
...the world's most energy friendly microcontrollers

2013-09-16 - an0039_Rev1.04 1 www.silabs.com

EFM32 Interrupt Handling
AN0039 - Application Note

Introduction

This application note is an introduction to interrupts and wake-up handling in the
EFM32. It includes ways to optimize for low latency wake-up, interrupt prioritization
and energy saving operation.

This application note includes:

• This PDF document
• Source files (zip)

• Example C code
• Multiple IDE projects
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1 Interrupt Theory
Interrupts are a commonly used technique in microcontrollers allowing CPU-external systems to indicate
need for change in CPU execution. Instead of using polling loops to monitor these kinds of events and
wasting valuable processing time, interrupts do not require any action from the CPU unless they are
triggered.

When an Interrupt Request (IRQ) is received, the CPU will store its current state before it switches to
the Interrupt Service Routine (ISR) (Figure 1.1 (p. 2) ). In older architectures there was only one
ISR and SW needed to determine which source triggered the IRQ. In modern architectures like the ARM
Cortex-M in the EFM32, each IRQ has its own ISR. The starting address for each ISR is stored in an
interrupt vector table.

When an interrupt is triggered, the CPU automatically jumps to the corresponding address in the vector
table which contains an address to the relevant ISR. The service routine then executes the tasks needed
to handle the event before the CPU returns to where it left off before the interrupt was received. A
common way to acknowledge the interrupt is to clear the interrupt source in the interrupt handler resulting
in the IRQ being de-asserted.

Figure 1.1. Basic Interrupt Operation

Main thread
TIMER0 ISR

TIMER0 IRQ

TIMER0 ISR Address

UART1 ISR Address

Interrupt 
Vector Table

UART0 ISR Address

TIMER1 ISR Address

As more than one interrupt can be triggered at the same time, interrupt priorities can be assigned to
the different IRQs. This allows lower latency for the most important interrupts for real-time control etc.
In interrupt controllers that support nesting, it is also possible for a high priority interrupt handler to start
immediately even if another lower priority handler is executing. The CPU will then continue where it left
off in the lower priority handler once it is done servicing the higher priority interrupt. Figure 1.2 (p. 3)
shows an example where a higher priority interrupt (2) is serviced in the middle of the lower priority
interrupt handler (1). The lookup in the vector table is done every time an IRQ is triggered, but left out
in the figure for simplicity.
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Figure 1.2.  Nested Interrupts
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2 Interrupts in the EFM32
The Nested Vector Interrupt Controller (NVIC) in the ARM Cortex-M processor in the EFM32 evaluates
the IRQ lines and switches the CPU execution to the triggered IRQs address in the vector table.
Figure 2.1 (p. 4)  shows an overview of how interrupts are handled in the EFM32. Most of the
peripherals in the EFM32 can generate interrupts and control one or more interrupt lines (IRQ) each.

Figure 2.1.  Interrupt overview
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2.1 Peripheral IRQ Generation

As shown in Figure 2.1 (p. 4)  each IRQ line can be triggered by one or more interrupt flags (IF).
Normally these interrupt flags will be set by a hardware condition (e.g. timer overflow), but SW can also
set and clear these directly by writing to the IFS (Interrupt Flag Set register) or IFC (Interrupt Flag Clear
register). The Interrupt Enable (IEN) register allows masking of interrupt flags that should not trigger
the IRQ. To acknowledge an interrupt the Interrupt Flag corresponding to the event should be cleared
(through the IFC register) in the ISR. The OR function between the interrupt flags ensures that the IRQ
line is asserted as long as there are unmasked interrupt flags that have not been acknowledged. As an
example, the TIMER0 peripheral contains 8 interrupt flags:

Example 2.1. TIMER0 interrupt flags/conditions

• OF - Overflow
• UF - Underflow
• CC0 - Compare Match/Input Capture on Channel 0
• CC1 - Compare Match/Input Capture on Channel 1
• CC2 - Compare Match/Input Capture on Channel 2
• ICBOF0 - Input Capture Buffer Overflow on Channel 0
• ICBOF1 - Input Capture Buffer Overflow on Channel 1
• ICBOF2 - Input Capture Buffer Overflow on Channel 2

These interrupt flags can be read through TIMER0_IF. The TIMER0_IFC and TIMER0_IFS registers
are used to clear and set the interrupt flags, while TIMER0_IEN masks the flags not contributing to the
IRQ. More detailed information on how to generate IRQs in the EFM32 peripherals are given in the
reference manual for the device, as well as in practical examples in application notes targeted for the
specific peripheral.

2.2 The Nested Vector Interrupt Controller (NVIC)

The Nested Vector Interrupt Controller (NVIC) is an integrated part of the ARM Cortex-M processor,
supporting both Cortex-internal interrupts (Hard fault, SysTick etc.) and up to 240 peripheral interrupt
requests (IRQs). In the EFM32, IRQs are generated by peripherals such as TIMERs and GPIOs as a
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response to events internal to, or acting upon the MCU. The NVIC's handling of the IRQs is controlled
by memory mapped registers (System Control Space). More information on the NVIC can be found in
the EFM32 Cortex-M3 Reference Manual.

As shown in Figure 2.1 (p. 4) , each IRQ will set a Pending bit when asserted. This pending bit will
generate an interrupt request to the CPU if the corresponding enable bit (SETENA[n] in Figure 2.1 (p.
4) ) is also set. Note that the pending bit will be automatically cleared by hardware when the
corresponding ISR is entered.

Table 2.1 (p. 6)  shows the interrupt vector table for the EFM32TG devices. The vector table is
common for all devices within the same device series (e.g. EFM32TG), but will vary between device
series (e.g EFM32LG devices have a different table than EFM32G devices). The interrupts generated
internally in the Cortex-M have negative IRQ numbers, while the peripheral IRQs start at 0.
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Table 2.1. EFM32 Interrupts

IRQ # Source

- Reset

-14 Non-maskable interrupt (NMI)

-13 Hard fault

-12 Memory management fault

-11 Bus fault

-10 Usage fault

-5 SVCall

-2 PendSV

-1 SysTick

0 DMA

1 GPIO_EVEN

2 TIMER0

3 USART0_RX

4 USART0_TX

5 ACMP0/ACMP1

6 ADC0

7 DAC0

8 I2C0

9 GPIO_ODD

10 TIMER1

11 USART1_RX

12 USART1_TX

13 LESENSE

14 LEUART0

15 LETIMER0

16 PCNT0

17 RTC

18 CMU

19 VCMP

20 LCD

21 MSC

22 AES

2.2.1 Interrupt Priority

Each IRQ in the EFM32 has 3 bits in the Priority Level Registers (IPRn) controlling interrupt priority. A
low value means a high priority. These bits are used to configure two types of priority:

• Preempt priority



...the world's most energy friendly microcontrollers

2013-09-16 - an0039_Rev1.04 7 www.silabs.com

• Sub priority

The preempt priority level determines whether an interrupt can be executed when the processor is
already running another ISR. The sub priority is only evaluated if two interrupts have the same preempt
priority and are pending at the same time. The interrupt with the higher sub priority will then be handled
first. If two pending interrupts have the same preempt and sub priority, the interrupt with the lower IRQ
number will be handled first. By default, the priority of all interrupts is 0 (highest) out of reset. There
is no need to write special wrapper code to handle nested interrupts. You only need to configure the
appropriate priority for each IRQ.

The PRIGROUP bits in the AIRC Register controls how many of the priority bits are used to encode the
preempt priority and how many are used for sub priority as shown in Figure 2.2 (p. 7) . By default
PRIGROUP is set to 0 and all 3-bits are therefore used for preempt priority.

Figure 2.2. Definition of Priority Fields in Priority Level Register
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2.2.2 Interrupt Sequencing

Before an ISR can be entered the CPU registers must pushed to the stack (stacking), which takes 12
clock cycles (when flash is configured to 0 wait states). Returning from the ISR also takes 12 clock cycles
as the CPU state must be restored (unstacking). For ISRs following immediately after (tail-chaining), or
nested inside another ISR, the ARM Cortex-M improves latency by not stacking and unstacking fully
between the ISRs. This reduces the latency between the handlers to only 6 clock cycles as shown in
Figure 2.3 (p. 7) .

Figure 2.3. Latency when entering interrupt handlers

2.3 Sleep Operation

If there is no other work for the CPU to do while waiting for an interrupt to trigger, energy can be saved
by putting the CPU to sleep until the interrupt triggered. In the EFM32 there are two ways of going to
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sleep, the Wait For Interrupt (WFI) and the Wait For Event (WFE) instructions. After executing one of
these instructions the CPU stays in sleep mode until one of the following conditions occur:

• An enabled interrupt request is asserted
• A Debug Entry request occurs, if Debug is enabled.

The SLEEPDEEP bit in the System Control Register (SCR) controls whether the processor uses Sleep
or Deep Sleep/Stop Mode as its low power mode according to Table 2.2 (p. 8) . Energy Mode 4/
Shut Off Mode is entered by register commands to the Energy Management Unit (EMU) and will require
a reset to wake-up thus not allowing regular interrupt operation. For more information on the functional
and power consumption differences between the Energy Modes, please refer to the reference manual
for the relevant EFM32 device.

Table 2.2. Entering Energy Modes with WFI/WFE

SLEEPDEEP Low Frequency Oscillator Resulting Energy Mode when
running WFI/WFE

0 NA Energy Mode 1/Sleep Mode

1 Running Energy Mode 2/Deep Sleep Mode

1 Stopped Energy Mode 3/Stopped Mode

2.3.1  ISR Handling With Wait For Interrupt (WFI)

The Wait For Interrupt instruction (__WFI();), causes immediate entry to EM1/2/3. When an enabled
IRQ is asserted, the CPU wakes up and executes the associated ISR. When the ISR is done, the main
thread continues at the point it was before entering sleep mode.

2.3.2  Low Latency Wake-up With Wait For Event (WFE)

The Wait For Event instruction (__WFE();), causes immediate entry to EM1/2/3. The CPU will wake up
once it receives an event. In the EFM32 an event can be generated by a pending interrupt if the Send
Event on Pending Interrupt bit (SEVONPEND)in the System Control Register is set. Note that if the
interrupt is also enabled, the pending interrupt will also cause the ISR to be executed after waking up.
However, if the interrupt is not enabled, the CPU will skip the ISR and continue execution immediately
from the WFE instruction. You will then be able to react to the interrupt event faster than if using the
ISR as the storing of the CPU state (12 clock cycles) for the ISR is skipped. This allows wake-up in
only 1 clock cycle from EM1 and only 2µs from EM2/3. Note though that the interrupt pending bit is only
cleared automatically when entering the ISR, so when waking from an event without the ISR, you must
first clear the interrupt flag in the peripheral and then clear the pending bit manually before entering a
sleep mode again.

Whenever an event occurs, the event status register bit will be set. This is the bit that the WFE command
is waiting for. It is important to note that this bit is also set when regular interrupts are executed. If this
bit has been set by interrupts executed earlier in the application, and the WFE instruction is executed,
the device will immediately wake up again as the event status bit is already set. This bit is not readable
directly by software. To make sure that this bit is cleared, it is therefore recommended to run the following
sequence before the WFE used to go to sleep:

Example 2.2. Clearing event status bit:

                            __SEV(); /* Set event register bit */
                            __WFE(); /* Clear the event status bit */ 
                            
                            /* __WFE() can now be used to go to sleep */
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Note that when using other interrupts at the same time as using WFE, the event status bit must be
cleared every time an interrupt executes.

2.3.3 Continuous Sleep With SLEEPONEXIT

Normally when the ISR is done, CPU execution returns to where it left off. However, if the SLEEPONEXIT
bit in the System Control Register (SCR) is set to 1 the device enters sleep (depth set by DEEPSLEEP
bit) directly when finishing the ISR without returning to main. This feature is useful for applications where
the program would otherwise enter sleep repeatedly between interrupts. With SLEEPONEXIT set, only
one WFI instruction would need to be run and execution would not return to main until the SLEEPONEXIT
bit is cleared in the ISR after a desirable condition has been met. Note that if the SLEEPONEXIT bit is
changed as the last instruction in the ISR, a Data Synchronization Barrier (DSB assembly instruction)
must be run to make sure that the new value is registered before the ISR is exited.
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3 CMSIS
The ARM Cortex Microcontroller Software Interface Standard (CMSIS) is a common software standard
for all Cortex-M devices across all vendors. This means that features, such as the NVIC, which are
present in all Cortex microcontrollers, are handled in the same way. The example below shows an ISR
for TIMER0 written according to the CMSIS standard. This function is called by the interrupt vector table,
which can be found in the startup file for the device (e.g. startup_efm32tg.s).

Example 3.1. A TIMER0 ISR:

                    void TIMER0_IRQHandler(void)
                    { 
                      /* Clear the interrupt flag in the beginning */
                      TIMER_IntClear(TIMER0, TIMER_IF_OF);
                    
                      /* More code */
                    }
                

As the NVIC is a part of the ARM Cortex-M, CMSIS functions are also provided to handle things
like enabling IRQs, (done with the NVIC_EnableIRQ-function in the example below) and configuring
priorities. The peripherals (like TIMER0) are not an integrated part of the Cortex and can vary from device
to device. CMSIS does not dictate a set of functions for these, although a common naming standard is
specified. Energy Micro does however provide a full function library for all peripherals called emlib.

Clearing of interrupt flags (TIMER_IntClear-function above) and handling of interrupt enable bits
(TIMER_IntEnable-function below) are all handled by the emlib functions (functions for TIMER0 are
found in efm32_timer.h). Please note that the emlib and CMSIS functions themselves are shared
between all EFM32 devices and individual differences between the sub-series are handled internally
in the functions.

Example 3.2. Enabling TIMER0 Overflow Interrupt:

                    /* Enable TIMER0 interrupt in NVIC */
                    NVIC_EnableIRQ(TIMER0_IRQn);
                    
                    /* Enable TIMER0 IRQ on Overflow */
                    TIMER_IntEnable(TIMER0, TIMER_IF_OF);
                



...the world's most energy friendly microcontrollers

2013-09-16 - an0039_Rev1.04 11 www.silabs.com

4 Software examples
The included examples are written for the Tiny and Giant Gecko starter kits and their onboard devices
EFM32TG840F32 and EFM32GG990F1024, respectively. Source files and projects for several IDEs are
also included with this application note.

4.1  WFI

In the wait_for_interrupt example project, TIMER0 is set to Up/Down mode and is configured to trigger
interrupts when an overflow or underflow occurs. The TOP value is set to give alternating overflow and
underflow interrupts at 1 second intervals (shown in Figure 4.1 (p. 11) ). The ISR for TIMER0 checks
which interrupt flag triggered and writes "OVER" or "UNDER" to the LCD display accordingly. Notice that
the interrupt flag register is copied to a variable early in the ISR and then only the interrupt flags that are
set are cleared. The copy of the interrupt flags is then evaluated to take appropriate action. Clearing the
interrupt flags early in the ISR minimizes the time the flags are set, as other interrupt conditions occurring
during this period will be lost as the flags are already set. Even though the interrupt timing in this example
is predictable, this structure is still good practice and should be adhered to whenever possible.

Figure 4.1.  TIMER0 in Up/Down Count Mode
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4.2 Reduced Wake-up Latency with SEVONPEND and WFE

In the wait_for_event example project, a GPIO pin connected to a LED is toggled every time a falling
edge is detected on PB0. The device is in Energy Mode 3 between GPIO interrupts. SEVONPEND is
set to generate an event when the IRQ from the GPIO sets the interrupt as pending. The interrupt is not
enabled, so the event will only wake-up the device from EM3 and no ISR is called. The LED is toggled
immediately after the wake-up. The plot from a logic analyzer in Figure 4.2 (p. 11)  shows that it
takes less than 2 µs from the time the Wake-up pin goes low to the time the Wake status pin toggles.
Immediately after the LED is toggled, the interrupt flag and the pending vector is cleared, making the
device ready to wake up from the next event.

On the Tiny Gecko Starter Kit(EFM32TG_STK3300) the LED is located on PD7 and Push button 0 is
located on PD8. On the Giant Gecko STK(EFM32GG_STK3700) they are located on PE2 and PB9,
respectively.

Figure 4.2. Wake-up Latency From EM2/EM3
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4.3  Sleep-on-Exit

The sleep_on_exit example project sets up TIMER0 in Up/Count mode to give overflow interrupts every
second. The SLEEPONEXIT bit is set and the device is put in EM1. Execution will then not return to
main until SLEEPONEXIT is cleared. The ISR increments an interrupt counter which is shown on the
LCD every time it is run. After 5 interrupts the SLEEPONEXIT bit is cleared in the ISR and the CPU
returns to main where "DONE" is written to the LCD.

4.4  Sub Priority

In the sub_priority example project, TIMER0 and TIMER1 are set up to start at the same time and count
to 1000, triggering their overflow interrupts in the same cycle. PRIGROUP is configured so all interrupt
bits are used to set sub priority. Initially both interrupts have the same default sub priority and TIMER0
ISR will then be executed first as it has the lowest numbered IRQ. Before the TIMERs reach their second
overflow interrupts (also in the same cycle), the sub priority for the TIMER0 ISR has been decreased
and the TIMER1 ISR will then be executed first. Both ISRs will concatenate a "0" (for TIMER0) or a
"1" (for TIMER1) to a string every time they are called. The string is printed at the end of the program
to show the order the ISRs were executed in.

4.5  Preempt Priority

In the preempt_priority example project, TIMER0 and TIMER1 are set up to trigger overflow interrupts,
but they are not enabled. The TIMER0 overflow interrupt is then triggered by setting the overflow interrupt
flag in SW. In the TIMER0 ISR, the TIMER1 overflow interrupt is triggered in the same way. PRIGROUP
is configured so all interrupt bits are used to set preempt priority. Initially both interrupts have the same
default preempt priority and the TIMER1 interrupt triggered in the TIMER0 ISR will then wait until the
TIMER0 ISR finishes before starting.

Before TIMER0 overflow is triggered a second time, the preempt priority for the TIMER0 ISR has been
decreased. The TIMER1 ISR will then start immediately when triggered in the TIMER0 ISR and the rest
of the TIMER0 ISR will complete after the TIMER1 ISR is finished. The TIMER1 ISR will concatenate
a "0" to a string every time it is called. The TIMER0 ISR will concatenate an "A" to the string before
triggering the TIMER1 overflow interrupt and a "B" after. The string is printed then printed at the end
of the program to show the order the ISRs were executed in. Figure 1.2 (p. 3)  shows the simplified
execution order of a nested interrupt.

4.6  Interrupt Disable

The interrupt_disable example project shows a how to disable interrupts temporarily to allow several
evaluations to be done in one atomic operation, without the risk of an interrupt hitting in between to
corrupt the process. In this example enabling the LFRCO and waiting for the interrupt to trigger when it
is stable. In the ISR, a global variable (lfrcoReady) is set to true which is then checked in main. While
this variable is false, the device is sent repeatedly to EM1. The repeated check ensures that no other
interrupt triggering will incorrectly cause the program to proceed without LFRCO being ready. If this
check was done without disabling the interrupts first, an LFRCO-ready interrupt firing after the check for
lfrcoReady, but before the sleep instructions, could lock the whole program indefinitely as there might
not be any subsequent interrupts to wake the device from sleep.

To disable and enable interrupts safely the em_int.h library is used. The library uses a lock level
counter to keep track of how many times INT_Disable() and INT_Enable() has been called.
INT_Disable() disables interrupts and increments the counter while INT_Enable() decrements the
counter and enables interrupts only if the counter reached zero. This ensures that interrupts will not be
enabled prematurely if nested disabling and enabling of interrupts is used. Notice that the CPU wakes
up when the interrupt is set pending even though the global interrupts have been disabled. The ISR is
however not entered until the lock level counter is decremented to zero.
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5 Further Reading
Details on the interrupt capabilities of each peripheral in the EFM32 devices can be found in the reference
manual for the device. Cortex-internal parts, such as the NVIC, is documented in the EFM32 Cortex-M3
Reference Manual. For a more narrative introduction to the Cortex-M3, "The Definitive Guide To The
ARM Cortex-M3" by Joseph Yiu is recommended.
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A Disclaimer and Trademarks

A.1 Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation
of all peripherals and modules available for system and software implementers using or intending to use
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and
do vary in different applications. Application examples described herein are for illustrative purposes
only. Silicon Laboratories reserves the right to make changes without further notice and limitation to
product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Silicon Laboratories shall have no liability for
the consequences of use of the information supplied herein. This document does not imply or express
copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must
not be used within any Life Support System without the specific written consent of Silicon Laboratories.
A "Life Support System" is any product or system intended to support or sustain life and/or health, which,
if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories
products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological
or chemical weapons, or missiles capable of delivering such weapons.

A.2 Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, the Silicon Labs logo, Energy Micro, EFM, EFM32, EFR,
logo and combinations thereof, and others are the registered trademarks or trademarks of Silicon
Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks
of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names
mentioned herein are trademarks of their respective holders.
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B Contact Information
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

Please visit the Silicon Labs Technical Support web page:
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
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