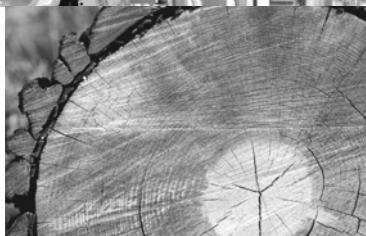


SEW
EURODRIVE



MOVIDRIVE® MDX61B DIP11B / DEH21B Absolute Encoder Cards

Edition 12/2007

11702613 / EN

Manual

SEW
EURODRIVE

1	General Information	5
1.1	Structure of the safety notes	5
1.2	Right to claim under warranty	5
1.3	Exclusion of liability	5
2	Safety Notes	6
2.1	Other applicable documentation	6
2.2	Safety functions	6
2.3	Hoist applications	6
2.4	Product names and trademarks	6
2.5	Disposal	6
3	System Description	7
3.1	Areas of application	7
3.2	Applicable absolute encoders	8
3.3	DIP11B/DEH21B and processing in IPOS ^{plus®}	9
3.4	Encoder sensing	10
3.5	Encoder monitoring	10
3.6	Control functions	11
4	Assembly/Installation	12
4.1	Mounting the DIP11B option card	12
4.2	Mounting the DEH21B option card	12
4.3	Notes for combining DIP11B with DIO11B	14
4.4	Connection and terminal description of the DIP11B option	15
4.5	Connection and terminal description of the DEH21B option	16
4.6	DC 24 V power supply of the DIP11B/DEH21B	17
4.7	Connecting an absolute encoder	19
5	Project Planning	21
5.1	Encoder selection	21
5.2	Configuring the encoders	23
6	Startup	24
6.1	General startup notes	24
6.2	Startup with PC and MOVITOOLS [®]	25
6.3	Manual startup	43
7	Unit functions	46
7.1	Encoder evaluation	46
7.2	Functions relevant for absolute encoders	46
7.3	Display values	47
7.4	Diagnostics option in the Shell program	48
8	IPOS^{plus®} Parameters	49
8.1	Parameter description	49

9 Application Example	52
9.1 Storage and retrieval system with extended positioning via bus.....	52
10 Error Messages	54
10.1 MOVIDRIVE® MDX61B with DIP11B/DEH21B option.....	54
11 Technical Data.....	55
11.1 Electronics data DIP11B option	55
11.2 Electronics data DIP11B option	55
12 Index	56

1 General Information

1.1 Structure of the safety notes

The safety notes in this manual are designed as follows:

Symbol	SIGNAL WORD
	<p>Nature and source of hazard.</p> <p>Possible consequence(s) if disregarded.</p> <ul style="list-style-type: none"> Measure(s) to avoid the hazard.

Symbol	Signal word	Meaning	Consequences if disregarded
<p>Example:</p> <p></p> <p>General hazard</p> <p></p> <p>Specific hazard, e.g. electric shock</p>	HAZARD!	Imminent hazard	Severe or fatal injuries
	WARNING	Possible hazardous situation	Severe or fatal injuries
	CAUTION!	Possible hazardous situation	Minor injuries
	STOP!	Possible damage to property	Damage to the drive system or its environment
	NOTE	Useful information or tip Simplifies drive system handling	

1.2 Right to claim under warranty

A requirement of fault-free operation and fulfillment of any rights to claim under limited warranty is that you adhere to the information in the documentation. Therefore, read the manual before you start operating the device!

Make sure that the manual is available to persons responsible for the plant and its operation, as well as to persons who work independently on the device. You must also ensure that the documentation is legible.

1.3 Exclusion of liability

You must comply with the information contained in the MOVIDRIVE® documentation to ensure safe operation and to achieve the specified product characteristics and performance requirements. SEW-EURODRIVE assumes no liability for injury to persons or damage to equipment or property resulting from non-observance of these operating instructions. In such cases, any liability for defects is excluded.

2 Safety Notes

2.1 Other applicable documentation

- Only electrical specialists are allowed to perform installation and startup observing relevant accident prevention regulations and the MOVIDRIVE® MDX60B/61B operating instructions:
- Read through this publication carefully before you commence installation and startup of the DIP11B/DEH21B options.
- As a prerequisite to fault-free operation and fulfillment of warranty claims, you must adhere to the information in the documentation.

2.2 Safety functions

The MOVIDRIVE® MDX60B/61B drive inverters may not perform safety functions without higher-level safety systems. Use higher-level safety systems to ensure protection of equipment and personnel. For safety applications, ensure that the information in the following publications is observed: "Safe Disconnection for MOVIDRIVE® MDX60B/61B".

2.3 Hoist applications

MOVIDRIVE® MDX60B/61B may not be used as a safety device in hoist applications. Use monitoring systems or mechanical protection devices as safety equipment to avoid possible damage to property or injury to people.

2.4 Product names and trademarks

The brands and product names in this manual are trademarks or registered trademarks of the titleholders.

2.5 Disposal

Please follow the current national regulations.

Dispose of the following materials separately in accordance with the country-specific regulations in force, as:

- Electronics scrap
- Plastics
- Sheet metal
- Copper

3 System Description

3.1 Areas of application

The DIP11B/DEH21B absolute encoder card options expands the MOVIDRIVE® system to include an SSI connection for absolute encoders. This permits positioning functions to be implemented with IPOS^{plus}® that offer the following opportunities:

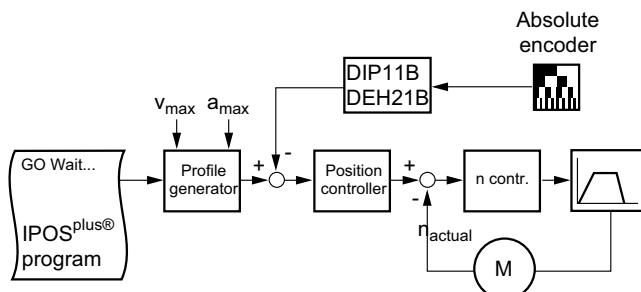
- No reference travel required when the system is started or after a power failure.
- Positioning can take place either with the absolute encoder or the motor encoder.
- Replacement of positioning switches along the travel distance even without motor encoder feedback.
- Free processing of the absolute position in the IPOS^{plus}® program.
- Both synchronous and asynchronous motors can be used in all MOVIDRIVE® operating modes (P700P701).
- The absolute encoder can be mounted either on the motor or along the track (e.g. high-bay warehouse).
- Simple encoder adjustment with user-guided startup.
- Endless positioning in combination with activated modulo function. Pay attention to the notes in the "IPOS^{plus}® manual" as well as the MOVIDRIVE® MDX60B/61B system manual (→ section "Parameter descriptions").

NOTE	
	It is not possible to operate the DIP11B and the DEH21B simultaneously.

3.2 Applicable absolute encoders

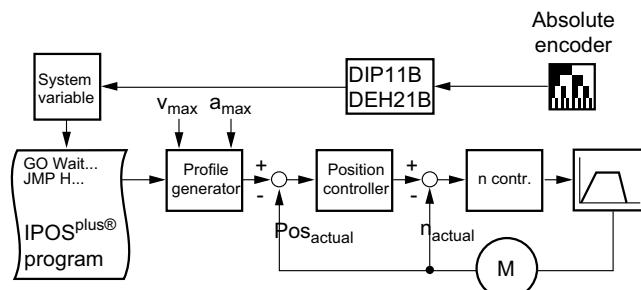
Connect only those encoders listed in the following table to the DIP11B and the DEH21B option.

Manufacturer	Encoder designation	Order designation	Comments
Hübner	HMG161-S24 H2048 (AH7Y)	-	Rotary encoder
Heidenhain	ROQ 424 (AV1Y)	586638-82	Rotary encoder
Elgo	LIMAX2-00-030-0125-SSG1-D9M3	-	Linear distance sensor
Balluf	BTL5-S112-M1500-P-S32	-	Linear distance sensor
TR-Electronic	TR CE58	Cx58xxxSSI	Rotary encoder
	TR CE65	Cx65xxxSSI	Rotary encoder
	TR CE100MSSI	Cx100xxxMSSI	Rotary encoder
	TR ZE65 M	Zx65xxxSSI	Rotary encoder
	TR LA41K SSI	304-00319-xxxx	Linear distance sensor
	TR LA66K SSI	-	Linear distance sensor
	TR LE100 SSI	LE100SSI	Laser distance measuring instrument
	TR LE200	2200-20002	Laser distance measuring instrument
	Leuze BPS37	BPS37xx MA4.7	Barcode measuring system
Leuze-electronic	Leuze OMS1	-	Laser distance measuring instrument
	Leuze OMS2	OMS2xx PB	Laser distance measuring instrument
	AMS200	-	Laser distance measuring instrument
	Fritz Kübler	9081	Rotary encoder
MTS Sensors	Tempsonics RP	RP-x-xxxxM-xxx-1-S3Gx105	Linear distance sensor
	Tempsonics RH	RH-x-xxxxM-xxx-1-S3Gx105	Linear distance sensor
	Tempsonics RF	RF-x-xxxxM-xxx-1-S3Gx105	Linear distance sensor
	Tempsonics RD3	RD3-x-xxxxM-xxx-1-S3Gx105	Linear distance sensor
IVO	GM 401	GM401.x20 xxxx	Rotary encoder
	GXMMW	GXMMW.x20 2PA2	Rotary encoder
Sick / Stegmann	Sick ATM60	ATM60 AxA12*12	Rotary encoder
	Sick DME 3000	DME 3000-x11	Laser distance measuring instrument
	Sick DME 4000	DME 4000-x11	Laser distance measuring instrument
	Sick DME 5000	DME 5000-x11	Laser distance measuring instrument
	Stegmann AG100 MSS1	-	Rotary encoder
	Stegmann AG626	ATM60 AxA12*12	Rotary encoder
	POMUX KH53	-	Linear distance sensor
Pepperl & Fuchs	AVM58X-1212	-	Rotary encoder
	WCS2A ¹⁾	WCS2A-LS311	Barcode distance sensor
	WCS3A ¹⁾	WCS3A-LS311	Barcode distance sensor
	EDM ²⁾	-	Laser distance measuring instrument


1) Previously STAHL

2) Previously VISOLUX

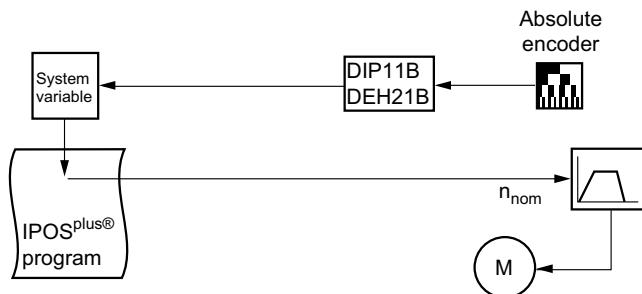
3.3 DIP11B/DEH21B and processing in IPOSplus®


Direct position control with absolute encoder (case 1)

62681AEN

- Direct position control in IPOSplus® by means of the absolute encoder connected via DIP11B/DEH21B option.
- An encoder (X15) is always required on the motor for speed feedback.
- Automatic slip compensation between the encoder of the motor and the absolute encoder.
- In IPOSplus®, positioning commands such as GOA ..." are performed with reference to the source actual position (in this case: absolute encoder connected to the DIP11B/DEH21B).
- The dynamic response that can be achieved depends on the properties and the installation of the absolute encoder as well as the position resolution.

Position control with incremental encoder on motor, processing of absolute encoder position in the IPOSplus® program (case 2)



62682AEN

- Position control takes place in IPOSplus® with motor encoder connected to motor.
- An encoder is always required on the motor for speed feedback.
- The high dynamic response of the inverter can be used directly for positioning.
- The position information of the absolute encoder is automatically reflected in an IPOSplus® variable and can be processed using program control.
- With DIP11B/DEH21B, a reference travel is not necessary.

Processing of the absolute encoder position in the IPOS^{plus}® program (case 3)

62683AEN

- The position information of the absolute encoder is automatically reflected in an IPOS^{plus}® variable and can be processed using program control.
- The DIP11B and DEH21B options can be used in particular to replace applications in which positioning usually takes place using rapid speed/creep speed by means of several proximity switches.
- No encoder is required on the motor for speed feedback; a standard asynchronous motor can be used.

3.4 Encoder sensing

- The counting direction can be set using parameters.
- When an encoder is replaced, startup must be repeated using MOVITOOLS®. Individual parameters can also be altered using the DBG60B keypad.
- The unit comes equipped with an automatic setting function for parameters in case the encoder is replaced.

3.5 Encoder monitoring

The DIP11B/DEH21B options come equipped with the following monitoring and correction mechanisms; these are necessary because the SSI interface does not have its own protocol safeguard feature.

- If supported by the encoder: Evaluation of a power failure or error bit (bit 25).
- Plausibility check of the actual position signaled by the encoder.
- Compensation of delays due to read cycles of the encoder (refresh time).

3.6 Control functions

- **Touch-Probe function**

Touch probe makes it possible to detect the current position of the absolute encoder with minimum time delay. For example, this makes it possible to register positions very precisely using proximity switch signals and process these positions in the program.

- **Modulo function**

Applications with infinite rotation, such as conveyor belts or rotary tables can be represented in modulo format ($360^\circ \triangleq 2^{16}$).

There will be no position loss (even in case of a gear unit ratio i with a relatively large number of decimal positions).

It can be positioned endlessly without a position loss.

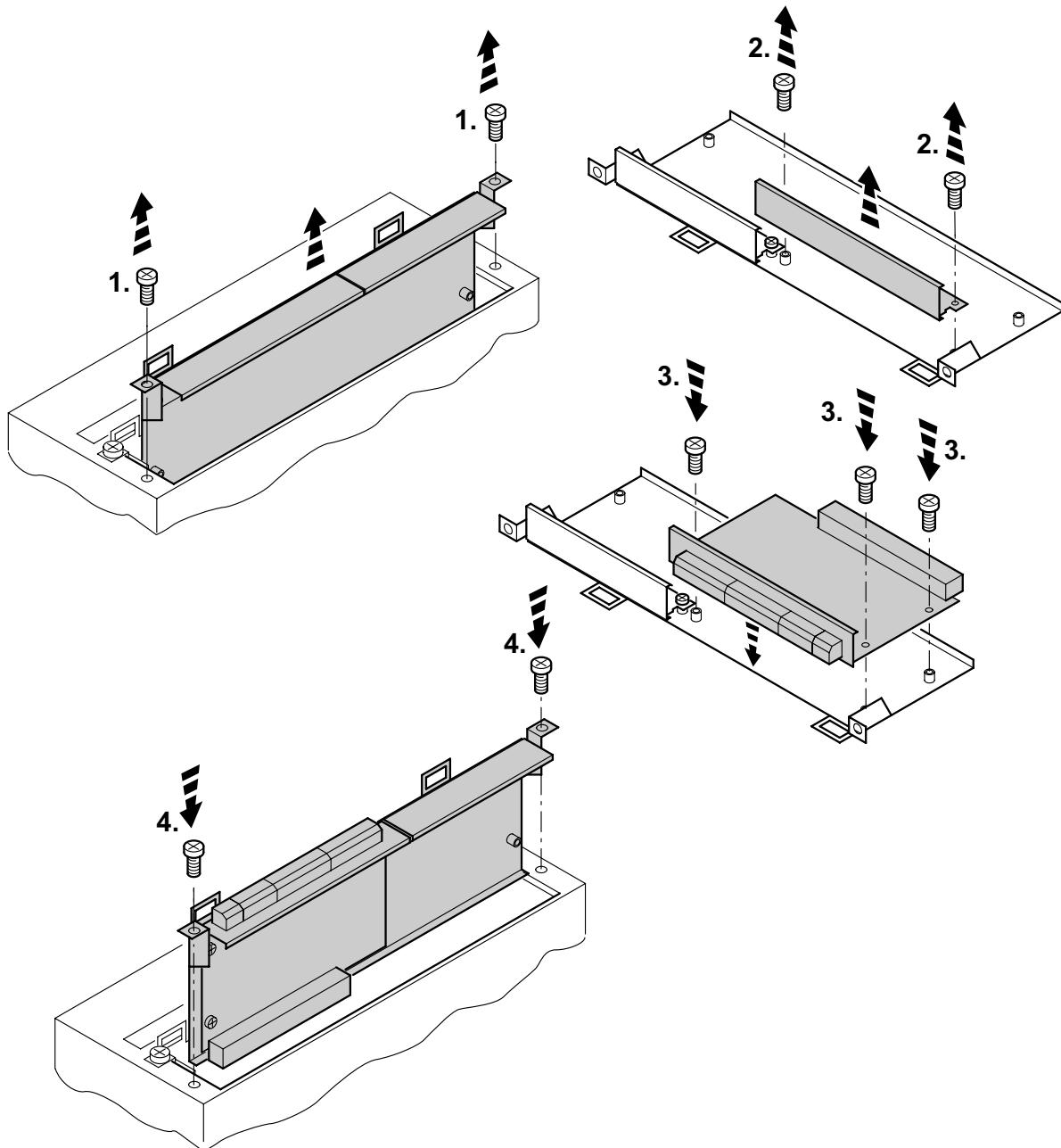
4 Assembly/Installation

Before you begin Do not use the DIP11B and the DEH21B simultaneously.

Read the following notes before installing or removing the DIP11B or DEH21B option card:

- Disconnect the inverter from the power. Switch off the DC 24 V and the supply voltage.
- Take appropriate measures to protect the option card from electrostatic charge (use discharge strap, conductive shoes, etc.) before touching it.
- **Before installing** the option card, remove the keypad and the front cover.
- **After installing** the option card, replace the front cover and the keypad.
- Keep the option card in its original packaging until immediately before you are ready to install it.
- Hold the option card by its edges only. Do not touch any components.

4.1 Mounting the DIP11B option card


NOTES	
	<ul style="list-style-type: none"> • The DIP11B option can only be installed in MOVIDRIVE® MDX61B sizes 1 to 6, not in MOVIDRIVE® MDX61B size 0. • The DIP11B option card must be installed in the expansion slot. • The DIP11B option must be supplied with 24V DC. Observe the 'Project Planning' chapter in the MOVIDRIVE® MDX60B/61B system manual.

4.2 Mounting the DEH21B option card

NOTES	
	<ul style="list-style-type: none"> • The DEH21B option card can be installed in MOVIDRIVE® MDX61B sizes 0 to 6. Only SEW-EURODRIVE staff may install or remove the DEH21B option for MOVIDRIVE® MDX61B size 0. • The DEH21B option card must be plugged into the encoder slot. • The DEH21B option must be supplied with 24V DC. Observe the 'Project Planning' chapter in the MOVIDRIVE® MDX60B/61B system manual.

Basic procedure for installing and removing option cards (MDX61B, sizes 1 to 6)

60039AXX

Figure 1: Installing an option card in MOVIDRIVE® MDX61B sizes 1 to 6

1. Remove the retaining screws holding the card retaining bracket. Pull the card retaining bracket out evenly from the slot (do not twist).
2. Remove the retaining screws of the black cover plate on the card retaining bracket. Remove the black cover plate.
3. Position the option card onto the retaining bracket so that the retaining screws fit into the corresponding bores on the card retaining bracket.
4. Insert the retaining bracket with installed option card into the slot, pressing slightly so it is seated properly. Secure the card retaining bracket with the retaining screws.
5. To remove the option card, follow the instructions in reverse order.

4.3 Notes for combining DIP11B with DIO11B

The DIPI11B option card must be installed in the expansion slot. All parameters relevant to the DIP11B can be set using the DBG60B keypad.

Observe terminal assignment

MOVIDRIVE® MDX61B allows for the assignment of eight binary input terminals and eight binary output terminals on one option card. In case the DIP11B option is used with the DIO11B option card or a fieldbus option, note the listed grouping of input and output terminals.

Terminal assignment of the input terminals (DI10 ... DI17)

	Function	Option			
		DIO11B	DIP11B	DIO11B	DIP11B
Read terminals with	Variable	H483 ¹⁾		H520	
	Bit	DIP11B with DIO11B	6 ... 13	14 ... 21	8 ... 15
Parameter 61... effective for	DIP11B with or without fieldbus card	-	6 ... 13	-	8 ... 15
	DIP11B with DIO11B	Yes	-	Yes	-
	DIP11B with or without fieldbus card	-	Yes	-	Yes

1) H483 is only documented for compatibility reasons. SEW-EURODRIVE recommends to use the H520 variable with MOVIDRIVE® B.

Terminal assignment of the output terminals (DO10 ... DO17)

	Function	Option			
		DIO11B	DIP11B	DIO11B	DIP11B
Read terminals with	Variable	H480 ¹⁾		H521	
	Bit	DIP11B with DIO11B	0 ... 7	8 ... 15	6 ... 13
Parameter 63... effective for	DIP11B with or without fieldbus card	-	0 ... 7	-	8 ... 15
	DIP11B with DIO11B	Yes	-	Yes	-
	DIP11B with or without fieldbus card	-	Yes	-	Yes

1) H480 is only documented for compatibility reasons. SEW-EURODRIVE recommends to use the H521 variable with MOVIDRIVE® B.

It is always possible to set and read terminals with variables, regardless of the additional option used along with the DIP11B. If the DIP11B is used in conjunction with a fieldbus card, the virtual fieldbus terminals are only available in IPOS^{plus®} by reading the process output data (GETSYS Hxxx PO-DATA).

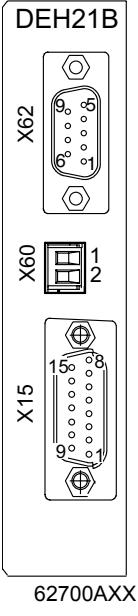
4.4 Connection and terminal description of the DIP11B option

Part number Absolute encoder card option type DIP11B: 824 969 5

NOTE	
	The DIP11B option must be supplied with 24V DC. Observe the 'Project Planning' chapter in the MOVIDRIVE® MDX60B/61B system manual.

Front view of DIP11B	Description	Terminal	Function
	X60: Connection binary inputs X61: Connection binary outputs X62: Connection absolute encoder	X60:1 ... 8 X60:9 X60:10 X61:1 ... 8 X61:9	Connection binary inputs DI10 ... DI17 isolated via optocoupler ($R_i=3\text{ k}\Omega$, $I_E=10\text{ mA}$, scanning time 1 ms, PLC compatible) Signal level (according to EN 61131-2): "1" = DC+13 V ... DC+30 V "0" = DC-3 V ... DC+5 V DCOM reference for binary inputs DGND reference potential for binary signals and 24VIN (X61:9): <ul style="list-style-type: none"> Without jumper X60:9-X60:10 (DCOM-DGND) → Isolated binary inputs With jumper X60:9-X60:10 (DCOM-DGND) → Non-isolated binary inputs Connection binary outputs DO10 ... DO17 (response time 1 ms, PLC compatible) Signal level (Do not apply external voltage!): "1" = DC 24 V "0" = DC 0 V $I_{max} = DC\ 50\text{ mA}$, short-circuit proof and protected against external voltage to DC 30 V 24VIN Input supply voltage: Mandatory for binary outputs and encoders (reference potential DGND) Data + Reserved Cycle + Reserved DGND Data – Reserved Cycle – DC 24 V output

STOP!	
	You must neither install nor remove an encoder connected to X62 during operation. Electrical components in the encoder or on the encoder card could be destroyed. De-energize the inverter before plugging or removing the encoder connection. Switch off the mains voltage and the DC 24 V (X10:9 at the inverter and X61:9 at the DIP11B option)


Assembly/Installation

Connection and terminal description of the DEH21B option

4.5 Connection and terminal description of the DEH21B option

Part number Encoder card option DEH21B: 1820 818 5

	NOTE
	The DC 24 V power supply of an encoder connected to X62 is ensured when X60 is supplied with DC 24 V. Observe the 'Project Planning' chapter in the MOVIDRIVE® MDX60B/61B system manual.

Front view of DEH21B	Description	Terminal	Function
	X62: Connection absolute encoder X60: Power supply X15: Motor encoder input	X62:1 X62:2 X62:3 X62:4 X62:5 X62:6 X62:7 X62:8 X62:9 X60:1 X60:2 X15:1 X15:2 X15:3 X15:4 X15:5 X15:6 X15:7 X15:8 X15:9 X15:10 X15:11 X15:12 X15:13 X15:14 X15:15	Data + Reserved Cycle + Reserved DGND Data – Reserved Cycle – DC 24 V output 24VIN DGND (COS+) signal track A (K1) (SIN+) signal track B (K2) Signal track C (K0) DATA + Reserved Reference potential TF/TH/KTY – Reserved Reference potential DGND (COS-) Signal track A (K1) (SIN-) Signal track B (K2) Signal track C (K0) DATA - Reserved TF/TH/KTY+ connection DC+12 V (tolerance range DC 10.5 ... 13 V) (max. load DC 650 mA)

	STOP!
Encoders connected to X15 and X62 must not be installed or removed during operation. Electrical components in the encoder or on the encoder card could be destroyed. De-energize the inverter before plugging or removing the encoder connections. Switch off the mains voltage and the DC 24 V (X10:9 at the inverter and X60:1 at the DEH21B option).	

	NOTE
The DC 12 V supply voltage from X15 is sufficient to operate SEW encoders (except HTL encoders) with a DC 24 V supply voltage. With all other encoders, check whether they can be connected to the DC 12 V supply voltage.	

4.6 DC 24 V power supply of the DIP11B/DEH21B

The DIP11B/DEH21B absolute encoder cards must be supplied with DC 24 V at the 24VIN voltage input (DIP11B at X61:9, DEH21B at X60:1) You have the following two options to provide this DC 24 V power supply.

Option 1: Power supply via basic unit

DC 24 V power supply via the auxiliary voltage output VO24 (X10:8) of the basic unit.

This is only permitted if

- the total load of all outputs of the basic unit and the currently connected options (including encoder) is less than 400 mA.
- and the total power output of the switched mode power supply is < 29 W

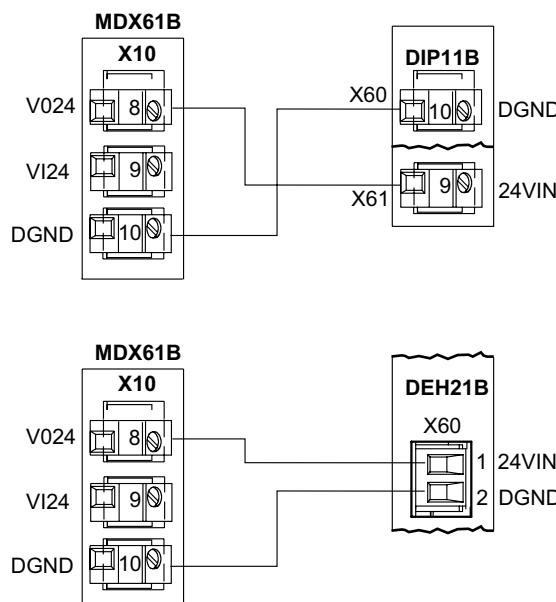


Figure 2: Wiring diagram of the auxiliary voltage output VO24

62705AXX

Assembly/Installation

DC 24 V power supply of the DIP11B/DEH21B

Option 2: External power supply

DC 24 V power supply via an external 24 V power supply unit. This is necessary when

- the total load of all outputs of the basic unit and the currently connected options (including encoder) is more than 400 mA.
- and the total power output of the switched mode power supply is > 29 W

The following figure shows two wiring examples (A and B).

In wiring example B, make sure that the **external DC 24 V power supply of the DIP11B/DEH21B option is switched on before or together with the MOVIDRIVE® B power supply**. This ensures that the connected encoder is initialized in time.

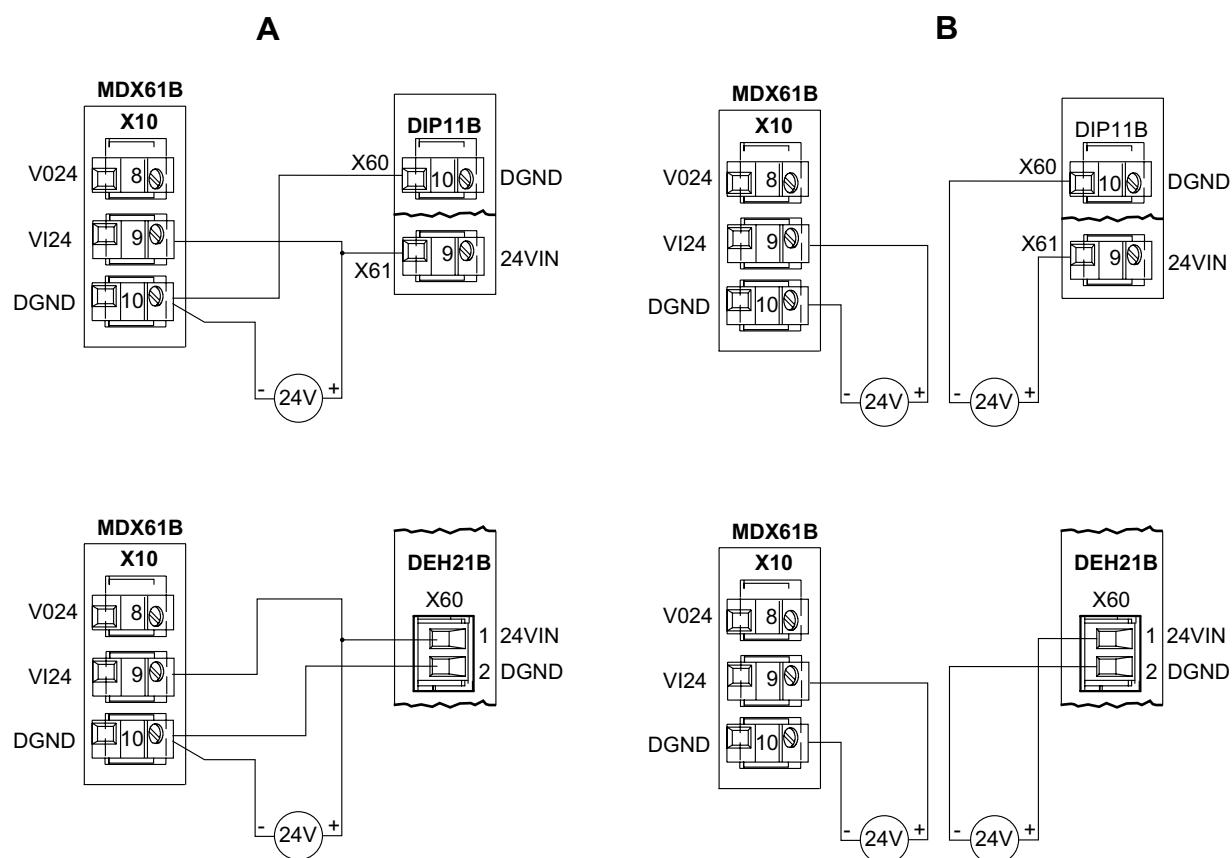
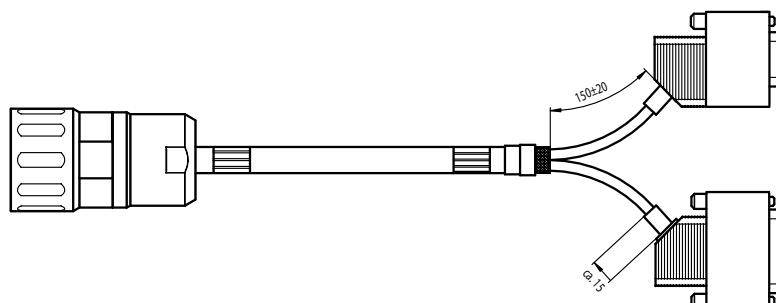


Figure 3: External power supply (wiring examples A and B)

62706AXX


4.7 Connecting an absolute encoder

General installation notes

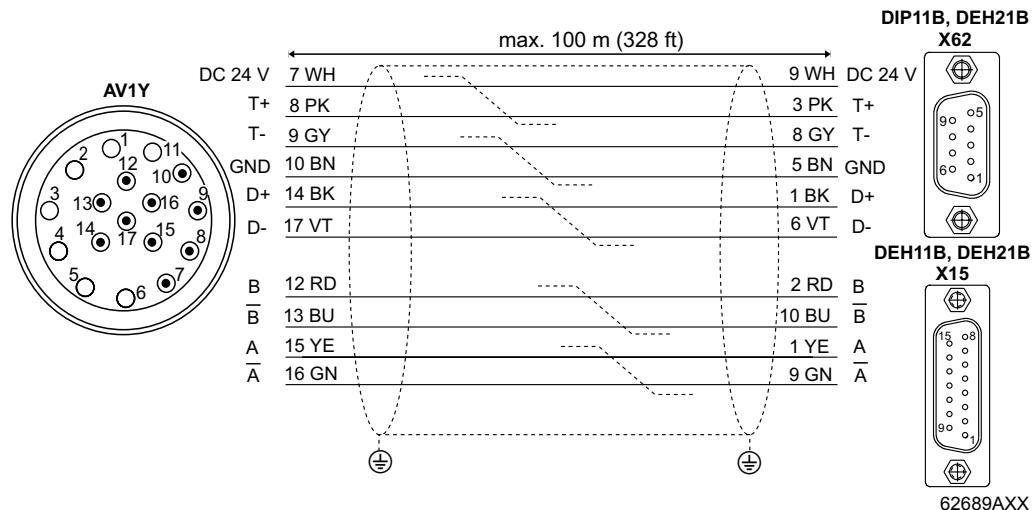

- Max. line length DIP11B/DEH21B option (inverter) - absolute encoder: 100 m (328 ft) with a capacitance per unit length 120 nF/km (exception: 10 m (33 ft) for Stahl WCS2-LS311, WCS3)
- Core cross section: 0,20 ... 0,5 mm² (AWG24 ... AWG21)
- Use shielded cables with twisted pair conductors and make sure they are grounded on both ends over a large surface area:
 - At the encoder in the cable gland or in the encoder plug
 - to the inverter in the housing of the sub D plug or
 - to the metal clamp/strain relief on the bottom of the inverter
- Route the encoder cable separately from the power cables.

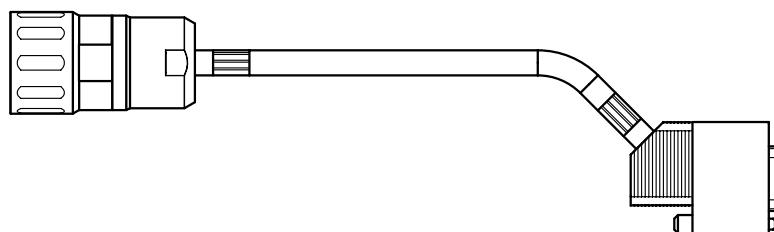
Prefabricated cables/wiring diagrams

- Wiring diagram for absolute encoder at the DIP11B or DEH21B option:

- Y cable to connect the AV1Y absolute encoder with plug connector on the motor side. The following encoder tracks are evaluated with the Y cable:
 - SSI track of the AV1Y absolute encoder at X62 of the DIP11B or DEH21B
 - sin/cos track of the AV1Y absolute encoder at X15 DEH11B or DEH21B

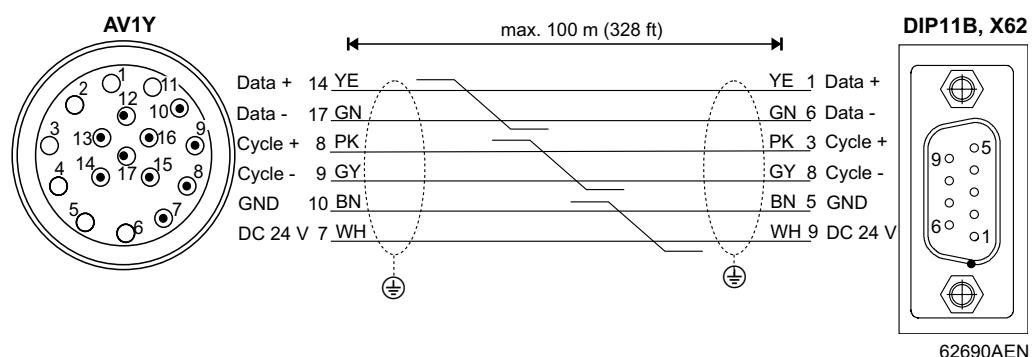
Part numbers of the prefabricated cables:


- For fixed routing: 1332 813 1
- For cable carrier routing: 1332 812 3


Assembly/Installation

Connecting an absolute encoder

Wiring diagram for the Y cable:


- CM and DS motors with integrated resolver: Additional cable to connect the AV1Y absolute encoder with plug connector connection on the motor side to DIP11B X62. A connection to the DEH21B X62 is not possible.

Part numbers of the prefabricated cables:

- For fixed routing: 198 929 4
- For cable carrier routing: 198 930 8

Wiring diagram:

5 Project Planning

5.1 Encoder selection

When selecting the absolute encoder, the following points should be considered to achieve optimum travel characteristics and good dynamic properties in the system:

- **Position measurement should be conducted without slip.**

Operate the encoder in positive engagement via toothed belt. Avoid all friction wheel connections.

- **Position measurement must be rigid.**

Avoid elasticity and clearance.

- **The resolution of the position measurement must be as high as possible.**

The more increments the encoder counts per unit-distance traveled,

- the more exactly it approaches the target position
- and the more rigid the control system can be set.

- **The "refresh time" (the time taken for the absolute encoder to determine a new actual position) should be less than 1 ms.**

This value exerts a decisive influence on the dynamic characteristics of the drive.

- **The position output by the absolute encoder should not be averaged or filtered**, otherwise the dynamic properties of the drive are severely reduced.

Encoders which can be used with the DIP11B/DEH21B option are divided into three categories as follows:

- Multiturn encoder, e.g. T&R CE58, CE 65, Sick ATM60
- Laser distance measuring devices, e.g. T&R LE200, Sick DME5000
- Linear distance measuring devices, e.g. Leuze BPS37, Stahl WCS2, Stahl WCS3

Multiturn encoder

- Multiturn encoders are ideally suited in applications with positive power transmission from the motor shaft to the load.

In this case, the absolute encoder can be mounted onto the motor shaft of the drive. This keeps the installation costs very low while the position resolution is generally very high due to the gear ratio.

- If the position measurement is performed using an externally mounted incremental encoder (synchronous encoder), it is essential to make sure the ratio between the encoder and the toothed belt is adequate.

NOTE	
	The ratio of position resolution between motor encoder and synchronous encoder must not exceed factor 8.

Example

Travel drive with the following data:

- Gearmotor: R97DV160L4BMIG11, $i = 25.03$
- Drive wheel diameter: 150 mm
- Encoder wheel diameter: 65 mm
- Encoder T&R CE65MSSI with: 4096 x 4096 increments

Calculation of position resolution with encoder mounted to motor shaft:

$$\rightarrow i \times 4096 / (\pi \times 150 \text{ mm}) = 217 \text{ increments/mm}$$

Calculation of position resolution with encoder mounted on the line:

$$\rightarrow 4096 / (\pi \times 65 \text{ mm}) = 20 \text{ increments/mm}$$

Result: The ratio between the position resolution of the motor/track is 10.9 (greater than 8). The diameter of the encoder wheel should be reduced.

Laser distance measuring units

Distance measurement with laser systems is based on a run-time measurement of pulsed infrared beams. Various measurement values have to be processed in the encoder to determine an accurate position with this procedure. The result is a delay in position measurement with these systems of up to 50 ms. This delay has a negative effect on the dynamics and positioning accuracy of the drive.

Consider the following points when using and configuring laser distance measuring devices:

- Ensure a vibration-free design when mounting the measurement system, e.g. in case of travel drives for storage/retrieval systems. Install the measuring system on the bottom in this instance because the swinging motion of the tower will otherwise have an adverse effect on the measurement.
- The maximum acceleration of the drive is not to exceed 0.8 ms^{-2} .
- The encoder characteristics will usually result in a positioning accuracy of $\pm 1 \dots 3 \text{ mm}$.
- The long delay
 - may demand a drastic reduction in velocity precontrol (P915).
 - may limit the amplification of the position controller (P910) to small values (0.1 ... 0.4). This means high dynamic properties cannot be achieved.
- There is a lag fault which is dependent on the speed, making it harder to monitor the drive (delayed shut-off in the event of a fault).

Material measure via metal rule

The operating principle of this system corresponds to that of the multiturn encoder. There is no averaging, so this system is not subject to a delay in position measurement.

A linear position measuring system offers the following advantages:

- No reduction in dynamic properties.
- Velocity precontrol (P915) of 100% means there is no lag fault.
- The monitoring functions are fully effective; a small lag fault window is possible.

Disadvantages of a linear position measuring system:

- Position resolution of 0.8 mm. The required positioning accuracy should not be less than $\pm 2 \text{ mm}$.
- Rather complicated mechanical installation due to the need for routing the metal rule.

5.2 Configuring the encoders

The following points must be observed in the design and construction of encoders and when setting their parameters:

- **For all configurable encoders applies:**
 - The interface must be set to "SSI".
 - 24 data bits + error bit or 24 data bits + 0 must be set in cycle 25.
 - Plausibility must be set to normal = 0 when the plausibility check is activated.
 - The coding must be set to "Gray".
- **HEIDENHAIN ROQ 424 (AV1Y)**

The SSI version with 10 ... 30 V is supported. The unit designation specifies all additional conditions.
- **T&R CE 58, CE 65, CE 100 MSSI, LE 100 SSI, LE 200, LA 66K-SSI, ZE 65**
 - Make a setting of 24 data bits and program signal bits to logical 0. Bit no. 25 may either contain 0 or an error or power fail bit. Other special bits following the position will not be evaluated. The 25-bit version is not supported.
 - The output mode must be "Direct".
 - The interface must be set to "SSI".
- **STEGMANN AG100 MSSI, AG626, ATM60**

Only the 24-bit version is supported.
- **SICK DME-5000-111**
 - The interface must be set to "SSI".
 - Set "24 data bits + error bit".
 - Set the resolution to 0.1 mm.
 - The plausibility must be set to "Normal".
- **STAHL WCS2-LS311, WCS3**

The unit designation specifies all necessary conditions. The line length to the encoder is not to exceed 10 m (33 ft.).
- **VISOLUX EDM 30/120/140 - 2347/2440**

All modes are supported. Recommendation: Mode 0 (DIP switches 3 and 4 in ON position) or mode 3 (DIP switches 3 and 4 in OFF position) and measuring for triple reflector (DIP switch 2 in OFF position).
- **LEUZE AMS200, OMS1, OMS2, BPS37**
 - Set "24 data bits + error bit".
 - Set the resolution to 0.1 mm.

6 Startup

6.1 General startup notes

The drive must be started up in conjunction with the MOVIDRIVE® MDX61B drive inverter as described in the MOVIDRIVE® MDX60B/61B system manual. It must be possible to move the drive using a suitable setpoint and control source.

Make sure that

- the installation of the DIP11B/DEH21B option
- Cabling
- the terminal assignment and
- Safety cut-outs

have been configured correctly and are suited to the application.

There is no need to activate the factory settings. If you call up a factory setting, the MOVIDRIVE® MDX61B parameters will be reset to the default values. This also affects the terminal assignment, which must be altered to the required settings if necessary.

6.2 *Startup with PC and MOVITOOLS®*

MOVITOOLS® software version 4.60 or higher is required for startup with a PC.

General information

- Terminal X13:1 (DIØØ "/CONTROLLER.INHIBIT") must receive a "0" signal!
- Start MOVITOOLS®.
- Select the language you want in the "Language" selection field.
- From the "PC-COM" drop down menu, select the PC port (e.g. COM 1) to which the inverter is connected.
- In the "Device type" field, select "MOVIDRIVE B".
- In the "Baudrate" field, select the baud rate set on the basic unit with the DIP switch S13 (standard setting → "57.6 kBaud").
- Click the [Update] button to display the connected inverter.

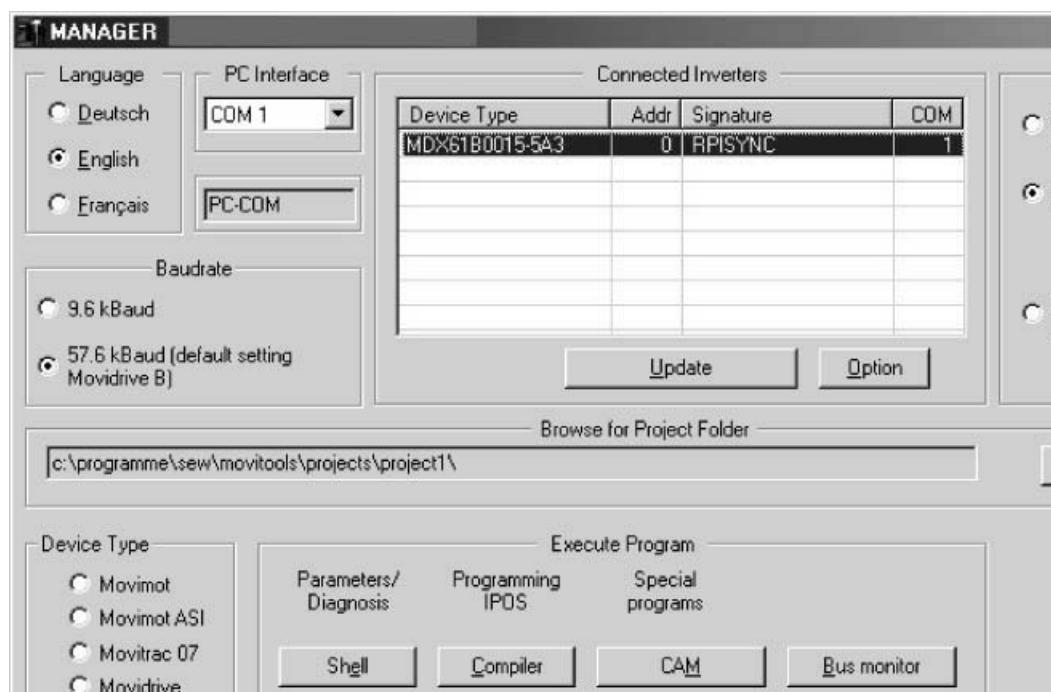


Figure 4: MOVITOOLS® initial screen

10708AFN

- Before you startup up the DIP11B/DEH21B option, you have to startup the connected MOVIDRIVE B® unit.

Startup

Startup with PC and MOVITOOLS®

Commencing startup

- In the "Execute Program" selection field, press the "Shell" button under "Parameters/Diagnosis". The Shell program is started.
- In the Shell program, select [Startup]/[DIP/DEH21B Startup] menu command.

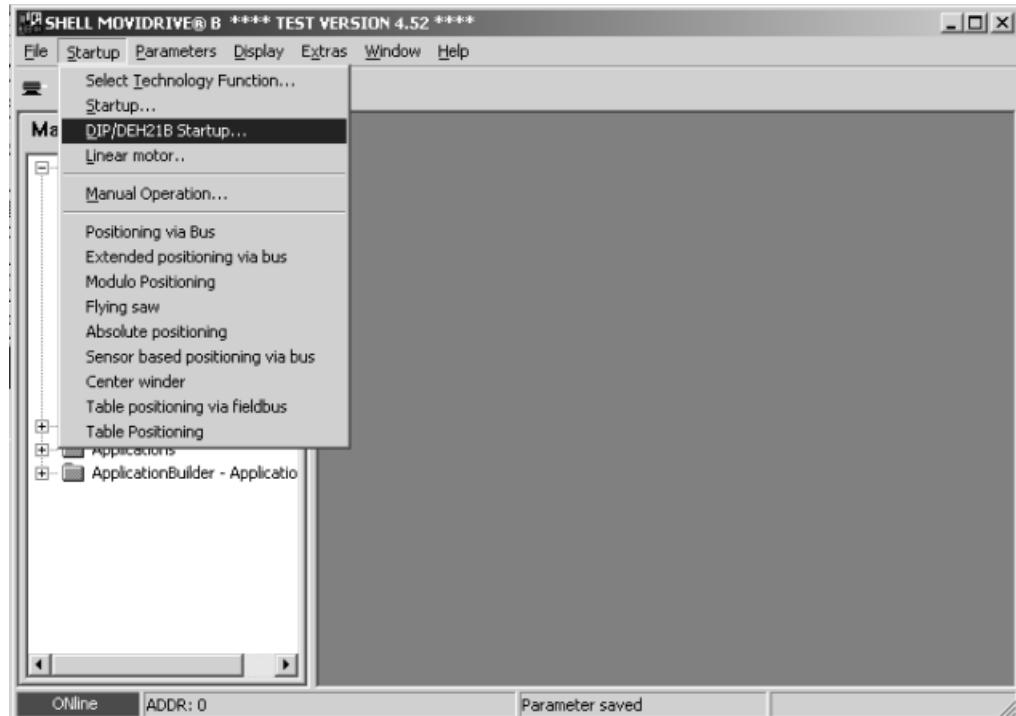
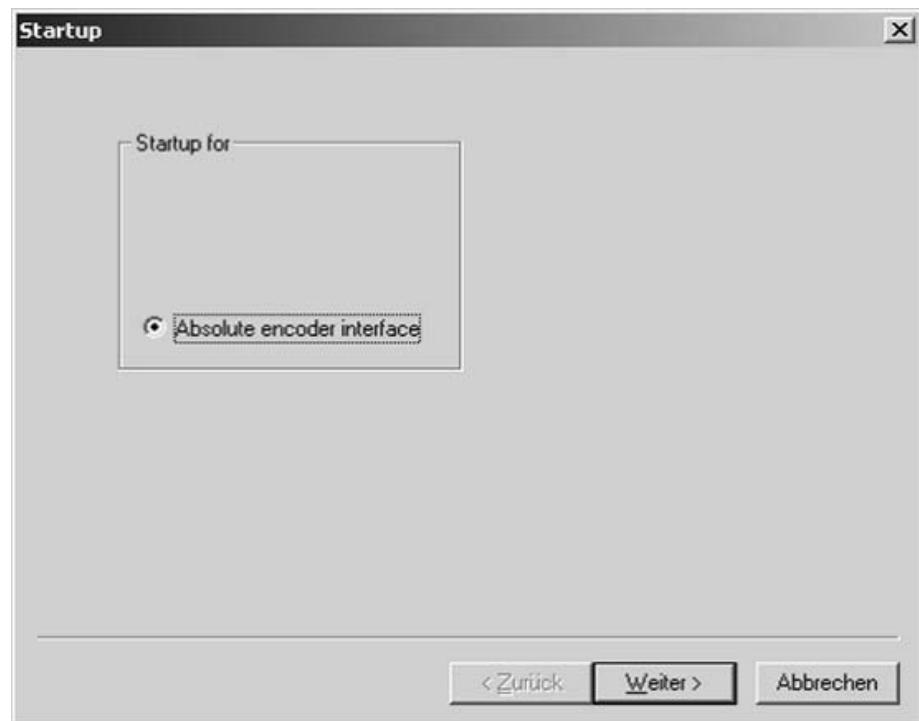
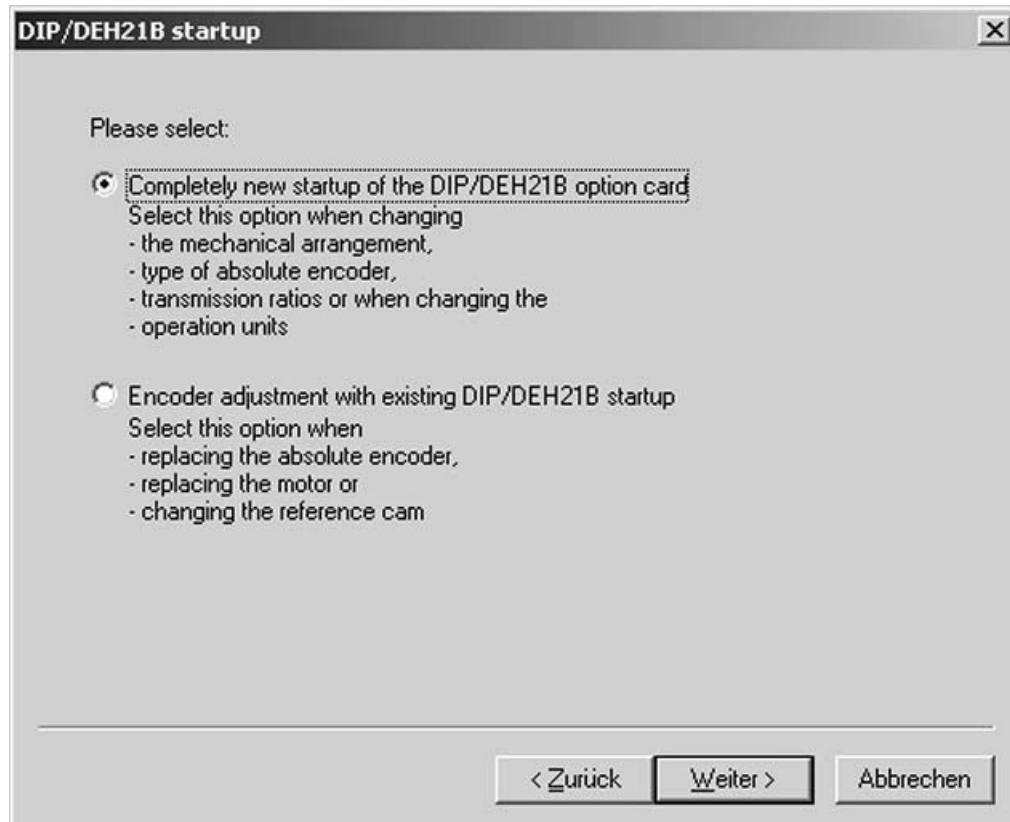



Figure 5: Open DIP/DEH21B-startup

11850AEN


- MOVITOOLS® opens the startup menu for DIP/DEH21B absolute encoders (→ following figure). For questions on startup, refer to the MOVITOOLS® online help. Click [Next] to continue.

11852AEN

**New startup of
the
DIP11B/DEH21B**

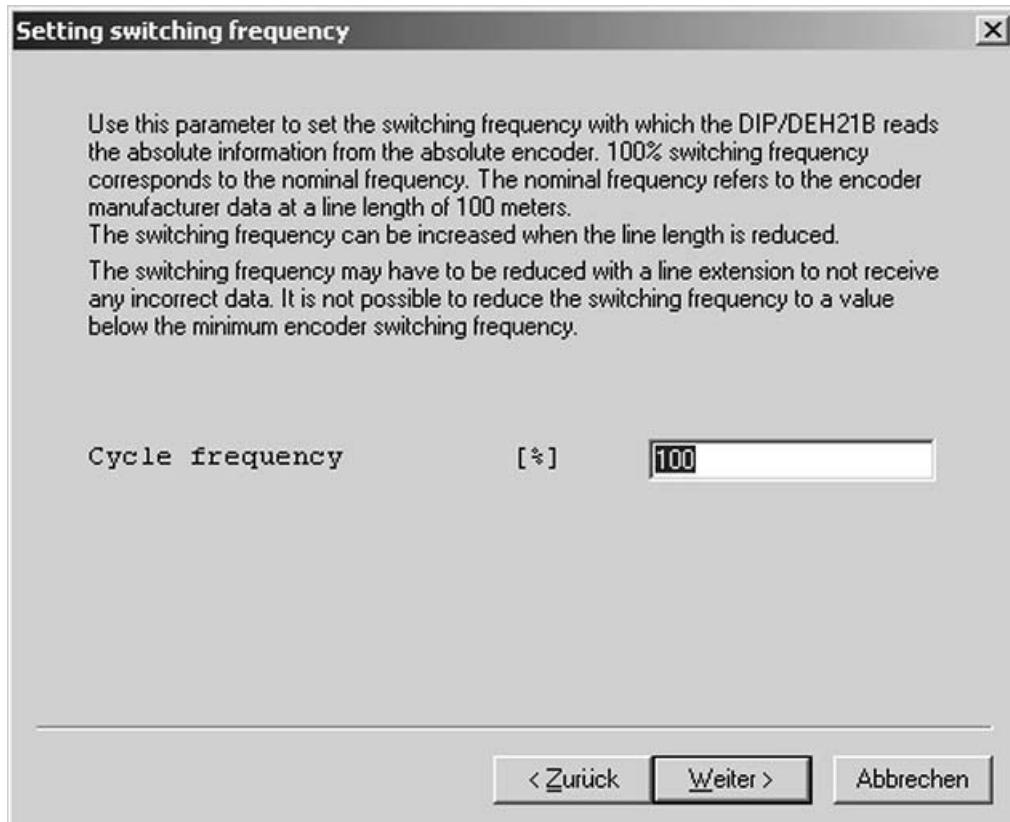

11853AEN

Figure 6: Set desired startup

- Choose one of the following options and click the [Next] button:
 - Completely new startup of the DIP11B/DEH21B option card after initial installation, for example
 - Restartup of the DIP11B/DEH21B , for example after having replaced the absolute encoder (→ "Restartup of the DIP11B/DEH21B").
- The following sections describe a complete new installation of the DIP11B/DEH21B option card.

Setting the cycle frequency

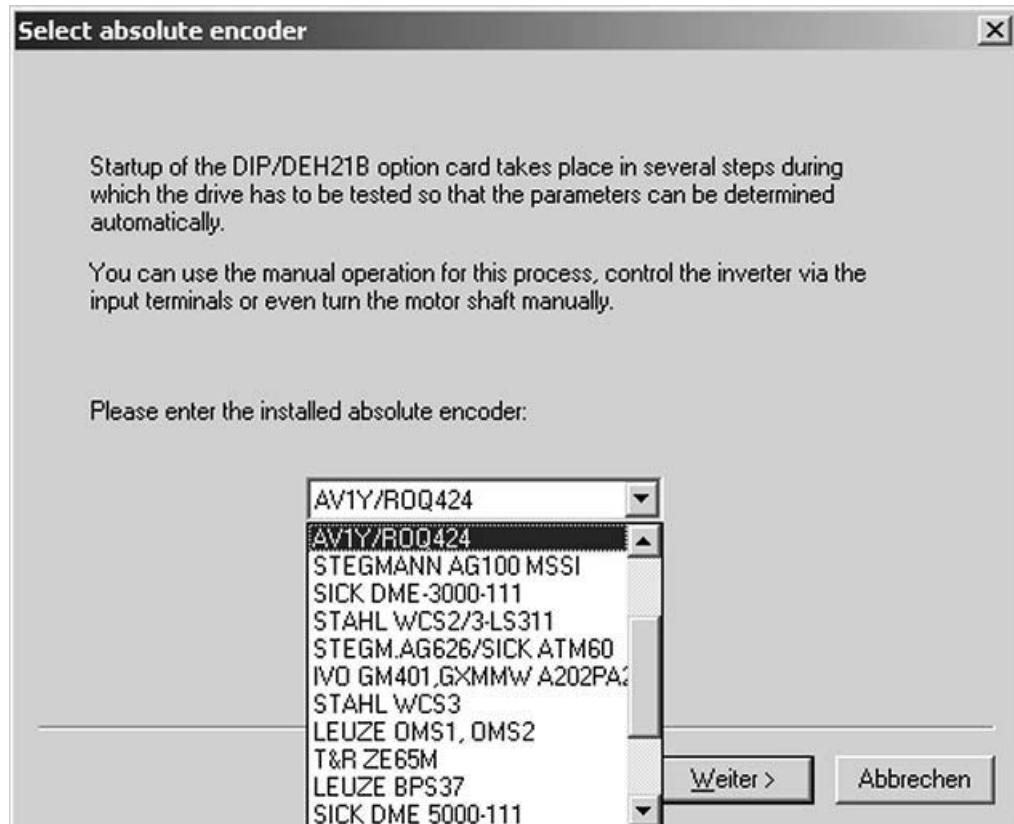

11854AEN

Figure 7: Setting the cycle frequency

- Set the cycle frequency at which the DIP11B/DEH21B reads the absolute information of the absolute encoder. 100% cycle frequency corresponds to the nominal frequency. The nominal frequency relates to the encoder manufacturers information for a cable length of 100 m (→ Section "Encoder connection").
- If the line length is < 100 m (328 ft.), you can increase the cycle frequency. Reading out the position values more quickly improves the closed-loop control properties. The cycle frequency may not be less than the minimum encoder cycle frequency.
- Click [Next].

Select absolute
encoder

11859AEN

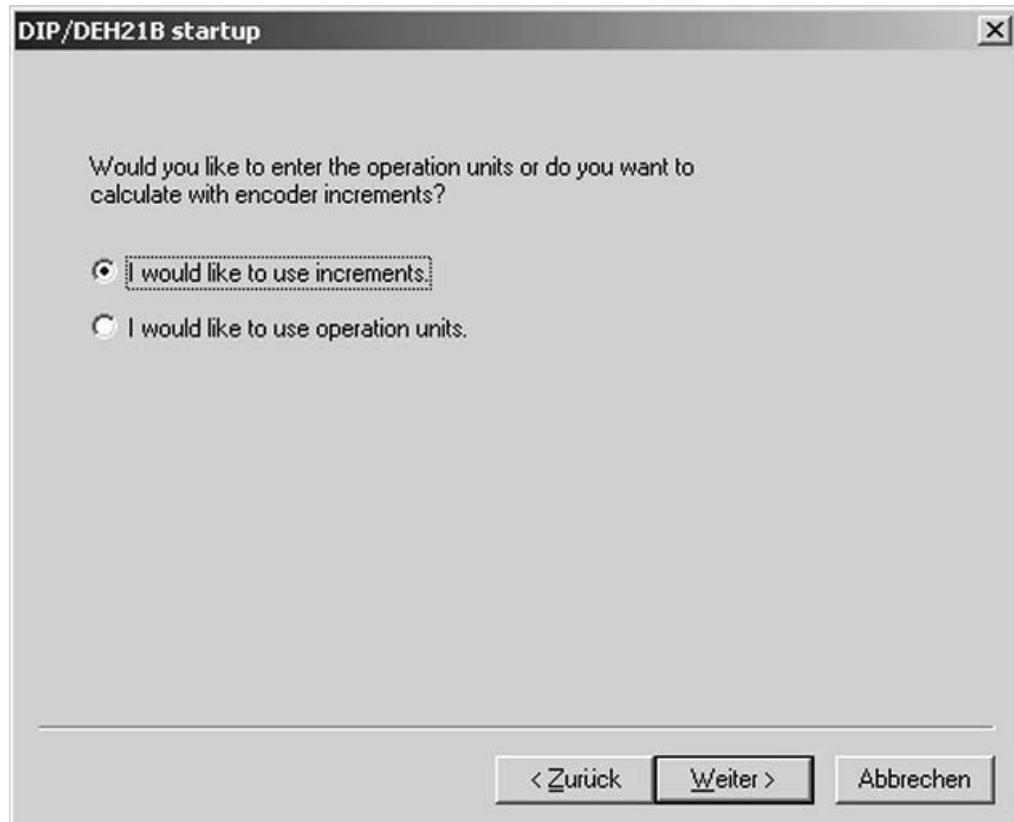
Figure 8: Select absolute encoder

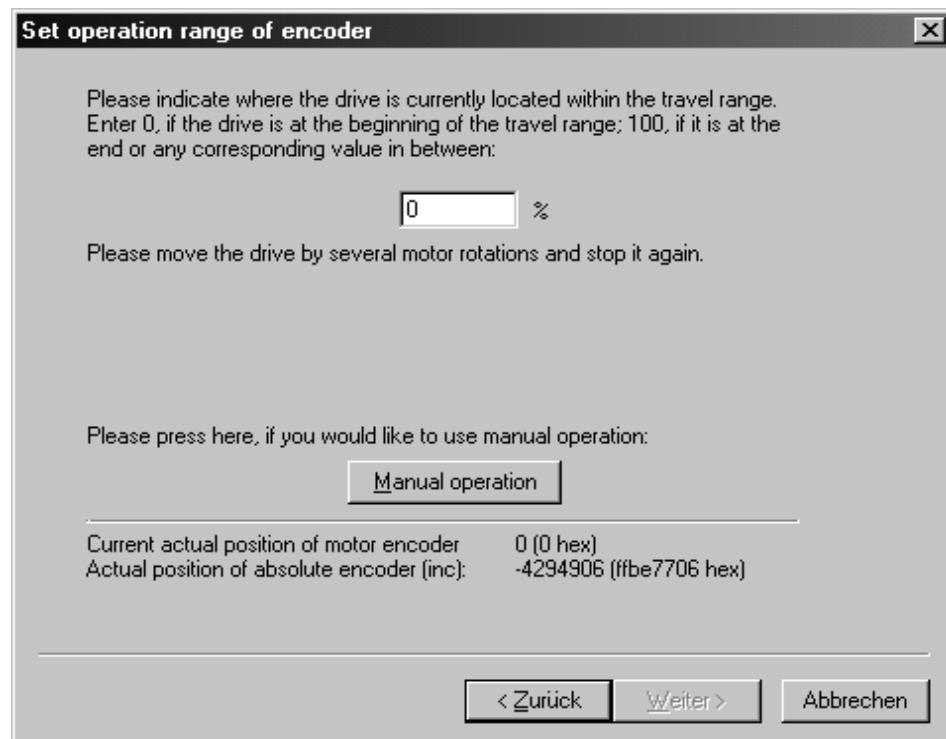
- Select the connected absolute encoder from the list of possible encoders.
- Click [Next].

Startup

Startup with PC and MOVITOOLS®

Choose the increments or user units option




Figure 9: Select increment option

11855AEN

- Select one of the two options "I would like to use increments" or "I would like to use operation units". Click [Next] to continue.

Set the operation range of the encoder

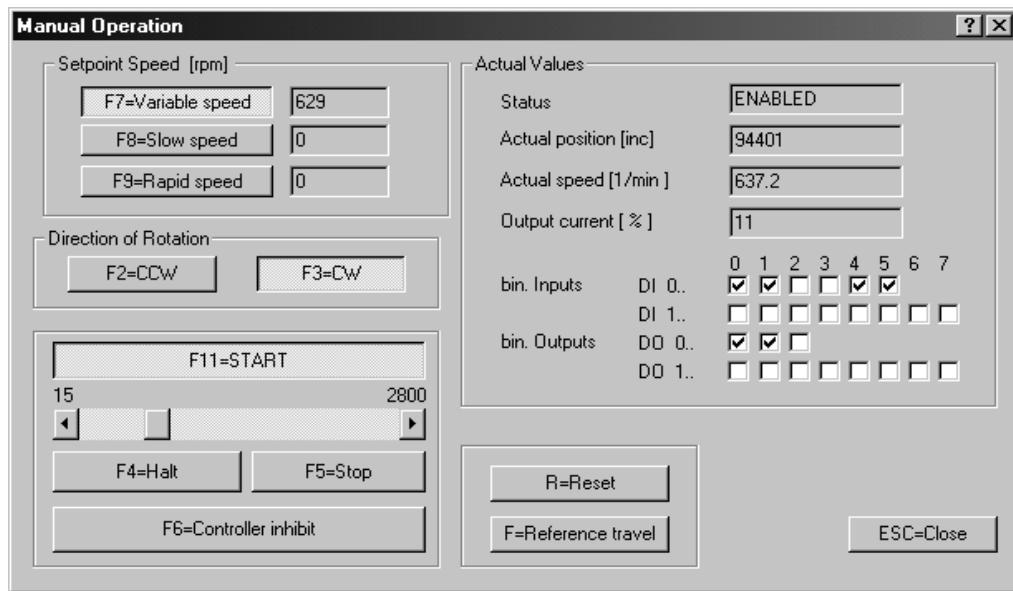

10773AEN

Figure 10: Setting the relation between connected encoder and motor encoder

- You will have to move the drive by a few motor revolutions to set the relation between connected encoder and motor encoder. Click [Next]. The "Parameter" window opens (→ section "Entering IPOS^{plus®} parameters").
- If you want to operate the drive in manual mode, click the "Manual operation" button. The "Manual operation" window opens (→ section "Manual operation").

Manual operation

10715AEN

Figure 11: Setting reference travel in manual operation

- Use buttons [F7=variable speed], [F8=slow speed] or [F9=fast speed] to set the set-point speed.
- Set binary input DI00 "/Controller inhibit" to the value "1".
- Use buttons [F2=CCW] and [F3=CW] to set direction of rotation.
- Click on button [F11=START] and move the drive by a few motor revolutions.
- Click on button [F5=Stop] and reset binary input DI00 to "0". Click ESC=Close[. The current encoder setpoint will be activated. Confirm the next message with [OK].
- The window "Operation range of the encoder" will open up once again. Click [Next] to continue.

Enter IPOS^{plus®}
parameters

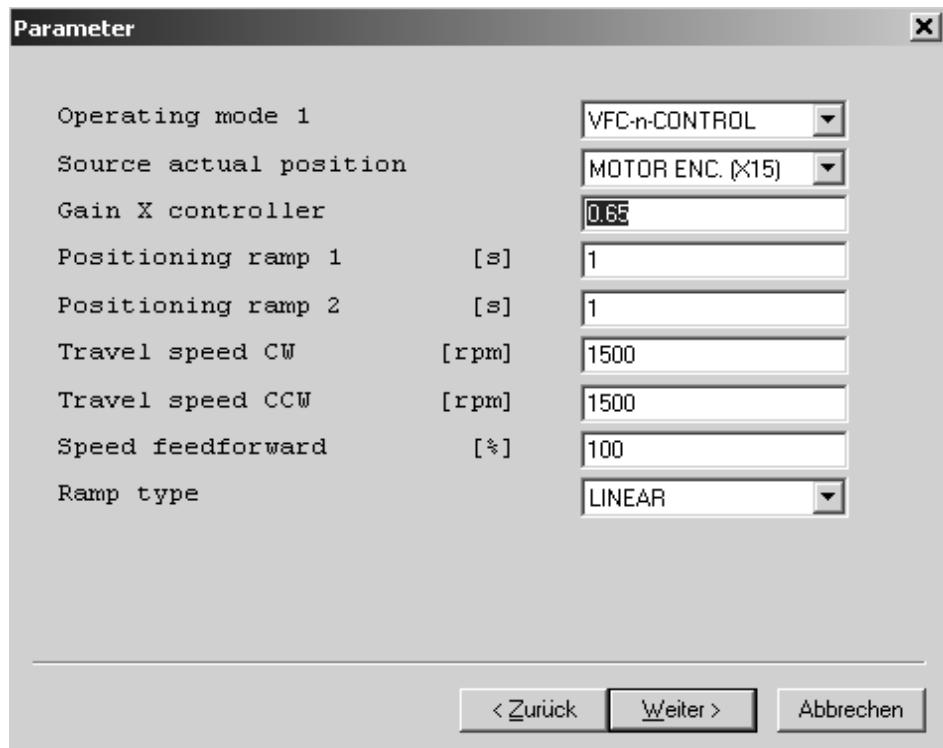
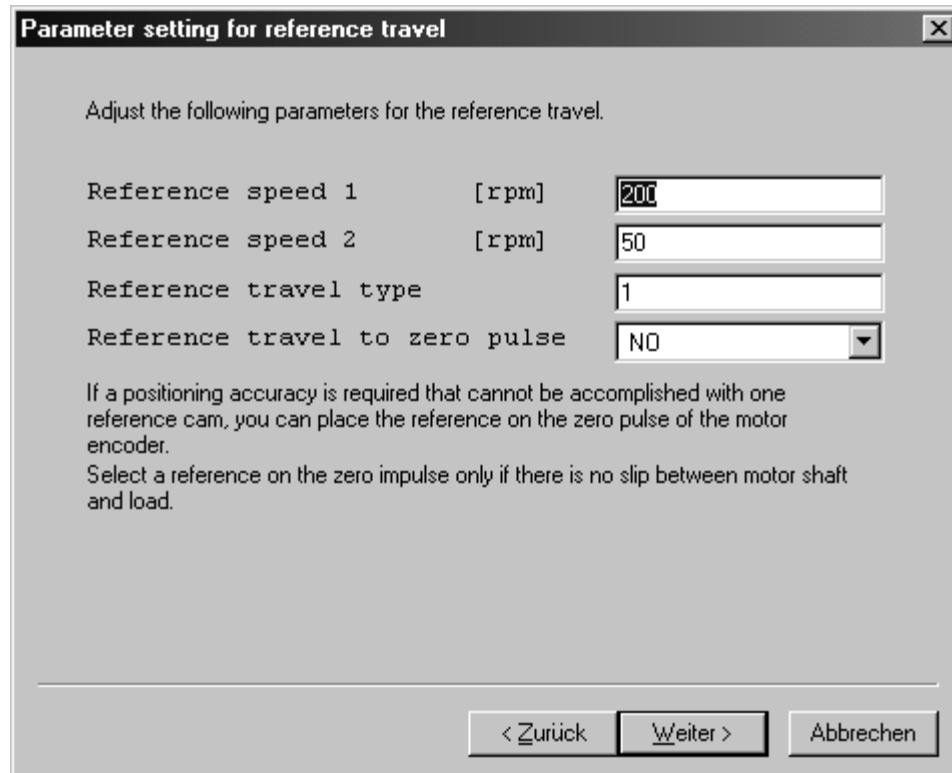


Figure 12: Enter IPOS^{plus®} parameters

11240AEN


- Enter all parameters (P910 et seq.) that are important for IPOS^{plus®} programming. The parameters become effective in "...&IPOS" operating mode only.
- Click [Next] to continue.

Startup

Startup with PC and MOVITOOLS®

Set parameters for
reference travel

10760AEN

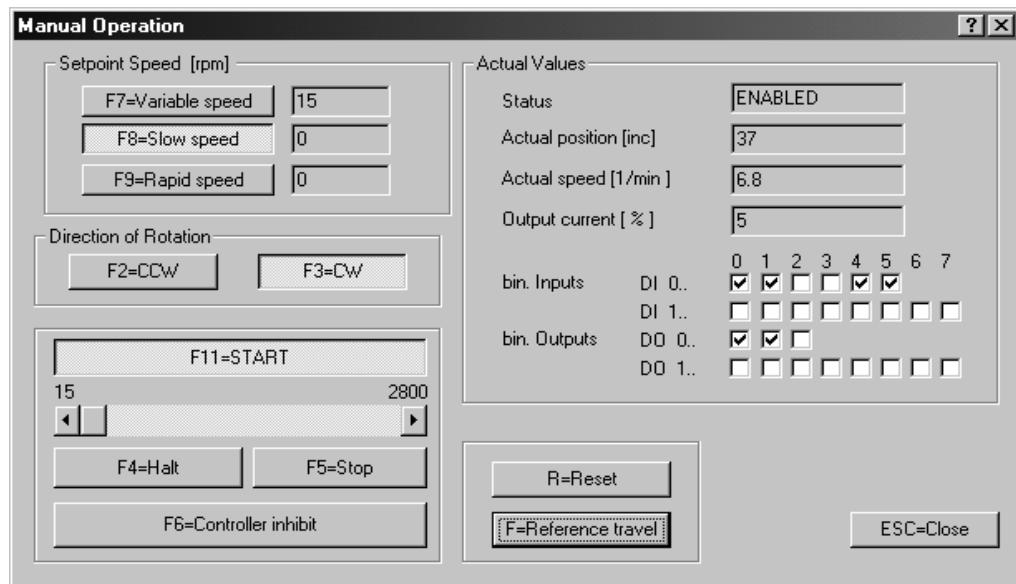
Figure 13: Set parameters for reference travel

- A reference travel is necessary for precise assignment of the absolute encoder value to a mechanical reference point. Enter the necessary parameters (P900 et seq.). Click [Next] to start reference travel.

Start reference
travel

10761AEN

Figure 14: Start reference travel


- If you want to perform reference travel by manual operation, click the [Manual operation] button. The "Manual operation" window opens (→ section "Perform reference travel by manual operation").
- After reference travel, click [Next] to continue. The window "Identify current absolute position" opens (→ section "Indicate current absolute position").

Startup

Startup with PC and MOVITOOLS®

Perform reference travel by manual operation

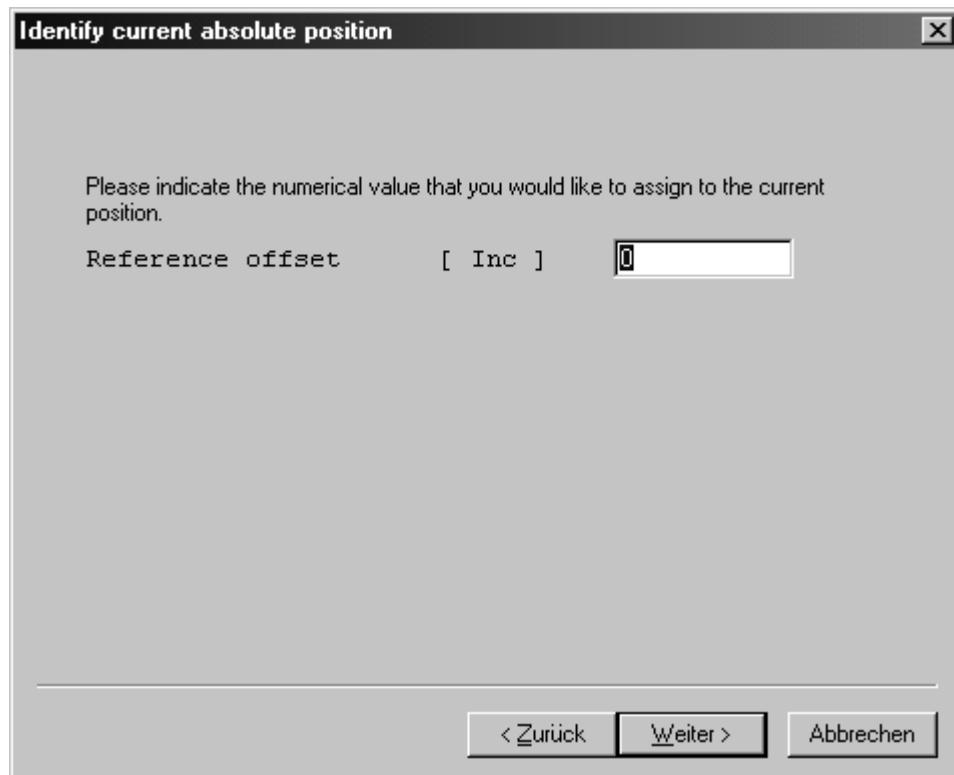

10762AEN

Figure 15: Perform reference travel by manual operation

- Set binary input DI00 "/Controller inhibit" to "1".
- Use buttons [F2=CCW] and [F3=CW] to set direction of rotation.
- To start reference travel, click [F11=START] and then [F=Reference travel].
- After reference travel, click the [F5=STOP] button. Reset the binary input DI00 to "0". Click ESC=Close[. Confirm the next message with [OK].
- The window "Identify current absolute position" opens. Click the [Next] button.

Identifying the current absolute position

10763AEN

Figure 16: Enter reference offset as incremental value

- Enter the numeric value that the current position is to correspond to in increments in the "Reference offset" entry field. Click [Next] to continue.

Startup

Startup with PC and MOVITOOLS®

Saving the
DIP/DEH21
parameters


11856AEN

Figure 17: Save DIP parameters

- Click [Finish] to transmit data to the inverter. This means the initial start is complete.

Restartup of the DIP11B/DEH21B

If the startup of the DIP11B/DEH21B option has been performed before, the following window appears.

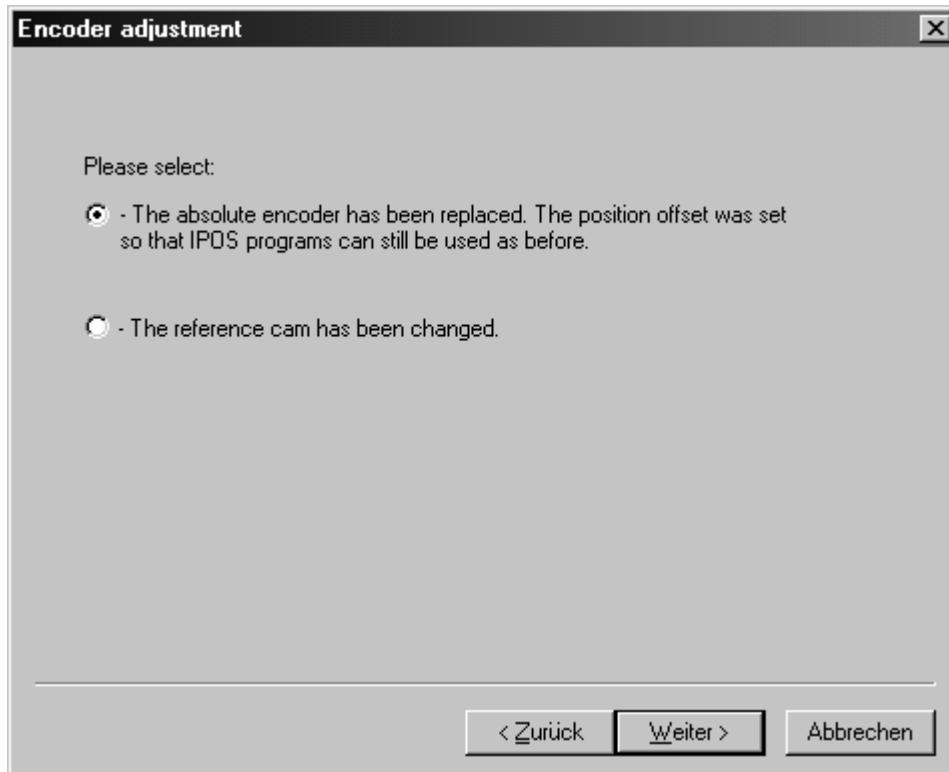

11857AEN

Figure 18: Restartup of the DIP11B/DEH21B

- Select the option "Encoder adjustment with existing DIP/DEH21B startup" (e. g. after replacement of the absolute encoder).
- The following sections describe an encoder adjustment of the DIP11B/DEH21B.

Encoder adjustment

10766AEN

Figure 19: Encoder adjustment

- Select one of the following options, depending on the particular application:
 - The absolute encoder has been replaced. The position offset was set so that the IPOS^{plus}® programs can be used without being edited.
 - The reference cam has been changed.
- Click [Next] to continue.

Start reference travel

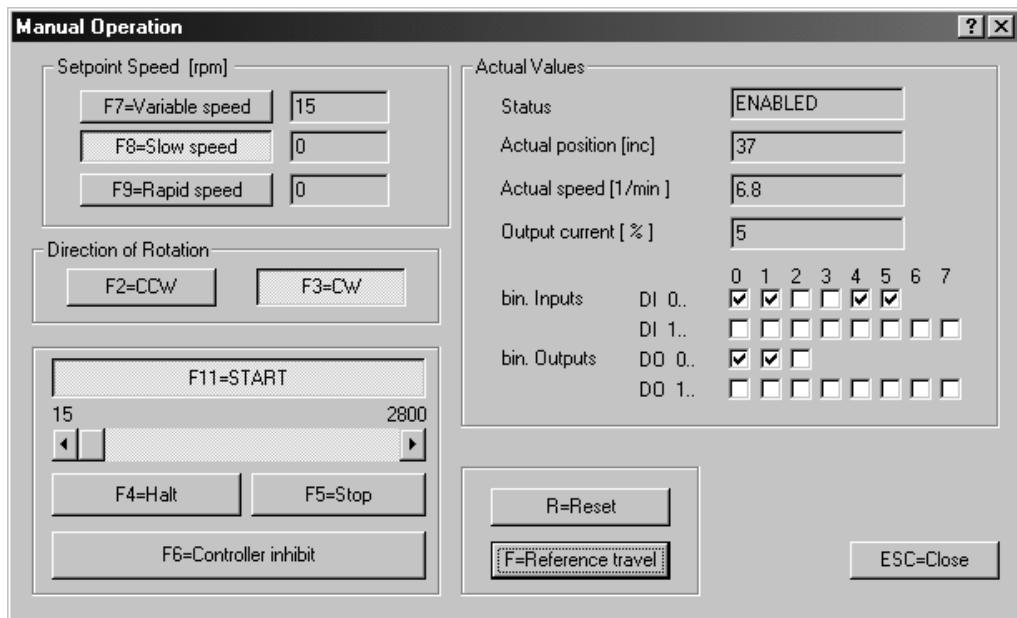

10767AEN

Figure 20: Perform reference travel

- If you want to perform reference travel by manual operation, click the [Manual operation] button. The "Manual operation" window opens (→ section "Perform reference travel by manual operation").
- After reference travel, click [Finish]. The data are automatically loaded to the inverter. This means the encoder adjustment is complete.

Perform reference travel by manual operation

10768AEN

Figure 21: Perform reference travel by manual operation

- Set binary input DI00 "/Controller inhibit" to the value "1".
- Use buttons [F2=CCW] and [F3=CW] to set direction of rotation.
- To start reference travel, click the button [F11=START] and next [F=Reference travel].
- After reference travel, click the [F5=STOP] button. Reset the binary input DI00 to "0". Click [ESC=Close]. Confirm the next message with [OK].
- The "Start reference travel" window opens. Click the [Finish] button. The data are loaded to the inverter. This means the encoder adjustment is complete.

6.3 Manual startup

Alternatively, you can perform the startup step-by-step with the DIP11B/DEH21B option as described below.

Select P950 encoder type	Select the absolute encoder connected to the DIP11B/DEH21B (X62) option. At present, the following encoders are permitted :
	<ul style="list-style-type: none"> • VISOLUX EDM • T&R CE65, CE58, CE100 MSSI • T&R LE100, LE200 • T&R LA66K • AV1Y / ROQ424 • STEGMANN AG100 MSSI • SICK DME-3000-111 • STAHL WCS2-LS311 • Stegmann AG626 • IVO GM401, GXMMW A202PA2 • STAHL WCS3 • LEUZE OMS1, OMS2 • T&R ZE 65M • LEUZE BPS37 • SICK DME5000-111 • POMUX KH53 • KÜBLER 9081 • LEUZE AMS200 • MTS TEMPOSONICS RP • P+F AVM58X-1212 • Hübner HMG161 S24 H2048 • Balluf BTL5-S112B-M1500 • T&R LA41K • Elgo LIMAX2
	You must check whether other encoders are suitable and released for use by SEW-EURODRIVE.
Set P35x Direction of motor rotation	Move the drive in the positive direction at low speed. If the actual position P003 counts upwards, it is possible to leave parameter <i>P350 Change direction of rotation</i> unchanged (→ use SHELL or DBG60B keypad to display the actual position). Change P350 if the actual position counts downwards.
P951 Set the counting direction for the SSI absolute encoder	Move the drive in the positive direction at low speed. If the absolute encoder position (<i>H509 ACTPOS. ABS</i>) counts upwards, you do not have to change parameter <i>P951 Counting direction</i> . Change P951 if the absolute encoder position counts downwards.

Set P955 Encoder scaling Set P955 to "1" if there is no motor encoder (no speed control). The position information from the absolute encoder is multiplied by this value. The parameter is set so the travel information ratio between the motor encoder and the absolute encoder is as close to "1" as possible.

Proceed as follows:

- Set P955 to "1" initially.
- Note the values of the variables *H509 ACTPOS.ABS* and *H511 ACTPOS.MOT*.
- Move the drive by about one increment.
- Calculate the difference between the values you wrote down and the new values of the variables:
 - $H509 \text{ old} - H509 \text{ new} = H509 \text{ difference}$
 - $H511 \text{ old} - H511 \text{ new} = H511 \text{ difference}$
- Get the quotient Q from H509 difference and H511 difference:

$$Q = H511 \text{ difference} / H509 \text{ difference}$$
- Set *P955 Encoder scaling* to the value closest to the calculated quotient Q, preferably to the lower of the closest values.

Set P954 Zero offset Zero offset is used for assigning the value you want to a specific position. The range of values can adopt positive or negative position values. The maximum valid parameter must not be exceeded. The limit is determined by the range of values of the numerator $\pm(2^{31}-1)$ and the range of values of the absolute encoder. Move the drive to a known position. Read in the value of variable *H509 ACT.POS.ABS* and enter the following value in parameter *P954 Zero offset*: P954 = Variable H509 – required value.

The required value is the display value you wish to have for the current position.

Set P942 / P943 encoder factor numerator / denominator In the event of positioning to an external encoder (X14) or an absolute encoder (X62), then these two parameters are used for adapting the resolution to the motor encoder (X15).

Proceed as follows:

- Note the values of the variables *H509 ACTPOS.ABS* and *H511 ACTPOS.MOT*.
- Move the drive by about 30 000 increments (H511).
- Calculate the difference between the values you wrote down and the new values of the variables:
 - $H509 \text{ old} - H509 \text{ new} = H509 \text{ difference}$
 - $H511 \text{ old} - H511 \text{ new} = H511 \text{ difference}$
- The values must not differ by more than $32\,767 (2^{15}-1)$. If the values are greater, divide both differentials by the same number to obtain correspondingly smaller values. Alternatively, repeat the procedure with a shorter travel distance.
- Enter the result H511 difference in *P942 Encoder factor nominator* and H509 difference in *P943 Encoder factor denominator*.

If there is no motor encoder installed (no speed control by MOVIDRIVE[®]), we recommend that you at least make an estimation of the relationship between encoder resolution and motor revolution. Use a value of 4,096 increments per motor revolution for the motor encoder.

Determine the *P943 Encoder factor denominator* as described above. Set for *P942 Encoder factor numerator* the value "4096 x number of performed motor revolutions".

In this case, the accuracy of the encoder factors is not so important (no speed control). The values merely serve for checking the absolute values in the DIP11B/DEH21B which occurs at a subordinate level.

Set P941 Source actual position

This parameter determines the position encoder used for position control if an operating mode & IPOS" is set in *P700 Operating mode*.

There are positioning commands in the IPOS^{plus®} program to control the motor connected to MOVIDRIVE[®] MDX61B. Set *P941 Source actual position* to "Absolute encoder DIP" if the motor is to be positioned using the absolute encoder.

NOTE

The circuit gain for position control of IPOS^{plus®}, parameter *P910 Gain X controller* was preset during startup of the speed control loop. This presetting means positioning control is performed with the motor encoder. The difference in encoder resolution or the time characteristics of the absolute encoder (e.g. laser distance measuring instrument) may require a lower value setting.

- Set half the value of the calculated preset value.
- Start an IPOS^{plus®} program with a positioning operation between two valid points at moderate speed.
- Reduce or increase parameter *P910 Gain X controller* step-by-step until the best movement and positioning characteristics have been set.
- The position value provided by the absolute encoder is available in variable *H509 ACTPOS.ABS*. The position value can be processed with the internal IPOS^{plus®} control even without direct positioning.

NOTE

When a reference travel is started **after the manual startup**, only the motor encoder is referenced **independent** of the setting of parameter P941.

When a reference travel is started after the startup with PC and MOVITOOLS[®], as described in chapter 5.2, the absolute encoder and the motor encoder are referenced **independent** of the setting of parameter P941.

7 Unit Functions

7.1 Encoder evaluation

All connected encoders are always evaluated regardless of the operating mode (P700). Operating modes with positioning (VFC-n-Reg. & IPOS, CFC & IPOS, SERVO & IPOS) always require a motor encoder at X15. The actual positions can be evaluated with the touch-probe function.

Encoder type	Absolute encoder on DIP11B/DEH21B P941: Absolute encoder (DIP)	Ext. encoder on X14 (P941: external encoder)	Motor encoder on X15 (P941: Motor encoder)
Connection	X62 on DIP11B/DEH21B	X14 on DEH11B/DER11B option ¹⁾	X15 on DEH11B/DEH21B/DER11B option
Actual value on variable	H509 ACTPOS.ABS	H510 ACTPOS.EXT	H511 ACTPOS.MOT
Resolution	Absolute position after conversion with: <ul style="list-style-type: none"> Zero offset (P954), Position offset (P953), Counting direction (P951). 	Actual number of encoder PPR count (with four time evaluation)	Always 4096 inc./motor revolution, regardless of the actual encoder resolution
Touch probe	Edge at DI02	H503 TP.POS1ABS	H507 TP.POS1MOT
	Edge at DI03	H502 TP.POS2ABS	H505 TP.POS2MOT
	Max. delay time	1 ms	100 µs

1) It is not possible to operate the DEH11B and the DEH21B simultaneously.

7.2 Functions relevant for absolute encoders

The following monitoring functions do not depend on the use of the DIP11B/DEH21B. However, knowledge of the range of functions is important for optimum use.

Speed monitoring	Speed monitoring checks the correcting variable of the n-controller and, in M control mode, the actual speed range. The motor encoder is always used for the speed signal, so the "DIP11B/DEH21B encoder" is either not checked with speed monitoring P50_ or not 'checked' directly.
Lag error monitoring	When lag error monitoring is active, it checks the difference between the current setpoint position and the actual position. The maximum permitted amount is set using <i>P923 Lag error window</i> . Lag error monitoring is only effective if the drive is in positioning status. The resolution is always "encoder increments" (exception: <i>P941 Source actual position</i> = Motor encoder (X15)), independent of PPR count 4,096 incr./motor revolution).
Axis in position message	The function operates with the resolution encoder increments of the encoder set via P941 (exception: <i>P941 Source actual position</i> = Motor encoder (X15)), independent of PPR count 4,096 incr./motor revolution). If no positioning operation has been set via P700 or if the drive is in reference travel status, the function will always show "Axis in position = 0".

Reference travel

	NOTE
<p>The reference travel and the associated parameters P900 ... P903 as well as the reference travel commands refer to the motor position (X15) and therefore to the motor encoder.</p>	

The message "Axis referenced" refers to a referencing of the motor position.

The variable *H510 ACTPOS.EXT* (X14) may be set with IPOS^{plus®}.

The DIP11B/DEH21B position at variable *H509 ACTPOS.ABS* is the processed position value. It is created with the absolute value supplied from the encoder, taking account of the DIP11B parameters *P952 Counting direction* and *P954 Zero offset*.

Modulo function

You activate the modulo function with the Shell parameters (P960 and following) (→ MOVIDRIVE® MDX60B/61B system manual). You then have the option to represent the positioning process directly in the scaling $360^\circ = 2^{16}$.

The actual position is displayed in variable *H455 ModActPos*. Positioning processes are triggered in case the target position (variable *H454 ModTagPos*) is written in enabled state. You will find additional information in the "MOVIDRIVE® IPOS^{plus®} positioning and sequence control" manual.

System variables relevant for absolute encoders

System variable	Meaning
<i>H503 TP.POS1ABS</i>	Touch probe position DIP11B/DEH21B encoder
<i>H502 TP.POS2ABS</i>	Touch probe position DIP11B/DEH21B encoder
<i>H509 ACTPOS.ABS</i>	Absolute position after conversion with zero offset, position offset, counting direction, encoder scaling

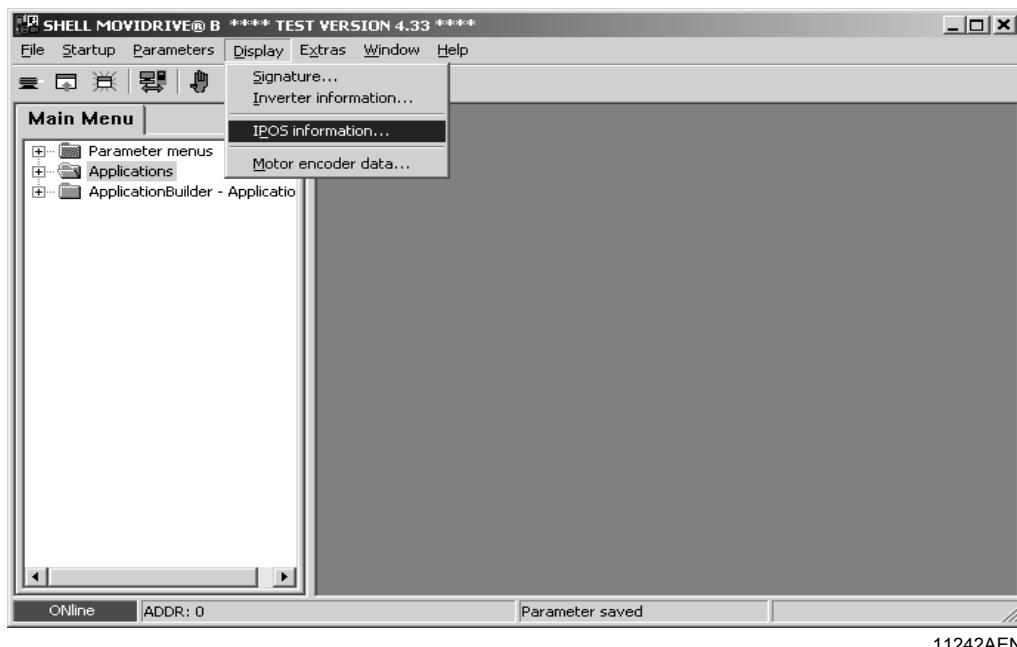
Software limit switch

The function of the software limit switches monitors whether the current target position (*H492 TARGET POSITION*) is in the valid range. The function is active when the drive is referenced or parameter *P941 = source actual position = absolute encoder (DIP)* is set and the drive is in positioning status. If you position to "external encoder" and need the limit switches, you will have to perform a reference travel.

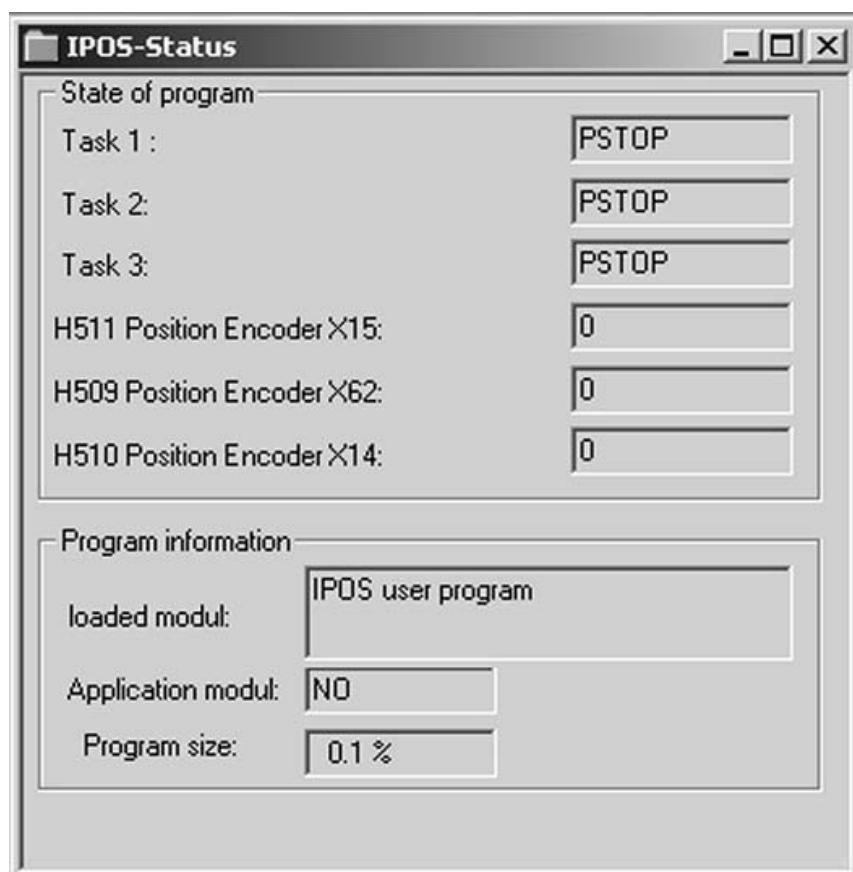
7.3 Display values

The SHELL operating software and the DBG60B keypad display in parameter group *P00_Display values / Process values* the position information of the motor encoder. This also applies to the fieldbus information of the PI data "ACTUAL position LOW and HIGH".

The system variable *H509 ACTPOS.ABS* includes the processed position value of the absolute encoder. You can view the value with SHELL and DBG60B. Transmission with the fieldbus is implemented by setting the PI data transfer P873/4/5 to "IPOS PI DATA" and writing the PI data with the *SetSys* command in the IPOS^{plus®} program.


You can write PI data with the *SetSys* command if an actual position (regardless of the encoder) can be transmitted scaled.

7.4 Diagnostics option in the Shell program


You have the option to display the current program status (such as the current actual position of the absolute encoder). Proceed as follows:

In Shell, open the menu item [Display]/[IPOS Information].

11242AEN

The window [IPOS status display] opens. Here you can find the information on the current program status (→ following figure).

11858AEN

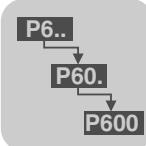
8 IPOSplus® Parameters

8.1 Parameter description

The following is a description of the IPOSplus® parameters. The factory setting is indicated by underline.

P072 Option/firmware encoder slot Displays the encoder card currently installed in the encoder slot and the program version.

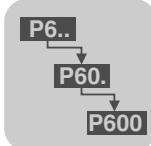
P074 Option/firmware expansion slot Displays the option card currently installed in the expansion slot and the program version, if this option has a program memory.


P941 Source actual position Setting range: Motor encoder (X15) / Ext. encoder (X14) / absolute encoder (X62)
Defines the encoder to which IPOSplus® positions.

Set P942/P943 encoder factor numerator/denominator Setting range: 1 ... 32767
First set the parameter *P944 encoder scaling ext. encoder* or *P955 encoder scaling* (when using DIP11B/DEH21B option). Then set P942/P943.

In the event of positioning to an external encoder (X14) or an absolute encoder (X62), then these two parameters are used for adapting the resolution to the motor encoder (X15).

Proceed as follows:


- Write down the values of variables *H509 absolute position* (H510 with external encoder) and *H511 Current motor position*.
- Move the drive by about 30 000 increments (H511).
- Calculate the difference between the values you wrote down and the new values of the variables:
 - H509 new – H509 old = H509 difference
 - H511 new – H511 old = H511 difference
- The values must not differ by more than 32 767 ($2^{15} - 1$). If the values are greater, divide both differentials by the same number to obtain correspondingly smaller values. Alternatively, repeat the procedure with a shorter travel distance.
- Enter the result H511 difference in *P942 Encoder factor nominator* and H509 in *P943 Encoder factor denominator*.

IPOSplus® Parameters

Parameter description

P950 Encoder type	The absolute encoder connected to the DIP11B/DEH21B option at X62 is selected. At present, encoders can be selected from the following list: <ul style="list-style-type: none"> • VISOLUX EDM • T&R CE65, CE58, CE100 MSSI • T&R LE100, LE200 • T&R LA66K • AV1Y / ROQ424 • STEGMANN AG100 MSSI • SICK DME-3000-111 • STAHL WCS2-LS311 • Stegmann AG626 • IVO GM401, GXMMW A202PA2 • STAHL WCS3 • LEUZE OMS1, OMS2 • T&R ZE 65M • LEUZE BPS37 • SICK DME5000-111 • POMUX KH53 • KÜBLER 9081 • LEUZE AMS200 • MTS TEMPOSONICS RP • P+F AVM58X-1212 • Hübner HMG161 S24 H2048 • Balluf BTL5-S112B-M1500 • T&R LA41K • Elgo LIMAX2
P951 Counting direction	Setting range: <u>NORMAL</u> / INVERTED Defines the counting direction of the absolute encoder. The setting must be made so the counting direction of the motor encoder (X15) and the absolute encoder (X62) match.
P952 Clock frequency	Setting range: 1 ... 200 % Defines the cycle frequency at which absolute encoder information is transmitted from the encoder to the inverter. A cycle frequency of 100 % corresponds to the nominal frequency of the encoder in relation to a 100 m cable length.

P954 Zero offset Setting range: $-(2^{31}-1) \dots 0 \dots 2^{31}-1$

Zero offset is used for assigning the value you want to a specific position. The range of values can adopt positive or negative position values. The maximum valid parameter must not be exceeded. The limit is determined by the range of values of the numerator (2^{31}) and the range of values of the absolute encoder. Move the drive to a known position. Read off the value of variable *H509 ACT.POS.ABS* and enter the following value in parameter P954 Zero offset: P954 = Variable H509 – required value.

The required value is the display value you wish to have for the current position.

P955 Encoder scaling Setting range: x1 / x2 / x4 / x8 / x16 / x32 / x64

Before setting P955, make sure that P942 and P943 are set to "1".

The significance of the travel resolution of the motor encoder and absolute encoder is adapted. The parameter is set so the travel information ratio between the motor encoder and the absolute encoder is as close to 1 as possible. Set the parameter initially to "x1." To do this, note the values in variables H509 and H511.

- Move the drive by about 1000 increments (H511).
- Calculate the difference between the values you wrote down and the current values:
 - H509 new – H509 old = H509 difference
 - H511 new – H511 old = H511 difference
- Calculate the quotient from H511 difference divided by H509 difference. Set parameter *P955 Encoder scaling* to the value that is closest to the calculated quotient.

Important: The encoder scaling directly influences the parameters *P900 Reference offset*, *P942 Encoder factor numerator* and *P943 Encoder factor denominator* and the parameter group *P92x IPOS monitoring*. All positions of the IPOSplus® program have to be adjusted when using the encoder. The setting of all listed parameters has to be adjusted every time the encoder scaling is changed.

9 Application Example

9.1 Storage and retrieval system with extended positioning via bus

The "Extended positioning via bus" application module is particularly suited to applications in which it is necessary to move to any number of positions at different speeds and with different acceleration ramps. If you use an external encoder for positioning, which is necessary when there is a non-positive connection between motor shaft and load, you can either use an incremental encoder or an absolute encoder.

The "Extended positioning via bus" application module is especially suitable for the following branches of industry and applications:

- **Materials handling**
 - Trolleys
 - Hoists
 - Rail vehicles
- **Logistics**
 - Storage and retrieval units
 - Transverse carriages

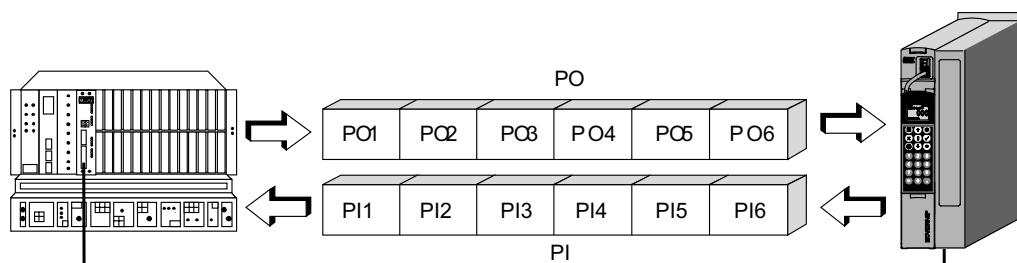
The "Extended positioning via bus" module offers the following advantages in these applications:

- User-friendly user interface
- You only have to enter the parameters required for "Extended positioning via bus" (ratios, speeds, diameters).
- Guided parameter setting process instead of complicated programming.
- Monitor mode for optimum diagnostics.
- Users do not need any programming experience.
- Long travel distances possible ($2^{18} \times$ travel unit)
- Incremental encoders or absolute encoders can be used as external encoders.
- It does not take long to get to know the system.

Functional characteristics

The "Extended positioning via bus" application offers the following functional characteristics:

- Any number of target positions can be specified via fieldbus.
- Long travel distance possible. The maximum possible travel distance depends on the travel unit set. For example:


Travel unit	Maximum possible travel distance
1/ 10 mm	26.2144 m
mm	262.144 m

- You have to set the speed and the ramps via the bus.
- Software limit switches can be defined and evaluated.
- Either incremental or absolute encoders can be evaluated as external encoders.
- Simple connection to the master controller (PLC).

Operating modes The functions are implemented with three operating modes:

- Jog mode
 - The drive is moved clockwise or counter clockwise via bit 9 or 10 in the control word (PO1). The speed and the ramps are variable and are set via the fieldbus.
- Referencing mode
 - A reference travel is started via bit 8 in the control word (PO1). Reference travel establishes the reference point (**machine zero**) for absolute positioning operations.
 - Reference travel can also be performed when using an absolute encoder as external encoder.
- Automatic operation
 - Positioning is started in automatic mode with bit 8 in control word 2 (PO1).
 - The target position is specified using process output data words PO2 and PO3.
 - The actual position is signaled back cyclically in user travel units using process input data words PI2 and PI3.
 - The set speed is specified using process output data word PO4.
 - The actual speed is signaled back cyclically via the process input data word PI4.
 - Acceleration and deceleration ramps are specified via the process output data words PO5 and PO6.
 - The active current and unit utilization are signaled back cyclically via the process input data words PI5 and PI6.
 - Confirmation of the target position to which movement has taken place via virtual binary output "target position reached".

54293AEN

Figure 22: Data exchange via process data

PO	= Process output data	PI	= Process input data
PO1	= Control word 2	PI1	= Status word
PO2	= Target position high	PI2	= Actual position high
PO3	= Target position low	PI3	= Actual position low
PO4	= Set speed	PI4	= Actual speed
PO5	= Acceleration ramp	PI5	= Active current
PO6	= Deceleration ramp	PI6	= Unit utilization

10 Error Messages

10.1 MOVIDRIVE® MDX61B with DIP11B/DEH21B option

The factory set error response appears in the "Response (P)" column. (P) indicates that the response is programmable (via IPOSplus®).

Fault code	Designation	Response (P)	Sub-error code	Designation	Possible cause	Measure
36	Option missing	Immediate switch-off	0	Hardware is missing or not permitted.	<ul style="list-style-type: none"> Type of option card not allowed Setpoint source, control signal source or operating mode not permitted for this option card Incorrect encoder type set for DIP11B/DEH21B 	<ul style="list-style-type: none"> Use correct option card Set correct setpoint source (P100) Set correct control signal source (P101) Set correct operating mode (P700 or P701) Set the correct encoder type
			2	Fault encoder slot.		
			3	Fault fieldbus slot.		
			4	Fault expansion slot.		
40	Boot synchronization	Immediate switch-off	0	Timeout at boot synchronization with option.	Error during boot synchronization between inverter and option.	Install a new option card if this fault reoccurs.
41	Watchdog option IPOS watchdog	Immediate switch-off	0	Fault Watchdog timer from/to option.	<ul style="list-style-type: none"> Error in communication between system software and option software Watchdog in the IPOSplus® program 	<ul style="list-style-type: none"> Contact SEW Service. Check IPOS program
			17	Fault Watchdog IPOS.	<ul style="list-style-type: none"> An application module without the application version has been loaded in a MOVIDRIVE® B unit The wrong technology function has been set if an application module is used 	<ul style="list-style-type: none"> Check whether the unit has been activated for the application version (P079) Check the selected technology function (P078)
92	DIP encoder problem	Error message	1	Soiling problem Stahl WCS3	Encoder on DIP11B/DEH21B reports an error.	Possible cause: Encoder is dirty → clean encoder
93	DIP encoder error	Emergency stop (P)	0	Error "absolute encoder"	<p>The encoder signals a fault, e.g. power failure.</p> <ul style="list-style-type: none"> Connection cable between the encoder and DIP11B/DEH21B does not meet the requirements (twisted pair, shielded). Cycle frequency for cable length too high. Permitted max. speed/acceleration of encoder exceeded. Encoder defective. 	<ul style="list-style-type: none"> Check absolute encoder connection. Check connection cables. Set correct cycle frequency. Reduce maximum traveling velocity or ramp. Replace absolute encoder.
95	DIP plausibility error	Emergency stop (P)	0	Validity check of absolute position	<p>No plausible position could be determined.</p> <ul style="list-style-type: none"> Incorrect encoder type set. IPOSplus® travel parameter set incorrectly. Numerator/denominator factor set incorrectly. Zero adjustment performed. Encoder defective. 	<ul style="list-style-type: none"> Set the correct encoder type. Check IPOSplus® travel parameters. Check traveling velocity. Correct numerator/denominator factor. After zero adjustment reset. Replace absolute encoder.
99	IPOS ramp calculation error	Immediate stop	0	Ramp or positioning speed modified (sine or square)	<p>Only in IPOSplus® operating mode:</p> <p>Positioning ramp is sinusoidal or square and an attempt is made to change ramp times and traveling velocities with enabled inverter.</p>	Rewrite the IPOSplus® program so that ramp times and traveling velocities can only be altered when the inverter is inhibited.

11 Technical Data

11.1 Electronics data DIP11B option

Description	Function
Connection binary inputs X60:1 ... 8	DI10 ... DI17 isolated via optocoupler, scanning time 1 ms, PLC compatible (EN 61131) Internal resistance $R_i = 3 \text{ k}\Omega$, $I_E = 10 \text{ mA}$ Signal level (EN 61131) "1" = DC+13 V ... +30 V "0" = DC-3 V ... +5 V Function X60:1 ... 8 DI10 ... DI17: Selection option → Parameter menu P61_
Connection binary outputs X61:1 ... 8	DO10 ... DO17, PLC compatible (EN 61131), response time 1 ms $I_{max} = \text{DC } 50 \text{ mA}$, short-circuit proof and protected against external voltage to DC 30 V Signal level (EN 61131) "1" = DC+24 V "0" = DC 0 V Important: Do not apply external voltage! Function X61:1 ... 8 DO10 ... DO17: Selection option → Parameter menu P63_
Encoder connection X62:	SSI encoder input
Reference terminals X60:9 X60:10	DCOM: Reference potential for binary inputs (DI10 ... DI17) DGND: Reference potential for binary signals and 24VIN <ul style="list-style-type: none"> without jumper X60:9-X60:10 (DCOM-DGND) isolated binary inputs With jumper X60:9-X60:10 (DCOM-DGND) non-isolated binary inputs
Voltage input X61:9	24VIN: Supply voltage DC+24 V for binary outputs DO10 ... DO17 and encoder (mandatory)

11.2 Electronics data DIP11B option

Description	Function
Motor encoder connection X15:	Permitted encoder types. <ul style="list-style-type: none"> HIPERFACE® encoder sin/cos encoder AC 1 V_{SS} TTL encoder with negated tracks Encoder with signal level to RS422 Permitted resolution: 128/256/512/1024/2048 [increments] Encoder power supply: DC+12 V (tolerance range DC 10.5 ... 13 V), $I_{max} = \text{DC } 650 \text{ mA}$
Encoder connection X62:	SSI encoder input
Power supply connection X60:1	24VIN: DC 24 V power supply for encoder connected to X62
Reference terminal X60:2	Reference potential 24VIN

12 Index

A

Absolute encoder connection	
General installation notes	19
Wiring diagrams and prefabricated cables	19
Applicable absolute encoders	8
Application example	52
Storage and retrieval system with extended positioning via bus	52
Areas of application for DIP11B/DEH21B	7
Assembly	12

C

Combining DIP11B with DIO11B	14
Terminal assignment input terminals (DI10...DI17)	14
Terminal assignment output terminals (DO10...DO17)	14
Configuring the encoders	23
Connecting an absolute encoder	19
Control functions	11
Modulo function	11
Touch-Probe function	11

D

Diagnostics option in the Shell program	48
DIP11B/DEH21B and processing in IPOSplus®	9
E	
Encoder factor numerator / denominator	49
Encoder monitoring	10
Encoder selection	21
Encoder sensing	10
Error messages MDX61B with DIP11B/DEH21B option	54
Exclusion of liability	5

F

Functions relevant for absolute encoders	
Axis in position message	46
Lag error monitoring	46
Modulo function	47
Reference travel	46
Software limit switch	47
Speed monitoring	46

G

General Information	
Exclusion of liability	5
General notes	
right to claim under warranty	5
Structure of the safety notes	5

I

Installation	12
Before you begin	12
Combining DIP11B with DIO11B	14
Connecting an absolute encoder	19

Mounting the DEH21B

12

Mounting the DIP11B

12

Terminal description of DEH21B

16

Terminal description of DIP11B

15

Installing and removing option cards

13

IPOSplus® parameters

49

Parameter description

49

M

Manual startup

43

O

Other applicable documentation

6

P

P072 Option/firmware encoder slot

49

P074 Option/firmware expansion slot

49

P941 Source actual position

49

P950 Encoder type

50

P951 Counting direction

50

P952 Cycle frequency

50

P954 Zero offset

51

P955 Encoder scaling

51

Power supply of the DIP11B/DEH21B

Via external DC 24 V power supply

18

Power supply of the DIP11B/DEH21B via basic unit

17

Project Planning

21

Configuring the encoders

23

Encoder selection

21

Laser distance measuring units

22

Material measure via metal rule

22

Multiturn encoder

21

R

Right to claim under warranty

5

S

Safety Notes

6

Disposal

6

Product names and trademarks

6

Safety notes

6

Hoist applications

6

Safety functions

6

Startup

24

Manual startup

43

New startup of the DIP11B/DEH21B

27

PC and MOVITOOLS®

25

Restartup of the DIP11B/DEH21B

39

Structure of the safety notes

5

System Description

7

T

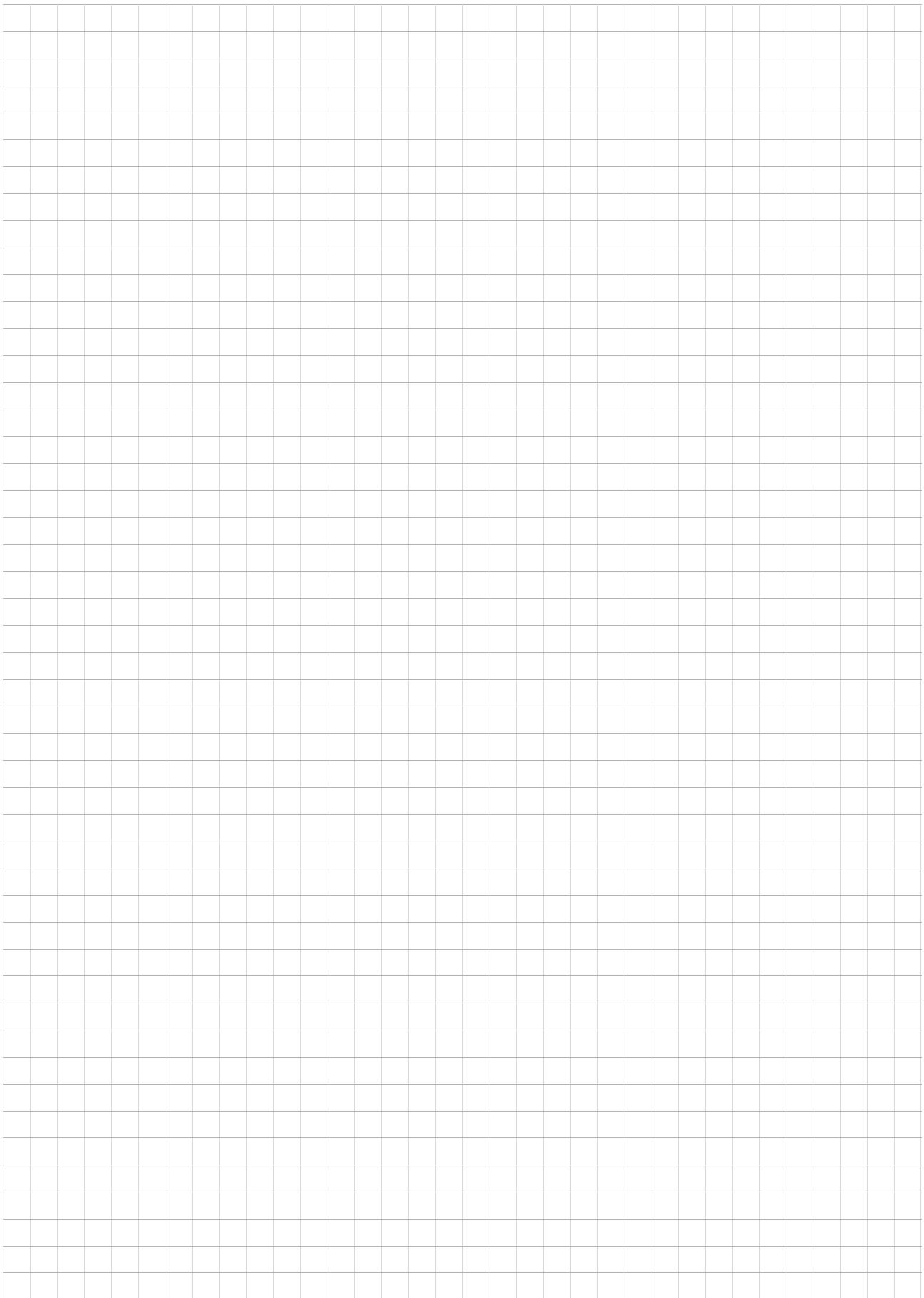
Technical data

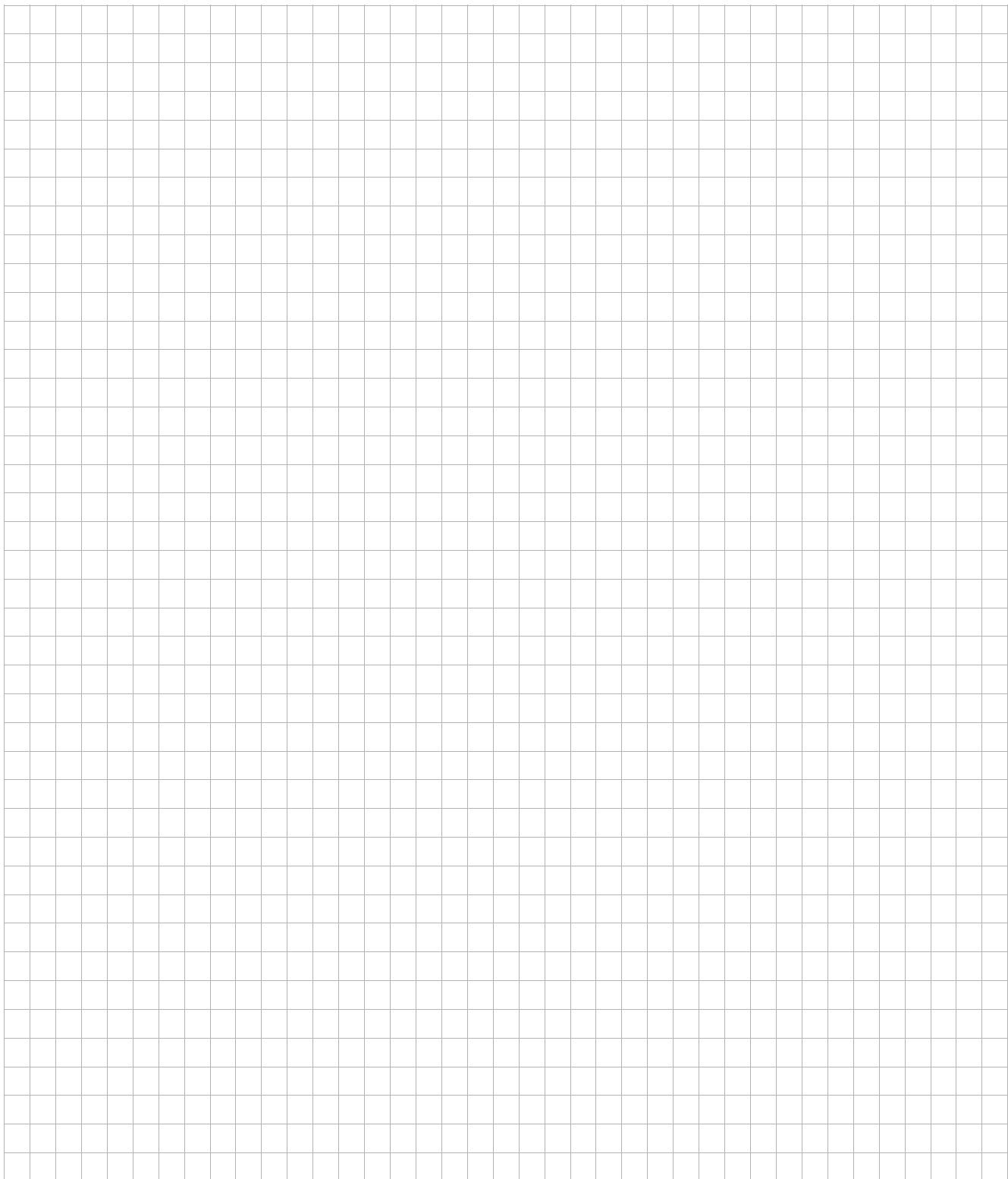
55

DEH21B option

55

DIP11B option


55



Terminal description of DEH21B	16
Terminal description of DIP11B	15

U

Unit functions	46
<i>Diagnostics option in the Shell program</i>	48
<i>Display values</i>	47
<i>Encoder evaluation</i>	46
<i>Functions relevant for absolute encoders</i>	46

How we're driving the world

With people who think fast and develop the future with you.

With a worldwide service network that is always close at hand.

With drives and controls that automatically improve your productivity.

With comprehensive knowledge in virtually every branch of industry today.

With uncompromising quality that reduces the cost and complexity of daily operations.

SEW-EURODRIVE
Driving the world

With a global presence that offers responsive and reliable solutions. Anywhere.

With innovative technology that solves tomorrow's problems today.

With online information and software updates, via the Internet, available around the clock.

SEW
EURODRIVE

SEW-EURODRIVE GmbH & Co KG
P.O. Box 3023 · D-76642 Bruchsal / Germany
Phone +49 7251 75-0 · Fax +49 7251 75-1970
sew@sew-eurodrive.com

→ www.sew-eurodrive.com