, MAINT, 16-136

Parameter (Cont.)
tuning buffer size for transaction

type, MAINT, 16-92
user account, MAINT, 16-138
VIRTUALPAGECNT, MAINT,

16-137
WSDEFAULT, MAINT, 16-139
WSEXTENT, MAINT, 16-139
WSMAX, MAINT, 16-137
WSQUOTA, MAINT, 16-139

Partitioned index, SQLRM, 6-83
Partitioning

data, RDORM, 9-171
horizontal, DESIGN, 4-17

Pascal
See also Embedded SQL; Program
data types, GURRR, 8-llt
data types generated by RDML,

RDMLRM,A-2
declaring

function, RDMLRM, 6-4
designing program in RDO, GURRR,

7-3
developing an RdbNMS program in,

GURRR, 18-1 to 18-52
parameter in, GUSQL, 10-62
precompiled program, GUSQL, 8-8
supported variable declarations in

precompiled SQL, SQLRM, 5-30
using parameter in, GUSQL, 10-62

Passing a database value
data type conversion, GURRR, 8-4

Patching database corruption, MAINT,
7-1

Patching databases
See RMU/ALTER command

PATHNAME clause
use in database design, DESIGN,

3-4
Path names, SQLRM, 3-9

dictionary
displaying default directory,

RDORM, 9-383

lndex-47

Performance
adjusting storage area parameters,

MAINT, 16-106
adjusting storage map parameters

PLACEMENT VIA INDEX option,
MAINT, 16-117

after-image journaling strategy,
MAINT, 16-79

AIJ file extents, MAINT, 16-97
allocation for AIJ file, MAINT, 16-95
allocation for snapshot file, MAINT,

16-96
analyzing the database, MAINT,

14-1
changing operating system

parameters, MAINT, 13-10
CPU resource problems, TUNING,

2-48
data compression

considerations, MAINT, 16-128
enabling and disabling, MAINT,

16-118
degradation

caused by index, DESIGN, 3-43
caused by overusing resources,

TUNING, 1-10
degree of normalization, MAINT,

16-11
developing change database

procedure, MAINT, 13-10
disabling snapshot file, MAINT,

16-98
enhancing application, SQLSRV, 5-1
evaluating, MAINT, 13-4

utilities and tools, MAINT, 13-5
VAX Software Performance

Monitor (SPM), MAINT, 13-7
evaluating databases, MAINT, 13-1

operating system utilities,
MAINT, 13-7

sample procedure, MAINT, 13-11
VAXcluster environment,

MAINT, 13-9

lndex-48

Performance (Cont.)
evaluating problem areas, MAINT,

13-2t
evaluating space usage, MAINT,

13-5
evaluating test database, MAINT,

13-9
export/import procedure, MAINT,

13-10
fragmentation, MAINT, 16-110
1/0 resource problems, TUNING, 2--2

balancing 1/0 load, TUNING, 2--5
detecting 1/0 resource bottlenecks,

TUNING,2-2
reducing 1/0, TUNING, 2-14

improving, GUSQL, 1-23, 2-24;
TUNING, 1-10
access to data

data distribution, MAINT,
16-77

by application tuning, TUNING,
1-12

by creating index after loading
database, GUSQL, 5-2

by creating redundant table,
GUSQL, 5-9

by database tuning, TUNING,
1-11

by evaluating constraint at
commit time, GUSQL, 5-1

by system tuning, TUNING, 1-10
by understanding your data,

MAINT, 16-4
by using temporary table,

GUSQL, 5-10
more buffers reduce RUJ file 1/0

operations, MAINT, 16-92
SQL module processor, GUSQL,

7-30
SQL precompiler, GUSQL, 8-18
with hashed index, DESIGN,

3-41
with index, DESIGN, 3--44

Performance (Cont.)
interrelated database parameters,

MAINT, 16-9t
issues, MAINT, 16-1
journaling, MAINT, 9-30
locking information, MAINT, 13-6
making changes in order of difficulty,

MAINT, 13-13
memory resource problems,

TUNING, 2-46
modifying the test database, MAINT,

13-9
monitoring tools

Monitor utility, MAINT, 16-132;
TUNING, 1-6

RMU/SHOW/STATISTICS
command, MAINT, 16-86

Software Performance Monitor
(SPM), MAINT, 16-132;
TUNING, 1-6

VAX Performance Advisor (VPA),
MAINT, 16-132; TUNING,
1-6

normalization, MAINT, 16-11
number of recovery buffers, MAINT,

16-94
optimization

in retrieving data, DESIGN, 4-11
using exact match retrieval,

DESIGN, 4-11
overview, MAINT, 1-14
page format, MAINT, 16-111
performance-related database

changes, MAINT, 13-11
problems

memory management, MAINT,
13-2

process parameters, MAINT,
13-2

system resources, MAINT, 13-2
range retrieval, DESIGN, 4-14
reducing disk I/O contention,

MAINT, 16-114

Performance (Cont.)
reducing disk I/O operations,

MAINT, 16-76
selecting threshold values for SPAMs,

MAINT, 16-111
sizing SPAM intervals, MAINT,

16-113
snapshot file extents, MAINT, 16-97
statistics, MAINT, 13-6, 15-1
transaction type

recommended buffer settings,
MAINT, 16-92t

tuning working set parameters,
MAINT, 13-3

using deferred snapshots, MAINT,
16-103

using lists, DESIGN, 4-19
using RDM$BIND_BUFFERS

RdbNMS logical name, MAINT,
16-145

using RDM$BIND_RUJ_EXTEND_
BLKCNT Rdb/VMS logical name,
MAINT, 16-146

using RDM$BUGCHECK_DIR
RdbNMS logical name, MAINT,
16-146

using RDMS$BIND_LOCK_
TIMEOUT_INTERVAL Rdb/VMS
logical name, MAINT, 16-149

using RDMS$BIND_SEGMENTED_
STRING_BUFFER Rdb/VMS
logical name, MAINT, 16-148

using RDMS$BIND_SORT_
WORKFILES Rdb/VMS logical
name, MAINT, 16-149

using RDMS$BIND_WORK_FILE
RdbNMS logical name, MAINT,
16-147

using RDMS$BIND_ WORK_ VM
RdbNMS logical name, MAINT,
16-147

using RDMS$DEBUG_FLAGS
RdbNMS logical name, MAINT,
16-145

lndex-49

Performance (Cont.)
using RDMS$DEBUG_FLAGS_

OUTPUT RdbNMS logical name,
MAINT, 16-145

using RDMS$DIAG_FLAGS RdbNMS
logical name, MAINT, 16-143

using RDMS$KEEP _PREP _FILES
RdbNMS logical name, MAINT,
16-144

using RDMS$RUJ RdbNMS logical
name, MAINT, 16-144

using SORTWORK.n RdbNMS logical
name, MAINT, 16-149

using SQL$KEEP _PREP _FILES
RdbNMS logical name, MAINT,
16-144

using the query optimizer, MAINT,
17-1; GURRR, 2-28

VAX. Performance Advisor (VPA),
MAINT, 13-7

VAX. Software Performance Monitor
(SPM), MAINT, 13-7

with distributed transaction,
DIST_TRA:NS,3-2,3-7

PERSONNEL sample database,
DESIGN, 1-10

creating, INTRO, 1-15
definitions for, DESIGN, A-1

PGFLQUOTA parameter
values, MAINT, 16-141

Physical database design, DESIGN,
1-4, 1-6

creating, DESIGN, 4-1
implementing with minimal effort,

MAINT, 16-2t
making a prototype, DESIGN, 4-1
using RdbExpert, DESIGN, 1--6

Pieces tracking
defined, DESIGN, 7-1

PL/I
See also Embedded SQL; Program
declaring parameter in, GUSQL,

10-71
precompiled program, GUSQL, 8-9

Index-SO

PL/I (Cont.)
supported variable declarations in

precompiled SQL, SQLRM, 5-36
using parameter in, GUSQL, 10-71

PLACE statement
defined, RDORM, 9-346

Positional qualifiers
See Parameter qualifiers

PRCLM parameter
values, MAINT, 16-141

Precompiled SQL
and distributed transaction,

DIST_TRANS, 4-3, 4-15 to 4-22
embedding statements, SQLRM, 5-2
summary, INTRO, 1-25

Precompiler, SQLRM, 5-1 to 5-38
See also SQL precompiler
command line, SQLRM, 5-4
statements, SQLRM, 2-10
supported Ada variable declarations,

SQLRM, 5-11
supported COBOL variable

declarations, SQLRM, 5-24
supported C variable declarations,

SQLRM, 5-18
supported FORTRAN variable

declarations, SQLRM, 5-27
supported host language variable

declarations, SQLRM, 5-10
supported Pascal variable

declarations, SQLRM, 5-30
supported PL/I variable declarations,

SQLRM, 5-36
Predicate, GUSQL, 3-22; SQLRM,

3-77
See also Boolean operator; Conditional

Expression; Conditional operator;
Relational· operator

BASIC, SQLRM, 3-81
BETWEEN, SQLRM, 3-81
complex, SQLRM, 3-82
CONTAINING, SQLRM, 3-84
EXISTS, SQLRM, 3-85
IN, SQLRM, 3-86

Predicate (Cont.)
LIKE, SQLRM, 3-89
NULL, SQLRM, 3-88
quantified, SQLRM, 3-94
STARTING WITH, SQLRM, 3-96
UNIQUE, SQLRM, 3-97

Prepare phase
of distributed transaction, DIST_

TRANS, 1-6, 2-7
PREPARE statement, GUSQL, 12-5;

RDMLRM, 6-98; SQLRM, 6-439
using parameter, GUSQL, 12-42,

12-44, 12-46
Preprocessing

error handling, GURRR, 10-3
linking, GURRR, 11-12

RDML, GURRR, 11-12
preparing programs, GURRR, 11-1
RDML, GURRR, 11-6 to 11-11

Preprocessor, RDMLRM, 1-7
C, GURRR, 17-2
RDBPRE, GURRR, 12-1
RDBPRE BASIC, GURRR, 13-2
RDBPRE COBOL, GURRR, 14-2
RDBPRE FORTRAN, GURRR, 15-2
RDML, GURRR, 16-1, 18-2

Primary key, MAINT, 16-16
and referential integrity, DESIGN,

3-38
PRINT statement, SQLRM, 6-44 7

retrieving records from a stream,
RDORM, 9-349

Privilege
ACL-style, DESIGN, 6-2; SQLRM,

6-359,6-455
adding, SQLRM, 6-359
advantages of ACL-style protection,

DESIGN, 6-6
advantages of ANSI/ISO-style

protection, DESIGN, 6-7
ANSI/ISO style, DESIGN, 6-3;

SQLRM, 6-379,6-465
building ACLs, DESIGN, 6-12

Privilege (Cont.)
choosing between ANSI/ISO and ACL

style, DESIGN, 6-5
creating ACLs, DESIGN, 6-9
creating identification codes,

DESIGN, 6-10
declaring schema to specify,

DESIGN, 6-7
default access to schema, DESIGN,

6-3
defining, SQLRM, 6-359, 6-379
denying, DESIGN, 6-12
differences between ANSI/ISO and

ACL style, DESIGN, 6-5
displaying, RDORM, 9-392, 9-395
granting, SQLRM, 6-359, 6-379
needed to create ACLs, DESIGN, 6-8
overriding, DESIGN, 6-4, 6-35;

SQLRM, 6-370
required for database operations,

DESIGN, 6-26
required for distributed transaction,

DIST_TRANS, 3-6
revoking, SQLRM, 6-455
role-oriented, SQLRM, 6-370
specifying, DESIGN, 6-25
specifying in ACEs, DESIGN, 6-25
timing of changes taking effect,

DESIGN, 6-12
Procedure

in SQL module, GUSQL, 7-13, 7-14,
7-21, 7-23

naming, SQLRM, 3-30
PROCEDURE keyword, GUSQL, 7-13
Processing

Callable RDO programs, GURRR,
11-12

SQL module, GUSQL, 7-25
Process pooling

components of, SQLSRV, 7-3f
component summary, SQLSRV, 7-4t
SQUServices, SQLSRV, 7-1 to 7-17

PROCSECTCNT parameter
values, MAINT, 16-137

lndex-51

Product kits, INTRO, 1-33
Program

building SQL/Services applications,
SQLSRV, 2-13 to 2-15
on Macintosh, SQLSRV, 2-15
on MS-DOS, SQLSRV, 2-13
on OS/2, SQLSRV, 2-14
on ULTRIX, SQLSRV, 2-14
on ULTRIX for RISC, SQLSRV,

2-14
on VMS, SQLSRV, 2-13

creating executable image, GUSQL,
9-1 to 9-7

debugging, GUSQL, 6-5, 9-6;
GURRR, 11-24

designing
BASIC, GURRR, 7-3
C, GURRR, 7-3
Callable RDO, GURRR, 7-3
COBOL, GURRR, 7-3
FORTRAN, GURRR, 7-3
Pascal, GURRR, 7-3

developing, GUSQL, 6-1 to 6-9
from interactive statement,

GUSQL, 6-7
with RDBPRE, GURRR, 12-1 to

12-11
embedding DML statements,

GURRR, 9-2
guideline for developing, GUSQL,

6-2
interface

Callable RDO, GURRR, 19-2
C preprocessor, GURRR, 17-2
RDBPRE BASIC preprocessor,

GURRR, 13-2
RDBPRE COBOL preprocessor,

GURRR, 14-2
RDBPRE FORTRAN preprocessor,

GURRR, 15-2
RDBPRE preprocessor, GURRR,

12-1
RDML preprocessor, GURRR,

16-1, lS-2

lndex-52

Program (Cont.)
languages supported by SQL

precompiler, INTRO, 1-25
linking, GURRR, 11-12
main parameter in, GUSQL, 10-11
modifying records, GURRR, 9-27
parameter declaration

for Ada, GUSQL, 10-26
for C, GUSQL, 10-33
for COBOL, GUSQL, 10-43
for FORTRAN, GUSQL, 10-52
for Pascal, GUSQL, 10-62
for PL/I, GUSQL, 10-71
SQL module, GUSQL, 10-79

precompiled, GUSQL, S-2
processing, GUSQL, S-10
processing SQL module used by,

GUSQL, 7-25
prototyping queries with interactive

interface, GURRR, 7-3
running, GUSQL, S-10, 9-6
running SQUServices sample

application, SQLSRV, 4-4
run-time error, GUSQL, 11-2
SQL/Services sample application,

SQLSRV, 4-1
on Macintosh, SQLSRV, 4-3
on MS-DOS, SQLSRV, 4-2
on OS/2, SQLSRV, 4-3
on ULTRIX, SQLSRV, 4-3
on ULTRIX for RISC, SQLSRV,

4-3
on VMS, SQLSRV, 4-2

SQLSRV$DYNAMIC
source code listings, SQLSRV,

C-1
structure, GURRR, 9-1
structured programming in

preprocessed programs, GURRR,
9-35

testing with command procedure,
GUSQL, 6-5

using Callable RDO, GURRR, 9-46
using cursor, GUSQL, 4-13

Program (Cont.)
using Rdb/VMS, GURRR, 1-11
using transactions, GURRR, 9-33
using VMS Debugger, GUSQL, 9-6

Protection
See also Access rights; Privilege

· changing using CHANGE
PROTECTION statement,
RDORM, 9-43

column level, DESIGN, 6-13, 6-24
default, DESIGN, 6-3; SQLRM,

6-359
defining

for columns, DESIGN, 6-24
for tables, DESIGN, 6-22
for views, DESIGN, 6-22
using CREATE SCHEMA

statement, DESIGN, 3-8
using DEFINE PROTECTION

statement, RDORM, 9-132
defining using CHANGE

PROTECTION statement,
RDORM, 9-43

deleting
using DELETE PROTECTION

statement, RDORM, 9-241
for shareable Rdb/VMS definitions in

CDD/Plus, DESIGN, 6-5
overriding, DESIGN, 6-4, 6-35
schema level, DESIGN, 6-13
table level, DESIGN, 6-13, 6-22
view level, DESIGN, 6-22

PROTECTION audit events
enabling or disabling, MAINT, 4-9

Protection definition
CHANGE PROTECTION statement,

RDORM, 9-43
Prototype

physical database design, DESIGN,
4-1

Prototype transaction, DESIGN, 2-12
Prototyping queries, GURRR, 7-3

Proxy-like access
SQUServices, SQLSRV, 8-3

PSECT names, RDMLRM, 1-5

Q

QUADWORD data type, SQLRM, 3-35
Qualifiers for RMU commands,

RDORM,6-2
Quantified predicate, SQLRM, 3-94
Query

multisegmented key
avoid OR condition, MAINT,

17-3
Query header, SQLRM, 3-51
Query optimizer, MAINT, 17-1, 17-1

to 17--5; GURRR, 2-28
access strategies, MAINT, 17-2
analyzing the RDMS$DEBUG

FLAGS display, MAINT, l7-46
assisting it, MAINT, 17-4
determining

access strategy with SE flags,
MAINT, 17-27

access strategy with S\ flags,
MAINT, 17-38

optimization cost with 0 flag,
MAINT, 17-39

strategy with S flag, MAINT,
17-22

dynamic leaf-level optimization,
MAINT, 17-5, 17-9
background-only leaf, MAINT,

17-12
examples, MAINT, 17-10
fast-first leaf, MAINT, 17-14
four-leaf types, MAINT, 17-11
index-only leaf, MAINT, 17-19
sorted-leaf, MAINT, 17-16

dynamic OR optimization, MAINT,
17--5, 17-6
new notation, MAINT, 17-7

dynamic versus traditional OR
optimization, MAINT, 17-5

lndex-53

Query optimizer (Cont.)
join predicate, MAINT, 17-4
optimization cost

determining, MAINT, 17-39
strategy, MAINT, 16-32
tasks, MAINT, 17-4
traditional OR optimization, MAINT,

17-6
using both S and 0 flags, MAINT,

17-42
using RDMS$DEBUG_FLAGS,

MAINT, 17-20
using RDMS$DEBUG_FLAGS_

OUTPUT, MAINT, 17-20
QUERY_HEADER FOR DTR clause,

RDORM, 5-17
QUERY_NAME FOR DTR clause,

RDORM, 5-17
QUIT statement, SQLRM, 6-449
Quitting interactive SQL, SQLRM,

6-449
Quoted character string Ii teral,

SQLRM, 3-44

R
RADIX command (RdbALTER),

MAINT, 7-13; RDORM, 7-37
RADIX in RdbALTER, MAINT, 7-23
Range retrieval, GUSQL, 3-35

optimizing performance, DESIGN,
4-14

RBR file, DESIGN, 5-23
RDA (storage area) file, DESIGN, 4-2
RDB$CONSTRAINTS system relation,

RDORM, 8-4
RDB$CONSTRAINT_RELATIONS

system relation, RDORM, 8-5
RDB$DATABASE system relation,

RDORM, 8-6
RDB$DBHANDLE authorization

identifier, GUSQL, 7-12
RDB$DB_KEY expression, RDMLRM,

2-26; RDORM, 3-32

lndex-54

RDB$FIELDS system relation,
RDORM,8-11

RDB$FIELD_VERSIONS system
relation, RDORM, 8-9

RDB$INDEX_SEGMENTS system
relation, RDORM, 8-15

RDB$INDICES system relations,
RDORM, 8-16

RDB$INTERPRET, GURRR, 7-2
RDB$LU_STATUS field, GUSQL, 11-11
RDB$MESSAGE_ VECTOR, GUSQL,

11-10; GURRR, 10-5
RDB$MISSING expression, RDMLRM,

2-29
RDB$RELATIONS system relation,

RDORM, 8-20
RDB$RELATION_FIELDS system

relation, RDORM, 8-17
RDB$SYSTEM

read-only, MAINT, 16-31
storage area, DESIGN, 4-3

RDB$VIEW_RELATIONS system
relation, RDORM, 8-23

RDB (database root) file, DESIGN, 4-2
RdbALTER, MAINT, 7-1

altering data fields, RDORM, 7-8
AREA command, MAINT, 7-4
ATTACH command, MAINT, 7-3
attaching to a database, MAINT,

7-3; RDORM, 7-5
changing area and snapshot file

specifications, RDORM, 7-14
changing page contents, MAINT,

7-13
COMMIT command, MAINT, 7-16,

7-25
committing changes, RDORM, 7-7
completing transactions, MAINT,

7-24
DEPOSIT command, MAINT, 7-13,

7-17
DETACH command, MAINT, 7-3,

7-25

RdbALTER (Cont.)
detaching from a database, MAJNT,

7-3; RDORM, 7-17
DISPLAY command, MAJNT, 7-11

*, MAJNT, 7-11
AREA_NUMBER, MAINT, 7-11
CHECKSUM, MAINT, 7-11
COUNT, MAINT, 7-11
DATA, MAJNT, 7-12
FREE_SPACE, MAJNT, 7-11
HEADER, MAJNT, 7-11
INDEX, MAINT, 7-12
LINE, MAJNT, 7-12
LOCKED_FREE_SPACE,

MAJNT, 7-11
PAGE_NUMBER, MAINT, 7-11
SPACE, MAINT, 7-12
TIME_STAMP, MAINT, 7-11

displaying
area or snapshot file

specifications, RDORM, 7-25
data fields, RDORM, 7-18
page contents, MAINT, 7-11
root file specifications, RDORM,

7-27
ending the session, RDORM, 7-28
entering, MAJNT, 7-3
EXIT command, MAINT, 7-25
exiting, MAINT, 7-25
fetching a page, MAJNT, 7-5;

RDORM, 7-36
fetching a storage area, MAJNT, 7-4
getting information on, RDORM,

7-29
HELP command, MAJNT, 7-25
information needed before using,

MAJNT, 7-2
invoking, RDORM, 6-4
keeping an audit trail, MAINT, 7-24;

RDORM, 7-30
LOG command, MAJNT, 7-2, 7-24
logging a session, MAINT, 7-2, 7-24
MAKE_CONSISTENT command,

MAINT, 7-22

RdbALTER (Cont.)
MOVE command, MAINT, 7-19
moving data, MAJNT, 7-19;

RDORM, 7-33
moving database files, MAJNT, 7-16,

7-17
NOLOG command, MAJNT, 7-24
PAGE command, MAINT, 7-5
RADIX command, MAINT, 7-13,

7-23
resetting an inconsistent flag,

RDORM, 7-31
resetting the corruption flag,

RDORM, 7-39
ROLLBACK command, MAINT, 7-25
setting default radix, RDORM, 7-37
specifying an area, MAINT, 7-4;

RDORM, 7-3
specifying a page, MAINT, 7-4;

RDORM, 7-3
stopping a session log, MAINT, 7-24;

RDORM, 7-35
UNCORRUPT command, MAINT,

7-3
undoing changes, MAINT, 7-2;

RDORM, 7-38
using with RMUNERIFY, MAJNT,

7-2
VERIFY command, MAINT, 7-23
verifying alterations, MAINT, 7-23
verifying a page, RDORM, 7-41
VERIFY versus RMUNERIFY,

MAJNT, 7-24
when to use, MAINT, 7-1

RdbExpert
using for database design, DESIGN,

1~
RDBPRE command line qualifier

/DISTRIBUTED_ TRANSACTION,
DIST_TRANS, 5-4

RDBPRE preprocessor
creating a shareable image, GURRR,

11-14
creating output files, GURRR, 11-4

lndex-55

RDBPRE preprocessor (Cont.)
developing applications, GURRR,

12-1 to 12-11
DML differences from RDO, GURRR,

12-2
error message output file, GURRR,

11~
invoking, GURRR, 11-2
supported languages, GURRR, 7-1
using, GURRR, 11-1
using with distributed transaction,

DIST_TRANS, 5-1 to 5-18
existing application, DIST_

TRANS, 5-4
new application, DIST_TRANS,

5-7 to 5-18
using with host language compile

qualifiers, GURRR, 11-3
RDBVMS$COLLATIONS system

relation, RDORM, 8-24
RDBVMS$INTERRELATIONS system

relation, RDORM, 8-25
RDBVMS$PRIVILEGES system

relation, RDORM, 8-26
RDBVMS$RELATION_CONSTRAINTS

system relation, RDORM, 8-27
RDBVMS$RELATION_CONSTRAINT_

FLDS system relation, RDORM,
8-31

RDBVMS$STORAGE_MAPS system
relation, RDORM, 8-31

RDBVMS$STORAGE_MAP _AREAS
system relation, RDORM, 8-:-32

RDBVMS$TRIGGERS system relation,
RDORM, 8-33

Rdb/VMS error messages
explanation files, RDORM, B-1

Rdb/VMS Management Utility (RMU)
See RMU, RDORM, 6-1

RDM$BIND_BUFFERS Rdb/VMS
logical name, MAINT, 16-145

RDM$BIND_LOCK_TIMEOUT_
INTERVAL logical name, GUSQL,
2-30; DIST_TRANS, 4-4

lndex-56

RDM$BIND_RUJ_EXTEND_BLKCNT
Rdb/VMS logical name, MAINT,
16-146

RDM$BUGCHECK_DIR logical name,
MAINT, 16-146

RDM$BUGCHECK_DIR Rdb/VMS
logical name

defining, MAINT, 12-3
RDML

and Rdb/ELN, RDMLRM, 1-2
and Rdb/VMS, RDMLRM, 1-2
conditional expression, RDMLRM,

1-2
element

clause and statement, RDMLRM,
1-2

keyword list, RDMLRM, 1-3
language, RDMLRM, 1-1
language element, RDMLRM, 1-1
linking programs, GURRR, 11-12
naming convention, RDMLRM, 1-3
program development in, GURRR,

16-1
record selection expression,

RDMLRM, 1-2
statements

in C programs, GURRR, 17-1
in Pascal programs, GURRR,

18-1
statistical function, RDMLRM, 1-2
syntax differences from RDO,

GURRR, 16-2
using the preprocessor, GURRR,

11-6 to 11-11
using with distributed transaction,

DIST_TRANS, 5-2
value expression, RDMLRM, 1-1

RDML-generated data types
for VAX C, RDMLRM, A-1
for VAXELN Pascal, RDMLRM, A-3
for VAX Pascal, RDMLRM, A-2

RDML preprocessor
supported languages, GURRR, 7-1

RDMS$BIND_LOCK_TIMEOUT_
INTERVAL RdbNMS logical name,
MAINT, 16-149

RDMS$BIND_SEGMENTED_STRING_
BUFFER Rdb/VMS logical name,
MAINT, 16-148

RDMS$BIND_SORT_ WORKFILES
RdbNMS logical name, MAINT,
16-149

RDMS$BIND_ WORK_FILE Rdb/VMS
logical name, MAINT, 16-147

RDMS$BIND_WORK_VM RdbNMS
logical name, MAINT, 16-147

RDMS$DEBUG_FLAGS, MAINT,
17-20 to 17-54

analyzing display, MAINT, 17-46
conjunct, MAINT, 17-4 7
displaying access strategies, MAINT,

17-20
index segments, MAINT, 17-51
sort statistics, MAINT, 17-51
the 0 flag, MAINT, 17-39
the R flag, MAINT, 17-51
the SE flags, MAINT, 17-27
the S flag, MAINT, 17-22
the S\ flags, MAINT, 17-38

RDMS$DEBUG_FLAGS logical name,
MAINT; 16-145

RDMS$DEBUG_FLAGS_OUTPUT
saving output access strategies,

MAINT, 17-20
RDMS$DEBUG_FLAGS_OUTPUT

Rdb/VMS logical name, MAINT,
16-145

RDMS$DIAG_FLAGS RdbNMS logical
name, MAINT, 16-143

RDMS$KEEP _PREP _FILES RdbNMS
logical name, MAINT, 16-144

RDMS$RUJ RdbNMS logical name,
MAINT, 16-144

RDMS error messages
explanation files, RDORM, B-1

RDO
CHANGE DATABASE

ADJUSTABLE LOCK
GRANULARITY IS, MAINT,
10-15

ADJUSTABLE LOCK
GRANULARITY IS
DISABLED, MAINT, 10-15

DICTIONARY IS REQUIRED,
MAINT, 10-26

EXTENT IS extent-pages PAGES,
MAINT, 10-11

JOURNAL FILE IS, MAINT,
10-18

NOJOURNAL, MAINT, 10-18
NUMBER OF BUFFERS IS,

MAINT, 2-8, 10-16
NUMBER OF RECOVERY

BUFFERS IS, MAINT, 10-17
NUMBER OF USERS IS,

MAINT, 10-13
NUMBER OF VAXCLUSTER

NODES IS, MAINT, 10-14
OPEN IS, MAINT, 10-11
SNAPSHOT IS ENABLED

DEFERRED, MAINT, 10-24
SNAPSHOT IS ENABLED

IMMEDIATE, MAINT, 10-24
/SNAPSHOTS, MAINT, 10-18

CHANGE DATABASE statement
changing database characteristics,

MAINT, 10-7
CHANGE INDEX statement,

MAINT, 16-50
database maintenance statements,

RDORM, 2-7
data definition statements, RDORM,

2-2
data manipulation statements,

RDORM, 2-5
DEFINE DATABASE statement

using, MAINT, 11-65

lndex-57

RDO (Cont.)
DEFINE STORAGE MAP statement

PLACEMENT VIA INDEX clause,
MAINT, 10-62

·distributing database statements,
RDORM, 2-9

DML differences from RDBPRE,
GURRR, 12-2

error messages
explanation files, RDORM, B-1

EXPORT statement
when to use, MAINT, 8-59

HELP statement, RDORM, 9-297
IMPORT statement

when to use, MAINT, 8-59
interactive

using with distributed
transaction, DIST _TRANS,
5-1

interactive control statements,
RDORM,2-8

invoking, RDORM, 1-1; GURRR,
1-5

language elements, RDORM, 1-3
obsolete statements

See Obsolete statements
PLACE statement

use with defined hashed indexes,
MAINT, 16-130

prompts, RDORM, 1-3
reference descriptions, RDORM, 1-1
START_TRANSACTION statement

reserving options, MAINT, 16-18
using, GURRR, 1-4
using Help in, RDORM, 1-2

Read-only storage areas, MAINT, 16-30
Read-only transaction, GUSQL, 2-22,

2-24; GURRR, 2-5, 2-7
with SNAPSHOT file deferred,

MAINT, 16-103
with SNAPSHOT file disabled,

MAINT, 16-99

lndex-58

Read/write transaction, GUSQL, 2-23,
2-26; GURRR, 2-5, 2-7, 2-8 ~

READY statement, RDMLRM, 6-102 ,
opening a database, RDORM, 9-353

REAL data type, RDORM, 5-6;
SQLRM, 3-36

Record
See also Record value
active and inactive, MAINT, 16-78
data

availability of during trigger
updates, RDORM, 9-211

deleting, GURRR, 6-7
fragmentation, MAINT, 11-51,

16-93, 16-110
index node, MAINT, 11-38
locking, GURRR, 2-5
order for loading the database,

MAINT, 16-129
retrieving from a stream, RDORM,

9-291
segmented string, MAINT, 11-36
storage

performance and space usage,
MAINT, 13-5

storing, GURRR, 6-1
user-stored, MAINT, 11-35

Record selection expression, GURRR,
1-7, 3-2

conditional expressions, GURRR, 3-7
CROSS clause, RDORM, 4-12
defined, RDORM, 4-1
FIRST clause, RDORM, 4-3
REDUCED TO clause, RDORM, 4-11
relation clause, RDORM, 4-6
restriction for START_STREAM

statement, RDORM, 9-422
SORTED BY clause, RDORM, 4-9;

GURRR, 3-4
syntax, RDORM, 4-2
WITH clause, RDORM, 4-8

Record selection expression (RSE),
RDMLRM, 1-2

Record stream, RDORM, 4-1

Record stream (Cont.)
advancing

FETCH statement, RDORM,
9-276

closing
END_STREAM statement,

RDORM, 9-261
DECLARE_STREAM statement,

RDORM, 9-82
displaying name of current stream,

RDORM, 9-406
forming, GURRR, 3-1, 9-5
FOR statement, RDORM, 9-282
retrieving records, RDORM, 9-291
START_STREAM statement,

RDORM, 9-422, 9-425
updating data, GURRR, 6-8

Record value
modifying

MODIFY statement, RDORM,
9-338

retrieving
GET statement, RDORM, 9-291
PRINT statement, RDORM,

9-349
Recovering a database, MAINT, 9-1;

RDORM, 6-91
access after failure in VAXclusters,

MAINT, 18-19
in VAXclusters, MAINT, 18-29
placement of RUJ files, MAINT, 9-30
proper order to apply, MAINT, 9-19
proper timing for changing AIJ file,

MAINT, 9-20
steps for, MAINT, 9-18
surviving nodes, MAINT, 18-30
using after-image journals, MAINT,

9-18, 16-79
using recovery-unit journals, MAINT,

9-29
RECOVER statement

See RMU/RECOVER command
obsolete, RDORM, F-7

Recovery-unit journal, MAINT, 9-29

Recovery-unit journal (Cont.)
directories, MAINT, 9-30
displaying contents, MAINT, 9-32
displaying output, RDORM, 6-68
interpreting file headings, MAINT;

9-32
logical names, MAINT, 9-30

Re-creating dictionary definitions
with INTEGRATE DATABASE,

RDORM, 9-325
REDUCED TO clause, RDMLRM, 4-30

of record selection expression,
RDORM, 4-11

using with the SORTED BY clause,
RDMLRM, 4-30

Redundancy
eliminating, DESIGN, 2-8
multi~user access, MAINT, 16-14
problems, MAINT, 16-15

Referential integrity, DESIGN, 3-37;
GURRR, 6-16

changing, DESIGN, 5-20
Reflexive join, RDMLRM, 4-16;

GURRR, 4-7
REFRESH MONITOR LOG statement

See RMU/MONITOR REOPEN_LOG
command

obsolete, RDORM, F-9
REINITIALIZE TRANSFER statement,

SQLRM, 6-450
distributing databases, RDORM,

9-357
Relation

See also Table
definitions

DEFINE RELATION statement,
RDORM, 9-149

DELETE RELATION statement,
RDORM, 9-244

SHOW RELATIONS statement,
RDORM, 9-398

for storing security audit journal
records, MAJNT, 4-25; RDORM,
6-71

lndex-59

Relation (Cont.)
inserting records into, RDORM,

9-457
loading, RDORM, 6-70
modifying, RDORM, 9-48
system, RDORM, 8-1

Relational database design
goals of, DESIGN, 1-1
theory of, DESIGN, 1-1
tradeoffs, DESIGN, 1-1

Relational Database Operator (RDO)
See RDO

Relational join, GUSQL, 3-61;
GURRR, 4-1

See also Joining relations
more than two relations, GURRR,

4-6, 5-4
reflexive joins, GURRR, 4-7
two relations, GURRR, 4-2

Relational model, GURRR, 1-2;
SQLRM, 1-2

Relational operator, RDMLRM, 3-31;
RDORM, 3-39; GURRR, 3-8

See also Conditional operator
internationalization support,

GURRR, 3-9
Relation clause, RDMLRM, 4-36
Relation definitions

specifying default protection for,
RDORM, 9-144

Relation-specific constraint
See Table-specific constraint, INTRO,

1-4
RELEASE statement, GUSQL, 12-6;

SQLRM, 6-452
Remote access, MAINT, 16-131

and distributed transaction,
DIST_TRANS, 3-6

INVOKE DATABASE statement,
GURRR, 2-3

Request handle, RDMLRM, 5-4;
RDORM, 3-5, 9-82, 9-282, 9-425,
9-458; GURRR, 9-41

lndex~O

Request handle (Cont.)
restriction for FOR statement,

RDORM, 9-283
restriction for INVOKE DATABASE

statement, RDORM, 9-332,
9-333

restriction for START_STREAM
statement, RDORM, 9-422

setting scope, RDORM, 9-332
REQUEST_HANDLE clause,

RDMLRM, 6-106
Requirements analysis in logical design,

DESIGN, 2-1
Reserved words

for RdbNMS statements, RDORM,
A-1

RESERVING clause, GUSQL, 2-19
Reserving option

access conflicts, MAINT, 16-18
transactions, MAINT, 16-18

Reserving options, GURRR, 2-11
Resolving

unresolved transactions, RDORM,
6-100, 6-103

Resolving distributed transaction,
DIST_TRANS, 6-1 to 6-7

Resource manager, DIST _TRANS, 2-2
in distributed transaction, DIST_

TRANS, 1-4, 2-3
Resource problems

CPU, TUNING, 2-48
1/0, TUNING, 2-2, 2-14
memory, TUNING, 2-46

Restore operation
by area

purpose of, RDORM, 6-110
RESTORE statement

obsolete, RDORM, F-10
Restoring

databases, MAINT, 8-1, 8-38, 8-44e
by area, RDORM, 6-112
by area, purpose of, RDORM,

6-110
from tape, MAINT, 8--48

Restoring
databases (Cont.)

IMPORT statement, DESIGN,
5-25, 5-36e; RDORM, 9-299

involved in distributed
transactions, DIST _TRANS,
6--6

modifying database characteristics,
MAINT, 8-52

RMU/RESTORE command,
RDORM, 6-107

to change schema and storage
area characteristics,
DESIGN, 5-26

modifying after-image journaling,
MAINT, 8-54

modifying page size, MAINT, 8-56
moving files, MAINT, 8-57
read-only storage areas, MAINT,

8-45e
threshold values, MAINT, 8-56

Restructuring
databases, DESIGN, 5-1 to 5-36

SQL options, DESIGN, 5-1
tables, GUSQL, 5-9

Result table, GUSQL, l.;..19, 3-1
cursor, GUSQL, 4-6
deleting, GUSQL, 1-19
filtering

in SQL/Services, SQLSRV, 5-2
Retrieval

indexed, MAINT, 16-34
sequential

buffer size, MAINT, 16-92
Retrieving data, GUSQL, 3-1 to 3-75;

SQLRM, 6-474
achieving optimal performance for

range retrieval, DESIGN, 4-14
based on

alternative condition, GUSQL,
3--45, 3--49

combined condition, GUSQL,
3--45, 3--47

Retrieving data
based on (Cont.)

existence of set of rows, GUSQL,
3--42

negated condition, GUSQL, 3--45
null, GUSQL, 3--40
range of values, GUSQL, 3-35

conditional expressions, GURRR, 3-7
eliminating duplicates, GURRR, 3-7

using REDUCED TO clause,
GURRR, 3-18

FIRST n clause, GURRR, 3-7
for exact matches, DESIGN, 1-10
improving performance using hashed

index, DESIGN, 3-41
joining relations, GURRR, 4-1 to

4-11
joining table and view, GUSQL, 3-61
LIMIT TO clause, GUSQL, 3-15,

4-10
methods of, DESIGN, 1-10
missing value, GURRR, 6-12
optimizing performance, DESIGN,

4-11
ordering rows, GUSQL, 3-19
range retrieval and indexes,

DESIGN, 3--41
records in a relation, GURRR, 3-2
records in sorted order, GURRR, 3-4
records that do not satisfy a condition,

GURRR, 3-13
records that satisfy a single condition,

GURRR, 3-10
records that satisfy multiple

conditions, GURRR, 3-11
segmented strings, GURRR, 9-16
selecting

all rows in table, GUSQL, 3-13
unique row, GUSQL, 3-16

selecting columns, GUSQL, 3--4
selecting fields, GURRR, 3-7
sequentially, DESIGN, 1-10

lndex-61

Retrieving data (Cont.)
using

column select expressions,
GUSQL, 3-67

cursor, GUSQL, 4-1
dbkey, DESIGN, 3-13; GURRR,

9-33
hashed indexes, DESIGN, 1-10
host language parameter,

GUSQL, 10-11
indexes, DESIGN, 1-10
indicator parameter, GUSQL,

10-20
record streams, GURRR, 9-5,

9-6
views, GUSQL, 3-67

using cursors, SQLRM, 6-352
Retrieving missing value, RDMLRM,

2-29
REVOKE statement

ACL style, SQLRM, 6-455
ANSI/ISO style, SQLRM, 6-465

Revoking privileges, SQLRM, 6-455
RMS (Record Management Services)

files
loading data, MAINT, 2-21

using RMU/LOAD command,
MAINT, 2-37

unloading data
using RMU/UNLOAD command,

MAINT, 2-37
RMU, RDORM, 6-1

area qualifiers
See Parameter qualifiers

bugcheck files, MAINT, 12-2
command parameters, RDORM, 6-2
command qualifiers, RDORM, 6-2
commands

auditing the use of, MAINT,
4-10; RDORM, 6-132

file qualifiers
See Parameter qualifiers

parameter qualifiers
defined, RDORM, 6-3

lndex-62

RMU
parameter qualifiers (Cont.)

positional semantics of, RDORM, ~
6-3

positional qualifiers
See Parameter qualifiers

RMU/ANALYZE/CARDINALITY
command, MAINT, 16-32;
RDORM, 6-9

RMU/ANALYZE command, DESIGN,
4-9; MAINT, 14-1 to 14-65;
RDORM, 6-5
analyzing record storage,

MAINT, 13-5
/AREAS qualifier, MAINT, 14-8

to 14-25, 18-32
/OPTIONS=DEBUG qualifier,

MAINT, 14-20
/OPTIONS=FULL qualifier,

MAINT, 14-14
/OPTIONS=NORMAL

qualifier, MAINT, 14-8
creating a binary output file,

MAINT, 14-2, 14-63
/INDEXES qualifier, MAINT,

14-28 to 14-42, 18-32
hashed indexes, MAINT,

14-33, 14-36
/OPTIONS=DEBUG qualifier,

MAINT, 14-33
/OPTIONS=FULL qualifier,

MAINT, 14-31
/OPTIONS=NORMAL

qualifier, MAINT, 14-28
sorted indexes, MAINT,

14-34
interpreting output, MAINT,

14-5
/LAREAS qualifier, MAINT,

14-25 to 14-28, 18-32
/OPTIONS=DEBUG qualifier,

MAINT, 14-27
/OPTIONS=FULL qualifier,

MAINT, 14-27

RMU
RMU/ANALYZE command

/LAREAS qualifier (Cont.)
/OPTIONS=NORMAL

qualifier, MAINT, 14-25
locking information, MAINT,

14-4
/OPTIONS=DEBUG qualifier,

MAINT, 14-12
overview, MAJNT, 14-4
/PLACEMENT qualifier, MAJNT,

14-42 to 14-63, 18-32
hashed indexes, MAINT,

14-53
/OPTIONS=DEBUG qualifier,

MAINT, 14-53
/OPTIONS=FULL qualifier,

MAINT, 14-47
/OPTIONS=NORMAL

qualifier, MAINT, 14-42
sorted indexes, MAINT,

14-55, 14-57
record fragmentation, MAINT,

16-93
using, MAINT, 14-4

RMU/ANALYZE/INDEXES command,
RDORM, 6-13

RMU/ANALYZE/PLACEMENT
command, RDORM, 6-16

RMU/BACKUP/AFTER_JOURNAL
command, RDORM, 6-37

RMU/BACKUP command, RDORM,
6-20
/AFTER_JOURNAL, MAINT, 9-8

/CONTINUOUS, MAINT,
9-11

/UNTIL, MAINT, 9-11
/BACKUP

full, MAINT, 8-13
/CHECKSUM_ VERIFICATION

qualifier, MAINT, 8-22
/CRC, MAINT, 8-33
/CRC=AUTODIN_II, MAINT,

8-33

RMU
RMU/BACKUP command (Cont.)

/CRC=CHECKSUM, MAINT,
8-33

/INCREMENTAL, MAINT, 8-19
/INCREMENTAL=BY_AREA,

MAJNT, 8-32
/INCREMENTAL=COMPLETE,

MAINT, 8-32
/INTERVAL, MAINT, 9-12
/NOCRC, MAINT, 8-33
/ONLINE, MAINT, 8-10
PROTECTION, MAINT, 8-9
tasks permitted, MAINT, 8-7
/THRESHOLD, MAINT, 9-12
truncating file names, RDORM,

6-33
RMU/CLOSE command, MAINT,

10-11; RDORM, 6-42
examples, MAINT, 5-14

RMU/CONVERT command, RDORM,
6-46 .

RMU/COPY_DATABASE command,
RDORM, 6-50

RMU/DUMP
/SNAPSHOT qualifier, MAINT,

11-22e
RMU/DUMP/AFTER_JOURNAL

command, RDORM, 6-59;
DIST_TRANS, 6-5

RMU/DUMP/AREA command,
MAINT, 11-13e

RMU/DUMP/BACKUP _FILE
command, RDORM, 6-62

RMU/DUMP command, MAINT,
10-18, 11-1
/AREA qualifier, MAINT, 11-11
format, RDORM, 6-54
/HEADER, MAINT, 10-8, 10-21
/LAREA qualifier, MAINT, 11-11
/RECOVERY _JOURNAL,

MAINT, 9-32
/SNAPSHOT qualifier, MAINT,

11-11

lndex-63

RMU
RMU/DUMP command (Cont.)

/USERS, MAINT, 10-21
RMU/DUMP/LAREA command,

MAINT, 11-17
RMU/DUMP/RECOVERY_JOURNAL

command, RDORM, 6-68
RMU/DUMP/USERS command,

DIST_TRANS, 6-3
RMU/LOAD/AUDIT command,

MAINT, 4-2, 4-27
RMU/LOAD command, RDORM,

6-70
loading databases, MAINT, 2-37

RMU/MONITOR command
START, MAINT, 3-3
START/OUTPUT, MAINT, 3-5
STOP, MAINT, 3-3, 3-5

RMU/MONITOR REOPEN_LOG
command, RDORM, 6-79

RMU/MONITOR START command,
RDORM, 6-80

RMU/MONITOR STOP command,
RDORM, 6-82

RMU/OPEN command, MAINT,
5-2e, 10-11; RDORM, 6-89

RMU/RECOVER command, MAINT,
9-18; RDORM, 6-91
/AIJ_BUFFERS qualifier,

MAINT, 9-27
/AREAS qualifier, MAINT, 9-27
/ROOT qualifier, MAINT, 9-27
/TRACE and /NOTRACE

qualifiers, MAINT, 9-27
/UNTIL qualifier, MAINT, 9-27

RMU/RECOVER/RESOLVE
command, DIST_TRANS, 6-6

RMU/RESOLVE command,
DIST_TRANS, 6-4

RMU/RESTORE command, RDORM,
6-107; DIST_TRANS, 6-6
/BLOCKS_PER_PAGE, MAINT,

8-56
/DIRECTORY, MAINT, 8-57

lndex-64 ·

RMU
RMU/RESTORE command (Cont.)

/FILE, MAINT, 8-57
/INCREMENTAL, MAINT, 8-42
/NOCDD_INTEGRATE, MAINT,

8-51
/PATH, MAINT, 8-58
/SNAPSHOTS, MAINT, 8-57
tasks permitted, MAINT, 8-38
/THRESHOLDS, MAINT, 8-56

RMU/SET AUDIT command,
MAJNT,4-2,4-12,4-14,4-16,
4-17' 4-18, 4-19

RMU/SHOW AUDIT command,
MAINT, 4-2, 4-12, 4-14, 4-16,
4-17, 4-18, 4-19; RDORM,
6-143

RMU/SHOW command, RDORM,
6-142
SYSTEM, MAINT, 3-9, 18-32
USERS, MAINT, 3-9, 18-32
VERSION, MAINT, 3-9

RMU/SHOW STATISTICS command,
MAINT, 15-1, 16-86; RDORM,
6-148
display modes, MAINT, 15-2
display options, MAINT, 15-8
formatted binary file, MAINT,

15-45
getting online help, MAINT,

15-10
/INTERACTIVE, MAINT, 15-2
monitor locking, MAINT, 13-6
monitor locks, MAINT, 16-135
/OUTPUT, MAINT, 15-2
report format options, MAINT,

15-8
/TIME, MAINT, 15-45

RMU/SHOW SYSTEM command,
RDORM, 6-154

RMU/SHOW USERS command,
RDORM, 6-155

RMU/SHOW VERSION command,
RDORM, 6-157

RMU (Cont.)
RMU/UNLOAD command, RDORM,

6--158
unloading databases, MAINT,

2-37
RMUNERIFY command, MAINT,

6-4, 6-10; RDORM, 6-161
/ALL, MAINT, 6-4, 6--11
/AREAS, MAINT, 6--11, 6--31
/CHECKSUM_ONLY, MAINT,

6--11, 6-21
/CONSTRAINTS, MAINT, 6-12
/INCREMENTAL, MAINT, 6--10
/INDEXES, MAINT, 6-12
/INDEXES/[NO]DATA, MAINT,

6-12
/LAREA, MAINT, 6--12
/LOG, MAINT, 6-18
/LNOJROOT, MAINT, 6-11
qualifier functions, MAINT, 6-9
/SNAPSHOTS, MAINT, 6-12
/TRANSACTION_TYPE, MAINT,

6-18
summary of maintenance tools,

INTRO, 1-31
VMS security access privileges for,

DESIGN, 6--36
RMU/ALTER command

entering RdbALTER, MAINT, 7-3
invoking the RdbALTER utility,

RDORM, 6-4
RMU audit events

enabling or disabling, MAINT, 4-10
RMU/CONVERT command

called by RMU/RESTORE, RDORM,
6--107

RMU/DUMP command
to show storage area, page, and record

numbers, MAINT, 7-5
RMU/RESTORE command

by area
purpose of, RDORM, 6-110

calling RMU/CONVERT, RDORM,
6--107

RMU/SET AUDIT command, RDORM,
6-127

RMU/VERIFY versus RdbALTER
VERIFY, MAINT, 7-24

Role-oriented privilege, SQLRM, 6-370
ROLLBACK

in RdbALTER, MAINT, 7-25
ROLLBACK command (RdbALTER),

RDORM, 7-38
ROLLBACK statement, GUSQL, 2-46;

RDMLRM, 6--111; SQLRM, 6-472
undoing changes to a database,

RDORM, 9-359
Rolling back a transaction

in RdbALTER, MAINT, 7-25
Root file

moving, RDORM, 6-85
Root file (RDB), DESIGN, 4-2
Row

See also Retrieving data
definition of, INTRO, 1-2
deleting, GUSQL, 5-18; SQLRM,

6-283
inserting, GUSQL, 5-3
locking, GUSQL, 2-33
ordering, GUSQL, 3-19
retrieving, GUSQL, 3-1 to 3-75
sorting using collating sequence,

DESIGN, 3-21
RSE

See Record selection expression
RUJ

See Recovery-unit journal
Run-time error

handling, GURRR, 10-1

s
Sample database, DESIGN, 1-10;

SQLRM, F-1
creating, MAINT, 1-16; INTRO,

1-15
definitions for, DESIGN, A-1

lndex-65

Sample database (Cont.)
disk space requirements for

PERSONNEL, INTRO, 1-16
generating, DESIGN, 1-10
use of, DESIGN, 1-10

Schedules
defining, RDORM, 9-164
deleting, RDORM, 9-24 7

Schema
attaching to, GUSQL, 2-3; SQLRM,

6-255
changing

characteristics, MAINT, 10-6
context, GUSQL, 2-1
copying without data, SQLRM, 6-350
creating, DESIGN, 1-6, 3-4;

SQLRM, 6-97 to 6-120
using CDO definitions, DESIGN,

7-11
using dictionary, DESIGN, 3-4

declaring, DESIGN, 3-5; GUSQL,
2-3; SQLRM, 6-255

declaring before issuing privilege
statements, DESIGN, 6-7

default protection on, SQLRM, 6-359
definition of, INTRO, 1-3
definitions in, DESIGN, 3-2
deleting, DESIGN, 3-8, 5-23;

SQLRM, 6-311
displaying information about,

SQLRM, 6-521
modifying, SQLRM, 6-15 to 6-28
naming, SQLRM, 3-7

Scope
of database handle, RDMLRM, 6-11
of dbkey, DESIGN, 3-13; RDMLRM,

6-11
of request handle, RDMLRM, 6-12
of transaction, MAINT, 16-27;

GUSQL, 2-42
Security

See also Access control list; Access
privilege set; Privilege; Protection

access privilege set, DESIGN, 6-2

lndex-66

Security (Cont.)
alarms, MAINT, 4-3, 4-20;

RDORM, 6-127
disabling, RDORM, 6-128
enabling, RDORM, 6-128

and VMS, DESIGN, 6-36
audit journal, DESIGN, 6-1;

MAINT, 4-3, 4-25; RDORM,
6-127

DACCESS level security auditing,
MAINT, 4-13

database objects, DESIGN, 6-1
database recovery, MAINT, 9-18
database subjects, DESIGN, 6-1
event level security auditing,

MAINT, 4-16
flowchart of access to SQL/Services,

SQLSRV, 8-lf
interpreting AUDIT alarms, MAINT,

4-22
interpreting DACCESS alarms,

MAINT, 4-22
interpreting PROTECTION alarms,

MAINT, 4-24
interpreting RMU alarms, MAINT,

4-24
overview of RdbNMS, DESIGN, 6-1

to 6-37
RdbNMS and VMS, DESIGN, 6-4
reference monitor concept, DESIGN,

6-1
reviewing audit journal, MAINT,

4-28
schema level, DESIGN, 6-3
securing access to SQL/Services,

SQLSRV, 8-1
top level security auditing, MAINT,

4-16
user level security auditing, MAINT,

4-12
Security auditing

alarms
enabling, MAINT, 4-11

AUDIT event type, MAINT, 4-4

Security auditing (Cont.)
audit journal

enabling, MAINT, 4-11
DACCESS event type, MAINT, 4-5
DACCESS level security auditing,

MAINT, 4-11
DACCESS privileges for database

objects, MAINT, 4-13
default characteristics, MAINT, 4-2
defining audit events, MAINT, 4-11
disabling, RDORM, 6-128
displaying characteristics, MAINT,

4-2; RDORM, 6-143
enabling, RDORM, 6-127, 6-128
enabling and disabling events,

MAINT, 4-16
event level security auditing,

MAINT, 4-11
event types, MAINT, 4-4
every access, MAINT, 4-17
first access only, MAINT, 4-17
/FLUSH qualifier, MAINT, 4-18
four levels of security auditing,

MAINT, 4-11
how to establish auditing, MAINT,

4-12
interpreting alarms, MAINT, 4-20
monitoring resources, MAINT, 4-3
/NOFLUSH qualifier, MAINT, 4-18
overview, MAINT, 4-2
PROTECTION event type, MAINT,

4-9
reviewing

AUDIT alarms, MAINT, 4-22
audit information, MAINT, 4-20
audit journal records, MAINT,

4-28
DACCESS alarms, MAINT, 4-22
PROTECTION alarms, MAINT,

4-24
RMU alarms, MAINT, 4-24

RMU event type, MAINT, 4-10
setting

alarms, MAINT, 4-16

Security auditing
setting (Cont.)

DACCESS events, MAINT, 4-13
record auditing, MAINT, 4-16
user level events, MAINT, 4-12

starting, MAINT, 4-11, 4-16;
RDORM, 6-133

stopping, MAINT, 4-11, 4-16;
RDORM, 6-133

strategy for defining security auditing,
MAINT, 4-11

top level security auditing, MAINT,
4-11

use of the RMU/LOAD/AUDIT
command, MAINT, 4-25

user level security auditing, MAINT,
4-11

Security audit journal
loading into database, MAINT, 4-25;

RDORM, 6-70
Security audit journal records

defining database table for storing,
MAINT, 4-25; RDORM, 6-71

defining relation for storing, MAINT,
4-25; RDORM, 6-71

Segmented string, MAINT, 11-36;
RDORM, 3-34; GURRR, 3-21

See also List
closing, RDORM, 9-260
creating

CREATE_SEGMENTED_STRING
statement, RDORM, 9-74

data type, GURRR, 8-3
END_SEGMENTED_STRING

statement, RDORM, 9-260
handle, RDORM, 9-74
modifying, GURRR, 9-28
retrieving, GURRR, 9-16

START_SEGMENTED_STRING,
RDORM, 9-417

retrieving values
FOR statement, RDORM, 9-287

lndex-67

Segmented string (Cont.)
storing

CREATE_SEGMENTED_STRING
statement, RDORM, 9-74

STORE statement, RDORM,
9-464

storing in multiple storage areas,
RDORM, 9-173

using to store data, GURRR, 9-24
SEGMENTED STRING data type,

RDORM, 5-8
SELECT expression, GUSQL, 3-4;

SQLRM, 3-98, 3-99
Selecting data

See Retrieving data; SELECT
statement

Selecting fields to be displayed,
GURRR, 3-7

Select list item
in dynamic SQL, GUSQL, 12--4,

12-5, 12-15
SELECT statement, GUSQL, 3-1 to

3-75; SQLRM, 3-99t, &-474
FROM clause, GUSQL, 3-9
in dynamic SQL, SQLSRV, 2-6
singleton select, GUSQL, 3-4
specifying data source, GUSQL, 3-9
structure, GUSQL, 3-3
WHERE clause, GUSQL, 3-22

Semicolon (;)
in interactive statement, GUSQL,

1-13
Sequential access

analyzing strategies, MAINT, 17-4 7
locks, MAINT, 16-48

Sequential data retrieval, DESIGN,
1-10

SET ALL CONSTRAINTS statement
SQLRM, 6-500 '

SE:r NOOUTPUT statement, GUSQ'L
1-22 '

SET OUTPUT statement, GUSQL,
1-21, 1-22

SET statement, SQLRM, 6-482

lndex-68

SET statement (Cont.)
changing RDO parameters, RDORM,

9-362
Setting index characteristics, MAINT,

16-50
Setting RDO parameters

SET statement, RDORM, 9-362
SET TRANSACTION statement,

GUSQL, 2-18, 2-22, 2-22e, 2-43;
SQLRM, 6-502

WAIT clause, GUSQL, 2-30;
DIST_TRANS, 4-4

SET VERIFY statement, GUSQL, 1-21,
6-6

Shadow pages
hashed index, MAINT, 16-74
using two storage areas, MAINT,

16-74
Shareable entity

creating, DESIGN, 7-6
deleting, DESIGN, 7-26
modifying, DESIGN, 7-13
tracking, DESIGN, 7-3

Shareable image
creating, GUSQL, 9-3
creating with RDBPRE, GURRR,

11-14
creating with RDML, GURRR, 11-14

Share mode, GUSQL, 2-33; GURRR,
2-12

exclusive, GURRR, 2-16
exclusive write, MAINT, 16-23
protected, GURRR, 2-15
protected read, MAINT, 16-22
protected write, MAINT, 16-23
reading data

multi-user access, MAINT, 16-19
shared, GURRR, 2-15
writing data, MAINT, 16-20

SHOW ALL statement
displaying all database information

RDORM, 9-375
SHOW COLLATING_SEQUENCE

statement, RDORM, 9-376

'

SHOW CONSTRAINT statement,
RDORM, 9-377

SHOW DATABASES statement,
RDORM, 9-379

SHOW DATE_FORMAT statement,
RDORM, 9-381

displaying time format, RDORM,
9-381

SHOW DICTIONARY statement
displaying cUtTent default, RDORM,

9-383
SHOW FIELDS statement, RDORM,

9-384
SHOW INDEXES statement, RDORM,

9-387
SHOW LANGUAGE statement

displaying language for date format,
RDORM, 9-391

SHOW MONITOR statement
See also RMU/SHOW SYSTEM

command
obsolete, RDORM, F-16

SHOW PRMLEGES statement
displaying access rights, RDORM,

9-392
SHOW PROTECTION statement

displaying all ACL entries, RDORM,
9-395

SHOW RADIX_POINT statement,
RDORM, 9-397

SHOW RELATIONS statement,
RDORM, 9-398

SHOW statement, SQLRM, 6-521
displaying information about

databases, RDORM, 9-372
using to check data compression,

MAINT, 16-127
SHOW STORAGE AREAS statement,

RDORM, 9-400
SHOW STORAGE MAPS statement,

RDORM, 9-404
SHOW STREAMS statement

displaying name of current stream,
RDORM, 9-406

SHOW TABLES statement, GUSQL,
1-5, 1-12

SHOW TRANSACTION statement,
RDORM, 9-407

SHOW TRANSFER statement,
RDORM, 9-409; SQLRM, 6-549

distributing databases, RDORM,
9-409

SHOW TRIGGERS statement,
RDORM, 9-413

SHOW USERS statement
See RMU/SHOW USERS
obsolete, RDORM, F-17

SHOW VERSIONS statement,
RDORM, 9-416

SHOW VIEWS statement, GUSQL,
1-12

SHR program section attribute,
GUSQL, 9-3

Single-file database, GURRR, 1-3
as opposed to multifile, DESIGN, 3-8
sample, DESIGN, A-1

Singleton select, GUSQL, 3-4
SMALLINT data type, DESIGN, 3-19;

SQLRM, 3-35
Snapshot file, DESIGN, 3-7, 3-54, 4-2

accessing, MAINT, 16-97
data structures, MAINT, 11-27
disabling, MAINT, 16-98
enabling, MAINT, 16-98
options, DESIGN, 3-11
transaction identification number,

MAINT, 16-98
using deferred snapshots, MAINT,

16-103, 16-104e
Snapshot page, MAINT, 11-22
Snapshot statistics, MAINT, 15-30
Snapshot storage area

creating, DESIGN, 3-54
SNP file type

See Snapshot file
Software Performance Monitor

See VAX Software Performance
Monitor

lndex-69

Software Performance Report (SPR)
form, MAINT, 12-1
submitting, MAINT, 12-11
when to submit, MAINT, 12-9

SORTED BY clause, RDMLRM, 4-44
of record selection expression,

RDORM,4-9
using with the REDUCED TO clause

RDMLRM, 4-30
'

Sorted index, DESIGN, 3-40; RDORM,
9-122; SQLRM, 6-79

access strategy, MAINT, 17-47
calculating node size, MAINT, 16-50
changing, MAINT, 10-39
page format required for storing,

DESIGN, 4-14
range retrieval, DESIGN, 4-14
retrieval with dbkey, DESIGN, 1-10
setting index characteristics, MAINT,

16-50
Sorting records, RDORM, 4-9;

GURRR,3-4
Sorting rows, GUSQL, 3-19

See ORDER BY clause
using collating sequences, DESIGN,

3-21
Sort key, GURRR, 3--4

ascending order, GURRR, 3-5
descending order, GURRR, 3-5

SORTWORKn RdbNMS logical name,
MAINT, 16-149

Space area management (SPAM) pages,
DESIGN, 4-8; MAINT, 11-65

controlling thresholds, MAINT,
11-69

defaults, MAINT, 11-65
defining, MAINT, 11-65
defining intervals, MAINT, 11-69
entries, MAINT, 11-55, 11-73t
format, MAINT, 11-61, 11-66
INTERVAL clause, DESIGN, 4-19
mixed page format, MAINT, 11-65,

11-65e

lndex-70

Space area management (SPAM) pages
(Cont.)

optimizing SPAM intervals, MAINT,
16-113

page interval, MAINT, 11-55
sample scenario, MAINT, 11-70e
selecting threshold values, MAINT,

16-111
SPAM interval

formula for uniform storage area,
MAINT, 11-57

structure, MAINT, 11-55
THRESHOLD clause, DESIGN, 4-19
threshold value, MAINT, 11-57
uniform page format, MAINT, 11-57,

11-57e
Space usage

database, MAINT, 13-5
SPAM page

See Space area management (SPAM)
page

Specifying database privileges,
DESIGN, 6-25

SPM
See VAX Software Performance

Monitor
SPOOL statement

See also RMU/BACKUP/AFTER
JOURNAL statement -

obsolete, RDORM, F-18
SPR

See Software Performance Report
SQL

ALTER DOMAIN statement,
DESIGN, 5-6

ALTER INDEX statement, MAINT,
16-50

ALTER SCHEMA
ADJUSTABLE LOCK

GRANULARITY IS, MAINT,
10-15

ADJUSTABLE LOCK
GRANULARITY IS
DISABLED, MAINT, 10-15

SQL
ALTER SCHEMA (Cont.)

DICTIONARY IS REQUIRED,
MAINT, 10-26

EXTENT IS extent-pages PAGES,
MAINT, 10-11

JOURNAL FILE IS, MAINT,
10-18

NOJOURNAL, MAINT, 10-18
NUMBER OF BUFFERS IS,

MAINT,2-8, 10-16
NUMBER OF RECOVERY

BUFFERS IS, MAINT, 10-17
NUMBER OF USERS IS,

MAINT, 10-13
NUMBER OF VAXCLUSTER

NODES IS, MAINT, 10-14
OPEN IS, MAINT, 10-11
SNAPSHOT IS ENABLED

DEFERRED, MAINT, 10-24
SNAPSHOT IS ENABLED

IMMEDIATE, MAINT, 10-24
/SNAPSHOTS, MAINT, 10-18

ALTER SCHEMA statement
database characteristics that can

be changed, MAINT, 10-7
ALTER TABLE statement, DESIGN,

5-7
and VAX DATATRIEVE, SQLRM,

3-49
authorization identifier, DESIGN,

3-12; GUSQL, 2-9; SQLRM,
3-10

column names, SQLRM, 3-13
CREATE SCHEMA statement

using, DESIGN, 1-6, 3-4, 3-8;
MAINT, 11-65

CREATE STORAGE MAP statement,
DESIGN,3-10,4-3
PLACEMENT VIA INDEX clause,

MAINT, 10-62
creating databases, DESIGN, 3-1
data definition statements, SQLRM,

2-2

SQL (Cont.)
data dictionary path names, SQLRM,

3-9
data manipulation statements,

SQLRM, 2-5
data types, SQLSRV, 11-lt;

SQLRM, 3-32
differences from ANSI standard,

SQLRM;B-1
distributed transaction

DISTRIBTRAN privilege,
DIST_TRANS, 3-6

using with, DIST _TRANS, 4-1
to 4-24

DROP TABLE statement, DESIGN,
5-7

dynamic DECLARE CURSOR
statement, SQLRM, 6-245

dynamic SQL, SQLRM, 3-29, 6-287,
6-338,6-343,6-439,6-452,D-l

dynamic SQL statements, SQLRM,
2-9

error messages, SQLRM, A-1
executable statements, SQLRM, 2-12
EXPORT statement, DESIGN, 5-25

when to use, MAINT, 8-59
extended dynamic DECLARE

CURSOR statement, SQLRM,
6-249

file specifications, SQLRM, 3-7
formatting clause, SQLRM, 3-49
functions, SQLRM, 2-1 to 2-16,

3-68
GRANT statement, SQLRM, 6-379
handling errors, SQLRM, A-1, C-1
help online, SQLRM, 6-389
IMPORT statement, DESIGN, 5-25

when to use, MAINT, 8-59
interactive

use in database design, DESIGN,
3-3

interactive statements, SQLRM, 2-8
introduction to, SQLRM, 1-1

lndex-71

SQL (Cont.)
language and syntax elements,

SQLRM, 3-1 to 3-109
line terminators, SQLRM, 3-2
logical names, SQLRM, G-1
message vector, SQLRM, C-1
module language, SQLRM, 2-11, 4-1

to 4-41
syntax, SQLRM, 4-3

nonexecutable statements, SQLRM,
2-12

optional keywords, SQLRM, 3-2
precompiler statements, SQLRM,

2-10
query header, SQLRM, 3-51
required keywords, SQLRM, 3-2
REVOKE ANSI-style statement,

SQLRM, 6-465
sample database, SQLRM, F-1
schema names, SQLRM, 3-7
SET TRANSACTION statement

reserving options, MAINT, 16-18
SQLCA, SQLRM, C-1
SQLDA, SQLRM, D-1
statements, SQLRM, 6-1 to 6-566

summary, SQLRM, 2-13
summary of using to access RdbNMS

database, INTRO, 1-20
table names, SQLRM, 3-12
user-supplied names, SQLRM, 3-3
using in programs, summary,

INTRO, 1-24
using VAX Data Distributor

statements, SQLRM, 2-7
using with other Digital database

products, SQLRM, 1-1
view names, SQLRM, 3-12

SQL$CLOSE_CURSOR routine
with distributed transaction,

DIST_TRANS, 4-9
SQL$DATABASE logical name,

GUSQL, 1-4
SQL$DISABLE_CONTEXT logical

name, DIST_TRANS, 4-3

lndex-72

SQL$EDIT logical name, GUSQL, 1-23
SQL$GET_ERROR_TEXT call, GUSQL,

11-23
SQL$KEEP _PREP _FILES RdbNMS

logical name, MAINT, 16-144
SQL$SIGNAL call, GUSQL, 11-20

. SQLCA, SQLSRV, 2-12, 10-6;
SQLRM, 6-407, C-1

use of in dynamic SQL, SQLSRV,
2-8

SQLCA (SQL Communications Area),
GUSQL, 11-7

SQLCODE field, GUSQL, 11-6
SQL Communications Area

See SQLCA
SQLDA, SQLSRV, 2-7, 2-12, 10-11;

SQLRM, 6-407, D-1
DESCRIBE statement, SQLRM,

6-287
SQLDA (SQL Descriptor Area),

GUSQL, 12-5; SQLRM, D-1
SQL Descriptor Area

See SQLDA
SQLINI

command procedure, GUSQL, 1-22
logical name, GUSQL, 1-22

SQLmodule
declaring parameter

using FROM clause, GUSQL,
10-10

FROM dictionary clause, GUSQL,
10-3, 10-10

SQL module language, GUSQL, 7-2 to
7-31; SQLRM, 4-1 to 4-41

See also Module language; SQL
advantages over interactive SQL,

INTRO, 1-25
and distributed transaction,

DIST_TRANS, 4-2, 4-9 to 4-15
converting interactive statement to,

GUSQL, 6-7
procedure in, GUSQL, 7-13
summary, INTRO, 1-25

SQL module processor, GUSQL, 7-25

SQL module processor (Cont.)
command line qualifier, GUSQL,

7-26
invoking, GUSQL, 7-30

SQL precompiler, GUSQL, 8-1 to
8-18; SQLRM, 5-1 to 5-38

See also Precompiler
command line, SQLRM, 5-4
command line qualifier, GUSQL,

8-12; SQLRM, 5-5
data type conversion, SQLRM, 5-10
error log file, GUSQL, 8-17
input file, GUSQL, 8-llt
invoking, GUSQL, 8-14
output file, GUSQL, 8-llt
parameter name processed by,

GUSQL, 10-11
processing source file, GUSQL, 8-10
program section created by, GUSQL,

9-3
statements, SQLRM, 2-10
supported Ada variable declarations,

SQLRM, 5-11
supported COBOL variable

declarations, SQLRM, 5-24
supported C variable declarations,

SQLRM, 5-18
supported FORTRAN variable

declarations, SQLRM, 5-27
supported host language variable

declarations, SQLRM, 5-10
supported Pascal variable

declarations, SQLRM, 5-30
supported PL/I variable declarations,

SQLRM, 5-36
SQL/Services

API routines, SQLSRV, 9-1, 9-6 to
9-75
as dynamic SQL statements,

SQLSRV,2-2
names, SQLSRV, 9-2

architecture, SQLSRV, 1-2f
building application programs,

SQLSRV, 2-13 to 2-15

SQUServices
building application programs (Cont.)

on Macintosh, SQLSRV, 2-15
on MS-DOS, SQLSRV, 2-13
on OS/2, SQLSRV, 2-14
on ULTRIX, SQLSRV, 2-14
on ULTRIX for RISC, SQLSRV,

2-14
on VMS, SQLSRV, 2-13

client/server model, SQLSRV, 1-1
components, SQLSRV, 1-2
creating and releasing an association,

SQLSRV, 4-6
creating client/server association,

SQLSRV,2-8
creating DECnet link, SQLSRV, 9-9
data structures, SQLSRV, 10-1

documentation format, SQLSRV,
10-1

SQLVAR, SQLSRV, 10-13
data structures used, SQLSRV, 2-12

to 2-13
data types, SQLSRV, 11-1
disabling access to, SQLSRV, 8-2
enabling access to, SQLSRV, 8-2
enabling or disabling API functions,

SQLSRV, 10-3
environment variables, SQLSRV,

B-1
executing a prepared SQL statement,

SQLSRV, 9-18
filter expression functions, SQLSRV,

A-1
filtering result tables, SQLSRV, 5-2
flowchart of access to, SQLSRV, 8-lf
installation log files, SQLSRV, D-1
introduction to, SQLSRV, 1-1
IVP log files, SQLSRV, D-1
logging used in, SQLSRV, 6-1
parameters, SQLSRV, 9-3
process pooling, SQLSRV, 7-1
routines, SQLSRV, 2-8 to 2-12
running the sample application,

SQLSRV, 4-4

lndex-73

SQL/Services (Cont.)
sample application, SQLSRV, 4-1

on VMS operating system,
SQLSRV, 4-2

sample application on Macintosh
operating system, SQLSRV, 4-3

sample application on MS-DOS
operating system, SQLSRV, 4-2

sample application on OS/2 operating
system, SQLSRV, 4-3

sample application on ULTRIX
for RISC operating system,
SQLSRV, 4-3

sample application on ULTRIX
operating system, SQLSRV, 4-3

securing application access to,
SQLSRV, 8-1

security, SQLSRV, 8-1
source code listings for

SQLSRV$DYNAMIC program,
SQLSRV, C--1

SQLCA, SQLSRV, 2-12
SQLCA data structure, SQLSRV,

10-6
SQLDA, SQLSRV, 2-12
SQLDA data structure, SQLSRV,

10-11
storing information when an error

occurs, SQLSRV, 10-6
summary, INTRO, 1-28
using C language in, SQLSRV, 1-7
using DECnet, SQLSRV, 1-2
using dynamic SQL with, SQLSRV,

1-2
SQLSRV _ENV _STR data structure,

SQLSRV, 10-16
SQL statements, SQLRM, 6-1 to

6-566
See also SQL
compiling, SQLSRV, 9-36
data definition, SQLRM, 2-2
data manipulation, SQLRM, 2-5
dynamic, SQLRM, 2-9, 3-29
executable, SQLRM, 2-12

lndex-74

SQL statements (Cont.)
interactive control, SQLRM, 2-8
keywords, SQLRM, 3-1
line terminators, SQLRM, 3-1, 3-2
nonexecutable, SQLRM, 2-12
not supported for V4.0, SQLRM, H-1
optional keywords, SQLRM, 3-2
prepared

executing, SQLSRV, 9-18
preparing, SQLSRV, 9-36
required keywords, SQLRM, 3-2
summary, SQLRM, 2-13
user-supplied names, SQLRM, 3-3
using VAX Data Distributor

statements, SQLRM, 2-7
using with context structure,

DIST_TRANS, 4-8
SQLVAR data structure, SQLSRV,

10-13
$SQL_VARCHAR data type, GUSQL,

8-4, 10-33
SRPCOUNT parameter

values, MAINT, 16-134
SRPCOUNTV parameter

values, MAINT, 16-134
Stall activity statistics, MAINT, 15-32
Stall message display, MAINT, 15-34
Starting

security auditing, MAI.NT, 4-11,
4-16

Starting security auditing, RDORM,
6-133

Starting transactions, GURRR, 2-4
distributed, DIST_TRANS, 2-2, 2-3

STARTING WITH expression,
RDMLRM, 3-33

with multinational characters,
RDMLRM, 3-34

STARTING WITH predicate, SQLRM,
3-96

START TRANSFER statement,
SQLRM, 6-554

distributing databases, RDORM,
9-453

START_SEGMENTED_STRING
statement

retrieving segmented strings,
RDORM, 9-417

START_STREAM statement, GURRR,
6-8

declared, RDMLRM, 6--115
record stream, RDORM, 9-422,

9-425
restrictions for RSE and handles,

RDORM, 9-422
transaction handle restriction,

RDORM, 9-426
undeclared, RDMLRM, 6--120

START_TRANSACTION statement,
RDMLRM, 6-128; GURRR, 2-4,
2-6, 2-30e, 6-1

DISTRIBUTED_TRANSACTION
clause, DIST_TRANS, 5-8, 5-14

with two-phase commit protocol,
RDMLRM, 6--128

Statement format
in RDO, RDORM, 1-3

Statements
database maintenance, RDORM, 2-7
data definition, RDORM, 2-2;

SQLRM, 2-2
data manipulation, RDORM, 2-5;

SQLRM, 2-5
distributing databases, RDORM, 2-9
interactive control, RDORM, 2-8
no longer supported in RDO

See Obsolete statements
VAX Data Distributor, RDORM, 2-9

Statistical expression, RDORM, 3-11;
SQLRM, 3-68

Statistical function
See Function

Statistics
See also DECtrace
after-image journal, MAINT, 15-25
database, MAINT, 13-6, 15-1
database process, RDORM, 6--148
display formats, MAINT, 15--4

Statistics (Cont.)
displaying, RDORM, 6--148
event-based data

using DECtrace, MAINT, 15--49
file I/O operations by file, MAINT,

15-36
formatted binary file, MAINT, 15--45
gathering on RdbNMS applications

using DECtrace, MAINT, 15--49
getting online help, MAINT, 15-10
graphic display format, MAINT, 15--4
hashed index, MAINT, 15-20
how to collect event data

using DECtrace, MAINT, 15-50
I/O display page, MAINT, 15-13
I/O stall, MAINT, 15-32
index (insertion), MAINT, 15-17
index (removal), MAINT, 15-19
index (retrieval), MAINT, 15-15
lock, MAINT, 15-23
locks for one statistics field, MAINT,

15-44
numbers display format, MAINT,

15-6
one lock type, MAINT, 15-39
online mode, MAINT, 15-2
output file description, MAINT,

15--45
PIO file activity, MAINT, 15-27
record activity, MAINT, 15-29
replay mode, MAINT, 15-2
reset option, MAINT, 15-8
set rate option, MAINT, 15-8
snapshot, MAINT, 15-30
stall messages, MAINT, 15-34
time plot display, MAINT, 15-7
transaction duration, MAINT, 15-33
types of, MAINT, 15-10
virtual memory use, MAINT, 15-22
writing output to a file, MAINT, 15-8

STOP MONITOR statement
See also RMU/STOP MONITOR

command
obsolete, RDORM, F-20

lndex-75

Stopping
security auditing, MAINT, 4-11,

4-16; RDORM, 6-133
STOP TRANSFER statement, RDORM,

9-456; SQLRM, 6-558
distributing databases, RDORM,

9-456
Storage area, DESIGN, 3-7; SQLRM,

3-31
adding new, MAINT, 10-28
adjusting parameters, MAINT,

16-106, 16-107t
calculating size

potential problems, MAINT,
16-73

changing, MAINT, 10-31
creating, DESIGN, 3-7; SQLRM,

6-121 to 6-129
multiple, DESIGN, 4-3

deleting, MAINT, 10-31
distributing tables and indexes

among, DESIGN, 4-8
estimating size for mixed page format,

MAINT, 16-57
estimating sizes, MAINT, 16-68e
for lists, SQLRM, 6-134
for segmented strings, RDORM,

9-173
for table rows, SQLRM, 6-132
fragmented records, MAINT, 16-93
hashed indexes

shadow pages, MAINT, 16-74
maps, MAINT, 11-10
mixed page format, MAINT, 11-9

estimating number of SPAM
pages, MAINT, 16-70

moving, DESIGN, 5-26; MAINT,
10-31, 10-35; RDORM, 6-85

naming, SQLRM, 3-31
page format, MAINT, 16-111
parameters

default values, RDORM, E-1
maximum values, RDORM, E-1
minimum values, RDORM, E-1

lndex-76

Storage area (Cont.)
partitioning data, RDORM, 9-171
read-only, MAINT, 16-30

RDB$SYSTEM, MAINT, 16-31
updating cardinalities,

MAINT, 16-32
reorganizing databases

definition sequence, MAINT,
10-58

requirements
journal files, MAINT, 9-40

restoring by, RDORM, 6-112
purpose of, RDORM, 6-110

SHOW STORAGE AREAS statement,
RDORM, 9-400

specifying on-disk structure for
hashed indexes, DESIGN, 4-7
manipulating SPAM pages,

DESIGN, 4-8
storing lists, DESIGN, 4-19
structures, MAINT, 11-27
uniform page format, MAINT, 11-6
using more than one for

a table, DESIGN, 4-9
Storage area file (RDA), DESIGN, 4-2
Storage area parameters

default values, RDORM, E-1
maximum values, RDORM, E-1
minimum values, RDORM, E-1

Storage map, SQLRM, 3-31
adjusting parameters, MAINT,

16-116, 16-117t
changes possible, MAINT, 10-45
changing, MAINT, 10-43, 10-45;

RDORM, 9-61; SQLRM, 6-29 to
6-34

changing or creating when indexes
change, MAINT, 10-43

creating, SQLRM, 6-130 to 6-137
data compression

considerations, MAINT, 16-128
DEFINE STORAGE MAP statement,

RDORM, 9-171

Storage map (Cont.)
defining for tables in multifile

databases, DESIGN, 4-4
deleting, MAINT, 10-45, 10-51;

SQLRM, 6-313
effect of changes on row placement,

MAINT, 10-46
for lists, DESIGN, 4-19
modifying, RDORM, 9-61; SQLRM,

6-29 to 6-34
naming, SQLRM, 3-31
PLACEMENT VIA INDEX option,

MAINT, 16-117
reorganizing databases

definition sequence, MAINT,
10-58

SHOW STORAGE MAPS statement,
RDORM, 9-404

Storage methods, DESIGN, 1-8
Storage segment

fragmented record, MAINT, 11-52
structure, MAINT, 11-33

STORE clause
in CREATE INDEX statement,

DESIGN, 4-3
in CREATE STORAGE MAP

statement, .. DESIGN, 4-3
STORE statement, RDMLRM, 6-140;

GURRR, 6-1
adding database records, RDORM,

9-457
storing segmented strings,

RDMLRM, 6-151; RDORM,
9-464

transaction handle restriction,
RDORM, 9-458

Storing a value
using indicator parameter, GUSQL,

10-21
Storing data, GUSQL, 5-3; SQLRM,

6-414, 6-560
using lists, GUSQL, 5-11
using segmented strings, GURRR,

9-24

Storing row
See INSERT statement

Strategy
access, MAINT, 16-42
conjunct, MAINT, 17-47
displaying with RDMS$DEBUG_

FLAGS, MAJ.NT, 17-20
query optimizer, MAINT, 16-47,

17-2
retrieval, MAINT, 16-47
saving output with RDMS$DEBUG_ ,

FLAGS_OUTPUT, MAINT,
17-20

Stream
See Record stream

String literal
TODAY, RDORM, 3-8
TOMORROW, RDORM, 3-8
YESTERDAY, RDORM,3-8

Structure
compared to record, GUSQL, 10-2
space area management (SPAM) page,

MAINT, 11-55
Structured programming

BASIC program, GURRR, 13-31
COBOL programs, GURRR, 14-32
C programs, GURRR, 17-31
FORTRAN program, GURRR, 15-34
Pascal programs, GURRR, 18-30

Structured· query language (SQL)
See SQL

Substring manipulation, GUSQL, 3-5,
3-7

SUM function, GUSQL, 3-54; SQLRM,
3-69

Symbol (DCL)
to invoke precompiler, GUSQL, 8-14

Syntax diagrams
reading, RDORM, xvii; SQLRM, 1-5

SYS$COMMON logical name, MAINT,
18-19

SYS$LANGUAGE logical name,
RDMLRM, 1-5

lndex-77

SYS$PUTMSG call, GUSQL, 11-22
SYSGEN parameters, MAINT, 16-132
SYSMWCNT parameter

values, MAINT, 16-136
SYSTEM record, MAINT, 11-46

hashed index structure, MAINT,
11-44

System relation, RDORM, S-1
RDB$CONSTRAINTS, RDORM, 8-4
RDB$CONSTRAINT_RELATIONS,

RDORM, S-5
RDB$DATABASE, RDORM, 8-6
RDB$FIELDS, RDORM, S-11
RDB$FIELD_ VERSIONS, RDORM,

S-9
RDB$INDEX_SEGMENTS, RDORM,

S-15
RDB$INDICES, RDORM, S-16
RDB$RELATIONS, RDORM, S-20
RDB$RELATION_FIELDS, RDORM,

S-17
RDB$VIEW _RELATIONS, RDORM,

S-23
RDBVMS$COLLATIONS, RDORM,

S-24
RDBVMS$INTERRELATIONS,

RDORM, S-25
RDBVMS$PRIVILEGES, RDORM,

S-26
RDBVMS$RELATION_

CONSTRAINTS, RDORM,
S-27

RDBVMS$RELATION_
CONSTRAINT_FLDS,
RDORM, S-31

RDBVMS$STORAGE_MAPS,
RDORM, 8-31

RDBVMS$STORAGE_MAP _AREAS,
RDORM, 8-32

RDBVMS$TRIGGERS, RDORM,
S-33

lndex-78

T

Table
See also Relation
and index

specifying storage area for,
DESIGN, 4-3

changing, DESIGN, 5-7; SQLRM,
6-35 to 6-51

constraint, DESIGN, 3-31; SQLRM,
6-138

creating, DESIGN, 3-23, 3-26;
SQLRM, 6-138 to 6-167

declaring, SQLRM, 6-268
defining protection for, DESIGN,

6-22
definition of, INTRO, 1-2
deleting, DESIGN, 5-7; SQLRM,

6-316
deleting row from, GUSQL, 5-18
disabling data compression, MAINT,

16-118
displaying, GUSQL, 1-12
eliminating redundancy from,

DESIGN, 2-8
inserting row, GUSQL, 5-1
joining, GUSQL, 3-61
loading, RDORM, 6-70
locking, GUSQL, 2-33
modifying, DESIGN, 5-7; SQLRM,

6-35 to 6-51
naming, DESIGN, 5-14; SQLRM,

3-12
needing separate storage areas,

DESIGN, 4-8
normalizing, DESIGN, 2-8
partitioning across multiple storage

areas, DESIGN, 4-9, 4-17
reserving, GUSQL, 2-34, 2-35
result, GUSQL, 1-19, 3-1
updating, GUSQL, 5-12

Table cursor, GUSQL, 4-5
See also Cursor

Table cursor (Cont.)
declaring, SQLSRV, 9-16

Table-specific constraint
creating, SQLRM, 6-138
definition of, INTRO, 1-4
deleting, SQLRM, 6-299
modifying, SQLRM, 6-35

Tapes
checking labels, RDORM, 6-34, 6-66,

6-120
Target page number

determining before storing records,
RDORM, 9-346

Template
in LSE, GUSQL, 1-25

Terminology differences, INTRO, 1-llt
Threshold values

selecting for SPAMs, MAINT, 16-111
Time format

SET DATE_FORMAT statement,
RDORM, 9-363

SHOW DATE_FORMAT statement,
RDORM, 9-381

Time literal
conversion to international format,

RDMLRM, 1-5
TINYINT data type, SQLRM, 3-35
TMPMBX VMS privilege, MAINT,

16-141
TODAY string literal

translation of, RDORM, 3-8;
SQLRM, 3-44

TOMORROW string literal
translation of, RDORM, 3-8;

SQLRM, 3-44
Total

See SUM function
TOTAL function, RDMLRM, 5-23;

RDORM, 3-3
TOTAL statistical function, RDORM,

3-13
TPU editor

See VAXTPU editor

Tracking
database changes using triggers,

DESIGN, 3--38
Tracking entities, DESIGN, 7-1
Tradeoffs of relational design, . DESIGN,

1-1
Transaction, GUSQL, 2-1; GURRR,

2-4
abnormal termination, MAINT, 9-2
access modes, GURRR, 2-6
analysis, DESIGN, 2-9
batch-update, MAINT, 16-26;

GUSQL, 2-28; GURRR, 2-7, 2-9;
DIST TRANS, 2-1

COMMIT-statement, RDORM, 9-69
committing, GUSQL, 2-46; SQLRM,

6-60
context, GUSQL, 2-1
declaring, SQLRM, 6-273
definition of, INTRO, 1-6
distributed, RDMLRM, 6-130

See also Distributed transaction
completing, DIST_TRANS, 1-7,

2-17, 6-1 to 6-7
duration statistics, MAINT, 15-33
ending, GUSQL, 2-46; GURRR,

2-25; SQLRM, 6-472
failure to start, GUSQL, 11-38
in after-image journals, MAINT, 9-3
involving multiple databases,

GUSQL, 2-23
mapping, DESIGN, 2-10
normal completion, MAINT, 9-2
prototype, DESIGN, 2-12
read-only, GUSQL, 2--24; GURRR,

2-5,2-7
read/write, GUSQL, 2-26; GURRR,

2-5,2-7,2-8
ROLLBACK statement, RDORM,

9--359
rolling back, GUSQL, 2-46
scope, MAINT, 16-27; GUSQL,

2-42; GURRR, 2-24

lndex-79

Transaction
scope (Cont.)

effect on long and short
transactions, MAINT, 16-28t

sequence number (TSN), MAINT,
11-31, ll-31e

share modes, GURRR, 2-6
specifying characteristics of, GUSQL,

2-18
starting, GUSQL, 1-20, 2-18;

GURRR,2-4
START_TRANSACTION statement,

RDORM, 9-431
update, MAINT, 9-2

abnormal termination, MAINT,
9-2

exception using invalid dbkey,
MAINT, 12-8

using deferred snapshots, MAINT,
16-104e

using two-phase commit protocol,
GUSQL, 2-2

waiting for lock release, SQLRM,
6-507

Transaction handle, RDORM, 3-5,
9-83, 9-283, 9-426, 9-458;
GURRR, 9-40

restriction for START_STREAM
statement, RDORM, 9-422,
9-426

Transaction identification number
in precompiled SQL statement,

SQLRM, 5-2
Transaction manager, DIST _TRANS,

2-2
in distributed transaction, DIST_

TRANS, 1-4, 2-3
Transaction sequence number (TSN)

index, MAINT, 11-31e
TRANSACTION_HANDLE clause,

RDMLRM, 6-157
Transfers

defining, RDORM, 9-180
deleting, RDORM, 9-251

lndex-80

Translating requirements analysis,
DESIGN, 2-3

Transportability, GUSQL, 2-48
for data retrieval, GUSQL, 3-74
of cursor, GUSQL, 4-21
of error-handling technique, GUSQL,

11-40
of parameter declaration, GUSQL,

10-93
using context file, GUSQL, 8-11

Trigger, SQLRM, 3-19
altering, DESIGN, 5-20
and referential integrity, DESIGN,

3-37
creating, DESIGN, 3-39; SQLRM,

6-202 to 6-218
defining

DEFINE TRIGGER statement,
RDORM, 9-204

deleting, DESIGN, 5-20; RDORM,
9-253; SQLR.M, 6-322

deleting data, GURRR, 6-8
displaying, GUSQL, 1-9
dropping, DESIGN, 5-20
modifying, DESIGN, 5-20
naming, SQLRM, 3-19
SHOW statement, RDORM, 9-413
using, GURRR, 6-16, 6-17
using to track changes to a database,

DESIGN, 3-38
Truncation

of file name during RMU/BACKUP
command, RDORM, 6-33

Tuning
See also Maintenance; Performance
adjusting buffer values, MAINT,

16-91
allocation size, MAINT, 16-110
buffer size, MAINT, 16-89
correcting record fragmentation,

MAINT, 16-93
defined, TUNING, 1-1
due to added capacity, TUNING, 1-3

Tuning (Cont.)
due to workload changes, TUNING,

1-2
flushing buffers, MAINT, 16-92
general guidelines, MAINT, 13-4
methodology, TUNING, 1-5
number of buffers, MAINT 16-91 . ' page size, MAINT, 16-109
process quotas, MAINT, 13-10
RdbNMS logical names, MAINT,

16-141, 16-141t
what to tune, TUNING, 1-10
when to tune, TUNING, 1-1
working set parameters, MAINT

13-3 '
Two-phase commit protocol, GUSQL,

2-2; DIST_TRANS, 1-1 to 1-7, 2-6
commit phase, DIST _TRANS 1-6

2-12 ' '
defined, DIST_TRANS, 1-1
designing database for, DIST_

TRANS, 3-1 to 3-9
prepare phase, DIST_TRANS 1-6

2-7 ' '
using with callable RDO, DIST_

TRANS, 5-1
using with interactive RDO

DIST_TRANS, 5-1 '
using with RDBPRE, DIST_TRANS

5-1 to 5-18 '
using with RDML, DIST_TRANS,

5-2
using with SQL, DIST _TRANS 4-1

to 4-24 '
when to use, DIST_TRANS, 1-2

Two-phase commit syntax
START_TRANSACTION statement,

RDORM, 9-431

u
UNCORRUPT command (RdbALTER),

MAINT, 7-3; RDORM 7--39
Uniform page format, DESIGN, 4-5
UNION operator, GUSQL, 3-59

UNIQUE expression, RDMLRM 3-38
Uniqueness, DESIGN, 3-42 '
UNIQUE operator, SQLRM, 3-97
Unique value

retrieving
See DISTINCT keyword

Unloading
data

using RMU/UNLOAD command,
MAINT, 2-37

databases, DESIGN, 5-26; RDORM
6-158 '

relations, RDORM, 6-158
views, RDORM, 6-158

Unresolved database transactions
resolving, RDORM, 6-100

Unresolved distributed transaction
DIST_TRANS, 6-1 '

completing, DIST_TRANS, 6-4
completing in corrupt database,

DIST_TRANS, 6-5
Unresolved transaction

resolving, RDORM, 6-103
Unsupported statements

See Obsolete statements
UPDATE statement, GUSQL, 5-12;

SQLRM, 6-560
in SQL module, GUSQL 7-19

Updating '
data, GUSQL, 5-12; GURRR, 6-4
database files

using dictionary definitions,
DESIGN, 7-22

databases, GURRR, 6-1; SQLRM
6-414 '

data dictionary definitions, SQLRM
6-424 '

dictionary, DESIGN, 7-15
using SQL, DESIGN, 7-17

problems, MAINT, 16-16
with START_STREAM, GURRR, 6-8

User identification code
accessing databases, RDORM, 9-44

lndex-81

USER keyword, SQLRM, 3-47
Users

default number of simultaneous users,
DESIGN, 3-7

User-stored records, MAINT, 11-35
User-supplied name, SQLRM, 3-3

aliases, SQLRM, 3-15
authorization identifiers, SQLRM,

3-10
parameters, SQLRM, 3-20

USING CONTEXT clause, SQLRM, 5-2
Using RdbNMS in programs, GURRR,

1-11
Using RdbNMS with other Digital

products, INTRO, 1-34
Using the RMU/DUMP/AREA command,

MAINT, 11-15e
Using the RMU/DUMP

/LAREA=RDB$AIP command,
MAINT, 11-19e

Using the RMU/DUMP/LAREA
command, MAINT, 11-17e

Using the RMU/DUMP/SNAPSHOT
command, MAINT, 11-22e

Using VAXclusters, MAINT, 18-9

v
Validation, RDORM, 5-11

of constraint, GUSQL, 11-28
using index, MAINT, 16-84

VALID IF clause, RDORM, 5-11
Value expression, GUSQL, 3-5;

RDMLRM, 2-2t; RDORM, 3-2;
GURRR,3-6; SQLRM,3-66

arithmetic, SQLRM, 3-75
arithmetic expressions, RDORM,

3-3,3-21
calculating value, RDMLRM, 2-1
comparing, GUSQL, 3-22
concatenated expressions, RDORM,

3-4, 3-25
context variable, RDORM, 3-3
database key, RDORM, 3-4, 3-32

lndex-82

Value expression (Cont.)
definition, RDORM, 3-1
field name, RDORM, 3-3
FIRST FROM expression, RDORM,

3-3, 3-31
host language variable, RDORM, 3-2
literals, RDORM, 3-6
missing value, RDORM, 3-3
numeric string, RDORM, 3-3
quoted string, RDORM, 3-3
RDB$LENGTH, RDORM, 3-34
RDB$MISSING, RDORM, 3-26
RDB$VALUE, RDORM, 3-34
segmented string, RDORM, 3-4,

3-34
statistical expression, RDORM, 3-3
unary minus, RDORM, 3-4

VARBYTE data type
See BYTE VARYING data type

VARCHAR data type, DESIGN, 3-19;
SQLRM, 3-34

Variable, SQLRM, 6-407
See also Parameter
comparing literal to numeric,

GUSQL, 3-23
environment

in SQUServices, SQLSRV, B-1
VAXcluster, MAINT, 18-9

CI-only
reducing loss of database access,

MAINT, 18-20
common system disk, MAINT, 18-9
concepts, MAINT, 18-2
converting from single-node, MAINT,

18-26
creating MF _PERSONNEL database,

MAINT, 18-20
creating the database, MAINT,

18-19
database access, MAINT, 18-19
dictionary requirements, MAINT,

18-18
dual-ported MSCP-served disks,

MAINT, 18-7

VAX.cluster (Cont.)
environment overview, MAINT, 1-16
exporting database, MAINT, 18-31
failure, MAINT, 18-16
file naming conventions, MAINT,

18-8
file placement, MAINT, 18-16
importing database, MAINT, 18-31
journal file placement, MAINT, 9-6
Local Area VAX.cluster

AUTOGEN parameters, MAINT,
18-31

monitoring the database, MAINT,
18-30

monitor processes, MAINT, 18-9
performance in a, MAINT, 13-9
recovery, MAINT, 18-19, 18-29
shareable images, MAINT, 18-9
sharing disk files, MAINT, 18-6
specifying maximum node number

MAINT, 18-11 '
starting distributed transaction in

' DIST_TRANS, 3-6
SYSUAF.DAT, MAINT, 18-9
terms, MAINT, 18-2

VAX Data Distributor
DEFINE TRANSFER statement,

RDORM, 9-180
DELETE SCHEDULE statement

RDORM, 9-247
DELETE TRANSFER statement,

RDORM, 9-251
REINITIALIZE TRANSFER

statement, RDORM, 9-357
SHOW TRANSFER statement ,

RDORM, 9-409
START TRANSFER statement,

RDORM, 9-453
STOP TRANSFER statement

' RDORM, 9-456

'

summary of statements, RDORM,
2-9; SQLRM, 2-7

VAX Data Distributor error messages
explanation files, RDORM, B-1

VAX DATATRIEVE
See DATATRIEVE

VAX DATATRIEVE formatting clause,
SQLRM, 3-49

VAX.DBMS
in distributed transaction, DIST_

TRANS,4-2
VAX Language-Sensitive Editor

See LSE
VAX Performance Advisor (VPA),

MAINT, 13-7, 16--132
VAX Software Performance Monitor

(SPM), MAINT, 13-7, 16--132
VAX Text Processing Utility

See VAXTPU editor
VAXTPU editor

editing in interactive SQL, SQLRM,
6--328

using with EDIT statement, GUSQL
1-24 . '

VERIFY command (RdbALTER),
MAINT, 7-23; RDORM, 7-41

Verifying database integrity, MAINT,
6-4; RDORM, 6--161

full, MAINT, 6-4
Verifying databases

after alterations in RdbALTER
' MAINT, 7-23

after using RdbALTER, MAINT,
7-16

Verifying protection, DESIGN, 6-34
Version number

displaying information about
SHOW VERSIONS statement

RDORM, 9-416
VIDA

'

differences from current RdbNMS
version, SQLRM, E-1

VIDA database
using with SQL module processor,

GUSQL, 7-28
View, GURRR, 5-1 to 5-6

benefits of using, GURRR, 5-1

lndex-83

View (Cont.)
compared to

cursor, GUSQL, 4-6
creating, DESIGN, 3-46; SQLRM,

6-219 to 6-230
defining, RDORM, 9-219; GURRR,

5-2, 5-4
defining protection for, DESIGN,

6-22
deleting, DESIGN, 5-21; RDORM,

9-255; SQLRM, 6-325
displaying, GUSQL, 1-12
in retrieving data, GUSQL, 3-67
naming, SQLRM, 3-12
record selection expressions,

RDORM,4-15
specifying default protection for,

RDORM, 9-144
unloading, RDORM, 6-158

Virtual memory statistics, MAINT,
15-22

VIRTUALPAGECNT parameter
values, MAINT, 16-137

VMS Debugger, GUSQL, 9-6; GURRR,
11-24

VMS privilege
TMPMBX privilege, MAINT, 16-141

VMS security audit journal, MAINT,
4-20

loading into database, MAINT, 4-25;
RDORM, 6-70

Volume tables, DESIGN, 2-14
VPA

See VAX.. Performance Advisor

w
Wait interval, DIST_TRANS, 4-4
WAIT option, GUSQL, 2-23
WHENEVER statement, GUSQL, 11-5,

11-16; SQLRM, 6-564
WHERE clause, GUSQL, 3-22, 5-13

specifying alternative condition,
GUSQL, 3-49

Wildcard character(*), GURRR, 3-7

lndex-84

WITH clause, RDMLRM, 4-50
of record selection expression,

RDORM,4-8
Workload information

collecting with DECtrace, MAINT,
15-60

WSDEFAULT parameter
values, MAINT, 16-139

WSEXTENT parameter
values, MAINT, 16-139

WSMAX parameter
values, MAINT, 16-137

WSQUOTA parameter
values, MAINT, 16-139

y

YESTERDAY string literal
translation of, RDORM, 3-8;

SQLRM, 3-44

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/El5
or
U.S. Area So~are Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

lFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX RdbNMS
Introduction and Master Index

AA-KY66C-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to :find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
N ametritle Dept.

Company

Mailing Address

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

DoNotTear-FoldHereandTape - - - - - - - - - - - - - - - - - -

mnmnomn

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
MR01-3/L12
P.O. BOX 1001
MARLBOROUGH, MA 01752-9840

11111 11 11 1111 11 I 1 I rl 1 1 rl 1 I I 1 I 1 rl 11 I 11 I 11 1111 1 1 rl 1 ii I

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

DoNotTear-FoldHereandTape -

