TMS320C28x Assembly Language Tools
v16.9.0.LTS

User's Guide

I3 TExXAs

INSTRUMENTS

Literature Number: SPRU513K
October 2016

I

TeEXAS
INSTRUMENTS

Contents

[(=7 = T = PP 11
1 Introduction to the Software Development TOOIS . ..cvii i 14
11 Software Development TOOIS OVEIVIEWuueiueeiiueirsersterss it santssisstass s rasiainssannss 15

1.2 LI 1S3 =TS] o0 16

2 INtroduction t0 ODJECT MOAUIES ...t ettt et e e e e e e e e e enes 17
2.1 Yol U1 = 1o (=T @ o =t 1 = 18

2.2 Lo o [8ox T I (o TS T=ox 11 o L N 18

2.2.1 Special SECHON NAMES ...ttt rr e sa e s ra e s saaas st saaaae s saaanassaannnsssannnessnns 19

2.3 How the Assembler HandleS SECHONS ...uiuuiiuiiseiisiisiririasr s e rannas 20

P2 I R U T 1 = =T IS T=od 1T o LS 20

pZ A | 011 = [=T IS =T o 1T LS 21

2.3.3 USEr-Named SECHONS 4 uuuuiusiseiseieisirseraersrassrsere sttt sassaa e aarsassaarraes 21

B2 B S O U4 (=01 0 Y=o 1o o S 22

2.3.5 SeCtion Program COUNTEISuuseiaetetsastsssaansesraassssaaaasesssansssaasnnsssaannsstsansssssannnesinn 22

P22 S TS T8 1= o 1T 22

2.3.7 USING SECHONS DIrECHVES 1.utiiuseiististsiississsssts et esa st saas s s s rr s s s saneaaness 23

2.4 How the LinKer Handles SeCHONS ... uuuse ittt et r e s s e s e s sr e s s saaase s s sanne s sannnneennn 26

2.4.1 Combining INPUE SECHONS 1.1 uueteitiiteeseieeessaaneessasnnessaanneesaasnnessaannessssnnnessennnessesnnnesens 26

B2 e o T o TS = o1 1o T 27

25 37 110 28

S T8 R 4 (=T 1 = YIS 1] o] 3 S 28

2.5.2 The Symbol Table ... e 29

2.6 53]] o] TRl == [Tox= 11T L 29

2.6.1 Expressions With Multiple Relocatable Symbols (COFF ONly)eiiiiiiiiiiiiiriiiee s neieenannes 29

2.7 (o =T [T o = 0T > o 30

3 Program Loading and RUNNING ...t e e s e e s e s s s e e e s s s e e eaens 31
3.1 00 = o {1 T 32

3.1.1 Load and RUN AGAIESSES ...uuuurerianeeessaannessasnneessaannesaasnnessasnnessaasnnessssnnessssnnnesssnnnensnn 32

B 0 07 = T To | 511 7= 1 o N I = T 1o 33

3.2 e Y0 0 T o 1 37

3.3 [0 T L= L 1= 1T U1 T o S 37

TR 7 R o 110 T 37

3.3.2 RAM Model VS. ROM MOGEI ... uuutiiiiinieiiiiite st ssitr st e s s ss s asaans s ssnne s asannnnnss 38

1 TG JEC T @0 o VRN 1= o] = 39

3.4 WY (o 814 T=T 0L 53 (o 02T o 40

3.5 LB T 0 =T = (oo 11 o 40

3.6 WX (o 11T i F= 1IN Ty} {0 4= .o o 40

4 F ST YT 0] oY =T 1= of T o} 1T o I PP 41
4.1 F ST =T a1 0] T G @Y= 1= 42

4.2 The Assembler's Role in the Software Development FIOWcveiiiiiiiiiiii s ciie e s s e e s ennneennas 43

4.3 INVOKING the ASSEMIDIEr .ttt e e r s s s r e aaes 44

4.4 Naming Alternate Directories for ASSEMDBIEr INPULt e s aanr e eaaas 45

4.4.1 Using the --include_path Assembler OptioNceeeiiiii i s rasee e sssnr s saannesaaanneeaannns 45

4.4.2 Using the C2000_A_DIR Environment Variableccoiiiiiiiiiiii e 46

2 Contents SPRU513K-0October 2016

Copyright © 2016, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS
www.ti.com
4.5 Yo 0 oIS £= 1= 0 =T o 1 0 0T 47
S R - o1 I 1= (o S 48
2 |1 T o o T o = [49
S TC J @ =T = oo T [49
O S @] o 1.0 =Y o1 A = 49
4.6 LT = IO 0] 11 = 50
G0t R 11 (=0 =T gl I =T - 50
4.6.2 Character String LItEralS.cueiiiiiiiii ittt srr e s s ranr e s rsann e e saan e aaannes 51
4.6.3 Floating-PoOiNt LItEralSuueseisieeiiiieesiiiee st ss s e s e s s s s s ssann e ssaann s s saannrsanannness 52
4.7 TS0] o] (=T G] 0] 52
0 R [=T 1= 52
0 T - 01 £ 53
e T o Yo | = o= 53
Y 11 o To [o @0 g1 = £ 56
4.7.5 Defining Symbolic Constants (--asm_defing OPtioN) v...ueeiivieieiiiiireiriiriirrii s aaireaaaans 56
4.7.6 Predefined SymboliC CONSANTS ...uutieeiieiriiite i aaneranns 57
O A = (=0 153 (=T 58
4.7.8 SUDSHItULION SYMDOIS. ...t s 59
4.8 (0SS T L 60
4.8.1 Mathematical and LOGICal OPEIatOrSueeeireteiriiteeaaaaresaaanressaanessaaanesaaannessaannnssaannns 61
4.8.2 Relational Operators and Conditional EXPresSioNSueeiiiiiieiiiiiririiriiisnii e asineaaaas 62
4.8.3 Well-DefiNed EXPrESSIONS .. uuttuseistirtsiseissesnsssssssisssans s sas s sasssasssarsrarstansesnness 62
S = - L b d o] 1111 o] 1 62
4.9 BuUilt-in FUNCLIONS N0 OPEIAtOIS «.uuuusssetiistesisastessiasesssisse s saasssestaassnesssassnsssannnssssansnessns 63
4.9.1 Built-In Math and Trigonometric FUNCHONS ...uvuuiiiiiiiiiiie i s s raaees 63
O Y S3C 72 0 @2 =5 QAN == =T o 4]] (= Y/ Yo = 64
O R 922 <5 q @ o] = od 1 o T [64
4.10.2 C28x FPU32 and FPUB4 ObjJECt MOUES ...uutiutiisiiiieiineiitssiasiiass s sansssssanssnnssansssanss 64
4.10.3 C28X CLA ODJECE MOOE . .uuuuineiiiiitisiit ittt s st s s st s e s e s s r e s e s e s s s e e aae s aea e raes 64
Nt Yo U o = £ T 1 66
4.12 Debugging ASSEMDIY SOUICE . .uuutiuetiatiite ittt e s s e s aar s ra et e e s an e e s rans 68
4,13 CroSS-REfErENCE LISHNGS . .ueeiieiiiiiteiaiitestaaaae s saaate s sraanae s saansessaann e e saaannssaaannessaannnsssannnesss 69
S 0 T = o0 T[T o 70
ST o o= 1 L= @0 g Ty 5= =Y o 110 o 71
4.15.1 Protected and Unprotected Pipeling INStrUCHONSuueeiiiiiii it r e e r e e anans 71
4.15.2 Pipeline Conflict Prevention and DeteCtioNnuueiiieieiiiiiseiiiissriississsainnssaaisssaaanes 71
4.15.3 Pipeline ConfliCtS DEtECIEA ...uuuiiusiietiite s s s aa s s s r e ran e aaneans 72
5 A S S M DIFECIIVES L vttt ittt ettt e e e e et e e s s e et et e e e s e e e e e e e e e anene e naeaeananenn 73
5.1 DIFECHIVES SUMIMAIY ettt et e esate e s e e sr e e st aae st s e e s ss s e et s aaa e e st s s e e s s ann e s ssannnsssannnesannns 74
5.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler DireCtiVeS....cuvevviiieeriiiineeriannersrnnneensns 78
5.3 Directives that DefiNe SECHONS ...ttt s r s s san s aannanaes 79
5.4 Directives that INitialiZe ValUES ... e s e s s e s s ann s saan e e anaas 81
5.5 Directives that Perform Alignment and RESEIVE SPaCeuiviiiiereiiiinerriiineesaaineessaineesraanneessannneninn 83
5.6 Directives that Format the OULPUL LIStINGS . v uueeiueirseiiseirerie e nriar s ras s sanenas 84
5.7 Directives that Reference Other FilesSuiiiiiiiiiii s r e s annn e nas 85
5.8 Directives that Enable Conditional ASSEMDIYi. i e i e sanre s sannre s saanresaannneaanns 86
5.9 Directives that Define Union OF StrUCLUIE TYPES vuueeuutirussrntirteiassisiserassisisssassssrerassssisssannssaneias 86
5.10 Directives that Define ENUMErated TYPES .. uuuuuriiiiniteiiites it st ssaitressanrssaaannssaaanssssannnesss 86
5.11 Directives that Define Symbols at ASSEMDBIY TimMecviiiiiiriiiiii i i rrnre s sranr e ananr e raaannees 87
5.12 MiSCEIIANEOUS DIFECHVES 1. uutiusttiuseiseisesasees sttt s s e s a s s s a s aa s s s s san s s s s saas s san e aanessaneaas 88
ST R T B 1 =04 ()Y T R = == o o] 89
6 [V To do R I Ta Lo [UE=To T=N BT Yo f1 o] { o o PP 142
6.1 L]0 1= Tod (01 143
SPRU513K—-October 2016 Contents 3

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS
www.ti.com
6.2 [T T g0 1Y T {01 143
6.3 Macro Parameters/Substitution SYMDOIS ...uvuueiiuiiiiiii i e 145
6.3.1 Directives That Define Substitution SYmbOIS........ccueiiiiiiiiiiii i i 146
6.3.2 Built-In Substitution SYmbol FUNCHONSuuiiiiiii i e raees 147
6.3.3 Recursive Substitution SYMDOIS .. .uviiueiiieiiiiii i 148
6.3.4 FOrced SUDSHUTION v uuutiissesistiieiiseiir i e aa e e s ra e aaareraseaas 148
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols..........c.ccviiiiiiiiiinnnnn, 149
6.3.6 Substitution Symbols as Local Variables in Macrosciveeiviieiiiiiiiiiiiiins i 150
6.4 Y =Tt I o] = T 150
6.5 Using Conditional ASSEMDIY iN IMBCIOS «..uueeruutiiseiratiite i raar s raas s ranesaanrsanns 151
6.6 L8]0 I o T= RS 1o T (0 153
6.7 Producing MeSSages iN MaACIOS ...uuuueeiiiustesiaatsesrassesraanseessasnstaasnssasasssstaasssssaannnsssannnessas 154
6.8 Using Directives to Format the OUtPUL LiStING ..vvueeruesiieiiinie i i sses e nsessinnsaaes 155
6.9 Using Recursive and NESIEA IMACIOSuueiiietetiateeisantesaaaneesaaansesaaannesssannsesaannnessannnnsssnnnes 156
6.10 MQACIO DireClVES SUMMAIY 1.t uuuttetatsessanessaseesssaaseesaaanesaaassestaasaesssaastsssaansnsssannnssssnnnnsssns 157
YN ot a LAV G B 1= Yod 410 o] o PPN 158
7.1 ATCRIVET OVEIVIEW 11 uatiate sttt st s e s e e e s e s s e e s e s s e e s e s s e e s e s s a e s a e s s a e s s s s n e nan e anans 159
7.2 The Archiver's Role in the Software Development FIOW.ovueriiiiiiiiiii i raanee s 160
7.3 INVOKING the ATCNIVET .ttt e i st i e s e s e e s s e s e et aanan e s sannessaanneessannnessannnnessannnesnnnn 161
7.4 (o 0T G T 4] o] = 162
7.5 Library Information ArChiver DeSCHPONee ittt e e s s e e raaan e s aanneeas 163
7.5.1 Invoking the Library Information ArChiVer........eeiiiiiiiii i i s i e s i s e nne e annne e ananes 163
7.5.2 Library Information Archiver EXample......c.eviieiiiiiiiiiirin s s raaes 164
7.5.3 Listing the Contents of an INdeX LiDraryo..eeeiiiiieiiiiiiiii i s s s nae e raanes 164
AT S == To (W11 =Y o 1= o1 164
[T 1= I TS o g o) 0 Y o P 165
8.1 1T B @ YT 166
8.2 The Linker's Role in the Software Development FIOWuvviiriiiiiiiiii i i s nane e 167
8.3 1NV 70T o TR {10 T (=T 168
8.4 [T =T O 1T] 169
8.4.1 Wildcards in File, Section, and Symbol Patternsc.evviiiiiiiiiiiiiiinii i i 171
8.4.2 Specifying C/C++ Symbols with Linker OPtioNSueevieiiieiriiireiiiiissesiarssesaneaanes 171
8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)ccvvviiiiiiiiiiiiiiieanans 172
8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)ccevvvvinnnennns 173
8.4.5 CoNtrol LiNKer DiagnOStiCS .. v uueiuutirueeineisueesanirssssssarsrase s sasssias et sasstasaanness 173
8.4.6 Automatic Library Selection (--disable_auto_rts OPtion)evveieeiiiiieeiaiie e rainersaaneeeaaanns 174
8.4.7 Disable Conditional Linking (--disable_clink Option)vvveeiiiiieiiiiii i i s ananes 174
8.4.8 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options) 174
8.4.9 Error Correcting Code Testing (--€CC OPLIONS) «uuuuuuueririineeiaaineraainessaaneessaanressaannarraannes 176
8.4.10 Define an Entry Point (--entry_point OPtioN) ...euueeseesissseesiiissssiaisresrainressaansrersannrssrannnes 176
8.4.11 Set Default Fill Value (--fill_value OpPtioN)vuueiiseiieeriiiierine s snsesissrsessinrsanss e 177
8.4.12 Define Heap Size (--heap_SiZ€ OPtiON) . ..ciueeeiiiieei i iaar e rraare s raaanr s saaanessaaannesaannns 177
8.4.13 HidiNg SYMDOIS . .uueiieiiiiii i e e 177

8.4.14 Alter the Library Search Algorithm (--library Option, --search_path Option, and C2000_C_DIR
ENVironment Variable).o.eeeiie i 178
8.4.15 Change Symbol LOCAliZAtION .. .uuueiieteiiiiteiii i s s r s s s s s e s s raanes 180
8.4.16 Create a Map File (--map_file OPtioN) ...vuuriiieeiiiiiiiri e ras 182
8.4.17 Managing Map File Contents (--mapfile_contents OPtion)ooeeeeiiiiineiiiii i aaieeernans 183
8.4.18 Disable Name Demangling (--n0_demangle)c.ceeiiiiueiiiiineiiiii i ranresraaans 184
8.4.19 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)ccevvvevrnnnns 184
8.4.20 Strip Symbolic Information (--no_symtable OpPtioN) ..uv.eevvsevieeiiseiiiriiirine i 184
8.4.21 Name an Output Module (--output_file OPLioN) ..uuueeeiiiiie i i raaaes 185
8.4.22 Prioritizing Function Placement (--preferred_order Option)ouevvieerieiiiiiiniiiieiinineninnnaas 185
Contents SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS
www.ti.com
8.4.23 C Language Options (--ram_model and --rom_model OptioNS)uvvviiiererriirnrrainnrerrnaneeranns 185
8.4.24 Create an Absolute Listing File (--run_abs OptioN)oeieeeiiiiiiiiiiiiriiie i rrnaee s raans 185
8.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)ccvvvviviviiiiiiiiinnninns 185
8.4.26 Define Stack Size (--StaCk_SiZe OPLON) «.uueiutsiieeiieritri i i rarsres 185
8.4.27 Enforce Strict Compatibility (--strict_compatibility Option)oeeeiiiiiiiiiii i raaes 186
8.4.28 Mapping of Symbols (--symbol_map OPtioN)vvieeeiiiiiiiii i s 186
8.4.29 Introduce an Unresolved Symbol (--undef_sym Option).......oeeeiiueiiieiiininirinienenieenans 186
8.4.30 Display a Message When an Undefined Output Section Is Created (--warn_sections) 186
8.4.31 Generate XML Link Information File (--xml_link_info Option).....ccevviiiiiiiiiiiiiiiiiiniie s 186
8.5 Linker Command FilES ... uuuiuiiiieiiie i e s r s 187
8.5.1 Reserved Names in Linker Command FileS......civiiiiiuiiiiiiiii i 188
8.5.2 Constants in Linker Command FileSoiuiiiiiiiiiiiiiiiiiiiiiiiiiiii e 188
8.5.3 Accessing Files and Libraries from a Linker Command Fil€cccvviiiiiiiiiiiiiiiiirniieennnns 189
8.5.4 The MEMORY DiIr€CHVE 1.uutiiutiiistiiteiaseiasesiatiassss it ras s et saars e ianeaaness 190
8.5.5 The SECTIONS Dil€CHVE .. uueusiustserstiusisssserrrssasersesrrasrasese s sas e assaresesansaes 194
8.5.6 Placing a Section at Different Load and RUN AddreSSEScvviiiiereriiieraainnersaaineessannnerrannes 209
8.5.7 Using GROUP and UNION StatemMeNtSiuueseiiiieiseiiiieesaaaaseesaanresaaansessaanssssannnessnnnes 211
8.5.8 OVErlayiNg PageS . .uueiiuutsiiieteiriitesssiaeesaase st 215
8.5.9 Special Section Types (DSECT, COPY, and NOLOAD) ...uuiiiiiieeerianeesaannnessaannesssannnesannnes 218
8.5.10 Configuring Error Correcting Code (ECC) with the LINKeroiiiiiiiiiiiiiiiiiiiii e anaas 219
8.5.11 Assigning Symbols at LiNK Time ... ueeeiiiiiniiiiierii s sr s rs e s ssnaae s ssannn s nrannes 221
8.5.12 Creating and Filling HOIESuuiieiiiiii i e s e aaes 226
8.6 =T 17 1] T 229
8.6.1 Using Linker Symbols in C/C++ APPHCALIONS ..uvuiiueeiiiiiieiiiiiie i i s arannes 229
8.6.2 Resolving Symbols with Object LIDrariesveeviviiiie i e 230
8.7 Default Placement AlGOItNM e e r s e s s ae e s s e e s ssanna s s aannessaanneeannn 232
8.7.1 How the Allocation Algorithm Creates OUtpUL SECHONSuueeiiiieeiiiiiiiii i raaaerraanes 232
8.7.2 Reducing Memory Fragmentationeuveessssrseiseines i aasianrs s iainesanrsanns 233
8.8 Linker-Generated Copy Tablesueiiiiiii i et r e s s a e s sa e ranreeas 233
8.8.1 Using Copy Tables for BOOt LOAMING .. .uutetiiutseiiieteiiiineessinrsssaissssssisesssassnessaannssssannes 233
8.8.2 Using Built-in Link Operators in Copy Tablesuvviiiiiiiiiiii i 234
8.8.3 Overlay Management EXAMPIEo.uuiiiiiiiiiiii e r e s rae s s raaan e s ssanne s s sann e raannns 234
8.8.4 Generating Copy Tables With the table() Operatorvvvveiiiiiiiiiii i i raaes 235
ST TR T @o o) VAN 1= o] L= O 0] 1 (=T o] £ 240
8.8.6 General PUrpOSE COPY ROULINE . ..uuiietteiiieteiiaitt e aaaaaee s raane e sr e s s saann e s ssannnessannnnssannnns 241
8.9 Linker-Generated CRC TableS . uuuuiiiuiiiiiiiiiiiiii i aaanens 242
8.9.1 The Crc_table() OPEratOr. . .uuu et et iiterte sttt r s e ra e s saa s s s s e sa e sannesaneaannens 242
ST T 11T 10} 242
LS LSRG T = 0010 T 243
ST T 101 (= 7= ot 245
8.9.5 A Special Note Regarding 16-Bit Charueivussiiseiiiriiiirii s raes 248
8.10 Partial (INCremental) LiINKINGuueuieueseirieteisntesssieessisrsssaisssssass s ssaassssaassesssansnsssannnessas 249
S04 I R I o (T T O L@ 5 o [250
8.11.1 RUN-TIME INItIAlIZAON +1uuetisteiae i r s s aar e raaeaannens 250
8.11.2 Object Libraries and RUN-TIME SUPPOI «..uuuutetiintesirinnesrannsrersinsnsssainnsssaaisessasinesisanes 250
8.11.3 Setting the Size of the Stack and Heap SECHONSvvuviiieiiiiie i rneeaes 250
8.11.4 Initializing and Autolnitialzing Variables at RUN TiIMe.......eriiiiiiiiiiiii i e enaes 251
S0 o IR =T g e T] = 251
9 ADSOIULE LiSter DESCIIPIION 1 iuitiiiiiit ittt a st e e et e e e e e e e e e e ananans 255
9.1 Producing an ADSOIULE LiStING +uueevuutsiuseiiserssissssrsssnte s rsss s sar s san e ssassaaneens 256
9.2 INVOKING the ADSOIULE LISTET 1. uutst ittt r e s s e s s s e s s s e s s s ae et saan e s saann e s ssannnesanan 257
9.3 ADSOIULE LiSTEr EXAMPIE «. ettt tieee s eiee s s et e s s e aaee s s s aan e e s sane e s aannessannnssannnnessannnesssnnnnessnnnes 258
10 Cross-Reference LiSter DeSCIIPLIONue et e e e e e e e e e e rn e e eenen 261
SPRU513K—-October 2016 Contents 5

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS
www.ti.com
10.1 Producing a CroSS-ReferencCe LiStNG ...uuueevueeiseiiterisinsrsiiss e saeesiassass s sarsraassainesannss 262
10.2 Invoking the CroSS-RefErE&NCE LISTOr ...t eiii ittt r e s ra e e saan e s sraanr s ssanne s aaanneeaanns 263
10.3 Cross-Reference LisSting EXamMpPIeuueiiieeeiiiiiiiie i st s s s s s s as e aane e 264
11 (O] o [T] LT] 1 A= PRSP 265
11.1 Invoking the Object File Display ULIlityueueuseiseiiieeiiisri s s nesaes 266
11.2 INVOKING the DiSaSSEMIbIEr. ...ttt ittt et e r e e s s e s s s a e st s s aa s s saanan st aannassaannnersnn 267
11.3 INVOKING the NaME Uity «euveeeeiiiies i s aeee e s esae e ssane e s saanne s sasaneesaannnessaanneessannnnsssnnnnessnn 267
11.4 InvOKING the Strip ULIItY «.uueieisseii e e s s s r s s i n e rneaas 268
12 Hex Conversion ULility DeSCIIPLION ..u.iiie it e e e e e e 269
12.1 The Hex Conversion Utility's Role in the Software Development FIOWcoceviiiiiiniiiiiiiiinniaeess 270
12.2 Invoking the Hex Conversion ULIILY ... uveeieee i s s e et r e s ss s s s an s snan s e e rnes 271
12.2.1 Invoking the Hex Conversion Utility From the Command Linecooeiiiiiiiiiiiiiiiiieeannns 271
12.2.2 Invoking the Hex Conversion Utility With a Command Fileccvviiiiiiiiiiiiiiiiii i 273
12.3 Understanding Memory WiIdths s s s s s e neas 274
2 700 = Vo = YL o 1o N 274
12.3.2 Specifying the Memory Width ..o e aee e 275
12.3.3 Partitioning Data INto OULPUL FIlES .uuiuuiiiiiiiiiii i e rae e 276
12.3.4 Specifying Word Order for OUIPUL WOIAS +..uueiiueeiisiiiseiistiiseiiseiiisesisssssssisrssasesasesannens 278
R I o O L I = o)1V 278
12.4.1 When to Use the ROMS Dir€CtVE .. uutiuteiteiieinitiits s s s s s e ssse s sasssaneans 279
12.4.2 An Example Of the ROMS DirECHVEiueeeiiiitee it e eraaar e s s e ssaanr s ssaanne s saannnesaaannesss 280
12.5 The SECTIONS DilECHVE .. uuuusetusiustsersesunrssassrae st st rae s s s saesan s sanesnenns 282
12.6 The Load Image Format (--load_image OPtioN)eiueererinuteiiseiaieerinriasssisrsans i saessanrsannesnns 283
12.6.1 Load Image SeCtion FOrMALION .uuuuserseiirerseiaseesisrraasssss it e e sanrssaneras 283
12.6.2 Load Image CRaraCteriStiCS «.uueuusuuusetrsuunesirnsnnessannssssrinrsssainnssssinsssaassnssssannesssannnesss 283
12.7 EXcluding & SPeCified SECHON.ttt st r e 283
12.8 AsSIgNINg OULPUL FIlENAIMES ...ttt r e s e e s s e e s aaaan e s saann e s s aannnnssaannneeann 284
12.9 Image Mode and the -fill OPLIONeeeiiiee i s s s s s s aanneaaaans 285
12.9.1 Generating @ MemMOIY IMaA0Euutiutirueiiterseiaesier st ertssaae s saisssanrsaesras 285
12.9.2 Specifying @ Fill VAIUE .. .uviieiiiiiii i s s s 285
12.9.3 Steps to Follow in UsSiNg IMage MOOEuueiiiiiiiiiiiites i st s ssinr s ssainne s asanneeas 285
12.10 Building a Table for an ONn-Chip BOOt LOAUETuueiueiiiniiiieeiite i ssias s ras s sinesanes 286
12.10.1 Description of the BoOt Table. ... e r e e s aanneeas 286
12.10.2 The B0oOt Table FOIMat...uiueiitiiisiiissisisie i iai i st i raseaanens 286
12.10.3 How to Build the BOOt Tableuiieiiiiiii i s s ree e 286
12.10.4 Booting From a Device Peripheral.......ceeiiiiiiiiiii i n e e anne e 287
12.10.5 Setting the Entry Point for the Boot Tableccieeiiiiiiiiii e 287
12.10.6 UsSINg the C28X BOOt LOAUETuuiuseiiuterteiastisterastsses s srse e ssiessaassssssanrsasssaneaas 288
12.11 Controlling the ROM DeViCe AQAIESS ... uuueeeiiiieeiiantes it saaanresaaanessaaanresaaannessaannnessaannnssnn 292
12.12 Control Hex Conversion Utility DiagNOSHCS «uuuuuuuesiiiussiiiisnesisinssisansrsssasnsssssiasssssasnnssasinsesnns 293
12.13 Description of the ObJECt FOIMALS. .. .uueieeiiiiiiii i r e e raaeaas 294
12.13.1 ASCII-Hex Object Format (--aSCii OPLiON) ...ciiuueeeiiiineiaiiiesiraiane s raanessaanresaaanrereaanness 294
12.13.2 Intel MCS-86 Object Format (--intel OPtioN)uueeeiiiiuieiiiiies i rair s arainneas 295
12.13.3 Motorola Exorciser Object Format (--motorola Option).....uvevvieriiiisiiieiiiriiirieaeeraes 296
12.13.4 Extended Tektronix Object Format (--teKtroniX OPtioN)oveeeeiiiiieeiiii i raainee s raanes 297
12.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option).......c.vvvviueeiinnnns 298
12.13.6 TI-TXT Hex Format (--ti_tXt OPtON) wuuueiiueeiseiieeriaireriss e rae s raasssia s sannesneeaas 299
12.14 Hex Conversion ULility ErrOr MESSAQES .uuueeiiruueeeiraianesiaantessaannsessannsessaannsssaaansessaansessmsnnsessnns 300
13 Sharing C/C++ Header Files With Assembly Source..........coocoiiiiiii 301
13.1 Overview Of the .CAECIS DIFECHVE ...uuisirsiitiitiisr s ranas 302
13.2 NOES ON C/CH+ CONVEISIONS 4 ttuustesuserasessunssssssuss s ssse s ssss st tassssasstasssinssannerassiannens 302
R 207t T o T T 01T 1 302
13.2.2 Conditional Compilation (#if/#else/Hfdef/etC.). . v uurr i i s s 303
6 Contents SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS
www.ti.com
R B0 B o =T 0T L 303
13.2.4 The #error and #AWarning Dir€CHVES ieeii i iiiit i rraar e s s e saaannesaaannness 303
13.2.5 Predefined symbol _ _ASM_HEADER _ _ ...uiiiiiiiiiiiiiie i s saate s ssnasnessann s ssannnees 303
13.2.6 Usage Within C/C++ asm() StatemMeNtS. ..uiuueiiueeretiiterinr it iaessinrrasssiarsarerasesaneans 303
13.2.7 The HNCIUAE DIrECHVE ...ttt e st e s s e e s ssaa e st aann e s saannnsssannneninn 303
13.2.8 Conversion Of #AEfiNE MACIOS ...iiuuueeiiiieeiiiiet i saa s aaaan e aaannenss 303
13.2.9 The #UNAET DIFECHVE . uuuuetietiiaeiitesitire s et st r s s s e a e e s e saa s n e s n e aaneans 304
13.2.10 ENUMEIALIONS .iuinetteiieteeraaateessane s saaaane s saaaae s ssannessaannessaannssssaannnssaannnessannssssnnn 304
R Tt T O 14T T 304
13.2.12 C/CH+ BUIlt-IN FUNCHONS +1uutiisiiiteiitiseest s rae s s s s s saassse s s ae s a s san s e saasaannens 305
13.2.13 StruCtures @and UNIONS ... ueeeeiiietesiaattessaaatesaaans s ssaa s e ssaann e s ssannnssaannessaannnsssannressnn 305
13.2.14 Function/Variable ProtOtyPeS .uuuueeeiiiiieiiiie i sr i s as s s 305
13.2.15 C CONStaNt SUFIXES wuiuutiitiiitiriiiri e et ar s a e e aanens 306
R T2 T = 7= L] o O @8 1Y/ 0T 306
13.3 Notes on C++ SPECIfiC CONVEISIONS .uuuiuuuueeiiiisansisissetiaissesssassessanstessaannsssaansrsssaannsssainnssssnns 306
IR T8 04 R N\ =T g 1= 01 - U T |1 o 306
13.3.2 DeriVEA ClaSSES .uuiuuuuieiiitteiiaatessaattesaaant e saaaate s aaaaa s e saannesaaannessaannnessaannnsssannnessnn 306
R TR TR T = 010] o 307
IR TR 0 S VT4 (1 | T 1T o 307
13.4 Special ASSEMDIEr SUPPOIT. 1. uutustiiteise et r st a s s ranraas 307
13.4.1 Enumerations (.enum/.emember/.@NdeNUM)oeeeiiiieeiiiii i i raarr s sraannes 307
13.4.2 The .defiNe Dir€CHVE . .uuuiietiieeiateriii st et s s s r e s s aaa e s n s s e e aaneens 307
13.4.3 The .undefine/.uUNasg DIrECHIVES ...uiuueiiuterseiisisieris s ra s raneaas 307
13.4.4 The $defined() Built-IN FUNCLION +1uuiisiisiiiiiin i s s aeaes 308
13.4.5 The $sizeof BUilt-In FUNCHON ...iuuiieiiiii i s s s s rae s aeens 308
13.4.6 Structure/Union Alignment and $alignof() «..oveeiieiieiiiiiiiii i 308
13.4.7 The .CStNG DIlrECHVE . vttt iieteiiiittesr it r i s s s et ss e st s asa et saanaa s ssannnessannnresnas 308
A Symbolic DebUQQING DirECHIVES . uuititiiiiie i et r s e et a e e eeens 309
Al (DTN o I T=T o U T o 1 o TN o g - 310
A.2 [OX@ T 1= 0T8T [[T Yo TN o] 1 .- 310
A3 DEDUGY DIrECHVE SYNTAX 1 atettsteetinnressasnneessanneessasnnessasnnessesssnessesnnessessneessesnnesresnnnessssnnessnns 311
B XML Link Information File DeSCIiPtiONu e e e ene e e e 312
B.1 XML Information File EIEMENt TYPES . .uuuueiiiiiiieeiaiitesiiate e sraaate s raaase e ssaann e ssaaanessaanneesaannnesaannes 313
B.2 D T0 ol B 0T oL = =T 1= 313
2 302 R o =T To 1= g = 1= 1T o 313
122 1 10 1 =] N 314
[e T O o 1= ot A @] 0] 0] 1= o | I 315
2 302 S o T o= I 1 10 o N 1 316
122 ST Tt =Y 41T o 1T o 318
B.2.6 SYMDOI Table ... e 319
C CRC Reference Implementation . ..o e e s e e e e eens 320
C.1 Compilation INSIIUCHIONS w.uueiuuseiseiseesss e s e s s s e s e s s a e s e s s a e s n s rn e sane s sn e sanees 321
C.2 Reference CRC CalCulation ROULINEuiueseiiiiiee it iriis s e sr s s s s s ssaass s saanne s saannnenss 321
C.3 Linker-Generated Copy Tables and CRC Tablescviiiiiiiiiiiiiii i rinre e sannneessnneesananness 325
D (L0372 P 329
E REVISTON HiSTOTY . ueitieiiie et r eens 334
SPRU513K—-October 2016 Contents 7

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. TMS320C28x Software DevelopmeNnt FIOWuiieiiisiiieeiiieriiiri s raaeaas 15
2-1. Partitioning Memory INto LOGICal BIOCKS +.uuuuuussiiiiieiiiiisiiiine st sssies s sssae s ssinae s ssaaane s sannesnas 19
2-2. Using Sections DireCtiVes EXaMPIE ... uu ettt r s s e aanrens 24
2-3. Object Code Generated by the File in ... e raannneeas 25
2-4. Combining Input Sections to Form an Executable Object Module..........ccviiiiiiiiiiiiiiiiii e 27
3-1. Bootloading Sequence (SIMPHfied) ..ove i e 33
3-2. Bootloading Sequence with Secondary BOOtIOAAETvviueiiieiiiiiiiiiiiri i 34
3-3. Autoinitialization at RUN TimME .. .uuuiuiiiiseiiiiiii i a e aeans 38
I [01 (= 2= i o T g = L 0 Y= Uo N o 0T 39
4-1. The Assembler in the TMS320C28x Software Development FIOWvveviiiiiiiiiiiiiiiiiniinieenans 43
I = 10 o] L= NS o] o] = gl £ 1 o 67
5-1 QLT =1 (o N1 =T o 11 81
ST [011 (= 2= 0T g T DT =T o 1Y 82
LS FO 8 0 U= | [o o I 1T =T o 1= 83
5-4. The .Space and .DES DiIr€CVES ...uuieiiuiiieiriiie i r e ra e s e e e aanens 84
ST T I 1= T {11 (o I 0] = o1 (1Y 109
5-6. Single-Precision FIoating-Point FOMMIALvuuuseiiiteiiiirsiersiies s ssaas s ssaare s ssanae s saannnenss 110
B5-7. The .USECE DIFECHIVE tuueiiustiteistiitesat s te e e e et s e s s s s s e et e s s e e s et s a st e s st e s e e s n e sanees 140
7-1. The Archiver in the TMS320C28x Software Development FIOWooiveiiiiiiiiiiii i eaanans 160
8-1. The Linker in the TMS320C28x Software Development FIOWc.ueuiiiiiiiiiiiiiiiriies e nsaans 167
8-2. Memory Map DefiNea IN .. .uuieeiiiiiii s e e 192
8-3. Section Placement Defined DYuuiiieiiiiiiiiiiii i 196
8-4. RUN-TIME EXECULION OF 41uuutiitiiintiiisiiiniiisiisii s a s ra s aa e e raanes 211
8-5. Memory Allocation SNOWN iN @NG . ..uiueeieeiiierire e e r e s s s r s rneanes 213
8-6. Overlay Pages Defined iN @ndoooeeeiiiiiiiiiii i e e s e s s s an e s s an e s aaana e s aanreeaas 217
8-7. CRC_TABLE Conceptual MOOEuuieiiiiiiiiiiieiiii s s s s e s ss s s s s s e s sann e s ssannnesas 245
8-8. CRC Data FIOW EXAMPIE . ueeiiieiiitiie st r s s e e e s s s e s r s e e s e s s e s n e 248
9-1. Absolute Lister DevelopmMENt FIOWuoiei it e e r i s s aee s s s s s aaanne s ssanna e s sannneeann 256
10-1. The Cross-Reference Lister Development FIOWvvvieiiiiiieiiiiisiiie i e sanneeas 262
12-1. The Hex Conversion Utility in the TMS320C28x Software Development FIOW.......c.vvvevviiiiiiieiiieinieias 270
12-2. Hex Conversion ULility ProCESS FIOW.uei ettt e re e e s ree s s s e s saan e s ssannn e s sannnenans 274
12-3. Object File Data and Memory Widthsueeeiiiieiiiie i r s s s asanreaaaas 275
12-4. Data, Memory, and ROM WidLhseeiiiiieeiiiie e e s s s e s s s e s ss e e s ssannn e ssnnnessaannnessannnnnrnn 277
12-5. The infile.out File Partitioned INnto FOUr OULPUL FIlESeiiii i e e e aeeeanas 280
12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI BOOL......cuuieiiiieiiiiiiiiiiieiniieenninaeens 289
12-7. Sample Hex Converter Out File for C28x 16-Bit Parallel Boot GP /Oc.vviiiiiiiiiiiiiiiiini e 290
12-8. Sample Hex Converter Out File for Booting From 8-Bit SCI BOOL.......uvvieiiiuiiiiiiiiiiiisieniannnaes 291
e S O B =G @ 1= ox o o] 0 | 294
12-10. Intel Hexadecimal ObJECt FOIMALu.ueirueeiteite ittt s st e e e s s s s s s s s n s raaeaaanenanns 295
I T O Y o) o] 0] o T o 0 T 296
12-12. Extended TeKtroniX ODJECt FOIMAL .. .uueiiseseiiiieeiiitessiiars s e ssaiaes s ssiaae s saaan e s saannessaannnessas 297
2 e T I B 1= o T [0 @ o =T o B o - 298
I I 19 I] 1= o o g - N 299
List of Figures SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS

INSTRUMENTS

www.ti.com

List of Tables

4-1. TMS320C28X ASSEMDIEr OPtiONS . uustustinteiseiareriseir st rs s rar s ranrrrans 44
4-2. C28x Processor SYMDOlIC CONSIANTS ... uuuteiietsiriiereisiiansisaiaessaaiaessssassestsassessaannasssansrsssannnes 57
e J 1 U @0 g1 10 =T 551 =T £ 58
O o O O] g1 0] I LT 0 1S3 (T 58
T VL O U L= 111 =] £ 59
4-6. Operators Used in EXPressions (PreCEAENCE) .uuiuutiiteiiseiiiirissirissriss it rias s sansasnnssannssns 61
4-7. Built-In MathematiCal FUNCHIONS ..uuuueiissiiseiisinee s s s e s e r e ranes 63
4-8. SYMDO| At OUIES . ettt 69
4-9. Smart Encoding for EffiCI@NCY «.uuuiueiiiiie i 70
4-10. Smart ENCOding INTUILIVEIY . ueuuuseiseiieie s s e e r s s s s e s i rannes 70
4-11. Instructions That Avoid SMart ENCOOING «.veuiuuueteirnteiiiiesiniisesisaisesisassesransresssasrsssannrsssainnns 71
5-1. Directives that Control SECHON USEueiiuiiiieiiitiiiieiirie st ra s raasaaneans 74
5-2. Directives that Affect Unused Section ElIMiNationvveiiieiiiiiiiiiriii s nnaees 74
5-3. Directives that Initialize Values (Data and MEMOIY)uiveueeiiiiuuesiiiiresiitesiraistessaarrssaannresaaannes 74
5-4. Directives that Perform Alignment and RESEIVE SPACEvuuiiiuttiiteiiieriririr i rnas 75
5-5. Directives that Format the OULPUL LISHING « ... ueeeeiiiiiiii e iri i r i e s e s s anae s ssane e s sanne s saannneasnn 75
5-6. Directives that Reference Other FileSiiiuiiiiiiiiiiiiiiiiiiiii i s 75
5-7. Directives that Affect Symbol Linkage and ViSiDilityvvveeiiiiiiiiiiii e 76
5-8. Directives that Override the ASSEMDIY MOUE ...t et r e s rane s s aanneeas 76
5-9. Directives that Enable Conditional ASSEMDIYuiiiuuiiiiiiiiii i aaane e 76
5-10. Directives that Define Union Or StrUCTUIrE TYPES «uuuueiuetiintireeiireries i sias i e 76
5-11. Directives that Define Symbols at ASSEMDBIY TIMe ...uvuiiiieiii i e 76
5-12. Directives that Create or AffECt MACIOS +.vvueiiisiiiiiiiisiii i e nens 77
5-13. Directives that Control DIagNOSHCS . uuuueiiueiretiiaitiiaeiirera st ras s i raasaannens 77
5-14. Directives that Perform Assembly SOUrce DebUQg.......cviiiiiiiii e r e 77
5-15. Directives that Are Used by the ADSOIUE LiSter....uuuueeiiiiieiiiiie i sr s aaaneeas 77
5-16. Directives that Perform Miscellan@ous FUNCHONSueiuiiieeiitirte i s ranne e 77
6-1. Substitution Symbol Functions and RetUrN ValUES.......vviuiiiiiriiiiiiiiiii i sassssssinnsnanes 147
L O = 11 o T 1Y = o] 0L 157
6-3. Manipulating SUbSHtUtION SYMDOISuuuiie i e 157
(R S @70 o 1o F= I A== =T 1 4]] N 157
6-5. Producing ASSEmMDIY-TimMeE MESSA0ES . .. uuuiiuuteiiiites it ittt rsaanrsssaanrsasanrsssaannssasannesss 157
6-6. FOrmMatting the LiStNg . .uuvuueieiiieiiiri e st e e s s s s r e e 157
8-1. BasSiC OPLIONS SUMIMAIY 1 uuuttuuserusetnsssnssrase et ssss st tase s tass s s st srasetaressannsannes 169
8-2. File Search Path OptioNS SUMIMAIYuueiiieeiiieisis s ssiiar s ssairs s ssase s saaaresssansessaannnesss 169
8-3. Command File Preprocessing OptioNS SUMIMAIY ..uuuueeiueirueernnrrsesinrsasssissianerassiaessinssannsrins 169
8-4. DiagnOoStiC OPLIONS SUMIMAIY .. .etinnneteirateeraaneesaaaanesaaannessaannesaaantessaannessaansnessannnesssnnnnsssns 169
8-5. Linker OUtPUL OPtiONS SUMMIBIY .t uuuutetrateersnnessaianesssisssssaanstaaassestsassssssasstessasnnnssssnnnsssns 170
8-6. Symbol Management OPtiONS SUMMEAIY «..uuiuutiruueiiurerseianeerss et sasr s rastsiessanrsanns 170
8-7. Run-Time Environment OPtioNS SUMIMAIYeeiiueeeirianesiaaaesessansessaanseesaannsessaannsssaannssssasnnsss 170
8-8. Link-Time Optimization OPtioNS SUMMIAIY 1..uueeiiiuueeisisnessaasnnsssanstessaasssssaannressaanrsssaannssssasnnss 171
8-9. Miscellaneous OPLiONS SUMIMEAIY .. uuuuueiueernnirussras e taas s sarsrass et asasstaesainssanns 171
8-10. Predefined C28X MaCIO NAIMES ...uutiuutiruseistirseiassisse sttt rae s ranneranes 175
8-11. Groups of Operators Used in EXpressions (PreCedENCE) v.uuuuiiriiueriiiiuieiiiiineiiiisiesisinsssisannnessannnes 222
10-1. Symbol Attributes in Cross-Reference LIStNG ...vvueerieeivieiiiiii it i ranneeaees 264
12-1. Basic Hex Conversion ULty OPtIONSuueeeiiiieiiiiie e iaaie st saaae s saaaas s ssann e s saannsssaannresaannnesanns 271
I = T Yo I T= T L= 0 1] 286

SPRU513K—-October 2016 List of Tables 9

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

2 TR = T Yo] A 1= o] (ST Yo 10 o7 < T 0 1 = L £ 288
2 S = 1T] 1= o] [T 0 1 1 = e 288
12-5. Options for Specifying Hex ConVersion FOIMIALSuuuvueeiriineeeiiiinsisrinessisisssisassesiannnsssaannneias 294
A-1. Symbolic Debugging Dir€CVES .. uuuueeiistirteiistiriae st e e s s s s s saar s raaeaanesannaans 311

10 List of Tables SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS

Preface
SPRU513K—-0October 2016

Read This First

About This Manual
The TMS320C28x Assembly Language Tools User's Guide explains how to use the following Texas
Instruments Code Generation object file tools:
» Assembler
* Archiver
e Linker
e Library information archiver
* Absolute lister
» Cross-reference lister
» Disassembler
* Object file display utility
* Name utility
e Strip utility
» Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments object file and assembly language tools
designed specifically for the TMS320C28x™ 16-bit devices. This book consists of four parts:

* Introductory information, consisting of Chapter 1 through Chapter 3, gives you an overview of the
object file and assembly language development tools. Chapter 2, in particular, explains object modules
and how they can be managed to help your TMS320C28x application load and run. It is highly
recommended that developers become familiar with what object modules are and how they are used
before using the assembler and linker.

» Assembler description, consisting of Chapter 4 through Chapter 6, contains detailed information
about using the assembler. Chapter 4 and Chapter 5 explain how to invoke the assembler and discuss
source statement format, valid constants and expressions, assembler output, and assembler directives.
Chapter 6 focuses on the macro language.

« Linker and other object file tools description, consisting of Chapter 7 through Chapter 12,
describes in detail each of the tools provided with the assembler to help you create executable object
files. Chapter 7 provides details about using the archiver to create object libraries. Chapter 8 explains
how to invoke the linker, how the linker operates, and how to use linker directives. Chapter 11 provides
a brief overview of some of the object file utilities that can be useful in examining the content of object
files as well as removing symbol and debug information to reduce the size of a given object file.
Chapter 12 explains how to use the hex conversion utility.

» Additional Reference material, consisting of Appendix A through Appendix D, provides
supplementary information including symbolic debugging directives used by the TMS320C28x C/C++
compiler. It also provides hex utility examples. A description of the XML link information file and a
glossary are also provided.

SPRU513K—-0October 2016 Read This First 11

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Notational Conventions www.ti.com

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a special typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).
Here is a sample of C code:

#include <stdio.h>

main()
{ printf("hello world\n");
b

In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘cIZOOO [options] [filenames] [--run_linker [link_options] [object files]] ‘

Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_maodel or --ram_model option:

cl2000 --run_linker {--rom_model | --ram_model} filenames

[--output_file= name.out] --library= libraryname

In assembler syntax statements, The leftmost character position, column 1, is reserved for the first
character of a label or symbol. If the label or symbol is optional, it is usually not shown. If it is a
required parameter, it is shown starting against the left margin of the box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or label, can begin in column 1.

‘symbol .usect "section name", size in bytes|, alignment] ‘

Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

‘.byte parameter,[, ... , parameter,] ‘

The TMS320C2800 core is referred to as TMS320C28x or C28x.
Other symbols and abbreviations used throughout this document include the following:

Symbol Definition

B,b Suffix — binary integer

H, h Suffix — hexadecimal integer
LSB Least significant bit

MSB Most significant bit

0x Prefix — hexadecimal integer
Q,q Suffix — octal integer

12 Read This First SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

See the following resources for further information about the Tl Code Generation Tools:
* Texas Instruments Wiki: Compiler topics
e Texas Instruments E2E Community: Compiler forum

You can use the following books to supplement this user's guide:

SPRU514 —TMS320C28x Optimizing C/C++ Compiler User's Guide. Describes the TMS320C28x
C/C++ compiler. This C/C++ compiler accepts ANSI standard C/C++ source code and produces
assembly language source code for the TMS320C28x devices.

SPRU127 —TMS320C2xx User's Guide. Discusses the hardware aspects of the TMS320C2xx 16-bit
fixed-point digital signal processors. It describes the architecture, the instruction set, and the on-
chip peripherals.

SPRU430 —TMS320C28x DSP CPU and Instruction Set Reference Guide. Describes the central
processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point
CPU. It also describes emulation features available on these devices.

SPRU566 —TMS320x28xx, 28xxx DSP Peripherals Reference Guide. Describes all the peripherals
available for TMS320x28xx and TMS320x28xxx devices.

SPRUEO2 —TMS320C28x Floating Point Unit and Instruction Set Reference Guide. Describes the
CPU architecture, pipeline, instruction set, and interrupts of the C28x floating-point DSP.

SPRAAO8 — Common Object File Format Application Report. Provides supplementary information on
the internal format of COFF object files. Much of this information pertains to the symbolic
debugging information that is produced by the C compiler.

TMS320C28x is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

SPRU513K—-0October 2016 Read This First 13

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://processors.wiki.ti.com/index.php/Category:Compiler
http://e2e.ti.com/support/development_tools/compiler/f/343
http://www.ti.com/lit/pdf/spru514
http://www.ti.com/lit/pdf/spru127
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru566
http://www.ti.com/lit/pdf/sprueo2
http://www.ti.com/lit/pdf/spraaO8

. Chapter 1
l TEXAS SPRU513K—-October 2016

INSTRUMENTS

Introduction to the Software Development Tools

The TMS320C28x™ is supported by a set of software development tools, which includes an optimizing
C/C++ compiler, an assembler, a linker, and assorted utilities. This chapter provides an overview of these
tools.

The TMS320C28x is supported by the following assembly language development tools:

» Assembler

» Archiver

* Linker

» Library information archiver

» Absolute lister

» Cross-reference lister

» Obiject file display utility

» Disassembler

* Name utility

o Strip utility

e Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.

For detailed information on the compiler and debugger, and for complete descriptions of the
TMS320C28x, refer to the books listed in Related Documentation From Texas Instruments.

Topic Page
1.1 Software Development TOOIS OVEIVIEW ...cuiuiie ettt et ae et eaeasaeeaenees 15
i o Yo FSR B L= YT od] o) 410 4 1= PP 16
14 Introduction to the Software Development Tools SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Software Development Tools Overview

1.1 Software Development Tools Overview

Figure 1-1 shows the TMS320C28x software development flow. The shaded portion highlights the most
common development path; the other portions are optional. The other portions are peripheral functions

that enhance the development process.

Figure 1-1. TMS320C28x Software Development Flow

Macro
source
files

C
source
files

C/C++

compiler

C2xx
assembler
source

Assembler Transition
source assistant
Macro Assembler
library Assembler Source
Object Library-build
files utility
T Debugging
. I . tools
Library of Run-time-
object) support
files Linker library

Post-link
optimizer

Executable
object file

Hex-conversion
utility

Cross-reference | Object file
lister utilities

EPROM Absolute lister
programmer

SPRU513K—-October 2016 Introduction to the Software Development Tools 15

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Tools Descriptions www.ti.com

1.2

Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

The C/C++ compiler accepts C/C++ source code and produces TMS320C28x machine code object
modules. See the TMS320C28x Optimizing C/C++ Compiler User's Guide for more information. A
shell program, an optimizer, and an interlist utility are included in the installation:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control the assembly process, including the source listing format, data
alignment, and section content. See Chapter 4 through Chapter 6. See the TMS320C28x DSP CPU
and Instruction Set Reference Guide for detailed information on the assembly language instruction set.

The linker combines object files into a single static executable or dynamic object module. It performs
symbolic relocation and resolves external references. The linker accepts relocatable object modules
(created by the assembler) as input. It also accepts archiver library members and output modules
created by a previous linker run. Link directives allow you to combine object file sections, bind sections
or symbols to addresses or within memory ranges, and define global symbols. See Chapter 8.

The archiver allows you to collect a group of files into a single archive file, called a library. The most
common use of the archiver is to collect a group of object files into an object library. The linker extracts
object library members to resolve external references during the link. You can also use the archiver to
collect several macros into a macro library. The assembler searches the library and uses the members
that are called as macros by the source file. The archiver allows you to modify a library by deleting,
replacing, extracting, or adding members. See Section 7.1.

The library information archiver allows you to create an index library of several object file library
variants, which is useful when several variants of a library with different options are available. Rather
than refer to a specific library, you can link against the index library, and the linker will choose the best
match from the indexed libraries. See Section 7.5 for more information about using the archiver to
manage the content of a library.

You can use the library-build utility to build your own customized run-time-support library. See the
TMS320C28x Optimizing C/C++ Compiler User's Guide for more information.

The hex conversion utility converts object files to TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. Converted files can be downloaded to an EPROM programmer. See
Chapter 12.

The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter 9.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See Chapter 10.

The main product of this development process is a executable object file that can be executed on a
TMS320C28x device. You can use one of several debugging tools to refine and correct your code.
Available products include:

— An instruction-accurate and clock-accurate software simulator
— An XDS emulator

In addition, the following utilities are provided to help examine or manage the content of a given object file:

The object file display utility prints the contents of object files and object libraries in either human
readable or XML formats. See Section 11.1.

The disassembler decodes the machine code from object modules to show the assembly instructions
that it represents. See Section 11.2.

The name utility prints a list of symbol names for objects and functions defined or referenced in an
object file or object archive. See Section 11.3.

The strip utility removes symbol table and debugging information from object files and object libraries.
See Section 11.4.

16

Introduction to the Software Development Tools SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 2
l TEXAS SPRU513K—-October 2016

INSTRUMENTS

Introduction to Object Modules

The assembler creates object modules from assembly code, and the linker creates executable object files
from object modules. These executable object files can be executed by a TMS320C28x device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the linker provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic Page

2.1 Executable ODJECT FilES ..uiuiuiiiiii ittt 18

2.2 INtrOdUCTION £0 SEBCTIONS ..t ttutietinetneteeiaetneeesaneenstseeseasseastsseseasssnstssenssssssnssnnssnsnns 18

2.3 How the Assembler HANAIES SECTIONS ..uueiiuteieeieeeeeianetaneeantersesaneeanseranesanneennns 20

2.4 How the Linker HandlEs SeCtiONS ... uuiit it iii ittt et ieeeaseeantesanesanneanneinns 26

S TV 111 o Lo K P 28

Y220 T V4 011 o o ol L= o o= 14 [0 1< 29

Y22 A o Y- Vo [T T = W 0o | - o o 1S P 30
SPRU513K-0October 2016 Introduction to Object Modules 17

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Executable Object Files www.ti.com

2.1 Executable Object Files

The linker can be used to produce static executable object modules. An executable object module has the
same format as object files that are used as linker input. The sections in an executable object module,
however, have been combined and placed in target memory, and the relocations are all resolved.

To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. See Chapter 3 for details about loading and running programs.

2.2 Introduction to Sections

The smallest unit of an object file is a section. A section is a block of code or data that occupies
contiguous space in the memory map. Each section of an object file is separate and distinct.

COFF format executable object files contain sections.
Object files usually contain three default sections:

.text section contains executable code ®
.data section usually contains initialized data
.ebss section usually reserves space for uninitialized variables

@ Some targets allow content other than text, such as constants, in .text sections.

The assembler and linker allow you to create, name, and link other kinds of sections. The .text, .data, and
.ebss sections are archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized; user-
named sections created with the .sect assembler directive are also
initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .ebss section is

uninitialized; user-named sections created with the .usect assembler
directive are also uninitialized.

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called placement. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine in a portion of the memory map that contains ROM. For
information on section placement, see the "Specifying Where to Allocate Sections in Memory" section of
the TMS320C28x Optimizing C/C++ Compiler User's Guide.

18 Introduction to Object Modules SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Introduction to Sections

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory
.ebss > RAM
.data » EEPROM

[Li
)
I

dext
\—' ROM

2.2.1 Special Section Names

You can use the .sect and .usect directives to create any section name you like, but certain sections are
treated in a special manner by the linker and the compiler's run-time support library. If you create a section
with the same name as a special section, you should take care to follow the rules for that special section.

A few common special sections are:

.text -- Used for program code.

.ebss -- Used for uninitialized objects (global variables).

.data -- Used for initialized non-const objects (global variables).

.econst -- Used for initialized const objects (string constants, variables declared const).
.cinit -- Used to initialize C global variables at startup.

.stack -- Used for the function call stack.

.esysmem - Used for the dynamic memory allocation pool.

For more information on sections, see the "Specifying Where to Allocate Sections in Memory" section of
the TMS320C28x Optimizing C/C++ Compiler User's Guide.

SPRU513K-0October 2016 Introduction to Object Modules 19
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

2.3

231

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has the following directives that support this function:

» .data

» .sect

* text

* .usect

The .usect directive creates uninitialized sections; the .text, .data, and .sect directives create initialized
sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.3.6.

Default Sections Directive

NOTE: If you do not use any of the sections directives, the assembler assembles everything into the
.text section.

Uninitialized Sections

Uninitialized sections reserve space in TMS320C28x memory; they are usually placed in RAM. These
sections have no actual contents in the object file; they simply reserve memory. A program can use this
space at run time for creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.

» The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .usect directive, the assembler reserves additional space in the user-named
section. The syntax is:

symbol .usect "section name", size in words][, blocking flag[, alignment flag]] ‘

symbol points to the first byte reserved by this invocation of the .usect directive. The symbol
corresponds to the name of the variable that you are reserving space for. It can be
referenced by any other section and can also be declared as a global symbol (with the
.global directive).

size in words is an absolute expression (see Section 4.8). The .usect directive reserves size in
words words in section name. You must specify a size; there is no default value.

blocking flag is an optional parameter. If you specify a value greater than 0 for this parameter, the
assembler allocates size in words contiguously. This means the allocated space does
not cross a page boundary unless its size is greater than a page, in which case the
objects starts a page boundary.

alignment flag is an optional parameter. It causes the assembler to allocate size in words on long
word boundaries.

type is an optional parameter. It causes the assembler to produce the appropriate debug
information for the symbol. See for more information.

section name specifies the user-named section in which to reserve space. See Section 2.3.3.

Initialized section directives (.text, .data, and .sect) change which section is considered the current section
(see Section 2.3.2). However, the .usect directive does not change the current section; it simply escapes
from the current section temporarily. Immediately after a .usect directive, the assembler resumes
assembling into whatever the current section was before the directive. The .usect directive can appear
anywhere in an initialized section without affecting its contents. For an example, see Section 2.3.7.

20

Introduction to Object Modules SPRU513K-0October 2016
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS

INSTRUMENTS

www.ti.com How the Assembler Handles Sections

2.3.2

2.3.3

The .usect directive can also be used to create uninitialized subsections. See Section 2.3.6 for more
information on creating subsections.

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in TMS320C28x memory when the program is loaded. Each initialized section is
independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these references. The following directives tell the assembler to place code or data
into a section. The syntaxes for these directives are:

text
.data
.sect "section name"

The .sect directive can also be used to create initialized subsections. See Section 2.3.6, for more
information on creating subsections.

User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and
.ebss sections, but each section with a distinct name is kept distinct during assembly.

For example, repeated use of the .text directive builds up a single .text section in the object file. This .text
section is allocated in memory as a single unit. Suppose there is a portion of executable code (perhaps an
initialization routine) that you want the linker to place in a different location than the rest of .text. If you
assemble this segment of code into a user-named section, it is assembled separately from .text, and you
can use the linker to allocate it into memory separately. You can also assemble initialized data that is
separate from the .data section, and you can reserve space for uninitialized variables that is separate from
the .ebss section.

These directives let you create user-named sections:

* The .usect directive creates uninitialized sections that are used like the .ebss section. These sections
reserve space in RAM for variables.

* The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates user-named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect "section name", size in words], blocking flag[, alignment flag[, type]]]
.sect "section name"

You can create up to 32 767 distinct named sections.

The section name parameter is the name of the section. For the .usect and .sect directives, a section
name can refer to a subsection; see Section 2.3.6 for details.

Each time you invoke one of these directives with a new name, you create a new user-named section.
Each time you invoke one of these directives with a name that was already used, the assembler resumes
assembling code or data (or reserves space) into the section with that name. You cannot use the same
names with different directives. That is, you cannot create a section with the .usect directive and then try
to use the same section with .sect.

SPRU513K-0October 2016 Introduction to Object Modules 21
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

234

2.35

2.3.6

Current Section

The assembler adds code or data to one section at a time. The section the assembler is currently filling is
the current section. The .text, .data, and .sect directives change which section is considered the current
section. When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied end of current section command). The assembler sets the designated
section as the current section and assembles subsequent code into the designated section until it
encounters another .text, .data, or .sect directive.

If one of these directives sets the current section to a section that already has code or data in it from
earlier in the file, the assembler resumes adding to the end of that section. The assembler generates only
one contiguous section for each given section name. This section is formed by concatenating all of the
code or data which was placed in that section.

Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relocates the symbols in each
section according to the final address of the section in which that symbol is defined. See Section 2.6 for
information on relocation.

Subsections

A subsection is created by creating a section with a colon in its name. Subsections are logical subdivisions
of larger sections. Subsections are themselves sections and can be manipulated by the assembler and
linker.

The assembler has no concept of subsections; to the assembler, the colon in the name is not special. The
subsection .text:rts would be considered completely unrelated to its parent section .text, and the
assembler will not combine subsections with their parent sections.

Subsections are used to keep parts of a section as distinct sections so that they can be separately
manipulated. For instance, by placing each function and object in a uniquely-named subsection, the linker
gets a finer-grained view of the section for memory placement and unused-function elimination.

By default, when the linker sees a SECTION directive in the linker command file like ".text", it will gather
.text and all subsections of .text into one large output section named ".text". You can instead use the
SECTION directive to control the subsection independently. See Section 8.5.5.1 for an example.

You can create subsections in the same way you create other user-named sections: by using the .sect or
.usect directive.

The syntaxes for a subsection name are:

symbol .usect "section_name:subsection_name",size in words[,blocking flag[,alignment flag[,type]]]
.sect "section_name:subsection_name"

A subsection is identified by the base section name followed by a colon and the name of the subsection.
The subsection name may not contain any spaces.

A subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:
.sect "_text:_func"

Using the linker's SECTIONS directive, you can allocate .text._func separately, or with all the .text
sections.

22

Introduction to Object Modules SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com How the Assembler Handles Sections

You can create two types of subsections:
» Initialized subsections are created using the .sect directive. See Section 2.3.2.
* Uninitialized subsections are created using the .usect directive. See Section 2.3.1.

Subsections are placed in the same manner as sections. See Section 8.5.5 for information on the
SECTIONS directive.

2.3.7 Using Sections Directives

Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.

The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A
line in a listing file has four fields:

Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.

Field 4 contains the original source statement.

See Section 4.11 for more information on interpreting the fields in a source listing.

SPRU513K-0October 2016 Introduction to Object Modules 23

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

{i’ TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

Figure 2-2. Using Sections Directives Example

1 FREEEEAA AT T RA A AT A A A A F AT AT A A A AT A A A AT F A A A A AT b E®
2 ** PAszsemble an initialized table into .data. L
3 dEkEFEE Ak AT T E R AT AT E A A b T T T AT ARk T AR A A AT T A ARk AT R T A bk b T AL
4 00000000 .data
5 00000000 0011 coeff .word 011h, 022h, 033h
goooo0O01 0022
go0o0002 0033
&
'JT tE R A R E AL R LA RS R LR R AR SRR R R R RS R R R RS R R R R SRR R R ERSE R R
8 * Reserve space in .ebss for a wvariable. *
9 R R R R S E R R R SRR R LSRR R R RS LR R LS EEEEEEEEEEEE R R
10 00000000 .bss buffer, 10
11
12 tEE E R L R E XL R LA RS LR R RS S S LR R EEE S LR R R SR R R R RS SRR E RS SR R
13 *x Still in .data * %
14 AEEREEAATRTEA AR AR A EAA R AR R A AR TR A AR AT T A A AR AR bR dk
15 00000003 0123 ptr .word 0123h
16
1? tE R L R E XL R LA RS SRR R A S SRR R RS R R R R RS R R R RS SRR R RS R
18 * % Assemble code into the .text section. ¥
lg X A A A B2 2 R R LR R RS R RS EE R R LR LR R EREE RN]}
20 00000000 text
21 00000000 28A1 add: mowv arl, #0Fh
0000001 Q00F
22 00000002 0BAl aloop: dec arl
23 00000003 o009 banz aloop, arl——
00000004 FFFF
24
_25 FEEFEEERITFTETER AR TR AT T ETE TR FT TR R LA T I T AR T R Tk T TR
26 * Another initialized table into .data * ok
2'}' X S X A B2 22 R R R RS R R SRR RE R LR LR EEEE LN]}
28 00000004 .data
29 00000004 00AA ivals .word O0AARh, OBBh, 0CCh
poo000005 00BB
00000006 gocc
30
31 s v o o e ok e e e o ok ok e e o o ok ok o e o o ol ol o b o o ol o e e e o e e e e e e R o e e ok b e e o
iz ** Define another section for more variables. *+*
33 kbbb bbb bbbk bbb bbb rd bbb d bbb hdbddh
34 00000000 varz .usect "newvars”, 1
35 00000001 inbuf .usect "newvars”, 7
36
37 FRAEEEAAAE R A A AT A A A AT A AA A A A A A A A A A A AT A A A A A A A LA AL A A LR
38 3 Assemble more code into .text. *
39 tE S R A R R AL R L RS EE R R R SRR R R EEE LR EEREE SRRt R REERSE R
40 00000005 text
41 00000005 28A1 end _mpy: mov arl, #0Ah
go000006 Q000A
42 00000007 33al1 mloop: mpy p,t,arl
43 00000008 28AC mov t, #0Ah
00000009 000A
44 0000000a 3FAl mowv arl, p
45 0000000b 6BFA sb end_mpy, OV
'_'.r_l' _V_.f _v_a' W
Field 1 Field 2 Field 3 Field 4
24 Introduction to Object Modules SPRU513K-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com How the Assembler Handles Sections

As Figure 2-3 shows, the file in Figure 2-2 creates four sections:

text contains ten 32-bit words of object code.

.data contains five words of initialized data.

.ebss reserves ten words in memory.

newvars is a user-named section created with the .usect directive; it contains eight words in
memory.

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in Figure 2-2

Line number Object code Section
5 0011 .data
5 0022
5 0033
15 0123
29 00AA
29 00BB
29 00CC
21 28A1 dext
21 000F
22 0BA1
23 0009
23 EERE
41 28A1
41 000A
42 J3A1
43 28AC
43 000A
44 JFA1
45 6BFB
10 Mo data .ebss
10 words
preserved
34 No data newvars
35 8 words
preserved
SPRU513K-0October 2016 Introduction to Object Modules 25

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
How the Linker Handles Sections www.ti.com
2.4 How the Linker Handles Sections
The linker has two main functions related to sections. First, the linker uses the sections in object files as
building blocks; it combines input sections to create output sections in an executable output module.
Second, the linker chooses memory addresses for the output sections; this is called placement. Two linker
directives support these functions:
 The MEMORY directive allows you to define the memory map of a target system. You can name
portions of memory and specify their starting addresses and their lengths.
» The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.
Subsections let you manipulate the placement of sections with greater precision. You can specify the
location of each subsection with the linker's SECTIONS directive. If you do not specify a subsection, the
subsection is combined with the other sections with the same base section name. See Section 8.5.5.1.
It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default placement algorithm described in Section 8.7. When you do use linker directives, you
must specify them in a linker command file.
Refer to the following sections for more information about linker command files and linker directives:
* Section 8.5, Linker Command Files
» Section 8.5.4, The MEMORY Directive
» Section 8.5.5, The SECTIONS Directive
e Section 8.7, Default Placement Algorithm
2.4.1 Combining Input Sections
Figure 2-4 provides a simplified example of the process of linking two files together.
Note that this is a simplified example, so it does not show all the sections that will be created or the actual
sequence of the sections. See Section 8.7 for the actual default memory placement map for
TMS320C28x.
26 Introduction to Object Modules SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

www.ti

INSTRUMENTS

.com How the Linker Handles Sections

24.2

Figure 2-4. Combining Input Sections to Form an Executable Object Module

file1.obj
Executable
text object module Memory map
file1
.ebss
(.text) Executable
A—l e code
data file2 (.text)
; (text)
Init - file -
(named section) = B n N (.data) Im?jaltl;ﬂd
EEEEEEEN e =
g file2 (.data)
(.data)
file1
file2.0bj L] N (.ebss) Epgce for
AT T T T T T T variables
oxt [] file2 (.ebss)
' (.ebss)
.ebss . Init Init
.data > Tables Tables
Tables
(named section)

In Figure 2-4, filel.obj and file2.0bj have been assembled to be used as linker input. Each contains the
.text, .data, and .ebss default sections; in addition, each contains a user-named section. The executable
object module shows the combined sections. The linker combines the .text section from filel.obj and the
.text section from file2.obj to form one .text section, then combines the two .data sections and the two
.ebss sections, and finally places the user-named sections at the end. The memory map shows the
combined sections to be placed into memory.

Placing Sections

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a user-named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, FLASH, etc.) in
varying amounts; you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 8.5.4
and Section 8.5.5. See Section 8.7 for the actual default memory allocation map for TMS320C28x.

SPRU513K-0October 2016 Introduction to Object Modules 27
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Symbols www.ti.com

2.5

251

Symbols

An object file contains a symbol table that stores information about external symbols in the object file. The
linker uses this table when it performs relocation. See Section 2.6.

An object file symbol is a named 32-bit integer value, usually representing an address. A symbol can
represent such things as the starting address of a function, variable, or section. Symbol addresses,
although they are 32-bit, are actually handled as 22-bit addresses, so that more efficient instructions can
be used with them.

An object file symbol can also represent an absolute integer, such as the size of the stack. To the linker,
this integer is an unsigned value, but the integer may be treated as signed or unsigned depending on how
it is used. The range of legal values for an absolute integer is 0 to 2*32-1 for unsigned treatment and -
2731 to 2°31-1 for signed treatment.

Symbols can be bound as global symbols or local symbols. The linker handles symbols differently based
on their binding. For example, the linker does not allow multiple global definitions of a symbol, but local
symbols can be defined multiple times. The linker does not resolve references to local symbols in different
object files, but it does resolve references to global symbols in any other object file.

A global symbol is defined in the same manner as any other symbol; that is, it appears as a label or is
defined by a directive, such as .set, .equ, or .usect. If a global symbol is defined more than once, the
linker issues a multiple-definition error. (The assembler can provide a similar multiple-definition error for
local symbols.)

See Section 4.7 for information about assembler symbols.

External Symbols

External symbols are symbols that are visible to other object modules. Because they are visible across
object modules, they may be defined in one file and referenced in another file. You can use the .def, .ref,
or .global directive to identify a symbol as external:

.def The symbol is defined in the current file and may be used in another file.
.ref The symbol is referenced in the current file, but defined in another file.

.global The symbol can be either of the above. The assembler chooses either .def or .ref as
appropriate for each symbol.

The following code fragment illustrates these definitions.

.def X
.ref y
-global z
-global g

X: ADD AR1, #56h
B y. UNC

q: ADD AR1, #56h
B z, UNC

In this example, the .def definition of x says that it is an external symbol defined in this file and that other
files can reference x. The .ref definition of y says that it is an undefined symbol that is defined in another
file. The .global definition of z says that it is defined in some file and available in this file. The .global
definition of q says that it is defined in this file and that other files can reference q.

The assembler places x, y, z, and q in the object file's symbol table. When the file is linked with other
object files, the entries for x and g resolve references to x and q in other files. The entries for y and z
cause the linker to look through the symbol tables of other files for y's and z's definitions.

The linker attempts to match all references with corresponding definitions. If the linker cannot find a
symbol's definition, it prints an error message about the unresolved reference. This type of error prevents
the linker from creating an executable object module.

An error also occurs if the same symbol is defined more than once.

28

Introduction to Object Modules SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Symbols

2.5.2 The Symbol Table

2.6

The assembler generates an entry in the symbol table for each .ref, .def, or .global directive in
Section 2.5.1). These are external symbols, which are visible to other object modules.

The assembler also creates special symbols that point to the beginning of each section.

The assembler does not usually create symbol table entries for any symbols other than those described
above, because the linker does not use them. For example, labels (Section 4.7.2) are not included in the
symbol table unless they are declared with the .global directive. For informational purposes, there are
entries in the symbol table for each symbol in a program.

Symbolic Relocations

The assembler treats each section as if it began at address 0. Of course, all sections cannot actually
begin at address 0 in memory, so the linker must relocate sections. For COFF, all relocations are relative
to address 0 in their sections.

The linker can relocate sections by:

» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive

» Adjusting symbol values to correspond to the new section addresses
» Adjusting references to relocated symbols to reflect the adjusted symbol values

The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch
the references after the symbols are relocated. Example 2-1 contains a code fragment for a TMS320C28x
device for which the assembler generates relocation entries.

Example 2-1. Code That Generates Relocation Entries

1 -global X

2 00000000 -text

3 00000000 0080* LC Y ; Generates a relocation entry
00000001 0004

4 00000002 28A1! MoV AR1,#X ; Generates a relocation entry
00000003 0000

5 00000004 7621 Y: IDLE

2.6.1 Expressions With Multiple Relocatable Symbols (COFF Only)

Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the linker computes the value of the expression.

Expression Cannot Be Larger Than Space Reserved

NOTE: If the value of an expression is larger, in bits, than the space reserved for it, you will receive
an error message from the linker.

Each section in an object module has a table of relocation entries. The table contains one relocation entry
for each relocatable reference in the section. The linker usually removes relocation entries after it uses
them. This prevents the output file from being relocated again (if it is relinked or when it is loaded). A file
that contains no relocation entries is an absolute file (all its addresses are absolute addresses, which are
addresses known at assembly time). If you want the linker to retain relocation entries, invoke the linker
with the --relocatable option (see Section 8.4.3.2).

SPRU513K-0October 2016 Introduction to Object Modules 29
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Symbolic Relocations www.ti.com

In Example 2-1, both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 4 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).

After the code is linked, suppose that X is relocated to address 0x7100. Suppose also that the .text
section is relocated to begin at address 0x7200; Y now has a relocated value of 0x7204. The linker uses
the two relocation entries to patch the two references in the object code:

0080" LC Y becomes 0080*"
0004 7204
28A11 MOV AR1,#X becomes 28A11
0000 7100

Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the linker computes the value of the expression as shown in
Example 2-2.

Example 2-2. Simple Assembler Listing

1 -global syml, sym2

2

3 00000000 FF20% MoV ACC, #(sym2-syml)
00000001 0000

The symbols sym1 and sym2 are both externally defined. Therefore, the assembler cannot evaluate the
expression sym2 - syml, so it encodes the expression in the object file. The '%' listing character indicates
a relocation expression. Suppose the linker relocates sym2 to 300h and sym1 to 200h. Then the linker
computes the value of the expression to be 300h - 200h = 100h. Thus the MOV instruction is patched to:

00000000 FF20 MOV ACC, #(sym2-syml)
00000001 0100

2.7 Loading a Program
The linker creates an executable object file which can be loaded in several ways, depending on your
execution environment. These methods include using Code Composer Studio or the hex conversion utility.
For details, see Section 3.1.

30 Introduction to Object Modules SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 3
I TEXAS SPRU513K—-October 2016

INSTRUMENTS
Program Loading and Running

Even after a program is written, compiled, and linked into an executable object file, there are still many
tasks that need to be performed before the program does its job. The program must be loaded onto the
target, memory and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Bootstrapping is the process of a program
performing some of its own initialization. Many of the necessary tasks are handled for you by the compiler
and linker, but if you need more control over these tasks, it helps to understand how the pieces are
expected to fit together.

This chapter will introduce you to the concepts involved in program loading, initialization, and startup.
This chapter does not cover dynamic loading.

This chapter currently provides examples for the C6000 device family. Refer to your device documentation
for various device-specific aspects of bootstrapping.

Topic Page

£ 4 15 - T 1o o 32

G 0 1 20 o] 2 P 37

3.3 RUN-TIME INIIAIIZALION .eueieiiei ettt e et e e st e n e e et aeanaaes 37

G AN (o LU 4 =T] =T (o TN .1 =V 40

3.5 RUN-TIME REIOCALION .ttt ittt e e e e e et e et a e e et e e e n e e eeae e nes 40

3.6 Additional INfOrmMationeieiiiii e et 40
SPRU513K-0October 2016 Program Loading and Running 31

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Loading www.ti.com

3.1

3.11

Loading

A program needs to be placed into the target device's memory before it may be executed. Loading is the
process of preparing a program for execution by initializing device memory with the program's code and
data. A loader might be another program on the device, an external agent (for example, a debugger), or
the device might initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the load image in memory before the program starts. The load
image is the program's code and data in memory before execution. What exactly constitutes loading
depends on the environment, such as whether an operating system is present. This section describes
several loading schemes for bare-metal devices. This section is not exhaustive. Additionally, with the
COFF RAM maodel, the loader is responsible for parsing the .cinit section and performing the initializations
encoded therein at load time.

A program may be loaded in the following ways:

» A debugger running on a connected host workstation. In a typical embedded development setup,
the device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The
device is connected with a communication channel such as a JTAG interface. CCS reads the program
and writes the load image directly to target memory through the communications interface.

e Another program running on the device. The running program can create the load image and
transfer control to the loaded program. If an operating system is present, it may have the ability to load
and run programs.

* "Burning" the load image onto an EPROM module. The hex converter (hex2000) can assist with
this by converting the executable object file into a format suitable for input to an EPROM programmer.
The EPROM is placed onto the device itself and becomes a part of the device's memory. See
Chapter 12 for details.

« Bootstrap loading from a dedicated peripheral, such as an I1°C peripheral. The device may require
a small program called a bootloader to perform the loading from the peripheral. The hex converter can
assist in creating a bootloader.

Load and Run Addresses

Consider an embedded device for which the program's load image is burned onto EPROM/ROM. Variable
data in the program must be writable, and so must be located in writable memory, typically RAM.
However, RAM is volatile, meaning it will lose its contents when the power goes out. If this data must have
an initial value, that initial value must be stored somewhere else in the load image, or it would be lost
when power is cycled. The initial value must be copied from the non-volatile ROM to its run-time location
in RAM before it is used. See Section 8.8 for ways this is done.

The load address is the location of an object in the load image.
The run address is the location of the object as it exists during program execution.
An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program code
and read-only data, such as the .econst section. In this case, the program can read the data directly from
the load address. Sections that have no initial value, such as the .ebss section, do not have load data and
are considered to have load and run addresses that are the same. If you specify different load and run
addresses for an uninitialized section, the linker provides a warning and ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable data,
such as the .data section. The .data section's starting contents are placed in ROM and copied to RAM.
This often occurs during program startup, but depending on the needs of the object, it may be deferred to
sometime later in the program as described in Section 3.5.

Symbols in assembly code and object files almost always refer to the run address. When you look at an
address in the program, you are almost always looking at the run address. The load address is rarely
used for anything but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded in
the object file metadata.

32

Program Loading and Running SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Loading

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For examples that
specify load and run addresses, see Section 8.5.6.1.

For an example that illustrates how to move a block of code at run time, see Example 8-10. To create a
symbol that lets you refer to the load-time address, rather than the run-time address, see the .label
directive. To use copy tables to copy objects from load-space to run-space at boot time, see Section 8.8.

COFF format executable object files contain sections.

3.1.2 Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device
supports every bootloading mode, and using the bootloader is optional. This section discusses various
bootloading schemes to help you understand how they work. Refer to your device's data sheet to see
which bootloading schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data may be
stored in ROM or FLASH memory. At power-on, an on-chip bootloader (the primary bootloader) built into
the device hardware starts automatically.

Figure 3-1. Bootloading Sequence (Simplified)

Power On

Device Reset:
on-chip bootloader

Entry point:
(_c_int00 by default)

main

The primary bootloader is typically very small and copies a limited amount of memory from a dedicated
location in ROM to a dedicated location in RAM. (Some bootloaders support copying the program from an
I/O peripheral.) After the copy is completed, it transfers control to the program.

For many programs, the primary bootloader is not capable of loading the entire program, so these
programs supply a more capable secondary bootloader. The primary bootloader loads the secondary
bootloader and transfers control to it. Then, the secondary bootloader loads the rest of the program and
transfers control to it. There can be any number of layers of bootloaders, each loading a more capable
bootloader to which it transfers control.

SPRU513K—-October 2016 Program Loading and Running 33

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Loading www.ti.com

Figure 3-2. Bootloading Sequence with Secondary Bootloader

Power On

Device Reset:
on-chip bootloader

CPU Reset

Secondary Bootloader

Entry point:
(_c_int00 by default)

main

3.1.2.1 Boot, Load, and Run Addresses
The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for
.econst data. If they are different, the object's contents must be copied to the correct location before the
object may be used.

The boot address may be different than the load address. The bootloader is responsible for copying the
raw data to the load address.

The boot address is not controlled by the linker command file or recorded in the object file; it is strictly a
convention shared by the bootloader and the program.
3.1.2.2 Primary Bootloader
The detailed operation of the primary bootloader is device-specific. Some devices have complex
capabilities such as booting from an 1/O peripheral or configuring memory controller parameters.
3.1.2.3 Secondary Bootloader

The hex converter assumes the secondary bootloader is of a particular format. The hex converter's model
bootloader uses a boot table. You can use whatever format you want, but if you follow this model, the hex
converter can create the boot table automatically.

34 Program Loading and Running SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Loading
3.1.2.4 Boot Table

The input for the model secondary bootloader is the boot table. The boot table contains records that
instruct the secondary bootloader to copy blocks of data contained in the table to specified destination
addresses. The hex conversion utility automatically builds the boot table for the secondary bootloader.
Using the utility, you specify the sections you want to initialize, the boot table location, and the name of the
section containing the secondary bootloader routine and where it should be located. The hex conversion
utility builds a complete image of the table and adds it to the program.

The boot table is target-specific. For C6000, the format of the boot table is simple. A header record
contains a 4-byte field that indicates where the boot loader should branch after it has completed copying
data. After the header, each section that is to be included in the boot table has the following contents:

» 4-byte field containing the size of the section

e 4-byte field containing the destination address for the copy

» the raw data

» 0 to 3 bytes of trailing padding to make the next field aligned to 4 bytes

More than one section can be entered; a termination block containing an all-zero 4-byte field follows the
last section.

See Section 12.10.2 for details about the boot table format.

3.1.2.5 Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is set up.
For this reason, it can't use the C stack, and it can't call any functions that have yet to be loaded!

The following sample code is for C6000 and is from Creating a Second-Level Bootloader for FLASH
Bootloading on TMS320C6000 Platform With Code Composer Studio (SPRA999).

Example 3-1. Sample Secondary Bootloader Routine

; global EMIF symbols defined for the c671x family
-include boot_c671x.h62
.sect ".boot_load"”
-global _boot

_boot:

;* DEBUG LOOP - COMMENT OUT B FOR NORMAL OPERATION

zero Bl

_myloop: ; [!B1] B _myloop
nop 5

_myloopend: nop

;* CONFIGURE EMIF

; *EMIF_GCTL = EMIF_GCTL_V;

mvkl EMIF_GCTL,A4
11 mvkl EMIF_GCTL_V,B4
mvkh EMIF_GCTL,A4
11 mvkh EMIF_GCTL_V,B4
stw B4,*A4

; *EMIF_CEO = EMIF_CEO_V

mvkl EMIF_CEO,A4

1 mvkl EMIF_CEO_V,B4
mvkh EMIF_CEO,A4

T mvkh EMIF_CEO_V,B4

SPRU513K—-October 2016 Program Loading and Running 35

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://www.ti.com/lit/pdf/SPRA999

Loading

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3-1. Sample Secondary Bootloader Routine (continued)

stw

B4 ,*A4

*EMIF_CE1 = EMIF_CE1_V (setup for 8-bit async)

mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE1,A4
EMIF_CE1_V,B4
EMIF_CE1,A4
EMIF_CE1_V,B4
B4,*A4

*EMIF_CE2 = EMIF_CE2_V (setup for 32-bit async)

mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE2,A4
EMIF_CE2_V,B4
EMIF_CE2,A4
EMIF_CE2_V,B4
B4,*Ad

*EMIF_CE3 = EMIF_CE3_V (setup for 32-bit async)

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE3,A4
EMIF_CE3_V,B4
EMIF_CE3,A4
EMIF_CE3_V,B4
B4,*Ad

*EMIF_SDRAMCTL = EMIF_SDRAMCTL_V

mvkl
mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMCTL ,A4
EMIF_SDRAMCTL_V,B4 ;
EMIF_SDRAMCTL ,A4
EMIF_SDRAMCTL_V,B4
B4,*A4

*EMIF_SDRAMTIM = EMIF_SDRAMTIM_V

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMTIM,A4
EMIF_SDRAMTIM_V,B4 ;
EMIF_SDRAMTIM, A4
EMIF_SDRAMTIM_V,B4
B4,*A4

*EMIF_SDRAMEXT = EMIF_SDRAMEXT_V

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMEXT ,A4
EMIF_SDRAMEXT_V,B4 ;
EMIF_SDRAMEXT ,A4
EMIF_SDRAMEXT_V,B4
B4,*A4

copy sections

mvkl COPY_TABLE, a3 ; load table pointer
mvkh COPY_TABLE, a3
Idw *a3++, bl ; Load entry point
copy_section_top:
ldw *a3++, b0 ; byte count
ldw *a3++, a4 ; ram start address
nop 3
[bO] b copy_done ; have we copied all sections?
nop 5
copy_loop:
Idb *a3++,b5
sub b0,1,b0 ; decrement counter

36 Program Loading and Running

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Entry Point

Example 3-1. Sample Secondary Bootloader Routine (continued)

[bo]
['b0]

[1b0]

[1b0]
[al]

b copy_loop ; setup branch if not done
b copy_section_top
zero al

and 3,a3,al
stb b5,*ad++
and -4,a3,a5 ; round address up to next multiple of 4
add 4,a5,a3 ; round address up to next multiple of 4

; jump to entry point

copy_done:

b .S2 bl
nop 5
3.2 Entry Point

The entry point is the address at which the execution of the program begins. This is the address of the
startup routine. The startup routine is responsible for initializing and calling the rest of the program. For a
C/C++ program, the startup routine is usually named _c_int00 (see Section 3.3.1). After the program is
loaded, the value of the entry point is placed in the PC register and the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You
can select a custom entry point; see Section 8.4.10. The device itself cannot read the entry point field from
the object file, so it has to be encoded in the program somewhere.

» If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the
bootloader branches to the entry point.

« If you are using an interrupt vector, the entry point is installed as the RESET interrupt handler. When
RESET is applied, the startup routine will be invoked.

» If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter
(PC) to the value of the entry point.

3.3 Run-Time Initialization
After the load image is in place, the program can run. The subsections that follow describe bootstrap
initialization of a C/C++ program. An assembly-only program may not need to perform all of these steps.
3.3.1 _c_int00
The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs
all the steps necessary for a C/C++ program to initialize itself.
The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets
up the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry
point for C programs by default. The compiler's run-time-support library provides a default implementation
of _c_int0O.
The startup routine is responsible for performing the following actions:
1. Set up status and configuration registers
2. Set up the stack and secondary system stack
3. Process the .cinit run-time initialization table to autoinitialize global variables (when using the --
rom_model option)
4. Call all global object constructors (.pinit)
5. Call the function main
6. Call exit when main returns
SPRU513K-0October 2016 Program Loading and Running 37

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Run-Time Initialization www.ti.com

3.3.2 RAM Model vs. ROM Model

In both the COFF ROM and EABI ROM models, the .cinit section is loaded into memory along with other
initialized sections. The linker defines a "cinit" symbol that points to the beginning of the initialization tables
in memory. When the program begins running, the C boot routine copies data from these tables into the
.ebss section.

In the COFF RAM model, the loader is additionally responsible for processing the .cinit section. The .cinit
section is a NOLOAD section, which means it does not get allocated to target memory. Instead, the loader
is responsible for parsing the .cinit section and performing the initializations encoded therein at load time.

3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called cinit that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by
.Cinit) into the specified variables in the .ebss section. This allows initialization data to be stored in slow
non-volatile memory and copied to fast memory each time the program is reset.

Figure 3-3 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into slow memory or needs to survive a reset.
Figure 3-3. Autoinitialization at Run Time
Object file Memory

cinit| Initialization

.cinit
; » Loader > tables
section (EXT_MEM) ‘
Boot
routine
.ebss
section +
(D_MEM)

3.3.2.2 Initializing Variables at Load Time (--ram_model)

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no
space in the memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the
beginning of the initialization tables). This indicates to the boot routine that the initialization tables are not
present in memory; accordingly, no run-time initialization is performed at boot time.

A loader must be able to perform the following tasks to use initialization at load time:
» Detect the presence of the .cinit section in the object file.

» Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory.

» Understand the format of the initialization tables.

38

Program Loading and Running SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Initialization

Figure 3-4 illustrates the initialization of variables at load time.

Figure 3-4. Initialization at Load Time
Object file Memory

.cinit Loader

k.

L . .ebss

3.3.2.3 The --rom_model and --ram_model Linker Options

The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model

option.

e The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.obj; referencing _c¢_int00 ensures that boot.obj is automatically linked in from the
appropriate run-time-support library.

* The .cinit output section is padded with a termination record to tell the boot routine (autoinitialize at run
time) or the loader (initialize at load time) when to stop reading initialization tables.
* When you initialize at load time (--ram_model option):

— The linker sets cinit to -1. This indicates that the initialization tables are not in memory, so no
initialization is performed at run time.

— The STYP_COPY flag (0010h) is set in the .cinit section header. STYP_COPY is the special
attribute that tells the loader to perform initialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit section.

« When you autoinitialize at run time (--rom_model option), the linker defines cinit as the starting address
of the .cinit section. The C boot routine uses this symbol as the starting point for autoinitialization.

Boot Loader

NOTE: A loader is not included as part of the C/C++ compiler tools. Use the TMS320C28x Code
Composer Studio as a loader.

3.3.3 Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load
address to its run address. This function reads size and location information from copy tables. The linker
automatically generates several kinds of copy tables. Refer to Section 8.8.

You can create and control code overlays with copy tables. See Section 8.8.4 for details and examples.

Using copy tables is similar to performing run-time relocations as described in Section 3.5, however copy
tables require a specific table format.

SPRU513K—-October 2016 Program Loading and Running 39

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Arguments to main www.ti.com

3.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the
copying at auto-initialization time. Refer to Section 8.8.4.2 for more about the BINIT copy table name. The
BINIT copy table is copied before .cinit processing.

3.3.3.2 CINIT

COFF .cinit tables can be used to provide copy table functionality.

3.4 Arguments to main
Some programs expect arguments to main (argc, argv) to be valid. Normally this isn't possible for an
embedded program, but the TI runtime does provide a way to do it. The user must allocate an .args
section of an appropriate size using the --args linker option. It is the responsibility of the loader to populate
the .args section. It is not specified how the loader determines which arguments to pass to the target. The
format of the arguments is the same as an array of pointers to char on the target.
See Section 8.4.4 for information about allocating memory for argument passing.

3.5 Run-Time Relocation
At times you may want to load code into one area of memory and move it to another area before running
it. For example, you may have performance-critical code in an external-memory-based system. The code
must be loaded into external memory, but it would run faster in internal memory. Because internal memory
is limited, you might swap in different speed-critical functions at different times.
The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct the
linker to allocate a section twice: first to set its load address and again to set its run address. Use the load
keyword for the load address and the run keyword for the run address. See Section 3.1.1 for more about
load and run addresses. If a section is assignhed two addresses at link time, all labels defined in the
section are relocated to refer to the run-time address so that references to the section (such as branches)
are correct when the code runs.
If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.
Uninitialized sections (such as .ebss) are not loaded, so the only significant address is the run address.
The linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.
For a complete description of run-time relocation, see Section 8.5.6.

3.6 Additional Information
See the following sections and documents for additional information:
Section 8.4.4, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"
Section 8.4.10, "Define an Entry Point (--entry_point Option)"
Section 8.5.6.1 ,"Specifying Load and Run Addresses"
Section 8.8, "Linker-Generated Copy Tables"
Section 8.11.1, "Run-Time Initialization"
Jlabel directive
Chapter 12, "Hex Conversion Utility Description”
"Run-Time Initialization," "Initialization by the Interrupt Vector," and "System Initialization" sections in the
TMS320C28x Optimizing C/C++ Compiler User's Guide
Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code
Composer Studio (SPRA999).

40 Program Loading and Running SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://www.ti.com/lit/pdf/SPRA999

. Chapter 4
l TEXAS SPRU513K—-October 2016

INSTRUMENTS

Assembler Description

The TMS320C28x assembler translates assembly language source files into machine language object
files. These files are object modules, which are discussed in Chapter 2. Source files can contain the
following assembly language elements:

Assembler directives described in Chapter 5
Macro directives described in Chapter 6
Assembly language instructions described in the TMS320C28x DSP CPU and Instruction Set

Reference Guide.

Topic Page
o R AN T =T a1 o] (=T G @Y= Y= P 42
4.2 The Assembler's Role in the Software Development FIOWcccciiiiiiiiiiiiiiiinnnnnn. 43
4.3 INVOKING the ASSEMDIET ..uuiiiiiii ettt e e e e e 44
4.4 Naming Alternate Directories for Assembler INPUto.ieiiiiiiiiiiiiie e ceceeeeeans 45
45 Source Statement FOIMaAt.oviiiiiiieiee et e e e e e e e e e rae e s e an s e enennanenes 47
I I | (=T = 0 1] = 1 | P 50
4.7 ASSEMbBIEr SYMDOIS. .. e e e 52
T b (=7 0 0 =P 60
4.9 Built-in FUNCLIONS @Nd OPEIatOrS .ouiuiuiieieieiiietreitiiee it ta et et eeaea et iaeneaeaeaeaeananns 63
4.10 TMS320C28X ASSEMDIET MOUES . ..eueniiininie ittt e e e e enra e e e e enennenes 64
2 5 S o T U)o = I =3 11 PP 66
4.12 Debugging ASSEMDIY SOUICEuiiiiiieieie it ettt e e e e e eara e e e enennneenes 68
4.13 CroSS-ReferenCe LiSTINGS ...ttt ittt ettt et e e et e e e e e eeeees 69
7 S o 0 = U A =1 o o o [Yo P 70
4.15 Pipeline Conflict DELECTION ...iuiiitieiii et et e e e aeees 71

SPRU513K-0October 2016 Assembler Description 41

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Assembler Overview www.ti.com

4.1

Assembler Overview

The 2-pass assembler does the following:

Processes the source statements in a text file to produce a relocatable object file
Produces a source listing (if requested) and provides you with control over this listing

Allows you to divide your code into sections and maintain a section program counter (SPC) for each
section of object code

Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

Allows conditional assembly
Supports macros, allowing you to define macros inline or in a library

42

Assembler Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

The Assembler's Role in the Software Development Flow

4.2 The Assembler's Role in the Software Development Flow

Figure 4-1 illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the TMS320C28x C/C++ compiler.

Figure 4-1. The Assembler in the TMS320C28x Software Development Flow

C
source
files

C2xx
assembler
source

Transition

assistant

Assembler
source

Macro
source C/C++
files compiler
Assembler
source
Macro
library Assembler
Object
files
Library of I
bject
Oflljeesc Linker

Post-link
optimizer

Library-build
utility

Run-time-
support
library

Executable
object file

Hex-conversion
utility

EPROM Absolute lister
programmer

lister

Object file
utilities

Cross-reference

Debugging

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Assembler Description

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Invoking the Assembler

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 Invoking the Assembler

To invoke the assembler, enter the following:

¢12000 input file [options]

¢l2000 is the command that invokes the assembler through the compiler. The compiler considers
any file with an .asm extension to be an assembly file and invokes the assembler.

input file names the assembly language source file.

options identify the assembler options that you want to use. Options are case sensitive and can

appear anywhere on the command line following the command. Precede each option with
one or two hyphens as shown.

The valid assembler options are listed in Table 4-1.

Table 4-1. TMS320C28x Assembler Options

Option

Alias Description

--absolute_listing

--asm_define=name[=def]

--asm_dependency

--asm_includes

--asm_listing
--asm_listing_cross_reference

--asm_undefine=name

--cla_support[=cla0|clal]

--cmd_file=filename

--float_support={ fpu32|fpu64}
--include_file=filename

--include_path=pathname

--quiet

--symdebug:dwarf or
--symdebug:none

-aa Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

-ad Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1.
See Section 4.7.5.

-apd Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

-api Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name
as the source file but with a .ppa extension.

-al Produces a listing file with the same name as the input file with a .Ist extension.

-ax Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --asm_listing_cross_reference option, the assembler creates a
listing file automatically, naming it with the same name as the input file with a .Ist extension.

-au Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Specifies TMS320C28x Control Law Accelerator (CLA) Type 0 or Type 1 support. This option
is used to compile or assemble code written for the CLA. This option does not need any
special library support when linking; the libraries used for C28x with/without FPU support
should be sufficient.

-@ Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a
semicolon (* or ;) at the beginning of a line in the command file to include comments.
Comments that begin in any other column must begin with a semicolon. Within the command
file, filenames or option parameters containing embedded spaces or hyphens must be
surrounded with quotation marks. For example: "this-file.asm"

Assembles code for C28x with 32-bit or 64-bit hardware FPU support.

-ahi Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

-1 Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 4.4.1.

-q Suppresses the banner and progress information (assembler runs in quiet mode).

-g (DWARF is on by default) Enables assembler source debugging in the C source debugger.
Line information is output to the object module for every line of source in the assembly
language source file. You cannot use this option on assembly code that contains .line
directives. See Section 4.12.

44 Assembler Description

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Naming Alternate Directories for Assembler Input
Table 4-1. TMS320C28x Assembler Options (continued)
Option Alias Description
--vcu_support[=vcu0|vcu2] Specifies support for the Viterbi, Complex Math and CRC Unit (VCU), Type 0 or Type 2. The

default is vcuO. Note that there is no VCU Type 1. This option is useful only if the source is in
assembly code, written for the VCU. The option is ignored for C/C++ code. This option does
not require any special library support from the linker; the libraries used for C28x with/without
VCU support should be sufficient.

4.4 Naming Alternate Directories for Assembler Input
The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 5 contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:
.copy ["Ifilename["]
.include ["]filename["]
.mlib ["]filename["]
The filename names a copy/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information.
The assembler searches for the file in the following locations in the order given:
1. The directory that contains the current source file. The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.
2. Any directories named with the --include_path option
3. Any directories named with the C2000_A_DIR environment variable
4. Any directories named with the C2000_C_DIR environment variable
Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in Section 4.4.1) or the C2000_A_DIR environment variable
(described in Section 4.4.2). The C2000_C_DIR environment variable is discussed in the TMS320C28x
Optimizing C/C++ Compiler User's Guide.
4.4.1 Using the --include_path Assembler Option
The --include_path assembler option names an alternate directory that contains copy/include files or
macro libraries. The format of the --include_path option is as follows:
¢l2000 --include_path= pathname source filename [other options] ‘
There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.
For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:
.copy ''‘copy.asm"
Assume the following paths for the copy.asm file:
UNIX: ftools/files/copy.asm
Windows: c:\tools\files\copy.asm
SPRU513K-0October 2016 Assembler Description 45

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Naming Alternate Directories for Assembler Input www.ti.com

4.4.2

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) cl2000 --include_path=/tools/files source.asm
Windows cl2000 --include_path=c:\tools\files source.asm

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

Using the C2000_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the C2000_A_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the C2000_A_DIR environment variable and then reads and processes it. If the
assembler does not find the C2000_A_DIR variable, it then searches for C2000_C_DIR. The processor-
specific variables are useful when you are using Texas Instruments tools for different processors at the
same time.

See the TMS320C28x Optimizing C/C++ Compiler User's Guide for details on C2000_C_DIR.
The command syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX (Bourne Shell) C2000_A_DIR=" pathname, ; pathname, ; . .."; export C2000_A_DIR
Windows set C2000_A_DIR= pathname, ; pathname, ; . . .

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set C28X_A DIR= c:\path\one\to\tools ; c:\path\two\to\tools

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set C28X_A DIR=c:\first path\to\tools;d:\second path\to\tools

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy '‘copyl.asm™
.copy '‘copy2.asm™

Assume the following paths for the files:

UNIX: ltools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter

UNIX (Bourne shell) C2000_A DIR="/dsys'"; export C2000_A DIR
cl2000 --include_path=/tools/files source.asm

Windows C2000_A DIR=c:\dsys
cl2000 --include_path=c:\tools\files source.asm

46

Assembler Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

4.5

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copyl.asm. Finally, the assembler searches the directory named with C2000_A_DIR and
finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter
UNIX (Bourne shell) unset C2000_A DIR
Windows set C2000_A_DIR=

Source Statement Format

Each line in a TMS320C28x assembly input file can be empty, a comment, an assembler directive, a
macro invocation, or an assembly instruction.

Assembly language source statements can contain four ordered fields (label, mnemonic, operand list, and
comment). The general syntax for source statements is as follows:

‘[Iabel[:] 1[Il mnemonic [operand list] [;comment]

Labels cannot be placed on instructions that have parallel bars.

Following are examples of source statements:

two .set 2 ; Symbol two = 2
Begin: MOV ARL1,#two ; Load AR1 with 2
-word 016h ; Initialize a word with 016h

The C28x assembler reads an unlimited number of characters per line. Source statements that extend
beyond 400 characters in length (including comments) are truncated in the listing file.

SPRU513K-0October 2016 Assembler Description 47
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Source Statement Format www.ti.com

Follow these guidelines:

» All statements must begin with a label, a blank, an asterisk, or a semicolon.

* Labels are optional for most statements; if used, they must begin in column 1.
» One or more space or tab characters must separate each field.

« Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or;), but comments that begin in any other column must begin with a semicolon.

NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.

The following sections describe each of the fields.

45.1 Label Field

A label must be a legal identifier (see Section 4.7.1) placed in column 1. Every instruction may optionally
have a label. Many directives allow a label, and some require a label.
A label can be followed by a colon (). The colon is not treated as part of the label name. If you do not use
a label, the first character position must contain a blank, a semicolon, or an asterisk.
When you use a label on an assembly instruction or data directive, an assembler symbol (Section 4.7)
with the same name is created. Its value is the current value of the section program counter (SPC, see
Section 2.3.5). This symbol represents the address of that instruction. In the following example, the .word
directive is used to create an array of 3 words. Because a label was used, the assembly symbol Start
refers to the first word, and the symbol will have the value 40h.

9 - - * Assume some code was assembled

10 000040 000A Start: .word OAh,3,7
000044 0003
000048 0007

A label on a line by itself is a valid statement. When a label appears on a line by itself, it points to the
instruction on the next line (the SPC is not incremented):

1 000000 Here:

2 000000 0003 .word 3
A label on a line by itself is equivalent to writing:
Here: .equ $; $ provides the current value of the SPC
If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.

48 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Source Statement Format

452

453

454

Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. The mnemonic field can begin with pipe symbols (]|) when the previous instruction
is a RPT. Pipe symbols that follow a RPT instruction indicate instructions that are repeated. For example:

RPT
| Inst2 «—— This instruction is repeated.

In the case of C28x with FPU support, the mnemonic field can begin with pipe symbols to indicate
instructions that are to be executed in parallel. For example, in the instance given below, Instl and Inst2
are FPU instructions that execute in parallel:

Instr1
[l Instr2
Next, the mnemonic field contains one of the following items:
e Machine-instruction mnemonic (such as ADD, MOV, or B)
» Assembler directive (such as .data, .list, .equ)
* Macro directive (such as .macro, .var, .mexit)
» Macro invocation

Operand Field

The operand field follows the mnemonic field and contains zero or more comma-separated operands. An
operand can be one of the following:

* an immediate operand (usually a constant or symbol) (see Section 4.6 and Section 4.7)
e aregister operand

e a memory reference operand

» an expression that evaluates to one of the above (see Section 4.8)

An immediate operand is encoded directly in the instruction. The value of an immediate operand must be
a constant expression. Most instructions with an immediate operand require an absolute constant
expression, such as 1234. Some instructions (such as a call instruction) allow a relocatable constant
expression, such as a symbol defined in another file. (See Section 4.8 for details about types of
expressions.)

A register operand is a special pre-defined symbol that represents a CPU register.

A memory reference operand uses one of several memory addressing modes to refer to a location in
memory. Memory reference operands use a special target-specific syntax defined in the appropriate CPU
and Instruction Set Reference Guide.

You must separate operands with commas. Not all operand types are supported for all operands. See the
description of the specific instruction in the CPU and Instruction Set Reference Guide for your device
family.

Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

SPRU513K-0October 2016 Assembler Description 49
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Literal Constants www.ti.com

4.6

4.6.1

Literal Constants

A literal constant (also known as a literal or in some other documents as an immediate value) is a value
that represents itself, such as 12, 3.14, or "hello".

The assembler supports several types of literals:
* Binary integer literals

* Octal integer literals

« Decimal integer literals

» Hexadecimal integer literals

* Character literals

» Character string literals

* Floating-point literals

Error checking for invalid or incomplete literals is performed.

Integer Literals

The assembler maintains each integer literal internally as a 32-bit signless quantity. Literals are
considered unsigned values, and are not sign extended. For example, the literal 00FFh is equal to O0FF
(base 16) or 255 (base 10); it does not equal -1. which is OFFFFFFFFh (base 16). Note that if you store
OFFh in a .byte location, the bits will be exactly the same as if you had stored -1. It is up to the reader of
that location to interpret the signedness of the bits.

4.6.1.1 Binary Integer Literals

A binary integer literal is a string of up to 32 binary digits (Os and 1s) followed by the suffix B (or b). Binary
literals of the form "0[bB][10]+" are also supported. If fewer than 32 digits are specified, the assembler
right justifies the value and fills the unspecified bits with zeros. These are examples of valid binary literals:

00000000B Literal equal to 0,4 Or 046
0100000b Literal equal to 32,, or 20,4
01b Literal equal to 1,5 0r 1,4
11111000B Literal equal to 248,, or OF8,4
0b00101010 Literal equal to 42,, or 2A ;4
0B101010 Literal equal to 42,, or 2A

4.6.1.2 Octal Integer Literals

An octal integer literal is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q). Octal
literals may also begin with a 0, contain no 8 or 9 digits, and end with no suffix. These are examples of
valid octal literals:

10Q Literal equal to 8,, or 8,4
054321 Literal equal to 22737, or 58D1,;
100000Q Literal equal to 32768, or 8000,
2269 Literal equal to 150, or 96,4
50 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Literal Constants

4.6.1.3 Decimal Integer Literals

A decimal integer literal is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295. These
are examples of valid decimal integer literals:

1000 Literal equal to 1000,, or 3E8,;
-32768 Literal equal to -32 768, or -8000,,
25 Literal equal to 25;, or 19,4

4815162342 Literal equal to 4815162342,, or 11FO18BEG6,;

4.6.1.4 Hexadecimal Integer Literals

A hexadecimal integer literal is a string of up to eight hexadecimal digits followed by the suffix H (or h) or
preceded by 0x. A hexadecimal literal must begin with a decimal value (0-9) if it is indicated by the H or h
suffix.

Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. If fewer than eight
hexadecimal digits are specified, the assembler right-justifies the bits.

These are examples of valid hexadecimal literals:

78h Literal equal to 120,, or 0078,
0x78 Literal equal to 120,, or 00784
OFh Literal equal to 15,, or 000F 4
37ACh Literal equal to 14252, or 37AC;

4.6.1.5 Character Literals

A character literal is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
guote that is part of a character literal. A character literal consisting only of two single quotes is valid and
is assigned the value 0. These are examples of valid character literals:

Defines the character literal a and is represented internally as 61,4
'C' Defines the character literal C and is represented internally as 43,4
Defines the character literal ' and is represented internally as 274
Defines a null character and is represented internally as 00,4

Notice the difference between character literals and character string literals (Section 4.6.2 discusses
character strings). A character literal represents a single integer value; a string is a sequence of
characters.

4.6.2 Character String Literals

A character string is a sequence of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN ""C""" defines the 8-character string PLAN "C".

SPRU513K-0October 2016 Assembler Description 51

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Literal Constants www.ti.com

Character strings are used for the following:

* Filenames, as in .copy "filename"

* Section names, as in .sect "section name"

» Data initialization directives, as in .byte "charstring"
e Operands of .string directives

4.6.3 Floating-Point Literals

A floating-point literal is a string of decimal digits followed by a required decimal point, an optional
fractional portion, and an optional exponent portion. The syntax for a floating-point number is:

[[+-1nnn. [nnn] [EJe [+]-] nnn] |

Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a
decimal point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10.
These are examples of valid floating-point literals:

3.0

3.14

3.

-0.314e13

+314.59e-2

The assembler syntax does not support all C89-style float literals nor C99-style hexadecimal constants,
but the $strtod built-in mathematical function supports both. If you want to specify a floating-point literal
using one of those formats, use $strtod. For example:

$strrod(*.3")
$strtod(''0x1.234p-5")

You cannot directly use NaN, Inf, or -Inf as floating-point literals. Instead, use $strtod to express these
values. The "NaN" and "Inf" strings are handled case-insensitively.

$strtod(*'NaN')
$strtod(C'Inf)

4.7 Assembler Symbols

An assembler symbol is a named 32-bit signless integer value, usually representing an address or
absolute integer. A symbol can represent such things as the starting address of a function, variable, or
section. The name of a symbol must be a legal identifier. The identifier becomes a symbolic
representation of the symbol's value, and may be used in subsequent instructions to refer to the symbol's
location or value.

Some assembler symbols become external symbols, and are placed in the object file's symbol table. A
symbol is valid only within the module in which it is defined, unless you use the .global directive or the .def
directive to declare it as an external symbol (see .global directive).

See Section 2.5 for more about symbols and the symbol tables in object files.

4.7.1 Identifiers

Identifiers are names used as labels, registers, symbols, and substitution symbols. An identifier is a string
of alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character
in an identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you
define are case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three distinct
identifiers.

52 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com Assembler Symbols

4.7.2

Labels

An identifier used as a label becomes an assembler symbol, which represent an address in the program.
Labels within a file must be unique.

NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition

Symbols derived from labels can also be used as the operands of .global, .ref, or .def directives.
-global labell

label2: NOP
ADD AR1, labell
SB label2, UNC

4.7.3 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two

ways:

* 3n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 4-1.

* name?, where name is any legal identifier as described above. The assembler replaces the question
mark with a period followed by a unique number. When the source code is expanded, you will not see
the unique number in the listing file. Your label appears with the question mark as it did in the source
definition. See Example 4-2.

You cannot declare these types of labels as global.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the

operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined

by directives.

A local label can be undefined or reset in one of these ways:

* By using the .newblock directive

* By changing sections (using a .sect, .text, or .data directive)

* By entering an include file (specified by the .include or .copy directive)

* By leaving an include file (specified by the .include or .copy directive)

SPRU513K—-October 2016 Assembler Description 53

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Assembler Symbols www.ti.com

Example 4-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

$1:
ADDB AL, #-7
B $1, GEQ

-newblock ; undefine $1 to use it again.

$1 Mov T, AL
MPYB ACC, T, #7
CMP AL, #1000
B $1, LT

The following code uses a local label illegally:

$1:
ADDB AL, #-7
B $1, GEQ
$1 MoV T, AL ; WRONG - $1 is multiply defined.

MPYB ACC, T, #7
CMP AL, #1000
B $1, LT

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not
limited. After you undefine a local label, you can define it and use it again. Local labels do not appear in
the object code symbol table.

54 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Symbols

Example 4-2. Local Labels of the Form name?

** First definition of local label mylab *x
nop
mylab? nop

B mylab?, UNC

** Include file has second definition of mylab **

.copy "a.inc"

** Third definition of mylab, reset upon exit from .include *x

mylab? nop
B mylab?, UNC

** Fourth definition of mylab in macro, macros use different **
** namespace to avoid conflicts **

mymac .macro

mylab? nop
B mylab?, UNC
-endm

** Macro invocation holad
mymac

** Reference to third definition of mylab. Definition is not **
** reset by macro invocation. *x

B mylab?, UNC

** Changing section, allowing fifth definition of mylab *x

.sect "'Sect_One"
nop
mylab? .word O
nop
nop
B mylab?, UNC

** The .newblock directive allows sixth definition of mylab **

-newblock
mylab? .word O

nop

nop

B mylab?, UNC

For more information about using labels in macros see Section 6.6.

SPRU513K—-October 2016 Assembler Description 55

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Assembler Symbols www.ti.com
4.7.4 Symbolic Constants
A symbolic constant is a symbol with a value that is an absolute constant expression (see Section 4.8). By
using symbolic constants, you can assign meaningful names to constant expressions. The .set and
.Struct/.tag/.endstruct directives enable you to set symbolic constants (see Define Assembly-Time
Constant). Once defined, symbolic constants cannot be redefined.
If you use the .set directive to assign a value to a symbol , the symbol becomes a symbolic constant and
may be used where a constant expression is expected. For example:
shift3 .set 3
MOV AR1, #shift3
You can also use the .set directive to assign symbolic constants for other symbols, such as register
names. In this case, the symbolic constant becomes a synonym for the register:
myReg .set AR1
MOV myReg, #3
The following example shows how the .set directive can be used with the .struct, .tag. and .endstruct
directives. It creates the symbolic constants K, maxbuf, item, value, delta, and i_len.
K .set 1024 ; constant definitions
maxbuf _.set 2*K
item .struct ; item structure definition
value .int ; value offset = 0
delta .int ; delta offset = 4
i_len _endstruct ; item size =8
array .tag item
array .usect ".ebss", i_len*K ; declare an array of K "items"
.text
MOV array.delta, AR1 ; access array .delta
The assembler also has many predefined symbolic constants; these are discussed in Section 4.7.6.
4.7.5 Defining Symbolic Constants (--asm_define Option)
The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:
¢l12000 --asm_define=name[=value]
The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:
» For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""
» For UNIX, use --asm_define= name =" value "'. For example, --asm_define=car="'sedan™
e For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.
Once you have defined the name with the --asm_define option, the symbol can be used with assembly
directives and instructions as if it had been defined with the .set directive. For example, on the command
line you enter:
cl2000 --asm_define=SYM1=1 --asm_define=SYM2=2 --asm_define=SYM3=3 --asm_define=SYM4=4 value.asm
Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
Example 4-3 shows how the value.asm file uses these symbols without defining them explicitly.
56 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Symbols
Within assembler source, you can test the symbol defined with the --asm_define option with these
directives:

Type of Test Directive Usage
Existence .if $isdefed(" name ")
Nonexistence .if $isdefed(" name ") =0
Equal to value .if name = value
Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

Example 4-3. Using Symbolic Constants Defined on Command Line

IF_4: Lif SYM4 = SYM2 * SYM2
-byte SYM4 ; Equal values
.else
-byte SYM2 * SYM2 ; Unequal values
-endif

IF.5: .if SYM1 <= 10
-byte 10 ; Less than / equal
.else
-byte SYM1 ; Greater than
-endif

IF 6: .if SYM3 * SYM2 I= SYM4 + SYM2
-byte SYM3 * SYM2 ; Unequal value
.else
-byte SYM4 + SYmM4 ; Equal values
-endif

IF7: Lif SYM1 = SYM2
-byte SYM1
.elseif SYM2 + SYM3 = 5
-byte SYM2 + SYM3
-endif

4.7.6 Predefined Symbolic Constants
The assembler has several types of predefined symbols.

$, the dollar-sign character, represents the current value of the section program counter (SPC). $is a
relocatable symbol if you are using COFF.

In addition, the following predefined processor symbolic constants are available:

Table 4-2. C28x Processor Symbolic Constants

Symbol name Description
.TMS320C2000 Always set to 1
.TMS320C2800 Set to 1 for C28x

.TMS320C2800_FPU32 Setto 1 for C28x with 32-bit FPU support, otherwise 0

SPRU513K-0October 2016 Assembler Description 57

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Assembler Symbols

13 TEXAS
INSTRUMENTS

www.ti.com

4.7.7 Registers
The names of C28x registers are predefined symbols.

In addition, control register names are predefined symbols.

Register symbols and aliases can be entered as all uppercase or all lowercase characters.

Control register symbols can be entered in all upper-case or all lower-case characters. For example, IER

can also be entered as ier.

See the "Register Conventions" section of the TMS320C28x Optimizing C/C++ Compiler User's Guide for
details about the registers and their uses.

Table 4-3. CPU Control Registers

Register Description

ACC/AH, AL Accumulator/accumulator high, accumulator low
DBGIER Debug interrupt enable register

DP Data page pointer

IER Interrupt enable register

IFR Interrupt flag pointer

P/PH, PL Product register/product high, product low

PC Program counter

RPC Return program counter

STO Status register 0

ST1 Status register 1

SP Stack pointer register

TH Multiplicant high register; an alias of T register

XARO/AROH, ARO
XAR1/AR1H, AR1
XAR2/AR2H, AR2
XAR3/AR3H, AR3
XAR4/AR4H, AR4
XARS5/AR5H, AR5
XARG6/ARGH, ARG
XAR7/ART7H, AR7

Auxiliary register O/auxiliary 0 high, auxiliary 0 low
Auxiliary register 1/auxiliary 1 high, auxiliary 1 low
Auxiliary register 2/auxiliary 2 high, auxiliary 2 low
Auxiliary register 3/auxiliary 3 high, auxiliary 3 low
Auxiliary register 4/auxiliary 4 high, auxiliary 4 low
Auxiliary register 5/auxiliary 5 high, auxiliary 5 low
Auxiliary register 6/auxiliary 6 high, auxiliary 6 low
Auxiliary register 7/auxiliary 7 high, auxiliary 7 low

XTIT, TL Multiplicand register/Multiplicant high, multiplicant low
Table 4-4. FPU Control Registers

Register Description

ROH Floating point register 0

R1H Floating point register 1

R2H Floating point register 2

R3H Floating point register 3

R4H Floating point register 4

R5H Floating point register 5

R6H Floating point register 6

R7H Floating point register 7

STF Floating point status register

58

Assembler Description

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Symbols
Table 4-5. VCU Registers

Register Description
VSTATUS VCU status and control register
VRO-VR8 VCU registers
VTO, VT1 VCU transition bit registers
VCRC VCU CRC result register

4.7.8 Substitution Symbols

Symbols can be assigned a string value. This enables you to create aliases for character strings by
equating them to symbolic names. Symbols that represent character strings are called substitution
symbols. When the assembler encounters a substitution symbol, its string value is substituted for the
symbol name. Unlike symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

-asg "AR1™, myReg ;register AR1
.asg "*+XAR2 [2]", ARGl ;First arg
-asg "*+XAR2 [1]", ARG2 ;second arg

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution
symbols are used in macros:

add2 .macro A, B ; add2 macro definition

MoV AL, A
ADD AL, B
-endm

*add2 invocation
add2 LOC1, LOC2 ;add '""LOC1" argument to a
;second argument "'LOC2".
MOV AL,LOC1
ADD AL,LOC2

See Chapter 6 for more information about macros.

SPRU513K—-October 2016 Assembler Description 59

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

Expressions www.ti.com
4.8 Expressions

Nearly all values and operands in assembly language are expressions, which may be any of the following:

* aliteral constant

e aregister

e a register pair

* amemory reference

* asymbol

* a built-in function invocation

* a mathematical or logical operation on one or more expressions

This section defines several types of expressions that are referred to throughout this document. Some

instruction operands accept limited types of expressions. For example, the .if directive requires its operand

be an absolute constant expression with an integer value. Absolute in the context of assembly code

means that the value of the expression must be known at assembly time.

A constant expression is any expression that does not in any way refer to a register or memory reference.

An immediate operand will usually not accept a register or memory reference. It must be given a constant

expression. Constant expressions may be any of the following:

» aliteral constant

e an address constant expression

* asymbol whose value is a constant expression

* a built-in function invocation on a constant expression

* a mathematical or logical operation on one or more constant expressions

An address constant expression is a special case of a constant expression. Some immediate operands

that require an address value can accept a symbol plus an addend; for example, some branch

instructions. The symbol must have a value that is an address, and it may be an external symbol. The

addend must be an absolute constant expression with an integer value. For example, a valid address

constant expression is "array+4".

A constant expression may be absolute or relocatable. Absolute means known at assembly time.

Relocatable means constant, but not known until link time. External symbols are relocatable, even if they

refer to a symbol defined in the same module.

An absolute constant expression may not refer to any external symbols anywhere in the expression. In

other words, an absolute constant expression may be any of the following:

* aliteral constant

» an absolute address constant expression

» asymbol whose value is an absolute constant expression

* a built-in function invocation whose arguments are all absolute constant expressions

* a mathematical or logical operation on one or more absolute constant expressions

A relocatable constant expression refers to at least one external symbol. A relocatable constant

expression may be any of the following:

» an external symbol

» arelocatable address constant expression

» asymbol whose value is a relocatable constant expression

* a built-in function invocation with any arguments that are relocatable constant expressions

e a mathematical or logical operation on one or more expressions, at least one of which is a relocatable

constant expression

In some cases, the value of a relocatable address expression may be known at assembly time. For

example, a relative displacement branch may branch to a label defined in the same section.
60 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.8.1 Mathematical and Logical Operators

The operands of a mathematical or logical operator must be well-defined expressions. That is, you must
use the correct number of operands and the operation must make sense. For example, you cannot take
the XOR of a floating-point value. In addition, well-defined expressions contain only symbols or assembly-
time constants that have been defined before they occur in the directive's expression.

Three main factors influence the order of expression evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 4-6, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.
8+4/2=10 (4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.
8/4*2=4,but8/(4*2)=1

Table 4-6 lists the operators that can be used in expressions, according to precedence group.

Table 4-6. Operators Used in Expressions (Precedence)

Group® Operator Description®
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
7 & Bitwise AND
8 N Bitwise exclusive OR (XOR)
9 | Bitwise OR

@ Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
@ Unary + and - have higher precedence than the binary forms.

The assembler checks for overflow and underflow conditions when arithmetic operations are performed
during assembly. It issues a warning (the "value truncated" message) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

SPRU513K-0October 2016 Assembler Description 61

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Expressions www.ti.com
4.8.2 Relational Operators and Conditional Expressions
The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:
= Equal to | = Not equal to
< Less than <= Less than or equal to
> Greater than > = Greater than or equal to
Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of equivalent
types; for example, absolute value compared to absolute value, but not absolute value compared to
relocatable value.
4.8.3 Well-Defined Expressions
Some assembler directives, such as .if, require well-defined absolute constant expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants that have been defined before
they occur in the directive's expression. In addition, they must use the correct number of operands and the
operation must make sense. The evaluation of a well-defined expression must be unambiguous.
This is an example of a well-defined expression:
1000h+X
where X was previously defined as an absolute symbol.
4.8.4 Legal Expressions
With the exception of the following expression contexts, there is no restriction on combinations of
operations, constants, internally defined symbols, and externally defined symbols.
When an expression contains more than one relocatable symbol or cannot be evaluated during assembly,
the assembler encodes a relocation expression in the object file that is later evaluated by the linker. If the
final value of the expression is larger in bits than the space reserved for it, you receive an error message
from the linker. See Section 2.6 for more information on relocation expressions.
When using the register relative addressing mode, the expression in brackets or parenthesis must be a
well-defined expression, as described in Section 4.8.3. For example:
*+XA4[7]
62 Assembler Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Built-in Functions and Operators

4.9 Built-in Functions and Operators
The assembler supports built-in mathematical functions and built-in addressing operators.

The built-in substitution symbol functions are discussed in Section 6.3.2.

4.9.1 Built-In Math and Trigonometric Functions

The assembler supports many built-in mathematical functions. The built-in functions always return a value
and they can be used in conditional assembly or any place where a constant can be used.

In Table 4-7 x, y and z are type float, n is an int. The functions $cvi, $int and $sgn return an integer and all
other functions return a float. Angles for trigonometric functions are expressed in radians.

Table 4-7. Built-In Mathematical Functions

Function Description
$acos(x) Returns cos(x) in range [0, x], -1<=x<=1
$asin(x) Returns sin™(x) in range [-n/2, n/2], -1<=x<=1
$atan x) Returns tan™(x) in range [-n/2, n/2]
$atan2(x, y) Returns tan™(y/x) in range [-x, n]
$ceil(x) Returns the smallest integer not less than x, as a float
$cos(x) Returns the cosine of x
$cosh(x) Returns the hyperbolic cosine of x
$cvf(n) Converts an integer to a float
$cvi(x) Converts a float to an integer. Returns an integer.
$exp(x) Returns the exponential function e *
$fabs(x) Returns the absolute value x|
$floor(x) Returns the largest integer not greater than x, as a float
$fmod(x, y) Returns the floating-point remainder of x/y, with the same sign as x
$int(x) Returns 1 if x has an integer value; else returns 0. Returns an integer.
$ldexp(x, n) Multiplies x by an integer power of 2. That is, x x 2"
$log(x) Returns the natural logarithm In(x), where x>0
$log10(x) Returns the base-10 logarithm log,,(x), where x>0
$max(x, y, ...z) Returns the greatest value from the argument list
$min(x, y, ...z) Returns the smallest value from the argument list
$pow(x, y) Returns x¥
$round(x) Returns x rounded to the nearest integer
$sgn(x) Returns the sign of x. Returns 1 if x is positive, 0 if x is zero, and -1 if x is negative. Returns an integer.
$sin(x) Returns the sine of x
$sinh(x) Returns the hyperbolic sine of x
$sqrt(x) Returns the square root of x, x=0
$strtod(str) Converts a character string to a double precision floating-point value. The string contains a properly-
formatted C99-style floating-point literal.
$tan(x) Returns the tangent of x
$tanh(x) Returns the hyperbolic tangent of x
$trunc(x) Returns x truncated toward 0O
SPRU513K—-October 2016 Assembler Description 63

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

TMS320C28x Assembler Modes www.ti.com

410 TMS320C28x Assembler Modes

The C28x assembler operates in different modes. These modes are controlled by options as follows:

-v28: The -v28 is the default, and no other silicon version is supported for the -v option. Therefore you do
not need to specify -v28 explicitly.

--float_support: Accept FPU32 instructions. To support some special floating point instructions when a
32-bit floating point unit (FPU) is available, the assembler operates in FPU32 mode. Section 4.10.2
describes the FPU32 mode. The syntax is: --float_support=fpu32

--cla_support: Accept CLA instructions. To support special floating point instructions that run on the
Control Law Accelerator (CLA), the assembler operates in CLA mode. Section 4.10.3 describes the CLA
mode. Support for the CLA Type 0 or Type 1 can be specified. This mode is controlled by options as
follows: --cla_support=[cla0|clal]

--vcu_support: Accept VCU instructions. To support the Viterbi, Complex Math and CRC Unit (VCU)
instructions, the assembler operates in VCU mode. Support for the VCU Type 0 or Type 2 can be
specified. This mode is controlled by options as follows: --vcu_support=[vcuO|vcu2]

--tmu_support: Substitute TMU instructions. To support the Trigonometric Math Unit (TMU), TMU
instructions are used for floating point division and trigonometric functions. Support for the TMU Type 0
can be specified using the following compiler option: --tmu_support=[tmu0]

Refer to the TMS320C28x DSP CPU and Instruction Set Reference Guide for more details on different
object modes and addressing modes supported by the C28x processor.

4.10.1 C28x Object Mode

This mode supports all the C28x instructions and generates C28x object code. New users of the C28x
processor should use the assembler in this mode. This mode is the default.

This mode generates an error if old C27x syntax is used. For example, the following instructions are illegal
in this mode:

MoV AL, *ARO++ ; *ARO++ is illegal addressing for C28x.

4.10.2 C28x FPU32 and FPU64 Object Modes

The FPU32 mode is used when the hardware 32-bit floating-point co-processor support is available on the
C28x. The FPU32 mode is invoked by specifying the--float_support=fpu32 option. This mode supports all
C28x instructions. The differences are as follows:

» Some special floating point instructions are supported. These are documented in the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide.

» The assembiler in this mode checks for pipeline conflicts. This is because the FPU32 instructions are
not pipeline protected. The C28x instructions are pipeline protected, which means that a new
instruction cannot read/write its operands until all preceding C28x instructions have finished writing
those operands. This is not the case with the FPU32 instructions: an FPU instruction can access its
operands while another instruction is writing them, causing race conditions. Thus the assembler has to
check for pipeline conflicts and issue warnings/errors as appropriate. The pipeline conflict detection
feature is described in Section 4.15.

The FPU64 mode supports a 64-bit version of the floating point co-processor. It is invoked by specifying
the --float_support=fpu64 option. This mode is similar to the FPU32 mode, but enables additional
instructions.

4.10.3 C28x CLA Object Mode

The CLA mode is used when the hardware Control Law Accelerator support is available on the C28x. This
mode is available by invoking the compiler with the —v28 and --cla_support=[cla0|clal] options, where cla0
indicates a CLA Type 0 device and clal indicates a Type 1 device. The --cla_support option can be
specified along with other C28x options, such as those for specifying FPU support. Specifying both FPU
and CLA options means that support is available for both types of accelerators. The CLA mode is very
similar to the C28x mode (with/without FPU support). The differences are:

64

Assembler Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com TMS320C28x Assembler Modes

» The CLA is similar to a cut-down version of the FPU32 that is optimized to perform math tasks only.
Some special floating point instructions are supported. These are documented in TMS320x28xx, 28xxX
DSP Peripherals Reference Guide.

» The CLA pipeline is unprotected, but at this time, the tools do not detect pipeline conflicts for the CLA.
You need to write CLA instructions in such a way that there are no pipeline conflicts.

» Assembly files containing CLA instructions can also contain C28x and FPU instructions. However, the
CLA instructions should always be in a separate, named section. This section cannot contain any non-
CLA instructions. Mixing CLA and non-CLA instructions in the same section is illegal and results in an
assembler/linker error.

* When a linker command file is written, care must be taken to put all data referenced by CLA
instructions within addresses 0-64K. This is because the CLA data read bus only has a 64K address
range.

» Alinker output section containing a CLA input section cannot contain any non-CLA input sections.
» The CLA mode does not need any special library support. Any of the C28x libraries suffices.

* The name of the section containing CLA instructions should be unique both within the file and across
all files that are compiled and linked into the same output file.

The CLA compiler places all CLA function data, arguments, and temporary storage in function frames in
the .scratchpad section. Function frame scratchpad sections are hamed in the form
".scratchpad:functionSectionName". (Each function has its own subsection and therefore a unique section
name.) For example: .scratchpad:ClalProg:_ClalTask2 would be the compiler-generated scratchpad
section name for a function called ClalTask2().

The CLA compiler's naming convention for the function scratchpad symbol is of the form
__cla_functionSymbol_sp, but this is not required in assembly code.

The following example shows compiled code with a .sect directive for a CLA function and a .usect
directive to identify the function scratchpad frame. This .usect directive identifies the function frame as part
of the .scratchpad section and allows the compiler to use overlays when possible. Overlaid function
frames use the same physical memory, thereby reducing memory utilization. It is recommended that
assembly code follow the ".scratchpad:" naming convention to reduce memory requirements.

.sect "ClalProg:_ClalTask2"

.align 2
_ cla_ClalTask2_sp .usect ".scratchpad:ClalProg:_ClalTask2",14,0,1

-.global _ClalTask2

FNAME: _ClalTask2 FR SI1ZE: 14

FUNCTION ENVIRONMENT

*ox X X

FUNCTION PROPERTIES
14 Auto, 12 SOE *

_ClalTask2:
L---1

See the "CLA Compiler" chapter in the TMS320C28x Optimizing C/C++ Compiler User's Guide for more
details.

SPRU513K—-October 2016 Assembler Description 65

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Source Listings www.ti.com

4.11 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Section 4.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 4-2 shows these in
an actual listing file.

Field 1: Source Statement Number

Line number

The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.

Nesting level number

A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .ebss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

! undefined external reference
.text relocatable

+ .sect relocatable

" .data relocatable

- .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

66

Assembler Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Source Listings

Figure 4-2 shows an assembler listing with each of the four fields identified.

Figure 4-2. Example Assembler Listing

OO WN

HFHHEF R R RRRRPBO
O WN RO

e)

19
20

000000
000000

000000
000001
000002
000003

N
Field 1Field 2

0001
0002
0003
0004

9A01
9C02
9C03
9C04

N
Field 3

addl .macro sl, s2, S3, sS4
MOV AL, S1
ADD AL, S2
ADD AL, S3
ADD AL, S4
.endm
.global cl, c2, c3, c4
.global _main
cl .set 1
c2 .set 2
c3 .set 3
cé .set 4
_main:
addl #cl, #c2, #c3, #c4
MOV AL, #cl
ADD AL, #c2
ADD AL, #c3
ADD AL, #c4
.end
Field 4

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Assembler Description

67

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Debugging Assembly Source www.ti.com

4.12 Debugging Assembly Source

By default, when you compile an assembly file, the assembler provides symbolic debugging information
that allows you to step through your assembly code in a debugger rather than using the Disassembly
window in Code Composer Studio. This enables you to view source comments and other source-code
annotations while debugging. The default has the same behavior as using the --symdebug:dwarf option.
You can disable the generation of debugging information by using the --symdebug:none option.

The .asmfunc and .endasmfunc (see .asmfunc directive) directives enable you to use C characteristics in
assembly code that makes the process of debugging an assembly file more closely resemble debugging a
C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

‘$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see .ref directive). Example 4-4 shows the cvar.c C program that defines a variable, svar, as the
structure type X. The svar variable is then referenced in the addfive.asm assembly program in Example 4-
5 and 5 is added to svar's second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:
cl2000 -symdebug:dwarf cvars.c addfive.asm --run_linker --library=Ink.cmd
--library=rts2800_ml.lib --output_file=addfive.out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor
the values in svar while stepping through main just as you would any regular C variable.

Example 4-4. Viewing Assembly Variables as C Types C Program

typedef struct

{

int ml;
int m2;

X
X svar = {1, 2 };

Example 4-5. Assembly Program for Example 4-4

; Tell the assembler we"re referencing variable "_svar', which is defined in
; another file (cvars.c).

-text
-global addfive

addfive: .asmfunc

Movz DP,# svar+1l ; load the DP with svar®s memory page
ADD @ _svar+1,#5 ; add 5 to svar.m2

LRETR ; return from function

-endasmfunc

68

Assembler Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Cross-Reference Listings

4.13 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --asm_listing_cross_reference option (see Section 4.3) or use the .option directive
with the X operand (see Select Listing Options). The assembler appends the cross-reference to the end of
the source listing. Example 4-6 shows the four fields contained in the cross-reference listing.

Example 4-6. An Assembler Cross-Reference Listing

LABEL VALUE DEFN REF

- TMS320C2800 00000001 0

_func 00000000* 18

varl 00000000- 4 17

var2 00000004~ 5 18
Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the

symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. Table 4-8 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.
Reference (REF) column lists the line numbers of statements that reference the symbol. A

blank in this column indicates that the symbol was never used.

Table 4-8. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)
UNDF Undefined

' Symbol defined in a .text section

Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .usect section

SPRU513K—-October 2016 Assembler Description 69

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Smart Encoding

13 TEXAS
INSTRUMENTS

www.ti.com

4.14 Smart Encoding

To improve efficiency, the assembler reduces instruction size whenever possible. For example, a branch
instruction of two words can be changed to a short branch one-word instruction if the offset is 8 bits.
Table 4-9 lists the instruction to be changed and the change that occurs.

Table 4-9. Smart Encoding for Efficiency

This instruction...

Is encoded as...

MOV AX, #8Bit

ADD AX, #8BitSigned
CMP AX, #8Bit

ADD ACC, #8Bit
SUB ACC, #8Bit
AND AX, #8BitMask
OR AX, #8BitMask
XOR AX, #8BitMask
B 8BitOffset, cond

LB 8BitOffset, cond
MOVH loc, ACC << 0
MOV loc, ACC << 0
MOVL XARnN, #8Bit

MOVB AX, #8Bit
ADDB AX, #8BitSigned
CMPB AX, #8Bit
ADDB ACC, #8Bit
SUBB ACC, #8Bit
ANDB AX, #8BitMask
ORB AX, #8BitMask
XORB AX, #8BitMask
SB 8BitOffset, cond
SB 8BitOffset, cond
MOV loc, AH

MOV loc, AL

MOVB XARn, #8Bit

The assembler also intuitively changes instruction formats during smart encoding. For example, to push
the accumulator value to the stack, you use MOV *SP++, ACC. Since it would be intuitive to use PUSH
ACC for this operation, the assembler accepts PUSH ACC and through smart encoding, changes it to
MOV *SP++, ACC. Table 4-10 shows a list of instructions recognized during intuitive smart encoding and

what the instruction is changed to.

Table 4-10. Smart Encoding Intuitively

This instruction...

Is encoded as...

MOV P, #0

SUB loc, #16BitSigned
ADDB SP, #-7Bit
ADDB aux, #-7Bit
SUBB AX, #8BitSigned
PUSH IER

POP IER

PUSH ACC

POP ACC

PUSH XARN

POP XARN

PUSH #16Bit

MPY ACC, T, #8Bit

MPY P, T, #0

ADD loc, #-16BitSigned
SUBB SP, #7Bit

SUBB aux, #7Bit
ADDB AX, #-8BitSigned
MOV *SP++, IER

MOV IER, *--SP

MOV *SP++, ACC
MOV ACC, *--SP

MOV *SP++, XARnN
MOV XARn, *--SP
MOV *SP++, #16Bit
MPYB ACC, T, #8Bit

70 Assembler Description

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline Conflict Detection

In some cases, you might want a 2-word instruction even when there is an equivalent 1-word instruction
available. In such cases, smart encoding for efficiency could be a problem. Therefore, the equivalent
instructions in Table 4-11 are provided; these instructions will not be optimized.

Table 4-11. Instructions That Avoid Smart Encoding

This instruction... Is encoded as...
MOVW AX, #8Bit MOV AX, #8Bit
ADDW AX, #8Bit ADD AX, #8Bit
CMPW AX, #8Bit CMP AX, #8Bit
ADDW ACC, #8Bit ADD ACC, #8Bit
SUBW ACC, #8Bit SUB ACC, #8Bit
JMP 8BitOffset, cond B 8BitOffset, cond

4.15 Pipeline Conflict Detection

Pipeline Conflict Detection (PCD) is a feature implemented on the TMS320C28x 5.0 Compiler, for targets
with hardware floating point unit (FPU) support only. This is because the FPU instructions are not pipeline
protected whereas the C28x instructions are. Beginning with version 6.0, similar protections are provided

for targets with support for the Viterbi, Complex Math and CRC Unit (VCU).

4.15.1 Protected and Unprotected Pipeline Instructions

The C28x target with FPU/VCU support has a mix of protected and unprotected pipeline instructions. This
necessitates some checks in the compiler and assembler that are not necessary for a C28x target without
such support.

By design, a (non-FPU) C28x instruction does not read/write an operand until all previous instructions
have finished writing that operand. The hardware stalls until this condition is true. As hardware stalls are
employed to preserve operand integrity, the compiler and assembler need not keep track of register reads
and writes by instructions in the pipeline. Thus, the C28x instructions are pipeline protected, meaning that
an instruction will not attempt to read/write a register while that register is still being written by another
instruction.

The situation is different when FPU support is enabled. While the non-FPU instructions are pipeline
protected, the FPU instructions aren't. This implies that an FPU instruction could attempt to read/write a
register while it is still being written by a previous instruction. This can cause undefined behavior, and the
compiler and assembler need to protect against such conflicting register accesses. The same is true for
VCU instructions.

4.15.2 Pipeline Conflict Prevention and Detection

The compiler, when generating assembly code from C/C++ programs, ensures that the generated code
does not have any pipeline conflicts. It does this by either scheduling non-conflicting instructions between
two potentially conflicting instructions, or inserting NOP instructions wherever necessary. For details on
the compiler, please see the .

While conflict prevention by the compiler is sufficient for C/C++ test cases, this does not cover manually-
written assembly language code. Assembly code can contain instructions that have pipeline conflicts. The
assembler needs to detect such conflicts and issue warnings or errors, depending on the severity of the
situation. This is what the Pipeline Conflict Detection (PCD) feature in the assembler, is designed to do.

SPRU513K-0October 2016 Assembler Description 71

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Pipeline Conflict Detection www.ti.com

4.15.3 Pipeline Conflicts Detected

The assembler detects certain pipeline conflicts, and based on their severity, issues either an error
message or a warning. The types of pipeline conflicts detected are listed below, along with the assembler
actions in the event of each conflict.

Pipeline Conflict:

An instruction reads a register when it is being written by another instruction.
Assembler Response:

The assembler generates an error message and aborts.

Pipeline Conflict:

Two instructions write the same register in the same cycle.

Assembler Response:

The assembler generates an error message and aborts.

Pipeline Conflict:

Instructions FRACF32, 116 TOF32, UI16TOF32, F32TOI32, and/or F32TOUI32 are present in the delay
slot of a specific type of MOV32 instruction that moves a value from a CPU register or memory location
to an FPU register.

Assembler Response:

The assembler gives an error message and aborts, as the hardware is not able to correctly execute
this sequence.

Pipeline Conflict:

Parallel operations have the same destination register.

Assembler Response:

The assembler gives a warning.

Pipeline Conflict:

A read/write happens in the delay slot of a write of the same register.
Assembler Response:

The assembler gives a warning.

Pipeline Conflict:

A SAVE operation happens in the delay slot of a pipeline operation.
Assembler Response:

The assembler gives a warning.

Pipeline Conflict:

A RESTORE operation happens in the delay slot of a pipeline operation.
Assembler Response:

The assembler gives a warning.

Pipeline Conflict:

A SETFLG instruction tries to modify the LUF or LVF flag while certain instructions that modify
LUF/LVF (such as ADDF32, SUBF32, EINVF32, EISQRTF32 etc) have pending writes.

Assembler Response:

The assembler does not check for which instructions have pending writes; on encountering a SETFLG
when any write is pending, the assembler issues a detailed warning, asking you to ensure that the
SETFLG is not in the delay slot of the specified instructions.

For the actual timing of each FPU instruction, and pipeline modeling, please refer to the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide. Timing information for VCU instructions can be
found in the TMS320x28xx, 28xxx DSP Peripherals Reference Guide.

72

Assembler Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 5
I TEXAS SPRU513K—-October 2016

INSTRUMENTS
Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

e Initialize memory

» Assemble conditional blocks

» Define global variables

» Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 5.1 through Section 5.12) describes the
directives according to function, and the second part (Section 5.13) is an alphabetical reference.

Topic Page
5.1 DIr€CHIVES SUIMMIAIY .euuinieiteueueuanae e eeeuanee e e eeaea s e e aeeaenen e e aeeaenenanreaeaeaenenrnns 74
5.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives................... 78
5.3 Directives that Define SECLIONSiuiuiiieieii ettt e e e eaeaeenns 79
5.4 Directives that INitialize VAlUEScuouiiiiiiiiiiiii i et e e e a e e e eaenenas 81
5.5 Directives that Perform Alignment and RESErve SPaceccovveiiieiniiiiieiiiiininiieieens 83
5.6 Directives that Format the OUtpUt LiStINGS «.cuvuiuieieieiiiieii e eeeaeaeeenes 84
5.7 Directives that Reference Other FileSouiuiiiiiiiiiiiii i e ee e 85
5.8 Directives that Enable Conditional ASSEMDBIYouieiiiiiiiiiiiiie e 86
5.9 Directives that Define Union Or StruCture TYPES ..uouiuiiieitieieiiiieieiteeeeeeaeeaeaeaeeeeanns 86
5.10 Directives that Define ENUMErated TYPeS . uuuiuiiiiiiieieiniieiitieitiaiteeaeaeieeesaeaeneneaenees 86
5.11 Directives that Define Symbols at Assembly TiMe.....cccciiiiiiiiiiiiiii e 87
5.12 MiSCEllaN€0OUS DilEC IVES .. uuututie it ittt et e ettt e e et e et an e e et e e ananeeeaeanes 88
5.13 DireCtiVES REfEIENCE. . ittt e et e e e e e e e n e e eeeenes 89

SPRU513K-0October 2016 Assembler Directives 73

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Summary

TEXAS
INSTRUMENTS

www.ti.com

5.1 Directives Summary

Table 5-1 through Table 5-16 summarize the assembler directives.

Besides the assembler directives documented here, the TMS320C28x software tools support the following

directives:

* Macro directives are discussed in Chapter 6; they are not discussed in this chapter.

» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes

NOTE: Most source statements that contain a directive can also contain a label and a comment.
Labels begin in the first column (only labels and comments can appear in the first column),
and comments must be preceded by a semicolon, or an asterisk if the comment is the only
element in the line. To improve readability, labels and comments are not shown as part of
the directive syntax here. See the detailed description of each directive for using labels with

directives.

Table 5-1. Directives that Control Section Use

Mnemonic and Syntax Description See
.data Assembles into the .data (initialized data) section .data topic
.sect "section name" Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect "section name”, size in words Reserves size words in a named (uninitialized) section .usect topic
[, blocking flagl[, alignment flag]]
Table 5-2. Directives that Affect Unused Section Elimination
Mnemonic and Syntax Description See
.clink "section name" Enables conditional linking for the current or specified section .clink topic
Table 5-3. Directives that Initialize Values (Data and Memory)
Mnemonic and Syntax Description See
.bits value[, ... , value,] Initializes one or more successive bits in the current section .bits topic
.byte value], ..., value,] Initializes one or more successive words in the current section .byte topic
.char value,], ..., value,] Initializes one or more successive words in the current section .char topic
.cstring {expr,|"string,"},... , {expr,|"string,"}] Initializes one or more text strings .string topic
field value], size] Initializes a field of size bits (1-32) with value field topic
float value,], ... , value,] Initializes one or more 32-bit, IEEE single-precision, floating-point .float topic
constants
.int value,], ..., value,] Initializes one or more 16-bit integers .int topic
long value[, ..., value,] Initializes one or more 32-bit integers .long topic

.pstring {expr,|" string,"}[,... , {expr,|"string, "}]

.string {expr,|"string;"}[,... , {expr,|"string,"}]
.ubyte value|, ..., value,]

.uchar value[, ..., value,]

.uint value,], ..., value,]

Places 8-bit characters from a character string into the current
section.

Initializes one or more text strings

Initializes one or more successive unsigned bytes in the current

section

Initializes one or more successive unsigned bytes in the current

section

Initializes one or more unsigned 32-bit integers

.pstring topic

.string topic
.ubyte topic

.uchar topic

.uint topic

74 Assembler Directives

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Summary

Table 5-3. Directives that Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax Description See
.ulong value,], ..., value,] Initializes one or more unsigned 32-bit integers .long topic
.uword value,|, ..., value,] Initializes one or more unsigned 16-bit integers .uword topic
.word value,|, ..., value,] Initializes one or more 16-bit integers .word topic
xfloat value,], ..., value,] Places the floating-point representation of one or more floating- Xxfloat topic
point constants into the current section
Xlong value,], ..., value] Places one or more 32-bit values into consecutive words in the .xlong topic
current section
Table 5-4. Directives that Perform Alignment and Reserve Space

Mnemonic and Syntax Description See
.align [size in words] Aligns the SPC on a boundary specified by size in words, which .align topic

must be a power of 2; defaults to 64-byte or page boundary
.bes size Reserves size bits in the current section; a label points to the end .bes topic

of the reserved space
.space size Reserves size words in the current section; a label points to the .space topic

beginning of the reserved space

Table 5-5. Directives that Format the Output Listing

Mnemonic and Syntax Description See
.drlist Enables listing of all directive lines (default) .drlist topic
.drnolist Suppresses listing of certain directive lines .drnolist topic
fclist Allows false conditional code block listing (default) fclist topic
fcnolist Suppresses false conditional code block listing fenolist topic

length [page length] Sets the page length of the source listing .length topic
list Restarts the source listing list topic
.mlist Allows macro listings and loop blocks (default) .mlist topic
.mnolist Suppresses macro listings and loop blocks .mnolist topic
.nolist Stops the source listing .nolist topic
.option option, [, option, , . . . Selects output listing options; available options are B, L, M, R, T, .option topic
W, and X
.page Ejects a page in the source listing .page topic
.sslist Allows expanded substitution symbol listing .sslist topic
.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic
.tab size Sets tab to size characters .tab topic
title "string" Prints a title in the listing page heading title topic
.width [page width] Sets the page width of the source listing .width topic
Directives that Reference Other Files
Mnemonic and Syntax Description See
.copy ["Ifilename["] Includes source statements from another file .copy topic
.include ["]filename["] Includes source statements from another file .include topic
.mlib ["Ifilename["] Specifies a macro library from which to retrieve macro definitions .mlib topic
SPRU513K—-October 2016 Assembler Directives 75

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Summary

I

TEXAS
INSTRUMENTS

www.ti.com

Table 5-7. Directives that Affect Symbol Linkage and Visibility

Mnemonic and Syntax Description See

.def symbol,], ... , symbol,] Identifies one or more symbols that are defined in the current .def topic
module and that can be used in other modules

.global symbol,], ..., symbol,] Identifies one or more global (external) symbols .global topic

.ref symbol,[, ... , symbol,] Identifies one or more symbols used in the current module that are .ref topic

defined in another module

.symdepend dst symbol name[, src symbol name] Creates an artificial reference from a section to a symbol

.symdepend topic

Table 5-8. Directives that Override the Assembly Mode

Mnemonic and Syntax

Description

See

.c28_amode

Begins assembling in C28x object mode

.c28_amode topic

Table 5-9. Directives that Enable Conditional Assembly

Mnemonic and Syntax Description See

.if condition Assembles code block if the condition is true .if topic

.else Assembles code block if the .if condition is false. When using the .if .else topic
construct, the .else construct is optional.

.elseif condition Assembles code block if the .if condition is false and the .elseif .elseif topic
condition is true. When using the .if construct, the .elseif construct
is optional.

.endif Ends .if code block .endif topic

.loop [count] Begins repeatable assembly of a code block; the loop count is .loop topic
determined by the count.

.break [end condition] Ends .loop assembly if end condition is true. When using the .loop .break topic

.endloop

construct, the .break construct is optional.
Ends .loop code block

.endloop topic

Table 5-10. Directives that Define Union or Structure Types

Mnemonic and Syntax

Description

See

.cstruct

.cunion

.emember
.endenum
.endstruct

.endunion

.enum
.union
.struct
.tag

Acts like .struct, but adds padding and alignment like that which is
done to C structures

Acts like .union, but adds padding and alignment like that which is
done to C unions

Sets up C-like enumerated types in assembly code
Sets up C-like enumerated types in assembly code
Ends a structure definition

Ends a union definition

Sets up C-like enumerated types in assembly code
Begins a union definition

Begins structure definition

Assigns structure attributes to a label

.cstruct topic
.cunion topic

Section 5.10
Section 5.10

.cstruct topic,
.struct topic

.cunion topic,
.union topic

Section 5.10
.union topic
.struct topic

.cstruct topic,
.struct topic.union
topic

Table 5-11. Directives that Define Symbols at Assembly Time

Mnemonic and Syntax

Description

See

.asg ["]character string["], substitution symbol

Assigns a character string to substitution symbol. Substitution
symbols created with .asg can be redefined.

.asg topic

76 Assembler Directives

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Summary

Table 5-11. Directives that Define Symbols at Assembly Time (continued)

Mnemonic and Syntax Description See
.define ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .define cannot be redefined.
.eval expression , Performs arithmetic on a numeric substitution symbol .eval topic
substitution symbol
.label symbol Defines a load-time relocatable label in a section .label topic
.newblock Undefines local labels .newblock topic
symbol .set value Equates value with symbol .set topic
.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic
.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic
Table 5-12. Directives that Create or Affect Macros
Mnemonic and Syntax Description See
macname .macro [parameter,][,... , parameter,] Begin definition of macro named macname .macro topic
.endm End macro definition .endm topic
.mexit Go to .endm Section 6.2
.mlib filename Identify library containing macro definitions .mlib topic
.var Adds a local substitution symbol to a macro's parameter list .var topic
Table 5-13. Directives that Control Diagnostics
Mnemonic and Syntax Description See
.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file
.mmsg string Sends user-defined messages to the output device .mmsg topic
.wmsg string Sends user-defined warning messages to the output device .wmsg topic
Table 5-14. Directives that Perform Assembly Source Debug
Mnemonic and Syntax Description See

.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic

.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc
topic

Table 5-15. Directives that Are Used by the Absolute Lister

Mnemonic and Syntax Description See

.setsect Produced by absolute lister; sets a section Chapter 9

.setsym Produced by the absolute lister; sets a symbol Chapter 9

Table 5-16. Directives that Perform Miscellaneous Functions

Mnemonic and Syntax Description See

.cdecls [options ,]"filename"[, "filename2"[, ...] Share C headers between C and assembly code .cdecls topic

.end Ends program .end topic

.sblock Designates section for blocking .sblock topic

SPRU513K—-October 2016 Assembler Directives 77

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives www.ti.com

5.2

In addition to the assembly directives that you can use in your code, the C/C++ compiler produces several
directives when it creates assembly code. These directives are to be used only by the compiler; do not
attempt to use these directives.

DWAREF directives listed in Section A.1
COFF/STABS directives listed in Section A.2

The .compiler_opts directive indicates that the assembly code was produced by the compiler, and
which build model options were used for this file.

The .template directive is used for early template instantiation. It encodes information about a template
that has yet to be instantiated. This is a COFF C++ directive.

Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives

This section explains how the TMS320C28x assembler directives differ from the
TMS320C1x/C2x/C2xx/C5x assembler directives.

The C28x .long and .float directives automatically align the SPC on an even word boundary, while the
C1x/C2x/C2xx/C5x assembler directives do not.

Without arguments, the .align directive for the C28x and the C1x/C2x/C2xx/C5x assemblers both align
the SPC at the next page boundary. However, the C28x .align directive also accepts a constant
argument, which must be a power of 2, and this argument causes alignment of the SPC on that word
boundary. The .align directive for the C1x/C2x/C2xx/C5x assembler does not accept this argument.

The .field directive for the C28x handles values of 1 to 32 bits, while the C1x/C2x/C2xx/C5x assembler
handles values of 1 to 16 bits. With the C28x assembler, objects that are 16 bits or larger start on a
word boundary and are placed with the least significant bits at the lower address.

The C28x .usect directive has an additional flag called the alignment flag, which specifies alignment on
an even word boundary. The C1x/C2x/C2xx/C5x .usect directive does not use this flag.

The .string directive for the C28x initializes one character per word; the C1x/C2x/C2xx/C5x assembler
directive .string, packs two characters per word. The C28x .pstring directive packs two characters per
word.

The following directives are valid with the C28x assembler but are not supported by the
C1x/C2x/C2xx/C5x assembler:

Directive Usage
.pstring Same as .string but packs two characters/word

Xfloat Same as .float without automatic alignment
xlong Same as .long without automatic alignment

The .mmregs and .port directives are supported by the C1x/C2x/C2xx/C5x assembler. The The C28x
assembler does not accept these directives.

78

Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Define Sections

5.3 Directives that Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

» The .clink directive enables conditional linking by telling the linker to leave the named section out of
the final object module output of the linker if there are no references found to any symbol in the
section. The .clink directive can be applied to initialized sections.

» The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

» The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

e The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

» The .usect directive reserves space in an uninitialized named section.
Chapter 2 discusses these sections in detail.

Example 5-1 shows how you can use sections directives to associate code and data with the proper
sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.
(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC
equals 0. When you resume assembling into a section after other code is assembled, the section's SPC
resumes counting as if there had been no intervening code.

SPRU513K—-0October 2016 Assembler Directives 79

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives that Define Sections

13 TEXAS
INSTRUMENTS

www.ti.com

The directives in Example 5-1 perform the following tasks:

text
.data
var_defs
.usect

Xy

initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.
initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
initializes words with the values 17 and 18.
reserves 19 words.

reserves 20 words.

The .usect directive does not end the current section or begin new sections; it reserves the specified
amount of space, and then the assembler resumes assembling code or data into the current section.

Example 5-1. Sections Directives

b WNPE

()]

13

14
15
16
17
18
19
20

21
22
23
24
25
26

27
28

29
30
31
32
33
34

35
36

000000
000000
000001
000002
000003

000000
000000
000001
000002
000003

000000
000000
000001

000004
000004
000005
000000
000006
000007

000004
000004
000005
000000
000006
000007

0001
0002
0003
0004

0009
000A
000B
0oocC

0011
0012

000D
00O0E

000F
0010

0005
0006

0007
0008

*

Start assembling into the .text section

.text
-word 1, 2
-word 3, 4

Start assembling into the .data section

.data
-word 9, 10
-word 11, 12

Start assembling into a named,
initialized section, var_defs

.sect
-word

“var_defs"
17, 18

Resume assembling into the .data section

.data
-word 13, 14

sym .usect ".ebss', 19 ; Reserve space in .ebss
-word 15, 16 ; Still in .data

* Resume assembling into the .text section *
-text
.word 5, 6

usym .usect 'xy", 20 ; Reserve space in xy
.word 7, 8 ; Still in _text

80

Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Initialize Values

5.4 Directives that Initialize Values

Several directives assemble values for the current section. For example:

» The .byte and .char directives place one or more 8-bit values into consecutive words of the current
section. These directives are similar to .word, .int, and .long, except that the width of each value is
restricted to 8 bits.

* The .field directive places a single value into a specified number of bits in the current word. With .field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled. If a field will not fit in the space remaining in the current word, .field will insert zeros to fill the
current word and then place the field in the next word. See the .field topic.

Figure 5-1 shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change (the fields are packed into the same word):

1 000000 0003 .field 3, 3
2 000000 0008 -field 8, 6
3 000000 0010 .Field 16, 5

Figure 5-1. The .field Directive
15 2 10
| 0 1 1| field3,3

3 bits
15 8 7 6 5 4 3

| 001000[0 1 1| fields6

6 bits
15 1312 11 10 9

| 1000 0/0010000 1 1| field165

5 bits

» The .float and .xfloat directives calculate the single-precision (32-bit) IEEE floating-point
representation of a single floating-point value and store it in a word in the current section that is aligned
to a word boundary.

* The .int and .word directives place one or more 16-bit values into consecutive 16-bit fields (words) in
the current section. The .int and .word directives automatically align to a word boundary.

» The .long and .xlong directives place one or more 32-bit values into consecutive 32-bit fields (words)
in the current section. The .long directive automatically aligns to a word boundary.

e The .string , .cstring, and .pstring directives place 8-bit characters from one or more character
strings into the current section. The .string and .cstring directives are similar to .byte, placing an 8-bit
character in each consecutive word of the current section. The .cstring directive adds a NUL character
needed by C; the .string directive does not add a NUL character. With the .pstring directive, the data is
packed so that each word contains two 8-bit bytes.

* The .ubyte, .uchar, .uint, .ulong, and .uword directives are provided as unsigned versions of their
respective signed directives. These directives are used primarily by the C/C++ compiler to support
unsigned types in C/C++.

Directives that Initialize Constants When Used in a .struct/.endstruct Sequence

NOTE: The .bits, .byte, .char, .int, .long, .word, .ubyte, .uchar, .uint, .ulong, .uword, .string, .pstring,
float, and .field directives do not initialize memory when they are part of a .struct/ .endstruct
sequence; rather, they define a member’s size. For more information, see the
.struct/.endstruct directives.

SPRU513K—-0October 2016 Assembler Directives 81

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives that Initialize Values

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 5-2 compares the .byte, .word, .long, and .string directives using the following assembled code:

1 000000
2 000001
3 000002
000003
4 000004
000005
000006
000007

00AB
CDEF
CDEF
89AB
0068
0065
006C
0070

Word

-byte
-word
-long

.string "help”

OABh
OCDEFh
089ABCDEFh

Figure 5-2. Initialization Directives

Contents
o o0 | A
C D | E
cC D | E
8 9 | A
0o o0 | 68
%/_/
h
0o 0| 65
%/_/
e
0 0 | scC
%/_/
|
o o0 | 70
%/_/
p

Code

.byte OABh
.word OCDEFh

Jong 089ABCDEFh

.string “help”

82

Assembler Directives

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Perform Alignment and Reserve Space

5.5 Directives that Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

» The .align directive aligns the SPC at the next word boundary. This directive is useful with the .field
directive when you do not want to pack two adjacent fields in the same word.

Figure 5-3 demonstrates the .align directive. Using the following assembled code:

1 000000 0002 .field 2,3

2 000000 005A .field 11,8

3 .align 2

4 000002 0065 .string "errorcnt”

000003 0072
000004 0072
000005 006F
000006 0072
000007 0063
000008 006E
000009 0074
5 .align
6 000040 0004 -byte 4

Figure 5-3. The .align Directive
(a) Result of .align 2

—_——- ==

—_—— —

~==" New SPC = 06h
after assembling
.align 2 directive

05h
Current e WordI /
SPC =05h ¢ y

(b) Result of .align without an argument

——

80h 7'y
Current A | e
SPC = 88h 64 word New SPC = C0Oh
after assembling
.align directive
COh ¥
SPRU513K—-0October 2016 Assembler Directives 83

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Directives that Format the Output Listings www.ti.com

The .bes and .space directives reserve a specified nhumber of bits in the current section. The
assembler fills these reserved bits with 0s.

— When you use a label with .space, it points to the first word that contains reserved bits.
— When you use a label with .bes, it points to the last word that contains reserved bits.
Figure 5-4 shows how the .space and .bes directives work for the following assembled code:

1

2

3 000000 0100 .word 100h, 200h
000001 0200

4 000002 Res_1 .Space 17

5 000004 OOOF .word 15

6 000006 Res_2 -bes 20

7 000007 OOBA -byte OBAh

Res_1 points to the first word in the space reserved by .space. Res_2 points to the last word in the
space reserved by .bes.

Figure 5-4. The .space and .bes Directives

———
_ -~ P
S———

) <+— Res_1=02h
17 bits -
reserved

20 bits
reserved

<+— Res_2 =06h

———

S———

5.6 Directives that Format the Output Listings

These directives format the listing file:

» The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval length .mnolist var
.break fclist .mlist .sslist .width
.emsg fcnolist .mmsg .ssnolist .wmsg

» The source code listing includes false conditional blocks that do not generate code. The .fclist and
.fenolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

» The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

« The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

» The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

84 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Reference Other Files

The .option directive controls certain features in the listing file. This directive has the following
operands:

turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
limits the listing of .byte and .char directives to one line.

turns off the listing of certain directives (same effect as .drnolist).

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, L, M, T, and W directives (turns off the limits of B, L, T, and W).

limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing
by invoking the assembler with the --asm_listing_cross_reference option (see Section 4.3).

Xs-H4mozzrow>»

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

The .tab directive defines tab size.
The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

5.7 Directives that Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Section 2.5.1). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The linker resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

The .symdepend directive creates an artificial reference from the section defining the source symbol
name to the destination symbol. The .symdepend directive prevents the linker from removing the
section containing the destination symbol if the source symbol section is included in the output module.

SPRU513K—-0October 2016 Assembler Directives 85
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Directives that Enable Conditional Assembly www.ti.com

5.8 Directives that Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

« The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if condition marks the beginning of a conditional block and assembles code
if the .if condition is true.

[.elseif condition] marks a block of code to be assembled if the .if condition is
false and the .elseif condition is true.

.else marks a block of code to be assembled if the .if condition is
false and any .elseif conditions are false.

.endif marks the end of a conditional block and terminates the block.

e The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

.loop [count] marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.
.break [end condition] tells the assembler to assemble repeatedly when the .break end

condition is false and to go to the code immediately after
.endloop when the expression is true or omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see Section 4.8.2.

5.9 Directives that Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union
types of the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is
more easily accessed. These directives do not allocate space for any object. Objects must be separately
allocated, and the .tag directive must be used to assign the type to the object.

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and
padding as if the structure were defined in analogous C code. This allows structures to be shared between
C and assembly code. See Chapter 13. For .struct and .union, element offset calculation is left up to the
assembler, so the layout may be different than .cstruct and .cunion.

5.10 Directives that Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names
to refer to compile-time constants. The types created are analogous to the enum type of the C language.
This allows enumerated types to be shared between C and assembly code. See Chapter 13.

See Section 13.2.10 for an example of using .enum.

86 Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives that Define Symbols at Assembly Time

5.11 Directives that Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .asg can be redefined.
.asg '"10, 20, 30, 40", coefficients
; Assign string to substitution symbol.
-byte coefficients
; Place the symbol values 10, 20, 30, and 40
; into consecutive bytes in current section.

The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .define cannot be redefined.

The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating
counters:

.asg 1, X ;o x =1

-loop ; Begin conditional loop.

-byte Xx*10h ; Store value into current section.
-break X =4 ; Break loop if x = 4.

-eval x+1, x ; Increment x by 1.

-endloop ; End conditional loop.

The .set directive sets a constant value to a symbol. The symbol is stored in the symbol table and
cannot be redefined; for example:

bval .set 0100h ; Set bval = 0100h
-long bval, bval*2, bval+12
; Store the values 0100h, 0200h, and 010Ch
; into consecutive words in current section.

The .set directive produces no object code.

The .unasg directive turns off substitution symbol assignment made with .asg.

The .undefine directive turns off substitution symbol assignment made with .define.

The .var directive allows you to use substitution symbols as local variables within a macro.

SPRU513K—-0October 2016 Assembler Directives 87
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Miscellaneous Directives www.ti.com

5.12 Miscellaneous Directives

These directives enable miscellaneous functions or features:

* The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

» The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

» The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

» The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit, or of the form NAME?, where you specify NAME. They are defined when they appear in
the label field. Local labels are temporary labels that can be used as operands for jump instructions.
The .newblock directive limits the scope of local labels by resetting them after they are used. See
Section 4.7.3 for information on local labels.

» The .sblock directive designates sections for blocking.

These three directives enable you to define your own error and warning messages:

» The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

e The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

» The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 6.7.

88

Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

5.13 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one

topic.

.align Align SPC on the Next Boundary

Syntax .align [size in words]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in words parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 64 aligns the SPC on the
next page boundary, and this is the default if no size in words is given. The assembler
assembles words containing null values (0) up to the next size in words boundary:

1 aligns SPC to byte boundary
2 aligns SPC to long word/even boundary
64 aligns SPC to page boundary
Using the .align directive has two effects:
» The assembler aligns the SPC on an x-word boundary within the current section.
» The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 4, and a default

.align.
1 000000 0004 .byte 4
2 -align 2
3 000002 0045 .string "Errorcnt"
000003 0072
000004 0072
000005 006F
000006 0072
000007 0063
000008 006E
000009 0074
4 -align
5 000040 0003 .field 3,3
6 000040 002B .Field 5,4
7 -align 2
8 000042 0003 .field 3,3
9 .align 8
10 000048 0005 .field 5,4
11 .align
12 000080 0004 .byte 4
SPRU513K-0October 2016 Assembler Directives 89

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.asg/.define/.eval

Syntax

Description

Assign a Substitution Symbol

.asg "character string",substitution symbol
.define "character string" ,substitution symbol
.eval expression,substitution symbol

The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a
constant value (which cannot be redefined) to a symbol, .asg assigns a character string
(which can be redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol.

» The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .define directive functions in the same manner as the .asg directive, except that
.define disallows creation of a substitution symbol that has the same name as a register
symbol or mnemonic. It does not create a new symbol name space in the assembler,
rather it uses the existing substitution symbol name space. The .define directive is used
to prevent corruption of the assembly environment when converting C/C++ headers. See
Chapter 13 for more information about using C/C++ headers in assembly source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the expression and assigns the string
value of the result to the substitution symbol. The .eval directive is especially useful as a
counter in .loop/.endloop blocks.

* The expression is a well-defined alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute expression.

e The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (), and
the dollar sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

90

Assembler Directives

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Example This example shows how .asg and .eval can be used.

1 .sslist
2 .asg XAR6, FP
3 00000000 0964 ADD ACC, #100
4 00000001 7786 NOP *FP++

NOP *XARG++
5 00000002 7786 NOP *XARG++
6
7 .asg 0, X
8 -loop 5
9 .eval X+1, X
10 -word X
11 -endloop

1 .eval X+1, X

.eval 0+1, x

1 00000003 0001 -word X

-word 1

1 .eval X+1, X

-eval 1+1, X

1 00000004 0002 -word X

-word 2

1 -eval X+1, X

.eval 2+1, X

1 00000005 0003 -word X

-word 3

1 .eval X+1, X

.eval 3+1, x

1 00000006 0004 -word X

-word 4

1 .eval X+1, X

-eval 4+1, X

1 00000007 0005 -word X

-word 5

SPRU513K-0October 2016
Submit Documentation Feedback

Assembler Directives 91

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax symbol .asmfunc [stack_usage(num)]
.endasmfunc
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The .asmfunc and .endasmfunc directives cannot be used when invoking the compiler
with the backwards-compatibility --symdebug:coff option. This option instructs the
compiler to use the obsolete COFF symbolic debugging format, which does not support
these directives.
The symbol is a label that must appear in the label field.
The .asmfunc directive has an optional parameter, stack usage, which indicates that the
function may use up to num bytes.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the assembly source generates debug information for the user_func
section.
1 00000000 .sect "otext”
2 -global userfunc
3 -global _printf
4
5 userfunc: -asmfunc
6 00000000 FE02 ADDB SP,#2
00000002 0000
8 00000003 7640! LCR #_printf
00000004 0000
9 00000005 9A00 MOVB AL,#0
10 00000006 FE82 SuBB SP,#2
11 00000007 0006 LRETR
12 -endasmfunc
13
14 00000000 .sect " .econst”
15 00000000 0048 SL1: .string "Hello World!",10,0
00000001 0065
00000002 006C
00000003 006C
00000004 006F
00000005 0020
00000006 0057
00000007 006F
00000008 0072
00000009 006C
0000000a 0064
0000000b 0021
0000000c 000A
0000000d 0000
92 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com Directives Reference

.bits Initialize Bits

Syntax .bits value,][, ..., value,]

Description The .bits directive places one or more values into consecutive bits of the current section.
The .bits directive is similar to the .field directive (see .field topic). However, the .bits
directive does not allow you to specify the number of bits to fill or increment the SPC.

SPRU513K-0October 2016 Assembler Directives 93

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.byte/.ubyte/.char/.uchar Initialize Byte

Syntax .byte value,], ... , value,]
.ubyte value,|, ..., value,]
.char valuey[, ... , value,]
.uchar value|, ... , value,]

Description The .byte, .ubyte, .char, and .uchar directives place one or more values into
consecutive words of the current section. Each byte is placed in a word by itself; the
eight MSBs are filled with Os. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

Values are not packed or sign-extended; each byte occupies the eight least significant

bits of a full 16-bit word. The assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive words in
memory. The label STRX has the value 100h, which is the location of the first initialized
word.

1 000000 .space 100h * 16

2 000100 O0OA STRX .byte 10, -1, "abc"™, "a"
000101 OOFF
000102 0061
000103 0062
000104 0063
000105 0061

3 000106 000A .char 10, -1, "abc", "a"
000107 OOFF
000108 0061
000109 0062
00010a 0063
00010b 0061

94 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cdecls

Syntax

Syntax

Description

Share C Headers Between C and Assembly Code
Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]

Multiple Lines:
.cdecls [options]

%{
I* */
/* C/C++ code - Typically a list of #includes and a few defines */
[* */
%0}

The .cdecls directive allows programmers in mixed assembly and C/C++ environments
to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the

containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot
be converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %/{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations; non-
function-like macros; enumerations; and #defines.

SPRU513K—-October 2016

Assembler Directives 95

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example

>>>>>>2>>>>>>>>>>>>>>>

O©CO~NOOUDSAWNREPRP

The resulting assembly language is included in the assembily file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 13 for more information on setting up and using the .cdecls directive with C
header files.

In this example, the .cdecls directive is used call the C header.h file.

C header file:

#define WANT_ID 10
#define NAME "John\n"

extern int a_variable;
extern float cvt_integer(int src);

struct myCstruct { int member_a; float member_b; };

enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:
.cdecls C,LIST,"myheader.h"

size: -int $sizeof(myCstruct)
aoffset: .int myCstruct.member_a
boffset: .int myCstruct.member_b
okvalue: .int status_enum.OK
failval: .int status_enum.FAILED
-1f $defined(WANT_ID)

id .cstring NAME
.endif
Listing File:

.cdecls C,LIST,"myheader.h"

; =========== MACRO DEFINITIONS ===========

.define "1",_ OPTIMIZE_FOR_SPACE

.define "1",_ ASM_HEADER_

.define "1",_edg_front_end__

.define 5001000, __COMPILER_VERSION___
.define "0",_ TI_STRICT_ANSI_MODE_
.define """"'14:53:42""", TIME__

.define "1™, TI1_COMPILER_VERSION_QUAL_
-define "unsigned long",_ SIZE_T_TYPE_
.define "long",_ PTRDIFF_T_TYPE_
.define "1",_ TMS320C2000__

.define "1",_TMS320C28X

.define "1",_TMS320C2000

.define "1",_ TMS320C28X__

.define "1",_ STDC___

.define "1",_ signed_chars__

.define "0",__ GNUC_MINOR__

©
(<)

Assembler Directives

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

>>>2>>>>>>>>>>>>>>>>P>>>>>>>>>>>>>

O~NO O~ WN

0001
0100
0000

0000
0001
0002
0004

00000000
00000001
00000002
00000003
00000004

00000005
00000006
00000007
00000008
00000009
0000000a

0004
0000
0002
0001
0100

004A
006F
0068
006E
000A
0000

status_enum
OK

FAILED
RUNNING

myCstruct
member_a

member_b

.define
.define
.define
.define
.define
.define
.define
.define
.define
.define
.define
.define
.define

.enum
.emem
.emem
.emem
.ende

.stru
.Fiel
.Fiel
.Fiel
.ends

1", _TMS320C28XX

5001000, TI1_COMPILER_VERSION
1M, TMS320C28XX__

1", little_endian__

"199409L", STDC_VERSION__

"""""EDG gcc 3.0 mode' ™", VERSION___
t John\n' NAME

"unsigned int”, WCHAR T TYPE _
"1", TI_RUNTIME_RTS_
"3",__GNUC__

""10" ,WANT_ID

""Sep 7 2007"t,_ DATE_

"7250", TI1_COMPILER_VERSION_QUAL_ID__

DEFINITIONS ===========

ber 1
ber 256
ber 0
num

ct 0,2 ; struct size=(4 bytes|64 bits), alignment=2

d 16 ; int member_a - offset 0 bytes, size (1 bytes]16 bits)

d 16 ; padding

d 32 ; Float member_b-offset 2 bytes, size (2 bytes|32 bits)

truct ; final size=(4 bytes|64 bits)

; =========== EXTERNAL FUNCTIONS ===========

; =========== EXTERNAL VARIABLES ===========

-g

lobal _a_variable

size: .int $sizeof(myCstruct)

aoffset:
boffset:
okvalue:
failval:

-int myC
-int myC
-int status_enum.OK

.int status_enum.FAILED

struct.member_a
struct.member_b

- if $defined(WANT_ID)
id .cstring NAME

.endif

SPRU513K-0October 2016
Submit Documentation Feedback

Copyrig

ht © 2016, Texas Instruments Incorporated

Assembler Directives

97

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.clink Conditionally Leave Section Out of Object Module Output

Syntax .clink["section name"]

Description The .clink directive enables conditional linking by telling the linker to leave a section out
of the final object module output of the linker if there are no references found to any
symbol in that section. The .clink directive can be applied to initialized sections.

The .clink directive applies to the current initialized section. It tells the linker to leave the
section out of the final object module output of the linker if there are no references found
in a linked section to any symbol defined in the specified section.

A section in which the entry point of a C program is defined cannot be marked as a
conditionally linked section.

Example In this example, the Vars and Counts sections are set for conditional linking.

1 000000 .sect "Vars"
2 ; Vars section is conditionally linked
3 .clink
4
5 000000 001A X: .long 01Ah
000001 0000
6 000002 001A Y: .word 01Ah
7 000003 001A Z: -word 01Ah
8 ; Counts section is conditionally linked
9 .clink
10
11 000004 001A XCount: .word O1Ah
12 000005 O01A YCount: .word 01Ah
13 000006 001A ZCount: .word 01Ah
14 ; By default, .text in unconditionally linked
15 000000 .text
16
17 000000 97C6 MOV *XAR6, AH
18 ; These references to symbol X cause the Vars
19 ; section to be linked into the COFF output
20 000001 8500+ MOV ACC, @X
21 000002 3100 MOV P, #0
22 000003 OFAB CMPL ACC, P
98 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy "filename"

.include "filename"

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:

1. Stops assembling statements in the current source file

2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
guotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the C2000_A_DIR environment variable
4. Any directories specified by the C2000_C_DIR environment variable

For more information about the --include_path option and C2000_A DIR, see
Section 4.4. For more information about C2000_C_DIR, see the TMS320C28x
Optimizing C/C++ Compiler User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)
.space 29 ** In byte.asm ** In word.asm
.copy "'byte.asm" _byte 32,1+ "A" .word OABCDh, 56q
** Back in original file .copy "‘word.asm"
.string "done" ** Back in byte.asm
-byte 67h + 3q

SPRU513K—-October 2016

Assembler Directives 99

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2

Listing file:
1 000000

000002 0005

2

1

2

3

1

2 000003 ABCD
4

5 000004 0006
3
4
5

000005 646F
000006 6E65

-Space 29
.copy "'byte.asm"

** In byte.asm
byte 5

.copy "‘word.asm"

** In word.asm

-word OABCDh

* Back in byte.asm

-byte 6

**Back in original file

.string "done™

In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the

listing file.
include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
-space 29 ** In byte2.asm ** In word2.asm

-include "byte2._asm"
** Back in original file

.string "‘done"

_byte 32,1+ "A"
-include
"word2.asm"
** Back in byte2.asm

-byte 67h + 3q

-word OABCDh, 56q

Listing file:
1 000000 .space 29
2 -include "byte2._asm"
3
4 ** Back in original file

5 000007 0064
000008 006F
000009 0O06E
00000a 0065

.string "done™

100 Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax

Description

Example

[stag] .cstruct|.cunion [expr]
[mem,] element [expr,]
[mem,] element [expr,]
[mem,] .tag stag [expr.]
[mem,] element [expry]
[size] .endstruct|.endunion
label .tag stag

The .cstruct and .cunion directives have been added to support ease of sharing of
common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word, .string,
.pstring, .float, and .field. All of these except .tag are typical directives that initialize
memory. Following a .struct directive, these directives describe the structure
element's size. They do not allocate memory. A .tag directive is a special case
because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

« The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The size is an optional label for the total size of the structure.

This example illustrates a structure in C that will be accessed in assembly code.

SPRU513K—-October 2016

Assembler Directives 101

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

;typedef struct MYSTR1

;{ long 10; /*
; short sO; /*
;3 MYSTR1; /*
;typedef struct MYSTR2
;{ MYSTR1 ml; /*
; short sl; /*
} MYSTR2; /*

offsetof(MYSTR1, 10)
offsetof(MYSTR1, sO)
sizeof(MYSTR1)

offsetof(MYSTR2, ml)
offsetof(MYSTR2, sl1)
sizeof(MYSTR2)

MYSTR1 .struct
10 -long ; bytes 0 and 1
sO .short ; byte 2
M1_LEN .endstruct ; size 4, alignment 2
MYSTR2 .struct
ml -tag MYSTR1 ; bytes 0-3
sl -short ; byte 4
M2_LEN .endstruct
.sect ‘'datal"
.word MYSTR1.10
-word MYSTR1.s0
-word M1_LEN
.sect "data2"
-word MYSTR2.m1
-word MYSTR2.s1
-word M2_LEN

offset 0 */
offset 2 */
size 4, alignment 2 */

offset 0 */
offset 4 */
size 6, alignment 2 */

0
2

=4

0
4
6

; size 6, alignment 2

The structure will get the following offsets once the C compiler lays out the structure
elements according to C standard rules:

Attempts to replicate this structure in assembly using .struct/.union directives will not
create the correct offsets because the assembler tries to use the most compact arrangement:

; The .cstruct/.cunion directives calculate offsets the same as the C compiler. The resulting

; assembly structure can be used to access elements of the C structure. Compare differences
; in the offsets of those structures defined via .struct above and the offsets for C code.

CMYSTR1 .cstruct

10 -long

sO .short

MC1_LEN -endstruct

CMYSTR2 .cstruct

ml .tag CMYSTR1

sl .short

MC2_LEN .endstruct
.sect "data3""
-word CMYSTR1.10, MYSTR1.10
-word CMYSTR1.s0, MYSTR1.s0
-word MC1_LEN, M1_LEN
.sect "datad"
-word CMYSTR2.m1, MYSTR2.ml
-word CMYSTR2.s1, MYSTR2.sl
-word MC2_LEN, M2_LEN

102 Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.data Assemble Into the .data Section
Syntax .data
Description The .data directive sets .data as the current section; the lines that follow will be

assembled into the .data section. The .data section is normally used to contain tables of
data or preinitialized variables.

For more information about sections, see Chapter 2.

Example In this example, code is assembled into the .data and .text sections.
1
2 *x Reserve space in .data. *x
3
4 000000 .data
5 000000 -space 0CCh
6
7 *x Assemble into .text. *x
8
9 000000 -text
10 0000 INDEX .set 0
11 000000 9A00 MoV AL ,#INDEX
12
13 ** Assemble into .data. *x
14
15 00000c Table: .data
16 00000d FFFF -word -1 ; Assemble 16-
bit constant into .data.
17 00000e OOFF -byte OFFh ; Assemble 8-
bit constant into .data.
18
19 ** Assemble into .text. holad
20
21 000001 -text
22 000001 08A9™ ADD AL,Table
000002 000C
23
24 ** Resume assembling into the .data *x
25 ** section at address OFh. *x
26
27 00000F .data

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Assembler Directives

103

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.drlist/.drnolist

Syntax

Description

Example

Control Listing of Directives

drlist
.drnolist

Two directives enable you to control the printing of assembler directives to the listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing

file. The .drnolist directive has no affect within macros.

e .asg » fcnolist
e .break e .mlist

e .emsg * .mmsg
e .eval e .mnolist
o fclist e .sslist

.ssnolist
.var
.wmsg

By default, the assembler acts as if the .drlist directive had been specified.

This example shows how .drnolist inhibits the listing of the specified directives.

Source file:
.asg 0, x
.loop 2
.eval X+1, X
-endloop
-drnolist
.asg 1, x
-loop 3
-eval x+1, X
-endloop
Listing file:
1 .asg 0, X
2 -loop 2
3 .eval X+1, X
4 -endloop
1 -eval 0+1, X
1 .eval 1+1, X
5
6 -drnolist
7
9 -loop 3
10 -eval x+1, X
11 -endloop

104 Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.emsg/.mmsg/.wmsg Define Messages

Syntax

Description

Example

.emsg string
.mmsg string

.wmsg string

These directives allow you to define your own error and warning messages. When you
use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

This example sends the message ERROR -- MISSING PARAMETER to the standard
output device.

Source file:

-global PARAM
MSG_EX .macro parml
.if $symlen(parml) = 0O
.emsg "ERROR -- MISSING PARAMETER™
.else
ADD AL, @parml
.endif
-endm

MSG_EX PARAM

MSG_EX
Listing file:
1 -global PARAM
2 MSG_EX _.macro parml
3 -if $symlen(parml) = 0O
4 .emsg "ERROR -- MISSING PARAMETER"
5 .else
6 ADD AL, @parml
7 -endif
8 -endm
9
10 000000 MSG_EX PARAM
1 -if $symlen(parml) = 0
1 .emsg "ERROR -- MISSING PARAMETER"
1 .else
1 000000 9400! ADD AL, @PARAM
1 .endif
11
12 000001 MSG_EX
1 -if $symlen(parml) = 0O
1 .emsg "ERROR -- MISSING PARAMETER"
&%*x USER ERROR *** _ : ERROR -- MISSING PARAMETER
1 .else
1 ADD AL, @parml
1 .endif

SPRU513K—-October 2016

Assembler Directives 105

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

1 Error, No Warnings

In addition, the following messages are sent to standard output by the assembler:

*** ERROR! line 12: ***** USER ERROR ***** _ - ERROR -- MISSING PARAMETER
.emsg "ERROR -- MISSING PARAMETER™ 11

1 Assembly Error, No Assembly Warnings
Errors in source - Assembler Aborted

.end End Assembly
Syntax .end
Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.
This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.
Ending a Macro
NOTE: Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.
Example This example shows how the .end directive terminates assembly. Any source statements
that follow the .end directive are ignored by the assembler.
Source file:
START: _space 300
TEMP .set 15
LOC1 .usect "_ebss"™, 48h
ABS ACC
ADD ACC, #TEMP
MOV @Loc1, ACC
-end
-byte 4
-word CCCh
Listing file:
1 000000 START: .space 300
2 000F TEMP .set 15
3 000000 LOC1 .usect ".ebss", 48h
4 000013 FF56 ABS ACC
5 000014 090F ADD ACC, #TEMP
6 000015 9600- MOV @Loc1, AcC
7 -end
106 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist
fcnolist

Two directives enable you to control the listing of false conditional blocks:

The fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.

This example shows the assembly language and listing files for code with and without
the conditional blocks listed.

Source file:
AAA .set 1
BBB .set O
.fclist
S V.V
ADD ACC, #1024
.else
ADD ACC, #1024*4
.endif
.fcnolist
\if AAA
ADD ACC, #1024
.else
ADD ACC, #1024*10
.endif
Listing file:
1 0001 AAA .set 1
2 0000 BBB .set O
3 -fclist
4
5 i AAA
6 000000 FF10 ADD ACC, #1024
000001 0400
7 .else
8 ADD ACC, #1024*4
9 .endif
10
11 -Fcnolist
12

14 000002 FF10
000003 0400

ADD ACC, #1024

SPRU513K—-October 2016

Assembler Directives 107

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

field Initialize Field
Syntax field value], size in bits]
Description The .field directive initializes a multiple-bit field within a single word (16 bits) of memory.

This directive has two operands:

» The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

* The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. The default size is 16 bits. If you specify a size in bits
of 16 or more, the field starts on a word boundary. If you specify a value that cannot
fit in size in bits, the assembler truncates the value and issues a warning message.
For example, .field 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

*** WARNING! line 21: WO0O1l: Field value truncated to 1
.field 3, 1

Successive .field directives pack values into the specified number of bits starting at the

current word. Fields are packed starting at the least significant part of the word, moving

toward the most significant part as more fields are added. If the assembler encounters a

field size that does not fit into the current word, it writes out the word, increments the

SPC, and begins packing fields into the next word. You can use the .align directive with

an operand of 1 to force the next .field directive to begin packing into a new word.

The .field directive is similar to the .bits directive (see the .bits topic). However, the .bits

directive does not allow you to specify the number of bits in the field and does not

automatically increment the SPC when a word boundary is reached.

Use the .align directive to force the next .field directive to begin packing a new word.

If you use a label, it points to the word that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it

does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun.

1

2 *x Initialize a 14-bit field. **
3

4 000000 OABC .field O0ABCh, 14

5

6

7 ** Initialize a 5-bit field **
8 *x in a new word. *x
9

10 000001 OOOA L_F: .field 0Ah, 5

11

12

13 ** Initialize a 4-bit field **
14 ** in the same word. **
15

16 000001 018A X: .field och, 4

17

18 *x Relocatable field *x
19 ** in the next 2 words. **
20
21 000002 0001" .field X
22
23 *x Initialize a 32-bit field *x
24
25 000003 4321 .field 04321h, 32

000004 0000
108 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Word

(@0

(b) 0

(c) 1

(d)1

(e)4

Figure 5-5 shows how the directives in this example affect memory.

Figure 5-5. The .field Directive

15 13 0
| 0010101011110 0]

14-bit field
[o 0J]o o1 0101011110 0]

| 0101 0]
;\/—/
5-bit field
| 1100/0 101 0]
;\/_/
4-bit field

[0 00000 o0f0o0 0 1

o
N
o
N
N

field

field

field

field

field

Code

O0ABCh, 14

00Ah, 5

000Ch, 4

04321, 32

SPRU513K—-October 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Assembler Directives

109

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
float/.xfloat Initialize Single-Precision Floating-Point Value
Syntax float value], ..., value,]
Xxfloat value], ..., value,]
Description The .float and .xfloat directives place the IEEE single-precision floating-point

representation of a single floating-point constant into a word in the current section. The
value must be an absolute constant expression with an arithmetic type or a symbol
equated to an absolute constant expression with an arithmetic type. Each constant is
converted to a floating-point value in IEEE single-precision 32-bit format.

The .float directive aligns the floating-point constants on the long-word boundary, while
the .xfloat directive does not.

The 32-bit value is stored exponent byte first, least significant word of fraction second,
and most significant word of fraction third, in the format shown in Figure 5-6.

Figure 5-6. Single-Precision Floating-Point Format

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMM M
31 23 0

Value = (_1)SX (1 0+ mantissa) X (z)exponent-127

Legend: S =sign (1 bit)
E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float and .xfloat directives:
1 00000000 5951 .float -1.0e25
00000001 E904
2 00000002 0010 -byte 0x10
3 00000003 0000 -xfloat 123.0 ; not on long-word boundary
00000004 42F6
4 00000006 0000 -float 3 ; aligns on long-word boundary

00000007 4040

110 Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.global/.def/.ref/.globl Identify Global Symbols

Syntax

Description

Example

.global symbol,], ..., symbol,]
.def symboly[, ... , symbol,]
.ref symbol,[, ... , symbol,]
.globl symbol,], ..., symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, or .usect directive. If a global symbol is defined
more than once, the linker issues a multiple-definition error. (The assembler can provide
a similar multiple-definition error for local symbols.) The .ref directive always creates a
symbol table entry for a symbol, whether the module uses the symbol or not; .global,
however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

* If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.lIst files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref and
.def to identify the symbols.

filel.lst
1 ; Global symbol defined in this file
2 -global INIT
3 ; Global symbols defined in file2.lst
4 -global X, Y, Z
5 000000 INIT:
6 000000 0956 ADD ACC, #56h
7
8 000001 0000! .word X
9 -
10
11 ; .
12 -end

SPRU513K—-October 2016

Assembler Directives 111

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
file2.Ist
1 ; Global symbols defined in this file
2 -global X, Y, zZ
3 ; Global symbol defined in filel.lst
4 -global INIT
5 0001 X: .set 1
6 0002 Y: .set 2
7 0003 Z: .set 3
8 000000 0000! -word INIT
9 ;
10 ;
11 ; .
12 .end
file3.Ist
1 ; Global symbol defined in this file
2 .def INIT
3 ; Global symbols defined in file4.lIst
4 .ref X, Y, Z
5 000000 INIT:
6 000000 0956 ADD ACC, #56h
7
8 000001 0000! -word X
9 ;
10 ;
11 ; -
12 .end
filed.lst
1 ; Global symbols defined in this file
2 .def X, Y, Z
3 ; Global symbol defined in file3.Ist
4 .ref INIT
5 0001 X: .set 1
6 0002 Y: .set 2
7 0003 z: .set 3
8 000000 0000! -word INIT
9 ; .
10 ;
11 ; -
12 -end
112 Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax

Description

Example

.if condition
[.elseif condition]
[-else]

.endif

These directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The condition is a required
parameter.

« If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).

» If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif is optional in a conditional block, and more
than one .elseif can be used. If an expression is false and there is no .elseif, the
assembler continues with the code that follows a .else (if present) or a .endif.

The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif. The .elseif and .else directives can be
used in the same conditional assembly block.

The .endif directive terminates a conditional block.
See Section 4.8.2 for information about relational operators.

This example shows conditional assembly:

1 0001 SYM1 .set 1

2 0002 SYM2 .set 2

3 0003 SYM3 .set 3

4 0004 SYmM4 .set 4

5

6 If 4: _|if SYM4 = SYM2 * SYM2

7 000000 0004 -byte SYM4 ; Equal values

8 .else

9 -byte SYM2 * SYM2 ; Unequal values
10 .endif

11

12 If£5: .if SYM1 <= 10

13 000001 OO0O0A -byte 10 ; Less than / equal
14 .else

15 -byte SYM1 ; Greater than

16 .endif

17

18 If6: .if SYM3 * SYM2 1= SYM4 + SYM2
19 -byte SYM3 * SYM2 ; Unequal value
20 .else
21 000002 0008 -byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If£.7: _if SYM1L = 2
25 -byte SYM1
26 .elseif SYM2 + SYM3 = 5
27 000003 0005 -byte SYM2 + SYM3
28 .endif

SPRU513K—-October 2016

Assembler Directives 113

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.int/.unint/.word/.uword Initialize 16-Bit Integers

Syntax .int value,[, ..., value,]
.uint value,], ..., value, |
.word value,], ..., value,]
.uword value,[, ..., value,]

Description The .int, .unint, .word, and .uword directives place one or more values into consecutive
words in the current section. Each value is placed in a 16-bit word by itself and is aligned
on a word boundary. A value can be either:

« An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is

relocatable, the assembler generates a relocation entry that refers to the appropriate

symbol; the linker can then correctly patch (relocate) the reference. This allows you to

initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

Example 1 This example uses the .int directive to initialize words.

1 000000 .space 73h
2 000000 PAGE .usect ".ebss", 128
3 000080 SUMPTR .usect ".ebss", 3
4 000008 FF20 INST: MOV ACC, #056h
000009 0056
5 00000a O00A .int 10, SYMPTR, -1, 35 + "a", INST
00000b 0080-
00000c FFFF
00000d 0084
00000e 0008*
Example 2 In this example, the .word directive is used to initialize words. The symbol WORDX
points to the first word that is reserved.
1 000000 0C80 WORDX: .word 3200, 1 + "AB", -OAFh, "X~
000001 4242
000002 FF51
000003 0058
114 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Jabel

Syntax

Description

Example

Create a Load-Time Address Label

.label symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.
See Section 3.5 for more information about run-time relocation.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

This example shows the use of a load-time address label.

sect "._examp™
-label examp_load ; load address of section

start: ; run address of section
<code>

finish: ; run address of section end
-label examp_end ; load address of section end

See Section 8.5.6 for more information about assigning run-time and load-time
addresses in the linker.

SPRU513K—-October 2016

Assembler Directives 115

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

length/.width

Set Listing Page Size

Syntax Jength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.
The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.
» Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.
e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.
e Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.
e Minimum width: 80 characters
* Maximum width: 200 characters
The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.
The assembler does not list the .width and .length directives.
Example The following example shows how to change the page length and width.
*x Page length = 65 lines *x
*x Page width = 85 characters *x
-length 65
.width 85
*x Page length = 55 lines *x
*x Page width = 100 characters *x
-length 55
.width 100
116 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Jlist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

Jist
.nolist

Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see

Section 4.3), the assembler ignores the .list directive.

This example shows how the .copy directive inserts source statements from another file.
The first time .copy is encountered, the assembler lists the copied source lines in the
listing file. The second time .copy is encountered, the assembler does not list the copied
source lines, because a .nolist directive was assembled. The .nolist, the second .copy,
and the .list directives do not appear in the listing file. Also the line counter is
incremented, even when source statements are not listed.

Source file:
copy.asm copy2.asm
(source file) (copy file)
.copy ‘‘copy2.asm" ** In copy2.asm
** Back in original file .word 32, 1 + "A"
NOP
-nolist
.copy "‘copy2.asm"
_list
** Back in original file
.string '"done"

Listing file:
1 .copy "'copy2.asm”
1 *In copy2.asm (copy file)
2 000000 0020 .word 32, 1 + "A*

000001 0042

* Back in original file
000002 7700 NOP

* Back in original file
000005 0044 .string '"Done"
000006 006F
000007 OO06E
000008 0065

0o~NwWN

SPRU513K—-October 2016

Assembler Directives 117

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jong/.ulong/.xlong

Initialize 32-Bit Integer

Syntax Jlong value,[, ..., value,]
.uong value|, ..., value,]
xlong value,|, ..., value,]
Description The .long, .ulong, and .xlong directives place one or more 32-bit values into
consecutive words in the current section. The most significant word is stored first. The
Jlong directive aligns the result on the long-word boundary, while .xlong does not.
A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.
If you use a label with these directives, it points to the first word that is initialized.
When you use .long in a .struct/.endstruct sequence, .long defines a member's size; it
does not initialize memory. See the .struct/.endstruct/.tag topic.
Example This example shows how the .long and .xlong directives initialize double words.
1 000000 ABCD DAT1: ._long OABCDh, "A" + 100h, "g", "o"
000001 0000
000002 0141
000003 0000
000004 0067
000005 0000
000006 006F
000007 0000
2 000008 0000" .xlong DAT1, OAABBCCDDh
000009 0000
00000a CCDD
00000b AABB
3 00000c DAT2:
118 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

Jloop/.endloop/.break Assemble Code Block Repeatedly

Syntax Joop [count]
.break [end-condition]

.endloop
Description Three directives allow you to repeatedly assemble a block of code:
The .loop directive begins a repeatable block of code. The optional count operand, if
used, must be a well-defined integer expression. The count indicates the number of
loops to be performed (the loop count). If count is omitted, it defaults to 1024. The loop
will be repeated count number of times, unless terminated early by a .break directive.
The optional .break directive terminates a .loop early. You may use .loop without using
.break. The .break directive terminates a .loop only if the end-condition expression is true
(evaluates to nonzero). If the optional end-condition operand is omitted, it defaults to
true. If end-condition is true, the assembler stops repeating the .loop body immediately;
any remaining statements after .break and before .endloop are not assembled. The
assembler resumes assembling with the statement after the .endloop directive. If end-
condition is false (evaluates to 0), the loop continues.
The .endloop directive marks the end of a repeatable block of code. When the loop
terminates, whether by a .break directive with a true end-condition or by performing the
loop count number of iterations, the assembler stops repeating the loop body and
resumes assembling with the statement after the .endloop directive.
Example This example illustrates how these directives can be used with the .eval directive. The

code in the first six lines expands to the code immediately following those six lines.

1 -eval 0,x

2 COEF .loop

3 -word X*100

4 -eval x+1, X

5 -break X =6

6 -endloop
1 000000 0000 .word 0*100
1 -eval 0+1, X
1 -break 1=6
1 000001 0064 .word 1*100
1 -eval 1+1, X
1 -break 2=6
1 000002 00C8 .word 2*100
1 -eval 2+1, X
1 -break 3=6
1 000003 012C .word 3*100
1 -eval 3+1, X
1 -break 4 =6
1 000004 0190 .word 4*100
1 -eval 4+1, X
1 -break 5=6
1 000005 01F4 .word 5*100
1 -eval 5+1, X
1 -break 6 =6

SPRU513K-0October 2016
Submit Documentation Feedback

Assembler Directives 119

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.macro/.endm Define Macro
Syntax macname .macro [parameter,|, ... , parameter,]]

model statements or macro directives

.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.

.macro identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the

.macro directive.

model statements are instructions or assembler directives that are executed each
time the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 6.

120 Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.mlib

Syntax

Description

Example

Define Macro Library

.mlib "filename"

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the C2000_A_DIR environment variable
4. Any directories specified by the C2000_C_DIR environment variable

See Section 4.4 for more information about the --include_path option.

A .mlib directive causes the assembler to open the library specified by filename and
create a table of the library's contents. The assembler stores names of individual library
members in the opcode table as library entries. This redefines any existing opcodes or
macros with the same name. If one of these macros is called, the assembler extracts the
library entry and loads it into the macro table. The assembler expands the library entry
as it does other macros, but it does not place the source code in the listing. Only macros
called from the library are extracted, and they are extracted only once.

See Chapter 6 for more information on macros and macro libraries.

The code creates a macro library that defines two macros, incl.asm and decl.asm. The

file incl.asm contains the definition of incl and decl.asm contains the definition of decl.
incl.asm decl.asm
* Macro for incrementing * Macro for decrementing
incl .macro A decl .macro A
ADD A, #1 SUB A, #1
.endm .endm

Use the archiver to create a macro library:
ar2000 -a mac incl.asm decl.asm

Now you can use the .mlib directive to reference the macro library and define the
incl.asm and decl.asm macros:

1 -mbib "mac.lib™
2
3 * Macro call
4 000000 incl AL
1 000000 9C01 ADD AL ,#1
5
6 * Macro call
7 000001 decl AR1
1 000001 08A9 SuUB AR1,#1

000002 FFFF

SPRU513K—-October 2016

Assembler Directives 121

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.mlist/. mnolist

Syntax

Description

Examp

le

Start/Stop Macro Expansion Listing

.mlist

.mnolist

Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.

The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 6 for more information on macros and macro libraries. See the
loop/.break/.endloop topic for information on conditional blocks.

This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR_3 .macro P1, P2, P3
2 .string ":pl:", ":ip2:', ":ip3:"
3 -endm
4

5 000000 STR_3 "as™, "I, "am"
1 000000 003A .string ":pl:", ":p2:", ":p3:"
000001 0070
000002 0031
000003 003A
000004 003A
000005 0070
000006 0032
000007 003A
000008 003A
000009 0070
00000a 0033
00000b 003A
6 00000c 003A .string ":pl:", ":p2:", ":p3:"
00000d 0070
00000e 0031
00000f 003A
000010 003A
000011 0070
000012 0032
000013 003A
000014 003A
000015 0070
000016 0033
000017 003A

-mnolist
000018 STR_3 ™as™, "I, "am"
-mlist
000024 STR_3 ™as™, "I, "am"
1 000024 003A .string ":pl:", ":ip2:', ":ip3:"
000025 0070
000026 0031
000027 003A
000028 003A
000029 0070
00002a 0032

=
P O 0o~

[y

122

Assembler Directives

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.newblock

Syntax

Description

Example

00002b 003A
00002c 003A
00002d 0070
00002e 0033
00002f 003A
12 000030 003A .string ":pl:", ":ip2:', ":ip3:"
000031 0070
000032 0031
000033 003A
000034 003A
000035 0070
000036 0032
000037 003A
000038 003A
000039 0070
00003a 0033
00003b 003A
13

Terminate Local Symbol Block

.newblock

The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, and cannot be used in expressions. They can be used only as operands in 8-bit
jump instructions. Local labels are not included in the symbol table.

After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.

See Section 4.7.3 for more information on the use of local labels.

This example shows how the local label $1 is declared, reset, and then declared again.

1 .ref ADDRA, ADDRB, ADDRC
2 0076 B .set 76h

3

4 00000000 F800! MoV DP, #ADDRA

5

6 00000001 8500! LABEL1: MOV ACC, @ADDRA

7 00000002 1976 SuB ACC, #B

8 00000003 6403 B $1, LT

9 00000004 9600! MoV @ADDRB, ACC

10 00000005 6F02 B $2, UNC

11

12 00000006 8500! $1 MoV ACC, @ADDRA

13 00000007 8100! $2 ADD ACC, @ADDRC

14 -newblock ; Undefine $1 to use again.
15

16 00000008 6402 B $1, LT

17 00000009 9600! MoV @ADDRC, ACC

18 0000000a 7700 $1 NOP

SPRU513K—-October 2016

Assembler Directives 123

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.option Select Listing Options

Syntax

.option option,[, option,,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:

A

Xs-H4mOozZzZzrow

turns on listing of all directives and data, and subsequent expansions, macros,
and blocks.

limits the listing of .byte and .char directives to one line.

turns off the listing of certain directives (same effect as .drnolist).
limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets any B, L, M, T, and W (turns off the limits of B, L, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-
reference listing by invoking the assembler with the --
asm_listing_cross_reference option (see Section 4.3).

Options are not case sensitive.

Example This example shows how to limit the listings of the .byte, long, .word, and .string
directives to one line each.

O©CoO~NOULDS WNPE

10
12
13

14
15

16

17

18

** Limit the listing of .byte, .long, **
** _word, and .string directives to 1 **
*x to 1 line each. *x

.option B, W, L, T

000000 00BD -byte -"C", 0BOh, 5
000004 CCDD -long OAABBCCDDh, 536 + "A*
000008 15AA .word 5546, 78h
00000a 0045 .string "Extended Registers™
*x Reset the listing options. *x
.option R
00001c 00BD -byte -"C", 0BOh, 5

00001d 00BO
00001e 0005
000020 CCDD .long OAABBCCDDh, 536 + "A*
000021 AABB
000022 0259
000023 0000

000024 15AA .word 5546, 78h
000025 0078
000026 0045 .string "Extended Registers"

000027 0078
000028 0074
000029 0065
00002a 006E
00002b 0064
00002c 0065
00002d 0064
00002e 0020
00002f 0052

124 Assembler Directives

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.page
Syntax

Description

Example

.sblock

Syntax

Description

Example

000030 0065
000031 0067
000032 0069
000033 0073
000034 0074
000035 0065
000036 0072
000037 0073

Eject Page in Listing

.page

The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.

This example shows how the .page directive causes the assembler to begin a new page
of the source listing.

Source file:

Source file (generic)
-title txxxx Page Directive Example ****'

-page
Listing file:
TMS320C000 COFF Assembler Version X.XX Day Time Year

Copyright (c) 1996-2011 Texas Instruments Incorporated
**** page Directive Example **** PAGE 1

2 ;

3 ;

4 ; -
TMS320C2000 COFF Assembler Version X.Xxx Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** page Directive Example **** PAGE 2

No Errors, No Warnings

Specify Blocking for a Section

.sblock["]section name["][,[']section name["]....

The .sblock directive designates sections for blocking. Blocking is an address alignment
mechanism similar to page alignment, but weaker. A blocked section does not cross a
page boundary (64 words) if it is smaller than a page, and it starts on a page boundary if
it is larger than a page. The section names may optionally be enclosed in quotation
marks.

This example designates the .text and .data sections for blocking.

1

2 ** Specify blocking for the .text **
3 ** and .data sections. *x
4

5 -sblock .text, .data

SPRU513K—-October 2016

Assembler Directives 125

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.sect

Syntax

Description

Example

Assemble Into Named Section

.sect " section name "

The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive sets section name to be the current section; the lines
that follow are assembled into the section name section.

The section name identifies the section. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section name :
subsection name. See Chapter 2 for more information about sections.

This example defines two special-purpose sections, Sym_Defs and Vars, and assembles
code into them.

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

29

000000

000000 FF20
000001 0078
000002 0936

000000

000000 CCCD
000001 3D4C
000002 00AA
000003 FF10
000004 0002+

000000
0010
0020
0008
0053

000003

000003 0942
000004 0003
000005 0004

000000

000000 000D
000001 OO00A
000002 0008
000003 0000

**

**

**

Begin assembling into .text section. *x
-text
MoV ACC, #78h ; Assembled into .text
ADD ACC, #36h ; Assembled into .text

Begin assembling into Sym_Defs section. **
.sect "'Sym Defs"

.float O. ; Assembled into Sym_Defs
-word OAAh ; Assembled into Sym_Defs
ADD ACC, #X ; Assembled into Sym_Defs

Begin assembling into Vars section. **
.sect "Vars"

WORD_LEN .set 16
DWORD_LEN .set WORD_LEN * 2
BYTE_LEN .set WORD_LEN 7/ 2

STR

**

**

.set 53h

Resume assembling into .text section. **

-text
ADD ACC, #42h ; Assembled into .text
-byte 3, 4 ; Assembled into .text

Resume assembling into Vars section. **
.sect "Vars"
.field 13, WORD_LEN
.Field OAh, BYTE_LEN
.Field 10q, DWORD_LEN

126 Assembler Directives

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.set

Syntax

Description

Example

Define Assembly-Time Constant

symbol .set value

The .set directive equates a constant value to a .set symbol. The symbol can then be
used in place of a value in assembly source. This allows you to equate meaningful

names with constants and other values.
» The symbol is a label that must appear in the label field.

» The value must be a well-defined expression, that is, all symbols in the expression

must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be

used in the expression. If the expression is relocatable, the symbol to which it is

assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value is not

part of the actual object code and is not written to the output file.

Symbols defined with .set can be made externally visible with the .def or .global directive

(see the .global/.defl.ref topic). In this way, you can define global absolute constants.

This example shows how symbols can be assigned with .set.

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

000000
000001

000002

000003

000004

0001
28C1
0056

0035
0935

000A
0004*

0035
0035

*x Equate symbol AUX_R1 to register ARl
** and use it instead of the register.

B

**

AUX_R1 .set AR1
MoV *AUX_R1, #56h

*x Set symbol index to an integer expr.
*x and use it as an immediate operand.

**

B

INDEX .set 100/2 +3
ADD ACC, #INDEX

** Set symbol SYMTAB to a relocatable expr.

*x and use it as a relocatable operand.

B

**

LABEL -word 10
SYMTAB .set LABEL + 1

** Set symbol NSYMS equal to the symbol
*x INDEX and use it as you would INDEX.

**

**

NSYMS .set INDEX
-word NSYMS

SPRU513K—-October 2016

Submit Documentation Feedback

Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

127

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.space/.bes Reserve Space
Syntax [label] .space size in bits
[label] .bes size in bits
Description The .space and .bes directives reserve the number of bits given by size in bits in the

current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the first word reserved. When
you use a label with the .bes directive, it points to the last reserved.

Example This example shows how memory is reserved with the .space and .bes directives.
1
2 ** Begin assembling into .text section. *x
3
4 000000 -text
5
6 ** Reserve OF0O bits (15 words in the **
7 *x -text section. **
8
9 000000 .space OFOh
10 00000f 0100 .word 100h, 200h
000010 0200
11
12 ** Begin assembling into .data section. *x
13
14 000000 .data
15 000000 0049 .string "In .data"

000001 006E
000002 0020
000003 002E
000004 0064
000005 0061
000006 0074
000007 0061

16
17 ** Reserve 100 bits in the .data section; **
18 *x RES_1 points to the first word that **
19 *x contains reserved bits. *x
20
21 000008 RES_1: .space 100
22 00000f OOOF -word 15
23
24 ** Reserve 20 bits in the .data section; **
25 ** RES_2 points to the last word that **
26 *x contains reserved bits. *x
27
28 000011 RES_2: .bes 20
29 000012 0036 -word 36h
30 000013 0011 -word RES

128 Assembler Directives SPRU513K—-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.sslist/.ssnolist

Syntax

Description

Example

Control Listing of Substitution Symbols

.sslist

.ssnolist

Two directives allow you to control substitution symbol expansion in the listing file:

The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the listing file.

By default, all substitution symbol expansion in the listing file is suppressed; the

assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.

00000000
00000001
00000002
00000003

12 00000000

1 00000000

00000001

1 00000002
13
14

15 00000003

00000003

[EnY

00000004

e e s

00000005

ADDRX
ADDRY
ADDRA
ADDRB

ADD2

8500-
8101-
9601-

8502-

8103-

9603~

.usect ".ebss", 1
.usect ".ebss", 1
.usect ".ebss", 1
.usect ".ebss", 1
-macro parml, parm2
MoV ACC, @parml
ADD ACC, @parm2
MOV @parm2, ACC
.endm
ADD2 ADDRX, ADDRY
MoV ACC, @ADDRX
ADD ACC, @ADDRY
MoV @ADDRY, ACC
.sslist
ADD2 ADDRA, ADDRB
MoV ACC, @parml
MoV ACC, @ADDRA
ADD ACC, @parm2
ADD ACC, @ADDRB
MOV @parm2, AC

SPRU513K—-October 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Assembler Directives

129

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.string/.cstring/.pstring Initialize Text

Syntax .string {expr, | "string,"} [, ... , {expr, | "string,"}]
.cstring {expr, | "string,"} [, ... , {expr, | "string,"}]
.pstring {expr, | "string,"} [, ... , {expr, | "string,"}]

Description The .string, .cstring, and .pstring directives place 8-bit characters from a character
string into the current section. With the .string directive, each 8-bit character has its own
16-bit word, but with the .pstring directive, the data is packed so that each word contains
two 8-bit bytes. The expr or string can be one of the following:

« An expression that the assembler evaluates and treats as an 16-hit signed number.

» A character string enclosed in double quotes. Each character in a string represents a
separate byte. The entire string must be enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not

add a NUL character. In addition, .cstring interprets C escapes (\\ \a \b \f \n \r \t \v

\<octal>).

With .pstring, values are packed into words starting with the most significant byte of the

word. Any unused space is padded with null bytes.

The assembler truncates any values that are greater than eight bits. Operands must fit

on a single source statement line.

If you use a label, it points to the location of the first word that is initialized.

When you use .string, .cstring, and .pstring in a .struct/.endstruct sequence, the directive

only defines a member's size; it does not initialize memory. For more information, see

the .struct/.endstruct/.tag topic.

Example In this example, 8-bit values are placed into consecutive words in the current section.

1 000000 0041 Str_Ptr: .string "ABCD"
000001 0042
000002 0043
000003 0044

2

3 000004 0041 .string 41h, 42h, 43h, 44h
000005 0042
000006 0043
000007 0044

4

5 000008 4175 .pstring "Austin", "Houston"
000009 7374
00000a 696E
00000b 486F
00000c 7573
00000d 746F
00000e 6E00

6

7 00000F 0030 .string 36 + 12

130 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.struct/.endstruct/.tag Declare Structure Type

Syntax

Description

[stag] .struct [expr]
[mem,] element [expr,]
[mem,] element [expr,]
[mem,] .tag stag [expr,]
[memy,] element [expry]
[size] .endstruct

label tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

e The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word, .string,
.pstring, .float, .field, and .tag. All of these except .tag are typical directives that
initialize memory. Following a .struct directive, these directives describe the structure
element's size. They do not allocate memory. The .tag directive is a special case
because stag must be used (as in the definition of stag).

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The size is an optional label for the total size of the structure.

Directives that Can Appear in a .struct/.endstruct Sequence

NOTE: The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty
structures are illegal.

SPRU513K—-October 2016

Assembler Directives 131

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1 REAL_REC .struct ; stag
NOM .int ; memberl = 0
DEN .int ; member2 =1
REAL_LEN .endstruct ; real_len = 4
ADD ACC, @(REAL + REAL_REC.DEN) ;access structure element
REAL .usect "_ebss", REAL_LEN ; allocate mem rec
Example 2 CPLX_REC .struct
REALI -tag REAL_REC ; stag
IMAGI .tag REAL_REC ; memberl = 0
CPLX_LEN _.endstruct ; rec_len = 4
COMPLEX .tag CPLX_REC ; assign structure attrib
ADD ACC, COMPLEX.REALI ; access structure
ADD ACC, COMPLEX.IMAGI
COMPLEX .usect "_ebss"™, CPLX_LEN ; allocate space
Example 3 .struct ; no stag puts mems into
X -int ; global symbol table
Y -int ;create 3 dim templates
z .int
.endstruct
Example 4 BIT_REC .struct ; stag
STREAM .string 64
BIT7 -field 7 ; bitsl = 64
BIT9 .field 9 ; bits2 = 64
BIT10 .field 10 ; bits3 = 65
X_INT -int ; x_int = 67
BIT_LEN -endstruct ; length = 68
BITS .tag BIT_REC
ADD AC, @BITS.BIT7 ; move into acc
AND ACC, #007Fh ; mask off garbage bits
BITS .usect ".ebss", BIT_REC
132 Assembler Directives SPRU513K—-October 2016

Copyright © 2016, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.symdepend

Syntax

Description

Affect Symbol Linkage and Visibility

.symdepend dst symbol name[, src symbol name]

These directives are used to affect symbol linkage and visibility.

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, or .usect directive. If a global symbol is defined
more than once, the linker issues a multiple-definition error. (The assembler can provide
a similar multiple-definition error for local symbols.) The .symdepend directive creates an
entry only if the module actually uses the symbol.

If the symbol is defined in the current module, the .symdepend directive declares that the
symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

SPRU513K—-October 2016

Assembler Directives 133

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are
translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single

tab character followed by an NOP instruction.

Source file:
; default tab size

NOP
NOP
NOP

-tab 4

NOP
NOP
NOP

.tab 16

NOP
NOP
NOP

Listing file:

[uy
COWOO~NUPAWNEPE

12
13
14

000000
000001
000002

000003
000004
000005

000006
000007
000008

7700
7700
7700

7700
7700
7700

7700
7700
7700

NOP
NOP
NOP

NOP
NOP
NOP

; default tab size

NOP
NOP
NOP

134 Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

text

Syntax

Description

Example

Assemble Into the .text Section

text

The .text sets .text as the current section. Lines that follow this directive will be
assembled into the .text section, which usually contains executable code. The section
program counter is set to 0 if nothing has yet been assembled into the .text section. If

code has already been assembled into the .text section, the section program counter is

restored to its previous value in the section.

The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive

to specify a different section.
For more information about sections, see Chapter 2.

This example assembles code into the .text and .data sections. The .data section
contains integer constants and the .text section contains character strings.

1
2 ** Begin assembling into .data section. **
3
4 000000 .data
5 000000 O0OA -byte 0Ah, OBh
000001 000B
6
7
8 ** Begin assembling into .text section. **
9
10 000000 -text
11 000000 0041 START: .string "A", "B", "C"

000001 0042
000002 0043
12 000003 0058 END: .string "X, "yT, "z"
000004 0059
000005 005A

13
14 000006 8100 ADD ACC, @START
15 000007 8103* ADD ACC, @END
16
17
18 ** Resume assembling into .data section.**
19
20 000002 .data
21 000002 0O00C .byte 0Ch, 0ODh
000003 000D
22
23 ** Resume assembling into .text section.**
24
25 000008 -text
26 000008 0051 .string "Quit"

000009 0075
00000a 0069
00000b 0074

SPRU513K—-October 2016

Assembler Directives

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

135

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

title Define Page Title
Syntax title "string"
Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.
The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING! line x: WO0O1l: String is too long - will be truncated
The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.
Example In this example, one title is printed on the first page and a different title is printed on
succeeding pages.
Source file:
-title "**** Fast Fourier Transforms ****"
-title "**** Floating-Point Routines ****"
-page
Listing file:
TMS320C2000 COFF Assembler Version X.xX Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** Fast Fourier Transforms **** PAGE 1
2 ;
3 ;
4 ; .
TMS320C2000 COFF Assembler Version X.XX Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** Eloating-Point Routines **** PAGE 2
No Errors, No Warnings
136 Assembler Directives SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.union/.endunion/.tag Declare Union Type

Syntax

Description

[stag] .union [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tagstag [expr,]

[memy] element [expry]
[size] .endunion
label tag stag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

« The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,, is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

e The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. An element can also be a complete
declaration of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element's size. They do not
allocate memory.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the union.

SPRU513K—-October 2016

Assembler Directives 137

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

NOTE:

Directives that Can Appear in a .union/.endunion Sequence

The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

These examples show unions with and without tags.

Example 1 1
2 -global employid
3 xample -union ; utag
4 0000 1ival -int ; memberl = iInt
5 0000 fval -float ; member2 = float
6 0000 sval .string ; member3 = string
7 0002 real_len -endunion
8
9 00000000 employid .usect "_ebss", real_len ; allocate memory
10
11 employid .tag xample ; name an instance
12
13 00000000 08A1- ADD AR1, #employid.ival
00000001 0000
Example 2 1
2 -union ; utag
3 0000 x -long ; member 1= long
4 0000 vy -Float ; member 2 = float
5 0000 z -int ; member 3 = int
6 0002 size_u .endunion ; size_u = 2
138 Assembler Directives SPRU513K-0October 2016

Copyright © 2016, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.usect

Syntax

Description

Example

Reserve Uninitialized Space

symbol .usect "section name", size in words|, blocking flag[, alignment flag|[, type]]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive simply reserves space for data and that space has no contents. The .usect
directive defines additional sections the can be placed anywhere in memory.

* The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

e The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

* The size in words is an expression that defines the number of words that are
reserved in section name.

» The blocking flag is an optional parameter. If you specify a value greater than 0 for
this parameter, the assembler allocates size in words contiguously. This means that
the allocated space does not cross a page boundary (64 words) unless its size is
greater than a page, in which case the object starts on a page boundary.

» The alignment is an optional parameter. It causes the assembler to allocate size in
words on long word boundaries.

» The type is an optional parameter. Designating a type causes the assembler to
produce the appropriate debug information for the symbol. See for more information.

Initialized sections directives (.text, .data, and .sect) tell the assembler to pause
assembling into the current section and begin assembling into another section. A .usect
directive encountered in the current section is simply assembled, and assembly
continues in the current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sections, varl
and var2. The symbol ptr points to the first word reserved in the varl section. The
symbol array points to the first word in a block of 100 words reserved in varl, and dflag
points to the first word in a block of 50 words in varl. The symbol vec points to the first
word reserved in the var2 section.

SPRU513K—-October 2016

Assembler Directives 139

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 5-7 shows how this example reserves space in two uninitialized sections, varl

and var2.
1
2 holad Assemble into .text section. holad
3
4 000000 -text
5 000000 9A03 MOV AL, #03h
6
7
8 holad Reserve 1 word in varl. holad
9
10 000000 ptr _usect ‘'varl", 1
11
12
13 *x Reserve 100 words in varl. *x
14
15 000001 array .usect 'varl", 100
16
17 000001 9CO03 ADD AL, #03h ; Still in _text
18
19
20 holad Reserve 50 words in varl. holed
21
22 000065 dflag .usect "varl", 50
23
24 000002 08A9 ADD AL, #dflag ; Still in .text
000003 0065-
25
26
27 *x Reserve 100 words in var2. *x
28
29 000000 vec .usect "var2", 100
30
31 000004 08A9 ADD AL, #vec ; Still in .text
000005 0000-
32
33
34 ** Declare an external .usect symbol **
35
36 -global array
Figure 5-7. The .usect Directive
Section var1 Section var2
Prr —> [2 pytes ptr —»
array —»
100 words
100 words
100 words reserved
in var2
dflag —»
50 words

152 words reserved
in var1

140

Assembler Directives

Copyright © 2016, Texas Instruments Incorporated

SPRU513K—-October 2016

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.unasg/.undefine Turn Off Substitution Symbol

Syntax .unasg symbol
.undefine symbol

Description The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembly file.
See Section 4.7.8 for more information on substitution symbols.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 13 for more information about using
C/C++ headers in assembly source.

.var Use Substitution Symbols as Local Variables
Syntax var sym, [, sym,, ..., sym,]
Description The .var directive allows you to use substitution symbols as local variables within a

macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

See Section 4.7.8 for more information on substitution symbols .See Chapter 6 for
information on macros.

SPRU513K—-0October 2016 Assembler Directives 141

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 6
I TEXAS SPRU513K—-October 2016

INSTRUMENTS

Macro Language Description

The TMS320C28x assembler supports a macro language that enables you to create your own
instructions. This is especially useful when a program executes a particular task several times. The macro
language lets you:

» Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

» Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro
* Manipulate strings within a macro

» Control expansion listing

Topic Page
LG A U F- 7 T 1 =T 0 F P 143
(S22 T o 1 Lo Y= Vo o 1 PP 143
6.3 Macro Parameters/Substitution SymbolSo 145
6.4 MACIO LIDraries ..uuie i e e 150
6.5 Using Conditional ASSEMDBIY iN MACIOS ..uuiuiiititiiiieii ettt e e eae e eaeneens 151
6.6 USING LADEIS IN IMBCIOS ..ueueuinieieiiieeee et ee e e et e e e e e e e e e e e n e e e e e enennnnenen 153
6.7 Producing MeSSages iN MaCIOS ... cucueueuieieieeeenenia e eeeeaaasa e e eenenra e eenenenannes 154
6.8 Using Directives to Format the Output LiSTiNG ...c.eueeieieiiiiiiiiiiei e e eeens 155
6.9 Using Recursive and NeSted MaCIOScucueiieieiniieitieieieeaeae e e aaseeaeaeaaanreneaens 156
6.10 MaCro Dir€CtiVES SUMMAIY .eueutuuiuininieeitiseneete et tseaee et s st eaea e e aaenansaeneaeaeanens 157

142 Macro Language Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS

INSTRUMENTS

www.ti.com Using Macros

6.1

6.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See Section 6.3 for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

(a) Macros can be defined at the beginning of a source file or in a copy/include file. See
Section 6.2, Defining Macros, for more information.

(b) Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Section 6.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see Section 6.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File);
they can also be defined in a macro library. For more information about macro libraries, see Section 6.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Section 6.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter,][, ... , parameter,]
model statements or macro directives
[.mexit]
.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter ,, are optional substitution symbols that appear as operands for the .macro directive.

parameter Parameters are discussed in Section 6.3.

SPRU513K—-October 2016 Macro Language Description 143
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Defining Macros

13 TEXAS
INSTRUMENTS

www.ti.com

model statements are instructions or assembler directives that are executed each time the macro is

called.
macro directives are used to control macro expansion.
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when

error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Section 6.7 for more information

about macro comments.

Example 6-1 shows the definition, call, and expansion of a macro.

Example 6-1. Macro Definition, Call, and Expansion

1 * add3 argl, arg2, arg3
2 * arg3 = argl + arg2 + arg3
3
4 add3 .macro P1, P2, P3, ADDRP
5
6 MOV ACC, P1
7 ADD ACC, P2
8 ADD ACC, P3
9 ADD ACC, ADDRP
10 -endm
11
12 -global ABC, def, ghi, adr
13
14 000000 add3 @abc, @def, @ghi, @adr
1
1 000000 EOOO! MOV ~ ACC, @abc
1 000001 A000! ADD ACC, @def
1 000002 A000! ADD ACC, @ghi
1 000003 A000! ADD ACC, @adr
15
144 Macro Language Description SPRU513K—-October 2016

Copyright © 2016, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

6.3

Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Section 4.7.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Section 6.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

Example 6-2 shows the expansion of a macro with varying numbers of arguments.

Example 6-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:

Parms -macro a,b,c
; a = :a:
; b = :b:
; c = :c:
-endm
Calling the macro:
Parms 100, label Parms 100, label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c="" 5 Cc =Xy
Parms 100, , X Parms *"100,200,300",%x,y
; a = 100 ; a = 100,200,300
- b = - b = x
> c =X : c=y
Parms "Ustring’™™,x,y
; a = "string"
; b = x
; c=y
SPRU513K-0October 2016 Macro Language Description 145

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.
e The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

Example 6-3 shows character strings being assigned to substitution symbols.

Example 6-3. The .asg Directive

.asg A4, RETVAL ; return value

» The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

Example 6-4 shows arithmetic being performed on substitution symbols.

Example 6-4. The .eval Directive

.asg 1,counter

-loop 100

.word counter

.eval counter + 1,counter
-endloop

In Example 6-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

146

Macro Language Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

6.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in Table 6-1, a and b are parameters that represent substitution symbols
or character-string constants. The term string refers to the string value of the parameter. The symbol ch

represents a character constant.

Table 6-1. Substitution Symbol Functions and Return Values

Function Return Value

$symlen (a) Length of string a

$symemp (a,b) <0Oifa<b;0ifa=b;>0ifa>b

$firstch (a,ch)

Index of the first occurrence of character constant ch in string a

$lastch (a,ch)

Index of the last occurrence of character constant ch in string a

$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$ismember (a,b) Top member of list b is assigned to string a

0 if b is a null string

$iscons (a) 1 if string a is a binary constant

2 if string a is an octal constant

3 if string a is a hexadecimal constant
4 if string a is a character constant

5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name

0 if string a is not a valid symbol name

Sisreg (a) @ 1 if string a is a valid predefined register name

0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Section 4.7.6.

Example 6-5 shows built-in substitution symbol functions.

Example 6-5. Using Built-In Substitution Symbol Functions

1 global X, label

2 .asg label, ADDR ; ADDR = label
3 -if ($symcmp(ADDR, ""label') = 0)

4 000000 8000! SuB ACC, @ADDR

5 .endif

6 .asg "X, y, z'", list list = x,

7 -if ($ismember(ADDR, list)) ; ADDR =

8 000001 8000! SuB ACC, @ADDR

9 .endif

; evaluates to true

SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

Macro Language Description 147

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 6-6, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 6-6. Recursive Substitution

1 -global x
2 .asg 'X'", z ; declare z and assign z = "x"
3 .asg "z", y ; declare y and assigny = "z"
4 .asg "y", x ; declare x and assign x = "y"
5 000000 FF10 ADD ACC, x

000001 000O0!
6

6.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol. The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

Example 6-7 shows how the forced substitution operator is used.

Example 6-7. Using the Forced Substitution Operator

force -.macro X
-loop 8
PORT:x: .set X*4
.eval X+1, X
-endloop
.endm

.global portbase

force
PORTO .set 0
PORT1 _.set 4
PORT7 .set 28
148 Macro Language Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Macro Parameters/Substitution Symbols
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:
» :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.
« :symbol (well-defined expression ;, well-defined expression ,):

In this method, expression, represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not O.

Example 6-8 and Example 6-9 show built-in substitution symbol functions used with subscripted
substitution symbols. In Example 6-8, subscripted substitution symbols redefine the STW instruction so
that it handles immediates. In Example 6-9, the subscripted substitution symbol is used to find a substring
strgl beginning at position start in the string strg2. The position of the substring strgl is assigned to the
substitution symbol pos.

Example 6-8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX

ADDX

-macro ABC

.var TMP

.asg :ABC(1): , TMP

-if $symemp(TMP, "#'") = 0

ADD ACC, ABC

.else

.emsg ""Bad Macro Parameter"
.endif

-endm

#100 ;macro call

Example 6-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strgl,strg2,pos

.var lenl,len2,i,tmp

Jif $symlen(start) = 0
-eval 1,start

.endif

-eval 0,pos

-eval start, i

-eval $symlen(strgl), lenl
-eval $symlen(strg2), len2
-loop

.break i = (len2 - lenl + 1)
.asg "istrg2(i,lenl):",tmp
.if $symemp(strgl,tmp) = O
-eval i,pos

-break

.else

-eval i+ 1,i

-endif

-endloop

-endm

.asg 0,pos

.asg arl ar2 ar3 ar4',regs
substr 1,"ar2",regs,pos
-word pos

SPRU513K—-October 2016 Macro Language Description 149
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to
define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive
creates temporary substitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

var sym,; [,sym,, ... ,sym,]

The .var directive is used in Example 6-8 and Example 6-9.

6.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member hame must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro
Library). The syntax is:

‘ .mlib filename

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry the same way it expands other macros. See Section 6.1 for how
the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For information about the .mlist directive, see Section 6.8 and Start/Stop Macro Expansion
Listing. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Section 7.1.

150 Macro Language Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

www.ti.com

TEXAS

INSTRUMENTS

Using Conditional Assembly in Macros

6.5

Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blocks for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Jloop [well-defined expression]
[.break [well-defined expression]]
.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to

be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler

encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks

Repeatedly for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or

when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive. For more information, see Section 5.8.

Example 6-10, Example 6-11, and Example 6-12 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

Example 6-10. The .loop/.break/.endloop Directives

.asg 1,x
-loop

-break (x == 10) ; if x == 10, quit loop/break with expression

.eval X+1,X
-endloop

SPRU513K-0October 2016 Macro Language Description
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

151

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Using Conditional Assembly in Macros www.ti.com

Example 6-11. Nested Conditional Assembly Directives

.asg 1,x

-loop

.if (x == 10) ; if x == 10, quit loop
.break (x == 10) ; force break

.endif

.eval X+1,X
-endloop

Example 6-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

MACK3 .macro srcl, src2, sum, kK
; sum = sum + k * (srcl * src2)
.if k=0

MOV T,#srcl

MPY ACC,T,#src2
MOV DP,#sum
ADD @sum, AL
.else

MOV T,#srcl

MPY ACC,T,#k
MOV T,AL

MPY ACC,T,#src2
MOV DP,#sum

ADD @sum, AL
.endif

-endm
-.global A0, A1, A2

MACK3 AO0,Al1,A2,0
MACK3 A0,A1,A2,100

152 Macro Language Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Using Labels in Macros

6.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is

expanded more than once, its labels are defined more than once. Defining a label more than once is

illegal. The macro language provides a method of defining labels in macros so that the labels are unique.

Simply follow each label with a question mark, and the assembler replaces the question mark with a

period followed by a unique number. When the macro is expanded, you do not see the unique number in

the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. See Section 4.7.3 for more about labels.

The syntax for a unique label is:

label ?

Example 6-13 shows unique label generation in a macro. The maximum label length is shortened to allow

for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label

length is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125.

The label with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the
assembler with the --cross_reference option (see Section 4.3).

Example 6-13. Unique Labels in a Macro

[y
PO OWWO~NOUMWDNEPR

[y

00000000

00000000 2FA9
00000001 55A9
00000002 6202

00000003 2FAS8
1?

PR RPRRRR

12
LABEL
-TMS320C2800

.TMS320C2800_FPU32
-.TMS320C2800_FPU6G4

__ TI1_ASSEMBLER_VERSION_QUAL_ID__

__ TI_ASSEMBLER_VERSION_QUAL__
__TI1_ASSEMBLER_VERSION__
1$1$

-macro X, Yy, Z

MOV z, Yy
CMP X, Yy
B 1?,GT
MOV z, X
-endm

min AH, AL, PH

MoV PH, AL
CMP AH, AL
B 1?,GT

MoV PH, AH

VALUE

000001
000000
000000
001c52
000049
4c4f128
000004*

w)
m
m
=

NOOOOOO

[y

REF

11

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Macro Language Description

153

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Producing Messages in Macros www.ti.com

6.7

Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same

manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

Example 6-14 shows user messages in macros and macro comments that do not appear in the macro
expansion.

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messages.

Example 6-14. Producing Messages in a Macro

1 testparam .macro X, Yy
2 !
3 I This macro checks for the correct number of parameters.
4 I It generates an error message if x and y are not present.
5 !
6 I The first line tests for proper input.
7 !
8 -if ($symlen(x) == 0)
9 .emsg "ERROR --missing parameter in call to TEST"
10 -mexit
11 .else
12 MoV ACC, #2
13 MoV AL, #1
14 ADD ACC, @AL
15 .endif
16 -endm
17
18 000000 testparam 1, 2
1 -if ($symlen(x) == 0)
1 .emsg "ERROR --missing parameter in call to TEST"
1 -mexit
1 .else
1 000000 FF20 MoV ACC, #2
000001 0002
1 000002 9A01 MoV AL, #1
1 000003 AOA9 ADD ACC, @AL
1 .endif
154 Macro Language Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Using Directives to Format the Output Listing

6.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

* Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.
.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.

For macro and loop expansion listing, .mlist is the default.

« False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

e Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

» Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

SPRU513K—-October 2016 Macro Language Description 155

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Using Recursive and Nested Macros www.ti.com

6.9

Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

Example 6-15 shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 6-15. Using Nested Macros

in_block _.macro y,a

- ; visible parameters are y,a and x,z from the calling macro
-endm

out_block .macro X,Y,Z
; visible parameters are X,y,z
in_block x,y ; macro call with x and y as arguments
-endm
out_block ; macro call

Example 6-16 shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in the A register. The fact
macro accomplishes this by calling factl, which calls itself recursively.

Example 6-16. Using Recursive Macros

1 -Fcnolist

2

3 fact .macro N, LOC

4

5 JdfFN<2

6 MoV @LoC, #1
7 .else

8 MoV @LOoC, #N
9

10

11 .eval N-1, N

12 factl

13

14 .endif

15 .endm

16

17 factl .macro

18 JdAF N> 1

19 MOV @T, @LoC
20 MPYB @P, @T, #N
21 MoV @Loc, @rP
22 MOV ACC, @LOC
23 .eval N -1, N
24 factl
25
26 .endif
27 .endm

156 Macro Language Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Macro Directives Summary

6.10 Macro Directives Summary

The directives listed in Table 6-2 through Table 6-6 can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language

directives.
Table 6-2. Creating Macros
See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Section 6.2 .endm
macname .macro [parameter,][,... , parameter,] Define macro by macname Section 6.2 .macro
.mexit Go to .endm Section 6.2 Section 6.2
.mlib filename Identify library containing macro definitions Section 6.4 .mlib
Table 6-3. Manipulating Substitution Symbols
See
Mnemonic and Syntax Description Macro Use Directive
.asg ["]character string["], substitution symbol Assign character string to substitution symbol Section 6.3.1 .asg
.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols Section 6.3.1 .eval
var sym, [, sym,, ..., sym,] Define local macro symbols Section 6.3.6 .var
Table 6-4. Conditional Assembly
See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 6.5 .break
.endif End conditional assembly Section 6.5 .endif
.endloop End repeatable block assembly Section 6.5 .endloop
.else Optional conditional assembly block Section 6.5 .else
.elseif well-defined expression Optional conditional assembly block Section 6.5 .elseif
.if well-defined expression Begin conditional assembly Section 6.5 Jif
.loop [well-defined expression] Begin repeatable block assembly Section 6.5 loop
Table 6-5. Producing Assembly-Time Messages
See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Section 6.7 .emsg
.mmsg Send assembly-time message to standard output Section 6.7 .mmsg
.wmsg Send warning message to standard output Section 6.7 .wmsg
Table 6-6. Formatting the Listing
See
Mnemonic and Syntax Description Macro Use Directive
fclist Allow false conditional code block listing (default) Section 6.8 fclist
fcnolist Suppress false conditional code block listing Section 6.8 fenolist
.mlist Allow macro listings (default) Section 6.8 .mlist
.mnolist Suppress macro listings Section 6.8 .mnolist
.sslist Allow expanded substitution symbol listing Section 6.8 .sslist
.ssnolist Suppress expanded substitution symbol listing (default) Section 6.8 .ssnolist
SPRU513K-0October 2016 Macro Language Description 157

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 7
l ?Eé(?lgUMENTS SPRU513K—-October 2016

Archiver Description

The TMS320C28x archiver lets you combine several individual files into a single archive file. For example,
you can collect several macros into a macro library. The assembler searches the library and uses the
members that are called as macros by the source file. You can also use the archiver to collect a group of
object files into an object library. The linker includes in the library the members that resolve external
references during the link. The archiver allows you to modify a library by deleting, replacing, extracting, or
adding members.

Topic Page
T. 1 ATCRIVEN OVEIVIEW .eneneiiuinitieit et e sttt e e e e e e et e e e e s e s et e e n e ara s et e en e s nnnan e enen 159
7.2 The Archiver's Role in the Software Development FIOWcocvveiiiiiiiiiiiiieicnninennnns 160
7.3 INVOKING the ATCRIVET . ..u ettt e e e e e e e a e eenen 161
T4 ArChIVEr EXAmMPIES. ...ttt ettt e n e e 162
7.5 Library Information Archiver DeSCrIPION ... c.cuuie ettt e et e e e eneaeaens 163
158 Archiver Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Archiver Overview

7.1 Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 6 discusses macros and macro libraries in detail, while this chapter explains how to
use the archiver to build libraries.

SPRU513K—-October 2016 Archiver Description 159
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

The Archiver's Role in the Software Development Flow

13 TEXAS
INSTRUMENTS

www.ti.com

7.2 The Archiver's Role in the Software Development Flow

Figure 7-1 shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 7-1. The Archiver in the TMS320C28x Software Development Flow

C
source
files

Macro
source
files

C/C++

compiler

Assembler
source

Macro
library

Assembler

Object
files

Library of
object
files

Linker

Post-link
optimizer

Hex-conversion
utility

EPROM
programmer

C2xx
assembler
source

Transition

assistant

Assembler
source

Library-build
process

Run-time-
support
library

Executable
object file

Absolute lister

Cross-reference
lister

Object file
utilities

Debugging
tools

Archiver Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com

Invoking the Archiver

7.3

Invoking the Archiver

To invoke the archiver, enter:

‘arZOOO[—]command [options] libname [filename, ... filename,]

ar2000
[FJcommand

options

libname

filenames

is the command that invokes the archiver.

tells the archiver how to manipulate the existing library members and any specified. A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See Example 7-1 for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing
member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

replaces the specified members in the library. If you do not specify filenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all library members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-g (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

names the archive library to be built or modified. If you do not specify an extension for

libname, the archiver uses the default extension .lib.

names individual files to be manipulated. These files can be existing library members or

new files to be added to the library. When you enter a filename, you must enter a

complete filename including extension, if applicable.

Naming Library Members

NOTE: Itis possible (but not desirable) for a library to contain several members with the same
name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

SPRU513K—-October 2016

Archiver Description 161

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Archiver Examples www.ti.com

7.4 Archiver Examples

The following are examples of typical archiver operations:

If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,
enter:

ar2000 -a function sine.obj cos.obj flt.obj
The archiver responds as follows:
==> new archive "function.lib® ==> building new archive "function.lib”
You can print a table of contents of function.lib with the -t command, enter:
ar2000 -t function
The archiver responds as follows:
FILE NAME SIZE DATE

sine.obj 300 Wed Jun 15 10:00:24 2011
cos.obj 300 Wed Jun 15 10:00:30 2011
flt.obj 300 Wed Jun 15 09:59:56 2011

If you want to add new members to the library, enter:
ar2000 -as function atan.obj

The archiver responds as follows:

==> gsymbol defined: "_sin"

==> symbol defined: "_cos”

==> symbol defined: "_tan"

==> gsymbol defined: "_atan

==> building archive "“function.lib"
Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the
archiver to list the global symbols that are defined in the library.)

If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

ar2000 -x macros push.asm

The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

ar2000 -r macros push.asm

If you want to use a command file, specify the command filename after the -@ command. For
example:
ar2000 -@modules.cmd
The archiver responds as follows:
==> building archive "modules.lib*

162

Archiver Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Archiver Examples

Example 7-1 is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is
in the library.

Example 7-1. Archiver Command File

; Command file to replace members of the
modules library with updated files

; Use r command and u option:

ru

; Specify library name:

modules.lib

; List filenames to be replaced if updated:

align.asm

bss.asm

data.asm

text.asm

sect.asm

clink.asm

copy.asm

double.asm

drnolist.asm

emsg.asm

end.asm

7.5 Library Information Archiver Description

Section 7.1 explains how to use the archiver to create libraries of object files for use in the linker of one or
more applications. You can have multiple versions of the same object file libraries, each built with different
sets of build options. For example, you might have different versions of your object file library for big and
little endian, for different architecture revisions, or for different ABIs depending on the typical build
environments of client applications. However, if you have several versions of a library, it can be
cumbersome to keep track of which version of the library needs to be linked in for a particular application.

When several versions of a single library are available, the library information archiver can be used to
create an index library of all of the object file library versions. This index library is used in the linker in
place of a particular version of your object file library. The linker looks at the build options of the
application being linked, and uses the specified index library to determine which version of your object file
library to include in the linker. If one or more compatible libraries were found in the index library, the most
suitable compatible library is linked in for your application.

7.5.1 Invoking the Library Information Archiver
To invoke the library information archiver, enter:

libinfo2000 [options] -o=libname libname, [libname, ... libname,]

libinfo2000 is the command that invokes the library information archiver.
options changes the default behavior of the library information archiver. These options are:
-0 libname specifies the name of the index library to create or update. This option is
required.
-u updates any existing information in the index library specified with the -o
option instead of creating a new index.
libnames names individual object file libraries to be manipulated. When you enter a libname, you

must enter a complete filename including extension, if applicable.

SPRU513K—-October 2016 Archiver Description 163

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Library Information Archiver Description www.ti.com
7.5.2 Library Information Archiver Example
Consider these object file libraries that all have the same members, but are built with different build
options:
Object File Library Name Build Options
mylib_2800_ml.lib (default)
mylib_2800_fpu32.lib --float_support=fpu32
Using the library information archiver, you can create an index library called mylib.lib from the above
libraries:
1ibinfo2000 -o mylib.lib mylib_2800.01ib mylib_2800_fpu32.1lib mylib_2800 ml.lib
You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.
e Example 1:
cl2000 --issue_remarks main.c -z -1 Ink.cmd ./mylib.lib
<Linking>
remark: linking in "mylib_2800.1ib" in place of "mylib._lib"
e Example 2 (with FPU32 support):
cl2000 --float_support=fpu32 --issue_remarks main.c -z -1 Ink.cmd ./mylib.lib
<Linking>
remark: linking in "mylib_2800_fpu32._1ib" in place of "mylib._lib"
7.5.3 Listing the Contents of an Index Library
The archiver's -t option can be used on an index library to list the archives indexed by an index library:
The indexed object file libraries have an additional .libinfo extension in the archiver listing. The
__TI_$3LIBINFO member is a special member that designates mylib.lib as an index library, rather than a
regular library.
If the archiver’'s -d command is used on an index library to delete a .libinfo member, the linker will no
longer choose the corresponding library when the index library is specified.
Using any other archiver option with an index library, or using -d to remove the __TI_$$LIBINFO member,
results in undefined behavior, and is not supported.
7.5.4 Requirements
You must follow these requirements to use library index files:
» At least one application object file must appear on the linker command line before the index library.
» Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.
» The linker expects the index library and all of the libraries it indexes to be in a single directory.
164 Archiver Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 8
I TEXAS SPRU513K—-October 2016

INSTRUMENTS

Linker Description

The TMS320C28x linker creates executable modules by combining object modules. This chapter
describes the linker options, directives, and statements used to create executable modules. Object
libraries, command files, and other key concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 includes a detailed discussion of sections.

Topic Page
8.1 LINKEI OVEIVIEBW ..viiuiuiiuieiniiiaieitiees st et ea s e e s e ea s e e s e e e s e s et s e enreen s e en e anren 166
8.2 The Linker's Role in the Software Development FIOW..........ocveieiiiiiiiiiiieieiieieenen. 167
8.3 INVOKING the LINKEI ..cuiiieieieie et ettt e e e a e e e e e e e nen e nn e e 168
S I T | Q=T G @ o o P 169
8.5 Linker Command FileScuiuieiiiiiii i 187
8.6 LiNKEr SYMbOIS .ouuiiiiiiiiii e e e 229
8.7 Default Placement AlgOorithm ... e 232
8.8 Linker-Generated Copy Tables e 233
8.9 Linker-Generated CRC Tablesouiuiiiiiiiiiiiii it e e e aas 242
8.10 Partial (Incremental) LINKINGcueuiuieieieiiiiie e eea e ra et enenna e eneaes 249
8.11 LiNKING C/CH+ GO . .uiieeiiiiiieit ittt ettt e et e e et e e ta e e e e e e ananenenenes 250
8.12 LiNKer EXAMPIE uiuiiiiiiiiiii ettt et et e et e e 251

SPRU513K-0October 2016 Linker Description 165

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

Linker Overview www.ti.com
8.1 Linker Overview

The TMS320C28x linker allows you to allocate output sections efficiently in the memory map. As the linker

combines object files, it performs the following tasks:

» Allocates sections into the target system's configured memory

» Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address

binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory model that you design. Two powerful directives, MEMORY and

SECTIONS, allow you to:

» Allocate sections into specific areas of memory

» Combine object file sections

» Define or redefine global symbols at link time
166 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com The Linker's Role in the Software Development Flow

8.2 The Linker's Role in the Software Development Flow

Figure 8-1 illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable object module that can be downloaded to one of several development tools or
executed by a TMS320C28x device.

Figure 8-1. The Linker in the TMS320C28x Software Development Flow

C
source
files
L L :
Macro
Sz assermbler
i compiler
files P source
L 1

Assembler Transition
source assistant

Macro Assembler

library SR G source
Object Library-build
files utility
= Debugging

Library of 1 Run-time-
object ; support
files Linker library

Post-link
optimizer

Executable
object file

Hex-conversion
utility

EPROM

Cross-reference f§ Obiject file
programmer lister utilities

Absolute lister

SPRU513K—-October 2016 Linker Description 167

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Invoking the Linker www.ti.com
8.3 Invoking the Linker
The general syntax for invoking the linker is:
¢l2000 --run_linker [options] filename, filename,
¢l2000 --run_linker is the command that invokes the linker. The --run_linker option's short form is
-Z.
options can appear anywhere on the command line or in a linker command file.
(Options are discussed in Section 8.4.)
filename 4, filename can be object files, linker command files, or archive libraries. The default
extension for all input files is .obj; any other extension must be explicitly
specified. The linker can determine whether the input file is an object or ASCII
file that contains linker commands. The default output filename is a.out, unless
you use the --output_file option to name the output file.
There are two methods for invoking the linker:
» Specify options and filenames on the command line. This example links two files, filel.obj and file2.obj,
and creates an output module named link.out.
cl2000 --run_linker filel.obj file2.obj --output_file=link.out
» Put filenames and options in a linker command file. Filenames that are specified inside a linker
command file must begin with a letter. For example, assume the file linker.cmd contains the following
lines:
--output_File=link.out filel.obj file2.obj
Now you can invoke the linker from the command line; specify the command filename as an input file:
cl12000 --run_linker linker.cmd
When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:
cl2000 --run_linker --map_file=link.map linker.cmd file3.obj
The linker reads and processes a command file as soon as it encounters the filename on the
command line, so it links the files in this order: filel.obj, file2.obj, and file3.0bj. This example creates an
output file called link.out and a map file called link.map.
For information on invoking the linker for C/C++ files, see Section 8.11.
168 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

8.4 Linker Options

Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space.

Table 8-1. Basic Options Summary

Option Alias Description Section

--run_linker -z Enables linking Section 8.3

--output_file -0 Names the executable output module. The default filename is a.out. Section 8.4.21

--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 8.4.16
places the listing in filename

--stack_size -stack Sets C system stack size to size words and defines a global symbol that Section 8.4.26
specifies the stack size. Default = 1K words

--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size words and Section 8.4.12
defines a global symbol that specifies the heap size. Default = 1K words

--warn_sections -w Displays a message when an undefined output section is created Section 8.4.30

Table 8-2. File Search Path Options Summary

Option Alias Description Section

--library -l Names an archive library or link command filename as linker input Section 8.4.14

--search_path -i Alters library-search algorithms to look in a directory named with pathname Section 8.4.14.1
before looking in the default location. This option must appear before the --
library option.

--priority -priority Satisfies unresolved references by the first library that contains a definition for ~ Section 8.4.14.3
that symbol

--reread_libs -X Forces rereading of libraries, which resolves back references Section 8.4.14.3

--disable_auto_rts Disables the automatic selection of a run-time-support library Section 8.4.6

Table 8-3. Command File Preprocessing Options Summary

Option Alias Description Section

--define Predefines name as a preprocessor macro. Section 8.4.8

--undefine Removes the preprocessor macro name. Section 8.4.8

--disable_pp Disables preprocessing for command files Section 8.4.8

Table 8-4. Diagnostic Options Summary

Option Alias Description Section

--diag_error Categorizes the diagnostic identified by num as an error Section 8.4.5

--diag_remark Categorizes the diagnostic identified by num as a remark Section 8.4.5

--diag_suppress Suppresses the diagnostic identified by num Section 8.4.5

--diag_warning Categorizes the diagnostic identified by num as a warning Section 8.4.5

--display_error_number Displays a diagnostic's identifiers along with its text Section 8.4.5

--emit_warnings_as_errors -pdew Treats warnings as errors Section 8.4.5

--issue_remarks Issues remarks (nonserious warnings) Section 8.4.5

--no_demangle Disables demangling of symbol names in diagnostics Section 8.4.18

--no_warnings Suppresses warning diagnostics (errors are still issued) Section 8.4.5

--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 8.4.5

errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 8.4.5

SPRU513K-0October 2016
Submit Documentation Feedback

Linker Description 169

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker Options

I

TEXAS
INSTRUMENTS

www.ti.com

Table 8-5. Linker Output Options Summary

Option Alias Description Section
--absolute_exe -a Produces an absolute, executable module. This is the default; if neither -- Section 8.4.3.1
absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe
were specified.
--ecc:data_error Inject the specified errors into the output file for testing Section 8.4.9
Section 8.5.10
--ecc:ecc_error Inject the specified errors into the Error Correcting Code (ECC) for testing Section 8.4.9
Section 8.5.10
--mapfile_contents Controls the information that appears in the map file. Section 8.4.17
--relocatable -r Produces a nonexecutable, relocatable output module Section 8.4.3.2
--rom -r Create a ROM object
--run_abs -abs Produces an absolute listing file Section 8.4.24
--xml_link_info Generates a well-formed XML file containing detailed information about the Section 8.4.31
result of a link
Table 8-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 8.4.10
module
--globalize Changes the symbol linkage to global for symbols that match pattern Section 8.4.15
--hide Hides global symbols that match pattern Section 8.4.13
--localize Changes the symbol linkage to local for symbols that match pattern Section 8.4.15
--make_global -g Makes symbol global (overrides -h)
--make_static -h Makes all global symbols static Section 8.4.15.1
--n0_sym_merge -b Disables merge of symbolic debugging information in COFF object files Section 8.4.19
--no_symtable -S Strips symbol table information and line number entries from the output Section 8.4.20
module
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 8.4.25
--symbol_map Maps symbol references to a symbol definition of a different name Section 8.4.28
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 8.4.29
--unhide Reveals (un-hides) global symbols that match pattern Section 8.4.13
Table 8-7. Run-Time Environment Options Summary
Option Alias Description Section
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 8.4.4
--fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 8.4.11
constant
--ram_model -cr Initializes variables at load time Section 8.4.23
--rom_model -C Autoinitializes variables at run time Section 8.4.23
170 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Linker Options
Table 8-8. Link-Time Optimization Options Summary
Option Alias Description Section
--keep_asm Retain any post-link files (.pl) and .absolute listing files (.abs) generated by the Note @
-plink option. This allows you to view any changes the post-link optimizer
makes. (Requires use of -plink)
--no_postlink_across_calls -nf Disable post-link optimizations across functions. (Requires use of -plink) Note @
--plink_advice_only Annotates assembly code with comments if changes cannot be made safely Note @
due to pipeline considerations, such as when float support or VCU support is
enabled. (Requires use of -plink)
--postlink_exclude -ex Exclude files from post-link pass. (Requires use of -plink) Note @
--postlink_opt -plink Post-link optimizations. (Only after --run_linker or -z) Note @

@ For more information, refer to the Post-Link Optimizer chapter in the TMS320C28x Optimizing C /C++ Compiler v6.0 User's Guide.

Table 8-9. Miscellaneous Options Summary

Option Alias Description Section

--disable_clink - Disables conditional linking of COFF object modules Section 8.4.7

--linker_help -help Displays information about syntax and available options -

--preferred_order Prioritizes placement of functions Section 8.4.22

--strict_compatibility F_Ierforms more conservative and rigorous compatibility checking of input object Section 8.4.27
iles

8.4.1 Wildcards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark
(?) wildcards. Using * matches any number of characters and using ? matches a single character. Using
wildcards can make it easier to handle related objects, provided they follow a suitable naming convention.

For example:

mp3*.obj /* matches anything .obj that begins with mp3 */
task?.o* /* matches taskl.obj, task2.obj, taskX.o55, etc. */

SECTIONS

{
.fast_code: { *.obj(*fast*) } > FAST_MEM

.vectors : { vectors.obj(.vector:partl:*) > OxFFFFFFOO
.str_code : { rts*_lib<str*.obj>(.text) } > S1ROM

}

8.4.2 Specifying C/C++ Symbols with Linker Options

For COFF ABI, the compiler prepends an underscore _ to the beginning of all C/C++ identifiers. That is,
for a function named foo2(), foo2() is prefixed with _ and _foo2 becomes the link-time symbol. For
example, the --localize and --globalize options accept link-time symbols. Thus, you specify --
localize="_foo2' to localize the C function _foo2(). For more information on linknames see the C/C++
Language Implementation chapter in the TMS320C28x Optimizing C/C++ Compiler User's Guide.

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

SPRU513K—-October 2016 Linker Description 171

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes (Section 2.6).

The linker supports two options (--absolute_exe and --relocatable) that allow you to produce an absolute
or a relocatable output module. The linker also supports a third option (-ar) that allows you to produce an
executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable files contain the
following:

» Special symbols defined by the linker (see Section 8.5.11.4)
* An header that describes information such as the program entry point (optional in COFF)
* No unresolved references

The following example links filel.obj and file2.0bj and creates an absolute output module called a.out:
cl2000 --run_linker --absolute_exe filel.obj file2.obj

The --absolute_exe and --relocatable Options

NOTE: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

8.4.3.2 Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module. If the
output module is relocated (at load time) or relinked (by another linker execution), use --relocatable to
retain the relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the --
absolute_exe option. A file that is not executable does not contain special linker symbols or an optional
header. The file can contain unresolved references, but these references do not prevent creation of an
output module.

This example links filel.obj and file2.0bj and creates a relocatable output module called a.out:
cl2000 --run_linker --relocatable filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see Section 8.10.)

8.4.3.3 Producing an Executable, Relocatable Output Module (-ar Option)

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces an
executable, relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links filel.obj and file2.0bj to create an executable, relocatable output module called xr.out:
cl2000 --run_linker -ar filel.obj file2.obj --output_file=xr.out

172

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com

Linker Options

8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

8.4.5

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments
from the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size

The size is the number of bytes to be allocated in target memory for command-line arguments.

By default, the linker creates the __c¢_args__ symbol and sets it to -1. When you specify --arg_size=size,

the following occur:

» The linker creates an uninitialized section named .args of size bytes.
* The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine
whether and how to pass arguments from the host to the target program. See the TMS320C28x
Optimizing C/C++ Compiler User's Guide for information about the loader.

Control Linker Diagnostics

The linker uses certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic
options must be specified before the --run_linker option.

--diag_error=num

--diag_remark=num

--diag_suppress=num

--diag_warning=num

--display_error_number

--emit_warnings_as_
errors

--issue_remarks
--no_warnings
--set_error_limit=num

--verbose_diagnostics

Categorize the diagnostic identified by num as an error. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_error=num to recategorize the diagnostic
as an error. You can only alter the severity of discretionary diagnostics.

Categorize the diagnostic identified by num as a remark. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_remark=num to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

Suppress the diagnostic identified by num. To find the numeric identifier of a
diagnostic message, use the --display_error_number option first in a
separate link. Then use --diag_suppress=num to suppress the diagnostic.
You can only suppress discretionary diagnostics.

Categorize the diagnostic identified by num as a warning. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_warning=num to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Display a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the TMS320C28x Optimizing C/C++ Compiler User's
Guide for more information on understanding diagnostic messages.

Treat all warnings as errors. This option cannot be used with the --
no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.

Issue remarks (nonserious warnings), which are suppressed by default.
Suppress warning diagnostics (errors are still issued).

Set the error limit to num, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provide verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

SPRU513K-0October 2016
Submit Documentation Feedback

Linker Description 173

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.6

8.4.7

8.4.8

Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support (RTS) library. See the
TMS320C28x Optimizing C/C++ Compiler User's Guide for details on the automatic selection process.

Disable Conditional Linking (--disable_clink Option)

The --disable_clink option disables removal of unreferenced sections in COFF object modules. Only
sections marked as candidates for removal with the .clink assembler directive are affected by conditional
linking. See Conditionally Leave Section Out of Object Module Output for details on setting up conditional
linking using the .clink directive.

Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses linker command files using a standard C preprocessor. Therefore, the command
files can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For
example:

cl2000 --define=FO00=1 main.c --run_linker --define=BAR=2 Ink.cmd
The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the
usual way (that is, macros defined in the parent are visible in the child). However, when a command file is
invoked other than through #include, either on the command line or by the typical way of being named in
another command file, preprocessing context is not carried into the nested file. The exception to this is --
define and --undefine options, which apply globally from the point they are encountered. For example:
--define GLOBAL
#define LOCAL

#include "incfile.cmd"” /* sees GLOBAL and LOCAL */
nestfile.cmd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are
subject to macro substitution, probably with unintended consequences. This effect can be defeated by
guoting the symbol name. For example:

--define MYSYM=123

--undefine MYSYM /* expands to --undefine 123 (1) */
--undefine "MYSYM" /* ahh, that"s better */

The linker uses the same search paths to find #include files as it does to find libraries. That is, #include
files are searched in the following places:

1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current file

2. In the list of directories specified with --library options or environment variables (see Section 8.4.14)

There are two exceptions: relative pathnames (such as "../name") always search the current directory; and
absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

174

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

The linker provides the built-in macro definitions listed in Table 8-10. The availability of these macros
within the linker is determined by the command-line options used, not the build attributes of the files being
linked. If these macros are not set as expected, confirm that your project's command line uses the correct
compiler option settings.

Table 8-10. Predefined C28x Macro Names

Macro Name Description

_ _DATE_ _ Expands to the compilation date in the form mmm dd yyyy

_ _FILE_ _ Expands to the current source filename

_ _TI_COMPILER_VERSION_ _ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does

not contain a decimal. For example, version 3.2.1 is represented as 3002001. The
leading zeros are dropped to prevent the number being interpreted as an octal.

__TILEABI_ _ Defined to 1 if EABI is enabled; otherwise, it is undefined.

__TIME_ _ Expands to the compilation time in the form "hh:mm:ss"

_ _TMS320C2000_ _ Defined for all C2000 processors

_ _TMS320C28XX_ _ Defined if target is C28x

_ TMS320C28XX_CLAO__ Defined to 1 if--cla_support=cla0; otherwise it is undefined.

_ TMS320C28XX_CLA1__ Defined to 1 if--cla_support=clal; otherwise it is undefined.

_ _TMS320C28XX_FPU32_ _ Defined to 1 if --float_support=fpu32 is used; otherwise it is undefined.

_ _TMS320C28XX_TMU__ Defined to 1 if --tmu_support is used; otherwise it is undefined.

_ _TMS320C28XX_VCUO0__ Defined to 1 if --vcu_support=vcu0; otherwise it is undefined.

_ TMS320C28XX_VCU2__ Defined to 1 if --vcu_support=vcu2; otherwise it is undefined.
SPRU513K—-October 2016 Linker Description 175

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.9 Error Correcting Code Testing (--ecc Options)

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC
support provided by the linker is compatible with the ECC support in Tl Flash memory on various Tl
devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64
bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-write
memory is handled completely in hardware at run time.)

See Section 8.5.10 for details on linker command file syntax for ECC support.

To test ECC error detection and handling, you can use two command-line options that inject bit errors into
the linked executable. These options let you specify an address where an error should appear and a
bitmask of bits in the code/data at that address to flip. You can specify the address of the error absolutely
or as an offset from a symbol.

When a data error is injected, the ECC parity bits for the data are calculated as if the error were not
present. This simulates bit errors that might actually occur and test ECC's ability to correct different levels
of errors.

The --ecc:data_error option injects errors into the load image at the specified location. The syntax is:
--ecc:data_error=(symbol+offset]|address)[,page],bitmask

The address is the location of the minimum addressable unit where the error is to be injected. A
symbol+offset can be used to specify the location of the error to be injected with a signed offset from that
symbol. The page number is needed to make the location non-ambiguous if the address occurs on
multiple memory pages. The bitmask is a mask of the bits to flip; its width should be the width of an
addressable unit.

For example, the following command line flips the least-significant bit in the byte at the address 0x100,
making it inconsistent with the ECC parity bits for that byte:
cl2000 test.c --ecc:data_error=0x100,0x01 -z -0 test.out

The following command flips two bits in the third byte of the code for main():
cl2000 test.c --ecc:data_error=main+2,0x42 -z -o test.out
The --ecc:ecc_error option injects errors into the ECC parity bits that correspond to the specified

location. Note that the ecc_error option can therefore only specify locations inside ECC input ranges,
whereas the data_error option can also specify errors in the ECC output memory ranges. The syntax is:

--ecc:ecc_error=(symbol+offset|address)[,page],bitmask

The parameters for this option are the same as for --ecc:data_error, except that the bitmask must be
exactly 8 bits. Mirrored copies of the affected ECC byte will also contain the same injected error.

An error injected into an ECC byte with --ecc:ecc_error may cause errors to be detected at run time in any
of the 8 data bytes covered by that ECC byte.

For example, the following command flips every bit in the ECC byte that contains the parity information for
the byte at 0x200:

cl2000 test.c --ecc:ecc_error=0x200,0xff -z -0 test.out

The linker disallows injecting errors into memory ranges that are neither an ECC range nor the input range
for an ECC range. The compiler can only inject errors into initialized sections.

8.4.10 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory, the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

» The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol

176

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

where global_symbol defines the entry point and must be defined as an external symbol of the input
files. The external symbol name of C or C++ objects may be different than the name as declared in the
source language; refer to the TMS320C28x Optimizing C/C++ Compiler User's Guide.

» The value of symbol _c_int0O0 (if present). The _c_int0O0 symbol must be the entry point if you are
linking code produced by the C compiler.

e The value of symbol _main (if present)
* 0 (default value)

This example links filel.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

cl2000 --run_linker --entry_point=begin filel.obj file2.0bj

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.4.11 Set Default Fill Value (--fill_value Option)

The --fill_value option fills the holes formed within output sections. The syntax for the option is:
--fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
cl2000 --run_linker --fill_value=0OxABCDABCD filel.obj file2.obj

8.4.12 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .esysmem for the C run-time memory pool used
by malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The
syntax for the --heap_size option is:

--heap_size= size
The size must be a constant. This example defines a 4K word heap:
cl2000 --run_linker --heap_size=0x1000 /* defines a 4k heap (.esysmem section)*/

The linker creates the .esysmem section only if there is a .esysmem section in an input file.

The linker also creates a global symbol _ SYSMEM_SIZE (COFF) and assigns it a value equal to the size
of the heap. The default size is 1K words. See Section 8.6.1 for information about referring to linker
symbols in C/C++ code. For more about C/C++ linking, see Section 8.11.

8.4.13 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is
used to prevent name space clashes in a link unit, symbol hiding is used to obscure symbols which should
not be visible outside a link unit. Such symbol’'s names appear only as empty strings or “no name” in
object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:
--hide=' pattern’
--unhide=" pattern '

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --hide option hides global symbols with a linkname matching the pattern. It hides symbols matching
the pattern by changing the name to an empty string. A global symbol that is hidden is also localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern
defined by --unhide is more restrictive than the pattern defined by --hide.

SPRU513K—-October 2016 Linker Description 177
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

These options have the following properties:

* The --hide and --unhide options can be specified more than once on the command line.
» The order of --hide and --unhide has no significance.

* A symbol is matched by only one pattern defined by either --hide or --unhide.

« A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

» Itis an error if a symbol matches patterns from --hide and --unhide and one does not supersede the
other. Pattern A supersedes pattern B if A can match everything B can and more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.
In map files these symbols are listed under the Hidden Symbols heading.

8.4.14 Alter the Library Search Algorithm (--library Option, --search_path Option, and

C2000_C_DIR Environment Variable)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib. If
this library defines symbols that are referenced in the file filel.obj, this is how you link the files:

cl2000 --run_linker filel.obj object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The --library
option's short form is -I. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or linker command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Section 8.5.5.5.

You can augment the linker's directory search algorithm by using the --search_path linker option or the
C2000_C_DIR environment variable. The linker searches for object libraries and command files in the
following order:

1. It searches directories named with the --search_path linker option. The --search_path option must
appear before the --library option on the command line or in a command file.

2. It searches directories hamed with C2000_C_DIR.

3. If C2000_C_DIR is not set, it searches directories named with the assembler's C2000_A_DIR
environment variable.

4. It searches the current directory.

8.4.14.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's
short form is -1. The syntax for this option is:

--search_path= pathname
The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through directories
named with --search_path first. Each --search_path option specifies only one directory, but you can have
several --search_path options per invocation. When you use the --search_path option to name an
alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in Id and Id2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment
variable, and how to use both libraries during a link. Select the row for your operating system:

178

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Linker Options

Operating System Enter
cl2000 --run_linker fl.obj f2.obj --search_path=/1d

UNIX (Bourne shell) --search_path=/1d2 --library=r.lib --library=lib2.1lib
cl2000 --run_linker fl.obj f2.obj --search_path=\Ild
Windows --search_path=\1d2 --library=r.lib --library=lib2.1ib

8.4.14.2 Name an Alternate Library Directory (C2000_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named C2000_C_DIR to name alternate directories that contain object libraries. The
command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C2000_C_DIR=" pathname,; pathname,; . . ."; export C2000_C_DIR
Windows set C2000_C_DIR= pathname, ; pathname, ; . ..

The pathnames are directories that contain input files. Use the --library linker option on the command line
or in a command file to tell the linker which library or linker command file to search for. The pathnames
must follow these constraints:

» Pathnames must be separated with a semicolon.
» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:
set C2000_C_DIR= c:\path\one\to\tools ; c:\path\two\to\tools
» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set C2000_C_DIR=c:\first path\to\tools;d:\second path\to\tools
In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and 1d2

directories. The table below shows how to set the environment variable, and how to use both libraries
during a link. Select the row for your operating system:

Operating System Invocation Command

C2000_C_DIR="/1d ;/1d2"; export C2000_C_DIR;
UNIX (Bourne shell) cl2000 --run_linker fl.obj f2.obj --library=r.lib --library=lib2.lib

C2000_C_DIR=\Id;\1d2
Windows cl2000 --run linker fl.obj f2.obj --library=r.lib —--library=lib2.lib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C2000_C DIR
Windows set C2000_C_DIR=

The assembler uses an environment variable named C2000_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If C2000_C_DIR is not set, the linker searches for object
libraries in the directories named with C2000_A_DIR. For information about C2000_A DIR, see
Section 4.4.2. For more information about object libraries, see Section 8.6.2.

SPRU513K—-October 2016 Linker Description 179
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.14.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:
» Reread libraries if you cannot resolve a symbol reference (--reread_libs).
e Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries
until no more references can be resolved. Linking using --reread_libs may be slower, so you should use it
only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the
libraries twice, as in:

cl2000 --run_linker --library=a.lib --library=b.lib --library=a.lib

or you can force the linker to do it for you:
cl2000 --run_linker --reread_libs --library=a.lib --library=b.lib

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For
example:

objfile references A

libl defines B

1ib2 defines A, B; obj defining A references B

% cl2000 --run_linker objfile libl lib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, obijfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rts2800_ml.lib
without providing a full replacement for rts2800_ml.lib. Using --priority and linking your new library before
rts2800_ml.lib guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with SYS/BIOS where situations like the one
illustrated above occur.

8.4.15 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global
symbols in a library which should not be visible outside the library, but must be global because they are
accessed by several modules in the library. The linker supports symbol localization through the --localize
and --globalize linker options.

The syntax for these options are:
--localize="' pattern '
--globalize=' pattern '

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

180

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The --
globalize option only affects symbols that are localized by the --localize option. The --globalize option
excludes symbols that match the pattern from symbol localization, provided the pattern defined by --
globalize is more restrictive than the pattern defined by --localize.

See Section 8.4.2 for information about using C/C++ identifiers in linker options such as --localize and --
globalize.

These options have the following properties:

* The --localize and --globalize options can be specified more than once on the command line.

» The order of --localize and --globalize options has no significance.

* A symbol is matched by only one pattern defined by either --localize or --globalize.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

« ltis an error if a symbol matches patterns from --localize and --globalize and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

* These options affect final and partial linking.
In map files these symbols are listed under the Localized Symbols heading.

8.4.15.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
filel.obj and file2.0bj both define global symbols called EXT. By using the --make_static option, you can
link these files without conflict. The symbol EXT defined in filel.obj is treated separately from the symbol
EXT defined in file2.0bj.

cl2000 --run_linker --make_static filel.obj file2.obj
The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol

to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

SPRU513K—-October 2016 Linker Description 181

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.16 Create a Map File (--map_file Option)

The syntax for the --map_file option is:

--map_file= filename

The linker map describes:

Memory configuration

Input and output section allocation

Linker-generated copy tables

The addresses of external symbols after they have been relocated
Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the linker command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

specifies that the memory can be read.

specifies that the memory can be written to.

specifies that the memory can contain executable code.
specifies that the memory can be initialized.

- xXs®D

For more information about the MEMORY directive, see Section 8.5.4.

A table showing the linked addresses of each output section and the input sections that make up the
output sections (section placement map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the linker command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 8.5.5.
A table showing each external symbol and its address sorted by symbol name.
A table showing each external symbol and its address sorted by symbol address.

The following example links filel.obj and file2.obj and creates a map file called map.out:
cl2000 --run_linker filel.obj file2.obj --map_file=map.out

Example 8-34 shows an example of a map file.

182 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.17 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax
for the --mapfile_contents option is:

--mapfile_contents= filter[, filter]

When the --map_file option is specified, the linker produces a map file containing information about
memory usage, placement information about sections that were created during a link, details about linker-
generated copy tables, and symbol values.

The --mapfile_contents option provides a mechanism for you to control what information is included in or
excluded from a map file. When you specify --mapfile_contents=help from the command line, a help
screen listing available filter options is displayed. The following filter options are available:

Attribute Description Default State
crctables CRC tables On
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
modules Module view On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes

none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:
--mapfile_contents=copytables,noentry

--mapfile_contents=all,nocopytables

--mapfile_contents=none,entry

By default, those sections that are currently included in the map file when the --map_file option is specified
are included. The filters specified in the --mapfile_contents options are processed in the order that they
appear in the command line. In the third example above, the first filter, none, clears all map file content.
The second filter, entry, then enables information about entry points to be included in the generated map
file. That is, when --mapfile_contents=none,entry is specified, the map file contains only information about
entry points.

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are included in
the symbol list in addition to the run address (if the load address is different from the run address).

You can use the sym_defs filter to include information sorted on a file by file basis. You may find it useful
to replace the sym_name, sym_dp, and sym_runaddr sections of the map file with the sym_defs section
by specifying the following --mapfile_contents option:
--mapfile_contents=nosym_name,nosym_dp,nosym_runaddr,sym_defs

By default, information about global symbols defined in an application are included in tables sorted by

name, data page, and run address. If you use the --mapfile_contents=sym_defs option, static variables
are also listed.

SPRU513K—-October 2016 Linker Description 183

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.18 Disable Name Demangling (--no_demangle)
By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.obj

The --no_demangle option disables the demangling of symbol names in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.obj

8.4.19 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:
-[header.h]-

typedef struct
{

<define some structure members>
Y XYZ;

-[f1.c 1-
#include "header.h"

-[f2.c 1-
#include ""header.h"

When these files are compiled for debugging, both f1.0bj and f2.0bj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

Use the COFF only --no_sym_merge option if you want the linker to keep such duplicate entries in COFF
object files. Using the --no_sym_merge option has the effect of the linker running faster and using less
host memory during linking, but the resulting executable file may be very large due to duplicated debug
information.

8.4.20 Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links filel.obj and file2.obj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

cl2000 --run_linker --output_file=nosym.out --no_symtable filel.obj file2.obj

Using the --no_symtable option limits later use of a symbolic debugger.

Stripping Symbolic Information

NOTE: The --no_symtable option is deprecated. To remove symbol table information, use the
strip2000 utility as described in Section 11.4.

184 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.21 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links filel.obj and file2.obj and creates an output module named run.out:
cl2000 --run_linker --output_file=run.out filel.obj file2.obj

8.4.22 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Refer to the for details on the program cache layout tool, which is impacted by --preferred_option.

8.4.23 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are required by
the C compiler.

» The --ram_model option tells the linker to initialize variables at load time.
» The --rom_model option tells the linker to autoinitialize variables at run time.

For more information, see Section 8.11, Section 3.3.2.1, and Section 3.3.2.2.

8.4.24 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file linked. These files are named with the input
filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs file.

8.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols
defined in COMDAT sections. The --scan_libraries option helps determine those symbols that were
actually chosen by the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to
a definition when multiple definitions are available in the libraries.

8.4.26 Define Stack Size (--stack_size Option)

The TMS320C28x C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time
stack. You can set the size of this section in words at link time with the --stack_size option. The syntax for
the --stack_size option is:

--stack_size= size
The size must be a constant and is in words. This example defines a 4K word stack:
cl2000 --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, _ STACK_SIZE (COFF), and
assigns it a value equal to the size of the section. The default software stack size is 1K words. See
Section 8.6.1 for information about referring to linker symbols in C/C++ code.

SPRU513K—-October 2016 Linker Description 185

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.27 Enforce Strict Compatibility (--strict_compatibility Option)

The linker performs more conservative and rigorous compatibility checking of input object files when you
specify the --strict_compatibility option. Using this option guards against additional potential compatibility
issues, but may signal false compatibility errors when linking in object files built with an older toolset, or
with object files built with another compiler vendor's toolset. To avoid issues with legacy libraries, the --
strict_compatibility option is turned off by default.

8.4.28 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the -
-symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition
foo_patch:

--symbol_map="foo=foo_patch*

The --symbol_map option is now supported even if --opt_level=4 was used when compiling.

8.4.29 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table.
This forces the linker to search a library and include the member that defines the symbol. The linker must
encounter the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rts2800_ml.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output
module and you want to include the library member that defines symtab in this link. Using the --undef_sym
option as shown below forces the linker to search rts2800_ml.lib for the member that defines symtab and
to link in the member.

cl2000 --run_linker --undef_sym=symtab filel.obj file2.obj rts2800_ml.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
filel.obj or file2.obj.

8.4.30 Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a linker command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Section 8.5.5. For more information about the
default actions of the linker, see Section 8.7.

8.4.31 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker generated map file. See Appendix B for specifics on the contents of the generated XML file.

186

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5

Linker Command Files

Linker command files allow you to put linker options and directives in a file; this is useful when you invoke
the linker often with the same options and directives. Linker command files are also useful because they
allow you to use the MEMORY and SECTIONS directives to customize your application. You must use
these directives in a command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

« Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

» Linker options, which can be used in the command file in the same manner that they are used on the
command line

 The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 8.5.4). The SECTIONS directive controls how sections are built and
allocated (see Section 8.5.5.)

» Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the cl2000 --run_linker command and follow it with the
name of the command file:

¢l2000 --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

Example 8-1 shows a sample linker command file called link.cmd.

Example 8-1. Linker Command File

a.obj
b.obj

/* First input filename */
/* Second input filename */

--output_file=prog.out /* Option to specify output file */
--map_TFile=prog.map /* Option to specify map file */

The sample file in Example 8-1 contains only flenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

cl2000 --run_linker link.cmd

You can place other parameters on the command line when you use a command file:
cl2000 --run_linker --relocatable link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called hames.Ist that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:

cl2000 --run_linker names.lIst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command
file calls another command file as input, this statement must be the last statement in the calling command
file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the
format of linker directives in a command file. Example 8-2 shows a sample command file that contains
linker directives.

SPRU513K—-October 2016 Linker Description 187
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Example 8-2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */
--output_file=prog.out /* Options */
--map_Tile=prog.map

MEMORY /* MEMORY directive */
FAST_MEM: origin = 0x0100 length = 0x0100
SLOW_MEM: origin = 0x7000 length = 0x1000

}

SECTIONS /* SECTIONS directive */

{

-text: > SLOW_MEM

.data: > SLOW_MEM

.ebss: > FAST_MEM
3

For more information, see Section 8.5.4 for the MEMORY directive, and Section 8.5.5 for the SECTIONS
directive.

8.5.1 Reserved Names in Linker Command Files

The following names (in both uppercase and lowercase) are reserved as keywords for linker directives. Do
not use them as symbol or section names in a command file.

ADDRESS_MASK END LENGTH ORG SIZE
ALGORITHM f LOAD ORIGIN START
ALIGN FILL LOAD_END PAGE TABLE

ATTR GROUP LOAD_SIZE PALIGN TYPE

BLOCK HAMMING_MASK LOAD_START PARITY_MASK UNION
COMPRESSION HIGH MEMORY RUN UNORDERED
COPY INPUT_PAGE MIRRORING RUN_END VFILL
CRC_TABLE INPUT_RANGE NOINIT RUN_SIZE

DSECT | (lowercase L) NOLOAD RUN_START

ECC LEN o] SECTIONS

In addition, any section names used by the Tl tools are reserved from being used as the prefix for other
names, unless the section will be a subsection of the section name used by the Tl tools. For example,
section names may not begin with .debug.

8.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants (but not binary constants) used in the assembler (see Section 4.6) or the
scheme used for integer constants in C syntax.

Examples:
Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20
188 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.3 Accessing Files and Libraries from a Linker Command File

Many applications use custom linker command files (or LCFs) to control the placement of code and data in
target memory. For example, you may want to place a specific data object from a specific file into a
specific location in target memory. This is simple to do using the available LCF syntax to reference the
desired object file or library. However, a problem that many developers run into when they try to do this is
a linker generated "file not found" error when accessing an object file or library from inside the LCF that
has been specified earlier in the command-line invocation of the linker. Most often, this error occurs
because the syntax used to access the file on the linker command-line does not match the syntax that is
used to access the same file in the LCF.

Consider a simple example. Imagine that you have an application that requires a table of constants called
"app_coeffs" to be defined in a memory area called "DDR". Assume also that the "app_coeffs" data object
is defined in a .data section that resides in an object file, app_coeffs.obj. app_coeffs.obj is then included in
the object file library app_data.lib. In your LCF, you can control the placement of the "app_coeffs" data
object as follows:

SECTIONS
{

.coeffs: { app_data.lib<app_coeffs.obj>(.data) } > DDR

}

Now assume that the app_data.lib object library resides in a sub-directory called "lib" relative to where you
are building the application. In order to gain access to app_data.lib from the build command-line, you can
use a combination of the —i and —I options to set up a directory search path which the linker can use to
find the app_data.lib library:

%> cl2000 <compile options/files> -z -i ./lib -1 app_data.lib mylnk.cmd <link options/files>

The —i option adds the lib sub-directory to the directory search path and the —I option instructs the linker to
look through the directories in the directory search path to find the app_data.lib library. However, if you do
not update the reference to app_data.lib in mylnk.cmd, the linker will fail to find the app_data.lib library and
generate a "file not found" error. The reason is that when the linker encounters the reference to
app_data.lib inside the SECTIONS directive, there is no —| option preceding the reference. Therefore, the
linker tries to open app_data.lib in the current working directory.

In essence, the linker has a few different ways of opening files:

» If there is a path specified, the linker will look for the file in the specified location. For an absolute path,
the linker will try to open the file in the specified directory. For a relative path, the linker will follow the
specified path starting from the current working directory and try to open the file at that location.

» If there is no path specified, the linker will try to open the file in the current working directory.

» If a -l option precedes the file reference, then the linker will try to find and open the referenced file in
one of the directories in the directory search path. The directory search path is set up via —i options
and environment variables (like C_DIR and C6X_C_DIR).

As long as a file is referenced in a consistent manner on the command line and throughout any applicable
LCFs, the linker will be able to find and open your object files and libraries.

Returning to the earlier example, you can insert a —I option in front of the reference to app_data.lib in
mylnk.cmd to ensure that the linker will find and open the app_data.lib library when the application is built:

SECTIONS
{

.coeffs: { -1 app_data.lib<app_coeffs.obj>(.data) } > DDR

}

Another benefit to using the —| option when referencing a file from within an LCF is that if the location of
the referenced file changes, you can modify the directory search path to incorporate the new location of
the file (using —i option on the command line, for example) without having to modify the LCF.

SPRU513K—-October 2016 Linker Description 189

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.4 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of TMS320C28x systems differ from application to application. The MEMORY
directive allows you to specify a variety of configurations. After you use MEMORY to define a memory
model, you can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.4.

8.5.4.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
TMS320C28x architecture. For more information about the default memory model, see Section 8.7.

8.5.4.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Page

* Name

e Starting address
* Length

» Optional set of attributes
e Optional fill specification

TMS320C28x devices have separate memory spaces (pages) that occupy the same address ranges
(overlay). In the default memory map, one space is dedicated to the program area, while a second is
dedicated to the data area. (For detailed information about overlaying pages, see Section 8.5.5.2.7.)

In the linker command file, you configure the address spaces separately by using the MEMORY directive's
PAGE option. The linker treats each page as a separate memory space. The TMS320C28x supports up to
255 address spaces, but the number of address spaces available depends on the customized
configuration of your device (see the TMS320C2xx User's Guide for more information.)

When you use the MEMORY directive, be sure to identify all memory ranges that are available for the
program to access at run time. Memory defined by the MEMORY directive is configured; any memory that
you do not explicitly account for with MEMORY is unconfigured. The linker does not place any part of a
program into unconfigured memory. You can represent nonexistent memory spaces by simply not
including an address range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in Example 8-3 defines a
system that has 4K words of slow external memory at address 0x0000 0COO in program memory, 32
words of fast external memory at address 0x0000 0060 in data memory, and 512 words of slow external
memory at address 0x0000 0200 in data memory. It also demonstrates the use of memory range
expressions as well as start/end/size address operators (see Example 8-4).

190 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Linker Command Files

Example 8-3. The MEMORY Directive

/ /
/* Sample command file with MEMORY directive */
/ /
filel.obj file2.0obj /* Input files */
--output_file=prog.out /* Options */

#define BUFFER O

MEMORY

PAGE O:

PAGE 1:

PROG:

SCRATCH: origin

RAM1:

0x00000C00, length = 0x00001000 + BUFFER

origin

0x00000060, length = 0x00000020
end(SCRATCH,1) + 0x00000180, length = 0x00000200

origin

The general syntax for the MEMORY directive is:
MEMORY

{

[PAGE 0:] name 1 [(attr)] : origin = expression , length = expression [, fill = constant]
[PAGE 1:] name 2 [(attr)] : origin = expression , length = expression [, fill = constant];

[PAGE n:] name n [(attr)] : origin = expression , length = expression [, fill = constant]

PAGE

name

attr

origin

length

identifies a memory space. You can specify up to 32 767 pages. Usually, PAGE 0 specifies
program memory, and PAGE 1 specifies data memory. Each PAGE represents a
completely independent address space. Configured memory on PAGE 0 can overlap
configured memory on PAGE 1 and so on. If you do not specify PAGE for a memory
space, the linker defaults to PAGE 0. If you do not specify PAGE in your allocation (see
Section 8.5.5), the linker allocates initialized sections to PAGE 0 and uninitialized sections
to PAGE 1.

names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is a 32-bit integer constant expression, which can be decimal, octal, or
hexadecimal.

specifies the length of a memory range; enter as length, len, or I. The value, specified in
bytes, is a 22-bit integer constant expression, which can be decimal, octal, or hexadecimal.

SPRU513K—-October 2016 Linker Description 191
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Linker Command Files www.ti.com
fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value

is an integer constant and can be decimal, octal, or hexadecimal. The fill value is used to
fill areas of the memory range that are not allocated to a section. (See Section 8.5.10.3 for
virtual filling of memory ranges when using Error Correcting Code (ECC).)

Filling Memory Ranges

NOTE: If you specify fill values for large memory ranges, your output file will be very large because
filing a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY
{

}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control placement
of output sections. For more information about the SECTIONS directive, see Section 8.5.5.

RFILE (RW) : o = 0x00000020, I = 0x00001000, f = OXFFFFFFFF

Figure 8-2 illustrates the memory map shown in Example 8-3

Figure 8-2. Memory Map Defined in Example 8-3

Page 0 Page 1
0x0000 0000 0x0000 0000
0x0000 0060 SCRATCH
0x0000 007F
0x0000 0080
0x0000 0200
RAMA1
0x0000 03FF
0x0000 0400
0x0000 0CO00
PROG
0x0000 1BFF
0x0000 1C00
0x0000 FFFF 0x0000 FFFF
192 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.4.3 Expressions and Address Operators
Memory range origin and length can use expressions of integer constants with the following operators:
Binary operators: * | % 4+ - << >> == =
<<= >>= & | && ||
Unary operators: -~

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer
type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot
be used in Memory Directive expressions.

Three address operators reference memory range properties from prior memory range entries:

START(MR[,PAGE]) Returns start address for previously defined memory range MR.
SIZE(MR[,PAGE]) Returns size of previously defined memory range MR.
END(MR[,PAGE]) Returns end address for previously defined memory range MR.

NOTE: If no PAGE information is input then PAGE=0.

Example 8-4. Origin and Length as Expressions

/ /
/* Sample command file with MEMORY directive */
/ /
filel.obj file2.obj /* Input Ffiles */
--output_file=prog.out /* Options */

#define ORIGIN 0x00000000
#define BUFFER 0x00000200
#define CACHE 0x0001000

MEMORY
{

0x00001000 + BUFFER
0x00001800 - size(FAST_MEM)
size(FAST_MEM) - CACHE

PAGE 1: FAST_MEM (RX): origin
PAGE 0: SLOW_MEM (RW): origin
PAGE 0: EXT_MEM (RX): origin

ORIGIN + CACHE length
end(FAST_MEM) length
0x03000000 length

SPRU513K—-October 2016 Linker Description 193

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5 The SECTIONS Directive

After you use MEMORY to specify the target system’'s memory model, you can use SECTIONS to allocate
output sections into specific named memory ranges or into memory that has specific attributes. For
example, you could allocate the .text and .data sections into the area named RAM1 and allocate the .ebss
section into the area named PROG.

The SECTIONS directive controls your sections in the following ways:

Describes how input sections are combined into output sections
Defines output sections in the executable program

Allows you to control where output sections are placed in memory in relation to each other and to the
entire memory space (Note that the memory placement order is not simply the sequence in which
sections occur in the SECTIONS directive.)

Permits renaming of output sections

For more information, see Section 2.4, Section 2.6, and Section 2.3.6. Subsections allow you to
manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Section 8.7 describes this algorithm in detail.

8.5.5.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

name : [property [, property] [, property] . ..]

name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

194

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

www.ti.com

I

TEXAS
INSTRUMENTS

Linker Command Files

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) Section names can refer to sections, subsections, or archive library members. (See
Section 8.5.5.4 for information on multi-level subsections.) After the section name is a list of properties
that define the section's contents and how the section is allocated. The properties can be separated by
optional commas. Possible properties for a section are as follows:

Load allocation defines where in memory the section is to be loaded. See Section 3.5,
Section 3.1.1, and Section 8.5.6.

Syntax: load = allocation or
> allocation

Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

Input sections defines the input sections (object files) that constitute the output section. See
Section 8.5.5.3.

Syntax: { input_sections }

Section type defines flags for special section types. See Section 8.5.9.
Syntax: type = COPY or

type = DSECT or

type = NOLOAD

Fill value defines the value used to fill uninitialized holes. See Section 8.5.12.
Syntax: fill = value

Example 8-5 shows a SECTIONS directive in a sample linker command file.

Example 8-5. The SECTIONS Directive

/ /
/* Sample command file with SECTIONS directive */
/ /
filel.obj file2.0obj /* Input files */
--output_Tfile=prog.out /* Options */
SECTIONS
{
-text: load = PROG, PAGE = O,
run = 0x0200, PAGE = 1
.econst: load = RAM1
.ebss: load = RAM1
.scratch: load = 0x0060, PAGE =1
{
tl.obj(-scratchl)
t2_obj(-scratch2)
endscratch = .;
3
.data:alpha: align = 16
.data:beta: align = 16
3
SPRU513K-0October 2016 Linker Description 195

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker Command Files

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 8-3 shows the output sections defined by the SECTIONS directive in Example 8-5 (.vectors, .text,
.econst, .ebss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory using
the MEMORY directive given in Example 8-3.

0x0000 0C00

0x0000 1BFF
0x0000 1C00

0x0000 FFFF

0x0000 0060

0x0000 007F

0x0000 0080

0x0000 0200

0x0000 03FF
0x0000 0400

0x0000 FFFF

Figure 8-3. Section Placement Defined by Example 8-5

Page 0
PROG
text - Allocated in PROG
Page 1
SCRATCH - Bound at
0x0000 0060
.scraich
RAMA1
.econst - Allocated in RAM1
.ebss - Allocated in RAM1
.data:alpha - Aligned on 16-byte
boundary
.data:beta - Aligned on 16-byte

boundary

The .text section combines the .text sections from
file1.obj and file2.0bj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x0000 0200.

The .scratch section is composed of the .scratch1
section from t1.obj and the .scratch2 section from
t2.0bj sections from file1.0bj and file2.obj.

The .econst section combines the .econst
sections from file1.obj and file2.obj.

The .ebss section combines the .ebss sections
from file1.obj and file2.obj.

The .data:alpha subsection combines the
.data:alpha sections from file1.obj and file2.obj.
The .data:beta section combines the .data:beta
sections from file1.obj and file2.0bj. The linker
places the subsections anywhere there is space
for them (RAM1 in this example) and aligns
each to a 16-byte boundary.

196 Linker Description

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.2 Section Allocation and Placement

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called placement. For more information about using separate load and
run placement, see Section 8.5.6.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to place the section.
Generally, the linker puts sections wherever they fit into configured memory. You can override this default
placement for a section by defining it within a SECTIONS directive and providing instructions on how to
allocate it.

You control placement by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run placement are separate, all parameters following the keyword LOAD apply to load
placement, and those following the keyword RUN apply to run placement. The allocation parameters are:

Binding allocates a section at a specific address.
-text: load = 0x1000
Named allocates the section into a range defined in the MEMORY directive with the specified

memory name (like SLOW_MEM) or attributes.
-text: load > SLOW_MEM

Alighment uses the align or palign keyword to specify the section must start on an address boundary.
-text: align = 0x100

Blocking uses the block keyword to specify the section must fit between two address aligned to the

blocking factor. If a section is too large, it starts on an address boundary.
-text: block(0x100)

Page specifies the memory page to be used (see Section 8.5.8). If PAGE is not specified, the
linker allocates initialized sections to PAGE 0 (program memory) and uninitialized sections

to PAGE 1 (data memory).
.text: load = SLOW_MEM PAGE 1

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:
.text: > SLOW_MEM
.text: {...} > SLOW_MEM
.text: > 0x4000
If more than one parameter is used, you can string them together as follows:
.text: > SLOW_MEM align 16 PAGE 2

Or if you prefer, use parentheses for readability:
.text: load = (SLOW_MEM align(16)) page 2

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Section 8.5.5.3.

Additional information about controlling the order in which code and data are placed in memory is provided
in the FAQ topic on section placement.

SPRU513K—-October 2016 Linker Description 197

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5.2.1 Example: Placing Functions in RAM

The --ramfunc compiler option and ramfunc function attribute allow the compiler to specify that a function
is to be placed in and executed from RAM. Most newer Tl linker command files support the ramfunc
option and function attribute by placing such functions in the .Tl.ramfunc section. If you see a linker error
related to this section, you should add the .Tl.ramfunc section to your SECTIONS directive as follows. In
these examples, RAM and FLASH are names of MEMORY regions for RAM and Flash memory; the
names may be different in your linker command file.

For RAM-based devices:

-Tl.ramfunc : {3 > RAM

For Flash-based devices:
.Tl.ramfunc : {} load=FLASH, run=RAM, table(BINIT)

See the Placing functions in RAM wiki page for details.

8.5.5.2.2 Binding

You can set the starting address for an output section by following the section name with an address:
-text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 22-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

NOTE: You cannot bind a section to an address if you use alignment or named memory. If you try to
do this, the linker issues an error message.

8.5.5.2.3 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Section 8.5.4). This example names ranges and links sections into them:

MEMORY
{
SLOW_MEM (RIX) : origin = 0x00000000, length = 0x00001000
FAST_MEM (RWIX) : origin = 0x03000000, Ilength = 0x00000300
b
SECTIONS
{
-text : > SLOW_MEM
.data : > FAST_MEM ALIGN(128)
.ebss : > FAST_MEM
3

In this example, the linker places .text into the area called SLOW_MEM. The .data and .ebss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTIONS
{
.text: > (X) /* .text --> executable memory */
.data: > (RI) /* .data --> read or init memory */
.ebss: > (RW) /* .ebss --> read or write memory */
}
198 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://processors.wiki.ti.com/index.php/Placing_functions_in_RAM

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .ebss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration. You might use
the HIGH location specifier in order to keep RTS code separate from application code, so that small
changes in the application do not cause large changes to the memory map.

For example, given this MEMORY directive:

MEMORY

{
RAM : origin = 0x0200, length = 0x0800
FLASH : origin = 0x1100, length = OXEEEO
VECTORS : origin = OxFFEO, length = Ox001lE
RESET : origin = OXFFFE, length = 0x0002

}

and an accompanying SECTIONS directive:

SECTIONS

{
-ebss : {3 > RAM
.esysmem : {} > RAM
.stack : {3 > RAM (HIGH)

}

SPRU513K-0October 2016 Linker Description 199

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker Command Files

13 TEXAS
INSTRUMENTS

www.ti.com

The HIGH specifier used on the .stack section placement causes the linker to attempt to allocate .stack
into the higher addresses within the RAM memory range. The .ebss and .esysmem sections are allocated
into the lower addresses within RAM. Example 8-6 illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

Example 8-6. Linker Placement With the HIGH Specifier

00000200
00000200
0000031a
000003a2
0000041a
00000460
00000468
0000046¢
0000046e

.ebss 0

00000470
00000470

.esysmem 0

000008c0
000008c0

.stack 0

00000270
0000011a
00000088
00000078
00000046
00000008
00000004
00000002
00000002

00000120
00000004

00000140
00000002

UNINITIALIZED
rtsxxx.lib

: defs.obj (-ebss)
: trgdrv.obj

(-ebss)

lowlev.obj (.ebss)

: exit.obj (-ebss)

> memory.obj

hello.obj (.e

UNINITIALIZED
rtsxxx .lib :

UNINITIALIZED
rtsxxx .lib :

(-ebss)
lock.obj (.ebss)

?open.obj (.ebss)

bss)

memory.obj (.esysmem)

boot.obj (.stack)

As shown in Example 8-6 , the .ebss and .esysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses

are available.

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 8-7

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>

operator).

Example 8-7. Linker Placement Without HIGH Specifier

00000200
00000200
0000031a
000003a2
0000041a
00000460
00000468
0000046¢
0000046e

.ebss 0

.stack 0 00000470

00000470

000005b0
000005b0

-esysmem 0

00000270
0000011a
00000088
00000078
00000046
00000008
00000004
00000002
00000002

00000140
00000002

00000120
00000004

UNINITIALIZED
rtsxxx.lib

: defs.obj (.ebss)
: trgdrv.obj

(-ebss)

lowlev.obj (.ebss)

: exit.obj (.ebss)

: memory.obj

hello.obj (.e

UNINITIALIZED
rtsxxx. lib

UNINITIALIZED
rtsxxx. lib

(-ebss)
lock.obj (.ebss)

?open.obj (-ebss)

bss)

: boot.obj (.stack)

: memory.obj (.esysmem)

200 Linker Description

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.2.5 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls
on a 32-byte boundary:

.text: load = align(32)
Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The

specified block size must be a power of 2. For example, the following code allocates .ebss so that the
entire section is contained in a single 128-byte page or begins on that boundary:

ebss: load = block(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

8.5.5.2.6 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size
of the section is a multiple of its placement alignment restrictions, padding the section size up to such a
boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

-text: palign(2) {} > PMEM

-text: palign = 2 {3 > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By
default, padding space is filled with a value of 0 (zero). However, if a fill value is specified for the output
section then any padding for the section is also filled with that fill value. For example, consider the
following section specification:

-mytext: palign(8), Ffill = Oxffff {} > PMEM

In this example, the length of the .mytext section is 3 16-bit bytes before the palign operator is applied.
The contents of .mytext are as follows:

addr content
0001 0x1234
0002 0x1234
0003 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:
addr content

0001 0x1234
0002 0x1234
0003 0x1234
0004 OxfFfff
0005 OXFfff
0006 OxFfff
0007 OxFfff

SPRU513K—-October 2016 Linker Description 201
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has
been filled with Oxff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify this
code:

-.mytext: palign(8), fill = Oxff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:
addr content

0001 0x1234
0002 0x1234
0003 0x1234
0004 OxOOff
0005 OxO00fF
0006 OxOO0fF
0007 OxOOff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that
power of 2 as well. For example, consider the following section specification:

-.mytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the palign(power2) operator, the .mytext output section will have the following properties:

name addr size align

-mytext 0x00010080 0x80 128

202

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files
8.5.5.2.7 Using the Page Method

Using the page method of specifying an address, you can allocate a section into an address space that is
named in the MEMORY directive. For example:

MEMORY
{
PAGE O : PROG : origin = 0x00000800, length = 0x00240
PAGE 1 : DATA : origin = 0x00000A00, length = 0x02200
PAGE 1 : OVR_MEM : origin = 0x00002D0O0, length = 0x01000
PAGE 2 : DATA : origin = 0x00000A00, length = 0x02200
PAGE 2 : OVR_MEM : origin = 0x00002D00, length = 0x01000
b
SECTIONS
{
-text: PAGE = 0O
.data: PAGE = 2
.cinit: PAGE =0
.ebss: PAGE = 1
3

In this example, the .text and .cinit sections are allocated to PAGE 0. They are placed anywhere within the
bounds of PAGE 0. The .data section is allocated anywhere within the bounds of PAGE 2. The .ebss
section is allocated anywhere within the bounds of PAGE 1.

You can use the page method in conjunction with any of the other methods to restrict an allocation to a
specific address space. For example:

-text: load = OVR_MEM PAGE 1

In this example, the .text section is allocated to the named memory range OVR_MEM. There are two
named memory ranges called OVR_MEM, however, so you must specify which one is to be used. By
adding PAGE 1, you specify the use of the OVR_MEM memory range in address space PAGE 1 rather
than in address space PAGE 2. If no PAGE is specified for a section, the linker allocates initialized
sections to PAGE 0 and uninitialized sections to PAGE 1.

8.5.5.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:

» All aligned sections, from largest to smallest
« All blocked sections, from largest to smallest
» All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.

Example 8-8 shows the most common type of section specification; note that no input sections are listed.

Example 8-8. The Most Common Method of Specifying Section Contents

SECTIONS
{
.text:
.data:
.ebss:
3

In Example 8-8, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .ebss sections. You can use this type
of specification for any output section.

SPRU513K—-October 2016 Linker Description 203

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name. If the filename is hyphenated (or contains special characters), enclose it
within quotes:

SECTIONS
{
-text : /* Build .text output section */
{
fl.obj(-text) /* Link _text section from fl.obj */
f2.obj(secl) /* Link secl section from f2.obj */
"f3-new.obj" /* Link ALL sections from f3-new.obj */
T4 _obj(.text,sec2) /* Link .text and sec2 from f4.obj */
b
3

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after f4.obj(sec2).

The specifications in Example 8-8 are actually a shorthand method for the following:

SECTIONS

{
text: { *(.text) }
.data: { *(.data) }
.ebss: { *(.ebss) }

}

The specification *(.text) means the unallocated .text sections from all input files. This format is useful if:

* You want the output section to contain all input sections that have a specified name, but the output
section name is different from the input sections' name.

* You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

The following example illustrates the two purposes above:

SECTIONS
{
.text @ {
abc.obj(xqt)
*(.text)
b
.data : {
*(.data)
fil._obj(table)
3
b

In this example, the .text output section contains a named section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a hamed
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

Each input section acts as a prefix and gathers longer-named sections. For example, the pattern *(.data)
matches .dataspecial. This mechanism enables the use of subsections, which are described in the
following section.

204

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated

by colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a

linker command file specifying a base name, such as A, selects the section A as well as any subsections

of A, such as A:B or A:C:D.
A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections

beginning with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also subsections of

A. A and A:B are supersections of A:B:C. Among a group of supersections of a subsection, the nearest
supersection is the supersection with the longest name. Thus, among {A, A:B} the nearest supersection
A:B:C:D is A:B. With multiple levels of subsections, the constraints are the following:

of

1. When specifying input sections within a file (or library unit) the section name selects an input section

of the same name and any subsections of that name.
2. Input sections that are not explicitly allocated are allocated in an existing output section of the same

name or in the nearest existing supersection of such an output section. An exception to this rule is that

during a partial link (specified by the --relocatable linker option) a subsection is allocated only to an
existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output

section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS {
nordic: {*(europe:north)
(europe:central :denmark)} / the nordic countries */

central: {*(europe:central)} /* france, germany */
therest: {*(europe)} /* spain, italy, malta */
3
This SECTIONS specification allocates the input sections as indicated in the comments:
SECTIONS {
islands: {*(europe:south:malta)
(europe:north:iceland)} / malta, iceland */
europe:north:finland : {} /* finland */
europe:north {3 /* norway, sweden */
europe:central O /* germany, denmark */
europe:central:france: {} /* france */
/* (italy, spain) go into a linker-generated output section "europe" */
3

Upward Compatibility of Multi-Level Subsections

NOTE: Existing linker commands that use the existing single-level subsection features and which do
not contain section hames containing multiple colon characters continue to behave as
before. However, if section names in a linker command file or in the input sections supplied
to the linker contain multiple colon characters, some change in behavior could be possible.
You should carefully consider the impact of the rules for multiple levels to see if it affects a
particular system link.

SPRU513K-0October 2016 Linker Description

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

205

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

Example 8-9. Archive Members to Output Sections

SECTIONS
{
boot > BOOT1
¢ --library=rtsxX.lib<boot.obj> (.text)
—-library=rtsXX.lib<exit.obj strcpy.obj> (.text)
}
.rts > BOOT2
{
--library=rtsxX_lib (.text)
}
.text > RAM
{
* (.text)
}
}

In Example 8-9, the .text sections of boot.obj, exit.obj, and strcpy.obj are extracted from the run-time-
support library and placed in the .boot output section. The remainder of the run-time-support library object
that is referenced is allocated to the .rts output section. Finally, the remainder of all other .text sections are
to be placed in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with angle
brackets < and > after the library name. Any object files separated by commas or spaces from the
specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in Example 8-9 is optional when listing specific archive members inside <
>. Using < > implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rts2800_ml.lib into the
.rtstest section:

SECTIONS
{
-rtstest { --library=rts2800_ml.lib(.text) } > RAM
}
SECTIONS Directive Effect on --priority
NOTE: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the --priority option, the first
library specified in the command file will be searched first.
206 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:

MEMORY

{
P_MEM1 : origin = 0x02000, lIength = 0x01000
P_MEM2 : origin = 0x04000, length = 0x01000
P_MEM3 : origin = 0x06000, length = 0x01000
P_MEM4 : origin = 0x08000, length = 0x01000

}

SECTIONS

{
.text : { } > P_MEM1 | P_MEM2 | P_MEM4

}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEML. If that attempt fails, the linker tries
to place the section into P_MEM2, and so on. If the output section is not successfully allocated in any of
the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the linker command file, you can let the linker move the section into one of the other areas.

8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges for efficient allocation. Use the >>
operator to indicate that an output section can be split, if necessary, into the specified memory ranges:

MEMORY
{
P_MEM1 : origin = 0x2000, length = 0x1000
P_MEM2 : origin = 0x4000, length = 0x1000
P_MEM3 : origin = 0x6000, length = 0x1000
P_MEM4 : origin = 0x8000, length = 0x1000
3
SECTIONS
{
-text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4
b

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEMS3 | P_MEMA4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY
{
RAM : origin = 0x1000, Ilength = 0x8000
}
SECTIONS
{
.special: { fl.obj(.-text) } load = 0x4000
-text: { *(.text) } >> RAM
}
SPRU513K—-October 2016 Linker Description 207

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.obj(.text) to 0x8000. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY
{
P_MEM1 (RWX) : origin = 0x1000, length = 0x2000
P_MEM2 (RWI) : origin = 0x4000, length = 0x1000
3
SECTIONS
{
text: { *(.text) } >> (RW)
3

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTIONS

{

-text: { *(.text) } >> P_MEM1 | P_MEM2}
}

Certain sections should not be split:

» Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs

* An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

* The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)
If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

208

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.6 Placing a Section at Different Load and Run Addresses

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:

.Fir: load = SLOW_MEM, run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.
See Section 3.5 for an overview on run-time relocation.

The application must copy the section from its load address to its run address; this does not happen
automatically when you specify a separate run address. (The TABLE operator instructs the linker to
produce a copy table; see Section 8.8.4.1.)

8.5.6.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. See Section 3.1.1 for an overview of load and run
addresses.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Section 8.5.7.2.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.

The examples that follow specify load and run addresses.

In this example, align applies only to load:
.data: load = SLOW_MEM, align = 32, run = FAST_MEM

The following example uses parentheses, but has effects that are identical to the previous example:
.data: load = (SLOW_MEM align 32), run = FAST_MEM

The following example aligns FAST_MEM to 32 bits for run allocations and aligns all load allocations to 16
bits:
.data: run = FAST_MEM, align 32, load = align 16

For more information on run-time relocation see Section 3.5.

Uninitialized sections (such as .ebss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run.

This example specifies load and run addresses for an uninitialized section;
.ebss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .ebss section is allocated in FAST_MEM.

.ebss: load = FAST_MEM

.ebss: run = FAST_MEM

.ebss: > FAST_MEM

SPRU513K—-October 2016 Linker Description 209

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.6.2 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol refers to its run-time address. However, it may be necessary at run
time to refer to a load-time address. Specifically, the code that copies a section from its load address to its
run address must have access to the load address. The .label directive defines a special symbol that
refers to the section's load address. Thus, whereas normal symbols are relocated with respect to the run
address, .label symbols are relocated with respect to the load address. See Create a Load-Time Address
Label for more information on the .label directive.

Example 8-10 and Example 8-11 show the use of the .label directive to copy a section from its load
address in SLOW_MEM to its run address in FAST_MEM. Figure 8-4 illustrates the run-time execution of
Example 8-10.

If you use the table operator, the .label directive is not needed. See Section 8.8.4.1.

Example 8-10. Moving a Function from Slow to Fast Memory at Run Time

.sect "_fir"

-label fir_src ; load address of section
fir: ; run address of section

<code here> ; code for the section

-label fir_end ; load address of section end

MOV XAR6, Fir_src

MOV XAR7, #Fir

RPT #(fir_end - fir_src - 1)
k PWRITE *XAR7, *XAR6++

Example 8-11. Linker Command File for Example 8-10

/ /
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/ /
MEMORY
{
PAGE O : FAST_MEM origin = 0x00000800, length = 0x00002400
PAGE O : PROG : origin = 0x00002C00, [lIength = 0x0000D200
PAGE 1 : SLOW_MEM : origin = 0x00000800, length = 0x0000F800
b
SECTIONS
{
.text: load = PROG PAGE O
.fir: load = SLOW_MEM PAGE 1, run = FAST_MEM PAGE O
b
210 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Figure 8-4. Run-Time Execution of Example 8-10

Program memory Data memory
0x0000 0800 0x0000 0800
FAST_MEM SLOW_MEM
__________ a
I fir (relocated | fir
h (loads here)
4

I torun here)
L

0x0000 2C00

0x0000 FEOO

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.7 Using GROUP and UNION Statements

Two SECTIONS statements allow you to organize or conserve memory: GROUP and UNION. Grouping
sections causes the linker to allocate them contiguously in memory. Unioning sections causes the linker to
allocate them to the same run address.

8.5.7.1 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously and
in the order listed, unless the UNORDERED operator is used. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can force the linker to allocate
.data and term_rec together:

Example 8-12. Allocate Sections Together

SECTIONS
{
-text /* Normal output section */
.ebss /* Normal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{
.data /* First section in the group */
term_rec /* Allocated immediately after .data */
3
b

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data
is allocated at 0x1000, and term_rec follows it in memory.

You Cannot Specify Addresses for Sections Within a GROUP

NOTE: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

SPRU513K—-October 2016 Linker Description 211

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.7.2 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section that occupies the same address
during run time. For example, you may have several routines you want in fast external memory at different
stages of execution. Or you may want several data objects that are not active at the same time to share a
block of memory. The UNION statement within the SECTIONS directive provides a way to allocate several
sections at the same run-time address.

In Example 8-13, the .ebss sections from filel.obj and file2.obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 8-13. The UNION Statement

SECTIONS

{
.text: load = SLOW_MEM
UNION: run = FAST_MEM
{

-ebss:partl: { filel.obj(.ebss) }
-ebss:part2: { file2.obj(.ebss) }

T
-ebss:part3: run = FAST_MEM { globals.obj(.ebss) }

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 8-14.

Example 8-14. Separate Load Addresses for UNION Sections

UNION run = FAST_MEM

{
-text:partl: load = SLOW_MEM, { filel.obj(-text) }
.text:part2: load = SLOW_MEM, { file2.obj(-text) }
}
212 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Linker Command Files

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a

Figure 8-5. Memory Allocation Shown in Example 8-13 and Example 8-14

FAST MEM Sections can run FAST MEM
as a union. This :
.ebss:part2 7 is run-time alloca- dext 2 (run) E_lonptlierﬁeat
.ebss:part1 tion only. text 1 (run) ™
1 L N\
\ \
.ebss:part3 .ebss:part3 \
Y |
H|
|
|
SLOW_MEM SLOW_MEM /
text

. text 1 (load)
Sections cannot
load as a union th

text 2 (load) [

union. Therefore, each requires its own load address. If you fail to provide a load allocation for an
initialized section within a UNION, the linker issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load

address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

NOTE:

UNION and Overlay Page Are Not the Same

The UNION capability and the overlay page capability (see Section 8.5.8) may sound similar
because they both deal with overlays. They are, in fact, quite different. UNION allows

multiple sections to be

overlaid within the same memory space. Overlay pages, on the other

hand, define multiple memory spaces. It is possible to use the page facility to approximate

the function of UNION,

but this is cumbersome.

SPRU513K-0October 2016
Submit Documentation Feedback

Linker Description

Copyright © 2016, Texas Instruments Incorporated

213

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.7.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
Example 8-15 shows how two overlays can be grouped together.

Example 8-15. Nesting GROUP and UNION Statements

SECTIONS

{

}

GROUP 0x1000 : run = FAST_MEM

{

}

UNION:
{
mysectl: load = SLOW_MEM
mysect2: load = SLOW_MEM
}
UNION:
{
mysect3: load = SLOW_MEM
mysect4: load = SLOW_MEM

}

For this example, the linker performs the following allocations:

» The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load
addresses. The name you defined with the .label directive is used in the SLOW_MEM memory region.
This assignment is determined by the particular load allocations given for each section.

» Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.
» Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

e The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:
GROUP_n UNION_n

where n is a sequential number (beginning at 1) that represents the lexical ordering of the group or union
in the linker control file without regard to nesting. Groups and unions each have their own counter.

8.5.7.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

* Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

» The linker does not accept a load allocation for UNIONSs.
e The linker does not accept a load allocation for uninitialized sections.

* In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

* As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.
— The group does not contain a union containing initialized sections.

214

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

» If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:

SECTIONS

{
GROUP: load = SLOW_MEM, run = SLOW_MEM

{
-textl:

UNION:

{
-text2:

-text3:
3
T
b

The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

8.5.7.5 Naming UNIONs and GROUPs

You can give a hame to a UNION or GROUP by entering the name in parentheses after the declaration.
For example:
GROUP(BSS_SYSMEM_STACK_GROUP)

{
-ebss 3

-esysmem :{}
.stack 3
} load=D_MEM, run=D_MEM
The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:
warning: LOAD placement ignored for "BSS_SYSMEM_STACK_GROUP": object is uninitialized

UNION(TEXT_CINIT_UNION)

{
.econst :{}load=D_MEM, table(tablel)
.pinit :{}load=D_MEM, table(tablel)
}run=P_MEM

warning:table(tablel) operator ignored: table(tablel) has already been applied to a section
in the "UNION(TEXT_CINIT_UNION)" in which "_pinit" is a descendant

8.5.8 Overlaying Pages

Some devices use a memory configuration in which all or part of the memory space is overlaid by shadow
memory. This allows the system to map different banks of physical memory into and out of a single
address range in response to hardware selection signals. In other words, multiple banks of physical
memory overlay each other at one address range. You may want the linker to load various output sections
into each of these banks or into banks that are not mapped at load time.

The linker supports this feature by providing overlay pages. Each page represents an address range that
must be configured separately with the MEMORY directive. You then use the SECTIONS directive to
specify the sections to be mapped into various pages.

Overlay Section and Overlay Page Are Not the Same

NOTE: The UNION capability and the overlay page capability (see Section 8.5.7.2) sound similar
because they both deal with overlays. They are, in fact, quite different. UNION allows
multiple sections to be overlaid within the same memory space. Overlay pages, on the other
hand, define multiple memory spaces. It is possible to use the page facility to approximate
the function of UNION, but it is cumbersome.

SPRU513K—-October 2016 Linker Description 215

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.8.1 Using the MEMORY Directive to Define Overlay Pages

To the linker, each overlay page represents a completely separate memory space comprising the full
range of addressable locations. In this way, you can link two or more sections at the same (or
overlapping) addresses if they are on different pages.

Pages are numbered sequentially, beginning with 0. If you do not use the PAGE option, the linker
allocates initialized sections into PAGE 0 (program memory) and uninitialized sections into PAGE 1 (data
memory).

8.5.8.2 Example of Overlay Pages

Assume that your system can select between two banks of physical memory for data memory space:
address range AOOh to FFFFh for PAGE 1 and 0AO0Oh to 2BFFh for PAGE 2. Although only one bank can
be selected at a time, you can initialize each bank with different data. Example 8-16 shows how you use
the MEMORY directive to obtain this configuration:

Example 8-16. MEMORY Directive With Overlay Pages

MEMORY
{
PAGE 0 : RAM zorigin = 0x0800, length = 0x0240
: PROG zorigin = 0x2C00, length = 0xD200
PAGE 1 : OVR_MEM :origin = Ox0A00, length = 0x2200
: DATA zorigin = 0x2C00, length = 0xD400
PAGE 2 : OVR_MEM :origin = Ox0AO0O, length = 0x2200

Example 8-16 defines three separate address spaces.

* PAGE 0 defines an area of RAM program memory space and the rest of program memory space.
e PAGE 1 defines the first overlay memory area and the rest of data memory space.

» PAGE 2 defines another area of overlay memory for data space.

Both OVR_MEM ranges cover the same address range. This is possible because each range is on a
different page and therefore represents a different memory space.

8.5.8.3 Using Overlay Pages With the SECTIONS Directive

Assume that you are using the MEMORY directive as shown in Example 8-16. Further assume that your
code consists of the standard sections, as well as four modules of code that you want to load in data
memory space and run in RAM program memory. Example 8-17 shows how to use the SECTIONS
directive overlays to accomplish these objectives.

Example 8-17. SECTIONS Directive Definition for Overlays in Example 7-10

SECTIONS

{

UNION - run = RAM

{

S1 : load = OVR_MEM PAGE 1
{

sl_load = 0x00000A0Oh;

sl start = _;

fl.obj (-text)

f2_0obj (-text)

sl _length = . - sl_start;

S2 : load = OVR_MEM PAGE 2
s2_load = 0x00000AQ0Oh;

s2_start = _;
3.0bj (-text)

216

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Example 8-17. SECTIONS Directive Definition for Overlays in Example 7-10 (continued)

f4.obj (.text)

s2_length = . - s2_start;
3
T
.text: load = PROG PAGE 0O
.data: load = PROG PAGE O

.ebss: load DATA PAGE 1

The four modules are f1, f2, f3, and f4. Modules f1 and f2 are combined into output section S1, and f3 and
f4 are combined into output section S2. The PAGE specifications for S1 and S2 tell the linker to link these
sections into the corresponding pages. As a result, they are both linked to load address AOOh, but in
different memory spaces. When the program is loaded, a loader can configure hardware so that each
section is loaded into the appropriate memory bank.

8.5.8.4 Memory Allocation for Overlaid Pages

Figure 8-6 shows overlay pages defined by the MEMORY directive in Example 8-16 and the SECTIONS
directive in Example 8-17.

Figure 8-6. Overlay Pages Defined in Example 8-16 and Example 8-17

Program memory Data memory Data memory
page 0 page 1 page 2
0x0000 0800 0x0000 0A0D 0x0000 0AOD
RAM OVR_MEM OVR_MEM
——————————————————— = o |

Run address

f1.0bj (.text) f3.0bj (.text)

| | ! |
' | ' |
| forfl, 12,53, f2.0bj (text) | | f4.0bj (text) |
R I N | o |
0x0000 2C00 0x0000 2C00 0x0000 2C00
x PROG DATA
————————— .
' [
: text ebss |
|
- R N S |
0x0000 FEOO
SPRU513K—-October 2016 Linker Description 217

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.9 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign the following special types to output sections: DSECT, COPY, and NOLOAD. These types
affect the way that the program is treated when it is linked and loaded. You can assign a type to a section
by placing the type after the section definition. For example:

SECTIONS

{

secl: load
sec2: load
sec3: load

0x00002000, type
0x00004000, type
0x00006000, type

DSECT {fl.obj}
COPY {f2.0bj}
NOLOAD {f3.obj}

* The DSECT type creates a dummy section with the following characteristics:

It is not included in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

It can overlay other output sections, other DSECTSs, and unconfigured memory.

Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

The section's contents, relocation information, and line number information are not placed in the
output module.

In the preceding example, none of the sections from f1.obj are allocated, but all the symbols are
relocated as though the sections were linked at address 0x2000. The other sections can refer to any of
the global symbols in secl.

» A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the TMS320C28x
C/C++ compiler has this attribute under the run-time initialization model.

A NOLOAD section differs from a normal output section in one respect: the section's contents,
relocation information, and line number information are not placed in the output module. The linker
allocates space for the section, and it appears in the memory map listing.

218

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.10 Configuring Error Correcting Code (ECC) with the Linker

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC
support provided by the linker is compatible with the ECC support in Tl Flash memory on various Tl
devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64
bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-write
memory is handled completely in hardware at run time.)

See Section 8.4.9 for command-line options that introduce bit errors into code that has a corresponding
ECC section or into the ECC parity bits themselves. You can use these options to test your ECC error
handling code.

ECC can be generated during linking. The ECC data is included in the resulting object file, alongside code
and data, as a data section located at the appropriate address. No extra ECC generation step is required
after compilation, and the ECC can be uploaded to the device along with everything else.

You can control the generation of ECC data using the ECC specifier in the memory map
(Section 8.5.10.1) and the ECC directive (Section 8.5.10.2).

8.5.10.1 Using the ECC Specifier in the Memory Map

To generate ECC, add a separate memory range to your memory map to hold ECC data and to indicate
which memory range contains the Flash data that corresponds to this ECC data. If you have multiple
memory ranges for Flash data, you should add a separate ECC memory range for each Flash data range.

The definition of an ECC memory range can also provide parameters for how to generate the ECC data.

The memory map for a device supporting Flash ECC may look something like this:

MEMORY {
VECTORS : origin=0x00000000 Iength=0x000020
FLASHO : origin=0x00000020 length=0x17FFEO
FLASH1 : origin=0x00180000 length=0x180000
STACKS : origin=0x08000000 Iength=0x000500
RAM : origin=0x08000500 length=0x03FBOO

ECC_VEC : origin=0xf0400000 length=0x000004 ECC={ input_range=VECTORS }
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input_range=FLASHO }
ECC_FLA1 : origin=0xf0430000 length=0x030000 ECC={ input_range=FLASH1 }

}

The "ECC" specifier attached to the ECC memory ranges indicates the data memory range that the ECC
range covers. The ECC specifier supports the following parameters:

input_range = <memory The data memory range covered by this ECC data range. Required.
range>
input_page = <page The page number of the input range. Required only if the input range's
number> name is ambiguous.
algorithm = <ECC algorithm The name of an ECC algorithm defined later in the command file using
name> the ECC directive. Optional if only one algorithm is defined. (See

Section 8.5.10.2.)
fill = true | false Whether to generate ECC data for holes in the initialized data of the input

range. The default is "true". Using fill=false produces behavior similar to
the nowECC tool. The input range can be filled normally or using a virtual
fill (see Section 8.5.10.3).

SPRU513K—-October 2016 Linker Description 219

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.10.2 Using the ECC Directive

In addition to specifying ECC memory ranges in the memory map, the linker command file must specify
parameters for the algorithm that generates ECC data. You might need multiple ECC algorithm
specifications if you have multiple Flash devices.

Each TI device supporting Flash ECC has exactly one set of valid values for these parameters. The linker
command files provided with Code Composer Studio include the ECC parameters necessary for ECC
support on the Flash memory accessible by the device. Documentation is provided here for completeness.

You specify algorithm parameters with the top-level ECC directive in the linker command file. For

example:
ECC {
algo_name : address_mask = Ox003ffff38
hamming_mask = FMC
parity_mask = Oxfc
mirroring = F021

}
This ECC directive accepts the following attributes:

address_mask = <32-bit This mask determines which bits of the address of each 64-bit piece of
mask> memory are used in the calculation of the ECC byte for that memory.
Default is 0.

hamming_mask = FMC | R4 This setting determines for which data bits the ECC bits encode parity.
Default is FMC.

parity_mask = <8-bit mask> This mask determines which ECC bits encode even parity and which bits
encode odd parity. Default is 0, meaning that all bits encode even parity.

mirroring = FO21 | FO35 This setting determines the order of the ECC bytes and their duplication
pattern for redundancy. Default is FO21.

8.5.10.3 Using the VFILL Specifier in the Memory Map

Normally, specifying a fill value for a MEMORY range creates initialized data sections to cover any
previously uninitialized areas of memory. To generate ECC data for an entire memory range, the linker
either needs to have initialized data in the entire range, or needs to know what value uninitialized memory
areas will have at run time.

In cases where you want to generate ECC for an entire memory range, but do not want to initialize the
entire range by specifying a fill value, you can use the "Vfill" specifier instead of a "fill" specifier to virtually

fill the range:
MEMORY {

FLASH : origin=0x0000 length=0x4000 vTfill=0xffffffff
3

The Vfill specifier is functionally equivalent to omitting a fill specifier, except that it allows ECC data to be
generated for areas of the input memory range that remain uninitialized. This has the benefit of reducing
the size of the resulting object file.

The Vfill specifier has no effect other than in ECC data generation. It cannot be specified along with a fill
specifier, since that would introduce ambiguity.

220 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.11 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at
link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value. See
Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.11.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C
language:

symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the
symbol table. The expression must follow the rules defined in Section 8.5.11.3. Assignment statements
must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Tablel and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Tablel or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

prog.obj /* Input file */

cur_tab = Tablel; /* Assign cur_tab to one of the tables */

8.5.11.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The linker's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Section 8.5.5.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see Identify Global Symbols), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:

SECTIONS

{
-text: s
.data: {Dstart = _;}
-ebss: s

¥

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Section 8.5.12.

SPRU513K—-October 2016 Linker Description 221
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.11.3 Assignment Expressions

These rules apply to linker expressions:

Expressions can contain global symbols, constants, and the C language operators listed in Table 8-11.
All numbers are treated as long (32-bit) integers.

Constants are identified by the linker in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C
language prefixes are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols
(and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value
of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 8-11 in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in Table 8-11, the linker also has an
align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a
power of 2). For example, the following expression aligns the SPC within the current section on the next
16-byte boundary. Because the align operator is a function of the current SPC, it can be used only in the
same context as . —that is, within a SECTIONS directive.

. = align(16);

Table 8-11. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6
! Logical NOT
~ Bitwise NOT & Bitwise AND
- Negation
Group 2 Group 7
* Multiplication
/ Division Bitwise OR
% Modulus
Group 3 Group 8
+ Addition ’
Subtraction && Logical AND
Group 4 Group 9
>> Arithmetic right shift .
<«< Arithmetic left shift I Logical OR
Group 5 Group 10 (Lowest Precedence)
lzf Eg?? tSaI to = Assignment
'>_ Greatgr than += A+=B is equivalentto A=A+B
< Less than -= A-=B is equivalentto A=A-B
<= Less than or equal to *= A*=B is equivalentto A=A*B
5= Greater than or equal to /= A/=B is equivalentto A=A/B
222 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files
8.5.11.4 Symbols Defined by the Linker

The linker automatically defines several symbols based on which sections are used in your assembly
source. A program can use these symbols at run time to determine where a section is linked. Since these
symbols are external, they appear in the linker map. Each symbol can be accessed in any assembly
language module if it is declared with a .global directive (see Identify Global Symbols). You must have
used the corresponding section in a source module for the symbol to be created. Values are assigned to
these symbols as follows:

text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.ebss is assigned the first address of the .ebss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .ebss output section.

(It marks the end of uninitialized data.)

The following symbols are defined only for C/C++ support when the --ram_model or --rom_model option is

used.
__STACK_END is assigned the end of the .stack size.
___STACK_SIZE is assigned the size of the .stack section.
_ SYSMEM_SIZE is assigned the size of the .esysmem section.

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.11.5 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:

outsect:

{
sl.obj(-text)
end_of_sl1 = .3
start_of_s2 = _;
s2._obj(-text)
end_of s2 = _;

3

This statement creates three symbols:

» end_of_sl—the end address of .text in s1.0bj
» start_of_s2—the start address of .text in s2.0bj
e end_of s2—the end address of .text in s2.0bj

SPRU513K—-October 2016 Linker Description 223

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Suppose there is padding between s1.0bj and s2.o0bj created as a result of alignment. Then start_of _s2 is
not really the start address of the .text section in s2.0bj, but it is the address before the padding needed to
align the .text section in s2.obj. This is due to the linker's interpretation of the dot operator as the current
PC. It is also true because the dot operator is evaluated independently of the input sections around it.

Another potential problem in the above example is that end_of s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of_s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:

GROUP

{

outsect:

{

start_of _outsect = .;

}

dummy: { size_of outsect = . - start_of_outsect; }

8.5.11.6 Address and Dimension Operators

Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START(sym) Defines sym with the load-time start address of related allocation unit
START(sym)

LOAD_END(sym) Defines sym with the load-time end address of related allocation unit
END(sym)

LOAD_SIZE(sym) Defines sym with the load-time size of related allocation unit

SIZE(sym)

RUN_START(sym) Defines sym with the run-time start address of related allocation unit
RUN_END(sym) Defines sym with the run-time end address of related allocation unit

RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit

Linker Command File Operator Equivalencies --

NOTE: LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE(). The LOAD names are recommended for clarity.

These address and dimension operators can be associated with several different kinds of allocation units,
including input items, output sections, GROUPs, and UNIONSs. The following sections provide some
examples of how the operators can be used in each case.

These symbols defined by the linker can be accessed at runtime using the _symval operator, which is
essentially a cast operation. For example, suppose your linker command file contains the following:

-text: RUN_START(text_run_start), RUN_SIZE(text_run_size) { *(-text) }

Your C program can access these symbols as follows:
extern char text_run_start, text_run_size;

printf(".text load start is %Ix\n", _symval(&text_run_start));
printf(".text load size is %Ix\n", _symval(&text_run_size));

See Section 8.6.1 for more information about referring to linker symbols in C/C++ code.

224 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files
8.5.11.6.1 Input Items
Consider an output section specification within a SECTIONS directive:

outsect:
{
sl.obj(.text)
end_of_s1 = .3
start_of _s2 = _;
s2.obj(.text)
end_of _s2 = _;
3
This can be rewritten using the START and END operators as follows:
outsect:
{
sl.obj(-text) { END(end_of_sl1) }
s2.obj(.text) { START(start_of_s2), END(end_of_s2) }
3

The values of end_of_s1 and end_of_s2 will be the same as if you had used the dot operator in the
original example, but start_of_s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of s2 to be defined
before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

8.5.11.6.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START(start_of outsect), SIZE(size_of _outsect)
{

}

In this case, the SIZE operator defines size_of outsect to incorporate any padding that is required in the
output section to conform to any alignment requirements that are imposed.

<list of input items>

The syntax for specifying the operators with an output section does not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

8.5.11.6.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP

{
outsectl: { ... }

outsect2: { ... }
} load = ROM, run = RAM, START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied. This makes the use of .label in the source code unnecessary.

SPRU513K—-October 2016 Linker Description 225

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.11.6.4 UNIONSs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:

UNION: run = RAM, LOAD_START(union_Jload_addr),
LOAD_SI1ZE(union_Id_sz), RUN_SIZE(union_run_sz)
{
.textl: load
-text2: load

ROM, SI1ZE(textl_size) { fl.obj(.text) }
ROM, SIZE(text2_size) { f2.obj(.text) }

}

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

8.5.12 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into
them. These areas are called holes. In special cases, uninitialized sections can also be treated as holes.
This section describes how the linker handles holes and how you can fill holes (and uninitialized sections)
with values.

8.5.12.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:
» Raw data for the entire section
* No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .ebss section and sections defined with the .usect directive (see Reserve Uninitialized
Space) have no raw data (they are uninitialized). They occupy space in the memory map but have no
actual contents. Uninitialized sections typically reserve space in fast external memory for variables. In the
object file, an uninitialized section has a normal section header and can have symbols defined in it; no
memory image, however, is stored in the section.

8.5.12.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave
extra space between input sections within an output section. When such a hole is created, the linker must
supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see Section 8.5.4.2.

To create a hole in an output section, you must use a special type of linker assignment statement within
an output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it,
assigning a greater value to it, or aligning it on an address boundary. The operators, expressions, and
syntaxes of assignment statements are described in Section 8.5.11.

226 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

The following example uses assignment statements to create holes in output sections:

SECTIONS
{

outsect:

{
filel.obj(-text)

. += 0x0100 /* Create a hole with size 0x0100 */
file2.obj(-text)

. = align(16); /* Create a hole to align the SPC */
file3.obj(-text)

3

The output section outsect is built as follows:

The .text section from filel.obj is linked in.

The linker creates a 256-byte hole.

The .text section from file2.obj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-byte boundary.
Finally, the .text section from file3.0bj is linked in.

akrwnh e

All values assigned to the . symbol within a section refer to the relative address within the section. The
linker handles assignments to the . symbol as if the section started at address 0 (even if you have
specified a binding address). Consider the statement . = align(16) in the example. This statement
effectively aligns the file3.obj .text section to start on a 16-byte boundary within outsect. If outsect is
ultimately allocated to start on an address that is not aligned, the file3.obj .text section will not be aligned
either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

-text: { .+= 0x0100; } /* Hole at the beginning */
.data: { *(.data)
. += 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, the linker treats the uninitialized section as a hole and
supplies data for it. The following example illustrates this method:

SECTIONS
{

outsect:

{
filel.obj(.-text)

filel.obj(.ebss) /* This becomes a hole */

}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .ebss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

SPRU513K—-October 2016 Linker Description 227

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.12.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills
holes with a 32-bit fill value that is replicated through memory until it fills the hole. The linker determines
the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section name with an = sign and a 32-bit constant. For
example:

SECTIONS
{ outsect:

{
Ffilel.obj(.text)

file2.obj(.ebss)= OxFFOO /* Fill this hole with OxFFOO */
3
}

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTIONS
{ outsect:fill = OxFFOO /* Fills holes with OxFFOO */
{
. += 0x0010; /* This creates a hole */
Ffilel.obj(.text)
filel.obj(-ebss) /* This creates another hole */
3
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified
with the --fill_value option (see Section 8.4.11). For example, suppose the command file link.cmd
contains the following SECTIONS directive:

SECTIONS { _text: { .= 0x0100; } /* Create a 100 word hole */ }

Now invoke the linker with the --fill_value option:
cl2000 --run_linker --fill_value=0OxFFFF link.cmd

This fills the hole with OxFFFF.

4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills
holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the linker uses to fill it.

8.5.12.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTIONS
{
.ebss: fill = 0x1234 /* Fills .ebss with 0x1234 */
3
Filling Sections
NOTE: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.
228 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS

INSTRUMENTS

www.ti.com Linker Symbols

8.6 Linker Symbols
This section provides information about using and resolving linker symbols.

8.6.1 Using Linker Symbols in C/C++ Applications
Linker symbols have a hame and a value. The value is a 32-bit unsigned integer, even if it represents a
pointer value on a target that has pointers smaller than 32 bits.
The most common kind of symbol is generated by the compiler for each function and variable. The value
represents the target address where that function or variable is located. When you refer to the symbol by
name in the linker command file or in an assembly file, you get that 32-bit integer value.
However, in C and C++ names mean something different. If you have a variable named x that contains
the value Y, and you use the name "x" in your C program, you are actually referring to the contents of
variable x. If "x" is used on the right-hand side of an expression, the compiler fetches the value Y. To
realize this variable, the compiler generates a linker symbol named x with the value &x. Even though the
C/C++ variable and the linker symbol have the same name, they don't represent the same thing. In C, x is
a variable name with the address &x and content Y. For linker symbols, x is an address, and that address
contains the value Y.
Because of this difference, there are some tricks to referring to linker symbols in C code. The basic
technique is to cause the compiler to creating a "fake" C variable or function and take its address. The
details differ depending on the type of linker symbol.
Linker symbols that represent a function address: In C code, declare the function as an extern
function. Then, refer to the value of the linker symbol using the same name. This works because function
pointers "decay" to their address value when used without adornment. For example:
extern void _c_int0O0(void);
printf(*"_c_int00 %Ix\n", (unsigned long)&_ c_int00);
Suppose your linker command file defines the following linker symbol:
func_sym=printf+100;
Your C application can refer to this symbol as follows:
extern void func_sym(void);
printf("func_sym %Ix\n", _symval(&func_sym)); /* these two are equivalent */
printf(*"func_sym %Ix\n", (unsigned long)&func_sym);
Linker symbols that represent a data address: In C code, declare the variable as an extern variable.
Then, refer to the value of the linker symbol using the & operator. Because the variable is at a valid data
address, we know that a data pointer can represent the value.
Suppose your linker command file defines the following linker symbols:
data_sym=_data+100;
Xyz=12345
Your C application can refer to these symbols as follows:
extern char data_sym;
extern int xyz;
printf(*'data_sym %Ix\n", _symval(&data_sym)); /* these two are equivalent */
printf(*'data_sym %p\n', &data_sym);
myvar = &xyz;

SPRU513K-0October 2016 Linker Description 229

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker Symbols www.ti.com

8.6.2

Linker symbols for an arbitrary address: In C code, declare this as an extern symbol. The type does
not matter. If you are using GCC extensions, declare it as "extern void". If you are not using GCC
extensions, declare it as "extern char". Then, refer to the value of the linker symbol mySymbol as
_symval(&mySymbol). You must use the _symval operator, which is equivalent to a cast, because the 32-
bit value of the linker symbol could be wider than a data pointer. The compiler treats _symval(&mySymbol)
in a special way that can represent all 32 bits, even when pointers are 16 bits. Targets that have 32-bit
pointers can usually use &mySymbol instead of the _symval operator. However, the portable way to
access such linker symbols across Tl targets is to use _symval(&mySymbol).

Suppose your linker command file defines the following linker symbol:
abs_sym=0x12345678;

Your C application can refer to this symbol as follows:

extern char abs_sym;

printf('abs_sym %Ix\n", _symval(&abs_sym));

Resolving Symbols with Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as linker input, the
linker includes any members of the library that define existing unresolved symbol references. You can use
the archiver to build and maintain libraries. Section 7.1 contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.

The order in which libraries are specified is important, because the linker includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the --
reread_libs option to reread libraries until no more references can be resolved (see Section 8.4.14.3). A
library has a table that lists all external symbols defined in the library; the linker searches through the table
until it determines that it cannot use the library to resolve any more references.

The following examples link several files and libraries, using these assumptions:

» Input files f1.obj and f2.0bj both reference an external function named clrscr.

« Input file f1.0bj references the symbol origin.

» Input file f2.0bj references the symbol fillclr.

* Member 0 of library libc.lib contains a definition of origin.

* Member 3 of library liba.lib contains a definition of fillclr.

* Member 1 of both libraries defines clrscr.

230

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker Symbols

If you enter:
cl2000 --run_linker fl1.obj f2.obj liba.lib libc.lib

then:

 Member 1 of liba.lib satisfies the fl1.0bj and f2.0bj references to clrscr because the library is searched
and the definition of clrscr is found.

* Member 0 of libc.lib satisfies the reference to origin.

» Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

cl2000 --run_linker fl.obj f2.obj libc.lib liba.lib
then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to
force the linker to include a library member. (See Section 8.4.29.) The next example creates an undefined
symbol routl in the linker's global symbol table:

cl2000 --run_linker --undef_sym=routl libc.lib
If any member of libc.lib defines routl, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm; see
Section 8.5.5.

Section 8.4.14 describes methods for specifying directories that contain object libraries.

SPRU513K—-October 2016 Linker Description 231

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Default Placement Algorithm www.ti.com

8.7

Default Placement Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating
sections. However, any memory locations or sections you choose not to specify must still be handled by
the linker. The linker uses algorithms to build and allocate sections in coordination with any specifications
you do supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though
the memory map and section definitions were as shown in Example 8-18 were specified.

Example 8-18. Default Allocation for TMS320C28x Devices

MEMORY
{
PAGE 0: PROG: origin = 0x000040 length = Ox3fffcO
PAGE 1: DATA: origin = 0x000000 length = 0x010000
PAGE 1: DATAl: origin = 0x010000 length = 0x3f0000
b
SECTIONS
{
.text: PAGE = O
.data: PAGE = 0
.cinit: PAGE = 0 /* Used only for C programs */
.ebss: PAGE = 1
b
Also see Section 2.4.1 for information about default memory allocation.
All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.
If you use a SECTIONS directive, the linker performs no part of this default allocation. Instead, allocation
is performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Section 8.7.1.
8.7.1 How the Allocation Algorithm Creates Output Sections
An output section can be formed in one of two ways:
Method 1 As the result of a SECTIONS directive definition
Method 2 By combining input sections with the same name into an output section that is not defined in
a SECTIONS directive
If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See Section 8.5.5 for examples of how to define an output section's content.)
If an output section is formed by combining input sections not specified by a SECTIONS directive, the
linker combines all such input sections that have the same name into an output section with that name.
For example, suppose the files f1.obj and f2.obj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The linker combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.
By default, the linker does not display a message when it creates an output section that is not defined in
the SECTIONS directive. You can use the --warn_sections linker option (see Section 8.4.30) to cause the
linker to display a message when it creates a hew output section.
After the linker determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the linker uses the default configuration as shown in Example 8-18. (See
Section 8.5.4 for more information on configuring memory.)
232 Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Default Placement Algorithm

8.7.2

Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be
used more efficiently and increases the probability that your program will fit into memory. The algorithm
comprises these steps:

1. Each output section for which you supply a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

If you want to control the order in which code and data are placed in memory, see the FAQ topic on
section placement.

8.8 Linker-Generated Copy Tables
The linker supports extensions to the linker command file syntax that enable the following:
» Make it easier for you to copy objects from load-space to run-space at boot time
» Make it easier for you to manage memory overlays at run time
* Allow you to split GROUPs and output sections that have separate load and run addresses

8.8.1 Using Copy Tables for Boot Loading
In some embedded applications, there is a need to copy or download code and/or data from one location
to another at boot time before the application actually begins its main execution thread. For example, an
application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.
One way to develop such an application is to create a copy table in assembly code that contains three
elements for each block of code or data that needs to be moved from FLASH to on-chip memory at boot
time:
» The load location (load page id and address)
» The run location (load page id and address)
* The size
The process you follow to develop such an application might look like this:
1. Build the application to produce a .map file that contains the load and run addresses of each section

that has a separate load and run placement.
2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.
4. Run the application.
This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece
of code or data is added or removed from the application, you must repeat the process in order to keep
the contents of the copy table up to date.

SPRU513K-0October 2016 Linker Description 233

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.2 Using Built-in Link Operators in Copy Tables

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the linker command file syntax . For example, instead of building
the application to generate a .map file, the linker command file can be annotated:

SECTIONS
{

-Flashcode: { app_tasks.obj(-text) }
load = FLASH, run = PMEM,
LOAD_START(_flash_code_Id_start),
RUN_START(_flash_code_rn_start),
SIZE(_flash_code_size)

}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create
three symbols:

Symbol Description

_flash_code_Id_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Section 8.8.1.

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the linker command file. Ideally, the linker
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 8.5.11.6.

8.8.3 Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the linker command file as illustrated in Example 8-19:

Example 8-19. Using a UNION for Memory Overlay

SECTIONS
{
UNION
{
GROUP

{
.taskl: { taskl.obj(.-text) }
.task2: { task2.obj(-text) }

} load = ROM, LOAD_START(taskl12_load_start), SIZE(_ taskl2_size)

GROUP

{
-task3: { task3.obj(-text) }
.task4: { task4.obj(-text) }

} load = ROM, LOAD_START(task34 load_start), SIZE(task 34_size)
} run = RAM, RUN_START(_ task_run_start)

234 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.4

The application must manage the contents of the memaory overlay at run time. That is, whenever any
services from .taskl or .task2 are needed, the application must first ensure that .taskl and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .taskl and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12 load_start), the run address (_task run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

Generating Copy Tables With the table() Operator

The linker supports extensions to the linker command file syntax that enable you to do the following:

» Identify any object components that may need to be copied from load space to run space at some
point during the run of an application

» Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

» Instruct the linker to generate a symbol specified by you that provides the address of a linker-
generated copy table. For instance, Example 8-19 can be written as shown in Example 8-20:

Example 8-20. Produce Address for Linker Generated Copy Table

SECTIONS

{

UNION

{

}

GROUP

{
.taskl: { taskl.obj(-text) }
.task2: { task2.obj(-text) }

} load = ROM, table(_taskl2_copy_table)

GROUP

{
-task3: { task3.obj(-text) }

.task4: { task4.obj(-text) }
} load = ROM, table(_task34_copy_table)

run = RAM

Using the SECTIONS directive from Example 8-20 in the linker command file, the linker generates two
copy tables named: _task12 copy_table and _task34_copy_table. Each copy table provides the load
address, run address, and size of the GROUP that is associated with the copy table. This information is
accessible from application source code using the linker-generated symbols, task12 copy_table and
_task34 copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you need not worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ or assembly source code,
passing that value to a general purpose copy routine, which will process the copy table and affect the
actual copy.

SPRU513K—-October 2016 Linker Description 235
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.4.1 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns it the address of the copy
table as the value of the symbol. The copy table can then be accessed from the application using the
linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate a copy table for erroneous
table() operator specifications.

Copy tables can be generated automatically; see Section 8.8.4.

8.8.4.2 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. This table is handled before the .cinit section is used to initialize variables at startup. For
example, the linker command file for the boot-loaded application described in Section 8.8.2 can be
rewritten as follows:

SECTIONS

{
-Flashcode: { app_tasks.obj(-text) }
load = FLASH, run = PMEM,
table(BINIT)

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, _ binit__, which contains the list of all object components that need to be copied from their load
location to their run location at boot-time. If a linker command file does not contain any uses of
table(BINIT), then the __ binit__ symbol is given a value of -1 to indicate that a boot-time copy table does
not exist for a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects
violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

236

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.4.3 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the linker
command file excerpt in Example 8-21:

Example 8-21. Linker Command File to Manage Object Components

SECTIONS

UNION

{
.First: { al.obj(-text), bl.obj(.-text), cl.obj(-text) }
load = EMEM, run = PMEM, table(BINIT), table(_Ffirst_ctbl)

.second: { a2.obj(-text), b2.obj(.-text) }
load = EMEM, run = PMEM, table(_second_ctbl)
3

.extra: load = EMEM, run = PMEM, table(BINIT)

In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first _ctbl and _second_ctbl.

8.8.4.4 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy
table symbol is defined with the address value of the input section that contains the corresponding copy
table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time copy table.

Example 8-22 illustrates how you can control the placement of the linker-generated copy table sections
using the input section names in the linker command file.

Example 8-22. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS
{
UNION
{
-First: { al.obj(.text), bl.obj(.text), cl.obj(-text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.obj(.text), b2.obj(-text) }
load = EMEM, run = PMEM, table(_second_ctbl)
}

.extra: load = EMEM, run = PMEM, table(BINIT)

.ovly: { } > BMEM
-binit: { } > BMEM
}

SPRU513K—-October 2016 Linker Description 237

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

For the linker command file in Example 8-22, the boot-time copy table is generated into a .binit input
section, which is collected into the .binit output section, which is mapped to an address in the BMEM
memory area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is
generated into the .ovly:_second_ctbl input section. Since the base names of these input sections match
the name of the .ovly output section, the input sections are collected into the .ovly output section, which is
then mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in
the same output section. The linker does not allow a copy table section that was created from a partial link
session to be used as input to a succeeding link session.

8.8.4.5 Splitting Object Components and Overlay Management

It is possible to split sections that have separate load and run placement instructions. The linker can
access both the load address and run address of every piece of a split object component. Using the
table() operator, you can tell the linker to generate this information into a copy table. The linker gives each
piece of the split object component a COPY_RECORD entry in the copy table object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among four different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in Example 8-
23.

Example 8-23. Creating a Copy Table to Access a Split Object Component

SECTIONS

UNION

{
.tasklto3: { *(.taskl), *(.task2), *(.task3) }

load >> LMEM1 | LMEM2 | LMEM4, table(_task13_ctbl)

GROUP

{
.task4: { *(.task4) }

.task5: { *(.task5) }
.task6: { *(.task6) }
-task7: { *(.task7) }

} load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)
} run = PMEM

.ovly: > LMEM4
}

238 Linker Description SPRU513K—-October 2016
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

Example 8-24 illustrates a possible driver for such an application.

Example 8-24. Split Object Component Driver

#include <cpy_tbl._h>

extern COPY_TABLE taskl13_ctbl;
extern COPY_TABLE task47_ctbl;

extern void taskl(void);
extern void task7(void);

main()

{

copy_in(&taskl3_ctbl);
taskl1(Q);
task2();
task3();

copy_in(&task47_ctbl);
task4(Q);
task5Q);
task6();
task7(Q);

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space.
The linker-generated copy table, _task13_ctbl, contains a separate COPY_RECORD for each piece of the
split section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of .task1to3
is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs
the GROUP split by applying the split operator to each member of the GROUP in order. The copy table for
the GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP.
These pieces are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The linker does not permit a split operator to be applied to the run placement of either a
UNION or of a UNION member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

SPRU513K—-October 2016 Linker Description 239

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker-Generated Copy Tables

13 TEXAS
INSTRUMENTS

www.ti.com

8.8.5 Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This
information is included in a run-time-support library header file, cpy_tbl.h, which contains a C source
representation of the copy table data structure that is generated by the linker. Example 8-25 shows the

copy table header file.

Example 8-25. TMS320C28x cpy_tbl.h File

/
/* cpy_tbl.h
/*

/* Copyright (c) 2003 Texas Instruments Incorporated

/*

/* Specification of copy table data structures which can be automatically

/* generated by the linker (using the table() operator in the LCF).

/*

*/
*/
*/
*/
*/
*/
*/

/
/* Copy Record Data Structure

*/

/
typedef struct copy_record
{

unsigned int src_pgid;
unsigned int dst_pgid;
unsigned long sSrc_addr;
unsigned long dst_addr;
unsigned long size;

3 COPY_RECORD;

/
/* Copy Table Data Structure

*/

/
typedef struct copy_table

{
unsigned int rec_size;
unsigned int num_recs;
COPY_RECORD recs[1];

} COPY_TABLE;

/

/* Prototype for general purpose copy routine.

*/

/

extern void copy_in(COPY_TABLE *tp);

/

/* Prototypes for utilities used by copy_in() to move code/data between

/* program and data memory (see cpy_utils.asm for source).

*/
*/

/

extern void ddcopy(unsigned long src, unsigned long dst);
extern void dpcopy(unsigned long src, unsigned long dst);
extern void pdcopy(unsigned long src, unsigned long dst);
extern void ppcopy(unsigned long src, unsigned long dst);

For each object component that is marked for a copy, the linker creates a COPY_RECORD object for it.
Each COPY_RECORD contains at least the following information for the object component:

e The load page id
e The run page id

e The load address
* The run address

* The size

240 Linker Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS

INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.6

The linker collects all COPY_RECORDSs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORD:s in the table, and the array of COPY_RECORD:s in the table. For instance, in
the BINIT example in Section 8.8.4.2, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:
COPY_TABLE _ binit__ = { 12, 2,
{ <load page id of .first>,
<run page id of _first>,
<load address of .first>,
<run address of _first>,
<size of _first> },
{ <load page id of .extra>,
<run page id of _extra>,
<load address of _extra>,
<run address of .extra>,
<size of .extra> } };

General Purpose Copy Routine

The cpy_tbl.h file in Example 8-25 also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument:
the address of a linker-generated copy table. The routine then processes the copy table data object and
performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in
Example 8-26.

Example 8-26. Run-Time-Support cpy_tbl.c File

/
/*
/>
/>
/*
/>
/>

cpy_tbl.c */
Copyright (c) 2003 Texas Instruments Incorporated */

*/

General purpose copy routine. Given the address of a linker-generated */
COPY_TABLE data structure, effect the copy of all object components */
that are designated for copy via the corresponding LCF table() operator. */

/

#include <cpy_tbl._h>
#include <string.h>

void copy_in(COPY_TABLE *tp)

{

}

unsigned int i;
for (i = 0; 1 < tp->num_recs; i++)

{

}

COPY_RECORD *crp = &tp->recs[i];
unsigned int cpy_type = 0;
unsigned int j;

if (crp->src_pgid) cpy_type += 2;
ifT (crp->dst_pgid) cpy_type += 1;

for (= 0; j < crp->size; j++)
{
switch (cpy_type)
{
case
case
case
case

ddcopy(crp->src_addr
dpcopy(crp->src_addr
pdcopy(crp->src_addr
ppcopy(crp->src_addr

, crp->dst_addr
, crp->dst_addr
, crp->dst_addr
, crp->dst_addr

J); break;
J); break;
J); break;
J); break;

oOr N W
+ + + +
+ + + +

}

SPRU513K—-October 2016 Linker Description 241
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

The load (or source) page id and the run (or destination) page id are used to choose which low-level copy
routine is called to move a word of data from the load location to the run location. A page id of 0 indicates
that the specified address is in program memory, and a page id of 1 indicates that the address is in data
memory. The hardware provides special instructions, PREAD and PWRITE, to move code/data into and
out of program memory.

8.9 Linker-Generated CRC Tables
The linker supports an extension to the linker command file syntax that enables the verification of code or
data by means of Cyclic Redundancy Code (CRC). The linker computes a CRC value for the specified
region at link time, and stores that value in target memory such that it is accessible at boot or run time.
The application code can then compute the CRC for that region and ensure that the value matches the
linker-computed value. The run-time-support library does not supply a routine to calculate CRC values at
boot or run time, however a limited reference implementation in C is provided in Appendix C.

8.9.1 The crc_table() Operator
For any section that should be verified with a CRC, the linker command file must be modified to include
the crc_table() operator. The specification of a CRC algorithm is optional. The syntax is:
crc_table(user_specified_table _name][, algorithm=xxx])
The linker uses the CRC algorithm from any specification given in a crc_table() operator. If that
specification is omitted, the CRC32_PRIME algorithm is used. The linker includes CRC table information
in the map file. This includes the CRC value as well as the algorithm used for the calculation.
The CRC table generated for a particular crc_table() instance can be accessed through the table name
provided as an argument to the crc_table() operator. The linker creates a symbol with this name and
assigns the address of the CRC table as the value of the symbol. The CRC table can then be accessed
from the application using the linker-generated symbol.
The crc_table() operator can be applied to an output section, a GROUP, a GROUP member, a UNION, or
a UNION member. If applied to a GROUP or UNION, the operator is applied to each member of the
GROUP or UNION.
You can include calls in your application to a routine that will verify CRC values for relevant sections. You
must provide this routine. See below for more details on the data structures and suggested interface.

8.9.2 Restrictions
It is important to note that the CRC generator used by the linker is parameterized as described in the
crc_tbl.h header file (see Example 8-31). Any CRC calculation routine employed outside of the linker must
function in the same way to ensure matching CRC values. The linker cannot detect a mismatch in the
parameters. To understand these parameters, see A Painless Guide to CRC Error Detection Algorithms
by Ross Williams, which is likely located at http://www.ross.net/crc/download/crc_v3.txt.
Only the CRC algorithm names and identifiers specified in crc_tbl.h are supported. All other names and ID
values are reserved for future use. Your system may not include built-in hardware that computes all these
CRC algorithms. Consult the documentation for your hardware for more detail. The following CRC
algorithms are supported:
« CRC8 _PRIME
« CRC16_ALT
« CRC16_802_15 4
« CRC_CCITT
* CRC24_FLEXRAY
+ CRC32_PRIME
e CRC32 C
+ CRC64_ISO

242 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://www.ross.net/crc/download/crc_v3.txt

I

TEXAS
INSTRUMENTS

www.ti.com Linker-Generated CRC Tables

8.9.3

The supported CRC algorithms are specified by published standards, including the Powerline Related
Intelligent Metering Evolution (PRIME) standard and IEEE 802.15.4. The Viterbi, Complex Math and CRC
Unit (VCU) module available on some C28x devices provides efficient instructions for CRC calculation
using these algorithms. You might want to take advantage of the VCU module to compute the CRC at run
time. For details, see the VCU module documentation in TMS320x28xx, 28xxx DSP Peripherals
Reference Guide (SPRU566).

There are also restrictions which will be enforced by the linker:
* CRC can only be requested at final link time.

e CRC can only be applied to initialized sections.

* CRC can be requested for load addresses only.

» Certain restrictions also apply to CRC table names.

Examples

The crc_table() operator is similar in syntax to the table() operator used for copy tables. A few simple
examples of linker command files follow.

Example 8-27. Using crc_table() Operator to Compute the CRC Value for .text Data

SECTIONS

{
:ééction_to_be_verified: {al.obj(.text)} crc_table(_my_crc_table_for_al)
3
Example 8-27 defines a section named “.section_to_be_verified”, which contains the .text data from the
al.obj file. The crc_table() operator requests that the linker compute the CRC value for the .text data and
store that value in a table named “my_crc_table for_al”. This table will contain all the information needed
to invoke a user-supplied CRC calculation routine, and verify that the CRC calculated at run time matches
the linker-generated CRC. The table can be accessed from application code using the symbol
my_crc_table for_al, which should be declared of type “extern CRC_TABLE”". This symbol will be defined
by the linker. The application code might resemble the following.
#include *crc_tbl_.h"
extern CRC_TABLE my_crc_table_for_al;
verify_al_text_contents()
{
};-Verify CRC value for .text sections of al.obj. */
if (my_check_CRC(&my_crc_table_for_al)) puts('OK"™);
b
The my_check_CRC() routine is discussed in detail in Section 8.9.4, Example 8-32.
SPRU513K-0October 2016 Linker Description 243

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://www.ti.com/lit/pdf/spru566

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

Example 8-28. Specifying an Algorithm in the crc_table() Operator

SECTIONS
{

.section_to_be_verified_2: {bl.obj(-text)} load=SLOW_MEM, run=FAST_MEM,
crc_table(_my_crc_table_for_bl, algorithm=CRC8_PRIME)

.Tl.crctab: > CRCMEM
b

In Example 8-28, the CRC algorithm is specified in the crc_table() operator. The specified algorithm is
used to compute the CRC of the text data from b1l.obj. The CRC tables generated by the linker are
created in the special section .Tl.crctab, which can be placed in the same manner as other sections. In
this case, the CRC table _my_crc_table_for_b1 is created in section .Tl.crctab:_my_crc_table_for_b1, and
that section is placed in the CRCMEM memory region.

Example 8-29. Using a Single Table for Multiple Sections

SECTIONS
{
.section_to_be_verified_1: {al.obj(-text)}
crc_table(_my _crc_table_for_al_and_cl)

.section_to_be_verified_3: {cl.obj(-text)}
crc_table(_my crc_table_for_al _and_cl, algorithm=CRC16_802_15 4)

In Example 8-29 the same identifier, _my crc_table for_al and_c1, is specified for both al.obj and
cl.obj. The linker creates a single table that contains entries for both text sections. Multiple CRC
algorithms can occur in a single table. In this case, _my_crc_table for_al and_c1 contains an entry for
the text data from al.obj using the default CRC algorithm, and an entry for the text data from c1.0bj using
the CRC16_802_15 4 algorithm. The order of the entries is unspecified.

Example 8-30. Applying the crc_table() Operator to a GROUP or UNION

SECTIONS
UNION

{
sectionl: {} crc_table(tablel, algorithm=CRC16_ALT)
section2:

} crc_table(table2, algorithm=CRC32_PRIME)

}

When the crc_table() operator is applied to a GROUP or a UNION, the linker applies the table
specification to the members of the GROUP or UNION.
In Example 8-30 the linker creates two CRC tables, tablel and table2. table1l contains one entry for
sectionl, using algorithm CRC16_ALT. Because both sections are members of the UNION, table2
contains entries for sectionl and section2, using algorithm CRC32_PRIME. The order of the entries in
table2 is unspecified.

244 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Linker-Generated CRC Tables

8.9.4

Interface

The CRC generation function uses a mechanism similar to the copy table functionality. Using the syntax
shown above in the linker command file allows specification of code/data sections that have CRC values
computed and stored in the run time image. This section describes the table data structures created by
the linker, and how to access this information from application code.

The CRC tables contain entries as detailed in the run-time-support header file crc_tbl.h, as illustrated in
Figure 8-7.

Figure 8-7. CRC_TABLE Conceptual Model

table_name » rec_size=8
(such as linker—generated symbol num_recs=2
my_crc_table for_a1)
recs
— [alg ID page ID | address data size CRC value
alg ID page ID | address data size CRC value

The crc_tbl.h header file is included in Example 8-31. This file specifies the C structures created by the
linker to manage CRC information. It also includes the specifications of the supported CRC algorithms. A
full discussion of CRC algorithms is beyond the scope of this document, and the interested reader should
consult the referenced document for a description of the fields shown in the table. The following fields are
relevant to this document.

* Name - text identifier of the algorithm, used by the programmer in the linker command file.

» ID —the numeric identifier of the algorithm, stored by the linker in the crc_alg_ID member of each table
entry.

e Order — the number of bits used by the CRC calculation.
» Polynomial — used by the CRC computation engine.
» Initial Value — the initial value given to the CRC computation engine.

Example 8-31. The CRC Table Header, crc_tbl.h

/ /
/* crc_tbl.h */
/* */
/* PRELIMINARY - SUBJECT TO CHANGE */
/* */
/* Specification of CRC table data structures which can be automatically */
/* generated by the linker (using the crc_table() operator in the linker */
/* command file). */
/ /
/ /
/* */
/* The CRC generator used by the linker is based on concepts from the */
/* document: */
/* "A Painless Guide to CRC Error Detection Algorithms" */
/* */
SPRU513K-0October 2016 Linker Description 245
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker-Generated CRC Tables

13 TEXAS
INSTRUMENTS

www.ti.com

Example 8-31. The CRC Table Header, crc_tbl.h (continued)

/* Author : Ross Williams (ross@guest.adelaide.edu.au.). */
/* Date : 3 June 1993. */
/* Status : Public domain (C code). */
/* */
/* Description : For more information on the Rocksoft~tm Model CRC */
/* Algorithm, see the document titled "A Painless Guide to CRC Error */
/* Detection Algorithms" by Ross Williams (ross@guest.adelaide.edu.au.). */
/* This document is likely to be in "ftp.adelaide.edu.au/pub/rocksoft" or */
/* at http:www.ross.net/crc/download/crc_v3.txt. */
/* */
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. */
/ /
#include <stdint_h> /* For uintXX_t */

/ /
/* CRC Algorithm Specifiers */
/* */
/* The following specifications, based on the above cited document, are used */
/* by the linker to generate CRC values. */
/* */
/* */
/* ID Name Order Polynomial Initial Ref Ref CRC XOR Zero */
/* Value In Out Value Pad */
/* __ */
/* 0, "CRC32_PRIME", 32, 0x04clldb7, 0x00000000, O, O, 0x00000000, 1 */
/* 1, "CRC16_802_15_4", 16, 0x00001021, 0x00000000, O, O, 0x00000000, 1 */
/* 2, "CRC16_ALT", 16, 0x00008005, 0x00000000, O, O, Ox00000000, 1 */
/* 3, "CRC8_PRIME", 8, 0x00000007, 0x00000000, O, O, 0x00000000, 1 */
/* */
/* */
/* Users should specify the name, such as CRC32_PRIME, in the linker command */
/* file. The resulting CRC_RECORD structure will contain the corresponding */
/* 1D value in the crc_alg_ID field. */
/ /
#define CRC32_PRIME 0 /* Poly = 0x04c11db7 */ /* DEFAULT ALGORITHM */
#define CRC16_802_15 4 1 /* Poly = 0x00001021 */

#define CRC16_ALT 2 /* Poly = 0x00008005 */

#define CRC8_PRIME 3 /* Poly = 0x00000007 */

/ /

/* CRC Record Data Structure */

/* NOTE: The list of fields and the size of each field */

/* varies by target and memory model. */

/ /

typedef struct crc_record

{

uintl6_t crc_alg_ID; /* CRC algorithm ID */

uintl6_t page_id; /* page number of data */

uint32_t addr; /* Starting address */

uint32_t size; /* size of data in 16-bit units */

uint32_t crc_value;

} CRC_RECORD;

/ /

/* CRC Table Data Structure */

/ /

typedef struct crc_table

{

uintl6_t rec_size;

uintl6_t num_recs;

CRC_RECORD recs[1];

3} CRC_TABLE;

246

Linker Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated CRC Tables

In the CRC_TABLE struct, the array recs[1] is dynamically sized by the linker to accommodate the number
of records contained in the table (num_recs). A user-supplied routine to verify CRC values should take a
table name and check the CRC values for all entries in the table. An outline of such a routine is shown in

Example 8-32.

Example 8-32. General Purpose CRC Check Routine

/
/*
/*
/>
/*

/

General purpose CRC check routine. Given the address of a */

linker-generated CRC_TABLE data structure, verify the CRC

of all object components that are designated with the
corresponding LCF crc_table() operator.

*/
*/
*/

/

#include <crc_tbl_h>

/ /
/* MY_CHECK_CRC() - returns 1 if CRCs match, O otherwise */
/ /
unsigned int my_check CRC(CRC_TABLE *tp)
{
int i;
for (i = 0; 1 < tp-> num_recs; i++)
{
CRC_RECORD crc_rec = tp->recs[i];
/ /
/* COMPUTE CRC OF DATA STARTING AT crc_rec.addr */
/* FOR crc_rec.size UNITS. USE */
/* crc_rec.crc_alg_ID to select algorithm. */
/* COMPARE COMPUTED VALUE TO crc_rec.crc_value. */
/ /
b
if all CRCs match, return 1;
else return O;
b

/

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Linker Description

247

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

8.9.5 A Special Note Regarding 16-Bit char

C2000 is a 16-bit word addressable target, which means that its char data type is 16 bits. However, CRC
algorithms operate on 8-bit units, which we shall call "octets". When computing a CRC on a C2000
section, the data cannot be fed to the CRC loop char-by-char, it must be fed octet-by-octet.

The data needs to be fed to the CRC in the order it would if the C2000 were a 8-bit machine, so we need
to consider which of the two octets in the char to feed first. C2000 is a little-endian machine, but it does
not make sense to talk about the endianness of the bits in an indivisible unit such as char. By convention,
we consider the data in a char to be stored least-significant octet first, then most-significant octet.

Abstractly, the CRC algorithm computes the CRC bit-by-bit in the order the bits appear in the data. For a
machine with 8-bit chars, this order is considered to proceed from the MSB through the LSB of each byte
starting with byte 0. However, for C2000, the CRC starts with the MSB through LSB of the LEAST
significant octet of byte 0, then the MSB through LSB of the MOST significant octet of byte 0, and so on
for the rest of the bytes.

Figure 8-8. CRC Data Flow Example

Low Memory
Most significant byte Least significant byte
119 16| 1 8
219 16| 1 8
v
High Memory
248 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Partial (Incremental) Linking

8.10 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial
linking or incremental linking. Partial linking allows you to partition large applications, link each part
separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

» The intermediate files produced by the linker must have relocation information. Use the --relocatable
option when you link the file the first time. (See Section 8.4.3.2.)

» Intermediate files must have symbolic information. By default, the linker retains symbolic information in
its output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table
strips symbolic information from the output module. (See Section 8.4.20.)

» Intermediate link operations should be concerned only with the formation of output sections and not
with allocation. All allocation, binding, and MEMORY directives should be performed in the final link.

« If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the --make_static option (see Section 8.4.15.1).

» If you are linking C code, do not use --ram_model or --rom_model until the final linker. Every time you
invoke the linker with the --ram_model or --rom_model option, the linker attempts to create an entry
point. (See Section 8.4.23, Section 3.3.2.1, and Section 3.3.2.2.)

The following example shows how you can use partial linking:

Step 1: Link the file filel.com; use the --relocatable option to retain relocation information in the
output file tempoutl.out.
cl2000 --run_linker --relocatable --output_file=tempoutl filel.com
filel.com contains:

SECTIONS
{
ssl: {
f1.0bj
f2.0bj
fn.obj
}
}
Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the

output file tempout2.out.
cl2000 --run_linker --relocatable --output_file=tempout2 file2.com
file2.com contains:

SECTIONS
{

Ss2: {
gl.obj
g2.0obj
gn.obj
}

}

Step 3: Link tempoutl.out and tempout2.out.
cl2000 --run_linker --map_file=final.map --
output_file=final.out tempoutl.out tempout2.out

SPRU513K—-October 2016 Linker Description 249

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Linking C/C++ Code www.ti.com

8.11 Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules progl, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:

cl2000 --run_linker --rom_model --
output_file prog.out progl.obj prog2.obj ... rts2800_ml.lib

The --rom_model option tells the linker to use special conventions that are defined by the C/C++
environment.

The archive libraries shipped by Tl contain C/C++ run-time-support functions.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

For more information about the TMS320C28x C/C++ language, including the run-time environment and
run-time-support functions, see the TMS320C28x Optimizing C/C++ Compiler User's Guide.

8.11.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap
routine, also known as the boot.obj object module. The symbol _c¢_int00 is defined as the program entry
point and is the start of the C boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is
automatically linked in from the run-time-support library. When a program begins running, it executes
boot.obj first. The boot.obj symbol contains code and data for initializing the run-time environment and
performs the following tasks:

» Sets up the system stack and configuration registers

» Processes the run-time .cinit initialization table and autoinitializes global variables (when the linker is
invoked with the --rom_model option)

» Disables interrupts and calls _main

The run-time-support object libraries contain boot.obj. You can:
* Use the archiver to extract boot.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the linker automatically extracts
boot.obj when you use the --ram_model or --rom_model option).

8.11.2 Object Libraries and Run-Time Support

The TMS320C28x Optimizing C/C++ Compiler User's Guide describes additional run-time-support
functions that are included in rts.src. If your program uses any of these functions, you must link the
appropriate run-time-support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those
library members that resolve undefined references.

8.11.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .esysmem and .stack for the memory pool
used by the malloc() functions and the run-time stacks, respectively. You can set the size of these by
using the --heap_size or --stack_size option and specifying the size of the section as a 4-byte constant
immediately after the option. If the options are not used, the default size of the heap is 1K words and the
default size of the stack is 1K words.

See Section 8.4.12 for setting heap sizes and Section 8.4.26 for setting stack sizes.

Linking the .stack Section

NOTE: The .stack section must be linked into the low 64K of data memory (PAGE 1) since the SP is
a 16-bit register and cannot access memory locations beyond the first 64K.

250

Linker Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Linking C/C++ Code

8.11.4 Initializing and Autolnitialzing Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke

the

linker with the --rom_model option. See Section 3.3.2.1 for details.

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option. See Section 3.3.2.2 for details.

See Section 3.3.2.3 for information about the steps that are performed when you invoke the linker with the
--ram_model or --rom_model option.

8.12 Linker Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
Memory Type Address Range Contents
Program 0x0f0000 to 0x3fffbf SLOW_MEM
0x3fffcO to Ox3fffff Interrupt vector table
Data 0x000040 to 0x0001ff Stack
0x000200 to 0x0007ff FAST_MEM_1
0x3ed000 to Ox3effff FAST_MEM_2

The output sections are constructed in the following manner:

Executable code, contained in the .text sections of demo.obj, fft.obj, and tables.obj, is linked into
program memory ROM.

Variables, contained in the var_defs section of demo.obj, are linked into data memory in block
FAST_MEM_2.

Tables of coefficients in the .data sections of demo.obj, tables.obj, and fft.obj are linked into
FAST_MEM_1. A hole is created with a length of 100 and a fill value of 0x07A1C.

The xy section form demo.obj, which contains buffers and variables, is linked by default into page 1 of
the block STACK, since it is not explicitly linked.

Executable code, contained in the .text sections of demo.obj, fft.obj, and tables.obj, is linked into
program memory ROM.

Variables, contained in the var_defs section of demo.obj, are linked into data memory in block
FAST_MEM_2.

Tables of coefficients in the .data sections of demo.obj, tables.obj, and fft.obj are linked into
FAST_MEM_1. A hole is created with a length of 100 and a fill value of 0x07A1C.

The xy section form demo.obj, which contains buffers and variables, is linked by default into page 1 of
the block STACK, since it is not explicitly linked.

SPRU513K—-October 2016 Linker Description 251
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker Example

I

TEXAS
INSTRUMENTS

www.ti.com

Example 8-33 shows the linker command file for this example. Example 8-34 shows the map file.

Example 8-33. Linker Command File, demo.cmd

/ /
V fakaiad Specify Linker Options siaioV 4
/ /
--output_file=demo.out /* Name the output file */
--map_Tile=demo.map /* Create an output map */
/ /
V fakaiad Specify the Input Files siaioV 4
/ /
demo.obj
fft.obj
tables.obj
/ /
[*** Specify the Memory Configuration xxx/
/ /
MEMORY
{
PAGE 0O: SLOW_MEM (R): origin=0x3f0000 length=0x00ffc0
VECTORS (R): origin=0x3fffcO 1ength=0x000040
PAGE 1: STACK (RW): origin=0x000040 length=0x0001c0
FAST_MEM_1 (RW): origin=0x000200 1ength=0x000600
FAST_MEM_2 (RW): origin=0x3ed000 1ength=0x003000
b
/ /
[*** Specify the Output Sections xxx/
/ /
SECTIONS
{
vectors : { } > VECTORS page=0
.text load = SLOW_MEM, page = 0 /* link in .text */
.data : fill = 07A1Ch, Load=FAST_MEM_1, page=1
{
tables.obj(.data) /* .data input */
fft.obj(.data) /* _data input */
. += 100h; /* create hole, fill with 0x07A1C */
3
var_defs : { } > FAST_MEM_2 page=1 /* defs in RAM */
-ebss : page=1, Fill=OxOffff /*_ebss fill and link*/
}
/ /
[*** End of Command File xxx/
/ /

Invoke the linker by entering the following command:
cl2000 --run_linker demo.cmd

This creates the map file shown in Example 8-34 and an output file called demo.out that can be run on a
TMS320C28x.

252 Linker Des

cription

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Linker Example

Example 8-34. Output Map File, demo.map

OUTPUT FILE NAME:
ENTRY POINT SYMBOL: O

<demo.out>

MEMORY CONFIGURATION

PAGE O:

PAGE 1:

name
SLOW_|
VECTO
STACK
FAST_
FAST_

SECTION ALLOCATION MAP

output
section

vectors
-text

var_defs

.data

.ebss

xy

page

0
0

origin length
MEM 003f0000 0000ffcO
RS 003fffco 00000040

00000040 000001cO
MEM_1 00000200 00000600
MEM_2 003ed000 00003000
origin length
003fffco 00000000
00310000 0000001a
00310000 0000000e
003T000e 00000000
003foooe 0000000c
003ed000 00000002
003ed000 00000002
00000200 0000010c
00000200 00000004
00000204 00000000
00000204 00000100
00000304 00000008
00000040 00000069
00000040 00000068
000000a8 00000000
000000a8 00000001
000000a9 00000014
000000a9 00000014

attributes/
input sections

UNINITIALIZED

demo.obj (-text)
tables.obj (.text)
fft.obj (.text)

demo.obj (var_defs)

tables.obj (.data)
fft.obj (.data)
--HOLE-- [Ffill = 7alc]
demo.obj (.data)

demo.obj (.ebss) [Fill=Ffff]
fft.obj (.ebss)

tables.obj (.ebss) [Fill=Ffff]
UNINITIALIZED

demo.obj (xy)

GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name

address

00000040
00000200
003f0000
00000040
000000a8
00000040
00000200
0000030c
000000a9
003f001a
00310000
0031000e
003f0000
0000030c
000000a9
003f001a

name
-ebss
.data
.text

ARRAY
TEMP

ebss
data___

edat

a—

___end__

etex

t_

text__

_funcl
_main
edata
end
etext

GLOBAL SYMBOLS: SORTED BY Symbol Address

address

00000040
00000040

name

ARRAY
ebss

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Linker Description

253

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

Linker Example www.ti.com
Example 8-34. Output Map File, demo.map (continued)

00000040 .ebss

000000a8 TEMP

000000a9 __ end__

000000a9 end

00000200 __ data__

00000200 .data

0000030c edata

0000030c ___ edata__

0030000 _main

00310000 .text

003f0000 _ text

003f000e _Ffuncl

003f00la etext

003f00la _ etext

[16 symbols]
254 Linker Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 9
I ’.{‘IE)S(’?gUMENTS SPRU513K—-October 2016

Absolute Lister Description

The TMS320C28x absolute lister is a debugging tool that accepts linked object files as input and creates
.abs files as output. These .abs files can be assembled to produce a listing that shows the absolute
addresses of object code. Manually, this could be a tedious process requiring many operations; however,
the absolute lister utility performs these operations automatically.

Topic Page

9.1 Producing an ADSOIULE LiStiNg ...ueuiuieeieieiiieieee et e e et e e eeeeeeaes 256

9.2 INVOKING the ADSOIULE LISTEr ...cueeiiiee ettt e e e e e eeees 257

9.3 ADSOlUte LisSter EXamPle uoueuiiiiiiiiii e e 258
SPRU513K-0October 2016 Absolute Lister Description 255

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Producing an Absolute Listing

13 TEXAS
INSTRUMENTS

www.ti.com

9.1 Producing an Absolute Listing
Figure 9-1 illustrates the steps required to produce an absolute listing.
Figure 9-1. Absolute Lister Development Flow
Step 1: Assembler First, assemble a source file.
source file
Assembler
_______ Object o o o]
file
Step 2 Link the resulting object file.
Linker
256 Absolute Lister Description SPRU513K-0October 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Absolute Lister

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs2000 [-options] input file

abs2000 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive
and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:
-e enables you to change the default naming conventions for filename extensions on
assembly files, C source files, and C header files. The valid options are:

» ea [.]Jasmext for assembly files (default is .asm)
e ec [.Jeext for C source files (default is .c)

» eh [.]Jhext for C header files (default is .h)

* ep [.]Jpext for CPP source files (default is cpp)

The . in the extensions and the space between the option and the extension are
optional.

-fs specifies a directory for the output files. For example, to place the .abs file generated
by the absolute lister in C:\ABSDIR use this command:
abs2000 -fs C:\ABSDIR filename.out
If the -fs option is not specified, the absolute lister generates the .abs files in the
current directory.

-q (quiet) suppresses the banner and all progress information.

input file names the linked object file. If you do not supply an extension, the absolute lister
assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the --absolute_listing assembler option as follows to create the absolute listing:
¢l2000 --absolute_listing filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (--symdebug:dwarf compiler option). When the debugging option is set, the resulting linked object
file contains the name of the source files used to build it. In this case, the absolute lister does not generate
a corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses
the assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:

abs2000 -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

SPRU513K-0October 2016 Absolute Lister Description 257

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Absolute Lister Example

13 TEXAS
INSTRUMENTS

www.ti.com

9.3

Absolute Lister Example

This example uses three source files. The files modulel.asm and module2.asm both include the file

globals.def.

modulel.asm

-text
array .usect "_ebss",100
dflag .usect ".ebss", 2
.copy globals.def
MoV ACC, #offset
MoV ACC, #dflag

module2.asm

offset .usect '.ebss", 2
.copy globals.def
MOV ACC, #offset
MoV ACC, #array

globals.def

-global dflag
-global array
-global offset

The following steps create absolute listings for the files modulel.asm and module2.asm:

Step 1:
cl2000 modulel
cl12000 module2

This creates two object files called modulel.obj and module2.obj.
Next, link modulel.obj and module2.obj using the following linker command file, called

Step 2:
bttest.cmd:

First, assemble modulel.asm and module2.asm:

--output_file=bttest.out
--map_Tile=bttest.map

modulel.obj
module2.obj
MEMORY

{

PAGE O: ROM:
PAGE 1: RAM:

}
SECTIONS

{
.data: >RAM
.text: >ROM
.ebss: >RAM

Invoke the linker:

origin=2000h length=2000h
origin=8000h length=8000h

cl2000 --run_linker bttest.cmd
This command creates an executable object file called bttest.out; use this file as input for the

absolute lister.

258

Absolute Lister Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Absolute Lister Example
Step 3: Now, invoke the absolute lister:

abs2000 bttest.out
This command creates two files called modulel.abs and module2.abs:

modulel.abs:

-nolist

array .setsym 000008000h

dflag .setsym 000008064h

offset .setsym 000008066h

.data .setsym 000008000h

edata .setsym 000008000h

-text .setsym 000002000h

etext .setsym 000002008h

-usect .setsym 000008000h

end .setsym 000008068h
.setsect "' _text',000002000h
.setsect " .data',000008000h
.setsect "' _ebss',00008000h
-list
-text
.copy "modulel.asm"

module2.abs:

-nolist

array .setsym 000008000h

dflag .setsym 000008064h

offset .setsym 000008066h

.data .setsym 000008000h

edata .setsym 000008000h

-text .setsym 000002000h

etext .setsym 000002008h

-usect .setsym 000008000h

end .setsym 000008068h
.setsect "' _text",000002004h
.setsect " .data',000008000h
.setsect "' _ebss',00008066h
-list
-text
.copy "module2._asm"

These files contain the following information that the assembler needs for Step 4:

< They contain .setsym directives, which equate values to global symbols. Both files contain
global equates for the symbol dflag. The symbol dflag was defined in the file globals.def,
which was included in modulel.asm and module2.asm.

« They contain .setsect directives, which define the absolute addresses for sections.

» They contain .copy directives, which defines the assembly language source file to include.
The .setsym and .setsect directives are useful only for creating absolute listings, not normal
assembly.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you must use

the --absolute_listing option when you invoke the assembler):
cl2000 --absolute_listing modulel.abs
cl2000 --absolute_listing module2.abs

This command sequence creates two listing files called modulel.lst and module2.Ist; no
object code is produced. These listing files are similar to normal listing files; however, the
addresses shown are absolute addresses.

The absolute listing files created are modulel.Ist (see Example 9-1) and module2.Ist (see
Example 9-2).

SPRU513K-0October 2016 Absolute Lister Description 259

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Absolute Lister Example

13 TEXAS
INSTRUMENTS

www.ti.com

Example 9-1. modulel.Ist

modulel.abs

15 002000

16

1 002000

2 008000 array
3 008064 dflag
4

1

2

3

5 002000 FF20!

002001 8066
002002 FF20-
002003 8064

()]

Example 9-2. module2.Ist

module2.abs
15 002004

1 008066 offset

WWNEDN

002004 FF20-
002005 8066
002006 FF20!
002007 8000

N

PAGE
-text
.copy "modulel.asm"
-text
.usect ".ebss",100
.usect ".ebss",2
.copy globals.def
-global dflag
-global array
-global offset
MoV ACC,#offset
MoV ACC,#dflag
PAGE
-text
.copy "module2.asm"
.usect '"_ebss",2

.copy globals.def
-global dflag
-global array
-global offset

MoV ACC,#offset

MoV ACC,#array

260 Absolute Lister Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Chapter 10
l ?Eé(?lgUMENTS SPRU513K—-October 2016

Cross-Reference Lister Description

The TMS320C28x cross-reference lister is a debugging tool. This utility accepts linked object files as input
and produces a cross-reference listing as output. This listing shows symbols, their definitions, and their
references in the linked source files.

Topic

Page
10.1 Producing a Cross-Reference LiStiNg......cocueuieieiiiiiiiiieiiieieieeeie e e reeeeaenns 262
10.2 Invoking the CroSS-ReferenCe LiStercocie it e eeees 263
10.3 Cross-Reference Listing EXamMpPle. ...t e e e 264

SPRU513K—-October 2016

Cross-Reference Lister Description 261
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Producing a Cross-Reference Listing www.ti.com
10.1 Producing a Cross-Reference Listing
Figure 10-1 illustrates the steps required to produce a cross-reference listing.
Figure 10-1. The Cross-Reference Lister Development Flow
)
Step 1: Assembler First, invoke the assembler with the compiler
source file --cross_reference option. This produces
T a cross-reference table in the listing file and
adds to the object file cross-reference infor-
Assembler mation. By default, only global symbols are
cross-referenced. If you use the compiler
--output_all_syms option, local symbols are
- cross-referenced as well.
_______ Object -
file
Step 2: Link the object file (.obj) to obtain an
executable object file (.out).
Linker
Linked object
file
Invoke the cross-reference lister. The
following section provides the command
Cross-reference | syntax for invoking the cross-reference lister
lister utility.
Cross-reference
listing
262 Cross-Reference Lister Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Cross-Reference Lister

10.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the --cross_reference option. This option
creates a cross-reference listing and adds cross-reference information to the object file. By default, the
assembler cross-references only global symbols, but if the assembiler is invoked with the --
output_all_syms option, local symbols are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

xref2000 [options] [input filename [output filename]]

xref2000 is the command that invokes the cross-reference utility.
options identifies the cross-reference lister options you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.

-l (lowercase L) specifies the number of lines per page for the output file. The format
of the -l option is -Inum, where num is a decimal constant. For example, -130 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

-q suppresses the banner and all progress information (run quiet).

input filename s a linked object file. If you omit the input filename, the utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit the output filename, the default
filename is the input filename with an .xrf extension.

SPRU513K-0October 2016 Cross-Reference Lister Description 263

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Cross-Reference Listing Example www.ti.com

10.3 Cross-Referenc

e Listing Example

These terms defined appear in the cross-reference listing in Example 10-1:

Symbol
Filename
RTYP

AsmVal

LnkVal
DefLn
RefLn

Name of the symbol listed

Name of the file where the symbol appears

The symbol's reference type in this file. The possible reference types are:
STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.

EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
Table 10-1 lists these characters and names.

This hexadecimal number is the value assigned to the symbol after linking.
The statement number where the symbol is defined.

The line number where the symbol is referenced. If the line number is followed by an
asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

Table 10-1. Symbol Attributes in Cross-Reference Listing

Character Meaning

Symbol defined in a .text section

Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .usect section

Example 10-1 is an example of cross-reference listing.

Example 10-1. Cross-Reference Listing

Symbol: _SETUP

Filename

RTYP AsmVal LnkVval DefLn RefLn RefLn RefLn

demo.asm

EDEF "00000018 00000018 18 13 20

Symbol: _Fill_tab

Filename RTYP AsmVal Lnkval DeflLn RefLn RefLn RefLn
ctrl_asm EDEF *00000000 00000040 10 5
Symbol: _x42
Filename RTYP AsmVal Lnkval DeflLn RefLn RefLn RefLn
demo.asm EDEF *00000000 00000000 7 4 18
Symbol: gvar
Filename RTYP Asmval Lnkval DeflLn RefLn RefLn RefLn
tables.asm EDEF 00000000 08000000 11 10
264 Cross-Reference Lister Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 11
l TEXAS SPRU513K-October 2016

INSTRUMENTS
Object File Utilities

This chapter describes how to invoke the following utilities:

* The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both text and XML formats.

» The disassembler accepts object files and executable files as input and produces an assembly listing
as output. This listing shows assembly instructions, their opcodes, and the section program counter
values.

» The name utility prints a list of names defined and referenced in an object file, executable files, and/or
archive libraries.

» The strip utility removes symbol table and debugging information from object and executable files.

Topic Page

11.1 Invoking the Object File Display ULtyc.ouieieieiiieiiecieiee e e e eeeneans 266

11.2 Invoking the DiSASSEMDIE it e e e e e e e e aeaaaas 267

11.3 InvoKing the NamMe ULIITYueieeeiie ettt e e e e e e e e e e e e e e aeneaes 267

11.4 INVOKING the STrP ULty cuoueeieiiiii et e et e e e e e aaanaes 268
SPRU513K-0October 2016 Object File Utilities 265

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Invoking the Object File Display Utility

13 TEXAS
INSTRUMENTS

www.ti.com

11.1 Invoking the Object File Display Utility

The object file display utility, ofd2000, prints the contents of object files (.obj), executable files (.out),
and/or archive libraries (.lib) in both text and XML formats. Hidden symbols are listed as no name, while
localized symbols are listed like any other local symbol.

To invoke the object file display utility, enter the following:

’ofd2000 [options] input filename [input filename]

ofd2000 is the command that invokes the object file display utility.

input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file.
The filename must contain an extension.

options identify the object file display utility options that you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.

_Cg

--dwarf_display=attributes

-g
-h
-o=filename

--obj_display attributes

-V
-X
--xml_indent=num

Prints function stack usage and callee information in XML
format. While the XML output may be accessed by a
developer, this option was primarily designed to be used
by tools such as Code Composer Studio to display an
application’s worst case stack usage.

Controls the DWARF display filter settings by specifying a
comma-delimited list of attributes. When prefixed with no,
an attribute is disabled instead of enabled.

Examples: --dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The ordering of attributes is important (see --obj_display).

The list of available display attributes can be obtained by

invoking ofd2000 --dwarf_display=help.

Appends DWARF debug information to program output.

Displays help

Sends program output to filename rather than to the
screen.

Controls the object file display filter settings by specifying
a comma-delimited list of attributes. When prefixed with
no, an attribute is disabled instead of enabled.

Examples: --0bj_display=rawdata,nostrings
--0bj_display=all,norawdata
--0bj_display=none,header

The ordering of attributes is important. For instance, in "--

obj_display=none,header", ofd2000 disables all output,

then re-enables file header information. If the attributes
are specified in the reverse order, (header,none), the file
header is enabled, the all output is disabled, including the
file header. Thus, nothing is printed to the screen for the
given files. The list of available display attributes can be
obtained by invoking ofd2000 --obj_display=help.

Prints verbose text output.

Displays output in XML format.

Sets the number of spaces to indent nested XML tags.

266 Object File Utilities

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS

INSTRUMENTS

www.ti.com Invoking the Disassembler

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in
which they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of
the input files on the console screen.

Object File Display Format

NOTE: The object file display utility produces data in a text format by default. This data is not
intended to be used as input to programs for further processing of the information. XML
format should be used for mechanical processing.

11.2 Invoking the Disassembler
The disassembler, dis2000, examines the output of the assembler or linker. This utility accepts an object
file or executable file as input and writes the disassembled object code to standard output or a specified
file.
To invoke the disassembler, enter the following:
dis2000 input filename[.] [output filename]
dis2000 is the command that invokes the disassembler.
input is a COFF object file (.obj) or an executable file (.out).
filename[.ext]
output filename is the name of the optional output file to which the disassembly will be written. If an
output filename is not specified, the disassembly is written to standard output.
11.3 Invoking the Name Utility
The name utility, nm2000, prints the list of names defined and referenced in an object file, executable file,
or archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols
are listed as """.
To invoke the name utility, enter the following:
‘ nm2000 [-options] [input filenames]
nm2000 is the command that invokes the name utility.
input filename is an object file (.obj), executable file (.out), or archive library (.lib).
options identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a prints all symbols.
-C also prints C_NULL symbols for a COFF object module.
-d also prints debug symbols for a COFF object module.
-f prepends file name to each symbol.
-g prints only global symbols.
-h shows the current help screen.
-l produces a detailed listing of the symbol information.
-n sorts symbols numerically rather than alphabetically.
-o file outputs to the given file.
-p causes the name utility to not sort any symbols.
SPRU513K-0October 2016 Object File Utilities 267

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Invoking the Strip Utility www.ti.com
-q (quiet mode) suppresses the banner and all progress information.
-r sorts symbols in reverse order.
-t also prints tag information symbols for a COFF object module.
-u only prints undefined symbols.

11.4 Invoking the Strip Utility

The strip utility, strip2000, removes symbol table and debugging information from object and executable
files.

To invoke the strip utility, enter the following:

strip2000 [-p] input filename [input filename]

strip2000 is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and can

appear anywhere on the command line following the invocation. Precede each option
with a hyphen (-). The strip utility option is as follows:

-0 filename writes the stripped output to filename.
-p removes all information not required for execution. This option causes more
information to be removed than the default behavior, but the object file is

left in a state that cannot be linked. This option should be used only with
static executable or dynamic object module files.

When the strip utility is invoked without the -0 option, the input object files are replaced with the stripped
version.

268 Object File Utilities SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

The TMS320C28x assembler and linker create object files which are in binary formats that encourage
modular programming and provide powerful and flexible methods for managing code segments and target

TeEXAS
INSTRUMENTS

Chapter 12

Hex Conversion Utility Description

system memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an
object file into one of several standard ASCIl hexadecimal formats, suitable for loading into an EPROM
programmer. The utility is also useful in other applications requiring hexadecimal conversion of an object

file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:
ASCII-Hex, supporting 16-bit addresses

Extended Tektronix (Tektronix)

Intel MCS-86 (Intel)

Motorola Exorciser (Motorola-S), supporting 16-bit addresses

Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses
Texas Instruments TI-TXT format, supporting 16-bit addresses

Topic Page
12.1 The Hex Conversion Utility's Role in the Software Development Flow 270
12.2 Invoking the Hex Conversion ULHITYcoceinieieieicieei e e ee e e eeeeeaes 271
12.3 Understanding Memory WISeiiiii ettt e e e e e eeaenenns 274
12.4 The ROMS Dil@CHIVE .. ettt ettt ettt ettt e e ettt ta e e et e e taea e e e e e anananenenes 278
12.5 The SECTIONS DilECTLIVE tueuiuiuinititiieenenititieeeenaattreaesenasaeseaeenenanrnreaeasnenanannnns 282
12.6 The Load Image Format (--load_image OpPtioN)...ccceeieiuiiiiiiiiiiiiieiene e eenenees 283
12.7 EXxcluding a SpecCified SECTION ...ttt e e e s e e e e aaaaaas 283
12.8 Assigning OULPUL FIlENAMESe ettt e e e e e e e e e n e nens 284
12.9 Image Mode and the —-fill OPtiON......cii i e e e e e eneens 285
12.10 Building a Table for an On-Chip BOOt LOGAEcueueieiniiiiiiiiiiie e eeeens 286
12.11 Controlling the ROM DeViCe AQOrESS ...cuuutieiniiiitieieieieeaee e ee et e eaaeeenenes 292
12.12 Control Hex Conversion Utility DiagnoStiCS . .cuiitiiiuieiiiiiitiiiieieieetieesaseeaeeenanas 293
12.13 Description of the ObJEeCt FOrMaAtS ...uuiuiuiiiiitieiieiee it e e e eaenaneenes 294
12.14 Hex Conversion ULility Error MESSAQgES . .ucucueuineeeeuenaninieaeeenenrnreseeenenanrnaenenes 300

SPRU513K-0October 2016 Hex Conversion Utility Description 269

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-October 2016

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

The Hex Conversion Utility's Role in the Software Development Flow www.ti.com

12.1 The Hex Conversion Utility's Role in the Software Development Flow
Figure 12-1 highlights the role of the hex conversion utility in the software development process.

Figure 12-1. The Hex Conversion Utility in the TMS320C28x Software Development Flow

C
source
files

Macro
source
files

C/C++

compiler

C2xx
assembler
source

Assembler Transition
source assistant
Macro Assembler
library LESHT G source
Object Library-build
files utility
T Debugging
. I3 . tools
Library of Run-time-
object) support
files Linker library

Post-link
optimizer

Executable
object file

Hex-conversion
utility

Cross-reference i Object file
lister utilities

EPROM Absolute lister
programmer

SPRU513K—-October 2016

270 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

12.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:

e Specify the options and filenames on the command line. The following example converts the file
firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.

hex2000 -t firmware -o firm.Isb -o firm.msb
» Specify the options and filenames in a command file. You can create a file that stores command

line options and filenames for invoking the hex conversion utility. The following example invokes the
utility using a command file called hexutil.cmd:

hex2000 hexutil.cmd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

12.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

hex2000 [options] filename

hex2000 is the command that invokes the hex conversion utility.

options supplies additional information that controls the hex conversion process. You can use
options on the command line or in a command file. Table 12-1 lists the basic options.

« All options are preceded by a hyphen and are not case sensitive.

* Several options have an additional parameter that must be separated from the option
by at least one space.

e Options with multi-character names must be spelled exactly as shown in this
document; no abbreviations are allowed.

e Options are not affected by the order in which they are used. The exception to this rule

is the --quiet option, which must be used before any other options.
filename names an object file or a command file (for more information, see Section 12.2.2).

Table 12-1. Basic Hex Conversion Utility Options

Option Alias Description See
General Options
_ } Number output locations by bytes rather than by target _
byte byte addressing
—entrypoint=addr e Spe(_:lfy the entry point at which to begin execution after boot Table 12-2
loading
--exclude={fname(sname) | _exclude If the fllename (fname) is omitted, all sections matching Section 12.7
shame} shame will be excluded.
--fill=value fill Fill holes with value Section 12.9.2
Display the syntax for invoking the utility and list available
options. If the option is followed by another option or phrase,
--help -options, -h detailed information about that option or phrase is displayed. = Section 12.2.2
For example, to see information about options associated with
generating a boot table, use --help boot.
--image -image Select image mode Section 12.9.1
--linkerfill -linkerfill Include linker fill sections in images --
--map=filename -map Generate a map file Section 12.4.2
--memwidth=value -memwidth Define the system memory word width (default 16 bits) Section 12.3.2
--order={LS|MS} -order Specify data ordering (endianness) Section 12.3.4
--outfile=filename -0 Specify an output filename Section 12.8

SPRU513K-0October 2016
Submit Documentation Feedback

Hex Conversion Utility Description 271

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I} TEXAS
INSTRUMENTS
Invoking the Hex Conversion Utility www.ti.com
Table 12-1. Basic Hex Conversion Utility Options (continued)
Option Alias Description See
--quiet -q Run quietly (when used, it must appear before other options) Section 12.2.2
Specify the ROM device width (default depends on format
--romwidth=value -romwidth used). This option is ignored for the TI-TXT and TI-Tagged Section 12.3.3
formats.
--zero -zero, -z Reset the address origin to 0 in image mode Section 12.9.3
Diagnostic Options
--diag_error=id Categorizes the diagnostic identified by id as an error Section 12.12
--diag_remark=id Categorizes the diagnostic identified by id as a remark Section 12.12
--diag_suppress=id Suppresses the diagnostic identified by id Section 12.12
--diag_warning=id Categorizes the diagnostic identified by id as a warning Section 12.12
--display_error_number Displays a diagnostic's identifiers along with its text Section 12.12
--issue_remarks Issues remarks (nonserious warnings) Section 12.12
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 12.12
e e L aaandons KNG 8t g 12,4
Boot Table Options
—boot -boot ggré\{relgﬁlllss;g&?vsei)nto bootable form (use instead of a Table 12-2
--bootorg=addr -bootorg Specify the source address of the boot loader table Table 12-2
—-gpio8 -gpio8 Ey?fzciglntga)ble source as the GP I/O port, 8-bit mode. (Aliased .\ 15,
--gpiol6 -gpiol6 Specify table source as the GP 1/O port, 16-bit mode Table 12-2
--lospcp=value -lospcp Specify the initial value for the LOSPCP register Table 12-2
--SCi8 -sci8 Specify table source as the SCI-A port, 8-bit mode Table 12-2
--Spi8 -spi8 Specify table source as the SPI-A port, 8-bit mode Table 12-2
--spibrr=value -spibrr Specify the initial value for the SPIBRR register Table 12-2
Output Options
--ascii -a Select ASCII-Hex Section 12.13.1
--binary -b Select binary (Must have memory width of 8 bits.) --
--intel -i Select Intel Section 12.13.2
--motorola=1 -ml Select Motorola-S1 Section 12.13.3
--motorola=2 -m2 Select Motorola-S2 Section 12.13.3
--motorola=3 -m3 Select Motorola-S3 (default -m option) Section 12.13.3
—tektronix x sséi(i}ti;e;ktronix (default format when no output option is Section 12.13.4
--ti_tagged -t Select TI-Tagged Section 12.13.5
-ti_txt Select TI-Txt Section 12.13.6
Load Image Options
--load_image Select load image Section 12.6
--section_name_prefix=string Specify the section name prefix for load image object files Section 12.6

272 SPRU513K—-October 2016

Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com Invoking the Hex Conversion Utility

12.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and

options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to

customize the conversion process.

Command files are ASCII files that contain one or more of the following:

e Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

 ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (See Section 12.4.)

» SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Section 12.5.)

e Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:
/* This is a comment. */

To invoke the utility and use the options you defined in a command file, enter:

hex2000 command_filename

You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:

hex2000 firmware.cmd --map=Ffirmware.mxp

The order in which these options and filenames appear is not important. The utility reads all input from the

command line and all information from the command file before starting the conversion process. However,
if you are using the -g option, it must appear as the first option on the command line or in a command file.

The --help option displays the syntax for invoking the compiler and lists available options. If the --help
option is followed by another option or phrase, detailed information about the option or phrase is
displayed. For example, to see information about options associated with generating a boot table use --
help boot.

The --quiet option suppresses the hex conversion utility's normal banner and progress information.

* Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
--ti-tagged /* Tl-Tagged */
—-outfile=firm.Isb /* output file */
--outfile=firm.msb /* output file */
You can invoke the hex conversion utility by entering:

hex2000 firmware.cmd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output
file is one byte wide and 4K bytes long.

appl.out /* input file */
--intel /* Intel format */
--map=appl -mxp /* map file */
ROMS

{

ROW1: origin=0x00000000 1en=0x4000 romwidth=8
Files={ appl.u0 appl.ul appl.u2 appl.u3 }

ROW2: origin=0x00004000 1en=0x4000 romwidth=8
Ffiles={ appl.u4 appl.u5 appl.u6 appl.u7 }

}

SECTIONS
{ .text, .data, .cinit, .sectl, .vectors, .econst:

}

SPRU513K-0October 2016 Hex Conversion Utility Description 273
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

12.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

e Target width
* Memory width
* ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.
Figure 12-2 illustrates the separate and distinct phases of the hex conversion utility's process flow.

Figure 12-2. Hex Conversion Utility Process Flow
Raw data in object files is
/ represented in the target’s
addressable units. For the
(inputfile) TMS320C28x, this is 16 bits.

The raw data in the object file
is grouped into words according
Phase | to the size specified by the
--memwidth option.

The memwidth-sized words are
broken up according to the size
Phase || specified by thg --romwid_th option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

(outputfile(s))

12.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The width is fixed for each target and
cannot be changed. The TMS320C28x targets have a width of 16 bits.

274

Hex Conversion Utility Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Understanding Memory Widths

12.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 16-bit processor has a 16-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 16 hits).
You can change the memory width (except for TI-TXT format) by:
» Using the --memwidth option. This changes the memory width value for the entire file.

» Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the --memwidth option for that range.
See Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only when you need to break single target words
into consecutive, narrower memory words.

Binary Format is 8 Bits Wide

NOTE: You cannot change the memory width of the Binary format. The Binary hex format supports
an 8-bit memory width only.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the memory width of the TI-TXT format. The TI-TXT hex format supports
an 8-bit memory width only.

Figure 12-3 demonstrates how the memory width is related to object file data.

Figure 12-3. Object File Data and Memory Widths

Source file

.word OAABBh
word 01122h

COFF data (assumed to be in big-endian format)

Memory widths (variable)

--memwidth=16 (default) --memwidth=8

f
Data aft
pr?aZ:I g:‘

hex2000

N2 ||
M ENN | BN [IR | S

SPRU513K-0October 2016 Hex Conversion Utility Description 275

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

12.3.3 Partitioning Data Into Output Files

If your *.out file contains sections allocated to multiple pages, separate output files are generated for each
page. See Section 8.5.4.2 for information about specifying memory pages.

In addition, ROM width determines how the hex conversion utility partitions the data into output files. ROM
width specifies the physical width (in bits) of each ROM device and corresponding output file (usually one
byte or eight bits). After the object file data is mapped to the memory words, the memory words are
broken into one or more output files. The number of output files is determined by the following formulas:

* If memory width = ROM width:
number of files = memory width + ROM width
* If memory width < ROM width:
number of files = 1
For example, for a memory width of 16, you could specify a ROM width value of 16 and get a single

output file containing 16-bit words. Or you can use a ROM width value of 8 to get two files, each
containing 8 bits of each word.

The default ROM width that the hex conversion utility uses depends on the output format:

» All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.

» TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

The TI-Tagged Format is 16 Bits Wide

NOTE: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format supports
a 16-bit ROM width only.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the ROM width of the TI-TXT format. The TI-TXT hex format supports
only an 8-bit ROM width.

You can change ROM width (except for TI-Tagged and TI-TXT formats) by:
» Using the --romwidth option. This option changes the ROM width value for the entire object file.

» Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the --romwidth option for that range. See
Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format, the utility simply writes
multibyte fields into the file. The --romwidth option is ignored for the TI-TXT and TI-Tagged formats.

Figure 12-4 illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent
values. Thus, the byte ordering of the object file data is maintained throughout the conversion process. To
refer to the partitions within a memory word, the bits of the memory word are always numbered from right
to left as follows:

--memwidth=16

AABB1122
15 0

276 Hex Conversion Utility Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Understanding Memory Widths

Data after
phase | of
hex2000

Data after
phase Il of
hex2000

Figure 12-4. Data, Memory, and ROM Widths

Source file
0AABBh
01122h

.word
.word

COFF data (assumed to be in big-endian format)

Memory widths (variable)
——— s

-

i X _\
7 --memW|dth—16\\

/
/ \ / \\
(AABB } II AA \
\ 1122 J ! BB ‘:
’:’_ (/(\ \\ 11 /’
R) 22 /
\ \ \) //
\ \\ \\ /7
\l \\ N~ T//
] \ \
.] \ \
Output files /’ \\ ||
\
--romwidth=16 o \ !
--outfile=file.wrd | AABB 1122 e e ,’ ,’
// //
--romwidth=8 " #
/
--outfile=file.o0 BB 22| e e« P4
7
—-outfle=file.b1 |AA 11| s« //
7
7
--romwidth=8 7

--outfile=file.byt | AABB1122 | e

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Hex Conversion Utility Description 277

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

12.3.4 Specifying Word Order for Output Words

12.4

There are two ways to split a wide word into consecutive memory locations in the same hex conversion

utility output file:

» --order=MS specifies big-endian ordering, in which the most significant part of the wide word occupies
the first of the consecutive locations.

» --order=LS specifies little-endian ordering, in which the least significant part of the wide word
occupies the first of the consecutive locations.

By default, the utility uses little-endian format. Unless your boot loader program expects big-endian format,
avoid using --order=MS.

When the --order Option Applies
NOTE:

* This option applies only when you use a memory width with a value less than 16.
Otherwise, --order is ignored.

¢ This option does not affect the way memory words are split into output files. Think of the
files as a set: the set contains a least significant file and a most significant file, but there
is no ordering over the set. When you list filenames for a set of files, you always list the
least significant first, regardless of the --order option.

The ROMS Directive

The ROMS directive specifies the physical memory configuration of your system as a list of address-range
parameters.

Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320C28x linker: both define the
memory map of the target address space. Each line entry in the ROMS directive defines a specific
address range. The general syntax is:

ROMS
{

romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={ filename 4, filename ,, ...}]

romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

ROMS begins the directive definition.

romname identifies a memory range. The name of the memory range can be one to eight
characters in length. The name has no significance to the program; it simply identifies
the range, except when the output is for a load image in which case it denotes the
section name. (Duplicate memory range names are allowed.)

origin specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:

278

Hex Conversion Utility Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

The ROMS Directive

Constant Notation Example
Hexadecimal 0x prefix or h suffix 0x77 or 077h
Octal 0 prefix 077
Decimal No prefix or suffix 77
length specifies the length of a memory range as the physical length of the ROM device. It

can be entered as length, len, or I. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length value, it defaults to the length of the entire address
space.

romwidth specifies the physical ROM width of the range in bits (see Section 12.3.3). Any value

you specify here overrides the --romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.

memwidth specifies the memory width of the range in bits (see Section 12.3.2). Any value you

fill

specify here overrides the --memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Section 12.5.)

specifies a fill value to use for the range. In image mode, the hex conversion utility
uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the --fill option. When
using fill, you must also use the --image command line option. (See Section 12.9.2.)

files identifies the names of the output files that correspond to this range. Enclose the list of

names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Section 12.3.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the --image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

12.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit
into the ROMs.

Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues no messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

Use image mode. When you use the --image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the --fill option, or with the default value of 0.

SPRU513K-0October 2016 Hex Conversion Utility Description 279
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

The ROMS Directive www.ti.com

12.4.2 An Example of the ROMS Directive

The ROMS directive in Example 12-1 shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMSs. Figure 12-5 illustrates the input and output files.

Example 12-1. A ROMS Directive Example

infile.out
--image
--memwidth 16

ROMS

EPROM1: org = 0x00004000, len = 0x2000, romwidth = 8
files = { rom4000.b0, rom4000.b1}

1
[o¢]

EPROM2: org = 0x00006000, len = 0x2000, romwidth
fill = OxFFOOFFOO,
files = { rom6000.b0, rom6000.b1}

Figure 12-5. The infile.out File Partitioned Into Four Output Files

Qutput files:
infile.out EPROM1
rom4000.b0 rom4000.b1
0x00004000 0x00004000 '
text (org) lext text
0x00005B80 Oh oh
.data 0x00005B80
0x0000633F data data
0x00006700
0x00005FFF
.table
Width = 8 bits
EPROM2
rom&000.b0 romG6000.b1
0x00008000
0x00006340 data data
X FER 00K
0x00006700
table table
0x00007C80 A a0n
0x00007FFF

The map file (specified with the --map option) is advantageous when you use the ROMS directive with
multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. Example 12-2 is a segment of the
map file resulting from the example in Example 12-1.

280 Hex Conversion Utility Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K—-October 2016

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com The ROMS Directive

Example 12-2. Map File Output From Example 12-1 Showing Memory Ranges

OUTPUT FILES: rom4000.b0 [bO..b7]
rom4000.b1 [b8..b15]
CONTENTS: 00004000..0000487F _text
00004880. .00005b7F FILL = 00000000
00005b80. .00005FFF .data

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..bl5]
CONTENTS: 00006000..0000633f .data
00006340. .000066FF FILL = FFOOFffOO
00006700..00007c7f .table
00007c80..00007FFF FILL = FFOOFFOO

EPROML1 defines the address range from 0x00004000 through 0x00005FFF with the following sections:

This section ... Has this range ...
text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0x00005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:
* rom4000.b0 contains bits 0 through 7
e rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...
.data 0x00006000 through 0x0000633F
.table 0x00006700 through 0x00007C7F

The rest of the range is filled with 0xFFO (from the specified fill value). The data from this range is
converted into two output files:

* rom6000.b0 contains bits O through 7
* rom6000.b1 contains bits 8 through 15

SPRU513K-0October 2016 Hex Conversion Utility Description 281

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

The SECTIONS Directive www.ti.com

12.5 The SECTIONS Directive

You can convert specific sections of the object file by name with the hex conversion utility SECTIONS
directive. You can also specify those sections that you want to locate in ROM at a different address than
the load address specified in the linker command file. If you:

» Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the object file.

» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Sections Generated by the C/C++ Compiler

NOTE: The TMS320C28x C/C++ compiler automatically generates these sections:
* Initialized sections: .text, .econst, and .cinit
¢ Uninitialized sections: .ebss, .stack, and .esysmem

Use the SECTIONS directive in a command file. (See Section 12.2.2.) The general syntax is:

SECTIONS

{
oname(sname)[:] [paddr=value]
oname(sname)[:] [paddr= boot]
oname(sname)[:] [boot]

}
SECTIONS begins the directive definition.
oname identifies the object filename the section is located within. The filename is optional
when only a single input file is given, but required otherwise.
shame identifies a section in the input file. If you specify a section that does not exist, the
utility issues a warning and ignores the name.
paddr=value specifies the physical ROM address at which this section should be located. This value

overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using
paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the --bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text: .data = boot }

In the example below, the object file contains six initialized sections: .text, .data, .econst, .vectors, .coeff,
and .tables. If you want only .text and .data to be converted, use this a SECTIONS directive:

SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:
SECTIONS { .text = boot .data = boot }

For more information about --boot and other command line options associated with boot tables, see
Section 12.2 and Section 12.10.

282

Hex Conversion Utility Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I

TEXAS
INSTRUMENTS

www.ti.com The Load Image Format (--load_image Option)

12.6

The Load Image Format (--load_image Option)

A load image is an object file which contains the load addresses and initialized sections of one or more
executable files. The load image object file can be used for ROM masking or can be relinked in a
subsequent link step.

12.6.1 Load Image Section Formation

The load image sections are formed by collecting the initialized sections from the input executables. There
are two ways the load image sections are formed:

» Using the ROMS Directive. Each memory range that is given in the ROMS directive denotes a load
image section. The romname is the section name. The origin and length parameters are required. The
memwidth, romwidth, and files parameters are invalid and are ignored.

When using the ROMS directive and the load_image option, the --image option is required.

» Default Load Image Section Formation. If no ROMS directive is given, the load image sections are
formed by combining contiguous initialized sections in the input executables. Sections with gaps
smaller than the target word size are considered contiguous.

The default section names are image_1, image_2, ... If another prefix is desired, the --
section_name_ prefix=prefix option can be used.

12.6.2 Load Image Characteristics

12.7

All load image sections are initialized data sections. In the absence of a ROMS directive, the load/run
address of the load image section is the load address of the first input section in the load image section. If
the SECTIONS directive was used and a different load address was given using the paddr parameter, this
address will be used.

The load image format always creates a single load image object file. The format of the load image object
file is determined based on the input files. The file is not marked executable and does not contain an entry
point. The default load image object file name is ti_load_image.obj. This can be changed using the --
outfile option. Only one --outfile option is valid when creating a load image, all other occurrences are
ignored.

Concerning Load Image Format

NOTE: These options are invalid when creating a load image:
e --memwidth
e --romwidth

e --order
e --ZEero
e --byte

If a boot table is being created, either using the SECTIONS directive or the --boot option, the
ROMS directive must be used.

Excluding a Specified Section

The --exclude section_name option can be used to inform the hex utility to ignore the specified section. If
a SECTIONS directive is used, it overrides the --exclude option.

For example, if a SECTIONS directive containing the section name mysect is used and an --exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The --exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, --exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the --exclude option on the command line with the * wildcard, use quotes around the section
name and wildcard. For example, --exclude"sect*". Using quotes prevents the * from being interpreted by
the hex conversion utility. If --exclude is in a command file, do not use quotes.

SPRU513K-0October 2016 Hex Conversion Utility Description 283
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Assigning Output Filenames www.ti.com

If multiple object files are given, the object file in which the section to be excluded can be given in the form
oname(sname). If the object filename is not provided, all sections matching the section name are
excluded. Wildcards cannot be used for the filename, but can appear within the parentheses.

12.8 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one

or more output files. When multiple files are formed by splitting memory words into ROM words, filenames

are always assigned in order from least to most significant, where bits in the memory words are numbered
from right to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1. It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.

For example, assume that the target data is 16-bit words being converted to two files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:

ROMS

{

RANGE1: romwidth=8, files={ xyz.b0 xyz.bl }

3
The utility creates the output files by writing the least significant bits to xyz.b0 and the most significant
bits to xyz.b1.

2. It looks for the --outfile options. You can specify names for the output files by using the --outfile
option. If no filenames are listed in the ROMS directive and you use --outfile options, the utility takes
the filename from the list of --outfile options. The following line has the same effect as the example
above using the ROMS directive:

--outfile=xyz.b0 --outfile=xyz._bl
If your *.out file contains sections allocated to multiple pages, separate output files are generated for
each page. See Section 8.5.4.2 for information about specifying memory pages.
If both the ROMS directive and --outfile options are used together, the ROMS directive overrides the --
outfile options.

3. It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

(a) A format character, based on the output format (see Section 12.13):
a for ASCII-Hex
[for Intel
m for Motorola-S
t for TI-Tagged
X for Tektronix
(b) The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.
(c) The file number in the set of files for the range, starting with 0 for the least significant file.
For example, assume a.out is for a 16-bit target processor and you are creating Intel format output.
With no output filenames specified, the utility produces two output files named a.i0, a.il, a.i2, a.i3.
If you include the following ROMS directive when you invoke the hex conversion utility, you would have
four output files:
ROMS
{
rangel: o = 0x1000 I = 0x1000
range2: o = 0x2000 I = 0x1000
3
284 Hex Conversion Utility Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
www.ti.com Image Mode and the --fill Option
These output files ... Contain data in these locations ...
a.i00 and a.i01 0x1000 through Ox1FFF
a.il0 and a.i1l 0x2000 through Ox2FFF

12.9 Image Mode and the --fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

12.9.1 Generating a Memory Image

With the --image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

NOTE: If you use image mode, you must also use a ROMS directive. In image mode, each output
file corresponds directly to a range of target memory. You must define the ranges. If you do
not supply the ranges of target memory, the utility tries to build a memory image of the entire
target processor address space. This is potentially a huge amount of output data. To prevent
this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

12.9.2 Specifying a Fill Value

The -fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the --fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying --fill=0xOFF results in a fill pattern of OXOFF. The constant
value is not sign extended.

The hex conversion utility uses a default fill value of O if you do not specify a value with the fill option. The
--fill option is valid only when you use --image; otherwise, it is ignored.

12.9.3 Steps to Follow in Using Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See Section 12.4.

Step 2: Invoke the hex conversion utility with the --image option. You can optionally use the --zero
option to reset the address origin to O for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of 0, use the --fill option.

SPRU513K-0October 2016 Hex Conversion Utility Description 285

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Building a Table for an On-Chip Boot Loader www.ti.com

12.10 Building a Table for an On-Chip Boot Loader

Some C28x devices, such as the F2810/12, have a built-in boot loader that initializes memory with one or
more blocks of code or data. The boot loader uses a special table stored in memory or loaded from a
device peripheral to initialize code or data. The hex conversion utility supports the boot loader by
automatically building the boot table.

See Section 3.1.2 for a general discussion of bootstrap loading.

12.10.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the on-chip
loader to copy blocks of data contained in the table to specified destination addresses. The table can be
stored in memory (such as EPROM) or read in through a device peripheral (such as a serial or
communications port).

The hex conversion utility automatically builds the boot table for the boot loader. Using the utility, you
specify the sections you want the boot loader to initialize and the table location. The hex conversion utility
builds a complete image of the table according to the format specified and converts it into hexadecimal in
the output files. Then, you can burn the table into ROM or load it by other means.

The boot loader supports loading from memory that is narrower than the normal width of memory. For
example, you can boot a 16-bit TMS320C28x from a single 8-bit EPROM by using the --memwidth option
to configure the width of the boot table. The hex conversion utility automatically adjusts the table's format
and length. See the boot loader example in the TMS320C28x DSP CPU and Instruction Set Reference
Guide for an illustration of a boot table.

12.10.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing a key value that indicates
memory width, entry point, and values for control registers. Each subsequent block has a header
containing the size and destination address of the block followed by data for the block. Multiple blocks can
be entered. The table ends with a header containing size zero. See the boot loader section in the
TMS320C28x DSP CPU and Instruction Set Reference Guide for more information.

12.10.3 How to Build the Boot Table
Table 12-2 summarizes the hex conversion utility options available for the boot loader.

Table 12-2. Boot-Loader Options

Option Description

--boot Convert all sections into bootable form (use instead of a SECTIONS directive).

--bootorg=value Specify the source address of the boot-loader table.

--entrypoint=value Specify the entry point at which to begin execution after boot loading. The value can be an
address or a global symbol.

--gpio8 Specify the source of the boot-loader table as the GP I/O port, 8-bit mode

--gpiol6 Specify the source of the boot-loader table as the GP 1/O port, 16-bit mode

--lospcp=value Specify the initial value for the LOSPCP register. The value is used only for the spi8 boot table
format and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

--SCi8 Specify the source of the boot-loader table as the SCI-A port, 8-bit mode

--Spi8 Specify the source of the boot-loader table as the SPI-A port, 8-bit mode

--spibrr=value Specify the initial value for the SPIBRR register. The value is used only for the spi8 boot table

format and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

286 Hex Conversion Utility Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Building a Table for an On-Chip Boot Loader
12.10.3.1 Building the Boot Table
To build the boot table, follow these steps:

Step 1: Link the file. Each block of the boot table data corresponds to an initialized section in the
object file. Uninitialized sections are not converted by the hex conversion utility (see
Section 12.5).

When you select a section for placement in a boot-loader table, the hex conversion utility
places the section's load address in the destination address field for the block in the boot
table. The section content is then treated as raw data for that block. The hex conversion
utility does not use the section run address. When linking, you need not worry about the
ROM address or the construction of the boot table; the hex conversion utility handles this.

Step 2: Identify the bootable sections. You can use the --boot option to tell the hex conversion
utility to configure all sections for boot loading. Or, you can use a SECTIONS directive to
select specific sections to be configured (see Section 12.5). If you use a SECTIONS
directive, the --boot option is ignored.

Step 3: Set the boot table format. Specify the --gpio8, --gpiol6, --sci8, or --spi8 options to set the
source format of the boot table. You do not need to specify the memwidth and romwidth as
the utility will set these formats automatically. If --memwidth and --romwidth are used after a
format option, they override the default for the format.

Step 4: Set the ROM address of the boot table. Use the --bootorg option to set the source address
of the complete table. For example, if you are using the C28x and booting from memory
location 0x3FF000, specify --bootorg=0x3FF000. The address field for the boot table in the
hex conversion utility output file will then start at 0x3FF000.

Step 5: Set boot-loader-specific options. Set entry point and control register values as needed.
Step 6: Describe your system memory configuration. See Section 12.3 and Section 12.4.

12.10.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the
boot loader. The address of this section is the boot table origin. As part of the normal conversion process,
the hex conversion utility converts the boot table to hexadecimal format and maps it into the output files
like any other section.

Be sure to leave room in your system memory for the boot table, especially when you are using the
ROMS directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually,
this is not a problem; typically, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use the --bootorg option to
specify the starting address.

12.10.4 Booting From a Device Peripheral

You can choose to boot from the F2810/12 serial or parallel port by using the --gpio9, --gpiol6, --sci8, or --
spi8 boot table format option. The initial value for the LOSPCP register can be specified with the --lospcp
option. The initial value for the SPIBRR register can be specified with the --spibrr option. Only the --spi8
format uses these control register values in the boot table.

If the register values are not specified for the --spi8 format, the hex conversion utility uses the default
values 0x02 for LOSPCP and 0x7F for SPIBRR. When the boot table format options are specified and the
ROMS directive is not specified, the ASCII format hex utility output does not produce the address record.

12.10.5 Setting the Entry Point for the Boot Table

After completing the boot load process, execution starts at the default entry point specified by the linker
and contained in the object file. By using the --entrypoint option with the hex conversion utility, you can set
the entry point to a different address.

For example, if you want your program to start running at address 0x0123 after loading, specify --
entrypoint=0x0123 on the command line or in a command file. You can determine the --entrypoint address
by looking at the map file that the linker generates.

SPRU513K-0October 2016 Hex Conversion Utility Description 287

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Building a Table for an On-Chip Boot Loader

13 TEXAS
INSTRUMENTS

www.ti.com

Valid Entry Points

NOTE: The value can be a constant, or it can be a symbol that is externally defined (for example,

with a .global) in the assembly source.

12.10.6 Using the C28x Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C28x devices. The
C28x hoot loader accepts the formats listed in Table 12-3.

Table 12-3. Boot Table Source Formats

Format Option
Parallel boot GP 1/O 8 bit --gpio8
Parallel boot GP 1/O 16 bit --gpiol6
8-bit SCI boot --sci8
8-bit SPI boot --spi8

The F2810/12 can boot through the SCI-A 8-bit, SPI-A 8-bit, GP 1/O 8-bit, or GP I/l 16-bit interface. The
format of the boot table is shown in Table 12-4.

Table 12-4. Boot Table Format

Description Word Content

Boot table header 1 Key value (Ox10AA or 0x08AA)
2-9 Register initialization value or reserved for future use
10-11 Entry point

Block header 12 Block size in number of words (nl)
13-14 Destination address of the block

Block data 15 Raw data for the block (n1 words)

Block header 16 + nl Block size in number of words

Block data

Additional block headers and data,
as required

Block header with size 0

Destination address of the block
Raw data for the block
Content as appropriate

0x0000; indicates the end of the boot table.

The C28x can boot through either the serial 8-bit or parallel interface with either 8- or 16-bit data. The
format is the same for any combination: the boot table consists of a field containing the destination
address, a field containing the length, and a block containing the data. You can boot only one section. If
you are booting from an 8-bit channel, 16-bit words are stored in the table with MSBs first; the hex
conversion utility automatically builds the table in the correct format. Use the following options to specify

the boot table source:

* To boot from a SCI-A port, specify --sci8 when invoking the utility. Do not specify --memwidth or --

romwidth.

» To boot from a SPI-A port, specify --spi8 when invoking the utility. Do not specify --memwidth or --
romwidth. Use --lospcp to set the initial value for the LOSPCP register and --spibrr to set the initial
value for the SPIBRR register. If the register values are not specified for the --spi8 format, the hex
conversion utility uses the default value 0x02 for LOSPCP and 0x7F for SPIBRR.

» To load from a general-purpose parallel I/O port, invoke the utility with --gpio8 or --gpio16. Do not

specify --memwidth or --romwidth.

The command file in Example 12-3 allows you to boot the .text and .cinit sections of test.out from a 16-bit-
wide EPROM at location Ox3FFCO00. The map file test.map is also generated.

288

Hex Conversion Utility Description

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

Example 12-3. Sample Command File for Booting From 8-Bit SPI Boot

/* ___ */
/* Hex converter command file. */
/* ___ */
test.out /* Input COFF file */
--ascii /* Select ASCIl format */
--map=test.map /* Specify the map file */
--outfile=test_spi8.hex /* Hex utility out file */
--boot /* Consider all the input sections as boot sections */
--spi8 /* Specify the SPI 8-bit boot format */
--lospcp=0x3F /* Set the initial value for the LOSPCP as Ox3F */
/* The -spibrr option is not specified to show that */
/* the hex utility uses the default value (Ox7F) */
--entrypoint=0x3F0000 /* Set the entry point */

The command file in Example 12-3 generates the out file in Figure 12-6. The control register values are
coded in the boot table header and that header has the address that is specified with the --entrypoint

option.

Figure 12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI Boot

3F
1A
1D
A6
00
FF
F7
Al
A9
00
00
C4
00

1A
02
02

7

AA 08 3F 7F 00 00 00

00
56
61
1E
77
76
60
92
59
77
C5
B2
A8

|

00
40
FF
Al
00
FF
7F
0D
FA
00
67
00
06

ey value

LOSPCP initial value

|

00
29
76
F7
77
FF
76
EC
ED
6F
3E
C5
00

SPIBRR register initial value

Reserved for future use

J\

Entry point

A

42
1F
90
86
01
06
00
03
40
42
01
67

B8
76
00
24
DF
6F
00
56
B8
B8
9A
3E

Address of the first block

— A

00
00
04
A7
09
01
7F
Al
02
BD
0D
00

00 00 00 00 00 00 OO

9A
00
29
06
00
DF
76
01
06
B2
6F
9A

04
02
OF
Al
EA
BD
4B
A9
03
02
00
BE

28
29
6F
81
FF
C3
00
08
EC
C5
93
8B

Length of second block in words
Address of the second block

— A

00 3F 00 90 00 04 00 84 10
00 02 10 00 00 00 00 02 00
00 82 10 89 00 3F 00 00 00 00 00

05
1B
00
01
1A
A7
BD
40
A7
A4
00
06

01
04

00
76
9B
09
76
1E
B2
10
1E
8B
0A
00

00
10

06
22
A9
A7
A9
67
42
A9
67
67
03
00

02
00

00
76
24
1E
28
3E
B8
5A
3E
3E
56
6F

00
00

00

AD
A9
01
A9
FF
BE
BD
82
40
40
A8
06

03
00

00

28
28
DF
24
FF
C5

DA
B8
B8
01
00

00
00

Terminating header with length zero

00

88
90
04
03
A8
A9
02
Cc2
04
00
A9
42

04
02

00 3F 00 00 00 90 0O

Length of first block in words

10 69 FF 1F 56
00 A8 28 3F 00
6C 04 29 A8 24
63 5C FF 04 3B
28 FF FF 01 09
24 01 DF A8 24
C5 67 3E 40 B8
C5 67 3E Al 92
06 03 EC A7 1E
92 20 52 06 64
5C A4 08 40 10
B8 02 A8 06 00

00 01 00 00 10
00 80 10 89 00

16
01
01
A9
OE
58
00
FF
67
42
42
42

00
3F

56
09
DF
59
61
FF
59
9C
3E
B8
B8
B8

00
00

The command file in Example 12-4 allows you to boot the .text and .cinit sections of test.out from the 16-
bit parallel GP 1/0O port. The map file test.map is also generated.

SPRU513K—-October 2016

Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2016, Texas Instruments Incorporated

289

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Building a Table for an On-Chip Boot Loader

13 TEXAS
INSTRUMENTS

www.ti.com

Example 12-4. Sample Command File for C28x 16-Bit Parallel Boot GP 1/O

test.out
--ascii

--map=test.map
—-outfile=test_gpiol6.hex

--gpiol6

SECTIONS

{

_text: paddr=BOOT

.cinit: paddr=BOOT

/* Input COFF file */

/*
/*
/*
/*

Select ASCIl format */
Specify the map file */
Hex utility out file */
Specify the 16-bit GP 1/0 boot format */

The command file in Example 12-4 generates the out file in Figure 12-7.

Figure 12-7. Sample Hex Converter Out File for C28x 16-Bit Parallel Boot GP 1/O

00
56
61
1E
77
76
60
92
59
77
C5
B2
A8

00
00

Key value

3F
1A
1D
A6
00
FF
F7
Al
A9
00
00
C4
00

Reserved for future use

L

Entry point

J

00
29
76
F7
77
FF
76
EC
ED
6F
3E
C5
00

00
40
FF
Al
00
FF
7F
0D
FA
00
67
00
06

B8
76
00
24
DF
6F
00
56
B8
B8
9A
3E

42
1F
90
86
01
06
00
03
40
42
01
67

10 AA 00 00 00 00 00

Address of the first block

S .

9a
00
29
06
00
DF
76
01
06
B2
6F
9A

00 00 00 00 00 00 OO

00
00
04
A7
09
01
7F
Al
02
BD
0D
00

28
29
6F
81
FF
C3
00
08
EC
C5
93
8B

04
02
OF
Al
EA
BD
4B
A9
03
02
00
BE

Length of second block in words

[Address of the second block

1A 00 3F 00 90 00 04 10 84 00 01
02 10 02 00 00 00 OO0 0O 02 10 04
02 10 82 00 89 00 3F 00 00 00 00

00
76
9B
09
76
1E
B2
10
1E
8B
0A
00

05
1B
00
01
1A
A7
BD
40
A7
A4
00
06

00
76
24
1E
28
3E
B8
5A
3E
3E
56
6F

00
00

06
22
A9
A7
A9
67
42
A9
67
67
03
00

02
00

00

28
28
DF
24
FF
C5

DA
B8
B8
01
00

00
00

00

AD
A9
01
A9
FF
BE
BD
82
40
40
A8
06

03
00

Terminating header with length zero

00 00 00 3F 00 05 00 90

Length of first block in words

10 88 FF 69 56 1F 56 16
00 90 28 A8 00 3F 09 01
6C 04 29 04 24 A8 DF 01
63 03 FF 5C 3B 04 59 A9
28 A8 FF FF 09 01 61 OE
24 A9 DF 01 24 A8 FF 58
C5 02 3E 67 B8 40 59 00
C5 C2 3E 67 92 Al 9C FF
06 04 EC 03 1E A7 3E 67
92 00 52 20 64 06 B8 42
5C A9 08 A4 10 40 B8 42
B8 42 A8 02 00 06 B8 42

00 04 00 01 10 00 0O 0O
00 02 10 80 00 89 00 3F

290

Hex Conversion Utility Description

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

The command file in Example 12-5 allows you to boot the .text and .cinit sections of test.out from a 16-bit
wide EPROM from the SCI-A 8-bit port. The map file test.map is also generated.

Example 12-5. Sample Command File for Booting From 8-Bit SCI Boot

--sci8

SECTIONS
{

.text: paddr=BOOT
.cinit: paddr=BOOT

--outfile=test_sci8.hex

/*

Hex utility out file */
Specify the SCI 8-bit boot format */

/* ___ */
/* Hex converter command file. */
/* ___ */
test.out /* Input COFF file */

-ascii /* Select ASCIl format */

--map=test.map /* Specify the map file */

The command file in Example 12-5 generates the out file in Figure 12-8.

Figure 12-8. Sample Hex Converter Out File for Booting From 8-Bit SCI Boot

3F
1A
1D
Ab
00
FF
F7
Al
A9
00
00
C4
00

02
02

00
56
61
1E
77
76
60
92
59
77
C5
B2
A8

Reserved for future use

)

Entry point

J

00
40
FF
Al
00
FF
7F
0D
FA
00
67
00
06

[Key value

AA 08 00 00 00 00 0O

00
29
76
F7
717
FF
76
EC
ED
6F
3E
C5
00

42
1F
90
86
01
06
00
03
40
42
01
67

B8
76
00
24
DF
6F
00
56
B8
B8
9A
3E

Address of the first block

S S

00
00
04
A7
09
01
7F
Al
02
BD
0D
00

00 00 00 00 00 00

9A 04 28 05 00 06
00 02 29 1B 76 22
29 OF 6F 00 9B A9
06 A1 81 01 09 A7
00 EA FF 1A 76 A9
DF BD C3 A7 1lE 67
76 4B 00 BD B2 42
01 A9 08 40 10 A9
06 03 EC A7 1E 67
B2 02 C5 A4 8B 67
6F 00 93 00 OA 03
9A BE 8B 06 00 00

Length of second block in words

Address of the second block

00 3F 00 90 00 04 00 84 10 01 00 02

00 02 10 00 00 00 00 02 00 04 10

00 82 10 89 00 3F 00 00 00 00 00

00

00
76
24
1E
28
3E
B8
5A
3E
3E
56
6F

00

00

AD
A9
01
A9
FF
BE
BD
82
40
40
A8
06

03

00 00 0O

00

28
28
DF
24
FF
C5

DA
B8
B8
01
00

00
00

Terminating header with length zero

00 00 3F 00 05 00 90 00

Length of first block in words

88 10 69 FF 1F 56 16 56
90 00 A8 28 3F 00 01 09
04 6C 04 29 A8 24 01 DF
03 63 5C FF 04 3B A9 59
A8 28 FF FF 01 09 OE 61
A9 24 01 DF A8 24 58 FF
02 C5 67 3E 40 B8 00 59
C2 C5 67 3E Al 92 FF 9C
04 06 03 EC A7 1E 67 3E
00 92 20 52 06 64 42 B8
A9 5C A4 08 40 10 42 B8
42 B8 02 A8 06 00 42 B8

04 00 01 00 00 10 00 OO
02 00 80 10 89 00 3F 00

SPRU513K-0October 2016
Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2016, Texas Instruments Incorporated

291

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Controlling the ROM Device Address www.ti.com

12.11 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

The address field of the hex-conversion utility output file is controlled by the following items, which are
listed from low to high priority:

1.

2.

The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

The --zero option. When you use the --zero option, the utility resets the address origin to 0 for each
output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the --zero option in conjunction with the --image option to force the starting address in
each output file to be zero. If you specify the --zero option without the --image option, the utility issues
a warning and ignores the --zero option.

The --byte option. Some EPROM programmers may require the output file address field to contain a
byte count rather than a word count. If you use the —byte option, the output file address increments
once for each byte. For example, if the starting address is Oh, the first line contains eight words, and
you use no —byte option, the second line would start at address 8 (8h). If the starting address is Oh, the
first line contains eight words, and you use the —byte option, the second line would start at address 16
(010h). The data in both examples are the same; —byte affects only the calculation of the output file
address field, not the actual target processor address of the converted data.

The --byte option causes the address records in an output file to refer to byte locations within the file,
whether the target processor is byte-addressable or not.

292

Hex Conversion Utility Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Control Hex Conversion Utility Diagnostics

12.12 Control Hex Conversion Utility Diagnostics

The hex conversion utility uses certain C/C++ compiler options to control hex-converter-generated

diagnostics.

--diag_error=id

--diag_remark=id

--diag_suppress=id

--diag_warning=id

--display_error_number

--issue_remarks
--no_warnings
--set_error_limit=count

--verbose_diagnostics

Categorizes the diagnostic identified by id as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=id to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

Categorizes the diagnostic identified by id as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=id to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

Suppresses the diagnostic identified by id. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=id to suppress the diagnostic.
You can only suppress discretionary diagnostics.

Categorizes the diagnostic identified by id as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=id to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the TMS320C28x Optimizing C/C++ Compiler User's
Guide for more information on understanding diagnostic messages.

Issues remarks (nonserious warnings), which are suppressed by default.
Suppresses warning diagnostics (errors are still issued).

Sets the error limit to count, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

SPRU513K-0October 2016
Submit Documentation Feedback

Hex Conversion Utility Description 293

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.13 Description of the Object Formats

The hex conversion utility has options that identify each format. Table 12-5 specifies the format options.
They are described in the following sections.

* You need to use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

» The default format is Tektronix (--tektronix option).

Table 12-5. Options for Specifying Hex Conversion Formats

Option Alias Format Address Bits Default Width
--ascii -a ASCII-Hex 16 8
--intel -i Intel 32 8
--motorola=1 -m1 Motorola-S1 16 8
--motorola=2 -m2 Motorola-S2 24 8
--motorola=3 -m3 Motorola-S3 32 8
--ti-tagged -t TI-Tagged 16 16
--ti_txt TI_TXT 8 8
--tektronix -X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with 16-
bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the number
of available bits.

The default width determines the default output width of the format. You can change the default width by
using the --romwidth option or by using the romwidth parameter in the ROMS directive. You cannot
change the default width of the TI-Tagged format, which supports a 16-bit width only.

12.13.1 ASCII-Hex Object Format (--ascii Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 12-9 illustrates the ASCII-Hex format.

Figure 12-9. ASCII-Hex Object Format

Nonprintable
Nonprintable Address end code

start code 1_‘ Jj

"B $AXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX. . ."C

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C,
03h). Address records are indicated with SAXXXXXXX, in which XXXXXXXX is a 8-digit (16-bit)
hexadecimal address. The address records are present only in the following situations:

* When discontinuities occur
* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the --image and --zero options. This
creates output that is simply a list of byte values.

294

Hex Conversion Utility Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.13.2 Intel MCS-86 Object Format (--intel Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

Figure 12-10 illustrates the Intel hexadecimal object format.

Figure 12-10. Intel Hexadecimal Object Format

Start
character
Address

Extended linear
address record
Most significant 16 bits

:2000000000000100020003000400050006000700080009000A000B000C0O00DO00OEOOOF0068
$2000200010001100120013001400150016001700180019001A001B001C001D001E001F0048 | Data
:2000400000000100020003000400050006000700080009000A000B000C0O00DO0O0OEOOOF0028 records

:2000600010001100120013001400150016001700180019001A001B001C001D0O01EO01F0008
:00000001FF L
T |
‘ Checksum
Byte Record End-of-file
count type record
SPRU513K-0October 2016 Hex Conversion Utility Description 295

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.13.3 Motorola Exorciser Object Format (--motorola Option)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit addresses, respectively. The
formats consist of a start-of-file (header) record, data records, and an end-of-file (termination) record.
Each record consists of five fields: record type, byte count, address, data, and checksum. The three
record types are:

Record Type Description

SO Header record

S1 Code/data record for 16-bit addresses (S1 format)
S2 Code/data record for 24-bit addresses (S2 format)
S3 Code/data record for 32-bit addresses (S3 format)
S7 Termination record for 32-bit addresses (S3 format)
S8 Termination record for 24-bit addresses (S2 format)
S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

Figure 12-11 illustrates the Motorola-S object format.

Figure 12-11. Motorola-S Format

Record Address Checksum

type
S00600004844521B _F Header record
S$32200DD
S31A0001FFEB00FA Data records
S70500000000FA T} Termination
record
Checksum
Byte count
Address for S3 records
296 Hex Conversion Utility Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.13.4 Extended Tektronix Object Format (--tektronix Option)
The Tektronix object format supports 32-bit addresses and has two types of records:

Data records contains the header field, the load address, and the object code.
Termination records signifies the end of a module.

The header field in the data record contains the following information:

Number of ASCII

Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %
Block type 1 6 = data record

8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the
checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain the
object code, two characters per byte.

Figure 12-12 illustrates the Tektronix object format.

Figure 12-12. Extended Tektronix Object Format

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+
0+

Block length o 2+0+2+0+2+0+2+0+2+0+2+

1ah = 26 4'_‘_‘ I: Object code: 6 bytes

Header %$15621810000000202020202020

character T
Load address: 10000000h

Block type: 6 Length of

(data) load address

SPRU513K-0October 2016 Hex Conversion Utility Description

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

297

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including start-of-
file record, data records, and end-of-file record. Each data records consists of a series of small fields and
is signified by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)
Identifies the end of a data record

*+ M W © 0

Followed by a data byte (two characters)

Figure 12-13 illustrates the tag characters and fields in TI-Tagged object format.

Figure 12-13. TI-Tagged Object Format
Start-of-file Load

record Program address Tag characters
identifier ‘

9 e e e e S A A A A

KOOOOCOFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F Data

BFFFFIBXFFFFBFFFFlBlFFFFXBXFFFFXBXFFFFXBXFFFFXBXFFFFBFFFFBFFFFI71F2451F _ records
T [I I I I I I I]
End-of-file Data
record words Checksum

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

298 Hex Conversion Utility Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.13.6 TI-TXT Hex Format (--ti_txt Option)

The TI-TXT hex format supports 16-bit hexadecimal data. It consists of section start addresses, data byte,
and an end-of-file character. These restrictions apply:

* The number of sections is unlimited.

» Each hexadecimal start address must be even.

» Each line must have 16 data bytes, except the last line of a section.

» Data bytes are separated by a single space.

* The end-of-file termination tag q is mandatory.

The data record contains the following information:

Iltem Description
@ADDR Hexadecimal start address of a section
DATAN Hexadecimal data byte
q End-of-file termination character

Figure 12-14. TI-TXT Object Format

Section
start

l—l—l

@ADDR1

Data { DATAO1l DATAO2o... DATAL6

bytes DATA17 DATA32 DATA32

DATAM ...oeo.n DATAnN

Section _* gApDR2

sta DATAOL wvvevenennennnnnnnns DATAn }— Data
bytes
q
End-of-line
character

Example 12-6. TI-TXT Object Format

@F000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFFE

00 FO

Q

SPRU513K-0October 2016 Hex Conversion Utility Description 299

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Error Messages www.ti.com

12.14 Hex Conversion Utility Error Messages

section mapped to reserved memory
Description A section is mapped into a memory area that is designated as reserved in the processor
memory map.

Action Correct section or boot-loader address. For valid memory locations, refer to the
TMS320C28x CPU and Instruction Set Reference Guide.

sections overlapping

Description ~ Two or more COFF section load addresses overlap, or a boot table address overlaps
another section.

Action This problem may be caused by an incorrect translation from load address to hexadecimal
output-file address that is performed by the hex-conversion utility when memory width is
less than data width. See Section 12.3 and Section 12.11.

unconfigured memory error

Description ~ The COFF file contains a section whose load address falls outside the memory range
defined in the ROMS directive.

Action Correct the ROM range as defined by the ROMS directive to cover the memory range
needed, or modify the section load address. Remember that if the ROMS directive is not
used, the memory range defaults to the entire processor address space. For this reason,
removing the ROMS directive could also be a workaround.

300

Hex Conversion Utility Description SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

. Chapter 13
l TEXAS SPRU513K—-October 2016

INSTRUMENTS
Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code.

Topic Page

13.1 Overview Of the .CAECIS DIr€CHIVE ...uuiuiiiiiii i et e e as 302

13.2 NOLES ON C/CH+ CONVEISIONS 1uiiuiutiuiitiiitttineaetaeantataneaeaneaneeansaeansaeaneasaneanaaeanennss 302

13.3 Notes 0N C++ SPECITIC CONVEISIONS c.uuuiuiiiiiitieieeiieet et iee ettt saee et aaanaaenes 306

13.4 Special ASSEMDIEr SUPPOIT uuuieieiiiiii et r et e e a e a s e eaeaeanananes 307
SPRU513K-0October 2016 Sharing C/C++ Header Files With Assembly Source 301

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Overview of the .cdecls Directive www.ti.com

13.1 Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See the .cdecls directive description for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:

.cdecls C,NOLIST
%{

%}

#define ASMTEST 1

.cdecls C,NOLIST
%{
#ifndef ASMTEST
#warn "ASMTEST not defined!" /* will be issued */
#endif

%}
Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler --include_path=path options to specify additional include file paths needed for the header
files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNING - variable definition "ABCD" ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,
either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

13.2 Notes on C/C++ Conversions
The following sections describe C and C++ conversion elements that you need to be aware of when
sharing header files with assembly source.

13.2.1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

302 Sharing C/C++ Header Files With Assembly Source SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler --define=name=value option) or within a .cdecls
block using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif,
and .endif directives.

13.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See the .cdecls topic for the WARN and
NOWARN parameter discussion for where these warnings are created.

13.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

13.2.5 Predefined symbol _ _ASM_HEADER_ _

The C/C++ macro _ _ASM_HEADER_ _is defined in the compiler while processing code within .cdecls.
This allows you to make changes in your code, such as not compiling definitions, during the .cdecls
processing.

Be Careful With the __ASM_HEADER_ _ Macro

NOTE: You must be very careful not to use this macro to introduce any changes in the code that
could result in inconsistencies between the code processed while compiling the C/C++
source and while converting to assembly.

13.2.6 Usage Within C/C++ asm() Statements

The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be
generated.

13.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion
step. Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives
.include and .copy are not used or needed within a .cdecls. Use the command line --include_path option to
specify additional paths to be searched for included files, as you would for C compilation.

13.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly
representation and so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to
assembly (i.e., _ FILE_ , _TIME__, _ TI_COMPILER_VERSION__, etc.). For example, this code is
converted to assembly because it is an object-like macro:

#define NAME Charley

This code is not converted to assembly because it is a function-like macro:
#define MAX(X,y) x>y ? X - Yy)
Some macros, while they are converted, have no functional use in the containing assembly file. For

example, the following results in the assembly substitution symbol FOREVER being set to the value
while(1), although this has no useful use in assembly because while(1) is not legal assembly code.

#define FOREVER while(1)

SPRU513K—-October 2016 Sharing C/C++ Header Files With Assembly Source 303

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

Macro values are not interpreted as they are converted. For example, the following results in the
assembler substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17.
This happens because the semantics of the C/C++ language require that macros are evaluated in context
and not when they are parsed.

#define OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as
\n are not converted to a single character in the converted assembly macro. See Section 13.2.11 for
suggestions on how to use C/C++ macro strings.

Macros are converted using the .define directive (see Section 13.4.2), which functions similarly to the .asg
assembler directive. The exception is that .define disallows redefinitions of register symbols and
mnemonics to prevent the conversion from corrupting the basic assembly environment. To remove a
macro from the assembly scope, .undef can be used following the .cdecls that defines it (see

Section 13.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional
macros are not supported by this process, # is not supported either. The concatenation operator ## is only
useful in a functional context, but can be used degenerately to concatenate two strings and so it is
supported in that context.

13.2.9 The #undef Directive

Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

13.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:
enum state { ACTIVE=0x10, SLEEPING=0x01, INTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:

state .enum

ACTIVE .emember 16

SLEEPING .emember 1

NTERRUPT .emember 256

POWEROFF .emember 257

LAST .emember 258
-endenum

The members are used via the pseudo-scoping created by the .enum directive.
The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within
the assembly environment.

13.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters 0x0OA and 0x09 until their
use in a string constant in a C/C++ program, C macros whose values are strings cannot be represented
as expected in assembly substitution symbols. For example:

#define MSG ""\tHI\n"

becomes, in assembly:
.define """\tHI\n""""",MSG ; 6 quoted characters! not 5!

When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I,
newline, NULL), but the .string assembler directive does not know how to perform the C escape
conversions.

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++. Using the above symbol MSG with a .cstring directive results in 5
characters of memory being allocated, the same characters as would result if used in a C/C++ strong
context. (See Section 13.4.7 for the .cstring directive syntax.)

304

Sharing C/C++ Header Files With Assembly Source SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

13.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if
they are used in macros. Also, their C expression values are not inserted into the resulting assembly
macro because macros are evaluated in context and there is no active context when converting the
macros to assembly.

Suitable functions such as $sizeof() are available in assembly expressions. However, as the basic types
such as int/char/float have no type representation in assembly, there is no way to ask for $sizeof(int), for
example, in assembly.

13.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and
member offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++
structures, as well as to facilitate debugging of the assembly code. For nested structures, the assembly
.tag feature is used to refer to other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the
same alignment as the C/C++ symbol. (See Section 13.2.3 for information about pragmas, which may
attempt to modify structures.) Because the alignment of structures is stored in the assembly symbol, built-
in assembly functions like $sizeof() and $alignof() can be used on the resulting structure name symbol.
When using unnamed structures (or unions) in typedefs, such as:

typedef struct { int a_member; } mystrname;

This is really a shorthand way of writing:
struct temporary_name { int a_member; };
typedef temporary_name mystrname;

The conversion processes the above statements in the same manner: generating a temporary name for
the structure and then using .define to output a typedef from the temporary name to the user name. You
should use your mystrname in assembly the same as you would in C/C++, but do not be confused by the
assembly structure definition in the list, which contains the temporary name. You can avoid the temporary
name by specifying a hame for the structure, as in:

typedef struct a_st name { ... } mystrname;

If a shorthand method is used in C to declare a variable with a particular structure, for example:
extern struct a_name { int a_member; } a_variable;

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of
the external variable, such as:

_a variable .tag a_st _name

This allows you to refer to _a_variable.a_member in your assembly code.

13.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated
for each symbol found.

See Section 13.3.1 for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the
WARN/NOWARN parameter discussion for where these warnings are created) for each, and they will not
be represented in the converted assembly.

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See Section 13.2.13 for information on variables names which are of a structure/union type.

SPRU513K—-October 2016 Sharing C/C++ Header Files With Assembly Source 305

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

13.2.15 C Constant Suffixes

The C constant suffixes u, |, and f are passed to the assembly unchanged. The assembler will ignore
these suffixes if used in assembly expressions.

13.2.16 Basic C/C++ Types

13.3

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic
types such as int, char, or float are not converted or represented in assembly beyond any existing .int,
.char, .float, etc. directives that previously existed in assembly.

Typedefs of basic types are therefore also not represented in the converted assembly.

Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when
sharing header files with assembly source.

13.3.1 Name Mangling

Symbol names may be mangled in C++ source files. When mangling occurs, the converted assembly will
use the mangled names to avoid symbol name clashes. You can use the demangler (dem2000) to
demangle names and identify the correct symbols to use in assembly.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name
with different kinds of arguments) is not required, use the following syntax:

extern "'C" void somefunc(int arg);

The above format is the short method for declaring a single function. To use this method for multiple
functions, you can also use the following syntax:

extern "'C"

{

void somefunc(int arg);
int anotherfunc(int arg);

}

13.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to
C++ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:

class base

{
public:
int bl;

¥

class derived : public base

{
public:
int di;

}

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly
structure "derived”, the members of the base class must be accessed using the name of the base class,
such as derived.__b_base.bl rather than the expected derived.bl.

A non-virtual, non-empty base class will have __b_ prepended to its name within the derived class to
signify it is a base class name. That is why the example above is derived.__b_base.b1 and not simply
derived.base.bl.

306

Sharing C/C++ Header Files With Assembly Source SPRU513K-0October 2016
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C++ Specific Conversions

13.3.3 Templates
No support exists for templates.

13.3.4 Virtual Functions

No support exists for virtual functions, as they have no assembly representation.
13.4 Special Assembler Support

13.4.1 Enumerations (.enum/.emember/.endenum)
The following directives support a pseudo-scoping for enumerations:

ENUM_NAME .enum

MEMBER1 .emember [value]
MEMBER2 .emember [value]
.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.
The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.

The format to use the value of a member is ENUM_NAME.MEMBER, similar to a structure member
usage.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not
specified, the member takes a value one more than the previous member. As in C/C++, member names
cannot be duplicated, although values can be. Unless specified with .emember, the first enumeration
member will be given the value 0 (zero), as in C/C++.

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because the
.endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elseif/.endif) are the only other non-enumeration code allowed
within the .enum/.endenum sequence.

13.4.2 The .define Directive

The .define directive functions in the same manner as the .asg directive, except that .define disallows
creation of a substitution symbol that has the same name as a register symbol or mnemonic. It does not
create a new symbol name space in the assembler, rather it uses the existing substitution symbol name
space. The syntax for the directive is:

.define substitution string , substitution symbol name

The .define directive is used to prevent corruption of the assembly environment when converting C/C++
headers.

13.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg.
This directive will remove the named symbol from the substitution symbol table from the point of the .undef
to the end of the assembly file. The syntax for these directives is:

.undefine substitution symbol name
.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a
problem.

Also see Section 13.4.2, which covers the .define directive.

SPRU513K-0October 2016 Sharing C/C++ Header Files With Assembly Source 307

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Special Assembler Support www.ti.com

13.4.4 The $defined() Built-In Function

The $defined directive returns true/1 or false/0 depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $defined returns TRUE if the
assembler has any user symbol in scope by that name. This differs from $isdefed in that $isdefed only
tests for NON-substitution symbols. The syntax is:

$defined(substitution symbol name)
A statement such as ".if $defined(macroname)" is then similar to the C code "#ifdef macroname".
See Section 13.4.2 and Section 13.4.3 for the use of .define and .undef in assembly.

13.4.5 The $sizeof Built-In Function

The assembly built-in function $sizeof() can be used to query the size of a structure in assembly. It is an
alias for the already existing $structsz(). The syntax is:

$sizeof(structure name)
The $sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $sizeof(int), because those basic type names are not represented in assembly. Only complex types are
converted from C/C++ to assembly.

Also see Section 13.2.12, which notes that this conversion does not happen automatically if the C/C++
sizeof() built-in function is used within a macro.

13.4.6 Structure/Union Alignment and $alignof()

The assembly .struct and .union directives take an optional second argument which can be used to
specify a minimum alignment to be applied to the symbol name. This is used by the conversion process to
pass the specific alignment from C/C++ to assembly.

The assembly built-in function $alignof() can be used to report the alignment of these structures. This can
be used even on assembly structures, and the function will return the minimum alignment calculated by
the assembler.

13.4.7 The .cstring Directive

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++.

.cstring "String with C escapes.\nWill be NULL terminated.\012"

See Section 13.2.11 for more information on the .cstring directive.

308

Sharing C/C++ Header Files With Assembly Source SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Appendix A
l }-‘IE)S(?IEUMENTS SPRU513K-October 2016

Symbolic Debugging Directives

The assembler supports several directives that the TMS320C28x C/C++ compiler uses for symbolic
debugging. These directives differ for the two debugging formats, DWARF and COFF.

These directives are not meant for use by assembly-language programmers. They require arguments that
can be difficult to calculate manually, and their usage must conform to a predetermined agreement
between the compiler, the assembler, and the debugger. This appendix documents these directives for
informational purposes only.

Topic Page

A.1 DWARF DebUgQing FOIMALcicueuiuieitiiiiieeie et eae e et e e e e e e e e e e e eenens 310

A.2 COFF Debugging FOIrMat.oueeuiiiieiiiiiiiiii e e st e e e e e e e e e e eenens 310

A.3 DeEDUQY DIrECHIVE SYNTAX ..ueuenentinieiiiet et e et e e e et e e taea s e e e e ananaeeaeneaanannn 311
SPRU513K—-October 2016 Symbolic Debugging Directives 309

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
DWARF Debugging Format www.ti.com
A.1 DWARF Debugging Format

A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that

the compiler creates for program analysis purposes. To list the complete set used for full symbolic debug,

invoke the compiler with the --symdebug:dwarf option, as shown below:

cl2000 --symdebug:dwarf --keep_asm input_file

The --keep_asm option instructs the compiler to retain the generated assembly file.

To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none

option:

cl2000 --symdebug:none --keep_asm input_file

The DWARF debugging format consists of the following directives:

* The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info
section.

e The .dwattr directive adds an attribute to an existing DIE.

» The .dwpsn directive identifies the source position of a C/C++ statement.

» The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.

» The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.

* The .dwcfi directive defines a call frame instruction for a CIE or FDE.

A.2 COFF Debugging Format

COFF symbolic debug is obsolete. These directives are supported for backwards-compatibility only. The

decision to switch to DWARF as the symbolic debug format was made to overcome many limitations of

COFF symbolic debug, including the absence of C++ support.

The COFF debugging format consists of the following directives:

* The .sym directive defines a global variable, a local variable, or a function. Several parameters allow
you to associate various debugging information with the variable or function.

* The .stag, .etag, and .utag directives define structures, enumerations, and unions, respectively. The
.member directive specifies a member of a structure, enumeration, or union. The .eos directive ends a
structure, enumeration, or union definition.

« The .func and .endfunc directives specify the beginning and ending lines of a C/C++ function.

» The .block and .endblock directives specify the bounds of C/C++ blocks.

* The .file directive defines a symbol in the symbol table that identifies the current source filename.

* The .line directive identifies the line number of a C/C++ source statement.

310 Symbolic Debugging Directives SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Debug Directive Syntax

A.3 Debug Directive Syntax

Table A-1 is an alphabetical listing of the symbolic debugging directives. For information on the C/C++
compiler, refer to the TMS320C28x Optimizing C/C++ Compiler User's Guide.

Table A-1. Symbolic Debugging Directives

Label Directive Arguments
.block [beginning line number]
.dwattr DIE label , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]
.dwcfi call frame instruction opcode[, operand|, operand]]

CIE label .dwcie version , return address register
.dwendentry
.dwendtag
.dwfde CIE label
.dwpsn " filename ", line number , column number

DIE label .dwtag I[DIE]tag name , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value)
.endblock [ending line number]
.endfunc [ending line number[, register mask[, frame size]]]
.e0s
.etag name[, size]
file " filename "
func [beginning line number]
line line number|, address]
.member name , value[, type , storage class , size , tag , dims]
.stag name[, size]
.sym name , value[, type , storage class , size , tag , dims]
.utag name[, size]

SPRU513K-0October 2016 Symbolic Debugging Directives 311

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS

Appendix B

SPRU513K-October 2016

XML Link Information File Description

The TMS320C28x linker supports the generation of an XML link information file via the --xml_link_info file
option. This option causes the linker to generate a well-formed XML file containing detailed information
about the result of a link. The information included in this file includes all of the information that is currently
produced in a linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that
could be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link
information file.

Topic Page
B.1 XML Information File El€mMent Ty PeS . uuuiuiiiiitieiiiiiieeetitiesiee et ea e seneaeae e enananenen 313
07 o Yo U g =T L == 0 =Y S 313
312 XML Link Information File Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

XML Information File Element Types

B.1 XML Information File Element Types

These element types will be generated by the linker:

Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

String elements contain a string representation of their value.
Constant elements contain a 32-bit unsigned long representation of their value (with a 0x prefix).

Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Section B.2, the element type is specified for each element in parentheses following the element
description. For instance, the <link_time> element lists the time of the link execution (string).

B.2 Do

cument Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that
an XML information file can contain.

B.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:

Example

<banner>
<copyrig
<link_ti
<output_
<entry_p

<name

<addr
</entry_|

The <banner> element lists the name of the executable and the version information (string).
The <copyright> element lists the Tl copyright information (string).

The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

The <output_file> element lists the name of the linked output file generated (string).

The <entry_point> element specifies the program entry point, as determined by the linker (container)
with two entries:

— The <name> is the entry point symbol name, if any (string).
— The <address> is the entry point address (constant).

B-1. Header Element for the hi.out Output File

TMS320Cxx Linker Version x.xx (Jan 6 2008)</banner>
ht>Copyright (c) 1996-2008 Texas Instruments Incorporated</copyright>
me>0x43dfd8ad</link_time>

Ffile>hi.out</output_file>

oint>

> c_int00</name>

ess>0xaf80</address>

point>

SPRU513K-0October 2016 XML Link Information File Description 313
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Document Elements

13 TEXAS
INSTRUMENTS

www.ti.com

B.2.2 Input File List

The next section of the XML link information file is the input file list, which is delimited with a
<input_file_list> container element. The <input_file_list> can contain any number of <input_file>

elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute
that can be referenced by other elements, such as an <object_component>. An <input_file> is a container
element enclosing the following elements:

» The <path> element names a directory path, if applicable (string).
» The <kind> element specifies a file type, either archive or object (string).
* The <file> element specifies an archive name or filename (string).

» The <name> element specifies an object file name, or archive member name (string).

Example B-2. Input File List for the hi.out Output File

<input_file_list>

<input_file id="fI-1">
<kind>object</kind>
<file>hi.obj</file>
<name>hi.obj</name>

</input_file>

<input_file id="fl1-2">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>boot.obj</name>

</input_file>

<input_file id="f1-3">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>exit.obj</name>

</input_file>

<input_file id="fl1-4">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>printf.obj</name>

</input_file>

</input_file_list>

314

XML Link Information File Description

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Document Elements

B.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components
that are involved in the link. An example of an object component is an input section. In general, an object
component is the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any humber of <object_component>
elements.

Each <object_component> specifies a single object component. Each <object_component> has an id
attribute so that it can be referenced directly from other elements, such as a <logical_group>. An
<object_component> is a container element enclosing the following elements:

e The <name> element names the object component (string).

» The <load_address> element specifies the load-time address of the object component (constant).
» The <run_address> element specifies the run-time address of the object component (constant).

» The <size> element specifies the size of the object component (constant).

» The <input_file_ref> element specifies the source file where the object component originated
(reference).

Example B-3. Object Component List for the fl-4 Input File

<object_component id="oc-20">
<name>.text</name>
<load_address>0xac00</load_address>
<run_address>0xac00</run_address>
<size>0xc0</size>
<input_file_ref idref="fl1-4"/>
</object_component>
<object_component id="oc-21">
<name>.data</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file_ref idref="f1-4"/>
</object_component>
<object_component id="oc-22">
<name>.ebss</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file_ref idref="fl1-4"/>
</object_component>

SPRU513K-0October 2016 XML Link Information File Description 315

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

B.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker-generated map file. However, the XML link information file contains a specification of GROUP and
UNION output sections, which are not represented in a map file. There are three kinds of list items that
can occur in a <logical_group_list>:

The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that it may be
referenced from other elements. Each <logical_group> is a container element enclosing the following
elements:

— The <name> element names the logical group (string).

— The <load_address> element specifies the load-time address of the logical group (constant).
— The <run_address> element specifies the run-time address of the logical group (constant).
— The <size> element specifies the size of the logical group (constant).

— The <contents> element lists elements contained in this logical group (container). These elements
refer to each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref>is a logical group that is contained in this logical group (reference).

The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that
share the same memory space (container). Each <overlay> element is given an id so that it may be
referenced from other elements (like from an <allocated_space> element in the placement map). Each
<overlay> contains the following elements:

— The <name> element names the overlay (string).
— The <run_address> element specifies the run-time address of overlay (constant).
— The <size> element specifies the size of logical group (constant).

— The <contents> container element lists elements contained in this overlay. These elements refer to
each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref>is a logical group that is contained in this logical group (reference).

The <split_section> is another special kind of logical group that represents a collection of logical
groups that is split among multiple memory areas. Each <split_section> element is given an id so that
it may be referenced from other elements. The id consists of the following elements.

— The <name> element names the split section (string).

— The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this split section,
and each element referenced is a logical group that is contained in this split section (reference).

316 XML Link Information File Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Document Elements

Example B-4. Logical Group List for the fl-4 Input File

<logical_group_list>

<logical_group id="1g-7">
<name>.text</name>
<load_address>0x20</load_address>
<run_address>0x20</run_address>
<size>0xb240</size>
<contents>
<object_component_ref idref="o0c-34"/>
<object_component_ref idref="o0c-108"/>
<object_component_ref idref="oc-e2'"/>

</contents>
</logical_group>

<overlay id="lg-b">
<name>UNION_1</name>
<run_address>0xb600</run_address>
<size>0xc0</size>
<contents>
<object_component_ref idref="oc-45"/>
<logical_group_ref idref="1g-8"/>
</contents>
</overlay>

<split_section id="1g-12">
<name>.task_scn</name>
<size>0x120</size>
<contents>
<logical_group_ref idref="1g-10"/>
<logical_group_ref idref="I1g-11"/>
</contents>

</logical_group_list>

SPRU513K-0October 2016 XML Link Information File Description 317

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

B.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in
the application, including unused spaces between logical groups that have been placed in a particular
memory area.

The <memory_area> is a description of the placement details within a named memory area (container).
The description consists of these items:

The <name> names the memory area (string).

The <page_id> gives the id of the memory page in which this memory area is defined (constant).
The <origin> specifies the beginning address of the memory area (constant).

The <length> specifies the length of the memory area (constant).

The <used_space> specifies the amount of allocated space in this area (constant).

The <unused_space> specifies the amount of available space in this area (constant).

The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is
specified with the memory area (constant).

The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications include <start_address> and
<size> elements.

— The <allocated_space> element provides details of an allocated fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

e The <logical_group_ref> provides a reference to the logical group that is allocated to this
fragment (reference).

— The <available_space element provides details of an available fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

Example B-5. Placement Map for the fl-4 Input File

<placement_map>
<memory_area>

<name>PMEM</name>
<page_id>0x0</page_id>
<origin>0x20</origin>
<length>0x100000</length>
<used_space>0xb240</used_space>
<unused_space>0xf4dcO</unused_space>
<attributes>RWXI</attributes>
<usage_details>

<allocated_space>
<start_address>0x20</start_address>
<size>0xb240</size>
<logical_group_ref idref="1g-7"/>

</allocated_space>

<available_space>
<start_address>0xb260</start_address>
<size>0xf4dcO</size>

</available_space>

</usage_details>

</memory_area>

</placement_map>

318 XML Link Information File Description SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Document Elements

B.2.6 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list
provides information about a symbol's name and value. In the future, the symbol_table list may provide
type information, the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:
e The <name> element specifies the symbol name (string).
e The <value> element specifies the symbol value (constant).

Example B-6. Symbol Table for the fl-4 Input File

<symbol_table>

<symbol>
<name>_c_int00</name>
<value>0xaf80</value>

</symbol>

<symbol>
<name>_main</name>
<value>0xbleO</value>

</symbol>

<symbol>
<name>_printf</name>
<value>0xac00</value>

</symbol>

</symbol_table>

SPRU513K-0October 2016 XML Link Information File Description 319

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Appendix C
l }-‘IE)S(?IEUMENTS SPRU513K-October 2016

CRC Reference Implementation

This appendix contains source code in C for a reference implementation of a CRC calculation routine that
is compatible with the linker-generated CRC tables. This code is found in the file labeled ref_crc.c.

This appendix also contains source code for a simple example application using linker-generated CRC
tables and copy tables. The application contains several tasks which share a common run area. Linker-
generated copy tables move the tasks from their load addresses to the run address. The application also
uses the reference CRC calculation routine to compute CRC values which are compared against the
linker-generated values.

This code is for reference only, and no warranty is made as to suitability for any purpose.

Topic Page
C.1 Compilation INSTTUCTIONS .uuuiuiiieitiie et ettt et e e e e e e e a e a e e e et raenaaeeeees 321
C.2 Reference CRC Calculation ROULINE.....iueieieiiiiieee et ee et et reaasaeeaenereanenens 321
C.3 Linker-Generated Copy Tables and CRC TableScociiiiieiiiiiiiiiiii e eeens 325
320 CRC Reference Implementation SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Compilation Instructions

C.1 Compilation Instructions
1. Run a stand-alone test of the reference implementation of CRC computation.

« For C2000 on Linux:

cl2000 -D=_RUN_MAIN ref_crc.c -z -o ref_crc_c2000 -1 Ink2800_ml.cmd
<Linking>

Run ref_crc_c2000 with an appropriate simulator:
— CRC-32-PRIME: 4beab53b
— CRC-8-PRIME: 70
— CRC16_802_15 4: 1bd3
* For GCC on Linux:

gcc -D_RUN_MAIN -o ref_crc_gcc ref_crc.c
./ref_crc_gcc

Run ref_crc_gcc with an appropriate simulator:
— CRC-32-PRIME: 4beab53b
— CRC-8-PRIME: 70
— CRC16_802_15_4: 1bd3
2. Run a simple example program using copy tables and CRC tables.
e For C2000 on Linux:

cl2000 -c *.c
cl2000 -z -lexl.cmd
<Linking>

Run ex1.out with an appropriate simulator:
— CRC-32-PRIME: 4beab53b

— CRC-8-PRIME: 70

— CRC16_802_15 4: 1bd3

C.2 Reference CRC Calculation Routine

Example C-1. Reference Implementation of a CRC Calculation Function: ref_crc.c

/ /
/* Reference implementation of a CRC calculation function */
/* */
/* gen_crc is the interface function which should be called from the */
/* application. There is also a stand-alone test mode that can be used */
/* if _RUN_MAIN is defined. */
/ /
/* ___ */
/* This file does NOT implement a general-purpose CRC function. */

/* Specifically, it does not handle parameterization by initial value, bit */
/* reflection, or final XOR value. This implementation is intended only to */
/* implement the CRC funtions used by the linker for C28x CRC tables. The */
/* algorithms used by the linker are selected to match the CRC algorithms in */

/* the PRIME and IEEE 802.15.4-2006 standards, which use the polynomials */
/* supported by the C28x VCU hardware. To understand CRCs in general, */
/* especially what other parameters exist, see: */
/* */
/* "A Painless Guide To CRC Error Detection Algorithms" likely at: */
/* http://www.ross.net/crc/download/crc_v3.txt */
/* Author : Ross Williams (ross@guest.adelaide.edu.au.). */
/* Date : 3 June 1993. */
/* Status : Public domain (C code). */
/* ___ */
SPRU513K-0October 2016 CRC Reference Implementation 321

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Reference CRC Calculation Routine www.ti.com

Example C-1. Reference Implementation of a CRC Calculation Function: ref_crc.c (continued)

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

/* ___ */
/* These are the CRC algorithms supported by the linker, which match the */
/* polynomials supported in C28x VCU hardware, which match the PRIME and */
/* 1EEE 802.15.4-2006 standards. These must match the values in crc_tbl.h. */
/* ___ */

#define CRC32_PRIME
#define CRC16_802_15 4
#define CRC16_ALT
#define CRCS_PRIME

typedef struct crc_config_t
{

int id;

int degree;

unsigned long poly;
} crc_config_t;

const crc_config_t crc_config[] = { { CRC32_PRIME, 32, 0x04cl1ldb7 },

{ CRC16_802_15 4, 16, 0x1021 },
{ CRC16_ALT, 16, 0x8005 },
{ CRC8_PRIME, 8, 0x07 } };

unsigned long crc_table[256] = { O };
const crc_config_t *find_config(int id) {
0; i < sizeof(crc_config) / sizeof(*crc_config); i++)

crc_config[i]-id == id)
return &crc_config[i];

-, -
~

fprintf(stderr, "invalid config id %d\n", id);
exit(EXIT_FAILURE);
return NULL;

3
/* ___ */
/* Table-driven version */
/* ___ */
unsigned long generate_mask(int degree)
{

unsigned long half = (lul << (degree /7 2)) - 1;

return half << (degree /7 2) | half;
3
void generate_crc_table(const crc_config_t *config)
{

inti, j;

unsigned long bit, crc;

unsigned long high_bit = (1ul << (config->degree - 1));

unsigned long mask = generate_mask(config->degree);

for (i = 0; 1 < 256; i++)

{

crc = (unsigned long)i << config->degree - 8;
for G =0; j <8; j++)
322 CRC Reference Implementation SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Reference CRC Calculation Routine

Example C-1. Reference Implementation of a CRC Calculation Function: ref_crc.c (continued)

{
bit = crc & high_bit;
crc <<= 1;
if (bit) crc”= config->poly;
3
crc_table[i] = crc & mask;
3
¥
/ /
/* gen_crc - Return the CRC value for the data using the given CRC algorithm */
/* int id : identifies the CRC algorithm */
/* char *data : the data */
/* size_t len : the size of the data */
/ /
unsigned long gen_crc(int id, const unsigned char *data, size_t len)
{
Y o */
/* Note: this is not a general-purpose CRC function. It does not handle */
/* parameterization by initial value, bit reflection, or final XOR */
/* value. This CRC function is specialized to the CRC algorithms in the */
/* linker used for C28x CRC tables. */
/* ___ */
/* ___ */

/* This CRC function is not intended to be optimal; it is written such */
/* that it works and generates the same result on all 8-bit and 16-bit */
/* targets, including C28x, other Tl DSPs, and typical desktops. */
/* ___ */
const crc_config_t *config = find_config(id);

unsigned long crc = 0;
unsigned long mask = generate_mask(config->degree);

size_t i;
generate_crc_table(config);

for (i = 0; 1 < len; i++)

{
unsigned int datum = data[i];
/* __ */
/* This loop handles 16-bit chars when we compile on 16-bit machines. */
/* __ */
int n;

{
) o */
/* For 16-bit machines, we need to feed the octets in an */
/* arbitrary order. For C2000, the arbitrary order we choose is */
/* to feed the LEAST significant octet of char 0 first. The */

/* first octet fed to the CRC is the LEAST-significant octet of */
/* char 0; the second octet is the MOST-significant octet of char */

/* 0. See the "Special Note regarding 16-bit char" in the */
/* Assembly Language Tools User®s Guide. */
/* __ */
#i1f __TMS320C28XX__
/* __ */
SPRU513K-0October 2016 CRC Reference Implementation 323

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Reference CRC Calculation Routine

13 TEXAS
INSTRUMENTS

www.ti.com

Example C-1. Reference Implementation of a CRC Calculation Function: ref_crc.c (continued)

/* Using __byte is not necessary; we use it here to illustrate */
/* how it relates to octet order. */
/* __ */

unsigned long octet

= _ byte((int*)&datum, n);

#else
unsigned long octet = ((datum >> (8 * n)) & Oxff);
#endif
unsigned long terml = (crc << 8);
int idx = ((crc >> (config->degree - 8)) & Oxff) ™ octet;
crc = terml ~ crc_table[idx];
}
}
return crc & mask;
}
#ifdef _RUN_MAIN
/ /
/* main - If requested, compute the CRC of test data using each algorithm. */
/ /
int main(void)
{
#i1f CHAR_BIT == 16
const unsigned char data[] = { "a", "b", "c*, "d" };
#elif CHAR_BIT ==
/* ___ */
/* This represents "abcd" as it would appear in C2000 memory if we view */
/* C2000 memory as octets, least-significant octet first; see "a special */
/* note regarding 16-bit char”™ in Assembly Language Tools User®s Guide. */
/* ___ */
const unsigned char data[] = { "a", 0, "b", 0, "c*, 0, "d", O };
#endif
/* CRC_8_PRIME: 0x70 */
/* CRC_16_802: Ox1bd3 */

/* CRC_32_PRIME: Ox4beab53b */

const unsigned char *p = (const unsigned char *)data;

uns

crc

crc

igned long crc;

= gen_crc(CRC32_PRIME, p, sizeof data);
printf(""CRC_32_PRIME: %08Ix\n", crc);

= gen_crc(CRC8_PRIME, p, sizeof data);
printf(""CRC_8_PRIME: %02Ix\n", crc);

crc = gen_crc(CRC16_802_15 4, p, sizeof data);
printf(*'CRC16_802_15 4: %04Ix\n', crc);

return 0O;

3
#endif

324 CRC Reference Implementation

SPRU513K—-October 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables and CRC Tables

C.3 Linker-Generated Copy Tables and CRC Tables

Three tasks exist in separate load areas. As each is needed, it is copied into the common run area and

executed. A separate copy table is generated for each task (see table() operator in ex1.cmd). CRC values

for the task functions are verified as well. See Example C-7 for the crc_table() operator calls.

Example C-2. Main Routine for Example Application: main.c

#include <stdio.h>
#include <cpy_tbl._h>
#include <crc_tbl.h>

extern COPY_TABLE taskl_ctbl;
extern COPY_TABLE task2_ctbl;
extern COPY_TABLE task3_ctbl;

extern CRC_TABLE taskl_crctbl;
extern CRC_TABLE union_crctbl;

/ /
/* copy_in - provided by the RTS library to copy code from its load */
/* address to its run address. */
/* my_check_CRC - verify that the CRC values stored in the given table */
/* match the computed value at run time, using load address. */
/* taskX - perform a simple task. These routines share the same run */
/* address. */
/ /
extern void copy_in(COPY_TABLE *tp);
extern unsigned int my_check CRC(CRC_TABLE *tp);
extern void taskl(void);
extern void task2(void);
extern void task3(void);
int x = 0;
main()
{
unsigned int ret val = 0;
unsigned int CRC_ok = 1;
printf("'Start task copy test with CRC checking.-\n");
printf(*"Check CRC of taskl section.\n");
ret_val = my_check_CRC(&taskl_crctbl);
if (ret_val == 1)
printF(""\nPASSED: CRCs for taskl_crc_tbl match.\n");
else
{
CRC_ok = 0;
printf("'\nFAILED: CRCs for taskl_crc_tbl do NOT match.\n");
3
/ /
/* Copy taskl into the run area and execute it. */
/ /
copy_in(&taskl_ctbl);
taskl1();
printf(*'Check CRC of UNION.\n");
if ((ret_val = my_check_CRC(&union_crctbl)) == 1)
printF(""\nPASSED: CRCs for union_crc_tbl match.\n");
else
{
CRC_ok = 0O;
printf("'\nFAILED: CRCs for union_crc_tbl do NOT match.\n");
SPRU513K-0October 2016 CRC Reference Implementation 325

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS

INSTRUMENTS
Linker-Generated Copy Tables and CRC Tables www.ti.com
Example C-2. Main Routine for Example Application: main.c (continued)
b
copy_in(&task2_ctbl);
task2();
copy_in(&task3 ctbl);
task3();
printf(*"Copy table and CRC tasks %s!I\n",
((CRC_ok == 1 && x == 6)) ? "PASSED" : "FAILED");
¥
Example C-3. Checking CRC Values: check_crc.c
#include <stdio.h>
#include "crc_tbl_h"
/ /
/* gen_crc() - computes the CRC value of data using the CRC algorithm ID */
/* specified. Found in ref _crc.c */
/ /
unsigned long gen_crc(int id, const unsigned char *data, size_t len);
/ /
/* my_check CRC() - verify the CRC values for all records stored in the */
/* given CRC table. Print diagnostic information also. */
/ /
unsigned int my_check CRC(CRC_TABLE *tp)
{
int i;
unsigned int ret_val = 1;
uint32_t my_crc;
printf("'\n\tTABLE INFO: rec size=%d, num_rec=%d.",
tp->rec_size, tp->num_recs);
for (i = 0; 1 < tp->num_recs; I++)
{
CRC_RECORD crc_rec = tp->recs[i];
/ /
/* COMPUTE CRC OF DATA STARTING AT crc_rec.addr */
/* FOR crc_rec.size UNITS. USE */
/* crc_rec.crc_alg_ID to select algorithm. */
/* COMPARE COMPUTED VALUE TO crc_rec.crc_value. */
/ /
my_crc = gen_crc(crc_rec.crc_alg_ID, (unsigned char *)crc_rec.addr,
crc_rec.size);
printf(""\n\tCRC record: page=%x, alg=%x, addr = %Ix, size=%Ix, "
“\n\t\tcrc=%lx, my_crc=bix.",
crc_rec.page_id, crc_rec.crc_alg_ID,
crc_rec.addr, crc_rec.size, crc_rec.crc_value, my_crc);
if (my_crc == crc_rec.crc_value)
printf(""\n\tCRCs match for record %d_-\n", i);
else
{
ret_val = 0;
printF(C"\n\tCRCs DO NOT match for record %d.-\n", i);
b
3
return ret_val;
b
326 CRC Reference Implementation SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables and CRC Tables

Example C-4. Taskl Routine: taskl.c

#include <stdio.h>
extern int x;

#pragma CODE_SECTION(taskl,

void taskl(void) { printf("

" .taskl_scn'™)
hit taskl, x is %d\n", x); x += 1; }

Example C-5. Task2 Routine: task2.c

#include <stdio.h>
extern int x;

#pragma CODE_SECTION(task2,

void task2(void) { printf("

" .task2_scn'™)
hit task2, x is %d\n", x); x += 2; }

Example C-6. Task3 Routine: task3.c

#include <stdio.h>
extern int x;

#pragma CODE_SECTION(task3,

void task3(void) { printf("

" .task3_scn')
hit task3, x is %d\n", x); x += 3; }

Example C-7. Example 1 Command File: exl.cmd

/* Linker Generated Copy Tables - Example #1

/* 3 separate tasks are loaded into 3 separate areas of target memory.
Before

/* They all must be run in
/* each task is run, it is

a common area of memory (overlay).
copied into its run space using a linker

/* generated copy table for each task.

/* Two linker generated CRC tables are created.
/* and the other is for the UNION.

/* records for .taskl_scn,

-task2_scn and .task3_scn.

One is for .taskl_scn
The UNION table will contain CRC

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

exl.obj
taskl.obj
task2.obj
task3.obj
check_crc.obj
ref_crc.obj

-0 exl.out

-m ex1l.map

-stack 0x1000

-heap 0x800

MEMORY

{

PAGE O : RESET(R): origi

n = 0x000000, length = 0x00002

SPRU513K-0October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

CRC Reference Implementation

327

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

Linker-Generated Copy Tables and CRC Tables

13 TEXAS
INSTRUMENTS

www.ti.com

Example C-7. Example 1 Command File: ex1.cmd (continued)

} run = PROG, PAGE = 0, crc_table(_union_crctbl, algorithm=CRC16_ALT)

length = Ox003FE
length = 0x10000

length = Ox003FE
length = 0x04000
length = 0x08000

PAGE = 1, table(_task2_ctbl)

VECTORS(R) : origin = 0x000002,
PROG(R) : origin = 0x3f0000,
PAGE 1 : RAM1 (RW) : origin = 0x000402
PAGE 1 : RAM2 (RW) : origin = 0x001000
PAGE 1 : RAM3 (RW) : origin = 0x3e0000
¥
SECTIONS
{
UNION
{
.task2_scn: load = RAM3,
.task3_scn: load = RAM3, PAGE =
.taskl_scn: load = RAM3, PAGE =
vectors : load = VECTORS, PAGE = O
-text : load = PROG, PAGE = 0
.data : load = 440h, PAGE = 1
.cinit : > PROG, PAGE = 0
-ebss : > RAM3, PAGE =1
.econst > RAM3, PAGE =1
-reset > RESET, PAGE = 0
.stack > RAM2, PAGE = 1
.sysmem : > RAM2, PAGE =1
.esysmem : > RAM3, PAGE = 1
.ovly > RAM2, PAGE = 1
¥

1, table(_task3 ctbl)
1, table(_taskl_ctbl),

crc_table(_taskl_crctbl)

328 CRC Reference Implementation

Copyright © 2016, Texas Instruments Incorporated

SPRU513K-0October 2016
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS

Appendix D

SPRU513K-October 2016

Glossary

ABI — Application binary interface.
absolute address — An address that is permanently assigned to a TMS320C28x memory location.

absolute constant expression — An expression that does not refer to any external symbols or any
registers or memory reference. The value of the expression must be knowable at assembly time.

absolute lister — A debugging tool that allows you to create assembler listings that contain absolute
addresses.

address constant expression — A symbol with a value that is an address plus an addend that is an
absolute constant expression with an integer value.

alignment — A process in which the linker places an output section at an address that falls on an n-byte
boundary, where n is a power of 2. You can specify alignment with the SECTIONS linker directive.

allocation — A process in which the linker calculates the final memory addresses of output sections.

ANSI — American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library — A collection of individual files grouped into a single file by the archiver.

archiver — A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

ASCIl — American Standard Code for Information Interchange; a standard computer code for
representing and exchanging alphanumeric information.

assembler — A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant — A symbol that is assigned a constant value with the .set directive.

big endian — An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

binding — A process in which you specify a distinct address for an output section or a symbol.
block — A set of statements that are grouped together within braces and treated as an entity.
byte — Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler — A software program that translates C source statements into assembly language
source statements.

COFF — Common obiject file format; a system of object files configured according to a standard
developed by AT&T. These files are relocatable in memory space.

command file — A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

SPRU513K—-October 2016 Glossary 329

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Appendix D www.ti.com

comment — A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program — A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

conditional processing — A method of processing one block of source code or an alternate block of
source code, according to the evaluation of a specified expression.

configured memory — Memory that the linker has specified for allocation.
constant — A type whose value cannot change.
constant expression — An expression that does not in any way refer to a register or memory reference.

cross-reference lister — A utility that produces an output file that lists the symbols that were defined,
what file they were defined in, what reference type they are, what line they were defined on, which
lines referenced them, and their assembler and linker final values. The cross-reference lister uses
linked object files as input.

cross-reference listing — An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section — One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

directives — Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

DWARF — A standardized debugging data format that was originally designed along with ELF, although it
is independent of the object file format.

EABI — An embedded application binary interface (ABI) that provides standards for file formats, data
types, and more.

ELF — Executable and linking format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator — A hardware development system that duplicates the TMS320C28x operation.
entry point — A point in target memory where execution starts.

environment variable — A system symbol that you define and assign to a string. Environmental
variables are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog — The portion of code in a function that restores the stack and returns.
executable module — A linked object file that can be executed in a target system.

expression — A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol — A symbol that is used in the current program module but defined or declared in a
different program module.

field — For the TMS320C28x, a software-configurable data type whose length can be programmed to be
any value in the range of 1-16 bits.

global symbol — A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

GROUP — An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

330

Glossary SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Appendix D

hex conversion utility — A utility that converts object files into one of several standard ASCII
hexadecimal formats, suitable for loading into an EPROM programmer.

high-level language debugging — The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

hole — An area between the input sections that compose an output section that contains no code.
identifier— Names used as labels, registers, and symbols.
immediate operand — An operand whose value must be a constant expression.

incremental linking — Linking files in several passes. Incremental linking is useful for large applications,
because you can partition the application, link the parts separately, and then link all of the parts
together.

initialization at load time — An autoinitialization method used by the linker when linking C/C++ code.
The linker uses this method when you invoke it with the --ram_model link option. This method
initializes variables at load time instead of run time.

initialized section — A section from an object file that will be linked into an executable module.
input section — A section from an object file that will be linked into an executable module.

ISO — International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

label — A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker — A software program that combines object files to form an object module that can be allocated
into system memory and executed by the device.

listing file — An output file, created by the assembiler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

literal constant — A value that represents itself. It may also be called a literal or an immediate value.

little endian — An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader — A device that places an executable module into system memory.
macro — A user-defined routine that can be used as an instruction.
macro call — The process of invoking a macro.

macro definition — A block of source statements that define the name and the code that make up a
macro.

macro expansion — The process of inserting source statements into your code in place of a macro call.

macro library — An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension of .asm.

map file — An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

member — The elements or variables of a structure, union, archive, or enumeration.

memory map — A map of target system memory space that is partitioned into functional blocks.

SPRU513K—-October 2016 Glossary 331

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

Appendix D www.ti.com

memory reference operand — An operand that refers to a location in memory using a target-specific
syntax.

mnemonic — An instruction name that the assembler translates into machine code.

model statement — Instructions or assembler directives in a macro definition that are assembled each
time a macro is invoked.

named section — An initialized section that is defined with a .sect directive.
object file — An assembled or linked file that contains machine-language object code.
object library — An archive library made up of individual object files.

object module — A linked, executable object file that can be downloaded and executed on a target
system.

operand — An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer — A software tool that improves the execution speed and reduces the size of C programs.

options — Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output module — A linked, executable object file that is downloaded and executed on a target system.
output section — A final, allocated section in a linked, executable module.

overlay page — A section of physical memory that is mapped into the same address range as another
section of memory. A hardware switch determines which range is active.

partial linking — Linking files in several passes. Incremental linking is useful for large applications
because you can partition the application, link the parts separately, and then link all of the parts
together.

guiet run — An option that suppresses the normal banner and the progress information.
raw data — Executable code or initialized data in an output section.
register operand — A special pre-defined symbol that represents a CPU register.

relocatable constant expression— An expression that refers to at least one external symbol, register, or
memory location. The value of the expression is not known until link time.

relocation — A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

ROM width — The width (in bits) of each output file, or, more specifically, the width of a single data value
in the hex conversion utility file. The ROM width determines how the utility partitions the data into
output files. After the target words are mapped to memory words, the memory words are broken
into one or more output files. The number of output files is determined by the ROM width.

run address — The address where a section runs.

run-time-support library — A library file, rts.src, that contains the source for the run time-support
functions.

section — A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

section program counter (SPC) — An element that keeps track of the current location within a section;
each section has its own SPC.

sign extend — A process that fills the unused MSBs of a value with the value's sign bit.

simulator — A software development system that simulates TMS320C28x operation.

332

Glossary SPRU513K-0October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

13 TEXAS
INSTRUMENTS

www.ti.com Appendix D

source file — A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

static variable — A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class — An entry in the symbol table that indicates how to access a symbol.

string table — A table that stores symbol names that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure — A collection of one or more variables grouped together under a single name.

subsection — A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol — A name that represents an address or a value.
symbolic constant — A symbol with a value that is an absolute constant expression.

symbolic debugging — The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator or simulator.

tag — An optional type name that can be assigned to a structure, union, or enumeration.
target memory — Physical memory in a system into which executable object code is loaded.

.text section — One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

unconfigured memory — Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section — A obiject file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .usect directive.

UNION — An option of the SECTIONS directive that causes the linker to allocate the same address to
multiple sections.

union — A variable that can hold objects of different types and sizes.
unsigned value — A value that is treated as a nonnegative number, regardless of its actual sign.
variable — A symbol representing a quantity that can assume any of a set of values.

well-defined expression — A term or group of terms that contains only symbols or assembly-time
constants that have been defined before they appear in the expression.

word — A 16-bit addressable location in target memory

SPRU513K—-October 2016 Glossary 333

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K

I3 TEXAS
INSTRUMENTS

Appendix E

SPRU513K—-0October 2016

Revision History

This table lists significant changes made to this document. The left column identifies the first version of
this document in which a particular change appeared.

Nl Chapter Location Additions / Modifications / Deletions
Added
Several linker options have been deprecated, removed, or renamed. The linker
Linker continues to accept some of the deprecated options, but they are not
SPRU513K Description Section 8.4 recommended for use. See the Compiler Option Cleanup wiki page for a list of
P deprecated and removed options, options that have been removed from CCS,
and options that have been renamed.
Previous Revisions:
SPRU513J Lmker_ _ Section 8.5.3 Information about accessing files and libraries from a linker command file has
Description been added.
Linker
SPRU513J Description Section 8.9.2 The list of available CRC algorithms has been expanded.
SPRU513J Ol:_)]_e_ct File Section 11.1 A —cg option has been added to _the Objt_act I_:lle Display utility to display
Utilities function stack usage and callee information in XML format.
Program .
SPRU513lI Loading and Sect!on 3.3.3.1and Added the BINIT (boot-time initialization) copy table.
) Section 8.8.4.2
Linker
SPRU513I Linker Section 8.4.17 ,Oﬂ\gt(ijgrc]i modules as a filter for the --mapfile_contents linker command line
SPRU513I Linker Section 8.5.5.2.1 Added an example for placing functions in RAM.
SPRU513lI Linker Section 8.8.4.3 Documented the table() operator.
The near and far keywords are deprecated, and the small memory model is no
longer supported; the only memory model uses 32-bit pointers. The C27x
object mode is also no longer supported. The .bss, .const, and .sysmem
SPRUS513H | -- - h -)
sections are no longer used; the .ebss, .econst, and .esysmem sections are
used instead. As a result, the --farheap linker option, far call trampolines, and
several other related features are no longer documented.
SPRU513H I(\)/I[C))J(Z?lj:ltes Section 2.3.4 Added information about the current section and how directives interact with it.
Object Section 2.5 and . . .
SPRU513H Modules Section 2.5.2 Added information about various types of symbols and about symbol tables.
Assembler Section 4.3 and . _
SPRU513G Description Section 4.10 Added support for Type 2 VCU via --vcu_support=vcu2.
Assembler Section 4.3 and : -
SPRU513G Description Section 4.10 Added support for Type 1 CLA via --cla_support=clal.
Assembler . The naming of function frames in scratchpad memory for the CLA compiler has
SPRU513H Description Section 4.10.3 changed.
Section 8.4.2,
SPRU513H | Linker Section 8.5.11.6, Added information about referencing linker symbols.
and Section 8.6.1
SPRU513H | Linker Section 8.4.8 Added a list of the linker's predefined macros.
SPRU513G | Linker Section 8.5.5.1 Removed invalid syntax for load and fill properties.
334 Revision History SPRU513K—-October 2016

Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513K
http://processors.wiki.ti.com/index.php/Compiler_option_cleanup

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Object Modules
	2.1 Executable Object Files
	2.2 Introduction to Sections
	2.2.1 Special Section Names

	2.3 How the Assembler Handles Sections
	2.3.1 Uninitialized Sections
	2.3.2 Initialized Sections
	2.3.3 User-Named Sections
	2.3.4 Current Section
	2.3.5 Section Program Counters
	2.3.6 Subsections
	2.3.7 Using Sections Directives

	2.4 How the Linker Handles Sections
	2.4.1 Combining Input Sections
	2.4.2 Placing Sections

	2.5 Symbols
	2.5.1 External Symbols
	2.5.2 The Symbol Table

	2.6 Symbolic Relocations
	2.6.1 Expressions With Multiple Relocatable Symbols (COFF Only)

	2.7 Loading a Program

	3 Program Loading and Running
	3.1 Loading
	3.1.1 Load and Run Addresses
	3.1.2 Bootstrap Loading
	3.1.2.1 Boot, Load, and Run Addresses
	3.1.2.2 Primary Bootloader
	3.1.2.3 Secondary Bootloader
	3.1.2.4 Boot Table
	3.1.2.5 Bootloader Routine

	3.2 Entry Point
	3.3 Run-Time Initialization
	3.3.1  _c_int00
	3.3.2 RAM Model vs. ROM Model
	3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)
	3.3.2.2 Initializing Variables at Load Time (--ram_model)
	3.3.2.3 The --rom_model and --ram_model Linker Options

	3.3.3 Copy Tables
	3.3.3.1 BINIT
	3.3.3.2 CINIT

	3.4 Arguments to main
	3.5 Run-Time Relocation
	3.6 Additional Information

	4 Assembler Description
	4.1 Assembler Overview
	4.2 The Assembler's Role in the Software Development Flow
	4.3 Invoking the Assembler
	4.4 Naming Alternate Directories for Assembler Input
	4.4.1 Using the --include_path Assembler Option
	4.4.2 Using the C2000_A_DIR Environment Variable

	4.5 Source Statement Format
	4.5.1 Label Field
	4.5.2 Mnemonic Field
	4.5.3 Operand Field
	4.5.4 Comment Field

	4.6 Literal Constants
	4.6.1 Integer Literals
	4.6.1.1 Binary Integer Literals
	4.6.1.2 Octal Integer Literals
	4.6.1.3 Decimal Integer Literals
	4.6.1.4 Hexadecimal Integer Literals
	4.6.1.5 Character Literals

	4.6.2 Character String Literals
	4.6.3 Floating-Point Literals

	4.7 Assembler Symbols
	4.7.1 Identifiers
	4.7.2 Labels
	4.7.3 Local Labels
	4.7.4 Symbolic Constants
	4.7.5 Defining Symbolic Constants (--asm_define Option)
	4.7.6 Predefined Symbolic Constants
	4.7.7 Registers
	4.7.8 Substitution Symbols

	4.8 Expressions
	4.8.1 Mathematical and Logical Operators
	4.8.2 Relational Operators and Conditional Expressions
	4.8.3 Well-Defined Expressions
	4.8.4 Legal Expressions

	4.9 Built-in Functions and Operators
	4.9.1 Built-In Math and Trigonometric Functions

	4.10 TMS320C28x Assembler Modes
	4.10.1 C28x Object Mode
	4.10.2 C28x FPU32 and FPU64 Object Modes
	4.10.3 C28x CLA Object Mode

	4.11 Source Listings
	4.12 Debugging Assembly Source
	4.13 Cross-Reference Listings
	4.14 Smart Encoding
	4.15 Pipeline Conflict Detection
	4.15.1 Protected and Unprotected Pipeline Instructions
	4.15.2 Pipeline Conflict Prevention and Detection
	4.15.3 Pipeline Conflicts Detected

	5 Assembler Directives
	5.1 Directives Summary
	5.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives
	5.3 Directives that Define Sections
	5.4 Directives that Initialize Values
	5.5 Directives that Perform Alignment and Reserve Space
	5.6 Directives that Format the Output Listings
	5.7 Directives that Reference Other Files
	5.8 Directives that Enable Conditional Assembly
	5.9 Directives that Define Union or Structure Types
	5.10 Directives that Define Enumerated Types
	5.11 Directives that Define Symbols at Assembly Time
	5.12 Miscellaneous Directives
	5.13 Directives Reference

	6 Macro Language Description
	6.1 Using Macros
	6.2 Defining Macros
	6.3 Macro Parameters/Substitution Symbols
	6.3.1 Directives That Define Substitution Symbols
	6.3.2 Built-In Substitution Symbol Functions
	6.3.3 Recursive Substitution Symbols
	6.3.4 Forced Substitution
	6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	6.3.6 Substitution Symbols as Local Variables in Macros

	6.4 Macro Libraries
	6.5 Using Conditional Assembly in Macros
	6.6 Using Labels in Macros
	6.7 Producing Messages in Macros
	6.8 Using Directives to Format the Output Listing
	6.9 Using Recursive and Nested Macros
	6.10 Macro Directives Summary

	7 Archiver Description
	7.1 Archiver Overview
	7.2 The Archiver's Role in the Software Development Flow
	7.3 Invoking the Archiver
	7.4 Archiver Examples
	7.5 Library Information Archiver Description
	7.5.1 Invoking the Library Information Archiver
	7.5.2 Library Information Archiver Example
	7.5.3 Listing the Contents of an Index Library
	7.5.4 Requirements

	8 Linker Description
	8.1 Linker Overview
	8.2 The Linker's Role in the Software Development Flow
	8.3 Invoking the Linker
	8.4 Linker Options
	8.4.1 Wildcards in File, Section, and Symbol Patterns
	8.4.2 Specifying C/C++ Symbols with Linker Options
	8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)
	8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)
	8.4.3.2 Producing a Relocatable Output Module (--relocatable option)
	8.4.3.3 Producing an Executable, Relocatable Output Module (-ar Option)

	8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
	8.4.5 Control Linker Diagnostics
	8.4.6 Automatic Library Selection (--disable_auto_rts Option)
	8.4.7 Disable Conditional Linking (--disable_clink Option)
	8.4.8 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)
	8.4.9 Error Correcting Code Testing (--ecc Options)
	8.4.10 Define an Entry Point (--entry_point Option)
	8.4.11 Set Default Fill Value (--fill_value Option)
	8.4.12 Define Heap Size (--heap_size Option)
	8.4.13 Hiding Symbols
	8.4.14 Alter the Library Search Algorithm (--library Option, --search_path Option, and C2000_C_DIR Environment Variable)
	8.4.14.1 Name an Alternate Library Directory (--search_path Option)
	8.4.14.2 Name an Alternate Library Directory (C2000_C_DIR Environment Variable)
	8.4.14.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

	8.4.15 Change Symbol Localization
	8.4.15.1 Make All Global Symbols Static (--make_static Option)

	8.4.16 Create a Map File (--map_file Option)
	8.4.17 Managing Map File Contents (--mapfile_contents Option)
	8.4.18 Disable Name Demangling (--no_demangle)
	8.4.19 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)
	8.4.20 Strip Symbolic Information (--no_symtable Option)
	8.4.21 Name an Output Module (--output_file Option)
	8.4.22 Prioritizing Function Placement (--preferred_order Option)
	8.4.23 C Language Options (--ram_model and --rom_model Options)
	8.4.24 Create an Absolute Listing File (--run_abs Option)
	8.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
	8.4.26 Define Stack Size (--stack_size Option)
	8.4.27 Enforce Strict Compatibility (--strict_compatibility Option)
	8.4.28 Mapping of Symbols (--symbol_map Option)
	8.4.29 Introduce an Unresolved Symbol (--undef_sym Option)
	8.4.30 Display a Message When an Undefined Output Section Is Created (--warn_sections)
	8.4.31 Generate XML Link Information File (--xml_link_info Option)

	8.5 Linker Command Files
	8.5.1 Reserved Names in Linker Command Files
	8.5.2 Constants in Linker Command Files
	8.5.3 Accessing Files and Libraries from a Linker Command File
	8.5.4 The MEMORY Directive
	8.5.4.1 Default Memory Model
	8.5.4.2 MEMORY Directive Syntax
	8.5.4.3 Expressions and Address Operators

	8.5.5 The SECTIONS Directive
	8.5.5.1 SECTIONS Directive Syntax
	8.5.5.2 Section Allocation and Placement
	8.5.5.2.1 Example: Placing Functions in RAM
	8.5.5.2.2 Binding
	8.5.5.2.3 Named Memory
	8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier
	8.5.5.2.5 Alignment and Blocking
	8.5.5.2.6 Alignment With Padding
	8.5.5.2.7 Using the Page Method

	8.5.5.3 Specifying Input Sections
	8.5.5.4 Using Multi-Level Subsections
	8.5.5.5 Specifying Library or Archive Members as Input to Output Sections
	8.5.5.6 Allocation Using Multiple Memory Ranges
	8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	8.5.6 Placing a Section at Different Load and Run Addresses
	8.5.6.1 Specifying Load and Run Addresses
	8.5.6.2 Referring to the Load Address by Using the .label Directive

	8.5.7 Using GROUP and UNION Statements
	8.5.7.1 Grouping Output Sections Together
	8.5.7.2 Overlaying Sections With the UNION Statement
	8.5.7.3 Nesting UNIONs and GROUPs
	8.5.7.4 Checking the Consistency of Allocators
	8.5.7.5 Naming UNIONs and GROUPs

	8.5.8 Overlaying Pages
	8.5.8.1 Using the MEMORY Directive to Define Overlay Pages
	8.5.8.2 Example of Overlay Pages
	8.5.8.3 Using Overlay Pages With the SECTIONS Directive
	8.5.8.4 Memory Allocation for Overlaid Pages

	8.5.9 Special Section Types (DSECT, COPY, and NOLOAD)
	8.5.10 Configuring Error Correcting Code (ECC) with the Linker
	8.5.10.1 Using the ECC Specifier in the Memory Map
	8.5.10.2 Using the ECC Directive
	8.5.10.3 Using the VFILL Specifier in the Memory Map

	8.5.11 Assigning Symbols at Link Time
	8.5.11.1 Syntax of Assignment Statements
	8.5.11.2 Assigning the SPC to a Symbol
	8.5.11.3 Assignment Expressions
	8.5.11.4 Symbols Defined by the Linker
	8.5.11.5 Why the Dot Operator Does Not Always Work
	8.5.11.6 Address and Dimension Operators
	8.5.11.6.1 Input Items
	8.5.11.6.2 Output Section
	8.5.11.6.3 GROUPs
	8.5.11.6.4 UNIONs

	8.5.12 Creating and Filling Holes
	8.5.12.1 Initialized and Uninitialized Sections
	8.5.12.2 Creating Holes
	8.5.12.3 Filling Holes
	8.5.12.4 Explicit Initialization of Uninitialized Sections

	8.6 Linker Symbols
	8.6.1 Using Linker Symbols in C/C++ Applications
	8.6.2 Resolving Symbols with Object Libraries

	8.7 Default Placement Algorithm
	8.7.1 How the Allocation Algorithm Creates Output Sections
	8.7.2 Reducing Memory Fragmentation

	8.8 Linker-Generated Copy Tables
	8.8.1 Using Copy Tables for Boot Loading
	8.8.2 Using Built-in Link Operators in Copy Tables
	8.8.3 Overlay Management Example
	8.8.4 Generating Copy Tables With the table() Operator
	8.8.4.1 The table() Operator
	8.8.4.2 Boot-Time Copy Tables
	8.8.4.3 Using the table() Operator to Manage Object Components
	8.8.4.4 Linker-Generated Copy Table Sections and Symbols
	8.8.4.5 Splitting Object Components and Overlay Management

	8.8.5 Copy Table Contents
	8.8.6 General Purpose Copy Routine

	8.9 Linker-Generated CRC Tables
	8.9.1 The crc_table() Operator
	8.9.2 Restrictions
	8.9.3 Examples
	8.9.4 Interface
	8.9.5 A Special Note Regarding 16-Bit char

	8.10 Partial (Incremental) Linking
	8.11 Linking C/C++ Code
	8.11.1 Run-Time Initialization
	8.11.2 Object Libraries and Run-Time Support
	8.11.3 Setting the Size of the Stack and Heap Sections
	8.11.4 Initializing and AutoInitialzing Variables at Run Time

	8.12 Linker Example

	9 Absolute Lister Description
	9.1 Producing an Absolute Listing
	9.2 Invoking the Absolute Lister
	9.3 Absolute Lister Example

	10 Cross-Reference Lister Description
	10.1 Producing a Cross-Reference Listing
	10.2 Invoking the Cross-Reference Lister
	10.3 Cross-Reference Listing Example

	11 Object File Utilities
	11.1 Invoking the Object File Display Utility
	11.2 Invoking the Disassembler
	11.3 Invoking the Name Utility
	11.4 Invoking the Strip Utility

	12 Hex Conversion Utility Description
	12.1 The Hex Conversion Utility's Role in the Software Development Flow
	12.2 Invoking the Hex Conversion Utility
	12.2.1 Invoking the Hex Conversion Utility From the Command Line
	12.2.2 Invoking the Hex Conversion Utility With a Command File

	12.3 Understanding Memory Widths
	12.3.1 Target Width
	12.3.2 Specifying the Memory Width
	12.3.3 Partitioning Data Into Output Files
	12.3.4 Specifying Word Order for Output Words

	12.4 The ROMS Directive
	12.4.1 When to Use the ROMS Directive
	12.4.2 An Example of the ROMS Directive

	12.5 The SECTIONS Directive
	12.6 The Load Image Format (--load_image Option)
	12.6.1 Load Image Section Formation
	12.6.2 Load Image Characteristics

	12.7 Excluding a Specified Section
	12.8 Assigning Output Filenames
	12.9 Image Mode and the --fill Option
	12.9.1 Generating a Memory Image
	12.9.2 Specifying a Fill Value
	12.9.3 Steps to Follow in Using Image Mode

	12.10 Building a Table for an On-Chip Boot Loader
	12.10.1 Description of the Boot Table
	12.10.2 The Boot Table Format
	12.10.3 How to Build the Boot Table
	12.10.3.1 Building the Boot Table
	12.10.3.2 Leaving Room for the Boot Table

	12.10.4 Booting From a Device Peripheral
	12.10.5 Setting the Entry Point for the Boot Table
	12.10.6 Using the C28x Boot Loader

	12.11 Controlling the ROM Device Address
	12.12 Control Hex Conversion Utility Diagnostics
	12.13 Description of the Object Formats
	12.13.1 ASCII-Hex Object Format (--ascii Option)
	12.13.2 Intel MCS-86 Object Format (--intel Option)
	12.13.3 Motorola Exorciser Object Format (--motorola Option)
	12.13.4 Extended Tektronix Object Format (--tektronix Option)
	12.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
	12.13.6 TI-TXT Hex Format (--ti_txt Option)

	12.14 Hex Conversion Utility Error Messages

	13 Sharing C/C++ Header Files With Assembly Source
	13.1 Overview of the .cdecls Directive
	13.2 Notes on C/C++ Conversions
	13.2.1 Comments
	13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	13.2.3 Pragmas
	13.2.4 The #error and #warning Directives
	13.2.5 Predefined symbol _ _ASM_HEADER_ _
	13.2.6 Usage Within C/C++ asm() Statements
	13.2.7 The #include Directive
	13.2.8 Conversion of #define Macros
	13.2.9 The #undef Directive
	13.2.10 Enumerations
	13.2.11 C Strings
	13.2.12 C/C++ Built-In Functions
	13.2.13 Structures and Unions
	13.2.14 Function/Variable Prototypes
	13.2.15 C Constant Suffixes
	13.2.16 Basic C/C++ Types

	13.3 Notes on C++ Specific Conversions
	13.3.1 Name Mangling
	13.3.2 Derived Classes
	13.3.3 Templates
	13.3.4 Virtual Functions

	13.4 Special Assembler Support
	13.4.1 Enumerations (.enum/.emember/.endenum)
	13.4.2 The .define Directive
	13.4.3 The .undefine/.unasg Directives
	13.4.4 The $defined() Built-In Function
	13.4.5 The $sizeof Built-In Function
	13.4.6 Structure/Union Alignment and $alignof()
	13.4.7 The .cstring Directive

	A Symbolic Debugging Directives
	A.1 DWARF Debugging Format
	A.2 COFF Debugging Format
	A.3 Debug Directive Syntax

	B XML Link Information File Description
	B.1 XML Information File Element Types
	B.2 Document Elements
	B.2.1 Header Elements
	B.2.2 Input File List
	B.2.3 Object Component List
	B.2.4 Logical Group List
	B.2.5 Placement Map
	B.2.6 Symbol Table

	C CRC Reference Implementation
	C.1 Compilation Instructions
	C.2 Reference CRC Calculation Routine
	C.3 Linker-Generated Copy Tables and CRC Tables

	D Glossary
	E Revision History
	Important Notice

