

Technical
Information

TI 34M06T02-02E

Ubuntu Image for F3RP70
User’s Guide

TI 34M06T02-02E
Mar. 2021 2nd Edition (YK)

Yokogawa Electric Corporation

 Content-1

 TI 34M06T02-02E 2021.03.31-00

Contents
Introduction
1 F3RP70-2L

1.1 Overview .. 1-1
1.2 Ubuntu image .. 1-1

2 Writing the Ubuntu image file to the SD memory
card and startup

2.1 Procedure overview .. 2-2
2.2 The SD memory card for starting .. 2-3

2.2.1 Specifications of the Ubunut image ... 2-3
2.2.2 User settings ... 2-5
2.2.3 Network settings ... 2-5

2.3 Procedure for writing to the SD memory card 2-7
2.3.1 Environment installation ... 2-7
2.3.2 How to write to the SD memory card ... 2-11

2.4 Starting from the SD memory card .. 2-14
2.4.1 Procedure of startup .. 2-14
2.4.2 Procedure of log in to Ubutu ... 2-14
2.4.3 Enable the sudo command .. 2-21

3 e-RT3 IO module configuration service
3.1 Functional overview ... 3-2
3.2 Usage ... 3-4

3.2.1 Setting file ... 3-4
3.2.2 Working with the daemon .. 3-4

3.3 Setting file in detail .. 3-6
3.3.1 Digital input module ... 3-6
3.3.2 Digital output module ... 3-7
3.3.3 Analog input module ... 3-8
3.3.4 Analog output module .. 3-10
3.3.5 High-speed data acquisition module .. 3-11
3.3.6 Temperature monitor module .. 3-14

Ubuntu Image for F3RP70 User’s Guide

TI 34M06T02-02E 2nd Edition

 Content-2

 TI 34M06T02-02E 2021.03.31-00

4 F3HA12 data acquisition service
4.1 Functional overview ... 4-1
4.2 Usage ... 4-2

4.2.1 Working with the daemon .. 4-2
4.2.2 Data acquisition .. 4-3

4.3 API .. 4-5

5 Application development with Python
5.1 Development method ... 5-2
5.2 Remote development with Visual Studio Code 5-3

5.2.1 Overview .. 5-3
5.2.2 Environment creation procedure ... 5-4
5.2.3 Usage ... 5-16

5.3 Remote development with Jupyter Notebook 5-22
5.3.1 Overview .. 5-22
5.3.2 Environment creation procedure ... 5-23
5.3.3 Usage ... 5-24

5.4 How to access the IOModule .. 5-30
5.4.1 Input output data of IO module ... 5-30
5.4.2 Calling C/C++ library functions from Python .. 5-31

5.5 Sample program .. 5-41

6 Application development with C/C++
6.1 Host development with F3RP70-2L .. 6-1

6.1.1 Usage ... 6-1
6.1.2 Using the e-RT3-specific API functions ... 6-9

7 Overlay Filesystem
7.1 Overview .. 7-2

7.1.1 OverlayFS overview .. 7-2
7.1.2 Overview of procedures ... 7-2

7.2 Description of Overlay FS .. 7-3
7.3 Enter settings .. 7-4

7.3.1 Preparing the operating environment ... 7-4
7.3.2 Configuring OverlayFS ... 7-5
7.3.3 Clearing OverlayFS settings .. 7-5

7.4 Usage precautions .. 7-7

 Content-3

 TI 34M06T02-02E 2021.03.31-00

Appendix1 I/O Module Access Library
A1.1 List of APIs ... A1-1
A1.2 List of API error codes ... A1-2
A1.3 Receiving interrupts and alarms .. A1-4
A1.4 How to receive signals (inter-process communication) A1-9
A1.5 API reference .. A1-12

A1.5.1 I/O module .. A1-12
A1.5.2 CPU module .. A1-24
A1.5.3 PLC device .. A1-31
A1.5.4 System administration .. A1-43
A1.5.5 RAS .. A1-48
A1.5.6 WDT ... A1-51

Appendix2 Web Maintenance Tool
A2.1 Before Use .. A2-1

A2.1.1 Overview ... A2-1
A2.1.2 Operating environment ... A2-1
A2.1.3 Setup and start-up ... A2-2

A2.2 Screen configuration and basic functions A2-5
A2.2.1 List of functions ... A2-5
A2.2.2 Portal screen (Start-up screen) ... A2-7
A2.2.3 Main screen .. A2-8
A2.2.4 Changing languages .. A2-9

A2.3 Device monitor (Module selection screen) A2-10
A2.3.1 CPU module monitor screen ... A2-12
A2.3.2 I/O device monitor screen .. A2-17
A2.3.3 Using and installing comment file ... A2-21

A2.4 CPU settings ... A2-23
A2.4.1 CPU settings (Top/Login) screen .. A2-23
A2.4.2 User management screen ... A2-24
A2.4.3 Calendar / Time settings screen .. A2-25
A2.4.4 Device settings screen .. A2-26
A2.4.5 Operation settings screen ... A2-29

A2.5 Manual display ... A2-31
A2.5.1 Installing manual files ... A2-32
A2.5.2 Displaying the manuals ... A2-33

Revision Information ... Rev-1

 i

All Rights Reserved. Copyright © 2020, Yokogawa Electric Corporation TI 34M06T02-02E Mar. 31, 2021-00

Introduction
 Overview

This manual describes how to use the Ubuntu image, which is provided for the OS-
free CPU module.
The OS-free CPU module is e-RT3 CPU module that incorporates only a boot
loader. Users can develop their own system, while it takes time and effort to gain
knowledge for using the module.
Use of the Ubuntu image allows you to easily take advantage of a system with a
combined set of some open-source software.

 Other Instruction Manuals
In addition to this manual, refer to the following manuals.

Product manuals
- e-RT3 CPU Module (F3RP7) Hardware Manual (IM 34M06M52-01E)
- e-RT3 CPU Module (SFRD2) BSP Common Function Manual (IM 34M06M52-

02E)
- e-RT3 OS-free CPU Module Startup Manual (IM 34M06M52-25E)

Related manuals
- Hardware Manual (IM 34M06C11-01E)
- Analog Input Modules (IM 34M06H11-02E)
- Analog Output Module (IM 34M06H11-03E)
- High-speed Data Acquisition Module (F3HA06-1R, F3HA12-1R) (IM 34M06G02-

02E)
- Temperature Monitoring Module (IM 34M06H63-01E)

*This manual contains current information as of March 2021.
The features or specifications of the product may be subject to change in the future.

 1-1

TI 34M06T02-02E Mar. 31, 2021-00

1. F3RP70-2L

1.1 Overview
F3RP70-2L is one of the models in the e-RT3 CPU modules. It incorporates a
boot loader only and allows its users to construct a flexible system, including
the operating system.

After F3RP70-2L is turned on, the boot loader starts its operation and
initializes hardware and e-RT3/FA-M3 modules. The boot loader of F3RP70-2L
provides the features of starting the OS according to the setup parameters
and of self-diagnosing the module, based on the state of the MODE switch.

1.2 Ubuntu image
Ubuntu image file to be installed in F3RP70-2L for easy use is provided. The
Ubuntu image file available on the e-RT3 website allows you to start
development early.
You will store this provided Ubuntu image file in an SD memory card before
using the image. To use it, follow the procedure in the next chapter to write
the operating system into the SD memory card and then insert the card into
F3RP70-2L.

 2-1

TI 34M06T02-02E Mar. 31, 2021-00

2. Writing the Ubuntu image file to the
SD memory card and startup
This chapter describes the procedure for writing the Ubuntu image file to an
SD memory card and startup.

 2-2

TI 34M06T02-02E Mar. 31, 2021-00

2.1 Procedure overview
This section provides an overview of the procedure for writing the Ubuntu
image file to an SD memory card and startup.
For details on the procedure, refer to “2.3 Procedure for writing to the SD
memory card” and “2.4 Starting from the SD memory card” of this manual.

 Writing to an SD memory card
Use the following procedure to write the Ubuntu image file to an SD memory card:
- Download the Ubuntu image file from the Yokogawa website.
- Let your PC recognize an SD memory card.
- Use a tool for writing disk images to write the Ubuntu image file to the SD

memory card.

 What you need
You need to have the following items for the write to the SD memory card:
- PC that supports SD memory cards
- SD memory card (SDHC card: 4 to 32 GB)
- Tool for writing disk images
- Ubuntu image file

You need to have the following items for starting Ubuntu from SD memory card:
- PC
- Terminal software (ex. PuTTY, tera term or.)
- RS-232-C conversion cable (KM72-2N) or Ethernet cable

 2-3

TI 34M06T02-02E Mar. 31, 2021-00

2.2 The SD memory card for starting
This section describes the SD memory card image you create in this chapter.

The SD memory card image consists of all copied files of the Ubuntu
operating system (OS) that runs on F3RP70-2L and a collection of setting files
necessary for starting the OS. The OS section contains the OS settings as well
as the stored files.
By inserting the SD memory card that has the Ubuntu image into an SD
memory card slot of F3RP70-2L, you can start Ubuntu with F3RP70-2L-
suitable settings and necessary libraries and packages installed in it.

SD memory
card

 Operating system
Setting files
Libraries
Created files, etc.　

+
 Collection of setting files for

starting F3RP70

SD memory card image

F3RP70 ...

Operating system Collection of
setting files for

starting
F3RP70

Figure 2.1 Description of the SD memory card for starting

2.2.1 Specifications of the Ubuntu image

 Revision

The revision of the Ubuntu image is confirmed in the file below.

Revison File
R.1.1.1 None
R.1.2.1 or later /usr/local/etc/sfrd14-release

 OS

Ubuntu18.04LTS, GNU/Linux4.14LTS+PREEMPT_RT is started.
With the following command, you can see kernel configuration of the Ubuntu image.

$ zcat /proc/config.gz

Same information is described in the file /boot/config-xxx-ert3xlnx (xxx is version of
kernel).

 Ubuntu development package

Python 3 and the build-essential toolchain are available as a program development
environment.

 2-4

TI 34M06T02-02E Mar. 31, 2021-00

 e-RT3 module access

It provides the API functions for working with various e-RT3 I/O modules and e-RT3
CPU and sequence CPU modules in the multi-CPU configuration, together with the
signal notification feature used for synchronization operations between CPU
modules.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

 PLC device access

PLC device access is a feature to emulate the structure of data in a sequence CPU
module. It provides a service for connecting programmable indicators through PC
link commands (specifications from Yokogawa) and a mechanism for shared devices
in the multi-CPU configuration.
It also offers the API functions for working with these PLC devices.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

 External equipment communication service

It provides a communication feature with external equipment, such as indicators and
PCs, via the command interface. With this service, you can monitor and configure
CPU devices and work with programs in sequence CPU modules to operate or stop
them via external equipment.

 RAS

It provides the API functions for examining or monitoring failures in systems and a
mechanism for receiving alarms when a failure occurs. You can receive alarms from
the momentary power failure detection feature for power supply voltage or about
abnormal temperatures of CPU modules.

Note

For details on the features above, refer to “e-RT3 CPU Module (SFRD2) BSP
Common Function Manual” (IM 34M06M52-02E).

 Web Maintenance Tool

This tool offers features for monitoring and configuring I/O modules and internal

 2-5

TI 34M06T02-02E Mar. 31, 2021-00

parameters of the system provided by the Ubuntu image.
It is available on a Web browser, such as Google Chrome. Therefore, end users
who do not have any development environment and engineers in charge of
maintenance or launching can easily work on their configuration or maintenance
tasks on the Web browser regardless of their PC environment.

Note

For details on the features above, refer to “Appendix2 Web Maintenance Tool” of
this document.

 Python 3 related packages

The Python-related packages listed in the table below are installed.
If necessary, use the apt command or the pip3 command to add or remove a
package.

No. Class Package
1 Machine learning scikit-learn
2 Numerical processing numpy
3 Numerical processing pandas
4 Numerical processing scipy
5 Graph drawing matplotlib
6 Communication pymodbus
7 Development environment jupyter-notebook
 Development environment ptvsd

2.2.2 User settings
The Ubuntu OS provided by this image file has the users below.
If necessary, change the password or add or remove a user.

 Root user

User name: root
Password: root_ert3

 Ordinary user

User name: ert3
Password: user_ert3

2.2.3 Network settings
The Ubuntu OS provided by this image file has the network settings below.
Change them to suit the user's environment. The Ubuntu OS starts with the new
settings if you reboot it after modifying the setting file.

 2-6

TI 34M06T02-02E Mar. 31, 2021-00

 eth0 (LAN port 1)

IP address: 192.168.3.72
Network mask: 255.255.255.0

Setting file:
/etc/systemd/network/10-eth0.network

A setting example for stable IP address is described below. You should modify
“Address”, “Gateway” and “Destination” for your environment.

[Network]

Address=192.168.3.72/24

[Route]

Gateway=192.168.3.1

Destination=192.168.3.0/24

 eth1 (LAN port 2)

IP address: get from DHCP
Network mask: get from DHCP

Setting file:

/etc/systemd/network/20-eth1.network

 2-7

TI 34M06T02-02E Mar. 31, 2021-00

2.3 Procedure for writing to the SD memory
card
This section describes the detailed procedure for writing the Ubuntu image
file to the SD memory card.

Note

In this procedure, all components (including your settings and applications) in SD
memory card are overwrote. When you use new version of Ubuntu image, you shall
re-install your settings and applications in the new Ubuntu.

2.3.1 Environment installation
This subsection describes the environment necessary for the tasks in this section.

 PC

You need to have a PC that meets the following criteria:

- It supports SD memory cards.
You need to use a PC with a built-in SD memory card drive, or have an external
SD memory card reader and connect it to your PC.

- It supports a given tool for writing disk images.

 SD memory card

F3RP70-2L supports an SDHC memory card with a capacity of 4 to 32 GB.
We recommend that you use a card with a higher program/erase cycle, such as an
SLC- or MLC-type card.

 Ubuntu image file

You download it from our website “Yokogawa Partner Portal”.
Access the following URL and download “OS image file for OS-free CPU Module”
URL: https://partner.yokogawa.com/global/itc/index.htm

 Tool for writing disk image files

You can have any tool for writing disk image files.
This manual shows a procedure for Rawrite32, free software for Windows.

How to install

1. Access the following URL and click the [Download] link at the top of the
Rawrite32 website.

 2-8

TI 34M06T02-02E Mar. 31, 2021-00

https://www.netbsd.org/~martin/rawrite32/index.html

Figure 2.2 Download link for Rawrite32

2. Click the [rw32-setup-1.0.7.0.exe] button to download the file.

Figure 2.3 Selecting the file for Rawrite32

3. Open the downloaded file to start the installer.
If you see a dialog box saying “Do you want to allow this app to make changes
to your device?” instead of the installer being started, click [Yes]. The installer is
then started.

4. Without making particular changes to the settings, click the [Install] button. The
installation is now started.

 2-9

TI 34M06T02-02E Mar. 31, 2021-00

Figure 2.4 Rawrite32 setup dialog box

5. Once the installation is complete, click the [Finish] button to exit the installer.

Figure 2.5 Complete Rawrite32 installation screen

Note

The following PC environment was used to check the procedure described in this
section.
- OS: Windows 10 Enterprise (64-bit version)

 2-10

TI 34M06T02-02E Mar. 31, 2021-00

- SD memory card support: Built-in SD memory card drive

The following SD memory card is available:
- SDHC memory card (4 to 32 GB)
The size of the Ubuntu image file for use ranges from 1 to 2 GB. Choose the
capacity of your card by considering the fact that data is also stored in the SD card
while you are using F3RP70-2L.
For details on the recommended standard and the use of the SD memory card slot
of e-RT3, refer to “4.5 SD memory card” of “e-RT3 CPU Module (F3RP7)
Hardware Manual” (IM 34M06M52-01E).

In the procedure described in this section, you do not have to uncompress the
downloaded file.

You cannot use a general operation for pasting a file to write the SD memory card
image to the SD card. Make sure that you have a tool for writing disk image.

 2-11

TI 34M06T02-02E Mar. 31, 2021-00

2.3.2 How to write to the SD memory card
This subsection details the writing procedure.

 Let your PC recognize an SD memory card

Before starting Rawrite32, SD memory card have to be recognized by PC.

 Start Rawrite32

If you see a dialog box saying “Do you want to allow this app to make changes to
your device?” instead of Rawrite32 being started, click [Yes]. Rawrite32 is then
started.
In the startup screen, check that [Target] is set to the location of the SD memory
card drive and the capacity of the card is indicated in []. In the following example, a
32-GB SD memory card is used.

Figure 2.6 Rawrite32 startup screen

 Select the Ubuntu image file to be written

At the top right of the screen, click the [Open...] button and select the compressed
Ubuntu image file you downloaded. Hash values are then calculated and displayed
in the [Program messages] section in the middle of the screen.
The [Write to disk...] button is also activated at the bottom right of the screen so that
you can click it.

 2-12

TI 34M06T02-02E Mar. 31, 2021-00

Figure 2.7 Complete Ubuntu image loading screen

 Write the image

At the bottom right of the screen, click the [Write to disk...] button to open the dialog
box as shown in the figure below. Click the [Yes] button to start writing to the SD
memory card.

Figure 2.8 Write confirmation screen

 2-13

TI 34M06T02-02E Mar. 31, 2021-00

 Confirm the completion of writing

The writing is complete when you see the message saying “successfully written to
disk” in the [Program messages] section, as shown in the figure below. At the top
right of the screen, click the [x] button to exit Rawrite32.

Figure 2.9 Writing completed screen

Note

When you perform the procedure in this section, all the data in the SD memory card
is overwritten. Use a blank SD memory card, or back up the data beforehand.

After the writing is completed, you sometimes see a dialog box that request you to
format the SD memory card. If this happens, cancel the format.

This is because the written image file contains a Linux file system (ext4) that cannot
be read by Windows. If you format the card accidentally, follow the procedure in this
subsection to write to the SD card again.

 2-14

TI 34M06T02-02E Mar. 31, 2021-00

2.4 Starting from the SD memory card
This section describes how to start the Ubuntu image file written to the SD
memory card.

2.4.1 Procedure of startup
This subsection details the startup procedure.

 Insert the SD memory card

Insert the SD memory card into SD slot 1 or 2 of F3RP70.
If two memory cards are inserted at the same time, the image in slot 1 is used in
preference to the one in the other slot.

When you use SD slot 2, you have to set “rootdev” environment variable of u-boot
to ”/dev/mmcblk1p2”. And when you use SD slot 1, you have to remove “rootdev”
environment variables.

Example for setting “rootdev” to “/dev/mmcblk1p2”
f3rp7x> setenv rootdev /dev/mmcblk1p2

f3rp7x> saveenv

Example for removing value of “rootdev”
f3rp7x> setenv rootdev

f3rp7x> saveenv

Note

For details on environment variable of u-boot, refer to “e-RT3 OS-free CPU Module
Startup Manual” (IM 34M06M52-25E).

 Start the system

With the MODE switch set to 0, turn on the power.

2.4.2 Procedure of log in to Ubuntu
This subsection details log-in procedure.

 What you need

You need to have the following items for log-in to Ubuntu using serial console:
- PC that is installed terminal software
- RS-232-C conversion cable (KM72-2N)
- USB-serial converter (when your pc doesn’t have seral port)

 2-15

TI 34M06T02-02E Mar. 31, 2021-00

You need to have the following items for log-in to Ubuntu using SSH connection:
- PC that is installed terminal software
- Ethernet cable

 Construction of devices

Figure 2.10 shows the construction of devices.
Log in to the Ubuntu through a serial console connection using the COM port at the
front of the CPU module or from an SSH terminal using the LAN port. In this section,
log in using the default value of eth0 (LAN port 1) shown in section 2.2.3 of this
document, so connect the ethernet cable to LAN port1 on the upper front of the
F3RP70-2L.

Local machine e-RT3

F3RP70

Figure 2.10 Construction of devices

 Installing a terminal software

A terminal software, such as “Putty” or “Tera term”, is needed when you log in to the
Ubuntu. This subsection describes installing procedure of “PuTTY” as an example.

1. Access the following URL and click the [here] in [Download PuTTY] contents.

Figure 2,11 Top page of PuTTY web site

2. Download the installer that matches your PC from the “Package files”.In this
document, we will explain using the 64-bit version of “MSI (‘Windows Installer’)”

 2-16

TI 34M06T02-02E Mar. 31, 2021-00

Figure 2.12 Download installer

3. Open the downloaded file to start the installer. When the following dialog is

shown, Click the “Run”.

Figure 2.13 Security dialog

4. Click the “Next”.

Figure 2.14 PuTTY installer

5. Specify the install location. In this document, do not change the destination
folder and click “Next”.

 2-17

TI 34M06T02-02E Mar. 31, 2021-00

Figure 2.15 Specify the install location

6. Click “Next”.

Figure 2.16 Selection of install components

7. When User Account Control dialg is displayed, click “Yes”.

8. Click “Finish” in the dialog of install completion. And then installation of “PuTTY”

is completed.

Figure 2.17 Dialog of install completion

 Log in to Ubuntu using serial console

 2-18

TI 34M06T02-02E Mar. 31, 2021-00

1. Start PuTTY and set “Connection type” to “Serial. And then set some items as
follows and click “Open”

 Serial-line: device of serial port
 Speed: 115200

Figure 2.18 PuTTY setting

2. When connection to F3RP70-2L for the first time, the PuTTY Security Alert

dialog is displayed. Click “Yes” to continue the connection.

Figure 2.19 PuTTY Security Alert dialog

3. Turn on F3RP70-2L.

4. Login prompt is displayed on the console after boot sequence. Log in using the

 2-19

TI 34M06T02-02E Mar. 31, 2021-00

user account you have set up.

Figure 2.20 Login prompt of serial console

 Log in to Ubuntu using SSH connection

1. Turn on F3RP70-2L.

2. Set an IP address of your PC to “192.168.3.□□”

3. Start PuTTY and set “Connection type” to “SSH”. And then set some items as
follows and click “Open”

 Host Name (or IP address): 192.168.3.72
 Port: 22

Figure 2.21 SSH setting of PuTTY

 2-20

TI 34M06T02-02E Mar. 31, 2021-00

4. When connection to F3RP70-2L for the first time, the PuTTY Security Alert
dialog is displayed. Click “Yes” to continue the connection.

Figure 2.22 PuTTY Security Alert dialog

5. Login prompt is displayed on the console. Log in using the user account you

have set up.

Figure 2.23 Login prompt of SSH connection

Note

If you change the settings of your computer's network adapter according to the
instructions in this manual, you may not be able to connect to the Internet using that
adapter.
Connect the F3RP70-2L to a port that is not normally used for internet connection or
restore the settings after the connection is completed.

 2-21

TI 34M06T02-02E Mar. 31, 2021-00

When you want to connect to SSH, please do after starting F3RP70-2L. Immediately
after starting, the SSH server may not start and connection may fail.
With the initial settings downloaded Ubuntu image from the Yokogawa web site, you
cannot use the SSH connection to log in with the root user account. Please log in
with an ordinally user account.
For the default value of the user account, see "2.2.2 User setting" in this manual.

2.4.3. Enable the sudo command
In this Ubuntu image, the sudo command cannot be used by general users in the
default state. If you want to use commands that require root privileges, enter the
settings in this section to enable them. The following are some examples of when
the sudo command is not available.

Operation with general user username

$ sudo ls -a /root

[sudo] password for username: # Enter Password

username is not in the sudoers file. This incident will be reported.

 Enabling the sudo command

1. Confirm the group of the user for whom you want to enable the sudo command.
If sudo is not included in the group, the sudo command is not available.

For general user username

$ groups username

username : username # User name: Group

2. Since the operation is performed with root privileges, switch to the root account.

$ su

Password: # Enter root Password

root@ubuntu:/home/username#

3. Add the user for whom to enable the sudo command to the sudo group.

gpasswd -a username sudo

Adding user username to group sudo

4. Confirm that sudo was added by checking the user's group in the same

procedure as in 1. Once added, log out of the root account. The settings will be
reflected when you log back in, so also log out of the general user account.

groups username

username : username sudo # User name: Group

exit

 2-22

TI 34M06T02-02E Mar. 31, 2021-00

exit

$ exit

logout

5. When you log in for the first time with the account that you added to the sudo

group, the following appears, indicating that the sudo command is enabled.

To run a command as administrator (user "root"), use "sudo <command>".

See "man sudo_root" for details.

username@ubuntu:~$

6. Confirm that the sudo command is received.

$sudo ls -a /root

[sudo] password for username: # Enter Password

. .. .bash_history .bashrc .cache .gnupg .profile

username@ubuntu:~$

 Disabling the sudo command

To disable the sudo command, follow the steps below. Cancel membership in the
sudo group; the opposite of when you enabled it.

1. Just as with enabling the sudo command, you need root privileges, so switch to

the root account as you did in enable step 2.

2. Remove the user for whom you want to disable the sudo command from the

sudo group.

gpasswd -d username sudo

Removing user username from group sudo

3. Using the same procedure as in enabling 1., check the user’s group. Once you

have confirmed that sudo has been deleted, log out of the root account. The
settings will be reflected when you log back in, so also log out of the general
user account.

groups username

username : username

exit

exit

$ exit

logout

4. When you login to the account from which you canceled sudo group

 2-23

TI 34M06T02-02E Mar. 31, 2021-00

membership, the sudo command is disabled.

Note
In this Ubuntu image, the ert3 default general user does not belong to the sudo
group. To prevent unexpected operations, we recommend disabling the sudo
command during operation.

 3-1

TI 34M06T02-02E Mar. 31, 2021-00

3. e-RT3 I/O module configuration
service
This chapter describes the features of IO module configuration service and
how to use the service.

 3-2

TI 34M06T02-02E Mar. 31, 2021-00

3.1 Functional overview
The IO module configuration service is a service that configures e-RT3 I/O
modules.
In e-RT3 I/O modules, a single module can handle various input and output
signals. For example, the F3AD08-6R analog input module can handle voltage
signals or current signals as input signals of various ranges. It also has
module-specific features, such as scaling and filtering. You can select these
ranges of input signals and use the specific features by setting parameters for
the configuration area of each module. In general, you need to specify these
parameters with user programs before handling data, when you use I/O
modules.
The IO module configuration service allows you to automatically configure the
features on these modules according to the setting file. You do not have to
write programs in order for configuring modules and therefore you can create
programs dedicated for data processing.

Table 3.1 lists e-RT3 I/O modules supported by the module configuration
service.

Table 3.1 Modules supported by the module configuration service

Type of module Model of module Overview of specification

Digital input

F3XD08- 8-bit digital input
F3XD16- 16-bit digital input
F3XD32- 32-bit digital input
F3XD64- 64-bit digital input

Digital output

F3YD04- 4-bit digital output
F3YD08- 8-bit digital output
F3YD14- 14-bit digital output
F3YD32- 32-bit digital output
F3YD64- 64-bit digital output

Analog input

F3AD04-5R 4-channel voltage input (0 to 5 V, 1 to 5 V, -10 to 10 V, 0 to 10 V)
F3AD08-5R 8-channel voltage input (0 to 5 V, 1 to 5 V, -10 to 10 V, 0 to 10 V)

F3AD08-6R
8-channel voltage input (0 to 5 V, 1 to 5 V, -10 to 10 V, 0 to 10 V)
or
8-channel current input (0 to 10 mA, 0 to 20 mA, 4 to 20 mA)

F3AD08-4R 8-channel current input (0 to 10 mA, 0 to 20 mA, 4 to 20 mA)

Analog output
F3DA04-6R

4-channel voltage output (-10 to 10 V, 0 to 10 V, 0 to 5 V, 1 to 5 V)
or
4-channel current output (4 to 20 mA, 0 to 20 mA, -20 to 20 mA)

F3DA08-5R 8-channel voltage output (-10 to 10 V, 0 to 10 V, 0 to 5 V, 1 to 5 V)

High-speed data
acquisition

F3HA06-1R 6-channel voltage input
F3HA12-1R 12-channel voltage input

Temperature
monitor F3CX04-0N

4-channel thermocouple (K, J, T, B, S, R, N, E, L, U, W, Platinel)
or
4-channel resistance temperature detector (JPt100, Pt100)
or
4-channel voltage input (0 to 10 mV, 0 to 100 mV, 0 to 1 V, 0 to 5
V, 1 to 5 V, 0 to 10 V)

 3-3

TI 34M06T02-02E Mar. 31, 2021-00

Note

For details on the module specifications, refer to each manual.
Refer to “Hardware Manual” (IM 34M06C11-01E) for details on the digital I/O
modules, “Analog Input Modules” (IM 34M06H11-02E) for the analog input modules,
“Analog Output Module” (IM 34M06H11-03E) for the analog output modules, “High-
speed Data Acquisition Module (F3HA06-1R, F3HA12-1R)” (IM 34M06G02-02E) for
the high-speed data acquisition modules, and “Temperature Monitoring Module” (IM
34M06H63-01E) for the temperature monitor module.

 3-4

TI 34M06T02-02E Mar. 31, 2021-00

3.2 Usage
The module configuration service is provided as a daemon managed by
systemd. Systemd is a utility platform for daemon management designed for
Linux. Using the systemctl command, you can configure services to start or
stop and whether they are run automatically on startup.

3.2.1 Setting file

 File format

The setting file is written in JSON format.
A single file contains all module settings. Specify a setting name as a JSON key and
a setting for each module as a value.

{

 " setting name 1 ":{ "unit":m, "slot":k, "modid":"module ID", ... },

 " setting name 2 ":{ setting for each module },

 " setting name 3 ":{ setting for each module }

}

The setting name can accept any string. You can specify it as you want for
identification because it does not matter in terms of the settings. The subsequent
sections describe the settings for each module. As the settings common to all
modules, specify the unit number and slot number of the unit and slot to which the
module is inserted, and the module ID. If the module ID of the I/O module inserted at
the position specified by the unit number and slot number does not match the
module ID in the setting file, the settings of the module are ignored.

Note

The unit number and slot number of an I/O module are numbers that indicate where
the module is inserted. For details, refer to “e-RT3 CPU Module (SFRD2) BSP
Common Function Manual” (IM 34M06M52-02E).

 File path

The setting file should be stored in the following path:
/usr/local/etc/ert3/ert3io.conf

3.2.2 Working with the daemon
With the systemctl command, you can work with the ert3ioconfd daemon. It
performs the following actions on the systemd commands.

 3-5

TI 34M06T02-02E Mar. 31, 2021-00

Note

The user that has root privilege can use “systemctl” command. When you use it, use
“sudo” command or switch to root user with “su” command.

 Start configuration

With the start command, you can run configuration manually. The command
configures the I/O module according to the setting file.

systemctl start ert3ioconfd

 Stop configuration

With the stop command, you can stop the daemon. When the daemon is stopped,
the I/O module is not accessed.

systemctl stop ert3ioconfd

 Restart configuration

With the restart command, you can stop and start the daemon. Use this command
when you modify the setting file and then reapply it to the I/O module.

systemctl restart ert3ioconfd

 Enable or disable configuration on startup

With the enable or disable command, you can enable or disable the execution of the
daemon on startup. If the daemon is enabled on startup, the I/O module is
configured when the power is turned on according to the setting file.
Similarly, the disable command is used to disable the execution of it on startup.

systemctl enable ert3ioconfd

systemctl disable ert3ioconfd

 Check the configuration status

With the status command, you can check the running status of the daemon.

systemctl status ert3ioconfd -n 40

The settings and setting errors in the loaded JSON file are displayed when you run a
command. The n option can be used to change the maximum value for the lines to
be displayed.
You can check whether the setting file contains proper information by comparing the
information displayed with the information in the setting file. If expected information
is not displayed, check the settings to see if the JSON file is written in the proper
format or the unit number, slot number, and module ID are correct.

 3-6

TI 34M06T02-02E Mar. 31, 2021-00

Note

The JSON information is sorted for display. Note that it is different from the order of
the information in the setting file.

If an error occurs during a parameter setup, the information of the setting failure is
displayed.

3.3 Setting file in detail
3.3.1 Digital input module

The setting format for a digital input module is shown below. Specify the input
setting on a 16-bit basis.

{

 "unit":unit number, "slot":slot number, "modid":"module ID",

 "X01-X16":{"sampling":"input sampling period", "intr":"interrupt edge"},

 "X17-X32":{"sampling":"input sampling period", "intr":"interrupt edge"},

 "X33-X48":{"sampling":"input sampling period", "intr":"interrupt edge" },

 "X49-X64":{"sampling":"input sampling period", "intr":"interrupt edge" }

}

Table 3.2 shows the settings for digital input modules.
Enclose a string in "" and specify a number directly.

Table 3.2 Settings for digital input modules (JSON)

Key (string) Value Required* Remarks

"unit" 0 to 7 Yes Specifies the position of insertion.

"slot" 1 to 16 Yes Specifies the position of insertion.

"modid"

"XD08"
"XD16"
"XD32"
"XD64"

Yes

Specifies four (uppercase alphabetic) letters of the
model name of an I/O module (F3XD), with the
string F3 removed.
It is used, together with the unit and slot keys, to
check the module.

"X01-X16" -- Sets an object consisting of sampling and intr for
bits 1 to 16.

"X17-X32" -- Sets an object consisting of sampling and intr for
bits 17 to 32.

"X33-X48" -- Sets an object consisting of sampling and intr for
bits 33 to 48.

"X49-X64" -- Sets an object consisting of sampling and intr for
bits 49 to 64.

"sampling"

"always"
"62.5us"
"250us"
"1ms"
"16ms"

 Specifies the sampling period as a string.
By default, it is set to "16ms".

"intr"

"up"
"down"

 Specifies an interrupt edge.
By default, it is set to "up".
up: An interrupt occurs at the rising edge.
down: An interrupt occurs at the falling edge.

* Required key

- Setting example

 3-7

TI 34M06T02-02E Mar. 31, 2021-00

{

 "unit":0, "slot":2,"modid":"XD32",

 "X01-X16":{"sampling":"16ms"},

 "X17-X32":{"sampling":"1ms"}

}

3.3.2 Digital output module
The setting format for a digital output module is shown below. Specify the output
setting on a 16-bit basis.

{

 "unit":unit number, "slot":slot number, "modid":"module ID",

 "Y01-Y16":{"fail":"CPU failure output"},

 "Y17-Y32":{"fail":"CPU failure output"},

 "Y33-Y48":{"fail":"CPU failure output"},

 "Y49-Y64":{"fail":"CPU failure output"}

}

Table 3.3 shows the settings for digital output modules.
Enclose a string in "" and specify a number directly.

Table 3.3 Settings for digital output modules (JSON)

Key (string) Value Required* Remarks

"unit" 0 to 7 Yes Specifies the position of insertion.

"slot" 1 to 16 Yes Specifies the position of insertion.

"modid"

"YD04"
"YD08"
"YD14"
"YD32"
"YD64"

Yes

Specifies four (uppercase alphabetic) letters of the
model name of an I/O module (F3YD), with the
string F3 removed.
It is used, together with the unit and slot keys, to
check the module.

"Y01-Y16" -- Sets an object consisting of fail for bits 1 to 16.

"Y17-Y32" -- Sets an object consisting of fail for bits 17 to 32.

"Y33-Y48" -- Sets an object consisting of fail for bits 33 to 48.

"Y49-Y64" -- Sets an object consisting of fail for bits 49 to 64.

"fail"

"hold"
"reset"

 Specifies the CPU failure output.
By default, it is set to "hold".
hold: Tells the module to continue to output the last
value.
reset: Tells the module to set the output value to 0.

* Required key

- Setting example
{

 "unit":0, "slot":3,"modid":"YD32",

 "Y01-Y16":{"fail":"reset"},

 "Y17-Y32":{"fail":"reset"}

}

 3-8

TI 34M06T02-02E Mar. 31, 2021-00

3.3.3 Analog input module
The setting format for an analog input module is shown below.

{

 "unit":unit number, "slot":slot number, "modid":"module ID",

 "cycle":"conversion cycle", "drift":"drift correction",

 "ch1 ":{"range":"input signal range", "skip":"channel skip",

 "scaleup":digital output value corresponding to the upper limit of input signals,

 "scalelow":digital output value corresponding to the lower limit of input signals,

 "offset":offset value,

 "mslag":first-order lag filter time constant, "avepoint":moving average points},

 ...,

 "ch8":{}

}

Table 3.4 shows the settings for analog input modules.
Enclose a string in "" and specify a number directly.

Table 3.4 Settings for analog input modules (JSON)

Key (string) Value Required* Remarks

"unit" 0 to 7 Yes Specifies the position of insertion.

"slot" 1 to 16 Yes Specifies the position of insertion.

"modid"

"AD04"
"AD08"

Yes

Specifies four (uppercase alphabetic) letters of
the model name of an I/O module (F3AD),
with the string F3 removed.
It is used, together with the unit and slot keys, to
check the module.

"cycle"

"50us"
"100us"
"250us"
"500us"
"1ms"
"16.6ms"
"20ms"
"100ms"

 Specifies the A/D conversion cycle.
The default value is "1ms".

"drift"
"enable"
"disable"

 Specifies whether the drift correction feature is
enabled or disabled.
The default value is "enable".

"ch1"
to
"ch8"

-- Sets an object for the channel.

"range"

"-10-10v"
"0-10v"
"0-5v"
"1-5v"
"0-20ma"
"4-20ma"

 Specifies the input range.
The default value is:
F3AD08-4R: "0-20ma"
Other modules: "-10-10v"

"skip"

"yes"
"no"

 Specifies whether A/D conversion is skipped.
The default value is "no".
yes: No A/D conversion is performed.
no: A/D conversion is performed.

"scaleup"
N
(-30000≤N≤30000)

 Digital output value that corresponds to the upper
limit of input signals.
The default value is 0 (no scaling).

"scalelow"
N
(-30000≤N≤30000)

 Digital output value that corresponds to the lower
limit of input signals.
The default value is 0 (no scaling).

"offset" N
(-5000≤N≤5000)

 Offset value.
The default is 0 (no offset).

 3-9

TI 34M06T02-02E Mar. 31, 2021-00

"mslag" 0 to 30000 First-order lag filter [ms].
The default value is 0 (disabled).

"avepoint"

2^n
(1≤n≤5)

 Moving average points.
The default value is 0 (disabled).
It is enabled only when the first-lag filter is set to
0.

* Required key

- Setting example

{

 "unit":0, "slot":4,"modid":"AD08",

 "cycle":"250us", "drift":"enable",

 "ch1":{"range":"4-20ma","scaleup":10000,"scalelow":0,"mslag":1000 },

 "ch2":{"range":"0-5v","avepoint":16},

 "ch3":{"range":"-10-10v"},

 "ch4":{"skip":"yes"},

 "ch5":{"skip":"yes"},

 "ch6":{"skip":"yes"},

 "ch7":{"skip":"yes"},

 "ch8":{"skip":"yes"}

}

Table 3.5 shows the digital output values when scaling is disabled.

Table 3.5 Initial scaling settings for analog input modules

Input signal range Digital output value

-10 to 10 V -20000 to 20000

0 to 10 V 0 to 20000

0 to 5 V 0 to 10000

1 to 5 V 2000 to 10000

0 to 20 mA 0 to 10000

4 to 20 mA 2000 to 10000

Note

For details on the module specifications, refer to “Analog Input Modules” (IM
34M06H11-02E).

 3-10

TI 34M06T02-02E Mar. 31, 2021-00

3.3.4 Analog output module
The setting format for an analog output module is shown below.

{

 "unit":unit number, "slot":slot number, "modid":"module ID",

 "ch":"output synchronization channel",

 "ch1 ":{"range":"output signal range", "fail":"CPU failure output",

 "scaleup":digital input value corresponding to the upper limit of output signals,

 "scalelow":digital input value corresponding to the lower limit of output signals},

 ...,

 "ch8":{}

}

Table 3.6 shows the settings for analog output modules.
Enclose a string in "" and specify a number directly.

Table 3.6 Settings for analog output modules (JSON)

Key (string) Value Required* Remarks

"unit" 0 to 7 Yes Specifies the position of insertion.

"slot" 1 to 16 Yes Specifies the position of insertion.

"modid"

"DA04"
"DA08"

Yes

Specifies four (uppercase alphabetic) letters of the
model name of an I/O module (F3DA), with the
string F3 removed.
It is used, together with the unit and slot keys, to
check the module.

"ch"

0 to 8 Specifies the channel number for synchronization
output.
The default value is 0.
0: No synchronization output.
Other than above: Output synchronized with the
specified channel.

"ch1"
to
"ch8"

-- Sets an object for the channel.

"range"

"-10-10v"
"0-10v"
"0-5v"
"1-5v"
"-20-20ma"
"0-20ma"
"4-20ma"

 Specifies the output range.
The default value is "-10-10v".

"fail"
N
(-30000≤N≤30000)

 Specifies an output value in CPU failure.
If this key is not specified, the output value is
maintained in a CPU failure.

"scaleup"
N
(-30000≤N≤30000)

 Digital input value that corresponds to the upper
limit of output signals.
The default value is 0 (no scaling).

"scalelow"
N
(-30000≤N≤30000)

 Digital input value that corresponds to the lower
limit of output signals.
The default value is 0 (no scaling).

* Required key

 3-11

TI 34M06T02-02E Mar. 31, 2021-00

- Setting example
{

 "unit":0, "slot":5,"modid":"DA04",

 "ch1":{"range":"4-20ma","scaleup":10000,"scalelow":0},

 "ch2":{"range":"4-20ma","scaleup":10000,"scalelow":0},

 "ch3":{"range":"1-5v","scaleup":10000,"scalelow":0},

 "ch4":{"range":"1-5v","scaleup":10000, "scalelow":0}

}

Table 3.7 shows the digital output values when scaling is disabled.

Table 3.7 Initial scaling settings for analog output modules

Output signal range Digital input value

-10 to 10 V -20000 to 20000

0 to 10 V 0 to 20000

0 to 5 V 0 to 10000

1 to 5 V 2000 to 10000

-20 mA to 20 mA -10000 to 10000

0 to 20 mA 0 to 10000

4 to 20 mA 2000 to 10000

Note

For details on the module specifications, refer to “Analog Output Module” (IM
34M06H11-03E).

3.3.5 High-speed data acquisition module
The setting format for a high-speed data acquisition module is shown below.

{

 "unit":unit number, "slot":slot number, "modid":"module ID",

 "cycle":"data acquisition cycle",

 "ch1 ":{"range":"input signal range", "scale":"enable/disable",

 "scaleup":digital output value corresponding to the upper limit of input signals,

 "scalelow":digital output value corresponding to the lower limit of input signals,

 "offset":offset,

 "filter1":"filter 1 type","filter2":"filter 2 type"

 "cutoff1":cutoff frequency 1,"cutoff2":cutoff frequency 2

 "avep":moving average points},

 ...,

 "ch12":{}

}

 3-12

TI 34M06T02-02E Mar. 31, 2021-00

Table 3.8 shows the settings for high-speed data acquisition modules.
Enclose a string in "" and specify a number directly.

Table 3.8 Settings for high-speed data acquisition modules (JSON)

Key (string) Value Required* Remarks

"unit" 0 to 7 Yes Specifies the position of insertion.

"slot" 1 to 16 Yes Specifies the position of insertion.

"modid"

"HA06"
"HA12"

Yes

Specifies four (uppercase alphabetic) letters of
the model name of an I/O module (F3HA),
with the string F3 removed.
It is used, together with the unit and slot keys, to
check the module.

"cycle"
5 to 1000 Specifies the data acquisition cycle

[microsecond].
The setting value is rounded to the multiple of 5.

"ch1"
to
"ch12"

-- Sets an object for the channel.
Data is collected only for the channel where this
key is specified.

"range"

"-10-10v"
"0-10v"
"1-5v"
"-5-5v"
"-2.5-2.5v"

 Specifies the output range.
The default value is "-10-10v".

"scale" "enable"
"disable"

 Specifies whether scaling is enabled or disabled.
The default value is "disable".

"scaleup"
N
(-29000≤N≤30000)

 Digital output value that corresponds to the upper
limit of input signals.
The default value is 0.

"scalelow"
N
(-29000≤N≤30000)

 Digital output value that corresponds to the lower
limit of input signals.
The default value is 0.

"offset" N
(-2500≤N≤2500)

 Offset value.
The default value is 0.

"filter1"

"none"
"multi"
"average"
"lpf_butterworth "
"lpf_chebyshev "

 Filter type. The default value is "none".
none: No filtering
multi: Multi-sampling
average: Moving average
lpf_butterworth: Low-pass (Butterworth) filter
lpf_chebyshev: Low-pass (Chebyshev) filter

"filter2"

"none"
"lpf_butterworth "
"lpf_chebyshev "
"hpf_butterworth "
"hpf_chebyshev "

 Filter type. The default value is "none".
none: No filtering
lpf_butterworth: Low-pass (Butterworth) filter
lpf_chebyshev: Low-pass (Chebyshev) filter
hpf_butterworth: High-pass (Butterworth) filter
hpf_chebyshev: High-pass (Chebyshev) filter

"cutoff1" 400 to 40000 Specifies the cutoff frequency for filter1.

"cutoff2" 400 to 40000 Specifies the cutoff frequency for filter2.

"avep"

2^n

 Specifies the population for multi-sampling or the
moving average points.
In multi-sampling: 1≤n≤4
In moving average: 1≤n≤11

* Required key

- Setting example

{

 "unit":0, "slot":6,"modid":"HA12",

 "cycle":100,

 "ch1":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"lpf-butterworth","filter2":"none",

 "cutoff1":10000,"cutoff2":0},

 "ch2":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 3-13

TI 34M06T02-02E Mar. 31, 2021-00

 "filter1":"lpf-butterworth","filter2":"none",

 "cutoff1":10000,"cutoff2":0},

 "ch3":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"lpf-butterworth","filter2":"none",

 "cutoff1":10000,"cutoff2":0},

 "ch4":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"lpf-butterworth","filter2":"none",

 "cutoff1":10000,"cutoff2":0},

 "ch5":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"lpf-butterworth","filter2":"none",

 "cutoff1":10000,"cutoff2":0},

 "ch6":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"lpf-butterworth","filter2":"none",

 "cutoff1":10000,"cutoff2":0},

 "ch7":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"none", "filter2":"none"},

 "ch8":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"none", "filter2":"none"},

 "ch9":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"none", "filter2":"none"},

 "ch10":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"none", "filter2":"none"},

 "ch11":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"none", "filter2":"none"},

 "ch12":{"range":"-10-10v","scaleup":30000, "scalelow":-30000, "offset":0,

 "filter1":"none", "filter2":"none"}

}

Table 3.9 shows the digital output values when scaling is disabled.

Table 3.9 Initial scaling settings for high-speed data acquisition modules

Input signal range Digital output value

-10 to 10 V -20000 to 20000

0 to 10 V 0 to 20000

1 to 5 V 2000 to 10000

-5 to 5 V -10000 to 10000

-2.5 to 2.5 V -5000 to 5000

Note

For details on the high-speed data acquisition module, refer to “High-speed Data
Acquisition Module (F3HA06-1R, F3HA12-1R)” (IM 34M06G02-02E).

 3-14

TI 34M06T02-02E Mar. 31, 2021-00

3.3.6 Temperature monitoring module
The setting format for a temperature monitoring module is shown below.

{

 "unit":unit number, "slot":slot number, "modid":"module ID",

 "freq":"output synchronization channel",

 "ch1 ":{"in":"input signal type","rh":upper limit of the measurement range,"rl":lower limit of the

measurement range,

 "sh":scaling upper limit,"sl":scaling lower limit,"sdp":scaling decimal point position},

 ...,

 "ch4":{}

}

Table 3.10 shows the settings for the temperature monitoring module.
Enclose a string in "" and specify a number directly.

Table 3.10 Settings for the temperature monitoring module (JSON)

Key (string) Value Required* Remarks

"unit" 0 to 7 Yes Specifies the position of insertion.

"slot" 1 to 16 Yes Specifies the position of insertion.

"modid"

"CX04"

Yes

Specifies four (uppercase alphabetic) letters of the
model name of an I/O module (F3CX), with the
string F3 removed.
It is used, together with the unit and slot keys, to
check the module.

"freq" "50hz"
"60hz"

Specifies the frequency of the power supply.
The default value is "50hz".

"ch1" to "ch4" -- Sets an object for the channel.

"in"

"k-200-1370c"
"k-200-1000c"
"k-200-500c"
"j-200-1200c"
"j-200-500c"
"t-270-400c"
"b0-1600c"
"s0-1600c"
"r0-1600c"
"n-200-1300c"
"e-270-1000c"
"l-200-900c"
"u-200-400c"
"w0-1600c"
"p0-1390c"
"jpt-200-500c"
"jpt-200-200c"
"jpt0-300c"
"jpt0-150c"
"pt-200-850c"
"pt-200-500c"
"pt-200-200c"
"pt0-300c"
"pt0-150c"
"0-10mv"
"0-100mv"
"0-1v"
"0-5v"
"1-5v"
"0-10v"

Specifies the output range.
The default value is "k-200-1370c".
Thermocouple K (-200 to 1370)
Thermocouple K (-200 to 1000)
Thermocouple K (-200 to 500)
Thermocouple J (-200 to 1200)
Thermocouple J (-200 to 500)
Thermocouple T (-270 to 400)
Thermocouple B (0 to 1600)
Thermocouple S (0 to 1600)
Thermocouple R (0 to 1600)
Thermocouple N (-200 to 1300)
Thermocouple E (-270 to 1000)
Thermocouple L (-200 to 900)
Thermocouple U (-200 to 400)
Thermocouple W (0 to 1600)
Thermocouple Platinel (0 to 1390)
RTD JPt (-200 to 500)
RTD JPt (-200 to 200)
RTD JPt (0 to 300)
RTD JPt (0 to 150)
RTD Pt (-200 to 850)
RTD Pt (-200 to 500)
RTD Pt (-200 to 200)
RTD Pt (0 to 300)
RTD Pt (0 to 150)
0 to 10 mV
0 to 100 mV
0 to 1 V
0 to 5 V
1 to 5 V
0 to 10 V

* Required key

 3-15

TI 34M06T02-02E Mar. 31, 2021-00

- Setting example
{

 "unit":0, "slot":7,"modid":"CX04",

 "freq":"50hz",

 "ch1":{"in":"k-200-500c"},

 "ch2":{"in":"k-200-1000c"},

 "ch3":{"in":"k-200-500c"},

 "ch4":{"in":"k-200-1000c"}

}

Table 3.11 shows the input ranges and digital output values of the temperature
monitoring module.

Table 3.11 Output values of the temperature monitoring module

Input signal range Digital output value

Thermocouple K (-200 to 1370) -2000 to 13700

Thermocouple K (-200 to 1000) -2000 to 10000

Thermocouple K (-200 to 500) -2000 to 5000

Thermocouple J (-200 to 1200) -2000 to 12000

Thermocouple J (-200 to 500) -2000 to 5000

Thermocouple T (-270 to 400) -2700 to 4000

Thermocouple B (0 to 1600) 0 to 16000

Thermocouple S (0 to 1600) 0 to 16000

Thermocouple R (0 to 1600) 0 to 16000

Thermocouple N (-200 to 1300) -2000 to 13000

Thermocouple E (-270 to 1000) -2700 to 10000

Thermocouple L (-200 to 900) -2000 to 9000

Thermocouple U (-200 to 400) -2000 to 4000

Thermocouple W (0 to 1600) 0 to 16000

Thermocouple Platinel (0 to 1390) 0 to 13900

RTD JPt (-200 to 500) -2000 to 5000

RTD JPt (-200 to 200) -2000 to 2000

RTD JPt (0 to 300) 0 to 3000

RTD JPt (0 to 150) 0 to 15000

RTD Pt (-200 to 850) -2000 to 8500

RTD Pt (-200 to 500) -2000 to 5000

RTD Pt (-200 to 200) -2000 to 2000

RTD Pt (0 to 300) 0 to 3000

RTD Pt (0 to 150) 0 to 15000

0-10mv 0 to 1000

0-100mv 0 to 1000

0-1v 0 to 1000

0-5v 0 to 5000

1-5v 1000 to 5000

0-10v 0 to 1000

 3-16

TI 34M06T02-02E Mar. 31, 2021-00

Note

For details on the module specifications, refer to “Temperature Monitoring Module”
(IM 34M06H63-01E).

 4-1

TI 34M06T02-02E Mar. 31, 2021-00

4. F3HA12 data acquisition service
This chapter describes the features and usage of the F3HA12 data acquisition
service.

4.1 Functional overview
The F3HA12 data acquisition service runs the data acquisition feature of a
high-speed data acquisition module (F3HA06/F3HA12) in the background.
In general, data acquisition with the high-speed data acquisition module
requires monitoring data being accumulated in the module, reading the
accumulated data from the module, and keeping on doing the previous steps
periodically. The F3HA12 data acquisition service is fully responsible for
accessing the high-speed data acquisition module and provides users with
the acquired data.

Note

For the details on the module specifications, refer to “High-speed Data Acquisition
Module (F3HA06-1R, F3HA12-1R)” (IM 34M06G02-02E).

 4-2

TI 34M06T02-02E Mar. 31, 2021-00

4.2 Usage
The F3HA12 data acquisition service is provided as a daemon managed by
systemd. Systemd is a utility platform for daemon management designed for
Linux. Using the systemctl command, you can configure services to start or
stop and whether they are run automatically on startup.

4.2.1 Working with the daemon
With the systemctl command, you can work with the ert3dgsd daemon. It performs
the following actions on the systemd commands.

Note

The user that has root privilege can use “systemctl” command. When you use it, use
“sudo” command or switch to root user with “su” command.

 Start the data acquisition daemon

With the start command, you can start the data acquisition daemon manually. Start
the daemon for data acquisition to prepare for it. Start the data acquisition itself.

systemctl start ert3dgsd

 Stop the data acquisition daemon

With the stop command, you can stop the daemon.

systemctl stop ert3dgsd

 Restart the data acquisition daemon

With the restart command, you can stop and start the daemon. Use this command
when you modify the setting file and then reapply it to the I/O module.

systemctl restart ert3dgsd

 Enable or disable the data acquisition daemon on startup

With the enable or disable command, you can enable or disable the execution of the
daemon on startup. If the daemon is enabled on startup with the enable command,
the I/O module is configured when the power is turned on according to the setting
file.
Similarly, the disable command is used to disable the execution of it on startup.

systemctl enable ert3dgsd

 4-3

TI 34M06T02-02E Mar. 31, 2021-00

systemctl disable ert3dgsd

 Check the status of the data acquisition daemon

With the status command, you can view the log output from the daemon.

systemctl status ert3dgsd

4.2.2 Data acquisition
This subsection provides an overview of data acquisition.
After starting the F3HA12 data acquisition service, you configure F3HA12, start data
acquisition, and then obtain the acquired data.

User program

Start the F3HA12 data
acquisition service

(manually or automatically)

Configure F3HA12
(module configuration service)

Start data acquisition

Get acquired data

Perform arithmetic processing
with acquired data, etc.

Stop data acquisition

Need more processing?

Turn on the power

Stop the F3HA12 data
acquisition service

(manually or automatically)

Exit the system

yes

no

Figure 4.1 Flowchart of data acquisition

The F3HA12 data acquisition service consists of a thread to acquire data from the
high-speed data acquisition module and a data server to provide acquired data for
the user.

 4-4

TI 34M06T02-02E Mar. 31, 2021-00

Once started, the service performs the initial operations for the high-speed data
acquisition module and the data server and waits for a data acquisition start
command from the user.
The user can configure F3HA12 by using the IO module configuration service
described in Chapter 3. With this configuration, the user can specify the data
acquisition cycle, the channel from which the data is acquired, and analog input
settings (such as the range, scale, and whether filters are used).

The user starts or stops data acquisition and obtains the acquired data through the
API.
When data acquisition is started, the service accumulates the data in the internal
buffer and assigns a data number (1 origin) on a scan basis. A scan is a unit of data
acquired by an F3HA module. Acquired data is stored in the internal buffer
tightly on a single scan basis. For example, if channels 1, 2, and 6 are active,
channel 1 data, channel 2 data, and channel 6 data are stored and then channel 1
data with the next data number is stored. The size of data for one channel is 2
bytes.
The internal buffer is a ring buffer of which size is 100000 scans.

Ch1 data Ch2 data Ch6 data

Data number n

Ch1 data Ch2 data Ch6 data

Data number n+1

... Ch1 data Ch2 data Ch6 data

Data number n+...

1 scan

2 bytes

Figure 4.2 Stored data when channels 1, 2, and 6 are enabled

Once data acquisition is stopped, the data number is assigned from 1 when it is
started again.

Using the API to obtain acquired data, the user gets the data held by the service
from the data server. The acquisition buffer stores the data tightly as shown in the
figure above. Use an offset value based on the data number and the number of data
acquisition targets to access the necessary data.

Note

For details on the configuration of F3HA12, refer to “3. e-RT3 I/O module
configuration service”.

 4-5

TI 34M06T02-02E Mar. 31, 2021-00

4.3 API
This section shows the information of the API functions as a user interface
provided by the F3HA12 data acquisition service.

Table 4.1 API list

Class Feature Function name
Management Initialize API resources LEDG_open

Release API resources LEDG_close
Configuration Get a data acquisition target LEDG_getHaGathering
Control Start data acquisition LEDG_startHaDataGathering

Stop data acquisition LEDG_stopHaDataGathering
Data acquisition Get the data number of acquired data LEDG_getHaDataNo

Get acquired data LEDG_getHaData

 Management

 LEDG_open
Feature Initialize API resources

Format bool LEDG_open(LEDG_OPEN_MODE mode, int unit, int slot);

Description This function initializes resources used internally by the API functions.

All the API functions become available by specifying
“LEDG_OPEN_MODE_READWRITE” for the “mode” argument.
The API functions for getting configuration and getting acquired data become available by
specifying “LEDG_OPEN_MODE_READ” for the “mode” argument.
(The API functions related to configuration change and control are not available.)

Argument mode Open mode

LEDG_OPEN_MODE_READWRITE: Readable and
writable
LEDG_OPEN_MODE_READ: Readable

 unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value true Successful
 false Failed

 LEDG_close
Feature Release API resources

Format void LEDG_close(void);

Description This function releases resources used internally by the API functions.

 Configuration

 LEDG_getHaGathering
Feature Get a data acquisition target

Format unsigned long

LEDG_getHaGathering(bool enableChannels [12], bool* enableCounter);

Description This function gets whether or not analog input channels and the counter are the data

acquisition target (active/inactive).

 4-6

TI 34M06T02-02E Mar. 31, 2021-00

enableChannels[0]: Whether or not channel 1 is the data acquisition target
enableChannels[1]: Whether or not channel 2 is the data acquisition target
...
enableChannels[11]: Whether or not channel 12 is the data acquisition target
The total number of bytes of data acquisition target data is returned as a return value.

One point of an analog input channel is 2 bytes of data and the counter is 4 bytes.
For example, the return value when the analog input channels for five points are active is
10.

Argument enableChannels A pointer to store the Boolean array that indicates

whether the acquisition channel is active or inactive.
true: Active
false: Inactive

 enableCounter A pointer to store the Boolean variable that indicates
whether the counter acquisition is active or inactive.
true: Active
false: Inactive

Return value ULONG_MAX Error
 Other than the above The number of bytes per scan (0 to 28)

 Control

 LEDG_ startHaDataGathering
Feature Start data acquisition

Format bool LEDG_startHaDataGathering(void);

Description This function starts data acquisition.

When data acquisition is started, the function accumulates the data in the internal buffer
and assigns a data number (1 origin) on a scan basis. A scan is a unit of data acquired by
an F3HA module. The size of data per scan varies depending on the number of data
acquisition targets.
Once data acquisition is stopped, the data number is assigned from 1 when it is started
again.

Return value true Successful
 false Failed

 LEDG_ stopHaDataGathering
Feature Stop data acquisition

Format bool LEDG_stopHaDataGathering(void);

Description This function stops data acquisition.

 Data acquisition

 LEDG_getHaDataNo
Feature Get the data number of acquired data

Format bool LEDG_getHaDataNo (long long* oldestNo, long long* newestNo,

 HA_ERR_STS* acqLastErr);

Description This function gets the data number (1 origin) of the data being acquired.

It gets the oldest and latest data numbers of data held by the service when the API
function is called.

 4-7

TI 34M06T02-02E Mar. 31, 2021-00

Argument oldestNo The oldest data number of the data to be acquired. If the

data does not exist, -1 is returned. (If it is unnecessary,
NULL is passed.)

 newestNo The latest data number of the data to be acquired. If the
data does not exist, -1 is returned. (If it is unnecessary,
NULL is passed.)

 acqLastErr Final data acquisition error status

Return value true Successful
 false Failed

 LEDG_getHaData
Feature Get acquired data

Format bool LEDG_getHaData (long long reqFromNo, long long reqToNo,

 unsigned char* buf, unsigned long numOfBuff,
 long long* realFromNo, long long* realToNo,
 HA_ERR_STS* acqLastErr);

Description This function gets acquired data from reqFromNo to reqToNo in the buffer.

You need to ensure that the data acquisition buffer has space larger than the size
obtained by multiplying the number of scans acquired by LEDG_getHaGathering by
numOfBuff.
Acquired data is stored tightly on a single scan basis. For example, if channels 1, 2, and
6 are active, channel 1 data with the realFromNo number is stored in the 0th byte of the
offset in the buffer, channel 2 data with the same number in the 2nd byte of the offset,
channel 6 data with the same number in the 4th byte of the offset, and then channel 1
data with the next data number in the 8th byte of the offset, and so on.
The data numbers actually acquired are stored in realFromNo and realToNo depending
on the number of buffers and the status of the data held by the service.

Argument reqFromNo The start number of data to be requested. If the

specified data number does not exist, the data from the
oldest is returned.

 reqToNo The last number of data to be requested. If the specified
data number does not exist, the data up to the latest is
returned. (The data up to the latest is returned if
LLONG_MAX is specified.)

 buf Buffer for data acquisition
 numOfBuff The number of buffers ready
 realFromNo The start data number of the data actually acquired is

returned.
 realToNo The latest data number of the data actually acquired is

returned.
 acqLastErr Final data acquisition error status

Return value ULONG_MAX Error
 Other than the above The number of scans of acquired data

 5-1

TI 34M06T02-02E Mar. 31, 2021-00

5. Application development with
Python
This chapter describes how to create a development environment of Python
applications with Visual Studio Code and Jupyter Notebook.

Visual Studio Code is a free source code editor with development tools of
code completion, debugging, and more. It allows you to easily add or remove
source files on F3RP70-2L and edit various settings such as debug
configurations, making it possible to carry out flexible development.

Jupyter Notebook is an open source application in which you can view, run,
and edit document files called a notebook through web browser.
It provides features, such as stepwise execution in the unit of operations
called a cell and easy drawing of graphs, helping you develop your
applications quickly.

 5-2

TI 34M06T02-02E Mar. 31, 2021-00

5.1 Development method
Figure 5.1 shows the configuration of the development environment for
Python applications.

Local machine e-RT3

F3RP70

Figure 5.1 Configuration of the application development environment

In the development of your application, the local machine communicates with
e-RT3 through a browser or SSH connection. Therefore, you need to connect
your machine to F3RP70-2L with an Ethernet cable.

The COM port on F3RP70-2L is used for the Linux console. Using Linux shell
commands, you can create files, modify F3RP70-2L settings, check the
operating status, and more.
Table 5.1 lists serial setting of F3RP70-2L

Table 5.1 Serial setting of F3RP70-2L

Item value
Baud rate 115,200bps
Data length 8bit
Stop bit 1bit
Parity bit None
Flow control none

 5-3

TI 34M06T02-02E Mar. 31, 2021-00

5.2 Remote development with Visual Studio
Code

5.2.1 Overview
Visual Studio Code is a free source code editor with development tools of code
completion, debugging, and more. It allows you to easily add or remove source files
on F3RP70-2L and edit various settings such as debug configurations, making it
possible to carry out flexible development.

This section describes how to create the remote development environment with
Visual Studio Code and how to use it. In application development, you (1) upload
source code, (2) run a program on F3RP70-2L, and then (3) attach to a process and
debug it. The details of each step are as follows:

(1) Upload source code
Using an SFTP extension of Visual Studio Code, upload source code on the local
machine to F3RP70-2L.

(2) Run the program
Connect to F3RP70-2L from Visual Studio Code through an SSH connection and
run the program on F3RP70-2L.

(3) Attach to a process and debug it
Attach to the process that is running on F3RP70-2L from Visual Studio Code and
perform debug on the local machine.

Local machine e-RT3

Source code Source code

Upload

Visual Studio Code

Edit

Python extension

SFTP

Process

Run the program
SSH connection

Attach and debug

Opened port

Figure5.2 Remote development with Visual Studio Code

 5-4

TI 34M06T02-02E Mar. 31, 2021-00

5.2.2 Environment creation procedure

 Installing Visual Studio Code

Install Visual Studio Code in your local machine.

1. Access the following URL to download Visual Studio Code:
https://code.visualstudio.com/

Figure 5.3 Installation of Visual Studio code -1

2. Installing Visual Studio Code
Run the exe file you downloaded to install Visual Studio Code.
Select [I accept the agreement] and then click [Next].

Figure 5.4 Installation of Visual Studio code -2

 5-5

TI 34M06T02-02E Mar. 31, 2021-00

Click [Next].

Figure 5.5 Installation of Visual Studio code -3

Click [Next].

Figure 5.6 Installation of Visual Studio code -4

 5-6

TI 34M06T02-02E Mar. 31, 2021-00

Select the [Create a desktop icon] check box and then click [Next].

Figure 5.7 Installation of Visual Studio code -5

Click [Install].

Figure 5.8 Installation of Visual Studio code -6

 5-7

TI 34M06T02-02E Mar. 31, 2021-00

Click [Finish] to finish the installation.

Figure 5.9 Installation of Visual Studio code -7

 Installing the extensions

Install two extensions: the Python extension, which is used to debug Python
applications on the local machine, and the SFTP extension, which is used to upload
source code on the local machine to F3RP70-2L.

From the menu on the left, select the [Extensions] icon and type “python” in the
search field. From the search results, select [Python] and install it.

Figure 5.10 Installation of extension -1

 5-8

TI 34M06T02-02E Mar. 31, 2021-00

Similarly, type “sftp” in the search field and install the SFTP extension.

Figure 5.11 Installation of extension -2

After the installation is complete, restart Visual Studio Code for the settings to take
effect.

 Creating a workspace folder

1. Creating a workspace folder on F3RP70-2L.
Create workspace folder on F3RP70-2L.

Starts the Visual Studio Code, then Click [Terminal] - [New Terminal] and open a
terminal.

Figure 5.12 Creating workspace folder -1

 5-9

TI 34M06T02-02E Mar. 31, 2021-00

Terminal is shown in bottom pane.

Figure 5.13 Creating workspace folder -2

Connect to F3RP70-2L as “ert3” user.

Figure 5.14 Creating workspace folder -3

When you connect to F3RP70-2L at first time, following message is displayed. Input
“Yes” and press “Enter” key.

Figure 5.15 Creating workspace folder -4

 5-10

TI 34M06T02-02E Mar. 31, 2021-00

Input password of “ert3” user, and log in.

Figure 5.16 Creating workspace folder -5

Figure 5.17 Creating workspace folder -6

Create workspace folder in any directory. In this manual as an example, input below
command and create workspace folder in home directory of “ert3”.

$ mkdir /home/ert3/workspace

 5-11

TI 34M06T02-02E Mar. 31, 2021-00

Figure 5.18 Creating workspace folder -7

2. Creating a workspace folder on local machine.
Create workspace folder in any directory of local machine. In this manual as an
example, create workspace folder in desktop.

Figure 5.19 Creating workspace folder -8

 Configuring SFTP

Configure the settings for uploading source code on the local machine to e-RT3.

1. Open the workspace folder to Visual Studio Code.

Click [File] - [Add Folder to Workspace].

Figure 5.20 Setting of SFTP -1

 5-12

TI 34M06T02-02E Mar. 31, 2021-00

Open the workspace folder you created on the local machine.

Figure 5.21 Setting of SFTP -2

2. Configure SFTP.

Click [View] - [Command Palette] to open the command palette. In the search field,
type “sftp config” and then click [SFTP: Config].

Figure 5.21 Setting of SFTP -3

Fill out the following items and save the settings.

 5-13

TI 34M06T02-02E Mar. 31, 2021-00

Figure 5.23 Setting of SFTP -4

The descriptions of the items and values are as follows:
 name

Specifies the connection name displayed on Visual Studio Code.

 host
Specifies the IP address of F3RP70-2L.

 protocol
Specifies the protocol of file transferring.

 port
Specifies the port number of F3RP70-2L used for file transferring.

 username
Specifies the user name of F3RP70-2L.

 password
Specifies the password of F3RP70-2L user.

 remote Path
Specifies a workspace folder of F3RP70-2L.

 uploadOnSave
Specify whether to automatically upload when saving the file.

 ignore
Specify a file and folder not to upload.

In the menu on the left, click the [SFTP] icon and check the folder in e-RT3. Check
that “ert3_workspace” is displayed.

 5-14

TI 34M06T02-02E Mar. 31, 2021-00

Figure 5.24 Setting of SFTP -5

 Configuring Launch

Edit “Launch.json” to set up the debug configuration.

Select the “.vscode” folder and click the [New File] button to create the “launch.json”
file.

Figure 5.25 Setting of launch -1

Fill out the following items and save the settings.

 5-15

TI 34M06T02-02E Mar. 31, 2021-00

Figure 5.26 Setting of Launch -2

The descriptions of the items and values are as follows:
 name

Specifies the name of setting.

 type
Specifies the type of setting.

 request
Specifies the request of setting.

 port
Specifies the port number of F3RP70-2L used for communication.

 host
Specifies the IP address of F3RP70-2L.

 localRoot
Specifies the workspace of the local machine. ${fileDirname} is a variable that
indicates the path to the file currently open in the editor.

 remoteRoot
Specifies the workspace of F3RP70-2L. ${relativeFileDirname} is a variable
that indicates the relative path to the directory of the file currently open in the
editor. The starting point of the relative path is the workspace folder of the local
machine.

 5-16

TI 34M06T02-02E Mar. 31, 2021-00

5.2.3 Usage

 Creating the project folder and source file

Select [workspace] and click the [New Folder] button to create the “project” folder.

Figure 5.27 Creating project folder and source file -1

Select the “project” folder and click the [New File] button to create the “test.py” file.

Figure 5.28 Creating project folder and source file -2

Note

Place the source file directly under the project folder.

 5-17

TI 34M06T02-02E Mar. 31, 2021-00

 Creating and uploading a program

1. Create a program.

Open “test.py” and write the following source code in it.

Figure 5.29 Creating and uploading a program -1

2. Upload the source code.
Right-click the “project” folder and click [Sync Local -> Remote] to upload the source
code to the workspace of F3RP70-2L.

Figure 5.30 Creating and uploading a program -2

 5-18

TI 34M06T02-02E Mar. 31, 2021-00

Click the [SFTP] icon, select the “ert3_workspace” folder, and click the [Refresh]
button. Check that the source code is added to the workspace of F3RP70-2L.

Figure 5.31 Creating and uploading a program -3

 Running and debugging the program

1. Running the program on F3RP70-2L.
Connect to F3RP70-2L with SSH, execute the program, and wait for attachment
from the debugger on the local machine.

Click [Terminal] – [New Terminal], open the terminal and connect to F3RP70-2L as
“ert3” user using SSH.

Figure 5.32 Running and debugging the program -1

 5-19

TI 34M06T02-02E Mar. 31, 2021-00

Move to the directory containing the source file “test.py” to execute.

Figure 5.33 Running and debugging the program -2

Input the command below and execute “test.py” and wait for attachment from the
debugger on the local machine.

$ python3 -m ptvsd -–host 0.0.0.0 -–port 5678 -–wait test.py

Figure 5.34 Running and debugging the program -3

2. Attaching from debugger of local machine.
Attach the process running on F3RP70-2L from debugger of local machine.
Open the “test.py” source file on the local machine and put a breakpoint at any
place.
Click the [Debug] icon and then click the [Start Debugging] button.

Figure 5.35 Running and debugging the program -4

 5-20

TI 34M06T02-02E Mar. 31, 2021-00

The program stops at the breakpoint after attaching the program running on
F3RP70-2L.

Figure 5.36 Running and debugging the program -5

You can see the output in the terminal.

Figure 5.37 Running and debugging the program -6

 Removing the file

Remove the file on F3RP70-2L and local machine.

 Removing the file from local machin

Click the file icon to view the file on local machine. And then right click on the
file and click [Delete].

 5-21

TI 34M06T02-02E Mar. 31, 2021-00

Figure 5.38 Removing the file -1

 Removing the file from F3RP70-2L
Click the file icon to view the file on F3RP70-2L. And then right click on the file
and click [Delete].

Figure 5.39 Removing the file -2

 5-22

TI 34M06T02-02E Mar. 31, 2021-00

5.3 Remote development with Jupyter
Notebook

5.3.1 Overview
Jupyter Notebook is an open source application in which you can view, run, and edit
document files called a notebook.
It provides features, such as stepwise execution in the unit of operations called a
cell and easy drawing of graphs, helping you develop your applications quickly.

This section describes how to configure and start a Jupyter Notebook server on
F3RP70-2L and how to access the Jupyter Notebook server from the local machine
through a Web browser. The user edits the notebook in F3RP70-2L through the Web
browser on the local machine for development.

Local machine e-RT3

Web browser

Jupyter
Notebook server

Access

Figure 5.40 Remote development with Jupyter Notebook

 5-23

TI 34M06T02-02E Mar. 31, 2021-00

5.3.2 Environment creation procedure
Configure Jupyter Notebook that has been installed in e-RT3.

 Configuring Jupyter Notebook

Create a configuration file.
Example:

ert3@ubuntu:~$ jupyter notebook --generate-config

Configure the password required when you access Jupyter Notebook from the local
machine.
Example:

ert3@ubuntu:~$ jupyter notebook password

Enter password: //Enter the password.

Verify password: //Enter the password again.

 5-24

TI 34M06T02-02E Mar. 31, 2021-00

5.3.3 Usage

 Starting Jupyter Notebook and accessing it from a Web browser

1. Start Jupyter Notebook.
Example:

ert3@ubuntu:~$ jupyter notebook --ip='*' --no-browser

2. Access the following URL in the Web browser of the local machine:
https://192.168.3.72:8888/

Note

Secure communication can be performed using SSL. Please refer to the Jupyter
Notebook official document for details.
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html

A login screen appears.
Enter the password you specified to log in.

Figure 5.41 Starting Jupyter Notebook and access from web browser -1

Note

When you can't log in, try to delete your browser cache.

 5-25

TI 34M06T02-02E Mar. 31, 2021-00

The following screen appears.

Figure 5.42 Starting Jupyter Notebook and access from web browser -2

 Creating a folder

Click the [New] button to show the drop-down list and click [Folder].

Figure 5.43 Creating folder -1

Select the check box for [Untitled Folder] you created and then click [Rename]
displayed above it.

Figure 5.44 Creating folder -2

 5-26

TI 34M06T02-02E Mar. 31, 2021-00

 Type a given folder name and click the [Rename] button.

Figure 5.45 Creating folder -3

 Creating a notebook

Click the [New] button to show the drop-down list and click [Python3].

Figure 5.46 Creating notebook -1

A new notebook appears in the browser.

Figure 5.42 Creating notebook -2

 5-27

TI 34M06T02-02E Mar. 31, 2021-00

 Coding

In this subsection as an example, you create a program that shows the elements of
a list and draws a scatter diagram.

Import the “matplotlib” package, which is required to draw the scatter diagram.

Figure 5.48 Coding -1

Click [insert cell below] and write code to declare and show a list.

Figure 5.49 Coding -2

 5-28

TI 34M06T02-02E Mar. 31, 2021-00

Click the [Run] button to run the code in the cell and show the result.

Figure 5.50 Coding -3

In a new cell, write code that draws a scatter diagram.

Figure 5.51 Coding -4

 5-29

TI 34M06T02-02E Mar. 31, 2021-00

Run the top cell and then run the bottom cell to draw the scatter diagram.

Figure 5.52 Coding -5

Note

You must run the top cell first as the bottom cell uses matplotlib.pyplot.

Note

If you want to run all cells from top to bottom, select the [Cell] menu to show the
drop-down list and click [Run All].

Figure 5.53 Coding -6

 Exiting Jupyter Notebook

In the F3RP70-2L console, press the [Ctrl] + [C] keys to exit Jupyter Notebook.

 5-30

TI 34M06T02-02E Mar. 31, 2021-00

5.4 How to access the M3IO module
You can configure the M3IO module and perform data I/O by running C/C++
library functions. This section describes how to call C/C++ library functions
from Python.

5.4.1 Input output data of IO module
Input / output data of the IO module is read /written from /to the device (relay,
register) of the module. The position of the device is specified by the unit, slot and
device number in the module. A unit is the smallest unit of the system. The usual
unit number is 0. When expanding IO, up to 7 unit (unit numbers 1 to 7) can be
added. The slot number represents the position of the module within the unit. From
the right next to the power supply module, take a value from 1 to 16. The device
number in the module start from 1 and the number varies depending on the module.
Generally, input / output data is allocated from device number 1. For example, the
data of channel 1 of the analog input module reads and writes the device number 1,
and the data of channel 4 reads and writes the device number 4.

Note

 For details on the specifications of the system configuration, refer to “e-RT3
CPU Module (SFRD2) BSP Common Function Manual (IM 34M06M52-02E)”.

 For details on each module, refer to the manual of each modules.

For modules supported by the IO Module Configuration Service, the service
executes the settings in the module so that the user program can be completed only
by reading and writing I / O data. The module devices and library functions used are
shown below.

Table 5.2 Device of module and access API

Module type Module model Device
type

IO Data
Number API

Digital input
F3XD08-□□

relay

1〜8
Read by 1bit：readM3InRelayP
Read by 16bit：readM3InRelay

F3XD16-□□ 1~16
F3XD32-□□ 1~32
F3XD64-□□ 1~64

Digital outpu

F3YD04-□□ 1~4
Write by 1bit：writeM3OutRelayP
Write by 16bit：writeM3OutRelay
Read by 16 bit：readM3OutRelay

F3YD08-□□ 1~8
F3YD14-□□ 1~14
F3YD32-□□ 1~32
F3YD64-□□ 1~64

Analog input
F3AD04-5R

register

1~4
Read by 16bit：readM3IoRegister F3AD08-5R 1~8

F3AD08-6R 1~8
F3AD08-4R 1~8

Analog output F3DA04-6R 1~4 Write by 16bit：writeM3IoRegister
Read by 16bit：readM3IoRegister F3DA08-5R 1~8

High speed data
acquisition

F3HA06-1R 1~6 Use API described in chapter4
For reading of immediate data:
Read by 16bit：readM3IoRegister F3HA12-1R 1~12

Temperature
monitor F3CX04-0N 1~4 1 点単位読出：readM3IoRegister

 5-31

TI 34M06T02-02E Mar. 31, 2021-00

5.4.2 Calling C/C++ library functions from Python
ctypes is a software module that provides C-compatible data types. To access the
IO module from Python, use ctypes to convert Python variables into appropriate
types and call functions in the library. The following shows some examples.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

 Reading data from a XD module (1bit)

The program below reads data from relay number 1 of the XD module inserted into
slot 2 of unit 0.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(2)

Relay number

c_pos = ctypes.c_int(1)

Create a short-type array for the buffer to store read data

short-type array with 1 element

short_arr= ctypes.c_uint16 * 1

create arry

c_data = short_arr()

Call the library function

libc.readM3InRelayP(c_unit, c_slot, c_pos, c_data)

The specification of the readM3InputRelayP function is:
int readM3InputRelayP (int unit, int slot, int pos, unsigned short *data);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 5-32

TI 34M06T02-02E Mar. 31, 2021-00

 Reading data from a XD module (16bit)

The program below reads data from relay number 1 to 32 of the XD module inserted
into slot 2 of unit 0.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(2)

Relay number

c_pos = ctypes.c_int(1)

Number of read block（1 block equals to 16 points）

c_num = ctypes.c_int(2)

Create a short-type array for the buffer to store read data

short-type array with 4 element

short_arr = ctypes.c_uint16 * 4

create array

c_data = short_arr()

Call the library function

libc.readM3InRelay(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the readM3IuptRelay function is:
int readM3InputRelay (int unit, int slot, int pos, int num, unsigned short data[4]);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 Writing data to a YD module (1bit)

The program below write data from relay number 1 of the YD module inserted into
slot 3 of unit 0.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

 5-33

TI 34M06T02-02E Mar. 31, 2021-00

Slot

c_slot = ctypes.c_int(3)

Relay number

c_pos = ctypes.c_int(1)

data for writing

c_data = ctypes.c_uint16(1)

Call the library function

libc.writeM3OutRelayP(c_unit, c_slot, c_pos, c_data)

The specification of the writeM3OutRelayP function is:
int writeM3OutRelay (int unit, int slot, int pos, unsigned short *data);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 Writing data to a YD module (16bit)

The program below write data from relay number 1 to 32 of the YD module inserted
into slot 3 of unit 0.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

Convert Python variables into the int type

Slot

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(3)

Relay number

c_pos = ctypes.c_int(1)

Write blocks （1 block equals to 16 points）

c_num = ctypes.c_int(2)

Create a short-type array for the buffer to store write data

short_arr = ctypes.c_uint16 * 4

Writing data

data = [0xffff, 0xffff]

c_data = short_arr(*data)

Data mask

mask = [0xffff, 0xffff]

c_mask = short_arr(*mask)

Call the library function

libc.writeM3OutRelay(c_unit, c_slot, c_pos, c_num, c_data, c_mask)

 5-34

TI 34M06T02-02E Mar. 31, 2021-00

The specification of the writeM3OutRelay function is:
int writeM3OutRelay (int unit, int slot, int pos, int num, unsigned short data[4],
unsigned short mask[4]);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 Reading data from a YD module (16bit)

The program below read data from relay number 1 to 32 of the YD module inserted
into slot 3 of unit 0.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(3)

Relay number

c_pos = ctypes.c_int(1)

Read blocks （1block equals to 16 points）

c_num = ctypes.c_int(2)

Create a short-type array for the buffer to store read data

short-type array with 4 element

short_arr = ctypes.c_uint16 * 4

create array

c_data = short_arr()

Call the library function

libc.readM3OutRelay(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the readM3OutRelay function is:
Int readM3OutRelay (int unit, int slot, int pos, int num, unsigned short data[4]);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 5-35

TI 34M06T02-02E Mar. 31, 2021-00

 Writing data to a DA module

The program below writes 6000 into register number 1 of the DA module inserted
into slot 4 of unit 0. Channel 1 of the DA module carries a voltage of 3 volts.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(4)

register number

c_pos = ctypes.c_int(1)

Write points

c_num = ctypes.c_int(1)

Create a short-type array for the buffer to store write data

python array to be converted

data = [6000]

short-type array with 1 element

short_arr = ctypes.c_short * 1

Convert python array into a short-type array

c_data = short_arr(*data)

Call the library function

libc.writeM3IoRegister(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the writeM3IoRegister function is:
int writeM3IoRegister(int unit, int slot, int pos, int num, unsigned short *data);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 Reading data from the AD module

The program below reads data from register number 1 of the AD module inserted
into slot 5 of unit 0.

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libm3.so.1")

 5-36

TI 34M06T02-02E Mar. 31, 2021-00

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(5)

Register number

c_pos = ctypes.c_int(1)

Read points

c_num = ctypes.c_int(1)

Create a short-type array for the buffer to store read data

short-type array with 1 element

short_arr = ctypes.c_short * 1

create array

c_data = short_arr()

Call the library function

libc.readM3IoRegister(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the readM3IoRegister function is:
int readM3IoRegister(int unit, int slot, int pos, int num, unsigned short *data);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

 Reading data from the high-speed data acquisition module

The program below reads data from register number 1 of the high-speed data
acquisition module inserted into slot 3 of unit 0. Store ert3dgc.pu and
ha_access_sample.py in the same directory and execute ha_access_sample.py.

Note

Before using high-speed data acquisition module, you have to configure a module
using F3HA12 data acquisition service and e-RT3 IO configuration service.
For details of each services, see chapter 3 and 4 of this document.

ert3dgc.py

__version__ = ‘1.1.1-00’

import ctypes

Load the library

libc = ctypes.cdll.LoadLibrary("/usr/local/lib/libert3dgc.so.1")

LONGLONG_MAX = 0x7fffffffffffffff

 5-37

TI 34M06T02-02E Mar. 31, 2021-00

initialize API resource mode 0:read-write 1:read only

def open_ha(mode=0, unit=0, slot=2):

 # Load library function

 LEDG_open = libc.LEDG_open

 # Specifies type of return value.

 LEDG_open.restype = ctypes.c_bool

 # Convert Python variables into the int type

 c_mode = ctypes.c_int32(mode)

 c_unit = ctypes.c_int32(unit)

 c_slot = ctypes.c_int32(slot)

 # Initialize API resource，return true/false

 return LEDG_open(c_mode, c_unit, c_slot)

Release API resource

def close_ha():

 LEDG_close = libc.LEDG_close

 # Release API resource

 LEDG_close()

Get the data number of acquired data

def get_hadatano():

 LEDG_getHaDataNo = libc.LEDG_getHaDataNo

 LEDG_getHaDataNo.restype = ctypes.c_bool

 c_oldestno = ctypes.c_int64(-1)

 c_newestno = ctypes.c_int64(-1)

 c_acq_lasterr = ctypes.c_int32(-1)

 # Get the data number of acquired data

 LEDG_getHaDataNo(ctypes.byref(c_oldestno), ctypes.byref(c_newestno),

ctypes.byref(c_acq_lasterr))

 # Return oldest，newest data number and error status

 return c_oldestno.value, c_newestno.value, c_acq_lasterr.value

Create buffer for data acquisition

def create_buffer(bytes_per_scan, num_of_buff):

 buf = ctypes.c_byte * (bytes_per_scan * num_of_buff)

 return buf()

Get acquired data

def get_hadata(c_buf, num_of_buff, fromno=0, tono=LONGLONG_MAX):

 5-38

TI 34M06T02-02E Mar. 31, 2021-00

 c_req_fromno = ctypes.c_int64(fromno)

 c_req_tono = ctypes.c_int64(tono)

 c_num_of_buff = ctypes.c_int32(num_of_buff)

 c_real_fromno = ctypes.c_int64(-1)

 c_real_tono = ctypes.c_int64(-1)

 c_acq_lasterr = ctypes.c_int32(-1)

 LEDG_getHaData = libc.LEDG_getHaData

 LEDG_getHaData.restype = ctypes.c_uint32

 # Get acquired data

 scan_num = LEDG_getHaData(c_req_fromno, c_req_tono, c_buf, c_num_of_buff,

ctypes.byref(c_real_fromno), ctypes.byref(c_real_tono),

ctypes.byref(c_acq_lasterr))

 # Return number of scan, start data number, end data number, error status

 return scan_num, c_real_fromno.value, c_real_tono.value, c_acq_lasterr.value

Get data acquisition target

def get_hagathering():

 # Create a boot-type srray with 12 elements

 boolarr12 = ctypes.c_bool * 12

 c_enable_channels = boolarr12()

 # Convert python variable into bool-type

 c_enable_counter = ctypes.c_bool(False)

 LEDG_getHaGathering = libc.LEDG_getHaGathering

 LEDG_getHaGathering.restype = ctypes.c_uint32

 #Get data acquisition target

 bytes_per_scan = LEDG_getHaGathering(c_enable_channels,

ctypes.byref(c_enable_counter))

 # Return number of bytes per a scan, valid of acquisition channel, valid of

counter

 return bytes_per_scan, [ch for ch in c_enable_channels],

c_enable_counter.value

Start data acquisition

def start_ha():

 LEDG_startHaDataGathering = libc.LEDG_startHaDataGathering

 LEDG_startHaDataGathering.restype = ctypes.c_bool

 # Start data acquisition，return true/false

 return LEDG_startHaDataGathering()

 5-39

TI 34M06T02-02E Mar. 31, 2021-00

Stop data acquisition

def stop_ha():

 LEDG_stopHaDataGathering = libc.LEDG_stopHaDataGathering

 # Stop data acquisition

 LEDG_stopHaDataGathering()

ha_access_sample.py

import time

import numpy as np

import ert3dgc

def main():

 # Open as read mode

 ert3dgc.open_ha(mode=0, unit=0, slot=3)

 # get number of bytes per a scan and valid of chnannel

 bytes_per_scan, channels, _ = ert3dgc.get_hagathering()

 # Get the number of valid channel

 ch_num = channels.count(True)

 # Definition of buffer for data acquisition

 num_of_buff = 100000

 buf = ert3dgc.create_buffer(bytes_per_scan, num_of_buff)

 # Start acquisition

 ert3dgc.start_ha()

 # Wait for data

 time.sleep(1)

 # Get oldest, newest data number

 oldestno, newestno, _ = ert3dgc.get_hadatano()

 # Get acquisition data from oldest to newest

 scan_num, _, _, _ = ert3dgc.get_hadata(buf, num_of_buff, fromno=oldestno,

tono=newestno)

 # Get data form buffer

 data = np.frombuffer(buf, dtype='int16', count=scan_num*ch_num)

 # Stop acquisition

 ert3dgc.stop_ha()

 5-40

TI 34M06T02-02E Mar. 31, 2021-00

 # Close

 ert3dgc.close_ha()

 return

if __name__ == "__main__":

 main()

 5-41

TI 34M06T02-02E Mar. 31, 2021-00

5.5 Sample program

This is a sample to detect anomalies using One Class SVM. Use the data
collected from CH1 and CH2 of HA as input. In learning, features are extracted
from the collected data to create a model. In prediction, the feature amount is
extracted from the collected data and compared with the model to determine
whether the data is normal or abnormal.

MLsample
├ert3dgc.py A program to access an I/O module
├feature.py A program to extract features
├drawGraph.py A program to draw a graph
├training.y A program to perform training
├prediction.py A program to make predictions
└prediction_continuous.py A program to make predictions continuously

Each program is as follows:
 ert3dgc.py

Program for access high-speed data acquisition module.

 feature.py
It is a program that extracts the feature amount from the collected data. In this
sample, the average value of the size of the collected data is used as the
feature value.

 draw_graph.py
It is a program that draws the features used for learning and the boundaries
that distinguish between normal and abnormal values. Figure 5.54 shows an
example of the drawn graph.

 training.py
This is a program that uses the collected data for learning. The collected data is
divided into a fixed number of pieces, feature extraction is performed for each,
and learning is performed based on the obtained feature quantities to
determine the discrimination boundaries that determine whether normal or
abnormal.

 prediction.py
It is a program that collects data at regular intervals and makes predictions.
The collected data is divided into fixed numbers and feature extraction is
performed for each, and the obtained feature values are compared with the
model obtained by learning to determine whether they are normal or abnormal.

 5-42

TI 34M06T02-02E Mar. 31, 2021-00

 predicition_continuous.py

It is a program that continuously collects data and makes predictions. As soon
as data for one prediction is accumulated, feature extraction is performed, and
the obtained feature amount is compared with the model obtained by learning
to determine whether it is normal or abnormal.

Figure 5.54 example, graph of model (blue point: feature, red line: discrimination boundaries)

Note

Before using high-speed data acquisition module, you have to configure a module
using F3HA12 data acquisition service and e-RT3 IO configuration service.
For details of each services, see chapter 3 and 4 of this document.

 Usage

1. Place the “MLsample” folder in a given directory in F3RP70-2L
2. Execute training.py for learning.

ert3@ubuntu:~/workspace/MLsample$ python3 training.py

3. Execute prediction.py for prediction.

For stop the program, press “Ctrl” + “C” key.

ert3@ubuntu:~/workspace/MLsample$ python3 prediction.py

Execute prediction_continuous.py for prediction for prediction of continuous

 5-43

TI 34M06T02-02E Mar. 31, 2021-00

data.

ert3@ubuntu:~/workspace/MLsample$ python3 prediction_continuous.py

 Source code

ert3dgc.py
See chapter 5.4.2

feature.py

#MLsample version 1.1.1-00

import numpy as np

Feature extraction rawdata: acquired data, ch_num: number of channel, data_size:

numberof data for learning or prediction

def feature_extraction(rawdata, ch_num, data_size):

 # Divide acquired data into data of channel every DATA_SIZE

 # chdataset:3D array(number of learning orprediction) × (number of channel) ×

(number of data for learning or predition)

 chdataset = rawdata.reshape(-1, data_size, ch_num).transpose(0, 2, 1)

 # Calculate the average value of the data of learning or prediction data every

channel

 #feature: 2D array(number of data for learning or prediction) × (number of

channels)

 feature = [[calc_aveamp(ch) for ch in data] for data in chdataset]

 return feature

Average of absolute values of array values

def calc_aveamp(data):

 data = np.array(data)

 data = list(np.abs(data))

 return sum(data)/len(data)

draw_graph.py

#MLsample version 1.1.1-00

import numpy as np

import matplotlib

matplotlib.use("Agg")

import matplotlib.pyplot as plt

Draw graph

def draw_graph(data, model):

 5-44

TI 34M06T02-02E Mar. 31, 2021-00

 data=np.array(data)

 # create mesh grid

 x1min, x1max = data[:, 0].min()-1, data[:, 0].max()+1

 x2min, x2max = data[:, 1].min()-1, data[:, 1].max()+1

 xx1, xx2 = np.meshgrid(np.linspace(x1min, x1max, 500),np.linspace(x2min,

x2max, 500))

 Z = model.decision_function(np.array([xx1.ravel(), xx2.ravel()]).T)

 Z = Z.reshape(xx1.shape)

 # Draw contour lines

 plt.contourf(xx1, xx2, Z, alpha=0.4)

 # Draw discrimination boundary

 plt.contour(xx1, xx2, Z, levels=[0], linewidths=2, colors='darkred')

 # Draw data

 plt.scatter(data[:, 0], data[:, 1])

 # Save picture

 plt.savefig("graph.png")

training.py

#MLsample version 1.1.1-00

import time

import pickle

import numpy as np

from sklearn import svm

import ert3dgc

from feature import feature_extraction

from draw_graph import draw_graph

DATA_NUM = 100 # Number of learning data

DATA_SIZE = 1000 # Number of learning data

GATHER_NUM = DATA_SIZE * DATA_NUM # Number of acquired data

def main():

 # Open read-write mode

 print("open = ", ert3dgc.open_ha(mode=0, unit=0, slot=3))

 # Get number of bytes per a scan

 bytes_per_scan, _, _ = ert3dgc.get_hagathering()

 # Get number of valid channels

 5-45

TI 34M06T02-02E Mar. 31, 2021-00

 ch_num = bytes_per_scan // 2

 # Definition of buffer for acquired data

 buf = ert3dgc.create_buffer(bytes_per_scan, GATHER_NUM)

 # Start data acquisition

 print("start = ", ert3dgc.start_ha())

 # Get newest data number

 _, newestno, _ = ert3dgc.get_hadatano()

 # Wait for data

 while newestno + 1 < GATHER_NUM:

 time.sleep(1)

 _, newestno, _ = ert3dgc.get_hadatano()

 # Get data of which size is GATHER_NUM

 scan_num, _, _, _ = ert3dgc.get_hadata(buf, GATHER_NUM, fromno=newestno-

GATHER_NUM+1)

 # Get acquired data from buffer

 data = np.frombuffer(buf, dtype='int16', count=scan_num*ch_num)

 # learning

 training(data, ch_num)

 # Stop data acquisition

 ert3dgc.stop_ha()

 print("stop")

 # Close

 ert3dgc.close_ha()

 print("close")

def training(rawdata, ch_num):

 # feature extraction

 feature = feature_extraction(rawdata, ch_num, DATA_SIZE)

 # learning

 clf = svm.OneClassSVM(nu=0.1, kernel="rbf")

 clf.fit(feature)

 # Save model

 pickle.dump(clf, open("model.pickle", 'wb'))

 # Draw graph

 5-46

TI 34M06T02-02E Mar. 31, 2021-00

 draw_graph(feature, clf)

if __name__ == "__main__":

 main()

prediction.py

#MLsample version 1.1.1-00

import time

import pickle

import numpy as np

import ert3dgc

from feature import feature_extraction

CLF = pickle.load(open("model.pickle", 'rb'))# Read model

DATA_NUM = 10 # Number of prediction data for 1 batch

DATA_SIZE = 1000 # Number of acquired data for 1 prediction

GATHER_NUM = DATA_SIZE * DATA_NUM # Number of acquired data

def main():

 # Open as read-write mode

 print("open = ", ert3dgc.open_ha(mode=0, unit=0, slot=3))

 # Get number of bytes per a scan

 bytes_per_scan, _, _ = ert3dgc.get_hagathering()

 # Get number of valid channels

 ch_num = bytes_per_scan // 2

 # Definition of buffer for acquired data

 buf = ert3dgc.create_buffer(bytes_per_scan, GATHER_NUM)

 # Start data acquisition

 print("start = ", ert3dgc.start_ha())

 # Get newest data number

 _, newestno, _ = ert3dgc.get_hadatano()

 # Wit for data

 while newestno + 1 < GATHER_NUM:

 time.sleep(1)

 _, newestno, _ = ert3dgc.get_hadatano()

 try:

 while True:

 5-47

TI 34M06T02-02E Mar. 31, 2021-00

 # Get newest data number

 _, newestno, _ = ert3dgc.get_hadatano()

 # Get data of which size is GATHER_NUM

 scan_num, _, _, _ = ert3dgc.get_hadata(buf, GATHER_NUM,

fromno=newestno-GATHER_NUM+1)

 # Get acquired data from buffer

 data = np.frombuffer(buf, dtype='int16', count=scan_num*ch_num)

 # Prediction

 prediction(data, ch_num)

 # interval for prediction

 time.sleep(1)

 except KeyboardInterrupt:

 # Stop data acquisition

 ert3dgc.stop_ha()

 print("stop")

 # Close

 ert3dgc.close_ha()

 print("close")

 return

def prediction(rawdata, ch_num):

 # feature extraction

 feature = feature_extraction(rawdata, ch_num, DATA_SIZE)

 # Prediction

 y_pred_test = CLF.predict(feature)

 n_outlier_test = y_pred_test[y_pred_test == -1].size

 # Number of prediction data

 print("number of test data: ", len(y_pred_test))

 # Number of errors

 print("number of outliers: ", n_outlier_test)

 print("")

if __name__ == "__main__":

 main()

prediction_continuous.py

#MLsample version 1.1.1-00

import pickle

 5-48

TI 34M06T02-02E Mar. 31, 2021-00

import numpy as np

import ert3dgc

from feature import feature_extraction

CLF = pickle.load(open("model.pickle", 'rb'))# Read model

DATA_SIZE = 1000 # Number of acquired data for 1 prediction

NUM_OF_BUFF = 100000 # Size of buffer for acquired data

def main():

 # Open as read-write mode

 print("open = ", ert3dgc.open_ha(mode=0, unit=0, slot=3))

 # Get number of bytes per a scan

 bytes_per_scan, _, _ = ert3dgc.get_hagathering()

 # Get number of valid channels

 ch_num = bytes_per_scan // 2

 # Definition of buffer for acquired data

 buf = ert3dgc.create_buffer(bytes_per_scan, NUM_OF_BUFF)

 # Start data acquisition

 print("start = ", ert3dgc.start_ha())

 try:

 # Start data acquisition number

 req_fromno = 0

 # FIFO

 queue = np.array([])

 while True:

 # Get data from “req_from” to latest

 scan_num, real_fromno, real_tono, _ = ert3dgc.get_hadata(buf,

NUM_OF_BUFF, fromno=req_fromno)

 # If you cannot get expected data

 if req_fromno < real_fromno:

 # Initialize queue

 queue = np.array([])

 print("WARNING: some data lost")

 # Get data from buffer

 queue = np.append(queue, np.frombuffer(buf, dtype='int16',

count=scan_num*ch_num))

 # Enough data is stored

 5-49

TI 34M06T02-02E Mar. 31, 2021-00

 while len(queue) >= (DATA_SIZE*ch_num):

 # Get the top element and remove from the queue

 data = queue[:DATA_SIZE*ch_num]

 queue = queue[DATA_SIZE*ch_num:]

 # Prediction

 prediction(data, ch_num)

 # When you can get some data

 if scan_num > 0:

 # add 1 to real_tono for next request number

 req_fromno = real_tono + 1

 except KeyboardInterrupt:

 # Stop data acquisition

 ert3dgc.stop_ha()

 print("stop")

 # Close

 ert3dgc.close_ha()

 print("close")

 return

def prediction(rawdata, ch_num):

 # Feature extraction

 feature = feature_extraction(rawdata, ch_num, DATA_SIZE)

 # Prediction

 y_pred_test = CLF.predict(feature)

 n_outlier_test = y_pred_test[y_pred_test == -1].size

 # Number of prediction data

 print("number of test data: ", len(y_pred_test))

 # Number errors

 print("number of outliers: ", n_outlier_test)

 print("")

if __name__ == "__main__":

 main()

 6-1

TI 34M06T02-02E Mar. 31, 2021-00

6. Application development with
C/C++

6.1 Host development with F3RP70-2L
This Ubuntu image has the build-essential package for the armhf architecture
installed as a build toolchain for C/C++ programs.
This section describes how to build and execute a program on F3RP70-2L
using this toolchain.

6.1.1 Usage

 Preparations

To transfer source files to F3RP70-2L, install WinSCP on the local machine.
1. Access the following URL to download WinSCP:
https://winscp.net/eng/download.php

Figure 6.1 Installation of WinSCP -1

 6-2

TI 34M06T02-02E Mar. 31, 2021-00

2. Run the file you downloaded to install WinSCP.

Click [Install for all users].

Figure 6.2 Installation of WinSCP -2

Click [Yes].

Figure 6.3 Installation of WinSCP -3

 6-3

TI 34M06T02-02E Mar. 31, 2021-00

Click [Accept].

Figure 6.4 Installation of WinSCP -4

Select [Typical installation] and click [Next].

Figure 6.5 Installation of WinSCP -5

 6-4

TI 34M06T02-02E Mar. 31, 2021-00

Click [Next].

Figure 6.6 Installation of WinSCP -6

Click [Install].

Figure 6.7 Installation of WinSCP -7

 6-5

TI 34M06T02-02E Mar. 31, 2021-00

The installation is now started.

Figure 6.8 Installation of WinSCP -8

Click [Finish].

Figure 6.9 Installation of WinSCP -9

 6-6

TI 34M06T02-02E Mar. 31, 2021-00

3. Configure the connection settings.
Fill out the [Host name], [User name], and [Password] fields and click [Login].

Figure 6.10 Installation of WinSCP -10

Click [Yes].

Figure 6.11 Installation of WinSCP -11

 6-7

TI 34M06T02-02E Mar. 31, 2021-00

The directories on the local machine are displayed on the left side and the
directories in F3RP70-2L on the right side.

Figure 6.12 Installation of WinSCP -12

 Creating source code

Create “HelloWorld.c” in a given directory on the local machine and write the
following code:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

 return 0;

}

 6-8

TI 34M06T02-02E Mar. 31, 2021-00

In WinSCP, drag “HelloWorld.c” and drop it into the home directory (“/home/ert3/”) of
the ert3 user, and click [OK].

Figure 6.13 Installation of WinSCP -13

Check that “HelloWorld.c” is added to the home directory.

Figure 6.14 Installation of WinSCP -14

 6-9

TI 34M06T02-02E Mar. 31, 2021-00

 Building and running the source code

In the console, go to the home directory of the ert3 user and run the following
command to build the code:

ert3@ubuntu:~$ arm-linux-gnueabihf-gcc -o HelloWorld HelloWorld.c

Run the following command to execute the program and check the output.

ert3@ubuntu:~$./HelloWorld

Hello World!

6.1.2 Using the e-RT3 -specific API functions
API functions to access the e-RT3 I/O module are provided.
The library is stored in “/usr/local/lib” and the header files are “/usr/local/include/ert3”.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

 7-1

TI 34M06T02-02E Mar. 31, 2021-00

7. Overlay Filesystem
This chapter describes the functions and usage of the Overlay Filesystem
(OverlayFS) addon software option for Ubuntu. By working with OverlayFS
enabled, you can reduce negative effects on the system of unexpected power
failures.

Note

This function is included in the F3RP70 Ubuntu image R1.2.1 and later. To find the
revision of your Ubuntu image, see 2.2.1, “Specifications of the Ubuntu image” in
this document.

 7-2

TI 34M06T02-02E Mar. 31, 2021-00

7.1 Overview
7.1.1 OverlayFS overview

OverlayFS consists of 3 files systems: a lower-layer, upper-layer, and merged
upper-lower layer file system. The lower layer is a read-only file system that resides
on the F3RP70-2L’s SD memory card. This is the file system on which Ubuntu is
loaded, and from which Ubuntu reads.

The upper layer and merged upper-lower layer file systems reside on a RAM disk on
the F3RP70, and any changes made in the file system (e.g. file add/edit/delete) after
bootup of Ubuntu are made to the upper layers only, leaving the lower layer
unmodified. That is why it is protected from power interruptions. For a more detailed
explanation, see section 7.2.

 Target

OverlayFS is useful for the following.
 To prevent negative effects on the system of unexpected power interruptions
 To prevent changes of the default operating environment

See also the operating precautions in section 7.4.

7.1.2 Overview of procedures
The following are the major steps involved in preparing to use OverlayFS. For
details, see section 7.3.

Figure. 7.1 Preparation for, and use of OverlayFS

Prepare Operating Environment

Configure OverlayFS

Operation start

Clear OverlayFS settings

If the operating env.
needs modify

Start

 7-3

TI 34M06T02-02E Mar. 31, 2021-00

7.2 Description of OverlayFS

 Features

 Power interruption resistance
Prevents negative effects on the system due to unexpected power interruptions
that the shutdown process cannot address.

 Same operation as usual
Enabling OverlayFS does not affect normal operations.

 Simple
Enabling/disabling setting can be done with just a parameter change.

 Description

The following describes each of the three file systems.
 Lower layer

This is the core OverlayFS file system. The contents prepared when OverlayFS
disabled (i.e. normal startup) are configured as the lower layer.

 Upper layer
This file system records the difference from the lower layer after startup.

 Merged upper-lower layer
This file system merges the lower and upper layers, and in normal operation the
user sees the merged directory.

OverlayFS places these three layers from bottom to top in the order: lower, upper,
merged. Thus, the user sees the merged file system at the top, and operates the
F3RP70 without being aware of the layering. Changes to files or directories (e.g.
add/edit/delete) are made in the upper level that is visible to the user, but the original
lower level remains unchanged. Therefore, turning off the power or restarting
Ubuntu will return the system to the state prior to the change.

Note that in the case of the F3RP70-2L, the lower, read-only layer resides on the SD
memory card, whereas the upper and merged upper-lower file systems are loaded
into the RAM disk. Because of this, no unexpected writing to the SD card occurs.
This is how negative effects on the original system from unexpected power
interruptions are prevented. However, if there is information that you want to save,
you need to create a separate storage location.

Note

Operation with OverlayFS is optional and can be selected according to the
customer's environment. By default, OverlayFS is disabled and Ubuntu starts as
normal.

 7-4

TI 34M06T02-02E Mar. 31, 2021-00

7.3 Enter settings
This section describes the OverlayFS setting procedure in detail.

 Development environment
Items required for development and equipment configuration are the same as for
serial console connection in "2.4.2 Procedure of log in to Ubuntu" in this document.
Before starting Ubuntu, there are tasks to perform from the bootloader.

As some work requires root privileges, enable the sudo command according to the
procedure in 2.4.3, “Enable the sudo command."

7.3.1 Preparing the operating environment
As explained in section 7.1, OverlayFS is built based on the lower layer file system.
First, we will prepare the environment that we want to be the base.

1. Start Ubuntu

Follow the procedure in chapter 2 to create the SD memory card for startup, and
start Ubuntu on the F3RP70-2L.

2. Prepare functions required for operation

OverlayFS is disabled upon initial startup, so you can proceed with your
development work as usual (installing packages, creating and placing
executables, and so on).

3. Update initramfs

initramfs is a file that is loaded when launching Ubuntu, and is required for
startup. When each function is ready, run the following command and update
initrd.img-xxxxxx in the /boot directory. The placeholder "xxxxxx" corresponds
to the kernel version and is referenced by the uname -r command.

$ sudo update-initramfs -u

4. Update initrd.img

Convert initramfs created in step 3 to initrd.img in a format that can be read by
U-Boot installed in F3RP70-2L.

To create initrd.img from initramfs, regenerate initrd.img from the new
initramfs as shown in the following command. This completes preparation of
the operating environment.

$ sudo mkimage -A arm -O linux -T ramdisk -C none -n "/boot/initrd.img-$(uname -

r)" -d /boot/initrd.img-$(uname -r) /boot/initrd.img

 7-5

TI 34M06T02-02E Mar. 31, 2021-00

7.3.2 Configuring OverlayFS
When the operating environment is ready, enable OverlayFS and configure it for
startup.

1. Edit /boot/ert3Env

Edit the settings file for u-boot environmental variables /boot/ert3Env. Open the
settings file, add the last line as "kuopt=’overlayroot=tmpfs’", and then save
and close the file.

$ sudo vi /boot/ert3Env

kernel image filename

kfile=vmlinuz-4.14.164-rt73-ert3xlnx

...

autorun=yes

kuopt=’overlayroot=tmpfs’

2. Restart Ubuntu.

If you restart and log in, a message appears indicating that OverlayFS is
enabled.

tmpfs-root /media/root-rw tmpfs rw,relatime 0 0

overlayroot / overlay rw,relatime,lowerdir=/media/root-ro,upperdir=/media/root-

rw/overlay,workdir=/media/root-rw/overlay-workdir/_ 0 0

/dev/mmcblk0p2 /media/root-ro ext4 ro,relatime,data=ordered 0 0

You can also use other commands to display mount information.

Note

Some service errors may appear in the Ubuntu startup message, but there is no
significant operational impact. For details, see the operational precautions in section
7.4.

7.3.3 Clearing OverlayFS settings
When you want to disable OverlayFS to return to normal startup, use the following
procedure.

1. Disable OverlayFS temporally.

Execute “overlayroot-chroot” command to enable writing to the SD memory
card.

 7-6

TI 34M06T02-02E Mar. 31, 2021-00

$ sudo overlayroot-chroot

INFO: Chrooting into [/media/root-ro]

2. Edit /boot/ert3Env

Edit the settings file for u-boot environmental variables /boot/ert3Env. Open the
settings file, remove or comment out the last line "kuopt=’overlayroot=tmpfs’"
added in the previous section 7.3.2 and then save and close the file.

$ sudo vi /boot/ert3Env

kernel image filename

kfile=vmlinuz-4.14.164-rt73-ert3xlnx

...

autorun=yes

#kuopt=’overlayroot=tmpfs’

3. Return to enable OverlayFS.

Execute “exit” command to return to enable OverlayFS.

exit

4. Restart Ubuntu.

If you restart and log in, OverlayFS is disabled and starts as normal.

 7-7

TI 34M06T02-02E Mar. 31, 2021-00

7.4 Usage precautions
The following are precautions when operating with OverlayFS. Please read
this document before use.

 Saving data

While operating with OverlayFS, data cannot be saved to the SD memory card
containing the Ubuntu image. If you acquire data during operation that you want to
save after turning off or restarting, you must prepare another device, such as a
separate SD memory card. When the SD memory card is inserted into the F3RP70-
2L, slot 1 is recognized as /dev/mmcblk0, and slot 2 is recognized as
/dev/mmcblk1. Mount it to the appropriate directories. For example, format the SD
card inserted into slot 2 in ext4 format and mount it as follows.

$ sudo mkdir /media/sd

$ sudo mkfs -t ext4 /dev/mmcblk1

$ sudo mount /dev/mmcblk1 /media/sd

Remove the mount before removing the SD card or turning off the F3RP70-2L.

$ sudo umount /media/sd

Note

OverlayFS does not affect any data storage area that you prepare for retaining when
the power is turned off or the system is restarted. Therefore, be sure not to turn off
the power when writing to this storage area. Also, format the SD memory card only
for the first time.

 Capacity

When starting with OverlayFS enabled, the merged upper-lower layer file system
and the upper layer file system are created in tmpfs format on the RAM disk. For the
F3RP70-2L, the maximum capacity of the tmpfs format is 512 MB by default, and
the total volume of the tmpfs file system is 512 MB. You can check the currently
used capacity with the df command as follows. Ensure that the totals of “Used” of
tmpfs and tmpfs-root at “Filesystem” do not exceed 512MB.

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

udev 500820 0 500820 0% /dev

tmpfs 102732 4132 98600 5% /run

/dev/mmcblk0p2 3444992 1449116 1801164 45% /media/root-ro

tmpfs-root 513644 103920 409724 21% /media/root-rw

overlayroot 513644 103920 409724 21% /

 7-8

TI 34M06T02-02E Mar. 31, 2021-00

tmpfs 513644 20 513624 1% /dev/shm

tmpfs 5120 0 5120 0% /run/lock

tmpfs 513644 0 513644 0% /sys/fs/cgroup

tmpfs 102728 0 102728 0% /run/user/1000

 Starting systemd-tmpfiles-setup.service

When starting with OverlayFS enabled, the systemd-tmpfiles-setup.service fails to
start, and the storage location of the journald log changes from its normal
/var/log/journal and its subdirectories to /run/log/journal and its subdirectories.
The following errors are displayed at startup.

[FAILED] Failed to start Create Volatile Files and Directories.

See 'systemctl status systemd-tmpfiles-setup.service' for details.

Failure to start systemd-tmpfiles-setup.service can be avoided by renaming or
deleting /var/log/journal. Remove of delete it after clearing OverlayFS settings, if you
need. Below is an example of a rename.

mv /var/log/journal /var/log/journal.old

Note that, regardless of enabling/disabling countermeasures, starting with
OverlayFS enabled, the journald log is saved within /run/log/journal. Note,
however, that if starting with OverlayFS disabled, if there is no /var/log/journal, the
log is saved in /run/log/journal, and log disappears if the power is turned off.

 A1-1

TI 34M06T02-02E Mar. 31, 2021-00

Appendix1. I/O Module Access Library
This section contains information on user interface APIs for accessing e-RT3
IO module.

A1.1 List of APIs

Table A1.1 List of APIs

Category Subcategory Feature Function name
I/O module Device

access
Read from the input relay in blocks readM3InRelay
Read from the input relay readM3InRelayP
Read from the output relay in blocks readM3OutRelay
Write to the output relay in blocks writeM3OutRelay
Write to the output relay writeM3OutRelayP
Read 16-bit data from the I/O register readM3IoRegister
Read 8-bit data from the I/O register readM3IoRegisterB
Read 32-bit data from the I/O register readM3IoRegisterL
Write 16-bit data to the I/O register writeM3IoRegister
Write 8-bit data to the I/O register writeM3IoRegisterB
Write 32-bit data to the I/O register writeM3IoRegisterL

Mode
configuration

Read from the mode register readM3IoModeRegister
Write to the mode register writeM3IoModeRegister

Input relay
interrupt

Enable interrupts (in all points) enableM3IoIrq
Enable interrupts (in one point) enableM3IoIrqP
Disable interrupts (in one point) disableM3IoIrqP

Module
information

Get the module ID getM3IoName
Get the mapping address of the I/O space getM3IoMapAdr
Get the mapping size of the I/O space getM3IoMapSize
Get the offset address of the I/O space in the
I/O register

getM3IoDRegAdr

Get the size of the I/O space in the I/O
register

getM3IoDRegSize

Get the offset address of the I/O space in the
input relay

getM3IoXAdr

Get the size of the I/O space in the input relay getM3IoXSize
Get the offset address of the I/O space in the
output relay

getM3IoYAdr

Get the size of the I/O space in the output
relay

getM3IoYSize

CPU module Device
access

Read from the CPU device readM3CpuDevice
Read from the CPU relay device readM3CpuDeviceP
Write to the CPU device writeM3CpuDevice
Write to the CPU relay device writeM3CpuDeviceP

Signal
notification

Enable signal reception enableM3CpuSignal
Disable signal reception disableM3CpuSignal
Send signals sendM3CpuSignal

CPU
information

Get the CPU number getM3CpuNumber
Get the CPU type getM3CpuType
Read from the CPU-shared memory readM3CpuMemory
Write to the CPU-shared memory writeM3CpuMemory

PLC device Local device Set local device assignment information setM3InternalDataTable
Get local device assignment information referM3InternalDataTable
Read from the internal relay in blocks readM3InternalRelay
Read from the internal relay readM3InternalRelayB
Write to the internal relay in blocks writeM3InternalRelay
Write to the internal relay writeM3InternalRelayB
Read 16-bit data from the data register readM3InternalRegister
Write 16-bit data to the data register writeM3InternalRegister

Shared
device

Set shared device assignment information setM3SharedDataConfig
Get shared device assignment information referM3SharedDataConfig
Read from the (extended) shared relay in
blocks

readM3SharedRelay

Read from the (extended) shared relay readM3SharedRelayB

 A1-2

TI 34M06T02-02E Mar. 31, 2021-00

Write to the (extended) shared relay in blocks writeM3SharedRelay
Write to the (extended) shared relay writeM3SharedRelayB
Read 16-bit data from the (extended) shared
register

readM3SharedRegister

Write 16-bit data to the (extended) shared
register

writeM3SharedRegister

Link device Set link device assignment information setM3LinkDeviceConfig
Get link device assignment information referM3LinkDeviceConfig
Read from the link relay in blocks readM3LinkRelay
Read from the link relay readM3LinkRelayB
Write to the link relay in blocks writeM3LinkRelay
Write to the link relay writeM3LinkRelayB
Read 16-bit data from the link register readM3LinkRegister
Write 16-bit data to the link register writeM3LinkRegister

System
administration

Library
management

Get the library version getM3LibVersion

LED indicator Set the state of the RUN LED setM3RunLed
Get the state of the RUN LED getM3RunLed
Set the state of the ALM LED setM3AlmLed
Get the state of the ALM LED getM3AlmLed
Set the state of the ERR LED setM3ErrLed
Get the state of the ERR LED getM3ErrLed
Set the state of the U1 LED setM3U1Led
Get the state of the U1 LED getM3U1Led
Set the state of the U2 LED setM3U2Led
Get the state of the U2 LED getM3U2Led
Set the state of the U3 LED setM3U3Led
Get the state of the U3 LED getM3U3Led
Get the state of the MODE switch getM3ModeSwitch
Get the battery level getM3BatteryPower

Logging Write a system log message writeM3log
Clear all system logs cleanM3log

RAS System
operation

System reset setM3Reset
Failure output setM3FailOutput

System
monitoring

Sub-unit transmission route diagnosis getM3FailSubunit
CPU module diagnosis getM3FailCpu

Alarm
notification

Enable high CPU temperature detection enableM3HeatIrq
Enable momentary power failure detection enableM3PowerIrq

WDT Timer
operation

Get the WDT bindM3Wdt
Release the WDT releaseM3Wdt
Clear the WDT cleanM3Wdt
Start the WDT startM3Wdt
Stop the WDT stopM3Wdt

Mode
configuration

Set the WDT timeout period setM3WdtTimeout
Set the WDT operating mode setM3WdtMode
Get the WDT operating mode getM3WdtMode

 A1-3

TI 34M06T02-02E Mar. 31, 2021-00

A1.2 List of API error codes
This section contains information on error codes specific to APIs.

Table 4.2 List of error codes

Macro name Error
code

Description

S_m3io_MODULE_NOT_FOUND 257 No module is mounted in the specified slot.
S_m3io_INVALID_UNIT 258 The specified unit number is out of range.
S_m3io_INVALID_SLOT 259 The specified slot number is out of range.
S_m3io_INVALID_NUMBER 260 The specified parameter is out of range.
S_m3io_INVALID_FUNC 261 An unexpected IOCTL code was specified.
S_m3io_INVALID_MODULE 262 An unsupported IOCTL code was specified.
S_m3io_DMA_ERROR 263 DMA communication failed.
S_m3io_BUS_ERROR_NR 264 An I/O bus failure occurred.
S_m3io_BUS_ERROR_BR 265 An I/O bus failure occurred.
S_m3io_BUS_ERROR_RDP 266 An I/O bus failure occurred.
S_m3io_BUS_ERROR_MF 267 An I/O bus failure occurred.
S_m3io_BUS_ERROR_DT 268 An I/O bus failure occurred.
S_m3io_INTERNAL_ERROR 357 An internal error occurred.
S_m3cpu_MODULE_NOT_FOUND 157 No module is mounted in the specified slot.
S_m3cpu_INVALID_UNIT 158 The specified unit number is out of range.
S_m3cpu_INVALID_SLOT 159 The specified slot number is out of range.
S_m3cpu_INVALID_NUMBER 160 The specified parameter is out of range.
S_m3cpu_INVALID_FUNC 161 An unexpected IOCTL code was specified.
S_m3cpu_INVALID_MODULE 162 An unsupported IOCTL code was specified.
S_m3cpu_TIMEOUT_ERROR 163 A CPU module does not respond.
S_m3cpu_INTERNAL_ERROR 166 An internal error occurred.
S_m3dev_INVALID_NUMBER 392 The specified parameter is out of range.
S_m3dev_DEVICE_NOT_FOUND 393 The specified device is not found.
S_m3dev_BOUNDARY_ERROR 396 The device alignment is ignored.
S_m3dev_INVALID_FUNC 397 The specified parameter is out of range.
S_m3dev_INTERNAL_ERROR 398 An internal error occurred.
S_m3ras_LRCHK_ERROR 449 An error was found in the sub-unit transmission route.
S_m3ras_CPUCHK_ERROR 450 An error was found in other CPU.
S_m3ras_BUS_ERROR 459 An I/O bus failure occurred.
S_m3ras_INTERNAL_ERROR 460 An internal error occurred.

When an API function returns an error, an error code is stored in the global
variable errno. To see the error code, include the errno.h header file in the
source code of your application.

 A1-4

TI 34M06T02-02E Mar. 31, 2021-00

A1.3 Receiving interrupts and alarms
Interrupts and alarms work by making use of message queuing (inter-process
communication) on Linux. This section describes how this message queuing
is implemented.

The following table lists the features that use the message queue.

Table 4.3 Features that use the message queue

Category Feature Function name
Input relay interrupt Enable interrupts (in all points) enableM3IoIrq

Enable interrupts (in one point) enableM3IoIrqP
Signal notification Enable signal reception enableM3CpuSignal
Alarm notification Enable high CPU temperature

detection
enableM3HeatIrq

Enable momentary power failure
detection

enableM3PowerIrq

These API functions require a message queue ID as an argument. To get the
message queue ID, use the msgget system call. To set the queue to receive a
message when an event occurs, specify the message queue ID obtained by
the msgget system call for the argument of an API function.
To receive the message in the message queue, use the msgrcv system call.
Specify the type (msgtyp) and data structure (mtext) of the message to be
received for the argument of the msgrcv system call. The following table lists
the type and data structure for the message.

Table 4.4 Type and data structure for the message

Feature msgtyp
macro name (value)

mtext
data structure

Enable interrupts (in all points) M3IO_MSGTYPE_IO (1) M3IO_MSG_IO
Enable interrupts (in one point) M3IO_MSGTYPE_IO (1) M3IO_MSG_IO
Enable signal reception M3CPU_MSGTYPE_SEQ_EVENT (2) M3CPU_MSG_SEQ_EVEN

T
Enable momentary power
failure detection

M3RAS_MSGTYPE_FAIL_EVENT (4) unsigned short

Enable high CPU temperature
detection

M3RAS_MSGTYPE_HEAT_ALARM (5) not used

Note

High CPU temperature detection enables alarm notification when its API function is
called, sending an alarm (message) only once if a failure is detected. It does not
repeatedly send alarms for high temperatures.

 System call

This subsection describes system calls used to receive messages in the message
queue. The following contains excerpts from the Linux manual (MAN).

 A1-5

TI 34M06T02-02E Mar. 31, 2021-00

 msgget
Feature Get a message queue identifier

Synopsis #include <sys/msg.h>

int msgget(key_t key, int msgflg);

Description The msgget system call returns the message queue identifier associated with the value of

the key argument. If key has the value IPC_PRIVATE or key is not IPC_PRIVATE when
no message queue with the given key exists and IPC_CREAT is specified in msgflg, a
new message queue is created.

If msgflg specifies both IPC_CREAT and IPC_EXCL and a message queue already exists
for key, then msgget fails with errno set to EEXIST.

Argument key IPC_PRIVATE /* Private key. */
 msgflg IPC_CREAT /* Create key if key does not exist. */

IPC_EXCL /* Fail if key exists. */
IPC_NOWAIT /* Return error on wait. */

Return value Non-negative integer Successful
 -1 Failed

errno EACCES A message queue exists for key, but the calling process does

not have permission to access the queue, and does not have
the CAP_IPC_OWNER capability.

 EEXIST A message queue exists for key and msgflg specified both
IPC_CREAT and IPC_EXCL.

 ENOENT No message queue exists for key and msgflg did not specify
IPC_CREAT.

 ENOMEM A message queue has to be created but the system does not
have enough memory for the new data structure.

 ENOSPC A message queue has to be created but the system limit for
the maximum number of message queues (MSGMNI) would
be exceeded.

 msgrcv
Feature Operate System V message queues

Synopsis #include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

Description The msgrcv system call is used to receive messages from a System V message queue.

The calling process must have read permission to receive a message.
The msgp argument is a pointer to caller-defined structure of the general form below.
The msgrcv system call removes a message from the queue specified by msqid and
places it in the buffer pointed to by msgp.
The argument msgsz specifies the maximum size in bytes for the member mtext of the
structure pointed to by the msgp argument. If the message text has a length greater than
msgsz, then the behavior depends on whether MSG_NOERROR is specified in msgflg. If
MSG_NOERROR is specified, then the message text will be truncated (and the truncated
part will be lost); if MSG_NOERROR is not specified, then the message is not removed
from the queue and the system call fails returning -1 with errno set to E2BIG.

Structure struct msgbuf {

 long mtype; /* message type, must be > 0 */
 char mtext[1]; /* message data */
};

The mtext field is an array (or other structure) whose size is specified by msgsz, a non-
negative integer value. Messages of zero length (that is, no mtext field) are also
permitted. The mtype field must have a strictly positive integer value. This value can be
used by the receiving process for message selection.

Argument msqid Message queue ID obtained by msgget()
 msgp Pointer to a struct msgbuf buffer in which a message is stored
 msgsz Specifies the maximum size in bytes for the member mtext of

the structure pointed to by the msgp argument.
 msgtyp If it is 0, then the first message in the queue is read.

If it is greater than 0, then the first message in the queue of
type msgtyp is read, unless MSG_EXCEPT was specified in

 A1-6

TI 34M06T02-02E Mar. 31, 2021-00

msgflg. If MSG_EXCEPT is specified, the first message in the
queue of type other than msgtyp will be read.
If it is less than 0, then the first message in the queue with the
lowest type less than or equal to the absolute value of msgtyp
will be read.

 msgflg The argument is a bit mask constructed by ORing together
with zero or more of the following flags:
IPC_NOWAIT /* Return error on wait. */
MSG_NOERROR /* no error if message is too big */
MSG_EXCEPT /* recv any msg except of specified type.*/
MSG_COPY /* copy (not remove) all queue messages */

Return value Non-negative integer Successful (the number of bytes actually copied into the mtext

array is returned.)
 -1 Failed

errno E2BIG The message text length is greater than msgsz and

MSG_NOERROR is not specified in msgflg.
 EACCES The calling process does not have read permission on the

message queue, and does not have the CAP_IPC_OWNER
capability.

 EAGAIN No message was available in the queue and IPC_NOWAIT
was specified in msgflg.

 EFAULT The address pointed to by msgp is not accessible.
 EIDRM While the process was sleeping to receive a message, the

message queue was removed.
 EINTR While the process was sleeping to receive a message, the

process caught a signal.
 EINVAL msgqid was invalid, or msgsz was less than 0. Both

MSG_COPY and MSG_EXCEPT were specified.
Both MSG_COPY and MSG_EXCEPT were specified in
msgflg.

 ENOMSG IPC_NOWAIT was specified in msgflg and no message of the
requested type existed on the message queue.
IPC_NOWAIT and MSG_COPY were specified in msgflg and
the queue contains less than msgtyp messages.

 ENOSYS MSG_COPY was specified in msgflg, and this kernel was
configured without CONFIG_CHECKPOINT_RESTORE.

 Sample code

 Receiving signal notifications from multiple CPUs
#include <stdio.h>

#include <sys/msg.h>

#include "m3lib.h"

int main(int argc, char *argv[])

{

 int msqid;

 struct msgbuf {

 long mtype;

 M3CPU_MSG_SEQ_EVENT mtext;

 } msgp;

 msqid = msgget(IPC_PRIVATE, 0666);

 if (msqid < 0) return -1;

 if (enableM3CpuSignal(2, msqid)) return -1;

 if (enableM3CpuSignal(3, msqid)) return -1;

 A1-7

TI 34M06T02-02E Mar. 31, 2021-00

 if (enableM3CpuSignal(4, msqid)) return -1;

 while(1)

 {

 printf("wait for message\n");

 if (msgrcv(msqid, &msgp, sizeof(M3CPU_MSG_SEQ_EVENT),

 M3CPU_MSGTYPE_SEQ_EVENT, MSG_NOERROR) < 0)

 return -1;

 printf("received message = %lx: slot=%d
data=%04x %c%c%c%c%c%c%c%c\n",

 msgp.mtype,

 msgp.mtext.slot,

 msgp.mtext.data,

 msgp.mtext.sigName[0], msgp.mtext.sigName[1],

 msgp.mtext.sigName[2], msgp.mtext.sigName[3],

 msgp.mtext.sigName[4], msgp.mtext.sigName[5],

 msgp.mtext.sigName[6], msgp.mtext.sigName[7]);

 if (msgp.mtext.slot == 2 && msgp.mtext.data == 100)

 break;

 }

 return 0;

}

 Batch-processing momentary power failure detection and high CPU
temperature detection

#include <stdio.h>

#include <sys/msg.h>

#include "m3lib.h"

int main(int argc, char *argv[])

{

 int msqid;

 struct msgbuf {

 long mtype;

 unsigned short mtext;

 } msgp;

 msqid = msgget(IPC_PRIVATE, 0666);

 if (msqid < 0) return -1;

 if (enableM3HeatIrq(msqid)) return -1;

 if (enableM3PowerIrq(0, msqid)) return -1;

 A1-8

TI 34M06T02-02E Mar. 31, 2021-00

 while(1)

 {

 printf("wait for message\n");

 if (msgrcv(msqid, &msgp, sizeof(unsigned short), 0,
MSG_NOERROR) < 0)

 return -1;

 switch (msgp.mtype)

 {

 case M3RAS_MSGTYPE_FAIL_EVENT:

 printf("blackout fail: starus=%d\n", msgp.mtext);

 break;

 case M3RAS_MSGTYPE_HEAT_ALARM:

 printf("thermal runaway\n");

 break;

 default:

 printf("unknown message\n");

 break;

 }

 }

 return 0;

}

 A1-9

TI 34M06T02-02E Mar. 31, 2021-00

A1.4 How to receive signals (inter-process
communication)
The watch dog timer (WDT) provided by this library has three types of modes,
from which you can select a different timeout operation. One of the modes
contains the software WDT capability, which can send a SIGTERM signal,
defined for Linux inter-process communication, upon timeout. This section
describes how to implement code to receive this signal.

Note

The signaling function for inter-process communication is different from the signal
notification. The signal notification can synchronize operations among CPU modules
in the multi-CPU configuration.
The signals described in this section are part of the Linux-specific functionality, with
which processes running on Linux communicate with each other.

For signal reception, a handler is put in place so that a process can run the
handler when receiving a signal. The sigaction system call is used to register
a handler with a process.
The sigaction system call associates the signal specified in the argument with
the pointer to the handler function. After this registration is completed, the
process calls the handler whenever receiving a registered signal. In the
hander, implement code to deal with a high CPU load.

Note

For details on WDT mode settings provided by e-RT3, refer to the description for the
setM3WdtMode function in "A1.5.6 WDT".

 System call

This subsection describes system calls used in receiving signals. The following
contains excerpts from the Linux manual (MAN).

 sigaction
Feature Examine and change a signal action

Synopsis #include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

Description The sigaction system call is used to change the action taken by a process on receipt of a

specific signal.

Structure struct sigaction {

 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_restorer)(void);
};

 A1-10

TI 34M06T02-02E Mar. 31, 2021-00

On some architecture a union is involved: do not assign to both sa_handler and
sa_sigaction.

Argument signum Specifies the signal and can be any valid signal except

SIGKILL and SIGSTOP.
 act If it is non-null, the new action for signal signum is installed

from act.
 oldact If it is non-null, the previous action is saved in oldact.

Return value 0 Successful
 -1 Failed

errno EFAULT act or oldact points to memory which is not a valid part of the

process address space.
 EINVAL An invalid signal was specified. This will also be generated if

an attempt is made to change the action for SIGKILL or
SIGSTOP, which cannot be caught or ignored.

 Sample code

 Forcing a WDT timeout to occur and receiving SIGTERM signals
#include <stdio.h>

#include <unistd.h>

#include <signal.h>

#include "m3lib.h"

static void handler(int sig)

{

 if (sig == SIGTERM)

 printf("SIGTERM signal is received\n");

}

int main(int argc, char *argv[])

{

 struct sigaction act;

 int timeout, loop;

 timeout = 1000;

 loop = 10;

 act.sa_handler = handler;

 if (sigaction(SIGTERM, (struct sigaction *)&act, NULL) < 0)

 return -1;

 if (bindM3Wdt()) return -1;

 if (setM3WdtTimeout(timeout)) return -1;

 if (setM3WdtMode(M3WDT_MODE_SIG)) return -1;

 if (startM3Wdt()) return -1;

 while(loop--)

 A1-11

TI 34M06T02-02E Mar. 31, 2021-00

 {

 usleep(timeout * 900);

 if (cleanM3Wdt()) return -1;

 }

 pause();

 if (stopM3Wdt()) return -1;

 if (releaseM3Wdt()) return -1;

 return 0;

}

 A1-12

TI 34M06T02-02E Mar. 31, 2021-00

A1.5 API reference
A1.5.1 I/O module

 Device access

 readM3InRelay
Feature Read from the input relay in blocks

Synopsis int readM3InRelay(int unit, int slot, int pos, int num, unsigned short data[4]);

Description The function reads from the input relay in an I/O module in 16 points.

num data blocks are read from the input relay with device number pos in the I/O module
specified by the arguments unit and slot.
The pos value must be 1, 17, 33, or 49. If any other value in the range is specified, the value
is rounded to a smaller value (for example, 24 is rounded down to 17). The read data is
stored in num elements in data[], starting from the first element. The contact statuses for 16
points are stored in an element, starting from the LSB, in the order of input relay numbers.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the input relay number (1, 17, 33, and 49).
 num Specifies the number of blocks to be read from (1 to 4).
 data[] Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no input relay was specified.

 readM3InRelayP
Feature Read from the input relay

Synopsis int readM3InRelayP(int unit, int slot, int pos, unsigned short *data);

Description The function reads from the input relay in an I/O module in one point.

Only one point is read from the input relay with input relay number pos in the I/O module
specified by the arguments unit and slot. The value of 1 is stored in data if the input relay is
set to ON, and 0 if set to OFF.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the input relay number (1 to 64).
 data Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no input relay was specified.

 A1-13

TI 34M06T02-02E Mar. 31, 2021-00

 readM3OutRelay
Feature Read from the output relay in blocks

Synopsis int readM3OutRelay(int unit, int slot, int pos, int num, unsigned short data[4]);

Description The function reads from the output relay in an I/O module in 16 points.

num data blocks are read from the output relay with device number pos in the I/O module
specified by the arguments unit and slot.
The pos value must be 1, 17, 33, or 49. If any other value in the range is specified, the
value is rounded to a smaller value (for example, 24 is rounded down to 17). The read
data is stored in num elements in data[], starting from the first element. The contact
statuses for 16 points are stored in an element, starting from the LSB, in the order of input
relay numbers.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the output relay number (1, 17, 33, and

49).
 num Specifies the number of blocks to be read from (1 to

4).
 data[] Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no output relay was specified.

 writeM3OutRelay
Feature Write to the output relay in blocks

Synopsis int writeM3OutRelay(int unit, int slot, int pos, int num, unsigned short data[4], unsigned

short mask[4]);

Description The function writes to the output relay in an I/O module in 16 points.

num data blocks are written to the output relay with device number pos in the I/O module
specified by the arguments unit and slot.
The pos value must be 1, 17, 33, or 49. If any other value in the range is specified, the
value is rounded to a smaller value (for example, 24 is rounded down to 17). The data is
stored in data[], starting from the first element to numth element in the array. The contact
statuses for 16 points are set in the order of output relay numbers, starting from the LSB.
mask[] is the data for masking. Specify the value of 1 for the relay number of the relay to
which the data should be written, and of 0 for that of the relay in which the value should
be retained. The bits are located just like data[].

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the output relay number (1, 17, 33, and

49).
 num Specifies the number of blocks to be written to (1 to

4).
 data[] Buffer to store the data to be written
 mask[] Buffer to store the data for write masking

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no output relay was specified.

 A1-14

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3OutRelayP
Feature Write to the output relay

Synopsis int writeM3OutRelayP(int unit, int slot, int pos, unsigned short data);

Description The function writes to the output relay in an I/O module in one point.

Only 1-point data is written to the output relay with output relay number pos in the I/O
module specified by the arguments unit and slot. To set the relay to ON, store 1 in data,
and to set it to OFF, store 0.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the output relay number (1 to 64).
 data Data to be written

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no output relay was specified.

 readM3IoRegister
Feature Read 16-bit data from the I/O register

Synopsis int readM3IoRegister(int unit, int slot, int pos, int num, unsigned short *data);

Description The function reads 16-bit data from the I/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the I/O register and the data
range are specified in pos and num. The data is read and then stored in data.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the I/O register number (from 1).
 num Specifies how many points of data are read (from 1).
 data Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no I/O register was specified.

 A1-15

TI 34M06T02-02E Mar. 31, 2021-00

 readM3IoRegisterB
Feature Read 8-bit data from the I/O register

Synopsis int readM3IoRegisterB (int unit, int slot, int pos, int num, unsigned char *data);

Description The function reads 8-bit data from the I/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the I/O register and the data
range are specified in pos and num. The data is read and then stored in data.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the I/O register number (from 1).
 num Specifies how many points of data are read (from 1).
 data Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no I/O register was specified.

Remarks This function is used on modules that handle byte sequences, such as serial communication

modules and device net modules.
The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
I/O register number for 8-bit data = 2 x (I/O register number for 16-bit data - 1) + 1

 readM3IoRegisterL
Feature Read 32-bit data from the I/O register

Synopsis int readM3IoRegisterL (int unit, int slot, int pos, int num, unsigned long *data);

Description The function reads 32-bit data from the I/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the I/O register and the
data range are specified in pos and num. The data is read and then stored in data.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the I/O register number (from 1).
 num Specifies how many points of data are read (from 1).
 data Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no I/O register was specified.

Remarks This function is used on modules that handle long word data such as high-speed counter

modules.
The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
I/O register number for 32-bit data = 2 x (I/O register number for 16-bit data + 1) / 2

 A1-16

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3IoRegister
Feature Write 16-bit data to the I/O register

Synopsis int writeM3IoRegister(int unit, int slot, int pos, int num, unsigned short *data);

Description The function writes 16-bit data to the I/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the I/O register and the
data range are specified in pos and num. The data to be written is stored in data.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the I/O register number (from 1).
 num Specifies how many points of data are written (from

1).
 data Buffer to store the data to be written

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no I/O register was specified.

 writeM3IoRegisterB
Feature Write 8-bit data to the I/O register

Synopsis int writeM3IoRegisterB(int unit, int slot, int pos, int num, unsigned char *data);

Description The function writes 8-bit data to the I/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the I/O register and the data
range are specified in pos and num. The data to be written is stored in data.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the I/O register number (from 1).
 num Specifies how many points of data are written (from 1).
 data Buffer to store the data to be written

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no I/O register was specified.

Remarks This function is used on modules that handle byte sequences, such as serial communication

modules and device net modules.
The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
I/O register number for 8-bit data = 2 x (I/O register number for 16-bit data - 1) + 1

 A1-17

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3IoRegisterL
Feature Write 32-bit data to the I/O register

Synopsis int writeM3IoRegisterL(int unit, int slot, int pos, int num, unsigned long *data);

Description The function writes 32-bit data to the I/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the I/O register and the data
range are specified in pos and num. The data to be written is stored in data.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the I/O register number (from 1).
 num Specifies how many points of data are written (from 1).
 data Buffer to store the data to be written

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no I/O register was specified.

Remarks This function is used on modules that handle long word data such as high-speed counter

modules.
The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
I/O register number for 32-bit data = 2 x (I/O register number for 16-bit data + 1) / 2

 Mode configuration

 readM3IoModeRegister
Feature Read from the mode register

Synopsis int readM3IoModeRegister(int unit, int slot, int pos, int num, unsigned short mode[8]);

Description The function reads 16-bit data from the mode register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the mode register and the
data range are specified in pos and num. The data is read and stored in mode[]. The
maximum number of data points is eight.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the mode register number (from 1).
 num Specifies how many points of data are read (1 to 8).
 mode [] Buffer to store the read data

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no mode register was specified.

Remarks - The function to read from the mode register is an API to configure DIO modules.

- The size of the mode register varies depending on the module.
- To configure an advanced module, work with the I/O register.

 A1-18

TI 34M06T02-02E Mar. 31, 2021-00

Note

For details on the register map and setting values of the mode register, refer to "4.4
Mode register access" of BSP Common Function Manual (IM 34M06M52-02E).

 writeM3IoModeRegister
Feature Write to the mode register

Synopsis int writeM3IoModeRegister(int unit, int slot, int pos, int num, unsigned short mode[8]);

Description The function writes 16-bit data to the mode register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the mode register and the
data range are specified in pos and num. The data to be written is stored in mode[]. The
maximum number of data points is eight.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the mode register number (from 1).
 num Specifies how many points of data are written (1 to 8).
 mode[] Buffer to store the data to be written

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_NUMBER An invalid parameter was specified.
 S_m3io_INVALID_MODULE A module with no mode register was specified.

Remarks - The function to read from the mode register is an API to configure DIO modules.

- The size of the mode register varies depending on the module.
- To configure an advanced module, work with the I/O register.

Note

For details on the register map and setting values of the mode register, refer to "4.4
Mode register access" of BSP Common Function Manual (IM 34M06M52-02E).

 A1-19

TI 34M06T02-02E Mar. 31, 2021-00

 Input relay interrupt

 enableM3IoIrq
Feature Enable interrupts (in all points)

Synopsis int enableM3IoIrq (int unit, int slot, unsigned short mask[4], int msgQId);

Description The function enables or disables interrupts for all the points from the input relay in an I/O

module.
The I/O module is specified in the arguments unit and slot. The data for interrupt masking is
set in the argument mask[] in 16 points, storing the possibilities of interrupts in the array
starting from the first bit, ordered by the lowest input relay number.

mask[0] 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

mask[1] 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

mask[2] 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

mask[3] 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

 If the corresponding bit is set to 1, interrupts from the input relay are enabled, and if set to 0,

they are disabled.
To disable I/O interrupts, specify 0 for all the data for interrupt masking, or specify -1 for the
message queue ID.

The msgrcv system call receives the interrupts from I/O modules by using the message
queue ID registered by the argument msgQId.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 mask[] Pointer of unsigned short type to store the data for

interrupt masking
 msgQId Message queue ID obtained by the msgget system call

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_MODULE A module with no interrupt support was specified.

Remarks - The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.
- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.
- If any message remains unread in the message queue when the interrupts are
disabled, the messages are sent when an interrupt request is received next time interrupts
are enabled.

 A1-20

TI 34M06T02-02E Mar. 31, 2021-00

 enableM3IoIrqP
Feature Enable interrupts (in one point)

Synopsis int enableM3IoIrqP (int unit, int slot, int pos, int msgQId);

Description The function enables interrupts from the input relay in the I/O module specified by the

argument in one point.
The msgrcv system call receives the interrupts from I/O modules by using the message
queue ID registered by the argument msgQId.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the input relay number (1 to 32).
 msgQId Message queue ID obtained by the msgget system call

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_MODULE A module with no interrupt support was specified.

Remarks - The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.
- Messages in a message queue cannot be received by multiple processes. A single
 process must be responsible for receiving the messages.
- If any message remains unread in the message queue when the interrupts are disabled,
 the messages are sent when an interrupt request is received next time interrupts are
 enabled.

 disableM3IoIrqP
Feature Disable interrupts (in one point)

Synopsis int disableM3IoIrqP (int unit, int slot, int pos);

Description The function disables interrupts from the input relay in the I/O module specified by the

argument in one point.
Disabling interrupts from all input relays also clears the registered message queue ID.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).
 pos Specifies the input relay number (1 to 32).

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3io_INVALID_MODULE A module with no interrupt support was specified.

Remarks The ability or inability to support interrupts in an I/O module is contained in the manual for

each module.
If any message remains unread in the message queue when interrupts are disabled, the
messages are sent when an interrupt request is received next time interrupts are enabled.

 A1-21

TI 34M06T02-02E Mar. 31, 2021-00

 Module information

 getM3IoName
Feature Get the module ID

Synopsis char* getM3IoName (int unit, int slot);

Description The function obtains the module ID of an I/O module. It can get the module ID (module

model name) of the I/O module specified in the arguments unit and slot. A pointer to the
string of four ASCII characters, followed by '\0', is returned as a return value, and NULL is
returned if getting the module name fails.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Not NULL Module model name with four ASCII characters,

including '\0' as the fifth character
 NULL Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_INVALID_SLOT An invalid slot number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.

 getM3IoMapAdr
Feature Get the mapping address of the I/O space

Synopsis int getM3IoMapAdr (int unit, int slot);

Description The function obtains the mapping address for the I/O space in an I/O module. As a return

value, it can get the address of the I/O space mapping register in the I/O module specified
in the arguments unit and slot. The address ranges from 0x0 to 0x40000.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number I/O space mapping address
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 getM3IoMapSize
Feature Get the mapping size of the I/O space

Synopsis int getM3IoMapSize (int unit, int slot);

Description The function obtains the mapping size of the I/O space in an I/O module. It can get the I/O

space mapping size of the I/O module specified in the arguments unit and slot. The size
ranges from 0x0 to 0x8000.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number I/O space mapping size
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.
 S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.

 A1-22

TI 34M06T02-02E Mar. 31, 2021-00

 getM3IoDRegAdr
Feature Get the offset address of the I/O space in the I/O register

Synopsis int getM3IoDRegAdr (int unit, int slot);

Description The function obtains the address of the I/O register in an I/O module as an offset from the

beginning of the mapping area. As a return value, it can get mapping information of the
I/O register in the I/O module specified in the arguments unit and slot.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number Offset address of the I/O space in the I/O register
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 getM3IoDRegSize
Feature Get the size of the I/O space in the I/O register

Synopsis int getM3IoDRegSize (int unit, int slot);

Description The function obtains the size of the area where the I/O register in an I/O module is

located. You can determine the existence or non-existence of the I/O register by checking
this size. The size can be obtained in bytes. To get the number of points in the I/O
register, divide the size by 2 to convert it into the value in words.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number Size of the I/O space in the I/O register
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 getM3IoXAdr
Feature Get the offset address of the I/O space in the input relay

Synopsis int getM3IoXAdr (int unit, int slot);

Description The function obtains the address of the input relay in an I/O module as an offset from the

beginning of the mapping area. As a return value, it can get mapping information of the
input relay in the I/O module specified in the arguments unit and slot.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number Offset address of the I/O space in the input relay
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 A1-23

TI 34M06T02-02E Mar. 31, 2021-00

 getM3IoXSize
Feature Get the size of the I/O space in the input relay

Synopsis int getM3IoXSize (int unit, int slot);

Description The function obtains the size of the area where the input relay in an I/O module is located.

You can determine the existence or non-existence of the input relay by checking this size.
The size can be obtained in bytes. To get the number of points in the input relay, multiply
the size by 8 to convert it into the value in bits.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number Size of the I/O space in the input relay
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 getM3IoYAdr
Feature Get the offset address of the I/O space in the output relay

Synopsis int getM3IoYAdr (int unit, int slot);

Description The function obtains the address of the output relay in an I/O module as an offset from the

beginning of the mapping area. As a return value, it can get mapping information of the
output relay in the I/O module specified in the arguments unit and slot.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number Offset address of the I/O space in the output relay
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 getM3IoYSize
Feature Get the size of the I/O space in the output relay

Synopsis int getM3IoYSize (int unit, int slot);

Description The function obtains the size of the area where the output relay in an I/O module is

located. You can determine the existence or non-existence of the output relay by checking
this size. The size can be obtained in bytes. To get the number of points in the output
relay, first divide the size by 2 considering the data for masking, and then multiply it by 8
to convert it into the value in bits.

Argument unit Specifies the unit number (0 to 7).
 slot Specifies the slot number (1 to 16).

Return value Positive number Size of the I/O space in the output relay
 -1 Error

errno EFAULT The function failed to get data.
 S_m3io_INVALID_UNIT An invalid unit number was specified.

 A1-24

TI 34M06T02-02E Mar. 31, 2021-00

A1.5.2 CPU module

 Device access

Note

For details on device types specified for CPU device access and error codes stored
in response commands, refer to "4.5 CPU device access" of BSP Common Function
Manual (IM 34M06M52-02E).

 readM3CpuDevice
Feature Read from the CPU device

Synopsis int readM3CpuDevice(int cpuno, int type, int pos, int num, unsigned short *data);

Description The function reads 16-bit data from the CPU device in a CPU module.

The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data is read and stored in the argument data.
The accessible range in each device varies depending on the CPU module.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, a
detailed error code is stored in data[0].

Argument cpuno Specifies the CPU number (1 to 4).
 type Device type
 pos Specifies the number of the start device to be read (from 1).
 num Number of points in the device to be read from (1 to 256)
 data Pointer to the unsigned short type buffer in which the read

data is stored

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 EIO The function received an error response command from the

CPU module.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_INVALID_NUMB

ER
An invalid parameter was specified.

 S_m3cpu_TIMEOUT_ERR
OR

The CPU module did not respond within the prescribed
period.

Remarks - The upper limit of points in the device cannot be exceeded.

- The function cannot be used for the special relay M.
- Make sure to access the special register Z on a 1-point basis.

Note

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

 A1-25

TI 34M06T02-02E Mar. 31, 2021-00

 readM3CpuDeviceP
Feature Read from the CPU relay device

Synopsis int readM3CpuDeviceP(int cpuno, int type, int pos, int num, unsigned short *data);

Description The function reads the specified number of points of data from the CPU device in other

CPU module.
The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data is read and stored in the argument data.
The accessible range in each device varies depending on the CPU module.
The values in the relay are stored in the argument data in device number order, starting
from the LSB to the MSB. The data array needs ((number of points - 1)/16 + 1) elements.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, a
detailed error code is stored in data[0].

Argument cpuno Specifies the CPU number (1 to 4).
 type Device type
 pos Specifies the number of the start device to be read (from

1).
 num Number of points in the device to be read from (1 to

256)
 data Pointer to the unsigned short type buffer in which the

read data is stored

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 EIO The function received an error response command from

the CPU module.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_INVALID_NUMBER An invalid parameter was specified.
 S_m3cpu_TIMEOUT_ERROR The CPU module did not respond within the prescribed

period.

Remarks - The upper limit of points in the device cannot be exceeded.

- Make sure to access the special relay M on a 1-point basis.
- The function cannot be used for any register device.

Note

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

 A1-26

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3CpuDevice
Feature Write to the CPU device

Synopsis int writeM3CpuDevice(int cpuno, int type, int pos, int num, unsigned short *data, unsigned

short *error);

Description The function writes 16-bit data to the CPU device in a CPU module.

The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data to be written is stored in the argument data.
The accessible range in each device varies depending on the CPU module.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, an
error code in the response command is stored in error.

Argument cpuno Specifies the CPU number (1 to 4).
 type Device type
 pos Specifies the number of the start device to be written to

(from 1).
 num Number of points in the device to be written to (1 to 256)
 data Pointer to the unsigned short type buffer in which the

data to be written is stored
 error Error code in the response command

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 EIO The function received an error response command from

the CPU module.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_INVALID_NUMBER An invalid parameter was specified.
 S_m3cpu_TIMEOUT_ERROR The CPU module did not respond within the prescribed

period.

Remarks - The upper limit of points in the device cannot be exceeded.

- The function cannot be used for the special relay M.
- Make sure to access the special register Z on a 1-point basis.

Note

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

 A1-27

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3CpuDeviceP
Feature Write to the CPU relay device

Synopsis int writeM3CpuDeviceP(int cpuno, int type, int pos, int num, unsigned short *data, unsigned

short *error);

Description The function writes the specified number of points of data to the PLC relay device in a CPU

module.
The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data to be written is stored in the argument data.
The accessible range in each device varies depending on the CPU module.
The values in the relay are stored in the argument data in device number order, starting from
the LSB to the MSB. The data array needs ((number of points - 1)/16 + 1) elements.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, an error
code in the response command is stored in error.

Argument cpuno Specifies the CPU number (1 to 4).
 type Device type
 pos Specifies the number of the start device to be written to (from

1).
 num Number of points in the device to be written to (1 to 256)
 data Pointer to the unsigned short type buffer in which the data to

be written is stored
 error Error code in the response command

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 EIO The function received an error response command from the

CPU module.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_INVALID_NUMB

ER
An invalid parameter was specified.

 S_m3cpu_TIMEOUT_ERR
OR

The CPU module did not respond within the prescribed
period.

Remarks - The upper limit of points in the device cannot be exceeded.

- Make sure to access the special relay M on a 1-point basis.
- The function cannot be used for any register device.

Note

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

 A1-28

TI 34M06T02-02E Mar. 31, 2021-00

 Signal notification

 enableM3CpuSignal
Feature Enable signal reception

Synopsis int enableM3CpuSignal (int cpuno, int msgQId);

Description The function enables receiving signal notifications used to synchronize operations among

CPU modules.
Signal notifications sent from CPU modules are received through a Linux message queue.
Thus, your applications must pre-register the message queue for reception.
This message-queue registration for reception of signal notifications can be done by this
function. The argument cpuno specifies the number of the slot in the CPU module that
receives the signal notifications.
The msgrcv system call receives the signals by using the message queue ID registered by
the argument msgQId.

Argument cpuno Specifies the CPU number (1 to 4).
 msgQId Message queue ID obtained by the msgget system call

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3cpu_INVALID_SLOT An invalid slot number was specified.
 S_m3cpu_INVALID_MODU

LE
A module with no interrupt support was specified.

Remarks - The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.
- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.
- If any message remains unread in the message queue when the interrupts are disabled,
the messages are sent when an interrupt request is received next time interrupts are
enabled.

 disableM3CpuSignal
Feature Disable signal reception

Synopsis int disableM3CpuSignal (int cpuno);

Description The function disables receiving signal notifications used to synchronize operations among

CPU modules.
Signal notifications sent from CPU modules are received through a Linux message queue.
The message queue for reception created in advance must be registered with your
application via the enableM3CpuSignal function.
This function releases the registered message queue to stop receiving signals. For
argument cpuno, specify the slot number in the CPU module that sends (was sending)
signal notifications.

Argument cpuno Specifies the CPU number (1 to 4).

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3cpu_INVALID_SLOT An invalid slot number was specified.
 S_m3cpu_INVALID_MODULE A module with no interrupt support was specified.

Remarks If any message remains unread in the message queue when interrupts are disabled, the

messages are sent when an interrupt request is received next time interrupts are enabled.

 A1-29

TI 34M06T02-02E Mar. 31, 2021-00

 sendM3CpuSignal
Feature Send signals

Synopsis int sendM3CpuSignal(int cpuno, char signal[8], unsigned short data);

Description The function sends signal notifications.

They are sent to e-RT3 2.0 CPU modules specified in the argument cpuno. A signal
notification consists of 8-byte signal signal[] and 1-word data data.

Argument cpuno Specifies the CPU (slot) number (1 to 4) for the signal

destination.
 signal[] Registers a name of eight ASCII characters or less.
 data Specifies 1-word data.

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_MODULE_NOT_FOU

ND
No module exists in the specified slot.

 S_m3cpu_INVALID_MODULE An invalid module was specified.
 S_m3cpu_INVALID_NUMBER An invalid parameter was specified.

Remarks Do not use this function for sequence CPU modules with no capability of receiving signal

notifications.

 CPU information

 getM3CpuNumber
Feature Get the CPU number

Synopsis int getM3CpuNumber (void);

Description The function obtains the slot number of the slot (1 to 4) in which this CPU module is

mounted. It returns the slot number as a return value.

Argument None

Return value 1 to 4 CPU number (slot number)
 -1 Error

errno EFAULT The function failed to get data.

 A1-30

TI 34M06T02-02E Mar. 31, 2021-00

 getM3CpuType
Feature Get the CPU type

Synopsis int getM3CpuType (int type[4]);

Description The function obtains the CPU types of all CPU modules mounted in the system.

The CPU types of the CPU modules with CPU numbers 1 through 4 are stored in the
argument type[]. The following table shows the relationship between the types and values
of the obtained CPU types:

CPU type Macro name Value
Not a CPU module M3CPU_TYPE_NON 0
Sequence CPU M3CPU_TYPE_SEQ 1
BASIC CPU M3CPU_TYPE_BASIC 2
AT-compatible CPU M3CPU_TYPE_AT 3
e-RT3CPU M3CPU_TYPE_RTOS 4

Argument type[] Pointer to the int type array in which CPU-type values are

stored.

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.

 readM3CpuMemory
Feature Read from the CPU-shared memory

Synopsis int readM3CpuMemory(int cpuno, int pos, int num, unsigned short *buf);

Description The function directly reads values from the CPU-shared memory.

The data is read directly from the shared memory area in the CPU module specified in the
argument cpuno to buf.
The maximum size of the data is 8.5 KB. Specify the offset not exceeding the limit in
words for pos and num.

Argument cpuno Specifies the CPU number (1 to 4).
 pos Specifies the offset in the shared memory in words.
 num Specifies the number of data sets in the shared

memory.
 buf Pointer to the unsigned short type array in which

the read data is stored

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3cpu_INVALID_MODULE An invalid module was specified.
 S_m3cpu_INVALID_NUMBER An invalid parameter was specified.
 S_m3cpu_INTERNAL_ERROR An internal error occurred.

Note

For details on the CPU-shared memory, refer to "5.2.1 Shared memory access" of
BSP Common Function Manual (IM 34M06M52-02E).

 A1-31

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3CpuMemory
Feature Write to the CPU-shared memory

Synopsis int writeM3CpuMemory(int cpuno, int pos, int num, unsigned short *buf);

Description The function directly writes values to the CPU-shared memory.

The data in buf is written directly to the shared memory area in the CPU module specified
in the argument cpuno.
The maximum size of the data is 8.5 KB. Specify the offset not exceeding the limit in
words for pos and num.

Argument cpuno Specifies the CPU number (1 to 4).
 pos Specifies the offset in the shared memory in words.
 num Specifies the number of data sets written to the

shared memory.
 buf Pointer to the unsigned short type array in which

the data to be written is stored

Return value 0 Successful
 -1 Error

errno ENOMEM The system memory is running low.
 EFAULT The function failed to get data.
 S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
 S_m3cpu_MODULE_NOT_FOUND No module exists in the specified slot.
 S_m3cpu_INVALID_MODULE An invalid module was specified.
 S_m3cpu_INVALID_NUMBER An invalid parameter was specified.
 S_m3cpu_INTERNAL_ERROR An internal error occurred.

Note

For details on the CPU-shared memory, refer to "5.2.1 Shared memory access" of
BSP Common Function Manual (IM 34M06M52-02E).

A1.5.3 PLC device

 Local device

 setM3InternalDataTable
Feature Set local device assignment information

Synopsis int setM3InternalDataTable

 (
 unsigned int location,
 unsigned int relaySize,
 unsigned int registerSize
);

Description The function sets the number of data points in the local devices.

It sets relaySize for the number of data points in the internal relay and registerSize for the
number of data points in the data register. Specify a multiple of 32 for the number of relay data
points and a multiple of 2 for the number of register data points.

Argument location Location for the local device

 0: SDRAM (kernel space)
 1: User SRAM (effective only for F3RP71-2L)

 relaySize Number of points in the internal relay (0, or 32 or more)
 registerSize Number of points in the data register (0, or 2 or more)

Return
value

0 Successful

 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOUND The device specified in location is not found.

 A1-32

TI 34M06T02-02E Mar. 31, 2021-00

 referM3InternalDataTable
Feature Get local device assignment information

Synopsis int referM3InternalDataTable(unsigned int *relaySize, unsigned int *registerSize);

Description The function obtains the number of data points in the local devices.

It stores the number of data points in the internal relay in relaySize and the number of data
points in the data register in registerSize.

Argument relaySize Pointer to the buffer in which the number of points in the

internal relay is stored
 registerSize Pointer to the buffer in which the number of points in the

data register is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.

 readM3InternalRelay
Feature Read from the internal relay in blocks

Synopsis int readM3InternalRelay (int no, int num, unsigned short *pBuff);

Description The function reads from the internal relay in 16 points.

It reads num points of data sets from the device with device number no in the internal relay
"I" into pBuff. For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the internal relay to be read (from 1)
 num Number of blocks in the internal relay to be read (from 1)
 pBuff Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The upper limit specified during configuration cannot be exceeded.

 readM3InternalRelayB
Feature Read from the internal relay

Synopsis int readM3InternalRelayB (int no, int num, unsigned char *data);

Description The function reads from the internal relay in one point.

It reads num points of data sets from the device with device number no in the internal relay
"I" into data. For the data pointer, reserve an array of num elements.

Argument no Start number of the internal relay to be read (from 1)
 num Number of points in the internal relay to be read (from 1).
 data Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The upper limit specified during configuration cannot be exceeded.

 A1-33

TI 34M06T02-02E Mar. 31, 2021-00

 readM3InternalRegister
Feature Read 16-bit data from the data register

Synopsis int readM3InternalRegister (int no, int num, unsigned short *pBuff);

Description The function reads 16-bit data from the data register.

It reads num points of data sets from the device with device number no in the data register
"D" into pBuff. For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the data register to be read (from 1)
 num Number of points in the data register to be read (from 1)
 pBuff Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The upper limit specified during configuration cannot be exceeded.

 writeM3InternalRelay
Feature Write to the internal relay in blocks

Synopsis int writeM3InternalRelay (int no, int num, unsigned short *pBuff);

Description The function writes to the internal relay in 16 points.

It writes num points of data sets in pBuff to the device starting from device number no in the
internal relay "I". For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the internal relay to be written to (from 1)
 num Number of blocks in the internal relay to be written to (from 1)
 pBuff Pointer to the buffer in which the data to be written is stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The upper limit specified during configuration cannot be exceeded.

 writeM3InternalRelayB
Feature Write to the internal relay

Synopsis int writeM3InternalRelayB (int no, int num, unsigned char *data);

Description The function writes to the internal relay in one point.

It writes num points of data sets in data to the device starting from device number no in the
internal relay "I". For the data pointer, reserve an array of num elements.

Argument no Start number of the internal relay to be written to (from 1)
 num Number of points in the internal relay to be written to (from 1)
 data Pointer to the buffer in which the data to be written is stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The upper limit specified during configuration cannot be exceeded.

 A1-34

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3InternalRegister
Feature Write 16-bit data to the data register

Synopsis int writeM3InternalRegister (int no, int num, unsigned short *pBuff);

Description The function writes 16-bit data to the data register.

It writes num points of data sets in pBuff to the device starting from device number no in the
data register "D". For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the data register to be written to (from 1)
 num Number of points in the data register to be written to (from 1)
 pBuff Pointer to the buffer in which the data to be written is stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The upper limit specified during configuration cannot be exceeded.

 Shared device

 setM3SharedDataConfig
Feature Set shared device assignment information

Synopsis int setM3SharedDataConfig

 (
 LPM3SHDDATACONFIG shdCnf,
 LPM3SHDDATACONFIG extShdCnf
);

Description The function assigns shared devices to CPU modules.

Each index number of the member variables wNumberOfRelay[] and wNumberOfRegister[] in
the structure for shared device assignment information corresponds to "CPU number - 1".
Specify a multiple of 32 for the number of relay data points and a multiple of 2 for the number
of register data points.

The following table shows the ranges that the parameter can accept:

Device name Total points of all CPUs Specify in
Shared relay 0 to 2048 points 32 points
Extended shared relay 0 to 2048 points 32 points
Shared register 0 to 1024 points 2 points
Extended shared register 0 to 3072 points 2 points

Structure typedef struct tagM3SHDDATACONFIG {

 unsigned short wNumberOfRelay[4];
 unsigned short wNumberOfRegister[4];
) M3SHDDATACONFIG, *LPM3SHDDATACONFIG;

Argument shdCnf.wNumberOfRelay[] Points in the shared relay that are assigned to CPU1 to 4
 shdCnf.wNumberOfRegister[] Points in the shared register that are assigned to CPU1

to 4
 extShdCnf.wNumberOfRelay[] Points in the extended shared relay that are assigned to

CPU1 to 4
 extShdCnf.wNumberOfRegister[] Points in the extended shared register that are assigned

to CPU1 to 4

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks Configure all CPU modules so that they use the same settings.

 A1-35

TI 34M06T02-02E Mar. 31, 2021-00

 referM3SharedDataConfig
Feature Get shared device assignment information

Synopsis int referM3SharedDataConfig

 (
 LPM3SHDDATACONFIG shdCnf,
 LPM3SHDDATACONFIG extShdCnf
);

Description The function obtains the configuration of the shared device assigned to each CPU module.

Each index number of the member variables wNumberOfRelay[] and wNumberOfRegister[] in
the structure for shared device assignment information corresponds to "CPU number - 1".

Structure typedef struct tagM3SHDDATACONFIG {

 unsigned short wNumberOfRelay[4];
 unsigned short wNumberOfRegister[4];
} M3SHDDATACONFIG, *LPM3SHDDATACONFIG;

Argument shdCnf.wNumberOfRelay[] Points in the shared relay that are assigned to CPU1 to 4
 shdCnf.wNumberOfRegister[] Points in the shared register that are assigned to CPU1

to 4
 extShdCnf.wNumberOfRelay[] Points in the extended shared relay that are assigned to

CPU1 to 4
 extShdCnf.wNumberOfRegister[] Points in the extended shared register that are assigned

to CPU1 to 4

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.

 readM3SharedRelay
Feature Read from the (extended) shared relay in blocks

Synopsis int readM3SharedRelay (int no, int num, unsigned short *pBuff);

Description The function reads from the (extended) shared relay in 16 points.

It reads num points of data sets from the device with device number no in the (extended)
shared relay "E" into pBuff. Calling the function once can read from all the shared relays. For
the pBuff pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared relay to be read

from (shared relay: 1 to 2048, extended shared relay:
2049 to 4096)

 num Number of blocks in the (extended) shared relay to be
read (from 1)

 pBuff Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_BOUNDARY_ERROR The start number of the device is invalid; the boundary is

incorrect.
 S_m3dev_INTERNAL_ERROR An I/O bus failure occurred.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
 CPU module configuration does not cause an error in the parameter check.
- Access across CPU areas requires word boundaries not to be crossed.
- Access across the shared relay and extended shared relay areas is not possible.

 A1-36

TI 34M06T02-02E Mar. 31, 2021-00

 readM3SharedRelayB
Feature Read from the (extended) shared relay

Synopsis int readM3SharedRelayB (int no, int num, unsigned char *data);

Description The function reads from the (extended) shared relay in one point.

It reads num points of data sets from the device with device number no in the (extended)
shared relay "E" into data. Calling the function once can read from all the shared relays. For
the data pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared relay to be read

from (shared relay: 1 to 2048, extended shared relay:
2049 to 4096)

 num Number of points in the (extended) shared relay to be
read (from 1)

 data Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_BOUNDARY_ERROR The start number of the device is invalid; the boundary is

incorrect.
 S_m3dev_INTERNAL_ERROR An I/O bus failure occurred.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
 CPU module configuration does not cause an error in the parameter check.
- Access across CPU areas requires word boundaries not to be crossed.
- Access across the shared relay and extended shared relay areas is not possible.

 readM3SharedRegister
Feature Read 16-bit data from the (extended) shared register

Synopsis int readM3SharedRegister (int no, int num, unsigned short *pBuff);

Description The function reads 16-bit data from the (extended) shared register.

It reads num points of data sets from the device with device number no in the (extended)
shared register "R" into pBuff. Calling the function once can read from all the shared
registers. For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared register to be

read from (shared register: 1 to 1024, extended shared
register: 1025 to 4096)

 num Number of points in the (extended) shared register to be
read (from 1)

 pBuff Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_INTERNAL_ERROR An I/O bus failure occurred.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.
- Access across the shared register and extended shared register areas is not possible.

 A1-37

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3SharedRelay
Feature Write to the (extended) shared relay in blocks

Synopsis int writeM3SharedRelay (int no, int num, unsigned short *pBuff);

Description The function writes to the (extended) shared relay in 16 points.

It writes num points of data sets in pBuff to the device starting from device number no in the
(extended) shared relay "E". Calling the function once can write to all the shared relays. For
the pBuff pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared relay to be written

to (shared relay: 1 to 2048, extended shared relay: 2049
to 4096)

 num Number of blocks in the (extended) shared relay to be
written to (from 1)

 pBuff Pointer to the buffer in which the data to be written is
stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_BOUNDARY_ERROR The start number of the device is invalid; the boundary is

incorrect.
 S_m3dev_INTERNAL_ERROR An I/O bus failure occurred.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.
- Access across CPU areas requires word boundaries not to be crossed.
- Access across the shared relay and extended shared relay areas is not possible.

 writeM3SharedRelayB
Feature Write to the (extended) shared relay

Synopsis int writeM3SharedRelayB (int no, int num, unsigned char *data);

Description The function writes to the (extended) shared relay in one point.

It writes num points of data sets in data to the device starting from device number no in the
(extended) shared relay "E". Calling the function once can write to all the shared relays. For
the data pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared relay to be written

to (shared relay: 1 to 2048, extended shared relay: 2049
to 4096)

 num Number of points in the (extended) shared relay to be
written to (from 1)

 data Pointer to the buffer in which the data to be written is
stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_BOUNDARY_ERROR The start number of the device is invalid; the boundary is

incorrect.
 S_m3dev_INTERNAL_ERROR An I/O bus failure occurred.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.
- Access across CPU areas requires word boundaries not to be crossed.
- Access across the shared relay and extended shared relay areas is not possible.

 A1-38

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3SharedRegister
Feature Write 16-bit data to the (extended) shared register

Synopsis int writeM3SharedRegister (int no, int num, unsigned short *pBuff);

Description The function writes 16-bit data to the (extended) shared register.

It writes num points of data sets in pBuff to the device starting from device number no in the
(extended) shared register "R". Calling the function once can write to all the shared registers.
For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared register to be

written to (shared register: 1 to 1024, extended shared
register: 1025 to 4096)

 num Number of points in the (extended) shared register to be
written to (from 1)

 pBuff Pointer to the buffer in which the data to be written is
stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.
- Access across the shared register and extended shared register areas is not possible.

 Link device

 referM3LinkDeviceConfig
Feature Get link device assignment information

Synopsis int referM3LinkDeviceConfig(LPM3LINKDATACONFIG linkCnf);

Description The function obtains the number of data points in the link device.

Each index number of the member variables wNumberOfRelay[] and
wNumberOfRegister[] in the structure for link device assignment information corresponds
to "system number - 1".

Structure typedef struct tagM3LINKDATACONFIG {

 unsigned short wNumberOfRelay[8];
 unsigned short wNumberOfRegister[8];
} M3LINKDATACONFIG, *LPM3LINKDATACONFIG;

Argument linkCnf.wNumberOfRelay[] Number of points that are assigned to system numbers 1

to 8 in the link relay
 linkCnf.wNumberOfRegister[] Number of points that are assigned to system numbers 1

to 8 in the link register

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.

Remarks The system numbers 3 through 8 are system-reserved numbers.

 A1-39

TI 34M06T02-02E Mar. 31, 2021-00

 setM3LinkDeviceConfig
Feature Set link device assignment information

Synopsis int setM3LinkDeviceConfig(LPM3LINKDATACONFIG linkCnf);

Description The function sets the number of data points in the link devices.

Each index number of the member variables wNumberOfRelay[] and
wNumberOfRegister[] in the structure for link device assignment information corresponds
to "system number - 1". Specify a multiple of 16 for both the number of relay data points
and the number of register data points.

The following table shows the ranges that the parameter can accept:

Device name Total points of all CPUs Specify in
Link relay 0 to 8192 points 16 points
Link register 0 to 8192 points 16 points

A single CPU module can have up to two systems assigned to it. Thus, the CPU module
can have a maximum of 16384 points of link devices.

Structure typedef struct tagM3LINKDATACONFIG {

 unsigned short wNumberOfRelay[8];
 unsigned short wNumberOfRegister[8];
} M3LINKDATACONFIG, *LPM3LINKDATACONFIG;

Argument linkCnf.wNumberOfRelay[] Number of points that are assigned to system numbers 1

to 8 in the link relay
 linkCnf.wNumberOfRegister[] Number of points that are assigned to system numbers 1

to 8 in the link register

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks The system numbers 3 through 8 are system-reserved numbers.

 readM3LinkRelay
Feature Read from the link relay in blocks

Synopsis int readM3LinkRelay (int no, int num, unsigned short *pBuff);

Description The function reads from the link relay in 16 points.

It reads num points of data sets from the device with device number no in the link relay "L"
into pBuff. For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the link relay to be read from

(n0001 to n8192: n represents system number - 1)
 num Number of blocks in the link relay to be read (from 1)
 pBuff Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOU

ND
The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The system numbers 3 through 8 are system-reserved numbers.

 A1-40

TI 34M06T02-02E Mar. 31, 2021-00

 readM3LinkRelayB
Feature Read from the link relay

Synopsis int readM3LinkRelayB (int no, int num, unsigned char *data);

Description The function reads from the link relay in one point.

It reads num points of data sets from the device with device number no in the link relay "L"
into data. For the data pointer, reserve an array of num elements.

Argument no Start number of the link relay to be read from

(n0001 to n8192: n represents system number - 1)
 num Number of points in the link relay to be read (from 1)
 data Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The system numbers 3 through 8 are system-reserved numbers.

 readM3LinkRegister
Feature Read 16-bit data from the link register

Synopsis int readM3LinkRegister (int no, int num, unsigned short *pBuff);

Description The function reads 16-bit data from the link register.

It reads num points of data sets from the device with device number no in the link register
"W" into pBuff. Access across the systems is not possible. For the pBuff pointer, reserve
an array of num elements.

Argument no Start number of the link register to be read from

(n0001 to n8192: n represents system number - 1)
 num Number of points in the link register to be read (from

1)
 pBuff Pointer to the buffer in which the read data is stored

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The system numbers 3 through 8 are system-reserved numbers.

 A1-41

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3LinkRelay
Feature Write to the link relay in blocks

Synopsis int writeM3LinkRelay (int no, int num, unsigned short *pBuff);

Description The function writes to the link relay in 16 points.

It writes num points of data sets in pBuff to the device starting from device number no in the
link relay "L". Access across the systems is not possible. For the pBuff pointer, reserve an
array of num elements.

Argument no Start number of the link relay to be written to

(n0001 to n8192: n represents system number - 1)
 num Number of blocks in the link relay to be written to (from 1)
 pBuff Pointer to the buffer in which the data to be written is

stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOU

ND
The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The system numbers 3 through 8 are system-reserved numbers.

 writeM3LinkRelayB
Feature Write to the link relay

Synopsis int writeM3LinkRelayB (int no, int num, unsigned char *data);

Description The function writes to the link relay in one point.

It writes num points of data sets in data to the device starting from device number no in
the link relay "L". Access across the systems is not possible. For the data pointer, reserve
an array of num elements.

Argument no Start number of the link relay to be written to

(n0001 to n8192: n represents system number - 1)
 num Number of points in the link relay to be written to

(from 1)
 data Pointer to the buffer in which the data to be written is

stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The system numbers 3 through 8 are system-reserved numbers.

 A1-42

TI 34M06T02-02E Mar. 31, 2021-00

 writeM3LinkRegister
Feature Write 16-bit data to the link register

Synopsis int writeM3LinkRegister (int no, int num, unsigned short *pBuff);

Description The function writes 16-bit data to the link register.

It writes num points of data sets in pBuff to the device starting from device number no in
the link register "W". Access across the systems is not possible. For the pBuff pointer,
reserve an array of num elements.

Argument no Start number of the link register to be written to

(n0001 to n8192: n represents system number - 1)
 num Number of points in the link register to be written to

(from 1)
 pBuff Pointer to the buffer in which the data to be written is

stored

Return value 0 Successful
 Other than 0 Error

errno EFAULT The function failed to get data.
 ENOMEM The function failed to reserve the working area.
 S_m3dev_INVALID_NUMBER An invalid parameter was specified.
 S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.

- The system numbers 3 through 8 are system-reserved numbers.

 A1-43

TI 34M06T02-02E Mar. 31, 2021-00

A1.5.4 System administration

 Library management

 getM3LibVersion
Feature Get the library version

Synopsis char *getM3LibVersion(void);

Description The function returns libm3 version information as a string.

Argument None

Return value String It returns a string that consists of the library version number

and the build time.

errno None

 LED indicator

 setM3RunLed
Feature Set the state of the RUN LED

Synopsis int setM3RunLed(int led);

Description The function sets the on/off state of the RUN LED at the top front of a CPU module to the

value specified in the argument led.

Argument led State of the RUN LED

 0: Off
 Not 0: On

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to write data.

 getM3RunLed
Feature Get the state of the RUN LED

Synopsis int getM3RunLed(void);

Description The function gets the on/off state of the RUN LED at the top front of a CPU module. The state

can be obtained as a return value of the function.

Argument None

Return value 1 On
 0 Off
 -1 Error

errno EFAULT The function failed to get data.

 A1-44

TI 34M06T02-02E Mar. 31, 2021-00

 setM3AlmLed
Feature Set the state of the ALM LED

Synopsis int setM3AlmLed(int led);

Description The function sets the on/off state of the ALM LED at the top front of a CPU module to the

value specified in the argument led.

Argument led State of the ALM LED

 0: Off
 Not 0: On

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to write data.

 getM3AlmLed
Feature Get the state of the ALM LED

Synopsis int getM3AlmLed(void);

Description The function gets the on/off state of the ALM LED at the top front of a CPU module. The

state can be obtained as a return value of the function.

Argument None

Return value 1 On
 0 Off
 -1 Error

errno EFAULT The function failed to get data.

 setM3ErrLed
Feature Set the state of the ERR LED

Synopsis int setM3ErrLed(int led);

Description The function sets the on/off state of the ERR LED at the top front of a CPU module to the

value specified in the argument led.

Argument led State of the ERR LED

 0: Off
 Not 0: On

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to write data.

 A1-45

TI 34M06T02-02E Mar. 31, 2021-00

 getM3ErrLed
Feature Get the state of the ERR LED

Synopsis int getM3ErrLed (void);

Description The function gets the on/off state of the ERR LED at the top front of a CPU module. The

state can be obtained as a return value of the function.

Argument None

Return value 1 On
 0 Off
 -1 Error

errno EFAULT The function failed to get data.

 setM3U1Led
Feature Set the state of the U1 LED

Synopsis int setM3U1Led(int led);

Description The function sets the on/off state of the U1 LED at the top front of a CPU module to the

value specified in the argument led.

Argument led State of the U1 LED

 0: Off
 Not 0: On

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to write data.

 getM3U1Led
Feature Get the state of the U1 LED

Synopsis int getM3U1Led(void);

Description The function gets the on/off state of the U1 LED at the top front of a CPU module. The

state can be obtained as a return value of the function.

Argument None

 1 On
Return value 0 Off
 -1 Error

errno EFAULT The function failed to get data.

 A1-46

TI 34M06T02-02E Mar. 31, 2021-00

 setM3U2Led
Feature Set the state of the U2 LED

Synopsis int setM3U2Led(int led);

Description The function sets the on/off state of the U2 LED at the top front of a CPU module to the

value specified in the argument led.

Argument led State of the U2 LED

 0: Off
 Not 0: On

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to write data.

 getM3U2Led
Feature Get the state of the U2 LED

Synopsis int getM3U2Led(void);

Description The function gets the on/off state of the U2 LED at the top front of a CPU module. The

state can be obtained as a return value of the function.

Argument None

 1 On
Return value 0 Off
 -1 Error

errno EFAULT The function failed to get data.

 setM3U3Led
Feature Set the state of the U3 LED

Synopsis int setM3U3Led(int led);

Description The function sets the on/off state of the U3 LED at the top front of a CPU module to the

value specified in the argument led.

Argument led State of the U3 LED

 0: Off
 Not 0: On

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to write data.

 A1-47

TI 34M06T02-02E Mar. 31, 2021-00

 getM3U3Led
Feature Get the state of the U3 LED

Synopsis int getM3U3Led(void);

Description The function gets the on/off state of the U3 LED at the top front of a CPU module. The

state can be obtained as a return value of the function.

Argument None

 1 On
Return value 0 Off
 -1 Error

errno EFAULT The function failed to get data.

 getM3ModeSwitch
Feature Get the state of the MODE switch

Synopsis int getM3ModeSwitch (void);

Description The function gets the state (number) of the MODE switch at the front of a CPU module.

The number is obtainable as a return value of the function.

Argument None

Return value 0 to F MODE switch number
 -1 Error

errno EFAULT The function failed to get data.

 getM3BatteryPower
Feature Get the battery level

Synopsis int getM3BatteryPower (void);

Description The function checks the remaining capacity of the RTC and SRAM backup battery. This

action is equivalent to checking the state of the BAT LED. The state can be obtained as a
return value of the function.

Argument None

Return value 1 Low battery voltage (BAT LED is on)
 0 Normal battery voltage (BAT LED is off)
 -1 Error

errno EFAULT The function failed to get data.
 EIO Access failed due to a device operation conflict.

Remarks Checking the battery level slightly consumes the battery power. To avoid unnecessary

consumption due to highly frequent checks, the hardware checks the battery level at
about 1-hour intervals, and this function returns the results of these checks by the
hardware. It takes time for the function to respond. If an EIO error is returned, try again
later.

 A1-48

TI 34M06T02-02E Mar. 31, 2021-00

 Logging

 writeM3log
Feature Write a system log message

Synopsis int writeM3log(char msg[128]);

Description The function writes a maximum of 128 ASCII characters at a time to the system log area.

The available ASCII code range is from 0x20 to 0x7E, excluding the codes for characters,
such as a carriage return and line feed.

Argument msg Pointer to the string

Avoid writing a string of more than 128 characters.

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 EINVAL An invalid message was written.

Remarks For F3RP71-2L, messages are written to the non-volatile memory area.

 cleanM3log
Feature Clear all system logs

Synopsis int cleanM3log (void);

Description The function clears all the messages in the system log.

Argument None

Return value 0 The function always returns 0.

errno None

A1.5.5 RAS

 System operation

 setM3Reset
Feature System reset

Synopsis int setM3Reset(void);

Description The function resets the entire e-RT3 system.

It resets all I/O and CPU modules mounted in the main unit and sub-units, and then
restarts the CPU module on which the function is run.

Argument None

Return value -1 Error

errno EACCES The function was run on an add-on CPU module.

Remarks Avoid using the function on an add-on CPU module.

 A1-49

TI 34M06T02-02E Mar. 31, 2021-00

 setM3FailOutput
Feature Failure output

Synopsis int setM3FailOutput(int cpuno);

Description The function switches the FAIL terminal on the power supply module, notifying the outside of

the system of an error.
You can use this function when you concluded that the operation can no longer be
continued, such as the occurrence of a fatal error in the system program.

When a failure is output, outputs from the output relay in the I/O module change according to
the external output setting on failure.
In the multi-CPU configuration, outputs only from the I/O modules assigned to the CPU with
the CPU number specified in the argument cpuno change. In e-RT3 2.0 CPU modules, the
assignment of an I/O module to a CPU module is determined by use or non-use of any I/O
module.
In the single CPU configuration, cpuno is ignored, and outputs from output relays in all I/O
modules change according to the setting.

Argument cpuno CPU number of the CPU module on which failure outputs

are enabled

Return value 0 Successful
 -1 Error

errno EINVAL An invalid CPU number was specified.

Note

For details on how to assign an I/O module to a CPU module and how to configure
whether an I/O module is used, refer to the manual for each CPU module.

 System monitoring

 getM3FailSubunit
Feature Sub-unit transmission route diagnosis

Synopsis int getM3FailSubunit (unsigned short *change, unsigned short *disconnect, unsigned short

position[8]);

Description The function obtains the state of a sub-unit transmission route (optical FA bus or optical FA

bus 2 connection) upon a sub-unit configuration. Use the function if an error, such as an I/O
bus error, occurs during access to an I/O module in the sub-unit.

If an error occurs on a sub-unit transmission route, an error type is stored in the arguments
change and disconnect, and an error location is stored in the argument position[]. position[]
represents an error-detected bit position on F3LR0□, which is set to 1. In each bit, the LSB
represents slot number 1, and the MSB represents slot number 16. An index of the array
represents a unit number.
 Example: for position[2] = 0x0020, the unit number is 2 and the slot number is 6.

Argument change Switching of the sub-unit transmission route

 0: A sub-unit transmission route has not been switched.
 1: A sub-unit transmission route has been switched.

 disconnect Sub-unit transmission route error
 0: A sub-unit transmission route error has not occurred.
 1: A sub-unit transmission route error has occurred.

 position[] Location in which the error-generated module is mounted
 Index of the array: unit number (0 to 7)
 Bit position in each array element: slot number (1 to 16)

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 S_m3ras_BUS_ERROR The function failed to access the FA bus module.

Remarks The sub-unit transmission route error indicates an instantaneous value when this function is

carried out. If a failure on the sub-unit transmission route is fixed, the error is also cleared.

 A1-50

TI 34M06T02-02E Mar. 31, 2021-00

 getM3FailCpu
Feature CPU module diagnosis

Synopsis int getM3FailCpu (int mode);

Description The function allows you to check whether other CPU modules, not the CPU module on

which the function is run, fail in the multi-CPU configuration. Use the function if an error,
such as an I/O bus access error, occurs during access to a shared device.

If any of the other CPU modules are found to have an error, the function returns the
results with the lower four bits of the return value. The result value of 0 indicates that no
error CPU module is found. If an error occurs, an error flag is set bit-by-bit from the LSB in
CPU number order.
 Bit0: CPU1 status (0: OK, 1: Error)
 Bit1: CPU2 status (0: OK, 1: Error)
 Bit2: CPU3 status (0: OK, 1: Error)
 Bit3: CPU4 status (0: OK, 1: Error)

If the argument mode is set to a value other than 0, the output setting for the I/O module
assigned to an error CPU module is changed according to the external output setting on
failure. In e-RT3 2.0 CPU modules, the assignment of an I/O module to a CPU module is
determined by use or non-use of any I/O module.

Argument mode DO output condition in case of a CPU failure detection

 0: The output setting is changed according to the
 external output setting on failure.
 Not 0: The output setting is changed according to the
 external output setting on failure.

Return value Positive number CPU status
 -1 Error

errno EFAULT The function failed to get data.
 S_m3ras_BUS_ERROR The function failed to access the CPU module.
 S_m3ras_CPUCHK_ERROR The function verified that the CPU module had failed

(normal behavior).

Remarks The function does not switch the FAIL terminal on the power supply module.

 System notification

 enableM3HeatIrq
Feature Enable high CPU temperature detection

Synopsis int enableM3HeatIrq (int msgQId);

Description The function enables temperature monitoring and notification of a processor equipped

with a CPU module.
High processor temperature notification always monitors the processors for high
temperature due to the surrounding environment or system failure, and notifies your
application of high temperatures, if detected.
The msgrcv system call receives the notified high temperature of the CPU by using the
message queue ID registered by the argument msgQId.

Argument msgQId Message queue ID obtained by the msgget system call

Return value 0 Successful
 -1 Error

errno EINVAL An invalid message queue ID was specified.

Remarks - The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.
- Messages in a message queue cannot be received by multiple processes. A single
 process must be responsible for receiving the messages.
- When the function notifies a high CPU temperature, the notification function gets
disabled.

 A1-51

TI 34M06T02-02E Mar. 31, 2021-00

 enableM3PowerIrq
Feature Enable momentary power failure detection

Synopsis int enableM3PowerIrq (int mode, int msgQId);

Description The function enables monitoring and notification of a momentary supplied voltage failure

or low voltage.
The momentary power failure detection detects a failure of the voltage supplied from the
power supply module, and notifies the user application of the failure.
In the argument mode, specify either the standard mode or the immediate detection mode
as the detection mode of the supplied voltage.
The msgrcv system call receives a detected momentary power failure by using the
message queue ID registered by the argument msgQId.

Argument mode Detection mode of momentary power failure

 0: standard mode
 Not 0: immediate detection mode

 msgQId Message queue ID obtained by the msgget system call

Return value 0 Successful
 -1 Error

errno EINVAL An invalid message queue ID was specified.

Remarks - The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.
- Messages in a message queue cannot be received by multiple processes. A single
 process must be responsible for receiving the messages.

A1.5.6 WDT

 Timer operation

 bindM3Wdt
Feature Get the WDT

Synopsis int bindM3Wdt(void);

Description The function obtains the right to use the WDT. Only one process can use the WDT at one

time.
To use the WDT, any process must obtain the right to use the WDT by using this function.

Argument None

Return value 0 Successful
 -1 Error

errno EBUSY The WDT is already in use.

 releaseM3Wdt
Feature Release the WDT

Synopsis int releaseM3Wdt(void);

Description The function releases the right to use the WDT obtained by the bindM3Wdt function.

Only one process can use the WDT timer.

Argument None

Return value 0 Successful
 -1 Error

errno EBADF The WDT has not been obtained.

 A1-52

TI 34M06T02-02E Mar. 31, 2021-00

 cleanM3Wdt
Feature Clear the WDT

Synopsis int cleanM3Wdt(void);

Description The function clears the WDT counter.

Call this function periodically at shorter intervals than that specified for the WDT to avoid a
WDT timeout.

Argument None

Return value 0 Successful
 -1 Error

errno EIO The WDT is stopped.

 startM3Wdt
Feature Start the WDT

Synopsis int startM3Wdt(void);

Description The function starts the WDT.

The WDT runs based on the specified mode and timeout period.

Argument None

Return value 0 Successful
 -1 Error

errno EIO The WDT is already in operation.

 stopM3Wdt
Feature Stop the WDT

Synopsis int stopM3Wdt(void);

Description The function stops the WDT.

Argument None

Return value 0 Successful
 -1 Error

errno EIO The WDT is stopped.

 A1-53

TI 34M06T02-02E Mar. 31, 2021-00

 Mode configuration

 setM3WdtTimeout
Feature Set the WDT timeout period

Synopsis setM3WdtTimeout(int timeout);

Description The function specifies the timeout period for the WDT.

The initial timeout period is set to 5,000 milliseconds when the WDT is started. Use
timeout to change this timeout period of the WDT. timeout can be from 1,000 to 120,000
milliseconds. You can change the timeout period at any time.

Argument timeout WDT timeout period

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 EINVAL An invalid period was specified.

Remarks The period for the WDT is rounded up at the value obtained from dividing the HZ macro

value by 10. The default value of the HZ macro is 1000. Although you can change the HZ
macro value with the kernel configuration, set the HZ macro to a value of at least 100
based on the previous reason.

 setM3WdtMode
Feature Set the WDT operating mode

Synopsis int setM3WdtMode(int mode);

Description The function sets the operating mode of the WDT with the argument mode.

For mode, set a logical addition of M3WDT_MODE_RESET, M3WDT_MODE_HALT,
M3WDT_MODE_SIG, and M3WDT_MODE_CLOSESTOP macros. The default value
after the system restart is M3WDT_MODE_RESET.

Macro name Value Description
M3WDT_MODE_RESET 0x0000 Rests the WDT when it times out.
M3WDT_MODE_HALT 0x0001 Halts the WDT when it times out. The

RDY LED lights off, and the I/O module
becomes inaccessible. In the multi-CPU
configuration, other CPU modules
recognize this CPU module as a failed
CPU.

M3WDT_MODE_SIG 0x0002 Works as a software WDT, causing no
actions like RESET and HALT shown in
the above.
When the WDT times out, a SIGTERM
signal is sent to the process that changed
the mode to this mode. If the WDT is
closed, no signal notification is sent.

M3WDT_MODE_CLOSESTOP 0x8000 An option to prevent the RESET operation
from being performed when the WDT
driver is closed by the OS for any reason.
This option causes the WDT to be
stopped upon closing. The WDT continues
to work by default, so that it can run based
on the mode setting after closing.

Argument mode WDT operating mode

Return value 0 Successful
 -1 Error

errno EFAULT The function failed to get data.
 EIO The WDT is already in operation.

 A1-54

TI 34M06T02-02E Mar. 31, 2021-00

 getM3WdtMode
Feature Get the WDT operating mode

Synopsis int getM3WdtMode(void);

Description The function obtains the operating mode of the WDT.

It returns a logical addition of macros, which is described in the setM3WdtMode function,
as a return value of the function.

Argument None

Return value Positive number WDT operating mode
 -1 Error

errno EFAULT The function failed to write data.

 A2-1

TI 34M06T02-02E Mar. 31, 2021-00

Appendix2 Web Maintenance Tool

A2.1 Before Use
A2.1.1 Overview

The Web Maintenance Tool provides monitoring and setting functions for the internal
parameters of the F3RP70-2L, CPU modules. This tool can be used from the client
PC via a Web browser such as Microsoft Internet Explorer or Google Chrome.
Therefore, engineers who perform maintenance and start-up and end users who
don't have a development environment can easily perform settings and maintenance
from a Web browser, regardless of their PC environment.
Apache2 is installed in the CPU module's system, enabling a Web server, and the
Web Maintenance Tool is built into the CPU module. Therefore, there is no need to
install dedicated software into your PC.
Also, you can view the PDF data such as manuals via your browser.

Figure A2.1.1 Overview

A2.1.2 Operating environment
The following describes the operating environment of the Web Maintenance Tool.

Table A2.1.1 Operating environment

Item Specification
Supported browsers Generic browsers such as Google Chrome
PC PC where a browser listed above operates properly
OS Platform OS where a browser listed above operates properly
Supported CPU modules F3RP70-2L
Communication conditions PC that can start up a browser listed above, and network

environment where an Ethernet cable can be connected to the port
on the front of the CPU module

Note

This application is optimized for operation on Internet Explorer on a Windows PC. If
using it in a different execution environment, the display images may vary

Generic browser

HTTP
communication

Web server

Web application

 A2-2

TI 34M06T02-02E Mar. 31, 2021-00

depending on the screen resolution and the installation format.

A2.1.3 Setup and start-up
(1) Make sure that the CPU module's power is on.

Figure A2.1.2 CPU module operating status

(2) Use a LAN cable to connect the PC to the Port 1 on the CPU module, then start

up the browser.

Note

Use Port 1 during setup.

Figure A2.1.3 PC and CPU module connection

F3RP70-2L

Generic browser

LAN cable

 A2-3

TI 34M06T02-02E Mar. 31, 2021-00

(3) Input the IP address "192.168.3.72" in the browser's address bar.

Note

The IP address (192.168.3.72) is set by default.

Figure A2.1.4 Inputting the IP address

The e-RT3 Plus Studio screen is displayed.

Figure A2.1.5 e-RT3 Plus Studio screen

 A2-4

TI 34M06T02-02E Mar. 31, 2021-00

(4) Click [Web Maintenance Tool].
The Web Maintenance Tool starts up and displays the main screen.

Figure A2.1.6 Main screen

Note

If the Web Maintenance Tool does not start up, check the PC's Ethernet port
settings, and use the ping command to make sure you can connect to the CPU
module. (The IP address for Ethernet Port 2 is not set.)
If the CPU module is starting up, wait a bit and then input the IP address
"192.168.3.72" again.

 A2-5

TI 34M06T02-02E Mar. 31, 2021-00

A2.2 Screen configuration and basic functions

A2.2.1 List of functions

Figure A2.2.1 Screen configuration

e-RT3 Plus Studio screen

Portal screen

Main screen

Manual display screen
Device monitor

(Module selection screen)
CPU settings

(Top/Login screen)

 A2-6

TI 34M06T02-02E Mar. 31, 2021-00

The following describes the screen configuration for the Web Maintenance Tool.

Table A2.2.1 Screen configuration

Screen Description
e-RT3 Plus Studio screen Top page for the e-RT3 Plus Support Package.
Portal screen Displayed while the Web Maintenance Tool is

initialized.
Main screen Main screen of the Web Maintenance Tool.
Device monitor (Module selection screen) Top screen for selecting the modules to be

monitored in the device monitor.
LED information is also displayed.

 CPU module monitor screen Monitors the CPU module devices.
I/O device monitor screen Monitors the I/O module devices.

CPU settings (Top/Login screen) Top screen for CPU settings.
This is also the screen for users to log into the Web
Maintenance Tool.

 User management screen Adds, deletes, or changes the password for Web
Maintenance Tool users.

Calendar / Time settings screen Sets the date and time for the CPU module.
Device settings screen Sets the internal devices, links, and shared devices

used by the CPU module.
Operation settings screen Sets the functional operation of peripheral services

for the CPU module.
Manual Displays the manuals.
About Displays information such as the version.

 A2-7

TI 34M06T02-02E Mar. 31, 2021-00

A2.2.2 Portal screen (Start-up screen)
This screen is displayed when the PC is connected to the CPU module and the Web
Maintenance Tool is starting up.

Figure A2.2.2 Portal screen

 A2-8

TI 34M06T02-02E Mar. 31, 2021-00

A2.2.3 Main screen
This is the top page for the Web Maintenance Tool.

Figure A2.2.3 Main screen

 About the navigation menu

Figure A2.2.4 Navigation menu

Table A2.2.2 Navigation menu
Item Description

Home Displays the main screen.
Device monitor Displays the device monitor screen. (Refer to "A2.3 Device monitor (Module

selection screen)".)
CPU settings Displays the CPU settings screen. (Refer to "A2.4 CPU settings".)
Manual Browses the PDF data such as manuals. (Refer to "A2.5 Manual display".)
About Displays information such as the version.

 A2-9

TI 34M06T02-02E Mar. 31, 2021-00

A2.2.4 Changing languages
On the main window, you can change the language the Web Maintenance Tool is
displayed in (Japanese or English). The initial setting is English.

Figure A2.2.5 Display language

 A2-10

TI 34M06T02-02E Mar. 31, 2021-00

A2.3 Device monitor (Module selection screen)
Click [Device Monitor] on the Navigation menu to display the device monitor
(module selection screen).

Figure A2.3.1 Device monitor (Module selection screen)

If browsing a sub-unit, select one from the [Select unit] pull-down menu.

Figure A2.3.2 Device monitor (Sub-unit)

 A2-11

TI 34M06T02-02E Mar. 31, 2021-00

The module selection screen displays the configuration of modules equipped
to the connected unit. Select a module to display the device monitor screen
for that module.

Figure A2.3.3 Selecting a module

 A2-12

TI 34M06T02-02E Mar. 31, 2021-00

A2.3.1 CPU module monitor screen
Select a CPU module from the module configuration to display that CPU module's
status and internal device monitor screen. The CPU module monitor screen can
show the following screens.
- CPU status screen
- CPU device monitor screen
The top page is the CPU status screen. To change the display, select from the
[Monitor] pull-down menu.

Note

To display the module selection screen, click [Device Monitor] in the navigation
menu, or click the back button in your browser's menu bar.

 CPU status screen
This screen displays the CPU module's LED light status and mode switch status.

Figure A2.3.4 CPU status screen

 A2-13

TI 34M06T02-02E Mar. 31, 2021-00

 CPU device (Relay device) monitor screen
On the relay device monitor screen, you can monitor the following.
- Internal relays (I)
- Shared relays (E)
- Extended shared relays (EE)
- Link relays (L)

Figure A2.3.5 Relay device monitor screen

The relay device monitor screen can display 64 devices at once.
To change the displayed devices, input the address number to be displayed at the
first line into the [Start address] input field, then click the [Change] button.

Figure A2.3.6 Changing addresses

 A2-14

TI 34M06T02-02E Mar. 31, 2021-00

The [COMMENT] column in the table displays the device comment defined by the
user. Regardless of the selection for [Display Language], the comment will be
displayed in the language the user used to define it.
The [DATA] column indicates if a device is on or off. You can also use the on/off
buttons in the [EDIT] column to turn a device on or off.

Note

In order to turn a device on or off, you must login to the Web Maintenance Tool on
the CPU settings screen.
For details about device comments, refer to "A2.3.3 Using and installing comment
file".

Figure A2.3.7 Displaying device comments and ON/OFF statuses

 A2-15

TI 34M06T02-02E Mar. 31, 2021-00

 CPU device (Register device) monitor screen
On the register device monitor screen, you can monitor the following.
- Data registers (D)
- Shared registers (R)
- Extended shared registers (ER)
- Link registers (W)

Figure A2.3.8 Register device monitor screen

The device monitor screen can display 64 devices at once.
To change the displayed devices, input the address number to be displayed at the
first line into the [Start address] input field, then click the [Change] button.

Figure A2.3.9 Changing addresses

The [COMMENT] column in the table displays the device comment defined by the
user. Regardless of the selection for [Display Language], the comment will be
displayed in the language the user used to define it.

 A2-16

TI 34M06T02-02E Mar. 31, 2021-00

The [DATA] column displays the current value. The word length value is displayed
as a signed decimal.
Also, you can input any value into the [EDIT] column's input field and click [Write] to
change the setting value.

Note

In order to change a setting value, you must login to the Web Maintenance Tool on
the CPU settings screen.
For details about device comments, refer to "A2.3.3 Using and installing comment
file".

Figure A2.3.10 Changing the setting value

If you input a value outside the specified range, an error message appears.

Figure A2.3.11 Error message

 A2-17

TI 34M06T02-02E Mar. 31, 2021-00

A2.3.2 I/O device monitor screen
Select an I/O module from the module configuration to display that I/O module's
monitor screen. On the I/O module monitor screen, you can monitor the following
depending on the module type.
- Input relays
- Output relays
- Internal registers
If there is a user comment file, the comments are quoted and displayed. For an
advanced I/O module, if there is no user comment file, the system comments are
quoted from the module definition file and displayed.
The top page is the device monitor screen for I/O relays. To change the display,
select from the [Monitor] pull-down menu.

Note

To display the module selection screen, click [Device Monitor] in the navigation
menu, or click the back button in your browser's menu bar.

 I/O relay monitor
If [Input relay] or [Output relay] is selected for [Monitor], the screen displays the
monitor for the I/O module's input or output relays.
The [COMMENT] column displays user comments about the module's position and
model name.
If there is no user comment and the system has advanced I/O module definition
information, the system's comments are displayed.

Figure A2.3.12 I/O device monitor screen

 A2-18

TI 34M06T02-02E Mar. 31, 2021-00

The [DATA] column indicates if a device is on or off. For output relays, you can also
use the on/off buttons in the [EDIT] column to turn a device on or off.

Note

In order to turn a device on or off, you must login to the Web Maintenance Tool on
the CPU settings screen.

Figure A2.3.13 Output relay monitor

 Advanced register monitor
If [Internal register] is selected for [Monitor], the screen displays the monitor for the
advanced I/O module's internal registers.
The [COMMENT] column displays user comments about the module's position and
model name.
If there is no user comment and the system has advanced I/O module definition
information, the system's comments are displayed.

Figure A2.3.14 Advanced register monitor screen

 A2-19

TI 34M06T02-02E Mar. 31, 2021-00

The register device monitor screen can display 64 devices at once.
To change the displayed registers, input the address number to be displayed at the
first line into the [Start address] input field, then click the [Change] button.

Figure A2.3.15 Changing addresses

The [DATA] column displays the current value. The word length value is displayed
as a signed decimal.
Also, you can input any value into the [EDIT] column's input field and click [Write] to
change the setting value.

Note

In order to change a setting value, you must login to the Web Maintenance Tool on
the CPU settings screen.

Figure A2.3.16 Changing the setting value

If you input a value outside the specified range, an error message appears.

Figure A2.3.17 Error message

 A2-20

TI 34M06T02-02E Mar. 31, 2021-00

Note

If the user comment is not displayed, there is an error in the definition of the user
comment file. Check it and make corrections, then re-execute.
If the comment information is displayed with corrupted characters, there is an error
in the encoding specification of the saved user comment file. Save it in UTF-8
format, then re-execute.

 A2-21

TI 34M06T02-02E Mar. 31, 2021-00

A2.3.3 Using and installing comment file
With the Web Maintenance Tool, you can create user comments for the device
monitors.

 Creation procedure

Note

Create the comment file in the ini file format.

(1) Specify the module model number and slot number.

Separate the four characters in front of the hyphen ("-") in the module model
number and the slot number where the module is installed with a comma (","),
and enclose them in brackets ("[]").

Figure A2.3.18 Example comment file

(2) Specify a register in the module.
Input the device type and address, then input "=".
The address is expressed using zero suppression (written without 0s, and
I00001 results in an error).

Figure A2.3.19 Example comment file

For a CPU module, the following devices can be defined.

Device type Device name
I Internal relay
D Data register
E Shared / Extended shared relay
R Shared / Extended shared register
L Link relay
W Link register

Module model number Slot number

Device type Address

 A2-22

TI 34M06T02-02E Mar. 31, 2021-00

For an I/O module, the following devices can be defined.
Device type Device name

X Input relay
Y Output relay

Note

The device settings for the CPU module can be specified within the address ranges
in the device settings. For details about the setting ranges, refer to "A2.4.4 Device
setting screen".
For I/O modules, the actual address is stored internally depending on the installation
slot.
For example, the comment for a module installed in Slot 004 shows Y1 =
"Comment" in the ini file definition, but the actual monitor address is "Y00401".

(3) Create a comment.

Input the comment after "=". Input the comment with 32 characters and enclose
it in quotation marks (" ").

Figure A2.3.20 Example comment file

(4) When you finish creating all the comments, save the file in the UTF-8
format using "UserComment.rpc" as the file name.

Figure A2.3.21 Example comment file

(5) Store the comment file in "/media/sd/WebTool/".
Make directory for storage

mkdir -p /media/sd/WebTool

chmod 0777 /media/sd/WebTool

You should store it in the above directory, through SFTP server. You can use any
SFTP client such as Visual Studio Code described in chapter 5 or WinSCP
described in chapter 6.

Comment

 A2-23

TI 34M06T02-02E Mar. 31, 2021-00

A2.4 CPU settings
A2.4.1 CPU settings (Top/Login) screen

This is the top page for CPU module settings.
This is also the screen where a user with CPU setting privileges can login to perform
configuration settings.

Note

General users cannot change CPU settings.
To register a new user, refer to "A2.4.2 User management screen".

Figure A2.4.1 CPU settings (Top/Login) screen

Input your registered user name and password, then click the [Login] button.
You can perform configuration settings after logging in.

Figure A2.4.2 Login input fields

You can reboot the CPU module
to apply the CPU settings while
logged in.

 A2-24

TI 34M06T02-02E Mar. 31, 2021-00

A2.4.2 User management screen
This screen is for adding and deleting user accounts which set the CPU modules.
"Administrator" is registered by default. (Default password : Administrator)

Note

In order to add or delete a user account, you must login to the Web Maintenance
Tool on the CPU settings screen.

Figure A2.4.3 User management screen

To add a user account, click the [Add] button.
Input fields are displayed for the user name and password. Input the new user name
and password.
To delete a user account, click the [Delete] button to the right of the field you want to
delete.
The user account is deleted.
If writing the settings to the CPU module, click the [Apply] button.

Figure 2.4.4 Adding or deleting user accounts

 A2-25

TI 34M06T02-02E Mar. 31, 2021-00

A2.4.3 Calendar / Time settings screen
This screen is for setting the date and time of the CPU module.

Note

In order to execute the calendar and time settings, you must login to the Web
Maintenance Tool on the CPU settings screen.

Figure A2.4.5 Calendar / Time settings screen

Input the date and time you want to set into the input fields displayed below the
calendar and clock, then click the [Apply] button.

Figure A2.4.6 Setting the date and time

Note

When you change the time zone of Ubuntu system, reboot the system before setting
time with this tool.

 A2-26

TI 34M06T02-02E Mar. 31, 2021-00

A2.4.4 Device settings screen
This screen is for setting the configuration of the internal devices, shared devices,
and link devices used by the CPU.
If writing the settings to the CPU module, click the [Apply] button.

Note

In order to execute device settings, you must login to the Web Maintenance Tool on
the CPU settings screen.
Settings are enabled after the CPU module is restarted.

Figure A2.4.7 Device settings screen

 A2-27

TI 34M06T02-02E Mar. 31, 2021-00

 Internal devices
This sets the internal relays and registers.

Figure A2.4.8 Internal devices

Table A2.4.1 Settings for internal devices

Item Description Range
Device information destination Select RAM or SRAM. RAM/SRAM
Internal relay (I) / Use Sets whether to use the internal relay or not.

Note
If you unselect [Use], you cannot input [Points].

-

Internal relay (I) / Points Sets the number of internal relay points used.

Note
Set the internal relay in units of 32 points.

Example settings: 32, 64, 96, 128...

0 to 65536

Data register (D) / Use Sets whether to use the data register or not.

Note
If you unselect [Use], you cannot input [Points].

-

Data register (D) / Points Sets the number of data register points used.

Note
Set the data register in units of 2 points.

Example settings: 2, 4, 6, 8...

0 to 65536

 A2-28

TI 34M06T02-02E Mar. 31, 2021-00

 Inter-CPU shared devices
This sets the shared relays and shared registers.

Figure A2.4.9 Inter-CPU shared devices

Table A2.4.2 Settings for inter-CPU shared devices

Item Description Range
Shared relay (E) Sets the range of the CPU shared relay.

Note
Set the shared relay so that the total number of points for
CPUs 1 to 4 comes to a range of 0 to 2048.

Also, set the shared relay in units of 32 points.

Example settings: 32, 64, 96, 128...

0 to 2048

Shared register (R) Sets the range of the CPU shared register.

Note
Set the shared register so that the total number of points for
CPUs 1 to 4 comes to a range of 0 to 1024.

Also, set the shared register in units of 2 points.

Example settings: 2, 4, 6, 8...

0 to 1024

Ext. shrd relay (EE) Sets the range of the CPU extended shared relay.

Note
Set the extended shared relay so that the total number of
points for CPUs 1 to 4 comes to a range of 0 to 2048.

Also, set the extended shared relay in units of 32 points.

Example settings: 32, 64, 96, 128...

0 to 2048

Ext. shrd reg. (ER) Sets the range of the CPU extended shared register.

Note
Set the extended shared register so that the total number of
points for CPUs 1 to 4 comes to a range of 0 to 3072.

Also, set the extended shared register in units of 2 points.

Example settings: 2, 4, 6, 8...

0 to 3072

 A2-29

TI 34M06T02-02E Mar. 31, 2021-00

A2.4.5 Operation settings screen
This screen is for setting the configuration of the CPU module's peripheral services
(M command server, FL-net link refresh, higher-level link service).
If writing the settings to the CPU module, click the [Apply] button.

Note

In order to execute operation settings, you must login to the Web Maintenance Tool
on the CPU settings screen.
Settings are enabled after the CPU module is restarted.

Figure A2.4.10 Operation settings screen

 M command server start-up settings

Figure A2.4.11 M command server start-up settings

Table A2.4.3 M command server start-up settings

Item Description Range
Wait time Sets the start-up wait time for the M command server. 1 to 100

 A2-30

TI 34M06T02-02E Mar. 31, 2021-00

 Higher-level link service (Ethernet) start-up settings

Figure A2.4.12 Higher-level link service (Ethernet) start-up settings

Table A2.4.4 Higher-level link service (Ethernet) start-up settings

Item Description Range
Process execution priority Specifies the process execution priority for the higher-

level link service (Ethernet). 1 to 99

 Higher-level link service (serial port) start-up settings

Figure A2.4.13 Higher-level link service (serial port) start-up settings

Table A2.4.5 Higher-level link service (serial port) start-up settings

Item Description Range
Process execution
priority

Specifies the process execution priority for the higher-level
link service (serial port). 1 to 99

Communication baud
rate

Selects the communication baud rate. 9600/19200/
38400/57600/
115200

Use check sum Specifies whether to use the check sum or not. Yes / No
Use end character Specifies whether to use the end character or not. Yes / No
Terminal mode settings Specifies whether to use the terminal mode or not. Yes / No

 A2-31

TI 34M06T02-02E Mar. 31, 2021-00

A2.5 Manual display
On the manual screen, you can display PDF documents for manuals on the
Web Maintenance Tool.

Note

If the execution environment does not have a function for viewing PDF data
(browser plug-in or application for viewing PDFs), then you cannot display the PDF
documents.

Figure A2.5.1 Manual screen

 A2-32

TI 34M06T02-02E Mar. 31, 2021-00

A2.5.1 Installing manual files
(1) Make directory for storage

mkdir -p /media/sd/WebTool/manual

chmod 0777 /media/sd/WebTool/manual

(2) Store the document's PDF data.
You should store them in the above directory, through SFTP server. You can use any
SFTP client such as Visual Studio Code described in chapter 5 or WinSCP
described in chapter 6.

Note

Use only single-byte alphanumeric characters for the file names of the PDF data
stored in the directory.

 A2-33

TI 34M06T02-02E Mar. 31, 2021-00

A2.5.2 Displaying the manuals

 Display method
Click [Manuals] in the Navigation menu to display the manuals screen.
From the pull-down menu, select the PDF document you want to display.

Figure A2.5.2 Pull-down menu for selecting a document

Note

If a PDF document's file name is not displayed in the pull-down menu, there is either
an error in the specification of the directory on the SD card
(/media/sd/WebTool/manual), or the file itself is invalid.
Check the file and the storage location.
If the PDF document is large, it may take some time for until it is displayed.

Figure A2.5.3 Displayed PDF document

 A2-34

TI 34M06T02-02E Mar. 31, 2021-00

 Useful functions
Open new window function
Click the [Open new window] button on the top-right of the PDF document display to
display the PDF document in a separate window.
This function enables you to display PDF documents even if the browser in your
environment does not support PDF display plug-ins (such as a Macintosh or
smartphone).

Note

If you cannot display a PDF document, check if a PDF viewer is installed.

Figure A2.5.4 Open new window function

 Rev-1

TI 34M06T02-02E 2nd Edition: Mar. 31, 2021-00

Revision Information
Title : Ubuntu Image for F3RP70 User’s Guide

Document No. : TI 34M06T02-02E

Mar. 2021 / 2nd Edition
 Add chapter 7
 Add appendix 1 and 2
 Correction of mistake

Apr. 2020 / 1st Edition
 New publication

 For Questions and More Information
If you have any questions, you can send an E-mail to the following address.
E-mail: plc_message@cs.jp.yokogawa.com

 Written by
Yokogawa Electric Corporation

 Published by

Yokogawa Electric Corporation
2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, JAPAN

	Ubuntu Image for F3RP70User’s Guide
	Contents
	Introduction
	1. F3RP70-2L
	1.1 Overview
	1.2 Ubuntu image

	2. Writing the Ubuntu image file to theSD memory card and startup
	2.1 Procedure overview
	2.2 The SD memory card for starting
	2.2.1 Specifications of the Ubuntu image
	2.2.2 User settings
	2.2.3 Network settings

	2.3 Procedure for writing to the SD memorycard
	2.3.1 Environment installation
	2.3.2 How to write to the SD memory card

	2.4 Starting from the SD memory card
	2.4.1 Procedure of startup
	2.4.2 Procedure of log in to Ubuntu
	2.4.3. Enable the sudo command

	3. e-RT3 I/O module configurationservice
	3.1 Functional overview
	3.2 Usage
	3.2.1 Setting file
	3.2.2 Working with the daemon

	3.3 Setting file in detail
	3.3.1 Digital input module
	3.3.2 Digital output module
	3.3.3 Analog input module
	3.3.4 Analog output module
	3.3.5 High-speed data acquisition module
	3.3.6 Temperature monitoring module

	4. F3HA12 data acquisition service
	4.1 Functional overview
	4.2 Usage
	4.2.1 Working with the daemon
	4.2.2 Data acquisition

	4.3 API

	5. Application development withPython
	5.1 Development method
	5.2 Remote development with Visual StudioCode
	5.2.1 Overview
	5.2.2 Environment creation procedure
	5.2.3 Usage

	5.3 Remote development with JupyterNotebook
	5.3.1 Overview
	5.3.2 Environment creation procedure
	5.3.3 Usage

	5.4 How to access the M3IO module
	5.4.1 Input output data of IO module
	5.4.2 Calling C/C++ library functions from Python

	5.5 Sample program

	6. Application development withC/C++
	6.1 Host development with F3RP70-2L
	6.1.1 Usage
	6.1.2 Using the e-RT3 -specific API functions

	7. Overlay Filesystem
	7.1 Overview
	7.1.1 OverlayFS overview
	7.1.2 Overview of procedures

	7.2 Description of OverlayFS
	7.3 Enter settings
	7.3.1 Preparing the operating environment
	7.3.2 Configuring OverlayFS
	7.3.3 Clearing OverlayFS settings

	7.4 Usage precautions

	Appendix1. I/O Module Access Library
	A1.1 List of APIs
	A1.2 List of API error codes
	A1.3 Receiving interrupts and alarms
	A1.4 How to receive signals (inter-processcommunication)
	A1.5 API reference
	A1.5.1 I/O module
	A1.5.2 CPU module
	A1.5.3 PLC device
	A1.5.4 System administration
	A1.5.5 RAS
	A1.5.6 WDT

	Appendix2 Web Maintenance Tool
	A2.1 Before Use
	A2.1.1 Overview
	A2.1.2 Operating environment
	A2.1.3 Setup and start-up

	A2.2 Screen configuration and basic functions
	A2.2.1 List of functions
	A2.2.2 Portal screen (Start-up screen)
	A2.2.3 Main screen
	A2.2.4 Changing languages

	A2.3 Device monitor (Module selection screen)
	A2.3.1 CPU module monitor screen
	A2.3.2 I/O device monitor screen
	A2.3.3 Using and installing comment file

	A2.4 CPU settings
	A2.4.1 CPU settings (Top/Login) screen
	A2.4.2 User management screen
	A2.4.3 Calendar / Time settings screen
	A2.4.4 Device settings screen
	A2.4.5 Operation settings screen

	A2.5 Manual display
	A2.5.1 Installing manual files
	A2.5.2 Displaying the manuals

	Revision Information

