
Manual | EN

TE1000
TwinCAT 3 | C++

2020-10-26 | Version: 1.13

Table of contents

TE1000 3Version: 1.13

Table of contents
1 Foreword .. 9

1.1 Notes on the documentation.. 9
1.2 Safety instructions ... 10

2 Overview... 11

3 Introduction.. 12
3.1 From conventional user mode programming to real-time programming in TwinCAT 14

4 Requirements... 20

5 Preparation - only once... 22
5.1 "Microsoft Windows Driver Kit (WDK)" installation (only <= Build 4022) ... 22
5.2 Visual Studio - TwinCAT XAE Base toolbar .. 24
5.3 Prepare Visual Studio - Configuration and Platform toolbar .. 25
5.4 Driver signing... 25

5.4.1 Operating system... 26
5.4.2 TwinCAT .. 31

6 Modules .. 35
6.1 The TwinCAT Component Object Model (TcCOM) concept ... 35

6.1.1 TwinCAT module properties .. 37
6.1.2 TwinCAT module state machine.. 44

6.2 Module-to-module communication .. 46

7 Modules - Handling.. 49
7.1 Versioned C++ Projects... 49
7.2 Non-versioned C++ projects .. 49

7.2.1 Export to TwinCAT 3.1 4022.xx ... 50
7.2.2 Import up to TwinCAT 3.1 4022.xx .. 51

7.3 Starting Modules.. 52
7.4 TwinCAT Loader.. 53

7.4.1 Test signing ... 53
7.4.2 Encrypting Modules ... 55
7.4.3 Return Codes... 57
7.4.4 TcSignTool - Storage of the certificate password outside the project.............................. 57

8 TwinCAT C++ development .. 58

9 Quick Start.. 60
9.1 Create TwinCAT 3 project ... 60
9.2 Create TwinCAT 3 C++ project ... 62
9.3 TwinCAT 3 Driver .. 63

9.3.1 Creating a TwinCAT 3 C++ module in the TwinCAT Driver Project 63
9.3.2 Implement TwinCAT 3 C++ project.. 66
9.3.3 Create TwinCAT 3 C++ Module instance .. 67
9.3.4 Create a TwinCAT task and apply it to the module instance ... 69
9.3.5 Compiling/building a TwinCAT 3 C++ project .. 71
9.3.6 TwinCAT 3 enable C++ debugger ... 72
9.3.7 Activating a TwinCAT 3 project.. 73

Table of contents

TE10004 Version: 1.13

9.3.8 Debug TwinCAT 3 C++ project.. 74
9.4 TwinCAT 3 Versioned Project ... 78

9.4.1 Create TwinCAT 3 C++ project.. 78
9.4.2 TwinCAT 3 C++ Configure project... 80
9.4.3 Implement TwinCAT 3 C++ project.. 81
9.4.4 Publish TwinCAT 3 C++ project in version 0.0.0.1 .. 83
9.4.5 Implement and publish TwinCAT 3 C++ project version 0.0.0.2...................................... 83
9.4.6 Create TwinCAT 3 C++ Module instance .. 85
9.4.7 Activating a TwinCAT 3 project.. 87
9.4.8 TwinCAT 3 C++ Implement project Online Change... 89

10 Debugging.. 91
10.1 Details of Conditional Breakpoints... 94
10.2 Visual Studio tools ... 96

11 Wizards... 99
11.1 TwinCAT C++ Project Wizard.. 99
11.2 TwinCAT Module Class Wizard... 100
11.3 TwinCAT Module Class Editor (TMC).. 103

11.3.1 Overview.. 105
11.3.2 Basic Information ... 106
11.3.3 Data Types .. 107
11.3.4 Modules ... 124

11.4 TwinCAT Module Instance Configurator.. 146
11.4.1 Object .. 147
11.4.2 Context .. 148
11.4.3 Parameter (Init) .. 148
11.4.4 Data Area... 149
11.4.5 Interfaces ... 149
11.4.6 Interface Pointer .. 149
11.4.7 Data Pointer... 150

11.5 Customer-specific project templates ... 150
11.5.1 Overview.. 150
11.5.2 Files involved ... 151
11.5.3 Transformations... 152
11.5.4 Notes on handling.. 153

12 Programming Reference... 156
12.1 TwinCAT C++ Project properties... 157

12.1.1 Tc SDK .. 159
12.1.2 Tc Extract Version ... 160
12.1.3 Tc Publish .. 160
12.1.4 Tc Sign... 161

12.2 File Description.. 162
12.2.1 Compilation procedure... 164

12.3 Online Change... 164
12.4 Limitations ... 166
12.5 Memory Allocation ... 167

Table of contents

TE1000 5Version: 1.13

12.6 Multi-task data access synchronization ... 168
12.7 Interfaces... 172

12.7.1 Return values... 173
12.7.2 Interface ITcCyclic ... 173
12.7.3 Interface ITcCyclicCaller.. 174
12.7.4 Interface ITcFileAccess ... 176
12.7.5 Interface ITcFileAccessAsync.. 184
12.7.6 Interface ITcIoCyclic .. 186
12.7.7 Interface ITcIoCyclicCaller... 187
12.7.8 ITComOnlineChange interface .. 189
12.7.9 Interface ITComObject... 190
12.7.10 ITComObject interface (C++ convenience) ... 195
12.7.11 Interface ITcPostCyclic .. 196
12.7.12 Interface ITcPostCyclicCaller... 197
12.7.13 Interface ITcRTimeTask .. 199
12.7.14 Interface ITcTask ... 200
12.7.15 Interface ITcTaskNotification ... 204
12.7.16 Interface ITcUnknown.. 205

12.8 Runtime Library (RtlR0.h) .. 207
12.9 ADS Communication ... 208

12.9.1 AdsReadDeviceInfo ... 208
12.9.2 AdsRead .. 210
12.9.3 AdsWrite .. 212
12.9.4 AdsReadWrite.. 214
12.9.5 AdsReadState.. 216
12.9.6 AdsWriteControl... 218
12.9.7 AdsAddDeviceNotification ... 220
12.9.8 AdsDelDeviceNotification .. 222
12.9.9 AdsDeviceNotification.. 224

12.10 Mathematical Functions... 225
12.11 Time Functions .. 227
12.12 STL / Containers.. 228
12.13 Error messages - understanding ... 228
12.14 Module messages for the Engineering (logging / tracing) ... 229

13 How to...?.. 233
13.1 Using the Automation Interface ... 233
13.2 Windows 10 as target system up to TwinCAT 3.1 Build 4022.2.. 233
13.3 Publishing of modules ... 233
13.4 Publishing modules on the command line ... 234
13.5 Clone ... 234
13.6 Access Variables via ADS ... 235
13.7 TcCallAfterOutputUpdate for C++ modules... 235
13.8 Order determination of the execution in a task.. 235
13.9 Setting version/vendor information .. 236
13.10 Renaming TwinCAT C++ projects ... 237
13.11 Delete Module ... 239

Table of contents

TE10006 Version: 1.13

13.12 Add revision control and Online Change subsequently ... 240
13.12.1 C++ Project -> Revision control ... 240
13.12.2 C++ Module -> OnlineChange... 243

13.13 Initialization of TMC-member variables ... 248
13.14 Using PLC strings as method parameters... 248
13.15 Third Party Libraries .. 249
13.16 Linking via TMC editor (TcLinkTo)... 249

14 Troubleshooting .. 252
14.1 Build - "The target ... does not exist in the project".. 252
14.2 Debug - "Unable to attach" .. 252
14.3 Activation – “invalid object id” (1821/0x71d).. 253
14.4 Error message - VS2010 and LNK1123/COFF ... 254
14.5 Using C++ classes in TwinCAT C++ module .. 254
14.6 Using afxres.h.. 254

15 C++-samples .. 255
15.1 Sample01: Cyclic module with IO.. 257
15.2 Sample02: Cyclic C++ logic, which uses IO from the IO Task .. 258
15.3 Sample03: C++ as ADS server ... 258

15.3.1 Sample03: TC3 ADS Server written in C++... 259
15.3.2 Sample03: ADS client UI in C#.. 263

15.4 Sample05: C++ CoE access via ADS ... 267
15.5 Sample06: UI-C#-ADS client uploading the symbolic from module .. 268
15.6 Sample07: Receiving ADS Notifications.. 273
15.7 Sample08: provision of ADS-RPC... 274
15.8 Sample10: module communication: Using data pointer .. 277
15.9 Sample11: module communication: PLC module invokes method of C-module........................... 278

15.9.1 TwinCAT 3 C++ module providing methods .. 279
15.9.2 Calling methods offered by another module via PLC .. 294

15.10 Sample11a: Module communication: C module calls a method of another C module 306
15.11 Sample12: module communication: Using IO mapping... 306
15.12 Sample13: Module communication: C-module calls PLC methods... 307
15.13 Sample19: Synchronous File Access .. 310
15.14 Sample20: FileIO-Write ... 311
15.15 Sample20a: FileIO-Cyclic Read / Write ... 311
15.16 Sample22: Automation Device Driver (ADD): Access DPRAM ... 312
15.17 Sample23: Structured Exception Handling (SEH) ... 314
15.18 Sample24: Semaphores .. 316
15.19 Sample25: Static Library ... 317
15.20 Sample26: Order of execution in a task .. 318
15.21 Sample30: Timing Measurement... 320
15.22 Sample31: Functionblock TON in TwinCAT3 C++ .. 321
15.23 Sample35: Access Ethernet .. 322
15.24 Sample37: Archive data .. 323
15.25 TcCOM samples.. 324

15.25.1 TcCOM_Sample01_PlcToPlc .. 324

Table of contents

TE1000 7Version: 1.13

15.25.2 TcCOM_Sample02_PlcToCpp .. 334
15.25.3 TcCOM_Sample03_PlcCreatesCpp .. 338

16 Appendix .. 343
16.1 ADS Return Codes .. 343
16.2 Retain data .. 348
16.3 Creating and handling C++ projects and modules .. 350
16.4 Creating and handling TcCOM modules ... 354

Table of contents

TE10008 Version: 1.13

Foreword

TE1000 9Version: 1.13

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TE100010 Version: 1.13

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Overview

TE1000 11Version: 1.13

2 Overview
This chapter is all about TwinCAT 3 implementation in C/C++. The most important chapters are:

• Start from scratch
Which platforms are supported? Additional installations to implement TwinCAT 3 C++ modules?
Find all answers in Requirements [} 20] and Preparation [} 22]. Limitations are documented here
[} 166].

• Quick start [} 60]
This is a “less than five minutes sample” to create a simple incrementing counter in C++ being
executed cyclically. Counter value will be monitored and overwritten, debugging capabilities will be
presented etc.

• MODULES [} 37]
Modularization the basic philosophy of TwinCAT 3. Especially for C++ Modules it is required to
understand the module concept of TwinCAT 3.
Minimum is to read one article about the architecture of TwinCAT modules.

• Wizards [} 99]
Documentation of visual components of the TwinCAT C++ environment.
This includes on the one hand tools for creating projects and on the other hand tools for editing module
and configuring instances of modules.

• Programming Reference [} 156]
This chapter contains detailed information for programming in TwinCAT C++. For Example Interfaces
as well as other TwinCAT provided functions for ADS communication and helper methods are located
here.

• The How to …? [} 233] Chapter contains useful hints while working with TwinCAT C++.
• Samples

Some Interfaces and their usage is best described by working code, which is provided as download
including source code and solution.

Introduction

TE100012 Version: 1.13

3 Introduction
The method of emulating classic automation devices such as programmable logic controllers (PLC) and
numerical controllers (NC) as software on powerful standard hardware has been the state of the art for many
years and is now practiced by many manufacturers.

There are many benefits, but the most important is without doubt the fact that the software is mostly
hardware-independent. This means, firstly, that the performance of the hardware can be specially adapted to
the application and, secondly, that you can automatically benefit from its further development.

This particularly applies to PC hardware, whose performance is still increasingly at a dramatically fast rate.
The relative independence from a supplier that results from this separation of software and hardware is also
very important for the user.

Since the PLC and Motion Control – and possibly other automation components – remain independent logic
function blocks with this method, there are only a few changes in the application architecture in comparison
with classic automation technology.

The PLC determines the machine's logical processes and transfers the implementation of certain axis
functions to the Motion Control. On account of the improved performance of the controllers and the
possibility to use higher-level programming languages (IEC 61131-3), even complex machines can be
automated in this way.

Modularization

In order to master the complexity of modern machines and at the same time to reduce the necessary
engineering expenditure, many machine manufacturers have begun to modularize their machines. Individual
functions, assemblies or machine units are thereby regarded as modules, which are as independent as
possible and are embedded into the overall system via uniform interfaces.

Ideally a machine is then structured hierarchically, whereby the lowest modules represent the simplest,
continually reusable basic elements. Joined together they form increasingly complex machine units, up to the
highest level where the entire machine is created. Different approaches are followed when it comes to the
control system aspects of machine modularization. These can be roughly divided into a decentralized and a
centralized approach.

In the local approach, each machine module is given its own controller, which determines the PLC functions
and possibly also the motion functions of the module.

The individual modules can be put into operation and maintained separately from one another and scaled
relatively independently. The necessary interactions between the controllers are coordinated via
communication networks (fieldbuses or Ethernet) and standardized via appropriate profiles.

The central approach concentrates all control functions of all modules in the common controller and uses
only very little pre-processing intelligence in the local I/O devices. The interactions can occur much more
directly within the central control unit, as the communication paths become much shorter. Dead times do not
occur and use of the control hardware is much more balanced, which reduces overall costs.

However, the central method also has the disadvantage that the necessary modularization of the control
software is not automatically specified. At the same time, the possibility of being able to access any
information from other parts of the program in the central controller obstructs the module formation and the
reusability of this control software in other applications. Since no communication channel exists between the
control units, an appropriate profile formation and standardization of the control units frequently fall by the
wayside.

The best of both worlds

The ideal controller for modular machines uses elements from decentralized and centralized control
architecture. A central, powerful computer platform of the most general kind possible serves 'as always' as
the control hardware.

The benefits of centralized control technology:

• low overall costs
• available

Introduction

TE1000 13Version: 1.13

• fast, modular fieldbus system (keyword: EtherCAT)
• and the possibility to access all information in the system without loss of communication

are decisive arguments.

The above-mentioned benefits of a decentralized approach can be implemented in the centralized control
system by means of suitable modularization of the control software.

Instead of allowing a large, complex PLC program and an NC with many axes to run, many small ‘controllers’
can co-exist in a common runtime on the same hardware with relative independence from one another. The
individual control modules are self-contained and make their functions available to the environment via
standard interfaces, or they use corresponding functions of other modules or the runtime.

A significant profile is created through the definition of these interfaces and the standardization of the
corresponding parameters and process data. Since the individual modules are implemented in a runtime,
direct calls of other modules are also possible – once again via corresponding standard interfaces. In this
way the modularization can take place within sensible limits without communication losses occurring.

During the development or commissioning of individual machine modules, the associated control modules
can be created and tested on any control hardware with the appropriate runtime. Missing connections to
other modules can be emulated during this phase. On the complete machine they are then instanced
together on the central runtime, which only needs to be dimensioned such that the resource requirements of
all instanced modules (memory, tasks and computing power) are fulfilled.

TwinCAT 3 Run-Time

The TwinCAT runtime offers a software environment in which TwinCAT modules are loaded, implemented
and managed. It offers additional basic functions so that the system resources can be used (memory, tasks,
fieldbus and hardware access etc.). The individual modules do not have to be created using the same
compiler and can therefore be independent of one another and can originate from different manufacturers.

A series of system modules is automatically loaded at the start of the runtime, so that their properties are
available to other modules. However, access to the properties of the system modules takes place in the
same way as access to the properties of normal modules, so that it is unimportant to the modules whether
the respective property is made available by a system module or a normal module.

Introduction

TE100014 Version: 1.13

In contrast to the PLC, where customer code is executed within a runtime environment, TwinCAT C++
modules are not within such a hosted environment. As a consequence TwinCAT C++ modules are executed
as Kernel Modules (.sys) – thus they are built with the kernel mode libraries.

3.1 From conventional user mode programming to real-
time programming in TwinCAT

This article describes the conceptual differences between standard user mode programming in a
programming language such as C++, C# or Java, and real-time programming in TwinCAT.

The article particularly focuses on real-time programming with TwinCAT C++, because this is where previous
knowledge with C++ programming comes to the fore and the sequence characteristics of the TwinCAT real-
time system have to be taken into account.

Introduction

TE1000 15Version: 1.13

With conventional user mode programming, e.g. in C#, a program is created, which is then executed by an
operating system.

The program is started by the operating system and can run independently, i.e. it has full control over its own
execution, including aspects such as threading and memory management. In order to enable multitasking,
the operating system interrupts such a program at any time and for any period. The program does not
register such an interruption. The operating system must ensure that such interruptions remain unnoticed by
the user. The data exchange between the program and its environment is event-driven, i.e. non-deterministic
and often blocking.

The behavior is not adequate for execution under real-time conditions, because the application itself must be
able to rely on the available resources in order to be able to ensure real-time characteristics (response
guarantees).

Introduction

TE100016 Version: 1.13

The basic idea of PLC is therefore adopted for TwinCAT C++: The TwinCAT real-time system manages the
real-time tasks, handles the scheduling and cyclically calls an entry point in the program code. The program
execution must be completed within the available cycle length and return the control. The TwinCAT system
makes the data from the I/O area available in the process images, so that consistent access can be
guaranteed. This means that the program code itself cannot use mechanisms such as threading.

Introduction

TE1000 17Version: 1.13

Concurrency

With conventional programming in user mode, concurrency is controlled by the program. This is where
threads are started, which communicate with each other. All these mechanisms require resources, which
have to be allocated and enabled, which can compromise the real-time capability. The communication
between the threads is event-based, so that a calling thread has no control over the processing time in the
called thread.

Introduction

TE100018 Version: 1.13

In TwinCAT, tasks are used for calling modules, which therefore represents concurrency. Tasks are
assigned to a core; they have cycle times and priorities, with the result that a higher-priority task can interrupt
a lower-priority task. If several cores are used, tasks are executed concurrently in practice.

Modules can communicate with each other, so that data consistency has to be ensured in concurrency
mode.
Data exchange across task boundaries is enabled through mapping, for example. When direct data access
via methods is used, it must be protected through Critical sections, for example.

Startup/shutdown behavior

The TwinCAT C++ code is executed in the so-called "Windows kernel context" and the "TwinCAT real-time
context", not as a user mode application.

During startup/shutdown of the modules, code for (de)initialization is initially executed in the Windows kernel
context; only the last phase and the cyclic calls are executed in the TwinCAT real-time context.

Details are described in the "Module state machine [} 44]" section.

Memory management

TwinCAT has its own memory management, which can also be used in the real-time context. This memory is
obtained from what is referred to as the "non-paged pool", which is provided by the operating system. In this
memory the TcCOM modules are instantiated with their memory requirement.

Introduction

TE1000 19Version: 1.13

In addition, the so-called "router memory" is provided by TwinCAT in this memory area, from which the
TcCOM modules can allocate memory dynamically in the real-time-context (e.g. with the New operator).

If possible, memory should generally be allocated in advance, not in the cyclic code. During each allocation a
check is required to verify that the memory is actually available. For allocations in the cyclic code, the
execution therefore depends on the memory availability.

Requirements

TE100020 Version: 1.13

4 Requirements
Overview of minimum requirements

The implementation and debugging of TwinCAT 3 C++ modules requires:

The following must be installed on the engineering PC:
• Microsoft Visual Studio 2010 (with Service Pack 1), 2012, 2013 or 2015

Professional, Premium or Ultimate
◦ When installing Visual Studio 2019 or 2017, the Desktop development with C++ option must be

manually selected, as this option is not selected with the automatic installation:

◦

◦ When installing Visual Studio 2015, the Visual C++ development option must be manually
selected, as this option is not selected with the automatic installation:

• TwinCAT 3 installation (XAE engineering)
• XaeShell is sufficient for the integration and use of existing binary C++ modules in a TwinCAT 3 PLC

environment (Visual Studio is not required.)

Requirements

TE1000 21Version: 1.13

On the runtime PC:
• IPC or Embedded CX PC with Microsoft operating system (Windows 7 / 10).
• Microsoft Visual Studio does not have to be installed.
• TwinCAT 3 installation (XAR runtime)

Limitations on the runtime PC
• TwinCAT 3.0 only supports 32-bit operating systems as target platform (runtime PC).

TC3.0 can be used as engineering platform on x64 PCs. The program can be transferred to a 32bit
(x86) remote PC over the network and executed there.

• TwinCAT 3.1 also supports x64-bit operating systems as target platform (runtime PC). To do this, the
drivers must be signed as documented under Driver signing [} 25].

• The runtime PC must be either a Windows 7 or Windows 10 system.

Also see about this
2 "Microsoft Windows Driver Kit (WDK)" installation (only <= Build 4022) [} 22]

Preparation - only once

TE100022 Version: 1.13

5 Preparation - only once
A PC for the engineering of TwinCAT C++ modules must be prepared. You only have to carry out these
steps once:

• Install the Microsoft Windows Driver Kit (WDK) [} 22].

• Configure the TwinCAT Basis [} 24] as well as the configuration and platform [} 25] toolbar.

• On x64 PCs, sign modules so that they can be run; see Documentation for the setup of a test signing
[} 25].

• If the operating system of the target system requires enhanced validation for drivers, for example,
through a SecureBoot, carry out a corresponding signing [} 31] with Microsoft.

5.1 "Microsoft Windows Driver Kit (WDK)" installation
(only <= Build 4022)

NOTE
WDK installation only up to TwinCAT 3.1 Build 4022
The installation of the WDK described here is only necessary up to TwinCAT 3.1. Build 4022. From Build
4024.0, either the WDK must be uninstalled or the previously set system variable WINDDK7 must be re-
named so that TwinCAT ignores the WDK.

Installation of WDK 7 for TwinCAT 3.1. 4022 and earlier

The installation is only necessary for the TwinCAT 3 engineering environment in order to be able to create
and edit C++ modules. The WDK installation is not required on the target system (XAR).

1. Download the Windows Driver Kit 7.1 from the Microsoft Download Center https://www.microsoft.com/
en-us/download/details.aspx?id=11800

2. Following the download, either burn a CD of the downloaded ISO image or use a virtual (software-based)
CD drive.

3. Start KitSetup.exe of the ISO image that has been downloaded or burnt on CD (on Windows 7 PCs, start
the installation with Run As Administrator...).

https://www.microsoft.com/en-us/download/details.aspx?id=11800
https://www.microsoft.com/en-us/download/details.aspx?id=11800

Preparation - only once

TE1000 23Version: 1.13

4. Select the option Build Environment – none of the other components are required by TwinCAT 3 – and
click on OK to continue.

5. After accepting the Microsoft EULA license, select the destination folder for the installation.
By default, the root folder "C:\" is selected – i.e. "C:\WinDDK\7600.16385.1" is proposed.
The digits "7600…." may be different in the case of a newer version of the Windows Driver Kit.

6. Start the installation with OK.

7. In future TwinCAT 3 will take care of the following step, but for now it must be done manually: Navigate
to Start-> Control Panel -> System and select Advanced system settings.

8. Select the Advanced tab and then click on Environment Variables…

Preparation - only once

TE100024 Version: 1.13

9. In the lower area of System variables, select New.. and enter the following information:
Variable name "WINDDK7"
Variable value "C:\WinDDK\7600.16385.1"
The path may differ with a different version of the Windows Driver Kit or if a different installation path is
specified.

10. Following the installation, log in again or restart the PC to confirm the new environment variable settings.

Also see about this
2 Programming Reference [} 156]

5.2 Visual Studio - TwinCAT XAE Base toolbar

Efficient engineering through TwinCAT XAE base toolbar

TwinCAT 3 integrates its own toolbar in the Visual Studio menu for better efficiency. It assists you in the
creation of C++ projects. This toolbar is automatically added to the Visual Studio menu by the TwinCAT 3
setup. If you wish to add it manually, however, do the following:

1. Open the View menu and select Toolbars\TwinCAT XAE Base

Preparation - only once

TE1000 25Version: 1.13

ð The selected toolbar appears below the menu.

5.3 Prepare Visual Studio - Configuration and Platform
toolbar

Add the toolbar "Solution Configuration and Solution Platform"

With the Configuration and Platform toolbar you can specify the target platform for the creation of your
project. This toolbar is automatically added to the Visual Studio menu by the TwinCAT 3 setup. If you wish to
add it manually, however, do the following:

1. Open the View menu and select Toolbars\Customize.
2. Navigate to the Commands tab.
3. Activate the Toolbar option field and then select the Standard toolbar from the list.
4. Click on Add Command...
5. Select the Build category, select the Solution Configurations command and then click on OK.
6. Repeat the last step for the Solution Platforms command.
7. Click on Close.
ð The two commands now appear below the menu bar.

5.4 Driver signing
TwinCAT C++ modules must be signed with a certificate so that they can be executed.

The signature ensures that only C++ software whose origin can be traced is executed on productive
systems.

For test purposes, certificates that cannot be verified can be used for signing. However, this is only possible
if the operating system is in test mode so that these certificates are not used on productive systems.

Engineering requires no signing
Only the execution requires certificates - the engineering does not.

Preparation - only once

TE100026 Version: 1.13

There are two ways to load modules, different certificates are used for signing:

• Operating system: The C++ modules are loaded as normal kernel drivers and must therefore also have
a signature.

◦ With TwinCAT 3.1. 4022 or earlier, only this procedure is available.
◦ Windows 7 (Embedded) x86 (32bit) does not require signing.

• TwinCAT: The C++ modules are loaded by the TwinCAT runtime system and must be signed with a
TwinCAT user certificate.

◦ With TwinCAT 3.1. 4024 and higher, this method is also available.

◦ This procedure is required to perform new functions such as versioned C++ projects [} 49] and
thus also the C++ Online Change [} 164].

Since a published module should be executable on various PCs, signing is always necessary for publishing.

Organizational separation of development and production software

Beckhoff recommends working organizationally with (at least) two certificates.

1. A certificate which is not countersigned, thus the test mode is needed for the development process.
This certificate can also be issued individually by each developer.

2. Only the software that has passed the corresponding final tests is signed by a countersigned certifi-
cate. This software can thus also be installed on machines and delivered.

Such a separation of development and operation ensures that only tested software runs on productive
systems.

5.4.1 Operating system
For the implementation of TwinCAT 3 C++ modules on x64 platforms, the driver (*.sys file) must be signed
with a certificate if it is to be loaded by the operating system.

The signature, which is automatically executed during the TwinCAT 3 build process, is used by 64-bit
Windows operating systems for the authentication of the drivers.

A certificate is required to sign a driver. This Microsoft documentation describes the process and
background knowledge for obtaining a test and release certificate that is accepted by 64-bit Windows
operating systems.

To use such a certificate in TwinCAT 3, configure the step after compiling your x64 build target as
documented in "Creating a test certificate for test mode [} 27]".

Test certificates

For testing purposes, self-signed test certificates can be created and used without technical limitations.

The following tutorials describe how to activate this option.
To create drivers with real certificates for production machines, this option must be disabled.

• Creating a test certificate for test mode [} 27]

• Delete (test) certificates [} 29]

Further references:

MSDN, test certificates (Windows driver),
 http://msdn.microsoft.com/en-us/library/windows/hardware/ff553457(v=vs.85).aspx

MSDN, MakeCert test certificates (Windows driver),
 http://msdn.microsoft.com/en-us/library/windows/hardware/ff548693(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/hardware/ff544865(v=vs.85).aspx

Preparation - only once

TE1000 27Version: 1.13

5.4.1.1 Test signing

Overview

Implementing TwinCAT 3 C++ modules for x64 platforms requires signing the driver with a certificate.

This article describes how to create and install a test certificate for testing a C++ driver.

Note the procedure when creating test certificates
Developers may have a wide range of tools for creating certificates. Please follow this description
exactly, in order to activate the test certificate mechanism.

The following commands must be executed from a command line that has been opened in either way:

• Visual Studio 2010 / 2012 prompt with administrator rights. (Via: All Programs -> Microsoft
Visual Studio 2010/2012 -> Visual Studio Tools -> Visual Studio Command Prompt, then right-click
Run as administrator)

• Developer Command Prompt of Visual Studio 2017 / 2019 with administrator rights. (Via: All
Programs -> Visual Studio 2017 -> Visual Studio Command Prompt for VS 2017/2019, then right-
click on Run as administrator)

• Only if the WINDDK has been installed:
Normal prompt (Start->Command Prompt) with administrator rights, then change to directory
%WINDDK7%\bin\x86\, which contains the corresponding tools.

1. On XAE:
in the engineering system enter the following command in the Visual Studio 2010 / 2012 prompt with
administrator rights (see note above):
makecert -r -pe -ss PrivateCertStore -n CN=MyTestSigningCert
MyTestSigningCert.cer
(If you do not have access rights to the PrivateCertStore, you can use a different location. This
must also be used in the PostBuild event, as described here. [} 30])
ð This is followed by creation of a self-signed certificate, which is stored in the file

"MyTestSigningCert.cer" and in the Windows Certificate Store.
ð Check the result with mmc (Use File->Add/Remove Snap-in->Certificates):

2. On XAE:
configure the certificate so that it is recognized by TwinCAT XAE on the engineering system.
Set the environment variable TWINCATTESTCERTIFICATE to "MyTestSigningCert" in the engineering
system or edit the post build event of Debug|TwinCAT RT (x64) and Release|TwinCAT RT (x64).
The name of the variable is NOT the name of the certificate file, but the CN name (in this case
MyTestSigningCert).

Note From TwinCAT 3.1 4024.0, the configuration of the certificate to be used is carried out under Tc
Sign in the project properties. To use signing via the operating system, as described here, please
pay attention to the project settings:

Preparation - only once

TE100028 Version: 1.13

3. On XAR (and XAE, if local test)
activate the test mode so that Windows can accept the self-signed certificates. This can be done on both
engineering systems (XAE) and runtime systems (XAR).

4. Execute the following using the "Run as administrator" option:
bcdedit /set testsigning yes
and restart the target system.
ð If test signing mode is enabled, this is displayed at the bottom right of the desktop. The PC now

accepts all signed drivers for execution.

5. You may have to switch off "SecureBoot" for this, which can be done in the bios.
6. Test whether a configuration with a TwinCAT module implemented in a TwinCAT C++ driver can be

enabled and started on the target system.

Preparation - only once

TE1000 29Version: 1.13

ð Compilation of the x64 driver generates the following output:

References:
MSDN, test certificates (Windows driver)
MSDN, MakeCert test certificates (Windows driver),

Also see about this
2 TwinCAT C++ Project properties [} 157]
2 Tc Sign [} 161]

5.4.1.2 Delete test certificate

This article is about how to delete a test certificate.

Overview

A certificate can be deleted with the Microsoft Management Console:

1. Start the management console MMC.exe via the Start menu or the user interface.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff553457(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff553457(v=vs.85).aspx

Preparation - only once

TE100030 Version: 1.13

2. Click in the menu on File -> Add/Remove Snap-in.. and select the certificate snap-in for the current
user; conclude with OK.

ð The certificates are listed in the node under PrivateCertStore/Certificates.
3. Select the certificate to be deleted.

5.4.1.3 Customer Certificates

Configuration Certificate
From TwinCAT 3.1 4024.0, the configuration of the certificate to be used is carried out under Tc
Sign [} 161] in the project properties.

If the TwinCAT C++ class wizard is used, the project is prepared for x64 targets using the test certificate
procedure described above.

This test signing system can be used for the entire engineering and test process.

Preparation - only once

TE1000 31Version: 1.13

If you want to create an infrastructure and sign the kernel drivers with official "Microsoft trusted" certificates,
the post-build events of the project properties provide the entry point.

The customer can simply replace the value of the environment variable TWINCATTESTCERTIFICATE or
determine another certificate to be used.
The customer can also change the whole signing process with the signing tool.
In this case a CrossSigning is necessary for the Windows drivers. The parameter for the signtool is "/ac".
The certificate provider provides the necessary information. Microsoft provides an overview here.

5.4.1.4 SecureBoot: Driver signing

Systems may require enhanced validation of the Windows drivers. This is usually the case with systems with
enabled SecureBoot.

In this case, the TwinCAT C++ drivers must also be signed by the "Attestation Signing" established by
Microsoft in the same way as all other drivers that the operating system is to load. The procedure for this is
documented in MSDN.

For development purposes, the development process can be simplified on corresponding test systems by
deactivating SecureBoot.

5.4.2 TwinCAT
Versioned C++ projects are stored as binary in a TMX file (TwinCAT Module Executeable).

For the implementation of TwinCAT 3 C++ modules, this compiled, executable TMX file must be signed with
a TwinCAT user certificate if it is to be loaded by the TwinCAT Runtime.

For signing a TMX file, a TwinCAT user certificate is required [} 32], which is configured accordingly in the
project for signing.

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing
https://technet.microsoft.com/en-us/library/hh824987.aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/attestation-signing-a-kernel-driver-for-public-release

Preparation - only once

TE100032 Version: 1.13

The TMX file must then be loaded by the TwinCAT Loader [} 53], for which corresponding settings are made
in the project during the construction process.

NOTE
Signing on 32bit and 64bit systems
In contrast to the operating system signature, TwinCAT signing is intended for both 32bit and 64bit sys-
tems. Thus, the test mode is assumed for a test signature also on 32-bit systems.

Note In contrast to the operating system signature, TwinCAT signing is intended for both 32bit and
64bit systems. Thus, the test mode is assumed for a test signature also on 32-bit systems.

Test signing

Just as with the option of loading drivers through the operating system, TwinCAT also provides the test
mode of the operating system for loading.

As soon as the TwinCAT user certificate has been countersigned by Beckhoff [} 34], the test mode can be
dispensed with accordingly.

5.4.2.1 Test signing

The test signature for TwinCAT can be carried out with the same TwinCAT user certificate as for the actual
delivery (see Driver signing [} 26]).
1. For test operation, e.g. during software development, the creation of a TwinCAT user certificate, as

described here, is sufficient. Make sure that you select the purpose "Sign TwinCAT C++ executable
(*.tmx)". For this the Crypto version 2 is required, a message appears.

https://infosys.beckhoff.com/content/1033/tc3_security_management/90071994397454475.html?id=3270001753992825463

Preparation - only once

TE1000 33Version: 1.13

2. On XAR (and XAE, if local test)
activate the test mode so that Windows can accept the self-signed certificates. This can be done on both
engineering systems (XAE) and runtime systems (XAR).

3. Execute the following using the "Run as administrator" option:
bcdedit /set testsigning yes
and restart the target system.
ð If test signing mode is enabled, this is displayed at the bottom right of the desktop. The PC now

accepts all signed drivers for execution.

4. You may have to switch off "SecureBoot" for this, which can be done in the bios.
5. During the initial activation (Activate Configuration) with a TwinCAT user certificate, the target system will

determine that the certificate is not trusted and the activation process will be aborted:

A local user with administrator rights can trust the certificate through simple running via the created REG
file.

This process only enables modules with a signature from the trusted TwinCAT user certificates to run.
6. Following this process you can use the TwinCAT user certificate for signing with the test mode of the

operating system.
This is configured in the project properties [} 161].
Use the TcSignTool [} 57] to avoid storing the password of the TwinCAT user certificate in the project,
where it would also end up in version management, for example.

If you have this TwinCAT user certificate countersigned by Beckhoff, you can also use it for delivery without
TestMode.

Preparation - only once

TE100034 Version: 1.13

5.4.2.2 Signing for delivery

If you create TwinCAT driver software for delivery, you should use a countersigned TwinCAT user certificate.

With a countersigned TwinCAT user certificate, the test mode is no longer required.

Modules

TE1000 35Version: 1.13

6 Modules
The TwinCAT module concept is one of the core elements for the modularization of modern machines. This
chapter describes the modular concept and working with modules.

The modular concept applies to all TwinCAT modules, not just C++ modules, although most details only
relate to the engineering of C++ modules.

6.1 The TwinCAT Component Object Model (TcCOM)
concept

The TwinCAT Component Object Model defines the characteristics and the behavior of the modules. The
model derived from the "Component Object Model" COM from Microsoft Windows describes the way in
which various independently developed and compiled software components can co-operate with one
another. To make that possible, a precisely defined mode of behavior and the observation of interfaces of
the module must be defined, so that they can interact. Such an interface is also ideal for facilitating
interaction between modules from different manufacturers, for example.

To some degree TcCOM is based on COM (Component Object Model of the Microsoft Windows world),
although only a subset of COM is used. In comparison with COM, however, TcCOM contains additional
definitions that go beyond COM, for example the state machine module.

Overview and application of TcCOM modules

This introductory overview is intended to make the individual topics easier to understand.

One or several TcCOM modules are consolidated in a driver. This driver is created by TwinCAT Engineering
using the MSVC compiler. The modules and interfaces are described in a TMC (TwinCAT Module Class) file.
The drivers and their TMC file can now be exchanged and combined between the engineering systems.

Instances of these modules are now created using the engineering facility. They are associated with a TMI
file. The instances can be parameterized and linked with each other and with other modules to form the IO. A
corresponding configuration is transferred to the target system, where it is executed.

Corresponding modules are started, which register with the TwinCAT ObjectServer. The TwinCAT XAR also
provides the process images. Modules can query the TwinCAT ObjectServer for a reference to another
object with regard to a particular interface. If such a reference is available, the interface methods can be
called on the module instance.

The following sections substantiate the individual topics.

Modules

TE100036 Version: 1.13

ID Management

Different types of ID are used for the interaction of the modules with each other and also within the modules.
TcCOM uses GUIDs (128 bit) and 32 bit long integers.

TcCOM uses

• GUIDs for: ModulIDs, ClassIDs and InterfaceIDs.
• 32 bit long integers are used for: ParameterIDs, ObjectIDs, ContextIDs, CategoryID.

Interfaces

An important component of COM, and therefore of TcCOM too, is interfaces.

Interfaces define a set of methods that are combined in order to perform a certain task. An interface is
referenced with a unique ID (InterfaceID), which must never be modified as long as the interface does not
change. This ID enables modules to determine whether they can cooperate with other modules. At the same
time the development process can take place independently, if the interfaces are clearly defined.
Modifications of interfaces therefore lead to different IDs. The TcCOM concept is designed such that
InterfaceIDs can superpose other (older) InterfaceIDs ("Hides" in the TMC description / TMC editor). In this
way, both versions of the interface are available, while on the other hand it is always clear which is the latest
InterfaceID. The same concept also exists for the data types.

TcCOM itself already defines a whole series of interfaces that are prescribed in some cases (e.g.
ITComObject), but are optional in most. Many interfaces only make sense in certain application areas. Other
interfaces are so general that they can often be re-used. Provision is made for customer-defined interfaces,
so that two third-party modules can interact with each other, for example.

• All interfaces are derived from the basic interface ItcUnknown which, like the corresponding interface of
COM, provides the basic services for querying other interfaces of the module (TcQueryInterface) and
for controlling the lifetime of the module (TcAddRef and TcRelease).

• The ITComObject interface, which must be implemented by each module, contains methods for
accessing the name, ObjectID, ObjectID of the parent, parameters and state machine of the module.

Several general interfaces are used by many modules:

• ITcCyclic is implemented by modules, which are called cyclically ("CycleUpdate"). The module can
register via the ITcCyclicCaller interface of a TwinCAT task to obtain cyclic calls.

• The ITcADI interface can be used to access data areas of a module.
• ITcWatchSource is implemented by default; it facilitates ADS device notifications and other features.
• The ITcTask interface, which is implemented by the tasks of the real-time system, provides information

about the cycle time, the priority and other task information.
• The ITComObjectServer interface is implemented by the ObjectServer and referenced by all modules.

A whole series of general interfaces has already been defined. General interfaces have the advantage that
their use supports the exchange and recycling of modules. User-defined interfaces should only be defined if
no suitable general interfaces are available.

Class Factories

"Class Factories" are used for creating modules in C++. All modules contained in a driver have a common
Class Factory. The Class Factory registers once with the ObjectServer and offers its services for the
development of certain module classes. The module classes are identified by the unique ClassID of the
module. When the ObjectServer requests a new module (based on the initialization data of the configurator
or through other modules at runtime), the module selects the right Class Factory based on the ClassID and
triggers creation of the module via its ITcClassFactory interface.

Module service life

Similar to COM, the service life of a module is determined via a reference counter (RefCounter). The
reference counter is incremented whenever a module interface is queried. The counter is decremented when
the interface is released. An interface is also queried when a module logs into the ObjectServer (the
ITComObject interface), so that the reference counter is at least 1. The counter is decremented on logout.

Modules

TE1000 37Version: 1.13

When the counter reaches 0, the module deletes itself automatically, usually after logout from the
ObjectServer. If another module already maintains a reference (has an interface pointer), the module
continues to exist, and the interface pointer remains valid, until this pointer is released.

6.1.1 TwinCAT module properties
A TcCOM module has a number of formally defined, prescribed and optional properties. The properties are
sufficiently formalized to enable interchangeable application. Each module has a module description, which
describes the module properties. They are used for configuring the modules and their relationships with each
other.

If a module is instantiated in the TwinCAT runtime, it registers itself with a central system instance, the
ObjectServer. This makes it reachable and parameterizable for other modules and also for general tools.
Modules can be compiled independently and can therefore also be developed, tested and updated
independently. Modules can be very simple, e.g. they may only contain a basic function such as low-pass
filter. Or they may be very complex internally and contain the whole control system for a machine
subassembly.

There are a great many applications for modules; all tasks of an automation system can be specified in
modules. Accordingly, no distinction is made between modules, which primarily represent the basic functions
of an automation system, such as real-time tasks, fieldbus drivers or a PLC runtime system, and user- or
application-specific algorithms for controlling a machine unit.

The diagram below shows a common TwinCAT module with his main properties. The dark blue blocks define
prescribed properties, the light blue blocks optional properties.

Modules

TE100038 Version: 1.13

Module description

Each TcCOM module has some general description parameters. These include a ClassID, which
unambiguously references the module class. It is instantiated by the corresponding ClassFactory. Each
module instance has an ObjectID, which is unique in the TwinCAT runtime. In addition there is a parent
ObjectID, which refers to a possible logical parent.

The description, state machine and parameters of the module described below can be reached via the
ITComObject interface (see "Interfaces").

Class description files (*.tmc)

The module classes are described in class description files (TwinCAT Module Class; *.tmc).

These files are used by developers to describe the module properties and interfaces, so that others can use
and embed the module. In addition to general information (vendor data, module class ID etc.), optional
module properties are described.

Modules

TE1000 39Version: 1.13

• Supported categories
• Implemented interfaces
• Data areas with corresponding symbols
• Parameter
• Interface pointers
• Data pointers, which can be set

The system configurator uses the class description files mainly as a basis for the integration of a module
instance in the configuration, for specifying the parameters and for configuring the links with other modules.

They also include the description of all data types in the modules, which are then adopted by the configurator
in its general data type system. In this way, all interfaces of the TMC descriptions present in the system can
be used by all modules.

More complex configurations involving several modules can also be described in the class description files,
which are preconfigured and linked for a specific application. Accordingly, a module for a complex machine
unit, which internally consists of a number of submodules, can be defined and preconfigured as an entity
during the development phase.

Instance description files (*.tmi)

An instance of a certain module is described in the instance description file (TwinCAT Module Instance;
*.tmi). The instance descriptions are based on a similar format, although in contrast to the class description
files they already contain concrete specifications for the parameters, interface pointers etc. for the special
module instance within a project.

The instance description files are created by TwinCAT Engineering (XAE), when an instance of a class
description is created for a specific project. They are mainly used for the exchange of data between all tools
involved in the configuration. However, the instance descriptions can also be used cross-project, for example
if a specially parameterized module is to be used again in a new project.

State machine

Each module contains a state machine, which describes the initialization state of the module and the means
with which this state can be modified from outside. The state machine describes the states, which occur
during starting and stopping of the module. This relates to module creation, parameterization and production
in conjunction with the other modules.

Application-specific states (e.g. of the fieldbus or driver) can be described in their own state machines. The
state machine of the TcCOM modules defines the states INIT, PREOP, SAFEOP and OP. Although the state
designations are the same as under EtherCAT fieldbus, the actual states differ. When the TcCOM module
implements a fieldbus driver for EtherCAT, it has two state machines (module and fieldbus state machine),
which are passed through sequentially. The module state machine must have reached the operating state
(OP) before the fieldbus state machine can start.

The state machine is described [} 44] in detail separately.

Modules

TE100040 Version: 1.13

Parameter

Modules can have parameters, which can be read or written during initialization or later at runtime (OP
state). Each parameter is designated by a parameter ID. The uniqueness of the parameter ID can be global,
limited global or module-specific. Further details can be found in the "ID Management" section. In addition to
the parameter ID, the parameter contains the current data; the data type depends on the parameter and is
defined unambiguously for the respective parameter ID.

Interfaces

Modules

TE1000 41Version: 1.13

Interfaces consist of a defined set of methods (functions), which offer modules through which they can be
contacted by other modules. Interfaces are characterized by a unique ID, as described above. A module
must support at least the ITComObject interface and may in addition contain as many interfaces as required.
An interface reference can be queried by calling the method "TcQueryInterface" with specification of the
corresponding interface ID.

Interface pointers

Interface pointers behave like the counterpart of interfaces. If a module wants to use an interface of another
module, it must have an interface pointer of the corresponding interface type and ensure that it points to the
other module. The methods of the other module can then be used.

Interface pointers are usually set on startup of the state machine. During the transition from INIT to PREOP
(IP), the module receives the object ID of the other modules with the corresponding interface; during the
transition from PREOP to SAFEOP (PS) or SAFEOP to OP (SO), the instance of the other modules is
searched with the ObjectServer, and the corresponding interface is set with the Method Query interface.
During the state transition in the opposite direction, i.e. from SAFEOP to PREOP (SP) or OP to SAFEOP
(OS), the interface must be enabled again.

Data areas

Modules can contain data areas, which can be used by the environment (e.g. by other modules or the IO
area of TwinCAT). These data areas can contain any data. They are often used for process image data
(inputs and outputs). The structure of the data areas is defined in the device description of the module. If a
module has data areas, which it wants to make accessible for other modules, it implements the ITcADI
interface to enable access to the data. Data areas can contain symbol information, which describes the
structure of the respective data area in more detail.

Modules

TE100042 Version: 1.13

Data area pointer

If a module wants to access the data area of other modules, it can contain data area pointers. These are
normally set during initialization of the state machine to data areas or data area sections of other modules.
The access is directly to the memory area, so that corresponding protection mechanisms for competing
access operations have to be implemented, if necessary. In many cases it is preferable to use a
corresponding interface.

Context

The context should be regarded as real-time task context. Context is required for the configuration of the
modules, for example. Simple modules usually operate in a single time context, which therefore requires no
detailed specification. Other modules may partly be active in several contexts (e.g. an EtherCAT master can
support several independent real-time tasks, or a control loop can process control loops of the layer below in
another cycle time). If a module has more than one time-dependent context, this must be specified the in the
module description.

Modules

TE1000 43Version: 1.13

Categories

Modules can offer categories by implementing the interface ITComObjectCategory. Categories are
enumerated by the ObjectServer, and objects, which use this to associated themselves with categories, can
be queried by the ObjectServer (ITComObjectEnumPtr).

ADS

Each module that is entered in the ObjectServer can be reached via ADS. The ObjectServer uses the
ITComObject interface of the modules in order to read or write parameters or to access the state machine,
for example. In addition, a dedicated ADS port can be implemented, through which dedicated ADS
commands can be received.

Modules

TE100044 Version: 1.13

System module

In addition, the TwinCAT runtime provides a number of system modules, which make the basic runtime
services available for other modules. These system modules have a fixed, constant ObjectID, through which
the other modules can access it. An example for such a system module is the real-time system, which makes
the basic real-time system services, i.e. generation of real-time tasks, available via the ITcRTime interface.
The ADS router is also implemented as a system module, so that other modules can register their ADS port
here.

Creation of modules

Modules can be created both in C++ and in IEC 61131-3. The object-oriented extensions of the TwinCAT
PLC are used for this purpose. Modules from both worlds can interact via interfaces in the same way as pure
C++ modules. The object-oriented extension makes the same interfaces available as in C++.

The PLC modules also register via the ObjectServer and can therefore be reached through it. PLC modules
vary in terms of complexity. It makes no difference whether only a small filter module is generated or a
complete PLC program is packed into a module. Due to the automation, each PLC program is a module
within the meaning of TwinCAT modules. Each conventional PLC program is automatically packed into a
module and registers itself with the ObjectServer and one or several task modules. Access to the process
data of a PLC module (e.g. mapping with regard to a fieldbus driver) is also controlled via the defined data
areas and ITcADI.

This behavior remains transparent and invisible for PLC programmers, as long as they decide to explicitly
define parts of the PLC program as TwinCAT modules, so that they can be used with suitable flexibility.

6.1.2 TwinCAT module state machine
In addition to the states (INIT, PREOP, SAFEOP and OP), there are corresponding state transitions, within
which general or module-specific actions have to be executed or can be executed. The design of the state
machine is very simple. In any case, there are only transitions to the next or previous step,

resulting in the following state transitions: INIT to PREOP (IP), PREOP to SAFEOP (PS) and SAFEOP to OP
(SO). In the opposite direction there are the following state transitions: OP to SAFEOP (OS), SAFEOP to
PREOP (SP) and PREOP to INIT (PI). Up to and including the SAFEOP state, all states and state transitions
take place within the non-real-time context. Only the transition from SAFEOP to OP, the OP state and the
transition from OP to SAFEOP take place in the real-time context. This differentiation is relevant when
resources are allocated or activated, or when modules register or deregister with other modules.

Modules

TE1000 45Version: 1.13

State: INIT

The INIT state is only a virtual state. Immediately after creation of a module, the module changes from INIT
to PREOP, i.e. the IP state transition is executed. The instantiation and the IP state transition always take
place together, so that the module never remains in INIT state. Only when the module is removed does it
remain in INIT state for a short time.

Transition: INIT to PREOP (IP)

During the IP state transition, the module registers with the ObjectServer with its unique ObjectID. The
initialization parameters, which are also allocated during object creation, are transferred to the module.
During this transition the module cannot establish connections to other modules, because it is not clear
whether the other modules already exist and are registered with the ObjectServer. When the module
requires system resources (e.g. memory), these can be allocated during the state transition. All allocated
resources have to be released again during the transition from PREOP to INIT (PI).

State: PREOP

In PREOP state, module creation is complete and the module is usually fully parameterized, even if further
parameters may be added during the transition from PREOP to SAFEOP. The module is registered in the
ObjectServer, although no connections with other modules have been created yet.

Transition: PREOP to SAFEOP (PS)

In this state transition the module can establish connections with other modules. To this end it has usually
received, among other things, ObjectIDs of other modules with the initialization data, which are now
converted to actual connections with these modules via the ObjectServer.

The transition can generally be triggered by the system according to the configurator, or by another module
(e.g. the parent module). During this state transition further parameters can be transferred. For example, the
parent module can transfer its own parameters to the child module.

State: SAFEOP

The module is still in the non-real-time context and is waiting to be switched to OP state by the system or by
other modules.

Modules

TE100046 Version: 1.13

Transition: SAFEOP to OP (SO)

The state transition from SAFEOP to OP, the state OP, and the transition from OP to SAFEOP take place in
the real-time context. System resources may no longer be allocated. On the other hand, resources can now
be requested by other modules, and modules can register with other modules, e.g. in order to obtain a cyclic
call during tasks.

This transition should not be used for long-running tasks. For example, file operations should be executed
during the PS transition.

State: OP

In OP state the module starts working and is fully active in the meaning of the TwinCAT system.

Transition: OP to SAFEOP (OS)

This state transition takes place in the real-time context. All actions from the SO transition are reversed, and
all resources requested during the SO transition are released again.

Transition: SAFEOP to PREOP (SP)

All actions from the PS transition are reversed, and all resources requested during the PS transition are
released again.

Transition: PREOP to INIT (PI)

All actions from the IP transition are reversed, and all resources requested during the IP transition are
released again. The module signs off from the ObjectServer and usually deletes itself (see "Service life").

6.2 Module-to-module communication
TcCOM modules can communicate with one another. This article is intended to provide an overview of the
various options. There are four methods of module-to-module communication:

• IO Mapping (linking of input/output symbols)
• IO Data Pointer
• Method calls via interface
• ADS

These four methods will now be described.

IO Mapping (linking of input/output symbols)

The inputs and outputs of TcCOM modules can be linked by IO Mapping in the same way as the links to
physical symbols in the fieldbus level. To do this, data areas are created in the TMC editor [} 134] that
describe the corresponding inputs/outputs. These are then linked in the TwinCAT solution.

Through mapping, the data are provided or accepted at the task beginning (inputs) or task end (outputs)
respectively. The data consistency is ensured by synchronous or asynchronous mapping.

The implementing language (PLC, C++, Matlab) is unimportant.

Modules

TE1000 47Version: 1.13

The following sample shows the realization:

Sample12: Module communication: IO mapping used [} 306]

IO Data Pointer

Direct memory access is also possible within a task via the Data Area Pointers, which are created in the
TMC Editor.

If several callers of a task or callers from other tasks occur, the user must ensure the data consistency
through appropriate mechanisms. Data pointers are available for C++ and Matlab.

The following sample shows the realization:

Sample10: Module communication: Use of data pointers [} 277]

Method calls via interfaces

As already described, TcCOM modules can offer interfaces that are also defined in the TMC editor. If a
module implements them ("Implemented Interfaces" in the TMC editor [} 126]), it offers appropriate methods.
A calling module will then have an "Interface Pointer" to this module in order to call the methods.

These are blocking calls, meaning that the caller blocks until the called methods come back and the return
values of the methods can thus be directly used. If several callers of a task or callers from other tasks occur,
the user must ensure the data consistency through appropriate mechanisms.

Modules

TE100048 Version: 1.13

The following samples show the realization:

Sample11: Module communication: PLC module calls a method of a C-module [} 278]

Sample11a: Module communication: C-module cites a method in the C-module [} 306]

Further samples exist for the communication with the PLC [} 324].

ADS

As the internal communication of the TwinCAT system in general, ADS can also be used to communicate
between modules. Communication in this case is acyclic, event-controlled communication.

At the same time ADS can also be used to collect or provide data from the UserMode and communicate with
other controllers (i.e. via the network). ADS can also be used to ensure data-consistent communication, e.g.
between tasks/cores/CPUs. In this case TcCOM modules can be both clients (requesters) and servers
(providers). The implementing language (PLC, C++, Matlab) is unimportant.

The following samples show the realization:

Sample03: C++ as ADS server [} 258]

Sample06: UI-C#-ADS client uploads the symbols from the module [} 268]

Sample07: reception of ADS notifications [} 273]

Sample08: provision of ADS-RPC [} 274]

Modules - Handling

TE1000 49Version: 1.13

7 Modules - Handling
TcCOM modules are implemented and loaded after a build.

This section describes the handling of modules when they are exchanged between systems.

A distinction must be made between the two C++ project types:

• C++ projects [} 49] that create a sys file to load them by the operating system.

• Versioned C++ projects [} 49] that create a tmx file to load them with the TwinCAT Loader [} 53]
(from TwinCAT 3.1 Build 4024).

Beckhoff recommends using versioned C++ projects [} 49] as standard. The advantages they offer include
the following:

• Driver signature [} 31] via OEM certificates that can be obtained from Beckhoff.

• Versioned storage [} 53] of the binaries.

• Online Change capability [} 164], if required.

Also see about this
2 Export to TwinCAT 3.1 4022.xx [} 50]
2 Import up to TwinCAT 3.1 4022.xx [} 51]

7.1 Versioned C++ Projects
From TwinCAT 3.1 Build 4024.0
The functionality described here is available from TwinCAT 3.1. 4024.0.

Versioned TwinCAT C++ projects result in an architecture-dependent TMX file during building and are
loaded via the TwinCAT Loader [} 53]. They must be signed by a TwinCAT user certificate.

If a C++ project was created using the template "Versioned C++ Project", the binary files are stored by a
publish in the TwinCAT repository under C:\TwinCAT\3.x\Repository at a vendor- and version-specific
location.

From here required modules are transferred to the target system under C:\TwinCAT\3.1\Boot\Repository, if
they are needed.

This can be either at the time of activation (Activate Configuration) or at the time of the Online Change
[} 164].

Additionally, it is possible to create an archive for the transfer between engineering systems of the binary
version of this project, which is configured by the project properties [} 160].

7.2 Non-versioned C++ projects
TwinCAT C++ drivers (.sys files) are loaded via the Windows operating system.
These are kernel-mode drivers which are subject to the normal requirements of the operating system with
regard to loading.

If a C++ project has been created using the TwinCAT Driver Project template, the binary files are stored in
the TwinCAT folder under C:\TwinCAT\3.x\CustomConfig\Modules by a publish.

From here the driver is transferred to the target system under C:\TwinCAT\3.x\Driver if it is needed.

Additionally, it is possible to create an archive for the transfer of the binary version of this project, which is
configured by the project properties [} 160].

Modules - Handling

TE100050 Version: 1.13

Up to TwinCAT 3.1 4022.xx

Before Release 4024.0, the handling of the export and import functionality was somewhat different, which is
documented on the subpages.

7.2.1 Export to TwinCAT 3.1 4022.xx
This article describes how to export a TwinCAT 3 driver that can run on any other TwinCAT PC.

The following steps have to be carried out

1. Implement a TwinCAT 3 C++ project on an engineering PC equipped with a Visual Studio version, see
quick start sample Create a TwinCAT 3 project [} 60]. Implement the TwinCAT modules as described,
compile and test the modules contained in the project before export.

2. Since the result should be able to be used on any machine, TwinCAT generates a 32-bit and a 64-bit
version.
Since x64 drivers must be signed, a certificate must be installed on the machine that exports the module.
See x64: Driver signing [} 25], how to generate and install a certificate.
(This step can be omitted on an engineering or 32-bit system)

3. To export a TC 3 C++ project, right-click on the module project in the solution tree and select TwinCAT
Publish Modules.
ð The project is then compiled (rebuild) - the successful export is displayed in the Build output window.

Please note the successful message at the end:

The binary files and the TMC module description are exported to the TempContr folder under C:
\TwinCAT\3.x\CustomConfig\Modules.

Modules - Handling

TE1000 51Version: 1.13

4. For the import, simply copy the TempContr folder to any other TwinCAT 3 machine.

7.2.2 Import up to TwinCAT 3.1 4022.xx
This article describes how a TC3-C++ driver can be imported and integrated into a PC/IPC controller with
TwinCAT 3 XAE (without full version of Visual Studio).
The binary TC3-C++ driver was previously implemented and exported [} 50] on another PC.

The following steps have to be carried out

1. Copy the TC3-C++ driver on the second IPC with TwinCAT XAE without the full version of Visual Studio
into the destination folder ..\TwinCAT\3.x\CustomConfig\Modules. The TestDriver.zip archive is
unpacked in this sample.

Modules - Handling

TE100052 Version: 1.13

ð The TestDriver (in the subfolders RT and UM) and the corresponding TwinCAT module Class *.tmc
file TestDriver.tmc are then available.

2. Start the TwinCAT XAE environment and create a TwinCAT 3 project.
3. Right-click System->TcCOM Objects and select Add New Item....

ð The new CTestModule module is listed in the dialog box that appears.
4. Create a module instance by selecting the module name and continue with OK.

ð The instance of the TestModule module now appears under TcCom Objects.
5. Create a new task.
6. Go to the context of the module instance and link the C++ module instance with the previously added

Task 1.
7. Activate the configuration.

7.3 Starting Modules
TwinCAT C++ modules can be started in two ways:

• Operating system: The operating system starts the TwinCAT module as a normal driver.

◦ On x64bit-PCs the operating system requires a signature, see Driver signing [} 25].

Modules - Handling

TE1000 53Version: 1.13

• TwinCAT Loader: [} 53] The TwinCAT Loader starts the TwinCAT module.

◦ The TwinCAT Loader requires a signature [} 25] with TwinCAT user certificate.

◦ This option is mandatory for encrypted modules [} 55].

◦ The TwinCAT Loader is required for the versioned C++ projects [} 99].

Via System -> TcCOM Modules -> Class Factories tab you can see whether the TwinCAT Loader or the
operating system is used:

Also see about this
2 Driver signing [} 26]

7.4 TwinCAT Loader
From TwinCAT 3.1 Build 4024.0
The functionality described here is available from TwinCAT 3.1. 4024.0.

TwinCAT 3 has an integrated function for loading modules.

Modules loaded with the TwinCAT Loader

• must be signed: Test signing [} 53]

• can be encrypted: Encrypting Modules [} 55], for which the TwinCAT software Protection must be
configured with a user DB.

7.4.1 Test signing
The test signature for TwinCAT can be carried out with the same TwinCAT user certificate as for the actual
delivery (see Driver signing [} 26]).

Modules - Handling

TE100054 Version: 1.13

1. For test operation, e.g. during software development, the creation of a TwinCAT user certificate, as
described here, is sufficient. Make sure that you select the purpose "Sign TwinCAT C++ executable
(*.tmx)". For this the Crypto version 2 is required, a message appears.

2. On XAR (and XAE, if local test)
activate the test mode so that Windows can accept the self-signed certificates. This can be done on both
engineering systems (XAE) and runtime systems (XAR).

3. Execute the following using the "Run as administrator" option:
bcdedit /set testsigning yes
and restart the target system.

https://infosys.beckhoff.com/content/1033/tc3_security_management/90071994397454475.html?id=3270001753992825463

Modules - Handling

TE1000 55Version: 1.13

ð If test signing mode is enabled, this is displayed at the bottom right of the desktop. The PC now
accepts all signed drivers for execution.

4. You may have to switch off "SecureBoot" for this, which can be done in the bios.
5. During the initial activation (Activate Configuration) with a TwinCAT user certificate, the target system will

determine that the certificate is not trusted and the activation process will be aborted:

A local user with administrator rights can trust the certificate through simple running via the created REG
file.

This process only enables modules with a signature from the trusted TwinCAT user certificates to run.
6. Following this process you can use the TwinCAT user certificate for signing with the test mode of the

operating system.
This is configured in the project properties [} 161].
Use the TcSignTool [} 57] to avoid storing the password of the TwinCAT user certificate in the project,
where it would also end up in version management, for example.

If you have this TwinCAT user certificate countersigned by Beckhoff, you can also use it for delivery without
TestMode.

7.4.2 Encrypting Modules
TwinCAT C++ modules loaded via the TwinCAT Loader (TMX files) can be encrypted, i.e. a key protects the
content of the driver against manipulation and reverse engineering at file level.

Modules - Handling

TE100056 Version: 1.13

No debugging
Encrypted modules cannot be searched for errors. Encrypted modules are not displayed in the de-
bugger.

Module encryption is enabled as follows:

ü The TwinCAT software protection must be configured.
ü A TwinCAT user certificate with Sign UserDB rights is required.
1. In the system tree, select the Solution User DB Key as the Boot File Encryption Key.

2. Select the C++ project and activate encryption there:

3. To start, an encrypted module must be loaded with the TwinCAT Loader (not the operating system).
ð For non-versioned drivers: The drivers are encrypted during transfer to the _deployment directory of the

project.
ð For versioned TMX: The drivers are stored unencrypted in XAE and encrypted when they are activated

on the target system.

ð If the function is used with versioned C++ projects, the TMX files are stored in the repository [} 49] as
usual.

TwinCAT C++ modules can be started in two ways:

• Operating system: The operating system starts the TwinCAT module as a normal driver.

◦ On x64bit-PCs the operating system requires a signature, see Driver signing [} 25].

• TwinCAT Loader: [} 53] The TwinCAT Loader starts the TwinCAT module.

◦ The TwinCAT Loader requires a signature [} 25] with TwinCAT user certificate.

◦ This option is mandatory for encrypted modules [} 55].

Modules - Handling

TE1000 57Version: 1.13

◦ The TwinCAT Loader is required for the versioned C++ projects [} 99].

Via System -> TcCOM Modules -> Class Factories tab you can see whether the TwinCAT Loader or the
operating system is used:

Also see about this
2 Driver signing [} 26]

7.4.3 Return Codes
Loading a module with the TwinCAT Loader can fail for various reasons.

Here is a list of the return codes:

Hex Dec Description
0xC1 193 File is corrupted; PE file checksum error
0x241 577 Signature error: TwinCAT user certificate does not match the file hash
0x4FB 1275 Signature error: File not signed
0x1772 6002 File is encrypted, but cannot be decoded with known keys.

7.4.4 TcSignTool - Storage of the certificate password outside the
project

The TcSignTool can be used to store a password for a TwinCAT user certificate in the registry. Thus, the
password is not needed in the projects, where the passwords would end up unintentionally in version control
systems.

The TcSignTool is a command line program located in the path C:\TwinCAT\3.x\sdk\Bin\.

The storage of the password is carried out with the following parameters:
tcsigntool grant /f "C:\TwinCAT\3.1\CustomConfig\Certificates\MyCertificate.tccert" /p MyPassword

The password is deleted with the following parameters:
tcsigntool grant /f "C:\TwinCAT\3.1\CustomConfig\Certificates\MyCertificate.tccert" /r

The unencrypted password is stored under HKEY_CURRENT_USER\SOFTWARE\Beckhoff\TcSignTool\

TwinCAT C++ development

TE100058 Version: 1.13

8 TwinCAT C++ development
Overview of the development environment

The layout of Visual Studio is flexible and adaptable, so that only a brief overview of a common configuration
can be provided here. The user is free to configure windows and arrangements as required.

1. In the TwinCAT solution, a TwinCAT C++ project can be created by right-clicking on the C++ icon.
This project contains the sources (“Untitled Project”) of perhaps several modules [} 35], and module
instances ("Untitled1_Obj1 (CModule1)") can be created. The module instances have inputs/outputs,
which can be linked in the usual way ("Link"). There are further options [} 46] for module interaction.

2. The Visual Studio editor for Visual C++ is used for programming. Note in particular the drop-down
boxes for fast navigation within a file. In the lower section the result of the compile process is output.
The user can switch to TwinCAT messages (cf. Module messages for the Engineering (logging / trac-
ing) [} 229]).
The usual features such as breakpoints (cf. Debugging [} 91]) can be used in the editors.

3. The freely configurable toolbar usually contains the toolbar for TwinCAT XAE Base. Activate Config-
uration, RUN, CONFIG, Choose Target System (in this case <Local>) and several other buttons pro-
vide fast access to frequently used functions. The TwinCAT Debugger is the button for establishing a
connection to the target system with regard to C++ modules (the PLC uses an independent debug-
ger). Like in other C++ programs, and in contrast to PLC, in TwinCAT C++ a distinction has to be
made between "Release" and "Debug". In a build process for "Release", the code is optimized to such
an extent that a debugger may no longer reliably reach the breakpoints, and incorrect data may be
displayed.

Procedure

This section describes the processes for programming, compiling and starting a TwinCAT C++ project.

It provides a general overview of the engineering process for TwinCAT C++ projects with reference to the
corresponding detailed documentation. The quick start guide describes the individual common steps.

TwinCAT C++ development

TE1000 59Version: 1.13

1. Type declaration and module type:
The TwinCAT Module Class Editor (TMC) [} 103] and TMC code generator is used for the definition of
data types and interfaces, and also for the modules that use these.
The TMC code generator generates source code based on the processed TMC file and prepares data
types / interfaces for use in other projects (like PLC).
Editing and starting the code generator can take place as often as you like – the code generation pays
attention to programmed user code and saves it.

2. Programming
The familiar Visual Studio C++ programming environment is used for the development and debugging
[} 91] of the user-defined code within the code template.

3. Instantiating modules [} 35]
The program describes a class, which is instantiated as objects. The TwinCAT Module Instance
Configurator [} 146] is used for configuring the instance. General configuration elements are: assign
task, download symbol information for runtime (TwinCAT Module Instance (TMI) file) or define
parameter/interface pointer.

4. Mapping of variables
The input and output variables of an object can be linked with variables of other objects or PLC projects,
using the standard TwinCAT System Manager.

5. Building
During the building (compilation and linking) of the TwinCAT C++ project, all components are compiled
for the selected platform. The platform is determined automatically when the target system is selected.

6. Publishing (see Export to TwinCAT 3.1 4022.xx [} 50] / Import up to TwinCAT 3.1 4022.xx [} 51])
During publishing of a module, the drivers for all platforms are created, and the module is prepared for
distribution. The created directory can be distributed without the need to transfer the source code. Only
binary code with the interface description is transferred.

7. Signature (see Driver signing [} 25])
The TwinCAT drivers must be signed for x64 run times, since 64-bit Windows versions require that
kernel modules are signed. Therefore, this applies both to the x64 creation and to the publication of
modules [} 233], because these modules contain the x64 binary codes (if not deactivated).
The signature process can be user-defined [} 30].

8. Activation
The TwinCAT C++ driver can be activated like any other TwinCAT project via Activate Configuration.
The dialog then requests to switch TwinCAT to RUN mode.
Debugging [} 91] in real-time (which is familiar from IEC61131-based systems) and the setting of
(conditional) breakpoints is possible for TwinCAT C++ modules.

ð The module runs under real-time conditions.

Quick Start

TE100060 Version: 1.13

9 Quick Start
This quick start shows how you can familiarize yourself with the TwinCAT C++ module engineering in a short
time. Each step in the creation of a module that runs in a real-time context is described in detail.

Three different scenarios are discussed:

• TwinCAT driver projects, which were common up to 4022.
These modules are loaded by the operating system and are unversioned in binary form.

• TwinCAT versioned C++ projects, which are recommended for new projects from 4024.0 or higher.
Modules based on such project are loaded by TwinCAT and stored versioned in binary form.

◦ We illustrate how to switch between the different versions via Online Change, using versioned C++
projects as a basis.

Before the quick start, please pay attention to the preparation - just once! Prepare the respective driver
signing.

9.1 Create TwinCAT 3 project

Start the TwinCAT Engineering Environment (XAE)

Microsoft Visual Studio can be started via the TwinCAT SysTray icon.

The Visual Studio versions recognized during the installation and supported by TwinCAT are thereby offered.
Alternatively, Visual Studio can also be started via the Start menu.

TwinCAT 3 C++ - Build Project

Carry out the following steps to create a TwinCAT C++ project:

Quick Start

TE1000 61Version: 1.13

1. Select New TwinCAT Project … via the Start page.

2. Alternatively, create a project by clicking on: File -> New -> Project.
ð All existing project templates are displayed.

3. Select TwinCAT XAE Project and optionally enter a suitable project name.
4. Click on OK. From now on you cannot select or change the name of the directory. Retain the default

settings (selected option Create directory for solution).

Quick Start

TE100062 Version: 1.13

ð The Visual Studio Solution Explorer then displays the TwinCAT 3 project.

9.2 Create TwinCAT 3 C++ project
After creating a TwinCAT 3 project, open the C++ node and carry out the following steps:

1. Right-click C++ and choose Add New Item....
If the green C++ symbol is not listed, this means that either a target device is selected that doesn't
support TwinCAT C++ or the TwinCAT solution is currently open in a version of Visual Studio that is not
C++-capable (cf. Requirements [} 20]).

ð The "TwinCAT C++ Project Wizard [} 99]" is shown and all existing project templates are listed.
2. Select one of the quick start options:

• TwinCAT driver project: These modules are loaded by the operating system and are subject to its
signing requirements as described here [} 26]. Driver projects were used routinely up to TwinCAT 3
4022. For 4024 or higher they should only be used if there is an extension in an existing environment,
for example. With these modules no Online Change is possible.
The quick start instructions for this project type continue here [} 63].

Quick Start

TE1000 63Version: 1.13

• TwinCAT Versioned Project: These modules are loaded by TwinCAT and are subject to the signing
requirements [} 31] described for this purpose. There is a versioned storage of the compilations,
between which - if desired - can be switched as online change.
The quick start instructions for this project type continue here [} 78].

• The TwinCAT Static Library Project is not explained as part of the quick start. Sample25: Static Library
[} 317]

3. Confirm with OK or double-click.
ð The C++ project has been created and the TwinCAT module wizard starts up.

Also see about this
2 TwinCAT Module Class Wizard [} 100]

9.3 TwinCAT 3 Driver
The following sections describe the handling of a TwinCAT 3 Driver Project. They guide you through code
generation, modification and activation of the configuration on a target system.

9.3.1 Creating a TwinCAT 3 C++ module in the TwinCAT Driver
Project

Once a TwinCAT 3 C++ project has been created, the TwinCAT module wizard [} 100] starts
automatically in order to create a module.

Quick Start

TE100064 Version: 1.13

1. In this case, select TwinCAT Module Class with Cyclic I/O and click on OK. A name is not necessary
and also cannot be entered here.

Quick Start

TE1000 65Version: 1.13

2. Enter a unique name in the TwinCAT Class Wizard dialog box or continue with the Object1 suggestion.

Quick Start

TE100066 Version: 1.13

ð A TwinCAT 3 C++ project with a driver will then be created on the basis of the selected template:

Also see about this
2 Requirements [} 20]
2 TwinCAT C++ Project Wizard [} 99]
2 Sample25: Static Library [} 317]

9.3.2 Implement TwinCAT 3 C++ project
This article describes how the sample project can be changed.

The implementation begins after creating a TwinCAT C++ project and opening <MyClass>.cpp (Module1.cpp
in this sample).

Quick Start

TE1000 67Version: 1.13

1. The <MyClass>::CycleUpdate() method is cyclically called – this is the point where the cyclic logic is to
be positioned. The entire cyclic code is inserted at this point. The dropdown menus at the top of the
editor can be used for navigation.

2. In this case a counter is incremented by the value of the "Value" variable in the input image (m_Inputs).
Replace a line in order to increment the counter without dependence on the value of the input image.
Replace this line
m_counter+=m_Inputs.Value;
with this one
m_counter++;

3. Save the modifications.

9.3.3 Create TwinCAT 3 C++ Module instance
An instance of the module must be created in order to execute it. Several instances of a module can exist.

After creating a TwinCAT C++ module, open the C++ Configuration node and follow these steps to create
an instance.

Quick Start

TE100068 Version: 1.13

1. Right-click on the C++ module (in this case "Untitled1") and select Add New Item....

ð All existing C++ modules are listed.
2. Select a C++ module. You can use the default name or alternatively enter a new instance name and

confirm with OK (in this sample the default name was selected).

ð The new instance "Untitled1_Obj2 (CModule1)" becomes part of the TwinCAT 3 solution: the new node
is located precisely under the TwinCAT 3 C++ source "Untitled1 Project".

The module already provides a simple I/O interface with 3 variables in each case:

• Input area: Value, Status, Data
• Output area: Value, Control, Data

The description of these interfaces corresponds in two places:

Quick Start

TE1000 69Version: 1.13

• "<Classname>Services.h" (in this sample "Untitled1Services.h")

• "TwinCAT Module Configuration".tmc file (in this sample "Untitled1.tmc")

9.3.4 Create a TwinCAT task and apply it to the module instance
This page describes the linking of a module instance to a task, so that the cyclic interface of the module is
called by the TwinCAT real-time system.

This configuration step only has to be carried out once. No new task needs to be configured for subsequent
creations/new compilations of the C++ module in the same project.

Quick Start

TE100070 Version: 1.13

Creating a TwinCAT 3 task
1. Open System, right-click on Tasks and select Add New Item….

2. Enter a unique name for the task (or retain the default name).
In this sample the I/O image interface is provided by a C++ module instance, so that no image is
necessary at the task for triggering the execution of the C++ module instance.

ð The new task with the name "Task 1" has been created.
3. The task can now be configured; double-click on the task to do this.

The most important parameters are Auto start and Priority:
Auto start must be activated in order to automatically start a task that is to be cyclically executed. The
Cycle ticks define the timing of the clock in relation to the basic clock (see real-time settings).

Quick Start

TE1000 71Version: 1.13

ð

Configuring a TwinCAT 3 C++ module instance that is called from the task
1. Select the C++ module instance in the solution tree.
2. Select the Context tab in the right-hand working area.
3. Select the task for the previously created context in the drop-down task menu.

Select the default Task 1 in the sample.

ð On completion of this step the Interface Pointer is configured as a CyclicCaller. The configuration is
now complete!

9.3.5 Compiling/building a TwinCAT 3 C++ project
This article describes how an already implemented C++ module class is created (compiled).

Quick Start

TE100072 Version: 1.13

1. Select the target platform according to which the compilation should be carried out. TwinCAT checks this
setting when selecting a target system and changes it if necessary after a prompt. The project is also
deactivated if an unsupported target platform is selected.

2. Right-click on the TwinCAT 3 C++ project and select Build or Rebuild.

ð The compiler output window must look like this if the code has been correctly written (i.e. no syntax
errors):

3. Verify that it was successful, indicated by "Successfully signed". If this message does not appear, check
the operating system driver signing [} 26] setting.

ð Following successful compilation/creation, the new TwinCAT C++ module is provided for the specific
target platform in the "_Deployment\" subfolder of the project directory.

9.3.6 TwinCAT 3 enable C++ debugger
To prevent all dependencies from being loaded for debugging [} 91], this function is switched off by default
and must be activated once before the activation of the configuration.

1. Select C++ Debugger on the C++ node of the Solution tab.
2. Select Enable C++ Debugger.

Quick Start

TE1000 73Version: 1.13

3. Switch Enable C++ Debugger on.

9.3.7 Activating a TwinCAT 3 project
Once a TwinCAT C++ project has been created, compiled and made available, the configuration must be
activated:

1. Click on the symbol Activate Configuration – all required files for the TwinCAT project are transferred
to the target system:

2. In the next step, confirm the activation of the new configuration. The previous old configuration will be
overwritten.

3. If you have no license on the target system, you will be offered the option to create a 7-day trial license.
This can be repeated any number of times.

Quick Start

TE100074 Version: 1.13

4. TwinCAT 3 automatically asks whether the mode should be switched to Run mode.

ð In the case of OK, the TwinCAT 3 project switches to Run mode.
In the case of Cancel, TwinCAT 3 remains in Config mode.

ð After switching to Run mode, the TwinCAT System Service symbol at the bottom in Visual Studio lights
up green.

9.3.8 Debug TwinCAT 3 C++ project
This article describes the debugging of the TwinCAT 3 C++ example project.

Attachment to the C++ runtime

After switching on the C++ debugging in the TwinCAT project and activating the complete project, the
TwinCAT Engineering (XAE) can now be used to connect to the target system for debugging.

Quick Start

TE1000 75Version: 1.13

1. A) Click on the Attach... button familiar from Visual Studio in order to connect to the TwinCAT debugger
on the target system:

B) Alternatively, select Debug -> Attach to process... in the Visual Studio environment:

2. Do not select the Default setting of Visual Studio for the transport; use TwinCAT XAE instead. Target
system (or All Routes) as qualifier and connect by Attach.

Quick Start

TE100076 Version: 1.13

ð

Monitoring C++ module member variables (without breakpoints)

The normal Visual Studio debugging mechanism is available – setting of breakpoints, step execution, etc.
Their usage depends on the process to be monitored:
If TwinCAT runs on a real machine with axis movements, the user will probably not wish to set any
breakpoints just for monitoring variables. On reaching a breakpoint the execution of a task would be stopped
and, depending on the configuration, the axis would immediately come to a halt or, perhaps even worse,
would continue to move in an uncontrolled fashion – a very unfavorable situation.

TwinCAT 3 therefore offers the option to monitor process variables without setting breakpoints:

1. Select Debug -> Windows -> TwinCAT Live Watch

ð The TwinCAT Live Watch windows show a list of all the variables in the module. Variables placed in
the watch list by drag & drop are monitored without setting breakpoints.

2. In order to change the value of a monitoring variable, simply enter a new value.

Quick Start

TE1000 77Version: 1.13

ð The new value is displayed in red and in brackets.

3. Click on the green symbol.
ð The new value is written into the process.

Setting breakpoints

The setting of breakpoints in the conventional way is also possible.

 WARNING
Damage to plants and personal injuries due to unexpected behavior of the machine / plant
Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.
Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

Quick Start

TE100078 Version: 1.13

Detaching the debugger from the process

Click on Debug -> Detach All.

9.4 TwinCAT 3 Versioned Project
The following sections describe the handling of a TwinCAT 3 Versioned C++ Project. They guide you
through code generation, modification and activation of the configuration on a target system. The Online
Change can optionally be included in the code and executed.

9.4.1 Create TwinCAT 3 C++ project
Once a TwinCAT 3 C++ project has been created, the TwinCAT module wizard [} 100] starts automatically in
order to create a module.

At this point a decision is made as to whether the module should be prepared for an Online Change.

1.
• If Online Change is required, select TwinCAT Module Class Online Changeable and click OK.
• If Online Change is not required, select TwinCAT Module with Cyclic IO

Quick Start

TE1000 79Version: 1.13

2. A name is not necessary and also cannot be entered here.

3. Enter a unique name in the TwinCAT Class Wizard dialog box or continue with the Object1 suggestion.

Quick Start

TE100080 Version: 1.13

ð A TwinCAT 3 C++ project with a driver will then be created on the basis of the selected template:

Also see about this
2 Requirements [} 20]
2 TwinCAT C++ Project Wizard [} 99]
2 Sample25: Static Library [} 317]

9.4.2 TwinCAT 3 C++ Configure project
ü You have got a created TwinCAT C++ project.
1. Right-click the project to open the properties.
2. Activate TwinCAT Signing.
3. If you have not yet created a TwinCAT user certificate, follow the instructions and observe to select the

Sign TwinCAT C++ executeables.
4. Enter the file name of the TwinCAT user certificate and the password.

(Note that this is stored unencrypted in the solution and is therefore also loaded on servers via version
control, for example. If necessary use the TcSignTool [} 57].)

Quick Start

TE1000 81Version: 1.13

9.4.3 Implement TwinCAT 3 C++ project
This article describes how the sample project can be changed.

The implementation begins after creating a TwinCAT C++ project and opening <MyClass>.cpp (Module1.cpp
in this sample).

Quick Start

TE100082 Version: 1.13

1. The <MyClass>::CycleUpdate() method is cyclically called – this is the point where the cyclic logic is to
be positioned. At this point, add the entire cyclic code. Use the drop-down menu at the top of the editor
for navigation.

2. In this case a counter is incremented by the value of the Value variable in the input image (m_Inputs).
Replace a line in order to increment the counter without dependence on the value of the input image.
Replace this line
m_counter+=m_Inputs.Value;
with this line
m_counter++;

3. Save the modifications.
4. If you have prepared the module for Online Change, please note that version 0.0.0.1 has been

implemented here, as you can see in the TMC editor.

Quick Start

TE1000 83Version: 1.13

9.4.4 Publish TwinCAT 3 C++ project in version 0.0.0.1
Once a TwinCAT C++ project has been created, compiled and made available, the configuration must be
activated.

1. Click on the symbol Activate Configuration – all required files for the TwinCAT project are transferred
to the target system:

ð The module is published in version 0.0.0.1 with the incremental counter on the engineering device.

9.4.5 Implement and publish TwinCAT 3 C++ project version 0.0.0.2
These steps are only necessary if you have previously prepared the module for Online Change.

This article describes how to change the sample project to create a version 0.0.0.2. This can later be
exchanged on the target system via Online Change

In <MyClass>.cpp (in this sample Module1.cpp) the implementation can be changed.

1. Replace a line to decrement the counter instead of incrementing it.
Replace this line
m_counter++;

2. with this
m_counter--;

3. Save the modifications.

Quick Start

TE100084 Version: 1.13

4. Start the Code Generator to take over any possible changes.

5. Parameterize version 0.0.0.2 in the TMC Editor.

Quick Start

TE1000 85Version: 1.13

6. Publish this version as well:

ð There are two versions of a module, which can be exchanged during runtime.

9.4.6 Create TwinCAT 3 C++ Module instance
An instance of the module must be created in order to execute it. Several instances of a module can exist.

After creating a TwinCAT C++ module, open the C++ Configuration node and follow these steps to create
an instance.

Quick Start

TE100086 Version: 1.13

1. Right-click on the C++ module (in this case "Untitled1") and select Add New Item....

ð All existing C++ modules are listed.
2. Select a C++ module. You can use the default name or alternatively enter a new instance name and

confirm with OK (in this sample the default name was selected).

ð The new instance "Untitled1_Obj2 (CModule1)" becomes part of the TwinCAT 3 solution: the new node
is located precisely under the TwinCAT 3 C++ source "Untitled1 Project".

The module already provides a simple I/O interface with 3 variables in each case:

• Input area: Value, Status, Data
• Output area: Value, Control, Data

The description of these interfaces corresponds in two places:

Quick Start

TE1000 87Version: 1.13

• "<Classname>Services.h" (in this sample "Untitled1Services.h")

• "TwinCAT Module Configuration".tmc file (in this sample "Untitled1.tmc")

9.4.7 Activating a TwinCAT 3 project
Once a TwinCAT C++ project has been created, compiled and made available, the configuration must be
activated:

Quick Start

TE100088 Version: 1.13

1. Click on the symbol Activate Configuration – all required files for the TwinCAT project are transferred
to the target system:

2. In the next step, confirm the activation of the new configuration. The previous old configuration will be
overwritten.

3. If you have no license on the target system, you will be offered the option to create a 7-day trial license.
This can be repeated any number of times.

4. TwinCAT 3 automatically asks whether the mode should be switched to Run mode.

ð In the case of OK, the TwinCAT 3 project switches to Run mode.
In the case of Cancel, TwinCAT 3 remains in Config mode.

Quick Start

TE1000 89Version: 1.13

5. For test operation, e.g. during software development, the creation of a TwinCAT user certificate, as
described here, is sufficient. Make sure that you select the purpose "Sign TwinCAT C++ executable
(*.tmx)". For this the Crypto version 2 is required, a message appears.

ð After switching to Run mode, the TwinCAT System Service symbol at the bottom in Visual Studio lights
up green.

9.4.8 TwinCAT 3 C++ Implement project Online Change
These steps are only necessary if you have previously prepared the module for Online Change.

ü Running TwinCAT C++ project as described above.
1. Switch to the TcCOM Objects overview of the SYSTEM area and there to the Online Changeable

Objects tab.

https://infosys.beckhoff.com/content/1033/tc3_security_management/90071994397454475.html?id=3270001753992825463

Quick Start

TE100090 Version: 1.13

2.
3. In the column Online Version the currently running version is preselected and marked with the

extension (Current).
4. Set a different version.
5. Activate this change by right-clicking and Apply changed online object versions on the target.

ð The version change was made on the target

Also see about this
2 Activating a TwinCAT 3 project [} 87]

Debugging

TE1000 91Version: 1.13

10 Debugging
TwinCAT C++ offers various mechanisms for debugging TwinCAT C++ modules running under real-time
conditions.
Most of them correspond to the mechanisms that are familiar from the normal C++ development
environment. The world of automation requires additional, slightly different debugging mechanisms, which
are documented here.

In addition, we provide an overview of Visual Studio tools that can be used in TwinCAT 3. These were
extended, so that data from the target system are displayed.

Debugging must be enabled.

This is configured via the C++ node of the solution:

1. Double-click on the C++ node and switch to the C++ Debugger tab to access the checkbox.

2. For all debugging in TwinCAT C++, connect the TwinCAT Engineering with the runtime system (XAR) via
the TwinCAT Debugger button.

3.

Breakpoints and step-by-step execution

In most cases when debugging a C++ program, breakpoints are set and the code is then executed step by
step while observing the variables, pointers, etc.

In the context of the Visual Studio debugging environment, TwinCAT offers options to run real-time-executed
code step by step. To set a breakpoint, you can navigate through the code and click on the gray column on
the left adjacent to the code or use the hotkey (normally F9).

 WARNING
Damage to plants and personal injuries due to unexpected behavior of the machine / plant
Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.
Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

Debugging

TE100092 Version: 1.13

On reaching the breakpoint (indicated by an arrow), the execution of the code is stopped.

The code is executed step by step by pressing Step Over (Debug menu, toolbar or hotkey F10). The familiar
Visual Studio functions Step in (F11) and Step out (Shift + F11) are also available.

Conditional breakpoints

A more advanced technology allows the setting of conditional breakpoints – the execution of code is only
stopped at a breakpoint if a condition is fulfilled.

TwinCAT offers the implementation of a conditional breakpoint as part of the Visual Studio Integration. To set
a condition, first set a normal breakpoint and then right-click on the red dot in the breakpoint column.

 WARNING
Damage to plants and personal injuries due to unexpected behavior of the machine / plant
Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.
Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

Select Condition… to open the condition window:

Debugging

TE1000 93Version: 1.13

Details of the conditions and how they are to be formulated can be found here [} 94].

Live Watch

When engineering and developing machines, it is not always advisable to stop the system at a breakpoint
because this will affect the behavior.
The TwinCAT PLC projects offer an online view and handling of the variables in the RUN state, without
having to interrupt the real-time.

TwinCAT C++ projects offer a similar behavior for C++ code via the Live Watch window.

The Live Watch window can be opened via Debug->Windows->TwinCAT Live Watch.
To open the window, first establish a connection with the real-time system (press the TwinCAT Debugger
button), whereupon Visual Studio switches to the debug view, otherwise no data can be provided.

Debugging

TE100094 Version: 1.13

The TwinCAT Live Watch window is divided into two areas.

In the upper area all member variables can be explored. By double-clicking on it they are added to the lower
area, where the current value is then displayed.

You can edit these values by clicking on the value in the Value field. The new value is highlighted in red. To
write the value, press the symbol in the upper left corner (1).

Using the import and export symbols under (2), the selected member variables can be saved and later
restored.

10.1 Details of Conditional Breakpoints
TwinCAT C++ provides conditional breakpoints. Details of the formulation of these conditions can be found
here.

Debugging

TE1000 95Version: 1.13

Unlike the Visual Studio C++ conditional breakpoints, the TwinCAT conditions are compiled and
subsequently transferred to the target system so that they can be used during short cycle times.

 WARNING
Damage to plants and personal injuries due to unexpected behavior of the machine / plant
Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.
Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

The option buttons offer two options that are described separately.

Option: Is true

Conditions are defined with the help of logical terms, comparable to conjunctive normal forms.
They are formed from a combination of maxterms connected by "&&".
(Maxterm1 && Maxterm2 && ... && MaxtermN)

wherein each Maxterm represents a combination of || associated conditions:
(condition1 ||condition2 || ... || conditionN)

Possible comparison operators: ==,!=, <=, >=, <, >

Observe the Live Watch window for the determination of the available variables. All listed variables can be
used for the formulation of conditions. This includes TMC-defined symbols as well as local member
variables.

Samples:

m_counter == 123 && hr != 0

m_counter == 123 || m_counter2 == 321 && hr == 0

m_counter == 123

Further comments:

• Monitoring module instances:
The OID of the object is stored in m_objId, so the monitoring of the OID can look like this m_objId
== 0x01010010

• Monitoring of tasks:
A special variable #taskId is provided to access the OID of the calling task. E.g. #taskID ==
0x02010010

Debugging

TE100096 Version: 1.13

Option: Has changed

The option “Has changed“ is simple to understand: By providing variable names, the value will be monitored
and execution will be held, if the value has changed from the cycle before.

Samples:

m_counter

m_counter && m_counter2

10.2 Visual Studio tools
Visual Studio makes the usual development and debugging tools available for C++ developers. TwinCAT 3
extends these Visual Studio tools, so that debugging of C++ code that runs on a target system is also
possible in TwinCAT 3 Engineering with the Visual Studio tools.
The corresponding advanced tools are briefly described here. If the corresponding windows are not visible in
Visual Studio, they can be added via the menu item Debug ->Windows. The menu is context-dependent,
i.e. many of the windows described here only become configurable once a debugger is linked to a target
system.

Call stack

The Call Stack is displayed by the Call Stack tool window when a breakpoint has been reached.

Autos / Locals and Watch

The corresponding variables and values are displayed in the Autos / Locals window when a breakpoint is
reached. Changes are shown in RED.

Debugging

TE1000 97Version: 1.13

From here, the values can be applied to the Watch windows by right-clicking:

Memory view

The memory can be monitored directly. Changes are shown in RED.

Debugging

TE100098 Version: 1.13

Wizards

TE1000 99Version: 1.13

11 Wizards
For ease of entrance in engineering the TwinCAT C++ system provides Wizards.

• The TwinCAT Project Wizard [} 99] creates a TwinCAT C++ project. For Driver projects, the TwinCAT
Class Wizard will be started afterwards.

• The TwinCAT Module Class Wizard [} 100] is automatically started during creation of a C++ module.
This wizard provides different “ready to use” projects as entry points for own development.

• The TwinCAT Module Class Editor [} 103] (TMC) is a graphical editor for defining the data structures,
parameters, data areas, interfaces and pointers. It generates a TMC file, which will be used by the
TMC Code generator.

• From the defined Classes instances will be generated and could be configured via the TwinCAT
Module Instance Configurator [} 146]

11.1 TwinCAT C++ Project Wizard
After the creation of a TwinCAT project you can add a C++ project with the help of the TwinCAT C++
Project Wizard:
1. Right click on the C++ icon and select Add new Item… to start the C++ project wizard.

TwinCAT offers three C++ projects:
- Driver Project: Projects containing one or more executable modules
- Versioned C++ Projects: Projects that involve revision control. So you obtain the opportunity to switch

Wizards

TE1000100 Version: 1.13

between versions at runtime.
- Static library: Projects with C++ functions that are used by (different) TwinCAT C++ drivers.

2. Select one of the project templates and specify a name and location.
ð The TwinCAT C++ project is created

ð In the case of a driver, the TwinCAT C++ class wizard [} 100] is started.

11.2 TwinCAT Module Class Wizard
TwinCAT 3 offers various class templates that can be used to create TcCOM object classes:

• TwinCAT Module Class
• TwinCAT Module Class with ADS port
• TwinCAT Module Class with cyclic caller
• TwinCAT Module Class with cyclic input/output
• TwinCAT Module Class with data pointer
• TwinCAT Module Class for real-time context
• TwinCAT Module Class with Online Changeable capability

Wizards

TE1000 101Version: 1.13

TwinCAT Modules Class

Creates a new TwinCAT module class.

This is a template generates a basic core module. It has no cyclic caller and no data area, instead it's good
as a start point for implementing services called on demand from a caller.

For example when creating a C++ method that will be called from a PLC module or another C++ module.

See Sample11 [} 278]

TwinCAT Module Class with ADS port

This template offers the C++ module as well as the functionality of an ADS server and ADS clients.

• ADS server:
Can run as a single instance of this template of the C++ module and can be preconfigured with a
specific ADS port number (e.g. 25023).
Enables several instances of this template, whereby each C++ module is assigned its own unique ADS
port number by TwinCAT 3 (e.g. 25023, 25024, 25025, ...).
The ADS messages can be analyzed and processed thanks to the implementation of the C++ module.
ADS handling for accessing input/output data areas does not have to be implemented using its own
ADS Message Handling.

• ADS Client:
This template provides sample codes to initiate an ADS call by sending an ADS message to an ADS
partner.

Since the modules behave like ADS clients or ADS servers that communicate with each other via ADS
messages, the two modules (Caller=Client and Called=Server) can run in the same or different real-time
contexts on the same or different CPU cores.
Because ADS can work across networks, the two modules can also run on different machines in the
network.

See Sample03 [} 258], ADS Communication [} 208]

TwinCAT Module Class with cyclic caller

Enables the cyclic call of a C++ program which is cut off from the outside world.

Not often used, a module class with cyclic caller and cyclic I/O is preferred.

Wizards

TE1000102 Version: 1.13

TwinCAT Module Class with cyclic input/output

Creates a new TwinCAT module class, which implements the cyclically calling interface and has an input
and output data area.

The input and output data areas can be linked with other input/output images or with physical I/O terminals.

Important:

The C++ module has its own logical input/output data storage area. The data areas of the module can be
configured with the System Manager.

If the module is mapped with a cyclic interface, copies of the input and output data areas exist in both
modules (the caller and the called). In this way, the module can run under a different real-time context and
even on another CPU core in relation to another module.
TwinCAT will continuously copy the data between the modules.

See Quick start, sample 01 [} 257].

TwinCAT Module Class with data pointer

Just like the TwinCAT Module Class with Cyclic IO, this template also generates a new TwinCAT module
class that implements a calling interface with an input and output data area for linking with other logic input/
output images or with physical I/O terminals.

In addition, this template provides data pointers that can be used to access data areas from other modules
via pointers.

Important:

Unlike in the case of the cyclic I/O data area, where the data is copied cyclically between modules, in the
case of the use of C++ data pointers there is only a single data area and this belongs to the destination
module. When writing from another C++ module to the destination module via the data pointer mechanism,
this will immediately affect the data area of the destination module. (Not necessarily towards the end of a
cycle).

If the module is executed at runtime, the call occurs immediately, blocking the original process (it is a
pointer...). Therefore, both modules (the caller and the called one) must be in the same real-time context and
on the same CPU core.

The data pointer is configured in the TwinCAT Module Instance Configurator [} 146].

See sample10 [} 277]

TwinCAT Module Class for real-time context

This template creates a module, which can be instantiated in the real-time context.

As described here [} 44], the other modules have transitions for startup and shutdown in a non-real-time
context. In some cases modules have to be started when a real-time is already running, so that all transitions
are executed in the real-time context. This is a corresponding template.
The modules with this (modified) state machine can also be used for instantiation directly on startup of TC. In
this case the transitions are executed like for a normal module.

The TcCOM 03 sample [} 338] illustrates the application of such a module.

TwinCAT Module Class with Online Change capability

This option can only be used if the module is added to a Versioned C++ Project.

This template creates a module that is capable of online change. Due to the revision control of the project,
these modules become exchangeable at runtime - it is therefore possible to exchange modules from different
versions at runtime.

The procedure for this Online Change is described here [} 164].

Wizards

TE1000 103Version: 1.13

The module itself otherwise corresponds to a module with cyclic input/output.

11.3 TwinCAT Module Class Editor (TMC)
The TwinCAT Module Class editor (TMC editor) is used for defining the class information for a module. It
includes data type definitions and their application, provided and implemented interfaces, and data areas
and data pointers.

To put it briefly: everything that is visible from outside must be defined with this editor.

The basic idea is:

1. The TMC Editor can be used to modify the module description file (TMC file). This contains all informa-
tion that is accessible in the TwinCAT system itself. These are for example symbols, implemented in-
terfaces and parameters.

2. The TwinCAT Code Generator, which can also be called from the TMC Editor, is used to generate all
the required C++ code, i.e. header and cpp files.

Start the TMC editor

Open the editor by double-clicking on the TMC file of a module. The graphical editor opens:

Functionalities of the TMC editor:

• Create/delete/edit symbols in the data areas, e.g. the logical input or output process images of a
module.

• Create/delete/edit user-defined data type definitions.
• Create/delete/edit symbols in the parameter list of a module.

User Help

The TMC editor offers user support for the definition of data types and C++ modules.

For example, in the event of problems (alignment, invalid standard definitions, ...) within the TMC, the user is
guided to the relevant location via red flags within the TMC tree:

Wizards

TE1000104 Version: 1.13

The user can nevertheless edit the TMCs directly, since they are XML files and can therefore be created and
edited by the user.

Tools

The upper section of the TMC editor contains symbols for the required operations.

• Reloading of the TMC file and the types from the type system.
• Updating of the higher-level data types.

• Switching the User Help [} 103] on/off.
• Start the TwinCAT TMC Code Generator:

Wizards

TE1000 105Version: 1.13

The editor will store the entered information in the TMC file. The TwinCAT TMC Code Generator converts
this TMC description to source code, which is also available in the context menu of the TwinCAT C++
project.

11.3.1 Overview

User interface

• TMC [} 106]: Here you can edit the C++ module vendor's basic information and add an image.

• Data types [} 107]: Data types are added, removed, or re-ordered here.

• Modules [} 124]: Shows the modules of the driver.

• Implemented Interfaces [} 126]: Shows the implemented interfaces of the module.

• Parameters [} 127]: Parameters are added, removed, or re-ordered here.

◦ TraceLevelMax [} 133]: Parameter that controls the quantity of logged messages; predefined for
(almost) every module.

• Data Areas [} 134]: Data areas are added, removed, or re-ordered here.

• Data Pointers [} 141]: Data pointers are added, removed, or re-ordered here.

• Interface Pointers [} 143]: Interface pointers are added, removed, or re-ordered here.

• Deployment [} 144]: Determines the files that are provided.

Wizards

TE1000106 Version: 1.13

11.3.2 Basic Information
Basic information on the TMC file can be found here:

Information about the provider

Name: This is the name of the provider.

Choose Image: A 16 x 16 pixel bitmap icon is entered here.

Reset image: Resets the module image to the standard value.

Versioned Classfactory

Name: Displays all class factories referenced from the TMC file. The class factory that implements the C++
project must be set. Typically this is the name of the project.
Used only for versioned C++ projects; otherwise "not set" appears here.

Version: The current version, consisting of four digits, each separated by a ".". At least one digit must not be
0.

Optional features

Generated by: This field indicates who created the file and who will maintain it. Please note that changes
are no longer possible in the TMC Editor when filling out this field (deactivates all editing procedures).

Comment: Optionally, you can enter a comment here.

Wizards

TE1000 107Version: 1.13

11.3.3 Data Types
The user can define data types via the TwinCAT Module Class (TMC) editor.

These data types can be type definitions, structures, areas, enumerations or interfaces, e.g. methods and
their signatures.

The TwinCAT Engineering system (XAE) publishes these data types in relation to all other nested projects of
the TwinCAT project, so that they can also be used in PLC projects, for example (as described here [} 278]).

NOTE
Name conflict
A name collision can occur if the driver is used in combination with a PLC module.
• Do not use any of the keywords that are reserved for the PLC as names.

This chapter describes how to use the capabilities of the TMC editor for defining data types.

11.3.3.1 Overview

User interface

Wizards

TE1000108 Version: 1.13

Symbol Function
Add a new data type.

Add a new interface.

Delete the selected type.

Move the selected element one place downwards.

Move the selected element one place upwards.

Search for unused types.

Select byte alignment.

Align selected data type (alignment).
This function loops through all used data types
(recursion). Is this is not desired, a step-by-step
approach can be adopted, by using the function within
the data types.
Reset data format of the selected data type.

Copy

Paste

Data type properties

Name: user-defined name of the data type.

GUID: unique ID of the data type.

Specification: specification of the data type.

Size: size of the data type, if expressly specified.

Size X64: different size of the data type for the x64 platform.

11.3.3.2 Add / modify / delete data types

Data types used by TwinCAT C++ modules can be added, edited and deleted with the help of the TwinCAT
Module Class (TMC) editor.

This article describes:

• Step 1: Create a new data type [} 108] in the TMC file.

• Step 2: Start the TwinCAT TMC Code Generator [} 111] in order to generate C++ code on the basis of a
module description in the TMC file.

• Using [} 124] the data types.

Step 1: Generate a new type
1. After starting the TMC Editor, select the Data Types node.

Wizards

TE1000 109Version: 1.13

2. Extend the list of data types and interfaces by a new data type by clicking on the + button Add a new
data area.
ð A new data type is then listed as a new entry:

3. Select the generated "Data Type1" in order to obtain details of the new data type.

4. Specify the data type.
See here [} 118] for more precise details.

5. Rename the data type.
In this sample stSensorData, select the specification STRUCT and click on Edit Struct.

Wizards

TE1000110 Version: 1.13

6. Insert new sub-elements in the structure by clicking on the Add a new sub item button.

7. You can edit the properties by double-clicking on the sub-element. Give the sub-element a new name
and select a suitable data type.

8. Give the other sub-elements a new name and select a suitable data type.
9. Save the changes you have made in the TMC file.

Wizards

TE1000 111Version: 1.13

Step 2: Start the TwinCAT TMC Code Generator to generate code for the module description.
10. Right-click on your project file and select TwinCAT TMC Code Generator to generate the source code

for your data type:

ð You can see the data type declaration in the module header file "Untitled1Services.h"

ð If you add a further data type or a further sub-element, run the TwinCAT TMC Code Generator again.

Wizards

TE1000112 Version: 1.13

11.3.3.3 Add / modify / delete Interfaces

Interfaces of a TwinCAT module can be added, edited and deleted with the help of the TwinCAT Module
Class (TMC) editor.

This article describes:

• Step 1: Create a new interface [} 112] in the TMC file.

• Step 2: [} 112]Add methods [} 112] to the interface in the TMC file.

• Step 3: Use the interface [} 114] by adding it to the "Implemented Interfaces" of the module.

• Step 4: Start the TwinCAT TMC [} 116] Code Generator to generate code for the module description.

• Optional change of the interface [} 116].

Step 1: generate a new interface
1. After starting the TMC Editor, select the Data Types node.
2. Click on Add a new interface to extend the list of interfaces by a new interface.

ð A new entry IInterface1 is then listed:

3. To open the details you can either select the appropriate node in the tree or double-click on the row in
the table.

4. Enter a meaningful name - in this sample "IStateMachine".

Step 2: add methods to the interface
5. Click on Edit Methods... to get a list of the methods of this interface:

Wizards

TE1000 113Version: 1.13

6. Click on the + button to generate a new default method, "Method1".

7. Double-click on the method or select a node in the tree to open the details.
8. Give the default "Method1" a more meaningful name.
9. Subsequently, you can add parameters by clicking on Add a new parameter or edit parameters of the

"SetState" method.

ð The new parameter, "Parameter1", is generated by default as "Normal Type" "INTEGER".
10. Edit the parameter by clicking on the name "Parameter1".

ð The "Normal Type" can also be changed to "Pointer" and so on – the data type itself can also be
selected.

ð In this case "NewState" is the new name – the rest of the settings are not changed.

Wizards

TE1000114 Version: 1.13

11. By repeating step 2 "Add methods to interface", all methods are listed – you can re-order the methods
with the help of the move up / move down button.

12. The interface is ready to be implemented by your module.

Step 3: Add the new interface to Implemented Interfaces
13. Select the module that is to be extended by the new interface - in this case select the destination

Modules->CModule1.
14. Extend the list of implemented interfaces by a new interface with Add a new interface to the module by

clicking on the + button.

Wizards

TE1000 115Version: 1.13

15. All available interfaces are listed - select the new template "IStateMachine" and end with OK.

ð The new interface "IStateMachine" is part of the module description.

Wizards

TE1000116 Version: 1.13

Step 4: Start the TwinCAT TMC Code Generator to generate code for the module description.
16. In order to generate the C/C++ code on the basis of this module description, right-click in the C/C++

project and then select the TwinCAT TMC Code Generator.

ð The module "Module1" then contains the new interfaces
CModule1: Start()
CModule1: Stop()
CModule1: SetState(SHORT NewState).

ð Done – the user-defined code can now be inserted in this area.

Optional change of the interface

User-defined code will never be deleted
In the case of changes to the interface (e.g. the parameters of a method will be extended later), the
user-defined code will never be deleted. Instead, the existing method will merely be provided with a
comment if the TMC Code Generator cannot map the methods.

Wizards

TE1000 117Version: 1.13

Wizards

TE1000118 Version: 1.13

11.3.3.4 Data type properties

Editing the properties of data types

Wizards

TE1000 119Version: 1.13

General properties

Name: user-defined name of the data type.

NOTE
Name conflict
A name collision can occur if the driver is used in combination with a PLC module.
• Do not use any of the keywords that are reserved for the PLC as names.

Namespace: user-defined namespace of the data type.

Please note that this is not assigned to a C namespace. It is used as the prefix to your data type.

Sample: an enumeration with a namespace "A":

The following code is generated:
///<AutoGeneratedContent id="DataTypes">
#if !defined(_TC_TYPE_41D4A207_3A09_4316_9D89_0DD1881AB8C4_INCLUDED_)
#define _TC_TYPE_41D4A207_3A09_4316_9D89_0DD1881AB8C4_INCLUDED_
enum A_ASampleEnum : SHORT {
One,
Two,
Three
};
#endif // !defined(_TC_TYPE_41D4A207_3A09_4316_9D89_0DD1881AB8C4_INCLUDED_)

You may wish to manually append the namespace name to the enumeration element as a prefix:
#if !defined(_TC_TYPE_C26FED5F_AC13_4FD3_AC6F_B658CB5604E0_INCLUDED_)
#define _TC_TYPE_C26FED5F_AC13_4FD3_AC6F_B658CB5604E0_INCLUDED_
enum B_BSampleEnum : SHORT {
B_one,
B_two,
B_three
};
#endif // !defined(_TC_TYPE_C26FED5F_AC13_4FD3_AC6F_B658CB5604E0_INCLUDED_)

GUID: unique ID of the data type.

Specification: specification of the data type.

• Alias: generate an alias of a standard data type (e.g. INT).

• Array [} 121]: create a user-defined array.

• Enumeration [} 122]: create a user-defined enumeration.

• Struct [} 122]: generate a user-defined structure.

• Interface [} 123]: generate a new interface.

Select data type

Select: Select data type – it can be a basic TwinCAT data type or a user-defined data type.
Data types equivalent to the PLC data types are defined (like TIME, LTIME, etc.). See Data Types of the
PLC for further information.

Description: Define the type as pointer, reference or value by means of the appropriate selection.

Wizards

TE1000120 Version: 1.13

• Normal type
• Pointer
• Pointer to pointer
• Pointer to pointer to pointer
• a reference

Type information
• Namespace: Defined for selected data type.
• GUID: Unique ID of the selected data type.

Optional data type settings

Size [Bits]: Size in bits (white fields) and in "Byte.Bit" notation (grey fields). A different size can be defined
for the x64 platform.

C/C++ Name: name used in the generated C++ code. The TMC code generator will not generate the
declaration, so that user-defined code can be provided for this data type. Beyond that a different name can
be defined for x64.

Unit: a unit of the variable.

Comment: comment that is visible, for example, in the instance configurator.

Hide sub items: If the data type has sub-elements, the System Manager will not allow the sub-elements to
be accessed. This should be used, for example, in the case of larger arrays.

Persistent (even if unused): Persistent type in the global type system (cf. System->Type System->Data
Types).

Optional Defaults

Depending on data type the default could be defined.

Optional Properties

A table of name, value and description for annotating the data type.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

Datatype Hides

Listed GUIDs refer to data types which are hidden by this data type. Normally, GUIDs of previous versions of
this data type are inserted here automatically on each change.

11.3.3.5 Specification

This section describes the Specification of data types.

Wizards

TE1000 121Version: 1.13

11.3.3.5.1 Array

Array: create a user-defined array.

A new dialog is shown for adding (+) or removing (-) array elements.

Dimension: Dimension of the array.

LBound: Left limit of the array (default value = 0).

Elements: Quantity of elements.

Dynamic arrays for parameters and data pointers

In the case of parameters [} 127] and data pointers [} 141], TwinCAT 3 supports arrays with a dynamic size.

Min: Minimum size of the array.

Max: Maximum size of the array.

Max is unbounded: indicates that there is no upper limit for the array size.

Wizards

TE1000122 Version: 1.13

11.3.3.5.2 Enum

Enumeration: create a user-defined enumeration.

A new dialog is shown for adding (+) or removing (-) an element. Edit the order with the help of the arrows.

NOTE
Unique names are required for enumeration elements
Please note that the enumeration elements must have unique names, as otherwise the C++ code gener-
ated is invalid.

Text: Enumeration element

Enum: Suitable integer value.

Comment: Optional comment.

11.3.3.5.3 Struct

Struct: Creating a user-defined structure.

Select the Sub Items node or click on the Edit Struct button to switch to this table:

A new dialog is shown for adding (+) or removing (-) an element. Edit the order with the help of the arrows.

Name: Name of the element.

Wizards

TE1000 123Version: 1.13

Specification: A struct can contain aliases, arrays or enumerators.

Type: Type of the variable.

Size: Size and offset of the sub-element.

Size X64: Other size for the x64 platform will additionally be provided.

Unit: Optional unit.

The details of the configuration page of the sub-element are shown by selecting the data type or double-
clicking on the table entry. Similar to Data type properties [} 118].

11.3.3.5.4 Interfaces

Interfaces: Creating a user-defined interface.

Select the Methods node or click on the Edit Methods button to switch to this table:

Method parameters

Select the Methods node or double-click on the entry to view the details of the method.

Wizards

TE1000124 Version: 1.13

Name: The name of the method.

RPC enable: enablement of remote procedure calls from outside this method.

Include Return Value: enablement of the forwarding of the return value of the method.

The fields correspond to those of the Data type properties [} 118].

Defining the method parameters
• Name:
• Type: Known from the Data type properties [} 118].

• Description: Known from the Data type properties [} 118].
• Default Value: Default value of this parameter; only numbers are allowed.
• RPC direction: As in the case of PLC function blocks, each parameter can either be IN, OUT or

INOUT. Over and above that, it can be defined as NONE so that this parameter is ignored in the case
of remote procedure calls (RPC).

11.3.4 Modules
Modules: Shows the modules of the driver.

Wizards

TE1000 125Version: 1.13

Class Name: Name of the module.

Class ID: Unique module ID.

Modules properties:

Click on the node in the tree or the row in the table to open the module properties.

General properties

Name: Name of the module.

Class ID: Unique module ID.

Auto generate on save: Enables TwinCAT to generate the ClassID via the module parameters during
saving. If the ClassID changes during import of the binary modules, the corresponding ClassIDs have to be
adjusted. Thus, TwinCAT can detect the interface change.

Choose Image: Add a 16x16 pixel bitmap symbol.

Reset image: Reset the module image to the default value.

Init sequence: Start the state machine. The selection options with 'late' in the name are internal. (See
Object [} 147] of the instance configurator for further information.)

Instantiable in RT Context: Indicates whether this module can be instantiated under real-time context; see
TwinCAT Module Class Wizard [} 100]

Wizards

TE1000126 Version: 1.13

Defining the contexts of the module

You can add (+) or remove (-) contexts for the module. Edit the order with the help of the arrows.
The context ID must be an integer other than 0.

Optional Properties

A table of name, value and description for annotating the module.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

11.3.4.1 Implemented Interfaces

Implemented Interfaces: View and edit the implemented interfaces of the module.

Name: Name of the interface.

Interface ID: Unique ID of the interface.

Disable Code Generation: Enable/disable the code generation.

You can add (+) or remove (-) contexts for the module. Edit the order with the help of the arrows.

Wizards

TE1000 127Version: 1.13

11.3.4.2 Parameters

A TcCOM module instance is defined through various parameters.

TwinCAT supports three types of Parameter IDs (PTCID) in the section Configuring the parameter ID
[} 132].

• "User defined" (default value for new parameters): A unique parameter ID is generated, which can be
used in the user code or in the instance configuration for specifying the parameter.

• "Predefined...": Special PTCIDs provided by the TwinCAT 3 system (e.g. TcTraceLevel).

• "Context-based…": Automatically assign values of the configured context [} 148] to this parameter.
The selected property is applied to the PTCPID. It overwrites the defined standard parameters and the
instance configuration parameter (parameter (Init)).

The parameters and their configuration are described in more detail below.

Parameters: Shows the implemented parameters of the module.

Wizards

TE1000128 Version: 1.13

Symbol Function
Add a new parameter

Deletes the selected type

Moves the selected element down one position

Moves the selected element up one position

Select byte alignment

Align the selected data type

Reset data format of the selected data type

Name: Name of the interface.

Parameter ID: Unique ID of the parameter.

Specification: Data type of the parameter.

Size: Size of the parameter. Other sizes are possible for x64.

Context: Context ID of the parameter.

Disable Code Generation: Enable/disable the code generation.

11.3.4.2.1 Add / modify / delete parameters

The properties and functionalities of a TwinCAT class can be added, edited and deleted with the aid of the
TwinCAT Module Class (TMC) Editor.

This article describes:

• Step 1: Create a new parameter [} 128] in the TMC file.

• Step 2: Start the TwinCAT TMC Code Generator [} 129] to generate code for the module description in
the TMC file.

• Step 3: Observe the transitions of the state machine [} 130]

Step 1: Create new parameters
1. After starting the TMC Editor, select the target Parameters.
2. Extend the list of parameters by a new parameter by clicking on the + button Add a new parameter.

ð A new "Parameter" is then listed as a new entry:

Wizards

TE1000 129Version: 1.13

3. Select Parameter in the left-hand tree or double-click on the red-marked "Parameter3" or select the node
in the tree to obtain details of the new parameter.

4. Configure the parameter as well as the Data Types [} 107].
5. Give it a more meaningful name – in this sample "bEnable" – and select the data type "BOOL".

6. Save the changes you have made in the TMC file.

Step 2: Start the TwinCAT TMC Code Generator to generate code for the module description.
7. Right-click on your project file and select TwinCAT TMC Code Generator to receive the parameters in

your source code:

Wizards

TE1000130 Version: 1.13

ð You can see the parameter declaration in the header file "Module1.h" of the module.

ð The implementation of the new parameter can be found in the get and set methods of the module
class "module1.cpp".

To add a further parameter, use the TwinCAT TMC Code Generator again.

Step 3: State machine transitions

Note the different state transitions of your state machine [} 44]:

Wizards

TE1000 131Version: 1.13

The parameters are specified during the transition Init->Preop and perhaps Preop->Safeop.

11.3.4.2.2 Parameter properties

Parameter properties: Edit the properties of the parameter.

Wizards

TE1000132 Version: 1.13

General properties

Name: Name of the interface.

Specification: Data type of the parameter, see specification.

Select data type

Select: Select data type.

Type information
• Namespace: user-defined namespace of the data type.
• GUID: unique ID of the data type.

Enter a unique ID Value: Enter a unique ID value, see Parameter [} 127].

Constant Name: source code name of the parameter ID.

Optional parameter settings

Size [Bits]: Calculated size in bits (white fields) and in "Byte.Bit" notation (grey fields). A special size
configuration is provided for x64.

Unit: a unit of the variable.

Comment: Comment that is visible, for example, in the instance configurator.

Context ID: Context used when accessing parameters by ADS.

Create Symbol: Default setting for ADS icon creation.

Wizards

TE1000 133Version: 1.13

Disable Code Generation: Enable/disable the code generation.

Hide parameter: Switches between showing/hiding parameters in the System Manager view.

Hide sub items: If the data type has sub-elements, the System Manager will not allow the sub-elements to
be accessed. This should be used, for example, in the case of larger arrays.

Online parameter: Define as online parameter.

Read-only: Switch to read-only access for System Manager.

Optional Properties

A table of name, value and description for annotating the parameter.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

11.3.4.2.3 TraceLevelMax

TraceLevelMax: Parameter which defines the trace level.
This is a predefined parameter provided by most TwinCAT module templates (except for the empty TwinCAT
module template).

Settings for this parameter should not be changed.

See Module messages for the Engineering (logging / tracing) [} 229]

Wizards

TE1000134 Version: 1.13

11.3.4.3 Data Areas

Data Areas: Dialog for editing the data areas of your module.

Symbol Function
Add a new data area

Delete the selected data area

Moves the selected element down one position

Moves the selected element up one position

Select byte alignment

Align the selected data type

Reset the data format of the selected area

NOTE
Recursion when setting an alignment
When setting the alignment of a data area, this will be taken as the basis for all of its elements (symbols
and also their sub-elements). User-defined alignment will be overwritten.

Number: Number of the data area.

Type: Defines the purpose and location of the data area.

Name: Name of the data area.

Size: Size of the parameter; other sizes are possible for x64.

Context: Displays the context ID.

Disable Code Generation: Enable/disable the code generation.

11.3.4.3.1 Add / modify / delete data areas and variables

The properties and functionalities of a TwinCAT class can be added, edited and deleted with the aid of the
TwinCAT Module Class (TMC) Editor.

This article describes:

• Creation of a new data area in the TMC file.

• Creating [} 140] new variables in a data area.

Wizards

TE1000 135Version: 1.13

• For example, edit the name or data type [} 140] of variables existing in the TMC file.

• Delete existing variables [} 141] from the TMC file.

Creating a new data area
1. After starting the TMC Editor, select the Data Areas node of the module.
2. Click on the + button, thus creating a new data area.

3. In order to obtain the properties of the data area, double-click on the table or on the node.

4. Rename the data area.

Creating a new variable
5. Select the sub-node Symbols of the data area.
6. Extend this data area by a new variable by clicking on the + button. A new entry "Symbol4" is then listed.

Editing the name or data type of existing variables
7. Select the sub-node Symbol4 or double-click on the row. The variable properties are shown.

Wizards

TE1000136 Version: 1.13

8. Enter a new name, e.g. "bEnableJob" and change the type to BOOL.

ð The new variable "bEnableJob" is created in the data area "Input".

Note Remember to run the TMC Code Generator again.

Deleting existing variables
1. To delete existing variables from the data area, select the variable and then click on the delete icon:

in this sample, select "MachineStatus1" and click on the Delete icon.

2. Run the TMC Code Generator again.

11.3.4.3.2 Data Areas Properties

Data Areas Properties: Dialog for editing the data area properties.

Wizards

TE1000 137Version: 1.13

General properties

Number: Number of the data area.

Type: Defines the purpose and location of the data area. The following are available:

Linkable data areas in the System Manager:

• Input-Source
• Input-Destination
• Output-Source
• Output-Destination

• Retain-Source (for use with NOV-RAM memory, see appendix [} 348])
• Retain-Destination (for internal use)

Further data areas:

• Standard (visible but not linkable in the System Manager)
• Internal (for internal module symbols, which can be reached via ADS but are not visible in the System

Manager)

Wizards

TE1000138 Version: 1.13

• MArea (for internal use)
• Not specified (same as standard)

Name: Name of the data area.

Optional parameter settings

Size [Bytes]: Size in bytes. A special size configuration is provided for x64.

Comment: Optional comment that is visible, for example, in the instance configurator.

Context ID: Context ID of all symbols of this data area; used for the determination of the mapping.

Data type name: If specified, a data type with the specified name is created in the type system.

Create Symbol: Default setting for ADS icon creation.

Disable Code Generation: Enable/disable the code generation.

Optional Defaults

Depending on data type the default could be defined.

Optional Properties

A table of name, value and description for annotating the data area.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

11.3.4.3.3 Symbol Properties

Symbols: Dialog for the editing of the symbols of the data area.

Wizards

TE1000 139Version: 1.13

General properties

Name: Name of the symbol.

Specification: Data type of the symbol, see Data type properties [} 118].

Select data type

Select: Select data type – it can be a basic TwinCAT data type or a user-defined data type.

Description: Define whether the type is the following:

• Normal type
• Pointer
• Pointer to pointer
• Pointer to pointer to pointer
• a reference

Type information
• Namespace: Namespace for selected data type.
• GUID: unique ID of the data type.

Optional data type settings

Offset [Bits]: Offset of the symbol within the data area; a different offset can be defined for the x64 platform.

Size [Bits]: Size in bits, if specified. A different size can be defined for the x64 platform.

Comment: Optional comment that is visible, for example, in the instance configurator.

Wizards

TE1000140 Version: 1.13

Create Symbol: Default setting for ADS icon creation.

Hide sub items: If a variable has sub-elements, then the System Manager will not allow the sub-elements to
be accessed. This should be used, for example, in the case of larger arrays.

TwinCAT Module Class Editor - Data Areas Symbols Properties

Data Areas Symbols Properties: Dialog to edit the data area symbols properties

General Properties

Name: Name for the interface

Specification: Data type of the parameter

Available specifications are:

• Alias: Create an alias of a default data type (e.g. INT)
• Array: Create a user specific array
• Enumeration: Create a user specific enum
• Struct: Create a user specific structure
• Interface: Create a new interface

Define the data type

Select: Select data type

Description: Define description

Wizards

TE1000 141Version: 1.13

Type Information

Name: Name of the selected default type

Namespace: User-defined namespace for the data type

GUID: Unique ID of the data type

Optional data type settings

Offset [Bits]: Memory offset

Size [Bits]: Calculated size in bits

Unit: Optional

Comment: Optional

Create symbol: Default setting for ADS symbol creation

11.3.4.4 Data Pointers

Data Pointer: Dialog for editing the data pointers of your module.

Symbol Function
Add a new data pointer

Deletes the selected data pointer

Moves the selected element down one position

Moves the selected element up one position

Name: Name of the data pointer.

Parameter ID: Unique ID of the parameter.

Type: Defines the pointer type.

Context: Displays the context ID.

Disable Code Generation: Enable/disable the code generation.

Wizards

TE1000142 Version: 1.13

11.3.4.4.1 Data Pointer Properties

Data Pointer Properties: Edit the properties of the data pointer.

General properties

Name: Name of the data pointer.

Define the data type

Select: Select data type.

Type information
• Name: Name of the selected data type.
• GUID: unique ID of the data type.

Define the dimension of the array

See here [} 121].

Configuring the parameter ID

Enter a unique ID Value: Enter a unique ID value, see Parameter [} 127].

Constant Name: source code name of the parameter ID.

Optional data pointer settings

Comment: Comment that is visible, for example, in the instance configurator.

Context ID: Context ID of the data pointer.

Wizards

TE1000 143Version: 1.13

Disable Code Generation: Enable/disable the code generation.

11.3.4.5 Interface Pointers

Interface Pointers: Add, remove or re-order interface pointers.

Symbol Function
Add interface pointers

Deletes the selected pointer

Moves the selected element down one position

Moves the selected element up one position

Name: Name of the interface.

Parameter ID: Unique ID of the interface pointer.

Type: Type of the interface pointer.

Context: Context of the interface.

Disable Code Generation: Enable/disable the code generation.

11.3.4.5.1 Interface Pointer Properties

Interface Pointer Properties: Edit the properties of the interface pointer.

Wizards

TE1000144 Version: 1.13

General properties

Name: Name of the interface pointer.

Select the basic interface

Select: Selection of the interface.

Type information
• Namespace: Namespace of the interface.
• GUID: Unique ID of the interface.

Configure the parameter ID

See Parameters [} 127].

Comment: Optional

Context ID: Context ID of the interface pointer.

Disable Code Generation: Enable/disable the code generation.

11.3.4.6 Deployment

Deployment: Specify storage locations for the provided modules on the target system.

Wizards

TE1000 145Version: 1.13

Symbol Function
Add a new file entry

Delete a file entry

Moves the selected element down one position

Moves the selected element up one position

This dialog enables configuration of the source and target file, which are transferred to the target system for
the respective platforms.

Define the files, which should be deployed.

Source File: Path to the source files.

Destination file: Path to the binary files.

Rename Destination: Destination file will be renamed before the new file is transferred. Since this is
required for Windows 10, it is done implicitly.

The individual entries can be expanded and collapsed by the + or – respectively at the beginning.

Evaluate: Puts the calculated value into the text field for verification.

Insert: Adds the variable name selected in the dropdown list.

Add or remove specific file entries

Remove symbol file entries: Removes the entries for the provision of symbol files (PDB).

Remove all entries: Removes all entries.

Reset to default: Sets the standard entries.

Add default file entries: Adds the entries for the selected platform.

Wizards

TE1000146 Version: 1.13

Remove file entries: Removes the entries for the selected platform.

Source and target paths for the allocation may contain virtual environment variables, which are resolved by
the TwinCAT XAE / XAR system.

The following table shows the list of these supported virtual environment variables.

Virtual environment variable Registry entry (REG_SZ) under key Default value
\HKLM\Software\Beckhoff\TwinCAT3

%TC_INSTALLPATH% InstallDir C:\TwinCAT\3.x \
%TC_CONFIGPATH% ConfigDir C:\TwinCAT\3.x

\Config\
%TC_TARGETPATH% TargetDir C:\TwinCAT\3.x

\Target\
%TC_SYSTEMPATH% SystemDir C:\TwinCAT\3.x

\System\
%TC_BOOTPRJPATH% BootDir C:\TwinCAT\3.x \Boot\
%TC_RESOURCEPATH% ResourceDir C:\TwinCAT\3.x

\Target\Resource\
%TC_REPOSITORYPATH% RepositoryDir C:\TwinCAT\3.x

\Repository\
%TC_DRIVERPATH% DriverDir C:\TwinCAT\3.x

\Driver\
%TC_DRIVERAUTOINSTALLPAT
H%

DriverAutoInstallDir C:\TwinCAT\3.x
\Driver\AutoInstall\

%TC_SYSSRVEXEPATH% C:\TwinCAT\3.x \SDK
\Bin\TwinCAT UM
(x86)\

%CLASSFACTORYNAME% <Name of the Class
Factory>

("x" is replaced by the installed TwinCAT version)

11.4 TwinCAT Module Instance Configurator
The TwinCAT 3 Modules Class (TMC) editor described above defines drivers at class level. These are
instantiated and have to be configured via the TwinCAT 3 instance configurator.

The configuration applies to the context (including the task calling the module), parameters and pointers.

Instances of C++ classes are created by right-clicking on the C++ project folder; see quick start. This chapter
describes the configuration of these instances in detail.

Double-click on the generated instance to open the configuration dialog with several windows.

Wizards

TE1000 147Version: 1.13

11.4.1 Object

• Object Id: The object ID used for identifying this instance in the TwinCAT system.
• Object Name: Name of the object used for displaying the instance in the Solution Explorer tree.
• Type Name: Type information (class name) of the instance.
• GUID: Module classes GUID.
• Class Id: Class ID of the implementation class (GUID and ClassId are usually identical).
• Class Factory: Refers to the driver, which provides the Class Factory that was used for the

development of the module instance.
• Parent Id: Contains the ObjectID of the parent, if available.
• Init Sequence: Specifies the initialization states for determining the startup behavior of the interacting

modules. See here [} 44] for detailed description of the state machine.

Specifying the startup behavior of several TcCOM instances

TcCOM instances can refer to each other - e.g. for the purpose of interaction via data or interface pointers.
To determine the startup behavior, the Init Sequence specifies states to be "held" by each TcCOM instance
for all other modules.

The name of an Init Sequence consists of the short name of the TcCOM state machine. If the short name of
a state (I, P, S, O) is included in the name of the Init Sequence, the modules will wait in this state, until all
other modules have reached at least this state. In the next transition the module can refer to all other module
instances, in order to be in this state as a minimum.

If, for example, a module has the Init Sequence "PS", the IP transitions of all other modules are executed, so
that all modules are in "Preop" state.

Wizards

TE1000148 Version: 1.13

This is followed by the PS transition of the module, and the module can rely on the fact that the other
modules are in "Preop" state.

• Copy TMI to target: Generating the TMI (TwinCAT Module Instance) file and transferring it to the
target.

11.4.2 Context

• Context: Select the context to be configured (see TMC Editor for Adding different contexts).
Note A data area is assigned to a context

• Data Areas / Interfaces / Data Pointer and Interface Pointer: Each instance can be configured to
have or not have elements defined in TMC.

• Result Table: List of the IDs that need to be configured. At least the context ("Task" column) of the
task must be configured accordingly.

11.4.3 Parameter (Init)

List of all parameters (as defined in TMC) could be initialized by values for each instance.

Special ParameterIDs (PTCID) are used to set values automatically.These are configured via the
TMCEditor's parameter dialogue as described here [} 127].

The CS (CreateSymbol) checkbox creates the ADS Symbols for each parameter, thus it is accessible from
outside

Wizards

TE1000 149Version: 1.13

11.4.4 Data Area

List of all data areas and their variables (as defined in TMC).

The CS (CreateSymbol) checkbox creates the ADS Symbols for each parameter, thus the variable is
accessible from outside

11.4.5 Interfaces

List of all implemented interfaces (as defined in TMC)

11.4.6 Interface Pointer

List of all Interface Pointers (as defined in TMC).

Special ParameterIDs (PTCID) are used to set values automatically. These are configured via the
TMCEditor's parameter dialogue as described here [} 127].

The OTCID column defines the pointer to the instance, which should be used.

Wizards

TE1000150 Version: 1.13

11.4.7 Data Pointer

List of all Data Pointers (as defined in TMC).

Special ParameterIDs (PTCID) are used to set values automatically. These are configured via the
TMCEditor's parameter dialogue as described here [} 127].

The OTCID column defines the pointer to the instance, which should be used.

11.5 Customer-specific project templates
TwinCAT 3 is embedded in Visual Studio and thus also uses the project management provided. TwinCAT 3
C++ projects are "nested projects" in the TwinCAT project folder (TwinCAT Solution).

This section of the documentation describes how customers can realize their own project templates.

11.5.1 Overview
When a TwinCAT C/C++ project is created, the TwinCAT C++ Project Wizard is started first. The latter
generates a framework for a TwinCAT driver. The purpose of this framework is to register a TwinCAT driver
in the system. The actual function of the driver is implemented in TwinCAT modules.

Wizards

TE1000 151Version: 1.13

The TwinCAT Class Wizard is automatically started on creating a new driver project in order to add the first
TwinCAT driver module. The different modules are generated by the same TwinCAT Class Wizard, but the
specific design of the module is realized using templates.

11.5.2 Files involved
Virtually all relevant information is contained in the directory C:\TwinCAT\3.x\Components\Base
\CppTemplate:

The TwinCAT C++ Project Wizard calls the TwinCAT Module Class Wizard if a Driver Project is to be
created.

Directory: Driver and Class

The respective project types are defined in the Driver (for TwinCAT C++ Project Wizard) and Class directory
(for the TwinCAT Module Class Wizard), each project type encompassing 3 files:

The .vsdir file provides information that is used when the respective assistant wizard is started. This is
essentially a name, a brief description and a file name of the type .vsz containing details for this project type.
The general description in the MSDN can be found here: https://msdn.microsoft.com/de-de/library/
Aa291929%28v=VS.71%29.aspx.

The .vsz file referenced in the .vsdir file provides information that is needed by the wizard.
The most important information here is the wizard that is to be started and a list of parameters.

https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx
https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx

Wizards

TE1000152 Version: 1.13

Both wizards have a .xml file as a parameter that describes the transformations of, for example, source files
from the template to the specific project. These are located together with the templates for the source code,
etc. in the Templates directory.
If a driver is to be created, the TwinCAT C++ Project Wizard starts the TwinCAT Module Class Wizard via
the TriggerAddModule parameter.

The general description in the MSDN can be found here: https://msdn.microsoft.com/de-de/library/
Aa291929%28v=VS.71%29.aspx.

The .ico file merely provides an icon.

Directory: Templates

Both the templates for the source code and the .xml file named in the .vsz file for the TwinCAT Module Class
Wizard are located in corresponding subdirectories in the Templates directory.

This .xml file describes the procedure for getting from the template to a real project.

11.5.3 Transformations

Transformation description (XML file)

The configuration file describes (in XML) the transformation of the template files into the project folder. In the
normal case these will be .cpp / .h and possibly project files; however, all types of files can be handled.

The root node is a <ProjectFileGeneratorConfig> element. The useProjectInterface="true" attribute can be
set directly at this node. It sets the processing procedure in the Visual Studio mode to generate projects (as
opposed to TC-C++ modules).

Several <FileDescription> elements, each of which describes the transformation of a file, follow here. After
these elements there is a possibility to define symbols that are available for the transformation in a
<Symbols> element.

Transformation of the template files

A <FileDescription> element is structured as follows:
<FileDescription openFile="true">
<SourceFile>FileInTemplatesDirectory.cpp</SourceFile>
<TargetFile>[!output SYMBOLNAME].cpp</TargetFile>
<Filter>Source Files</Filter>
</FileDescription>

• The source file from the templates directory is specified as the <SourceFile>.
• The destination file in the Project directory is specified as the <TargetFile>. A symbol is normally used

by means of the [!output...] command.
• The attribute "copyOnly" can be used to specify whether the file should be transformed, i.e. whether

the transformations described in the source file are executed. Otherwise the file is merely copied.
• The "openFile" attribute can be used to specify whether the file is to be opened after creation of the

project in Visual Studio.
• Filter: a filter is created in the project.

To do this the useProjectInterface="true" attribute must be set at the <ProjectFileGeneratorConfig>.

Transformation instructions

Commands that describe the transformations themselves are used in the template files.

The following commands are available:

• [!output SYMBOLNAME]
This command replaces the command by the value of the symbol. A number of predefined symbols are
available.

https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx
https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx

Wizards

TE1000 153Version: 1.13

• [!if SYMBOLNAME], [!else] and [!endif] describe a possibility to integrate corresponding text
only in certain situations during the transformation.

Symbol names

Symbol names can be provided for the transformation instructions in 3 ways.
These are used by the commands described above in order to carry out replacements.

1. A number of predefined symbols directly in the configuration file:
A list of <Symbols> is provided in the XML file. Symbols can be defined here: <Symbols>
<Symbol>
<Name>CustomerSymbol</Name>
<Value>CustomerString</Value>
</Symbol>
</Symbols>

2. The generated destination file names can be provided by adding the "symbolName" attribute:
<TargetFile symbolName="CustomerFileName">[!output SYMBOLNAME].txt</Target-
File>

3. Important symbols are provided by the system itself

Symbol Name (Projects) Description
PROJECT_NAME The project name from the Visual Studio dialog.
PROJECT_NAME_UPPERCASE The project name in upper case letters.
WIN32_WINNT 0x0400
DRVID Driver ID in the format: 0x03010000
PLATFORM_TOOLSET Toolset version, e.g. v100
PLATFORM_TOOLSET_ELEMENT Toolset version as an XML element, e.g. <PlatformToolset>v100</

PlatformToolset>
NEW_GUID_REGISTRY_FORMAT Creates a new GUID in the format:

{48583F97-206A-4C7C-9EF2-D5C8A31F7BDC}

Symbol Name (Classes) Description
PROJECT_NAME The project name from the Visual Studio dialog.
HEADER_FILE_NAME Entered by the user in the wizard dialog.
SOURCE_FILE_NAME Entered by the user in the wizard dialog.
CLASS_NAME Entered by the user in the wizard dialog.
CLASS_SHORT_NAME Entered by the user in the wizard dialog.
CLASS_ID A new GUID created by the wizard.
GROUP_NAME C++
TMC_FILE_NAME Used to identify the TMC file.
NEW_GUID_REGISTRY_FORMAT Creates a new GUID in the format:

{48583F97-206A-4C7C-9EF2-D5C8A31F7BDC}

11.5.4 Notes on handling
Template in customer-specific directory

Templates can also be stored outside of the usual TwinCAT directory.

1. In the registry, expand the search path (in this case V12.0, i.e. for VS 2013) in which the node /2 is
created:
Registry Key: HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\12.0_Config

Wizards

TE1000154 Version: 1.13

\Projects\{B9B2C4C6-072A-4B72-83C1-77FD2DEE35AB}\AddItemTemplates
\TemplateDirs\{3d3e7b23-b958-4a99-bfee-d0d953c182d4}\

2. Increase the SortPriority.
3. Recommendation: in the directory, create a subdirectory called Class, which is entered in the registry,

and a subdirectory called Templates in order to separate the .vsz / .vsdir / .ico files from the templates.
4. Adapt the paths within the files.
ð As a result, a dedicated order exists for the templates:

This directory or directory structure can, for example, now be versioned in the version management system
and is also not affected by TwinCAT installations/updates.

Quick start

A general entry to the wizard environment in the MSDN is the entry point: https://msdn.microsoft.com/de-
de/library/7k3w6w59%28v=VS.120%29.aspx.

This describes how a template is used for creating a customer-specific module with the TwinCAT C++
Module Wizard.

1. Take an existing module template as the copying template
In C:\TwinCAT\3.x\Components\Base\CppTemplate\Templates

https://msdn.microsoft.com/de-de/library/7k3w6w59%2528v=VS.120%2529.aspx
https://msdn.microsoft.com/de-de/library/7k3w6w59%2528v=VS.120%2529.aspx

Wizards

TE1000 155Version: 1.13

2. Rename the .xml file within the folder

3. Copy the corresponding files .ico / .vsdir / .vsz also in the Class/

4. Now reference the copied .vsz file in the .vsdir file and adapt the description.
5. Enter the .xml file created in step 2 in the .vsz file.
6. You can now make changes to the source files in the Template/CustomerModuleCyclicIO/ directory.

The .xml takes care of replacements when creating a project from this template.
ð The TwinCAT Module Class Wizard now displays the new project for selection:

If the vsxproj, for example, are also to be provided in a changed form, it is recommended to adapt a copy of
the TwinCAT C++ Project Wizard.

If necessary, the use of settings in .props files should also be considered so that settings can also be
changed in existing projects created from a template – e.g. as a result of the .props files being updated by a
version management system.

Alternative creation on the basis of an existing project

A viable way here is to create a finished project and transform it into a template afterwards.

1. Copy the cleaned project into the Templates\ folder.
2. Create a transformation description (XML file).
3. Prepare the source files and the project file by means of the replacements described.
4. Provide the .ico / .vsdir / .vsz files.

Programming Reference

TE1000156 Version: 1.13

12 Programming Reference
TwinCAT offers a wide range of basic functions. They all can be very useful for TwinCAT C++ programmers
and are documented here.

There is a wide range of C++ samples, which contain the valuable information on the handling of the
modules and interfaces.

TwinCAT C++ project

A TwinCAT C++ project has some parameters that can be opened by double-clicking on the TwinCAT C++
project (project name here "Untitiled1").

Renaming is not possible at this stage (see Renaming TwinCAT C++ projects [} 237])

The encryption of the binary module can be set here, a more detailed description of the requirements can be
found here [} 55].

Programming Reference

TE1000 157Version: 1.13

The option whether the sources should be included can be set here for the two archive types, which are
transferred to the target system or sent by email.

Accordingly, empty archives are created on deselection.

12.1 TwinCAT C++ Project properties
From TwinCAT 3.1 Build 4024.0
The functionality described here is available from TwinCAT 3.1. 4024.0.

Different settings can be made in the project properties for a TwinCAT C++ project.

The project properties are opened by right-clicking on the C++ project -> Properties.

Programming Reference

TE1000158 Version: 1.13

TwinCAT pages exist in addition to the Visual Studio C++ dialogs for the settings:

Programming Reference

TE1000 159Version: 1.13

These are described on the subpages.

12.1.1 Tc SDK

Settings for the TwinCAT SDK

Common
• TwinCAT SDK folder: File folder that provides the TwinCAT SDK and shows the value of the

environment variable TWINCATSDK.

Intrinsics
• Use intrinsics from platform toolset: the intrinsics should be used.

Programming Reference

TE1000160 Version: 1.13

Windows Driver Kit

If an environment variable WINDDK7 is set, this option prevents the use of the WDK for a specific project.

• Build with WDK: Whether the WDK should be used.
• WinDDK7 folder: Displays the value of the WINDDK7 environment variable.

12.1.2 Tc Extract Version

Version information from the project is provided in a header file and used for the build process.

If the .rc file contains version information, the header file is generated from it. With versioned C++ projects,
the version information is read from the TMC file and the macros from the generated header file are used in
the .rc file.

Extract Version
• Resource Input File: The .rc file to consider.
• Product Version Input File: TMC file containing the product version for versioned projects.
• File Version Input File: TMC file, which contains the file version for versioned projects.
• Header-Output File: Header File in which the information is provided.

12.1.3 Tc Publish

Information about publishing modules.

General Settings
• Platform(s): Which platforms should be built in a Publish?
• Configuration(s): Selection whether to build debug / release.
• Include Debug Information: For which configurations should the debug symbols (PDBs) be provided

in the repository?
• TMC / TML source file(s): TMC / TML files from the project that represent the starting point for the

Publish process.

• Publish as Versioned Library: Should the publishing take place in the repository [} 49]?

Programming Reference

TE1000 161Version: 1.13

Installation Settings
• Archive: File path for an archive. Extensions .zip (for a ZIP archive) and .exe (for a self-extracting ZIP

archive) are allowed. Both contain the content for a repository (versioned C++ projects) or
CustomConfig/Modules (non-versioned C++ drivers) on another engineering system.

• Publish Installation Root Folder: No installation is performed on the local system with "None". The
files are only available under TWINCATSDK/_products/TcPublish. An archive can be created to
manually transfer these files to another system and install them there.
If "Default" is selected, an installation into the repository (versioned C++ projects) or CustomConfig/
Modules (non-versioned C++ drivers) is performed on the local system.

Special Settings
• Additional Files: Adding additional files to the Publish process, which are stored in the "deploy"

subdirectory during installation.
• Post publish command: Execute a command after the publish, e.g. to clean up.

12.1.4 Tc Sign

TwinCAT modules must be signed [} 25], which can be configured here.

Enable Signing
• SHA1 signing: Should an operating system signature, which is necessary for the operating system, be

carried out?
• SHA256 signing: Should an operating system signature, which is necessary for the operating system,

be carried out?
• TwinCAT signing: Should a TwinCAT user certificate be used for signing? This is necessary for the

TwinCAT Loader [} 53].

TwinCAT Certificates
These parameters are used for all configurations such as debug and release.

• TwinCAT Certificate Name: Name of the certificate file (directory: C:\TwinCAT\3.x\CustomConfig
\Certificates). Alternatively, the environment variable TcSignTwinCatCertName can be set to the name
of the certificate file.

Programming Reference

TE1000162 Version: 1.13

• TwinCAT Certificate Password: Password that protects the TwinCAT user certificate (stored in plain
text, leave blank if necessary). The TcSignTool [} 57] can be used to not store the password of the
TwinCAT user certificate in the project, where it would also end up in version management, for
example.

• Verbose Output: Should extended information be output during the signature?

Windows Certificate (SHA1)
• Certificate Store Name: Name of the certificate store in the certificate manager of the operating

system.
• Certificate Name: Name of the certificate in the certificate store.
• Certificate ID: ID of the certificate.
• Timestamp Server URL: URL of the timestamp server for use during the signature. This is provided

by various CAs.

• CA Cross Signing Certificate Path: Path to cross signing certificate. Microsoft provides an overview
here.

• Verbose Output: Should extended information be output during the signature?

Windows Certificate (SHA256)
• Certificate Store Name: Name of the certificate store in the certificate manager of the operating

system.
• Certificate Name: Name of the certificate in the certificate store.
• Certificate ID: ID of the certificate.
• Timestamp Server URL: URL of the timestamp server for use during signature, provided by the CA.

• CA Cross Signing Certificate Path: Path to cross signing certificate. Microsoft provides an overview
here.

• Verbose Output: Should extended information be output during the signature?

12.2 File Description
During the development of TwinCAT C++ modules, files in the file system can be handled directly. This is of
interest, either to understand how the system works or for specific use cases such as manual file transfer,
etc.

Here is a list of files related to C++ modules.

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing

Programming Reference

TE1000 163Version: 1.13

File Description Further Information
Engineering / XAE
*.sln Visual Studio Solution file, hosts TwinCAT and

non-TwinCAT projects
*.tsproj TwinCAT project, collection of all nested

TwinCAT projects, such as TwinCAT C++ or
TwinCAT PLC project

_Config/ Folder contains further configuration files (*.xti)
that belong to the TwinCAT project.

See menu Tools| Options|
TwinCAT| XAE-
Environment| File
Settings

_Deployment/ Folder for compiled TwinCAT C++ drivers
*.tmc TwinCAT Module Class file (XML-based) See TwinCAT Module

Class Editor (TMC) [} 103]
*.rc Resource file See Setting version/

vendor information
[} 236]

.vcxproj. Visual Studio C++ project files
*ClassFactory.cpp/.h Class Factory for this TwinCAT driver
*Ctrl.cpp/.h Upload and remove drivers for TwinCAT UM

platform
*Driver.cpp/.h Upload and remove drivers for TwinCAT RT

platform
*Interfaces.cpp/.h Declaration of the TwinCAT COM interface

classes
*W32.cpp./.def/.idl
*.cpp/.h One C++/Header file per TwinCAT module in

the driver. Insert user code here.
Resource.h Required by *.rc file
TcPch.cpp/.h Used for creating precompiled headers
%TC_INSTALLPATH%
\Repository\<Vendor>
\<PrjName>\<Version>
\<Platform>*.tmx

Compiled driver that is loaded via the
TcLoader.
C:\TwinCAT\3.x\Repository\C++ Module
Vendor\Untitled1\0.0.0.1\TwinCAT RT *
\Unititled1.tmx

See Versioned C++
Projects [} 49]

%TC_INSTALLPATH%
\CustomConfig\Modules*

Published TwinCAT driver package
normally C:\TwinCAT\3.x\CustomConfig
\Modules*

See Export to TwinCAT
3.1 4022.xx [} 50]

Runtime / XAR
%TC_BOOTPRJPATH%
\CurrentConfig*

Current configuration setup
usually C:\TwinCAT\3.x\Boot

%TC_DRIVERAUTOINSTALLP
ATH% *.sys/pdb

Compiled, platform-specific driver that is loaded
via the operating system.
C:\TwinCAT\3.x\Driver\AutoInstall (system
loaded)

%TC_INSTALLPATH%\Boot
\Repository\<Vendor>
\<PrjName>\<Version>*.tmx

Compiled platform-specific driver that is loaded
via the TcLoader.
C:\TwinCAT\3.x\Boot\Repository\C++ Module
Vendor\Untitled1\0.0.0.1\Untitled1.tmx

%TC_BOOTPRJPATH% \TM
\OBJECTID.tmi

TwinCAT Module Instance File
Describes variables of the driver
File name is ObjectID.tmi

Programming Reference

TE1000164 Version: 1.13

File Description Further Information
Usually C:\TwinCAT\3.x\Boot\TMI\OTCID.tmi

Temporary files
*.sdf IntelliSense Database
*.suo / *.v12.suo User-specific and Visual Studio-specific files
*.tsproj.bak Automatically generated backup file from tsproj
ipch/ Intermediate directory created for precompiled

headers

Also see about this
2 TwinCAT Module Class Editor (TMC) [} 103]
2 Setting version/vendor information [} 236]
2 Export to TwinCAT 3.1 4022.xx [} 50]

12.2.1 Compilation procedure
The procedure that initiates a Build or Rebuild on a TwinCAT C++ project in the TwinCAT Engineering XAE
is described here. This is to be taken into account, for example, if company-specific environments and
building processes are to be integrated.

The configurations that are built in the case of a Build or Rebuild depend on the current selection in Visual
Studio:

The correct target architecture (in this case TwinCAT RT (x64)) is set appropriately by selecting the target
system.

The Configuration Manager allows the dedicated setting of the build configuration.

When selecting Build or Rebuild (and thus also Activate Configuration), the following steps are
performed:

1. The sources are located in the respective project directory.
2. The compilations are generated according to the specific architecture in C:\TwinCAT\3.1\sdk_prod-

ucts\
e.g. in C:\TwinCAT\3.1\sdk_products\TwinCAT RT (x64)\Debug\<ProjectName>

3. The link process then places the .sys/.pdb file also architecture-specific in C:\TwinCAT\3.1\sdk_prod-
ucts\.
e.g. in C:\TwinCAT\3.1\sdk_products\TwinCAT RT (x64)\Debug\

4. A copy of the .sys/.pdb is placed in the _Deployment/ subdirectory of the project directory, e.g. in
Project Directory/_Deployment/TwinCAT RT (x64)\

5. Pressing the Activate Configuration button leads to .sys/.pdb being transferred from _Deployment/ of
the project directory to the target system (if applicable it is a local copy).

12.3 Online Change
From TwinCAT 3.1 Build 4024.0
The functionality described here is available from TwinCAT 3.1. 4024.0.

Programming Reference

TE1000 165Version: 1.13

TwinCAT 3.1 supports the exchange of C++ modules at runtime, i.e. without interrupting the real-time
program.

For this purpose, different versions of a TwinCAT Executable (TMX) are stored on the target system, as
already described here [} 49].

For all module instances from a TMX, a switchover between the versions can be initiated by the engineering.

The procedure is roughly sketched:

ü Online Change capable module in TMX
1. TwinCAT instantiates the new module. The old module is still called cyclically by the task.
2. TwinCAT calls ITcOnlineChange::PrepareOnlineChange() of the new module.

This call can access the old module and accept data that does not change due to the cyclic calls of the
module - for example parameter values.

3. TwinCAT calls ITcOnlineChange::PerformOnlineChange() of the new module.
This call can access the old module and take over data which have changed cyclically before. This call is
executed if no cyclic call is made by a task. The old module is not called again by the task, but the new
module is called. The PerformOnlineChange() method should use as little computing time as possible so
that this switchover can take place from one task cycle to the other.

4. After completion, the task will call the new module cyclically.

The Online Change can be carried out through this dialog in engineering.

Programming Reference

TE1000166 Version: 1.13

When dealing with the Online Change, there are therefore some aspects to consider:

• The project must provide a revision control.
• The DataAreas for these modules are kept outside the TcCOM module and made available to the

modules. This means that they do not need to consider the data or the mapping of the symbols in the
DataAreas.

• The DataAreas of the module must not change.
• References to internal data structures must not be passed on. Access must always take place via

interfaces that are retrieved via the TcQueryInterface, since these references are updated during an
Online Change.

After a restart, TwinCAT will start the driver in the initial version of the modules.

12.4 Limitations
TwinCAT 3 C++ modules [} 35] are executed in Windows kernel mode. Developers must therefore be aware
of some limitations:

• Win32 API [} 166] is not available in kernel mode
• Windows kernel mode API must not be used directly.

TwinCAT SDK provides functions, which are supported.

• User mode libraries (DLL) cannot be used. (see Third Party Libraries [} 249])
• The memory capacity for dynamic allocation in a real-time context is limited by the router memory (this

can be configured during engineering), see Memory Allocation [} 167].
• A subset of the C++ runtime library functions (CRT) is supported
• C++ exceptions are not supported.

• Runtime Type Information (RTTI [} 167]) is not supported.

• Subset of STL is supported (see STL / Containers [} 228])

• Support for functions from math.h through TwinCAT implementation (see Mathematical Functions
[} 225])

TwinCAT functions as replacement for Win32 API functions

The original Win32 API is not available in Windows kernel mode. For this reason a list of the common
functions of the Win32 API and their equivalents for TwinCAT is provided here:

Programming Reference

TE1000 167Version: 1.13

Win32API TwinCAT functionality
WinSock TF6311 TCP/UDP real-time
Message boxes Tracing [} 229]
File I/O See Interface ITcFileAccess [} 176], Interface

ITcFileAccessAsync [} 184] and Sample19:
Synchronous File Access [} 310], Sample20: FileIO-
Write [} 311], Sample20a: FileIO-Cyclic Read / Write
[} 311]

Synchronization See Sample11a: Module communication: C module
calls a method of another C module [} 306]

Visual C CRT See RtlR0.h

RTTI dynamic_cast function in TwinCAT

TwinCAT has no support for dynamic_cast<>.

Instead, it may be possible to use the TCOM strategy. Define an ICustom interface, which is derived from
ITcUnknown and contains the methods, which are called from a derived class. The base class CMyBase is
derived from ITcUnknown and implements this interface. The class CMyDerived is derived from CMyBase
and from ICustom. It overwrites the TcQueryInterface method, which can then be used instead of dynamic
cast.

TcQueryInterface can also be used to display the IsType() function through evaluation of the return value.

See Interface ITcUnknown [} 205].

12.5 Memory Allocation
Generally we recommend reserving memory with the aid of member variables of the module class. This is
done automatically for data areas defined in the TMC editor.
It is also possible to allocate and release memory dynamically.

• Operator new / delete
• TcMemAllocate / TcMemFree

This memory allocation can be used in the transitions [} 44] or in the OP state of the state machine.

If the memory allocation is made in a non-real-time context, the memory is allocated in the non-paged pool of
the operating system (blue in the diagram). In the TwinCAT real-time context, the memory is allocated in the
router memory (red in the diagram).

The memory can also be released in the transitions or the OP state; we recommend to always release the
memory in the "symmetric" transition, e.g. allocation in PS, release in SP.

Programming Reference

TE1000168 Version: 1.13

Memory allocation between Windows and real-time context in conjunction with static variables

If global instances are used,

• a maximum of 32 global instances may exist in total,
• and memory allocated in the real-time context must be released in the OS transition, for example, so

that this does not happen via the destructor.

This code includes three examples of global instances:
class MyClassA
{
public:
 MyClassA() {}
 ~MyClassA() {}
private:
 int v;
}

MyClassA A;

class MyClassB
{
 static MyClassA Value;
};

MyClassA& GetInstance()
{
 static MyClassA a;
 return a;
}

12.6 Multi-task data access synchronization
When the same data is accessed by multiple tasks, the tasks may access the same data simultaneously,
depending on the task/real-time configuration. If the data is written by at least one of the tasks, the data may
have an inconsistent state during or after a change. To prevent this, all concurrent accesses must be
synchronized so that only one task at a time can access the shared data.

Programming Reference

TE1000 169Version: 1.13

If the same data is accessed by several tasks and the data is written for at least one of these accesses, all
read and write accesses must be synchronized. This applies irrespective of whether the tasks run on one or
more CPU cores.

 WARNING
Inconsistencies and other risks due to unsecured data access
If concurrent accesses are not synchronized, there is a risk of inconsistent or invalid data records. Depend-
ing on how the data is used in the further course of the program, this can result in incorrect program behav-
ior, undesired axis movement or even sudden program standstill. Depending on the controlled system,
damage to equipment and workpieces may occur, or people's health and lives may be endangered.

General synchronization options between the TcCOM modules are described here [} 46]. The following
mechanisms were described:

• Data exchange via the process image (IO mapping). During this process, the cycle transition, and thus
TwinCAT, ensures data synchronicity between the sources and targets.

• Method calls via interfaces in which CriticalSections can be used.
• ADS, which transfers data in the form of a transport medium and thus ensures synchronicity of the

data.
• Common data area to be protected by a CriticalSection.

Ideally, however, you should try to avoid the need for synchronization. Otherwise, the simplest way is usually
the exchange via the process image, which copies the data between the cycles from the output process
images to the input process images and thus ensures a consistent state.
If this is not sufficient and data has to be accessed from different contexts, one of the following options can
be used.

It is important to differentiate between the task contexts that are to access the data. In the TwinCAT
Runtime, a distinction is made between the Windows kernel mode thread contexts (Windows context for
short) and the TwinCAT real-time task contexts (RT context). During initialization of TwinCAT modules, the
IP, PS, SP and PI transitions are executed in the Windows context. The SO and OS transitions are executed
in the RT context.

The SDK offers appropriate synchronization options for such scenarios. Nevertheless, the TcCOM modules
should be designed such that that they are independent of each other, at least in the Windows context, and
thus do not require synchronization. The transitions in the RT context can use CriticalSections if required.

For the CriticalSection and semaphores it applies that in case of a lock the task waits for the release. In the
meantime the core is released for other tasks. With CriticalSections the active task inherits the priority of the
waiting task ("Priority Inheritance").

CriticalSections

Instances of CriticalSections are created through TwinCAT real-time. This instance can be initialized in the
Windows context as well as in the RT context. The CriticalSection instance can only be used in the RT
context.

TwinCAT real-time uses "priority inheritance" to prevent a task with lower priority from indirectly blocking a
task with high priority.

CCriticalSectionInstance

The CCriticalSectionInstance class provides the interface to handle Critical Sections and has the required
memory. To create a Critical Section the class requires the object ID of the TwinCAT real-time instance,
which is available via OID_TCRTIME_CTRL, as well as a reference to the TwinCAT object server via a
pointer to ITComObjectServer.

Methods:

• CCriticalSectionInstance(OTCID oid=0, ITComObjectServer* ipSrv=NULL);
The default constructor that initializes the object ID of the Critical Section Provider. If the pointer is
given to the object server, the Critical Section is also initialized.

• ~CCriticalSectionInstance();
The destructor deletes the Critical Section instance.

Programming Reference

TE1000170 Version: 1.13

• void SetOidCriticalSection(OTCID oid);
Sets the Critical Section Provider, which is given by TwinCAT real-time and whose object ID is
available via OID_TCRTIME_CTRL.

• bool HasOidCriticalSection();
Returns TRUE if the object ID is set to a value other than 0, otherwise FALSE. The object ID is not
checked to verify whether it belongs to a Critical Section Provider.

• bool IsInitializedCriticalSection();
Returns TRUE if the Critical Section was successfully initialized.

• HRESULT CreateCriticalSection(ITComObjectServer* ipSrv);
Once the Critical Section is initialized, it is deleted and a new Critical Section is initialized. Returns
S_OK if successful. Error cases are indicated by the return of error codes:

ADS_E_INVALIDPARM Invalid Critical Section Provider
ADS_E_NOINTERFACE The object ID is set to a reference that is not a Critical Section Provider,

i.e. ITcRTime is not implemented.
E_FAIL Internal error from the Critical Section Provider.

• HRESULT CreateCriticalSection(OTCID oid, ITComObjectServer* ipSrv);
Initializes the Critical Section. DeleteCriticalSection() must be called if this method is used again.
Return values as in CreateCriticalSection(ITComObjectServer* ipSrv);

• HRESULT DeleteCriticalSection(); Critical Section is deleted. Always returns S_OK.
• HRESULT EnterCriticalSection(); blocked until the Critical Section is released.
• HRESULT LeaveCriticalSection();

Leaves the Critical Section and thus releases it again.
Returns MAKE_RTOS_HRESULT(OS_CS_ERR) if the caller is not the owner.

EnterCriticalSection() and LeaveCriticalSection() must be called in the RT context, otherwise the following
return value is returned:

ADS_E_INVALIDCONTEXT Return value if Critical Section is entered outside the RT context. The
Critical Section is not entered.

If these methods are used without initializing the Critical Section, S_OK is returned without further action. All
other methods can be used in the RT context as well as in the Windows context.

CriticalSections allow nested calls and require an associated LeaveCriticalSection() call for each
EnterCriticalSection() call. The Critical Section is released when the last LeaveCritcalSection() is called.

Sample:

The sample [} 306] shows how to use a CriticalSection to prevent simultaneous access to a date via an
interface method call.

Critical Section Concurrent

The CCriticalSectionInstanceConcurrent class allows concurrent access. This can be used if several tasks
have read access to the data to be protected, but all other accesses must be prevented in the case of write
access.

Methods:

• CCriticalSectionInstanceConcurrent(UINT concurrent, OTCID oid=0, ITComObjectServer*
ipSrv=NULL); The parameter "concurrent" defines the number of tasks that can simultaneously enter
the Critical Section via CsEnterCriticalSectionConcurrent(). If "concurrent" is 1, the Critical Section
Concurrent variant works like a Critical Section.
The value 0 is not allowed. It would prevent the Critical Section from being initialized.

• ~CCriticalSectionInstanceConcurrent(); The destructor implicitly deletes the Critical Section
• void SetOidCriticalSection(OTCID oid); Sets the Critical Section Provider, which is given by TwinCAT

real-time and whose object ID is available via OID_TCRTIME_CTRL.
• bool HasOidCriticalSection(); Returns TRUE if the object ID is set to a value other than 0, otherwise

FALSE. The object ID is not checked to verify whether it belongs to a Critical Section Provider.

Programming Reference

TE1000 171Version: 1.13

• bool IsInitializedCriticalSection(); Returns TRUE if the Critical Section was successfully initialized.
• HRESULT CreateCriticalSection(ITComObjectServer* ipSrv); Once the Critical Section is initialized, it

is deleted and a new Critical Section is initialized. Returns S_OK if successful. Error cases are
indicated by the return of error codes:

ADS_E_INVALIDPARM Invalid Critical Section Provider
ADS_E_NOINTERFACE The object ID is set to a reference that is not a Critical Section Provider,

i.e. ITcRTime is not implemented.
E_FAIL Internal error from the Critical Section Provider.

• HRESULT CreateCriticalSection(OTCID oid, ITComObjectServer* ipSrv);
Initializes the Critical Section. DeleteCriticalSection() must be called if this method is used again.
Return values as in CreateCriticalSection(ITComObjectServer* ipSrv);

• HRESULT DeleteCriticalSection(); Critical Section is deleted. Always returns S_OK.
• HRESULT EnterCriticalSection(); Blocked until the Critical Section is released and can be accessed

exclusively.
• HRESULT LeaveCriticalSection(); Leaves the Critical Section and thus releases it again. Returns

MAKE_RTOS_HRESULT(OS_CS_ERR) if the caller is not the owner.
• HRESULT EnterCriticalSectionConcurrent(); Enters the Critical Section in parallel with other tasks. The

number of parallel accesses is defined by the parameter "concurrent" in the constructor. When this
maximum number is reached, the call is blocked until one of the parallel accesses has ended.

EnterCriticalSection(), EnterCriticalSectionConcurrent() and LeaveCriticalSection() must be called in the RT
context, otherwise the following return value is returned:

ADS_E_INVALIDCONTEXT Return value if Critical Section is entered outside the RT context. The
Critical Section is not entered.

If these methods are used without initializing the Critical Section, S_OK is returned without further action. All
other methods can be used in the RT context as well as in the Windows context.

Semaphores

Semaphores are used to synchronize access to limited resources. They can also be used to implement a
notification event. Semaphores are provided by the TwinCAT real-time through the CSemaphoreInstance
class.

CSemaphoreInstance

The CSemaphoreInstance class provides the interface for handling semaphores. To create a semaphore,
the instance requires the object ID of the TwinCAT real-time instance, which is available via
OID_TCRTIME_CTRL, as well as a reference to the TwinCAT object server via a pointer to
ITComObjectServer.

Methods:

• HRESULT SemCreate(WORD nCntInit, OTCID oid, ITComObjectServer* ipSrv); Creates the
semaphores with nCntInit as initial value of the available resources. Returns S_OK if successful and
E_FAIL if the semaphore cannot be generated.

• HRESULT SemDelete(); SemDelete() deletes the semaphore. Returns S_OK.
• HRESULT SemPost() SemPost() increases the number of available resources. If a task is waiting for

the semaphores, the task with the highest priority is released, i.e. it can continue its execution. Returns
S_OK if successful. Possible error codes:

MAKE_RTOS_HRESULT(51) Semaphore overflow. For example, if the internal memory is
insufficient.

• HRESULT SemPend(OSTICKS nTimeout); Reduces the number of available resources; if no
resources are available, the task is blocked at this point.
SemPend() waits for a semaphore until it is available. A timeout can be specified in OSTICKS and is

Programming Reference

TE1000172 Version: 1.13

therefore processor dependent. The ITcRTime interface in can be used to calculate it. In the sample
TcSemaphoreSample a method TimeoutMsToTicks was used for this purpose. Special values for
nTimeout:

RTIME_NOWAIT (-1) Method immediately returns S_OK if the semaphore is available.
Method returns a timeout if no resource is available.

RTIME_ENDLESSWAIT (0) Method waits indefinitely for availability of the semaphores

The method returns S_OK if the semaphore was successfully obtained; otherwise:

MAKE_RTOS_HRESULT(10) Indicates a timeout. If nTimeout is set as RTIME_NOWAIT, this
semaphore is not available.

Sample:

Sample24: Semaphores [} 316]

12.7 Interfaces
Several interfaces are available for the interaction of the modules developed by the user with the TwinCAT 3
system. These are described (at API level) in detail on these pages.

Name Description
ITcUnknown [} 205] ITcUnknown defines the reference count as well as the querying of a reference

to a more specific interface.
ITComObject [} 190] The ITComObject interface is implemented by every TwinCAT module.

ITcCyclic [} 173] The interface is implemented by TwinCAT modules that are called once per task
cycle.

ITcCyclicCaller [} 174] Interface for logging the ItcCyclic interface of a module onto and off from a
TwinCAT task.

ITcFileAccess [} 176] Interface for accessing the file system

ITcFileAccessAsync [} 184] Asynchronous access to file operations.

ITcPostCyclic [} 196] The interface is implemented by TwinCAT modules that are called once per task
cycle following the output update.

ITcPostCyclicCaller [} 197] Interface for logging the ITcPostCyclic interface of a module onto and off from a
TwinCAT task.

ITcIoCyclic [} 186] This interface is implemented by TwinCAT modules that are called during the
input update and output update within a task cycle.

ITcIoCyclicCaller [} 187] Interface for logging the ITcIoCyclic interface of a module onto and off from a
TwinCAT task.

ITcRTimeTask [} 199] Query of extended TwinCAT task information.

ITcTask [} 200] Query of the timestamp and task-specific information of a TwinCAT task.

ITcTaskNotification
[} 204]

Executes a callback if the cycle time was exceeded during the previous cycle.

TwinCAT SDK

TwinCAT SDK contains a number of functions, which can be found in C:\TwinCAT\3.x\sdk\Include.

• The TcCOM framework is provided here (in particular TcInterfaces.h and TcServices.h).
• Tasks and data area access is provided via TcIoInterfaces.h.

• SDK functions are the mathematical functions [} 225].

• Subset of STL [} 228].

• TwinCAT runtime RtlR0.h [} 207]

• Methods for ADS communication [} 208]

Programming Reference

TE1000 173Version: 1.13

• Classes / functions with names beginning with "Os" must not be used in a real-time context.

12.7.1 Return values
ITc interfaces methods generally return an HRESULT.

The following return values can be returned in the case of ITc interfaces.

Name HRESULT
S_OK 0x0000 0000
S_FALSE 0x0000 0001
E_NOTIMPL 0x8000 4001
E_NOINTERFACE 0x8000 4002
E_POINTER 0x8000 4003
E_ABORT 0x8000 4004
E_FAIL 0x8000 4005
E_UNEXPECTED 0x8000 FFFF
E_ACCESSDENIED 0x8007 0005
E_HANDLE 0x8007 0006
E_OUTOFMEMORY 0x8007 000E
E_INVALIDARG 0x8007 0057

In addition, there is a possibility for ADS Return Codes to be returned as HRESULT. These are also available
as macros in the SDK, where they are known, for example, as ADS_E_BUSY for the ADS Error Code
ADSERR_DEVICE_BUSY.

12.7.2 Interface ITcCyclic
Interface ITcCyclic Interface is implemented by TwinCAT modules which should be called once per task
cycle.

Syntax

TCOM_DECL_INTERFACE("03000010-0000-0000-e000-000000000064", ITcCyclic)
struct__declspec(novtable) ITcCyclic : public ITcUnknown

Required include: TcIoInterfaces.h

 Methods

Name Description
CycleUpdate [} 173] Is called once per task cycle if the interface is logged on to a cyclic caller.

Comments

The ITcCyclic interface is implemented by TwinCAT modules. This interface is passed to the
ITcCyclicCaller::AddModule() method when a module logs on to a task, usually as the last initialization step
in the transition from SafeOP to OP. After login, the CycleUpdate() method of the module instance is called.

12.7.2.1 Method ITcCyclic:CyclicUpdate

The CyclicUpdate method is normally called by a TwinCAT Task after the interface has been logged in.

https://infosys.beckhoff.de/content/1031/tc3_adscommon/html/ads_returncodes.htm?id=3761410833454870580

Programming Reference

TE1000174 Version: 1.13

Syntax

HRESULT TCOMAPI CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)

Parameters

ipTask: (type: ITcTask) refers to the current task context.

ipCaller: (type: ITcUnknown) refers to the calling instance.

Context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcCyclicCaller::AddModule()

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

At present, the return value is ignored by the TwinCAT tasks.

Description

Within a task cycle the method CycleUpdate() is called after InputUpdate() has been for all registered
module instances. Therefore, this method should be used to implement cyclic processing.

12.7.3 Interface ITcCyclicCaller
Interface for logging the ItcCyclic interface of a module onto and off from a TwinCAT task.

Syntax

TCOM_DECL_INTERFACE("0300001E-0000-0000-e000-000000000064", ITcCyclicCaller)
struct__declspec(novtable) ITcCyclicCaller : public ITcUnknown

Required include: TcIoInterfaces.h

 Methods

Name Description
AddModule [} 174] Login module that implements the ITcCyclic interface.

RemoveModule [} 175] Log off the previously logged in ITcCyclic interface of a
module.

Comments

The ITcCyclicCaller interface is implemented by TwinCAT tasks. A module uses this interface to login its
ITcCyclic interface to a task, usually as the last initialization step in the SafeOP to OP transition. After login,
the CycleUpdate() method of the module instance is called. The interface is also used to log off the module
so that it is no longer called by the task.

12.7.3.1 Method ITcCyclicCaller:AddModule

Reports the ITcCyclic interface of a module to a cyclic caller, e.g. a TwinCAT task.

Programming Reference

TE1000 175Version: 1.13

Syntax
virtual HRESULT TCOMAPI
AddModule(STcCyclicEntry* pEntry, ITcCyclic* ipMod, ULONG_PTR
context=0, ULONG sortOrder=0)=0;

Parameter

pEntry: (type: STcCyclicEntry) [in] pointer to a list item that is inserted into the internal list of the cyclic caller;
see also description [} 175].

ipMod: (type: ITcCyclic) [in] interface pointer used by the cyclic caller.

context: (type: ULONG_PTR) [optional] a context value that is transferred to the ITcCyclic::CyclicUpdate()
method with each call.

sortOrder: (type: ULONG) [optional] the sorting order can be used for controlling the order of execution if
various module instances are executed by the same cyclic caller.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

The error ADSERR_DEVICE_INVALIDSTATE is returned if the cyclic caller, i.e. the TwinCAT task is not in
the OP state.

Description

A TwinCAT module class normally uses a Smart Pointer to refer to the cyclic caller type ITcCyclicCallerPtr.
The object ID of the task is stored in this Smart Pointer and a reference to the task can be obtained via the
TwinCAT object server. In addition, the Smart Pointer class already contains a list item. Therefore the Smart
Pointer can be used as the first parameter for the AddModule method.

The following sample code shows the login of the ITcCyclicCaller interface.
RESULT hr =
S_OK;

if (m_spCyclicCaller.HasOID()) {

if (SUCCEEDED_DBG(hr =
m_spSrv->TcQuerySmartObjectInterface(m_spCyclicCaller)))
{

 if (FAILED(hr =
m_spCyclicCaller->AddModule(m_spCyclicCaller,
THIS_CAST(ITcCyclic)))) {

 m_spCyclicCaller = NULL;

 }

}

}

12.7.3.2 Method ITcCyclicCaller:RemoveModule

Unregister a module instance from being called by a cyclic caller.

Syntax
virtual HRESULT TCOMAPI
RemoveModule(STcCyclicEntry* pEntry)=0;

Programming Reference

TE1000176 Version: 1.13

Parameters

pEntry: (type: STcCyclicEntry) refers to the list entry which should be removed from the internal list of the
cyclic caller.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

The method returns E_FAIL if the entry is not in the internal list.

Description

Similar to the method AddModule() the smart pointer for the cyclic caller is used as list entry when the
module instance should be removed from cyclic caller.

Declaration and usage of smart pointer:

ITcCyclicCallerInfoPtr m_spCyclicCaller;
if (
m_spCyclicCaller) {
m_spCyclicCaller->RemoveModule(m_spCyclicCaller);
}
m_spCyclicCaller = NULL;

12.7.4 Interface ITcFileAccess
Interface to access file system from TwinCAT C++ modules

Syntax

TCOM_DECL_INTERFACE("742A7429-DA6D-4C1D-80D8-398D8C1F1747", ITcFileAccess) __declspec(novtable)
ITcFileAccess: public ITcUnknown

Required include: TcFileAccessInterfaces.h

 Methods

Name Description
FileOpen [} 177] Opens a file.

FileClose [} 178] Closes a file.

FileRead [} 178] Reads from a file.

FileWrite [} 179] Writes to a file.

FileSeek [} 179] Sets position in a file.

FileTell [} 180] Queries position in a file.

FileRename [} 180] Renames a file.

FileDelete [} 180] Deletes a file.

FileGetStatus [} 181] Gets the status of a file.

FileFindFirst [} 182] Searches for a file, first iteration.

FileFindNext [} 182] Searches for a file, next iteration.

FileFindClose [} 183] Closes a file search.

MkDir [} 183] Creates a directory.

RmDir [} 184] Deletes a directory.

Programming Reference

TE1000 177Version: 1.13

Remarks

The ITcFileAccess interface used to access files from file systems.
Since the provided methods are blocking this should not be used in CycleUpdate() / realtime context. The
derived interface ITcFileAccessAsync [} 184] adds a Check() Method, which could be used instead.

Please have a look at Sample20a: FileIO-Cyclic Read / Write [} 311].

The interface is implemented by module class CID_TcFileAccess.

12.7.4.1 Method ITcFileAccess:FileOpen

Opens a file.

Syntax
virtual HRESULT TCOMAPI FileOpen(PCCH szFileName, TcFileAccessMode AccessMode, PTcFileHandle
phFile);

Parameter

szFileName: (type: PCCH) [in] the name of the file to be opened.

AccessMode: (type: TcFileAccessMode) [in] method of accessing the file; see TcFileAccessServices.h.

phFile: (type: TcFileHandle) [out] returned file handle.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

The method returns a handle to access the file, which name is defined in szFileName.

AccessModes could be used as following:
typedef enum TcFileAccessMode
{
amRead = 0x00000001,
amWrite = 0x00000002,
amAppend = 0x00000004,
amPlus = 0x00000008,
amBinary = 0x00000010,
amReadBinary = 0x00000011,
amWriteBinary = 0x00000012,
amText = 0x00000020,
amReadText = 0x00000021,
amWriteText = 0x00000022,
amEnsureDirectory = 0x00000040,
amReadBinaryED = 0x00000051,
amWriteBinaryED = 0x00000052,
amReadTextED = 0x00000061,
amWriteTextED = 0x00000062,
amEncryption = 0x00000080,
amReadBinEnc = 0x00000091,
amWriteBinEnc = 0x00000092,
amReadBinEncED = 0x000000d1,
amWriteBinEncED = 0x000000d2,
} TcFileAccessMode, *PTcFileAccessMode;

Also see about this
2 ADS Return Codes [} 343]

Programming Reference

TE1000178 Version: 1.13

12.7.4.2 Method ITcFileAccess:FileClose

Closes a file.

Syntax
virtual HRESULT TCOMAPI FileClose(PTcFileHandle phFile);

Parameter

phFile: (type: TcFileHandle) [out] returned file handle.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

The method closes a file defined by the phFile.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.3 Method ITcFileAccess:FileRead

Read data from a file.

Syntax
virtual HRESULT TCOMAPI
FileRead(TcFileHandle hFile, PVOID pData, UINT cbData, PUINT pcbRead);

Parameter

hFile: (type: TcFileHandle) [in] refers to the previously opened file.

pData: (type: PVOID) [out] storage location of the data to be read.

cbData: (type: PVOID) [in] maximum size of the data to be read (size of the memory behind pData).

pcbRead: (type: PUINT) [out] size of the data that was read.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method retrieves data from a file defined by the file handle. Data will be stored in pData while pcbRead
provides length of given data.

Also see about this
2 ADS Return Codes [} 343]

Programming Reference

TE1000 179Version: 1.13

12.7.4.4 Method ITcFileAccess:FileWrite

Write data to a file.

Syntax
virtual HRESULT TCOMAPI
FileWrite(TcFileHandle hFile, PCVOID pData, UINT cbData, PUINT pcbWrite);

Parameter

hFile: (type: TcFileHandle) [in] refers to the previously opened file.

pData: (type: PVOID) [in] storage location of the data to be written.

cbData: (type: PVOID) [in] size of the data to be written (size of the memory behind pData).

pcbRead: (type: PUINT) [out] size of the written data.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method writes data to a file defined by the file handle. Data will be read from pData while pcbRead
provides length of data.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.5 Method ITcFileAccess:FileSeek

Sets position in file.

Syntax
virtual HRESULT TCOMAPI FileSeek(TcFileHandle hFile, UINT uiPos);

Parameter

hFile: (type: TcFileHandle) [in] refers to the previously opened file.

uiPos: (type: UINT) [in] position at which setting is to take place.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method sets the position within the file for further actions

Also see about this
2 ADS Return Codes [} 343]

Programming Reference

TE1000180 Version: 1.13

12.7.4.6 Method ITcFileAccess:FileTell

Retrieves position in file.

Syntax
virtual HRESULT TCOMAPI FileTell(TcFileHandle hFile, PUINT puiPos);

Parameter

hFile: (type: TcFileHandle) [in] refers to the previously opened file.

puiPos: (type: PUINT) [out] storage location of the position to be returned.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method retrieves the position within the file, which is currently set.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.7 Method ITcFileAccess:FileRename

Renames a file.

Syntax
virtual HRESULT TCOMAPI FileRename(PCCH szOldName, PCCH szNewName);

Parameter

szOldName: (type: PCCH) [in] the file name to be changed.

szNewName: (type: PCCH) [in] the new file name.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method renames a file from an old name to a new name.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.8 Method ITcFileAccess:FileDelete

Deletes a file.

Programming Reference

TE1000 181Version: 1.13

Syntax
virtual HRESULT TCOMAPI FileDelete(PCCH szFileName);

Parameter

szFileName: (type: PCCH) [in] name of the file to be deleted.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method deletes a file from the file system.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.9 Method ITcFileAccess:FileGetStatus

Retrieves status of a file.

Syntax
virtual HRESULT TCOMAPI FileGetStatus(PCCH szFileName, PTcFileStatus pFileStatus));

Parameter

szFileName: (type: PCCH) [in] the name of the file in question.

pFileStatus: (type: PTcFileStatus) [out] the state of the file, cf. TcFileAccessServices.h .

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method retrieves Status information of a given file name.

This includes the following information:
typedef struct TcFileStatus
{
union
{
ULONGLONG ulFileSize;
struct
{
ULONG ulFileSizeLow;
ULONG ulFileSizeHigh;
};
};
ULONGLONG ulCreateTime;
ULONGLONG ulModifiedTime;
ULONGLONG ulReadTime;
DWORD dwAttribute;
DWORD wReserved0;
} TcFileStatus, *PTcFileStatus;

Programming Reference

TE1000182 Version: 1.13

Also see about this
2 ADS Return Codes [} 343]

12.7.4.10 Method ITcFileAccess:FileFindFirst

Capability to step through files of a directory.

Syntax
virtual HRESULT TCOMAPI FileFindFirst (PCCH szFileName, PTcFileFindData pFileFindData ,
PTcFileFindHandle phFileFind);

Parameter

szFileName: (type: PCCH) [in] directory or path and name of the file sought. The file name can contain
placeholders such as asterisk (*) or question mark (?).

pFileFindData: (type: PTcFileFindData) [out] the description of the first file, cf. TcFileAccessServices.h

phFileFind: (type: PTcFileFindHandle) [out] handle for searching further with FileFindNext.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method starts with finding files in a defined directory. The Method provides access to PTcFileFindData
of the first found file, which contains the following information:
typedef struct TcFileFindData
{
TcFileHandle hFile;
DWORD dwFileAttributes;
ULONGLONG ui64CreationTime;
ULONGLONG ui64LastAccessTime;
ULONGLONG ui64LastWriteTime;
DWORD dwFileSizeHigh;
DWORD dwFileSizeLow;
DWORD dwReserved1;
DWORD dwReserved2;
CHAR cFileName[260];
CHAR cAlternateFileName[14];
WORD wReserved0;
} TcFileFindData, *PTcFileFindData;

Also see about this
2 ADS Return Codes [} 343]

12.7.4.11 Method ITcFileAccess:FileFindNext

Step further on through files of a directory.

Syntax
virtual HRESULT TCOMAPI FileFindNext (TcFileFindHandle hFileFind, PTcFileFindData pFileFindData);

Parameters

hFileFind: (type: PTcFileFindHandle) [in] handle to search further on with FileFindNext.

Programming Reference

TE1000 183Version: 1.13

pFileFindData: (type: PTcFileFindData) [out] the description of the next file. Compare
TcFileAccessServices.h.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method finds next file in a directory. The Method provides access to PTcFileFindData of the found file,
which contains the following information:
typedef struct TcFileFindData
{
TcFileHandle hFile;
DWORD dwFileAttributes;
ULONGLONG ui64CreationTime;
ULONGLONG ui64LastAccessTime;
ULONGLONG ui64LastWriteTime;
DWORD dwFileSizeHigh;
DWORD dwFileSizeLow;
DWORD dwReserved1;
DWORD dwReserved2;
CHAR cFileName[260];
CHAR cAlternateFileName[14];
WORD wReserved0;
} TcFileFindData, *PTcFileFindData;

Also see about this
2 ADS Return Codes [} 343]

12.7.4.12 Method ITcFileAccess:FileFindClose

Close finding files of a directory.

Syntax
virtual HRESULT TCOMAPI FileFindClose (TcFileFindHandle hFileFind);

Parameter

hFileFind: (type: PTcFileFindHandle) [in] handle to exit the search.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method closes finding of files in a directory.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.13 Method ITcFileAccess:MkDir

Create a directory on the filesystem.

Programming Reference

TE1000184 Version: 1.13

Syntax
virtual HRESULT TCOMAPI MkDir(PCCH szDir);

Parameter

szDir: (type: PCCH) [in] directory to be created.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method creates a directory as defined by the szDir parameter.

Also see about this
2 ADS Return Codes [} 343]

12.7.4.14 Method ITcFileAccess:RmDir

Delete a directory from the filesystem.

Syntax
virtual HRESULT TCOMAPI RmDir(PCCH szDir);

Parameter

szDir: (type: PCCH) [in] directory to be deleted.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

A particularly interesting error code is ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.

Description

This method deletes a directory as defined by the szDir parameter.

Also see about this
2 ADS Return Codes [} 343]

12.7.5 Interface ITcFileAccessAsync
Asynchronous access to file operations. This interface extends ITcFileAccess [} 176].

Syntax
TCOM_DECL_INTERFACE("C04AC244-C126-466E-982E-93EC571F2277", ITcFileAccessAsync) struct
__declspec(novtable) ITcFileAccessAsync: public ITcFileAccess

Required include: TcFileAccessInterfaces.h

Programming Reference

TE1000 185Version: 1.13

 Methods

Name Description
C [} 185]heck Query the state of the file operation.

 Interface parameters

Name Description
PID_TcFileAccessAsyncSegmentSize Size of the segments transferred to system service.
PID_TcFileAccessAsyncTimeoutMs Sets the timeout in [ms].
PID_TcFileAccessAsyncNetId(Str) NetId of the system service to be contacted.

Comments

Interface can be obtained from module instance with class ID CID_TcFileAccessAsync.
When using the asynchronous interface, the interface methods inherited from the synchronous variant return
ADS_E_PENDING if a query has been successfully submitted but not yet completed. If the call is received
while the previous request was still being processed, the error code ADS_E_BUSY is returned.

Description of the module parameters:

• PID_TcFileAccessAsyncAdsProvider: Object ID of a task that provides the ADS interface.
• PID_TcFileAccessAsyncNetId / PID_TcFileAccessAsyncNetIdStr: AmsNetId of the system service

used for file access. The "Str" variant takes the AmsNetId as string. Please use one.
• PID_TcFileAccessAsyncTimeoutMs: Timeout for file access.
• PID_TcFileAccessAsyncSegmentSize: The read and write access to file is fragmented with this

segment size.

See Sample20a: FileIO-Cyclic Read / Write [} 311].

12.7.5.1 Method ITcFileAccessAsync::Check()

Query the state of the file operation.

Syntax
virtual HRESULT TCOMAPI Check();

Parameters

none

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Particularly interesting error codes are

• ADSERR_DEVICE_TIMEOUT if the timeout (5 seconds) has elapsed.
• ADSERR_DEVICE_PENDING if the file operation is not completed.

Description

This operation checks the state of the previously called file operation.

Also see about this
2 ADS Return Codes [} 343]

Programming Reference

TE1000186 Version: 1.13

12.7.6 Interface ITcIoCyclic
Interface is implemented by TwinCAT modules which should be called on input update and on output update
within a task cycle.

Syntax

TCOM_DECL_INTERFACE("03000011-0000-0000-e000-000000000064", ITcIoCyclic)
struct __declspec(novtable) ITcIoCyclic : public ITcUnknown

Required include: TcIoInterfaces.h

 Methods

Name Description
InputUpdate [} 186] Is called at the beginning of a task cycle if the interface is

logged on to a cyclic I/O caller.
OutputUpdate [} 187] Is called at the end of a task cycle if the interface is logged on

to a cyclic I/O caller.

Comments

ITcIoCyclic can be used to implement a TwinCAT module that acts as a fieldbus driver or I/O filter module.

This interface is passed to the ITcIoCyclicCaller::AddIoDriver method when a module logs on to a task,
usually as the last initialization step at the transition from SafeOP to OP. After login, the methods
InputUpdate() and OutputUpdate() of the module instance are called once per task cycle.

12.7.6.1 Method ITcIoCyclic:InputUpdate

The InputUpdate method is normally called by a TwinCAT task after the interface has been logged in.

Syntax

virtual HRESULT TCOMAPI InputUpdate(ITcTask* ipTask,
ITcUnknown* ipCaller, DWORD dwStateIn, ULONG_PTR context = 0)=0;

Parameter

ipTask: (type: ITcTask*) refers to the current task context.

ipCaller: (type: ITcUnknown) refers to the calling instance.

dwStateIn: (type: DWORD) future extensions reserved; at present this value is always 0.
context: (type: ULONG_PTR) context contains the value that was transferred to the method
ITcCyclicCaller::AddIoDriver().

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

In a task cycle the method InputUpdate() is first called for all registered module instances. Therefore this
method must be used for updating the data areas of the type Input-Source of the module.

Programming Reference

TE1000 187Version: 1.13

12.7.6.2 Method ITcIoCyclic:OutputUpdate

The OutputUpdate method is normally called by a TwinCAT task after the interface has been logged in.

Syntax

virtual HRESULT TCOMAPI OutputUpdate(ITcTask* ipTask, ITcUnknown* ipCaller,
PDWORD pdwStateOut = NULL, ULONG_PTR context = 0)=0;

Parameters

ipTask: (type: ITcTask) refers to the current task context.

ipCaller: (type: ITcUnknown) refers to the calling instance.

pdwStateOut: (type: DWORD) [out] reserved for future extensions, currently returned value is ignored.
context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcCyclicCaller::AddIoDriver()

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

In a task cycle the method OutputUpdate() is called for all registered module instances. Therefore this
method must be used for updating the data areas of the type Output-Destination of the module.

12.7.7 Interface ITcIoCyclicCaller
Interface for logging the ITcIoCyclic interface of a module onto and off from a TwinCAT task.

Syntax

TCOM_DECL_INTERFACE("0300001F-0000-0000-e000-000000000064", ITcIoCyclicCaller)
struct__declspec(novtable) ITcIoCyclicCaller : public ITcUnknown

Required include: TcIoInterfaces.h

 Methods

Name Description
AddIoDriver [} 187] Login module that implements the ITcIoCyclic interface.

RemoveIoDriver [} 188] Log off the previously logged in ITcIoCyclic interface of a
module.

Comments

The ITcIoCyclicCaller interface is implemented by TwinCAT tasks. A module uses this interface to login its
ITcIoCyclic interface to a task, usually as the last initialization step in the SafeOP to OP transition. After
login, the CycleUpdate() method of the module instance is called. The interface is also used to log off the
module so that it is no longer called by the task.

12.7.7.1 Method ITcIoCyclicCaller:AddIoDriver

Reports the ITcIoCyclic interface of a module to a cyclic I/O caller, e.g. a TwinCAT task.

Programming Reference

TE1000188 Version: 1.13

Syntax

virtual HRESULT TCOMAPI AddIoDriver(STcIoCyclicEntry*
pEntry, ITcIoCyclic* ipDrv, ULONG_PTR context=0, ULONG sortOrder=0)=0;

Parameter

pEntry: (type: STcIoCyclicEntry) pointer to a list item that is inserted into the internal list of the cyclic I/O
caller; see also description [} 175].

ipDrv: (type: ITcloCyclic) [in] interface pointer used by the cyclic I/O caller.

context: (type: ULONG_PTR) [optional] a context value that is transferred to the ITcIoCyclic::InputUpdate()
and ITcIoCyclic::OutputUpdate methods with each call.

sortOrder: (type: ULONG) [optional] the sorting order can be used for controlling the order of execution if
various module instances are executed by the same cyclic caller.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

A TwinCAT module class normally uses a Smart Pointer to refer to the cyclic I/O caller of type
ITcIoCyclicCallerPtr. The object ID of the cyclic I/O caller is stored in this Smart Pointer and a reference can
be obtained via the TwinCAT object server. In addition, the Smart Pointer class already contains a list item.
Therefore the Smart Pointer can be used as the first parameter for the AddIoDriver method.

The following code sample illustrates the login of the ITcIoCyclicCaller interface.
HRESULT hr = S_OK;
if (m_spIoCyclicCaller.HasOID())
{
if (SUCCEEDED_DBG(hr = m_spSrv->TcQuerySmartObjectInterface(m_spIoCyclicCaller))
)
{
if (FAILED(hr = m_spIoCyclicCaller->AddIoDriver(m_spIoCyclicCaller,
THIS_CAST(ITcIoCyclic))))
{
m_spIoCyclicCaller = NULL;
 }
}
}

12.7.7.2 Method ITcIoCyclicCaller:RemoveIoDriver

Unregister a module instance from being called by a cyclic I/O caller.

Syntax

virtual HRESULT TCOMAPI
RemoveIoDriver(STcIoCyclicEntry* pEntry)=0;

Parameters

pEntry: (type: STcIoCyclicEntry) refers to the list entry which should be removed from the internal list of the
cyclic I/O caller.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Programming Reference

TE1000 189Version: 1.13

The method returns E_FAIL if the entry is not in the internal list.

Description

Comparable with the AddIoDriver() method, the smart pointer is used for the cyclic I/O caller as a list item if
the module instance is to be removed from the cyclic I/O caller.

Declaration and use of the smart pointer:
ITcIoCyclicCallerInfoPtr
m_spIoCyclicCaller;

if (m_spIoCyclicCaller)
{
m_spIoCyclicCaller->RemoveIoDriver(m_spIoCyclicCaller);
}
m_spCyclicCaller = NULL;

12.7.8 ITComOnlineChange interface
The ITComOnlineChange interface is used to perform Online Changes of modules.

Syntax
TCOM_DECL_INTERFACE ("D28A8CD2-5477-4B75-AF0F-998841AF9E44", ITComOnlineChange)

 Methods

Name Description
PrepareOnlineChange [} 189] This method is called to prepare the Online Change.

PerformOnlineChange [} 190] This method is called to perform the Online Change.

Comments

The implementation of this interface is necessary for a module to be capable of Online Change. Furthermore
such a module must be created in a versioned C++ project.

• Here [} 164] is a general description of the procedure.

• This procedure can be followed for existing modules: Online Change [} 164].

Also see about this
2 TwinCAT Module Class Wizard [} 102]
2 TwinCAT C++ Project Wizard [} 99]

12.7.8.1 Method ITComOnlineChange:PrepareOnlineChange

This method is called to prepare the Online Change.

The method is called by TwinCAT to execute the OnlineChange. It runs asynchronously in the background,
which must be taken into account when accessing the existing object.
The preparation should include all operations that can already be performed.

Syntax
virtual HRESULT TCOMAPI PrepareOnlineChange(ITComObject* ipOldObj, TmcInstData* pOldInfo) = 0;

Parameter

ipOldObj: (Type: ITComObject*) Reference to the existing object to be exchanged.

pOldInfo: (type: TmcInstData*) reference to information of the existing object.

Programming Reference

TE1000190 Version: 1.13

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

Via ipOldObj, the data of the existing object is made available for transfer so that it can be applied.

For example:
ULONG nData = sizeof(m_Parameter);
PVOID pData = &m_Parameter;
ipOldObj->TcGetObjPara(PID_Module1Parameter, nData, pData);

12.7.8.2 Method ITComOnlineChange:PerformOnlineChange

This method is called to perform the Online Change.

The method is called by TwinCAT to execute the OnlineChange. It is called blocking. It should therefore only
take a short time.

Syntax
virtual HRESULT TCOMAPI PerformOnlineChange(ITComObject* ipOldObj, TmcInstData* pOldInfo) = 0;

Parameter

ipOldObj: (Type: ITComObject*) Reference to the existing object to be exchanged.

pOldInfo: (type: TmcInstData*) reference to information of the existing object.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

Via ipOldObj, the data of the existing object is made available for transfer so that it can be applied.

For example:
ULONG nData = sizeof(m_Parameter);
PVOID pData = &m_Parameter;
ipOldObj->TcGetObjPara(PID_Module1Parameter, nData, pData);

12.7.9 Interface ITComObject
The ITComObject interface is implemented by every TwinCAT module. It makes basic functionalities
available.

Syntax
TCOM_DECL_INTERFACE("00000012-0000-0000-e000-000000000064", ITComObject)
struct__declspec(novtable) ITComObject: public ITcUnknown

Programming Reference

TE1000 191Version: 1.13

 Methods

Name Description
TcGetObjectId(OTCID& objId)
[} 191]

Saves the object ID using the given OTCID reference.

TcSetObjectId [} 191] Sets the object ID of the object to the given OTCID.

TcGetObjectName [} 192] Saves the object names in the buffer with the given length.

TcSetObjectName [} 192] Sets the object name of the object to given CHAR*.

TcSetObjState [} 193] Initializes a transition to a predefined state.

TcGetObjState [} 193] Queries the current state of the object.

TcGetObjPara [} 193] Queries an object parameter identified with its PTCID.

TcSetObjPara [} 194] Sets an object parameter identified with its PTCID.

TcGetParentObjId [} 194] Saves the parent object ID with the help of the given OTCID reference.

TcSetParentObject [} 195] Sets the parent object ID to the given OTCID.

Comments

The ITComObject interface is implemented by every TwinCAT module. It makes functionalities available
regarding the state machine and Information from/to the TwinCAT system.

12.7.9.1 Method ITcComObject:TcGetObjectId(OTCID& objId)

The method saves the object ID with the help of the given OTCID reference.

Syntax

HRESULT TcGetObjectId(OTCID& objId)

Parameter

objId: (type: OTCID&) reference to OTCID value.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method stores Object ID using given OTCID reference.

12.7.9.2 Method ITcComObject:TcSetObjectId

The method TcSetObjectId sets object’s object ID to the given OTCID.

Syntax

HRESULT TcSetObjectId(OTCID objId)

Parameters

objId: (type: OTCID) The OTCID, which should be set.

Programming Reference

TE1000192 Version: 1.13

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

At present, the return value is ignored by the TwinCAT tasks.

Description

Indicates the success of the ID change.

12.7.9.3 Method ITcComObject:TcGetObjectName

The method TcGetObjectName stores the Object name into buffer with given length.

Syntax

HRESULT TcGetObjectName(CHAR* objName, ULONG nameLen);

Parameters

objName: (type: CHAR*) the name, which should be set.

nameLen: (type: ULONG) the maximum length to write.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method TcGetObjectName stores the Object name into buffer with given length.

12.7.9.4 Method ITcComObject:TcSetObjectName

The method TcSetObjectName sets objects’s Object Name to the given CHAR*.

Syntax

HRESULT TcSetObjectName(CHAR* objName)

Parameter

objName: (type: CHAR*) the name of the object to be set.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method TcSetObjectName sets objects’s Object Name to the given CHAR*.

Programming Reference

TE1000 193Version: 1.13

12.7.9.5 Method ITcComObject:TcSetObjState

The method TcSetObjState initializes a transition to given state.

Syntax

HRESULT TcSetObjState(TCOM_STATE state, ITComObjectServer* ipSrv, PTComInitDataHdr pInitData);

Parameter

state: (type: TCOM_STATE) displays the new state.

ipSrv: (type: ITComObjectServer*) ObjServer that handles the object.

pInitData: (type: PTComInitDataHdr) points to a list of parameters (optional), see macro
IMPLEMENT_ITCOMOBJECT_EVALUATE_INITDATA as an example of how the list can be iterated.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method TcSetObjState initializes a transition to given state.

12.7.9.6 Method ITcComObject:TcGetObjState

The method TcGetObjState retrieves the current state of the object.

Syntax

HRESULT TcGetObjState(TCOM_STATE* pState)

Parameter

pState: (type: TCOM_STATE*) pointer to the state.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The TcGetObjState method queries the current state of the object.

12.7.9.7 Method ITcComObject:TcGetObjPara

The method TcGetObjPara retrieves a object parameter identified by its PTCID.

Syntax

HRESULT TcGetObjPara(PTCID pid, ULONG& nData, PVOID& pData, PTCGP pgp=0)

Programming Reference

TE1000194 Version: 1.13

Parameter

pid: (type: PTCID) parameter ID of the object parameter.

nData: (type: ULONG&) max. length of the data.

pData: (type: PVOID&) pointer to the data.

pgp: (type: PTCGP) reserved for future extension, NULL forwarded.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method TcGetObjPara retrieves a object parameter identified by its PTCID.

12.7.9.8 Method ITcComObject:TcSetObjPara

The method TcSetObjPara sets a object parameter identified by its PTCID.

Syntax

HRESULT TcSetObjPara(PTCID pid, ULONG nData, PVOID pData, PTCGP pgp=0)

Parameter

pid: (type: PTCID) parameter ID of the object parameter.

nData: (type: ULONG) max. length of the data.

pData: (type: PVOID) pointer to the data.

pgp: (type: PTCGP) reserved for future extension, NULL forwarded.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method TcSetObjPara sets a object parameter identified by its PTCID.

12.7.9.9 Method ITcComObject:TcGetParentObjId

The method TcGetParentObjId stores Parent Object ID using given OTCID reference.

Syntax

HRESULT TcGetParentObjId(OTCID& objId)

Parameter

objId: (type: OTCID&) reference to OTCID value.

Programming Reference

TE1000 195Version: 1.13

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

The method TcGetParentObjId stores Parent Object ID using given OTCID reference.

12.7.9.10 Method ITcComObject:TcSetParentObjId

The method TcSetParentObjId sets Parent Object ID using given OTCID reference.

Syntax

HRESULT TcSetParentObjId(OTCID objId)

Parameter

objId: (type: OTCID) reference to OTCID value.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

At present, the return value is ignored by the TwinCAT tasks.

Description

The method TcSetParentObjId sets Parent Object ID using given OTCID reference.

12.7.10 ITComObject interface (C++ convenience)
The ITComObject interface is implemented by every TwinCAT module. It makes basic functionalities
available.

TwinCAT C++ provides additional functions, which are not directly defined through the interface.

Syntax

Required include: TcInterfaces.h

 Methods

Name Description
OTCID TcGetObjectId [} 196] Queries the object ID.

TcTryToReleaseOpState [} 196] Releases resources; must be implemented.

Comments

Further methods exist, which are not itemized here.

This functionality is provided as standard by the module wizards.

Programming Reference

TE1000196 Version: 1.13

12.7.10.1 TcGetObjectId method

The method queries the object ID.

Syntax
OTCID TcGetObjectId(void)

Parameters

Return Value

OTCID: Returns the OTCID of the object.

Description

The method TcGetObjectId retrieves the Object ID of the object.

12.7.10.2 TcTryToReleaseOpState method

The method TcTryToReleaseOpState releases resources, e.g. data pointers, in order to prepare for exiting
the OP state.

Syntax

BOOL TcTryToReleaseOpState(void)

Parameters

Return value

TRUE or FALSE is returned.

Description

The method TcTryToReleaseOpState releases resources, e.g. data pointers, in order to prepare for exiting
the OP state. Must be implemented in order to cancel possible mutual dependencies of module instances.
See Sample 10 [} 277].

12.7.11 Interface ITcPostCyclic
Interface is implemented by TwinCAT modules which should be called once per task cycle after the output
update (comparable to Attribute TcCallAfterOutputUpdate of the PLC).

Syntax

TCOM_DECL_INTERFACE("03000025-0000-0000-e000-000000000064", ITcPostCyclic)
struct__declspec(novtable) ITcPostCyclic : public ITcUnknown

Required include: TcIoInterfaces.h

 Methods

Name Description
PostCycleUpdate [} 197] Is called once per task cycle after the output update if the interface has been

logged on to a cyclic caller.

Programming Reference

TE1000 197Version: 1.13

Comments

The ITcPostCyclic interface is implemented by TwinCAT modules. This interface is passed to the
ITcCyclicCaller::AddPostModule() method when a module logs itself on to a task, usually as the last
initialization step at the transition from SafeOP to OP. After login, the PostCycleUpdate() method of the
module instance is called.

12.7.11.1 Method ITcPostCyclic:PostCyclicUpdate

The PostCyclicUpdate method normally called by a TwinCAT Task after the output update, after the interface
has been logged in.

Syntax

HRESULT TCOMAPI PostCycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)

Parameters

ipTask: (type: ITcTask) refers to the current task context.

ipCaller: (type: ITcUnknown) refers to the calling instance.

Context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcPostCyclicCaller::AddPostModule()

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

At present, the return value is ignored by the TwinCAT tasks.

Description

Within a task cycle the method PostCycleUpdate() is called after OutputUpdate() has been for all registered
module instances. Therefore, this method should be used to implement such cyclic processing.

12.7.12 Interface ITcPostCyclicCaller
Interface for logging the ITcPostCyclic interface of a module onto and off from a TwinCAT task.

Syntax

TCOM_DECL_INTERFACE("03000026-0000-0000-e000-000000000064", ITcCyclicCaller)
struct__declspec(novtable) ITcPostCyclicCaller : public ITcUnknown Ca

Required include: TcIoInterfaces.h

 Methods

Name Description
AddPostModule [} 198] Login module that implements the ITcPostCyclic interface.

RemovePostModule [} 199] Log off the previously logged in ITcPostCyclic interface of a
module.

Programming Reference

TE1000198 Version: 1.13

Comments

The ITcPostCyclicCaller interface is implemented by TwinCAT tasks. A module uses this interface to login its
ITcPostCyclic interface to a task, usually as the last initialization step in the SafeOP to OP transition. After
login, the PostCycleUpdate() method of the module instance is called. The interface is also used to log off
the module so that it is no longer called by the task.

12.7.12.1 Method ITcPostCyclicCaller:AddPostModule

Reports the ITcPostCyclic interface of a module to a cyclic caller, e.g. a TwinCAT task.

Syntax
virtual HRESULT TCOMAPI
AddPostModule(STcPostCyclicEntry* pEntry, ITcPostCyclic* ipMod, ULONG_PTR
context=0, ULONG sortOrder=0)=0;

Parameter

pEntry: (type: STcPostCyclicEntry) [in] pointer to a list item that is inserted into the internal list of the cyclic
caller; see also description [} 198].

ipMod: (type: ITcPostCyclic) [in] interface pointer used by the cyclic caller.

context: (type: ULONG_PTR) [optional] a context value that is transferred to the
ITcPostCyclic::PostCyclicUpdate() method with each call.

sortOrder: (type: ULONG) [optional] the sorting order can be used for controlling the order of execution if
various module instances are executed by the same cyclic caller.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

The error ADSERR_DEVICE_INVALIDSTATE is returned if the cyclic caller, i.e. the TwinCAT task is not in
the OP state.

Description

A TwinCAT module class uses a Smart Pointer to refer to the cyclic caller of type ITcPostCyclicCallerPtr. The
object ID of the task is stored in this Smart Pointer and a reference to the task can be obtained via the
TwinCAT object server. In addition, the Smart Pointer class already contains a list item. Therefore the Smart
Pointer can be used as the first parameter for the AddPostModule method.

The following code sample illustrates the login of the ITcPostCyclicCaller interface.
RESULT hr =
S_OK;

if (m_spPostCyclicCaller.HasOID()) {

if (SUCCEEDED_DBG(hr =
m_spSrv->TcQuerySmartObjectInterface(m_spPostCyclicCaller)))
{

 if (FAILED(hr =
m_spPostCyclicCaller->AddPostModule(m_spPostCyclicCaller,
THIS_CAST(ITcPostCyclic)))) {

 m_spPostCyclicCaller = NULL;

 }

}

}

Programming Reference

TE1000 199Version: 1.13

12.7.12.2 Method ITcPostCyclicCaller:RemovePostModule

Unregister a module instance from being called by a cyclic caller.

Syntax
virtual HRESULT TCOMAPI
RemovePostModule(STcPostCyclicEntry* pEntry)=0;

Parameters

pEntry: (type: STcPostCyclicEntry) refers to the list entry which should be removed from the internal list of
the cyclic caller.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

The method returns E_FAIL if the entry is not in the internal list.

Description

Similar to the method AddPostModule() the smart pointer for the cyclic caller is used as list entry when the
module instance should be removed from cyclic caller.

Declaration and usage of smart pointer:

ITcPostCyclicCallerInfoPtr m_spPostCyclicCaller;
if (
m_spPostCyclicCaller) {
m_spPostCyclicCaller->RemovePostModule(m_spPostCyclicCaller);

}

m_spPostCyclicCaller = NULL;

12.7.13 Interface ITcRTimeTask
Retrieve extended TwinCAT task Information.

Syntax

TCOM_DECL_INTERFACE("02000003-0000-0000-e000-000000000064", ITcRTimeTask)
struct __declspec(novtable) ITcRTimeTask : public ITcTask

Required include: TcRtInterfaces.h

 Methods

Name Description
GetCpuAccount [} 200] Query of the CPU account of a TwinCAT Task.

Remarks

Retrieving and using TwinCAT task Information could be done by this interface.

Please have a look at Sample30: Timing Measurement [} 320]

Programming Reference

TE1000200 Version: 1.13

12.7.13.1 Method ITcRTimeTask::GetCpuAccount()

Query of the CPU account of a TwinCAT Task.

Syntax
virtual HRESULT TCOMAPI GetCpuAccount(PULONG pAccount)=0;

Parameters

pAccount: (type: PULONG) [out] TwinCAT task CPU account is stored in this parameter.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pAccount = NULL.

Description

The GetCpuAccount() method can be used to query the current computing time used for the task.

Code snippet showing the use of GetCpuAccount(), e.g. within an ITcCyclic::CycleUpdate() method:

// CPU account in 100 ns interval
ITcRTimeTaskPtr spRTimeTask = ipTask;
ULONG nCpuAccountForComputeSomething = 0;
if (spRTimeTask != NULL)
{
ULONG nStart = 0;
hr = FAILED(hr) ? hr : spRTimeTask->GetCpuAccount(&nStart);

ComputeSomething();

ULONG nStop = 0;
hr = FAILED(hr) ? hr : spRTimeTask->GetCpuAccount(&nStop);

nCpuAccountForComputeSomething = nStop - nStart;
}

12.7.14 Interface ITcTask
Query of the timestamp and task-specific information of a TwinCAT task.

Syntax

TCOM_DECL_INTERFACE("02000002-0000-0000-e000-000000000064", ITcTask)
struct __declspec(novtable) ITcTask : public ITcUnknown

Required include: TcRtInterfaces.h

Programming Reference

TE1000 201Version: 1.13

 Methods

Name Description
GetCycleCounter [} 203] Query number of task cycles since task start.

GetCycleTime [} 203] Query of task cycle time in nanoseconds, i.e. time between
"begin of task" and next "begin of task".

GetPriority [} 201] Querying the task priority.

GetCurrentSysTime [} 202] Querying the time when the task cycle starts at intervals of 100
nanoseconds since January 1, 1601 (UTC).

GetCurrentDcTime [} 202] Querying the distributed clock time when the task cycle starts
in nanoseconds since January 1, 2000.

GetCurPentiumTime [} 203] Querying the time when the method is called at intervals of 100
nanoseconds since January 1, 1601 (UTC).

Comments

With the ITcTask interface the time can be measured in real-time context.

12.7.14.1 Method ITcTask:GetPriority

Querying the task priority.

Syntax

virtual HRESULT TCOMAPI GetPriority(PULONG
pPriority)=0;

Parameter

pPriority: (Type: PULONG) [out] Priority value of the task is stored in this parameter.

Programming Reference

TE1000202 Version: 1.13

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pPriority = NULL.

Description

Sample30: Timing Measurement [} 320] shows usage of this method.

12.7.14.2 Method ITcTask:GetCurrentSysTime

Retrieve time at task cycle start in 100 nanoseconds intervals since 1. January 1601 (UTC)

Syntax

virtual HRESULT TCOMAPI GetCurrentSysTime(PLONGLONG
pSysTime)=0;

Parameters

pSysTime: (type: PLONGLONG) [out] current system time at task cycle start is stored in this parameter.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pSysTime = NULL.

Description

Sample30: Timing Measurement [} 320] shows usage of this method.

12.7.14.3 Method ITcTask:GetCurrentDcTime

Retrieve distributed clock time at task cycle start in nanoseconds since 1. January 2000

Syntax

virtual HRESULT TCOMAPI GetCurrentDcTime(PLONGLONG
pDcTime)=0;

Parameters

pDcTime: (type: PLONGLONG) [out] distributed clock time at task cycle start is stored in this parameter.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pDcTime = NULL.

Description

Sample30: Timing Measurement [} 320] shows usage of this method.

Programming Reference

TE1000 203Version: 1.13

12.7.14.4 Method ITcTask:GetCurPentiumTime

Retrieve time at method call in 100 nanoseconds intervals since 1. January 1601 (UTC)

Syntax

virtual HRESULT TCOMAPI GetCurPentiumTime(PLONGLONG
pCurTime)=0;

Parameter

pCurTime: (Type: PLONGLONG) [out] This parameter stores the current time (UTC) in 100 nanosecond
intervals since January 1, 1601.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pCurTime = NULL.

Description

Sample30: Timing Measurement [} 320] shows usage of this method.

12.7.14.5 Method ITcTask:GetCycleCounter

Retrieve number of task cycles since task start.

Syntax

virtual HRESULT TCOMAPI GetCycleCounter(PULONGLONG
pCnt)=0;

Parameter

pCnt: (type: PULONGLONG) [out] the number of task cycles since the task was started is stored in this
parameter.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pCnt = NULL.

Description

Sample30: Timing Measurement [} 320] shows usage of this method.

12.7.14.6 Method ITcTask:GetCycleTime

Query of task cycle time in nanoseconds, i.e. time between "begin of task" and next "begin of task".

Syntax

virtual HRESULT TCOMAPI GetCycleTime(PULONG
pCycleTimeNS)=0;

Programming Reference

TE1000204 Version: 1.13

Parameters

pCycleTimeNS: (type: PULONG) [out] the configured task cycle time in nanoseconds is stored in this
parameter.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

E_POINTER if the parameter pCnt = NULL.

Description

Sample30: Timing Measurement [} 320] shows usage of this method.

12.7.15 Interface ITcTaskNotification
Executes a callback if the cycle time was exceeded during the previous cycle.
This interface provides comparable functions such as PLC PlcTaskSystemInfo->CycleTimeExceeded.

Syntax
TCOM_DECL_INTERFACE("9CDE7C78-32A0-4375-827E-924B31021FCD", ITcTaskNotification) struct
__declspec(novtable) ITcTaskNotification: public ITcUnknown

Required include: TcRtInterfaces.h

 Methods

Name Description
NotifyCycleTimeExceeded Called if the cycle time was exceeded.

Comments

Note that the callback does not take place during the calculations, but at the end of the cycle. Therefore, this
method does not offer any mechanism for immediately stopping the calculations.

12.7.15.1 Method ITcTaskNotification::NotifyCycleTimeExceeded()

Gets called if cycle time was exceeded beforehand

Syntax
virtual HRESULT TCOMAPI NotifyCycleTimeExceeded ();

Parameters

ipTask: (type: ITcTask) refers to the current task context.

context: (type: ULONG_PTR) context

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

Description

Gets called if cycle time was exceeded beforehand. So not immediately on exceeded time, but afterwards.

Programming Reference

TE1000 205Version: 1.13

12.7.16 Interface ITcUnknown
ITcUnknown defines the reference counting as well as querying a reference to a more specific interface.

Syntax
TCOM_DECL_INTERFACE("00000001-0000-0000-e000-000000000064", ITcUnknown)

Declared in: TcInterfaces.h

Required include: -

 Methods

Name Description
TcAddRef [} 205] Increments the reference counter.

TcQueryInterface [} 205] Query of the reference to an implemented interface via the IID.

TcRelease [} 206] Decrements the reference counter.

Remarks

Every TcCOM interface is directly or indirectly derived from ITcUnknown. As a consequence every TcCOM
module class implements ITcUnknown, because it is derived from ITComObject.

The default implementation for ITcUnknown will delete the object if its last reference is released. Therefore
an interface pointer must not be dereferenced after TcRelease() has been called.

12.7.16.1 Method ITcUnknown:TcAddRef

This method increments the reference counter.

Syntax
ULONG TcAddRef()

Return Value

Resulting reference count value.

Description

Increments the reference counter and returns the new value..

12.7.16.2 Method ITcUnknown:TcQueryInterface

Query of an interface pointer with regard to an interface that is given by interface ID (IID).

Syntax
HRESULT TcQueryInterface(RITCID iid, PPVOID pipItf)

iid: (Type: RITCID) Interface IID.

pipItf: (PPVOID Type) pointer to interface pointer. Is set when the requested interface type is available from
the corresponding instance.

Programming Reference

TE1000206 Version: 1.13

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values [} 173]. Extended
messages refer in particular to the column HRESULT in ADS Return Codes [} 343].

If the demanded interface is not available, the method returns ADSERR_DEVICE_NOINTERFACE.

Description

Query reference to an implemented interface by the IID. It is recommended to use smart pointers to initialize
and hold interface pointers.

Variant 1:
HRESULT GetTraceLevel(ITcUnkown* ip, TcTraceLevel& tl)
{
HRESULT hr = S_OK;
if (ip != NULL)
{
ITComObjectPtr spObj;
hr = ip->TcQueryInterface(spObj.GetIID(), &spObj);
if (SUCCEEDED(hr))
{
hr = spObj->TcGetObjPara(PID_TcTraceLevel, &tl, sizeof(tl));
}
return hr;
}
}

The interface id associated with the smart pointer can be used as parameter in TcQueryInterface. The
operator “&” will return pointer to internal interface pointer member of the smart pointer. Variant 1 assumes
that interface pointer is initialized if TcQueryInterface indicates success. If scope is left the destructor of the
smart pointer spObj releases the reference.

Variant 2:

HRESULT GetTraceLevel(ITcUnkown* ip, TcTraceLevel& tl)
{
HRESULT hr = S_OK;
ITComObjectPtr spObj = ip;
if (spObj != NULL)
{
spObj->TcGetObjParam(PID_TcTraceLevel, &tl);
}
else
{
hr = ADS_E_NOINTERFACE;
}
return hr;
}

When assigning interface pointer ip to smart pointer spObj method TcQueryInterface is implicitly called with
IID_ITComObject on the instance ip refers to. This results in shorter code, however it loses the original return
code of TcQueryInterface.

12.7.16.3 Method ITcUnknown:TcRelease

This method decrements the reference counter.

Syntax
ULONG TcRelease()

Return Value

Resulting reference count value.

Programming Reference

TE1000 207Version: 1.13

Description

Decrements the reference counter and returns the new value.

If reference counter gets zero, object deletes itself.

12.8 Runtime Library (RtlR0.h)
TwinCAT has its own implementation of the runtime library. These functions are declared in RtlR0.h, a part of
TwinCAT SDK.

 Methods provided

Name Description
abs Calculates the absolute value.
atof Converts a string (char *buf) into a double.
BitScanForward Searches for a set bit (1) from LSB to MSB.
BitScanReverse Searches for a set bit (1) from MSB to LSB.
labs Calculates the absolute value.
memcmp Compares two buffers.
memcpy Copies one buffer into another.
memcpy_byte Copies one buffer into another (bytewise).
memset Sets the bytes of a buffer to a value.
qsort QuickSort for sorting a list.
snprintf Writes formatted data into a character string.
sprintf Writes formatted data into a character string.
sscanf Reads data from a character string after specification of a format.
strcat Appends one character string to another.
strchr Searches for a character in a character string.
strcmp Compares two character strings.
strcpy Copies a character string.
strlen Determines the length of a character string.
strncat Appends one character string to another.
strncmp Compares two character strings.
strncpy Copies a character string.
strstr Searches for a character string within a character string.
strtol Converts a character string into an integer.
strtoul Converts a character string into an unsigned integer.
swscanf Reads data from a character string after specification of a format.
tolower Converts a letter into a lower-case letter.
toupper Converts a letter into an upper-case letter.
vsnprintf Writes formatted data into a character string ('\0' scheduling).
vsprintf Writes formatted data into a character string.

Comments

All functions are based on the C++ runtime library.

Programming Reference

TE1000208 Version: 1.13

12.9 ADS Communication
ADS based on client-server principle. An ADS query calls the corresponding indication methods on the
server side. The ADS response calls the corresponding confirmation method on the client side.

ADS client-server sequence

In this section both the outgoing and incoming ADS communication is described for TwinCAT 3 C++
modules.

ADS instruction set Description
AdsReadDeviceInfo [} 208] The general device information can be read with this command.

AdsRead [} 210] ADS read command for retrieving data from an ADS device.

AdsWrite [} 212] ADS write command for transferring data to an ADS device.

AdsReadState [} 216] ADS command to query the state of an ADS device.

AdsWriteControl [} 218] ADS control command to change the state of an ADS device.

AdsAddDeviceNotification [} 220] Observe variable. The client is informed in case of an event.

AdsDelDeviceNotification [} 222] Removes the variable that was previously linked.

AdsDeviceNotification [} 224] Used to transfer the device notification event.

AdsReadWrite [} 214] ADS read/write command. Data is transmitted to an ADS device
(write) and its response data read with one call.

The ADS Return Codes [} 343] apply to the entire ADS communication.

As an introduction, look at Sample07: Receiving ADS Notifications [} 273].

12.9.1 AdsReadDeviceInfo

12.9.1.1 AdsReadDeviceInfoReq

The method AdsDeviceInfoReq enables the transfer of an ADS DeviceInfo command for reading the
identification and version number of an ADS server.
AdsReadDeviceInfoCon is called on receipt of the response.

Syntax

int AdsReadDeviceInfoReq(AmsAddr& rAddr, ULONG invokeId);

Programming Reference

TE1000 209Version: 1.13

Parameters

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command, which is sent. The InvokeId is specified from the
source device and serves to identify the commands.

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.1.2 AdsReadDeviceInfoInd

The method AdsDeviceInfoInd indicates an ADS DeviceInfo command for reading the identification and
version number of an ADS server. The AdsReadDeviceInfoRes [} 209] must be called afterwards.

Syntax

void AdsReadDeviceInfoInd(AmsAddr& rAddr, ULONG invokeId);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

Return Value

void

12.9.1.3 AdsReadDeviceInfoRes

The method AdsReadDeviceInfoRes sends an ADS Read Device Info. AdsReadDeviceInfoCon [} 210] forms
the counterpart and is subsequently called.

Syntax

int AdsReadDeviceInfoRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, CHAR
name[ADS_FIXEDNAMESIZE], AdsVersion version);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

name: (type: char[ADS_FIXEDNAMESIZE]) [in] contains the name of the device.

version: (type: AdsVersion) [in] structure of build (int), revision (byte) and version (byte) of the device.

Programming Reference

TE1000210 Version: 1.13

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.1.4 AdsReadDeviceInfoCon

The method AdsReadDeviceInfoCon permits to receive an ADS read device info confirmation. The receiving
module has to provide this method. The AdsReadDeviceInfoReq [} 208] is the counterpart and need to be
called beforehand.

Syntax

void AdsReadDeviceInfoCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult,
CHAR name[ADS_FIXEDNAMESIZE], AdsVersion version);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

name: (type: char[ADS_FIXEDNAMESIZE]) [in] contains the name of the device.

version: (type: AdsVersion) [in] structure of build (int), revision (byte) and version (byte) of the device.

Return Value

void

12.9.2 AdsRead

12.9.2.1 AdsReadReq

The method AdsReadReq enables the sending of an ADS read command for the data transmission from an
ADS device.
AdsReadCon [} 212] is called on receipt of the response.

Syntax

int AdsReadReq(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

Programming Reference

TE1000 211Version: 1.13

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length in bytes of the data to be read (pData).

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.2.2 AdsReadInd

The method AdsReadInd permits to receive an ADS read request. The AdsReadRes [} 211] needs to be
called for sending the result.

Syntax

void AdsReadInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length in bytes of the data to be read (pData).

Return value

Type: int

ADS Return Code - see AdsStatuscodes [} 343].

12.9.2.3 AdsReadRes

The method AdsReadRes enables the sending of an ADS read response. AdsReadCon [} 212] forms the
counterpart and is subsequently called.

Syntax

int AdsReadRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS read command; see AdsStatuscodes [} 343].

Programming Reference

TE1000212 Version: 1.13

cbLength: (type: ULONG) [in] contains the length in bytes of the data that was read (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the data are located.

Return value

Type: int

ADS Return Code - see AdsStatuscodes [} 343].

12.9.2.4 AdsReadCon

The method AdsReadCon enables the reception of an ADS read confirmation. The receiving module must
provide this method.
The counterpart AdsReadReq [} 210] must have been called beforehand.

Syntax

void AdsReadCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS read command; see AdsStatuscodes [} 343].

cbLength: (type: ULONG) [in] contains the length in bytes of the data that was read (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the data are located.

Return Value

void

12.9.3 AdsWrite

12.9.3.1 AdsWriteReq

The method AdsWriteReq enables the sending of an ADS write command for transferring data to an ADS
device.
AdsWriteCon [} 214] is called on receipt of the response.

Syntax

int AdsWriteReq(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

Programming Reference

TE1000 213Version: 1.13

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length in bytes of the data to be written (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the written data are located.

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.3.2 AdsWriteInd

The method AdsWriteInd indicates an ADS write command, for the transfer of data to an ADS device.
The AdsWriteRes [} 213] has to be called for confirming the operation.

Syntax

void AdsWriteInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length in bytes of the data to be written (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the written data are located.

Return value

void

Error code - see AdsStatuscodes [} 343].

12.9.3.3 AdsWriteRes

The method AdsWriteRes sends an ADS write response. AdsWriteCon [} 214] forms the counterpart and is
subsequently called.

Syntax

int AdsWriteRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

Programming Reference

TE1000214 Version: 1.13

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

Return Value

Type: int

ADS Return Code - see AdsStatuscodes [} 343].

12.9.3.4 AdsWriteCon

The method AdsWriteCon enables the reception of an ADS write confirmation. The receiving module must
provide this method.
AdsWriteReq [} 212] forms the counterpart and must have been called beforehand.

Syntax

void AdsWriteCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

Return Value

void

12.9.4 AdsReadWrite

12.9.4.1 AdsReadWriteReq

The method AdsReadWriteReq permits to send an ADS readwrite command, for the transfer of data to and
from an ADS device. The AdsReadWriteCon [} 216] will be called on arrival of the answer.

Syntax

int AdsReadWriteReq(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbReadLength, ULONG cbWriteLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

Programming Reference

TE1000 215Version: 1.13

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbReadLength: (type: ULONG) [in] contains the length in bytes of the data to be read (pData).

cbWriteLength: (type: ULONG) [in] contains the length in bytes of the data to be written (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the written data are located.

Return value

Type: int

Error code, see AdsStatuscodes [} 343].

12.9.4.2 AdsReadWriteInd

The method AdsReadWriteInd indicates an ADS readwrite command, for the transfer of data to and from an
ADS device. The AdsReadWriteRes [} 217] needs to be called for sending the result.

Syntax

void AdsReadWriteInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup,

ULONG indexOffset, ULONG cbReadLength, ULONG cbWriteLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbReadLength: (type: ULONG) [in] contains the length in bytes of the data to be read (pData).

cbWriteLength: (type: ULONG) [in] contains the length in bytes of the data to be written (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the written data are located.

Return Value

void

12.9.4.3 AdsReadWriteRes

The method AdsReadWriteRes permits to receive an ADS read write confirmation. The AdsReadWriteCon
[} 216] is the counterpart and will be called afterwards.

Syntax

int AdsReadWriteRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID
pData);

Programming Reference

TE1000216 Version: 1.13

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

cbLength: (type: ULONG) [in] contains the length in bytes of the data that was read (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the data are located.

Return value

Type: int

ADS Return Code - see AdsStatuscodes [} 343].

12.9.4.4 AdsReadWriteCon

The method AdsReadWriteCon enables the reception of an ADS read/write confirmation. The receiving
module must provide this method.
AdsReadWriteReq [} 214] forms the counterpart and must be called beforehand.

Syntax

void AdsReadWriteCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

cbLength: (type: ULONG) [in] contains the length in bytes of the data that was read (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the data are located.

Return Value

void

12.9.5 AdsReadState

12.9.5.1 AdsReadStateReq

The method AdsReadStateReq permits to send an ADS read state command for reading the ADS status and
the device status from an ADS server. The AdsReadStateCon [} 218] will be called on arrival of the answer.

Syntax

int AdsReadStateReq(AmsAddr& rAddr, ULONG invokeId);

Programming Reference

TE1000 217Version: 1.13

Parameters

rAddr: (type: AmsAddr) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command, which is sent. The InvokeId is specified from the
source device and serves to identify the commands.

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.5.2 AdsReadStateInd

The method AdsReadStateInd indicates an ADS read state command for reading the ADS status and the
device status from an ADS device. The AdsReadStateRes [} 217] needs to be called for sending the result.

Syntax

void AdsReadStateInd(AmsAddr& rAddr, ULONG invokeId);

Parameters

rAddr: (type: AmsAddr) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command, which is sent. The InvokeId is specified from the
source device and serves to identify the commands.

Return Value

void

12.9.5.3 AdsReadStateRes

The method AdsWriteRes enables the sending of an ADS status read response. AdsReadStateCon [} 218]
forms the counterpart and is subsequently called.

Syntax

int AdsReadStateRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, USHORT adsState, USHORT
deviceState);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

adsState: (type: USHORT) [in] contains the ADS state of the device.

deviceState: (type: USHORT) [in] contains the device status of the device.

Return value

Type: int

Programming Reference

TE1000218 Version: 1.13

Error code - see AdsStatuscodes [} 343].

12.9.5.4 AdsReadStateCon

The method AdsWriteCon enables the reception of an ADS state read confirmation. The receiving module
must provide this method.
AdsReadStateReq [} 216] forms the counterpart and must be called beforehand.

Syntax

void AdsReadStateCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, USHORT adsState, USHORT
deviceState);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

adsState: (type: USHORT) [in] contains the ADS state of the device.

deviceState: (type: USHORT) [in] contains the device status of the device.

Return Value

void

12.9.6 AdsWriteControl

12.9.6.1 AdsWriteControlReq

The method AdsWriteControlReq permits to send an ADS write control command for changing the ADS
status and the device status of an ADS server. The AdsWriteControlCon [} 220] will be called on arrival of
the answer.

Syntax

int AdsWriteControlReq(AmsAddr& rAddr, ULONG invokeId, USHORT adsState,
 USHORT deviceState, ULONG cbLength, PVOID pData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

adsState: (Type: USHORT) [in] new ADS state (see enum nAdsState in Ads.h).

deviceState: (Type: USHORT) [in] new device state.

cbLength: (type: ULONG) [in] contains the length in bytes of the data (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the written data are located.

Programming Reference

TE1000 219Version: 1.13

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.6.2 AdsWriteControlInd

The method AdsWriteControlInd permits to send an ADS write control command for changing the ADS status
and the device status of an ADS device. The AdsWriteControlRes [} 219] has to be called for confirming the
operation.

Syntax

void AdsWriteControlInd(AmsAddr& rAddr, ULONG invokeId, USHORT adsState, USHORT deviceState,
ULONG cbLength, PVOID pDeviceData);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

adsState: (Type: USHORT) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

deviceState: (Type: USHORT) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length in bytes of the data (pData).

pData: (type: PVOID) [in] pointer to the data buffer in which the written data are located.

Return Value

void

12.9.6.3 AdsWriteControlRes

The method AdsWriteControlRes permits to send an ADS write control response. The AdsWriteControlCon
[} 220] is the counterpart and will be called afterwards.

Syntax

int AdsWriteControlRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

Return value

Type: int

Programming Reference

TE1000220 Version: 1.13

ADS Return Code - see AdsStatuscodes [} 343].

12.9.6.4 AdsWriteControlCon

The method AdsWriteCon enables the reception of an ADS write control confirmation. The receiving module
must provide this method.
AdsWriteControlReq [} 218] forms the counterpart and must be called beforehand.

Syntax
void AdsWriteControlCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

Return Value

void

12.9.7 AdsAddDeviceNotification

12.9.7.1 AdsAddDeviceNotificationReq

The method AdsAddDeviceNotificationReq permits to send an ADS add device notification command, for
adding a device notification to an ADS device. The AdsAddDeviceNotificationCon [} 222] will be called on
arrival of the answer.

Syntax

int AdsAddDeviceNotificationReq(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG
indexOffset,
 AdsNotificationAttrib noteAttrib);

Parameters

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command, which is sent. The InvokeId is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

noteAttrib: (type: AdsNotificationAttrib) [in] contains specification of the notification parameters (cbLength,
TransMode, MaxDelay)

Return value

Type: int

Programming Reference

TE1000 221Version: 1.13

Error code - see AdsStatuscodes [} 343].

12.9.7.2 AdsAddDeviceNotificationInd

The method AdsAddDeviceNotificationInd should enable sending AdsDeviceNotification [} 224]. The
AdsAddDeviceNotificationRes [} 221] has to be called for confirming the operation.

Syntax

void AdsAddDeviceNotificationInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG
indexOffset, AdsNotificationAttrib noteAttrib);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

indexGroup: (Type: ULONG) [in] contains the index group number (32-bit, unsigned) of the requested ADS
service.

indexOffset: (Type: ULONG) [in] contains the index offset number (32-bit, unsigned) of the requested ADS
service.

noteAttrib: (type: AdsNotificationAttrib) [in] contains the specification of the notification parameters
(cbLength, TransMode, MaxDelay).

Return Value

void

12.9.7.3 AdsAddDeviceNotificationRes

The method AdsAddDeviceNotificationRes permits to send an ADS add device notification response. The
AdsAddDeviceNotificationCon [} 222] is the counterpart and will be called afterwards.

Syntax

void AdsAddDeviceNotificationCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG handle);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes

Handle: (type: ULONG) [in] handle to generated device notification.

Return Value

void

Programming Reference

TE1000222 Version: 1.13

12.9.7.4 AdsAddDeviceNotificationCon

The method AdsAddDeviceNotificationCon confirms an ADS device addition notification request.
AdsAddDeviceNotificationReq [} 220] forms the counterpart and must be called beforehand.

Syntax

void AdsAddDeviceNotificationCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG handle);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes.

Handle: (type: ULONG) [in] handle to generated device notification.

Return Value

void

12.9.8 AdsDelDeviceNotification

12.9.8.1 AdsDelDeviceNotificationReq

The method AdsDelDeviceNotificationReq permits to send an ADS delete device notification command, for
removing a device notification from an ADS device. The AdsDelDeviceNotificationCon [} 223] will be called
on arrival of the answer.

Syntax

int AdsDelDeviceNotificationReq(AmsAddr& rAddr, ULONG invokeId, ULONG hNotification);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

hNotification: (type: ULONG) [in] contains the handle of the notification to be removed.

Return value

Type: int

Error code - see AdsStatuscodes [} 343].

12.9.8.2 AdsDelDeviceNotificationInd

The method AdsAddDeviceNotificationCon permits to receive an ADS delete device notification confirmation.
The receiving module has to provide this method. The AdsDelDeviceNotificationRes [} 223] has to be called
for confirming the operation.

Programming Reference

TE1000 223Version: 1.13

Syntax

void AdsDelDeviceNotificationCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

Return Value

void

12.9.8.3 AdsDelDeviceNotificationRes

The method AdsAddDeviceNotificationRes permits to receive an ADS delete device notification. The
AdsDelDeviceNotificationCon [} 223] is the counterpart and will be called afterwards.

Syntax

int AdsDelDeviceNotificationRes(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS command; see AdsStatuscodes [} 343].

Return value

Int

Returns the result of the ADS command, see AdsStatuscodes [} 343].

12.9.8.4 AdsDelDeviceNotificationCon

The method AdsAddDeviceNotificationCon enables the reception of an ADS device deletion notification
confirmation. The receiving module must provide this method. AdsDelDeviceNotificationReq [} 222] forms
the counterpart and must be called beforehand.

Syntax

void AdsDelDeviceNotificationCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

Programming Reference

TE1000224 Version: 1.13

invokeId: (type: ULONG) [in] handle of the transmitted command; the InvokeId is specified by the source
device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command; see AdsStatuscodes [} 343].

Return Value

void

12.9.9 AdsDeviceNotification

12.9.9.1 AdsDeviceNotificationReq

The method AdsAddDeviceNotificationReq permits to send an ADS device notification, to inform an ADS
device. The AdsDeviceNotificationInd [} 224] will be called on the counterpart.

Syntax
int AdsDeviceNotificationReq(AmsAddr& rAddr, ULONG invokeId, ULONG cbLength,
AdsNotificationStream notifications[]);

Parameters

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command, which is sent. The InvokeId is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains result of the device notification indication.

notifications[]: (type: AdsNotificationStream) [in] contains information of the device notification(s).

Return value

Type: int

ADS Return Code - see AdsStatuscodes [} 343].

12.9.9.2 AdsDeviceNotificationInd

The method AdsDeviceNotificationInd enables receiving of information from an ADS device notification
display. The receiving module must provide this method. There is no acknowledgment of receipt.
AdsDeviceNotificationCon [} 225] must be called by AdsDeviceNotificationReq [} 224] to check the transfer.

Syntax

void AdsDeviceNotificationInd(AmsAddr& rAddr, ULONG invokeId, ULONG cbLength,
AdsNotificationStream* pNotifications);

Parameter

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the responding ADS server.

invokeId: (type: ULONG) [in] handle of the command that is sent. The InvokeId is specified by the source
device and is used for the identification of the commands.

cbLength: (type: ULONG) [in] contains the length of pNotifications.

Programming Reference

TE1000 225Version: 1.13

pNotifications: (type: AdsNotificationStream*) [in] pointer to the notifications. This array consists of
AdsStampHeader with notification handle and data via AdsNotificationSample.

Return Value

void

12.9.9.3 AdsDeviceNotificationCon

The sender can use the method AdsAddDeviceNotificationCon to check the transfer of an ADS device
notification.
AdsDeviceNotificationReq [} 224] must be called first.

Syntax
void AdsDeviceNotificationCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameters

rAddr: (type: AmsAddr&) [in] structure with NetId and port number of the ADS server.

invokeId: (type: ULONG) [in] handle of the command, which is sent. The InvokeId is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains result of the device notification indication

Return Value

void

12.10 Mathematical Functions
TwinCAT has its own mathematical functions implemented, because the math.h implementation provided by
Microsoft is not real-time capable.
These functions are declared in TcMath.h, which is part of TwinCAT SDK. For x64 the operations are
executed via SSE; on x86 systems the FPU is used.

TwinCAT 3.1 4018 or earlier
TwinCAT 3.1 4018 provides an fpu87.h with the same methods. This continues to exist and redi-
rects to TcMath.h.

Programming Reference

TE1000226 Version: 1.13

 Methods provided

Name Description
sqr_ Calculates the square.
sqrt_ Calculates the square root.
sin_ Calculates the sine.
cos_ Calculates the cosine.
tan_ Calculates the tangent.
atan_ Calculates the angle whose tangent is the specified value.
atan2_ Calculates the angle whose tangent is the quotient of two

specified values.
asin_ Calculates the angle whose sine is the specified value.
acos_ Calculates the angle whose cosine is the specified value.
exp_ Calculates e to the specified power.
log_ Calculates the logarithm of a specified value.
log10_ Calculates the base 10 logarithm of a specified value.
fabs_ Calculates the absolute value.
fmod_ Calculates the remainder.
ceil_ Calculates the smallest integer that is greater than or equal to

the specified number.
floor_ Calculates the largest integer that is smaller than or equal to

the specified number.
pow_ Calculates a specified number to the specified power.
sincos_ Calculates the sine and cosine of x.
fmodabs_ Calculates the absolute value that meets the Euclidean

definition of the mod operation.
round_ Calculates a value and rounds to the nearest integer.
round_digits_ Calculates a rounded value with a specified number of

decimal places.
coubic_ Calculates the cubic value.
ldexp_ Calculates a real number (double) from mantissa and

exponent.
ldexpf_ Calculates a real number (float) from mantissa and exponent.
sinh_ Calculates the hyperbolic sine of the specified angle.
cosh_ Calculates the hyperbolic cosine of the specified angle.
tanh_ Calculates the hyperbolic tangent of the specified angle.
finite_ Determines whether the specified value is finite.
isnan_ Determines whether the specified value is not a number

(NAN).
rands_ Calculates a pseudo random number between 0 and 32767.

The parameter holdrand is set randomly and changed with
every call.

Comments

The functions have the extension "_" (underscore), which identifies them as TwinCAT implementation.
Most are analog math.h, designed by Microsoft, only for the data type double.

See also

MSDN documentation of analog math.h functions.

http://msdn.microsoft.com/en-us/library/system.math_methods

Programming Reference

TE1000 227Version: 1.13

12.11 Time Functions
TwinCAT provides functions for time conversion, they are declared in TcTimeConversion.h, which is part of
TwinCAT SDK.

 Methods provided

Name Description
TcDayOfWeek(WORD day, WORD month, WORD year) Determines the day of the week.

Input: day (0..30) and month (1..12)
Return: 0 is Sunday, 6 is Saturday

TcIsLeapYear Determines whether the given year is a leap year.
TcDaysInYear Determines the number of days in a given year.
TcDaysInMonth Determines the number of days in a given month.
TcSystemTimeToFileTime(const SYSTEMTIME*
lpSystemTime, FILETIME *lpFileTime);

Converts the given system time into a file time.

TcFileTimeToSystemTime(const FILETIME *lpFileTime,
SYSTEMTIME* lpSystemTime);

Converts the given file time into a system time.

TcSystemTimeToFileTime(const SYSTEMTIME*
lpSystemTime, ULONGLONG& ul64FileTime);

Converts the given system time into a file time
(ULONGLONG format).

TcFileTimeToSystemTime(const ULONGLONG&
ul64FileTime, SYSTEMTIME* lpSystemTime);

Converts the given file time (ULONGLONG
format) into a system time.

TcIsISO8601TimeFormat(PCCH sDT) Checks whether a PCCH follows the time format
ISO8601.

TcDecodeDateTime(PCCH sDT) Converts a ULONG as DateTime from the PCCH
into ISO8601 format.

TcDecodeDcTime(PCCH sDT) Converts a LONGLONG as DcTime from the
PCCH into ISO8601 format.

TcDecodeFileTime(PCCH sFT) Converts a LONGLONG as FileTime from the
PCCH into ISO8601 format.

TcEncodeDateTime(ULONG value, PCHAR p, UINT len) Converts a string (p, len) into ISO8601 format on
the basis of the ULONG value in DateTime
format.
Minimum length for p is 24 bytes.

TcEncodeDcTime(LONGLONG value, PCHAR p, UINT
len)

Converts a string (p, len) into ISO8601 format on
the basis of the LONGLONG in DcTime format.
Minimum length for p is 32 bytes.

TcEncodeFileTime(LONGLONG value, PCHAR p, UINT
len)

Converts a string (p, len) into ISO8601 format on
the basis of the LONGLONG in FileTime format.
Minimum length for p is 32 bytes.

TcDcTimeToFileTime(LONGLONG dcTime) Converts a LONGLONG as FileTime from the
LONGLONG into DcTime.

TcFileTimeToDcTime(LONGLONG fileTime); Converts a LONGLONG as DcTime from the
LONGLONG into FileTime.

TcDcTimeToDateTime(LONGLONG dcTime) Converts a ULONG as DateTime from the
LONGLONG into DcTime.

TcDateTimeToDcTime(ULONG dateTime) Converts a ULONG as DcTime from the
LONGLONG into DateTime.

TcFileTimeToDateTime(LONGLONG fileTime) Converts a ULONG as DateTime from the
LONGLONG into FileTime.

TcDateTimeToFileTime(ULONG dateTime) Converts a LONGLONG as FileTime from the
ULONG into DateTime.

• Further information on different time sources is described here:
https://infosys.beckhoff.com/content/1031/ethercatsystem/2469114379.html

https://infosys.beckhoff.com/content/1031/ethercatsystem/2469114379.html

Programming Reference

TE1000228 Version: 1.13

12.12 STL / Containers
TwinCAT 3 C++ supports STL with regard to

• List
• Map
• Set
• Stack
• String
• Vector
• WString
• Algorithms (such as binary_search)

◦ See c:\TwinCAT\3.x\Sdk\Include\Stl\Stl\algorithm for a specific list of supported algorithms.

Restrictions
• Class templates do not exist for all data types.
• Some header files should not be used directly.

More detailed documentation on memory management, which uses STL, can be found here [} 167].

12.13 Error messages - understanding
In TwinCAT you receive very detailed information about errors that occur.

For instance, this error message means:

• The error occurred during the transition from SAFE OP to OP.
• The affected object is "Untitled1_Obj1" (CModule1).
• The error code 1821 / 0x71d indicates that the object ID is invalid.

Therefore, you should examine the method "SetObjStateSP()", which is responsible for this transition, in
more detail. In the case of the generated standard code, you can see that the addition of the module takes
place there.

The reason for this error is that no task has been assigned to this module, so the module cannot have a task
in which it is executed.

Programming Reference

TE1000 229Version: 1.13

12.14 Module messages for the Engineering (logging /
tracing)

Overview

TwinCAT 3 C++ offers the option of sending messages from a C++ module to the TwinCAT 3 Engineering as
tracing or logging.

Syntax

The syntax for recording messages is as follows:
m_Trace.Log(TLEVEL, FNMACRO"A message", …);

With these properties:

• TLEVEL categorizes a message into one of five levels.
The recording of the higher level always includes the recording of the lower levels: i.e. a message
classified on level "tlWarning" will occur with level "tlAlways", "tlError" and "tlWarning" - it will NOT
record the "tlInfo" and "tlVerbose" messages.

Level 0 tlAlways
Level 1 tlError
Level 2 tlWarning
Level 3 tlInfo
Level 4 tlVerbose

Programming Reference

TE1000230 Version: 1.13

• FNMACRO can be used to place the function name before the message to be printed
◦ FENTERA: Used when entering a function; prints the function name followed by ">>>".
◦ FNAMEA: Used within a function; prints the function name.
◦ FLEAVEA: Used when exiting a function; prints the function name followed by "<<<".

• The %q format specifier is used to output pointers and other variables of platform-specific size.

Sample
HRESULT CModule1::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
{
 HRESULT hr = S_OK;

 // Sample to showcase trace logs
 ULONGLONG cnt = 0;
 if (SUCCEEDED(ipTask->GetCycleCounter(&cnt)))
 {
 if (cnt%500 == 0)
 m_Trace.Log(tlAlways, FENTERA "Level tlAlways: cycle= %llu", cnt);

 if (cnt%510 == 0)
 m_Trace.Log(tlError, FENTERA "Level tlError: cycle=%llu", cnt);

 if (cnt%520 == 0)
 m_Trace.Log(tlWarning, FENTERA "Level tlWarning: cycle=%lld", cnt);

 if (cnt%530 == 0)
 m_Trace.Log(tlInfo, FENTERA "Level tlInfo: cycle=%llu", cnt);

 if (cnt%540 == 0)
 m_Trace.Log(tlVerbose, FENTERA "Level tlVerbose: cycle=%llu", cnt);
 }

 // TODO: Replace the sample with your cyclic code
 m_counter++;
 m_Outputs.Value = m_counter;

 return hr;
}

Use tracking level

The tracking level can be preconfigured at the level of the module instance.

1. Navigate to the instance of the module in the solution tree.
2. Select the Parameters (Init) tab on the right.
3. Make sure that you activate Show Hidden Parameters.
4. Select the tracking level.

Programming Reference

TE1000 231Version: 1.13

5. To test everything, select the highest level tlVerbose.

Alternatively, you can change the tracking level at runtime by going to the instance, selecting a level at Value
for TraceLevelMax parameters, right-clicking in front of the first column, and selecting Online Write.

Filter message categories

Visual Studio Error List allows you to filter entries by category. The three categories Errors, Warnings and
Messages can be enabled or disabled independently by simply switching the keys.

In this screenshot only warnings are enabled - errors and messages are disabled:

Programming Reference

TE1000232 Version: 1.13

In this screenshot, only messages are enabled - errors and warnings, on the other hand, are disabled for
the display:

How to...?

TE1000 233Version: 1.13

13 How to...?
This is a collection of frequently ask questions about common paradigms of coding as well as handling of
TwinCAT C++ modules.

13.1 Using the Automation Interface
The Automation Interface can be used for C++ projects.

This includes creating projects [} 99] and using the wizard for creating module classes [} 100].
In addition, the project properties can be set and the TMC Code Generator and the publishing of modules
called. The corresponding documentation [} 350] is part of the Automation Interface.

Irrespective of the programming language, access to and creation and handling of TcCOM modules [} 354]
may be relevant.

From there, common System Manager tasks such as linking of variables can be executed.

13.2 Windows 10 as target system up to TwinCAT 3.1 Build
4022.2

For Windows 10 target systems the transferred files cannot be overwritten; they have to be renamed first.

Up to TwinCAT 3.1 Build 4022.2, the Rename Destination option must be enabled for this purpose in the
TMC Editor deployment [} 144]. In later versions this is done implicitly when the target system uses Windows
10 as operating system.

13.3 Publishing of modules
The section Export to TwinCAT 3.1 4022.xx [} 50] describes how TwinCAT modules are published so that
they can be transferred to any TwinCAT system and imported [} 51].

The engineering system (XAE) does not necessarily have to be on the same platform type as the executing
system. To this end, TwinCAT creates all versions of the module in the course of the publication.

Certain use cases require an adaptation of the publication of the modules:

• When working in a pure 32-bit (x86) environment, the x64 settings can be skipped so that no
certificates are required.

• The User Mode (UM) settings can be skipped if they are not used.

Migration
If a build is not contained in the published module, the corresponding platform cannot be used as an
executing system.

Add the corresponding target platforms in the provision [} 144] of the TMC Editor or remove them.

The following provision configuration, for example, only makes the TwinCAT RT (x86) build available:

How to...?

TE1000234 Version: 1.13

13.4 Publishing modules on the command line
By means of the following call, the module publishing process in the TwinCAT Engineering (XAE) can also
be initiated from the command line:
msbuild CppProject.vcxproj /t:TcPublishModule /p:TcPublishDestinationBaseFolder=c:\temp

The CppProject.vcxproj parameter must be adapted according to the existing project file.

The TcPublishDestinationBaseFolder parameter is optional here. If it is not specified, the normal
storage location will be used (C:\TwinCAT\3.x\CustomConfig\Modules).

13.5 Clone
The runtime data can be transferred from one machine to another by means of a file copy if both originate
from the same platform and are connected with equivalent hardware equipment.

The following steps describe a simple procedure to transfer a binary configuration from one machine,
"source", to another, "destination".

How to...?

TE1000 235Version: 1.13

ü Empty the folder C:\TwinCAT\3.x\Boot on the source machine.
1. Create (or enable) the module on the source machine.
2. Transfer the folder C:\TwinCAT\3.x\Boot from the source to the destination.
3. Transfer the driver itself from C:\TwinCAT\3.x\Driver\AutoInstall\MYDRIVER.sys.
4. Optionally transfer MYDRIVER.pdb as well.
5. If drivers are new on a machine:

TwinCAT must carry out a registration once. To do this, switch TwinCAT to RUN mode using SysTray
(right-click->System->Start/Restart).
The following call can alternatively be used (replace "%1" by the driver name):
sc create %1 binPath= c:\TwinCAT\3.1\Driver\AutoInstall\%1.sys type= kernel
start= auto group= "file system" DisplayName= %1 error= normal

ð You can now start the target machine.

Handling licenses
Note that licenses cannot be transferred in this manner. Please use pre-installed licenses, volume
licenses or other mechanisms for providing licenses.

13.6 Access Variables via ADS
Variables of C++ modules can be reached via ADS if the variables are marked in the TMC Editor as "Create
Symbol":

The name of the variable for access by ADS is derived from the name of the instance.

For the TraceLevelMax parameter it could be:
Untitled1_Obj1 (CModule1).TraceLevelMax

13.7 TcCallAfterOutputUpdate for C++ modules
Comparable with the PLC attribute TcCallAfterOutputUpdate, C++ modules can be called following the
output update.
The ITcPostCyclic [} 196] interface is used in the same way as the ITcCyclic [} 173] interface.

13.8 Order determination of the execution in a task
Different module instances can be assigned to a task, so the user needs a mechanism to determine the
order of execution in the task.

It is configured under Sort Order in the context [} 148] of the TwinCAT Module Instance Configurator [} 146].

How to...?

TE1000236 Version: 1.13

See Sample26: Order of execution in a task [} 318], how this is to be implemented.

13.9 Setting version/vendor information
Windows offers a mechanism to query vendor and version resources that are defined in the course of a .rc
file for the compilation time.

These are accessible, for example, via the Details tab of each properties file.

TwinCAT offers this behavior via the familiar Windows mechanisms of .rc files, which are generated in the
course of creating the TwinCAT C++ project.

How to...?

TE1000 237Version: 1.13

Edit the .rc file in the Source Files folder with the resource editor in order to define these properties:

13.10 Renaming TwinCAT C++ projects
The automated renaming of TwinCAT C++ projects is not possible.

At this point instructions will be given on manually renaming a project.

In summary, one can say that the C++ project will be renamed together with the corresponding files.

ü A project, "OldProject", exists and is to be renamed "NewProject".
1. If TcCOM instances exist in the project and are to be retained along with their links, first move them by

drag & drop out of the project into System->TcCOM Objects.
2. Remove the old project from the TwinCAT Solution using Remove.

How to...?

TE1000238 Version: 1.13

3. Compilations of the "OldProject" can be deleted. To do this, delete the corresponding .sys/.pdb files in
"_Deployment".
Any existing .aps file can also be deleted.

4. Rename the C++ project directory and the project files (.vcxproj, .vcxproj.filters).
If version management is in use, this renaming must be carried out via the version management system.

5. If a .vcvproj.user file exists, check the contents; this is where user settings are stored. Also rename this
file if necessary.

6. Open the TwinCAT Solution. Re-link the renamed project to the C++ node using Add existing Item:
navigate to the renamed subdirectory and select the .vcxproj file there.

7. Rename the ClassFactory, services and interfaces as well as header/source code files to the new project
name. In addition, rename the TMC file and the corresponding files in the project folders "TwinCAT RT
Files" and "TwinCAT UM Files".
This renaming should also be mapped in the version management system; if the version management
system is not integrated in Visual Studio, this step must also be carried out in the version management
system. Replace all occurrences in the source code (case-sensitive):
"OLDPROJECT" becomes "NEWPROJECT" and "OldProject" becomes "NewProject".
Use the Find and Replace dialog in Visual Studio for this; note that the "NewProject Project" in the
Solution Explorer has to be selected.

ð

How to...?

TE1000 239Version: 1.13

NOTE
Incorrect source code
The simple renaming of all occurrences of the character string may result in incorrect source code, for ex-
ample if the project name is used within a method name.
• If such occurrences are possible, carry out the renaming individually (Replace instead of Replace All).

How to build the project:

1. A) If instances from the project should exist, update them. To do this, right-click on the instance, select
TTMI/TMC File->Reload TMI/TMC File… and select the renamed new TMC file.

B) Alternatively, carry this out via System->TcCOM Objects and the Project Objects tab by right-
clicking on the OTCID.

2. Move System->TcCOM into the project.
3. Clean up the target system(s).

Delete the files "OldProject.sys/.pdb" in C:\TwinCAT\3.x\Driver\AutoInstall.
4. Test the project.

13.11 Delete Module
A TwinCAT C++ module can be deleted from a C++ project with the help of the TMC Editor.

1. Right-click on the module (in this case CModule2)
2. Select Delete.

How to...?

TE1000240 Version: 1.13

3. Confirm the deletion via TMC.

4. Note that the .cpp and .h files are retained – delete them manually if necessary.
Delete other components concerned (e.g. header files, structures). See Compiler error messages for
more information.

13.12 Add revision control and Online Change subsequently
An existing project with C++ TcCOM modules can be subsequently extended by the Online Change
property.

This is a manual process.

The changeover takes place in several steps:

• Convert C++ project to a versioned C++ project [} 240].

• Make C++ module class Online Change capable [} 243].

These steps are described on the subpages. However, it may be useful to create a new project yourself and
transfer the corresponding differences. Thus, the respective context is visible.

13.12.1 C++ Project -> Revision control
These instructions describe how to add subsequently a revision control to a TwinCAT C++ project.

The code to be changed is stored in bold in the source code.

ü C++ project. For the sample "Untitled1" is used as C++ project name.
In addition, an empty, new project with a versioned C++ project is to be created. This serves as a copy
template.

1. Open the file Untitled1.vcxproj in an editor.
2. Make the following addition:

<PropertyGroup Label="Globals">
<ProjectGuid>{….}</ProjectGuid>
<RootNamespace>Untitled1</RootNamespace>
<Keyword>Win32Proj</Keyword>
<AutomaticRetargetPlatformVersion>true</AutomaticRetargetPlatformVersion>
</PropertyGroup>
 <PropertyGroup Label="TcGeneral">
<TcGeneralUseTmx>true</TcGeneralUseTmx>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />

3. Transfer the Untitled1.rc and Untitled1W32.rc files from the new project to the project to be migrated,
overwriting the Untitled1.rc file.

4. Open the project.
5. Under TwinCAT UM Files -> Context menu / Add Existing Items select the file Unititled1W32.rc and

add it to the project.

How to...?

TE1000 241Version: 1.13

6. This file only needs to be built for TwinCAT UM platforms, so it should otherwise be excluded for the
build process. This is done via right-click and properties:

7. Open the TMC Editor.
8. Set the name of the class factory and the version to "0.0.0.1".

How to...?

TE1000242 Version: 1.13

9. Under Deployment, delete all entries.

10. Change in header Modul1.h DECLARE_IPERSIST_LIB():
public:
DECLARE_IUNKNOWN()
DECLARE_IPERSIST_LIB()
DECLARE_ITCOMOBJECT_LOCKOP()

11. Add Modul1.cpp to the source code:
#pragma hdrstop
#include "Module1.h"
#include "Untitled1Version.h"

#ifdef _DEBUG

12. Add Modul1.cpp to the source code:
END_INTERFACE_MAP()

IMPLEMENT_IPERSIST_LIB(CModule1, VID_Untitled1,
CID_Untitled1CModule1)
IMPLEMENT_ITCOMOBJECT(CModule1)
IMPLEMENT_ITCOMOBJECT_SETSTATE_LOCKOP2(CModule1)

13. Call the code generator.

14. Change in the file Untitled1Classfactory.cpp:
CUntitled1ClassFactory::CUntitled1ClassFactory() : CObjClassFactory()
{
TcDbgUnitSetImageName(TCDBG_UNIT_IMAGE_NAME_TMX(SRVNAME_UNTITLED1));
#if defined(TCDBG_UNIT_VERSION)
TcDbgUnitSetVersion(TCDBG_UNIT_VERSION(Untitled1));
#endif //defined(TCDBG_UNIT_VERSION)
}

How to...?

TE1000 243Version: 1.13

15. Change the signing in the project properties in the tab Tc Sign [} 161]. To do this, switch SHA1 signing
off and TwinCAT signing on; provide TwinCAT user certificate and password at the same time.

16. Trigger the Rebuild of the project.
ð The result is a C++ project that supports revision control.

If a module is to be made Online Change capable, this can be achieved by the following instructions [} 243].

13.12.2 C++ Module -> OnlineChange
These instructions describe how to subsequently make a module OnlineChange-capable in a versioned
TwinCAT C++ project.

ü Versioned C++ project with C++ module, which is not yet Online Change capable. For this sample, a
module "Module1" is assumed. In addition, an empty, new project can be created with an Online
Change-capable module, from which the changes can be more easily adopted.

1. Open the project and the TMC Editor.
2. Set the Auto generate on save option for the module so that the ClassID is changed automatically.

How to...?

TE1000244 Version: 1.13

3. Under Implemented Interfaces, delete the interfaces ITcADI and ITcWatchsource and add
ITComOnlineChange.

4. Delete the CyclicCaller under Interface Pointer.

How to...?

TE1000 245Version: 1.13

5. Under Parameters some predefined parameters have to be added.
Press + under Parameters and select Predefined to select the predefined ParameterIDs:

You create the following parameters with the given names, in each case without code generation:
"PID_LibraryID" with the name "LibraryID"
"PID_ModuleClsId" with the name "ModuleClsId"
"PID_Ctx_TaskSortOrders with the name "SortOrders"
"PID_Ctx_TaskOids" with the name "Contexts"
"IOFFS_TcIoDataAreaSize" with the name "DataAreas"

ð The result in the overview:

How to...?

TE1000246 Version: 1.13

6. Start the code generation.

7. Some changes must be made in the header of the module "Module1.h". First, delete the declarations of
the interfaces that are no longer required and the corresponding maps in two places.
class CModule1
: public ITComObject
, publicITcADI
, publicITcWatchSource
///<AutoGeneratedContent id="InheritanceList">
, public ITcCyclic
///</AutoGeneratedContent>
{
public:
DECLARE_IUNKNOWN()
DECLARE_IPERSIST(CID_Untitled1CModule1)
DECLARE_ITCOMOBJECT_LOCKOP()
DECLARE_ITCADI()
DECLARE_ITCWATCHSOURCE()
DECLARE_OBJPARAWATCH_MAP()
DECLARE_OBJDATAAREA_MAP()

8. Create a new member variable in the header:
///</AutoGeneratedContent>
ITcADIPtr m_spADI;
// TODO: Custom variable

9. Some changes need to be made to the source code of the module "Module1.cpp". First, delete the
implementations of the interfaces that are no longer required in two places.
BEGIN_INTERFACE_MAP(CModule1)
INTERFACE_ENTRY_ITCOMOBJECT()
INTERFACE_ENTRY(IID_ITcADI, ITcADI)
INTERFACE_ENTRY(IID_ITcWatchSource, ITcWatchSource)
///<AutoGeneratedContent id="InterfaceMap">
INTERFACE_ENTRY(IID_ITcCyclic, ITcCyclic)
///</AutoGeneratedContent>
END_INTERFACE_MAP()
IMPLEMENT_ITCOMOBJECT(CModule1)
IMPLEMENT_ITCOMOBJECT_SETSTATE_LOCKOP2(CModule1)
IMPLEMENT_ITCADI(CModule1)
IMPLEMENT_ITCWATCHSOURCE(CModule1)

10. Delete the implementation of the maps belonging to the deleted interfaces:
BEGIN_SETOBJPARA_MAP(CModule1)
SETOBJPARA_DATAAREA_MAP()
///<AutoGeneratedContent id="SetObjectParameterMap">
SETOBJPARA_VALUE(PID_TcTraceLevel, m_TraceLevelMax)
SETOBJPARA_VALUE(PID_Module1Parameter, m_Parameter)
SETOBJPARA_ITFPTR(PID_Ctx_TaskOid, m_spCyclicCaller)
///</AutoGeneratedContent>
END_SETOBJPARA_MAP()
///
// Get parameters of CModule1
BEGIN_GETOBJPARA_MAP(CModule1)
GETOBJPARA_DATAAREA_MAP()
///<AutoGeneratedContent id="GetObjectParameterMap">
GETOBJPARA_VALUE(PID_TcTraceLevel, m_TraceLevelMax)
GETOBJPARA_VALUE(PID_Module1Parameter, m_Parameter)
GETOBJPARA_ITFPTR(PID_Ctx_TaskOid, m_spCyclicCaller)
///</AutoGeneratedContent>
END_GETOBJPARA_MAP()
///
// Get watch entries of CModule1
BEGIN_OBJPARAWATCH_MAP(CModule1)
OBJPARAWATCH_DATAAREA_MAP()
///<AutoGeneratedContent id="ObjectParameterWatchMap">
///</AutoGeneratedContent>
END_OBJPARAWATCH_MAP()
///

How to...?

TE1000 247Version: 1.13

// Get data area members of CModule1
BEGIN_OBJDATAAREA_MAP(CModule1)
///<AutoGeneratedContent id="ObjectDataAreaMap">
OBJDATAAREA_VALUE(ADI_Module1Inputs, m_Inputs)
OBJDATAAREA_VALUE(ADI_Module1Outputs, m_Outputs)
///</AutoGeneratedContent>
END_OBJDATAAREA_MAP()

11. The m_spAPI pointer must be obtained in the transition P->S in the state machine:
HRESULT CModule1::SetObjStatePS(PTComInitDataHdr pInitData)
{
m_Trace.Log(tlVerbose, FENTERA);
HRESULT hr = S_OK;
IMPLEMENT_ITCOMOBJECT_EVALUATE_INITDATA(pInitData);
// query TcCOM object server for ITcADI interface with own object id,
// which retrieves a reference to the TMC module instance handler
m_spADI.SetOID(m_objId);
hr = FAILED(hr) ? hr : m_spSrv->TcQuerySmartObjectInterface(m_spADI);
// TODO: Add initialization code

12. Add the following in the state machine in the transition S->O, the calls to AddModuleToCaller or
RemoveModuleFromCaller are omitted.
HRESULT hr = S_OK;
// Retrieve pointer to data areas via ITcADI interface from TMC module handler
///<AutoGeneratedContent id="DataAreaPointerInitialization">
///</AutoGeneratedContent>
// TODO: Add any additional initialization
// Cleanup if transition failed at some stage
if (FAILED(hr))
{
 SetObjStateOS();
}

13. Add the following in the state machine in the transition O->S, the call RemoveModuleFromCaller is
omitted:
HRESULT hr = S_OK;
// Release pointer to data areas via ITcADI interface from TMC module handler
///<AutoGeneratedContent id="DataAreaPointerRelease">
///</AutoGeneratedContent>
// TODO: Add any additional deinitialization

14. The AddModuleToCaller and RemoveModuleFromCaller methods are not required and can be deleted.
15. Change the accesses to the DataAreas:

HRESULT CModule1::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
{
 HRESULT hr = S_OK;
 // TODO: Replace the sample with your cyclic code
 m_Counter+=m_pInputs->Value;
 m_pOutputs->Value=m_Counter;
 return hr;
}

16. Implement the ITcOnlineChange. The functions are created by the previous code generation, but must
not return NOTIMPL.
///<AutoGeneratedContent id="ImplementationOf_ITComOnlineChange">
///
// PrepareOnlineChange is called after this instance has been set to PREOP in non RT context.
// Parameter ipOldObj refers to the currently active instance which is still in OP.
// Retrieve parameter values that are not changed during OP via ipOldObj here.
//
// Parameter pOldInfo refers to instance data which includes the libraryId and
// the module class id. This information can be used to implement switch from one
// specific version to another.
HRESULT CModule1::PrepareOnlineChange(ITComObject* ipOldObj, TmcInstData* pOldInfo)
{
HRESULT hr = S_OK;

ULONG nData = sizeof(m_Parameter);
PVOID pData = &m_Parameter;
ipOldObj->TcGetObjPara(PID_Module1Parameter, nData, pData);
return hr;
}
///
// PerformOnlineChange is called after this instance has been set to SAFEOP in RT context.
// Parameter ipOldObj refers to old instance which is now in SAFEOP.
// Allows to retrieve data after the last cyclic update of the old instance and

How to...?

TE1000248 Version: 1.13

// before the first cyclic update of this instance.
HRESULT CModule1::PerformOnlineChange(ITComObject* ipOldObj, TmcInstData* pOldInfo)
{
HRESULT hr = S_OK;

ULONG nData = sizeof(m_Counter);
PVOID pData = &m_Counter;
ipOldObj->TcGetObjPara(PID_Module1Counter, nData, pData);
return hr;
}
///</AutoGeneratedContent>

17. Start the TMC Code Generator again to generate the code for the initialization of the data area pointers.

13.13 Initialization of TMC-member variables
All member variables of a TcCOM module must be initialized. The TMC Code Generator supports this with:
///<AutoGeneratedContent id="MemberInitialization">

The TMC Code Generator replaces this with:
 ///<AutoGeneratedContent id="MemberInitialization">
m_TraceLevelMax = tlAlways;
memset(&m_Parameter, 0, sizeof(m_Parameter));
memset(&m_Inputs, 0, sizeof(m_Inputs));
memset(&m_Outputs, 0, sizeof(m_Outputs));
///</AutoGeneratedContent>

The projects generated with the TwinCAT C++ Wizard prior to TwinCAT 3.1 Build 4018 do not use this
property, but can easily be adapted by inserting this line in the corresponding code (e.g. Constructor):
///<AutoGeneratedContent id="MemberInitialization">

13.14 Using PLC strings as method parameters
To transfer a character string from PLC to C++ as a method parameter, use a pointer with length information
when declaring the method in TMC:

Such a method can be called by means of implementing a method within the wrapper function block.

The reason is the different handling of method parameters in the two worlds:

• PLC: Uses the call by value for STRING(nn) data types.
• TwinCAT C++ (TMC): Uses the call by reference.

How to...?

TE1000 249Version: 1.13

13.15 Third Party Libraries
C/C++ code existing in Kernel mode cannot be linked with or execute libraries from third parties that were
developed for execution in User mode. There is therefore no possibility to use any DLL directly in TwinCAT
C++ modules.

The connection of the TwinCAT 3 real-time environment can be realized via ADS communication instead.
You can implement a User-mode application that makes use of the third-party library that provides TwinCAT
functions via ADS.

This action of an ADS component in User mode can take place both as a client (i.e. the DLL transmits data
to the TwinCAT real-time if necessary) and as a server (i.e. the TwinCAT real-time fetches data from the
User mode if necessary).

Such an ADS component in User mode can also be used in the same way from the PLC. In addition, ADS
can communicate beyond device limits.

The following samples illustrate the use of ADS in C++ modules:

Sample03: C++ as ADS server [} 258]

Sample07: Receiving ADS Notifications [} 273]

Sample08: provision of ADS-RPC [} 274]

13.16 Linking via TMC editor (TcLinkTo)
Similar to the PLC, in TwinCAT C++ a link to the hardware, for example, can be predefined at the time of
encoding.
This is done in the TMC editor at the symbol to be linked. A property TcLinkTo with the value of the target is
specified. The screenshot below illustrates this:

How to...?

TE1000250 Version: 1.13

Note that such an instruction applies to all instances of the module:

How to...?

TE1000 251Version: 1.13

Troubleshooting

TE1000252 Version: 1.13

14 Troubleshooting
This is a list of pitfalls and glitches within the handling of TwinCAT C++ modules.

14.1 Build - "The target ... does not exist in the project"
In particular when transferring a TwinCAT solution from one machine to another, Visual Studio may display
error messages to the effect that not all targets (such as Build, Rebuild, Clean) exist in the project.

Check the configuration of the "platform toolset" of the C++ project. It may need to be reconfigured if
solutions migrate from one Visual Studio version to another:

14.2 Debug - "Unable to attach"
If this error message appears when starting the debugger in order to debug a TwinCAT C++ project, then a
configuration step is missing:

Troubleshooting

TE1000 253Version: 1.13

In this case, navigate to System -> Real-Time, select the C++ Debugger tab and activate the option Enable
C++ Debugger.

14.3 Activation – “invalid object id” (1821/0x71d)
If the ADS Return Code 1821 / 0x71d is reported during the course of the start, check the context of the
module instance as described in Quick start [} 69].

Troubleshooting

TE1000254 Version: 1.13

14.4 Error message - VS2010 and LNK1123/COFF
During the compilation of a TwinCAT C++ module, the error message

LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or
corrupt

indicates that a Visual Studio 2010 is being used, but without Service Pack 1, which is required [} 20] for
TwinCAT C++ modules.

Download the installation program for the service pack from Microsoft.

14.5 Using C++ classes in TwinCAT C++ module
When adding (non-TwinCAT) C++ classes using the Visual Studio context menu Add->Class..., the
compiler/linker reports:
Error 4 error C1010: unexpected end of file while looking for precompiled

header. Did you forget to add '#include ""' to your source?

Insert the following lines at the start of your generated class file:
#include "TcPch.h"

#pragma hdrstop

14.6 Using afxres.h
In some templates afxres.h is included, which in some systems is not provided.

This header file can be replaced by winres.h.

http://www.microsoft.com/en-us/download/confirmation.aspx?id=23691

C++-samples

TE1000 255Version: 1.13

15 C++-samples
Numerous samples are available – further samples follow.

This picture provides an overview in graphical form and places the emphasis on the interaction possibilities
of a C++ module.

Beyond that, this is a table with brief descriptions of the samples.

C++-samples

TE1000256 Version: 1.13

Number Title Description
01 Sample01: Cyclic with IO module

[} 257]
This article describes the implementation of a TC3 C++
module that uses an IO module mapped with physical IO.
This sample describes the quick start for the purpose of
creating a C++ module that increments a counter on
each cycle and assigns the counter to the logical output
"Value" in the data area.
The data area can be assigned to the physical IO or
another logical input or another module instance.

02 Sample02: Cyclic with IO task [} 258] Describes the flexibility of C++ code when working with
IOs that are configured at the task. Thanks to this
approach, a finally compiled C++ module can affect
various IOs connected with the IO task much more
flexibly. One application could be to check cyclic analog
input channels, where the number of input channels can
differ from one project to another.

03 Sample03: ADS Server Client [} 258] Describes the design and implementation of one's own
ADS interface in a C++ module.
The sample contains two parts:
• ADS Server implemented in TC3 C++ with user-

specific ADS interface
• ADS Client UI implemented in C#, which transmits

user-specific ADS messages to the ADS server.
05 Sample05: CoE access via ADS [} 267] Shows how CoE registers of EtherCAT devices can be

accessed over ADS.
06 Sample06: ADS C# client uploads ADS

symbols [} 268]
Shows how symbols in an ADS server can be accessed
via the ADS interface. C# ADS client connects to a
module implemented in PLC/C++/Matlab. Upload the
available symbol information and read/write subscription
for process values.

07 Sample07: Receiving ADS
Notifications [} 273]

Describes the implementation of a TC3 C++ module that
receives ADS notifications regarding data changes on
other modules.

08 Sample08: provision of ADS-RPC
[} 274]

Describes the implementation of methods that can be
called by ADS via the task.

10 Sample10: Module communication:
Use of data pointers [} 277]

Describes the interaction between two C++ modules with
a direct data pointer. The two modules must be
implemented on the same CPU core in the same real-
time context.

11 Sample11: Module communication:
PLC module calls a method of a C-
module [} 278]

This sample contains two parts
• A C++ module which functions as a state machine that

provides an interface with methods for starting/
stopping and also for setting/maintaining the state
machine.

• Second PLC module for interacting with the first
module by calling methods from the C++ module.

11a Sample11a: Module communication:
C-module cites a method in the C-
module [} 306]

This sample contains two classes in one driver (can also
be done between two drivers)
• One module that provides a calculation method.

Access is protected through a Critical section.
• A second module that acts as the caller in order to use

the methods in the other module.
12 Sample12: Module communication: IO

mapping used [} 306]
• Describes how two modules can interact with each

other via mapping of symbols from the data area of
different modules. The two modules can be executed
on the same or different CPU cores.

C++-samples

TE1000 257Version: 1.13

13 Sample13: Module communication: C-
module calls PLC methods [} 307]

• Describes how a TwinCAT C++ module calls a PLC
function block using TcCOM interface methods.

19 Sample19: Synchronous File Access
[} 310]

Describes how the File IO function can be used in a
synchronized manner with C++ modules.
The sample writes process values in a file. The writing of
the file is triggered by a deterministic cycle - the
execution of File IO is decoupled (asynchronous), i.e.:
the deterministic cycle continues to run and is not
hindered by writing to the file. The status of the routine
for decoupled writing to the file can be checked.

20 Sample20: FileIO-Write [} 311] Describes how the File IO function can be used with C++
modules.
The sample writes process values in a file. The writing of
the file is triggered by a deterministic cycle - the
execution of File IO is decoupled (asynchronous), i.e.:
the deterministic cycle continues to run and is not
hindered by writing to the file. The status of the routine
for decoupled writing to the file can be checked.

20a Sample20a: FileIO-Cyclic Read / Write
[} 311]

A more extensive sample than S20 and S19. It describes
the cyclic read and/or write access to files from a TC3 C+
+ module.

22 Sample22: Automation Device Driver
(ADD): Access DPRAM [} 312]

Describes how the TwinCAT Automation Device Driver
(ADD) is to be written for access to the DPRAM.

23 Sample23: Structured Exception
Handling (SEH) [} 314]

Describes the use of Structured Exception Handling
(SEH) based on five variants.

24 Sample24: Semaphores [} 316] Describes the use of semaphores.
25 Sample25: Static Library [} 317] Describes how to use the TC3 C++ static library

contained in another TC3 C++ module.
26 Sample26: Order of execution in a

task [} 318]
Describes the determination of the task execution order,
if a task is assigned to more than one module.

30 Sample30: Timing Measurement
[} 320]

Describes the measurement of the TC3 C++ cycle or
execution time.

31 Sample31: Functionblock TON in
TwinCAT3 C++ [} 321]

Describes the implementation of a behavior in C++,
which is comparable to a TON function block of PLC /
61131.

37 Sample37: Archive data [} 323] Describes the loading and saving of the state of an object
during the initialization and de-initialization.

TcCOM TcCOM samples [} 324] Several samples are provided to illustrate the module
communication between PLC and C++.

15.1 Sample01: Cyclic module with IO
This article describes how to implement a TC3 C++ module which is using the module IO mapped to
physical IO

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample01-Cyclic-with-module-IO/S01-CyclicIO.zip

C++-samples

TE1000258 Version: 1.13

ð The sample is ready for operation.

Description

This sample describes the quick start for the purpose of creating a C++ module that increments a counter on
each cycle and assigns the counter to the logical output Value in the data area.
The data area can be assigned to the physical IO or another logical input or another module instance.

The sample is described step by step here in the short instructions.

15.2 Sample02: Cyclic C++ logic, which uses IO from the IO
Task

This article describes the implementation of a TC3 C++ module that uses an image of an IO Task.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Source code, which is not automatically generated by the wizard, is identified with a start flag "//sample
code" and end flag "//sample code end".
In this way you can search for these strings in the files, in order to get an idea of the details.

Description

This sample describes the flexibility of C++ code when working with IOs configured at the task. This
approach enables a compiled C++ module to respond more flexibly, if a different number of IOs are linked to
the IO task. One application option would be cyclic testing of analog input channels with a different number
of channels, depending on the project.

The sample contains

• the C++ module TcIoTaskImageAccessDrv with a module instance TcIoTaskIMageAccessDrv_Obj1
• A "Task1" with an image, 10 input variables (Var1..Var10) and 10 output variables (Var11..Var20).
• They are linked: The instance is called by the task and uses the image of Task1.

The C++ code accesses the values via a data image, which is initialized during the transition from SAFEOP
to OP (SO).

In the cyclically executed method CycleUpdate the value of each input variable is checked by calling the
helper method CheckValue. If it is less than 0, the corresponding output variable is set to 1, if it is greater
than 0, it is set to 2, if it is 0, the output is set to 3.

After activation of the configuration you can access the variables via the Solution Explorer and set them.
Double-click on the Task1 image of system for an overview.
The input variables can be opened and then set with the Online tab.

15.3 Sample03: C++ as ADS server
This article describes:

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample02-Cyclic-with-task-IO/S02-CyclicIOTask.zip

C++-samples

TE1000 259Version: 1.13

• The creation of a TC3 C++ module that acts as an ADS server.
The server provides an ADS interface for starting / stopping / resetting a counter variable in the C++
module. The counter is available as a module output and can be assigned to an output terminal
(analog or a number of digital IOs).
How the TC3 ADS server function written in C++ is to be implemented. [} 259]

• The creation of a C# ADS client to interact with the C++ ADS server.
The client provides a UI for connection locally or via a network to an ADS server with the ADS interface
to be counted. The UI enables the starting / stopping / reading / overwriting and resetting of the
counter.
Sample code: ADS Client UI written in C# [} 263].

Understanding the sample

Options for the automatic determination of an ADS port are used in the sample. The disadvantage of this is
that the client has to be configured at each start in order to access the correct ADS port.

Alternatively, the ADS port can be hard-coded in the module as shown below.
Disadvantage here: The C++ module cannot be instanced more than once as it is not possible to share an
ADS port.

15.3.1 Sample03: TC3 ADS Server written in C++
This article describes how to create a TC3-C++ module acting as a ADS-server.
The server will provide an ADS interface to start / stop / reset an counter variable insight the C++ module.

Download

Here you can access the source code for this sample:

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample03-ADS-Server-Client/S03-ADSServer.zip

C++-samples

TE1000260 Version: 1.13

Description

This sample contains a C++ module that acts as an ADS server. The server grants access to a counter that
can be started, stopped and read.

The header file of the module defines the counter variable m_bCount, and the corresponding .cpp file
initializes the value in the constructor and implements the logic in the CycleUpdate method.

The AdsReadWriteInd method in the .cpp file analyzes the incoming messages and returns the return
values. A define in the header file is added for a further added message type.

Details such as the definition of the ADS message types are described in the following cookbook, where you
can compile the sample manually.

Cookbook

This is a step by step description about the creation of the C++ module.

1. Create a new TwinCAT 3 project solution

Follow the steps for creating a new TwinCAT 3 project [} 60].

2. Create a C++ project with ADS port

Follow the steps for the creation of a new TwinCAT 3 C++ project.

Select TwinCAT Module Class with ADS port in the Class templates dialog.

3. Add the sample logic to the project
1. Open the header file <MyClass>.h (in this sample Module1.h) and add the counter m_bCount to the

protected area as a new member variable:
class CModule1
 : public ITComObject
 , public ITcCyclic
 ,...
{
public:
 DECLARE_IUNKNOWN()

protected:
 DECLARE_ITCOMOBJECT_SETSTATE();
///<AutoGeneratedContent id="Members">
 ITcCyclicCallerInfoPtr m_spCyclicCaller;

///</AutoGeneratedContent>
 ULONG m_ReadByOidAndPid;
 BOOL m_bCount;
};

2. Open the class file <MyClass>.cpp (in this sample Module1.cpp) and initialize the new values in the
constructor:
CModule1::CModule1()

{
 memset(&m_Counter, 0, sizeof(m_Counter));
 memset(&m_Inputs, 0, sizeof(m_Inputs));
 memset(&m_Outputs, 0, sizeof(m_Outputs));
 m_bCount = FALSE; // by default the counter should not increment
 m_Counter = 0; // we also initialize this existing counter
}

ð The sample code has been added.

C++-samples

TE1000 261Version: 1.13

3.a. Add the sample logic to the ADS server interface.

Usually, the ADS server receives an ADS message, which contains two parameters (indexGroup and
indexOffset) and perhaps further data pData.

Designing an ADS interface
Our counter is to be started, stopped, reset, overwritten with a value or send a value to the ADS client on
request:

indexGroup indexOffset Description
0x01 0x01 m_bCount = TRUE, counter is

incremented.
0x01 0x02 Counter value is transferred to

ADS client.
0x02 0x01 m_bCount = FALSE, counter is no

longer incremented.
0x02 0x02 Reset counter.
0x03 0x01 Overwrite counter with value

transferred by ADS client.

These parameters are defined in modules1Ads.h – change the source code to add a new command for
IG_RESET.
#include "TcDef.h"
enum Module1IndexGroups : ULONG
{
 Module1IndexGroup1 = 0x00000001,
 Module1IndexGroup2 = 0x00000002, // add command
 IG_OVERWRITE = 0x00000003 // and new command
};

enum Module1IndexOffsets : ULONG
{
 Module1IndexOffset1 = 0x00000001,
 Module1IndexOffset2 = 0x00000002
};

Change the source code in your <MyClass>::AdsReadWriteInd() method (in this case in Module1.cpp).
switch(indexGroup)
{
case Module1IndexGroup1:
 switch(indexOffset)
 {
 case Module1IndexOffset1:
 ...
 // TODO: add custom code here
 m_bCount = TRUE; // receivedIG=1 IO=1, start counter
 AdsReadWriteRes(rAddr, invokeId, ADSERR_NOERR, 0,NULL);
 break;
 case Module1IndexOffset2:
 ...
 // TODO: add custom code here
 // map counter to data pointer
 pData = &m_Counter; // received IG=1 IO=2, provide counter value via ADS
 AdsReadWriteRes(rAddr, invokeId, ADSERR_NOERR, 4 ,pData);
//comment this: AdsReadWriteRes(rAddr, invokeId,ADSERR_NOERR, 0, NULL);
 break;
 }
 break;
case Module1IndexGroup2:
 switch(indexOffset)
 {
 case Module1IndexOffset1:
 ...
 // TODO: add custom code here
 // Stop incrementing counter
 m_bCount = FALSE;
 // map counter to data pointer
 pData = &m_Counter;
 AdsReadWriteRes(rAddr, invokeId, ADSERR_NOERR, 4,pData);
 break;
case Module1IndexOffset2:

C++-samples

TE1000262 Version: 1.13

 ...
 // TODO: add custom code here
 // Reset counter
 m_Counter = 0;
 // map counter to data pointer
 pData = &m_Counter;
 AdsReadWriteRes(rAddr, invokeId, ADSERR_NOERR, 4, pData);
 break;
}
break;
case IG_OVERWRITE:
 switch(indexOffset)
 {
 case Module1IndexOffset1:
 ...
 // TODO: add custom code here // override counter with value provided by ADS-client
 unsigned long *pCounter = (unsigned long*) pData;
 m_Counter = *pCounter;
 AdsReadWriteRes(rAddr, invokeId, ADSERR_NOERR, 4, pData);
 break;
}
break;
}
break;
default:
 __super::AdsReadWriteInd(rAddr, invokeId, indexGroup,indexOffset, cbReadLength, cbWriteLength,
pData;
 break;
}

3.b. Add sample logic to the cyclic part

The method <MyClass>::CycleUpdate() is cyclically called - this is the place to modify the logic.
// TODO: Replace the sample with your cyclic code
m_Counter+=m_Inputs.Value; // replace this line
m_Outputs.Value=m_Counter;

In this case the counter mCounter is incremented if the boolean variable m_bCount is true.

Insert this If-Case to your cyclic method
HRESULT CModule1::CycleUpdate(ITcTask* ipTask,
ITcUnknown* ipCaller, ULONG context)
{
HRESULT hr = S_OK;
// handle pending ADS indications and confirmations
CheckOrders();
....
// TODO: Replace the sample with your cyclic code
if (m_bCount) // new part
{
 m_Counter++;
}
m_Outputs.Value=m_Counter;
}

4. Execute server sample

1. Run the TwinCAT TMC Code Generator [} 71] in order to provide the inputs/outputs for the module.
2. Save the project.

3. Compile [} 71] the project.
4. Create a module instance.
5. Create a cyclic task and configure the C++ module for the execution in this context.
6. Scan the hardware IO and assign the symbol Value of outputs to certain output terminals (this is

optional).

7. Activate [} 87] the TwinCAT project.
ð The sample is ready for operation.

C++-samples

TE1000 263Version: 1.13

5. Determine the ADS port of the module instance

Generally the ADS port may be

• pre-numbered, so that the same port is always used for this module instance.
• kept customizable, in order to offer several module instances the option to have their own ADS port

assigned on startup of the TwinCAT system.

In this sample the default setting (keep flexible) is selected. First of all you have to determine the ADS port
that was assigned to the module that has just been activated.

1. Navigate to the module instance.
2. Select the Parameter Online tab.

ð 0x8235 or decimal 33333 is assigned to the ADS port (this may be different in your sample). If more
and more instances are created, each instance is allocated its own unique AdsPort.

ð The counter is still at "0" because the ADS message to start the incrementation has not been sent.

ð The server part is completed - continue with ADS client sends the ADS messages [} 263].

Also see about this
2 Create TwinCAT 3 C++ Module instance [} 67]
2 Create a TwinCAT task and apply it to the module instance [} 69]

15.3.2 Sample03: ADS client UI in C#
This article describes the ADS client, which sends ADS messages to the previously described ADS server.

The implementation of the ADS server depends neither on the language (C++ / C# / PLC / ...) nor on the
TwinCAT version (TwinCAT 2 or TwinCAT 3).

Download

Here you can access the source code for this sample.

ü This code requires .NET Framework 3.5 or higher!
1. Unpack the downloaded ZIP file.
2. Open the sln file contained in it with Visual Studio.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample03-ADS-Server-Client/S03-ADSClient.zip

C++-samples

TE1000264 Version: 1.13

3. Create the sample on your local machine (right-click on the project and click on Build).
4. Start the program with a right-click on Project, Debug->Start new instance.

Description

This client performs two tasks:

• Testing the ADS-server, which was described before.
• Providing sample code for implementing a ADS-client

Using the client

Selecting a communication partner

Enter both ADS parameters in order to specify your ADS communication partner:

• NetID:
127.0.0.1.1.1 (for ADS partner also linked with local ADS Message Router)
Enter another NetID, if you want to communicate with an ADS partner connected to another ADS
router via the network.
First you have to create an ADS route between your device and the remote device.

• AdsPort
Enter the AdsServerPort of your communication partner.
Do not confuse the ADS server port (which has explicitly implemented your own message handler) with
the regular ADS port for the purpose of access to symbols (this is provided automatically, without the
need for user intervention).
Find the assigned AdsPort [} 259], in this sample the AdsPort was 0x8235 (dec 33333).

Create link with communication partner

Click on Connect to call the method TcAdsClient.Connect for the purpose of creating a link with the
configured port.

ADS messages are sent to the ADS server with the help of the Start / Read / Stop / Overwrite / Reset
buttons.
The specific indexGroup / indexOffset commands were already designed in the ADS interface of the ADS
server [} 259].

C++-samples

TE1000 265Version: 1.13

The result of clicking on the command buttons can also be seen in the module instance in the Parameters
(online) tab.

C# program

Here is the "Core" code of the ADS client – download for the GUI or ZIP file above.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using TwinCAT.Ads;

namespace adsClientVisu
{
public partial class form : Form
{
 public form()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // create a new TcClient instance
 _tcClient = new TcAdsClient();
 adsReadStream = new AdsStream(4);
 adsWriteStream = new AdsStream(4);

C++-samples

TE1000266 Version: 1.13

 }

 /*
 * Connect the client to the local AMS router
 */

 private void btConnect_Click(object sender, EventArgs e)
 {
 AmsAddress serverAddress = null;
 try
 {
 serverAddress = new AmsAddress(tbNetId.Text,
 Int32.Parse(tbPort.Text));
 }
 catch
 {
 MessageBox.Show("Invalid AMS NetId or Ams port");
 return;
 }

 try
 {
 _tcClient.Connect(serverAddress.NetId, serverAddress.Port);
 lbOutput.Items.Add("Client port " + _tcClient.ClientPort + " opened");

 }
 catch
 {
 MessageBox.Show("Could not connect client");
 }
 }

 private void btStart_Click(object sender, EventArgs e)
 {
 try
 {
 _tcClient.ReadWrite(0x1, 0x1, adsReadStream, adsWriteStream);
 byte[] dataBuffer = adsReadStream.ToArray();
 lbOutput.Items.Add("Counter started value = " + BitConverter.ToInt32(dataBuffer, 0));
 }

 catch (Exception err)
 {
 MessageBox.Show(err.Message);
 }

 }

 private void btRead_Click(object sender, EventArgs e)
 {
 try
 {
 _tcClient.ReadWrite(0x1, 0x2, adsReadStream, adsWriteStream);
 byte[] dataBuffer = adsReadStream.ToArray();
 lbOutput.Items.Add("Counter = " + BitConverter.ToInt32(dataBuffer, 0));
 }

 catch (Exception err)
 {
 MessageBox.Show(err.Message);
 }
 }

 private void btStop_Click(object sender, EventArgs e)
 {
 try
 {
 _tcClient.ReadWrite(0x2, 0x1, adsReadStream, adsWriteStream);
 byte[] dataBuffer = adsReadStream.ToArray();
 lbOutput.Items.Add("Counter stopped value = " + BitConverter.ToInt32(dataBuffer, 0));
 }

 catch (Exception err)
 {
 MessageBox.Show(err.Message);
 }
 }

 private void btReset_Click(object sender, EventArgs e)
 {

C++-samples

TE1000 267Version: 1.13

 try
 {
 _tcClient.ReadWrite(0x2, 0x2, adsReadStream, adsWriteStream);
 byte[] dataBuffer = adsReadStream.ToArray();
 lbOutput.Items.Add("Counter reset Value = " + BitConverter.ToInt32(dataBuffer, 0));
 }

 catch (Exception err)
 {
 MessageBox.Show(err.Message);
 }
 }
}
}

15.4 Sample05: C++ CoE access via ADS
This article describes how to implement a TC3 C++ modules which can access the CoE (CANopen over
EtherCAT) register of a EtherCAT terminal.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).
5. Note the actions listed on this page under Configuration.

6. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

This sample describes access to an EtherCAT Terminal, which reads the manufacturer ID and specifies the
baud rate for serial communication.

This sample describes the quick start for the purpose of creating a C++ module that increments a counter on
each cycle and assigns the counter to the logical output Value in the data area.

Configuration
1. Activate the EtherCAT address of the terminal concerned and assign it.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample05-CoE-Access-via-Ads/S05-CoEAccess.zip

C++-samples

TE1000268 Version: 1.13

2. Activate inclusion of the ADS address in the advanced settings for the EtherCAT Terminal:

3. Assign the ADS address (including netId and port) to the module input AdsAdress:

4. The module parameters are read out and displayed by the sample code during the course of the

initialization:

15.5 Sample06: UI-C#-ADS client uploading the symbolic
from module

This article describes the implementation of an ADS client to

• connect to an ADS server that provides a process image (data area); the connection can be
established locally or remotely via a network,

C++-samples

TE1000 269Version: 1.13

• upload symbol information,
• read / write data synchronously,
• subscribe to symbols, in order to obtain values on change as callback.

Download

Access the source code for this client sample:

ü This code requires .NET Framework 3.5 or higher!
1. Unpack the downloaded ZIP file.
2. Open the sln file contained in it with Visual Studio.
3. Create the sample on your local machine (right-click on the project and click on "Build").
4. Start the program with a right-click on Project, Debug->Start new instance.

The client sample should be used with example 03 "C++ as ADS server".

Open Sample 03 [} 259] before you begin with this client-side sample!

Description

The possibilities of the ADS are described on the basis of this sample.

The details of the implementation are described in Form1.cs, which is included in the download. The
connection via ADS with the target system is established in the btnLoad_Click method, which is called on
clicking on the Load Symbols button. From there you can explore the different GUI functions.

Background information:

For this ADS client it is irrelevant whether the ADS server is based on TwinCAT 2 or TwinCAT 3. It also
doesn't matter if the server is a C++ module, a PLC module or an IO task without any logic.

The ADS client UI

On starting of the sample the user interface (UI) is displayed.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample06-ADS-Client/S06-SymbolUploadClient.zip

C++-samples

TE1000270 Version: 1.13

Selecting a communication partner

After starting the client, enter the two ADS parameters, in order to determine your ADS communication
partner.

• NetID:
127.0.0.1.1.1 (for ADS partner also linked with local ADS message router).
Enter another NetID, if you want to communicate with an ADS partner connected to another ADS
router via the network.
First you have to create an ADS route between your device and the remote device.

• AdsPort
Enter the AdsPort of your communication partner: 350 (in this sample).

Do not confuse the ADS server port with the regular ADS port.
Do not confuse the ADS server port (which was explicitly implemented in sample 03 for providing
your own message handler) with the regular ADS port for the purpose of access to symbols (this is
provided automatically, without the need for user intervention):
The regular ADS port is required to access symbols. You can find the AdsPort for the IO task of
your instance or the module instance yourself (since the module is executed in the context of the IO
task).

C++-samples

TE1000 271Version: 1.13

Navigate to IO task Task1 and note the value of the port: 350.

Since the C++ module instance is executed in the context of Task1, the ADS port is also 350.

Enabled symbols for access available via ADS

Individual symbols or whole data areas can be provided for access via ADS, or they can be deliberately not
provided.
Navigate to the Data Area tab of your instance and activate/deactivate the C/S column.

In this sample all symbols are marked and therefore available for ADS access.

After making the changes, click on Activate configuration.

C++-samples

TE1000272 Version: 1.13

Load symbols

Once the NetID and the ADS port have been set up, click on the Load Symbols button to make a
connection with the target system and load the symbols.

All available symbols are then visible. You can then:

• Write a new value:
select a symbol in the left-hand tree, e.g. Counter.
enter a new value in the edit box Value on the right-hand side and click on Write using WriteSymbol.
The new value is written to the ADS server.

After writing a new value with Write using WriteSymbol, the C# application is assigned a callback
with the new value.

C++-samples

TE1000 273Version: 1.13

• Subscribe in order to obtain callback when the value changes:
select a symbol in the left-hand tree, e.g. Counter.
click on Watch Current Symbol.

15.6 Sample07: Receiving ADS Notifications
This article describes how to implement a TC3 C++ module which receives ADS Notifications about data
changes on other modules.
Since all other ADS communication has to be implemented in a similar way, this sample is the general entry
point to initialize ads communication from TwinCAT C++ modules.

Download

Here you can access the source code for this sample:

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

This sample describes the reception of ADS notifications in a TwinCAT C++ module.

The solution contains 2 modules for this purpose.

• A C++ module, which registers for querying ADS notifications of a variable.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample07-AdsNotifications/S07-AdsNotifications.zip

C++-samples

TE1000274 Version: 1.13

• For a simple understanding: A PLC program that provides a variable MAIN.PlcVar.
If its value changes, an ADS notification is sent to the C++ module.

• The C++ module utilizes the message recording options. For a better understanding of the code,
simply start the sample and note the output / error log when you change the value Main.PlcVar of the
PLC module.

The address is prepared during the module transition PREOP->SAFEOP (SetObjStatePS). The CycleUpdate
method contains a simple state machine, which sends the required ADS command. Corresponding methods
show the receipts.

The inherited and overloaded method AdsDeviceNotificationInd is called when a notification is received.

During shutdown, ADS messages are sent during transition for the purpose of logoff (SetObjStateOS), and
the module waits for receipts of confirmation until a timeout occurs.

Start of the module development
Creating a TwinCAT C++ module with the aid of the ADS port wizard. This sets up everything you
need for establishing an ADS communication. Simply use and overwrite the required ADS methods
of ADS.h, as shown in the sample.

See also

ADS Communication [} 208]

15.7 Sample08: provision of ADS-RPC
This article describes the implementation of methods that can be called by ADS via the task.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The download contains 2 projects:

• The TwinCAT project, which contains a C++ module. This offers some methods that can be called by
ADS.

• Also included is a Visual C++ project that calls the methods from the User mode as a client.

Four methods with different signatures are provided and called. These are organized in two interfaces, so
that the composition of the ADS symbol names of the methods becomes clear.

Understanding the sample

The sample consists of the TwinCAT C++ module, which offers the RPC methods and a C++ sample
program that calls them.

TwinCAT C++ module

The TwinCAT C++ project contains a module and an instance of the module with the name "foobar".

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample08-AdsRPC/S08-ADSRPC.zip

C++-samples

TE1000 275Version: 1.13

RPC methods are normal methods that are described by interfaces in the TMC editor and are additionally
enabled by an RPC enable checkbox. The options are described in greater detail in the Description of the
TMC Editor [} 103].

In this module two interfaces are described and implemented, as can be seen in the TMC Editor:

The methods, four in all, have different signatures of call and return values.

Their ADS symbol name is formed according to the pattern: ModuleInstance.Interface#MethodName
Particularly important in the implementing module is the ContextId, which defines the context for the
execution.

C++-samples

TE1000276 Version: 1.13

As can be seen in the C++ code itself, the methods are generated by the code generator and implemented
like normal methods of a TcCOM module.

If the type information of the methods is to be available on the target system, the TMI file of the module can
be transferred to the target system.

The TwinCAT OPC-UA server offers the option to call these methods also by OPC-UA – the TMI files are
required on the target system for this.

C++ example client

C++-samples

TE1000 277Version: 1.13

Directly after starting, the C++ client will fetch the handles and then call the methods any number of times;
however a [RETURN] is expected between the procedures. Every other key leads to the enabling of the
handle and the termination of the program.
The outputs illustrate the calls:

15.8 Sample10: module communication: Using data pointer
This article describes the implementation of two TC3 C++ modules, which communicate via a data pointer.

Download

Here you can access the source code for this sample:

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

This communication is based on a "split" data area: Provided by a module and accessible from another
module via pointers.

It is not possible that two different data pointers are linked with the same entry in an output or input data
area; without this limitation there could be synchronization problems. For this reason a ModuleDataProvider
module consolidates input and output in a standard data area, which is not subject to this restriction.

All in all, this sample includes the following modules:

• ModuleDataProvider provides a data area, which can be accessed by the other modules.
The data area contains 4 bits (2 for input, 2 for output) and 2 integers (1 for input, 1 for output).

• ModuleDataInOut provides "normal" input variables, which are written to the data area of the
ModuleDataProvider, and output variables, which are read from
the data area.
This instance of the CModuleDataInOut class serve as a simulation for real IO.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample10-ModuleCommunication-DataPointer/S10-Mod2ModDataPointer.zip

C++-samples

TE1000278 Version: 1.13

• ModuleDataAccessA accesses the data area of ModuleDataProvider and cyclically processes Bit1 /
BitOut1 and the integer.

• ModuleDataAccessB accesses the data area of ModuleDataProvider and cyclically processes Bit2 /
BitOut2 and the integer.

The user of the sample triggers ModuleDataInOut by setting the variables ValueIn / Bit1 / Bit2:

• When setting the input Bit1, the output Switch1 will be set accordingly.
• When setting the input Bit2, the output Switch2 will be set accordingly.
• When the input ValueIn is set, the output ValueOut is incremented twice in each cycle.

All modules are configured such that they have the same task context, which is necessary since access via
pointers offers no synchronization mechanism. The order of execution corresponds to the order specified on
the context configuration tab. This value is passed on as parameter SortOrder and stored in the smart
pointer of the cyclic caller (m_spCyclicCaller), which also contains the object ID of the cyclic caller.

Understanding the sample

The module ModuleDataInOut has input and output variables. They are linked with the corresponding
variables of the data provider.

The module ModuleDataProvider provides an input and output data array and implements the ITcIoCylic
interface. The method InputUpdate copies data from the input variables to the DataIn symbol of the standard
data area Data, and the method OutputUpdate copies data from the DataOut symbol to the output variables.

The modules ModuleDataAccessA and ModuleDataAccessB contain pointers to data areas of the data
provider via links. These pointers are initialized during the transition from SAFEOP to OP.
ModuleDataAccessA cyclically sets BitOut1 according to Bit1. ModuleDataAccessB accordingly, with
BitOut2 / Bit2. Both increment ValueOut through multiplication of the internal counter with the value ValueIn.

It is important that all modules are executed in the same context, since there is no synchronization
mechanism via data pointers. The order of execution is defined by the Sort Order on the Context tab of the
respective module. This is provided as parameter SortOrder in the SmartPointer (m_SpCyclicCaller), which
also includes the ObjectID.

15.9 Sample11: module communication: PLC module
invokes method of C-module

This article describes the implementation:

• of a C++ module [} 279] that provides methods for controlling a state machine.
Follow this step-by-step introduction with regard to the implementation of a C++ module that provides
an interface to the state machine.

• of a PLC module [} 294] for calling the function of the C++ module.
The fact that no hard-coded link exists between the PLC and the C++ module is a great advantage.
Instead, the called C++ instance can be configured in the system manager.
Follow this step-by-step introduction with regard to the implementation of a PLC project that calls
methods from a C++ module.

Download

Get the source code for this sample:

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample11-ModuleCommunication-MethodCalls/S11-Mod2ModMethod.zip

C++-samples

TE1000 279Version: 1.13

ð The sample is ready for operation.

15.9.1 TwinCAT 3 C++ module providing methods
This article describes the creation of a TwinCAT 3 C++ module that provides an interface with several
methods that can be called by a PLC and also by other C++ modules.

The idea is to create a simple state machine in C++ that can be started and stopped from the outside by
other modules, but which also allows the setting or reading of the particular state of the C++ state machine.

Two further articles use the result from this C++ state machine.

• Calling the function from the PLC logic [} 278] - i.e. affecting the C++ code from the PLC.

• Calling the function from the C++ logic [} 306] - i.e. interaction between two C++ modules.

This article describes:

• Step 1: create a new TwinCAT 3 project [} 279].

• Step 2: create a new TwinCAT 3 C++ driver [} 280].
• Step 3: create a new TwinCAT 3 interface.

• Step 4: add methods to the interface [} 283].
• Step 5: add a new interface to the module.

• Step 6: start the TwinCAT TMC Code Generator to generate code for the module class description
[} 288].

• Step 7: implement the member variables and the constructor.
• Step 8: implement methods.
• Step 9: implement cyclic update.

• Step 10: compile code [} 291]
• Step 11: create an instance of the C++ module.
• Step 12: done. Check the results.

Step 1: create a new TwinCAT 3 project

First of all, create a TwinCAT project as usual.

C++-samples

TE1000280 Version: 1.13

Step 2: create a new TwinCAT 3 C++ driver
1. Right-click on C++ and Add New Item…

C++-samples

TE1000 281Version: 1.13

2. Select the template TwinCAT Driver Project and enter a driver name, "StateMachineDrv" in this sample.
Click on Add to continue.

3. Select a template to be used for this new driver. In this sample "TwinCAT Module Class with Cyclic IO" is
selected, since the internal counter of the state machine is available for assigning to the IO.

4. Click on Add to continue.

5. Specify a name for the new class in the C++ driver "StateMachineDrv".
The names of the module class and the header and source files are derived from the specified "Short
Name".

C++-samples

TE1000282 Version: 1.13

6. Click on OK to continue.

ð The wizard then creates a C++ project, which can be compiled error-free.

Step 3: create a new TwinCAT 3 interface

NOTE
Name conflict
A name collision can occur if the driver is used in combination with a PLC module.
Do not use any of the keywords that are reserved for the PLC as names.

C++-samples

TE1000 283Version: 1.13

1. Start the TMC editor by double-clicking on StateMachineDrv.tmc.

2. Select Data Types within the TMC editor.

3. Add a new interface by clicking on Add a new interface .
ð A new entry IInterface1 is then listed.

4. Open IInterface1 by double-clicking in order to change the properties of the interface.
5. Enter a meaningful name - in this sample "IStateMachine".

ð The interface has been created.

Step 4: add methods to the interface
1. Click on Edit Methods... to get a list of the methods of this interface:

Click on the + button to create a new default method, Method1.

C++-samples

TE1000284 Version: 1.13

2. Replace the default name Method1 by a more meaningful name, in this sample "Start".

3. Add a second method and name it "Stop".

4. Add a third method and name it "SetState".

C++-samples

TE1000 285Version: 1.13

5. Subsequently, you can add parameters by clicking on Add a new parameter or edit parameters of the
SetState method.

ð The new parameter, Parameter1, is generated by default as Normal Type INT.
6. Click on the name "Parameter1" and change the name in the edit box to "State".
7. After Start, Stop and SetState have been defined, define a further method.
8. Rename it "GetState".
9. Add a parameter and name it "pState" (which is conceived to become a pointer later on).

10. Change Normal Type to Is Pointer.

C++-samples

TE1000286 Version: 1.13

ð You then obtain a list of all methods. You can change the order of the methods with the
buttons.

Step 5: add a new interface to the module
1. Select the module that is to be extended by the new interface - in this case select the destination

Modules->CStateMachineModule.
2. Extend the list of implemented interfaces by a new interface with Add a new interface to the module by

clicking on the + button.

C++-samples

TE1000 287Version: 1.13

3. All available interfaces are listed - select the new interface IStateMachine and end with OK.

ð The new interface IStateMachine is part of the module description.

C++-samples

TE1000288 Version: 1.13

Step 6: Start the TwinCAT TMC Code Generator
1. In order to generate the C/C++ code on the basis of this module, right-click in the C/C++ project and then

select the TwinCAT TMC Code Generator.

ð The module StateMachineModule.cpp now contains the new interfaces
CModule1: Start()
CModule1: Stop()
CModule1: SetState(SHORT State)
CModule1: GetState(SHORT* pState).

Step 7: implementation of the member variables and the constructor

Add the member variables to the header file StateMachineModule.h.

C++-samples

TE1000 289Version: 1.13

Step 8: implementation of methods

Implement the code for the four methods in the StateMachineModule.cpp:

C++-samples

TE1000290 Version: 1.13

Step 9: implementation of a cyclic update

The C++ module instance is cyclically called, even if the internal state machine is in Stop mode.

• If the state machine is not to be executed, the m_bRun Flag signals that the code execution of the
internal state machine is to be quit.

• If the state is "1" the counter must be incremented.
• If the state is "2" the counter must be decremented.
• The resulting counter value is assigned to Value, which is a member variable of the logical output of

the data area. This can be assigned to the physical IO level or to other data areas of other modules at
a later time.

C++-samples

TE1000 291Version: 1.13

.

Step 10: compilation of code
1. Following the implementation of all interfaces, compile the code by right-clicking on the state machine

and selecting Build.

2. Repeat the compilation and optimize your code until the result looks like this:

C++-samples

TE1000292 Version: 1.13

ð

Step 11: creating an instance of the C++ module
1. Right-click on the C++ project and select Add New Item... to create a new module instance.

2. Select the module that is to be added as a new instance – in this case CStateMachineModule.

3. Assign the instance to a task:

C++-samples

TE1000 293Version: 1.13

ð

Step 12: finished - check the result
1. Navigate to the module listed in the solution tree and select the Interfaces tab on the right-hand side.
ð The new interface IStateMachine is listed.

Also see about this
2 TwinCAT 3 C++ module providing methods [} 282]
2 TwinCAT 3 C++ module providing methods [} 286]
2 TwinCAT 3 C++ module providing methods [} 288]
2 TwinCAT 3 C++ module providing methods [} 289]
2 TwinCAT 3 C++ module providing methods [} 290]
2 TwinCAT 3 C++ module providing methods [} 292]

C++-samples

TE1000294 Version: 1.13

2 TwinCAT 3 C++ module providing methods [} 293]

15.9.2 Calling methods offered by another module via PLC
This article describes how a PLC can call a method that is provided by another module; in this case: the
previously defined C++ module.

• Step 1: check the available interfaces.
• Step 2: create a new PLC project.

• Step 3: add a new FB state machine [} 295](which acts as the proxy that calls the C++ module
methods).

• Step 4: clean up the function block interface.

• Step 5: add the FB methods "FB_init" and "exit". [} 299]
• Step 6: implement the FB methods.

• Step 7: call the FB state machine in the PLC. [} 303]
• Step 8: compile the PLC code.
• Step 9: link the PLC FB with the C++ instance.
• Step 10: observe the execution of both modules, PLC and C++.

Step 1: check available interfaces

Option 1:

1. Navigate to the C++ module instance.
2. Select the Interfaces tab.
ð The IStateMachine interface is in the list with its specific IID (Interface ID).

Option 2:

1. Navigate to System.
2. Select the Interfaces tab.

C++-samples

TE1000 295Version: 1.13

ð The IStateMachine interface is in the list with its specific IID (Interface ID).

The lower section shows the stored code in different programming languages.

Step 2: creating a new PLC project

A standard PLC project called "PLC-calling state machine" is created.

1. Right-click on the PLC node.
2. Select Standard PLC Project.
3. Adapt the name.

ð The project has been successfully created.

Step 3: add a function block (FB) (which serves as the proxy for calling the C++ module methods)
1. Right-click on POUs.

C++-samples

TE1000296 Version: 1.13

2. Select Add->POU....

3. Define a new FB to be created, which will later act as a proxy for calling C++ classes: Enter the name of
the new FB: "FB_StateMachine".

C++-samples

TE1000 297Version: 1.13

4. Select Function Block, then Implements and then click on the ... button.

5. Select the interface either via the Text Search tab or the Categories tab by deselecting Structured
View.

6. Select IStateMachine and click on OK.

C++-samples

TE1000298 Version: 1.13

ð The IStateMachine interface is then listed as the interface to be implemented.
7. Select Structured Text (ST) as Method implementation language.
8. Select Structured Text (ST) as implementation language.
9. End this dialog with Open.

ð You have successfully added the FB.

Step 4: Customizing the function block interface

As a result of creating an FB that implements the IStateMachine interface, the wizard will create an FB with
corresponding methods.

The FB_StateMachine makes 4 methods available:

• GetState
• SetState
• Start
• Stop

1. Delete Implements IStateMachine. Since the function block should act as proxy, it does not implement
the interface itself. Therefore, it can be deleted.

2. Delete the methods TcAddRef, TcQueryInterface and TcRelease. They are not required for a proxy
function block.

C++-samples

TE1000 299Version: 1.13

ð The result is:

Step 5: add FB methods FB_init (Constructor) and FB_exit (Destructor)
1. Right-click on FB_StateMachine in the tree and select Add / Method…

C++-samples

TE1000300 Version: 1.13

2. Add the methods FB_exit and FB_init - both with Structured Text (ST) as the implementation language.
They are available as predefined name.

3. Exit the dialog in each case by clicking on Open.
ð In the end, all required methods are available:

Step 6: implement FB methods

Now all methods have to be filled with code.

C++-samples

TE1000 301Version: 1.13

NOTE
Missing attributes lead to unexpected behavior
Attribute statements in brackets represent code to be added.

More precise information on the attributes is given in the PLC documentation.

1. Implement the variable declarations of the FB_Statemachine. The FB itself does not require cyclically
executable code.

2. Implement the variable declarations and the code area of the method FB_exit.

3. Implement the variable declarations and the code area of the method FB_init.

C++-samples

TE1000302 Version: 1.13

4. Implement the variable declaration and the code area of the method GetState (the generated pragmas
can be deleted as they are not required for a proxy FB).

5. Implement the variable declaration and the code area of the method SetState (the generated pragmas
can be deleted as they are not required for a proxy FB).

6. Implement the variable declaration and the code area of the method Start
(the generated pragmas can be deleted as they are not required for a proxy FB).

7. Implement the variable declaration and the code area of the method Stop
(the generated pragmas can be deleted as they are not required for a proxy FB).

C++-samples

TE1000 303Version: 1.13

ð The implementation of the FB_StateMachine, which acts as the proxy for calling the C++ module
instance, is completed.

Step 7: call FB in the PLC

The FB_StateMachine is now called in the POU MAIN.

This simple sample acts as follows:

• Cyclic incrementation of a PLC counter nCounter
• If nCounter = 500, the C++ StateMachine is started with the state "1" in order to increment its internal C

++ counter. Then read the state of C++ using GetState().
• If nCounter = 1000, the C++ state machine is set to the state "2" in order to decrement its internal C++

counter. Then read the state of C++ using GetState().
• If nCounter = 1500, the C++ StateMachine is stopped. The PLC nCounter is also set to "0", so that

everything starts again from the beginning.

C++-samples

TE1000304 Version: 1.13

Step 8: compile PLC code
1. Right-click on the PLC project and click on Build.

ð The compilation result shows "1 succeeded - 0 failed".

Step 9: link PLC FB with C++ instance

The benefits of all previous steps now become apparent:

The PLC FB FB_StateMachine can be configured with regard to linking with every instance of the C++
module StateMachine. This is a very flexible and powerful method of connecting PLC and C++ modules on
the machine with each other.

1. Navigate to the instance of the PLC module in the left-hand tree and select the Symbol Initialization tab
on the right-hand side.
ð All instances of FB_StateMachine are listed; in this sample we have only defined one FB instance in

POU MAIN.

C++-samples

TE1000 305Version: 1.13

2. Select the drop-down field Value and then the C++ module instance that is to be linked to the FB
instance.

ð PLC and C++ module are connected to each other.

Step 10: observe the execution of the two modules, PLC and C++

Following the activation of the TwinCAT configuration and the downloading and starting of the PLC code, the
execution of the two codes, PLC and C++, is simple to observe:

1. After the Login and Start of the PLC project, the editor is already in online mode (left-hand side – see
following illustration).

2. In order to be able to access online variables of the C++ module, activate the C++ debugging [} 72] and
follow the steps in the quick start in order to start the debugging (right-hand side of the following
illustration).

Also see about this
2 Calling methods offered by another module via PLC [} 294]
2 Calling methods offered by another module via PLC [} 295]
2 Calling methods offered by another module via PLC [} 298]
2 Calling methods offered by another module via PLC [} 300]

C++-samples

TE1000306 Version: 1.13

2 Calling methods offered by another module via PLC [} 304]
2 Calling methods offered by another module via PLC [} 304]
2 Calling methods offered by another module via PLC [} 305]

15.10 Sample11a: Module communication: C module calls a
method of another C module

This article describes how TC3 C++ modules could communicate via method calls. The method protects the
data with a critical section thus the access could be initiated from different contexts / tasks.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The project contains three modules:

• The instance of the CModuleDataProvider class hosts the data and protects against access via the
Retrieve and Store methods through a Critical Section.

• The instance of the module class CModuleDataRead reads the data from the DataProvider by calling
the Retrieve method.

• The instance of the module class CModuleDataWrite writes the data from the DataProvider by calling
the Store method.

The read/write instances are configured for access to the DataProvider instance, which can be seen in the
Interface Pointer menu on the instance configuration.
The context (task), in which the instances are to be executed, can also be configured there. In this sample
two tasks are used, TaskRead and TaskWrite.
The DataWriteCounterModul parameters of CModuleDataWrite and DataReadCounterModulo
(CModuleDataRead) enable the moment to be determined, at which the module instances initiate the
access.

CriticalSections are described in the SDK in TcRtInterfaces.h and are therefore intended for the real-time
context.

15.11 Sample12: module communication: Using IO mapping
This article describes how two TC3 C++ modules could communicate via the usual IO mapping of TwinCAT
3: Two instances are linked via IO mapping and access the variable value periodically.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample11-ModuleCommunication-MethodCalls/S11a-Mod2ModCS.zip
http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample12-ModuleCommunication-IOMapping/S12-Mod2ModIOMapping.zip

C++-samples

TE1000 307Version: 1.13

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

Both instances are realized by means of a module class ModuleInToOut: The class cyclically copies its input
data area Value to its output data area Value.
The Front instance acts as front end for the user. An input Value is transferred to the output Value via the
method cycleupdate(). This output value of Front is assigned (linked) to the input "value" of the Back
instance.
The Back instance copies the input Value to its output Value, which can be monitored by the user (see the
following quick start steps to start debugging: Debugging a TwinCAT 3 C++ project [} 74])

Ultimately, the user can define the input value of the Front instance and observe the output value of Back.

15.12 Sample13: Module communication: C-module calls
PLC methods

This article describes how a TwinCAT C++ module calls a methods of a PLC function block via the TcCOM
interface.

Download

System requirements: TwinCAT 3.1 Build 4020

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

This sample provides for communication from a C++ module to a function block of a PLC by means of
method call. To this end a TcCOM interface is defined that is offered by the PLC and used by the C++
module.

The PLC page as a provider in the process corresponds to the corresponding project of the TcCOM Sample
01 [} 324], where an PLC is considered after PLC communication. Here a Caller is now provided in C++,
which uses the same interface.

The PLC page adopted by TcCOM Sample 01 [} 324]. The function block registered there as TcCOM module
offers the object ID allocated to it as an output variable.
It is the C++ module’s task to make the offered interface of this function block accessible.

ü A C++ project with a Cycle IO module is assumed.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample13-CppToPLC/S13-CppToPLC.zip

C++-samples

TE1000308 Version: 1.13

1. In the TMC editor, create an interface pointer of the type I_Calculation with the name Calculationn). Later
access occurs via this.

2. The Data Area Inputs have already been created by the module wizard with the type Input-Destination.
Here in the TMC editor you create an input of the type OTCID with the name oidProvider, via which the
Object ID will be linked from the PLC later.

3. All other symbols are irrelevant for the sample and can be deleted.

C++-samples

TE1000 309Version: 1.13

ð The TMC-Code-Generator prepares the code accordingly.
In the header of the module some variables are created in order to carry out the methods calls later.

In the actual code of the module in CycleUpdate() the interface pointer is set using the object ID
transmitted from the PLC. It is important that this happens in the CycleUpdate() and thus in real-time
context, since the PLC must first provide the function block.
When this has taken place once, the methods can be called.

In addition, as can be seen above, the interface pointer is cleared when the program shuts down.
This happens in the SetObjStateOS method.

4. Now build the C++ project.
5. Create an instance of the module.

C++-samples

TE1000310 Version: 1.13

6. Connect the input of the C++ module to the output of the PLC.

ð The project can be started. When the PLC is running, the OID is made known through the mapping to the
C++ instance. Once this has occurred, the method can be called.

15.13 Sample19: Synchronous File Access
This article describes how to implement a TC3 C++ module which accesses files on the hard disk within the
startup of a module, thus within the real-time environment.

Download

Get the source code for this sample
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

The whole source code, which is not automatically generated by the wizard, is identified with the comment
start flag "//sample code" and the comment end flag "//sample code end".
In this way you can search for these strings in the files, in order to get an idea of the details.

Description

This sample describes file access via the TwinCAT interface ITCFileAccess. The access is synchronous and
can be used for reading a configuration during startup of a module, for example.

The sample contains a C++ module, TcFileTestDrv, with an instance of this module, TcFileTestDrv_Obj1.
In this sample the file access takes place during the transition PREOP to SAFEOP, i.e. in the
SetObjStatePS() method.

Helper methods encapsulate file handling.
First, general file information and a directory list is printed to the log window of TwinCAT 3. Then, a file
%TC_TARGETPATH%DefaultConfig.xml (normally C:\TwinCAT\3.x\Target\DefaultConfig.xml) is copied to
%TC_TARGETPATH%DefaultConfig.xml.bak.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample19-FileIO-Sync/S19-FileIOSync.zip

C++-samples

TE1000 311Version: 1.13

For access to the log entries, see the Error List tab in the TwinCAT 3 output window.
The amount of information can be set by changing the variable TraceLevelMax in the instance
TcFileTestDrv_obj1 in Parameter (Init) tab.

15.14 Sample20: FileIO-Write
This article describes the implementation of TC3 C++ modules, which write (process) values to a file.

The writing of the file is triggered by a deterministic cycle - the execution of File IO is decoupled
(asynchronous), i.e.: the deterministic cycle continues to run and is not hindered by writing to the file.

Download

Here you can access the source code for this sample
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample includes an instance of TcAsyncWritingModule, which writes data to the file AsyncTest.txt in
directory BOOTPRJPATH (usually C:\TwinCAT\3.x\Boot).

TcAsyncBufferWritingModule has two buffers (m_Buffer1, m_Buffer2), which are alternately filled with current
data. The member variable m_pBufferFill points to the buffer that is currently to be filled. Once a buffer is
filled, the member variable m_pBufferWrite is set such that it points to the full buffer.

These data are written to a file with the aid of TcFsmFileWriter.

Note that the file has no human-readable content, such as ASCII characters; in this sample, but binary data
are written to the file.

15.15 Sample20a: FileIO-Cyclic Read / Write
This article is a more comprehensive sample than S20 and S19. It demonstrates cyclic read and/or write
access to files from a TC3-C++ module.

Download

Here you can access the source code for this sample
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample describes how to access files for reading and/or writing using the CycleUpdate method, i.e. in a
cyclic manner.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample20-FileIO-Write/S20-FileIOWrite.zip
http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample20-FileIO-Write/S20a-FileIO-CyclicReadWrite.zip

C++-samples

TE1000312 Version: 1.13

This sample contains the following projects and module instances.

• A static library (TcAsyncFileIo) offers the file access.
The code for the file access can be shared, therefore this code is located in a static library that is used
by the driver projects.

• A driver (TcAsyncBufferReadingDrv) provides two instances:
◦ ReadingModule: uses the static library to read the AsyncTest.txt file.
◦ WriteDetectModule: Detects write operations and initiates read operations.

• A driver (TcAsyncBufferWritingDrv) provides one instance:
◦ WriteModule: uses the static library to write to the AsyncTest.txt file.

On starting the sample, the writing module begins to write data to the file located in the boot project path
(normally C:\TwinCAT\3.x\Boot\AsyncTest.txt). The input variable bDisableWriting can be used to prevent
writing.

The objects are connected to one another: once the writing is complete, the WritingModule triggers the
DetectModule of TcAsyncBufferReadingDrv. As a result of this, the ReadingModule initiates a reading
procedure.

Observe the nBytesWritten / nBytesRead output variables of the WritingModule / ReadingModule. Over and
above that, protocol messages are generated at verbose level. As before, these can be configured with the
help of the TraceLevelMax parameter of the module.

• A driver (TcAsyncFileFindDrv) provides one instance
◦ FileFindModule: list the files of a directory with the help of the static library.

Initiate the action with the help of the input variable bExecute. The FilePath parameter contains the directory
whose files are to be listed (default value: c: \TwinCAT\3. 1\Boot*).

Observe the sequence tracking (verbose protocol level) with regard to the list of files found.

Understanding the sample

The project TcAsyncFileIO contains various classes in a static library. This library is used by driver projects
for reading and writing.

Each class is intended for a file access operation such as Open / Read / Write / List / Close / Since
execution takes place in a cyclic real-time context, each operation has a status, and the class encapsulates
this state machine.

As an entry point for understanding the file access, begin with the classes TcFsmFileReader and
TcFsmFileWriter.

If too many history tracking messages occur, which hamper understanding of the sample, you can disable
modules!

See also

Sample S19 [} 310]

Sample S20 [} 311]

Sample S25 [} 317]

Interface ITcFileAccess [} 176] / Interface ITcFileAccessAsync [} 184]

15.16 Sample22: Automation Device Driver (ADD): Access
DPRAM

This article describes how to implement a TC3 C++ driver which acts as a TwinCAT Automation Device
Driver (ADD) accessing the DPRAM.

C++-samples

TE1000 313Version: 1.13

Download

Here you can access the source code for this sample.

NOTE
Configurations details
Read the configurations details below prior to the activation.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).
5. Note the actions listed on this page under Configuration.

6. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

This sample is intended to switch the Link Detect bit of the network adapter (i.e. of an CX5010) cyclically on
and off.

The C++ module is connected to the NOV/DP-RAM device via the PciDeviceAdi interface pointer of the C++
module.

Configuration

To make the sample work, the hardware addresses must be configured to match your own hardware.
Check the PCI configuration:

To check whether the communication with NOV/DPRAM is set up correctly, use the DPRAM (Online) view:

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample22-Access-DPRAM/S22-ADD.zip

C++-samples

TE1000314 Version: 1.13

15.17 Sample23: Structured Exception Handling (SEH)
This article describes the use of Structured Exception Handling (SEH) on the basis of five variants.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample contains five variants that demonstrate the use of SEH in TwinCAT C++:

1. Exception in the case of a NULL-pointer access
2. Exception in the case of a NULL-pointer access with a filter
3. Exception with Finally
4. A customer-specific structured exception
5. Exception with Continue block

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample23-SEH/S23-SEH.zip

C++-samples

TE1000 315Version: 1.13

All of these variants can be selected via a drop-down box at the instance of the C++:

After selecting a variant you can also write the value at runtime by right-clicking on the first column:

All variants write trace messages to illustrate the behavior, so that messages appear in TwinCAT
Engineering:

Understanding the sample

The selection in the drop-down box is an enumeration that is used in the CycleUpdate() of the module for
selecting a case (switch case). As a result the variants can be considered independently of one another
here:

1. Exception in the case of a NULL-pointer access
Here, a PBYTE is created as NULL and used afterwards, which leads to an exception.
This is intercepted by the TcTry{} block and an output generated.

2. Exception in the case of a NULL-pointer access with a filter
This variant also accesses a NULL-pointer, but in TcExcept{} it uses a method, FilterException(), that
is also defined in the module. Reactions take place to different exceptions within the method; in this
case a message is merely output.

3. Exception with Finally
A NULL-pointer access takes place once again here, but this time a TcFinally{} block is executed in
every case.

C++-samples

TE1000316 Version: 1.13

4. A customer-specific structured exception
By means of TcRaiseException() an exception is generated that is intercepted and processed by the
FilterException() method. Since this is an exception defined in the module, the FilterException()
method additionally outputs a further (specific) message.

5. Exception with Continue block
Here too, a NULL-pointer access takes place once again with TcExcept{}; however, this time the ex-
ception is forwarded after handling in the FilterException() method so that the further TcExcept{} also
handles the exception.

15.18 Sample24: Semaphores
This article describes the use of semaphores.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).
5. Note the actions listed on this page under Configuration.

6. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample contains a "LargeObjPool", which contains two "LargeObj" for processing by the
"LargeObjProcessors".

The "LargeObjProcessors" are controlled by different tasks with different priorities that run on different CPU
cores. In the info data area they count how often processing could be carried out ("Info-
>ProcessedObjCount") and how often no object was available for processing within the delay time ("Info-
>TakeObjFailedCount").

Understanding the sample

The LargeObjPool is initialized in the PS transition by the InitPool() method with two LargeObj (defined
by the parameter "ObjCount"). The pool essentially offers two methods, which are used by the
"LargeObjProcessors":

• TakeObj() returns a LargeObj if one is available. Based on a semaphore, the system waits until a
timeout occurs to see if an object is made available. The objects themselves are stored in a map.
Access to the map is protected by a CriticalSection.

• ReturnObj() provides a processed object to the pool for further processing.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample24-Semaphores/S24-Semaphores.zip

C++-samples

TE1000 317Version: 1.13

In its CycleUpdate() LargeObjProcessor uses TakeObj() from the pool to obtain a LargeObj for
processing. If this is successful, processing is simulated via the help function ConsumeTime() before the
LargeObj is returned to the pool via ReturnObj.

Processing of all LargeObj must be complete before the system can be shut down. This is achieved by the
LargeObjPool informing the TwinCAT system via TcTryLockOpState() and TcReleaseOpState() that
an object is being processed. As long as the stored counter is not 0, the TcCOM object "Pool" is reset and
only shut down later by the Op->SafeOp transition.

15.19 Sample25: Static Library
This article describes the implementation and use of a module of a static TC3 C++ library.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample contains two projects – the DriverUsingStaticLib project uses the static content of the StaticLib
project.

StaticLib:
On the one hand, StaticLib offers the function ComputeSomething in the StaticFunction.h/.cpp.
On the other hand an interface ISampleInterface is defined (see TMCEditor) and implemented in the
MultiplicationClass.

DriverUsingStaticLib:
In the CycleUpdate method of the ModuleUsingStaticLib, both the class and the function of StaticLib is used.

Understanding the sample

Follow the steps below to create and use a static library.

Manual recompilation
Note that Visual Studio does not automatically recompile the static library during driver develop-
ment. Do that manually.

ü During development of a C++ project use the TwinCAT Static Library Project template for creating a
static library.

ü For the following steps use the Edit dialog of VisualStudio, so that afterwards %(AddtitionalIncludeDirec-
tories) or %(AdditionalDependencies) is used.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample25-Static-Library/S25-StaticLibrary.zip

C++-samples

TE1000318 Version: 1.13

1. In the driver add the directory of the static library to the compiler under Additional Include Directories.

2. Add this as an additional dependency for the linker in the driver, which uses the static library. Open the
project properties of the driver and add the static library:

15.20 Sample26: Order of execution in a task
This article describes the determination of the task execution order if more than one module is assigned to a
task.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample contains the SortOrder module, which is instanced twice. The sort order determines the
execution order, which can be configured via the TwinCAT Module Instance Configurator [} 146].

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample26-SortOrder/S26-SortOrder.zip

C++-samples

TE1000 319Version: 1.13

For example, the CycleUpdate method tracks the object name and ID along with the sort order of this
module. On the console window you can see the order of execution:

In the sample, one instance is configured with Sort Order 150 and one with 170, while both instances are
assigned to a task.

Understanding the sample
ü A TcCOM C++ module with cyclic IO.
1. The module requires a context-based parameter Sort order of task, which will automatically select

PID_Ctx_TaskSortOrder as name.
Note that the parameter must be an alias (specification) of data type UDINT:

2. Start the TMC Code Generator in order to obtain the standard implementation.
3. Since the code is modified in the next step, disable the code generation for this parameter now.

4. Make sure you accept the changes before restarting the TMC Code Generator:
Take a look at the CPP module (SortOrderModule.cpp in the sample). The instance of the smart pointer
of the cyclic caller includes information data, including a field for the sorting order. The parameter value
is stored in this field.
///
// Set parameters of CSortOrderModule
BEGIN_SETOBJPARA_MAP(CSortOrderModule)
 SETOBJPARA_DATAAREA_MAP()
///<AutoGeneratedContent id="SetObjectParameterMap">
 SETOBJPARA_VALUE(PID_TcTraceLevel, m_TraceLevelMax)
 SETOBJPARA_ITFPTR(PID_Ctx_TaskOid, m_spCyclicCaller)
///</AutoGeneratedContent>

C++-samples

TE1000320 Version: 1.13

 SETOBJPARA_TYPE_CODE(PID_Ctx_TaskSortOrder, ULONG, m_spCyclicCaller.GetInfo()-
>sortOrder=*p) //ADDED
 //generated code: SETOBJPARA_VALUE(PID_Ctx_TaskSortOrder, m_TaskSortOrderContext1Parameter)
END_SETOBJPARA_MAP()

///
// Get parameters of CSortOrderModule
BEGIN_GETOBJPARA_MAP(CSortOrderModule)
 GETOBJPARA_DATAAREA_MAP()
///<AutoGeneratedContent id="GetObjectParameterMap">
 GETOBJPARA_VALUE(PID_TcTraceLevel, m_TraceLevelMax)
 GETOBJPARA_ITFPTR(PID_Ctx_TaskOid, m_spCyclicCaller)
///</AutoGeneratedContent>
 GETOBJPARA_TYPE_CODE(PID_Ctx_TaskSortOrder, ULONG, *p=m_spCyclicCaller.GetInfo()-
>sortOrder) //ADDED
 //generated code: GETOBJPARA_VALUE(PID_Ctx_TaskSortOrder, m_TaskSortOrderContext1Parameter)
END_GETOBJPARA_MAP()

5. In this sample the object name, ID and sort order are tracked cyclically:
 // TODO: Add your cyclic code here
 m_counter+=m_Inputs.Value;
 m_Outputs.Value=m_counter;
 m_Trace.Log(tlAlways, FNAMEA "I am '%s' (0x%08x) w/ SortOrder %d ", this->TcGetObjectName(),
this->TcGetObjectId() , m_spCyclicCaller.GetInfo()->sortOrder); //ADDED

6. The sorting order can also be transferred as the fourth parameter of the method
ITcCyclicCaller::AddModule(), which is used in CModuleA::AddModuleToCaller().

7. Allocate a task with a long cycle interval (e.g. 1000 ms) to the instances of this module, in order to limit
the tracking messages sent to the TwinCAT Engineering system.

8. Assign a different sorting order to each instance via the TwinCAT Module Instance Configurator [} 146]:

15.21 Sample30: Timing Measurement
This article describes how to implement a TC3 C++ module which contains time measurement
functionalities.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample30-StopWatch/S30-Timing.zip

C++-samples

TE1000 321Version: 1.13

Description

This sample exclusively deals with time measurement such as

• Querying the task cycle time in nanoseconds
• Querying the task priority
• Querying the time when the task cycle starts at intervals of 100 nanoseconds since January 1, 1601

(UTC)
• Querying the distributed clock time when the task cycle starts in nanoseconds since January 1, 2000
• Querying the time when the method is called at intervals of 100 nanoseconds since January 1, 1601

(UTC)

See also

ITcTask interface [} 200]

15.22 Sample31: Functionblock TON in TwinCAT3 C++
This article describes the implementation of a behavior in C++, which is comparable with a TON function
block of PLC / IEC-61131-3.

Source

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The behavior of this module is comparable with a module that was created with the Cyclic IO wizard.
m_input.Value is added to m_Output.Value. As opposed to the Cyclic IO module, this module only adds
m_input.Value to m_Output.Value if the defined time interval (1000 ms) has elapsed.

This is achieved with the help of a CTON class, which is comparable with the TON function block of PLC /
61131.

Understanding the sample

The C++ class CTON (TON.h/.cpp) provides the behavior of a TON function block of PLC / 61131. The
Update() method is comparable with the rump of the function block, which has to be called regularly.

The Update() method contains two "in" parameters:

• IN1: Starts the timer switch on a rising edge and resets the timer switch on a falling edge.
• PT: Describes the time to wait before Q is set.

And two "out" parameters:

• Q: TRUE if PT exhibited a rising edge seconds after IN.
• ET: Designates the elapsed time.

Beyond that, ITcTask must be provided to query the time base.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample31-CTON/S31-CTON.zip

C++-samples

TE1000322 Version: 1.13

See also

Sample30: Timing Measurement [} 320]

ITcTask interface [} 200]

15.23 Sample35: Access Ethernet
This article describes the implementation of TC3 C++ modules that communicate directly via an Ethernet
card. The sample code queries a hardware address (MAC) from a communication partner by means of the
cyclic transmission and reception of ARP packets.

The sample illustrates the direct access to the Ethernet card. The TF6311 TCP/UDP RT function provides
access to Ethernet cards on the basis of TCP and UDP, so that an implementation of a network stack is not
necessary on the basis of this sample.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).
5. Note the actions listed on this page under Configuration.

6. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample contains an instance of the TcEthernetSample module, which sends and received ARP packets
for the purpose of determining the remote hardware address (MAC).

The CycleUpdate method implements a rudimentary state machine for sending ARP packets and waiting for
a response with a timeout.

The sample uses two Ethernet components from TwinCAT:

1. An ITcEthernetAdapter (instance name in the sample is m_spEthernetAdapter) represents an RT
Ethernet adapter. It enables access to the adapter parameters such as hardware MAC address, link
speed and link errors. It can be used to send Ethernet frames and enables a module instance to regis-
ter itself as an ItcIoEthProtocol via the registerProtocol method.

2. The ITcIOoEthProtocol is extended by the sampling module, which ensures that a notification takes
place via the ITcEthernetAdapter in case of Ethernet events.

Configuration

The downloaded TwinCAT project must be configured for execution in a network environment. Please carry
out the following steps:

ü This sample demands the use of the TwinCAT driver by the Ethernet card.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample35-AccessEthernet/S35-AccessEthernet.zip

C++-samples

TE1000 323Version: 1.13

1. Start TcRteInstall.exe either from the XAE via the menu TwinCAT->Show Realtime Ethernet
compatible devices… or from the hard disk on the XAR systems.

2. You may have to install and activate the driver with the help of the buttons.
3. TwinCAT must know which Ethernet card is to be used. Open the project in XAE and click on Select I/

O / Devices / Device 1 (RT-Ethernet Adapter).
4. Click on the Adapter tab and select the adapter with Search.
5. TcEthernetSample_Obj1 must be configured. Open the instance window and set the following values:

Parameter (Init): SenderIpAddress (IP of the network adapter configured in step 2)
Parameter (Init): TargetIpAddress (IP of target host)
Interface pointer: EthernetAdapter must point to I/O / Devices / Device 1 (RT-Ethernet Adapter).

15.24 Sample37: Archive data
The sample TcCOM object archive describes restoration and saving of an object state during initialization
and deinitialization.

TwinCAT supports retain data
TwinCAT also supports retain data, in order to utilize the NOVRAM of a device to make data persis-
tent.

Download

Get the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on Open Project ….
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on .
ð The sample is ready for operation.

Description

The sample TcCOM object archive describes restoration and saving of an object state during initialization
and deinitialization. The state of the sample class CmoduleArchive corresponds to the value of the counter
CModuleArchive::m_counter.

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample37-Archive/S37-ArchiveData.zip

C++-samples

TE1000324 Version: 1.13

During the transition from PREOP to SAFEOP, i.e. when calling the method
CModuleArchive::SetObjStatePS(), the object archive server (ITComObjArchiveServer) is used to create an
object archive for reading, which is accessed via the interface ITComArchiveOp. This interface provides
overloads from operator>>() in order to read them in the archive.

During the transition from SAFEOP to PREOP, i.e. when calling the method
CModuleArchive::SetObjStateSP(), the TCOM object archive server is used to create an object archive for
writing, which is accessed via the interface ITComArchiveOp. This interface provides overloads from
operator<<() in order to write them in the archive.

The interface used here was not developed for the real-time context [} 44], therefore the interface can only
be used in the non-real-time context.

15.25 TcCOM samples
Modules can communicate between PLC and C++. The description therefore covers handling of C++
modules on the PLC side and handling of the PLC on the C++ side.
The TcCOM samples for communication with the PLC are shown here.

The TcCOM_Sample01 sample [} 324] shows how TcCOM communication can take place between two
PLCs. In the process functionalities from one PLC are directly called up from the other PLC.

The TcCOM_Sample02 sample [} 334] shows how a PLC application can use functionalities of an existing
instance of a TwinCAT C++ class. In this way separate algorithms written C++ (or Matlab) can be used easily
in the PLC.
Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the target system, a C++ development environment is not necessary on the target system or on the
development computer.

The TcCOM_Sample03 sample [} 338] shows how a PLC application uses functionalities of a TwinCAT C++
class by generating an instance of C++ class at the same time. In comparison to the previous sample this
can offer increased flexibility.

15.25.1 TcCOM_Sample01_PlcToPlc
This sample describes a TcCOM communication between two PLCs.

Functionalities provided by a function block in the first PLC (also called "provider" in the sample), are called
from the second PLC (also called "caller" in the sample). To this end it is not necessary for the function block
or its program code to be copied. Instead the program works directly with the object instance in the first PLC.

Both PLCs must be in a TwinCAT runtime. In this connection a function block offers its methods system-wide
via a globally defined interface and represents itself a TcCOM object. As is the case with every TcCOM
object, such a function block is also listed at runtime in the TcCOM Objects node.

C++-samples

TE1000 325Version: 1.13

The procedure is explained in the following sub-chapters:

• Creating an FB in the first PLC that provides its functionality globally [} 325]

• Creating an FB in the second PLC that, as a simple proxy, also offers this functionality there [} 330]

• Execution of the sample project [} 332]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TC3_C/Resources/
zip/9007201597787659.zip

Race Conditions in the case of Multi-Tasking (Multi-Threading) use
The function block that provides its functionality globally is instantiated in the first PLC. It can be
used there like any function block. In addition, if it is used from a different PLC (or, for example,
from a C++ module), make sure that the methods offered are thread-safe, as the various calls could
take place simultaneously from different task contexts or mutually interrupt one another, depending
on the system configuration. In this case the methods must not access member variables of the
function block or global variables of the first PLC. If this should be absolutely necessary, prevent si-
multaneous access. Observe the function TestAndSet() from the Tc2_System library.

System requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

15.25.1.1 Creating an FB which provides its functionality globally in the first PLC
1. Create a PLC and prepare a new function block (FB) (here: FB_Calculation). Derive the function block

from the TcBaseModuleRegistered class, so that an instance of this function block is not only available in
the same PLC, but can also be reached from a second.
Note: as an alternative you can also modify an FB in an existing PLC.

https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/9007201597787659.zip
https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/9007201597787659.zip

C++-samples

TE1000326 Version: 1.13

2. The function block must offer its functionality by means of methods. These are defined in a global
interface, whose type is system-wide and known regardless of programming language. To create a
global interface, open the Context menu in the “Interface” tab of System Properties and choose the
option “New”.
ð The TMC Editor opens, which provides you with support in creating a global interface.

3. Specify the name (here: I_Calculation) and append the desired methods. The interface is automatically
derived from ITcUnknown, in order to fulfill the TwinCAT TcCOM module concept.

C++-samples

TE1000 327Version: 1.13

4. Specify the name of the methods analogously (here: Addition() and Subtraction()) and select HRESULT
as return data type. This return type is mandatory if this type of TcCOM communication should be
implemented.

5. Specify the method parameters last and then close the TMC Editor.

6. Now implement the I_Calculation interface in the FB_Calculation function block and append the c+
+_compatible attribute.

C++-samples

TE1000328 Version: 1.13

7. Choose the “Implement interfaces...” option in the Context menu of the function block in order to obtain
the methods belonging to this interface.

8. Delete the two methods TcAddRef() and TcRelease() because the existing implementation of the base
class should be used.

C++-samples

TE1000 329Version: 1.13

9. Create the FB_reinit() method for the FB_Calculation function block and call the basic implementation.
This ensures that the FB_reinit() method of the base class will run during the online change. This is
imperative.

10. Implement the TcQueryInterface() method of the Interface ITcUnknown [} 205]. Via this method it is
possible for other TwinCAT components to obtain an interface pointer to an instance of this function
block and thus actuate method calls. The call for TcQueryInterface is successful if the function block or
its base class provides the interface queried by means of iid (Interface ID). For this case the handed over
interface pointer is allocated the address to the function block type-changed and the reference counter is
incremented by means of TcAddRef().

11. Fill the two methods Addition() and Subtraction() with the corresponding code to produce the
functionality: nRes := nIn1 + nIn2 and nRes := nIn1 - nIn2

12. Add one or more instances of this function block in the MAIN program block or in a global variable list.
ð The implementation in the first PLC is complete.

ð After compiling the PLC, the object ID of the TcCOM object which represents the instance of
FB_Calculation is available as an outlet in the in the process image.

C++-samples

TE1000330 Version: 1.13

15.25.1.2 Creating an FB which likewise offers this functionality there as a simple
proxy in the second PLC,

1. Create a PLC and append a new function block there.
ð This proxy function block should provide the functionality which was programmed in the first PLC. It

does this via an interface pointer of the type of the global interface I_Calculation.

2. In the declaration part of the function block declare as an output an interface pointer to the global
interface which later provides the functionality outward.

3. In addition create the object ID and the interface ID as local member variables.
While the interface ID is already available via a global list, the object ID is assigned via a link in the
process image.

C++-samples

TE1000 331Version: 1.13

4. Implement the PLC proxy function block. First add the GetInterfacePointer() method to the function block.
The interface pointer is fetched to the specified interface of the specified TcCOM object with the help of
the FW_ObjMgr_GetObjectInstance() function. This will only be executed if the object ID is valid and the
interface pointer has not already been allocated. The object itself increments a reference counter.

5. It is imperative to release the used reference again. To this end call the FW_SafeRelease() function in
the FB_exit destructor of the function block.

ð This completes the implementation of the Proxy function block.
6. Instantiate the Proxy function block FB_CalculationProxy in the application and call its method

GetInterfacePointer() to get a valid interface pointer.
An instance of the proxy block is declared in the application to call the methods provided via the

C++-samples

TE1000332 Version: 1.13

interface. The calls themselves take all place over the interface pointer defined as output of the function
block. As is typical for pointers a prior null check must be made. Then the methods can be called directly,
also via Intellisense.

ð The sample is ready for testing.

Order irrelevant
The sequence in which the two PLCs start later is irrelevant in this implementation.

15.25.1.3 Execution of the sample project
1. Select the destination system and compile the project.
2. Enable the TwinCAT configuration and execute a log-in and start both PLCs.

ð In the online view of the PLC application “Provider” the generated object ID of the C++ object can be
seen in the PLC function block FB_Calculation. The project node “TcCOM Objects” keeps the
generated object with its object ID and the selected name in its list.

C++-samples

TE1000 333Version: 1.13

ð In the online view of the PLC application “Caller” the Proxy function block has been allocated the
same object ID via the process image. The interface pointer has a valid value and the methods are
executed.

C++-samples

TE1000334 Version: 1.13

15.25.2 TcCOM_Sample02_PlcToCpp
This example describes a TcCOM communication between PLC and C++. In this connection a PLC
application uses functionalities of an existing instance of a TwinCAT C++ class. In this way own algorithms
written in C++ can be used easily in the PLC.
Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

An already built C++ driver provides one or more classes whose interfaces are deposited in the TMC
description file and thus are known in the PLC.

The procedure is explained in the following sub-chapters:

1. Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object [} 334]

2. Creating an FB in the PLC, which as a simple wrapper offers the functionality of the C++ object [} 335]

3. Execution of the sample project [} 337]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343048971.zip

System requirements

TwinCAT version Hardware Libraries to be Integrated
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

15.25.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object

The TwinCAT C++ driver must be available on the target system. TwinCAT offers a deployment for this
purpose, so that the components only have to be stored properly on the development computer.

The existing TwinCAT C++ driver as well as its TMC description file(s) are available as a driver archive. This
archive (IncrementerCpp.zip) is unpacked in the following folder:
C:\TwinCAT\3.1\CustomConfig\Modules\IncrementerCpp\

The TwinCAT Deployment copies the file(s) later in the following folder upon the activation of a configuration
in the target system:
C:\TwinCAT\3.1\Driver\AutoInstall\

1. Open a TwinCAT project or create a new project.
2. Add an instance of Class CIncrementModule in the solution under the node TcCOM Objects.

Creation of the C++ driver
In the documentation for TwinCAT C++ [} 11] there is a detailed explanation on how C++ drivers for
TwinCAT are created.
To create the above-mentioned driver archive, Publish TwinCAT Modules is selected from the C+
+ project context as the last step in the creation of a driver.

https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343048971.zip

C++-samples

TE1000 335Version: 1.13

15.25.2.2 Creating an FB in the PLC that, as a simple proxy, offers the
functionality of the C++ object

1. Create a PLC and append a new function block there.
This Proxy function block should provide the functionality that was programmed in C++. It is able to do
this via an interface pointer that was defined from the C++ class and is known in the PLC due to the TMC
description file.

2. In the declaration part of the function block declare as an output an interface pointer to the interface
which later provides the functionality outward.

3. Create the object ID and the interface ID as local member variables.
While the interface ID is already available via a global list, the object ID is allocated via the TwinCAT
symbol initialization. The TcInitSymbol attribute ensures that the variable appears in a list for external
symbol initialization. The object ID of the created C++ object should be allocated.

C++-samples

TE1000336 Version: 1.13

ð The object ID is displayed upon selection of the object under the TcCOM Objects node.
Provided the TcInitSymbol attribute was used, the list of symbol initializations is located in the node
of the PLC instance in the Symbol Initialization tab.

4. Here, assign an existing object ID to the symbol name of the variable by drop-down. This value is
assigned when the PLC is downloaded so it can be defined prior to the PLC run-time. New symbol
initializations or changes are accordingly entered with a new download of the PLC.

As an alternative, the passing of the object ID could also be implemented by means of process image
linking as implemented in the first sample (TcCOM_Sample01_PlcToPlc [} 324]).

5. Implement the PLC Proxy function block.
First the FB_init constructor method is added to the function block. For the case that it is no longer an
OnlineChange but rather the initialization of the function block, the interface pointer to the specified

C++-samples

TE1000 337Version: 1.13

interface of the specified TcCOM object is obtained with the help of the function
FW_ObjMgr_GetObjectInstance(). In this connection the object itself increments a reference counter.

6. It is imperative to release the used reference again. To this end call the FW_SafeRelease() function in
the FB_exit destructor of the function block.

ð This completes the implementation of the Proxy function block.
7. Declare an instance of the Proxy function block to call the methods provided via the interface in the

application.
The calls themselves take all place over the interface pointer defined as output of the function block. As
is typical for pointers a prior null check must be made. Then the methods can be called directly, also via
Intellisense.

ð The sample is ready for testing.

15.25.2.3 Execution of the sample project
1. Select the destination system and compile the project.
2. Enable the TwinCAT configuration and execute a log-in as well as starting the PLC.

C++-samples

TE1000338 Version: 1.13

ð In the online view of the PLC application the assigned object ID of the C++ object in the PLC Proxy
function block can be seen. The interface pointer has a valid value and the method will be executed.

15.25.3 TcCOM_Sample03_PlcCreatesCpp
Just like Sample02, this sample describes a TcCOM communication between PLC and C++. To this end a
PLC application uses functionalities of a TwinCAT C++ class. The required instances of this C++ class will
be created by the PLC itself in this sample. In this way own algorithms written in C++ can be used easily in
the PLC.
Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

An already built C++ driver provides one or more classes whose interfaces are deposited in the TMC
description file and thus are known in the PLC.

The procedure is explained in the following sub-chapters:

1. Provision of a TwinCAT C++ driver and its classes [} 339]

2. Creating an FB in the PLC that creates the C++ object and offers its functionality [} 340]

3. Execution of the sample project [} 342]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343051531.zip

System requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343051531.zip

C++-samples

TE1000 339Version: 1.13

15.25.3.1 Provision of a TwinCAT C++ driver and its classes

The TwinCAT C++ driver must be available on the target system. TwinCAT offers a deployment for this
purpose, so that the components only have to be stored properly on the development computer.

The existing TwinCAT C++ driver as well as its TMC description file(s) are available as a driver archive. This
archive (IncrementerCpp.zip) is unpacked in the following folder:
C:\TwinCAT\3.1\CustomConfig\Modules\IncrementerCpp\

The TwinCAT Deployment copies the file(s) later in the following folder upon the activation of a configuration
in the target system:
C:\TwinCAT\3.1\Driver\AutoInstall\

1. Open a TwinCAT project or create a new project.
2. Select the required C++ driver in the solution under the TcCOM Objects node in the Class Factories

tab.
ð This ensures that the driver is loaded on the target system when TwinCAT starts up. In addition this

selection provides for the described deployment.

Creation of the C++ driver
In the documentation for TwinCAT C++ [} 11] there is a detailed explanation on how C++ drivers for
TwinCAT are created.
For Sample03 it is important to note that TwinCAT C++ drivers whose classes are supposed to be
dynamically instantiated must be defined as “TwinCAT Module Class for RT Context”. The C++
Wizard offers a special template for this purpose.
In addition this sample uses a TwinCAT C++ class which manages without TcCOM initialization
data and without TcCOM parameters.

C++-samples

TE1000340 Version: 1.13

15.25.3.2 Creating an FB in the PLC that creates the C++ object and offers its
functionality

1. Create a PLC and append a new function block there.
This Proxy function block should provide the functionality that was programmed in C++. It manages this
via an interface pointer that was defined by C++ and is known in the PLC due to the TMC description file.

2. In the declaration part of the function block declare as an output an interface pointer to the interface
(IIncrement) which later provides the functionality outward.

3. Create class ID and the interface ID as member variables.
While the interface ID is already available via a global list, the class IDs, provided they are not yet
supposed to be known, are determined by other means. When you open the TMC description file of the
associated C++ driver you will find the corresponding GUID there.

4. Add the FB_init constructor method to the PLC Proxy function block.
For the case, that it is not an online change but rather the initialization of the function block, a new
TcCOM object (Class instance of the specified class) is created and the interface pointer to the specified
interface is obtained. In the process the used FW_ObjMgr_CreateAndInitInstance() function is also given
the name and the destination state of the TcCOM object. These two parameters are declared here as
input parameters of the FB_init method, whereby they are to be specified in the instantiation of the Proxy
function block. The TwinCAT C++ class to be instantiated manages without TcCOM initialization data

C++-samples

TE1000 341Version: 1.13

and without TcCOM parameters.
In the case of this function call the object itself increments a reference counter.

5. It is imperative to release the used reference again and to delete the object, provided it is no longer being
used. To this end call the FW_ObjMgr_DeleteInstance() function in the FB_exit destructor of the function
block.

ð This completes the implementation of the Proxy function block.
6. Declare an instance of the Proxy function block to call the methods provided via the interface in the

application. The calls themselves take all place over the interface pointer defined as output of the
function block. As is typical for pointers a prior null check must be made. Then the methods can be called
directly, also via Intellisense.

ð The sample is ready for testing.

C++-samples

TE1000342 Version: 1.13

15.25.3.3 Execution of the sample project
1. Select the target system and compile the project.
2. Enable the TwinCAT configuration and execute a log-in as well as starting the PLC.
ð In the online view of the PLC application the desired TcCOM object name in the PLC Proxy function

block can be seen. The project node TcCOM Objects keeps the generated object with the generated ID
and the desired name in his list. The interface pointer has a valid value and the method will be executed.

Appendix

TE1000 343Version: 1.13

16 Appendix
• The ADS Return Codes [} 343] are important across TwinCAT 3, particularly if ADS communication

[} 208] itself is implemented.

• The Retain data [} 348] (in NOVRAM memory) can be used in a similar way from the PLC and also C+
+.

• In addition to the TcCOM Module [} 35] concept, the TwinCAT 3 type system is an important basis for
understanding.

• The following pages originate from the documentation for the Automation Interface.
When using the Automation Interface please refer to the dedicated documentation.

◦ Creating and handling C++ projects and modules [} 350]

◦ Creating and handling TcCOM modules [} 354]

16.1 ADS Return Codes
Grouping of error codes: 0x000 [} 343]..., 0x500 [} 344]..., 0x700 [} 345]..., 0x1000 [} 347]...

Global error codes

https://infosys.beckhoff.de/content/1031/typesystem/27021601303262475.html?id=7105325433476631001

Appendix

TE1000344 Version: 1.13

Hex Dec HRESULT Name Description
0x0 0 0x9811 0000 ERR_NOERROR No error.
0x1 1 0x9811 0001 ERR_INTERNAL Internal error.
0x2 2 0x9811 0002 ERR_NORTIME No real-time.
0x3 3 0x9811 0003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x9811 0004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle
will help.

0x5 5 0x9811 0005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x9811 0006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or

is not reachable.
0x7 7 0x9811 0007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not

found.
0x8 8 0x9811 0008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x9811 0009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811 000A ERR_NOIO No IO.
0xB 11 0x9811 000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811 000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811 000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811 000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811 000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x9811 0010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license er-

ror.
0x11 17 0x9811 0011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x9811 0012 ERR_PORTDISABLED Port disabled – TwinCAT system service not

started.
0x13 19 0x9811 0013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x9811 0014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x9811 0015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x9811 0016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x9811 0017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x9811 0018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x9811 0019 ERR_NOMEMORY No memory.
0x1A 26 0x9811 001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811 001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811 001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811 001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811 001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description
0x500 1280 0x9811 0500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x9811 0501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x9811 0502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x9811 0503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x9811 0504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x9811 0505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x9811 0506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x9811 0507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x9811 0508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x9811 0509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811 050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811 050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811 050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811 050D ROUTERERR_TOBEREMOVED The port is removed.

Appendix

TE1000 345Version: 1.13

General ADS error codes

Appendix

TE1000346 Version: 1.13

Hex Dec HRESULT Name Description
0x700 1792 0x9811 0700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x9811 0701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x9811 0702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x9811 0703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x9811 0704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x9811 0705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x9811 0706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x9811 0707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x9811 0708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x9811 0709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS function blocks in different tasks. It
may be possible to resolve this through multitasking
synchronization in the PLC.

0x70A 1802 0x9811 070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811 070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811 070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811 070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811 070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811 070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x9811 0710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x9811 0711 ADSERR_DEVICE_SYMBOLVERSIONIN-

VALID
Invalid symbol version. This can occur due to an on-
line change. Create a new handle.

0x712 1810 0x9811 0712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x9811 0713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x9811 0714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x9811 0715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x9811 0716 ADSERR_DEVICE_NOMOREHDLS No further notification handle available.
0x717 1815 0x9811 0717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x9811 0718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x9811 0719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811 071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811 071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811 071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811 071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811 071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811 071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x9811 0720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x9811 0721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x9811 0722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x9811 0723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x9811 0724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x9811 0725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x9811 0726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x9811 0727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x9811 0728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x9811 0729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811 072A ADSERR_DEVICE_LICENSEFUTUREISSUE License problem: Time in the future.
0x72B 1835 0x9811 072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811 072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811 072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811 072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811 072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x9811 0730 ADSERR_DEVICE_LICENSEOEMNOT-

FOUND
Public key not known from OEM.

0x731 1841 0x9811 0731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x9811 0732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x9811 0733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x9811 0734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x9811 0735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

Appendix

TE1000 347Version: 1.13

Hex Dec HRESULT Name Description
0x736 1846 0x9811 0736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.
0x737 1847 0x9811 0737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x9811 0738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x9811 0739 ADSERR_DEVICE_FORWARD_RT Context – forward to real-time.
0x740 1856 0x9811 0740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x9811 0741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x9811 0742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x9811 0743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x9811 0744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x9811 0745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured in-
correctly.

0x746 1862 0x9811 0746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x9811 0747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x9811 0748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x9811 0749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x9811 0750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x9811 0751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x9811 0752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x9811 0753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x9811 0754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x9811 0755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x9811 1000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x9811 1001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x9811 1002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x9811 1003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x9811 1004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x9811 1005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x9811 1006 RTERR_NOMORESEMAS No free semaphores available. The maximum num-

ber of semaphores is 64.
0x1007 4103 0x9811 1007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811 100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already ap-
plied.

0x100E 4110 0x9811 100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811 100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt

has failed.
0x1010 4112 0x9811 1010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x9811 1017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x9811 1018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x9811 1019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811 101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

TCP Winsock error codes

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the connection, because

the remote terminal did not respond properly after a certain period of time, or the es-
tablished connection could not be maintained because the connected host did not re-
spond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the target computer
has explicitly rejected it. This error usually results from an attempt to connect to a ser-
vice that is inactive on the external host, that is, a service for which no server applica-
tion is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

Appendix

TE1000348 Version: 1.13

16.2 Retain data
This section describes the option to make data available even after an ordered or spontaneous system
restart. The NOV-RAM of a device is used for this purpose. The EL6080 cannot be used for these retain
data, because the corresponding data must first be transferred, which leads to corresponding runtimes.
The following section describes the retain handler, which stores data and makes them available again, and
the application of the different TwinCAT 3 programming languages.

Configuring a retain device
1. The retain data are stored and made available by a retain handler, which is part of the NOV-DP-RAM

device in the IO section of the TwinCAT solution. Create a NOV-RAM DP Device in the IO area of the

Solution.
2. Create one or more Retain Handler below this device.

Storage location: NOVRAM

3. Configure the NOV-DP RAM device. In the Generic NOV-DP-RAM Device tab, use Search... to define
the area to be used.

4. An additional retain directory for the symbols is created in the TwinCAT boot directory.

Appendix

TE1000 349Version: 1.13

Using the retain handler with a PLC project

In a PLC project the variables are either created in a VAR RETAIN section or identified with the attribute
TcRetain.
PROGRAM MAIN
VAR RETAIN
 l: UINT;
 k: UINT;
END_VAR
VAR
 {attribute ‘TcRetain’:=’1’}
 m: UINT;
 x: UINT;
END_VAR

Corresponding symbols are created after a "Build".
The assignment to the retain handler of the NOV-DP-RAM device is done in column Retain Hdl.

If self-defined data types (DUTs) are used as retain, the data types must be available in the TwinCAT type
system. You can either use the option Convert to Global Type or you can create structures directly as
STRUCT RETAIN. However, the Retain Handler then handles all occurrences of the structure.
Retain data cannot be used for POUs (function blocks) as a whole. However, individual elements of a POU
can be used.

Using the retain handler with a C++ module

In a C++ module a data area of type Retain Source is created, which contains the corresponding symbols.

Appendix

TE1000350 Version: 1.13

At the instances of the C++ module, a retain handler of the NOV-DP-RAM device to be used for this data
area is defined in column Retain Hdl.

Conclusions

When a retain handler is selected as target in the respective project, the symbols under retain handler and a
mapping are created automatically after a "Build".

16.3 Creating and handling C++ projects and modules
This chapter explains in-depth how to create, access and handle TwinCAT C++ projects. The following list
shows all chapters in this article:

• General information about C++ projects
• Creating new C++ projects
• Creating new module within a C++ project
• Opening existing C++ projects
• Creating module instances
• Calling TMC Code Generator
• Calling Publish Modules command
• Setting C++ Project Properties

Appendix

TE1000 351Version: 1.13

• Building project

General information about C++ projects

C++ projects are specified by their so-called project template, which are used by the “TwinCAT C++ Project
Wizard”. Inside a project multiple modules could be defined by module templates, which are used by the
“TwinCAT Class Wizard”.

TwinCAT-defined templates are documented in the Section C++ / Wizards [} 99].

The customer could define own templates, which is documented at the corresponding sub-section if C++
Section / Wizards [} 150].

Creating C++ projects

To create a new C++ project via Automation Interface, you need to navigate to the C++ node and then
execute the CreateChild() method with the corresponding template file as a parameter.

Code snippet (C#):
ITcSmTreeItem cpp = systemManager.LookupTreeItem("TIXC");
ITcSmTreeItem cppProject = cpp.CreateChild("NewCppProject", 0, "", pathToTemplateFile);

Code snippet (Powershell):
$cpp = $systemManager.LookupTreeItem("TIXC")
$newProject = $cpp.CreateChild("NewCppProject", 0, "", $pathToTemplateFile)

For instantiating a driver project please use "TcDriverWizard" as pathToTemplateFile.

Creating new module within a C++ project

Within a C++ project usually a TwinCAT Module Wizard is used to let the wizard create a module by a
template.

Code snippet (C#):
ITcSmTreeItem cppModule = cppProject.CreateChild("NewModule", 1, "", pathToTemplateFile);

Code snippet (Powershell):
$cppModule = $cppProject.CreateChild("NewModule", 0, "", $pathToTemplateFile);

As example for instantiating a Cyclic IO module project please use "TcModuleCyclicCallerWizard " as
pathToTemplateFile.

Opening existing C++ projects

To open an existing C++-Project via Automation Interface, you need to navigate to the C++ node and then
execute the CreateChild() method with the path to the corresponding C++ project file as a parameter.

You can use three different values as SubType:

• 0: Copy project to solution directory
• 1: Move project to solution directory
• 2: Use original project location (specify “” as NameOfProject parameter)

Appendix

TE1000352 Version: 1.13

Basically, these values represent the functionalities (Yes, No, Cancel) from the following MessageBox in
TwinCAT XAE:

In place of the template file you need to use the path to the C++ project (to its vcxproj file) that needs to be
added. As an alternative, you can also use a C++ project archive (tczip file).

Code snippet (C#):
ITcSmTreeItem cpp = systemManager.LookupTreeItem("TIXC");
ITcSmTreeItem newProject = cpp.CreateChild("NameOfProject", 1, "", pathToProjectOrTczipFile);

 Code snippet (Powershell):
$cpp = $systemManager.LookupTreeItem("TIXC")
$newProject = $cpp.CreateChild("NameOfProject", 1, "", $pathToProjectOrTczipFile)

Please note that C++ projects can’t be renamed, thus the original project name needs to be specified. (cmp.
Renaming TwinCAT C++ projects [} 237])

Creating module instances

TcCOM Modules could be created at the System -> TcCOM Modules node. Please see documentation there
[} 354].

The same procedure could also be applied to the C++ project node to add TcCOM instances at that place
($newProject at the code on top of this page.).

Calling TMC Code Generator

TMC Code generator could be called to generate C++ code after changes at the TMC file of the C++ project.

Code snippet (C#):
string startTmcCodeGenerator = @"<?xml version=""1.0"" encoding=""UTF-16""?>
<TreeItem>
<CppProjectDef>
<Methods>
<StartTmcCodeGenerator>
<Active>true</Active>
</StartTmcCodeGenerator>
</Methods>
</CppProjectDef>
</TreeItem>";
cppProject.ConsumeXml(startTmcCodeGenerator);

Code snippet (Powershell):
$startTmcCodeGenerator = @"<?xml version=""1.0"" encoding=""UTF-16""?>
<TreeItem>
<CppProjectDef>
<Methods>
<StartTmcCodeGenerator>
<Active>true</Active>
</StartTmcCodeGenerator>
</Methods>

Appendix

TE1000 353Version: 1.13

</CppProjectDef>
</TreeItem>"
$cppProject.ConsumeXml($startTmcCodeGenerator)

Calling Publish Modules command

Publishing includes building the project for all platforms. The compiled module will be provided for Export like
described in the Module-Handling section of C++ [} 50].

Code snippet (C#):
string publishModules = @"<?xml version=""1.0"" encoding=""UTF-16""?>
<TreeItem>
<CppProjectDef>
<Methods>
<PublishModules>
<Active>true</Active>
</PublishModules>
</Methods>
</CppProjectDef>
</TreeItem>";
cppProject.ConsumeXml(publishModules);

Code snippet (Powershell):
$publishModules = @"<?xml version=""1.0"" encoding=""UTF-16""?>
<TreeItem>
<CppProjectDef>
<Methods>
<PublishModules>
<Active>true</Active>
</PublishModules>
</Methods>
</CppProjectDef>
</TreeItem>"
$cppProject.ConsumeXml($publishModules)

Setting C++ Project Properties

C++ projects provide different options for the build and deployment process.
These are settable by the Automation Interface.

Code snippet (C#):
string projProps = @"<?xml version=""1.0"" encoding=""UTF-16""?>
<TreeItem>
<CppProjectDef>
<BootProjectEncryption>Target</BootProjectEncryption>
<TargetArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</TargetArchiveSettings>
<FileArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</FileArchiveSettings>
</CppProjectDef>
</TreeItem>";
cppProject.ConsumeXml(projProps);

Code snippet (Powershell):
$projProps = @"<?xml version=""1.0"" encoding=""UTF-16""?>
<TreeItem>
<CppProjectDef>
<BootProjectEncryption>Target</BootProjectEncryption>
<TargetArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</TargetArchiveSettings>
<FileArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</FileArchiveSettings>
</CppProjectDef>
</TreeItem>"
$cppProject.ConsumeXml($projProps)

For the BootProjectEncryption the values “None” and “Target” are valid.
Both other settings are “false” and “true” values.

Appendix

TE1000354 Version: 1.13

Building project

To build the project or solution you can use the corresponding classes and methods of the Visual Studio API,
which are documented here.

16.4 Creating and handling TcCOM modules
This chapter explains how to add existing TcCOM modules to a TwinCAT configuration and parameterize
them. The following topics will be briefly covered in this chapter:

• Acquiring a reference to “TcCOM Objects” node
• Adding existing TcCOM modules
• Iterating through added TcCOM modules
• Setting CreateSymbol flag for parameters
• Setting CreateSymbol flag for Data Areas
• Setting Context (Tasks)
• Linking variables

Acquiring a reference to “TcCOM Objects” node

In a TwinCAT configuration, the “TcCOM Objects” node is located under “SYSTEM^TcCOM Objects”.
Therefore you can acquire a reference to this node by using the method ITcSysManager::LookupTreeItem()
in the following way:

Code Snippet (C#):
ITcSmTreeItem tcComObjects = systemManager.LookupTreeItem("TIRC^TcCOM Objects");

Code Snippet (Powershell):
$tcComObjects = $systemManager.LookupTreeItem("TIRC^TcCOM Objects")

The code above assumes that there is already a systemManager objects present in your AI code.

Adding existing TcCOM modules

To add existing TcCOM modules to your TwinCAT configuration, these modules need to be detectable by
TwinCAT. This can be achieved by either of the following ways:

• Copying TcCOM modules to folder %TWINCAT3.XDIR”\CustomConfig\Modules\
• Editing %TWINCAT3.XDIR”\Config\Io\TcModuleFolders.xml to add a path to a folder of your choice

and place the modules within that folder

Both ways will be sufficient to make the TcCOM modules detectable by TwinCAT.

A TcCOM module is being identified by its GUID or name:

• This GUID can be used to add a TcCOM module to a TwinCAT configuration via the
ITcSmTreeItem::CreateChild() method. The GUID can be determined in TwinCAT XAE via the
properties page of a TcCOM module.

Appendix

TE1000 355Version: 1.13

Alternatively, you can also determine the GUID via the TMC file of the TcCOM module.
<TcModuleClass>
 <Modules>
 <Module GUID="{8f5fdcff-ee4b-4ee5-80b1-25eb23bd1b45}">
 ...
 </Module>
 </Modules>
</TcModuleClass>

Let’s assume that we already own a TcCOM module that is registered in and detectable by TwinCAT. We
now would like to add this TcCOM module, which has the GUID {8F5FDCFF-
EE4B-4EE5-80B1-25EB23BD1B45} to our TwinCAT configuration. This can be done by the following way:

Code Snippet (C#):
Dictionary<string,Guid> tcomModuleTable = new Dictionary<string,Guid>();
tcomModuleTable.Add("TempContr",Guid.Parse("{8f5fdcff-ee4b-4ee5-80b1-25eb23bd1b45}"));
ITcSmTreeItem tempController = tcComObjects.CreateChild(“Test”, 0, "",
tcomModuleTable["TempContr"]);

Code Snippet (Powershell):
$tcomModuleTable = @""
$tcomModuleTable.Add("TempContr", "{8f5fdcff-ee4b-4ee5-80b1-25eb23bd1b45}")
$tempController = $tcComObjects.CreateChild("Test", 0, "", $tcomModuleTable["TempContr"])

Please note that the vInfo parameter of the method ItcSmTreeItem::CreateChild() contains the GUID of the
TcCOM module which is used to identify the module in the list of all registered TcCOM modules in that
system.

• This name can be used to add a TcCOM module to a TwinCAT configuration via the
ITcSmTreeItem::CreateChild() method. The name can be determined in TwinCAT XAE via the TMC
Editor.

•
• This can be done by the following way:

Code Snippet (C#):

Appendix

TE1000356 Version: 1.13

ITcSmTreeItem tempController = tcComObjects.CreateChild(“Test”, 1, "", "NewModule");

Code Snippet (Powershell):
$tempController = $tcComObjects.CreateChild("Test", 0, "", "NewModule")

Iterating through added TcCOM modules

To iterate through all added TcCOM module instances, you may use the ITcModuleManager2 interface. The
following code snippet demonstrates how to use this interface.

Code Snippet (C#):
ITcModuleManager2 moduleManager = (ITcModuleManager2)systemManager.GetModuleManager();
foreach (ITcModuleManager2 moduleInstance in moduleManager)
{
 string moduleType = moduleInstance.ModuleTypeName;
 string instanceName = moduleInstance.ModuleInstanceName;
 Guid classId = moduleInstance.ClassID;
 uint objId = moduleInstance.oid;
 uint parentObjId = moduleInstance.ParentOID;
}

Code Snippet (Powershell):
$moduleManager = $systemManager.GetModuleManager()
ForEach($moduleInstance in $moduleManager)
{
 $moduleType = $moduleInstance.ModuleTypeName
 $instanceName = $moduleInstance.ModuleInstanceName
 $classId = $moduleInstance.ClassID
 $objId = $moduleInstance.oid
 $parentObjId = $moduleInstance.ParentOID
}

Please note that every module object can also be interpreted as an ITcSmTreeItem, therefore the following
type cast would be valid:

Code Snippet (C#):
ITcSmTreeItem treeItem = moduleInstance As ITcSmTreeItem;

Please note: Powershell uses dynamic data types by default.

Setting CreateSymbol flag for parameters

The CreateSymbol (CS) flag for parameters of a TcCOM module can be set via its XML description. The
following code snippet demonstrates how to activate the CS flag for the Parameter “CallBy”.

Code Snippet (C#):
bool activateCS = true;
// First step: Read all Parameters of TcCOM module instance
string tempControllerXml = tempController.ProduceXml();
XmlDocument tempControllerDoc = new XmlDocument();
tempControllerDoc.LoadXml(tempControllerXml);
XmlNode sourceParameters = tempControllerDoc.SelectSingleNode("TreeItem/TcModuleInstance/Module/
Parameters");

// Second step: Build target XML (for later ConsumeXml())
XmlDocument targetDoc = new XmlDocument();
XmlElement treeItemElement = targetDoc.CreateElement("TreeItem");
XmlElement moduleInstanceElement = targetDoc.CreateElement("TcModuleInstance");
XmlElement moduleElement = targetDoc.CreateElement("Module");
XmlElement parametersElement = (XmlElement) targetDoc.ImportNode(sourceParameters, true);
moduleElement.AppendChild(parametersElement);
moduleInstanceElement.AppendChild(moduleElement);
treeItemElement.AppendChild(moduleInstanceElement);
targetDoc.AppendChild(treeItemElement);

// Third step: Look for specific parameter (in this case “CallBy”) and read its CreateSymbol
attribute
XmlNode destModule = targetDoc.SelectSingleNode("TreeItem/TcModuleInstance/Module ");
XmlNode callByParameter = destParameters.SelectSingleNode("Parameters/Parameter[Name='CallBy']");
XmlAttribute createSymbol = callByParameter.Attributes["CreateSymbol"];

createSymbol.Value = "true";

Appendix

TE1000 357Version: 1.13

// Fifth step: Write prepared XML to configuration via ConsumeXml()
string targetXml = targetDoc.OuterXml;
tempController.ConsumeXml(targetXml);

Code Snippet (Powershell):
$tempControllerXml = [Xml]$tempController.ProduceXml()
$sourceParameters = $tempControllerXml.TreeItem.TcModuleInstance.Module.Parameters

[System.XML.XmlDocument] $targetDoc = New-Object System.XML.XmlDocument
[System.XML.XmlElement] $treeItemElement = $targetDoc.CreateElement("TreeItem")
[System.XML.XmlElement] $moduleInstanceElement = $targetDoc.CreateElement("TcModuleInstance")
[System.XML.XmlElement] $moduleElement = $targetDoc.CreateElement("Module")
[System.XML.XmlElement] $parametersElement = $targetDoc.ImportNode($sourceParameters, $true)
$moduleElement.AppendChild($parametersElement)
$moduleInstanceElement.AppendChild($moduleElement)
$treeItemElement.AppendChild($moduleInstanceElement)
$targetDoc.AppendChild($treeItemElement)

$destModule = $targetDoc.TreeItem.TcModuleInstance.Module
$callByParameter = $destmodule.SelectSingleNode("Parameters/Parameter[Name='CallBy']")

$callByParameter.CreateSymbol = "true"

$targetXml = $targetDoc.OuterXml
$tempController.ConsumeXml($targetXml)

Setting CreateSymbol flag for Data Areas

The CreateSymbol (CS) flag for Data Areas of a TcCOM module can be set via its XML description. The
following code snippet demonstrates how to activate the CS flag for the Data Area “Input”. Please note that
the procedure is pretty much the same as for parameters.

Code Snippet (C#):
bool activateCS = true;
// First step: Read all Data Areas of a TcCOM module instance
string tempControllerXml = tempController.ProduceXml();
XmlDocument tempControllerDoc = new XmlDocument();
tempControllerDoc.LoadXml(tempControllerXml);
XmlNode sourceDataAreas = tempControllerDoc.SelectSingleNode("TreeItem/TcModuleInstance/Module/
DataAreas");

// Second step: Build target XML (for later ConsumeXml())
XmlDocument targetDoc = new XmlDocument();
XmlElement treeItem = targetDoc.CreateElement("TreeItem");
XmlElement moduleInstance = targetDoc.CreateElement("TcModuleInstance");
XmlElement module = targetDoc.CreateElement("Module");
XmlElement dataAreas = (XmlElement)
targetDoc.ImportNode(sourceDataAreas, true);
module.AppendChild(dataAreas);
moduleInstance.AppendChild(module);
treeItem.AppendChild(moduleInstance);
targetDoc.AppendChild(treeItem);

// Third step: Look for specific Data Area (in this case "Input") and read its CreateSymbol
attribute
XmlElement dataArea = (XmlElement)targetDoc.SelectSingleNode("TreeItem/TcModuleInstance/Module/
DataAreas/DataArea[ContextId=’0’ and Name=’Input’]");
XmlNode dataAreaNo = dataArea.SelectSingleNode("AreaNo");
XmlAttribute createSymbol = dataAreaNoNode.Attributes["CreateSymbols"];

// Fourth step: Set CreateSymbol attribute to true if it exists. If not, create attribute and set
its value
if (createSymbol != null)
string oldValue = createSymbol.Value;
else
{
createSymbol = targetDoc.CreateAttribute("CreateSymbols");
dataAreaNo.Attributes.Append(createSymbol);
}
createSymbol.Value = XmlConvert.ToString(activateCS);

// Fifth step: Write prepared XML to configuration via ConsumeXml()
string targetXml = targetDoc.OuterXml;
tempController.ConsumeXml(targetXml);

Appendix

TE1000358 Version: 1.13

Code Snippet (Powershell):
$tempControllerXml = [Xml]$tempController.ProduceXml()
$sourceDataAreas = $tempControllerXml.TreeItem.TcModuleInstance.Module.DataAreas

[System.XML.XmlDocument] $targetDoc = New-Object System.XML.XmlDocument
[System.XML.XmlElement] $treeItem = $targetDoc.CreateElement("TreeItem")
[System.XML.XmlElement] $moduleInstance = $targetDoc.CreateElement("TcModuleInstance")
[System.XML.XmlElement] $module = $targetDoc.CreateElement("Module")
[System.XML.XmlElement] $dataAreas = $targetDoc.ImportNode($sourceDataAreas, $true)
$module.AppendChild($dataAreas)
$moduleInstance.AppendChild($module)
$treeItem.AppendChild($moduleInstance)
$targetDoc.AppendChild($treeItem)

$destModule = $targetDoc.TreeItem.TcModuleInstance.Module
[System.XML.XmlElement] $dataArea = $destModule.SelectSingleNode("DataAreas/DataArea[ContextId='0'
and Name='Input']")
$dataAreaNo = $dataArea.SelectSingleNode("AreaNo")
$dataAreaNo.CreateSymbols = "true"

// Fifth step: Write prepared XML to configuration via ConsumeXml()
$targetXml = $targetDoc.OuterXml
$tempController.ConsumeXml($targetXml)

Setting Context (Tasks)

Every TcCOM module instance needs to be run in a specific context (task). This can be done via the
ITcModuleInstance2::SetModuleContext() method. This method awaits two parameters: ContextId and
TaskObjectId. Both are equivalent to the corresponding parameters in TwinCAT XAE:

Please note that the TaskObjectId is shown in hex in TwinCAT XAE.

Code Snippet (C#):
ITcModuleInstance2 tempControllerMi = (ITcModuleInstance2) tempController;
tempControllerMi.SetModuleContext(0, 33619984);

You can determine the TaskObjectId via the XML description of the corresponding task, for example:

Code Snippet (C#):
ITcSmTreeItem someTask = systemManager.LookupTreeItem(“TIRT^SomeTask”);
string someTaskXml = someTask.ProduceXml();
XmlDocument someTaskDoc = new XmlDocument();
someTaskDoc.LoadXml(someTaskXml);
XmlNode taskObjectIdNode = someTaskDoc.SelectSingleNode(“TreeItem/ObjectId”);
string taskObjectIdStr = taskObjectId.InnerText;
uint taskObjectId = uint.Parse(taskObjectIdStr, NumberStyles.HexNumber);

Linking variables

Linking variables of a TcCOM module instance to PLC/IO or other TcCOM modules can be done by using
regular Automation Interface mechanisms, e.g. ITcSysManager::LinkVariables().

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tc1300

mailto:info@beckhoff.de?subject=TE1000
https://www.beckhoff.com
https://www.beckhoff.com/tc1300

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	3 Introduction
	3.1 From conventional user mode programming to real-time programming in TwinCAT

	4 Requirements
	5 Preparation - only once
	5.1 "Microsoft Windows Driver Kit (WDK)" installation (only <= Build 4022)
	5.2 Visual Studio - TwinCAT XAE Base toolbar
	5.3 Prepare Visual Studio - Configuration and Platform toolbar
	5.4 Driver signing
	5.4.1 Operating system
	5.4.1.1 Test signing
	5.4.1.2 Delete test certificate
	5.4.1.3 Customer Certificates
	5.4.1.4 SecureBoot: Driver signing

	5.4.2 TwinCAT
	5.4.2.1 Test signing
	5.4.2.2 Signing for delivery

	6 Modules
	6.1 The TwinCAT Component Object Model (TcCOM) concept
	6.1.1 TwinCAT module properties
	6.1.2 TwinCAT module state machine

	6.2 Module-to-module communication

	7 Modules - Handling
	7.1 Versioned C++ Projects
	7.2 Non-versioned C++ projects
	7.2.1 Export to TwinCAT 3.1 4022.xx
	7.2.2 Import up to TwinCAT 3.1 4022.xx

	7.3 Starting Modules
	7.4 TwinCAT Loader
	7.4.1 Test signing
	7.4.2 Encrypting Modules
	7.4.3 Return Codes
	7.4.4 TcSignTool - Storage of the certificate password outside the project

	8 TwinCAT C++ development
	9 Quick Start
	9.1 Create TwinCAT 3 project
	9.2 Create TwinCAT 3 C++ project
	9.3 TwinCAT 3 Driver
	9.3.1 Creating a TwinCAT 3 C++ module in the TwinCAT Driver Project
	9.3.2 Implement TwinCAT 3 C++ project
	9.3.3 Create TwinCAT 3 C++ Module instance
	9.3.4 Create a TwinCAT task and apply it to the module instance
	9.3.5 Compiling/building a TwinCAT 3 C++ project
	9.3.6 TwinCAT 3 enable C++ debugger
	9.3.7 Activating a TwinCAT 3 project
	9.3.8 Debug TwinCAT 3 C++ project

	9.4 TwinCAT 3 Versioned Project
	9.4.1 Create TwinCAT 3 C++ project
	9.4.2 TwinCAT 3 C++ Configure project
	9.4.3 Implement TwinCAT 3 C++ project
	9.4.4 Publish TwinCAT 3 C++ project in version 0.0.0.1
	9.4.5 Implement and publish TwinCAT 3 C++ project version 0.0.0.2
	9.4.6 Create TwinCAT 3 C++ Module instance
	9.4.7 Activating a TwinCAT 3 project
	9.4.8 TwinCAT 3 C++ Implement project Online Change

	10 Debugging
	10.1 Details of Conditional Breakpoints
	10.2 Visual Studio tools

	11 Wizards
	11.1 TwinCAT C++ Project Wizard
	11.2 TwinCAT Module Class Wizard
	11.3 TwinCAT Module Class Editor (TMC)
	11.3.1 Overview
	11.3.2 Basic Information
	11.3.3 Data Types
	11.3.3.1 Overview
	11.3.3.2 Add / modify / delete data types
	11.3.3.3 Add / modify / delete Interfaces
	11.3.3.4 Data type properties
	11.3.3.5 Specification
	11.3.3.5.1 Array
	11.3.3.5.2 Enum
	11.3.3.5.3 Struct
	11.3.3.5.4 Interfaces

	11.3.4 Modules
	11.3.4.1 Implemented Interfaces
	11.3.4.2 Parameters
	11.3.4.2.1 Add / modify / delete parameters
	11.3.4.2.2 Parameter properties
	11.3.4.2.3 TraceLevelMax

	11.3.4.3 Data Areas
	11.3.4.3.1 Add / modify / delete data areas and variables
	11.3.4.3.2 Data Areas Properties
	11.3.4.3.3 Symbol Properties
	11.3.4.3.3.1 TwinCAT Module Class Editor - Data Areas Symbols Properties

	11.3.4.4 Data Pointers
	11.3.4.4.1 Data Pointer Properties

	11.3.4.5 Interface Pointers
	11.3.4.5.1 Interface Pointer Properties

	11.3.4.6 Deployment

	11.4 TwinCAT Module Instance Configurator
	11.4.1 Object
	11.4.2 Context
	11.4.3 Parameter (Init)
	11.4.4 Data Area
	11.4.5 Interfaces
	11.4.6 Interface Pointer
	11.4.7 Data Pointer

	11.5 Customer-specific project templates
	11.5.1 Overview
	11.5.2 Files involved
	11.5.3 Transformations
	11.5.4 Notes on handling

	12 Programming Reference
	12.1 TwinCAT C++ Project properties
	12.1.1 Tc SDK
	12.1.2 Tc Extract Version
	12.1.3 Tc Publish
	12.1.4 Tc Sign

	12.2 File Description
	12.2.1 Compilation procedure

	12.3 Online Change
	12.4 Limitations
	12.5 Memory Allocation
	12.6 Multi-task data access synchronization
	12.7 Interfaces
	12.7.1 Return values
	12.7.2 Interface ITcCyclic
	12.7.2.1 Method ITcCyclic:CyclicUpdate

	12.7.3 Interface ITcCyclicCaller
	12.7.3.1 Method ITcCyclicCaller:AddModule
	12.7.3.2 Method ITcCyclicCaller:RemoveModule

	12.7.4 Interface ITcFileAccess
	12.7.4.1 Method ITcFileAccess:FileOpen
	12.7.4.2 Method ITcFileAccess:FileClose
	12.7.4.3 Method ITcFileAccess:FileRead
	12.7.4.4 Method ITcFileAccess:FileWrite
	12.7.4.5 Method ITcFileAccess:FileSeek
	12.7.4.6 Method ITcFileAccess:FileTell
	12.7.4.7 Method ITcFileAccess:FileRename
	12.7.4.8 Method ITcFileAccess:FileDelete
	12.7.4.9 Method ITcFileAccess:FileGetStatus
	12.7.4.10 Method ITcFileAccess:FileFindFirst
	12.7.4.11 Method ITcFileAccess:FileFindNext
	12.7.4.12 Method ITcFileAccess:FileFindClose
	12.7.4.13 Method ITcFileAccess:MkDir
	12.7.4.14 Method ITcFileAccess:RmDir

	12.7.5 Interface ITcFileAccessAsync
	12.7.5.1 Method ITcFileAccessAsync::Check()

	12.7.6 Interface ITcIoCyclic
	12.7.6.1 Method ITcIoCyclic:InputUpdate
	12.7.6.2 Method ITcIoCyclic:OutputUpdate

	12.7.7 Interface ITcIoCyclicCaller
	12.7.7.1 Method ITcIoCyclicCaller:AddIoDriver
	12.7.7.2 Method ITcIoCyclicCaller:RemoveIoDriver

	12.7.8 ITComOnlineChange interface
	12.7.8.1 Method ITComOnlineChange:PrepareOnlineChange
	12.7.8.2 Method ITComOnlineChange:PerformOnlineChange

	12.7.9 Interface ITComObject
	12.7.9.1 Method ITcComObject:TcGetObjectId(OTCID& objId)
	12.7.9.2 Method ITcComObject:TcSetObjectId
	12.7.9.3 Method ITcComObject:TcGetObjectName
	12.7.9.4 Method ITcComObject:TcSetObjectName
	12.7.9.5 Method ITcComObject:TcSetObjState
	12.7.9.6 Method ITcComObject:TcGetObjState
	12.7.9.7 Method ITcComObject:TcGetObjPara
	12.7.9.8 Method ITcComObject:TcSetObjPara
	12.7.9.9 Method ITcComObject:TcGetParentObjId
	12.7.9.10 Method ITcComObject:TcSetParentObjId

	12.7.10 ITComObject interface (C++ convenience)
	12.7.10.1 TcGetObjectId method
	12.7.10.2 TcTryToReleaseOpState method

	12.7.11 Interface ITcPostCyclic
	12.7.11.1 Method ITcPostCyclic:PostCyclicUpdate

	12.7.12 Interface ITcPostCyclicCaller
	12.7.12.1 Method ITcPostCyclicCaller:AddPostModule
	12.7.12.2 Method ITcPostCyclicCaller:RemovePostModule

	12.7.13 Interface ITcRTimeTask
	12.7.13.1 Method ITcRTimeTask::GetCpuAccount()

	12.7.14 Interface ITcTask
	12.7.14.1 Method ITcTask:GetPriority
	12.7.14.2 Method ITcTask:GetCurrentSysTime
	12.7.14.3 Method ITcTask:GetCurrentDcTime
	12.7.14.4 Method ITcTask:GetCurPentiumTime
	12.7.14.5 Method ITcTask:GetCycleCounter
	12.7.14.6 Method ITcTask:GetCycleTime

	12.7.15 Interface ITcTaskNotification
	12.7.15.1 Method ITcTaskNotification::NotifyCycleTimeExceeded()

	12.7.16 Interface ITcUnknown
	12.7.16.1 Method ITcUnknown:TcAddRef
	12.7.16.2 Method ITcUnknown:TcQueryInterface
	12.7.16.3 Method ITcUnknown:TcRelease

	12.8 Runtime Library (RtlR0.h)
	12.9 ADS Communication
	12.9.1 AdsReadDeviceInfo
	12.9.1.1 AdsReadDeviceInfoReq
	12.9.1.2 AdsReadDeviceInfoInd
	12.9.1.3 AdsReadDeviceInfoRes
	12.9.1.4 AdsReadDeviceInfoCon

	12.9.2 AdsRead
	12.9.2.1 AdsReadReq
	12.9.2.2 AdsReadInd
	12.9.2.3 AdsReadRes
	12.9.2.4 AdsReadCon

	12.9.3 AdsWrite
	12.9.3.1 AdsWriteReq
	12.9.3.2 AdsWriteInd
	12.9.3.3 AdsWriteRes
	12.9.3.4 AdsWriteCon

	12.9.4 AdsReadWrite
	12.9.4.1 AdsReadWriteReq
	12.9.4.2 AdsReadWriteInd
	12.9.4.3 AdsReadWriteRes
	12.9.4.4 AdsReadWriteCon

	12.9.5 AdsReadState
	12.9.5.1 AdsReadStateReq
	12.9.5.2 AdsReadStateInd
	12.9.5.3 AdsReadStateRes
	12.9.5.4 AdsReadStateCon

	12.9.6 AdsWriteControl
	12.9.6.1 AdsWriteControlReq
	12.9.6.2 AdsWriteControlInd
	12.9.6.3 AdsWriteControlRes
	12.9.6.4 AdsWriteControlCon

	12.9.7 AdsAddDeviceNotification
	12.9.7.1 AdsAddDeviceNotificationReq
	12.9.7.2 AdsAddDeviceNotificationInd
	12.9.7.3 AdsAddDeviceNotificationRes
	12.9.7.4 AdsAddDeviceNotificationCon

	12.9.8 AdsDelDeviceNotification
	12.9.8.1 AdsDelDeviceNotificationReq
	12.9.8.2 AdsDelDeviceNotificationInd
	12.9.8.3 AdsDelDeviceNotificationRes
	12.9.8.4 AdsDelDeviceNotificationCon

	12.9.9 AdsDeviceNotification
	12.9.9.1 AdsDeviceNotificationReq
	12.9.9.2 AdsDeviceNotificationInd
	12.9.9.3 AdsDeviceNotificationCon

	12.10 Mathematical Functions
	12.11 Time Functions
	12.12 STL / Containers
	12.13 Error messages - understanding
	12.14 Module messages for the Engineering (logging / tracing)

	13 How to...?
	13.1 Using the Automation Interface
	13.2 Windows 10 as target system up to TwinCAT 3.1 Build 4022.2
	13.3 Publishing of modules
	13.4 Publishing modules on the command line
	13.5 Clone
	13.6 Access Variables via ADS
	13.7 TcCallAfterOutputUpdate for C++ modules
	13.8 Order determination of the execution in a task
	13.9 Setting version/vendor information
	13.10 Renaming TwinCAT C++ projects
	13.11 Delete Module
	13.12 Add revision control and Online Change subsequently
	13.12.1 C++ Project -> Revision control
	13.12.2 C++ Module -> OnlineChange

	13.13 Initialization of TMC-member variables
	13.14 Using PLC strings as method parameters
	13.15 Third Party Libraries
	13.16 Linking via TMC editor (TcLinkTo)

	14 Troubleshooting
	14.1 Build - "The target ... does not exist in the project"
	14.2 Debug - "Unable to attach"
	14.3 Activation – “invalid object id” (1821/0x71d)
	14.4 Error message - VS2010 and LNK1123/COFF
	14.5 Using C++ classes in TwinCAT C++ module
	14.6 Using afxres.h

	15 C++-samples
	15.1 Sample01: Cyclic module with IO
	15.2 Sample02: Cyclic C++ logic, which uses IO from the IO Task
	15.3 Sample03: C++ as ADS server
	15.3.1 Sample03: TC3 ADS Server written in C++
	15.3.2 Sample03: ADS client UI in C#

	15.4 Sample05: C++ CoE access via ADS
	15.5 Sample06: UI-C#-ADS client uploading the symbolic from module
	15.6 Sample07: Receiving ADS Notifications
	15.7 Sample08: provision of ADS-RPC
	15.8 Sample10: module communication: Using data pointer
	15.9 Sample11: module communication: PLC module invokes method of C-module
	15.9.1 TwinCAT 3 C++ module providing methods
	15.9.2 Calling methods offered by another module via PLC

	15.10 Sample11a: Module communication: C module calls a method of another C module
	15.11 Sample12: module communication: Using IO mapping
	15.12 Sample13: Module communication: C-module calls PLC methods
	15.13 Sample19: Synchronous File Access
	15.14 Sample20: FileIO-Write
	15.15 Sample20a: FileIO-Cyclic Read / Write
	15.16 Sample22: Automation Device Driver (ADD): Access DPRAM
	15.17 Sample23: Structured Exception Handling (SEH)
	15.18 Sample24: Semaphores
	15.19 Sample25: Static Library
	15.20 Sample26: Order of execution in a task
	15.21 Sample30: Timing Measurement
	15.22 Sample31: Functionblock TON in TwinCAT3 C++
	15.23 Sample35: Access Ethernet
	15.24 Sample37: Archive data
	15.25 TcCOM samples
	15.25.1 TcCOM_Sample01_PlcToPlc
	15.25.1.1 Creating an FB which provides its functionality globally in the first PLC
	15.25.1.2 Creating an FB which likewise offers this functionality there as a simple proxy in the second PLC,
	15.25.1.3 Execution of the sample project

	15.25.2 TcCOM_Sample02_PlcToCpp
	15.25.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object
	15.25.2.2 Creating an FB in the PLC that, as a simple proxy, offers the functionality of the C++ object
	15.25.2.3 Execution of the sample project

	15.25.3 TcCOM_Sample03_PlcCreatesCpp
	15.25.3.1 Provision of a TwinCAT C++ driver and its classes
	15.25.3.2 Creating an FB in the PLC that creates the C++ object and offers its functionality
	15.25.3.3 Execution of the sample project

	16 Appendix
	16.1 ADS Return Codes
	16.2 Retain data
	16.3 Creating and handling C++ projects and modules
	16.4 Creating and handling TcCOM modules

		documentation@beckhoff.com
	2020-10-27T05:03:19-0700
	Beckhoff Automation, Verl
	Documentation Publishing

