

Service and Repair Manual

Serial Number Range

Z[®]-45 XC Z[®]-45 HF from Z4525XCF-101 from Z4525XCM-101 This manual includes: Repair procedures Fault Codes Electrical and Hydraulic Schematics

For detailed maintenance procedures, refer to the appropriate Maintenance Manual for your machine.

Part No. 1268197GT Rev E November 2020

Introduction

Important

Read, understand and obey the safety rules and operating instructions in the appropriate Operator's Manual on your machine before attempting any procedure.

This manual provides troubleshooting and repair procedures for qualified service professionals.

Basic mechanical, hydraulic and electrical skills are required to perform most procedures. However, several procedures require specialized skills, tools, lifting equipment and a suitable workshop. In these instances, we strongly recommend that maintenance and repair be performed at an authorized Genie dealer service center.

Compliance

Machine Classification

Group B/Type 3 as defined by ISO 16368

Machine Design Life

Unrestricted with proper operation, inspection and scheduled maintenance.

Technical Publications

Genie has endeavored to deliver the highest degree of accuracy possible. However, continuous improvement of our products is a Genie policy. Therefore, product specifications are subject to change without notice.

Readers are encouraged to notify Genie of errors and send in suggestions for improvement. All communications will be carefully considered for future printings of this and all other manuals.

Contact Us:

Internet: www.genielift.com E-mail: awp.techpub@terex.com

Find a Manual for this Model

Go to http://www.genielift.com

Use the links to locate Service Manuals, Maintenance Manuals, Service and Repair Manuals, Parts Manuals and Operator's Manuals.

Copyright © 2017 by Terex Corporation

1268197GT Rev E, November 2020

First Edition, Fifth Printing

Genie and "Z" are registered trademarks of Terex South Dakota, Inc. in the U.S.A. and many other countries.

"XC" is a trademark of Terex South Dakota, Inc.

Introduction

Revision History

Revision	Date	Section	Procedure / Page / Description
Α	5/2017		Initial Release
A1	8/2017	Fault Codes	Control System Fault Codes
		Specifications	Hydraulic Component Specifications
		Repair	Function Manifold Components
		Schematics	Hydraulic Schematic,
A2	9/2017	Repair	Procedure 2-3, 2-4
		Fault Codes	Introduction, Control System and Platform Overload Fault Codes
		Schematics	Hour Meter Pin Legend
В	9/2017	Schematics	Add wiring diagrams
B1	11/2017	Specifications	Machine Specifications
B2	6/2018	Schematics	GCON Terminal Strip Wiring Diagram
С	1/2019	Specifications	Added ANSI / CSA engines
		Schematics	Added ANSI / CSA Schematics
D	10/2019	Specifications	Machine Specifications
		Repair	Procedure 2-3
Е	11/2020	All Sections	Add Deutz TD 2.2 L3 engine
Reference I	Examples:		
Section – Repair Procedure, 4-2			Electronic Version Click on any content or procedure in the Table of Contents to view
Section – Fault Codes, All charts			the update.
Section – Schematics, Legends and schematics		ends and schematics	

Safety Rules

Danger

Failure to obey the instructions and safety rules in this manual and the appropriate Operator's Manual on your machine will result in death or serious injury.

Many of the hazards identified in the operator's manual are also safety hazards when maintenance and repair procedures are performed.

Do Not Perform Maintenance Unless:

- You are trained and qualified to perform maintenance on this machine.
- ✓ You read, understand and obey:
 - manufacturer's instructions and safety rules
 - employer's safety rules and worksite regulations
 - · applicable governmental regulations
- You have the appropriate tools, lifting equipment and a suitable workshop.

Safety Rules

Personal Safety

Any person working on or around a machine must be aware of all known safety hazards. Personal safety and the continued safe operation of the machine should be your top priority.

Read each procedure thoroughly. This manual and the decals on the machine, use signal words to identify the following:

Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

Indicates a imminently hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

A CAUTION

Indicates a potentially hazardous situation which, if not avoided, may cause minor or moderate injury.

Indicates a potentially hazardous situation which, if not avoided, may result in property damage.

Be sure to wear protective eye wear and other protective clothing if the situation warrants it.

Be aware of potential crushing hazards such as moving parts, free swinging or unsecured components when lifting or placing loads. Always wear approved steel-toed shoes.

Workplace Safety

Any person working on or around a machine must be aware of all known safety hazards. Personal safety and the continued safe operation of the machine should be your top priority.

Be sure to keep sparks, flames and lighted tobacco away from flammable and combustible materials like battery gases and engine fuels. Always have an approved fire extinguisher within easy reach.

Be sure that all tools and working areas are properly maintained and ready for use. Keep work surfaces clean and free of debris that could get into machine components and cause damage.

Be sure any forklift, overhead crane or other lifting or supporting device is fully capable of supporting and stabilizing the weight to be lifted. Use only chains or straps that are in good condition and of ample capacity.

Be sure that fasteners intended for one time use (i.e., cotter pins and self-locking nuts) are not reused. These components may fail if they are used a second time.

Be sure to properly dispose of old oil or other fluids. Use an approved container. Please be environmentally safe.

Be sure that your workshop or work area is properly ventilated and well lit.

٧

Introduction	Introductionii		
	Important Informationii		
	Find a Manual for this Modelii		
	Revision Historyiii		
Section 1	Safety Rulesiv		
	General Safety Rulesiv		
Section 2	Specifications1		
	Machine Specifications 1		
	Performance Specifications		
	Hydraulic Oil Specifications2		
	Hydraulic Component Specifications5		
	Deutz D 2.9 L4 Engine Specifications		
	Deutz TD 2.2 L3 Engine Specifications 8		
	Deutz D2011 L03i Engine Specifications9		
	Perkins 404D-22 Engine Specifications		
	Perkins 404F-E22T Engine Specifications		
	Ford MSG-425 EFI Engine Specifications		
	Machine Torque Specifications13		
	Hydraulic Hose and Fitting Torque Specifications		
	Torque Procedure15		

Section 3	Repair Procedures	
	Platform Controls	
	1-2 Joysticks	
	How to Adjust the Joystick Max-out Setting	
	How to Adjust the Joystick Ramp Rate Setting	
	How to Adjust the Joystick Threshold Setting	
	Platform Components	24
	2-1 Platform Leveling Slave Cylinder	
	How to Bleed the Slave Cylinder	25
	2-2 Platform Rotator	25
	2-3 Platform Overload System	26
	How to Replace the Platform Overload Load Cell	29
	2-4 Platform Overload Recovery Fault	29
	Jib Boom Components	30
	3-1 Jib Boom	30
	3-2 Jib Boom Lift Cylinder	31
	Primary Boom Components4-1 Cable Track	
	How to Remove the Cable Track	
	How to Repair the Primary Boom Cable Track	
	4-2 Primary Boom	
	How to Disassemble the Primary Boom	
	4-3 Primary Boom Lift Cylinder	
	4-4 Primary Boom Extension Cylinder	39
	4-5 Platform Leveling Master Cylinder	
	Secondary Boom Components	41
	5-1 Secondary Boom	
	5-2 Secondary Boom Lift Cylinders	46

Engines	47
6-1 RPM Adjustment - Deutz D2011L03i Models	47
6-2 RPM Adjustment - Perkins 404D-22 Models	47
6-3 Flex Plate	47
How to Install the Flex Plate	49
How to install the Pump and Bell Housing Assembly	50
5-4 Engine Fault Codes	51
6-7 Diesel Particle Filter Regeneration - Deutz TD 2.2 L3	52
Hydraulic Pumps	53
7-1 Lift/Steer Pump	53
7-2 Drive Pump	54
How to Prime the Pump	55
Manifolds	56
8-1 Function Manifold Components - CE (to Z4525XCM-1500)	56
8-1.1 Function Manifold Components - ANSI / CSA / CE (from Z4525XCF-101, Z4525XCM-1501)	59
8-2 Valve Adjustments - Function Manifold	64
How to Adjust the System Relief Valve	64
How to Adjust the Secondary Boom Down Relief Valve	64
8-3 Jib Boom / Platform Rotate Manifold Components	65
8-4 Turntable Rotation Manifold Components	66
8-5 Directional Valve Manifold Components	67
How to Set Up the Directional Valve Linkage	68
8-6 Traction Manifold Components, 4WD	70
8-7 Valve Adjustments, 4WD Traction Manifold	72
8-8 Hydraulic Generator Manifold Components, 2.2kW	73
8-8.1 Generator Manifold Components	74
8-9 Valve Coils	75
How to Test a Coil Diode	75
Turntable Rotation Components	77
9-1 Turntable Rotation Assembly	77
Axle Components	78
10-1 Oscillating Ayla Cylinders	70

Section 4	Fault Codes	79
	Introduction	79
	Control System Fault Codes	80
	How to Retrieve Control System Fault Codes	80
	Control System Fault Codes	81
	How to Retrieve Platform Overload System Fault Codes - Deutz D2011L03i, Perkins 404D-22 and Ford MSG-425 Models	84
	Platform Overload System Fault Codes	85
	Fault Code Display - Deutz and Perkins Models	87
	How to Retrieve Active Engine Fault Codes - Deutz D 2.9 L4 and Perkins 404F-E22T Models	87
	How to Retrieve Active Engine Fault Codes - Deutz TD 2.2 L3 Models	88
	Fault Code Display - Flashing and Solid LED's - Deutz D 2.9 L4 and Perkins 404F-E22T Models	89
	Soft Key Functions and Icons - Deutz D 2.9 L4 and Perkins 404F-E22T Models	90
	Soft Key Functions and Icons - Deutz TD 2.2 L3 Models	91
	Main Menu Structure - Deutz D 2.9 L4 Models	92
	Main Menu Structure - Deutz TD 2.2 L3 Models	93
	Main Menu Structure - Perkins 404F-E22T Models	94
	Deutz TD 2.2 L3 Engine Fault Codes	95
	Deutz D 2.9 L4 Engine Fault Codes	105
	Perkins 404F-E22T Engine Fault Codes	116
	Ford MSG-425 Engine Fault Codes	

Χ

Section 5	Schematics	123
	Introduction	123
	Electrical Symbol Legend	124
	Hydraulic Symbols Legend	125
	Limit Switch Location Legend	126
	Electrical Component and Wire Color Legends	127
	Hour Meter Legend	130
	Electrical Schematics	131
	Electrical Schematic, Ford MSG425	132
	Electrical Schematic, Deutz D2011L03i and Perkins 404D-22	133
	Electrical Schematic, Deutz D 2.9 L4	136
	Engine Wire Harness, Deutz D 2.9 L4	137
	Electrical Schematic, Deutz TD 2.2 L3	140
	Engine Wire Harness, Deutz TD 2.2 L3 - Page 1	141
	Engine Wire Harness, Deutz TD 2.2 L3 - Page 2	143
	Electrical Schematic, Perkins 404F-22T	146
	Perkins 404F-E22T Engine Wire Harness	147
	Electrical Schematic, Function Controls - ANSI / CSA	150
	Electrical Schematic, Function Controls - CE	151
	Electrical Schematic, Platform Overload	154
	Electrical Schematic, Options Wiring Diagram	155

Ground Control Box Switch Panel Wiring Diagram, Deutz D2011L03i and Perkins 404D-22 - ANSI / CSA	. 158
Ground Control Box Terminal Strip Wiring Diagram, Deutz D2011L03i and Perkins 404D-22 - ANSI / CSA	. 159
Ground Control Box Switch Panel Wiring Diagram, Deutz D 2.9 L4 and Perkins 404F-E22T - ANSI / CSA	. 162
Ground Control Box Terminal Strip Wiring Diagram, Deutz D 2.9 L4 and Perkins 404F-E22T - ANSI / CSA	. 163
Ground Control Box Switch Panel Wiring Diagram, Ford MSG425 - ANSI / CSA	. 166
Ground Control Box Terminal Strip Wiring Diagram, Ford MSG425 - ANSI / CSA	. 167
Ground Control Box Switch Panel Wiring Diagram - CE	. 170
Ground Control Box Terminal Strip Wiring Diagram - CE	. 171
Platform Control Box Switch Panel Wiring Diagram	. 174
Platform Control Box Terminal Strip Wiring Diagram	. 175
Platform Control Box Relayl Wiring Diagram - ANSI / CSA	. 178
Platform Control Box Relay Wiring Diagram- CE	. 179
Hydraulic Schematics	. 181
Hydraulic Schematic - CE (to Z4525XCM-1500)	. 182
Hydraulic Schematic - ANSI / CSA / CF (from 74525XCF-101, 74525XCM-1501)	183

This page intentionally left blank.

Machine Specifications

Tires and wheels	rough terrain
Tire size	315/55 D20
Tire ply rating	12
Tire weight, new foam filled	290 lbs
(minimum)	131,5 kg
Overall tire diameter	32.5 in
	82,5 cm
Wheel diameter	20 in
	50,8 cm
Wheel width	11 in
	27,9 cm
	high flotation
Tire size	33/16LL 500
Tire ply rating	10
Tire weight	145 lbs
	66 kg
Overall tire diameter	33 in
	88,8 cm
Wheel diameter	19.5 in
	49,5
Wheel width	14 in 35,5
Tire proceure	38 psi
Tire pressure	2,62 bar
Wheel lugs	9 @ 5/8 -18
Lug nut torque, lubricated	94 ft-lbs
G (1.1.)	127,4 Nm
Lug nut torque, dry	125 ft-lbs
	169,5 Nm

Fuel capacities	
LPG tank	33.5 pounds 15,2 kg
Fuel tank	17 gallons 64,4 liters
Hydraulic tank	22 gallons 83 liters
Hydraulic system (including tank)	30 gallons 113,6 liters
Drive hubs	24 fl oz 710 cc
Turntable rotation drive hub	25.5 fl oz 750 cc
Drive hub oil type: SAE 90 multipurp	oose hypoid gear oil

API service classification GL5

For operational specifications, refer to the Operator's Manual.

Performance Specifications

Drive speed, maximum	
Stowed position	4.5 mph 7,2 km/h
	40 ft / 6.1 sec 12,2 m / 6,1 sec
Raised or extended	0.33 mph 0,5 km/h
	40 ft / 90 sec 12,2 m / 90 sec
Gradeability	See Operator's Manual
Braking distance, maximum	
High range on paved surface	3 to 6 ft 0,9 to 1,8 m
Joystick function speeds, ma	ximum from platform
Primary boom up	26 to 30 seconds
Primary boom down	26 to 30 seconds
Primary boom extend	14 to 18 seconds
Primary boom retract	14 to 18 seconds
Secondary boom up	26 to 30 seconds
Secondary boom down	26 to 30 seconds
Turntable rotate, 355°	67 to 73 seconds

For operational specifications, refer to the Operator's Manual.

Hydraulic Oil Specifications

Hydraulic Fluid Specifications

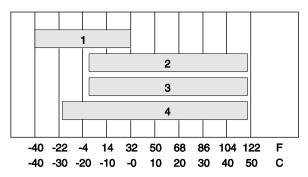
Genie specifications require hydraulic oils which are designed to give maximum protection to hydraulic systems, have the ability to perform over a wide temperature range, and the viscosity index should exceed 140. They should provide excellent antiwear, oxidation prevention, corrosion inhibition, seal conditioning, and foam and aeration suppression properties.

Cleanliness level, minimum	ISO 15/13
Water content,	250 ppm

maximum		
Recommended Hydraulic Fluid		
Hydraulic oil type	Chevron Rando HD Premium	
Viscosity grade	32	
Viscosity index	200	
Optional Hydraulic F	luids	
Mineral based	Shell Tellus S2 V 32 Shell Tellus S2 V 46 Shell Tellus S4 VX 32 Shell Donax TG (Dexron III) Chevron 5606A	
Biodegradable	Petro Canada Environ MV 46	
Fire resistant	UCON Hydrolube HP-5046	

Note: Genie specifications require additional equipment and special installation instructions for the approved optional fluids. Consult Genie Product Support before use.

Optional fluids may not have the same hydraulic lifespan and may result in component damage.


Note: Extended machine operation can cause the hydraulic fluid temperature to increase beyond its maximum allowable range. If the hydraulic fluid temperature consistently exceeds 200°F / 90°C an optional oil cooler may be required.

Do not top off with incompatible hydraulic fluids. Hydraulic fluids may be incompatible due to the differences in base additive chemistry. When incompatible fluids are mixed, insoluble materials may form and deposit in the hydraulic system, plugging hydraulic lines, filters, control valves and may result in component damage.

Note: Do not operate the machine when the ambient air temperature is consistently above 120°F / 49°C.

Hydraulic Fluid Temperature Range

Ambient air temperature

- 1 Chevron hydraulic oil 5606A
- 2 Petro-Canada Environ MV 46
- 3 UCON Hydrolube HP-5046D
- 4 Chevron Rando HD premium oil MV

Chevron Rando HD Premium Oil MV Fluid Properties

ISO Grade	32
Viscosity index	200
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C	7.5 33.5
Brookfield Viscosity cP @ -4°F / -20°C cP @ -22°F / -30°C	1040 3310
Flash point	375°F / 190°C
Pour point	-58°F / -50°C
Maximum continuous operating temperature	171°F / 77°C

Note: A hydraulic oil heating system is recommended when the ambient temperature is consistently below 0°F / -18°C.

Note: Do not operate the machine when the ambient temperature is below -20°F / -29°C with Rando HD Premium MV.

Chevron 5606A Hydraulic Oil Fluid Properties

ISO Grade	15
Viscosity index	300
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C cSt @ -40°F / -40°C	5.5 15.0 510
Flash point	180°F / 82°C
Pour point	-81°F / -63°C
Maximum continuous operating temperature	124°F / 51°C

Note: Use of Chevron 5606A hydraulic fluid, or equivalent, is required when ambient temperatures are consistently below 0°F / -17°C unless an oil heating system is used.

Continued use of Chevron 5606A hydraulic fluid, or equivalent, when ambient temperatures are consistently above 32°F / 0°C may result in component damage

Petro-Canada Environ MV 46 Fluid Properties

ISO Grade	46
Viscosity index	154
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C	8.0 44.4
Flash point	482°F / 250°C
Pour point	-49°F / -45°C
Maximum continuous operating temperature	180°F / 82°C

Shell Tellus S4 VX Fluid Properties

ISO Grade	32
Viscosity index	300
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C	9 33.8
Brookfield Viscosity cSt @ -4°F / -20°C cSt @ -13°F / -25°C cSt @ -40°F / -40°C	481 702.4 2624
Flash point	>100
Pour point	-76°F / -60°C
Maximum continuous operating temperature	103°F / 75°C

UCON Hydrolube HP-5046 Fluid Properties

ISO Grade	46
Viscosity index	192
Kinematic Viscosity cSt @ 149°F / 65°C cSt @ 104°F / 40°C cSt @ 0°F / -18°C	22 46 1300
Flash point	None
Pour point	-81°F / -63°C
Maximum continuous operating temperature	189°F / 87°C

Hydraulic Component Specifications

Drive Pump	
Type: bi-directional variable displacer	nent piston pump
Flow rate @ 2500 psi / 172 bar	32 gpm 121 L/min
Drive pressure, maximum	3500 psi 241 bar
Charge Pump	
Туре	gear
Displacement per revolution	0.84 cu in 13,76 cc
Flow rate @ 2500 psi / 172 bar	9.1 gpm 34,4 L/min
Charge pressure @ 2500 rpm	315 psi 21,7 bar
Function Pump	
Туре	gear
Displacement per revolution	0.67 cu in 11 cc
Flow rate @ 2500 psi / 172 bar	7.25 gpm 27,4 L/min
Auxiliary Pump	
Туре	gear, fixed displacement
Displacement per revolution	0.067 cu in 1,1 cc
Auxiliary pump relief pressure	3200 psi 220,6 bar

Function manifold	
System relief valve pressure, maximum	3200 psi 220,6 bar
Secondary boom down relief valve pressure	2100 psi 145 bar
Platform level relief valve pressure	3000 psi 207 bar
Steer flow regulator	2.0 gpm 7,6 L/min
Boom extend flow regulator	2 gpm 7,6 L/min
Jib boom / platform rotate flow regulator	0.8 gpm 3 L/min
Traction Manifold	
Hot oil relief pressure	250 psi 17,2 bar
Steer end drive motors	
Displacement per revolution variable	0.54 to 1.53 cu in 8,77 to 25 cc
Non-steer end drive motors	
Displacement per revolution variable (2 speed motor)	0.54 to 1.53 cu in 8,85 to 25,1 cc
Hydraulic Filters	
High pressure filter:	Beta 3 ^ 200
High pressure filter bypass pressure	102 psi 7 bar
Medium pressure filter	Beta 3 ^ 200
Medium pressure filter bypass pressure	51 psi 3,5 bar
Hydraulic tank return filter	10 micron with 25 psi / 1,7 bar bypass

Manifold Component Specifications	
Plug torque	
SAE No. 2	36 in-lbs / 4 Nm
SAE No. 4	10 ft-lbs / 13 Nm
SAE No. 6	14 ft-lbs / 19 Nm
SAE No. 8	38 ft-lbs / 51 Nm
SAE No. 10	41 ft-lbs / 55 Nm
SAE No. 12	56 ft-lbs / 76 Nm

Deutz D2.9 L4 Engine

Displacement	177 cu in 2,9 liters
Number of cylinders	4
Bore and Stroke	3.6 x 4.3 inches 92 x 110 mm
Horsepower	48.8 @ 2600 rpm 37 kW @ 2600 rpm
Firing order	1 - 3 - 4 - 2
Low idle	1500 rpm 313 Hz
High idle	2500 rpm 521,7 Hz
Compression ratio	18.4:1
Compression pressure	362 to 435 psi 25 to 30 bar
Governor	electronic
Lubrication system	
Oil pressure (@ 2000 rpm)	40 to 60 psi 1,4 to 3 bar
Oil capacity (including filter)	9.4 quarts 9 liters
Oil viscosity requirements	Low ash oil required
-22° F to 86° F/ -30° C to 30° C	5W-30 (synthetic)
-4° F to 90° F / -20° C to 32° C	10W-40
Above 23° F / -5° C	20W-50
Unit ships with 15W-40. Extreme of temperatures may require the use	

Engine coolant	
Capacity	10 quarts 9,4 liters
Fuel injection system	
Injection pump make	Bosch
Injection pump pressure, maximum	15000 psi 1034 bar
Injector opening pressure	3046 psi 210 bar
Fuel requirement	
For fuel requirements, refer to the e Manual for your engine.	ngine Operator
Starter motor	
Cranking speed	150-250 RPM
Current draw, normal load	250A to 400A
Output	3.2kW
Battery	
Type	12V DC
Quantity	1
Cold cranking ampere	1000A
Reserve capacity @ 25A rate	200 minutes
Alternator output	95A @ 14V DC
Fan belt deflection	3/8 to 1/2 inch 9 to 12 mm

Unit ships with 15W-40. Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Manual for your engine.

Manual for your engine.	
Oil temperature switch	
Temperature switch point	257°F 125°C
Oil Pressure switch	
Oil pressure switch point	20 psi

Deutz TD 2.2 L3 Engine

Displacement	134 cu. in
	2,2 liters
Number of cylinders	3
Bore and Stroke	3.6 x 4.3 inches
	92 x 110 mm
Horsepower net intermittent	49 hp
@ 2600 rpm	36 kW
Induction system	turbocharged
Firing order	1 - 2 - 3
Low idle, standby	1000 rpm
Low idle, function enable	1500 rpm
High idle	2400 rpm
Governor	electronic
Lubrication system	Low ash oil required
Oil pressure, hot (@ 2000 rpm)	40 to 60 psi
	2,8 to 4,1 bar
Oil capacity (including filter)	8 quarts
	7,6 liters
Oil viscosity requirements	
-22°F to 86°F / -30°C to 30°C	5W-30
	(synthetic)
-4°F to 104°F / -20°C to 40°C	10W-40
Above 5°F / -15°C	15W-40
Unit ships with 15W-40 Extreme (nerating

Unit ships with 15W-40. Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Manual for your engine.

8 - 18 ft-lbs 11 - 24 Nm	
257°F 125°C	
8 - 18 ft-lbs 11 - 24 Nm	
17.4 psi 1,2 bar	
engine Operator	
2.2 gallons 8,3 liters	
Unit ships with Ethylene Glycol engine coolant. Consult your local supplier for compatibility before mixing alternative engine coolants.	
140 - 200A	
250 - 350 rpm	
ntrol system	
12V DC, Group 31	
1	
1000A	
200 Minutes	
95A @ 14V DC	

Deutz D2011 L03i Engine

Displacement	142 cu in
Diopiacoment	2,33 liters
Number of cylinders	3
Bore and Stroke	3.7 x 4.4 inches 94 x 112 mm
Horsepower	48 @ 2800 rpm 36 kW @ 2800 rpm
Firing order	1 - 2 - 3
Low idle	1500 rpm 313 Hz
High idle	2500 rpm 521,7 Hz
Compression ratio	19:01
Compression pressure	362 to 435 psi 25 to 30 bar
Governor	centrifugal mechanical
Valve clearance, cold	
Intake	0.012 in 0.3 mm
Exhaust	0.020 in 0,5 mm
Lubrication system	
Oil pressure	20 to 44 psi 1,4 to 3 bar
Oil capacity (including filter)	9.5 quarts 9 liters
Oil viscosity requirements	
-22° F to 86° F/ -30° C to 30° C	5W-30 (synthetic)
-4° F to 90° F / -20° C to 32° C	10W-40
Above 23° F / -5° C	20W-50
Unit ships with 15W-40. Extreme	operating

temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator

Manual for your engine.

Oil temperature switch	
Temperature switch point	300°F
	149°C
Oil Pressure switch	
Oil pressure switch point	22 psi
	1,5 bar
Fuel injection system	
Injection pump make	Bosch
Injection pump pressure,	15000 psi
maximum	1034 bar
Injector opening pressure	3046 psi
	210 bar
Fuel requirement	
For fuel requirements, refer to t	he engine Operator
Manual for your engine.	
Starter motor	
Current draw, no load	90A
Brush length, new	0.72 in
	18,5 mm
Brush length, minimum	0.27 in
	7 mm
Battery	
Туре	12V DC, Group 34/78
Quantity	1
Cold cranking ampere	900A
Reserve capacity @ 25A rate	200 minutes
Alternator output	60A @ 14V DC
Fan belt deflection	3/8 to 1/2 inch
	9 to 12 mm

Perkins 404D-22 Engine

Displacement	134 cu in 2,2 liters
Number of cylinders	4
Bore and Stroke	3.31 x 3.94 inches 84 x 100 mm
Horsepower	51 @ 2500 rpm 38 kW @ 2500 rpm
Firing order	1 - 3 - 4 - 2
Low idle	1300 rpm 229,7 Hz
High idle	2500 rpm 441,7 Hz
Compression ratio	23.3:1
Compression pressure	426 psi 29,4 bar
Pressure (nsi) of lowest cylinde	er must he within 50 nsi /

Pressure (psi) of lowest cylinder must be within 50 psi / 3.45 bar of highest cylinder

Governor	centrifugal mechanical
Valve clearance, cold	
Intake	0.008 in 0,2 mm
Exhaust	0.008 in 0,2 mm
Lubrication system	
Oil pressure, cold (at 2500 rpm)	60 psi 4,1 bar
Oil capacity (including filter)	9.3 quarts 8,8 liters
Oil viscosity requirements	
Below 86°F / 30°C	5W-20
-4°F to 104°F / -20°C to 40°C	10W-30
Above 14°F / -10°C	15W-40

Unit ships with 15W-40. Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Manual for your engine.

Oil pressure sending unit	
Oil pressure switch point	14.2 psi 1 bar
Fuel injection system	
Injection pump make	Zexel
Injection pressure	2133 psi 147 bar
Fuel requirement	
For fuel requirements, refer to the Manual for your engine.	the engine Operator
Alternator output	55A @ 12V DC
Fan belt deflection	3/8 in 10 mm
Starter motor	
Current draw, no load	140-200A
Brush length, new	0.7480 in 19 mm
Brush length, minimum	0.5 in 12,7 mm
Battery	
Туре	12V DC, Group 34/78
Quantity	1
Cold cranking ampere	900A
Reserve capacity @ 25A rate	200 minutes
Engine coolant	
Capacity	7.7 quarts 7,3 liters
Coolant temperature switch	
Temperature switch point	221° F 105° C

Perkins 404F-E22T Engine

Displacement	134 cu in 2,2 liters
Number of cylinders	4
Bore and Stroke	3.31 x 3.94 inches 84 x 100 mm
Horsepower	48 @ 2800 rpm 38 kW @ 2500 rpm
Firing order	1 - 3 - 4 - 2
Low idle	1500 rpm 313 Hz
High idle	2500 rpm 441,7 Hz
Compression ratio	18:1
Compression pressure	426 psi 29,4 bar
Pressure (psi) of lowest cylinder 3.45 bar of highest cylinder	must be within 50 psi /
Governor	electronic
Valve clearance, cold	
Intake	0.008 in 0,2 mm
Exhaust	0.008 in 0,2 mm
Lubrication system	
Oil pressure (@ 2000 rpm)	40 to 60 psi 1,4 to 3 bar
Oil capacity (including filter)	9.4 - 11.2 quarts 8,9 - 10,6 liters
Oil viscosity requirements	
Below 86°F / 30°C	5W-20
-4°F to 104°F / -20°C to 40°C	10W-30
Above 14°F / -10°C	15W-40
Unit ships with 15W-40. Extreme temperatures may require the us oils. For oil requirements, refer to Manual for your engine.	se of alternative engine
Oil pressure sending unit	
Oil pressure switch point	14.2 psi

Fuel injection system	
Injection pump make	Zexel
Injection pressure	2133 psi 147 bar
Fuel requirement	
For fuel requirements, refer to the Manual for your engine.	engine Operator
Alternator output	85A @ 12V DC
Fan belt deflection	3/8 in 10 mm
Starter motor	
Current draw, no load	140A - 200A
Brush length, new	0.7480 in 19 mm
Brush length, minimum	0.5 in 12,7 mm
Battery	
Туре	12V DC
Quantity	1
Cold cranking ampere	1000A
Reserve capacity @ 25A rate	200 minutes
Engine coolant	
Capacity	7.7 quarts 7,3 liters
Coolant temperature switch	
Temperature switch point	221° F 105° C

1 bar

Ford MSG-425 EFI Engine

Displacement	153 cu in 2,5 liters
Number of cylinders	4
Bore and Stroke	3.5 x 3.9 inches 89 x 100 mm
Horsepower	60 @ 2500 rpm 45 kW @ 2500 rpm
Firing order	1 - 3 - 4 - 2
Low idle, standby	1000 rpm 33,3 Hz
Low idle, function enable	1600 rpm 53,3 Hz
High idle	2500 rpm 83,3 Hz
Compression ratio	9.7:1
Compression pressure (approx.)	
Pressure (psi or bar) of lowest cylinder must be at least 75% of highest cylinder	
Lubrication system	
Oil pressure (operating temperature @ 2000 rpm)	29 to 39 psi 2,75 to 4,1 bar
Oil capacity (including filter)	6.7 quarts 6,4 liters
Oil Pressure switch	
Oil pressure switch point	7.5 psi 0,51 bar
Oil viscosity requirements	
Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Handbook on your machine.	
Electronic fuel pump	
Fuel pressure, static	60 psi 4,1 bar
Fuel flow rate	0.58 gpm 2,2 L/min

Fuel requirement	
For fuel requirements, refer to the Manual for your engine.	he engine Operator
Ignition system	
Spark plug type	Motorcraft AYFS-32Y-R
Spark plug gap	0.049 to 0.053 inches 1,25 to 1,35 mm
Engine coolant	
Capacity	11.5 quarts 10,9 liters
Coolant temperature switch	
Temperature switch point	230°F 110°C
Starter motor	
Normal engine cranking speed	200 to 250 rpm
Current draw, no load	140-200A
Current draw, maximum load	800A
Alternator	
Alternator output	95A, 13.8V DC
Battery	
Туре	12V DC, Group 34/78
Quantity	1
Cold cranking ampere @ 0°F	900A
Reserve capacity @ 25A rate	200 minutes

Machine Torque Specifications

Note: All torque values are shown lubricated unless otherwise noted.

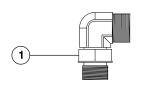
Platform Rotator	
1-8 center bolt, GR 5	483 ft-lbs
	655 Nm
1/2 -13 bolts, GR 8	85 ft-lbs
	115 Nm
Turntable rotate assembly	
Rotate bearing mounting bolts	159 ft-lbs
	215 Nm
Drive motor/brake mounting bolts	93 ft-lbs
	126 Nm
Drive motors and hubs	
Drive hub mounting bolts	179 ft-lbs
	242 Nm
Drive motor mounting bolts	52 ft-lbs
	70 Nm

Hydraulic Hose and Fitting
Torque Specifications

Your machine is equipped with Parker Seal-Lok™ ORFS or 37° JIC fittings and hose ends. Genie specifications require that fittings and hose ends be torqued to specification when they are removed and installed or when new hoses or fittings are installed.

Seal-Lok™ Fittings		
(hose end - ORFS)		
SAE Dash Size	Torque	
-4	18 ft-lbs / 25 Nm	
-6	30 ft-lbs / 41 Nm	
-8	40 ft-lbs / 55 Nm	
-10	60 ft-lbs / 81 Nm	
-12	85 ft-lbs / 115 Nm	
-16	110 ft-lbs / 150 Nm	
-20	150 ft-lbs / 205 Nm	
-24	230 ft-lbs / 315 Nm	

JIC 37° Fittings (swivel nut or hose connection) **SAE Dash Size Thread Size Flats** 2 7/16-20 -6 9/16-18 1 1/2 -8 3/4-16 1 1/2 -10 7/8-14 1 1/2 -12 1 1/4 1 1/16-12 -16 1 5/16-12 1 -20 1 5/8-12 1


1 7/8-12

-24

SAE O-ring Boss Port

(tube fitting - installed into Aluminum) (all types)

(),		
SAE Dash Size	Torque	
-4	14 ft-lbs / 19 Nm	
-6	23 ft-lbs / 31,2 Nm	
-8	36 ft-lbs / 49 Nm	
-10	62 ft-lbs / 84 Nm	
-12	84 ft-lbs / 114 Nm	
-16	125 ft-lbs / 169,5 Nm	
-20	151 ft-lbs / 204,7 Nm	
-24	184 ft-lbs / 249,5 Nm	

Adjustable Fitting

Non-adjustable fitting

1 jam nut

SAE O-ring Boss Port

(tube fitting - installed into Steel)

SAE Dash Size		Torque
-4	ORFS / 37° (Adj) ORFS (Non-adj) 37° (Non-adj)	15 ft-lbs / 20,3 Nm 26 ft-lbs / 35,3 Nm 22 ft-lbs / 30 Nm
-6	ORFS (Adj / Non-adj) 37° (Adj / Non-adj)	35 ft-lbs / 47,5 Nm 29 ft-lbs / 39,3 Nm
-8	ORFS (Adj / Non-adj) 37° (Adj / Non-adj)	60 ft-lbs / 81,3 Nm 52 ft-lbs / 70,5 Nm
-10	ORFS (Adj / Non-adj) 37° (Adj / Non-adj)	100 ft-lbs / 135,6 Nm 85 ft-lbs / 115,3 Nm
-12	(All types)	135 ft-lbs / 183 Nm
-16	(All types)	200 ft-lbs / 271,2 Nm
-20	(All types)	250 ft-lbs / 339 Nm
-24	(All types)	305 ft-lbs / 413,5 Nm

Torque Procedure

Seal-Lok™ fittings

 Replace the O-ring. The O-ring must be replaced anytime the seal has been broken.
 The O-ring cannot be re-used if the fitting or hose end has been tightened beyond finger tight.

Note: The O-ring in Parker Seal Lok™ fittings and hose end are custom-size O-rings. They are not standard size O-rings. They are available in the O-ring field service kit (Genie part number 49612GT).

- 2 Lubricate the O-ring before installation.
- 3 Be sure the O-ring face seal is seated and retained properly.
- 4 Position the tube and nut squarely on the face seal end of the fitting and tighten the nut finger tight.
- 5 Tighten the nut or fitting to the appropriate torque. Refer to the appropriate torque chart in this section.
- 6 Operate all machine functions and inspect the hose, fittings and related components to confirm there are no leaks.

JIC 37° fittings

- Align the tube flare (hex nut) against the nose of the fitting body (body hex fitting) and tighten the hex nut to the body hex fitting to hand tight, approximately 30 in-lbs / 3.4 Nm.
- 2 Using a permanent ink marker, make a reference mark on one the flats of the hex nut and continue the mark onto the body of the hex fitting. Refer to Illustration 1.

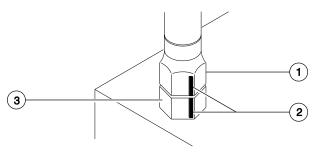


Illustration 1

- 1 hex nut
- 2 reference mark
- 3 body hex fitting

Working clockwise on the body hex fitting, make a second mark with a permanent ink marker to indicate the proper tightening position. Refer to Illustration 2.

Note: Use the JIC 37° Fitting table in this section to determine the correct number of flats, for the proper tightening position.

Note: The marks indicate the correct tightening positions have been determined. Use the second mark on the body hex fitting to properly tighten the joint after it has been loosened.

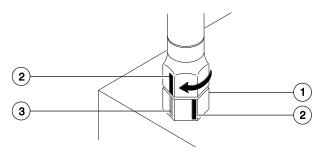


Illustration 2

- 1 body hex fitting
- 2 reference mark
- 3 second mark
- 4 Tighten the hex nut until the mark on the hex nut is aligned with the second mark on the body hex fitting.
- 5 Operate all machine functions and inspect the hose, fittings and related components to confirm there are no leaks.

Repair Procedures

Observe and Obey:

- Repair procedures shall be completed by a person trained and qualified on the repair of this machine.
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.

Before Repairs Start:

- Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine.
- Be sure that all necessary tools and parts are available and ready for use.
- ✓ Use only Genie approved replacement parts.
- Read each procedure completely and adhere to the instructions. Attempting shortcuts may produce hazardous conditions.

Machine Configuration:

- Unless otherwise specified, perform each repair procedure with the machine in the following configuration:
 - Machine parked on a firm, level surface
 - Key switch in the off position with the key removed
 - The red Emergency Stop button in the off position at both the ground and platform controls
 - · Wheels chocked
 - All external AC power supply disconnected from the machine
 - Boom in the stowed position
 - Turntable secured with the turntable rotation lock

Repair Procedures

About This Section

Most of the procedures in this section should only be performed by trained service professional in a suitably equipped workshop. Select the appropriate repair procedure after troubleshooting the problem.

Perform disassembly procedures to the point where repairs can be completed. Then to reassemble, perform the disassembly steps in reverse order.

Symbols Legend

Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

Indicates a imminently hazardous situation which, if not avoided, will result in death or serious injury.

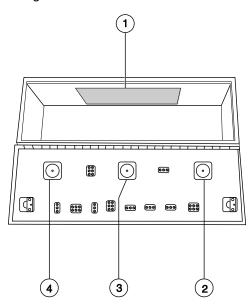
AWARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

A CAUTION

Indicates a potentially hazardous situation which, if not avoided, may cause minor or moderate injury.

NOTICE


Indicates a potentially hazardous situation which, if not avoided, may result in property damage.

- Indicates that a specific result is expected after performing a series of steps.
- Indicates that an incorrect result has occurred after performing a series of steps.

Platform Controls

The platform control box contains one printed circuit board. The ALC-500 circuit board inside the platform control box controls all proportional machine functions from the platform. The joystick controllers at the platform controls utilize Hall Effect technology and require no adjustment. The operating parameters of the joysticks are stored in memory at the ECM circuit board at the platform controls. If a joystick error occurs or if a joystick is replaced, it will need to be calibrated before that particular machine function will operate. Refer to Repair Procedure, *How to Calibrate a Joystick*.

Each joystick controller should operate smoothly and provide proportional speed control over its entire range of motion.

- 1 ALC-500 circuit board
- 2 drive/steer joystick controller
- 3 secondary boom up/down joystick controller
- 4 primary boom up/down and turntable rotate left/right joystick controller

1-1 ALC-500 Circuit Board

Note: When the ALC-500 circuit board is replaced, the joystick controllers will need to be calibrated. Refer to Repair Procedure, *How to Calibrate a Joystick*.

How to Remove the ALC-500 Circuit Board

- Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 2 Remove the platform control box lid retaining fasteners. Open the control box lid.
- 3 Locate the ALC-500 circuit board mounted to the inside of the platform control box.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

4 Attach a grounded wrist strap to the ground screw inside the platform control box.

NOTICE

Component damage hazard. Electrostatic discharge (ESD) can damage printed circuit board components. Maintain firm contact with a metal part of the machine that is grounded at all times when handling printed circuit boards OR use a grounded wrist strap.

- 5 Carefully disconnect the wire connectors from the circuit board.
- 6 Remove the ALC-500 circuit board mounting fasteners.
- 7 Carefully remove the ALC-500 circuit board from the platform control box.

1-2 Joysticks

How to Calibrate a Joystick

The joystick controllers on this machine utilize digital Hall Effect technology for proportional control. If a joystick controller is disconnected or replaced, it must be calibrated before that particular machine function will operate.

Note: The joystick must be calibrated before the threshold, max-out or ramping can be set.

Note: Perform this procedure with the engine off.

- 1 Open the platform control box.
- Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 3 Turn the key switch to platform control. Do not start the engine.
- 4 Select a joystick to calibrate.
- 5 Disconnect the wire harness connector from the joystick for approximately 10 seconds or until the alarm sounds. Connect the wire harness connector to the joystick.
- 6 Move the joystick full stroke in either direction and hold for 5 seconds.
- 7 Return the joystick to the neutral position, pause for a moment, then move the joystick full stroke in the opposite direction. Hold for 5 seconds and return the joystick to the neutral position.
- Result: The alarm should sound indicating successful joystick calibration.
- Result: The alarm does not sound. Check the electrical connections or replace the joystick.
- 8 Repeat this procedure for each joystick controlled machine function including the thumb rocker steer switch.

Note: No machine function should operate while performing the joystick calibration procedure.

How to Adjust the Joystick Maxout Setting

The max-out setting of a joystick controls the maximum speed of a joystick-controlled machine function. Whenever a hydraulic cylinder, drive motor or hydraulic pump is replaced, the max-out setting should be adjusted to maintain optimum performance. The max-out settings on the joystick can be changed to compensate for hydraulic pump wear to maintain peak performance from the machine.

Note: Perform this procedure with the boom in the stowed position.

- Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 2 Turn the key switch to platform control. Do not start the engine.
- 3 Push in the platform controls red Emergency Stop button to the off position.
- 4 Do not press down the foot switch.
- Move and hold the drive enable toggle switch in the right position and pull out the red Emergency Stop button to the on position.
- When the alarm sounds, release the drive enable toggle switch.
- 7 Momentarily activate the drive enable toggle switch in the right direction 4 times.
- Result: There should be a pause and the alarm should sound 4 times indicating that the machine is in max-out calibration mode.
- Result: The alarm does not sound. Repeat steps 3 through 7.

- 8 Start the engine from the platform controls and press down the foot switch.
- 9 Start a timer and activate the machine function that needs to be adjusted. Record the time it takes for that function to complete a full cycle (ie; boom up).
- 10 Compare the machine function time with the function times listed in Refer to Specifications, Performance Specifications. Determine whether the function time needs to increase or decrease.
- While the joystick is activated, adjust the maxout setting to achieve the proper function cycle time. Momentarily move the drive enable toggle switch in the right direction to increase the function speed or momentarily move the drive enable toggle switch in the left direction to decrease the function speed.

Note: Each time the drive enable toggle switch is momentarily moved, the function speed will change in 2% increments from a default of 100%, with a minimum of 60% and a maximum of 120%.

- 12 Repeat steps 9 through 11 for each joystick controlled machine function.
- 13 Return the joystick to the neutral position and wait for approximately 10 seconds to allow the settings to be saved.
- Result: The alarm should sound indicating that the settings have been saved in memory.

Note: Do not operate any machine function during the 10 second waiting time.

How to Adjust the Joystick Ramp Rate Setting

The ramp rate setting of a joystick controls the time at which it takes for the joystick to reach maximum output, when moved out of the neutral position. The ramp rate settings of a joystick can be changed to compensate for hydraulic pump wear to maintain peak performance from the machine.

Note: Perform this procedure with the boom in the stowed position.

- Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 2 Turn the key switch to platform control. Do not start the engine.
- 3 Push in the platform controls red Emergency Stop button to the off position.
- 4 Do not press down the foot switch.
- Move and hold the drive enable toggle switch in the right position and pull out the red Emergency Stop button to the on position.
- When the alarm sounds, release the drive enable toggle switch.
- 7 Momentarily activate the drive enable toggle switch in the right direction 6 times.
- Result: There should be a pause and the alarm should sound 6 times indicating that the machine is in ramp rate calibration mode.

- 8 Start the engine from the platform controls and press down the foot switch.
- 9 Start a timer and simultaneously move the joystick in either direction full stroke. Note how long it takes the function to reach maximum speed. This is the ramp rate.
- 10 Compare the function ramp rate time with the table below and determine whether the ramp rate time needs to increase or decrease.
- 11 While the joystick is activated, set the ramp rate. Momentarily move the drive enable toggle switch in the right direction to increase the time or momentarily move the drive enable toggle switch in the left direction to decrease the time.

Note: Each time the drive enable toggle switch is momentarily moved, the time will change in 10% increments.

12 Repeat steps 9 through 11 for each joystick controlled machine function.

- 13 Return the joystick to the neutral position and wait for approximately 10 seconds to allow the settings to be saved.
- Result: The alarm should sound indicating that the settings have been saved in memory.

Note: Do not operate any machine function during the 10 second waiting time.

Ramp rate (factory settings)		
Primary boom up/down		
accelerate	4 seconds	
decelerate	0.5 second	
Secondary boom up/down		
accelerate	2 seconds	
decelerate	0.5 second	
Turntable rotate		
accelerate	2 seconds	
decelerate	0.5 second	
Drive		
accelerate	3 seconds	
decelerate to neutral	0.5 second	
decelerate, change of direction	0.5 second	
decelerate, coasting	0.75 second	
decelerate, braking	1 second	
decelerate, shift from low to high speed	1 seconds	
decelerate, shift from high to low speed	2 seconds	

How to Adjust the Joystick Threshold Setting

The threshold setting of a joystick is the minimum output at which a function proportional valve can open and allow the function to operate.

Note: Perform this procedure with the boom in the stowed position.

- Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 2 Turn the key switch to platform control. Do not start the engine.
- 3 Push in the platform controls red Emergency Stop button to the off position.
- 4 Do not press down the foot switch.
- Move and hold the drive enable toggle switch in the right position and pull out the red Emergency Stop button to the on position.
- When the alarm sounds, release the drive enable toggle switch.
- 7 Momentarily activate the drive enable toggle switch in the right direction 8 times.
- Result: There should be a pause and the alarm should sound 8 times indicating that the machine is in threshold calibration mode.
- Result: The alarm does not sound. Repeat steps 3 through 7.
- 8 Start the engine from the platform controls and press down the foot switch.

- 9 Select a boom function joystick to set the threshold.
- Slowly move the joystick off center in either direction just until the function begins to move.
- 11 Slowly move the joystick back towards the neutral position. Just before the function stops moving, move the drive enable toggle switch to either side to set the threshold.
- Result: The alarm should sound indicating a successful calibration.

Note: For each joystick axis, the threshold must be set for both directions.

- 12 Repeat steps 9 through 11 for each direction of boom joystick controlled machine function (boom up/down, boom extend/retract and turntable rotate left/right).
- 13 Return the joystick to the neutral position and wait for approximately 10 seconds to allow the settings to be saved.
- Result: The alarm should sound indicating that the settings have been saved in memory.

Note: Do not operate any machine function during the 10 second waiting time.

14 Cycle the red Emergency Stop button off, then back on.

Platform Components

2-1 Platform Leveling Slave Cylinder

The slave cylinder and the rotator pivot are the two primary supports for the platform. The slave cylinder keeps the platform level through the entire range of boom motion. It operates in a closed-circuit hydraulic loop with the master cylinder. The slave cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Platform Leveling Slave Cylinder

Note: Before cylinder removal is considered, bleed the slave cylinder to be sure there is no air in the closed loop.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- Extend the primary boom until the slave cylinder barrel-end pivot pin is accessible.
- 2 Raise the primary boom slightly and place blocks under the platform for support.
- 3 Lower the primary boom until the platform is resting on the blocks just enough to support the platform.

Note: Do not rest the entire weight of the boom on the blocks.

4 Tag, disconnect and plug the hydraulic hoses from the slave cylinder at the unions and connect them together using a connector. Connect the hoses from the cylinder together using a connector.

AWARNING

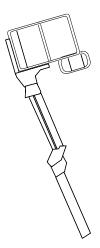
Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 5 Remove the pin retaining fastener from the slave cylinder rod-end pivot pin. Do not remove the pin.
- 6 Remove the external snap rings from the slave cylinder barrel-end pivot pin. Do not remove the pin.
- 7 Place a block under the slave cylinder for support. Protect the cylinder rod from damage.
- 8 Use a soft metal drift to drive the rod-end pivot pin out.

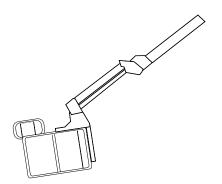
AWARNING

Crushing hazard. The platform could fall when the slave cylinder rod-end pivot pin is removed if not properly supported.

NOTICE


Component damage hazard. The slave cylinder rod may become damaged if it is allowed to fall if not properly supported by the lifting device.

- 9 Use a soft metal drift and drive the barrel-end pin out.
- 10 Carefully pull the cylinder out of the primary boom.


How to Bleed the Slave Cylinder

Note: This procedure will have to be preformed outside.

- 1 Raise the jib to a horizontal postion and raise the secondary boom 3 feet.
- 2 Move the function enable toggle switch to either side. Simultaneously activate and hold the primary boom up and platform level up toggle switches until the primary boom is fully raised.
- The platform should be facing in an upward position. As shown.

- While still holding the function enable toggle switch, simultaneously activate the primary boom down and platform level down toggle switches until the primary boom is fully lowered.
- The platform should be facing in a down position. As shown.

2-2 Platform Rotator

How to Bleed the Platform Rotator

Note: This procedure will require two people. Do not start the engine. Use auxiliary power for this procedure.

- 1 Move the function enable toggle switch to either side and activate the platform rotate toggle switch to the right then the left through two platform rotation cycles, then hold the switch to the right position until the platform is fully rotated to the right.
- 2 Place a suitable container underneath the platform rotator.
- 3 Open the top bleed screw on the rotator, but do not remove it.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

Move the function enable toggle switch to either side and hold the platform rotate toggle switch to the left position until the platform is fully rotated to the left. Continue holding the toggle switch until air stops coming out of the bleed screw. Close the bleed screw.

AWARNING

Crushing hazard. Keep clear of the platform during rotation.

Open the bottom bleed screw on the rotator, but do not remove it.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

Move the function enable toggle switch to either side and hold the platform rotate toggle switch to the right position until the platform is fully rotated to the right. Continue holding the toggle switch until air stops coming out of the bleed screw. Close the bleed screw.

AWARNING

Crushing hazard. Keep clear of the platform during rotation.

- 7 Clean up any oil that may have spilled. Properly discard the used oil.
- 8 Rotate the platform fully in both directions and inspect the bleed screws for leaks.

2-3 Platform Overload System

Proper calibration of the platform overload system is essential to safe machine operation. Continued use of an improperly calibrated platform overload system could result in the system failing to sense an overloaded platform. The stability of the machine is compromised, and it could tip over.

Note: Perform this procedure with the machine on a firm, level surface.

How to Perform a Zero Load Platform Calibration

Perform this procedure when platform overload is not operating within the calibration parameters. This procedure will re-calibrate the zero load point without affecting a previous full load calibration. In most cases the machine will maintain full load capacity, however, in some situations the platform load capacity may be reduced until a full load calibration has been performed.

1 Remove all weight, tools, accessories and equipment from the platform.

Tip-over hazard. Failure to remove all non-integrated factory and non-factory options and accessories could result in the machine tipping over, causing death or serious injury.

2 Turn the key switch to ground controls.

3 Pull out the red Emergency Stop button and momentarily activate the calibration toggle switch located on the left side of the control box in the up position 3 times to enter calibration mode.

Note: The calibration toggle switch must be activated within 5 seconds.

- Result: The green LED on the SCON located under the ground control box is flashing confirming calibration mode is active.
- 4 Activate and hold the calibration toggle switch in the down position for 2 seconds to store the zero load calibration.

Result: An audible alarm sounds for 1 second. Calibration has been stored.

How to Perform a Full Load Platform Calibration

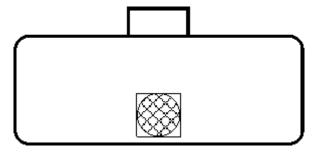
Perform this procedure if the platform support or load cell sensor has been replaced, or if a zero load platform calibration does not return the machine to full load capacity.

1 Remove all weight, tools, accessories and equipment from the platform.

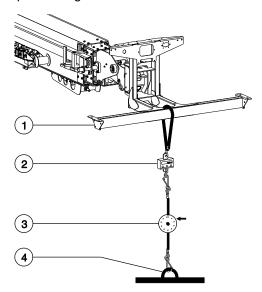
Note: Remove the welder (if equipped).

Tip-over hazard. Failure to remove all non-integrated factory and non-factory options and accessories could result in the machine tipping over, causing death or serious injury.

- 2 Turn the key switch to ground controls.
- 3 Pull out the red Emergency Stop button and momentarily activate the calibration toggle switch located on the left side of the control box in the up position 3 times to enter calibration mode.


Note: The calibration toggle switch must be activated within 5 seconds.

- Result: The green LED on the SCON located under the ground control box is flashing confirming calibration mode is active.
- 4 Activate and hold the calibration toggle switch in the down position for 2 seconds to store the zero load calibration.
- Result: An audible alarm sounds for 1 second.
 Calibration has been stored.


5 **XC models:** Add maximum rated load of 1000 lbs / 454 kg to the center of the platform.

HF models: Add maximum rated load of 600 lbs / 272 kg to the center of the platform.

Note: If test weights are not available, you may use an industrial scale to weigh available objects until it equals the platform's maximum capacity.

Note: Alternate method for achieving rated load in the platform is to attach a hanging scale to the bottom of the platform and apply load using a winch or ratchet until the readout displays the appropriate weight.

Platform hidden from illustration for clarity

- 1 platform support
- 2 hanging scale
- 3 winch or ratchet
- 4 anchoring device

- Activate and hold the calibration toggle switch in the up position for 2 seconds to store the rated load calibration.
- Result: An audible alarm sounds for 1 second.
 Calibration has been stored.
- 7 Push in the red Emergency Stop button to the off position.

Confirm calibration:

- 8 Start the engine from the ground controls.
- 9 Place an additional 50 lbs / 23 kg of weight in the platform.

Result: The alarm sounds. The engine turns off. The platform overload indicator light flashes at the platform controls and *Platform Overload* is displayed on the LCD screen at the ground controls.

Note: There may be a 2 second delay before the overload indicator lights flash and the alarm sounds.

- 10 Test all machine functions from the ground controls.
- Result: Engine does not start. Limited APU functionality. Elevate and extend functions do not operate.
- Remove the test weight or the rated load from the platform.

How to Replace the Load Cell Sensor

Note: The preload adjustment should only be performed after the load cell sensor has been replaced.

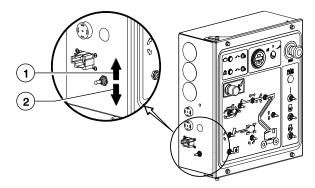
- 1 Remove all equipment or tools from the platform. Remove the welder if equipped.
- 2 At the platform, remove the plastic instruction holder from the document mount plate.
- 3 Tag and disconnect the load cell sensor harness.
- 4 Loosen the jam nut securing the load cell sensor foot and rotate the foot screw clockwise to remove the preload.
- 5 Remove the fasteners securing the load cell sensor and remove the sensor.

Install the new Load Cell Sensor

- 6 Screw the foot with jam nut into the top of the load cell sensor until the foot bolt extends out of the bottom of the sensor. The foot should not contact the flex plate when assembling onto the platform support.
- 7 Assemble the load cell and foot assembly to the platform and securely tighten the two mounting screws. Torque the bolts to 101 ftlbs / 137 Nm.

Set the Load Cell Sensor Preload

- 8 Rotate the foot screw counter clockwise until the foot just contacts the flex plate (finger tight).
- 9 Using an open end wrench, continue to rotate the foot counter clockwise an additional 1/2 turn (180°). Then, while holding the foot bolt, securely tighten the jam nut. Torque the jam nut to 55 ft-lbs / 75 Nm.
- 10 Attach the load cell sensor harness.
- 11 Install the plastic instruction holder.
- 12 Calibrate the platform overload system. Refer to Repair Procedure How to Calibrate the Platform Overload System.


2-4 Platform Overload Recovery Fault

If the ground controls hour meter displays fault code 8221, the emergency lowering system has been used while the platform was overloaded.

How to Clear the Platform Overload Recovery Fault

Note: This message shall be cleared by a person trained and qualified on the troubleshooting and repair of this machine.

- Turn the key switch to ground control and pull out the red Emergency Stop button to the on position.
- Wait 10 seconds and activate the calibration toggle switch in the following sequence (gain)(gain)(gain)(zero).

- 1 gain
- 2 zero
- 3 Turn the key switch to the off position.

29

Jib Boom Components

3-1 Jib Boom

How to Remove the Jib Boom

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Remove the platform.
- 2 Disconnect the electrical connector from the jib boom/platform rotate select valve manifold mounted to the platform support.
- Tag, disconnect and plug all of the hydraulic hoses from the jib boom/platform rotate select valve manifold. Cap the fittings on the manifold and pull the hoses out through the platform rotator.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 4 Remove the platform mounting weldment.
- 5 Attach a lifting strap from an overhead crane to the platform rotator for support.
- 6 Remove the pin retaining fastener from the jib boom lift cylinder rod-end pivot pin. Do not remove the pin.

- 7 Remove the pin retaining fasteners from both platform rotator pivot pins. Do not remove the pins.
- 8 Use a soft metal drift to remove the leveling arm pivot pin and let the leveling arms hang down.
- 9 Slide both of the jib boom leveling arms off of the jib boom cylinder rod-end pivot pin.
- 10 Remove the hose and cable cover from the side of the jib boom. Remove the hose and cable separators.
- 11 Attach a lifting strap from an overhead crane to the jib boom.
- 12 Support the barrel end of the jib boom lift cylinder with a suitable lifting device.
- 13 Tag, disconnect and plug the jib boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

14 Remove the pin retaining fastener from the jib boom lift cylinder barrel-end pivot pin.

Jib Boom Components

15 Use a soft metal drift to remove the pin and let the cylinder hang down. Remove the platform rotator from the machine.

AWARNING

Crushing hazard. The jib boom could fall when the barrel-end pivot pin is removed if not properly supported by the overhead crane.

16 Remove the pin retaining fastener from the jib boom pivot pin. Use a soft metal drift to remove the pin, then remove the jib boom from the bellcrank.

AWARNING

Crushing hazard. The jib boom may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.

- 17 Attach a lifting strap from an overhead crane to the lug on the rod end of the jib boom lift cylinder.
- 18 Use a soft metal drift to remove the jib boom lift cylinder rod-end pivot pin, then remove the jib boom lift cylinder from the bellcrank.

▲WARNING

Crushing hazard. The jib boom lift cylinder may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.

3-2 Jib Boom Lift Cylinder

How to Remove the Jib Boom Lift Cylinder

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

1 Raise the jib boom slightly and place blocks under the platform mounting weldment. Then lower the jib boom until the platform is resting on the blocks just enough to support the platform.

Note: Do not rest the entire weight of the boom on the blocks.

2 Tag, disconnect and plug the jib boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

3 Remove the pin retaining fasteners from the jib boom lift cylinder rod-end pivot pin. Do not remove the pin.

Jib Boom Components

- 4 Use a soft metal drift to tap the jib boom lift cylinder rod-end pivot pin half way out. Then lower one of the leveling arms to the ground. Tap the pin the other direction and lower the opposite leveling arm. Do not remove the pin.
- 5 Support the jib boom lift cylinder with a suitable lifting device.
- 6 Remove the pin retaining fastener from the jib boom lift cylinder barrel-end pivot pin.
- 7 Use a soft metal drift to remove the pin and let the cylinder hang down. Remove the platform rotator from the machine.

AWARNING

Crushing hazard. The jib boom may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.

- 8 Attach a lifting strap from an overhead crane to the lug on the rod end of the jib boom lift cylinder.
- 9 Use a soft metal drift to remove the jib boom lift cylinder rod-end pin. Remove the jib boom lift cylinder from the machine.

AWARNING

Crushing hazard. The jib boom lift cylinder may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.

4-1 Cable Track

The primary boom cable track guides the cables and hoses running up the boom. It can be repaired link by link without removing the cables and hoses that run through it. Removing the entire primary boom cable track is only necessary when performing major repairs that involve removing the primary boom.

How to Remove the Cable Track

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- Locate the cables from the primary boom cable track to the platform control box.
 Number each cable and its entry location at the platform control box.
- 2 Disconnect the cables from the platform control box.
- 3 Remove the hose and cable cover from the side of the jib boom. Remove the hose and cable separators.
- 4 Remove the hose clamp on the primary boom bellcrank.
- 5 Pull all of the electrical cables out of the plastic cable track. Do not pull out the hydraulic hoses.

Tag, disconnect and plug the hydraulic hoses from the "V1" and "V2" ports on the counterbalance valve manifold located on the platform rotator. Cap the fittings on the manifold.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

7 Tag and disconnect the hydraulic hoses from the platform leveling slave cylinder at the union and connect them together using a connector. Connect the hoses from the cylinder together using a connector.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

Tag, disconnect and plug the hydraulic hoses from the jib boom/platform rotate manifold.

Cap the fittings on the manifold.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

9 Tag, disconnect and plug the platform rotator hydraulic hoses at the union located above the primary boom lift cylinder. Cap the fittings on the unions.

▲WARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

 Tag, disconnect and plug the hydraulic hoses from the platform leveling master cylinder.
 Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 11 Raise the boom to a horizontal position.
- 12 Place blocks between the upper and lower cable tracks and secure the upper and lower tracks together.

AWARNING

Crushing hazard. If the upper and lower cable tracks are not properly secured together, the cable track could become unbalanced and fall when removed from the machine.

- 13 Attach a lifting strap from an overhead 5 ton / 5,000 kg capacity crane to the platform end of the primary boom for support. Do not lift it.
- 14 Remove all hose and cable clamps from the underside of the primary boom.
- 15 Support the rod end of the primary boom lift cylinder with a suitable lifting device.

- 16 Remove the pin retaining fasteners from the primary boom lift cylinder rod-end pivot pin. Do not remove the pin.
- 17 Raise the primary boom slightly with the overhead crane to relieve the pressure on the primary boom lift cylinder rod-end pivot pin.
- 18 Use a soft metal drift to remove the primary boom lift cylinder rod-end pivot pin.

AWARNING

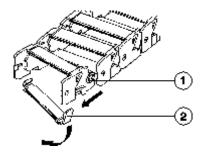
Crushing hazard. The primary boom lift cylinder could become unbalanced and fall if not properly supported by the lifting device.

- 19 Lower the rod end of the primary boom lift cylinder approximately 12 inches / 30 cm.
- 20 Pull all of the hoses and cables out and away from the mounting ears for the rod end of the primary boom lift cylinder.
- 21 Raise the rod end of the primary boom lift cylinder back into position and install the rodend pivot pin. Install the pin retaining fasteners.
- 22 Attach a strap from an overhead crane to the cable track.
- 23 Remove the mounting fasteners from the upper cable track at the platform end of the extension boom.
- 24 Remove the cable track mounting fasteners that attach the lower cable track to the primary boom.
- 25 Remove the cable track from the machine and place it on a structure capable of supporting it.

AWARNING

Crushing hazard. The cable track could become unbalanced and fall if not properly attached to the overhead crane.

NOTICE


Component damage hazard. Cables and hoses can be damaged if they are kinked or pinched.

How to Repair the Primary Boom Cable Track

Component damage hazard. The boom cable track can be damaged if it is twisted.

Note: A 7 link repair section of cable track is available through the Genie Service Parts Department.

- 1 link separation point
- 2 lower clip
- Use a slotted screwdriver to pry down on the lower clip.
- 2 To remove a single link, open the lower clip and then use a screw driver to pry the link to the side.
- 3 Repeat steps 1 and 2 for each link.

4-2 Primary Boom

How to Remove the Primary Boom

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Remove the platform.
- 2 Remove the jib boom. Refer to Repair Procedure, *How to Remove the Jib Boom.*
- 3 Remove the cable track. Refer to Repair Procedure, *How to Remove the Cable Track*.
- 4 Raise the primary boom to a horizontal position.
- 5 Remove the hose and cable cover from the upper pivot.

6 Remove the pin retaining fastener from the master cylinder barrel-end pivot pin. Use a soft metal drift to remove the pin. Then lower the cylinder and let it hang down.

Component damage hazard. When lowering the master cylinder down, be sure not to damage the master cylinder hoses or fittings.

- 7 Locate the primary boom drive speed limit switch inside of the upper pivot.
- 8 Remove the primary boom drive speed limit switch mounting fasteners. Do not disconnect the wiring.
- 9 Locate the primary extension boom drive speed limit switch inside of the extension boom.
- 10 Remove the primary extension boom drive speed limit switch mounting fasteners. Do not disconnect the wiring.
- 11 Pull the limit switch and the wiring out of the extension tube and move it out of the way.
- 12 Tag, disconnect and plug the primary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

13 Remove the hose clamp at the pivot end of the boom.

- 14 Attach a 5 ton / 5,000 kg overhead crane to the center point of the primary boom.
- 15 Attach a similar lifting device to the primary boom lift cylinder.
- 16 Place support blocks under the primary boom lift cylinder.
- 17 Remove the pin retaining fasteners from the primary boom lift cylinder rod-end pivot pin. Use a soft metal drift to remove the pin.

AWARNING

Crushing hazard. The boom lift cylinder and primary boom will fall if not properly supported.

- 18 Lower the rod end of the primary boom lift cylinder onto support blocks. Protect the cylinder rod from damage.
- 19 Remove the pin retaining fasteners from the primary boom pivot pin.
- 20 Remove the primary boom pivot pin with a soft metal drift, then carefully remove the primary boom from the machine and place it on a structure capable of supporting it.

AWARNING

Crushing hazard. The primary boom could become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

How to Disassemble the Primary Boom

Complete disassembly of the boom is only necessary if the outer or inner boom tube must be replaced. The extension cylinder can be removed without completely disassembling the boom. Refer to Repair Procedure, *How to Remove the Primary Boom Extension Cylinder*.

- 1 Remove the primary boom. Refer to Repair Procedure, *How to Remove the Primary Boom.*
- 2 Place blocks under the barrel end of the primary boom extension cylinder for support.
- 3 Remove the pin retaining fastener from the extension cylinder barrel-end pivot pin at the pivot end of the primary boom. Use a soft metal drift to remove the pin.
- 4 Remove and label the location of the wear pads from the platform end of the primary boom.

Note: Pay careful attention to the location and amount of shims used with each wear pad.

5 Support and slide the extension tube and extension cylinder assembly out of the boom tube.

AWARNING

Crushing hazard. The primary boom extension tube could become unbalanced and fall when removed from the primary boom tube if not properly supported.

Note: During removal, the overhead crane strap will need to be carefully adjusted for proper balancing.

- 6 Remove the external snap rings from the extension cylinder rod-end pivot pins at the platform end of the extension tube. Use a soft metal drift to remove the pins.
- 7 Support and slide the extension cylinder out of the base end of the extension tube. Place the extension cylinder on blocks for support.

AWARNING

Crushing hazard. The extension cylinder could become unbalanced and fall when removed from primary boom extension tube if not properly supported.

Note: During removal, the overhead crane strap will need to be carefully adjusted for proper balancing.

4-3 Primary Boom Lift Cylinder

The primary boom lift cylinder raises and lowers the primary boom. The primary boom lift cylinder is equipped with a counterbalance valve to prevent movement in the event of a hydraulic line failure.

How to Remove the Primary Boom Lift Cylinder

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Raise the primary boom to a horizontal position.
- 2 Raise the secondary boom until the primary boom lift cylinder barrel-end pivot pin is above the turntable covers.
- 3 Attach a 5 ton / 5000 kg overhead crane to the primary boom for support.
- 4 Raise the primary boom with the overhead crane slightly to take the pressure off the primary boom lift cylinder pivot pins.
- 5 Support the rod end and the barrel end of the primary boom lift cylinder with a second overhead crane or similar lifting device.

6 Tag, disconnect and plug the primary boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

7 Remove the pin retaining fasteners from the primary boom lift cylinder rod-end pivot pin. Use a soft metal drift to remove the pin.

AWARNING

Crushing hazard. The primary boom will fall if not properly supported when the primary boom rod-end pivot pin is removed.

- 8 Place a support block across both turntable covers under the primary boom lift cylinder.
- 9 Lower the rod end of the lift cylinder onto the block. Protect the cylinder rod from damage.

AWARNING

Crushing hazard. The primary boom lift cylinder could become unbalanced and fall if not properly supported by the lifting device.

- 10 Remove the primary boom lift cylinder barrelend pivot pin retaining fasteners. Do not remove the pin.
- 11 Use a slide hammer to remove the barrel-end pivot pin. Carefully remove the primary boom lift cylinder from the machine.

AWARNING

Crushing hazard. The lift cylinder could become unbalanced and fall if not properly supported and secured to the lifting device.

4-4 Primary Boom Extension Cylinder

The primary boom extension cylinder extends and retracts the primary boom extension tube. The primary boom extension cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Primary Boom Extension Cylinder

▲WARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Raise the primary boom to a horizontal position.
- Extend the primary boom until the primary boom extension cylinder rod-end pivot pin is accessible in the primary boom extension tube.
- 3 Remove the hose and cable guard from the upper pivot.

4 Tag, disconnect and plug the primary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 5 At the platform end of the boom, remove the external snap rings from the extension cylinder rod-end pivot pins. Use a soft metal drift to remove the pins.
- 6 Remove the barrel-end pivot pin retaining fasteners.
- 7 Place a rod through the barrel-end pivot pin and twist to remove the pin.
- 8 Support and slide the extension cylinder out of the upper pivot.

AWARNING

Crushing hazard. The extension cylinder could fall when removed from the extension boom if not properly supported.

NOTICE

Component damage hazard. Be careful not to damage the counterbalance valves on the primary boom extension cylinder when removing the cylinder from the primary boom.

NOTICE

Component damage hazard. Hoses and cables can be damaged if the primary boom extension cylinder is dragged across them.

Note: Note the length of the cylinder after removal. The cylinder must be at the same length for installation.

4-5 Platform Leveling Master Cylinder

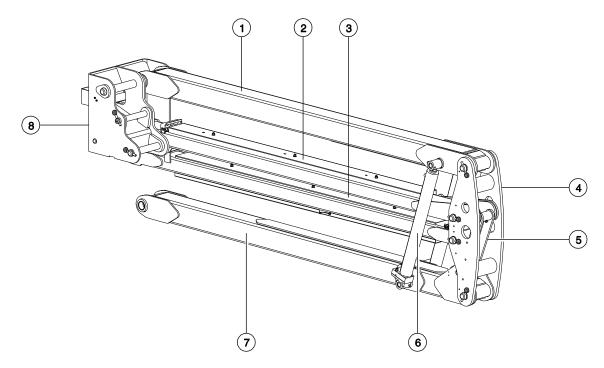
The master cylinder acts as a pump for the slave cylinder. It's part of the closed circuit hydraulic loop that keeps the platform level through the entire range of boom motion. The master cylinder is located at the base of the primary boom.

How to Remove the Platform Leveling Master Cylinder

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Raise the primary and secondary booms until both the rod-end and barrel-end pivot pins on the master cylinder are accessible.
- 2 Tag, disconnect and plug the master cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING


Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

3 Attach overhead crane or similar lifting device to the master cylinder.

- 4 Remove the pin retaining fasteners from the master cylinder barrel-end pivot pin.
- 5 Place a rod through the barrel-end pivot pin and twist to remove the pin.
- 6 Remove the pin retaining fastener from the rod-end pivot pin.
- 7 Place a rod through the rod-end pivot pin and twist to remove the pin.
- 8 Remove the master cylinder from the machine.

AWARNING

Crushing hazard. The master cylinder could become unbalanced and fall if not properly attached to the overhead crane.

Secondary Boom components

- 1 upper secondary boom (number 1 arm)
- 2 upper tension link (number 2 arm)
- 3 lower tension link (number 3 arm)
- 4 mid-pivot

- 5 compression link
- 6 secondary boom lift cylinder (2)
- 7 lower secondary boom (number 4 arm)
- 8 upper pivot

5-1 Secondary Boom

How to Disassemble the Secondary Boom

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Follow the disassembly steps to the point required to complete the repair. Then re-assemble the secondary boom by following the disassembly steps in reverse order.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Remove the platform.
- 2 Remove the jib boom. Refer to Repair Procedure, *How to Remove the Jib Boom*.
- 3 Remove the primary boom. Refer to Repair Procedure, How to Remove the Primary Boom.
- 4 Remove the master cylinder. Refer to Repair Procedure, *How to Remove the Master Cylinder*.
- 5 Attach a lifting strap from an overhead crane to the lug on the rod end of the primary boom lift cylinder. Then raise the primary boom lift cylinder with the crane, to a vertical position.

Tag, disconnect and plug the hydraulic hoses at the primary boom lift cylinder. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- Remove the pin retaining fastener from the primary boom lift cylinder barrel-end pivot pin.
- 8 Use a slide hammer to remove the pin. Remove the primary boom lift cylinder from the machine.

AWARNING

Crushing hazard. The primary boom lift cylinder could become unbalanced and fall if not properly supported by the lifting device.

9 Tag, disconnect and plug the hydraulic hoses on both of the secondary boom lift cylinders. Cap the fittings on the cylinders.

▲WARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

10 Remove the pin retaining fasteners from both sides of the secondary boom lift cylinder rodend pivot pin and barrel-end pivot pin. Do not remove the pins.

- Attach a strap from an overhead crane to the lug on the rod end of one of the secondary boom lift cylinders for support. Do not apply any lifting pressure.
- 12 Use a soft metal drift to drive the barrel-end pivot pin half way out. Lower the barrel end of the secondary boom lift cylinder and let it hang down.
- 13 Use a soft metal drift to drive the rod-end pivot pin half way out.
- 14 Remove the secondary boom lift cylinder from the machine.
- 15 Repeat steps 11 through 14 for the other secondary boom lift cylinder.

AWARNING

Crushing hazard. The secondary boom lift cylinder could become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

NOTICE

Component damage hazard. When removing a secondary boom lift cylinder from the machine, be careful not to damage the counterbalance valve at the barrel end of the cylinder.

- 16 Attach a lifting strap from an overhead crane to the upper pivot for support. Do not lift it.
- 17 Attach a lifting strap from a second overhead crane to the number 1 arm at the mid-point between the upper pivot and mid-pivot.
- 18 Remove the pin retaining fasteners from the number 1 arm pivot pins at the mid-pivot and the upper pivot. Do not remove the pins.
- 19 Use a soft metal drift to drive both pins out.

20 Remove the number 1 arm from the machine.

AWARNING

Crushing hazard. The number 1 arm could become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

AWARNING

Crushing hazard. The upper pivot could fall when the number 1 arm is removed from the machine if not properly supported by the overhead crane.

- 21 Using the overhead crane attached to the upper pivot, raise the secondary boom assembly approximately 30 inches / 76 cm.
- 22 Insert a 4 x 4 x 11 inch / 10 x 10 x 28 cm block between the number 2 arm and the boom rest. Then lower the secondary boom assembly onto the block.

AWARNING

Crushing hazard. The secondary boom assembly could fall if not properly supported by the4 x 4 x 11 inch / 10 x 10 x 28 cm block.

23 Pull all of the cables and hoses out through the upper pivot.

NOTICE

Component damage hazard. Cables and hoses can be damaged if they are kinked or pinched.

- 24 Remove the hose and cable covers from the top of the number 2 arm.
- 25 Pull all of the hoses and cables out of the upper pivot and out through the mid-pivot. Lay the hoses and cables on the ground.

NOTICE

Component damage hazard. Cables and hoses can be damaged if they are kinked or pinched.

26 Remove the pin retaining fastener from the number 2 arm pivot pin at the upper pivot. Use a soft metal drift to remove the pin.

27 Remove the upper pivot from the machine.

AWARNING

Crushing hazard. The upper pivot could become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

- 28 Attach the lifting strap from an overhead crane to the number 2 arm at the upper pivot end.
- 29 Raise the number 2 arm slightly and remove the 4 x 4 x 11 inch / 10 x 10 x 28 cm block.
- 30 Lower the number 2 arm onto the boom rest pad.
- 31 Insert a 4 x 4 x 81/2 inch / 10 x 10 x 22 cm block between the number 3 arm and the number 4 arm at the mid-pivot end.
- 32 Attach a lifting strap from the overhead crane to the mid-pivot for support. Do not lift it.
- 33 Remove the pin retaining fasteners from the number 2, 3 and 4 arm pivot pins at the mid-pivot. Do not remove the pins.
- 34 Use a soft metal drift to drive each pin out. Then remove the mid-pivot from the secondary boom assembly.

AWARNING

Crushing hazard. The mid-pivot could become unbalanced and fall when removed from the secondary boom assembly if not properly supported by the overhead crane.

- 35 Attach the lifting strap from an overhead crane to the center point of the number 2 arm for support. Do not lift it.
- 36 Remove the pin retaining fasteners from both compression link pivot pins. Do not remove the pins.

- 37 Use a soft metal drift to remove the lower compression link pivot pin at the number 3 arm.
- 38 Support the compression link with an appropriate lifting device.
- 39 Use a soft metal drift to remove the upper compression link pivot pin from the number 2 arm. Remove the compression link from the machine.

AWARNING

Crushing hazard. The number 2 arm could fall when the compression link is disconnected from the number 2 arm if not properly supported by the overhead crane.

AWARNING

Crushing hazard. The compression link may fall if not properly supported when removed from the secondary boom assembly.

40 Remove the number 2 arm from the machine.

AWARNING

Crushing hazard. The number 2 arm could become unbalanced and fall when removed from the secondary boom assembly if not properly supported by the overhead crane.

- A1 Remove the upper and lower hose and cable covers from the number 3 arm.
- 42 Pull all of the cables and hoses from the number 3 arm and lay them over the turntable counterweight.

NOTICE

Component damage hazard. Cables and hoses can be damaged if they are kinked or pinched.

- 43 Open the ground controls side turntable cover.
- 44 Remove the fuel tank filler cap.

45 Using an approved hand-operated pump, drain the fuel tank into a container of suitable capacity. Refer to Specifications, *Machine Specifications*.

A DANGER

Explosion and fire hazard. Engine fuels are combustible. Perform this procedure in an open, well-ventilated area away from heaters, sparks, flames and lighted tobacco. Always have an approved fire extinguisher within easy reach.

A DANGER

Explosion and fire hazard. When transferring fuel, connect a grounding wire between the machine and pump or container.

Note: Be sure to only use a hand-operated pump suitable for use with gasoline and diesel fuel.

- 46 Tag, disconnect and plug the fuel hoses from the fuel tank. Clean up any fuel that may have spilled.
- 47 Remove the fuel tank mounting fasteners. Carefully remove the fuel tank from the machine.

NOTICE

Component damage hazard. The fuel tank is plastic and may become damaged if allowed to fall.

Note: Clean the fuel tank and inspect for cracks and other damage before installing it onto the machine.

- 48 Remove the retaining fastener from the ground control box and function manifold pivot plate.
- 49 Lower the ground control box and function manifold pivot plate to access the number 3 arm pivot pin.
- 50 Attach the lifting strap from the overhead crane to the center point of the number 3 arm for support. Do not lift it.

- 51 Remove the mounting fasteners from the cover located in the boom storage area to access the number 3 and number 4 arm pivot pin retaining fasteners at the turntable riser.
- 52 Remove the pin retaining fasteners from the number 3 arm at the turntable riser. Do not remove the pin.
- 53 Use a slide hammer to remove the number 3 arm pivot pin from the turntable pivot through the access hole behind the ground control box.
- 54 Remove the number 3 arm from the machine.

AWARNING

Crushing hazard. The number 3 arm could become unbalanced and fall when removed from the machine if not properly supported by the overhead crane.

- 55 Remove the upper and lower hose and cable covers from the number 3 arm.
- 56 Remove the secondary boom drive speed limit switch mounting fasteners from the number 4 arm at the mid-pivot end. Do not disconnect the wiring.
- 57 Remove the pin retaining fasteners from the number 4 arm at the turntable riser. Do not remove the pin.
- 58 Attach a lifting strap from the overhead crane to the center point of the number 4 arm. Do not lift it.
- 59 Use a slide hammer to remove the number 4 arm from the turntable riser through the ground controls side bulkhead.
- 60 Remove the number 4 arm from the machine.

AWARNING

Crushing hazard. The number 4 arm could become unbalanced and fall when removed from the machine if not properly supported by the overhead crane.

5-2 Secondary Boom Lift Cylinder

There are two secondary boom lift cylinders incorporated in the structure of the secondary boom assembly. These cylinders operate in parallel and require hydraulic pressure to extend and retract. Each secondary boom lift cylinder is equipped with a counterbalance valve to prevent movement in the event of a hydraulic line failure.

How to Remove the Secondary Boom Lift Cylinder

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- Lower the secondary boom to the stowed position.
- 2 Raise the primary boom so that it is above the secondary boom lift cylinder rod-end pivot pin.

3 Tag, disconnect and plug the hydraulic hoses on the secondary boom lift cylinder.

▲WARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 4 Remove the pin retaining fasteners from the secondary boom lift cylinder rod-end pivot pin and barrel-end pivot pin. Do not remove the pins.
- Attach a strap from an overhead crane to the lug on the rod end of the secondary boom lift cylinder for support. Do not apply any lifting pressure.
- 6 Use a soft metal drift to drive the barrel-end pivot pin half way out. Lower the barrel end of the secondary boom lift cylinder and let it hang down.
- 7 Use a soft metal drift to drive the rod-end pivot pin half way out.
- 8 Remove the secondary boom lift cylinder from the machine.

AWARNING

Crushing hazard. The secondary boom lift cylinder could become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

NOTICE

Component damage hazard. When removing a secondary boom lift cylinder from the machine, be careful not to damage the counterbalance valve at the barrel end of the cylinder.

6-1 RPM Adjustment - Deutz D2011L03i Models

Refer to Maintenance Procedure in the appropriate Service or Maintenance Manual for your machine, *Check and Adjust the Engine RPM.*

6-2 RPM Adjustment - Perkins 404D-22 Models

Refer to Maintenance Procedure in the appropriate Service or Maintenance Manual for your machine, Check and Adjust the Engine RPM.

6-3 Flex Plate

The flex plate acts as a coupler between the engine and the pump. It is bolted to the engine flywheel and has a splined center to drive the pump.

How to Remove the Flex Plate

Perkins models:

Disconnect the battery cables from the battery.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

- 2 Disconnect the electrical connectors at the electrical proportional controller, located on the drive pump.
- 3 Remove the engine starter mounting fasteners. Remove the starter from the engine. Do not disconnect the wiring.
- 4 Support the drive pump with an appropriate lifting device. Then remove all of the bell housing to engine mounting bolts. Leave the pump connected to the bell housing.
- 5 Carefully pull the pump and bell housing away from the engine and secure it from moving.

Component damage hazard. Hoses can be damaged if they are kinked or pinched.

6 Remove the flex plate mounting fasteners, then remove the flex plate from the engine flywheel.

Ford models:

1 Disconnect the battery cables from the battery.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

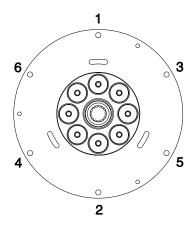
- 2 Disconnect the electrical connectors at the electrical proportional controller, located on the drive pump.
- 3 Support the drive pump assembly with an overhead crane or other suitable lifting device. Do not apply any lifting pressure.
- 4 Remove the drive pump retaining fasteners.
- 5 Carefully pull the drive pump out until the pump coupler separates from the flex plate.

NOTICE

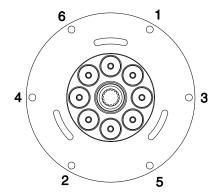
Component damage hazard. Hoses can be damaged if they are kinked or pinched.

- Disconnect the electrical connector from the oxygen sensor at the tailpipe. Do not remove the oxygen sensor.
- 7 Support the muffler and bracket assembly with a suitable lifting device.
- 8 Remove the exhaust pipe fasteners at the muffler.
- 9 Remove the muffler bracket mounting fasteners from the bell housing. Carefully remove the muffler and bracket assembly from the engine.

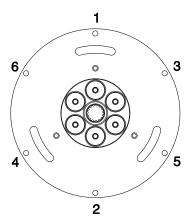
- 10 Support the engine with an overhead crane or other suitable lifting device. Do not lift it.
- 11 Remove the engine mounting plate to bell housing fasteners.
- 12 Raise the engine slightly using the overhead crane and place a block of wood under the oil pan for support.
- 13 Remove all of the engine bell housing retaining fasteners.
- 14 Carefully remove the bell housing from the engine.
- 15 Remove the flex plate mounting fasteners. Remove the flex plate from the flywheel.


How to Install the Flex Plate

- 1 Install the flex plate onto the engine flywheel with the rubber vibration isolators towards the pump.
- 2 Apply Loctite® removable thread sealant to the flex plate fasteners and loosely install the fasteners.
- 3 **Deutz models:** Torque the flex plate mounting bolts in sequence to 28 ft-lbs / 38 Nm. Then torque the flex plate mounting bolts in sequence to 40 ft-lbs / 54 Nm.
 - Ford and Perkins models: Torque the flex plate mounting bolts in sequence to 14 ft-lbs / 19 Nm. Then torque the flex plate mounting bolts in sequence to 20 ft-lbs / 27 Nm.
- 4 Apply a high viscosity coupling grease (Genie part number 128025) to the splines of the pump shaft and flex plate.


Grease Specification

Part No. 1268197GT


Shell Alvania® Grease CG, NLGI 0/1 or equivalent.

Ford Models

Deutz Models

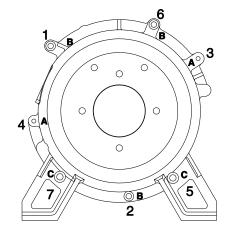
Perkins Models

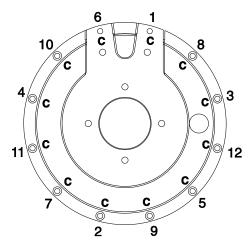
How to Install the Pump and Bell Housing Assembly

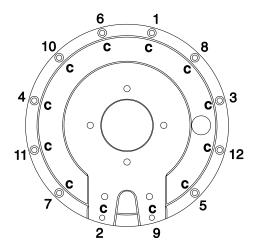
1 Install the pump and bell housing assembly.

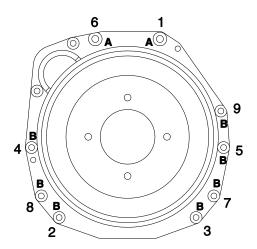
Deutz models: Torque the bell housing mounting bolts labeled "C" in sequence to 28 ft-lbs / 38 Nm. Then torque the bell housing mounting bolts labeled "C" in sequence to 40 ft-lbs / 54 Nm.

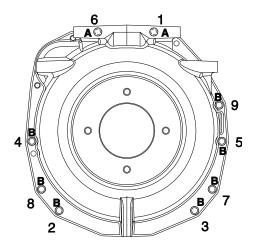
Ford models: Torque the bell housing mounting bolts labeled "A" and "B" in sequence to 28 ft-lbs / 38 Nm and the mounting bolts labeled "C" to 49 ft-lbs / 66 Nm. Then torque the bell housing mounting bolts labeled "A" and "B" in sequence to 40 ft-lbs / 54 Nm and the mounting bolts labeled "C" to 70 ft-lbs / 95 Nm.


Perkins models: Torque the bell housing mounting bolts labeled "B" in sequence to 28 ft-lbs / 38 Nm and the mounting bolts labeled "A" to 49 ft-lbs / 66 Nm. Then torque the bell housing mounting bolts labeled "B" in sequence to 40 ft-lbs / 54 Nm and the mounting bolts labeled "A" to 70 ft-lbs / 95 Nm.


Component damage hazard. When installing the pump, do not force the pump coupler into the flexplate or damage to the pump shaft seal may occur.


Component damage hazard. Do not force the drive pump during installation or the flex plate teeth may become damaged.


Ford Models


Deutz Models D2011L03i

Deutz Models D 2.9 L4, TD 2.2 L3

Perkins Models 404D-22

Perkins Models 404F-E22T

6-4 Engine Fault Codes

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor.

Refer to Fault Codes Section. Use the Fault Code Charts to aid in identifying the fault.

6-5 Diesel Particle Filter Regeneration - Deutz TD 2.2 L3 Engine

The combustion of diesel fuel results in soot, which is separated in the diesel particle filter (DPF). This must be regenerated as the contamination with soot increases. There are 3 types of regeneration.

Passive regeneration:

Under normal operating conditions when the exhaust temperature is >482°F / 250°C the particle filter contamination with soot remains in a permissible range. This process is automatically activated by the engine control unit, the operator does not need to perform any actions.

Standstill regeneration:

If passive regeneration does not attain an adequate reduction of the soot contamination, the particle filter will continue to become contaminated with soot and a standstill regeneration will be required by the operator.

To perform standstill regeneration, refer to the Operator's Manual on your machine.

Service regeneration:

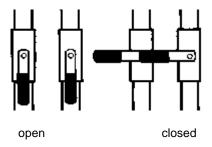
If a fault occurs, the system reacts by reducing the engine performance. This can include limited machine functions, torque reduction, reduced engine rpm and replacement of the DPF.

If standstill regeneration is prohibited by the operator. Service regeneration must be performed by a trained technician with the use of the DEUTZ SerDia software tool and DeCom interface cable. Available from Deutz.

If service regeneration is not performed, replacement of the DPF will be required.

Hydraulic Pumps

7-1 Lift/Steer Pump


How to Remove the Lift/Steer Pump

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

1 Locate the two hydraulic tank valves at the hydraulic tank through the access hole underneath the turntable. Close the valves.

NOTICE

Component damage hazard. The engine must not be started with the hydraulic tank shut-off valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

2 Tag, disconnect and plug the lift/steer pump hydraulic hoses. Cap the fittings on the pump.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

3 Remove the pump mounting bolts. Carefully remove the pump.

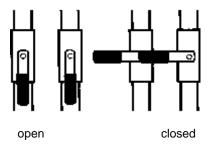
Component damage hazard. Be sure to open the two hydraulic tank valves and prime the pump after installing the pump.

Hydraulic Pumps

7-2 Drive Pump

The drive pump is a bi-directional variable displacement piston pump. The pump output is controlled by the electro-proportional controller, located on the pump. The only adjustment that can be made to the pump is the neutral or null adjustment. Any internal service to the pump should only be performed at an authorized Eaton Hydraulics center. Call Genie Service Department to locate your local authorized service center.

How to Remove the Drive Pump


Component damage hazard. The work area and surfaces where this procedure will be performed must be clean and free of debris that could get into the hydraulic system and cause severe component damage. Dealer service is recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

 Disconnect the electrical connectors at the electrical proportional controller located on the drive pump. 2 Locate the two hydraulic tank valves at the hydraulic tank through the access hole underneath the turntable. Close the valves.

Component damage hazard. The engine must not be started with the hydraulic tank shut-off valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

Tag and disconnect and plug the hydraulic hoses from the drive and lift/steer pumps. Cap the fittings on the pumps.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

Support the pump with a lifting device and remove the two drive pump mounting fasteners.

Hydraulic Pumps

- 5 Carefully pull the drive pump out until the pump coupler separates from the flex plate.
- 6 Remove the drive pump from the machine.

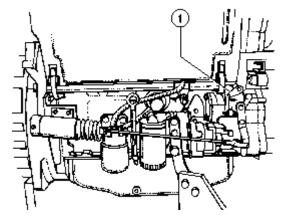
NOTICE

Component damage hazard. The pump(s) may become unbalanced and fall if not properly supported.

NOTICE

Component damage hazard. When installing the pump, do not force the pump coupler into the flexplate or damage to the pump shaft seal may occur.

NOTICE

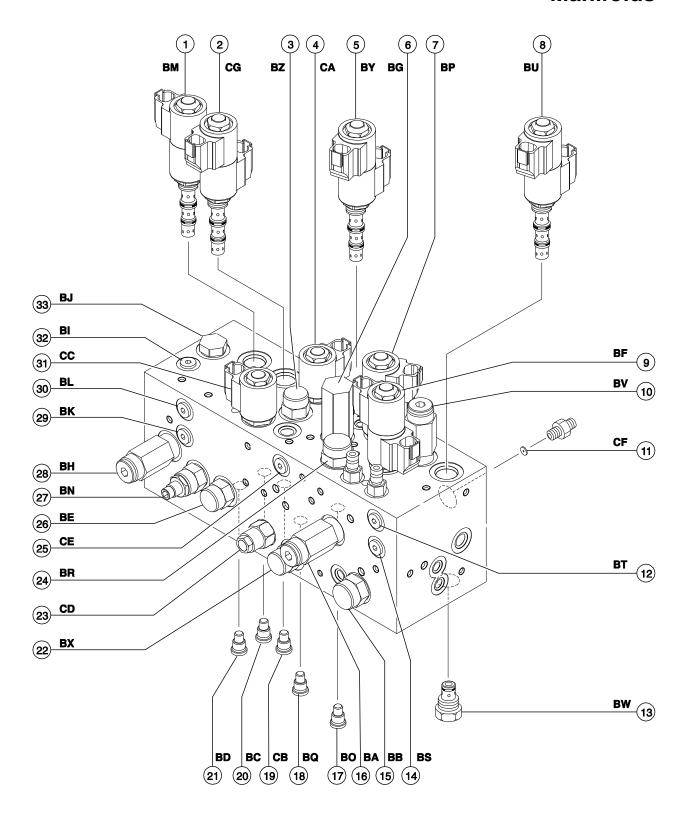

Component damage hazard. Be sure to open the two hydraulic tank valves and prime the pump after installing the pump.

How to Prime the Pump

- 1 Connect a 0 to 600 psi / 0 to 41 bar pressure gauge to the test port on the drive pump.
- 2 Remove the safety pin from the engine pivot plate latch.

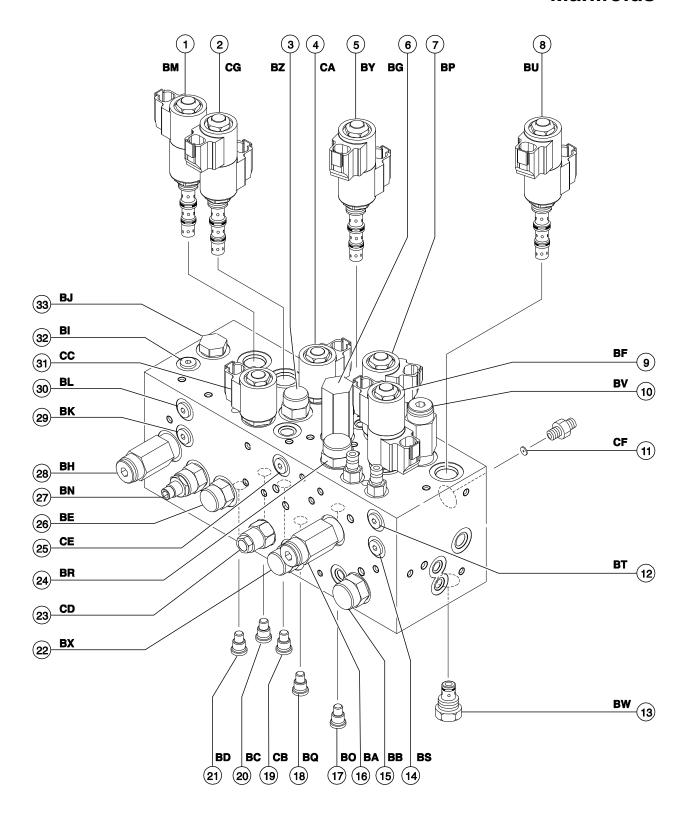
Note: The engine pivot plate latch is located under the engine turntable pivot plate at the counterweight end of the machine.

- Open the engine pivot plate latch and swing the engine pivot plate out and away from the machine.
- 4 Hold the manual fuel shutoff valve clockwise to the closed position.


1 manual fuel shutoff valve

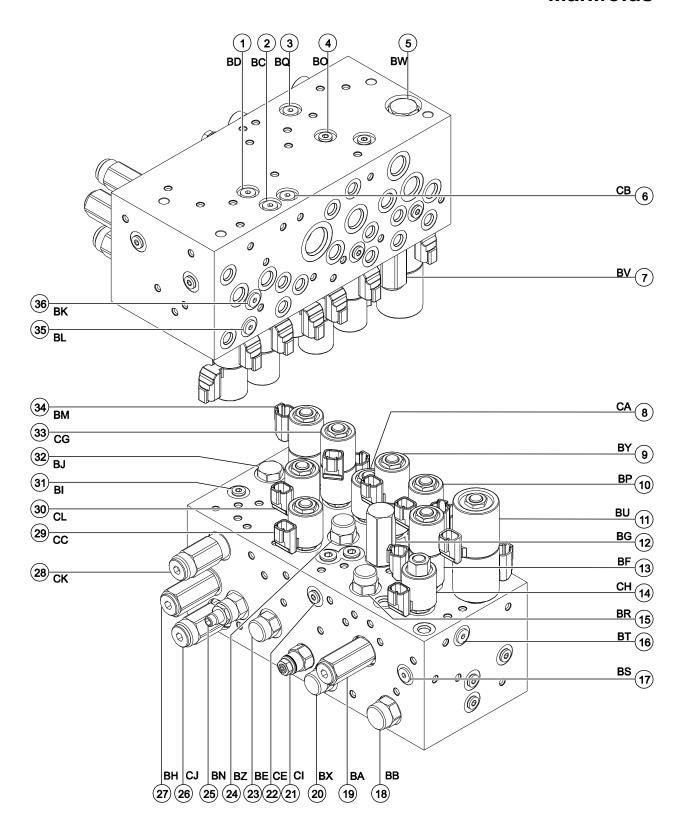
- 5 Have another person crank the engine with the starter motor for 15 seconds, wait 15 seconds, then crank the engine an additional 15 seconds or until the pressure reaches 320 psi / 22 bar.
- 6 Release the manual fuel shutoff valve.
- 7 Start the engine from the ground controls and check for hydraulic leaks.

8-1 Function Manifold Components - CE (to Z4525XCM-1500)

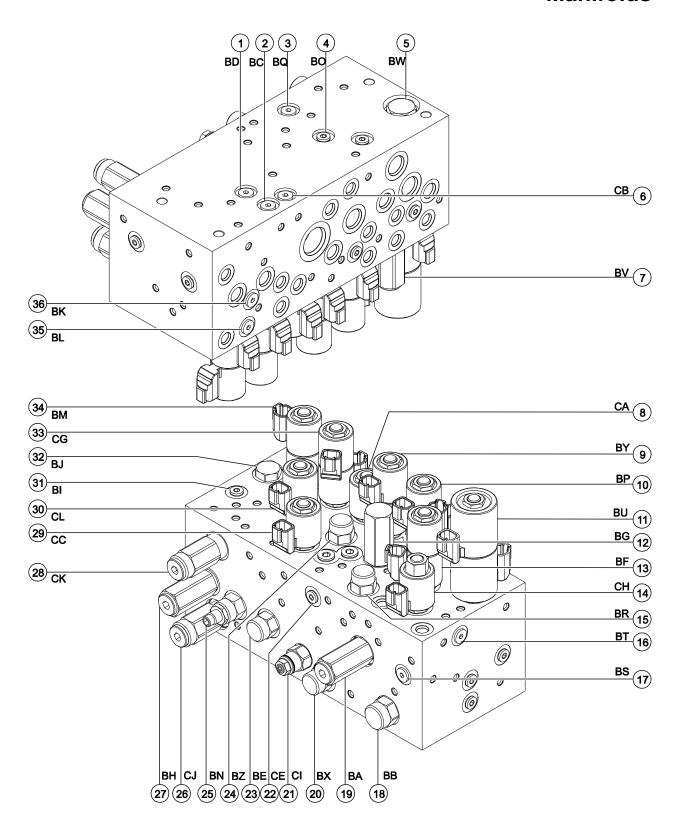

The function manifold is located next to the hydraulic tank underneath the ground controls side cover.

Index No.	Description	Schemat Item	^{ic} Function	Torque
1	Solenoid valve, 3 position 4 way	BM	Platform level up/down	25 ft-lbs / 34 Nm
2	Solenoid valve, 3 position 4 way	CG	Platform rotate left/right and jib boom up/down	25 ft-lbs / 34 Nm
3	Flow regulator valve, 2 gpm / 7.6 L/min	BZ	Boom extend/retract circuit	20 ft-lbs / 27 Nm
4	Solenoid valve, 2 position 3 way	CA	Primary boom extend	20 ft-lbs / 27 Nm
5	Proportional directional solenoid valve, 3 position 4 way	BY	Primary boom up/down	16-20 ft-lbs / 22-27 Nm
6	Differential sensing valve 160 psi / 11 bar	BG	Meters flow to functions	25 ft-lbs / 34 Nm
7	Proportional directional solenoid valve, 3 position 4 way	BP	Turntable rotate left/right	16-20 ft-lbs / 22-27 Nm
8	Proportional directional solenoid valve, 3 position 4 way	BU	Secondary boom up/down	16-20 ft-lbs / 22-27 Nm
9	Solenoid valve, 3 position 4 way	BF	Steer left/right	25 ft-lbs / 34 Nm
10	Relief valve, 2100 psi / 145 bar	BV	Secondary boom down	20 ft-lbs / 27 Nm
11	Orifice, 0.046 inch / 1.17 mm	CF	Secondary boom down circuit	
12	Check valve, 5 psi / 0.3 bar	ВТ	Differential sensing circuit, secondary boom down	12-14 ft-lbs / 16-19 Nm
13	Check valve, 5 psi / 0.3 bar	BW	Secondary boom circuit	25 ft-lbs / 34 Nm
14	Check valve, 5 psi / 0.3 bar	BS	Differential sensing circuit, secondary boom up	12-14 ft-lbs / 16-19 Nm
15	Priority flow regulator valve, 2.0 gpm / 7.6 L/min	BB	Steer circuit	25 ft-lbs / 34 Nm
16	Relief valve, 3200 psi / 221 bar	ВА	System relief	20 ft-lbs / 27 Nm
17	Shuttle valve	ВО	Turntable rotate circuit	12-14 ft-lbs / 16-19 Nm

Function Manifold Components - CE, continued


Index No.	Description	Schemat Item	ic Function	Torque
18	Check valve, 5 psi / 0.3 bar	BQ	Differential sensing circuit, turntable rotate	12-14 ft-lbs / 16-19 Nm
19	Check valve, 5 psi / 0.3 bar	СВ	Differential sensing circuit, primary boom retract	12-14 ft-lbs / 16-19 Nm
20	Check valve, 5 psi / 0.3 bar	ВС	Differential sensing circuit, platform rotate left and jib boom up	25 ft-lbs / 34 Nm
21	Check valve, 5 psi / 0.3 bar	BD	Differential sensing circuit, platform rotate right and jib boom down	25 ft-lbs / 34 Nm
22	Flow regulator valve, 0.1 gpm / 0.38 L/min	ВХ	Primary boom load sense circuit	20 ft-lbs / 27 Nm
23	Counterbalance valve, 3000 psi / 207 bar	CD	Primary boom down circuit	30-35 ft-lbs / 45-50 Nm
24	Pressure compensator valve, 80 psi / 5.5 bar	BR	Turntable rotate circuit	25 ft-lbs / 34 Nm
25	Shuttle valve	CE	Differential sensing circuit, primary boom up/down	12-14 ft-lbs / 16-19 Nm
26	Flow regulator valve, 0.8 gpm / 3 L/min	BE	Jib boom and platform rotate circuit	20 ft-lbs / 27 Nm
27	Needle valve	BN	Platform level flow control	20 ft-lbs / 27 Nm
28	Relief valve, 3000 psi / 207 bar	ВН	Platform level circuit	20 ft-lbs / 27 Nm
29	Check valve, 5 psi / 0.3 bar	BK	Differential sensing circuit, platform level up	12-14 ft-lbs / 16-19 Nm
30	Check valve, 5 psi / 0.3 bar	BL	Differential sensing circuit, platform level down	12-14 ft-lbs / 16-19 Nm
31	Solenoid valve, 2 position 3 way	CC	Primary boom retract	20 ft-lbs / 27 Nm
32	Shuttle valve	ВІ	Platform level circuit	12-14 ft-lbs / 16-19 Nm
33	Check valve, dual pilot operated, 135 psi / 9.3 bar	i BJ	Platform level circuit	20 ft-lbs / 27 Nm

8-1.1 Function Manifold Components - ANSI / CSA / CE (from Z4525XCF-101, Z4525XCM-1501)


The function manifold is located next to the hydraulic tank underneath the ground controls side cover.

Inde No.	X Description	Schemat Item	ic Function	Torque
1	VALVE, CHECK, #4 SAE, 5 PSI*	BD	Differential sensing circuit, platform rotate right and jib boom down	25 ft-lbs / 34 Nm
2	VALVE, CHECK, #4 SAE, 5 PSI*	ВС	Differential sensing circuit, platform rotate left and jib boom up	25 ft-lbs / 34 Nm
3	VALVE, CHECK, #4 SAE, 5 PSI*	BQ	Differential sensing circuit, turntable rotate	12-14 ft lbs / 16-19 Nm
4	VALVE, SHUTTLE	ВО	Turntable rotate circuit	12-14 ft lbs / 16-19 Nm
5	VALVE, CHECK, CV10-20-0-N-05	BW	Secondary boom circuit	25 ft-lbs / 34 Nm
6	VALVE, CHECK, #4 SAE, 5 PSI*	СВ	Differential sensing circuit, primary boom retract	12-14 ft lbs / 16-19 Nm
7	VALVE, RELIEF, RV08-22H-0-N-26/21	BV	Secondary boom down	20 ft-lbs / 27 Nm
8	VALVE, SOLENOID, 2POS 3 WAY***	CA	Primary boom extend	20 ft-lbs / 27 Nm
9	VALVE, PROPORTIONAL 3 POS 4 WY	BY	Primary boom up/down	16-20 ft lbs / 22-27 Nm
10	VALVE, SPOOL, 4 WAY, 3 POSITION	BP	Turntable rotate left/right	16-20 ft lbs / 22-27 Nm
11	VALVE, SPOOL, 4 WAY, 3 POSITION	BU	Secondary boom up/down	16-20 ft lbs / 22-27 Nm
12	VALVE, DIRECTIONAL, P-COMP	BG	Meters flow to functions	25 ft-lbs / 34 Nm
13	VALVE, 4-WAY, TANDEM CENTER, SV08- 47A-0-N-00	BF	Steer left/right	25 ft-lbs / 34 Nm
14	VALVE, SOLENOID, 2POS 2WAY N.O.*	СН	Main function enable	19-21 ft-lbs / 26-29 Nm
15	VALVE, PRESSURE COMPENSATOR, EC08-32-0-N-80	BR	Turntable rotate circuit	25 ft-lbs / 34 Nm
16	VALVE, CHECK, #4 SAE, 5 PSI*	ВТ	Differential sensing circuit, secondary boom down	12-14 ft lbs / 16-19 Nm
17	VALVE, CHECK, #4 SAE, 5 PSI*	BS	Differential sensing circuit, secondary boom up	12-14 ft-lbs / 16-19 Nm

Function Manifold Components - ANSI / CSA / CE, continued

Index No.	Description	Schemat Item	ic Function	Torque	
18	VALVE, FLOW REGULATOR, FR10- 30F-0-N-/2.00	BB	Steer circuit	25 ft-lbs / 34 Nm	
19	VALVE, RELIEF, RV08-22H-0-N-26/32	ВА	System relief	20 ft-lbs / 27 Nm	
20	VALVE, CHECK, -8	BX	Primary boom load sense circuit	20 ft-lbs / 27 Nm	
21	VALVE, COUNTERBALANCE, CBBC-LHN@1000***	CI	Primary boom rod side CB valve	30-35 ft-lbs / 41-47 Nm	
22	VALVE, SHUTTLE	CE	Differential sensing circuit, primary boom up/down	12-14 ft lbs / 16-19 Nm	
23	VALVE, FLOW REGULATOR, 0.8 GPM FIXED	BE	Jib boom and platform rotate circuit	20 ft-lbs / 27 Nm	
24	VALVE, FLOW REGULATOR, 2.0 GPM		Boom extend/retract circuit	20 ft-lbs / 27 Nm	
25	VALVE, NEEDLE, ADJUSTABLE***	BN	Platform level flow control	20 ft-lbs / 27 Nm	
26	VALVE, PRESSURE REDUCER, PR58-38H-0-N-05/05	CJ	Oscillate circuit pressure reducing valve	24-26 ft-lbs / 33-35 Nm	
27	VALVE, RELIEF, RV08-22H-0-N-26/35	ВН	Platform level circuit	20 ft-lbs / 27 Nm	
28	VALVE, PRESSURE CONTROL, PS10-41H-0-N-22/08.5	CK	Oscillate circuit pressure control valve	25 ft-lbs / 34 Nm	
29	VALVE, SOLENOID, 2POS 3 WAY***	CC	Primary boom retract	20 ft-lbs / 27 Nm	
30	VALVE, 2-WAY, NC, SV08-20-0-N-00	CL	Primary boom extend enable valve	19-21 ft-lbs / 26-29 Nm	
31	VALVE, SHUTTLE	BI	Primary boom retract	12-14 ft lbs / 16-19 Nm	
32	VALVE, PO CHECK, DC08-40-0-N- 135	BJ	Platform level circuit	20 ft-lbs / 27 Nm	
33	VALVE, SOLENOID, 3POS 4WAY***	CG	Platform rotate left/right and jib boom up/down	25 ft-lbs / 34 Nm	
34	VALVE, SOLENOID, 3POS 4WAY***	BM	Platform level up/down	25 ft-lbs / 34 Nm	
35	VALVE, CHECK, 5 PSI*	BL	Differential sensing circuit, platform level down	12-14 ft lbs / 16-19 Nm	
36	VALVE, CHECK, 5 PSI*	BK	Differential sensing circuit, platform level up	12-14 ft lbs / 16-19 Nm	

8-2 Valve Adjustments - Function Manifold

How to Adjust the System Relief Valve

Note: Perform this procedure with the boom in the stowed position.

Note: Refer to Function Manifold Component list to locate the system relief valve.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the test1 port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Hold the function enable switch to the high rpm position and activate and hold the primary boom retract switch with the boom fully retracted.
- 4 Observe the pressure reading on the pressure gauge. Refer to Specifications, *Hydraulic Specifications*.
- 5 Turn the engine off. Use a wrench to hold the relief valve and remove the cap.
- 6 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 7 Repeat steps 2 through 5 and recheck relief valve pressure.
- 8 Remove the pressure gauge.

How to Adjust the Secondary Boom Down Relief Valve

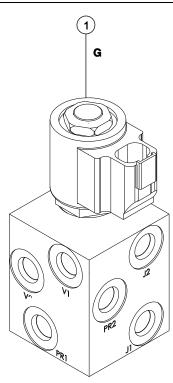
Note: Perform this procedure with the boom in the stowed position.

Note: Refer to Function Manifold Component list to locate the secondary boom down relief valve.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the test1 port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Hold the function enable switch to the high rpm position and activate and hold the secondary boom down switch with the secondary boom fully lowered.
- 4 Observe the pressure reading on the pressure gauge. Refer to Specifications, *Hydraulic Specifications*.
- 5 Turn the engine off. Use a wrench to hold the relief valve and remove the cap.
- 6 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

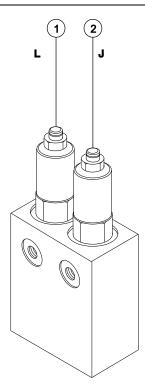
Tip-over hazard. Do not adjust the relief valve higher than specified.


Part No. 1268197GT

- 7 Repeat steps 2 through 5 and recheck relief valve pressure.
- 8 Remove the pressure gauge.

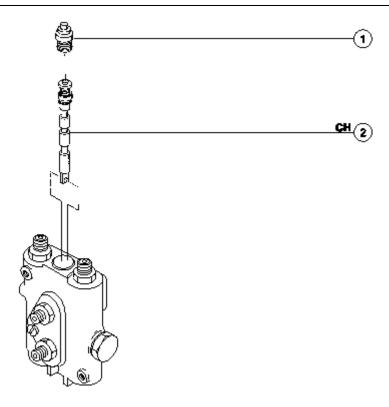
8-3
Jib Boom / Platform Rotate Manifold Components

The jib boom / platform rotate manifold is mounted to the platform support.


Index No.	^K Description	Schematic Item	Function	Torque
1	Solenoid valve, 2 position 3 way	G	Platform rotate/jib boom select	8-10 ft-lbs / 11-14 Nm

8-4 **Turntable Rotation Manifold Components**

The turntable rotation manifold is mounted to the turntable rotation motor located in the boom storage compartment.


Index No.	Description	Schematic Item	Function	
1	Counterbalance valve	L	Turntable rotate right	
2	Counterbalance valve	J	Turntable rotate left	

8-5 **Directional Valve Manifold Components**

The directional valve manifold is mounted inside the drive chassis at the non-steer end.

Index	No. Description	Schematic Item Functio	ion Torqu
1	Сар	Breathe	ner 20-25 ft-lbs / 27-3 N
2	Spool valve	CH Direction	onal control

How to Set Up the Directional Valve Linkage

Note: Adjustment of the oscillate directional valve linkage is only necessary when the linkage or valve has been replaced.

- 1 Lower the boom to the stowed position.
- 2 Use a "bubble type" level to be sure the floor is completely level.

AWARNING

Tip-over hazard. Failure to perform this procedure on a level floor could compromise the stability of the machine resulting in the machine tipping over.

3 Check the tire pressure in all four tires and add air if needed to meet specification.

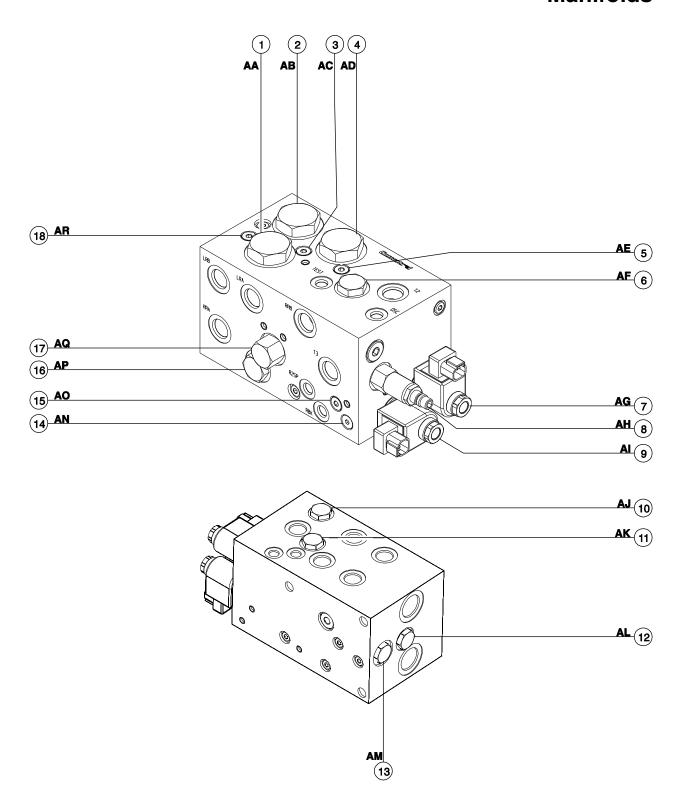
Note: The tires on some machines are foam-filled and do not need air added to them.

- 4 Remove the drive chassis cover and the nonsteer axle covers.
- 5 Place a "bubble type" level across the drive chassis non-steer end. Check to be sure the drive chassis is completely level.
- 6 Remove the ball joint retaining fastener from the bracket.
- 7 To level the drive chassis, start the engine and push up or pull down on the threaded rod until the machine is completely level.
- 8 Verify that the ground and drive chassis are completely level.

- 9 Adjust the ball joint until the hole lines up with the retaining fastener hole in the bracket.
- 10 Install the ball joint to the axle and tighten the jam nut.
- 11 Check to be sure the drive chassis is completely level.
- 12 Measure the distance between the drive chassis and the non-steer axle on both sides (from the inside of the drive chassis).

Note: If the distance is not equal and the adjustment to the linkage was completed with the ground and drive chassis level, repeat steps 6 through 11 OR consult Genie Product Support.

This page intentionally left blank.


Part No. 1268197GT

Manifolds

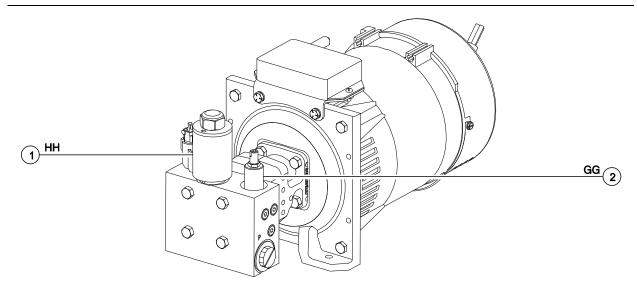
8-6 Traction Manifold Components, 4WD

The traction manifold is mounted inside the drive chassis at the non-steer end.

Index No.	Description	Schemat Item	ic Function	Torque
1	Flow divider/combiner valve	AA	Controls flow to flow divider/combiner valves 2 and 4	25-30 ft-lbs / 34-41 Nm
2	Flow divider/combiner valve	AB	Controls flow to non-steer end drive motors in forward and reverse	25-30 ft-lbs / 34-41 Nm
3	Orifice, 0.047 in / 1.2 mm	AC	Drive circuit	
4	Flow divider/combiner valve	AD	Controls flow to steer end drive motors in forward and reverse	25-30 ft-lbs / 34-41 Nm
5	Orifice, 0.040 in / 1.02 mm	AE	Drive circuit	
6	Check valve	AF	Non-steer end drive motor circuit	10-12 ft-lbs / 14-16 Nm
7	Solenoid valve, 2 position 3 way	AG	Braking	10-12 ft-lbs / 14-16 Nm
8	Relief valve, 250 psi / 17.2 bar	AH	Charge pressure circuit	10-12 ft-lbs / 14-16 Nm
9	Solenoid valve, 2 position 3 way	Al	2-speed motor shift	10-12 ft-lbs / 14-16 Nm
10	Check valve	AJ	Steer end drive motor circuit	10-12 ft-lbs / 14-16 Nm
11	Check valve	AK	Steer end drive motor circuit	10-12 ft-lbs / 14-16 Nm
12	Check valve	AL	Non-steer end drive motor circuit	10-12 ft-lbs / 14-16 Nm
13	Check valve	AM	Non-steer end drive motor circuit	10-12 ft-lbs / 14-16 Nm
14	Check valve	AN	2 speed motor shift circuit	10-12 ft-lbs / 14-16 Nm
15	Orifice, 0.030 inch / 0.76 mm	AO	Brake circuit	
16	Check valve	AP	Steer end drive motor circuit	10-12 ft-lbs / 14-16 Nm
17	Shuttle valve, 3 position 3 way	AQ	Charge pressure circuit that directs hot oil out of low pressure side of drive pump and allows low pressure flow path for brake release and 2-speed motor shift	15-18 ft-lbs / 20-24 Nm
18	Orifice, 0.040 in / 1.01 mm	AR	Drive circuit	

8-7 Valve Adjustments, 4WD Traction Manifold

How to Adjust the Charge Pressure Relief Valve

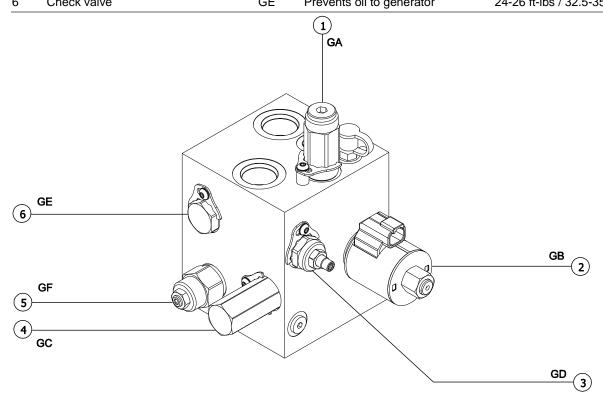

Note: Refer to 4WD Traction Manifold Component list to locate the charge pressure relief valve.

- 1 Connect a 0 to 600 psi / 0 to 50 bar pressure gauge to the test port on the drive pump.
- 2 Hold the charge pressure relief valve and remove the cap.
- 3 Turn the internal hex socket clockwise fully until it stops. Install the cap.
- 4 Start the engine and move and hold the function enable/rpm select toggle switch to the high rpm (rabbit symbol) position. Note the reading on the pressure gauge.
- 5 Turn the engine off.
- 6 Remove the pressure gauge from the drive pump. Connect the gauge to the test port located on the traction manifold.
- 7 Hold the charge pressure relief valve and remove the cap.
- 8 Start the engine and move and hold the function enable/rpm select toggle switch to the high rpm (rabbit symbol) position.
- 9 Adjust the internal hex socket until the pressure reading on the gauge is 40 psi / 2.8 bar less than the pressure reading on the pump. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the valve cap.
- 10 Turn the engine off and remove the pressure gauge.

8-8
Hydraulic Generator Manifold Components, 2.2kW

The generator manifold is mounted to the hydraulic generator located in the engine compartment.

Index No.	Description	Schematic Item	Function	Torque
1	Proportional solenoid valve	НН	Generator speed	33-37 ft-lbs / 45-50 Nm
2	Relief valve, 3000 psi / 207 bar	GG	Generator circuit	20-25 ft-lbs / 27-34 Nm


Part No. 1268197GT

Manifolds

8-8.1 3 kW Generator Manifold

The generator manifold is mounted below the generator on the control side of the machine.

Index No.	Description	Schematic Item	Function	Torque
1	Relief valve	GA	Generator relief valve	50 ft-lbs / 67 Nm
2	Solenoid Valve	GB	Charge pressure circuit	60-65 ft lbs / 81-88 Nm
3	Needle valve	GD	Charge pressure circuit	50 ft-lbs / 67 Nm
4	Differential sensing valve	GC	Pilot valve to diverter valve	50 ft-lbs / 67 Nm
5	Counterbalance valve	GF	Adds backpressure to generator circuit	
6	Check valve	GE	Prevents oil to generator	24-26 ft-lbs / 32.5-35.3 Nm

8-9 Valve Coils

How to Test a Coil

A properly functioning coil provides an electromotive force which operates the solenoid valve. Critical to normal operation is continuity within the coil that provides this force field.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

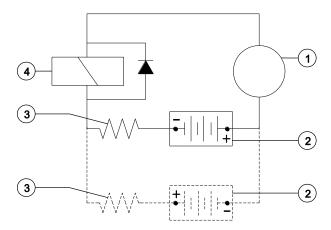
- 1 Tag and disconnect the wiring from the coil to be tested.
- 2 Test the coil resistance.
- Result: The resistance should be within specification, plus or minus 30%.
- Result: If the resistance is not within specification, plus or minus 30%, replace the coil.

Valve Coil Resistance Specification	
Proportional directional solenoid valve, 10V DC	6 to 8Ω
(schematic items BP, BU and BY)	
3 position 4 way directional valve, 10V DC	6 to 8Ω
(schematic items BF, BM and CG)	
2 position 3 way solenoid valve, 10V DC	6 to 8Ω
(schematic items CA, CC, AF, AG and AI)	

How to Test a Coil Diode

Properly functioning coil diodes protect the electrical circuit by suppressing voltage spikes. Voltage spikes naturally occur within a function circuit following the interruption of electrical current to a coil. Faulty diodes can fail to protect the electrical system, resulting in a tripped circuit breaker or component damage.

AWARNING


Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

75

- 1 Test the coil for resistance. Refer to Repair Procedure, *How to Test a Coil*.
- 2 Connect a 10Ω resistor to the negative terminal of a known good 9V DC battery. Connect the other end of the resistor to a terminal on the coil.

Resistor, 10Ω	
Genie part number	27287

Note: The battery should read 9V DC or more when measured across the terminals.

- 1 multimeter
- 2 9V DC battery
- 3 10Ω resistor
- 4 coil

Note: Dotted lines in illustration indicate a reversed connection as specified in step 6.

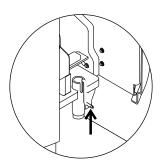
3 Set a multimeter to read DC current.

Note: The multimeter, when set to read DC current, should be capable of reading up to 800 mA.

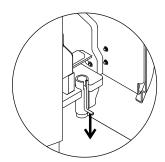
- 4 Connect the negative lead to the other terminal on the coil.
- Momentarily connect the positive lead from the multimeter to the positive terminal on the 9V DC battery. Note and record the current reading.
- At the battery or coil terminals, reverse the connections. Note and record the current reading.
- Result: Both current readings are greater than 0 mA and are different by a minimum of 20%. The coil is good.
- Result: If one or both of the current readings are 0 mA, or if the two current readings do not differ by a minimum of 20%, the coil and/or its internal diode are faulty and the coil should be replaced.

Turntable Rotation Components

9-1 Turntable Rotation Assembly


How to Remove the Turntable Rotation Assembly

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.


- Raise the secondary boom until the upper pivot is above the turntable covers. Turn the machine off.
- 2 Secure the turntable from rotating with the turntable rotation lock.

A DANGER

Tip-over hazard. The machine could tip over when the turntable rotation assembly is removed if the turntable rotation lock is not in the locked position.

Unlocked position

Locked position

3 Remove the safety pin from the engine pivot plate latch.

Note: The engine pivot plate latch is located under the engine turntable pivot plate at the counterweight end of the machine.

- 4 Remove the center turntable cover retaining fasteners. Remove the center turntable cover from the machine.
- 5 Open the engine pivot plate latch and swing the engine pivot plate out and away from the machine.
- Tag, disconnect and plug the hydraulic hoses from the turntable rotation motor manifold.

 Cap the fittings on the manifold.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 7 Attach a lifting strap from and overhead crane or other suitable lifting device to the turntable rotator assembly.
- 8 Remove the turntable rotation assembly mounting fasteners.
- 9 Carefully remove the turntable rotation assembly from the machine.

A DANGER

Tip-over hazard. The machine could tip over when the turntable rotation assembly is removed if the turntable rotation lock is not in the locked position.

AWARNING

Crushing hazard. The turntable rotation assembly could become unbalanced and fall when removed from the machine if not properly supported by the overhead crane.

Axle Components

10-1 Oscillating Axle Cylinders

The oscillating axle cylinders extend and retract between the drive chassis and the oscillating axle. The cylinders are equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure. The valves are not adjustable.

How to Remove an Oscillating Axle Cylinder

Note: Perform this procedure on a firm, level surface with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

1 Tag, disconnect and plug the oscillating axle cylinder hydraulic hoses. Cap the fittings on the oscillate cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

2 Remove the pin retaining fasteners from the rod-end pivot pin. Use a soft metal drift to remove the pin.

- 3 Attach a lifting strap from an overhead crane to the barrel end of the oscillating cylinder.
- 4 Remove the pin retaining fasteners from the barrel-end pivot pin. Use a soft metal drift to remove the pin.

A CAUTION

Crushing hazard. The oscillate cylinder may become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

5 Remove the oscillate cylinder from the machine.

Fault Codes

Observe and Obey:

- Troubleshooting and repair procedures shall be completed by a person trained and qualified on the repair of this machine
- Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.
- Unless otherwise specified, perform each procedure with the machine in the following configuration:
 - Machine parked on a firm, level surface
 - Key switch in the off position with the key removed
 - The red Emergency Stop button in the off position at both the ground and platform controls
 - · Wheels chocked
 - All external AC power supply disconnected from the machine
 - · Boom in the stowed position
 - Turntable secured with the turntable rotation lock
 - Welder disconnected from the machine (if equipped with the weld cable to platform option)

Before Troubleshooting:

- Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine.
- Be sure that all necessary tools and test equipment are available and ready for use.
- Read each appropriate fault code thoroughly. Attempting short cuts may produce hazardous conditions.
- Be aware of the following hazards and follow generally accepted safe workshop practices.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Note: Two persons will be required to safely perform some troubleshooting procedures.

About This Section

There are two types of system faults in this section.

Control System Faults: Faults are indicated by the ALC500 operating system with two short beeps every 30 seconds when an abnormal condition or component failure occurs with the machine operating system. This could include machine functions, limit switches, angle sensors and hydraulic valves. Control system faults can be retrieved inside the platform control box.

Platform Overload System Fault Codes: Faults are indicated on the hour meter display, a red LED and with one short beep every second when an abnormal condition or component failure occurs with the platform overload system. Platform overload system fault codes can be retrieved on the hour meter display located at the ground controls.

Control System

How to Retrieve Control System Fault Codes

At least one fault code is present when the alarm at the platform controls produces two short beeps every 30 seconds for 10 minutes.

Perform this procedure with the engine off, the key switch turned to platform controls and the red Emergency Stop button pulled out to the on position at both the ground and platform controls.

Open the platform control box lid.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

2 Locate the red and yellow fault LEDs on the ALC-500 circuit board inside the platform control box. Do not touch the circuit board.

NOTICE

Component damage hazard. Electrostatic discharge (ESD) can damage printed circuit board components. Maintain firm contact with a metal part of the machine that is grounded at all times when handling printed circuit boards OR use a grounded wrist strap.

3 Determine the error source: The red LED indicates the error source and will flash two separate codes. The first code will indicate the first digit of the two digit code, flashing once per second. It will then pause for 1.5 seconds and flash the second digit once per 0.5 second.

Note: When the red LED is flashing the code, the yellow LED will be on solid.

4 **Determine the error type:** The yellow LED indicates the error type and will flash two separate codes. The first code will indicate the first digit of the two digit code, flashing once per second. It will then pause for 1.5 seconds and flash the second digit once per 0.5 second.

Note: When the yellow LED is flashing the code, the red LED will be on solid.

5 Use the fault code table on the following pages to aid in troubleshooting the machine by pinpointing the area or component affected.

Erro	or Source	Erro	Туре	Condition	Solution
ID	Name	ID	Name		
21	Primary Up / Down Joystick	11	Value at 5.0 V	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		12	Value too high		
		15	Value too low		
		16	Value at 0 V		
		17	Not Calibrated	Joystick Speed and Direction frozen at zero and neutral.	Calibrate Joystick.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
22	Primary Up / Down Directional Valves	21	Fault	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
23	Primary Up / Down Flow Valve	12	Value too high	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		15	Value too low		
		17	Not Calibrated	Normal function except threshold for one or both directions is zero.	Calibrate valve threshold.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
24	Angle sensor	11	Value at 5.0 V	Reduced function speed	Retract before lowering
		12	Value too high		required. Dual capacity models.
		15	Value too low		Power up controller with problem corrected.
		16	Value at 0 V		
		17	Not Calibrated		Calibrate angle sensor.
		31	Invalid setup	Initiate 1 second beep of Alarm.	Retract before lowering required. Dual capacity models. Calibrate angle sensor.
26	Angle sensor cross check	19	Out of Range	Reduced function speed	Retract before lowering required. Dual capacity models.
					Power up controller with problem corrected.
31	Secondary Up / Down. Joystick	11	Value at 5.0 V	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		12	Value too high		
		15	Value too low		
		16	Value at 0 V		
		17	Not Calibrated	Joystick Speed and Direction frozen at zero and neutral.	Calibrate Joystick.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)

Erro	or Source	Error	Туре	Condition	Solution
ID	Name	ID	Name		
32	Secondary Up / Down. Directional Valves	21	Fault	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
33	Secondary Up / Down Flow Valve	12	Value too high	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		15	Value too low		
		17	Not Calibrated	Normal function except threshold for one or both directions is zero.	Calibrate valve threshold.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
34	primary Boom Extend / Retract Limit Switches	31	Invalid setup	Initiate 1 second beep of Alarm. 1000lb. Mode: Required retract into FULLY RETRACTED state before lowering. 500lb. Mode: Operates normally. Dual capacity models.	Fully retract, then lower boom. Check and service ext/ret and fully stowed switches.
41	Turntable Rotate Joystick	11	Value at 5.0 V	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		12	Value too high		
		15	Value too low		
		16	Value at 0 V		
		17	Not Calibrated	Initiate 1 second beep of Alarm.	Calibrate Joystick.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
42	Turntable Rotate Directional Valves	21	Fault	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
43	Turntable Rotate Flow Valve	12	Value too high	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		15	Value too low		
		17	Not Calibrated	Normal function except threshold for one or the other direction is zero. Display message on LCD.	Calibrate valve threshold.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
44	Drive Enable Override Switch	21	Fault	Drive enable override direction is frozen at neutral.	Power up controller with problem corrected.
45	Platform Level Switch	21	Fault	Platform level frozen at neutral.	Power up controller with problem corrected.
46	Primary Extend / Retract Switch	21	Fault	Platform Extend / Retract frozen at neutral.	Power up controller with problem corrected.

Erro	or Source	Error	Туре	Condition	Solution
ID	Name	ID	Name		
51	Drive Joystick	11	Value at 5.0 V	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		12	Value too high		
		15	Value too low		
		16	Value at 0 V		
		17	Not Calibrated	Joystick Speed and Direction frozen at zero and neutral.	Calibrate Joystick.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
53	Drive Flow Valve (EDC)	12	Value too high	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		15	Value too low		
		17	Not Calibrated	Normal function except threshold for one or both directions is zero.	Calibrate valve threshold
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
54	Propel Brake Valve	21	Fault	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
55	Propel High Motor Speed Valve	21	Fault	Motor speed frozen in the low state.	Power up controller with problem corrected.
56	Platform Level Valve	21	Fault	Direction frozen at zero and neutral.	Power up controller with problem corrected.
57	Foot switch / ECU Power Crosscheck	12	Value too high	Direction frozen at zero and neutral.	Power up controller with problem corrected.
		15	Value too low		
61	Steer Joystick	11	Value at 5.0 V	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
		12	Value too high		
		15	Value too low		
		16	Value at 0 V		
		17	Not Calibrated	Joystick Speed and Direction frozen at zero and neutral.	Calibrate Joystick.
		18	Just calibrated	Initiate 1 second beep of Alarm.	Self-clearing (transient)
62	Steer Direction Valves	21	Fault	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Power up controller with problem corrected.
81	Platform Load Sense Overload	21	Fault	Limited Speed and Direction frozen at zero and neutral, Alarm sounds.	Self-clearing (transient)
82	Load Sense Overload Recovery	21	Fault	Limited Primary Up, Secondary Up and Primary extend and 5 seconds timeout.	Self-clearing after timeout.

Platform Overload System Fault Codes

How to Retrieve Platform Overload System Fault Codes - Deutz D2011L03i, Perkins 404D-22 and Ford MSG-425 Models

At least one or more fault codes are present when the alarm at the platform and ground controls produces one short beep every second and a solid or flashing red LED is displayed on the hour meter at the ground controls.

The last two digits of the fault code are the *Error Type*. The first two or three digits of the fault code are the *Error Source*.

- 1 LCD display
- 2 red LED fault indicator
- 3 yellow LED battery indicator
- 4 green LED engine hours indicator
- 1 Read and record the fault code(s) shown on the display.
- 2 Refer to the fault code tables on the following pages.

Error Source		Error Type		Condition		Solution
ID Name		ID	Name			
34	Ext. Ret. Limit Switch	36	Cross check faul	t Alarm sounds indicating a fault.		Check primary boom retracted operational
				Overload LED is on.		(LS1) and safety (LS5) limit switches.
				Functions disabled, engine shutdow	wn.	Boom retracted:
				Auxiliary functions enabled except extend.		0 volts at C42LS of LS1. 12 volts at C166LS of LS5.
75	SCON - Safety controller	34	Software Alarm sounds indicating a fault. Install correct software particular mismatch Overload LED is on. Primary and Functions disabled, engine secondary micro-controlles shutdown. controllers software do not match. Alarm sounds indicating a fault. Install correct software particular number and version in secondary micro-controlles secondary micro-controlles secondary micro-controlles shutdown.		nber and version in	
76	Platform load cell	12	Value too high	Platform overloaded.	Reduce weight in platform	
		13	No Response	No communication to load cell.	ope Che load	eck CAN bus circuit for n or short. eck for cable damage to d cell. eck for power at load cell.
		15	Value too low	Output from load cell lower than expected while primary up is active.	is p	afirm the platform load cel roperly pre-loaded and is of obstructions.
		17	Not Calibrated	Zero load not calibrated: Alarm sounds indicating a fault. Overload LED is on. Functions disabled, engine shutdown. Auxiliary functions enabled except extend. Zero load calibrated, gain is not: Unit operates with reduced load capacity.	Cali	brate the load cell.
		21	Internal load cell status	Alarm sounds indicating a fault. Overload LED is on. Functions disabled, engine shutdown. Auxiliary functions enabled except extend.	Сус	pect load cell for damage. le power off then back on ult persist, replace load
		31	Invalid setup			brate load cell with prope d or replace
		36	Cross check fault		Сус	pect load cell for damage. le power off then back on ult persist, replace load

Error Source		Error Type		Condition	Solution	
ID	Name	ID	Name			
79	Hour meter	13	No Response	Loss of communication to hour meter.	Check power and ground to hour meter.	
				Machine functions normal.	Check CAN bus circuit for open or short.	
					Check CAN bus resistance between CAN high and CAN low. 60 ohms.	
82	Overload recovery	21	Fault	Platform overloaded and machine operated using auxiliary power.	Refer to Repair Procedure, Platform Overload Recovery	
				Fault remains active until reset is performed.	Fault.	
102	Overload function cutout relay	12	Value too high	SCON detects 12VDC from CR54 or CR55 terminal 87 when terminals 85 and 86 are not activated.	Check for 12VDC at SCON C41-6. Should be 0VDC. Replace CR54 or CR55. Check for short to 12VDC in	
				Alarm sounds indicating a fault. Overload LED is on.	harness to SCON C41-6.	
				Functions disabled, engine shutdown.		
				Auxiliary functions enabled except extend.		
		15	Value too low	SCON detects 0VDC from CR54 or CR55 terminal 87 when terminals 85 and 86 are activated. Alarm sounds indicating a fault.	C41-6. Should be 12VDC. Replace CR54 or CR55.	
				Overload LED is on.	Check for open in harness to SCON C41-6.	
				Functions disabled, engine shutdown.		
				Auxiliary functions enabled except extend.		
103	Overload engine cutout relay	12	Value too high	SCON detects input from TB21 when CR56 terminals 85 and 86 are not activated. Alarm sounds indicating a fault.	Replace CR56. Check for short from TB21 in harness to SCON C42-2.	
				Overload LED is on.		
				Functions disabled, engine shutdown.		
				Auxiliary functions enabled except extend.		

How to Retrieve Active Engine Fault Codes - Deutz D 2.9 L4 and Perkins 404F-E22T Models

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor. One or more fault LED's will illuminate on the display located at the ground control box. The active fault code will also be displayed on the LCD screen.

Note: The Perkins 404F-E22T is equipped with an engine fault LED located at the platform control box.

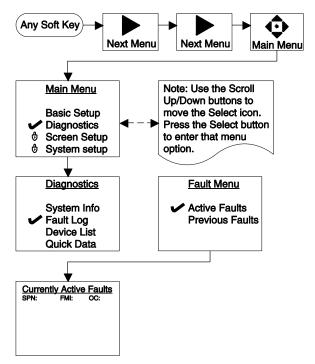
If an engine fault occurs that does not result in an engine shutdown, the engine rpm will go into limp home mode resulting in the loss of high rpm.

When operating from the platform, if the red Emergency Stop button is pushed in, the active fault code(s) will be erased from the display.

Start the engine from the ground control box and operate various boom functions to verify that an active engine fault occurs and is shown on the display.

Note: All faults are stored in the Previous Fault history menu. These faults will not be erased when corrective action has been completed.

With an active fault and the engine running: (preferred method)


1 At the ground controls, activate the auxiliary pump toggle switch to shut the engine off.

Note: Do not push in the red Emergency Stop button or turn the key switch to the off position.

- 2 Press any soft key below the display.
- 3 Use the scroll up / down keys to check for multiple engine fault codes.

With the engine not running:

- At the ground controls, turn the key switch to ground controls and pull out the red Emergency Stop button.
- 2 Navigate to the Active Fault Menu and use the scroll up / down keys to check for multiple engine fault codes.

How to Retrieve Active Engine Fault Codes - Deutz TD 2.2 L3 Models

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor. One or more fault LED's will illuminate on the display located at the ground control box. The active fault code will also be displayed on the LCD screen.

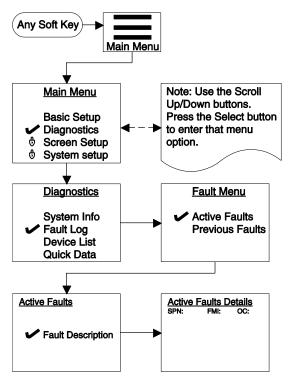
If an engine fault occurs that does not result in an engine shutdown, the engine rpm will go into limp home mode resulting in the loss of high rpm.

When operating from the platform, if the red Emergency Stop button is pushed in, the active fault code(s) will be erased from the display.

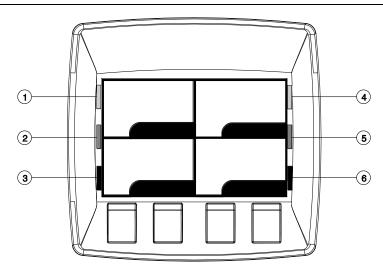
Start the engine from the ground control box and operate various boom functions to verify that an active engine fault occurs and is shown on the display.

Note: All faults are stored in the Previous Fault history menu. These faults will not be erased when corrective action has been completed.

With an active fault and the engine running: (preferred method)


1 At the ground controls, activate the auxiliary pump toggle switch to shut the engine off.

Note: Do not push in the red Emergency Stop button or turn the key switch to the off position.


- 2 Press any soft key below the display.
- 3 Use the scroll up / down keys to check for multiple engine fault codes.

With the engine not running:

- At the ground controls, turn the key switch to ground controls and pull out the red Emergency Stop button.
- Navigate to the Active Fault Menu and use the scroll up / down keys to check for multiple engine fault codes.

Flashing and Solid LED's - Deutz D 2.9 L4 and Perkins 404F-E22T Models

1 Left green LED:

Flashing, engine fault detected. Contact service.

Solid, fault acknowledged. Contact service.

2 Left amber LED: (Perkins models)

Solid.

- a) Regeneration is inhibited. No service required.
- b) High exhaust temperature during regeneration mode. No service required.
- 3 Left red LED:

Flashing, engine fault detected. Contact service.

Flashing with right flashing amber LED, engine soot level over 140%. Engine shut down. Contact service.

4 Right green LED:

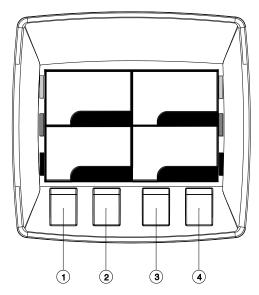
Flashing, engine fault detected. Contact service.

Solid, fault acknowledged. Contact service.

5 Right amber LED: (Perkins models)

Solid with left amber LED on solid, regeneration has been inhibited and engine soot level is between 80 - 100%. Regeneration is required.

Flashing with left amber LED on solid, regeneration has been inhibited and soot level is between 100 - 140%. Engine rpm is de-rated. Regeneration is required.


Flashing with left and right red LED's flashing, engine soot level over 140%. Engine shut down. Contact service.

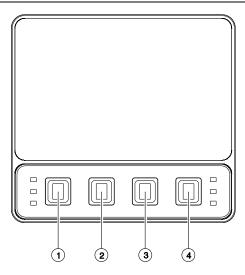
6 Right red LED:

Flashing, engine fault detected. Contact service.

Flashing with right flashing amber LED, engine soot level over 140%. Engine shut down. Contact service.

Soft Key Functions and Icons - Deutz D 2.9 L4 and Perkins 404F-E22T Models

- 1 Next menu Exit / Back one screen Decrease brightness (-)
- 2 Brightness / Contrast Scroll up Increase Increase brightness (+)
- 3 Regeneration forced Scroll down Decrease Decrease contrast (-)
- 4 Regeneration inhibited Select / Next Main menu Increase contrast (+)

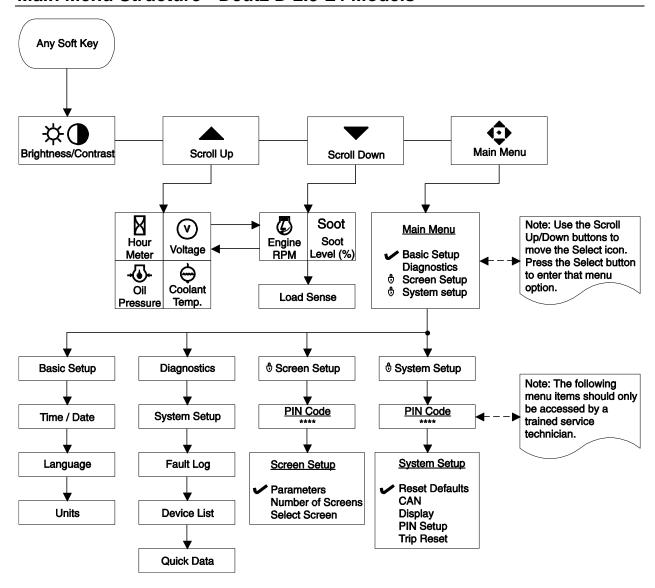

	☼❶	#>	₹
Next Menu	Brightness/	Initiate	Inhibit
	Contrast	Switch	Switch
		•	/
Exit / Back	Scroll	Scroll	Select
One Screen	Up	Down	
•	×		0
Main	Hour	Oil	Coolant
Menu	Meter	Pressure	Temp.
	Soot	V	0
Engine	Soot Level	Voltage	Pin #
RPM	Percent (%)		Protected

Note: Regeneration, initiate, inhibit and soot only apply to the Perkins 404F-E22T models.

91

Fault Code Display - Deutz and Perkins Models

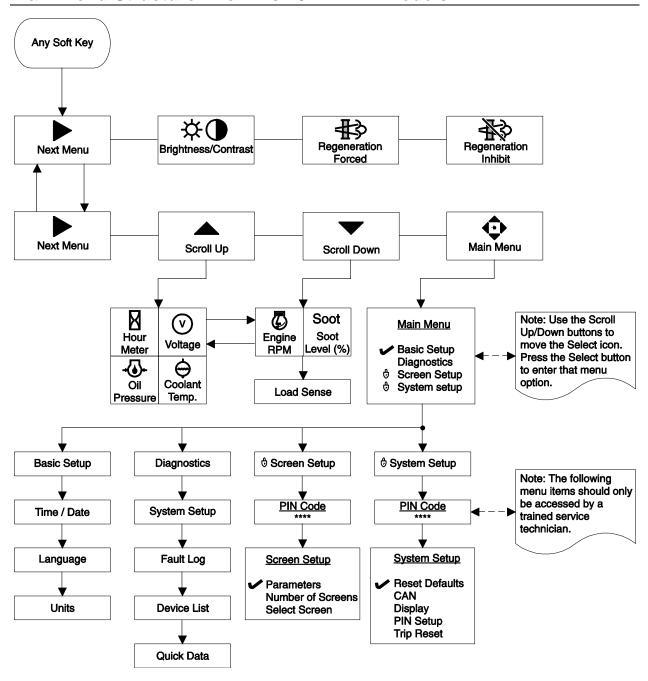
Soft Key Functions and Icons - Deutz TD 2.2 L3 Models


- 1 Exit / Back one screen
- 2 Scroll up Increase Time / Date Decrease brightness
- 3 Scroll down Decrease Time / Date Increase brightness
- 4 Main menu Select

	Main Scre	en Icons		Engine Warning Icons			
n/min	- +		<u></u>	-∏3>	=[3		9-7
Engine RPM	Voltage	Oil pressure	Coolant temperature	Regen required	DPF service required	Replace DPF	Change oil
-∏3>		\boxtimes		****			\bigcirc
Soot load (%)	Engine torque	Hour meter	Time since last regen	Low coolant	Fuel/Water separator	Engine stop	Engine start
	•	•		E	(I)		
Exit / Back one screen	Scroll up	Scroll down	Select	Standstill regen active	Engine failure		
Main menu	Pin code required						

92

Fault Code Display - Deutz and Perkins Models


Main Menu Structure - Deutz D 2.9 L4 Models

Main Menu Structure - Deutz TD 2.2 L3 Models

Main Menu Structure - Perkins 404F-E22T Models

Deutz TD 2.2 L3 Engine Fault Codes

DTC = Diagnostic Trouble Code FMI = Failure Mode Identifier SPN = Suspect Parameter Number

DTC	SPN	FMI	Description
1000	98	2	Engine oil level sensor internal error. Sensor reports error. Open/short transducer.
1001	98	31	Engine oil level out of range. Level low, high, foaming.
1002	98	31	Oil sensor voltage out of range. <8,5V ±0,5V; >16,5V ±0,5V.
1003	98	2	Oil sensor invalid sensor status.
1004	98	31	Oil sensor temperature out of range.
1005	98	14	Oil sensor is broken or disconnected.
1021	100	3	Oil pressure voltage above normal or shorted to high.
1022	100	4	Oil pressure voltage below normal or shorted to low.
1025	100	1	Low oil pressure. Warning threshold exceeded.
1026	100	1	Low oil pressure. Shut off threshold exceeded.
1043	107	0	Air filter differential pressure. Air filter clogged.
1071	411	2	Engine exhaust gas recirculation. Pressure does not change between engine operating points.
1072	411	0	Engine exhaust gas recirculation. Pressure above normal operational range.
1073	411	1	Engine exhaust gas recirculation. Pressure below normal operational range.
1074	411	2	Engine exhaust gas recirculation. Negative measured differential pressure.
1075	411	2	Engine exhaust gas recirculation. Positive measured differential pressure.

DTC	SPN	FMI	Description
1077	411	3	Engine exhaust gas recirculation. Signal value above maximum limit.
1078	411	4	Engine exhaust gas recirculation. Signal value below maximum limit.
1079	108	0	Ambient air pressure sensor above normal operational range.
1080	108	1	Ambient air pressure sensor below normal operational range.
1081	108	15	Fault check max signal range violated for ambient air pressure sensor.
1082	108	17	Fault check min signal range violated for ambient air pressure sensor.
1083	108	2	Ambient air pressure sensor error by component self diagnosis.
1084	3720	0	DPF ash load above normal operational range.
1086	3734	0	DPF soot load exceeded. Remove filter level.
1087	4781	14	DPF soot load exceeded shut off level.
1088	4781	0	DPF soot load exceeded warning level.
1089	4781	16	DPF. Too much standstill time in short time interval.
1090	10156	0	DPF. The standstill-regeneration mode time exceeds the short-limit.
1091	3735	16	DPF. Standstill required and no successful standstill longer than escalation threshold. Moderately severe.
1092	3735	0	DPF. Standstill required and no successful standstill longer than escalation threshold. Most severe.
1093	4766	1	DOC. Regeneration temperature in standstill main phase not reached.
1102	171	2	Ambient air temperature shows a deviation from expected value at cold start conditions.

Deutz TD 2.2 L3 Engine Fault Codes

DTC = Diagnostic Trouble Code

FMI = Failure Mode Identifier

SPN = Suspect Parameter Number

DTC	SPN	FMI	Description
111	102	0	Engine intake manifold pressure above normal operational range.
1114	102	1	Engine intake manifold pressure below normal operational range.
1115	102	3	Intake manifold pressure sensor voltage above normal or shorted to high.
1116	102	4	Intake manifold pressure sensor voltage below normal or shorted to low.
1118	102	1	Intake manifold pressure below normal operational range.
1121	102	2	DFC for signal variation check for pressure sensor of the intake manifold.
1122	102	0	Intake air pressure valve sensor, warning condition exceeded.
1123	102	1	Intake air pressure valve sensor, shutoff condition exceeded.
1124	1209	2	Engine exhaust pressure turbine upstream differs from ambient pressure while engine not running.
1125	1209	15	Engine exhaust pressure turbine upstream above upper limit.
1126	1176	1	Engine turbocharger compressor intake pressure below normal operational range.
1127	1209	2	Engine exhaust pressure turbine upstream tuck check failed. Pressure does not change between engine operating points.
1130	1209	3	Engine exhaust pressure sensor voltage above normal or shorted to high.
1131	1209	4	Engine exhaust pressure sensor voltage below normal or shorted to low.

DTC	SPN	FMI	Description
1134	3251	3	DPF voltage above normal or shorted to high.
1135	3251	4	DPF voltage below normal or shorted to low.
1136	3251	14	DPF reporting communication error.
1137	3251	14	DPF reporting data error.
1138	3251	14	DPF reporting fast channel 1 error.
1139	3251	14	DPF reporting fast channel 2 signal range error.
1149	3251	2	DPF difference pressure value not plausible.
1150	3251	0	DPF difference pressure above shut off threshold.
1151	3251	16	DPF difference pressure above warning threshold.
1152	3251	1	DPF difference pressure below shut off threshold.
1153	3251	18	DPF difference pressure below warning threshold.
1161	5571	16	Rail fuel pressure relief valve above normal operational range.
1162	5571	2	Rail fuel pressure relief valve is forced to open, perform pressure increase.
1163	5571	2	Rail fuel pressure relief valve is forced to open. Performed by pressure increase.
1164	5571	16	Rail fuel pressure relief valve is forced to open. Shutoff conditions.
1165	5571	15	Rail fuel pressure relief valve is forced to open. Warning conditions.
1166	5571	0	Open rail fuel pressure relief valve was detected.
1167	5571	2	Unexpected opening of the rail fuel pressure relief valve.
1168	5571	2	Successful rail fuel pressure relief valve opening cannot be ensured.
1169	5571	13	Averaged rail fuel pressure after valve opening is outside the expected tolerance range.

DTC	SPN	FMI	Description
1170	5571	16	Open time of rail fuel pressure relief valve for wear out monitoring had exceeded.
1171	94	1	Fuel pressure build up during engine start not successful.
1172	1347	5	Electrical fuel pump current below normal or open circuit.
1174	1347	3	Electrical fuel pump voltage above normal or shorted to high.
1175	1347	4	Electrical fuel pump voltage below normal or shorted to low.
119	1231	14	CAN Bus 2 off Error for Application CAN.
1190	7103	13	Rail fuel pressure below set point, speed-dependent threshold exceeded.
1191	7103	13	Rail fuel pressure metering unit. Fuel quantity balance is disrupted.
1194	7103	13	Negative rail fuel pressure governor deviation at zero delivery by metering unit.
1195	7103	1	Rail fuel pressure value is below minimum rail pressure threshold.
1197	7103	0	Maximum rail fuel pressure exceeded.
1198	7103	2	Set point of fuel metering unit in overrun mode not plausible.
120	639	14	CAN Bus 1 off Error for Power train CAN.
1200	5357	14	Shut-off due to undershoot of minimum rail pressure.
1202	157	0	Maximum rail pressure exceeded in limp home mode.
1208	157	3	Engine fuel injector metering rail pressure voltage above normal or shorted to high.

DTC	SPN	FMI	Description
1209	157	4	Engine fuel injector metering rail pressure voltage below normal or shorted to low.
121	520252	2	Wrong checksum in the CAN message EAT Control.
1212	629	12	ECU. Keep alive error during runtime at an external device.
1213	629	12	ECU. Keep alive error during initialization phase at an external device.
1215	629	12	ECU. Read diagnosis error for non volatile memory.
1216	629	12	ECU. Write diagnosis error for non volatile memory.
1218	629	12	ECU. Stack memory threshold overrun.
1219	629	12	ECU. Observation counter irregular switch off counter triggered by engine running.
122	4207	2	TSC1 message checksum fault.
123	4207	2	TSC1 message checksum fault.
1233	5826	15	Emission control system operator inducement level 1 severity above normal operational range.
1235	5826	0	Emission control system operator inducement level 2 severity above normal operational range.
1236	5826	14	Emission control system operator pre-trigger inducement level 2 severity.
124	4207	2	TSC1 message checksum fault.
125	4207	2	TSC1 message checksum fault.
1274	91	3	Accelerator pedal sensor position 1 voltage above normal or shorted to high.
1275	2623	3	Accelerator pedal 1, channel 2 voltage above normal or shorted to high.
1276	29	3	Accelerator pedal 2 voltage above normal or shorted to high.

DTC	SPN	FMI	Description
1277	2625	3	Accelerator pedal 2, channel 2 voltage above normal or shorted to high.
1280	91	4	Accelerator pedal sensor position 1 voltage below normal or shorted to low.
1281	2623	4	Accelerator pedal 1, channel 2 voltage below normal or shorted to low.
1282	29	4	Accelerator pedal 2 voltage below normal or shorted to low.
1283	2625	4	Accelerator pedal 2, channel 2 voltage below normal or shorted to low.
1289	3509	14	Failure of sensor supply voltage 1 from ECU.
1290	3509	0	Sensor supply voltage 1 from ECU above normal operational range.
1291	3509	6	Sensor supply voltage 1 from ECU current above normal or grounded circuit.
1292	3509	1	Sensor supply voltage 1 from ECU below normal operational range.
1293	3510	14	Failure of sensor supply voltage 2 from ECU.
1294	3510	0	Sensor supply voltage 2 from ECU above normal operational range.
1295	3510	6	Sensor supply voltage 2 from ECU current above normal or grounded circuit.
1296	3510	1	Sensor supply voltage 2 from ECU below normal operational range.
1306	677	3	Engine starter motor relay voltage above normal or shorted to high.
1307	677	4	Engine starter motor relay voltage below normal or shorted to low.

DTC	SPN	FMI	Description
			Description
1308	677	5	Engine starter motor relay current below normal or shorted to low.
1310	677	3	Engine starter motor relay voltage above normal or shorted to high.
1311	677	4	Engine starter motor relay voltage below normal or shorted to low.
1323	91	11	Accelerator pedal position 1. Possible error between APP1 and APP2 or APP1 and idle switch.
1326	29	11	Accelerator Pedal 2 Position. Possible error between APP1 and idle switch.
1346	1041	14	Start signal indicator. Terminal 50 was operated too long.
1354	105	0	Engine intake manifold 1 temperature data above normal operational range. Warning threshold exceeded.
1355	105	0	Engine intake manifold 1 temperature above normal operational range. Shutoff threshold exceeded.
1357	1136	0	Engine ECU temperature above normal operational range. Most severe.
1358	1136	1	Engine ECU temperature below normal operational range. Most severe.
1359	1136	15	Engine ECU temperature above normal operational range. Least severe.
1360	1136	17	Engine ECU temperature below normal operational range. Least severe.
1361	1136	2	Engine ECU temperature fault check.
1362	412	15	Engine exhaust gas recirculation temperature above normal operational range.

DTC	SPN	FMI	Description
1363	412	17	Engine exhaust gas recirculation temperature below normal operational range.
1364	412	3	Engine exhaust gas recirculation temperature voltage above normal or shorted to high.
1365	412	4	Engine exhaust gas recirculation temperature voltage below normal or shorted to low.
1372	51	5	Engine throttle valve 1, position 1 current below normal or open circuit.
1375	51	3	Engine throttle valve 1, position 1 voltage above normal or shorted to high. Short circuit to battery 1.
1376	51	3	Engine throttle valve 1, position 1 voltage above normal or shorted to high. Short circuit to battery 2.
1377	51	4	Engine throttle valve 1, position 1 voltage below normal or shorted to low. Short circuit to ground 1.
1378	51	4	Engine throttle valve 1, position 1 voltage below normal or shorted to low. Short circuit to ground 2.
1379	51	6	Engine throttle valve 1, position 1 current above normal or grounded circuit.
1382	51	7	Engine throttle valve 1 position 1 mechanical system not responding or out of adjustment. Valve stuck closed.
1383	51	7	Engine throttle valve 1 position 1 mechanical system not responding or out of adjustment. Valve stuck open.
1391	51	3	Engine throttle valve 1, position 1 voltage above normal or shorted to high.

DTC	SPN	FMI	Description
1392	51	4	Engine throttle valve 1, position 1 voltage below normal or shorted to low.
1397	105	0	Engine intake manifold 1 temperature above normal operational range.
1398	105	1	Engine intake manifold 1 temperature below normal operational range.
1399	4766	2	DOC temperature too high.
1400	4766	2	DOC temperature too low.
1401	4766	15	DOC outlet temperature above normal operational range.
1402	4766	3	DOC outlet temperature voltage above normal or shorted to high.
1403	4766	4	DOC outlet temperature voltage below normal or shorted to low.
1404	4766	2	DOC intake temperature error.
1405	4766	15	DOC Intake temperature above normal operational range.
1406	4766	3	DOC intake temperature voltage above normal or shorted to high.
1407	4766	4	DOC intake temperature voltage below normal or shorted to low.
1408	4766	2	DOC intake temperature does not change.
142	520256	9	Timeout of EAT control receive message. CAN message is not received.
144	523211	9	Timeout error of CAN receive frame EBC1.
154	523212	9	Timeout error of CAN receive frame engine protection.
1540	520254	8	The stand still regeneration mode time exceeds the long limit threshold.
1541	520255	2	Hoses connected to the dp DPF SENT sensor inverted. Swap hoses.
155	523741	14	Engine shutdown request via CAN.

DTC = Diagnostic Trouble Code

FMI = Failure Mode Identifier

SPN = Suspect Parameter Number

DTC	SPN	FMI	Description
1587	97	0	Water in fuel level prefilter; maximum value exceeded.
188	523240	9	Timeout CAN message function mode control.
219	520253	2	Rolling counter fault CAN message EAT Control.
220	4206	2	Fault check for Rolling Counter of TSC1AE.
221	4206	2	Fault check for Rolling Counter of TSC1AR.
222	4206	2	Fault check for Rolling Counter of TSC1TE.
223	4206	2	Fault check for Rolling Counter of TSC1TR.
349	3349	0	Timeout error of CAN receive frame active TSC1AE.
350	3349	0	Timeout error of CAN receive frame passive TSC1AE.
351	3349	0	Timeout error of CAN receive frame active TSC1AR.
352	3349	0	Timeout error of CAN receive frame passive TSC1AR.
353	3349	0	Timeout error of CAN receive frame TSC1TE active.
354	3349	0	TSC1 receive timeout error. Short circuit to ground error.
355	3349	0	Timeout error of CAN receive frame TSC1TR.
356	3349	0	Passive timeout error of CAN receive frame TSC1TR.
361	3349	0	Timeout error of CAN receive frame TSC1AE. Traction Control.
363	3349	0	Timeout error of CAN receive frame TSC1AR. Retarder.
365	3349	0	Timeout error of CAN receive frame TSC1TE. Setpoint.

DTC	SPN	FMI	Description
367	3349	0	Timeout Error of CAN receive frame TSC1TR; control signal.
38	1485	3	ECM main relay voltage above normal or shorted to high.
39	1485	3	ECM main relay voltage above normal or shorted to high of actuator relay 2.
40	1485	3	ECM main relay voltage above normal or shorted to high of actuator relay 3.
41	1485	4	ECM main relay voltage below normal or shorted to low.
42	1485	4	ECM main relay voltage below normal or shorted to low of actuator relay 2.
43	1485	4	ECM main relay voltage below normal or shorted to low of actuator relay 3.
48	168	0	Battery voltage above normal operational range.
49	168	1	Battery voltage low normal operational range.
50	168	3	Battery voltage above normal or shorted to high.
51	168	4	Battery voltage above normal or shorted to low.
516	523982	0	Power stage diagnosis disabled. High battery voltage.
517	523982	1	Power stage diagnosis disabled. Low battery voltage.
52	168	0	High battery voltage. Warning threshold is exceeded.
567	27	5	Engine exhaust gas recirculation 1 valve position current below normal or open circuit.
570	27	3	Engine exhaust gas recirculation 1 valve position voltage above normal or shorted to battery 1.
571	27	3	Engine exhaust gas recirculation 1 valve position voltage above normal or shorted to battery 2.

DTC	SPN	FMI	Description
572	27	4	Engine exhaust gas recirculation 1 valve position voltage below normal or shorted to ground 1.
573	27	4	Engine exhaust gas recirculation 1 valve position voltage below normal or shorted to ground 2.
574	27	6	Engine exhaust gas recirculation 1 valve position current above normal or grounded circuit.
577	27	7	Engine exhaust gas recirculation 1 valve position. Mechanical system not responding or out of adjustment. Valve stuck closed.
578	27	7	Engine exhaust gas recirculation 1 valve position. Mechanical system not responding or out of adjustment. Valve stuck open.
582	5763	3	Engine exhaust gas recirculation 1, actuator 1 voltage above normal or shorted to high.
583	5763	4	Engine exhaust gas recirculation 1, actuator 1 voltage below normal or shorted to low.
586	3055	14	Internal software error ECU. Injection cut off.
587	190	0	Engine speed above warning threshold. Over speed detection in component engine protection.
588	190	0	Engine speed above warning threshold. FOC-Level 1.
589	190	0	Engine speed above warning threshold. FOC-Level 2.
590	190	0	Engine speed above warning threshold. Overrun Mode.
610	171	15	Environment temperature sensor, temperature above upper physical threshold.

DTC	SPN	FMI	Description
613	171	3	Ambient air temperature sensor voltage above normal or shorted to high.
614	171	4	Ambient air temperature sensor voltage below normal or shorted to low.
615	723	8	Camshaft speed sensor abnormal frequency or pulse width or period.
616	723	14	Camshaft sensor detection. Out of range, signal disrupted, no signal.
617	723	13	Offset angle between crank and camshaft sensor is too large.
618	4201	8	Crankshaft sensor detection. Out of range, signal disrupted, no signal.
619	4201	14	Crankshaft speed sensor. Speed detection, out of range, signal disrupted or no signal.
68	1669	14	CAN Bus ID-5. CAN Hardware registers are not updated within the expected time.
70	110	2	Engine Coolant Temperature. Data erratic, intermittent or incorrect.
709	97	3	Water in fuel indicator 1. Voltage above normal or shorted to high.
710	97	4	Water in fuel indicator 1. Voltage below normal or shorted to low.
721	94	15	Low fuel pressure system, max. physical range exceeded.
723	94	3	Engine fuel pressure sensor voltage above normal or shorted to high.
724	94	4	Engine fuel pressure sensor voltage below normal or shorted to low.
725	94	1	Low fuel pressure system, warning threshold exceeded.
726	94	1	Low fuel pressure, shut off threshold exceeded.
75	110	3	Engine coolant temperature voltage above normal or shorted to high.
76	110	4	Engine coolant temperature voltage below normal or shorted to low.

DTC = Diagnostic Trouble Code

FMI = Failure Mode Identifier

SPN = Suspect Parameter Number

DTC	SPN	FMI	Description
77	110	0	High coolant temperature. Warning threshold exceeded.
78	110	0	Coolant temperature. System reaction initiated.
797	676	12	Engine cold start aid relay error.
798	676	5	Engine cold start aid relay current below normal or open circuit.
799	676	5	Engine cold start aid relay current below normal or open circuit.
80	411	2	Intake air massflow not in expected range.
803	676	3	Engine cold start aid relay voltage above normal or shorted to high.
805	676	4	Engine cold start aid relay voltage below normal or shorted to low.
807	2797	14	Engine fuel 1 injector, Group 1. Number of possible injections limited by the injection valve.
815	2797	4	Engine fuel 1 injector, Group 1 voltage below normal or shorted to low.
816	5358	5	Engine cylinder 1 fuel injection quantity current below normal or open circuit.
817	5359	5	Engine cylinder 2 fuel injection quantity current below normal or open circuit.
818	5360	5	Engine cylinder 3 fuel injection quantity current below normal or open circuit.
819	5361	5	Engine cylinder 4 fuel injection quantity current below normal or open circuit.
820	5362	5	Engine cylinder 5 fuel injection quantity current below normal or open circuit.

DTC	SPN	FMI	Description
821	5363	5	Engine cylinder 6 fuel injection quantity current below normal or open circuit.
822	2797	6	Engine fuel 1 injector, Group 1 current above normal or grounded circuit.
823	2798	6	Engine fuel 1 injector, Group 2 current above normal or grounded circuit.
824	5358	6	Engine cylinder 1 fuel injection quantity above normal or grounded circuit. Short circuit of the power stage low-side.
825	5359	6	Engine cylinder 2 fuel injection quantity above normal or grounded circuit. Short circuit of the power stage low-side.
826	5360	6	Engine cylinder 3 fuel injection quantity above normal or grounded circuit. Short circuit of the power stage low-side.
827	5361	6	Engine cylinder 4 fuel injection quantity above normal or grounded circuit. Short circuit of the power stage low-side.
828	5362	6	Engine cylinder 5 fuel injection quantity above normal or grounded circuit. Short circuit of the power stage low-side.
829	5363	6	Engine cylinder 6 fuel injection quantity above normal or grounded circuit. Short circuit of the power stage low-side.
83	111	1	Coolant level too low.
830	5358	6	Engine cylinder 1 fuel injection quantity above normal or grounded circuit. Short circuit between highside and low-side of the power stage.

SPN:	SPN = Suspect Parameter Number				
DTC	SPN	FMI	Description		
831	5359	6	Engine cylinder 2 fuel injection quantity above normal or grounded circuit. Short circuit between high-side and low-side of the power stage.		
832	5360	6	Engine cylinder 3 fuel injection quantity above normal or grounded circuit. Short circuit between high-side and low-side of the power stage.		
833	5361	6	Engine cylinder 4 fuel injection quantity above normal or grounded circuit. Short circuit between high-side and low-side of the power stage.		
834	5362	6	Engine cylinder 5 fuel injection quantity above normal or grounded circuit. Short circuit between high-side and low-side of the power stage.		
835	5363	6	Engine cylinder 6 fuel injection quantity above normal or grounded circuit. Short circuit between high-side and low-side of the power stage.		
836	105	3	Engine intake manifold temperature voltage above normal or shorted to high.		
837	105	4	Engine intake manifold temperature voltage below normal or shorted to low.		
838	2797	14	Engine fuel 1 injector, group 1 missing injector adjustment value programming injector 1.		
839	2798	14	Engine fuel 1 injector, group 2 missing injector adjustment value programming injector 2.		

DTC	SPN	FMI	Description
840	4257	14	Engine fuel 1 injector, group 3 missing injector adjustment value programming injector 3.
854	7103	5	Engine fuel metering rail pump current below normal or open circuit.
855	7103	3	Engine fuel metering rail pump voltage above normal or shorted to high. Short circuit to battery on the high side power stage.
856	7103	3	Engine fuel metering rail pump voltage above normal or shorted to high. Short circuit to battery on the low side power stage.
857	7103	4	Engine fuel metering rail pump voltage below normal or shorted to low. Short circuit to battery on the high side power stage.
858	7103	4	Engine fuel metering rail pump voltage below normal or shorted to low. Short circuit to battery on the low side power stage.
859	7103	6	Engine fuel metering rail pump current above normal or grounded circuit.
868	629	12	Function monitoring: fault of ECU ADC. Null load test pulse.
869	629	12	Function monitoring: fault of ECU ADC. Test voltage.
870	629	12	ECU. DFC to indicate ICO request from MoCSOP module.
871	91	14	Function monitoring: Monitoring of accelerator pedal position.
875	190	2	Function monitoring: Fault of engine speed check.
876	5357	2	Engine fuel injection error for multiple cylinders. Diagnostic fault check error between level 1 energizing time and level 2 information.

DTC = Diagnostic Trouble Code FMI = Failure Mode Identifier

SPN = Suspect Parameter Number

SPN	FMI	Description
5441	2	Engine fuel injection timing error for multiple cylinders.
5357	2	Engine fuel injection error for multiple cylinders. Diagnostic fault check to report the error due to non plausibility in ZFC.
523612	12	Internal recovery. Diagnosis fault check to report the error to demand for an ICO due to an error in the Pol2 shut-off.
598	10	Clutch switch. Abnormal rate of change.
523612	12	Internal recovery. Diagnosis fault check to report the error to demand for an ICO due to an error in the Pol3 efficiency factor.
523612	12	Internal recovery. Diagnosis fault check to report the error to demand for an ICO due to an error in change of EOM.
5357	2	Engine fuel injection error for multiple cylinders. Diagnosis fault check to report the error to demand for an ICO due to an error in total torque relevant quantity.
5357	2	Engine fuel injection error for multiple cylinders. Diagnostic fault check to report the error due to injection quantity correction.
5442	2	Engine fuel injection pressure error for multiple cylinders.
29	2	Accelerator pedal 2 position.
677	2	Engine starter motor relay. Function monitoring: Fault of ECU power train active.
	5441 5357 523612 598 523612 5357 5357 5442 29	5441 2 5357 2 523612 12 523612 12 523612 12 5357 2 5442 2 29 2

DTC	SPN	FMI	Description
887	513	2	Actual engine percent torque. DFC to report the fault in energizing time comparison.
888	513	2	Actual engine percent torque. DFC to report in torque comparison error.
889	520250	2	Function monitoring: Error in the post-build selectable monitoring.
890	629	12	ECU. Status of the EMM alarm FCCU0 which is read out of the FCCU hardware module.
91	1109	2	Engine protection system approaching shutdown. Engine shut off demand ignored.
92	1109	14	Engine protection system approaching shutdown. Shut off request from supervisory monitoring function.
996	629	12	ECU. Diagnostic fault check to report ABE active state.
997	629	12	Function monitoring: Fault of ECU, WDA active by inquiry/response communication.
998	629	12	Function monitoring: Fault of ECU, Error Pin active suspision of HW fault.
999	629	12	Function monitoring: Fault of ECU, WDA active by overvoltage detection.

The following DTC fault code range shares the same description. Replace the ECU.

DTC	891 - 945	Description
SPN	629	Internal ECU error.
FMI	12	

SPN	FMI	KWP	Description
51	3	1019	EGR-Valve, short circuit to battery
51	3	1024	Position sensor error of actuator EGR-Valve; signal range check high
51	3	1226	EGR-Valve; short circuit to battery (A02)
51	3	1227	EGR-Valve; short circuit to battery (A67)
51	4	1020	EGR-Valve; short circuit to ground
51	4	1025	Position sensor error actuator EGR-Valve; signal range check low
51	4	1228	EGR-Valve; short circuit to ground (A02)
51	4	1229	EGR-Valve; short circuit to ground (A67)
1	4	1232	Actuator error EGR-Valve; Voltage below threshold
51	5	1015	Actuator error EGR-Valve; signal range check low
51	5	1017	Actuator EGR-Valve; open load
51	5	1023	Actuator error EGR-Valve; signal range check low
51	5	1223	Actuator EGR-Valve; open load
51	6	1014	Actuator error EGR-Valve; signal range check high
51	6	1022	Actuator error EGR-Valve; signal range check high
51	6	1224	Actuator EGR-Valve; over current
51	6	1230	Actuator error EGR-Valve; Overload by short-circuit
51	7	1016	Actuator position for EGR-Valve not plausible

SPN	FMI	KWP	Description
51	11	1231	Actuator error EGR-Valve; Power stage over temp due to high current
51	12	1018	Actuator EGR-Valve; powerstage over temperature
51	12	1021	Mechanical actuator defect EGR-Valve
51	12	1225	Actuator EGR-Valve; over temperature
94	1	474	Low fuel pressure; warning threshold exceeded
94	1	475	Low fuel pressure; shut off threshold exceeded
94	3	472	Sensor error low fuel pressure; signal range check high
94	4	473	Sensor error low fuel pressure; signal range check low
97	3	464	Sensor error water in fuel; signal range check high
97	4	465	Sensor error water in fuel; signal range check low
97	12	1157	Water in fuel level prefilter; maximum value exceeded
100	0	734	High oil pressure; warning threshold exceeded
100	0	735	High oil pressure; shut off threshold exceeded
100	1	736	Low oil pressure; warning threshold exceeded
100	1	737	Low oil pressure; shut off threshold exceeded
100	3	732	Sensor error oil pressure; signal range check high
100	4	733	Sensor error oil pressure sensor; signal range check low
102	2	88	Charged air pressure above warning threshold
102	2	89	Charged air pressure above shut off threshold
102	4	777	Sensor error charged air press.; signal range check low

		ICIAID	
SPN	FMI	KWP	Description
105	0	996	High charged air cooler temperature; warning threshold exceeded
105	0	997	High charged air cooler temperature; shut off threshold exceeded
105	3	994	Sensor error charged air temperature; signal range check high
105	4	995	Sensor error charged air temperature; signal range check low
108	3	412	Sensor error ambient air press.; signal range check high
108	4	413	Sensor error ambient air press.; signal range check low
110	0	98	High coolant temperature; warning threshold exceeded
110	0	99	High coolant temperature; shut off threshold exceeded
110	3	96	Sensor error coolant temp.; signal range check high
110	4	97	Sensor error coolant temp.; signal range check low
111	1	101	Coolant level too low
132	11	1	Air flow sensor load correction factor exceeding the maximum drift limit; plausibility error
132	11	2	Air flow sensor load correction factor exceeding drift limit; plausibility error
132	11	3	Air flow sensor low idle correction factor exceeding the maximum drift limit
132	11	4	Air flow sensor load correction factor exceeding the maximum drift limit
157	3	877	Sensor error rail pressure; signal range check high
157	4	878	Sensor error rail pressure; signal range check low

SPN	FMI	KWP	Description
168	0	1180	Physical range check high for battery voltage
168	1	1181	Physical range check low for battery voltage
168	2	47	High battery voltage; warning threshold exceeded
168	2	48	Low battery voltage; warning threshold exceeded
168	3	45	Sensor error battery voltage; signal range check high
168	4	46	Sensor error battery voltage; signal range check low
171	3	417	Sensor error environment temperature; signal range check high
171	4	418	Sensor error environment temperature; signal range check low
172	0	1182	Physical range check high for intake air temperature
172	1	1183	Physical range check low for intake air temperature
172	2	9	Sensor ambient air temperature; plausibility error
172	2	983	Intake air sensor; plausibility error
172	3	981	Sensor error intake air; signal range check high
172	4	982	Sensor error intake air sensor; signal range check low
174	0	481	High low fuel temperature; warning threshold exceeded
174	0	482	High Low fuel temperature; shut off threshold exceeded
175	0	740	Physical range check high for oil temperature
175	0	745	High oil temperature; warning threshold exceeded
175	0	746	High oil temperature; shut off threshold exceeded
175	1	741	Physical range check low for oil temperature

SPN	FMI	KWP	Description
175	2	738	Sensor oil temperature; plausibility error
175	2	739	Sensor oil temperature; plausibility error oil temperature too high
175	3	743	Sensor error oil temperature; signal range check high
175	4	744	Sensor error oil temperature; signal range check low
190	0	389	Engine speed above warning threshold (FOC-Level 1)
190	2	421	Offset angle between crank- and camshaft sensor is too large
190	8	419	Sensor camshaft speed; disturbed signal
190	8	422	Sensor crankshaft speed; disturbed signal
190	11	390	Engine speed above warning threshold (FOC-Level 2)
190	12	420	Sensor camshaft speed; no signal
190	12	423	Sensor crankshaft speed; no signal
190	14	391	Engine speed above warning threshold (Overrun Mode)
190	14	1222	Camshaft- and Crankshaft speed sensor signal not available on CAN
411	0	791	Physical range check high for differential pressure Venturiunit (EGR)
411	1	792	Physical range check low for differential pressure Venturiunit (EGR)
411	3	795	Sensor error differential pressure Venturiunit (EGR); signal range check high
411	4	381	Physical range check low for EGR differential pressure
411	4	796	Sensor error differential pressure Venturiunit (EGR); signal range check low

SPN	FMI	KWP	Description
412	3	1007	Sensor error EGR cooler downstream temperature; signal range check high
412	4	1008	Sensor error EGR cooler downstream temperature; signal range check low
520	9	306	Timeout Error of CAN-Receive- Frame TSC1TR; Setpoint
597	2	49	Break lever mainswitch and break lever redundancy switch status not plausible
624	3	971	SVS lamp; short circuit to batt.
624	4	972	SVS lamp; short circuit to grd.
624	5	969	SVS lamp; open load
624	12	970	SVS lamp; powerstage over temperature
630	12	376	Access error EEPROM memory (delete)
630	12	377	Access error EEPROM memory (read)
630	12	378	Access error EEPROM memory (write)
639	14	84	CAN-Bus 0 "BusOff-Status"
651	3	580	Injector 1 (in firing order); short circuit
651	4	586	High side to low side short circuit in the injector 1 (in firing order)
651	5	568	Injector 1 (in firing order); interruption of electric connection
652	3	581	Injector 2 (in firing order); short circuit
652	4	587	High side to low side short circuit in the injector 2 (in firing order)
652	5	569	Injector 2 (in firing order); interruption of electric connection
653	3	582	Injector 3 (in firing order); short circuit
653	4	588	High side to low side short circuit in the injector 3 (in firing order)
653	5	570	Injector 3 (in firing order); interruption of electric connection

SPN = Suspect Parameter Number

FMI = Failure Mode Identifier

KWP = Keyword Protocol

SPN	FMI	KWP	Description
654	3	583	Injector 4 (in firing order); short circuit
654	4	589	High side to low side short circuit in the injector 4 (in firing order)
654	5	571	Injector 4 (in firing order); interruption of electric connection
676	11	543	Cold start aid relay error.
676	11	544	Cold start aid relay open load
677	3	956	Starter relay high side; short circuit to battery
677	3	960	Starter relay low side; short circuit to battery
677	4	957	Starter relay high side; short circuit to ground
677	4	961	Starter relay low side; short circuit to ground
677	5	958	Starter relay; no load error
677	12	959	Starter relay; powerstage over temperature
703	3	426	Engine running lamp; short circuit to battery
703	4	427	Engine running lamp; short circuit to ground
703	5	424	Engine running lamp; open load
703	12	425	Engine running lamp; powerstage over temperature
729	5	545	Cold start aid relay open load
729	12	547	Cold start aid relay; over temperature error
898	9	305	Timeout Error of CAN-Receive- Frame TSC1TE; Setpoint
1079	13	946	Sensor supply voltage monitor 1 error (ECU)
1080	13	947	Sensor supply voltage monitor 2 error (ECU)

SPN	FMI	KWP	Description
1109	2	121	Engine shut off demand ignored
1136	0	1398	Physikal range check high for ECU temperature
1136	1	1399	Physikal range check low for ECU temperature
1136	3	1400	Sensor error ECU temperature; signal range check high
1136	4	1401	Sensor error ECU temperature; signal range check low
1176	3	849	Sensor error pressure sensor upstream turbine; signal range check high
1176	4	850	Sensor error pressure sensor downstream turbine; signal range check high
1180	0	1193	Physical range check high for exhaust gas temperature upstream turbine
1180	0	1460	Turbocharger Wastegate CAN feedback; warning threshold exceeded
1180	0	1462	Exhaust gas temperature upstream turbine; warning threshold exceeded
1180	1	1194	Physical range check low for exhaust gas temperature upstream turbine
1180	1	1461	Turbocharger Wastegate CAN feedback; shut off threshold exceeded
1180	1	1463	Exhaust gas temperature upstream turbine; shut off threshold exceeded
1180	3	1067	Sensor error exhaust gas temperature upstream turbine; signal range check high
1180	11	1066	Sensor exhaust gas temperature upstream turbine; plausibility error
1188	2	1414	Wastegate; status message from ECU missing

SPN	FMI	KWP	Description
1188	7	1415	Wastegate actuator; blocked
1188	11	1411	Wastegate actuator; internal error
1188	11	1412	Wastegate actuator; EOL calibration not performed correctly
1188	11	1416	Wastegate actuator; over temperature (> 145øC)
1188	11	1417	Wastegate actuator; over temperature (> 135øC)
1188	11	1418	Wastegate actuator; operating voltage error
1188	13	1413	Wastegate actuator calibration deviation too large, recalibration required
1231	14	85	CAN-Bus 1 "BusOff-Status"
1235	14	86	CAN-Bus 2 "BusOff-Status"
1237	2	747	Override switch; plausibility error
1322	12	610	Too many recognized misfires in more than one cylinder
1323	12	604	Too many recognized misfires in cylinder 1 (in firing order)
1324	12	605	Too many recognized misfires in cylinder 2 (in firing order)
1325	12	606	Too many recognized misfires in cylinder 3 (in firing order)
1326	12	607	Too many recognized misfires in cylinder 4 (in firing order)
2659	0	1524	Physical range check high for EGR exhaust gas mass flow
2659	1	1525	Physical range check low for EGR exhaust gas mass flow
2659	2	1523	Exhaust gas recirculation AGS sensor; plausibility error

001		KWD	D
SPN	FMI	KWP	Description
2659	2	1527	AGS sensor temperature exhaust gas mass flow; plausibility error
2659	12	1526	Exhaust gas recirculation; AGS sensor has "burn off" not performed
2797	4	1337	Injector diagnostics; timeout error of short circuit to ground measurement cyl. Bank 0
2798	4	1338	Injector diagnostics; timeout error of short circuit to ground measurement cyl. Bank 1
2798	4	1339	Injector diagnostics; short circuit to ground monitoring Test in Cyl. Bank 0
2798	4	1340	Injector diagnostics; short circuit to ground monitoring Test in Cyl. Bank 1
3224	2	127	DLC Error of CAN-Receive- Frame AT1IG1 NOX Sensor (SCR-system upstream cat; DPF-system downstream cat); length of frame incorrect
3224	9	128	Timeout Error of CAN-Receive- Frame AT1IG1; NOX sensor upstream
3248	4	1047	Sensor error particle filter downstream temperature; signal range check low
3699	2	1616	DPF differential pressure sensor and a further sensor or actuator CRT system defective
3699	2	1617	Temperature sensor us. and ds. DOC simultaneously defect
3699	14	1615	Maximum stand-still-duration reached; oil exchange required
4765	0	1039	Physical range check high for exhaust gas temperature upstream (DOC)
4765	1	1042	Physical range check low for exhaust gas temperature upstream (DOC)

SPN	FMI	KWP	Description
4766	0	1029	Physical range check high for exhaust gas temperature downstream (DOC)
4766	1	1032	Physical range check low for exhaust gas temperature downstream (DOC)
4768	2	1036	Sensor exhaust gas temperature upstream (DOC); plausibility error
4768	3	1044	Sensor error exhaust gas temperature upstream (DOC); signal range check high
4768	4	1045	Sensor error exhaust gas temperature upstream (DOC) signal range check low
4769	2	1026	Sensor exhaust gas temperature downstream (DOC); plausibility error
4769	3	1034	Sensor error exhaust gas temperature downstream (DOC); signal range check high
4769	4	1035	Sensor error exhaust gas temperature downstream (DOC); signal range check low
523006	3	34	Controller mode switch; short circuit to battery
523006	4	35	Controller mode switch; short circuit to ground
523008	1	648	Manipulation control was triggered
523008	2	649	Timeout error in Manipulation control
523009	9	825	Pressure Relief Valve (PRV) reached maximun allowed opening count
523009	10	833	Pressure relief valve (PRV) reached maximun allowed open time

SPN	FMI	KWP	Description
523212	9	171	Timeout Error of CAN-Receive- Frame ComEngPrt; Engine Protection
523216	9	198	Timeout Error of CAN-Receive- Frame PrHtEnCmd; pre-heat command, engine command
523240	9	179	Timeout CAN-message FunModCtl; Function Mode Control
523350	4	565	Injector cylinder-bank 1; short circuit
523352	4	566	Injector cylinder-bank 2; short circuit
523354	12	567	Injector powerstage output defect
523470	2	826	Pressure Relief Valve (PRV) forced to open; performed by pressure increase
523470	2	827	Pressure Relief Valve (PRV) forced to open; performed by pressure shock
523470	7	876	Maximum rail pressure in limp home mode exceeded (PRV)
523470	11	831	The PRV can not be opened at this operating point with a pressure shock
523470	11	832	Rail pressure out of tolerance range
523470	12	828	Open Pressure Relief Valve (PRV); shut off condition
523470	12	829	Open Pressure Relief Valve (PRV); warning condition
523470	14	830	Pressure Relief Valve (PRV) is open
523550	12	980	T50 start switch active for too long
523601	13	948	Sensor supply voltage monitor 3 error (ECU)
523603	9	126	Timeout Error of CAN-Receive- Frame AMB; Ambient Temperature Sensor

SPN	FMI	KWP	Description
523605	9	300	Timeout Error of CAN-Receive- Frame TSC1AE; Traction Control
523606	9	301	Timeout Error of CAN-Receive- Frame TSC1AR; Retarder
523612	12	387	Internal software error ECU; injection cut off
523612	12	612	Internal ECU monitoring detection reported error
523612	12	613	Internal ECU monitoring detection reported error
523612	12	614	Internal ECU monitoring detection reported error
523612	12	615	Internal ECU monitoring detection reported error
523612	12	616	Internal ECU monitoring detection reported error
523612	12	617	Internal ECU monitoring detection reported error
523612	12	618	Internal ECU monitoring detection reported error
523612	12	619	Internal ECU monitoring detection reported error
523612	12	620	Internal ECU monitoring detection reported error
523612	12	621	Internal ECU monitoring detection reported error
523612	12	623	Internal ECU monitoring detection reported error
523612	12	624	Internal ECU monitoring detection reported error
523612	12	625	Internal ECU monitoring detection reported error
523612	12	627	Internal ECU monitoring detection reported error
523612	12	628	Internal ECU monitoring detection reported error

SPN	FMI	KWP	Description
523612	12	637	Internal ECU monitoring detection reported error
523612	12	1170	Internal software error ECU
523612	14	973	Softwarereset CPU SWReset_0
523612	14	974	Softwarereset CPU SWReset_1
523612	14	975	Softwarereset CPU SWReset_2
523613	0	856	Maximum positive deviation of rail pressure exceeded (RailMeUn0)
523613	0	857	Maximum positive deviation of rail pressure in metering unit exceeded (RailMeUn1)
523613	0	858	Railsystem leakage detected (RailMeUn10)
523613	0	859	Maximum negative deviation of rail pressure in metering unit exceeded (RailMeUn2)
523613	0	860	Negative deviation of rail pressure second stage (RailMeUn22)
523613	0	862	Maximum rail pressure exceeded (RailMeUn4)
523613	1	861	Minimum rail pressure exceeded (RailMeUn3)
523613	2	864	Setpoint of metering unit in overrun mode not plausible
523615	3	594	Metering unit (Fuel-System); short circuit to battery highside
523615	3	596	Metering unit (Fuel-System); short circuit to battery low side
523615	4	595	Metering unit (Fuel-System); short circuit to ground high side
523615	4	597	Metering Unit (Fuel-System); short circuit to ground low side
523615	5	592	Metering unit (Fuel-System); open load
523615	12	593	Metering unit (Fuel-System); powerstage over temperature
523619	2	488	Physical range check high for exhaust gas temperature upstrem (SCR-CAT)
523698	11	122	Shut off request from supervisory monitoring function

SPN	FMI	KWP	Description
523717	12	125	Timeout Error of CAN-Transmit- Frame AmbCon; Weather environments
523718	3	1488	SCR mainrelay; short circuit to battery (only CV56B)
523718	4	1489	SCR mainrelay; short circuit to ground (only CV56B)
523718	5	1486	SCR mainrelay; open load (only CV56B)
523718	12	1487	SCR mainrelay; powerstage over temperature (only CV56B)
523766	9	281	Timeout Error of CAN-Receive- Frame Active TSC1AE
523767	9	282	Timeout Error of CAN-Receive- Frame Passive TSC1AE
523768	9	283	Timeout Error of CAN-Receive- Frame Active TSC1AR
523769	9	284	Timeout Error of CAN-Receive- Frame Passive TSC1AR
523770	9	285	Timeout Error of CAN-Receive- Frame Passive TSC1DE
523776	9	291	Timeout Error of CAN-Receive- Frame TSC1TE - active
523777	9	292	Passive Timeout Error of CAN- Receive-Frame TSC1TE; Setpoint
523778	9	293	Active Timeout Errorof CAN- Receive-Frame TSC1TR
523779	9	294	Passive Timeout Error of CAN- Receive-Frame TSC1TR

SPN	FMI	SPN	Description
523788	12	299	Timeout Error of CAN-Transmit- Frame TrbCH; Status Wastegate
523793	9	202	Timeout Error of CAN-Receive- Frame UAA10; AGS sensor service message
523794	9	203	Timeout Error of CAN-Receive- Frame UAA11; AGS sensor data
523895	13	559	Check of missing injector adjustment value programming (IMA) injector 1 (in firing order)
523896	13	560	check of missing injector adjustment value programming (IMA) injector 2 (in firing order)
523897	13	561	check of missing injector adjustment value programming (IMA) injector 3 (in firing order)
523898	13	562	check of missing injector adjustment value programming (IMA) injector 4 (in firing order)
523910	6	1261	Air Pump; over current
523913	3	74	Sensor error glow plug control diagnostic line voltage; signal range check high
523913	4	75	Sensor error glow plug control diagnostic line voltage; signal range check low
523914	3	78	Glow plug control; short circuit to battery
523914	4	79	Glow plug control; short circuit to ground
523914	5	76	Glow plug control; open load
523914	5	1216	Glow plug control release line; short circuit error
523914	11	1217	Glow plug control; internal error
523914	12	77	Glow plug control; powerstage over temperature
523919	2	1378	Sensor air pump airpressure; plausibility error
523920	2	1379	Sensor exhaust gas back pressure burner; plausibility error

SPN	FMI	KWP	Description
523922	7	1262	Burner Shut Off Valve; blocked closed
523922	7	1264	Burner Shut Off Valve; blocked closed
523929	0	109	Fuel Balance Control integrator injector 1 (in firing order); maximum value exceeded
523929	1	115	Fuel Balance Control integrator injector 1 (in firing order); minimum value exceeded
523930	0	110	Fuel Balance Control integrator injector 2 (in firing order); maximum value exceeded
523930	1	116	Fuel Balance Control integrator injector 2 (in firing order); minimum value exceeded
523931	0	111	Fuel Balance Control integrator injector 3 (in firing order); maximum value exceeded
523931	1	117	Fuel Balance Control integrator injector 3 (in firing order); minimum value exceeded
523932	0	112	Fuel Balance Control integrator injector 4 (in firing order); maximum value exceeded
523932	1	118	Fuel Balance Control integrator injector 4 (in firing order); minimum value exceeded
523935	12	168	Timeout Error of CAN-Transmit- Frame EEC3VOL1; Engine send messages
523936	12	169	Timeout Error of CAN-Transmit- Frame EEC3VOL2; Engine send messages
523946	0	1158	Zero fuel calibration injector 1 (in firing order); maximum value exceeded

SPN	FMI	KWP	Description
523946	1	1164	Zero fuel calibration injector 1 (in firing order); minimum value exceeded
523947	0	1159	Zerofuel calibration injector 2 (in firing order); maximum value exceeded
523947	1	1165	Zerofuel calibration injector 2 (in firing order); minimum value exceeded
523948	0	1160	Zerofuel calibration injector 3 (in firing order); maximum value exceeded
523948	1	1166	Zerofuel calibration injector 3 (in firing order); minimum value exceeded
523949	0	1161	Zerofuel calibration injector 4 (in firing order); maximum value exceeded
523949	1	1167	Zerofuel calibration injector 4 (in firing order); minimum value exceeded
523960	0	1011	Physical range check high for EGR cooler downstream temp.
523960	0	1458	High exhaust gas temperature EGR cooler downstream; warning threshold exceeded
523960	1	1012	Physical range check low for EGR cooler downstream temp.
523960	1	1459	High exhaust gas temperature EGR cooler downstream; shut off threshold exceeded
523980	14	1187	Bad quality of reduction agent detected
523981	11	918	Urea-tank without heating function (heating phase)
523982	0	360	Powerstage diagnosis disabled; high battery voltage
523982	1	361	Powerstage diagnosis disabled; low battery voltage

SPN	FMI	KWP	Description
523988	3	1245	Charging lamp; short circuit to battery
523988	4	1246	Charging lamp; short circuit to ground
523988	5	1243	Charging lamp; open load
523988	12	1244	Charging lamp; over temp.
523998	4	1327	Injector cylinder bank 2 slave; short circuit
523999	12	1328	Injector powerstage output Slave defect
524014	1	1254	Air pressure glow plug flush line; below limit
524016	2	1259	Amount of air is not plausible to pump speed
524016	2	1260	Calculated amount of air is not plausible to HFM reading
524016	11	1258	HFM sensor; electrical fault
524021	11	1263	Burner fuel line pipe leak behind Shut Off Valve
524024	11	1302	Deviation of the exhaust gas temp. setpoint to actual value downstream (DOC) too high
524028	2	1431	CAN message PROEGRActr; plausibility error
524029	2	1432	Timeout Error of CAN-Receive- Frame ComEGRActr - exhaust gas recirculation positioner
524030	7	1440	EGR actuator; internal error
524031	13	1441	EGR actuator; calibration error

SPN	FMI	KWP	Description
524032	2	1442	EGR actuator; status message EGRCust is missing
524033	7	1443	EGR actuator; due to overload in Save Mode
524034	3	1438	Disc separator; short circuit to battery
524034	4	1439	Disc separator; short circuit to ground
524034	5	1436	Disc Separator; open load
524034	12	1437	Disc Separator; powerstage over temperature
524035	12	1341	Injector diagnostics; time out error in the SPI communication
524057	2	1505	Electric fuel pump; fuel pressure build up error
524097	9	1663	Timeout error of CAN-Transmit- Frame DPFBrnAirPmpCtl
524098	3 9 1664 Timeout error of CAN-Transmit- Frame ComDPFBrnPT		
524099	9	1665	Timeout error of CAN-Transmit- Frame ComDPFC1
524100	9	1666	Timeout error of CAN-Transmit- Frame ComDPFHisDat
524101	9	1667	Timeout error of CAN-Transmit- Frame ComDPFTstMon

SPN	FMI	KWP	Description
524102	9	1674	Timeout error of CAN-Receive- Frame ComRxDPFBrnAirPmpCtl
524103	9	1675	Timeout error of CAN-Receive- Frame ComRxDPFBrnAirPmp
524104	9	1676	Timeout error of CAN-Receive- Frame ComRxDPFCtl
524105	9	1668	Timeout error of CAN-Transmit- Frame ComEGRMsFlw
524106	9	1677	Timeout error of CAN-Receive- Frame ComRxEGRMsFlw1
524107	9	1678	Timeout error of CAN-Receive- Frame ComRxEGRMsFlw2
524108	9	1669	Timeout error of CAN-Transmit- Frame ComEGRTVActr
524109	9	1679	Timeout error of CAN-Receive- Frame ComRxEGRTVActr
524110	9	1670	Timeout error of CAN-Transmit- Frame ComETVActr
524111	9	1680	Timeout error of CAN-Receive- Frame ComRxETVActr
524112	9	1671	Timeout ComITVActr
524113	9	1681	Timeout error of CAN-Receive- Frame ComRxITVActr

SPN	FMI	KWP	Description
524114	9	1659	Timeout error of CAN-Transmit- Frame A1DOC
524115	9	1660	Timeout error of CAN-Transmit- Frame AT1S
524116	9	1661	Timeout error of CAN-Transmit- Frame SCR2
524117	9	1662	Timeout error of CAN-Transmit- Frame SCR3
524118	9	1672	Timeout error of CAN-Receive- Frame ComRxCM1
524119	9	1673	Timeout error of CAN-Receive- Frame ComRxCustSCR3
524120	9	1682	Timeout error of CAN-Receive- Frame ComRxSCRHtDiag
524121	9	1683	Timeout error of CAN-Receive- Frame ComRxTrbChActr
524122	9	1684	Timeout error of CAN-Receive- Frame ComRxUQSens
524123	9	1685	Timeout error of CAN-Receive- Frame ComSCRHtCtl
524124	9	1686	Timeout error of CAN-Receive- Frame ComTxAT1IMG
524125	9	1687	Timeout error of CAN-Receive- Frame ComTxTrbChActr

Perkins 404F-E22T Engine Fault Codes

SPN = Suspect Parameter Number FMI = Failure Mode Identifier

SPN	FMI	Description
29	3	Accelerator Pedal Position 2: Voltage Above Normal
29	4	Accelerator Pedal Position 2: Voltage Below Normal
91	3	Accelerator Pedal Position 1: Voltage Above Normal
91	4	Accelerator Pedal Position 1: Voltage Below Normal
100	1	Engine Oil Pressure: Low- most severe (3)
108	3	Barometric Pressure: Voltage Above Normal
108	4	Barometric Pressure: Voltage Below Normal
110	3	Engine Coolant Temperature: Voltage Above Normal
110	4	Engine Coolant Temperature: Voltage Below Normal
110	15	Engine Coolant Temperature: High - least severe (1)
168	0	Battery Potential/ Power Input 1: High- most severe (3)
168	3	Battery Potential/ Power Input 1: Voltage Above Normal
168	4	Battery Potential/ Power Input 1: Voltage Below Normal
172	3	Engine Air Inlet Temperature: Voltage Above Normal
172	4	Engine Air Inlet Temperature: Voltage Below Normal
190	0	Engine Speed: High- most severe (3)
190	8	Engine Speed: Abnormal Frequency, Pulse Width or Period
558	3	Accelerator Pedal1 Low Idle Switch: Voltage Above Normal
558	4	Accelerator Pedal1 Low Idle Switch: Voltage Below Normal
638	6	Engine Fuel Rack Actuator: Current Above Normal
639	14	J1939 Network#1: Special Instruction
		*

SPN	FMI	Description
723	3	Engine Speed Sensor #2: Voltage Above Normal
723	4	Engine Speed Sensor #2: Voltage Below Normal
723	8	Engine Speed Sensor#2: Abnormal Frequency, Pulse Width or Period"
723	10	Engine Speed Sensor #2: Abnormal Rate of Change
733	3	Engine Rack Position Sensor: Voltage Above Normal
733	4	Engine Rack Position Sensor: Voltage Below Normal
1485	7	ECU Main Relay: Not Responding Property
2840	11	ECU Instance: Other Failure Mode
2840	12	ECU Instance: Failure
2840	13	ECU Instance: Out of Calibration
2970	3	Accelerator Pedal 2 Low Idle Switch: Voltage Above Normal
2970	4	Accelerator Pedal 2 Low Idle Switch: Voltage Below Normal
3241	1	Exhaust Gas Temperature 1: Low-most severe (3)
3241	3	Exhaust Gas Temperature 1: Voltage Above Normal
241	4	Exhaust Gas Temperature 1: Voltage Below Normal
3241	15	Exhaust Gas Temperature 1: High- least severe (1)
3241	16	Exhaust Gas Temperature 1: High- moderate severity (2)
3242	1	Particulate Trap Intake Gas Temp: Low- most severe (3)"
3242	3	Particulate Trap Intake Gas Temp: Voltage Above Normal"
3242	4	Particulate Trap Intake Gas Temp: Voltage Below Normal"
3242	15	Particulate Trap Intake Gas Temp: High - least severe (1)"
3242	16	Particulate Trap Intake Gas Temp: High-moderate severity (2)

Perkins 404F-E22T Engine Fault Codes

SPN = Suspect Parameter Number FMI = Failure Mode Identifier

SPN	FMI	Description
3251	3	Particulate Trap Differential Pressure: Voltage Above Normal
3251	4	Particulate Trap Differential Pressure: Voltage Below Normal
3473	7	Aftertreatmert #1 Failed to Ignite: Not Responding Properly
3473	11	Aftertreatmert #1 Failed to Ignite: Other Failure Mode
3484	0	Aftertreatmert #1 Ignition: High-most severe (3)
3484	3	Aftertreatmert #1 Ignition: Voltage Above Normal
3484	4	Aftertreatmert #1 Ignition: Voltage Below Normal
3556	6	Aftertreatmert 1 Hydrocarbon Doser 1: Current Above Normal
3610	3	Diesel Particulate Filter Outlet Pressure or 1: Voltage Above Normal"
3610	4	DieselParticulate Filter Outlet Pressure Sensor 1: Voltage Below Normal
3713	7	DPF Active Regeneration Inhibited Due to System Timeout: Not Responding Properly
3713	31	DPF Active Regeneration Inhibited Due to System Timeout
3719	0	Particulate Trap #1 Soot Load Percent: High- most severe (3)
3719	16	Particulate Trap #1 Soot Load Percent: High-moderate severity (2)
4016	6	High Current Auxiliary Power Relay 1: Current Above Normal
4201	3	Engine Speed Sensor #1: Voltage Above Normal

SPN	FMI	Description
4201	4	Engine Speed Sensor #1: Voltage Below Normal
4201	8	Engine Speed Sensor #1: Abnormal Frequency, Pulse \Nidth, or Period
4201	10	Engine Speed Sensor #1: Abnormal Rate of Change
4765	1	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Low-most severe (3)
4765	3	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Voltage Above Normal
4765	4	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Voltage Below Normal
4765	15	Aftertreatmert #1Diesel Oxidation Catalyst Intake Gas Temperature: High-least severe (1)
4765	16	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: High-moderate severity (2)
5487	3	Aftertreatmert 1 Burner Unit Combustion Chamber Temperature: Voltage Above Normal
5487	4	Aftertreatmert 1 Burner Unit Combustion Chamber Temperature: Voltage Below Normal
6581	6	Aftertreatmert 1 Hydrocarbon Doser 2: Current Above Normal

Fault Codes

How to Retrieve Ford Engine Fault Codes

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor and will turn on the Check Engine Light.

Note: Perform this procedure with the key switch in the off position.

- Open the ground controls side cover and locate the run/test toggle switch on the side of the ground control box.
- Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 3 Move and hold the run/test toggle switch to the test position.
- Result: The check engine light should turn on.
 The check engine light should begin to blink.
- 4 Continue to hold the run/test toggle switch in the test position and count the blinks.

Note: Before the fault codes are displayed, the check engine light will blink a code 1-6-5-4 three times. After the fault codes, the check engine light will blink a code 1-6-5-4 three times again indicating the end of the stored codes.

Note: If any fault codes are present, the ECM will blink a three digit code three times for each code stored in memory. It will blink the first digit of a three digit code, pause, blink the second digit, pause, and then blink the third digit. For example: the check engine light blinks 5 consecutive times, blinks 3 times and then 1 time. That would indicate code 531.

Note: Once a fault code has been retrieved and the repair has been completed, the ECM memory must be reset to clear the fault code from the ECM. Refer to Fault Codes Procedure, *How to Clear Engine Fault Codes from the ECM*.

How to Clear Engine Fault Codes from the ECM

Note: Perform this procedure with the engine off and the key switch in the off position.

- Open the engine side turntable cover and locate the battery.
- 2 Disconnect the negative battery cable from the battery for a minimum of 5 minutes.

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

3 Connect the negative battery cable to the battery.

Fault Codes

162067GT

Code	Description
16	Never crank synced at start
91	FP low voltage
92	FP high voltage
107	MAP Low Voltage
108	MAP High Pressure
111	IAT higher than expected 1
112	IAT low voltage
113	IAT high voltage
116	ECT higher than expected 1
117	ECT/CHT Low Voltage
118	ECT/CHT High Voltage
121	TPS1 lower than TPS2
122	TPS1 low voltage
123	TPS1 high voltage
127	IAT higher than expected 2
129	BP low pressure
134	EGO open/lazy pre-cat 1
140	EGO open/lazy post-cat 1
154	EGO open/lazy pre-cat 2/post-cat 1
160	EGO open/lazy post-cat 2
171	AL high gasoline bank1
172	AL low gasoline bank1
174	AL high gasoline bank2
175	AL low gasoline bank2
182	FT Gasoline Low Voltage
183	FT Gasoline High Voltage
187	FT Gaseaous fuel low voltage
188	FT Gaseaous fuel high voltage
217	ECT higher than expected 2
219	Max govern speed override
221	TPS1 higher than TPS2
222	TPS2 low voltage
223	TPS2 high voltage
236	TIP Active

Code	Description
237	TIP Low Voltage
238	TIP High Voltage
261	Injector Loop Open or Low-side short to Ground
262	Injector Coil Shorted
264	Injector Loop Open or Low-side short to Ground
265	Injector Coil Shorted
267	Injector Loop Open or Low-side short to Ground
268	Injector Coil Shorted
270	Injector Loop Open or Low-side short to Ground
271	Injector Coil Shorted
273	Injector Loop Open or Low-side short to Ground
274	Injector Coil Shorted
276	Injector Loop Open or Low-side short to Ground
277	Injector Coil Shorted
279	Injector Loop Open or Low-side short to Ground
280	Injector Coil Shorted
282	Injector Loop Open or Low- side short to Ground
283	Injector Coil Shorted
285	Injector Loop Open or Low-side short to Ground
286	Injector Coil Shorted
288	Injector Loop Open or Low-side short to Ground
289	Injector Coil Shorted

Genie part number

162067GT

Fault Codes

Code	Description
301	Emissions/catalyst damaging misfire
302	Emissions/catalyst damaging misfire
303	Emissions/catalyst damaging misfire
304	Emissions/catalyst damaging misfire
305	Emissions/catalyst damaging misfire
306	Emissions/catalyst damaging misfire
307	Emissions/catalyst damaging misfire
308	Emissions/catalyst damaging misfire
326	Knock 1 Excessive Signal
327	Knock 1 sensor Open
331	Knock 2 Excessive Signal
332	Knock 2 sensor Open
336	Crank sync noise
337	Crank loss
341	Cam sync noise
342	Cam loss
420	Gasoline cat monitor
430	Gasoline cat monitor
524	Oil pressure low
562	Battery Voltage Low
563	Battery Voltage High
601	Flash checksum invalid
604	RAM failure
606	COP failure
615	Start relay coil open
616	Start relay control ground short
617	Start relay coil short to power
627	Fpump relay coil open
628	FPump motor loop open or high-side shorted to ground
628	Fpump relay control ground short
629	FPump motor high-side shorted to power
629	Fpump relay coil short to power

Code	Description
642	5VE1 low voltage
643	5VE1 high voltage
650	MIL open
652	5VE2 low voltage
653	5VE2 high voltage
685	Relay Coil Open
686	Relay Control ground short
687	Relay coil short to power
1111	Fuel rev limit
1112	Spark rev limit
1121	FPP1/2 simultaneous voltages out of range
1122	FPP1/2 do not match each other or the IVS
1151	CL high LPG
1152	CL low LPG
1153	CL high NG
1154	CL low NG
1155	CL high gasoline bank1
1156	CL low gasoline bank1
1157	CL high gasoline bank2
1158	CL low gasoline bank2
1161	AL high LPG
1162	AL low LPG
1163	AL high NG
1164	AL low NG
1165	LPG cat monitor
1166	NG cat monitor
1171	Megajector delivery pressure higher than expected
1172	Megajector delivery pressure lower than expected
Ford MS	G-425 EFI Diagnostic Manual

Genie part number

Fault Codes

Code	Description	
1173	Megajector comm lost	
1174	Megajector voltage supply high	
1175	Megajector voltage supply low	
1176	Megajector internal actuator fault detection	
1177	Megajector internal circuitry fault detection	
1178	Megajector internal comm fault detection	
1311	Misfire detected	
1312	Misfire detected	
1313	Misfire detected	
1314	Misfire detected	
1315	Misfire detected	
1316	Misfire detected	
1317	Misfire detected	
1318	Misfire detected	
1511	AUX analog PU1 high	
1512	AUX analog PU1 low	
1513	AUX analog PU2 high	
1514	AUX analog PU2 low	
1515	AUX analog PD1 high	
1516	AUX analog PD1 low	
1517	AUX analog PU3 high	
1518	AUX analog PU3 low	
1521	CHT higher than expected 1	
1522	CHT higher than expected 2	
1531	IVS/Brake/Trans-Park interlock failure	
1541	AUX analog PUD1 high	
1542	AUX analog PUD1 low	
1543	AUX analog PUD2 high	
1544	AUX analog PUD2 low	
1545	AUX analog PUD3 high	

0-1-	Description		
Code	Description		
1551	AUX DIG1 high		
1552	AUX DIG1 low		
1553	AUX DIG2 high		
1554	AUX DIG2 low		
1555	AUX DIG3 high		
1556	AUX DIG3 low		
1561	AUX analog PD2 high		
1562	AUX analog PD2 low		
1563	AUX analog PD3 high		
1564	AUX analog PD3 low		
1611	5VE 1/2 simultaneous out of range		
1612	RTI 1 loss		
1613	RTI 2 loss		
1614	RTI 3 loss		
1615	A/D loss		
1616	Invalid interrupt		
1621	Rx Inactive		
1622	Rx Noise		
1623	Invalid Packet Format		
1624	Shutdown Request		
1625	Shutdown Request		
1626	CAN Tx failure		
1627	CAN Rx failure		
1628	CAN addresss conflict failure		
Ford MSG-425 EFI Diagnostic Manual			

Genie part number 162067GT

Fault Codes

Code	Description	
1629	J1939 TSC1 message receipt lost	
1630	J1939 ETC message receipt lost	
1631	PWM1-Gauge1 open / ground short	
1632	PWM1-Gauge1 short to power	
1633	PWM2-Gauge2 open /ground short	
1634	PWM2-Gauge2 short to power	
1635	PWM3-Gauge3 open / ground short	
1636	PWM3-Gauge3 short to power	
1641	Buzzer control ground short	
1642	Buzzer open	
1643	Buzzer control short to power	
1644	MIL control ground short	
1645	MIL control short to power	
2111	Unable to reach lower TPS	
2112	Unable to reach higher TPS	
2115	FPP1 higher than IVS limit	
2116	FPP2 higher than IVS limit	
2120	FPP1 invalid voltage and FPP2 disagrees with IVS	
2121	FPP1 lower than FPP2	
2122	FPP1 high voltage	
2123	FPP1 low voltage	
2125	FPP2 invalid voltage and FPP1 disagrees with IVS	
2126	FPP1 higher than FPP2	
2127	FPP2 low voltage	
2128	FPP2 high voltage	

Code	Description	
2130	IVS stuck at-idle, FPP1/2 match	
2131	IVS stuck off-idle, FPP1/2 match	
2135	TPS1/2 simultaneous voltages out of range	
2139	FPP1 lower than IVS limit	
2140	FPP2 lower than IVS limit	
2229	BP high pressure	
2300	Primary Loop Open or Low-side Short to Ground	
2301	Primary Coil Shorted	
2303	Primary Loop Open or Low-side Short to Ground	
2304	Primary Coil Shorted	
2306	Primary Loop Open or Low-side Short to Ground	
2307	Primary Coil Shorted	
2309	Primary Loop Open or Low-side Short to Ground	
2310	Primary Coil Shorted	
2312	Primary Loop Open or Low-side Short to Ground	
2313	Primary Coil Shorted	
2315	Primary Loop Open or Low-side Short to Ground	
2316	Primary Coil Shorted	
2318	Primary Loop Open or Low-side Short to Ground	
2319	Primary Coil Shorted	
2321	Primary Loop Open or Low-side Short to Ground	
2322	Primary Coil Shorted	
2618	Tach output ground short	
2619	Tach output short to power	

Ford MSG-425 EFI Diagnostic Manual Genie part number 162067GT

Schematics

Observe and Obey:

- ▼ Troubleshooting and repair procedures shall be completed by a person trained and qualified on the repair of this machine
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.

Before Troubleshooting:

- Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine.
- Be sure that all necessary tools and test equipment are available and ready for use.

About This Section

There are two groups of schematics in this section.

Electrical Schematics

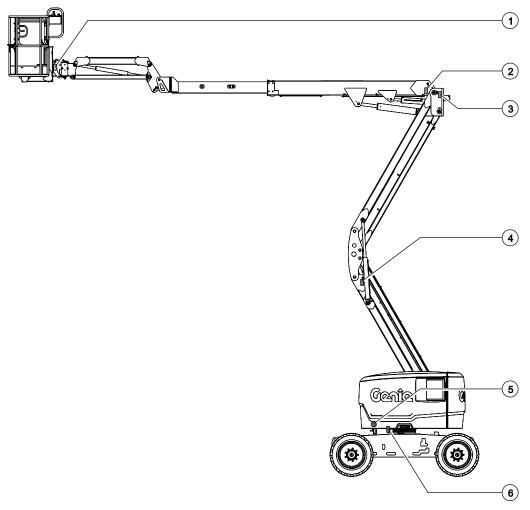
AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Hydraulic Schematics

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.


Electrical Symbol Legend

		Н	(FB)	G
Battery	Coil, solenoid or relay	Horn or alarm	Flashing beacon	Gauge
 	HM)	L3	F1	FS1_BK
Diode	Hour meter	LED	Fuse with amperage	Foot switch
	N.O.H.C. N.C.H.O.	PRI PRI		√√ O OTOH √√ W NITINA
T-circuits connect	Limit Switch	Power relay	Coil with suppression	Fuel or RPM solenoid
-	■ TB21		BK WH	CB1 → ↑ 15A
Connection - no terminal	T-circuits connect at terminal	Circuits crossing no connection	Quick disconnect terminal	Circuit breaker with amperage
PLATFORM 1GROUND	TOOWN LEVEL	& LENGINE START	M2	
Key switch	Toggle Switch DPDT	Toggle Switch SPDT	Pump or Motor	Tilt sensor
어 *P3	P1	510Ω	O O O	
Horn button - normally open	Emergency Stop button - normally closed	Resistor with ohm value	Battery separator	Gauge sending unit
Sw3 N.O.	SW1 N.O.	SW2 N.C.	CR4/	00000
Oil temperature switch normally open	Coolant temperature switch - normally open	Oil pressure switch normally closed	Control relay contact normally open	Diode starting aid, glow plug or flame ignitor

Hydraulic Symbols Legend

	T .		
0.037 Inon 0.94 mm	→	\boxtimes	
Orifice with size	Check valve	Shut off valve	Brake
Pump, fixed displacement	Pump, bi-directional variable displacement	Motor, bi-directional	Motor, 2 speed bi- directional
	E	→	
Cylinder, double acting	Pump, prime mover (engine or motor)	Shuttle valve. 2 position, 3 way	Differential sensing valve
	200 psi 13.8 bar		W
Filter with bypass relief valve	Relief valve with pressure setting	Priority flow regulator valve	Solenoid operated proportional valve
M	50% 50%		
Directional valve (mechanically activated)	Flow divider/combiner valve	Pilot operated 3 position, 3 way shuttle valve	Solenoid operated 2 position, 3 way directional valve
3000 psi 206.8 bar 3:1			N W
Counterbalance valve with pressure and pilot ratio	Solenoid operated 3 position 4 way directional valve	Solenoid operated 3 position, 4 way proportional directional valve	Solenoid valve, 2 position 2 way

Limit Switch Location Legend

1 S24 5 S8 2 LS1, LS5 6 LS3

3 LS2

4 LS4

Limit Switches and Sensors

S24	Platform overload sensor
LS1	Limit switch boom fully retracted operational, 40pin connector
LS5	Limit switch boom fully retracted safety, 2 pin connector
LS2	Limit switch primary boom angle
LS4	Limit switch secondary boom angle
S8	Turntable tilt sensor
LS3	Limit switch turntable

Electrical Component and Wire Color Legends

Item	Description	
В	Battery	
B1	Engine Start - 12V DC	
С	Connector	
C7	Power to platform, 12v cable connector	
C9	Foot switch input connector	
C54	Options connector	
СВ	Circuit Breaker	
CB1	Circuit breaker, engine, 15a	
CB2	Circuit breaker, controls, 15a	
CB7	Circuit breaker, controls, 10a Engine throttle solenoid	
CR	Control Relay	
CR1	Start relay	
CR2	Ignition power relay	
CR4	High idle relay	
CR5	Horn relay	
CR13	Jib relay (jib option)	
CR14	Jib relay (jib option)	
CR17	Hydraulic oil cooling fan (option)	
CR23	Drive light enable	
CR27	Brake circuit relay (lift/drive option)	
CR30	Limit switch relay (lift/drive option)	
CR76	Load sense aux recovery (AS models)	
CR51	Aircraft package (option)	
G	Gauge	
G1	Battery Charge Indicator	
G2	Engine oil pressure	
G3	Engine coolant temp.	
G4	Engine oil temp.	
G6	Hour meter	

Item	Description
Н	Horn or Alarm
H1	Tilt/load sense alarm
H4	Descent (ground)
H6	Load sense (ground)
JC	Joystick
JC1	Boom proportional joystick: secondary boom up/down
JC2	Boom proportional joystick: primary up/down, turntable rotate
JC3	Drive proportional joystick
KS	Key switch
KS1	Key switch
L	LED or Light
L1	Drive enable led
L2	Check engine led
L4	Platform overload led (ce only)
L29	Drive lights
L48	Tilt alarm led (ansi/csa only)
LS	Limit Switch
LS1	Primary boom retracted operational
LS5	Primary boom retracted safety
LS2	Primary boom up
LS3	Drive enable
LS4	Secondary boom up

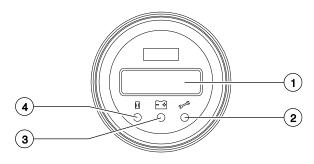
Electrical Component and Wire Color Legends

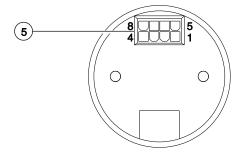
Item	Description
М	Motor
M2	Auxiliary pump
M3	Engine starter
M4	Fuel pump
P	Button
P1	Red emergency stop button
P2	Emergency stop button
P3	Horn Button
P4	Function enable button
PR	Power Relay
PR1	Auxiliary pump (m2)
PR2	Engine starter (m3)
PR3	Starting aid / glow plugs
PR4	Function pump (m5)
R	Resistor
R4	Speed limiting variable resistor 20 ohms
R14	Up/down speed resister 7.5 ohms
SW	Switch
SW2	Engine oil pressure
SW3	Engine oil temperature

Item	Description
TS	Toggle Switch
TS1	Auxiliary pump switch
TS2	Start engine switch
TS3	Fuel select switch (ford efi only)
TS4	Hi/low rpm switch
TS6	Glow plug switch
TS7	Platform rotate switch
TS8	Jib rotate switch (jib option)
TS9	Platform level switch
TS13	Primary boom extend/retract switch
TS14	Drive speed switch
TS15	Drive enable switch
TS43	Heater switch (option)
TS46	Proximity kill switch (option)
TS47	Generator switch (option)
TS51	Auxiliary pump toggle switch
TS52	Engine start toggle switch
TS53	Fuel select toggle switch
TS54	Rpm select toggle switch
TS56	Glow plug toggle switch
TS57	Platform rotate toggle switch
TS58	Jib boom up/down toggle switch (option)
TS59	Platform level up/down toggle switch
TS60	Secondary boom up/down toggle switch
TS61	Primary boom up/down toggle switch
TS62	Turntable rotate toggle switch
TS63	Primary boom extend/retract toggle switch
TS64	Run/test toggle switch (Ford)
TS74	Run/test toggle switch (Deutz)

Electrical Component and Wire Color Legends

Item	Description
U	Module
U1	Ignition start module
U4	EDC - drive pump
U13	Alc 500 joystick controller card
U18	Control module
U33	Load sense module
U34	Time delay relay - 2 seconds, 10A
U35	Time delay relay
U38	Time delay relay
U39	J1939 Ground Control Box Display
X	ALC500 connectors
X101	ALC500 power connector
X101	ALC500 input/out connectors
X102	ALC500 input/out connectors
X103	ALC500 input/out connectors
X104	ALC500 input/out connectors
X105	ALC500 input/out connectors
X106	ALC500 input/out connectors
X107	ALC500 input/out connectors
X108	ALC500 input/out connectors
X109	ALC500 input/out connectors
X1-4	Circuit splice

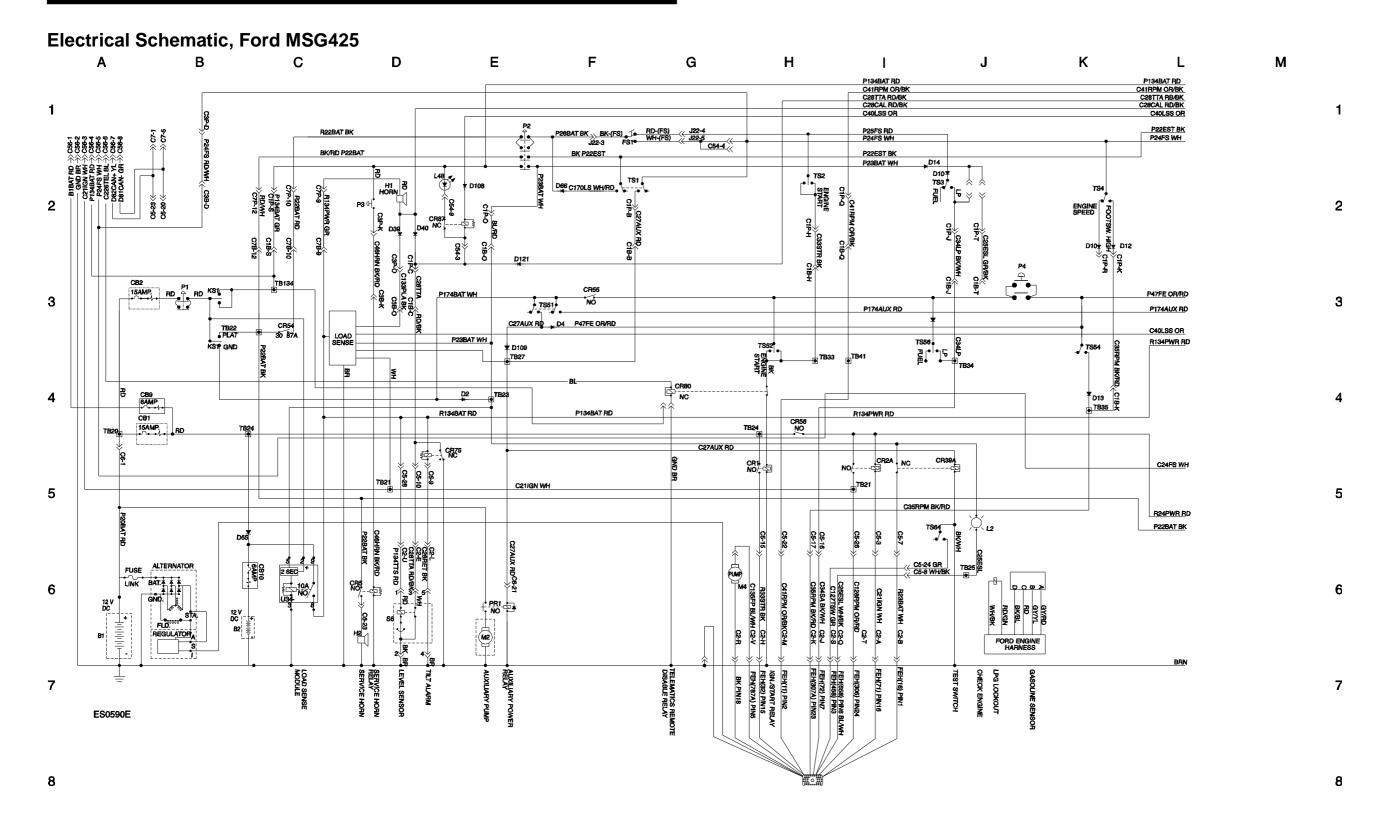

Wire Color Legend	
Item	Description
BL	Blue
BK	Black
BR	Brown
GN	Green
OR	Orange
PP	Purple
RD	Red
WH	White
YL	Yellow
BL/RD	Blue/Red
BL/WH	Blue/White
BK/RD	Black/Red
OR/WH	Orange/White
RD/BK	Red/Black
RD/WH	Red/White
WH/BL	White/Blue
WH/BK	White/Black
WH/RD	White/Red
WH/YL	White/Yellow
YL/BK	Yellow/Black


Hour Meter Legend

The hour meter (HCON) displays the SCON software version upon startup for 5 seconds.

Under normal operation the display will sequence between engine hours and battery voltage every 5 seconds.

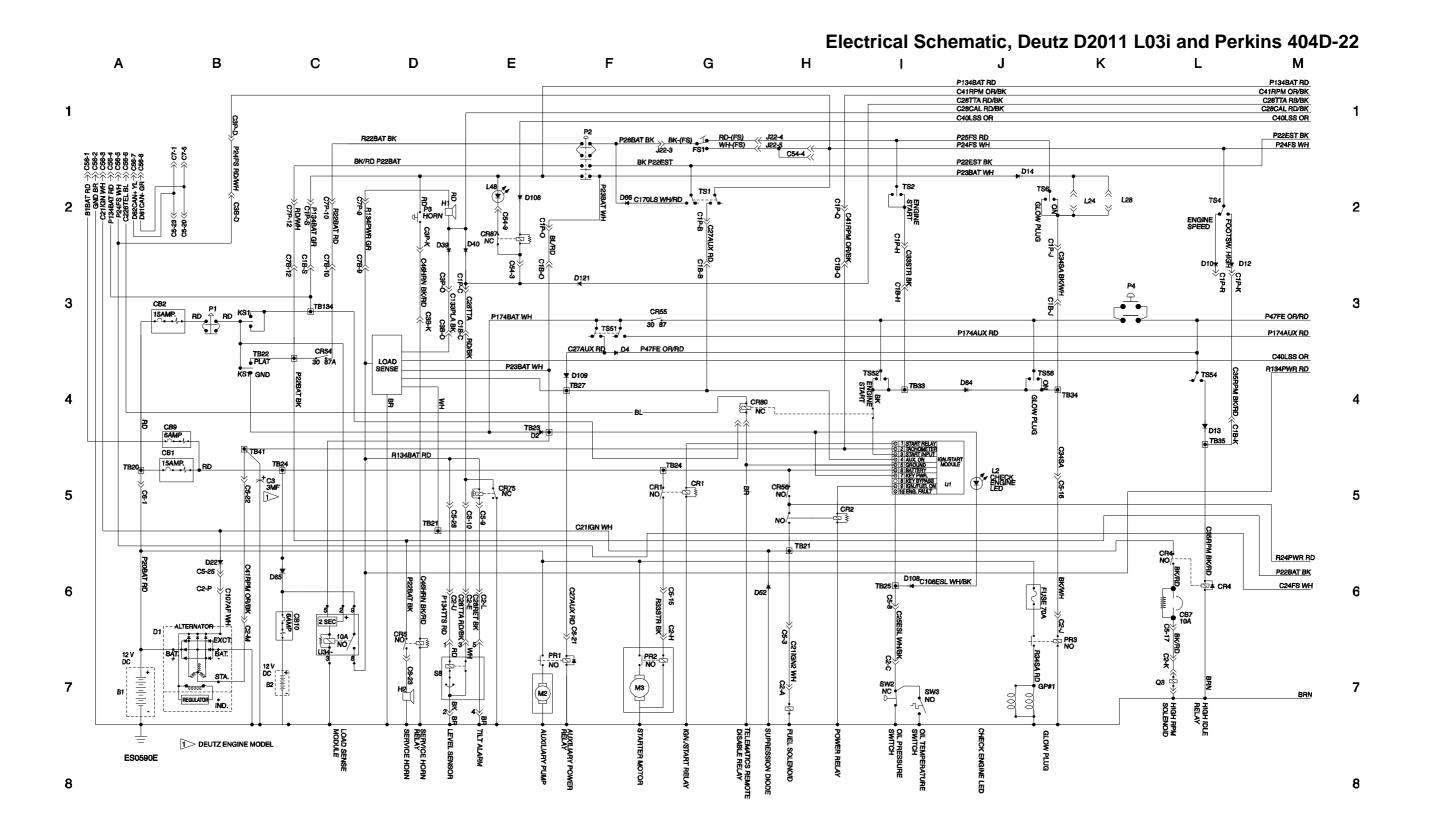
Active platform overload fault codes are also displayed.


- 1 LCD display
- 2 red LED fault indicator
- 3 yellow LED battery indicator
- 4 green LED engine hours indicator
- 5 8 pin connector

	8 Pin Connector	
Pin number	Circuit	Wire color
1	CAN High	Yellow
2	CAN Low	Green
3	12V (B+) Heater	Red
4	Not Used	
5	12V (B+)	Red
6	Not Used	
7	Not Used	
8	Ground (B-)	Brown

November 2020 Service and Repair Manual

Electrical Schematic, Ford MSG425



Z®-45 XC[™] • Z®-45 HF Part No. 1268197GT

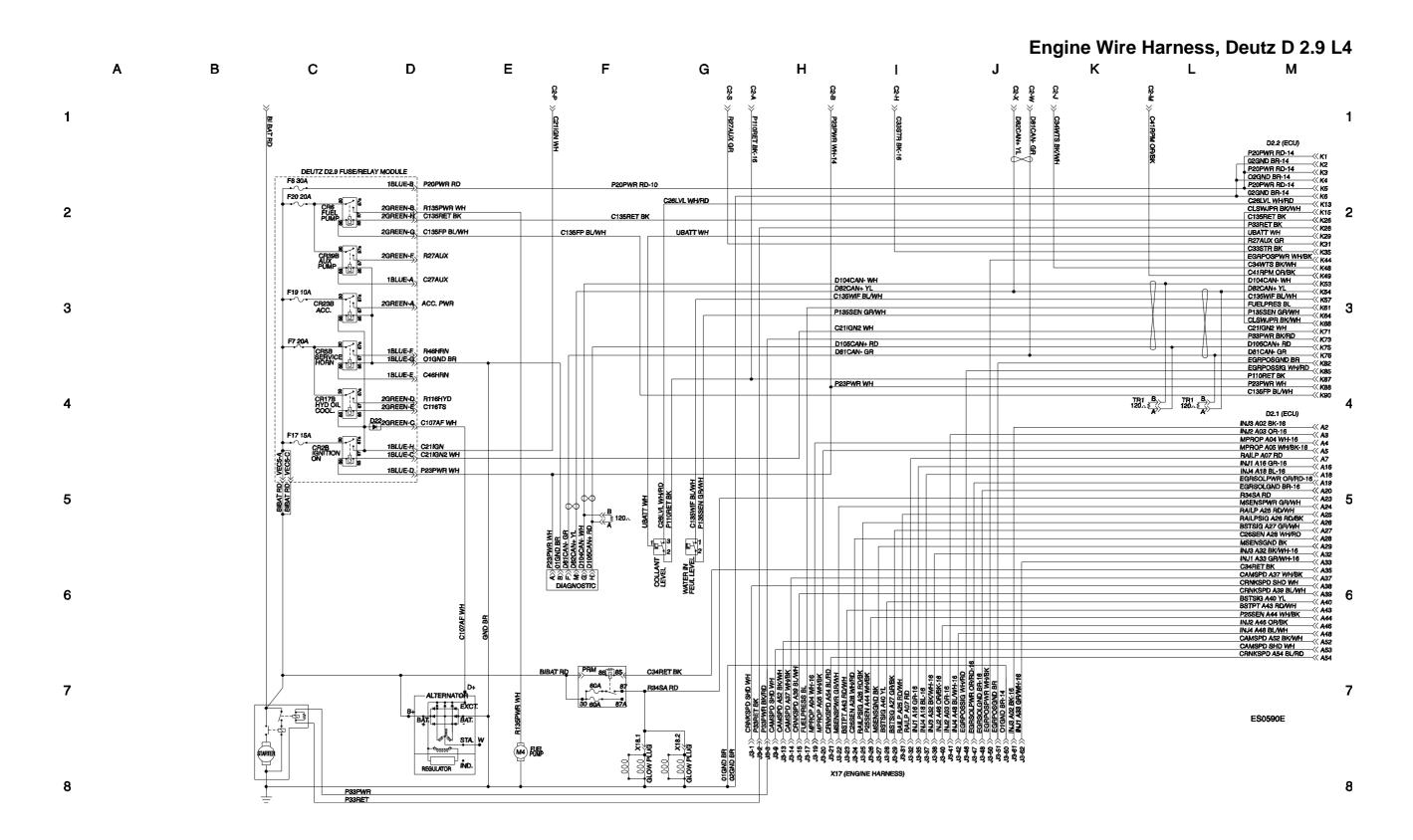
Genîe.

132

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 133

Service and Repair Manual

Electrical Schematic, Deutz D2011 L03i and Perkins 404D-22

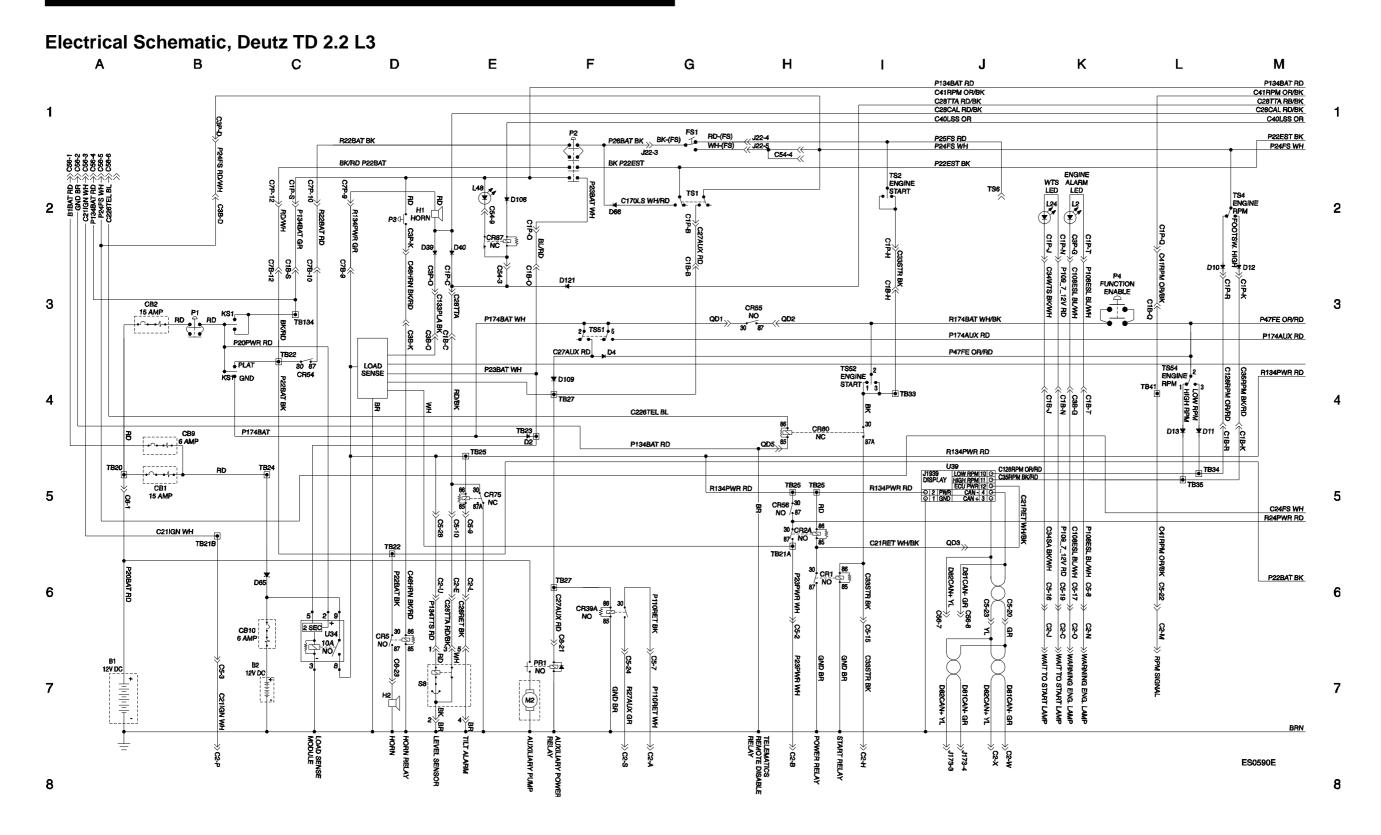

Electrical Schematic, Deutz D 2.9 L4

Electrical Schematic, Deutz D 2.9 L4 В Ε D Κ G Н М P134BAT RD C41RPM OR/BK C28TTA RB/BK C28CAL RD/BK P134BAT RD C41RPM OR/BK C28TTA RD/BK C28CAL RD/BK 1 P22EST BK P24FS WH R22BAT BK BK/RD P22BAT P22EST BK P23BAT WH D14 등 문 꽃 등 꽃 목 D66 C170LS WH/RD 2 D121 3 3 R174BAT WH/BK P47FE OR/RD P174AUX RD P174AUX RD C27AUX RD D4 P47FE OR/RD PLAT LOAD P23BAT WH KST GND D109 TB27 4 C226TEL BL P174BAT D11 1 5 5 C24FS WH CR2A NO TB21A CR1 R134PWR RD 6 6 NO --7 7 TELEMATICS REMOTE DISABLE RELAY ES0590E 8 8

Genie.

136

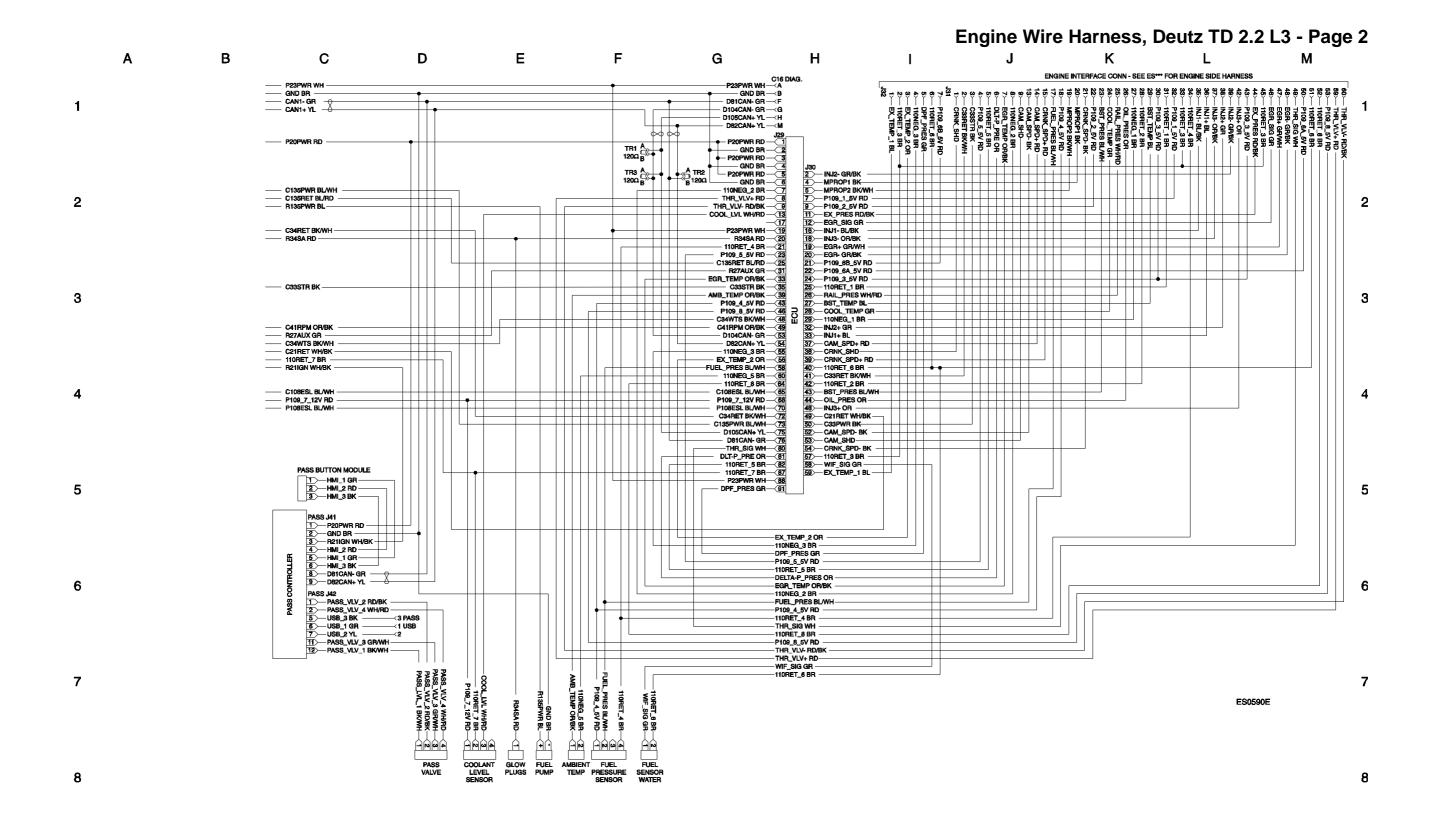
Part No. 1268197GT Z®-45 XC™ • Z®-45 HF 137


Service and Repair Manual

Engine Wire Harness, Deutz D 2.9 L4

Electrical Schematic, Deutz TD 2.2 L3

November 2020


Service and Repair Manual

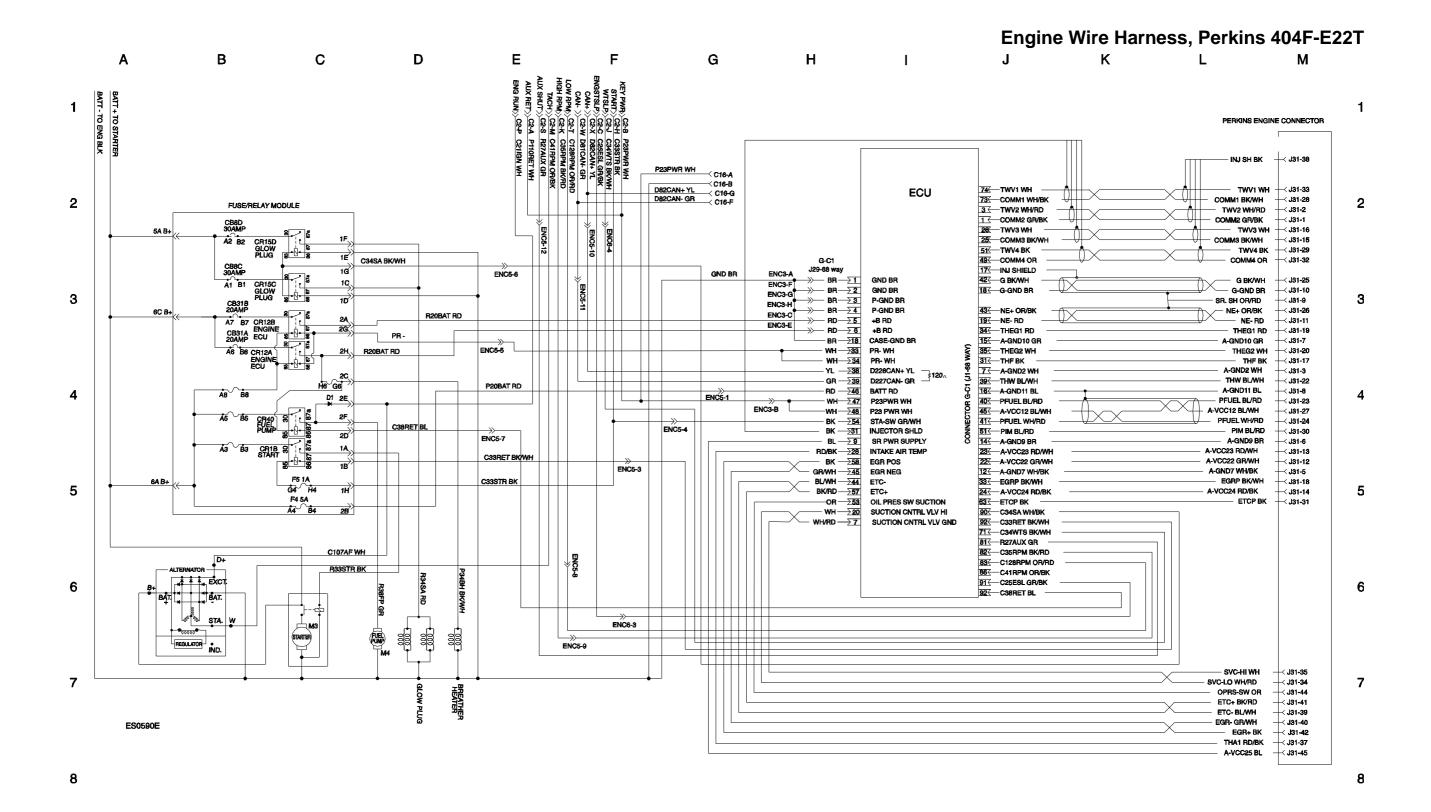
Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 141

Service and Repair Manual November 2020

Engine Wire Harness, Deutz TD 2.2 L3 - Page 1

Service and Repair Manual November 2020

Engine Wire Harness, Deutz TD 2.2 L3 - Page 2



Electrical Schematic, Perkins 404F-E22T

Electrical Schematic, Perkins 404F-E22T В Ε С Κ D G Н М P134BAT RD C41RPM OR/BK C28TTA RB/BK C28CAL RD/BK P134BAT RD C41RPM OR/BK C28TTA RD/BK C28CAL RD/BK 1 P22EST BK P24FS WH R22BAT BK 0.586.4 0.586.4 0.586.4 0.586.4 0.586.4 0.586.4 BK/RD P22BAT P22EST BK P23BAT WH D14 **5** — B1BAT RD — GND BR — GND BR — P24FS WH — P24FS WH — C226TEL BL D66 C170LS WH/RD \----2 3 3 P47FE OR/RD P174AUX RD P174AUX RD C27AUX RD D4 P47FE OR/RD **♦ PLAT** P23BAT WH KST GND D109 4 87 C226TEL B C18-R P174BAT P134BAT RD CR75 5 5 CR56 C24F8 WH -\$⊒}CR2A TB21A R24PWR RD R134PWR RD 6 6 6AMP 12 V DC | _____ R27AUX GR 7 7 TELEMATICS REMOTI ុំស្វី ES0590E 8 8

Genîe.

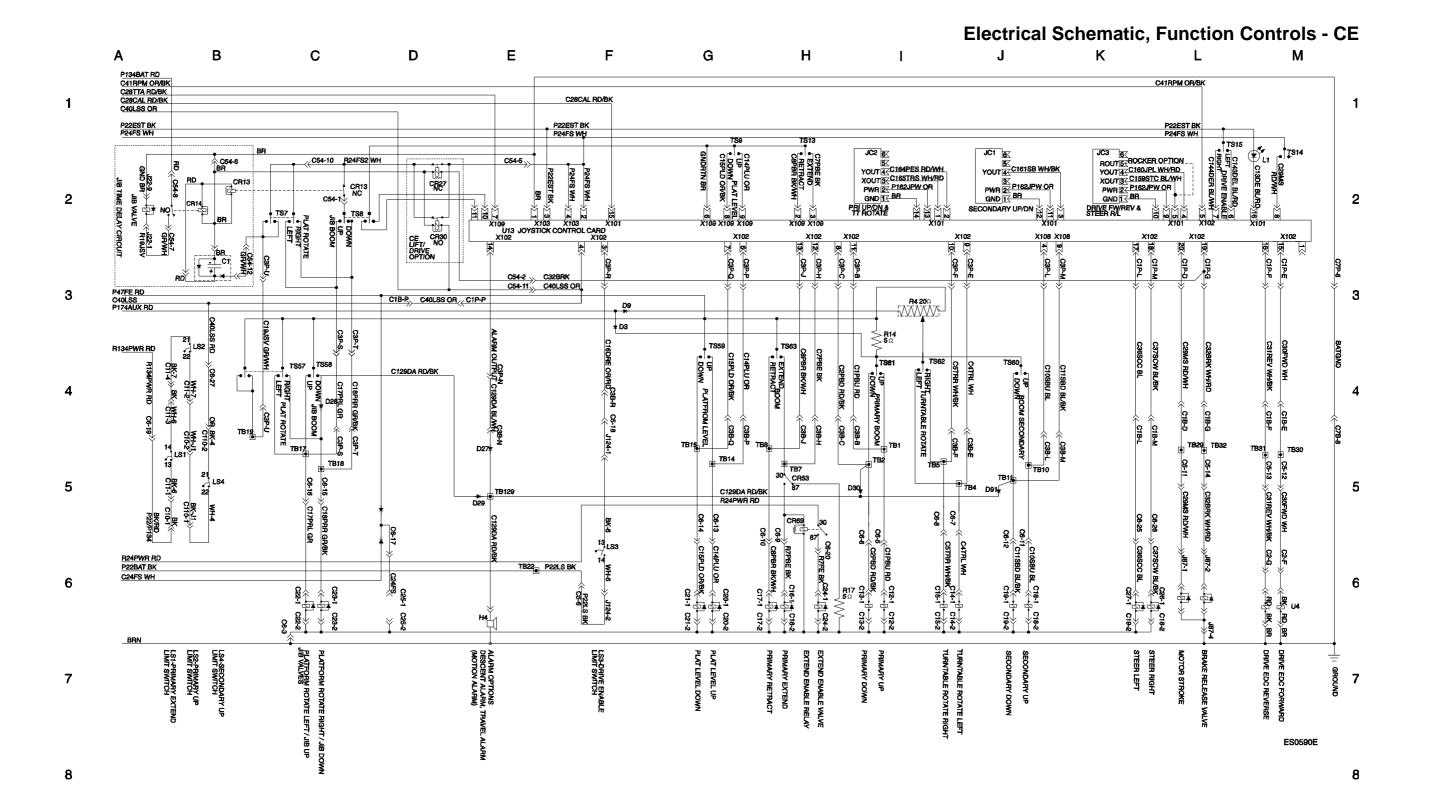
Part No. 1268197GT Z®-45 XC™ • Z®-45 HF 147

Service and Repair Manual

Engine Wire Harness, Perkins 404F-E22T

Electrical Schematic, Function Controls - ANSI / CSA

Electrical Schematic, Function Controls - ANSI / CSA В С D Ε G Н Κ L М P134BAT RD C41RPM OR/BK C28TTA RD/BK C28CAL RD/BK C40LSS OR P22EST BK P24FS WH P22EST BK P24FS WH P22EST BK P24FS WH JC2 65 SC 154PES RDWH YOUTGC165TRS WH/RD PWR 92: P162/PW OR GND 112 BR PRI UPDD 6 THOTATE X1 R24FS2 WH C54-10 YOUT 4 C161SB WH/BK PWR 2 P162JPW OR CR13 NC GND TE BR 2 GND 1€— SECONDARY UP/DN SECON 2 X109 X103 X103 X103 X103 X102 X102 X102 X108 X108 CIP-D CIPT C54-2 >> C32BRK C54-11 >> C40LSS OR 3 P47FE RD C40LSS P174AUX RD 3 C1B-P C40LSS OR C1P-P R4 20Ω √√√√√√√ 15Ω ∮ 5Ω ¥ D3 C129DA RD/BK • RIGHT PLAT ROTATE C11-2 CH43 TB14 TB18 5 5 TB4 D91 D30 C129DA RD/BK R24PWR RD D29 CHS. 13 LS3 06-20 R7FE BK C24-1 (4) C24 R24PWR RD P22BAT BK TB22 P22LS BK 6 BK C16-1-1 C16-2 6 TURNTABLE ROTATE LEFT TURNTABLE ROTATE RIGHT LS2-PRIMARY UP PRIMARY EXTEND PRIMARY RETRACT EXTEND ENABLE VALVE STEER RIGHT STEER LEFT LS1-PRIMARY EXT LS3-DRIVE ENABLE LIMIT SWITCH 7 7 ES0590F


Part No. 1268197GT

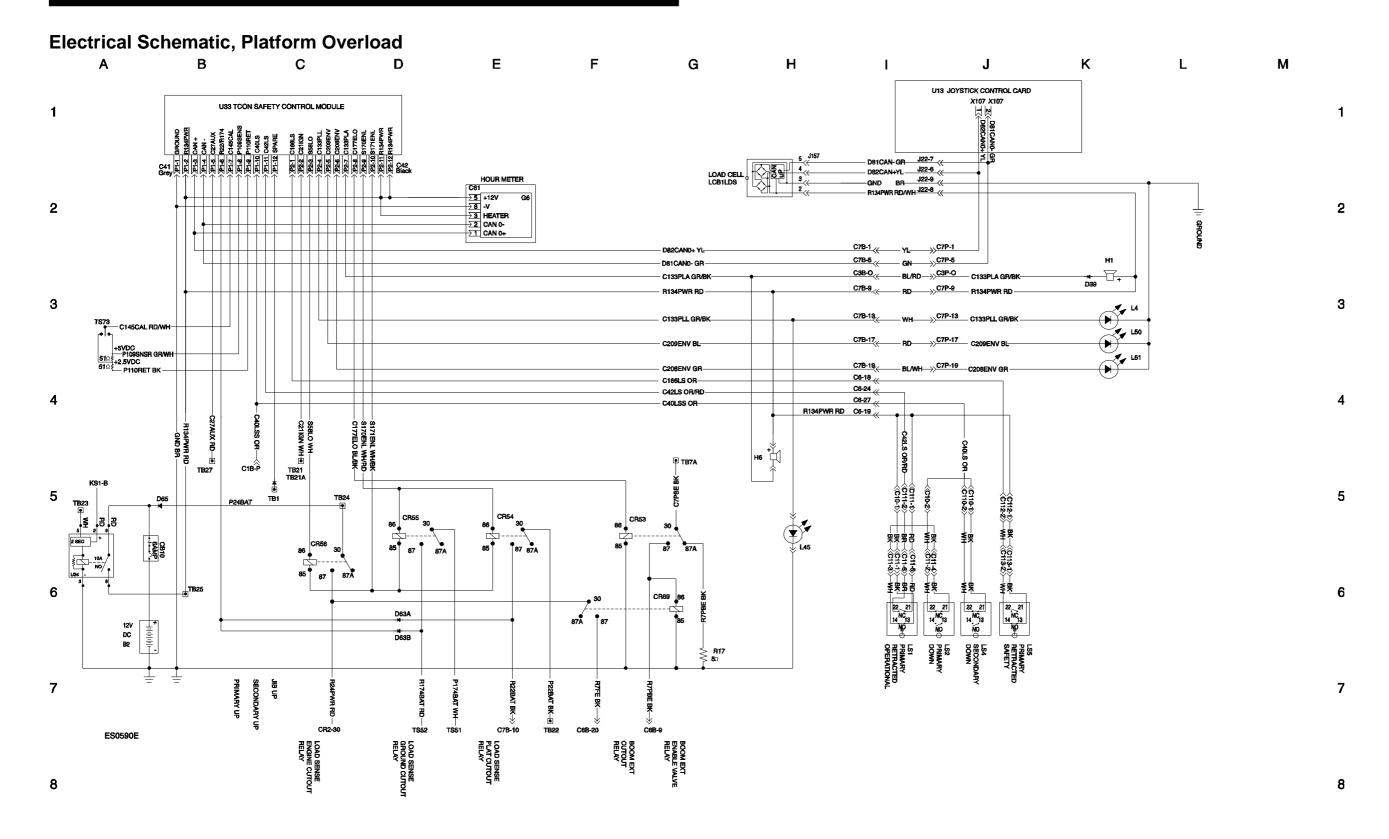
8

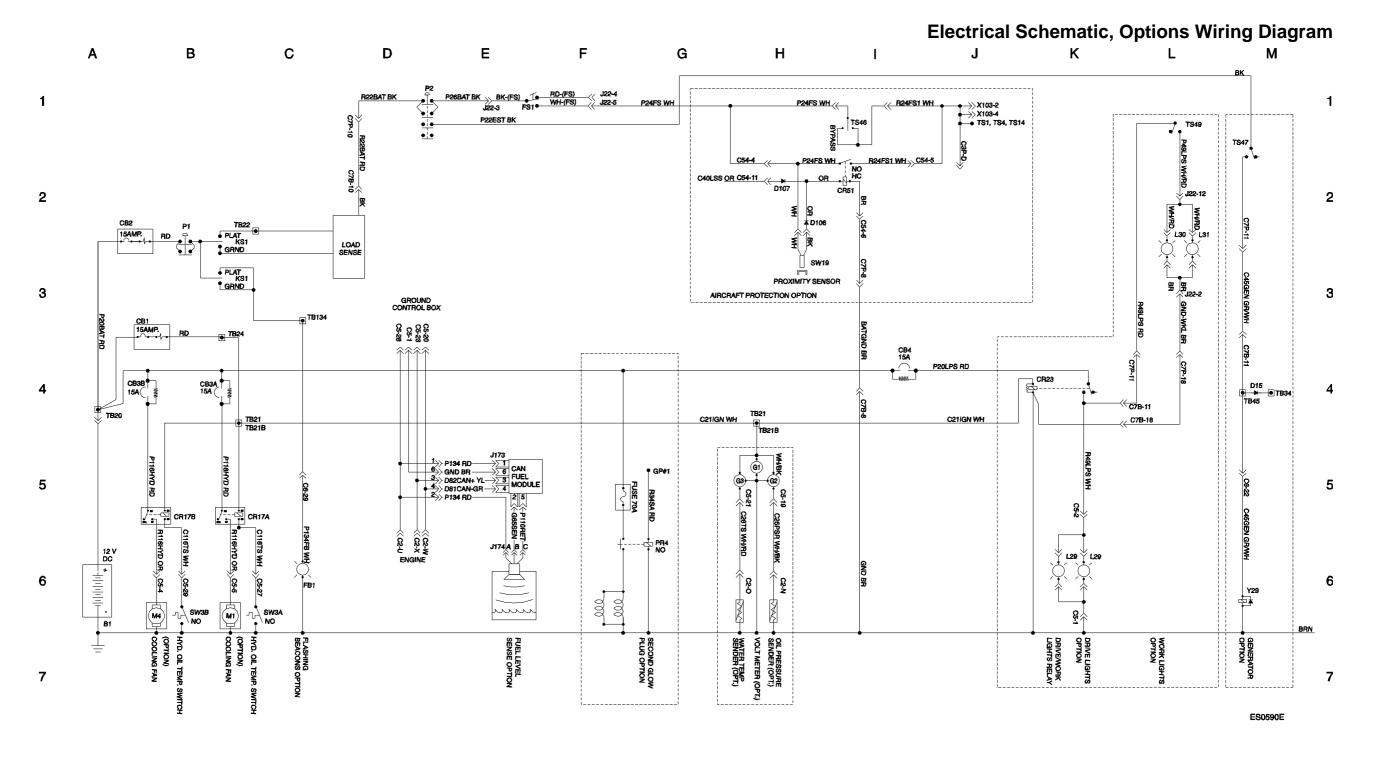
November 2020

_ Genie.

8

Part No. 1268197GT Z®-45 XC™ • Z®-45 HF 151


Service and Repair Manual November 2020


Electrical Schematic, Function Controls - CE

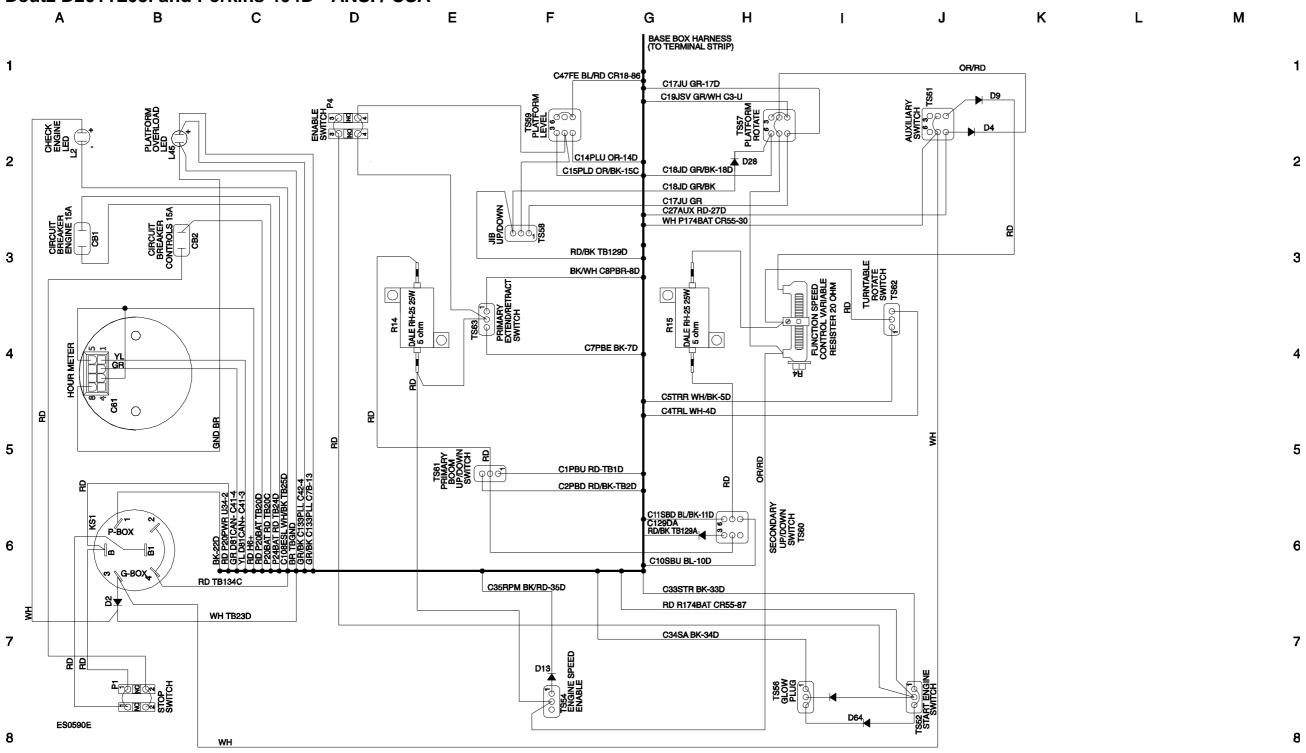
Electrical Schematic, Platform Overload

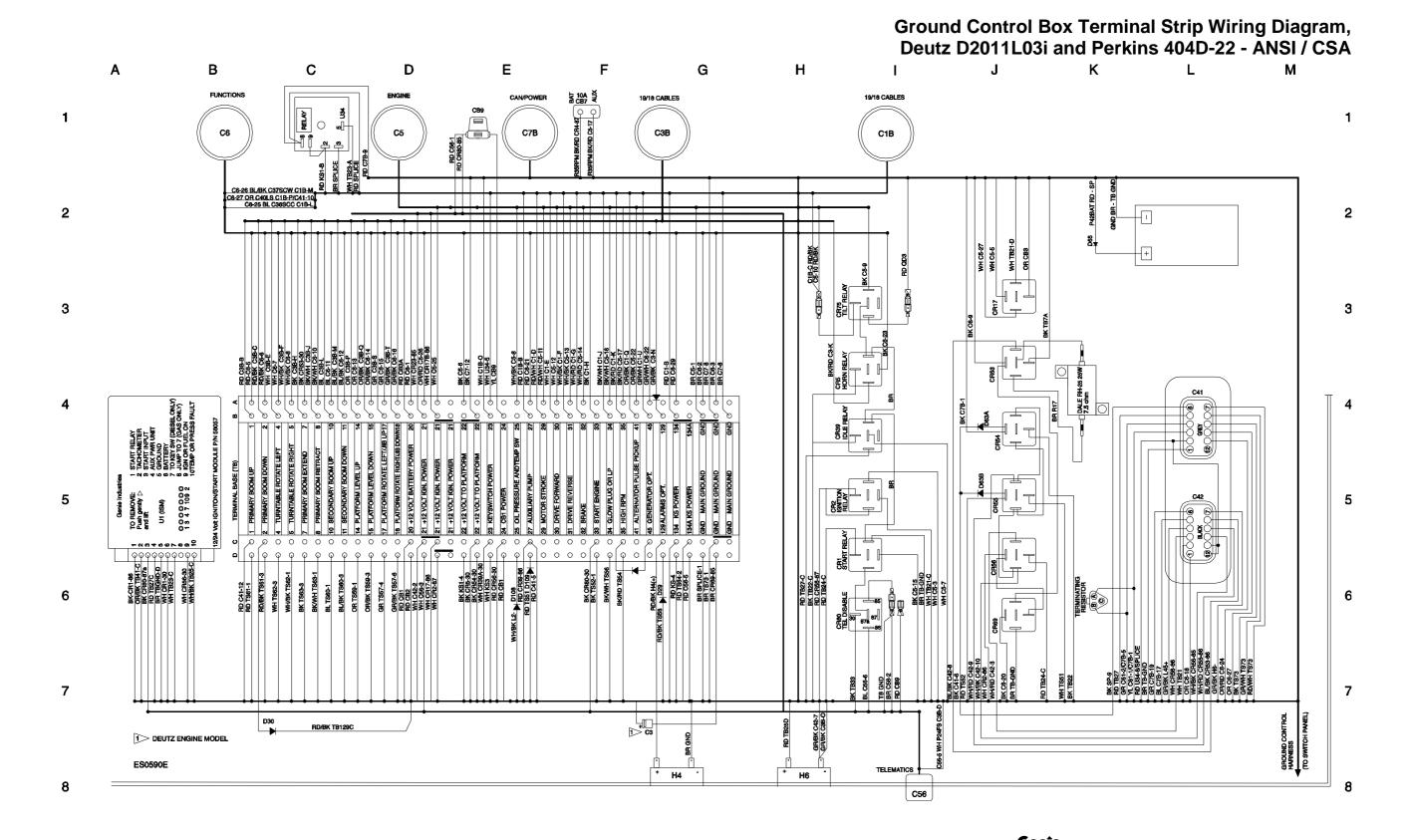
8

 Cenie

 Part No. 1268197GT
 Z®-45 XC™ • Z®-45 HF
 155

Service and Repair Manual

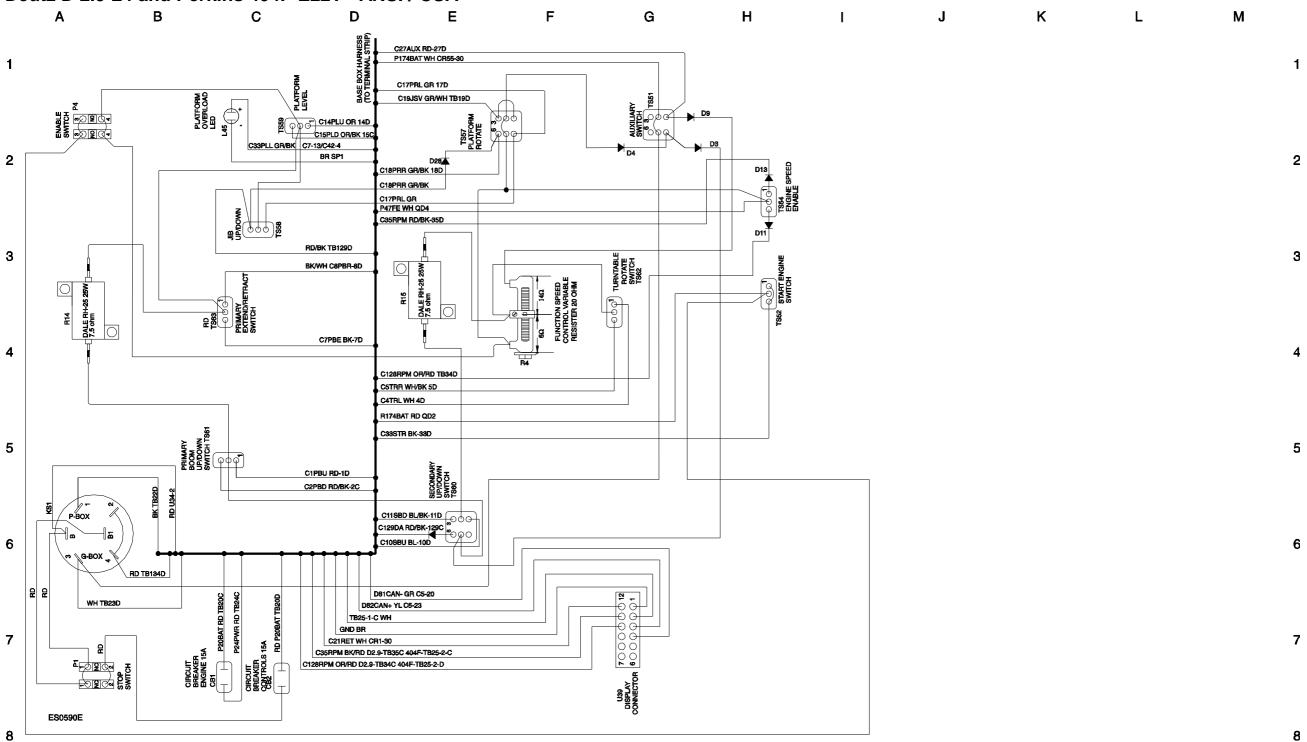

Electrical Schematic, Options Wiring Diagram



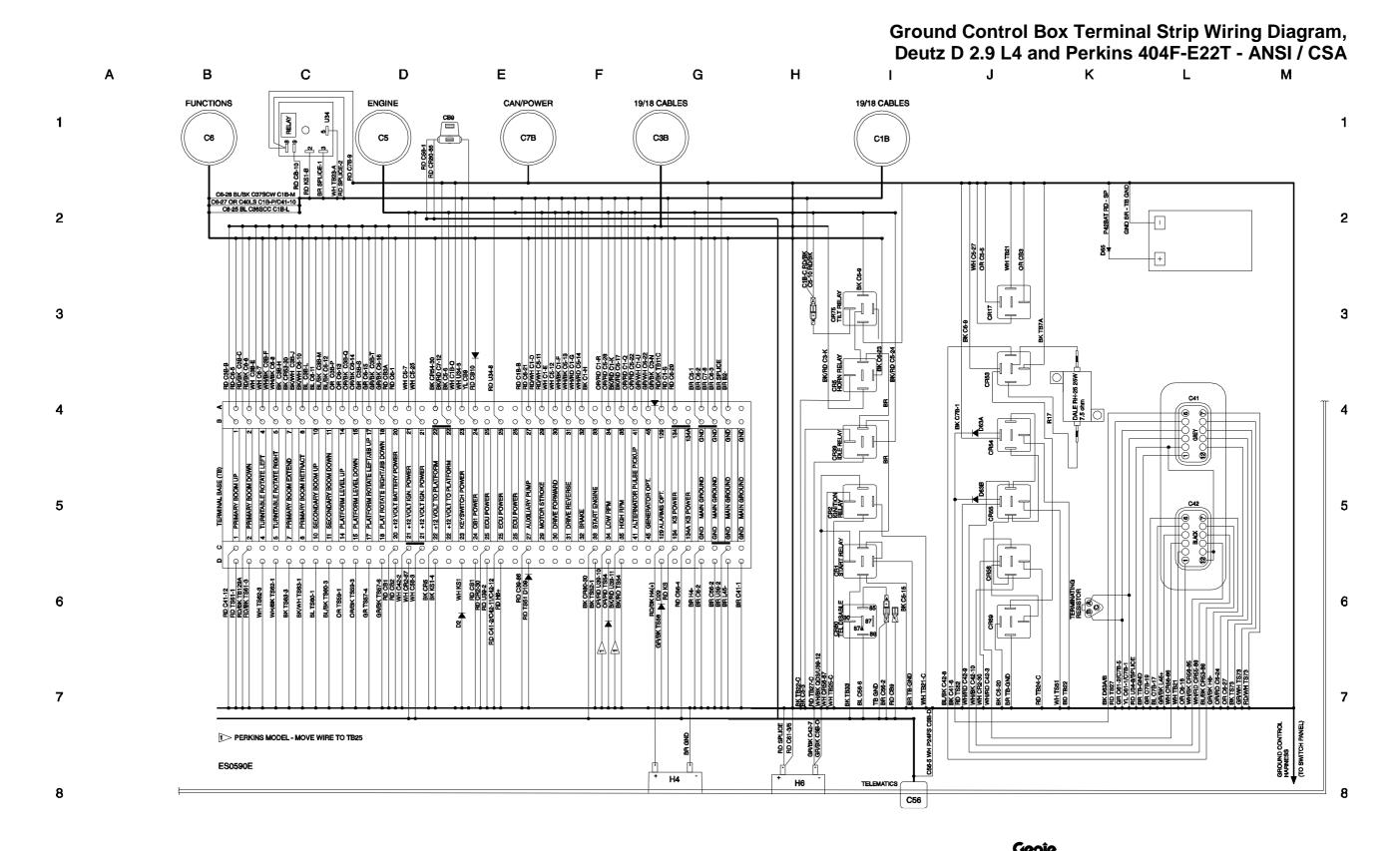
Ground Control Box Switch Panel Wiring Diagram, Deutz D2011L03i and Perkins 404D - ANSI / CSA

Ground Control Box Switch Panel Wiring Diagram, Deutz D2011L03i and Perkins 404D - ANSI / CSA

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 159


Ground Control Box Terminal Strip Wiring Diagram, Deutz D2011L03i and Perkins 404D-22 - ANSI / CSA

Ground Control Box Switch Panel Wiring Diagram, Deutz D 2.9 L4 and Perkins 404F-E22T - ANSI / CSA

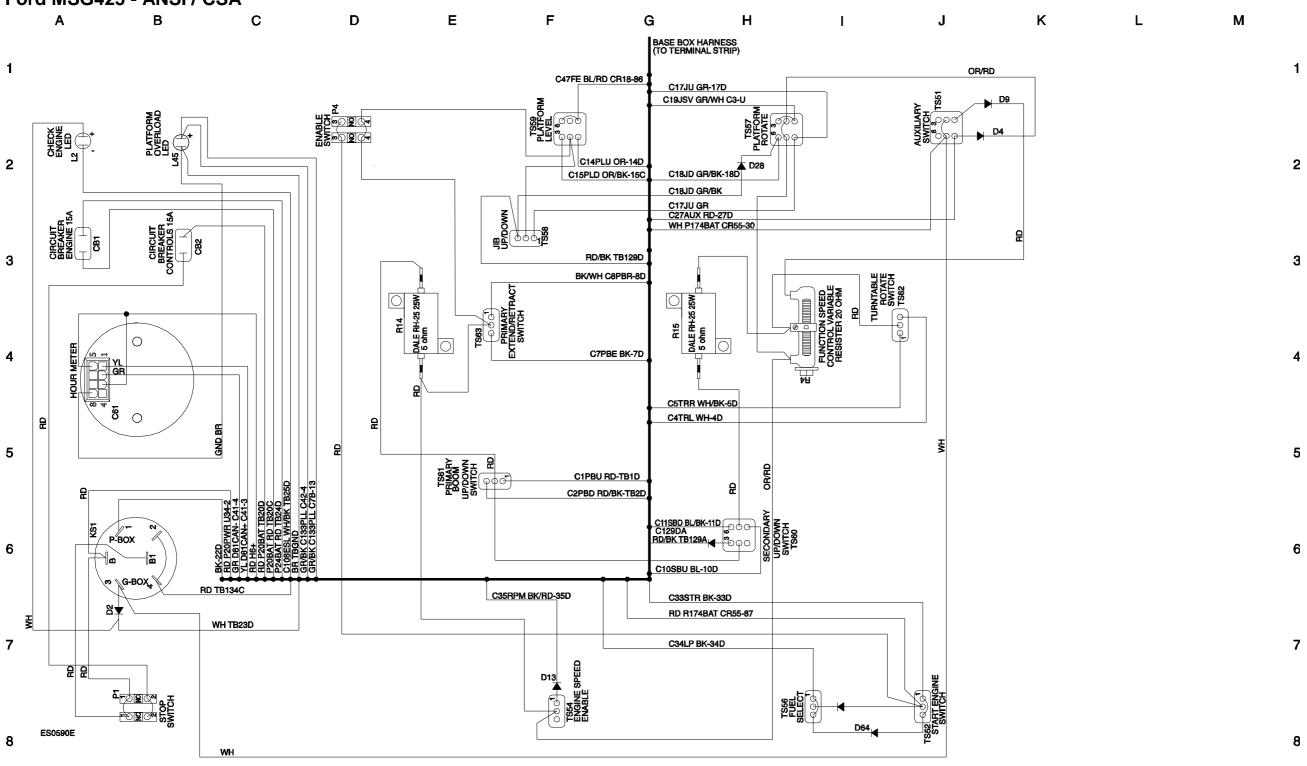


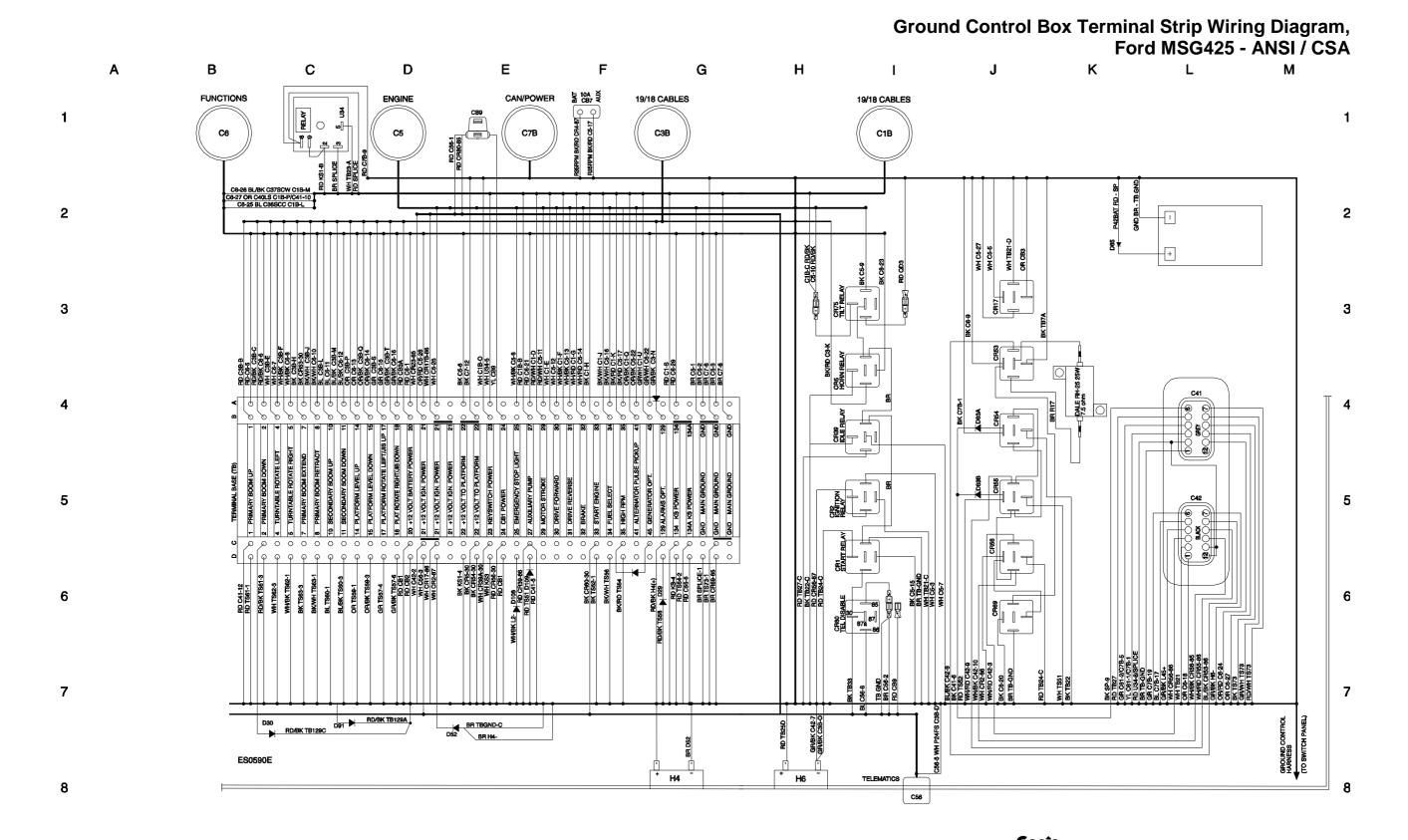
Ground Control Box Switch Panel Wiring Diagram, Deutz D 2.9 L4 and Perkins 404F-E22T - ANSI / CSA

_ Genîe.

162 Z®-45 XC™ • Z®-45 HF Part No. 1268197GT

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 163

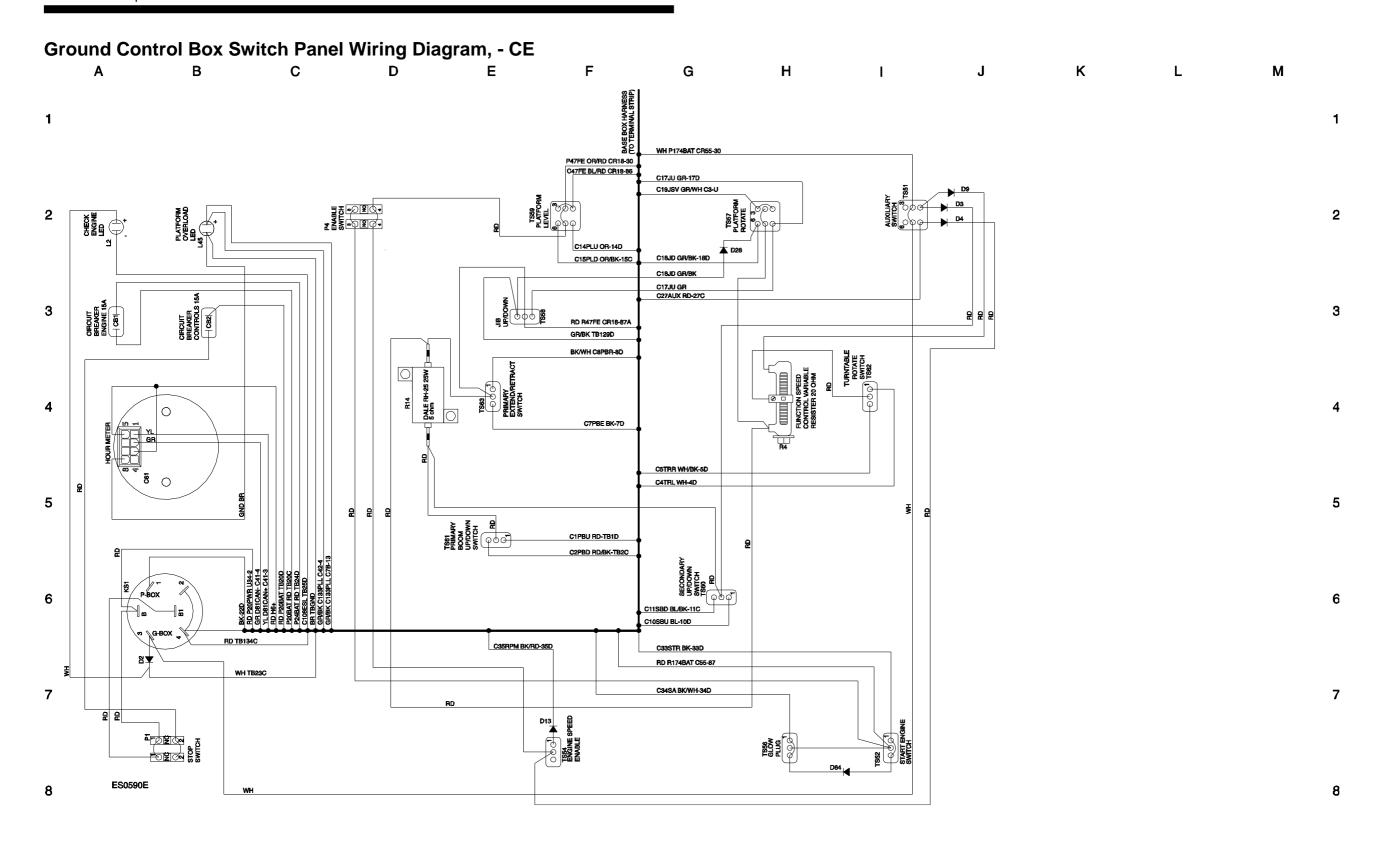

Ground Control Box Terminal Strip Wiring Diagram, Deutz D 2.9 L4 and Perkins 404F-E22T - ANSI / CSA

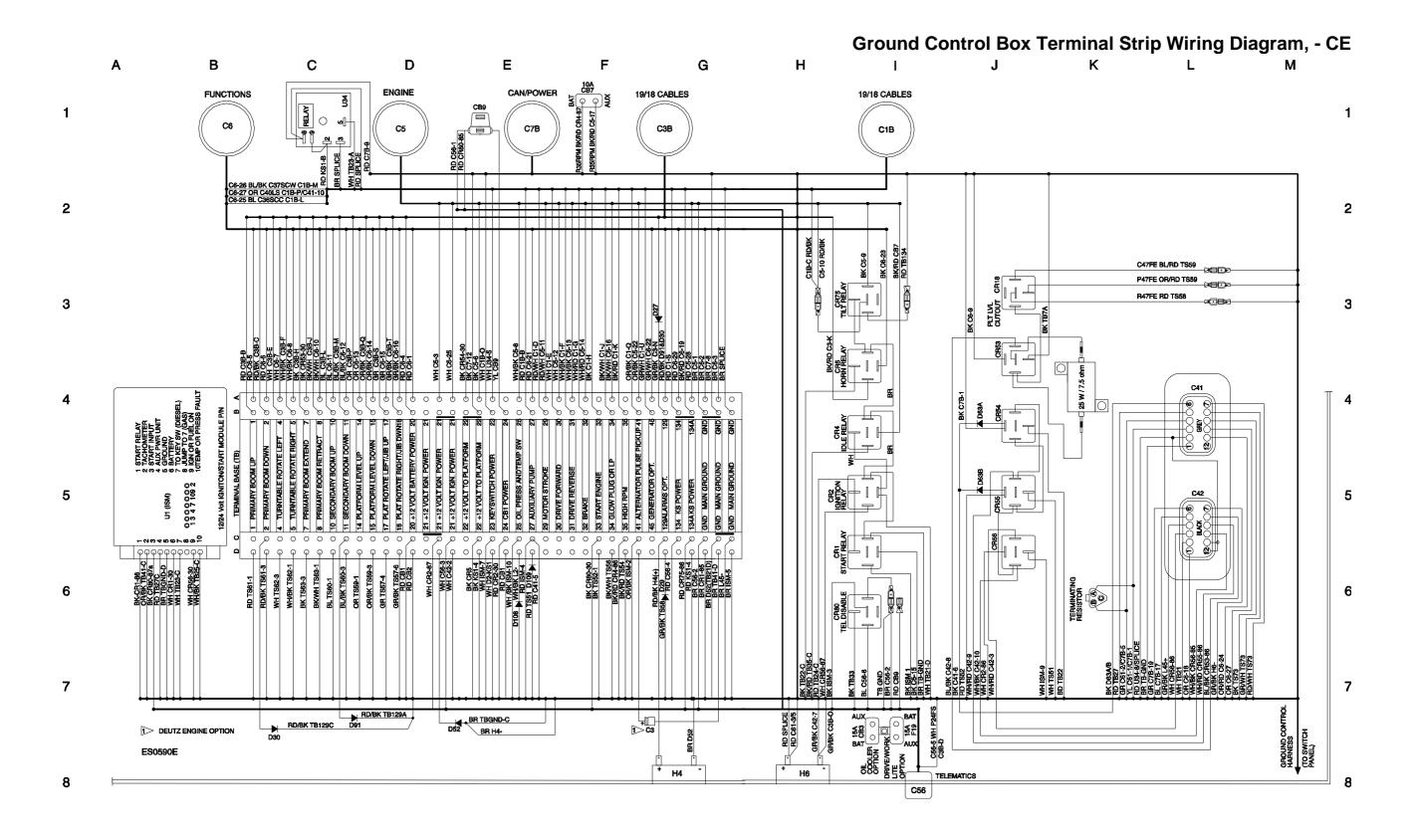

Ground Control Box Switch Panel Wiring Diagram, Ford MSG425 - ANSI / CSA

Ground Control Box Switch Panel Wiring Diagram, Ford MSG425 - ANSI / CSA

Z®-45 XC[™] • Z®-45 HF

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 167


Service and Repair Manual

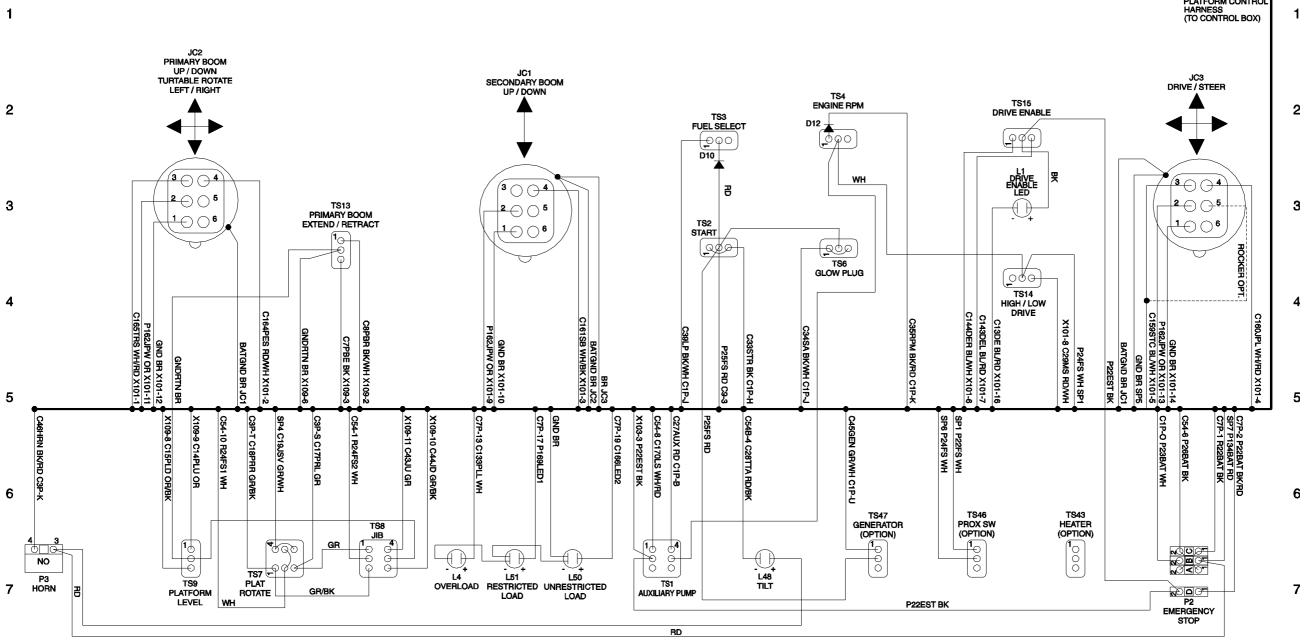

Ground Control Box Terminal Strip Wiring Diagram, Ford MSG425 - ANSI / CSA

Ground Control Box Switch Panel Wiring Diagram, - CE

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 171

Service and Repair Manual

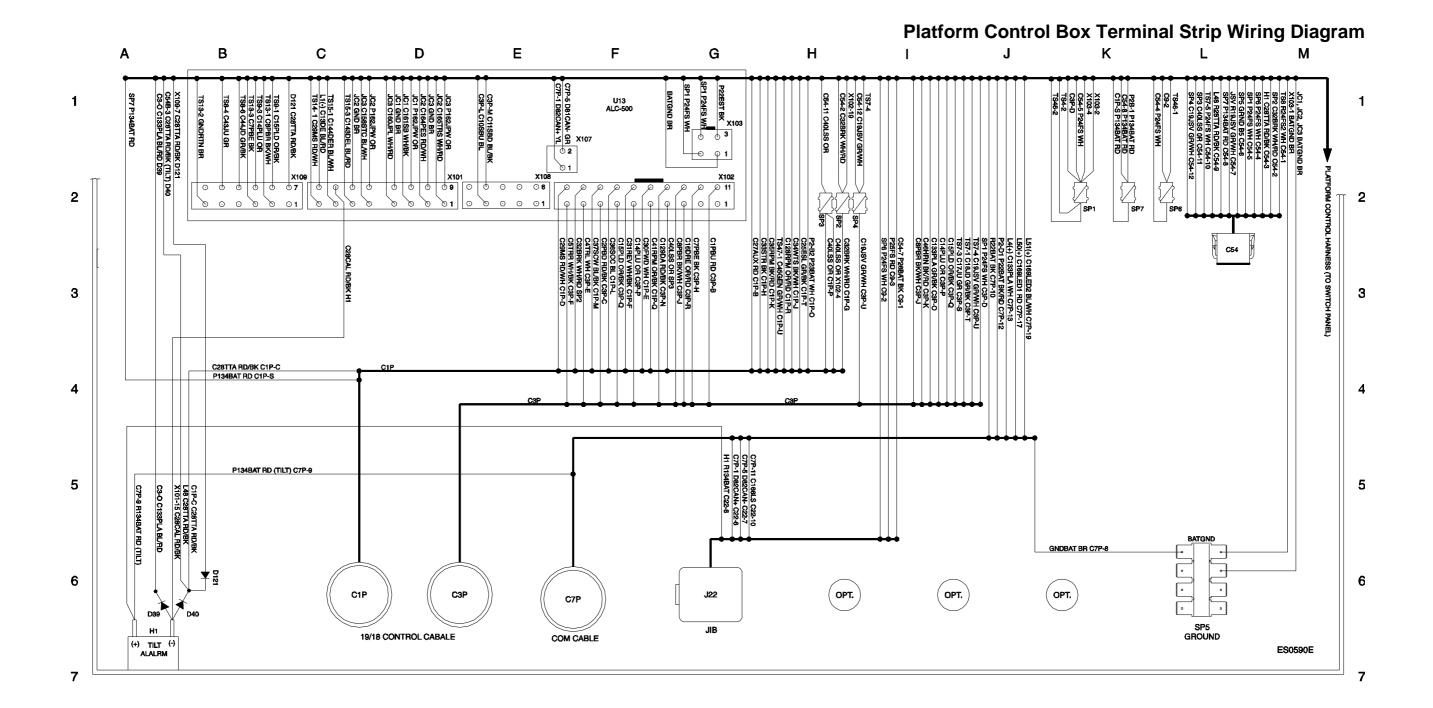
Ground Control Box Terminal Strip Wiring Diagram, - CE



Platform Control Box Switch Panel Wiring Diagram

Service and Repair Manual November 2020

Platform Control Box Switch Panel Wiring Diagram A B C D E F G H I J J K L M PLATFORM CONTROL HARNESS (TO CONTROL BOX)


ES0590E

8

_ Genie. ___

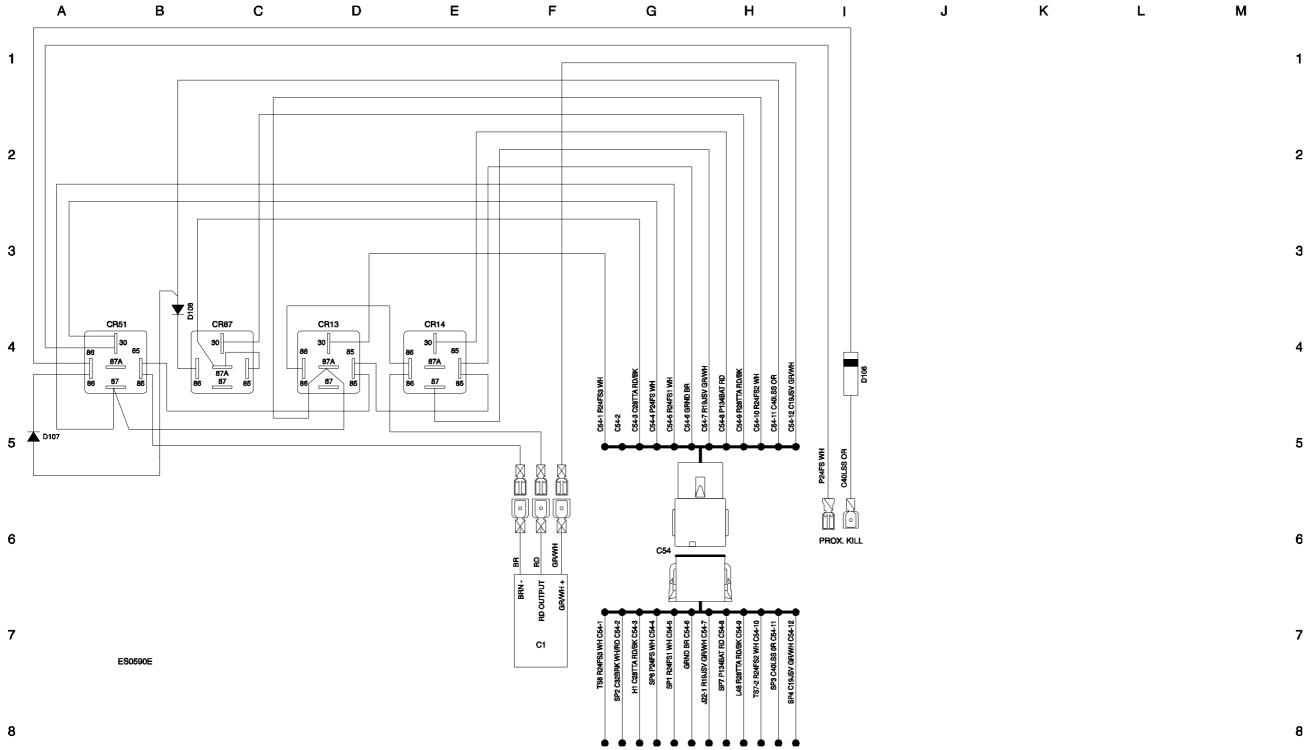
174 Z®-45 XC[™] • Z®-45 HF

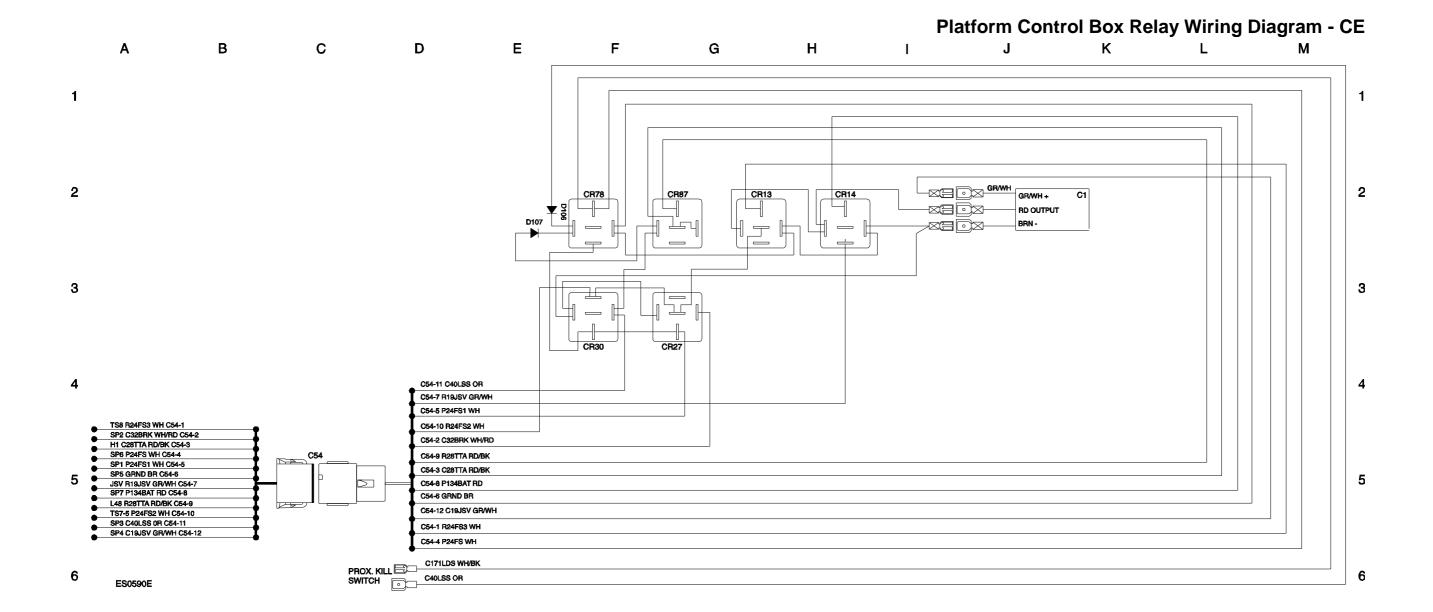
Part No. 1268197GT

8

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 175

Service and Repair Manual


Platform Control Box Terminal Strip Wiring Diagram


Platform Control Box Relay Wiring Diagram - ANSI / CSA

Platform Control Box Relay Wiring Diagram - ANSI / CSA

_ Genîe.

7

8

Part No. 1268197GT Z®-45 XC[™] • Z®-45 HF 179

Service and Repair Manual

Platform Control Box Relay Wiring Diagram - CE

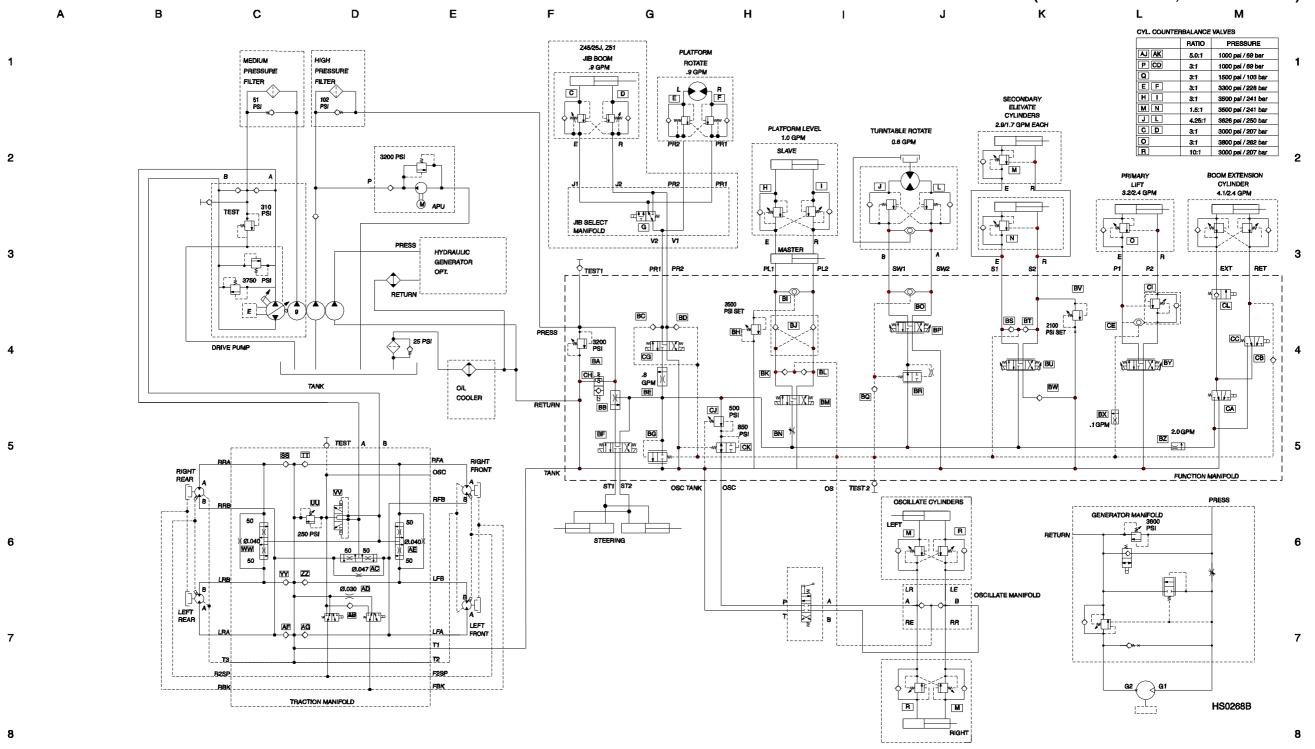
Hydraulic Schematic, - CE (to Z4525XCM-1500)

Service and Repair Manual November 2020

Hydraulic Schematic, - CE (to Z4525XCM-1500) С D Ε F G М JIB BOOM PLATFORM ROTATE 0.9 GPM 3.4 L/min MEDIUM PRESSURE HIGH PRESSURE 0.9 GPM 3.4 L/min SECONDARY BOOM ELEVATE CYLINDERS GENERATOR FILTER 102 psi 51 psi *> 3.5 bar PLATFORM LEVEL TURNTABLE ROTATE PRIMARY BOOM EXTENSION CYLINDER PRIMARY BOOM LIFT CYLINDER 0.6 GPM 2.8 L/min 3.5 / 2.4 GPM 13.2 / 9.1 L/min 3.3 (regen) / 1.7 GPM 12.5 / 6.4 L/min 2 JIB SELECT MANIFOLD 3200 psi FUNCTION PUMP 3 MASTER 0.030 inch 0.080mm *শ*হাচ্চ DRIVE PUMP BV 2100 psi / 145 bar SET @ 2.5 GPM / 9.5 L/min @ TEST2 TEST OIL COOLER OPTION PRESS TEST 0.8 GPM 3 L/min AM AK W TZ 2.0 GPM)(7.6 L/min 5 MILE XIE BM RIGHT REAR FUNCTION MANIFOLD TEST2 Y 6 PRESSURE RATIO 5.0:1 STEERING 3:1 1000 psi / 69 bar 3:1 1500 psi / 103 bar 3:1 3300 psi / 228 bar LEFT REAR 3:1 3500 psi / 241 bar 7 LEFT FRONT 4.5:1 3500 pei / 241 bar 4,25:1 3626 psi / 250 bar 1.5:1 3000 psi / 207 bar 3:1 3800 psi / 262 bar

OSCILLATE

HS0264C


_ Genîe.

TF2SP

TRACTION MANIFOLD

8

Hydraulic Schematic, - ANSI / CSA / CE (from Z4525XCF-101, Z4525XCM-1501)

Part No. 1268197GT Z®-45 XC™ • Z®-45 HF 183

Service and Repair Manual November 2020

Hydraulic Schematic, - ANSI / CSA / CE (from Z4525XCF-101, Z4525XCM-1501)

California Proposition 65

Operating, servicing and maintaining this equipment can expose you to chemicals including engine exhaust, carbon monoxide, phthalates, and lead, which are known to the State of California to cause cancer and birth defects or other reproductive harm. These chemicals can be emitted from or contained in other various parts and systems, fluids and some component wear by-products. To minimize exposure, avoid breathing exhaust, do not idle the engine except as necessary, service your equipment and vehicle in a well-ventilated area and wear gloves or wash your hands frequently when servicing your equipment or vehicle and after operation. For more information go to www.P65Warnings.ca.gov/passenger-vehicle.

Breathing diesel engine exhaust exposes you to chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.

- Always start and operate the engine in a well-ventilated area.
- If in an enclosed area, vent the exhaust to the outside.
- Do not modify or tamper with the exhaust system.
- Do not idle the engine except as necessary. For more information go to www.P65warnings.ca.gov/diesel.

Distributed By