Technical -

Information Ubuntu Image for F3RP70 e-RPT=
User’s Guide

TI1 34M06T02-02E

N

TI 34M06T02-02E

YOKOGAWA ’ Mar. 2021 2nd Edition (YK)

Yokogawa Electric Corporation

Content-1

Ubuntu Image for F3RP70 User’s Guide

TI1 34M06T02-02E 2nd Edition

Contents

Introduction

1 F3RP70-2L
O T 0 1 7=Y V= 1-1
2 U 1 0 10143 0] 4 F- 7= Y 1-1

2 Writing the Ubuntu image file to the SD memory

card and startup

2.1 ProCedure OVEIVIEWccceeerremeeerrrcenneerssssnnesesssssssesessssssssessssnnsesesssnnns 2-2
2.2 The SD memory card for starting.......cccccceccerrrccccerreccccerr s 2-3
2.2.1 Specifications of the Ubunut image ..., 2-3
2.2.2 User Settings ..o 2-5
2.2.3 Network settings ... ————— 2-5
2.3 Procedure for writing to the SD memory card........cccccecvmmreerreieecccnnnes 2-7
2.3.1 Environment installation ... 2-7
2.3.2 How to write to the SD memory card ..., 2-11
2.4 Starting from the SD memory card ... 2-14
2.4.1 Procedure of Startup ... 2-14
2.4.2 Procedure of [0 in to UBUtU ..oeerieiiiciirccrrcrrr e 2-14
2.4.3 Enable the sudo commandcoiriiiriceerccrrr e 2-21
e-RT3 10 module configuration service
3.1 Functional OVerVIEW ... ccecere e e e nse e e e e e e e mnnnes 3-2
B 0 U -3 7 - 3-4
3.2 1 Setting file .. ————————— 3-4
3.2.2 Working with the daemon ... 3-4
3.3 Setting file in detail ... —————— 3-6
3.3.1 Digital input module ... ——— 3-6
3.3.2 Digital output Module ... —————— 3-7
3.3.3 Analog input MOdUIEeeiieieeeeeerrer e 3-8
3.3.4 Analog output Module ... ————— 3-10
3.3.5 High-speed data acquisition module ... 3-11
3.3.6 Temperature monitor modulecccririceircicnrcc e ——— 3-14

Tl 34M06T02-02E 2021.03.31-00

Content-2

4

4.1
4.2

4.3

5.1
5.2

5.3

5.4

5.5

6.1

7.1

1.2
1.3

7.4

F3HA12 data acquisition service

Functional OVerview ... e 4-1
L L3 1< 4-2
4.2.1 Working with the daemon ... 4-2
T4 N O T: Y - T T o | 11 £=1 1[0 o R 4-3
LN 4-5
Application development with Python
Development method..........eiii e 5-2
Remote development with Visual Studio Code.......cccccerrrrnnernnnee 5-3
L0 R 11 T SRR SSP 5-3
5.2.2 Environment creation procedure ... 5-4
L T U - - 5-16
Remote development with Jupyter Notebookccrrrrnnneennn. 5-22
5.3.1 OVEIVIEW ..eeeeieeieeccerseer e s e s s s s e s s s e s s s e s s s e e n e e s emn e e smn e s nnennnns 5-22
5.3.2 Environment creation procedureriicmrcnncinnnces e 5-23
LG T T - - - 5-24
How to access the IOModule ... 5-30
5.4.1 Input output data of IO module ... ————— 5-30
5.4.2 Calling C/C++ library functions from Pythoncccceeeeeeeeerceecercesenne 5-31
ST 100101 L3 0T 0T =4 2 o o 5-41
Application development with C/C++
Host development with F3RP70-2L ... 6-1
00 0 O 1= - 6-1
6.1.2 Using the e-RT3-specific APl functionsccccreemrcvcmrrccnrcccerrccenrcceeenaen, 6-9
Overlay Filesystem
L0 37T T 7-2
7.1.1 OVerlayFS OVEIVIEWeoeieirceercereccere s er e s s e e e e s e e e s e e e e e e n e s e sme e e 7-2
7.1.2 Overview of ProCEAUIESiiiireecierrrceeerrrcer e e rcer e s ssee e e e s s s e e e e s smee e e e snneeenns 7-2
Description of Overlay FS....... e 7-3
Enter Settings o 7-4
7.3.1 Preparing the operating environmentcccococerrecmrricnrccnnrcenrccer e 7-4
7.3.2 Configuring OverlayFsS ... e 7-5
7.3.3 Clearing OverlayFS SettiNgS ...ccccvrvcirccmrricirrcerrrc e e e 7-5
UsSage PreCaUtioNS......cccccceerieeccceerrccceees s s ssse s s e s sssme e s s s smne e s s s s smne s esssnnns 1-7

Tl 34M06T02-02E 2

021.03.31-00

Content-3

Appendix11/0 Module Access Library

NI O I E3 o 2 3 Al-1
Al.2 List of APl error COdes.....mmiiiieerecccceer e e e Al-2
Al1.3 Receiving interrupts and alarms........ccooccoeerrrcccinnrccceeee e, Al-4
Al.4 How to receive signals (inter-process communication) A1-9
DAN IRLOT AN o =Y (=1 =Y o Vo - Al-12
0 R 4 0 I T Yo [1] - Al-12
AL.5.2 CPU MOAUIE ..eeeeeeeeeeecceeerreeerrssseeseessse s eessssseeessssseessssnsesenssnsesensansesennen Al-24
AL5.3 PLC dEVICE .uerrerrerrcetrctrre s e s s s e ssne s se s s s s e s s e Al-31
Al.5.4 System administration ... ——— Al-43
N TR T £ S Al-48
N T T N Al-51
Appendix2 Web Maintenance Tool
DA N = 1= 0T U K A2-1
L I R 0 1Y Y 1 S A2-1
A2.1.2 Operating environment ... e e e e A2-1
A2.1.3 Setup and Start-Up ... A2-2
A2.2 Screen configuration and basic functions......cccccceeeeerccicccneenneenen. A2-5
A2.2.1 List Of fUNCHIONS ...eeeeeeeceiic e e s e e ns e e e e s e e e e nnns A2-5
A2.2.2 Portal screen (Start-up SCrEEN)ccccveererrererreressessesesessssesssssssessssessssenes A2-7
DAV 20 T T/ - T3 =T o (=Y =Y o RS A2-8
A2.2.4 Changing laNBUAZESccceececerrrrrmerrrrrrerersseeerssssseesessssseresssnseeensssneeressnns A2-9
A2.3 Device monitor (Module selection screen)......cocceeeeveeriersreessennne A2-10
A2.3.1 CPU module MONitor SCreENccccevccirrccrrccirrcee e e s e sse e s e s ne s e A2-12
A2.3.2 1/0 device MONItOr SCIEENccucvveereeeeersersessessessssssssesssssssessssssssesssesenns A2-17
A2.3.3 Using and installing comment file ..o A2-21
DAV S 0 o U =T =Y u 4] 4 ¥ -4 A2-23
A2.4.1 CPU settings (TOP/LOZIN) SCIEENooceeeeeeceeccrcnrinrinssnees s sesesssesssssens A2-23
A2.4.2 User management SCreeNcciircierrrsseessssseessssses e s sssne s sesssnsesensen A2-24
A2.4.3 Calendar / Time Settings SCrEENcccuevevrerreerimriercessnessesnessessssssesesns A2-25
A2.4.4 Device Settings SCrEEN ... ccirrccciiirc e e e A2-26
A2.4.5 Operation settings SCreen ... e e A2-29
A2.5 Manual displaycccoccirirciciiirrccerr e e A2-31
A2.5.1 Installing manual filesccccocrrreiciieccer e e e A2-32
A2.5.2 Displaying the manualsccccorrvrrccmrcccnrcrr s A2-33
Revision INformation ... Rev-1
Tl 34M06T02-02E 2021.03.31-00

Introduction

H Overview

This manual describes how to use the Ubuntu image, which is provided for the OS-
free CPU module.

The OS-free CPU module is e-RT3 CPU module that incorporates only a boot
loader. Users can develop their own system, while it takes time and effort to gain
knowledge for using the module.

Use of the Ubuntu image allows you to easily take advantage of a system with a
combined set of some open-source software.

B Other Instruction Manuals
In addition to this manual, refer to the following manuals.

Product manuals

- e-RT3 CPU Module (F3RP70) Hardware Manual (IM 34M06M52-01E)

- e-RT3 CPU Module (SFRDO2) BSP Common Function Manual (IM 34M06M52-
02E)

- e-RT3 OS-free CPU Module Startup Manual (IM 34M06M52-25E)

Related manuals

- Hardware Manual (IM 34M06C11-01E)

- Analog Input Modules (IM 34M06H11-02E)

- Analog Output Module (IM 34M06H11-03E)

- High-speed Data Acquisition Module (F3HA06-1R, F3HA12-1R) (IM 34M06G02-
02E)

- Temperature Monitoring Module (IM 34MO6H63-01E)

*This manual contains current information as of March 2021.
The features or specifications of the product may be subject to change in the future.

All Rights Reserved. Copyright © 2020, Yokogawa Electric Corporation TI 34M06T02-02E Mar. 31, 2021-00

1-1

1.2

F3RP70-2L

Overview

F3RP70-2L is one of the models in the e-RT3 CPU modules. It incorporates a
boot loader only and allows its users to construct a flexible system, including
the operating system.

After F3RP70-2L is turned on, the boot loader starts its operation and
initializes hardware and e-RT3/FA-M3 modules. The boot loader of F3RP70-2L
provides the features of starting the OS according to the setup parameters
and of self-diagnosing the module, based on the state of the MODE switch.

Ubuntu image

Ubuntu image file to be installed in F3RP70-2L for easy use is provided. The
Ubuntu image file available on the e-RT3 website allows you to start
development early.

You will store this provided Ubuntu image file in an SD memory card before
using the image. To use it, follow the procedure in the next chapter to write
the operating system into the SD memory card and then insert the card into
F3RP70-2L.

Tl 34M06T02-02E Mar. 31, 2021-00

2-1

Writing the Ubuntu image file to the
SD memory card and startup

This chapter describes the procedure for writing the Ubuntu image file to an
SD memory card and startup.

Tl 34M06T02-02E Mar. 31, 2021-00

21 Procedure overview

This section provides an overview of the procedure for writing the Ubuntu
image file to an SD memory card and startup.

For details on the procedure, refer to “2.3 Procedure for writing to the SD
memory card” and “2.4 Starting from the SD memory card” of this manual.

B Writing to an SD memory card

Use the following procedure to write the Ubuntu image file to an SD memory card:

- Download the Ubuntu image file from the Yokogawa website.

- Let your PC recognize an SD memory card.

- Use a tool for writing disk images to write the Ubuntu image file to the SD
memory card.

B What you need

You need to have the following items for the write to the SD memory card:
- PC that supports SD memory cards

- SD memory card (SDHC card: 4 to 32 GB)

- Tool for writing disk images

- Ubuntu image file

You need to have the following items for starting Ubuntu from SD memory card:
- PC

- Terminal software (ex. PuTTY, tera term or.)

- RS-232-C conversion cable (KM72-2N) or Ethernet cable

Tl 34M06T02-02E Mar. 31, 2021-00

2-3

2.2

2.21

The SD memory card for starting

This section describes the SD memory card image you create in this chapter.

The SD memory card image consists of all copied files of the Ubuntu
operating system (OS) that runs on F3RP70-2L and a collection of setting files
necessary for starting the OS. The OS section contains the OS settings as well
as the stored files.

By inserting the SD memory card that has the Ubuntu image into an SD
memory card slot of F3RP70-2L, you can start Ubuntu with F3RP70-2L-
suitable settings and necessary libraries and packages installed in it.

SD memory card image

Operating system Collection of
ubuntu® setting files for .
e Operating system

starting Setting fi
N F3RP70 etting riles
\m ﬁ_ PUthOﬂ Libraries

Created files, etc.
=0 -

+

S
SD memory e \\\\\\% e Collection of setting files for
card \\\> starting F3RP70
S
F3RP70 : N

Figure 2.1 Description of the SD memory card for starting

Specifications of the Ubuntu image

Revision

The revision of the Ubuntu image is confirmed in the file below.

Revison File
R.1.1.1 None
R.1.2.1 or later lusr/locall/etc/sfrd14-release

(0153
Ubuntu18.04LTS, GNU/Linux4.14LTS+PREEMPT_RT is started.
With the following command, you can see kernel configuration of the Ubuntu image.

$ zcat /proc/config.gz

Same information is described in the file /boot/config-xxx-ert3xInx (xxx is version of
kernel).

Ubuntu development package

Python 3 and the build-essential toolchain are available as a program development
environment.

Tl 34M06T02-02E Mar. 31, 2021-00

2-4

® e-RT3 module access

It provides the API functions for working with various e-RT3 I/O modules and e-RT3
CPU and sequence CPU modules in the multi-CPU configuration, together with the
signal notification feature used for synchronization operations between CPU
modules.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

® PLC device access

PLC device access is a feature to emulate the structure of data in a sequence CPU
module. It provides a service for connecting programmable indicators through PC
link commands (specifications from Yokogawa) and a mechanism for shared devices
in the multi-CPU configuration.

It also offers the API functions for working with these PLC devices.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

® External equipment communication service

It provides a communication feature with external equipment, such as indicators and
PCs, via the command interface. With this service, you can monitor and configure
CPU devices and work with programs in sequence CPU modules to operate or stop
them via external equipment.

® RAS

It provides the API functions for examining or monitoring failures in systems and a
mechanism for receiving alarms when a failure occurs. You can receive alarms from
the momentary power failure detection feature for power supply voltage or about
abnormal temperatures of CPU modules.

Note

For details on the features above, refer to “e-RT3 CPU Module (SFRDO2) BSP
Common Function Manual” (IM 34M06M52-02E).

® Web Maintenance Tool
This tool offers features for monitoring and configuring I/O modules and internal

Tl 34M06T02-02E Mar. 31, 2021-00

2-5

2.2.2

223

parameters of the system provided by the Ubuntu image.

It is available on a Web browser, such as Google Chrome. Therefore, end users
who do not have any development environment and engineers in charge of
maintenance or launching can easily work on their configuration or maintenance
tasks on the Web browser regardless of their PC environment.

Note

For details on the features above, refer to “Appendix2 Web Maintenance Tool” of
this document.

Python 3 related packages

The Python-related packages listed in the table below are installed.
If necessary, use the apt command or the pip3 command to add or remove a
package.

No Class Package

1 Machine learning scikit-learn

2 Numerical processing numpy

3 Numerical processing pandas

4 Numerical processing scipy

5 Graph drawing matplotlib

6 Communication pymodbus

7 Development environment jupyter-notebook
Development environment ptvsd

User settings

The Ubuntu OS provided by this image file has the users below.
If necessary, change the password or add or remove a user.

Root user

User name: root
Password: root_ert3

Ordinary user

User name: ert3
Password: user_ert3

Network settings

The Ubuntu OS provided by this image file has the network settings below.
Change them to suit the user's environment. The Ubuntu OS starts with the new
settings if you reboot it after modifying the setting file.

Tl 34M06T02-02E Mar. 31, 2021-00

2-6

® eth0 (LAN port 1)

IP address: 192.168.3.72
Network mask: 255.255.255.0

Setting file:
letc/systemd/network/10-eth0.network

A setting example for stable IP address is described below. You should modify
“‘Address”, “Gateway” and “Destination” for your environment.

[Network]
Address=192.168.3.72/24
[Route]
Gateway=192.168.3.1
Destination=192.168.3.0/24

® eth1 (LAN port 2)

IP address: get from DHCP
Network mask: get from DHCP

Setting file:
letc/systemd/network/20-eth1.network

Tl 34M06T02-02E Mar. 31, 2021-00

2-7

2.3

2.31

Procedure for writing to the SD memory
card

This section describes the detailed procedure for writing the Ubuntu image
file to the SD memory card.

Note

In this procedure, all components (including your settings and applications) in SD
memory card are overwrote. When you use new version of Ubuntu image, you shall
re-install your settings and applications in the new Ubuntu.

Environment installation

This subsection describes the environment necessary for the tasks in this section.

PC
You need to have a PC that meets the following criteria:

- It supports SD memory cards.
You need to use a PC with a built-in SD memory card drive, or have an external
SD memory card reader and connect it to your PC.

- It supports a given tool for writing disk images.

SD memory card

F3RP70-2L supports an SDHC memory card with a capacity of 4 to 32 GB.
We recommend that you use a card with a higher program/erase cycle, such as an
SLC- or MLC-type card.

Ubuntu image file

You download it from our website “Yokogawa Partner Portal”.
Access the following URL and download “OS image file for OS-free CPU Module”
URL: https://partner.yokogawa.com/global/itc/index.htm

Tool for writing disk image files

You can have any tool for writing disk image files.
This manual shows a procedure for Rawrite32, free software for Windows.

How to install

1. Access the following URL and click the [Download] link at the top of the
Rawrite32 website.

Tl 34M06T02-02E Mar. 31, 2021-00

2-8

https://www.netbsd.org/~martin/rawrite32/index.html

: Rawrite32
\-Slﬁ The NetBSD
image writing tool Home | Help | License !

If you've found the license acceptable, you can download the program and/or it's source code here:

Figure 2.2 Download link for Rawrite32

2. Click the [rw32-setup-1.0.7.0.exe] button to download the file.

Rawrite32
\'\-.g The Net8SD
image writing tool Home | Help | License | » Download

If you've found the license acceptable, you can download the program and/or it's source code here:

[rw32-setup-1.0.7.0.exe | he win32 setup program.

This is the easiest and shrink-wrapped solution. Run the installer, and it

Figure 2.3 Selecting the file for Rawrite32

3. Open the downloaded file to start the installer.
If you see a dialog box saying “Do you want to allow this app to make changes
to your device?” instead of the installer being started, click [Yes]. The installer is
then started.

4. Without making particular changes to the settings, click the [Install] button. The
installation is now started.

Tl 34M06T02-02E Mar. 31, 2021-00

2-9

{7 Rawrite32 Setup — *

. Choose Install Location
J Choose the folder in which to install Rawrite 32,

Setup will install Rawrite32 in the following folder. To install in a different folder, dick Browse
and select another folder. Clidk Install to start the installation.

Destination Folder

Browse...

Space reguired: 2.6 M8
Space available: 50.7 GB

Cancel

Figure 2.4 Rawrite32 setup dialog box

5. Once the installation is complete, click the [Finish] button to exit the installer.

(& Rawrite32 Setup —=

Completing Rawrited? Setup

Rawrite32 has been installed on your computer.

Chck Finish to dose Setup.

Figure 2.5 Complete Rawrite32 installation screen

Note

The following PC environment was used to check the procedure described in this
section.
- OS: Windows 10 Enterprise (64-bit version)

Tl 34M06T02-02E Mar. 31, 2021-00

2-10

- SD memory card support: Built-in SD memory card drive

The following SD memory card is available:

- SDHC memory card (4 to 32 GB)

The size of the Ubuntu image file for use ranges from 1 to 2 GB. Choose the
capacity of your card by considering the fact that data is also stored in the SD card
while you are using F3RP70-2L.

For details on the recommended standard and the use of the SD memory card slot
of e-RT3, refer to “4.5 SD memory card” of “e-RT3 CPU Module (F3RP70)
Hardware Manual” (IM 34M06M52-01E).

In the procedure described in this section, you do not have to uncompress the
downloaded file.

You cannot use a general operation for pasting a file to write the SD memory card
image to the SD card. Make sure that you have a tool for writing disk image.

Tl 34M06T02-02E Mar. 31, 2021-00

2-11

2.3.2

How to write to the SD memory card

This subsection details the writing procedure.

Let your PC recognize an SD memory card
Before starting Rawrite32, SD memory card have to be recognized by PC.

Start Rawrite32
If you see a dialog box saying “Do you want to allow this app to make changes to
your device?” instead of Rawrite32 being started, click [Yes]. Rawrite32 is then

started.

In the startup screen, check that [Target] is set to the location of the SD memory
card drive and the capacity of the card is indicated in []. In the following example, a
32-GB SD memory card is used.

M NetBSD Disk Image Tool X

Filesystem image;
u v | R P

Frogram messages:

\
Target: |D: Genenc- S0 Card Reader [7.45 GBEwie] 4}) ‘

Figure 2.6 Rawrite32 startup screen

® Select the Ubuntu image file to be written

At the top right of the screen, click the [Open...] button and select the compressed
Ubuntu image file you downloaded. Hash values are then calculated and displayed
in the [Program messages] section in the middle of the screen.

The [Write to disk...] button is also activated at the bottom right of the screen so that
you can click it.

Tl 34M06T02-02E Mar. 31, 2021-00

2-12

B NetBSD Disk Image Tool ®

D% 7

Filesyztem image:

Aep 70 ubunty_bionic 20200408 bz
Program massages
File systea inaze CINE: ;) buntu_bionic_20200408.bz2 (407.3
MEvte)
MDS Bed2bb3ch2f7cceedddd802abf 272304
SHAT 095719ccddDf 3e36b149762df 26528dd3058618
SHAZ5E 09b5E0acedf1eebchel2 103771 78cb7f c2adbaf 13db8cda322f dadd42c0017
SHAR12 1288737ac1a8819a452602572544 90c=59b1 a856ca3f 9652 17221113754
916bb8c83a2836a34 1e1f 70eb572ad17277d037f efef 23d4hadb2ab=92 19098
Targel |D: Genesic- SD Card Fieader [7.45 GByte] | Wrketodisk..

Figure 2.7 Complete Ubuntu image loading screen

® Write the image

At the bottom right of the screen, click the [Write to disk...] button to open the dialog
box as shown in the figure below. Click the [Yes] button to start writing to the SD
memory card.

b
Filesystem imsge;
CON . bioric_ 20200406522 oo, | R P
Rawrite32
Program mess
File systef B 407.3
MByte) % Are you sure you would like to write the loaded image to
9 drive D: Generic- SD Card Reader [7.45 GByte] 7
g& g;‘ hfFENTIDN: this wall destroy all contents of the disk in that
Suagse 08l drive!
EHAB12 12
a1
(| ves) No I
Taget |D: Genesic- SD Card Fieader [7.45 GByte] | wietodsk. |

Figure 2.8 Write confirmation screen

Tl 34M06T02-02E Mar. 31, 2021-00

2-13

® Confirm the completion of writing

The writing is complete when you see the message saying “successfully written to
disk” in the [Program messages] section, as shown in the figure below. At the top
right of the screen, click the [x] button to exit Rawrite32.

N

Filesystem mage: " |

Y - 0_.r_bionic_20200408 b2z Open.. | % £
Program messages:

File systen inaze CONNNNNNTNTNINII: +70_ubuntu_bionic_20200408.bz2 (407.3

Lare 1 N
moyLe)

D5 Bed2bb3cBficceeddddB02abf 272904

SHA 0957 f dccddif 3e36b] 4976241 2662044306 6618

SHAZRE 09b550acedf 1eebch2el2 12377 T8cbificadbdf 1306893221 dadd 4220017

sHAR1E 128824 7ac 1 ald 1 9ad4b2B02b 20 d41 0cabibil altbbcadf Abbdbel 172m1 1137504
A16EbEcE3alB36a3 M el f T 0ebh72ad1 V27T A037{ ebef 23d45a9b2 56202 13008

MiS hash of output data: ecec?Bi3:d3bZbf435ech?ddbdlchZch

Ta9et [Generic SO Card Reader [7.45 GEyte] ~|| witetodsk.. |
Figure 2.9 Writing completed screen
Note

When you perform the procedure in this section, all the data in the SD memory card
is overwritten. Use a blank SD memory card, or back up the data beforehand.

After the writing is completed, you sometimes see a dialog box that request you to
format the SD memory card. If this happens, cancel the format.

EZ] Microsoft Windows X

You need to format the disk in drive M: before
you can use it.

Do you want to format it?

I Format disk

This is because the written image file contains a Linux file system (ext4) that cannot
be read by Windows. If you format the card accidentally, follow the procedure in this
subsection to write to the SD card again.

Tl 34M06T02-02E Mar. 31, 2021-00

2-14

2.4

241

24.2

Starting from the SD memory card

This section describes how to start the Ubuntu image file written to the SD
memory card.

Procedure of startup

This subsection details the startup procedure.

Insert the SD memory card

Insert the SD memory card into SD slot 1 or 2 of F3RP70.
If two memory cards are inserted at the same time, the image in slot 1 is used in
preference to the one in the other slot.

When you use SD slot 2, you have to set “rootdev” environment variable of u-boot
to "/dev/immcblk1p2”. And when you use SD slot 1, you have to remove “rootdev”
environment variables.

Example for setting “rootdev” to “/dev/immcblk1p2”
f3rp7x> setenv rootdev /dev/immcblk1p2

f3rp7x> saveenv

Example for removing value of “rootdev”
f3rp7x> setenv rootdev

f3rp7x> saveenv

Note

For details on environment variable of u-boot, refer to “e-RT3 OS-free CPU Module
Startup Manual” (IM 34M06M52-25E).

Start the system
With the MODE switch set to 0, turn on the power.

Procedure of log in to Ubuntu

This subsection details log-in procedure.

What you need

You need to have the following items for log-in to Ubuntu using serial console:
- PC that is installed terminal software

- RS-232-C conversion cable (KM72-2N)

- USB-serial converter (when your pc doesn’t have seral port)

Tl 34M06T02-02E Mar. 31, 2021-00

2-15

You need to have the following items for log-in to Ubuntu using SSH connection:
- PC that is installed terminal software
- Ethernet cable

Construction of devices

Figure 2.10 shows the construction of devices.

Log in to the Ubuntu through a serial console connection using the COM port at the
front of the CPU module or from an SSH terminal using the LAN port. In this section,
log in using the default value of ethO (LAN port 1) shown in section 2.2.3 of this
document, so connect the ethernet cable to LAN port1 on the upper front of the
F3RP70-2L.

F3RP70
LAN1
192.168.3.72 (default)

Ethernet

RS-232C

Local machine e-RT3
Figure 2.10 Construction of devices

Installing a terminal software

A terminal software, such as “Putty” or “Tera term”, is needed when you log in to the
Ubuntu. This subsection describes installing procedure of “PuTTY” as an example.

1. Access the following URL and click the [here] in [Download PuTTY] contents.

Download PuTTY

PUTTY is an SSH and telnet client,
= the Windows platform. PuTTY is 0
- source code and is developed and s

) yo—gr :--; You can download PU

Figure 2,11 Top page of PuTTY web site

2. Download the installer that matches your PC from the “Package files”.In this
document, we will explain using the 64-bit version of “MSI (‘Windows Installer’)”

Tl 34M06T02-02E Mar. 31, 2021-00

2-16

Package files

You probably want one of these. They include versions of all the PUTTY ublibes.
(Not sure whether you want the 32-bit or the 64-bit version? Read the FAQ enlry.)

MSI (‘Windows Installer’)

3z-bit: sl il forby FTP) (signature)
64-bit: Clooeiisoiaie > (erbvfT?) (sonaturs)
Unix source archive

R+ 2L 0 ar for by FT2) (sonature)

\

Figure 2.12 Download installer

3. Open the downloaded file to start the installer. When the following dialog is
shown, Click the “Run”.

Open File - Security Warning X

Do you want to run this file?

1Y Publisher. Simon Tatham
Type: Windows Installer Package
From: C:\Users Downloads\putty-64bit-0.73-install...

Always ask before opening this file

harm your computer. Only run software from publishers you trust.

i ! While files from the Internet can be useful, this file type can potentially
What's the risk?

Figure 2.13 Security dialog

4. Click the “Next”.

I PUTTY reicese 073 [B4-bil) Setup - P

Welcome to the PuTTY release 0.73
(64-bit) Setup Wizard

The Sctup Wieard alll potal PUTTY rebome 0,73 (o4-bil} on
wour computer, Click Nead 1o conbirgs o Corcdl 1o et the
Setup Wersrd,

Figure 2.14 PuTTY installer

5. Specify the install location. In this document, do not change the destination
folder and click “Next”.

TI 34M06T02-02E Mar. 31, 2021-00

2-17

(B PUTTY rebeme 0.73 164-bil) Selus -
Destination Folder
ik Neal o kel b U Jeleal olie o Jid Change o whanne ancliar,

Tnstall PuTTY reiwinie 0.73 (64 b Lo

Codmyam FeadilTh

Change....

- D

Figure 2.15 Specify the install location

6. Click “Next”.

8 FUTTY sciemne 0.73 54-bil) Sciup - % |
Product Features
Saledt the way you went fashures b be Initaliad
=

- 22) Add shertoul te PUTTY on the Deskicp
b -] Pt Intall divedtony on tve PATH for Command promats
] Aasoiae PEX Mles with PUTTY e and Fageint

i frabure rpares JPUHCH en yeur hard drtee.

mw

Figure 2.16 Selection of install components

7. When User Account Control dialg is displayed, click “Yes”.

8. Click “Finish” in the dialog of install completion. And then installation of “PuTTY”
is completed.

B PuITY sebeme 070 (54-bit! Selun - A

Completed the PUTTY release 0.73 (64-bit)
Setup Wizard

ek the rizh bullon o it the Stup Wosc

7] Vieaw READM e

Dotk ﬁml Camat

Figure 2.17 Dialog of install completion

® Log in to Ubuntu using serial console

Tl 34M06T02-02E Mar. 31, 2021-00

2-18

1. Start PUTTY and set “Connection type” to “Serial. And then set some items as

follows and click “Open”
Serial-line: device of serial port
Speed: 115200

Figure 2.18 PuTTY setting

1
ﬁ PuTTY Configuration ? X
Category.
=) Session Basic oplions for your PuTTY 2essgion
Loggine Specify the destinstion you want to connect to
= 1"":"" d Serisl line Speed
e coms |[115200]
Bell | |
Features Connection type.
). Window ORew () Temet ORiogin ()SSH |
Appesrance Load, seve or delete a stored session
Behaviour Seved Sessions
Transiation et e b]
+ - Selection L
Colours Detault Settngs Load
(=] Connection
Data Save
Proxy Delete
Telnet
Riogin L
) SSH
Seral Olose window on exit i
) Always) Newer (™ Only on clean @t
Asout e e D Owenl !

2. When connection to F3RP70-2L for the first time, the PUTTY Security Alert

dialog is displayed. Click “Yes” to continue the connection.

The server's host key is not cached in the registry. You
have no guarantee that the server is the computer you
think it is.

The server's ssh-ed25519 key fingerprint is:
ssh-ed25519 255 ¢S:cT:56:1e:Be:b8:02: Th 2e:44: TT 19 5e:63:90:0f
If you trust this host, hit Yes to add the key to

PUTTY s cache and carry on connecting.

If you want to carry on connecting just once, without
adding the key to the cache, hit No.

If you do mot trust this host, hit Cancel to abandon the
connection.

PuTTY Security Alert x

Figure 2.19 PuTTY Security Alert dialog

3. Turn on F3RP70-2L.

4. Login prompt is displayed on the console after boot sequence. Log in using the

Tl 34M06T02-02E

Mar. 31, 2021-00

2-19

user account you have set up.

Figure 2.20 Login prompt of serial console

Log in to Ubuntu using SSH connection
1. Turn on F3RP70-2L.

2. Set an IP address of your PC to “192.168.3.1 1"

3. Start PuTTY and set “Connection type” to “SSH”. And then set some items as
follows and click “Open”
Host Name (or IP address): 192.168.3.72
Port: 22

& PuTTY Configuration ? X
Oategory
Session Basic options for your PuTTY session
Logging Spacify the destinabon you want to connect to
Terr:ml: Host Nema (or IP address) Port |
e yhowd : -
1921682379][22
Ball | |

Festyres Connection hpe

- Window ORmw O Tehet -Fncq» Sens

Appearsnos Losd save or delete & stored session
Betiedols Seved Sessions
Transiation
&) Selection
Colours Default Settings Load
Connection .
Data Sewe
Ere Delete
Telnat
Riogir
+- SSH
Sernl Close window on et
) Always) Mever) Only on clean exit

Apout Halp Cancal

Figure 2.21 SSH setting of PuTTY

Tl 34M06T02-02E Mar. 31, 2021-00

2-20

4. When connection to F3RP70-2L for the first time, the PUuTTY Security Alert
dialog is displayed. Click “Yes” to continue the connection.

PuTTY Security Alert x

The server's host key is not cached in the registry. You
! have no guarantee that the server is the computer you

think it is.
The server's ssh-ed25519 key fingerprint is:
§5h-2d25519 255 T 5601 B 6808 Th e 7T 3 5e:63: 90 Of

If you trust this host, hit Yes to add the key to

PuTTY's cache and carry on connecting.

If you want to carry on connecting just once, without
adding the key to the cache, hit No

If you do mot trust this host, hit Cancel to abandon the
connection,

Figure 2.22 PuTTY Security Alert dialog

5. Login prompt is displayed on the console. Log in using the user account you
have set up.

Figure 2.23 Login prompt of SSH connection

Note

If you change the settings of your computer's network adapter according to the
instructions in this manual, you may not be able to connect to the Internet using that
adapter.

Connect the F3RP70-2L to a port that is not normally used for internet connection or
restore the settings after the connection is completed.

Tl 34M06T02-02E Mar. 31, 2021-00

2-21

When you want to connect to SSH, please do after starting F3RP70-2L. Immediately
after starting, the SSH server may not start and connection may fail.

With the initial settings downloaded Ubuntu image from the Yokogawa web site, you
cannot use the SSH connection to log in with the root user account. Please log in
with an ordinally user account.

For the default value of the user account, see "2.2.2 User setting" in this manual.

2.4.3. Enable the sudo command

In this Ubuntu image, the sudo command cannot be used by general users in the
default state. If you want to use commands that require root privileges, enter the
settings in this section to enable them. The following are some examples of when
the sudo command is not available.

Operation with general user username
$ sudo Is -a /root
[sudo] password for username: # Enter Password

username is not in the sudoers file. This incident will be reported.

e Enabling the sudo command

1.

Confirm the group of the user for whom you want to enable the sudo command.
If sudo is not included in the group, the sudo command is not available.

For general user username
$ groups username

username : username # User name: Group
Since the operation is performed with root privileges, switch to the root account.

$ su
Password: # Enter root Password

root@ubuntu:/home/username#
Add the user for whom to enable the sudo command to the sudo group.

gpasswd -a username sudo

Adding user username to group sudo

Confirm that sudo was added by checking the user's group in the same
procedure as in 1. Once added, log out of the root account. The settings will be
reflected when you log back in, so also log out of the general user account.

groups username
username : username sudo # User name: Group

exit

Tl 34M06T02-02E Mar. 31, 2021-00

2-22

exit
$ exit
logout

5. When you log in for the first time with the account that you added to the sudo
group, the following appears, indicating that the sudo command is enabled.

To run a command as administrator (user "root'), use ''sudo <command>".

See "man sudo_root" for details.
username@ubuntu:~$
6. Confirm that the sudo command is received.

$sudo Is -a /root
[sudo] password for username: # Enter Password
. .bash_history .bashrc .cache .gnupg -.profile

username@ubuntu:~$

e Disabling the sudo command

To disable the sudo command, follow the steps below. Cancel membership in the
sudo group; the opposite of when you enabled it.

1. Just as with enabling the sudo command, you need root privileges, so switch to
the root account as you did in enable step 2.

2. Remove the user for whom you want to disable the sudo command from the
sudo group.

gpasswd -d username sudo

Removing user username from group sudo

3. Using the same procedure as in enabling 1., check the user’s group. Once you
have confirmed that sudo has been deleted, log out of the root account. The
settings will be reflected when you log back in, so also log out of the general
user account.

groups username
username : username
exit

exit

$ exit

logout

4. When you login to the account from which you canceled sudo group

Tl 34M06T02-02E Mar. 31, 2021-00

2-23

membership, the sudo command is disabled.

Note

In this Ubuntu image, the ert3 default general user does not belong to the sudo
group. To prevent unexpected operations, we recommend disabling the sudo

command during operation.

Tl 34M06T02-02E Mar. 31, 2021-00

3-1

e-RT3 I/O module configuration
service

This chapter describes the features of |0 module configuration service and
how to use the service.

Tl 34M06T02-02E Mar. 31, 2021-00

3-2

3.1

Functional overview

The 10 module configuration service is a service that configures e-RT3 I/0

modules.

In e-RT3 I/O modules, a single module can handle various input and output
signals. For example, the F3AD08-6R analog input module can handle voltage
signals or current signals as input signals of various ranges. It also has
module-specific features, such as scaling and filtering. You can select these
ranges of input signals and use the specific features by setting parameters for
the configuration area of each module. In general, you need to specify these
parameters with user programs before handling data, when you use 1/0

modules.

The 10 module configuration service allows you to automatically configure the
features on these modules according to the setting file. You do not have to
write programs in order for configuring modules and therefore you can create
programs dedicated for data processing.

Table 3.1 lists e-RT3 I/O modules supported by the module configuration

service.

Table 3.1

Modules supported by the module configuration service

Type of module

Model of module

Overview of specification

F3XD08-00 8-bit digital input
Digital input F3XD16-00 16-bit digital input
F3XD32-00 32-bit digital input
F3XD64-00 64-bit digital input
F3YD04-00 4-bit digital output
F3YD08-00 8-bit digital output
Digital output F3YD14-00 14-bit digital output
F3YD32-00 32-bit digital output
F3YD64-00 64-bit digital output
F3AD04-5R 4-channel voltage input (0Oto 5V, 1t0 5V, -10t0 10 V, 0 to 10 V)
F3AD08-5R 8-channel voltage input (0to 5V, 1to 5V, -10to 10V, 0to 10 V)
8-channel voltage input (0to5V,1t05V,-10to 10 V, 0 to 10 V)
Analog input F3AD08-6R or)
8-channel current input (0 to 10 mA, 0 to 20 mA, 4 to 20 mA)
F3AD08-4R 8-channel current input (0 to 10 mA, 0 to 20 mA, 4 to 20 mA)
4-channel voltage output (-(10to 10V, 0to 10 V,0to 5V, 1to 5V)
F3DA04-6R or
Analog output 4-channel current output (4 to 20 mA, 0 to 20 mA, -20 to 20 mA)
F3DA08-5R 8-channel voltage output (-10to 10V, 0t0 10V, 0to 5V, 1to 5V)
High-speed data | F3HAO06-1R 6-channel voltage input
acquisition F3HA12-1R 12-channel voltage input
4-channel thermocouple (K, J, T, B, S, R, N, E, L, U, W, Platinel)
or
Temperature F3CX04-0N 4-channel resistance temperature detector (JPt100, Pt100)
monitor or

4-channel voltage input (0 to 10 mV, 0 to 100 mV,0to 1V, 0to 5
V,1t05V,0to 10 V)

Tl 34M06T02-02E Mar. 31, 2021-00

3-3

Note

For details on the module specifications, refer to each manual.

Refer to “Hardware Manual” (IM 34M06C11-01E) for details on the digital 1/0
modules, “Analog Input Modules” (IM 34M06H11-02E) for the analog input modules,
“Analog Output Module” (IM 34M06H11-03E) for the analog output modules, “High-
speed Data Acquisition Module (F3HA06-1R, F3HA12-1R)” (IM 34M06G02-02E) for
the high-speed data acquisition modules, and “Temperature Monitoring Module” (IM
34M06H63-01E) for the temperature monitor module.

Tl 34M06T02-02E Mar. 31, 2021-00

3-4

3.2.1

3.2.2

Usage

The module configuration service is provided as a daemon managed by
systemd. Systemd is a utility platform for daemon management designed for
Linux. Using the systemctl command, you can configure services to start or
stop and whether they are run automatically on startup.

Setting file

File format

The setting file is written in JSON format.
A single file contains all module settings. Specify a setting name as a JSON key and
a setting for each module as a value.

{
" settingname 1 **:{ "unit':m, "slot":k, "modid":"module ID", ... },
" setting name 2 "' :{ setting for each module },

** setting name 3 **:{ setting for each module }

}

The setting name can accept any string. You can specify it as you want for
identification because it does not matter in terms of the settings. The subsequent
sections describe the settings for each module. As the settings common to all
modules, specify the unit number and slot number of the unit and slot to which the
module is inserted, and the module ID. If the module ID of the I/O module inserted at
the position specified by the unit number and slot number does not match the
module ID in the setting file, the settings of the module are ignored.

Note

The unit number and slot number of an 1/O module are numbers that indicate where
the module is inserted. For details, refer to “e-RT3 CPU Module (SFRD2) BSP
Common Function Manual” (IM 34M06M52-02E).

File path

The setting file should be stored in the following path:
lusr/local/etc/ert3/ert3io.conf

Working with the daemon

With the systemctl command, you can work with the ert3ioconfd daemon. It
performs the following actions on the systemd commands.

Tl 34M06T02-02E Mar. 31, 2021-00

3-5

Note

The user that has root privilege can use “systemctl” command. When you use it, use
“sudo” command or switch to root user with “su” command.

Start configuration
With the start command, you can run configuration manually. The command
configures the 1/0 module according to the setting file.

systemctl start ert3ioconfd

Stop configuration

With the stop command, you can stop the daemon. When the daemon is stopped,
the 1/0 module is not accessed.

systemctl stop ert3ioconfd

Restart configuration

With the restart command, you can stop and start the daemon. Use this command
when you modify the setting file and then reapply it to the I/O module.

systemctl restart ert3ioconfd

Enable or disable configuration on startup

With the enable or disable command, you can enable or disable the execution of the
daemon on startup. If the daemon is enabled on startup, the I/O module is
configured when the power is turned on according to the setting file.

Similarly, the disable command is used to disable the execution of it on startup.

systemctl enable ert3ioconfd

systemctl disable ert3ioconfd

Check the configuration status
With the status command, you can check the running status of the daemon.

systemctl status ert3ioconfd -n 40

The settings and setting errors in the loaded JSON file are displayed when you run a
command. The n option can be used to change the maximum value for the lines to
be displayed.

You can check whether the setting file contains proper information by comparing the
information displayed with the information in the setting file. If expected information
is not displayed, check the settings to see if the JSON file is written in the proper
format or the unit number, slot number, and module ID are correct.

Tl 34M06T02-02E Mar. 31, 2021-00

3-6

Note

The JSON information is sorted for display. Note that it is different from the order of
the information in the setting file.

If an error occurs during a parameter setup, the information of the setting failure is
displayed.

3.3 Setting file in detail
3.3.1 Digital input module

The setting format for a digital input module is shown below. Specify the input
setting on a 16-bit basis.

{
"unit" tunit number, "slot':slot number, "modid":"'module ID",
""X01-X16":{""sampling":"input sampling period", ""intr':"interrupt edge"},
"'X17-X32":{"'sampling' : "input sampling period**, *intr':"interrupt edge"},
""X33-X48": {""sampling": "input sampling period"*, ""intr':"interrupt edge" %},
"'X49-X64":{"'sampling" : "'input sampling period"*, 'intr':"interrupt edge" }
3

Table 3.2 shows the settings for digital input modules.
Enclose a string in "™ and specify a number directly.

Table 3.2 Settings for digital input modules (JSON)

Key (string) Value Required* Remarks
"unit" Oto7 Yes Specifies the position of insertion.
"slot" 1to 16 Yes Specifies the position of insertion.
"XD08" Yes Specifies four (uppercase alphabetic) letters of the
"XD16" model name of an I/O module (F3XDOO), with the
"modid" "XD32" string F3 removed.
"XD64" It is used, together with the unit and slot keys, to

check the module.
-- Sets an object consisting of sampling and intr for

"X01-X16" bits 1 to 16.
Wy 47 YR -- Sets an object consisting of sampling and intr for
X17-X32 bits 17 to 32.
"R YAR" -- Sets an object consisting of sampling and intr for
X33-X48 bits 33 to 48.
" AOXRL" -- Sets an object consisting of sampling and intr for
X49-X64 bits 49 to 64.
"always" Specifies the sampling period as a string.
"62.5us" By default, it is set to "16ms".
"sampling" "250us"
Il1 msll
"16ms"
"up" Specifies an interrupt edge.
"intr" "down" By default, it is set to "up”.

up: An interrupt occurs at the rising edge.
down: An interrupt occurs at the falling edge.
* Required key

- Setting example

Tl 34M06T02-02E Mar. 31, 2021-00

3-7

{
“"unit”:0, “slot":2,"modid":""XD32",
""X01-X16":{"'sampling':"16ms"},
"X17-X32" :{""'sampling':"1ms"}

b

3.3.2 Digital output module

The setting format for a digital output module is shown below. Specify the output
setting on a 16-bit basis.

{
"unit" tunit number, "slot":slot number, "modid":"module ID",
"YO1-Y16":{""fail" :""CPU failure output™},
"Y17-Y32" : {"fail' :""CPU failure output™},
"Y33-Y48" : {""fail" :""CPU failure output™},
"Y49-Y64" : {""fail' :""CPU failure output"}
3

Table 3.3 shows the settings for digital output modules.
Enclose a string in " and specify a number directly.

Table 3.3 Settings for digital output modules (JSON)

Key (string) Value Required* Remarks
"unit" Oto7 Yes Specifies the position of insertion.
"slot" 1to 16 Yes Specifies the position of insertion
"YD04" Yes Specifies four (uppercase alphabetic) letters of the
"YD08" model name of an I/O module (F3YDOO), with the
"modid" "YD14" string F3 removed.
"YD32" It is used, together with the unit and slot keys, to
"YD64" check the module.
"Y01-Y16" - Sets an object consisting of fail for bits 1 to 16.
"17-Y32" -- Sets an object consisting of fail for bits 17 to 32.
"Y33-Y48" - Sets an object consisting of fail for bits 33 to 48.
"Y49-Y64" -- Sets an object consisting of fail for bits 49 to 64.
"hold" Specifies the CPU failure output.
"reset" By default, it is set to "hold".
"fail" hold: Tells the module to continue to output the last
value.
reset: Tells the module to set the output value to 0.

* Required key

- Setting example

{
"unit":0, "slot":3,"modid":""YD32",
"YO1-Y16" :{"fail":"reset"},
"Y17-Y32" :{"fail":"reset"}

¥

Tl 34M06T02-02E Mar. 31, 2021-00

3-8

3.3.3 Analog input module

The setting format for an analog input module is shown below.

{
"unit" tunit number, "slot":slot number, "modid":"module ID",
"*cycle':""conversion cycle', "drift':"drift correction",
""chl ":{"range":"input signal range", "skip":"channel skip",
"'scaleup :digital output value corresponding to the upper limit of input signals,
""'scalelow' :digital output value corresponding to the lower limit of input signals,
"offset" :offset value,
"mslag" :first-order lag filter time constant, '‘avepoint' :moving average points},
“ch8":{}
3

Table 3.4 shows the settings for analog input modules.
Enclose a string in " and specify a number directly.

Table 3.4 Settings for analog input modules (JSON)

Key (string) Value Required* Remarks
"unit" Oto7 Yes Specifies the position of insertion.
"slot" 1to 16 Yes Specifies the position of insertion.
"AD04" Yes Specifies four (uppercase alphabetic) letters of
"AD08" the model name of an I/O module (F3ADOO),
"modid" with the string F3 removed.
It is used, together with the unit and slot keys, to
check the module.
"50us" Specifies the A/D conversion cycle.
"100us" The default value is "1ms".
"250us"
" " "500us"
cycle "ms"
"16.6ms"
"20ms"
"100ms"
"enable" Specifies whether the drift correction feature is
"drift" "disable" enabled or disabled.
The default value is "enable".
"ch1" -- Sets an object for the channel.
to
"ch8"
"-10-10v" Specifies the input range.
"0-10v" The default value is:
"range” "0-5v" F3AD08-4R: "0-20ma"
"1-5v" Other modules: "-10-10v"
"0-20ma"
"4-20ma"
"yes" Specifies whether A/D conversion is skipped.
"skip" "no" The default value is "no".
yes: No A/D conversion is performed.
no: A/D conversion is performed.
N Digital output value that corresponds to the upper
"scaleup” (-30000=N=<30000) limit of input signals.
The default value is 0 (no scaling).
N Digital output value that corresponds to the lower
"scalelow" (-30000=N=<30000) limit of input signals.
The default value is 0 (no scaling).
noffset” N Offset value.
(-5000<N<5000) The default is 0 (no offset).

Tl 34M06T02-02E Mar. 31, 2021-00

3-9

"mslag" 0 to 30000 First-order lag filter [ms].
The default value is 0 (disabled).
27n Moving average points.
"avepoint" (1=n<5) The default value is 0 (disabled).
It is enabled only when the first-lag filter is set to
0.

- Setting example

{

"unit":0, "slot":4,"modid":""AD0O8",

"cycle'":"250us", "drift":"enable",
“chl":{"range':""4-20ma",""scaleup':10000, " scalelow:0, " "mslag':1000 },
"ch2":{"range":"0-5v","avepoint':16},

"ch3":{"range":"-10-10v"},
"ch4":{"skip":"yes"},
"ch5":{""skip":"yes"},
"che":{"skip'":"yes"},
"ch7'":{"skip":"yes"},
"ch8":{"skip":"yes"}

Table 3.5 shows the digital output values when scaling is disabled.

Table 3.5 Initial scaling settings for analog input modules
Input signal range Digital output value
-10to 10V -20000 to 20000
Oto10V 0 to 20000
Oto5V 0 to 10000
1to5V 2000 to 10000
0to 20 mA 0 to 10000
4 to 20 mA 2000 to 10000
Note

* Required key

For details on the module specifications, refer to “Analog Input Modules” (IM

34MO6H11-02E).

Tl 34M06T02-02E

Mar. 31, 2021-00

3-10

3.34

Analog output module

The setting format for an analog output module is shown below.

"unit’ :unit number, "'slot':slot number, "modid':"module ID*,

**ch™ :""output synchronization channel*,

"chl ":{"range":"output signal range', "fail':"CPU failure output",

“chg": {}

"'scaleup’ :digital input value corresponding to the upper limit of output signals,

""'scalelow' :digital input value corresponding to the lower limit of output signals},

Table 3.6 shows the settings for analog output modules.

Enclose a string in

and specify a number directly.

Table 3.6 Settings for analog output modules (JSON)
Key (string) Value Required* Remarks
"unit" Oto7 Yes Specifies the position of insertion.
"slot" 1t0 16 Yes Specifies the position of insertion.
"DA04" Yes Specifies four (uppercase alphabetic) letters of the
"DA08" model name of an I/O module (F3DAONO), with the
"modid" string F3 removed.
It is used, together with the unit and slot keys, to
check the module.
0to8 Specifies the channel number for synchronization
output.
"ch The default value is 0.
0: No synchronization output.
Other than above: Output synchronized with the
specified channel.
"ch1" - Sets an object for the channel.
to
"ch8"
"-10-10v" Specifies the output range.
"0-10v" The default value is "-10-10v".
"0-5v"
"range" "1-5v"
"-20-20ma"
"0-20ma"
"4-20ma"
N Specifies an output value in CPU failure.
"fail" (-30000=N=<30000) If this key is not specified, the output value is
maintained in a CPU failure.
N Digital input value that corresponds to the upper
"scaleup” (-30000=N<30000) limit of output signals.
The default value is 0 (no scaling).
N Digital input value that corresponds to the lower
"scalelow" (-30000=N<30000) limit of output signals.
The default value is 0 (no scaling).

* Required key

Tl 34M06T02-02E Mar. 31, 2021-00

3-11

- Setting example

{
"unit":0, "slot":5,"modid":"DA04",
“chl":{"range':""4-20ma",""scaleup':10000, "scalelow":0},
"ch2":{"range':""4-20ma",""scaleup':10000, "scalelow":0},
"ch3":{"range":""1-5v",""scaleup :10000,"scalelow':0},
"ch4":{"range":"1-5v",""scaleup':10000, *scalelow":0}
¥

Table 3.7 shows the digital output values when scaling is disabled.

Table 3.7 Initial scaling settings for analog output modules
Output signal range Digital input value
-10to 10V -20000 to 20000
Oto10V 0 to 20000
0Oto5V 0 to 10000
1to5V 2000 to 10000
-20 mA to 20 mA -10000 to 10000
0to 20 mA 0 to 10000
4 to 20 mA 2000 to 10000
Note

For details on the module specifications, refer to “Analog Output Module” (IM
34M06H11-03E).

3.3.5 High-speed data acquisition module

The setting format for a high-speed data acquisition module is shown below.

{
"unit" tunit number, "slot':slot number, "modid":"module ID",
"'cycle' :""data acquisition cycle",
"'chl ":{""range":"input signal range', "'scale':"enable/disable’,
"'scaleup' :digital output value corresponding to the upper limit of input signals,
"'scalelow" :digital output value corresponding to the lower limit of input signals,
"offset" :offset,
“Filterl":"ilter 1 type™, " Filter2" :"filter 2 type"
"cutoffl" :cutoff frequency 1, ""cutoff2' : cutoff frequency 2
"'avep'':moving average points},
“chi2":{}
3

Tl 34M06T02-02E Mar. 31, 2021-00

3-12

Table 3.8 shows the settings for high-speed data acquisition modules.
Enclose a string in "™ and specify a number directly.

Table 3.8 Settings for high-speed data acquisition modules (JSON)
Key (string) Value Required* Remarks
"unit" Oto7 Yes Specifies the position of insertion.
"slot" 1to 16 Yes Specifies the position of insertion.
"HA06" Yes Specifies four (uppercase alphabetic) letters of
"HA12" the model name of an I/O module (F3HAOO),
"modid" with the string F3 removed.
It is used, together with the unit and slot keys, to
check the module.
5to 1000 Specifies the data acquisition cycle
"cycle" [microsecond].
The setting value is rounded to the multiple of 5.
"ch1" - Sets an object for the channel.
to Data is collected only for the channel where this
"ch12" key is specified.
"-10-10v" Specifies the output range.
"0-10v" The default value is "-10-10v".
"range" "1-5v"
"-5-5v"
"-2.5-2.5v"
nscale” "enable" Specifies whether scaling is enabled or disabled.
"disable" The default value is "disable".
N Digital output value that corresponds to the upper
"scaleup” (-29000=N=<30000) limit of input signals.
The default value is 0.
N Digital output value that corresponds to the lower
"scalelow" (-29000=N<30000) limit of input signals.
The default value is 0.
" " N Offset value.
offset (-2500sN<2500) The default value is 0.
"none" Filter type. The default value is "none".
"multi" none: No filtering
"average" multi: Multi-sampling
"filter1" "Ipf_butterworth " average: Moving average
"Ipf_chebyshev " Ipf_butterworth: Low-pass (Butterworth) filter
Ipf_chebyshev: Low-pass (Chebyshev) filter
"none" Filter type. The default value is "none".
"Ipf_butterworth " none: No filtering
"filter2" "Ipf_chebyshev " Ipf_butterworth: Low-pass (Butterworth) filter
"hpf_butterworth " Ipf_chebyshev: Low-pass (Chebyshev) filter
"hpf_chebyshev " hpf_butterworth: High-pass (Butterworth) filter
hpf_chebyshev: High-pass (Chebyshev) filter
"cutoff1" 400 to 40000 Specifies the cutoff frequency for filter1.
"cutoff2" 400 to 40000 Specifies the cutoff frequency for filter2.
2™n Specifies the population for multi-sampling or the
"avep" moving average points.
In multi-sampling: 1=n<4
In moving average: 1sns11

- Setting example

{

"unit":0, "slot":6,"modid":""HA12",

"cycle':100,
"chl":{"range'":""-10-10v","scaleup':30000, "scalelow'":-30000, "offset':0,

* Required key

“filterl”:"Ipf-butterworth”,"filter2":"'none",
"'cutoffl":10000, " "cutoff2':0},
“ch2" :{"range":""-10-10v",""scaleup':30000, ‘"‘scalelow':-30000, "offset':0,

Tl 34M06T02-02E Mar. 31, 2021-00

3-13

“filterl":"Ipf-butterworth”,"filter2":"none",
"cutoff1':10000, "cutoff2":0},

"ch3":{"range":""-10-10v", "scaleup':30000, "scalelow':-30000,
“filterl”:"Ipf-butterworth”,"filter2":"'none",
“cutoffl:10000, "cutoff2':0},

"ch4":{"range'":""-10-10v","scaleup':30000, "scalelow':-30000,
“fFilterl":"Ipf-butterworth”,"filter2":"none",
"cutoffl':10000, "cutoff2":0},

"ch5":{"range":""-10-10v", "scaleup' :30000, "scalelow':-30000,
“filterl”:"Ipf-butterworth”, " filter2":""none",
“'cutoffl:10000, “cutoff2':0},

"ch6" :{"range':""-10-10v","scaleup':30000, "scalelow':-30000,
“fFilterl":"Ipf-butterworth”,"filter2":"none",
"cutoff1':10000, "cutoff2":0},

"ch7":{"range":""-10-10v", "scaleup' :30000, "scalelow':-30000,
“filterl":"none", "filter2":"none"},

""ch8":{"range":""-10-10v", "scaleup' :30000, "scalelow':-30000,
“filterl":"none", "filter2":"none"},

"ch9":{"range":""-10-10v", "scaleup' :30000, "scalelow':-30000,

“filterl":"none", "filter2":"none"},

"chl0":{"range'":"-10-10v", "scaleup':30000, "scalelow':-30000,

“filterl":"none", "filter2":"none"},

“chll":{"range'":"-10-10v","scaleup':30000, "scalelow':-30000,

“filterl":"none", "filter2":"none"},

“chl2":{"range'":"-10-10v","scaleup':30000, "scalelow':-30000,

“filterl":"none", "filter2":"none"}

Table 3.9 shows the digital output values when scaling is disabled.

"offset":

"offset":

"offset":

"offset":

"offset":

"offset":

"offset":

“offset":

“offset":

“offset":

Table 3.9 Initial scaling settings for high-speed data acquisition modules
Input signal range Digital output value
-10to 10V -20000 to 20000
Oto10V 0 to 20000
1to5V 2000 to 10000
-5to5V -10000 to 10000
-25t025V -5000 to 5000
Note

For details on the high-speed data acquisition module, refer to “High-speed Data
Acquisition Module (F3HA06-1R, F3HA12-1R)” (IM 34M06G02-02E).

Tl 34M06T02-02E

Mar. 31, 2021-00

3-14

3.3.6 Temperature monitoring module

The setting format for a temperature monitoring module is shown below.

"unit" tunit number, "slot":slot number, "modid":"module ID",
"“freq" : "output synchronization channel**,
"chl ":{"in":"input signal type", " rh" zupper limit of the measurement range, "'r1'*:lower limit of the
measurement range,
"'sh'" zscaling upper limit, "'s1"* zscaling lower limit, "*sdp"* - scaling decimal point position},

“cha": {3

Table 3.10 shows the settings for the temperature monitoring module.
Enclose a string in " and specify a number directly.

Table 3.10 Settings for the temperature monitoring module (JSON)

Key (string) Value Required* Remarks
"unit" Oto7 Yes Specifies the position of insertion.
"slot" 1to 16 Yes Specifies the position of insertion.

"CX04" Yes Specifies four (uppercase alphabetic) letters of the
model name of an I/O module (F3CXOO), with the
"modid" string F3 removed.
It is used, together with the unit and slot keys, to
check the module.
"freq" "50hz" Specifies the frequency of the power supply.
"60hz" The default value is "50hz".
"ch1" to "ch4" - Sets an object for the channel.
Specifies the output range.
The default value is "k-200-1370c".
"k-200-1370c" Thermocouple K (-200 to 1370)
"k-200-1000c" Thermocouple K (-200 to 1000)
"k-200-500c" Thermocouple K (-200 to 500)
"j-200-1200c" Thermocouple J (-200 to 1200)
"j-200-500c" Thermocouple J (-200 to 500)
"t-270-400c" Thermocouple T (-270 to 400)
"b0-1600c" Thermocouple B (0 to 1600)
"s0-1600c" Thermocouple S (0 to 1600)
"r0-1600c" Thermocouple R (0 to 1600)
"n-200-1300c" Thermocouple N (-200 to 1300)
"e-270-1000c" Thermocouple E (-270 to 1000)
"[-200-900c" Thermocouple L (-200 to 900)
"u-200-400c" Thermocouple U (-200 to 400)
Wi "w0-1600c" Thermocouple W (0 to 1600)
"p0-1390c" Thermocouple Platinel (0 to 1390)
"jpt-200-500c" RTD JPt (-200 to 500)
"jpt-200-200c" RTD JPt (-200 to 200)
"jpt0-300c" RTD JPt (0 to 300)
"jpt0-150c" RTD JPt (0 to 150)
"pt-200-850c" RTD Pt (-200 to 850)
"pt-200-500c" RTD Pt (-200 to 500)
"pt-200-200c" RTD Pt (-200 to 200)
"pt0-300c” RTD Pt (0 to 300)
"pt0-150c" RTD Pt (0 to 150)
"0-10mv" 0to 10 mV
"0-100mv" 0to 100 mV
"0-1v" Oto1V
"0-5v" Oto5V
"1-5v" 1to5V
"0-10v" Oto10V

* Required key

Tl 34M06T02-02E

Mar. 31, 2021-00

3-15

- Setting example
{

"unit":0, "slot":7,"modid":""CX04",
“freq':"50hz",
“"chl™:{"in":"k-200-500c"},
"ch2":{"in":"k-200-1000c""},
"ch3":{"in":"k-200-500c"},
"ch4:{""in":"k-200-1000c"}

Table 3.11 shows the input ranges and digital output values of the temperature

monitoring module.

Table 3.11

Input signal range

Digital output value

Thermocouple K (-200 to 1370)

-2000 to 13700

Thermocouple K (-200 to 1000)

-2000 to 10000

-200 to 500)

(
Thermocouple K (-2000 to 5000
Thermocouple J (-200 to 1200) -2000 to 12000
Thermocouple J (-200 to 500) -2000 to 5000
Thermocouple T (-270 to 400) -2700 to 4000
Thermocouple B (0 to 1600) 0 to 16000
Thermocouple S (0 to 1600) 0 to 16000
Thermocouple R (0 to 1600) 0 to 16000
Thermocouple N (-200 to 1300) -2000 to 13000
Thermocouple E (-270 to 1000) -2700 to 10000
Thermocouple L (-200 to 900) -2000 to 9000
Thermocouple U (-200 to 400) -2000 to 4000
Thermocouple W (0 to 1600) 0 to 16000
Thermocouple Platinel (0 to 1390) |0 to 13900
RTD JPt (-200 to 500) -2000 to 5000
RTD JPt (-200 to 200) -2000 to 2000
RTD JPt (0 to 300) 0 to 3000
RTD JPt (0 to 150) 0 to 15000

RTD Pt (-200 to 850)

-2000 to 8500

RTD Pt (-200 to 500)

-2000 to 5000

RTD Pt (-200 to 200)

-2000 to 2000

RTD Pt (0 to 300) 0 to 3000
RTD Pt (0 to 150) 0 to 15000
0-10mv 0 to 1000
0-100mv 0 to 1000
0-1v 0 to 1000
0-5v 0 to 5000
1-5v 1000 to 5000
0-10v 0 to 1000

Output values of the temperature monitoring module

Tl 34M06T02-02E

Mar. 31, 2021-00

3-16

Note

For details on the module specifications, refer to “Temperature Monitoring Module”
(IM 34M06H63-01E).

Tl 34M06T02-02E Mar. 31, 2021-00

4-1

4.1

F3HA12 data acquisition service

This chapter describes the features and usage of the F3HA12 data acquisition
service.

Functional overview

The F3HA12 data acquisition service runs the data acquisition feature of a
high-speed data acquisition module (F3HA06/F3HA12) in the background.

In general, data acquisition with the high-speed data acquisition module
requires monitoring data being accumulated in the module, reading the
accumulated data from the module, and keeping on doing the previous steps
periodically. The F3HA12 data acquisition service is fully responsible for
accessing the high-speed data acquisition module and provides users with
the acquired data.

Note

For the details on the module specifications, refer to “High-speed Data Acquisition
Module (F3HA06-1R, F3HA12-1R)” (IM 34M06G02-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

4-2

4.2

421

Usage

The F3HA12 data acquisition service is provided as a daemon managed by
systemd. Systemd is a utility platform for daemon management designed for
Linux. Using the systemctl command, you can configure services to start or
stop and whether they are run automatically on startup.

Working with the daemon

With the systemctl command, you can work with the ert3dgsd daemon. It performs
the following actions on the systemd commands.

Note

The user that has root privilege can use “systemctl” command. When you use it, use
“sudo” command or switch to root user with “su” command.

Start the data acquisition daemon

With the start command, you can start the data acquisition daemon manually. Start
the daemon for data acquisition to prepare for it. Start the data acquisition itself.

systemctl start ert3dgsd

Stop the data acquisition daemon
With the stop command, you can stop the daemon.

systemctl stop ert3dgsd

Restart the data acquisition daemon

With the restart command, you can stop and start the daemon. Use this command
when you modify the setting file and then reapply it to the I/O module.

systemctl restart ert3dgsd

Enable or disable the data acquisition daemon on startup

With the enable or disable command, you can enable or disable the execution of the
daemon on startup. If the daemon is enabled on startup with the enable command,
the 1/0 module is configured when the power is turned on according to the setting
file.

Similarly, the disable command is used to disable the execution of it on startup.

systemctl enable ert3dgsd

Tl 34M06T02-02E Mar. 31, 2021-00

4-3

4.2.2

systemctl disable ert3dgsd

® Check the status of the data acquisition daemon
With the status command, you can view the log output from the daemon.

systemctl status ert3dgsd

Data acquisition

This subsection provides an overview of data acquisition.
After starting the F3HA12 data acquisition service, you configure F3HA12, start data
acquisition, and then obtain the acquired data.

Turn on the power

Startthe F3HA12 data
acquisition service
(manually or automatically)

'

Configure F3HA12
(module configuration service)

User program
Y

Start data acquisition

%7

Get acquired data

'

Perform arithmetic processing
with acquired data, etc.

Need more processing?

no

yes

Stop data acquisition

A
Stop the F3HA12 data
acquisition service
(manually or automatically)

Exit the system

Figure 4.1 Flowchart of data acquisition

The F3HA12 data acquisition service consists of a thread to acquire data from the
high-speed data acquisition module and a data server to provide acquired data for

the user.

Tl 34M06T02-02E Mar. 31, 2021-00

4-4

Once started, the service performs the initial operations for the high-speed data
acquisition module and the data server and waits for a data acquisition start
command from the user.

The user can configure F3HA12 by using the IO module configuration service
described in Chapter 3. With this configuration, the user can specify the data
acquisition cycle, the channel from which the data is acquired, and analog input
settings (such as the range, scale, and whether filters are used).

The user starts or stops data acquisition and obtains the acquired data through the
API.

When data acquisition is started, the service accumulates the data in the internal
buffer and assigns a data number (1 origin) on a scan basis. A scan is a unit of data
acquired by an F3HAOO module. Acquired data is stored in the internal buffer
tightly on a single scan basis. For example, if channels 1, 2, and 6 are active,
channel 1 data, channel 2 data, and channel 6 data are stored and then channel 1
data with the next data number is stored. The size of data for one channel is 2
bytes.

The internal buffer is a ring buffer of which size is 100000 scans.

| 1scan |

Data number n Data number n+1 Data number n+...

Ch1 data Ch2 data Ché6 data Ch1 data Ch2 data Ch6 data Ch1 data Ch2 data Ch6 data

‘ 2 bytes

Figure 4.2 Stored data when channels 1, 2, and 6 are enabled

Once data acquisition is stopped, the data number is assigned from 1 when it is
started again.

Using the API to obtain acquired data, the user gets the data held by the service
from the data server. The acquisition buffer stores the data tightly as shown in the
figure above. Use an offset value based on the data number and the number of data
acquisition targets to access the necessary data.

Note

For details on the configuration of F3HA12, refer to “3. e-RT3 1/O module
configuration service”.

Tl 34M06T02-02E Mar. 31, 2021-00

4-5

4.3 API

This section shows the information of the API functions as a user interface
provided by the F3HA12 data acquisition service.

Table 4.1 API list

Class Feature Function name
Management Initialize API resources LEDG open
Release API resources LEDG_close
Configuration Get a data acquisition target LEDG_getHaGathering
Control Start data acquisition LEDG_startHaDataGathering
Stop data acquisition LEDG_stopHaDataGathering
Data acquisition Get the data number of acquired data LEDG_getHaDataNo
Get acquired data LEDG_getHaData

B Management

® LEDG_open

Feature
Format

Description

Argument

Return value

Initialize API resources
bool LEDG_open(LEDG_OPEN_MODE mode, int unit, int slot);

This function initializes resources used internally by the API functions.

All the API functions become available by specifying
“LEDG_OPEN_MODE_READWRITE” for the “mode” argument.

The API functions for getting configuration and getting acquired data become available by
specifying “LEDG_OPEN_MODE_READ” for the “mode” argument.

(The API functions related to configuration change and control are not available.)

mode Open mode
LEDG_OPEN_MODE_READWRITE: Readable and
writable
LEDG_OPEN_MODE_READ: Readable

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

true Successful

false Failed

® LEDG_close

Feature
Format

Description

B Configuration

Release API resources
void LEDG_ close(void);

This function releases resources used internally by the API functions.

® LEDG_getHaGathering

Feature

Format

Description

Get a data acquisition target

unsigned long
LEDG_getHaGathering(bool enableChannels [12], bool* enableCounter);

This function gets whether or not analog input channels and the counter are the data
acquisition target (active/inactive).

Tl 34M06T02-02E Mar. 31, 2021-00

4-6

enableChannels[0]: Whether or not channel 1 is the data acquisition target
enableChannels[1]: Whether or not channel 2 is the data acquisition target

éhabIeChannels[ﬂ]: Whether or not channel 12 is the data acquisition target
The total number of bytes of data acquisition target data is returned as a return value.

One point of an analog input channel is 2 bytes of data and the counter is 4 bytes.
For example, the return value when the analog input channels for five points are active is

10.

Argument enableChannels A pointer to store the Boolean array that indicates
whether the acquisition channel is active or inactive.
true: Active
false: Inactive

enableCounter A pointer to store the Boolean variable that indicates
whether the counter acquisition is active or inactive.
true: Active
false: Inactive
Return value ULONG_MAX Error
Other than the above The number of bytes per scan (0 to 28)

H Control

® LEDG_ startHaDataGathering

Feature Start data acquisition
Format bool LEDG_startHaDataGathering(void);
Description This function starts data acquisition.

When data acquisition is started, the function accumulates the data in the internal buffer
and assigns a data number (1 origin) on a scan basis. A scan is a unit of data acquired by
an F3HAODO module. The size of data per scan varies depending on the number of data
acquisition targets.

Once data acquisition is stopped, the data number is assigned from 1 when it is started

again.
Return value true Successful
false Failed

® LEDG_ stopHaDataGathering

Feature Stop data acquisition
Format bool LEDG_stopHaDataGathering(void);

Description This function stops data acquisition.

B Data acquisition

® LEDG_getHaDataNo

Feature Get the data number of acquired data

Format bool LEDG_getHaDataNo (long long* oldestNo, long long* newestNo,
HA_ERR_STS* acqlLastErr);

Description This function gets the data number (1 origin) of the data being acquired.
It gets the oldest and latest data numbers of data held by the service when the API
function is called.

Tl 34M06T02-02E Mar. 31, 2021-00

4-7

Argument oldestNo The oldest data number of the data to be acquired. If the
data does not exist, -1 is returned. (If it is unnecessary,
NULL is passed.)
newestNo The latest data number of the data to be acquired. If the
data does not exist, -1 is returned. (If it is unnecessary,
NULL is passed.)

acqglLastErr Final data acquisition error status
Return value true Successful
false Failed

® LEDG_getHaData

Feature Get acquired data

Format bool LEDG_getHaData (long long reqFromNo, long long reqToNo,
unsigned char* buf, unsigned long numOfBuff,
long long* realFromNo, long long* realToNo,
HA_ERR_STS* acqlLastErr);

Description This function gets acquired data from reqFromNo to reqToNo in the buffer.

You need to ensure that the data acquisition buffer has space larger than the size
obtained by multiplying the number of scans acquired by LEDG_getHaGathering by
numOfBuff.

Acquired data is stored tightly on a single scan basis. For example, if channels 1, 2, and
6 are active, channel 1 data with the realFromNo number is stored in the Oth byte of the
offset in the buffer, channel 2 data with the same number in the 2nd byte of the offset,
channel 6 data with the same number in the 4th byte of the offset, and then channel 1
data with the next data number in the 8th byte of the offset, and so on.

The data numbers actually acquired are stored in realFromNo and realToNo depending
on the number of buffers and the status of the data held by the service.

Argument reqFromNo The start number of data to be requested. If the
specified data number does not exist, the data from the
oldest is returned.

reqToNo The last number of data to be requested. If the specified
data number does not exist, the data up to the latest is
returned. (The data up to the latest is returned if
LLONG_MAX is specified.)

buf Buffer for data acquisition

numOfBuff The number of buffers ready

realFromNo The start data number of the data actually acquired is
returned.

realToNo The latest data number of the data actually acquired is
returned.

acqlLastErr Final data acquisition error status

Return value ULONG_MAX Error
Other than the above The number of scans of acquired data

Tl 34M06T02-02E Mar. 31, 2021-00

5-1

Application development with
Python

This chapter describes how to create a development environment of Python
applications with Visual Studio Code and Jupyter Notebook.

Visual Studio Code is a free source code editor with development tools of
code completion, debugging, and more. It allows you to easily add or remove
source files on F3RP70-2L and edit various settings such as debug
configurations, making it possible to carry out flexible development.

Jupyter Notebook is an open source application in which you can view, run,
and edit document files called a notebook through web browser.

It provides features, such as stepwise execution in the unit of operations
called a cell and easy drawing of graphs, helping you develop your
applications quickly.

Tl 34M06T02-02E Mar. 31, 2021-00

5-2

5.1

Development method

Figure 5.1 shows the configuration of the development environment for
Python applications.

F3RP70

LAN1

Ethernet
192.168.3.72 (default)

RS-232C

Local machine e-RT3
Figure 5.1 Configuration of the application development environment

In the development of your application, the local machine communicates with
e-RT3 through a browser or SSH connection. Therefore, you need to connect
your machine to F3RP70-2L with an Ethernet cable.

The COM port on F3RP70-2L is used for the Linux console. Using Linux shell
commands, you can create files, modify F3RP70-2L settings, check the
operating status, and more.

Table 5.1 lists serial setting of F3RP70-2L

Table 5.1 Serial setting of F3RP70-2L

Item value
Baud rate 115,200bps
Data length 8hit
Stop bit 1bit
Parity bit None
Flow control none

Tl 34M06T02-02E

Mar. 31, 2021-00

5-3

5.2

5.2.1

Remote development with Visual Studio
Code

Overview

Visual Studio Code is a free source code editor with development tools of code
completion, debugging, and more. It allows you to easily add or remove source files
on F3RP70-2L and edit various settings such as debug configurations, making it
possible to carry out flexible development.

This section describes how to create the remote development environment with
Visual Studio Code and how to use it. In application development, you (1) upload
source code, (2) run a program on F3RP70-2L, and then (3) attach to a process and
debug it. The details of each step are as follows:

(1) Upload source code
Using an SFTP extension of Visual Studio Code, upload source code on the local
machine to F3RP70-2L.

(2) Run the program
Connect to F3RP70-2L from Visual Studio Code through an SSH connection and
run the program on F3RP70-2L.

(3) Attach to a process and debug it
Attach to the process that is running on F3RP70-2L from Visual Studio Code and
perform debug on the local machine.

Local machine e-RT3

Visual Studio Code

Python extension
SFTP

Run the program
SSH connection

Opened port
Attach and debug

Edit Process

Upload
Figure5.2 Remote development with Visual Studio Code

Tl 34M06T02-02E Mar. 31, 2021-00

5-4

5.2.2

Environment creation procedure

@ Installing Visual Studio Code

Install Visual Studio Code in your local machine.

1. Access the following URL to download Visual Studio Code:
https://code.visualstudio.com/

| Visual Studho Code

Code editing.
Redefined.

Download for Windows

v v o

Figure 5.3 Installation of Visual Studio code -1

2. Installing Visual Studio Code
Run the exe file you downloaded to install Visual Studio Code.
Select [l accept the agreement] and then click [Next].

) Setup - Microsoft Visual Studio Code (User) — x
License Agreement
Please read the following important information before continuing.

Please read the folowing License Agreement. You must accept the terms of this
agreement before continuing with the installabon.

This license applies to the Visual Studio Code product. Source .
Code for Visual Studio Code (s available ot

https://github com/Microsoft/ de under the MIT license
agreement at
https://github.com/microsoft/vscode/blob/master/LICENSE txt
Additional license information can be found in our FAQ at

nttps '.".I.'L'-\.'.rr'.‘ visualstudio.comydocs sUppoiting. "':.?LT L

[@,'I accept the ag'eementi
()1 do not accept the agreement

coc

Figure 5.4 Installation of Visual Studio code -2

Tl 34M06T02-02E

Mar. 31, 2021-00

5-5

Click [Next].
3] Setup - Microsoft Visual Studio Code (User)

b4
Select Destination Location n
Where should Visual Studio Code be installed? ~

Setup wil instal Visual Studio Code into the following folder.

To confinue, dick Next. If you would like to select a different folder, dick Browse.
oft VS Code | | - Browse, . -

¥ AppData¥l ocal¥Programs¥Micos

Co¥lisersy

At least 254.7 MB of free disk space is required.
<esk [[ex>]| conce

Installation of Visual Studio code -3

Figure 5.5
Click [Next].
ﬂ Setup - Microsoft Visual Studie Code (User) — hd
Select Start Menu Folder
Where should Setup place the program's shortouts?
ill Setup will ceate the program's shoriouts in the following Start Menu folder.
To continuie, dick Next, If you would like to sslect a different folder, dick Browse.
Visual Studio Code] Browse, ..
[Joen't create a Start Menu folder
< Back Next > Cancsl

Figure 5.6 Installation of Visual Studio code -4

Mar. 31, 2021-00

TI 34M06T02-02E

5-6

Select the [Create a desktop icon] check box and then click [Next].
] Setup - Microsoft Visual Studio Code (User]

X
Select Additional Tasks m
Which additional tasks should be performed? " |

Select the additional tasks you would like Setup to perform while instaling Visual Studio
Code, then dick Next.

Additional icons:

[E Create a deskiop iconl
Other:

[[] Add "Open with Code™ action to Windows Explorer file context menu

[[] Add "Open with Code® action to Windows Explorer directory context menu
[] Register Code as an editor for supported file types

[Add to PATH (requires shell restart)

Figure 5.7 Installation of Visual Studio code -5

Click [Install].

] Setup - Microsoft Visual Studio Code (User) *
Ready to Install
Setup is now ready to begin installing Visual Studio Code on your computer.

Chick Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:
C:¥Users¥ ML AppData¥l ocal¥Programs¥Microsoft VS Code
Start Menu folder:
Visual Studso Code
Additional tasks:
Additional icons:
Create a desktop icon

Br:
Add to PATH (requires shell restart)

<oack [Cooma)| concel |

Figure 5.8 Installation of Visual Studio code -6

TI 34M06T02-02E Mar. 31, 2021-00

o-7

Click [Finish] to finish the installation.
)ﬁ Setup - Microsoft Visual Studio Code (User) —

Completing the Visual Studio Code
Setup Wizard

Setup has finished instaling Visual Studio Code on your
computer, The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

Ei_athch:lsuazs

Figure 5.9 Installation of Visual Studio code -7

Installing the extensions

Install two extensions: the Python extension, which is used to debug Python
applications on the local machine, and the SFTP extension, which is used to upload
source code on the local machine to F3RP70-2L.

From the menu on the left, select the [Extensions] icon and type “python” in the
search field. From the search results, select [Python] and install it.

File Edit Selection View Go Debug Terminal

RKETPLACE ==

Py

Python 20202 6307
Linting, Debugging (multi-threaded. r...
Microsoft Install

Python for VSCode 0.

I 1 langua

Python Indent 1

orre hon indent

py-!

p

AREPL for python
real-time scratchpad

Almenon

Python Test Explorer for Visu

bar ..
Install

Figure 5.10 Installation of extension -1

Tl 34M06T02-02E Mar. 31, 2021-00

Similarly, type “sftp” in the search field and install the SFTP extension.

Fie Edit Selectior

—shp—

SFTP 129

SFTR/FTP syne

fmirmoma It
Sftp Snippet

ey M, b Iretalt
Detaily

sftp sync exte|

Irestal

Irestait

Irelait

Figure 5.11 Installation of extension -2

After the installation is complete, restart Visual Studio Code for the settings to take
effect.

Creating a workspace folder

1. Creating a workspace folder on F3RP70-2L.
Create workspace folder on F3RP70-2L.

Starts the Visual Studio Code, then Click [Terminal] - [New Terminal] and open a
terminal.

Go Run Terminal Help

MNew Terminal Ctrl +Shift+@

Split Terminal Ctrl+Shift+5

Figure 5.12 Creating workspace folder -1

Tl 34M06T02-02E Mar. 31, 2021-00

Terminal is shown in bottom pane.

TERMINAL

Figure 5.13 Creating workspace folder -2

Connect to F3RP70-2L as “ert3” user.

TERMINAL

Figure 5.14 Creating workspace folder -3

When you connect to F3RP70-2L at first time, following message is displayed. Input
“Yes” and press “Enter” key.

TERMINAL

ablished.

sure you want to continue connecting (yes/mo)? veSI

Figure 5.15 Creating workspace folder -4

Tl 34M06T02-02E Mar. 31, 2021-00

5-10

Input password of “ert3” user, and log in.

TERMINAL

Are you

Narn

Figure 5.16 Creating workspace folder -5

Figure 5.17 Creating workspace folder -6

Create workspace folder in any directory. In this manual as an example, input below
command and create workspace folder in home directory of “ert3”.
$ mkdir /home/ert3/workspace

TERMINAL

ration. All rights reserwv

com
anonical.
* Support:

Last login: Fri_Aor
ert3 :~§ mkdi

2

Tl 34M06T02-02E Mar. 31, 2021-00

o5-11

Figure 5.18 Creating workspace folder -7

2. Creating a workspace folder on local machine.
Create workspace folder in any directory of local machine. In this manual as an
example, create workspace folder in desktop.

Figure 5.19 Creating workspace folder -8

® Configuring SFTP
Configure the settings for uploading source code on the local machine to e-RT3.

1. Open the workspace folder to Visual Studio Code.

Click [File] - [Add Folder to Workspace].

File Edit Selection View Go Run Terminal Help

Ctrl+K Ctrl+O

Figure 5.20 Setting of SFTP -1

Tl 34M06T02-02E Mar. 31, 2021-00

5-12

Open the workspace folder you created on the local machine.

3 Open Folder b1

Oigwie v thwiiolde - @

Cance
Figure 5.21 Setting of SFTP -2

2. Configure SFTP.

Click [View] - [Command Palette] to open the command palette. In the search field,
type “sftp config” and then click [SFTP: Config].

Figure 5.21 Setting of SFTP -3

Fill out the following items and save the settings.

Tl 34M06T02-02E Mar. 31, 2021-00

5-13

Figure 5.23 Setting of SFTP -4

The descriptions of the items and values are as follows:
name
Specifies the connection name displayed on Visual Studio Code.

host
Specifies the IP address of FSRP70-2L.

protocol
Specifies the protocol of file transferring.

port
Specifies the port number of F3RP70-2L used for file transferring.

username
Specifies the user name of F3RP70-2L.

password
Specifies the password of F3RP70-2L user.

remote Path
Specifies a workspace folder of F3RP70-2L.

uploadOnSave
Specify whether to automatically upload when saving the file.

ignore
Specify a file and folder not to upload.

In the menu on the left, click the [SFTP] icon and check the folder in e-RT3. Check
that “ert3_workspace” is displayed.

Tl 34M06T02-02E Mar. 31, 2021-00

o-14

= @it '.a.r'.l|..'\||,|| r

Figure 5.24 Setting of SFTP -5

® Configuring Launch
Edit “Launch.json” to set up the debug configuration.

Select the “.vscode” folder and click the [New File] button to create the “launch.json”
file.

File Edit Selection WView Go
~ OPEN EDITORS

" WORKSPACE

{} launch.son

Figure 5.25 Setting of launch -1

Fill out the following items and save the settings.

Tl 34M06T02-02E Mar. 31, 2021-00

5-15

launchyson - workspas Visual Studio Code

i} launch.json X

> {} launch,jsc

Figure 5.26 Setting of Launch -2

The descriptions of the items and values are as follows:
© name
Specifies the name of setting.

type
Specifies the type of setting.

request
Specifies the request of setting.

port
Specifies the port number of FSRP70-2L used for communication.

host
Specifies the IP address of FSRP70-2L.

localRoot
Specifies the workspace of the local machine. ${fileDirname} is a variable that
indicates the path to the file currently open in the editor.

remoteRoot
Specifies the workspace of F3RP70-2L. ${relativeFileDirname} is a variable
that indicates the relative path to the directory of the file currently open in the

editor. The starting point of the relative path is the workspace folder of the local
machine.

Tl 34M06T02-02E Mar. 31, 2021-00

5-16

5.2.3

Usage

® Creating the project folder and source file

Select [workspace] and click the [New Folder] button to create the “project” folder.

LN LDITORS

UNTITLED (WORKSPALE}

Figure 5.27 Creating project folder and source file -1

Select the “project” folder and click the [New File] button to create the “test.py” file.

LENTITLED [WAORERSPRALE]

Figure 5.28 Creating project folder and source file -2

Note

Place the source file directly under the project folder.

Tl 34M06T02-02E Mar. 31, 2021-00

o-17

® Creating and uploading a program
1. Create a program.

Open “test.py” and write the following source code in it.

Figure 5.29 Creating and uploading a program -1

2. Upload the source code.
Right-click the “project” folder and click [Sync Local -> Remote] to upload the source
code to the workspace of F3RP70-2L.

Sync Local -> Remote

Figure 5.30 Creating and uploading a program -2

Tl 34M06T02-02E Mar. 31, 2021-00

5-18

Click the [SFTP] icon, select the “ert3_workspace” folder, and click the [Refresh]
button. Check that the source code is added to the workspace of F3RP70-2L.

W eitd workspace

Figure 5.31 Creating and uploading a program -3

® Running and debugging the program

1. Running the program on F3RP70-2L.
Connect to F3RP70-2L with SSH, execute the program, and wait for attachment
from the debugger on the local machine.

Click [Terminal] — [New Terminal], open the terminal and connect to F3RP70-2L as
“ert3” user using SSH.

TERMINAL

osoft Corporation. All rights reserved.

\Deskto cspace> ssh ert3g192.168. ".‘"

Figure 5.32 Running and debugging the program -1

Tl 34M06T02-02E Mar. 31, 2021-00

5-19

Move to the directory containing the source file “test.py” to execute.

Figure 5.33 Running and debugging the program -2

Input the command below and execute “test.py” and wait for attachment from the
debugger on the local machine.
$ python3 -m ptvsd -—host 0.0.0.0 -—port 5678 -—wait test.py

rt3xlnx armv7l)

elcome to Ubuntu 18.84.4 LTS (GNU/Linux 4.14.164-rt73-ert3xlnx armv7l)

Last login:

host ©.8.8.8 --port 5678 --wait test.py

0

Figure 5.34 Running and debugging the program -3

2. Attaching from debugger of local machine.

Attach the process running on F3RP70-2L from debugger of local machine.
Open the “test.py” source file on the local machine and put a breakpoint at any
place.

Click the [Debug] icon and then click the [Start Debugging] button.

VARIABLES

Figure 5.35 Running and debugging the program -4

Tl 34M06T02-02E Mar. 31, 2021-00

5-20

The program stops at the breakpoint after attaching the program running on
F3RP70-2L.

VARABLES

Figure 5.36 Running and debugging the program -5

You can see the output in the terminal.

aces

Figure 5.37 Running and debugging the program -6

Removing the file
Remove the file on F3RP70-2L and local machine.

Removing the file from local machin
Click the file icon to view the file on local machine. And then right click on the
file and click [Delete].

Tl 34M06T02-02E Mar. 31, 2021-00

5-21

File Edit Selection View Go Run Terminal Help

&

“ OPEN EDITORS

 WORKSPACE

Open to the Ctrl+Enter

Shift+Alt+R

Ctri+X

Ctrl+C

Shift+Al+C

Run Current File in Python Interactiv

Upload

Figure 5.38 Removing the file -1

Removing the file from F3RP70-2L
Click the file icon to view the file on F3RP70-2L. And then right click on the file
and click [Delete].

File Edit Selection View Go Run Terminal Help

O =

Reveal in Explorer

Delete

Figure 5.39 Removing the file -2

Tl 34M06T02-02E Mar. 31, 2021-00

9-22

5.3

5.3.1

Remote development with Jupyter
Notebook

Overview

Jupyter Notebook is an open source application in which you can view, run, and edit
document files called a notebook.

It provides features, such as stepwise execution in the unit of operations called a
cell and easy drawing of graphs, helping you develop your applications quickly.

This section describes how to configure and start a Jupyter Notebook server on
F3RP70-2L and how to access the Jupyter Notebook server from the local machine
through a Web browser. The user edits the notebook in F3RP70-2L through the Web
browser on the local machine for development.

Local machine e-RT3

Access

Jupyter

Web browser Notebook server

Figure 5.40 Remote development with Jupyter Notebook

Tl 34M06T02-02E Mar. 31, 2021-00

9-23

5.3.2 Environment creation procedure
Configure Jupyter Notebook that has been installed in e-RT3.

® Configuring Jupyter Notebook

Create a configuration file.
Example:

ert3@ubuntu:~$ jupyter notebook --generate-config

Configure the password required when you access Jupyter Notebook from the local

machine.

Example:
ert3@ubuntu:~$ jupyter notebook password
Enter password: //Enter the password.
Verify password: //Enter the password again.

Tl 34M06T02-02E Mar. 31, 2021-00

5-24

5.3.3 Usage

@ Starting Jupyter Notebook and accessing it from a Web browser

1. Start Jupyter Notebook.
Example:

ert3@ubuntu:~$ jupyter notebook --ip="*" --no-browser

2. Access the following URL in the Web browser of the local machine:
https://192.168.3.72:8888/

Note

Secure communication can be performed using SSL. Please refer to the Jupyter
Notebook official document for details.
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html

Alogin screen appears.
Enter the password you specified to log in.

x o+

~ Jupyter

Figure 5.41 Starting Jupyter Notebook and access from web browser -1

Note

When you can't log in, try to delete your browser cache.

Tl 34M06T02-02E Mar. 31, 2021-00

9-25

The following screen appears.

x +
- C @ O Notsecure | 192168372 o d O i
= Jupyter Logout
Bac] Iheme. 1) Darionm BCIOMS On Mhem Jpl o
- .

Figure 5.42 Starting Jupyter Notebook and access from web browser -2

® Creating a folder

Click the [New] button to show the drop-down list and click [Folder].

~ Home x B - o0 x
& C Y @ Notsecure | 192.168.3.72:8888/tree o Q % O
~ Jupyter Logout

Jsters
Select items to perform actions on them Upload E+
0~ W :
Python 3 ¢
Text File
Terminal

Figure 5.43 Creating folder -1

Select the check box for [Untitled Folder] you created and then click [Rename]
displayed above it.

x + = o x
&« C O O Notsecure | 192168372 o * O i
— Jupyter Logaut
p o +]
@1 - Name ¥
seconds ago

Figure 5.44 Creating folder -2

Tl 34M06T02-02E Mar. 31, 2021-00

5-26

Type a given folder name and click the [Rename] button.

= Home x o+

€ > C (0 O Notsecure | 192.168.3.72:8808/tree? Q % O :

Rename directory

Enter a new diréctory name:

test

P |

|

Figure 5.45 Creating folder -3

® Creating a notebook
Click the [New] button to show the drop-down list and click [Python3].

= s/ x o+ - 0 X
« & G 0O O nNotsecure | 1921683728585 e/ les a oa O
~ Jupyter Logout

Fies Running Clustérs
Select items to perform actions on them Upload [Neww| o
HET ST
0« W test)
o o e
The notenooik bst is emply. Text File
Folger
Terminal
Figure 5.46 Creating notebook -1
A new notebook appears in the browser.
) X @ Untited x i = 2 i
@ Y A Notsecurs | 1921603728580 notebooks test/Untitled ipymbThemel_name=pythond a &« 6
7 JuUpyter Untitied s g A g
File Eon View nsen Cel Kemel Wikigeds Hedy Trusted Pythan3d O

& + ¥ OB a4 din B C Code

)]

In[J:]

Figure 5.42 Creating notebook -2

TI 34M06T02-02E Mar. 31, 2021-00

9-27

® Coding

In this subsection as an example, you create a program that shows the elements of
a list and draws a scatter diagram.

Import the “matplotlib” package, which is required to draw the scatter diagram.

= test X & Untitled x + = a X
C {t A Notsecure | 192.168.3.72:8888/natebooks/test/Untitled.ipynb?kemnel_name=python3 Q %« 6
" Jupyter Untitled wnsseamnges A | Logou
Edit View ert € Kernel Nidgets Help Trusted Python3 O
B |+ & & B |4 % | HWRun B C | Code =

In []: import matplotlib.pyplot as plt

Figure 5.48 Coding -1

Click [insert cell below] and write code to declare and show a list.

. tesy X & Urttied x | % = o x

5 o & i
F Logout

Trusted n3 O

In []: import matplotlib.pyplot as plt

I: == [1, 4, 6, 3, 9]
y = 00, 16, 2, 43, 4]
print(x)
print (y

Figure 5.49 Coding -2

Tl 34M06T02-02E Mar. 31, 2021-00

5-28

Click the [Run] button to run the code in the cell and show the result.

= test/ X @ Untitled b3 + - & =
C (Y A Notsecure | 192.1683.72:8888/notebooks/test/Untitled.ipynb?kermel_name=python3 a & 6
“jupyter Untitled wisaved cnanges) & | Logout
File Eait View Insert Cell Kernel Widgets Help Trusted | & |J'.'Lhun:‘ (o]
+3®ﬁ+W.CCode v |=
In []: | import matplotlib.pyplot as plt
In [1]: |x = [1, 4, 6, 3, 9]
y = [7, 10, 2, -3, 4]
print(x)
print(y

[1, 4, 8, 3, 9]
[7, 1e, 2, -3, 4]

I Ln[]:|

Figure 5.50 Coding -3

In a new cell, write code that draws a scatter diagram.

= test/ X & Untitled x +

C A Notsecure | 192,168.3.72:3888/notebooks/test/Untitlied.ipynbkernel_name=python3

: JU pyter Untitled (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help Trusted
B + % th B 4 ¥ HRun B C Code v|| =
In []: import matplotlib.pyplot as plt
In [1]: x = [1, 4, 6, 3, 9]
y = [7, 10, 2, -3, 4]
print(x)
print(y)

[1, 4, 6, 3, 9]
[7, 1e, 2, -3, 4]

In []: plt.scatter(x, y

Figure 5.51 Coding -4

= a X

a % 6
? Logout

|Python3 O

Tl 34M06T02-02E

Mar. 31, 2021-00

5-29

Run the top cell and then run the bottom cell to draw the scatter diagram.

e
« +

O A Motsecurs | 192188872 AL o . R a &+ O !
— Jupyter Untitled wsams csen o

a5 0+ B + % HAunn B C

Figure 5.52 Coding -5

Note

You must run the top cell first as the bottom cell uses matplotlib.pyplot.

Note

If you want to run all cells from top to bottom, select the [Cell] menu to show the
drop-down list and click [Run All].

O a - T 8
Jupyter Unfitled i A

Figure 5.53 Coding -6

® Exiting Jupyter Notebook
In the F3RP70-2L console, press the [Ctrl] + [C] keys to exit Jupyter Notebook.

Tl 34M06T02-02E Mar. 31, 2021-00

5-30

5.4

5.4.1

How to access the M310 module

You can configure the M310 module and perform data I/O by running C/C++
library functions. This section describes how to call C/C++ library functions
from Python.

Input output data of IO module

Input / output data of the IO module is read /written from /to the device (relay,
register) of the module. The position of the device is specified by the unit, slot and
device number in the module. A unit is the smallest unit of the system. The usual
unit number is 0. When expanding IO, up to 7 unit (unit numbers 1 to 7) can be
added. The slot number represents the position of the module within the unit. From
the right next to the power supply module, take a value from 1 to 16. The device
number in the module start from 1 and the number varies depending on the module.
Generally, input / output data is allocated from device number 1. For example, the
data of channel 1 of the analog input module reads and writes the device number 1,
and the data of channel 4 reads and writes the device number 4.

Note

For details on the specifications of the system configuration, refer to “e-RT3
CPU Module (SFRDO2) BSP Common Function Manual (IM 34M06M52-02E)".
For details on each module, refer to the manual of each modules.

For modules supported by the 10 Module Configuration Service, the service
executes the settings in the module so that the user program can be completed only
by reading and writing | / O data. The module devices and library functions used are
shown below.

Table 5.2 Device of module and access API

Module type Module model Dtey‘sge h?,.%?r API
F3XD08-[1[1~8
Digital input F3XD16-[1] 1~16 Read by lbit_: readM3InRelayP
F3XD32-000O 1~32 Read by 16bit : readM3InRelay
F3XD64-[1[] 1~64
F3YDO04-[1[] relay 1~4
F3YD08-[[] 1~8 Write by 1bit : writeM30utRelayP
Digital outpu F3YD14-[1[] 1~14 Write by 16bit : writeM30utRelay
F3YD32-[] 1~32 Read by 16 bit : readM30utRelay
F3YD64-[1[] 1~64
F3AD04-5R 1~4
Analog input Egﬁggg_gg 1N§ Read by 16bit : readM3loRegister
F3AD08-4R 1~8
Analog output F3DA04-6R . 1~4 Write by 16b_it : writel\/ISIoReg_ister
F3DA08-5R register [1-8 Read by 16bit : readM3loRegister
High speed data F3HA06-1R 1~6 Use API _descri_bed in _chapter4
acquisition F3HA12-1R 1-12 For reading <_)f immediate datg:
Read by 16bit : readM3loRegister
Temperature | £3¢x04-0N 1~4 |1 AfE : readM3loRegister

Tl 34M06T02-02E Mar. 31, 2021-00

5-31

5.4.2

Calling C/C++ library functions from Python

ctypes is a software module that provides C-compatible data types. To access the
IO module from Python, use ctypes to convert Python variables into appropriate
types and call functions in the library. The following shows some examples.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/0 Module Access Library” of this document.

Reading data from a XD module (1bit)

The program below reads data from relay number 1 of the XD module inserted into
slot 2 of unit 0.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Convert Python variables into the int type
Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(2)

Relay number

Cc_pos = ctypes.c_int(1)

Create a short-type array for the buffer to store read data
short-type array with 1 element

short_arr= ctypes.c_uintl6é * 1

create arry

c_data = short_arr()

Call the library function

libc.readM3InRelayP(c_unit, c_slot, c_pos, c_data)

The specification of the readM3InputRelayP function is:

int readM3InputRelayP (int unit, int slot, int pos, unsigned short *data);

Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

Tl 34M06T02-02E Mar. 31, 2021-00

9-32

® Reading data from a XD module (16bit)

The program below reads data from relay number 1 to 32 of the XD module inserted
into slot 2 of unit 0.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Convert Python variables into the int type

Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(2)

Relay number

Cc_pos = ctypes.c_int(1)

Number of read block (1 block equals to 16 points)
c_num = ctypes.c_int(2)

Create a short-type array for the buffer to store read data
short-type array with 4 element

short_arr = ctypes.c_uintl6é * 4

create array

c_data = short_arr()

Call the library function

libc.readM3InRelay(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the readM3luptRelay function is:

int readM3InputRelay (int unit, int slot, int pos, int num, unsigned short data[4]);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

® Writing data to a YD module (1bit)

The program below write data from relay number 1 of the YD module inserted into
slot 3 of unit 0.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Convert Python variables into the int type
Unit

c_unit = ctypes.c_int(0)

Tl 34M06T02-02E Mar. 31, 2021-00

9-33

Slot

c_slot = ctypes.c_int(3)

Relay number

C_pos = ctypes.c_int(1)

data for writing

c_data = ctypes.c_uintl6(l)

Call the library function

libc.writeM30utRelayP(c_unit, c_slot, c_pos, c_data)

The specification of the writeM3OutRelayP function is:

int writeM30OutRelay (int unit, int slot, int pos, unsigned short *data);

Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

® Writing data to a YD module (16bit)

The program below write data from relay number 1 to 32 of the YD module inserted
into slot 3 of unit 0.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Convert Python variables into the int type
Slot

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(3)

Relay number

C_pos = ctypes.c_int(1)

Write blocks (1 block equals to 16 points)
Cc_num = ctypes.c_int(2)

Create a short-type array for the buffer to store write data
short_arr = ctypes.c_uintl6é * 4

Writing data

data = [OxFfff, OxFfff]

c_data = short_arr(*data)

Data mask

mask = [OxFFff, OxFfff]

c_mask = short_arr(*mask)

Call the library function

libc.writeM30utRelay(c_unit, c_slot, c_pos, c_num, c_data, c_mask)

Tl 34M06T02-02E Mar. 31, 2021-00

5-34

The specification of the writeM3OutRelay function is:

int writeM3O0utRelay (int unit, int slot, int pos, int num, unsigned short data[4],
unsigned short mask[4]);

Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

Reading data from a YD module (16bit)

The program below read data from relay number 1 to 32 of the YD module inserted
into slot 3 of unit 0.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Convert Python variables into the int type
Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(3)

Relay number

C_pos = ctypes.c_int(1)

Read blocks (1block equals to 16 points)
Cc_num = ctypes.c_int(2)

Create a short-type array for the buffer to store read data
short-type array with 4 element

short_arr = ctypes.c_uintlé * 4

create array

c_data = short_arr()

Call the library function

libc.readM30utRelay(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the readM30OutRelay function is:

Int readM30utRelay (int unit, int slot, int pos, int num, unsigned short data[4]);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

Tl 34M06T02-02E Mar. 31, 2021-00

5-35

® Writing data to a DA module

The program below writes 6000 into register number 1 of the DA module inserted
into slot 4 of unit 0. Channel 1 of the DA module carries a voltage of 3 volts.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Convert Python variables into the int type
Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(4)

register number

Cc_pos = ctypes.c_int(1)

Write points

c_num = ctypes.c_int(1)

Create a short-type array for the buffer to store write data
python array to be converted

data = [6000]

short-type array with 1 element

short_arr = ctypes.c_short * 1

Convert python array into a short-type array

c_data = short_arr(*data)

Call the library function

libc.writeM3loRegister(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the writeM3loRegister function is:

int writeM3loRegister(int unit, int slot, int pos, int num, unsigned short *data);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

® Reading data from the AD module

The program below reads data from register number 1 of the AD module inserted
into slot 5 of unit 0.

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(*'/usr/local/lib/1ibm3.s0.1")

Tl 34M06T02-02E Mar. 31, 2021-00

5-36

Convert Python variables into the int type
Unit

c_unit = ctypes.c_int(0)

Slot

c_slot = ctypes.c_int(b)

Register number

Cc_pos = ctypes.c_int(1)

Read points

c_num = ctypes.c_int(1)

Create a short-type array for the buffer to store read data
short-type array with 1 element

short_arr = ctypes.c_short * 1

create array

c_data = short_arr()

Call the library function

libc.readM3loRegister(c_unit, c_slot, c_pos, c_num, c_data)

The specification of the readM3loRegister function is:

int readM3loRegister(int unit, int slot, int pos, int num, unsigned short *data);
Therefore, Python variables are converted into an appropriate type with ctypes and
then the function is called.

Reading data from the high-speed data acquisition module

The program below reads data from register number 1 of the high-speed data
acquisition module inserted into slot 3 of unit 0. Store ert3dgc.pu and
ha_access _sample.py in the same directory and execute ha_access_sample.py.

Note

Before using high-speed data acquisition module, you have to configure a module
using F3HA12 data acquisition service and e-RT3 IO configuration service.
For details of each services, see chapter 3 and 4 of this document.

ert3dgc.py

__version__ = ‘1.1.1-00’

import ctypes

Load the library
libc = ctypes.cdll._LoadLibrary(**/usr/local/lib/libert3dgc.so.1")

LONGLONG_MAX = OX7FFFFffrrfrfffee

Tl 34M06T02-02E Mar. 31, 2021-00

9-37

initialize APl resource mode O:read-write 1l:read only
def open_ha(mode=0, unit=0, slot=2):
Load library function

LEDG_open = libc.LEDG_open

Specifies type of return value.

LEDG_open.restype = ctypes.c_bool

Convert Python variables into the int type
c_mode = ctypes.c_int32(mode)
c_unit = ctypes.c_int32(unit)
c_slot = ctypes.c_int32(slot)

Initialize APl resource, return true/false

return LEDG open(c_mode, c_unit, c_slot)

Release APl resource
def close_ha():
LEDG_close = libc.LEDG close

Release APl resource

LEDG_close()

Get the data number of acquired data

def get_hadatano():
LEDG_getHaDataNo = libc.LEDG_getHaDataNo
LEDG_getHaDataNo.restype = ctypes.c_bool

c_oldestno = ctypes.c_int64(-1)
C_newestno = ctypes.c_int64(-1)

c_acqg_lasterr = ctypes.c_int32(-1)

Get the data number of acquired data
LEDG_getHaDataNo(ctypes.byref(c_oldestno), ctypes.byref(c_newestno),
ctypes.byref(c_acq_lasterr))

Return oldest, newest data number and error status

return c_oldestno.value, c_newestno.value, c_acq_lasterr.value

Create buffer for data acquisition

def create_buffer(bytes_per_scan, num_of _buff):
buf = ctypes.c_byte * (bytes_per_scan * num_of_ buff)
return buf()

Get acquired data
def get_hadata(c_buf, num_of _buff, fromno=0, tono=LONGLONG_MAX):

Tl 34M06T02-02E Mar. 31, 2021-00

5-38

c_reg_fromno = ctypes.c_int64(fromno)
C_reg_tono = ctypes.c_int64(tono)

c_num_of _buff = ctypes.c_int32(num_of_buff)
c_real_fromno = ctypes.c_int64(-1)
c_real_tono = ctypes.c_int64(-1)
c_acg_lasterr = ctypes.c_int32(-1)

LEDG_getHaData = libc.LEDG_getHaData
LEDG_getHaData.restype = ctypes.c_uint32

Get acquired data

scan_num = LEDG_getHaData(c_req_fromno, c_reqg_tono, c_buf,

c_num_of_buff,

ctypes.byref(c_real_fromno), ctypes.byref(c_real_tono),

ctypes.byref(c_acq_lasterr))

Return number of scan, start data number, end data number, error status

return scan_num, c_real_fromno.value, c_real_tono.value, c_acq_lasterr.value

Get data acquisition target

def get_hagathering():
Create a boot-type srray with 12 elements
boolarrl2 = ctypes.c_bool * 12
c_enable_channels = boolarri2()
Convert python variable into bool-type

c_enable_counter = ctypes.c_bool(False)

LEDG_getHaGathering = libc.LEDG_getHaGathering
LEDG_getHaGathering.restype = ctypes.c_uint32

#Get data acquisition target

bytes_per_scan = LEDG_getHaGathering(c_enable_channels,

ctypes.byref(c_enable_counter))

Return number of bytes per a scan, valid of acquisition channel, valid of

counter

return bytes_per_scan, [ch for ch in c_enable_channels],

c_enable_counter.value

Start data acquisition

def start_ha():
LEDG_startHaDataGathering = libc.LEDG_startHaDataGathering
LEDG_startHaDataGathering.restype = ctypes.c_bool

Start data acquisition, return true/false

return LEDG_startHaDataGathering()

Tl 34M06T02-02E

Mar. 31, 2021-00

5-39

Stop data acquisition
def stop_ha():
LEDG_stopHaDataGathering = libc.LEDG_stopHaDataGathering

Stop data acquisition

LEDG_stopHabDataGathering()

ha_access_sample.py

import time

import numpy as np

import ert3dgc

def main():
Open as read mode

ert3dgc.open_ha(mode=0, unit=0, slot=3)

get number of bytes per a scan and valid of chnannel
bytes_per_scan, channels, _ = ert3dgc.get_hagathering()
Get the number of valid channel

ch_num = channels.count(True)

Definition of buffer for data acquisition
num_of_buff = 100000
buf = ert3dgc.create_buffer(bytes_per_scan, num_of_buff)

Start acquisition

ert3dgc.start_ha()

Wait for data
time.sleep(1)

Get oldest, newest data number

oldestno, newestno, _ = ert3dgc.get_hadatano()

Get acquisition data from oldest to newest

tono=newestno)

Get data form buffer

data = np.frombuffer(buf, dtype="intl6", count=scan_num*ch_num)

Stop acquisition

ert3dgc.stop_ha()

scan_num, _, , _ = ert3dgc.get_hadata(buf, num_of buff, fromno=oldestno,

Tl 34M06T02-02E

Mar. 31, 2021-00

5-40

if _name__ == "_main__":

Close
ert3dgc.close_ha()

return

mainQ)

Tl 34M06T02-02E

Mar. 31, 2021-00

5-41

5.5

Sample program

This is a sample to detect anomalies using One Class SVM. Use the data
collected from CH1 and CH2 of HA as input. In learning, features are extracted
from the collected data to create a model. In prediction, the feature amount is
extracted from the collected data and compared with the model to determine
whether the data is normal or abnormal.

MLsample

|-ert3dgc.py A program to access an I/0O module
|—feature.py A program to extract features
|-drawGraph.py A program to draw a graph
|—training.y A program to perform training
|-prediction.py A program to make predictions

Lprediction_continuous.py A program to make predictions continuously

Each program is as follows:
- ert3dgc.py
Program for access high-speed data acquisition module.

feature.py

It is a program that extracts the feature amount from the collected data. In this
sample, the average value of the size of the collected data is used as the
feature value.

draw_graph.py

It is a program that draws the features used for learning and the boundaries
that distinguish between normal and abnormal values. Figure 5.54 shows an
example of the drawn graph.

training.py

This is a program that uses the collected data for learning. The collected data is
divided into a fixed number of pieces, feature extraction is performed for each,
and learning is performed based on the obtained feature quantities to
determine the discrimination boundaries that determine whether normal or
abnormal.

prediction.py

It is a program that collects data at regular intervals and makes predictions.
The collected data is divided into fixed numbers and feature extraction is
performed for each, and the obtained feature values are compared with the
model obtained by learning to determine whether they are normal or abnormal.

Tl 34M06T02-02E Mar. 31, 2021-00

9-42

predicition_continuous.py

It is a program that continuously collects data and makes predictions. As soon
as data for one prediction is accumulated, feature extraction is performed, and
the obtained feature amount is compared with the model obtained by learning
to determine whether it is normal or abnormal.

12

11 1

10

Figure 5.54 example, graph of model (blue point: feature, red line: discrimination boundaries)

Note

Before using high-speed data acquisition module, you have to configure a module
using F3HA12 data acquisition service and e-RT3 10 configuration service.
For details of each services, see chapter 3 and 4 of this document.

® Usage

1. Place the “MLsample” folder in a given directory in F3RP70-2L
2. Execute training.py for learning.

ert3@ubuntu:~/workspace/MLsample$ python3 training.py

3. Execute prediction.py for prediction.
For stop the program, press “Ctrl” + “C” key.

ert3@ubuntu:~/workspace/MLsample$ python3 prediction.py

Execute prediction_continuous.py for prediction for prediction of continuous

Tl 34M06T02-02E Mar. 31, 2021-00

9-43

data.

ert3@ubuntu:~/workspace/MLsample$ python3 prediction_continuous.py

® Source code

ert3dgc.py
See chapter 5.4.2

feature.py

#MLsample version 1.1.1-00

import numpy as np

Feature extraction rawdata: acquired data, ch_num: number of channel, data_size:

numberof data for learning or prediction

def feature_extraction(rawdata, ch_num, data_size):

Divide acquired data into data of channel every DATA SIZE

chdataset:3D array(number of learning orprediction) x (number of channel) x
(number of data for learning or predition)

chdataset = rawdata.reshape(-1, data_size, ch_num).transpose(0, 2, 1)

Calculate the average value of the data of learning or prediction data every
channel

#feature: 2D array(number of data for learning or prediction) x (nhumber of
channels)

feature = [[calc_aveamp(ch) for ch in data] for data in chdataset]

return feature

Average of absolute values of array values
def calc_aveamp(data):

data = np.array(data)

data = list(np.abs(data))

return sum(data)/len(data)

draw_graph.py

#MLsample version 1.1.1-00
import numpy as np

import matplotlib
matplotlib.use("'Agg™)

import matplotlib.pyplot as plt

Draw graph

def draw_graph(data, model):

Tl 34M06T02-02E Mar. 31, 2021-00

5-44

data=np.array(data)

create mesh grid

x1lmin, x1lmax = data[:, 0].min()-1, data[:, 0].max()+1

x2min, x2max = data[:, 1].min()-1, data[:, 1]-max()+1

xx1l, xx2 = np.meshgrid(np.linspace(x1min, x1max, 500),np.linspace(x2min,

x2max, 500))

model .decision_function(np.array([xx1l.ravel(), xx2.ravel()])-T)

Z .reshape(xx1.shape)

Draw contour lines

plt.contourf(xxl, xx2, Z, alpha=0.4)

Draw discrimination boundary

plt.contour(xx1, xx2, Z, levels=[0], linewidths=2, colors="darkred®)

Draw data
plt.scatter(data[:, 0], data[:, 1])

Save picture

plt.savefig(*'graph.png™)

training.py

#MLsample version 1.1.1-00
import time

import pickle

import numpy as np

from sklearn import svm

import ert3dgc
from feature import feature_extraction

from draw_graph import draw_graph

DATA_NUM = 100 # Number of learning data
DATA_SIZE = 1000 # Number of learning data
GATHER_NUM = DATA_SIZE * DATA_NUM # Number of acquired data

def main():
Open read-write mode

print("open = ", ert3dgc.open_ha(mode=0, unit=0, slot=3))

Get number of bytes per a scan

bytes_per_scan, _, _ = ert3dgc.get_hagathering()

Get number of valid channels

Tl 34M06T02-02E Mar. 31, 2021-00

5-45

ch_num = bytes per_scan // 2

Definition of buffer for acquired data

buf = ert3dgc.create_buffer(bytes_per_scan, GATHER_NUM)

Start data acquisition

print(start = ", ert3dgc.start_ha())

Get newest data number

_, hewestno, _ = ert3dgc.get_hadatano()

Wait for data
while newestno + 1 < GATHER_NUM:
time.sleep(1)

_, hewestno, _ = ert3dgc.get_hadatano()

Get data of which size is GATHER_NUM

scan_num, _, , _ = ert3dgc.get _hadata(buf, GATHER_NUM, fromno=newestno-

GATHER_NUM+1)

Get acquired data from buffer

data = np.frombuffer(buf, dtype="intl6", count=scan_num*ch_num)

learning

training(data, ch_num)

Stop data acquisition
ert3dgc.stop_ha()
print(“'stop™)

Close
ert3dgc.close_ha()

print(*'close™)

def training(rawdata, ch_num):
feature extraction

feature = feature_extraction(rawdata, ch_num, DATA SIZE)
learning
clf = svm.OneClassSVM(nhu=0.1, kernel="rbf")

clf_fit(feature)

Save model

pickle_dump(clf, open(‘'model.pickle™, "wb"))

Draw graph

Tl 34M06T02-02E

Mar. 31, 2021-00

5-46

draw_graph(feature, clf)

if _name__ == main :

main()

prediction.py

#MLsample version 1.1.1-00
import time

import pickle

import numpy as np

import ert3dgc

from feature import feature_extraction

CLF = pickle.load(open(*'model .pickle"™, "rb"))# Read model
DATA_NUM = 10 # Number of prediction data for 1 batch
DATA_SIZE = 1000 # Number of acquired data for 1 prediction
GATHER_NUM = DATA_SIZE * DATA_NUM # Number of acquired data

def main():
Open as read-write mode

print("open = ", ert3dgc.open_ha(mode=0, unit=0, slot=3))

Get number of bytes per a scan

bytes _per_scan, _, _ = ert3dgc.get_hagathering()

Get number of valid channels

ch_num = bytes_per_scan // 2

Definition of buffer for acquired data

buf = ert3dgc.create_buffer(bytes_per_scan, GATHER_NUM)

Start data acquisition

print("start = ", ert3dgc.start_ha())

Get newest data number

_, hewestno, _ = ert3dgc.get_hadatano()

Wit for data
while newestno + 1 < GATHER_NUM:
time.sleep(1)

_, hewestno, _ = ert3dgc.get_hadatano()

try:

while True:

Tl 34M06T02-02E Mar. 31, 2021-00

o-47

Get newest data number

_, hewestno, _ = ert3dgc.get_hadatano()

Get data of which size is GATHER_NUM
scan_num, ., , = ert3dgc.get_hadata(buf, GATHER_NUM,

fromno=newestno-GATHER_NUM+1)

Get acquired data from buffer

data = np.frombuffer(buf, dtype="intl6", count=scan_num*ch_num)

Prediction

prediction(data, ch_num)

interval for prediction
time.sleep(1)
except KeyboardInterrupt:
Stop data acquisition
ert3dgc.stop_ha()
print(“'stop™)

Close
ert3dgc.close_ha()

print(*'close™)

return

def prediction(rawdata, ch_num):
feature extraction

feature = feature_extraction(rawdata, ch_num, DATA_SIZE)

Prediction

y_pred_test = CLF.predict(feature)

n_outlier_test = y pred_test[y_pred_test == -1].size
Number of prediction data

print(*'number of test data: ', len(y_pred_test))

Number of errors

print(*'number of outliers: ', n_outlier_test)

print(""")

if _name__ == "__main

main()

prediction_continuous.py

#MLsample version 1.1.1-00

import pickle

Tl 34M06T02-02E Mar. 31, 2021-00

5-48

import numpy as np

import ert3dgc

from feature import feature_extraction

CLF = pickle.load(open("'model .pickle", "rb"))# Read model
DATA_SIZE = 1000 # Number of acquired data for 1 prediction
NUM_OF_BUFF = 100000 # Size of buffer for acquired data

def main():
Open as read-write mode

print("open = ", ert3dgc.open_ha(mode=0, unit=0, slot=3))

Get number of bytes per a scan

bytes _per_scan, _, _ = ert3dgc.get_hagathering()

Get number of valid channels

ch_num = bytes_per_scan // 2

Definition of buffer for acquired data

buf = ert3dgc.create_buffer(bytes_per_scan, NUM_OF_BUFF)

Start data acquisition

print("start = ", ert3dgc.start_ha())

try:
Start data acquisition number
reqg_fromno = 0
FIFO
queue = np.array([1D
while True:

Get data from “req_from” to latest

scan_num, real_fromno, real_tono, _ = ert3dgc.get_hadata(buf,

NUM_OF_BUFF, fromno=req_fromno)

1T you cannot get expected data
if reqg_fromno < real_fromno:
Initialize queue

queue = np.array([1)
print("WARNING: some data lost'™)

Get data from buffer
queue = np.append(queue, np.frombuffer(buf,

count=scan_num*ch_num))

Enough data is stored

dtype="intl6",

Tl 34M06T02-02E

Mar. 31, 2021-00

5-49

while len(queue) >= (DATA_SIZE*ch_num):
Get the top element and remove from the queue
data = queue[:DATA_SIZE*ch_num]
queue = queue[DATA_SIZE*ch_num:]
Prediction

prediction(data, ch_num)

When you can get some data
if scan_num > O:
add 1 to real_tono for next request number

req_fromno = real_tono + 1

except KeyboardInterrupt:
Stop data acquisition
ert3dgc.stop_ha()
print(“'stop'™)

Close
ert3dgc.close_ha()

print(*'close™)

return

def prediction(rawdata, ch_num):
Feature extraction

feature = feature_extraction(rawdata, ch_num, DATA_SIZE)

Prediction

y_pred_test = CLF.predict(feature)

n_outlier_test = y pred_test[y_pred_test == -1].size
Number of prediction data

print("'number of test data: ', len(y_pred_test))

Number errors

print("'number of outliers: ", n_outlier_test)

print("")

if _name__ == main__"':

main()

Tl 34M06T02-02E Mar. 31, 2021-00

6-1

6. Application development with
C/C++

6.1 Host development with F3RP70-2L

This Ubuntu image has the build-essential package for the armhf architecture
installed as a build toolchain for C/C++ programs.

This section describes how to build and execute a program on F3RP70-2L
using this toolchain.

6.1.1 Usage

® Preparations

To transfer source files to F3RP70-2L, install WinSCP on the local machine.
1. Access the following URL to download WinSCP:
https://winscp.net/eng/download.php

]
@ =

Figure 6.1 Installation of WinSCP -1

Tl 34M06T02-02E Mar. 31, 2021-00

6-2

2. Run the file you downloaded to install WinSCP.
Click [Install for all users].

Select Setup Install Mode X

3 Select install mode

WinSCP can be installed for all users (requires
administrative priviieges), or for you oniy.

& Install for all users (recommended)

—> Install for me only

Figure 6.2 Installation of WinSCP -2

Click [Yes].

$ WInSCP Installer

Verified publisher: Martin Prikryl
File origin: Hard drive on this computer

Show more details

e e

Figure 6.3 Installation of WinSCP -3

TI 34M06T02-02E

Mar. 31, 2021-00

6-3

Click [Accept].
B Setup - WinSCP 5.17.3

License Agreement

Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this agreement before
continuing with the installation.

h’ou can also review this license and further details online at:
https://winscp.net/eng/docs/license

A. GNU General Public License
B. License of WinSCF Icon Set
C. Privacy Policy

A. GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://www.fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Help Cancel

Figure 6.4 Installation of WinSCP -4

Select [Typical installation] and click [Next].
® Setup - WinSCP 5.17.3

Setup Type
What type of setup do you want?

|© Typical installation (recommended)

= installs to default destination
« installs all components
= enables most typical features

() custom installation

« allows full selection of destination, components and features

| Help

Cancel

Figure 6.5 Installation of WinSCP -5

TI 34M06T02-02E Mar. 31, 2021-00

6-4

Click [Next].
", Setup - WinSCP 5.17.3 -

Initial User Settings
Please, select your preferred user interface options.

User interface style

(® Commander » two panels (left for local directory, right for remote directory)
« keyboard shortcuts like in Norton Commander (and other similar programs as

EE Total Commander, Midnight Commander...)
« drag & drop to/from both panels

(O Explorer = only remote directory
« keyboard shortcuts like in Windows File Explorer

F « drag & drop
H

Help < Back Next = Cancel

Figure 6.6 Installation of WinSCP -6

Click [Install].

) Setup - WinSCP 5.17.3 —

Ready to Install
Setup is now ready to begin installing WinSCP on your computer.

Click Install to continue with the installation, or click Back if you want to review or change any settings.

Destination location: ~
C:¥Program Files (x86)¥ WinSCP

Setup type:
Typical installation

Selected components:
WInSCP application
Drag & drop shell extension (allows direct downloads, may require restart)
Pageant (SSH authentication agent)
PuTTYgen (key generator)
Translations

Additional tasks:
Enable automatic check for application updates (recommended)
Enable collecting anonymous usage statistics
Create a desktop icon
Add upload shortcut to Explorer's 'Send to' context menu
Register to handle URL addresses

= =

Figure 6.7 Installation of WinSCP -7

TI 34M06T02-02E Mar. 31, 2021-00

6-5

The installation is now started.

™ Setup - WinSCP 5.17.3

Installing

Flease wait while Setup installs WinSCF on your computer.

Creating shortcuts...

C:¥PI‘DgF""r ¥ Mi I\Wﬂ¥“r d

¥ Start Menu¥Programs¥WinSCP.Ink

Help

Figure 6.8 Installation of WinSCP -8

Click [Finish].

™ Setup - WinSCP 5.17.3

Help

Completing the WinSCP Setup Wizard

Setup has finished installing WinSCF on your computer. The application
may be launched by selecting the installed shortcuts.

Click Finish to exit Setup.

Launch WinSCP

Open Getting started page

Please consider donating to support WinSCP development.

Donate $9
Donate $19 [r—_ N~
Donate $49] v (S Y ==
About donations

Finish

Figure 6.9 Installation of WinSCP -9

TI 34M06T02-02E

Mar. 31, 2021-00

6-6

3. Configure the connection settings.

Fill out the [Host name], [User name], and [Password] fields and click [Login].

"B, Login — x

[New Site | Session
File protocol:
SFTP ~

Host name: Port number:
||192.153.3.72 (|| 23

User name: Password:
"er‘tBl |I|on.oon|.n||]
—_—

|

sae |v | Advanced... |v

Tools = Manage = | 5] Login |v| . Close | | Help

[+/] Show Login dialog on startup and when the last session is closed

Figure 6.10 Installation of WinSCP -10

Click [Yes].

Warning ? x

& Continue connecting to an unknown server and add its
host key to a cache?

The server's host key was not found in the cache. You have no guarantee that
the server is the computer you think it is.

The server's Ed23519 key details are:
Algorithrm: ssh-ed23319 256
S5HA-256: En'wew D e TR s o Pl w
MD5: e e Bemedee com B T ol e Be—

If you trust this host, press Yes. To connect without adding host key to the
cache, press No. To abandon the connection press Cancel.

Copy key fingerprints to clipboard

Yes I' . No Cancel Help

Figure 6.11 Installation of WinSCP -11

TI 34M06T02-02E Mar. 31, 2021-00

6-7

The directories on the local machine are displayed on the left side and the

directories in F3RP70-2L on the right side.

& C\ - et3@192.168.3.72 - WinSCP

Local Mark Files Commands Session Options Remote Help

H 5:—: -_é' Synchronize [l Q? 53] ‘i-.é} \'gﬁ Queue ~ Transfer Settings Default -
& ert3@192.168.3.72 X [New Session
WG E-F- - Q2% s -[@-[-
Esl Upload - t - ¥ =5 Ly Properties £ New ~ - [+ i)
G\ /home/ert3/
Name) Size Type Changed Name
File folder 3/23/2020 Z11:21PN | &)
File folder 6/20/2018 11:44:06 A test
File folder 5/28/2019 11:03:42 A | mycert.pem
File folder 3/18/2020 2:13:35 PN | [] mykey key
File folder 3/11/2019 %:09:22 AM
File folder 9/26/2019 &17:52 PN
File folder 9/15/2018 4:33:50 PA
File folder 2/12/2020 11:20:3T A
File folder 3/12/2020 2:25:39 PN
File folder 3/25/2020 %:40:13 AP
File folder 11/19/2019 8:52:37 A
File folder 2/16/2019 1:57:26 PN
File folder 11/19/2019 2:44:23 P
File folder 3/25/2020 %:44:40 AN
File folder 5/14/2019 5:15:44 PN
‘ < > <
0Bof0BinDof 15 11 hidden 0B of 287KBin0of 3

Figure 6.12 Installation of WinSCP -12

® Creating source code

@ sFP3

M & EFndFiles |y

H - M

2.
48
. 3R

>
11 hidden
0:02:21

Create “HelloWorld.c” in a given directory on the local machine and write the

following code:

#include <stdio.h>

int main(void)
{
printf(**Hello World!\n™);

return O;

Tl 34M06T02-02E

Mar. 31, 2021-00

6-8

In WinSCP, drag “HelloWorld.c” and drop it into the home directory (“/home/ert3/”) of
the ert3 user, and click [OK].

B e 72 - WinSCP - O
Local Mark Files Commands Session Options Remote Help
M & 63 Synchronize [l ¢ | @ | [Queue ~ Transfer Settings Default - @
I et3®192.168372 X G Mew Session
G [0 &% et3 EB-E- . - BB M & [DFindFies Ty
[Upload ~ | [f Edit ~ 3 o} [Properties 5 New~ [+ [F] ¥] - | [Edit ~ 3 o [P ties |5 New ~ |
i\ /home/ert3/
Name - Size Type Changed Name hee Che
| File folder 3/23/2020 211:21PN | 4| .. 271
File folder 6/20/2018 11:44:06 A test 478,
File folder 5/28/2019 11:03:42 A \j mycert.pem - 32
File folder 3/18/2020 2:13:35 PN | [] mykey.key w32
Upload 7 X
[~ Upload fie ‘HelloWorld.c' to remote directory:
E [momeferts/== ~]
Transfer settings
| .] Transfer type: Binary
[Transfer in background (add to transfer queue)
| Transfer settings... Cancel Help
100 not show this dialog box again
[HelloWorld.c
< >||< >
B4Bof84Bin1of 16 11 hidden 0Bof287KBin0of 3 11 hidden

& sFe3 =] 0:10:51

Figure 6.13 Installation of WinSCP -13

Check that “HelloWorld.c” is added to the home directory.

b C\ - ert3@192.168,3.72 - WinSCP = o X
Local Mark Files Commands Session Options Remote Help
M &= £3 Synchronize B & | & 50 Queue - Transfer Settings Default - &
I et3@192.168.3.72 X [New Session
e @ F- e BEOE[% on @@ e B0 02| e 5
[Upload ~ | [7 Edit ~ 3¢ w5 [Properties [New v] - | [Edit ~ 3¢ Properties |5 New + i}
/home/ertd/
| Name h Size Type Changed Name e Che
File folder 3/23/2020 211:21PN | &) .. 21
File folder 6/20/2018 11:44:06 Ai test 4/8
File folder 5/28/2019 11:03:42 A |[B HelloWerld.c] . 48
File folder 3/18/2020 2:13:35 PN _‘] mycert.pem w32
File folder 371172019 9:09:22 AN | |] mykey.key T
File folder 9/26/2019 8:17:52 PN
File folder 9/15/2018 4:33:30 PN
File folder 2/12/2020 11:20:37 A|
= File folder 3/12/2020 3:25:39 PN
B o= File folder 3/25/2020 9:40:13 AN
File folder 11/19/2019 8:52:37 A
File folder 2/16/2019 1:57:26 PN
File folder 11/19/2019 2:44:23 P|
File folder 3/25/2020 9:44:40 AN
File folder 5/14/2019 5:15:44 PN
1KB CSource 4/8/2020 11:42:51 AN
< > < >
0Bof84Bin0of 16 11 hidden 0B of 296 KB in 0 of 4 11 hidden

@ sFe3) 0:11:51

Figure 6.14 Installation of WinSCP -14

TI 34M06T02-02E Mar. 31, 2021-00

6-9

® Building and running the source code

In the console, go to the home directory of the ert3 user and run the following
command to build the code:

ert3@ubuntu:~$ arm-linux-gnueabihf-gcc -o HelloWorld HelloWorld.c

Run the following command to execute the program and check the output.

ert3@ubuntu:~$./HelloWorld
Hello World!

6.1.2 Using the e-RT3 -specific API functions

API functions to access the e-RT3 I/O module are provided.
The library is stored in “/usr/local/lib” and the header files are “/usr/local/include/ert3”.

Note

For details on the API functions for e-RT3 I/O module access, refer to “Appendix1
I/O Module Access Library” of this document.

Tl 34M06T02-02E Mar. 31, 2021-00

7-1

Overlay Filesystem

This chapter describes the functions and usage of the Overlay Filesystem
(OverlayFS) addon software option for Ubuntu. By working with OverlayFS
enabled, you can reduce negative effects on the system of unexpected power
failures.

Note

This function is included in the F3RP70 Ubuntu image R1.2.1 and later. To find the
revision of your Ubuntu image, see 2.2.1, “Specifications of the Ubuntu image” in
this document.

Tl 34M06T02-02E Mar. 31, 2021-00

7-2

7.1
711

7.1.2

Overview
OverlayFS overview

OverlayFS consists of 3 files systems: a lower-layer, upper-layer, and merged
upper-lower layer file system. The lower layer is a read-only file system that resides
on the F3RP70-2L’s SD memory card. This is the file system on which Ubuntu is
loaded, and from which Ubuntu reads.

The upper layer and merged upper-lower layer file systems reside on a RAM disk on
the F3RP70, and any changes made in the file system (e.g. file add/edit/delete) after
bootup of Ubuntu are made to the upper layers only, leaving the lower layer

unmodified. That is why it is protected from power interruptions. For a more detailed
explanation, see section 7.2.

® Target

OverlayFS is useful for the following.
To prevent negative effects on the system of unexpected power interruptions
To prevent changes of the default operating environment

See also the operating precautions in section 7.4.

Overview of procedures

The following are the major steps involved in preparing to use OverlayFS. For
details, see section 7.3.

1 Start)

Figure. 7.1

»
P>

Prepare Operating Environment

v

Configure OverlayFS

v

Operation start

A

If the operat

ing env.

needs modify

Clear OverlayFS settings

]

Preparation for, and use of OverlayFS

Tl 34M06T02-02E

Mar. 31, 2021-00

7-3

7.2 Description of OverlayF$S

® Features

Power interruption resistance

Prevents negative effects on the system due to unexpected power interruptions
that the shutdown process cannot address.

Same operation as usual

Enabling OverlayFS does not affect normal operations.

Simple

Enabling/disabling setting can be done with just a parameter change.

® Description

The following describes each of the three file systems.
Lower layer
This is the core OverlayFS file system. The contents prepared when OverlayFS
disabled (i.e. normal startup) are configured as the lower layer.
Upper layer
This file system records the difference from the lower layer after startup.
Merged upper-lower layer
This file system merges the lower and upper layers, and in normal operation the
user sees the merged directory.

OverlayFS places these three layers from bottom to top in the order: lower, upper,
merged. Thus, the user sees the merged file system at the top, and operates the
F3RP70 without being aware of the layering. Changes to files or directories (e.g.
add/edit/delete) are made in the upper level that is visible to the user, but the original
lower level remains unchanged. Therefore, turning off the power or restarting
Ubuntu will return the system to the state prior to the change.

Note that in the case of the F3RP70-2L, the lower, read-only layer resides on the SD
memory card, whereas the upper and merged upper-lower file systems are loaded
into the RAM disk. Because of this, no unexpected writing to the SD card occurs.
This is how negative effects on the original system from unexpected power
interruptions are prevented. However, if there is information that you want to save,
you need to create a separate storage location.

Note

Operation with OverlayFS is optional and can be selected according to the
customer's environment. By default, OverlayFS is disabled and Ubuntu starts as
normal.

Tl 34M06T02-02E Mar. 31, 2021-00

7-4

7.3

Enter settings

This section describes the OverlayFS setting procedure in detail.

B Development environment

7.3.1

Items required for development and equipment configuration are the same as for
serial console connection in "2.4.2 Procedure of log in to Ubuntu" in this document.
Before starting Ubuntu, there are tasks to perform from the bootloader.

As some work requires root privileges, enable the sudo command according to the
procedure in 2.4.3, “Enable the sudo command."

Preparing the operating environment

As explained in section 7.1, OverlayFS is built based on the lower layer file system.
First, we will prepare the environment that we want to be the base.

1. Start Ubuntu
Follow the procedure in chapter 2 to create the SD memory card for startup, and
start Ubuntu on the F3RP70-2L.

2. Prepare functions required for operation
OverlayFS is disabled upon initial startup, so you can proceed with your
development work as usual (installing packages, creating and placing
executables, and so on).

3. Update initramfs
initramfs is a file that is loaded when launching Ubuntu, and is required for
startup. When each function is ready, run the following command and update
initrd.img-xxxxxx in the /boot directory. The placeholder "xxxxxx" corresponds
to the kernel version and is referenced by the uname -r command.

$ sudo update-initramfs -u

4. Update initrd.img
Convert initramfs created in step 3 to initrd.img in a format that can be read by
U-Boot installed in F3RP70-2L.

To create initrd.img from initramfs, regenerate initrd.img from the new
initramfs as shown in the following command. This completes preparation of
the operating environment.

$ sudo mkimage -A arm -0 linux -T ramdisk -C none -n "/boot/initrd.img-$(uname -

r)" -d /boot/initrd.img-$(uname -r) /boot/initrd.img

Tl 34M06T02-02E Mar. 31, 2021-00

7-5

7.3.2

7.3.3

Configuring OverlayFS

When the operating environment is ready, enable OverlayFS and configure it for
startup.

1. Edit /boot/ert3Env
Edit the settings file for u-boot environmental variables /boot/ert3Env. Open the

settings file, add the last line as "kuopt="overlayroot=tmpfs’", and then save
and close the file.

$ sudo vi /boot/ert3Env

kernel image filename

kfile=vmlinuz-4.14.164-rt73-ert3xInx

autorun=yes

kuopt="overlayroot=tmpfs”

2. Restart Ubuntu.
If you restart and log in, a message appears indicating that OverlayFsS is

enabled.

tmpfs-root /media/root-rw tmpfs rw,relatime 0 O
overlayroot / overlay rw,relatime,lowerdir=/media/root-ro,upperdir=/media/root-
rw/overlay,workdir=/media/root-rw/overlay-workdir/_ 0 O

/dev/mmcblkOp2 /media/root-ro ext4 ro,relatime,data=ordered 0 O

You can also use other commands to display mount information.

Note

Some service errors may appear in the Ubuntu startup message, but there is no
significant operational impact. For details, see the operational precautions in section

7.4.

Clearing OverlayFsS settings

When you want to disable OverlayFS to return to normal startup, use the following
procedure.

1. Disable OverlayFS temporally.
Execute “overlayroot-chroot” command to enable writing to the SD memory

card.

Tl 34M06T02-02E Mar. 31, 2021-00

7-6

$ sudo overlayroot-chroot
INFO: Chrooting into [/media/root-ro]
#

Edit /boot/ert3Env

Edit the settings file for u-boot environmental variables /boot/ert3Env. Open the
settings file, remove or comment out the last line "kuopt="overlayroot=tmpfs’"
added in the previous section 7.3.2 and then save and close the file.

$ sudo vi /boot/ert3Env

kernel image filename

kfile=vmlinuz-4.14.164-rt73-ert3xInx

autorun=yes

#kuopt="overlayroot=tmpfs~’

Return to enable OverlayFS.
Execute “exit” command to return to enable OverlayFS.

exit

Restart Ubuntu.
If you restart and log in, OverlayFS is disabled and starts as normal.

Tl 34M06T02-02E Mar. 31, 2021-00

-7

7.4

Usage precautions

The following are precautions when operating with OverlayFS. Please read
this document before use.

Saving data

While operating with OverlayFS, data cannot be saved to the SD memory card
containing the Ubuntu image. If you acquire data during operation that you want to
save after turning off or restarting, you must prepare another device, such as a
separate SD memory card. When the SD memory card is inserted into the F3RP70-
2L, slot 1 is recognized as /devimmcblk0, and slot 2 is recognized as
/devimmcblk1. Mount it to the appropriate directories. For example, format the SD
card inserted into slot 2 in ext4 format and mount it as follows.

$ sudo mkdir /media/sd
$ sudo mkfs -t ext4 /dev/mmcblkl
$ sudo mount /dev/mmcblkl /media/sd

Remove the mount before removing the SD card or turning off the F3RP70-2L.

$ sudo umount /media/sd

Note

OverlayFS does not affect any data storage area that you prepare for retaining when
the power is turned off or the system is restarted. Therefore, be sure not to turn off
the power when writing to this storage area. Also, format the SD memory card only
for the first time.

Capacity

When starting with OverlayFS enabled, the merged upper-lower layer file system
and the upper layer file system are created in tmpfs format on the RAM disk. For the
F3RP70-2L, the maximum capacity of the tmpfs format is 512 MB by default, and
the total volume of the tmpfs file system is 512 MB. You can check the currently
used capacity with the df command as follows. Ensure that the totals of “Used” of
tmpfs and tmpfs-root at “Filesystem” do not exceed 512MB.

$ df

Filesystem 1K-blocks Used Available Use% Mounted on
udev 500820 0 500820 0% /dev

tmpfs 102732 4132 98600 5% /run
/dev/mmcblk0Op2 3444992 1449116 1801164 45% /media/root-ro
tmpfs-root 513644 103920 409724 21% /media/root-rw
overlayroot 513644 103920 409724 21% /

Tl 34M06T02-02E Mar. 31, 2021-00

7-8

tmpfs 513644 20 513624 1% /dev/shm

tmpfs 5120 0 5120 0% /run/lock
tmpfs 513644 0 513644 0% /sys/fs/cgroup
tmpfs 102728 0 102728 0% /run/user/1000

® Starting systemd-tmpfiles-setup.service

When starting with OverlayFS enabled, the systemd-tmpfiles-setup.service fails to
start, and the storage location of the journald log changes from its normal
Ivar/logl/journal and its subdirectories to /run/log/journal and its subdirectories.
The following errors are displayed at startup.

[FAILED] Failed to start Create Volatile Files and Directories.

See "systemctl status systemd-tmpfiles-setup.service® for details.

Failure to start systemd-tmpfiles-setup.service can be avoided by renaming or
deleting /var/log/journal. Remove of delete it after clearing OverlayFS settings, if you
need. Below is an example of a rename.

mv /var/log/journal /var/log/journal.old

Note that, regardless of enabling/disabling countermeasures, starting with
OverlayF$S enabled, the journald log is saved within /run/log/journal. Note,
however, that if starting with OverlayFS disabled, if there is no /var/log/journal, the
log is saved in /run/log/journal, and log disappears if the power is turned off.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-1

Appendix1. 1/0 Module Access Library

This section contains information on user interface APls for accessing e-RT3
10 module.

A1.1 List of APIs

Table A1.1 List of APIs

Category Subcategory Feature Function name
I/O module Device Read from the input relay in blocks readM3InRelay
access Read from the input relay readM3InRelayP
Read from the output relay in blocks readM3OutRelay
Write to the output relay in blocks writeM3OutRelay
Write to the output relay writeM3OutRelayP
Read 16-bit data from the 1/O register readM3loRegister
Read 8-bit data from the I/O register readM3loRegisterB
Read 32-bit data from the 1/O register readM3loRegisterL
Write 16-bit data to the 1/O register writeM3loRegister
Write 8-bit data to the I/O register writeM3loRegisterB
Write 32-bit data to the 1/O register writeM3loRegisterL
Mode Read from the mode register readM3loModeRegister
configuration | Write to the mode register writeM3loModeRegister
Input relay Enable interrupts (in all points) enableM3lolrg
interrupt Enable interrupts (in one point) enableM3lolrgP
Disable interrupts (in one point) disableM3lolrgP
Module Get the module ID getM3loName
information Get the mapping address of the I/O space getM3loMapAdr
Get the mapping size of the I/O space getM3loMapSize
Get the offset address of the I/O space in the | getM3loDRegAdr
1/O register
Get the size of the 1/0 space in the I/O getM3loDRegSize
register
Get the offset address of the I/0 space in the | getM3loXAdr
input relay
Get the size of the I/O space in the input relay | getM3loXSize
Get the offset address of the I/O space in the | getM3loYAdr
output relay
Get the size of the I/0 space in the output getM3loYSize
relay
CPU module Device Read from the CPU device readM3CpuDevice
access Read from the CPU relay device readM3CpuDeviceP
Write to the CPU device writeM3CpuDevice
Write to the CPU relay device writeM3CpuDeviceP
Signal Enable signal reception enableM3CpusSignal
notification Disable signal reception disableM3CpusSignal
Send signals sendM3CpuSignal
CPU Get the CPU number getM3CpuNumber
information Get the CPU type getM3CpuType
Read from the CPU-shared memory readM3CpuMemory
Write to the CPU-shared memory writeM3CpuMemory
PLC device Local device | Set local device assignment information setM3InternalDataTable
Get local device assignment information referM3InternalDataTable
Read from the internal relay in blocks readM3InternalRelay
Read from the internal relay readM3InternalRelayB
Write to the internal relay in blocks writeM3InternalRelay
Write to the internal relay writeM3InternalRelayB
Read 16-bit data from the data register readM3InternalRegister
Write 16-bit data to the data register writeM3InternalRegister
Shared Set shared device assignment information setM3SharedDataConfig
device Get shared device assignment information referM3SharedDataConfig
Read from the (extended) shared relay in readM3SharedRelay
blocks
Read from the (extended) shared relay readM3SharedRelayB

Tl 34M06T02-02E

Mar. 31, 2021-00

A1-2

Write to the (extended) shared relay in blocks | writeM3SharedRelay
Write to the (extended) shared relay writeM3SharedRelayB
Read 16-bit data from the (extended) shared | readM3SharedRegister
register
Write 16-bit data to the (extended) shared writeM3SharedRegister
register
Link device Set link device assignment information setM3LinkDeviceConfig
Get link device assignment information referM3LinkDeviceConfig
Read from the link relay in blocks readM3LinkRelay
Read from the link relay readM3LinkRelayB
Write to the link relay in blocks writeM3LinkRelay
Write to the link relay writeM3LinkRelayB
Read 16-bit data from the link register readM3LinkRegister
Write 16-bit data to the link register writeM3LinkRegister
System Library Get the library version getM3LibVersion
administration management
LED indicator | Set the state of the RUN LED setM3RunLed
Get the state of the RUN LED getM3RunLed
Set the state of the ALM LED setM3AlmLed
Get the state of the ALM LED getM3AlmLed
Set the state of the ERR LED setM3ErrLed
Get the state of the ERR LED getM3ErrLed
Set the state of the U1 LED setM3U1Led
Get the state of the U1 LED getM3U1Led
Set the state of the U2 LED setM3U2Led
Get the state of the U2 LED getM3U2Led
Set the state of the U3 LED setM3U3Led
Get the state of the U3 LED getM3U3Led
Get the state of the MODE switch getM3ModeSwitch
Get the battery level getM3BatteryPower
Logging Write a system log message writeM3log
Clear all system logs cleanM3log
RAS System System reset setM3Reset
operation Failure output setM3FailOutput
System Sub-unit transmission route diagnosis getM3FailSubunit
monitoring CPU module diagnosis getM3FailCpu
Alarm Enable high CPU temperature detection enableM3Heatlirg
notification Enable momentary power failure detection enableM3Powerlrq
WDT Timer Get the WDT bindM3Wdt
operation Release the WDT releaseM3Wdt
Clear the WDT cleanM3Wdt
Start the WDT startM3Wdt
Stop the WDT stopM3Wdt
Mode Set the WDT timeout period setM3WdtTimeout
configuration | Set the WDT operating mode setM3WdtMode
Get the WDT operating mode getM3WdtMode

Tl 34M06T02-02E

Mar. 31, 2021-00

A1-3

A1.2

List of API error codes

This section contains information on error codes specific to APlIs.

Table 4.2 List of error codes

Macro name Error Description
code

S m3io MODULE _NOT FOUND 257 No module is mounted in the specified slot.
S_m3io_INVALID_UNIT 258 The specified unit number is out of range.
S m3io INVALID SLOT 259 The specified slot number is out of range.
S _mg3io INVALID NUMBER 260 The specified parameter is out of range.
S_m3io_INVALID_FUNC 261 An unexpected IOCTL code was specified.
S_m3io_INVALID_MODULE 262 An unsupported IOCTL code was specified.
S m3io DMA ERROR 263 DMA communication failed.
S_m3io_BUS_ERROR_NR 264 An 1/O bus failure occurred.
S_m3io_BUS_ERROR_BR 265 An 1/O bus failure occurred.
S m3io BUS ERROR_RDP 266 An I/O bus failure occurred.
S_m3io_BUS_ERROR_MF 267 An 1/O bus failure occurred.
S m3io BUS ERROR DT 268 An I/O bus failure occurred.
S _m3io INTERNAL ERROR 357 An internal error occurred.
S _m3cpu_MODULE _NOT _FOUND 157 No module is mounted in the specified slot.
S m3cpu INVALID UNIT 158 The specified unit number is out of range.
S m3cpu_ INVALID SLOT 159 The specified slot number is out of range.
S_m3cpu_INVALID NUMBER 160 The specified parameter is out of range.
S m3cpu INVALID FUNC 161 An unexpected IOCTL code was specified.
S _m3cpu_INVALID MODULE 162 An unsupported IOCTL code was specified.
S _m3cpu_TIMEOUT_ERROR 163 A CPU module does not respond.
S m3cpu INTERNAL ERROR 166 An internal error occurred.
S _m3dev_INVALID NUMBER 392 The specified parameter is out of range.
S _m3dev_DEVICE_NOT _FOUND 393 The specified device is not found.
S m3dev BOUNDARY ERROR 396 The device alignment is ignored.
S _m3dev_INVALID FUNC 397 The specified parameter is out of range.
S_m3dev_INTERNAL_ERROR 398 An internal error occurred.
S_m3ras_LRCHK_ERROR 449 An error was found in the sub-unit transmission route.
S m3ras_ CPUCHK ERROR 450 An error was found in other CPU.
S_m3ras_BUS_ERROR 459 An 1/O bus failure occurred.
S m3ras INTERNAL ERROR 460 An internal error occurred.

When an API function returns an error, an error code is stored in the global
variable errno. To see the error code, include the errno.h header file in the
source code of your application.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-4

A1.3

Receiving interrupts and alarms

Interrupts and alarms work by making use of message queuing (inter-process
communication) on Linux. This section describes how this message queuing
is implemented.

The following table lists the features that use the message queue.

Table 4.3 Features that use the message queue

Category Feature Function name
Input relay interrupt Enable interrupts (in all points) enableM3lolrg
Enable interrupts (in one point) enableM3lolrgP
Signal notification Enable signal reception enableM3CpusSignal
Alarm notification Enable high CPU temperature enableM3Heatlrqg
detection
Enable momentary power failure | enableM3Powerlrq
detection

These API functions require a message queue ID as an argument. To get the
message queue ID, use the msgget system call. To set the queue to receive a
message when an event occurs, specify the message queue ID obtained by
the msgget system call for the argument of an API function.

To receive the message in the message queue, use the msgrcv system call.
Specify the type (msgtyp) and data structure (mtext) of the message to be
received for the argument of the msgrcv system call. The following table lists
the type and data structure for the message.

Table 4.4 Type and data structure for the message

Feature msgtyp mtext
macro name (value) data structure
Enable interrupts (in all points) M3IO_MSGTYPE_IO (1) M3I0_MSG_IO
Enable interrupts (in one point) M3IO_MSGTYPE_IO (1) M3I0_MSG_IO
Enable signal reception M3CPU_MSGTYPE_SEQ_EVENT (2) M3CPU_MSG_SEQ_EVEN
T
Enable momentary power M3RAS_MSGTYPE_FAIL_EVENT (4) unsigned short
failure detection
Enable high CPU temperature M3RAS_MSGTYPE_HEAT_ALARM (5) not used
detection

Note

High CPU temperature detection enables alarm notification when its API function is
called, sending an alarm (message) only once if a failure is detected. It does not
repeatedly send alarms for high temperatures.

B System call

This subsection describes system calls used to receive messages in the message
queue. The following contains excerpts from the Linux manual (MAN).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-5

® msgget
Feature Get a message queue identifier
Synopsis #include <sys/msg.h>

int msgget(key_t key, int msgflg);

Description The msgget system call returns the message queue identifier associated with the value of
the key argument. If key has the value IPC_PRIVATE or key is not IPC_PRIVATE when

no message queue with the given key exists and IPC_CREAT is specified in msgflg, a

new message queue is created.

If msgflg specifies both IPC_CREAT and IPC_EXCL and a message queue already exists

for key, then msgget fails with errno set to EEXIST.

Argument key IPC_PRIVATE /* Private key. */

msgflg IPC_CREAT /* Create key if key does not exist. */
IPC_EXCL /* Fail if key exists. */

IPC_NOWAIT /* Return error on wait. */
Return value Non-negative integer Successful
-1 Failed
errmo EACCES A message queue exists for key, but the calling process does
not have permission to access the queue, and does not have
the CAP_IPC_OWNER capability.

EEXIST A message queue exists for key and msgflg specified both
IPC_CREAT and IPC_EXCL.

ENOENT No message queue exists for key and msgflg did not specify
IPC_CREAT.

ENOMEM A message queue has to be created but the system does not
have enough memory for the new data structure.

ENOSPC A message queue has to be created but the system limit for
the maximum number of message queues (MSGMNI) would
be exceeded.

® msgrcv
Feature Operate System V message queues
Synopsis #include <sys/msg.h>

ssize_t msgrecv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

Description The msgrcv system call is used to receive messages from a System V message queue.
The calling process must have read permission to receive a message.
The msgp argument is a pointer to caller-defined structure of the general form below.
The msgrcv system call removes a message from the queue specified by msqid and
places it in the buffer pointed to by msgp.
The argument msgsz specifies the maximum size in bytes for the member mtext of the
structure pointed to by the msgp argument. If the message text has a length greater than
msgsz, then the behavior depends on whether MSG_NOERROR s specified in msgflg. If
MSG_NOERROR is specified, then the message text will be truncated (and the truncated
part will be lost); if MSG_NOERROR is not specified, then the message is not removed
from the queue and the system call fails returning -1 with errno set to E2BIG.

Structure struct msgbuf {
long mtype; /* message type, must be > 0 */
char mtext[1]; /* message data */

The mtext field is an array (or other structure) whose size is specified by msgsz, a non-
negative integer value. Messages of zero length (that is, no mtext field) are also
permitted. The mtype field must have a strictly positive integer value. This value can be
used by the receiving process for message selection.

Argument msqid Message queue ID obtained by msgget()
msgp Pointer to a struct msgbuf buffer in which a message is stored
msgsz Specifies the maximum size in bytes for the member mtext of
the structure pointed to by the msgp argument.
msgtyp If it is O, then the first message in the queue is read.

If it is greater than 0, then the first message in the queue of
type msgtyp is read, unless MSG_EXCEPT was specified in

Tl 34M06T02-02E Mar. 31, 2021-00

A1-6

msgflg

Return value Non-negative integer
-1
errno E2BIG

EACCES

EAGAIN

EFAULT
EIDRM

EINTR

EINVAL

ENOMSG

ENOSYS

msgflg. If MSG_EXCEPT is specified, the first message in the
queue of type other than msgtyp will be read.

If it is less than 0, then the first message in the queue with the
lowest type less than or equal to the absolute value of msgtyp
will be read.

The argument is a bit mask constructed by ORing together
with zero or more of the following flags:

IPC_NOWAIT /* Return error on wait. */
MSG_NOERROR /* no error if message is too big */
MSG_EXCEPT /* recv any msg except of specified type.*/
MSG_COPY /* copy (not remove) all queue messages */

Successful (the number of bytes actually copied into the mtext
array is returned.)
Failed

The message text length is greater than msgsz and
MSG_NOERROR is not specified in msgflg.

The calling process does not have read permission on the
message queue, and does not have the CAP_IPC_OWNER
capability.

No message was available in the queue and IPC_NOWAIT
was specified in msgflg.

The address pointed to by msgp is not accessible.

While the process was sleeping to receive a message, the
message queue was removed.

While the process was sleeping to receive a message, the
process caught a signal.

msgqid was invalid, or msgsz was less than 0. Both
MSG_COPY and MSG_EXCEPT were specified.

Both MSG_COPY and MSG_EXCEPT were specified in
msgflg.

IPC_NOWAIT was specified in msgflg and no message of the
requested type existed on the message queue.
IPC_NOWAIT and MSG_COPY were specified in msgflg and
the queue contains less than msgtyp messages.
MSG_COPY was specified in msgflg, and this kernel was
configured without CONFIG_CHECKPOINT_RESTORE.

B Sample code

® Receiving signal notifications from multiple CPUs

#include <stdio.h>
#include <sys/msg.h>
#include "m3lib.h"

int main(int argc, char *argv[])

{
int msqid;
struct msgbuf {
long mtype;

M3CPU_MSG_SEQ EVENT mtext;

} msgp;

msgid = msgget(1PC_PRIVATE, 0666);

if (msqid < 0) return -1;
it (enableM3CpuSignal (2, msqid)) return -1;
if (enableM3CpuSignal (3, msqid)) return -1;

Tl 34M06T02-02E Mar. 31, 2021-00

A1-7

if (enableM3CpuSignal(4, msqid)) return -1;

while(1)
{
printf("wait for message\n');
if (msgrcv(msqgid, &msgp, sizeof(M3CPU_MSG_SEQ EVENT),
M3CPU_MSGTYPE_SEQ_EVENT, MSG_NOERROR) < 0)
return -1;

printf("'received message = %Ix: slot=%d
data=%04x %c%hchchchchchchec\n'",

msgp -mtype,

msgp -mtext.slot,

msgp -mtext.data,

msgp -mtext.sigName[0], msgp.-mtext.sigName[1],
msgp.-mtext.sigName[2], msgp.mtext.sigName[3],
msgp-mtext.sigName[4], msgp.-mtext.sigName[5],
msgp-mtext.sigName[6], msgp.-mtext.sigName[7]);

it (nsgp-mtext.slot == 2 && msgp.-mtext.data == 100)
break;

return O;

® Batch-processing momentary power failure detection and high CPU
temperature detection

#include <stdio.h>
#include <sys/msg.h>
#include "m3lib.h"

int main(int argc, char *argv[])
{
int msqid;
struct msgbuf {
long mtype;
unsigned short mtext;
} msgp;

msgid = msgget(1PC_PRIVATE, 0666);

if (msqid < 0) return -1;
it (enableM3Heatlrg(msqid)) return -1;
if (enableM3Powerlrq(0, msqgid)) return -1;

Tl 34M06T02-02E Mar. 31, 2021-00

A1-8

while(1)
{
printf("wait for message\n');

it (msgrcv(msqid, &msgp, sizeof(unsigned short), O,
MSG_NOERROR) < 0)

return -1;

switch (msgp.mtype)

{

case M3RAS_MSGTYPE_FAIL_EVENT:
printf('blackout fail: starus=%d\n", msgp.mtext);
break;

case M3RAS_MSGTYPE_HEAT_ALARM:
printf("thermal runaway\n');
break;

default:
printf('unknown message\n');
break;

}
}

return O;

Tl 34M06T02-02E Mar. 31, 2021-00

A1-9

A1.4

How to receive signals (inter-process
communication)

The watch dog timer (WDT) provided by this library has three types of modes,
from which you can select a different timeout operation. One of the modes
contains the software WDT capability, which can send a SIGTERM signal,
defined for Linux inter-process communication, upon timeout. This section
describes how to implement code to receive this signal.

Note

The signaling function for inter-process communication is different from the signal
notification. The signal notification can synchronize operations among CPU modules
in the multi-CPU configuration.

The signals described in this section are part of the Linux-specific functionality, with
which processes running on Linux communicate with each other.

For signal reception, a handler is put in place so that a process can run the
handler when receiving a signal. The sigaction system call is used to register
a handler with a process.

The sigaction system call associates the signal specified in the argument with
the pointer to the handler function. After this registration is completed, the
process calls the handler whenever receiving a registered signal. In the
hander, implement code to deal with a high CPU load.

Note

For details on WDT mode settings provided by e-RT3, refer to the description for the
setM3WdtMode function in "A1.5.6 WDT".

B System call

This subsection describes system calls used in receiving signals. The following
contains excerpts from the Linux manual (MAN).

® sigaction
Feature Examine and change a signal action
Synopsis #include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

Description The sigaction system call is used to change the action taken by a process on receipt of a
specific signal.

Structure struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

Tl 34M06T02-02E Mar. 31, 2021-00

A1-10

On some architecture a union is involved: do not assign to both sa_handler and

sa_sigaction.
Argument signum Specifies the signal and can be any valid signal except
SIGKILL and SIGSTOP.
act If it is non-null, the new action for signal signum is installed
from act.
oldact If it is non-null, the previous action is saved in oldact.
Return value 0 Successful
-1 Failed
errno EFAULT act or oldact points to memory which is not a valid part of the
process address space.
EINVAL An invalid signal was specified. This will also be generated if

an attempt is made to change the action for SIGKILL or
SIGSTOP, which cannot be caught or ignored.

B Sample code

® Forcing a WDT timeout to occur and receiving SIGTERM signals
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include "m3lib.h"

static void handler(int sig)

{
it (sig == SIGTERM)
printf(""'SIGTERM signal is received\n');
}

int main(int argc, char *argv[])
{

struct sigaction act;

int timeout, loop;

timeout = 1000;
loop = 10;

act.sa handler = handler;
if (sigaction(SIGTERM, (struct sigaction *)&act, NULL) < 0)
return -1;

if (bindv3wdt()) return -1;

it (setM3WdtTimeout(timeout)) return -1;

if (setM3WdtMode (M3WDT_MODE_SI1G)) return -1;
if (startM3wdt()) return -1;

while(loop--)

Tl 34M06T02-02E Mar. 31, 2021-00

A1-11

{

usleep(timeout * 900);

if (cleanM3Wdt())return -1;
}

pause();

it (stopM3wdt()) return -1;
it (releaseM3Wdt()) return -1;

return O;

}

Tl 34M06T02-02E Mar. 31, 2021-00

A1-12

A1.5 API reference

A1.51

B Device access

1/0 module

® readM3InRelay

Feature
Synopsis

Description

Argument

Return value

errno

Read from the input relay in blocks

int readM3InRelay(int unit, int slot, int pos, int num, unsigned short data[4]);

The function reads from the input relay in an I1/O module in 16 points.

num data blocks are read from the input relay with device number pos in the I/O module
specified by the arguments unit and slot.

The pos value must be 1, 17, 33, or 49. If any other value in the range is specified, the value
is rounded to a smaller value (for example, 24 is rounded down to 17). The read data is
stored in num elements in data[], starting from the first element. The contact statuses for 16
points are stored in an element, starting from the LSB, in the order of input relay numbers.

unit
slot
pos
num
data[]

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOU
ND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the input relay number (1, 17, 33, and 49).
Specifies the number of blocks to be read from (1 to 4).
Buffer to store the read data

Successful
Error

The function failed to get data.

An invalid unit number was specified.
An invalid slot number was specified.
No module exists in the specified slot.

An invalid parameter was specified.
A module with no input relay was specified.

e readM3InRelayP

Feature
Synopsis

Description

Argument

Return value

errno

Read from the input relay

int readM3InRelayP(int unit, int slot, int pos, unsigned short *data);

The function reads from the input relay in an 1/0O module in one point.
Only one point is read from the input relay with input relay number pos in the 1/O module
specified by the arguments unit and slot. The value of 1 is stored in data if the input relay is

set to ON, and 0 if set to OFF.

unit
slot
pos
data

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOU
ND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).
Specifies the slot number (1 to 16).
Specifies the input relay number (1 to 64).
Buffer to store the read data

Successful
Error

The function failed to get data.

An invalid unit number was specified.
An invalid slot number was specified.
No module exists in the specified slot.

An invalid parameter was specified.
A module with no input relay was specified.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-13

o readM3OutRelay

Feature
Synopsis

Description

Argument

Return value

errno

Read from the output relay in blocks

int readM3OutRelay(int unit, int slot, int pos, int num, unsigned short data[4]);

The function reads from the output relay in an /O module in 16 points.

num data blocks are read from the output relay with device number pos in the I/O module
specified by the arguments unit and slot.

The pos value must be 1, 17, 33, or 49. If any other value in the range is specified, the
value is rounded to a smaller value (for example, 24 is rounded down to 17). The read
data is stored in num elements in data[], starting from the first element. The contact
statuses for 16 points are stored in an element, starting from the LSB, in the order of input

relay numbers.

unit
slot
pos

num
data[]

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOUND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the output relay number (1, 17, 33, and
49).

Specifies the number of blocks to be read from (1 to
4).

Buffer to store the read data

Successful
Error

The function failed to get data.

An invalid unit number was specified.

An invalid slot number was specified.

No module exists in the specified slot.

An invalid parameter was specified.

A module with no output relay was specified.

o writeM3OutRelay

Feature

Synopsis

Description

Argument

Return value

errno

Write to the output relay in blocks

int writeM3OutRelay(int unit, int slot, int pos, int num, unsigned short data[4], unsigned

short mask[4]);

The function writes to the output relay in an I/O module in 16 points.

num data blocks are written to the output relay with device number pos in the I/O module
specified by the arguments unit and slot.

The pos value must be 1, 17, 33, or 49. If any other value in the range is specified, the

value is rounded to a smaller value (for example, 24 is rounded down to 17). The data is
stored in data[], starting from the first element to numth element in the array. The contact
statuses for 16 points are set in the order of output relay numbers, starting from the LSB.
mask[] is the data for masking. Specify the value of 1 for the relay number of the relay to
which the data should be written, and of O for that of the relay in which the value should

be retained. The bits are located just like data[].

unit
slot
pos

num

data[]
mask(]

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOUND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the output relay number (1, 17, 33, and
49).

Specifies the number of blocks to be written to (1 to
4).

Buffer to store the data to be written

Buffer to store the data for write masking

Successful
Error

The function failed to get data.

An invalid unit number was specified.

An invalid slot number was specified.

No module exists in the specified slot.

An invalid parameter was specified.

A module with no output relay was specified.

Tl 34M06T02-02E

Mar. 31, 2021-00

A1-14

Feature
Synopsis

Description

Argument

Return value

errno

o writeM3OutRelayP

Write to the output relay

int writeM3OutRelayP(int unit, int slot, int pos, unsigned short data);

The function writes to the output relay in an I/O module in one point.
Only 1-point data is written to the output relay with output relay number pos in the I/O
module specified by the arguments unit and slot. To set the relay to ON, store 1 in data,

and to set it to OFF, store 0.

unit
slot
pos
data

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT

S_m3io_MODULE_NOT_FOUND

S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).
Specifies the slot number (1 to 16).
Specifies the output relay number (1 to 64).
Data to be written

Successful
Error

The function failed to get data.

An invalid unit number was specified.

An invalid slot number was specified.

No module exists in the specified slot.

An invalid parameter was specified.

A module with no output relay was specified.

Feature
Synopsis

Description

Argument

Return value

errno

o readM3loRegister

Read 16-bit data from the I/O register

int readM3loRegister(int unit, int slot, int pos, int num, unsigned short *data);

The function reads 16-bit data from the 1/O register in an I/O module.
The 1/0 module is specified in the arguments unit and slot, and the 1/O register and the data
range are specified in pos and num. The data is read and then stored in data.

unit
slot
pos
num
data

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOU
ND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the I/O register number (from 1).

Specifies how many points of data are read (from 1).
Buffer to store the read data

Successful
Error

The function failed to get data.

An invalid unit number was specified.
An invalid slot number was specified.
No module exists in the specified slot.

An invalid parameter was specified.
A module with no I/O register was specified.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-15

® readM3loRegisterB

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Read 8-bit data from the I/O register
int readM3loRegisterB (int unit, int slot, int pos, int num, unsigned char *data);
The function reads 8-bit data from the 1/O register in an 1/0O module.

The 1/0 module is specified in the arguments unit and slot, and the I/O register and the data
range are specified in pos and num. The data is read and then stored in data.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

pos Specifies the I/O register number (from 1).

num Specifies how many points of data are read (from 1).
data Buffer to store the read data

0 Successful

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.
S_m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_MODULE_NOT_FOU No module exists in the specified slot.

ND

S_m3io_INVALID_NUMBER An invalid parameter was specified.
S_m3io_INVALID_MODULE A module with no I/O register was specified.

This function is used on modules that handle byte sequences, such as serial communication
modules and device net modules.

The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.

1/0 register number for 8-bit data = 2 x (I/O register number for 16-bit data - 1) + 1

® readM3loRegisterL

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Read 32-bit data from the I/O register
int readM3loRegisterL (int unit, int slot, int pos, int num, unsigned long *data);
The function reads 32-bit data from the 1/O register in an I/O module.

The I/O module is specified in the arguments unit and slot, and the 1/O register and the
data range are specified in pos and num. The data is read and then stored in data.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

pos Specifies the 1/O register number (from 1).
num Specifies how many points of data are read (from 1).
data Buffer to store the read data

0 Successful

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.
S_m3io_INVALID_SLOT An invalid slot number was specified.
S_m3io_ MODULE_NOT_FOUND No module exists in the specified slot.
S_m3io_INVALID_NUMBER An invalid parameter was specified.
S_m3io_INVALID_MODULE A module with no I/O register was specified.

This function is used on modules that handle long word data such as high-speed counter
modules.

The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
I/0 register number for 32-bit data = 2 x (I/O register number for 16-bit data + 1) / 2

Tl 34M06T02-02E Mar. 31, 2021-00

A1-16

Feature
Synopsis

Description

Argument

Return value

errno

o writeM3loRegister

Write 16-bit data to the 1/O register

int writeM3loRegister(int unit, int slot, int pos, int num, unsigned short *data);

The function writes 16-bit data to the 1/O register in an I/O module.
The 1/0 module is specified in the arguments unit and slot, and the 1/O register and the
data range are specified in pos and num. The data to be written is stored in data.

unit
slot
pos
num

data

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOUND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the I/O register number (from 1).
Specifies how many points of data are written (from
1).

Buffer to store the data to be written

Successful
Error

The function failed to get data.

An invalid unit number was specified.

An invalid slot number was specified.

No module exists in the specified slot.

An invalid parameter was specified.

A module with no I/O register was specified.

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

o writeM3loRegisterB

Write 8-bit data to the 1/O register

int writeM3loRegisterB(int unit, int slot, int pos, int num, unsigned char *data);

The function writes 8-bit data to the I/O register in an /O module.
The 1/0 module is specified in the arguments unit and slot, and the I/O register and the data
range are specified in pos and num. The data to be written is stored in data.

unit
slot
pos
num
data

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT FOU
ND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the I/O register number (from 1).

Specifies how many points of data are written (from 1).
Buffer to store the data to be written

Successful
Error

The function failed to get data.

An invalid unit number was specified.
An invalid slot number was specified.
No module exists in the specified slot.

An invalid parameter was specified.
A module with no I/O register was specified.

This function is used on modules that handle byte sequences, such as serial communication

modules and device net modules.

The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
1/0 register number for 8-bit data = 2 x (I/O register number for 16-bit data - 1) + 1

Tl 34M06T02-02E Mar. 31, 2021-00

A1-17

o writeM3loRegisterL

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Write 32-bit data to the 1/O register
int writeM3loRegisterL (int unit, int slot, int pos, int num, unsigned long *data);
The function writes 32-bit data to the 1/O register in an I/O module.

The 1/0 module is specified in the arguments unit and slot, and the 1/O register and the data
range are specified in pos and num. The data to be written is stored in data.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

pos Specifies the I/O register number (from 1).

num Specifies how many points of data are written (from 1).
data Buffer to store the data to be written

0 Successful

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.
S_m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_MODULE_NOT_FOU No module exists in the specified slot.

ND

S_m3io_INVALID_NUMBER An invalid parameter was specified.
S_m3io_INVALID_MODULE A module with no I/O register was specified.

This function is used on modules that handle long word data such as high-speed counter
modules.

The register number that is to be set to argument pos can be obtained from the following
formula by using register numbers for 16-bit data written in the manual for each module.
1/0 register number for 32-bit data = 2 x (I/O register number for 16-bit data + 1) / 2

B Mode configuration
® readM3loModeRegister

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Read from the mode register
int readM3loModeRegister(int unit, int slot, int pos, int num, unsigned short mode[8]);

The function reads 16-bit data from the mode register in an /O module.

The 1/0 module is specified in the arguments unit and slot, and the mode register and the
data range are specified in pos and num. The data is read and stored in mode][]. The
maximum number of data points is eight.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

pos Specifies the mode register number (from 1).

num Specifies how many points of data are read (1 to 8).
mode [] Buffer to store the read data

0 Successful

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.
S_m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_ MODULE_NOT_FOU No module exists in the specified slot.

ND

S_m3io_INVALID_NUMBER An invalid parameter was specified.
S_m3io_INVALID_MODULE A module with no mode register was specified.

- The function to read from the mode register is an API to configure DIO modules.
- The size of the mode register varies depending on the module.
- To configure an advanced module, work with the I/O register.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-18

Note

For details on the register map and setting values of the mode register, refer to "4.4
Mode register access" of BSP Common Function Manual (IM 34M06M52-02E).

o writeM3loModeRegister

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Note

Write to the mode register

int writeM3loModeRegister(int unit, int slot, int pos, int num, unsigned short mode[8]);

The function writes 16-bit data to the mode register in an I/O module.

The 1/0 module is specified in the arguments unit and slot, and the mode register and the
data range are specified in pos and num. The data to be written is stored in mode][]. The
maximum number of data points is eight.

unit
slot
pos
num
mode]]

0
-1

EFAULT
S_m3io_INVALID_UNIT
S_m3io_INVALID_SLOT
S_m3io_MODULE_NOT_FOU
ND
S_m3io_INVALID_NUMBER
S_m3io_INVALID_MODULE

Specifies the unit number (0 to 7).

Specifies the slot number (1 to 16).

Specifies the mode register number (from 1).
Specifies how many points of data are written (1 to 8).
Buffer to store the data to be written

Successful
Error

The function failed to get data.

An invalid unit number was specified.
An invalid slot number was specified.
No module exists in the specified slot.

An invalid parameter was specified.
A module with no mode register was specified.

- The function to read from the mode register is an API to configure DIO modules.
- The size of the mode register varies depending on the module.
- To configure an advanced module, work with the I/O register.

For details on the register map and setting values of the mode register, refer to "4.4
Mode register access" of BSP Common Function Manual (IM 34M06M52-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-19

B Input relay interrupt
® enableM3loirq

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Enable interrupts (in all points)
int enableM3lolrg (int unit, int slot, unsigned short mask[4], int msgQld);

The function enables or disables interrupts for all the points from the input relay in an 1/0
module.

The I/O module is specified in the arguments unit and slot. The data for interrupt masking is
set in the argument mask[] in 16 points, storing the possibilities of interrupts in the array
starting from the first bit, ordered by the lowest input relay number.

mask[0] (16 |15 |14 (13 |12 (11 |10 |9 (8 |7 6 |5 |4 3 |2 [1

mask[1] |32 |31 |30 |29 |28 (27 (26 (25 (24 |23 |22 |21 |20 |19 (18 (17

mask[2] |48 |47 |46 |45 |44 (43 (42 (41 (40 |39 |38 |37 |36 |35 (34 (33

mask[3] |64 |63 |62 |61 |60 (59 (58 (57 (56 |55 |54 |53 |52 |51 (50 (49

If the corresponding bit is set to 1, interrupts from the input relay are enabled, and if set to 0,
they are disabled.

To disable 1/O interrupts, specify 0 for all the data for interrupt masking, or specify -1 for the
message queue ID.

The msgrcv system call receives the interrupts from 1/0 modules by using the message
queue D registered by the argument msgQld.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

mask][] Pointer of unsigned short type to store the data for
interrupt masking

msgQld Message queue ID obtained by the msgget system call

0 Successful

-1 Error

EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

S _m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_ MODULE_NOT_FOU No module exists in the specified slot.
ND
S_m3io_INVALID_MODULE A module with no interrupt support was specified.

- The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.

- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.

- If any message remains unread in the message queue when the interrupts are
disabled, the messages are sent when an interrupt request is received next time interrupts
are enabled.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-20

® enableM3lolrgP

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Enable interrupts (in one point)
int enableM3lolrgP (int unit, int slot, int pos, int msgQld);

The function enables interrupts from the input relay in the I/O module specified by the
argument in one point.

The msgrcv system call receives the interrupts from 1/0 modules by using the message
queue ID registered by the argument msgQld.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

pos Specifies the input relay number (1 to 32).

msgQld Message queue ID obtained by the msgget system call
0 Successful

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.
S_m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_MODULE_NOT_FOU No module exists in the specified slot.
ND
S_m3io_INVALID_MODULE A module with no interrupt support was specified.

- The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.

- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.

- If any message remains unread in the message queue when the interrupts are disabled,
the messages are sent when an interrupt request is received next time interrupts are
enabled.

e disableM3lolrgP

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

Disable interrupts (in one point)
int disableM3lolrgP (int unit, int slot, int pos);
The function disables interrupts from the input relay in the 1/0O module specified by the

argument in one point.
Disabling interrupts from all input relays also clears the registered message queue ID.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

pos Specifies the input relay number (1 to 32).
0 Successful

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.
S_m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_ MODULE_NOT_FOU No module exists in the specified slot.
ND
S_m3io_INVALID_MODULE A module with no interrupt support was specified.

The ability or inability to support interrupts in an I/O module is contained in the manual for
each module.

If any message remains unread in the message queue when interrupts are disabled, the
messages are sent when an interrupt request is received next time interrupts are enabled.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-21

B Module information
e getM3loName

Feature
Synopsis

Description

Argument

Return value

errno

Get the module ID
char* getM3loName (int unit, int slot);

The function obtains the module ID of an 1/O module. It can get the module ID (module
model name) of the 1/0 module specified in the arguments unit and slot. A pointer to the
string of four ASCII characters, followed by "\0', is returned as a return value, and NULL is
returned if getting the module name fails.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

Not NULL Module model name with four ASCII characters,
including "\0' as the fifth character

NULL Error

EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

S _m3io_INVALID_SLOT An invalid slot number was specified.

S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.

o getM3loMapAdr

Feature

Synopsis

Description

Argument

Return value

errno

Get the mapping address of the I/O space
int getM3loMapAdr (int unit, int slot);
The function obtains the mapping address for the I/O space in an I1/0O module. As a return

value, it can get the address of the 1/0O space mapping register in the I/O module specified
in the arguments unit and slot. The address ranges from 0x0 to 0x40000.

unit Specifies the unit number (0 to 7).
slot Specifies the slot number (1 to 16).
Positive number 1/0 space mapping address

-1 Error

EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

o getM3loMapSize

Feature

Synopsis

Description

Argument

Return value

errno

Get the mapping size of the 1/0 space
int getM3loMapSize (int unit, int slot);
The function obtains the mapping size of the 1/O space in an I/O module. It can get the 1/0

space mapping size of the I/O module specified in the arguments unit and slot. The size
ranges from 0x0 to 0x8000.

unit Specifies the unit number (0 to 7).
slot Specifies the slot number (1 to 16).
Positive number I/O space mapping size

-1 Error

EFAULT The function failed to get data.
S_m3io_INVALID_UNIT An invalid unit number was specified.

S_m3io_MODULE_NOT_FOUND No module exists in the specified slot.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-22

o getM3loDRegAdr

Feature Get the offset address of the I/O space in the 1/O register
Synopsis int getM3loDRegAdr (int unit, int slot);
Description The function obtains the address of the 1/O register in an I/O module as an offset from the

beginning of the mapping area. As a return value, it can get mapping information of the
I/0 register in the /0 module specified in the arguments unit and slot.

Argument unit Specifies the unit number (0 to 7).
slot Specifies the slot number (1 to 16).

Return value Positive number Offset address of the I/O space in the I/O register
-1 Error

errno EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

® getM3loDRegSize

Feature Get the size of the 1/0 space in the I/O register
Synopsis int getM3loDRegSize (int unit, int slot);
Description The function obtains the size of the area where the 1/O register in an I/O module is

located. You can determine the existence or non-existence of the I/O register by checking
this size. The size can be obtained in bytes. To get the number of points in the I/O
register, divide the size by 2 to convert it into the value in words.

Argument unit Specifies the unit number (0 to 7).
slot Specifies the slot number (1 to 16).
Return value Positive number Size of the 1/O space in the I/O register
-1 Error
errno EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

o getM3loXAdr

Feature Get the offset address of the I/0 space in the input relay
Synopsis int getM3loXAdr (int unit, int slot);
Description The function obtains the address of the input relay in an I/O module as an offset from the

beginning of the mapping area. As a return value, it can get mapping information of the
input relay in the 1/0 module specified in the arguments unit and slot.

Argument unit Specifies the unit number (0 to 7).
slot Specifies the slot number (1 to 16).

Return value Positive number Offset address of the 1/0 space in the input relay
-1 Error

errmo EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-23

® getM3loXSize

Feature
Synopsis

Description

Argument

Return value

errno

Get the size of the I/0 space in the input relay
int getM3loXSize (int unit, int slot);

The function obtains the size of the area where the input relay in an I/O module is located.
You can determine the existence or non-existence of the input relay by checking this size.
The size can be obtained in bytes. To get the number of points in the input relay, multiply
the size by 8 to convert it into the value in bits.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).
Positive number Size of the 1/0 space in the input relay
-1 Error

EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

o getM3loYAdr

Feature

Synopsis

Description

Argument

Return value

errno

Get the offset address of the 1/O space in the output relay
int getM3loYAdr (int unit, int slot);
The function obtains the address of the output relay in an I/O module as an offset from the

beginning of the mapping area. As a return value, it can get mapping information of the
output relay in the I/O module specified in the arguments unit and slot.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).

Positive number Offset address of the 1/O space in the output relay
-1 Error

EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

® getM3loYSize

Feature
Synopsis

Description

Argument

Return value

errno

Get the size of the I/O space in the output relay
int getM3loYSize (int unit, int slot);

The function obtains the size of the area where the output relay in an I/O module is
located. You can determine the existence or non-existence of the output relay by checking
this size. The size can be obtained in bytes. To get the number of points in the output
relay, first divide the size by 2 considering the data for masking, and then multiply it by 8
to convert it into the value in bits.

unit Specifies the unit number (0 to 7).

slot Specifies the slot number (1 to 16).
Positive number Size of the 1/0 space in the output relay
-1 Error

EFAULT The function failed to get data.

S_m3io_INVALID_UNIT An invalid unit number was specified.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-24

A1.5.2

B Device access
Note

CPU module

For details on device types specified for CPU device access and error codes stored
in response commands, refer to "4.5 CPU device access" of BSP Common Function
Manual (IM 34M06M52-02E).

® readM3CpuDevice

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Note

Read from the CPU device

int readM3CpuDevice(int cpuno, int type, int pos, int num, unsigned short *data);

The function reads 16-bit data from the CPU device in a CPU module.

The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data is read and stored in the argument data.
The accessible range in each device varies depending on the CPU module.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, a
detailed error code is stored in data[0].

cpuno
type
pos
num
data

0
-1

ENOMEM
EFAULT
EIO

S_m3cpu_INVALID_SLOT
S_m3cpu_INVALID_NUMB
ER
S_m3cpu_TIMEOUT_ERR
OR

Specifies the CPU number (1 to 4).

Device type

Specifies the number of the start device to be read (from 1).
Number of points in the device to be read from (1 to 256)
Pointer to the unsigned short type buffer in which the read
data is stored

Successful
Error

The system memory is running low.

The function failed to get data.

The function received an error response command from the
CPU module.

An invalid CPU number was specified.

An invalid parameter was specified.

The CPU module did not respond within the prescribed
period.

- The upper limit of points in the device cannot be exceeded.
- The function cannot be used for the special relay M.
- Make sure to access the special register Z on a 1-point basis.

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-25

® readM3CpuDeviceP

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Note

Read from the CPU relay device

int readM3CpuDeviceP(int cpuno, int type, int pos, int num, unsigned short *data);

The function reads the specified number of points of data from the CPU device in other

CPU module.

The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data is read and stored in the argument data.
The accessible range in each device varies depending on the CPU module.

The values in the relay are stored in the argument data in device number order, starting
from the LSB to the MSB. The data array needs ((number of points - 1)/16 + 1) elements.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, a
detailed error code is stored in data[0].

cpuno
type
pos

num
data

0

-1

ENOMEM

EFAULT

EIO
S_m3cpu_INVALID_SLOT

S_m3cpu_INVALID_NUMBER
S_m3cpu_TIMEOUT _ERROR

Specifies the CPU number (1 to 4).

Device type

Specifies the number of the start device to be read (from
1).

Number of points in the device to be read from (1 to
256)

Pointer to the unsigned short type buffer in which the
read data is stored

Successful
Error

The system memory is running low.

The function failed to get data.

The function received an error response command from
the CPU module.

An invalid CPU number was specified.

An invalid parameter was specified.

The CPU module did not respond within the prescribed
period.

- The upper limit of points in the device cannot be exceeded.
- Make sure to access the special relay M on a 1-point basis.
- The function cannot be used for any register device.

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-26

® writeM3CpuDevice

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

Note

Write to the CPU device

int writeM3CpuDevice(int cpuno, int type, int pos, int num, unsigned short *data, unsigned

short *error);

The function writes 16-bit data to the CPU device in a CPU module.

The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data to be written is stored in the argument data.
The accessible range in each device varies depending on the CPU module.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, an
error code in the response command is stored in error.

cpuno

type
pos

num
data

error

0
-1

ENOMEM
EFAULT
EIO

S_m3cpu_INVALID_SLOT
S_m3cpu_INVALID_NUMBER
S_m3cpu_TIMEOUT _ERROR

Specifies the CPU number (1 to 4).

Device type

Specifies the number of the start device to be written to
(from 1).

Number of points in the device to be written to (1 to 256)
Pointer to the unsigned short type buffer in which the
data to be written is stored

Error code in the response command

Successful
Error

The system memory is running low.

The function failed to get data.

The function received an error response command from
the CPU module.

An invalid CPU number was specified.

An invalid parameter was specified.

The CPU module did not respond within the prescribed
period.

- The upper limit of points in the device cannot be exceeded.
- The function cannot be used for the special relay M.
- Make sure to access the special register Z on a 1-point basis.

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-27

® writeM3CpuDeviceP

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

Note

Write to the CPU relay device

int writeM3CpuDeviceP(int cpuno, int type, int pos, int num, unsigned short *data, unsigned

short *error);

The function writes the specified number of points of data to the PLC relay device in a CPU

module.

The argument cpuno specifies a CPU module, type specifies a device type, and pos and
num specify the range in the device. The data to be written is stored in the argument data.
The accessible range in each device varies depending on the CPU module.

The values in the relay are stored in the argument data in device number order, starting from
the LSB to the MSB. The data array needs ((number of points - 1)/16 + 1) elements.

If the error code is set to EIO when the function fails (the return value is -1), the code
indicates that an error is returned from the CPU module to be operated. In this case, an error
code in the response command is stored in error.

cpuno
type
pos

num
data

error

0
-1

ENOMEM
EFAULT
EIO

S_m3cpu_INVALID_SLOT
S_m3cpu_INVALID_NUMB
ER
S_m3cpu_TIMEOUT_ERR
OR

Specifies the CPU number (1 to 4).

Device type

Specifies the number of the start device to be written to (from
1).

Number of points in the device to be written to (1 to 256)
Pointer to the unsigned short type buffer in which the data to
be written is stored

Error code in the response command

Successful
Error

The system memory is running low.

The function failed to get data.

The function received an error response command from the
CPU module.

An invalid CPU number was specified.

An invalid parameter was specified.

The CPU module did not respond within the prescribed
period.

- The upper limit of points in the device cannot be exceeded.
- Make sure to access the special relay M on a 1-point basis.
- The function cannot be used for any register device.

For details on device types and error codes stored in response commands, refer to
"4.5 CPU device access" of BSP Common Function Manual (IM 34M06M52-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-28

B Signal notification

® enableM3CpusSignal

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Enable signal reception
int enableM3CpusSignal (int cpuno, int msgQld);

The function enables receiving signal notifications used to synchronize operations among
CPU modules.

Signal notifications sent from CPU modules are received through a Linux message queue.
Thus, your applications must pre-register the message queue for reception.

This message-queue registration for reception of signal notifications can be done by this
function. The argument cpuno specifies the number of the slot in the CPU module that
receives the signal notifications.

The msgrcv system call receives the signals by using the message queue ID registered by
the argument msgQld.

cpuno Specifies the CPU number (1 to 4).

msgQld Message queue ID obtained by the msgget system call
0 Successful

-1 Error

EFAULT The function failed to get data.

S_m3cpu_INVALID_SLOT An invalid slot number was specified.
S_m3cpu_INVALID_MODU A module with no interrupt support was specified.
LE

- The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.

- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.

- If any message remains unread in the message queue when the interrupts are disabled,
the messages are sent when an interrupt request is received next time interrupts are
enabled.

e disableM3CpusSignal

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Disable signal reception
int disableM3CpuSignal (int cpuno);

The function disables receiving signal notifications used to synchronize operations among
CPU modules.

Signal notifications sent from CPU modules are received through a Linux message queue.
The message queue for reception created in advance must be registered with your
application via the enableM3CpuSignal function.

This function releases the registered message queue to stop receiving signals. For
argument cpuno, specify the slot number in the CPU module that sends (was sending)
signal notifications.

cpuno Specifies the CPU number (1 to 4).

0 Successful

-1 Error

EFAULT The function failed to get data.

S _m3cpu_INVALID_SLOT An invalid slot number was specified.

S_m3cpu_INVALID_MODULE A module with no interrupt support was specified.

If any message remains unread in the message queue when interrupts are disabled, the
messages are sent when an interrupt request is received next time interrupts are enabled.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-29

® sendM3CpuSignal

Feature Send signals
Synopsis int sendM3CpusSignal(int cpuno, char signal[8], unsigned short data);
Description The function sends signal notifications.

They are sent to e-RT3 2.0 CPU modules specified in the argument cpuno. A signal
notification consists of 8-byte signal signal[] and 1-word data data.

Argument cpuno Specifies the CPU (slot) number (1 to 4) for the signal
destination.
signal[] Registers a name of eight ASCII characters or less.
data Specifies 1-word data.
Return value 0 Successful
-1 Error
errno ENOMEM The system memory is running low.
EFAULT The function failed to get data.
S _m3cpu_INVALID_SLOT An invalid CPU number was specified.
S_m3cpu_MODULE_NOT_FOU No module exists in the specified slot.
ND

S_m3cpu_INVALID_MODULE An invalid module was specified.
S_m3cpu_INVALID_NUMBER An invalid parameter was specified.

Remarks Do not use this function for sequence CPU modules with no capability of receiving signal
notifications.

B CPU information
e getM3CpuNumber

Feature Get the CPU number
Synopsis int getM3CpuNumber (void);
Description The function obtains the slot number of the slot (1 to 4) in which this CPU module is

mounted. It returns the slot number as a return value.

Argument None
Return value 1to4 CPU number (slot number)
-1 Error
errno EFAULT The function failed to get data.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-30

® getM3CpuType

Feature Get the CPU type
Synopsis int getM3CpuType (int type[4]);
Description The function obtains the CPU types of all CPU modules mounted in the system.
The CPU types of the CPU modules with CPU numbers 1 through 4 are stored in the
argument type[]. The following table shows the relationship between the types and values
of the obtained CPU types:
CPU type Macro name Value
Not a CPU module M3CPU_TYPE_NON 0
Sequence CPU M3CPU_TYPE_SEQ 1
BASIC CPU M3CPU_TYPE_BASIC 2
AT-compatible CPU M3CPU_TYPE_AT 3
e-RT3CPU M3CPU_TYPE_RTOS 4
Argument typel[l Pointer to the int type array in which CPU-type values are
stored.
Return value 0 Successful
-1 Error
errno EFAULT The function failed to get data.

® readM3CpuMemory

int readM3CpuMemory(int cpuno, int pos, int num, unsigned short *buf);

The function directly reads values from the CPU-shared memory.

The data is read directly from the shared memory area in the CPU module specified in the

The maximum size of the data is 8.5 KB. Specify the offset not exceeding the limit in

Feature Read from the CPU-shared memory
Synopsis
Description
argument cpuno to buf.
words for pos and num.
Argument cpuno
pos
num
buf

Return value 0
-1

ENOMEM

EFAULT

S_m3cpu_INVALID_SLOT
S_m3cpu_MODULE_NOT_FOUND
S_m3cpu_INVALID_MODULE
S_m3cpu_INVALID_NUMBER
S_m3cpu_INTERNAL_ERROR

errno

Note

Specifies the CPU number (1 to 4).

Specifies the offset in the shared memory in words.
Specifies the number of data sets in the shared
memory.

Pointer to the unsigned short type array in which
the read data is stored

Successful
Error

The system memory is running low.
The function failed to get data.

An invalid CPU number was specified.
No module exists in the specified slot.
An invalid module was specified.

An invalid parameter was specified.
An internal error occurred.

For details on the CPU-shared memory, refer to "5.2.1 Shared memory access" of
BSP Common Function Manual (IM 34M06M52-02E).

Tl 34M06T02-02E Mar. 31, 2021-00

A1-31

® writeM3CpuMemory

Feature
Synopsis

Description

Argument

Return value

errno

Note

Write to the CPU-shared memory
int writeM3CpuMemory(int cpuno, int pos, int num, unsigned short *buf);

The function directly writes values to the CPU-shared memory.

The data in buf is written directly to the shared memory area in the CPU module specified
in the argument cpuno.

The maximum size of the data is 8.5 KB. Specify the offset not exceeding the limit in
words for pos and num.

cpuno Specifies the CPU number (1 to 4).

pos Specifies the offset in the shared memory in words.

num Specifies the number of data sets written to the
shared memory.

buf Pointer to the unsigned short type array in which

the data to be written is stored

0 Successful

-1 Error

ENOMEM The system memory is running low.
EFAULT The function failed to get data.
S_m3cpu_INVALID_SLOT An invalid CPU number was specified.
S m3cpu_MODULE_NOT_FOUND No module exists in the specified slot.
S_m3cpu_INVALID_MODULE An invalid module was specified.
S_m3cpu_INVALID_NUMBER An invalid parameter was specified.
S_m3cpu_INTERNAL_ERROR An internal error occurred.

For details on the CPU-shared memory, refer to "5.2.1 Shared memory access" of
BSP Common Function Manual (IM 34M06M52-02E).

A1.5.3 PLC device

B Local device

o setM3internalDataTable

Feature

Synopsis

Description

Argument

Return
value

errno

Set local device assignment information
int setM3InternalDataTable

unsigned int location,
unsigned int relaySize,
unsigned int registerSize

)

The function sets the number of data points in the local devices.

It sets relaySize for the number of data points in the internal relay and registerSize for the
number of data points in the data register. Specify a multiple of 32 for the number of relay data
points and a multiple of 2 for the number of register data points.

location Location for the local device
0: SDRAM (kernel space)
1: User SRAM (effective only for F3RP71-2L)

relaySize Number of points in the internal relay (0, or 32 or more)
registerSize Number of points in the data register (0, or 2 or more)
0 Successful

Other than 0 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.
S_m3dev_INVALID_NUMBER An invalid parameter was specified.

S _m3dev_DEVICE_NOT_FOUND The device specified in location is not found.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-32

Feature
Synopsis

Description

Argument

Return value

errno

o referM3InternalDataTable

Get local device assignment information
int referM3InternalDataTable(unsigned int *relaySize, unsigned int *registerSize);

The function obtains the number of data points in the local devices.
It stores the number of data points in the internal relay in relaySize and the number of data
points in the data register in registerSize.

Pointer to the buffer in which the number of points in the
internal relay is stored
Pointer to the buffer in which the number of points in the
data register is stored

relaySize

registerSize

0 Successful
-1 Error
EFAULT The function failed to get data.

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

o readM3IinternalRelay

Read from the internal relay in blocks

int readM3InternalRelay (int no, int num, unsigned short *pBuff);

The function reads from the internal relay in 16 points.

It reads num points of data sets from the device with device number no in the internal relay
"I" into pBuff. For the pBuff pointer, reserve an array of num elements.

no Start number of the internal relay to be read (from 1)
num Number of blocks in the internal relay to be read (from 1)

pBuff Pointer to the buffer in which the read data is stored
0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER An invalid parameter was specified.

The upper limit specified during configuration cannot be exceeded.

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

® readM3internalRelayB

Read from the internal relay

int readM3InternalRelayB (int no, int num, unsigned char *data);

The function reads from the internal relay in one point.

It reads num points of data sets from the device with device number no in the internal relay

"I" into data. For the data pointer, reserve an array of num elements.

no Start number of the internal relay to be read (from 1)
num Number of points in the internal relay to be read (from 1).

data Pointer to the buffer in which the read data is stored
0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S _m3dev_INVALID_NUMBER An invalid parameter was specified.

The upper limit specified during configuration cannot be exceeded.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-33

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

® readM3internalRegister

Read 16-bit data from the data register
int readM3InternalRegister (int no, int num, unsigned short *pBuff);
The function reads 16-bit data from the data register.

It reads num points of data sets from the device with device number no in the data register
"D" into pBuff. For the pBuff pointer, reserve an array of num elements.

no Start number of the data register to be read (from 1)
num Number of points in the data register to be read (from 1)
pBuff Pointer to the buffer in which the read data is stored

0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER An invalid parameter was specified.

The upper limit specified during configuration cannot be exceeded.

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

e writeM3InternalRelay

Write to the internal relay in blocks
int writeM3InternalRelay (int no, int num, unsigned short *pBuff);

The function writes to the internal relay in 16 points.
It writes num points of data sets in pBuff to the device starting from device number no in the
internal relay "I". For the pBuff pointer, reserve an array of num elements.

no Start number of the internal relay to be written to (from 1)
num Number of blocks in the internal relay to be written to (from 1)
pBuff Pointer to the buffer in which the data to be written is stored

0 Successful
Other than 0 Error

EFAULT The function failed to get data.
ENOMEM The function failed to reserve the working area.
S_m3dev_INVALID_NUMBER An invalid parameter was specified.

The upper limit specified during configuration cannot be exceeded.

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

o writeM3InternalRelayB

Write to the internal relay
int writeM3InternalRelayB (int no, int num, unsigned char *data);

The function writes to the internal relay in one point.
It writes num points of data sets in data to the device starting from device number no in the
internal relay "I". For the data pointer, reserve an array of num elements.

no Start number of the internal relay to be written to (from 1)
num Number of points in the internal relay to be written to (from 1)
data Pointer to the buffer in which the data to be written is stored

0 Successful
Other than 0 Error

EFAULT The function failed to get data.
ENOMEM The function failed to reserve the working area.
S_m3dev_INVALID_NUMBER An invalid parameter was specified.

The upper limit specified during configuration cannot be exceeded.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-34

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

B Shared device
o setM3SharedDataConfig

Feature

Synopsis

Description

Structure

Argument

Return value

errno

Remarks

o writeM3InternalRegister

Write 16-bit data to the data register
int writeM3InternalRegister (int no, int num, unsigned short *pBuff);

The function writes 16-bit data to the data register.
It writes num points of data sets in pBuff to the device starting from device number no in the
data register "D". For the pBuff pointer, reserve an array of num elements.

no Start number of the data register to be written to (from 1)
num Number of points in the data register to be written to (from 1)
pBuff Pointer to the buffer in which the data to be written is stored

0 Successful
Other than 0 Error

EFAULT The function failed to get data.
ENOMEM The function failed to reserve the working area.
S_m3dev_INVALID_NUMBER An invalid parameter was specified.

The upper limit specified during configuration cannot be exceeded.

Set shared device assignment information
int setM3SharedDataConfig

(
LPM3SHDDATACONFIG shdCnf,
LPM3SHDDATACONFIG extShdCnf

)

The function assigns shared devices to CPU modules.

Each index number of the member variables wNumberOfRelay[] and wNumberOfRegister(] in
the structure for shared device assignment information corresponds to "CPU number - 1".
Specify a multiple of 32 for the number of relay data points and a multiple of 2 for the number
of register data points.

The following table shows the ranges that the parameter can accept:

Device name Total points of all CPUs Specify in
Shared relay 0 to 2048 points 32 points
Extended shared relay 0 to 2048 points 32 points
Shared register 0 to 1024 points 2 points
Extended shared register 0 to 3072 points 2 points

typedef struct tagM3SHDDATACONFIG {
unsigned short wNumberOfRelay[4];
unsigned short wNumberOfRegister[4];

) M3SHDDATACONFIG, *LPM3SHDDATACONFIG;

shdCnf.wNumberOfRelay[]
shdCnf.wNumberOfRegister(]

Points in the shared relay that are assigned to CPU1 to 4
Points in the shared register that are assigned to CPU1

to 4

extShdCnf.wNumberOfRelay(] Points in the extended shared relay that are assigned to
CPU1to 4

extShdCnf.wNumberOfRegister[] Points in the extended shared register that are assigned
to CPU1to 4

0 Successful

Other than 0 Error

EFAULT
S_m3dev_INVALID_NUMBER

The function failed to get data.
An invalid parameter was specified.

Configure all CPU modules so that they use the same settings.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-35

o referM3SharedDataConfig

Feature

Synopsis

Description

Structure

Argument

Return value

errno

Get shared device assignment information
int referM3SharedDataConfig

(
LPM3SHDDATACONFIG shdCnf,
LPM3SHDDATACONFIG extShdCnf

)

The function obtains the configuration of the shared device assigned to each CPU module.
Each index number of the member variables wNumberOfRelay[] and wNumberOfRegister[] in
the structure for shared device assignment information corresponds to "CPU number - 1".

typedef struct tagM3SHDDATACONFIG {
unsigned short wNumberOfRelay[4];
unsigned short wNumberOfRegister[4];

} M3SHDDATACONFIG, *LPM3SHDDATACONFIG;

shdCnf.wNumberOfRelay][] Points in the shared relay that are assigned to CPU1 to 4

shdCnf.wNumberOfRegister[] Points in the shared register that are assigned to CPU1
to 4

extShdCnf.wNumberOfRelay[] Points in the extended shared relay that are assigned to
CPU1 to 4

extShdCnf.wNumberOfRegister[] Points in the extended shared register that are assigned
to CPU1 to 4

0 Successful

-1 Error

EFAULT The function failed to get data.

® readM3SharedRelay

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Read from the (extended) shared relay in blocks
int readM3SharedRelay (int no, int num, unsigned short *pBuff);

The function reads from the (extended) shared relay in 16 points.

It reads num points of data sets from the device with device number no in the (extended)
shared relay "E" into pBuff. Calling the function once can read from all the shared relays. For
the pBuff pointer, reserve an array of num elements.

no Start number of the (extended) shared relay to be read
from (shared relay: 1 to 2048, extended shared relay:
2049 to 4096)

num Number of blocks in the (extended) shared relay to be
read (from 1)

pBuff Pointer to the buffer in which the read data is stored

0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S _m3dev_INVALID NUMBER An invalid parameter was specified.

S_m3dev_BOUNDARY_ERROR The start number of the device is invalid; the boundary is
incorrect.

S_m3dev_INTERNAL_ERROR An 1/O bus failure occurred.

- The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.

- Access across CPU areas requires word boundaries not to be crossed.

- Access across the shared relay and extended shared relay areas is not possible.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-36

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

® readM3SharedRelayB

Read from the (extended) shared relay
int readM3SharedRelayB (int no, int num, unsigned char *data);

The function reads from the (extended) shared relay in one point.

It reads num points of data sets from the device with device number no in the (extended)
shared relay "E" into data. Calling the function once can read from all the shared relays. For
the data pointer, reserve an array of num elements.

no Start number of the (extended) shared relay to be read
from (shared relay: 1 to 2048, extended shared relay:
2049 to 4096)

num Number of points in the (extended) shared relay to be
read (from 1)

data Pointer to the buffer in which the read data is stored

0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER
S_m3dev_BOUNDARY_ERROR

An invalid parameter was specified.

The start number of the device is invalid; the boundary is

incorrect.

S_m3dev_INTERNAL_ERROR An 1/O bus failure occurred.

- The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.

- Access across CPU areas requires word boundaries not to be crossed.

- Access across the shared relay and extended shared relay areas is not possible.

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

® readM3SharedRegister

Read 16-bit data from the (extended) shared register
int readM3SharedRegister (int no, int num, unsigned short *pBuff);

The function reads 16-bit data from the (extended) shared register.

It reads num points of data sets from the device with device number no in the (extended)
shared register "R" into pBuff. Calling the function once can read from all the shared
registers. For the pBuff pointer, reserve an array of num elements.

no Start number of the (extended) shared register to be
read from (shared register: 1 to 1024, extended shared
register: 1025 to 4096)

num Number of points in the (extended) shared register to be
read (from 1)

pBuff Pointer to the buffer in which the read data is stored

0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER
S_m3dev_INTERNAL_ERROR

An invalid parameter was specified.
An 1/O bus failure occurred.

- The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.

- Access across the shared register and extended shared register areas is not possible.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-37

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

o writeM3SharedRelay

Write to the (extended) shared relay in blocks
int writeM3SharedRelay (int no, int num, unsigned short *pBuff);

The function writes to the (extended) shared relay in 16 points.

It writes num points of data sets in pBuff to the device starting from device number no in the
(extended) shared relay "E". Calling the function once can write to all the shared relays. For
the pBuff pointer, reserve an array of num elements.

no Start number of the (extended) shared relay to be written
to (shared relay: 1 to 2048, extended shared relay: 2049
to 4096)

num Number of blocks in the (extended) shared relay to be

written to (from 1)

pBuff Pointer to the buffer in which the data to be written is
stored

0 Successful

Other than 0 Error

EFAULT
ENOMEM
S_m3dev_INVALID_NUMBER
S_m3dev_BOUNDARY_ERROR

The function failed to get data.

The function failed to reserve the working area.

An invalid parameter was specified.

The start number of the device is invalid; the boundary is
incorrect.

S_m3dev_INTERNAL_ERROR An 1/O bus failure occurred.

- The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.

- Access across CPU areas requires word boundaries not to be crossed.

- Access across the shared relay and extended shared relay areas is not possible.

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

o writeM3SharedRelayB

Write to the (extended) shared relay
int writeM3SharedRelayB (int no, int num, unsigned char *data);

The function writes to the (extended) shared relay in one point.

It writes num points of data sets in data to the device starting from device number no in the
(extended) shared relay "E". Calling the function once can write to all the shared relays. For
the data pointer, reserve an array of num elements.

no Start number of the (extended) shared relay to be written
to (shared relay: 1 to 2048, extended shared relay: 2049
to 4096)

num Number of points in the (extended) shared relay to be

written to (from 1)

data Pointer to the buffer in which the data to be written is
stored

0 Successful

Other than 0 Error

EFAULT
ENOMEM
S_m3dev_INVALID_NUMBER
S_m3dev_BOUNDARY_ERROR

The function failed to get data.

The function failed to reserve the working area.

An invalid parameter was specified.

The start number of the device is invalid; the boundary is
incorrect.

S _m3dev_INTERNAL_ERROR An |/O bus failure occurred.

- The upper limit specified during configuration cannot be exceeded.

- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.

- Access across CPU areas requires word boundaries not to be crossed.

- Access across the shared relay and extended shared relay areas is not possible.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-38

o writeM3SharedRegister
Feature Write 16-bit data to the (extended) shared register

Synopsis int writeM3SharedRegister (int no, int num, unsigned short *pBuff);

Description The function writes 16-bit data to the (extended) shared register.
It writes num points of data sets in pBuff to the device starting from device number no in the
(extended) shared register "R". Calling the function once can write to all the shared registers.
For the pBuff pointer, reserve an array of num elements.

Argument no Start number of the (extended) shared register to be
written to (shared register: 1 to 1024, extended shared
register: 1025 to 4096)

num Number of points in the (extended) shared register to be
written to (from 1)
pBuff Pointer to the buffer in which the data to be written is
stored
Return value 0 Successful
Other than 0 Error
erro EFAULT The function failed to get data.
ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER An invalid parameter was specified.

Remarks - The upper limit specified during configuration cannot be exceeded.
- The parameter check follows the configuration. Any difference between the setting and the
CPU module configuration does not cause an error in the parameter check.
- Access across the shared register and extended shared register areas is not possible.

B Link device
o referM3LinkDeviceConfig

Feature Get link device assignment information
Synopsis int referM3LinkDeviceConfig(LPM3LINKDATACONFIG linkCnf);
Description The function obtains the number of data points in the link device.

Each index number of the member variables wNumberOfRelay[] and
wNumberOfRegister][] in the structure for link device assignment information corresponds
to "system number - 1".

Structure typedef struct tagM3LINKDATACONFIG {
unsigned short wNumberOfRelay|[8];
unsigned short wNumberOfRegister([8];
} M3LINKDATACONFIG, *LPM3LINKDATACONFIG;

Argument linkCnf.wNumberOfRelay([] Number of points that are assigned to system numbers 1
to 8 in the link relay
linkCnf.wNumberOfRegister[] Number of points that are assigned to system numbers 1
to 8 in the link register

Return value 0 Successful

-1 Error
erro EFAULT The function failed to get data.
Remarks The system numbers 3 through 8 are system-reserved numbers.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-39

Feature
Synopsis

Description

Structure

Argument

Return value

errno

Remarks

e setM3LinkDeviceConfig

Set link device assignment information
int setM3LinkDeviceConfig(LPM3LINKDATACONFIG linkCnf);

The function sets the number of data points in the link devices.

Each index number of the member variables wNumberOfRelay[] and
wNumberOfRegister[] in the structure for link device assignment information corresponds
to "system number - 1". Specify a multiple of 16 for both the number of relay data points
and the number of register data points.

The following table shows the ranges that the parameter can accept:

Device name Total points of all CPUs Specify in
Link relay 0 to 8192 points 16 points
Link register 0 to 8192 points 16 points

A single CPU module can have up to two systems assigned to it. Thus, the CPU module
can have a maximum of 16384 points of link devices.

typedef struct tagM3LINKDATACONFIG {
unsigned short wNumberOfRelay[8];
unsigned short wWNumberOfRegister[8];
} M3LINKDATACONFIG, *LPM3LINKDATACONFIG;
linkCnf.wNumberOfRelay[] Number of points that are assigned to system numbers 1
to 8 in the link relay
Number of points that are assigned to system numbers 1
to 8 in the link register

linkCnf.wNumberOfRegister(]

0 Successful
-1 Error
EFAULT The function failed to get data.

S_m3dev_INVALID_NUMBER An invalid parameter was specified.

The system numbers 3 through 8 are system-reserved numbers.

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

® readM3LinkRelay

Read from the link relay in blocks

int readM3LinkRelay (int no, int num, unsigned short *pBuff);

The function reads from the link relay in 16 points.

It reads num points of data sets from the device with device number no in the link relay "L"
into pBuff. For the pBuff pointer, reserve an array of num elements.

no Start number of the link relay to be read from
(n0001 to Nn8192: n represents system number - 1)

num Number of blocks in the link relay to be read (from 1)
pBuff Pointer to the buffer in which the read data is stored
0 Successful

-1 Error

EFAULT The function failed to get data.

ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER
S_m3dev_DEVICE_NOT_FOU
ND

An invalid parameter was specified.
The specified device is not found.

- The upper limit specified during configuration cannot be exceeded.
- The system numbers 3 through 8 are system-reserved numbers.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-40

o readM3LinkRelayB

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

Read from the link relay

int readM3LinkRelayB (int no, int num, unsigned char *data);

The function reads from the link relay in one point.
It reads num points of data sets from the device with device number no in the link relay "L"
into data. For the data pointer, reserve an array of num elements.

no

num
data

0
-1

EFAULT
ENOMEM
S_m3dev_INVALID_NUMBER

Start number of the link relay to be read from

(n0001 to n8192: n represents system number - 1)
Number of points in the link relay to be read (from 1)
Pointer to the buffer in which the read data is stored

Successful
Error

The function failed to get data.
The function failed to reserve the working area.
An invalid parameter was specified.

S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

- The upper limit specified during configuration cannot be exceeded.
- The system numbers 3 through 8 are system-reserved numbers.

o readM3LinkRegister
Read 16-bit data from the link register

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

int readM3LinkRegister (int no, int num, unsigned short *pBuff);

The function reads 16-bit data from the link register.
It reads num points of data sets from the device with device number no in the link register
"W" into pBuff. Access across the systems is not possible. For the pBuff pointer, reserve

an array of num elements.
no

num

pBuff

0
-1

EFAULT
ENOMEM
S_m3dev_INVALID_NUMBER

Start number of the link register to be read from
(n0001 to n8192: n represents system number - 1)
Number of points in the link register to be read (from
1)

Pointer to the buffer in which the read data is stored

Successful
Error

The function failed to get data.
The function failed to reserve the working area.
An invalid parameter was specified.

S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

- The upper limit specified during configuration cannot be exceeded.
- The system numbers 3 through 8 are system-reserved numbers.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-41

o writeM3LinkRelay

Feature Write to the link relay in blocks
Synopsis int writeM3LinkRelay (int no, int num, unsigned short *pBuff);

Description The function writes to the link relay in 16 points.
It writes num points of data sets in pBuff to the device starting from device number no in the
link relay "L". Access across the systems is not possible. For the pBuff pointer, reserve an
array of num elements.

Argument no Start number of the link relay to be written to
(n0001 to Nn8192: n represents system number - 1)
num Number of blocks in the link relay to be written to (from 1)
pBuff Pointer to the buffer in which the data to be written is
stored
Return value 0 Successful
Other than 0 Error
errno EFAULT The function failed to get data.
ENOMEM The function failed to reserve the working area.

S_m3dev_INVALID_NUMBER An invalid parameter was specified.
S_m3dev_DEVICE_NOT_FOU The specified device is not found.
ND

Remarks - The upper limit specified during configuration cannot be exceeded.
- The system numbers 3 through 8 are system-reserved numbers.

e writeM3LinkRelayB

Feature Write to the link relay
Synopsis int writeM3LinkRelayB (int no, int num, unsigned char *data);

Description The function writes to the link relay in one point.
It writes num points of data sets in data to the device starting from device number no in
the link relay "L". Access across the systems is not possible. For the data pointer, reserve
an array of num elements.

Argument no Start number of the link relay to be written to
(n0001 to n8192: n represents system number - 1)
num Number of points in the link relay to be written to
(from 1)
data Pointer to the buffer in which the data to be written is
stored
Return value 0 Successful
Other than 0 Error
errno EFAULT The function failed to get data.
ENOMEM The function failed to reserve the working area.
S_m3dev_INVALID_NUMBER An invalid parameter was specified.

S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

Remarks - The upper limit specified during configuration cannot be exceeded.
- The system numbers 3 through 8 are system-reserved numbers.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-42

o writeM3LinkRegister

Feature
Synopsis

Description

Argument

Return value

errno

Remarks

Write 16-bit data to the link register

int writeM3LinkRegister (int no, int num, unsigned short *pBuff);

The function writes 16-bit data to the link register.
It writes num points of data sets in pBuff to the device starting from device number no in
the link register "W". Access across the systems is not possible. For the pBuff pointer,

reserve an array of num elements.

no
num

pBuff

0

Other than 0
EFAULT

ENOMEM
S_m3dev_INVALID_NUMBER

Start number of the link register to be written to
(n0001 to n8192: n represents system number - 1)
Number of points in the link register to be written to
(from 1)

Pointer to the buffer in which the data to be written is
stored

Successful
Error

The function failed to get data.
The function failed to reserve the working area.
An invalid parameter was specified.

S_m3dev_DEVICE_NOT_FOUND The specified device is not found.

- The upper limit specified during configuration cannot be exceeded.
- The system numbers 3 through 8 are system-reserved numbers.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-43

A1.54 System administration

B Library management
e getM3LibVersion

Feature Get the library version

Synopsis char *getM3LibVersion(void);

Description The function returns libm3 version information as a string.

Argument None

Return value String It returns a string that consists of the library version number
and the build time.

errno None

B LED indicator

® setM3RunlLed
Feature Set the state of the RUN LED

Synopsis int setM3RunLed(int led);

Description The function sets the on/off state of the RUN LED at the top front of a CPU module to the
value specified in the argument led.

Argument led State of the RUN LED
0: Off
Not 0: On
Return value 0 Successful
-1 Error
errno EFAULT The function failed to write data.

e getM3RunLed
Feature Get the state of the RUN LED

Synopsis int getM3RunLed(void);

Description The function gets the on/off state of the RUN LED at the top front of a CPU module. The state
can be obtained as a return value of the function.

Argument None
Return value 1 On
0 Off
-1 Error
errno EFAULT The function failed to get data.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-44

o setM3AlmLed

Feature
Synopsis

Description

Argument

Return value

errno

Set the state of the ALM LED
int setM3AImLed(int led);

The function sets the on/off state of the ALM LED at the top front of a CPU module to the
value specified in the argument led.

led State of the ALM LED
0: Off
Not 0: On
0 Successful
-1 Error
EFAULT The function failed to write data.

e getM3AimLed

Feature
Synopsis

Description

Argument

Return value

errno

Get the state of the ALM LED
int getM3AlmLed(void);

The function gets the on/off state of the ALM LED at the top front of a CPU module. The
state can be obtained as a return value of the function.

None

1 On

0 Off

-1 Error

EFAULT The function failed to get data.

® setM3ErrLed

Feature
Synopsis

Description

Argument

Return value

errno

Set the state of the ERR LED
int setM3ErrLed(int led);

The function sets the on/off state of the ERR LED at the top front of a CPU module to the
value specified in the argument led.

led State of the ERR LED
0: Off
Not 0: On
0 Successful
-1 Error
EFAULT The function failed to write data.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-45

® getM3ErrLed

Feature
Synopsis

Description

Argument

Return value

errno

Get the state of the ERR LED
int getM3ErrLed (void);

The function gets the on/off state of the ERR LED at the top front of a CPU module. The
state can be obtained as a return value of the function.

None

1 On

0 Off

-1 Error

EFAULT The function failed to get data.

e setM3U1Led

Feature
Synopsis

Description

Argument

Return value

errno

Set the state of the U1 LED
int setM3U1Led(int led);

The function sets the on/off state of the U1 LED at the top front of a CPU module to the
value specified in the argument led.

led State of the U1 LED
0: Off
Not 0: On
0 Successful
-1 Error
EFAULT The function failed to write data.

e getM3U1Led

Feature
Synopsis

Description

Argument

Return value

errno

Get the state of the U1 LED
int getM3U1Led(void);

The function gets the on/off state of the U1 LED at the top front of a CPU module. The
state can be obtained as a return value of the function.

None

1 On

0 Off

-1 Error

EFAULT The function failed to get data.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-46

e setM3U2Led

Feature
Synopsis

Description

Argument

Return value

errno

Set the state of the U2 LED
int setM3U2Led(int led);

The function sets the on/off state of the U2 LED at the top front of a CPU module to the
value specified in the argument led.

led State of the U2 LED
0: Off
Not 0: On
0 Successful
-1 Error
EFAULT The function failed to write data.

e getM3U2Led

Feature
Synopsis

Description

Argument

Return value

errno

Get the state of the U2 LED
int getM3U2Led(void);

The function gets the on/off state of the U2 LED at the top front of a CPU module. The
state can be obtained as a return value of the function.

None

1 On

0 Off

-1 Error

EFAULT The function failed to get data.

® setM3U3Led

Feature
Synopsis

Description

Argument

Return value

errno

Set the state of the U3 LED
int setM3U3Led(int led);

The function sets the on/off state of the U3 LED at the top front of a CPU module to the
value specified in the argument led.

led State of the U3 LED
0: Off
Not 0: On
0 Successful
-1 Error
EFAULT The function failed to write data.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-47

o getM3U3Led
Feature Get the state of the U3 LED

Synopsis int getM3U3Led(void);

Description The function gets the on/off state of the U3 LED at the top front of a CPU module. The
state can be obtained as a return value of the function.

Argument None
1 On
Return value 0 Off
-1 Error
errno EFAULT The function failed to get data.
® getM3ModeSwitch
Feature Get the state of the MODE switch
Synopsis int getM3ModeSwitch (void);

Description The function gets the state (number) of the MODE switch at the front of a CPU module.
The number is obtainable as a return value of the function.

Argument None
Returnvalue OtoF MODE switch number
-1 Error
errno EFAULT The function failed to get data.

o getM3BatteryPower

Feature Get the battery level
Synopsis int getM3BatteryPower (void);
Description The function checks the remaining capacity of the RTC and SRAM backup battery. This

action is equivalent to checking the state of the BAT LED. The state can be obtained as a
return value of the function.

Argument None
Return value 1 Low battery voltage (BAT LED is on)
0 Normal battery voltage (BAT LED is off)
-1 Error
errno EFAULT The function failed to get data.
EIO Access failed due to a device operation conflict.
Remarks Checking the battery level slightly consumes the battery power. To avoid unnecessary

consumption due to highly frequent checks, the hardware checks the battery level at
about 1-hour intervals, and this function returns the results of these checks by the
hardware. It takes time for the function to respond. If an EIO error is returned, try again
later.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-48

B Logging
e writeM3log

Feature Write a system log message

Synopsis int writeM3log(char msg[128]);

Description The function writes a maximum of 128 ASCII characters at a time to the system log area.
The available ASCII code range is from 0x20 to Ox7E, excluding the codes for characters,
such as a carriage return and line feed.

Argument msg Pointer to the string

Avoid writing a string of more than 128 characters.

Return value 0 Successful
-1 Error
errmo EFAULT The function failed to get data.
EINVAL An invalid message was written.
Remarks For F3RP71-2L, messages are written to the non-volatile memory area.

® cleanM3log

Feature Clear all system logs

Synopsis int cleanM3log (void);

Description The function clears all the messages in the system log.
Argument None

Return value 0 The function always returns 0.

errmo None

A155 RAS

B System operation
® setM3Reset

Feature System reset

Synopsis int setM3Reset(void);

Description The function resets the entire e-RT3 system.
It resets all /O and CPU modules mounted in the main unit and sub-units, and then
restarts the CPU module on which the function is run.

Argument None

Return value -1 Error

errno EACCES The function was run on an add-on CPU module.

Remarks Avoid using the function on an add-on CPU module.

Tl 34M06T02-02E

Mar. 31, 2021-00

A1-49

o setM3FailOutput

Feature
Synopsis

Description

Argument
Return value

errno

Note

Failure output
int setM3FailOutput(int cpuno);

The function switches the FAIL terminal on the power supply module, notifying the outside of
the system of an error.

You can use this function when you concluded that the operation can no longer be
continued, such as the occurrence of a fatal error in the system program.

When a failure is output, outputs from the output relay in the I/O module change according to
the external output setting on failure.

In the multi-CPU configuration, outputs only from the I/O modules assigned to the CPU with
the CPU number specified in the argument cpuno change. In e-RT3 2.0 CPU modules, the
assignment of an /O module to a CPU module is determined by use or non-use of any 1/0
module.

In the single CPU configuration, cpuno is ignored, and outputs from output relays in all I/O
modules change according to the setting.

cpuno CPU number of the CPU module on which failure outputs
are enabled

0 Successful

-1 Error

EINVAL An invalid CPU number was specified.

For details on how to assign an I/O module to a CPU module and how to configure
whether an 1/0 module is used, refer to the manual for each CPU module.

B System monitoring
o getM3FailSubunit

Feature

Synopsis

Description

Argument

Return value

errno

Remarks

Sub-unit transmission route diagnosis

int getM3FailSubunit (unsigned short *change, unsigned short *disconnect, unsigned short
position[8]);

The function obtains the state of a sub-unit transmission route (optical FA bus or optical FA
bus 2 connection) upon a sub-unit configuration. Use the function if an error, such as an 1/0
bus error, occurs during access to an I/O module in the sub-unit.

If an error occurs on a sub-unit transmission route, an error type is stored in the arguments
change and disconnect, and an error location is stored in the argument position[]. position[]
represents an error-detected bit position on F3LR0o, which is set to 1. In each bit, the LSB
represents slot number 1, and the MSB represents slot number 16. An index of the array
represents a unit number.

Example: for position[2] = 0x0020, the unit number is 2 and the slot number is 6.

change Switching of the sub-unit transmission route
0: A sub-unit transmission route has not been switched.
1: A sub-unit transmission route has been switched.
disconnect Sub-unit transmission route error
0: A sub-unit transmission route error has not occurred.
1: A sub-unit transmission route error has occurred.
position[] Location in which the error-generated module is mounted
Index of the array: unit number (0 to 7)
Bit position in each array element: slot number (1 to 16)

0 Successful

-1 Error

EFAULT The function failed to get data.

S m3ras_ BUS_ERROR The function failed to access the FA bus module.

The sub-unit transmission route error indicates an instantaneous value when this function is
carried out. If a failure on the sub-unit transmission route is fixed, the error is also cleared.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-50

e getM3FailCpu

Feature CPU module diagnosis
Synopsis int getM3FailCpu (int mode);

Description The function allows you to check whether other CPU modules, not the CPU module on
which the function is run, fail in the multi-CPU configuration. Use the function if an error,
such as an I/O bus access error, occurs during access to a shared device.

If any of the other CPU modules are found to have an error, the function returns the
results with the lower four bits of the return value. The result value of 0 indicates that no
error CPU module is found. If an error occurs, an error flag is set bit-by-bit from the LSB in
CPU number order.
Bit0: CPU1 status (0: OK, 1: Error
Bit1: CPU2 status (0: OK, 1: Error
Bit2: CPU3 status (0: OK, 1: Error
Bit3: CPU4 status (0: OK, 1: Error

[N Na N

If the argument mode is set to a value other than 0, the output setting for the /0O module
assigned to an error CPU module is changed according to the external output setting on
failure. In e-RT3 2.0 CPU modules, the assignment of an 1/0 module to a CPU module is
determined by use or non-use of any /0O module.

Argument mode DO output condition in case of a CPU failure detection
0: The output setting is changed according to the

external output setting on failure.
Not 0: The output setting is changed according to the

external output setting on failure.

Return value Positive number CPU status
-1 Error

ermo EFAULT The function failed to get data.
S_m3ras_BUS_ERROR The function failed to access the CPU module.

S m3ras_ CPUCHK_ERROR The function verified that the CPU module had failed
(normal behavior).

Remarks The function does not switch the FAIL terminal on the power supply module.

B System notification
® enableM3Heatlrq

Feature Enable high CPU temperature detection
Synopsis int enableM3Heatlrq (int msgQld);
Description The function enables temperature monitoring and notification of a processor equipped

with a CPU module.

High processor temperature notification always monitors the processors for high
temperature due to the surrounding environment or system failure, and notifies your
application of high temperatures, if detected.

The msgrcv system call receives the notified high temperature of the CPU by using the
message queue ID registered by the argument msgQld.

Argument msgQld Message queue ID obtained by the msgget system call
Return value 0 Successful
-1 Error
errno EINVAL An invalid message queue ID was specified.
Remarks - The message queue ID is overwritten every time the function is called.

- Amessage queue ID of 0 or more is valid.

- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.

- When the function notifies a high CPU temperature, the notification function gets

disabled.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-51

® enableM3Powerirq
Feature Enable momentary power failure detection

Synopsis int enableM3Powerlrqg (int mode, int msgQld);

Description The function enables monitoring and notification of a momentary supplied voltage failure
or low voltage.
The momentary power failure detection detects a failure of the voltage supplied from the
power supply module, and notifies the user application of the failure.
In the argument mode, specify either the standard mode or the immediate detection mode
as the detection mode of the supplied voltage.
The msgrcv system call receives a detected momentary power failure by using the
message queue ID registered by the argument msgQld.

Argument mode Detection mode of momentary power failure
0: standard mode
Not 0: immediate detection mode

msgQld Message queue ID obtained by the msgget system call
Return value 0 Successful

-1 Error
errno EINVAL An invalid message queue ID was specified.
Remarks - The message queue ID is overwritten every time the function is called.

- A message queue ID of 0 or more is valid.
- Messages in a message queue cannot be received by multiple processes. A single
process must be responsible for receiving the messages.

A1.5.6 WDT

B Timer operation
® bindM3Wdt

Feature Get the WDT

Synopsis int bindM3Wdt(void);

Description The function obtains the right to use the WDT. Only one process can use the WDT at one
time.

To use the WDT, any process must obtain the right to use the WDT by using this function.

Argument None
Return value 0 Successful
-1 Error
erro EBUSY The WDT is already in use.

® releaseM3Wdt
Feature Release the WDT

Synopsis int releaseM3Wdt(void);

Description The function releases the right to use the WDT obtained by the bindM3Wdt function.
Only one process can use the WDT timer.

Argument None
Return value 0 Successful
-1 Error
errno EBADF The WDT has not been obtained.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-52

® cleanM3Wdt

Feature Clear the WDT
Synopsis int cleanM3Wdt(void);
Description The function clears the WDT counter.
Call this function periodically at shorter intervals than that specified for the WDT to avoid a
WDT timeout.
Argument None
Return value 0 Successful
-1 Error
errno EIO The WDT is stopped.
o startM3Wdt
Feature Start the WDT
Synopsis int startM3Wdt(void);
Description The function starts the WDT.
The WDT runs based on the specified mode and timeout period.
Argument None
Return value 0 Successful
-1 Error
errno EIO The WDT is already in operation.
o stopM3Wdt
Feature Stop the WDT
Synopsis int stopM3Wdt(void);
Description The function stops the WDT.
Argument None
Return value 0 Successful
-1 Error
errno EIO The WDT is stopped.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-53

B Mode configuration
® setM3WdtTimeout

Feature Set the WDT timeout period
Synopsis setM3WdtTimeout(int timeout);
Description The function specifies the timeout period for the WDT.

The initial timeout period is set to 5,000 milliseconds when the WDT is started. Use
timeout to change this timeout period of the WDT. timeout can be from 1,000 to 120,000
milliseconds. You can change the timeout period at any time.

Argument timeout WDT timeout period
Return value 0 Successful
-1 Error
errno EFAULT The function failed to get data.
EINVAL An invalid period was specified.
Remarks The period for the WDT is rounded up at the value obtained from dividing the HZ macro

value by 10. The default value of the HZ macro is 1000. Although you can change the HZ
macro value with the kernel configuration, set the HZ macro to a value of at least 100
based on the previous reason.

o setM3WdtMode
Feature Set the WDT operating mode

Synopsis int setM3WdtMode(int mode);

Description The function sets the operating mode of the WDT with the argument mode.
For mode, set a logical addition of MBWDT_MODE_RESET, M3WDT_MODE_HALT,
M3WDT_MODE_SIG, and MBWDT_MODE_CLOSESTOP macros. The default value
after the system restart is MBWDT_MODE_RESET.

Macro name Value Description
M3WDT MODE _RESET 0x0000 | Rests the WDT when it times out.
M3WDT_MODE_HALT 0x0001 | Halts the WDT when it times out. The

RDY LED lights off, and the 1/O module
becomes inaccessible. In the multi-CPU
configuration, other CPU modules
recognize this CPU module as a failed
CPU.

M3WDT_MODE_SIG 0x0002 | Works as a software WDT, causing no
actions like RESET and HALT shown in
the above.

When the WDT times out, a SIGTERM
signal is sent to the process that changed
the mode to this mode. If the WDT is
closed, no signal notification is sent.
M3WDT_MODE_CLOSESTOP | 0x8000 | An option to prevent the RESET operation
from being performed when the WDT
driver is closed by the OS for any reason.
This option causes the WDT to be
stopped upon closing. The WDT continues
to work by default, so that it can run based
on the mode setting after closing.

Argument mode WDT operating mode

Return value 0 Successful
-1 Error

errno EFAULT The function failed to get data.
EIO The WDT is already in operation.

Tl 34M06T02-02E Mar. 31, 2021-00

A1-54

e getM3WdtMode
Feature Get the WDT operating mode

Synopsis int getM3WdtMode(void);
Description The function obtains the operating mode of the WDT.

It returns a logical addition of macros, which is described in the setM3WdtMode function,
as a return value of the function.

Argument None
Return value Positive number WDT operating mode
-1 Error
errno EFAULT The function failed to write data.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-1

Appendix2 Web Maintenance Tool

A2.1

Before Use

A2.1.1 Overview

A2.1.2

The Web Maintenance Tool provides monitoring and setting functions for the internal
parameters of the F3RP70-2L, CPU modules. This tool can be used from the client
PC via a Web browser such as Microsoft Internet Explorer or Google Chrome.
Therefore, engineers who perform maintenance and start-up and end users who
don't have a development environment can easily perform settings and maintenance
from a Web browser, regardless of their PC environment.

Apache? is installed in the CPU module's system, enabling a Web server, and the
Web Maintenance Tool is built into the CPU module. Therefore, there is no need to
install dedicated software into your PC.

Also, you can view the PDF data such as manuals via your browser.

Generic browser

j Web server

HTTP — —
communication | Web application

Figure A2.1.1 Overview

Operating environment

The following describes the operating environment of the Web Maintenance Tool.

Table A2.1.1 Operating environment

Item Specification

Supported browsers Generic browsers such as Google Chrome

PC PC where a browser listed above operates properly

0Ss Platform OS where a browser listed above operates properly

Supported CPU modules F3RP70-2L

Communication conditions PC that can start up a browser listed above, and network
environment where an Ethernet cable can be connected to the port
on the front of the CPU module

Note

This application is optimized for operation on Internet Explorer on a Windows PC. If
using it in a different execution environment, the display images may vary

Tl 34M06T02-02E Mar. 31, 2021-00

A2-2

depending on the screen resolution and the installation format.

A2.1.3 Setup and start-up

(1) Make sure that the CPU module's power is on.

L F3RP70-2L

Figure A2.1.2 CPU module operating status

(2) Use a LAN cable to connect the PC to the Port 1 on the CPU module, then start
up the browser.

Note
Use Port 1 during setup.

Generic browser

Figure A2.1.3 PC and CPU module connection

Tl 34M06T02-02E Mar. 31, 2021-00

A2-3

(3) Input the IP address "192.168.3.72" in the browser's address bar.

Note

The IP address (192.168.3.72) is set by default.

/ |

http://192.168.3. 72

Figure A2.1.4 Inputting the IP address

The e-RT3 Plus Studio screen is displayed.

@ RT3 Plus Support Package Plu- X +

« C A RESATIVGEIGER | 192.1683.72

YOKOGAWA e-AT3 Plus

Plus studio

e-RT3 Plus Support Package

e-RT3 Plus Studio > Web Maintenance Tool

Figure A2.1.5 e-RT3 Plus Studio screen

TI 34M06T02-02E

Mar. 31, 2021-00

A2-4

(4) Click [Web Maintenance Tool].
The Web Maintenance Tool starts up and displays the main screen.

‘ @ RT3 Web Maintenance Tool X +
< C A FEESNTVEWNEE | 192.168.2.110/WebTool/main.html ﬁ o :
YOKOGAWA e-RT3 Plus

e Display Language:

Home Device Monitor CPU Settings Manuals About

Web Maintenance Tool

Plus StUdi='

@-RT3 Plus S0

- Supported Modules

= F3RP70-2L / e-RT2 CPU module with user SRAM

- Major Functions of the e-RT2 Web Maintenance Tool
Monitor Maonitors the device values for the CPU and each slot.

Device

Settings Perform configurations and settings for the e-RT3.
Manuals Refer to each manual.
About About this tool

FlgureA216 Main screen

Note

If the Web Maintenance Tool does not start up, check the PC's Ethernet port

settings, and use the ping command to make sure you can connect to the CPU

module. (The IP address for Ethernet Port 2 is not set.)
If the CPU module is starting up, wait a bit and then input the IP address
"192.168.3.72" again.

TI 34M06T02-02E Mar. 31, 2021-00

A2-5

A2.2 Screen configuration and basic functions

A2.2.1 List of functions

e-RT3 Plus Studio screen

Main screen

wHGHA S Y R SV

Device monitor CPU settings]
(Module selection screen) (Top/Login screen) Manual display screen

Figure A2.2.1 Screen configuration

Tl 34M06T02-02E Mar. 31, 2021-00

A2-6

The following describes the screen configuration for the Web Maintenance Tool.

Table A2.2.1 Screen configuration

Screen

Description

e-RT3 Plus Studio screen

Top page for the e-RT3 Plus Support Package.

Portal screen

Displayed while the Web Maintenance Tool is
initialized.

Main screen

Main screen of the Web Maintenance Tool.

Device monitor (Module selection screen)

Top screen for selecting the modules to be
monitored in the device monitor.
LED information is also displayed.

CPU module monitor screen

Monitors the CPU module devices.

1/0 device monitor screen

Monitors the I/O module devices.

CPU settings (Top/Login screen)

Top screen for CPU settings.
This is also the screen for users to log into the Web
Maintenance Tool.

User management screen

Adds, deletes, or changes the password for Web
Maintenance Tool users.

Calendar / Time settings screen

Sets the date and time for the CPU module.

Device settings screen

Sets the internal devices, links, and shared devices
used by the CPU module.

Operation settings screen

Sets the functional operation of peripheral services
for the CPU module.

Manual

Displays the manuals.

About

Displays information such as the version.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-7

A2.2.2 Portal screen (Start-up screen)

This screen is displayed when the PC is connected to the CPU module and the Web
Maintenance Tool is starting up.

[e-RT3 Web Maintenance ™ X Y ¥
€« C | [) 192.168.0.1/web/WebTool/w

Now Loading...

®

Figure A2.2.2 Portal screen

Tl 34M06T02-02E Mar. 31, 2021-00

A2-8

A2.2.3 Main screen
This is the top page for the Web Maintenance Tool.

‘ @ e-RT3 Web Maintenance Tool x 4+

&« C A REENTLELBE | 192.168.2.110/WebTool/main.html T 0

e-RT3 Pl
YOKOGAWA (' R ‘PS' Display Language:

Home Device Monitor CPU Settings Manuals About

UWeb Maintenance Tool

- Supported Modules
» F3RP70-2L/ e-RT3 CPU module with user SRAM

- Major Functions of the e-RT2 Web Maintenance Tool
Device Monitor Monitors the device values for the CPU and each slot.
CPU Settings Perform configurations and settings for the e-RT3.

Manuals Refer to each manual.
About About this tool

FlgureA223 Main screen

B About the navigation menu

—— Q
Yt)KOGAWA CRT% plU:S Display Language:

Home Device Monitor CPU Settings Manuals About

_

Figure A2.2.4 Navigation menu

Table A2.2.2 Navigation menu

Item Description
Home Displays the main screen.
Device monitor Displays the device monitor screen. (Refer to "A2.3 Device monitor (Module
selection screen)".)
CPU settings Displays the CPU settings screen. (Refer to "A2.4 CPU settings".)
Manual Browses the PDF data such as manuals. (Refer to "A2.5 Manual display".)
About Displays information such as the version.

TI 34M06T02-02E Mar. 31, 2021-00

A2-9

A2.2.4 Changing languages

On the main window, you can change the language the Web Maintenance Tool is
displayed in (Japanese or English). The initial setting is English.

YOKOGAWA e-RT3 Plus
Display Language} | English r
Japanese
Home Device Monitor CPU Settings Manuals

e

2

Figure A2.2.5 Display language

Tl 34M06T02-02E Mar. 31, 2021-00

A2-10

A2.3 Device monitor (Module selection screen)

Click [Device Monitor] on the Navigation menu to display the device monitor
(module selection screen).

[e-RT3 Web Maintenancs %

&« C | [1 192.168.0.1/web/WebTool/devmon_top.html By =
YOKOGAWA e-AT3 Plus
Home Device Monitor CPU Sattings Manuals About

Device Monitor

Select unit: | Main unit S

Powsr RP XD YD LX RZ
Soeoly Fo 84 32 o1 BT

Figure A2.3.1 Device monitor (Module selection screen)

If browsing a sub-unit, select one from the [Select unit] pull-down menu.
Home Device Monitor CPU Settings Manuals About

Device Monitor

Select unit: Main unit v

Main unit
Sub-unit 1
Sub-unit 2
Sub-unit 3
Sub-unit 4
Sub-unit &
Sub-unit &
Sub-unit 7

Dower RP LX RZ
Supply 70 01 91

Figure A2.3.2 Device monitor (Sub-unit)

Tl 34M06T02-02E Mar. 31, 2021-00

A2-11

The module selection screen displays the configuration of modules equipped
to the connected unit. Select a module to display the device monitor screen
for that module.

Home Device Monitor CPU Settings

Device Monitor

Select unit: Main unit

Figure A2.3.3 Selecting a module

Tl 34M06T02-02E Mar. 31, 2021-00

A2-12

A2.3.1

CPU module monitor screen

Select a CPU module from the module configuration to display that CPU module's
status and internal device monitor screen. The CPU module monitor screen can
show the following screens.

- CPU status screen

- CPU device monitor screen

The top page is the CPU status screen. To change the display, select from the
[Monitor] pull-down menu.

Note

To display the module selection screen, click [Device Monitor] in the navigation
menu, or click the back button in your browser's menu bar.

B CPU status screen

This screen displays the CPU module's LED light status and mode switch status.

[} e-RT3 Web Maintenance ~ x

[o C [192.168.0.1/web/WebTool/devmon_page.html?unit=08&slot=1&id=RP70 By

S

YOKOGAWA e-AT3 Plus
Home Device Monitor CPU Settings Manuals About

[F3RP70-2L] (Unit:0 Slot:1)

Select modula:é F3RP70-2L v ' I‘-1onitor:i CPU status \a

P status

ROV [us1 [MODE][5]

RUN us2
ALM Us3
ERR BAT

Figure A2.3.4 CPU status screen

Tl 34M06T02-02E Mar. 31, 2021-00

A2-13

B CPU device (Relay device) monitor screen

On the relay device monitor screen, you can monitor the following.
- Internal relays (I)

- Shared relays (E)

Extended shared relays (EE)

Link relays (L)

[&-RT3 Web Maintenance %

€ = C |[1192.168.0.1/web/WebTool/devmon_page.html?unit=0&slot=18&id=RP70 By =
YOKOGAWA {115 Plus i
Home Device Monitor CPU Settings Manuals About
[F3RP70-2L] (Unit:0 Slot:1)
Select mudule:| F3RP70-2L \ ‘Monitor:‘ Intemal relay (1) "Start address:i_‘] Change
ADDRESS COMMENT DATA EDIT
100001 _ON | [OFF
100002 _ON | [OFF
100003 [on | [oFF =
100004 _ON | [OFF
100005 | OFF |
100006 _ON | [oFF
100007 [on | [oFF
100008 _ON | [OFF
100009 | OFF |
100010 "on | [OFF
100011 [oN | [OFF.
100012 o | [oFF]
100013 | OFF |
100014 oM | | OFF |
100015 [on | [oFF
100016 _ON | [oFF |
100017 | OFF |
100018 _ON | [oFF
100019 [on | [oFF
100020 _ON | [OFF 2

Figure A2.3.5 Relay device monitor screen

The relay device monitor screen can display 64 devices at once.
To change the displayed devices, input the address number to be displayed at the
first line into the [Start address] input field, then click the [Change] button.

YOKOGAWA e-AT3 Plus

Home Device Monitor CPU Settings Manuals About

[F3RP70-2L] (Unit:0 Slot:1)

Select module:) F3RPT0-2L v Monitor:| Internal relay (1)

COMMENT

v | Start address:

DATA

ADDRESS
100065
100066
100067
100068
100069

100070
TAMNT

Figure A2.3.6 Changing addresses

TI 34M06T02-02E Mar. 31, 2021-00

A2-14

The [COMMENT] column in the table displays the device comment defined by the
user. Regardless of the selection for [Display Language], the comment will be
displayed in the language the user used to define it.

The [DATA] column indicates if a device is on or off. You can also use the on/off
buttons in the [EDIT] column to turn a device on or off.

Note

In order to turn a device on or off, you must login to the Web Maintenance Tool on
the CPU settings screen.

For details about device comments, refer to "A2.3.3 Using and installing comment
file".

[00001 Work Relay 1 ON OFF
I00002 Comment Test 1 ON OFF
100003 Comment Test 2 ON OFF
[000D04 ON OFF
[00005 ON OFF
[00006 ON OFF

TAMMANAT Tkl mrr

Figure A2.3.7 Displaying device comments and ON/OFF statuses

Tl 34M06T02-02E Mar. 31, 2021-00

A2-15

B CPU device (Register device) monitor screen

On the register device monitor screen, you can monitor the following.
- Data registers (D)

- Shared registers (R)

Extended shared registers (ER)

Link registers (W)

[] e-RT3 Web Maintenancs %

€ = C | [192.168.0.1/web/WebTool/devmon_page.html?unit=08slot=1&id=RP70 By =

YOKOGAWA e:A13 Plus
Home Device Monitor CPU Settings Manuals About

[F3RP70-2L] (Unit:0 Slot:1)

Select modu\e:‘ F3RP70-2L Y | Monitor:‘ Data register (D) v ‘ Start address:ijﬂ
ADDRESS COMMENT DATA EDIT
D00001 15863 Write
D00002 30057 Write

D00003 5805 | [write | =
D00004 -15963 | || Write |
D0000S 12637 Write
D00006 -4096 Write
DO0007 -16154 | || write |
D00008 -31065 | || Write |
D00009 24406 Write
D00010 15017 Write
D0O0011 10008 | || write |
D00012 4718 | || Write |
D00013 7283 Write
D00014 26748 | Write
D00015 -11079 | || write |
D00016 -12079 | || wite |
D00017 -30700 Write
D00018 -10285 | Write
D00019 17214 | || write |
D00020 2037 | [Write |

Figure A2.3.8 Register device monitor screen

The device monitor screen can display 64 devices at once.
To change the displayed devices, input the address number to be displayed at the
first line into the [Start address] input field, then click the [Change] button.

YOKOGAWA e:A13 Plus
Home Device Monitor CPU Settings Manuals About

[F3RP70-2L] (Unit:0 Slot:1)

Select module:| F3RP70-2L v Monitor:| Data register (D) v | Start address:

ADDRESS COMMENT DATA EDIT

D00065 -15150 [|| wirite |
D00066 31083 [write |
D00067 15407 [write |
D00068 6595 [write |
D00069 -9061 [write |
D00070 8704 [write |
nonnzi -9106 ['rrite |

Figure A2.3.9 Changing addresses

The [COMMENT] column in the table displays the device comment defined by the
user. Regardless of the selection for [Display Language], the comment will be
displayed in the language the user used to define it.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-16

The [DATA] column displays the current value. The word length value is displayed
as a signed decimal.

Also, you can input any value into the [EDIT] column's input field and click [Write] to
change the setting value.

Note

In order to change a setting value, you must login to the Web Maintenance Tool on
the CPU settings screen.

For details about device comments, refer to "A2.3.3 Using and installing comment
file".

D00001 -10000 | -10000
D00002 -30957 Wiite
D00003 5805 Wiite
D00004 -15963 Wiite
D0000S -12637 Wiite
D00006 -4096 Wirite
nonnn_s -1AR154 Whilritm

Figure A2.3.10 Changing the setting value

If you input a value outside the specified range, an error message appears.

The page at XXX X0 X0 XXX says:

Invalid setting value.

Figure A2.3.11 Error message

Tl 34M06T02-02E Mar. 31, 2021-00

A2-17

A2.3.2

/O device monitor screen

Select an 1/0 module from the module configuration to display that I/O module's
monitor screen. On the 1/O module monitor screen, you can monitor the following
depending on the module type.

- Input relays

- Output relays

- Internal registers

If there is a user comment file, the comments are quoted and displayed. For an
advanced I/0O module, if there is no user comment file, the system comments are
quoted from the module definition file and displayed.

The top page is the device monitor screen for I/O relays. To change the display,
select from the [Monitor] pull-down menu.

Note

To display the module selection screen, click [Device Monitor] in the navigation
menu, or click the back button in your browser's menu bar.

H 1/O relay monitor

If [Input relay] or [Output relay] is selected for [Monitor], the screen displays the
monitor for the I/O module's input or output relays.

The [COMMENT] column displays user comments about the module's position and
model name.

If there is no user comment and the system has advanced I/O module definition
information, the system's comments are displayed.

] e-RT3 Web Maintenance = %
weblool

&~ C [} 192.168.0.1/we evmon_page.htmi?unit=08slot=58&id=RZ91 B —
YOKOGAWA eA13 Plus
Home Device Monitor CPU Settings Manuals About
[F3RZ91-0F] (Unit:0 Slot:5)
Select module:| F3RZ91-0F v 1Munitor:i Input relay (X) v ;
CADD 3 UM =N - = L
.XOOSOI Receive Completed -| ON |. | OFF |
X00502 Send Completed IE, ‘EI
X00503 Set Comm. Mode Completed | ON | | OFF |
X003504 Read Comm. Mode Completed | ON 7| ;.
X00505 Initialize Recelve Buffer Compl. ,T| ‘Fi
X00506 Send Break Completed |H7| ‘.C?Ti
X00507 Receive Error ‘Ei ‘EI
X00508 Send Error | on | [OFF |
X00509 Set Comm. Mode Error |LON | \Ei
X00510 [Lon | [oFF]
X00511 [on | [oFF]
X00512 [on | f‘_=F|
X00513 [on | [oFF |
X00515 [on | [oFF]
X00516 .£| E.
X00517 [on | [oFF]
X00518 [on | [oFF]
X00519 ,E; ‘E,
X00520 [Lon | [oFF] 2

Figure A2.3.12 1/O device monitor screen

Tl 34M06T02-02E Mar. 31, 2021-00

A2-18

The [DATA] column indicates if a device is on or off. For output relays, you can also
use the on/off buttons in the [EDIT] column to turn a device on or off.

Note

In order to turn a device on or off, you must login to the Web Maintenance Tool on
the CPU settings screen.

ADDRESS COMMENT DATA EDIT
Y00533 Fead Received Data Completed OFF
Y00534 Request to Send OFF
Y00535 Req. to Set Comm. Mode
Y00536 Req. to Read Comm. Mode
¥00537 Req to Initialize Receive Buffer
Y00538 Req. to Send Break OFF

Figure A2.3.13 Output relay monitor

B Advanced register monitor

If [Internal register] is selected for [Monitor], the screen displays the monitor for the
advanced I/0O module's internal registers.

The [COMMENT] column displays user comments about the module's position and
model name.

If there is no user comment and the system has advanced I/O module definition
information, the system's comments are displayed.

[&-RT3 Web Maintenance = %

€ - C |[)192.168.0.1/web/WebTool/devmon_page.html?unit=08&slot=5&id=RZ91 b
YOKOGAWA e-RT3 Plus
Home Device Monitor CPU Settings Manuals About
[F3RZ91-0F] (Unit:0 Slot:5)
Select mcdu\e:| F3RZ91-0F v ‘Monitor:‘ Internal register v ‘Start address:irﬂ | Change
ADDRESS COMMENT DATA EDIT
0001 Send Data so000 | || Wite
0002 Send Data s0000 | |[write
0003 Send Data $0000 | || write | =
0004 Send Data so000 | [wnte]
0005 Send Data $0000 l—\
0006 Send Data $0000 Write
0007 Send Data $0000 | || write |
0008 send Data soo00 | |[write]
0009 send Data sooo0 | |[wite
0010 Send Data s0000 | [write
0011 send Data $0000 | | write |
0012 send Data s0000 | || Wiite]
0013 Send Data s0000 | |[wite]
0014 Send Data 0000 | |[write
0015 Send Data s0000 | || write |
0016 send Data soo00 | || wnte|
0017 Send Data soo00 ||| wiite]
0018 Send Data sooo0 | [write
0019 Send Data 30000 | HWme|
0020 Send Data s0000 | |[wiite] -

Figure A2.3.14 Advanced register monitor screen

Tl 34M06T02-02E Ma

=

. 31, 2021-00

A2-19

The register device monitor screen can display 64 devices at once.
To change the displayed registers, input the address number to be displayed at the
first line into the [Start address] input field, then click the [Change] button.

YOKOGAWA

Home

["‘ s

Device Monitor

[F3RZ91-0F] (Unit:0 Slot:5)

Select module:

0063
0066
0067
0068
0069
0070
nn7zi

F3RZ91-0F

¥ |Monitor:| Internal register

Send
Send
Send
Send
Send
Send
Senr

Data
Data
Data
Data
Data
Data
Nata

Figure A2.3.15 Changing addresses

CPU Settings Manuals

$0000
£0000
50000
£0000
$0000
£0000
snnnn

¥ | Start address:|65

About
Change
Write
Write
Write
Write
Write
Write

Wirita

The [DATA] column displays the current value. The word length value is displayed
as a signed decimal.
Also, you can input any value into the [EDIT] column's input field and click [Write] to
change the setting value.

Note

In order to change a setting value, you must login to the Web Maintenance Tool on
the CPU settings screen.

0001
ooo2
ooo3
0004
0005
0006

nmn7

Send
Send
Send
Send
Send
Send

Cand

Data
Data
Data
Data
Data
Data

Nata

Figure A2.3.16 Changing the setting value

$2EED
0000
0000
0000
0000
0000

Catalaty]

12000

Write
Write

Wite
Write
Wite
Write

Whirite

If you input a value outside the specified range, an error message appears.

The page at XX IO KKK XXX says:

Invalid setting value.

Figure A2.3.17 Error message

Tl 34M06T02-02E

Mar. 31, 2021-00

A2-20

Note

If the user comment is not displayed, there is an error in the definition of the user
comment file. Check it and make corrections, then re-execute.

If the comment information is displayed with corrupted characters, there is an error
in the encoding specification of the saved user comment file. Save it in UTF-8

format, then re-execute.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-21

A2.3.3 Using and installing comment file

With the Web Maintenance Tool, you can create user comments for the device
monitors.

B Creation procedure
Note

Create the comment file in the ini file format.

(1) Specify the module model number and slot number.
Separate the four characters in front of the hyphen ("-") in the module model
number and the slot number where the module is installed with a comma (","),

and enclose them in brackets ("[1").
Module model number Slot number

[RP70,001]

Figure A2.3.18 Example comment file

(2) Specify a register in the module.
Input the device type and address, then input "=".
The address is expressed using zero suppression (written without Os, and

100001 results in an error).
Device type Address

[RW

IT=

Figure A2.3.19 Example comment file

For a CPU module, the following devices can be defined.
Device type Device name

Internal relay

Data register

Shared / Extended shared relay
Shared / Extended shared register
Link relay

Link register

s|r|3|jm|o|—

Tl 34M06T02-02E Mar. 31, 2021-00

A2-22

For an 1/0 module, the following devices can be defined.
Device type Device name
Input relay

Output relay

X
Y

Note

The device settings for the CPU module can be specified within the address ranges
in the device settings. For details about the setting ranges, refer to "A2.4.4 Device
setting screen".

For 1/0O modules, the actual address is stored internally depending on the installation
slot.

For example, the comment for a module installed in Slot 004 shows Y1 =
"Comment" in the ini file definition, but the actual monitor address is "Y00401".

(3) Create a comment.
Input the comment after "=". Input the comment with 32 characters and enclose
it in quotation marks (" ").

Comment

[RP70,001
[="TEST1”

Figure A2.3.20 Example comment file

(4) When you finish creating all the comments, save the file in the UTF-8
format using "UserComment.rpc” as the file name.

[RP70,001]
[T="TESTT”
[3="TESTZ”
D5="TRIALT”
D6="TRI1AL2"

Figure A2.3.21 Example comment file

(5) Store the comment file in "/media/sd/WebTool/".
Make directory for storage

mkdir -p /media/sd/WebTool
chmod 0777 /media/sd/WebTool

You should store it in the above directory, through SFTP server. You can use any
SFTP client such as Visual Studio Code described in chapter 5 or WinSCP
described in chapter 6.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-23

A2.4
A2.4.1

CPU settings

CPU settings (Top/Login) screen

This is the top page for CPU module settings.
This is also the screen where a user with CPU setting privileges can login to perform
configuration settings.

Note

General users cannot change CPU settings.
To register a new user, refer to "A2.4.2 User management screen”.

= =] b4
@ RT3 Web Maintenance Too x +
= C A RESNTUGLEE | 192.168.3.72/WebTool/cpuset_top.php w o »O
YOKOGAWA
Home Device Monitor CPU Settings Manuals About
CPU Settings CPU Settings
TOP/Login
User Management User Name Login
password

Calendar/Time

Device Settings

Operation Settings

I;igure A2.41 CPU setting; (Top_ll:ogin) screen

Input your registered user name and password, then click the [Login] button.
You can perform configuration settings after logging in.

User Name Login

Password

Figure A2.4.2 Login input fields
You can reboot the CPU module

to apply the CPU settings while
logged in.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-24

A2.4.2

User management screen

This screen is for adding and deleting user accounts which set the CPU modules.
"Administrator" is registered by default. (Default password : Administrator)

Note

In order to add or delete a user account, you must login to the Web Maintenance
Tool on the CPU settings screen.

A e * * O
YOKOGAWA

Home Device Monitor CPU Settings Manuals About

CPU Settings User Management

TOP/Lagin .
Administrator ™ [sseseens

User Management Add
Calendar/Time

Device Settings

Operation Settings

Figure A2.4.3 User management screen

To add a user account, click the [Add] button.

Input fields are displayed for the user name and password. Input the new user name
and password.

To delete a user account, click the [Delete] button to the right of the field you want to
delete.

The user account is deleted.

If writing the settings to the CPU module, click the [Apply] button.

1 Administrator 0 | [eseseses Delete
2 User | [esssasas Delete
Add
Apply

Figure 2.4.4 Adding or deleting user accounts

Tl 34M06T02-02E Mar. 31, 2021-00

A2-25

A2.4.3

Calendar / Time settings screen

This screen is for setting the date and time of the CPU module.

Note

In order to execute the calendar and time settings, you must login to the Web
Maintenance Tool on the CPU settings screen.

- *
(<] X+ =
€ C & &E 318 | 192.168 H e »O
YOKOGAWA
Device Monitor CPU Settings Manuals About
CPU Settings Date and Time Settings
TOP/Login
User Management 11
2021/3 £
Calendar/Time Sun |Mon | Tue (Wed | Thu | Fri | Sat 10
1 N ERERERE 9 3
Device Settings
? 7 [&8[9 [rwo]1 2213 N
Operstion Settings 14 |15 |16 |17 |18 |19 | 20 =
21 | 22 [23 [24 |25 | 26 | 27
28 [29 [30 [22

11:27:06

Year | 2021 |Month |3 Day |12 1 % |: |54

Figure A2.4.5 Calendar / Time settings screen

Input the date and time you want to set into the input fields displayed below the
calendar and clock, then click the [Apply] button.

2021/3
Sun |Mon | Tue {wed | Thu | Fri | Sat
1 2 % 4 5 6
7 g8 9 10 11 12 33
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

1122706

Yvear [2021 |Month 3 Day|12 | |I| ‘£| E|

Figure A2.4.6 Setting the date and time

Note

When you change the time zone of Ubuntu system, reboot the system before setting
time with this tool.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-26

A2.4.4

Device settings screen

This screen is for setting the configuration of the internal devices, shared devices,

and link devices used by the CPU.

If writing the settings to the CPU module, click the [Apply] button.

Note

In order to execute device settings, you must login to the Web Maintenance Tool on

the CPU settings screen.

Settings are enabled after the CPU module is restarted.

CPU Settings

TOP/Leogin
Device information
User Management RnALon

Calendar/Time

Data ragister (D)

Device Settings

Operation Settings
Shared relay (E)

Shared register (R)

Ext. shrd reg. (ER)

Link system aliccat

System 1
System 2
System 3
System 4
System 5
System 6
System 7

System 8

*Settings

Ext. shrd relay (EE)

@ e-RT3 Web Maintenance Tool *® +
< C A FEINTIGLGEE | 192.1683.72/WebTool/cpuset_device.php
YOKOGAWA
Home

CPU Settings Manuals

Device Settings

Use Points
85535
85535

Range

1024 1-
2048] 2
3072

on ® automatic Manual

Slot Link relay (L)
No. uUse Points Range

are enabled after restarting the devic

Use Points

W O

About

Range Ps Range

0
0
o
0

Link register (W)
Range

[
[

0

Figure A2.4.7 Device settings screen

Tl 34M06T02-02E Mar. 31, 2021-00

A2-27

B Internal devices
This sets the internal relays

Internal deviCces

Device information

and registers.

destination ¥ RAM SRAM
Use Points Range
Internal relay (I} | |55535 1 - 65536
Data register (D) | |65535 1 -65535
Figure A2.4.8 Internal devices
Table A2.4.1 Settings for internal devices
Item Description Range
Device information destination | Select RAM or SRAM. RAM/SRAM
Internal relay () / Use Sets whether to use the internal relay or not.
Note]
If you unselect [Use], you cannot input [Points].
Internal relay (1) / Points Sets the number of internal relay points used.
Note
0 to 65536
Set the internal relay in units of 32 points.
Example settings: 32, 64, 96, 128...
Data register (D) / Use Sets whether to use the data register or not.
Note]
If you unselect [Use], you cannot input [Points].
Data register (D) / Points Sets the number of data register points used.
Note
0 to 65536

Set the data register in units of 2 points.
Example settings: 2, 4, 6, 8...

Tl 34M06T02-02E

Mar. 31, 2021-00

A2-28

Inter-CPU shared devices
This sets the shared relays and shared registers.

Ps Range Ps Range Ps Range Ps Range

Shared relay (E) 512 |[1512 512 |[513-1024 [[512 ||10251536 |[512 |[1537-2048
Shared register (R) |256 (|1-255 256 ||257-512 256 ||513-768 256 |[769-1024
Ext. shrd relay (EE) |512 512 ||2561-3072 ||512 |[3073-3584 ||512 |[3585-4006
Ext. shrd reg. (ER) 758 766 ||1793:2560 ||768 |[2561-3328 ||768 |[3320-4006

Figure A2.4.9 Inter-CPU shared devices

Table A2.4.2 Settings for inter-CPU shared devices

Item Description Range
Shared relay (E) Sets the range of the CPU shared relay.
Note
Set the shared relay so that the total number of points for
CPUs 1 to 4 comes to a range of 0 to 2048. 0 to 2048

Also, set the shared relay in units of 32 points.
Example settings: 32, 64, 96, 128...

Shared register (R) Sets the range of the CPU shared register.

Note

Set the shared register so that the total number of points for
CPUs 1 to 4 comes to a range of 0 to 1024. 0to 1024

Also, set the shared register in units of 2 points.

Example settings: 2, 4, 6, 8...

Ext. shrd relay (EE) Sets the range of the CPU extended shared relay.

Note

Set the extended shared relay so that the total number of
points for CPUs 1 to 4 comes to a range of 0 to 2048. 0 to 2048

Also, set the extended shared relay in units of 32 points.
Example settings: 32, 64, 96, 128...

Ext. shrd reg. (ER) Sets the range of the CPU extended shared register.

Note

Set the extended shared register so that the total number of
points for CPUs 1 to 4 comes to a range of 0 to 3072. 0 to 3072

Also, set the extended shared register in units of 2 points.

Example settings: 2, 4, 6, 8...

Tl 34M06T02-02E Mar. 31, 2021-00

A2-29

A2.4.5

Operation settings screen

This screen is for setting the configuration of the CPU module's peripheral services
(M command server, FL-net link refresh, higher-level link service).
If writing the settings to the CPU module, click the [Apply] button.

Note

In order to execute operation settings, you must login to the Web Maintenance Tool
on the CPU settings screen.
Settings are enabled after the CPU module is restarted.

YOKOGAWA

Home

CPU Settings

TOP/Login

Calendar/Time

Device Settings

User Management

Operation Settings

192.168.3.72/WebTo.

CPU Settings

Operation Settings

Wait time 10

Process execution priority |1

I;ig_ur-e_A2.4.-;I_0 Bﬁg-r-étion settings screen

B M command server start-up settings

Wait time

- ot ot

cattinas

Manuals

About

ticks Check Operating Status

{1: Low to 99: High

1: Low to 95: High)

100 ticks

Figure A2.4.11 M command server start-up settings

Table A2.4.3 M command server start-up settings

wor o »O

Item

Description

Range

Wait time

Sets the start-up wait time for the M command server.

110 100

Tl 34M06T02-02E

Mar. 31, 2021-00

A2-30

Higher-level link service (

Higher-level link se

cerr

Process execution priority

Ethe

rnet) start-up settings

L A i |

{1: Low to 99: High)

Figure A2.4.12 Higher-level link service (Ethernet) start-up settings

Table A2.4.4 Higher-level |

ink service (Ethernet) start-up settings

Item Description Range
Process execution priority Specifies the process execution priority for the higher- 110 99
level link service (Ethernet).
B Higher-level link service (serial port) start-up settings

Higher-level link service (serial port) start-up

Process execution pricrity |99 {1: Low to 99: High)

Communication baud rate | 115200 ¥ | bps

Use check sum Yes LN

Use end character 8 vac Mo

Terminal mode settings Yes LN

Figure A2.4.13 Higher-level link service (serial port) start-up settings
Table A2.4.5 Higher-level link service (serial port) start-up settings
Item Description Range

Process execution Specifies the process execution priority for the higher-level 11099

priority link service (serial port).

Communication baud Selects the communication baud rate. 9600/19200/

rate 38400/57600/
115200

Use check sum Specifies whether to use the check sum or not. Yes / No

Use end character Specifies whether to use the end character or not. Yes / No

Terminal mode settings Specifies whether to use the terminal mode or not. Yes / No

Tl 34M06T02-02E

Mar. 31, 2021-00

A2-31

A2.5

Manual display

On the manual screen, you can display PDF documents for manuals on the
Web Maintenance Tool.

Note

If the execution environment does not have a function for viewing PDF data
(browser plug-in or application for viewing PDFs), then you cannot display the PDF

documents.

[] -RT3 Web Maintenance ~ X

YOKOGAWA

Home

<« C' | [1 192.168.0.1/web/WebTool/manual.php

e-RT3 Plus

Device Monitor

CPU Settings

Select Manual...

Manuals

About

ol =

Figure A2.5.1 Manual screen

Tl 34M06T02-02E

Mar. 31, 2021-00

A2-32

A2.5.1 Installing manual files
(1) Make directory for storage

mkdir -p /media/sd/WebTool/manual
chmod 0777 /media/sd/WebTool/manual

(2) Store the document's PDF data.

You should store them in the above directory, through SFTP server. You can use any
SFTP client such as Visual Studio Code described in chapter 5 or WinSCP
described in chapter 6.

Note

Use only single-byte alphanumeric characters for the file names of the PDF data
stored in the directory.

Tl 34M06T02-02E Mar. 31, 2021-00

A2-33

A2.5.2 Displaying the manuals
B Display method

Click [Manuals] in the Navigation menu to display the manuals screen.
From the pull-down menu, select the PDF document you want to display.

IM34MO0E6M52-01E_003.pdf v

Select Manual...
IM34MO6M52-01E_003.pdf
IM34MOBM52-01_004 pdf

— e-KiJ LFU Modauie (rokF Fi...

Figure A2.5.2 Pull-down menu for selecting a document

Note

If a PDF document's file name is not displayed in the pull-down menu, there is either
an error in the specification of the directory on the SD card
(/media/sd/WebTool/manual), or the file itself is invalid.

Check the file and the storage location.

If the PDF document is large, it may take some time for until it is displayed.

@ RT3 Web Maintenance %+
< C A FESATLGLAR | 192.1683.72/WebTool/manualphp * O :
YOKOGAWA
Home Device Monitor CPU Settings Manuals About
IM34M0EM52-01E_003 pdf v Open new

window

= «RT3 CPU Module (F3RPTEL. 1 /52

User's
Manual

e-RT3 CPU Module (F3RP70)
Hardware Manual

1M 34MOEMS2-01E

Applicable Product
Model Name

Figure A2.5.3 Displayed PDF document

Tl 34M06T02-02E Mar. 31, 2021-00

A2-34

B Useful functions

Open new window function
Click the [Open new window] button on the top-right of the PDF document display to

display the PDF document in a separate window.

This function enables you to display PDF documents even if the browser in your
environment does not support PDF display plug-ins (such as a Macintosh or
smartphone).

Note

If you cannot display a PDF document, check if a PDF viewer is installed.

3RP7O)

User's
Manual

e-RT3 CPU Module (F3RP70)
Hardware Manual

Applicable Product
Modet
FARFTO-ZL
FIRPT11R
FIRPT1-ZL

MName
O5-free CPU module
CPU module for Linux
CPU module for Linux

Figure A2.5.4 Open new window function

Tl 34M06T02-02E Mar. 31, 2021-00

Rev-1

Revision Information

Title : Ubuntu Image for F3RP70 User’s Guide
Document No. : Tl 34M06T02-02E

Mar. 2021 / 2nd Edition
Add chapter 7
Add appendix 1 and 2
Correction of mistake

Apr. 2020 / 1st Edition
New publication

B For Questions and More Information
If you have any questions, you can send an E-mail to the following address.
E-mail: plc_message@cs.jp.yokogawa.com
B Written by
Yokogawa Electric Corporation
B Published by
Yokogawa Electric Corporation
2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, JAPAN

TI 34M06T02-02E 2nd Edition: Mar. 31, 2021-00

	Ubuntu Image for F3RP70User’s Guide
	Contents
	Introduction
	1. F3RP70-2L
	1.1 Overview
	1.2 Ubuntu image

	2. Writing the Ubuntu image file to theSD memory card and startup
	2.1 Procedure overview
	2.2 The SD memory card for starting
	2.2.1 Specifications of the Ubuntu image
	2.2.2 User settings
	2.2.3 Network settings

	2.3 Procedure for writing to the SD memorycard
	2.3.1 Environment installation
	2.3.2 How to write to the SD memory card

	2.4 Starting from the SD memory card
	2.4.1 Procedure of startup
	2.4.2 Procedure of log in to Ubuntu
	2.4.3. Enable the sudo command

	3. e-RT3 I/O module configurationservice
	3.1 Functional overview
	3.2 Usage
	3.2.1 Setting file
	3.2.2 Working with the daemon

	3.3 Setting file in detail
	3.3.1 Digital input module
	3.3.2 Digital output module
	3.3.3 Analog input module
	3.3.4 Analog output module
	3.3.5 High-speed data acquisition module
	3.3.6 Temperature monitoring module

	4. F3HA12 data acquisition service
	4.1 Functional overview
	4.2 Usage
	4.2.1 Working with the daemon
	4.2.2 Data acquisition

	4.3 API

	5. Application development withPython
	5.1 Development method
	5.2 Remote development with Visual StudioCode
	5.2.1 Overview
	5.2.2 Environment creation procedure
	5.2.3 Usage

	5.3 Remote development with JupyterNotebook
	5.3.1 Overview
	5.3.2 Environment creation procedure
	5.3.3 Usage

	5.4 How to access the M3IO module
	5.4.1 Input output data of IO module
	5.4.2 Calling C/C++ library functions from Python

	5.5 Sample program

	6. Application development withC/C++
	6.1 Host development with F3RP70-2L
	6.1.1 Usage
	6.1.2 Using the e-RT3 -specific API functions

	7. Overlay Filesystem
	7.1 Overview
	7.1.1 OverlayFS overview
	7.1.2 Overview of procedures

	7.2 Description of OverlayFS
	7.3 Enter settings
	7.3.1 Preparing the operating environment
	7.3.2 Configuring OverlayFS
	7.3.3 Clearing OverlayFS settings

	7.4 Usage precautions

	Appendix1. I/O Module Access Library
	A1.1 List of APIs
	A1.2 List of API error codes
	A1.3 Receiving interrupts and alarms
	A1.4 How to receive signals (inter-processcommunication)
	A1.5 API reference
	A1.5.1 I/O module
	A1.5.2 CPU module
	A1.5.3 PLC device
	A1.5.4 System administration
	A1.5.5 RAS
	A1.5.6 WDT

	Appendix2 Web Maintenance Tool
	A2.1 Before Use
	A2.1.1 Overview
	A2.1.2 Operating environment
	A2.1.3 Setup and start-up

	A2.2 Screen configuration and basic functions
	A2.2.1 List of functions
	A2.2.2 Portal screen (Start-up screen)
	A2.2.3 Main screen
	A2.2.4 Changing languages

	A2.3 Device monitor (Module selection screen)
	A2.3.1 CPU module monitor screen
	A2.3.2 I/O device monitor screen
	A2.3.3 Using and installing comment file

	A2.4 CPU settings
	A2.4.1 CPU settings (Top/Login) screen
	A2.4.2 User management screen
	A2.4.3 Calendar / Time settings screen
	A2.4.4 Device settings screen
	A2.4.5 Operation settings screen

	A2.5 Manual display
	A2.5.1 Installing manual files
	A2.5.2 Displaying the manuals

	Revision Information

